DEVELOPMENT OF AN OPTIMAL DRAGONFLY-LIKE FLAPPING WING STRUCTURE FOR USE IN BIOMIMETIC MICRO AIR VEHICLES

PRAVEENA NAIR SIVASANKARAN

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA
KUALA LUMPUR

2015
UNIVERSITY OF MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: (I.C/Passport No:)
Registration/Matric No:
Name of Degree:

Field of Study:

I do solemnly and sincerely declare that:
(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair
dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that
the making of this Work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed
any copyright whether intentionally or otherwise, I may be subject to legal
action or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:
Designation:
ABSTRACT

Biomimetic Micro Air Vehicles (BMAV) are unmanned, micro-scaled aircrafts that are bioinspired from flying organisms to achieve lift and thrust by flapping their wings. Micro Air Vehicles (MAV) are a relatively new and rapidly growing area of aerospace research. They were first defined by the US Defense Advanced Research Projects Agency (DARPA) in 1997 as unmanned aircraft that are less than 15 cm in any dimension. This allows BMAV to potentially be smaller and more lightweight than the other two types. These characteristics make BMAV ideally suited for flight missions in confined areas (e.g. around power lines, narrow streets, indoors, etc.). Therefore, BMAV structural components must be ultra-lightweight, compact, and flexible. Most past MAV research has focused on fixed wings, which are essentially scaled-down versions of wings on conventional fixed wing aircraft. These wings are unsuitable for BMAV due to their lack of flexibility. So a new type of structural wing design is required for BMAV. In this work, a dragonfly wing structure is mimicked to construct a new BMAV wing design. A dragonfly (Odonata) was selected for biomimicry, because they are highly maneuverable flyers, capable of hovering, rapid forward flight, or reverse flight. Therefore, structurally analyzing these wings could yield results that inspire the design of more effective wings for BMAVs. The overall objective of this research is to develop a simplified wing model for a BMAV, bioinspired from actual dragonfly wings. A simplified model was created using spatial network analysis, a topological optimization method. These simplified wing frame models were then fabricated using seven different types of materials. Stainless steel type 321, balsa wood, red pre-impregnated fiberglass, black graphite carbon fiber, polyvinyl acid, acrylic and acrylo-nitirile butadiene styrene. These wing frame structures were fabricated using laser cutting machine and a 3D printer. These wing frames were then immersed in a chitin-chitosan membrane by a casting method. These wing frames were subjected to
mechanical testing’s such as bending and tensile to study its suitability for use in a BMAV. A flapping mechanism was also created and used to produce flapping motion on these BMAV wings and an actual dragonfly wing (for comparison). The aero elastic properties of both the BMAV and actual dragonfly wings were examined using two high speed frame camera. The bending angle, displaced distance or deflection, wing tip angle, and the wing tip rotational twist speed were analyzed at the flapping frequencies of 10,20, 30 Hz, 60 Hz and 120 Hz.
ABSTRAK

DEDICATIONS

d this thesis is dedicated especially

to my beloved father, mother, and husband

Mr. Sivasankaran Nair, Mrs. Santhakumari and Mr. Rajendra Nath

The caring ones,

Kishan Nair Sivasankaran, Rubentheren Viyapuri

Respected supervisors,

Dr. Thomas Arthur Ward

Associate Professor Dr. Mohd Rafie Johan

Thanks for all the support.

My love for you all remains forever.
I take this opportunity to express my profound gratitude to my supervisor Dr. Thomas Arthur Ward for his exemplary guidance, monitoring, patience and constant encouragement throughout the duration of my studies. I would also like to acknowledge with much appreciation the supportive role of my co-supervisor Associate Professor Dr. Mohd Rafie Johan for guiding me professionally throughout the candidature.

I would like to express the deepest appreciation to all my lab members Mr. Rubentheren Viyapuri, Mr. Christopher Fearday and Mr. Erfan Salami. I'm thankful for being blessed with a friendly and cheerful group. They were always there to lend me a helping hand under many situations. I wish to take this opportunity to express my heartfelt gratitude to all of them. I also take this opportunity to express a deep sense of appreciation to lab assistants Mr. Fauzi who have helped me during my lab experiments. Special thanks to University Malaya for sourcing me a quality workstation.

Of course no acknowledgments would be complete without giving thanks to my family. I would like to thank my family for their unconditional support. In particular, the motivation and encouragement given by my husband has helped me pull through many critical situations throughout my candidature. Also, the absolute love and blessings showered by my mum, dad, and brother. A special thanks to Rubentheren Viyapuri for being a good friend in need.

Above all, I thank God for his grace, wisdom, favor and protection. I could never have done this without the faith I have in you, Baba.

There are so many others whom I may have inadvertently left out and I sincerely thank all of them for their help.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Biomimetics | 1
1.2 Unmanned aerial vehicles (UAVs) | 1
1.3 Problem statement | 3
1.4 Objectives | 5
1.5 Procedures | 7
1.6 Outline of thesis | 7

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction | 9
2.2 Insect flight | 9
2.3 Dragonflies | 10
2.4 Spatial network analysis | 17
2.5 Fabrication of artificial insect wings
2.6 Frequencies of insect wings
2.7 Static test conducted on real and artificial wings
2.8 Flapping mechanism
2.9 Ornithopters
2.10 High speed camera imaging technique

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction
3.2 Wing model overview
3.3 Spatial network analysis
 3.3.1 Canny edge detection algorithm
 3.3.2 Proximity index
 3.3.3 CAD model
3.4 Finite element analysis
 3.4.1 Element and mesh
 3.4.2 Modal analysis: Mode shapes and MAC
3.5 Artificial wing frames and nano-composite chitosan membrane
 3.5.1 Fabrication of stainless steel (Type 321) wing frames
 3.5.2 Fabrication of balsa wood wing frames
 3.5.3 Fabrication of black graphite carbon fiber wing frames
 3.5.4 Fabrication of red prepreg fiberglass wing frames
 3.5.5 Fabrication of polylactic acid (PLA) wing frames
3.5.6 Fabrication of acrylic wing frames 45
3.5.7 Fabrication of acrylonitrile butadiene styrene ABS wing frames 46
3.5.8 Chitosan nano-composite solution (membrane) 47
3.6 Numerical bend-twist coupling and static strength simulation analysis 48
 3.6.1 Numerical bend-twist coupling analysis 48
 3.6.2 Static strength simulation analysis 48
3.7 Experimental set up 49
3.8 Flapping mechanism 53

CHAPTER 4: RESULTS AND DISCUSSION 55
4.1 Introduction 55
4.2 Simplified model creation 55
4.3 Mode shape analysis and MAC 59
4.4 Numerical bend-twist coupling analysis 64
4.5 Tensile test simulation result 66
 4.5.1 Tensile simulations (wing frames without membranes) 66
 4.5.2 Tensile test simulations results (wing frames with membrane) 71
 4.5.3 Bending test simulation results (wing frames without membrane) 73
 4.5.4 Bending test simulation results (wing frames with membrane) 75
 4.5.5 Tensile test experimental results 76
 4.5.6 Bending test experimental results 84
4.6 High speed camera image results analysis 87
4.6.1 Bending angle versus flapping frequency 92
4.6.2 Wing tip deflection versus flapping frequency 95
4.6.3 Wing twist angle versus flapping frequency 97
4.6.4 Wing tip twist speed versus flapping frequency 99

CHAPTER 5 – CONCLUSION 102

5.1 Summary 102
5.2 Future work 106

REFERENCES 107
LIST OF PUBLICATIONS 119
APPENDICES 121
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Illustration of the overall procedures in developing a BMAV wing frame</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Dragonfly species used in this study</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Strokes of wings during flapping motion</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The front view of a dragonfly in flight</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Schematic diagram of Gui et al (2010) of fire ant alate wing motion</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Main parts of a dragonfly wing</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Spatial Network Model</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>(a) Digital image of the forewing of a dragonfly; b) forewing created by Canny edge algorithm; c) Canny edge forewing created after noise minimization and main pattern identification; d) forewing CAD model</td>
<td>34-35</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Stainless steel type 321 wing frames; a) forewing, b) hindwing</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Balsa wood wing frames; a) forewing, b) hindwing</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Waviness of carbon fiber yarns</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Black graphite carbon fiber wing frames; a) forewing, b) hindwing</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Red pre-preg fiberglass wing models after immersion in chitosan nanocomposite solutions; a) forewing, b) hindwing</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>PLA wing models after immersion in chitosan nano-composite solutions; a) forewing, b) hindwing</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Acrylic wing models after immersion in chitosan nano-composite solutions; a) forewing, b) hindwing</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>ABS wing models after immersion in chitosan nano-composite solutions; a) forewing, b) hindwing</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Wing structure immersed in chitosan nanocomposite solution; (a) fore wing, (b) hind wing</td>
<td>47</td>
</tr>
</tbody>
</table>
Figure 3.13 Placement of constraints fixed in a natural frequency analysis 48
Figure 3.14 Constraints for a static strength analysis 49
Figure 3.15 INSTRON Universal testing machine 51
Figure 3.16 (a) Actual experimental set up of the high speed camera imaging technique, (b) Schematic diagram of the experimental set up 51-52
Figure 3.17 Front view (a) and side view (b) of the wing motion captured and measurement axes. 52
Figure 3.18 Flapping mechanism used in this research 54
Figure 4.1 Fabricated simplified model (a) forewing; (b) hindwing 55
Figure 4.2 Typical dragonfly wing membrane pattern arrangement 57
Figure 4.3 Example of connecting strong edges using cloud points 58
Figure 4.4 Simplified models, (a) forewing, (b) hindwing 59
Figure 4.5 Similar mode shapes and corresponding natural frequencies for both detailed (left) and simplified models (right) : forewing 60
Figure 4.6 Similar mode shapes and corresponding natural frequencies for both detailed (left) and simplified models (right) : hindwing 61-62
Figure 4.7 The static bend-twist coupling graph of both detailed and simplified models; forewing 64
Figure 4.8 The static bend-twist coupling graph of both detailed and simplified models; hindwing 65
Figure 4.9 Von Misses stress simulation results of different forewing frame structures; (a) stainless steel (Type 321), (b) balsa wood, (c) black graphite carbon fiber, (d) red prepreg fiberglass e) PLA, f) acrylic, g) ABS 68
Figure 4.10 Von Misses stress simulation results of different forewing frame structures; (a) stainless steel (Type 321), (b) balsa wood, (c) black graphite carbon fiber, (d) red prepreg fiberglass, e) PLA, f) acrylic, g) ABS 69
Figure 4.11 von Misses stress simulation results of different forewing model structures; (a) stainless steel (Type 321), (b) balsa wood, (c) black graphite carbon fiber, (d) red prepreg fiberglass, (e) PLA, (f) acrylic, (g) ABS 71

Figure 4.12 von Misses stress simulation results of different forewing model structures; (a) stainless steel (Type 321), (b) balsa wood, (c) black graphite carbon fiber, (d) red prepreg fiberglass, (e) PLA, (f) acrylic, (g) ABS 72-73

Figure 4.13 von Misses stress simulation results of different forewing model structures; (a) stainless steel (Type 321), and (b) balsa wood 74

Figure 4.14 Von Misses stress simulation results of different hindwing model structures; (a) stainless steel (Type 321), and (b) balsa wood 74

Figure 4.15 von Misses stress simulation results of different forewing model structures; (a) stainless steel (Type 321), and (b) balsa wood 75

Figure 4.16 von Misses stress simulation results of different hindwing model structures; (a) stainless steel (Type 321), and (b) balsa wood 75

Figure 4.17 Tensile stress vs tensile strain (engineering) of all four forewing frame structures; a) stainless steel (Type 321), b) balsa wood, c) black graphite carbon fiber, d) red prepreg fiberglass, e) PLA, f) acrylic and g) ABS 80-82

Figure 4.18 Tensile stress vs tensile strain (engineering) of all four hindwing frame structures; a) stainless steel (Type 321), b) balsa wood, c) black graphite carbon fiber, d) red prepreg fiberglass, e) PLA, f) acrylic and g) ABS 82-83

Figure 4.19 Comparison stress vs comparison strain graphs of forewing wing models; a) stainless steel (Type 321), b) balsa wood 85

Figure 4.20 Comparison stress vs comparison strain graphs of hindwing wing models; a) stainless steel (Type 321), b) balsa wood 86

Figure 4.21 Degrees of freedom for the wings of flying insects 88

Figure 4.22 Side view of the dragonfly flapping wing (gray scale) captured by the high speed camera during one flapping cycle at 30Hz. a) start of downstroke, b) mid-downstroke, c) end of downstroke, d) start of upstroke, e) mid-upstroke, f) end of upstroke 89
Figure 4.23 Front view of the dragonfly flapping wing (gray scale) captured by the high speed camera during one flapping cycle at 30Hz. a) start of downstroke, b) mid-downstroke, c) end of downstroke, d) start of upstroke, e) mid-upstroke, f) end of upstroke

Figure 4.24 Bending angle of different wing frames; (a) without membrane and (b) with membrane

Figure 4.25 Wing tip deflection of different wing frames; (a) without membrane and (b) with membrane

Figure 4.26 Wing twist angle of different frames versus flapping frequency; (a) without membrane and (b) with membrane

Figure 4.27 Wing tip twist speed of different frames versus flapping frequency; (a) without membrane and (b) with membrane
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Properties of Teflon</td>
<td>38</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Mechanical properties of frame structure materials</td>
<td>40</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Specifications of black graphite carbon fiber</td>
<td>43</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Model Specifications in Terms of Number of Membranes, Density and Patterns</td>
<td>56</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>MAC values for all five compared mode shapes for both forewing and hindwing</td>
<td>63</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbols and Abbreviations</th>
<th>Full name</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAV</td>
<td>Unmanned aerial vehicle</td>
</tr>
<tr>
<td>MAV</td>
<td>Micro air vehicle</td>
</tr>
<tr>
<td>BMAV</td>
<td>Biomimetic micro air vehicle</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>PLA</td>
<td>Polylactic acid</td>
</tr>
<tr>
<td>ABS</td>
<td>Acrylonitrile-butadiene styrene</td>
</tr>
<tr>
<td>dpi</td>
<td>Dots per inch</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>μ</td>
<td>Micro</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite element analysis</td>
</tr>
<tr>
<td>ω</td>
<td>Circular frequency</td>
</tr>
<tr>
<td>θ</td>
<td>Bending angle</td>
</tr>
<tr>
<td>d</td>
<td>Displaced distance or deflection</td>
</tr>
<tr>
<td>α</td>
<td>Wing tip angle</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer aided design</td>
</tr>
<tr>
<td>3D</td>
<td>Three dimensional</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>Units</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>GPA</td>
<td>Giga Pascal</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Force displacement graph of dragonfly fore wing</td>
<td>121</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Force displacement graph of dragonfly hind wing</td>
<td>123</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Force displacement graph of BMAV fore wing</td>
<td>126</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Force displacement graph of BMAV hind wing</td>
<td>128</td>
</tr>
</tbody>
</table>