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ABSTRACT 
 

With the introduction of fractional calculus, this study proposes two automatic 

segmentation methods which are based on nonlinear Active Contour Model (ACM) for 

medical image segmentation. Before that, a semi-automated approach is developed which is 

based on Mathematical Morphology function to overcome the gap problems. Medical 

images are classified as having low in quality due to its level of noise and level of intensity 

inhomogeneity. These characteristics of medical images create problems of over 

segmentation and local minima during the segmentation process that leads to inaccurate 

segmentation. Therefore the study proposes two automated methods to overcome those 

problems in providing successful medical image segmentation. The first proposed method 

is designed using the collaboration of fractional function and sinc method. Our first 

method, Fractional Sinc Wave method (FSW) ACM, managed to reduce the over 

segmentation problem thus provide successful segmentation. The fractional function 

provides rapid, dynamic and bending effect capability to the contour to evolve towards the 

object. On the contrary, the sinc wave method with the interpolation capability, support the 

fractional calculus in constructing new data points within the current data points. The 

method shows good potential in providing an improved segmenting where the over 

segmentation problem is reduced However, the method did not managed to provide 

accurate boundary segmentation on some of the medical images. This problem is then 

overcome by our second method namely Fractional Gaussian Heaviside (FGH) ACM. We 

introduce two importance techniques which are Adaptive Fractional Gaussian Kernel 

(AFGK) and Fractional Differential Heaviside (FDH). The introduction of Adaptive 

Fractional Gaussian Kernel (AFGK), offers an excellent enhancement process where the 
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inhomogeneous objects in regions are now more accurately classified. The proposed 

Fractional Differential Heaviside (FDH) provides the nonlinear protecting capability and 

produce extraction of accurate local image information. The collaboration of AFGK and 

FDH via ACM produces a method that provides accurate boundary segmentation on four 

different medical image modalities. In order to access accuracy of segmentation on medical 

images, two types of evaluations were conducted. The first evaluation is based on 

quantitative evaluation where the metric of accuracy is stressed on. It was found that, the 

metric of accuracy for all images used in the experiments were more than 90%. The second 

evaluation is based on visual interpretation where the FSW ACM and FGH ACM were 

compared to other methods of ACM. It is noted that the accuracy produced by both 

methods are better than others.  
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ABSTRAK  

Kajian ini memperkenalkan dua kaedah pembahagian keatas imej-imej perubatan secara 

automatic berdasarkan kaedah Nonlinear Active Contour Model dengan menggunakan 

konsep Fractional Calculus. Di awal kajian, konsep Mathematical Morphology telah pun di 

analisis dan operasi nya di guna pakai untuk pembangunan kedua kaedah ini. Dua 

permasaalah pada imej perubatan telahpun dikenalpasti iaitu noise and intensity 

inhomogeneity. Noise adalah signal yang tidak diperlukan manakala intensity 

inhomogeneity adalah taburan intensity yang tidak sekata pada imej perunatan tersebut. 

Kaedah yang diperkenalkan menggunakan teknik pencilinan yang dapat melicinkan imej 

dan dalam masa yang sama megurangkan jumlah noise. Kaedah yang pertama direkabentuk 

menggunakan teknik Fractional Sinc Wave untuk membahagikan imej perubatan dengan 

baik dalam masa yang sama mengurangkan intensity inhomogeneity. Ini dapat 

mengurangkan over sampling. Konsep fractional di reka didalam keseluruhan (global) dan 

sebahagian (local) pada ACM. Kekuatan fractional iaitu berulang-ulang memberikan 

contour bergerak lebih pantas dan berkelok-kelok. Sebaliknya, sinc wave membantu 

fractional calculus didalam menyediakan set data yang baru. Ini memberikan hasil 

pembahagian yang bagus. Walaubagaimanapun, kaedah ini tidak member hasil yang tepat 

pada pembahagian objek dari latar belakang nya. Kaedah kedua yang diperkenalkan masih 

berlandaskan konsep fractional calculus. Kaedah ini memperkenalkan dua teknik iaitu 

Adaptive Fractional Gaussian Kernel (AFGK) dan Fractional Differentiate Heaviside 

(FDH). Teknik AFGK adalah untuk pelicinan imej dan teknik FDH adalah untuk 

menarikan local image information. Gabungan antara AFGK dan FDH menyediakan satu 

kaedah yang baik di mana pembahagian yang tepat telah diperolehi. Untuk menilai 
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keberkesana kedua-dua kaedah yang direkabentuk, dua jenis penialaian di lakukan. 

Penilaian tersebut adalah penilaian kuantitatif dan penilaian perbandingan. Penilaian 

kuantitatif dilakukan untuk menilai metric ketepatan dimana didapati ketepatan kedua 

kaedah didalam pembahagian adalah melebihi 90%. Penilaian yang kedua adalah 

membandingkan hasil kedua-dua kaedah dengan kaedah lain. Didapati, ketepatan kedua-

dua kaedah adalah lebih baik dari kaedah yang lain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Univ
ers

ity
 of

 M
ala

ya



vii 
 

 
 

ACKNOWLEDGEMENT 
 

First of all, I would like to show my gratitude to the current Dean of the faculty and the 

office staff for providing support in numerous ways during this research study, especially in 

conducting camps to provide knowledge in completing the research writing. It is an honour 

to me to thank the former Dean of the faculty, Prof. Dr. Siti Salwah for her initial 

encouragement and directions provided during this study. I would to express my warmest 

thanks to Dr. Rabha Al Waeil, lecturer from Institute of Mathematics of University Malaya 

in providing guidance to write the Mathematics equation in completing the study. A 

warmest thanks to Dr. Hamid Al Jalab, lecturer from faculty Science Computer and 

Information Technology of University Malaya in giving lesson and knowledge on Matlab 

programming. This thesis would not have been possible without the help from Dr. 

Norintan, gynecologist specialist from Columbia Hospital, Seremban on her support and 

knowledge in the guidance on interpreting various medical images.  

 

Most importantly and especially, I am heartily thankful to my main supervisor Assoc Prof 

Dr Nor Aniza Abdullah and my previous supervisor, Prof Dr Roziati Zainuddin. Their 

encouragement, guidance, corrections, reviews and motivations from initial to the final 

thesis compilation ensure the success of the study. I would like to put forward my gratitude 

to my family especially my husband in understanding my responsibility in completing the 

thesis. Lastly, a special thanks to my father in helping me financially and all the supports 

throughout the study. 

 

 

Univ
ers

ity
 of

 M
ala

ya



viii 
 

TABLE OF CONTENT 

CHAPTER 1…………………………………………………………………………………1 

INTRODUCTION .................................................................................................................. 1 

1.1 Research Motivation ................................................................................................ 2 

1.2  Medical Image Segmentation .................................................................................. 5 

1.2.1  Medical Imaging Modalities ............................................................................ 5 

1.2.2 Medical Image Characteristics………………………………………………..8 

1.3 Problem Description ................................................................................................ 9 

1.4 Aim and Objectives ............................................................................................... 10 

1.5 Focus and Scope .................................................................................................... 10 

1.6 Research Questions ............................................................................................... 11 

1.7 Research Methodology…………………………………………………………...12 

1.8 Research Contributions ......................................................................................... 14 

1.9 Organization of the Thesis ..................................................................................... 15 

CHAPTER TWO.................................................................................................................. 18 

SURVEY METHODS OF MEDICAL IMAGE SEGMENTATION .................................. 18 

2.1 Image Segmentation Methods ............................................................................... 18 

2.1.1 Threshold-based method ................................................................................ 19 

2.1.2 Edge-detection Technique .............................................................................. 19 

2.1.3 Region-based method ..................................................................................... 20 

2.1.4 Curve evolution-based method....................................................................... 21 

2.2 Medical Image Segmentation Methods ................................................................. 23 

2.2.1  Active Contour Model .................................................................................... 23 

2.2.1.1 The concept of the Snake model ................................................................... 24 

2.2.2 Level Set Method ........................................................................................... 28 

2.2.3 Edge-Based Active Contour Model ............................................................... 30 

Univ
ers

ity
 of

 M
ala

ya



ix 
 

2.2.4 Region-Based Active Contour Model ............................................................ 35 

2.2.5 Hybrid Model of Active Contours ................................................................. 40 

2.3  Smoothing Technique: Gaussian Filtering ............................................................ 43 

2.4 Nonlinear Diffusion Function ................................................................................ 45 

2.4.1  Contour Evolution via Nonlinear Diffusion ................................................... 47 

2.8 Summary ................................................................................................................ 50 

CHAPTER 3 ......................................................................................................................... 52 

RESEARCH METHODOLOGY ......................................................................................... 52 

3.1  Literature Investigation and Data Gathering Process ............................................ 52 

3.2  Design and Development....................................................................................... 54 

3.2.1  Binary Morphological Active Contour Model ............................................... 54 

3.2.2  Fractional Sinc Wave Active Contour Model ................................................ 55 

3.2.3   Fractional Gaussian Heaviside Active Contour Model .................................. 57 

3.3  Experiments and Evaluation .................................................................................. 58 

3.3.1 Quantitative Evaluation Method .................................................................... 59 

3.4 Summary ................................................................................................................ 61 

CHAPTER 4 ......................................................................................................................... 62 

BINARY MORPHOLOGY OF  ACTIVE CONTOUR MODEL ....................................... 62 

4.1  Mathematical Morphological Operations in Image Segmentation ............................... 62 

4.2  New Morphological Based Method in Active Contour Model ............................. 65 

4.2.1  Dilation Operation .......................................................................................... 67 

4.2.2   Region filling.................................................................................................. 69 

4.2.3  Erosion Operation .......................................................................................... 70 

4.3   Binary Morphological Model ................................................................................ 70 

4.5  Experiment and Result .......................................................................................... 72 

4.6  Summary ................................................................................................................ 76 

Univ
ers

ity
 of

 M
ala

ya



x 
 

CHAPTER 5 ......................................................................................................................... 77 

FRACTIONAL SINC WAVE METHOD WITH ACM ...................................................... 77 

5.1 Introduction ........................................................................................................... 78 

5.2  Fractional Sinc Wave Active Contour Model ....................................................... 79 

5.3  Algorithm Design of the Fractional Sinc Wave ACM .......................................... 81 

5.3.1  Algorithm Implementation ............................................................................. 86 

5.4  Experiments and Results ....................................................................................... 89 

5.4.1  Dataset ............................................................................................................ 89 

5.4.2  Experimental Procedures and Results ............................................................ 91 

5.4.2.1 Medical Images with Inner and Outer Parts .................................................. 94 

5.4.2.2 Medical Images with Collections of Individual Cells ................................. 101 

5.4.2.3 Outlining Object in Ultrasound Medical Images ........................................ 104 

5.5   Benchmarking Evaluation on FSW ACM ........................................................... 106 

5.5.1  Experimental Results ........................................................................................ 106 

5.6  Discussion ............................................................................................................ 119 

5.7  Summary .............................................................................................................. 121 

CHAPTER 6 ....................................................................................................................... 123 

FRACTIONAL GAUSSIAN HEAVISIDE  ACTIVE CONTOUR MODEL ................... 123 

6.1  Introduction ......................................................................................................... 124 

6.1.1  Hybrid methods with Local Image Information ........................................... 125 

6.2  Fractional Gaussian Heaviside Active Contour Model ....................................... 128 

6.2.1  The Design of Fractional Gaussian Heaviside ............................................. 128 

6.2.1.1   Adaptive Fractional Gaussian Kernel ....................................................... 129 

6.2.1.2 Fractional Differentiate Heaviside .............................................................. 133 

6.2.1.3 Energy minimization and Level Set Method............................................... 135 

6.3  Implementation and Demonstration .................................................................... 137 

Univ
ers

ity
 of

 M
ala

ya



xi 
 

6.4    Experimental Result and Discussion ................................................................... 140 

6.4.1  Experiment on medical image modalities .................................................... 141 

6.5  Benchmarking on Fractional Gaussian Heaviside Method ................................ 146 

6.5.1  Benchmarking with Fractional Sinc Wave method...................................... 146 

6.5.2    Benchmarking with methods using local image information ......................... 153 

6.6   Discussion ............................................................................................................ 163 

6.7   Summary .............................................................................................................. 165 

CHAPTER 7 ....................................................................................................................... 166 

CONCLUSION .................................................................................................................. 166 

7.1  Research Findings ............................................................................................... 166 

    7.2     Future Enhancement…………………………………………………………….176 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



xii 
 

LIST OF FIGURES 

Figure 1.1: Level of noise in CT scan image(a), MRI image(b) and ultrasound image(c)….9 

Figure 2.1: On the left is the initial contour and on the right is the final contour with the 

accomplishment of bending energy.................................................................... 27 

Figure 2. 2: Illustration on U shape. (a) is the U shape with the concave problem, (b) is the 

outcome from snake model and (c) is the outcome by using Gradient Vector 

Flow…………………………………………………………………………….27 

Figure 2.3: Experiments and results on medical images using active contour model without 

re-initialization. (a) is the synthetic image, (b) is the CT scan image of brain and 

(c) is the MRI image of heart. ............................................................................ 34 

Figure 2.4: Experiments and results on synthetic image of alphabets (a), CT scan image of 

brain (b) and MRI image of heart (c) using C-V method................................... 37 

Figure 2.5: Examples of medical images with intensity inhomogeneity problem. In (a) is the 

x-ray image of blood vessels, (b) is the image of MRI heart and in (c) is the 

image of microscopic of cells............................................................................. 38 

Figure 2.6: Graph for Gaussian smoothing technique……………………………………...44 

Figure 3.1: The framework of the first method which is based on semi-automated        

segmentation....................................................................................................... 55 

Figure 3.2: The framework of the proposed Fractional Sinc Wave ACM method. ............. 56 

Figure 3.3: Framework of the proposed Fractional Gaussian Heaviside ACM 

method……………….........................................................................................58 

Figure 4.1: (a) A cell image with missing edges; (b) The close up view of the missing 

edges. .................................................................................................................. 65 

Figure 4.2: The original binary image of microscopic image of cell and the dilation process

 ............................................................................................................................ 67 

Univ
ers

ity
 of

 M
ala

ya



xiii 
 

Figure 4.3: The sequence results obtained from the experiments using microscopic image; 

(a) shows the result obtained from LBF method (b-d) show the results obtained 

in sequence when implemented using the binary morphological model. .......... 73 

Figure 4.4: The inserted seeds to support the dilation process whether to expand or 

shrinking. ............................................................................................................ 74 

Figure 4.5: The sequence results obtained from the experiment using MRI image of heart; 

(a) shows the result obtained from LBF method(b-d) show the results obtained 

in sequence when implemented using the binary morphological model. .......... 75 

 Figure 5.1: Images of MRI image of heart (a) and its ground truth image in (b); Breast 

cysts of ultrasound in (c) and its ground truth image in (d)……………………93 

Figure 5.2: Images of CT scan modality comprises of abdomen at different angle, brain, 

heart and lung. .................................................................................................... 95 

Figure 5.3: Experiments and results on twelve images of CT scan modality with α = 0.7 

and  σ = 1.0. ...................................................................................................... 96 

Figure 5.4: MRI images of heart, breast, abdomen and lung. .............................................. 97 

Figure 5.5: Experiments and results on MRI images of brain with α = 0.5 and sigma of σ is 

1.0. ...................................................................................................................... 99 

Figure 5.6: Images of cells and bacteria images of microscopic images. .......................... 101 

Figure 5.7: Experiments and results on microscopic images of cells and bacteria where 

images in (a - d) is using 𝛼 = 0.7 and 𝜎 = 1.0 and images in (e – h) is using 

𝛼 = 0.5 and 𝜎 = 1.0. ....................................................................................... 102 

Figure 5.8: Images of ultrasound of liver, appendix and two images of breast cancer. ..... 104 

Figure 5.9: Experiments and results on ultrasound images by the proposed method with 

𝛼 = 0.1 and 𝜎 = 3.0. ....................................................................................... 105 

Univ
ers

ity
 of

 M
ala

ya



xiv 
 

Figure 5.10: Brain MRI image segmentation. The final results using the C–V in (a), 

SGLACM in (b) and proposed FSW ACM in (c) respectively with α=0.5 and 

σ = 1.0 for our method. ................................................................................... 108 

Figure 5.11: CT scan image of brain segmentation. The final results using the C–V in (a), 

SGLACM in (b), and proposed FSWACM  in (c) respectively with  α=0.7, 

σ = 1.0, for our method. .................................................................................. 109 

Figure 5.12: Segmentation of a second CT scan image of a brain that focus on the white 

flare. The final results using the C–V in (a), SGLACM in (b) and proposed FSW 

ACM in (c) respectively with α=0.7 and σ = 1.0 for our method. .................. 110 

Figure 5.13: Experiment on the MRI image of a heart. The final results using the C–V in 

(a), SGLACM in (b), and proposed FSW ACM in (c) respectively with α=0.5 

and σ = 1.0 for our method. ............................................................................ 112 

Figure 5.14: Experiment on another MRI image of a heart in different angle. The final 

results using the C–V in (a), SGLACM in (b), and proposed FSW ACM in (c) 

respectively with α=0.5 and σ = 1.0 for our method. ...................................... 112 

Figure 5.15: Experiment of an ultrasound image of a liver. The final results using the C–V 

in (a), SGLACM in (b), and proposed FSW ACM in (c), respectively with the 

parameter of  α=0.1 and σ is 3 for our method. ................................................ 113 

Figure 5.16: Experiments on ultrasound image of appendix. The final results using the C–V 

in (a), SGLACM in (b), and proposed FSW ACM in (c) respectively with the 

parameter of α=0.1 and σ= 3 for our method. .................................................. 114 

Figure 5.17: Experiments on ultrasound image of breast cysts. The final results using the 

C–V in (a), SGLACM in (b), and FSW ACM in(c), respectively with the 

parameter of α=0.1 and  σ= 3 for our method. ................................................. 115 

Univ
ers

ity
 of

 M
ala

ya



xv 
 

Figure 5.18: Experiments on X-ray images of thin and winding blood vessels. The final 

results using the C–V in (a), SGLACM in (b), and proposed FSW ACM in (c), 

respectively with the parameter of α=0.3 and σ = 5 for our method. ............... 116 

Figure 5.19: Experiments on the second type of blood vessel x-ray images. The final results 

using the C–V in (a), SGLACM in (b), and proposed FSW ACM in (c), 

respectively with the parameter of α=0.3 and σ =5 for our method. ................ 117 

Figure 6.1: Demonstration on synthetic image of a star. (a) is the original image. (b) is the 

outcome from FSW ACM and (c) is the outcome from FGH ACM………….137 

Figure 6.2: Demonstration on another image of a star with decreasing of intensity where (a) 

is the original image, (b) is the outcome from FSW ACM and (c) is the outcome 

from FGH ACM ............................................................................................... 138 

Figure 6.3: Demonstration on two synthetic images, (a) is the original image of a flower. 

(b) is the outcome from FSW ACM, (c) is the outcome from FGH ACM, (d) is 

the original image another synthetic image, (e) is the outcome from FSW ACM, 

(f) is the outcome from FGH ACM. ................................................................. 139 

Figure 6.4: Demonstration for the ground truth images where in (a) is the image of CT scan 

brain and the ground truth is in (b). (c) depicts the x-ray image of blood vessel 

and the ground truth is in (d)………………………………………………….141 

Figure 6.5: Segmentation outcome by FGH ACM method of on MRI brain (a – c) with 

parameter of 𝛼 = 5, CT scan images of heart (d – f) with parameter of 𝛼 = 2, 

MRI images of brain skull (g – i) with parameter of 𝛼 = 8 and CT scan images 

of brain (j –l) with parameter 𝛼 = 5. ............................................................... 143 

Figure 6.6: Segmentation outcome by FGH ACM method on MRI vessels (a – c) with 

parameter of 𝛼 = 3, CT scan images of blood vessels (d – f) with parameter of 

Univ
ers

ity
 of

 M
ala

ya



xvi 
 

𝛼 = 3, and microscopic images of bacteria/cell (g - i) with parameter 𝛼 =

5……………………………………………………………………………….145 

Figure 6.7: Segmentation outcome depicted from the FSW ACM method. MRI images of 

brain is situation at (a – c), CT scan images of heart is shown at (d – f), images 

of x-ray blood vessels is at (g – i) and images of microscopic bacteria is shown 

at (j – l). ............................................................................................................ 148 

Figure 6.8: Segmentation outcome depicted from the FGH ACM method with α=5 for MRI 

images of brain (a – c), CT scan image of heart are shown at (d – f) with α=3, 

images of x-ray blood vessels are shown at (g – i) with α=1 and images of 

microscopic bacteria is shown at (j – l). ........................................................... 150 

Figure 6.9: Segmentation results on MRI image of a brain where (a) shows the result by 

LGD method, (b) shows the result by LIC method, (c) is the results obtained by 

the LBF method, and (d) shows the result obtained on the basis of FGH ACM 

method for α=4. ................................................................................................ 153 

Figure 6.10: Segmentation results on another MRI image of brain from the top view where 

(a) shows the result by LGD method (b) shows the result by LIC method, (c) is 

the results obtained by LBF method, and (d) the result obtained on the basis of 

our method for α=5. ......................................................................................... 154 

Figure 6.11: Segmentation results on another brain image but using CT SCAN modality. (a) 

shows the result by LGD method, (b) shows the result by LIC method, (c) is the 

results obtained by LBF method, and (d) is the result obtained on the basis of 

FGH ACM method for α=5. ............................................................................. 154 

Figure 6.12: Segmentation results on a heart image of CT SCAN. (a) shows the result by 

LGD method, (b) shows the result by LIC method, (c) shows the results 

Univ
ers

ity
 of

 M
ala

ya



xvii 
 

obtained by LBF method, and (d) shows the result obtained by our method for 

α=3. .................................................................................................................. 157 

Figure 6.13: Segmentation results on a heart image of CT SCAN. (a) shows the result by 

LGD method, (b) shows the result by LIC method, (c) shows the results 

obtained by LBF method, and (d) shows the result obtained by our method for 

α=3. .................................................................................................................. 158 

Figure 6.14: Segmentation results on blood vessel from x-ray modality. (a) shows the result 

by LGD method, (b) shows the result by LIC method, (c) is the results obtained 

by LBF method, and (d) shows the result obtained on the basis of our method 

for α=1. ............................................................................................................. 159 

Figure 6.15: Segmentation results on blood vessel of an eye taken from x-ray modality. (a) 

shows the result by LGD method, (b) shows the result by the LIC method, (c) is 

the results obtained by LBF method, and (d) shows the result obtained on the 

basis of our method for α=1. ............................................................................ 160 

Figure 6.16: Segmentation results on microscopic image of bacteria. (a) shows the result by 

LGD method, (b) shows the result by LIC method, (c) is the results obtained by 

LBF method, and (d) shows the result obtained on the basis of our method for 

α=2. .................................................................................................................. 161 

Figure 6.17: Segmentation results on microscopic image of cell. The first column shows the 

result by the LGD method, the second column shows the result by the LIC 

method, the third column results obtained by the LBF method, and the last 

column shows the result obtained on the basis of our method for α=2……….162 

Figure 7.1: Segmentation on MRI image of heart with intensity inhomogeneity problem. (a) 

is the original image, (b) is the segmentation outcome by FSW ACM, (c) the 

correct segmentation outcome. ......................................................................... 172 

Univ
ers

ity
 of

 M
ala

ya



xviii 
 

 

 

LIST OF TABLES 

Table 2.1: Strengths and weaknesses of edge-based and region-based ACM. .................... 39 

Table 2.2: Several methods of hybrid ACM with it objectives and findings in medical 

image modalities. ............................................................................................... 42 

Table 5.1: The visual characteristics of medical images used in the experiments…………90 

Table 5.2: Evaluation metrics based on accuracy obtained for CT scan images. .............. 100 

Table 5.1: Evaluation metrics based on accuracy obtained for microscopic images……..103 

Table 5.4: Evaluation metrics based on accuracy obtained for ultrasound images............ 106 

Table 5.5: Summarization and comparison on time in seconds took in completing the 

segmentation process........................................................................................ 118 

Table 5.6: Summarization and comparison on time in seconds took in completing the 

segmentation process........................................................................................ 118 

Table 6.1: Summarization of accuracy percentage on MRI and CT scan images using FGH 

ACM method. ................................................................................................... 145 

Table 6.2: Summarization of accuracy percentage on x-ray and microscopic images using 

FGH ACM method. ........................................................................................... 145 

Table 6.3: Summarization of accuracy percentage on MRI, CT scan, x-ray and microscopic 

images by FSW ACM method and FGH ACM method. ................................. 152 

Table 6.4: The evaluation metric comparison for medical images among LGD, LIC, LBF 

and FGH ACM method……………………………………………………….163 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



xix 
 

 

     

LIST OF ABBREVIATIONS AND ACRONYMS 

ACM 

MoH 

WHO 

MRI 

CT 

CAT 

FGK 

FDH 

AFGK 

PDE 

LSM 

LSF 

GVF 

GAC 

LBF 

LIF 

FC 

MM 

SE 

CV 

SGLACM 

MS 

FGCV 

LIC 

LGD 

- Active Contour Model 

- Minister of Health 

- World Health Organization 

- Magnetic Resonance Imaging 

- Computed Tomography 

- Computerized Axial Tomography 

- Fractional Gaussian Kernel 

- Fractional Differential Heaviside 

- Adaptive Fractional Gaussian Kernel 

- Partial Differential Equation 

- Level Set Method 

- Level Set Function 

- Gradient Vector Flow 

- Geometric Active Contour 

- Local Binary Fitting 

- Local Image Fitting 

- Fractional Calculus 

- Mathematical Morphology 

- Structuring Elements 

- Chan & Vese 

- Selective Global and Local Active Contour Model 

- Mumford-Shah 

- Fast Global Minimization 

- Local Intensity Clustering 

- Local Gaussian Distribution  

 

 

Univ
ers

ity
 of

 M
ala

ya



 
 

1 
 

 

 

 

 

CHAPTER 1 

INTRODUCTION 
 

In modern medicine, utilization of medical imaging is often needed for physicians to 

diagnose patients’ medical conditions or illness. Nonetheless, poor quality of medical 

images and limited number of experienced radiologists (Bhavana & Krishnappa, 2015; 

Caselles, Chambolle & Novaga, 2015) can lead to inaccurate diagnosis. So it is essential to 

have a computer system that can help radiologists to accurately interpret medical images. 

However, a reliable computer system for interpreting medical images normally requires an 

accurate and robust segmentation method.  

 

Therefore the goal of this research is to devise a novel segmentation method that can 

produce accurate boundary segmentation in medical images regardless of modalities and 

anatomical structures involved. This chapter is dedicated to provide an overview of the 

intended research work. It starts with research motivation, followed by an introduction to 

fundamental issues in medical image segmentation in Section 1.2. A problem description is 

described in Section 1.3. Research aim and objectives are presented in Section 1.4, 

followed by a list of research questions. Section 1.6 gives an overview on the research 

methodology. This chapter ends with some brief descriptions of each chapter in this thesis.  
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1.1 Research Motivation 

Modern medicine often depends on medical imaging for medical diagnosis and treatment. 

Medical image modalities such as Computerized Tomography (CT) scan, Magnetic 

Resonance Imaging (MRI) and ultrasound are non-invasive examination methods that 

enable physicians to examine the inner part of human body to evaluate his or her 

physiological condition or to identify any possible occurrence of diseases such as tumors, 

cancer, or cysts.  

 

Unfortunately, every medical imaging procedure produces visual noise, and such noise 

tends to be more prevalent in certain imaging modalities than others, for instance, CT scan 

images have less noise than ultrasound images. One of the reasons for this is that procedure 

of ultrasound imaging produces speckle noises, resulting in blurry and unclear images. 

Untrained naked eye would not be able to interpret these images, and inexperienced 

radiologists may interpret the image inaccurately. This situation leads to unsatisfactory 

diagnosis and confusion among physicians involved. As a consequence, a patient needs to 

wait longer for a suitable medication or treatment to be prescribed by the physicians. On the 

contrary, an experienced radiologist will be able to interpret the image accurately despite its 

poor visual condition. Unfortunately, the rate of imaging utilization is far exceeded the 

number of qualified radiologists, for example, in the United States of America, the 

utilization rate increased by 6 percent each year while the number of new radiologists 

increased by only 2 percent each year (Bhavana & Krishnappa, 2015).  
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The research also found that the shortage of qualified radiologist was more apparent in 

developing countries. For instance, in 2004, Indonesia had fewer than 500 radiologists for 

its 220 million people, and Bangladesh only had one radiologist for every million people. 

Malaysia is also facing a shortage in the number of radiologists, as indicated by the Health 

Minister Datuk Seri Dr S. Subramaniam (Malay Mail Online, 2014). According to him, the 

shortage was due to the increasing growth of new facilities such as health clinics and 

hospitals throughout the country. 

 

The increasing use of imaging facilities and the shortage of radiologist would result in a 

long queue of patients waiting for their medical image diagnostic report. A reliable 

computer system that is able to automatically detect abnormality in medical images is 

therefore urgently needed to speed up the diagnostic process. Such system can also alert 

less experienced radiologists of any possible abnormality for further inspection of the 

suggested area. The realization of the importance of such system is evidenced when the 

medical image analysis community has become preoccupied with the problems of 

extracting clinically useful information from medical images with the assistance of 

computers (Ayache et al., 2012; Hermosillo & Faugeras, 2002; Caselles, Chambolle & 

Novaga, 2015). This is because the primary challenge the development of an automatic 

system for detecting abnormalities in medical images is to design a robust and accurate 

segmentation algorithm that can work on any modalities and anatomical structures.  

 

For the past decade, numerous methods have been proposed to accurately segment medical 

images for detecting abnormalities such as tumors or cancerous cells. Among the 

segmentation methods that have been developed, Active Contour Model (ACM) appears to 
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be the most popular for segmenting medical images (Airouche, Bentabet, & Zelmat, 2009; 

Zhang et al., 2013; Tingting Liu et al., 2014). ACM was initially developed by Kass, 

Witkin and Terpozoulos (1988) and it is classified as edge-based ACM. Even though edge-

based ACM can segment some medical images, its result is hardly satisfying (Chan & 

Vese, 2001; Li et al., 2005). This is because the technique works on image’s gradients. 

Therefore, its success depends on the visibility of edges in an image. Unfortunately, 

medical images are mostly affected by visual noises that weaken those edges. The problem 

becomes severe in certain medical images such as ultrasound in which the edges are too 

weak to actualize any objects’ boundaries.  

 

To address this deficiency, a region-based ACM was developed. The method has proven 

more successful than edge-based ACM in segmenting noisy medical images   due to it 

robustness in handling noise (Bresson, 2005; Li et al., 2007). However, apart from the 

visual noises, many medical images such as MRI and ultrasound are also impaired with 

intensity inhomogeneity problem (Li et.al., 2007; Wang et al., 2009; Li et al., 2010). 

Intensity inhomogeneity is a problem where the distribution of intensity in an image is not 

homogeneous. This condition creates an interface with various levels of intensities. 

 

Neither edge-based nor region-based ACM method alone can accurately segment medical 

images with intensity inhomogeneity (Zhang et al., 2010). In the attempt to resolve this 

problem, a combination of edge-based and region-based ACM methods were later 

employed by many researchers (Li et al., 2010; Zhang et al., 2010). Some of the hybrid 

techniques perform better than the others in segmenting certain medical images but none 

has yet able to accurately segment the object’s boundary in the presence of intensity 
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inhomogeneity without producing excessive over segmentation effect. Over segmentation is 

the process by which the objects being segmented from the background are themselves 

segmented into sub-components or sub-regions. However, the regions that are segmented 

can be classified as non-significant areas. As medical images are created by different types 

of imaging modalities therefore it is important to know about these modalities and the 

challenges they pose to medical image segmentation. The following section provides the 

information. 

 

1.2  Medical Image Segmentation 

This section comprises of two sub sections. The first sub section explains about the most 

common medical imaging modalities. The second sub section describes the visual 

characteristics of medical images produced by these modalities. 

 

1.2.1  Medical Imaging Modalities 

Medical imaging is a process of creating a visual representation of the inner parts of human 

body including organs and bones structures for clinical analysis and medical intervention 

(James & Dasarathy, 2014). There are many medical imaging modalities for capturing inner 

parts of human body for medical diagnosis and each modality has its own strengths and 

weakness. Among the common modalities used are MRI, CT scan, x-ray, and ultrasound 

imaging. 

 

MRI is a noninvasive medical assessment that helps doctors to diagnose and treat medical 

conditions. MRI uses a powerful magnetic field with radio frequency pulses to capture the 

inner part of human body, while a computer is used to display the captured organs, bone 
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and other inner body parts captured by the MRI (Maria & Sanjay, 2004). Physicians 

normally use MRI examination to diagnose or monitor treatment for conditions such as 

tumor in the chest, abdomen or pelvis, diseases of a liver, heart problems, and to determine 

the presence of a fetus in the womb.  

 

Besides MRI, CT scan imaging uses special x-ray equipment to create detailed images, or 

scan areas of the inner parts of the body. CT scan imaging is also known as computerized 

tomography or computerized axial tomography (CAT). Unlike MRI, CT scan imaging 

provides detailed and cross-sectional views of all types of body tissues.  It is known as one 

of the fastest and most accurate tools for examining human chest, abdomen and pelvis 

(Healy et al., 2011; Maria & Sanjay, 2004). CT scan is often used for detecting many types 

of cancers such as lymphoma and cancers of the lung, liver, kidney, ovary, and pancreas 

because it can provide clearer and more detailed images of organs’ tissues as compared to 

other modalities. When compared to MRI, CT scan has higher imaging resolution and less 

motion artifact due to its fast imaging speed. Therefore CT scan images contain less noise 

and the object boundary is clearer than MRI images. 

 

Besides MRI and CT scan imaging, an x-ray (radiograph) is another types of medical 

imaging. The image produced by an x-ray imaging involves exposing a part of the body to 

a small dose of ionizing radiation. X-ray is the oldest and most frequently applied medical 

imaging. It is usually used to visualize bones structures in human body.  
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Among all types of medical imaging, ultrasound imaging is the safest medical imaging.  

Ultrasound is synonyms to pregnancy where gynecologist often used to examine the growth 

of a fetus. However, ultrasound imaging can do more than just checking on a woman’s 

pregnancy. For example, ultrasound is used to examine many anatomical structures such as 

kidneys, gallbladder and spleen. Additionally, ultrasound is also used to guide procedures 

such as needle biopsies and fluid drainages (Catherine, Mindy & Maria, 2012).  

 

Ultrasound uses a device known as a transducer to send high-frequency sound waves into a 

human body. Sound waves emitted by the transducer will go through the body, reflect on 

the internal organ and are transmitted back to the ultrasound transducer to produce image 

on a monitor. Although ultrasound imaging is safe and can be used on several types of 

human body, the images it produced can only be interpreted by doctors with prior 

knowledge in ultrasound image reading. This is because the images are dark and severely 

affected with noises hence producing lots of broken edges and uneven distribution of 

intensity throughout the image. 

 

Another imaging used in diagnostic is microscopic imaging. Microscopic images are 

normally produced by electron microscopes. Microscope images are commonly used in the 

field of cancer research, drug testing, cell analyses, bacteria and many more. By analyzing 

microscopic images, expert could count blood cells or identify type of virus or bacteria of 

any diseases. But, the variation of color tones and shapes in microscopy image produces 

quantization type of noise that made the images unclear and difficult to go through the 

segmentation process (Vijay & Bhupendra, 2014). 
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1.2.2 Medical Image Characteristics 

Medical images are generally low in quality as compared to synthetic images due to their 

high level of noise and intensity inhomogeneity. Image noise is the ‘unwanted signals’ that 

are inadvertently produced by the imaging devices. It is sometimes referred to as image 

mottle that gives an image a textured or grainy appearance. The level of noise in medical 

image depends on the imaging device and the procedure involved, for instance, a CT scan 

image has less noise when compared to MRI or ultrasound images. There are many types of 

noise such as Gaussian noise, salt-and-pepper noise, shot noise and quantization noise. In 

medical images, noise leads to poor image quality which made segmentation process 

becomes difficult. 

 

Among medical images, ultrasound image contains the highest level of noise, and its noise 

type is known as ‘speckles noise’. Therefore ultrasound image usually requires 

preprocessing before it can be segmented to remove the unwanted noise and enhance 

details. Filtering and blurring techniques are among the techniques used to remove or 

reduce image noise. However, the use of image blurring for noise reduction can also reduce 

the visibility of useful image detail in an image. Figure 1.1 illustrates several example of 

image noise in CT scan, MRI and ultrasound images. The first column of Figure 1.1 depicts 

a CT scan image of an abdomen, while the second column shows an MRI image of a heart 

and the last column shows an ultrasound image of an appendix. Note that, each image 

contains different level of noise, and the ultrasound image displays the highest level of 

noise, followed by the MRI image and finally the CT scan image.  
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(a) 

 
(b) 

 
(c) 

Figure 1.1: Level of noise in CT scan image (a), MRI image (b) and ultrasound image (c). 

 

Another characteristic of medical images that distinguishes their quality is the degree of 

intensity distribution throughout the image. The distribution of intensities in medical 

images is often not homogeneous, a condition commonly known as ‘intensity 

inhomogeneity’. High level of intensity inhomogeneity in medical images will create 

leakage at object’s boundary. Boundary leakage is a problem created by weak or missing 

edges. Intensity inhomogeneity also creates complex texture in medical images. These 

problems must be addressed in order to produce accurate boundary segmentation of 

medical images.   

 

1.3 Problem Description 

Current methods of ACM are not able to produce accurate boundary segmentation of 

multimodality of medical images in the presence of intensity inhomogeneity and noises due 

to the following issues. First is edge-based ACM methods are sensitive to image noise 

therefore successful segmentation cannot be achieved due to weak or missing edges. 

Secondly, region based ACM methods are robust to noise but sensitive to intensity 

inhomogeneity which leads to over segmentation and local minima problems. Our research 

work aims to address these problems in order to produce a robust and accurate 

segmentation method for medical images. 
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1.4 Aim and Objectives 

The aim of this study is to propose a novel method that enhances ACM ability to provide 

accurate boundary segmentation of medical images even in the presence of high level of 

noise and intensity inhomogeneity in an image. The following objectives have been 

formulated to gear the research work towards achieving this aim. 

1. To develop a Fractional Gaussian algorithm for reducing image noise and preserving 

edge details. 

2. To develop the Fractional Sinc Wave ACM method for solving over segmentation 

problem in medical image with intensity inhomogeneity. 

3. To develop the Fractional Gaussian Heaviside ACM method for solving the local 

minima problem to achieve accurate boundary segmentation in the presence of high 

level of intensity inhomogeneity. 

4. To test and evaluate the proposed algorithm by measuring the accuracy, specificity 

and  the sensitivity using the database of image Clef from the year 2010 to 2012. 

 

1.5 Focus and Scope 

This study primarily focuses on medical image segmentation for various modalities 

including MRI, CT scan, X-ray, microscopic images and ultrasound images. It only 

considers two dimensional and gray scale medical images. This study used a collection of 

datasets taken from image clef database from the year 2009 to year 2012. The datasets 

contain variety of images of human’s inner parts that were captured from different angles 

by various medical imaging modalities. For example, there are MRI images of a heart, CT 

scan images of a brain, x-rays images of blood vessels, ultrasound images of a uterus, and 

microscopic images of cells. The purpose of using medical images of various anatomical 
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structures in different modalities is to enable this study to formulate an improved and robust 

technique that can successfully segment medical images, regardless of modalities and 

anatomical structures. 

 

In regards to technique being used to segment medical images, ACM appears to be the most 

popular. Therefore this research work focuses on investigating the strengths and 

weaknesses of the key methods originated from the ACM technique and explore the 

potential of incorporating nonlinear mathematical concept into ACM method to improve 

segmentation outcome.  

 

1.6 Research Questions 

In accomplishing the stipulated research aim and objectives, the following research 

questions have been formulated: 

1 Does smoothing technique contribute to a good segmentation outcome in ACM 

method? 

a. Between linear diffusion and nonlinear diffusion functions, which function leads to 

an improved smoothness of a medical images? 

b. Does the collaboration between nonlinear diffusion function and Gaussian 

smoothing lead to a better classification of inhomogeneous object in a region? 

2. Does the collaboration between fractional calculus and sinc wave method contribute to 

an improve segmentation outcome in the presence of noise and intensity 

inhomogeneity? 

a. Does the sinc wave method contribute to the dynamic movement of a contour in 

ACM?  
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b. Does the fractional calculus with ACM contribute to accurate boundary 

segmentation? 

3.  Does the introduction of FGK with adaptive window mechanism contribute to a better 

classification of a region with homogeneous objects. 

a. Does the introduction of FDH in ACM able to deliver accurate boundary 

segmentation of a medical image with high level of intensity inhomogeneity?  

b. Does the benchmarking process based on human visual interpretation depict the 

differences among the segmentation results. 

4. Does the outcome of the quantitative evaluation aligned with the visual interpretation 

outcome. 

 

1.7 Research Methodology 

Literature Investigation: Analysis and studies have been performed on various types of 

medical image modalities. Interviews and observations with expert doctors and radiologist 

have been conducted in the early stage of the research for understanding the structure, 

texture and interpretation of medical images. Previous methods of ACM were thoroughly 

studied and reviewed. Various algorithms in image segmentation were examined and 

experimented on various medical image modalities and anatomical structures. Observations 

and studies were established to analyze which methods of ACM work best on which types 

of medical image modalities. Based the review of the literature, research issues and 

problems were identified and formulated accordingly.  

 

 

Univ
ers

ity
 of

 M
ala

ya



 
 

13 
 

Design and Development: The frameworks of the proposed image segmentation methods 

were designed to enhance the ability of the existing ACM methods to segment medical 

images. Specifically, three methods are designed to address issues associated with medical 

images. First method is a semi-automated method. It is developed to explore the 

performance of mathematical morphology technique in solving the boundary leakage 

problem in an image. The second and third methods offer automated image segmentation 

process, and are designed based on nonlinear concept of fractional calculus. The second 

method implements the Fractional Sinc Wave method that is generalized from fractional 

calculus with the aim to reduce the over segmentation problem and improve segmentation 

outcome. However, the method cannot accurately segment medical images that are affected 

with high level of intensity inhomogeneity problem. To address this problem the third 

method is proposed and it is known as the Fractional Gaussian Heaviside. The development 

of the three proposed methods is executed using MatlabR(2008b) on a 2.5 GHz Intel 

Processor i5. 

 

Experiment: Experiments were carried out with each of the proposed methods using several 

types of medical image modalities. The first experiment was conducted on the first 

proposed method to evaluate the strength of mathematical morphology in joining gaps 

along the object boundary. The second experiment was conducted on the proposed 

Fractional Sinc Wave ACM method to measure the effectiveness of the method in reducing 

over segmentation problem and improving segmentation outcome. The last experiment was 

conducted on the proposed Fractional Gaussian Heaviside ACM method to measure the 

accuracy of its boundary segmentation method on medical images of various modalities and 

Univ
ers

ity
 of

 M
ala

ya



 
 

14 
 

anatomical structures, particularly those images that are affected with high level of noise 

and intensity inhomogeneity. 

 

Evaluation: The feasibility of the proposed methods is evaluated using three approaches. 

First is by using visual interpretation based on human perception. The evaluation results are 

then verified using a quantitative approach. Finally the performance of the proposed 

methods are compared and benchmarked against other baseline ACM methods.  

 

1.8 Research Contributions 

The specific contributions identified in the thesis are as follows: 

1. The incorporation of nonlinear function with Gaussian filter gives good enhancement 

outcome by preserving the image details, and removing image noise. 

2. The proposed implementation of sinc wave method with fractional calculus gives rapid 

movement and flexible bending capability of contours toward objects in an image. 

3. The application of Fractional Sinc Wave method via ACM improves segmentation 

outcome of medical images with various modalities and anatomical structures while 

reducing the over segmentation problem. 

4. The introduction of Adaptive Fractional Gaussian Kernel into ACM offers an excellent 

image enhancement outcome, in which objects in a region are now classified with 

homogeneous intensity. 

5. The proposed Fractional Differentiate Heaviside provides the nonlinear protecting 

capability of the image details, and has the ability to extract accurate local image 

information thus solve the local minima problem can be solved. 
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6. The collaboration between Adaptive Fractional Gaussian Kernel and Fractional 

Differentiate Heaviside via local ACM produces a new ACM’s method, named as the 

Fractional Gaussian Heaviside method that has the capability to provide accurate 

boundary segmentation on various types of medical images in spite of the visual 

problems such as weak edges and intensity inhomogeneity. 

 

1.9 Organization of the Thesis 

This thesis presents three methods of medical image segmentation using ACM method to 

address pertinent issues in medical images such as weak edges and intensity 

inhomogeneity. Details for the methods are discussed in each chapter 4, 5 and 6. Overall, 

this thesis contains seven chapters. The outlines of each chapter are described below. 

 

Chapter 2 presents survey results on ACM based methods in segmenting images 

particularly medical images. The survey reveals the strengths and weaknesses found in each 

of the methods. The chapter also provides intensive literature coverage on both edge-based, 

region-based, and hybrid ACM with sufficient highlights on their advantages and 

disadvantages in segmenting medical images.  The chapter ends with summaries on the 

ability of each classification methods of ACM in producing a satisfactory segmentation 

result on medical images with various characteristics and modalities.  

 

Chapter 3 gives the overview on the methodology of the three proposed methods that are 

able to improve the performance of the existing ACM methods in segmenting more 

challenging medical images such as those with severe boundary leakage and intensity 

inhomogeneity problems. The chapter provides the descriptions on the framework and flow 
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process of the three methods. Chapter 3 ends with the summary of each proposed methods 

highlighting their relationship.  

 

Chapter 4 introduces the first proposed method that improves ACM segmentation method 

using morphological technique. The technique uses mathematical approach to fill up gaps 

or holes in an image edges to overcome the leakage problems found at the boundary of 

meaningful object to be segmented. The implementation of the proposed method enables a 

better understanding of the process used in the morphological technique when joining gaps 

at an image boundary.  

 

Chapter 5 describes the proposed method that uses Fractional Sinc Wave ACM method to 

enhance ACM capability for automatically segmenting medical images in the presence of 

high level of noise and intensity inhomogeneity. The chapter explains the strength of FSW 

ACM method in giving the contour the capability of flexible bending and rapid movement 

toward an object to be segmented. Relevant equations and procedures involved in the 

development of the method are also discussed. The chapter also describes the experiments 

conducted on four medical image modalities for measuring the performance of the 

proposed method against other baseline ACM methods in segmenting medical images with 

intensity inhomogeneity problem, and the experimental results are reported accordingly. A 

benchmarking process is also conducted with another two methods of ACM. To support the 

benchmarking process, quantitative evaluation is conducted which is based on accuracy 

metric to measure the percentage of accuracy of the method. 
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Chapter 6 proposes a new ACM method that uses fractional calculus to achieve accurate 

boundary segmentation even though for image with severe intensity inhomogeneity 

problems. The method applies adaptive fractional function in its Gaussian kernel for image 

enhancement, and the Heaviside function for local image information extraction. Details 

about the design and implementation process of the proposed method are thoroughly 

explained in this chapter. Several experiments have been conducted to demonstrate the 

effectiveness of the method against other baseline ACM methods. Benchmarking process 

and quantitative evaluation is conducted to measure the accuracy of the segmentation 

methods. 

 

Chapter 7 concludes the research work and provides suggestions for future work. It mainly 

highlights the accomplishment of the research aim and objectives. The chapter also gives 

some insights on the future direction for the research work.  
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CHAPTER TWO 

SURVEY METHODS OF MEDICAL IMAGE SEGMENTATION 
 

This chapter surveys methods of image segmentation including methods for segmenting 

medical images. The chapter begins by reviewing the earliest segmentation methods to the 

most recent ones. Section 2.2 describes methods on medical image segmentation including 

those common methods of Active Contour Model. The smoothing technique of Gaussian 

which been used in ACM is also discussed in Section 2.3. Section 2.4 briefly describes 

about nonlinear diffusion function, an alternative to nonlinear mathematical concept for 

segmentation. This chapter ends by summarizing the findings from the survey. 

 

2.1 Image Segmentation Methods 

In past decades, a great variety of segmentation methods has been proposed. Most of the 

segmentation methods in the early days begin with the segmentation on synthetics images 

such as buildings, geometrical objects and so forth. Image segmentation later evolves to 

solve a more challenging problem such as medical images (Pham, Xu & Prince, 2000). 

Some of the earliest and common methods in image segmentation includes threshold based 

methods, edge-based methods, region-based methods, watershed transformation and energy 

based methods. The following sub-section describes several methods of image 

segmentation. 
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2.1.1  Threshold-based method     

Threshold-based method is among the earliest method in image segmentation that acts as a 

tool to separate objects from the background. Some examples of thresholding applications 

are document image analysis where thresholding is used to extract the printed characters, 

logos, lines, colors and other elements of the image (Chen & Leung, 2004; Yan, Zhang, & 

Kube, 2005; Raju & Neelima, 2012). Threshold-based method is the simplest segmentation 

method. It transforms gray-scale image into binary format to obtain a threshold value in an 

image. Once the image is transformed into binary format, the image will be segmented into 

two segments, with values 0 and 1 respectively. This method is very useful to segment an 

object which only has two regions with homogeneous intensity (Orlando & Seara, 2002). In 

other words, both the object and background has distinctive intensities (Al-Amri, 

Kalyankar, & Khamitkar, 2010). However, threshold method is not suitable for segmenting 

images with high level of noise (Yan, Zhang, & Kube, 2005). To address this problem the 

method is often been used with other algorithm such as Otsu algorithm, entropy method 

and K-means clustering. Later, edge detection technique is introduced for segmenting 

specific objects in an image.  

 

2.1.2 Edge-detection Technique 

Edge-detection technique is introduced to overcome problems created by previous methods 

(Patil & Deore, 2013). Edges are local changes in the image intensity and it typically occurs 

on the boundaries between two regions (Dhankhar & Sahu, 2013; Senthilkumaran & 

Rajesh, 2009). It is used to identify object boundaries in an image where it focuses on the 

localization of significant variations of the grey level in the image.  
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Generally, edge detection process filters out unimportant information while preserving the 

structural image details (Dhankhar & Sahu, 2013; Lakshmi & Sankaranarayanan, 2010). In 

terms of image segmentation, edge detection works well with images that have good 

contrast between regions. The edge-based segmentation method does not produce 

successful outcome on images that are low in gradient or contain missing edges at the 

object’s boundary. This is because the method only depends on the visibility of edges in an 

image. Both the threshold-based and edge based methods aim to extract boundaries of 

meaningful objects in an image, therefore image with unclear objects boundaries will not be 

successfully segmented by this method. This includes images that contain lots of noise. To 

solve this problem, region based segmentation method is introduced. 

 

2.1.3 Region-based method 

This method operates iteratively by grouping together neighboring pixels that have similar 

values, and splitting groups of pixels with non-similar values (Gu et al., 2009; Saini & 

Sethi, 2013; Qing & Yizhou, 2003). Region-based segmentation method has been identified 

to be better than the edge-based method because it covers more pixels value than the edge-

based method (Rai & Nair, 2010; Saini & Sethi, 2013). This is because, region-based 

method uses pixel’s intensity and image’s gradient in its segmentation process. In the 

contrary, the edge-based method only uses image’s gradient for segmenting an image.  

 

The first region-based method was known as region growing method where the method 

uses seed pixels as input to accumulate and grow similar pixels in an image in iterative 

cycles (Kamdi & Krishna, 2011, Muhammad et al., 2012). The choice of seed will 
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determine the segmentation outcome. However, this method is sensitive to image noise 

where noise in the image can cause the seeds to be placed incorrectly. This issue has led to 

the modification of the algorithm which does not require explicit seeds. 

 

Watershed region-based method was later developed where it does not require an explicit 

seeds. The basic idea of watershed method is to create a basin-like landform defined by 

highpoints and ridgelines that descend into lower elevations and stream valleys. The idea 

was introduced by Beucher & Meyer (1993) by placing a water source in each regional 

minimum in the relief, to flood the entire relief from sources, and build barriers when 

different water sources meet. Normally, watershed segmentation is applied to the gradient 

of an image, rather than to the image itself  (Salman, 2006; Roerdink & Meijster, 2000). 

The aim of the watershed transform is to find the ‘watershed lines’ in an image in order to 

separate the distinct regions. Although watershed transform is robust to image noise but it 

provides many over segmentation regions because the method is sensitive to intensity 

inhomogeneity interface. Over segmentation happens when objects being segmented are 

again segmented into sub-regions. Research in image segmentation continued to develop 

another type of image segmentation method that is based on curve propagation or 

evolution. 

 

2.1.4 Curve evolution-based method 

Segmentation methods that are based on curve evolution are developed to address problems 

associated with the edge-based and region-based segmentation methods. This technique 

depends on an energy model which is defined by partial differential equation (PDE). PDE, 

in mathematics is a differential equation that contains multivariable functions and their 
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partial derivatives. PDEs are used to formulate problem involving functions of several 

variables and can be used to create a relevant computer model (Tsai & Yezzi, 2001).  

 

Among the popular techniques used in the PDE’s category is the used of curve evolution 

with numerous applications for object extraction, object tracking and stereo reconstruction 

(Paragios, 2006, Maragos, 1996). The central idea of the curve’s propagation is to evolve 

an initial curve towards an object. In image segmentation, the initial curve is placed on an 

image where the curve will evolve towards the object boundary. One of the famous 

mathematical equations on curve evolution was proposed by Osher and Sethian, and it is 

known as level set method (LSM) (Osher & Sethian, 1988). This method has been 

embedded in numerous segmentation methods for a more dynamic and smooth curve 

evolution outcome. In LSM, the evolving contour is represented using a signed function, 

where its zero level corresponds to the actual contour (Osher & Sethian, 1988; Osher & 

Fedkiw, 2001). The LSM encodes numerous advantages: it is implicit, parameter free, 

provides a direct way to estimate the geometric properties of the evolving structure and able 

to segment multiple regions in an image. Based on the LSM, many methods arose and this 

includes Active Contour Model which was later known to have the potential in medical 

image segmentation. Detail on LSM is discussed in Section 2.2.2. The following section 

explores in detail methods of ACM which are derived from partial differential method. 
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2.2 Medical Image Segmentation Methods 

The earliest methods of segmentation are mainly focused on segmentation of images with 

low level of noise, such as synthetic images. Image segmentation on medical images is not 

suitable by those methods, because medical images are categorized as low quality images. 

Therefore segmentation methods such as edge detection are not applicable to segment 

objects in medical image. The introduction of ACM by Kass, Witkin & Terpozoulus (1988) 

provides improved performance in extracting objects from medical images. The initial 

ACM was then refined resulting in many methods and each was introduced to address some 

pertinent segmentation problems and challenges posed by various types of medical images. 

The first ACM was developed in 1988 and was named as Snake model. Detail on ACM is 

discussed in the following sub sections. 

 

2.2.1  Active Contour Model  

Inspired by the edge detection technique, Snake model was first developed and introduced 

by Kass, Witkin & Terpozoulus and gained popularity since then (Kass, Witkin & 

Terpozoulus, 1988). However, the idea of the snake is derived from the development of 

deformable models introduced by Terpozoulus in the late eighties. The idea behind the 

model is to deform a contour for extracting image features (Terzopoulos & Fleischer, 1988; 

McInerney & Terzopoulos, 1996). In ACM, first the deformable contour is placed on an 

image and its position is depends whether it is edge-based or region-based ACM.  
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ACM is classified as edge-based ACM and region-based ACM (Lei et al., 2008). For edge-

based ACM, the contour placement is dependent on the image and can only be at one 

position at a time, whereas for region-based ACM the contour placement is independent 

and it can be more than one position at a time. Next, the contour starts to move based on the 

Snake’s movement with the ability to extract objects’ boundaries in an image through the 

evolution of contour(s) (Kass, Witkin & Terpozoulus, 1988; Xu & Prince, 1998). The 

evolution of the contour depends on the external and internal energies of the Snake model 

which acts as pull and push actions. Once the contour reaches the object boundary, the 

movement of the snake must minimize the energy provided by the model (Kass, Witkin & 

Terpozoulus, 1988). Once the energy is minimized, the contour movement stops resulting 

in the visibility of contour along the object boundary. In stopping the contour at the correct 

position, the edge-based methods use the edge-detector based stopping function whereas, in 

the region-based ACM the stopping term is based on the global image information (Li et 

al., 2005). In understanding how ACM works, Section 2.2.1.1 depicts the design algorithm 

of the first ACM method namely the Snake model. 

 

2.2.1.1 The concept of the Snake model 

The first ACM known as snake implemented the edge-based concept and minimized its 

contour by iterative gradient descent. This means the contour of the Snake model is highly 

depending on the gradient in the image without considering the intensity of the image 

(Kass, Witkin, Terpozoulus, 1988). Snake flexibly moves to locate sharp image intensity 

variations by deforming a contour C toward the edge of an object’s boundary in iterative 

cycles until it completely ‘shrink-wraps’ around the boundary of the object. Snake is the 
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energy minimizing based on the sum of two energies which are internal and external energy 

as shown in equation (2.1): 

𝐸௦௡௔௞௘ =  𝐸௜௡௧௘௥௡௔௟ +  𝐸௘௫௧௘௥௡௔௟ 

(2.1) 

The external energy evolves a contour C toward the boundary of the object whereas the 

internal energy acts to smooth and bend the contour toward the object to be segmented. The 

internal energy is the total sum of elastic and bending energies. The elastic energy is treated 

as elastic rubber band whereby it discourages stretching by introducing tension. On the 

other hand, the bending energy aims to smooth out the contour. The complete equation of 

the internal energy is given by: 

 

(2.2) 

where 𝛼 and 𝛽 are weighting parameters that control the Snake's tension and rigidity, 

respectively. In the equation above, 𝑉௦ is referring to a set of  𝑉 points where 𝑠  = 0,….s - 1. 

The external energy generated by processing an image 𝐼(𝑥, 𝑦) is used to drive a Snake 

towards lines (regions) and edges in an image. This means, the image forces guided by the 

internal energy push the Snakes toward the image features such as lines and edges. On the 

other hand the external energy is responsible to put the Snake at a point nearby the gradient 

in an image. As Snake represent the edge-based ACM, the external energy will be extracted 

at the high gradient in an image in order to extract the boundary of the target object. This is 

how Snake wraps around the object boundary. The equation of the external energy is given 

by: 

න 𝑓ଶ(𝐼଴

ଵ

଴
(𝐶))𝑑𝑠 

(2.3) 

2 2
int

1 | | | | )
2elastic bending s ss

s
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where the 𝑓 function presents the edge-detection. The function 𝑓 is given by: 

𝑔|∇𝐼(𝑥, 𝑦)|) =  
1

1 + |∇𝐺ఙ(𝑥, 𝑦) ⊗ 𝐼(𝑥, 𝑦)|ଶ 

(2.4) 

where g represents the stopping function for terminating the contours at edges and 

𝐺ఙ(𝑥, 𝑦) ⊗ 𝐼(𝑥, 𝑦) is the smoother version of 𝐼(𝑥, 𝑦). The Gaussian function 𝐺ఙ with the 

standard deviation 𝜎, 𝐼(𝑥, 𝑦) ∗  𝐺ఙ is a smoothed version of the original image 𝐼(𝑥, 𝑦). 

Details on Gaussian filter will be discussed in Section 2.3. When a contour evolves closer 

to the edge, the gradient value is at the maximum level and the edge detector function 

approaches close to zero. At the edge, the evolved contour attains a zero speed and stop at 

target edge. The complete snake equation is given as follows: 

 

 

(2.5) 

where 𝛼 and 𝛽 are the weighting parameters. To understand the bending movement of the 

Snake model, Figure 2.1 illustrates the contour movement. The Figure 2.1 shows an initial 

contour and the final contour after the bending force is embedded to the contour. Image on 

the left side of Figure 2.1 is the initial contour placed on the image. During the evolution of 

the contour, the contour will bend smoothly by the internal energy towards the object. The 

bending contour is shown on the right side image in Figure 2.1. 

 

2 21 ( ) | | ( ) | | ) ( ( ))
2snake s ss image

s

E s v s v E v s ds �D �E �³
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Figure 2.1: On the left is the initial contour and on the right is the final contour with the 

accomplishment of bending energy. 

 

There are several drawbacks of Snake model. For instance, it is very sensitive with image 

noise and contains small capture range. For example, consider image U as shown in Figure 

2.2(a). The small capture range as shown by the arrow forbids Snake to detect concave 

boundary because the external energy is not attracted to the points at the boundary 

concavity. This is shown in Figure 2.2 (b) where the contour did not move toward the 

concavity area of the object ‘U’. 

 
(a) 

 
(b) 

 
(c) 

Figure 2.2: Illustration on U shape. (a) is the U shape with the concave problem, (b) is the 

outcome from Snake model and (c) is the outcome from Gradient Vector Flow 

 

To overcome the concavity problem created by the Snake model, Xu & Prince (1997) 

introduced the improved Snake model called as Gradient Vector Flow (GVF). This method 

introduced the third type of energy besides the internal and external energy introduced by 

the Snake model. By introducing the third energy, the contour is now able to move through 

a concave as shown in Figure 2.2 (c).  
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However, both models still facing the problem of topological changes where more than two 

objects in an image could not be detected or segmented. Snake provides a fast numerical 

algorithm but in the case of closed curves, it is not able to segment more than one object in 

an image or when the topology of the image changes. To overcome the limitation of the 

changes of topology, Osher and Sethian (1988) have proposed the powerful level set 

method (LSM) in year 1988. In LSM, the contour C is implicitly represented by a function 

of higher dimension called the level set function. After the introduction of LSM, almost all 

development of subsequent methods of ACM are based on LSM. Detail regarding this 

method is discussed in the following section. 

 

2.2.2 Level Set Method 

Level set method (LSM) is a powerful mathematical function that has been used in many 

applications from physics to graphics, image processing, computer vision, control, and 

many others (Osher & Sethian, 1988; Malladi, Sethian, & Vemuri, 1995). This section 

discusses the application of the level set method in active contour model. As mentioned 

earlier, the Snake model has contour that is not dynamic enough to segment more than two 

objects in an image. Level set function provides an efficient and stable algorithm to solve 

this problem. Interface created by the level set method is more dynamic wherein it allows a 

contour to move at sharp corners, break apart and merge again when necessary.  

 

The basic idea of level set method is to place a closed contour on the surface and allow the 

contour to move perpendicular to itself at a prescribed speed (Osher & Sethian, 1987; 

Osher & Paragios, 2003). Level set method is frequently used in image segmentation 

through propagation of a contour. Since its introduction, the level set function has been 
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implemented in the subsequent methods of the active contour model such as 

geometric/geodesic active contour, active contour model without re-initialization, and 

active contour model without gradient (Paragios & Deriche, 2002).  

 

Specifically, level set method works in a given closed contour C. The function becomes 

zero when the pixel is on the contour itself, otherwise the pixels are distributed outside or 

inside the contour C where it is known as minimum distance from the pixel to the contour 

C. If the pixels are distributed outside the contour C, the distance is regarded as negative 

value. On the other hand if the pixels are distributed inside the contour C, the distance is 

regarded as positive value. The level set function 𝜙 of the closed front C is defined as: 

𝜙(𝑥, 𝑦) =  ି
ା𝑑((𝑥, 𝑦), 𝐶) 

(2.6) 

where 𝑑൫(𝑥, 𝑦), 𝐶൯ is the distance from point (𝑥, 𝑦) to the contour C. The plus and minus 

symbol of d are chosen if the point (𝑥, 𝑦) is inside or outside of C. Apart from solving the 

topological changes, level set method also has the numerical approximation advantage 

whereby it can be used either in a fixed discrete grid of the spatial domain or temporal 

derivatives. In additions, level set method can be extended to any dimension. However in 

two dimensional space, the level set method represents a closed curve 𝜂 (such as the shape 

boundary) using an auxiliary function, called the level set function. 𝜂  is represented as the 

zero level set 𝜙 by the equation: 

𝜂 = {(𝑥, 𝑦)|𝜙(𝑥, 𝑦) =  0} 

(2.7) 
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The level set method manipulates 𝜂 implicitly through the function 𝜙. This function 𝜙 is 

assumed to take positive values inside the region delimited by the curve 𝜂 and negative 

values when outside the region. In general if the curve 𝜂 moves in the normal direction with 

a speed , then the level set function 𝜙 satisfies the level set equation: 

డథ
డ௧

=  𝜐 | ∇𝜙|. 

(2.8) 

where | . | is the Euclidean distance from the object to the contour and 𝑡 is representing the 

time. Level set method is applied on both edge-based but region-based methods of ACM 

which later extend to hybrid methods of ACM. Therefore it is important to understand how 

does level set method works. In the subsequent section the classification of ACM, the edge-

based and region-based ACM methods are described in detail. 

 

2.2.3 Edge-Based Active Contour Model 

Since the development of Snake model, researchers tend to develop methods with various 

functions to solve different characteristics found in medical image modalities. After the 

development of Snake and GVF method, the first ACM that embeds the LSM is named as 

Geometric ACM (GAC). This method was proposed by Caselles, Kimmel and Sapiro 

(1993). Generally, the method is based on the theory of contour evolution of the Snake 

model and the geometric flow of GAC. The method proposed a new energy that utilized the 

localization property and energy minimization simultaneously.  

 

The idea behind GAC is the incorporation of the minimal distance calculation into its 

equation, and this calculation is derived from the image (Caselles et al., 1993, Caselles, 

Kimmel & Sapiro, 1997). Besides, GAC method also implemented a technique called re-
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initialization. Re-initialization technique is a technique for periodically re-initializing the 

level set function to a signed distance function during the contour evolution. Its goal is to 

maintain the contour stability and to ensure potential results. The energy proposed in GAC 

method is given by: 

𝜀ீ஺஼ = න 𝑓(|∇𝐼଴

ଵ

଴
൫𝐶(𝑝)൯𝐶௣|𝑑𝑝 =  න 𝑓(|∇𝐼଴

௅(஼)

଴
൫𝐶(𝑠)൯|)𝑑𝑠 

(2.9) 

where 𝑑𝑠 in the Equation (2.9) is the Euclidean element of length and L(C) is the Euclidean 

length of the curve C defined by 𝐿(𝐶) = ∫ |𝐶௣
ଵ

଴ |𝑑𝑝 =  ∫ 𝑑𝑠௅(஼)
଴ . The 𝑑𝑠 function is the new 

length proposed by geometric ACM and is obtained from the edge-detecting function 𝑓 that 

was discussed in Equation (2.4). The direction for which the GAC curve decrease will lead 

to the given minimization flow of: 

డ஼
డ௧

 =  𝜅𝑓 − (∇𝑓, 𝒩))𝒩 

(2.10) 

where 𝒩 is the unit normal to the contour C and 𝜅 is the mean curvature. The first term is 

the smooth function, also called as contour shortening flow, weighted by the edge detecting 

function 𝑓(x). The term imposes smoothness constraints on the contour and the constant 𝜅 

makes the detection of non-convex objects easier, increases the speed of convergence. The 

strength of GAC is derived from its geometrical function. However as its distance 

measurement is based on the explicit Euler scheme, thus limits the stability in the model. 

As a result, GAC does not manage to segment medical images that are affected with high 

level of noise due to weak or missing edges. 
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Although GAC has several disadvantages but the method has been proven able to segment 

certain types of medical images (Airouche, Bentabet, & Zelmat, 2009; Xu & Prince, 1998). 

Therefore, the subsequent edge-based segmentation methods are primarily focused on 

refining GAC to address its limitation. After the development of GAC, Caselles again 

proposed a method called Geodesic Active Contour (1997) which inherits the advantages of 

GAC. Geodesic Active Contour combines the strength of the Snakes model and GAC for 

improved segmentation outcome. However, its limitation is that it could not successfully 

segment an object which has large gaps at its boundary. 

 

One of the methods that yield good potential to overcome GAC limitations is the Active 

Contour Model without re-initialization developed by Chumning Li (2005). It is an 

extension of Snake and GAC models. The method was designed to speed up the 

segmentation process by eliminating the re-initialization technique which is considered as 

the main idea behind this method. Re-initialization technique has been extensively used as a 

numerical application in LSM model. The standard re-initialization technique is to solve the 

following re-initialization equation: 

𝜕𝜙
𝜕𝑡

= 𝑠𝑖𝑔𝑛 (𝜙଴) (1 − |∇𝜙|) 

(2.11) 

where 𝜙଴ is the function to be re-initialized, and sign 𝜙 is the sign function. So far, this 

technique has been used extensively for maintaining stable curve evolution and to ensure 

desirable results. However, some opinions beliefs that the re-initialization technique may 

move the function 𝜙 incorrectly and lead to incorrect results in segmentation. Due to some 

facts, the re-initialization technique was eliminated in Li’s method (Li et al., 2005; Li et al., 
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2009). In Li’s method, in order to maintain the level set function as an approximate signed 

distance function during the contour evolution, Li has proposed the following integral: 

𝑢℘(𝜙) = න
1
2

 (|∇𝜙| −  1)ଶ 𝑑𝑥𝑑𝑦 

(2.12) 

where 𝑢℘(𝜙) is the new proposed distance that eliminates the re-initialization technique in 

the previous level set method. The complete equation for active contour model without re-

initialization is as follows: 

𝜀(𝜙) =  𝑢℘(𝜙) +  ℰ𝔪(𝜙) 

(2.13) 

where ℰ𝔪(𝜙) is a certain energy that would drive the motion of the zero level curve of (𝜙). 

However, as this method falls under the classification of edge-based model, it inherits the 

weaknesses of the model such as sensitive to image noise and the contour placement is 

dependent and not flexible. This is illustrated in Figure 2.3 where the initial contour could 

not move exactly at the boundary of the object when the image was affected with high level 

of noise.  

 

Figure 2.3(a) is a synthetic image with less noise, and ‘A’ and ‘S’ are the objects to be 

segmented. Both objects have different intensity from the background (bright intensity). 

However, both alphabets have anti-alising effect obtained from digital processing along 

their boundaries resulting in unclear edges and numerous existences of local minima along 

the boundary. These conditions make segmentation process difficult because they forbid a 

contour from getting to the exact boundary of the alphabets. Similar segmentation outcome 

of a CT scan image of brain is shown in Figure 2.3(b). The intensity in the interior part of 

the brain is non-homogeneous which hinders this method to segment the image successful 
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particularly in the brain’s inner parts. Finally, Figure 2.3(c) represents a MRI image of a 

heart. The image has high level of noise and intensity inhomogeneity. Both conditions 

make it impossible for any edge-based approach to segment the image successfully. These 

experimental results demonstrate that edge-based approach is unable to successfully 

segment low quality medical images.  

   
(a)  (b) ( c) 

 
Figure 2.3: Experiments and results on medical images using active contour model without 

re-initialization. (a) is the synthetic image, (b) is the CT scan image of brain and (c) is the 

MRI image of heart. 

 

To conclude, there are several drawbacks of edge-based ACM segmentation especially 

when dealing with medical images. First of all, edge-based ACM is sensitive to image 

noise. Noise is common attribute in any medical images. In some medical images such as 

ultrasound, the level of noise is very high resulting in blurred images and objects’ 

boundaries is difficult to be seen. Secondly, the placement of contour in an image is 

dependent and not flexible because it can only be placed once in an image, therefore the 

contour may located far from the object boundary. Lastly, as the level set formulation of the 

final contours are always closed contour, the inner objects will not segmented. Section 

2.2.4 discusses the region-based ACM methods that are able to the solve some of these 

problems. 
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2.2.4 Region-Based Active Contour Model 

Apart from noise that degrades the low quality of medical images, distribution of intensity 

that is not homogeneous in the image is also an important issue to be solved. Medical 

images with homogeneous regions and less noise can be easily segmented using the edge-

based ACM. Unfortunately there are only a handful of them. The fact is, many medical 

images hardly have any regions with homogeneous intensity (Zhang et al., 2013). The 

condition leads to complex image texture with hardly any apparent anatomical structure can 

be seen. As a consequence, any possible abnormality in the image could be missed and the 

image cannot be segmented due to very weak or missing edges. Due to these weaknesses of 

the edge-based method, region-based curve evolution technique is introduced.  

 

The first known region-based method was developed by Mumford-Shah (1989) that 

approximates an image into a piecewise smooth representation. The concept forms the basis 

of various region statistics based segmentation which allows image segmentation without 

depending only on the image’s gradient. Influenced by Mumford-Shah method, Chan-Vese 

(C-V) has developed a mean-curvature flow in which the mean intensity inside and outside 

the curve are used as a smooth approximation function of the image (Chan and Vese, 

2001). 

 

C-V’s ACM is a region-based method that is not sensitive to image noise (Zhang et al., 

2010). The method which is named as ‘Active Contour Model Without Edges’ permits the 

movement of a contour either on gradient or without gradient. The method becomes a 

popular method among researcher as it shows great potential in segmenting noisy medical 

images. If a medical image does not have strong gradient due to noise, the method moves 
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its contour based on pixels intensity in a region to extract object’s boundary in the image. 

The idea of C-V method is based on the assumption that an object has distinctive intensity 

from its background and contains homogenous intensity. C-V method considers only two 

regions, Ω௜௡ and Ω௢௨௧ and both regions have homogeneous intensity.  In general, the 

object to be segmented is represented by the regions with value of 𝑢଴
ଵ and let denote this 

boundary by C. Then the method has 𝑢௢ ≈  𝑢଴
ଵ inside the boundary and 𝑢௢ ≈  𝑢଴

௢ outside 

the boundary. Then the following equation is given as the fitting energy of the method. 

ℱ(𝐶, 𝑐ଵ, 𝑐ଶ) =  𝜇. 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶) +  𝜐. 𝑎𝑟𝑒𝑎൫𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)൯ + 

𝜆ଵ න
௜௡(஼)

 |𝑢 −  𝑐ଵ|ଶ𝑑𝑥𝑑𝑦 + 

𝜆ଶ න
௢௨௧(஼)

 |𝑢 − 𝑐ଶ|ଶ𝑑𝑥𝑑𝑦 

(2.14) 

Here, let C be the evolving curve in which 1c and 2c are two constants representing the 

average of 0u  ‘inside’ and ‘outside’ curve C. On the other hand, 0,,0,0 21 !!! OOQP  

are fixed parameters. When these parameters are fixed, P  controls the smoothness of the 

zero level set, Q increases the propagation speed and 21,OO  control the image data force 

inside and outside the contour, respectively. In order to minimize the fitting energy, C-V 

add some regularizing terms, in this situation the length of C and the area inside C as 

represented by the first two terms in the equation (2.14). With the level set function, the 

model assumed that the object and the background have homogeneous intensity as given 

in the equation below.  
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(a) 
 

(b) 
 

(c) 

Figure 2.4: Experiments and results on synthetic image of alphabets (a), CT scan image of 

brain (b) and MRI image of heart (c) using C-V method. 

 

Figure 2.4 demonstrates the outcome of the C-V method when segmenting medical images. 

The experimental results on three different types of images using C-V method are shown in 

Figure 2.4. Figure 2.4 (a) is a synthetic image that contains several alphabets. The alphabets 

have brighter intensity than the background, in accordance with the assumption made by 

the method. Unlike the edge based method, this region based method successfully extracts 

the boundary of all the alphabets. Figure 2.4 (b) and (c) display the segmentation outcome 

on CT scan image of a brain and MRI image of a heart. In (b), the outer part of the brain 

contains different levels of intensity compared to its outer part. However, the method could 

successfully segment both the outer and inner part of the brain.  

 

The success of the C-V method in Figure 2.4 is influenced by the independent contour 

placement that allows the contour to be near to the object boundaries. In (c), the MRI image 

of heart has intensity inhomogeneity and complex texture. The texture becomes complex 

due to the creation of many small regions with different levels of intensity throughout a 
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region to be segmented. As the model works on the assumption that both the inside and the 

outside of region C must have homogeneous intensity, it produces over segmentation 

problem when attempting to segment image with intensity inhomogeneity. Intensity 

inhomogeneity occurs in many medical image modalities including MRI, CT scan, x-rays 

and ultrasound as shown in Figure 2.5. Figure 2.5 (a) is the x-ray image of blood vessels, 

Figure 2.5(b) is the MRI image of a heart and Figure 2.5 (c) shows the microscopic image 

of cells. Due to the presence of intensity inhomogeneity in these images, segmentation 

using the region-based ACM method produces over segmentation problem, as shown in 

Figure 2.5(d), Figure 2.5(e) and Figure 2.5(f).  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Figure 2.5: Examples of medical images with intensity inhomogeneity problem. In (a) is 

the x-ray image of blood vessels, (b) is the image of MRI heart and in (c) is the image of 

microscopic of cells. 
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In summary, the edge-based and the region-based ACM methods have their own strengths 

and weaknesses. Table 2.1 illustrates the strengths and weaknesses of methods of ACM. 

 

Table 2.1: Strengths and weaknesses of edge-based and region-based ACM. 

Main 
characteristics 
of ACM 
 

x Energy based minimization 
x Contour initialization with Gaussian smoothing 
x Stopping function 

Types of 
ACM 
methods 

Characteristics Chronology 
of methods 

Strengths Weaknesses 

 
Edge-based 
ACM 

 
x Based on local 

properties in the image. 
x Use edge-detector 

based stopping 
function. 

 
Snake, 
GVF, GAC. 

 
x Better 

segmentation 
capability than 
edge detection 
technique 

x Able to segment 
images with 
clear and high 
level of 
gradient. 
 

 
x Sensitive to image 

noise 
x Trap at the local 

minima along object 
boundary. 

 
Region-based 
ACM 

 
x Based on global 

properties in the image. 
x Based on inside and 

outside regions. 
x Use the stopping 

function to terminate 
contour’s movement. 
 

 
ACM 
without 
edges (CV), 
Piecewise 
constant. 

 
x Provide robust 

segmentation. 
x Able to segment 

noisy images. 
x Potential in 

medical image 
segmentation 

 
x Sensitive to images 

with high level of 
intensity 
inhomogeneity. 

 

As the region-based methods process only the global property of an image, they are unable 

to successfully segment medical images with intensity inhomogeneity problem. In this 

situation, a combination on both edge-based and region-based would be a better solution. In 

the next section, the hybrid methods of ACM are discussed. 
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2.2.5 Hybrid Model of Active Contours 

Previously, ACM methods are either classified as edge-based or region-based. Both of the 

classifications utilized the energy minimization concept in its contour evolution. Edge-

based segmentation methods provide a better precision along the object boundary provided 

that the image does not suffer from high level of noises. On the other hand, region-based 

methods are less susceptible to noises as it highly utilizes the global properties of an image, 

but it will not work successfully if the image contains problem of intensity inhomogeneity.  

 

Recent trend in medical image segmentation research shows the growing interests to apply 

the combination of both classifications of active contours models to improve segmentation 

outcome (Huang & Zeng, 2015). Some methods start with the edge-based approach at the 

beginning and proceed to region-based approach in their development while others use the 

region-based with the integration of local properties of the edge-based active contour. 

Paragios et al. (1997) combined a probability based active region model with the classical 

edge-based model, and Chakraborty et al. (1996) developed a game-theory based approach 

to combine region and edge-based models in an attempt to exploit the benefit of both 

approaches. 

 

Shawn Lankton (2008) conducted experiments that enabled region-based energy to be 

localized in a fully variational manner. His work significantly improved the accuracy of 

heterogeneous image segmentation. Zhang et al. (2010) proposed an ACM with selective 

local or global in his implementation which is based on LSM. The method improves the 

LSM by avoiding the calculation of signed distance function and re-initialization. The 

method allows the segmentation process to take place by using the local or global selection. 
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However, if the selection is based on global, it create the over segmentation problem when 

dealing with images that contains high level of intensity inhomogeneity. In the later trend, 

many region-based ACM applied the localization strategy in achieving accurate 

segmentation by embedding the local image information. Some of the known methods are 

Local Binary Fitting Energy (LBF), Local Image Fitting Energy (LIF), Local intensity 

Clustering (LIC) and many more. Brief description on these methods is presented in 

Chapter 6.  

 

In summary, generally the hybrid ACM that combines both local and global properties of 

ACM shows good potential in medical image segmentation. Since then, many methods of 

ACM move to the combination of local and global ACM in providing a successful outcome 

of segmentation. Table 2.2 provides some chronologies of hybrid ACM with its capability 

in segmenting various types of medical images. 

 

Methods of ACM normally used the smoothing technique called Gaussian filter. It is used 

to support the smooth movement of the contour toward the object in the image. Therefore, 

in the next section we present the Gaussian filter as the smoothing technique used in most 

ACM methods.  
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Table 2.2: Several methods of hybrid ACM with it objectives and findings in medical 

image modalities. 
Hybrid 
methods 
of ACM 

Objectives Findings Drawbacks Medical 
Imaging 

Anatomical 
structure  

 
Local 
Binary 
Fitting 
Energy 
(LBF) 

 
Proposed a 
region-based 
ACM that 
utilized the 
local 
information in 
local regions. 
 

 
Able to segment 
images with the 
presents of intensity 
inhomogeneity. 

 
The method ignore 
the region variance 
information that lead 
to inaccurate 
segmentation. 

 
MRI 

 
Blood vessels 
and brain 
images 

 
Local 
Image 
Fitting 
Energy 
(LIF) 
 

 
A novel 
method based 
on Gaussian 
filtering for 
variational 
level set. 
 

 
Able to segment 
images with 
intensity 
inhomogeneity. 
 

 
The method highly 
utilized the local 
properties and did not 
consider the global 
properties that lead to 
inaccurate 
segmentation. 
 

 
MRI 

 
Blood vessels 
and brain 
images 

 
Local 
Gaussian 
Distributi
on Fitting 
Energy 
(LGD) 
 

 
A novel 
method that 
defined the 
local image 
intensities as 
Gaussian 
distributions 
which is 
based on 
mean and 
variance. 
 

 
Enable in 
segmenting medical 
images with noisy 
and texture images. 

 
The used of local 
means and variance 
to control the noise 
level and intensity 
inhomogeneity 
trapped a contour 
from moving further 
towards object in the 
image. 

 
MRI, 
ultrasound 

 
Blood vessels, 
brain images 
and heart, 
liver. 

 
Local 
Intensity 
Clusterin
g (LIC) 

 
A novel 
region-based 
ACM that 
derives the 
local intensity 
clustering 
properties in 
an image 
properties. 

 
Enable in 
segmenting medical 
images within 
intensity 
inhomogeneity with 
robust to 
initialization. 

 
The method did not 
consider the 
clustering variance 
that lead to inaccurate 
segmentation. 

 
MRI, 
CT scan, 
x-ray, 
ultrasound 

 
Blood vessels, 
breast cysts, 
bones, 
prostate. 
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2.3  Smoothing Technique: Gaussian Filtering 

As mentioned earlier, pixels intensity in most medical images are non-homogeneous 

throughout an image. Intensity inhomogeneity in medical images leads to non-smooth 

texture in the image. Smoothing technique is therefore required to remove noise and other 

fine-scale structures in an image (Zhang et al., 2010; Li & Acton, 2007; Spann & 

Nieminen, 1988). One of the best methods for smoothing image texture is called the 

Gaussian smoothing. This technique is widely used in active contour model. In most 

ACM’s methods, the Gaussian technique uses the concept of linearity diffusion.   

 

The Gaussian smoothing technique is the two-dimensional convolution operator. The idea 

behind Gaussian filtering technique is achieved by its convolution operator whereby it uses 

the two-dimensional distribution as its “point- spread” function (Gedraite & Hadad, 2011; 

Spann & Nieminen, 1988). However, before the convolution is performed, the image which 

is stored as a collection of discrete pixels is first transformed into a discrete approximation 

to the Gaussian function. Once a suitable kernel has been calculated then the Gaussian 

smoothing can be performed using a standard convolution method. The standard equation 

of Gaussian smoothing technique is given by: 

    𝐺ఙ(𝑥) =  ଵ
ఙ√ଶగ

exp ቀ− ௫మ

ଶఙమቁ 

(2.16) 

where 𝜎 is the size of the window or the convolution. The size of the window must be 

proportional to the image size and normally it depends on the application. In order to 

smooth the image, the Gaussian smoothing will locate the pixel weight in an image and 

then determine all the related pixels with similar intensity. In the application of 

segmentation, the related pixels or the pixel weight can be viewed as the edges or boundary 
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of desired object to be segmented. This means the edges or boundary is enhanced during 

the Gaussian smoothing process while other unrelated pixels are ignored, as illustrated in 

Figure 2.6. 

 

pixel weight 

 

 

 

 

                  uncertain pixel                        related pixel                 uncertain pixel 

Figure 2.6: Graph for Gaussian smoothing technique. 

 

Many works in image processing have been using the Gaussian smoothing as a filter to 

remove or reduce noise in an image. In most active contour models, Gaussian smoothing 

technique is also applied for smoothing process during the evolution of the contour towards 

the boundary of the object to be segmented. However, many methods of ACMs have 

recently been using Gaussian smoothing to regularize the level set method for stability of 

the contour during the evolution (see detail in Section 2.5). For example, work by Zhang et 

al (2010) uses the Gaussian smoothing kernel to regularize the level set function. Work by 

Li Wang et al. (2009) utilizes the local Gaussian distribution as the fitting energy with 

difference means and variance in order to control contour movement. Recently, work by Bo 

et al. (2013) proposes an expression of simple energy function with the fractional order of 

Gaussian kernel embedded within its region-based geometric active contour. However, as 
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the Gaussian is based on linear function, the image will become unclear once  the parameter 

is increased with a bigger value.  

 

Most ACM methods that utilize the linear Gaussian filter cannot produce satisfactory 

segmentation outcome when dealing with medical images that contained high level of 

intensity inhomogeneity and high level of noise. This is because linear Gaussian will 

eliminate some unimportant structures that will affect the continuity of the smoothing 

process. In addition, Gaussian smooth an image across the edge where it only considers the 

image’s gradient is covered but not its local properties. Furthermore, the local image 

properties in the image are difficult to locate with linear Gaussian as the flux in Gaussian 

tends to follow one direction.  

 

The solution of linear Gaussian can be overcome by using nonlinear Gaussian. Nonlinear 

Gaussian smooth an image around the edge to preserve local image details and allows 

Gaussian’s flux to have flexible direction in finding local image properties. Moreover, the 

nonlinear Gaussian will smooth an image based on the diffused image and not the original 

one for better smoothing result when compared with linear Gaussian. Further description on 

the nonlinear function is provided in the following section.  

 

2.4 Nonlinear Diffusion Function 

Image smoothing is part of image enhancement process that plays an important role to 

improve visual appearance of an image as well as facilitate image analysis process. It is 

essential to smooth an image prior to segmentation process. This section introduces the role 

of a nonlinear diffusion function in image smoothing process. 
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Linear function is used to smooth an image in a controlled way and usually it is convolved 

with Gaussian filter to provide a better smoothing effect (Chad & Karen, 2013). Gaussian 

filter works directly with image gradients. In Gaussian, enhancing an image is to smooth 

the image by adjusting or modifying the gradient’s levels of the neighboring pixels. Linear 

Gaussian filter can smooth image texture for improved segmentation outcome. However, 

linear diffusion can dislocates edges when moving from strong edges to weak edges (Wang, 

Xu & Wei, 2005). As a consequence the dislocated edges will not represent the right object 

boundary of the original image (Weickert, 1999; Weickert, 1994; Barenblatt & Vazquez, 

2003).  

 

On the other hand, the nonlinear diffusion reduces image noise and enhances the edges 

without dislocating them (Junmo et al., 2005). Nonlinear diffusion function is one of the 

image smoothing techniques that are based on the physical notion of diffusion where it can 

be locally controlled with the diffusion tensor (Catt´e et al., 1992; Erdem, 2012). Diffusion 

tensor denotes the variety movement of molecules that is able to locate the pixel intensity in 

solving the problem of intensity inhomogeneity (Weickert, 1998).  

 

 There are several advantages of nonlinear diffusion over the linear diffusion. First the 

noise is smoothed locally within regions defined by object boundaries. Secondly, local 

edges are enhanced and this provides an advantage when dealing with boundary leakages 

problem along an object boundary. The nonlinear diffusion function has been widely used 

over the past decade as the enhancement technique. The first application of the nonlinear 

concept in image segmentation process is done by Perona & Malik (1990). The following 
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sub-section discusses the application of nonlinear diffusion with the contour evolution in 

ACM. 

 

2.4.1  Contour Evolution via Nonlinear Diffusion 

Image segmentation can be achieved by approaches based on contour or curve evolution. In 

image segmentation, contour evolution has been developed into an important tool in 

computer vision and has been applied to a wide variety of problems such as smoothing of 

shapes, shape analysis and shape recovery (Zhanbing & Haishen, 2005).  

 

The ACM provides an effective way for segmentation in which objects’ boundaries are 

detected by evolving curves. According to this model, the easiest way to implement the 

contour evolution is by embedding the initial contour using the LSM method in a surface 

and let the contour evolve simultaneously. As ACM embedded the powerful LSM in its 

moving contours, the topological changes in an image are automatically handled by 

simplifying the data structure (Xu & Prince, 1998). In the region-based ACM which utilizes 

global information in an image, the stopping term is used to slow down contour evolution 

when it comes near the object boundaries. In the edge-based ACM where it utilizes local 

information in an image, the contour becomes dependent on the image’s gradient, therefore 

the models are more sensitive to image noise. The evolution equation that is normally used 

in most methods of active contour is given by (Li et al, 2007): 

𝜕𝜙
𝜕𝑡

= 𝑔(∇𝐼)‖∇𝜙‖(𝑐 + 𝜅) 

(2.17) 
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where 𝜙 is the embedding surface of contour evolution representing the level set function , 

∇ is the gradient and 𝐼 is the given image, and the equation 𝑔(∇𝐼) is as follows: 

𝑔(∇𝐼) =  
1

1 + ‖∇(𝐺ఙ ∗ 𝐼)‖ଶ 

(2.18) 

where the equation above is based on Gaussian and the stopping term is applied in the 

contour evolution and the mean curvature  𝜅 of the level set 𝜙 is given by: 

𝜅 = 𝑑𝑖𝑣 ൬
∇𝜙

‖∇𝜙‖൰ 

(2.19) 

and c in equation (2.17) is a constant speed evolution term. The main idea behind the curve 

evolution is to apply a smooth technique in the contour evolution and provide a quality 

noise removal from an image during the segmentation process. There are also several works 

related to contour evolution that enhance image structures such as edge lines, curve and so 

forth. For example, works by Wickert (1998) uses the anisotropic diffusion which utilized 

the tensor diffusivity parameters to enhance the image structure. Works by Shah (1996) 

developed a common framework for contour evolution, in which a new segmentation 

functional was developed with a coupled of partial Difference Equation (PDEs). One of the 

methods performed a nonlinear smoothing of an input image and the other method 

smoothed the image using an edge-strength function (Shah, 1996). 

 

Previously, there are applications of image segmentation methods including ACM that 

embedded or uses the technique of linear or nonlinear diffusion. The equation of linear 

diffusion is closely related to the Gaussian smoothing scale-space.  
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The resulting linear scale-space for 𝑡: 0 ⟼  + ∞ is in the form of: 

𝑢(𝑥, 𝑦 , 𝑡) =  𝑢଴(𝑥, 𝑦) ∗  𝐺(𝑥, 𝑦, 𝑡) 

(2.20) 

where 𝑢(𝑥, 𝑦, 𝑡) has coarser resolution as t marching to infinity. As linear diffusion gave 

shows good relationship with the convolution of Gaussian, the equation is given by: 

𝜕𝑢(𝑥, 𝑦)
𝜕𝑡

=  ∇ଶ𝑢(𝑥, 𝑦) 

(2.21) 

where ∇ଶ denotes the Laplacian operation. The equation of the linear diffusion as shown in 

(2.21) is normally used for noise removing from the initial image of 𝑢଴. However, in this 

situation the noise and edges are equal, thus the edges have the possibility to be eliminated, 

displaced or blurred. To solve this problem, Perona & Malik (1990) have proposed a 

nonlinear diffusion in their work. The equation of their work is given by: 

𝜕𝑢
𝜕𝑡

= 𝑑𝑖𝑣(𝑐(‖∇𝑢‖∇𝑢)         𝑜𝑛 Ω 𝑋 (0, +∞) 

(2.22) 

subject to the boundary and the initial conditions 

𝜕𝑢
𝜕𝑡

= 0                𝑜𝑛 𝜕 Ω 𝑋 (0, +∞), 

𝑢(𝑥, 𝑦, 𝑡)  = 𝑓     𝑜𝑛 Ω 

(2.23) 

where f is a noisy image, ∂u/∂n is the derivative of an image to the image boundary ∂Ω, ‖. ‖ 

and div denote the L2 − norm and divergence respectively. The main theory behind 

nonlinear diffusion is to use nonlinear to create a scale space representation that consists of 

gradually simplified images where some image features such as edges are maintained or 

even enhanced.  
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2.8 Summary 

Distinctive levels of noise and intensity inhomogeneity across multimodality of medical 

images are among the primary issues that continuously challenge the advancement in 

medical image segmentation process.  These issues produce high possibility of images with 

missing edges, and very complex texture, making it extremely difficult to successfully 

obtain accurate boundary segmentation of objects. In this chapter, we investigate several 

methods of ACMs that are popularly used in segmenting medical images. These methods 

can be categorized into edge-based active contour, region-based active contour and the 

combination of both models.  

 

The first generations of ACM are classified as edge-based, and the first method of edge-

based is popularly known as the Snake model. It is based on the concept of energy 

minimization and utilizes local image’s property to move a contour towards object’s 

boundary in an image. However, it is sensitive to image noise and the placement of contour 

is not flexible. Due to that, medical images with high levels of noise cannot be segmented 

successfully by this generation of active contour. The introduction of the second model 

focuses on the utilization of global image’s property in an image, thus it is classified as 

region-based active contour. Based on the idea of Mumford-shah model, the first region-

based method was developed by C-V. This method provides better segmentation outcome 

than the edge-based method as it is more robust to image noise. However, as most medical 

are also affected with intensity inhomogeneity problem, the method cannot segment them 

successfully because it produces over segmentation effect.  
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To overcome the problem of image noise and intensity inhomogeneity in most medical 

images, the third generations of ACM methods that combined the strength of both edge-

based and region-based was introduced. This combination method embeds the local 

image’s property of edge-based into the region-based, and produces better segmentation 

performance than the earlier methods. The hybrid ACMs’ methods are to solve over 

segmentation problem of images with intensity inhomogeneity. However, when the 

intensity inhomgeneity problem becomes severe or the level of intensity inhomogeneity is 

high, the combination method is also not capable to produce good segmentation outcome of 

these images. There are many other functions that are used to improve the capability of 

ACM in providing an improved and accurate segmentation. One of the techniques that 

often applied is the introduction of the smoothing techniques for ease of contour evolution.  

 

In this chapter, we also discuss the used of Gaussian filter applied in most ACM methods. 

Currently, the Gaussian filter uses the concept of linear diffusion function. The literature 

shows that Gaussian is among the best technique to remove noise and at the same time 

enhances image details in medical images. However, in certain cases the image detail may 

loss once the parameter of Gaussian is increased to a certain value. To address this 

problem, we introduce the used of nonlinear Gaussian to protect the loss of image detail 

when the Gaussian parameter increases. In this research work, a semi-automated approach 

and two automated approaches of ACM with nonlinear Gaussian have been developed to 

smooth images and enhance image details. Our proposed methods are discussed in       

Chapter 4 to 6.  
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CHAPTER 3 

RESEARCH METHODOLOGY 
 

This chapter presents the research methodology implemented in the thesis. The chapter is 

divided into three main subsections. Section 3.1 presents, the methodology used in the 

literature investigation. The framework, design and development of proposed methods are 

provided in Section 3.2. Section 3.3 describes the experiments and the evaluation process 

deployed in this study. 

 

3.1  Literature Investigation and Data Gathering Process 

In the early stage of this study, reviews on medical image analysis have been carried out to 

determine research problems. Our early investigation denotes that, interpretation of medical 

images by experts is important. Hence, several interview sessions and observation were 

conducted to learn how to interpret medical images. Appointments with two gynecologists 

from the Columbia Hospital and KPJ Tawakkal were conducted. During the interview 

sessions, information on types of medical imaging and its importance were obtained. 

Sessions for interpreting medical images were conducted several times to understand image 

texture and anatomical structures underneath those medical images.  
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Information collected from literature and interviews is than analyzed. Our investigation 

found that the main problems that hinder the interpretation of medical images are the level 

of noise and intensity inhomogeneity. The investigation also found that Active Contour 

Model (ACM) has good potential in segmenting various types of medical images. The 

investigation proceeds by analyzing the problems associated with ACM methods when 

segmenting medical images. It was found that two main problems that may lead to 

inaccurate segmentation of medical images are over segmentation and local minima 

problem (Li et al., 2005, Zhang et al., 2010).  

 

To resolve these problems, investigation on ACM was conducted and it is identified that 

one of the factor that lead to an improved segmentation is to use the Gaussian filter as the 

smoothing technique. The current ACM is using the linear Gaussian in its implementation 

and it is identified that the accuracy of the methods is still unsatisfied. Therefore, we 

implement the used of nonlinear Gaussian in determining its efficiency as the smoothing 

mechanism. Three framework of the proposed method have been design. The first method 

is based on a semi-automated approach. This method implements the Mathematical 

Morphology (MM) operations and is name as Binary Morphological (BM) ACM. MM is a 

nonlinear and its function such as the dilation and erosion is easily executed using Matlab 

programming. The aim of the method is to identify the technique in solving the missing 

edges along the object boundary.  

 

The study continued to solve the over segmentation problem by producing the automated 

approach. Based on the concept of nonlinear, the fractional calculus function is collaborated 

with ACM method in producing a successful segmentation outcome while solving the over 
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segmentation problem. The fractional function is applied on the contour to get a dynamic, 

rapid and bending capability to overcome the over segmentation problem. To support the 

capability of fractional function, sinc wave method is implemented in the method to 

provide the successful segmentation outcome and the method is named as Fractional Sinc 

Wave (FSW) ACM.  

 

The third approach is later designed to overcome the problem created by the second 

approach. This automated approach is designed to solve the local minima problem faced by 

most methods of ACM. The design of the third proposed method is still depending on 

fractional function. Two techniques have been introduced which are the Adaptive 

Fractional Gaussian Kernel (AFGK) and Fractional Differentiate Heaviside (FGH). We 

named the method as Fractional Gaussian Heaviside (FGH) ACM. Both FSW ACM and 

FGH ACM methods are discussed in Section 3.2.2 and 3.2.3 respectively in terms of the 

their flow process and design development. 

 

3.2  Design and Development 

This section describes the design and development of the proposed methods. 

 

3.2.1  Binary Morphological Active Contour Model 

Prior to the design and development of the proposed methods, we have implemented the 

MM with ACM to gain clear understanding on ACM’s operations and how MM can be 

used with ACM to address the problem of missing edges in an image. The MM operations 

such as dilation and erosion can be applied to expand and shrink the value of image pixels 

to close any gaps along the object boundary. Figure 3.1 illustrates the implementation 
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framework of the Binary Morphological ACM method where the input to this method is the 

output from LBF method (Li et al., 2007). 

      Dilation operator 

 

           Output from LBF 

 

      Erosion operator 

 

      Segmentation 

                                       outcome 

 
Figure 3.1: The framework of the first method which is based on 

semi-automated segmentation. 

 

The input image for the method is a segmented image obtained from the execution of the 

Local Binary Fitting energy (LBF) method (Li et al., 2007). The input image contains many 

weak and broken edges, producing many gaps along the object boundary. Using the 

method, seeds will be inserted manually at the gaps. Once this process is completed, the 

dilation and erosion operation will expand or shrink the seeds to close the gaps. As a result, 

new lines are created to complete the boundary. Details explanation on the method is 

discussed in Chapter 4. 

 

3.2.2  Fractional Sinc Wave Active Contour Model 

The purpose of the second method is to solve the over segmentation problem. The second 

method is designed to perform an automated segmentation process on medical images. The 

concept of fractional function is used to implement nonlinear function in ACM. The 

Insert seeds along 
boundary 

Filling Holes 

Merge the lines 
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fractional function is applied within the global and local ACM to inherit the advantages of 

the both local and global properties. The concept of fractional function is used to benefit its 

exponent behavior for the contour to move dynamically and rapidly. On the contrary, the 

sinc wave method is seen to produce high accuracy in the segmentation outcome once 

collaborated with fractional function. The advantage of both the fractional function and the 

sinc wave could produce an improved medical image segmentation outcome. Figure 3.2 

illustrates the framework of the proposed FSW ACM method.  The input to this framework 

is a medical image regardless its modalities. Once the image is read, the contour placement 

is initialized based on region-based ACM. A nonlinear Gaussian filter is applied as the 

enhancement technique to smooth the image texture, protect and enhance any edges.  

 

 
 

Input medical  
images 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
                                                        Segmentation outcome 
 
 

Figure 3.2: The framework of the proposed Fractional Sinc Wave ACM method. 
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The nonlinear Gaussian is used to prepare a smooth image texture by enhancing and 

removing the image noise. The fractional function behavior gives advantage in providing 

the rapid, dynamic and bending capability to the contour in evolving toward the object 

boundary. The distance is measured from the current position of the contour to the nearest 

object boundary. The application of Fractional Euler Lagrance is used in the distance 

measurement. Once the energy is minimized, the segmentation outcome is generated. Detail 

explanation on the method is discussed in Chapter 5. 

 

3.2.3   Fractional Gaussian Heaviside Active Contour Model 

The third proposed method is designed is the aim to solve the local minima problem created 

by the second method, thus provides accurate boundary segmentation. Our third method is 

named as Fractional Gaussian Heaviside (FGH) ACM and two terms is introduced; the 

Adaptive Fractional Gaussian Kernel (AFGK) and Fractional Differentiate Heaviside 

(FDH). 

 

Figure 3.3 illustrates the main processes of FGH ACM with medical image as the input.  

Firstly, the contour placement is initialized based on region based approach. The placement 

of the contour can be more than one and it can be placed anywhere in the image. The 

AFGK as the enhancement technique provides an effective method for edge enhancement 

and has good noise immunity. An adaptive window mechanism with various sizes and 

orientations is deployed to maintain and enhance the image details especially at an object’s 

curves and angles. On the other hand, the FDH with the operator of fractional order 

gradient is implemented for effective and accurate extraction of the object boundary. The 
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energy is minimized and the process is terminated with an outcome of segmented medical 

image. Detail explanation of the method is discussed in Chapter 6. 

 

 
       Input medical 
       images 
 
 
 
 
 
 
 
 
 
 
 
                                                         Segmentation outcome 
 

Figure 3.3: Framework of the proposed Fractional Gaussian Heaviside  

ACM method. 

 

3.3  Experiments and Evaluation 

The experiment process is conducted to measure the feasibility of the three proposed 

methods. Two medical images are used in the first method in showing how the dilation and 

erosion operations joint the gaps along the object boundary. The two images are the 

microscopic images of cells and MRI image of heart. The results and discussion are 

presented in Chapter 4. 

 

 In order to measure the effectiveness of the FSW ACM method in reducing the over 

segmentation problem, several experiments were conducted on four medical image 

modalities which are MRI, CT scan, microscopic and ultrasound images. The organs 

involved in the images vary, for example, the brain images, heart image, and blood cells. 

During the experiments, the capability of the proposed method to segment the following 
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anatomical structures will be evaluated: outer and inner parts, long and winding structures, 

and structure outlining in an interface with high level of noise and intensity inhomogeneity. 

On the other hand, experiment process on the third method is executed on four medical 

image modalities and they are MRI, CT scan, x-ray and microscopic images. The aim is to 

solve the problem by the second method which is to achieve the accurate boundary 

segmentation. 

 

Besides the experiment process, benchmarking with other methods of ACM is also 

conducted. Two baseline methods are used for performance comparison with the FSW 

ACM method, and they are Chan-Vese (C-V) and Selective Global Local ACM method 

(SGLACM). Three baseline methods are used to benchmarks with the FGH ACM methods 

and they are Local Binary Fitting energy (LBF), Local Gaussian Distribution (LGD) and 

Local Intensity Clustering (LIC). To support the benchmarking process, a quantitative 

evaluation is carried for each experiment. The evaluation is based on the metric of 

accuracy, as explained in the following section.  

 

3.3.1 Quantitative Evaluation Method 

This section presents a discussion on the quantitative evaluation which is based on 

evaluation metrics (Abbas et al., 2014). In the paper, the main metric used is to measure the 

accuracy of the contour to the object boundary during the segmentation process. However, 

to measure the accuracy metric, it involved the evaluation on specificity and sensitivity. 

Therefore, in this study we concentrate on the accuracy metric as the computation of the 

accuracy metric is involving the computation on the specificity and sensitivity as well. The 

statistical metric of accuracy of the evaluation metric is computed as follows; 
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             Specificity = ்ே
்ேାி௉

  , 

            Sensitivity = ்௉
்௉ାிே

   , 

                                                  Accuracy = ்ேା்௉
்௉ା்ேାிேାி௉

 

(3.1)   

where TP (True Positive) is the number of overlapping pixels inside the region, TN (True 

Negative) is the number of overlapping pixels outside the region, FP (False Positive) is the 

number of overlapping pixels between the automatically labelled object and those outside 

the manually labelled object of interest and FN (False Negative) is the number of 

overlapping pixels between the manually labelled object of interest and those outside the 

automatically labelled object of interest. To conduct the evaluation, two images of the same 

medical image are used where the first image is the image with segmentation based on 

selected ACM method and the second image, is the medical image with manually drawn 

border/boundary. To evaluate the accuracy of the segmentation is to measure the distance 

of the manually drawn border/boundary to the automatic border/boundary created by the 

ACM method. Let B be the automatic border, H be the manually drawn border and d is the 

distance between B and H. Thus the equation of d (distance) is given as; 

𝑑(𝐵, 𝐻) =  𝑎𝑟𝑔𝑚𝑖𝑛(𝑏௦, ℎ௧), 𝑏௦ ∈ 𝐵, ℎ௧ ∈ 𝐻 

(3.2) 

To get the percentage of the segmentation accuracy metric q is computed as the rate of 

minimum distance between both manual and automatic borders. The metric q is computed 

as; 

𝑞 =  
𝑛𝑑
𝑠

 𝑥 100% 

(3.3) 
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where 𝑛𝑑 is the number of pixels in the image. The evaluation metric is used in chapter 5 

and chapter 6 to evaluate the segmentation accuracy. The higher the percentage of accuracy 

depicted that the border of the segmentation is near at the object boundary. 

 

3.4 Summary 

Survey on the best medical image segmentation methods had been conducted and problems 

in achieving accurate segmentation had been identified. Based on the literature findings, 

three methods of ACM have been designed with the introduction of nonlinear function. 

First of all based on nonlinear function, the method of mathematical morphology is applied 

to join gaps along the object boundary which is based on manually inserted seeds. The 

method of FSW ACM is applied in the aim to achieve improved segmentation within the 

intensity inhomogeneity interface while reducing the oversampling problem. The third 

method is later designed and developed to achieve accurate boundary segmentation with the 

method of FGH ACM. The three proposed methods are later measured in several 

experiments, and the result obtained on several medical image modalities is evaluated 

based on visual interpretation and benchmarking. To further evaluate the potential of the 

proposed method, quantitative evaluation is also applied.  
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CHAPTER 4 

BINARY MORPHOLOGY OF ACTIVE CONTOUR MODEL 
 

This chapter reports the investigation on the strength of Mathematical Morphology (MM). 

The main purpose is to study the advantages of MM and to collaborate it with Active 

Contour Model (ACM) to solve the gaps problems identified in most medical images due to 

the noise and intensity inhomogeneity problem. The chapter begins with a brief 

introduction on Mathematical Morphology in image segmentation. Section 4.2 explained 

the operations of MM that can be used in image segmentation. This included the operations 

of dilation and erosion. The design and development of the proposed method is presented in 

Section 4.3. The experiments and results of the proposed method are depicted in Section 

4.4. We end the chapter by summarizing the overall method developed.  

 

4.1  Mathematical Morphological Operations in Image Segmentation 

The term Mathematical Morphology (MM) is basically about dealing with shapes and 

structures which in image segmentation it is significant as a tool in extracting an object in 

an image. The aim of morphology operation is to simplify the image, eliminate irrelevant 

objects and preserve the useful characteristics in an image. Morphology is an operator 

which is constructed with operations on a set of pixels in binary image in order to extract 

useful component in representing an image (Álvarez, Baumela & Márquez, 2010; Ahmad 
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& Nasri, 2012). Therefore, there is a growing interest to apply morphological operations in 

image segmentation with ACM due to its low computational complexity in minimizing the 

energy involved in the segmentation process (Amer, 2002; Sun, Chen, & Jiang, 2012).  

 

There are two main operations of morphology; dilation and erosion. Other operators are 

opening and closing, hit and miss transform. These operators use a binary image and a 

structuring element as an input (Parvati, 2008; Ahmad & Nasri, 2012). As the mathematical 

morphology take a binary image as an input, understanding on pixel connectivity is 

important. Pixel connectivity is the way in which pixels in 2D or 3D images relate to their 

neighbors. For example, 4 connectivity means 4-connected pixels are neighbors to every 

pixel that touches one of their edges. In addition, a diagonal pixel exist when once would 

like to join any two corners of the rectangular pixels which are not already joined which is 

called as edges. The morphological operations of erosion can be used to get the diagonal 

pixel in getting an accurate boundary. On the other hand, a structuring element with a 

determined shape is used to interact with a given image. The structuring element (SE) acts 

as an agent or a mask that moved in the image based on the morphological operators 

applied. The purpose of a SE is to fit the SE shape to the shape of the object in the image. 

Usually, the structuring element has a size of 3×3 and its origin is at the center pixel 

(Krishan & Rajender, 2013). When the structuring element or the mask is gradually shifted 

across an image, every pixels of the image are compared with the underlying pixels of the 

mask and need to meet certain condition defined by the morphological operators. If the 

pixels match the condition defined by the set operator of the morphological operations, the 

pixel underneath the structuring element is set to a predefined value (0 or 1).  
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In the edge-based ACM, the morphological operations of dilation and erosion are done by 

comparing the gradients in the image. On the other hand, the region-based ACM the 

dilation and erosion operations are completed by comparing of the pixels intensity in each 

region (Sun, Chen, & Jiang, 2012). Work by Francoise and Hel-Or (1991) embedded the 

mathematical morphology as an energy formulation in active contour model to solve the 

lung contour problem in CT scan images. The work expressed the external energy 

functional as a combination of conditional-gradient and anatomical structure as a prior 

knowledge that is expressed in term of distance function. The Mathematical Morphology 

operation of dilation and erosion is used as the expanding and shrinking deformation 

process to provide an improved segmentation. Unfortunately, the method is sensitive to 

noise and having difficulty to be applied to other types of medical image modalities 

(citation). The research performed by Victoria et al (2013), introduces a new morphological 

multiphase active contour model. The work is based on the multiphase implementation of 

Active Contour Model Without Edges (Chan & Vese, 2001). The implementation of 

morphological operations shows efficient and robust segmentation result on the trial 

vascular images. Besides, the method shows good outcome on watershed model and fuzzy 

c-means method. However, the method is sensitive to intensity inhomogeneity problem. In 

addition, one of the disadvantages of MM in image segmentation is that it does not provide 

smoothing effect during the curve evolution. Section 4.3 presents the new development of 

ACM which is based on Mathematical Morphology. 
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4.2  New Morphological Based Method in Active Contour Model 

In this section, discussion on the proposed method of ACM with MM is presented 

(Norshaliza et al., 2012). As medical images are low in quality, segmenting the object from 

the background can be difficult. For example, the microscopic image of two cells. The 

characteristics of microscopic images that made it difficult in the segmentation process are 

noise that lead to missing edges at the boundary of the cells and intensity inhomogeneity in 

the image. Due to the intensity inhomogeneity problem, some ACM methods such as active 

contour model without edges (Chan & Vese, 2001) failed to successfully segment the cell 

from the background. On the other hand, the LBF method (Li, Kao, Gore, & Ding, 2007) 

can partially segment the boundary of the cell due to weak or missing edges in the image, 

as shown in Figure 4.1 below.  

 
(a) 

 
(b) 

Figure 4.1: (a) A cell image with missing edges; (b) The close up view of the missing 

edges. 

 

The aim of the proposed method (Binary Morphology model) is to improve the output 

image derived from the segmentation using the LBF method by the implementation of MM 

function. The proposed method implements the MM on binary image to overcome the 

boundary leakage problem. It adopts morphological closing operator using the diamond-

shape SE in order to expand or to fill in the holes at the disjoint regions (Sun, Chen, & 

Jiang, 2012;  Ahmad & Nasri, 2012; Francisco, Mar & Ramón, 2007). Morphological 

closing operator consists of a dilation operation followed by erosion operation. The 
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morphological closing operator adopts the dilation operation to expand and merge the 

separate region in order to build/construct the missing edges. In other words, dilation 

process fills in holes found at the boundary. Subsequently, the erosion operation is applied 

to smooth and remove any unwanted pixels from the image before an outline function is 

applied to create an outline of possible shape in the image.  This operation is also called as 

morphological connectivity, and here the implementation of the 4x4 connectivity is carried 

out in horizontal followed by vertical movements or vice versa of the structuring element 

with the shape of diamond. 

 

As mentioned earlier, morphological operation works better on binary image than gray-

scale image. Therefore, gray-scale microscopic image of a cell is first converted into binary 

image prior to the execution of the closing morphological operation on the image.  The 

advantage when working with binary image is the speed on the evolving contour is faster 

when compared with image based on gradient. Moreover, the accuracy of segmentation is 

also higher (Sun, Chen, & Jiang, 2012; Ahmad & Nasri, 2012; Victoria et al., 2013). Figure 

4.2 illustrates the microscopic image that was converted into binary image using Matlab 

R2008b. Note that pixels with value of 1 are denoted as object to be segmented and are 

called as structuring elements. Pixels with value of 0 are considered as the background. 

Assume that B is the binary image of the original image, the equation is given by; 

Ɛ = B(x) – [ B ȏ A ] (x) 

(4.1) 

where A is the structuring elements (SE) and ȏ denotes morphological closing operator. Eq. 

(4.1) represents the dilation process where the SE will expand the pixel value from 0 to 1. 

In other words, the pixel is added up to the neighboring pixels to fill up the gaps. Here, the 
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proposed method implemented the morphological closing operation with flat linear SE with 

proper length and degree. This measurement Eq.(4.1) is in a counter-clockwise direction 

with horizontal and vertical SE. In the sub sequence section, each operations of MM 

applied on the proposed method are presented.  

 

 

a 

 

b 

Figure 4.2: The original binary image of microscopic image of cell and the  

dilation process. 

4.2.1  Dilation Operation  

 
This section presents the dilation process in MM. In binary morphology, dilation is a shift-

invariant operator. To understand the process, assumed that SE is labeled as S and the 

image is labeled as B. Therefore, the dilation operation is performed by laying the 

structuring element S on image B, and sliding it across the image in a manner similar to 

convolution. In a standard dilation operation, the structuring element S is moved over the 

binary image B. In general the equation is given by; 

𝐴 ⊕ 𝐵 = 𝐵 ⊕ 𝐴 =  ራ 𝐵௔
௔ ఢ ஺

 

(4.2) 

Univ
ers

ity
 of

 M
ala

ya



 
 

68 
 

If B has a center on the origin, then the dilation of A by B can be understood as the locus of 

the points covered by B when the center of B moves inside A. Take note that either A and B 

is having the value of 0 and 1 and vice versa which means A can be white and B can be 

black or vice versa. 

 

In the proposed method, the origin B (having value of 0 which is white) intersects with 

pixels value in A (black). The current respective pixel’s value of A (black) need to cover all 

pixels underneath its region which is white (the gaps) to black. This means the dilation 

process is expanding the black pixels to other pixels the region. At this point, the binary 

gradient mask is dilated using the vertical SE of B followed by the horizontal SE of B. 

Dilation operation is used to increase object in the image. In terms of binary image in the 

proposed method, the equation is given by: 

𝜀஺(𝐵) =  {𝑥|𝐴௫ ∩ 𝐵 ≠ 𝜙} 

(4.3) 

where A is translated with x, and as SE have the maximum pixel value with 1, x is 

translated from value 0 to value 1. The equation (4.3) above can be rewritten into the 

unions of the translated set 𝐼 ௔: 

𝜀஺(𝐵) = ∪௔∈஺ 𝐵ି௔ 

(4.4) 

Figure 4.2(b) illustrates the dilation process using the vertical followed by the horizontal 

movements. This process is normally named as region filling and is discussed in section 

4.2.2. 
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4.2.2   Region filling  

Region filling process is done based on a set of dilation operations. In the dilation process, 

region is filled to close any small gaps or to connect the disjoint regions repeatedly. The 

proposed method applied the dilation operation to fill in holes at disjoint regions, and after 

the filling process is completed, the gap is filled and connectivity is established. Let A 

denote a set with a 8x8 connected boundary. Let 𝑋௢be an initial point in the boundary. 

Therefore, the equation of region filling is given by;  

 

𝑋௞ = (𝑋௞ିଵ ⊕ 𝐵)⋂ 𝐴௖ 

(4.5) 

A problem with dilation process is some critical part within the same region (same value) is 

not properly filled. As a result, there are part is the region is having pixel value of 0 (white). 

Therefore, the region filling is used to fill up the gap with value which is the same with the 

current region’s value. Assumed that the process start with a point t inside the boundary of 

the SE with the value of 1 (black). The current pixel value for the region is also 1 (black). 

The SE with value of 1 will move on the current pixel value of the region with the value of 

1 to overcome the disjoint. Once the SE is working by moving horizontally and vertically in 

the region, it will fill up any region with value of 0 (white) and converted them to value of 

1 (black) to have a connected region. The proposed method will perform a contour 

evolution and is achieved by performing substitutions of 4x4 pixel patterns on the region 

boundary. 
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4.2.3  Erosion Operation  

The erosion morphological operation with a structuring diamond element is applied to 

smooth the image, remove noises or unwanted pixels, and finally create the outline of 

possible shape in the image. The function returns a binary image containing only the 

perimeter pixels of object in the input image. A nonzero pixel is part of the perimeter, and it 

is connected to at least one zero-valued pixel. Our proposed Binary Morphological 

operation is explained in the following section.  

 

4.3   Binary Morphological Model  

This section presents the design and development of the proposed method named binary 

morphological model. In order to execute the method, segmented medical image is needed 

as an input to the method. The input medical image must be executed from any 

segmentation method to get the result and the result must depict the gaps / holes problem 

along the object boundary. In this study, Local Binary Fitting (LBF) energy is used to 

produce an input to the method. The LBF method has the potential to segment medical 

images with intensity inhomogeneity. However, it could not manage to segment medical 

images that have missing edges. The Binary Morphology model will join the gaps / holes 

that have been identified from the output image of LBF. Therefore, the equation of the 

proposed method depending on the morphological closing operation is given by; 

[𝐴 ⊕ 𝐵 (𝑋௞ିଵ⨁ 𝐵) ∪ 𝐴]  ⊝  𝐴   

(4.6) 

A and B are the image with value of either 1 or 0 and vice versa. The first part of the 

algorithm shows the dilation process whereby the SE of A is expanded with pixel B. After 
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the dilation process, the translated pixels are filled with region.  This measurement is given 

by; 

𝑋௞ = (𝑋௞ିଵ ⊕ 𝐵) ∪ 𝐴 

(4.7) 

where k is the size of a window and k = 2,3,4. This algorithm terminates at iteration step k 

if 𝑋௞ =  𝑋௞ିଵ and A contains the filled set and its boundary. The last step in completing the 

whole process is to smooth and erode the image. This is represented by A. The complete 

algorithm is given by;  

𝜀 = 𝐿𝐵𝐹 + [ 𝐴 ⊕ 𝐵(𝑋௞ିଵ ⊕ 𝐵)⋃𝐴] ⊝ 𝐴 

(4.8) 

where the first part is the LBF method and the equation is the same as shown in (4.2). Once 

the LBF method deliver the output image, the binary morphological model will perform the 

morphological closing operation to close the gaps between the separate regions. The 

complete equation of LBF method is given as follows; 

𝜀௅஻ி(𝜙, 𝑓ଵ, 𝑓ଶ) =  ∫ஐ𝜀௫
௅஻ி ൫𝜙, 𝑓ଵ(𝑥), 𝑓ଶ(𝑥)൯𝑑𝑥 

=  𝜆ଵ∫ ൣ ∫ 𝐾ఙ(𝑥 − 𝑦)ห𝐼(𝑦) −  𝑓ଵ(𝑥)|ଶ 𝐻൫𝜙(𝑦)൯𝑑𝑦൧𝑑𝑥 

= 𝜆ଶ∫ ൣ ∫ 𝐾ఙ(𝑥 − 𝑦)ห𝐼(𝑦) −  𝑓ଶ(𝑥)|ଶ (1 − 𝐻 𝜙(𝑦)))𝑑𝑦൧𝑑𝑥 

(4.9) 

where 𝜆ଵ and 𝜆ଶ are positive constants, and K is a kernel function with a localization 

property. Both the 𝑓ଵ(x) and 𝑓ଵ(x) are two numbers that fit image intensities near the point 

x. The point x is the center point of the above integral, and the above energy the local 
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binary fitting (LBF) energy around the center point x. In the next section, experiment on 

binary morphological model is presented. 

 

4.5  Experiment and Result 

This section reports the experimental setup and results obtained based on the binary 

morphological model. The purpose of these experiments is to observe the capability of the 

mathematical morphology in joining the gaps problems along the object boundary. The 

algorithm is implemented using MatlabR (2008b). Two medical images are used in the 

experiments and they are microscopic image of two cells and MRI image of heart. In brief, 

below are the steps in implementing the binary morphological model. 

1. Obtained an input image from the execution of LBF method. 

2. Identify any gaps along an object boundary. 

3. Insert some seeds at the gaps as many as possible. 

4. Execute the dilation operation to expand the seeds. 

5. Execute the erosion operation to remove unwanted pixels. 

6. New lines/contours are created to join the gaps. 

7. Segmentation outcome is generated. 

 

Figure 4.3 depicts image of two cells from the modality of microscopic. Note that, along 

the boundary of the two cells, several gap/hole are identified. This is due to the problem of 

noise and intensity inhomogeneity that leads to missing/weak edges at the object boundary. 

The aim of binary morphological model is to use the morphological operations in joining 

these gaps. To get the results of binary morphological model, an input image which is 

segmented from LBF is executed. Figure 4.3(a) shows the results obtained when executed 
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with the LBF method. Figure 4.3(b), 4.3(c) and 4.3(d) shows the sequence results when 

applied the binary morphological model on the microscopic image of two cells based on 

dilation and erosion operations.  

 
(a) 

 
(b) 

 
(c)  

(d) 
Figure 4.3: The sequence results obtained from the experiments using microscopic image; 

(a) shows the result obtained from LBF method (b-d) show the results obtained in sequence 

when implemented using the binary morphological model. 

 

The result obtained from LBF method shows several gaps at the boundary of the two cells 

Figure 4.3(a). This is one of the drawbacks with LBF method as the initial positions create 

two contours whereby it passes at the weak edges and creates gap. The proposed model 

uses the closing morphological operation where it starts with the dilation operation process. 

Before the dilation process can be implemented, several seeds need to be placed manually 

by the user between regions with gaps problem. The seeds need to be inserted at several 

points where the dilation process needs to expand or shrink to join the gaps at the object 

boundary. At this point, the dilation process will merge and join gaps at the boundary of the 

cell which is based on the inserted seeds. The seeds can be placed as many as possible and 

at any positions along the object boundary. For the microscopic image of two cells, Figure 

4.4 shows sample of the inserted seed shown by the dotted points.  
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Figure 4.4: The inserted seeds to support the dilation process whether to expand or 

shrinking. 

 

The dilation process is shown in image at Figure 4.3(b). At this point, the connectivity in 

joining the gaps is created and implemented as discussed in section 4.2. However, from the 

result obtained, the image is still having unneeded regions (over segmentation) that are still 

being segmented by the process (shown by the arrow). To overcome the problem, the image 

needs to be smooth by applying the erosion morphological operation. The function of 

erosion morphological was set to 4 pixels in removing all diagonal connections (4-

connected). The erode operation is used to erode the binary image and returning the erode 

image again. This is shown in Figure 4.3(c) where the image is now smooth the 

oversampling regions are removed. To complete the whole process, a mapping of the result 

obtained on Figure 4.3(c) is done on the original image of the two cells. The mapping 

process will return a binary image containing the perimeter pixels of objects in the input 

image as shown in Figure 4.3(c). The complete result is shown in Figure 4.3(d). The result 

depicted that the gaps problem is now solved. It is shown that the operations of dilation and 

erosion having the capability in creating the connectivity in joining the gaps problem along 

the object boundary. 

 

To support the finding in this chapter, MRI image of heart is used to evaluate the binary 

morphological model. MRI image of heart suffered from noise and intensity inhomogeneity 
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that leads to weak at edges. The purpose of the experiment is to segment only the hole of 

the heart which is situated at the center of the heart image. Figure 4.5 illustrate the 

experiment conducted on MRI image of heart using binary morphological model. Figure 

4.5 (a) is the input image to the method executed from LBF method. Note that, the contour 

did not perfectly segment the hole of the heart image. The binary morphological model is 

applied where the dilation operation is used to expand and shrink depending on the 

placement of the inserted seeds. Figure 4.5(b) shows the result obtained from the dilation 

process. Based on the results, several unwanted regions are segmented as well and this is 

removed by applying the erosion process. The result obtained is shown in Figure 4.5(c). 

Now, the output from the erosion process is become the outline or mapping on the original 

image of MRI of heart and the finalize result of the segmentation is shown in Figure 4.5(d). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
Figure 4.5: The sequence results obtained from the experiment using MRI image of heart; 

(a) shows the result obtained from LBF method (b-d) show the results obtained in sequence 

when implemented using the binary morphological model. 

 

From the two experiments conducted in Figure 4.4 and Figure 4.5, it is shown that 

mathematical morphology with its operation of dilation and erosion could be used to 

overcome the problem of missing or weak edges. Section 4.6 summarizes the work on 

binary morphological model. 
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4.6  Summary 

The binary morphological model is designed and developed to observe the strength of 

mathematical morphology in joining gaps along the object boundary. Medical images are 

known to have low quality that made it difficult to be segmented. Due to the level of noise 

and intensity inhomogeneity, regions in medical images are suffered from weak or missing 

edges. At this situation, the contour of ACM has difficulty in recognizing or extracting the 

intensity in order to create the connectivity among the pixels. If there is no connectivity, 

this means segmentation produced is incorrect. The study observed the morphology 

operations in joining gaps along the object boundary of medical images. The LBF method 

is used to produce segmented medical image but with several identified gaps. Experiment 

using the dilation operation shows that the gap is joined based on the placement of inserted 

seeds. To get the complete segmentation, the output from erosion process is map on the 

original image. As the binary morphological model is based on semi automatic, the 

efficiency of the model is not satisfactory. Additionally, the inserted seeds may give 

problems especially when it passes the diagonal pixels. Therefore, two automatic 

segmentation methods are developed to overcome the semi automated method and this is 

discussed in Chapter 5 and Chapter 6 respectively. Both automated method is based on 

fractional calculus which is generalized from nonlinear diffusion function.  
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CHAPTER 5 
FRACTIONAL SINC WAVE METHOD WITH ACM 

 

This chapter describes our first approach in automatic segmentation of medical images. The 

approach introduces a novel implementation of fractional calculus with sinc wave method 

in the hybrid ACM. This implementation is proposed to address current issues of intensity 

inhomogeneity problem in medical images that creates inaccuracy in image segmentation 

(Zhang et al., 2013; Wang, Li, Sun, Xia, & Kao, 2009; Li, Xu, Gui, & Fox, 2005). This 

chapter begins with a brief introduction to fractional calculus and sinc wave method. In 

Section 5.3 we propose our algorithm and highlight its advantages in enhancing the 

segmentation outcome of medical images. Section 5.4 describes the strategy and issues 

involved in implementing the proposed algorithm. In Section 5.5 we report our experiments 

and their results. Section 5.7 discusses on the benchmarking results emphasizing on the 

performance of the proposed method against other methods of ACM. This chapter ends 

with a conclusion about the capability of the proposed method in addressing current 

problem of medical image segmentation. 
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5.1 Introduction 

Calculus is a system of calculating or reasoning that finds the derivatives or integrals of a 

function. Derivatives or integrals are the fundamental tools in calculus where derivatives is 

a process of measuring the sensitivity to change the function value or dependent variable 

which is determined by another independent variable. Integral on the other hand, covers the 

accumulations of quantities such as areas under a curve. Fractional is a numerical value that 

is not a whole number where fractional is less than one. Therefore, fractional calculus is a 

function that takes any real number powers in differentiates or integrating a function once, 

twice or many times. Real number of fractional calculus is a value that represents a quantity 

along a continuous line whereas the term ‘powers’ here is referred to an iterative 

application. Fractional calculus can be described in many scientific phenomena such as in 

physics, biomedical engineering, statistics, image processing and others (Alkan & Secer, 

2015).  

 

Fractional calculus is a nonlinear mathematical function. Nonlinear function is viewed not 

as a straight line in a given graph and it contains a variable with an exponent other than 

one. In mathematics, exponent behavior is referred to a repeated multiplication of a 

numerical value. In nonlinear function, the data is modeled by a combination of parameters 

and it depends on one or more independent variables (B. J. West et al., 2003; K. S. Miller 

and B. Ross, 1993). Nonlinear function has the capability in enhancing and preserving 

image details. It also provides the most flexible contour-fitting functionality in an image 

(Amadori& Vazquez, 2005; Secer et al., 2013). Contour-fitting functionality is a process to 

construct a curve or contour in an image made from a series of data points. The nonlinear 

function provides the smoothing effect of this contour over the data points. In the ACM’s 
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image segmentation method which utilizes the contour evolution, the data obtained from 

nonlinear function is fitted to form a contour in order to wrap around an object in a given 

image.  

 

In image segmentation where contour minimization is utilized, the lower bound of 

fractional calculus derivative does not coincide with the lower bound of the fractional 

calculus integral when the energy is minimized (Baumann & Stenger, 2015; Diethelm et al., 

2005). This leads to difficulty in finding the local image properties thus hinders accurate 

boundary segmentation. Through several studies, sinc wave method or sine function is 

employed to determine and solve the boundary value problem. This is investigated in work 

by El-Gamel (2012). The advantage of sinc wave method is on its consistent movement, the 

ability to retain its shape in a given time. In image segmentation, sinc wave method can be 

applied to a contour in order to obtain a smooth and repetitive contour’s movement across 

the time. The method therefore supports the functionality of fractional calculus and 

nonlinear function in order to achieve high accuracy in image segmentation outcome.   

 

5.2  Fractional Sinc Wave Active Contour Model 

Fractional sinc wave (FSW) ACM is a new hybrid ACM that integrates the strengths of 

fractional calculus and sinc wave method in order to enhance the capability of the existing 

model to accurately segment images even in the presence of intensity inhomogeneity. In 

this study, we proposed a method that uses the FSW within the global and local ACM. The 

integration of fractional calculus in both global and local ACM enables its contour to 

evolve in a nonlinear movement along pixels intensity so that it can be as near as possible 
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to an object’s boundary. The exponential behavior of fractional calculus which is nonlinear 

provides a contour evolution that is dynamic and rapid, yet stable.  

 

Besides giving an excellent smoothing effect on an image surface, nonlinear function 

provides flexibility in contour fitting function, incorporation of fractional calculus further 

improves the bending effect capability of the contour. Additionally, the collaboration of 

sinc wave method with fractional calculus has the capability of interpolation in constructing 

a new data point along the contour. This gave efficient contour bending flexibility to permit 

it to reach even at difficult angles. Furthermore, the sinc wave method provided high 

accuracy in finding the local image properties at the object boundary. Therefore, improved 

segmentation outcome is achieved. 

 

However, the contour augmentation with fractional calculus is still not able to bring the 

contour to stop correctly on the object boundary especially for those complex objects with 

sharp curves and weak edges. In this research, we alleviate this problem by applying sinc 

wave method on the augmentation. The sinc wave method bends the contour flexibly, 

forward and backward at critical angles along the object boundary (El-Gamel, 2012; Dan 

Tian, 2012). With its capability of interpolation technique in constructing and placing new 

data points in a given sets of current data points, the sinc wave method managed to close 

any gap or weak edges along the object boundary. The gaps are the resultant of local 

minima problem that occur along an object boundary particularly in images with intensity 

inhomogeneity (Aydin et al., 2013). Our proposed FSW ACM offers the following 

advantages.  
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First is the implementation of nonlinear function smoothed image texture while preserving 

its edges and enhancing the inhomogeneous object classification in the affected regions. 

Secondly, the augmentation of fractional calculus with sinc wave method on contour 

evolution of both global and local energy has resulted in rapid contour movement with 

flexible bending capability to quickly segment object with sharp curves and difficult angles. 

Finally, apart from its ability to produce accurate segmentation even in the presence of 

intensity inhomogeneity, the proposed method can also resolve over segmentation, a 

problem commonly occur in many region-based ACM methods. 

 

5.3  Algorithm Design of the Fractional Sinc Wave ACM 

In the proposed method, the fractional sinc wave is embedded with the global and local 

ACM because the former is more robust to image noise while the latter allows the 

extraction of image’s gradient along an object boundary. However, the global or region-

based ACM is sensitive to intensity inhomogeneity which would produce segmentation of 

many unwanted regions or better known as over segmentation. In getting a satisfying  

result, the proposed method embedded the fractional sinc wave method within the global 

and local ACM. In explaining the algorithm design of the proposed method, we first present 

the fractional integral and derivative used in the proposed method by the definition of the 

Riemann-Liouville. The equation is given by; 

𝐷 𝑓(𝑥) =  
1

Γ(𝛼)௫
ఈ න 𝑓(𝑡)(𝑥 − 𝑡)ఈିଵ

௫

௔
𝑑𝑡 

(5.1) 
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𝐷 𝑓(𝑦) =  
1

Γ(1 − 𝛼)௫
ఈ න 𝑓ᇱ(𝑦 − 𝑢)(𝑢 − 𝑥)ିఈ

௬

௔
𝑑𝑢 

(5.2) 

where Eq.5.1 represents the fractional integral and Eq.5.2 represents the fractional 

derivatives. The symbol of 𝛼 in both equations is the positive real number, Γ is the gamma 

function and 𝛼 is an arbitrary fixed based point. As the proposed method is using the sinc 

method, in general, the sinc(t) of order α, (sinα), is defined by (Dan Tian, 2013; Gerd 

Baumann and Frank Stenger, 2011) as follows: 

𝑠𝑦𝑛𝑐ఈ(𝑡) =  
𝑠𝑖𝑛ఈ(𝑡)

𝑡
,      𝑡 ≠ 0 

=  ෍
(−1)௡𝑡(ଶିఈ)௡

Γ((2 − 𝛼)𝑛 + 2)

∞

௡ୀ଴

 

(5.3) 
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(5.4) 

where in Eq.(5.3), *  is the gamma function, t is a variable and   (0,1)D �  is a parameter.  

The sincα (t) function also called as the sampling function, it is a function that arises 

regularly in the theory of Fourier transforms and signal processing (El-Gamel, 2012). This 

function inherits the singularities strength and has the capability in supporting the fractional 

calculus for better bending effect capability as well as a rapid and dynamic movement. The 
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sinc wave method has the similarities with the Heaviside function where Heaviside function 

is a discontinuous function and is used in operational calculus for the solution of 

differential equation. The Heaviside function is normally defined by a limit of the sinc 

wave method and is given by; 

1           t 0
lim  sinc( ) ( )0 0           t<0  

        t H tt
t

  o
­
®
¯

. 

(5.5) 

The value zero of Heaviside function is for negative arguments and one is for positive 

arguments. As the proposed method utilizes the generalization of nonlinear which are the 

fractional calculus and the sinc wave method, the general procedure for nonlinear FSW 

function is defined by the following recursive equation: 

𝑆௡ =  𝛼𝐼௡ + (1 − 𝛼)𝑆௡ିଵ ;              0 ≤ 𝛼 ≤ 1 

(5.6) 

where {𝐼௡} is the image to be processed, 𝑆௡ is the processed result for the 𝑛௧௛step, and 𝛼 is 

the smoothing coefficient. The nonlinear function has the capability in preserving image 

detail and reducing image noise. To support the use of the Eq. (5.6) for several iterations, 

Eq. (5.7) is represented using the following equation: 

𝑆௡ =  𝛼 ෍ 𝛽௡ି௜𝐼௜ +  𝛽௡𝑆଴

௡

௜ୀଵ

,                    𝛽 = 1 − 𝛼 

(5.7) 

where the processing result is a weighted sum of all samples with exponential decreasing 

weights. Eq. (5.7) has a parameter of 𝛼 that meets the algorithm requirements regardless of 

the number of inputs. This gives rapid and dynamic movement of contour in evolving in an 

image’s surface and this is done iteratively. Eq.5.8 illustrates the complete equation of the 

proposed FSW ACM method.  
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Let C be a contour in an image Ω. The complete energy for FSW ACM is defined as 

follows: 

𝐹(𝐶, 𝑑ଵ, 𝑑ଶ) =  𝜆ଵ න 𝐺(𝑥)| 𝐼(𝑦) − 𝑑ଵ(𝑥)|ఈೣ∗೤𝑑𝑥𝑑𝑦
௜௡(஼)

 

+𝜆ଶ න 𝐺(𝑥)| 𝐼(𝑦) − 𝑑ଶ(𝑥)|ఈೣ∗೤

௢௨௧(஼)
𝑑𝑥𝑑𝑦 

+𝜇. 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) 

           (5.8) 

where 𝜆ଵ and 𝜆ଶ are the two positive parameters, G(x) is the Gaussian filter function as 

discussed in Eq.(2.22). The two numbers 𝑑ଵ, 𝑑ଶ shown in Eq. 5.8 are defined by;  

1 ( )
( ).sin ( )

sin ( )

I x c dx

c dx
d D

D

I
I

I
:

:

 
³
³

, 

2 ( )
( ).(1 sin ( ))

(1 sin ( ))

I x c dx

c dx
d D

D

I
I

I
:

:

 
�

�
³
³  

(5.9)
 

Accordingly, 𝑑ଵ, 𝑑ଶ in Eq.(5.9) do not have constant values as the proposed method applies 

the nonlinear Gaussian (Ghamisi, 2012; Perona & Malik, 1990; Erdem, 2012; Barenblatt & 

Vazquez, 2004). As the proposed method is embedded within the level set framework, the 

new equation is given as follows: 

𝐹(𝜙, 𝑑ଵ, 𝑑ଶ) =  𝜆ଵ න 𝐺(𝑥)| 𝐼(𝑦) − 𝑑ଵ(𝑥)|ఈೣ∗೤𝑠𝑖𝑛𝑐ఈ(𝜙)𝑑𝑥𝑑𝑦
௜௡(థ)

 

+ 𝜆ଶ ∫ 𝐺(𝑥)| 𝐼(𝑦) − 𝑑ଶ(𝑥)|ఈೣ∗೤

௢௨௧(థ) ൫1 − 𝑠𝑖𝑛𝑐ఈ(𝜙)൯𝑑𝑥𝑑𝑦 

+ 𝜇. 𝐿𝑒𝑛𝑔𝑡ℎ(𝜙) 

(5.10) 
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where 𝑠𝑖𝑛𝑐ఈ(𝜙) is based on Heaviside function. The elaboration of 𝑠𝑖𝑛𝑐ఈ(𝜙)in Eq. (5.10) 

is presented in Eq.(5.3) and Eq.(5.4) for constructing a contour. To provide a contour with 

rapid and dynamic movement, the study proposes a technique by applying the Gaussian 

filter with fractional sinc wave method in each contour movement. This technique provides 

a rapid and dynamic movement, which speeds up the segmentation process. The 

computational requirement for separating inhomogeneous objects within regions is 

simplified by applying the FSW method in Gaussian filter modification. This is given by;  

𝐼(𝑥) −  (𝑑ଵ + 𝑑ଶ)ఈೣ∗೤ 

(5.11) 

where 𝑑ଵ and 𝑑ଶ are the two regions, and 𝐼(𝑥) is the original image. For a successful 

segmentation outcome, the overall equation is applied to the image to improve the image 

intensity distribution in each region. The power of α is the control parameter of sinc wave 

method with two variable numbers which is based on exponential regression. If a large 

number is given to the α, the contour will move further towards  the segmented object 

boundary. If a small number is used, the contour will move nearer the segmented object. 

This is shown in the experiments conducted in Section 5.4. The choice of input for α 

depends on the distribution severity of the image intensity. This input needs to be properly 

tuned. The contour did not stop at the exact object boundaries when only the global energy 

is utilized. To solve this problem, the energy function need to be minimized where the level 

set contour must be on the object boundary even in order to ensure the contour stop exactly 

on the object’s boundary in the presence of intensity inhomogeneity, we have implemented 

distance measure that is based on fractional Euler Lagrance within the level set function.  
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As the proposed method is based on fractional sinc wave method, the equation for distance 

measure as stated in the third line of Eq.(5.10) as follows; 

     𝐿𝑒𝑛𝑔𝑡ℎ(𝜙) = 𝜇𝐿௙ఈ(𝜙) 

(5.12) 

where 𝐿௙ఈ(𝜙) is the distance measure based on fractional sinc function and is given by; 

𝐹ఈ(𝜙) =  න |∇ఈ𝜙(𝑥, 𝑦)
Ω

|ఈ𝑠𝑖𝑛𝑐ఈ𝑑𝑥𝑑𝑦 

(5.13) 

To minimize the energy function, 𝐹ఈ(𝜙) = 0 to make sure these contour is placed exactly 

on the object boundary. The implementation of this equation is presented in section 5.3.1.  

 

5.3.1  Algorithm Implementation 

This section describes the implementation of the proposed method. The method is 

implemented in MatlabR (2008b) on a 2.5 GHz with Intel Processor i5. There are two 

primary issues that need to be considered in the implementation of the proposed method. 

First is about the initial placement of a contour in an image. According to the literature, 

there are two implementation strategies to set the initial contour placement in an image. 

The first strategy automatically initializes the placement of a contour in an image. This 

strategy does not require a segmentation method to decide on how or where to place a 

contour in an image therefore segmentation methods that implement this strategy will have 

the same type of contour initialization. On the other hand, in the second strategy, the initial 

placement of a contour is determined by the segmentation algorithm therefore contour 

initializations can be different across different ACM methods. Our proposed method 

implements the second strategy therefore the initial placement of a contour is according to 
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the region-based ACM that utilizes the global energy to achieve the contour placement 

flexibility during its evolution. 

 

Another issue that needs to be considered in implementing the proposed method is in 

regards to use a nonlinear Gaussian filter for the smoothing technique. The nonlinear 

Gaussian filter requires some controlled parameters to allow a contour to rapidly move 

towards an object. If the values of a controlled parameter are large, the contour will move 

further from an object’s boundary; otherwise, the contour will move nearer towards the 

boundary. The controlled parameter used in the algorithm is 𝑠𝑖𝑛𝑐ఈ where 𝛼 is the parameter 

that needs to be adjusted for improved bending effect and contour fitting capability. 

Another parameter used is sigma 𝜎 that permits the Gaussian filter to also enhance image 

details including the edges. Its value can be adjusted according to the level of noise and 

intensity distribution in an image. The values of input for both 𝛼 and 𝜎 parameters will be 

later explained during the execution of experiments in the following section.  

 

The stopping function is also an issue that must be considered to ensure that the contour 

stops on or near an object boundary. In order to bring a contour as near as possible to an 

object boundary, our proposed method implements the fractional sinc method along with a 

distance measurement term that utilizes the local energy within the level set framework. 

During this process, the level set property is kept equal to |∇𝜙| = 1. This value is used to 

stabilize and to stop the contour movement when it reaches an object boundary. The value 

indicates that the contour is exactly on the boundary of the segmented object boundary. The 

contour stability during the evolution is maintained until the segmentation process is 

completed. The summarization of the algorithm of the proposed method is presented below: 
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1. A contour is initialized based on the curve evolution 

𝜇 =  ൜ 𝑑ଵ𝑥 ∈ Ω௜௡
𝑑ଶ𝑥 ∈ Ω௢௨௧

 

where 𝑑ଵand 𝑑ଶ  are not constants in order to implement the nonlinear function and the 

initialization is based on inside and outside regions. 

2. 𝑑ଵand 𝑑ଶin step 1, are computed based on Eq. (5.8). 

3. The Gaussian filter is applied for providing the smooth effect on an image with the 

strength of nonlinear function. 

4. The contour evolves based on the FSW ACM method represented by sincα , α>0. 

5. The controlled parameter 𝛼 is applied in Eq.(5.8) to control the movement of a contour. 

6. To minimize the energy function, 𝐹ఈ(𝜙) = 0 to make sure a contour is placed exactly 

on an object boundary as shown in Eq. (5.11). Otherwise, repeat step 2. 

 

In step 3, x and y are the control parameters of α which are adjusted to obtain an efficient 

contour bending effects and a rapid movement toward the boundary of an object of interest. 

Giving a larger number of x and y parameters (i.e., more than 0.7) will move the contour far 

from the boundary. Too small values input for the (i.e., less than 0.4) draws the contour 

near or flat at the boundary of objects of interest. The nonlinear function applied on the 

contour has the capability of the fractional sinc wave function hence it will move the 

contour increasingly and decreasingly towards an object boundary and stops when the 

energy is minimized or when the level set property is equal to |∇𝜙| =  1. The FSW ACM 

method works well when the local energy is efficiently adapted at the area with high 

gradient level. Section 5.4 presents the experimental results on multimodality of medical 

images.  
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5.4  Experiments and Results 

Several experiments have been conducted to evaluate the feasibility of the proposed method 

to automatically perform accurate boundary segmentation of medical images in the 

presence of intensity inhomogeneity. Additionally, the experiments aim to demonstrate that 

the proposed method works well regardless of imaging modalities and anatomical structure 

of the images. For this reason the datasets used for these experiments comprises of medical 

images from various modalities namely CT scan, MRI, microscopic and ultrasound images, 

and representing various types of human organs or anatomical structures. This section 

describes the medical datasets used and reports the experiments that have been carried out 

on these datasets and their results. This section includes the ground truth data medical 

images so that detail of areas that need to be segmented. 

 

5.4.1  Dataset 

Medical images of various modalities and anatomical structure used in these experiments 

were taken from the database of image Clef from the year 2010 to 2012 

(www.imageclef.org). The medical images used in the experiments are MRI, CT scan, 

microscopic and ultrasound images. Table 5.1 presents the characteristics of the medical 

images used in the experiments. 
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Table 5.1: The visual characteristics of medical images used in the experiments. 

Imaging 
modalities 

Organ 
captured 

Criteria Level of noise Level of 
Intensity 
inhomogeneity 

CT scan x Brain 
x Chest 
x Heart 
x Abdomen include 

kidney liver, 
spleen, pancreas 

x Pelvic include 
ovaries, bladder 

x Lymph nodes  
 
 

x Object to be 
segmented consist 
of the inner and 
outer parts, for 
example, brain, 
heart and abdomen. 

x Different shapes 
and brightness are 
used to represent 
anatomical 
structure, for 
example, the white 
flare to represent 
the outline of the 
brain tissues. 
 

x More severe 
in the inner 
part 
compared to 
the outer 
parts.  

x Inner parts 
contains high 
level of 
intensity 
inhomogenei
ty  

MRI x Brain 
x Chest 
x Heart 
x Abdomen include 

kidney liver, 
spleen, pancreas 

x Pelvic include 
ovaries, bladder 

x Blood vessels 
 

x Object to be 
segmented consist 
of the inner and 
outer parts, for 
example, brain, 
heart and abdomen. 

x Images appeared  
to be darker than 
CT scan images 
and images such as 
heart appeared to 
be difficult in 
visual.  

x Level of 
noise is 
higher than 
CT Scan 

x High level of 
intensity 
inhomogenei
ty throughout 
the image 

Microscopic x Blood cells 
x Bacteria 

x Consist of a 
collection of 
individual cells 
that are small in 
size and scattered 
throughout the 
image.  

x Moderate.  
x Often 

dependent on 
anatomical 
structure.  

x Moderate.  
x Often 

dependent on 
anatomical 
structure. 

Ultrasound x Appendix 
x Liver 
x Heart 
x Breast 

tumor/cancer 
x Kidney 
x Uterus 
x Bladder 
 

x The lowest image 
quality among all 
modalities. 

x Images are dark 
with unclear 
objects’ outline.  
 

x Severely 
affected by 
noise 

x High level of 
intensity 
inhomogenei
ty throughout 
the image. 
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5.4.2  Experimental Procedures and Results 

This section presents the procedures used in the experimental process and reports the 

experimental results. The experiments are conducted using MatlabR (2008b) on a 2.5 GHz 

with Intel Processor i5. The execution of the experiments involved several types of medical 

images with various anatomical structures. The main purpose of these experiments is to 

observe the capability of our method in segmenting multimodal medical images with 

various anatomical structures in the presence of noise and intensity inhomogeneity. In the 

experiments, two parameters are used that is the sinc 𝛼 and sigma of 𝜎. Both of these 

parameters need to be appropriately tuned to get a satisfying result. The values of these 

parameters depend on the level of noise and intensity inhomogeneity appeared in those 

medical images.  

 

The reporting of the experimental results is presented in the following sub-sections. The 

first sub section (Section 5.4.3.1) presents the experimental results on medical images with 

inner and outer parts such as brain, abdomen and heart. MRI and CT scan images of these 

anatomical structures are used in this experiment to demonstrate the capability of the 

proposed method to successfully segment the inner and outer parts of medical images of 

different anatomical structures and imaging modalities.  

 

The second sub section (Section 5.4.3.2) reports the experimental results on sets of medical 

images that contain collection of individual cells that are small in size, for example, the 

microscopic images of cells or bacteria. Separating each of the individual cells is indeed a 

challenging process as most of the cells’ images are affected with intensity inhomogeneity. 

The final sub section 5.4.3.3 reports experimental results on ultrasound images that are 
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commonly known as images with the lowest quality among the current modalities. 

Ultrasound images contained high levels of noise and intensity inhomogeneity, and appear 

darker than other modalities. In some cases, it becomes difficult to visually recognize the 

object to be segmented in an ultrasound image. 

 

To measure the effectiveness of the proposed method in segmenting four types of medical 

images, twelve images of CT scan, twelve images of MRI, eight images of microscopic and 

four images of ultrasound were used in the experiment and their results are reported in the 

thesis. However, the experimental evaluation is based on visual interpretation where the 

evaluation is based on human eye ability in looking at the segmentation outcome. Therefore 

a quantitative evaluation using metric of accuracy is needed to support the findings. 

 

Prior to the experiments, the ground truth data for the segmented medical images need to be 

built. The ground truth data of the segmentation outcome for the medical images is based 

on the medical experts’ opinion. They were asked to manually drawn the segmented 

regions on the raw medical images. The outcome must be based on the objective of the 

proposed method. For instance, the objective of our FSW ACM is to segment regions 

within the noise and intensity inhomogeneity interface while solving the over segmentation 

problems. Figure 5.1 presents two images of medical imaging which are the MRI image of 

heart and the ultrasound image of breast cysts, along with their ground truth images.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.1: Images of MRI image of heart (a) and its ground truth image in (b); Breast 

cysts of ultrasound in (c) and its ground truth image in (d). 

 

Figure 5.1(a) shows the MRI image of a heart that was affected with noise and its 

distribution of intensity is non-homogeneous. The ground truth for the image is shown in 

Figure 5.1(b). For this image parameter α is chosen as 0.5 and the value of sigma 𝜎 is 

chosen as 1.0. As the level of noise and intensity inhomogeneity is not considered as very 

high, the smoothness of a contour cannot be too smooth, otherwise the movement of the 

contour will be unstable.  

 

On the other hand, the ultrasound image of breast shown in Figure 5.1(c) was affected with 

high level of noise and intensity inhomogeneity. Therefore, the value of α is chosen as 

slightly smaller which is 0.1 and the value sigma of 𝜎 must be larger for example 3.0 in 

order to provide smoother effect to the contour. The optimum value for α is 1.0 and 𝜎 is 

5.0. The ground truth image for ultrasound of breast is shown in Figure 5.1(d). The 

experiments’ results are presented in the next sub-sections. 
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5.4.2.1 Medical Images with Inner and Outer Parts  

This section reports our experimental findings on the capability of the proposed method in 

segmenting both the inner and outer parts of several human organs (brain, heart, abdomen, 

breast) which were represented in both CT scan and MRI images. Our first experiment with 

the FSW ACM method presents a collection of images from CT scan modality as shown in 

Figure 5.2(a – l). Figure 5.2(a - i) presents images of abdomen at different angles. The inner 

part of the abdomen contained object such as bladder, kidney, liver and others. Figure 5.2(j) 

represents an image of a brain, Figure 5.2(k) presents an image of a heart and Figure 5.2(l) 

shows an image of lungs. These images contain anatomical object that has inner and outer 

parts. The outer part contains a round or sphere anatomical structure. The object situated at 

the inner part depicted various anatomical structures of sizes and shapes. The parameters 

used in the experiments are 𝛼 = 0.7 and 𝜎 = 1.0. Note that, small numbers are chosen for 

both parameters due to the low level of noise and intensity inhomogeneity in the CT scan 

images. As the characteristics of visual features among the images appear to be similar 

therefore the experimental outcomes are more or less equivalent.  
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(a) 

 
(b) 

 
(c) (d) 

 
(e) 

 
(f) 

 
(g) (h) 

(i) (j) (k) (l) 
Figure 5.2: Images of CT scan modality comprises of abdomen at different angle, brain, 

heart and lungs. 

 

Generally, the proposed method can successfully segment the outer part of the target object 

from the background for all images shown in Figure 5.2(a – l) and the segmentation 

outcome is shown in Figure 5.3(a - l). However, the segmentation results on the inner part 

of the objects varies for example, images shown in Figure 5.3(i), 5.3(k) and 5.3(l) displays 

better segmentation outcomes as compared to the rest of the images. The successful 

outcomes are attributed to low level of intensity inhomogeneity in the areas within the inner 

part of the object in Figure 5.3(i), Figure 5.3(k) and Figure 5.3 (l), and the distribution of 

intensity in those areas appear to be more distinctive. These outcomes have proven that the 

proposed nonlinear Gaussian filter can reduce noise and enhance edges for fast and smooth 

segmentation process. The implementation of the fractional sinc wave method can further 
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increase the efficiency of a contour to rapidly move along edges and flexibly bend at any 

difficult curves and angles of an object to ensure accurate boundary segmentation outcome. 

In comparison, the inner parts of objects in other images suffer from intensity 

inhomogeneity problem as the areas appear bright with various intensities and high 

illumination. However, some components in the inner parts of these objects particularly in 

images Figure 5.3(a), Figure 5.3(c), Figure 5.3(d) and Figure 5.3(e) can still be segmented 

by the proposed method despite the problem. These results demonstrated that the proposed 

method has the capability to reduce the impact of the intensity inhomogeneity problem on 

medical images. 

 
(a) 

 
(b) 

 
 (c) 

 
(d) 

 
 (e)  

 (f) 

 
 (g) 

 
 (h) 

 
 (i) 

 
 (j) 

 
 (k) 

 
 (l) 

 
Figure 5.3: Experiments and results on twelve images of CT scan modality with 𝛂 = 𝟎. 𝟕 

and  𝛔 = 𝟏. 𝟎. 
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The same experiments were repeated on a set of MRI images to observe the performance of 

the proposed method in segmenting both the inner and outer parts of an object in MRI 

images shown in Figure 5.4. The images have more noise and inhomogenous intensity as 

compared to the CT scan images. Among these images, images of a heart from various 

viewing angles (Figure 5.4(e)-(h)) and a liver (Figure 5.4(l)) have suffered from high level 

of intensity inhomogeneity throughout the image, resulting in unclear object boundary. 

Also noteworthy that the MRI’s brain images (Figure 5.4(a-d)) and heart images consist of 

outer and inner parts. The outer part of the brain consists of bone structure while the inner 

part contains the brain tissues or muscles. There are high level of intensity inhomogeneity 

in the region of brain tissues and muscles which can create weak or missing edges along 

objects boundaries as shown in Figure 5.4(d), (f) and (h). Therefore a successful 

segmentation of the inner part of the brain is indeed a challenging process. 

 
(a) 

 
(b) (c) 

 
(d) 

(e) 
 

(f) 
 

(g) 
 

(h) 

(i) (j) 
 

(k) (l) 
 

Figure 5.4: MRI images of heart, breast, abdomen and lung. 
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Figure 5.5 displays the experimental outcomes of our proposed method on MRI images. 

This experiment uses 𝛼 = 0.7 and 𝜎 =1.0. The segmentation outcomes of the proposed 

method on MRI brain images are shown in Figure 5.5(a-d). Generally the method can 

successfully segment both the outer and inner parts of the images. However the accuracy of 

the segmentation result of the brain tissues is still lacking due to high level of intensity 

inhomogeneity in that areas. In Figure 5.5(a) and (c), the white flare of the brain tissue 

appears darker with similar intensity therefore the method is not able to properly segment 

the boundaries of the brain tissues. The best segmentation result of the inner part of the 

brain image would be those presented in Figure 5.5(b). This is perhaps due to a more 

distinctive level of intensity throughout the inner regions.    

 

Figure 5.5(e – l) presents the results obtained on MRI images of a heart, abdomen, breast 

cancer and lung. As these images are unclear due to high levels of noise and intensity 

inhomogeneity, 𝛼 is set to 0.5 and 𝜎 is set to 1.0. Our segmentation method can 

successfully segment both the outer and inner parts of a heart object in Figure 5.5(e - g). In 

Figure 5.5(h) however, only the outer part can be properly segmented because its inner part 

contains high level of intensity inhomogeneity which leads to many broken edges.  Look at 

image shown in Figure 5.5(l) which is the image of a liver. The proposed method managed 

to separate the liver object from the background but may not be that accurate due to the 

level of intensity that is high. However, the method managed to segment the object. For 

images shown in Figure 5.5(i), (j) and (k), both the outer and inner parts of the objects are 

successfully segmented by the proposed method.  
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As the results of the experiments are mainly based on visual interpretation, a quantitative 

evaluation is carried out to further support the findings. As mentioned in chapter three, the 

percentage of the accuracy is measured based on the difference between the automatically 

created border by the proposed method and the border that is drawn manually by expert 

(the ground truth image). Table 5.2 illustrates the results after conducting the evaluation 

metric. Note that, the evaluation metric used in this study is based on work by Abbas et 

al.(2014) as explained in Chapter 3 of the thesis.  

 

 
(a)  

(b) 
 

(c) 
 

(d) 

 
(e) (f) 

 
(g) (h) 

(i) (j) (k) (l) 
 

Figure 5.5: Experiments and results on MRI images of brain with 𝛂 = 𝟎. 𝟓 and sigma of 

𝛔 = 𝟏. 𝟎. 
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Table 5.2: Evaluation metrics based on accuracy obtained for CT scan images. 

 
CT scan 
images / 
 
Accuracy 
metric 
 

Fig. 
5.3 
(a) 

Fig. 
5.3 
(b) 

Fig. 
5.3 
(c) 

Fig. 
5.3 
(d) 

Fig. 
5.3 
(e) 

Fig. 
5.3 
(f) 

Fig. 
5.3 
(g) 

Fig. 
5.3 
(h) 

Fig. 
5.3 
(i) 

Fig. 
5.3 
(j) 

Fig. 
5.3 
(k) 

Fig. 
5.3 
(l) 

 
96.33 

 
94.67 

 
95.79 

 
94.43 

 
96.54 

 
96.21 

 
95.11 

 
94.68 

 
96.69 

 
96.64 

 
96.23 

 
96.88 

 
MRI 
images / 
 
Accuracy 
metric 
 
 

Fig. 
5.5 
(a) 

Fig. 
5.5 
 (b) 

Fig. 
5.5 
 (c) 

Fig. 
5.5 
 (d) 

Fig. 
5.5 
 (e) 

Fig. 
5.5 
 (f) 

Fig. 
5.5 
 (g) 

Fig. 
5.5 
 (h) 

Fig. 
5.5 
 (i) 

Fig. 
5.5 
 (j) 

Fig. 
5.5 
 (k) 

Fig. 
5.5 
 (l) 

 
90.12 

 
96.67 

 
94.79 

 
95.43 

 
92.67 

 
96.21 

 
95.11 

 
93.68 

 
95.69 

 
96.64 

 
95.23 

 
93.88 

 

The evaluation metric is applied on twelve images of CT scan and MRI. According to the 

statistical metric of accuracy, the average accuracy obtained on twelve CT scan images is 

95.85%. On the other hand, the average metric for the accuracy of segmentation on MRI 

images is 94.61%. The accuracy metric shown in Table 5.2 are aligned with the 

segmentation outcome which is based on visual interpretation as shown in Figure 5.3 and 

Figure 5.5. For example, Figure 5.3(a) shows a successful segmentation where the inner 

and outer part of the abdomen is segmented. In accordance, the quantitative evaluation 

shows the metric accuracy of 96.33% which is aligned with the segmentation outcome. 

Figure 5.5(a) shows an image of MRI brain. The contour did not accurately segment the 

white flare of the brain. Therefore, the metric of accuracy is just 90.12%. From the 

percentage of accuracy displayed in Table 5.2 the accuracy produced by the FSW ACM 

method on the CT scan images and MRI images are satisfactory. 
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5.4.2.2 Medical Images with Collections of Individual Cells 

Microscopic images are medical image that are normally used to capture images of bacteria 

or blood cells. The images often comprise of a collection of individual cells that are 

adjacent and resemble to each other. Each individual cell is having the same size but 

separating between one individual cell to another can be unsuccessful. For a bacteria image, 

some image has unique anatomical structure and contains outer and inner part. Experts used 

microscopic images to determine the type of bacteria or to calculate the number of cells in 

human blood.  

 

This experiment employs eight images of microscopic that consist of four images of 

bacteria and four images of blood cells. Figure 5.6(a – d) depicts images of bacteria in a 

collections of individual cells whereas Figure 5.6(e – h) displays close shot images of cells 

in a form of a single object, in order to have a clearer view on its anatomical structure. The 

aim of the experiment is to separate each individual bacteria successfully and to accurately 

segment the unique anatomical structure of the cell. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 5.6: Images of cells and bacteria images of microscopic images. 
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As the images of the cells in Figure 5.6(a – d) have average noise, 𝛼 is set to 0.7 and 𝜎 is 

set to 1.0. In some parts of the images, the distribution of intensities are not homogeneous 

thus influenced segmentation accuracy along an object boundary. Based on the results 

shown in Figure 5.7(a - d), the proposed method managed to segment the four images 

successfully. Image shown in Figure 5.6(a), has a clear background and the objects have 

different intensities from the background. Therefore, the proposed method do not faced 

problem in successfully segmenting the object in 0.5 seconds. In Figure 5.7(c), as the object 

of bacteria has brighter intensity and high illumination, the outlines of the bacteria are not 

successfully segmented. Look at the image shown in Figure 5.7(b) and Figure 5.7(d), the 

textures of both image backgrounds have slightly different intensity inhomogeneity. Due to 

that, the contour segmented the regions at the background but, it did not affect the 

segmentation made on each of the bacteria. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
 

Figure 5.7: Experiments and results on microscopic images of cells and bacteria where 

images in (a - d) is using 𝜶 = 𝟎. 𝟕 and 𝝈 = 𝟏. 𝟎 and images in (e – h) is using 𝜶 = 𝟎. 𝟓 and 

𝝈 = 𝟏. 𝟎. 
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Microscopic images shown in Figure 5.6(e – h) represents object of blood cells. Figure 

5.6(e) shows image of microscopic of two cells. The image is considered as dark image and 

part of the boundary of the image is missing. Therefore, the parameter of 𝛼 is set to 0.5 and 

the sigma 𝜎 is set to 1.0. From the result obtained in Figure 5.7(e), the proposed method 

managed to segment the outer and the inner parts of the two cells although part of the 

boundary is not accurately segmented. This is due to the missing edges at the boundary of 

the image. Figure 5.7(f) and Figure 5.7(g) show images of blood cells. In Figure 5.7(g) the 

contour managed to segment the blood cells but in Figure 5.7(f) some part of the boundary 

was not properly segmented. However its inner part was well segmented. Figure 5.6(h) 

shows an image with clear background but its inner part contains intensity inhomogeneity. 

Based on the result obtained in Figure 5.7(h), the contour managed to segment the object 

inside the blood cell successfully and managed to reduce segmenting the unwanted regions. 

The average percentage of accuracy on eight microscopic images is 95.64%. Due to the 

characteristic of microscopic images which is having low level of noise, the accuracy 

shown is higher than images of CT scan and MRI. However, the metric of accuracy shown 

for Figure 5.7(h) shows the lowest accuracy due to the level of intensity inhomogeneity 

which is slightly higher than other images in Figure 5.6 which is 92.02%. 

Table 5.3: Evaluation metrics based on accuracy obtained for microscopic images. 

 
Microscopic 
images  
 
 

 
Fig. 
5.7 
(a) 

 
Fig. 
5.7 
(b) 

 
Fig. 
5.7 
(c) 

 
Fig. 
5.7 
(d) 

 
Fig. 
5.7 
(e) 

 
Fig. 
5.7 
(f) 

 
Fig. 
5.7 
(g) 

 
Fig. 
5.7 
(h) 

Accuracy 
metric 
 

 
97.12 

 
96.56 

 
95.89 

 
97.02 

 
92.12 

 
95.56 

 
96.89 

 
92.02 
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5.4.2.3 Outlining Object in Ultrasound Medical Images 

Ultrasound modality is used to capture human organ which consists of muscle such as 

breast tumor, cysts ovary, lung and many more. Ultrasound images are darker than other 

modalities and have the highest levels of noise and intensity inhomogeneity. This 

experiment will test the ability of our proposed method to segment object boundary in 

ultrasound images. Figure 5.8(a - d), presents four images of ultrasound used in this 

experiment which are the liver, appendix and two images of breast cancer respectively.  

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 5.8: Images of ultrasound of liver, appendix and two images of breast cancer. 

 

Due to ultrasound characteristics, both parameters are set with values of 𝛼 is set to 0.1 

which is smaller and 𝜎 is set to 3.0 which is larger to give more smoother effect to the 

contour. Figure 5.8(a –d) shows the segmentation outcomes when the proposed method is 

applied on these images. Figure 5.8(a) shows ultrasound image of a liver. The dark area on 

the center of the image is the liver object that should be segmented. The distribution of 

intensity in its surrounding area is inhomogeneous. Similar conditions are reflected in 

Figure 5.8(c) and (d), both represent the image of breast cysts. Despite the aforementioned 

conditions, the proposed method can successfully segment both the liver and the cysts in 

the images. The success is due to the ability of nonlinear Gaussian filter to appropriately 
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smooth the intensity inhomogeneous regions and enhance the relevant edges in order to 

permit a contour to rapidly move along the objects boundaries. The application of sinc 

wave method can further improve the capability of the contour to flexibly bend at difficult 

curves and angles to ensure boundary segmentation of both objects can be achieved. A 

slightly different anatomical structure of an appendix is shown in Figure 5.8(b). The 

location of the appendix is indicated by label ‘A’. It is surrounded with masses of body 

tissues or muscles with high level of noises and intensity inhomogeneity. It is indeed a 

difficult image to segment. However, the proposed method managed to segment the 

appendix and the over sampling problems are reduced. Over segmentation problems are 

referring to segmentation of unwanted regions. This is proven by the percentage of 

accuracy where the average on four ultrasound images is 93.42% as shown in Table 5.4. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.9: Experiments and results on ultrasound images by the proposed method with 

𝜶 = 𝟎. 𝟏 and 𝝈 = 𝟑. 𝟎. 

 

Among the medical images, ultrasound images are having the lowest quality with high level 

of noise and intensity inhomogeneity. The metric of accuracy is also low where images in 

Figure 5.9(b), Figure 5.9(c) and Figure 5.9(d) show around 92%. This is because the 

contour segment several unwanted regions besides only segment the correct outlining of the 

object in ultrasound images.  
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Table 5.4: Evaluation metrics based on accuracy obtained for ultrasound images. 

 
Ultrasound 
images  
 

 
Fig.5.9(a) 

 
Fig.5.9(b) 

 
Fig.5.9(c) 

 
Fig.5.9(d) 

Accuracy 
metric 
 

 
97.12 

 
92.08 

 
91.80 

 
91.23 

 

5.5   Benchmarking Evaluation on FSW ACM  

The earlier sections have shown the feasibility of the proposed method to successfully 

segment medical images in the presence of high levels of noise and intensity 

inhomogeneity, regardless the modalities and anatomical structures. In this section we 

compare the performance of the proposed method with other baseline methods to prove its 

performance is equivalent to other ACM methods or even supersedes some of those 

methods. The medical images of various modalities and anatomical structures that are used 

in this experiment include CT scan, MRI, microscopic and ultrasound images. The baseline 

methods involved in this experiment are as follows: Chan-Vese (C-V, 2001) method and 

Selective Global and Local (SGLACM) method by K.Zhang (2010). The C–V method is a 

region-based ACM that endures high computational cost and produces over segmentation 

in dealing with intensity inhomogeneity. The SGLACM method manages to address the C–

V method's deficiencies but does not provide contour stability during its evolution.  To 

support the benchmarking process, an evaluation metric is used in accessing the accuracy of 

the segmentation outcomes among the evaluated methods. 

   

5.5.1  Experimental Results 

The experiments expects the outcome as a clean image with the initial contour wrap around 

the object of interest. A clean outcome of segmentation in this study is where only the 

object of interest is segmented without segmenting other unwanted regions regardless the 
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intensity inhomogeneity problems. The images used in the experiments are MRI images of 

a brain and a heart, a CT scan image of a brain, ultrasound images of a heart, appendix and 

breast cyst and x-ray images of blood vessels. The C–V method is among the popular 

methods currently used in medical image segmentation. The SGLACM method, 

meanwhile, combines both edge-based and region-based ACMs by using a hybrid concept 

similar to the proposed method. Hence, the C–V and SGLACM methods were used as the 

baseline methods in this study.  

 

The first experiment begins with the segmentation of an MRI image of a brain which later 

supported by two CT scan images of brain. Both MRI and CT scan images had less noise. 

However, images present are darker and had many sub-regions except for the second image 

of CT scan that focusing on the inner part of the white flare which result in a brighter 

environment. The inner part of brain images are suffered from the intensity inhomogeneity 

problem that create a challenging situation in segmenting the white flare. The segmentation 

results are shown in Figure 5.10, Figure 5.11 and Figure 5.12 respectively. 

 

 In experiments conducted in Figure 5.10 to Figure 5.12, the parameter of 𝛼 that represents 

the 𝑠𝑖𝑛𝑐ఈ function (Eq.5.7) is adjusted to 0.5 and the parameter of sigma 𝜎 is adjusted to 1. 

If the sigma is chosen as a big number the initial contour may move dynamically and may 

disappeared without segmenting the object of interest. This is due to the smooth effect on 

the image texture which is high that may push the contour to move rapidly thus disappear 

from the image. On the other hand, the parameter 𝛼 of 𝑠𝑖𝑛𝑐ఈ function is given as 0.7 due to 

the level of noise which is less when compared to the microscopic image of cell. Figure 

5.10(a) shows that the C–V method successfully segmented the image. The method highly 
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utilized the global energy. Hence, in inner part with intensity inhomogeneity, the method 

tended to also segment unwanted regions and produced over segmentation. The SGLACM 

method only segmented the outer part of the brain image shown in Figure 5.10(b). The 

segmentation result of the proposed method in Figure 5.10(c) illustrates a smooth 

segmentation outcome. Both the outer and inner parts of the brain were successfully 

segmented.  

 

Application of the FSW ACM method in the Gaussian filter also improved the image's 

appearance. The region was smoother, the edges were clearer, and the image structure was 

preserved. As a result, the proposed method successfully addressed the intensity 

inhomogeneity problem in the inner part of the image and alleviated the over segmentation 

problem. Accordingly, the MRI brain was segmented in 50 iterations within 0.66 s. The 

proposed FSW ACM method segmented the image with a lower computational cost 

compared to the baseline methods. The C–V method made 300 iterations within 7.28 s. The 

SGLACM method completed the segmentation in 120 iterations within 1.03 s. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.10: Brain MRI image segmentation. The final results using the C–V in (a), 

SGLACM in (b) and proposed FSW ACM in (c) respectively with α=0.5 and 𝛔 = 𝟏. 𝟎 for 

our method. 
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On the contrary, Figure 5.11 illustrated the segmentation outcome conducted on a CT scan 

image of a brain. The image is used as to support the first experiment of MRI image of 

brain where the image also contained numerous sub-regions which lead into over sampling 

or the initial contour may segment the unwanted regions as well. However, unlike the MRI 

image of a brain, the inner parts of its sub-regions were surrounded with a bright intensity 

(Figure 5.11). The C–V method produced the segmentation of unwanted regions and 

completed the segmentation in 50 iterations within 2.77 s and this is shown in the first 

column of Figure 5.11(a). The SGLACM method revealed a similar outcome, where only 

the outer part of the brain was segmented in the MRI image as shown in Figure 5.11(b). 

The method completed the segmentation in 120 iterations within 1.6 s. The proposed FSW 

ACM method produced a cleaner outcome with a segmentation of both the outer and inner 

parts in 40 iterations within 1.01 s. 

 
 

 

 

 
 

Figure 5.11: CT scan image of brain segmentation. The final results using the C–V in (a), 

SGLACM in (b), and proposed FSWACM  in (c) respectively with  α=0.7, 𝛔 = 𝟏. 𝟎, for 

our method. 

 

The experiment proceeded on another CT scan image of a brain but this time the image is 

focusing at the white flare of the brain. The aim is to show the accuracy of segmentation 

provided by the proposed FSW ACM method in segmenting each of the white flare existed 

in the brain image. The texture of the image is smooth but, the classification of the intensity 

levels happen in the image are challenging where the initial contour may not correctly 

 
(a) 

 
(b) 

 
(c) 
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moved toward the white flare and segment each of the white flare in the image. The values 

for α = 0.7 and σ = 1.0 is same as used in Figure 5.10 as the characteristics of the images 

are similar.  

 

Among the results obtained, the FSW ACM method presents outcome which situated in 

Figure 5.12(c) shows better accuracy when compared to the outcome by C-V method in 

Figure 5.12(a) and SGLACM method in Figure 5.12(b). The FSW ACM method did not 

produced any unwanted segmented regions and the thin long white flare shown in Figure 

5.12(c) is excellently segmented when compared to other methods where the white flare is 

not successfully segmented. C-V method due its intensity inhomogeneity problem, did not 

segment the white flare in the image successfully. On the other hand, SGLACM method 

produced a segmentation which is not complete. In terms of speed, FSW ACM method 

managed to complete the segmentation process within 40 iterations in 0.8 s whereas C-V 

method took 300 iterations in 6.2 s and SGLACM method took 60 iterations in 0.9 s. 

 
(a) 

 
(b) 

 
(c) 

 
Figure 5.12: Segmentation of a second CT scan image of a brain that focus on the white 

flare. The final results using the C–V in (a), SGLACM in (b) and proposed FSW ACM in 

(c) respectively with α=0.7 and 𝛔 = 𝟏. 𝟎 for our method. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 
 

111 
 

The experiment using the MRI image of a heart was then conducted. Two MRI images of 

heart with different angle and texture is produced. Both images revealed a slightly different 

texture than the earlier images. It also suffered from a high noise level with severe intensity 

inhomogeneity leading to weak edges. The hole in the center revealed a similar gradient 

level to the background with a dark intensity, which made the segmentation process more 

challenging.  

 

Due to the texture of both images which are unclear and having more intensity levels which 

is not homogeneous, the 𝑠𝑖𝑛𝑐ఈ parameter is adjusted to be bigger which is 0.084 and the 

sigma 𝜎 is maintain to 1. In this situation the interpolation process of FSW ACM method 

will better classify the non-homogenous objects in a region. The experimental results on the 

MRI image of a heart are shown in Figure 5.13 and Figure 5.14. The segmentation results 

using the C–V, SGLACM and proposed FSW ACM methods are shown in (a), (b), and (c) 

respectively in both Figure 5.13 and Figure 5.14. The segmentation outcomes were similar 

in the C–V and the proposed FSW ACM methods for both images in Figure 5.13 and 

Figure 5.14. The proposed FSW ACM method demonstrated a cleaner and more defined 

segmentation outcome without any oversampling. This result indicated a significant 

reduction of the intensity inhomogeneity in the image. For image in Figure 5.13, the C–V 

method made 100 iterations within 3.68 s to complete the segmentation, whereas the 

proposed FSW ACM method segmented the heart object from the MRI image with only 40 

iterations in 1.7 s. On the other hand C-V method complete the segmentation of image in 

Figure 5.14 within 70  iterations in 2.11 s and the FSW wave ACM method complete the 

segmentation within 60 iterations in 1.2 s. The SGLACM method, which made 120 

iterations in 0.95 s for image in Figure 5.13 and 60 iterations in 1.1 s for image in Figure 
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5.14, only segmented the outer part of the heart object and did not segment the hole in the 

image center. 

 
(a) 

 
(b) 

 
(c) 

 
Figure 5.13: Experiment on the MRI image of a heart. The final results using the C–V in 

(a), SGLACM in (b), and proposed FSW ACM in (c) respectively with α = 0.5 and 

𝛔 = 𝟏. 𝟎 for our method. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.14: Experiment on another MRI image of a heart in different angle. The final 

results using the C–V in (a), SGLACM in (b), and proposed FSW ACM in (c) respectively 

with α = 0.5 and 𝛔 = 𝟏. 𝟎 for our method. 

 

The experiment continued with three ultrasound images that represent an image of a liver in 

Figure 5.15, image of an appendix in Figure 5.16 and image of a breast cyst in Figure 5.17. 

Ultrasound images are known as the noisiest images among medical images. To conduct 

the experiments on these ultrasound images, the 𝑠𝑖𝑛𝑐ఈ is adjusted to 0.1 which is much 

smaller and sigma 𝜎 as 3.0 which is larger for more smoother effects. This is due to the 

image nature which is rough and having severe intensity inhomogeneity. Moreover, its 
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intensity distribution is not homogeneous, its object boundary is very weak, and it has many 

missing edges. Besides, the liver image is particularly dark with complex and rough texture, 

which poses a challenging situation for any segmentation process.  

 

The segmentation outcomes obtained from this experiment are depicted in Figure 5.15. As 

expected, the C–V method displayed many overlapping pixels in the image's regions with 

250 iterations in 7.28 s. The SGLACM method only segmented the image exterior with 120 

iterations in 0.82 s. Although the selective global was applied, the contour did not segment 

the liver object because of the complex image texture. The proposed FSW ACM method 

demonstrated an impressive outcome in Figure 5.15(c). Without any over segmentation, the 

method accurately segmented the ultrasound image of a liver with 50 iterations in 0.78 s. 

 

 
(a) 

 
(b) (c) 

Figure 5.15: Experiment of an ultrasound image of a liver. The final results using the C–V 

in (a), SGLACM in (b), and proposed FSW ACM in (c), respectively with the parameter of  

α=0.1 and 𝛔 is 3.0 for our method. 

 

The experiment was repeated on an ultrasound image of an appendix to further support the 

consistency of the experimental findings on ultrasound images. This appendix image was 

more challenging to segment because its texture was more complex and darker than the 

previous images. The appendix object was labelled “A”. Much noise and overlapping pixels 

surrounded the object, and the quality of this ultrasound image was very low. Hence, the V  
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values of the proposed method were set larger than usual with V  = 3.0 as mentioned 

earlier. The segmentation results of the appendix object are shown in Figure 5.16. The C–V 

method produced severe over segmentation effect, which made its segmentation result less 

successful. The SGLACM method only segmented the outer image border, ignoring the 

segmentation of the appendix object.  

 

A successful appendix object segmentation was demonstrated by the proposed FSW ACM 

method in Figure 5.16 with a significantly less over segmentation effect than the C–V 

method. In terms of the time taken to complete the segmentation, the proposed method took 

the least time among all the methods. The proposed FSW ACM method took only 40 

iterations within 1.21 s, whereas the C–V method completed the segmentation in 140 

iterations within 3.23 s. The SGLACM method took about 120 iterations within 1.68 s. 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 5.16: Experiments on ultrasound image of appendix. The final results using the C–

V in (a), SGLACM in (b), and proposed FSW ACM in (c) respectively with the parameter 

of α = 0.1 and 𝛔= 3.0 for our method. 

 

The experiment demonstrated another ultrasound image which represented the image of 

breast cyst in Figure 5.17. The reason is to support the experiments conducted earlier and to 

observe the efficiency of the proposed method. As the nature of the ultrasound image is the 

same as previous ultrasound images, both parameters of 𝛼 and 𝜎 used are the same as used 
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in Figure 5.15 and Figure 5.16. Based on the outcome obtained as shown in Figure 5.17, the 

FSW ACM method produced a cleaner outcome with reduced intensity inhomogeneity and 

managed to successfully segment the cyst within 40 iterations in 1.2 s. On the other hand, 

C-V method segments the cyst object within 250 iterations in 8 s but produced 

segmentation of unwanted regions. SGLACM only segmented the outer part but did not 

managed to segment the cysts object and this is done within 50 iterations in 1.31 s. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.17: Experiments on ultrasound image of breast cysts. The final results using the 

C–V in (a), SGLACM in (b), and FSW ACM in(c), respectively with the parameter of α = 
0.1 and  𝛔= 3.0 for our method. 

 

The final experiment was conducted on x-ray images of blood vessels in Figure 5.18. 

Unlike the other images, these images were distinctive with a long and winding structure. 

The background of both images had slightly brighter intensity than the interior region of the 

vessels. The texture of the image is smooth and the intensity level that represent the 

background to the vessel object are slightly similar where the intensity level is difficult to 

be identified. Thus, the parameter α is adjusted to 0.3 and the σ is adjusted to 3.  
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(a) 

 
(b) 

 
(c) 

 
Figure 5.18: Experiments on X-ray images of thin and winding blood vessels. The final 

results using the C–V in (a), SGLACM in (b), and proposed FSW ACM in (c), respectively 

with the parameter of α = 0.3 and 𝛔 = 5 for our method. 

 

The segmentation results on these images are shown in Figures 5.18 and 5.19. The 

boundary of the long and thin vessels suffered from the intensity inhomogeneity problem, 

which made the segmentation arduous. The SGLACM method (Figure 5.18 (b)) did not 

accurately segment the blood vessel. In this case, the contour did not stop on the exact 

blood vessel boundary. To complete the segmentation process, the method made 120 

iterations within 2.02 s. The C–V method did not successfully segment the vessel and failed 

to identify the area badly affected with the intensity inhomogeneity problem. This area is 

indicated by an arrow in the first column. To complete the segmentation, the C–V method 

made 300 iterations within 2.68 s. Using the proposed FSW ACM method, an accurate 

segmentation outcome of the blood vessel was achieved with lower computational cost. 

The method made only 40 iterations within 1.1 s. A similar experiment was repeated on 

another blood vessel for consistency purposes (Figure 5.19). 
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(a) 

 
(b) 

 
(c) 

Figure 5.19: Experiments on the second type of blood vessel x-ray images. The final 

results using the C–V in (a), SGLACM in (b), and proposed FSW ACM in (c), respectively 

with the parameter of α = 0.3 and 𝛔 = 5 for our method. 

 

The image in Figure 5.19 illustrates an intensity inhomogeneity problem along with some 

subsequent pixels weak in intensity in the vessel. All the methods successfully segmented 

the blood vessel, albeit with different computational times. The C–V method completed the 

segmentation process in 50 iterations within 8.4 s. It also encountered some segmentation 

difficulties along the vessel boundary because of the intensity inhomogeneity effect. On the 

contrary, the SGLACM method made about 40 iterations in 6.8 s to complete the vessel 

segmentation. The proposed FSW ACM method completed successful blood vessel 

segmentation in just 30 iterations within 5.4 s. This computational time was the shortest 

completion time achieved among the methods. Speed, aside from improving the 

segmentation, was also important in completing the segmentation process. The FSW ACM 

method produced a satisfactory segmentation outcome in reducing the processing time 

required to complete a successful segmentation process. Table 5.4 summarized the time 

taken in completing the segmentation process for all experiments conducted earlier. On the 

other hand Table 5.5, summarize the evaluation executed based on the segmentation 

accuracy.  
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Table 5.5: Summarization and comparison on time in seconds took in completing the 

segmentation process. 
Medical Image 

Modalities 
Object Time taken 

FSW ACM 
method 

C-V method SGLACM 
method 

MRI Brain 0.66s 7.28s 1.03s 
MRI Heart 0.95s 3.68s 0.82s 
MRI Heart (different 

angle) 
1.25s 2.11s 1.15s 

CT SCAN Brain 1.01s 2.77s 1.6s 
CT SCAN Brain 0.85s 6.2s 0.95s 
ULTRASOUND Liver 0.78s 7.28s 0.82s 
ULTRASOUND Appendix 1.21s 3.23s 1.68s 
ULTRASOUND Breast Cysts 1.25s 8s 1.31s 
X-RAY Blood Vessel 1.1s 2.68s 2.02s 
X-RAY Blood Vessels 5.4s 8.4 6.8s 

 

Table 5.6: Summarization and comparison on time in seconds took in completing the 

segmentation process 
Methods                                                
 

Medical Images 
 

Chan-Vese SGLACM FSW ACM 

 
Accuracy 

 
MRI Brain 

 
95.55 

 
93.23 

 
      95.9 

 
Accuracy 

 
MRI heart 1 

 
92.52 

 
90.11 

 
      92.87 

 
Accuracy 

 
MRI heart 2 

 
92.91 

 
90.07 

 
     93.68 

 
Accuracy 

 
CT Scan Brain 1 

 
89.34 

 
90.23 

 
      96.67 

 
Accuracy 

 
CT Scan Brain 2 

 
89.12 

 
92.34 

 
      95.43 

 
Accuracy 

 
Ultrasound 
Liver 

 
92.34 

 
88.12 

 
      96.55 

 
Accuracy 

 
Ultrasound  
Appendix 

 
89.34 

 
86.12 

 
      95.64 
 

 
Accuracy 

 
UltrasoundBreast Cysts 

 
93.23 

 
88.67 

 
      96.23 

 
Accuracy 

 
X-Ray bloodVessel 1 

 
93.23 

 
90.56 

 
     94.23 

 
Accuracy 

 
X-Ray bloodVessel 2 

 
 96.04 

 
96.2 

 
96.37 
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From the results obtained as shown in Table 5.6, the metric of accuracy shown by the FSW 

ACM method is more than 90% for medical image modalities used in the experiment. The 

metric of accuracy obtained by each medical images produced by FSW ACM method 

shows higher accuracy than accuracy obtained from C-V and SGLACM method. This show 

FSW ACM provides an improvement of the segmentation outcome.   

 

5.6  Discussion 

This section discusses the analysis conducted based on results gained from the experiments 

on four medical image modalities. Most of the images used in the experiments suffered 

from the intensity inhomogeneity problem and noise. The only different is the level of 

intensity inhomogeneity and noise. Hence, some critical edges along the object boundary 

became weak or missing and led to gaps at the object boundary. Among the medical images 

used in this paper, the CT scan image has the least noise, especially at the outer part of the 

object from the background. Other images, such as those from MRI, microscopic imaging 

and ultrasound imaging have much noise, which leads to the intensity inhomogeneity 

problem. The proposed method aims to reduce the intensity inhomogeneity problem, 

thereby improving the object segmentation in medical images in a shorter processing time. 

 

This study introduces the use of FSW method of order α with hybrid ACM because it 

removes noise in an image while maintaining the edges of the image structure. The use of 

sinc wave method along with the fractional calculus is further introduced for a flexible 

contour movement with improved bending effect capability during its evolution. This 

bending flexibility enables the contours to easily move forward and backward the object of 

interest and to quickly segment the object. Moreover, the sinc wave method with fractional 

function has the strength to rapidly move the contour within the intensity inhomogeneity 
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interface efficiently. It further moves the contour slower when it is near the object boundary 

with the support of local energy. Consequently, the contour locally adapts at the boundary 

interface for improved segmentation result. 

 

Based on several experiments conducted, it is shown that the proposed FSW ACM method 

managed to provide an improved segmentation while reducing the over sampling created by 

the intensity inhomogeneity problem. Segmentation executed on CT scan images depicted a 

satisfying result. The contour managed to separate the object in the image perfectly from 

the background. Regarding the inner part, the contour managed to move toward the 

multiple objects without any over segmentation. On the other hand, segmentation on MRI 

images produced successful results. Due to the texture the parameters applied is chosen as 

slightly highly. Although the MRI images depicted as images as dark and having more 

noise, the FSW ACM method managed to segment the object excellently. This is proven 

that, the FSW ACM method applied managed to deals with weak pixels in the image.  

 

Microscopic and ultrasound images are shown as an image in having soft and rough texture 

respectively. Some microscopic image is having severe intensity inhomogeneity until it 

made the contour difficult to wrap around the object of interest. On the other hand, the 

ultrasound image is dark and the intensity distribution is not homogeneous. Detecting the 

object of interest is difficult thus made the segmentation crucial. In conducting the 

experiments on these images, both parameters of 𝛼 and 𝜎 is chosen to be higher. Based on 

the results obtained, FSW ACM method had proven that the collaboration of fractional 

function with FSW method managed to overcome the intensity inhomogeneity problem and 

provide improved segmentation.  
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The potential of FSW ACM method in segmenting several modalities of medical images is 

supported by conducting the evaluation metric which is based on the accuracy of 

segmentation. It is shown that in most experiment, the accuracy is more than 90%. This 

means the distance of the contour to the object boundary is near and the segmentation 

achieved its goal.  

 

However, based on several experiments conducted, the method having drawback where it 

fail to produce accurate boundary segmentation. Details discussion and illustration on the 

drawback will be discussed in the chapter 6 and the proposed Fractional Gaussian 

Heaviside (FGH) ACM will overcome the problem created by the FSW ACM method. This 

will be discussed in Chapter 6 of the thesis. 

 

5.7  Summary 

This chapter presents a combination of global and local ACMs that uses the FSW ACM 

method of order α, with exponential regression to speed up the contour evolution. This 

method provides improved bending effects for contour movement forward and backward 

during its evolution and enhances the object boundary edges. This study proposes the 

application of fractional sinc wave method on the contour during its evolution using both 

global and local energies. The Gaussian filter is modified with the FSW ACM method to 

smooth the image and enhance its edges, thereby preserving the image structure. The filter 

is also used to reduce the oversampling issue produced by the region-based ACM on 

images with intensity inhomogeneity. The contours embedded with the FSW ACM method 

actively moved forward and backward to be closer to the object boundary. A distance 

measurement based on fractional Euler Lagrance with local energy is implemented to 
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accurately segment an object at its correct boundary within the level set framework. The 

energy function is minimized as the level set curve meet exactly on the object boundary. 

Regardless of the image modalities, the proposed method provides improved segmentation 

of the object of interest at a lower computational cost than the other common ACM 

methods. In addition, the measurement of accuracy metric is more than 90% is all types of 

medical image modalities. 
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CHAPTER 6 
FRACTIONAL GAUSSIAN HEAVISIDE ACTIVE CONTOUR MODEL 
 

This chapter proposes the second approach in automatic segmentation of medical images. 

We proposed a novel region-based ACM with fractional calculus concept and namely 

Fractional Gaussian Heaviside (FGH) ACM. In the proposed method, we introduce two 

important terms; Adaptive Fractional Gaussian Kernel (AFGK) and Fractional Differentiate 

Heaviside (FDH). The aim of the implementation is to address the problem encountered in 

the first approach; Fractional Sinc Wave (FSW) ACM in achieving the accurate boundary 

segmentation within the intensity inhomogeneity interface. The chapter begins with a brief 

introduction of the proposed method in providing the accurate boundary segmentation 

while Section 6.1.1 presents brief information on hybrid ACM methods that utilized the 

local image information. Section 6.2 discusses the FGH ACM method in general. The 

design and development of the proposed method; FGH ACM method is discussed in 

Section 6.2.1 where Section 6.2.1.1 presents the discussion on AFGK and Section 6.2.1.2 

presents discussion on FDH. The energy minimization of FGH ACM is presented in 

Section 6.2.1.3. Implementation of the proposed method is presented in Section 6.3 with 

demonstration of the proposed method in showing its strength to overcome the problem 

created by FSW ACM method. We report our experiments and their results followed by 

some experiments for benchmarking evaluations to compare the performance of our 
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proposed method with the previous FSW ACM method and other well-known segmentation 

methods in Section 6.4 and Section 6.5 respectively. Section 6.6 discusses on the 

benchmarking results emphasizing on the performance of the proposed method against 

other methods of ACM. This chapter ends with a conclusion about the ability of the 

proposed method in addressing the current problem of medical image segmentation. 

 

6.1  Introduction 

The FSW ACM method discussed in Chapter 5 contributed to a method that reduced the 

over segmentation problem thus produced successful segmentation on four types of medical 

image modalities. However, it is discovered that FSW ACM method has several 

drawbacks. First, the method was trapped at local minima problem along the object 

boundary. Second, the method does not have the capability in recognizing regions with 

least gradient in the image. Due to these factors, accurate boundary segmentation is not 

achieved. Our investigation found that, medical images with long, winding and spiral 

structures gave challenges to FSW ACM in guiding the contour to move along the winding 

and spiral structure in order to provide successful segmentation. Moreover, images with 

object boundary that is affected with high level of intensity inhomogeneity until it leads to 

missing edges also gave effect to the contour of FSW ACM in providing an accurate 

boundary segmentation. This chapter presents our novel contribution in solving the local 

minima problem by introducing the FGH ACM in providing accurate boundary 

segmentation. 
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Through investigation, embedding the local image information will have the probability in 

solving the local minima problem. Additionally, losing of edges in an image need to be 

avoided to make sure there is no gap along the object boundary. Previously, the hybrid 

methods of ACM embedded the local image information in their method to solve the local 

minima problem which leads to accurate segmentation. Several techniques are used by 

these methods in providing accurate to segmentation.  

 

6.1.1  Hybrid methods with Local Image Information 

In medical images, local minima are frequently encountered when the initial contour is far 

from the object that needs to be segmented (Bresson et al., 2005; Li et al., 2010). Local 

minima problem is more crucial for small anatomical structures of medical images such as 

object of white flare (brain), boundary of bacteria object and many more. This is because 

when a contour stuck in a local minima problem, the gradient or nearest intensity value 

among the neighboring pixels becomes invisible (Li et al., 2010). The local minima 

problem often occurs in medical images with high level of intensity inhomogeneity. 

Embedding the local information at the critical area in medical images is one way to solve 

the local minima problem in order to extract the object boundary (Li et al., 2007; Zhang et 

al., 2010).  

 

Several studies on ACM have attempted to solve the local minima problem to achieve the 

accurate boundary segmentation within the high level of intensity inhomogeneity. Many 

local region-based ACM methods are currently attempting to solve the local minima 

problem. The idea began with work of Brox and Cremers (2009), who have extended the 

Mumford-Shah (MS) model by embedding the local energy as the first-order approximation 
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(Mumford & Shah, 1989). The work provided smoother regions by modeling each region 

with an estimated mean into a local Gaussian neighborhood. Shawn Lankton (2008) 

conducted experiments that enabled region-based energy to be localized in a fully 

variational manner. His work significantly improved the accuracy of heterogeneous image 

segmentation. 

 

 Li et al. (2007) analyzed the localized energy and developed a method called local binary 

fitting energy (LBF). Their work introduced local energy with a kernel function (Li et al., 

2007) to extract the local image information and achieve accurate segmentation in the 

presence of intensity inhomogeneity. Their method yielded good performance in the 

segmentation process, especially on medical image segmentation. However, the method 

required high computational cost, especially in handling severe intensity inhomogeneity 

images, because it had to be performed in four convolution operations. Furthermore, it 

sometimes did not reveal accurate segmentation at the desired object boundary (Li et al., 

2007; Chan & Vese, 2001).  

 

Li et al. (2011) again developed a novel region-based ACM that derived a local intensity 

clustering property of the image intensities and namely Local Intensity Clustering (LIC). 

Based on the image intensities, a local clustering criterion function is defined for the image 

intensities in a neighborhood of each point. The local clustering criterion function derived 

earlier is then integrated to the neighborhood center to give a global criterion of image 

segmentation.  The LIC method can be considered as a locally weighted K-means clustering 

method. The method does not consider the clustering variance, which may cause inaccurate 

segmentation.  
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Wang et al. (2009) developed a new region-based ACM that utilized the local image 

intensities. The local image intensities are then described by Gaussian distribution with 

different means and variance as its variables. The means and variances of local intensities 

are considered as spatially varying functions to handle intensity inhomogeneities and noise 

of spatially varying strength. As the method highly depending of the means and variances 

of the Gaussian distributions, small intensities within the image is not extracted that leads 

to inaccurate segmentation. In addition, the method provides high computational cost and 

leads to slower segmentation speed.  

 

Lastly, Darolti et al. (2008) proposed a method called local region descriptor (LRD) to 

characterize the entire image region that had overlapping pixel intensity. The method aimed 

to solve the problem of overlapping pixels leading to the difficult extraction of the local 

image information at the object boundary. However, the LRD method showed several 

drawbacks. One example was its level set evolution that acted locally because the Dirac 

function used was restricted to neighborhood pixels around the zero level set, thereby easily 

trapping the contour at the local image details (C. Darolti et al., 2008). Moreover, the 

region descriptor used in the LRD method did not consider the region variance, which led 

to inaccurate segmentation.  
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6.2  Fractional Gaussian Heaviside Active Contour Model 

The second automatic approach of the thesis is still based on the fractional calculus 

concept. Two important techniques are formed which are; the Adaptive Fractional Gaussian 

Kernel (AFGK) which is used to enhance the image and the Fractional Differentiate 

Heaviside (FDH) is applied to extract the local image information. The goal of the FGH 

ACM method is to provide the accurate boundary segmentation.  

 

6.2.1  The Design of Fractional Gaussian Heaviside  

The design of FGH ACM method is based on the application of AFGK and FDH 

techniques. The Gaussian filter in previous FSW ACM method that is nonlinear is now 

replaced with FGK in AFGK. The new FGK which is also nonlinear shows the capability in 

merging and grouping the inhomogenuous object that belongs to the same intensity level 

(Yunmei et al., 2003; Miller & Ross, 1993). The capability of nonlinear function in 

enhancing and maintaining the image structure while reducing the image noise is also 

inherit by AFGK. Additionally, an adaptive window is applied where it has the capability in 

adaptively change according to the gradient magnitude changes in an image. This gave 

excellent result of a smoother image texture especially at the critical area along the object 

boundary.  

 

The FDH technique is introduced to extract the local image information. The integer-order 

gradient operator implemented in most ACM methods is now generalized to FDH function 

which is based on energy formulation regulations. The FDH function uses the fractional-

order gradient operators which weigh both image gradient and intensity to mitigate the 

local minima problem and improve the object boundary segmentation outcome. The FDH 
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function offers a nonlinear protecting capability to maintain the image structure and has the 

ability in the extraction of local image information. The proposed FDH function works 

within the level set framework, thereby stopping the contour when its energy is minimized 

at the object boundary. The algorithm design of the proposed method is reported in Section 

6.2.1.1 and Section 6.2.1.2. 

 

The proposed FGH ACM shows several advantages. First, the AFGK technique introduces 

a new method of enhancing the image quality within the environment of high level intensity 

inhomogeneity. The enhancement is carried out by reducing the noise and enhancing the 

image details. Besides, the FGK have the capability in merging and grouping the 

inhomogeneous object in a region. Second, the FDH function extracts the image gradient 

and its various intensities for an accurate boundary segmentation outcome. Lastly, the 

implementation of fractional-order gradient all throughout the proposed model ensures 

contour stability when maneuvering every object boundary within the difficult intensity 

inhomogeneity image. Furthermore, it also forbids the contour from stopping until the 

segmentation process is successfully completed.  

 

6.2.1.1   Adaptive Fractional Gaussian Kernel  

The application of adaptive window mechanism with FGK has shown a significantly better 

smoothing process than the previous Gaussian filter. The flexibility of the window 

mechanism that can be adapted perfectly based on changes of the image texture gave 

motivation to the study in applying the window mechanism concept. The window sizes will 

be adjusted to move increasingly and decreasingly in such a way to smooth most in the 

direction of least gradient. As the FGK is used, the edges are preserved and enhanced, 
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however at critical area some local image details are invisible and difficult to be detected. 

Therefore, the AFGK provide the capability to embed the local image information for 

extraction process to take place. 

 

One of the critical parts of segmentation process is to find the exact location of contour C 

on the object boundary to achieve accurate boundary segmentation. The role of fractional 

calculus in the proposed window mechanism makes the window narrower and smaller, such 

that it can adapt to the object boundary angle as it moves closer to the boundary. This 

technique prevents the loss of critical information and improves the classification of objects 

in the inhomogeneous interface. Furthermore, the proposed adaptive window with 

fractional calculus prevents the merging of information on the two sides of the boundary, 

thereby keeping the intensities sharp in this area. The smoothing process is based on 

Gaussian kernel as discussed in Chapter 2 in Eq. (2.22). In this situation, the Gaussian 

kernel is classified as nonlinear function with a scale parameter of 𝛼 > 0. The two-

dimensional FGK is decomposed into two of one-dimensional Gaussian kernels in the 

proposed method, where the adaptive window is implemented. The resulting equation is 

given as follows: 

𝐺ఈ(𝑥, 𝑦) =  𝐺ఈ(𝑥) ∗ 𝐺ఈ(𝑦) 

(6.1) 

The standard deviation of the one-dimensional fractional Gaussian at a pixel should be 

inversely proportional to the minimum and maximum of the fractional gradient magnitude 

at the image pixel; thus, the standard deviations of 𝜎௫ and 𝜎௬ are represented as: 

𝜎௫ =  𝛼/2(𝐺௡ +  1)  

(6.2) 
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and 

𝜎௬ = 𝛼/2(𝐺௠ +  1) 

(6.3) 

Near the object boundary, when the value of the gradient magnitude increased, the 

Gaussian kernel will becomes smaller. Otherwise, it becomes narrower near the edge along 

the object boundary. This is because the value of local gradient magnitude across the edge 

of the object boundary is larger than the value of local gradient magnitude along the edge of 

the object boundary. The value of parameter 𝛼 of the Gaussian kernel in the proposed 

method needs to be user-tuned depending on the image characteristics to achieve an 

effective result.   

 

Furthermore, parameter 𝛼 enables the user to increase the smoothing effect when image 

noise is presented but decrease its value with low image noise. In addition, the coordinates 

on both sides of the object boundary are computed to calculate the FGK with the adaptive 

window for an improved smoothing effect and obtain the relation between the points of the 

two sides. This computation is conducted to achieve the rotation invariance of the window 

using fractional calculus. The equation for this computation is given as follows: 

 

𝑅ఈ =  Γ(1 +  𝛼) ቆ
cos(𝛼𝜋/2)        sin (𝛼𝜋/2)

−sin (𝛼𝜋/2)        cos(𝛼𝜋/2) 
ቇ 

(6.4) 

where 𝛼 represents the fractional power derivatives for the FGK. The preceding equation is 

further explained as follows: 

                                                            𝐷ఈ sin(𝑡)

= sin ቀ
𝛼𝜋
2

ቁ 𝑐𝑜𝑠ఈ(𝑡) +  cos ቀ
𝛼𝜋
2

ቁ 𝑠𝑖𝑛ఈ(𝑡)                                                       (6.5) 
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𝐷ఈ cos(𝑡) = cos ቀ
𝛼𝜋
2

ቁ 𝑐𝑜𝑠ఈ(𝑡) +  −sin ቀ
𝛼𝜋
2

ቁ 𝑠𝑖𝑛ఈ(𝑡), 

(6.6) 

where Dα denotes the Riemann–Liouville fractional differential operator of the order 

0 < α <1. 

𝐷 
ఈ𝑓(𝑡) =  

𝑑
𝑑𝑡

න
(𝑡 − 𝜏)ିఈ

Γ(1 − 𝛼)

௧

௔
𝑓(𝜏)𝑏𝜏 =  

𝑑
𝑑𝑡

𝐼௔
ଵିఈ𝑓(𝑡) 

(6.7) 

The following equation corresponds to the fractional-order gradient operator for a 

continuous function f(t) of the order α > 0: 

𝐼௔
ఈ 𝑓(𝑡) =  න

(𝑡 − 𝜏)ఈିଵ

Γ(𝛼)

௧

௔
 𝑓(𝜏)𝑑𝜏. 

(6.8) 

The rotation invariance of the adaptive window is achieved on the basis of Eqs. (6.6) and 

(6.7). We define the following axes by considering the fractional trigonometric function: 

𝑥 =  Γ(1 + 𝛼)[𝑋 cos (𝛼𝜋/2) − 𝑌 sin (𝛼𝜋/2) + 𝑋]  

(6.9) 

and 

𝑦 =  Γ(1 + 𝛼) ቂ𝑋 sin ቀ
𝛼𝜋
2

ቁ − 𝑌 cos ቀ
𝛼𝜋
2

ቁ + 𝑌ቃ,  

(6.10) 

where X and Y are the usual axes. The preceding relationships determine the corresponding 

image pixels. Furthermore, the values of the image pixel and the window are multiplied and 

added to obtain the smoothed image intensity. The advantage of using fractional calculus is 

obvious on the image edges and angles, which are ignored when normal calculus is 

employed. Correspondingly, the inhomogeneous object and the image local information 
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found in a given region are now effectively classified. In addition, the sharp edges at the 

boundary are maintained to extract information better with the use of the contour during the 

segmentation process. The section that follows discusses the fractional-order gradient for 

the image segmentation process and the complete algorithm description of the proposed 

FGH ACM method. 

 

6.2.1.2 Fractional Differentiate Heaviside  

The FDH function is generalized using the region-based ACM method to solve the local 

minima and the intensity inhomogeneity problems. We assume that a dependency exists 

between different image pixels, and that each pixel value is related to its neighbor in a 

region. The energy is minimized within the level set framework. We derived the following 

complete algorithm for the proposed method on the basis of fractional calculus: 

 

𝜀ఈ
ி(𝑑ଵ(𝑥), 𝑑ଶ(𝑥), 𝜙) 

=  𝜇 න 𝛿൫𝜙(𝑥, 𝑦)൯|∇ఈ 𝜙(𝑥, 𝑦)|𝑑𝑥𝑑𝑦 

+ 𝜆ଵ න 𝐺ఈ(𝑥 − 𝑦)|𝐼(𝑦) − 𝑑ଵ(𝑥)|ଶ∗ఈ𝑑𝑦
௜௡

            0 < 𝛼 < 1 

+ 𝜆ଶ න 𝐺ఈ(𝑥 − 𝑦)|𝐼(𝑦) − 𝑑ଶ(𝑥)|ଶ∗ఈ𝑑𝑦
௢௨௧

     0 < 𝛼 < 1          

(6.11) 
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where 𝐺ఈ is the FGK, ∇ఈ is the fractional-order gradient operator , and 𝑑ଵ(𝑥) and 𝑑ଶ(𝑥) are 

the two fitting numbers placed to extract and spot the intensity belonging to the same class: 

                                           𝑑ଵ (𝜙) =  
∫ 𝐼 ∗ 𝐻௫

(ఈ)(𝜙)𝑑𝑥ఆ

∫ 𝐻௫
(ఈ)(𝜙)𝑑𝑥ఆ

                                                                     

(6.12) 

and 

                                     𝑑ଶ (𝜙) =  
∫ 𝐼 ∗ (1 − 𝐻௫

(ఈ)(𝜙)𝑑𝑥 )ఆ

∫ (1 − 𝐻௫
(ఈ)(𝜙)𝑑𝑥ఆ )

                                                               

(6.13) 

Note that: 

𝛻ఈ𝜙(𝑥, 𝑦) =  𝜙௫
(ఈ) + 𝜙௬

(ఈ) 

(6.14) 

The following equation is obtained using I as the image and Hα as the fractional differential  

Heaviside function: 

.>,
)(1

)()(=)()( 9
D

999
D

D tttHtH
�*

�
��

�

 

(6.15) 

The two fitting numbers are responsible in classifying and combining the inhomogeneous 

intensity. Besides, the two fitting numbers are placed near the intensity of the object of 

interest and used to extract the local image information embedded earlier by the Gaussian 

kernel. The AFGK decomposes the two-dimensional Gaussian into one-dimensional 

Gaussian kernels. The adaptive window is horizontally and vertically moved across the 

image to multiply the window and image values and produce a smooth image texture. The 

process is pre-calculated, saved, and reused to speed up the computations. 
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Parameter 𝛼 in Eq. (6.11) represents the order of the FDH function. This stage is applied 

within the level set framework, where stabilizing the level set is possible. The proposed 

method uses the fractional-order gradient instead of the integer-order gradient operator used 

in the previous ACM methods. The integer-order gradient operator term stands for the 

changing rate of the level set curve length, which is used to control the speed of the level 

set from shrinking. The fractional-order gradient of FDH function implemented in the 

proposed method enables us to control the speed of the level set from shrinking, thereby 

improving stability. The energy is minimized to obtain the accurate boundary segmentation 

because the proposed method works within the level set method. The complete algorithm of 

the proposed method is discussed in Section 6.2.1.3. 

 

6.2.1.3 Energy minimization and Level Set Method  

One of the aims of ACM is to minimize energy when the level set contour is on the object 

boundary. In this study, the fractional-order gradient operator was used to obtain a stable 

contour to realize energy minimization. In any ACM method, the energy of the level set is 

minimized on the object boundary. For example, in the C–V method, the energy is 

minimized when the parameters are equal to zero, whereas the two fitting values in the LBF 

method are optimally chosen to minimize the energy of the level set method. The proposed 

method also minimizes the energy when contour C is placed on the object boundary, with 

the condition that 𝑑௜(𝑥)  ≈ 0, 𝑖 = 1,2. The fractional gradient flow equation that 

corresponds to the FDH function and the minimization energy is defined as follows: 
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𝜙௧ =  𝛿(𝜙){ 𝜇 [𝐷௫
ఈ∗(|∇ఈ𝜙(𝑥, 𝑦)|ିଵ𝐷௫

ఈ𝜙)  

+ 𝐷௬
ఈ∗(|∇ఈ𝜙(𝑥, 𝑦)|ିଵ𝐷௬

ఈ𝜙) 

−𝜆ଵ(𝐼(𝑦) −  𝑑ଵ(𝑥))ଶ + 𝜆ଶ(𝐼(𝑦) −  𝑑ଶ(𝑥))ଶ  

(6.16) 

where 𝐷௫
ఈ∗ and 𝐷௬

ఈ∗ are the adjoints of the usual fractional differential operator, satisfying 

the condition that the fractional derivative on the boundary of Ω for the function φ is 

vanished. The contour stops when the energy is minimized and accurate segmentation is 

achieved. Based on the discussion in Sections 6.2.1.1 and 6.2.1.2, the proposed FGH ACM 

is summarized in the following steps. 

1. Initialization of contour. 

2. Updating the fractional Gaussian kernel by tuning the parameter of 𝛼, 0 < 𝛼 <

1 through Eqs. (6.5) and (6.6). 

3. Updating the window sizes and shapes according to the interface of intensity 

inhomogeneity by adjusting the 𝛼 using Eqs. (6.9) and (6.10). 

4. Updating the fitting numbers, 𝑑ଵ(𝑥) and 𝑑ଶ(𝑥) optimally using Eqs. (6.12) and (6.13), 

respectively.  

5. Evolving the level set function according to Eq. (6.16). 

6. Regularizing and minimizing the energy of the level set function. 

7. When the condition of 𝑑௜(𝑥)  ≈ 0, 𝑖 = 1,2 is met, the contour movement is stopped; 

otherwise, return to step 2. 
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6.3  Implementation and Demonstration 

This section presents several demonstrations based on the implementation of the proposed 

FGH ACM method. The demonstration and the implementation is executed using Matlab 

R(2008b) on a 2.5 GHz Intel Processor i5. The main aim is to observe the performance of 

FGH ACM method in solving problem created by the FSW ACM method in providing 

accurate boundary segmentation. In illustrating the problem created by the FSW ACM 

method, Figure 6.1(a) presents a synthetic image that was affected with intensity 

inhomogeneity problem along the object boundary thus made it difficult in getting accurate 

boundary segmentation. Figure 6.1(b), presents the outcome obtained from the 

segmentation executed based on FSW ACM method. The contour was stuck at the local 

minima problem thus accurate segmentation in not achieve. This problem is then solved by 

FGH ACM method in providing accurate boundary segmentation. The operator of FDH; 

the fractional order gradient has the capability in extracting the local image information 

thus accuracy along the object boundary is achieved. Figure 6.1(c) denotes the outcome 

gained. 

 
(a) (b) 

 
(c) 

 
Figure 6.1: Demonstration on synthetic image of a star. (a) is the original image. (b) is the 

outcome from FSW ACM and (c) is the outcome from FGH ACM. 

 

Another synthetic image is executed in supporting the first experiment. Figure 6.2(a) 

presents the image of a star where the intensity level is decreasing from top to bottom, until 

the intensity level at the bottom of the star is hardly seen. Figure 6.2(b) depicts the outcome 
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obtained using the FSW ACM method. Unfortunately, the method failed to accurately 

segment the object as the contour did not recognized the low intensity level at the bottom of 

the star. 

 
(a) 

 
(b)  

(c) 
 

Figure 6.2: Demonstration on another star image with decreasing of intensity where (a) is 

the original image, (b) is the outcome from FSW ACM and (c) is the outcome from FGH 

ACM 

 

This problem is solved by FGH ACM method as shown in Figure 6.2(c). The method 

managed to complete the segmentation and produced accurate boundary segmentation as 

the application of FDH managed to extract the local image information at the location 

where the gradient magnitude is low. To better shown that the FGH ACM method in 

provides better accuracy than FSW ACM method, Figure 6.3(a) demonstrates a flower 

image within a solid dark and Figure 6.3(d) illustrates an image with decreasing gradient 

from left to right. To observe the potential of FGH ACM, comparison with the FSW ACM 

method is presented. It is obviously depicted that the FSW ACM method failed to 

accurately segment both images. This is clearly shown in Figure 6.3(b) and Figure 6.3(e) 

respectively where the contour did not accurately segment both boundary of the object. 
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(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 

Figure 6.3: Demonstration on two synthetic images, (a) is the original image of a flower. 

(b) is the outcome from FSW ACM, (c) is the outcome from FGH ACM, (d) is the original 

image of another synthetic image, (e) is the outcome from FSW ACM, (f) is the outcome 

from FGH ACM. 

 

With the introduction of FDH in the proposed FGH ACM method, the contour managed to 

extract the local image information thus solved the local minima problem existed in both 

images. The fractional-order gradient, protect the edges and maintain the contour stability.  

In addition, the application of window mechanism works perfectly at the angle of the object 

boundary in creating a smoother texture and enhancing the important edges from 

disappearing. Figure 6.3(c) and Figure 6.3(f) show both images that are accurately 

segmented by the proposed FGH ACM method thus solved problem created by FSW ACM 

method. Section 6.4 presents several experiments conducted on four medical image 

modalities and they are MRI images, CT scan images, x-ray image and microscopic 

images.  
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6.4    Experimental Result and Discussion 

Based on the implementation and demonstration in the earlier section, several experiments 

were conducted to evaluate the efficiency of the FGH ACM algorithm in performing the 

segmentation on multimodal of medical images. The medical image modalities involved in 

the experiments are MRI and CT scan brain, CT scan image of brain skull and heart, 

microscopic image of bacteria or cell and x-ray images of blood vessels. These medical 

images are having characteristics of high level of intensity inhomogeneity that made the 

contour stuck at the local minima problem where accurate segmentation at object boundary 

is not achieved.  

 

The goal of FGH ACM method is to provide the accurate segmentation at the object 

boundary. Therefore, the ground truth in the experiment is different from the ground truth 

executed with FSW ACM method. Figure 6.4 demonstrates two medical images that we 

used as sample in showing the ground truth of the segmentation outcome. Figure 6.4(a) is 

the image of CT scan brain. The segmentation outcome should cover the lowest intensity 

level in an image. Therefore, the ground truth for CT scan image of brain is shown in 

Figure 6.4(b). On the other hand, Figure 6.4(c) shows the image of blood vessel using the 

X-ray modality. This image is affected with high level of noise and intensity inhomogeneity 

that affected the edges along the blood vessel. The ground truth for the image is shown in 

Figure 6.4(d).  

 

In executing the experiments based on FGH ACM method, the value of 𝛼 need to be tuned 

to achieve accuracy at the object boundary. For image of CT scan of brain, the value of 𝛼 is 

chosen as slightly higher which is 5 but for x-ray image of blood vessel, the value of 𝛼 is 

Univ
ers

ity
 of

 M
ala

ya



 
 

141 
 

tuned as 1 which is smaller as the interface is highly affected with intensity inhomogeneity 

problem. The optimum value of 𝛼 for FGH ACM method in the experiments is 10 which is 

depending on the characteristics of the medical image itself.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 6.4: Demonstration for the ground truth images where in (a) is the image of CT 

scan brain and the ground truth is in (b). (c) depicts the x-ray image of blood vessel and the 

ground truth is in (d). 

 

6.4.1  Experiment on medical image modalities 

Figure 6.5 depicts the experiments conducted on the three MRI images of brain, three MRI 

images of heart, three CT scan images of brain skull and three CT scan image of brain. The 

focus of the segmentation is to accurately segment the anatomical structures of the object 

with different sizes and shapes allocated at the inner part of the image. The images are 

highly affected with intensity inhomogeneity and noise. On the other hand, Figure 6.6 

depicts the experiments on three images of MRI vessels, three images of x-ray blood 

vessels and three images of microscopic of bacteria. These images are highly affected with 
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intensity inhomogeniety until the object boundary is difficult to be identified. The 

anatomical structures are long, thin and winding that gave difficulty for the segmentation 

process.  

 

Figure 6.5(a – c) shows the result obtained from MRI images of brain by using the FGH 

ACM method. The white flare situated at the inner part of the image made the segmentation 

process challenging due to the presence of high level of intensity inhomogeneity and noise, 

but FGH ACM method managed to wrap around the white flare accurately. Due to the 

nature of the image, the parameter of FGH ACM method is set to α = 5. The experiment 

proceeded with another three images of CT scan brain ((Figure 6.5(j – l)). The white flare 

in the image is having low level of noise and intensity inhomogeneity where the boundary 

of white flare is clearly seen. With parameter of α = 2, all the three images are successfully 

and accurately segmented by FGH ACM method.  

 

The CT scan image of brain skull is another set of images to be segmented. FGH ACM 

method managed to provide the accurate boundary segmentation for all the three images as 

shown in Figure 6.5(g - i). This shows that the AFGK managed to smooth the image texture 

by preserving and enhancing the image details which made the FDH easier for extracting 

the local image information. However, as the image is dark and having lots of noise, the 

parameter of 𝛼 is set to 8 that is considered high. Another set of images used are the MRI 

images of heart. One of the image was affected which high level of intensity inhomogeneity 

where the object boundary is missing. With parameter of 𝛼 = 5, the FGH ACM method 

managed to accurately segment the object boundary. This is shown in Figure 6.5(d – f). To 

conclude, the contour of FGH ACM method have the capability in moving through the 
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winding and spiral structures of the white flare and produced accurate segmentation. On the 

other hand, the soft boundary of heart with high level of intensity lead to missing or weak 

edges, but the contour had success in recognizing the pixel value thus solve the local 

minima problem. 

 
(a) 

 
(b)  

(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
Figure 6.5: Segmentation outcome by FGH ACM method on MRI of brain (a – c) with 

parameter of 𝜶 = 𝟓, CT scan images of heart (d – f) with parameter of 𝜶 = 𝟐, MRI images 

of brain skull (g – i) with parameter of 𝜶 = 𝟖 and CT scan images of brain (j –l) with 

parameter 𝜶 = 𝟓. 
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The experiments continued on medical images that are having independent object such as 

the blood vessels and bacteria or cells images. These images are having low intensity level 

at the object boundary. Figure 6.6 presents the experiment conducted on three images of 

MRI vessels, three images of x-ray blood vessels and three images of microscopic bacteria. 

Figure 6.6(a – c) depicts images from MRI vessel where FGH ACM method managed to 

accurately segment the vessels object with parameter of 𝛼 = 3. Figure 6.6(d – f) presents 

images of x-ray blood vessels which is thin and long. The level of intensity is moderate. 

But with the introduction of AFGK and FDH, the proposed method managed to segment 

the object with the parameter of 𝛼 = 3. 

 

The last images are images of microscopic image of bacteria as shown in Figure 6.6(g – i). 

The object to be segmented is having high level of intensity that lead to weak at edges. The 

FGH ACM managed to wrap the contour along the object boundary although part of the 

boundary is hardly recognized with parameter of 𝛼 = 5. This concluded that the 

collaboration of AFGK and FDH leads to accurate boundary segmentation. Meanwhile, the 

quantitative evaluation is presented and the results are shown in Table 6.2 for image shown 

in Figure 6.5 which is based on metric of accuracy. On the other hand, Table 6.3 listed the 

evaluation metric executed on the nine medical images (Figure 6.6) which is also based on 

metric of accuracy. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
Figure 6.6: Segmentation outcome by FGH ACM method on MRI vessels (a – c) with 

parameter of 𝜶 = 𝟑, CT scan images of blood vessels (d – f) with parameter of 𝜶 = 𝟑, and 

microscopic images of bacteria/cell (g - i) with parameter 𝜶 = 𝟓 

 

Table 6.1: Summarization of accuracy percentage on MRI and CT scan images using FGH 

ACM method. 
Images 
 

Fig. 
6.6(a) 
 

Fig. 
6.6(b) 

Fig. 
6.6(c) 

Fig. 
6.6(d) 

Fig. 
6.6(e) 

Fig. 
6.6(f) 

Fig. 
6.6(g) 

Fig. 
6.6(h) 

Fig. 
6.6(i) 

Fig. 
6.6(j) 

Fig. 
6.6(k) 

Fig. 
6.6(l) 

 
Metric of  
Accuracy 
 

 
94.21 

 
96.82 

 
94.32 

 
93.45 

 
94.82 

 
93.32 

 
94.63 

 
93.54 
 

 
95.11 

 
94.66 

 
96.89 

 
96.34 

 

Table 6.2: Summarization of accuracy percentage on x-ray and microscopic images using 

FGH ACM method. 
Images 
 

Fig. 
6.7(a) 
 

Fig. 
6.7(b) 

Fig. 
6.7(c) 

Fig. 
6.7(d) 

Fig. 
6.7(e) 

Fig. 
6.7(f) 

Fig. 
6.7(g) 

Fig. 
6.7(h) 

Fig. 
6.7(i) 

Metric of 
Accuracy 
 

 
94.63 

 
93.54 

 
95.14 

 
94.21 

 
96.45 

 
95.97 

 
94.07 

 
95.17 

 
96.51 
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Based on the quantitative evaluation displayed in Table 6.1 and Table 6.2, the metric of 

accuracy is aligned with the outcome of the segmentation which is based on human 

perception. For example, MRI image of heart that shows a dark images where the boundary 

is hardly seen. However, based on visual interpretation FGH ACM managed to accurately 

segment the object and the metric of accuracy show 94.82% of accuracy. The average 

metric of accuracy for images in Figure 6.5 is 94.83% and the average metric of accuracy 

for images shown in Figure 6.6 is 91%.  

 

6.5  Benchmarking on Fractional Gaussian Heaviside Method 

Benchmarking process is conducted on FGH ACM in this section. The experiment in this 

section was also designed using Matlab R(2008b) on a 2.5 GHz Intel Processor i5 

according to the implementation framework. The benchmarking will be divided into two 

subsections where in Section 6.5.1 the benchmarking process is done with FSW ACM 

methods. On the other hand, Section 6.5.2 presents the benchmarking with Local Binary 

Fitting Energy (LBF), Local Intensity Clustering (LIC) and Local Gaussian Distribution 

(LGD) methods. Subsequently, several experiments were conducted to evaluate the 

efficiency of the algorithm to perform accurate boundary segmentation of the object in the 

presence of intensity inhomogeneity.  

 

6.5.1  Benchmarking with Fractional Sinc Wave method.  

The aim of the experiment is to observe the potential of FGH ACM method in solving the 

accuracy problem at object boundary which did not achieved by FSW ACM method. 

Twelve images of medical image that included three images of MRI brain, three images of 

CT scan heart, three images of x-ray blood vessels and three images of microscopic image 
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of bacteria or cell are used. The images listed are having intensity that is not homogeneous 

and the gradient magnitude at the object boundary is low until the edges could not be 

recognized.  

 

The first experiments will be conducted on three images of MRI brain as shown in Figure 

6.7(a – c). The result obtained is observed to verify that FGH ACM method could 

accurately segment the white flare of the brain image. The white flare of brain is having the 

anatomical structure which is winding and spiral. In this situation, separating and accurately 

segment the white flare can be difficult due to the local minima problem. In conducting the 

experiment, the parameter of 𝛼 Gaussian kernel is tuned to 5 for FGH ACM method. Figure 

6.7(a - c) presents the outcome executed from the FSW ACM method and Figure 6.8(a – c) 

depicts the outcome from FGH ACM method. From the outcome (Figure 6.7(a - c)), it is 

obvious that the contour of FSW ACM method, did not extract the white flare boundary 

accurately where the contour did not manage to wrap around the winding and spiral 

structure of the white flare. This may due to the missing of local image information which 

is then overcome by the FGH ACM method where the segmentation outcome shows 

accurate segmentation. The FDH proposed in the FGH ACM method managed to extract 

the local image information and overcome the local minima problem thus provide accurate 

boundary segmentation as shown in Figure 6.8(a – c). 

 

The experiment proceeded with three images of CT scan of heart. As heart images are made 

from muscles, the level of intensity inhomogeneity is seen as high level that leads to 

missing edges along the object boundary. In addition, some images of heart is having tiny 

vessel allocated at the internal part of the heart. Segmenting this anatomical structure is 
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challenging. Due to this factors, the parameter of 𝛼 is set to 3 for a better segmentation 

outcome. To show the effectiveness of the FGH ACM method in providing accurate 

segmentation, Figure 6.8(d - f) show the outcome of CT scan images of heart based on 

execution of the FGH ACM method. On the other hand, Figure 6.7(d - f) depicts the 

segmentation outcome on CT scan image of heart based on the FSW ACM method. The 

idea is to compare the problem created by the second method could overcome perfectly by 

the third method.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
Figure 6.7: Segmentation outcome depicted from the FSW ACM method. MRI images of 

brain is situation at (a – c), CT scan images of heart is shown at (d – f), images of x-ray 

blood vessels is at (g – i) and images of microscopic bacteria is shown at (j – l). 
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Noted that, the three images shown in Figure 6.7(d - f) did not well segmented by the FSW 

ACM method in terms of providing an accurate segmentation at the object boundary. This 

may due to the local minima problem that diverted the contour from accurately stop on the 

correct boundary. To overcome the problem, the FDH proposed in the FGH ACM method 

efficiently extract the local image information along the object boundary in providing 

accurate boundary segmentation. Figure 6.8(d - f) shows the perfect outcome by FGH 

ACM method. Notice that the tiny vessel at the heart image Figure 6.8(e - f) is also 

segmented by the contour. The contour managed to stop exactly on the correct position 

along the object boundary. 

 

Based on the two experiments conducted on brain and heart images, the experiment 

continued to segment the blood vessels from an x-ray modality and bacteria/cell image 

from microscopic modality. Images of the blood vessels are having the anatomical structure 

which is long, thin and winding. In addition, the intensity level of both images is lower 

from the object to the background which made the contour have difficulty in recognizing 

the intensity of the object boundary.  Figure 6.7(g - i) presents the outcome of x-ray images 

of blood vessels after an experiment using FSW ACM is executed.  

 

Note that, the contour could not accurately move along the object boundary especially on 

images that are unclear. To overcome the weaknesses by FSW ACM method, FGH ACM 

method embed the AFGK to enhance the edges to be seen and extract by the FDH. As the 

image is unclear, the parameter 𝛼 is set as a small number which is 1. This is because if a 

large number is used, the movement of the contour will be fast and accurate segmentation 
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could not be achieved. With the parameter 𝛼 is set as 1, an accurate boundary segmentation 

is achieved to all three images of x-ray (Figure 6.8(g - i)).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j)  

(k) 
 

(l) 
Figure 6.8: Segmentation outcome depicted from the FGH ACM method with 𝛂=5 for 

MRI images of brain (a – c), CT scan image of heart are shown at (d – f) with 𝛂=3, images 

of x-ray blood vessels are shown at (g – i) with 𝛂=1 and images of microscopic bacteria is 

shown at (j – l) with 𝛂=1. 

 
To support the experiments conducted on x-ray images of blood vessel, we conducted 

another experiments on three images of microscopic of bacteria/cell which is taken as an 

individual object. The images of bacteria/cell have a unique shape of boundary. The 

intensity level from the object to the background is low until some of the edges along the 
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object boundary are missing. The contour may have difficulty to recognize the low intensity 

in order to get the accurate boundary segmentation. In observing the potential of FGH 

ACM in segmenting microscopic images, we compare the outcome with FSW ACM 

method. Figure 6.7(j – l) display the outcome obtained on three images of microscopic 

using FSW ACM method. Due to the characteristics of the images, the contour could not 

successfully stop exactly on the correct boundary of the object to be segmented. For images 

which is dark and having least gradient, the contour is diverting to other area in the image. 

This problem is overcome by the FGH ACM method is providing an improved and accurate 

segmentation. With parameter of 𝛼 that is set to 1, the FDH managed to move along the 

object boundary and provide an accurate segmentation. This is shown by the images shown 

in Figure 6.8(j - l). Three microscopic images are well segmented along the object 

boundary. 

 

To support the benchmarking process conducted earlier which is based on visually 

interpretation, the evaluation metric is applied as used in chapter 5. Recall back, the 

evaluation metric is based on the metric of accuracy. Table 6.3 illustrated the metric of 

accuracy for MRI images used in the demonstration. The metric presents the metric of 

accuracy between the FSW ACM method and FGH ACM method. The aim is to observe 

the pattern of the accuracy metric of FGH ACM that should show incremental of 

percentage from the FSW ACM method.  

 

From the metric of accuracy listed in Table 6.1, the percentage accuracy for both FSW 

ACM method and FGH ACM method is more than 90%. The FGH ACM method managed 

to improve the percentage accuracy from the FSW ACM method. The average percentage 
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for MRI images based on FGH ACM method (Figure 6.8(a – c)) are 97.45%, while the 

percentage of CT scan images based on segmentation outcome by FGH ACM method are 

95.07%. On the other hand, the x-ray images accuracy percentage are 96.12% and 

microscopic accuracy percentage is 98.14%. The percentage for all images shown in Table 

6.1, shows improvement of the segmentation from the FSW method to FGH ACM  method.  

 

Table 6.3: Summarization of accuracy percentage on MRI, CT scan, x-ray and microscopic 

images by FSW ACM method and FGH ACM method. 
Images/ 
Method 

Fig. 
6.7 
(a) 

Fig. 
6.7 
(b) 

Fig. 
6.7 
(c) 

Fig. 
6.7 
 (d) 

Fig. 
6.7 
 (e) 

Fig. 
6.7 
 (f) 

Fig. 
6.7 
 (g) 

Fig. 
6.7 
 (h) 

Fig. 
6.7 
 (i) 

Fig. 
6.7 
 (j) 

Fig. 
6.7 
 (k) 

Fig. 
6.7 
 (l) 

 
Sinc 

Wave 
ACM 

 

 
 

92.31 

 
 

94.34 

 
 

93.12 

 
 

91.12 

 
 

91.23 

 
 

92.03 

 
 

91.54 

 
 

90.05 

 
 

90.33 

 
 

93.12 
 

 
 

92.32 

 
 

94.16 

Images/ 
Method 

 

Fig. 
6.8 
(a) 

Fig. 
6.8 
 (b) 

Fig. 
6.8 
 (c) 

Fig. 
6.8 
 (d) 

Fig. 
6.8 
 (e) 

Fig. 
6.8 
 (f) 

Fig. 
6.8 
 (g) 

Fig. 
6.8 
 (h) 

Fig. 
6.8 
 (i) 

Fig. 
6.8 
 (j) 

Fig. 
6.8 
 (k) 

Fig. 
6.8 
 (l) 

 
FGH 
ACM 

 

 
 

96.21 

 
 

97.82 

 
 

98.32 

 
 

94.12 

 
 

95.54 

 
 

95.57 

 
 

96.7 

 
 

96.54 

 
 

95.12 
 
 

 
 

98.63 

 
 

98.47 

 
 

97.32 

 

The experiment was carried out to evaluate the performance of the FGH ACM method in 

achieving accurate boundary segmentation within the interface of severe intensity 

inhomogeneity against other ACM methods that utilize local image information in their 

segmentation process. The methods used for the comparison are the Local Intensity 

Clustering method (LIC) (Li et al., 2011) Local Gaussian Method (LGM) (Wang et al., 

2009), and Local Binary Fitting Energy (LBF) (Li et al., 2007). In addition, the evaluation 

metric is also applied to support the benchmarking process. 
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6.5.2    Benchmarking with methods using local image information 

This section reports the experimental finding on various characteristics of medical image 

modalities. This experiment was conducted to measure the effectiveness of the proposed 

FGH ACM method in handling segmentation process within severe intensity 

inhomogeneity interface to accomplish the accurate boundary segmentation. The 

performance of the proposed FGH ACM method is compared with three different methods 

of ACM that rely on local image information for their segmentation process. The methods 

include Local Gaussian Distribution Method (LGD), Local Intensity Clustering (LIC), and 

Local Binary Fitting Energy (LBF). The experiment begins with an MRI image of brain. 

The internal part of the brain image contains white flares with inhomogeneous intensity. 

Unlike other images, the white flare is thin, with long and winding structure.  

 
(a) (b) 

 
(c) (d) 

 
Figure 6.9: Segmentation results on MRI image of a brain where (a) shows the result by 

LGD method, (b) shows the result by LIC method, (c) is the results obtained by the LBF 

method, and (d) shows the result obtained on the basis of FGH ACM method for α=0.4. 

 

Figure 6.9 presents the result obtained from the experiment conducted on the MRI image of 

brain. Figure 6.9(a) shows the segmentation outcome using the LGD method, followed by 

the LIC method in Figure 6.9(b), the LBF segmentation outcome in Figure 6.9(c), and FGH 

ACM method in Figure 6.9(d). The LGD method did not manage to segment the inner part 

of the brain. Its contour failed to be placed along the object boundary of the white flare 

areas, thereby hindering inaccurate segmentation. Likewise, the LIC method was also not 
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successful in accurately segmenting the brain structure within the white flare area. The LBF 

method is sensitive to the initial placement of its contour; hence, the object boundary of the 

white flare is also not well segmented. This failure may be due to the two contours on the 

image. Some parts of the object boundary were not segmented as shown in Figure 6.9(c). In 

addition, the method also shows slight over segmentation effect in its outcome. In this 

situation, accurate segmentation could not be achieved. Meanwhile, the proposed FGH 

ACM method managed to produce a comprehensive and accurate boundary segmentation 

outcome successfully even in white flare areas with parameter of 𝛼 is set to 4. The 

capability to maneuver segmentations along complex brain structure, which is long and 

winding with sharp curves, is mainly attributed to its novel AFGK and FDH function. The 

AFGK technique provides a smooth and preserves critical information, such as the edges at 

some critical part, namely, the white flare. The adaptive windows applied supported the 

Gaussian kernel by moving towards critical angles along the boundary of the white flare, 

thereby enabling the FDH function to extract the intensity at that position and regularize the 

level set.  

(a) (b) (c) 
 

(d) 
 
Figure 6.10: Segmentation results on another MRI image of brain from the top view where 

(a) shows the result by LGD method (b) shows the result by LIC method, (c) is the results 

obtained by LBF method, and (d) the result obtained on the basis of our method for α=5. 
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The same experiment was repeated on another slice of MRI image that shows the top view 

of the brain, with more focus given to the white flare areas. This experiment was conducted 

to support the previous experiment. Better and clearer segmentation outcome was obtained 

with the second experiment as compared with the first. As expected, the segmentation 

result was consistent with that of the previous experiment for all tested methods. The LGD 

method still failed to complete the segmentation process successfully because of severe 

intensity inhomogeneity in the image as shown in Figure 6.10(a). The LIC method 

produced a better segmentation outcome, but failed to segment the brain structures situated 

in the white flare areas, as indicated in Figure 6.10(b). Meanwhile, the LBF method 

managed to segment almost all the brain structure, but with less accuracy and has slight 

tendency to also segment unwanted regions. FGH ACM method showed satisfactory results 

and achieved accurate boundary segmentation with 𝛼 = 5, similar to the outcome depicted 

in Figure 6.9. 

 

The results obtained based on the proposed FGH ACM on two MRI images of brain shown 

earlier depicted an excellent outcome with cleaner and accurate segmentation especially 

along the boundary of the white flare. To show a good collaboration of AFGK and FDH, 

the next experiment is conducted on CT SCAN image of a brain but the brain image is 

affected with a tumor indicated by the white round object. Figure 6.11 illustrates the 

outcome obtained based on the experiment conducted using the four methods of ACM 

including FGH ACM method. 
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 (a)  

 (b) 
 

 (c) 
 

 (d) 
 

Figure 6.11: Segmentation results on another brain image but using CT SCAN modality. 

(a) shows the result by LGD method, (b) shows the result by LIC method, (c) is the results 

obtained by LBF method, and (d) is the result obtained on the basis of FGH ACM method 

for α=5. 

 

Figure 6.11(a) depicts the outcome based on LGD method, followed by the outcome using 

the LIC method at Figure 6.11 (b), outcome by the LBF is presented at Figure 6.11(c) and 

Figure 6.11(d) is the outcome based on the proposed FGH ACM. This time, the image of 

brain by the modality of CT scan shows a dark area at the inner part of the brain with least 

intensity. Most white flare was affected with least intensity until the white flare boundary is 

unseen due to the darkness of the image texture. Due to the darkness factor, LGD method 

did not managed to complete the segmentation where the contour could not segment the 

white flare area situated at the inner part of the brain.  

 

LBF method managed to move the contour at the inner part but the contour did not manage 

to produce an accurate segmentation and this is shown in Figure 6.11(c). This may due to 

the sensibility of the two contour placement of the method. On the other hand, the LIC and 

FGH ACM method managed to segment the inner part of the brain. However, LIC method 

have inaccuracy in the segmentation where it produced over segmentation problems (Figure 

6.11(b)). FGH ACM method managed to provide accurate segmentation with lessen over 
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segmentation with parameter of 𝛼= 5. This shows that the collaboration of AFGK and FDH 

provide an accurate boundary segmentation of the FGH ACM method. 

 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

Figure 6.12: Segmentation results on a heart image of CT SCAN. (a) shows the result by 

LGD method, (b) shows the result by LIC method, (c) shows the results obtained by LBF 

method, and (d) shows the result obtained by our method for α=3. 
 

Next the finding report on a CT scan image of a heart which is then followed by another 

image of heart using the modality of MRI. Both heart images have soft texture with severe 

inhomogeneous intensity. The objects to be segmented in Figure 6.12 have lighter intensity 

and are located in the sub-region of the object. Figure 6.12 (a) shows the result obtained 

using the LGD method, followed by those obtained through the LIC, LBF and the proposed 

methods. Among the presented results, the proposed FGH ACM method shows significant 

improvement in the segmentation outcome, accurately segmenting the boundary of the two 

objects successfully for α=3. Other methods, such as the LGD method, did not manage to 

segment the object where only one object is segmented. The objects are not well segmented 

by LBF because of the sensibility problem of the contour. The LIC method managed to 

show some segmentation; however, the result obtained was neither accurate nor satisfying, 

demonstrating some over sampling effects. To show the effectiveness of the proposed FGH 

ACM method, another image of heart from the modality of MRI is used. Its texture is soft 

but the image is darker than one in CT scan image. The boundary of heart is affected by 
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lots of noise which leads to intensity inhomogeneity thus made the segmentation process 

crucial.  

(a) (b) (c) (d) 
 

Figure 6.13: Segmentation results on a heart image of CT SCAN. (a) shows the result by 

LGD method, (b) shows the result by LIC method, (c) shows the results obtained by LBF 

method, and (d) shows the result obtained by our method for α=3. 

 

Figure 6.13(a) shows the result obtained using the LGD method, followed by those 

obtained through the LIC, LBF and FC ACM methods. Similar as previous outcome, the 

FGH ACM depicted the most perfect outcome with better accuracy at the object boundary 

and cleaner outcome for α=3. The LGD and LBF method did not managed to segment some 

part of the object boundary. On the other hand, LIC method managed to complete the 

segmentation but produce over segmentation. 

 

The next experiment presents images by x-ray modality of blood vessels. It is known that 

the object of blood vessels is long, thin and winding. The image is having high level of 

noise and the distribution of intensity is not homogeneous. In addition the level of intensity 

of the object of interest is at least until it made it difficult to be separated from the 

background. This is shown in Figure 6.13. On the other hand, another x-ray image of blood 

vessel is shown in Figure 6.14 depicts an object of blood vessel which is dark with noise 

and intensity inhomogeneity. The pixel intensity within the neighborhood pixels inside the 
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blood vessel has similar levels which lead to over segmentation during the segmentation 

process.  

 
(a) (b) 

 
(c) 

 
(d) 

 

Figure 6.14: Segmentation results on blood vessel from x-ray modality. (a) shows the 

result by LGD method, (b) shows the result by LIC method, (c) is the results obtained by 

LBF method, and (d) shows the result obtained on the basis of our method for α=1. 

 

Results obtained by the four methods denote various segmentation outcomes and this is 

shown in Figure 6.14. Both the LGD and LIC methods completely failed to segment the 

object in this image, indicating the inability of their contours to evolve in the environment 

severely affected by intensity inhomogeneity problem. Meanwhile, the LBF method and 

FGH ACM method were able to move the contour along the blood vessel and produce 

better segmentation outcomes. Nonetheless, the outcome of the proposed FGH ACM 

method is more complete and accurate than those produced by the LBF method for α=1.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.15: Segmentation results on blood vessel of an eye taken from x-ray modality. (a) 

shows the result by LGD method, (b) shows the result by the LIC method, (c) is the results 

obtained by LBF method, and (d) shows the result obtained on the basis of our method for 

α=1 

 

Result obtained from the second x-ray blood vessel image is depicted in Figure 6.15. The 

results obtained shows slightly different outcome from those in Figure 6.14. This is due to 

the image texture which is darker and having intensity inhomogeneity at the foreground. As 

the blood vessels is having similar intensity in the pixel neighborhood, LGD method shown 

at Figure 6.15(a) and LBF method at Figure 6.15(c) shown over sampling at the inner part 

of the blood vessels. This means both methods does not managed to provide a successful 

segmentation. On the other hand, the proposed FGH ACM method and LGD method show 

good segmentation results. Nonetheless, the outcome of the proposed FGH ACM method is 

more complete and accurate than those produced by the LGD method.  

 

The last experiment conducted in this section will be on microscopic images of bacteria. 

Both images are shown in Figure 6.16 and Figure 6.17 respectively. Noted that, 

microscopic images of bacteria are having bacteria object with least intensity yet the 

background is also having similar intensity as the one in the object. The intensity 

distribution is not well distributed which made the segmentation failed to be completed or 

produced over sampling. The object of bacteria as shown in Figure 6.16 is having several 
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level of intensity that leads to over segmentation. This is shown by the outcome of the 

image using the four methods mentioned earlier.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 6.16: Segmentation results on microscopic image of bacteria. (a) shows the result 

by LGD method, (b) shows the result by LIC method, (c) is the results obtained by LBF 

method, and (d) shows the result obtained on the basis of our method for α=2. 

 

Figure 6.16(a) depicts the outcome using the LGD method, outcome from LIC method at 

Figure 6.16(b), outcome from LBF method at Figure 6.16(c) and FGH ACM method at the 

Figure 6.16(d). Notice that LGD method and LIC method could not produce satisfying 

segmentation, where the exact object of bacteria is not really segmented. On the other hand, 

both LBF and FGH ACM method managed to complete and perfectly segment the bacteria 

object from the background, but some over segmentation is created. Nonetheless, the 

outcome by the FGH ACM method is better than other methods without any over 

segmentation at the background of the image than the other methods for α=2. To support 

the outcome as in Figure 6.16, another image of microscopic image of bacteria is used with 

similar characteristic as above and is shown in Figure 6.17. This time, the object of bacteria 

was affected with intensity inhomogeneity along the object boundary until the boundary is 

having gaps along the boundary. 
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(a) (b) (c) (d) 
 

Figure 6.17: Segmentation results on microscopic image of cell. The first column shows 

the result by the LGD method, the second column shows the result by the LIC method, the 

third column results obtained by the LBF method, and the last column shows the result 

obtained on the basis of our method for α=2. 

 

Figure 6.17 depicts the results gained from the experiment conducted. Figure 6.17(a) is the 

result obtained from LGD method, Figure 6.17(b) is the result obtained from LIC method, 

Figure 6.17(c) is the result from LBF method and Figure 6.17(d) is the result obtained from 

the proposed FGH ACM method. From the results presented, it is obvious that, the contour 

of LGD and LIC method could not move toward the object of interest, thus the 

segmentation failed. The method by LBF and FGH ACM managed to move the contour 

toward the object of interest and provide satisfying result. However, LBF produce some 

over sampling. To support the benchmarking findings, the evaluation metric which is based 

on the metric of accuracy shows that the FGH ACM method provide accurate boundary 

segmentation on most of the medical images. Based on the experiments, FGH ACM 

method provide the average accuracy of 94.85%, LGD method provide the average 

accuracy of 63.29%, LIC method provide the average accuracy of 75.09% and LBF method 

provide the average accuracy of 91.75%. The metric of accuracy shown in Table 6.5 is 

aline with the segmentation outcome which is based on visual interpretation. 
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Table 6.4: The evaluation metric comparison for medical images among LGD, LIC, LBF 

and FGH ACM method. 
Medical images Metric of Accuracy 

 
LGD LIC LBF FC ACM 

 
MRI image of brain 1 72.23 89.48 90.23 97.51 

 
MRI image of brain 2 70.86 92.49 94.31 97.88 

 
CT SCAN image of brain 71.45 94.04 94.92 96.11 

 
CT SCAN image of heart 1 65.48 92.08 93.44 95.71 

 
CT SCAN image of heart 1 86.76 91.89 91.11 94.23 

 
X-ray image of blood vessel 1 23.11 21.07 91.87 93.49 

 
X-ray image of blood vessel 2 90.41 86.01 88.09 91.88 

 
Microscopic image of bacteria 1 67.12 87.72 89.16 92.45 

 
Microscopic image of bacteria 2 22.23 21.1 92.63 94.39 

 
 

In concluding the experiments executed, the proposed FGH ACM managed to segment 

accurately at the object boundary on various medical image modalities with various 

characteristic. Section 6.6 presents a discussion based on the result gained by the FGH 

ACM method when compared with other three baseline ACM methods. 

 

6.6   Discussion 

This section provides a brief discussion on the experiments conducted using FGH ACM 

method. Previously in chapter 5, several experiments using four medical images modalities 

have been carried out on the FSW ACM method. However, it is later discovered that, the 

FSW ACM method has a drawback which it cannot provide an accurate boundary 

segmentation. This may be due to the lacking of technique in extracting the local image 

information which produced the local minima problem.  
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The proposed FGH ACM method is using an excellent enhancement process which is 

called as AFGK (Adaptive Fractional Gaussian Kernel). The fractional calculus used here 

is known as having the nonlinear capability in preserving and enhancing the image details. 

The collaboration of fractional and Gaussian Kernel managed to classify and merge the 

intensity level in a region in a better way. To give a perfect enhancement result, the 

adaptive window is applied to move along the critical angle to better preserve and enhanced 

the edges. Once the image texture is enhance, the FDH with the fractional-order gradient 

operator is applied to extract the local image information and avoid the local minima 

provide. This is to provide an accurate segmentation along the object boundary. 

Demonstration have been carried out on several synthetic images which having a low 

gradient to illustrate the capability of the proposed method in extracting the object 

boundary.  

 

Later, four medical image modalities were used during the experiment with different 

characteristics. Noticed that the parameter of Gaussian of 𝛼 is used and need proper tuning 

in getting a good result. On images with dark and smooth texture the parameter of 𝛼 used is 

seen as smaller when compared to images with difficult structure of object and severe 

intensity inhomogeneity. However, the FGH ACM method managed to provide good 

potential in segmenting different type of medical image modalities with various 

characteristics. The quantitative evaluation using the evaluation metric is performed on 

FGH ACM method to observe the metric of accuracy achieved in the segmentation process. 

It is shown that the FC ACM method managed to produce more than 90% of segmentation 

accuracy even though medical images with severe intensity inhomogeneity. 
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6.7   Summary 

In this study, a novel local region-based active contour model with fractional calculus for 

image segmentation in the presence of intensity inhomogeneity was presented namely 

fractional Gaussian Heaviside (FGH) ACM. The method introduced the adaptive fractional 

Gaussian kernel to avoid redundant information or pixels in the image from merging 

together, thereby providing better regions with homogeneous object. The fractional calculus 

used has the capability to maintain image structure and reduce random noise; the sizes and 

orientation of the adaptive rectangular window adapt with the changes in the local image 

details for better smoothness of the image texture. In this situation, the intensity 

inhomogeneity interface is handled properly and the edges are enhanced and ready for 

boundary extraction. Later, the fractional differential Heaviside function will have the 

capability in protecting the edges and lower frequency, especially at the object boundary for 

better feature extraction. In addition, the FDH function has the capability to extract the 

gradient and the intensity of the image. After the boundary condition is met within the level 

set framework, our proposed method may provide a satisfaction segmentation yet accurate 

boundary segmentation. Comparison with the FSW ACM method using several synthetic 

images and several medical image modalities are presented. The aim is to show the 

capability of FGH ACM method in providing accurate boundary segmentation thus solve 

the drawbacks by the FSW ACM method. The proposed method showed potential 

capability in classifying the inhomogeneous object in a better manner, thereby providing 

accurate segmentation, especially at the boundary of the object that need to be segmented.  
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CHAPTER 7 
CONCLUSION 

 

This chapter mainly concludes the research findings. It highlights our contributions in 

designing methods for accurate medical image segmentation even in the presence of high 

levels of noises and intensity inhomogeneity. Both methods introduce the use of fractional 

calculus and sinc wave method in a Hybrid ACM. The chapter ends with some suggestions 

for future work which includes possible enhancement to the proposed method. 

 

7.1  Research Findings 

In modern medicine, diagnosis and examination of diseases can be more efficient with the 

assistance of medical imaging. Medical imaging is one of the techniques used by experts to 

examine the condition of internal parts of human body for medical diagnostics and 

interventions. Among the commonly used medical imaging modalities are MRI, CT scan, 

ultrasound and x-ray. However, medical images produced by these modalities contain many 

visual problems such as high levels of noise, and inhomogeneous distributions of 

intensities. These characteristics make it impossible for untrained human eye to understand 

the visual contents of those images. High dependency on the experienced radiologists 

would slow down any diagnostic process due to huge production of medical images to be 

examined by a small number of available radiologists each day. Having a computer aided 
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diagnosis (CAD) system can therefore facilitate to speed up the examination process and 

alert radiologist of any possible abnormalities in those images. 

 

However, the CAD system’s ability to detect any abnormalities in medical images is 

heavily dependent on the accuracy of its segmentation algorithm. Among the most 

commonly used algorithms for segmenting medical images are those derived from the 

Active Contour Model (ACM) (Casseles, 2003, Li et al., 2005). ACM is based on the 

concept of energy minimization and contour evolution. The energy is minimized once the 

contour meets the correct object boundary which can be easily achieved in images with no 

apparent visual problems. The strength of ACM is based on its contour evolution, its 

stopping function, and its smoothing strategy. However, ACM is still facing several 

problems that hinder its successful execution for an accurate boundary segmentation of 

multimodal medical images in the presence of noise and intensity inhomogeneity. These 

problems will forbid the contour from accurately wrap around the object in an image. 

Therefore these problems need to be removed or reduced.  

 

Smoothing process can reduce noise and improve image texture (Zhang et al., 2013). ACM 

methods use the Gaussian filter as their smoothing techniques, and its execution is based on 

a linear concept. In our investigation, the ACM methods with linear Gaussian are not able 

to perform accurate boundary segmentation on medical images in the presence of intensity 

inhomogeneity (Li et al., 2010; Zhang et al., 2010). The straight line movement of linear 

Gaussian increases the probability of losing image details (Wang et al., 2009). In this study 

the linear Gaussian is replaced with nonlinear Gaussian. Our experimental finding shows 

that nonlinear Gaussian has better capability than linear Gaussian in reducing noises, 
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preserving medical image details and enhancing its edges. In addition to that, nonlinear 

function with its contour fitting functionality makes it more convenience for the ACM 

contour to evolve due to smoother interface. The design and development of the nonlinear 

Gaussian filter for medical image enhancement is the first contribution of this research. The 

second contribution of this study is in regards to a novel design of the Fractional Sinc Wave 

FSW ACM method which is capable to reduce over segmentation problem when 

segmenting medical images with noise and intensity inhomogeneity. To recall, the 

proposed method is based on a combination of edge-based and region-based ACM in order 

to harness the strengths for both of the approaches. The strength of the edge-based 

approach is that it can produce a precise boundary segmentation outcome provided that the 

image has less noise but this is not possible for medical images. Unlike the edge-based 

approach, the region-based approach is more robust to noise hence it has high tendency to 

successfully segment medical images. Nevertheless, both approaches have their weaknesses 

that impede a successful implementation of accurate boundary segmentation of medical 

images with high level of noise and intensity inhomogeneity.  

 

Among the weaknesses of an edge-based ACM method is its sensitivity to image noise  

because low quality medical images has high tendency for weak and missing edges in the 

images (Lakshmi & Sankaranarayanan, 2010). On the other hand, a region-based ACM 

method produces satisfactory segmentation outcome on noisy medical images but not on 

images with intensity inhomogeneity (Lankton, 2008). This is because intensity 

inhomogeneity in an image would create many small regions with inhomogeneous 

intensities even within the object in the image. As a result, the region-based segmentation 

approach would produce islands of segmented regions including the unwanted regions as 
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well, a condition known as over sampling in segmentation. The proposed FSW ACM 

method should therefore need to address these weaknesses in order for it to successfully 

segment medical images that contain lots of noises and non-homogeneous distributions of 

intensities.   

 

The FSW is a method in the ACM that is based on the concept of fractional calculus and 

sine wave method. The nonlinearity nature of the fractional calculus enables a contour to 

have flexible bending movement and rapidly evolve through the intensity inhomogeneity 

interface towards objects to be segmented in an image. The implementation of the nonlinear 

Gaussian filter in the proposed method improves image texture, enhances its edges and 

protects them from disappearing. The sinc wave method with its interpolation capability  

can construct  new data points along the contour’s path close to an object boundary to 

enable the contour to move as near as possible to the boundary hence increases the 

segmentation success.  

 

The feasibility of the proposed method is evaluated in our experiments on several medical 

images with various modalities (MRI, CT scan, microscopic and ultrasound) and 

anatomical structures, taking into account the occurrence of noise and intensity 

inhomogeneity in those images. The justification of using multimodality of medical images 

is that different modalities produce medical images with different levels of noises and 

intensity inhomogeneity. The ability to segment images from these common modalities 

increases the robustness of the proposed methods in segmenting medical images. The 

robustness and significance of the methods is further proved by using medical images on 

various anatomical structures such as human heart, brain, blood vessels and cells, hence 
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making our work unique against many research work in medical image segmentation that 

are often dependent on a specific anatomical structure. The performance evaluation of the 

proposed segmentation methods is carried out in three ways. Firstly is the segmentation 

outcomes from the experiments are evaluated via visual interpretation by human perception 

Second, by using quantitative measurement based on metric of accuracy by Abbas et al. 

(2014). The metric accuracy is done by creating the correct segmentation contour on the 

medical image which is later compared with the segmentation outcome depicted by the 

proposed method. Finally, benchmarking evaluation is used against some baseline ACM 

methods. 

 

To ease the understanding on the capability of the FSW ACM method, we provide the 

discussion of our experimental results based on the following three categories of medical 

images. The first category contains different modalities of medical images of various 

anatomical structures that have both inner and outer parts to be segmented, for instance, 

human heart, abdomen, and blood cells. Having this specific category is important because 

our experimental results show that the inner part is the mostly affected area by intensity 

inhomogeneity problem. Additionally, the inner part normally composed of unique 

anatomical structures such as long, winding and spiral. Meanwhile the quantitative 

evaluation of our experimental findings denotes around 95.2% success rate of the proposed 

FSW method in segmenting medical images in this category, as reported in Section 5.4.2.1. 

The benchmarking evaluation against the baseline ACM methods shows that the proposed 

method produces an improved segmentation outcome as compared to C-V and SGLACM 

methods. 
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The purpose of the second category is to determine the ability of the proposed FSW method 

to successfully segment a collection of individual cells in medical images that are usually 

captured by microscopic modality. Among the challenges in this category is the collection 

of objects often comprises of tiny cells structure. In the presence of noise and intensity 

inhomogeneity, the border of each tiny cell would encounter leakage problem thus 

complicate the process of accurately segmenting each individual cell. The application of 

nonlinear Gaussian filter in the proposed method helps to alleviate this problem, as 

explained in Section 5.2. Further, the implementation of the FSW method gives the contour 

the strength to rapidly evolve and effectively maneuver through curves and angles of tiny 

cells, for a successful segmentation outcome. The quantitative evaluation of our 

experimental findings indicate around 92% success rate of the proposed method in 

segmenting medical images in this category, as reported in Section 5.4.2.2. The 

benchmarking evaluation also demonstrates that the proposed segmentation method 

supersedes the performance of the two baseline ACM methods. 

 

Finally the third category concerns on handling segmentation on the lowest image quality 

among modalities which is the ultrasound images. Due to its poor quality, the image shows 

dark surfaces with unclear edges therefore object outlining can hardly be traced. As noise 

and intensity inhomogeneity level in ultrasound image appeared to be the highest among 

medical image modalities, it becomes a great challenge to obtain successful segmentation. 

Even though region-based ACM methods can segment some medical images, it produces 

over sampling problem especially when involving images with high level of noise and 

intensity inhomogeneity.  The nonlinearity of the FSW method alleviates this problem by 

smoothing the image texture and providing rapid and dynamic contour movement through 
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the image. The sinc wave method has proven its capability in giving high segmentation 

accuracy when it is being integrated with fractional calculus. In our experimental results, 

the novel FSW method had shown its ability to successfully segment ultrasound images 

with various anatomical structures.  

 

As a conclusion, the segmentation outcomes of the FSW ACM method demonstrates a 

better accuracy from the baseline methods with obvious reduction on the over sampling 

problems. Additionally, the applied quantitative evaluation denotes that the metric accuracy 

of the proposed methods appears to be relatively higher than the C-V and SGLACM 

methods. However, the proposed method still lacks of boundary segmentation accuracy 

when the image is affected with high level of intensity inhomogeneity. Figure 7.1 shows an 

image of a MRI heart where the inner and outer boundaries of the heart object are not 

accurately segmented by the FSW ACM method.  

 

(a) 

 

(b) 

 

(c) 

Figure 7.1: Segmentation on MRI image of heart with intensity inhomogeneity problem. 

(a) is the original image, (b) is the segmentation outcome by FSW ACM, (c) the correct 

segmentation outcome. 

 

Figure 7.1(a) shows an example of a MRI heart image with intensity inhomogeneity 

problem. In reference to Figure 7.1(b), the contour of the FSW method did not accurately 

segment the inner and outer boundaries of the heart although it has reduced the over 
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sampling problem. The correct boundary that should be segmented by the proposed method 

is as indicated in Figure 7.5(c). In our investigation, the applied smoothing technique must 

have the capability to preserve the local image information besides enhancing the edges in 

order for the contour to extract object boundary accurately. 

 

The lacking in the FSW ACM method is sufficiently addressed in the novel design of our 

second ACM method, named as the Fractional Gaussian Heaviside FGH ACM. This is the 

third contribution of our research work. The proposed method improves the extraction of 

local image information in order to achieve accurate boundary segmentation on 

multimodality of medical images that contain high levels of noise and intensity 

inhomogeneity. The proposed FGH ACM method comprises of two important components: 

Adaptive Fractional Gaussian Kernel (AFGK) and Fractional Differentiate Heaviside 

(FDH).  

 

Due to the problem of local minima in medical images, accurate boundary segmentation is 

not achieved. A local minima is a problem where the contour could not locate any 

appropriate pixel value among the neighborhood in a region. This leads to leakage problem 

along an object boundary. The local image information is needed to improve the related 

pixel value to overcome the problem. The first component of FGH ACM is the introduction 

of AFGK as the image enhancement mechanism. The AFGK is comprises of fractional 

Gaussian Kernel (FGK) and adaptive window mechanism. Our investigation shows that the 

collaboration between the fractional calculus and nonlinear Gaussian Kernel (FGK) extends 

the capability of the nonlinear Gaussian in preserving edges in an image through the 

process of merging and grouping the homogeneous object in the same regions. In addition, 
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the capability of an adaptive window mechanism further preserves and enhances image 

edges. The window mechanism with its sizes and shapes vary depending on the changes of 

the image texture, will smooth the image by moving increasingly and decreasingly at 

direction of least gradient. The FGK at this situation will protect the edges for easy 

extraction by the fractional Differentiate Heaviside (FDH) function.    

 

The proposed FDH as the second component with the operator of fractional order gradient 

is responsible for extracting the local image information as it weighs not only the gradient 

but also the intensity of the image. Additionally, the fractional order gradient of FDH is 

capable in controlling the speed of a contour from shrinking thus maintain its stability. The 

collaboration of AFGK and FDH provides excellent result in producing accurate boundary 

segmentation on multimodality of medical images with different anatomical structures even 

in the presence of high level of intensity inhomogeneity.  

 

The feasibility of the FGH ACM method is tested on four types of medical image 

modalities (MRI, CT scan, X-ray and microscopic) with complex structures. The first 

experiment focuses on medical images that contain objects with long, winding and spiral 

structures for instance, the white flare areas of brain images, and blood vessels. These 

structures create challenges in providing accurate boundary segmentation as the interface 

produces high level of intensity inhomogeneity. In addition to that, the topology of the 

white flare and the blood vessels always changes due to the winding and spiral structures. 

The second experiment worked on the MRI image of a heart and microscopic images of 

cells. The objects’ boundaries in these images are highly affected with intensity 
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inhomogeneity that leads to missing edges.  Noteworthy that the boundaries of these objects 

were not accurately segmented using the FSW ACM method.  

 

Our experimental results have demonstrated that the proposed FGH ACM method can 

alleviate the problem faced by the FSW ACM method.  The quantitative evaluation of our 

first experimental denotes around 94% of success. The benchmarking evaluation shows that 

the proposed method produces accuracy of segmentation along the object boundary when 

compared to the Local Binary Fitting energy (LBF), Local Gaussian Distribution (LGD) 

and Local Intensity Clustering (LIC) methods. The quantitative evaluation of our second 

experiment  also demonstrates a successful segmentation outcome that is around 96.1% 

Details of the experimental results and discussions can be obtain in Section 6.4. These 

satisfactory segmentation outcomes are the results of the implementation of the following 

components. First is the AFGK produces excellent smoothing technique in preserving the 

edges along complex structures, and allows the FDH to extract the local image information. 

Furthermore, the application of an adaptive window smoothed the edges along object 

boundary to enable the FGK to classify and merge the inhomogeneous object in the same 

region. The FDH with the fractional order gradient that weigh not only the gradient but the 

intensity is capable to extract and spot the image details thus solve the local minima 

problem. Besides, it could control the speed of level set from shrinking and maintain the 

stability of the contour. 

 

We also conduct a benchmarking evaluation to compare the performance of the FGH 

method against the FSW method. Several medical images are used in the experiment which 

denotes the limitation of FSW method in providing the accuracy at the object boundary. 
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The FGH method had proven its capability in extracting the local image information and 

this has solved the problem created by the earlier method. In addition to that another 

benchmarking evaluation is conducted with three other ACM methods (Local binary Fitting 

energy, Local Gaussian Distribution and Local Intensity Clustering) to demonstrate the 

capability of the proposed method in providing boundary segmentation accuracy against the 

other three methods. Additionally, the applied quantitative evaluation denotes that the 

metric accuracy of the proposed method appears to be relatively higher than LBF, LGD and 

LIC methods.  

 

7.2  Future Enhancement  

This research has introduced the concept of fractional calculus in ACM method for image 

segmentation. The introduction of nonlinearity concept through fractional calculus would 

give an insight for improving the accuracy of segmenting medical images. This is because 

both of our proposed ACM methods that are based on fractional calculus concept are able 

to segment various anatomical structures in medical images of multi-modalities even 

though in the presence of high level of noise and intensity inhomogeneity. In fact our 

second method can produce accurate boundary segmentation for medical images that are 

affected with high level of intensity inhomogeneity. This accomplishment is very 

significant indeed because almost all medical images are affected with intensity 

inhomogeneity and different types of noise. 

 

Having a robust segmentation algorithm with good accuracy for medical images with 

various modalities and anatomical structures would encourage a development of a reliable 

CAD system to assist doctors in their diagnosis and alert them of any potential 
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abnormalities in the images. As the scope of this research is only to produce a robust and 

accurate segmentation method for medical images, further work is required to build a CAD 

for detecting any abnormalities in medical images.  

 

Additionally, during the evaluation of our proposed methods we have experienced that the 

proposed methods have the capability to complete a successful segmentation within a 

shorter timeframe as compared to other baseline methods of ACM. However, it is beyond 

the scope of this research to produce a segmentation method with low computational cost. 

Therefore, our future work also includes further research and experiments to prove that the 

proposed methods are computationally cost effective hence suitable to process huge 

collections of medical imaging data. Finally, we aim to extend the capability of these robust 

algorithms for segmenting colored and three-dimensional medical images.   
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