
iii 

 

ABSTRACT 

We investigated the dynamics of attached and free-living bacterial abundance 

over a period of 18 months in tropical coastal waters of Malaysia. We measured at both 

oligotrophic coastal water (Port Dickson) and eutrophic estuary (Klang), and 

hypothesized that attached bacteria are predominant in eutrophic waters. We also 

addressed whether attached and free-living bacteria differ phylogenetically. We found 

that bacterial abundance was higher at Klang than Port Dickson (Student’s t-test: t = 

4.87, df = 19, P < 0.001). Attached bacteria also formed a large fraction of the total 

bacteria at Klang (75 ± 13%) relative to Port Dickson (56 ± 22%), and showed 

preference for chlorophyll a based particles rather than total suspended solids. The 

bacterial community structure was clearly different between the two stations but was 

similar between the attached and free-living bacterial population.  Our results showed 

the importance of attached bacteria in eutrophic water where they could play a major 

role in carbon and nutrient cycling. 
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ABSTRAK 

Kami mengkaji dinamik kelimpahan bakteria yang berkoloni di zarah-zarah dan 

hidup bebas selama 18 bulan di pantai tropika Malaysia. Kami mengukur di pantai 

oligotrofik (Port Dickson) dan muara eutrofik (Klang) dan mengadakan hipotesis 

bahawa bakteria berkoloni di zarah-zarah adalah predominan di air eutrofik. Kami juga 

menunjukkan sama ada bakteria yang berkoloni di zarah-zarah dan hidup bebas berbeza 

secara filogenetik. Kami mendapati kelimpahan bakteria adalah lebih tinggi di Klang 

daripada Port Dickson (Student’s t-test: t = 4.87, df = 19, P < 0.001). Bakteria yang 

berkelompok di zarah-zarah juga membentuk satu pecahan yang besar dari jumlah 

bakteria di Klang (75 ± 13%) relatif dengan Port Dickson (56 ± 22%), dan 

menunjukkan keutamaan pada zarah-zarah berasaskan klorofil a daripada jumlah 

pepejal terampai. Struktur komuniti bakteria adalah berbeza di antara kedua-dua stesen 

tetapi adalah serupa di antara populasi bakteria berkoloni di zarah-zarah dan hidup 

bebas. Keputusan kami menunjukkkan bakteria berkoloni di zarah-zarah amat penting 

di air eutrofik di mana mereka memainkan peranan utama dalam kitaran karbon dan 

nutrisi. 
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