
AN INTEGRATED APPROACH FOR SIMULTANEOUS
PRIORITIZATION OF FUNCTIONAL AND NON-

FUNCTIONAL REQUIREMENTS

MOHAMMAD DABBAGH

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2015

AN INTEGRATED APPROACH FOR

SIMULTANEOUS PRIORITIZATION OF FUNCTIONAL

AND NON-FUNCTIONAL REQUIREMENTS

MOHAMMAD DABBAGH

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2015

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: MOHAMMAD DABBAGH (I.C/Passport No:)

Registration/Matric No: WHA110052

Name of Degree: DOCTOR OF PHILOSOPHY

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

AN INTEGRATED APPROACH FOR SIMULTANEOUS PRIORITIZATION

OF FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

Field of Study: REQUIREMENTS PRIORITIZATION

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or

reference to or reproduction of any copyright work has been disclosed

expressly and sufficiently and the title of the Work and its authorship have

been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that

the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the

copyright in this Work and that any reproduction or use in any form or by any

means whatsoever is prohibited without the written consent of UM having

been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed

any copyright whether intentionally or otherwise, I may be subject to legal

action or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

iii

ABSTRACT

Requirements prioritization, as one of the important activities in the requirements

engineering phase, is the process of giving precedence to one requirement over another

to help accomplishing software projects on a predefined schedule. Over the recent past

years, a substantial amount of research effort has been dedicated to proposing various

approaches to perform requirements prioritization. Although these approaches have

contributed a lot to the software development process, an in-depth study of current

research work has found that they can only be applied with functional requirements or

non-functional requirements separately though most have been adopted with respect to

functional requirements. However, it is not an effective way to prioritize functional and

non-functional requirements separately since both types of requirements are interrelated

and have an influence on each other. Moreover, considering merely each type of

requirements separately during the requirements prioritization process may lead to

failure in the final software product, or at least, may result in a poor-quality system

because both types of requirements have a serious impact on each other. To achieve a

high-quality software system, both functional and non-functional requirements need to

be taken into consideration together during the prioritization process. Hereupon,

fulfilling this gap is considered as a major motivation toward conducting this research to

provide software researchers and practitioners with an approach which is capable of

integrating the process of prioritizing functional and non-functional requirements

simultaneously.

In this research, an approach called Integrated Prioritization Approach (IPA), is

proposed, which aims to simultaneously integrate the process of prioritizing functional

and non-functional requirements. IPA allows practitioners to prioritize both functional

and non-functional requirements simultaneously in an integrated manner by establishing

their relationships, ultimately producing the prioritized lists of functional and non-

iv

functional requirements separately. It utilizes triangular fuzzy number to prioritize non-

functional requirements based on their importance degree for achieving functional

requirements. Furthermore, IPA prioritizes functional requirements according to the

importance degrees of non-functional requirements using weighted average decision

matrix. Two successive controlled experiments were conducted to evaluate IPA against

two state-of-the-art approaches. In the first experiment, IPA was compared with AHP-

based approach, whereas in the second experiment, IPA was compared with HAM-

based approach. In both experiments, evaluation was based on measuring three

properties: actual time-consumption, accuracy of results, and ease of use.

Statistical analysis of the experimental results obtained from the two controlled

experiments shows the better performance of IPA compared to both AHP-based

approach and HAM-based approach, with respect to actual time-consumption, accuracy

of results, and ease of use. IPA requires a time reduction of 43% and 20% compared to

AHP-based approach and HAM-based approach respectively, to perform the

prioritization task. Furthermore, IPA is validated to be easier to use and produces more

accurate results compared to these two approaches at 95% confidence level (i.e.

p<0.05). Results extracted from the conducted experiments provide practitioners with

valuable information to choose the most appropriate approach for a given prioritization

problem, and also could be used as a guideline by interested researchers for identifying

trends before conducting a study in future.

v

ABSTRAK

Keperluan keutamaan, sebagai salah satu aktiviti penting dalam fasa kejuruteraan

keperluan, adalah proses memberi keutamaan kepada satu keperluan ke atas yang lain

untuk membantu menyelesaikan projek perisian mengikut jadual yang telah ditetapkan.

Sejak beberapa tahun kebelakangan yang lalu, sejumlah besar usaha penyelidikan telah

didedikasikan untuk mencadangkan pelbagai pendekatan untuk melaksanakan keperluan

keutamaan. Walaupun pendekatan ini telah banyak menyumbang kepada proses

pembangunan perisian, satu kajian yang mendalam dalam kerja penyelidikan semasa

telah mendapati bahawa mereka hanya boleh digunakan dengan keperluan fungsian atau

keperluan bukan fungsian secara berasingan sungguhpun kebanyakan telah diterima

pakai berkenaan dengan keperluan fungsian. Walau bagaimanapun, ia bukanlah cara

yang berkesan untuk mengutamakan keperluan fungsian dan bukan fungsian secara

berasingan kerana kedua-dua jenis keperluan adalah saling berkaitan dan mempunyai

pengaruh ke atas satu sama lain. Selain itu, mempertimbangkan hanya setiap jenis

keperluan berasingan semasa proses keutamaan keperluan itu boleh membawa kepada

kegagalan dalam produk perisian terakhir, atau sekurang-kurangnya, boleh

menyebabkan sistem yang berkualiti rendah kerana kedua-dua jenis keperluan memberi

kesan yang serius ke atas satu sama lain. Untuk mencapai sistem perisian yang

berkualiti tinggi, kedua-dua keperluan fungsian dan bukan fungsian perlu diambil kira

bersama-sama semasa proses keutamaan itu. Setelah itu, memenuhi jurang ini dianggap

sebagai motivasi utama ke arah menjalankan kajian ini untuk menyediakan penyelidik

dan pengamal perisian dengan pendekatan yang mampu menyepadukan proses

keutamaan keperluan fungsian dan bukan fungsian pada masa yang sama.

Dalam kajian ini, pendekatan yang dikenali sebagai Pendekatan Keutamaan

Bersepadu (IPA), adalah dicadangkan, yang bertujuan untuk mengintegrasikan proses

keutamaan keperluan fungsian dan bukan fungsian pada masa yang sama. IPA

vi

membolehkan pengamal untuk mengutamakan kedua-dua keperluan fungsi dan bukan

fungsi dengan serentak secara bersepadu dengan mewujudkan hubungan mereka,

akhirnya menghasilkan senarai keutamaan dalam keperluan fungsian dan bukan

fungsian secara berasingan. Ia menggunakan nombor kabur segi tiga untuk

mengutamakan keperluan bukan fungsi berdasarkan pada tahap kepentingan mereka

untuk mencapai keperluan fungsian. Tambahan pula, IPA mengutamakan keperluan

fungsian mengikut darjah kepentingan keperluan bukan fungsi dengan menggunakan

wajaran matriks keputusan purata. Dua eksperimen terkawal telah dijalankan secara

berturut-turut untuk menilai IPA terhadap dua pendekatan terkini. Dalam eksperimen

pertama, IPA telah dibandingkan dengan pendekatan berasaskan-AHP, sedangkan

dalam eksperimen kedua, IPA telah dibandingkan dengan pendekatan berasaskan HAM.

Dalam kedua-dua eksperimen, penilaian adalah berdasarkan pada berukuran tiga sifat:

masa penggunaan sebenar, ketepatan keputusan, dan kemudahan penggunaan.

Analisis statistik daripada keputusan eksperimen yang diperolehi daripada dua

eksperimen terkawal tersebut menunjukkan prestasi yang lebih baik daripada IPA

berbanding kedua-dua pendekatan berasaskan-AHP dan pendekatan berasaskan HAM,

berkenaan dengan masa penggunaan sebenar, ketepatan keputusan, dan kemudahan

penggunaan. IPA memerlukan pengurangan masa sebanyak 43% dan 20% berbanding

dengan pendekatan berasaskan-AHP dan pendekatan berasaskan HAM masing-masing,

untuk melaksanakan tugas keutamaan itu. Tambahan pula, IPA disahkan lebih mudah

untuk digunakan dan menghasilkan keputusan yang lebih tepat berbanding dengan

kedua-dua pendekatan pada 95% tahap keyakinan (iaitu p <0.05). Keputusan yang

terhasil daripada eksperimen terkawal itu dapat menyediakan kepada pengamal

maklumat yang bernilai untuk memilih pendekatan yang paling sesuai untuk masalah

keutamaan diberikan, dan juga boleh digunakan sebagai satu garis panduan oleh

vii

penyelidik untuk mengenal pasti trend sebelum menjalankan kajian pada masa akan

datang.

viii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God for given me the wisdom, knowledge

and strength to complete this work successfully.

Secondly, I would like to express my profound gratitude to my supervisor, Professor

Dr. Lee Sai Peck, whose constructive criticisms and invaluable contributions have

enabled me to complete this work successfully. Thank you so much Prof. Lee for all

your support right from the beginning of this thesis to the end and God bless you for all

the patience and advice.

I owe a great debt of gratitude to my beloved parents, Masoud and Jaleh, for

educating me to this level and all their support. Mum and Dad, I say God richly bless

you for all that you have been doing for me. I also give special thanks to my sister,

Nazanin, for her kind support and contribution to the success of my studies.

 Mohammad, April 2015

ix

TABLE OF CONTENTS

Abstract .. iii

Abstrak .. v

Acknowledgements .. viii

Table of Contents ... ix

List of Figures .. xiv

List of Tables... xvii

List of Appendices .. xx

CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Background ... 2

1.3 Motivation and Problem Statement ... 4

1.4 Research Scope ... 6

1.5 Research Objectives .. 7

1.6 Research Questions ... 8

1.7 Research Approach ... 9

1.8 Significance of the Research ... 11

1.9 Summary ... 11

CHAPTER 2: LITERATURE REVIEW .. 13

2.1 Basic Concepts in the Context of Requirements Prioritization 13

2.1.1 The Role of Requirements Prioritization in Requirements Engineering 13

2.1.2 Requirement ... 17

2.1.3 Requirements Prioritization ... 21

2.1.3.1 Aspects of Requirements Prioritization .. 24

2.1.3.2 Different Types of Product Developments in the Prioritization Process 28

x

2.2 Requirements Prioritization Approaches .. 31

2.2.1 Ratio Scale Approaches ... 33

2.2.2 Ordinal Scale Approaches .. 50

2.2.3 Nominal Scale Approaches .. 55

2.2.4 Interval Scale Approaches.. 59

2.2.5 Overview of Current Requirements Prioritization Approaches 60

2.3 Empirical Evaluations of Requirements Prioritization Approaches 63

2.3.1 The Evaluation of Minimal Spanning Tree, Bubble Sort, Binary Search Tree,

Priority Groups, Hierarchy AHP, and AHP .. 63

2.3.2 The Evaluation of Hundred Dollar Method, Planning Game, AHP, Binary

Search Tree, and PGcAHP .. 65

2.3.3 The Evaluation of Hundred Dollar Method, AHP, MoSCoW, and Simple

Ranking ... 67

2.3.4 The Evaluation of AHP and Planning Game ... 68

2.3.5 The Evaluation of AHP and CBRank .. 71

2.3.6 Overview of Empirical Studies .. 73

2.4 Concluding Remarks ... 75

2.5 Summary ... 76

CHAPTER 3: RESEARCH METHODOLOGY ... 77

3.1 Preparation Phase .. 77

3.2 Approach Development and Validation Phase ... 79

3.2.1 Propose an Integrated Approach for Simultaneous Prioritization of Functional

and Non-functional Requirements .. 80

3.2.2 Validate the Proposed Approach through a Case Study 81

3.2.3 Validate the Proposed Approach through Mathematical Theory 82

3.3 Evaluation Phase ... 82

xi

3.3.1 Experiment Definition .. 83

3.3.2 Experiment Planning .. 84

3.3.3 Experiment Execution .. 84

3.3.4 Experiment Analysis .. 85

3.4 Summary ... 85

CHAPTER 4: THE PROPOSED APPROACH ... 87

4.1 Integrated Prioritization Approach (IPA).. 87

4.1.1 Step 1: Identify stakeholders of software system ... 92

4.1.2 Step 2: Specify the weights of stakeholders using Analytic Hierarchy Process 92

4.1.3 Step 3: Identify functional and non-functional requirements 93

4.1.4 Step 4: Extract functional and non-functional requirements statements 94

4.1.5 Step 5: Construct the decision matrix .. 95

4.1.6 Step 6: Elicit the importance degree of each non-functional requirement with

respect to each functional requirement to establish the relationship between functional

and non-functional requirements... 95

4.1.7 Step 7: Calculate NFRs ranking with respect to all FRs using triangular fuzzy

number and alpha cut approach... 97

4.1.8 Step 8: Compute FRs ranking using weighted average decision matrix and

weights determined in Step 7 .. 100

4.1.9 Step 9: Aggregate different prioritized lists of FRs and NFRs provided by

various stakeholders to obtain final rankings of FRs and NFRs 101

4.2 Summary ... 103

CHAPTER 5: VALIDATION OF THE PROPOSED APPROACH 104

5.1 Validate the Proposed Approach through Case Study .. 104

5.2 Validate the Proposed Approach using Mathematical Theory 117

5.2.1 Mathematical Formulation of the Proposed Approach 117

xii

5.2.2 Validation of the Proposed Approach using Graph Theory 120

5.3 Summary ... 124

CHAPTER 6: EVALUATION OF THE PROPOSED APPROACH THROUGH

CONTROLLED EXPERIMENTS .. 125

6.1 Controlled Experiments .. 126

6.1.1 Experiment Definition .. 127

6.1.1.1 Definition of Experiment 1 ... 127

6.1.1.2 Definition of Experiment 2 ... 128

6.1.2 Experiment Planning .. 129

6.1.2.1 Context Selection .. 129

6.1.2.2 Hypothesis Formulation .. 130

6.1.2.3 Variables and Measures .. 131

6.1.2.4 Selection of subjects .. 142

6.1.2.5 Experiment design ... 143

6.1.2.6 Subjects ... 143

6.1.2.7 Objects .. 144

6.1.2.8 Instrumentation ... 145

6.1.2.9 Threats to validity ... 146

6.1.3 Experiment execution... 150

6.1.4 Experiment results and analysis ... 151

6.1.4.1 Results of Experiment 1 .. 152

6.1.4.2 Results of Experiment 2 .. 157

6.1.5 Discussion .. 162

6.2 Summary ... 165

CHAPTER 7: CONCLUSION ... 167

7.1 Contributions ... 167

xiii

7.2 Implications ... 169

7.3 Achievement of Research Objectives ... 170

7.4 Limitation .. 173

7.5 Future work ... 173

REFRENCES .. 175

List of Publications and Presented Papers .. 185

Appendices .. 186

xiv

LIST OF FIGURES

Figure 1.1: The scope of the current thesis ... 7

Figure 1.2: Flow chart of research approach ... 10

Figure 2.1: The activities of requirements engineering process 15

Figure 2.2: An example of cost-value diagram ... 38

Figure 2.3: Value-oriented prioritization framework .. 40

Figure 2.4: EVOLVE approach to select requirements for each release 44

Figure 2.5: Steps of CBRank approach for prioritizing requirements 46

Figure 2.6: The general process of VIRP approach for requirements prioritization 47

Figure 3.1: Flow chart of the research methodology .. 78

Figure 3.2: A graphical overview of controlled experiment process 83

Figure 3.3: Overview of experiment planning .. 84

Figure 3.4: Process of experiment analysis ... 85

Figure 4.1: Flow charts of the proposed approach when applied A) in single decision-

making problems; B) in group decision-making problems ... 90

Figure 4.2: A sketch of algorithm used for automating the IPA 91

Figure 4.3: Fuzzy priority vector, 𝐹�̃�. .. 98

Figure 5.1: The NFRs’ weights achieved by four stakeholders participated in the

prioritization process ... 112

Figure 5.2: The final prioritized list of FRs ranked according to their relationships with

NFRs ... 116

Figure 5.3: The final prioritized list of NFRs ranked according to their relationships

with FRs .. 117

Figure 5.4: A sample of complete weighted graph for three functional requirements . 121

xv

Figure 5.5: Flow chart of identifying the single path which indicates the final prioritized

list .. 122

Figure 5.6: The completed weighted graph of non-functional requirements 123

Figure 5.7: The acyclic directed sub graph indicates the final prioritized list of non-

functional requirements ... 123

Figure 5.8: The acyclic directed sub graph indicates the final prioritized list of

functional requirements ... 124

Figure 6.1: The process of prioritizing functional and non-functional requirements using

a) IPA; b) AHP-based approach; c) HAM-based approach .. 132

Figure 6.2: A picture of the visual user interface displaying the functional requirement,

withdraw money, versus the non-functional requirement, availability, under analysis

with TIPA .. 134

Figure 6.3: A picture of the visual user interface displaying two functional requirements,

withdraw money, and check balance, under evaluation in CAHP 136

Figure 6.4: A picture of pairwise comparison of two non-functional requirements,

Availability, and Security, using CHAM .. 139

Figure 6.5: A picture of the visual user interface displaying the functional requirement,

withdraw money, versus the non-functional requirement, Availability, under analysis

with CHAM ... 140

Figure 6.6: Boxplot of the actual time-consumption associated with the two evaluated

prioritization approaches ... 152

Figure 6.7: Boxplot of the actual time-consumption associated with IPA and HAM-

based approach .. 158

Figure A.1: Use case diagram of the TIPA software prototype 189

Figure A.2: User interface of the TIPA software prototype along with its Projects form

 ... 193

Figure A.3: A snapshot of Stakeholders windows form ... 194

Figure A.4: A graphical view of FRs windows form .. 195

Figure A.5: A snapshot of NFRs windows form... 196

Figure A.6: A picture of pairwise comparisons of two stakeholders, User1 and User4,

using TIPA .. 197

xvi

Figure A.7: Calculated weights of stakeholders using TIPA .. 198

Figure A.8: A picture of the visual user interface displaying the functional requirement,

Transfer funds, versus the non-functional requirement, Security, under analysis with

TIPA, for project, Banking system ... 199

Figure A.9: Prioritized list of functional and non-functional requirement calculated

using TIPA .. 199

Figure A.10: A graphical view of the report that indicates the weights of stakeholders

 ... 200

Figure A.11: A visual interface of a report that shows the weights of non-functional

requirements achieved by each stakeholder for project, Banking system 201

Figure A.12: A graphical view of a report that indicates the weights of functional

requirements achieved by each stakeholder for project, Banking system 202

Figure A.13: A visual interface of the TIPA software prototype that shows the final

prioritized lists of functional and non-functional requirements for a given project 203

Figure E.1: Post-test 1A of Experiment 1 for assessing ease of use of IPA 215

Figure E.2: Post-test 1A of Experiment 1 for assessing ease of use of AHP-based

approach .. 215

Figure E.3: Post-test 2A of Experiment 1 for comparing ease of use of IPA and AHP-

based approach .. 215

Figure E.4: Post-test 1B of Experiment 1 for assessing expected accuracy of IPA 216

Figure E.5: Post-test 1B of Experiment 1 for assessing expected accuracy of AHP-based

approach .. 216

Figure E.6: Post-test 1A of Experiment 2 for assessing ease of use of IPA 216

Figure E.7: Post-test 1A of Experiment 2 for assessing ease of use of HAM-based

approach .. 217

Figure E.8: Post-test 2A of Experiment 2 for comparing ease of use of IPA and HAM-

based approach .. 217

Figure E.9: Post-test 1B of Experiment 2 for assessing expected accuracy of IPA 217

Figure E.10: Post-test 1B of Experiment 2 for assessing expected accuracy of HAM-

based approach .. 217

xvii

LIST OF TABLES

Table 2.1: Overview of definitions of the term “Requirement”...................................... 18

Table 2.2: Different categories of requirements ... 19

Table 2.3: Different definitions of functional requirements ... 19

Table 2.4: Different definitions of non-functional requirements 20

Table 2.5: A comparison between bespoke and market-driven software development .. 29

Table 2.6: Classification of requirements prioritization approaches 32

Table 2.7: Overview of requirements prioritization approaches 60

Table 2.8: Results of objective and subjective measurements .. 65

Table 2.9: Initial results of controlled experiment .. 66

Table 2.10: Results of times taken, median confidence, and median difficulty 68

Table 2.11: Properties of the prioritization approaches .. 68

Table 2.12: Results of the first controlled experiment for comparing AHP and Planning

Game ... 70

Table 2.13: Results of evaluating tool-supported AHP and Planning Game 71

Table 2.14: Results of the controlled experiment for comparing AHP and CBRank 72

Table 2.15: An overview of comparative evaluations of different prioritization

approaches ... 74

Table 4.1: Steps of IPA for integrating the prioritization of functional and non-

functional requirements ... 88

Table 4.2: Possible scales used for AHP’s pairwise comparison 93

Table 4.3: IPA nominal scale, IPA actual scale .. 96

Table 4.4: Weighted average decision matrix for priority assessment of FRs.............. 100

Table 4.5: Weighted average matrix to aggregate different prioritized list of FRs 102

Table 4.6: Weighted average matrix to aggregate different prioritized list of NFRs ... 102

xviii

Table 5.1: The functional requirements of the ATM, CDM, and CQM 107

Table 5.2: The non-functional requirements of the banking software system 107

Table 5.3: Filling up the four decision matrixes with nominal scale values 109

Table 5.4: Computation of NFRs’ priority vectors with respect to all FRs 111

Table 5.5: Calculation of FRs’ priority vectors with respect to NFRs.......................... 113

Table 5.6: Calculating the prioritized list of FRs .. 115

Table 5.7: Computing the prioritized list of NFRs ... 116

Table 6.1: Overview of the controlled experiments .. 127

Table 6.2: Scales used in AHP method ... 135

Table 6.3: Scales used in HAM method.. 138

Table 6.4: The paired comparison design used for controlled experiments 143

Table 6.5: Objects of the controlled experiments ... 145

Table 6.6: Average actual time-consumption for the prioritization task using IPA and

AHP-based approach ... 152

Table 6.7: Normality test of data extracted from Experiment 1 using Shapiro-wilk test

 ... 153

Table 6.8: Results of ease of use collected from post-test 1A of Experiment 1 154

Table 6.9: Results of ease of use extracted from post-test 2A of Experiment 1 155

Table 6.10: Results of expected accuracy collected from post-test 1B of Experiment 1

 ... 155

Table 6.11: Results of perceived accuracy collected from post-test 2B of Experiment 1

 ... 156

Table 6.12: Analysis the effect of other variables on dependent variables of Experiment

1 ... 157

Table 6.13: Average actual time-consumption for the prioritization task using IPA and

HAM-based approach ... 158

Table 6.14: Normality test of data extracted from Experiment 2 using Shapiro-Wilk test

 ... 159

xix

Table 6.15: Results of ease of use obtained from post-test 1A of Experiment 2 159

Table 6.16: Results of ease of use extracted from post-test 2A of Experiment 2 159

Table 6.17: Results of expected accuracy collected from post-test 1B of Experiment 2

 ... 160

Table 6.18: Results of perceived accuracy collected from post-test 2B of Experiment 2

 ... 161

Table 6.19: Analysis the effect of other variables on dependent variables of Experiment

2 ... 161

Table 6.20: Summary of hypotheses testing of Experiment 1 for comparing IPA and

AHP-based approach ... 162

Table 6.21: Overview of hypotheses testing of Experiment 2 for comparing IPA and

HAM-based approach ... 164

Table B.1: Classification of empirical strategies .. 207

Table C.1: Results of time-consumption of IPA and AHP-based approaches collected

from twenty subjects of Experiment 1 .. 209

Table C.2: Results of ease of use of IPA and AHP-based approaches collected from

twenty subjects of Experiment 1 using post-test 1A ... 210

Table C.3: Results of ease of use collected from post-test 2A for Experiment 1 210

Table C.4: Results of expected accuracy of IPA and AHP-based approaches collected

from twenty subjects of Experiment 1 using post-test 1B .. 211

Table C.5: Results of perceived accuracy collected from post-test 2B for Experiment 1

 ... 211

Table D.1: Results of time-consumption of IPA and HAM-based approaches collected

from twenty subjects of Experiment 2 .. 212

Table D.2: Results of ease of use of IPA and HAM-based approaches collected from

twenty subjects of Experiment 2 using post-test 1A ... 213

Table D.3: Results of ease of use collected from post-test 2A for Experiment 2 213

Table D.4: Results of expected accuracy of IPA and HAM-based approaches collected

from twenty subjects of Experiment 2 using post-test 1B .. 214

Table D.5: Results of perceived accuracy collected from post-test 2B for Experiment 2

 ... 214

xx

LIST OF APPENDICES

APPENDIX A: THE SOFTWARE PROTOTYPE .. 187

APPENDIX B: OVERVIEW OF EMPIRICAL STRATEGIES 204

APPENDIX C: RAW DATA OF CONTROLLED EXPERIMENT 1 209

APPENDIX D: RAW DATA OF CONTROLLED EXPERIMENT 2 212

APPENDIX E: POST QUESTIONNAIRES OF CONTROLLED EXPERIMENTS .. 215

 1

CHAPTER 1: INTRODUCTION

1.1 Introduction

The ultimate goal of developing any high quality software system is to satisfy

various stakeholders’ needs and expectations (J. Karlsson & Ryan, 1997). Hence,

managing the software requirements process plays a critical role towards the success of

a software development project (Hofmann & Lehner, 2001). Requirements engineering,

as a first step in the software development process, and its underlying activities can help

practitioners to understand stakeholders’ needs and develop high quality software in an

economic manner.

However, in real-world software development, projects have to regularly deal with

time and to meet market constraints, budget deadlines, restricted technology, and

limited human power. Considering these constraints, projects often are not able to

address all the requirements in one product release. When projects contain more

requirements than can be addressed in one product release, requirement engineers have

to make decisions on which requirements need to be considered first. In addition, during

the initial stage of software development process, often it is not obvious which

requirements strongly affect stakeholders’ satisfaction among the candidate list of

requirements.

Due to the constraints mentioned above, it could be a challenge for requirements

engineers to decide which requirements lead to high stakeholders’ satisfaction and need

to be considered first. Therefore, to address this concern and in order to reduce the cost

and duration of a software project as well, it is essential to address the high-priority

requirements before considering the low-priority ones (Duan, Laurent, Cleland-Huang,

& Kwiatkowski, 2009; Liu, Sun, Veera, Kyoya, & Noguchi, 2006). Requirements

 2

prioritization can help to identify the most important requirements for a software system

(Sommerville, 2007), and then proceed to develop the software according to these

requirements. Hence, requirements prioritization has been recognized as one of the most

important decision-making processes during the software development process

(Achimugu, Selamat, Ibrahim, & Mahrin, 2014; Perini, Susi, & Avesani, 2013).

Furthermore, the most frequently addressed topic in the requirements engineering

domain is requirements prioritization (Babar, Ghazali, & Jawawi, 2014; Daneva,

Damian, Marchetto, & Pastor, 2014).

This research is conducted to introduce a prioritization approach which addresses

both functional and non-functional requirements. In other words, the new approach aims

to facilitate software engineers with a way which can assist them to integrate the process

of prioritizing functional and non-functional requirements simultaneously.

1.2 Background

As the complexity of software systems increases, practitioners are forced to make

trade-offs between conflicting requirements in order to complete projects on predefined

schedule. Priority assessment of requirements is one of the solutions which can be

useful to assist practitioners to resolve trade-offs. Thus, requirements prioritization has

become an increasingly important part of ensuring the success of a project, and

therefore, various studies pointed out the importance of the problem of requirements

prioritization in the software engineering domain. Requirements prioritization is defined

as an activity during which the most important requirements for the system (or release)

should be identified in order to maximize the stakeholders’ satisfaction (Sommerville,

2007). To perform the prioritization process, stakeholders are requested to compare

requirements using a scoring method with the aim of determining the importance value

of each requirement. Prioritizing requirements prior to architecture design or

 3

implementation phase provides many benefits throughout the software development

process (Achimugu et al., 2014).

Even though requirements prioritization approaches have mostly been adopted with

respect to functional requirements (Svensson et al., 2011; Thakurta, 2013), several

studies have shown the significance of non-functional requirements in software projects

(Joerg Doerr, Kerkow, Koenig, Olsson, & Suzuki, 2005; Glinz, 2007), and not correctly

taking non-functional requirements into consideration is identified as one of the ten

biggest risks in requirements engineering (Lawrence, Wiegers, & Ebert, 2001).

Therefore, non-functional requirements need to be considered throughout the first phase

of the software development process (i.e. requirements engineering phase). As such, it

has been widely acknowledged that the achievement of non-functional requirements

along with functional requirements is critical to the success of a software system

(Berntsson Svensson, Olsson, & Regnell, 2013; Cysneiros & Sampaio do Prado Leite,

2004; Svensson et al., 2012). However, there are some differences between functional

and non-functional requirements (Berander & Andrews, 2005; Lauesen, 2002):

 Functional requirements generally depend on particular functions whereas non-

functional requirements generally have an effect on various functions (from a set

of functions to the entire software system).

 Non-functional requirements are qualities that the functions or system should

have, taking into the account that non-functional requirements are basically

ineffective without functional requirements.

 From the implementation’s point of view, functional requirements either operate

or not, though non-functional requirements usually have a sliding value scale of

good and bad.

 4

 In many cases, non-functional requirements are usually in conflict with each

other, hence trade-offs among this kind of requirements should be done.

The aforementioned differences of functional and non-functional requirements imply

that non-functional requirements are more critical than functional requirements. Users

of a system might be able to work with a function that is not capable of meeting their

real expectations. However, failure of satisfying a non-functional requirement might

make the whole system unworkable. In essence, a non-functional requirement presents a

cross-cutting concern aspect that may have an effect on several functions or on the

whole system. For instance, a non-functional requirement such as usability should be

addressed through implementing some specific functions that enhance the capability of

software system to be understood, learned, and used by its intended users. A non-

functional requirement such as system’s availability may affect the whole system.

Considering the example of ATM software system, suppose that there is one functional

requirement regarding withdraw cash. This functional requirement might be affected by

several non-functional requirements such as usability, performance and reliability:

“Usability: Bank customer shall be able to withdraw cash easily.”

“Performance: Bank customer shall be able to withdraw cash in less than 3 seconds.”

“Reliability of withdraw cash must be high.”

All the above explanations lead to the motivation to concentrate on both functional

and non-functional requirements in this study and propose an approach which considers

these two types of requirements (i.e. functional and non-functional) simultaneously

during the prioritization process.

1.3 Motivation and Problem Statement

As discussed in the preceding sections, in almost every software project, budgetary

deadlines and time-to-market constraints force practitioners to carefully prioritize

 5

requirements and distinguish the high-priority requirements from the low-priority ones

(Duan et al., 2009). So, requirement prioritization has been recognized as a critical but

challenging activity in software product development (Svensson et al., 2012).

The requirements engineering community has classified the requirements of a

software system into two main categories: functional requirements and non-functional

requirements (Baskaran, 2014; Chung & do Prado Leite, 2009). The definition for a

functional requirement specifies what the system should do; "A functional requirement

specifies a function that a system or component must be able to perform." On the other

hand, the definition for a non-functional requirement specifies how the system should

behave; "A non-functional requirement is a statement of how a system must behave, it is

a constraint upon the system behaviour." It has been widely acknowledged that a quality

attribute such as reliability, modifiability, performance, or usability is a non-functional

requirement of a software system (Capilla, Babar, & Pastor, 2012; Laplante, 2013).

Although, functional and non-functional requirements are very different, they have a

serious impact on each other (Berander & Andrews, 2005). Considering merely

functional requirements during the requirements prioritization process may lead to

failure in the final product or at least may result in a poor-quality system. Hence,

prioritizing these two types of requirements entirely together or separately might not be

the best solution. For example, if there is one functional requirement about a specific

function and one non-functional requirement regarding availability, it could be hard to

prioritize between them since they are not at the same abstraction level. So, it is not an

efficient way to prioritize both types of requirements together. In such cases, one may

decide to prioritize them separately. Clearly, it is also not a good choice since both types

of requirements have an impression on each other.

 6

Over the recent past years, a substantial amount of research effort in the software

engineering community has been dedicated into proposing various techniques, methods,

and approaches to perform requirements prioritization. Although these approaches have

contributed a lot to software development, an in-depth study of current research studies

implies that:

1. The existing approaches can be used with both types of requirements separately.

2. Most of the current approaches have mostly been adopted with respect to

functional requirements.

3. Considering both functional and non-functional requirements has received less

attention in these works.

Hence, to support the advancement in this area and the maturity of requirements

prioritization, a new approach needs to be developed with the purpose of addressing

both functional and non-functional requirements during the prioritization stage. This

research is primarily concerned with providing such an approach.

1.4 Research Scope

The box shaded in grey colour in Figure 1.1 shows the general focus of the current

thesis which is actually the area of requirements prioritization. The figure also uses a

hierarchy to demonstrate the role of requirements prioritization in the context of

requirements engineering in particular and in the domain of software engineering in

general. It should be noted that the presented hierarchy for showing the software

development process is adapted by (Paetsch, Eberlein, & Maurer, 2003).

 7

Figure 1.1: The scope of the current thesis

This research aims to introduce an approach by which practitioners are able to

prioritize both functional and non-functional requirements simultaneously in an

integrated manner. This approach investigates the dependencies between functional and

non-functional requirements to perform the prioritization task. However, this study does

not investigate requirements dependencies which might exist among individual

functional requirements or non-functional requirements. In other words, this approach

assumes that requirements (whether functional or non-functional) are independent.

Nevertheless, in a case where some dependent functional or non-functional

requirements need to be considered throughout the prioritization process, the remedy is

to group those dependent requirements into a single requirement and then perform the

prioritization task.

1.5 Research Objectives

The main purpose of this research is to provide the practitioners and researchers with

an approach which is capable of integrating the prioritization of functional and non-

Software
Development

Process

Requirements
Engineering

Requirements
Elicitation

Requirements
Analysis and
Negotiation

Joint Application
Development

Requirements
Prioritization

Modeling
Requirements

Documentation

Requirements
Validation

Requirements
Management

Design

Implementation

Testing

Maintenance

 8

functional requirements simultaneously. To achieve the desired goal, the objectives of

this research are determined as follows:

 RO1: To identify the current requirements prioritization approaches as well as

several empirical evaluations of these approaches.

 RO2: To propose an approach by which integrating the process of prioritizing

functional and non-functional requirements could be performed.

 RO3: To empirically evaluate the effectiveness of the proposed approach,

through controlled experiments, in terms of time needed for performing the

prioritization task, accuracy of the produced results and ease of use when

compared to two similar state-of-the-art approaches.

1.6 Research Questions

The six research questions which form the basis of conducting this research are

formulated as follows:

 RQ1: What are the current approaches used for requirements prioritization?

 RQ2: What are the descriptions and limitations of current requirements

prioritization approaches?

 RQ3: What procedure should a software engineer follow to integrate the process

of prioritizing functional and non-functional requirements?

 RQ4: How to perform the prioritization task within a reasonable amount of

time?

 RQ5: How easily the prioritization task can be performed?

 RQ6: How accurately the prioritization task can produce the prioritized lists of

functional requirements and non-functional requirements?

 9

1.7 Research Approach

The main purpose of conducting this research is to provide researchers and/or

practitioners with an approach which is capable of integrating the process of prioritizing

functional and non-functional requirements simultaneously. To achieve the desired goal,

three successive phases need to be accomplished throughout the research as illustrated

in Figure 1.2. They are defined as follows: preparation phase, approach development

and validation phase, and evaluation phase.

In the initial phase of conducting this research, called preparation phase, a detailed

review of the literature is performed on the area of software requirements prioritization.

This includes several studies that investigate different requirements prioritization

approaches proposed in recent years to perform the requirements prioritization process.

Besides this, a varied set of empirical evaluations of existing prioritization approaches,

which were carried out by other researchers, are reviewed.

Three main activities which are conducted throughout the approach development and

validation phase of this research aim to propose an approach for integrating the

prioritization of functional and non-functional requirements, as well as validate the

proposed approach through a case study, and through mathematical theory.

During the last phase of this research, i.e. evaluation phase, the effectiveness of the

proposed approach is evaluated through conducting two controlled experiments. In both

controlled experiments, the proposed approach is compared with two state-of-the-art

alternatives in terms of actual time-consumption, accuracy of results, and ease of use.

 10

Start

Conduct an extensive literature

review on various requirements

prioritization approaches

Conduct an extensive literature

review on different comparative

evaluations of existing approaches

Study the state of the art

Evaluate the effectiveness of the

proposed approach

End

Preparation

Evaluation

Controlled

experiments

Comparing with two

state-of-the-art

approaches

Approach Development

and

Validation
Validate the proposed approach

through case study

Validate the proposed approach

through mathematical theory

Propose an approach for integrating

the prioritization of functional and

non-functional requirements

simultaneously

Time-consumption Accuracy Ease of use

Figure 1.2: Flow chart of the research approach

 11

1.8 Significance of the Research

The significance of this research is summarized as follows:

 To provide researchers with a body of knowledge of software requirements

prioritization from two main perspectives: approaches as well as empirical

studies.

 To provide practitioners with an approach that considers both functional and

non-functional requirements simultaneously during the prioritization process.

 To assist researchers/practitioners in reducing the required time to perform the

prioritization task.

 To help researchers/practitioners in improving the accuracy of the results

provided by the proposed approach as well as enhancing the ease of use of the

approach.

1.9 Summary

This chapter presented the primary elements of this thesis with the aim of providing

insights into the research problem that this thesis addresses. The chapter also outlined

the main objectives of this research along with the related research questions.

Furthermore, it provided a brief research methodology that needs to be followed to

achieve the desired objectives. It also presented the scope and significance of this

research.

The remainder of this thesis is structured as follows. Chapter 2 of this thesis aims at

presenting a thorough study on the current body of knowledge in the context of

requirements prioritization. It introduces some basic concepts in the area of

requirements prioritization, current requirements prioritization approaches, and

empirical evaluations of existing prioritization approaches. Chapter 3 provides a

 12

comprehensive description of the research methodology carried out in this research.

Chapter 4 introduces the approach that is proposed in this research for integrating the

process of prioritizing functional and non-functional requirements simultaneously.

Chapter 5 describes the validation of the proposed approach through a case study as

well as mathematical theory. Chapter 6 presents a thorough explanation of the two

controlled experiments carried out in this research in order to evaluate the effectiveness

of the proposed approach in an empirical manner. Finally, Chapter 7 describes the main

conclusions of this research and outlines suggestions for future research.

 13

CHAPTER 2: LITERATURE REVIEW

This chapter aims to present a thorough study on the current body of knowledge in

the context of requirements prioritization. The basic concepts in the context of

requirements prioritization are introduced first in order to express how this domain

relates to the other activities and concepts in the area of software engineering, and also

to demonstrate the definition and different aspects of requirements prioritization. Then,

the current requirements prioritization approaches in the literature are explained and

reviewed comprehensively to show how they prioritize requirements. This could be

helpful to find out the research gap of this study. At the end of the chapter, some

empirical evaluations of existing prioritization approaches, which were carried out by

other researchers, are presented and reviewed to provide some guidelines on how to

evaluate a given prioritization approach.

2.1 Basic Concepts in the Context of Requirements Prioritization

This section aims to provide fundamental concepts related to the domain of

requirements prioritization. Initially, it presents the role of requirements prioritization in

the area of requirements engineering. Afterwards, definitions for the terms requirement,

functional requirement, and non-functional requirement are provided. Finally, the

definition and aspects of requirements prioritization along with different types of

product developments in the requirements prioritization process are discussed.

2.1.1 The Role of Requirements Prioritization in Requirements Engineering

A software development life cycle typically consists of five phases such as

requirements engineering, designing, implementation, testing, and maintenance (Royce,

 14

1970). Requirements engineering as the leading phase of the software development

process is the phase in which requirements prioritization should be performed.

Many authors believe that the quality of a software product is mostly assessed by

measuring its ability to satisfy different stakeholders’ needs and expectations (Babar,

Ramzan, & Ghayyur, 2011; J. Doerr, Hartkopf, Kerkow, Landmann, & Amthor, 2007;

Sher, Jawawi, Mohamad, & Babar, 2014). One of the main challenges throughout the

software development process is to find out the right needs of stakeholders and convert

them into software requirements. Hence, managing the software requirements process in

a solid, systematic and rigorous way could help practitioners to release high-quality

products. Requirements engineering and its underlying activities play a critical role

toward the success of a software project (Fellir, Nafil, & Touahni, 2014; Hofmann &

Lehner, 2001).

Requirements engineering is not only engineering but actually it is a sort of multi-

disciplinary strategy that covers some other disciplines and areas particularly the social

and human sciences (Khan, 2006). In fact, it focuses on the social and cognitive

sciences to be able to make use of its theoretical and practical background, knowledge,

and methods for requirements elicitation, analysis, documentation, management and

modelling. Many disciplines that have been applied in the context of requirements

engineering are from sociology, anthropology, cognitive psychology, philosophy,

human psychology and linguistics. These are generally well-organized and disciplined

domains which have great contribution towards the improvements in the area of

requirements engineering (Nuseibeh & Easterbrook, 2000). The terms requirements and

engineering were initially joined together as a single phrase by Alford when he was

developing the Software Requirements Engineering Method (SREM) (Alford, 1977).

Requirements engineering was originally applied to information systems.

 15

For a large number of software projects, it has been reported that the failure of

software system is not due to the bugs found in the source code but rather because of the

poorly-defined software requirements (Daneva et al., 2014). In other words, the failure

of software project is mostly related to the problems within the requirements

engineering phase. For example, in a research study conducted for a US Air Force

project, it has been claimed that more than 40% of detected bugs were the results of

errors in the requirements (Martens, 2011). The cost of discovering and fixing the

requirements errors is a person-intensive and expensive job (Abirami, Shankari,

Akshaya, & Sithika, 2015). Therefore, well-structured requirements engineering process

can improve the success probability of any software system.

The requirements engineering process includes a structured set of activities which

need to be done in order to discover, validate, and maintain a systems requirements

document (Pressman, 2010). In (Gunda, 2008), the author introduced some general

activities which form the requirements engineering process. As Figure 2.1 shows, these

activities include requirements elicitation, requirements analysis and negotiation,

requirements documentation, requirements validation, and requirements management.

In the following paragraph, these activities are explained briefly.

Figure 2.1: The activities of requirements engineering process

Requirements
engineering

process

Requirements
elicitation

Requirements
analysis &
negotiation

Requirements
documentation

Requirements
validation

Requirements
management

 16

Requirements elicitation involves the identification of stakeholders’ needs in order to

transform them into software requirements (Teixeira, Saavedra, Ferreira, Simões, &

Santos, 2014). Various techniques have been introduced for eliciting the software

requirements (Rehman, Khan, & Riaz, 2013). Examples of these techniques include

interview, use case/scenario, observation and social analysis, focus group,

brainstorming, ethnography, and goal-based techniques (Anwar & Razali, 2014).

During the requirements analysis and negotiation, each requirement is inspected to

check its necessity, completeness, consistency, and feasibility (Pohl, 2010). The most

common techniques used for requirements analysis are Joint Application Development

(JAD) sessions, requirements prioritization, and requirements modelling. The goal of

documenting the requirements is to provide a common basis for communication

between stakeholders and developers. A well-defined requirements document should be

unambiguous, complete, correct, understandable, consistent, concise, and feasible.

Requirements validation is the process of checking the requirements to make sure that

they are defined correctly as well as to ensure that they are the real needs of

stakeholders. Requirements management involves with all activities concerned with

change and version control, requirements traceability, and requirements status checking

(Pohl, 2010).

However, there is not a unique requirements engineering process which is applicable

for all organization (Aurum & Wohlin, 2003). In other words, different organizations or

companies may apply a different requirements engineering process for developing their

software products (e.g. requirements engineering process for web-based applications is

not the same as requirements engineering process for safety critical systems or

embedded systems) (Khan, 2006). The variety in the requirements engineering process

is considered as an acceptable issue since there exists no ideal requirements engineering

process. Requirements engineering may be impressed by many factors such as

 17

application domain (Kotonya & Sommerville, 1998), organizational culture,

disciplinary involvement, technical maturity, and market decisions as well as design

decisions of the individuals (Gurp, Bosch, & Svahnberg, 2001). Furthermore, other

factors like system acquisition, commercial, legal, and contractual issues can affect the

requirements engineering process (Kotonya & Sommerville, 1998). The end result of

requirements engineering process is the software requirements specification (SRS).

2.1.2 Requirement

In the context of requirements prioritization, the object to be prioritized by decision

makers is a collection of requirements. This implies that the concept of requirement is

fundamental in the area of requirements prioritization. Hence, before going through the

concept of requirements prioritization, it would be useful to have an overview on the

definitions provided in the literature for the term requirement. According to

(Sommerville & Sawyer, 1997), the term requirement is referred to as “What a system

should do”. However, different authors and researchers offered various definitions from

different points of view for the term requirement. These definitions are summarized and

presented in Table 2.1.

Requirements can be classified into different categories. Table 2.2 illustrates some

different categories of requirements. Based on the purpose of requirements

prioritization, prioritization techniques or approaches can be applied on different classes

of requirements.

 18

Table 2.1: Overview of definitions of the term “Requirement”

Reference Definition

(Abbott, 1986) “Any function, constraint, or other property that must be provided, met, or

satisfied to fill the needs of the system’s intended user(s).”

(IEEE, 1990) “(1) A condition or capability needed by a user to solve a problem or achieve an

objective. (2) A condition or capability that must be met or possessed by a

system or system component to satisfy a contract, standard, specification, or

other formally imposed documents. (3) A documented representation of a

condition or capability as in (1) or (2).”

(A.M. Davis,

1993)

“A user need or a necessary feature, function, or attribute of a system that can

be sensed from a position external to that system.”

(S. IEEE, 1998) “A well-formed requirement is a statement of system functionality (a capability)

that must be met or possessed by a system to satisfy a customer’s need or to

achieve a customer’s objective, and that is qualified by measurable conditions

and bounded by constraints.”

(Lethbridge &

Laganiere, 2001)

“A statement about the proposed system that all stakeholders agree must be

made true in order for the user’s problem to be adequately solved.”

(Sommerville,

2007)

“The requirements for a system are the descriptions of the services provided by

the system and its operational constraints. These requirements reflect the needs

of customers for a system that helps solve some problem such as controlling a

device, placing an order or finding information.”

Due to the fact that the quality of any software system mainly depends on fulfilling

functional and non-functional requirements, these two types of requirements have

received more attention in this thesis. Therefore, these two types of requirements (i.e.

functional and non-functional requirements) are explained below in more detail. In

addition, the differences between these two types of requirements are discussed.

A functional requirement describes a functional behaviour that a system or system

component should be able to perform. In other words, functional requirements specify

what the system should do; an activity that the system must do to provide its users with

the required functionality. Functional requirements are also referred to as behavioural or

operational requirements (Davis, 1993). Table 2.3 shows a review on different

definitions of functional requirements that have been presented in the literature. It is

 19

quite obvious that these definitions are in line with the definition that has been already

presented in this thesis.

Table 2.2: Different categories of requirements (Aurum & Wohlin, 2005)

Requirements Classification

 Functional requirements---what the system should do

 Non-functional requirements---constraints on the types of solutions that will

meet functional requirements (e.g. performance, security, reliability)

 Goal level requirements---related to business goal

 Domain level requirements---related to problem area

 Product level requirements---related to the product

 Design level requirements---what to build

 Primary requirements---elicited from stakeholders

 Derived requirements---derived from primary requirements

Some other classifications:

 Business requirements versus technical requirements

 Product requirements versus process requirements---i.e. business needs

versus how people will interact with the system

 Role based requirements, e.g. customer requirements, user requirements,

system requirements, and security requirements.

Table 2.3: Different definitions of functional requirements

Reference Definition

(IEEE, 1990) “A function that a system must be able to perform.”

(Robertson &

Robertson, 2012)

“What the product must do.”

(Sommerville, 2004) “What the system should do.”

(K. E. Wiegers, 2003) “A statement of a piece of required functionality or a behaviour that a

system will exhibit under specific conditions.”

(Jacobson, Booch, &

Rumbaugh, 1999)

“A requirement that specifies an action that a system must be able to

perform, without considering physical constraints; a requirement that

specifies input/output behaviour of a system.”

(Anton, 1997) “Describe the behavioural aspects of a system.”

 20

On the other hand, the other type of requirements, called non-functional

requirements, express how good a software system must work. It has been widely

acknowledged that a quality attribute such as reliability, modifiability, performance, or

usability is a non-functional requirement of a software system (Capilla et al., 2012;

Chung & do Prado Leite, 2009; Laplante, 2013). That is why non-functional

requirements are sometime called quality attributes or quality requirements. Literature

offers several definitions proposed by different scholars. These definitions are provided

in Table 2.4. Referring to the definitions, it is clear that non-functional requirements are

relating to properties or qualities that the software system must have when performing

one or some functions

Table 2.4: Different definitions of non-functional requirements

Reference Definition

(Anton, 1997) “Describe the non-behavioural aspects of a system, capturing the properties and

constraints under which a system must operate.”

(A.M. Davis,

1993)

“The required overall attributes of the system, including portability, reliability,

eefficiency, human engineering, testability, understand- ability, and

modifiability.”

(Robertson &

Robertson, 2012)

“A property, or quality, that the product must have, such as an appearance, or a

speed or accuracy property.”

(K. E. Wiegers,

2003)

“A description of a property or characteristic that a software system must exhibit

or a constraint that it must respect, other than an observable system behaviour.”

(Jacobson et al.,

1999)

“A requirement that specifies system properties, such as environmental and

implementation constraints, performance, platform dependencies,

maintainability, extensibility, and reliability. A requirement that specifies

physical constraints on a functional requirement.”

(Mylopoulos,

Chung, & Nixon,

1992)

“Global requirements on its development or operational cost, performance,

reliability, maintainability, portability, and robustness.”

Although functional and non-functional requirements are two correlated concepts in

software development process, there are also some differences between functional and

non-functional requirements. These differences are listed below (Berander & Andrews,

2005; Lauesen, 2002).

 21

 Functional requirements generally depend on particular functions whereas non-

functional requirements generally have an effect on various functions (from a set

of functions to the entire software system).

 Non-functional requirements are qualities that the functions or system should

have, taking into the account that non-functional requirements are basically

ineffective without functional requirements.

 From implementation point of view, functional requirements either operate or

not, though non-functional requirements usually have a sliding value scale of

good and bad.

 In many cases, non-functional requirements are usually in conflict with each

other so that trade-offs among these kind of requirements should be done.

2.1.3 Requirements Prioritization

Requirements prioritization has not been only recognized as one of the major

activities of requirements engineering process but also has been known as one of the

most significant decision-making processes during the software development process.

In software engineering community, projects are usually faced with time to market

constraints, budget deadlines, restricted technology, and limited human power.

Therefore, it would be challenging for requirements engineers to determine which

requirements may provide a higher degree of satisfaction for stakeholders and should be

addressed first. To tackle this concern, it is essential to address the high-priority

requirements before considering the low-priority ones. Requirements prioritization

facilitates requirements engineers with a solution to choose the most valuable

requirements for a software system or a release planning.

 22

By reviewing the literature, it has been discovered that different scholars proposed

different definitions for the term requirements prioritization. According to

(Sommerville, 2007), requirements prioritization has been defined as an activity in

which the most important requirements can be identified. On the other hand, another

definition presented by (Firesmith, 2004) implies that requirements prioritization is a

process by which the implementation order of requirements can be determined. By

analyzing the definitions proposed in the two studies, it can be found that the first

definition is centralized on the importance of requirements to stakeholders. However,

the second definition focuses on implementation order, relying on the point that in some

situations there might be dependencies among requirements which make the

implementation order of requirements different from the importance order of

requirements to stakeholders. This thesis adopts Somerville’s definition as the meaning

of the requirements prioritization.

According to (Berander & Andrews, 2005), requirements prioritization provides

many benefits and advantages including:

 It improves user involvement by engaging stakeholders in the process of

identifying the most important requirements of a project.

 It facilitates stakeholders to assign resources according to the priorities of

requirements.

 It allows stakeholders to determine the core requirements of the system.

 It helps in choosing an optimal ordered list of requirements which need to be

implemented in consecutive releases.

 It provides support to make trade-off between the desired project scope and

conflicting constraints such as resources, budget, schedule, time to market, and

quality.

 23

 It helps in counter-balancing the business profit of each requirement against its

implementation cost.

 It aids in balancing implications of requirements on the software architecture

and future evolution of the product and its related cost.

 It assists to choose only a subset of the requirements that meet the overall

stakeholders’ satisfaction.

 It helps in the estimation of predicted stakeholder’s satisfaction.

 It assists to get a technical advantage and optimize market opportunity.

 It facilitates the development organization to minimize rework and schedule

slippage and thereby improve stability.

 It helps to manage inconsistent requirements, concentrate on the negotiation

process, and solve arguments among stakeholders.

 It allows determining the relative importance of each requirement to deliver the

maximum importance at the minimum cost.

All the factors stated above represent the importance of requirements prioritization.

In addition to the benefits mentioned above, some well-known authors in the domain of

software engineering have argued regarding the significance of prioritizing

requirements. For instance, Frederick P. Brooks mentioned (Brooks Jr, 1995), “The

hardest single part of building a software system is deciding precisely what to

build…No other part of the work so cripples the resulting system if done wrong. No

other part is more difficult to rectify later”. Another famous author in the field of

software engineering, Ed Yourdon, has recognized requirements prioritization as an

extremely important issue (Yourdon, 1997). Sharif et al. believes that requirements

prioritization is a key but often neglected issue in the requirements engineering research

(Sharif, Zafar, & Zyad, 2014).

 24

A number of researchers consider requirements prioritization as one of the most

complicated activities throughout the requirements engineering process (Berander &

Andrews, 2005). They claim that only a few number of software companies have

utilized systematic, practical, and efficient methods for performing the prioritization

task. At the same time, some authors believe that requirements prioritization has a

medium level of complexity while some others consider it as an easy process during the

software development process. Nonetheless, it has to be said that all of the researchers

has identified requirements prioritization as a fundamental activity toward the success

of any software project. Hence, in order to develop a cost-effective software system, it

is crucial to prioritize requirements first and then proceed to develop the software

according to those requirements.

2.1.3.1 Aspects of Requirements Prioritization

Variety of aspects can be taken into account when prioritizing requirements. Aspect

can be defined as a property or attribute of requirements that can be used to prioritize

requirements (Berander, 2004a). Some alternative terms have been used in the literature

such as factor (Henry & Henry, 1993), criteria (Martinez, Pazos Arias, & Vilas, 2005),

element (Egyed, 2003), and parameter (Tran & Sherif, 1995) to bring the same meaning

for the term aspect. Some popular aspects that can be used to prioritize requirements

include risk, time, cost, penalty, importance, dependency, volatility, abstraction level,

strategic benefit, available resources, and market value. Prioritizing requirements based

on only one aspect seems to be easier compared to the situations that multiple aspects

need to be considered for prioritization (Khan, 2006). For example, if the goal is to

prioritize requirements according to their importance to stakeholders, it is a

straightforward task to decide which requirement is the most desirable. But, once taking

other aspects into account such as cost, stakeholders need to change their minds to

 25

prioritize requirements. This may result in changing the high-priority requirements into

low-priority requirements if they are not cost-effective.

Authors of (Ruhe, Eberlein, & Pfahl, 2003) believe that, in many cases, aspects are

dependent on each other, and might have interaction with each other (e.g. high quality

might need high cost). Hence, modification in a single aspect might cause a

modification in the other aspect. Due to the fact that every aspect could possibly have an

impact on the success level of the ultimate software product, it is crucial to take several

aspects into consideration to be able to enhance the success degree of the ultimate

product. Although requirements can be prioritized based on multiple aspects, it is

normally not useful and advisable to consider all the aspects (Berander & Andrews,

2005). The question on what aspects are essential to be considered for a prioritization

problem is mainly dependent on the specific project.

The most significant aspects which might be suitable for any prioritization problem

are explained below.

 Importance: Stakeholders can prioritize requirements according to their

importance for the software system to find out which requirement is the most

important one. Nevertheless, the term importance could be considered as a

multi-dimensional principle (Ma, 2009), i.e. it can possess various

interpretations from different points of view. For example, importance can be

interpreted as urgency of implementation, importance of a requirement for a

software system, or strategic importance of the product architecture. Therefore,

prior to begin the prioritization process, it is necessary to clarify the meaning of

importance to avoid misunderstanding among stakeholders.

 26

 Cost: Cost is usually specified with the amount of money outlaid on

implementing the requirements (Ma, 2009). Factors which may affect the cost

include the ability to reuse existing code, the complexity of requirements, the

extra resources required to implement the requirements, and the amount required

for documentation and testing. Cost is specifically measured in terms of staff

hours due to the fact that the major cost of developing any software system is

associated with the number of spent hours.

 Time: Time can be defined as the period which is needed to successfully

implement the requirements. In addition, time can be affected by other factors

such as training time, level of parallelism in software development process, time

required to develop infrastructure and support industry standards, and etc.

 Risk: Each software project encompasses a particular amount of risk. Risk can

be prioritized to find which requirement contains the lowest risk. Risk

management is generally rooted in project management where it has been

utilized to deal with internal as well as external risks. Internal risks include

market and technical risk whereas external risks involve suppliers and

regulations risks. In particular, risk management could also be exploited when

planning requirements into releases and products by determining risks that may

lead to problems throughout the development process. Some instances of these

risks are schedule risks, process risks, and performance risks. Risk degree of a

software project can possibly be assessed by estimating the risk level of every

single requirement .

 Penalty: Penalty is a major aspect which needs to be estimated in terms of how

much requires to be spent if a requirement is not met (Ma, 2009). It is not

correct to use penalty as the opposite meaning of importance. In some situations,

 27

a requirement may have a low level of importance, but ignoring to meet that

requirement might lead to a high penalty.

 Volatility: In some cases, volatility of requirements has been considered as a risk

element and is also occasionally treated as portion of risk aspect (Berander &

Andrews, 2005). Some authors believe that volatility needs to be evaluated

independently and volatility of requirements must be taken into the

consideration independently within the prioritization process (Lauesen, 2002).

There are some different reasons that may result in requirement volatility.

Examples of these reasons include user changes, legislative changes, business

requirements changes, and market changes (Ruhe et al., 2003). Regardless of

these reasons, volatile requirements could possibly influence the planning and

stability of a software project and undoubtedly boost the costs. This is due to the

reason that any changes during the development process will increase the cost of

a software project.

 Other aspects: A collection of typical aspects which have been considered

significant in the literature presented above. However, this collection is not a

thorough list in which other aspects also can be included such as release theme,

competence/resources, competitors, strategic benefit, and financial benefit. It has

been recommended that stakeholders provide a comprehensive list of aspects

before starting the process of decision making in a software company (Berander

& Andrews, 2005). In addition, it is crucial for stakeholders to reach a consensus

on the meaning of aspects and requirements as well because several studies have

indicated that it is quite difficult to interpret the outcomes if there is no guideline

regarding the meaning of aspects and requirements (Lehtola, Kauppinen, &

Kujala, 2004).

 28

 Aspects combination: In real cases, it is preferable to combine different aspects

of a requirement before making decision on the final priority of that

requirement. For instance, the Planning Game approach considers three aspects

such as importance, cost, and risks of requirements to determine the final

prioritized list of requirements (Beck, 2000). In cost-value approach (J. Karlsson

& Ryan, 1997), requirements are prioritized based on importance to users and

cost of implementation to select those requirements that possess the highest

importance and lowest price. Moreover, some other studies declare that

requirements should be prioritized based on importance and volatility aspects

whereas others express that dependencies should be also considered

(Carlshamre, Sandahl, Lindvall, Regnell, & Natt och Dag, 2001; Lauesen,

2002). The Wieger’s approach (K. E. Wiegers, 2003) uses four aspects including

benefit, penalty, cost, and risk to determine the relative value of each

requirement. This approach allows different weights for different aspects in

different situations in order to find out the most valuable requirement. Many

other combinations of aspects can be considered when prioritizing requirements.

Which aspects to use for combination is basically dependent on the specific

situation, and it is really critical to determine the possible aspects that can be

combined together efficiently to achieve the desired outcomes.

2.1.3.2 Different Types of Product Developments in the Prioritization Process

Requirements prioritization can be applied on two types of software development

processes: bespoke software development and market-driven software development

(Baskaran, 2014; Ma, 2009). For a bespoke project, only one or a few number of

stakeholders may take part in the prioritization process, whereas in market-driven

software development, every person in the entire world has the potential to be

 29

considered as a stakeholder of project (Regnell & Brinkkemper, 2005). Literature

distinguishes the differences between bespoke and market-driven software development

which may inspire requirements prioritization (Carlshamre, 2001). These differences are

given in Table 2.5.

Table 2.5: A comparison between bespoke and market-driven software development (Carlshamre, 2001)

Facet Bespoke development Market-driven development

Main stakeholder Customer organization Development organization

Users Known or identifiable Unknown, may not exist until product is on

market

Distance to users Usually small Usually large

Requirements

conception

Elicited, analysed, validated Invented (by market pull or technology push)

Lifecycle One release, then maintenance Several releases as long as there is a market

demand

Specific RE

issues

Elicitation, modelling, validation,

conflict resolution

Steady stream of requirements, prioritization,

cost estimating, release planning

Primary goal Compliance to specification Time-to-market

Measures of

success

Satisfaction, acceptance Sales, market share

According to Table 2.5, there is a great difference between bespoke development and

market-driven development which put them in two extremes. Therefore, different

software projects should follow different ways to prioritize requirements. However, in

majority of real situations, projects development place somewhere between these two

extremes. Different kinds of markets involve different types of customers. Generally,

three types of customer situations may exist while developing a software product: one

customer, several known customers, and mass-market (Berander & Andrews, 2005).

In case of one customer development, the goal is to develop a software product for

only one customer, and thereby requirements need to be prioritized based on the

viewpoint of only one person. Most of the existing software processes are developed

 30

based on one customer presuming that this customer is accessible at the time of

developing the product. However, one major concern in one customer situation is that,

in some cases, the customer who participates in the prioritization process is different

from the one who really works with the system. For example, it could be conflicting in

requirements priorities if a customer who prioritizes the requirements would be an

employer but the person who really uses the system would be an employee. In such

case, it would be advisable to engage the end user in the prioritization process, since not

involving him/her in the prioritization process may lead to reduction of product’s

usability.

Regarding several known customers development, the prioritization process is more

difficult because different customers who may take part in the prioritization process

may have different preferences and viewpoints. In this situation, the major target is to

come up with a prioritized list of requirements which is acceptable by each single

customer. Engaging the viewpoints of all stakeholders is necessary towards the success

of the software product.

In case of mass-market development, all customers are not accessible throughout the

prioritization process (Kuusela & Savolainen, 2000). In this case, different sources can

be used to extract necessary information for the prioritization process (Jobber & Ellis-

Chadwick, 2012). These sources include marketing research (e.g. surveys, focus

groups), competitor intelligence (e.g. information about competitors’ strategies,

benchmarking competitors’ products), marketing intelligence (e.g. information from

sales force, scientists) and internal records (e.g. shipments, sales records). To perform

marketing research, it is essential to focus on an appropriate test sample which can

accurately represent the actual characteristics of the whole market segment. For

 31

instance, when developing for small companies, it is not useful to engage large

companies in the surveys or focus groups.

2.2 Requirements Prioritization Approaches

In the preceding section, it has been shown that requirements prioritization has been

recognized as one of the most important decision-making process in the software

development life cycle. This is also confirmed by a great amount of requirements

prioritization approaches that have been proposed in recent years. In this regard, this

section aims to provide a thorough overview on the various prioritization approaches

found in the literature. Before going through a detailed description of the current

prioritization approaches, it should be highlighted that the term approach in this context

refers to a general term for technique and method and they have been used to bring the

same meaning.

Existing requirements prioritization approaches can be split into four different

categories such as ratio scale approaches, ordinal scale approaches, nominal scale

approaches, and interval scale approaches. This classification is derived from (Aasem,

Ramzan, & Jaffar, 2010; Achimugu et al., 2014; L. Karlsson, Höst, & Regnell, 2006;

Voola & Babu, 2012) and depending on the order relation, the approaches ultimately

produced. Table 2.6 classifies the findings according to those scales.

Regarding ratio scale approaches, requirements are ranked according to their relative

weights (Ma, 2009). The ratio scale is widely recognized to be the most desirable

among all the other scales since it is capable of ordering, specifying relative ratios and

distances among requirements. Examples of ratio scale approaches are AHP, hundred

dollar method, minimal spanning tree, hierarchy AHP, cost-value approach, VOP,

TOPSIS, case-based ranking, IGA, and EVOLVE. Using ratio scale prioritization

 32

approaches provides the opportunity to accomplish all possible kinds of statistical

calculations such as coefficient of variations, harmonic mean, geometric mean, and also

exploit algorithms during the prioritization process (Aasem et al., 2010; Achimugu et

al., 2014).

Table 2.6: Classification of requirements prioritization approaches

Requirements prioritization approaches

Ratio scale Ordinal scale Nominal scale Interval scale

AHP

Hundred dollar method

Minimal spanning tree Hierarchy

AHP

Cost-value approach

VOP

Wieger’s method

IGA

EVOLVE

TOPSIS-based approach

Case-based ranking

Value-based intelligent

requirements prioritization

Fuzzy AHP

Thakurta’s approach

Interrelationship-based approach

HAM

Simple ranking

Bubble sort

Binary search tree

Planning Game

QFD

CBPA

Numerical assignment

Top-ten requirements

MoSCoW

Requirements triage

RUPA

Ordinal scale approaches generate an ordered list of requirements (Ma, 2009). In

other words, ordinal scale could be utilized to enhance the efficiency of nominal scale

due to the reason that it provides knowledge regarding the ranking of requirements.

Examples of these approaches include: simple ranking, bubble sort, binary search tree,

B-tree, Planning Game, QFD, and correlation-based priority assessment framework.

Using ordinal scale prioritization approaches provides the opportunity to compute the

percentile and median of ordered requirements (Aasem et al., 2010).

For nominal scale approaches, requirements are allocated to distinct priority groups,

taking into consideration that all requirements of each group have the same priority

(Ma, 2009). These kinds of approaches are not able to show the importance degree of

each requirement over the other requirement. Examples of these approaches are as

 33

follows: numerical assignment, top-ten requirements, and MoSCoW. The nominal scale

prioritization approaches allow computing chi square and mode of ordered requirements

(Aasem et al., 2010).

Interval scale approaches include details regarding how big are the intervals between

the ordered set of requirements in order to increase the calculation of the disparity that

might exist between requirements (Achimugu et al., 2014). The interval scale keeps the

order in the same way as ordinal scale does. RUPA is considered as an example of

interval scale approach. The interval scale prioritization approaches allow calculating

regression, correlation, standard deviation, mean, and analysis of variance (Aasem et al.,

2010).

2.2.1 Ratio Scale Approaches

Analytical Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP), first proposed by Saaty (Saaty, 1980), has

been recognized as a principled and organized multi-criteria decision-making method.

AHP was initially applied to the domain of software engineering by Karlsson (J.

Karlsson, 1996), and since then, it has been used to prioritize software requirements.

The fundamental concept of AHP is to determine the priorities of all available

requirements as well as their relative importance through comparing all possible pairs of

requirements together. In practice, a decision maker who intends to use AHP should use

a range of scales from 1 to 9 (where one indicates the same level of importance while

nine expresses the most degree of importance) to decide which requirement is more

important and to what extent.

To prioritize 𝑛 requirements using AHP, the decision maker needs to perform

𝑛 × (𝑛 − 1)/2 comparisons among requirements. So, in any prioritization case where

 34

there would be a large number of requirements to prioritize, the number of comparisons

would increase substantially. This issue has been considered as a major drawback

associated with the AHP method. That is why some studies in the literature stated that

AHP is not appropriate for prioritization of a large number of requirements (Lehtola &

Kauppinen, 2004). In contrast, some researchers have attempted to figure out solutions

to reduce the number of comparisons. As a result, some modifications of AHP method

have been proposed with the aim of reducing the number of comparisons (Harker, 1987;

Shen, Hoerl, & McConnell, 1992).

AHP has been recognized as the most cited prioritization technique among others

(Achimugu et al., 2014). It is also capable of prioritizing requirements based on

different aspects. In addition, it has been acknowledged that AHP is the most promising

prioritization technique which produces trustworthy results (J. Karlsson, Wohlin, &

Regnell, 1998). This is due to the fact that it is possible to calculate the consistency ratio

when using AHP to improve the reliability of results. Further discussions regarding

AHP is available in (J. Karlsson & Ryan, 1997; Saaty, 1980).

Hundred dollar method

Hundred dollar method is an uncomplicated prioritization method in which

stakeholders receive 100 fictitious units and they are asked to allocate these units among

candidate requirements (Berander & Andrews, 2005; Hatton, 2008). This method is also

referred to as cumulative voting. The outcome of the prioritization process using

hundred dollar method is shown in ratio scale. The fictitious units can be expressed in

terms of different aspects such as cost of implementing requirements, time, importance,

and so on. According to (Berander, 2004a), this method is considered complex in terms

of sophistication, and fine in terms of granularity.

 35

There would be some problems when a large of requirements need to be prioritized

using this method (Berander & Andrews, 2005). For instance, if there are twenty

candidate requirements, five units should be allocated to each requirement on the

average. Regnell et al. encountered with this issue when they intended to prioritize 17

sets of requirements (Regnell, Höst, Och Dag, Beremark, & Hjelm, 2001). To solve the

problem and have more flexibility in the prioritization process, they considered an

imaginary amount of $100,000. So, this study indicated that in case of having a large

number of requirements, the other amounts more than hundred units can be used to

allow participants to have a straightforward prioritization. The other problem that might

be happened when prioritizing many requirements using hundred dollar method is that

an individual who works with the technique may make a mistake regarding the

calculation of hundred points (Berander & Wohlin, 2004). This issue can be solved by

facilitating the method’s users with an automated tool which is capable of counting the

number of remaining points (Berander & Andrews, 2005).

Using the Hundred dollar method, the prioritization process must be performed only

one time on the same list of requirements since stakeholders may change their

preferences in the second time especially when they do not find their desired

requirements as high-priority requirements (Berander, 2004a). In such situation, the

solution could be used to force stakeholders to allocate a limited amount of points for

each requirement. However, this could be considered a risk because stakeholders are not

able to prioritize requirements based on their actual preferences.

Minimal spanning tree

Minimal spanning tree is a prioritization approach which first proposed by (J.

Karlsson et al., 1998). As explained before, AHP needs a great amount of pairwise

comparisons to prioritize candidate requirements. So, AHP involves a large-scale

 36

redundancy. Suppose that if requirement X is considered to be more important than

requirement Y and requirement Y is also supposed to be more important than

requirement Z, then it can be easily concluded that requirement X is more important

than requirement Z. However, using AHP, the decision maker has to perform the

pairwise comparison between requirement X and requirement Z. Although this

redundancy assists to recognize the errors associated with stakeholder’s judgments, it

also causes scalability problems. Minimal spanning tree approach has been proposed

with the aim of solving this problem.

The fundamental concept behind the Minimal spanning tree technique is that all the

redundant pairwise comparisons of AHP method should not be performed (e.g.

comparing requirement X to Z in the previously mentioned example) by relying on the

assumption that the decision maker’s judgement would be consistent. This would result

in decreasing the number of pairwise comparisons from 𝑛 × (𝑛 − 1)/2 needed by AHP

to (𝑛 − 1) with Minimal spanning tree approach. The required number of comparisons

can be represented by constructing a minimal spanning tree of requirements in a

directed graph. This reduced number of comparisons between requirements is sufficient

to compute the relative degree of importance between requirements. The Minimal

spanning tree approach is considered a fast approach for prioritizing requirements due to

the low number of comparisons needed by this approach. On the other hand, its

capability to recognize inconsistent judgments is not high because redundancy has been

eliminated.

Cost-value approach

The cost-value approach was proposed by (J. Karlsson & Ryan, 1997) to allow

decision makers to give ranking to candidate requirements based on two aspects: the

value of requirements to users and customers, and the implementation cost of

 37

requirements for software developers. The evaluation of requirements based in value

and cost is performed using AHP method. In fact, the outcome of this approach

provides insights for software engineers to include or exclude some requirements

in/from the first release of software product.

Using the cost-value approach involves five steps to prioritize software requirements.

These steps are as follows:

1. Requirements engineers need to check the candidate requirements to make sure

that they are defined completely and clearly.

2. Users and customers must utilize AHP method to estimate the relative value of

candidate requirements.

3. Skilful software engineers should apply AHP method to determine the relative

cost of implementing the candidate requirements.

4. A software engineer needs to apply AHP method to obtain the relative value as

well as implementation cost of each candidate requirement, and then based on

this information, draws a cost–value diagram. Example of this diagram is

depicted in Figure 2.2.

5. The stakeholders exploit the cost-value diagram as a guideline for analysing

requirements, and software managers use the information of the diagram to

prioritize candidate requirements.

 38

Figure 2.2: An example of cost-value diagram

Despite the fact that the cost-value approach can be considered as a robust and

straightforward prioritization approach which provides valuable results to its users,

there are still some drawbacks associated with this approach. In case of a large number

of requirements, it would be a time-consuming approach which makes it tedious to use.

In addition, the approach ignores the dependencies which may exist among

requirements.

Hierarchy AHP

The Hierarchy AHP approach was introduced by (J. Karlsson et al., 1998) to

overcome the scalability issues involved with the AHP method. Davis believes that in

large-scale software projects, requirements are not organized in a flat structure (Alan M

Davis, 1993). In other words, requirements tend to be placed in an organized hierarchy

in which the more general requirements are put at the higher levels of the hierarchy

while the more specific requirements are placed at the lower levels of the hierarchy.

Hierarchy AHP approach utilizes the AHP method to prioritize requirements which are

placed at the same level of hierarchy. This approach can improve the scalability of the

AHP method by decreasing the number of comparisons needed for performing the

 39

prioritization process. This is due to the reason that only requirements of the same level

need to be compared together.

According to (J. Karlsson et al., 1998), using hierarchy AHP approach involves three

stages explained below to prioritize requirements.

1. In preparation stage, all candidate requirements are organized in a hierarchy.

2. During execution stage, requirements that have been placed in each hierarchy are

compared together using AHP scales (i.e. one to nine).

3. In presentation stage, AHP algorithm is applied at each hierarchy level to come

up with a prioritized list of requirements for the related hierarchy level.

Value-Oriented Prioritization (VOP)

VOP provides a framework for requirements engineers to make decisions and

prioritize requirements. VOP can be defined as a prioritization approach which

prioritizes requirements based on their influence on particular business values that a

company identifies (J. Azar, R. K. Smith, & D. Cordes, 2007). Figure 2.3 demonstrates

the VOP framework.

VOP includes a two-step process including establishing the framework and applying

the framework to prioritize requirements (J. Azar, R. Smith, & D. Cordes, 2007). The

first step is called establishing the framework which involves with recognizing the core

business values and then assigning weights to those business values. These weights are

ranging from 1 (not important) to 10 (critical). Besides identifying and scoring the core

business values, the framework also includes the identification and giving scores to the

risk categories. The weight of risk is assigned in negative scale. VOP creates a decision

 40

matrix using business core value as well as risk value. So, the outcome of the first step

is a decision matrix. Then, in the second step (i.e. applying the framework), VOP

calculates the final score associated with each candidate requirement. In practice, the

final score of each requirement is calculated as the sum of its business values minus the

sum of its risk values. The total core business value contribution is easily achieved as

the product of each value’s weight times the requirement’s weight with respect to that

core value. Besides, the sum of risk values of a requirement is the product of each risk’s

weight times the weight of that requirement with respect to that risk.

Figure 2.3: Value-oriented prioritization framework (Jim Azar et al., 2007)

Wieger’s method

Wieger proposed a semi-quantitative analytical approach with the purpose of

prioritizing requirements based on four aspects such as benefit, penalty, cost, and risk

(K. E. Wiegers, 2003; K. Wiegers, 1999). However, it seems that this method is not

 41

rigorous since it lacks of mathematical basis and it depends only on the estimation of

stakeholders regarding the values of benefit, penalty, cost, and risk. Wieger’s method is

suitable for applying on small projects. Using this method, three main stakeholders need

to participate in the prioritization process:

 Project manager, who manages the whole process.

 Main customers, who provides the values of benefit and penalty associated with

each requirement.

 Key developers, who is in charge of providing the values of cost and risk

associated with each requirement.

Wieger’s method involves eight steps that need to be followed by a decision maker

to prioritize requirements. These steps are as follows:

1. Make a list of requirements that need to be prioritized. These requirements

should be at the same abstraction level.

2. Determine the benefit that every single requirement may provide to the

customer. Benefit of each requirement is assessed by customers on a scale from

1 to 9 where one indicates the lowest benefit and nine represents the highest

benefit.

3. Determine the penalty associated with each requirement if that requirement fails

to fulfil. The penalty is also assessed by customers on a scale from 1 to 9.

4. Calculate the value of each requirement by adding the estimated benefit and

penalty of that requirement.

5. Determine the implementation cost of each requirement by asking the

developers to assign a value from 1 to 9.

 42

6. Determine the risk level of each requirement by asking again the developers to

assign a value from 1 to 9.

7. Calculate the final weight of each requirement using the following formula:

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑣𝑎𝑙𝑢𝑒%/(𝑐𝑜𝑠𝑡% + 𝑟𝑖𝑠𝑘%).

8. Prioritize the candidate requirements in descending order using calculated

weights.

Interactive genetic algorithm (IGA)

Tonella et al. proposed a search-based approach, called Interactive Genetic

Algorithm (IGA), for requirements prioritization (Tonella, Susi, & Palma, 2013). The

IGA requirements prioritization approach is a kind of pairwise comparison method that

gets the advantages of using a genetic algorithm to reduce the amount of pairwise

comparisons that need to be elicited from the decision maker. It merely elicits those

pairs of requirements which prevent the ambiguity of similarly ordered or even

diversely ordered requirements. This can enhance the scalability of the approach when

using for prioritizing a large number of requirements.

The disagreement among the ranking of requirements converted into a code form of

an individual and the elicited pairs of requirements and their elementary constraints on

the relative requirements ranking express the fitness function to be minimized

(optimized). Both elicitation and optimization are performed simultaneously due to the

reason that they have impact on each other. In other words, the most significant pairs of

requirements that need to be elicited would be recognized once the genetic algorithm

has started to optimize the ranking of requirements with regards to the existing

constraints. From the other side, the new elicited pairs of requirements establish new

constraints that need to be considered. Therefore, the fitness function exploited by IGA

 43

is designed to work in an incremental way to satisfy the newly produced constraints. As

a result, convergence of the genetic algorithm is not guaranteed and is dependent upon

the balance of the fitness function over the time, during incremental knowledge

utilization. The prioritization process brings into an end once disagreement becomes

low and the specified time or elicitation budget finishes.

EVOLVE

Greer et al. proposed an evolutionary and iterative approach called EVOLVE that

supports decision making in software release planning (Greer & Ruhe, 2004). This

approach gets the advantages of integrating the genetic algorithms and iterative solution

method. In practice, a genetic algorithm is used for all iterations to make optimal or

closely optimal decisions (because genetic algorithms generally are not able to

guarantee of making absolute optimal decisions) regarding the assignment of

requirements for the next release. For all iterations, only requirements that satisfy

constraints are considered. The main purpose of using the iterative solution method in

EVOLVE is to provide the opportunities to apply any types of delayed modifications to

requirements, changes to the prioritization of requirements achieved by various

stakeholders, effort estimation and constraints which needed for all requirements,

precedence and coupling constraints and any changes to the weights of stakeholders.

The number of iterations is not fixed throughout the process. The EVOLVE process is

illustrated in Figure 2.4.

 44

Figure 2.4: EVOLVE approach to select requirements for each release (Iqbal, Khan, & Khan, 2009)

Using EVOLVE approach offers many advantages such as:

 It utilizes genetic algorithms to perform an optimal prioritization process for

several stakeholders who may have different viewpoints regarding the priorities

of requirements.

 The approach considers various stakeholder opinions, risk constraints, effort

constraints, and dependencies among requirements.

 It also provides uncertainty in estimating effort, letting stakeholders to select the

confidence level when estimating effort.

TOPSIS-based approach

TOPSIS-based approach (Kukreja, 2013) is a two-step prioritization approach which

has been proposed, on the basis of a decision-analysis framework called TOPSIS

(Technique of Ordered Preference by Similarity to Ideal Solution) (Jahanshahloo, Lotfi,

& Izadikhah, 2006), to prioritize system and software requirements. Initially, the

process is started by decomposing the software system which needs to be developed

 45

into some high-level features called Minimal Marketable Features (MMFs). Then,

MMFs are furthered broken up into low-level requirements.

The MMFs are prioritized by business stakeholders with respect to business goals

and they are assessed based on a scale from 1 to 9 where one indicates the lowest score

and nine represents the highest score of MMF for satisfying a particular business goal.

In addition, the requirements in the lowest level are also prioritized based on three

aspects including relative penalty, business value, and ease of realization by cooperating

technical and business stakeholders. The ease of realization is defined as the extent to

which the requirement technologically, politically, socially, and economically is

achievable.

Case-Based Ranking approach (CBRank)

The Case-Based Ranking approach (CBRank) is a prioritization approach which

combines the pairwise comparison and machine learning techniques to calculate the

final ordering of requirements (Avesani, Bazzanella, Perini, & Susi, 2005; Perini et al.,

2013). The basic idea of integrating machine learning techniques with pairwise

comparisons is to overcome the scalability issues concerned with pairwise comparisons.

In other words, using machine learning techniques makes the approach applicable for a

large number of requirements. Figure 2.5 depicts the main steps of CBRank approach

for prioritizing software requirements.

 46

Figure 2.5: Steps of CBRank approach for prioritizing requirements (Perini, Susi, Ricca, & Bazzanella,

2007)

As can be seen in Figure 2.5, the input of the CBRank approach is a set of

requirements that need to be prioritized whereas the output of the approach is an

estimation of the final ordering. The pair sampling function is an automatic process in

which a couple of requirements should be selected based on some pre-defined criteria.

The decision maker must assess all pairs of requirements through an iterative process.

The ranking learning function takes the preference values of the decision maker as an

input, and produces an estimation of the final ordering of requirements as an output.

The learning function works according to the boosting approach presented in (Avesani,

Bazzanella, Perini, & Susi, 2004). The process is terminated once the ranking generated

by the learning function can be recognized as a reasonable output. Otherwise, it should

be considered as an input for further iteration.

Value-based Intelligent Requirements Prioritization (VIRP)

VIRP is essentially a three-level prioritization technique which exploits automated

fuzzy logic-based system, stakeholders’ preferences, and expert’s opinions to iteratively

prioritize requirements (Muhammad Ramzan, Jaffar, & Shahid, 2011). The iterative

 47

process used in VIRP enhances the reliability of results produced by the prioritization

approach. The main steps of the VIRP approach are presented in Figure 2.6.

Figure 2.6: The general process of VIRP approach for requirements prioritization (M Ramzan, Jaffar,

Iqbal, Anwar, & Shahid, 2009)

Fuzzy Analytical Hierarchy Process (FAHP)

Laarhoven and Pedrycz (Van Laarhoven & Pedrycz, 1983) proposed the Fuzzy

Analytical Hierarchy Process in which AHP method and Fuzzy Theory were combined

together in order to cope with the vagueness and indefiniteness associated with the

opinions of decision makers. Zadeh (Zadeh, 1965) first proposed Fuzzy Theory, which

is capable of getting indefinite opinions from stakeholders. After getting undetermined

opinions as inputs, then fuzzy set theory is able to specify the extent to which these

inputs belong to the appropriate fuzzy sets. The process should be continued by

defuzzification process, which normally generates quantifiable weights in the form of

numerical values. By integrating fuzzy set theory, AHP is able of managing the

 48

fuzziness of the data involved in decision making in an efficient way. By proposing

FAHP, the authors have shown that several concepts and things that exist in the real life

may have fuzziness.

Thakurta’s approach

Thakurta proposed a quantitative prioritization approach in which non-functional

requirements have been focused (Thakurta, 2013). This approach aims at generating a

prioritized set of non-functional requirements that need to be implemented for a

software project by considering the opinions of stakeholders of both project and

business organization. It also considers the objectives of both project and business

organization. In addition, the approach is capable of providing quantitative information

for determining the degree of the benefit that can be reached while making decision on

accepting or ignoring a specific non-functional requirement to be considered in the final

requirements of a particular project. The prioritization process additionally represents

the importance degree of all business objectives as well as different non-functional

requirements achieved by each stakeholder of business organization. The main

difference of this approach from existing ones is that it considers the dependencies of

non-functional requirements during the prioritization process. Nevertheless, the

approach consists of six steps, as listed below, to prioritize non-functional requirements:

1. Identification of non-functional requirements

2. Construction of a project level scenario

3. Connecting scenario to business objectives

4. Calculation the weights of non-functional requirements of scenario

5. Applying a heuristic to ignore some non-functional requirements from a

scenario

 49

Interrelationship-based approach approach

Dabbagh and Lee proposed an AHP-based approach for prioritizing non-functional

requirements (Dabbagh & Lee, 2013). In this approach, the interrelationships which

may exist among non-functional requirements are considered during the prioritization

process while non-functional requirements are prioritized based on their importance to

the customers and users. In other words, the approach produces a consistent prioritized

list of non-functional requirements in which there is no conflicting relationships among

the output list. This approach consists of eight steps as described below:

1. Elicit a list of non-functional requirements that need to be prioritized.

2. Collect the preference value between each pair of non-functional

requirements.

3. Apply AHP algorithm on the candidate list of non-functional requirements.

4. Insert the results of applying AHP into an array called initial set.

5. Select a non-functional requirement which poses the greatest value of the

initial set as well as appending it into the result set.

6. Remove the selected non-functional requirement from the initial set.

7. Remove any non-functional requirement from the initial set which has

negative impact on the high-priority non-functional requirement.

8. If the initial set is empty, the process is terminated and the result set is then

used as guidance for other members of the project. Otherwise, further

iteration would be needed. (go to step 5)

 50

Hybrid Assessment Method (HAM)

HAM is a multiple criteria decision-making method in which the pairwise comparison

decision matrix is integrated with the classical weighted average decision matrix to rank

a collection of alternatives with respect to a set of criteria. HAM is a two-phase method

which begins the prioritization task by eliciting the criteria and the alternatives (Ribeiro,

Moreira, Van den Broek, & Pimentel, 2011). The second step performs trade-offs

between criteria using pairwise comparisons. The third step is to calculate the criteria

priority vector, normalize the respective weights and calculate the consistency ratio.

These three steps belong to Phase 1 of the HAM and correspond to an automated

determination of weights for the decision matrix. Phase 2 starts in step four, which

elicits the contributions of each alternative with respect to each criterion, using a

classical weighted average decision matrix. The fifth and final step is an aggregation

process to determine the prioritization of alternatives (ranking) using a geometric

aggregation operator. This step concludes the HAM’s process by providing the ratings

for each alternative.

2.2.2 Ordinal Scale Approaches

Simple ranking

Simple ranking method is a common prioritization method by which requirements

are prioritized in the same way as the people rank objects in real life (Berander &

Andrews, 2005). It means that for 𝑛 requirements to be ranked, the most important

requirement is assigned rank 1 while the least important one is assigned rank 𝑛 (Hatton,

2008). Using this method, the priority of each requirement is unique, but it is not

possible to have the relative importance of two requirements.

 51

Simple ranking method has been considered as medium in terms of granularity and

easy in terms of sophistication (Berander, 2004a). This method is suitable to be applied

in the prioritization problems like in bespoke development where only one stakeholder

involves in the prioritization process since it would be difficult to consider different

viewpoints of distinct stakeholders (Khan, 2006). However, it is feasible to aggregate

different views by calculating the mean priority of every single requirement which is

not really advisable.

Bubble sort

Bubble sort has been basically identified as one the straightforward methods for

sorting elements (Hopcroft, 1983) and it has been firstly applied in the area of software

requirements prioritization in the study presented by (J. Karlsson et al., 1998). It is

interesting to mention that there is a high degree of similarity between bubble sort and

AHP method since the number of required pair-wise comparisons in both approaches

is 𝑛 × (𝑛 − 1)/2. The difference is that by using bubble sort, the decision maker does

not need to specify the importance degree between each pair of requirements. Using

bubble sort involves four steps as follows:

1. Put the requirements in a vertical column.

2. Compare two requirements from the top of column to find out which one is

more important. If the higher requirement is less important than the lower one,

change their positions in the column.

3. Continue this process until the bottom of the column is reached.

4. If the position of any requirement has been changed during steps 2 and 3, do the

process again for the whole column starting from the top two requirements (step

 52

2). Continue repeating the process until the positions of all requirements are

fixed through the column.

The outcome of this process is a prioritized column of requirements where the most

important requirement is placed at the top and the least important one is placed at the

bottom of the column. The shortcoming of this method is that it is not suitable for

prioritizing a large number of requirements.

Binary search tree

Binary tree is defined as a tree where each node contains at most two children and

binary search tree is a particular kind of binary tree in which the nodes have labels.

Binary search tree has been basically identified as a method for sorting the elements of a

set (Hopcroft, 1983) and has been firstly introduced for prioritizing software

requirements in (J. Karlsson et al., 1998).

To prioritize 𝑛 requirements using binary search tree method, a binary search tree

with 𝑛 nodes should be constructed. To start the process, the first requirement needs to

be placed in the top node of tree. Then, the next requirement should be compared to the

top node. If it has a high priority than top node, it must be placed as the right children of

the top node and if it has a low priority than top node, it should be put as the left

children of the top node. This process should be repeated until all requirements are

placed in the right positions of the binary search tree. Once the binary search tree is

constructed completely, the prioritized list of requirements can be achieved by

traversing the tree in in-order. The time complexity of prioritizing 𝑛 requirements using

binary search tree method is 𝑂(𝑛 log 𝑛) (Ma, 2009).

 53

Planning Game

Planning Game (PG) has been applied in an Extreme Programming (XP) project with

the purpose of making decisions on what to develop for a certain release. Using this

technique, customers are first asked to elicit requirements. After eliciting requirements,

the customers prioritize them according to three different groups: (1) the requirements

that without considering them the software system is not able to work, (2) the

requirements that are not considered as critical but produce essential business value, and

(3) the requirements that would be better to be considered (Beck, 2000).

Simultaneously, the required time for implementing each requirement is estimated by

developers. Then, requirements are prioritized into three different groups: (1)

requirements that can be estimated accurately, (2) requirements that can be estimated

moderately, and (3) requirements that cannot be estimated.

According to the requirements’ importance, time estimation, and also determining

the release date of system, the customers prioritize the requirements of each group and

then make decision regarding the selection of which requirements for the next release

(Newkirk & Martin, 2001). PG exploits a sorting algorithm such as numerical

assignment (J. Karlsson, 1996) to prioritize the requirements into one of three groups.

Then, the requirements of each group are compared together to produce an ordered list

of requirements.

As explained before, the outcome of the PG technique is a prioritized list of

requirements. This indicates that the requirements are listed as a ranking on an ordinal

scale, without providing any information regarding the extent to which each

requirement would be important than the other one.

 54

Quality Function Deployment (QFD)

QFD is a significant method targeted at satisfying customer requirements and

converting requirements into design objectives (Wang, Xie, & Goh, 1998). It has been

identified as an effective management method in multi-criteria decision-making

problems due to its clarity and simplicity. The basis of QFD is to create and deal with a

management tool, called House Of Quality (HOQ) (Cohen & Cohen, 1995), which

documents the translation of customer requirements into high-level technical

specifications. In HOQ, customers are responsible for determining the relative

importance of customer requirements. The way of determining the relative importance

is not to perform pairwise comparison but to assign a number to each requirement

which expresses the customer’s viewpoints regarding that requirement. This helps to

construct the prioritization matrix method which has been utilized in HOQ to provide

the final weight of each requirement. Constructing the prioritization matrix method in

HOQ involves some steps as follows:

1. List customer requirements (what).

2. List technical descriptors (how).

3. Develop a relationship matrix between what and how.

4. Develop an interrelationship matrix between how.

5. Develop prioritized customer requirements.

6. Develop prioritized technical descriptors.

Correlation-Based Priority Assessment (CBPA)

The CBPA method has been developed to perform the prioritization of software

process requirements obtained from various groups of stakeholders by combining inter-

 55

perspective relationships that exist among different requirements (Liu et al., 2006).

Addressing the relationships among different requirements obtained from different

stakeholders during the prioritization process could possibly help practitioners to

achieve a general knowledge regarding the problem domain as well as the requirements

of stakeholders for the software process.

In addition, the CBPA method was proposed to provide the opportunity for business

organizations to prioritize the requirements gathered from various stakeholders with the

aim of recognizing and concentrating on the most critical subjects elicited from different

stakeholders. CBPA showed constant and changeless efficiency under circumstances

where a wide range of requirements were gathered from various perspectives. By

applying this method, those software process requirements that have more and solid

effects on other requirements from various perspectives may be assigned as high-

priority requirements. Satisfying these high-priority requirements can enhance the

overall quality of the final product. The cooperative prioritization of process

requirements prepares a noteworthy guideline to mitigate project risks that may have

negative influence on the improvement of software process. It also assists to enhance

the quality of the process, which provides many benefits for all associated stakeholders.

2.2.3 Nominal Scale Approaches

Numerical assignment

Numerical assignment has been recognized as a popular method for prioritizing

requirements, as acknowledged by different studies such as (Berander & Andrews,

2005; Bradner, 1997; S. IEEE, 1998; L. Karlsson et al., 2006; Leffingwell & Widrig,

2000; Sommerville & Sawyer, 1997). Furthermore, it has been identified as a medium

and very easy method in terms of granularity and sophistication, respectively (Berander,

 56

2004a). The idea in numerical assignment method is to divide requirements into

different priority groups. Although the number of groups may be different from case to

case, choosing three groups is common in general. For instance, requirements can be

categorized based on three groups such as critical, standard, and optional. Labelling

groups with words such as high, medium, and low may confound stakeholders since

different stakeholders could have their own interpretation regarding these terms. Hence,

it is necessary to provide stakeholders with common definitions of each group before

asking them to prioritize.

As mentioned in (Berander, 2004b), one of the shortcomings of this method is that

most of the stakeholders have a tendency to label each requirement as a critical one. A

solution to overcome this issue is to force stakeholders to choose only a limited number

of requirements for each group. However, this may result in reducing the efficiency of

the prioritization process. The outcome of numerical assignment method is represented

using nominal scales so that the requirements of each group have the same priority.

Top-ten requirements

Using top-ten requirements approach for prioritizing requirements involves asking

stakeholders to choose the most ten significant requirements among all candidate

requirements from their points of view without specifying the relative importance

between selected requirements (Berander & Andrews, 2005). This makes the approach

particularly ideal for several stakeholders with the same level of importance (Lauesen,

2002). The intention of not prioritizing some more is that it could cause inessential

conflicts when some stakeholders get support for their top priority and others only for

their third priority. One might presume that conflicts could happen in any case if, for

instance, one customer considers three top-ten requirements into the product whereas

 57

another addresses six top-ten requirements into the product. Nevertheless, it is not just a

good choice to get an average among all stakeholders because it could result in failing

some stakeholders to get any of their top requirements (Lauesen, 2002). Alternatively, it

is essential that a number of important requirements are fulfilled for every stakeholder.

This might clearly lead to a situation that dissatisfies all customers rather than fulfilling

a few customers entirely. The major challenge associated with this approach is to handle

these issues.

MoSCoW

MoSCoW is based on numerical assignment and it has been suggested by (Hatton,

2007, 2008; Tudor & Walter, 2006). It is also integrated into the software development

methodology, called Dynamic Systems Development Method (DSDM). The basic idea

behind MoSCoW is to partition all candidate requirements into four priority groups

including “MUST have”, “SHOULD have”, “COULD have”, and “WON’T have” (Ma,

2009). MoSCow is an acronym stands for:

 “MUST have” represents that requirements of this group should be included in

the project. Failure to satisfy these requirements equals to the failure for the

whole project.

 “SHOULD have” indicates that the project would perform better if the

requirements of this group are included.

 “COULD have” also represents that the project would perform better if the

requirements of this group are included. But these requirements are less

important than the requirements in the “SHOULD have” group.

 58

 “WON’T have” is like a “wish list”. It indicates that although the requirements

of this group are good but they could not be considered in the current release.

They might be included in the next release.

This method is not able to provide the relative importance of requirements of each

group. In other words, all the requirements within each group have the same priority.

Requirements triage

A semi-automated prioritization approach has been proposed by (Duan et al., 2009)

with the purpose of producing a prioritized set of requirements from a large list of

unrefined stakeholders’ demands using data mining and machine learning techniques. It

has been also indicated that how the prioritized list of requirements might be utilized to

notify and supply the triage process. The approach, which is referred to as Pirogov after

one of the inventors of early triage practices, exploits clustering techniques to put

requirements into several distinct classes that take the different and complicated roles

played by separate requirements. For instance, one clustering technique classifies

requirements according to feature sets; the other one captures and clusters non-

functional requirements or early aspects; whereas others classify requirements based on

user-defined aspects including high-level use cases, business goals, or available code

samples. The final output result is that each requirement is placed into one or more

feature sets, while a cross-cutting subset of requirements are located into supplementary

classes. Using this approach, Stakeholders are in charge of specifying the relative

weight of each cluster as well as determining the importance weight of each clustering

method.

 59

The approach provides some advantages. First, the required elicitation effort by

stakeholders to perform the prioritization process is remarkably decreased. For example,

to prioritize 1000 requirements using the binary search tree method, 10000 comparisons

are needed while to prioritize the same number of requirements using the presented

approach, only 500 comparisons should be done. The second advantage is that the

approach allows stakeholders to make decisions at a higher level of abstraction, which

are further automatically transformed down to the requirement level. The third

advantage is that the approach enables using multiple criteria throughout the triage

process. The last advantage of the approach is that decisions made at the clustering level

can be used for different releases of the product, and can also be used to automatically

filter next requirements and other stakeholder demands. On the other side, the

restrictions of the approach are associated with the restrictions of underlying data

mining and machine learning techniques which have been used in the approach.

2.2.4 Interval Scale Approaches

Requirements Uncertainty Prioritization Approach (RUPA)

The necessity for addressing uncertainty in requirements prioritization is introduced

and established in a prioritization approach called Requirements Uncertainty

Prioritization Approach (RUPA) (Voola & Babu, 2012). The idea of uncertainty and

imprecision is described in this approach by introducing a probability distribution across

individual scores and score intervals to determine the importance of requirements. This

approach integrates extensive numerical assignment method (Voola & Babu, 2013) and

interval evidential reasoning algorithms to prioritize requirements.

 60

2.2.5 Overview of Current Requirements Prioritization Approaches

This section aims to provide a summary, as given in Table 2.7, on the existing

requirements prioritization approaches that have been discussed thoroughly in the

preceding sections. The explanation and limitation of each presented requirements

prioritization approach are given in Table 2.7.

Table 2.7: Overview of requirements prioritization approaches

Source Prioritization approach Explanation Disadvantage

(J. Karlsson,

1996)

Analytical hierarchy process This approach compares

all possible pairs of

requirements to

calculate the relative

weight of each

requirement

Not scalable when used

for prioritizing a large

number of requirements

(Berander &

Andrews, 2005)

Hundred dollar method Stakeholders receive

100 fictitious units and

they are asked to

allocate these units

among candidate

requirements

Does not work well for

a large number of

requirements

(J. Karlsson et al.,

1998)

Minimal spanning tree This approach uses a

weighting score to order

requirements in a

directed graph

Not suitable to

recognize inconsistent

judgments

(J. Karlsson &

Ryan, 1997)

Cost-value approach Requirements are

prioritized based on

value to customers and

implementation cost

It is time-consuming

when applied for a large

number of requirements

(Jim Azar et al.,

2007)

Value-oriented prioritization Requirements are

prioritized according to

their impact on business

values

Not address

requirements

dependencies in the

prioritization process

(J. Karlsson et al.,

1998)

Hierarchy AHP Requirements are

placed in a hierarchy

and then AHP is applied

on each hierarchy

Not able to identify

inconsistent judgments

(K. E. Wiegers,

2003)

Wieger’s method Requirements are

prioritized based on

benefit, penalty, cost, and

risk

It lacks of mathematical

basis and not suitable

for large projects

 61

Table 2.7, continued

Source Prioritization approach Explanation Disadvantage

(Tonella et al.,

2013)

Interactive genetic algorithm It uses a genetic

algorithm to reduce the

amount of pairwise

comparisons that need

to be elicited from the

decision maker

Did not apply on

different case studies to

show its effectiveness

(Greer & Ruhe,

2004)

EVOLVE It integrates the genetic

algorithms and iterative

solution method to

make optimal solutions

It suffers from time

complexity

(Kukreja, 2013) TOPSIS-based approach Requirements are

prioritized by

stakeholders according

to business goals

Did not address

requirements

dependencies

(Perini et al.,

2013)

Case-based ranking It exploits machine

learning algorithms to

reduce the number of

pairwise comparison

It sacrifices the

accuracy of results for

decreasing the time

(Muhammad

Ramzan et al.,

2011)

Value-based intelligent

requirements prioritization

It uses automated fuzzy

logic-based system,

stakeholders’

preferences, and

expert’s opinions to

iteratively prioritize

requirements

Not scalable to be

applied in large projects

(Van Laarhoven

& Pedrycz, 1983)

Fuzzy AHP It combines triangular

fuzzy numbers and

AHP algorithm to

prioritize requirements

Not suitable for

prioritizing a large

number of requirements

(Thakurta, 2013) Thakurta’s approach Non-functional

requirements are

prioritized based on

business objective and

stakeholders’ ratings

Decisions might be non-

optimal due to the

subjectivity of inputs

(Dabbagh & Lee,

2013)

Interrelationship-based

approach

Non-functional

requirements are

prioritized based on

their interrelationships

and AHP algorithm

It lacks of empirical

evaluation

(Berander &

Andrews, 2005)

Simple ranking Requirements are

prioritized from 1 to 𝑛

It lacks of providing

relative importance

between requirements

and it is not

recommended for a

large number of

requirements

(J. Karlsson et al.,

1998)

Binary search tree This method prioritizes

requirements by

traversing a binary tree

of requirements in in-

order

It is not able to show

the relative weights of

requirements

 62

Table 2.7, continued

Source Prioritization approach Explanation Disadvantage

(J. Karlsson et al.,

1998)

Bubble sort Requirements are

prioritized according to

the following steps:

(1) Inserting

requirements in a

vertical vector

(2) Performing the

comparisons of

requirements

(3) Ordering

requirements from

bottom-up

It is not suitable for

prioritizing a large

number of requirements

(Beck, 2000) Planning Game Requirements are first

categorized into three

groups and then

prioritized by relevant

stakeholders

It lacks of providing

information regarding

the extent to which each

requirement would be

important than the other

(Wang et al.,

1998)

Quality function deployment It uses the prioritization

matrix method to

produce the final rank

of each requirement

Not scalable for

prioritizing a large

number of requirements

and not able to identify

inconsistent judgments

(Liu et al., 2006) Correlation-based priority

assessment

Requirements are

prioritized by

synthesizing

requirements

correlations using

relationship matrix

It lacks of addressing

negative correlations

between requirements

during the prioritization

process

(L. Karlsson et

al., 2006)

Numerical assignment Using this method,

requirements are

divided into different

priority groups

Its shortcoming is that

stakeholders tend to put

requirements in the

most important group

(Berander &

Andrews, 2005)

Top-ten requirements Stakeholders select their

top-ten requirements

from all candidate

requirements

It is not effective when

many stakeholders with

conflicting viewpoints

involve in the

prioritization process

(Ma, 2009) MoScoW All candidate

requirements are

partitioned into four

priority groups

including “MUST

have”, “SHOULD

have”, “COULD have”,

and “WON’T have”

It is not able to provide

the relative importance

of requirements within

each group

(Duan et al.,

2009)

Requirements triage Requirements are

prioritized from a large

list of unrefined

stakeholders’ demands

using data mining and

machine learning

techniques

It is capable of making

errors during the

prioritization process

 63

Table 2.7, continued

Source Prioritization approach Explanation Disadvantage

(Voola & Babu,

2012)

Requirements uncertainty

prioritization approach

It uses an extensive

numerical assignment

method and interval

evidential reasoning

algorithms to prioritize

requirements

It is not scalable for

prioritizing a large

number of requirements

2.3 Empirical Evaluations of Requirements Prioritization Approaches

A number of empirical studies have been conducted in the literature to perform the

comparative and experimental evaluations of the state-of-the-art prioritization

techniques, methods and approaches. To compare the prioritization approaches, some

properties of the techniques, methods and approaches, such as time-consumption,

scalability, ease of use, and accuracy of results, have been measured throughout the

empirical studies. This section aims to provide a review on the most important

comparative evaluations of existing prioritization approaches which inspired this work.

2.3.1 The Evaluation of Minimal Spanning Tree, Bubble Sort, Binary Search Tree,

Priority Groups, Hierarchy AHP, and AHP

An empirical study was conducted by (J. Karlsson et al., 1998) to compare six

prioritization approaches including minimal spanning tree, bubble sort, binary search

tree, priority groups, Hierarchy AHP, and AHP. The six approaches have been applied

on thirteen requirements of telephony system. These requirements have been prioritized

by three authors of the study. The prioritization was done based on the importance of

requirements for customers. Each author applied the approaches randomly without any

pre-defined execution orders.

During the study, the authors have used two types of measurements for comparative

evaluations of the six prioritization approaches. These measurements included both

 64

subjective and objective measurements. A range of ordinal numbers from one to six

have been used for the measurements so that one represented the best choice whereas

six represented the worst option. The results of performing the experimental study are

provided in Table 2.8.

The authors considered time consumption per decision, total time consumption, and

required number of decisions as objective measurements.

 Time consumption per decision represented the average time needed for making

one decision using a given prioritization approach.

 Total time consumption indicated the total time needed for performing the

prioritization process using a particular approach.

 Required number of decisions determined the total number of decisions needed

to be made using each prioritization approach.

In addition, three properties such as fault tolerance, reliability of results, and ease of

use have been selected as subjective measurements.

 Fault tolerance indicated the capability of recognizing inconsistent judgements.

 Reliability of results showed how much the result of a specific prioritization

approach could be reliable.

 Ease of use described how much a prioritization approach would be easy for

performing the prioritization process.

 65

Table 2.8: Results of objective and subjective measurements (J. Karlsson et al., 1998)

Approach

Criteria

AHP Hierarchy

AHP

Spanning tree Bubble sort Binary search Priority groups

Time

consumption

per decision

2 4 5 1 6 3

Total time

consumption

6 2 1 3 5 4

Required

number of

decisions

78 26 12 78 293338 343536

Fault

tolerance

1 3 6 2 4 5

Reliability

of results

1 3 6 2 4 5

Ease of use 3 4 2 1 5 6

According to the results presented in Table 2.8, it can be concluded that AHP is able

to produce trustworthy results compared to the other six approaches. However, it takes a

long time to perform the whole prioritization process. Minimal spanning tree method

seems to be the fastest method among others for requirements prioritization and also

requires a minimum number of decisions to be made. Nevertheless, it lacks of providing

reliable results and being fault tolerant. Bubble sort has been identified as an easiest

method and can produce almost reliable results though it requires a large number of

decisions. Binary search tree and hierarchy AHP can be considered as moderate

prioritization approaches since they generate less reliable results in comparison with

AHP and bubble sort. On the other side, they need less time than AHP and bubble sort

to perform the prioritization process.

2.3.2 The Evaluation of Hundred Dollar Method, Planning Game, AHP, Binary

Search Tree, and PGcAHP

Ahl (Ahl, 2005) conducted a controlled experiment to perform the comparative

evaluation of five prioritization approaches including the hundred dollar method,

Planning Game, AHP, binary search tree, and a combination of planning game and

AHP. The five prioritization approaches have been applied on thirteen requirements of a

 66

course registration system. Fourteen subjects including twelve bachelor and master

students and two professionals participated in the controlled experiment.

In order to perform the comparative evaluation of the five prioritization approaches,

the author measured four properties such as scalability, accuracy of results, ease of use,

and time consumption, through the controlled experiment. A range of ordinal numbers

from one to five have been used for measuring scalability, accuracy of results, and ease

of use while time consumption has been assessed in terms of real time. Table 2.9

provides the average results obtained from executing the controlled experiment.

 Scalability has been measured by asking subjects regarding the scalability of a

given prioritization approach when applied on a large number of requirements.

 Accuracy of results has been measured by asking participants to express his/her

opinions about the accuracy of results produced by a particular prioritization

approach.

 Ease of use has been measured by asking subjects to determine how easy a given

prioritization approach could be used for performing the prioritization task.

 Time consumption has been measured by asking participants to keep record of

how long it took them to apply a particular prioritization approach.

Table 2.9: Initial results of controlled experiment (Ahl, 2005)

Approach

Criteria

Hundred dollar Planning Game AHP Binary search tree PGcAHP

scalability 3 4 2 3 3

Accuracy of results 3 3 2 3 2

Ease of use 3 3 2 3 3

Time consumption 3.5 2.7 11 9.15 5.28

The initial results obtained from executing the controlled experiment have been

analysed statistically by the author to provide more rigorous findings. According to the

 67

final results of the study, the binary search tree method has been identified as the most

suitable approach for prioritizing requirements. This could be due to the reasons that it

could provide the most accurate results among other approaches, i.e. it took reasonable

time for performing the prioritization task, it was an easy method to use, and it could

also be easy to apply even for a large number of requirements. Even though the results

have shown that the binary search tree method would be the best prioritization

approach, some variables such as previous experiences of subjects on the prioritization

approaches could have some effect on the final result. Another interesting point reported

from this study was that the test subjects selected the combination of Planning Game

and AHP, i.e. PGcAHP, as one of the best overall methods for requirements

prioritization even though they did not give a high rank to PGcAHP when measuring

the other properties. A reason for this could be that there were few requirements or few

subjects to get a clear answer.

2.3.3 The Evaluation of Hundred Dollar Method, AHP, MoSCoW, and Simple

Ranking

Another empirical study conducted by Hatton to evaluate the effectiveness of four

prioritization approaches including the hundred dollar method, AHP, MoSCoW, and

simple ranking method (Hatton, 2007). In practice, the effectiveness of these approaches

has been evaluated by measuring three properties such as user confidence, the required

time to complete the prioritization process, and ease of use. The four mentioned

approaches have been applied on twelve requirements of a mobile phone software

system. In addition, thirty one persons from a different range of careers, educational

levels, genders, and ages have been considered as participants of the empirical study.

 68

Each subject of the study was asked to apply each prioritization approach on the

requirements of the mobile phone software system. Then, they were also asked to

determine his/her confidence rate regarding each approach, record the time needed by

each approach to perform the whole prioritization task, and specify the difficulty level

of each approach.

The time needed by each prioritization approach was measured by asking the

participants to record the time he/she commenced and terminated the prioritization

process while working with each approach. To measure the difficulty (ease of use) of

each approach, an ordinal scale ranging from one to ten was used, where one

represented the lowest level and ten expressed the highest level of difficulty. The user-

confidence level was also rated on an ordinal scale from one to ten, where one

represented “not confident” and ten expressed “very confident”. The results of the

empirical study are presented in Table 2.10 and Table 2.11.

Table 2.10: Results of times taken, median confidence, and median difficulty (Hatton, 2007)

 Minimum

time

Maximum

time

Mean time Standard

deviation

Median

confidence

Median

difficulty

MoSCoW 1 5 1.78 1.083 8 2

Simple Ranking 1 4 1.5 0.73 8 3

Hundred dollar 1 8 3.6 2.42 7 4

AHP 7 22 14.03 4.4 2 9

Table 2.11: Properties of the prioritization approaches (Hatton, 2007)

Simple ranking MoSCoW Hundred dollar AHP

Ratio scale information √ √
High confidence from user √ √ √

Consistent √ √ √ √
Low difficulty √ √ √

Low effort √ √ √

Able to handle large numbers of

alternatives

 √

 69

According to the results presented in Table 2.10, it is clear that AHP requires the

longest time to complete the prioritization task among the other four approaches.

Regarding the mean time values, AHP takes much longer time to perform the

prioritization process. MoSCoW and simple ranking have achieved the highest rate of

confidence as well as the lowest degree of difficulty. AHP shows the highest rate of

difficulty and the lowest confidence rate.

The results presented in Table 2.11 imply that the outcomes of all four approaches

are consistent. This indicates that the outcomes of all four approaches reflect the actual

viewpoints of participants regarding the priorities of requirements. MoSCoW has been

identified as the easiest approach to use among the four other approaches. It gives high

user confidence and it requires less time to complete. Simple ranking has been also

recognized as an easy approach to use. Similar to MoSCoW, it gives high user

confidence and it requires less time to complete. Even though the hundred dollar

method needs longer time to complete and provides less user confidence than simple

ranking and MoSCoW, it is almost easy to use, provides high user confidence, and

requires less time to complete. AHP has been identified as the most difficult approach to

use.

2.3.4 The Evaluation of AHP and Planning Game

In the study conducted by (L. Karlsson, Thelin, Regnell, Berander, & Wohlin, 2007),

two controlled experiments have been carried out with the aim of evaluating three

prioritization approaches. In the first controlled experiment, two prioritization

approaches, AHP and Planning Game, have been compared to find out which one is

more effective. Sixteen subjects including fifteen students and one professor

 70

participated in the experiment. They have been asked to apply AHP and Planning Game

on sixteen requirements of mobile phone.

In order to perform the comparative evaluation of the AHP and Planning Game, the

authors measured one objective property including time, as well as two subjective

properties, accuracy of results, and ease of use, through the controlled experiment. Time

was measured by asking subjects to determine the start and end time of performing the

prioritization task while using each approach. Accuracy of results was measured by a

post-questionnaire which was submitted to the subjects a few weeks after the

experiment. Ease of use was measured by asking the subjects immediately after the

experiment “Which approach did you find easiest to use?” The results of the first

controlled experiment are given in Table 2.12.

Table 2.12: Results of the first controlled experiment for comparing AHP and Planning Game (L.

Karlsson et al., 2007)

 AHP Planning game p-value direction

Time 26.7min 12.0min 0.0209 Planning Game

Ease of use 6% 75% 0.0023 Planning Game

Accuracy of results 19% 56% 0.2200 ---------

According to the results provided in Table 2.12, it is clear that Planning Game shows

a better performance compared to AHP in terms of ease of use and time-consumption.

Regarding the accuracy of results produced by the two approaches, there is no evidence

of superiority of one approach over another one. This indicates that the prioritized lists

of requirements generated by the two approaches are closely similar.

In the second controlled experiment of this study, the tool-supported version of AHP

has been compared to Planning Game. The motivation behind conducting the second

controlled experiment was that even though the first experiment showed the superiority

 71

of Planning Game over AHP, the authors thought that the tool-supported version of

AHP could cover the defects of its manual version. The selected requirements of the

second experiment were exactly the same as the first experiment while the subjects were

different to prevent biasing the final results. Thirty subjects including 25 male and 5

female master students participated in the second experiment. Similar to the first

experiment, three properties such as time, ease of use, and accuracy of results have been

measured within the second experiment. Table 2.13 shows the results of the second

experiment.

Table 2.13: Results of evaluating tool-supported AHP and Planning Game (L. Karlsson et al., 2007)

 Tool-supported AHP Planning game p-value direction

Time 9.4min 11.3min 0.0400 Tool-supported AHP

Ease of use 53% 33% 0.2393 ---------

Accuracy of results 37% 50% 0.3270 ---------

By analysing the results presented in Table 2.13, it can be found that the tool-

supported AHP is much faster than Planning Game in performing the prioritization task.

However, the statistical tests of ease of use and accuracy of results indicate that there is

not much difference between the two approaches with regards to these two properties.

2.3.5 The Evaluation of AHP and CBRank

Perini et al. conducted a controlled experiment to evaluate two tool-supported

requirements prioritization approaches, AHP and CBRank (Perini, Ricca, & Susi, 2009).

The experiment was carried out by participating twenty three well-experienced subjects

including eight researchers and fifteen Ph.D. students. The subjects of the study have

been asked to apply tool-supported versions of AHP and CBRank on a set of twenty

requirements of the Compilation Compiler Advisor (CoCoA) project. To compare the

 72

two approaches, the authors focused on measuring three properties such as time-

consumption, ease of use, and accuracy.

Time-consumption of each requirements prioritization approach has been measured

automatically by the software tool through recording the start and end time of working

with a given prioritization approach. Ease of use was measured by a post-questionnaire

through asking the subjects to identify which approach was easiest to use. Accuracy was

measured in two ways including expected accuracy and perceived accuracy. Expected

accuracy was measured immediately after the experiment by a post-questionnaire

through which the subjects were asked to determine which approach produced the most

accurate results. Perceived accuracy was measured after a long break by another post-

questionnaire through which the subjects were presented with two prioritized list of

twenty requirements provided during the working sessions with the two tool-supported

versions of AHP and CBRank. The subjects were not aware of which approach

produced a prioritized list. Then, each subject was asked to select a list which better

showed his/her priority orders. This list identified the approach which produced most

accurate results.

Once the experiment has been executed, the data was collected and then statistical

tests were carried out on the obtained results to make rigorous conclusions. Table 2.14

presents the results of the controlled experiment.

Table 2.14: Results of the controlled experiment for comparing AHP and CBRank (Perini et al., 2009)

 Tool-supported

AHP

Tool-supported CBRank p-value direction

Time-consumption 38.65min 10.78min < 0.01 Tool-supported

CBRank

Ease of use 5% 95% < 0.01 Tool-supported

CBRank

Accuracy Expected 70% 30% 0.09 ---------

Perceived 100% 0% < 0.01 Tool-supported

AHP

 73

Based on the results provided in Table 2.14, CBRank shows a better performance

compared to AHP in terms of time-consumption and ease of use. Regarding the

accuracy of results, AHP outperforms CBRank.

2.3.6 Overview of Empirical Studies

A summary on the most important comparative evaluations of different requirements

prioritization approaches which have been explained above is illustrated in Table 2.15.

They are appeared and sorted based on the year of publication.

 74

T
ab

le
 2

.1
5

:
A

n
 o

v
er

v
ie

w
 o

f
co

m
p

ar
at

iv
e

ev
al

u
at

io
n

s
o

f
d

if
fe

re
n

t
p

ri
o
ri

ti
za

ti
o

n
 a

p
p
ro

ac
h

es

O
u

tc
o

m
e

A
H

P

an
d

b

u
b
b

le

so
rt

sh

o
w

ed

a
b

et
te

r
p

er
fo

rm
an

ce

w
it

h
 r

es
p

ec
t

to
 r

el
ia

b
il

it
y

 o
f

re
su

lt
s,

 a
n

d
 e

as
e

o
f

u
se

.

S
p

an
n

in
g
 t

re
e

m
at

ri
x
 r

eq
u

ir
ed

 l
es

s
ti

m
e

to
 p

er
fo

rm
 t

h
e

p
ri

o
ri

ti
za

ti
o

n
 t

as
k

.

P
la

n
n

in
g

g

am
e

w
as

th

e
ea

si
es

t
m

et
h

o
d

to

ap

p
ly

.

H
u

n
d

re
d

d
o

ll
ar

an

d

b
in

ar
y

se
ar

ch

w
er

e
th

e
m

o
st

ac
cu

ra
te

m

et
h

o
d

s.

B

in
ar

y

se

ar
ch

an

d

p

la
n
n

in
g

g

am
e

w
er

e
th

e
m

o
st

sc

al
ab

le

p
ri

o
ri

ti
za

ti
o

n

m
et

h
o
d

s.

T
h

e

b
in

ar
y

 s
ea

rc
h

 t
re

e
w

as
 i

d
en

ti
fi

ed
 a

s
th

e
m

o
st

 e
ff

ec
ti

v
e

m
et

h
o

d
 f

o
r

re
q

u
ir

em
en

ts
 p

ri
o

ri
ti

zi
n

g
.

 M
o

S
C

o
W

w

a
s

id
en

ti
fi

ed

as

th

e
m

o
st

ea

si
es

t
to

u

se

am
o

n
g

o

th
er

m

et
h
o

d
s.

A

H
P

w

as

th
e

sl
o

w
e
st

o

n
e

am
o

n
g

 o
th

er
s.

 S
im

p
le

 r
an

k
in

g
 a

n
d

 M
o

S
C

o
W

 i
n

d
ic

at
ed

th
e

b
es

t
p

er
fo

rm
an

ce
 f

o
r

u
se

r
co

n
fi

d
en

ce
.

T
h

e
au

to
m

at
ed

v

er
si

o
n

o

f
p

ai
r-

w
is

e
co

m
p

ar
is

o
n

s

in
d

ic
at

ed

a
b

et
te

r
p

er
fo

rm
an

ce

in

te
rm

s
o

f
ti

m
e
-

co
n

su
m

p
ti

o
n

 a
s

w
el

l
as

 e
as

e
 o

f
u

se
 w

h
er

ea
s

it
 c

o
u

ld

n
o

t
d

ec
la

re
 o

b
v

io
u

sl
y

 w
h

ic
h

 o
n

e
w

as
 m

o
re

 a
cc

u
ra

te
.

F
o

r
ti

m
e-

co
n

su
m

p
ti

o
n

 a
s

w
el

l
as

 e
a
se

 o
f

u
se

,
C

B
R

an
k

h
as

o

v
er

co
m

e
A

H
P

,
w

h
il

e

fo
r

th
e

ac
cu

ra
cy

A

H
P

p
er

fo
rm

ed
 b

et
te

r.

N
u

m
b

er

o
f

su
b

je
c
ts

p
a

rt
ic

ip
a

te
d

in

th
e

st
u

d
y

3
 s

ch
o

la
rs

1
4

st

u
d

en
ts

an

d

p
ro

fe
ss

io
n

al
s

3
1

 s
u

b
je

ct
s

1
6

st

u
d

en
ts

an

d

sc
h

o
la

rs
 i

n
 t

h
e

fi
rs

t

ex
p

er
im

en
t,

3

0

m
as

te
r

st
u

d
en

ts

in

th
e

se
co

n
d

ex
p

er
im

en
t

2
3

P

h
.D

.
st

u
d

en
ts

an
d

 s
ch

o
la

rs

N
u

m
b

er

o
f

re
q

u
ir

em
e
n

ts

1
3

n

o
n

-

fu
n

ct
io

n
al

re
q

u
ir

em
en

ts

o
f

a
sm

al
l

te
le

p
h

o
n

y

sy
st

em

1
3

re

q
u

ir
em

en
ts

o
f

co
u

rs
e

re
g

is
tr

at
io

n

sy
st

em

1
2

 m
o

b
il

e
p
h

o
n

e

re
q

u
ir

em
en

ts

1
6

 m
o

b
il

e
p
h

o
n

e

re
q

u
ir

em
en

ts

2
0

 r
eq

u
ir

em
en

ts
 o

f

th
e

C
o

m
p

il
at

io
n

C
o

m
p

il
er

 A
d
v

is
o

r

(C
o

C
o

A
)

p
ro

je
ct

M
ea

su
re

d

p
ro

p
er

ti
e
s

o
f

th
e

p
ri

o
ri

ti
za

ti
o

n

a
p

p
ro

a
ch

es

re
li

ab
il

it
y

o

f
re

su
lt

s,

re
q

u
ir

ed

co
m

p
le

ti
o

n

ti
m

e,
 a

n
d

 e
as

e
o

f
u

se

sc
al

ab
il

it
y

,
ac

cu
ra

cy
,

ea
se

 o
f

u
se

,
an

d
 t

im
e

U
se

r
co

n
fi

d
en

ce
,

th
e

ti
m

e
to

co

m
p

le
te

th

e

p
ri

o
ri

ti
zi

n
g

p

ro
ce

ss
,

an
d

 e
as

e
o

f
u

se

ac
cu

ra
cy

,
ea

se

o
f

u
se

,

an
d

 t
im

e-
co

n
su

m
p

ti
o

n

ac
cu

ra
cy

o
f

re
su

lt
s,

ti
m

e-
co

n
su

m
p

ti
o
n

,
an

d

ea
se

 o
f

u
se

R
eq

u
ir

em
e
n

ts

p
ri

o
ri

ti
za

ti
o

n

a
p

p
ro

a
ch

es
 u

n
d

er
 e

v
a

lu
a

ti
o

n

sp
an

n
in

g
 t

re
e

m
at

ri
x

,
b

u
b

b
le

 s
o

rt
,

b
in

ar
y

 s
ea

rc
h

 t
re

e,
 p

ri
o
ri

ty
 g

ro
u

p
s,

H
ie

ra
rc

h
y

 A
H

P
,

an
d

 A
H

P

H
u

n
d

re
d

 d
o

ll
ar

 m
et

h
o

d
,

P
la

n
n

in
g

g
am

e,

A
H

P
,

b
in

ar
y

se
ar

ch

tr
ee

,

an
d

 P
G

cA
H

P

H
u

n
d

re
d

d
o

ll
ar

m

et
h

o
d

,
A

H
P

,

M
o

S
C

o
W

,
an

d
 s

im
p

le
 r

an
k

in
g

A
H

P

an
d

P

la
n

n
in

g

g
am

e
in

th

e

fi
rs

t
ex

p
er

im
en

t,

to
o

l-
su

p
p
o

rt
ed

A
H

P

an
d

P

la
n

n
in

g

g
am

e
in

th

e

se
co

n
d

 e
x

p
er

im
en

t

T
o

o
l-

su
p

p
o

rt
ed

v

er
si

o
n

s
o

f
A

H
P

an
d

 C
B

R
an

k

S
o

u
rc

e

(J
.

K
ar

ls
so

n

et
 a

l.
,

1
9

9
8

)

(A
h

l,
 2

0
0

5
)

(H
at

to
n

,

2
0

0
7
)

(L
.

K
ar

ls
so

n

et
 a

l.
,

2
0

0
7

)

(P
er

in
i

et

al
.,

 2
0

0
9

)

 75

2.4 Concluding Remarks

An in-depth studying and analysis of the current requirements prioritization

approaches, which was discussed in Section 2.2, indicated that each of the existing

approaches has its own benefits and disadvantages. However, one of the important gaps

that has been neglected through all these approaches is that none of them has

investigated and addressed the prioritization of both functional and non-functional

requirements simultaneously during the prioritization process. In other words, it has

been found that the current requirements prioritization approaches can only be applied

with functional requirements or non-functional requirements separately. As discussed

earlier, considering both functional and non-functional requirements is crucial since

these two types of requirements are interrelated and have a serious impact on each

other, and not properly addressing them together in the prioritization process could

ultimately result in delivering low-quality software products. Hence, fulfilling this gap

has been considered as a major motivation toward conducting this research to provide

researchers and practitioners with an approach which is capable of integrating the

prioritization of functional and non-functional requirements simultaneously. Therefore,

this research aims to introduce an approach which allows practitioners to prioritize both

functional and non-functional requirements simultaneously in an integrated manner by

establishing their relationships, ultimately producing the prioritized lists of functional

and non-functional requirements separately.

A thorough reviewing of the most important empirical evaluations of the existing

requirements prioritization approaches, which was presented in Section 2.3, could

provide guidelines on how to evaluate and compare a requirements prioritization

approach which specifically could be beneficial for evaluating a new prioritization

approach. In fact, by analyzing the empirical evaluations of different requirements

 76

prioritization approaches, it has been found that three properties of requirements

prioritization approaches have been measured during all of the empirical studies. Hence,

this could be helpful to choose three properties, such as time-consumption, accuracy of

results, and ease of use, as the most essential properties that need to be measured for

evaluating a new prioritization approach. Furthermore, it has been discovered that AHP

has been widely applied as a reference approach in empirical evaluations of different

prioritization approaches. In addition, analyzing the comparative evaluations of

different requirements prioritization approaches could contribute this research towards

choosing the number of requirements and participants for evaluating a new

prioritization approach.

2.5 Summary

This chapter provided an extensive literature review which has been conducted in

this research on the area of requirements prioritization. In practice, the chapter started

with discussing about the basic concepts such as requirements, requirements

engineering and requirements prioritization. This could possibly assist researchers to get

fundamental and general ideas regarding the current body of knowledge in the context

of requirements prioritization. The chapter continued with presenting a literature review

on the existing requirements prioritization approaches. This could bring some insights

for conducting this research. First, it highlighted the strengths and weaknesses of the

existing requirements prioritization approaches. Second, it was beneficial to find out the

research gap of this study. Ultimately, a literature review on the most important

empirical evaluations of the existing requirements prioritization approaches has been

presented in this chapter. This was helpful to provide guidelines on how to evaluate a

requirements prioritization approach.

 77

CHAPTER 3: RESEARCH METHODOLOGY

The main purpose of conducting this research is to provide researchers and/or

practitioners with an approach which is capable of integrating the process of prioritizing

functional and non-functional requirements simultaneously. To achieve the desired goal,

three successive phases required to be accomplished throughout the research as

illustrated in Figure 3.1. They are defined as follows: preparation phase, approach

development and validation phase, and evaluation phase. Each phase consists of some

activities which have been performed to form the whole body of this research.

Moreover, conducting each phase of the research assisted the researcher to address and

achieve one research objective defined in Chapter 1. Figure 3.1 also sketches the

relationship between the three phases of the research and the three research objectives,

where the preparation phase has addressed the research objective 1, the approach

development & validation phase has tackled the research objective 2, and the evaluation

phase has tackled the research objective 3. The following sections explain the three

mentioned phases in more detail.

3.1 Preparation Phase

In the initial phase of conducting this research, called preparation phase, a detailed

review of the literature has been performed on the area of software requirements

prioritization. This resulted in collecting:

 Several studies that investigate different requirements prioritization techniques,

methods, and approaches proposed in recent years to perform the requirements

prioritization process.

 78

Start

Conduct an extensive literature

review on various requirements

prioritization approaches

Conduct an extensive literature

review on different comparative

evaluations of existing approaches

Study the state of the art

Evaluate the effectiveness of the

proposed approach

End

Preparation

Evaluation

Controlled

experiments

Comparing with two

state-of-the-art

approaches

Research objective 1

Research objective 2

Research objective 3

Approach Development

and

 Validation
Validate the proposed approach

through case study

Validate the proposed approach

through mathematical theory

Propose an approach for integrating

the prioritization of functional and

non-functional requirements

simultaneously

Time-consumption Accuracy Ease of use

Figure 3.1: Flow chart of the research methodology

 A number of empirical studies that had been carried out and reported in order to

perform the comparative evaluations of the existing techniques, methods, and

approaches.

 79

Conducting an extensive literature review, on the various requirements prioritization

approaches, was useful to find out the research gap of this study. It should be pointed

out that the detailed explanations of the current approaches are provided in Chapter 2. In

fact, after the final review of the different requirements prioritization approaches, it has

been found that addressing both functional and non-functional requirements within a

single prioritization approach has received less attention in current prioritization

approaches. This could be considered as a motivation to propose an approach in which

prioritization of functional and non-functional requirements could be integrated

simultaneously.

On the other hand, a review on the most important empirical evaluations of existing

prioritization approaches, that inspired our work, has been conducted throughout the

preparation phase. Generally, this review targeted toward determining the guidelines on

how to evaluate and compare the requirements prioritization approaches. In particular, it

contributed to this research by identifying the significant properties that need to be

measured for evaluating a new requirements prioritization approach. Further discussions

regarding the most important comparative evaluations of existing prioritization

approaches are given in Chapter 2.

3.2 Approach Development and Validation Phase

Three main activities which have been conducted throughout the approach

development and validation phase are proposing an integrated approach for

simultaneous prioritization of functional and non-functional requirements, validating the

proposed approach through a case study, and validating the proposed approach through

mathematical theory. In the following, these activities are explained briefly.

 80

3.2.1 Propose an Integrated Approach for Simultaneous Prioritization of

Functional and Non-functional Requirements

As the beginning part of the approach development and validation phase, an

approach has been proposed throughout this research with the aim of integrating the

process of prioritizing functional and non-functional requirements simultaneously. This

approach is called Integrated Prioritization Approach (IPA). IPA can be defined as an

approach which prioritizes both functional and non-functional requirements

simultaneously, producing two prioritized lists of functional requirements and non-

functional requirements separately. In other words, by applying IPA on a candidate list

of functional requirements as well as a candidate list of non-functional requirements,

researchers/practitioners are able to obtain a prioritized list of non-functional

requirements along with a prioritized list of functional requirements.

The initial motivation behind proposing such an approach is particularly based on the

idea that non-functional requirements may affect several functional requirements

(Berander & Andrews, 2005). Inspired by this point, the intention is to find out the

extent in which each non-functional requirement may affect a given functional

requirement. By determining such a value (i.e. the importance degree of a non-

functional requirement for a given functional requirement), IPA aims to prioritize

functional and non-functional requirements simultaneously according to the relationship

which may exist among functional and non-functional requirements. It should be noted

that IPA uses only one decision matrix to perform the prioritization task.

By establishing the relationship between functional and non-functional requirements,

IPA produces a prioritized list of non-functional requirements by calculating the total

importance degree of each non-functional requirement with respect to all related

functional requirements. In other words, it means that a non-functional requirement

which achieves the greatest total importance degree among all functional requirements

 81

may be assigned as a high-priority non-functional requirement with respect to all

functional requirements. Moreover, it provides a prioritized list of functional

requirements with respect to all candidate non-functional requirements.

IPA is a nine-step approach which can be used in both single and group decision

making problems. The nine steps of IPA are listed below. The whole description of each

step is provided in Chapter 4.

1. Identify stakeholders of software system

2. Specify the weights of stakeholders using Analytic Hierarchy Process

3. Identify functional and non-functional requirements

4. Extract functional and non-functional requirements statements

5. Construct the decision matrix

6. Elicit the importance degree of each non-functional requirement (NFR) with

respect to each functional requirement (FR) to establish the relationship between

functional and non-functional requirements

7. Calculate NFRs ranking with respect to all FRs using triangular fuzzy number

and alpha cut approach

8. Compute FRs ranking using weighted average decision matrix and weights

determined in Step 7

9. Aggregate different prioritized lists of FRs and NFRs provided by various

stakeholders to obtain final rankings of FRs and NFRs

3.2.2 Validate the Proposed Approach through a Case Study

In order to validate the proposed approach (i.e. IPA), it has been applied on a case

study to demonstrate how the nine steps of the proposed approach could be utilized in

practical solutions. Indeed, in this part of research, IPA has been applied on a collection

of 15 functional requirements and 5 non-functional requirements of Automated Teller

Machine (ATM), Cash Deposit Machine (CDM), and Check Deposit Machine (CQM).

 82

Four users of ATM, CDM, and CQM, who played the role of stakeholders, participated

in the case study. The detailed explanation of validating IPA through case study is given

in Chapter 5.

3.2.3 Validate the Proposed Approach through Mathematical Theory

In this part of research, mathematical theory is used to show that the outcome of the

proposed approach is proven to be valid. To perform such an activity, the proposed

approach is expressed using mathematical formulation. Then, graph theory is utilized to

prove that the final prioritized list of functional and non-functional requirements

produced by the proposed approach are prioritized in a correct order. The validation of

the proposed approach through mathematical theory is described in more detail in

Chapter 5.

3.3 Evaluation Phase

Within the third and last phase of this research, i.e. evaluation phase, empirical

studies have been carried out to evaluate the effectiveness of the proposed approach,

IPA. The effectiveness of IPA has been assessed through performing two controlled

experiments to compare it with the most familiar and relevant state-of-the-art

alternatives, AHP-based approach and HAM-based approach. In both controlled

experiments, evaluation was based on measuring three properties: actual time-

consumption, accuracy of results, and ease of use. Figure 3.2 shows the process of

conducting the controlled experiments, which highlights the basic activities to perform

the controlled experiments.

 83

Experiment definition

Experiment goal

Experiment planning

Experiment

design

Experiment execution

Experiment

results

Experiment analysis

Experiment

conclusions

Legend:

Activity

Output

 Figure 3.2: A graphical overview of controlled experiment process

According to Figure 3.2, conducting the controlled experiments within the evaluation

phase of this research involved four main activities. The different activities are:

 Experiment definition

 Experiment planning

 Experiment execution

 Experiment analysis

3.3.1 Experiment Definition

This activity is related to define the controlled experiments. It specified the target

and foundation of each controlled experiment. The goal of each controlled experiment

was defined clearly.

 84

3.3.2 Experiment Planning

The input for experiment planning is the experiment definition. In fact, after the

experimental goal was determined, each controlled experiment needed to be planned in

order to determine the design of the controlled experiment. The planning phase of each

controlled experiment composed of seven steps, as depicted in Figure 3.3. These steps

are further elaborated in Chapter 6.

Context selection

Hypothesis formulation

Variables selection

Selection of subjects

Experiment design

Instrumentation

Validity evaluation

Experiment planning

Figure 3.3: Overview of experiment planning

3.3.3 Experiment Execution

Once the controlled experiment has been planned and designed, it should be executed

in order to collect the required data needed to be analysed. This is the step where the

subjects of the study have to work with the proposed approach.

 85

3.3.4 Experiment Analysis

The experimental data collected within the execution step provided the input to this

activity. Consequently, as can be observed in Figure 3.4, the collected data has been

interpreted and analysed in two ways: descriptive analysis and statistical analysis using

hypothesis testing. The goal of performing such analysis was to make rigorous

conclusions regarding the findings of the controlled experiments.

Descriptive analysis

Statistical analysis

Experiment Analysis

Experiment data

Experiment

conclusions

Figure 3.4: Process of experiment analysis

It should be highlighted that the detailed description of the controlled experiments

which have been carried out during this phase is presented in Chapter 6.

3.4 Summary

This chapter provided a comprehensive overview of the research methodology which

has been organized in the form of three phases such as preparation phase, approach

development and validation phase, and evaluation phase. During the preparation phase,

an extensive literature review has been performed on different requirements

prioritization approaches proposed in recent years as well as various empirical studies

dedicated to evaluate the existing approaches. Within the approach development and

validation phase, an approach for integrating the prioritization of functional and non-

functional requirements has been proposed. Moreover, in this phase, the proposed

 86

approach has been validated in two ways including case study and mathematical theory.

Finally, in the evaluation phase, the effectiveness of the proposed approach has been

evaluated through conducting two controlled experiments. In both controlled

experiments, the proposed approach has been compared with the other state-of-the-art

alternatives in terms of actual time-consumption, accuracy of results, and ease of use.

 87

CHAPTER 4: THE PROPOSED APPROACH

As explained in Chapter 2, over the recent past years, a substantial amount of

research studies in the software engineering community have been dedicated into

proposing numerous techniques, methods and approaches to perform the prioritization

of software requirements (Perini et al., 2013; Thakurta, 2013; Tonella et al., 2013). A

comprehensive and thorough study of current research studies insinuates that integrating

the prioritization of functional and non-functional requirements has been neglected

through all existing prioritization approaches proposed recently. Accordingly, to support

the progression in this area and the maturity of requirements prioritization, a new

approach needs to be proposed with the purpose of addressing both functional

requirements along with non-functional requirements during the prioritization stage.

Considering both functional and non-functional requirements is crucial during the

prioritization process since these two types of requirements have great impression on

each other, and not properly addressing them together in the prioritization process could

ultimately result in releasing low-quality software products. In response to fulfil this

demand, a new approach has been proposed throughout this research in order to

integrate the process of prioritizing functional and non-functional requirements

simultaneously. This approach is referred to as Integrated Prioritization Approach

(IPA). This chapter basically describes the detailed description of IPA.

4.1 Integrated Prioritization Approach (IPA)

In order to integrate the prioritization of functional and non-functional requirements

simultaneously, an approach has been proposed, namely, Integrated Prioritization

Approach (IPA), consisting of nine steps, as shown in Table 4.1. The initial step is to

identify system stakeholders who get involved in the prioritization process. The second

step specifies the weight of each stakeholder using Analytic Hierarchy Process (AHP)

 88

method. The third step is to identify functional requirements as well as non-functional

requirements. The forth step is to extract functional and non-functional requirements

statements. The fifth step is to set up the 𝑛 functional requirements and the m non-

functional requirements in the rows and columns of an 𝑛 × 𝑚 decision matrix. The sixth

step performs the elicitation of the importance degree of each non-functional

requirement with respect to each functional requirement with the aim of creating linkage

between functional and non-functional requirements. The seventh step is an aggregation

procedure to specify the prioritization of non-functional requirements ranking with

respect to all functional requirements using triangular fuzzy number and alpha cut

approach. This step provides a decision maker with a prioritized list of non-functional

requirements with respect to all functional requirements. The eighth step produces a

prioritized list of functional requirements by calculating the functional requirements

priority vector and the respective normalized weights. The ninth and final step

concludes the process by aggregating different prioritized lists of functional and non-

functional requirements provided by various stakeholders to obtain final rankings of

functional and non-functional requirements.

Table 4.1: Steps of IPA for integrating the prioritization of functional and non-functional requirements

Step # Description

1 Identify stakeholders of software system

2 Specify the weights of stakeholders using Analytic Hierarchy Process

3 Identify functional and non-functional requirements

4 Extract functional and non-functional requirements statements

5 Construct the decision matrix

6 Elicit the importance degree of each non-functional requirement with respect to

each functional requirement to establish the relationship between functional and

non-functional requirements

7 Calculate NFRs ranking with respect to all FRs using triangular fuzzy number

and alpha cut approach

8 Compute FRs ranking using weighted average decision matrix and weights

determined in Step 7

9 Aggregate different prioritized lists of FRs and NFRs provided by various

stakeholders to obtain final rankings of FRs and NFRs

 89

Before going through the details of each step, it should be highlighted that IPA

supports both single and group decision-making. In other words, the proposed approach,

IPA, has the flexibility to apply whether in single or group decision-making problems.

In single decision-making problems, only one stakeholder (i.e. decision maker) is

involved in the prioritization process, whereas within group decision-making problems,

several stakeholders may take part in the prioritization process.

If IPA is applied in any single decision-making problems, Step 1, Step 2, and Step 9

of the proposed approach should be skipped. Hence, in those situations, as illustrated in

Figure 4.1A, the process would be started by Step 3, following by Step 4, Step 5, Step 6,

Step 7 and finally will be terminated by Step 8. On the other hand, in group decision-

making problems, as can be seen in Figure 4.1B, all of the steps (i.e. Step 1 to Step 9)

must be accomplished consecutively.

The algorithm, given as pseudo-code in Figure 4.2, has been used as a basis for

developing a software prototype to support the automation of the proposed approach.

More information regarding the software prototype is provided in Appendix A.

 90

[No]

[Yes]

Identify

stakeholders

Specify weights of

the stakeholders

Identify FRs and

NFRs

Extract FRs and

NFRs Statements

Build decision

matrix

Select a pair

(FR vs NFR)

Elicit the importance

degree of an NFR for

a given FR

All pairs

elicited?

Calculate NFRs

ranking

Calculate FRs

ranking

All stakeholders

participated?

Aggregate results

[No]

[Yes]

[No]

[Yes]

Identify FRs and

NFRs

Extract FRs and

NFRs Statements

Build decision

matrix

Select a pair

(FR vs NFR)

Elicit the importance

degree of an NFR for

a given FR

All pairs

elicited?

Calculate NFRs

ranking

Calculate FRs

ranking

A)

B)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 3

Step 4

Step 5

Step 7

Step 8

Step 6

Figure 4.1: Flow charts of the proposed approach when applied A) in single decision-making problems;

B) in group decision-making problems

 91

Input

𝑭𝑹𝒔 = {𝑭𝑹𝟏𝟏, 𝑭𝑹𝟐, 𝑭𝑹𝟑, … , 𝑭𝑹𝒏}
//a set of functional requirements

𝑵𝑭𝑹𝒔 = {𝑵𝑭𝑹𝟏, 𝑵𝑭𝑹𝟐, 𝑵𝑭𝑹𝟑, … , 𝑵𝑭𝑹𝒎}
//a set of non-functional requirements

𝑺 = {𝑺𝟏, 𝑺𝟐, 𝑺𝟑, … , 𝑺𝒌}

//a set of stakeholders

Output

𝑷(𝑭𝑹𝒔)
//prioritized list of FRs

𝑷(𝑵𝑭𝑹𝒔)
//prioritized list of NFRs

Begin

1: 𝑵 = 𝑵𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒎𝒆𝒏𝒕𝒔

 //definition of parameter for the number of functional requirements

2: 𝑴 = 𝑵𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑵𝒐𝒏𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒎𝒆𝒏𝒕𝒔

 //definition of parameter for the number of non-functional requirements

3: 𝑲 = 𝑵𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑺𝒕𝒂𝒌𝒆𝒉𝒐𝒍𝒅𝒆𝒓𝒔

 //definition of parameter for the number of stakeholders

4: If 𝑲 > 𝟏

5: 𝑾(𝑺) = 𝑨𝑯𝑷(𝑺)

 //specifying the weights of stakeholders using AHP method

6: Endif

7: For 𝒌 = 𝟏 To 𝑲

 𝑴 = 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑴𝒂𝒕𝒓𝒊𝒙(𝑵, 𝑴)

 //constructing the decision matrix with N rows and M columns

8: For 𝒏 = 𝟏 To 𝑵

9: For 𝒎 = 𝟏 To 𝑴

10: 𝑴[𝒏, 𝒎] = 𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒄𝒆𝑫𝒆𝒈𝒓𝒆𝒆(𝑵𝑭𝑹(𝒎), 𝑭𝑹(𝒏))

 //elicitation of the importance degree of NFR for with respect to each FR

11: Endfor

12: Endfor

13: 𝑷(𝑵𝑭𝑹𝒔) = 𝑪𝒐𝒎𝒑𝒖𝒕𝑹𝒂𝒏𝒌𝒊𝒏𝒈𝟏(𝑵𝑭𝑹𝒔)

14: //computation of NFRs ranking using triangular fuzzy number and alpha cut approach

15: 𝑷(𝑭𝑹𝒔) = 𝑪𝒐𝒎𝒑𝒖𝒕𝑹𝒂𝒏𝒌𝒊𝒏𝒈𝟐(𝑭𝑹𝒔)

16: // computation of FRs ranking using weighted average decision matrix

17: Endfor

18: If 𝑲 > 𝟏

19: 𝑷(𝑵𝑭𝑹𝒔) = 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆𝑹𝒆𝒔𝒖𝒍𝒕𝑶𝒇𝑵𝑭𝑹𝒔

20: //aggregating different NFRs rankings provided by different stakeholders

21: 𝑷(𝑭𝑹𝒔) = 𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆𝑹𝒆𝒔𝒖𝒍𝒕𝑶𝒇𝑭𝑹𝒔

22: // aggregating different FRs rankings provided by different stakeholders

23: Endif

24: return 𝑷(𝑭𝑹𝒔)and 𝑷(𝑵𝑭𝑹𝒔)

End

Figure 4.2: A sketch of algorithm used for automating the IPA

As can be observed in Table 4.1, using IPA to prioritize functional and non-

functional requirements involves nine steps. The detailed explanation of these steps is

illustrated in the following:

 92

4.1.1 Step 1: Identify stakeholders of software system

Identification of stakeholders is a crucial activity associated with requirements

elicitation process (Pacheco & Garcia, 2009). Hence, the initial step of the proposed

approach is primarily concerned with identification of system stakeholders. During this

step, the main stakeholders who may possibly take part in the prioritization process are

recognized. To illustrate the proposed approach, the identified stakeholders are

represented as 𝑆1, 𝑆2, 𝑆3, …, 𝑆𝑘.

4.1.2 Step 2: Specify the weights of stakeholders using Analytic Hierarchy Process

As mentioned in the previous step, different stakeholders might participate in the

prioritization process. These stakeholders could have different weights according to

their significance on the final prioritized lists of functional and non-functional

requirements. In the proposed approach, in order to perform the weighting process,

Analytic Hierarchy Process (AHP) (J. Karlsson & Ryan, 1997) has been utilised to get

the relative importance between different stakeholders (these stakeholders are identified

in Step 1). AHP has been selected as a method for weighting the stakeholders due to the

fact that the outcome that would be generated by this method is accurate, reliable, and

trustworthy (Achimugu et al., 2014).

AHP as the most widely known MCDM (Multi Criteria Decision Making) method,

exploits pairwise comparison strategy, allowing requirements engineers to compare all

the available pairs of stakeholders together to figure out the weight of one stakeholder

over another stakeholder. Having a collection of 𝑛 stakeholders identified in Step 1, the

first step in AHP is to construct an 𝑛 × 𝑛 matrix in which rows and columns indicate the

available stakeholders. Then, the requirements engineer determines his/her judgment for

each pair of stakeholders by identifying a preference value which is between one to

 93

nine, where one expresses that the two stakeholders are equally important while nine

represents the highest value of one stakeholder when compared to the other stakeholder.

In fact, the requirements engineer needs to perform 𝑛 ∗ (𝑛 − 1)/2 pairwise comparisons

in total. The underlying values used for this purpose are presented in Table 4.2, which

indicates a measure of specifying the requirements engineer’s preference value for a

given pair of stakeholders. Once all the possible pairs of stakeholders have been

assessed, the final weight of each stakeholder is calculated throughout the calculation of

the principal eigenvector of the matrix (i.e., the eigenvector with the greatest normalized

eigenvalue). Each element of the principal eigenvector signifies the weight of the

related stakeholder. The calculated weights of stakeholders using AHP are represented

as 𝑊𝑠1
, 𝑊𝑠2

, 𝑊𝑠3
, …, 𝑊𝑠𝑘

.

Table 4.2: Possible scales used for AHP’s pairwise comparison (J. Karlsson & Ryan, 1997)

4.1.3 Step 3: Identify functional and non-functional requirements

The third step of IPA is to identify the functional and non-functional requirements

which are required to be prioritized for inclusion in a software system. Let 𝑛 be the

number of candidate functional requirements and 𝑚 the number of candidate non-

functional requirements. For demonstration of the process, we suppose that we have 𝑛

candidate functional requirements: 𝐹𝑅1, 𝐹𝑅2, 𝐹𝑅3, …, 𝐹𝑅𝑛, and 𝑚 non-functional

requirements: 𝑁𝐹𝑅1, 𝑁𝐹𝑅2, 𝑁𝐹𝑅3, …, 𝑁𝐹𝑅𝑚, which need to be ranked using IPA.

Relative

Intensity

Definition Explanation

1 Of equal value Two stakeholders are of equal value

3 Slightly more value Experience slightly favors one stakeholder

over another

5 Essential or strong value Experience strongly favors one stakeholder

over another

7 Very strong value A stakeholder is strongly favored and its

dominance is demonstrated in practice

9 Extreme value The evidence favoring one over another is of

the highest possible order of affirmation

2,4,6,8 Intermediate values between two

adjacent judgments

When compromise is needed

Reciprocals if stakeholder i has one of the above numbers assigned to it when compared with

stakeholder j, then j has the reciprocal value when compared with i.

 94

4.1.4 Step 4: Extract functional and non-functional requirements statements

In this step, in order to reach agreement among different stakeholders as well as

avoid misunderstanding between them, both functional and non-functional requirements

which were identified in Step 3, must be expressed in a structured and consistent way.

Therefore, to define each functional requirement statement, a canonical form is

provided and structured as follows:

<S> shall be able to <Functionality>.

 must be able to

Where <S> is the entity to which this requirement applies such as stakeholder or

system; <Functionality> is the main function of a functional requirement which was

defined during the previous step and it can be represented by one of the following

structures:

1. [V]

2. [V]+[O]

3. [V]+[C]

4. [V]+[A]

5. [V]+[O]+[A], where V is verb; O is object; C is Complement; A is adverb.

On the other hand, to extract non-functional requirements statements, the proposed

approach offers three canonical forms as follows:

1. <non-functional attribute>: <S> shall be able to <Functionality> <constraint>.

 must be able to

Where <non-functional attribute> includes, but not limited to Performance, Security,

Availability, or Reliability; <constraint> is the condition of satisfying the requirement.

The other two ways for acquiring non-functional requirements statements are to

integrate non-functional attributes (quality attributes) with <Functionality> as follows

(Sadana & Liu, 2007):

 95

 2. <non-functional attribute> of <Functionality> shall be <constraint>.

 must be

3. <Functionality> shall have <constraint><non-functional attribute>.

 must have

4.1.5 Step 5: Construct the decision matrix

The fifth step of the proposed approach, IPA, is to generate an 𝑛 × 𝑚 decision

matrix, namely, 𝐷, and insert the 𝑛 functional requirements along with 𝑚 non-

functional requirements in the rows and columns of the decision matrix, respectively.

Therefore, in this step, an 𝑛 × 𝑚 matrix is constructed, as shown in matrix 𝐷 (4.1). The

instructions on how to fill up the elements of the matrix 𝐷 will be described in Step 6.

 𝐷 =

 𝑁𝐹𝑅1 𝑁𝐹𝑅2 𝑁𝐹𝑅3 𝑁𝐹𝑅4 . . . 𝑁𝐹𝑅𝑚

𝐹𝑅1 𝐷11 𝐷12 𝐷13 𝐷14 − − − 𝐷1𝑚

𝐹𝑅2 𝐷21 𝐷22 𝐷23 𝐷24 − − − 𝐷2𝑚

𝐹𝑅3 𝐷31 𝐷32 𝐷33 𝐷34 − − − 𝐷3𝑚

𝐹𝑅4 𝐷41 𝐷42 𝐷43 𝐷44 − − − 𝐷4𝑚

. − − − − − − − −

. − − − − − − − −

. − − − − − − − −
𝐹𝑅𝑛 𝐷𝑛1 𝐷𝑛2 𝐷𝑛3 𝐷𝑛4 − − − 𝐷𝑛𝑚

 (4.1)

4.1.6 Step 6: Elicit the importance degree of each non-functional requirement with

respect to each functional requirement to establish the relationship between

functional and non-functional requirements

As mentioned before, non-functional requirements have an impact on functional

requirements. Accordingly, the main purpose of performing this step is to elicit this

impact value. So, the sixth step of the proposed approach involves eliciting the decision

maker’s opinions for determining the importance degree of each non-functional

requirement for a given functional requirement. To elicit such an extent, IPA uses two

scales: nominal scale, and actual scale.

 96

Nominal scale is an interface scale which is utilized in order to enhance the user-

friendliness of IPA for interacting with decision makers so that the decision maker

would not be aware of details regarding the actual scale. On the other side, the actual

scale is a numerical scale which is used for internal calculations within IPA. In fact, IPA

exploits a five-point scale as actual scale. Table 4.3 demonstrates these scales.

Table 4.3: IPA nominal scale, IPA actual scale

IPA nominal scale IPA actual scale

Very high importance (VHI) 1

High importance (HI) 0.75

Low importance (LI) 0.5

Very low importance (VLI) 0.25

Negligible (NI) 0.001

For each pair of functional and non-functional requirements (selected from rows and

columns of matrix 𝐷, respectively), the decision maker fulfils a number of activities to

determine the importance degree of each non-functional requirement for achieving each

associated functional requirement (look at activities “select a pair” and “elicit the

importance degree of an non-functional requirement for a given functional requirement”

in Figure 4.1). Each pair (i.e., functional requirement and non-functional requirement) is

assigned a value belonging to the IPA nominal scale (see left column of Table 4.3)

which represents a qualitative measure of importance relation between the

corresponding functional and non-functional requirements. So, for all i and j with

1 ≤ i ≤ n and 1 ≤ j ≤ m, the importance degree of the jth non-functional requirement

for achieving the ith functional requirement would be assessed by a decision maker,

leading to the value Dij using Table 4.3 (e.g. if the value of D23= “very high

importance”, it means that the decision maker believed that the non-functional

requirement NFR3 has “very high importance” impact for achieving functional

requirement FR2).

 97

By accomplishing this step, the relationships between all pairs of functional and non-

functional requirements are extracted. In addition, all elements of decision matrix, D,

are filled.

4.1.7 Step 7: Calculate NFRs ranking with respect to all FRs using triangular fuzzy

number and alpha cut approach

When all pairs of functional and non-functional requirements have been evaluated,

IPA carries out the priority assessment of non-functional requirements with respect to

all functional requirements, to obtain the weights for Step 8, using triangular fuzzy

number (TFN) and alpha cut approach. In fact, during this step, IPA creates a prioritized

list of non-functional requirements through calculating the total importance degree of

each non-functional requirement with respect to all associated functional requirements.

The rational behind this idea is that a non-functional requirement which achieves the

highest total importance degree among all associated functional requirements could be

assigned as a high-priority non-functional requirement. The following sub-steps

illustrate a stepwise process of computing the priority vector of non-functional

requirements:

Sub-step 1: Convert the elements of matrix 𝐷 into numerical values

First, IPA converts all values of the decision matrix D, which were specified

according to the nominal scale, into the corresponding actual scales, resulting in the

matrix D́.

Sub-step 2: Set up triangular fuzzy numbers (TFNs)

Until now, various types of fuzzy numbers have been presented by researchers which

could be useful throughout the decision-making process. They are including

Trapezoidal, Triangular, Sigmoid, and Gaussian (Mahmood, Ahmadi, Verma, Srividya,

 98

& Kumar, 2013). In this study, triangular fuzzy number is adopted since it is the most

popular fuzzy number among the various shapes of fuzzy numbers. It has been widely

used in practical solutions, and it is also simple in terms of computation and concept.

Here, in order to aggregate the different importance degrees of each non-functional

requirement for different functional requirements, the triangular fuzzy number (TFN) is

calculated. TFN has an ability to aggregate the different opinions of a decision maker by

means of fuzzy set theory. The triangular fuzzy number Txi
 is represented using the

following equations ((4.2) and (4.3)):

𝑇𝑥𝑖
= (𝐿𝑥𝑖

, 𝑀𝑥𝑖
, 𝐻𝑥𝑖

), 𝑖 = 1. . 𝑚, and 𝐿𝑥𝑖
, 𝑀𝑥𝑖

, 𝐻𝑥𝑖
 ∈ [0.001,1] (4.2)

𝑀𝑥𝑖
= √𝐷𝑥𝑖𝑎. 𝐷𝑥𝑖𝑏 . 𝐷𝑥𝑖𝑐 … 𝐷𝑥𝑖𝑛

𝑛 (4.3)

where Txi
 indicates the triangular fuzzy number of non-functional requirement “xi” ; Lxi

and Hxi
 represent the lowest and highest values of non-functional requirement “xi”

respectively; Mxi
 is generated by calculating the geometric mean of all values belonging

to the non-functional requirement “xi” (see Equation (4.3)); m is the total number of

non-functional requirements; n is the total number of functional requirements; and Dxia

specifies an opinion of a decision maker toward the importance degree of the non-

functional requirement “xi” for achieving the functional requirement “a”.

Sub-step 3: Constructing the fuzzy priority vector

After calculating the TFN value for each non-functional requirement, the fuzzy

priority vector, namely, Fx̃ is generated, as illustrated in Figure 4.3. Notice, the values

of Fx̃ are derived from Equation (4.2).

 𝑥1 𝑥2 …. 𝑥𝑚

𝑇𝑥1
 𝑇𝑥2

 …. 𝑇𝑥𝑚

Figure 4.3: Fuzzy priority vector, 𝐹�̃�.

 99

Sub-step 4: Defuzzification process

IPA exploits the alpha cut approach proposed by (Liou & Wang, 1992), as shown in

the Equation (4.4), to perform the defuzzification process. The defuzzification is

accomplished in order to convert the calculated TFN values into quantifiable values,

leading to the priority vector W.

W(�̃�𝑥𝑖
) = [𝛽 × 𝑓𝛼(𝐿𝑥𝑖

) + (1 − 𝛽) × 𝑓𝛼(𝐻𝑥𝑖
)],0 ≤ 𝛼, 𝛽 ≤ 1 (4.4)

where fα(Lxi
) = (Mxi

− Lxi
) × α + Lxi

, which indicates the left-end border value of

alpha cut for F̃xi
; and fα(Hxi

) = Hxi
− (Hxi

− Mxi
) × α, which shows the right-end

border value of alpha cut for F̃xi
.

In this case, α and β correspond to preferences and risk tolerance of decision maker,

respectively. Both of these values vary in range 0 and 1, in such a way that a lower

value implies higher uncertainty in decision making. Due to the fact that preferences as

well as risk tolerance are not the main issues of this study, a value of 0.5 is used for both

α and β to indicate a balanced setting. This represents that the decision maker is neither

very optimistic nor pessimistic of his/her viewpoints.

Finally, by normalizing the calculated priority vector, W, the vector NW of

normalized weights is obtained using the following equation (4.5):

𝑁𝑊𝑗 =
𝑊𝑗

∑ 𝑊𝑗
𝑚
𝑗=1

 (4.5)

By applying the steps stated above, a decision maker is provided with a prioritized

list of non-functional requirements along with their corresponding importance values

with respect to all existing functional requirements.

 100

4.1.8 Step 8: Compute FRs ranking using weighted average decision matrix and

weights determined in Step 7

During the previous steps, the priority value of each non-functional requirement with

respect to all functional requirements was obtained (i.e. NW in Step 7). Furthermore,

the importance degree of each non-functional requirement with regards to every

individual functional requirement was elicited (i.e. elements of the matrix D́). By

gathering such data, the weighted average decision matrix, as indicated in Table 4.4, is

generated in order to assist the process of calculating the priority vector of functional

requirements (according to their relations with non-functional requirements).

Table 4.4: Weighted average decision matrix for priority assessment of FRs

 𝑵𝑭𝑹𝒔′ 𝑾𝒆𝒊𝒈𝒉𝒕𝒔 𝑵𝑾𝟏 𝑵𝑾𝟐 𝑵𝑾𝟑 𝑵𝑾𝒎

𝑵𝑭𝑹𝟏 𝑵𝑭𝑹𝟐 𝑵𝑭𝑹𝟑 𝑵𝑭𝑹𝒎

𝑭𝑹𝟏

𝑭𝑹𝟐

….

𝑭𝑹𝒏

𝐷11
́ 𝐷12

́ 𝐷13
́ 𝐷1𝑚

́

𝐷21
́ 𝐷22

́ 𝐷23
́ 𝐷2𝑚

́

…. …. …. ….

𝐷𝑛1
́ 𝐷𝑛2

́ 𝐷𝑛3
́ 𝐷𝑛𝑚

́

The geometric means need to be computed to perform the aggregation process which

has been used to determine the final ranking of functional requirements in this step of

IPA. For computing the geometric means, the researcher has used the calculated

normalized priority vector of non-functional requirements (see Sub-step 4) for its

weights, leading to the priority vector R, as represented using the following equation

(4.6):

𝑅𝑖 = ∏ �́�𝑖𝑗
𝑁𝑊𝑗𝑚

𝑗=1 ,𝑖 = 1. . 𝑛 (4.6)

Then the obtained vector R is normalized, giving the normalized priority vector of

functional requirements, NR, to ensure that the final ranking values will be between 0

and 1:

 101

𝑁𝑅𝑖 =
𝑟𝑖

∑ 𝑟𝑖
 (4.7)

The decreasing ordered functional requirements indicate the final ranking, where the

most important functional requirement is the one with the highest NR value.

4.1.9 Step 9: Aggregate different prioritized lists of FRs and NFRs provided by

various stakeholders to obtain final rankings of FRs and NFRs

As discussed before, different stakeholders may possibly participate in the

prioritization process. Each of these stakeholders might have his/her individual opinion

regarding the final prioritized lists of functional and non-functional requirements. On

the other hand, each of these stakeholders could have different weights based on how

important they have been recognized for a specific prioritization problem. Hence, the

question on how to aggregate and combine different results provided by different

stakeholders regarding the final prioritized lists of functional and non-functional

requirements could be a challenge.

In the proposed approach, Weighted Average (WA) method (McZara, Sarkani,

Holzer, & Eveleigh, 2014) has been applied in order to aggregate different prioritized

lists of functional and non-functional requirements which were provided by different

stakeholders.

Therefore, to obtain the single prioritized list of functional requirements from

different prioritized lists of functional requirements provided by different stakeholders,

the weighted average matrix needs to be generated as indicated in Table 4.5.

 102

Table 4.5: Weighted average matrix to aggregate different prioritized list of FRs

FRs

𝑺𝒕𝒂𝒌𝒆𝒉𝒐𝒍𝒅𝒆𝒓𝒔′ 𝑾𝒆𝒊𝒈𝒉𝒕𝒔 𝑾𝒔𝟏
 𝑾𝒔𝟐

 𝑾𝒔𝟑
 𝑾𝒔𝒌

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝒌

𝑭𝑹𝟏

𝑭𝑹𝟐

….

𝑭𝑹𝒏

 𝑁𝑅11 𝑁𝑅12 𝑁𝑅13 𝑁𝑅1𝑘

 𝑁𝑅21 𝑁𝑅22 𝑁𝑅23 𝑁𝑅2𝑘

 …. …. …. ….

 𝑁𝑅𝑛1 𝑁𝑅𝑛2 𝑁𝑅𝑛3 𝑁𝑅𝑛𝑘

Then, the following equation (4.8) is used to arrive at a final weight for each

functional requirement associated with the prioritization problem:

𝑈𝑅𝑖 = ∑ 𝑁𝑅𝑖𝑗 ∗ 𝑊𝑠𝑗

𝑘
𝑗=1 , 𝑖 = 1. . 𝑛 (4.8)

where 𝑈𝑅𝑖 indicates the final weight of functional requirement “Ri” ; 𝑛 is the total

number of functional requirements; 𝑘 is the total number of stakeholders; 𝑁𝑅𝑖𝑗 specifies

the normalized weight of functional requirement “Ri” obtained by stakeholder 𝑗; and

𝑊𝑠𝑗
 is the weight of stakeholder 𝑗. It should be noted that the values of 𝑁𝑅𝑖𝑗 and 𝑊𝑠𝑗

have already computed through Step 8 and Step 2, respectively.

The same process needs to be done in order to produce the single prioritized list of

non-functional requirements. So, the weighted average matrix is generated again, as

shown in Table 4.6, but here for non-functional requirements.

Table 4.6: Weighted average matrix to aggregate different prioritized list of NFRs

NFRs

𝑺𝒕𝒂𝒌𝒆𝒉𝒐𝒍𝒅𝒆𝒓𝒔′ 𝑾𝒆𝒊𝒈𝒉𝒕𝒔 𝑾𝒔𝟏
 𝑾𝒔𝟐

 𝑾𝒔𝟑
 𝑾𝒔𝒌

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝒌

𝑵𝑭𝑹𝟏

𝑵𝑭𝑹𝟐

….

𝑵𝑭𝑹𝒎

 𝑁𝑊11 𝑁𝑊12 𝑁𝑊13 𝑁𝑊1𝑘

 𝑁𝑊21 𝑁𝑊22 𝑁𝑊23 𝑁𝑊2𝑘
 …. …. …. ….

 𝑁𝑊𝑚1 𝑁𝑊𝑚2 𝑁𝑊𝑚3 𝑁𝑊𝑚𝑘

Then, the following equation (4.9) can be used to obtain a final weight for each non-

functional requirement associated with the prioritization problem:

𝑈𝑊𝑖 = ∑ 𝑁𝑊𝑖𝑗 ∗ 𝑊𝑠𝑗

𝑘
𝑗=1 , 𝑖 = 1. . 𝑚 (4.9)

 103

where 𝑈𝑊𝑖 indicates the final weight of non-functional requirement “Wi”; 𝑚 is the total

number of non-functional requirements; 𝑘 is the total number of stakeholders; 𝑁𝑊𝑖𝑗

specifies the normalized weight of non-functional requirement “Wi” obtained by

stakeholder 𝑗; and 𝑊𝑠𝑗
 is the weight of stakeholder 𝑗. It should be noted that the values

of 𝑁𝑊𝑖𝑗 and 𝑊𝑠𝑗
 have already calculated through Step 7 and Step 2, respectively.

4.2 Summary

This chapter introduced the approach which has been proposed in this research for

integrating the prioritization of functional and non-functional requirements. The

proposed approach, called IPA, can be applied on a prioritization problem where one or

several stakeholders may take part in the prioritization process. Therefore, it has the

flexibility to be used in both single and group decision-making process.

 104

CHAPTER 5: VALIDATION OF THE PROPOSED APPROACH

This chapter presents the detailed descriptions regarding the validation of the proposed

approach (i.e. IPA) through case study (Section 5.1) and mathematical theory (Section

5.2).

5.1 Validate the Proposed Approach through Case Study

An intuitive comprehension of the proposed approach can be achieved by applying

the IPA to a case study, step by step, to demonstrate how the nine steps of the IPA could

be utilized for a practical prioritization problem. Therefore, IPA has been applied on a

collection of 15 functional requirements and 5 non-functional requirements of

Automated Teller Machine (ATM), Cash Deposit Machine (CDM), and Check Deposit

Machine (CQM). Four users of ATM, CDM, and CQM, who played the role of

stakeholders, participated in the case study. The detailed explanation of applying IPA

on the requirements of ATM, CDM, and CQM is illustrated in the following:

Step 1: Identify stakeholders of software system

To initiate the process, four stakeholders participated in the prioritization process. All

these stakeholders play the role of users of the banking software system. These

stakeholders are represented as 𝑆1, 𝑆2, 𝑆3, and 𝑆4.

Step 2: Specify the weights of stakeholders using Analytic Hierarchy Process

The four identified stakeholders could have different weights according to their

significance on the final prioritized lists of functional and non-functional requirements.

In this step, AHP method is applied on the identified stakeholders in order to obtain

their weights. Using AHP for performing the weighting process involves four steps.

 105

1. Insert the four stakeholders in the rows and columns of a 4 × 4 matrix. The four

stakeholders are inserted into the rows and columns of a matrix of order 4. So, in

this case, a 4 × 4 matrix is generated.

2. Exploit pairwise comparisons of all the stakeholders. The basic scales used in

AHP for pairwise comparisons are demonstrated in Table 4.2. Given a pair of

stakeholders (e.g. 𝑆1 and 𝑆2), put the relative importance value of 𝑆1 and 𝑆2 in

the position (𝑆1,𝑆2) where the row of 𝑆1 joins the column of 𝑆2. In position

(𝑆2,𝑆1) put the reciprocal value, and in all positions in the main diagonal insert a

“1”. As mentioned before, for a matrix of order 𝑛, 𝑛 ∗ (𝑛 − 1)/2 pairwise

comparisons are needed in total. So, in this case, six pairwise comparisons are

needed. In this example, each of the four stakeholders is assigned a different

importance value. So, all values of the matrix are selected based on the scales

presented in Table 4.2. As a result, a 4 × 4 pairwise matrix is formed like this:

 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒

𝑺𝟏 1 1/2 2 3
𝑺𝟐 2 1 1/2 1/2
𝑺𝟑 1/2 2 1 1/3
𝑺𝟒 1/3 2 3 1

 (5.1)

3. Use averaging over normalized columns to estimate the eigenvalues of the

matrix. The method used in this step is called averaging over normalized

columns, originally proposed by Thomas Saaty (Saaty, 1980). First, compute the

summation of the 𝑛 columns in the pairwise comparison matrix. Then, divide

each element of the pairwise comparison matrix by the summation of the

column that element belongs to, and finally compute the summation of each

row:

 106

 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝑼𝑴
𝑺𝟏 0.26 0.09 0.31 0.62 1.28
𝑺𝟐 0.52 0.18 0.08 0.10 0.88
𝑺𝟑 0.13 0.36 0.15 0.07 0.72
𝑺𝟒 0.09 0.36 0.46 0.21 1.12

 (5.2)

Then, in order to normalize the summation of each row, the summation of each

row is divided by the number of stakeholders. The outcome of this computation

is an estimation of the eigenvalues of the pairwise comparison matrix.

1

4
∙ [

1.28
0.88
0.72
1.12

] = [

0.32
0.22
0.18
0.28

] (5.3)

4. Assign each stakeholder to its relative weight according to the estimated

eigenvalues. By computing the estimated eigenvalues of the pairwise

comparison matrix, the relative weights of four stakeholders are achieved as

follows:

 𝑊𝑠1
 has the weight of 0.32.

 𝑊𝑠2
 has the weight of 0.22.

 𝑊𝑠3
 has the weight of 0.18.

 𝑊𝑠4
 has the weight of 0.28.

Step 3: Identify functional and non-functional requirements

The third step of IPA is to identify the functional and non-functional requirements of

ATM, CDM, and CQM. Accordingly, 15 functional requirements and 5 non-functional

requirements are identified to be prioritized. The identified functional and non-

functional requirements are listed in Table 5.1 and Table 5.2, respectively.

 107

Table 5.1: The functional requirements of the ATM, CDM, and CQM

Functional requirement ID Functional requirement description

𝐅𝐑𝟏 Withdraw cash

𝐅𝐑𝟐 Check balance

𝐅𝐑𝟑 Deposit cash

𝐅𝐑𝟒 Transfer funds

𝐅𝐑𝟓 Change PIN number

𝐅𝐑𝟔 View transactions history

𝐅𝐑𝟕 Bill payment

𝐅𝐑𝟖 Print transaction receipt

𝐅𝐑𝟗 Deposit cheque

𝐅𝐑𝟏𝟎 Top up your mobile phone

𝐅𝐑𝟏𝟏 Loan payment

𝐅𝐑𝟏𝟐 Print transaction history

𝐅𝐑𝟏𝟑 Change withdraw limit

𝐅𝐑𝟏𝟒 Activate overseas services

𝐅𝐑𝟏𝟓 Credit card payment

Table 5.2: The non-functional requirements of the banking software system

NFR ID Name Description

𝐍𝐅𝐑𝟏 Availability The percentage of time that the software system is in operation to provide

its intended function.

𝐍𝐅𝐑𝟐 Security The extent to which access to the desired function by unauthorized

persons can be controlled while still providing its function to users.

𝐍𝐅𝐑𝟑 Usability The extent to which a user is able to understand, learn, use and being

attracted to a function.

𝐍𝐅𝐑𝟒 Performance The extent to which how fast the system can interact with the user to

perform the desired function.

𝐍𝐅𝐑𝟓 Reliability The extent to which the system can be expected to perform its intended

function with required precision.

Step 4: Extract functional and non-functional statements

During this step, first, each functional requirement is redefined according to the

canonical form introduced in the proposed approach. The total number of functional

requirements was thus 15. Examples of such functional requirements statements are:

“FRS1: Bank customer shall be able to withdraw cash.”

“FRS2: Bank customer shall be able to check balance.”

“FRS3: Bank customer shall be able to deposit cash.”

 108

In addition, examples of extracted non-functional requirements statements could be

as below.

“Usability: Bank customer shall be able to deposit cash easily.”

“Performance: Bank customer shall be able to withdraw cash in less than 3 seconds.”

“Reliability of check balance must be high.”

Step 5: Construct the decision matrix

Here, within this step, four decision matrixes of 15 × 5 are generated. Then, 15

identified functional and 5 identified non-functional requirements are inserted into the

rows and columns of the four separate decision matrixes, respectively. Four decision

matrixes are constructed because four stakeholders participated in the prioritization

process.

Step 6: Elicit the importance degree of each non-functional requirement with respect to

each functional requirement to establish the relationship between functional and non-

functional requirements

To fill up the elements of the decision matrixes constructed in Step 5, the judgments

of four stakeholders are elicited and inserted into the matrixes, D1, D2, D3, and D4.

These values are given in Table 5.3. It should be noted that numbers within parenthesis

represent the actual scale values.

 109

Table 5.3: Filling up the four decision matrixes with nominal scale values

Decision

matrix

Functional

requirements

Non-functional requirements

 𝑵𝑭𝑹𝟏 𝑵𝑭𝑹𝟐 𝑵𝑭𝑹𝟑 𝑵𝑭𝑹𝟒 𝑵𝑭𝑹𝟓

𝐷1 𝑭𝑹1 VHI (1) VHI (1) VHI (1) VHI (1) VHI (1)

 𝑭𝑹2 HI (0.75) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹3 HI (0.75) VHI (1) VHI (1) VHI (1) VHI (1)

 𝑭𝑹4 HI (0.75) VHI (1) VHI (1) VHI (1) VHI (1)

 𝑭𝑹5 LI (0.5) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹6 HI (0.75) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹7 HI (0.75) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹8 HI (0.75) HI (0.75) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹9 LI (0.5) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹10 HI (0.75) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹11 LI (0.5) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹12 LI (0.5) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹13 LI (0.5) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹14 VLI (0.25) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹15 LI (0.5) VHI (1) HI (0.75) HI (0.75) VHI (1)

𝐷2 𝑭𝑹1 HI (0.75) LI (0.5) LI (0.5) HI (0.75) VHI (1)

 𝑭𝑹2 LI (0.5) LI (0.5) HI (0.75) LI (0.5) HI (0.75)

 𝑭𝑹3 HI (0.75) HI (0.75) HI (0.75) VHI (1) VHI (1)

 𝑭𝑹4 LI (0.5) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹5 VLI (0.25) LI (0.5) VHI (1) LI (0.5) LI (0.5)

 𝑭𝑹6 LI (0.5) VLI (0.25) LI (0.5) HI (0.75) HI (0.75)

 𝑭𝑹7 HI (0.75) HI (0.75) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹8 LI (0.5) VLI (0.25) VLI (0.25) LI (0.5) LI (0.5)

 𝑭𝑹9 HI (0.75) HI (0.75) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹10 VHI (1) LI (0.5) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹11 VLI (0.25) LI (0.5) LI (0.5) LI (0.5) HI (0.75)

 𝑭𝑹12 VLI (0.25) LI (0.5) LI (0.5) HI (0.75) HI (0.75)

 𝑭𝑹13 HI (0.75) HI (0.75) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹14 VLI (0.25) VLI (0.25) LI (0.5) VLI (0.25) HI (0.75)

 𝑭𝑹15 HI (0.75) HI (0.75) LI (0.5) LI (0.5) VHI (1)

𝐷3 𝑭𝑹1 HI (0.75) VHI (1) HI (0.75) VHI (1) VHI (1)

 𝑭𝑹2 HI (0.75) VHI (1) HI (0.75) HI (0.75) HI (0.75)

 𝑭𝑹3 VHI (1) VHI (1) HI (0.75) VHI (1) HI (0.75)

 𝑭𝑹4 VHI (1) VHI (1) HI (0.75) VHI (1) VHI (1)

 𝑭𝑹5 HI (0.75) VHI (1) VHI (1) LI (0.5) HI (0.75)

 𝑭𝑹6 LI (0.5) VHI (1) HI (0.75) LI (0.5) LI (0.5)

 𝑭𝑹7 HI (0.75) HI (0.75) LI (0.5) HI (0.75) HI (0.75)

 𝑭𝑹8 HI (0.75) HI (0.75) VLI (0.25) LI (0.5) HI (0.75)

 𝑭𝑹9 HI (0.75) HI (0.75) VLI (0.25) HI (0.75) HI (0.75)

 𝑭𝑹10 HI (0.75) LI (0.5) NI (0.001) HI (0.75) VLI (0.25)

 𝑭𝑹11 HI (0.75) HI (0.75) NI (0.001) HI (0.75) HI (0.75)

 110

Table 5.3, continued

Decision

matrix

Functional

requirements

Non-functional requirements

 𝑵𝑭𝑹𝟏 𝑵𝑭𝑹𝟐 𝑵𝑭𝑹𝟑 𝑵𝑭𝑹𝟒 𝑵𝑭𝑹𝟓

 𝑭𝑹12 LI (0.5) HI (0.75) NI (0.001) LI (0.5) HI (0.75)

 𝑭𝑹13 LI (0.5) HI (0.75) NI (0.001) LI (0.5) HI (0.75)

 𝑭𝑹14 LI (0.5) HI (0.75) VLI (0.25) LI (0.5) HI (0.75)

 𝑭𝑹15 HI (0.75) HI (0.75) VLI (0.25) HI (0.75) HI (0.75)

𝐷4 𝑭𝑹1 VHI (1) VHI (1) LI (0.5) HI (0.75) VHI (1)

 𝑭𝑹2 HI (0.75) HI (0.75) LI (0.5) LI (0.5) HI (0.75)

 𝑭𝑹3 VHI (1) VHI (1) HI (0.75) HI (0.75) VHI (1)

 𝑭𝑹4 VHI (1) VHI (1) LI (0.5) HI (0.75) VHI (1)

 𝑭𝑹5 HI (0.75) VHI (1) HI (0.75) LI (0.5) HI (0.75)

 𝑭𝑹6 LI (0.5) HI (0.75) LI (0.5) LI (0.5) HI (0.75)

 𝑭𝑹7 VHI (1) VHI (1) HI (0.75) LI (0.5) VHI (1)

 𝑭𝑹8 HI (0.75) LI (0.5) LI (0.5) LI (0.5) LI (0.5)

 𝑭𝑹9 VHI (1) VHI (1) HI (0.75) LI (0.5) VHI (1)

 𝑭𝑹10 HI (0.75) HI (0.75) HI (0.75) LI (0.5) HI (0.75)

 𝑭𝑹11 HI (0.75) VHI (1) HI (0.75) LI (0.5) VHI (1)

 𝑭𝑹12 HI (0.75) LI (0.5) VLI (0.25) LI (0.5) LI (0.5)

 𝑭𝑹13 HI (0.75) VHI (1) HI (0.75) LI (0.5) HI (0.75)

 𝑭𝑹14 HI (0.75) HI (0.75) HI (0.75) LI (0.5) HI (0.75)

 𝑭𝑹15 HI (0.75) VHI (1) HI (0.75) HI (0.75) VHI (1)

Step 7: Calculate NFRs ranking with respect to all FRs using triangular fuzzy number

and alpha cut approach

To calculate the priority vector of non-functional requirements with respect to all

functional requirements, the elements of matrix D are converted to actual scales (Sub-

step 1), the TFN is calculated for each non-functional requirement (Sub-step 2), the

fuzzy priority vector is constructed (Sub-step 3), and the defuzzification is done in order

to achieve the priority vector W and NW (Sub-step 4). Table 5.3 shows Sub-step 1

where the elements of matrixes D1, 𝐷2, 𝐷3, and 𝐷4 with actual scales are indicated

within parenthesis, while the values of Fx̃, W (Equation (4.4)), and NW (Equation (4.5))

related to each non-functional requirement are represented in Table 5.4. By calculating

the priority vector NW, we are provided with a prioritized list of non-functional

 111

requirements for each stakeholder (numbers within parenthesis represent the priority of

each non-functional requirement for considering during the development process).

Thus, totally, four prioritized lists of non-functional requirements are achieved.

Table 5.4: Computation of NFRs’ priority vectors with respect to all FRs

Decision matrix Non-functional

requirements
𝐅�̃� 𝑾 𝑵𝑾

𝐷1 𝑵𝑭𝑹1 (0.25,0.60415,1.0) 0.61 0.145 (5)

 𝑵𝑭𝑹2 (0.75,0.981004,1.0) 0.93 0.221 (2)

 𝑵𝑭𝑹3 (0.75,0.794417,1.0) 0.83 0.198 (3)

 𝑵𝑭𝑹4 (0.75,0.794417,1.0) 0.83 0.198 (4)

 𝑵𝑭𝑹5 (1.0,1.0,1.0) 1.0 0.238 (1)

𝐷2 𝑵𝑭𝑹1 (0.25,0.511916,1.0) 0.568 0.178 (5)

 𝑵𝑭𝑹2 (0.25,0.521829,1.0) 0.573 0.180 (4)

 𝑵𝑭𝑹3 (0.25,0.60415,1.0) 0.615 0.193 (3)

 𝑵𝑭𝑹4 (0.25,0.650059,1.0) 0.64 0.201 (2)

 𝑵𝑭𝑹5 (0.5,0.828354,1.0) 0.79 0.248 (1)

𝐷3 𝑵𝑭𝑹1 (0.5,0.699457,1.0) 0.72 0.227 (2)

 𝑵𝑭𝑹2 (0.5,0.819025,1.0) 0.78 0.246 (1)

 𝑵𝑭𝑹3 (0.001,0.095002,1.0) 0.3 0.095 (5)

 𝑵𝑭𝑹4 (0.5,0.675479,1.0) 0.71 0.224 (3)

 𝑵𝑭𝑹5 (0.25,0.704971,1.0) 0.66 0.208 (4)

𝐷4 𝑵𝑭𝑹1 (0.5,0.803466,1.0) 0.777 0.222 (3)

 𝑵𝑭𝑹2 (0.5,0.844394,1.0) 0.80 0.229 (1)

 𝑵𝑭𝑹3 (0.25,0.608913,0.75) 0.55 0.157 (5)

 𝑵𝑭𝑹4 (0.5,0.557091,0.75) 0.59 0.169 (4)

 𝑵𝑭𝑹5 (0.5,0.812619,1.0) 0.781 0.223 (2)

Figure 5.1 summarizes the weights of non-functional requirements obtained by four

stakeholders who participated in the prioritization process.

 112

 Figure 5.1: The NFRs’ weights achieved by four stakeholders participated in the prioritization process

Step 8: Compute FRs ranking using weighted average decision matrix and weights

determined in Step 7

In this step, the ranking (Equation (4.6)) along with the normalized ranking

(Equation (4.7)) of each functional requirement for each stakeholder are calculated (see

Table 5.3), using the values of D́ as well as NW which was achieved in Step 7. This step

applies a classical weighted average matrix, where rows depict functional requirements

while columns depict non-functional requirements. By performing this step, the

prioritized list of functional requirements is also achieved for each stakeholder. The

most right column of Table 5.5 (i.e. 𝑁𝑅) indicates the weight of functional requirements

obtained by each stakeholder.

0.000

0.050

0.100

0.150

0.200

0.250

S1
S2

S3
S4

N
F

R
s'

 w
ei

g
h

ts

Stakeholders

Availability

Security

Usability

Performance

Reliability

 113

Table 5.5: Calculation of FRs’ priority vectors with respect to NFRs

Stakeholder Functional

requirements

Non-functional requirements

 𝑵𝑭𝑹𝟏 𝑵𝑭𝑹𝟐 𝑵𝑭𝑹𝟑 𝑵𝑭𝑹𝟒 𝑵𝑭𝑹𝟓 𝑹 𝑵𝑹

 NFRs’ weights 0.145 0.221 0.198 0.198 0.238

𝑆1 𝑭𝑹1 1 1 1 1 1 1.000 0.079

 𝑭𝑹2 0.75 1 0.75 0.75 1 0.856 0.067

 𝑭𝑹3 0.75 1 1 1 1 0.959 0.075

 𝑭𝑹4 0.75 1 1 1 1 0.959 0.075

 𝑭𝑹5 0.5 1 0.75 0.75 1 0.807 0.063

 𝑭𝑹6 0.75 1 0.75 0.75 1 0.856 0.067303

 𝑭𝑹7 0.75 1 0.75 0.75 1 0.856 0.067303

 𝑭𝑹8 0.75 0.75 0.75 0.75 1 0.803 0.063157

 𝑭𝑹9 0.5 1 0.75 0.75 1 0.807 0.06346

 𝑭𝑹10 0.75 1 0.75 0.75 1 0.856 0.067303

 𝑭𝑹11 0.5 1 0.75 0.75 1 0.807 0.06346

 𝑭𝑹12 0.5 1 0.75 0.75 1 0.807 0.06346

 𝑭𝑹13 0.5 1 0.75 0.75 1 0.807 0.06346

 𝑭𝑹14 0.25 1 0.75 0.75 1 0.730 0.057392

 𝑭𝑹15 0.5 1 0.75 0.75 1 0.807 0.06346

 NFRs’ weights 0.178 0.180 0.193 0.201 0.248

𝑆2 𝑭𝑹1 0.75 0.5 0.5 0.75 1 0.692 0.072

 𝑭𝑹2 0.5 0.5 0.75 0.5 0.75 0.598 0.062

 𝑭𝑹3 0.75 0.75 0.75 1 1 0.853 0.089

 𝑭𝑹4 0.5 1 0.75 0.75 1 0.789 0.082

 𝑭𝑹5 0.25 0.5 1 0.5 0.5 0.505 0.052

 𝑭𝑹6 0.5 0.25 0.5 0.75 0.75 0.529 0.054931

 𝑭𝑹7 0.75 0.75 0.75 0.75 1 0.805 0.083563

 𝑭𝑹8 0.5 0.25 0.25 0.5 0.5 0.386 0.040055

 𝑭𝑹9 0.75 0.75 0.75 0.75 1 0.805 0.083563

 𝑭𝑹10 1 0.5 0.75 0.75 1 0.788 0.081763

 𝑭𝑹11 0.25 0.5 0.5 0.5 0.75 0.489 0.050702

 𝑭𝑹12 0.25 0.5 0.5 0.75 0.75 0.530 0.055007

 𝑭𝑹13 0.75 0.75 0.75 0.75 1 0.805 0.083563

 𝑭𝑹14 0.25 0.25 0.5 0.25 0.75 0.375 0.038934

 𝑭𝑹15 0.75 0.75 0.5 0.5 1 0.687 0.071225

 114

Table 5.5, continued

Stakeholder Functional

requirements

Non-functional requirements

 𝑵𝑭𝑹𝟏 𝑵𝑭𝑹𝟐 𝑵𝑭𝑹𝟑 𝑵𝑭𝑹𝟒 𝑵𝑭𝑹𝟓 𝑹 𝑵𝑹

 NFRs’ weights 0.227 0.246 0.095 0.224 0.208

𝑆3 𝑭𝑹1 0.75 1 0.75 1 1 0.912 0.095

 𝑭𝑹2 0.75 1 0.75 0.75 0.75 0.805 0.084

 𝑭𝑹3 1 1 0.75 1 0.75 0.917 0.096

 𝑭𝑹4 1 1 0.75 1 1 0.973 0.102

 𝑭𝑹5 0.75 1 1 0.5 0.75 0.755 0.079

 𝑭𝑹6 0.5 1 0.75 0.5 0.5 0.616 0.064296

 𝑭𝑹7 0.75 0.75 0.5 0.75 0.75 0.722 0.075294

 𝑭𝑹8 0.75 0.75 0.25 0.5 0.75 0.617 0.064375

 𝑭𝑹9 0.75 0.75 0.25 0.75 0.75 0.676 0.070496

 𝑭𝑹10 0.75 0.5 0.001 0.75 0.25 0.288 0.030047

 𝑭𝑹11 0.75 0.75 0.001 0.75 0.75 0.400 0.041721

 𝑭𝑹12 0.5 0.75 0.001 0.5 0.75 0.333 0.034749

 𝑭𝑹13 0.5 0.75 0.001 0.5 0.75 0.333 0.034749

 𝑭𝑹14 0.5 0.75 0.25 0.5 0.75 0.563 0.058715

 𝑭𝑹15 0.75 0.75 0.25 0.75 0.75 0.676 0.070496

 NFRs’ weights 0.222 0.229 0.157 0.169 0.223

𝑆4 𝑭𝑹1 1 1 0.5 0.75 1 0.854 0.077

 𝑭𝑹2 0.75 0.75 0.5 0.5 0.75 0.657 0.059

 𝑭𝑹3 1 1 0.75 0.75 1 0.910 0.082

 𝑭𝑹4 1 1 0.5 0.75 1 0.854 0.077

 𝑭𝑹5 0.75 1 0.75 0.5 0.75 0.748 0.067

 𝑭𝑹6 0.5 0.75 0.5 0.5 0.75 0.601 0.053798

 𝑭𝑹7 1 1 0.75 0.5 1 0.850 0.076158

 𝑭𝑹8 0.75 0.5 0.5 0.5 0.5 0.547 0.049008

 𝑭𝑹9 1 1 0.75 0.5 1 0.850 0.076158

 𝑭𝑹10 0.75 0.75 0.75 0.5 0.75 0.700 0.062734

 𝑭𝑹11 0.75 1 0.75 0.5 1 0.798 0.071446

 𝑭𝑹12 0.75 0.5 0.25 0.5 0.5 0.491 0.043955

 𝑭𝑹13 0.75 1 0.75 0.5 0.75 0.748 0.067006

 𝑭𝑹14 0.75 0.75 0.75 0.5 0.75 0.700 0.062734

 𝑭𝑹15 0.75 1 0.75 0.75 1 0.854 0.076513

Step 9: Aggregate different prioritized lists of FRs and NFRs provided by various

stakeholders to obtain final rankings of FRs and NFRs

In the preceding steps, we have observed how to produce the prioritized list of

functional requirements as well as non-functional requirements for each stakeholder.

 115

Thus, in this case, four prioritized lists of functional requirements and four prioritized

lists of non-functional requirements have been achieved due to the reason that four

stakeholders participated in the prioritization process. But, there is still a need to

aggregate these different prioritized lists of functional requirements as well non-

functional requirements.

In response to aggregate four prioritized lists of functional requirements and produce

a single prioritized list of functional requirements in which the opinions of all

stakeholders have been considered, weighted average matrix is constructed as shown in

Table 5.6. The most right column of Table 5.6 (i.e. 𝑈𝑅) shows the final weights of

functional requirements along with their priorities (numbers within parenthesis).

Table 5.6: Calculating the prioritized list of FRs

 Stakeholders’

weights

0.32 0.22 0.18 0.28

Functional

requirements
 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑼𝑹

𝑭𝑹1 0.079 0.072 0.095 0.077 0.080 (3)

𝑭𝑹2 0.067 0.062 0.084 0.059 0.067 (7)

𝑭𝑹3 0.075 0.089 0.096 0.082 0.084 (1)

𝑭𝑹4 0.075 0.082 0.102 0.077 0.082 (2)

𝑭𝑹5 0.063 0.052 0.079 0.067 0.065 (8)

𝑭𝑹6 0.067303 0.054931 0.064296 0.053798 0.060 (11)

𝑭𝑹7 0.067303 0.083563 0.075294 0.076158 0.075 (4)

𝑭𝑹8 0.063157 0.040055 0.064375 0.049008 0.054 (14)

𝑭𝑹9 0.06346 0.083563 0.070496 0.076158 0.073 (5)

𝑭𝑹10 0.067303 0.081763 0.030047 0.062734 0.062 (10)

𝑭𝑹11 0.06346 0.050702 0.041721 0.071446 0.059 (12)

𝑭𝑹12 0.06346 0.055007 0.034749 0.043955 0.051 (15)

𝑭𝑹13 0.06346 0.083563 0.034749 0.067006 0.064 (9)

𝑭𝑹14 0.057392 0.038934 0.058715 0.062734 0.055 (13)

𝑭𝑹15 0.06346 0.071225 0.070496 0.076513 0.070 (6)

Similarly, in response to aggregate four prioritized lists of non-functional

requirements and produce a single prioritized list of non-functional requirements in

which the opinions of all stakeholders have been considered, weighted average matrix is

constructed as shown in Table 5.7. The most right column of Table 5.7 (i.e. 𝑈𝑊) shows

 116

the final weights of non-functional requirements along with their priorities (numbers

within parenthesis).

Table 5.7: Computing the prioritized list of NFRs

 Stakeholders’

weights

0.32 0.22 0.18 0.28

NFRs 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑼𝑾

𝑵𝑭𝑹1 0.145 0.178 0.227 0.222 0.188 (4)

𝑵𝑭𝑹2 0.221 0.180 0.246 0.229 0.218 (2)

𝑵𝑭𝑹3 0.198 0.193 0.095 0.157 0.167 (5)

𝑵𝑭𝑹4 0.198 0.201 0.224 0.169 0.196 (3)

𝑵𝑭𝑹5 0.238 0.248 0.208 0.223 0.231 (1)

Therefore, the outcomes of applying IPA on the functional and non-functional

requirements of the banking software system, while participating four stakeholders in

the prioritization process are given in Figure 5.2 and Figure 5.3, where Figure 5.2

depicts the final prioritized list of functional requirements whereas Figure 5.3

demonstrates the final prioritized list of non-functional requirements.

Figure 5.2: The final prioritized list of FRs ranked according to their relationships with NFRs

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090

Withdraw cash

Check balance

Deposit cash

Transfer funds

Change PIN number

View transactions history

Bill payment

Print transaction receipt

Deposit cheque

Top up your mobile phone

Loan payment

Print transaction history

Change withdraw limit

Activate overseas services

Credit card payment

Weights

F
u

n
ct

io
n

a
l

r
eq

u
ir

em
en

ts

 117

 Figure 5.3: The final prioritized list of NFRs ranked according to their relationships with FRs

5.2 Validate the Proposed Approach using Mathematical Theory

The goal of this section is to provide mathematical evidence that the outcome of the

proposed approach (i.e. IPA) is proven to be valid using graph theory. To achieve the

desired goal, first, there is a need to express the proposed approach using mathematical

formulation. Indeed, the mathematical formulation of the proposed approach could

simplify the process of validating the proposed approach using graph theory. Then,

graph theory is used in order to validate the outcome of the proposed approach.

5.2.1 Mathematical Formulation of the Proposed Approach

Let 𝑆 be the set of stakeholders who participate in the prioritization process. It is

denoted as:

𝑆 = {𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑘} (5.4)

where 𝑘 is the total number of stakeholders.

0.000 0.050 0.100 0.150 0.200 0.250

Availability

Security

Usability

Performance

Reliability

Weights

N
o

n
-f

u
n

ct
io

n
a

l
r
eq

u
ir

em
en

ts

 118

These stakeholders might have different weights according to their significance for

the prioritization problem. AHP has been applied in our approach in order to perform

the process of weighting stakeholders. Thus, a function should be defined as follows:

𝐹𝐴𝐻𝑃(𝑠𝑖) = {𝑤𝑖 ∈ [0,1] ∀𝑠𝑖 ∈ 𝑆, 1 ≤ 𝑖 ≤ 𝑘} (5.5)

where FAHP(si) applies AHP for calculating the relative weight of the stakeholder si; wi

is a real number such that 0 ≤ wi ≤ 1; and k is the number of stakeholders.

Suppose that 𝐹𝑅 is the set of functional requirements which are required to be

prioritized. It can be expressed as follows:

𝐹𝑅 = {𝐹𝑅1, 𝐹𝑅2, 𝐹𝑅3, … , 𝐹𝑅𝑛} (5.6)

where 𝑛 is the total number of functional requirements.

Similarly, let 𝑁𝐹𝑅 be the set of non-functional requirements which are required to be

prioritized. It is denoted as:

𝑁𝐹𝑅 = {𝑁𝐹𝑅1, 𝑁𝐹𝑅2, 𝑁𝐹𝑅3, … , 𝑁𝐹𝑅𝑚} (5.7)

where 𝑚 is the total number of non-functional requirements.

However, there is a relationship between functional and non-functional requirements

which should be established in terms of eliciting the importance degree of each non-

functional requirement for a given functional requirement. This relationship can be

expressed as follows:

𝐹𝑀(𝐹𝑅𝑖 , 𝑁𝐹𝑅𝑗) = {𝑚𝑖𝑗 ∈ (0.001,0.25,0.5,0.75,1) ∀𝐹𝑅𝑖 ∈ 𝐹𝑅, 1 ≤ 𝑖 ≤ 𝑛, ∀𝑁𝐹𝑅𝑗 ∈

𝑁𝐹𝑅, 1 ≤ 𝑗 ≤ 𝑚} (5.8)

 119

where 𝐹𝑀(𝐹𝑅𝑖 , 𝑁𝐹𝑅𝑗) indicates the importance degree of non-functional NFRj for

achieving functional requirement FRi; mij is a real number belongs to IPA actual scale

(see Table 4.3); finally 𝑛 and m represent the number of functional and non-functional

requirements, respectively.

Moreover, there is a need for defining functions aimed at calculating the weights of

functional requirements as well non-functional requirements. Thus, initially, a function

is defined in the following for computing the weights of non-functional requirements

using triangular fuzzy number and alpha cut approach:

𝐹𝑇𝐴(𝑁𝐹𝑅𝑗) = {𝑁𝑊𝑗 ∈ [0,1] ∀ 𝑁𝐹𝑅𝑗 ∈ 𝑁𝐹𝑅, 1 ≤ 𝑗 ≤ 𝑚} (5.9)

where 𝐹𝑇𝐴(𝑁𝐹𝑅𝑗) applies fuzzy triangular number and alpha cut approach to compute

the weight of NFRj; NWj is a real number such that 0 ≤ NWj ≤ 1; and m is the number

of non-functional requirements.

In a similar way, another function is needed to calculate the weights of functional

requirements. This is formulated as follows:

𝐹𝑊𝐴(𝐹𝑅𝑖) = {𝑁𝑅𝑖 ∈ [0,1] ∀ 𝐹𝑅𝑖 ∈ 𝐹𝑅, 1 ≤ 𝑖 ≤ 𝑛} (5.10)

where 𝐹𝑊𝐴(𝐹𝑅𝑖) uses weighted average decision matrix to calculate the weight of FRi;

NRi is a real number such that 0 ≤ NRi ≤ 1; and n is the number of functional

requirements.

Nevertheless, at the end of the process of prioritizing non-functional requirements,

there is a need to aggregate different prioritized lists of non-functional requirements

produced by different stakeholders. This is formulated as follows:

𝑈𝑊𝑖 = ∑ 𝐹𝑇𝐴(𝑁𝐹𝑅𝑖𝑗) ∗ 𝐹𝐴𝐻𝑃(𝑠𝑗)𝑘
𝑗=1 (5.11)

 120

where 𝑈𝑊𝑖 is a real number such that 0 ≤ 𝑈𝑊𝑖 ≤ 1 which represents the final weight

of non-functional requirement 𝑊𝑖; and k is the number of stakeholders.

The same process needs to be done in order to produce the single prioritized list of

functional requirements. It is expressed as follows:

𝑈𝑅𝑖 = ∑ 𝐹𝑊𝐴(𝐹𝑅𝑖𝑗) ∗ 𝐹𝐴𝐻𝑃(𝑠𝑗)𝑘
𝑗=1 (5.12)

where 𝑈𝑅𝑖 is a real number such that 0 ≤ 𝑈𝑅𝑖 ≤ 1 which indicates the final weight of

functional requirement 𝑅𝑖; and k is the number of stakeholders.

5.2.2 Validation of the Proposed Approach using Graph Theory

In the following, graph theory is used to indicate that the outcome of the proposed

approach is valid.

A graph 𝐺 = (𝑉, 𝐸) is represented by two main sets, called vertices 𝑉(𝐺) and edges

𝐸(𝐺). In other words, vertices are the nodes of graph which connect together using

edges.

In the context of this research, the set of requirements (functional or non-functional)

represents the vertices of the graph where each pair of requirements (functional or non-

functional) is connected together using an edge. Each edge of the graph has a weight

which indicates the weights summation of two connected requirements. So, a complete

weighted graph is formed. For a graph that contains 𝑛 nodes, there are 𝑛! possible paths,

which may indicate the final prioritized list. For example, Figure 5.4 represents a

complete weighted graph which is formed based on three functional requirements. So,

there are 6 possible paths which might represent the final prioritized list. They are:

 FR1 FR2 FR3

 FR1 FR3 FR2

 121

 FR2 FR1 FR3

 FR2 FR3 FR1

 FR3 FR2 FR1

 FR3 FR1 FR2

FR1

FR2 FR3

U
R

1+U
R

3U
R

2+
U

R
1

UR2+UR3

FR : Functional requirement

URi+URj : The weights summation of FRi and FRj

Figure 5.4: A sample of complete weighted graph for three functional requirements

Then, the intention is to find out the single path which indicates the prioritized list of

functional requirements, produced by the proposed approach, among all possible paths.

The procedure which needs to be followed to discover the single path is represented as a

flowchart in Figure 5.5. Finally, the outcome would be represented in the form of an

acyclic directed sub graph.

As mentioned before, the main goal of using graph theory is to prove that the final

prioritized list of functional and non-functional requirements produced by the proposed

approach have been sorted in a correct order. By applying the graph theory on the

example presented in Section 5.1, two graphs need to be formed; one for non-functional

requirements and the other one for functional requirements.

 122

[No]

[Yes]

Read a complete weighted graph

Choose an edge which poses the greatest weight

among all available edges

Remove all other edges connected to the tail of

the selected edge

Final path is

completed?

Return an acyclic directed sub graph

For each node of the selected edge, calculate the

weights summation of all connected edges (WS)

Select a node with higher WS as a tail of the

selected edge and select a node with lower WS

as a head of the selected edge

Figure 5.5: Flow chart of identifying the single path which indicates the final prioritized list

The complete weighted graph of non-functional requirements is represented in

Figure 5.6. As can be seen in Figure 5.6, there are 120 possible paths which may

indicate the final prioritized list of non-functional requirements. By following the

procedure represented in Figure 5.5, the final prioritized list of non-functional

requirements is achieved and represented in Figure 5.7. As can be observed in Figure

4.9, the prioritized list of non-functional requirements

(NFR5NFR2NFR4NFR1NFR3) is the same as the prioritized list of non-

functional produced by the proposed approach (see Table 5.7).

 123

NFR1

NFR2

0.3550.
40

6

0.427
NFR4 NFR5

NFR3

0
.4

1
4 0

.3
9

8

0.385

0.
38

4

0.419

0.363 0.449

Figure 5.6: The completed weighted graph of non-functional requirements

NFR1

NFR2

0.355

NFR4 NFR5

NFR3

0
.4

1
4

0.
38

4

0.449

Figure 5.7: The acyclic directed sub graph indicates the final prioritized list of non-functional

requirements

Similarly, in order to discover the final prioritized list of functional requirements of

the example presented in Section 5.1 using graph theory, a complete weighted graph is

formed which contains 15 nodes and 15! possible paths. By applying the procedure

presented in Figure 5.5, the single path which indicates the final prioritized list of

functional requirements is obtained and shown (the bold directed paths started by FR3)

in Figure 5.8. It is quite obvious that this path (FR3FR4 FR1FR7

 124

FR9FR15 FR2FR5 FR13FR10 FR6FR11 FR14FR8 FR12) is

the same as the list produced and represented by the proposed approach in Table 5.6.

FR12

FR1 FR2 FR3 FR4 FR5

FR6

FR7

FR8

FR9FR10FR11

FR13

FR14

FR15

Figure 5.8: The acyclic directed sub graph indicates the final prioritized list of functional requirements

5.3 Summary

This chapter explained the application of IPA on the requirements of ATM, CDM,

and CQM by participating four stakeholders to demonstrate how the nine steps of IPA

could be applied in real cases. In addition, the chapter described the application of graph

theory to provide mathematical evidence that the outcome of the proposed approach (i.e.

IPA) is proven to be valid.

 125

CHAPTER 6: EVALUATION OF THE PROPOSED APPROACH THROUGH

CONTROLLED EXPERIMENTS

This research aims to contribute to software engineering community by proposing an

approach which enables researchers and practitioners to integrate the prioritization of

functional and non-functional requirements simultaneously. The detailed description of

this approach has been provided in Chapter 4. However, improving the maturity of the

whole body of exploration in this field of research will never be achieved unless the

proposed approach is completely analyzed, evaluated, and compared and the demands

for enhancement are recognized. In this respect, an in-depth evaluation of the proposed

approach in an empirical manner would be needed.

The objective of this chapter is to present the evaluation the effectiveness of the

proposed approach, i.e. IPA, in terms of time needed for performing the prioritization

task, accuracy of the results produced by the approach and ease of use when compared

to the other state-of-the-art approaches.

To achieve the desired goal, two successive controlled experiments have been

performed during this research. Controlled experiment has been recognized as one of

the most common empirical strategies for evaluating a new approach in the software

engineering domain (Wohlin et al., 2012). Appendix B provides a general overview on

the most common empirical strategies which can be used to investigate the evaluation of

a new software engineering approach.

In the first controlled experiment, IPA has been compared with the state-of-the-art

approach, called AHP-based approach. To compare these approaches, the focus was

mainly on measuring three relevant properties such as the actual time-consumption, the

accuracy of results, and ease of use. AHP-based approach has been exploited for

comparative evaluation of IPA since AHP has been widely applied as a reference

 126

method in empirical evaluations of different prioritization methods (J. Karlsson et al.,

1998; L. Karlsson et al., 2007; Perini et al., 2009; Perini et al., 2007; Perini et al., 2013;

Ribeiro et al., 2011; Tonella et al., 2013). Moreover, it is also found to be the most well-

known and robust method in several domains (Barney, Petersen, Svahnberg, Aurum, &

Barney, 2012).

As the results of the first controlled experiment indicated the superiority of IPA over

AHP-based approach, the researcher conducted the second experiment with the aim of

comparing IPA with the other state-of-the-art alternative, named HAM-based approach

to find out whether IPA outperforms HAM-based approach with respect to the actual

time-consumption, the accuracy of results, and ease of use. The results of the second

experiment indicated statistically that IPA shows a better performance than HAM-based

approach.

6.1 Controlled Experiments

This section illustrates in detail the two controlled experiments, which have been

carried out to assess the actual time consumption, accuracy of results, and ease of use of

the IPA. Table 6.1 summarizes the key components of the two controlled experiments.

To conduct both experiments, the researcher has followed the guidelines proposed by

(Wohlin et al., 2012), on how to define, plan, run, and analyze the results of an

experiment in the software engineering domain. As can be observed in Table 6.1, the

main difference between Experiment 1 and Experiment 2 is that we replaced AHP-

based approach with HAM-based approach. Note that Experiment 2 was conducted

almost six month after Experiment 1. The reason of not conducting only one

experiment, which includes the three prioritization approaches, i.e. IPA, AHP-based

approach, and HAM-based approach, is that on the time of conducting the first

experiment, HAM-based approach had not been proposed. Moreover, conducting a

 127

controlled experiment, which deals with three approaches, might make participants

exhausted, and thereby, may bias the final results.

Table 6.1: Overview of the controlled experiments

 Experiment 1 Experiment 2

Goal Analyze two tool-supported approaches for

software requirements prioritization: IPA and

AHP-based approach, with the goal of

measuring the actual time-consumption,

accuracy of results, and ease of use

Analyze two tool-supported approaches for

software requirements prioritization: IPA and

HAM-based approach, with the purpose of

measuring the actual time-consumption,

accuracy of results, and ease of use

Independent

variables

IPA and AHP-based approach IPA and HAM-based approach

Perspective From the point of view of the decision maker and researcher (for both experiments)

Context Both experiments were executed using 20 real subjects prioritizing a collection of 20 real

requirements including 15 functional requirements and 5 non-functional requirements of ATM,

CDM, and CQM.

Dependent

variables

Actual time-consumption; accuracy of results and ease of use (for both experiments)

Other

variables

Execution order, experience in requirements prioritization (for both experiments)

6.1.1 Experiment Definition

6.1.1.1 Definition of Experiment 1

The main goal of the first experiment is to analyze two approaches for software

requirements prioritization, IPA and AHP-based approach. To achieve the desired goal,

three properties are evaluated during the experiment: actual time-consumption, accuracy

of results, and ease of use. The perspective is from the decision maker’s and

researcher’s point of view, so that the decision maker and researcher would like to

investigate the difference between IPA and AHP-based approach in terms of the three

properties. Moreover, this investigation is useful for decision makers and researchers

who may want to select an appropriate prioritization approach for a given requirements

prioritization problem or to initiate a new prioritization approach in the future. The

experiment has been carried out in the context of 20 Ph.D. students and research

 128

scholars prioritizing a collection of 20 real requirements including 15 functional

requirements and 5 non-functional requirements of ATM (Automated Teller Machine),

CDM (Cash Deposit Machine), and CQM (Check Deposit Machine). Thus, this

experiment is classified as blocked subject-object study.

As a summary, the goal of the first experiment is defined as:

Analyze the IPA and AHP-based approach for the purpose of evaluation with respect

to actual time-consumption, accuracy of results, and ease of use from the point of view

of the decision makers and researchers in the context of Ph.D. students and research

scholars prioritizing requirements.

To achieve the defined goal of this experiment, the researcher needed to investigate

for finding answers to the following research questions:

 RQ1-1: How fast are IPA and AHP-based approach when applied to perform

the prioritization process?

 RQ1-2: Which approach, between IPA and AHP-based approach, is easier to

use?

 RQ1-3: Which approach, between IPA and AHP-based approach, produces

results that are more accurate?

6.1.1.2 Definition of Experiment 2

The principal purpose of the second experiment is to analyze the IPA and HAM-

based approach for the purpose of evaluation with respect to actual time-consumption,

accuracy of results, and ease of use from the point of view of the decision makers and

researchers. The experiment has been done in the context of Ph.D. students prioritizing

a collection of 20 real requirements including 15 functional requirements and 5 non-

 129

functional requirements of ATM, CDM, and CQM. This experiment is classified as

blocked subject-object study.

To achieve the desired goal, the researcher required to verify the following research

questions:

 RQ2-1: How fast are IPA and HAM-based approach when applied to perform

the prioritization process?

 RQ2-2: Which approach, between IPA and HAM-based approach, is easier to

use?

 RQ2-3: Which approach, between IPA and HAM-based approach, produces

results that are more accurate?

6.1.2 Experiment Planning

6.1.2.1 Context Selection

Both experiments have been done in a research laboratory environment, and hence

the experiments were executed off-line (i.e. the experiments have not been done in an

industrial setting). The experiments have been conducted with participating Ph.D.

students and research scholars as subjects, and the experiments are classified as specific

since they have focused on the requirements of ATM (Automated Teller Machine),

CDM (Cash Deposit Machine), and CQM (Check Deposit Machine). The experiments

have addressed a real problem since they have investigated the differences between two

requirements prioritization approaches when applied on the same set of requirements.

 130

6.1.2.2 Hypothesis Formulation

Depending on previously mentioned research questions, the following null and

alternative hypotheses have been formulated for the controlled experiments:

Hypotheses of Experiment 1:

 Null hypothesis (𝐻0𝑡𝑖𝑚𝑒): There is no significant difference between IPA and

AHP-based approach with regards to the average actual time-consumption to

conclude the prioritization task.

Alternative hypothesis (𝐻1𝑡𝑖𝑚𝑒): There is a significant difference between IPA

and AHP-based approach with regards to the average actual time-

consumption to conclude a prioritization task.

 Null hypothesis (𝐻0𝑒𝑎𝑠𝑒𝑜𝑓𝑢𝑠𝑒): There is no significant difference between IPA

and AHP-based approach in terms of ease of use.

Alternative hypothesis (𝐻1𝑒𝑎𝑠𝑒𝑜𝑓𝑢𝑠𝑒): There is a significant difference

between IPA and AHP-based approach in terms of ease of use.

 Null hypothesis (𝐻0𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦): The accuracy is equal for IPA and AHP-based

approach.

Alternative hypothesis (𝐻1𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦): The accuracy is not equal for IPA and

AHP-based approach.

Hypotheses of Experiment 2:

 Null hypothesis (𝐻0𝑡𝑖𝑚𝑒): There is no significant difference between IPA and

HAM-based approach with regards to the average actual time-consumption to

conclude the prioritization task.

 131

Alternative hypothesis (𝐻1𝑡𝑖𝑚𝑒): There is a significant difference between IPA

and HAM-based approach with regards to the average actual time-

consumption to conclude a prioritization task.

 Null hypothesis (𝐻0𝑒𝑎𝑠𝑒𝑜𝑓𝑢𝑠𝑒): There is no significant difference between IPA

and HAM-based approach in terms of ease of use.

Alternative hypothesis (𝐻1𝑒𝑎𝑠𝑒𝑜𝑓𝑢𝑠𝑒): There is a significant difference

between IPA and HAM-based approach in terms of ease of use.

 Null hypothesis (𝐻0𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦): The accuracy is equal for IPA and HAM-based

approach.

Alternative hypothesis (𝐻1𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦): The accuracy is not equal for IPA and

HAM-based approach.

6.1.2.3 Variables and Measures

Similar to almost any kind of controlled experiments in software engineering

domain, independent variables as well as dependent variables of the controlled

experiments needed to be identified.

Independent variables:

The independent variables of the first experiment were IPA and AHP-based

approach while the independent variables of the second experiment were IPA and

HAM-based approach. Figure 6.1 sketches a graphical overview of these approaches. It

should be highlighted that, in the following description of the three approaches, the term

non-functional requirement refers to system quality attributes such as reliability,

security, and etc. A brief description on the three approaches, IPA, AHP-based

approach, and HAM-based approach, along with their implemented software prototypes

are provided in the following.

 132

[No]

[Yes]

Identify FRs and

NFRs

Build decision

matrix of FRs and

NFRs

Select a pair

(FR vs NFR)

Elicit the importance

degree of an NFR for

a given FR

All pairs

elicited?

Calculate NFRs

ranking

Calculate FRs

ranking

a)

[No]

[Yes]

Identify FRs

Build decision

matrix of FRs

Select a pair

(FR vs FR)

Elicit the preference

value for each pair of

FRs

All pairs

elicited?

Calculate FRs

ranking

b)

[No]

[Yes]

Identify NFRs

Build decision

matrix of NFRs

Select a pair

(NFR vs NFR)

Elicit the preference

value for each pair of

NFRs

All pairs

elicited?

Calculate NFRs

ranking

[No]

[Yes]

Identify FRs and

NFRs

Build decision

matrix of NFRs

Select a pair

(NFR vs NFR)

Elicit the preference
value for each pair

of NFRs

All pairs

elicited?

Calculate NFRs

ranking

Build decision

matrix of FRs and

NFRs

c)

[No]

[Yes]

Select a pair

(FR vs NFR)

Elicit the importance

degree of an NFR for

a given FR

All pairs

elicited?

Calculate FRs

ranking

Figure 6.1: The process of prioritizing functional and non-functional requirements using a) IPA; b) AHP-

based approach; c) HAM-based approach

 IPA and its supporting tool

In this research, an approach has been proposed in order to integrate the process of

prioritizing functional and non-functional requirements simultaneously. This approach

is called IPA. The detailed description of IPA has been provided in Chapter 4.

Figure 6.1a demonstrates the steps, which should be done by a decision maker to

prioritize functional and non-functional requirements using IPA. As can be seen in

Figure 6.1a, the process is started with identifying functional and non-functional

requirements by a decision maker. Then, IPA puts the functional and non-functional

requirements into rows and columns of the decision matrix, respectively. Afterward, the

decision maker (the person who works with IPA) is requested to give his/her opinion

regarding the importance degree of each non-functional requirement with respect to

each functional requirement. In reality, the decision maker is asked to express his/her

opinion according to five scales, called IPA nominal scale (see Table 4.3). Once the

process of eliciting the importance degree of each non-functional requirement for all

 133

functional requirements is completed, IPA begins to calculate the weight of each non-

functional requirement, using triangular fuzzy number and alpha-cut approach, with the

aim of producing the prioritized list of non-functional requirements. Lastly, the IPA’s

process is concluded with computing the weight of each functional requirement using

weighted average decision matrix as well as the calculated weights of non-functional

requirements, producing the prioritized list of functional requirements.

The IPA supporting prototype, which was utilized in this study, is TIPA (Tool-

supported Integrated Prioritization Approach) that is a C#-based implementation of IPA

algorithm. In fact, TIPA provides the opportunity for decision makers to computerize

the particular steps of the IPA process shown in Figure 6.1a. The software prototype

guides the user to express his/her judgments between all possible pairs of functional and

non-functional requirements in a similar way as the IPA approach does. Figure 6.2

shows a picture of the TIPA visual user interface. A thorough explanation of TIPA is

given in Appendix A.

The software prototype facilitates the decision maker in the whole prioritization

process. Particularly, once the decision maker is authenticated by the system, he/she is

able to define the candidate functional and non-functional requirements that need to be

prioritized. Afterward, TIPA presents him/her an agenda of specifying the preference

values. In this situation, the decision maker can view the explanation of functional and

non-functional requirements for every possible pair (i.e. FR and NFR). So, the decision

maker can specify her/his preference value by identifying the importance degree of

every non-functional requirement for achieving each functional requirement according

to IPA nominal scale (see Table 4.3), through choosing one of the radio buttons

indicated in Figure 6.2. When the decision maker presses ‘Submit’, the subsequent pair

of requirements (i.e. FR and NFR) is viewable. After finishing the evaluations of all

requirements, the system is capable of calculating and showing the prioritized list of

 134

functional requirements, non-functional requirements along with their corresponding

weights.

Figure 6.2: A picture of the visual user interface displaying the functional requirement,

Transfer funds, versus the non-functional requirement, Security, under analysis with TIPA

 AHP-based approach and its implementation

In this section, a description of the AHP-based approach, which has been exploited in

the first experiment, is given. This approach targeted at prioritizing functional and non-

functional requirements separately. The AHP-based approach is basically proposed by

the means of Analytic Hierarchy Process (AHP) method. The AHP method (Saaty,

1980) has been recognized as the most widely known MCDM (Multi Criteria Decision

Making) method. This method exploits pairwise comparison strategy in such a way that

the decision maker is required to compare all the available pairs of requirements

together to figure out the relative weight of one requirement over another requirement.

Figure 5.1b sketches the steps of the AHP-based approach for prioritizing functional

and non-functional requirements. In fact, to prioritize both functional and non-

functional requirements using AHP-based approach, a decision maker needs to apply

AHP method twice, first to apply AHP method on the identified functional requirements

(see the left side of Figure 6.1b), and second to apply it on the candidate set of non-

functional requirements (see the right side of Figure 6.1b). For example (see the left

side of Figure 6.1b), having a collection of 𝑛 functional requirements determined by a

decision maker, the first step in AHP is to construct an 𝑛 × 𝑛 matrix which rows and

 135

columns indicate the candidate functional requirements. Then, the decision maker

determines his/her judgment for each pair of functional requirements by identifying a

preference value which is between one to nine, where one expresses that the two

functional requirements are equally important while nine represents the highest value of

one functional requirement when compared to the other functional requirement. In fact,

the decision maker has to perform 𝑛 × (𝑛 − 1)/2 pairwise comparisons in total. The

underlying values used for this purpose are presented in Table 6.2, which indicates a

measure of specifying the decision maker’s preference value for a given pair of

requirements. Once all the possible pairs of functional requirements are assessed, the

final priority order of functional requirements is calculated throughout the calculation of

the principal eigenvector of the matrix (i.e., the eigenvector with the greatest normalized

eigenvalue). Each element of the principal eigenvector signifies the priority value of the

related functional requirement. The same procedure needs to be applied in order to

prioritize non-functional requirements.

Table 6.2: Scales used in AHP method (J. Karlsson & Ryan, 1997)

In the following, the software prototype, which has been used as an implementation

of AHP-based approach within this study, is described. In practice, CAHP (Csharp

Analytic Hierarchy Process) has been exploited. It is a C#-based implementation of

Relative

Intensity

Definition Explanation

1 Of equal value Two requirements are of equal value

3 Slightly more value Experience slightly favors one requirement

over another

5 Essential or strong value Experience strongly favors one requirement

over another

7 Very strong value A requirement is strongly favored and its

dominance is demonstrated in practice

9 Extreme value The evidence favoring one over another is of

the highest possible order of affirmation

2,4,6,8 Intermediate values between

two adjacent judgments

When compromise is needed

Reciprocals if requirement i has one of the above numbers assigned to it when compared with

requirement j, then j has the reciprocal value when compared with i.

 136

AHP algorithm that enables the decision maker to computerize the particular steps of

the AHP method. The software prototype directs the decision maker to specify pairwise

comparisons between all possible pairs of requirements. Figure 6.3 indicates an image

of the CAHP visual user interface where the decision maker is able to perform the

pairwise comparison between each pair of requirements.

Figure 6.3: A picture of the visual user interface displaying two functional requirements, withdraw

money, and check balance, under evaluation in CAHP

The CAHP software prototype supports the whole evaluation process. Note that the

following process is applicable for either functional or non-functional requirements.

Particularly, after the decision maker is authenticated by the system, he/she is able to

define the candidate requirements (functional or non-functional) that need to be

prioritized. Then, the software prototype displays the decision maker an agenda of

𝑛 × (𝑛 − 1)/2 pairwise comparisons. The decision maker can view the explanation for

each pair of requirements, determine her/his preference value by identifying the relative

importance of one requirement over the other one according to AHP scales (see Table

6.2), through choosing one of the radio buttons shown in Figure 6.3. When the decision

maker presses ‘Submit’, the subsequent pair of requirements is represented. When the

evaluations of all requirements have been done completely, the system computes the

final ranking of the requirements along with their priority values using AHP algorithm.

 137

 HAM-based approach and its supporting tool

This section briefly explains the HAM-based approach, proposed by (Dabbagh, Lee,

& Parizi, 2014) which has been used and analyzed in the second controlled experiment

of this research. HAM-based approach is inspired from the Hybrid Assessment Method

(HAM), first introduced in (Ribeiro et al., 2011).

In (Dabbagh et al., 2014), the authors proposed an approach by which indicated how

HAM could be applied in the context of prioritizing functional and non-functional

requirements, i.e., non-functional requirements are mapped to the criteria of HAM’s

process while functional requirements play the role of HAM’s alternatives. This

approach is called HAM-based approach.

The process of HAM-based approach for prioritizing functional and non-functional

requirements is displayed in Figure 6.1c. The process is initialized with identifying

functional and non-functional requirements that need to be prioritized by a decision

maker. Then, HAM-based approach generates a pairwise comparison decision matrix,

which rows and columns indicate the candidate non-functional requirements. Afterward,

the decision maker is requested to determine his/her judgment for each pair of non-

functional requirements by identifying a preference value according to HAM’s scale

(see Table 6.3). Once all the possible pairs of non-functional requirements are assessed,

the process of prioritizing non-functional requirements can be done. After that,

functional and non-functional requirements are inserted into rows and columns of the

decision matrix, respectively. Then, the decision maker is asked to determine his/her

judgment regarding the importance degree of each non-functional requirement with

respect to each functional requirement based on the scales defined in Table 6.3. Once

the process of eliciting the importance degree of each non-functional requirement for all

 138

functional requirements is completed, the process is concluded by performing the

prioritization of functional requirements.

Table 6.3: Scales used in HAM method (adapted form (Ribeiro et al., 2011))

The software prototype, which has been used in this research, as an implementation

of HAM-based approach, is CHAM (Csharp Hybrid Assessment Method). CHAM is

implemented using C# programming language to assist decision makers by automating

the particular steps of the HAM-based approach displayed in Figure 6.1c. The software

prototype directs the decision maker to specify pairwise comparisons between all

possible pairs of non-functional requirements as well as express his/her opinions

between all possible pairs of functional and non-functional requirements in a similar

way as the HAM-based approach does. Figure 6.4 and Figure 6.5 show two main

pictures of the CHAM visual user interface.

The software prototype facilitates the decision maker in the whole prioritization

process. Particularly, once the decision maker is authenticated by the system, he/she is

able to define the candidate functional and non-functional requirements that need to be

prioritized. Then, the software prototype shows the decision maker an agenda of

𝑛 × (𝑛 − 1)/2 pairwise comparisons of non-functional requirements (see Figure 6.4).

So, the decision maker can view the explanation for each pair of non-functional

requirements, determine her/his preference value by identifying the relative importance

HAM scale Interpretation

9/1 Extremely high importance

9/3 Very high importance

9/5 High importance

9/7 Medium high importance

9/9 Equal importance

7/9 Medium low importance

5/9 Low importance

3/9 Very low importance

1/9 Extremely low importance

 139

of one non-functional requirement over the other one through choosing one of the radio

buttons shown in Figure 6.4. When the decision maker presses ‘Submit’, the subsequent

pair of non-functional requirements is represented. When the evaluations of all non-

requirements requirements have been done completely, the system computes the final

ranking of the non-functional requirements along with their priority values. Afterward,

CHAM provides the decision maker with the explanation of functional and non-

functional requirements for every possible pair (i.e. FR and NFR). So, the decision

maker can specify her/his preference value by identifying the importance degree of

every non-functional requirement for achieving each functional requirement, through

choosing one of the radio buttons indicated in Figure 6.5. When the decision maker

presses ‘Submit’, the subsequent pair of requirements (i.e. FR and NFR) is viewable.

After finishing the evaluations of all requirements, the system is capable of calculating

and showing the prioritized list of functional requirements along with their

corresponding weights.

Figure 6.4: A picture of pairwise comparison of two non-functional requirements, Availability, and

Security, using CHAM

 140

Figure 6.5: A picture of the visual user interface displaying the functional requirement, withdraw

money, versus the non-functional requirement, Availability, under analysis with CHAM

Dependent variables and measures:

Based on the hypotheses formulated in Section 6.1.2.2, three dependent variables

have been considered and measured in both controlled experiments: actual time-

consumption, ease of use, and accuracy of results. By conducting a systematic mapping

study on the various empirical studies within the requirements prioritization area, it was

found that the most frequently measured dependent variables in these studies are the

accuracy of results, the time needed to perform the prioritization task, and the ease of

use (Pergher & Rossi, 2013). This is also in line with the analysis of comparative

evaluations of different prioritization methods, which has been presented in Table 2.15,

where the three mentioned variables have been measured in all reviewed studies. The

reason for choosing these properties has been advocated by the fact that to make a

prioritization process applicable in commercial software development, it should be fast

and simple while providing accurate results (J. Karlsson & Ryan, 1997).

To measure the actual time-consumption, i.e. the first dependent variable, start time

and end time of the prioritization task for each prioritization approach have been

monitored automatically using the prioritization tools, and then their difference

computed.

 141

Ease of use represents how easy a decision maker is able to perform the prioritization

process using a given prioritization approach. In both experiments, the second

dependent variable, i.e. ease of use, was measured in two ways by the means of the two

post-questionnaires: post-test 1A and post-test 2A (post-questionnaires are presented in

Appendix E). Immediately after working with each tool-supported prioritization

approach, the test subjects carried out the first post-test, i.e. post-test 1A, by answering

the following question: How easy was to perform the actual prioritization using the

approach? (In the experiments, the term approach is replaced with IPA or AHP-based

approach or HAM-based approach) (The test subject was asked to choose an integer

value ranging from one to five according to Likert scale (Likert, 1932) where one

indicated very low and five represents very high). In the post-test 2A which has been

done after working with both tool-supported prioritization approaches, the test subjects

were asked to answer the following question: Which approach did you find easier to

use? The test subject was asked to select one option:

 For Experiment 1: IPA, AHP-based approach, they are equal.

 For Experiment 2: IPA, HAM-based approach, they are equal.

In this context, a more accurate prioritization approach is the one that produces the

ranking results (i.e. prioritized lists of functional and non-functional requirements)

which better reflects the participants’ opinions. Suppose that prioritization approach 𝑋

is considered to produce more accurate results than prioritization approach 𝑌. This

brings the meaning that the prioritized list of functional requirements as well as the

prioritized list of non-functional requirements which have been produced by using

approach 𝑋 are closer to the perception of the participants who have used both

approaches 𝑋 and 𝑌. In both experiments of this study, the accuracy of results, as the

third dependent variable, was measured in terms of expected accuracy and perceived

 142

accuracy using two post-questionnaires: post-test 1B and post-test 2B. The expected

accuracy was measured through the post-test 1B where each test subject was asked to

answer the following question immediately after working with each tool-supported

prioritization approach once he/she was provided with prioritized lists of functional and

non-functional requirements produced by the given tool-supported approach based on

his/her judgements: How accurate did you find the results produced by the approach?

(In the experiment, the term approach is replaced with IPA or AHP-based approach or

HAM-based approach) (The test subject was asked to choose an integer value ranging

from one (very low) to five (very high) according to Likert scale (Likert, 1932)). In

addition, the perceived accuracy was measured by the means of the second post-

questionnaire, i.e. post-test 2B. The post-test 2B was done one week after each subject

session. Therefore, each test subject was given two sheets of prioritized lists. Each sheet

included the prioritized list of 15 functional requirements as well as the prioritized list

of 5 non-functional requirements that had been generated by a given tool-supported

approach based on the judgements of the subject who received the sheets. The critical

point here is that the subjects were not aware of which tool produced the lists. They

were only requested to label a sheet that included the lists (i.e. prioritized list of 15

functional requirements and prioritized list of 5 non-functional requirements) which

better suited their views.

6.1.2.4 Selection of subjects

The sampling technique, which has been exploited in both experiments to select the

test subjects, was convenience sampling. Convenience sampling is a type of non-

probability sampling technique by which the most convenient and available persons are

chosen as test subjects (Wohlin et al., 2012).

 143

6.1.2.5 Experiment design

The design, which has been adopted in both experiments, is the paired comparison

design (see Table 6.4), which is a particular type of one factor with two treatments

(Wohlin et al., 2012). In this design, each subject applied two prioritization approaches

(i.e. treatments) on the same set of requirements (i.e. objects). The order of executions

was given at random to each subject in order to minimize the effect of the execution

order on the final results.

Table 6.4: The paired comparison design used for controlled experiments

 Experiment 1 Experiment 2

Group Prioritization task 1 Prioritization task 2 Prioritization task 1 Prioritization task 2

1 IPA AHP-based IPA HAM-based

2 AHP-based IPA HAM-based IPA

6.1.2.6 Subjects

Both experiments have been performed with 20 real subjects. Participants of the first

experiment included 16 Ph.D. candidates of Computer Science who have served as

research assistants at the University of Malaya and 4 Ph.D holders in Software

Engineering who are currently working as post-doc at University of Malaya, Kuala

Lumpur, Malaysia. All the subjects of the second experiment were Ph.D. students of

Computer Science at University of Malaya, Kuala Lumpur, Malaysia. It should be

highlighted that the subjects of the second experiment were different from the subjects

of the first experiment. This was done to prevent biasing the results that may happen

due to the previous working experience of the subjects with approaches. All the subjects

who participated in the experiments have had a good knowledge about different types of

software requirements, requirements prioritization approaches and software engineering

 144

domain in general. Therefore, we believe that the selected test subjects for the

experiments could be considered close to professionals.

6.1.2.7 Objects

Same objects have been used in both experiments. In practice, 15 functional

requirements and 5 non-functional requirements (totally twenty requirements) of ATM

(Automated Teller Machine), CDM (Cash Deposit Machine), and CQM (Check Deposit

Machine), were selected as the objects of the controlled experiments. ATM is a banking

subsystem that allows bank customers to access basic bank services from remote

locations. CDM and CQM are self-service banking subsystems that allow bank

customers to make deposits and payment transactions using cash and check,

respectively. Clearly, ATM, CDM, and CQM must provide some services (i.e.

functional requirements) to their users. At the same time, these functional requirements

should satisfy certain quality attributes (i.e. non-functional requirements) which could

have great impression on the overall users’ satisfaction.

Functional requirements of ATM, CDM, and CQM, which were used in the

experiments, are given in Table 6.5 (see left column of Table 6.5). Non-functional

requirements of ATM, CDM, and CQM express how well the functional requirements

should be performed. For example, “bank customer should be able to withdraw cash in

less than 3 seconds”. This statement indicates that to perform functional requirement,

withdraw cash, non-functional requirement, performance, needs to be considered as an

important quality attribute. The non-functional requirements which have been chosen

for this study were system quality attributes such as availability, security, usability,

performance, and reliability. The definitions of non-functional requirements are

provided in Table 6.5 (see the right column of Table 6.5).

 145

These requirements were quite independent and high level, which have been chosen

taking into consideration that they need to possibly be clear enough even for novice

users. All requirements were represented as simple textual descriptions. The

prioritization was performed without taking into account dependencies among

requirements.

Table 6.5: Objects of the controlled experiments

Functional requirement Non-functional requirement

Withdraw cash

Check balance

Deposit cash

Transfer funds

Change PIN number

View transactions history

Bill payment

Print transaction receipt

Deposit check

Top up mobile phone

Loan payment

Print transaction history

Change withdraw limit

Activate overseas services

Credit card payment

Availability: the percentage of time that the system

is in operation to provide its intended function

Security: the extent to which access to desired

function by unauthorized persons can be controlled

while still providing its function to users

Usability: the extent to which a user is able to

understand, learn, use and being attracted to a

function

Performance: the extent to which how fast the

system can interact with user to perform the desired

function

Reliability: the extent to which the system can be

expected to perform its intended function with

required precision

6.1.2.8 Instrumentation

To perform each controlled experiment and monitor it as well, a software tool has

been developed. The software tool not only included the implementations of the

prioritization approaches used in the experiment, but also provided the participant with

a sufficient amount of information regarding the definition of requirements

prioritization, definitions of functional and non-functional requirements in general as

well as explaining the differences between functional and non-functional requirements.

In particular, the software tool included the definitions of 15 functional requirements

 146

and 5 non-functional requirements, which were used as objects in each experiment. In

addition, it provided the subject with a general introduction about the prioritization

approaches of a given experiment as well as the guidelines on how they might work.

Furthermore, to collect and measure the required data, i.e. the dependent variables

which were explained in Section 6.1.2.3, some standard techniques and questionnaires

were embedded in the designed tool.

6.1.2.9 Threats to validity

This section discusses the main threats to validity, which could bias the results of

both controlled experiments: internal, external, construct and conclusion validity threats

(Wohlin et al., 2012).

Internal validity concerns the relationship between the treatments and the outcome of

the experiment. This type of validity threats, which could possibly bias the outcome of

the experiments, is the fatigue effect. The subjects may become exhausted during each

experiment, which might have impression on their concentration. In other words, the

test subjects who performed the prioritization tasks with 20 requirements (15 FRs and 5

NFRs) could get tired and bored. To minimize the effect of this threat, the number of

requirements was kept low with the purpose of conducting experiment in less than two

hours to prevent the subjects form feeling fatigued. In addition, an obligatory break was

considered between the two tasks to mitigate this threat. Moreover, the time of each

subject session was arranged according to his/her preference so that he/she could be

fresh at that time.

External validity focuses on theory about the relationship between the treatment and

the outcome. Can the experiment be generalized outside the scope of the experiment?

Threats to external validity may restrict the generalizability of the experiment to the

 147

industrial setting. External validity threats must be taken into consideration when an

experiment is needed to be conducted with participating students and researchers. Since

the test subjects of the experiments were sampled from software engineering Ph.D.

students and researchers, this type of threat needs to be addressed. Several studies have

discussed the similarities and differences of using students or professionals in the

software engineering experimentations. Some of them have shown that there is no

significant difference between students and professionals (Svahnberg, Aurum, &

Wohlin, 2008) while some others argued that the results of using students and

professionals are not the same (Berander, 2004b). Another author (Tichy, 2000) argued

that if the results of an experiment, which uses students as subjects, indicate that one

approach overcomes the other one in terms of a given property, it is highly probable that

practitioners would get the same conclusion. However, it is challenging to deduce that

the results of conducted experiments within this study could be generalized to industrial

environment. However, to minimize this threat, research students were selected as test

subjects of the experiments taking into consideration that the results of using research

students might be more reliable compared to classroom students (Danesh & Ahmad,

2009). In addition, the test subjects who participated in the experiments represented a

population with sufficient education about requirements, requirements prioritization

approaches used in the experiments, and have had industrial working experience.

Therefore, selected test subjects of the experiments could be considered close to

professionals. The other external threat is concerned with the small number of

requirements used in the experiments. Despite rather small number of requirements (20)

was used in the experiments to conquer the fatigue effect and as a result of that, amend

the internal threat, it limits the chance of generalizing the results to cases where a larger

couple of requirements need to be prioritized. In many practical situations, the total

number of requirements is actually larger, and accordingly, the outcomes obtained in

 148

this particular research could possibly be credible when the prioritization is conducted

on a subset of the requirements of a large-scale system like the situation that only the

requirements for a specific subsystem are needed to be prioritized. It is difficult to

conclude that increasing the number of requirements would certainly result in exactly

the identical results. Hence, future duplications and experimental studies need to be

conducted to analyze the findings in some situations where more requirements would be

prioritized. Furthermore, threats to external validity are also associated with the

functional and non-functional requirements used as experimental objects. All of the

subjects were familiar with the experimental objects (i.e. functional and non-functional

requirements of ATM, CDM, and CQM). Though this makes the situation quite

realistic, further investigations with various kinds of objects as well as subjects are

needed to confirm or contradict the outcomes found in the experiments. Lastly, the time

complexity of the algorithms as well as GUIs utilization are actually insignificant with

regards to the time needed by a decision maker to perform the prioritization process.

Hence, the calculated actual time-consumption pertains basically to the time of

individuals’ decision-making process. Therefore, this could not be considered as a threat

to validity.

Construct validity threats concern the relationship between theory and observation.

The objective dependent variable time was measured by the means of the prioritization

tools automatically, as done also in (Perini et al., 2009). Dependent variables such as

ease of use and accuracy are subjective variables, i.e. their measurement relies on how

they are perceived by the subjects and could possibly influenced by the subjects’ past

expertise and information about a specific issue (Perini et al., 2009). Also, the ideal

target ranking is not identified in advance, in general. Thus, these factors make it

difficult to measure the ranking accuracy. In this research, an accurate prioritization

approach is one that generates a priority order which better reflects the decision maker’s

 149

viewpoint, as in (Perini et al., 2009). Furthermore, following (Perini et al., 2009),

accuracy has been measured in two ways. To collect the viewpoints of the test subjects

regarding the ease of use and accuracy of prioritization approaches, standard

questionnaires were designed. In a situation like the performed experiments where the

test subjects are aware of measuring the time-consumption of performing the

prioritization process, it is possible that the time-consumption could be affected.

However, the test subjects of experiments were not aware of measuring the other two

variables (i.e. ease of use and accuracy) when performing each experiment. Therefore,

only the actual time-consumption may have been influenced.

The threats to conclusion validity are primarily related to the statistical analyses

underlying the conclusion, measures, implementation, and unexpected interruptions

during experiments execution. In the following, the researcher explains that none of

these threats could affect the results. Robust and appropriate statistical tests were carried

out to investigate the null hypotheses. In some situations, non-parametric tests were

utilized in preference to parametric tests since the requirements to apply parametric tests

were failed to meet. Furthermore, measures and implementation were considered to be

reliable. Both objective and subjective measures were used. The researcher measured

the objective dependent variable of the experiments, i.e. actual time-consumption, in an

automatic way to make the outcomes more reliable. Moreover, to measure the

subjective dependent variables of the experiments, which are ease of use and accuracy

of results, the researcher designed some standard questionnaires and test (e.g. blind test

used for measuring perceived accuracy). All of the participants used the same

implementation of prioritization approaches as well. Each test subject was isolated in

the research laboratory to make sure that nobody or nothing may disturb him/her and

thereby influence the results. Mobile and any other smart devices were switched off.

However, one threat, which may influence statistical power, is caused by the limited

 150

number of test subjects who participated in the experiment, since only 20 subjects took

part in the experiment. Therefore, further experiments would be carried out with

participating more test subjects to have more rigorous statistical analysis.

6.1.3 Experiment execution

Before running the experiment, the researcher provided a brief presentation to each

subject who participated in the experiment with the purpose of giving an introduction on

the requirements prioritization definition and on available prioritization approaches,

IPA, AHP-based approach (for only the participants of Experiment 1), or HAM-based

approach (for only the participants Experiment 2). All selected functional and non-

functional requirements of ATM, CDM, and CQM were explained to them. Moreover,

the researcher provided a short instruction on how to work with the tools, TIPA, CAHP

(for only the participants of Experiment 1), or CHAM (for only the participants of

Experiment 2). These tools were also tested on a small number of requirements before

applying them to the actual experiment. After that, each test subject was asked to fill up

two pre-questionnaires: pre-questionnaire 1 and pre-questionnaire 2.

Pre-questionnaire 1 was designed in order to get some general information from each

participant of the experiment. This information includes educational level, position,

industrial experience, etc. The second pre-questionnaire, i.e. pre-questionnaire 2,

targeted at obtaining information with respect to the familiarity of each subject

regarding the requirements of ATM, CDM, and CQM. It also captured knowledge of

each test subject about two prioritization approaches used in a given experiment.

The experiment occurred inside a research laboratory room provided with a

computer. A computer with access to TIPA, CAHP (for only participants of Experiment

1), or CHAM (for only participants of Experiment 2) has been provided to every single

 151

subject. The twenty requirements, including 15 functional requirements and 5 non-

functional requirements of ATM, CDM, and CQM, were inserted in advance to the

software tools. Given the same set of functional and non-functional requirements, the

subject executed the two prioritization tasks sequentially. The order of executions was

assigned randomly in order to minimize the effect of the order. Each subject’s session

took more than an hour, including preliminary presentation and providing instruction on

the tools, along with the limited break of 5 minutes between the two prioritization tasks.

An individual session was considered for each participant of the experiment.

After working with each tool-supported prioritization approach, each subject filled

up the post-test 1 in order to measure the ease of use and expected accuracy of

prioritization approaches. Furthermore, after working with both prioritization

approaches, the first part of post-test 2, i.e. post-test 2A was given to each test subject to

capture the ease of use again. Lastly, one week after the experiment, the second part of

post-test 2, i.e. post-test 2B, was provided to each subject in order to capture the

perceived accuracy.

6.1.4 Experiment results and analysis

This section describes the notable results achieved from the first experiment as well

as the second experiment. For both experiments, the researcher initially performed

descriptive analysis using Microsoft Excel. In addition, statistical analysis has been

carried out using IBM SPSS Statistics version 21 to reject or accept the null hypotheses,

which were formulated in Section 6.1.2.2. It should be noted that a 5% significance

level was used for hypothesis testing. Raw data of Experiment 1 and Experiment 2 are

given in Appendix C and Appendix D, respectively.

 152

6.1.4.1 Results of Experiment 1

 RQ1-1: How fast are IPA and AHP-based approach when applied to perform the

prioritization process?

Some intuition can be achieved by taking a look at the results indicated in Table 6.6

and the boxplot sketched in Figure 6.6 that compares the actual time-consumption to

perform the prioritization task using IPA and AHP-based approach. These values were

calculated automatically by the prioritization tools through recording the start time and

end time of performing each prioritization task. It is quite obvious that the time required

to perform the prioritization task is smaller with IPA than with AHP-based approach.

As Table 6.6 shows, the difference in average actual time-consumption between the two

approaches collected from 20 subjects of the first experiment is 390 seconds, which

corresponds to a reduction of 43%. This is also shown in Figure 6.6 where the median

value is higher for AHP-based approach than for IPA.

Table 6.6: Average actual time-consumption for the prioritization task using IPA and AHP-based approach

 IPA AHP-based approach Difference (AHP-based,IPA)

Actual time-consumption 509 sec 899 sec 390

% - - 43%

Figure 6.6: Boxplot of the actual time-consumption associated with the two evaluated prioritization approaches

 153

Before starting to test the null hypothesis (𝐻0𝑡𝑖𝑚𝑒) (see Section 6.1.2.2), the

researcher checked the distribution of data to determine whether it is normal or not. To

perform the normality test, the Shapiro-Wilk test was used. According to information

gained from the Shapiro-Wilk test (see Table 6.7), it has been found that the distribution

of data is normal with respect to actual time-consumption, as the p-value was greater

than 0.05 for both IPA and AHP-based approach.

Table 6.7: Normality test of data extracted from Experiment 1 using Shapiro-wilk test

Shapiro-Wilk

Time-consumption
Ease of use Accuracy

post-test 1A post-test 2A expected perceived

 statics df Sig. statics df Sig. statics df Sig. statics df Sig. statics df Sig.

IPA 0.952 20 0.400 0.785 20 0.001
0.695 20 0.000

0.857 20 0.007
0.544 20 0.000

AHP-based 0.969 20 0.729 0.598 20 0.000 0.812 20 0.001

According to Table 6.7, the data were normally distributed. On top of that, the design

type that was used for this experiment was one factor with two treatments (see Section

6.1.2.5). One of the analysis methods, which appears to be suitable for such situation, is

a parametric test called t-test. Therefore, to test the null hypothesis (H0time), t-test was

applied. The test’s result shows that the difference between the average actual time-

consumption of two approaches, IPA and AHP-based approach is significant, as the p-

value turned out to be 0.034, which is less than a 5% significance level. Thus, the first

null hypothesis was rejected and it could be easily concluded that the IPA approach is a

faster approach than the AHP-based approach for performing the prioritization task.

 RQ1-2: Which approach, between IPA and AHP-based approach, is easier to use?

The ease of use was measured through two post questionnaires (see Section 6.1.2.3).

In the first post questionnaire, post-test 1A, which was done immediately after working

with each tool-supported approach, each participant was asked to identify his/her

judgment regarding the approach’s ease of use for performing the actual prioritization

 154

using Likert scale. The results of this post questionnaire are provided in Table 6.8

where for IPA, majority of subjects believed that it has a high degree of ease of use for

performing the prioritization, whereas for AHP-based approach, majority of participants

found it a low-level of ease of use.

Table 6.8: Results of ease of use collected from post-test 1A of Experiment 1

 Likert scale 1 2 3 4 5

Prioritization

approach

IPA - 5 1 11 3

AHP-based - 14 1 5 -

To investigate the second null hypothesis (H0easeofuse) (see Section 6.1.2.2), a non-

parametric test, called Mann-Whitney test, was applied with considering the fact that the

data were not distributed normally (see Table 6.7). As a result, the second null

hypothesis was rejected since the significance value (p-value) calculated using Mann-

Whitney test is 0.002, which is less than 0.05. Thus, it could be concluded that the IPA

approach is easier to use than AHP-based approach.

To confirm the results regarding the ease of use, the researcher performed the post-

test 2A after the subjects worked with both prioritization approaches. As illustrated in

Section 6.1.2.3, they were requested to answer the following question: Which approach

did you find easier to use (select one option: IPA, AHP-based approach, They are

equal)? Among the 20 subjects, 14 found IPA easier to use than AHP-based approach.

Only 5 subjects stated that AHP-based approach was easier than IPA and 1 subject

found them equally easy. As can be observed in Table 6.9, this corresponds to that 70%

of the participants found IPA easier, while 25% found AHP-based approach easier and

5% found the two approaches equally easy to use.

 155

Table 6.9: Results of ease of use extracted from post-test 2A of Experiment 1

Ease of use IPA AHP-based Equally easy

 14 5 1

% 70% 25% 5%

Due to the nature of variables as well as the fact that the data were not normally

distributed (see Table 6.7), the researcher decided to investigate the second null

hypothesis using Chi-Square test by comparing the number of responses in favour of

IPA to the total number of responses. It became apparent that there is a statistically

significance difference, as p-value=0.001 (<0.05). Hence, the second null hypothesis

was rejected again and it could be concluded that the IPA approach is easier to use than

AHP-based approach.

 RQ1-3: Which approach, between IPA and AHP-based approach, produces results

that are more accurate?

As discussed in Section 6.1.2.3, accuracy of results produced by two approaches was

measured in two ways, including expected accuracy and perceived accuracy. To

measure the expected accuracy, the participants filled up the post-test 1B immediately

after working with each tool-supported prioritization approach and seeing the results

produced by a given approach. Table 6.10 summarizes the results collected from the

post-test 1B which indicates the opinions of test subjects with respect to the expected

accuracy of IPA and AHP-based approach. As can be seen in Table 6.10, the opinions

of test subjects seem to be different for the two approaches. Therefore, in order to get

understanding of which approach produces more accurate results, the third null

hypothesis was tested statistically.

Table 6.10: Results of expected accuracy collected from post-test 1B of Experiment 1

 Likert scale 1 2 3 4 5

Prioritization

approach

IPA - 4 3 12 1

AHP-based - 8 8 2 2

 156

To test the third null hypothesis (𝐻0𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) (see Section 6.1.2.2), the researcher

decided to apply a non-parametric test, called Mann-Whitney test, taking into the

account that the data were not distributed normally (see Table 6.7). Hence, it was

observed that the difference between two approaches with respect to the expected

accuracy is statically significant since the p-value turned out to be 0.033 (<0.05).

Therefore, the third null hypothesis was rejected and it could be drawn the conclusion

that IPA produces more accurate results than AHP-based approach.

Furthermore, the perceived accuracy was measured by the means of post-test 2B.

Therefore, each test subject was given two pairs of prioritized lists, including the 15

prioritized functional requirements as well as the 5 prioritized non-functional

requirements ordered based on the priority order that had been calculated by

himself/herself during the subject session working with the two tools. The subjects were

not aware of which tool produced the lists. They were only requested to label the list

comprising the priority order which better suited their views. As Table 6.11 illustrates, 5

test subjects (25%) found the AHP-based approach lists are more accurate whereas 15

subjects (75%) declared that IPA was more accurate. Here also the difference is

statistically significant, as the p-value turned out to be 0.025 (<0.05) in a Chi-Square

test. Chi-Square test was used since the data were not normally distributed with respect

to perceived accuracy (see Table 6.7). Therefore, the third null hypothesis was rejected

and thus it could be concluded that IPA produces more accurate results than AHP-based

approach.

Table 6.11: Results of perceived accuracy collected from post-test 2B of Experiment 1

Perceived accuracy IPA AHP-based Similar

 15 5 0

% 75% 25% 0%

 157

 Effects of other variables:

The researcher analyzed the effects of other variables, including execution order and

experience in requirements prioritization, on dependent variables, i.e. actual time-

consumption, ease of use, and accuracy of results, to investigate whether these variables

affected the results of the experiment. Execution order indicates the order of executing

the prioritization approaches by a subject. As mentioned before, half of the subjects

started the prioritization task by executing IPA followed by AHP-based approach while

the other subjects began with AHP-based approach followed by IPA. Moreover, the

subjects who participated in the experiment could be classified into five categories

(based on Likert scale (Likert, 1932)), according to their familiarity with requirements

prioritization.

The results of analysis are presented in Table 6.12, where it can be concluded that

neither execution order nor experience in requirements prioritization did not have any

significant effect on time, ease of use, and accuracy of results, since the p-values are

greater than 0.05. It should be noted that the analysis was performed using Mann-

Whitney test.

Table 6.12: Analysis the effect of other variables on dependent variables of Experiment 1

 Factor Execution order

(IPA first vs. AHP-based

first)

Experience in requirements prioritization (very

low, low, medium, high, very high)

Dependent variable p-value p-value

Time 0.45 0.528

Ease of use 0.423 0.792

Accuracy 1.0 0.584

6.1.4.2 Results of Experiment 2

 RQ2-1: How fast are IPA and HAM-based approach when applied to perform the

prioritization process?

 158

The average actual time-consumption of the two tool-supported prioritization

approaches, i.e. IPA and HAM-based approach, was calculated and provided in Table

6.13 where the average actual time-consumption was 509 seconds and 635 seconds for

IPA and HAM-based approach, respectively. In other words, IPA needed 20% less time

than HAM-based approach to perform the prioritization task. This difference is also

indicated in boxplots of Figure 6.7 where the median value is higher for HAM-based

approach than IPA.

Table 6.13: Average actual time-consumption for the prioritization task using IPA and HAM-based approach

 IPA HAM-based approach Difference(HAM-based,IPA)

Actual time-consumption 509 sec 635 sec 126

% - - 20%

Figure 6.7: Boxplot of the actual time-consumption associated with IPA and HAM-based approach

Due to normally distribution of the data (see the most left columns of Table 6.14),

the researcher decided to apply the parametric t-test to test the null hypothesis (𝐻0𝑡𝑖𝑚𝑒)

(see Section 6.1.2.2). The t-test’s outcome indicated that the difference between the

average actual time-consumption of IPA and HAM-based approach is significant on the

5% level, as the p-value turned out to be 0.016. Thus, the first null hypothesis was

rejected and it could be simply drawn the conclusion that the IPA approach is faster

than the HAM-based approach.

 159

Table 6.14: Normality test of data extracted from Experiment 2 using Shapiro-Wilk test

Shapiro-Wilk

Time-consumption
Ease of use Accuracy

post-test 1A post-test 2A expected perceived

 statics df Sig. statics df Sig. statics df Sig. statics df Sig. statics df Sig.

IPA 0.952 20 0.400 0.785 20 0.001
0.771 20 0.000

0.785 20 0.001
0.495 20 0.000

HAM-based 0.984 20 0.971 0.800 20 0.001 0.816 20 0.002

 RQ2-2: Which approach, between IPA and HAM-based approach, is easier to use?

After working with each tool-supported approach, participants filled up the first post

questionnaire to answer the question “How easy was to perform the actual prioritization

using the approach?”. The results of this questionnaire are given in Table 6.15.

Table 6.15: Results of ease of use obtained from post-test 1A of Experiment 2

 Likert scale 1 2 3 4 5

Prioritization

approach

IPA - 5 1 11 3

HAM-based - 8 8 4 -

Due to the non-normally distribution of the data (see the middle columns of Table

6.14), the non-parametric Mann-Whitney test was applied to investigate the second null

hypothesis (H0easeofuse) (see Section 6.1.2.2). The test’s result showed that the

difference between ease of use of IPA and HAM-based approach is significant due to

the reason that the p-value calculated using Mann-Whitney test is 0.01, which is less

than 5%. Thus, second null hypothesis was rejected and it could be concluded that the

IPA approach is easier to use than HAM-based approach.

Moreover, the results extracted from the post-test 2A confirmed the results (see

Table 6.16) where 60% of the test subjects found IPA easier, while 30% found HAM-

based approach easier and 10% found the two approaches equally easy to use.

Table 6.16: Results of ease of use extracted from post-test 2A of Experiment 2

Ease of use IPA HAM-based Equally easy

 12 6 2

% 60% 30% 10%

 160

Here, the second null hypothesis was investigated again in a Chi-Square test because

the data were not normally distributed (see the middle columns of Table 6.14) by

comparing the number of responses in favour of IPA to the total number of responses.

The test’s result indicated that there is a statistically significance difference, as p-value

is 0.022 (<0.05). Hence, the second null hypothesis was rejected and it could be

concluded that the IPA approach is easier to use than HAM-based approach.

 RQ2-3: Which approach, between IPA and HAM-based approach, produces results

that are more accurate?

The results collected from the post-test 1B, which illustrate the viewpoints of test

subjects with respect to the expected accuracy of IPA and HAM-based approach are

provided in Table 6.17. As can be seen in Table 6.17, it seems that there is a difference

between these approaches in terms of expected accuracy. To investigate the difference

between these approaches in a statistical manner, the non-parametric Mann-Whitney

test, was applied since the distribution of the data was not normal (see the most right

columns of Table 6.14). The test’s result showed that the difference between two

approaches with respect to the expected accuracy is statically significant since the p-

value turned out be 0.048 (<0.05). Therefore, the third null hypothesis was rejected and

it could be concluded that IPA produces more accurate results than HAM-based

approach.

Table 6.17: Results of expected accuracy collected from post-test 1B of Experiment 2

 Likert scale 1 2 3 4 5

Prioritization

approach

IPA - 5 1 11 3

HAM-based - 5 9 6 -

However, the researcher also measured the perceived accuracy of IPA and HAM-

based approach through a blind test by the means of the post-test 2B. The results of the

 161

post-test 2B are given in Table 6.18 where it can be observed that 16 test subjects (80%)

believed that the prioritized lists of functional and non-functional requirements

produced by IPA were more close to their ideal rankings whereas only 4 subjects (20%)

declared that results of HAM-based were more accurate. Here also the difference is

statistically significant, as the p-value turned out to be 0.007 (<0.05) in a Chi-Square

test. Chi-Square test was used because the data were not normally distributed with

respect to perceived accuracy (see the most right columns of Table 6.14). Therefore, the

third null hypothesis was rejected, and thus, it could be drawn the conclusion that IPA

produces more accurate results than HAM-based approach.

Table 6.18: Results of perceived accuracy collected from post-test 2B of Experiment 2

Perceived accuracy IPA HAM-based Similar

 16 4 0

% 80% 20% 0%

 Effects of other variables:

Median test was used to analyze the effects of execution order and experience of

subjects in requirements prioritization, on actual time consumption, ease of use, and

accuracy of results. As can be observed in Table 6.19, these variables did not

significantly affect the dependent variables of the second experiment, as the p-values

are greater than 0.05.

Table 6.19: Analysis the effect of other variables on dependent variables of Experiment 2

 Factor Execution order

(IPA first vs. HAM-based

first)

Experience in requirements prioritization

(very low, low, medium, high, very high)

Dependent variable p-value p-value

Time 0.226 0.528

Ease of use 0.165 0.813

Accuracy 1.0 0.570

 162

6.1.5 Discussion

Regarding Experiment 1, the main results extracted from this experiment are

summarized in Table 6.20 where they are characterized in terms of hypothesis,

dependent variable, statistical test, p-value, result and direction. Based on the results

obtained from this experiment, IPA outperforms AHP-based approach with respect to

the actual time-consumption taken for performing the prioritization task, ease of use,

and accuracy of results perceived by test subjects. It should be highlighted that these

results have been achieved in a situation where both IPA and AHP-based approach have

been applied by the same set of test subjects on the same set of functional and non-

functional requirements.

Table 6.20: Summary of hypotheses testing of Experiment 1 for comparing IPA and AHP-based approach

Hypothesis Dependent variable Statistical test p-value Result Direction

𝐇𝟎time Actual time-consumption T-test 0.034 rejected IPA

𝑯𝟎𝑒𝑎𝑠𝑒𝑜𝑓𝑢𝑠𝑒 Ease of use Mann-whitney 0.002
rejected

IPA

Chi-square 0.001

𝐇𝟎accuracy Expected accuracy Mann-whitney 0.033
rejected

IPA

Perceived accuracy Chi-square 0.025

The observations concerning the actual time-consumption of the two prioritization

approaches, IPA and AHP-based approach, indicate that, IPA performs better than the

other approach, AHP-based approach as the first null hypothesis was rejected on a 0.034

significance value. The difference between the actual time-consumption of the two

approaches is mostly based on the required number of decision-makings needed to be

made by each test subject using these approaches. In this experiment, in order to

prioritize 15 functional requirements as well as 5 non-functional requirements, each test

subject needed to make 115 decisions using AHP-based approach whereas 75 decisions

using IPA. The reason for the difference between IPA and AHP-based approach with

respect to the required number of decision-makings is that IPA only needs one decision

matrix in which both functional and non-functional requirements are included while

 163

using AHP-based approach, two decision matrixes need to be constructed

independently: one for functional requirements and the other one for non-functional

requirements. Thus, this factor contributed the test subjects to reach the prioritized lists

of functional and non-functional requirements produced by IPA faster than the

prioritized lists produced by AHP-based approach. Furthermore, the different range of

the values used for indicating a preference applied by the two approaches might have

led to this variation in actual time-consumption since IPA uses a five-point scale (see

Table 4.3) whereas AHP-based approach exploits a nine-point scale (see Table 6.2). It is

obvious that selecting between five options requires less time than choosing among nine

options.

A better performance of IPA with respect to AHP-based approach is also discovered

when analyzing the results obtained from the dependent variable, ease of use. Initially,

by measuring the ease of use using the post-test 1A, it can be concluded that the second

null hypothesis was rejected with a p-value of 0.002. To confirm the findings regarding

the ease of use of the IPA and AHP-based approach, the researcher also conducted the

post-test 2A for measuring the ease of use in another way. It is worth pointing out that

the second null hypothesis was rejected again and thus it can be drawn the conclusion

that the IPA approach is easier to use than AHP-based approach. Two factors may bias

the subjects’ judgments on the ease of use of the two approaches: first, the number of

decision-makings, and second, specifying the preference value in a short range. Both

these factors could possibly put the IPA’s ease of use in a higher level than AHP-based

approach.

The third null hypothesis which refers to the statement that the accuracy is equal for

IPA and AHP-based approach was also rejected. As can be observed in Table 6.20,

regarding both the expected and perceived accuracy, the differences are statistically

 164

significant since the p-values are 0.033 and 0.025, respectively. This indicates that the

major number of the subjects selected IPA (see Table 6.10 and Table 6.11) as the most

accurate approach compared to the AHP-based approach. This may be due to the reason

that the triangular fuzzy numbers, which have been used in the underlying of IPA, could

increase the accuracy of the results produced by this approach since the other approach,

i.e. AHP-based approach, has not used triangular fuzzy numbers.

Regarding controlled Experiment 2, Table 6.21 summarizes the results achieved by

the means of conducting the second experiment. In general, these results demonstrate

the superiority of IPA over HAM-based approach when those approaches have been

applied by the same set of subjects on the same set of functional and non-functional

requirements.

Table 6.21: Overview of hypotheses testing of Experiment 2 for comparing IPA and HAM-based approach

Hypothesis Dependent variable Statistical test p-value Result Direction

𝐇𝟎time Actual time-consumption T-test 0.016 rejected IPA

𝑯𝟎𝑒𝑎𝑠𝑒𝑜𝑓𝑢𝑠𝑒 Ease of use Mann-whitney 0.010
rejected

IPA

Chi-square 0.022

𝐇𝟎accuracy Expected accuracy Mann-whitney 0.048
rejected

IPA

Perceived accuracy Chi-square 0.007

In particular, the investigation of the first null hypothesis indicated that there is a

significant difference between IPA and HAM-based approach in terms of actual time-

consumption since the p-value is 0.016, and thereby IPA is the faster approach. The

difference between the actual time-consumption of the two approaches is mostly based

on the number of decision makings requested to the subject by these approaches, where

it is 85 for HAM-based approach, and 75 for IPA. Furthermore, the different range of

the values used for indicating a preference applied by the two approaches might have

led to this variation in actual time-consumption.

 165

Furthermore, the superiority of IPA over HAM-based approach can be observed with

respect to the other two dependent variables, i.e. ease of use and accuracy of results

since the second and third null hypotheses were rejected (see Table 6.21). For the first

experiment, the main factors which might lead IPA to show a better performance

comparing to AHP-based approach in terms of ease of use and accuracy of results, are

discussed earlier. Those justifications are also valid for discussing the differences

between IPA and HAM-based approach in terms of ease of use and accuracy of results.

6.2 Summary

This chapter provided a detailed description of the two controlled experiments that

have been carried out in order to evaluate and compare the proposed prioritization

approach, i.e. IPA, with the most familiar alternatives, called AHP-based approach, and

HAM-based approach.

In the first experiment, IPA and AHP-based approach were analyzed and compared

together in order to find out which one is an appropriate approach in terms of the actual

time-consumption, the ease of use of an approach perceived by the subjects, and the

accuracy of each approach’s results. As the statistical analysis of the results obtained

from the first experiment indicated the superiority of IPA over AHP-based approach in

terms of actual time-consumption, ease of use, and accuracy of results, the researcher

conducted the second experiment with the aim of comparing the IPA with the other

comparable approach called HAM-based approach. To compare the IPA with HAM-

based approach, once again the researcher concentrated on measuring the three

properties, actual time-consumption, ease of use, and accuracy of results. The statistical

analysis of the second experiment’s results showed the better performance of IPA

compared to HAM-based approach. Both of the experiments have been carried out with

 166

20 experienced subjects on a set of 20 real requirements consisting of 15 functional

requirements and 5 non-functional requirements.

 167

CHAPTER 7: CONCLUSION

This chapter describes the main conclusions of this research by (i) presenting the key

contributions of the research; (ii) explaining the practical and theoretical implications of

this study; (iii) describing the achievements of the research objectives; (iv) discussing

the limitation of the study; and (v) outlining some suggestions for future research.

7.1 Contributions

The software engineering community has been criticizing for lacking an approach

which enables practitioners to integrate the prioritization of functional and non-

functional requirements (Berander & Andrews, 2005; Pergher & Rossi, 2013;

Pitangueira, Maciel, de Oliveira Barros, & Andrade, 2013; Thakurta, 2013). The

approach introduced in this research, i.e. IPA, is a useful first step towards filling this

gap. The IPA allows the practitioners to prioritize both functional and non-functional

requirements simultaneously in an integrated manner by establishing their relationships,

ultimately producing the prioritized lists of functional and non-functional requirements

separately. The key contributions of the IPA over existing approaches are:

 IPA provides a requirements prioritization approach which considers both

functional requirements and non-functional requirements simultaneously during

the prioritization stage, using only one decision matrix.

 IPA establishes the relationship between functional and non-functional

requirements to perform the prioritization task. This means that by using IPA,

non-functional requirements are prioritized based on their importance degree for

achieving functional requirements. Furthermore, functional requirements are

prioritized in relation to non-functional requirements.

 168

Moreover, the effectiveness of the proposed approach was empirically evaluated

through conducting two controlled experiments aimed at comparing the IPA with the

other similar state-of-the-art approaches, called AHP-based approach, and HAM-based

approach. Three main properties were measured during the experiments: the actual

time-consumption, the ease of use of an approach perceived by the subjects, and the

accuracy of each approach’s results. The experiments were conducted with 20

experienced subjects on a set of 20 real requirements of ATM, CDM, and CQM which

consist of 15 functional requirements and 5 non-functional requirements. The main

conclusion that can be drawn from the results of the experiments is that the IPA is

superior to the AHP-based approach as well as HAM-based approach with respect to the

actual time-consumption, ease of use, accuracy of results. In particular, the better

performance of IPA compared to AHP-based approach and HAM-based approach with

respect to the actual time-consumption is predominantly dependent on the required

number of decision makings needed to be made by a decision maker. In fact, by using

only one decision matrix, IPA produces a prioritized list of functional requirements as

well as an ordered list of non-functional requirements, while AHP-based approach and

HAM-based approach need two decision matrixes to perform the prioritization tasks.

Another interesting point that indicates the superiority of IPA over the other two

approaches is the accuracy of results produced by IPA. In other words, IPA does not

sacrifice the accuracy of results towards decreasing the required time for performing the

prioritization tasks. This implies that IPA is able to perform the prioritization of

functional and non-functional requirements in a faster way compared to AHP-based

approach and HAM-based approach, while at the same time, it is capable of generating

reliable results. The application of triangular fuzzy number in the underlying steps of

IPA plays a critical role for producing reliable results (prioritized lists of functional and

non-functional requirements). The superiority of IPA over AHP-based approach and

 169

HAM-based approach was also distinguished with respect to ease of use. Two aspects

that may cause IPA to be identified as an easier approach to use are the number of

decision makings and specifying the preference value in a short range. Both these

factors could possibly put the IPA’s ease of use in a higher level than the other two

approaches.

7.2 Implications

This research offers some significant implications to practitioners and researchers.

To requirements engineers, this study provides empirical evidence that adopting a

prioritization approach which considers the mutual impact of functional and non-

functional requirements during the prioritization process, as IPA does, would lead to

beneficial results. The results of applying such an approach for a given software project,

which are a prioritized list of functional requirements as well as a prioritized list of non-

functional requirements, could assist software developers to concentrate on the most

important functional requirements as the key component of the implementation phase,

early in the life cycle rather than later when modifications are often difficult and

impractical to accomplish. It would also help software architects to consider the most

significant non-functional requirements as the main driver to design the system’s

software architecture and also simplify the selection of suitable guidelines for achieving

the desired non-functional requirements. Requirements engineers might consider IPA as

an appropriate prioritization approach in projects in which (i) the prioritization of both

functional and non-functional requirements is required; (ii) the number of requirements

is limited; (iii) the prioritization process needs to be fast and simple while preserving

accuracy of results. The analysis of the specific results extracted from the conducted

experiments would facilitate decision makers with valuable descriptive and statistical

 170

information which could be useful to assist them to choose the most suitable

prioritization approach for a given prioritization problem in an organization.

The findings of this study could be also used as a guideline by interested researchers

for identifying trends before initiating a new prioritization approach in the future or

evaluating existing ones. In addition, this study provides researchers with few lines for

future research. As discussed earlier, it is challenging to claim that the results of this

empirical study could be generalized to industrial settings due to the usage of students

and researchers as test subjects. To have rigorous evidence of confirming or

contradicting this claim, it would be of interest for researchers to investigate the

replication of the study in industrial environments by participating professionals as

subjects. It would be also worthwhile for researchers to conduct further empirical

studies on a larger number of requirements to figure out how similar would be the

results with the findings of this study.

7.3 Achievement of Research Objectives

As discussed in Chapter 1 (Section 1.5), three research objectives have been defined

throughout this research. This section aims to provide the evidence that all defined

research objectives have been tackled and achieved in this study.

To achieve the research objective 1, that is to identify the current requirements

prioritization approaches as well as several empirical evaluations of these approaches,

two research questions were formulated, i.e. RQ1 and RQ2 (see Section 1.6).

 RQ1: What are the current approaches used for requirements prioritization?

 171

To investigate the above research question, an extensive literature review has been

conducted on the various existing requirements prioritization approaches. Accordingly,

the most important requirements prioritization approaches were identified and explained

thoroughly in Chapter 2 (see Section 2.2). In fact, conducting an extensive literature

review, on the various requirements prioritization approaches, contributed to this

research towards finding out the research gap of this study. In particular, by

comprehensively reviewing of the current requirements prioritization approaches, it was

observed that addressing both functional and non-functional requirements within a

single prioritization approach has received less attention in existing prioritization

approaches.

 RQ2: What are the descriptions and limitations of current requirements prioritization

approaches?

In order to find out the answer of this research question, the identified requirements

prioritization approaches were analyzed and consequently their descriptions and

limitations were captured and reported in Chapter 2 (see Section 2.2.5). This was useful

towards discovering the strength and weakness of each prioritization approach.

Moreover, a literature review was conducted on the most important empirical

evaluations of the existing requirements prioritization approaches (see Section 2.3).

This contributed to this research by providing some insights. Initially, it highlighted the

strengths and weaknesses of the existing requirements prioritization approaches when

applied in real cases. In addition, it provided guidelines on how to evaluate and compare

a requirements prioritization approach which specifically could be beneficial for

evaluating the proposed approach of this research.

 172

To attain the research objective 2, that is to propose an approach by which

integrating the process of prioritizing functional and non-functional requirements could

be performed, a research question was formulated, i.e. RQ3 (see Section 1.6).

 RQ3: What procedure does a software engineer should follow to integrate the

process of prioritizing functional and non-functional requirements?

To investigate the above research question, a nine-step approach, called IPA, was

proposed in this research with the aim of integrating the prioritization of functional and

non-functional requirements. The detailed description of IPA was provided in Chapter

4.

To attain the research objective 3, that is to empirically evaluate the effectiveness of

the proposed approach, through controlled experiments, in terms of time needed for

performing the prioritization task, accuracy of the produced results and ease of use

when compared to two similar state-of-the-art approaches, three research questions

including RQ4, RQ5, and RQ6 were formulated (see Section 1.6).

 RQ4: How to perform the prioritization task within a reasonable amount of time?

 RQ5: How easily the prioritization task can be performed?

 RQ6: How accurately the prioritization task can produce the prioritized lists of

functional requirements and non-functional requirements?

In order to investigate the above research questions and find out the required results,

two controlled experiments were conducted in this research (see Section 6.1) with the

aim of evaluating the IPA. Consequently, the results were collected, analyzed and

thereby reported in Section 6.1.4.

 173

7.4 Limitation

In the evaluation phase of this research, a rather small number of requirements, i.e.

20 requirements, were used as objects of the controlled experiments. One of the

important issues needs to be taken into consideration when conducting experiments is to

carry out experiments within a reasonable amount of time (L. Karlsson et al., 2007).

Considering this factor could prevent choosing a larger number of requirements for the

experiments of this study. However, some industrial projects would deal with the larger

number of requirements during the prioritization process. Hence, the findings of the

experiments could not be generalized to all industrial environments. The results of this

study might be valid when a subset of functional and non-functional requirements of a

large-scale system would be prioritized. Therefore, evaluation of the IPA in situations

where a larger number of requirements would be prioritized could be considered as a

potential suggestion for further empirical investigation of this approach.

7.5 Future work

As a future line of this research, (i) it would be worthwhile to investigate the

replication of the controlled experiments on a larger number of requirements with

participating professionals to get a sounder basis for our findings.

 (ii) The AHP-based approach which was exploited in the first experiment relies on

the idea that there is no relationship between functional and non-functional

requirements. In other words, AHP-based approach prioritizes functional and non-

functional requirements separately. As a future work, it would be interesting to modify

this approach in a way that it gets advantage of using hierarchy for establishing the

relationships. For example, in the case of having m non-functional requirements and n

functional requirements, the first step could be to construct a m×m pairwise comparison

 174

matrix and ask the decision maker to identify his/her judgments for each pair of non-

functional requirements. Then, for each non-functional requirement, a n×n pairwise

comparison matrix should be constructed for which each pair of functional requirements

needs to be assessed with respect to a particular non-functional requirement. In this

case, the total number of pairwise comparisons matrixes is m+1. Providing such

improvement may result in enhancing the accuracy of results, but at the same time, it

could lack in scalability issue. However, one solution to overcome the scalability issue

is to exploit Incomplete AHP (IAHP) (Harker, 1987) with the aim of minimizing the

pairwise comparisons.

(iii) The prioritization approach, which has been proposed and evaluated in this

research, does not focus on the requirements dependencies. Hence, it would be of

interest to propose a modified version of this approach in a way that dependencies

among requirements would make certain to receive more attention.

 175

REFRENCES

Aasem, Muhammad, Ramzan, Muhammad, & Jaffar, Arfan. (2010). Analysis and

optimization of software requirements prioritization techniques. 2010 IEEE

International Conference on Information and Emerging Technologies (ICIET),

1-6. doi: 10.1109/ICIET.2010.5625687.

Abbott, R. J. (1986). An Integrated Approach to Software Development. New York,

USA: John Wiley.

Abirami, S, Shankari, G, Akshaya, S, & Sithika, M. (2015). Conceptual Modeling of

Non-Functional Requirements from Natural Language Text Computational

Intelligence in Data Mining-Volume 3 (pp. 1-11): Springer.

Achimugu, Philip, Selamat, Ali, Ibrahim, Roliana, & Mahrin, Mohd Naz’ri. (2014). A

systematic literature review of software requirements prioritization research.

Information and Software Technology, 56(6), 568-585.

Ahl, Viggo. (2005). An experimental comparison of five prioritization methods.

Master's Thesis, School of Engineering, Blekinge Institute of Technology,

Ronneby, Sweden.

Alford, M. W. (1977). A Requirements Engineering Methodology for Real-Time

Process Requirements. IEEE Transactions on Software Engineering, 3(1), 60-

69.

Anton, A. (1997). Goal identication and renement in the specication of information

systems. (Ph.D. thesis), Georgia Institute of Technology.

Anwar, Fares, & Razali, Rozilawati. (2014). Requirements Elicitation Techniques

Selection Survey. New Trends in Software Methodologies, Tools and

Techniques: Proceedings of the Thirteenth SoMeT_14, 280-294. doi:

10.3233/978-1-61499-434-3-280.

Aurum, Aybüke, & Wohlin, Claes. (2003). The fundamental nature of requirements

engineering activities as a decision-making process. Information and Software

Technology, 45(14), 945-954.

Aurum, Aybüke, & Wohlin, Claes. (2005). Requirements engineering: Setting the

context (pp. 1-15): Springer Berlin Heidelberg.

Avesani, Paolo, Bazzanella, Cinzia, Perini, Anna, & Susi, Angelo. (2004). Supporting

the Requirements Prioritization Process. A Machine Learning approach. SEKE,

306-311.

Avesani, Paolo, Bazzanella, Cinzia, Perini, Anna, & Susi, Angelo. (2005). Facing

scalability issues in requirements prioritization with machine learning

techniques. 13th IEEE International Conference on Requirements Engineering,

297-305.

Azar, J, Smith, RK, & Cordes, D. (2007). Value-Oriented Prioritization: A Framework

for Providing Visibility and Decision Support in the Requirements Engineering

 176

Process. Department of Computer Science, University of Alabama, Technical

report.

Azar, Jim, Smith, Randy K, & Cordes, David. (2007). Value-oriented requirements

prioritization in a small development organization. IEEE Software, 24(1), 32-37.

Babar, Muhammad Imran, Ghazali, Masitah, & Jawawi, Dayang NA. (2014).

Systematic reviews in requirements engineering: A systematic review. 8th IEEE

Malaysian Software Engineering Conference (MySEC), 43-48.

Babar, Muhammad Imran, Ramzan, Muhammad, & Ghayyur, Shabaz AK. (2011).

Challenges and future trends in software requirements prioritization. 2011 IEEE

International Conference on Computer Networks and Information Technology

(ICCNIT), 319-324.

Babbie, Earl. (2013). The basics of social research (2 ed.). Belmont, CA:Wadsworth:

Cengage Learning.

Barney, Sebastian, Petersen, Kai, Svahnberg, Mikael, Aurum, Aybüke, & Barney,

Hamish. (2012). Software quality trade-offs: A systematic map. Information and

Software Technology, 54(7), 651-662.

Baskaran, Saranya. (2014). A Survey on Prioritization Methodologies to Prioritize Non

Functional Requirements. International Journal of Computer Science and

Business Informatics, 12(1), 32-44.

Beck, Kent. (2000). Extreme programming explained: embrace change: Addison-

Wesley Professional; US ed edition.

Berander, Patrik. (2004a). Prioritization of Stakeholder Needs in Software Engineering.

Understanding and Evaluation. Licenciate Thesis, Blekinge Institute of

Technology, Sweden, Licentiate Series(2004), 12.

Berander, Patrik. (2004b). Using students as subjects in requirements prioritization.

IEEE International Symposium on Empirical Software Engineering (ISESE'04),

167-176. doi: 10.1109/ISESE.2004.1334904.

Berander, Patrik, & Andrews, Anneliese. (2005). Requirements prioritization

Engineering and managing software requirements (pp. 69-94): Springer.

Berander, Patrik, & Wohlin, Claes. (2004). Differences in views between development

roles in software process improvement-a quantitative comparison. Paper

presented at the Proceedings of the 8th International Conference on Empirical

Assessment in Software Engineering (EASE 2004).

Berntsson Svensson, Richard, Olsson, Thomas, & Regnell, Björn. (2013). An

investigation of how quality requirements are specified in industrial practice.

Information and Software Technology, 55(7), 1224-1236.

Bradner, Scott. (1997). Key words for use in RFCs to Indicate Requirement Levels.

Brooks Jr, Frederick P. (1995). The Mythical Man-Month: Essays on Software

Engineering, Anniversary Edition, 2/E: Pearson Education India.

 177

Capilla, Rafael, Babar, Muhammad Ali, & Pastor, Oscar. (2012). Quality requirements

engineering for systems and software architecting: methods, approaches, and

tools. Requirements Engineering, 17(4), 255-258.

Carlshamre, Pär. (2001). A usability perspective on requirements engineering: from

methodology to product development. Ph D Dissertation, Department of

Computer and Information Science, Linkoping University, Sweden.

Carlshamre, Pär, Sandahl, Kristian, Lindvall, Mikael, Regnell, Björn, & Natt och Dag,

Johan. (2001). An industrial survey of requirements interdependencies in

software product release planning. Paper presented at the Fifth IEEE

International Symposium on Requirements Engineering, 2001.

Chung, Lawrence, & do Prado Leite, Julio Cesar Sampaio. (2009). On non-functional

requirements in software engineering Conceptual modeling: Foundations and

applications (pp. 363-379): Springer.

Cohen, Lou, & Cohen, Lou. (1995). Quality function deployment: how to make QFD

work for you: Addison-Wesley Reading, MA.

Cysneiros, Luiz Marcio, & Sampaio do Prado Leite, Julio Cesar. (2004). Nonfunctional

requirements: From elicitation to conceptual models. IEEE Transactions on

Software Engineering, 30(5), 328-350.

Dabbagh, Mohammad, & Lee, Sai Peck. (2013). A consistent approach for prioritizing

system quality attributes. Paper presented at the 2013 14th ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD).

Dabbagh, Mohammad, Lee, Sai Peck, & Parizi, Reza Meimandi. (2014). Application of

Hybrid Assessment Method for Priority Assessment of Functional and Non-

Functional Requirements. Paper presented at the 2014 International Conference

on Information Science and Applications (ICISA).

Danesh, Amir Seyed, & Ahmad, Rodina. (2009). Study of prioritization techniques

using students as subjects. Paper presented at the International Conference on

Information Management and Engineering, 2009. ICIME'09. .

Daneva, Maya, Damian, Daniela, Marchetto, Alessandro, & Pastor, Oscar. (2014).

Empirical research methodologies and studies in Requirements Engineering:

How far did we come? Journal of Systems and Software, 95, 1-9.

Davis, A.M. (1993). Software Requirements: Objects, Functions, and States. Upper

Saddle River, NJ: Prentice Hall.

Davis, Alan M. (1993). Software requirements: objects, functions, and states: PTR

Prentice Hall.

Doerr, J., Hartkopf, S., Kerkow, D., Landmann, D., & Amthor, P. (2007). Built-in user

satisfaction - Feature appraisal and prioritization with AMUSE. 15th Ieee

International Requirements Engineering Conference, Proceedings, 101-110.

doi: Doi 10.1109/Re.2007.62

 178

Doerr, Joerg, Kerkow, Daniel, Koenig, Tom, Olsson, Thomas, & Suzuki, Takeshi.

(2005). Non-functional requirements in industry-three case studies adopting an

experience-based NFR method. Paper presented at the 13th IEEE International

Conference on Requirements Engineering. .

Duan, Chuan, Laurent, Paula, Cleland-Huang, Jane, & Kwiatkowski, Charles. (2009).

Towards automated requirements prioritization and triage. Requirements

engineering, 14(2), 73-89.

Egyed, Alexander. (2003). A scenario-driven approach to trace dependency analysis.

IEEE Transactions on Software Engineering, 29(2), 116-132.

Fellir, Fadoua, Nafil, Khalid, & Touahni, Rajaa. (2014). System requirements

prioritization based on AHP. Paper presented at the 2014 Third IEEE

International Colloquium in Information Science and Technology (CIST).

Firesmith, Donald. (2004). Prioritizing Requirements. Journal of Object Technology,

3(8), 35-48.

Glinz, Martin. (2007). On non-functional requirements. Paper presented at the 15th

IEEE International Requirements Engineering Conference, 2007. RE'07. .

Greer, Des, & Ruhe, Günther. (2004). Software release planning: an evolutionary and

iterative approach. Information and Software Technology, 46(4), 243-253.

Gunda, Sai Ganesh. (2008). Requirements engineering: elicitation techniques.

Trollhattan: University West, Department of Technology, Mathematics and

Computer Science.

Gurp, J Van, Bosch, J, & Svahnberg, M. (2001). On the notion of variability in software

product lines. Proceedings of Working IEEE/IFIP Conference on Software

Architecture, 45-54.

Harker, Patrick T. (1987). Incomplete pairwise comparisons in the analytic hierarchy

process. Mathematical Modelling, 9(11), 837-848.

Hatton, Sarah. (2007). Early prioritisation of goals Advances in conceptual modeling–

Foundations and applications (pp. 235-244): Springer.

Hatton, Sarah. (2008). Choosing the right prioritisation method. Paper presented at the

19th Australian Conference on Software Engineering, 2008. ASWEC 2008. .

Henry, Joel, & Henry, Sallie. (1993). Quantitative assessment of the software

maintenance process and requirements volatility. Paper presented at the

Proceedings of the 1993 ACM conference on Computer science.

Hofmann, H. F., & Lehner, F. (2001). Requirements engineering as a success factor in

software projects. IEEE Software, 18(4), 58-66. doi: Doi

10.1109/Ms.2001.936219

Hopcroft, John E. (1983). Data structures and algorithms. Boston, MA, USA: Addison-

Wesley.

 179

IEEE, 830 Std. (1998). IEEE Recommended Practice for Software Requirements

Specifications.

IEEE. (1990). Standard Glossary of Software Engineering Terminology: IEEE Std.

Iqbal, A, Khan, FM, & Khan, SA. (2009). A critical analysis of techniques for

requirement prioritization and open research issues. International Journal of

Reviews in Computing, 1, 1-11.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unied Software Development

Process: Addison-Wesley Longman Publishing Co., Inc.,.

Jahanshahloo, Gholam Reza, Lotfi, F Hosseinzadeh, & Izadikhah, Mohammad. (2006).

Extension of the TOPSIS method for decision-making problems with fuzzy data.

Applied Mathematics and Computation, 181(2), 1544-1551.

Jobber, David, & Ellis-Chadwick, Fiona. (2012). Principles and practice of marketing.

Boca Raton, FL: McGraw-Hill Higher Education.

Karlsson, Joachim. (1996). Software requirements prioritizing. Paper presented at the

Proceedings of the Second International Conference on Requirements

Engineering, 1996.

Karlsson, Joachim, & Ryan, Kevin. (1997). A cost-value approach for prioritizing

requirements. IEEE Software, 14(5), 67-74.

Karlsson, Joachim, Wohlin, Claes, & Regnell, Björn. (1998). An evaluation of methods

for prioritizing software requirements. Information and Software Technology,

39(14), 939-947.

Karlsson, Lena, Höst, Martin, & Regnell, Björn. (2006). Evaluating the practical use of

different measurement scales in requirements prioritisation. Paper presented at

the Proceedings of the 2006 ACM/IEEE international symposium on Empirical

software engineering.

Karlsson, Lena, Thelin, Thomas, Regnell, Björn, Berander, Patrik, & Wohlin, Claes.

(2007). Pair-wise comparisons versus planning game partitioning—experiments

on requirements prioritisation techniques. Empirical Software Engineering,

12(1), 3-33.

Khan, Kashif Ahmed. (2006). A Systematic Review of Software Requirements

Prioritization. (Master Thesis), Blekinge Institute of Technology, Sweden.

Kotonya, G, & Sommerville, I. (1998). Requirements Engineering - Processes and

Techniques: John Wiley & Sons, New York, NY. USA.

Kukreja, Nupul. (2013). Decision theoretic requirements prioritization A two-step

approach for sliding towards value realization. Paper presented at the 2013 35th

International Conference on Software Engineering (ICSE).

Kuusela, Juha, & Savolainen, Juha. (2000). Requirements engineering for product

families. Paper presented at the Proceedings of the 22nd international conference

on Software engineering.

 180

Laplante, Phillip A. (2013). Requirements engineering for software and systems (1 ed.).

Redmond, WA: CRC Press.

Lauesen, Soren. (2002). Software requirements: styles and techniques. Essex Pearson

Education.

Lawrence, Brian, Wiegers, Karl, & Ebert, Christof. (2001). The top risk of requirements

engineering. IEEE Software, 18(6), 62-63.

Leffingwell, Dean, & Widrig, Don. (2000). Managing software requirements: a unified

approach: Addison-Wesley Professional.

Lehtola, Laura, & Kauppinen, Marjo. (2004). Empirical evaluation of two requirements

prioritization methods in product development projects Software Process

Improvement (pp. 161-170): Springer.

Lehtola, Laura, Kauppinen, Marjo, & Kujala, Sari. (2004). Requirements prioritization

challenges in practice Product focused software process improvement (pp. 497-

508): Springer.

Lethbridge, T., & Laganiere, R. (2001). Object oriented software engineering: practical

software development using UML and Java. England: Mc-Graw Hill Education.

Likert, Rensis. (1932). A technique for the measurement of attitudes. Archives of

psychology (140).

Liou, Tian-Shy, & Wang, Mao-Jiun J. (1992). Ranking fuzzy numbers with integral

value. Fuzzy sets and systems, 50(3), 247-255.

Liu, Xiaoqing Frank, Sun, Yan, Veera, Chandra Sekhar, Kyoya, Yuji, & Noguchi,

Kunio. (2006). Priority assessment of software process requirements from

multiple perspectives. Journal of Systems and Software, 79(11), 1649-1660.

Ma, Qiao. (2009). The effectiveness of requirements prioritization techniques for a

medium to large number of requirements: a systematic literature review.

Auckland University of Technology.

Mahmood, YA, Ahmadi, Alireza, Verma, Ajit Kumar, Srividya, Ajit, & Kumar, Uday.

(2013). Fuzzy fault tree analysis: a review of concept and application.

International Journal of System Assurance Engineering and Management, 4(1),

19-32.

Marascuilo, Leonard A, & Serlin, Ronald C. (1988). Statistical methods for the social

and behavioral sciences: WH Freeman/Times Books/Henry Holt & Co.

Martens, Nick. (2011). The impact of non-functional requirements on project success.

Citeseer, Utrecht University, Netherland.

Martinez, Ana Belen Barragans, Pazos Arias, JJ, & Vilas, Ana Fernandez. (2005).

Merging requirements views with incompleteness and inconsistency. Paper

presented at the 2005 Australian Software Engineering Conference. .

McZara, Jason, Sarkani, Shahryar, Holzer, Thomas, & Eveleigh, Timothy. (2014).

Software requirements prioritization and selection using linguistic tools and

 181

constraint solvers—a controlled experiment. Empirical Software Engineering, 1-

41.

Montgomery, Douglas C. (2008). Design and analysis of experiments: John Wiley &

Sons.

Mylopoulos, John, Chung, Lawrence, & Nixon, Brian. (1992). Representing and using

nonfunctional requirements: A process-oriented approach. IEEE Transactions

on Software Engineering, 18(6), 483-497.

Newkirk, James, & Martin, Robert C. (2001). Extreme programming in practice.

Object-oriented programming, systems, languages, and applications

(Addendum), 25-26.

Nuseibeh, B, & Easterbrook, S. (2000). Requirements engineering: A roadmap. Future

of Software Engineering, 35 – 46.

Pacheco, Carla, & Garcia, Ivan. (2009). Effectiveness of stakeholder identification

methods in requirements elicitation: experimental results derived from a

methodical review. Paper presented at the Eighth IEEE/ACIS International

Conference on Computer and Information Science, 2009. .

Paetsch, Frauke, Eberlein, Armin, & Maurer, Frank. (2003). Requirements engineering

and agile software development. Paper presented at the International Workshops

on Enabling Technologies: Infrastructure for Collaborative Enterprises.

Pergher, Massimiliano, & Rossi, Bruno. (2013). Requirements prioritization in software

engineering: A systematic mapping study. Paper presented at the 2013 IEEE

Third International Workshop on Empirical Requirements Engineering

(EmpiRE).

Perini, Anna, Ricca, Filippo, & Susi, Angelo. (2009). Tool-supported requirements

prioritization: Comparing the AHP and CBRank methods. Information and

Software Technology, 51(6), 1021-1032.

Perini, Anna, Susi, A, Ricca, Filippo, & Bazzanella, C. (2007). An empirical study to

compare the accuracy of AHP and CBRanking techniques for requirements

prioritization. Paper presented at the Fifth International Workshop on

Comparative Evaluation in Requirements Engineering, 2007. CERE'07. .

Perini, Anna, Susi, Angelo, & Avesani, Paolo. (2013). A machine learning approach to

software requirements prioritization. Software Engineering, IEEE Transactions

on, 39(4), 445-461.

Pfleeger, Shari Lawrence. (1995). Experimental design and analysis in software

engineering. Annals of Software Engineering, 1(1), 219-253.

Pohl, Klaus. (2010). Requirements engineering: fundamentals, principles, and

techniques: Springer Publishing Company, Incorporated.

Pressman, R. (2010). Software Engineering: A Practitioner s Approach (7th edition

ed.): McGraw-Hill.

 182

Ramzan, M, Jaffar, M Arfan, Iqbal, M Amjad, Anwar, Sajid, & Shahid, Arshad A.

(2009). Value based fuzzy requirement prioritization and its evaluation

framework. Paper presented at the Innovative Computing, Information and

Control (ICICIC), 2009 Fourth International Conference on.

Ramzan, Muhammad, Jaffar, M Arfan, & Shahid, Arshad Ali. (2011). Value based

intelligent requirement prioritization (VIRP): expert driven fuzzy logic based

prioritization technique. International Journal Of Innovative Computing,

Information And Control, 7(3).

Regnell, Björn, & Brinkkemper, Sjaak. (2005). Market-driven requirements engineering

for software products Engineering and managing software requirements (pp.

287-308): Springer.

Regnell, Björn, Höst, Martin, Och Dag, Johan Natt, Beremark, Per, & Hjelm, Thomas.

(2001). An industrial case study on distributed prioritisation in market-driven

requirements engineering for packaged software. Requirements Engineering,

6(1), 51-62.

Rehman, Tousif, Khan, Muhammad Naeem Ahmed, & Riaz, Naveed. (2013). Analysis

of Requirement Engineering Processes, Tools/Techniques and Methodologies.

International Journal of Information Technology and Computer Science

(IJITCS), 5(3), 40.

Ribeiro, Rita A, Moreira, Ana M, Van den Broek, Pim, & Pimentel, Afonso. (2011).

Hybrid assessment method for software engineering decisions. Decision Support

Systems, 51(1), 208-219.

Robertson, S., & Robertson, J. (2012). Mastering the requirements process: Getting

requirements right: Addison-wesley.

Robson, C. (2002). Real World Research: A Resource for Social Scientists and

Practitioner-Researchers: Wiley.

Royce. (1970). Managing the Development of Large Software Systems: Concepts and

Techniques. Paper presented at the WESTCON, Los Angeles, California.

Ruhe, Günther, Eberlein, Armin, & Pfahl, Dietmar. (2003). Trade-off analysis for

requirements selection. International Journal of Software Engineering and

Knowledge Engineering, 13(04), 345-366.

Saaty, Thomas L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.

Sadana, Vishal, & Liu, Xiaoqing Frank. (2007). Analysis of conflicts among non-

functional requirements using integrated analysis of functional and non-

functional requirements. Paper presented at the 31st Annual International

Computer Software and Applications Conference, 2007.

Sharif, Naila, Zafar, Kashif, & Zyad, Waqas. (2014). Optimization of requirement

prioritization using Computational Intelligence technique. Paper presented at the

2014 International Conference on Robotics and Emerging Allied Technologies

in Engineering (iCREATE).

 183

Shen, Yujin, Hoerl, AE, & McConnell, Wes. (1992). An incomplete design in the

analytic hierarchy process. Mathematical and computer modelling, 16(5), 121-

129.

Sher, Falak, Jawawi, Dayang NA, Mohamad, Radziah, & Babar, Muhammad Imran.

(2014). Requirements prioritization techniques and different aspects for

prioritization a systematic literature review protocol. Paper presented at the

2014 8th Malaysian Software Engineering Conference (MySEC).

Siegel, S., & Castellan, N.J. (1988). Nonparametric Statistics for the Behavioral

Sciences: McGraw-Hill.

Sommerville, I. (2004). Software Engineering. USA: Pearson Addison Wesley.

Sommerville, I. (2007). Software Engineering (7th Edition ed.). USA: Pearson Addison

Wesley.

Sommerville, I., & Sawyer, P. (1997). Requirements Engineering: Good Practice

Guide.: Chichester, England: John Wiley & Sons Ltd.

Stake, Robert E. (1995). The Art of Case Study Research. Washington DC: SAGE

Publications.

Svahnberg, Mikael, Aurum, Aybüke, & Wohlin, Claes. (2008). Using students as

subjects-an empirical evaluation. Paper presented at the Proceedings of the

Second ACM-IEEE international symposium on Empirical software engineering

and measurement.

Svensson, Richard Berntsson, Gorschek, Tony, Regnell, Björn, Torkar, Richard,

Shahrokni, Ali, & Feldt, Robert. (2012). Quality Requirements in Industrial

Practice-An Extended Interview Study at Eleven Companies. IEEE Transactions

on Software Engineering, 38(4), 923-935.

Svensson, Richard Berntsson, Gorschek, Tony, Regnell, Björn, Torkar, Richard,

Shahrokni, Ali, Feldt, Robert, & Aurum, Aybüke. (2011). Prioritization of

quality requirements: State of practice in eleven companies. Paper presented at

the 2011 19th IEEE International Conference on Requirements Engineering

Teixeira, Leonor, Saavedra, Vasco, Ferreira, Carlos, Simões, João, & Santos, Beatriz

Sousa. (2014). Requirements Engineering Using Mockups and Prototyping

Tools: Developing a Healthcare Web-Application Human Interface and the

Management of Information. Information and Knowledge Design and

Evaluation (pp. 652-663): Springer.

Thakurta, Rahul. (2013). A framework for prioritization of quality requirements for

inclusion in a software project. Software Quality Journal, 21(4), 573-597.

Tichy, Walter F. (2000). Hints for reviewing empirical work in software engineering.

Empirical Software Engineering, 5(4), 309-312.

Tonella, Paolo, Susi, Angelo, & Palma, Francis. (2013). Interactive requirements

prioritization using a genetic algorithm. Information and Software Technology,

55(1), 173-187.

 184

Tran, Tuyet-Lan, & Sherif, Joseph S. (1995). Quality Function Deployment (QFD): an

effective technique for requirements acquisition and reuse. Paper presented at

the Second IEEE International Software Engineering Standards Symposium,

1995.(ISESS'95)'Experience and Practice'.

Tudor, Dot, & Walter, George A. (2006). Using an agile approach in a large,

traditional organization. Paper presented at the Agile Conference, 2006.

Van Laarhoven, PJM, & Pedrycz, Witold. (1983). A fuzzy extension of Saaty's priority

theory. Fuzzy sets and Systems, 11(1), 199-227.

Voola, Persis, & Babu, A Vinaya. (2012). Requirements uncertainty prioritization

approach: a novel approach for requirements prioritization. Software

Engineering: An International Journal (SEIJ) Vol, 2, 37-49.

Voola, Persis, & Babu, A Vinaya. (2013). Comparison of requirements prioritization

techniques employing different scales of measurement. ACM SIGSOFT Software

Engineering Notes, 38(4), 1-10.

Wang, H, Xie, M, & Goh, TN. (1998). A comparative study of the prioritization matrix

method and the analytic hierarchy process technique in quality function

deployment. Total Quality Management, 9(6), 421-430.

Wiegers, K. E. (2003). Software Requirements. USA: Microsoft Press.

Wiegers, Karl. (1999). First things first: prioritizing requirements. Software

Development, 7(9), 48-53.

Wohlin, Claes, Runeson, Per, Höst, Martin, Ohlsson, Magnus C, Regnell, Björn, &

Wesslén, Anders. (2012). Experimentation in software engineering: Springer.

Yin, Robert K. (2014). Case study research: Design and methods. Washington DC:

Sage publications.

Yourdon, E. (1997). Death March Projects Keynote Address, ICSE, 97.

Zadeh, Lotfi A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

Zelkowitz, Marvin V, & Wallace, Dolores R. (1998). Experimental models for

validating technology. Computer, 31(5), 23-31.

 185

LIST OF PUBLICATIONS AND PRESENTED PAPERS

Mohammad Dabbagh, Sai Peck Lee, Reza Meimandi Parizi. 2015. “Functional and

Non-Functional Requirements Prioritization: empirical evaluation of IPA, AHP-based,

and HAM-based approaches”. Soft Computing, Springer, DOI: 10.1007/s00500-015-

1760-z.

Mohammad Dabbagh and Sai Peck Lee. 2015. “An Approach for Prioritizing NFRs

According to Their Relationship with FRs”. Lecture Notes on Software Engineering,

Vol. 3, No. 1, February 2015. pp. 1-5. DOI: 10.7763/LNSE.2015.V3.154.

Mohamad Dabbagh and Sai Peck Lee. 2014. “An Approach for Integrating the

Prioritization of Functional and Non- functional Requirements”. The Scientific World

Journal. Volume 2014 (2014), Article ID 737626, 13 pages.

http://dx.doi.org/10.1155/2014/737626.

Reza Meimandi Parizi, Sai Peck Lee, and Mohammad Dabbagh. 2014. “Achievements

and Challenges in State-of-the-Art Software Traceability Between Test and Code

Artifacts”. IEEE Transactions on Reliability. Vol. 63, No. 4, Dec 2014. pp. 913-926.

Tahriri, Farzad, Mohammad Dabbagh, and Nader Ale Ebrahim. "Supplier assessment

and selection using fuzzy analytic hierarchy process in a steel manufacturing company".

Journal of Scientific Research and Reports 3.10 (2014): 1319-1338.

Mohammad Dabbagh, Sai Peck Lee, Reza Meimandi Parizi. 2014. “Application of

Hybrid Assessment Method for Priority Assessment of Functional and Non-Functional

Requirements”. 2014 International Conference on Information Science and Applications

(ICISA). 6-9 May 2014. Seoul, South Korea. pp. 1-4. IEEE Computer Society. ISBN

978-1- 4799- 4443-9. DOI 10.1109/ICISA.2014.6847365.

Mohammad Dabbagh and Sai Peck Lee. 2013. “A Consistent Approach for Prioritizing

System Quality Attributes”. 14th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

(SNPD). Honolulu, HI, USA, 1-3 July 2013. pp. 317 - 322.

Mohammad Dabbagh and Ali Mahjur. 2011. “Filter Scheduling in the Flexible Stream

Programming Language, Vol. 6, Issue. 3, May 2011. pp. 306-313.

Mohamad Dabbagh. "Introducing a new language for stream applications".

International Journal on Computer Science and Engineering 3.5 (2011): 2119-2126.

http://dx.doi.org/10.1155/2014/737626

 186

Appendices

 187

APPENDIX A: THE SOFTWARE PROTOTYPE

Chapter 4 introduced and described the underlying steps of IPA. However,

performing the underlying steps of IPA manually during the software development

process is not a straightforward job and might result in achieving incorrect and

unreliable prioritized lists of functional and non-functional requirements. Moreover, the

large amount of mathematical calculations such as calculating triangular fuzzy number,

applying alpha cut approach and so on, that need to be done while using the IPA might

be considered as a person-power intensive, time-consuming and error-prone task. In this

respect, a software prototype which is capable of automating the underlying steps of

IPA would be needed.

The main focus of this section is to present the detailed development of the software

prototype, called TIPA (Tool-supported Integrated Periodization Approach), which

aims to automate the prioritization of functional and non-functional requirements using

IPA. The software prototype, i.e. TIPA, can aggressively tackle the mentioned

difficulties of manually using IPA by reducing the effort and time needed to perform the

prioritization task. In addition, TIPA is able to improve the reliability of the results

produced by the proposed approach.

TIPA needs to be developed to assist researchers and practitioners to computerize the

approach that has been proposed in this research, to integrate the prioritization of

functional and non-functional requirements simultaneously. In other words, for a given

software project, TIPA is able to produce a prioritized list of functional requirements as

well as a prioritized list of non-functional requirements automatically in the same

process as the IPA does. As a first step to develop the software prototype, the main

requirements of TIPA have been elicited and listed below.

 188

 R1: The TIPA shall be able to allow requirements engineers to

insert/delete/update/view software projects which their functional and non-

functional requirements need to be prioritized.

 R2: The TIPA shall be able to allow requirements engineers to

insert/delete/update/view potential stakeholders associated with a defined

software project which their functional and non-functional requirements need to

be prioritized.

 R3: The TIPA shall be able to allow requirements engineers to

insert/delete/update/view functional requirements that need to be prioritized for

a defined software project.

 R4: The TIPA shall be able to allow requirements engineers to

insert/delete/update/view non-functional requirements that need to be prioritized

for a defined software project.

 R5: The TIPA shall be able to allow requirements engineers to apply pairwise

comparisons between all possible pairs of stakeholders using AHP scales.

 R6: The TIPA shall be able to calculate and show the final weight of each

stakeholder associated with a defined software project using AHP algorithm.

 R7: The TIPA shall be able to allow each stakeholder to specify his/her

preference value in terms of identifying the importance degree of each non-

functional requirement for achieving each functional requirement using IPA

nominal scales.

 R8: The TIPA shall be able to calculate and show the prioritized list of

functional requirements, non-functional requirements, and their respective

values related to each stakeholder.

 189

 R9: The TIPA shall be able to allow requirements engineers to aggregate

different prioritized lists of functional and non-functional requirements

calculated by various stakeholders.

 R10: The TIPA shall be able to provide requirements engineers with a search

engine equipped with various types of reports regarding software projects,

stakeholders and their relative weights, functional and non-functional

requirements of each project, prioritized lists of functional and non-functional

requirements, and etc.

After eliciting the main requirements of TIPA, these requirements can be represented

using use case diagram. Figure A.1 illustrates the use case diagram of TIPA.

TIPA

insert/delete/update/view projects

which their requirements need to

be prioritized using TIPA

insert/delete/update/view potential

stakeholders

insert/delete/update/view

functional requirements that need

to be prioritized using TIPA

insert/delete/update/view non-

functional requirements that need

to be prioritized using TIPA

apply pairwise comparisons

between all possible pairs of

stakeholders using AHP scales

Calculate/show the final weight of

each stakeholder using AHP

algorithm

specify preference value in terms

of importance degree of each NFR

for achieving each FR using IPA

nominal scales

Calculate/show the prioritized list

of FRs, NFRs, and their respective

values

aggregate different prioritized lists

of FRS and NFRs calculated by

various stakeholders

provide a search engine equipped

with various types of reports

requirement engineer stakeholder

Figure A.1: Use case diagram of the TIPA software prototype

 190

In the implementation phase of developing TIPA, the real software prototype has

been implemented to satisfy the specified requirements. The first step of the

implementation phase was to select the programming language that would be suitable

for implementing the TIPA software prototype. Moreover, the data generated by the

software prototype should have stored in a database. So, the second step was to select

and design a database to store the TIPA’s data. Finally, the third step was to code the

required functions to implement the TIPA software prototype and design the user

interface. A detailed explanation of these steps is provided below.

1) Selection of Programming Language

An object-oriented programming (OOP) language was selected to implement the

TIPA software prototype. In fact, Visual C# programming language (version 5.0

released in August 2012), which is included in Microsoft Visual Studio 2012 and .Net

framework 4.0, has been used to implement the TIPA software prototype. The reasons

of choosing Visual C# as a programming language are listed below.

 The C# language is a multi-paradigm, modern, general-purpose, high-level, and

object-oriented programming language for building applications using Visual

Studio and .Net framework.

 The C# language provides many features for software engineering principles

such as strong type checking, array bounds checking, detection of attempts to

use uninitialized variables, and automatic garbage collection.

 The C# language is suitable for writing applications for both hosted, distributed

and embedded systems, ranging from the very large that use sophisticated

operating systems, down to the very small having dedicated functions.

 191

 The C# language is suitable for developing software applications that need to be

economical with respect to memory and processing power requirements.

2) Database Design

Microsoft SQL Server 2010 was utilized to store and retrieve the data generated by

the TIPA. Indeed, Microsoft SQL Server is a relational database management system

developed by Microsoft. Microsoft SQL Server offers many features such as:

 The SQL Server allows storing data in a collection of tables with typed columns

supporting different data types including Integer, Float, Decimal, Char,

Varchar, Binary, and Text.

 The SQL Server provides buffer management by which pages are buffered in

memory to minimize disk input/output and thereby improves performance.

 The SQL Server allows multiple clients to access the same database

concurrently while preserving the data integrity.

 The SQL Server offers querying using stored procedures so that it is capable of

executing queries in the server side and not in the client side in order to decrease

network traffic and improve performance.

In this regard, a database called TIPA_DBMS, was created using SQL Server 2010

with the aim of storing and retrieving data generated by the TIPA software prototype.

3) Coding and User Interface Design

To start coding the TIPA, three class libraries have been built. The first and lowest

level class library, called dataAccess, included some classes to perform the transactions

on the TIPA_DBMS. These transactions included inserting, updating, deleting, and

retrieving data from/to the database. The second and middle level class library, named

192

business, was built to implement and execute the required operations and internal

calculations of TIPA. Lastly, the third and highest level class library, called

presentation, included some visual user interfaces to interact with end user and provide

the tool’s functionality to the person who works with the TIPA. In the following, the

user interface design is explained.

The user interface of TIPA has a main visual menu consisting of four menu items

such as Basic information, AHP pairwise comparison, IPA decisions, and Search. The

main menu is viewable in Figure A.2. The TIPA’s user can insert/update/delete/view

the information of projects, stakeholders, functional requirements and non-functional

requirements by the means of Basic information menu item. By using AHP pairwise

comparison menu item, user of TIPA is able to perform pairwise comparisons between

all possible pairs of stakeholders using AHP scales. Then, TIPA calculates and shows

the weights of stakeholders for a given project using AHP algorithm. IPA decisions

enables user to specify his/her judgments regarding the importance degree of each non-

functional requirements for achieving each functional requirement. Afterward, TIPA

computes and represents the prioritized list of functional requirements and prioritized

list of non-functional requirements based on the internal calculation of IPA. Finally, the

TIPA software prototype provides the user with a different range of reports through

Search menu item.

The Basic information menu item comprises four sub items including Projects,

Stakeholders, FRs, and NFRs. In practice, by clicking Projects sub item, a visual

windows form is represented, as displayed in the middle of Figure A.2, in which the

information of software projects is accessible. In fact, by clicking “Add a new project”,

the TIPA’s user can define a new project in which functional and non-functional

193

requirements need to be prioritized using IPA. In addition, the TIPA’s user may update

the information of existing projects or delete current projects by pressing “Change

existing project”, and “Delete a project”, respectively. In the bottom part of the Projects

windows form, the whole information of the projects is provided in a data grid.

Figure A.2: User interface of the TIPA software prototype along with its Projects form

Each defined project may have some associated stakeholders. To define the

stakeholders of a given project using TIPA, users need to press Stakeholders sub item

(under Basic information menu item) to view the related visual windows form. This

form is indicated in Figure A.3 where the defined projects are retrieved from the

TIPA_DBMS and listed automatically in the left upper side of the windows form. Then

the TIPA’s user is able to define one or more stakeholders associated with the selected

project by clicking “Add a new stakeholder” button. Once the user adds a new

stakeholder, the information of the new stakeholder is shown in a data grid in the

bottom of the Stakeholders windows form. Moreover, TIPA facilitates the users with

other options such as updating and/or deleting the information of existing stakeholders

by providing “Change a stakeholder”, and “Delete a stakeholder” buttons.

194

Figure A.3: A snapshot of Stakeholders windows form

The TIPA software prototype is also equipped with a windows form for

inserting/updating/deleting/viewing functional requirements associated with each

defined project. In practice, by clicking FRs sub item (under Basic information menu

item), a windows form, as indicated in Figure A.4, is displayed by which users are able

to perform required operations concerning with functional requirements of each selected

project.

195

Figure A.4: A graphical view of FRs windows form

Similarly, a windows form is designed to define, modify, delete, and view the

information of non-functional requirements associated with each project. This form is

represented in Figure A.5. Using TIPA, it can be accessible through clicking NFRs sub

item under Basic information menu item.

196

Figure A.5: A snapshot of NFRs windows form

The TIPA software prototype provides the ability to perform the pairwise

comparisons between all possible pairs of stakeholders to specify the weights of

stakeholders for a given project. Indeed, by clicking on the AHP pairwise comparison

menu item, a visual windows form is represented, as indicated in Figure A.6, where the

TIPA’s user is able to perform pairwise comparisons between each pair of stakeholders

for a selected project. In other words, after selecting the project (see the left upper side

of Figure A.6), the TIPA software prototype displays the user an agenda of 𝑛 ∗ (𝑛 −

1)/2 pairwise comparisons. The TIPA’s user can view the name of each pair of

stakeholders, determine her/his preference value by identifying the relative importance

of one stakeholder over the other one according to AHP scales, through choosing one of

the radio buttons shown in Figure A.6. When the user presses “Submit”, the subsequent

pair of stakeholders is represented.

197

Figure A.6: A picture of pairwise comparisons of two stakeholders, User1 and User4, using TIPA

When the pairwise comparisons of all stakeholders have been done completely,

TIPA computes and shows automatically the weights of the stakeholders along with

their ranking, as represented in Figure A.7, using AHP algorithm.

198

Figure A.7: Calculated weights of stakeholders using TIPA

By clicking on the IPA decisions, TIPA guides each stakeholder to express his/her

judgments between all possible pairs of functional and non-functional requirements in a

similar way as the IPA does. Figure A.8 shows a picture of the IPA decisions visual user

interface. In practice, the stakeholder can view the explanation of functional and non-

functional requirements for every possible pair (i.e. FR and NFR) for a selected project.

So, the stakeholder can specify her/his preference value by identifying the importance

degree of every non-functional requirement for achieving each functional requirement

according to IPA nominal scale, through choosing one of the radio buttons indicated in

Figure A.8. When the stakeholder presses ‘Submit’, the subsequent pair of requirements

(i.e. FR and NFR) is viewable. After finishing the evaluations of all functional and non-

functional requirements, TIPA is capable of calculating and showing the prioritized list

of functional requirements, prioritized list of non-functional requirements along with

their corresponding weights (see Figure A.9).

199

Figure A.8: A picture of the visual user interface displaying the functional requirement, Transfer funds,

versus the non-functional requirement, Security, under analysis with TIPA, for project, Banking system

Figure A.9: Prioritized list of functional and non-functional requirement calculated using TIPA

The TIPA software prototype is equipped with a Search menu item which provides

some tabular and schematic reports automatically. These reports are including:

 Stakeholders weights for a given project

200

 Non-functional requirements weights achieved by each stakeholder for each

project

 Functional requirements weights achieved by each stakeholder for a given

project

 Aggregated weights of functional and non-functional requirements of each

project

Figure A.10 shows a snapshot of the visual interface of TIPA which indicates the

weight of each stakeholder in both tabular and graphical form for a selected project.

Figure A.10: A graphical view of the report that indicates the weights of stakeholders

Figure A.11 indicates the visual interface of a report which contains the weights of

non-functional requirements achieved by each stakeholder for a selected project.

201

Figure A.11: A visual interface of a report that shows the weights of non-functional requirements

achieved by each stakeholder for project, Banking system

Similarly, Figure A.12 represents the graphical view of a report that shows the

weights of functional requirements achieved by each stakeholder for a selected project.

 202

F
ig

u
re

 A
.1

2
:

v
ie

w
 o

f
a

re
p

o
rt

 t
h

at
 i

n
d

ic
at

es
 t

h
e

w
ei

g
h

ts
 o

f
fu

n
ct

io
n

al
 r

eq
u

ir
em

en
ts

 a
ch

ie
v

ed
 b

y
 e

ac
h

 s
ta

k
eh

o
ld

er
 f

o
r

p
ro

je
ct

,
B

a
n

ki
n

g
 s

ys
te

m

 203

Lastly, as can be seen in Figure A.13, TIPA provides a report which contains the

final and aggregated prioritized lists of functional and non-functional requirements for a

selected project.

Figure A.13: A visual interface of the TIPA software prototype that shows the final prioritized lists of

functional and non-functional requirements for a given project

 204

APPENDIX B: OVERVIEW OF EMPIRICAL STRATEGIES

This section aims to provide a general overview on the most common empirical

strategies which can be used for evaluating a new approach in the software engineering

domain. It also presents the most commonly used statistical tests which can be exploited

for analysing the results of a controlled experiment.

There are three different strategies that can be investigated to evaluate techniques,

methods, and approaches (Robson, 2002; Wohlin et al., 2012). These strategies include

survey, case study, and experiment. In this section, these strategies are explained

briefly. Then they are compared according to different criteria.

 Survey. Surveys can be conducted when a technique or method has been already

proposed and applied. So, the main goal of investigating a technique or method

through surveys is to capture its current status. It is very popular to use surveys for

market research and opinion polls. By using surveys, a researcher is not able to

control over the execution or measurement. So, it is impossible to manipulate and

change variables as in the other strategies (Wohlin et al., 2012). The two most

common ways for collecting required data for the research through surveys are

interviews and questionnaires. The main difference between interviews and

questionnaires is that interviews are online whereas questionnaires are offline. In

other words, by using interviews, a face-to-face or voice-to-voice live

communication needs to be established in order to capture the required data, while in

questionnaires, the data can be collected through some paper forms or electronic

forms such as emails or web pages. The benefits of using interviews include

achieving higher response rates and decreasing the number of “no answer”. It is also

possible for the interviewer to observe and ask questions. However, the drawback is

time and cost of conducting interviews which restrict its flexibility. The results

 205

obtained from the survey can be analysed to discover descriptive and explanatory

conclusions. A comprehensive explanation of surveys are provided in (Babbie, 2013;

Robson, 2002).

 Case study. Case study research can be conducted to keep track of activities,

projects or assignments. Data is captured for a certain objective throughout the case

study. After collecting necessary data through case study, statistical analyses such as

principal component analysis and linear regression can be carried out to make

rigorous conclusions. Indeed, case study research is a strategy by which main

variables that may influence the outcome of research are captured and then the

activity is documented (Stake, 1995; Yin, 2014). A case study research is an

observational study, i.e. it can be conducted by observation and monitoring of an on-

going project or activity. In general, case study research is a typical strategy that

could be useful for empirical studies in several sciences like medicine, psychology,

as well as sociology. In particular, within software engineering domain, case studies

have become ideal for industrial evaluation of software engineering techniques,

methods, and tools since they can easily prevent scale-up issues. The difference

between case study and experiment is that a case study is an observational study

while the experiment is a controlled study (Zelkowitz & Wallace, 1998). In addition,

the level of control in case studies is lower than in controlled experiments. One

benefit associated with case studies is that they are simple to plan. Nevertheless, the

drawbacks are that the results are hard to generalize and more difficult to interpret,

i.e. it is possible to discover the impacts in a particular circumstance, but it is not

possible to generalize the results to general circumstances (Yin, 2014). A thorough

description of case study research is given in (Robson, 2002; Yin, 2014).

 Experiment. An experiment is a formal, precise, and controlled investigation in

which the significant variables are determined and manipulated (Wohlin et al., 2012).

 206

Experiments are typically conducted in a laboratory environment where a researcher

intends to have a high degree of control over the situation under investigation in a

systematic manner. Once experiment’s subjects are assigned to distinct treatments

randomly, the main goal would be to manipulate and change one or more variables

and monitor all other variables at fixed levels. The effect of the manipulation is

measured, and based on the measurement; statistical analyses can be carried out to

make a strong conclusion. A good example of an experiment within software

engineering is to compare two approaches for requirements prioritization. For this

kind of studies, some statistical tests can be carried out with the purpose of showing

evidences that an approach is statistically better than the other with a given

significance value. The difference between experiments and case studies is mainly

based on the notation of a state variable (Pfleeger, 1995). In an experiment, the state

variable may receive distinct values, whereas in a case study, the state variable can

assume only one value, which is influenced by the actual project under investigation.

Conducting a well-designed experiment is not a straightforward task and involves

performing different steps systematically.

The presented strategies are compared and classified according to four criteria, which

are derived from (Wohlin et al., 2012). These criteria are briefly explained below.

 Execution control. This factor indicates the degree of control which the researcher

may have over the study under investigation. For instance, in a case study, the data is

collected while the project is in execution mode. Therefore, if project is stopped due

to any reason, the researcher is not able to continue his/her investigation. In contrast

to case studies, the researcher has a high level of control in experiments.

 Measurement control. This criterion represents the degree of control which the

researcher may have on decision of which measures to be selected, and to include or

exclude those measures during execution of the study.

 207

 Investigation cost. This factor expresses the cost associated with execution of

investigation and it mainly depends on the size of investigation as well as required

resources to carry out the investigation. For example, in a survey, the investigation

cost is low, since it does not need any large amount of resources for carrying out the

survey.

 Ease of replication. This aspect indicates the degree of possibility to replicate the

investigation. The key goal of replication is to prove that the results of the original

experiment are the same as the results collected for the new experiment with the

same design, but with different and larger population.

Table B.1 classifies and compares the presented empirical strategies according to the

mentioned criteria. This table can possibly be used as a guideline to assist researchers

for selecting a suitable strategy for a given investigation.

Table B.1: Classification of empirical strategies

 Criteria

Empirical strategies

Execution

control

Measurement

control

Investigation

cost

Ease of

replication

Survey No No Low High

Case study No Yes Medium Low

Experiment Yes Yes High High

As mentioned earlier, one of the advantages of carrying out a controlled experiment

is that a researcher would be able to analyze the collected data statistically, in order to

make a rigorous conclusion. To perform such an activity, there are some statistical tests

which can be used to analyze the collected data. In the following, some of the most

commonly used statistical tests are presented.

 T-test. This test has been considered as one of the most frequently applied

parametric tests. The test can be applied to compare two sample means. This test is

suitable in the case of one factor with two treatments (Montgomery, 2008).

 208

 Mann-Whitney. This test is non-parametric alternative to the t-test. The Mann-

Whitney test is further discussed in (Siegel & Castellan, 1988).

 F-test. This is a parametric test which could be applied to compare two sample

distributions (Montgomery, 2008).

 Paired t-test. A t-test for a paired comparison design (Marascuilo & Serlin, 1988).

 Wilcoxon. This test is non-parametric alternative to the paired t-test (Siegel &

Castellan, 1988).

 Sign test. This test is non-parametric alternative to the paired t-test. The sign test is a

simpler alternative to the Wilcoxon test (Robson, 2002).

 ANOVA (Analysis Of VAriance). This is a parametric test which can be used for

different design types including nested design, factorial design, one factor and

blocking variable, and one factor with more than two treatments (Montgomery,

2008).

 Kruskal-Wallis. This is a non-parametric alternative to ANOVA in the case of one

factor with more than two treatments (Siegel & Castellan, 1988).

 Chi-Square. This is a non-parametric test which can be applied in those situations

where data are formed in terms of frequencies (Siegel & Castellan, 1988).

 209

APPENDIX C: RAW DATA OF CONTROLLED EXPERIMENT 1

This section provides the raw data achieved from executing the first controlled

experiment of this study which aimed at comparing IPA and AHP-based approaches in

terms of time-consumption, ease of use, and accuracy of results.

C.1) TIME-CONSUMPTION

Table C.1: Results of time-consumption of IPA and AHP-based approaches collected from twenty

subjects of Experiment 1

Subject IPA (Sec) AHP-based (Sec)

S1 632 947

S2 718 679

S3 269 520

S4 272 609

S5 408 988

S6 834 1137

S7 505 1255

S8 523 759

S9 543 659

S10 735 1373

S11 415 808

S12 379 1219

S13 684 850

S14 521 1054

S15 445 1002

S16 553 1020

S17 462 714

S18 428 797

S19 431 801

S20 424 791

 210

C.2) EASE OF USE

Table C.2: Results of ease of use of IPA and AHP-based approaches collected from twenty subjects of

Experiment 1 using post-test 1A

Subject IPA AHP-based

S1 4.00 2.00

S2 4.00 2.00

S3 4.00 2.00

S4 4.00 2.00

S5 5.00 2.00

S6 5.00 2.00

S7 5.00 2.00

S8 4.00 2.00

S9 4.00 2.00

S10 4.00 2.00

S11 4.00 2.00

S12 4.00 2.00

S13 4.00 2.00

S14 4.00 2.00

S15 2.00 4.00

S16 2.00 4.00

S17 2.00 4.00

S18 2.00 4.00

S19 3.00 3.00

S20 2.00 4.00

Table C.3: Results of ease of use collected from post-test 2A for Experiment 1

Subject Ease of use

S1 IPA

S2 IPA

S3 IPA

S4 IPA

S5 IPA

S6 IPA

S7 IPA

S8 IPA

S9 IPA

S10 IPA

S11 IPA

S12 IPA

S13 IPA

S14 IPA

S15 AHP-based

S16 AHP-based

S17 AHP-based

S18 AHP-based

S19 Equal

S20 AHP-based

 211

C.3) ACCURACY

Table C.4: Results of expected accuracy of IPA and AHP-based approaches collected from twenty

subjects of Experiment 1 using post-test 1B

Subject IPA AHP-based

S1 4.00 2.00

S2 4.00 2.00

S3 4.00 2.00

S4 4.00 2.00

S5 4.00 2.00

S6 5.00 2.00

S7 3.00 2.00

S8 4.00 2.00

S9 4.00 3.00

S10 4.00 3.00

S11 4.00 3.00

S12 4.00 3.00

S13 4.00 3.00

S14 4.00 3.00

S15 3.00 3.00

S16 3.00 3.00

S17 2.00 4.00

S18 2.00 4.00

S19 2.00 5.00

S20 2.00 5.00

Table C.5: Results of perceived accuracy collected from post-test 2B for Experiment 1

Subject Perceived accuracy

S1 IPA

S2 IPA

S3 IPA

S4 IPA

S5 IPA

S6 IPA

S7 IPA

S8 IPA

S9 IPA

S10 IPA

S11 IPA

S12 IPA

S13 IPA

S14 IPA

S15 AHP-based

S16 IPA

S17 AHP-based

S18 AHP-based

S19 AHP-based

S20 AHP-based

 212

APPENDIX D: RAW DATA OF CONTROLLED EXPERIMENT 2

This section presents the raw data extracted from executing the second controlled

experiment of this research which targeted at comparing IPA and HAM-based

approaches in terms of time-consumption ease of use, and accuracy of results.

D.1) TIME-CONSUMPTION

Table D.1: Results of time-consumption of IPA and HAM-based approaches collected from twenty

subjects of Experiment 2

Subject IPA (Sec) HAM-based (Sec)

S1 632 713

S2 718 818

S3 269 324

S4 272 345

S5 408 468

S6 834 937

S7 505 645

S8 523 599

S9 543 653

S10 735 802

S11 415 481

S12 379 523

S13 684 751

S14 521 885

S15 445 596

S16 553 659

S17 462 553

S18 428 522

S19 431 717

S20 424 708

 213

D.2) EASE OF USE

Table D.2: Results of ease of use of IPA and HAM-based approaches collected from twenty subjects

of Experiment 2 using post-test 1A

Subject IPA HAM-based

S1 4.00 2.00

S2 4.00 2.00

S3 4.00 2.00

S4 4.00 2.00

S5 5.00 2.00

S6 5.00 2.00

S7 5.00 2.00

S8 4.00 2.00

S9 4.00 3.00

S10 4.00 3.00

S11 4.00 3.00

S12 4.00 3.00

S13 4.00 3.00

S14 4.00 3.00

S15 3.00 3.00

S16 2.00 3.00

S17 2.00 4.00

S18 2.00 4.00

S19 2.00 4.00

S20 2.00 4.00

Table D.3: Results of ease of use collected from post-test 2A for Experiment 2

Subject Ease of use

S1 IPA

S2 IPA

S3 IPA

S4 IPA

S5 IPA

S6 IPA

S7 IPA

S8 IPA

S9 IPA

S10 IPA

S11 IPA

S12 IPA

S13 Equal

S14 HAM-based

S15 HAM-based

S16 HAM-based

S17 HAM-based

S18 HAM-based

S19 Equal

S20 HAM-based

 214

D.3) ACCURACY

Table D.4: Results of expected accuracy of IPA and HAM-based approaches collected from twenty

subjects of Experiment 2 using post-test 1B

Subject IPA HAM-based

S1 4.00 3.00

S2 4.00 3.00

S3 4.00 3.00

S4 4.00 3.00

S5 5.00 3.00

S6 5.00 2.00

S7 5.00 2.00

S8 4.00 2.00

S9 4.00 2.00

S10 4.00 2.00

S11 4.00 3.00

S12 4.00 3.00

S13 4.00 3.00

S14 4.00 3.00

S15 3.00 4.00

S16 2.00 4.00

S17 2.00 4.00

S18 2.00 4.00

S19 2.00 4.00

S20 2.00 4.00

Table D.5: Results of perceived accuracy collected from post-test 2B for Experiment 2

Subject Perceived accuracy

S1 IPA

S2 IPA

S3 IPA

S4 IPA

S5 IPA

S6 IPA

S7 IPA

S8 IPA

S9 IPA

S10 IPA

S11 IPA

S12 IPA

S13 IPA

S14 IPA

S15 IPA

S16 IPA

S17 HAM-based

S18 HAM-based

S19 HAM-based

S20 HAM-based

 215

APPENDIX E: POST QUESTIONNAIRES OF CONTROLLED

EXPERIMENTS

E.1) CONTROLLED EXPERIMENT 1

Figure E.1: Post-test 1A of Experiment 1 for assessing ease of use of IPA

Figure E.2: Post-test 1A of Experiment 1 for assessing ease of use of AHP-based approach

Figure E.3: Post-test 2A of Experiment 1 for comparing ease of use of IPA and AHP-based approach

 216

Figure E.4: Post-test 1B of Experiment 1 for assessing expected accuracy of IPA

Figure E.5: Post-test 1B of Experiment 1 for assessing expected accuracy of AHP-based approach

D.2) CONTROLLED EXPERIMENT 2

Figure E.6: Post-test 1A of Experiment 2 for assessing ease of use of IPA

 217

Figure E.7: Post-test 1A of Experiment 2 for assessing ease of use of HAM-based approach

Figure E.8: Post-test 2A of Experiment 2 for comparing ease of use of IPA and HAM-based approach

Figure E.9: Post-test 1B of Experiment 2 for assessing expected accuracy of IPA

Figure E.10: Post-test 1B of Experiment 2 for assessing expected accuracy of HAM-based approach

