
AN ENHANCED FORMAL INSPECTION PROCESS

TO IMPROVE THE EFFICIENCY AND

EFFECTIVENESS OF SOFTWARE INSPECTION

PROCESS

NAVID HASHEMI TABA

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

FACULTY OF COMPUTER SCIENCE &

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

iii

*(Please delete this part) Depending on the medium of thesis/dissertation, pick either the

English or Bahasa Malaysia version and delete the other.

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: (I.C/Passport No:)

Registration/Matric No:

Name of Degree:

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Field of Study:

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or

reproduction of any copyright work has been disclosed expressly and

sufficiently and the title of the Work and its authorship have been

acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the

making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the copyright

in this Work and that any reproduction or use in any form or by any means

whatsoever is prohibited without the written consent of UM having been first

had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any

copyright whether intentionally or otherwise, I may be subject to legal action

or any other action as may be determined by UM.

 Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iv

ABSTRACT

In software development, it is important to detect and remove software defects as early

as possible using a software inspection method. A formal inspection process (Process 1),

was first introduced by Michael Fagan in 1976, and it was claimed that it can reduce about

38% of the defects in the software during development. Although some enhancements

and improvements have been made to Process 1, and a few new inspection processes have

been introduced, there are still weaknesses which include the absence of proper selection

criteria for choosing the most suitable/qualified inspectors to conduct inspection on

specific types of artefacts, some existing inspection processes do not have a database to

help in the preparation of inspection checklists, and/or a database to store information on

potential causes of each defect, which can provide a fast and easy reference to help in

removing the defects. There is also a lack of inspection support tools that can help the

software inspectors to conduct online inspection process which can save both time and

costs for the inspection team members. This research is aimed at introducing an enhanced

inspection process, ISIP (Process 2), by making some enhancements to overcome or

reduce the weaknesses in Process 1. The enhancements include providing a method of

selecting suitable inspectors based on their expertise and work experience; providing a

defects database to store information on potential defects that are most commonly found

in the requirements analysis and design phases, and which can be used as a reference for

the preparation of inspection checklists; providing a database to store the possible causes

of each of the defects stored in the defects database; and incorporating a few

enhancements in the inspection process. To facilitate the selection of suitable inspectors

and the inspection process, an inspection tool, ArSeC was developed using agile

development techniques and MS SQL development environment. To determine whether

the use of Process 2 with ArSeC can improve the inspection process, the process was

evaluated using Paired T-test which compares the differences between Process 1 and

Univ
ers

ity
 of

 M
ala

ya

v

Process 2, in terms of the number of defects detected, inspection time, and the

productivity of the inspectors. Two case studies were conducted in two companies and

inspections were carried out on two software development projects to collect the data

needed for the statistical test. The statistical test results show that at = 0.05, the mean

values of the number of defects detected, the inspection time, and the productivity of the

inspectors when using Process 1 and Process 2 are 19.78 and 28.13; 220.97 minutes and

213.69 minutes; and 0.0891 and 0.1328, respectively. This shows that the use of ISIP

effect significant improvement in the number of defects detected (i.e. difference = 8.35;

42.21%), and productivity of the inspectors (i.e. difference = 0.0437; 49.05%). However,

there is only a slight improvement in the inspection time (i.e. difference = 7.28 minutes;

3.29%). It can be concluded that ISIP together with ArSeC improve the quality of

inspection process in the two case studies.

Univ
ers

ity
 of

 M
ala

ya

vi

ABSTRAK

Dalam pembangunan perisian, adalah penting untuk mengesan dan menghapuskan

kecacatan perisian seawal mungkin dengan menggunakan proses pemeriksaan perisian.

Satu proses pemeriksaan formal (Proses 1), yang mula-mula diperkenalkan oleh Michael

Fagan pada tahun 1976, dan telah didakwa bahawa ianya boleh mengurangkan kira-kira

38% kecacatan yang dalam perisian pada masa pembangunan. Walaupun beberapa

tambahan dan penambahbaikan telah dibuat terhadap Proses 1, dan beberapa proses

pemeriksaan baru telah diperkenalkan, masih terdapat kelemahan yang termasuk

ketiadaan kriteria pemilihan yang wajar untuk memilih pemeriksa yang paling sesuai/

layak untuk menjalankan pemeriksaan pada jenis artifak tertentu, sesetengah proses

pemeriksaan yang sedia ada tidak mempunyai satu pangkalan data untuk membantu

dalam penyediaan senarai semakan pemeriksaan dan/atau satu pangkalan data yang

menyimpan maklumat mengenai penyebab potensi bagi setiap kecacatan, yang boleh

memberi satu rujukan yang cepat dan mudah untuk membantu dalam menghapuskan

kecacatan. Terdapat juga kekurangan alat sokongan pemeriksaan yang boleh membantu

pemeriksa perisian untuk menjalankan proses pemeriksaan dalam talian yang boleh

menjimatkan keduanya perjalanan dan kos bagi ahli pasukan pemeriksaan. Penyelidikan

ini adalah bertujuan untuk memperkenalkan satu proses pemeriksaan dipertingkatkan

yang dikenali sebagai ISIP (Proses 2) dengan membuat beberapa penambahbaikan untuk

mengatasi atau mengurangkan kelemahan yang telah dikenalpasti dalam Proses 1.

Penambahbaikan yang dibuat termasuk satu proses memilih pemeriksa yang sesuai

berdasarkan kepakaran dan pengalaman kerja mereka; menyediakan satu pangkalan data

kecacatan yang menyimpan maklumat mengenai kecacatan potensi yang paling biasa

dijumpai dalam fasa analisis keperluan dan fasa rekabentuk yang boleh digunakan

sebagai rujukan bagi penyediaan senarai semakan pemeriksaan; mempunyai satu

pangkalan data yang menyimpan penyebab yang mungkin bagi setiap kecacatan yang

Univ
ers

ity
 of

 M
ala

ya

vii

disimpan dalam pangkalan data kecacatan itu; dan menggabungkan beberapa

penambahbaikan dalam proses pemeriksaan. Bagi memudahkan pemilihan pemeriksa

yang sesuai dan proses pemeriksaan, alat pemeriksaan, ArSeC dibangunkan

menggunakan teknik pembangunan tangkas dan persekitaran .Net MS-SQL. Untuk

menentukan sama ada penggunaan Proses 2 dengan ArSeC boleh meningkatkan proses

pemeriksaan, proses dinilai menggunakan Paired-Samples T-Test untuk membandingkan

perbezaan antara Proses 1 dan Proses 2, dari segi bilangan kecacatan yang dikesan, masa

pemeriksaan, dan produktiviti pemeriksa. Dua kajian kes telah dijalankan di dua syarikat

dan pemeriksaan telah dijalankan ke atas dua projek pembangunan perisian untuk

mengumpul data yang diperlukan untuk ujian statistikal tersebut. Keputusan ujian

statistikal menunjukkan bahawa pada = 0.05, nilai purata bilangan kecacatan dikesan;

masa pemeriksaan; dan produktiviti pasukan pemeriksa apabila menggunakan Proses 1

dan Proses 2 adalah 19.78 dan 28.13; 220.97 minit dan 213.69 minit; dan 0.0891 dan

0.1328, masing-masing. Ini menunjukkan bahawa kegunaan ISIP membawa peningkatan

yang ketara dalam bilangan kecacatan yang dikesan (iaitu, perbezaan = 8.35; 42.21%),

dan produktiviti pasukan pemeriksa (iaitu, perbezaan = 0.0437; 49.05%). Walau

bagaimanapun, hanya terdapat sedikit kemajuan dalam masa pemeriksaan (iaitu,

perbezaan = 7.28 minit; 3.29%). Sehubungan itu, boleh disimpulkan bahawa ISIP

bersama ArSeC meningkatkan kualiti proses pemeriksaan dalam dua kajian kes itu.

Univ
ers

ity
 of

 M
ala

ya

viii

ACKNOWLEDGEMENTS

Praise be to God Almighty Who has blessed and endowed me with fortitude to reach this

pinnacle of my academic pursuit. The past six years had taken me through an arduous

academic journey, which I have made every endeavor to arrive at a fruitful end. Many

people, in one way or another, have helped in this journey in pursuit of my doctoral

degree. Problems, big and small, which I was at times desperate to solve, were resolved

one after another, and as time passes, I attained greater awareness of the true aim and

meaning of my research. I acknowledge Him, and I beseech Him to assist me in my

service to mankind.

All along the lengthy course of my research, Associate Prof. Dr. Ow Siew Hock, my

supervisor, patiently guided, encouraged me to overcome some problems, academic and

non-academic, I encountered. Without her invaluable guidance, her extensive knowledge,

experience, and wise words of advice, I would certainly not have been able to arrive at

this juncture. I wish to express my deepest gratitude to her.

Associate Prof. Dr. Noor Haroon Abdul Karim, from the Department of Library and

Information Science, very kindly provided statistical consultation for this thesis. An

expert in statistical tests, he guided me on data gathering and validation, and the use of

appropriate statistical tests for my research. I am truly grateful for his help in this

important aspect of my thesis.

Mr. K H Teh helped to proofread this thesis. With extraordinary patience and finesse, he

made the necessary corrections to the text of the thesis. I am indebted to him for the

professionalism he showed in his task.

I greatly appreciate and recognize the help of the managers of the companies which

allowed me to use the data from their major software projects. In particular, I would like

to thank the project managers of those two companies who have kindly agreed to

implement the proposed inspection process from this research. Their trust in me, yet not

Univ
ers

ity
 of

 M
ala

ya

ix

seeking any remuneration of any kind, is indeed a most noble gesture which augurs well

in fostering close collaboration between the industry and the university. Credit must be

given to the experienced inspectors who participated in this research voluntarily, out of

their professionalism. Throughout the case studies, they remained unbiased and put aside

their personal opinions. As the thesis was being done, other studies were also carried out

in other companies, projects, and with other people partaking. Some led to the publication

of various papers, and some shed light on the main direction of this research. I owe my

sincere gratitude to all those who contributed to the aforementioned studies in one way

or another.

I am glad to be able to pursue my doctorate degree in the University of Malaya, which

has a tradition of academic and research excellence. The University had generously

provided all the software and hardware facilities as well as various services to effect an

environment conducive to qualitative and quantitative research. In this regard, I am

especially thankful to Professor Dr. Abdullah Gani, Dean of the Faculty of Computer

Science and Information Technology (FCSIT), and Associate Prof. Dr. Rodina, Head,

Department of Software Engineering, for accepting my candidacy for the PhD program

and availing me all the facilities needed for my research. I would also like to acknowledge

the staff of the university at various levels for their warm and friendly attitude, and the

professional services which they offered, unhesitatingly. I hereby also acknowledge the

Research Grant (PPP) extended to me by the University of Malaya under the

Postgraduate, Account Number: PS027-2012A, which was used to carry out this research.

Almost half a century ago, my erudite father and insightful, kind mother impressed upon

me the value of education and the splendor of science. For fifty years, my father humbly

illuminated students’ minds while teaching using the blackboard, on the importance of

amalgamating science and culture. Never through all these years, have I heard from him

a word of complaint about life. Since early childhood, my mother taught me that wealth

Univ
ers

ity
 of

 M
ala

ya

x

is mortal but knowledge is perpetual. She dispensed with the many conventional pleasures

of life so that her children can receive proper education. My parents provided a rich

cultural environment their children’ talents to blossom, and they sacrificed their whole

life so that their children can achieve both intellectual and spiritual development. I never

have the opportunity to make up for even a small part of what they did. I am at the loss

for words to express my gratitude to them for inculcating us with the ethical standards to

live our life, and the unceasing quest for education to gain knowledge and wisdom. To

my lovely parents, I dedicate my whole life’s achievements.

My wife, Ahdieh, has been my friend, supporter, and faithful companion as I undertake

my academic pursuit. She underwent great hardship; and made equally great sacrifices;

but she has never ceased to support me and to care for our family. My daughter, Niki,

grew from one year old to eight years old, and Hafez, my little son, set foot on this world

while I was taking part in conferences and gathering and analyzing tremendous amount

of data. During the past years, my studies has inevitably encroached on myfamily life to

some extent, and I could not allocate enough time to my family. My dear family has

always been the highest priority of my life, and their sacrifice indeed encouraged me to

continue my research. I seek their forgiveness, and I hope they will allow me to make up

for all their sacrifices, soon.

My brothers, Saeid and Maysam, compensated for my failure to serve my parents over

the years when I was busy with my doctorate studies. They deserve my eternal gratitude.

Last but not least, the subject of this thesis is software quality improvement and defect

reduction. Hence, it will benefit the children of the present generation - those who will

strive to make this world a better place as engineers, managers, and experts in the sciences

and other life disciplines in future.

I very much hope that this research will serve as a small but valuable illumination of the

path for those who have faith in better quality of life. I would like to extend my gratitude

Univ
ers

ity
 of

 M
ala

ya

xi

in advance to those who will read, and critique my thesis, and continue to improve on the

findings reported, here within.

This research is dedicated to my learned father, my devoted, insightful mother, and my

wife, Ahdieh, who has been unwavering in her support for me for almost a decade. I

would also like to dedicate this dissertation to my two beloved children, my daughter,

Niki, and my son, Hafez. I hope they will choose the path of knowledge, wisdom, and

service to mankind. This work is also dedicated to all dear scholars who are preoccupied

with creating a better and healthier world, where peace and kindness prevails over

violence and hatred.

Navid Hashemi Taba

Univ
ers

ity
 of

 M
ala

ya

xii

TABLE OF CONTENTS

Abstract .. iv

Abstrak ... vi

Acknowledgements .. viii

Table of Contents .. xii

List of Figures ... xxii

List of Tables.. xxiv

List of Symbols and Abbreviations ... xxvii

List of Appendices ... xxviii

CHAPTER 1: INTRODUCTION .. 1

1.1 RESEARCH BACKGROUND .. 1

1.2 PROBLEM STATEMENTS ... 3

1.3 RESEARCH OBJECTIVES ... 5

1.4 RESEARCH QUESTIONS .. 5

1.5 RESEARCH SCOPE .. 6

1.6 RESEARCH METHODOLOGY .. 7

1.7 ORGANISATION OF THE THESIS ... 8

CHAPTER 2: LITERATURE REVIEW .. 9

2.1 SOFTWARE TESTING AND SOFTWARE INSPECTION ... 9

2.2 SOFTWARE INSPECTION PROCESS... 12

2.2.1 Formal Inspection Process Improvements .. 13

Univ
ers

ity
 of

 M
ala

ya

xiii

2.2.2 The Fagan Defect-Free Process .. 17

2.3 SOFTWARE INSPECTION TEAM .. 18

2.4 IEEE FORMAL INSPECTION PROCESS .. 21

2.4.1 Planning .. 19

2.4.2 Overview .. 19

2.4.3 Preparation .. 19

2.4.4 Examination/ Meeting/Inspection phase .. 19

2.4.5 Rework.. 20

2.4.6 Follow-up.. 20

2.4.7 Third Hour (Optional Step) .. 20

2.5 INSPECTION AND DEFECT REMOVAL ... 20

2.6 IMPORTANCE OF INSPECTION IN EARLY PHASES OF SOFTWARE DEVELOPMENT 22

2.7 A CHRONOLOGICAL LIST OF SOFTWARE INSPECTION RELATED ARTICLES 23

2.7.1 The subjects covered in the articles reviewed .. 35

2.8 SOFTWARE INSPECTION PROCESSES FOR THE REQUIREMENTS ANALYSIS AND DESIGN

PHASES ... 36

2.8.1 Software Inspection Processes Applicable in the Requirements Analysis

Phase ... 37

Univ
ers

ity
 of

 M
ala

ya

xiv

2.8.1.1 Structured Walkthroughs .. 37

2.8.1.2 Phased Inspection .. 37

2.8.1.3 Inspection without a Meeting .. 38

2.8.1.4 Inspection with Brainstorming Session ... 38

2.8.1.5 Software Inspection Process Applicable in the Design Phase 39

2.8.1.6 Active Design Review... 39

2.8.1.7 Two-Person Formal Inspection Method.. 40

2.8.1.8 High-Level Object-Oriented Designs Inspection 40

2.8.1.9 Usage-Based Testing (UBT-i) Method ... 40

2.8.1.10 Multiple Team (N-fold) Inspection Method 41

2.9 PROBLEMS OF USING CURRENT INSPECTION METHODS IN THE ANALYSIS AND DESIGN

PHASE ... 43

2.9.1 Common Problems Encountered when Using the Inspection Methods in the

Requirement Analysis Phase .. 43

2.9.2 Specific Problems Encountered when Using the Inspection Methods in the

Requirements Analysis Phase ... 43

2.9.3 Common Problems Encountered when Using the Inspection Methods in the

Design Phase... 46

2.9.4 Specific Problems Encountered when Using Inspection Methods in the

Design Phase... 46

Univ
ers

ity
 of

 M
ala

ya

xv

2.10 STANDARD CLASSIFICATION OF SOFTWARE DEFECTS ... 46

2.10.1 Defect Classification in the Requirements Analysis Phase 46

2.10.2 Defects Classification in the Design Phase .. 50

2.11 FINDINGS OF THE DEFECT CLASSIFICATION IN THE REQUIREMENTS ANALYSIS PHASE

AND DESIGN PHASE .. 52

2.12 MISSING ASPECTS OR GAPS .. 53

2.13 SUMMARY ... 54

CHAPTER 3: RESEARCH METHOD .. 56

3.1 RESEARCH METHOD USED .. 56

3.1.1 Activity 0: Choosing Area Subject ... 56

3.1.2 Activity 1: Literature Review ... 57

3.1.3 Activity 2: Problems Identification .. 57

3.1.4 Activity 3: Propose an Improved Software Inspection Process (ISIP) 58

3.1.5 Activity 4: Develop a Web-based tool (ArSeC) 58

3.1.6 Activity 5: Conduct case studies to evaluate the proposed software

inspection process ... 59

3.1.6.1 Hypothesis 1: ... 61

3.1.6.2 Hypothesis 2: ... 61

Univ
ers

ity
 of

 M
ala

ya

xvi

3.1.6.3 Hypothesis 3: ... 61

3.2 EVALUATION OF ISIP .. 62

3.2.1 Number of real defects detected ... 62

3.2.2 Inspection Time .. 63

3.2.3 Productivity of Inspection Team .. 64

3.3 VALIDITY OF RESEARCH ... 64

3.3.1 Statistical validity ... 64

3.3.2 Construct validity ... 65

3.3.3 External validity ... 66

3.3.4 Internal validity... 66

3.3.5 Summary ... 67

CHAPTER 4: THE PROPOSED INSPECTION PROCESS 68

4.1 INSPECTION TEAM ... 68

4.2 AN IMPROVED SOFTWARE INSPECTION PROCESS (ISIP).. 70

4.3 INSPECTION PROCESS IN ISIP .. 71

4.3.1 Preparation .. 71

Univ
ers

ity
 of

 M
ala

ya

xvii

4.3.2 Defect Detection ... 72

4.3.3 Pioneer Inspection Kernel .. 72

4.3.4 Process appraisal... 73

4.4 UNIQUE FEATURES OF ISIP .. 74

4.4.1 Selection of Suitable Inspectors ... 74

4.4.2 Maintenance of Defects List ... 76

4.4.3 Preparation of Inspection Checklists .. 76

4.4.4 Avoidance of Defect Transition ... 77

4.4.5 Inspection Reference Guide .. 77

4.4.6 Shared Databases .. 77

4.5 COMPARISON BETWEEN ISIP AND THE FORMAL INSPECTION PROCESS: THE

ENHANCEMENTS MADE ... 78

4.6 CLASSIFICATION OF DEFECTS .. 83

4.7 DEVELOPMENT OF A WEB-BASED TOOL ... 89

4.7.1 Artefacts and Session Control System (ArSeC) 89

4.7.2 The Workflow of ArSeC .. 89

Univ
ers

ity
 of

 M
ala

ya

xviii

4.7.2.1 Step 1: Project definition ... 89

4.7.2.2 Step 2: Preparation of Artefacts .. 90

4.7.2.3 Step 3: Formation of Inspection Team .. 90

4.7.2.4 Step 4: Preparation of checklist... 91

4.7.2.5 Step 5: Preparation for inspection ... 91

4.7.2.6 Step 6: Conduct inspection ... 91

4.7.2.7 Step 7: Defect removal .. 92

4.8 DEFECTS AND CAUSES OF DEFECTS ... 93

4.9 FUNCTIONS AND FEATURES OF ARSEC.. 93

4.10 COMPARISON BETWEEN ARSEC AND OTHER INSPECTION PROCESS SUPPORT TOOLS 93

4.11 SUMMARY ... 95

CHAPTER 5: CASE STUDIES, DATA COLLECTION AND ANALYSIS 96

5.1 PILOT CASE STUDY ... 97

5.2 CASE STUDIES ... 98

5.3 DATA COLLECTION ... 99

5.3.1 Design of Inspection Data Recording Form ... 100

5.3.2 Administration of Inspection Process and Data Recording 101

5.3.3 Calculation of the total number of real (actual) defects detected 101

5.3.4 Calculation of total inspection time .. 105

Univ
ers

ity
 of

 M
ala

ya

xix

5.3.5 Calculation of the productivity of an inspection team 107

5.4 DATA ANALYSIS .. 107

5.4.1 Data Screening .. 109

5.4.2 Test of Hypotheses ... 113

5.4.2.1 Hypothesis 1 .. 113

5.4.2.2 Hypothesis 2 .. 115

5.4.2.3 Hypothesis 3 .. 116

5.5 INSPECTION STOPPING CRITERIA .. 118

5.6 OTHER FINDINGS OF THE CASE STUDIES .. 119

5.6.1 Defect Density .. 119

5.6.2 Evaluation of the Efficiency of the Inspection Processes – An Alternative

Approach .. 123

5.6.3 Productivity of Inspectors ... 126

5.6.4 Most Common Defects Detected .. 131

5.6.4.1 Defects detected in the requirements analysis phase (Project 1 and

Project 2) 131

5.6.4.2 Defects detected in the design phase (Project 1 and Project 2) 135

5.6.5 Lessons learned from the two case studies ... 140

Univ
ers

ity
 of

 M
ala

ya

xx

5.7 SUMMARY ... 140

CHAPTER 6: DISCUSSION AND CONCLUSION .. 143

6.1 RESEARCH VALIDITY AND RELIABILITY .. 143

6.2 BIAS IN THE RESEARCH ... 145

6.3 ETHICAL ISSUES ... 146

6.4 PROBLEMS ENCOUNTERED ... 147

6.4.1 Cooperation from software companies ... 147

6.4.2 Number of artefacts used in the case study .. 148

6.4.3 Number of inspectors involved in the case study 148

6.5 CONTRIBUTIONS OF THE RESEARCH STUDY .. 149

6.5.1 The number of inspectors in the inspection team 149

6.5.2 The roles and responsibilities of the inspection team 150

6.5.3 Selection of inspectors based on inspector skill levels 150

6.5.4 Inspection checklist .. 150

6.5.5 Inspection process and inconsistencies resolution.................................. 151

6.5.6 Potential causes of each defect ... 152

Univ
ers

ity
 of

 M
ala

ya

xxi

6.5.7 Use of automated inspection tool (ArSeC) and inspection meeting 152

6.6 RESEARCH CONCLUSION ... 153

6.7 FUTURE RESEARCH ... 155
References ... 157

List of Publications and Papers Presented .. 167

Appendix A ... 169

Appendix B ... 174

Appendix C ... 175

Appendix D ... 179

Appendix E ... 183

Appendix F .. 189

Univ
ers

ity
 of

 M
ala

ya

xxii

LIST OF FIGURES

Figure 2.1: The five phases of Fagan’s formal inspection process (1976) 13

Figure 2.2: Formal Inspection Process (Six-Step) (Fagan, 1986) 14

Figure 2.3: Fagan’s Formal Inspection (Seven-Step) (Fagan, 1999) 15

Figure 2.4: Formal Inspection Steps of the IEEE STD 1028-1988, rev. 1997 standard . 21

Figure 2.5: Steps in defect removal strategy ... 22

Figure 2.6: Cost to detect and correct defects in different development phases (Nair Suma,

Kumar, 2011) .. 23

Figure 2.7: Inspection Session Stages in the Parnas and Weiss method (1985) 39

Figure 2.8: Techniques for Reading in Two Axes .. 40

Figure 2.9: The Major Steps of UBT-i Inspection Method ... 41

Figure 2.10: Inspector Responsibilities in UBT-i Approach .. 41

Figure 3.1: Research Activities ... 57

Figure 3.2: Research Design ... 60

Figure 4.1: The work flow of ISIP .. 71

Figure 4.2: Comparison between ISIP and Formal Inspection Process 79

Figure 4.3: The Enhancements of Inspection Process in ISIP Comparing Formal

Inspection .. 81

Figure 4.4: The work flow of ArSeC .. 90

Figure 4.5: A screen shot of ArSeC .. 94

Figure 5.1: Case study – Two independent groups Research design 97

Figure 5.2: Histograms of data (total number of real defects detected, inspection time, and

productivity of inspection team) ... 111

Figure 5.3: Box plot of variables .. 121

Figure 5.4: Histograms of variables .. 122

Univ
ers

ity
 of

 M
ala

ya

file:///C:/Users/navid/Desktop/____________________________2016/_________ّFINAL_VERSION-25-Sep/__________________PPT/_________VIVA_RESULT/Corrections/Chapters/Correction_06.docx%23_Toc449280701
file:///C:/Users/navid/Desktop/____________________________2016/_________ّFINAL_VERSION-25-Sep/__________________PPT/_________VIVA_RESULT/Corrections/Chapters/Correction_06.docx%23_Toc449280707
file:///C:/Users/navid/Desktop/____________________________2016/_________ّFINAL_VERSION-25-Sep/__________________PPT/_________VIVA_RESULT/Corrections/Chapters/Correction_06.docx%23_Toc449280715

xxiii

Figure 5.5: Average productivity of each inspector .. 131

Figure 5.6: Comparison of defects detected in Project 1 according to defect class

(inspected by Team A and Team B) with the actual total number of defects in each defect

class (Requirements analysis phase) ... 134

Figure 5.7: Comparison of defects detected in Project 2 according to defect class

(inspected by Team C and Team D) with the total number of defects in each defect class

(Requirements analysis phase) .. 135

Univ
ers

ity
 of

 M
ala

ya

xxiv

LIST OF TABLES

Table 2.1: Comparison of the defects detected using software inspection and software

testing .. 10

Table 2.2: A Chronological List of Software Inspection Articles from 1976 to 2015.... 23

Table 2.3: Number of articles that contain the subjects relevant to the inspection process

 ... 35

Table 2.4: Common Problems Encountered when using Inspection Methods in the

Analysis Phase .. 42

Table 2.5: Specific Problems Encountered when using Inspection Methods in

Requirements Analysis Phase ... 44

Table 2.6: Common Problems of Inspection Methods Used in the Design Phase 45

Table 2.7: Specific Problems Encountered when using Inspection Methods in the Design

Phase ... 47

Table 2.8: Software Defects in Requirement Analysis Phase classified based on (IEEE

Std 1044-2009) Standard .. 48

Table 2.9: Types of Defects in the Analysis Phase (Hong et al., 2008) 49

Table 2.10: ODC of Defects in the Analysis Phase (Chillarege et al., 1992) 49

Table 2.11: Software Defects in Design Phase (NASA, 2013) 51

Table 2.12: Design Defects Adopted (Chaar, 1993) ... 51

Table 2.13: Software Defects Classification in the Design Phase (IEEE Std 1044-2009)

 ... 53

Table 4.1: The skill levels of the inspectors .. 74

Table 4.2: Combination of weighted votes of three inspectors 76

Table 4.3: Classification of defects (Requirements analysis phase) 84

Table 4.4: Classification of defects (Design phase) .. 86

Table 4.5: Comparison between ArSeC and nine current inspection support tools 95

Table 5.1: Title and purpose of each section of the inspection data recording form 100

Univ
ers

ity
 of

 M
ala

ya

xxv

Table 5.2: Summary of defects classes, inconsistencies and final decision.................. 103

Table 5.3: Profiles of inspectors of the four inspection teams 104

Table 5.4: Total number of real defects detected, total inspection time, and productivity

of inspection team ... 108

Table 5.5: Skewness the distribution of data .. 112

Table 5.6: Kolmogorov-Smirnov tests of normality ... 113

Table 5.7: Paired-Samples Statistics ... 114

Table 5.8: Paired-Samples Correlations .. 114

Table 5.9: Paired-Samples Test... 115

Table 5.10: Test of hypothesis 2 using Related-Samples Wilcoxon Signed Rank test:

Summary ... 116

Table 5.11: Paired-Samples Statistics ... 117

Table 5.12: Paired-Samples Correlations .. 117

Table 5.13: Paired-Samples Test... 117

Table 5.14: Defect density of artefacts ... 119

Table 5.15: Skewness in the distribution of data (Size of artefact and Defect density) 122

Table 5.16: Kolmogorov-Smirnov test of normality (Size of artefact and Defect density)

 ... 122

Table 5.17: Pearson Correlation Test .. 123

Table 5.18: Efficiency of inspection processes based on the actual total number of real

defects present in each artefact ... 124

Table 5.19: Inspectors and the artefacts they are assigned to inspect 125

Table 5.20: Total number of real defects detected and total inspection time of each

inspector .. 127

Table 5.21: Average productivity of each inspector ... 130

Table 5.22: Distribution of defects detected by defect classes (Requirements analysis

phase) .. 132

Univ
ers

ity
 of

 M
ala

ya

xxvi

Table 5.23: Actual total number of defects detected by defect classes (Requirements

analysis phase) .. 133

Table 5.24: Distribution of defects detected by defect classes (Design phase) 136

Table 5.25: Actual total number of defects detected by defect classes (Design phase) 136

Univ
ers

ity
 of

 M
ala

ya

xxvii

LIST OF SYMBOLS AND ABBREVIATIONS

FIP : Formal inspection process

ISIP : Improved software inspection process

TIRT : Total inconsistencies resolution time

SIRT : Scheduled inconsistencies resolution time

TIST : Total inspection session time

SIST : Scheduled inspection session time

IST : Inspection session time

RD : Real defect

ArSeC : Artefacts and Session Control System

Univ
ers

ity
 of

 M
ala

ya

xxviii

LIST OF APPENDICES

Appendix A: Artefact complexity conversion …………………………………... 197

Appendix B: The composition of five inspectors …………………………….... 202

Appendix C: Brief description about project 1, project 2, and each artefact….... 203

Appendix D: Inspection data recording form …………………………………... 207

Appendix E: Brief description about project 1, project 2, and each artefact and

sample of artefact ……………………………………………………………….

Appendix F: Sample cause and effects ………………………………..................

211

217

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Research Background

In the NASA-STD-2202-93 standard, software inspection is defined as, “An in-process technical

review of any software work product conducted for the purpose of finding and eliminating defects.”

(Gregory, 1993). Software inspection was introduced about 40 years ago by Michael Fagan (1976),

and is the most formal structure of peer review which can remove as much as 80% of the total defects

detected. Since then, many other researchers such as Gilb and Graham (1993), have fine-tuned the

inspection process to make it an even more cost-effective instrument for tackling quality deficiencies

and defect costs. In a survey of articles published on software inspection technologies, Laitenberger

(2002) found that many of the articles reported the successful use of software inspection, and only

one article reported on its failure to obtain the expected benefits (Shirey, 1992).

Much research efforts have been made to improve the inspection methods and the activities

involved; the inspected software product; the team roles as well as its optimal size and selection of

team members; the technique applied to detect defects in the software product (i.e. reading technique);

and the various automated tools and their efficiency in supporting a given inspection approach

(Laitenberger, 2002). However, many findings on these research issues remain controversial. For

example, Ackerman, Buchwald and Lewsky (1989), Fagan (1976), Gilb and Graham (1993), and

Strauss and Ebenau (1993) emphasised on the planning phase to prepare for the inspection, but most

of the other researchers do not. Hence, in view of many different inspection processes, it becomes

difficult for software developers to determine which inspection process or refinement to use should

they wish to introduce inspection or improve on their current inspection approach.

On the issue of inspection team size, Fagan (1976) recommended four people; Bisant and Lyle

(1989) preferred two persons (one inspector and the author) to perform the inspection; Weller (1993)

Univ
ers

ity
 of

 M
ala

ya

2

suggested to have three to four inspectors, Madachy, Little, and Fan (1993) and Bourgeois (1996)

stated that the optimal size is between three and five people; while Kaner (1998), Martin and Tsai

(1990) proposed the N-fold inspection method – i.e. N teams each carrying out parallel independent

inspections of the same software artefact. Thus, there is no definite agreement as to the optimal

number of inspectors, and the team size. This situation creates confusion for the developers who

intend to conduct software inspection.

At the same time, the early inspection process introduced by Fagan in 1976 has also been improved

from Fagan Inspection to Fagan Defect-Free Process to include the following three essential and

interwoven components that are required to make software inspections successful (Fagan, 2002):

(i) Formal Process Definition ensuring each member of the team is conversant with the objectives,

function, and entry and exit criteria of each process phase;

(ii) Inspection Process – the seven-step process used to find defects; and

(iii) Continuous Process Improvement – removing systemic defects from the development process.

Inspections do not only consume effort, but they also have an impact on the software product

development cycle time. Inspection activities are scheduled in a way in which all team members

involved can participate and fulfill their roles. Thus, the interval for the completion of all activities

will range from at least a few days to up to a few weeks. During this period, other tasks that rely on

the inspected software product might be delayed. Thus, the duration is a crucial issue for a software

project manager if time to market a software product is a critical issue (Laitenberger, 2002). Votta

(1993) discussed the effects of time loss due to scheduling contention. He reported that inspection

meetings account for 10% of the development interval. He advised substituting inspection meetings

with other methods of defect collection, because of delays.

Univ
ers

ity
 of

 M
ala

ya

3

Similarly, Fagan (2002) also expressed the same concern that software developers who have tight

project delivery schedules, are reluctant to employ the inspection process, as they fear that inspections

will take too long, lengthen the schedule and delay shipment. He stated that inspections use 20%-

30% of the effort during the first half of product development, and fears that this will add to the

development cycle time. Also, without full understanding of what it entails to make the process work

successfully, cases of partial or improper implementation of the inspection process, which are

incorrect executions of the process, often produced poor results. There are developers who would

rather not include inspections in their development processes because of the fear of getting mediocre

results due to mediocre implementation. Some developers who find the inspection process tedious

and time-consuming, tend to make changes to the inspection process, and they do not carry it out

correctly and consistently. Thus, they could not get good results from the inspection process. Also,

experience has shown that all variations of the inspection processes do not produce similar results.

The aforementioned challenges inspired the initiation of this research to enhance the Fagan’s formal

inspection process to improve the quality of software inspection, particularly during the requirements

analysis and design phases of the software development lifecycle.

1.2 Problem Statements

Fagan’s formal inspection process (FIP) had proven to be an effective means of reducing customer-

reported defects, improving product quality as well as saving untold millions of dollars in

development cost (Laitenberger, 2002). Despite its achievement, variations of the inspection process

have been introduced by other researchers. Some of these variations include the way to organise the

defect detection phase – should defect detection be performed individually or conducted as part of a

group meeting; the purpose of the inspection preparation phase, i.e. with the goal of detecting defects

or just understanding the inspected artefact to detect defects later on in a meeting session; the methods

of inspection such as the Phased Inspection Method suggested by Knight and Myers (1991), and the

Univ
ers

ity
 of

 M
ala

ya

4

N-fold inspection method proposed by Martin and other researchers (Martin & Tsai, 1990; Schneider,

Martin & Tsai, 1992; Kaner, 1998), and the reading technique for the defect detection activity. A

reading technique is a mechanism or strategy for the individual inspector to detect defects in the

inspected product. There are two most popular reading techniques used today for defect detection in

inspection – ad-hoc reading and checklist-based reading (Fagan, 1976; Gilb & Graham, 1993),

besides the Reading by Stepwise Abstraction advocated by the Cleanroom community for inspection

on code documents only (Dyer, 1992a; Dyer, 1992b, Huzooree, & Devi, 2015) and Active Design

Review suggested by Parnas and others for inspection on design documents only (Parnas & Weiss,

1985; Parnas, 1987). However, there are disagreemenst on the use of checklist-based reading. The

checklist provides little support for an inspector to understand the inspected artefact if the checklist

questions are too general and not sufficiently tailored to a particular development environment.

Secondly, concrete instructions on how to use a checklist are often missing. Thirdly, the checklist

questions are often limited to the detection of defects that belong to particular types of defect

(Vitharana, 2015). Since the defect types are based on past defect information (Chernak, 1996),

inspectors may not focus on defect types not previously detected and thus, may miss those classes of

defects. These weaknesses pertaining to the checklist were not addressed explicitly in Fagan’s FIP.

Another important factor that impacts on the success of software inspection is the human factor –

the number of inspectors, team size and team selection. In the FIP, Fagan recommended to keep the

inspection team small, that is, four people (Fagan, 1976). However, there is no definite answers as to

the optimal number of inspectors, and the team size. In the selection of members for an inspection

team (Goswami, Walia, & Singh, 2015), the primary candidates for the role of inspectors are

personnel involved in product development (Fagan, 1986). Outside inspectors may be brought in if

they have a particular expertise that would add to the inspection (National Aeronautics and Space

Administration, 1993). The selection of inspectors is often based on length of experience, and

Univ
ers

ity
 of

 M
ala

ya

5

knowledge (Fagan, 1986; Blakely & Boles, 1991; Strauss & Ebenau, 1993). This implies that

inspectors with little experience are unlikely or rarely to be chosen to participate in any inspection

process. This issue has not been addressed per se and reported in Fagan’s FIP, hence, this important

issue has to be speedily resolved.

Besides the human factor, another factor that could impact on the inspection process is the use of

automated tools to support the inspection process (Laitenberger, 2002). Automated tools for code

inspection are commonly available (Huzooree, & Devi, 2015). However, there is currently no

automated tool to support the formal inspection process, fully. This is an issue that this research will

also address as part of the overall efforts to enhance the FIP.

1.3 Research Objectives

The detection and removal of software defects at the early phases of software development can

lead to substantial reduction in the cost of software development. The main objectives of this research

are:

i. to identify the activities and areas for improvement in the formal inspection process;

ii. to enhance the formal inspection process in order to improve the inspection of the artefacts of the

requirements analysis and design phases;

iii. to develop an inspection tool to support the enhanced formal inspection process; and

iv. to evaluate the performance of the enhanced formal inspection process.

1.4 Research Questions

The main aim of this research is to enhance the FIP to improve the quality of software. The formal

inspection process which was first introduced by Michael Fagan in 1976 has been very effective in

Univ
ers

ity
 of

 M
ala

ya

6

early detection of defects during software development. The software inspection process has

generally been viewed to be tedious and time consuming, hence, researchers have made efforts to

improve and simplify this process. As a result, different variations of inspection processes have been

introduced. However, the formal inspection process continues to be the preferred process that is often

used, with some customisation, by software companies to perform inspections on artefacts in the

software development process. These crucial issues have provided the motivation to enhance the FIP

to improve the quality of software inspection. Specifically, this research aims to answer the following

two questions:

i. How can the FIP be enhanced to improve the quality of software inspection?

ii. How would the enhanced inspection process impact on the quality of software inspection from

the perspectives of the number of defects detected, inspection time, and the productivity of an

inspection team?

iii. How can the performance of the enhanced software inspection process be evaluated?

The answers to the three questions would be very beneficial to software developers who need an

effective method for the detection of defects, especially in the early phases of software development,

so that the overall cost of development can be drastically reduced.

1.5 Research Scope

Michael Fagan introduced the formal inspection process in 1976. Over the years, he made various

enhancements to the inspection process. In 1986, he added another step to the first inspection

process he introduced in 1976. 1n 1999, he improved the inspection process by adding another step

to the process introduced in 1986 to become a seven-step formal inspection process. In 2002, Fagan

improved the inspection process again to become the defect free process comprising three

Univ
ers

ity
 of

 M
ala

ya

7

components i) Formal process definition, ii) Inspection process, and iii) Continuous process

improvement. This research only focuses on the enhancements to the second component,

comprising the seven activity of his formal inspection process. (Fagan, 2002)

The enhancement made to the formal inspection process can be used to inspect artefacts in all

phases of software development. However, this research focuses on the inspection of artefacts of

the requirements analysis and design phases, thus, the databases that store the details on the defects,

their classification, inspection checklists, causes of each defect as well as the artefacts used in this

research, pertain to defects of these two phases only. Also, because of resource and time constraints,

only two case studies could be carried out for the empirical study to collect at least 30 sets of

inspection data from the participating companies.

1.6 Research Methodology

To carry out the research, a comprehensive literature review was conducted on the formal

inspection process (FIP), which covers: basic features of the inspection process; variations of

software inspection process proposed by other experts; problems related to the current software

inspection process of the requirements analysis and design phases; classification of commonly

detected defects in the artefacts of the requirements analysis and design phases; design of inspection

checklists; the problems in rework; and issues pertaining to the inspection teams. Thus, the

proposed enhancements on the FIP include: features that are lacking in the FIP, as evident from the

literature survey. Statistical hypotheses will be established and tested to evaluate the performance

of the enhanced FIP. Case studies will be conducted to collect data for statistical analysis to prove

the hypotheses. A comparison of the features of the enhanced FIP with FIP as well as with other

inspection processes will also be made to evaluate its performance.

To facilitate the inspection of artefacts of the requirements analysis and design phases using the

enhanced FIP, a Web-based inspection support tool will be developed using agile development

Univ
ers

ity
 of

 M
ala

ya

8

technique and with MS SQL as the selected database management system. Chapter 3 presents the

research methodology in more detail.

1.7 Organisation of the Thesis

This thesis consists of six chapters. Chapter 1 introduces the background study, defines the problem

statements, research objectives, and explains the research method used to carry out the research.

Chapter 2 presents the literature review pertaining to software inspection. It discusses: the formal

inspection process introduced by Michael Fagan, as well as other inspection processes proposed by

other researchers; the issues and weaknesses in the formal inspection process; and problems

pertaining to the inspection of artefacts of the requirements analysis and design phases; and the

various types of defects that are commonly detected in the requirements analysis and design phase

of software development.

Chapter 3 discusses: the method used to carry out the research; metrics used to measure the quality

of an inspection process; the hypotheses established for the research; and the validity of the

research. Chapter 4 discusses: the roles of each inspection team member; the workflow and unique

features of the proposed enhanced inspection process (ISIP); the classification of defects in the

requirements analysis and design phases; and the development and features of ArSeC, an inspection

support tool to support ISIP. Chapter 5 discusses: the two case studies carried out to test the three

hypotheses; the Paired-Samples T Test and the Related-Samples Wilcoxon Signed Rank test.

Chapter 6 discusses: the validity and reliability of the research; problems encountered and the

limitations of the research; research contribution, research conclusion and suggestions for future

works.

Univ
ers

ity
 of

 M
ala

ya

9

CHAPTER 2: LITERATURE REVIEW

Software inspection is a static verification as well as a validation technique (Thelin, Runeson, &

Wohlin, 2003, Vitharana 2015). The aim of inspection is to evaluate software quality and not the

quality of software development process. Inspections are applicable to all software products as they

do not need dynamic execution. Unlike manual and automatic testing which are applied only after

code completion, software inspection can be conducted in any development phases. In other words,

it can be conducted starting from the first documentation in the preliminary investigation phase and

continued until the maintenance phase.

2.1 Software Testing and Software Inspection

Fagan introduced software inspection in 1976. Ten years later, he published his paper on the success

of software inspection (Fagan, 1986). Several research findings show that 60% to 90% of software

problems are discovered by software inspections, and this has impact on the eventual software quality

(Denger & Shull, 2007). Between inspection and testing, some researchers found that inspection is

equally good or even more effective in finding defects during the early software development phases,

as shown in Table 2.1.

Univ
ers

ity
 of

 M
ala

ya

10

Table 2.1: Comparison of the defects detected using software inspection and software

testing

Researchers Defects

captured by

software

inspection (A)

Defects

captured by

software

testing (B)

Development

phase

Comparison

between (A)

and (B)

Myers (1978) 15 15
Design and

Coding
I = T

Chillarege et al.

(1992)
333 255

Analysis,

Design, and

Coding

I > T

Chaar et al. (1993)

810

(Analysis and

design: 477,

coding: 333)

401

Analysis,

Design, and

Coding

I > T

Conradi, Marjara,

& Skåtevik (1999)
6,300 1,502

Analysis,

Design, and

Coding

I > T

Berling & Thelin

(2003)
169 49

Analysis
I > T

Anderson et al.

(2003)
14 13

Analysis,

Design, and

Coding

I > T

Gopalakrishnan et

al. (2012)
307 52

Analysis, and

Design
I > T

Note: I = T means inspection is as efficient as testing.

 I > T means inspection is more efficient than testing.

Chaar et al. (1993) reported that 810 defects were detected using software inspection of which 477

defects were found in the requirements specification and design specification documents. On the

other hand, only 401 errors were found through software testing. The total number of defects found

in the analysis, design, and coding phases using inspection is twice the number of defects found by

testing.

Conradi (1999) expressed that software inspection is a cost-effective approach when compared with

software testing. They found that inspection was able to find 6,300 defects, which is 4,798 defects

Univ
ers

ity
 of

 M
ala

ya

11

more than the 1,502 defects detected by test activities. Besides, they also reported that only 10% of

the development time was spent on the inspection process to find 70% of the defects. Another

research conducted by Berling and Thelin (2003) found that although the specifications of their

project were clearly defined, inspection detected 169 defects, which is about three times more than

the 49 defects detected by testing.. Besides these findings, Boehm and Basili (2001) reported that

inspection improved the defect detection rate from 15% to 50%. Shull et al. (2002) also reviewed

the data from a large project and reported that 64% of the defects were detected through inspection.

Runesson et al. (2006) reviewed 12 studies on software inspection and testing, and concluded that

inspection is more effective and efficient than testing especially in the requirements analysis and

design phases. They found that in seven out of the 12 studies, inspection was able to find different

defects that were not detected by testing. Most researchers emphasised that inspection can reveal

many errors that testing could not detect. Gopalakrishnan et al. (2012) conducted a study to compare

the efficiency in defect detection between inspection and testing. The study conducted on nine

separate projects found that inspections discovered 151 and 156 defects in the analysis and design

phases, respectively, from the total of 307 defects. On the other hand, testing only found 33 and 19

defects in the requirements analysis and design phases, respectively from the total of 52 defects.

Furthermore, a large German company found that a defect detected by testing costs 14.5 times

more to correct as did one found by formal inspection, while a defect discovered by a customer

through testing costs 68 times as much to fix. IBM also reported that an error found after product

release costs 45 times as much to correct as one uncovered during the design phase (Wiegers, 1995).

The Jet Propulsion Laboratory estimated a net savings of $7.5 million from 300 inspections performed

on software they produced for NASA. Another large company estimated an annual savings of $2.5

million due to their inspection activities, based on $146 it costs to fix a major defect found by

inspection, and $2,900 to fix a defect found by the customer. Although incorporating inspections into

Univ
ers

ity
 of

 M
ala

ya

12

software engineering process can incur between 5% and 15% of the total project budget, many

companies have learned that the benefits gained from a good inspection process to detect and correct

errors early, far outweigh the costs of performing the inspection.

This chapter describes a theoretical framework for software inspection as an effective and efficient

defect detection approach. Owing to the different processes and approaches in software inspection,

similarity and mutual interference of them, detailed explanations that include a comparison of

common problems, and specific constraints of those techniques are presented. Finally, the outcomes

of the studies discussed here set the direction for this research to develop an enhanced inspection

process.

2.2 Software Inspection Process

Software inspection is a technical review that was developed by Michael Fagan (1976) to enhance

the quality of software as well as its efficiency and effectiveness. Fagan stated that there are five

mandatory phases and one optional operation (acceptance) phase in a formal software inspection

process. Figure 2.1 shows the five phases - Overview, Preparation, Inspection, Rework, and Follow-

up. He also defined four roles in the inspection process – that of a moderator, designer, coder and

tester. The moderator is the coach of the inspection team, whose duties include scheduling the

inspection meetings and reporting the results of the inspection. Moreover, he also handles the follow-

up of the reworks after the inspection. In the overview phase, the designer will deliver the artefact to

the moderator, who will then arrange the inspection process. The moderator also calls the inspector

and decides on the resources that are needed for the inspection process. In the preparation phase, all

inspectors are given the artefact as well as the necessary documents by the moderators. In the meeting

or inspection phase, all inspectors participated in the meeting sessions to discuss the potential defects

and specify them. In the meeting session, all inspectors participate to recognize the defects. After

Univ
ers

ity
 of

 M
ala

ya

13

specifying the defects, the rework phase follows. In this phase, the author (designer/coder) - as the

owner of artefact - is responsible for working on the artefact and removing the defects discussed in

the meeting. The last mandatory phase of the inspection process is the follow-up phase, and the main

responsibility rests on the moderator, who will check to ensure that all defects have been fixed, and

to seek clarifications, if any, from the author.

Figure 2.1: The five phases of Fagan’s formal inspection process (1976)

Formal inspection plays an essential role in software quality (Perry et al., 2002). There are different

review committees, various routines and frameworks to prepare the formal technical reports.

2.2.1 Formal Inspection Process Improvements

Fagan (1986) improved the software inspection process by adding one stage (planning) to the five

stages previously introduced by him in 1976, as shown in Figure 2.2. The main features of this

inspection process are:

(i). Clear definition of the inspectors four-fold duties of moderator, recorder, reader, or producer;

(ii). Formal collection of data for the inspection process, and product of inspection; and

(iii). An appropriate supporting infrastructure.

Univ
ers

ity
 of

 M
ala

ya

14

Figure 2.2: Formal Inspection Process (Six-Step) (Fagan, 1986)

The seven-step inspection is another improvement of the formal software inspection. It was

introduced by Fagan in 1999 and later completed in 2002. Fagan’s seven-step formal activities are

shown Figure 2.3:

 Planning

Selecting the software inspection team and sending the artefact and the related documents like

defect sheet to each member of the team two or three days before the inspection meeting.

 Overview

In overview meeting, the author will explain the important features of the artefact. Overview is

not mandatory for those artefacts that are popular or are familiar to inspection team members.

 Preparation

Before the inspection meeting, the artefact should be inspected by each team member to find the

defect(s), individually. The correctness and completeness have to be checked. About 75% of the

defects detected could be found by inspector in the preparation phase, before the inspection meeting.

The checklists for recording the defect detected will be used in this phase of inspection (Barnard, &

Price, 1994, Sommerville, 2013, Pressman, 2015).

The most important phase of software inspection is the individual preparation phase. Inspectors

must be familiar with the development environment, development tools, projects characteristics,

and the relevant software products. In their study, Van Genuchten et al. (2001) found that well–

Univ
ers

ity
 of

 M
ala

ya

15

executed inspections can discover from 60% to 80% of the defects those phases of the software

development lifecycle, before the testing phase.

FIP: Formal inspection process

Figure 2.3: Fagan’s Formal Inspection (Seven-Step) (Fagan, 1999)

Univ
ers

ity
 of

 M
ala

ya

16

 Inspection Meeting

In this step, all inspectors, moderator, author and a reader gather in one place. They discuss the

defects detected by each inspector during preparation phase. The explanation could be provided by

author, but he/she is not allowed to make any counter-argument or to provide any reason in defense

of the defects detected. The recorder will document the result of discussions.

Ackerman, Buchwald, and Lewski (1989) emphasized that providing the relevant checklists is one

of the first steps of inspection. In the inspection process, they emphasized that the presence of a

developer in inspection meetings can reduce the level of secrecy of the product being inspected,

and this will facilitate the review.

 Inspection analysis

Making an analysis on the defects detected, is not necessary in the current inspection. However, it

can serve as a useful guide for the future inspections to avoid facing the same defects. The long-term

improvement of software quality is the main goal of this step. Analyzing the data gathered from an

inspection allows project managers and developers to have a better estimation of the numbers of

potential defects in the forthcoming projects, and this will ensure better product quality (Biffl, 2000).

 Rework

The corrections needed to fix the defects detected will be done in this phase by the author, who is

responsible for resolving all issues raised during the inspection. It is highly recommended that the

author takes into consideration the suggestions, however, the author has the prerogative to fix the

defects detected in any way that he/she prefers.
Univ

ers
ity

 of
 M

ala
ya

17

 Follow-up

In this step, the moderator will determine whether all defects detected are removed, and will

follow-up with the author, if necessary. If an artefact has to be modified more than 5% or 10% (up to

the moderator to decide), the inspection should be done again. Another exit criterion may clarify the

completion of inspection. The correct documentation of defects in a tracking system or fixing an

acceptable percentage of defects could be set as the exit criteria.

2.2.2 The Fagan Defect-Free Process

To improve the formal inspection process, Fagan (2002) introduced the Defect-Free software

inspection process in 2002 and claimed that it consists of the three essential components to make the

inspection process more successful: i) Formal process definition, ii) Inspection process, and iii)

Continuous process improvement.

The main goal of the first component is to ensure that all team members are familiar with the process.

Thus, it focuses on the defects to eliminate the systematic defects. Fagan stated that analyzing the

defects can provide enough insights to avoid introducing the same fatal defects in future software

developments.

However, the guidelines in all the components are still general and ambiguous in nature. Moreover,

there some shortcomings in the new Defect-Free Process: the inspection session could be cancelled

at any time because of the absence of one or more inspectors; the brainstorming sessions and

discussion may end disagreement among the inspectors not accepting each other’s views on the

defects; the reader may not be professional enough as a moderator and his/her records might not be

accurate; gathering the inspectors, the author, moderator in one place is very difficult, because those

involved feel that the meeting sessions can be conducted even remotely through modern online

telecommunication technologies ; using old classification of defects might cause the inspection to be

Univ
ers

ity
 of

 M
ala

ya

18

conducted wrongly; and even with new defect classification the potential causes are not provided and

inspectors might be repeating a task such as finding the causes of a defect, which had previously been

done by other inspectors.

2.3 Software Inspection Team

The inspection team can consist of more than three but less than eight members. Each team

member is responsible for a specified task (role) during the inspection process. The composition of

the inspection team as well as the roles of the team members could be changed or redefined during

the inspection. The five main roles in the inspection process are explained below.

i) Author or owner is a professional person or a group of professionals who will prepare the

artefacts. He will provide all information about the artefacts during the inspection process, and

fix the defects detected.

ii) Inspector is a skilled person who is responsible for reviewing the artefacts created by the author.

Every inspection team members who attend the inspection meeting could assume the role of an

inspector (NASA-STD-8739.9).

iii) Moderator is a leader, manager, and controller of the whole inspection process, especially, during

the inspection session. In addition, he institutes the policy to foster collaboration among the

inspection team members.

iv) Reader is responsible for reading the artefacts if it is a document, or present the information if

they are in other formats. Usually, the reader is a different person from the author in order to avoid

conflict of interest.

v) Recorder is responsible for logging and recording all the information about the defect(s) found

during the inspection process. The details of the defects recorded include the type (extracts from

the pre-defined taxonomy of defects), rank (the frequency of defect type detected based on

Univ
ers

ity
 of

 M
ala

ya

19

previous similar inspections, and class or severity of defects. This information can help the

inspector in estimating the expected amount of time and cost to be incurred to handle a defect of

a particular type

2.3.1 Planning

This step involves scheduling the inspection activities in the other phases. The moderator will

decide whether the artefact is ready for inspection, then selects the inspectors based on their ability,

and subsequently invites them to participate.

2.3.2 Overview

The objectives and goals of inspection will be clarified in this phase. The moderator will explain

the role of each inspector in detail, and will distribute the checklists, procedures, artefacts and any

other related materials to them.

2.3.3 Preparation

In this step, each inspector makes all the preparation for the inspection meeting. It is not

compulsory for the author to participate in this step. During the preparation, the potential defects,

ambiguous issues, and questions raised will be documented and passed to the moderator. The

inspection meeting will be held when all inspectors are ready (Fagan, 1986; IEEE STD 1028-1997).

2.3.4 Examination/ Meeting/Inspection phase

The moderator is responsible for planning, conducting, coordinating and controlling this phase. A

formal meeting is held to allow the inspection team to review the artefacts together to find the

potential defect(s) (NASA, 2013). At this stage, the inspector are not expected to find or suggest the

solutions to remove the defects in the artefacts. However, the moderator might decide to address the

causes or possible source of each defect (Fagan, 1986). In this step, a recorder is responsible for

Univ
ers

ity
 of

 M
ala

ya

20

recording all the defects discussed in the inspection meeting, noting the severity level as well as the

type of defects. The moderator will decide whether to continue the meeting or arrange additional

inspection session.

2.3.5 Rework

In this step, the author removes all defects that had been detected during the inspection meeting

(NASA, 2013).

2.3.6 Follow-up

In this step, the moderator examines the artefacts to ensure that all the detected defects have been

fixed. The moderator may verify the artefacts with other inspection team members (NASA, 2013).

2.3.7 Third Hour (Optional Step)

The third hour is optional and is decided by the author. In this step, all inspectors discuss about

the defects identified during the inspection meeting. The brain-storming session will result in

gathering the opinions of every inspector about the issues raised, and this will give the author a clearer

idea on fixing the defects.

2.4 Inspection and Defect Removal

According to IEEE, a product has a defect when it has some shortcomings or inadequacies in

providing its own requirements and attributes (IEEE Std. 2002.94130). Therefore, ‘repairing’,

‘reworking’ or ‘replacing’ must be carried out for the defect removal. Regardless of any special kind

of inspection technique used to identify and remove the defect, the general defect removal strategy

follows the sequence as shown in Figure 2.5.

Univ
ers

ity
 of

 M
ala

ya

21

2.5 IEEE Formal Inspection Process

According to the IEEE STD 1028-1988 rev. 1977 standard, the inspection process consists of six

steps and an optional step (Third Hour), as shown in Figure 2.4, and discussed in detail in the

following sub-sections.

Figure 2.4: Formal Inspection Steps of the IEEE STD 1028-1988, rev.

1997 standard

Univ
ers

ity
 of

 M
ala

ya

22

Figure 2.5: Steps in defect removal strategy

There is an IEEE standard for failure classification of the defects. However, there has been a minor

improvement and change to this over the past two decades. In addition, common software inspections

are usually conducted by independent inspectors using their legible software documents in their

official paper, and search for defects and problems. In this way, the detected defects will be recorded

in standard forms by their type and their sources. These defects are accessible only by the project

managers. Usually, supplementary inspection meetings are held in the presence of individuals who

have connection to the inspected documents, and the software developer presents the suggestions for

eliminating the defects. However, these suggestions will only be applied upon the confirmation by

the project managers.

2.6 Importance of Inspection in Early Phases of Software Development

Weinberg and Freedman (1984) emphasised that inspection must commence early in the software

development lifecycle. This is because the inspection results and reports can be useful to the project

manager in subsequent phases. Studies have shown that correcting a defect in the early phases of the

software development lifecycle saves up to hundred times in cost, when compared to fixing a defect

in the later phases of development (Nair, Suma, Kumar, 2011). Figure 2.6 shows the relative costs for

correcting software defects at different phases. The detection and correction of defects in the last

stages of software development can cost a hundred times more than correction of defects detected in

the requirements analysis phase.

Univ
ers

ity
 of

 M
ala

ya

23

Figure 2.6: Cost to detect and correct defects in different development phases (Nair Suma,

Kumar, 2011)

2.7 A Chronological List of Software Inspection Related Articles

The relevant articles on software inspection published from 1976 to present are listed

chronologically in Table 2.2.

Table 2.2: A Chronological List of Software Inspection Articles from 1976 to 2015

No Year Author Title of Article Focus Resource Title

1. 1976 Fagan Design and Code

Inspection to Reduce

Errors in Program

Development

Formal inspection IBM Systems

Journal

2. 1984 Weinberg

e and

Freedman

Reviews, Walkthroughs,

and Inspections

Technical and project

review policies,

From testing to

debugging

IEEE Transactions

on Software

Engineering

3. 1986 Fagan Advances in Software

Inspections

Advance in formal

inspection

IEEE Transactions

on Software

Engineering

4. 1989 Dunham V&V in the Next Decade

Technology, tools and

evaluation of V&V

IEEE Software

5. 1989 Ackerman

Ackerman,

Buchwald,

and Lewski

Software Inspections: An

Effective Verification

Process

Inspection metrics and

defect types

IEEE Software

Univ
ers

ity
 of

 M
ala

ya

24

6. 1992 Chillarege

et al.

Orthogonal Defect

Classification-A Concept

for In-Process

Measurements

Defect types IEEE Transactions

on Software

Engineering

7. 1995 Kaplan,

Clark, &

Tang

Secrets of Software

Quality

 Defect removal and

software quality

Innovations 40

from IBM

8. 1997 Porter et al. An Experiment to Assess

the Cost-Benefits of Code

Inspections in Large-Scale

Software Development

Comparison of different

approaches,

Inspection experiments

IEEE Transactions

on Software

Engineering

9. 2000 Biffl Using Inspection Data for

Defect Estimation

Capture–Recapture

Model (CR)

detection profile

method (DPM)

IEEE Software

10. 2001 Van

Genuchten

et al.

Using Group Support

Systems for Software

Inspections

Communication

improvement for

software inspection

IEEE Software

11. 2001 Chernak Validating and Improving

Test-Case Effectiveness

Test cases before

release

IEEE Software

12. 2002 Houdek, F.,

Schwinn, T.,

& Ernst

Defect Detection for

Executable Specifications

— An Experiment

Inspection practices International

Journal of Software

Engineering &

Knowledge

Engineering

13. 2002 Perry et al. Reducing Inspection

Interval in Large-Scale

Software Development

Comparison of Web-

based inspection using

traditional inspection

IEEE Transactions

on Software

Engineering

14. 2002 Antoniol, et

al.

Recovering Traceability

Links between Code and

Documentation

Information retrieval

IEEE Transactions

on Software

Engineering

Univ
ers

ity
 of

 M
ala

ya

25

15. 2002 Fagan A History of Software

Inspections

Recommended three

components includes

seven steps formal

continuous process for

inspection success

Software Pioneers

16. 2003 Thelin,

Runeson, &

Wohlin

Prioritized Use Cases as a

Vehicle for Software

Inspections

Usage-Based Reading

(UBR), use cases,

scenarios, instead of

Checklist-Based

Reading (CBR)

IEEE Software

17. 2003 Anderson,

Reps, &

Teitelbaum

Design and

Implementation of a Fine-

Grained Software

Inspection Tool

Software inspection

using dependency graph

automated code

inspection

IEEE Transactions

on Software

Engineering

18. 2003 Parnas &

Lawford

The Role of Inspection in

Software Quality

Assurance

Software inspection

process improvement

IEEE Transactions

on Software

Engineering

19. 2003 Xu Making Software Timing

Properties Easier to Inspect

and Verify

Pre runtime schedule for

the inspection of large

software

IEEE Software

20. 2004 Miller &

Yin

A Cognitive-Based

Mechanism for

Constructing Software

Inspection Teams

Cognitive team

selection for inspection

process

IEEE Transactions

on Software

Engineering

21. 2004 Shore Fail Fast Global error handler

Global exception

handler

IEEE Software

22. 2004 Kelly &

Shepard

Task-Directed Software

Inspection

Light inspection process

(TDI) with focus on

individual work of

inspectors.

Journal of Systems

and Software

23. 2004 Yin,

Dunsmore,

& Miller

Self-Assessment of

Performance in Software

Inspection Processes

Presenting a subjective

defect estimation for the

number of remained

defects

Information and

Software

Technology

24. 2004 Leite et al. Scenario inspections Inspection practices Requirements

Engineering

Univ
ers

ity
 of

 M
ala

ya

26

25. 2005 Armour The Unconscious Art of

Software Testing

Software test cases Communications of

the ACM

26. 2005 Ruhe &

Saliu

The Art and Science of

Software Release Planning

Software delivery

planning

IEEE Software

27. 2005 Williams &

Hollingswort

h

Automatic Mining of

Source Code Repositories

to Improve Bug Finding

Techniques

Using user report in

inspection process to

improve debugging as

well as development

IEEE Transactions

on Software

Engineering

28. 2005 Freimut &

Vollei

Determining Inspection

Cost-Effectiveness by

Combining Project Data

and Expert Opinion

Inspection cost IEEE Transactions

on Software

Engineering

29. 2005 Remillard Source Code Review

Systems

Code inspection tools,

Check-in spot

inspections,

Recommended Code

striker at Solaris.

IEEE Software

30. 2005 Huhns &

Singh

Service-Oriented

Computing: Key Concepts

and Principles

Case tools, Framework

in open environment

Internet

Computing, IEEE

31. 2006 Faraj &

Sambamurth

y

Leadership of Information

Systems Development

Projects

Team efficiency in

software development

IEEE Transactions

on Engineering

Management

32. 2006 Tyran A Software Inspection

Exercise for the Systems

Analysis and Design

Course

Relationship between

system analysis and

software inspection,

inspection practices

Journal of

Information Systems

Education

33. 2006 Runeson et

al.

What Do We Know about

Defect Detection

Methods?

Summarized empirical

studies on inspection and

defect detection

Software, IEEE

34. 2006 Zheng et al.

On the Value of Static

Analysis for Fault

Detection in Software

Statistical model to

evaluate the defect

removal efficiency,

Economics of defect

detection

IEEE Transactions

on Software

Engineering

Univ
ers

ity
 of

 M
ala

ya

27

35. 2006 Lange,

Chaudron, &

Muskens

In Practice: UML

Software Architecture and

Design Description

UML model defects and

metrics

Software, IEEE

36. 2007 Denger &

Shull

A Practical Approach for

Quality-Driven Inspections

Developer’s role in

product quality,

Importance of inspection

techniques training

Software, IEEE

37. 2007 Vodde Experiences in Software

Inspection Measurements

Inspection metrics Software Quality

Professional

38. 2007 Jalote,

Mittal, &

Prajapat

On Optimum Module Size

for Software Inspections

Reduce inspection cost

via optimum size of

modules

International

Journal of

Reliability, Quality

and Safety

Engineering

39. 2008 Bertrand Design and Code Reviews

in the Age of the Internet

Online Code inspection Communications of

the ACM

40. 2008 Carver,

Nagappan,

& Page

The Impact of Educational

Background on the

Effectiveness of

Requirements Inspections:

An Empirical Study

Individual’s abilities in

software inspection,

Non-computer graduates

are more efficient

IEEE Transactions

on Software

Engineering

41. 2008 Shull &

Seaman

Inspecting the History of

Inspections: An Example

of Evidence-Based

Technology Diffusion

NASA experts’

experiences,

improvement using

professionals;

New approaches

Software, IEEE

42. 2008 Godefroid

et al.

Automating Software

Testing Using Program

Analysis

Dynamic Test

Generation;

Automated defect

detection for program

code

Software, IEEE

Univ
ers

ity
 of

 M
ala

ya

28

43. 2008 Hatton Testing the Value of

Checklists in Code

Inspections

Inspection Checklist,

Formal statistical

analysis,

weak relationship

between experience and

defect detection

Software, IEEE

44. 2008 Glass Software: Hero or Zero? Recommended data

validation process for

defect prevention

Software, IEEE

45. 2009 Kollanus Experiences from using

ICMM in Inspection

Process

Assessment

Improving inspection

practices, Inspection

Capability Maturity

Model

Software Quality

Journal

46. 2009 Gjerlufsen,

Ingstrup, &

Olsen

 Mirrors of Meaning:

Supporting Inspectable

Runtime Models

Develop inspectable

systems using

hierarchical graphs

Computer

47. 2009 Mantyla &

Lassenius

What Types of Defects

Are Really Discovered in

Code Reviews?

Defect type,

Comparison of other

research work

IEEE Transactions

on Software

Engineering

48. 2009 Koru et al. An Investigation into the

Functional Form of the

Size-Defect Relationship

for Software Modules

Exponential relation

between software size

and number of defects

IEEE Transactions

on Software

Engineering

49. 2009 Pothier &

Tanter

Back to the Future:

Omniscient Debugging

Log-based, breakpoint-

based, and Reversible

debugging

Software, IEEE

50. 2009 Walia &

Carver

A Systematic Literature

Review to Identify and

Classify Software

Requirement Errors

Taxonomy of errors,

and requirement faults.

Information and

Software

Technology

51. 2009 Kollanus &

Koskinen

Survey of Software

Inspection Research

A classification of

papers in inspection area

with an emergent

taxonomy of the

inspection research

TOSEJ
Univ

ers
ity

 of
 M

ala
ya

29

52. 2010 Yang et al. TESTQUAL:

Conceptualizing Software

Testing as a Service

Software quality aspects E - Service Journal

53. 2010 Poulding &

Clark

Efficient Software

Verification: Statistical

Testing Using

Automated Search

Practical method using

statistical testing for

automated defect

detection

IEEE Transactions

on Software

Engineering

54. 2010 Nair &

Suma

Impact Analysis of the

Inspection Process for

Effective Defect

Management in Software

Development

Effectiveness of

inspection using metrics

Software Quality

Professional

55. 2010 Spinellis Software Tracks Discussion on the

variety of automated

tools for software

development and

reduction of defects.

Software, IEEE

56. 2011 Shin et al. Evaluating Complexity,

Code Churn, and

Developer Activity

Metrics as Indicators of

Software Vulnerabilities

Web-browser case

studies to improve

security inspection

IEEE Transactions

on Software

Engineering

57. 2011 Shaoying et

al.

Formal Specification-

based Inspection for

Verification of Program

Program code

inspection, formal

specification

IEEE Transactions

on Software

Engineering

58. 2011 Sumit &

Patil

A Practical Experiment in

Teaching Software

Engineering Metrics

Error measurement,

Systematic debugging

Journal of

Computational

Simulation and

Modeling

59. 2011 Nair & Nair Estimation of the

Characteristics of a

Software Team for

Implementing an Effective

Inspection Process

Through Inspection

Performance Metrics.

Inspection performance

metrics,

Depth of inspection

Software Quality

Professional Univ
ers

ity
 of

 M
ala

ya

30

60. 2012 Wilkerson,

Nunamaker

Jr., and

Merce

Comparing the Defect

Reduction Benefits of

Code Inspection and Test-

Driven Development

The higher efficiency of

software (code)

inspection compared to

TTD

IEEE Transactions

on Software

Engineering

61. 2012 Gopalakrish

nan et al.

Significance of depth of

inspection and inspection

performance metrics for

consistent defect

management in software

industry

Comparing efficiency

between testing and the

inspection process.

Inspection is better at

finding defects.

IET Software

62. 2012 de Mello et

al.

Checklist-Based

Inspection Technique for

Feature Models Review

Proposed checklist-

based inspection

technique (FMCheck)

Software Product Line

Engineering. It is

configurable and

applicable on several

extensions of the

original feature model

notation.

Software

Components

Architectures and

Reuse (IEEE

Proceeding)

63. 2013 Souza et

al.

Evidence of Software

Inspection on Feature

Specification for Software

Product Lines

Gathering evidence

about the effects of

applying inspection to

feature specification for

SPL. Recommends using

sub-domain risk as on

indicator for sub-

domains priority in the

inspection activities.

Journal of Systems

and Software

64. 2013 De Sousa,

Coelho,

Braga, &

Ambrósio

System Dynamics Model

for Simulation of the

Software Inspection

Process

Introduces a dynamic

model to facilitate

inspection simulation

based on predefined

scenarios

ACM SIGSOFT

Software

Engineering Notes

65. 2013 Ali et al. An Improved, Efficient

and Cost Effective

Software Inspection

Meeting Process

Recommendations for

better meeting and

follow-up activity of

inspection

International

Journal of Modern

Education and

Computer Science

Univ
ers

ity
 of

 M
ala

ya

31

66. 2013 Fernandez,

Abrahão, &

Insfran

Empirical Validation of a

Usability Inspection

Method for model-driven

Web development

Inspection method for

Web artefacts

Journal of Systems

and Software

67. 2014 Misra,

Fernández,

&

Colomo-

Palacios

A Simplified Model for

Software Inspection

Development of an

asynchronous tool to

facilitate the inspection

process.

Journal of

Software: Evolution

and Process

68. 2014 Chandani &

Gupta

A Survey on Effective

Defect Prevention - 3T

Approach

Defect analysis and

defect tracking

IJIEEB

69. 2014 Dittrich Software Engineering

Beyond the Project –

Sustaining Software

Ecosystems

A qualitative research

shows that in software

domain, a continuous

development is preferred

to project management.

Major improvements in

SE needed, to support

software ecosystems.

Local designer in

company and third-party

(from outside of project)

have collaborated in the

design phase

Information and

Software

Technology

70. 2014 Gimpel Software That Checks

Software: The Impact of

PC-lint

Development of

automated tool for

software test and

software inspection the

software with defining

its behaviour via a

scenario and classifying

the corresponded defects

Software, IEEE

Univ
ers

ity
 of

 M
ala

ya

32

71. 2014 Shen, Zhao,

& Han

On Inspection Strategy

Based on Sample

Inspection Reliability.

Redefine the reliability

with multi aspect factors

and defining the

inspection strategy based

on it

Applied Mechanics

and Materials

72. 2014 Chen, &

Agrawal

Special issue on Emerging

Topics on Software

Debugging.

Debugging from an

intelligent mufti agent

landscape

Journal of Systems

and Software

73. 2015 Huzooree,

& Devi

Ramdoo

Evaluation of Code

Inspection on an

Outsourced Software

Project in Mauritius.

Defining the criteria for

debugging evaluation

through case study

IJCA

74. 2015 Sneed, &

Verhoef

From Software

Development to Software

Assembly

The software

development approach

with highlighting the

importance of software

test for successful

implementation

Software, IEEE

75. 2015 Mahmoud,

Haggag, &

Abd

Cost Analysis of a Two-

Unit Cold Standby System

Considering Hardware,

Software Failures and

Inspection with Maximum

Repair Time.

Classification the

failures to find new

analysis approach for

cost analysis

IJCA

76. 2015 Gomes &

Moita

On the Validation of a

Specific Development

Process for Scientific

Software using the

Inspection Technique

Focusing on inspection

techniques for process

phases validation as well

as the corresponded

work products.

77. 2015 Malhotra, &

Taneja

Comparative Analysis of

two Stochastic Models

subjected to Inspection and

Scheduled Maintenance.

A pragmatic research to

compare the advantages

and shortcoming the

software inspection and

maintenance plan

IJSEIA

Univ
ers

ity
 of

 M
ala

ya

33

78. 2015 Li, X.,

Mutha, C.,

& Smidts

An automated software

reliability prediction

system for safety critical

software

Focusing on the

reliability prediction and

evaluation to improve

the quality of software

with unique and special

features

Empirical Software

Engineering

79. 2015 Minetola,

Iuliano, &

Calignano

A customer oriented

methodology for reverse

engineering software

selection in the computer

aided inspection scenario.

The reverse approach to

promote the quality of

software development

through the inspection

technique

Computers in

Industry

80. 2015 Goswami,

Walia, &

Singh

Using Learning Styles of

Software Professionals to

Improve Their Inspection

Team Performance.

Focus on different

learning philosophy,

application, and

mechanisms for

improving the

effectiveness and

productivity of

inspection teams

International

Journal of Software

Engineering and

Knowledge

Engineering

81. 2015 Vitharana Defect propagation at the

project-level: results and a

post-hoc analysis on

inspection efficiency

Study the potential

shortcoming in

inspection process

specially in

amplification the debugs

in software life cycle

from one phase to next

phase

Empirical Software

Engineering

Univ
ers

ity
 of

 M
ala

ya

34

One of the major problems highlighted by many researchers, is that not many

enterprises know how to conduct inspection. Another problem is the lack of research

pertaining to handling the inconsistencies. Some inspection processes recommend

brainstorming, negotiation, and collaboration as a part of the inspection process. This

means soliciting different views from the inspectors on how the potential defects are to

be handled if they could not be resolved by brainstorming, the issue. Researchers have

not been able to provide a definitive solution for such a case, until now.

There is no justification for companies to save cost by using traditional testing rather

than by inspections to reduce defects (Radice, 2002, Mahmoud, Haggag, & Abd, 2015).

In a comprehensive study, Mishra and Mishra (2009) found that” most organizations

do not use inspections in the software development process as the inspections are too

rigorous, and even with the support of computer, it is too complicated for organizations

to implement”.

Recent researches on how software inspection has evolved over the years, show that

efforts to eliminate the inspection meeting in order to enhance efficiency can have

adverse effects such as an increase in false positives. Although many studies have

shown that no-meeting inspection processes are more efficient compared to meeting-

based inspections, none of these studies had provided answers for solving the false

positive issue (Misra, Fernández, & Colomo, 2014). In any occurrence of false

positives, inspectors identify non-defects to be defects (Land, Sauer, & Jeffery, 1997).

Also the tools developed for the new inspection processes lack coordination support

(Zhang & Babar, 2013).

In software inspection, a long-standing problem that still remains after three decades

concerns the choice, evaluation, and appraisal of inspectors for an inspection process

(Winkler, Thurnher, & Biffl, 2007; Valentim & Conte, 2014). None of the existing

Univ
ers

ity
 of

 M
ala

ya

35

inspection processes address the selection method, or qualification needed of an

inspector, or even recommend a placement test to assess their abilities. Most studies on

software inspection are based on some experiments and surveys, involved small

artefacts, and none on the large projects or very large artefacts. Wilkerson, Nunamaker

Jr., and Mercer (2012) stated that to validate the findings from the studies as well as the

inspection process, further research is necessary both inside and outside of the

laboratory.

2.7.1 The subjects covered in the articles reviewed

Table 2.3 shows the subjects covered in the articles listed in Table 2.2. The subjects

covered in the articles are relevant to this research. The table also shows the number of

articles that include each subject in their contents.

Table 2.3: Number of articles that contain the subjects relevant to the inspection

process

 Subject covered

Inspection Checklist Defect

Classes

Defect detection in

Requirements

Phase

Defect

detection in

Design Phase

Defect detection

in Program Code

No. of

articles

51 11 6 28 34 24

Percentage 33 % 7 % 4% 18% 22% 16%

Of the total of 154 articles reviewed, only 24 (16%) focused on code inspection. Today,

automated tools are used for code inspection, as well as online inspection. Inspection in

the requirements analysis and design phases, and inspection efficiency have remained

important issues over the past three decades. Also, 51 (33%) of the articles listed above,

focus on software inspection process; 28 (18%) on defects of the requirements analysis

phase artefacts, and 34 (22%) on defects detected in the artefacts of the design phase.

Univ
ers

ity
 of

 M
ala

ya

36

Only 6 (4%) of the articles reviewed discussed defects classification. It must be noted

that defects classification is crucial for the success of the inspection process. Most of the

studies used a sub-class of the IEEE defects classification.

Inspection is a team activity and the productivity of the team is another important issue

for a successful inspection process (Sneed, & Verhoef, 2015). Team structure, and the

productivity of the different compositions of semi-skilled, skilled, and highly skilled

inspectors are not covered in the studies. Also, removing the inconsistencies identified

are not covered. Brainstorming and negotiation sessions conducted during inspection

meeting to resolve ambiguous issues also have to be addressed.

2.8 Software Inspection Processes for the Requirements Analysis and Design

Phases

Ad hoc, Checklist, and Scenario are three common classes of methods for software

inspection in the requirements analysis and design phases (Minetola, Iuliano, &

Calignano, 2015). Ad hoc and Checklist are two frequently-used fault detection methods.

Studies have proven that traditional checklist-based methods do not perform better than

the Ad hoc method (Grady & Slack, 1994). Inspection meetings to discuss individual

checklists have been futile, inflexible and ineffective (Malhotra, & Taneja, 2015). There

is no professional cooperation, on exchange of knowledge, opinions and experiences in

the checklist method.

The use of the Scenario method results in 35% better efficiency than the Checklist and

Ad hoc methods (Hatton, 2008). Although this method allows the inspectors to

concentrate on specific features of the defects, other studies have shown that the Scenario

method is not applicable for all defects (Minetola, Iuliano, & Calignano, 2015). The

success of software inspections using the Scenario method, depends on the type of

Scenario designs (Gomes, & Moita, 2015). Thus, despite the inspectors’ efforts, poorly-

Univ
ers

ity
 of

 M
ala

ya

37

designed Scenario methods cannot perform satisfactory during inspections (Minetola,

Iuliano, & Calignano, 2015).

2.8.1 Software Inspection Processes Applicable in the Requirements Analysis

Phase

This section discusses the current inspection processes for artefacts in the requirements

analysis phase.

2.8.1.1 Structured Walkthroughs

Weinberg and Freedman (1984) conducted a comprehensive study on reviewing, walk-

through, and inspection. They emphasized that the Formal Technical Review (FTR) must

be within the scope of responsibility for those not involved in software production. Hence,

the main role of FTR is to provide reliable information on the software products to

managers.

In 1989, Yourdon introduced a new software inspection technique called Structured

Walkthroughs that allows very short preparation time and meeting time. The method is

appropriate for use in the requirements analysis phase. The important feature of

Yourdon’s technique is its focus on all types of documents generated during the

requirement analysis phase.

2.8.1.2 Phased Inspection

The Phased inspection method could be considered a combination of traditional,

active design reviews, and multiple team inspection. This technique developed by

Knight and Myers (1993), is aimed that not only finding the defects but also to examine

the quality features of software such as reusability and portability. The artefacts will be

inspected over six or more sequential phases.

Univ
ers

ity
 of

 M
ala

ya

38

A simple inspection may consist of up to six phases, which are conducted

sequentially. Each phase is designed to examine a specific property of an artefact.

Completion of a phase and correction of all defects found is important in order to start

the next phase. In this method, a single checklist is used by a single inspector, prior to

using different checklists by several inspectors.

2.8.1.3 Inspection without a Meeting

Mashayekhi et al. (1993) stated that face-to-face communication in inspection

meetings is quite expensive and does not produce any significant results in defect finding.

Eick et al. (1992) and Votta (1993) found that 90% of the defects could be identified

during inspection, and before the inspection meeting. Porter et al. (1995) opined that

inspection meeting is too time-consuming and not popular with project managers. They

also viewed that gathering several inspectors, authors, and the moderator in one place is

a waste of time and resources.

Votta (1993) also stated that because of the inevitable sequential order in inspection

processing, only two of the inspectors actually have face-to-face interaction in any

inspection with n inspectors participating. He also opined that the inspection meetings are

not cost effective, and recommends a replacement meeting (depositions) with an author

and an inspector. His studies show that depositions are more effective when compared to

traditional inspection meetings.

2.8.1.4 Inspection with Brainstorming Session

Gilb and Graham (1993) suggested adding an extra step - process-brainstorming

meeting to improve the inspection process, after the inspection meeting. The weakness of

short meetings is that misunderstanding will be resolved by applying the aforementioned

step. Without strong leadership during inspection, confusion and anarchism might arise.

Univ
ers

ity
 of

 M
ala

ya

39

2.8.1.5 Software Inspection Process Applicable in the Design Phase

The current inspection methods for the design phase, are presented in the following

sections.

2.8.1.6 Active Design Review

The active design review method was introduced by Parnas and Weiss in 1985. The

method involves several small reviews instead of a big review. Each review focuses on

an important part of an artefact. There are three classes of defects: i) inconsistency, ii)

inefficiency, and iii) ambiguity. The artefacts are classified based on their properties.

Each inspector has to pass a qualification exam to ensure that he/she is fully competent

to inspect specific part of the artefact. This is because each inspector is assigned to find a

particular class of defects. To guide the reviewers, the errors are classified. Figure 2.7

shows the steps of Parnas and Weiss method.

Figure 2.7: Inspection Session Stages in the Parnas and Weiss method (1985)

Univ
ers

ity
 of

 M
ala

ya

40

2.8.1.7 Two-Person Formal Inspection Method

Bisant and Lyle (1989) presented a formal method for software inspection in the design

phase. In this method, the moderator’s role is removed and the team size is reduced. A

peer-to-peer relationship is fostered to make the review meeting more efficient. The

results from researches indicated that the method is useful for semi-skilled software

developers in small organizations. Fostering close relation between an author and a

reviewer can improve the productivity of the inspection process.

2.8.1.8 High-Level Object-Oriented Designs Inspection

Figure 2.8 illustrates the different techniques for reading in two horizontal and vertical

axes. The horizontal reading is applied within a particular software development phase,

while the vertical reading compares requirements documents between the software

development phases.

Figure 2.8: Techniques for Reading in Two Axes

2.8.1.9 Usage-Based Testing (UBT-i) Method

Winkler, Riedl, and Biffl (2005) developed a paper-based inspection process to

integrate the desk test and the inspection methods. The process is applicable to the design

specifications. The most important feature of UBT-i is the defect location characteristics

Univ
ers

ity
 of

 M
ala

ya

41

information that could be used in the design specifications. The major stages of the UBT-

i method are shown in Figure 2.9.

Figure 2.9: The Major Steps of UBT-i Inspection Method

Generating the Test-case is an essential task of the UBT-i process. Finally, the defects

are detected in the design phase of the software development based on the priority of each

use case. Figure 2.10 shows the inspector’s responsibilities in the UBT-i process.

2.8.1.10 Multiple Team (N-fold) Inspection Method

The major feature of N-fold inspection is the use of N independent inspection teams.

Kantorowitz, Guttman, and Arzi (1997) stated that the N-fold inspection could be used

for any type of inspection and for any size of systems, provided there is an optimal number

of members in the inspection team.

1. Choose the first prioritized use case.

2. Find equivalence classes and test cases according to the

selected use case. Handling equivalence class derivation.

3. Apply test cases regarding use cases and record defects.

4. Continue step 1 until all use cases and documents are

covered or have reached time limit.

S
te

p
 1

Select a use case
with the highest
rank.

S
te

p
 2

Record the potential defects, those
classified by inspectors and
ranked by experts.

S
te

p
 3

Select next use case
in a limited time.

Figure 2.10: Inspector Responsibilities in UBT-i Approach

Univ
ers

ity
 of

 M
ala

ya

42

Using small teams provides an opportunity for finding more defects than using a single

big team. Therefore, small teams are more efficient compared to big inspection teams.

However, multiple teams can be used to identify defects which might not be found by a

single team. Different teams with various proficiencies will find different defects of

different classes.

In this method, the moderator is responsible for coordinating the teams. Each

inspection team follows the formal software inspection procedures. It is important to

achieve a balance between the cost of using more teams and the benefits gained from

finding more defects (Tripp, Struck, & Pflug, 1991).

Table 2.4: Common Problems Encountered when using Inspection Methods in

the Analysis Phase

Problem Explanation Reference

Checklist

consequences

 Checklists facilitate the inspection process but

have limitations

 No flexibility

Hatton

(2008)

Time

measurement

 Measuring the time is sometimes important

but sometimes applied by combining human

forces (person–month). In both cases, the

measurement process will encounter some

difficulties

 Measurements obtained from virtual meetings

are very different from that obtained from

normal sessions

 E-mail inspections are less efficient but

accelerate the inspection process

Vodde

(2007)

Martin and Tsai (1990) opined that the N-fold inspection technique is appropriate to

be applied in the requirements analysis and design phases of the software development

lifecycle. Tripp, Struck, and Pflug (1991) found that this technique generates low

redundancy in defects among the inspection groups. In their research, Schneider et al.

(1992) found that N teams detected about 80% of potential defects whereas a single

Univ
ers

ity
 of

 M
ala

ya

43

inspection team could not find more than 35% of those defects. Other studies have found

that there is no overlapping among the defects that different teams have detected. The

limit on the number of inspection teams is a crucial issue that had been addressed by many

researchers (Martin & Tsai, 1990).

2.9 Problems of Using Current Inspection Methods in the Analysis and Design

Phase

The problems associated with the current inspection methods in the requirements

analysis phase can be divided into two classes - common and specific problems - as

explained in the next sections:

2.9.1 Common Problems Encountered when Using the Inspection Methods in the

Requirement Analysis Phase

The traditional inspection approaches cannot meet today’s inspection requirements.

The size and complexities of software, especially in the early phases of development,

warrant the use of more efficient inspection methods. A shortcoming of the current

inspection methods is the lack of facilities to support the inspection teams. The

organisation, formation, and characteristics of the inspection teams are also new concern

with regard to the modern inspection approaches (Nair, Suma, Kumar, 2011). These

issues have been ignored in the traditional approaches. Table 2.4 summarises some

important common problems of current inspection methods in the analysis phase.

2.9.2 Specific Problems Encountered when Using the Inspection Methods in the

Requirements Analysis Phase

Specific problems have been encountered when using software inspection methods in

the requirements analysis phase. As a result, it restricts the use of these methods in various

software types, and in projects of different disciplines (Grady & Van Slack, 1994). Table

Univ
ers

ity
 of

 M
ala

ya

44

2.5 summarises the problems encountered when using the different inspection methods

in the requirements analysis phase.

Table 2.5: Specific Problems Encountered when using Inspection Methods in

Requirements Analysis Phase

Method Problem Reference

Formal Inspection

 Failure to find defects in the

product developed

 Information overload in the

preparation phase

 Information is not relevant

 Reviewers are not aware of the

design objectives

 Evaluation freeze

 Production freeze

(Shull, 2002)

Phased Inspection

 Finding sequence of defect is

complicated

 Comprehensive checklists are

essential, but designing is arduous

 Dependencies among the defects

make this technique difficult

(MacDonald,

1995)

Structured

Walkthrough

 Focusing only on the positive

aspects of documents while negative

aspects are ignored

(Weinberg &

Freedman, 1984)

Inspection with

Brainstorming

Session

 Confusion and anarchism could

happen without strong inspection

leadership

 Brainstorming may result in an

infinite loop with fruitless

arguments

(MacDonald et

al., 1995)

Inspection without a

Meeting

 The method is efficient but not

effective

 Some serious defects will remain

undetected

(Perry et al.,

2002)

Univ
ers

ity
 of

 M
ala

ya

45

Table 2.6: Common Problems of Inspection Methods Used in the Design Phase

Problem Explanations Reference

Team Work in

Software

Inspection

 Finding the appropriate number of inspectors

for an inspection team

 No formal sharing knowledge and

experience

 Periodical training for the inspection team

can incur unexpected costs

 The current methods neglect experience

sharing because no collaborative

infrastructure is provided

(Boehm,

Basili, 2005)

Team

Characteristics

 Effective implementation of the inspection

process is entirely dependent on correct software

team features

 Software developers employ people who have

little experience in inspection and estimation,

and this does not justify the cost incurred to

produce quality software

(Nair et al.,

2011)

(Spiewak, &

McRitchie,

2008)

Forming the

Inspection

Team

 The composition of the team is emphasised

to ensure success of the inspection process

 Ensuring that both the number of people in a

team and their capabilities, potential,

experience, and the skills meet the

requirements

 The composition of the team and the

capabilities of each inspector does not match

(Miller &

Yin, 2004)

Eliciting the

Requirement

and Team

Training

 Paradox in qualification and requirement of

inspection team members (the inspectors without

computer science background discovered more

defects in comparison with those with computer

science qualification

 Inspectors with Masters or PhD degrees or

industrial experience or related expertise do not

perform as remarkably as expected in the

inspection

 Inspectors only have experience in documenting

the requirements or analyzing the systems

(Carver,

Nagappan,

& Page,

2008)

Univ
ers

ity
 of

 M
ala

ya

46

2.9.3 Common Problems Encountered when Using the Inspection Methods in the

Design Phase

All inspection methods used for the software design phase have some common

weaknesses. Table 2.6 summarises the common shortcomings of current inspection

methods used in the design phase.

2.9.4 Specific Problems Encountered when Using Inspection Methods in the

Design Phase

Every software inspection method used in the design phase has certain weaknesses and

limitations (Grady & Slack, 1994). Table 2.7 summarises the specific problems

encountered using each inspection method in the design phase.

2.10 Standard Classification of Software Defects

The defects found at the requirements analysis and design phases can be classified as

defect, failure, error, bug, etc. The following section gives the definition of these defects.

2.10.1 Defect Classification in the Requirements Analysis Phase

Different researchers have proposed different classifications for defects in the

requirement analysis phase of software development lifecycle. Table 2.8 shows the

defects found in the requirements analysis phase during the software inspection process

and classified based on the IEEE (Std. 1044-2009) standard.

Univ

ers
ity

 of
 M

ala
ya

47

Table 2.7: Specific Problems Encountered when using Inspection Methods in

the Design Phase

Method Problem Reference

Active Design Review

 No quantitative measurement

 Lack of integration

 Difficulty in managing many

meetings

 Defect management is not

effective

(Parnas & Weiss,

1987)

Two-Person Formal

Inspection Method

 Not applicable for large

systems

 Suitable only for semi-skilled

developers in small projects

(Bisant & Lyle,

1989)

Multiple Team (N-

fold) Inspection

 Difficulties faced in multiple

team arrangement

 Additional team costs

 Potential hidden expenses for

defects not detected

 Difficult in finding optimal

number of members

(Tripp et al.,

1991),

(Schneider,

Martin, & Tsai,

1992)

UBT-i

 The gap between requirements

analysis and class definition

 Only applicable to the class

specification of UML design

model

 Professional prioritization of

classes is needed

(Winkler, Riedl,

Biffl, 2005)

High-Level Object-

Oriented Designs

Inspection

 Poor transition definition from

one phase to the next phase

 Lack of integration among the

phases

 Weakness in coordination, and

time-management

(Travassos et al.,

1999).

Univ
ers

ity
 of

 M
ala

ya

48

Table 2.8: Software Defects in Requirement Analysis Phase classified based on

(IEEE Std 1044-2009) Standard

Attribute Phase Definition Example

Insertion

activity

R
eq

u
ir

em
en

ts

Defect inserted during

requirements definition

activities (e.g.,

elicitation, analysis, or

specification)

 Function required to meet

customer goals omitted from

requirements specification

 Incomplete use case

specification

 Performance requirements

are missing or incorrect

 Security requirements are

missing or incorrect

 Function incorrectly

specified

 Function not needed to meet

customer goals specified in

requirements specification

Type Logic

Defect in decision logic,

branching, sequencing,

or computational

algorithm, as found in

natural language

specifications

 Incorrect sequencing of

operations

Mode

Wrong

Something is incorrect,

inconsistent, or

ambiguous.

 Ambiguous definition of

business rule in specification

Missing

Something is absent that

should be present.

 Missing system response in

sequence diagram

Extra

Something is present

that should not be

present

 Some attributes (fields /

variables), switches or

branches are never used

Univ
ers

ity
 of

 M
ala

ya

49

Table 2.9 shows the general types of defects classification in the analysis phase, as

defined by Hong et al. (2008).

Table 2.9: Types of Defects in the Analysis Phase (Hong et al., 2008)

Type of defect Explanation

Consistency

Little consistency between the previous artefacts and

the current artefacts.

Function Defects that affect the functionality due to incorrect

functional explanation, wrong algorithm, data structure,

etc.

Standards Little observance of the rules such as customer’s

standards, project standards methodology, coding rules,

etc.

Performance Defects that influence the performance due to incorrect

design, inefficient algorithm, data structure, etc.

Miscellaneous

Defects not categorized by the aforementioned types

Chillarege et al. (1992) proposed the orthogonal defect classification (ODC). Table

2.10 shows a complete classification of potential defects in the analysis phase.

Table 2.10: ODC of Defects in the Analysis Phase (Chillarege et al., 1992)

Defect Class Description

Missing

Functionality

The system requirements specification does not contain

the necessary information to clarify the system internal

operational behaviour.

Missing

Performance

The description of the performance specifications does

not satisfy the acceptance testing criteria or is not

available.

Univ
ers

ity
 of

 M
ala

ya

50

Missing

Environment

Environmental resources such as database, skilled and

semi-skilled staff, hardware, and software are not stated

in the system requirements specification.

Missing

Interface

The interaction and communication scenario,

procedures, and instructions showing how the proposed

system communicates with the objects out of the system

boundaries are not clarified.

Incorrect Fact The false sentence or description, or condition, or

situation affects the validity of the system requirements

specification.

Wrong Section The placement of some essential data and information

is not correct or misplaced in the system requirements

specification.

Ambiguous

Information

Misunderstanding happens because of missing a term

or important sentence. Incorrect or incomplete

behaviour definition could be another reason for

confusion.

Inconsistent

Information

Two or more sentences in the system requirements

specification are contradictory or refer to some actions

in an inconsistent manner.

2.10.2 Defects Classification in the Design Phase

The standard classification for software defects in the design phase adopts the NASA

(2013) standard, as shown in Table 2.11.

According to Chaar et al. (1993), the design phase of the software development

lifecycle could be categorised into dynamic or static classes (see Table 2.12).

Univ
ers

ity
 of

 M
ala

ya

51

Table 2.11: Software Defects in Design Phase (NASA, 2013)

Type Description

Algorithm Invalid logic algorithms

Cohesion Inappropriate cohesion

Component Bad structure of component does not meet requirement

Coupling Inappropriate coupling

Data structure Incomplete data structures

Functionality Incomplete general function of module

I/O interaction Invalid I/O interface

Inconsistency The design decisions do not match system objectives

Interface Incompleteness module interface

Module Non-modular design

Notation Non-standard notations

Pattern Design pattern is not suitable

Relationship Invalid modules relationships

Requirement related
Design specification is not match with its relevant

requirements

Reusability Bad selection of the reusable components

Self-instrument Invalid fault detection

Traceability Non-traceable design for ensuring validity

Table 2.12: Design Defects Adopted (Chaar, 1993)

Defect Type Description Definition

Algorithm
The sequence of activities or use of the data type or the number of

occurrences and loops is incorrect

Assignment The value is missing or assigned incorrectly

Univ
ers

ity
 of

 M
ala

ya

52

Build/Package/

Merge

The predefined library objects, methods, routines, or modules have

problems or are not compatible

Checking
Type mismatch of parameters or invalid parameters in a conditional

expression

Documentation Inconsistencies in the description and the real behaviour of the components

Function The functionality requirement is not satisfied

Interface
The interaction between the components is not correctly defined or is not

stated

Timing

In the sharing of resources, correctness of serialization is not met or an

incorrect technique is implemented

2.11 Findings of the Defect Classification in the Requirements Analysis Phase

and Design Phase

Different classification methods have been proposed by different institution or

researchers. Basically defects are classified according to the source of the defect, trigger

of the defect, the mode of the defect, etc. There is no standard or systematic classification

for defects. Therefore, it is necessary to establish a standard for defects classification.

Based on the comparison of the different defects classifications, defects can be

categorised into six major modes – missing, incorrect, inconsistent, ambiguous, wrong

section, and extra. In this research, a common set of defect classes is defined, and is

related to these six modes for the requirements analysis phase, as shown in Table 2.13.

To facilitate the inspection process, each defect is assigned a defect code. This helps in

analysing and identifying the defect types that are most common in the analysis and

design phases for a specific type of system.

Univ
ers

ity
 of

 M
ala

ya

53

Table 2.13: Software Defects Classification in the Design Phase (IEEE Std 1044-

2009)

Mode Code Definition Example

Ambiguous

(A)

Misunderstanding

caused by a missing term

or important sentence.

 Definition of a discount

rule in a business plan

without explanation on

how it is to be done.

Wrong

Section
(WS)

The placement of some

essential data and

information is not

correct or misplaced in

the system requirements

specification.

 Placing authentication

function after

authorization function in

requirements

specification.

Extra (E)

Something is present that

should not be present

 Asking for details of a

user in a cardinality

schema.

Missing (M)
Something is absent

which should be present.

 Absence of encryption

method in a safe

transportation mode.

Incorrect (IC)

Something is wrong or

description is not

accurate under specified

conditions.

 Updating a profile when

the necessary information

is not provided.

Inconsistent (ICST)

Descriptions contradict

each other or expressed

actions that cannot both

be correct or cannot both

be carried out.

 Allowing a method to

send a message that

should be verified at the

destination, and

concurrently expecting to

receive only verified

requests from the

destination.

2.12 Missing Aspects or Gaps

The literature review in this chapter shows some gaps and shortages of software

inspection process which need to be focused to enhance the quality of software inspection.

Some gaps and issues are listed below:

• Develop the checklists is difficult and have some limitations.

Univ
ers

ity
 of

 M
ala

ya

54

• Measuring the time will encounter some difficulties.

• Measurements obtained from virtual meetings are not considered.

• Failure to find defects in the product developed.

• Not relevant and overload information overload in the preparation phase.

• Lack of documentation of the cause and effect of the potential defects detected during

the inspection process.

• Lack of comprehensive defect classification

• Brainstorming may result in an infinite loop with fruitless arguments

• Unable to determine the appropriate number of inspectors for an inspection team.

• The current methods neglect experience sharing because no collaborative

infrastructure is provided.

• No formal sharing of knowledge and experience (i.e. inspector profile review).

• Preparation and development kit are not defined carefully.

• The composition of the inspection team is not considered to ensure success of the

inspection process.

2.13 Summary

The formal inspection approach that had been used for more than three decades is not

effective for current software and development inspection processes, especially in the

requirements analysis and design phases. The current inspection tools focus on code

inspection, but inspection at the early phases of software development lifecycle is more

Univ
ers

ity
 of

 M
ala

ya

55

important. Studies on software inspection and the inspection process have shown that

customizing the inspection process can increase its effectiveness as well as its efficiency.

There are common problems encountered in all inspection processes in the

requirements analysis and design phases (Kollanus, 2009). Inspection is not done in most

of the software projects and this results in software of lower quality and lower reliability.

In most software inspection processes, the productivity of inspectors is crucial to the

overall productivity of the inspection team, hence, if the inspectors are not skillful or

competent, the quality of inspection would be adversely affected. However, the inspection

team structure as well as team productivity have not been addressed in the studies.

Some researchers opined that a software inspection process without comprehensive

teamwork will not be efficient. Finding more defects in less time is the main goal of any

inspection process. The studies reviewed show that developing an application to record

the potential defects facilitates the inspection process. Finally, the use of defect detection

performance criteria and quality metrics proposed by inspection experts have provided

the motivation to design an enhanced and effective inspection process to improve the

Formal inspection process.

Over the last four decades since the introduction of the formal inspection process by

Fagan, different software inspection processes and tools have been introduced. However,

none of the formal processes introduced is any better in efficiency. The formal process is

still recognized as the standard model for NASA and IEEE. Misra Fernández, and Colomo

(2014) and Kasai, Morisaki, and Matsumot (2013) introduced some prototype models and

tested them in student projects (Hussain, 2007), but these prototypes were not operational

processes as they have not been shown to be more efficient in detecting defects or in

finding a larger number of defects compared to the formal process.

Univ
ers

ity
 of

 M
ala

ya

56

CHAPTER 3: RESEARCH METHOD

This chapter presents the methods used to carry out the research. It also discusses the

research activities, research design, the metrics used to evaluate the proposed software

inspection process, ISIP, and elaborates on the internal and external validity of the

research.

3.1 Research Method Used

This research is aimed at proposing a new and improved software inspection process.

The efficiency of the proposed process will then be evaluated using data collected from

two case studies. Figure 3.1 shows the activities involved in this research.

A new software inspection process, ISIP, was proposed after conducting a thorough

review of the literature pertaining to the software inspection process and as well as related

issues. A tool that incorporates the proposed process was developed using agile

development technique. It was used to collect data during the case studies to evaluate the

efficiency of the proposed inspection process. Before conducting the case studies, the

metrics to be used to evaluate the proposed process were defined. The following sections

explain the research activities in detail.

3.1.1 Activity 0: Choosing Area Subject

Software inspection is an important process in software engineering. Personal interest

and the experiences on software testing and software inspection have inspired the

initiation to conduct a study on software inspection.

Univ
ers

ity
 of

 M
ala

ya

57

Figure 3.1: Research Activities

3.1.2 Activity 1: Literature Review

A literature review was conducted from August 2009 to July 2015, on published work

of researches pertaining to software inspection process, problems encountered during

inspection in the requirements analysis and design phases, and the classification of defects

detected in the requirements and design artefacts. The literature review was presented in

chapter 2. Altogether, 87 articles published between 1976 and 2015 were reviewed. Out

of the 87 articles, 35 articles were journal papers, and 10 articles were retrieved from 30

conference proceedings, two reference books, and 10 articles were retrieved from the

Internet.

3.1.3 Activity 2: Problems Identification

The literature review provides insight into the main problems and weaknesses

associated with the current inspection process. Over the past three decades, software

inspection had focused on program code inspection. Less attention was paid to the

inspection process, as well as inspection of artefacts in the requirements analysis and

design phases. Fagan (2002) highlighted the shortcomings associated with inspecting

Univ
ers

ity
 of

 M
ala

ya

58

artefacts in the early stages of software development. He stated that inspection of

artefacts, especially in the requirements analysis and design phases, requires thorough

and careful inspection to eliminate as many defects as possible in those early phases

(Fagan, 2002). Inspection carried out using paper-based checklists and conducted

manually without the use of any automated inspection tools, are very tedious and time-

consuming (de Mello et al, 2012, Li, Mutha, & Smidts, 2015). In addition, there is

presently no comprehensive method of categorising defects found in the requirements

analysis and design phases (Alshazly, Elfatatry, & Abougabal, 2014). This research was

initiated to address the aforementioned problems.

3.1.4 Activity 3: Propose an Improved Software Inspection Process (ISIP)

To overcome the shortcomings of the current software inspection process, an improved

software inspection process, ISIP, was established. ISIP classifies defects detected in the

requirements analysis and design phases of the software development life cycle into

different categories based on IEEE’s and NASA’s defect classification approaches. It also

supports virtual inspection meetings, and thus, allows remote inspection to be conducted.

ISIP incorporates features which are aimed at improving inspections of the artefacts

detected in the requirements analysis and design phases, as well as improving the

productivity of the inspection teams. Chapter 4 provides more details on the features of

ISIP.

3.1.5 Activity 4: Develop a Web-based tool (ArSeC)

To facilitate the implementation of ISIP, an inspection tool known as Artefact Session

Control (ArSeC), was developed using agile development techniques in the .NET

environment. ArSeC has a database that stores the various types of defects which have

been classified according to the IEEE and NASA standards, and commonly detected in

the requirements analysis and design phases. The database also stores information on the

Univ
ers

ity
 of

 M
ala

ya

59

potential causes of each defect. This is aimed at helping the author(s) of the artefacts in

removing the defects detected quickly. The features of ArSeC are explained in chapter 4.

3.1.6 Activity 5: Conduct case studies to evaluate the proposed software

inspection process

Case study is the most appropriate method to validate the proposed software inspection

process, because i) the inspectors involved in the process could not be controlled by the

researcher, ii) the replication cost, i.e. the cost to repeat the inspection for the other

software projects, is reduced, and iii) the data that will be used to evaluate the proposed

inspection process are based on the inspection outcomes of past completed projects (i.e.

retrospective investigation). The limitations of using case studies to conduct this research

are: 1) only two large projects and eight artefacts of the requirements analysis and design

phases were inspected respectively, 2) the checklists designed and used are applicable for

requirements analysis and design phases only, 3) the knowledge and experiences of the

inspectors are based on the highly skilled and skilled levels, only, and 4) only three

inspectors were selected to form an inspection team.

Several emails have been sent to software and industrial companies to invite them to

participate in current research. Two case studies were conducted to evaluate ISIP. Two

software development projects (P1 and P2) from a manufacturing company (C1) and a

trading company (C2), respectively, were selected for the case studies. Several emails

have been sent to software and industrial companies to participate in current research. In

this research, inspection is done only on large artefacts in the requirements analysis and

design phases (those had more than 15 pages). Inspectors have chosen based on their

experiences of the number of artefact inspected by them and the number of their

experience in software inspection, explained in detail in chapter five. The research design

adopts a two-group independent design approach whereby two independent inspection

Univ
ers

ity
 of

 M
ala

ya

60

teams – Team A and Team B from C1; Team C and Team D from C2 – were formed to

inspect the artefacts, as shown in Figure 3.2. In case study 1, the formal inspection process

(Process 1) was first used by three inspectors from Team A to conduct manual inspections

on the artefacts of P1 based on the inspection checklists prepared by a moderator. The

inspection outcomes – number of defects detected and the inspection time – were recorded

using MS Excel. The same sets of artefacts were also inspected by another three

inspectors from Team B using ISIP (Process 2). The inspection process was facilitated

using ArSeC, and the inspection outcomes were recorded using ArSeC as well. In case

study 2, the inspection processes were repeated by two different inspection teams, Team

C and Team D on the artefacts of P2, respectively.

Figure 3.2: Research Design

The inspection data and outcomes of both projects were compiled and analysed using

the Statistical Package for Social Sciences (SPSS) version 22 to determine whether ISIP

Univ
ers

ity
 of

 M
ala

ya

61

(Process 2) is more efficient than the formal inspection process model (Process 1). In the

evaluation, these metrics were used for measuring – i) number of real (actual) defects

detected in each artefact, ii) inspection time of each artefact, and iii) productivity of the

inspection team, which are explained in section 3.3 below.

The following three hypotheses were formulated for this research:

3.1.6.1 Hypothesis 1:

H0: The total number of real (actual) defects detected using Process 1 is the same as

the total number of real (actual) defects detected using Process 2.

H1: The total number of real (actual) defects detected using Process 2 is more than the

total number of real (actual) defects detected using Process 1.

3.1.6.2 Hypothesis 2:

H0: The total inspection time on each artefact using Process 1 is the same as the total

inspection time on each artefact using Process 2.

H1: The total inspection time on each artefact using Process 2 is less than the total

inspection time on each artefact using Process 1.

3.1.6.3 Hypothesis 3:

H0: The productivity of the inspection team using Process 1 is the same as the

productivity of the inspection team using Process 2.

H1: The productivity of the inspection team using Process 2 is higher than the

productivity of the inspection team using Process 1.

Univ
ers

ity
 of

 M
ala

ya

62

3.2 Evaluation of ISIP

Three metrics are used to evaluate the efficiency of ISIP: (i) Number of defects

detected – used to determine whether ISIP helps to detect more defects; (ii) Inspection

time – used to determine whether ISIP reduces the inspection time; and (iii) Productivity

of the inspectors – used to determine whether ISIP helps the inspectors to find more

defects in a shorter inspection time. The formulas used in these measurements are

explained below.

3.2.1 Number of real defects detected

As the inspections were carried out by three different inspectors, there is likelihood

that inspector 2 and inspector 3 might find some real (actual) defects which have already

been detected by inspector 1. Similarly, there is likelihood that inspector 2 and inspector

3 might detect some common and real defects which have not been detected by inspector

1. Thus, to eliminate double counting of the common real defects detected by the other

two inspectors, the number of real (actual) defects detected in each inspection session is

calculated using the following formula:

Total Number of Defects = ∑ 𝐷𝐷𝑖=𝑛
𝑖=1 𝑖 - RD (1)

where,

DDi : Total number of defects detected (DD) by all inspectors, i = 1, 2, 3

RD : Total number of common real (actual) defects detected by the second and/or

third inspectors.

The size of each artefact varies depending on the type of artefact. The measurement of

the size of an artefact can be the number of pages of a document, or the number of boxes

in a diagram, or the number of fields in a form, etc. In the object-oriented development

approach, it can be the number of use cases, or the number of classes. In this research, as

the number of artefacts to be inspected are in different formats – text, diagrams, formulas,

Univ
ers

ity
 of

 M
ala

ya

63

etc. – there must be a way of determining the size of each artefact consistently and

correctly. The function point was therefore used for calculating each artefact to determine

its complexity. The value obtained for each artefact was then converted to the equivalent

number of pages and used in the measurement of the size of each artefact. Appendix A

shows details of the calculation. The defect density of each artefact is calculated using

the following formula:

Defect Density = Total number of real defects in each artefact / Size of the artefact (2)

It is important to note that there is also a possibility that the defects detected and

reported by the inspectors might contain defects which are not actually defects. This kind

of defects is known as false positives. Hence, the number of real (actual) defects detected

by an inspection team should exclude false positives. This issue is discussed in detail in

section 5.3.3, and calculation of the total number of real (actual) defects detected by an

inspection team is further elaborated in the section.

3.2.2 Inspection Time

The inspection time, in minutes, of an artefact is the sum of inspection preparation

time, the time spent to inspect an artefact (inspection session), and the time spent to

resolve inconsistencies in the artefact (explained in chapter 4), as shown below:

Inspection Time = Preparation time + Inspection session time + Inconsistencies

resolution time (3)

Hence, the total inspection time taken by all the inspectors to inspect an artefact is:

∑ IT𝑖=𝑛
𝑖=1

where,

IT: Inspection time taken by an inspector to inspect an artefact.

Univ
ers

ity
 of

 M
ala

ya

64

3.2.3 Productivity of Inspection Team

As aforementioned, the total number of defects detected by an inspector may contain

false positives, hence, the productivity of an inspection team – the defect finding

efficiency – must be calculated based on the total number of real (actual) defects detected

by the inspection team, as shown in the formula below:

Productivity of an Inspection Team = Total number of real (actua)l defects detected

by the inspection team / Total inspection time on the artefact by the inspection team (4)

where,

Total number of real (actual) defects detected = Total number of defects detected -

Total number of false positives

A higher defect finding efficiency implies that an inspection team is able to find more

defects and in a shorter inspection time.

3.3 Validity of Research

A major concern in any research is the soundness of the processes and procedures used

to carry out the research. In this research, the following four types of validity are

considered:

3.3.1 Statistical validity

Statistical validity used to assess that the dependent variables are reliable as the

number of defects detected (after eliminating double counting of common defects), and

that the inspection time is correctly and systematically recorded either manually or using

ArSeC, respectively. The correct formula is used to calculate the productivity of the

inspector – false positive defects are eliminated in the counting of defects detected by an

Univ
ers

ity
 of

 M
ala

ya

65

inspector. The statistical tests used to prove the hypotheses were selected based on the

advice of a statistician. The assumptions that underlie the statistical tests –test on the data

distribution normality – were tested to decide whether the parametric or non-parametric

tests should be used to prove the hypotheses. The only statistical error that cannot be

avoided in this research is the rejecting of the null hypothesis incorrectly, in the statistical

decision, α, which is set at 0.05.

3.3.2 Construct validity

Construct validity concerns the extent to which a test is measuring what it claims, or

purports, to be measuring (Cronbach & Meehl, 1955). This research aims to determine

whether ISIP outperforms the formal inspection process. Hence, assigning the same set

of artefacts to two independent inspection teams with similar inspection experience – one

inspection team using Process 1 (Formal inspection) and another team using Process 2

(ISIP) – and comparing the inspection results is a logical and suitable approach to achieve

the objective. The three metrics – number of defects detected, inspection time, and

productivity of inspectors – used to measure the efficiency of each process, are closely

related to the performance of each process. Hence, these measurements are the most

appropriate for comparing and evaluating the two processs. Moreover, all the inspectors

involved do not know that they were selected to participate in the study (i.e. a blind study).

They also do not know the actual total number of defects in each artefact, and that their

productivity is being measured. The inspection processes – using the two processes –

were conducted simultaneously and this will strengthen the construct validity of this

research.

A pilot case study was conducted before the actual case study began. The pilot case

study involved six inspectors from Company 1 (C1), who inspected a medium-sized

artefact which had been injected with 12 additional defects. One inspection team

Univ
ers

ity
 of

 M
ala

ya

66

comprising three inspectors used the formal inspection process and MS Excel, while the

other inspection team used ISIP and ArSeC, to conduct inspection. The pilot case study

is aimed at assessing the feasibility of using ISIP in a full-scale case study in the company.

The outcomes of the pilot study revealed that the inspectors were skeptical about the use

of ISIP as it is new to them although they agreed that ISIP and ArSeC can facilitate the

inspection process. Hence, necessary adjustments were made to the case study – only

eight artefacts of high complexity were selected at random from a large-sized software

project, and six other inspectors who were not involved in the pilot study, were selected

to participate in the actual case study.

3.3.3 External validity

External validity refers to the extent to which researchers are allowed to generalise the

results of a study to other participants, conditions, times, and places (Graziano & Raulin,

2014). In this research, the artefacts were selected randomly from two big software

projects which had more than 50 artefacts identified in the requirements analysis and

design phases, respectively. A randomised block design (i.e. complete balanced block

design), with eight (equal numbers) artefacts assigned to each process (treatment), and

three inspectors per inspection team were used in this research. Also, each inspection

session is limited to two hours only, regardless of the process used.

3.3.4 Internal validity

Internal validity concerns the extent to which a causal conclusion based on a study is

warranted. It concerns the independent variable, and not some extraneous variables that

cause changes to the dependent variable (Graziano & Raulin, 2014). Although the two

software projects were not developed under similar environments (i.e. using different

programming languages, databases, development platforms, etc.), in this research, the

artefacts selected for the case studies are of similar size. Before selecting the artefacts,

Univ
ers

ity
 of

 M
ala

ya

67

the size of each artefact is calculated using the function point approach. Hence, only

artefacts of large size were used in the inspection process. This eliminates the

confounding effect that would have resulted if different sizes of an artefact are used.

Besides, the use of two independent inspection teams had eliminated the confounding

effect – defects will be detected in a shorter time if only one inspection team setting is

used in the case study to conduct inspections using Process 1 followed by Process 2. In

addition, the four teams of inspectors were selected at random from both companies,

based on the same number of years of work experience in software inspection. This helps

to eliminate the confounding effect that would have resulted if the inspectors had different

levels of inspection experience, where an experienced inspector could possibly find more

defects and in shorter time than the inexperienced inspectors. This will obviously have

impact on the performance and productivity of an inspector.

3.3.5 Summary

This chapter explains the research methodology used to carry out the research. It

includes the literature review on the inspection processes, and problems related to these

existing inspection processes. An enhanced inspection process (ISIP) was proposed to

solve those problems. Two case studies were conducted to evaluate the performance of

ISIP against the formal inspection process. To facilitate the use of ISIP, a Web-based

inspection tool (ArSeC) was developed. In evaluating the performance of ISIP against the

formal inspection process model, three metrics were used – number of defects detected,

inspection time, and productivity of the inspecting teams. The statistical approach is used

to prove the hypotheses established. A detailed discussion on the validity of the research

was also presented.

Univ
ers

ity
 of

 M
ala

ya

68

CHAPTER 4: THE PROPOSED INSPECTION PROCESS

In view of the problems, weaknesses, and limitations identified during the inspection

of the artefacts in the requirements analysis and design phases as well as the weaknesses

identified during the formal inspection and other traditional inspection processes, an

Improved Software Inspection Process (ISIP) was developed. In ISIP, an inspection team

consists of an Author, Moderator, and Inspector, as shown in Figure 4.1. The following

sections describe the responsibilities of the team and the features of ISIP, in detail.

4.1 Inspection Team

An inspection team consists of an author, a moderator, and a few inspectors, whose

responsibilities are described below:

i. Author

The author is a professional person whose responsibilities include:

 Develops the artefacts, provides all information, and clarifies the ambiguities

about the artefacts during the inspection process;

 Fixes the defects that have been identified during the inspection process.

ii. Moderator

This role is same as the moderator of the formal inspection process but in ISIP, the

moderator has additional responsibilities of that of a reader and a recorder, and the

responsibilities include:

 Records and updates profiles of inspectors into the Inspectors database – details

such as telephone number and email address; inspection work experience; and

inspection productivity;

 Defines the project to be inspected (Project title, project ID, inspection context,

access level to manage the artefacts), and the related project constraints such as

the deadline to complete an inspection process, and/or special qualifications or

Univ
ers

ity
 of

 M
ala

ya

69

certification required of an inspector to be selected to conduct inspection on a

particular type of artefacts;

 Selects the inspectors and invites them to form an inspection team for a project;

 Defines the software inspection session;

 Assigns inspectors to inspect artefacts based on their specific expertise and

experience;

 Provides guidelines for the inspection preparation stage;

 Conducts the inspection session - perform checklist based reading, resolve the

conflicts among the inspection team members;

 Records the inspection outcomes and incidents; and

 Monitors the resolution of inconsistent defects - compile the votes from the

inspectors.

iii. Inspector

In ISIP, an inspector performs the following tasks facilitated by the integrated

Web-based tool, ArSeC:

 Provides his/her profiles (contacts, qualifications and inspection work

experience) to the moderator to store into the Inspectors database (for the

selection and assignment of inspection tasks by a moderator);

 Reads the inspection package provided by a moderator;

 Identifies the potential defects in the artefacts based on the checklists prepared

by the moderator;

 Records details of the defects detected; and

 Verifies the inconsistency removal process.

ISIP is supported by an automated tool (ArSeC) and thus a system administrator is

responsible for defining the users, and maintaining the databases. However, the

administrator is not a member of inspection team.

Univ
ers

ity
 of

 M
ala

ya

70

In ISIP, it is recommended that either three or five inspectors be assigned to an

inspection team, as explained in Step 3 of section 4.7.2.3

4.2 An Improved Software Inspection Process (ISIP)

The traditional formal software inspection process involves having face-to-face

meetings among system developers and inspectors when inspecting the software artefacts

(Fagan, 2002). Advancements in distributed systems and Web-based applications have

greatly facilitated access to distributed databases for retrieving related inspection artefacts

and documents to conduct online inspections remotely, to remove the defects detected,

and save the updated information. The Distributor is the core component of SQL Server’s

replication process. ISIP incorporates these new technologies, and is therefore an

enhanced formal inspection process, which can greatly improve the quality of software

inspection of the artefacts in the requirements analysis and design phases. The workflow

and features of ISIP are illustrated in Figure 4.1 and explained in the following sections.

Univ
ers

ity
 of

 M
ala

ya

71

Figure 4.1: The work flow of ISIP

4.3 Inspection Process in ISIP

The inspection process in ISIP consists of four stages – preparation, defects detection,

pioneer kernel, and process appraisal. The activities involved in each stage are applicable

for the inspection of artefacts both in the requirements analysis and design phases.

4.3.1 Preparation

The number of inspectors to be involved is first determined. They are selected based

on their expertise, inspection experience, and average past inspection productivity. Their

profiles are updated and stored in the Inspectors database. A moderator will send an

invitation message together with the artefacts and the related inspection documents –

inspection checklists, inspection guidelines, etc. – to each selected inspector, and then

wait for their confirmation of participation. There are two other databases in ISIP: (i)

Defects database – stores all types of potential defects detected in the requirements

Univ
ers

ity
 of

 M
ala

ya

72

analysis and design phases; it is accessible by all members of the inspection team;

software defects data are gathered from technical reports and research findings published

in reputable scholarly journals; (ii) Causes database –stores the potential causes and

effects of each potential defect identified in the requirements analysis and design phases;

this information serves as a reference to help the author in the removing the defects.

The inspection sessions are conducted online using ArSeC, and the duration of the

inspection process is also determined at this stage. The artefacts, together with the

necessary guidelines and information, will be distributed to the inspectors involved in the

inspection process.

4.3.2 Defect Detection

The second stage focuses on finding the defects in the artefacts. Each inspector carries

out the task using the inspection routine/guidelines and checklists given, as well as

referring to the Defects database to find potential defects. The details of the defects found

are recorded, including the potential causes of each defect. Information on any new

defects found will be added into the Defects database under the specific defect category,

while the potential causes of the defects are recorded in the Causes database. This regular

updating process helps in maintaining both a comprehensive Defects database as well as

a Causes database, which can greatly aid the inspectors in finding defects, and the author

in removing defects detected, quickly. Hence, this stage involves three crucial activities

– defect detection, defect identification (sources of defect), and new defects

categorization and recording.

4.3.3 Pioneer Inspection Kernel

At this stage, similar defects as well as inconsistent defects detected by each inspector

are listed. All inspectors will help in making decisions to resolve all the inconsistent

defects. Any inspected artefacts which require rework will be returned to the author. The

Univ
ers

ity
 of

 M
ala

ya

73

moderator is responsible for managing the rework and confirming the successful removal

of defect by the inspectors.

For the inconsistent defects, the moderator will clarify the ambiguous information

related to them, schedule an inconsistent defects removal session, and obtain a consensus

among inspectors on appropriate action to be taken to resolve all the inconsistent defects.

Similarly, information on any new defects found at this stage will be added into the

Defects database under the relevant defect category, and the potential causes and effects

of the defects will be recorded into the Causes database. These two databases are regularly

updated, hence, they provide current information for preparing comprehensive inspection

checklists to aid in the defect detection and removal processes during artefact inspections.

A final inspection report is prepared by the moderator and distributed to all the members

of the inspection team.

4.3.4 Process appraisal

During the inspection process, data are systematically collected and updated into the

respective databases. These include information on the types and characteristics of the

artefacts, total inspection time, inspectors’ profiles, the number and types of defects

detected during the inspection process. These data are used to measure the productivity,

and efficiency of each inspector, and the overall effectiveness of the inspection process.

Hence, every inspector as well as the inspection process are appraised, and an analysis

report of the inspection process is prepared by the moderator. The profile of each

inspector involved are updated after each inspection, thus, a moderator has the latest

information for selecting the most suitable inspector to conduct future software

inspections.

Univ
ers

ity
 of

 M
ala

ya

74

4.4 Unique Features of ISIP

ISIP has four unique features which are not available in the traditional formal

inspection process: (i) selection of suitable inspectors; (ii) maintenance of defects list;

(iii) preparation of inspection checklists; and (iv) avoidance of defect transition. The

following sections describe these features in more details.

4.4.1 Selection of Suitable Inspectors

A moderator uses the Inspectors database to select suitable inspectors based on

different criteria such as their expertise, past inspection experience (i.e. number of years

of inspection, and the types of artefacts inspected), and average past inspection

productivity (i.e. number of real (actual) defects detected per hour). During an inspection

process, it is inevitable to have disputes concerning the defects found (i.e. inconsistencies)

among the inspectors. For example, an inspector might deem an issue as a defect, whereas

two other inspectors might disagree (i.e. it is not a defect), or vice versa. The ISIP

guidelines for the selection of suitable inspectors can help in resolving such dispute,

through the use of a weighted vote of each inspector. Inspectors have three skill levels –

highly skilled, skilled, and semi-skilled – based on the number of years of inspection

experience (criteria 1), the number of artefacts they have inspected (criteria 2), and the

average past inspection productivity (criteria 3). Table 4.1 shows the classification of the

skill levels of the inspectors (O’Regan, 2002).

Table 4.1: The skill levels of the inspectors

Skilled Level No. of Years

of

Inspection

Experience

No. of Artefacts

Inspected

Average Past

Inspection

Productivity

Highly Skilled (HS) ≥20 ≥ 900 > 40

Skilled (S) 10-19 500-899 30 - 40

Semi-Skilled (SS) < 10 < 500 < 30

Univ
ers

ity
 of

 M
ala

ya

75

Table 4.2 shows the combined weighted votes of an inspection team that comprises

three inspectors. In resolving disputes (inconsistencies) related to the defects, the vote of

a highly skilled, skilled, and semi-skilled inspector is assigned 3 points, 2 points, and 1

point, respectively (O’Regan, 2002). There are 10 sets of possible combinations in the

decisions made by the three inspectors. For example, in No. 2 of Table 4.2, two highly

skilled and one skilled inspectors are involved, and the total weighted votes for the same

decision made by the first and second inspectors, first and third inspectors, and second

and third inspectors, are 6 points, 5 points, and 5 points, respectively. The values are all

greater than the vote of the inspector who disagreed with their decision (i.e. 2 points, 3

points, and 3 points, respectively). The decision based on the greater vote weightage will

be used to resolve the dispute. It is important to note that the decision of the values of the

weighted votes can be positive as well as negative. An inspection team can consist of

inspectors having different skill levels, can except for No. 4 and No. 10. These two

combinations in the inspection team: one highly skilled, skilled, and semi-skilled; and

one skilled together with two semi-skilled inspectors, will not be used to form an

inspection team, as such combinations might result in a tie decision (as shown in red).

Hence, ArSeC would not recommend forming such teams. A similar approach is used to

form a five-inspector team.

An interesting situation that could arise using this selection approach is the structure

of an inspection team that comprises three semi-skilled inspectors (No. 9 of Table 4.2).

There will be doubts regarding the competency and expertise of this inspection team. In

this regard, it is recommended that such a team should be assigned to inspect only

artefacts of low priority and low complexity. However, there is also a possibility that this

team might perform as well as the inspection team that has three highly skilled inspectors.

This can be determined more accurately by conducting further studies on inspection team

structure. Appendix B shows the combination of weighted votes of five inspectors

Univ
ers

ity
 of

 M
ala

ya

76

Table 4.2: Combination of weighted votes of three inspectors

No. Inspector Skill Level Decision based on Combination of Same

Vote

1st 2nd 3rd 1st and 2nd 1st and 3rd 2nd and 3rd

1. HS (3) HS (3) HS (3) 6>3 6>3 6>3

2. HS (3) HS (3) S (2) 6>2 5>3 5>3

3. HS (3) HS (3) SS (1) 6>1 4>3 4>3

4. HS (3) SS (1) S (2) 4>2 5>1 3=3

5. HS (3) SS (1) SS (1) 4>1 4>1 2<3

6. HS (3) S (2) S (2) 5>2 5>2 4>3

7. S (2) S (2) S (2) 4>2 4>2 4>2

8. S (2) S (2) SS (1) 4>1 3>2 3>2

9. SS (1) SS (1) SS (1) 2>1 2>1 2>1

10. SS (1) SS (1) S (2) 2=2 3>1 3>1

Keys: HS – Highly Skilled S – Skilled SS – Semi-Skilled

4.4.2 Maintenance of Defects List

Categorising and maintaining different types of defects found in the requirements

analysis and design phases of software development makes it easier for a moderator to

prepare comprehensive checklists for the inspection process. In addition, newly detected

defects are regularly being added into the Defects database. This helps in maintaining an

updated list of defects. Besides, the Defects and the Causes databases are updated at every

inspection process. Each defect is classified using a new method proposed in this thesis.

Hence, this further facilitates defects detection and classification, and thereby giving

better insight into the main causes (defect trigger) and sources of defects.

4.4.3 Preparation of Inspection Checklists

According to Ackerman (1989), a comprehensive checklist helps to achieve more

effective software inspection regardless of the software inspection process used. In ISIP,

the Defects and Causes databases are duly updated upon completion of the inspection

process. New defects and their causes and elimination details are clearly described and

updated into the relevant databases. The rate of occurrence of each defect is calculated

and updated into the Defects database for future reference. Hence, more attention must

be paid to those more frequently identified and serious defects to provide updated and

Univ
ers

ity
 of

 M
ala

ya

77

comprehensive inspection checklists for future artefact inspections. Also, a moderator can

use the Checklist database to prepare inspection checklists based on the latest checklists

of similar software projects. This will save preparation time and increase the

comprehensiveness of inspection checklists. A sample of the checklist of P2 of artefact 6

(P2-A6-R) of the requirements analysis phase and the checklist of P2 of artefact 2 (P2-

A2-D) of the design phase is shown in Appendix C.

4.4.4 Avoidance of Defect Transition

As mentioned above, suitable inspectors are selected to conduct inspection of the

artefacts in the requirements analysis and design phases. The use of comprehensive

checklists helps in detecting the defects in these phases faster, and thus ensures early

removal of the defects. The early detection and early removal of defects will prevent

propagation of defects to the later software development phases.

4.4.5 Inspection Reference Guide

In ISIP, an inspector kit is prepared by a moderator and sent to the relevant inspectors

during the preparation for the inspection (Chapter 4). The inspection kit is a reference

guide that provides clear insight into artefact inspection, the aim of the inspection process,

as well as the use of ArSeC to support the inspection process. This inspector kit is

particularly useful for new inspectors who are not familiar with the workflow of ISIP, and

the use of ArSeC.

4.4.6 Shared Databases

ArSeC is a web-based inspection process support tool, which allows inspectors to

conduct online inspections remotely from anywhere and at any time. Inspectors who are

not available during the scheduled online inspection session(s), can access the related

databases(such as the Defects and Causes databases through the shared access rights

granted to them) to retrieve the information needed to conduct inspection at a time

Univ
ers

ity
 of

 M
ala

ya

78

convenient to them, and submit their inspection results to the moderator using ArSeC.

Furthermore, any queries or ambiguities about the artefacts can be clarified with the

moderator or author using ArSeC, at any time and from anywhere.

4.5 Comparison between ISIP and the Formal Inspection Process: The

Enhancements Made

ISIP was developed to improve the quality of software process by making

enhancements to the formal inspection process (FIP). The major enhancements made

include the roles and responsibilities of the inspection team, the selection of inspectors,

and the changes to the inspection process, which are illustrated in Figure 4.2 and

described below.

i) The roles and responsibilities of inspection team members, and team size

In FIP, there are four to five roles for the inspection team (team size is 4-5) with one

member to assigned to each role – author, moderator, reader, recorder (a moderator may

also play this role), and inspector (Fagan, 1999), as illustrated in Figure 4.2.

Univ
ers

ity
 of

 M
ala

ya

79

** Formal inspection process ** Improved software inspection process
Figure 4.2: Comparison between ISIP and Formal Inspection Process

However, in ISIP, the inspection team has only three roles – author, moderator and

inspector, with at least one member assigned to each role except for the inspector’s role,

which can consist of three or five inspectors (team size is 5 or 7 members). The moderator

not only prepares, arranges, and manages the inspection process, but also assumes the

roles and responsibilities of a reader and a recorder during the inspection process. In FIP,

Univ
ers

ity
 of

 M
ala

ya

80

the final decisions to resolve any ambiguous issues or conflicts during an inspection

process are based on the decisions of all the inspection team members. However, in ISIP,

ambiguous issues and conflicts are resolved through a weighted voting process which

involves the inspectors only.

ii) The selection of inspectors

In FIP, the selection of inspector(s) is based on the inspector’s experience and

knowledge (Laitenberger, 2002). However, in ISIP, the selection of inspectors is based

on the skill levels - highly skilled, skilled or semi-skilled - and areas of expertise of each

inspector. It is also recommended that the team should compose of inspectors of at least

two different skill levels such as two highly skilled and one skilled inspector or one semi-

skilled inspector. This will provide an opportunity for the skilled and semi-skilled

inspectors to learn from the highly skilled inspector during the inspection process.

iii) Inspection process and resolution of inconsistencies

In FIP, the inspection process consists of seven activities – planning, overview,

preparation, inspection (meeting), inspection analysis, rework, and follow-up. In ISIP, the

inspection process consists of four main stages – preparation, defect detection, pioneer

inspection kernel, and process appraisal. In FIP, face-to-face group meeting is used to

detect the defects and to resolve the inconsistencies (Fagan, 1976). A reader will perform

checklist-reading and a recorder will document the inspection process and outcomes

during the inspection process. In ISIP, a moderator will perform the checklist-reading and

also record the inspection details and outcomes. Besides, using ArSeC (a tool developed

to support the inspection process), inspectors who are not available during the scheduled

inspection session, can conduct inspection on the artefacts individually, and submit the

inspection outcomes to the moderator for consolidation within the stipulated inspection

timeline.

Univ
ers

ity
 of

 M
ala

ya

81

Figure 4.3: The Enhancements of Inspection Process in ISIP Comparing Formal

Inspection

Univ
ers

ity
 of

 M
ala

ya

82

Also, any ambiguity pertaining to the artefacts can be clarified with the author, and

inconsistencies can be resolved easily using the proposed weighted voting process,

without the need to have all the inspection team members to be present for the online

scheduled inspection session (but at least two inspectors must be available during the

online scheduled inspection session). This feature is not available in FIP.

iv) Preparation of checklists

In FIP, a checklist is used during the inspection process. Based on the literature

review, the checklists are prepared based on checklists of similar past projects

(Laitenberger, 2002). However, there is no mention of the preparation of the checklists,

and also no mention whether a database is available for maintaining the questions of past

inspection checklists. In ISIP, a Checklists database is created to store and maintain all

the checklists that were created for the past software inspection projects. This database

serves as an archive and a reference source for the moderator to prepare a fairly

“comprehensive and complete” checklist easily and quickly.

v) Iteration of inspection process

In FIP, the inspection team will decide whether re-inspection is needed if too many

defects were detected in an artefact (Fagan, 1999). In ISIP, at least one re-inspection is

conducted on an artefact. The criterion to determine if a second re-inspection process is

needed is: when the total number of real defects detected during the re-inspection process

exceeds 5% of the total number of defects detected during the first inspection process.

The inspectors can decide on what is the threshold (percentage of the defects detected)

for re-inspection and the threshold can be changed accordingly depending on the

importance of the software project or the artefact.

Univ
ers

ity
 of

 M
ala

ya

83

vi) Potential causes of each defect

Providing solutions for the defects is not the focus of an inspection process. However,

ISIP can reduce the rework process of the author because a Causes database is created to

store and maintain all the potential causes of each defect that had been detected in an

artefact. The author is responsible to maintain this Causes database whenever new defects

are detected and resolved. Hence, the inspectors can retrieve the potential causes of each

real defect (if the potential causes are available in the Causes database), and distribute to

the author for rework together with the consolidated inspection report. This enhancement

made to the FIP, is a unique feature of ISIP.

vii) Use of automated inspection tool (ArSeC) and inspection meeting

The use of ArSeC supports the inspection process by facilitating the distribution of the

inspection documents to the inspection team members; recording the data and using the

data in calculation inspection data; facilitating the storage and retrieval of data by the

inspection team members such as the defect data, checklists, causes of each defect, etc.

As it is a Web-based inspection support tool, the inspection meeting can be held at any

time and at anywhere to accommodate the inspection team members who are at different

geographically locations. There has been no report in the literature the use of an

automated tool to support the formal inspection process (Chen, & Agrawal, 2014).

4.6 Classification of Defects

Table 4.3 and Table 4.4 show the proposed classification used in this research, for

defects detected in the requirements analysis and design phases. The classification is

based on the Orthogonal Defect Classification (ODC) technique and the defect

classification formats used by IEEE, and NASA (NASA, 2013; IEEE Std 1044-2009). In

classifying the defects found in the requirements analysis phase, it considered include the

functionality, performance, environment, interface, security, and miscellaneous features.

A defect code is assigned to each defect using the naming convention: AD_i, where, AD

Univ
ers

ity
 of

 M
ala

ya

84

– Analysis Defect, i – Defect class i. Each defect can be any one of the following modes:

Missing (M); Incorrect (IC); Inconsistent (ICST); Ambiguous (A); Wrong Section (WS),

and Extra (E).

Table 4.3: Classification of defects (Requirements analysis phase)

Defect Class

No. Defect

Code

Mode Description

Functionality

1.

AD_F1 M

The relevant information to explain

the system behaviour from the

interoperational aspect is missing.

Incomplete functional specification.

2.
AD_F2 IC Function incorrectly specified.

3.
AD_F3 ICST

Requirement statements directly

contradict each other.

4.
AD_F4 A

Requirement statements are not clear

or are confusing.

5.
AD_F5 WS

Requirement statements are

misplaced.

6.
AD_F6 E The function is not needed.

Performance

7.
AD_F1 M

Definition of types of defects, factors

related to performance are not given.

8.

AD_P2 IC

Defined criteria and factors are not

compatible with the system

specification.

9.
AD_P3 ICST

Various aspects of performance are

in contradiction.

10.
AD_P4 A

Criteria are not stipulated clearly and

quantitatively.

11.

AD_P5 WS

Precision and attributes related to

performance are juxtaposed or are

wrongly defined.

12.

AD_P6 E

Extra fields that have been included

for performance criteria are not

stipulated in the system

specifications.

Environment
13.

AD_E1 M

Some required resources have not

been provided or have been simply

ignored.

Univ
ers

ity
 of

 M
ala

ya

85

14.
AD_E2 IC

Resources have not been clearly

described.

15.

AD_E3 ICST

Amount, and type of resources

provided are not compatible with

actual usage.

16.

AD_E4 A

Required resources have not been

stated separately in an organised

manner.

17.

AD_E5 WS

Some resources have not been

allocated to the right place or the

resource needed cannot be provided.

18.

AD_E6 E

Some resources which have been

included in the system specification,

are in fact, not needed.

Interface

19.
AD_I1 M

The relationship between parts,

systems, and actors is not explained.

20.
AD_I2 IC Wrong interaction description.

21.

AD_I3 ICST

Relationship between different

sections or external entities is

contradictory.

22.
AD_I4 A

The way the relationship starts,

continues, and ends is unclear.

23.
AD_I5 WS

Relationship or a dialogue needs to

be moved to another place.

24.
AD_I6 E

A dialogue that has been defined, is

in fact, not necessary.

Security

25.
AD_S1 M

Some of the security-related issues

are left out from the documentation.

26.

AD_S2 IC

Some of the codes or security-related

issues do not fulfill the security

objectives.

27.
AD_S36 ICST

Security procedures and criteria

contradict each other.

28.
AD_S4 A

Good security procedures cannot be

designed due to lack of clarity.

29.

AD_S5 WS

Invalid information transmitted or

received cannot be classified like

other issues.

30.

AD_S6 E

Instruction or information which will

not contribute to any security

improvements.

Miscellaneous 31.
AD_M1 M

Items are missing and cannot be

placed in the higher classes.

Univ
ers

ity
 of

 M
ala

ya

86

 32.

AD_M2 IC

Invalid facts, diagrams or sentences

which cannot be placed in the classes

mentioned.

33.
AD_M3 ICST

Other inconsistencies apart from the

items mentioned.

34.

AD_M4 A

Items that are not clear require

further clarification, and cannot be

placed in the higher classes.

35.

AD_M5 WS

The items require new placements

and do not belong to the classes they

are assigned.

36.

AD_M6 E

Extra items whose omission does not

harm the definition or fulfillment of

the requirements, and cannot be

classified with the mentioned issues.

AD_i – Requirements Analysis Defect class number i

In the design phase, the defects are classified into algorithm, alignment, checking,

documentation, function, interface, package/COTS, and miscellaneous. The defect code

is assigned using similar naming convention as in the requirements analysis phase –

DD_i, where DD – Design Defect, and i defect class. The mode of each defect is defined

using the same approach as the mode of defects used in the requirements analysis phase.

Table 4.4: Classification of defects (Design phase)

Defect Class
No. Defect

Code
Mode Description

Algorithm

1.
DD_A1 M

An algorithm or a method is totally

omitted.

2.

DD_A2 IC

An algorithm does not fulfill the

defined requirement or is not

compatible with the conceptual design.

3.

DD_A3 ICST

Algorithms have incompatibilities in

areas such as calling, sorting,

arguments, objectives, and resources.

4.

DD_A4 A

Execution sequence, operation,

arguments or type of data exchange is

not clear.

5.
DD_A5 WS

Calling or operation is not placed in the

right place.

6.
DD_A6 E

An algorithm which is never called or

its product is not needed.

Univ
ers

ity
 of

 M
ala

ya

87

Assignment

7.
DD_As1 M

An assignment or initialisation has

totally been ignored.

8. DD_As2 IC Method or assigned value is invalid.

9.

DD_As3 ICST

Assignments are not compatible, and

change each other’s value before any

usage.

10.
DD_As4 A

Type, time, order or method of setting

values is unclear.

11. DD_As5 WS Assignment must be relocated.

12.

DD_As6 E

Initialisation where the value would not

be used, and it would undergo change

in another operation.

Checking

13.
DD_C1 M

Lack of some controls, conditions or

their parameters.

14.

DD_C12 IC

Some conditions are not valid or their

parameters have been set incorrectly or

have an incorrect range.

15.

DD_C3 ICST

Conditions contradict each other or are

logically inconsistent. Parameters of

each condition might be in

contradiction with the order of

execution in the body.

16.

DD_C4 A

Initiation, execution or end of a

condition or control is not

understandable.

17.

DD_C5 WS

The condition is in the wrong location,

has an incorrect range and must be

moved.

18.
DD_C6 E

Branches that would never be entered

logically.

Documentation

19.
DD_D1 M

Any description, diagram or relevant

object which is missing.

20.

DD_D2 IC

Documentations which are not prepared

properly from a syntactic or lexical

point of view.

21.
DD_D3 ICST

The contents or reference of some of

the documentations are contradictory.

22.
DD_D4 A

Sentences or references do not have a

clear meaning or origin or destination.

23.
DD_D5 WS

Titles, text and [sentences or

references] refer to the wrong items.

24.

DD_D6 E

Presence or absence of sentences or

facts which will not affect the

development or execution.

Function

25.

DD_F1 M

Phrase or sentence essential for

understanding system behaviour is

missing.

26.

DD_F2 IC

Information related to the internal

operational behaviour of the system is

not compatible with the requirements

specification.

27. DD_F3 ICST Some sentences negate each other.

Univ
ers

ity
 of

 M
ala

ya

88

28.

DD_F4 A

The conditions set for system

specification is not compatible with the

included sentences.

29.

DD_F5 WS

Exchange and use of parameters or

calls are not used in the correct

location.

30.

DD_F6 E

An operation that would never be

launched or is not mentioned in the

system specification.

Interface

31.
DD_F1 M

An interface which has not been

defined or an incomplete interaction.

32.
DD_I2 IC

Interaction of data, information and

controls are invalid.

33.

DD_I3 ICST

Submission or reception tasks and start

and end of interaction are

incompatible.

34.
DD_I4 A

Interaction methods, specifically,

exchange of information is unclear.

35. DD_I5 WS Dialogues are not in the right location.

36.
DD_I6 E

Relationships defined will never be

used.

Package/

COTS

37.
DD_P1 M

Some library functions or ready

modules have not been incorporated.

38.

DD_P2 IC

Ready-made classes, methods, objects,

and functions have been defined or

used incorrectly.

39.

DD_P3 ICST

Tasks and responsibilities of

components or their usage are in

contradiction.

40.
DD_P4 A

Purpose of a component is not clearly

defined.

41.

DD_P5 WS

Some responsibilities of classes or

functions have been wrongly located.

Parameters are not exchanged

correctly.

42.

DD_P6 E

Unused components have been defined

or other components can carry out their

tasks as well.

Miscellaneous

43.
AD_M1 M

Missing items in design

documentations.

44.

AD_M2 IC

Invalid descriptions, labels, titles or

relationships that cannot be placed in

any of the higher classes.

45.
AD_M3 ICST

Design inconsistencies apart from the

mentioned issues.

46.

AD_M4 A

Implausible or non-standard

issues/items that require more

interpretation or explanation, and

cannot be put in the same category as

the issues/items mentioned.

Univ
ers

ity
 of

 M
ala

ya

89

47.

AD_M5 WS

Definition, relationship, order or

classification/categorisation that is

assigned incorrectly, and are not related

to the issues/items included.

48.

AD_M6 E

Extra issues with which the

requirements of the analysis phase can

be fulfilled without them, and do not

belong to the related classes.

4.7 Development of a Web-based Tool

Following the proposal of the new software inspection process (ISIP), and the

compilation of a comprehensive list of defects identified in the requirements analysis and

design phases, respectively, a Web-based tool (ArSeC) was also developed. The tool

provides four databases to store details of each inspector (Inspectors database), inspection

checklists of each project (Checklists database), defects details (Defects database), and

the potential causes of each defect (Causes database). Hence, ArSeC facilitates the

selection of the most suitable (qualified) inspectors, helps in the preparation of inspection

checklists by a moderator, accelerates inspection of the artefacts by the inspectors, and

removal of defects by the author, and assists in defect data collection and analysis.

4.7.1 Artefacts and Session Control System (ArSeC)

ArSeC is a Web-based software inspection support system developed using agile

development techniques and ASP to facilitate the inspection of artefacts in the

requirements analysis and design phases. It uses MS SQL to store details of the latest

defects, thus helps to accelerate the defect removal process (rework).

4.7.2 The Workflow of ArSeC

The inspection process in ArSeC consists of seven steps, as shown in Figure 4.3, and

are described in more detail below.

4.7.2.1 Step 1: Project definition

A moderator defines (creates) a project for artefact inspection, determines the phase of

inspection – requirements analysis phase or design phase – and the starting and ending

Univ
ers

ity
 of

 M
ala

ya

90

dates of the inspection. Thus, the inspectors will be fully aware of what the inspection

will involve, as well as the duration of the inspection process.

Figure 4.4: The work flow of ArSeC

4.7.2.2 Step 2: Preparation of Artefacts

In this step, a list of artefacts related to the particular inspection phase is generated.

The artefacts to be inspected are categorised, prepared, and assigned inspection due dates.

To meet the deadlines, artefacts which are deemed of higher priority are moved to the top

of the inspection list. An Inspector Kit is also prepared to give the inspectors a clearer

understanding of the artefact inspection process, the focus of the inspection process, and

the use of ArSeC.

4.7.2.3 Step 3: Formation of Inspection Team

Either three or five inspectors will be selected to be members of an inspection team,

depending on their profiles. The number of inspectors must be an odd number so that a

decisive vote can be casted to avoid a tie in the event of disagreement during the

inspection process,. The profiles of the inspectors are updated whenever they have

completed inspection of the artefacts. The inspection phase and the inspection date, the

Univ
ers

ity
 of

 M
ala

ya

91

number of artefacts inspected, and the number of defects found in each artefact are

recorded. The availability of the inspector to conduct an inspection is also recorded in the

database. Hence, only inspectors who are available and have the necessary inspection

expertise will be selected. A moderator formally invites the selected inspectors and

provides them with brief description of the artefact, related documents, as well as informs

them on the inspection deadline. Having a clear understanding of what the task will

involve, the inspectors decide and confirm their involvement in the inspection process. In

the event an inspector decides not to participate in the inspection, the moderator will

assign the inspection job to another suitably qualified inspector.

4.7.2.4 Step 4: Preparation of checklist

Depending on what artefacts are to be inspected, a moderator will prepare an

inspection checklist for the inspection of the specific artefacts using checklists of defects

detected in similar projects conducted in the past.

4.7.2.5 Step 5: Preparation for inspection

A moderator sends the Inspector Kit together with information of the artefacts to all

the inspectors. All inspectors will be given 7-14 days to conduct a preliminary review of

the artefacts received, depending on the complexity of the artefacts. The inspectors will

then have to indicate that they are ready and available to conduct online inspection with

the author on the date determined by the moderator. Also, any inspector who is unable to

conduct the inspection tasks assigned due to unforeseen circumstances, a replacement can

be made at this stage. The inspection session time for each inspector will be arranged at

this stage, as well.

4.7.2.6 Step 6: Conduct inspection

All inspectors will conduct online inspection using ArSeC guided by the inspection

checklists prepared by the moderator. The author is also present to answer any questions

Univ
ers

ity
 of

 M
ala

ya

92

and clarify any ambiguities raised by the inspectors. An optimum online inspection

session should be completed within two hours. ArSeC sends a reminder to all the

inspectors ten minutes before the end of each inspection session. At the end of the

inspection process, the moderator reviews and compiles all the inspection results, and

prepares a list of inconsistencies, if any, using ArSeC. The list of common defects

detected is sent to the author for removal (rework) of the defects as well as the information

on the potential causes of each defect. To deal with the inconsistencies, the moderator

distributes the list of inconsistencies to all the inspectors and calls for a vote. This voting-

compilation-voting process will be iterated until all the listed inconsistencies are duly

resolved. A final list of defects will be compiled and distributed to all inspection team

members. The total number of defects detected is calculated and the defect details are

recorded into the Defects database.

ArSeC makes it possible to conduct online inspection, therefore, inspectors who are

unable to conduct inspection at the time scheduled, can seek clarification on any

ambiguities with the author anytime via email and submit the inspection results to the

moderator for compilation by the inspection due date. The duration of each online

inspection session as well as the inspection time of the inspectors who conduct inspection

on separate sessions are recorded and used to calculate the total inspection time and the

productivity of each inspector.

4.7.2.7 Step 7: Defect removal

In this step, the author removes the defects and records details pertaining to the defects

removal, together with the actual cause(s) of each defect. Details on the cause(s) are

updated into the Causes database which will be used as reference for future inspections.

Univ
ers

ity
 of

 M
ala

ya

93

4.8 Defects and Causes of Defects

A defect could result from one or more causes, which could occur sequentially or in

parallel. In the Causes database, the causes are classified into different categories such as

omission, and accidental. The Causes database can be searched by using keywords. A

cause may result in different defects. For example, a team of inexperienced system

analysts who produced poor quality analysis specifications and reports, might include

defects such as missing and ambiguous specifications. In this example, the team of

inexperienced analysts is a cause, which could have resulted from inappropriate selection

of system analysts. Details of the causes of each defect are recorded by the author during

the defect removal process. On the other hand, details of the defects are recorded by the

inspectors during the inspection process.

4.9 Functions and Features of ArSeC

ArSeC performs five main functions project definition; defect management; tracking

of causes; checklist management (generates various types of checklists, and maintains

the checklist database); and supports the whole inspection process (schedules

inspection session; records inspection results – total number of defects detected, total

inspection time, productivity of inspector, etc.). Figure 4.4 shows a snapshot of ArSeC.

4.10 Comparison between ArSeC and other inspection process support tools

Table 4.5 shows a comparison of the features and functions provided of ArSeC with

nine other inspection tools (Fagan, 1986; Fagan, 1999; Fagan, 2002). Among these 10

inspection support tools, only ArSeC, Compass, and EMS provide scheduling support for

managing the inspection sessions. Another important feature of ArSeC, WIP and

HyperCode is that they are Web-based systems which allow inspection to be conducted

online without the need to have all the parties concerned – author, moderator, and

inspectors – conduct face-to-face inspections, simultaneously.

Univ
ers

ity
 of

 M
ala

ya

94

Figure 4.5: A screen shot of ArSeC

One unique feature of ArSeC, not available in the other nine tools, is the authorisation

and authentication feature. Every user, regardless of his/her role – author, moderator or

inspector – must be defined by an authorised person and validated through an

authentication process which includes the use of passcodes (i.e. two different passwords

for login and logout, respectively, for each inspection session), security questions, and IP

verification. This prevents intruders from logging-in and gaining access to any important

data stored in ArSeC.

Although online facilities are provided by most of the inspection tools, they are only

used for discussing the inconsistencies detected. Only ArSeC allows online weighted

voting, as explained in section 4.4.1, above.

Univ
ers

ity
 of

 M
ala

ya

95

Table 4.5: Comparison between ArSeC and nine current inspection support

tools

4.11 Summary

This chapter discusses the enhanced formal inspection process (ISIP), the roles of the

inspection team members, the four unique features of ISIP, and the development of an

automated inspection support tool (ArSeC). The workflow of ArSeC, and a comparison

of the features between ArSeC and nine other inspection support tools, are also discusss.

This chapter also discusses two case studies conducted in two companies, and the three

hypotheses formulated to determine if ISIP and ArSeC can help to improve the quality of

the inspection process. Details of the case studies, data collection, and testing of the three

hypotheses using statistical tests, are presented in chapter 5.

Capabilities

Inspection Tools

ArSeC Compass WIP EMS ICICLE InspeQ CSI Scrutiny InspectA HyperCode

Scheduling support ✓ ✓ X ✓ X X X X X X

Web-based ✓ X ✓ X X X X X X ✓

Distributed meeting ✓ X X ✓ X X ✓ ✓ X X

Defect classification ✓ X ✓ ✓ ✓ X ✓ ✓ X X

Checklists ✓ X ✓ X X ✓ X X ✓ X

Data collection ✓ ✓ X X ✓ X ✓ ✓ X X

Weighted Voting ✓ X X X X X X X X X

Process support ✓ X X ✓ X X X X X X

Synchronous facility ✓ X X X ✓ X ✓ ✓ X X

Authorisation and

Authentication
✓ X X X X X X X X X

Univ
ers

ity
 of

 M
ala

ya

96

CHAPTER 5: CASE STUDIES, DATA COLLECTION AND ANALYSIS

Two case studies were conducted to evaluate the efficiency of ISIP. A software

development project (P1) from one manufacturing company (C1) and another software

project (P2) from a trading company (C2) were used in the two case studies. These two

companies conduct software inspection using Fagan’s formal inspection process. Their

inspections involved projects which contain medium- or large-sized artefacts only.

They do not perform inspections on small-sized artefacts – those less than three pages

– which the project managers considered unnecessary as they might not uncover any

serious or significant defects in these simple artefacts.

In case study 1, eight (8) artefacts of the requirements analysis phase of P1 were

selected at random from a total of 30 artefacts. These artefacts were first inspected by

three (3) inspectors (Team A) using the Fagan’s formal inspection process (Process 1).

The inspection outcomes were recorded using MS Excel and included information on

the number and types of defects detected by each inspector, the total number of defects

found in each artefact, the inspection time taken by each inspector, the total inspection

time taken for each inspection session, the productivity of each inspector (calculated

using the formula explained in chapter 3), etc. These eight artefacts were also inspected

by another three inspectors (Team B) using ISIP (Process 2) together with ArSeC. In

these inspections, the outcomes were recorded using ArSeC, as explained in chapter 4.

Following the inspection of these artefacts, the two inspection teams conducted

inspections on eight artefacts of the design phase of P1 which derived from the eight

artefacts of the requirements analysis phase. Hence, two independent group research

designs were used in the case study.

Similarly, in case study 2, inspections were conducted on eight randomly selected

artefacts from the total of 42 artefacts of the requirements analysis phase of P2 by two

inspection teams – Team C using Process 1, and Team D using Process 2, respectively.

Univ
ers

ity
 of

 M
ala

ya

97

This was followed by inspections on the eight corresponding artefacts of the design

phase, as shown in Figure 5.1.

Keys: Pn – Project Number n, where n = 1, 2

 RA – Requirements analysis phase DE – Design phase

5.1 Pilot Case Study

Before the two case studies were carried out, a pilot study using the defect injection

approach was conducted. One medium-sized artefact of an in-house software project of

the requirements analysis phase, which had been inspected by three inspectors earlier,

were selected from Company 1 (C1), with 12 additional defects injected into the artefact.

Two inspection teams were formed (excluding inspectors who had inspected the artefacts

before) – one team (Team 1) with three inspectors selected at random without following

any selection criteria, and another team (Team 2) with three inspectors selected using

ArSeC based on the proposed inspector selection criteria of ISIP. The two artefacts (A1

and A2) were distributed to all the inspectors of both teams to prepare for inspection using

 Pn Artefacts

(RA; DE)

Process 1

(MS

Process 2

(ArSeC)

Inspection outcomes

1. No. of defects detected

2. Inspection time

Eight (8) Pn

Artefacts

Figure 5.1: Case study – Two independent groups Research design

Univ
ers

ity
 of

 M
ala

ya

98

Fagan’s formal inspection process (Process 1 by Team 1), and using ISIP (Process 2 by

Team 2), respectively. Both teams were told to make preparation and conduct the actual

inspection within two hours, respectively. Team 1 used MS Excel while Team 2 used

ArSeC to record the inspection outcomes. A few problems were encountered during the

inspection processes. These include: incomprehensive issues found in the design of the

inspection checklist, and the inspection data recording form used to record the inspection

outcomes manually; unavailability of inspectors to conduct inspection on the scheduled

inspection sessions; and the use of ArSeC during the inspection process. Appropriate

actions were taken to address these problems and these include: improving the design of

the inspection checklists and inspection data recording form; enhancing ArSeC so as to

allow inspectors to conduct inspections during the scheduled inspection sessions (i.e.

discussion with other inspectors and clarification of ambiguous issues pertaining to the

artefacts with the author during the inspection session) or according to the time

convenient to the inspectors (i.e. clarification of ambiguities can be made later with the

author via email); and organising briefing sessions for the inspectors who will use ArSeC

during the actual case studies. A detailed plan of the case study was then prepared.

5.2 Case Studies

In case study 1, a moderator prepared the inspection checklists for the eight artefacts

of the requirements analysis phase using MS Excel. The checklists were distributed to the

three inspectors of Team A to make preparation for inspection four days before the actual

inspection sessions. They were told to complete the necessary preparation within two

hours. The actual face-to-face inspection processes were conducted using Process 1 at

Company 1 according to the scheduled inspection sessions where each inspection session

should take not more than two hours. An alarm is set 10 minutes before the end of an

inspection session, and a summarized report of the inspection session is prepared. This

step is followed to ensure that a consistent two-hour inspection session is applied to both

Univ
ers

ity
 of

 M
ala

ya

99

Process 1 and Process 2, as prolonged inspection time might either allow more defects to

be detected by the inspectors or adversely impact on the inspectors’ productivity, and

thereby, affect the reliability of the case study (Shen, Zhao, & Han, 2014). Similarly, this

process was repeated for inspecting the corresponding eight artefacts of the design phase

of P1.

At the same time, the eight artefacts of the requirements analysis and design phases

were inspected by Team B using Process 2 and ArSeC, respectively. Similarly, to ensure

that each inspection session takes not more than two hours, ArSeC generates an alert 10

minutes before the end of the inspection session, and the inspection team then prepares a

summarized report of the inspection session. Once the inspection session is over, all the

inspectors cannot access ArSeC unless the moderator re-schedules (re-opens) a new

inspection session, if necessary.

These same procedures were followed in case study 2. The following sections explain

the method of data collection, and discuss the analysis of the defects detected, the

inspection time taken, and calculation of the productivity of the inspection teams.

5.3 Data Collection

The ideal way of evaluating ISIP is to conduct case studies, interviews, and on-site

observations. However, interviews with all the software inspectors to gather information

regarding the inspection process and their inspection performance are not practical as they

are time-consuming, and also likely to affect the work schedule of the inspectors

(Vitharana, 2015). On-site observation is not recommended because the inspectors might

feel uncomfortable or might perform differently with such an obtrusive approach. This

could affect the progress of the inspection process and skew the eventual findings. Hence,

an inspection data recording form was designed and used in the case studies to record the

Univ
ers

ity
 of

 M
ala

ya

100

inspection process, the defects detected, and the inspection time. In addition, The Class.

Mode, and description of defects are gathered and can also be in the form.

Table 5.1: Title and purpose of each section of the inspection data recording

form

Section

No.

Section Title Description

A Project and

artefacts to

inspect

Project ID, project title, brief description of project,

artefact ID, artefact title, and brief description of each

artefact.

B Inspector profiles

(of each inspector

and inspection

team members)

Inspector ID, name, contact, number of years of

inspection experience, number of artefacts inspected,

total number of real defects detected in each artefact,

total inspection time, and inspection productivity,

contact details of other inspection team members.

C Inspection

process

Inspection date and time, number of inspectors involved

in each inspection session, duration of each inspection

session, the stopping criteria of inspection, unexpected

incident(s), issues discussed, summary of the inspection

outcomes.

D Defects detected

(for each artefact)

Defect ID, defect code, defect class, defect mode, brief

description of each defect, inspectors who detected the

defect, a summary of the total number of common and

real defects detected, total number of false positives,

total number of inconsistencies, and total number of

ambiguous artefacts.

E Inspection time

(for each artefact)

Inspection preparation time of each inspector, total

inspection preparation time of all inspectors, inspection

time of each inspection session, inconsistencies

resolution time, total inspection time.

F Defect causes and

effects

(for each new

defect)

Defect code, brief defect description, brief description

of potential causes of defects, potential effects and brief

description of each new defect detected, updates

information on causes or effects of the existing defects.

5.3.1 Design of Inspection Data Recording Form

The inspection data recording form consists of six sections for recording data needed for

evaluating ISIP, and testing the three hypotheses formulated. Table 5.1 shows the section

titles and brief descriptions of these sections: Section A records details of the project and

Univ
ers

ity
 of

 M
ala

ya

101

artefacts to be inspected; Section B records the profiles of the inspectors and the contacts

of other inspection team members; Section C records details of the inspection process;

Section D records details of the defects detected; Section E records details of the

inspection time, and Section F records details about all the new defects detected.

Appendix D is a sample copy of the inspection data recording form.

5.3.2 Administration of Inspection Process and Data Recording

During the inspection process, it is important to ensure that the inspection data are

accurately recorded, especially in the manual recording of the inspection outcomes by

inspection Team A and Team C, respectively. On the other hand, Team B and Team D

used ArSeC to record the inspection outcomes and data, thus, the productivity of each

inspector was calculated, automatically.

To ensure that the inspection processes were carried out according to the planned

procedures, all inspectors involved were given briefings on data collection, and the

recording process, and the use of MS Excel (by Team A and Team C), and ArSeC (by

Team B and Team D) to record the inspection outcomes. All inspectors were told to spend

not more than two hours each to prepare for the inspection, and to conduct the actual

inspection on the artefacts. Data collected from both case studies were tabulated, analysed

and used to prove the hypotheses. The calculation of the number of real (actual) defects

detected and the total inspection time are explained in the following sections.

5.3.3 Calculation of the total number of real (actual) defects detected

When conducting an inspection, the real defects (RD) detected could be from following

groups:

RD1 – A real defect is detected and reported by all inspectors.

RD2 – A defect is detected and reported by all inspectors (i.e. reported as a defect but is

actually NOT a defect). This type of defect is considered as a false positive.

Univ
ers

ity
 of

 M
ala

ya

102

RD3 – A defect is detected and reported by at least one inspector (i.e. an inspector

reported a defect but it is actually NOT a defect), but it is not detected and reported by

any of the other two inspectors. This type of defect is considered both as a false positive,

as well as an “inconsistency”, which requires re-inspection, and consolidation (voting)

processes to be carried out.

RD4 – A defect is detected and reported by at least one inspector (i.e. an inspector

reported a defect but it is actually NOT a defect), but it is detected and reported by any of

the other two inspectors as real defect. This type of defect is also a false positive, and an

“inconsistency” which requires re-inspection and consolidation (voting) processes to be

carried out.

RD5 – A real defect is detected and reported by at least one inspector, but it is not detected

and reported by any of the other inspectors. This type of defect is an “inconsistency”

which requires re-inspection and consolidation (voting) processes to be carried out.

RD6 – A real defect is detected and reported by at least one inspector, but it is detected

and reported by any of the other two inspectors as not a defect. This type of defect is an

“inconsistency” which requires re-inspection and consolidation (voting) processes to be

carried out.

Table 5.2 shows a summary of the six classes of defects. It is obvious that RD2-RD4 are

false positives, RD3-RD6 are inconsistencies which need to go through the consolidation

(voting) processes to be scheduled by a moderator. The consolidation process involves

re-inspection, discussion and voting among the inspectors to resolve the inconsistencies.

The final outcome of the consolidation (voting) process for RD3-RD6 could either be a

correct or incorrect decision, which means a 50-50 percent decision as the decisions of

the inspectors could change after re-inspection of the inconsistencies. It is therefore

logical to state that an inspection team with experienced inspectors might make correct

rather than incorrect decisions regarding the inconsistencies during the final consolidation

Univ
ers

ity
 of

 M
ala

ya

103

process, and at worse, identifying only a minimum number of defects as false positives

(mistakes in RD2). As shown in Table 4.2 (chapter 4), the first three different

compositions of inspectors are preferred in forming an experienced inspection team.

Undoubtedly, the first composition which consists of three highly skilled inspectors (in a

three-inspector team) is the most preferred. However, this composition of inspectors does

not involve any skilled or semi-skilled inspectors in the inspection process. They have no

opportunity to learn from any highly skilled inspectors and thus would not achieve the

training element embedded in ISIP (Figure 4.1, chapter 4). Hence, in the two case studies,

the second composition of inspectors - two highly skilled and one skilled inspectors - was

chosen to form each of the four inspection teams. Table 5.3 shows the profiles of the 12

inspectors involved in the two case studies. For example, IA1 refers to the first inspector

from Team A who is highly skilled, with 21 years of inspection experience, had inspected

60 projects and 1,800 artefacts, and has an average inspection productivity of detecting

55 defects per hour.

Table 5.2: Summary of defects classes, inconsistencies and final decision

Defect

Group

Defect Type

(T-True/real defect

or

F- False positive)

Inconsistency Consolidation

process needed

(Voting)

Final decision

(C – Correct,

IC – Incorrect)

RD1 T - - C

RD2 F - - IC

RD3 F C or IC

RD4 F C or IC

RD5 T C or IC

RD6 T C or IC

Univ
ers

ity
 of

 M
ala

ya

104

Table 5.3: Profiles of inspectors of the four inspection teams

Inspector

Code*

Skill

Level

No. of years of

Inspection

Experience

No. of

Projects

Inspected

No. of

Artefacts

Inspected

Average

Inspection

Productivity

(No. of

defects

detected/hr)

IA1 HS 21 (1994-2015) 60 1800 67

IA2 HS 26 (1989-2015) 83 1500 58

IA3 S 12 (2003-2015) 44 720 30

IB1 HS 20 (1995-2015) 76 1760 47

IB2 HS 25 (1990-2015) 102 1070 52

IB3 S 10 (2005-2015) 48 950 32

IC1 HS 22 (1993-2015) 79 930 46

IC2 HS 32 (1983-2015) 66 1620 67

IC3 S 11 (2004-2015) 93 780 31

ID1 HS 34 (1981-2015) 107 1940 64

ID2 HS 20 (1995-2015) 69 1380 45

ID3 S 14 (2001-2015) 39 650 34

* Ixi: Inspector Team x number i (x = A, B, C or D; i = 1..3) HS: Highly Skilled S: Skilled

Based on Table 5.2, if it is assumed that the final decisions made during the final

consolidation processes for the defect groups, RD3-RD6, are correct (i.e. the final

decisions made on RD3-RD4 are not defects, RD5-RD6 are defects), then by implication,

the number of defects in RD5 and RD6 will be counted once only, and double counting

would happen in RD1 only. The total number of common defects detected by the second

and/or third inspectors can be determined from the defect codes, as shown in Table 4.3

and Table 4.4 (chapter 4). Based on the explanations given in section 3.2 (chapter 3), the

total number of real defects detected by an inspection team is calculated using the

following formula:

Total number of real defects detected by an inspection team (TNARD) = ∑ RD1i𝑖=3
𝑖=1 +

∑RD5 + ∑RD6 - (∑ RD_RD1i𝑖=3
𝑖=2)

Univ
ers

ity
 of

 M
ala

ya

105

Where:

RD1i : Total number of real defects detected in RD1 by all three inspectors, i = 1.. 3.

RD_RD1i : Total number of common and real defects detected by the second and/or

third inspectors in RD1, i = 2, 3.

5.3.4 Calculation of total inspection time

As mentioned in section 3.2 (chapter 3), the total inspection time spent on an artefact

by an inspector is calculated using the formula:

Inspection Time = Preparation time + Inspection session time + Inconsistencies

resolution time

The preparation time is the time spent by each inspector to get ready for the actual

inspection process. Hence, the total preparation time by all inspectors (i.e. sum of

preparation time, ∑PT, for an inspection team) should be included in the calculation of

the total inspection time. However, to determine the inspection session time and

inconsistencies resolution time, there are two perspectives to consider based on the actual

inspection situations: (i) all inspectors are available during the scheduled inspection

session (for both processes), and they can resolve all the inconsistencies together. In this

case, the inspection session time and inconsistencies resolution time are counted ONCE

only; and (ii) one inspector (for a three-inspector team) or two-trree inspectors (for a five-

inspector team), respectively, might not be available during the scheduled inspection

session and/or inconsistencies resolution session. In this case, the total inspection session

time and the total inconsistencies resolution time should be calculated using the following

formulas:

Total inspection session time (TIST) = Scheduled inspection session time (SIST) +

∑Inspection session time of those inspector(s) who conduct inspection at their own

convenient time (∑ IST
𝑖=𝑗
𝑖=1).

Univ
ers

ity
 of

 M
ala

ya

106

The value of ∑ IST
𝑖=𝑗
𝑖=1 is 0 if all the inspectors are available during the scheduled

inspection session(s), and vice versa (i.e., SIST = 0) if all inspectors are not available for

the scheduled inspection session(s). Both SIST and ∑ IST
𝑖=𝑗
𝑖=1 are > 0, when at least one

or more inspectors (but not all the inspectors) are either available or not available for the

scheduled inspection session.

Total inconsistencies resolution time (TIRT) = Scheduled inconsistencies resolution

time (SIRT) + ∑Inconsistencies resolution time of those inspector(s) who conduct

inconsistencies resolution at their own convenient time (∑ IRT𝑖=𝑘
𝑖=1).

Similarly, the value of ∑ IRT𝑖=𝑘
𝑖=1 is 0 if all the inspectors are available during the

scheduled inconsistencies resolution session(s), and vice versa (i.e., SIRT = 0) if all

inspectors are not available during the scheduled inconsistencies resolution session(s).

Both SIRT and ∑ IRT
𝑖=𝑗
𝑖=1 are > 0, when at least one or more inspectors (but not all the

inspectors) are either available or not available during the scheduled inconsistencies

resolution session(s).

Hence, the total inspection time taken to inspect an artefact by an inspector (TIT-I) is:

PT + SIST + IST + SIRT + IRT

The value of IST and IRT is 0 if the inspector is available during the scheduled

inspection session(s) and inconsistencies resolution session(s), and vice versa (i.e. IST

and IRT are ≠ 0) if the inspectors are not available during both sessions, i.e. the value of

SIST and SIRT is 0. It is also possible for other combinations such as SIST ≠ 0, IST = 0,

SIRT = 0, and IRT ≠ 0.

The total inspection time to inspect an artefact by an inspection team (TIT-T) is:

∑ PT + TIST + TIRT𝑖=𝑛
𝑖=1

where,

n: Total number of inspectors.

Univ
ers

ity
 of

 M
ala

ya

107

5.3.5 Calculation of the productivity of an inspection team

The productivity of each inspection team is calculated using the formula explained in

section 3.2 (chapter 3):

Productivity of an inspection team = Total number of real (actual) defects detected by

the inspection team / Total inspection time taken to inspect an artefact by the inspection

team (TIT-T)

Where,

Total number of real (actual) defects detected = Total number of defects detected -

Total number of false positives.

5.4 Data Analysis

The purpose of this research is to confirm a hypothesis that using ISIP (Process 2, an

enhanced formal inspection process) can improve the quality of software inspection when

compared with using the formal inspection process (Process 1). Both Process 1 and

Process 2 are the independent variables, and they are also the treatments in this study.

The number of real defects detected, the total inspection time, and the productivity of the

inspection teams are dependent variables as their values depend on the type of inspection

process model used.

In this research, both the number of defects detected and inspection time are directly

measured and calculated during the inspection processes. However, the productivity of

an inspection team is an indirect measurement as it is calculated using the formula:

Total number of real (actual) defects detected / Total inspection time.

Univ
ers

ity
 of

 M
ala

ya

108

Hence, the measurement scales of these dependent variables are ratio scales as they

can have 0 value if an artefact is of zero length, and hence, will have zero defect, zero

inspection time, and no measurement of the inspector productivity, respectively.

Table 5.4: Total number of real defects detected, total inspection time, and

productivity of inspection team

Project

ID

Artefact

ID

Total No. of Real

Defects Detected

Total Inspection

Time (min)

Productivity of

Inspection Team

Process

1

Process

2

Process

1

Process

2

Process 1 Process 2

P1 P1-A1-R 26 34 229 221 0.11 0.15

P1 P1-A2-R 15 26 218 218 0.07 0.12

P1 P1-A3-R 18 28 220 214 0.08 0.13

P1 P1-A4-R 15 26 217 212 0.07 0.12

P1 P1-A5-R 12 17 216 206 0.06 0.08

P1 P1-A6-R 21 23 216 201 0.10 0.11

P1 P1-A7-R 13 26 217 210 0.06 0.12

P1 P1-A8-R 21 28 223 218 0.09 0.13

P2 P2-A1-R 24 35 225 219 0.11 0.16

P2 P2-A2-R 22 33 226 219 0.10 0.15

P2 P2-A3-R 16 19 212 206 0.08 0.09

P2 P2-A4-R 7 13 209 193 0.03 0.07

P2 P2-A5-R 30 36 230 223 0.13 0.16

P2 P2-A6-R 18 27 223 213 0.08 0.13

P2 P2-A7-R 14 21 222 218 0.06 0.10

P2 P2-A8-R 31 39 234 227 0.13 0.17

P1 P1-A1-D 33 32 229 221 0.14 0.14

P1 P1-A2-D 24 36 228 220 0.11 0.16

P1 P1-A3-D 27 35 227 220 0.12 0.16

P1 P1-A4-D 8 11 210 199 0.04 0.06

P1 P1-A5-D 16 25 220 214 0.07 0.17

P1 P1-A6-D 21 31 229 219 0.09 0.14

P1 P1-A7-D 13 21 218 205 0.06 0.10

P1 P1-A8-D 22 34 220 224 0.10 0.15

P2 P2-A1-D 24 22 216 200 0.11 0.11

P2 P2-A2-D 22 28 224 218 0.10 0.13

P2 P2-A3-D 14 26 216 207 0.06 0.13

P2 P2-A4-D 27 42 221 223 0.12 0.18

P2 P2-A5-D 24 37 224 214 0.11 0.17

P2 P2-A6-D 14 24 214 208 0.07 0.16

P2 P2-A7-D 14 28 214 213 0.07 0.13

P2 P2-A8-D 27 37 224 215 0.12 0.17
Keys:

Pn – Project No. n, n = 1, 2 Am – Artefact No., m = 1,..,8

R – Requirements analysis phase D – Design phase

Process 1 – Formal Inspection and facilitated using MS Excel

Process 2 – ISIP and facilitated using ArSeC

Univ
ers

ity
 of

 M
ala

ya

109

The data of the three dependent variables were collected from the two case studies and

analysed using IBM SPSS Statistics 22. A statistician was consulted on the appropriate

statistical tests to use to prove the hypotheses formulated in chapter 3. In this research,

the data of the dependent variables consist of a matched pair of data: i) the number of real

(actual) defects detected by two inspection teams (Team A and Team B; Team C and

Team D) using Process 1 and Process 2; ii) the matched pair of total inspection time; and

iii) the matched pair of the respective productivity of the Inspection teams. Hence, the

Paired-Samples T Test is selected to test the hypothesis that there is no difference between

the mean values of two variables. Table 5.4 shows the total number of real (actual) defects

detected by each inspection team, the total inspection time to inspect each artefact by an

inspection team, and the productivity of each inspection team inspecting each artefact.

For example, from the artefact P1-A1-R, from the requirements analysis phase of project

1 (P1), 26 defects were detected by inspection Team A using Process 1 in 229 minutes,

and 34 defects were detected by Team B using Process 2 in 221 minutes.

5.4.1 Data Screening

Before testing the hypotheses, histograms, skewness and the Kolmogorov-

Smirnov test were plotted and used to determine whether the data of the dependent

variables are of normal distribution, and to identify any possible departures from the

normal distribution. Figure 5.2 shows the histograms of the six sets of data – total number

of real defects detected by each inspection team, total inspection time taken to inspect

each artefact by an inspection team, and the productivity of each inspection team. Based

on this figure and Table 5.5 which shows skewness in the distribution of data, all the data

seem to be distributed normally (i.e. all histograms show trend of normal distribution, and

all the values of skewness are less than 1.0). However, Table 5.6, which shows the results

of Kolmogorov-Smirnov test of normality indicates that the significant value (p) of the

data for total inspection time using Process 2 (ISIP and ArSeC) is 0.020 (i.e. p < 0.05).

Univ
ers

ity
 of

 M
ala

ya

110

This indicates that the data is not distributed normally. Hence, all the data have met the

data considerations – variables are ratio level of measurement, and the response for

each test subject and its matched control subject is in the same case in the data file; and

the assumptions that observations for each pair should be made under the same

conditions, the mean differences should be normally distributed, and variances of each

variable can be equal or unequal, for paired-samples T Test (Paired-Samples T Test,

2015), except for the data set – total inspection time using Process 2.

Univ
ers

ity
 of

 M
ala

ya

111

 (a)

 (b)

 (c) (d)

 (e)

 (f)

Figure 5.2: Histograms of data (total number of real defects detected, inspection

time, and productivity of inspection team)

Univ
ers

ity
 of

 M
ala

ya

112

Table 5.5: Skewness the distribution of data

Total no. of

correct

defects

detected

using

Process 1

Total no. of

real defects

detected

using

Process 2

Total

inspection

time using

Process 1

Total

inspection

time using

Process 2

Productivity of

inspection

team using

Process 1

Productivity of

inspection

team using

Process 2

Valid N 32 32 32 32 32 32

Missing 0 0 0 0 0 0

Mean 19.78 28.13 220.97 213.69 .0891 .1328

Median 21.00 28.00 220.50 214.50 .0900 .1300

Std.

Deviation
6.622 7.499 6.224 8.201 .2763 .3113

Variance 43.854 56.242 38.741 67.254 .001 .001

Skewness .067 -.348 .037 -.724 -.121 -.608

Std. Error

of

Skewness

.414 .414 .414 .414 .414 .414

Kurtosis -.707 -.254 -.647 -.050 -.740 -.256

Std. Error

of Kurtosis
.809 .809 .809 .809 .809 .809

Note: Value of skewness < 1.0 indicates normal distribution, otherwise not normal distribution.

Univ
ers

ity
 of

 M
ala

ya

113

Table 5.6: Kolmogorov-Smirnov tests of normality

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Total No. of real defects

detected using Process 1
.122 32 .200* .971 32 .524

Total No. of real defects

detected using Process 2
.100 32 .200* .975 32 .646

Total inspection time using

Process 1
.090 32 .200* .981 32 .826

Total inspection time using

Process 2
.169 32 .020 .946 32 .113

Productivity of inspection team

using Process 1
.130 32 .184 .965 32 .366

Productivity of inspection team

using Process 2
.121 32 .200* .947 32 .116

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Note: Kolgomorov-Smirnov test, if sig. value, p > 0.05, indicates normal distribution, otherwise not

normal distribution.

The Paired-Samples T Test (a parametric test) is used to test the first and third

hypotheses. On the other hand, hypothesis 2 is tested using the equivalent nonparametric

test - the Related-Samples Wilcoxon Signed Rank test - as the matched paired data of the

total inspection time using Process 2 is not normally distributed.

5.4.2 Test of Hypotheses

5.4.2.1 Hypothesis 1

In section 3.1.5, Hypothesis 1 is stated as follows:

H0: The total number of real defects detected using Process 1 is the same as the total

number of real defects detected using Process 2.

H1: The total number of real defects detected using Process 2 is more than the total

number of real defects detected using Process 1.

Univ
ers

ity
 of

 M
ala

ya

114

The mean values of the total number of real defects detected using Process 1 and

Process 2 are 19.78 and 28.13, respectively, as shown in Table 5.7. The Pearson

correlation between these paired data is 0.838, as shown in Table 5.8. This value is close

to 1.0, implying that the total number of real defects detected using Process 1 and Process

2 are closely related.

At α = 0.05, there is a difference in the mean value of the total number of real defects

detected between Process 1 and Process 2. Since the significance value for the average

total number of real defects detected, at the degree of freedom, df = 31, and at 2-tailed

test, is p = 0.000, which is less than 0.05, as shown in Table 5.9, we can conclude that the

average increase of 8.344 in the total number of real defects detected is not due to chance

variation, but is attributed to the use of ISIP and ArSeC. Thus, we reject H0 and accept

H1. Also, the value of the mean difference between Process 1 and Process 2 (i.e. -8.344),

as shown in Table 5.9, implies that the average total number of real defects detected using

Process 2 has increased by 42.2% (i.e. 8.344 / 19.78 x 100%).

Table 5.7: Paired-Samples Statistics

 Mean N

Std.

Deviation

Std.

Error

Mean

Pair 1 Total no. of real defects detected using

Process 1
19.78 32 6.622 1.171

Total no. of real defects detected using

Process 2
28.13 32 7.499 1.326

Table 5.8: Paired-Samples Correlations

 N Correlation Sig.

Pair 1 Total no. of real defects detected using

Process 1 & Total no. of real defects

detected using Process 2

32 .838 .000

Univ
ers

ity
 of

 M
ala

ya

115

Table 5.9: Paired-Samples Test

Paired Differences

t df

Sig. (2-

tailed) Mean

Std.

Deviation

Std.

Error

Mean

95% Confidence

Interval of the

Difference

Lower Upper

Pair 1 Total no. of real

defects detected

using Process 1 -

Total no. of real

defects detected

using Process 2

-8.344 4.108 .726 -9.825 -6.863 -11.489 31 .000

5.4.2.2 Hypothesis 2

Hypothesis 2, as stated below, was tested using the Related-samples Wilcoxon Signed

Rank test.

H0: The total inspection time using Process 1 is the same as the total inspection time

using Process 2.

H1: The total inspection time using Process 2 is less than the total inspection time

using Process 1.

Wilcoxon Signed Rank test is the equivalent nonparametric test of the Paired-Samples

T Test as data on the total inspection time using Process 2 are not normally distributed.

At α = 0.05, the results from Wilcoxon Signed Rank test suggest rejection of the null

hypothesis H0, but acceptance of H1 because the value of p = 0.000 < 0.05. This implies

that there is a difference in the outcome when using Process 2 (ISIP and ArSeC) –

improvement to the inspection process reflected by a reduction in the total inspection

time, as shown in Table 5.10 below. As shown in Table 5.5, the mean values of the total

inspection time when using Process 1 and Process 2 are 220.97 minutes and 213.69

minutes, respectively. The mean difference is -7.31 – a 3.3% (i.e. 7.31 / 220.97 x 100%)

Univ
ers

ity
 of

 M
ala

ya

116

reduction in the average total inspection time when Process 2 was used to inspect the

artefacts.

Table 5.10: Test of hypothesis 2 using Related-Samples Wilcoxon Signed Rank

test: Summary

5.4.2.3 Hypothesis 3

Hypothesis 3 was formulated as follows:

H0: The productivity of the inspection team using Process 1 is the same as the

productivity of the inspection team using Process 2.

H1: The productivity of the inspection team using Process 2 is higher than the

productivity of the inspection team using Process 1.

The hypothesis was tested using the Paired-Samples T Test. The mean values of the

productivity of the inspection team using Process 1 and Process 2 are 0.0891 and 0.1328,

respectively, as shown in Table 5.11. The correlation between these paired data is 0.723,

as shown in Table 5.12. This value is fairly close to 1.0, implying that the productivity of

the inspection teams using Process 1 and Process 2 are closely related.

At α = 0.05, the test outcome indicates that there is a difference in the mean value of

the productivity between the inspection team that used Process 1 and the team that used

Process 2. The significance value for the average productivity of the inspection team, at

the degree of freedom, df = 31, and at 2-tailed test, is p = 0.000, which is less than 0.05,

Univ
ers

ity
 of

 M
ala

ya

117

as shown in Table 5.13, hence, we can conclude that the average increase of 0.04375 in

the productivity of the inspection team is not due to chance, but is attributed to ISIP and

ArSeC. Hence, we reject H0 and accept H1. Also, the value of the mean difference

between Process 1 and Process 2 (i.e. -0.04375), as shown in Table 5.13, implies that the

average productivity of the inspection team that used Process 2 has increased by 49.1%

(8.344 / 19.78 x 100%).

Table 5.11: Paired-Samples Statistics

 Mean N

Std.

Deviation

Std. Error

Mean

Pair 1 Productivity of inspection

team using Process 1
.0891 32 .02763 .00488

Productivity of inspection

team using Process 2
.1328 32 .03113 .00550

Table 5.12: Paired-Samples Correlations

 N Correlation Sig.

Pair 1 Productivity of inspector using Process 1 &

Productivity of inspector using Process 2
32 .723 .000

Table 5.13: Paired-Samples Test

Paired Differences

t df

Sig.

(2-

tailed) Mean

Std.

Deviation

Std.

Error

Mean

95% Confidence

Interval of the

Difference

Lower Upper

Pair 1

Productivity of

inspection team

using Process 1 -

Productivity of

inspection team

using Process 2

-.04375 .02211 .00391 -.05172 -.03578 -11.195 31 .000

Univ
ers

ity
 of

 M
ala

ya

118

5.5 Inspection Stopping Criteria

During each inspection session, inconsistencies and ambiguous issues are often raised

by the inspectors. Furthermore, it is impossible to determine whether all or most of the

serious defects have been detected by the inspection team during the first inspection

session (i.e. one inspection session is needed only). Hence, a moderator might have to

schedule additional inspection sessions to allow the inspection team to resolve the

inconsistencies and ambiguous issues raised by the inspectors during the first inspection

session. At the same time, the team has the opportunity to detect other serious defects

which have not yet been detected. Thus, for the latter case, an inspection stopping

condition or criterion has to be established to decide when to stop conducting further

inspections.

In this research, the criterion is the percentage of real (actual) defects detected during

the additional inspection session compared with the total number of real defects detected

in the previous inspection session. This percentage is decided by the inspection team

based on the importance and size of an artefact, for example, for an important and larged-

size artefact, a small percentage, for example 5%, is used. For artefacts which are not

important and of smaller size, a larger percentage of between 5%-11% is used. When the

percentage of the total number of real defects detected is less than the set inspection

stopping percentage, the inspection process will be considered complete, and a

summarized report on all the inspection sessions and the defects detected is prepared. In

the two case studies, 5% was used as the inspection stopping criterion as all the 32

randomly selected artefacts are important and large-sized artefacts.

Univ
ers

ity
 of

 M
ala

ya

119

5.6 Other Findings of the Case Studies

Besides testing the three hypotheses to evaluate the efficiency of ISIP, this research

also investigates three other related issues:

i. the defect density in each artefact based on the total number of real defects present

in each artefact,

ii. the efficiency of each inspection model based on the total number of real defects

present in each artefact.

iii. the most common defects that are detected in the requirements analysis and design

phases of the two case studies.

5.6.1 Defect Density

The two large software development projects (P1 and P2) which were used in the two

case studies were in-house software development projects of company 1 (C1) and

company 2 (C2) which were completed in three and half years and three years,

respectively. Hence, the total number of real defects that was present in the requirements

analysis and design phases was determined and documented at the completion of the two

projects. The defect densities of the 32 artefacts of these two projects, are shown in Table

5.14, and had been calculated using formula (2) stated in section 3.2 (chapter 3):

Defect Density = Total number of real defects present in each artefact / Size of the

artefact

Table 5.14: Defect density of artefacts

Artefact ID Size of Artefact (N1)
Actual no. of Real

Defects (N2)

Actual Defect

Density, DD = N2

/ N1

P1-A1-R 27 36 1.33

P1-A2-R 23 26 1.13

P1-A3-R 23 29 1.26

P1-A4-R 22 27 1.22

Univ
ers

ity
 of

 M
ala

ya

120

P1-A5-R 17 17 1.00

P1-A6-R 18 23 1.28

P1-A7-R 19 27 1.42

P1-A8-R 24 28 1.12

P2-A1-R 35 36 1.03

P2-A2-R 32 35 1.09

P2-A3-R 12 19 1.58

P2-A4-R 10 13 1.30

P2-A5-R 30 39 1.30

P2-A6-R 25 27 1.08

P2-A7-R 23 24 1.04

P2-A8-R 35 41 1.17

P1-A1-D 29 34 1.17

P1-A2-D 25 37 1.48

P1-A3-D 25 35 1.40

P1-A4-D 13 11 0.85

P1-A5-D 23 25 1.09

P1-A6-D 19 32 1.68

P1-A7-D 16 22 1.38

P1-A8-D 23 34 1.48

P2-A1-D 18 24 1.33

P2-A2-D 25 28 1.12

P2-A3-D 19 27 1.42

P2-A4-D 23 47 2.04

P2-A5-D 23 40 1.74

P2-A6-D 21 25 1.19

P2-A7-D 16 28 1.75

P2-A8-D 31 38 1.23

Keys:

 Pn – Project No. n, n = 1, 2 Am – Artefact No., m = 1,..,8

R – Requirements analysis phase D – Design phase

M1 (Process 1) – Formal Inspection M2 (Process 2) – ISIP

The artefact that contains the most defects from the requirements analysis and design

phases are artefact 3 of P2 (P2-A3-R; size: 12 pages), and artefact 4 of P2 (P2-A4-D; size:

23 pages) with defect density of 1.58 and 2.04, respectively. On the other hand, the

artefact that contains the least defects from the requirements analysis and design phases

are artefact 5 of P1 (P1-A5-R; size: 17 pages), and artefact 4 of P1 (P1-A4-D; size: 13

pages) with defect density of 1.00 and 0.85, respectively.

Univ
ers

ity
 of

 M
ala

ya

121

To determine whether the actual number of defects present in an artefact is correlated

with the size of an artefact, a test of correlation was performed on these two variables.

The box plot was first used to identify any outliers in the variables. Figure 5.3 (a) shows

that there is no outlier in the variable, actual total number of defects. However, there are

two outliers in the variable, size of artefact, as shown in Figure 5.3 (b). Hence, these two

outliers were removed. Histograms of the remaining 30 sets of data of the two variables

were plotted to show the trend in data distribution (Figure 5.4). Table 5.15 shows the

values of skewness of the two variables (-0.053 and -0.207), both less than 1, indicating

that the data are distributed normally. Table 5.16 shows the results of Kolmogorov-

Smirnov test of normality, which indicates that the significant value (p) of the data for the

actual total number of defects and size of artefact are 0.065 and 0.200, respectively, both

values are > 0.05. This again indicates that the data are distributed normally. As shown

in Table 5.17, the Pearson Correlation coefficient between actual total number of defects

and size of artefact is 0.756, significant at the 0.01 level. This shows that there is a strong

correlation between the total number of defects present in an artefact and the size of the

artefact, as the value is fairly close to 1.

(a): Total number of defects (b): Size of artefact (Number of pages)

Figure 5.3: Box plot of variables

Univ
ers

ity
 of

 M
ala

ya

122

(a) Total number of defects (b): Size of artefact (Number of

pages)

Figure 5.4: Histograms of variables

Table 5.15: Skewness in the distribution of data (Size of artefact and Defect

density)

N Mean

Std.

Deviation Variance Skewness

Statistic Statistic Statistic Statistic Statistic

Std.

Error

Actual Total No. of

Defects
30 28.57 8.059 64.944 -.053 .427

Artefact Size (No. of

pages)
30 21.80 5.404 29.200 -.207 .427

Valid N (list wise) 30

Note: If value of skewness < 1.0, implies normal distribution, otherwise not normal distribution.

Table 5.16: Kolmogorov-Smirnov test of normality (Size of artefact and Defect

density)

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Actual Total No. of

Defects
.128 30 .200* .979 30 .808

Artefact Size (No. of

pages)
.155 30 .065 .972 30 .590

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Univ
ers

ity
 of

 M
ala

ya

123

Table 5.17: Pearson Correlation Test

Actual

Total No. of

Defects

Artefact

Size (No. of

pages)

Actual Total No. of

Defects

Pearson Correlation 1 .756**

Sig. (1-tailed) .000

N 30 30

Artefact Size (No. of

pages)

Pearson Correlation .756** 1

Sig. (1-tailed) .000

N 30 30

**. Correlation is significant at the 0.01 level (1-tailed).

5.6.2 Evaluation of the Efficiency of the Inspection Processes – An Alternative

Approach

Besides using a statistical approach to evaluate the efficiency of the inspection

processes (Process 1 and Process 2), an alternative approach is to calculate and compare

the total number of real defects detected by each inspection Process in relation to the total

number of real defects present in each artefact, as shown in Table 5.18 below. Table 5.19

shows the inspectors (i.e. the inspection teams) and the artefacts to be inspected. Based

on the figures shown in these two tables, it is obvious that Team B which used ISIP and

ArSeC to inspect the eight artefacts – P1-A2-R, P1-A5-R, P1-A6-R, P1-A8-R (four

artefacts from the requirements analysis phase); P1-A3-D, P1-A4-D, P1-A5-D, P1-A8-D

(four artefacts from the design phase) – detected all (100%) real defects present in these

eight artefacts. Similarly, Team D which also used ISIP and ArSeC to inspect the five

artefacts – P2-A3-R, P2-A4-R, P2-A6-R (three artefacts from the requirements analysis

phase); P2-A2-D, P2-A7-D (two artefacts from the design phase) - also detected all

(100%) real defects present in these five artefacts. These findings show that using ISIP

and ArSeC to inspect 40.6% (13 / 32 artefacts x 100%) of the artefacts, has succeeded

detecting all the defects present in each of these artefacts. On the other hand, Team C

inspected only one artefact (P2-A1-D) and succeeded in detecting all (100.0%) of the

defects present in this artefact. This shows that using the formal inspection process and

Univ
ers

ity
 of

 M
ala

ya

124

MS Excel to inspect only 3.1% (1 / 32 artefact x 100%) of the artefacts succeeded in

detecting all the defects present in the artefacts.

Further analysis shows that the efficiency of Process 1 (formal inspection process and MS

Excel) and Process 2 (ISIP and ArSeC) ranges from 48.1%-100.0%, and 87.5%-100.0%,

respectively. The difference in the minimum efficiency level of these two processes is

39.4% (i.e. 87.5% - 48.1%) in the inspection of artefacts. The average efficiency of each

process is 68.0% and 96.8%, respectively, thus, ISIP shows 28.8% better efficiency.

Hence, it is obvious that the use of ISIP and ArSeC can improve the quality of software

inspection, markedly.

Table 5.18: Efficiency of inspection processes based on the actual total number

of real defects present in each artefact

Artefact

ID

Size of

Artefact

(N1)

Actual No.

of Real

Defects

Detected

(N2)

Total No. of Real

Defects Detected

(N3)

Efficiency of Inspection

Model, N4 = N3 / N2 x

100%

M1

(N3a)

M2

(N3b)

M1

(N4a = N3a /

N2 x 100%)

M2

(N4b = N3b /

N2 x 100%)

P1-A1-R 27 36 26 34 72.2 94.4

P1-A2-R 23 26 15 26 57.7 100.0

P1-A3-R 23 29 18 28 62.0 96.6

P1-A4-R 22 27 15 26 55.6 96.3

P1-A5-R 17 17 12 17 70.6 100.0

P1-A6-R 18 23 21 23 91.3 100.0

P1-A7-R 19 27 13 26 48.1 96.3

P1-A8-R 24 28 21 28 75.0 100.0

P2-A1-R 35 36 24 35 66.7 97.2

P2-A2-R 32 35 22 33 62.3 94.3

P2-A3-R 12 19 16 19 84.2 100.0

P2-A4-R 10 13 7 13 53.8 100.0

P2-A5-R 30 39 30 36 76.9 92.3

P2-A6-R 25 27 18 27 66.7 100.0

P2-A7-R 23 24 14 21 66.7 87.5

P2-A8-R 35 41 31 39 75.6 95.1

P1-A1-D 29 34 33 32 97.1 94.1

P1-A2-D 25 37 24 36 64.9 97.3

P1-A3-D 25 35 27 35 77.1 100.0

P1-A4-D 13 11 8 11 72.7 100.0

P1-A5-D 23 25 16 25 64.0 100.0

P1-A6-D 19 32 21 31 65.6 96.9

Univ
ers

ity
 of

 M
ala

ya

125

P1-A7-D 16 22 13 21 59.1 95.5

P1-A8-D 23 34 22 34 64.7 100.0

P2-A1-D 18 24 24 22 100.0 91.7

P2-A2-D 25 28 22 28 78.6 100.0

P2-A3-D 19 27 14 26 51.9 96.3

P2-A4-D 23 47 27 42 57.4 89.4

P2-A5-D 23 40 24 37 60.0 92.5

P2-A6-D 21 25 14 24 56.0 96.0

P2-A7-D 16 28 14 28 50.0 100.0

P2-A8-D 31 38 27 37 71.1 97.4

Average 67.99% 96.78%
Keys:

 Pn – Project No. n, n = 1, 2 Am – Artefact No., m = 1,..,8

R – Requirements analysis phase D – Design phase

M1 (Process 1) – Formal Inspection M2 (Process 2) – ISIP

Table 5.19: Inspectors and the artefacts they are assigned to inspect

Inspector Code* Skill Level Artefact Code

(Requirements Analysis Phase)

Artefact Code

(Design Phase)

IA1 H [Use MS Excel]

P1-A1-R, P1-A2-R,

P1-A3-R, P1-A4-R,

P1-A5-R, P1-A6-R,

P1-A7-R, P1-A8-R.

[Use MS Excel]

P1-A1-D, P1-A2-D,

P1-A3-D, P1-A4-D,

P1-A5-D, P1-A6-D,

P1-A7-D, P1-A8-D.

IA2 H

IA3 S

IB1 HS [Use ArSeC]

P1-A1-R, P1-A2-R,

P1-A3-R, P1-A4-R,

P1-A5-R, P1-A6-R,

P1-A7-R, P1-A8-R.

[Use ArSeC]

P1-A1-D, P1-A2-D,

P1-A3-D, P1-A4-D,

P1-A5-D, P1-A6-D,

P1-A7-D, P1-A8-D.

IB2 HS

IB3 S

IC1 HS [Use MS Excel]

P2-A1-R, P1-A2-R,

P2-A3-R, P1-A4-R,

P2-A5-R, P1-A6-R,

P2-A7-R, P1-A8-R.

[Use MS Excel]

P2-A1-R, P1-A2-D,

P2-A3-R, P1-A4-D,

P2-A5-R, P1-A6-D,

P2-A7-R, P1-A8-D.

IC2 HS

IC3 S

ID1 HS [Use ArSeC]

P2-A1-R, P1-A2-R,

P2-A3-R, P1-A4-R,

P2-A5-R, P1-A6-R,

P2-A7-R, P1-A8-R.

[Use ArSeC]

P2-A1-R, P1-A2-D,

P2-A3-R, P1-A4-D,

P2-A5-R, P1-A6-D,

P2-A7-R, P1-A8-D.

ID2 HS

ID3 S

* Ixi: Inspector Team x number i (x = A, B, C or D; i = 1..3) HS: Highly Skilled S: Skilled

Univ
ers

ity
 of

 M
ala

ya

126

5.6.3 Productivity of Inspectors

The productivity of each inspector is calculated to determine which inspector, among

the 12 inspectors, has the highest, or the lowest productivity, respectively. The

productivity of each inspector is calculated using the formula below:

Productivity of an inspector = Total No. of real defects detected by the inspector /

Total inspection time

Where,

Total No. of real defects detected = Total No. of defects detected – Total No. of false

positives

The calculation of the total inspection time of an inspector is different from the total

inspection time of an inspection team. As the scheduled inspection session time is

incurred from team efforts in finding the new defects which were not detected during the

preparation stage, hence, this scheduled inspection time is not included in the calculation.

However, if an inspector conducts on inspection session at his/her own convenient time

(i.e., IST, to find other defects which were not detected during the preparation stage), then

the sum of these independent inspection session times (i.e. ∑ IST) are considered in the

calculation of the total inspection time. However, the scheduled inconsistencies resolution

time is not considered because it is the time incurred to resolve inconsistencies and

ambiguous defects detected by all the inspectors, and not to find new defects. Hence, the

total inspection time to inspect an artefact by an inspector is calculated as follows:

The total inspection time (in min) = Total preparation time the inspector spent to find

the defects + ∑ IST

where,

Univ
ers

ity
 of

 M
ala

ya

127

∑ IST = Sum of inspection session times of the inspector who conducted the session

inspections at his/her own convenient times.

Table 5.20 shows the total number of real defects detected, the total inspection time

(in min), and the productivity of each inspector calculated using the formulas explained

above. The average productivity of each inspector was calculated and tabulated in Table

5.21 together with the respective inspection details from Table 5.3 – inspection skill

level, number of years of inspection experience (NYIE), and the number of artefacts

inspected (NAI), previously.

Table 5.20: Total number of real defects detected and total inspection time of

each inspector

Inspection Team A

Requirements Analysis Phase (Using Process 1 and MS Excel)

Artefact

ID

Inspector Code

IA1 IA2 IA3

TNCD TIT Prod-A1 TNCD TIT Prod-A2 TNCD TIT Prod-A3

P1-A1-R 26 154 0.168 27 147 0.183 25 160 0.156

P1-A2-R 13 134 0.097 10 127 0.078 15 169 0.088

P1-A3-R 22 132 0.166 21 120 0.175 27 178 0.151

P1-A4-R 18 130 0.138 14 132 0.106 20 151 0.132

P1-A5-R 14 135 0.103 8 124 0.064 9 165 0.054

P1-A6-R 17 121 0.14 16 117 0.136 20 170 0.117

P1-A7-R 23 137 0.167 16 134 0.119 15 148 0.101

P1-A8-R 17 145 0.117 15 139 0.107 20 159 0.125

Sub-

Total-1
- - 1.096 - - 0.968 - - 0.924

Design Phase (Using Process 1 and MS Excel)

Artefact

ID

Inspector Code

IA1 IA2 IA3
TNCD TIT Prod-A1 TNCD TIT Prod-A2 TNCD TIT Prod-A3

P1-A1-D 20 149 0.134 13 151 0.086 17 163 0.104

P1-A2-D 28 149 0.187 25 138 0.181 31 157 0.197

P1-A3-D 28 161 0.173 30 138 0.217 23 166 0.138

P1-A4-D 7 136 0.051 10 129 0.077 8 145 0.055

P1-A5-D 14 144 0.097 16 131 0.122 21 159 0.132

P1-A6-D 26 159 0.163 24 140 0.171 27 160 0.168

P1-A7-D 16 143 0.111 10 119 0.084 9 152 0.059

P1-A8-D 23 145 0.158 21 136 0.154 22 153 0.143

Univ
ers

ity
 of

 M
ala

ya

128

Sub-

Total-2
- - 1.074 - - 1.092 - - 0.996

Total - - 2.170 - - 2.060 - - 1.920

Average - - 0.134 - - 0.129 - - 0.120

Inspection Team B

Requirements Analysis Phase (Using Process 2 and ArSeC)

Artefact

ID

Inspector Code

IB1 IB2 IB3
TNCD TIT Prod-B1 TNCD TIT Prod-B2 TNCD TIT Prod-B3

P1-A1-R 26 115 0.226 27 143 0.188 25 153 0.163

P1-A2-R 13 119 0.109 10 140 0.071 15 143 0.104

P1-A3-R 22 128 0.171 21 138 0.152 27 158 0.17

P1-A4-R 18 129 0.139 14 114 0.122 20 145 0.137

P1-A5-R 14 125 0.112 8 136 0.058 9 147 0.061

P1-A6-R 17 130 0.13 16 126 0.126 20 144 0.138

P1-A7-R 23 123 0.186 16 130 0.123 15 147 0.102

P1-A8-R 17 140 0.121 15 140 0.107 20 140 0.142

Sub-

Total-1
- - 1.194 - - 0.947 - - 1.017

Design Phase (Using Process 2 and ArSeC)

Artefact

ID

Inspector Code

IB1 IB2 IB3
TNCD TIT Prod-B1 TNCD TIT Prod-B2 TNCD TIT Prod-B3

P1-A1-D 20 120 0.166 13 143 0.09 17 144 0.118

P1-A2-D 28 136 0.205 25 142 0.176 31 146 0.212

P1-A3-D 28 133 0.21 30 142 0.211 23 134 0.171

P1-A4-D 7 135 0.051 10 132 0.075 8 149 0.053

P1-A5-D 14 137 0.102 16 138 0.115 21 139 0.151

P1-A6-D 26 132 0.196 24 141 0.17 27 148 0.182

P1-A7-D 16 136 0.117 10 96 0.104 9 140 0.064

P1-A8-D 23 146 0.157 21 150 0.14 22 163 0.134

Sub-

Total-2
- - 1.204 - - 1.081 - - 1.085

Total - - 2.398 - - 2.028 - - 2.102

Average - - 0.150 - - 0.127 - - 0.131

Inspection Team C

Requirements Analysis Phase (Using Process 1 and MS Excel)

Artefact

ID

Inspector Code

IC1 IC2 IC3
TNCD TIT Prod-C1 TNCD TIT Prod-C2 TNCD TIT Prod-C3

P2-A1-R 22 147 0.149 23 133 0.172 24 155 0.154

P2-A2-R 27 151 0.178 26 143 0.181 28 160 0.175

P2-A3-R 13 126 0.103 11 123 0.089 13 147 0.088

P2-A4-R 11 155 0.07 8 129 0.062 8 163 0.049

P2-A5-R 33 155 0.212 30 136 0.22 31 169 0.183

P2-A6-R 21 152 0.138 23 140 0.164 19 157 0.121

P2-A7-R 12 143 0.083 13 131 0.099 16 152 0.105

P2-A8-R 27 148 0.182 25 142 0.176 25 172 0.145

Univ
ers

ity
 of

 M
ala

ya

129

Sub-

Total-1
- - 1.115 - - 1.163 - - 1.02

Design Phase (Using Process 1 and MS Excel)

Artefact

ID

Inspector Code

IC1 IC2 IC3
TNCD TIT Prod-C1 TNCD TIT Prod-C2 TNCD TIT Prod-C3

P2-A1-D 17 140 0.121 11 138 0.079 10 146 0.068

P2-A2-D 18 142 0.126 21 138 0.152 19 156 0.121

P2-A3-D 13 137 0.094 17 131 0.129 18 144 0.125

P2-A4-D 32 133 0.24 31 137 0.226 39 165 0.236

P2-A5-D 25 150 0.166 29 147 0.197 31 158 0.196

P2-A6-D 17 140 0.121 20 127 0.157 15 143 0.104

P2-A7-D 23 138 0.166 22 125 0.176 27 153 0.176

P2-A8-D 30 144 0.208 27 135 0.2 28 153 0.183

Sub-

Total-2
- - 1.242 - - 1.316 - - 1.209

Total - - 2.357 - - 2.479 - - 2.229

Average - - 0.147 - - 0.155 - - 0.139

Inspection Team D

Requirements Analysis Phase (Using Process 2 and ArSeC)

Artefact

ID

Inspector Code

ID1 ID2 ID3
TNCD TIT Prod-D1 TNCD TIT Prod-D2 TNCD TIT Prod-D3

P2-A1-R 22 132 0.166 23 141 0.163 24 148 0.162

P2-A2-R 27 130 0.207 26 141 0.184 28 150 0.186

P2-A3-R 13 132 0.098 11 138 0.079 13 152 0.085

P2-A4-R 11 133 0.082 8 137 0.058 8 139 0.057

P2-A5-R 33 135 0.244 30 143 0.209 31 144 0.215

P2-A6-R 21 133 0.157 23 139 0.165 19 141 0.134

P2-A7-R 12 136 0.088 13 142 0.091 16 144 0.111

P2-A8-R 27 141 0.191 25 147 0.17 25 153 0.163

Sub-

Total-1
- - 1.233 - - 1.119 - - 1.113

Design Phase (Using Process 2 and ArSeC)

Artefact

ID

Inspector Code

ID1 ID2 ID3
TNCD TIT Prod-D1 TNCD TIT Prod-D2 TNCD TIT Prod-D3

P2-A1-D 17 101 0.168 11 118 0.093 10 131 0.076

P2-A2-D 18 99 0.181 21 131 0.16 19 150 0.126

P2-A3-D 13 132 0.098 17 133 0.127 18 137 0.131

P2-A4-D 32 136 0.235 31 143 0.216 39 165 0.236

P2-A5-D 25 127 0.196 29 115 0.252 31 149 0.208

P2-A6-D 17 99 0.171 20 134 0.149 15 138 0.108

P2-A7-D 23 129 0.178 22 144 0.152 27 145 0.186

P2-A8-D 30 105 0.285 27 139 0.194 28 134 0.208

Sub-

Total-2
- - 1.512 - - 1.343 - - 1.279

Total - - 2.745 - - 2.462 - - 2.392

Average - - 0.172 - - 0.154 - - 0.150

Univ
ers

ity
 of

 M
ala

ya

130

As shown in Table 5.21 and Figure 5.5, it is obvious that among the 12 inspectors, ID1

from Inspection Team D achieved the highest productivity (0.172), and inspector IA3

recorded the lowest productivity. The inspector with the highest productivity from each

inspection team is IA1, IB1, IC2 and ID1, respectively. All these inspectors are highly

skilled inspectors with at least 20 or more years of inspection experience, and had

inspected more than 1,600 artefacts. The inspectors with the lowest productivity from

each inspection team are IA3, IB2, IC3 and ID3, respectively. All these inspectors are

skilled inspectors with less than 15 years of inspection experience and had inspected less

than 1,000 artefacts except for inspector IB2 who is highly skilled, possesses 25 years of

inspection experience and had inspected 1,070 artefacts. There are two highly skilled

inspectors (IA2 and IB2) whose average productivity is lower than the average

productivity of the skilled inspector IB3. The average productivity of IC3 and ID3 was

not compared as their respective average productivity was calculated based on Project 2

and not Project 1 (i.e. incorrect comparison if it is not based on the same project).

Table 5.21: Average productivity of each inspector

Inspection

Team

Inspector

Code

Average Productivity

(No. of real defects detected /

min)

Skill

Level

NYIE NAI

A

IA1 0.134 HS 21 1800

IA2 0.129 HS 26 1500

IA3 0.120 S 12 720

B

IB1 0.150 HS 20 1760

IB2 0.127 HS 25 1070

IB3 0.131 S 10 950

C

IC1 0.147 HS 22 930

IC2 0.155 HS 32 1620

IC3 0.139 S 11 780

D

ID1 0.172 HS 34 1940

ID2 0.154 HS 20 1380

ID3 0.150 S 14 650

Key: NYIE – No. of Years of Inspection Experience NAI – No. of Artefacts Inspected

Univ
ers

ity
 of

 M
ala

ya

131

These outcomes show that the number of artefacts inspected might affect the individual

productivity of the inspectors. Generally, the more artefacts inspected, the higher the

productivity of the inspectors. On the other hand, as each inspector from the four inspection

teams inspected 16 artefacts only, it is not appropriate to make any inferences and comparison

of their productivity based on the inspection process and the tools they used.

Figure 5.5: Average productivity of each inspector

5.6.4 Most Common Defects Detected

In the two case studies, different classes of defects were detected. This prompted

further investigation to determine the classes of defects which were more frequently

detected by the inspection teams using the two different inspection processes in compared

with the number of defects detected in these classes.

5.6.4.1 Defects detected in the requirements analysis phase (Project 1 and Project

2)

Actual figures on classes of defects detected in the 32 artefacts of P1 (inspected by

Team A and Team B) and P2 (inspected by Team C and Team D), and the actual total

0.134 0.129
0.120

0.150

0.127 0.131

0.147
0.155

0.139

0.172

0.154 0.150

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

IA1 IA2 IA3 IB1 IB2 IB3 IC1 IC2 IC3 ID1 ID2 ID3

A
v
er

a
g
e

P
ro

d
u

ct
iv

it
y
 (

N
o

.
o

f
R

ea
l

D
ef

ec
ts

D
et

ec
te

d
/m

in
)

Inspector Code

Average Productivity of Each Inspector

Univ
ers

ity
 of

 M
ala

ya

132

number of defects detected during the requirements analysis phase are tabulated in Table

5.22 and Table 5.23, respectively.

Table 5.22: Distribution of defects detected by defect classes (Requirements

analysis phase)

Project 1 (P1) (Inspected by Team A and Team B)

Artefact

ID

Defect Classes

Func Perf Envi Inte Secu Misc Total

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

P1-A1-R 13 17 4 4 2 5 5 6 1 1 1 1 26 34

P1-A2-R 8 9 1 6 3 5 1 2 2 3 0 1 15 26

P1-A3-R 8 12 4 7 1 3 3 3 2 3 0 0 18 28

P1-A4-R 4 8 3 7 3 4 4 6 1 1 0 0 15 26

P1-A5-R 3 4 3 3 3 4 2 4 0 0 1 2 12 17

P1-A6-R 8 8 3 4 2 3 1 1 6 6 1 1 21 23

P1-A7-R 2 6 2 2 8 15 1 3 0 0 0 0 13 26

P1-A8-R 3 5 7 12 5 5 3 3 2 2 1 1 21 28

Total 49 69 27 45 27 44 20 28 14 16 4 6 141 208

Project 2 (P2) (Inspected by Team C and Team D)

Artefact

ID

Defect Classes

Func Perf Envi Inte Secu Misc Total

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

P2-A1-R 5 9 3 6 7 9 3 3 4 6 2 2 24 35

P2-A2-R 6 8 3 5 7 8 5 8 1 4 0 0 22 33

P2-A3-R 2 2 7 8 3 4 3 4 1 1 0 0 16 19

P2-A4-R 5 9 0 0 0 0 1 2 1 1 0 1 7 13

P2-A5-R 9 12 1 3 3 3 8 8 5 5 4 5 30 36

P2-A6-R 2 2 7 8 3 5 1 7 3 3 2 2 18 27

P2-A7-R 2 2 6 7 3 6 3 6 0 0 0 0 14 21

P2-A8-R 4 4 5 5 6 10 7 10 7 7 2 3 31 39

Total 35 48 32 42 32 45 31 48 22 27 10 13 162 223

Keys:

 Func – Functionality Perf – Performance Envi – Environment

 Inte – Interface Secu – Security Misc – Miscellaneous

 M1 (Process 1) – Formal inspection process and MS Excel

 M2 (Process 2) – ISIP and ArSeC

Univ
ers

ity
 of

 M
ala

ya

133

Table 5.23: Actual total number of defects detected by defect classes

(Requirements analysis phase)

Actual No. of Defects Detected: Project 1 (P1)

Artefact

ID

Defect Classes

Func Perf Envi Inte Secu Misc Total

P1-A1-R 17 5 5 6 1 2 36

P1-A2-R 9 6 5 2 3 1 26

P1-A3-R 12 7 3 4 3 0 29

P1-A4-R 8 7 4 7 1 0 27

P1-A5-R 4 3 4 4 0 2 17

P1-A6-R 8 4 3 1 6 1 23

P1-A7-R 6 2 16 3 0 0 27

P1-A8-R 5 12 5 3 2 1 28

Total 69 46 45 30 16 7 213

Actual No. of Defects Detected: Project 2 (P2)

Artefact

ID

Defect Classes

Func Perf Envi Inte Secu Misc Total

P2-A1-R 9 6 9 3 7 2 36

P2-A2-R 8 6 9 8 4 0 35

P2-A3-R 2 8 4 4 1 0 19

P2-A4-R 9 0 0 2 1 1 13

P2-A5-R 13 3 3 8 6 6 39

P2-A6-R 2 8 5 7 3 2 27

P2-A7-R 2 9 7 6 0 0 24

P2-A8-R 5 5 10 10 8 3 41

Total 50 45 47 48 30 14 234
Keys:

 Func – Functionality Perf – Performance Envi – Environment

 Inte – Interface Secu – Security Misc – Miscellaneous

Figure 5.6 shows that of the 213 defects (Table 5.23), the two most commonly detected

defects in P1 pertain to functionality, 32.4% (69 / 213 x 100%), and performance, 21.6%

(45 / 213 x 100%), respectively. For these two classes of defects, inspection Team B using

Process 2 detected 100% (functionality: 69 / 69 x 100%), and 97.8% (performance: 45 /

46 x 100%) of the defects, respectively. On the other hand, Team A which used Process

1, detected 71% (functionality: 49 / 69 x 100%), and 58.7% (performance: 27 / 46 x

Univ
ers

ity
 of

 M
ala

ya

134

100%) of the defects of these two classes, respectively. It is clear that the inspectors who

used ISIP succeeded in detecting more functionality-related defects, as well as defects in

the other classes, than the inspectors who used the formal inspection process. Team B

also detected 100% of the defects pertaining to security issues.

Keys:

Func – Functionality Perf – Performance Envi – Environment

 Inte – Interface Secu – Security Misc – Miscellaneous

Figure 5.6: Comparison of defects detected in Project 1 according to defect class

(inspected by Team A and Team B) with the actual total number of defects in

each defect class (Requirements analysis phase)

As shown in Figure 5.7, of the 234 defects (Table 5.23), the two defects most

commonly detected in P2 pertain to functionality, 21.4% (50 / 234 x 100%), and interface,

20.5% (48 / 234 x 100%), respectively. From these two classes of defects, inspection

Team D using Process 2 detected 96.0% (functionality: 48 / 50 x 100%), and 100.0%

0 10 20 30 40 50 60 70 80

Func

Perf

Envi

Inte

Secu

Misc

Func Perf Envi Inte Secu Misc

No. of Defects Detected (using

Process 2)
69 45 44 28 16 6

No. of Defects Detected (using

Process 1)
49 27 27 20 14 4

Actual No. of Defects 69 46 45 30 16 7

Comparison of Defects Detected According to Defect Class

(Project 1 Inspected by Team A and Team B)

Univ
ers

ity
 of

 M
ala

ya

135

(interface: 48 / 48 x 100%) of the defects, respectively. However, Team C, which used

Process 1, detected defects pertaining to functionality, 70.0% (35 / 50 x 100%), and

pertaining to interface, 54.6% (31 / 48 x 100%) of the defects detected from these two

classes, respectively. Again, it is clear that inspectors who used ISIP succeeded in

detecting more functionality-related defects, as well as defects in other classes, than

inspectors who used the formal inspection process. Team D also detected 100% of the

defects pertaining to interface issues.

Keys:

 Func – Functionality Perf – Performance Envi – Environment

 Inte – Interface Secu – Security Misc – Miscellaneous

Figure 5.7: Comparison of defects detected in Project 2 according to defect class

(inspected by Team C and Team D) with the total number of defects in each

defect class (Requirements analysis phase)

5.6.4.2 Defects detected in the design phase (Project 1 and Project 2)

Actual figures on classes of defects detected in the 32 artefacts of P1 (inspected by

Team A and Team B), and P2 (inspected by Team C and Team D), and the actual total

0 10 20 30 40 50 60

Func

Perf

Envi

Inte

Secu

Misc

Func Perf Envi Inte Secu Misc

No. of Defects Detected (using

Process 2)
48 42 45 48 27 13

No. of Defects Detected (using

Process 1)
35 32 32 31 22 10

Actual No. of Defects 50 45 47 48 30 14

Comparison of Defects Detected According to Defect Class

(Project 2 Inspected by Team C and Team D)

Univ
ers

ity
 of

 M
ala

ya

136

number of defects detected during the design phase, are tabulated in Table 5.24 and Table

5.25, respectively.

Table 5.24: Distribution of defects detected by defect classes (Design phase)

Project 1 (P1) (Inspected by Team A and Team B)

Artefact

ID

Defect Classes

Algo Assi Chec Docu Func Inte Pack Misc Total

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

P1-A1-D 5 5 3 3 7 7 7 7 3 3 2 2 5 4 1 1 33 32

P1-A2-D 1 1 4 5 2 9 5 6 7 10 3 4 2 1 0 0 24 36

P1-A3-D 5 5 5 6 2 2 7 8 0 1 5 9 1 1 2 3 27 35

P1-A4-D 1 2 1 1 2 3 1 2 2 2 0 0 1 1 0 0 8 11

P1-A5-D 3 6 2 3 2 3 1 1 3 4 3 4 1 3 1 1 16 25

P1-A6-D 6 9 2 4 5 6 1 3 3 4 2 2 2 3 0 0 21 31

P1-A7-D 3 8 1 2 2 2 5 5 1 3 1 1 0 0 0 0 13 21

P1-A8-D 3 5 4 6 3 4 5 6 2 4 3 5 1 3 1 1 22 34

Total 27 41 22 30 25 36 32 38 21 31 19 27 13 16 5 6 164 225

Project 2 (P2) (Inspected by Team C and Team D)

Artefact

ID

Defect Classes

Algo Assi Chec Docm Func Inte Pack Misc Total

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

P2-A1-D 3 3 3 3 6 6 5 5 5 3 2 2 0 0 0 0 24 22

P2-A2-D 3 3 2 2 4 7 4 6 3 3 4 5 2 2 0 0 22 28

P2-A3-D 1 2 2 3 3 3 4 5 1 4 0 1 2 7 1 1 14 26

P2-A4-D 6 7 5 5 4 3 3 7 5 9 3 7 1 3 0 1 27 42

P2-A5-D 2 2 5 8 4 6 2 4 4 8 1 4 3 3 3 2 24 37

P2-A6-D 0 0 4 4 2 2 3 6 3 4 0 5 2 3 0 0 14 24

P2-A7-D 2 2 4 5 2 4 1 5 3 5 0 4 2 3 0 0 14 28

P2-A8-D 3 5 4 8 3 3 3 4 5 5 5 7 3 4 1 1 27 37

Total 20 24 29 38 28 34 25 42 29 41 15 35 15 25 5 5 166 244

Keys:

 Algo – Algorithm Assi – Assignment Chec – Checking

 Docu – Documentation Func – Function Inte – Interface

 Pack – Package Misc – Miscellaneous

 M1 (Process 1) – Formal inspection process and MS Excel

 M2 (Process 2) – ISIP and ArSeC

Table 5.25: Actual total number of defects detected by defect classes (Design

phase)

Actual No. of Defects Detected: Project 1 (P1)

Artefact

ID

Defect Classes

Algo Assi Chec Docu Func Inte Pack Misc Total

P1-A1-D 5 3 7 8 3 2 5 1 34

P1-A2-D 1 5 9 6 10 4 2 0 37

P1-A3-D 5 6 2 8 1 9 1 3 35

Univ
ers

ity
 of

 M
ala

ya

137

P1-A4-D 2 1 3 2 2 0 1 0 11

P1-A5-D 6 3 3 1 4 4 3 1 25

P1-A6-D 9 4 6 3 5 2 3 0 32

P1-A7-D 8 3 2 5 3 1 0 0 22

P1-A8-D 5 6 4 6 4 5 3 1 34

Total 41 31 36 39 32 27 18 6 230

Actual No. of Defects Detected: Project 2 (P2)

Artefact

ID

Defect Classes

Algo Assi Chec Docu Func Inte Pac Misc Total

P2-A1-D 3 3 6 5 5 2 0 0 24
P2-A2-D 3 2 7 6 3 5 2 0 28
P2-A3-D 2 3 3 6 4 1 7 1 27

P2-A4-D 7 8 5 7 9 7 3 1 47

P2-A5-D 2 8 6 4 9 4 4 3 40

P2-A6-D 0 5 2 6 4 5 3 0 25

P2-A7-D 2 5 4 5 5 4 3 0 28
P2-A8-D 5 8 3 4 5 8 4 1 38

Total 24 42 36 43 44 36 26 6 257
Keys:

Algo – Algorithm Assi – Assignment Chec – Checking

Docu – Documentation Func – Function Inte – Interface

Pack – Package Misc – Miscellaneous

Figure 5.8 shows that of the 230 defects (Table 5.26), the two most commonly detected

defects pertain to algorithm, 17.8% (41 / 230 x 100%), and documentation, 17.0% (39 /

230 x 100%), respectively. From these two classes of defects, inspection Team B using

Process 2 detected defects that portion to algorithm, 100% (41 / 41 x 100%), and

documentation, 97.4%: (38 / 39 x 100%), respectively. On the other hand, Team A which

used Process 1, detected defects that pertain to algorithm 65.9% (27 / 41 x 100%) and

documentation 82.1% (32 / 39 x 100%), in these two classes, respectively. It is clear that

the inspectors who used ISIP succeeded in detecting more algorithm-related defects as

well as defects in the other classes, than the inspectors who used the formal inspection

process. Team B also detected 100% of the defects pertaining to Interface, as well as those

pertaining to miscellaneous issues.

Univ
ers

ity
 of

 M
ala

ya

138

Keys:
 Algo – Algorithm Assi – Assignment Chec – Checking

 Docu – Documentation Func – Function Inte – Interface

 Pack – Package Misc – Miscellaneous

Figure 5.8: Comparison of defects detected in Project 1 according to defect class

(inspected by Team A and Team B) with the actual total number of defects in each

defect class (Design phase)

As shown in Figure 5.9, of the 257 defects (Table 5.26), the two most commonly

detected defects in P2 pertain to functionality, 17.1% (44 / 257 x 100%), and

documentation, 16.7% (43 / 257 x 100%), respectively. From these two classes of defects,

inspection Team D using Process 2 detected defects that pertain to functionality, 93.2%

(41 / 44 x 100%), and interface, 97.7% (42 / 43 x 100%), respectively.

41

27

41

31

22

29

36

25

36

39

32

38

32

21

30

27

19

27

18

13

16

6

5

6

Actual No. of Defects

No. of Defects Detected (using

Method 1)

No. of Defects Detected (using

Method 2)

0% 20% 40% 60% 80% 100%

Comparison of Defects Detected According to Defect Class

(Project 1 Inspected by Team A and Team B)

Algo Assi Chec Docu Func Inte Pack Misc

Univ
ers

ity
 of

 M
ala

ya

139

Keys:

 Algo – Algorithm Assi – Assignment Chec – Checking

 Docu – Documentation Func – Function Inte – Interface

 Pack – Package Misc – Miscellaneous

Figure 5.9: Comparison of defects detected in Project 2 according to defect class

(inspected by Team C and Team D) with the actual total number of defects in each

defect class (Design phase)

However, Team C which used Process 1, detected defects pertaining to functionality,

65.9% (29 / 44 x 100%) and defects pertaining to documentation, 58.1% (25 / 43 x 100%)

in these two classes, respectively. Again, it is clear that the inspectors who used ISIP

succeeded in detecting more functionality-related defects, as well as defects in other

classes, than the inspectors who used the formal inspection process, in the design phase.

Team D detected 100% of the defects pertaining to algorithm.

24

20

24

42

29

38

36

28

34

43

25

42

44

29

41

36

15

35

26

15

25

6

5

5

Actual No. of

Defects

No. of Defects

Detected (using

Method 1)

No. of Defects

Detected (using

Method 2)

0% 20% 40% 60% 80% 100%

Comparison of Defects Detected According to Defect Class

(Project 2 Inspected by Team C and Team D)

Algo Assi Chec Docu Func Inte Pack Misc

Univ
ers

ity
 of

 M
ala

ya

140

5.6.5 Lessons learned from the two case studies

In order to evaluate Improved Software Inspection Process (ISIP), two case studies

were conducted. The lessons learned from these two case studies are summarised as

follows:

i. arranging the inspection session time is very difficult and even with prior agreements

some inspectors may not be attended on time. So, sending the opinion or vote after

the session is an appropriate solution;

ii. guidelines for using the system with mandatory requirement to use ArSeC (like secure

Internet connection) have to b included in preparation kit.;

iii. the constraints of virtual session for inspection session especially the time limitation

for each inspector has to be define adequately; and

iv. complete familiarity with the web based tool (ArSeC) and answering the possible

questions prior to start the inspection process is mandatory.

5.7 Summary

This chapter presents the evaluation of ISIP using the data collected from two case

studies on two software development projects. Statistical tests were used to prove the

three hypotheses formulated in chapter 3. Before testing the hypotheses, data screening

techniques that include histogram, test of skewness, and Kolmogorov-Smirnov test of

normality, were employed to determine whether the data of the dependent variables are

distributed normally. Also, boxplot was used to determine and identify any outliers in the

data set. Using Paired-Samples T Test, the total number of real defects detected using

Process 2 is 8.344 (mean) more than the total number of real defects detected using

Process 1, indicating a 42.2% increase in the average total number of real defects detected

using Process 2. As the distribution of the matched paired data of the total inspection time

Univ
ers

ity
 of

 M
ala

ya

141

using Process 2 is not normally distributed, the Related-Samples Wilcoxon Signed Rank

test was used to test hypothesis 2. The test result shows that the average total inspection

time taken when using Process 2 is 7.31 minutes less than the average total inspection

time taken when using Process 1. This is a 3.3% reduction in the average total inspection

time taken to inspect the artefacts. Hypothesis 3 was tested using Paired-Samples T Test.

The test result shows that the productivity of the inspection teams using Process 2 is

higher by 0.04375 than the productivity of the inspection teams using Process 1,

indicating a 49.1% increase in the average productivity of the inspection teams using

Process 2.

Other findings from the case studies include i) a strong correlation between the total

number of defects present in an artefact, and the size of the artefact, as shown by the

Pearson Correlation coefficient of 0.756; ii) the efficiency of ISIP and ArSeC to improve

the quality of software inspection can be determined by calculating and comparing the

total number of real defects detected by each inspection process in relation to the total

number of real defects present in each artefact. The result shows that using ISIP and

ArSeC improves the quality of inspection by 28.8% when compared with using the formal

inspection process and MS Excel, based on the total number of real defects detected in

the artefacts; iii) among the 12 inspectors from inspection teams A-D, the most productive

inspector is ID1 who achieved an average productivity of 0.172 real defects detected per

minute ; iv) the three most commonly detected defects in the requirements analysis phase

of the two case studies are the functionality, performance and interface defect classes; v)

the three most commonly detected defects in the design phase of the two case studies are

the algorithm, documentation, and functionality defect classes.

Although a sample size of 32 sets of data is used in these case studies, the findings

show that using the proposed inspection process, ISIP and its support tool, ArSeC,

Univ
ers

ity
 of

 M
ala

ya

142

software inspectors can improve their productivity by detecting more real defects, while

taking less inspection time. The findings on the most commonly detected defects in the

requirements analysis and design phases will be useful to software inspectors who should

be more alert to these classes of defects when inspecting the artefacts of similar projects

in future.

Univ
ers

ity
 of

 M
ala

ya

143

CHAPTER 6: DISCUSSION AND CONCLUSION

This chapter explains the research validity and reliability, the different ways to

minimise bias as well as ethical issues involved in the research. The problems

encountered and limitations of the research are also discussed. The contributions of the

research are highlighted and suggestions for future investigations based on the problems

and limitations encountered are also presented.

6.1 Research Validity and Reliability

In any research, it is important to check the validity and reliability of the data gathered,

and the measurement method used, and eventual findings. The concept of validity

answers the question, “Does your measurement process and assessment, actually

measures what you intend to measure?” The concept of reliability is an indication of

whether repeated measurements or assessments provide a consistent output under the

same initial circumstances (Cooper, Hedges, & Valentine, 2009).

A pilot case study was conducted on one medium-sized artefact by two inspection

teams (three inspectors per team) from Company 1 (C1) prior to the two case studies.

Problems encountered and weaknesses found during the pilot study were identified and

appropriate corrective measures were taken to ensure that the actual case studies will be

carried out in a systematic manner to ensure research validity and reliability.

In this research, four types of validity (statistical validity, construct validity, external

validity, and internal validity) have been considered and described in detail in section 3.3

(chapter 3). The inspectors who participated in the case studies had not previously

inspected the artefacts used in the case studies. Furthermore, the two case studies involved

four different and independent inspection teams consisting of inspectors with the same

skill levels – each team consisting of two highly-skilled inspectors and one skilled

Univ
ers

ity
 of

 M
ala

ya

144

inspector, respectively. The time for inspection preparation and the inspection session is

limited to two hours. Hence, the two case studies were conducted by the four inspection

teams using the same procedures, same tools, and under the same conditions using both

the formal inspection process (by Team A and Team C) and ISIP (by Team B and Team

D), respectively. Also, in the test of hypothesis, data screening, histograms, skewness test,

Kolmogorov-Smirnov test and box-plot were used to determine the normality of data

distribution of the dependent variables, and to identify any possible departure from

normality. The Paired-Samples T Test was applied, as it is the most appropriate test to

conduct a statistical test that involves two matched pairs of dependent variables (Paired-

Samples T Test, 2015).

In the software inspection process, the inspection metrics considered include the total

number of defects detected, the total number of false positives, and the total inspection

time of each inspection process. The data were recorded using MS Excel (for those using

process 1) and ArSeC (for those using process 2), and based on an inspection data

recording form specially designed for the case studies to ensure that inspection data were

recorded systematically and correctly. The total number of real (actual) defects identified

was compared with historical records from past inspections to determine whether ISIP

has effected improvement on the quality of the software inspection process. In both case

studies, the ratio scale is used in the measurement of the three dependent variables – the

total number of defects detected, the total inspection time, and the productivity of each

inspection team. The inspection data recording form and the use of MS Excel and ArSeC

with process 1 and process 2, respectively, have contributed to the accuracy of the

measurements.

Univ
ers

ity
 of

 M
ala

ya

145

6.2 Bias in the Research

Besides validity and reliability, this study has also addressed the issue of biasness

(Graziano & Raulin, 2014). Randomisation was used in the selection of projects (P1 and

P2) from the two companies (C1 and C2); the selection of the 16 artefacts of P1 and P2

of the requirements analysis and design phases; and the selection of the 12 inspectors

based on their inspection work experience and inspection competency. The random

assignment of artefacts to the randomly selected inspectors, helps to avoid bias and

confirm the validity of the inspection results. Also, the two case studies were carried out

using the same experimental design and procedures, and under similar conditions, instead

of repeating the inspections based on ISIP on the same sets of artefacts by the same team

of inspectors. This replication avoids bias during the inspection of defects, and makes it

possible to estimate the mean effect of the inspection process (i.e. ISIP) evaluated in this

research.

Furthermore, a complete balanced block was used in assigning the artefacts and

inspectors in the two case studies, as shown in Figure 6.1, below. In each case study, eight

artefacts from the requirements analysis and design phases, respectively, from each

company, were selected at random for the inspection process. Each inspection team has

three inspectors comprising two highly skilled inspectors and one skilled inspector. They

were selected at random from the two groups of highly skilled and skilled inspectors of

C1 and C2. The assignment of an equal number of artefacts and an equal number of

inspectors of the same skill level for each case study will eliminate the confounding effect

which would have resulted if different number of artefacts had been assigned. In addition,

having inspectors of different skill levels will also result in having different number of

real defects being detected by the inspectors with different inspection capabilities. The

pilot case study helped in reducing the potential impact of limitations associated with his

Univ
ers

ity
 of

 M
ala

ya

146

the research study by using the feedback of the inspectors to improve the inspection kit

and enhanced the virtual inspection session.

Table 6.1: Complete balanced block design in assigning artefacts and inspectors to

case study

Artefacts Case Study 1 Case Study 2

S1 S2 S1 S2

Requirements Analysis

Phase

8 8 8 8

Design Phase 8 8 8 8

Total No. of Artefacts 16 16 16 16

Skill Level Inspectors

Team A Team B Team C Team D

Highly Skilled 2 2 2 2

Skilled 1 1 1 1

Total No. of Inspectors 3 3 3 3

Keys: S1 (Process 1) – Formal Inspection Process S2 (Process 2) – ISIP

Furthermore, the inspectors were informed that there will be no evaluation on their

individual productivity. This was done to avoid or pre-empt possible “dishonest”

behaviours of the inspectors in the case study. An inspector who is aware that his/her

productivity will be evaluated to determine the inspector with the highest or lowest

productivity, will try to perform well in the inspection process by putting in extra

efforts/time to detect more defects than what he/she would normally have detected. This

will affect the outcome of the inspection data analysis, and thus, the validity of this

research.

6.3 Ethical Issues

The 12 inspectors (human) were selected by their respective project manager, and they

participated in the case study voluntarily, therefore, appropriate measures were taken to

ensure their rights of privacy and confidentiality. The profiles of the inspectors, profiles

of the companies, project managers, etc., involved in the two case studies were not

revealed throughout this research to any other third party. Besides, all the inspectors were

Univ
ers

ity
 of

 M
ala

ya

147

not aware that their individual inspection productivity was being measured (to ensure

research validity) and reported in this thesis, and that the findings are not reported to their

respective project manager. This is to ensure that their personal interests are protected,

and their career path in the company will not be affected in any way.

6.4 Problems Encountered

Throughout the research, a few problems were encountered. These include difficulty in

getting the cooperation from the software companies to participate in the case studies,

the number of artefacts used, and the number of inspectors permitted to participate in

the case studies. These problems are discussed in detail, below.

6.4.1 Cooperation from software companies

To test the three hypotheses formulated in this research, more than 12 software

development companies in Malaysia were initially invited to participate in the case

studies. Sadly, all the companies were reluctant to participate as their software projects

are commercial systems, which means that they the contents of the systems cannot be

disclosed to any external parties. Furthermore, they have tight project deadlines to meet,

and hence, unable to commit any inspection teams to participate in the research, even

though the software development projects might even be in-house software

development projects. However, through the assistance from friends, the project

managers from a manufacturing company and a trading company agreed to participate

in the case studies. The companies were concerned about their reputation and image,

how their inspectors will benefit, and the quality of their artefacts to be inspected. To

reassure them, a non-disclosure agreement was signed to ensure that all privacy and

confidentiality requirements are complied with as well as address their other concerns.

The inspection data collected and used for analysis were returned to the company upon

completion of the research.

Univ
ers

ity
 of

 M
ala

ya

148

6.4.2 Number of artefacts used in the case study

The number of defects detected in an artefact is a reflection of the quality and the

competency of the author of the artefact. Hence, the project managers of the two

participating companies were very concerned that the quality of those artefacts used in

the case studies will be ‘opening known’ to an external party (i.e. the researcher of this

study). The companies feared that the researcher might have a negative impression of the

competency of the authors who produced those artefacts as well as the quality of the

software systems, which may contain many defects in the artefacts. Hence, the project

manager of each company only allowed eight artefacts of the requirements analysis and

design phases, selected at random, to be used in the case study, respectively.

A statistical test often requires 30 or more sets of data for the test of hypothesis, thus,

another case study should be conducted to collect more data to test the three hypotheses

formulated for this research. Owing to time constraints, only two case studies were carried

out to collect sufficient inspection data needed for the statistical tests. Hence, in this

research, only the defects from the 32 artefacts were used in data analysis and to prove

the hypotheses (i.e. defects detected from 16 artefacts of the requirements analysis, and

design phases, respectively, of the two different software projects).

6.4.3 Number of inspectors involved in the case study

Most of the inspectors were also involved as software engineers in the development of

other software systems for in-house applications. After negotiating with the project

managers of the two participating companies, only six inspectors - selected at random and

based on their inspection skill level and experience - were allowed to participate in the

case studies. However, most of the selected inspectors expressed concern that their

productivity will be measured and compared with other inspectors in the inspection team,

and thus, were reluctant to participate in the case study. It was only after they were assured

Univ
ers

ity
 of

 M
ala

ya

149

that their work performance will not be affected by their participation in the case study,

and that their productivity will not be measured, then all the 12 inspectors agreed to

participate. Hence, in the two case studies, only two inspection teams - with three

inspectors in each team comprising two highly skilled inspectors and one skilled inspector

- were formed to inspect the artefacts. Owing to time constraints (the two project

managers allowed not more than three months for the case studies), and the number of

inspectors allowed to participate in the case studies, other team structures such as teams

with three skilled inspectors, two skilled inspectors with one semi-skilled inspector, etc.,

were not formed to conduct inspections on the 16 artefacts, to determine the impact of

inspection team structure on software inspection.

6.5 Contributions of the Research Study

This research had proposed an enhanced formal inspection process comprising four

stages which is aimed at improving the quality of software inspection by introducing

enhancements to the inspection activity and other areas that had been identified for

improvement. The enhancements that contributed to the increase in the number of real

defects detected, decrease in the inspection time, and an increase of the productivity of

the inspection team are described below.

6.5.1 The number of inspectors in the inspection team

In Fagan’s formal inspection process (FIP), it is recommended that an inspection team

should minimally consists of four to five members comprising one moderator, one author,

one reader, one recorder (this responsibility can be assigned to the moderator) and one

inspector (Laitenberger, 2002). In this case, only one inspector is involved. In ISIP, the

inspection team should minimally have one moderator, one author, and a minimum of

three inspectors up to a maximum of five inspectors. In the two case studies, the team has

three inspectors. The average increase in the total number of real defects detected is 8.344

Univ
ers

ity
 of

 M
ala

ya

150

(42.2%) more than the total number of real defects detected using FIP. Hence, it is

obvious that having more inspectors can help to detect more real defects in an artefact.

6.5.2 The roles and responsibilities of the inspection team

As mentioned in i) above, in FIP, an inspection team may have to perform four to five

roles – moderator, author, reader, recorder (this responsibility can be assigned to the

moderator) and inspector (Laitenberger, 2002). Each of them has specific responsibilities.

However, in ISIP, there are only three roles – moderator, author, and inspector, in which

the moderator also assume the role of a reader, as well as a recorder. This team

composition optimises the usage of human resources.

6.5.3 Selection of inspectors based on inspector skill levels

The selection of inspectors is often based on their inspection experience and

knowledge (Fagan, 1986). A drawback of this selection approach is that inspectors who

are inexperienced will not be chosen to inspect artefacts although they could learn and

benefit from their involvement in the inspection process (Laitenberger, 2002). In ISIP,

the selection of inspectors is based on the skill levels - highly skilled, skilled, and semi-

skilled - and the expertise of each inspector, which is evaluated using the three parameters

– number of years of inspection, number of artefacts inspected, and average inspection

productivity. In ISIP, it is recommended that the team structure should be composed of

inspectors with different skill levels such as two highly skilled and one skilled inspectors

(as in the two case studies), or two highly skilled and one semi-skilled inspectors, or any

other combinations so that the skilled and semi-skilled inspectors also have the

opportunity to learn from the highly skilled inspectors in the inspection process.

6.5.4 Inspection checklist

In the traditional formal inspection process (FIP), checklist and checklist-reading were

used during the inspection process (Laitenberger, 2002). However, from the literature

Univ
ers

ity
 of

 M
ala

ya

151

review, it is found that there is no mention on the construction of the questions in the

checklists, and also no mention of whether a database is created to maintain the checklist

questions of past inspection projects. In ISIP, a Checklists database is created to maintain

all the checklists used in past software inspection projects. This database can serve as a

reference source for the moderator to create a fairly “comprehensive and complete”

checklist easily and quickly based on the checklists of similar past software development

projects. In addition, each question or statement in the checklists is specific and clearly

phrased and devoid of any ambiguities, and this already facilitates decision making on

whether an item that falls under a question/statement is truly a defect. Obviously, a fairly

“comprehensive and complete” checklist would help in increasing the productivity of the

inspection team as reflected by the detection of more defects and within shorter inspection

time, when compared to a newly prepared inspection checklist.

6.5.5 Inspection process and inconsistencies resolution

Fagan’s FIP supports the use of face-to-face group meeting as it promotes synergy

leading to the detection of most of the defects, and resolution of the inconsistencies

(Fagan, 1976; Fagan, 1986). On the other hand, ISIP allows inspectors who are not

available during the scheduled inspection session to conduct inspection on the artefacts

individually, and submit the inspection outcomes to the moderator for consolidation by

the stipulated inspection timeline. Also, any ambiguity pertaining to the artefacts can be

clarified with the author, and inconsistencies can be resolved easily using the proposed

weighted voting process. Al these can be done online without the need to have all the

inspection team members to be present at a fixed scheduled time. This feature eases the

inspection process and resolution of the inconsistencies, and thus, helps to reduce the

number of iterated inspection sessions, and reduce the total inspection time.

Univ
ers

ity
 of

 M
ala

ya

152

6.5.6 Potential causes of each defect

Providing solutions to the defects is not the focus of an inspection process. However,

ISIP can ease the rework process of the author, by allowing inspectors to retrieve the

potential causes of each real (actual) defect (if the potential causes are available in the

Causes database), and distribute to the author for reference and resolution together with

the inspection report. Logically, this enhancement will help in reducing the rework time

even though it was not recorded and considered in the two case studies. There ahs been

no report in the literature about this feature in the FIP.

6.5.7 Use of automated inspection tool (ArSeC) and inspection meeting

The use of ArSeC supports the inspection process by facilitating the distribution of the

inspection documents to the inspection team members; recording the data and using the

data in calculation of inspection data (project details, inspector details, number of defects

detected by each inspector, inspection time, automatic calculation of the total number of

real (actual) defects detected, total inspection time, etc.); facilitating the selection of

inspectors; sending reminders to the related parties concerned; facilitate the storage and

retrieval of data by the inspection team members such as defect data, checklists, defect

causes, etc.; etc. As it is a Web-based inspection support tool, the inspection meetings can

be held at anytime and at anywhere to accommodate inspection team members who might

be at different geographical locations. This has helped to improve the productivity of the

inspection team and reduce the total inspection time. There has been no report in the

literature on the availability of an automated tool to support the FIP (Gimpel, 2014, Yogi,

, Yatna, & Raharno, 2014).

Table 6.2 shows a summary of the comparison between the features of the formal

inspection process and ISIP.

Univ
ers

ity
 of

 M
ala

ya

153

Table 6.2: Comparison between the formal inspection process and ISIP

Features Formal

Inspection Process

Enhanced Formal

Inspection Process (ISIP)

Size of inspection team 4 or 5 members. 5 or 7 members.

Roles and responsibilities

of inspection team:

moderator, author, reader,

recorder, and inspector

4 or 5 roles, with

respective

responsibilities.

3 roles, with respective

responsibilities, but moderator

also assumes the roles of reader

and recorder.

Selection of inspection

team members

Experience and

knowledge.

Inspector skill level (highly

skilled, skilled, or semi-skilled)

and areas of expertise.

Inspection checklist No checklist

database.

Checklists database – allows

storing and retrieving of

inspection checklists from

similar past projects;

questions/statements in the

checklist are specific and clearly

phrased.

Inspection process and

inconsistencies resolution

Face-to-face group

inspection meeting.

Allows online group inspection

meeting, and individual

inspection and reporting.

Potential causes of each

defect

No defect causes

database to store

potential causes for

each defect.

A Causes database is available to

store the potential causes for

defects detected in the

requirements analysis and design

phases.

Use of automated

inspection tool and

inspection meeting

No automated tool

to support FIP.

Availability of an automated tool

(ArSeC) to support ISIP

6.6 Research Conclusion

This research focuses on improving the quality of software inspection process by

making enhancements to the 7-step formal inspection process introduced by Michael

Fagan. The enhanced inspection process (ISIP), has only four main inspection stages –

inspection preparation, defect detection, pioneer kernel, and process appraisal. ISIP

enhances the formal inspection process by introducing new features that are not found in

Univ
ers

ity
 of

 M
ala

ya

154

the latter process, as evident in the literature review. The enhancements made are confined

to the inspection of the artefacts of the requirements analysis and design phases. To

support the inspection process, an inspection tool, ArSeC, was developed to facilitate: the

selection of inspectors; distribution of artefacts and related inspection documents to the

inspection team members; online inspection process; storage of important inspection data

(inspector profiles, checklists, defects, and causes of the defects); recording of inspection

process, data and results; compilation of inspection outcomes; and distribution of

inspection reports to all the parties concerned.

The results of the case studies show that the quality of software inspection is improved

using ISIP (RQ1). The inspection time is reduced and the number of defects detected

using the ISIP was more than the defects detected using the formal process, therefore the

quality of software could be improved (RQ2). To answer the RQ3, the quality of the ISIP

was evaluated based on three measurements: i) the total number of real defects detected

in the artefacts, ii) the total inspection time to inspect an artefact, and iii) the productivity

of the inspection teams. An increase in i) and iii), and a decrease in ii) reflects

improvement in the quality of software inspection. In this research, two case studies were

carried out, and the results from the inspection of 32 artefacts (16 requirements analysis

and design artefacts, respectively) were used to prove the three hypotheses pertaining to

the quality of software inspection, established in this study. The result of Paired-Samples

T Test show that on an average, there is an increase in the total number of real defects

detected (i.e. 8.344, or 42.2%) and an average increase of 0.04375 in the productivity of

the inspection teams that used ISIP to conduct inspection process on the 16 artefacts

assigned to them. Similarly, using the Related-samples Wilcoxon Signed Rank test, the

average total inspection time has been reduced by 7.31, i.e. a reduction of 3.3%. As only

16 artefacts were used in the inspection process, the findings are only valid in the two

case studies, and they cannot be used to generalise the efficiency of ISIP in improving the

Univ
ers

ity
 of

 M
ala

ya

155

quality of the software inspection process. More case studies have to be conducted to

collect sufficient inspection data to test the three hypotheses, and to arrive at more cogent

inferences. Maintaining the ArSeC databases incurs some overhead costs and hence, a

limitation of using the proposed software inspection process. Despite this limitation, this

research has achieved the four objectives defined in chapter 1 and contributed new

insights to the area of software inspection by answering the three research questions.

6.7 Future Research

In this research, the problems encountered and the research limitations were discussed

in section 6.4. The shortcomings pointed out should provide the motivation for further

research to expand the scope of future studies to address the problems, as well as other

issues as follows:

 Design inspection checklists for other development phases;

 Review the defect classification and enhance the defects list for the requirements

analysis and design phases, and prioritise them according to severity level and

frequency of occurrence;

 Analyse and classify the defects for other development phases;

 Conduct comparative studies on the efficiency of the 3-inspector and 5-inspector

team structures, comprising inspectors with different skill levels and areas of

expertise;

 Conduct more case studies to evaluate ISIP by involving software companies to

participate in the study;

 Increase the number of artefacts, and use a variety of artefacts with different

complexities levels to determine the quality of ISIP in software inspection

process;

Univ
ers

ity
 of

 M
ala

ya

156

 Conduct a case study on one large software development project involving

artefacts in all phases of the development lifecycle to determine the efficiency of

ISIP in detecting defects with sufficient number of artefacts (i.e. more than 30

artefacts) to eliminate the confounding effects when artefacts from different

software projects are used in data analysis and to prove the hypotheses established

in this research.

 Investigate the productivity of other inspection team members such as the

moderator and author;

 Investigate the productivity of authors in the rework process; and

 Providing three (or more) possible answers (such as Pass/Partial/ Fail options) to

allow more flexible inspection process.

Univ
ers

ity
 of

 M
ala

ya

157

REFERENCES

Ackerman, A. F., Buchwald, L. S., & Lewsky, F. H. (1989). Software Inspections: An

effective verification process. IEEE Software, 6(3): 31-36.

Alshazly, A. A., Elfatatry, A. M., & Abougabal, M. S. (2014). Detecting defects in

software requirements specification. Alexandria Engineering Journal, 53(3), 513–

527.

Anderson, P., Reps, T., & Teitelbaum, T. (2003). Design and implementation of a fine-

grained software inspection tool. IEEE Transactions on Software Engineering,

29(8), 721-721-733. doi:10.1109/TSE.2003.

Anderson, P., Reps, T., Teitelbaum, T., & Zarins, M. (2003). Tool support for fine-

grained software inspection. IEEE Software, 20(4), 42-42-50.

doi:10.1109/MS.2003.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recovering

traceability links between code and documentation. IEEE Transaction on Software

Engineering, 28(10), 970–983.

Armour P. G. (2005). Communications of the ACM, 48(1), 15-18, 2005.

Barnard, J. and Price, A., 1994. Managing Code Inspection Information. IEEE

Software, 11(2):59-69.

Berling, T, Thelin, T. (2003). An industrial case study of the verification and validation

activities. Proceedings 5th International Workshop on Enterprise Networking and

Computing in Healthcare Industry (IEEE Cat No03EX717). IEEE Comput. Soc;

2003.

Bernd F., Lionel C. B., & Ferdinand V.ollei (2005). Using multiple adaptive regression

splines to support decision making in code inspections. Journal of Systems and

Software, 73(2), 205–217. doi:10.1016/j.jss.2004.01.015.

Biffl, S. (2000). Using inspection data for defect estimation. IEEE Software.17(6):36–43.

Bisant, D. B. & Lyle, J. R. (1989). A two-person inspection method to improve

programming productivity. IEEE Transactions on Software Engineering,

15(10):1294-1304.

Blakely, F. W. & Boles, M. E. (1991). A case study of code inspections. Hewlett-Packard

Journal, 42(4):58-63.

Boehm, B., & Basili, V. R. (2000). Gaining intellectual control of software development

[Perspectives]. Computer, 33(5), 27–33.

Boehm, B., & Basili, V.R. (2005). Software defect reduction top-10 list. Foundations of

Empirical Software Engineering, 426–431.

Univ
ers

ity
 of

 M
ala

ya

158

Boehm, B.; Basili, V.R. (2001). Top 10 list [software development], Computer, 34(1),

135-137.

Bourgeois, K. V. (1996). Process insights from a large-scale software inspections data

analysis. Cross Talk, Journal of Defense Software Engineering, 17-23.

Carver, J. C., Nagappan, N., & Page, A. (2008). The Impact of Educational Background

on the Effectiveness of Requirements Inspections: An Empirical Study. IEEE

Transactions on Software Engineering, 34(6), 800–812.

Chaar, J. K., Halliday, M. J., Bhandari, I. S., & Chillarege, R. (1993). In-process

evaluation for software inspection and test. IEEE Transactions on Software

Engineering, 19(11), 1055-1055-1070.

Chandani, P., & Gupta, C. (2014). A Survey on Effective Defect Prevention - 3T

Approach. International Journal of Information Engineering and Electronic

Business, 6(1), 32–41.

Chen, Z., & Agrawal, H. (2014). Special issue on Emerging Topics on Software

Debugging. Journal of Systems and Software, 90, 1–2.

doi:10.1016/j.jss.2014.01.032

Chernak, Y. (1996). A statistical approach to the inspection checklist formal synthesis

and improvement. IEEE Transactions on Software Engineering, 22(12):866-874.

 Chernak, Y. (2001). Validating and improving test-case effectiveness, IEEE Software,

18(1),81-86, Jan/Feb 2001.

Chillarege, R, Bhandari, IS, Chaar, JK, Halliday, MJ, Moebus, DS, & Ray, BK. (1992).

Orthogonal defect classification-a concept for in-process measurements. IEEE

Transactions on Software Engineering. 18(11):943–56.

Conradi, R., Marjara, A., & Skåtevik, B. (1999). An empirical study of inspection and

testing data at Ericsson, Norway.

Cooper, H., Hedges, L., & Valentine, J. (2009). The handbook of research synthesis and

meta-analysis. New York, NY: Russell Sage Foundation Publications.

Cronbach, L. J. & Meehl, P. E. (1955). construct validity in psychological tests.

Psychological Bulletin, 52 (4): 281–302.

De Sousa Coelho, J. J., Braga, J. L., & Ambrósio, B. G. (2013). System dynamics model

for simulation of the software inspection process. ACM SIGSOFT Software

Engineering Notes, 38(5), 1.

Denger, C., & Shull, F. (2007). A practical approach for quality-driven inspections. IEEE

Software, 24(2), 79-79-86.

Dittrich, Y. (2014). Software engineering beyond the project – Sustaining software

ecosystems. Information and Software Technology, 56(11), 1436–1456.

Univ
ers

ity
 of

 M
ala

ya

159

Dunham, J. R. (1989). V&V in the next decade [software validation]. IEEE Software,

6(3), 47–53.

Dyer, M. (1992a). The cleanroom approach to quality software development. New York:

John Wiley and Sons, Inc.

Dyer, M. (1992b). Verification-based inspection. Proceedings of the 26th Annual Hawaii

International Conference on System Sciences, pp. 418-427.

Eick, S. G., Loader, C. R., Long, M. D., Votta, L. G., & Vander Wiel, S. (1992,June).

Estimating software fault content before coding. In Proceedings of the 14th

international conference on Software engineering (pp. 59-65). ACM.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program

development. IBM Systems Journal, 15(3):182-211.

Fagan, M. E. (1986). Advances in software inspections. IEEE Transactions on Software

Engineering, 12(7):744-751.

Fagan, M. E. (1999). Design and code inspections to reduce errors in program

development. IBM Systems Journal 38(2.3): 258–287.

Fagan, M. E. (2002). Advances in software inspections. Software Pioneers, 609–630.

Fagan, M. E. (2002). Reviews and Inspections. PP. 214-225.

Faraj, S., & Sambamurthy, V. (2006). Leadership of information systems development

projects. IEEE Transactions on Engineering. Management, 53(2), 238–249.

Fernandez, A., Abrahão, S., & Insfran, E. (2013). Empirical validation of a usability

inspection method for model-driven Web development. Journal of Systems and

Software, 86(1), 161–186.

Freimut, B., Briand, L. C., & Vollei, F. (2005). Determining inspection cost-effectiveness

by combining project data and expert opinion. IEEE Transactions on Software

Engineering, 31(12), 1074–1092.

Gilb, T. & Graham, D. (1993). Software inspection. New York: Addison-Wesley

Publishing Company.

Gimpel, J. (2014). Software That Checks Software: The Impact of PC-lint. IEEE

Software, 31(1), 15–19. doi:10.1109/ms.2014.13

Gomes, J. O., & Moita, G. F. (2015). On the Validation of a Specific Development

Process for Scientific Software using the Inspection Technique Abakós, 3(2).

doi:10.5752/p.2316-9451.2015v3n2p3

Gopalakrishnan, R., Nair, T., Suma, V., and Kumar, T. (2012). “Significance of depth of

inspection and inspection performance metrics for consistent defect management in

software industry,” IET Software,. 6(6), 524, 2012.

Univ
ers

ity
 of

 M
ala

ya

160

Goswami, A., Walia, G., & Singh, A. (2015). Using Learning Styles of Software

Professionals to Improve Their Inspection Team Performance. International Journal

of Software Engineering and Knowledge Engineering, 25(9), 1721–1726.

doi:10.1142/s0218194015710060.

Grady, R. B., & Slack, T. V. (1994). Key lessons in achieving widespread inspection use.

IEEE Software, 11(4), 46–57.

Graziano, A. M., & Raulin, M. L. (2014). Research methods – A process of inquiry. 8th

ed. Essex: England: Pearson Education Limited.

Gregory, F. D. (1993) Software formal inspections standard. Technical Report NASA-

STD-2202-93, NASA Office of Safety and Mission Assurance, Washington, D.C.:

NASA.

Hatton L. (2008). Testing the Value of Checklists in Code Inspections. IEEE Software.

25(4):82–8.

Hong, Y.• Baik, J., Ko, I. Y., & Choi, H. J. (2008, May). A Va lue- Added Predictive

Defect Type Distribution Model based on Project Characteristics. lnComputer and

Information Science, 2008.ICIS 08. Seventh IEEE/ACIS International Conference

on (pp. 469-474). IEEE.

Houdek, F., Schwinn, T., & Ernst, D. (2002). Defect detection for executable

specifications — An experiment. International Journal of Software Engineering and

Knowledge Engineering, 12(6), 637–655.

Huhns, M. N., & Singh, M. P. (2005). Service-oriented computing: key concepts and

principles. IEEE Internet Computing, 9(1), 75–81.

Hussain, F., & Shehzad, M. S. (2007). “Robust and Flexible Software Inspection model”

for Software Re-Engineering Process: Abstraction phase. 14th Asia-Pacific

Software Engineering Conference (APSEC’07).

Huzooree, G., & Devi Ramdoo, V. (2015). Evaluation of Code Inspection on an

Outsourced Software Project in Mauritius. IJCA, 113(10), 39–44.

doi:10.5120/19864-1827

IEEE Standard for Software Reviews and Audits (IEEE STD 1028-1988), IEEE

Computer Society, 1988.

IEEE Standard for software reviews and audits. IEEE Std 1028-1988, Soft. Eng. Tech.

Comm. of the IEEE Computer Society.

IEEE Std 1044-2009, 2009, IEEE Standard Classification for Software Anomalies IEEE

standard classification for software anomalies. IEEE Std 1044-2009.

IEEE Std 730-2002 (Revision of IEEE Sid 730-1998), IEEE Standard for Software Qualit

Assurance Plans, 2002.

Univ
ers

ity
 of

 M
ala

ya

161

J. W. Wilkerson, J. F. Nunamaker, and R. Mercer, “Comparing the Defect Reduction

Benefits of Code Inspection and Test-Driven Development,” IEEE Transactions on

Software Engineering, vol. 38, no. 3, pp. 547–560, May 2012.

Jalote, P., Mittal, A. K., & Prajapat, R. G. (2007). On Optimum Module Size for Software

Inspections. Int. J. Rel. Qual. Saf. Eng., 14(03), 283–295.

Jia Xu. (2003). Making software timing properties easier to inspect and verify. IEEE

Software, 20(4), 34–41.

Kaner, C. (1998). The Performance of the N-Fold Requirement Inspection Method,

Requirements Engineering Journal, 2(2): 114-116.

Kantorowitz, E., Guttman. A., & Arzi, L. (1997). The performance of the N-Fold

requirement inspection method. Requirements Engineering, 2(3), 152-164.

Kaplan, C., Clark, R., & Tang, V. (1995). Secrets of Software Quality: 40 Innovations

from IBM. New York: McGraw Hill, Inc.

Kasai, N., Morisaki, S., & Matsumoto, K. (2013). Fault-Prone Module Prediction Using

a Prediction Model and Manual Inspection. 2013 20th Asia-Pacific Software

Engineering Conference (APSEC).

Kelly D. & Shepard, T. (2004). “Task-directed software inspection,” Journal of Systems

and Software, 73(2), 361–368.

Knight JC, Myers EA. (1993). An improved inspection technique. Communications of

the ACM. Association for Computing Machinery (ACM); 1993 Nov 1;36(11):51–

61.

Knight, J. C. & Myers, E. A. (1991). Phased Inspections and their Implementation. ACM

SIGSOFT Software Engineering Notes, 16(3):29-35.

Kollanus S. (2009). Experiences from using ICMM in inspection process assessment.

Software Quality Journal. Springer Science + Business Media; 2009 Jan

10;17(2):177–87.

Kollanus, S., & Koskinen, J. (2009). Survey of Software Inspection Research. The Open

Software Engineering Journal, 3(1), 15–34.

Koru AG, Dongsong Zhang, El Emam K, Hongfang Liu. (2009). An Investigation into

the Functional Form of the Size-Defect Relationship for Software Modules. IEEE

Transactions on Software Engineering. 35(2):293–304.

Laitenberger, O. (2002). A Survey of Software Inspection Technologies. Handbook on

Software Engineering and Knowledge Engineering. In 2 Volumes, 517–555.

Land, L. P. W., Sauer, C., & Jeffery, R. (1997). Validating the defect detection

performance advantage of group designs for software reviews. ACM SIGSOFT

Software Engineering Notes, 22(6), 294–309.

Univ
ers

ity
 of

 M
ala

ya

162

Lange, C.F.J.; Chaudron, M.R.V.; Muskens, J. (2006). "In practice: UML software

architecture and design description," Software, IEEE , vol.23, no.2, pp. 40- 46,

March-April 2006.

Leite, J. C. S. do P., Doorn, J. H., Hadad, G. D. S., & Kaplan, G. N. (2004). Scenario

inspections. Requirements Eng, 10(1), 1–21.

Li, X., Mutha, C., & Smidts, C. S. (2015). An automated software reliability prediction

system for safety critical software. Empir Software Eng. doi:10.1007/s10664-015-

9412-6

MacDonald F, Miller J, Brooks A, Roper M, Wood M. (1995). A review of tool support

for software inspection. Proceedings Seventh International Workshop on

Computer-Aided Software Engineering. IEEE Comput. Soc. Press; 1995.

Madachy, R., Little, L., & Fan, S. (1993). Analysis of a Successful Inspection Program.

Proccedings of the 18th Annual NASA Software Engineering Laboratory

Workshop, 176-198.

Mahmoud, M. A. W., Haggag, M. Y., & Abd, A. E. B. (2015). Cost Analysis of a Two-

Unit Cold Standby System Considering Hardware, Software Failures and Inspection

with Maximum Repair Time. IJCA, 129(5), 1–8. doi:10.5120/ijca2015906910

Malhotra, R., & Taneja, G. (2015). Comparative Analysis of two Stochastic Models

subjected to Inspection and Scheduled Maintenance. IJSEIA, 9(10), 179–188.

doi:10.14257/ijseia.2015.9.10.18

 Mantyla, M. V., & Lassenius, C. (2009). What Types of Defects Are Really Discovered

in Code Reviews? IEEE Transactions on Software Engineering. 35(3), 430–448.

Martin, J. & Tsai, W.T. (1990). N-fold Inspection: A Requirements Analysis Technique.

Communications of the ACM, 33(2):225-232.

Mashayekhi, V., Drake, J. M., Tsai, W., & Riedl, J. (1993). Distributed, collaborative

software inspection. IEEE Software, 10(5), 66-66-75.

Mello, R. M. de, Teixeira, E. N., Schots, M., Werner, C. M. L., & Travassos, G. H. (2012).

Checklist-Based Inspection Technique for Feature Models Review. 2012 Sixth

Brazilian Symposium on Software Components, Architectures and Reuse.

Meyer, B. (2008). Design and code reviews in the age of the internet. Communications

of ACM, 51(9), 66.

Miller, J., & Yin, Z. (2004). A cognitive-based mechanism for constructing software

inspection teams. IEEE Transactions on Software Engineering, 30(11), 811-825.

Minetola, P., Iuliano, L., & Calignano, F. (2015). A customer oriented methodology for

reverse engineering software selection in the computer aided inspection scenario.

Computers in Industry, 67, 54–71. doi:10.1016/j.compind.2014.11.002

Mishra, D., & Mishra, A. (2009). Simplified software inspection process in compliance

with international standards. Computer Standards & Interfaces, 31(4), 763–771.

Univ
ers

ity
 of

 M
ala

ya

163

Misra, S., Fernández, L., & Colomo-Palacios, R. (2014). A simplified model for software

inspection. J. Softw. Evol. and Proc., 26(12), 1297–1315.

Myers W. (1978). The Need for Software Engineering. Computer. 1978 Feb;11(2):12–

26.

Nair T .R. G., Suma V, Kumar NRS. (2011). An analytical approach for project managers

in effective defect management in software process. 2011 Malaysian Conference in

Software Engineering. IEEE; 2011 Dec.

Nair, T. R. G., & Nair, N. G. (2011). Estimation of the characteristics of a software team

for implementing an effective inspection process through inspection performance

metric. Software Quality Professional, 13(2), 14-14-24.

Nair, T.R., Suma V. (2010). Impact Analysis of Inspection Process for Effective Defect

Management in Software Development. Software Quality Professional Journal,

American Society for Quality (ASQ). (March 2010) 4-14.

NASA-STD-8739.9 (2013). https://standards.nasa.gov/documents/detail/3315679

National Aeronautics and Space Administration. (1993). Software Formal Inspection

Guidebook. Technical Report NASA-GB-A302, National Aeronautics and Space

Administration. http://satc.gsfc.nasa.gov/fi/fipage.html.

O’Regan, G. (2002). Formal Methods and Design, A Practical Approach to Software

Quality, 239–277, Springer. 2002.

Paired-samples T Test. (2015). Paired-samples T Test. (2015). retrieved from

http://10.100.21.18:54604/help/index.jsp?topic=%2Fcom.ibm.spss.statistics.help

%2Fspss%2Fbase%2Fovervw_auto_0.htm. Date Accessed: 2 March 2015.

Parnas DL, Lawford M. (2003). The role of inspection in software quality assurance.

IEEE Transactions on Software Engineering. 29(8):674–6.

Parnas, D. L. & Weiss, D. (1985). Active Design Reviews: Principles and Practices.

Proceedings of the 8th International Conference on Software Engineering, 132-136.

Also Available as NRL Report 8927, 18 November 1985.

Parnas, D. L. (1987). Active Design Reviews: Principles and Practice. Journal of Systems

and Software, 7:259-265.

Parnas, D. L., & Lawford, M. (2003). Inspection's role in software quality assurance.

IEEE Software, 20(4), 16-16-20.

Parnas, D., & Weiss, D. M. (1987). Active design reviews: Principles and practices.

Journal of Systems and Software, 7(4), 259–265.

Perry, D. E., Porter, A., Wade, M. W., Votta, L. G., & Perpich, J. (2002). Reducing

inspection interval in large-scale software development. IEEE Transactions on

Software Engineering, 28(7), 695-705.

Univ
ers

ity
 of

 M
ala

ya

164

Porter AA, Votta LG, Basili VR. (1995). Comparing detection methods for software

requirements inspections: a replicated experiment. IEEE Transactions on Software

Engineering.;21(6):563–75.

Porter, A. A., Siy, H. P., Toman, C. A., & Votta, L. G. (1997). An experiment to assess

the cost-benefits of code inspections in large scale software development. IEEE

Transactions on Software Engineering 23(6), 329–346.

 Pothier, G.; Tanter, E. (2009). Back to the Future: Omniscient Debugging. Software,

IEEE , 26(6), 78-85, Nov.-Dec. 2009.

Poulding, S., & Clark, J. A. (2010). Efficient Software Verification: Statistical Testing

Using Automated Search. IEEE Transactions on Software Engineering, 36(6), 763–

777.

Radice, R. A. (2002). Software Process Assessments. Encyclopedia of Software

Engineering.

 Remillard, J. (2005). "Source code review systems," Software, IEEE , 22(1), 74- 77. Jan.-

Feb. 2005.

Ruhe, G., & Saliu, M. O. (2005). The Art and Science of Software Release Planning.

IEEE Software, 22(6), 47–53.

Runeson, P., Andersson, C., Thelin, C., Andrews, A., & Berling, T. (2006). What do we

know about defect detection methods? IEEE Software, 23(3), 82-90.

Schneider, G. M., Martin, J., & Tsai, W. T. (1992). An experimental study of fault

detection in user requirements documents. ACM Transactions on Software

Engineering and Methodology, 1(2):188-204.

Shaoying Liu, Yuting Chen, Nagoya, F., & McDermid, J. A. (2012). Formal

Specification-Based Inspection for Verification of Programs. IEEE Transactions on

Software Engineering. 38(5), 1100–1122.

Shen, W. G., Zhao, X. T., & Han, J. W. (2014). On Inspection Strategy Based on Sample

Inspection Reliability. Applied Mechanics and Materials, 487, 639–642.

doi:10.4028/www.scientific.net/amm.487.639

Sherif, Y. S., & Kelly, J. C. (1992). Improving software quality through formal

inspections. Microelectronics Reliability, 32(3), 423–431.

Shin, Y., Meneely, A., Williams, L., & Osborne, J. A. (2011). Evaluating Complexity,

Code Churn, and Developer Activity Metrics as Indicators of Software

Vulnerabilities. IEEE Transactions on Software Engineering. 37(6), 772–787.

Shirey, G. C., (1992). How Inspections Fail. Proceedings of the 9th International

Conference on Testing Computer Software, 151-159.

Shore, J. (2004). Fail Fast. IEEE Software, 21(05), 21–25.

Univ
ers

ity
 of

 M
ala

ya

165

 Shull, F., & Seaman, C. (2008). Inspecting the History of Inspections: An Example of

Evidence-Based Technology Diffusion. IEEE Software, 25(1), 88–90.

Shull, F., Basili, V., Boehm, B., Brown, A. W., Costa, P., Lindvall, M., Port, D., Rus, I.,

Tesoriero, R., Zelkowitz, M. (2002). What we have learned about fighting defects.

Proceedings Eighth IEEE Symposium on Software Metrics. 249-258.

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M., & Erdogmus, H. (2010). What

do we know about test-driven development? IEEE Software, 27(6), 16–19.

Sneed, H., & Verhoef, C. (2015). From Software Development to Software Assembly.

IEEE Software, 1–1. doi:10.1109/ms.2015.78

Sommerville, “Teaching cloud computing: A software engineering perspective,” Journal

of Systems and Software, vol. 86, no. 9, pp. 2330–2332, Sep. 2013.

Souza, I. S., da Silva Gomes, G. S., da Mota Silveira Neto, P. A., do Carmo Machado, I.,

de Almeida, E. S., & de Lemos Meira, S. R. (2013). Evidence of software inspection

on feature specification for software product lines. Journal of Systems and

Software, 86(5), 1172–1190.

Spiewak, R.,McRitchie, K. (2008). Using Software Quality Methods to Reduce Cost and

Prevent Defects. CrossTalk, The Journal of Defense Software Engineering, 21(12),

23-27. (December, 2008)

Spinellis, D. (2010). Software Tracks. IEEE Software, 27(2), 10–11.

Strauss, S. H. & Ebenau, R. G. (1993). Software Inspection Process. McGraw Hill

Systems Design & Implementation Series.

Suma, V., & Nair, T. R. G. (2014). Impact of test effort in software development life

cycle for effective defect management. International Journal of Productivity and

Quality Management, 13(3), 251.

Suma, V., & Nair, T. R. G. (2014). Impact of test effort in software development life

cycle for effective defect management. International Journal of Productivity and

Quality Management, 13(3), 251.

Sumit, B., Patil S.M. (2011). A Practical Experiment In Teaching Software Engineering

Metrics. Journal Of Computational Simulation And Modeling, 1 (1), 10-16.

Thelin, T., Runeson, P., & Wohlin, C. (2003). Prioritized use cases as a vehicle for

software inspections. IEEE Software, 2003; 20(4), 30-33.

Travassos, G., Shull, F., Fredericks, M., & Basili, V. R. (1999). Detecting defects in

object-oriented designs. Proceedings of the 14th ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications - OOPSLA

’99.

 Tyran, C. K. (2006). A software inspection exercise for the systems analysis and design

course. Journal of Information Systems Education, 17(3), 341-341-351.

Univ
ers

ity
 of

 M
ala

ya

166

Van Genuchten, M., van Dijk, C., Scholten, H., & Vogel, D. (2001). Using group support

systems for software inspections. IEEE Software, 18(3), 60–65.

Vitharana, P. (2015). Defect propagation at the project-level: results and a post-hoc

analysis on inspection efficiency. Empir Software Eng. doi:10.1007/s10664-015-

9415-3

Vodde, B. (2007). Experiences in software inspection measurements. Software Quality

Professional, 9(2), 27-27-35.

Votta, L. G. (1993). Does Every Inspection Need a Meeting? ACM Software Engineering

Notes, 18(5):107-114.

Walia, G. S., & Carver, J. C. (2009). A systematic literature review to identify and classify

software requirement errors. Information and Software Technology, 51(7), 1087–

1109.

Weinberg, G. M., & Freedman, D. P. (1984). Reviews, Walkthroughs, and Inspections.

IEEE Transactions on Software Engineering. SE-10(1), 68–72.

Weller, E. F., (1993). Lessons from Three Years of Inspection Data. IEEE Software,

10(5):38-45.

Wiegers, K. E. (1995). Improving Quality Through Software Inspections.

Williams, C. C., & Hollingsworth, J. K. (2005). Automatic mining of source code

repositories to improve bug finding techniques. IEEE Transactions on Software

Engineering. 31(6), 466–480.

Winkler, D., Riedl, B., & Biffl, S. (2005). Improvement of Design Specifications with

Inspection and Testing. 31st EUROMICRO Conference on Software Engineering

and Advanced Applications.

Winkler, D., Thurnher, B., & Biffl, S. (2007). Early software product improvement with

sequential inspection sessions: An empirical investigation of inspector capability

and learning effects. 33rd EUROMICRO Conference on Software Engineering and

Advanced Applications (EUROMICRO 2007).

Yang, Y., Onita, C., Zhang, X., & Dhaliwal, J. (2010). TESTQUAL: Conceptualizing

software testing as a service. E - Service Journal, 7(2), 46-65,101-102.

Yin, Z., Dunsmore, A., & J. Miller, J.(2004). “Self-assessment of performance in software

inspection processes,” Information and Software Technology, 46(3), 185–194.

Zhang, H., & Ali Babar, M. (2013). Systematic reviews in software engineering: An

empirical investigation. Information and Software Technology, 55(7), 1341–1354.

Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J. P., & Vouk, M. A.

(2006). On the value of static analysis for fault detection in software. IEEE

Transactions on Software Engineering, 32(4), 240–253.

Univ
ers

ity
 of

 M
ala

ya

167

 LIST OF PUBLICATIONS AND PAPERS PRESENTED

Hashemitaba, N., & Ow, S.H. (2014). A new model for software inspection at the

requirements and design phases of software development. Accepted for publication

by The International Arab Journal of Information Technology (IAJIT). (ISI-Cited

Publication)

Hashemitaba, N., & Ow, S.H. (2012). Defect management using a comprehensive

software inspection model. Software Engineering Journal, 2(5): 160-164.

Hashemitaba, N., Khatavakhotan, A. S. & Ow, S.H. (2012). A Comprehensive model to

improve the efficiency of software inspection: A case study. International Journal

of Information Technology & Computer Science. 5:30-37.

Hashemitaba, N., & Ow, S.H. (2012). Generative inspection: an intelligent model to

detect and remove software defects. Proceedings of the 3rd International Conference

on Intelligent Systems, Modelling and Simulation (ISMS2012), February 8-10,

2012, Sabah, Malaysia (ISI-Cited Publication).

Hashemitaba, N., & Ow, S.H. (2012). A scenario- based model to improve the quality of

software inspection process. Proceedings of the 4th International Conference on

Computational Intelligence, Modelling and Simulation (CIMSiM), 25-26

September, 2012, Kuantan, Pahang. pp. 194-198. (ISI-Cited Publication).

Hashemitaba, N., Khatavakhotan, A. S. & Ow S.H. (2012). Prosperity in software

inspection: Improvement of software development process using an inspection

smart boost. Conference on Computer Modelling and Simulation. CSSIM 2012. 3-

5 September 2012, Brno University of Technology.

Hashemitaba, N., & Ow, S.H. (2012). Software Defect Management Using a

Comprehensive Software Inspection Model, Software Engineering Journal, 2012,

2(5): 160-164 DOI: 10.5923/j.se.20120204.09

Hashemitaba, N., & Ow, S.H. (2012). Improving software quality using a defect

management-oriented (DEMAO) software inspection model. Asia Modeling

Symposium 2012, Sixth Asia International Conference on Mathematical Modeling

and Computer Simulation Publication. 46 – 49.

Hashemitaba, N., Khatavakhotan, A. S., & Ow, S.H. (2012). A comprehensive model to

improve the efficiency of software inspection: A case study. Proceedings of the

International Conference on Information Integration and Computing

Applications Singapore. Singapore, August 14-15, 2012. (ISI-Cited Publication).

Hashemitaba, N., Khatavakhotan, A. S., & Ow, S.H. (2012). A scenario-based model to

improve the quality of software inspection process. Computational Intelligence,

Modeling and Simulation Fourth International Conference on Topic(s): Computing

& Processing (Hardware/Software). 59: 194 – 198.

Hashemitaba, N., Khatavakhotan, A. S., & Ow, S.H. (2012). A new model to improve the

quality of software inspection Postgraduate Research Excellence Symposium - 25

Sep 2012 - Kuala Lumpur Malaysia.

Univ
ers

ity
 of

 M
ala

ya

168

Hashemitaba, N., Khatavakhotan, A. S., & Ow, S.H. (2012). ICCSA 2012. An integrated

model to improve the role of inspection in software quality process, International

Conference on Computer Science and Applied Computing ,Vienna, Austria. 6-7

September 2012.

Hashemitaba, N., Khatavakhotan, A. S., & Ow, S.H. (2011). A novel four-faceted

telecommunication model based on distributed connectivity technology systems

International Conference on Computer and Software Modeling. IPCSIT vol.14

(2011) © (2011) IACSIT Press, Singapore.

Univ
ers

ity
 of

 M
ala

ya

169

APPENDIX A

ARTEFACT COMPLEXITY CONVERSION

In software development, no code is written at the software requirements analysis and

design phases, hence, measurement of the complexity an artefact cannot be based on the

size of software or the number of lines of codes. In this case, the function point must be

used as a complexity-related indirect method of measurement for software work products

[IFP, 2005]. Boehm demonstrated the method of categorization and measurement in

1996. Artefacts are divided into two groups - Data Entries, and Transactions artefacts.

Transactions artefacts are often derived from DFD graphs, which are used in both the

analysis and design phases, and have a separate categorization, as shown in Table A.1.

Entity relationship diagrams are classic methods and class and object and collaboration

are used in object-oriented methods for data entities artefact categorization [Uem99].

Table A.1 also shows the data entities sub-classes.

Table A.1. Transactions and Data entities sub-classes

Function Point

Transactions Data entities

(EI1), (EO2), (EQ3) (EIF4), (ILF5)

No. of data entity

types (FTR)

No. of attribute types

accessed (DET).

No. of attribute types

(DET)

No. of data entity

subtypes (RET)

1: External Inputs, 2: External Outputs, 3: External Queries, 4: External Files 5: External

Entities

Each of these sub-categories can have high, average or low level of complexity. The

relevant weight of each sub-category can be seen in the table. In the present research, the

complexity of selected artefacts is measured using Boehm’s formula. The first step is to

determine whether each artefact is simple, medium or complex. The type is also

Univ
ers

ity
 of

 M
ala

ya

170

determined and based on Table A.2 their weight quotient (weight factor) was calculated,

and finally the function point is obtained.

Table A.2 Complexity Table

Domain Value

Complexity /

Weighting Factor

Low Medium High

External Inputs

EI

3 4 6

 EO 4 5 7

 EQ 3 4 6

 ILF 7 10 15

 EIF 5 7 10

Following the preliminary calculation of complexity, the figures obtained are the

Unjustified Function Points (UFP). After considering the 14 complexity factors and using

Equation A.1, the Adjusted Function Points are obtained. The complexity factors will

each have a value of between 0 and 5 and their sum is the Value Adjusted Factors (VAF)

[Lon, 2002]. The final complexity factor is obtained by considering all 14 factors (See

Table A.3), and it can range from 0 to 70 (14*5). This indicates that the final function

point or AFP can vary from 0.65 to UFP 1.35. Data on the functionality of artefacts have

been included in Table A.4 together with explanations by the project managers and

experts. Since the projects are still on-going, it is not possible to compare the artefacts,

and also not possible to answer a large number of questions related to them. Thus, the

preliminary FPs (UFP) are considered equal to the AFP in this research. Eventually,

considering the time taken and the defects detected based on the function point of each

artefact, the quality of the inspection and the productivity of the inspection teams as well

as the inspectors were assessed and compared.

Univ
ers

ity
 of

 M
ala

ya

171

Table A.3. Function point adjustment questions [Lon, 2002]

1 The necessity for crucial backup and recovery 8 On-line updating of the ILFs

2
Requirements of information transferred by special

data.
9 Complexity of components.

3 Distributed processing functions requirements. 10 Complexity of internal processing.

4 The expected level of performance. 11 Need for reusability.

5 Implementation in on operational platform. 12 Need for conversion of detailed design.

6 Need for online data entry. 13 Different implementation and setup requirements.

7
Need for multiple processes and concurrent

operations.
14 Need for flexibility.

Equation A.1 Adjusted Function Point calculation

VAF = ∑ Fi (i = 1 to 14)

AFP = UFP * ((TDI * 0.01) + 0.65)

Table A.4 shows the page numbers and calculation of FP related to all 32 artefacts

selected for the two projects. Items related to the product complexity are also mentioned

in this table and are sorted in the relevant column according to their weight. The page

number of each artefact is registered in the second column. In this research, the

relationship between the FP (last column) as the metrics for complexity of the artefact,

and the page number as the size of the artefacts, is as shown in Figure A.1. This Figure

also shows a direct positive relationship between those two metrics. Therefore, the use of

the page number as the size of artefact is justified, and there is no need to use the function

point. This is also because the use of the function point only shows the same results but

with different values and in different ranges.

Univ
ers

ity
 of

 M
ala

ya

172

Table A.4 FP and number of Pages of Artefacts

Project 1 Project 2

R
eq

u
ir

em
en

ts
 A

n
al

y
si

s
P

h
as

e

A

C

Page

s

D

M

CP

X

W

F

RF

C
FP

R
eq

u
ir

em
en

ts
 A

n
al

y
si

s
P

h
as

e

A

C

Page

s

D

M

CP

X

W

F

RF

C
FP

1. 27
D1 H 15 5 11

7
17. 35

D1 L 7 8
96

D2 M 7 6 D2 H 10 4

2. 23
D1 H 15 3

66 18. 32
D1 L 7 9

93
D2 M 7 3 D2 L 5 6

3. 23
D1 M 10 4

70 19. 12
D1 - - 0

30
D2 L 5 6 D2 H 10 3

4. 22
D1 L 7 6

62 20. 10
D1 L 2 3

26
D2 H 10 2 D2 L 5 4

5. 17
D1 M 2 3

41 21. 30
D1 L 7 9 13

3 D2 M 7 5 D2 H 10 7

6. 18
D1 - - 0

40 22. 25
D1 M 10 4

75
D2 H 10 4 D2 L 5 7

7. 19
D1 L 7 7

59 23. 23
D1 L 7 5

75
D2 L 5 2 D2 H 10 4

8. 24
D1 M 1 8

78 24. 35
D1 H 15 9 17

0 D2 H 10 7 D2 L 5 7

D
es

ig
n
 P

h
as

e

9. 29

D3 M 4 3
11

4
D

es
ig

n
 P

h
as

e
25. 18

D3 M 4 8

44 EO M 5 6 EO - - 0

D4 H 6 4 D4 L 3 4

10. 25

D3 H 6 8
10

9
26. 25

D3 M 6 4

80 EO H 7 6 EO H 7 4

D4 M 4 5 D4 M 4 7

11. 25

D3 H 6 7
10

8
27. 19

D3 H 6 3

49 EO M 5 5 EO L 4 4

D4 L 3 7 D4 L 3 5

12. 13

D3 L 1 2

26 28. 23

D3 L 3 2

74 EO - - 0 EO M 5 8

D4 M 4 6 D4 M 4 7

13. 23

D3 H 6 7

68 29. 23

D3 H 6 3

70 EO M 5 2 EO M 4 6

D4 M 4 4 D4 M 4 7

14. 19

D3 L 3 6

81 30. 21

D3 H 6 5

58 EO M 5 9 EO M 5 4

D4 H 6 3 D4 H 2 4

15. 16

D3 M 4 6

34 31. 16

D3 H 6 7

67 EO L 2 5 EO L 4 4

D4 - - 0 D4 L 1 9

16. 23

D3 H 6 8

87 32. 31

D3 M 4 9
12

0
EO L 4 6 EO H 7 6

D4 L 3 5 D4 H 6 7

AC: Artefact, D1: ILF, D2:ELF, D3:EI, D4:EQ, D5: EO

Requirement Function Counts, H: High M: Medium L: Low, FP: Function Point

 AC: Artefact Code, WF: Weighting factor, DM: Domain Value, CPX: Complexity

Univ
ers

ity
 of

 M
ala

ya

173

i < 9 & 17<i<25 Artefact i: P1-Ai-R 9<i<17 & 24<i<=32 : Artefact i: P1-Ai-D

Figure A.1 The relationship between complexity of artefacts (FP) and number of pages

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

N
o

.
o

f
P

ag
e/

 F
P

Artefact No.

FP and Page relationship

FP

Page

Univ
ers

ity
 of

 M
ala

ya

174

APPENDIX B

THE COMPOSITION OF FIVE INSPECTORS

The inspection teams formed in this research consist of three-inspector teams. However,

five-inspector or seven-inspector teams could also be formed. Table C.1 shows the

combination of weighted votes of an inspection team that consists of five inspectors. Any

combination of four votes will not give rise to any problem. In a three-vote and a two-

vote situation, some problems concerning the weight of votes arise. As shown, some

combinations in row 5 and row 10 are not suitable and could give rise to problems. It is

clear that any combination that include three semi-skilled the worst combination. A

combination of highly skilled and semi-skilled inspectors could give rise to more votes

of semi-skilled inspectors with less vote of highly skilled inspector with higher

weightage. Combination of highly skilled inspectors is preferred.

Table C.1: Combination of weighted votes of five inspectors

C
o

m
b

in
a

ti

o
n

 o
f th

ree

sim
ila

r v
o

te

T
w

o

sim
ila

r v
o

te

D
ecisio

n

T
w

o

sim
ila

r v
o

te

D
ecisio

n

 w
o

 sim
ila

r

v
o

te

D
ecisio

n

T
w

o

sim
ila

r v
o

te

D
ecisio

n

T
w

o

sim
ila

r v
o

te

D
ecisio

n

T
w

o

sim
ila

r v
o

te

D
ecisio

n

1 HHH HH 9>6 HN 9>5 HS 9>4 NN 9>4 NS 9>3 SS 9>2

2 HHN HH 8>6 HN 8>5 HS 8>4 NN 8>4 NS 8>3 SS 8>2

3 HHS HH 7>6 HN 7>5 HS 7>4 NN 7>4 NS 7>3 SS 7>2

4 HNN HH 7>6 HN 7>5 HS 7>4 NN 7>4 NS 7>3 SS 7>2

5 HNS HH 6=6 HN 6>5 HS 6>4 NN 6>4 NS 6>3 SS 6>2

6 HSS HH 5<6 HN 5=5 HS 5>4 NN 5>4 NS 5>3 SS 5>2

7 NNN HH 6=6 HN 6>5 HS 6>4 NN 6>4 NS 6>3 SS 6>2

8 NNS HH 5<6 HN 5=5 HS 5>4 NN 5>4 NS 5>3 SS 5>2

9 NSS HH 4<6 HN 4<5 HS 4=4 NN 4=4 NS 4>3 SS 4>2

10 SSS HH 3<6 HN 3<5 HS 3<4 NN 3<4 NS 3=3 SS 3>2

H: Highly skilled, N: Normal (Skilled), S: Semi-Skilled

Univ
ers

ity
 of

 M
ala

ya

175

APPENDIX C

SAMPLE CHECKLIST

 (A) Requirements Analysis - Use Case Sample Checklist

The purpose of this document is to provide an inspection checklist of the use case

diagram(s) for (Artefact P2-A6-R). Two inspection teams will inspect the documents and

provide a report on the result of their inspection. Team C will inspect the artefact using

the by Formal inspection process (FIP) together with Microsoft Excel, and Team D will

inspect the artefact using the enhanced software inspection process together with ArSeC

online system. Some reference documents and resources will be provided to give some

background information of the system to the inspectors.

No.
Inspection Question

Pass/Fail

☑, ☒

1. Are all the actors and steps cited in the use case relevant to the execution of

the task?

2. Are areas of uncertainty documented as assumptions and issues?

3. Are system boundaries and scope clear?

4. Can the system meet that objective?

5. Do all actors and use cases have descriptive names?

6. Does it "validate" as opposed to "check" a condition?

7. Does it have less than 10 steps?

8. Does it run from trigger to delivery of the success guarantee?

9. Does the use case contain a complete step-by-step plan?

10. Has each step in the scenario(s) been clearly, unambiguously and completely

described?

11. Have all the alternatives been described?

Univ
ers

ity
 of

 M
ala

ya

176

12. Have all the known exceptions been described?

13. Is it an active-verb phrase that mentions the objective of the primary actor?

14. Is it clear for which actors the use case is intended?

15. Is it phrased as a goal that can be achieved?

16. Is the aim of the use case clear?

17. Is the goal level of the step lower than the goal level of the overall use case?

18. Is the intent of the actor clear?

19. The symbols in the use case diagram conform to the UML diagram.

20. Use case diagrams and descriptions are clear and well organized.

General Comments, Recommendations, and Suggestions (if any):

Univ
ers

ity
 of

 M
ala

ya

177

(B) Requirements Analysis – Class Diagram Sample Checklist

The purpose of this document is to provide an inspection checklist of the class diagram(s)

for (Artefact P2-A2-D). Two inspection teams will inspect the documents and provide a

report on the result of their inspection. Team C will inspect the artefact using the by

Formal inspection process (FIP) together with Microsoft Excel, and Team D will inspect

the artefact using the enhanced software inspection process together with ArSeC online

system. Some reference documents and resources will be provided to give some

background information of the system to the inspectors.

No.
Inspection Question

Pass/Fail

☑, ☒

1. All kinds of identification like 'id' or 'name' attribute, provided?

2. All needed associations from the requirements are considered.

3. All needed attributes are added?

4. All needed classes from the requirements (mostly they appear as nouns)?

5. Are all class names written in the singular and starting with a capital letter?

6. Are there direct associations (arrows), and are they correct?

7. Class diagram and descriptions are clear and well organized.

8. Do all associations have multiplicity at both ends?

9. Do the attributes represent simple data that each instance must have String,

Integer, Float, Date, Time, Boolean etc.?

10. Do role names start with lower case letters and have a meaning that is a role the

class plays?

11. Does the 'isa rule' apply to all subclasses and their superclass?

12. Does everything in each superclass also apply to every one of its subclasses?

Are there any classes with huge numbers of attributes (>10) or associations

(>5)?

13. Each message in sequence diagram is a method in class diagram.

14. Each message passing in sequence diagram is the method in class diagram.

15. If there is message passing between objects in sequence diagram, association

relationship in class diagram is defined.

16. Is it correct that any unlabeled associations can be read as 'has'?

17. Is there an open diamond to specify an aggregation, is this really the 'whole'

end of a proper part-whole relationship?

18. Is there any classes that should be split into an 'Abstraction' and an

'Occurrence' class using a * -- 1 association?

Univ
ers

ity
 of

 M
ala

ya

178

19. Is there any instance hierarchies in the model and used either an asymmetric

reflexive association or the general hierarchy (composite) pattern?

20. Is there plural attributes but could be replaced by associations instead.

21. Names used in class diagram indicate their meaning. Example: class Multicast

22. The symbols using in class case diagram conform to UML diagram.

23. Using proper open triangle symbol, pointing to the superclass?

24. All kinds of identification like 'id' or 'name' attribute, provided?

25. All needed associations from the requirements are considered.

26. All needed attributes are added?

27. All needed classes from the requirements (mostly they appear as nouns)?

28. Are all class names written in the singular and starting with a capital letter?

29. Are there direct associations (arrows), and they are correct?

30. Class diagram and descriptions are clear and well organized.

31. Do all associations have multiplicity at both ends?

General Comments, Recommendations, and Suggestions (if any):

Univ
ers

ity
 of

 M
ala

ya

179

APPENDIX D

INSPECTION DATA RECORDING FORM

Section A: Project and Artefact Details

1.
Project

ID:

2.
Project

title:

3. Project brief

description:

4. Artefact details:

Requirements analysis phase

No. Artefact ID Artefact title Artefact brief description

1.

2.

:

Design phase

1.

2.

:

Section B: Inspector Profiles and Inspection Team Members

1. Inspector ID:

2. Inspector Details:

No. Inspector

ID

Inspector

name

Contact No. of years of

work

experience

No. of

artefacts

inspected

Tel. Email

1.

2.

3.

4.

5.

Univ
ers

ity
 of

 M
ala

ya

180

3. Inspection Team Member Details:

No. Role

(Author, Moderator,

System Administrator,

etc.)

Name Contact

Tel. Email

1.

2.

3.

4. Details about artefacts inspected (current project):

Requirements analysis phase

Project ID:

Artefact ID:

No. Inspector ID Actual total No. of real

defects detected

Total inspection

time (min)

Inspector

productivity

1.

2.

3.

4.

5.

Artefact ID:

1.

2.

:

Design phase

Project ID:

Artefact ID:

1.

2.

3.

4.

5.

Artefact ID:

1.

2.

:

Note: Inspection productivity = Total No. of real defect detected / inspection time (hr)

Univ
ers

ity
 of

 M
ala

ya

181

Section C: Inspection Process

Requirements analysis phase

Project ID:

Number of inspectors:

Inspector ID:

Inspection stopping criteria:

No. Artefact

ID

Inspection

date and

time

Inspection

duration

Unexpected

incident(s)

Issues

discussed

Inspection

outcomes

summary

1.

2.

:

Design phase

Project ID:

Number of inspectors:

Inspector ID:

Inspection stopping criteria

1.

2.

:

Section D: Defects Detected

Requirements analysis phase

Project ID:

Artefact ID

No. Defect

code

Defect

class

Mode Severity Description Detected by (Inspector ID)

1.

2.

:

Design phase

Project ID:

Artefact ID

No. Defect

code

Defect

class

Mode Severity Description Detected by (Inspector ID)

1.

2.

:

Summary of Defects Detected

Requirements analysis phase

Project ID:

No. Artefact

ID

Total number of

common real defects

detected

Total number

of false

positives

Total number

of

inconsistencies

Total number of

ambiguous artefacts

1.

2.

Univ
ers

ity
 of

 M
ala

ya

182

:
Design phase

Project ID:

1.

2.

:

Section E: Inspection Time

Requirements analysis phase

Project ID:

No. Artefac

t ID

Inspection

preparation time

of each inspector

Total

inspection

preparation

time (All

inspectors)

Inspection

time of

each

inspection

session

Inconsistencies

resolution time

Total

inspection

time

1 2 3 4 5 1 2 3 4 1 2 3 4

1.

2.

:

Design phase

Project ID:

No. Artefac

t ID

Inspection

preparation time

of each inspector

Total

inspection

preparation

time (All

inspectors)

Inspection

time of

each

inspection

session

Inconsistencies

resolution time

Total

inspection

time

1 2 3 4 5 1 2 3 4 1 2 3 4

1.

2.

:

Section F: Defect Causes and Effects

Requirements analysis phase

Project ID:

No. Defect

code

Description Potential

causes

Description Potential

effects

Description

1.

2.

:

Design phase

Project ID:

1.

2.

:

Note: Update details of existing defects and record details of new defects detected.

Univ
ers

ity
 of

 M
ala

ya

183

APPENDIX E

BRIEF DESCRIPTION ABOUT PROJECT 1, PROJECT 2, AND EACH

ARTEFACT AND SAMPLE OF ARTEFACT

Brief description about Project 1, and Project 2

Project ID Description

P1 Integrated system for failure recording system for production line. This

system includes all sub-systems for all steps from production line to

inventory control. The project took 3 years to complete. The company

has a branch in Malaysia. It has several factories and workshops which

are involved in developing mechanical health care products and vehicle

items.

P2 A Malaysian trading company. The project was a web-based system as

total solution for gathering and reporting the import and export orders.

The projects also involved tracking the shipments from the place of

origin to the second and third and final destinations.

Brief description of each artefact

Project ID: P1 Project title: Integrated system for failure recording system for production

line

Artefact

ID

Artefact title Description of artefact

P1-A1-R Process specification

for failure mode and

effects analysis

(FMEA) sub system

This artefact is a part of total quality management

system for spotting and evaluating failures in the

production process. There is description of each process,

the potential hazards, the defects, the patterns, severity

and frequency of occurrence.

P1-A2-R DFD for process

specification for

failure mode and

effects analysis

(FMEA) sub system

This artefact shows the sequence of steps and data

relationship between the processes which are specified

through FMEA artefacts. The focus is on the data which

have to be stored and retrieved.

P1-A3-R Use cases for process

specification for

failure mode and

The actors and their roles and relationship for

implementing the failure mode. Effects analysis is

illustrated by diagrams.

Univ
ers

ity
 of

 M
ala

ya

184

effects analysis

(FMEA) sub system

P1-A4-R Process specification

for Measurement

system analysis

(MSA) subsystem

This artefact shows the measurement analysis and

evaluations. The instructions, criteria and flowcharts are

defined to ensure that the current measurement system is

reliable enough and performs to effect improvement and

change (if any) to the operators ID fields, profiles, roles,

equipment specifications, the parts and the components

feature defined.

P1-A5-R DFD for Process

specification for

Measurement system

analysis (MSA)

subsystem.

This artefact shows the data flow in the processes as

well as data storage and retrieval.

P1-A6-R Process specification

for production

planning and control

This artefact shows the necessary data, information and

standards for controlling and planning the product in

production line.

P1-A7-R DFD for

Specification for

production planning

and control.

The data to be stored permanently or temporarily are

defined and the processes relationships are shown.

P1-A8-R ER and DFD

diagrams for order

registration.

This artefact involves order registration and tracing

of orders. The different dates from order to

delivery, and order details and customer details of

as well as the steps to produce the whole or part of

an order are included.

P1-A1-D Complaint resolution

class diagrams.

The new and current class diagrams focus on

reusability of the CRM system. This artefact

includes the details of complaints and the resolution

results, and the legal and police reports details (if

any).

P1-A2-D Web interface design

for complaint

resolution.

The artefact contains the complaints about the

quality or other issues pertaining to products and

the delivery process. A strong relationship between

this sub-system and the customer relationship

management system (artefact P1-A1-D).

Univ
ers

ity
 of

 M
ala

ya

185

P1-A3-D Failure removal class

diagrams.

Class diagrams which show the formula,

comparison methods, and details of the mode and

effects analysis for failures.

P1-A4-D Web interface design

failure removal.

The artefact includes the details of potential failures

and defect occurrence details, and comparison

reports on severity estimation and actual occurrence

(if any).

P1-A5-D Order tracing class

diagrams.

The order tracing class diagrams include the classes

and methods for tracing the orders, estimation

information, and evaluation formulas.

P1-A6-D Web interface design

for order registration

and tracing.

The artefact shows the input details and reports for

each step, and current status of the production

process for an order.

P1-A7-D Class diagrams for

production control.

The procedures classes and methods, local and

global data used to control the production step-by-

step.

P1-A8-D Web interface design

for production

control.

The interface for inputting the measured features

like sizes, and test results details for each work

product status of the order. It is possible to change

the standards and the comparison methods. It is an

artefact of the detailed design of a production

control system.

Project

ID: P2

Project title: Import-Export Management System

P2-A1-R Import customer

request specification.

The customer details and its shipment information

and the port of origin are included in this artefact. It

also includes special information like urgent

shipment requests. The cost estimation and basic

account information and the credit limit of customer

(New or loyal customer) are also included.

P2-A2-R Use case for import

customer requests.

The artefact shows the role and interactions

between the actors and systems for an import

shipment. The type of relationship and description

are explained and shown by diagrams.

Univ
ers

ity
 of

 M
ala

ya

186

P2-A3-R Export customer

request specification.

The export shipment to a predetermined port or

destination is described. The customs process and

information on the destination are not included.

Details on type of transportation and the due dates

are provided.

P2-A4-R Use case for export

customer requests.

The artefact shows the role and interactions

between the actors for exporting a shipment. The

type of relationship and the descriptions are

explained and shown by diagrams. However, the

customs procedures and other procedures are not

mentioned.

P2-A5-R Shipment tacking-

monitoring

specification (Handle

by other companies).

The specifications for shipment tracking that is

handled by other companies but monitored to

ensure correct and on-time delivery. The import or

export shipments which are monitored step-by-step

include the payments and customs procedures.

P2-A6-R Use case for tracking

monitoring

subsystem.

The roles and actors for tracking shipments (import

or export) are illustrated by diagrams.

P2-A7-R Custom subsystem

specification (export

shipments).

If requested by customer, the customs procedures

will be handled by company. The detailed

information for pre-evaluation and actual evaluation

and payments are considered.

P2-A8-R Use case for Custom

subsystem.

This includes the various agents, the transfer of

money, customs or customers details, customer

credit account, the LCs.

P2-A1-D Class diagrams for

Import customer

request.

The artefact shows the classes and methods for an

import shipment. The customs information is

considered.

P2-A2-D Class diagrams for

Export customer

request.

The artefact shows the class diagrams and methods

for exporting a shipment. The customs information

is not included.

P2-A3-D Class diagrams for

Shipment tacking-

The class diagrams and methods necessary for

tracking and monitoring the shipments.

Univ
ers

ity
 of

 M
ala

ya

187

monitoring (Handle

by other companies).

P2-A4-D Class diagrams for

Custom subsystem.

This artefact includes the class diagrams for export

shipment that the company has requested for

customs procedures.

P2-A5-D Class diagrams for

integrated report

generator.

The artefact includes the reused and the new class

diagrams and methods for generating dynamic

reports for shipments.

P2-A6-D Web page design for

integrated reports.

The details of the web design for the reports for

various subsystems (customer details, profile,

shipments, source and destinations, income and

payments for each order).

P2-A7-D Class diagrams for

statistical data

analysis outputs.

The artefact shows the class diagrams and methods

for statistical data analysis (shipment details and

account information).

P2-A8-D Web page design for

statistical data

analysis outputs.

This artefact shows the necessary scenarios as well

as fields, controls and algorithms for data analysis

of the shipments and customer accounts. The status

transitions are considered.

Univ
ers

ity
 of

 M
ala

ya

188

Requirements Analysis Sample Artefact

Project ID: P2

Project title: Import-Export Management System

Artefact ID: P2-A6-R

Company:

Malaysia

Artefact title: Use case for tracking monitoring subsystem

THE FIRST PAGE OF

ARTEFACT 6

Univ
ers

ity
 of

 M
ala

ya

189

APPENDIX F

SAMPLE CAUSE AND EFFECTS

a) Sample causes and effects for defects in requirements analysis phase

Sample causes and effects of potential defects in use case diagrams

Cause

Code

Cause Effect(s)

US-1 Defining the same activity for different actors The data security ;

Unreliable data damaging

the access rights

US-2 Weakness in distinguish between the

responsibilities and duties of different actors

The customer actions are

not comprehensive

US-3 The differences between the action of staff

(system actor) and customer (Primary actor)

in same situation cannot be distinguished

The scenarios those have

to be different, may be

planed same.

US-4 There is a delete option while (usually) after

confirmation could not be deleted

Essential data will be

destroyed

Data security will be lost.

US-5 The similar operations with different actor not

clarified (Complaint of company and

customer not separated)

The sequences of actions

will be undetermined.

US-6 Date and time details of the frequently (like

tracking) is not adequate

The operations do not have

exact timeline.

US-7 The scenario of actors (for tracking- Customer

and staff) are not different.

The actions of actors will

be mixed up.

Univ
ers

ity
 of

 M
ala

ya

190

b) Sample causes and effects for defects in Design phase

Sample causes and effects of potential defects in class diagrams

Cause

Code

Cause Effect(s)

CL-1 Defining the name of elements in

general like 'data', 'record', or

'info'.

Weakness in specifications and

adequate operations.

CL-2 Do not understand the meaning of

superclass

Defining many subclass with same

attributes and operations

Cl-3 Not focus on common elements of

the classes

effect missing correct super classes

an instance may need to change the

class CL-4 Defining a class instead of

defining an attribute in a

superclass

CL-5 Defining an attribute in associate

role class, as a class

Any change in an instance may be

changes the class

CL-6 Mixed up aggregation and

composition relationship

Destroy the part when not necessary

and not destroy when must.

CL-7 Mixed up the public, private, and

protected attributes

The access to attributes in subclass

within class and outside class not

correct

CL-8 Multiple inheritance Not supported by the programming

language and make the code not

executable.

CL-9 All kinds of identification like 'id'

or 'name' attribute, are not

provided

Problem in access to with some key

attributes

Univ
ers

ity
 of

 M
ala

ya

