

THE FUSION OF PARTICLE SWARM OPTIMIZATION (PSO)

 AND INTERIOR POINT METHOD (IPM) AS COOPERATIVE

MOVEMENT CONTROL ALGORITHM IN SWARM ROBOTICS

DADA EMMANUEL GBENGA

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

Univ
ers

ity
 of

 M
ala

ya

THE FUSION OF PARTICLE SWARM OPTIMIZATION (PSO)

 AND INTERIOR POINT METHOD (IPM) AS COOPERATIVE

MOVEMENT CONTROL ALGORITHM IN SWARM ROBOTICS

DADA EMMANUEL GBENGA

THESIS SUBMITTED AS FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: DADA EMMANUEL GBENGA

Registration /Matric No: WHA120022

Name of Degree: DOCTOR OF PHILOSOPHY

Title of Project Paper/Research Report/Dissertation/Thesis (“this work”): The Fusion of

Particle Swarm Optimization (PSO) and Interior Point Method Algorithms for

Swarm Robotics

Field of Study: Swarm Intelligence (Computer Science)

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this work;

(2) This work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing and

for permitted purposes and any except or extract from, or reference to or reproduction of

any copyright work has been disclosed expressly and sufficiently and the title of the Work

and its authorship have been acknowledged in this work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making

of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this work to the University of

Malaya (“UM”), who henceforth shall be owner of the copyright in this work and that

any reproduction or use in any form or by any means whatsoever is prohibited without

the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this work I have infringed any

copyright whether intentionally or otherwise, I may be subjected to legal action or any

other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:

Designation:

Univ
ers

ity
of

Mala
ya

iii

ABSTRACT

Research in Particle Swarm Optimisation and its applications to real world

problems has become a very interesting field in recent years. Particle Swarm Optimisation

(PSO) despite its simplicity, ease of implementation and efficiency still has some flaws,

which include its tendency to premature convergence and inability to escape local

minima. To address these weaknesses, many variants of PSO have been proposed in the

literature. Also, many of these PSO algorithms employed hybrid methods that integrate

other optimisation algorithms with the standard PSO. It is demonstrated in the literature

that methods that hybridize PSO and some other optimisation algorithm have a better

performance over the standard PSO algorithm. The Primal Dual method have been used

to solve many optimisation problems.

We proposed the Primal-Dual Particle Swarm Optimisation (pdPSO) and Primal-

Dual Asynchronous Particle Swarm Optimisation (pdAPSO) to resolve the shortcomings

of the standard PSO without the limitations of the IPM methods. To evaluate the

performance of our new algorithms, we first compared the performance of pdPSO with

IPM and PSO using nine (9) different dynamic benchmark functions. Our results revealed

that pdPSO performed better than both the conventional PSO algorithm and the IPM

method. The proposed algorithm is not susceptible to premature convergence, and can

handle local minima avoidance better when compared to conventional PSO.

Hence, pdPSO has the potential to perform better than many other PSO variants.

Secondly, we compared the performance of our new algorithm pdAPSO with APSO, and

PSO using 7 benchmark functions. Optimisation results reveal that pdAPSO offers similar

(or in many test cases better) solutions than the other PSO variants to which we compared.

Thirdly, we make a comparison between the performance

of pdPSO and pdAPSO. Finally, we used our hybrid algorithms (pdPSO and pdAPSO) to

solve the flocking and pattern formation problem in swarm robotics. Our simulation result

Univ
ers

ity
 of

 M
ala

ya

iv

provides a clear indication of the effectiveness of the algorithm. The hybrid algorithms

perform better in terms of precision, rate of convergence, steadiness, robustness and

flocking capability for homogenous set of swarm robots compared to some other variants

of PSO.

We also compared the performance of pdAPSO and pdPSO with 9 state of the art

PSO algorithms using 12 benchmark functions. Our proposed algorithms have mean

dependability of 80.4% for pdAPSO and 69.69% for pdPSO. Also, pdAPSO and pdPSO

is a better convergence speed compared to the other 9 algorithms. For instance, on

Rosenbrock function, the mean FEs of 8938, 6786, 10,080, 9607, 11,680, 9287, 23,940,

6269 and 6198 are required by PSO-LDIW, CLPSO, pPSA, PSOrank, OLPSO-G,

ELPSO, APSO-VI, DNSPSO and MSLPSO respectively to get to the global optima.

However, pdPSO and pdAPSO only use 2997 and 2124 respectively which shows that

pdAPSO is the fastest convergence speed and closely followed by pdPSO. In summary,

pdPSO and pdAPSO uses the lowest number of FEs to arrive at acceptable solutions for

all the 12 benchmark functions.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Penyelidikan dalam “Particle Swarm Optimisation” dan aplikasinya kepada

masalah dunia sebenar telah menjadi satu bidang yang sangat menarik sejar kebelakangan

ini. Antara teknik-teknik pengoptimuman yang wujuo, “Particle Swarm Optimisation”

(PSO) adalah salah satu yang paling popular kerana kesederhanaan nya mudah dilaksana

kan dan kecekapan. Algoritma tersebut Bagaimanapun, algorithma ini mempunyai

beberapa kelemahan, seperti kecenderungan untuk penumpuan pra-matang dan

ketidakupayaan untuk melarikan diri dari terperangkap bi dalam minima tempatan

Ia juga telah digunakan untuk menyelesaikan fungsi kos yang berbeza tak linear

dan bukan licin yang tersebar luas dalam reka bentuk rangkaian, pembinaan semula imej

perubatan dan kejuruteraan industri. Ianya mempunyai keupayaan untuk menangani

masalah pelbagai dimensi pengan berkesan. Kami berhasrat untuk menggabungkan

kedua-dua algoritma ini untuk menghasilkan satu set algoritma PSO hibrid yang akan

dapat menyelesaikan masalah-masalah yang dinyatakan di atas yang berkaitan dengan

PSO. Kami mencadangkan primitif-Dual “Particle Swarm Optimisation” (pdPSO) dan

“Primal-Dual Asynchronous Particle Swarm Optimisation” (pdAPSO) untuk

menyelesaikan kelemahan PSO asli dan juga tanpa batasan kaedah IPM tanpa batasan.

Integrasi ini melahirkan sistem yang mempunyai kapasiti yang besar untuk mengelakkan

penumpuan pra-matang, dan mencegah zarah daripada terperangkap di dalam minimum

tempatan. kami menguji prestasi pdPSO dengan IPM dan PSO menggunakan sembilan

(9) fungsi penanda aras yang dinamik nya berbeza hasil eksperimen. Keputusan kami

menunjukkan bahawa pdPSO menunjukkan prestasi yang lebih baik berbanding kedua-

dua algoritma PSO asal dan kaedah IPM. Algoritma yang dicadangkan tidak mudah

terdedah kepada penumpuan pra-matang, dan boleh mengendalikan perangkap minima

tempatan dengan lebih baik berbanding dengan PSO asal. Oleh itu, hipotesis pdPSO

mempunyai potensi untuk berfungsi dengan lebih baik berbanding variasi PSOs dapat

Univ
ers

ity
 of

 M
ala

ya

vi

dilaksan akan. Kedua, kami berbanding kan prestasi pdAPSO dengan APSO, dan PSO

menggunakan tujuh fungsi penanda aras. Algoritma yang dicadangkan terbukti

mempunyai kapasiti yang besar untuk mengelakkan penumpuan pra-matang, dan

mengatasi kutukan zarah terperangkap di dalam minimum tempatan. Akhir sekali, kami

menggunakan algoritma hibrid tersebut (pdPSO dan pdAPSO) untuk menyelesaikan

masalah pengelompakan di dalam robotik selara berkurumun. Hasil simulasi kami

memerikan petunjuk yang jelas berkenaan keberkesanan algoritma yang dicadangkan.

Algoritma hibrid adalah lebih baik dari segi ketepatan, kadar penumpuan, keunggulan,

keteguhan dan keupayaan pengelompokan untuk set homogen robot sekumpulan

berbanding dengan beberapa varian lain PSO. Di samping itu, algoritma kami juga

digunakan untuk menyelesaikan masalah pembentukan corak robotik secara berkurumun.

Kami juga membandingkan kinerja pdAPSO dan pdPSO dengan 9 negara dari algoritma

PSO seni menggunakan 12 fungsi patokan. algoritma yang diusulkan kami memiliki

mean keandalan 80,4% untuk pdAPSO dan 69,69% untuk pdPSO. Juga, pdAPSO dan

pdPSO adalah kecepatan konvergensi yang lebih baik dibandingkan dengan 9 algoritma

lainnya. Misalnya, pada fungsi Rosenbrock, FES rata-rata 8938, 6786, 10080, 9607,

11680, 9287, 23940, 6269 dan 6198 yang ditetapkan oleh PSO-LDIW, CLPSO, PPSA,

PSOrank, OLPSO-G, ELPSO, APSO-VI , DNSPSO dan MSLPSO masing-masing untuk

sampai ke optima global. Namun, pdPSO dan pdAPSO hanya menggunakan 2997 dan

2124 masing-masing yang menunjukkan bahwa pdAPSO adalah kecepatan konvergensi

tercepat dan diikuti oleh pdPSO. Singkatnya, pdPSO dan pdAPSO menggunakan jumlah

terendah FES untuk sampai pada solusi yang dapat diterima untuk semua 12 fungsi

patokan.

Univ
ers

ity
 of

 M
ala

ya

vii

"If I have seen further, it is by standing upon the shoulders of giants"

Sir Isaac Newton

To my parents, my wife Shola and children

Univ
ers

ity
 of

 M
ala

ya

viii

ACKNOWLEDGEMENTS

I wish to express my profound gratitude to God Almighty for unflinching love,

mercy, favour and provision, granted me to complete my PhD program, particularly this

thesis work in this great citadel of learning. I acknowledge the immense and inspiring

contribution of my dynamic, able, erudite and indefatigable supervisor, Dr. Effirul

Ikhwan Ramlan for all the timely assistance and encouragement he gave me throughout

this research work. Special thanks also go to the retired Prof. Sapiya Baba, Mr. Mazrul,

and other academic and non-academic staffs in the faculty for their excellent tutoring.

Benefiting from your rare wealth of teaching experience is a great privilege. I pray that

the Almighty God will enlarge your coasts.

I have a deep sense of gratitude and indebtedness to the members and staffs of the

Department of Computer Engineering, University of Maiduguri. I say a big thanks to the

Vice Chancellor of Unimaid, the Registrar, Dean of faculty of Engineering, and the

incumbent H.O.D of Computer Engineering Department, Unimaid. Also my thanks go to

the Engr. Ismail and Dr. Aboaba for the help they have rendered to me in the cause of my

study in UM. I also want to appreciate my colleagues in office, Mr. Bassey Steve Joseph,

Mr Ali Baba and others that space will not permit me to mention their name. You are all

helpers and lifters of destiny. See you at the top.

I will not fail to acknowledge the love, encouragement and support of my father

in the Lord Pastor Ephraim Andy and Pastor (Mrs) Christy Ephraim. I also want to thank

Pastor Sunday Olujimi and his wife, Pastor Tope, Pastor Okopedi, Pastor Mike, and every

other person that have made my study in Malaysia a sweet experience. I thank all the

worker and members of RCCG Province II, Malaysia. I will never forget the kindness

demonstrated by Pastor Chris Iwenjora towards me. You will never lack helpers Sir.

Univ
ers

ity
 of

 M
ala

ya

ix

I express my thanks to my friends and colleagues in Intelligent System lab. You

are all unforgettable factors in my success at this PhD Programme. Finally, to my caring

and loving wife, in person of Shola Deborah Dada, and my fruits: Daniel and David.

Thanks for your understanding and support. I say a big thank you to my mother and

siblings for their prayers and moral support. The Rewarder of men will reward you all

beyond your imagination. Finally, I thank the management of University of Malaya for

all the facilities and quality services they provided during my study in University of

Malaya.

Univ
ers

ity
 of

 M
ala

ya

x

TABLE OF CONTENTS

Original Literary Work Declaration Form

Abstract

Abstrak

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Symbols and Abbreviations

List of Appendices

CHAPTER 1: INTRODUCTION……………..……………………………………….1

1.1 Introduction……………………………………………………………………....1

1.2 Background of the Research……………………………………………………...1

1.3 Research Trend and Motivation……………………………………………….…4

1.4 Problem Statement ………………………………………………………………6

1.5 Research Questions..……………………………………………………………..7

1.6 Aim and Objectives of the Research …………………………………………….8

1.7 Significance of the Research…………………………………………………......9

1.8 Outline of Thesis………………………………………………………………..10

CHAPTER 2: LITERATURE REVIEW…………………………........................….12

2.1 Introduction……………………………………………………………………..12

Univ
ers

ity
 of

 M
ala

ya

xi

2.1.1 Cooperative behaviours…………………………………………………………14

2.1.1.1 Aggregation………………………………………………………….…14

2.1.1.2 Pattern formation…………………………………………………….…15

2.1.1.3 Cooperative exploration………………………………………………...17

2.1.1.4 Mutual decision-making and job distribution…………………………..18

2.2 Advances in Swarm robotic algorithms.……….………..………….………..…19

2.2.1 Artificial Potential Fields (APF)……………………………….………...……...19

2.2.2 A* Algorithm……………………….…………………………………...…...…22

2.2.3 D* (Dynamic A*) Algorithm…………………………………………………...23

2.2.4 Genetic Algorithm (GA)……………………..……………………………..….24

2.2.5 Bacteria Foraging Optimisation Algorithms (BFOA)……..……………………27

2.2.6 Artificial Bee Colony (ABC) Algorithm…..…………..…………….……...…..28

2.2.7 Ant Algorithm (AA)……………………...………………………………...…...30

2.2.8 Artificial Neural Network……………………………………………………….32

2.3 Particle Swarm Optimisation (PSO) Algorithms…………….…………………34

2.4 Variants of Particle Swarm Optimisation (PSO) Algorithms in swarm robotics..42

2.4.1 The Standard PSO…………………………………………………………...….43

2.4.2 Synchronous PSO (SPSO)…………………………………………….………..46

2.4.3 Asynchronous PSO (APSO)…………………………………………………....47

2.4.4 Extended Particle Swarm Optimisation (EPSO)………..………………………47

Univ
ers

ity
 of

 M
ala

ya

xii

2.4.5 Group Decision Making Extended Particle Swarm Optimisation (GDMEPSO)..48

2.4.6 Multi-Robot, Multi-Target PSO……………………..…..……………………..49

2.4.7 Physically embedded PSO (pePSO)…………………..………..………………49

2.4.8 Distributed PSO (dPSO)…………………………………………..………..…..50

2.4.9 Augmented Lagrangian PSO with Velocity Limits (VL-ALPSO)……………...50

2.4.10 Detection and responding PSO (DR PSO)…… ………………………..……..51

2.4.11 Charged PSO (CPSO)………………………………………………………....52

2.4.12 Augmented Lagrangian Particle Swarm Optimisation (ALPSO)…………..…52

2.4.13 Fully Informed Particle Swarm Optimisation Algorithm (FIPS)……………..52

2.4.14 Robotic Darwinian PSO (RDPSO)……………..…………………………..…53

2.5 Interior-Point Algorithm (IPMs)…………………………………………….….59

2.6 The Barrier Methods……………………………………………………………63

2.7 Basic Interior-Point Algorithm…………………………………………...…….67

2.8 Primal and Primal-Dual System………………………………………….…….70

2.8.1 Primal methods……………………………………………………..…………..70

2.8.2 Primal-dual methods ………………………………………………..…………..74

2.9 Feasible and Infeasible Interior-Point Methods…………………….………..….76

2.10 Line Search Interior-Point Method…………………….…………………….…79

2.11 Trust-Region Interior-Point Method…………………………………….….….81

2.11.1 Trust-Region Interior-Point Method for Barrier Problem…….……...…..........82

2.11.2 Trust-Region Interior-Point Method for Nonlinear Programming……............84

Univ
ers

ity
 of

 M
ala

ya

xiii

2.12 Summary of Literature Review……………………..………………………….86

CHAPTER 3: A SURVEY OF PERFORMANCE OF PARTICLE SWARM

OPTIMISATION (PSO) ALGORITHM ON BENCHMARK PROBLEMS……...88

3.1 Introduction…………………..……………………..…………………………..80

3.2 Benchmark Functions…………………………………………………………..89

3.3 Results and Discussion…………………………………………………………94

 3.3.1 Simulation Results……………………………………………………...95

 3.3.2 Discussion……………………………………………………………..103

CHAPTER 4: DEVELOPMENT OF HYBRID ALGORITHMS: PRIMAL-DUAL

AND PARTICLE SWARM (pdPSO) AND PRIMAL-DUAL AND

ASYNCHRONOUS PARTICLE SWARM (pdAPSO).……...………………….…109

4.1 Introduction…………………………………………………………………....109

4.2 Constraint Handling Techniques……………………………………………....112

4.2.1 The Penalty Function Method………………………...……………………….112

4.2.2 Augmented Lagrangian Multiplier Method…………………………………....113

4.2.3 Primal Dual Particle Swarm Optimisation (pdPSO)…………………………...115

4.2.4 Implementation of Primal Dual Particle Swarm Optimisation (pdPSO)..…….118

4.2.4.1 Parameter settings……………………………..………………………...119

4.3 Primal Dual Asynchronous Particle Swarm Optimisation (pdAPSO)

algorithm………………………………………...……………………………....137

4.4 Implementation of Primal Dual Particle Swarm Optimisation (pdPSO)..……....138

4.4.1 Parameter settings …………………………………....……………………….140

Univ
ers

ity
 of

 M
ala

ya

xiv

4.5 Performance Comparison of Primal-Dual-PSO (pdPSO) and Primal-Dual-APSO

(pdAPSO)………………………………….….……………………………..…..153

4.6 Performance Comparison of pdPSO and pdAPSO algorithms with the state-of-the-

art PSO variants………………………….….……………………………....…...161

4.6.1 Performance Comparison on superiority of results...……………………….163

4.6.2 Performance Comparison on dependability and speed of convergence.........170

4.7 Chapter summary..........................…….….……………………………....…......176

CHAPTER 5: APPLICATIONS OF PRIMAL-DUAL-PSO TO SWARM

ROBOTICS TASKS……………………………………….......................................179

5.1 Introduction……………………………………………………………………….179

5.2 Flocking…………………………………………………………………………..180

5.2.1 Problem Statement………………………………………………………….182

5.2.2 Experimental Setup…………………………………………………………183

5.2.3 Result and Discussion………………………………………………………185

5.3 Pattern Formation………..……………………………………………………….203

5.3.1 World Definition……………………………………..……………………206

5.3.2 Problem Statement…………………………………………………………208

5.3.3 Pattern Formation Algorithm………………………………………………..209

5.3.4 Pattern Formation Results………………………………..…………………211

5.4 Summary of chapter………………………………………...……………………..221

Univ
ers

ity
 of

 M
ala

ya

xv

CHAPTER 6: CONCLUSION………………………….…..…….............................223

6.1 Research Summary…………………………………………………..….………...223

6.1.1 Summary of Primal Dual Particle Swarm Optimisation

(pdPSO)…………..….224

6.1.2 Summary of Primal Dual Asynchronous Particle Swarm Optimisation

(pdAPSO)…………………………………………………………………..226

6.2 Conclusion……………………………...………………………………………....228

6.3 Future Directions………….……………………………………..…..…………....229

References………………………………………………………………........………..231

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF FIGURES

Figure 2.1: Potential Field……………………………………………………………..21

Figure 2.2: Flowchart of the Genetic Algorithm ………………………………...…….26

Figure 2. 3: Flowchart of the Bacteria Foraging Optimisation Algorithm…...………..28

Figure 2.4: Procedure of the PSO algorithm…………...…..………………….....…….43

Figure 3.1: Simulation results of benchmark functions for PSO, SPSO, and APSO....103

Figure 4.1: Diagrammatic representation of PSO particle position and velocity

update………………………………………………………………………………….111

Figure 4.2: Pseudo code of Primal Dual algorithm………………………..…….……..116

Figure 4.3. Flowchart of Primal- Dual-PSO (pdPSO) algorithm……………………....118

Figure 4.4: Graph of Ackley function for Primal-Dual, PSO and pdPSO…………….120

Figure 4.5: Graph of Sphere function for Primal-Dual, PSO and pdPSO………………122

Figure 4.6: Graph of Griewank function for Primal-Dual, PSO and pdPSO…………...123

Figure 4.7: Graph of Schaffer f6 function for Primal-Dual, PSO and pdPSO………...125

Figure 4.8: Graph of Schaffer f6 Modified function for Primal-Dual, PSO and

pdPSO…………………………………………………………………………………127

Figure 4.9: Graph of Schaffer f6 Bubble Dynamic function for Primal-Dual, PSO and

pdPSO…………….…………………………………………………………………...128

Figure 4.10: Graph of NDParabola function for Primal-Dual, PSO and pdPSO………130

Figure 4.11: Graph of Rastrigin function for Primal-Dual, PSO and pdPSO…………..131

Figure 4.12: Graph of Tripod function for Primal-Dual, PSO and pdPSO……………..133

Figure 4.13: Algorithm for Asynchronous PSO (APSO)…………..……………….….139

Figure 4.14: Flowchart of pdAPSO algorithm..140

Figure 4.15: Graph of Ackley function for APSO, Primal-Dual-PSO and PSO…....….141

Figure 4.16: Graph of Dejong f2 function for APSO, Primal-Dual-PSO and PSO..…..143

Univ
ers

ity
 of

 M
ala

ya

xvii

Figure 4.17: Graph of Sphere function for APSO, Primal-Dual-PSO and PSO…….....144

Figure 4.18: Graph of Griewank function for APSO, Primal-Dual-PSO and PSO…….145

Figure 4.19: Graph of Schaffer f6 function for APSO, Primal-Dual-PSO and PSO…...146

Figure 4.20: Graph of Schaffer f6 Modified function for APSO, Primal-Dual-PSO and

PSO……………………………………………………………………………………148

Figure 4.21: Graph of NDParabola function for APSO, Primal-Dual-PSO and PSO….149

Figure 4.22: Graph of Rastrigin function for APSO, Primal-Dual-PSO and PSO…..…150

Figure 4.23: Graph of Tripod function for APSO, Primal-Dual-PSO and PSO………152

Figure 4.24: Graph of Ackley function for pdPSO and pdAPSO………………………154

Figure 4.25: Graph of Schaffer f6 modified function for pdPSO and pdAPSO………..155

Figure 4.26: Graph of ND Parabola function for pdPSO and pdAPSO…………….…156

Figure 4.27: Graph of Rastrigin function for pdPSO and pdAPSO……………………157

Figure 4.28: Graph of Sphere function for pdPSO and pdAPSO……………………...158

Figure 4.29: Graph of Griewank function for pdPSO and pdAPSO…………………..159

Figure 4.30: Graph of Tripod function for pdPSO and pdAPSO………………………160

Figure 5.1: Convergence and Flocking strategy…………………..…………………..184

Figure 5.2: Screenshot of 200 robots………………………..………………………...186

Figure 5.3: Screenshot robots moving towards convergence…………………………..186

Figure 5.4: Screenshot robots converging at a point………………….……..…………187

Figure 5.5: Screenshot robots flocking to Zone 1…………………….……..…………187

Figure 5.6: Screenshot robots flocking to Zone 4……………………..………………188

Figure 5.7: Screenshot robots flocking to Zone 3……………………………………..188

Univ
ers

ity
 of

 M
ala

ya

xviii

Figure 5.8: Graph of total iteration to converge and flock to Zone 1………………….190

Figure 5.9: Graph of total iteration to converge and flock to Zone 2………………….190

Figure 5.10: Graph of total iteration to converge and flock to Zone 3………………….191

Figure 5.11: Graph of total iteration to converge and flock to Zone 4………………..191

Figure 5.12: Screenshot robots moving towards convergence………………………..192

Figure 5.13: Screenshot robots converging at the center……….……………………..192

Figure 5.14: Screenshot robots flocking to Zone 1…………......……………………..193

Figure 5.15: Screenshot robots flocking to Zone 2………………………..…………..193

Figure 5.16: Screenshot robots flocking to Zone 3………………………..…………..194

Figure 5.17: Screenshot robots flocking to Zone 4………………………..…………..194

Figure 5.18: Graph of total iteration to converge and flock to Zone 1………………….198

Figure 5.19: Graph of total iteration to converge and flock to Zone 2…………………198

Figure 5.20: Graph of total iteration to converge and flock to Zone 3…………………199

Figure 5.21: Graph of total iteration to converge and flock to Zone 4………………….199

Figure 5.22: Graph of performance comparison of total iteration for pdPSO, PSO, APSO

and Primal Dual algorithms at Zone 1..200

Figure 5.23: Graph of performance comparison of total iteration for pdPSO, PSO, APSO

and Primal Dual algorithms at Zone 2..200

Figure 5.24: Graph of performance comparison of total iteration for pdPSO, PSO, APSO

and Primal Dual algorithms at Zone 3..201

Univ
ers

ity
 of

 M
ala

ya

xix

Figure 5.25: Graph of performance comparison of total iteration for pdPSO, PSO, APSO

and Primal Dual algorithms at Zone 4..202

Figure 5.26: Pictorial representation of pheromone...205

Figure 5.27: Pheromone flowchart...207

Figure 5.28: Virtual pheromone map..208

Figure 5.29: Flowchart of pattern formation algorithm..210

Figure 5.30: 50-agent pattern formation, black spots stands for the robots…………….212

Figure 5.31: 100-agent pattern formation, black spots stands for the robots…………...213

Figure 5.32: 150-agent pattern formation, black spots stands for the robots…………..215

Figure 5.33: 200-agent pattern formation, black spots stands for the robots………….216

Figure 5.34: 250-agent pattern formation, black spots stands for the robots………….218

Figure 5.35: Graph of Pattern Formation using 50 agents…………………………….218

Figure 5.36: Graph of Pattern Formation using 100 agents…………………………….219

Figure 5.37: Graph of Pattern Formation using 150 agents…………………………….219

Figure 5.38: Graph of Pattern Formation using 200 agents…………………………….220

Figure 5.39: Graph of Pattern Formation using 250 agents…………………………….220

Univ
ers

ity
 of

 M
ala

ya

xx

LIST OF TABLES

Table 2.1: A summary of variants of PSO algorithm implementation specifically for

swarm robotics …………………………………………………………………54

Table 3.1: Benchmark Functions and their Mathematical Equation……….…………..90

Table 3.2: Parameters for Test Functions……………………………..………………...92

Table 3.3: Parameters Settings of PSO variants..94

Table 4.1: Result Comparison for Ackley Function……………………….…..……..121

Table 4.2: Result Comparison for Sphere Function……………………..…………….123

Table 4.3: Result Comparison for Griewank Function………………….…………….123

Table 4.4: Result Comparison for Schaffer f6 Function………………..……………..125

Table 4.5: Result Comparison for Schaffer f6 Modified Function……………………..127

Table 4.6: Result Comparison for Schaffer f6 Bubble Dynamic Function……..…….128

Table 4.7: Result Comparison for NDParabola Function……………….……………130

Table 4.8: Result Comparison for Rastrigin Function……………….…………….…131

Table 4.9: Result Comparison for Tripod Function………………….……………….133

Table 4.10: Test Functions used in the comparison...135

Table 4.11: Statistical result of 12 benchmarking functions for pdPSO........................137

Table 4.12: Result Comparison for Ackley Function……………….…………………141

Table 4.13: Result Comparison for Dejong f2 Function……………………………..143

Table 4.14: Result Comparison for Sphere Function……………………..………….144

Table 4.15: Result Comparison for Griewank Function…………………..…………145

Table 4.16: Result Comparison for Schaffer f6 Function…………………………….147

Table 4.17: Result Comparison for Schaffer f6 Modified Function…………………..148

Table 4.18: Result Comparison for NDParabola Function……………..…………….149

Table 4.19: Result Comparison for Rastrigin Function……………..………………...151

Univ
ers

ity
 of

 M
ala

ya

xxi

Table 4.20: Result Comparison for Tripod Function…………………..…………….152

Table 4.21: Statistical result of 12 benchmarking functions for pdAPSO.....................153

Table 4.22: Result Comparison for Ackley function………………….………………154

Table 4.23: Result Comparison for Schaffer f6 modified function…………………….155

Table 4.24: Result Comparison for ND Parabola function…………………………….156

Table 4.25: Result Comparison for Rastrigin function………………………….…….157

Table 4.26: Result Comparison for Sphere function…………………………..………158

Table 4.27: Result Comparison for Griewank function………………………………..159

Table 4.28: Result Comparison for Tripod function…………………..………………160

Table 4.29: PSO variants used for our comparative studies...163

Table 4.30: Mean and Standard Deviation comparisons for sphere among eleven (11) PSO

algorithms..164

Table 4.31: Mean and Standard Deviation comparisons for Schwefel's P2.22

among eleven (11) PSO algorithms..164

Table 4.32: Mean and Standard Deviation comparisons for Rosenbrock among eleven

(11) PSO algorithms..165

Table 4.33: Mean and Standard Deviation comparisons for Rastrigin among eleven (11)

PSO algorithms...166

Table 4.34: Mean and Standard Deviation comparisons for Ackley among eleven (11)

PSO algorithms..166

Table 4.35: Mean and Standard Deviation comparisons for Schwefel among eleven (11)

PSO algorithms..166

Table 4.36: Mean and Standard Deviation comparisons for Griewank among eleven (11)

PSO algorithms..167

Table 4.37: Mean and Standard Deviation comparisons for Rotated Rosenbrock

among eleven (11) PSO algorithms...168

Univ
ers

ity
 of

 M
ala

ya

xxii

Table 4.38: Mean and Standard Deviation comparisons for Rotated Rastrigin

among eleven (11) PSO algorithms...168

Table 4.39: Mean and Standard Deviation comparisons for Rotated Ackley

among eleven (11) PSO algorithms...168

Table 4.40: Mean and Standard Deviation comparisons for Rotated Griewank

among eleven (11) PSO algorithms...169

Table 4.41: Mean and Standard Deviation comparisons for Shifted Rosenbrock

among eleven (11) PSO algorithms...170

Table 4.42: Mean and Standard Deviation comparisons for Shifted Rastrigin

among eleven (11) PSO algorithms...170

Table 4.43: Comparison of dependability and speed of convergence on Sphere..........171

Table 4.44: Comparison of dependability and speed of convergence on Schwefel's

P2.22..171

Table 4.45: Comparison of dependability and speed of convergence on Rosenbrock...171

Table 4.46: Comparison of dependability and speed of convergence on Rastrigin........172

Table 4.47: Comparison of dependability and speed of convergence on Ackley..........172

Table 4.48: Comparison of dependability and speed of convergence on Schwefel.......172

Table 4.49: Comparison of dependability and speed of convergence on Griewank......173

Table 4.50: Comparison of dependability and speed of convergence on Rotated

Rosenbrock..173

Table 4.51: Comparison of dependability and speed of convergence on Rotated

Rastrigin..173

Table 4.52: Comparison of dependability and speed of convergence on Rotated

Ackley..174

Table 4.53: Comparison of dependability and speed of convergence on Rotated

Griewank..174

Univ
ers

ity
 of

 M
ala

ya

xxiii

Table 4.54: Comparison of dependability and speed of convergence on Shifted

Rosenbrock..174

Table 4.55: Comparison of dependability and speed of convergence on Shifted

Rastrigin...175

Table 5.1: Mean and Variance for Convergence and flocking using Primal-Dual-

PSO..189

Table 5.2: Mean and Variance for Convergence and flocking using Primal-Dual-

APSO...195

Table 5.3: The mean number of iterations for pdAPSO, PSO, APSO and Primal dual

algorithms for all runs..203

Univ
ers

ity
 of

 M
ala

ya

xxiv

LIST OF SYMBOLS AND ABBREVIATIONS

PSO Particle Swarm Optimisation

IPM Interior Point Methods

PDIP Primal-dual interior-point

pdPSO Primal Dual Interior Point Method Particle Swarm Optimisation

pdAPSO Primal Dual Asynchronous Particle Swarm Optimisation

APSO Asynchronous Particle Swarm Optimisation

SPSO Synchronous Particle Swarm Optimisation

I Positive scaling factor

D Position of the robot

Dt Target of the robot

P (D, Dt) Distance of the robot from the target

Fatt Attractive force

Η Non negative scaling factor

P(D, Dt) Shortest distance between robot and obstacles

P0 Compulsory distance of effect of the obstacles

GA Genetic algorithm

BCGA Bacteria Colony Growth Algorithm

RIN Reactive Immune Network

AA Ant Algorithm

ACO Ant Colony Optimisation algorithm

dPSO Distributed PSO

Univ
ers

ity
 of

 M
ala

ya

xxv

PRM Probabilistic Roadmap Method

Xi Position of PSO particle

Vi Velocity of PSO particle

Vmax Maximum velocity of a particle

N The number of particles in the swarm

i The particle’s number

w PSO Inertia parameter

c1 Cognitive scaling factor

C2 Social scaling factors

m
gbest . Global best of PSO particle

mi
pbest

, Personal best of PSO particle

𝑋𝑖
𝑑 ith particle’s dth dimension’s value

pop_size Population size

gen_count generation counter from 1 to max_gen

dimen dimension

max_gen maximum generations

EPSO Extended Particle Swarm Optimisation

GDMEPSO Group Decision Making Extended Particle Swarm Optimisation

WSN Wireless Sensor Network

RSSI Received signal strength indication

RSS Rreceived signal strength

pePSO Physically embedded PSO

dPSO Distributed PSO

VL-ALPSO Augmented Lagrangian PSO with Velocity Limits

DR PSO Detection and responding PSO

CPSO Charged PSO

Univ
ers

ity
 of

 M
ala

ya

xxvi

ALPSO Augmented Lagrangian Particle Swarm Optimisation

FIPS Fully Informed Particle Swarm Optimisation Algorithm

RDPSO Robotic Darwinian PSO

KKT Karush-Kuhn-Tucker

SQP Sequential Quadratic Programming

LP Linear Programming

SOCP Second-Order Cone Programming

SDP Semi-Definite Programming

∑ Primal-dual matrix (3.12),

τ Scalar Value

S-1 Scaling

𝑃𝑠 Step vector

rE and rI. Relaxation vectors

TOL Halting tolerance

𝜆 The Lagrange multiplier

f(x) The objective function

g(x) Equality Constraint Violation

h(x) Inequality Constraint Violation

BFGS Broyden–Fletcher–Goldfarb–Shanno

Z1 Flocking zone 1

Z2 Flocking zone 2

Z3 Flocking zone 3

Z4 Flocking zone 4

C Convergence centre

SP Success Performance

Univ
ers

ity
 of

 M
ala

ya

xxvii

X* Theoretical global optimal solution

NFE Average number of function evaluation required to find solution

SR Success Rate

Univ
ers

ity
 of

 M
ala

ya

xxviii

LIST OF APPENDICES

Appendix A……………………………………………………………………………262

Appendix B……………………………………………………………………………263

Appendix C……………………………………………………………………………265

Appendix D……………………………………………………………………………267

Appendix E……………………………………………………………………………269

Appendix F……………………………………………………………………………271

Appendix G……………………………………………………………………………273

Appendix H……………………………………………………………………………275

Appendix I…………………………………………………………………………….277

Appendix J…………………………………………………………………………….279

Appendix K……………………………………………………………………………281

Appendix L……………………………………………………………………………283

Appendix M…………………………………………………………………………...285

Appendix N……………………………………………………………………………287

Appendix O……………………………………………………………………………289

Appendix P……………………………………………………………………………291

Appendix Q……………………………………………………………………………293

Appendix R……………………………………………………………………………295

Appendix S……………………………………………………………………………297

Appendix T……………………………………………………………………………299

Appendix U……………………………………………………………………………301

Appendix V……………………………………………………………………………303

Appendix W.......………………………………………………………………………305

Appendix X……………………………………………………………………………307

Appendix Y……………………………………………………………………………309

Univ
ers

ity
 of

 M
ala

ya

xxix

Appendix Z……………………………………………………………………………311

Appendix AA….………………………………………………………………………313

Appendix AB..………………………………………………………………...………315

Appendix AC.........……………………………………………………………………317

Appendix AD..……...…………………………………………………………………319

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

This thesis is a research work on the fusion of Particle Swarm Optimisation (PSO)

and Interior Point Methods for Swarm Robotics. The proposed technique uses the Interior

Point Methods to choose the initial feasible path for the robots in the search space. Then

Particle Swarm Optimisation is used to find the optimal path for the robots in the swarm.

Interior Point Methods provides the coordination between step computation and the bounds

to make the robots navigate through the search space that the robot will navigate. This chapter

introduces some background information on swarm robots; the research trend and motivation

for the thesis, the problem statement, the aim and objectives of the research, the significance

of the research; and the expected contribution of the research.

1.2 Background of the Research

The ability of a robot to locate the safest and shortest path is a very crucial factor to

the success of any robotic system. The need to make the robot navigate through its

environment without colliding with any obstacle during the course of finding its target is an

important research area in robotics. The need to reduce computation cost, computation time,

energy consumption, and delay in communication requires that more efficient and robust

algorithms be developed. Several techniques have been developed to solve these problems.

Examples of algorithms used for cooperative control of swarm robotic movement are the

artificial potential field (Chanclou & Luciani, 1996), cell decomposition (Dušan, Mario &

Mirjana, 2009), visibility graph (de Berg, Cheong , van Kreveld & Overmars, 2008), voronoi

diagrams (O’Dunlaing & Yap, 1982), grid (Payton, Rosenblatt & Keirsey, 1993), genetic

algorithm (Gao et al., 2008), fuzzy logic algorithm (Saboori, Menhaj & Karimi, 2006), and

Univ
ers

ity
 of

 M
ala

ya

2

neural network techniques (Yang & Luo 2004). Each of the techniques mentioned above has

its own advantages and disadvantages. Conventionally, the major problems in swarm robots

are the complexity of computation, the inability of the robots to escape from the local optima,

and low ability of robots to adapt to the environment (Zheng, Jain, Koenig & Kempe, 2005).

The artificial potential force (APF) by (Khatib, 1968) is one of the few algorithms

that have been used for real time robot applications. It provides a simple yet effective way to

plan a path for a robot. Navigating the robot through the use a potential field implies that

there is no prior knowledge of the pathway of the robot, neither was there any computation

in advance. This enables the robot to automatically select the right way to reach their target

(Dunias, 1996). Recently, the efficiency of the Artificial Potential Force has been increased

by hybridizing it with some other computational methods. Miao (2009) reported that

Simulated Annealing has been used together with APF to escape local minima.

Visibility Graphs are in the class of Deterministic Path planning methods. What is

required to create a visibility graph is just linking two vertices of barriers, which are visible

to each other, and linking the target and the robot to boundaries where they are completely

visible to themselves. The merit of the visibility graphs is that there is assurance of locating

the best path for any set of points in the graph (Russell & Norvig, 2010). The shortcoming of

the visibility graphs is that they do not possess the ability to sustain their optimal performance

when the maximum dimensions are high. Furthermore, they can only locate “semi-free” paths

which are very close to barriers (Russell & Norvig, 2010). Moreover, the visibility graph

algorithm requires that the robot has a very high accuracy in manipulating its way through

the environment. The weakness of this algorithm is its low efficiency in searching for a path

for the robot to navigate through (Yuan et al., 2004).

The genetic algorithm (GA), which was proposed by Holland in 1975, is a biology

inspired search approach that uses a procedure similar to natural reproduction. In the work

Univ
ers

ity
 of

 M
ala

ya

3

of Beasley, Bull & Martin (1993), a GA has been used in the field of robotics for path

planning or trajectory planning. The major drawback of GA is the unexpected deviations

demonstrated in the iterations during the evaluation of the fitness function and generation of

the offspring. However, such sudden leaps are not practicable for mobile robots (Yang, Ian,

& David, 2007). Moreover, the genes of the GA can be trapped in local minima, meaning

that there is no solution (Beasley, Bull & Martin, 1993). It has also been observed that the

time taken to locate the first suitable path will be high if there are many obstacles in the

environment. The response time of a GA during the optimisation process is usually very high

thereby resulting in a slow convergence rate of GA genes as they search for the best path.

Tang, Zhang, and Yang (2000) observed that low convergent probability in GA can result to

low crossover probability and high mutation probability, which will affect the efficiency of

the algorithm drastically. For instance, in GA, mutation operators are commonly used to

serve the function of exploration, while cross-over operators assist the population to converge

to good solutions. This is referred to as exploitation since the cross-over seeks to converge

to a particular point in the search space. The mutation operator tries to prevent GA from early

convergence so that it can explore other regions. It is preferable to explore more areas in the

start of the search as this will guarantee exploration of more areas and increase the diversity

in the population. Conversely, it is better to do more exploitations at the expiration of the

search. This is to warrant the convergence of the population to the global optimum. In other

words, when mutation rate is high, the search ability of GA is reduced. And when GA

mutation rate is too small the search will most likely stop at a local optimum. Therefore, it is

compulsory that algorithms that are more effective be developed to handle various swarm

robotics tasks.

Univ
ers

ity
 of

 M
ala

ya

4

Since the introduction of Particle swarm optimisation (PSO), it has been extensively

used for solving different swarm robotic tasks (Ellips & Davoud, 2010). PSO is a stochastic

algorithm centered on population which is now being applied successfully in several fields

like Electric Power Systems (AlRashidi & El-Hawary, 2009), water distribution network

design (Montalvo et al, 2008), parameter optimisation in suspension system (Alfi & Fateh,

2010), resource allocation (Gong et al, 2012), task assignment (Ho et al, 2008), DNA

sequence compression (Zhu, Zhou & Shi, 2011), e-education (Dascalu, 2011), and

computational finance (Chiam, Tan, & Al-Mamun, 2009). Kennedy and Eberhart in 1995

provided the first PSO algorithm. They got their inspiration from the social behaviour of

flock of bird, school of fish, and herd of animal (Kennedy & Eberhart, 1995). Just like was

we have in other evolution algorithms such as GA, PSO possesses several advantages which

include which makes it a desirable optimisation algorithm (Shi & Eberhart, 1998).

1.3 Research Trend and Motivation

I drew my inspiration to this research work on the fusion PSO and the Primal Dual

method from the fact that Particle Swarm Optimisation (PSO) is one of the most popular

algorithm in use because of its simplicity, ease of implementation and efficiency. It however

exhibits some shortcoming, particularly its tendency to premature convergence and inability

to escape from local minima. To address this weaknesses, many variants of PSO have been

proposed in the literature. Some of these approach are centered mainly on manipulating some

of the parameters used in the PSO algorithm optimisation process, whereas many others

employed hybrid methods that integrate other optimisation algorithms with the standard PSO.

It have been demonstrated in the literature that methods that hybridize PSO and some other

optimisation algorithm have a better performance over the standard PSO algorithm.

Univ
ers

ity
 of

 M
ala

ya

5

The modern day Interior-Point algorithms have become recognised as the most ideal

approach for solving large-scale linear problems (Laird, 2006). The Primal Dual method has

been applied to convex optimisation problems where strong duality is required (Rockefeller,

1970). It has also been used for various nonlinear and non-smooth cost functions that are

prevalent in network design, medical image reconstruction, and industrial engineering (Boyd

& Vandenberghe, 2004). They can be easily parallelized which enables them to efficiently

handle multi-dimensional problems (Bauschke & Combettes). The Primal dual method from

literature can solve both linear and non-linear optimisation problems effectively (Laird,

2006).

We intend to develop a set of hybrid PSO algorithms that will be able to solve the

aforementioned problems that are associated with PSO. The Primal Dual method, when

integrated into PSO, will provide better balance between exploration and exploitation,

preventing the particles from experiencing premature convergence and being trapped in local

minima easily and so producing better results. The fusion of conventional PSO with Primal-

Dual Interior-Point method will resolve the common issues associated with PSO algorithm

and many of its variants. The integration will make our proposed system to have great

capacity to prevent premature convergence, and prevent the particles from being stuck in the

local minima.

In the past, many variants of PSO have been developed in the past to provide specific

solutions for swarm robotics problem. For every swarm robotic problem investigated, a

newly developed customized PSO is required to effectively solve the problem. For instance,

(Hayes et al, 2003) and (Jatmiko et al, 2007) used PSO to provide solution to the odor

localization problem of swarm robotics. Moreover, Hereford (2006) developed a distributed

particle swarm optimisation algorithm to handle the scalability problem of swarm robotic

system. Tang & Eberhard, (2011) proposed the Velocity Limit Augmented Lagrangian PSO

Univ
ers

ity
 of

 M
ala

ya

6

to solve the problem of collision with barriers in the search space by the robots in the swarm.

Derr and Manic (2009) proposed the distributed PSO (dPSO) algorithm for navigation of

robots in hazardous environment. Doctor 2004 applied PSO for path planning of unmanned

vehicle. Zhang, Wu and Wang (2013) proposed the Chaotic PSO for avoiding collision with

obstacles by swarm robots.

Hao and colleagues (2007) proposed a PSO algorithm that uses Polar coordinate

system to move in a dynamic environment. Karimu (2012) proposed dynamic hybrid PSO

algorithm to handle motion planning problem of mobile robot. Moreover, new variants of the

PSO algorithm have been developed by fusing it with an already tested approaches which

have been effectively used to solve complex optimisation problems. Academicians and

researchers have improved the performance of PSO by integrating in it the basics of other

famous methods. Some researchers have also made efforts to increase the performance of

popular evolutionary algorithms such as Genetic Algorithm, Ant Colony and Differential

Evolution, etc. by infusing the position and velocity update equations of the PSO. The

purpose of the integration is to make PSO overcome some of its drawbacks like premature

convergence, particles being trapped in the local minima, and partial optimisation.

1.4 Problem Statement

Though Particle Swarm Optimisation (PSO) is a widely accepted algorithm in

different fields, it still suffers from common issues such as premature convergence, inability

to effectively cope with a dynamic environment and failure of PSO particles to escape from

being trapped in local minima. This provides possibilities for the development of new

variants of PSO algorithms. Although successful in addressing those issues specific to a

directed domain, these variants of PSO are still unable to resolve the issues effectively. The

Interior-Point Methods (IPMs) are powerful tools for solving nonlinear optimisation

problems. It has been depicted as the most robust algorithms for solving large-scale nonlinear

Univ
ers

ity
 of

 M
ala

ya

7

optimisation problems. On the other, similar to PSO, the methods are still plagued with

several issues (e.g., how to handle non-convexity, the procedure for making the barrier

constraint up to date is burdensome even with the presence of nonlinearities, and the necessity

to guarantee progress in the direction of the solution). The particles in PSO are naturally

inclined to fling to the infeasible areas from the feasible areas during the course of searching.

This poses a threat to the searching efficiency of PSO. Many of the PSO variants are not

really suitable for effective handling of swarm robotic tasks. The present variants of PSO

cannot adequately handle the constraints and the complexities that characterise the dynamic

environment. There is therefore the need to increase the efficiency of PSO algorithms for

swarm robotic by developing new variants that can adequately handle complex constraints.

1.5 Research Questions

What are the problems associated with existing PSO algorithms that limit their

suitability for swarm robotics tasks? What are the different ways by which PSO algorithms

and Interior Point Methods can be applied to swarm robotics? What are the different ways

by which we can bring together the advantages of PSO with the strengths of Interior Point

Methods to overcome the weaknesses of PSO algorithms? What are the different ways by

which the fusion of these two algorithms can be used to increase the performance of PSO

and make them more suitable for handling swarm robotics cooperative movement? What are

the processes that must be carried out for the new algorithms to perform (in terms of speed

of convergence, escaping from been trapped in the local minima) better than the existing

ones? What is the computational cost and computational time attached to using the new

algorithms for swarm robotics? What are the ways of measuring the performance of the new

algorithms (Best fitness, worst fitness, mean fitness, standard deviation of fitness)?

Univ
ers

ity
 of

 M
ala

ya

8

1.6 Aim and Objectives of the Research

To address the problem statement one, our objectives are: to carry out experiments

using standard benchmarking functions on some variants of PSO algorithms that have find

application in the field of swarm robotics. This will enable us to know the problems

associated with the existing PSO algorithms that limits their usefulness for solving swarm

robotics tasks. Moreover, we want to assess the convergence properties of the algorithms

through these benchmark functions. And to validate the presence of premature convergence,

inability of particles to escape being trapped in the local minima, and unsuitability of PSO

for dynamic tasks in these PSO variants.

To tackle problem statement two, our objectives are: to propose new set of hybrid

algorithms based on the integration of PSO and Primal Dual Interior Point Method, and use

benchmarking functions to validate their performance with respect to the Best fitness, worst

fitness, mean fitness, and standard deviation of the fitness for each of the algorithms. Also,

we intend to test if the proposed algorithms have been able to overcome the problem of

premature convergence and inability of particles to escape from local minima.

To deal with problem statement three, our objectives are: to apply our proposed

algorithms to solve swarm robotic tasks such as aggregation, flocking and pattern formation

to ensure the applicability aspect of the algorithm. It is essential not only to develop

algorithms that perform better than its predecessors, but also applicable for the intended

domain of cooperative swarm movement. These three objectives will ensure that our aim

towards creating a singular (in PSO algorithm) and generic PSO derivative for all dynamic

optimisation tasks can be achieved. Thus, eliminating the need to develop a new variant of

PSO algorithm whenever a new dynamic optimisation problem is to be solved.

Univ
ers

ity
 of

 M
ala

ya

9

1.7 Significance of the Research

This thesis proposed the fusion of Particle Swarm Optimisation (PSO) and Interior

Point Methods as cooperative movement control algorithm in swarm robotics. We developed

the Primal-Dual Interior Point Particle Swarm Optimisation (pdPSO) algorithm to resolve

the shortcomings of the standard PSO without the limitations of the IPM methods. We

applied the Primal Dual to each particle in a finite number of iterations, and feed the PSO

with the output of the Primal Dual procedure. We compared the performance of our new

algorithm (pdPSO) with IPM and PSO using different dynamic benchmark functions. Our

results revealed that pdPSO performed better than both independent PSO algorithm and IPM

method. The novel algorithm is not susceptible to premature convergence, and can handle

local minima avoidance better compared to conventional PSO, hence hypothetically has the

potential to perform better than many variants PSOs. As part of our contribution to the field

of swarm intelligence, we also developed the Primal-Dual Asynchronous Particle Swarm

Optimisation (pdAPSO) algorithm. We applied the Primal Dual to each particle in a finite

number of iterations, and feed the APSO with the output of the Primal Dual. Also, our work

demonstrated how the Primal Dual can be used to ensure better balance between exploration

and exploitation, preventing the particles from experiencing premature convergence and been

trapped in local minima easily and so producing better results. We compared the performance

of our new algorithm (pdAPSO) with APSO, PSO, and Primal-Dual Particle Swarm

Optimisation using 7 benchmark functions. Optimisation results reveal that pdAPSO offers

similar or in many test cases better solutions than the other approaches used for the

performance evaluation. Our proposed algorithm is shown to have the ability to avert

premature convergence, and prevent the particles being trapped in the local minima which

have characterized many variants of PSO.

Moreover, we applied our hybrid algorithms (pdPSO and pdAPSO) to adopt the

Univ
ers

ity
 of

 M
ala

ya

10

swarm robotics flocking motion problem. We hypothesize that the fusion of the two

algorithms (PSO and Primal Dual) offers a robust prospect of preventing premature

convergence of robots, and also make sure that the robots are not stuck in their local minima.

The results of our simulation give a clear evidence of the efficacy of the algorithms.

These hybrid algorithms contributed to the field of swarm robotics by providing novel

algorithms that perform better in terms of accuracy, convergence rate, stability, robustness

and ability to flock for identical set of swarm robots. Lastly, this thesis also contributed to

the field of swarm robotics by applying the new algorithms (pdPSO and pdAPSO) to solving

the problems of pattern formation in cooperative movements of swarm robots.

1.8 Outline of Thesis

 This thesis is organized into seven chapters. Chapter 1 provides an overview of the

study. It outlines the general introduction, background of the research, research trend and

motivation, statement of the problem, research questions, research aim and objectives, and

the significance of the research work.

Chapter two discusses the characteristics of a swarm robotic system, the advantages

and disadvantages of swarm robotics, detailed review of the different swarm robotic

algorithms, and comparative review of foregoing research in the field of particle swarm

optimisation. Moreover, we did an overview of the various Interior Point method algorithms.

The primal-dual interior-point (PDIP) method, Barrier Method, Simplex Method, strengths

and weaknesses of the Primal dual method, feasible and infeasible interior point method, line

search interior point method, trust region interior point method were all discussed.

Chapter three presents a survey on the different variants of PSO and their performance

on different benchmarking problems. We also seek to establish the grand truth about some

Univ
ers

ity
 of

 M
ala

ya

11

of these algorithms as discussed in literatures, and seek how they have been applied to swarm

robotics problems.

Chapter four discusses our new hybrid algorithm named Primal Dual Interior Point

Method Particle Swarm Optimisation (pdPSO). A comparative study of the new algorithm

with the conventional PSO and Primal Dual method was done using nine benchmark

functions. The chapter also presents another new hybrid algorithm named Primal Dual

Asynchronous Particle Swarm Optimisation (pdAPSO). We did a comparison of our new

algorithm with the typical PSO, APSO and pdPSO using seven (7) benchmark functions. We

also compared the performance of pdAPSO and pdPSO. The performance of pdAPSO and

pdPSO was compared with 9 state of the art PSO algorithms using 12 benchmark functions.

Chapter five discusses the application of pdPSO and pdAPSO to flocking problem.

We also applied pdPSO to solve pattern formation problems of swarm robotics.

Finally, chapter six summarizes the thesis. Our theoretical and practical contributions

are discussed and the final conclusion is presented. In addition, we described the future

research directions of this work.

 Univ
ers

ity
 of

 M
ala

ya

12

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

 This chapter gives a general review of state of the art swarm robotic algorithms. It

also establishes the need for the study and also provides an in-depth look at some relevant

literatures on algorithms implemented in the past and present and applied to swarm robotics

tasks. Experiments were carried out to ascertain the strengths and weaknesses of some of the

algorithms we read in literature, and also to highlight the drawbacks of Particle Swarm

Optimisation (PSO) algorithms.

 Sahin (2005) defined swarm robotics as the study of ways through which a vast

number of simple inexpensive agents can be made to work together to bring about a preferred

cooperative behaviour through communications at the local neighbourhoods among robots

as well as between the robots and their surroundings. The attributes of a swarm robotic system

includes firstly, a huge number of independent robots. Secondly, the ability to detect and

transfer information from one robot to the other within the same local neighbourhood is very

crucial in swarm robotics. Thirdly, they are decentralised and independent of global

information. Lastly, they possess cooperative behaviour that can be attained via spontaneous

formation of spatiotemporal structure, and communications among the robots and between

the robot and their surroundings. Some of the cooperative behaviours in swarm robotics are

discussed briefly in the section below.

According to Arkin (1998), there are several advantages and disadvantages of swarm

robotic systems in comparison to a single robot. The advantages of swarm robotic system are

as follows

Univ
ers

ity
 of

 M
ala

ya

13

i. Enhanced performance: breaking complex tasks into simpler ones and then

making the robots to perform tasks cooperatively thereby increasing the

efficiency.

ii. Job empowerment: some set of robots are authorised carry out specific jobs which

are difficult for an individual robot to perform.

iii. Broad sensing: the radius of signal detection of a set of robots is broader than that

of an individual robot.

iv. Parallel execution of jobs: a set of robots can set in motion several tasks in diverse

places simultaneously.

v. Robust system: failure of one robot in the swarm does not mean that the system

will fail or that the job will not be completed. There might be degradation in the

performance of the system but it will complete its task even as some redundant

robots in the swarm take up the challenge of completing the remaining tasks.

The shortcomings of swarm robotics are listed below:

i. Infringement: obstructions, collision, and intrusion can cause a set of robots to

infringe on the movement of other robots.

ii. Doubt about the plans of other robots: directing a set of robots entails knowing

the plans other robots in the group. Vagueness of purpose can result into

contention rather than collaboration among the robots.

iii. Need for effective control algorithm: the fact that a large number of robots are

involved means that there will be the need to develop an effective algorithm that

will make the robots in the swarm to work in corporation to achieve their desired

goal.

Univ
ers

ity
 of

 M
ala

ya

14

2.1.1 Cooperative behaviours

According to Brambilla et al. (2013), swarm robotics have many cooperative

behaviours that can be used to solve sophisticated problems. These cooperative behaviours

can be grouped into three principal sections:

i. Non-random arrangement behaviours: This deals with the ability of swarm

robotic system to arrange and allocate robots and objects in the search space;

ii. Path finding behaviours: Have to do with the capacity of the swarm robotic

system to plan and direct the way and manner in which the robots move in the

swarm;

iii. Mutual decision-making and job distribution: Is the ability of the swarm to

make a joint resolution or split the swarm into different clusters depending on

their choice. A brief discussion about the different activities of the swarm

robotic systems that requires joint decision are presented below.

2.1.1.1 Aggregation

This is a characteristics of swarm robotic system where all the robots in a swarm

occupy the same locality in the environment and are clustered to accomplish a specific task

(Camazine et al., 2001). Aggregation has been classified as the easiest cooperative behaviour

in swarm robotics which is a requirement before other cooperative behaviours like flocking,

foraging, and pattern formation (that involve the coming together of robot at the same place)

can take place. Camazine et al. (2001), opined that the research on swarm robots’ aggregation

have been inspired by observing the behaviour of bees, birds, cockroaches, and fish. Some

other approaches that are different from swarm intelligence methods have been employed to

solve some of the extremely difficult forms of aggregation tasks in swarm robotics (Ferrante,

Univ
ers

ity
 of

 M
ala

ya

15

2013). In such cases, there is no available information, hints or set standards to decide where

the robots should gather. It is required that the robots gather themselves together at a

haphazard location. Some researchers such as Minsky (1967) have used likelihood finite-

state automaton to do aggregation. Also, Nolfi and Floreano (2004) employed artificial

evolution to achieve aggregation. These approaches that have been mentioned have their

limitations as some of the robots can still be trapped thereby not converging with other robots

in their destination (Ferrante, 2013).

2.1.1.2 Pattern formation

Pattern formation basically involves changing the position of each robot in the swarm

based on some predefined rules in order to form a particular shape (Yukiko, 2013). This is

also a non-regular arrangement behaviour that can be utilized to arrange robots in an ordered

and rhythmic style. According to Meinhardt (1982), the inspiration of designing algorithms

to make swarm of robots to form a particular pattern came from natural processes like

development of colour patterns in animals. Another example as stated by Langer (1980) is

physical activity such as mineral development.

Egerstedt and Hu (2001) proposed a pattern formation method that uses the

organization approach for a swarm of robots to form a given shape. The technique was used

in a simulated environment that takes obstacle avoidance into consideration to control the

movement of robots to form a triangular shape. The strength of this approach is that the

tracking of robots was properly done thereby stabilizing the pattern formation error.

Koo and Shahruz (2001) proposed another pattern formation approach that used a

make a set of unmanned aerial vehicles (UAVs) to form a preferred shape using centralized

Univ
ers

ity
 of

 M
ala

ya

16

pattern formation method. The main emphasis of their research work is the computation of

the Route through which the unmanned aerial vehicles will travel through.

Belta and Kumar (2002) proposed a method that uses an invariable kinetic energy

measurement to create plane paths for a swarm of robots to navigate. The closeness between

one robot and other robots in the swarm can be regulated using some parameters. However

their approach failed to consider obstacle avoidance and it is not scalable. Krishnanand &

Ghose (2005) proposed a pattern formations algorithm of simple robots using indigenous

prototypes and attitudinally distributed communications. Ikemoto et. al. (2005) presented a

pattern formation approach based on steady spatial formation of similar robots into a desired

shape. Chen, et. al. (2008) also proposed a decentralized pattern formation algorithm for

making mobile robots to form a given shape. Elor and Bruckstein (2011) proposed a pattern

formation approach that deploys multiple identical robots in a swarm to form a particular

shape.

From the research work that we have considered so far, there is no guarantee that the

robot will converge to form the desired pattern (Gautam & Mohan, 2013). If the given shape

is formed, it is a weak formation that has no firm symmetrical shape. Many of the determining

factors about the formation of the patterns are based on presumptions. Examples of such

deductions include the detection, direction-finding, interaction and computational

competences of the robots. The robots also have negligible or no perceptive of other robots

in the search space. Also, there is insignificant or no interaction among the robots (Gautam

& Mohan, 2013).

Univ
ers

ity
 of

 M
ala

ya

17

2.1.1.3 Cooperative exploration

This is an explorative behaviour utilized by robots to search the environment where

they are positioned, locate their target(s), and successfully move to their destination

(Camazine et al., 2001). As reported by Camazine et al. (2001), the origin of inspiration for

cooperative exploration is from insects like ants, termite, and bees. Howard et al. (2002),

proposed a swarm robotic cooperative exploration technique that uses a potential-field-based

method to deploy mobile robots in a swarm. The fields are fabricated in a way that each node

is prevented by both barriers and other nodes, thus compelling the network to extent its area

of coverage in the environment. Their method is both decentralised and scalable. Their

experiment is however incomplete because they did not take into consideration some external

and internal factors such as network size, environment, original situations, weights, size of

the node, and viscidness.

Ducatelle et al., (2011) proposed a swarm robotic cooperative exploration technique

that allows the robots to direct one another’s movement by passing their path finding

information by means of wireless network created in the swarm. They conducted their

experiments under two different situations. Firstly, the swarm directs a robot to its

destination. Secondly, all the robots in the swarm move to and fro between two destinations.

The method was found to be efficient and robust in the two situations. It is robust to failures

of robots in the swarm. The approach helps the robots to organization themselves thus

increasing the efficiency of exploration. The approach also possesses the ability to locate the

shortest routes in chaotic environments.

Univ
ers

ity
 of

 M
ala

ya

18

2.1.1.4 Mutual decision-making and job distribution

This deals with the ability of robots in the swarm to inspire one another during

decision making (Camazine et al., 2001). The mutual decision making can either result into

reaching a compromise to accept the joint decision or selection from the list of feasible

options. Instances of mutual decision-making are derived from animals. For example, the

idea of swarm robotics sprung from the study of the behaviour of cockroaches (Amé et al.,

2006). Demonstrations of job distribution are very common in animals that live in castes like

ants and bees (Camazine et al., 2001). Various techniques have been applied for joint

decision-making as explained by Campo (2011). Examples of approached that are used for

mutual decision making are likelihood finite-state automaton (Garnier et al., 2005), and

statistical-physics (Montes de Oca et al., 2011). Likelihood finite-state automaton that was

proposed by Bonabeau et al. (1997) in their seminar work is used for job distribution in

swarm robotics (Liu et al., 2007; Brutschy et al., 2012).

Liu et al., (2007) presented a research work that uses a naive acclimatization system

that spontaneously change the proportion of robots in a swarm that are involved in foraging

and those that are resting. The advantage is that energy is conserved. The robots in the swarm

have some set of rules that enables them to effectively search for food, avoid colliding with

other robots in the swarm during search, and also ensure that they retrieve their food. The

robots also help their team mates to successfully retrieve their own food as well. The job of

searching for food is distributed among the foraging robots and the resting robots. The results

of their simulation demonstrates that mutual decision and job distribution is achievable in

swarm robots. Their work further revealed that mutual decision is highly necessary when

there is shortage of food.

Univ
ers

ity
 of

 M
ala

ya

19

Moreover, the swarm acclimatization system helps in optimisation of the energy

consumed regardless of the poor perception capacity and inadequate information transfer of

the robots to the other robots around them. Another strength of their work is the ability of the

swarm to detect and adjust to changes in the environment.

2.2 Advances in Swarm Robotic Algorithms

Many researchers have in the past used different approaches for the task of planning

swarm robot’s mobility in the search space.

2.2.1 Artificial Potential Fields (APF)

One of the methods used for controlling the navigation of robots in a swarm is the

artificial potential field (APF). It was proposed by Khatib in 1968. It is one of the few motion

planning methods for real time robot applications. It provides a straightforward but efficient

way to plan a path for a robot. The APF is a function whose slope angle is used to calculate

a force applied to the robot. This force compels the robot to navigate to its target without

being stopped by obstacles. APF is made up of force vectors, which can be as a result of the

obstacles or the location of the targets in the search space. Depending on the state of the robot

with respect to the environment, the forces acting on the robot can either be repulsive,

attractive or random. The equation D = [d, q] can be taken as the position and direction of

vector. The attractive potential field force acting can be written as:

Uatt (D) = IP2 (D, Dt), where

I: is a positive scaling factor

D: is the position of the robot and

Univ
ers

ity
 of

 M
ala

ya

20

Dt: is the target of the robot

P (D, Dt) = || Dt – D ||: is the distance of the robot from the target

Fatt : is the attractive force (it is a negative gradient of the attractive

potential field function which is less than zero)

This means that

 Fatt = - [Uatt (D)] = IP (D, Dt)

The repulsive potential field function is described by

 Uatt (D) = {
 0.5𝜂

0
(

1

𝑝(𝑑,𝑑0)
−

1

𝑃𝑜
) 𝑃(𝑑,𝑑0)≤𝑃𝑜

𝑃(𝐷,𝐷0)>𝑃𝑜
 where

η: is non negative scaling factor

P(D, Dt): is the distance that is the shortest between the robot and obstacles

P0: is the distance between the robot and the obstacles

P0 is a constant value, which depends on the target of the robot, the type and shape of obstacle.

It is usually less than half the extent of space between the obstructions or shortest length from

the obstacles to the goal.

The repulsive force that is applied whenever the robot is yet to get to the target is:

Frep = - [Urep (D)]

 = {
 𝜂
0
(

1

𝑝(𝑑,𝑑0)
−

1

𝑃𝑜
)

1

 𝑃2(𝑑,𝑑0)

𝑃(𝑑,𝑑0)≤𝑃𝑜
𝑃(𝐷,𝐷0)>𝑃𝑜

The resulting force is F = Fatt + Frep

Univ
ers

ity
 of

 M
ala

ya

21

According to Cao, Huan, and Zhou (2006), the force F controls the navigation of the

robot from the start to the goal. Below is an illustration of how the potential force works.

Figure 2.1: Potential Field (Diagrammatical representation of the APF showing how the

attractive and repulsive forces compel the robots to navigate from its starting point avoiding

obstacles on its way and getting to its destination).

Some of the desirable qualities of the APF include its simplicity of use, efficient

mathematical evaluation, real time usage, applicable to both redundant and non-redundant

robots, and the incorporation of the dynamics of the robot (Ren, et al., 2006). The major

drawback of APF is the local minima which could lead the robot been trapped before reaching

its goal. Other weaknesses of APF according to (Wang et al., 2013) are oscillation, and Goal

Non Reachable with Obstacle Nearby (GNRON). Also failure is possible even when a valid

path exists and failure modes are visible to onlookers. Navigating the robot through the use

a potential field implies that there is no prior knowledge of the pathway of the robot, neither

Obstacle Destination

Attractive

force

Direction of

Movement

Repulsive

force

Univ
ers

ity
 of

 M
ala

ya

22

was there any computation in advance. That implies that the robot ‘chooses’ automatically

its way to reach its goal (Dunias, 1996).

Nowadays, the Artificial Potential Force is been hybridized with other computational

methods to improve its efficiency (Lie Tang et al., 2010) and Miao (2009)). Wang (2000)

used the Road Map approach to plan path for mobile robot. The shortcoming of the method

is that it cannot be used for complex environments due to the high volume of computations

that is involved. Latombe (1990) used the Cell Decomposition method for path planning of

robot. Zhu, Yan, and Xing (2006) integrated Artificial Potential Field into Simulated

Annealing for planning the path of mobile robot. They were able to solve the problem of the

robot been trapped in the local minima. Boschian and Pruski (1993) applied the Grid method

to robot path planning. The technique is however ineffective because it cannot solve the

problem of been trapped in the local minimum. Visibility graph was used by Li, Ye and Tan

(2002) for robot path planning. Swarm intelligence and Potential flow was used by Hu, Wu,

and Wang (2007) to navigate mobile robot in both static and dynamic environment. The

problem with this approach is that unless the obstacle is conceptualized as a normal circle

having radius, it is difficult for the robot to move from one point to another in the search

space. Simulated Annealing was used by Hui (2009) to plan the path for robot in a dynamic

environment.

2.2.2 A* Algorithm

Another algorithm that has been used for swarm robotics is the A* algorithm. The A*

(pronounced A star) was first described early in 1968 by Hart, Nilsson and Raphael (Chestrutt

& Lau, 2005). The algorithm is a best-first, tree search algorithm, and able to find the shortest

route for a robot to travel from the initial spot to the target. A modified A* algorithm that

was applied to a real robot was developed by Chestrutt & Lau (2005) to calculate path for

ASIMO (a robot with human characteristics). They engaged a framework of crisscrossed

Univ
ers

ity
 of

 M
ala

ya

23

cells to represent the environment while colour cells were used to represent the obstacles.

The region that has no gravitational or electromagnetic fields is represented by some bits.

The distance to be covered by step positions that will make the robot to navigate towards the

target position is computed by the algorithm. The algorithm also includes information on

known static and moving objects with anticipated paths. There are three cost functions been

used by the A* algorithm. The cost functions help the algorithm to constrain the step nodes

used by the robot. The cost functions include: one, costing the step locality with respect to

the surroundings to resolve whether the location is safe or not. Two, calculating the attached

cost if robot is to take the step desired. And three, using a typical mobile robot organizer to

provide a navigational solution so as to determine the estimated remaining cost. This is used

to prevent the robots from been caught in the local minima. Zeng, Zhang, and Wei (2012)

proposed a Genetic Algorithm-based global path planning for mobile robot using A*

Algorithm. The approach used the MAKLINK graph theory and Dijkstra algorithm to create

unrestricted space prototype of robots and find best collision free path for the robot

respectively. A* algorithm and genetic algorithm are then used to generate the global optimal

path of the robots.

2.2.3 D* (Dynamic A*) Algorithm

Similar to the A* also is the D* algorithm. D* (pronounced "D star") is an incremental

search algorithms that uses graph representing cost. The basic D* method was originally

proposed in 1994 by Stentz (1995). He described the D* as a method used in planning

direction of mobility in non-static new environments. There is a great reduction in the

computational cost as the robot strategies for the best target coordinate by computing the best

routes leading to the robot’s destination. Depending on the new information gathered from

the environment by the robot, it will replan new paths and produce a new path for the robot

Univ
ers

ity
 of

 M
ala

ya

24

to navigate. There is no need for D* to do a complete replannnig of the navigation direction

all the time when it receives any new information. It updates the path cost locally when

environment changes, and tries to get the best global path when possible. To improve the

efficiency of the algorithm, some varieties of D* have been proposed such as the Focused

D*, Framed-quadatree D* and Field D*. For example, the Focused D* algorithm have been

applied in real-time path replannnig. The algorithm calculates an original path through which

the robot will navigate from the initial state while effectively adjusting its path during the

navigation whenever there is fluctuations in the arc costs. One of the strength of the Focused

D* algorithm is that it is able to generate an ideal path for the robot to navigate to its target.

The performance of the Focused D* is better than that of the original D* algorithm. The

integration of an exploratory Focusing function to D* makes it a generalized form of A* that

can copy in a non-static environment (Stentz, 1995).

2.2.4 Genetic Algorithm (GA)

Genetic algorithm was proposed in 1962 by Holland (Holland, 1993). GAs are a set

of adaptive techniques which provide solution to the problems of search and optimisation

involving substantial exploration of search landscape (Mantas & Andrius, 2007). They make

use of natural process of choosing the most suitable chromosome in the population to proffer

solution to optimisation problem (Mantas & Andrius, 2007).

Genetic algorithms can also be defined as biology inspired search approach that uses

a procedure similar in nature to evolution discovered by Charles Darwin (Goldberg &

Holland, 1988). According to Goldberg (1994), GAs have been extensively accepted as an

algorithm that can solve complex problems that traditional algorithms cannot provide

adequate answer to within a realistic time limit (Goldberg, 1994). A primary population of

individuals is arbitrarily created, and every single individual is evaluated. After the

Univ
ers

ity
 of

 M
ala

ya

25

evaluation, many individuals with higher fitness are generated and the ones with lower fitness

are throw out of the population. The GA uses genetic operators such as mutation, crossover

and natural selection to produce better generation ((Forrest & Mitchell, 1993) and (Keisam,

2014)). The process discussed here follows the natural biological process by which changes

occur in a chromosome through crossover and haphazard mutation (Trivedi, Lai & Zhang,

2001). In the work of David, Bull & Martin (1993), genetic algorithm has been used in the

field of robotics for path planning or trajectory planning. Ghorbani (2009) employed Genetic

Algorithm for the navigation of mobile robot. The path of robot was planned in a static

environment by (Sugihara & Smith, 1997) and (Gallardo et al, 1998) using Fixed Length

Binary Strings Genetic Algorithm. The shortcoming of this approach is that it takes longer

time to generate solutions because chromosomes that have fixed length are not appropriate

for complicated environment. Another approach called Binary Coded Genetic Algorithm

where the gene indicates the subsequent bearing and distance was proposed by Tu and Yang

(2003). The deficiency of this approach is that it leads to false solutions like paths that may

not get to the end of the search space (or boundary condition). An evolutionary planner that

uses simple genotype to depict suitable paths for robot to navigate was proposed by Xiao et

al (1997). A modified visibility based method and repair operator that generate suitable paths

which are then exposed to evolutionary technique was presented by Dozier et al (1997).

However, the approach can only create path for robot to avoid convex obstacles, while it

finds it very hard to proffer solution to obstacles that are concave in type. More so, the

computation time is high as it takes longer time to convert chromosomes to phenotypes.

According to Ripon, Kwong and Man (2007), the binary nature of the repair operator results

in decline in accuracy as local tuning of solution is problematic. Most of the existing

evolutionary based path planning algorithms, the computation load and execution time

increases as the population increases.

Univ
ers

ity
 of

 M
ala

ya

26

There are some drawbacks with the previously proposed genetic algorithms which

makes them unsuitable for swarm robotics. Firstly, genetic algorithm during optimisation

usually produces unexpected deviations and such sudden leaps are not practicable for mobile

robots. Secondly, premature convergence that makes the population to converge untimely to

non-optimal local minima is prevalent in GA (Davis, 1991). Thirdly, there are some illusory

functions that are ‘hard’ for most GAs to solve. Fourthly, GA finds it hard to cope with noisy

functions (Goldberg, Deb, and Clark (1992), and 1993). Finally, optimizing many conditions

always create problems for GA (Fonseca and Fleming, 1995). Some recent variants of GA

proposed by Ai & Wang (2011) have made some improvement in the performance of GA in

overcoming the problem of premature convergence that is inherent in the current GAs. One

of their hybrid algorithm fuses GA with the downhill simplex method, while the other one

integrate the conjugate gradient method into GA. Below is a flowchart of the genetic

algorithm.

Figure 2.2: Flowchart of the Genetic Algorithm (Adapted from Chan, Lau, & Ko, 2000)

Univ
ers

ity
 of

 M
ala

ya

27

2.2.5 Bacterial Foraging Optimisation Algorithm

Bacteria Foraging Optimisation Algorithm (BFOA) was presented by Passino in 2002

(Das et al., 2009). It is an emerging algorithm in the class of bio-inspired optimisation

algorithms. Foraging is a characteristic exhibited by group of bacteria and not an

individualistic character. This algorithm possesses the attributes of the bacterial foraging

forms such as chemo taxis, digestion, procreation and detection of quorum (Binitha & Sathya,

2012). Chemo taxis involves movement from cell to cell. It is the assembling of bacteria to

areas where there is abundance of nutrients in an unconstrained manner. This establishes a

process that enables transfer of information from one cell to another. Chemo taxis mimics

the biological behaviour of how bacteria move when looking for nutrients. This is also called

swim/tumble ((Binitha & Sathya, 2012) and (Das et al., 2009)).

Procreation is achieved in BFOA through the process of natural selection. It is only

the bacteria that seem to best adapt to the procedure that continue to exist, and transfer their

genetic attributes to subsequent generations. The less adapted bacteria do not survive this

phase. To enhance the global search capability of the algorithm and also avoid being trapped

in local optima, the exclusion-spreading mechanism is incorporated into the algorithm

(Binitha & Sathya, 2012). This strategy randomly chooses the sections of the bacteria

population to reduce and scatter into arbitrary locations in the environment.

 Univ
ers

ity
 of

 M
ala

ya

28

Figure 2.3: Flowchart of the Bacteria Foraging Optimisation Algorithm (Adapted from Das

et al., 2009)

2.2.6 Artificial Bee Colony (ABC) Algorithm

Karaboga and Basturk (2007) proposed the Artificial Bee Colony algorithm. It was

inspired through the study of the foraging activities of a swarm of bee. There are three (3)

categories of artificial bees in the ABC algorithm: employed bees, onlookers and scout. A

bee that is hanging around the dance area to decide on the origin of food to choose from is

referred to as onlooker. The one that is going to the origin of the food inspected before by it

is called employed bee. The last type of bee in ABC algorithm is called the scout bee. It

conducts arbitrary exploration for finding new origins of food. The location where the origin

Univ
ers

ity
 of

 M
ala

ya

29

of the food is denotes a potential solution to the optimisation problem (Binitha & Sathya,

2012). Also, the quantity of sugary fluid called nectar available at the food origin is directly

related to the fitness of the obtained solution. Based on this principle, the ABC algorithm

creates a swarm of simulated bees and began to move arbitrarily in the search space.

Whenever the bees locate nectar in the targeted location, there is communication. The optimal

solution to the problem is obtained from the massive communication among the bees (Binitha

& Sathya, 2012).

At the beginning a set of solutions (s1 = 1, 2… N) that is randomly dispersed across

the N problem space. A hired bee generates an amended solution in her memory. The solution

is based on the information she is having. It then tests the fitness value new solution (nectar).

Given that the nectar in the earlier one is less than that of the former one, the bee will record

in its memory the updated position and ignores the old one. All the hired bees share the sugary

information of the origin of food and their position information with the onlooker bees as

soon as they are through with their search process (Binitha & Sathya, 2012).

The subsequent stage is Procreation. This depends on the value of likelihood

connected with the origin of the food. The likelihood is represented as Li. The origin of the

food is selected by the simulated onlooker bee.

𝐿𝑥 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛
𝑁
𝑛=𝑥

Where, N is the number of origins of food (the number of hired bees), fitness is the fitness of

the solution x which is relative to the amount of the sugary fluid in the origin of the food at

the location. The final stage is called Substitution of bee and Choice making. The location of

food is abandoned when the position cannot be enhanced by a prearranged number of circular

Univ
ers

ity
 of

 M
ala

ya

30

movements. The value of prearranged number of circular movements is a very vital constraint

factor of the ABC algorithm. It is referred to as the threshold of abandonment (Binitha &

Sathya, 2012). The simulated bee generates and evaluates the location of each bee. It then

compared its performance with that of its previous one. The previous food origin is replaced

with a new one in the memory of the quantity of sugary fluid in the new food is equal or

better than that of the previous origin; else the previous one is kept in the memory.

2.2.7 Ant Algorithm (AA)

The Ant Algorithm was proposed by Dorigo, Maniezzo, and Colorni (1996). It draws

its inspiration from the foraging behaviour of ants. The term referred to as stigmergy which

was initiated by Grasse in 1959 (Binitha & Sathya, 2012). Stigmergy can be described as the

oblique transfer of information among a self-arranging evolving system through parties that

are changing their surroundings. The most fascinating part of the cooperative behavior of

various species of ant is their capability to locate shortest routes between the ants' habitual

resort and the food origins by trailing pheromone traces. Afterward, the ants select the route

to follow by means of a probability method to make choices depending on the volume of

pheromone deposited by the ant. The greater the pheromone’s trails, the more attractive it is.

Since ants leave behind pheromone on the route they are trailing, this behaviour gives rise to

a self-strengthening process resulting in the creation of routes indicated by high pheromone

intensity. Through modeling and simulation of ant foraging behaviour such as brood sorting,

nest building and self-assembling, algorithms can be created that may possibly be employed

to solve difficult combinatorial optimisation problems.

 The performance of the algorithm was verified using common benchmark Travelling

Salesman Problem (Binitha & Sathya, 2012). Ant algorithm prototypes the activities of

physical ants that possess the capacity to find the swiftest path from one food origin to the

Univ
ers

ity
 of

 M
ala

ya

31

successive one without any obvious sign (Gengqian et al, 2005). They also possess the ability

to adapt fast to any environment change that may need exploring another route if they are

confronted with any obstacle in the old one. This is because the hormone that the ants deposit

called pheromone has an effect on the remaining ants’ choice of path. When many ants chose

a path the quantity of the chemical secreted on the path increases, thereby serving as attractant

to other ants of the same species to choose that same path. The pheromone will fade away as

time goes on (Gengqian et al, 2005). The Ant algorithm uses the model of group ant to

navigate the swarm robot. The weakness of this approach is that it is complicated as it needs

a lot of computational time to arrive at the solution (Gengqian et al, 2005). Some of these

weaknesses have been dealt with in the work of Dorigo and Stützle (2004) who proposed a

MAX-MIN ant algorithm that adjust the pheromone to hinder the search from being trapped

in local optimum.

The Ant Colony Optimisation (ACO) which is another metaheuristic algorithm was

designed to provide good enough solution to optimisation problem was proposed by Dorigo

and Di Caro (1999). The aim is to simplify the general technique of providing solution to

combinatorial problems by approximate solutions built on the universal behaviour of physical

ants. According to Binitha & Sathya (2012), ACO have three main steps which are arranged

as functions. They are:

1. Create Solutions for the ant – The simulated ants navigate through neighbouring

positions of a problem using an evolution rule to repeatedly generate solutions.

2. Perform the updating of pheromone - This deal with providing the update of the

pheromone traces after creating comprehensive solutions. The ACO algorithm also

put into consideration a situation when the traces of pheromone vaporize with time.

Vaporization of pheromone traces assists ants only remember the good solutions that

were created during the course of running the algorithm.

Univ
ers

ity
 of

 M
ala

ya

32

3. Perform deamon actions – This is an alternative step whereby the algorithm makes

use of extra updates from overall viewpoint. This step can also involve using extra

pheromone to boost the ability of the algorithm to get the most ideal solution

produced.

ACO have been applied to the field of swarm robotics. For instance, Brand et al

(2010) applied the ant colony optimisation (ACO) algorithm to find the fastest and obstacle

free route for robot motion planning in a network. In their experiment obstacles with varying

structures and magnitudes were simulated in an environment that is dynamic. The result of

the computer simulations showed that for the new network, the best path can be re-routed

successfully by ACO algorithm after the addition of obstacles. The weakness of the two

approaches discussed above is that there is a high computational cost incurred. This is

because much time is required for the ants to deposit their pheromone, update it, and locate

the origin of the food. Ant Colony Algorithm (ACO) was used by used by Sugawara (2004)

to provide solution to the navigation problem of robot in a virtual dynamic environment.

2.2.8 Artificial Neural Network

The idea of neural networks (also known as artificial neural networks) was motivated

by the recognition mechanism of the human brain (Ben & Patrick, 1996). The human brain

can be described as a complicated, multidimensional parallel processing computer. Our

digital computer is not as fast in performing computations as human neurons (Simon, 1998).

According to Simon (1998), human vision is a good example for understanding this

difference. Neural networks are a form of multiprocessor computer system with many simple

processors called neurons. There is a high level of interconnection, simple organized

messages and communication that are exchanged between these neurons. These neurons

Univ
ers

ity
 of

 M
ala

ya

33

usually have a limited memory. The neurons are saddled with the responsibility of receiving

inputs from other neurons within the network or importing input from outside sources. These

inputs are used to calculate the output for the neural network and can also be sent as input to

the neurons of the next layer. The communication routes (also known as weights) transport

the computed data. The weights which establish communication between two neurons have

definite values and which can be timed when training the network. The weights are tuned in

parallel, implying that the computations by many neurons can be processed concurrently.

The learning rule is used in training the data and the extent of tuning of the neurons is subject

to the training data.

For example, if a neural network multiple layers. The layers are arranged as follows;

leftmost layer is the input layer; it accepts data from a source. The rightmost layer two is the

output layer that transports the calculated data from layer one out of the neural network. The

other layers are referred to as the hidden layers. It’s input and output signals continue in the

neural network. The neural network above is a case where each of the neurons in one layer

is totally connected with all neurons in the previous layer and so on. For any given

circumstance, a neural network is expected to figure out the most accurate results. With the

application of the training rules and the weights which can be changed, the neurons in the

neural networks can be used in creating a collision free path that the robot will navigate in

the search space. The advantage of using neural network is that it is computationally simple

(Simon & Chaomin, 2004).

Artificial Neural Network was used by Qu (2009) for navigation and obstacle

avoidance of mobile robots in dynamic environment. Du, Chen, and Gu (2005) proposed a

mobile robot global path planning approach for a static environment using Neural network

and genetic algorithm. A new path planning method based on neural network with obstacle

avoidance that enables cleaning robots in dynamic environment to extend its search to the

Univ
ers

ity
 of

 M
ala

ya

34

nooks and crannies of the search space was proposed by Simon and Chaomin (2004). A

multilayer Artificial Neural Network model was proposed was proposed by Youssef (2012)

for rover systems to enable them carry out self-directed path-planning to favourably move

towards their targets in difficult terrains while avoiding obstacles.

2.3 Particle Swarm Optimisation (PSO) Algorithms

Different variants of PSO algorithms have been proposed in the literature. For

example, Robinson et al. (2002) developed the GA-PSO and PSO-GA and used them to solve

a specific electromagnetic application problem of projection antenna. The results of their

experiments revealed that the PSO-GA hybrid algorithm performs better than the GA-PSO,

standard PSO only and GA only. He proposed the hybridization of GA and Hill Climbing

algorithm the same year and used it to solve unconstrained global optimisation problems

(Krink & Løvbjerg, 2002). Conradie, Miikkulainen, and Aldrich (2002), developed the

symbiotic neuro memetic evolution (SMNE) algorithm when they hybridized PSO and

‘symbiotic genetic algorithm’ and used it for neural network control devices in a

corroboration learning context. Grimaldi et al. (2004) developed the genetic swarm

optimisation (GSO) by hybridizing PSO and GA. They later went ahead and used their

algorithm to solve combinatorial optimisation problems. They presented different

hybridization approaches (Gandelli, 2007). They authenticated the genuineness of GSO using

different multimodal benchmark problems and applied it in different domain as demonstrated

in Gandelli et al. (2005), Grimaccia et al. (2007) and Gandelli et al. (2006).

Juang (2004) proposed the HGAPSO by hybridizing PSO and GA. Settles and Soule

(2005) proposed the BS algorithm which unites the velocity and position update equation of

PSO and the concepts of selection, crossover and mutation of GA with a supplementary

parameter referred to as the breeding ratio to decide on the percentage of the population that

Univ
ers

ity
 of

 M
ala

ya

35

will go through breeding in the present generation. Jian and Chen (2006) proposed the PSO-

RDL which is a PSO- GA hybrid (where the GA makes use of recombination operator and

dynamic linkage discovery). This algorithm was used to provide solution to 25 unconstrained

test problems having different degrees of sophistication. A new hybrid algorithm in where

PSO was used to produce the first population for GA was proposed by Mohammadi and

Jazaeri (2007). This algorithm was applied to proffer solution to an IEEE 68 bus problem.

Esmin et al. (2006) introduced the HPSOM algorithm which is the hybrid of PSO and a GA

mutation operator. The algorithm was used to solve unconstrained global optimisation

problems. Kim (2006) presented another GA-PSO algorithm that uses the PSO and the

concept of Euclidean distance. He applied it in getting the local and global optima of Foxhole

function.

Yang et al. (2007) proposed the PSO-GA centered hybrid evolutionary algorithm

(HEA) that splits the evolution process into two phases. Kao and Zahara (2008) introduced

another hybrid algorithm named GA-PSO. This algorithm was used to solve 17 unconstrained

multimodal test functions. Ru and Jianhua (2008) proposed a hybrid of GA and PSO that

combines the strengths of PSO and GA and also uses the idea of breeding individuals

originally exhibited by GA with the idea of self- enhancement of PSO, where the particles

improve themselves as a result of the social and cognitive scaling factors. The hybrid particle

swarm optimisation (HPSO) was introduced by Shunmugalatha and Slochanal (2008). This

algorithm absorbs the process of propagation and subpopulation in GA into PSO. The result

of their experiment shows that HPSO’s convergence rate is high and the solution is better. Li

et al (2008) proposed a PHGA which is a hybrid of PSO and GA. The algorithm employed

enhanced genetic methods such as the nonlinear choice of position (Mahanti & Chakrabarty,

2007) used in GA method.

Ting et al. (2008) proposed a hybrid constricted algorithm named GA/PSO used for

Univ
ers

ity
 of

 M
ala

ya

36

providing solution to challenges of load flow control. A hybrid GA/PSO algorithm was

presented by Jeong et al. (2009). This algorithm was used to give solution to multiobjective

optimisation problems. Valdez et al. (2009) reported a PSO + GA hybrid algorithm. It works

by using GA + PSO fuzzy rules to determine if it will select GA particles or PSO particles.

A set of 5 unconstrained benchmark functions were used to ascertain if the algorithm is

working according to specification or no. Bhuvaneswari et al. (2009) proposed an algorithm

named HGAPSO which is a hybrid of genetic algorithm and particle swarm optimisation.

The algorithm was used for alternator construction optimisation. Premalatha and Natarajan

(2009) developed a DPSO algorithm that uses GA’s mutation and crossover operators for

document clustering. Abdel-Kader (2010) introduced a GAI-PSO algorithm that integrates

the velocity and position update equations of PSO together with the concept of selection and

crossover from GAs.

Hendtlass (2001) proposed the Swarm Differential Evolution Algorithm (SDEA)

where PSO swarm acts as the population for Differential Evolution (DE) algorithm, and the

DE is carried out over some generations. After the DE have performed its part in the

optimisation, the resulting population is then optimized by PSO. Talbi and Batauche (2004)

developed the DEPSO algorithm and used it to solve problem in the field of medical image

processing. In Hao et al. (2007) introduced another variant of DEPSO where some probability

distribution rules are used any of PSO or DE to produce the best solution. Omran et al. (2008)

developed a Bare Bones Differential Evolution (BBDE) algorithm which used the idea of

barebones PSO and self-adaptive DE approaches. They used their algorithm to solve image

categorization problem. Jose et al. (2009) developed another variant of DEPSO algorithm

that uses the differential modification systems of DE to update the velocities of particles in

the swarm. Zhang et al. (2009) proposed the DE-PSO algorithm that uses three

unconventional updating approaches. Liu et al. (2009) developed the PSO-DE algorithm that

Univ
ers

ity
 of

 M
ala

ya

37

combines DE with PSO and uses the DE to update the former best positions of PSO particles

to make them escape local magnetizers thereby avoiding inertia in the population. Capanio

et al. (2009) proposed a Superfit Memetic Differential Evolution (SFMDE) algorithm which

is a hybrid of DE, PSO, Nelder Mead algorithm and Rosenbrock algorithm. The algorithm

was used to solve some standard benchmark and engineering problems.

Xu and Gu (2009) developed the particle swarm optimisation with prior crossover

differential evolution (PSOPDE). Pant et al. (2009) reported a DE-PSO algorithm that uses

DE for the initial optimisation process and then moved on to the PSO segment if DE fails to

satisfy the optimum conditions. Khamsawang et al. (2009) introduced another hybrid

algorithm name PSO-DE that centres on standard PSO and DE. They used their algorithm to

solve economic dispatch (ED) problem having constraints. Shelokar et al. (2007) developed

PSO with Ant Colony Optimisation (PSACO) algorithm. The algorithm has two phases. The

PSO is employed in the first phase and the result of the optimisation is feed into ACO for the

second phase of the optimisation. Hendtlass and Randall (2001) integrated ACO into PSO.

The best position is selected from the list of best positions obtained and recorded. Victoire

and Jeyakumar (2004) proposed the hybrid of PSO and sequential quadratic programming

(SQP). It was used to solve economic dispatch problem in Boggs and Tolle (1995). Grosan

et al. (2005) developed an independent neighborhoods particle swarm optimisation (INPSO)

algorithm that is made up of autonomous sub-swarms that allows the production of many

points at the end of iteration.

Liu et al. (2007) developed a turbulent PSO (TPSO) in the effort to surmount the

shortcomings of the traditional PSO. They later integrate TPSO with a fuzzy logic controller

to make a Fuzzy Adaptive TPSO (FATPSO). Sha and Hsu (2006) proposed a novel hybrid

algorithm that combine PSO with Tabu search (TS) and applied it to solve job shop problem

(JSP). He and Wang (2007) proposed a hybrid algorithm that fuses PSO and Simulated

Univ
ers

ity
 of

 M
ala

ya

38

Annealing (SA) together. Mo et al. (2007) introduced Particle Swarm Assisted Incremental

Evolution Strategy (PIES). This algorithm uses PSO for global optimisation while

Evolutionary strategy is used for local optimisation. Fan and Zahara (2007) and Fan et al.

(2004) proposed the NM-PSO algorithm by integrating PSO with Nelder Mead Simplex

method. Their work was later extended by Zahara and Kao (2009) and used to solve

constricted optimisation tasks. Guo et al. (2006) proposed an algorithm that hybridized PSO

with gradient descent (GD) method and they used it for fault identification. Shen et al. (2007)

introduced the HPSOTS algorithm which is a hybrid of PSO and Tabu search. Ge et al. (2008)

developed a hybrid of PSO and Artificial Immune System (AIS). Song et al. (2008)

developed hybrid particle swarm cooperative optimisation (HPSCO) algorithm merging

simulated annealing algorithm and simplex method.

Kao et al. (2008) proposed an algorithm that combine NM-PSO algorithm developed

by (Fan & Zahara, 2007) and (Fan, Liang, & Zahara, 2004), with K-means algorithm and

used for data clustering. Murthy et al. (2009) proposed an algorithm that have the advantages

of the parameter-free PSO (pf-PSO) and the extrapolated particle swarm optimisation like

algorithm (ePSO). Kuo et al. (2009) proposed the HPSO algorithm that amalgamated a

random-key(RK) encoding system, individual enhancement (IE) system, and particle swarm

optimisation (PSO) and used to solve the flow-shop scheduling tasks. Chen et al. (2010)

developed the PSO-EO algorithm by hybridizing of PSO with Extremal Optimisation (EO)

as reported in (1999). Kaveh and Talatahari (2009a) and Kaveh and Talatahari (2009b)

proposed a heuristic particle swarm ant colony optimisation (HPSACO) and a discrete

heuristic particle swarm ant colony optimisation (DHPSACO). Wei et al. (2002) introduced

the concept of entrenching swarm targets into Fast Evolutionary Programming (FEP)

algorithm to make the swarm to perform better. Pant et al. (2008) presented an AMPSO

algorithm which combines PSO and EP mutation operator employing Beta distribution.

Univ
ers

ity
 of

 M
ala

ya

39

The (VL-ALPSO) was proposed by Tang and Eberhard (2011) to make planning for

change in the physical position of swarm robots for collective search of targets more

effective. VL-ALPSO approach to swarm robotics is the amalgamation of augmented

Lagrangian multipliers, velocity restrictions in addition to virtual detectors to guarantee the

implementation of constraints, obstacle avoidance and mutual avoidance which are situations

obtainable in swarm mobile robots in coordinated movements. Augmented Lagrangian

Particle Swarm Optimisation (ALPSO) algorithm was presented by Sedlaczek and Eberhard

(2005). They made use of some part of the original PSO technique and combines it with

Augmented Lagrangian Multiplier.

PSO has been used in the area of robotics because of its ease of implementation, quick

convergence and few control parameters that need to be adjusted. Hayes et al (2003) and

Jatmiko et al (2007) used PSO to solve the odor localization problem using swarm of robots.

Another researcher employed PSO for multi-robot searching though they failed to take into

account the ability to handle growth in the number of robots which is an attribute of the

typical PSO (Doctor et al, 2004). In 2006, a distributed particle swarm optimisation algorithm

was developed by Hereford (2006), which they later improve upon in (Hereford & Siebold,

2008) and used for physical robots which can only make a circular movement in a definite

angle. They however did not put into consideration the possibility of the robot encountering

an obstacle in the search space (Tang & Eberhard, 2011). Pugh et al (2006) compared and

contrast between physical robot and ideal particle in terms of their properties. They then

broaden PSO to directly prototype many robots for investigating at a conceptual level the

consequences of varying parameters of the swarm robots system (Pugh & Martinoli, 2007).

A PSO algorithm was presented by Akat and Gazi in which the particle’s neighbours or the

arrangement of neighbours surrounding a particle is altered continuously as time goes on

(Akat & Gazi, 2008).

Univ
ers

ity
 of

 M
ala

ya

40

A target search PSO algorithm was presented for swarm robotics that centres on an

elaborate and systematic search of the search space by the robots. Simulations were done to

control the movement of the robots asynchronously. Their work put into consideration the

mechanical properties of the robot (Xue et al, 2009). However, there was no obstacle in their

simulation environment, and the volume of the robot was not considered. Derr and Manic

(2009) also demonstrated how the distributed PSO (dPSO) algorithm can be used in an

environment that is very hazardous to direct the path of robots to find their goal(s). The

algorithm after its development was tested using many robots to look for single target, and

also more than one target. To increase the efficiency and effectiveness of the search many

robots were introduced to do diverse search simultaneously in some environments that are

characterized by strepent. It was established that the presence of a frequency of

electromagnetic radiation in the range at which radio signals are transmitted can drastically

influence the time it will take a robot to get to its desired goal. They however left out the

mechanical properties of the robot and only concentrate on algorithms.

Doctor 2004 used PSO for path planning of unmanned vehicle that can converge very

well. A soft and efficient path planning method for using Stochastic PSO was presented by

Chen et al (2006). A Chaotic PSO was developed by Zhang, Wu and Wang (2013) for

planning collision free path for robots. PSO was used to obtain the global best particle while

local chaotic iterations are utilized to increase the accuracy of the solution. A path planning

approach that used Chaotic PSO with mutation operator was proposed by Qin and Colleagues

(2004). Also, Hao and Colleagues (2007) presented an approach that uses PSO and Polar

coordinate system to avoid obstacles in in a non-stationary environment. PSO was used by

Wang et al (2006) for controlling the direction and position of soccer robot. Karimu (2012)

used dynamic hybrid PSO algorithm to solve motion planning problem of mobile robot. Qin

et al (2004) proposed a path planning method based on PSO with mutation operator. The

Univ
ers

ity
 of

 M
ala

ya

41

approach uses the Dijkstra’s algorithm to find the shortest path in the MAKLINK graph, and

then used PSO to optimize the shortest path generated. The algorithm is suitable for stationary

environment where the barriers are protrusive polygon in shape.

A multi-objective PSO for avoiding obstacles which are assumed to be circles in

dynamic environment was proposed by Min, Zhu and Zheng (2005). PSO algorithm is used

in getting the solution by adjusting the velocity of the robot. The limitations of this approach

include the fact that path planning will be very difficult except the obstacle is a simple circle.

And the approach may not produce the best result for concave barriers. Raja and Pugazhenti

(2009) proposed a PSO planner for dynamic environment which can be used to obtain the

optimum solution for the path that the mobile robot will navigate in the search space. Ellips

and Davoud (2010) developed a multi-objective PSO-based algorithm for robot path

planning. They used PSO for global path planning and the Probabilistic Roadmap Method

(PRM) was used for obstacle avoidance. Yinghua Xue and Hongpeng Liu (2011) proposed a

new variant of PSO that centres on the degree at which the obstacle changes. This approach

is distributed thereby increasing the flexibility of the robot path planning in the search space.

The strength of the algorithm is that its model is simple, convergences quickly, has automatic

obstacle avoidance and can be used to generate the best path for the robot to navigate in

various environments.

 According to Basturk, and Karaboga, (2007), PSO is a stochastic population based

algorithm that operates on the optimisation of a candidate solution (or particle)

(Venayagomoorthy et al, 2008). The original PSO algorithm was introduced by Kennedy and

Eberhart (1995). Their algorithm was centered on the social behavior demonstrated by a flock

of bird, a school of fish, and herds of animals. The algorithm make use of particles that go

through ongoing transformations by means of cooperation and competition among the

particles from one generation to the other. PSO have been used to solve non-differentiable

Univ
ers

ity
 of

 M
ala

ya

42

(Guerra & Coelho, 2007), non-linear (Guerra & Coelho, 2007) and (Eberhart & Shi, 1998),

and non-convex engineering problems (Rusman, 2013).

 PSO is theoretically straightforward and does not require any sophisticated

computation (Abraham, Konar & Das, 2008). PSO uses a small number of parameters, which

have minima influence on the outcomes unlike any other optimisation algorithms. This

property also applies to the initial generation of the algorithm. The randomness of the initial

generation will not affect the output produced. Despite these advantages, PSO faces similar

shortcomings as other optimisation algorithms. Specifically, PSO algorithm suffers from

premature convergence, lack of capacity to provide solution to dynamic optimisation

problems, the tendency of particles to be stuck in local minima and partial optimism (i.e.,

which worsens the control of its speed and direction). In swarm robotics, PSO particles

moves within the search space to find optimal solution for the swarm by updating their

velocity and position. According to (Xue et al, 2011) robots with actual velocities and

physical positions that made up the swarm can be mapped to particles in PSO as they carry

out their target search in the search space. The flowchart in figure 2.4 is the general steps of

the PSO algorithm.

2.4 Variants of particle swarm optimisation algorithms in swarm robotics

In concordance with the development of a number of variant to reduce the disadvantage of

general PSO, the application of PSO in swarm robotics has also spawned a number of

dedicated PSO algorithms. These variants were developed to accommodate the different

requirement of robotics tasks and characteristics. This is not limited to the extension from

singular to multiple robots environment, but also includes the parallel operative nature of

these swarm robots that work uniquely but at the same time in unison with the other robots.

In this subsection, we describe some PSO algorithms that have been developed over the

decades and are been used in the field of swarm robots.

Univ
ers

ity
 of

 M
ala

ya

43

Figure 2.4: Procedure of the PSO algorithm

2.4.1 The Standard PSO

It was originally proposed by James Kennedy and Russell Eberhart in 1995 (Kennedy,

Eberhart & Shi, 2004). The algorithm is made up of particles which have position and

velocity. Each of the particles of a swarm epitomizes a possible solution in PSO. The particles

explore the problem search space seeking for the best or at least a solution that is suitable.

Each of the particles changes their movement according to their own accumulated knowledge

of moving in the environment and that of their neighbours.

In PSO (Xi) represent the position of a particle, and (Vi) the velocity of the particle.

The particle’s number is i. Where (i = 1,…,N), and N is the number of particles in the swarm.

The ith particle is denoted as),...,,(
2! iNiiI

XXXX  . The velocity is the degree at which the

subsequent position is varying as regards the present position.),...,,(
2! iNiiI

VVVV  represent

Univ
ers

ity
 of

 M
ala

ya

44

the velocity for the particle i. As the algorithm begins, the position and velocity of the

particles are given numerical values haphazardly. This is followed by using equations (1) and

(2) to update the position and velocity of the particles after successive iterations are

conducted throughout the search.

)(()(()
)(

,
2

2

)(

,,
1

1

)(

,

)1(

,
*

t

mim

t

mimi

t

mi

t

mi
xgbestrandcxpbestrandcvwv 


 (1)

)1(

,

)(

,

)1(

,




t

mi

t

mi

t

mi
vxx (2)

Shi and Eberhart (2004) showed that PSO having different swarm population has

practically alike but not identical performance.
1

c and
2

c are two positive constants

representing the cognitive scaling and social scaling factors which according to Kennedy,

Eberhart, and Shi (2001) are usually set to 2. The stochastic variable ()1rand and ()2rand

has the distribution U (0, 1). These random variables are stand-alone functions that infuse

momentum to the particles. The most ideal position located so far by the particle is denoted

as mi
pbest

, . The best position attained by the neighbouring particles is denoted as m
gbest .

There are two types of particles neighbourhood in PSO, and the type of neighbourhood

is what determines the value of m
gbest . The two types of neighbourhood are:

1. gBest (Global neighbourhood) – Here, there is a full connection among the particles,

and the exploration of swarm is controlled by the best particle in the swarm.

2. lBest (Local neighbourhood) – There is no full connection among the particles in the

swarm, rather they are connected only to their neighbours.

Equation 2 is used in updating the position of the particles whereby the velocity is added

together with the earlier position and a new search is started from its former position. Eberhart

Univ
ers

ity
 of

 M
ala

ya

45

and Shi (2000) in their work bounded
)1(

,

t

mi
x to avoid a situation whereby particles are spending

too much time in infeasible region. A problem dependent fitness function is used in

evaluating the superiority of
)1(

,

t

mi
x . Assuming the present solution is superior to the fitness of

mi
pbest

, or m
gbest then the new position will replace mi

pbest
, or m

gbest accordingly.

Unless the condition for ending the search (either the iteration has reached its peak or we

have gotten the desired solution) this updating process will continue. The optimal solution is

the best particle found when the stopping criterion is satisfied (Aziz & Ibrahim, 2012). The

flowchart for the original PSO for collective robot search is shown in Figure 2.4 above.

Where: i = particles identification counter form 1 to pop_size

 𝑋𝑖
𝑑 = ith particle’s dth dimension’s value

pop_size = Population size

 gen_count = generation counter from 1 to max_gen

 dimen = dimension

 w = inertia weight (w0 = 0.9, w1= 0.4)

 max_gen = maximum generations

1

c =
2

c = 2

As opined by Shi and Eberhart (1998), to prevent commotion, the value
)1(

,

t

mi
v is fixed

at ±vmax. The reason is that the value of vmax is going to be extremely large if the scope of

search is too broad. Also, if vmax is very narrow, the extent of the search will be unreasonably

reduced thereby forcing the particles to do local exploration. The inertia weight is represented

as w (constriction factor) is the inertia parameter; this regulates algorithm’s searching

properties. Shi & Eberhart (1998) opined that it is better to commence the search using a

larger inertia value (a more global search) that is automatically decreased to the end of the

Univ
ers

ity
 of

 M
ala

ya

46

optimisation (a more local search). Using inertia weight with smaller values mostly ensures

fast convergence as little time is wasted on the exploration of the global space (Aziz &

Ibrahim, 2012). The inclusion of w in the equation is to provide equilibrium between the

global and local search capability of the particles. There are two techniques that have been

presented for the choice of suitable values for inertia factor. The number one technique is

called linear method, here the inertia weight decreases linearly after each iteration until the

highest number of iteration or the highest number of inertia parameter is reached (Eberhart

& Shi, 2001).

𝑤𝑖+1 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑚𝑎𝑥
𝑖

The number two technique is called the dynamic method; here the value of the inertia reduces

from the initial value to the final value fractionally by ∆w.

𝑤𝑖+1 = ∆𝑤𝑤𝑖

Where the value of ∆𝑖 varies from 1 to 0. Judging from the results of experiments that have

been performed by Shi and Eberhart (2004), the performance of the dynamic method in term

of convergence is superior to the one of linear method because it dynamically reduces the

value of the inertia weight from maximum to minimum.

2.4.2 Synchronous PSO (SPSO)

Particles in the conventional PSO perform synchronous updates, i.e., the best particle

in each neighborhood is located and then used by the other particles to update their positions.

The entire information of the neighbours is possessed by all the particles as reported in the

work of Juan, Mengjie, and Winston (2011). mi
pbest

, or m
gbest update are done after all

particles’ fitness have been evaluated. This type of approach has the advantage of quick

convergence and good result. Carlisle and Dozier (2001) however observed that the

Univ
ers

ity
 of

 M
ala

ya

47

synchronous update is costly as the first particle evaluated will be redundant for some time

since it has to wait for other particles to be evaluated before it can progress to a another

position and continue exploring the search domain.

2.4.3 Asynchronous PSO (APSO)

In the Asynchronous PSO (APSO), mi
pbest

, and m
gbest of a particle, its velocity and

position are updated immediately after computing their fitness and, as a consequence, they

update it having incomplete or imperfect information about the neighbourhood. This result

into varieties in the swarm since some of the information is from the previous iteration while

some is from the current iteration. In the work of Luo and Zhang (2006), they used the bench-

mark functions of Rosenbrock (unimodal) and Griewank (multimodal) to do a performance

comparison of SPSO and APSO on the Rosenbrock (unimodal) and Griewank (multimodal)

bench-mark functions. They found out that APSO performs better and has a faster

convergence than SPSO. Perez and Basterrechea (2005) opined from the results of their

experiments that APSO is able to find solutions faster and with a similar accuracy as SPSO.

They concluded that APSO provides the best accuracy at the expense of computational time.

2.4.4 Extended Particle Swarm Optimisation (EPSO)

Extended Particle Swarm Optimisation (EPSO) was proposed by Pugh and Martinoli

(2006, 2007). In the work of Jun-jie and Zhang- hong (2005), the EPSO algorithm provides

a platform whereby each of the robots are directed through unknown environment to their

goal by their individual intuition knowledge (cognitive) and accumulated knowledge (social

experience) of their companionship with other robots in the swarm. EPSO utilizes the

existing advantages of gBest and lBest in previous versions of PSO. In the EPSO algorithm,

the robots are not connected in a multi-step nature and there is no restriction on the movement

Univ
ers

ity
 of

 M
ala

ya

48

of the robots in the swarm thereby guaranteeing greater level of communication among the

robots. The Braitenberg obstacle avoidance algorithm (Braitenberg, 1984) was incorporated

into the main equation and used to achieve obstacle avoidance mechanism in the EPSO

algorithm. The robot will update its inner velocity and keep heading towards a different

direction if it encounters an obstacle by implementing a step of the algorithm. The advantage

of this technique is that it allows the collision prevention procedures to be treated separately

from some of the other eminent characteristics of robots. However, this approach is not likely

to be practicable if there is the need to analyze the steadiness of the algorithm in view of the

effect the barriers have on the robots (Couceiro et al, 2012c). Moreover, it will be difficult to

define a technique that can fit into all situations whereby it will be able to use appropriate

information to modify all the parameters for the algorithm (Couceiro et al, 2012a).

2.4.5 Group Decision Making Extended Particle Swarm Optimisation (GDMEPSO)

Xue Songdong et. al. (2012) proposed the Group Decision Making Extended Particle

Swarm Optimisation (GDMEPSO) algorithm, which is a fully distributive algorithm and was

proved to be effective even when the size of the swarm is too large. They modified the theory

behind EPSO by exchanging the social experience with the approximation value of location

of the desired goal. The swarm robots were mapped to WSN (Wireless Sensor Network). To

enhance the efficacy of the search, the RSSI (received signal strength indication) wireless

sensor network technique was considered as a merger of aggregate selection of course of

action among several alternatives.

2.4.6 Multi-Robot, Multi-Target PSO

Multi-Robot, Multi-Target PSO algorithm was proposed by Kurt Derr and Milos

Manic (2009). They developed a distributed PSO that utilizes multiple small mobile robots

to search an unfamiliar terrain with the aim of locating the target(s). The PSO algorithm made

Univ
ers

ity
 of

 M
ala

ya

49

use of a new adaptive RSS (received signal strength) as a very important element that direct

the movement of robots toward their goal(s) in a highly risky environment. Their

experimental results show that electromagnetic wave frequency between audio and infrared

can have a dramatic effect on the time it takes the robot to reach its target.

2.4.7 Physically embedded PSO (pePSO)

The Physically embedded PSO (pePSO) algorithm was proposed by Hereford, and

Siebold, (2008). They employed two search strategies. First, the swarm robot moves

throughout the search space and take measurements as they move towards their targets.

Second, trophallactic, (which is the exchange of vomited partially digested food that occurs

between adults and larvae in colonies of social insects) was developed into an algorithm and

utilized for the search. The second search algorithm is advantageous in that no robot-to-robot

communication is needed; communication radius, protocol, or bandwidths are all

unnecessary. Also, it is not necessary for the robots to have knowledge their position

explicitly. The pePSO does not make use of any main agent to direct the movements and

behaviours of the robots in the swarm. Unlike what we have in the standard PSO, the

movement of particles is confined within a regulated space to circumvent the no direct

movement obtainable in the traditional PSO. The pePSO algorithm presumed that all the

robots in the swarm are in harmony and it is after the transferring of all relevant information

among the robots that the calculation of the robot’s new position is done. Moreover, robots

can only disclose information about their individual solution if their personal solution is the

ideal solution for the entire swarm. The advantage of this approach is that it drastically

decrease the volume of information interchange among robots. The approach can however

lead to redundancy on the part of the robots as they would have to remain idle for some time

Univ
ers

ity
 of

 M
ala

ya

50

after successfully completing an iteration to process all appropriate information (Couceiro et

al, 2013).

2.4.8 Distributed PSO (dPSO)

The Distributed PSO (dPSO) was proposed by Hereford, J. M. (2006) as an algorithm

that can adequately handle a swarm made up of a considerable number of miniature robots.

This variant of PSO algorithm is very efficient in locating the search goal. This algorithm

makes provision for computation of the individual robot’s current position. The exchange of

information and signals among the robots in the swarm will be greatly reduced. Also, there

is no need of a representative robot to organize the robots in the swarm into a harmonious

movement towards their target.

2.4.9 Augmented Lagrangian PSO with Velocity Limits (VL-ALPSO)

Kai Sedlaczek and Peter Eberhard (2006) presented the Augmented Lagrangian

Particle Swarm Optimisation (ALPSO) algorithm. They made use of some parts of the

original PSO technique and combine them with Augmented Lagrangian Multiplier. The

Augmented Lagrangian Multiplier is a comprehensive non-stationary penalty function

method, which will give suitable result. The authors concluded from their experiments that

ALPSO have quick convergence properties and it is a powerful tool for solving problems in

real life applications that have few solutions. The drawbacks of this algorithm are the

performance is poor when a fully connected topology (global best) is used, and conflicting

situations based on information from many neighbors. This approach however allows

informed individuals to find better solutions, as it is more likely in the neighborhood to have

a particle with a high quality. Tang and Eberhard (2011) proposed the Augmented

Lagrangian PSO with Velocity Limits (VL-ALPSO). The algorithm was proposed to handle

Univ
ers

ity
 of

 M
ala

ya

51

changes in the physical position of swarm robots for collective search of targets to be more

effective. VL-ALPSO approach to swarm robotics is through the amalgamation of

augmented Lagrangian multipliers, velocity restrictions in addition to virtual detectors to

guarantee the implementation of constraints, obstacle avoidance and mutual avoidance,

which are situations obtainable in, swarm mobile robots in coordinated movements. The

algorithm is decentralized and the mechanical properties of the robots are taken into

consideration.

2.4.10 Detection and responding PSO (DR PSO)

Detection and responding PSO (DR PSO) algorithm was presented by Jatmiko,

Sekiyama and Fukuda in 2006. According to Andries P. Engelbrecht (2005), the

complications of the dynamic environment cannot be solved by the original PSO. There is

therefore the need to modify or improve on the original PSO so that it can solve problems

that are dynamic in nature. Eberhart and Shi (2001), and Hu and Eberhart (2002) suggested

that this could only be achieved through the integration of a system that can discover

modification and react to it favorably. The global best information gBest is monitored by the

alteration detection function. After some certain number of iterations, if gBest is unchanged,

it possibly means that another optimum solution exists. Some productive plan for reacting

positively to diversities of environmental fluctuations must be employed when environmental

changes are detected. DR-PSO’s inability to survive extreme alterations is the main drawback

of this technique.

2.4.11 Charged PSO (CPSO)

Jatmiko, Sekiyama and Fukuda presented the Charged PSO (CPSO) algorithm in

2006 alongside DR-PSO to provide solution to the circulation of odor with time in a dynamic

Univ
ers

ity
 of

 M
ala

ya

52

environment. CPSO algorithm adopted the idea of Coulomb’s inverse square law that

described the electrostatic interaction between electrically charged particles. The charged

particle here is represented as charged robot (which is used in CPSO). A non-attraction force

is used on the charged robot while such force is not used on the neural robot. There is variety

in the positional allocation of robots to avoid being snared in a local maximum. With this,

the problem of inability to cope with extreme changes that characterized the DR-PSO is

deemed solved.

2.4.12 Augmented Lagrangian Particle Swarm Optimisation (ALPSO)

This algorithm was presented by Sedlaczek and Eberhard (2005). They made use of

some part of the original PSO technique and combines it with Augmented Lagrangian

Multiplier. The Augmented Lagrangian Multiplier is a comprehensive non-stationary penalty

function method which will give suitable result. The authors concluded from their

experiments that ALPSO have quick convergence properties and it is a powerful tool for

solving problems in real life applications that have few solutions.

2.4.13 Fully Informed Particle Swarm Optimisation Algorithm (FIPS)

Mendes et al. (2004) introduced the Fully Informed Particle Swarm Optimisation

(FIPS) algorithm. It is a variant of PSO algorithms that exploit the velocity update approach

of the best neighborhood. This algorithm readily reacts to alterations in the configuration of

the population. All neighbors of a particle are carefully considered before updating their

velocity. This is unlike some variants of PSO that only update the velocity of the best

neighbor. FIPS performs better when the topologies have a lower degree such as the ring

lattice topology (local best) or topologies where the particles have very few neighbors (not

more than three).

Univ
ers

ity
 of

 M
ala

ya

53

2.4.14 Robotic Darwinian PSO (RDPSO)

Couceiro, Rocha, and Ferreira (2011a & 2011b) as an extension of the Darwinian

PSO (DPSO) presented the Robotic Darwinian PSO (RDPSO) algorithm. This algorithm like

the standard PSO, is made up of a swarm of robots that moves as a group in the search space

to locate the ideal solution. Each robot have a position, the direction they are going, and their

performance. The RDPSO permits the swarm to be divided into various dynamic groups of

sub swarm. This supports a distributed method rather than the centralized method obtainable

in some PSO algorithms where the network is likely to have covered the whole swarm of

robots. The advantage of this is that with the swarm divided into smaller groups of swarms,

there is a decrease in the robots that are needed to get the ideal solution and the volume of

exchanges information among robots also decrease thus reducing the overhead cost.

Moreover, that means that dividing the robot swarm into mutually exclusive

categories is an added advantage for RDPSO since the volume of information transfer among

the robots will decrease to the barest minimum. The algorithm does not need any central

agents to coordinate robots’ movements or actions. The RDPSO is highly scalable thereby

allowing the addition of a huge number of robots to the swarm. The weaknesses of the

algorithm includes the lack of adaptability to contextual information, and the changing over

time of the sub-optimal solutions which according to J. Suarez, R. Murphy (2011) can be

overcome by sweeping the whole scenario with robots. Couceiro et al (2012a, 2012b, &

2012c) in some of their most recent research demonstrated that the RDPSO can solve some

problems related to swarm robotics such as obstacle avoidance, dynamic nature of the robots

in the search space, finding ideal solutions, and ability to handle some of the communication

restraints (Couceiro et al, 2013).

Univ
ers

ity
 of

 M
ala

ya

54

Table 2.1: A summary of variants PSO algorithms implementation specifically for swarm

robotics.

S/No Technique Author(s) and

Year

Strength(s) Weakness(es) Description

1 Original PSO Kennedy and

Eberhert (1995)

Fast convergence,

simple, effective, and

easy to implement

without a complex

calculation.

Premature

convergence,

inability to solve

dynamic optimisation

problems, and cannot

be scaled to

accommodate large

number of robots.

Uses particles

that have

position and

velocity rather

than genetic

operators.

Inertia weight

w is in the

range of 0.2 to

0.4, while c1

and c2 equal to

2.

2 Synchronous

PSO (SPSO)

Kennedy and

Eberhert (1995)

Quick convergence, it

produces good result,

and it can be adapted

to solve a given

problem.

It is costly as the first

particle evaluated

will be redundant for

some time since it

has to wait for other

particles before its

position can be

updated. It also has

poor parallel

competence.

Inertia weight

w is in the

range of 0.4 to

0.9, while c1

and c2 equal to

2.

Univ
ers

ity
 of

 M
ala

ya

55

3 Asynchronous

PSO (APSO)

Koh, Fregly,

George, and

Haftka (2005)

Fully utilize the

processor as there is

no idle processor.

Provides the best

accuracy at the

expense of

computational time.

Inertia weight

w is dynamic,

while c1 and

c2 = 2

4 Extended PSO

(EPSO)

Jun-jie and

Zhang- hong

(2005)

Utilize the existing

advantages of gBest

and lBest version of

PSO. It has less

computational costs.

It can also be easily

mapped to robot or

swarm of robots.

It cannot be used to

solve complex

dynamic optimisation

problems. Also, it

cannot handle large

number of robots in

the swarm.

Makes use of

intuition

knowledge to

direct the

movement of

robots to their

search goal.

5 Group Decision

Making

Extended PSO

(GDMEPSO)

Xue, Zan, Zeng,

Xue and Jing

(2012)

Is very effective, can

successfully handle

large number of

robots in the swarm.

The guiding effect of

GDMEPSO is strong

than that of EPSO

As the swarm size

becomes very big, the

efficiency of

GDMEPSO becomes

lower than that of

EPSO.

Energy consumption

increases as swarm

size increases.

It is a fully

distributive

algorithm

where

communication

of swarm

robots is taken

as wireless

sensor

network.

6 Multi-Robot

Multi-Target

PSO

Kurt Derr and

Milos Manic

(2009)

It can search for

multiple targets in a

noisy environment

using many robots in

the swarm.

Signal degeneration

can adversely affect

robots’ navigation.

It uses the

combination of

decentralised

PSO algorithm

and new

adaptive RSS

to enable

Univ
ers

ity
 of

 M
ala

ya

56

It can be used for

hazardous target

search.

Overshooting of

target is greatly

prevented.

robots to locate

their target(s).

7 Physically

embedded PSO

(pePSO)

Hereford and

Siebold (2008)

Has the ability to

locate target in

complicated

environment.

The need for robot to

robot communication

is completely

eradicated.

Search time can be

unpleasantly long

when there are

obstacles in the

search space.

Weak communication

signal can

unfavourably affect

search time.

Trophallactic

behaviou r in

social insects

was developed

into an

algorithm.

The algorithm

allows robots

to take

measurement

in the search

space from the

location where

they are to the

target.

8 Distributed PSO

(dPSO)

Hereford (2006) It is computationally

simple.

It can efficiently

handle swarm that is

made up of large

number of robots.

The time taken to

locate the target is

much because the

mobility on the path

of the robots are

limited

It is a

distributive

algorithm and

there is no

need of any

representative

robot.

Univ
ers

ity
 of

 M
ala

ya

57

It has the ability to

locate targets

efficiently.

Inter-robot

communication is

minimized.

9 Augmented

Lagrangian PSO

with Velocity

Limits (VL-

ALPSO)

Tang and

Eberhard (2011)

It is simple and

reliable.

It has resilient

convergence.

It is scalable to a very

huge number of

robots.

It can handle

diversity in swarm

thereby solving the

problem of premature

convergence.

It can be modified to

evade barriers that

are dynamic in nature

in the search space.

There is non-

monotonous decrease

in the value of the

objective function.

Requires making a lot

of adjustment to get

the best performance

for it.

Uses a

decentralised

algorithm.

The technique

employed the

combination of

augmented

Lagrangian

multiplier with

velocity

restrictions and

virtual

detectors.

10 Detecting and

Responding PSO

(DR PSO)

Jatmiko,

Sekiyama and

Fukuda (2006)

It can solve the

complexity problem

in the dynamic

environment.

Cannot survive

extreme alterations in

dynamic

environment.

It uses change

detection

function to

monitor gBest.

11 Charged PSO

(CPSO)

Sekiyama and

Fukuda (2006)

It solved the problem

of inability to cope

The instabilities in

the charged swarm

It adopted the

idea of

Univ
ers

ity
 of

 M
ala

ya

58

with extreme changes

that characterized DR

PSO.

size can be very

large.

Introduction of

charged particles

makes it to be

wasteful.

The algorithm is not

scalable.

Coulomb’s

law.

A charged

robot is

introduced

with a

repulsive force

and a neutral

robot with non

-repulsive

force.

12 Augmented

Lagrangian PSO

(ALPSO)

Sedlaczek and

Eberhard (2005)

Quick convergence.

Powerful tool for

solving constrained

problems.

There is problem of

incomplete

information since

individual robot only

have information on

the value of self-best

and swarm best.

Makes uses of

classical PSO

and

Augmented

Lagrangian

multiplier.

13 Fully Informed

PSO (FPSO)

R. Mendes, J.

Kennedy, and J.

Neves. (2004)

Performance is high

with lower degree

topology.

It is simpler.

High computational

cost is associated

with the algorithm.

Performs poorly

when global best is

used.

Information from

neighbourhood can

lead to conflict.

Performance can be

adversely affected by

It exploits the

velocity update

of its

neighbourhood

after careful

consideration. Univ
ers

ity
 of

 M
ala

ya

59

changes in topology

of the population.

14 Robotic

Darwinian PSO

(RDPSO)

Couceiro,

Rocha and

Ferreira (2011)

It is highly scalable.

The need for central

coordinating robot is

eliminated.

The volume of

information transfer

from one robot to

another is reduced to

the barest minimum.

Lack of adaptability

to contextual

information.

Frequent changes of

sub optimal solutions

with time.

It uses

sociobiological

technique to

improve the

ability of

canonical PSO

to avoid been

trapped in local

optimal.

2.5 Interior-Point Methods (IPMs)

The notion of the “interior point” method was derived from the linear programming

annotation. The Interior Point Methods go through the feasible search space to arrive at the

most favourable solution. This is contrary to what we have in the simplex method which go

along a succession of contiguous extreme points to the best solution. Interior Point Methods

are normally grouped into three principal classes: Affine-scaling methods, primal-dual

methods, and Projective methods. From the aforementioned types of IPMs, the one that is

most popular for achieving maximum productivity is the primal-dual (as well as primal-dual

algorithms that integrate predictor - corrector) algorithms. Quintana and Torres (1997)

reported that the most important stages in all Interior Point Methods are: Converting the

inequality constrained optimisation problem to equality constrained one, use the logarithmic

barrier functions to develop the Lagrange function, decide on the first-order most favourable

conditions, and utilize the Newton’s method to the group of equations coming from the first-

order most favourable conditions.

Univ
ers

ity
 of

 M
ala

ya

60

Since the 1960s, different variants of the Interior Point Methods have been developed

for solving nonlinear and linear programming problems. For more than 25 years now,

researchers and academicians have contributed immensely to the development of the Interior

Point Methods thereby making it a practicable set of algorithms that are suitable for solving

different kinds of optimisation problems that are conical in shape (Quintana and Torres,

1997). According to (Dikin, 1967), the lack of convergence in the data of the problem

constitutes the early shortcoming in the use of Interior Point Methods for Linear

Programming. Many of the interior-point methods employ a revised Newton method to

decide the direction of search for each iteration. The set of equations relating to the revised

Newton system can then be summarized to a scheme of equations whose matrix AD2AT is

positive but habitually not in peak condition (Jorge & Stephen, 2006). The logic backing the

development of these methods originated from the truth that the optimal conditions for linear

programming known as the Karush-Kuhn-Tucker (KKT) conditions, is expressed as

{z : F(x) = 0,G(x) ≥ 0},

where F(·) and G(·) are maps and z is a vector. Interior point methods are iterative algorithms

generating a sequence of points {sj} lying in the interior of the set {z: G(x) ≥ 0} (hence the

name), and then come together at a point s∗ fulfilling the KKT conditions.

It have been shown beyond reasonable doubt in the work of (Jorge & Stephen, 2006)

that Interior-Point Methods (IPMs) also known as barrier methods are powerful tools for

providing solution to nonlinear optimisation problems. The IPMs and SQP methods have

constrains that are functional at the present stage are now believed to be the best algorithms

for providing solution to large-scale nonlinear optimisation problems. Though they are very

efficient, but they are still plagued with several challenges such as how to deal with non-

convexity, the way to update the barrier constraint notwithstanding the presence of

Univ
ers

ity
 of

 M
ala

ya

61

nonlinearities. Also, is the necessity of making sure the algorithm advance in the direction of

the solution. The continuation methods used by IPMs include the linear and quadratic

programming which can be classified as an extended part of interior-point methods that

impose convergence using line searches and engage direct linear algebra for steps

computation. IPMs also make use of the barrier methods which use a trust region constraint

to keep stability while the quadratic model is used to define the step (Jorge & Stephen, 2006).

Ben-Tal and Nemirovski (2001) pointed out that one of the strength of the IPMs is

their polynomial convergence properties. Karmarkar (1984) in his work proved that an

interior-point method for linear programming have verifiable polynomial convergence

qualities. О(n2.5log ϵ−1) arithmetic operations is needed by the algorithm to attain an ϵ-

solution to linear programming, where the size of the decision vector is n. Also IPMs have

the ability to solve problems that are classified as complex. Particularly, IPMs are been used

in solving problems in conic programming that are of the form

min {cTx : Ax − b ∈ K},

where K is a cone that is closed, convex, and have non-empty interior (Renegar, 2001). The

most popular categories of conic problems for which IPMs have been developed are

1. Linear Programming (LP): K = 𝑅+
𝑛 = {x ∈ Rn: xi ≥ 0 for all i = 1..., n},

2. Second-Order Cone Programming (SOCP): K = K1× ··· × Kp, where each

Ki= {x ∈ Rni: xni ≥ √𝑥𝑖
2 + ⋯+ 𝑥𝑛𝑖−1

2 }, and

3. Semi-Definite Programming (SDP): K = {X ∈ Rn×n: X = XT, yT Xy ≥ 0 for all y ∈ Rn}.

Ben-Tal and Nemirovski (2001) concluded that LP ⊂ SOCP ⊂ SDP when some simple

changes are made to the variables.

Univ
ers

ity
 of

 M
ala

ya

62

Interior-point methods (IPMs) when contrasted with active set and cutting plane

methods flick the amount of work; thereby making the number of iteration to be lower both

theoretically and practically than the one we have in active set methods. When the interior-

point methods is used for solving problems in linear programming, for a hard-and-fast

precision, a O(√n) iterations is enough hypothetically, but in practice it is deemed that only

O(log n) iterations are needed. One of the shortcomings of Interior-Point methods is the

excessive work per iteration that is commonly required. For a linear programming problem,

we can have the following:

min cTx max bTy

s.t. Ax = b, and s.t. ATy ≤ c.

x ≥ 0,

Despite the fact that there are many types of interior-point-algorithms that can be used

to solve linear programming problems; unless the right linear algebra methods are employed,

the principal work per iteration is the development and result of a system of “standard

equations”, which can be written as:

ADATu = f,

where A = the constraint matrix of the LP, and

 D = some diagonal matrix.

The attached costs required to develop the normal matrix is O(nm2) floating-point

computations and that of solving the resulting system, using Cholesky factorization (A =

LLT) and back substitution is O(m3) when A is complex.

Univ
ers

ity
 of

 M
ala

ya

63

2.6 The Barrier Methods

The 1960s witnessed the development of the barrier methods though its popularity

has dwindled over time. The efficiency of the interior-point methods for solving linear

programming problems has inspired new attention from researchers and Mathematicians in

using barrier methods for solving nonlinear problems. The have led to the development of

more innovative techniques and software for nonlinear programming at the end of the 1990s.

Boyd and Vandenberghe (2004) have opined that Interior Points Methods make use of barrier

function in F to convert constrained optimisation problem into a series of unconstrained

problems. This makes the gradient of the augmented criterion unbounded at the boundary of

the feasible domain so that its minimizers fulfill the constraints. Results of experiments

conducted have shown that Interior-Point Methods are faster in solving large scale problems

with thousands of free variables and constraints compared to active-set Sequential Quadratic

Programming methods. They are likely not too robust as the problem they are to solve

becomes larger. The terms “interior-point methods” and “barrier methods” are now used

interchangeably.

 min
𝑥,𝑠

𝑓(𝑥) (2.1a)

 subject to 𝐶𝐸(x) = 0 (2.1b)

 𝐶𝐼(x) – s = 0 (2.1c)

 s ≥ 0. (2.1d)

CI(x) is a vector that is created from the scalar functions Ci (x), i ∈ I. The same thing applies

to CE(x). From the above equation, the insertion of a vector s of idle variables into the

inequalities CI(x) ≥ 0 changed it into equalities. The variable l was used to represent the

number of equality constraints which is the dimension of the vector CE, while m is the

Univ
ers

ity
 of

 M
ala

ya

64

dimension of CI and was used to represent the number of inequality constraints. Interior-point

methods can also be categorised as the barrier methods or as continuation methods. The

Karush-Kuhn-Tucker (KKT) conditions for the nonlinear program (2.1) can be written as

∇f (x) – AE T (x) y – AI T (x) z = 0, (2.2a)

Sz − μe = 0, (2.2b)

 𝐶𝐸(x) = 0, (2.2c)

 𝐶𝐼(x) – s = 0, (2.2d)

with μ = 0, together with

 s ≥ 0, z ≥ 0 (2.3)

From the above equation, there are two Jacobian matrices AE(x) and AI(x) having CE

and CI as functions respectively. The Lagrangian multipliers are y and z. The diagonal

matrices S and Z are having diagonal entries s and z, where e = (1, 1, . . . , 1)T. Looking

closely at the equation (2.2b), when the value of μ = 0, the boundary limits specified in (2.3)

help in initiating an ordered sequence of defining the best active set of the problem. The

variables s and z are forced to have positive values by making μ to be always positive. The

continuation approach is also called homotopy where one path can be continuously deformed

into the other leaving the endpoints fixed and remaining within its defined region. The idea

of homotopy is what gave birth to the description of primal-dual trend just as the barrier

viewpoint is central in the scheme of having iterations that have global convergence.

This approach nearly solves the disconcerted KKT conditions (2.2) for series of

positive variables {μk} that tends to zero, while s, z > 0. This is to ensure that we find a spot

where the KKT conditions for the nonlinear program (2.1) is met. The probability of the

Univ
ers

ity
 of

 M
ala

ya

65

iterate converging to a minimizer is very high as it becomes necessary for the iterate to reduce

a merit function. This approach of two continuous functions from one topological space is

locally acceptable. In a situation where (x∗, s∗, y∗, z∗) is a neighbourhood of solution that

suits the self-sufficient linear constraint condition, the exact supplementary condition, and

the second-order satisfactory conditions. There is a small positive value for μ in the system

which has a local solution that is distinctive. These solutions are represented by (x(μ), s(μ),

y(μ), z(μ)). The primal-dual central path is the name of the path depicted by these positions,

and it converges to (x∗, s∗, y∗, z∗) as μ → 0.

The second derivation of interior-point methods associates with (2.1) the barrier

problem

 min
𝑥,𝑠

𝑓(𝑥) - μ∑ log 𝑠𝑚
𝑖=1 I (2.4a)

 Subject to 𝐶𝐸(x) = 0, (2.4b)

 𝐶𝐸(x)- s = 0, (2.4c)

 ∇f (x) – AE T (x) y – AI T (x) z = 0, (2.5a)

 μS-I e + z = 0, (2.5b)

 𝐶𝐸(x) = 0, (2.5c)

 𝐶𝐼(x) – s = 0, (2.5d)

The only difference between the above equations (2.5) and the one of (2.2) in only

the second equation because it no longer linear as s → 0 nears the solution. By multiplying

the equation (2.5b) by S, it can be changed into a quadratic equation using Newton’s method.

However, since the diagonal components of S are non-negative, this multiplication does not

Univ
ers

ity
 of

 M
ala

ya

66

have any visible effect on the solution. After equation (2.5b) has been changed to a quadratic

equation, the KKT specifications for the barrier problem correspond with the disconcerted

KKT structure of equation (2.2).

According to Fiacco and Mccormick (1990), the “interior point” terminology

originated from the reality that the barrier methods used in those days are without any slacks

and assumed that the initial point x0 is feasible with respect to the inequality constraints ci

(x) ≥ 0, i ∈ I.

The barrier function

 𝑓(𝑥) − 𝜇 ∑ log 𝑐𝑖𝑖 ∈𝐼 (𝑥)

is applied by these techniques to inhibit a situation in which the iterates will exit the feasible

locality that have been identified by the lack of equalities. A good number of the state-of-

the-art interior-point methods are impracticable. The implication of this is that they can begin

from any original point x0 and continue being interior for as long as the constraints s ≥ 0, z ≥

0 remain. Certain modifications can however be made in the design so that when a feasible

iterate is produced, all the succeeding iterates will continue to be feasible. However, they can

be designed so that once they generate a feasible iterate; all subsequent iterates remain

feasible vis-à-vis the lack of equalities.

2.7 Basic Interior-Point Algorithm

By using Newton’s method for the nonlinear system (2.2) having the variables x, s, y, z, the

result is the equation below:

Univ
ers

ity
 of

 M
ala

ya

67

[

𝛻𝑥𝑥
2 𝐿 0 −𝐴𝐸

𝑇 (𝑥) −𝐴𝐸
𝑇(𝑥)

0 𝑍 0 𝑆
𝐴𝐸(𝑥) 0 0 0

𝐴𝐼(𝑥) − 𝐼 0 0

] [

𝑃𝑥

𝑃𝑠

𝑃𝑦

𝑃𝑧

] = -

[

∇𝑓(𝑥) −𝐴𝐸

𝑇(𝑥)𝑦 − 𝐴𝐼
𝑇(𝑥)𝑧

𝑆𝑧 − 𝜇𝑒

𝐶𝐸(𝑥)

𝐶𝐼(𝑥) − 𝑆]

 (2.6)

where L represents the Lagrangian for (2.1a)–(2.1c):

L(x, s, y, z) = f (x) − yT cE(x) − zT (cI(x) − s). (2.7)

Unlike the primal system that was reviewed in Section 2.3, the above system (2.6) is called

the primal-dual system. After determining the step p = (px , ps, py , pz), the new iterate (x+, s+,

y+, z+) is calculated as:

x+ = x + 𝛼𝑠
𝑚𝑎𝑥𝑝𝑥, s+ = s + 𝛼𝑠

𝑚𝑎𝑥𝑝𝑠, (2.8a)

y+ =y + 𝛼𝑧
𝑚𝑎𝑥𝑝𝑦, z+ = z + 𝛼𝑠

𝑚𝑎𝑥 pz, (2.8b)

where

 𝛼𝑠
𝑚𝑎𝑥 = max{ α ϵ (0,1]:s + α 𝑝𝑠 ≥ (1 - r)s}, (2.9a)

 𝛼𝑧
𝑚𝑎𝑥 = max{ α ϵ (0,1]:z + α 𝑝𝑧 ≥ (1 - r)z}, (2.9b)

while τ ∈ (0, 1), 0.995 is an ideal value for τ. The criteria stated in (2.9) are referred to as the

fraction to the boundary rule. It was introduced to stop the variables s and z from prematurely

getting to their lower bound which is 0. The fundamental principles of the state of the art

interior point methods were based on this iteration. It has however gone through several

alterations to make the interior point method to cope with non-convexities and nonlinearities.

Another very important factor is the process of selecting the arrangement of barrier

Univ
ers

ity
 of

 M
ala

ya

68

parameters {μk}. Fiacco and McCormick (1998) in their study revealed that unless some

level of accuracy is achieved for the KKT conditions specified in (2.2), the barrier parameter

μ remains constant for the sequence of iterations. Another efficient way of doing this is to

make the barrier parameter up to date for every iteration.

What we have in (2.2) is a primal dual matrix that continues to have a determinant

that is not zero when the convergent solution from the iteration fulfills the conditions of the

second-order sufficiency and strict complementarity. The nonsingular primal-dual matrix in

(2.6) continues to be so and the iteration will converge to a solution that meets the second-

order satisfactoriness conditions and meticulous off setting of mutual lack. Particularly, let

us assume that x* is a solution whereby meticulous off setting of mutual lack is in place, then

for every index i either si or zi continues to be restricted from getting to zero as iterates move

toward x*. This will ensure that the second block row of the primal-dual matrix (2.6) has full

row rank. A superior rate of convergence can easily be created because the interior-point

method does not produce ill conditioning or singularity.

The above discussion can be summed up with a description of the implementation of

the basic interior-point method. The subsequent error function, which is founded on the

disconcerted KKT system (2.2) was used:

 E(x, s, y, z;μ) = max {ǁ∇ f (x) − AE(x)T y − AI(x)T zǁ, ǁSz − μe ǁ, ǁcE(x) ǁ, ǁcI(x) − sǁ}, (2.10)

representing certain vector pattern ǁ.ǁ.

Algorithm 2.1 (Elementary Interior-Point Algorithm).

Select x0 and s0 > 0, and calculate first values for the multipliers y0 and z0 > 0.

Pick the original barrier parameter μ0 > 0 and parameters σ, τ ∈ (0, 1).

Univ
ers

ity
 of

 M
ala

ya

69

Let k ← 0.

while

condition for ending for the nonlinear program (2.1) is yet to be satisfied

repeat

while

 E(xk , sk , yk , zk ;μk) ≥ μk

repeat

Provide solution to (2.6) to find the search direction p = (px, ps, py, pz);

 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 ∝𝑠
𝑚𝑎𝑥, ∝𝑧

𝑚𝑎𝑥 applying (2.9);

 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (xk+1, sk+1, yk+1, zk+1) applying (2.10);

 Let μk+1 ← μk and k ← k + 1;

 end

 Select μk ∈ (0, σμk);

 End

When we eliminate the prerequisite that the KKT conditions must fulfill for each μk

in the inner “while - repeat” loop, we can without doubt get the up-to-date of the barrier

parameter μk of each iteration from the Algorithm 2.1. This can be achieved by updating μk

in the second to last line when a dynamic rule is employed.

The quest to make the interior point algorithm to be able to solve myriad problems

which include the non-convex nonlinear problems have made researchers to make some

amendments and augmentations on the Algorithm 2.1. Many a times, the primal-dual system

(2.6) is changed to the symmetric model

Univ
ers

ity
 of

 M
ala

ya

70

[

𝛻𝑥𝑥

2 𝐿 0 −𝐴𝐸
𝑇 (𝑥) −𝐴𝐸

𝑇(𝑥)

0 ∑ 0 − 𝐼

𝐴𝐸(𝑥) 0 0 0

𝐴𝐼(𝑥) − 𝐼 0 0]

 [

𝑃𝑥

𝑃𝑠

−𝑃𝑦

−𝑃𝑧

] = -

[

∇𝑓(𝑥) −𝐴𝐸

𝑇(𝑥)𝑦 − 𝐴𝐼
𝑇(𝑥)𝑧

𝑍 − 𝜇𝑆−1𝑒

𝐶𝐸(𝑥)

𝐶𝐼(𝑥) − 𝑆]

 (2.11)

Where

∑ = 𝑆−1𝑍 (2.12)

The workload involved in the calculation of each iteration is drastically reduced because a

symmetric linear equation solver is used.

2.8 Primal and Primal-Dual System

2.8.1 Primal methods

Barrier methods actually acted in the area of primitive variables x before the launch

of the primal-dual interior point methods. The purpose of the primal methods was to provide

solution to nonlinear programming problems through unrestrained reduction utilized in a

parametric sequence of functions. Inequality constrained problems can simply be explained

using Primal barrier methods as follows:

𝑓(𝑥)𝑥
 𝑚𝑖𝑛 subject to c(x) ≥ 0 (2.13)

While the barrier-log function is described by

 P(x; μ) = f(x) - μ 𝑙𝑜𝑔𝑖∈𝐼
∑

𝑐𝑖(𝑥) (2.14)

Univ
ers

ity
 of

 M
ala

ya

71

as μ > 0. It can be proved that x(μ) which minimizes P(x; μ), move towards a solution of

(2.13) as μ ↓ 0, given some conditions. The path followed by the projectile Cp is stated as

 Cp {𝑥(𝜇)|𝜇 > 0} =
𝑑𝑒𝑓

 (2.15)

this is usually described as the pivotal path of the primal.

We can search for x(μ) which minimizes P(x; μ) seeing that it is positioned in the

firmly viable set {x | c(x) > 0} where there is no operational restraints. We can use any of the

unconstrained minimization algorithms to search for x(μ). To avoid a situation in which some

of the steps will leave the feasible area or are too near to the restriction borders, there will be

need to make some alteration in the algorithm. The approximate value of the Lagrange

multipliers can be obtained by finding the differential value of P to get

 𝛻𝑥𝑝(𝑥; 𝜇) = ∇𝑓(𝑥) −𝑖∈𝐼
∑ 𝜇

𝑐𝑖(𝑥)
 ∇𝑐𝑖(𝑥) (2.16)

The best Lagrangian multipliers 𝑧𝑖
∗, 𝑖 ∈ 𝐼 can be obtained when x is near the minimizer x(μ)

and the value of μ is not large. If the value of μ is not large, and x is near the point a for which

f(x) > f(a) at all neighboring points x, then the ideal Lagrange multipliers 𝑧𝑖
∗, 𝑖 ∈ 𝐼 is

approximately:

Univ
ers

ity
 of

 M
ala

ya

72

 𝑧𝑖
∗ ≈ 𝜇/𝑐𝑖(𝑥), 𝑖 ∈ 𝐼 (2.17)

The conventional architecture for algorithms built around the primal log-barrier function is

as below.

Algorithm 2.2 (Unconstrained Primal Barrier Method).

Let 𝜇0 > 0, a series {τi} alongside τi → 0, and a initial point 𝑥0
𝑠;

do

Obtain the estimated minimizer xi of P(.; μi), beginning at 𝑥𝑖
𝑠,

and ending as soon as ǁ∇ P(xi ;μi) ǁ ≤ τi ;

Calculate the Lagrange multipliers zi by (2.16);

if last test of convergence is fulfilled

stop at solution close to xi ;

Select another criterion penalty μi+1 < μi;

Select another initial point 𝑥𝑖+1
𝑠 ;

while i > 0

 end (do)

This class of Interior Point Method called primal barrier method was initially put

forward by Frisck (1995) in the 1950s. The original barrier method was investigated by

Fiacco and McCormick (1990), and they have made their own contribution towards the

improvement and propagation of the barrier method. This approach however has become

obsolete with the introduction and adoption of the Sequential Quadratic Programming (SQP)

Univ
ers

ity
 of

 M
ala

ya

73

due to several advantages it have over the barrier approach. The primal-dual Interior-Point

method is also preferred to the barrier approach the minimizer x(μ) is very hard to find as μ

↓ 0 since the output of the function P(x; μ) is not directly to its input. The primal-dual Interior

Point Method by solving a series of unconstrained optimisation problems which form a part

of another more inclusive problem is able to proffer answer to the constricted optimisation

problem

(𝐹𝜇(𝑥) = 𝐹(𝑥) + 𝜋𝐵(𝑥))
𝑥∈𝑅𝑁

𝑚𝑖𝑛

when the values of the barrier parameter µ decrease to 0. A secondary function B(x) which

is also known as the barrier function is used in the unrestricted problem that is part of another

problem. The logarithmic barrier is the most popular among the secondary functions.

𝐵(𝑥) = − ∑ log(𝑐𝑖(𝑥)) ,

𝑚

𝑖=1

let 𝑐𝑐(𝑥) = [𝑐𝑥 + 𝑝]𝑖, the supplemented criterion Fµ turns out to be boundless at the border

of the feasible area so that x µ
∗ the minimizers satisfy Ci(x µ

∗) > 0 for all i.

2.8.2 Primal-dual methods

It was rightly observed by Wright (1997) that the primal-dual methods are a modern

class of interior-point methods that have been used to proffer solution to large-scale nonlinear

optimisation problems. Primal-dual methods, unlike to what is obtainable in the conventional

primal method, equally compute the primal variables x and dual Lagrange multipliers λ

Univ
ers

ity
 of

 M
ala

ya

74

correlating to the constraints simultaneously. The perturbed Karush-Kuhn-Tucker (KKT)

equations below can be resolved through the exact primal-dual solution (x µ
∗ ,λ µ

∗) for a

specified parameter µ

 {
∇𝐹(𝑥) − 𝐶𝑇λ = 0

 λ𝑖𝐶𝑖(𝑥) = 𝜇, 𝑖 = 1,… ,𝑚

 with the constraint (C(x),λ) ≥ 0.

The Newton’s algorithm and line search method are used to recursively solve any

primal or primal-dual sub-problems for a given µ value (Boyd & Vandenberghe, 2004).

Feasibility and convergence is imposed on the algorithm by judiciously choosing the size of

step in the iteration. One of the predominant way to achieve this is to properly decrease the

merit function used in evaluating the rate of progress towards the solution. The dual variables

of the primal dual can be safeguarded through the use of Fµ as a function that is capable of

integrating the primal and dual variables (Armand, Gilbert & Jan-Jegou, 2000); and at the

same time assesses the coherence between data and the suitable model for a specific selection

of the parameters (Johnson, Seidel & Sofer, 2000). The key drawback of the barrier functions

is their tendency to bring about ineffectiveness of traditional line exploration methods

thereby necessitating the development of more efficient line search methods (Emilie, Saïd &

Jérôme, 2011).

According to Carl (2006), the state-of-the-art Interior-Point algorithm have gained

popularity as the choicest approach for providing solution to large scale linear programming

problems. They are however limited due to their inability to solve problems that are unsteady

in nature. This is because contemporary Interior-Point algorithm might not be able to cope

Univ
ers

ity
 of

 M
ala

ya

75

with the increasing need of the large number of constraints. Efforts to increase the efficiency

of the Interior-Point algorithm have led to the development of another variant of this

algorithm that can handle unsteady linear programming problems. These algorithms lower

the number of work per iteration by using only small number of constraints thereby

drastically decreasing their total processing time (Luke, 2010). The primal-dual interior-point

(PDIP) algorithm is an excellent example of an algorithm that uses the constraint-reduction

methods. Mehrotra (1992) in his research work developed the Mehrotra’s Predictor-Corrector

PDIP algorithm which has been executed in almost all the interior-point software suite for

solving both linear and convex-conic problems (Frisch, 1995).

Strengths of primal-dual algorithm:

• It can efficiently handle large linear programming problems, and the bigger the

problem size the more noticeable the efficiency of the primal-dual algorithm.

• The algorithm is not susceptible to degradation and the number of iterations does not

depend on the number of vertices in the feasible search space.

• Primal-dual algorithm uses considerably less iteration compared to what we have in

simplex method.

• The algorithm is able to get the idea solution for a linear programming problem in not

more than 100 iterations irrespective of the huge number of variables involved in

nearly all its implementations.

Shortcomings of primal-dual algorithm:

• Inability to detect the possibility of having unbounded status of the problem, up to

some extent the primal-dual algorithm can be tagged as incomplete. Some researchers

Univ
ers

ity
 of

 M
ala

ya

76

have however been able to handle this problem through the use of model that are

undiversified in nature (Wright, 1996) and (Quintana & Torres, 1997).

• The computational cost of each iteration of primal-dual algorithm is higher than that

of the simplex algorithm. When we have a large linear programming problem that

involves more than 100 variables, the primal-dual algorithms performs better than the

simplex algorithm. This is due to the fact that the total work done in providing

solution to a linear programming problem is the multiplication of the number of

iterations and the work done during iteration.

• The primal step has the inclination of producing inferior steps that defile the

boundaries s > 0 and z > 0 extensively, causing the progress to dwindle.

2.9 Feasible and Infeasible Interior-Point Methods

Assuming we have the problem formulated below

min
𝑥,𝑠

𝑓(𝑥) (2.1a)

subject to 𝐶𝐸(x) = 0 (2.1b)

 𝐶𝐼(x) = 0 (2.1c)

let f, CE and C1 are adequately smooth functions of the variable x ϵ Rn. Where f is a scalar-

valued function, and CE and C1 are vector-valued functions. A feasible method for (2.1) is

the one in which the initial point and all successive iterates fulfill the inequality constraints

(2.1c).

Univ
ers

ity
 of

 M
ala

ya

77

The realization of the inequality constraints during iteration is not made compulsory

by the infeasible interior methods. The slack variable is used by the infeasible interior point

method to convert (3:1) to the feasible equivalent of the problem.

 min
𝑥,𝑠

𝑓(𝑥) (2.2a)

subject to 𝐶𝐸(x) = 0 (2.2b)

 𝐶𝐼(x) – s = 0 (2.2c)

 s ≥ 0. (2.2d)

The interior point methods make use of the Newton's method during iteration to provide

solution that is accurate to a greater extent to the barrier problem.

Algorithm 2.3: Generic Infeasible Interior Point Algorithm

Given that x (probably infeasible) is a iterate and s > 0 is a slack vector

Do

Calculate the step dist = (distx; dists):

Define the testing point xtesting = x + distx; stesting = s + dists:

Do

Calculate a smaller step dist:

Let xtesting = x + distx; stesting = s + dists:

while Φ(xtesting; stesting) is not satisfactorily lesser than Φ(x; s)

Let x+ = xtesting; s+ = stesting:

while the rule for ending is not yet fulfilled

Univ
ers

ity
 of

 M
ala

ya

78

When the technique in use is the trust region method, reducing the radius of the trust

region and re-calculating a step will enable us to get a smaller step. For line search method,

using a retrace your steps line search would produce the same result.

If the present iterate is precisely feasible with respect to the inequality constraints,

some alterations can be made to make sure that the next iterate is also feasible. The slack

variable can be redefined once the step distx and dists have been computed as stesting ← g

(xtesting). Analysis is then carried out to see if the point (xtesting; stesting) is suitable for the merit

function. The step is discarded and a fresh, experimental step which is shorter is calculated

if the present step is not satisfactory. The infeasible Generic Algorithm is first employed

when the first iterate x0 does not suit all the constraints in the inequality. This continues until

all inequalities are more than certain positive maximum value. When such happens, the

algorithm swaps to the feasible form and for the remaining part of the optimisation process

continues to be feasible. The algorithm is below:

Algorithm 2.4: Feasible-Reset Interior Point Algorithm

Given that x (probably infeasible) is a iterate and s > 0 is a slack vector, and ɤ a positive

maximum value

if g(xtesting) < ɤe then

 Execute infeasible Generic Interior Point Algorithm until g (xtesting) ≥ ɤe

 Set s = g (xtesting)

end if

do

Calculate the step dist = (distx; dists):

Specify the experimental point xtesting = x + distx; stesting = s + dists:

do

Univ
ers

ity
 of

 M
ala

ya

79

Calculate a smaller step dist:

Let xtesting = x + distx; stesting = s + dists:

while Φ(xtesting; stesting) is not satisfactorily lesser than Φ(x; s)

Let x+ = xtesting; s+ = stesting:

while a stopping test is not yet fulfilled

Other condition that does not treat each constraint equally and that put into

consideration the range of the constraints can be applied to take the place of the test g

(xtesting) ≥ ɤe. It is worth noticing that the vector dists is not necessary in Feasible-Reset

Algorithm. Richard, Jorge, and Richard (2005) presumed that during iteration there is

calculation of a phase in the slacks and variables thereby making both the feasible and

infeasible genres to need similar data structure and variables. It is advantageous in several

applications that all iterates produced by an optimisation algorithm be feasible as regards

some or all of the inequality constraints. An inherent structure for developing feasible

algorithms is supported by the interior point method (Jorge & Stephen, 2006).

2.10 Line Search Interior-Point Method

Interior point algorithms employ the reduction of rule boosted by a barrier function

to guarantee the satisfaction of the constraints. The existence of barrier function will however

make the convergence speed of the iterative succession algorithm to be very slow when

multifunctional line search methods are used. An elaborate description of a line search

interior-point method is given in the algorithm below. The orientation end product of the

merit function ϕν at (x, s) is given by Dϕ(x, s; p) in the direction P. The stopping conditions

are based on the error function.

Univ
ers

ity
 of

 M
ala

ya

80

Algorithm 2.5: (Line Search Interior-Point Algorithm).

Select x0 and s0 > 0, and compute initial values for the multipliers y0 and z0 > 0.

If a quasi-Newton approach is used, choose an n×n symmetric and positive definite

initial matrix B0. Choose an original barrier parameter μ > 0, parameters η, σ ∈ (0, 1),

and tolerances ∈μ and ∈TOL. Set k ← 0.

repeat until E(xk , sk , yk , zk; 0) ≤ ∈TOL

repeat until E(xk , sk , yk, zk; μ) ≤∈μ

Calculate the primal-dual direction p = (px, ps, py, pz)

Calculate𝛼𝑠
𝑚𝑎𝑥, 𝛼𝑧

𝑚𝑎𝑥

Let pw= (px , ps);

Calculate step lengths ∝𝑠, ∝𝑧 meeting the necessary conditions

Calculate (xk+1, sk+1, yk+1, zk+1)

if a quasi-Newton approach is used

update the estimate Bk;

Set k ← k + 1;

end

Set μ ← σμ and update ∈μ;

 end

The strength of the barrier can be described as ∈μ = μ, as in the above Algorithm. A

flexible approach that is up to date information at every step about μ which is the barrier

parameter can easily be executed using this approach. A second-order rectification or an

approach that is not monotonic ought to be executed to avoid the merit function triggering

the Maratos effect. We can abandon the merit function for a filter method to execute the line

search. This will guarantee the global convergence of the algorithm (Jorge & Stephen, 2006).

Univ
ers

ity
 of

 M
ala

ya

81

2.11 Trust-Region Interior-Point Method

This is a kind of interior-point method that uses the trust regions to ensure

convergence. The design of the trust-region tolerates unlimited autonomy in the selection of

the Hessian. It also supports a system for handling individualities of the Jacobian and

Hessian. This is ensured by a tradeoff between flexibility and complexity in iteration

compared to the line search approach.

The interior-point described below can be directly compared to the line search

method. The two of them are however not the same as the trust region method is not

completely a primal-dual method, as the first thing it does is to calculate the variables’ steps

(x, s) before it computes the current estimated value of the multipliers. Moreover, the

approach of the trust-region restricts movements in the direction of the border of the feasible

region by ordering the variables. The advantage of this approach is that it will make the

algorithm to produce steps that divers from that of the line search approach, and having good

convergence properties. There are two types of trust region algorithm that will be described

in this section. They include: Trust-Region Interior-Point Method for Barrier Problem, and

Trust-Region Interior-Point Method for Nonlinear Programming (Jorge & Stephen, 2006).

2.11.1 Trust-Region Interior-Point Method for Barrier Problem

The combination of trust regions and sequential quadratic programming (SQP)

technique can be used to provide solution to the barrier problem (2.6). The SQP method when

applied to solve the barrier problem usually produces incompetent steps which are against

the affirmativeness of the variables that are added to a constraint to turn the inequality into

an equation. The steps produced by the SQP are also interrupted before its planned end by

the trust region constraint. Jorge & Stephen (2006) developed an SQP technique customized

to the barrier problems to surmount these disadvantages of SQP. The first thing they did was

Univ
ers

ity
 of

 M
ala

ya

82

to calculate the approximate Lagrange multiplier (y, z) and then calculate step p = (px, ps)

given the iterate (x, s) for a given barrier parameter μ. This provides an estimated solution to

the problem below:

 min
𝑃𝑥.𝑃𝑠

∇𝑓𝑇𝑝𝑥 + ½𝑃𝑥
𝑇∇𝑥𝑥

2 − 𝜇𝑒𝑇𝑠−1𝑝𝑠 + ½𝑝𝑠
𝑇∑𝑝𝑠 (2.18a)

 Subject to 𝐴𝐸(𝑥)𝑃𝑥 + 𝐶𝐸(𝑥) = 𝑟𝐸 , (2.18b)

 𝐴𝐼(𝑥)𝑃𝑥 − 𝑃𝑠 + (𝐶𝐼(𝑥) − 𝑠) = 𝑟𝐼 , (2.18c)

ǁ(𝑃𝑥, 𝑠
−1𝑃𝑠)ǁ2 ≤ ∆, (2.18d)

𝑃𝑠 ≥ −𝑟𝑠. (2.18e)

Where

∑ = Primal-dual matrix (2.12),

τ = Scalar and τ ∈ (0, 1) is made to have a value closer to 1 (e.g. 0.997),

S-1 = Scaling

 𝑃𝑠 = Step vector

rE and rI. = Relaxation vectors

According to Jorge & Stephen (2006), the function carried out by (2.18e) is similar

to the one of the threshold principle in (2.9). Dogmatically following the conventional

approach of setting r = (rE, rI) = 0, however this can make the constraints (2.18b) – (2.18d)

to be unsuitable or to present a step p that cannot effectively advance to viability. They proved

further that the calculated step of (2.18) have some correlation with the line search step of

primal-dual.

Jorge & Stephen (2006) observed that the constraint (2.18d) of the trust-region gives

the assurance that the problem (2.18) can be solved predictably. Though 𝛻𝑥𝑥
2 𝐿 (x, s, y, z)

Univ
ers

ity
 of

 M
ala

ya

83

might not be convincingly positive, it will still produce the desired solution and there will be

no need to amend the Hessian. Another notable advantage of the trust region is that it ensures

that it guarantees that sufficient advancement is achieved at every iteration. To make the

effect of the scaling S−1 vivid, the structure of the trust region need to plan for the possibility

of the prerequisite that the slack variables do not get to zero before the due time. This is the

rationale behind the introduction of the scaling S−1 so that it can constrain the elements i of

the step vector 𝑃𝑠 where si is not far from zero which is its lower boundary. The algorithm

below is the Trust-Region Algorithm for Barrier Problems:

Algorithm 2.6: (Trust-Region Algorithm for Barrier Problems).

Input parameters: μ > 0, x0, s0 > 0, μ, and _0 > 0.

Calculate Lagrange multiplier estimates y0 and z0 > 0.

Let k ← 0.

do

Calculate p = (px, ps) by approximately solving (2.18).

if p offers adequate reduction in the merit function φν

Let xk+1 ← xk + px, sk+1 ← sk + ps;

Calculate additional multiplier estimates yk+1, zk+1 > 0

and let 𝛻k+1 ≥ 𝛻k ;

else

Define xk+1 ← xk, sk+1 ← sk, and set 𝛻k+1 < 𝛻k ;

end

Set k ← k + 1;

until E(xk, sk, yk, zk ; μ) ≤ ∈μ

Univ
ers

ity
 of

 M
ala

ya

84

 end

The above algorithm is relevant for a predetermined value of the barrier parameter μ.

A comprehensive interior-point algorithm propelled by a sequence {μk} → 0 is explained in

the next section.

2.11.2 Trust-Region Interior-Point Method for Nonlinear Programming

The trust-region interior-point algorithm can also be used for providing solution to

the nonlinear programming problem (2.1). The Fiacco–McCormick approach for bringing up

to date the barrier parameter was used by stating the ending requirements in terms of the error

function E. In a quasi-Newton approach, The Hessian 𝛻𝑥𝑥
2 𝐿 is substituted with a proportional

estimation.

Algorithm 2.7: Trust-Region Interior-Point Algorithm

Select a value for the parameters η > 0, τ ∈ (0, 1), σ ∈ (0, 1), and ζ ∈ (0, 1),

Pick the halting tolerances μ and TOL.

If a quasi-Newton approach is used, select an n × n symmetric initial matrix B0.

Choose initial values for μ > 0, x0, s0 > 0, and 0.

Let k ← 0.

do

 do

Univ
ers

ity
 of

 M
ala

ya

85

 Calculate Lagrange multipliers;

Calculate 𝛻𝑥𝑥
2 𝐿 (xk , sk , yk , zk) or update a quasi-Newton

approximation Bk, and define ∑k by (2.12);

Calculate the normal step vk = (vx, vs);

Calculate 𝑝k by using the estimated CG approach;

Find the sum step pk;

Update νk to fulfill the needed condition;

Calculate predk (pk);

if aredk(pk) ≥ η predk(pk)

Let xk+1 ← xk + px, sk+1 ← sk + ps;

Select ∆k+1 ≥∆k ;

else

set xk+1 = xk , sk+1 = sk; and select ∆k+1 < ∆k ;

endif

Let k ← k + 1;

until E(xk , sk , yk , zk ;μ) ≤ μ

Set μ ← σμ and update ϵμ ;

until E(xk , sk , yk , zk ; 0) ≤ TOL

end

Univ
ers

ity
 of

 M
ala

ya

86

This algorithm still suffers from the Maratos effect which can make it to disallow steps that

cause beneficial advance to a solution. According to Jorge & Stephen (2006), this

shortcoming have however been conquered through careful usage of a second-order

amendment step.

2.12 Summary of Literature Review

In this chapter, we did discussed the characteristics of a swarm robotic system such

as large number of autonomous robots; ability to detect and communicate from one robot to

the other within the same local neighbourhood; distributed system that is not dependent on

global information; and cooperative behavior, and robot to robot communication and robots

to environment communication. The advantages and disadvantages of swarm robotics were

examined.

A comprehensive review of the different swarm robotic algorithms was been done in

this chapter. We also did a comparative review of foregoing research in the field of particle

swarm optimisation. Variants of PSO and how they have been applied to swarm robotics was

also presented. The comprehensive discussion of the applicability of PSO as an optimisation

algorithm to support swarm robotics (or multi-objective dynamic optimisation in general) as

presented in this chapter exposed critical limitations that describes the recent trends of

customizing a new swarm algorithms for each swarm robotic project. These limitations can

be addressed with the introduction of some other technique to improve the performance of

PSO so that it can tackle dynamic optimisation problems adequately. There is the need to

address some of the problem associated with the existing variants of PSO that we have

discussed such as premature convergence, and the challenge of some of the particles been

trapped in the local minima. An exhaustive review of the literatures accessible in this subject

is presented to give a broad understanding of this topic.

Univ
ers

ity
 of

 M
ala

ya

87

Furthermore, we did a holistic overview of the various Interior Point method

algorithms. We considered the primal-dual interior-point (PDIP) method is as an excellent

example of an algorithm that uses the constraint-reduction methods. The primal-dual

methods were classified as a new category of interior-point methods that have of recent been

practically employed for solving large-scale nonlinear optimisation problems. We discussed

the major setback of the barrier functions as the ineffectiveness of traditional line exploration

methods thereby necessitating the development of more efficient line search (Chouzenoux,

Idier & Moussaoui, 2011). We also mentioned that primal-dual method can efficiently handle

large linear programming problems. The bigger the problem size the more noticeable the

efficiency of the primal-dual algorithm. The algorithm is not susceptible to degradation and

the number of iterations does not depend on the number of vertices in the feasible search

space (Wehenkel & Glavic, 2004). The drawbacks of the primal-dual was explained such as

its inability to detect the possibility of having unbounded status of the problem, and the high

computational cost per each iteration. In the next chapter we will do a survey on PSO

algorithms using different benchmarking functions.

Univ
ers

ity
 of

 M
ala

ya

88

CHAPTER 3: A SURVEY OF PERFORMANCE OF PARTICLE

SWARM OPTIMISATION (PSO) ALGORITHM ON BENCHMARK

PROBLEMS

3.1 Introduction

It is evident from the previous chapter, that in order to apply PSO into any swarm

robotics implementation, a high performing PSO algorithm is need thereby necessitating the

development of more efficient PSO variants and thus contributing towards the ever-

expanding pool of PSO algorithm. This should have not been the norm since the natural

characteristics of the algorithm should be able to support any swarm robotics project.

Apparently, the algorithm is ill suited with some fundamental problems. This study is aimed

towards identifying the performance of the conventional PSO algorithms, and from this

comparative review, work on addressing issues related to swarm robotic applications towards

the creation of a generic PSO, adaptable to any swarm robotic project.

We carried out certain experiments using different benchmark functions. The purpose

of this experiment is firstly to establish the ground truth of these existing algorithms, and to

determine if they are functioning as described in the literature. Secondly, to determine the

global optimum and local optimal of each of the three PSO variants under the different

benchmarking functions, and to confirm the problem of the particles in PSO been trapped in

local optima. Lastly, we are validating the existence of the premature convergence problem

of PSO. In general, we wanted to investigate the performances of the three PSO variants

using the global optimum and local optimal using the standard benchmark functions.

Moreover we wanted to examine their convergence properties through these benchmark

functions.

Univ
ers

ity
 of

 M
ala

ya

89

Our intention is to develop a single generic PSO that would be applicable for swarm

robotics tasks. Though there are many variants of PSO that have been applied to swarm

robotics, these variants can categorically be grouped into three main versions based on their

properties (i.e., minor fundamental changes of each from the basic PSO) of the PSO

algorithm. The three variants are the original PSO, synchronous PSO (SPSO), and

asynchronous PSO (APSO).

3.2 Benchmark functions

 Sixteen benchmark functions were selected. They can be classified as Unimodal or

Multimodal, and either Static or Dynamic functions. The selected functions are Sphere

(Bijaka, Yuhui and Meng-Hiot 2011), Alpine (Clerc 2004), DeJong f3 (Xin et. al. 2004),

DeJong f4 (Xin et. al. 2004), Foxhole (Grana et. al. 2004), Tripod (Clerc 2004), NDParabola

(Clerc 2004), Griewank (Dervis and Bahriye 2007), Rastrigin (Dervis and Bahriye 2007),

Rosenbrock (Dervis and Bahriye 2007), Ackley (Dervis and Bahriye 2007), Shaffer f6 (Sun,

Lai and Wu 2012), Shaffer f6 modified (Matlab Central 2013), f6 Linear Dynamic (Matlab

Central 2013), f6 Bubble Dynamic (Matlab Central 2013), and Shaffer f6 Spiral Dynamic

(Matlab Central 2013). The chosen functions have been selected to test the ability of PSO

and its variants to escape premature convergence. Moreover, some of the functions test the

capability of the PSO algorithms to escape local minima, while the multimodal functions that

were used test the performance of PSO algorithms in a dynamic environment. All functions

used for the experiment are for minimization problems and their properties are outlined in

the tables below.

Univ
ers

ity
 of

 M
ala

ya

90

Table 3.1: Benchmark Functions and their Mathematical Equation.

Function

Name

Mathematical Equation

Sphere (De

Jong f1)

 𝑓(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1

Rosenbrock

(De Jong f2)

 𝑓(𝑥) = ∑ 100𝑁
𝑖=1 (xi+1 - 𝑥𝑖

2)2 + (xi - 1)2

Griewank

 𝑓(𝑥) =
1

4000
 ∑ 𝑥𝑖

2𝑛
𝑖=1 - ∏ 𝑐𝑜𝑠𝑁

𝑖=1
xi

√𝑖
 + 1

Rastrigin

 𝑓(𝑥) = ∑ (𝑥𝑖
2 − 10 cos(2𝜋𝑛

𝑖=1 xi) + 10)

Ackley
𝑓(𝑥) = -20 * 𝑒−0.2√

1

𝑁
∑ 𝑥𝑖

2 − 𝑒
1

𝑁𝑁
𝑖=1 ∑ cos (2𝜋𝑥𝑖

𝑁
𝑖=1 + 20 + e

Alpine 𝑓(𝑥𝑑) = ∑ ǀ 𝑥𝑑 sin(𝑥𝑑) + 0.1 𝑥𝑑 ǀ where d = 1, 2, 3

De Jong f3
𝑓(𝑥) = ∑ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑥𝑖)

5

𝑖=1

De Jong f4
𝑓(𝑥) = ∑ 𝑖 ∗ 𝑥𝑖

4
30

𝑖=1

Shekel’s

foxhole

𝑓(𝑥) = −∑ (𝑚
𝑖=1 ∑

[(𝑥𝑗 𝑎𝑖𝑗)
2 + 𝑐𝑗])

−1
𝑛
𝑗=1 where cj, i=1,…,m), (aij, j = 1,…,n, i= 1,…,m) are constant numbers fixed in

advance.

Univ
ers

ity
 of

 M
ala

ya

91

NDParabola
𝑓(𝑥) = ∑ 𝑥𝑑

2
𝐷

𝑑=1

Schaffer f6
𝑓(𝑥) = 0.5 +

(𝑠𝑖𝑛2√𝑥2 + 𝑦2)

(1 + 0.001 (𝑥2 + 𝑦2))2
− 0.5

Schaffer f6

modified

𝑓(𝑥) = 0.5 +
(𝑠𝑖𝑛2√𝑥2 + 𝑦2)

(1 + 0.001 (𝑥2 + 𝑦2))2
− 0.5

Tripod 𝑓(𝑥) = 𝑝(𝑥2)(1 + 𝑝(𝑥1)) + |𝑥1 + 50𝑝(𝑥2)(1 − 2𝑝(𝑥1))| + |𝑥2 + 50(1 − 2𝑝(𝑥2))|

F6 Linear

Dynamic

𝑓(𝑥) = 0.5 +
sin (√(𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑒)

2 + (𝑦 − 𝑦𝑐𝑒𝑛𝑡𝑟𝑒)
2)2

(1 + 0.01((𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑒)
2 + (𝑦 − 𝑦𝑐𝑒𝑛𝑡𝑟𝑒)

2)2)
− 0.5

F6 Bubbles

Dynamic

𝑓(𝑥)

= 2 ∗ ((0.5 +
sin (√(𝑥 − 𝑥1)

2 + (𝑦 − 𝑦1)
2)2

(1 + 0.01((𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2)2)
− 0.5) ∗ |𝑠𝑖𝑛 (

𝑐𝑝𝑢𝑡𝑖𝑚𝑒
10

− 𝑐𝑝𝑢𝑡𝑖𝑚𝑒) +
𝜋
2)

+ (0.5 +
sin (√(𝑥 − 𝑥2)

2 + (𝑦 − 𝑦2)
2)2

(1 + 0.01((𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2)2)
− 0.5)

∗ |sin (
𝑐𝑝𝑢𝑡𝑖𝑚𝑒

10
− 𝑐𝑝𝑢𝑡𝑖𝑚𝑒) +

𝜋

2
))

− ((0.5 +
sin (√(10000 − 𝑥1)

2 + (10000 − 𝑦1)
2)2

(1 + 0.01((10000 − 𝑥1)
2 + (10000 − 𝑦1)

2)2)
− 0.5) ∗ |𝑠𝑖𝑛 (

𝑐𝑝𝑢𝑡𝑖𝑚𝑒
10

− 𝑐𝑝𝑢𝑡𝑖𝑚𝑒) +
𝜋
2)

+ ((0.5 +
sin (√(10000 − 𝑥2)

2 + (10000 − 𝑦2)
2)2

(1 + 0.01((10000 − 𝑥2)
2 + (10000 − 𝑦2)

2)2)
− 0.5) ∗ |𝑠𝑖𝑛 (

𝑐𝑝𝑢𝑡𝑖𝑚𝑒
10

− 𝑐𝑝𝑢𝑡𝑖𝑚𝑒) +
𝜋
2)

F6 Spiral

Dynamic

𝑓(𝑥) = 0.5 +
sin (√(𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑒)

2 + (𝑦 − 𝑦𝑐𝑒𝑛𝑡𝑟𝑒)
2)2

(1 + 0.01((𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑒)
2 + (𝑦 − 𝑦𝑐𝑒𝑛𝑡𝑟𝑒)

2)2)
− 0.5

Univ
ers

ity
 of

 M
ala

ya

92

Table 3.2: Parameters for Test Functions

Function Name Properties Dimension Initial Range Global Optima

(x*)

Sphere

(De Jong f1)

Is a unimodal function, it is simple, there is no

communication between its variables.

30 [-100; 100]n [0,0,…,0]

Rosenbrock

(De Jong f2)

It is a unimodal function, have complicated

landscape due to very narrow ridge.

30 [30; 30]n [1,1,…,1]

Griewank

Non-linear multimodal function. Highly

multimodal due to the addition of the cosine

modulation that produces many widespread

local minima.

30 [-600;600]n [0,0,…,0]

Rastrigin

This is a multi-modal version of the sphere

function with the addition of cosine

modulation to produce frequent local minima.

It contains millions of local optima.

30 [-5.12; 5.12]n [0,0,…,0]

Ackley Multi-modal function with deep local minima.

It has several local minima.

30 [-32;32]n [0,0,…,0]

Alpine It has many local and global minima of value

zero.

3 [0,0,…,0]

De Jong f3 A uniformly increasing stepping function in

five dimensions.

5 [-5.12; 5.12]n [0,0,…,0]

De Jong f4 Is a noisy function. [-1.28; 1.28]n [0,0,…,0]

Shekel’s foxhole Is a multimodal test function. [-65.538;

65.538]

[1,1,…,1]

NDParabola Was used to test for global minimization

problems in Clerc’s “semi-continuous

challenge.” It works very well with gradient

30 [-20;20] [0,0,…,0]

Univ
ers

ity
 of

 M
ala

ya

93

methods, but presents a challenge for PSO

which is a stochastic method.

Schaffer f6 Is a complex multimodal function. Most hill-

climbing and reactive search methods find it

very difficult due to its circular local maxima.

It is considered a GA-hard function to

optimize.

 [-100,100] [0,0,…,0]

Schaffer f6 modified This is the sum of five (5) Schaffer f6

functions with different centres to look for

local minimum.

 [-100,100] [0,0,…,0]

Tripod A semi-continuous function. This function

presents a problem that many algorithms such

as GA and PSO that are easily trapped in one

of the two local optima find very difficult to

cope with.

2 [-100,100] [0,-50]

F6 Linear Dynamic This is a version of Schaffer f6 that moves the

optima minimum linearly along a 45 degree

angle in x, y space.

 [-100,100]

F6 Bubbles Dynamic This benchmark is made up of Schaffer f6 in

which each goes on bubbles magnitude cycles

up and down. They are 180 degree out of

phase with each other.

 [-100,100] [-8,-8] and others

at [8,8]

F6 Spiral Dynamic This version of Schaffer f6 moves the

minimum about a Fermat spiral according to

the equation: r = a*(theta^2). Where theta is a

function of time and is checked internally.

 𝑥𝑐𝑒𝑛𝑡𝑟𝑒 = r (cos(theta))

𝑦𝑐𝑒𝑛𝑡𝑟𝑒 = r (sin(theta))

 [-100,100]

Univ
ers

ity
 of

 M
ala

ya

94

Table 3.3: Parameters Settings of PSO variants

Algorithm Parameter Settings

PSO Population Size = 30, Dimension = 10,

C1, c2 = 2, W = 0.9 to 0.4

SPSO Population Size = 30, Dimension = 10,

C1, c2 = 1.49, W = 0.9 to 0.4

APSO Population Size = 30, Dimension = 10,

C1, c2 = 1.49, W = 0.9 to 0.4

3.3 Results and Discussion

To affirm the existence of premature convergence, inability to escape being trapped in local

minima, and the unsuitability of PSO algorithms and some of its variants for handling

dynamic tasks we experimented with the original PSO, synchronous PSO (SPSO), and

asynchronous PSO (APSO).algorithms. In general, we wanted to investigate the

performances of the three PSO variants using the global optimum and local optimal using the

standard benchmark functions. Moreover we wanted to examine their convergence properties

through these benchmark functions. We have stated our intention of developing a single

generic PSO that would be applicable for swarm robotics. Though there are many variants of

PSO that have been applied to swarm robotics, these variants can be categorically group into

three main versions based on their properties (i.e., minor fundamental changes of each from

the basic PSO) of the PSO algorithm. The three variants are the original PSO, synchronous

PSO (SPSO), and asynchronous PSO (APSO). We run each algorithm independently for 20

Univ
ers

ity
 of

 M
ala

ya

95

trials. Table 3.3 shows the settings of population size, dimension of problem, the cognitive

and social scaling factors (c1 and c2), and the inertia weight w which is decreased linearly

from 0.9 to 0.4 during the iterations. The results of the experiment for the 16-benchmark

functions on the three variants of the PSO algorithm are depicted in Figure 3.3.1. Each figure

represents the performance of the variants in solving each benchmark function. The graphs

are generated during the simulation process and are saved as .jpg file from Matlab.

3.3.1 Simulation Results

(a) Ackley function for PSO

(b) Ackley function for SPSO

(c) Ackley function for APSO

(d) Alpine function for PSO

Univ
ers

ity
 of

 M
ala

ya

96

(e) Alpine function for SPSO

(f) Alpine function for APSO

(g) Dejong f2 function for PSO

(h) Dejong f2 function for SPSO

(i) Dejong f2 function for APSO

(j) Dejong f3 function for PSO

Univ
ers

ity
 of

 M
ala

ya

97

(k) Dejong f3 function for SPSO

(l) Dejong f3 function for APSO

(m) Dejong f4 function for PSO

(n) Dejong f4 function for SPSO

(o) Dejong f4 function for APSO

(p) Shekel foxhole function for PSO

Univ
ers

ity
 of

 M
ala

ya

98

(q) Shekel foxhole function for SPSO

(r) Shekel foxhole function for APSO

(s) Griewank function for PSO

(t) Griewank function for SPSO

(u) Griewank function for APSO

(v) NDParabola function for PSO

Univ
ers

ity
 of

 M
ala

ya

99

(w) NDParabola function for SPSO

(x) NDParabola function for APSO

(y) Rastrigin function for PSO

(z) Rastrigin function for SPSO

(aa) Rastrigin function for APSO

(ab) Rosenbrock function for PSO

Univ
ers

ity
 of

 M
ala

ya

100

(ac) Rosenbrock function for SPSO

(ad) Rosenbrock function for APSO

(ae) Schaffer f6 function for PSO

(af) Schaffer f6 function for SPSO

(ag) Schaffer f6 function for APSO

(ah) Schaffer f6 modified function for PSO

Univ
ers

ity
 of

 M
ala

ya

101

(ai) Schaffer f6 modified function for SPSO

(aj) Schaffer f6 modified function for APSO

(ak) Tripod function for PSO

(al) Tripod function for SPSO

(am) Tripod function for APSO

(an) Schaffer f6 Bubbles Dynamic function for

PSO

Univ
ers

ity
 of

 M
ala

ya

102

(ao) Schaffer f6 Bubbles Dynamic function for

SPSO

(ap) Schaffer f6 Bubbles Dynamic function for

APSO

(aq) Schaffer f6 Linear Dynamic function for

PSO

(ar) Schaffer f6 Linear Dynamic function for

SPSO

(as) Schaffer f6 Linear Dynamic function for

APSO

(at) Schaffer f6 Spiral Dynamic function for

PSO

Univ
ers

ity
 of

 M
ala

ya

103

(au) Schaffer f6 Spiral Dynamic function for

SPSO

(av) Schaffer f6 Spiral Dynamic function for

APSO

Figure 3.1: Simulation results of benchmark functions for PSO, SPSO, and APSO

3.3.2 Discussion

In the figure 3.1 above (a) – (c) is the Ackley function for PSO, SPSO and APSO

respectively. There are many local minima produced by the function. We have global

optimum for PSO at the 370th iteration, while SPSO have global optimum at the 400th

iteration and APSO reached the global optimum at the 320th iteration. APSO therefore have

a faster convergence speed than SPSO and PSO. The (d) – (f) above is the Alpine function

for PSO, SPSO and APSO respectively. There are many local minima in the function. PSO

reached the global optimum at the 380th iteration, while SPSO global optimum was reached

at the 400th iteration and APSO has its global optimum at the 320th iteration. This further

proves the superiority of the APSO over the SPSO and the PSO algorithms. The (g) – (i)

above is the Dejong f2 function for PSO, SPSO and APSO respectively. We observed from

the simulation result that there was a sharp drop in the value of the gbest as the iteration

progresses, but convergence to the global optimum was difficult for PSO, SPSO and APSO.

This might be the reason why this function was considered suitable for testing the

Univ
ers

ity
 of

 M
ala

ya

104

performance of optimisation algorithms. The (j) – (l) in figure 3.1 above is the Dejong f3

function for PSO, SPSO and APSO respectively. There was convergence to the global

optimum at the 52nd iteration for PSO, while SPSO reached the global optimum at the 30th

iteration. APSO has its global optimum at the 42nd iteration. SPSO performs slightly better

than APSO and PSO with this function.

The (m) – (o) in the above figure is the Dejong f4 function for PSO, SPSO and APSO

respectively. There are some local minima for PSO but convergence to global optimum was

very difficult. SPSO and APSO do not have any local minima and there was no convergence

to the global optimum. This is because the particles have been trapped in the local minima.

The (p) – (r) in figure above is the Shekel foxhole function for PSO, SPSO and APSO

respectively. There are many local minima for PSO, SPSO and APSO. The global optimum

for PSO was reached at the 190th iteration, for SPSO it was at the 28th iteration while the

global optimum was reached at the 22nd iteration for APSO. The (s) – (u) above is the

Griewank function for PSO, SPSO and APSO respectively. PSO has many local optima and

its convergence to global optima was at the 115th iteration. SPSO reached global optimum

at the 48th iteration and APSO’s global optimum was reached at the 42nd iteration.

The (v) – (x) above is the NDParabola function for PSO, SPSO and APSO

respectively. There was no convergence to global optima for all the 3 algorithms used in this

experiment. This is because the particles have been trapped in the local minima. This function

poses a challenge to stochastic algorithms such as PSO and its variants but it has been

discovered that it works perfectly with gradient methods. The (y) – (aa) in figure 3.1 above

is the Rastrigin function for PSO, SPSO and APSO respectively. This highly multimodal

function has several local minima which are regularly distributed throughout the iteration for

all the 3 algorithms. PSO converged to global optimum at the 320th iteration, for SPSO there

global optimum was reached at the 192nd iteration, while APSO has its global optimum at

Univ
ers

ity
 of

 M
ala

ya

105

the 57th iteration. The (ab) – (ad) in the above figure is the Rosenbrock function for PSO,

SPSO and APSO respectively. For this function also called banana function, PSO have many

local minima but convergence to global optimum was reached at the 390th iteration. SPSO

have its global optimum at the 270th iteration, while APSO reached its global optimum at

the 320th iteration.

The (ae) – (ag) above is the Schaffer f6 function for PSO, SPSO and APSO. This

multimodal function is very difficult for most hill-climbing and reactive search algorithm.

There was quick convergence for PSO, SPSO and APSO. Global optima for APSO and SPSO

were at the 1st iteration, while PSO converged to global optimum at the 10th iteration. The

(ah) – (aj) above is the Schaffer f6 modified function for PSO, SPSO and APSO. PSO, SPSO

and APSO converged quickly. Global optimum for PSO was at the 4th iteration, for SPSO it

was at the 10th iteration and APSO reached the global optimum at the 7th iteration. The (ak)

– (am) above is the Tripod function for PSO, SPSO and APSO. Global optimum for PSO

was at the 3rd iteration, for SPSO it was at the 6th iteration and APSO reached the global

optimum at the 1st iteration. The (an) – (ap) above is the Schaffer f6 Bubble Dynamic

function for PSO, SPSO and APSO. The bubbles magnitude cycles up and down. PSO have

many local minima as the environment changes. We have global optima for PSO from the

55th to 100th iterations, and from the 200th to 230th and 325th to 352nd iteration. SPSO also

have many local minima which are evenly distributed throughout the iteration. We have

global optima between 148th and 180th, 270th to 300th and 380th to 400th iterations. APSO

also have many evenly distributed local optima in the iteration. Global optima were reached

between 45th and 55th, 150th and 180th, and the 400th iterations. The (aq) – (as) in figures

above is the Schaffer f6 Linear Dynamic function for PSO, SPSO and APSO. For the 3 PSO

algorithms used in this experiment the function moves linearly along a 45 degree angle. PSO

has its global optimum at the 150th iteration, SPSO at the 379th iteration and APSO at the

Univ
ers

ity
 of

 M
ala

ya

106

179th iteration. The (at) – (av) in figure 3.1 above is the Schaffer f6 Spiral Dynamic function

for PSO, SPSO and APSO. PSO has its global optimum at the 130th iteration, SPSO at the

32nd iteration and APSO at the 48th iteration.

Generally, from our observation, the three variant PSOs experimented were able to

converge to their respective local optimal and global optimum. However, there are exceptions

where by both the PSO and SPSO failed to find their local and global optimum on the Ackley,

Alpine, Dejong f2, Dejong f4, and ND Parabola functions. We observed that the PSO

converged 10% faster for the Ackley function while APSO converged 20% faster for the

same function as compared to SPSO. APSO has the best performance because the particle’s

velocity and position are updated immediately after the fitness is computed, thus update

occurs with incomplete information about particles in the neighborhood. We suspect that

SPSO did not converge slower due to the deep local minima presented by the Ackley

function. Similar observation can be made for the Alpine function. Theoretically, Alpine

function has many local and global minima with the values of zero and as expected, SPSO

could not tackle these different plateaus and was outpaced by PSO (converged 5% faster)

and APSO (converged 20% faster).

PSO converged 5% faster as compared to SPSP and APSO for the De Jong f2

function. The performance of the SPSO and APSO are relatively the similar for this function

as require longer time to converge. De Jong f2 function is a unimodal function with

complicated search landscape comprises of very narrow ridges. For De Jong f4 function,

none of the particles reached convergence. This is simply because De Jong f4 is a noisy

function. It is therefore likely that the particles have been trapped in the local minima. The

three PSO algorithms did not converge under the NDParabola function as well. This is

because NDParabola only works efficiently with gradient methods, and therefore possess a

challenge for particle swarm algorithms (which is a stochastic method).

Univ
ers

ity
 of

 M
ala

ya

107

Under the Rastrigin function, PSO converged faster 19.75% of the time, SPSO

converged faster 52.5% of the time and APSO converged faster 87% of the time. Rastrigin

is a multi-modal version of the sphere function with the addition of cosine modulation to

produce frequent local minima. It contains relatively millions of local optima. PSO

converged faster 72.5% of the time; SPSO converged faster 88% of the time, while APSO

converged faster 90% of the time under Griewank. The function Griewank is a highly

multimodal function due to the addition of the cosine modulation that produces many

widespread local minima. PSO converged faster 60% of the time; SPSO converged faster

89% of the time, while APSO converged faster 88% of the time under Shekel’s foxhole,

which is a multimodal test function.

PSO, SPSO and APSO all experienced premature convergence very early under the

Schaffer f6, Schaffer f6 modified, and Tripod functions. This is because the Schaffer f6 is a

complex multimodal function with circular local maxima. Most hill-climbing and reactive

search methods find this very difficult to tackle (Roberto, Mauro and Srinivas (2005)). In

addition, the Schaffer f6 modified have different centers to look for local minimum, while

Tripod is a semi-continuous function, and this presents a problem that makes many

algorithms such as PSO and GA to be easily trapped in the local optima (Ashish Raj (2013)).

The F6 Linear Dynamic, F6 Bubbles Dynamic, and F6 Spiral Dynamic all have

several local optimal. F6 Linear Dynamic is a version of Schaffer f6 that moves the optima

minimum linearly along a 45-degree angle in x, y space. The function F6 Bubbles Dynamic

is made up of Schaffer f6 in which each goes on bubbles magnitude cycles up and down

which are 180 degree out of phase with each other. Moreover, the F6 Spiral Dynamic is a

version of Schaffer f6 that moves the minimum about a Fermat spiral according to the

equation: r = a*(theta^2). Where theta is a function of time and is checked internally. 𝑥𝑐𝑒𝑛𝑡𝑟𝑒

= r (cos(theta)) and 𝑦𝑐𝑒𝑛𝑡𝑟𝑒 = r (sin(theta)).

Univ
ers

ity
 of

 M
ala

ya

108

In conclusion, we can deduce from our simulation results that Particle Swarm

Optimisation (PSO) still suffers from issues such as premature convergence, inability to

effectively cope with dynamic environment and failure of PSO particles to escape from been

trapped in local minima. Based on the analysis of our results for the sixteen (16)

benchmarking functions used, the presence of premature convergence is confirmed in ten

(10) out of the sixteen (16) functions used for PSO, SPSO and APSO. The functions where

premature convergence are noticed include Ackley, Dejong f3, Griewank, Foxhole, Schaffer

f6, Schaffer f6 modified, Tripod, f6 Bubble Dynamic, f6 Linear Dynamic, and f6 spiral

dynamic functions. The inability of PSO and its variants to escape been trapped in the local

minima is visible in 9 out of the 16 functions that we used to carry out our tests. PSO was

trapped in the local minima in Dejong f2, Dejong f3, Ackley, Alpine, Foxhole, Griewank,

Rastrigin, Rosenbrock and Tripod functions. The simulation results from Schaffer f6 Bubble

dynamic, Schaffer f6 linear dynamic, and Schaffer f6 spiral dynamic show that PSO, SPSO

and APSO does not have the capability to effectively handle optimisation problems in a

dynamic environment. The conditions that effect these flaws in the PSO algorithm and that

of its variants is that particles in PSO are naturally inclined to fling to the infeasible areas

from the feasible areas during the course of searching. This poses a threat to the searching

efficiency of PSO.

Univ
ers

ity
 of

 M
ala

ya

109

CHAPTER 4: DEVELOPMENT OF HYBRID ALGORITHMS:

PRIMAL-DUAL AND PARTICLE SWARM (pdPSO) AND PRIMAL-

DUAL AND ASYNCHRONOUS PARTICLE SWARM (pdAPSO)

4.1 Introduction

 From our literature review in Chapter two, we discovered that the PSO algorithm is

an important algorithm for solving various optimisation problems. This is due to the high

flexibility and simplicity of implementation of the algorithm. The comprehensive discussion

of the applicability of PSO as an optimisation algorithm to support swarm robotics (or multi-

objective dynamic optimisation in general) presented in the previous chapter, exposed critical

limitations that describes the recent trends of customizing a new swarm algorithms for each

swarm robotic project. These limitations can be addressed with the introduction of some other

technique to improve the performance of PSO so that it can tackle dynamic optimisation

problems adequately. We hypothesize the applicability of embedding an Interior Point

Method optimisation (Luke, 2010) to address some of the problem associated with the

existing variants of PSO that we have discussed such as premature convergence, and the

challenge of some of the particles being trapped in local minima. Why? Evidently, this would

propel the initiative towards the creation of a general PSO that can easily be adapted to any

swarm robotics project without the need of heavy customization. The Interior-Point

algorithm has become recognised as the most ideal approach for solving large-scale linear

problems (Laird, 2006). The Primal Dual has been applied to convex optimisation problems

where strong duality is required (Rockefeller, 1970). It has also been used for various

nonlinear and non-smooth cost functions that are prevalent in network design, medical image

reconstruction, and industrial engineering (Boyd & Vandenberghe, 2004). They can be easily

Univ
ers

ity
 of

 M
ala

ya

110

parallelized which enables them to efficiently handle multi-dimensional problems. Primal

dual from literature can solve linear optimisation problems effectively (Laird, 2006).

In this chapter, we proposed a hybrid PSO algorithm that will be able to solve the

aforementioned problems that are associated with PSO. The Primal Dual algorithm, when

integrated into PSO will provide better balance between exploration and exploitation,

preventing the particles from experiencing premature convergence and been trapped in local

minima easily and so producing better results. The fusion of conventional PSO with Primal-

Dual Interior-Point method will resolve the common issues associated with PSO algorithm

and many of its variants. The integration will make the system to have great capacity to

prevent premature convergence, and prevent the particles from being stuck in local minima.

The two key components of this implementation are the explorative capacity of PSO, and the

exploitative capability of the Primal-Dual Interior-Point algorithm. On the one hand,

exploration is key in searching (i.e., traversing the search landscape) to provide reliable

approximation values of the global optimal (Abraham, Pant, Bouvry & Thangaraj, 2011). On

the other, exploitation is critical to focus the search on the ideal solutions resulting from

exploration to produce more refined results (Torn, 1989). The representation of PSO particle

position and velocity update is shown in figure 4.1.

Where

Xi = the position of a particle

Vi = the velocity of the particle

N = the number of particles in the swarm

i = the particle’s number (where i = 1…N)

The ith particle is represented as),...,,(
2! iNiiI

XXXX  . While the velocity is the rate

Univ
ers

ity
 of

 M
ala

ya

111

at which the next position is changing with respect to the current position.

),...,,(
2! iNiiI

VVVV  represent the velocity for the particle i. At the start of the algorithm,

initial numerical values of the position and velocity of the particles are assigned haphazardly.

This is followed by using equations (1) and (2) to update the position and velocity of the

particles after subsequent iterations are conducted during the search process.

Figure 4.1: Diagrammatic representation of PSO particle position and velocity update

)(()(()
)(

,
2

2

)(

,,
1

1

)(

,

)1(

,
*

t

mim

t

mimi

t

mi

t

mi
xgbestrandcxpbestrandcvwv 


 (1)

)1(

,

)(

,

)1(

,




t

mi

t

mi

t

mi
vxx (2)

In a PSO algorithm, all the particles are randomly introduced and evaluated to

calculate fitness of the particles in the swarm. It also computes the local best which is the

best value of individual particle and global best which is the best value of particle in the entire

swarm (Talukder, 2011). To get the optimum solution, some iterative steps are involved.

Univ
ers

ity
 of

 M
ala

ya

112

During the looping process, the velocity of the particles is first updated by the local and

global bests. After this, the position of the individual particle is then updated by the up-to-

date velocity of the particle. Once the stopping criteria which has already been predetermined

is satisfied, the loop will be terminated.

4.2 Constraint Handling Techniques

One of the limitations of the PSO algorithm is that it is only effective in providing

solution to unconstrained global optimisation problems. PSO cannot efficiently solve

constrained optimisation problems. There is therefore the need to employ other techniques to

handle the constraints. This section will discuss some of the standard approaches that can be

used to work out solution to optimisation problems that are constrained in nature.

4.2.1 The Penalty Function Method

In Interior point method, the constrained optimisation problem is solved by changing

the problem to a set of unconstrained optimisation problems using the penalty function

method. The penalty function is used as a substitute for the objective function. The addition

of a penalty parameter to some degree of infringement on the constraints results into the

origination of the penalty function. The feasible points and the infeasible points are the two

categories of anticipated outcome that guides the search space we have in constrained

problems. The measure of degree of infringement on the constraints is zero and non-zero for

feasible points and infeasible points respectively.

Stationary penalty function and non-stationary penalty function are the two main

classes of penalty functions. The stationary penalty function makes use of penalty values that

are constant for the whole operation of minimizing the constrained problem. The non-

Univ
ers

ity
 of

 M
ala

ya

113

stationary penalty function uses dynamic functions that are adjusted in the course of the

minimization operation. The outcome of the non-stationary penalty method is usually

outstanding when compared with that of the stationary penalty method. To ensure

convergence for this class of penalty function, it is required that a very high penalty parameter

be used. The side effect of using very high penalty parameter is that it can result into

complexity of numbers (Boyd and Vandenberghe, 2004).

4.2.2 Augmented Lagrangian Multiplier Method

The major shortcoming of the Penalty Function method which is the use of large

penalty parameter in the penalty function is overcome in the Augmented Lagrangian

Multiplier Method. This approach makes use of the combination of Lagrange multiplier and

constrained function. The Augmented Lagrangian Multiplier Method is the multiplication of

the Lagrange multiplier and constrained function. The constrained optimisation problem just

like in the case of penalty function is converted into unconstrained optimisation problem by

the Lagrange function. The Lagrangian function can be written as:

𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑ 𝜆𝑖𝑔𝑖(𝑥) +
𝑚𝑔

𝑖=1
∑ 𝜆𝑗+𝑚𝑔

 ℎ𝑗(𝑥)
𝑚𝑔

𝑗=1
 (4.1)

Where

 𝜆 = The Lagrange multiplier

 f(x) = The objective function

 g(x) = Equality Constraint Violation

 h(x) = Inequality Constraint Violation

Univ
ers

ity
 of

 M
ala

ya

114

The solution X* to constrained problem with the correct set of multipliers λ* is a

stationary point on L. But X* is not necessarily a minimum of Lagrange function L. To

convert the solution X* from stationary point to minimum, the Lagrange function is

augmented using quadratic extension.

𝐿𝐴(𝑥, 𝜆, 𝑟𝑝) = 𝑓(𝑥) + ∑ 𝜆𝑖
𝑚𝑒+𝑚𝑖
𝑖=1 𝜃𝑖(𝑥) + ∑ 𝑟𝑝,𝑖

𝑚𝑒+𝑚𝑖
𝑖=1 𝜃𝑖

2(𝑥) (4.2)

with

𝜃𝑖= [

𝑔𝑖(𝑥), 𝑖 = 1(1)𝑚𝑒 ,

max {ℎ
𝑖−𝑚𝑔(𝑥),

−𝜆𝑗

2𝑟𝑝,𝑗

} , 𝑖 = 𝑚𝑒 + 1(1)𝑚𝑒 + 𝑚𝑖
] (4.3)

From the gradient based optimisation problems, the term
−𝜆𝑗

2𝑟𝑝,𝑗
 in equation 4.3 is

selected to have continuous derivatives
𝜕𝐿𝐴

𝜕𝑋
 at Ẋ, where ℎ𝑖−𝑚𝑒Ẋ =

−𝜆𝑗

2𝑟𝑝,𝑗
 . The Lagrange

function differs from penalty function due to addition of Lagrangian multipliers. In this

method, each constraint infeasibility is penalized separately by the use of a vector of positive

penalty factors 𝑟𝑝. It can be shown that there exist finite constraint penalty factors 𝑟𝑝 in the

solution X* of the Lagrange function and thus of the original constrained problem. But the

proper values of Lagrange multipliers 𝜆𝑖 and penalty factor parameter 𝑟𝑝 are unknown and

are always problem dependent and thus the solution of the Lagrange function cannot be

computed by single unconstrained minimization of equation 4.2 but a sequence of

unconstrained sub-problems with subsequent updates of 𝜆𝑖 and 𝑟𝑝. The update scheme of

Lagrange multipliers is based on the solution 𝑥∗𝑣 of the stationary condition of the v-th sub-

problem. It holds for 𝑥𝑣 ≈ 𝑥∗𝑣

[
𝜕𝑓(𝑥)

𝜕𝑥
 + ∑ 𝜆𝑖

𝑣𝑚𝑒+𝑚𝑖
𝑖=1

𝜕𝜃𝑖(𝑥)

𝜕𝑥
 + ∑ 2𝑟𝑝,𝑗

𝑣𝑚𝑒+𝑚𝑖
𝑖=1 𝜃𝑖(𝑥) +

𝜕𝜃𝑖(𝑥)

𝜕𝑥
] 𝑥 = 𝑥𝑣 (4.4)

Univ
ers

ity
 of

 M
ala

ya

115

The Lagrange multiplier can be formulated by comparing equations (3.4) and (3.1)

𝜆𝑖
𝑣+1 = 𝜆𝑖

𝑣 + 2𝑟𝑝,𝑗
𝑣 𝜃𝑖(𝑥) (4.5)

4.2.3 Primal Dual Particle Swarm Optimisation (pdPSO)

The Interior-Point algorithm can be used to solve convex problems that have both

equality and inequality constraints. Some state of the art of Interior-Point algorithms can be

used to handles such problems effectively. The Interior-Point algorithm can be used to

compute the solution to the following optimisation problem:

 minimize f(x)

 subject to c(x) < 0,

where f(x) is a convex objective and c(x) is a vector-valued function with outputs

that are convex in x. The input X0 is the starting point for the solver. It must be an n x 1

matrix, where n is the number of (primal) optimisation variables. The descent direction can

either be 'newton' for the Newton search direction, 'BFGS' for the quasi-Newton search

direction with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, or 'steepest' for the

steepest descent direction. The steepest descent direction is often quite bad, and the algorithm

may fail to converge to the solution if the option is chosen. For the Newton direction, the

Hessian of the objective must be calculated. The quasi-Newton estimate to the objective is

usually formed, the implication of this is that a second-order information about the inequality

constraint functions. The Interior Point Method algorithm below was adapted from Gilbert,

Armand and Jan-Jégou (2000). The algorithm for the Primal Dual Method is below:

Univ
ers

ity
 of

 M
ala

ya

116

Step 1:Initialize some of the algorithm parameters (such as The maximum centering parameter, The

maximum forcing number, Minimum barrier parameter, Maximum step size, Minimum step

size, Granularity of backtracking search, Amount of actual decrease we will accept in line

search).

Step 2: Compute the responses of the unperturbed Karush-Kuhn-Tucker optimality conditions.

Step 3: Check for convergence

Step 4: Update the BFGS approximation to the Hessian of the objective.

Step 5: Find Solution to perturbed KKT system.

Step 7: Do Backtracking line search.

Step 8: Compute the response of the merit function and the directional gradient at the current point

and search direction.

Step 9: Compute the candidate point, the constraints, and the response of the objective function and

merit function at the candidate point.

Step 10: Stop backtracking search if we've found a candidate point that sufficiently decreases the

merit function and satisfies all the constraints.

Step 11: Decrease the step size if candidate point does not meet our criteria

Step 12: Compute the response of the merit function at (x, z).

Step 13: End

Figure 4.2: Primal Dual Method algorithm.

In an attempt to provide solution to the problem of premature convergence and

particles being trapped in the local minima that have characterized the PSO algorithm, we

hereby propose a hybrid PSO algorithm that can tackle the shortcomings of PSO algorithms

and it variants. Primal Dual, when integrated into PSO will provide better balance between

exploration and exploitation. The hybridization will enable the system to possess great ability

to prevent premature convergence, and prevent the particles from being stuck in the local

minimal. The new algorithm works by randomly generating the initial parameters for Primal-

Dual and the PSO. The Primal-Dual and PSO operators are applied to generate the initial

population. The particles that made up the initial generation are evaluated. When the solution

generated is feasible, and then the stopping criteria are checked after which the solution is

feed into the Primal-Dual method as the objective function. The result of the Primal-Dual

optimisation is then passed to PSO, which creates a perturbation in the population and also

Univ
ers

ity
 of

 M
ala

ya

117

maintain diversity in the population until there is either convergence to the global optimal or

the termination criteria is satisfied. The flowchart of Primal Dual PSO (pdPSO) is presented

in figure 4.3.

The two algorithms that are hybridised in the pdPSO: a deterministic algorithm (the

Primal-Dual algorithm) and an evolutionary algorithm (the PSO algorithm). The Primal-Dual

algorithm possesses a good searching capacity because its rate of convergence is high. It is

however liable to converge to a local minima instead of a global optimal solution. In contrast,

the PSO algorithm is efficient in converging to a global optimal solution. The implication of

this is that a sizable number of particles are required to do a successful search, and

consequently large memory capacity and high computation time are needed during the course

of optimisation. On the ground of the above rationale, the pdPSO algorithm is proposed to

solve the problems associated with the PSO algorithm and the Primal-Dual method, and to

effectively compute the correct global optimal solution. The flowchart to implement the

proposed pdPSO algorithm is shown above in figure 4.3.

Univ
ers

ity
 of

 M
ala

ya

118

Figure 4.3: Flowchart of Primal Dual PSO (pdPSO)

4.2.4 Implementation of Primal Dual PSO (pdPSO) Algorithm

We implemented our proposed algorithm and carried out some experiments to

determine if the algorithm is functioning according to specification. Secondly, we wanted to

determine the global optimum and local optima of each of PSO, Primal Dual and pdPSO

under the different benchmarking functions, and to confirm the problem of the particles in

PSO been trapped in the local optimal. Lastly, we are validating the existence of the

Univ
ers

ity
 of

 M
ala

ya

119

premature convergence problem of PSO and Primal Dual Interior Point method.

4.2.4.1 Parameter settings

The dimension value of 30 is assigned for each function (i.e. n = 30). For the

implementation of pdPSO algorithm mentioned above, a swarm of 50 particles was generated

with global best topology. We carried out 400 iterations for each of the algorithm we are

testing using the following 9 benchmark functions (Ackley, Sphere, Griewank, Schaffer f6,

Schaffer f6 modified, Schaffer f6 Bubble Dynamic, NDParabola, Rastrigin, and Tripod

function) running on MATLAB R2012a. The cognitive scaling c1 that influences local search

is set to the value 1.49. Accordingly, the social scaling c2, which influences the global search,

is identically set to the value 1.49. Functions rand1 and rand2 are stochastic variables that

have the uniform distribution U (0, 1). Primal-Dual parameter setting is as follows: Primal

Dual tolerance is set to 1e-8. The maximum centering parameter is 0.5. The Minimum barrier

parameter is set to 1e-9. The Maximum step size is 0.95. The Granularity of backtracking

search is set to 0.75

The value of the velocity is limited at ±Vmax and the value of Vmax is set to be equal

to the value of Xmax. This helps in controlling the search range. The range of the searching

will become wide if the value assigned is large, thus limiting the algorithm to only global

exploration. In contrast, if the value of Vmax is small the scope of the search will be

excessively limited thereby forcing the particles to support only local exploration. The inertia

weight w called (constriction factor) is the inertia parameter; this regulates the algorithm’s

searching properties. The initial value is 0.9 and this value decreases to a final value of 0.4.

We started with a larger inertia value (a more global search) that is dynamically reduced

towards the end of the optimisation (a more local search). Small inertia weight guarantees

Univ
ers

ity
 of

 M
ala

ya

120

quick convergence of the algorithms due to the reduction of time for the exploration in the

global space. The inertia weight w is used to provide equilibrium between the global and

local search capability of the particles in the swarm.

For the primal-dual method, the parameter settings are as follows: Primal-dual

tolerance is set to 1e-8. The maximum centering parameter is 0.5. Minimum barrier

parameter is 1e-9. Maximum step size is 1e-6, and granularity of backtracking search is 0.75.

A total of 20 independent trial runs are carried out for each of the functions that were used to

evaluate the performance and robustness of the pdPSO algorithm.

Figure 4.4: Graph of Ackley function for Primal-Dual, PSO and pdPSO (IPM and pdPSO

are superimposed on each other before IPM got trapped in local minima)

Univ
ers

ity
 of

 M
ala

ya

121

Table 4.1: Result Comparison for Ackley Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 5.79464e-10 2.28608e-05 +9.00249e-07 4.16412e-06

Primal-Dual 1.64406e-06 3.57445e+00 +1.44513e+00 1.35517e+00

PSO 2.72194e-10 2.20607e-08 +1.94965e-09 4.12310e-09

The first function is Ackley (Results depicted in Tab. 4.1). It is a multi-modal function

with deep local minima. It has several local minima. It is commonly used to test the ability

of the optimisation algorithm to escape local minima. It also used to test the presence of

premature convergence in the algorithm. Based on the simulation results for IPM, PSO, and

pdPSO, there are many local minima generated by the function for PSO and pdPSO. PSO

and pdPSO converged to global optimum, while IPM got trapped in local minima. The

convergence rates of PSO and pdPSO are almost identical. For the pdPSO algorithm, the first

200 iterations were handled by the IPM, while the last 200 iterations were executed by the

PSO (thereby combining the exploitative power of IPM and the explorative ability of the

PSO). We observed a sharp drop in the gbest of pdPSO from the first to the 50th iteration,

and only after the output of the IPM is inserted into the PSO algorithm the convergence rate

doubled. In our comparisons, we used the values of the Best fitness, Mean fitness, and

Standard deviation because they are some of the performance measures mentioned in Chena

et al. (2010). When we compared the performance of the three algorithms in terms of the

numerical values of Best fitness, Mean fitness, and Standard deviation, we can deduce that

there is no much significant difference between the performances of PSO and pdPSO for

Ackley function.

The second function is the Sphere function. It is a unimodal function, it is simple, and

there is no communication between the variables. Optimisation algorithms commonly would

be to solve the function efficiently. The function can also be used to test the presence of

Univ
ers

ity
 of

 M
ala

ya

122

premature convergence in optimisation algorithms. From the result of our simulation

(depicted in Figure. 4.5 and Tab. 4.2), pdPSO converged faster than PSO algorithm. For the

250 iterations run, both PSO and pdPSO converged successfully. PSO took longer iteration

before it converges as it seems to be trapped at a local minimum. This suggests the superiority

of the pdPSO (in terms of convergence speed) compared to the PSO algorithm. We compared

the performance of the three algorithms based on the values of Best fitness, Mean fitness and

Standard deviation. From the numerical results, the performance of pdPSO was better in

terms of the Best fitness, Mean fitness and Standard deviation.

Figure 4.5: Graph of Sphere function for Primal-Dual, PSO and pdPSO (IPM and pdPSO

are superimposed on each other before)

Univ
ers

ity
 of

 M
ala

ya

123

Table 4.2: Result Comparison for Sphere Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 1.87349e-29 9.11685e-27 +1.19780e-27 2.20741e-27

Primal-Dual 3.05475e-18 1.00235e-17 +6.33670e-18 1.71551e-18

PSO 1.80186e-18 2.76436e-14 +1.05297e-15 5.02818e-15

Figure 4.6: Graph of Griewank function for Primal-Dual, PSO and pdPSO (IPM and pdPSO

are superimposed on each other before they both converged)

Table 4.3: Result Comparison for Griewank Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 5.65695e-02 3.45688e+00 +8.22243e-01 7.07663e-01

Primal-Dual 5.65695e-02 1.08272e+00 +2.73931e-01 3.61745e-01

PSO 8.86239e-02 1.91516e+00 +4.59212e-01 5.75298e-01

Univ
ers

ity
 of

 M
ala

ya

124

The third function is the Griewank function. It is a non-linear multimodal function. It

is highly multimodal due to the addition of the cosine modulation that produces many

widespread local minima. Griewank has characteristics that are quite similar to that of

Rastrigin function except that the number of local optima is more this time around. The

numerous local minima have complex structure, and only multi-start algorithms can easily

find the global minimum with increase in the dimension of the problem. When used, it tests

the ability of the optimisation algorithm to escape been trapped in the local minima. In the

Figure above we have the simulation result of Griewank function for IPM, PSO, and pdPSO.

The PSO has many local optima in the function. All the three (3) algorithms converged to

the global optimum for this function. The performance of IPM and pdPSO for Griewank

function is far better than that of PSO based on their speed of convergence. In term of the

numerical value of the Best fitness, the pdPSO is superior to the other two algorithms.

However, the performance of the Primal-dual is better in terms of Mean fitness and Standard

deviation. The pdPSO however have a better convergence rate thereby giving it an edge over

the Primal-Dual and PSO.

Univ
ers

ity
 of

 M
ala

ya

125

Figure 4.7: Graph of Schaffer f6 function for Primal-Dual, PSO and pdPSO (IPM and pdPSO

are superimposed on each other).

Table 4.4: Result Comparison for Schaffer f6 Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 0.00000e+00 2.42012e-01 +8.06720e-03 4.41851e-02

Primal-Dual 2.22045e-16 4.24477e-01 +3.33300e-01 1.13677e-01

PSO 0.00000e+00 4.99600e-16 +2.40548e-17 9.29832e-17

The fourth function is the Schaffer f6 Function. It is a complex multimodal function.

Most hill-climbing and reactive search methods find it very difficult due to its circular local

maxima. It is considered a Genetic Algorithm-hard function to optimize. It is used to test the

ability of the optimisation algorithm to escape local minima, as well as premature

convergence. The challenge that this function posed to optimisation algorithms is the rise in

the magnitude of the prospective maxima, which must be overcome to get to a minimum as

Univ
ers

ity
 of

 M
ala

ya

126

one move nearer to the global minimum. The Schaffer f6 function simulation result for IPM,

PSO, and pdPSO is depicted in Figure 4.7 and Table 4.4. Apparently, this function poses a

challenge to both PSO and pdPSO (presence of several local minima). There was a sharp and

steady fall in the value of gbest of IPM and pdPSO up till the 150th iteration. The pdPSO

seems to be trapped in a local minimum from the 150th to the 275th iteration after which it

experienced a fall in the value of its gbest again. The PSO however converged faster under

this function when compared to IPM and pdPSO. While pdPSO and PSO have better

performance in terms of the numerical value of Best fitness, PSO is better in terms of Mean

fitness and Standard deviation.

The fifth is Schaffer f6 Modified Function which is the sum of five (5) Schaffer f6

functions with different centres to look for local minimum. It also test the ability of the

optimisation algorithm to escape been trapped in the local minima, and check for the presence

of premature convergence. The result of the simulation for Schaffer f6 modified function for

IPM, PSO, and pdPSO is presented in the figure above (depicted in Figure 4.8 and Table

4.5). The IPM and pdPSO converged faster than PSO. After the 30th iteration, PSO

experienced a sharp fall in the value of its gbest and from there got trapped in a local minima

and remained there throughout the iteration. There was no significant difference between the

performance of the pdPSO and the IPM. The pdPSO performs better in terms of the value of

Best fitness. When we compare the Mean fitness and Standard deviation, the PSO performs

better. The pdPSO is however superior to the PSO and Primal-dual because it was able to

overcome the problem of premature convergence. Whereas the PSO and Primal-dual were

trapped in the local minima, pdPSO was able to escape been trapped in the local minima.

Univ
ers

ity
 of

 M
ala

ya

127

Figure 4.8: Graph of Schaffer f6 Modified function for Primal-Dual, PSO and pdPSO (IPM

and pdPSO are superimposed on each other before they both converged)

Table 4.5: Result Comparison for Schaffer f6 Modified Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 3.95063e-01 5.66018e-01 +4.03145e-01 3.34147e-02

Primal-Dual 3.95063e-01 4.80710e-01 +4.59061e-01 2.29854e-02

PSO 3.98750e-01 4.84612e-01 +4.01617e-01 1.56753e-02 Univ
ers

ity
 of

 M
ala

ya

128

Figure 4.9: Graph of Schaffer f6 Bubble Dynamic function for Primal-Dual, PSO and pdPSO

(IPM and pdPSO are superimposed on each other)

Table 4.6: Result Comparison for Schaffer f6 Bubble Dynamic Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 5.18555e-02 8.98753e-01 -6.49279e-01 5.05210e-01

Primal-Dual 4.58057e-02 4.43780e-01 -2.89311e-01 9.56216e-02

PSO 9.02080e-01 9.02179e-01 -9.02131e-01 1.50446e-05

The sixth is Schaffer f6 Bubble Dynamic Function which is made up of Schaffer f6

in which each goes on bubbles magnitude cycles up and down. They are 180 degree out of

phase with each other. It tests the ability of the algorithm to work effectively in a dynamic

environment. The Schaffer f6 Bubble Dynamic function simulation result for IPM, PSO, and

pdPSO is above (depicted in Figure 4.9 and Table 4.6). The bubbles magnitude cycles up and

down especially for IPM and pdPSO. Under this function, the pdPSO and IPM converged

Univ
ers

ity
 of

 M
ala

ya

129

faster that the PSO. The performance of pdPSO is better in terms of the Mean fitness, Primal-

dual was better in terms of Best fitness while PSO performs better in terms of Standard

deviation. We can deduce that the overall performance of the pdPSO is better for this function

than that of the other two algorithms we compared because it demonstrate its ability to handle

a dynamic environment. This means that pdPSO will be more suitable in solving problems

that are dynamic in nature compared to standard PSO. While PSO and Primal-dual were static

and got trapped in the local minima, pdPSO was not.

The seventh function is NDParabola. It was used to test for global minimization

problems in Clerc’s “semi-continuous challenge.” It works very well with gradient methods,

but presents a challenge for PSO, which is a stochastic method. The results of our simulation

are depicted in Figure 4.10 and Table 4.7. This function tests the ability of the algorithm to

converge to global optima after escaping from been trapped in the local minima. The

simulation result above is the NDParabola function for IPM, PSO, and pdPSO. The IPM,

PSO and pdPSO algorithms converged to global optima. Both PSO and pdPSO have several

local minima as shown in the result. There was a great drop in the gbest value of the IPM,

PSO, and pdPSO from the beginning of the iteration to the end. The convergence speed of

pdPSO and IPM was much better than that of PSO. Based on the numerical values of the

Best fitness, Mean fitness and Standard deviation, pdPSO performs better for this function.

Our new algorithm (pdPSO) also demonstrates its ability to escape been trapped in the local

minima and to evade premature convergence in this function. Univ
ers

ity
 of

 M
ala

ya

130

Figure 4.10: Graph of NDParabola function for Primal-Dual, PSO and pdPSO (IPM and

pdPSO are superimposed on each other)

Table 4.7: Result Comparison for NDParabola Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 1.87351e-29 9.11685e-27 +1.19780e-27 2.20741e-27

Primal-Dual 3.05475e-18 1.00235e-17 +6.33670e-18 1.71551e-18

PSO 1.80186e-18 2.76436e-14 +1.05297e-15 5.02818e-15

Univ
ers

ity
 of

 M
ala

ya

131

Figure 4.11: Graph of Rastrigin function for Primal-Dual, PSO and pdPSO

Table 4.8: Result Comparison for Rastrigin Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 6.29026e+00 1.81783e+02 +7.29321e+01 3.88201e+01

Primal-Dual 6.16813e+00 2.69526e+01 +1.60688e+01 5.13242e+00

PSO 8.95462e+00 8.96635e+00 +8.95527e+00 2.32294e-03

The eighth function is Rastrigin function which is a non-convex, multi-modal version

of the sphere function with the addition of cosine modulation to produce frequent local

minima. It contains millions of local optima which are organized in a systematic lattice. This

function is a moderately problematic one because of its huge search space and its immense

number of local minima. The above simulation result is the Rastrigin function for IPM, PSO,

and pdPSO. This highly multimodal function has several local minima which are regularly

distributed throughout the iteration for all the 3 algorithms. The results of our simulation are

Univ
ers

ity
 of

 M
ala

ya

132

depicted in Figure 4.11 and Table 4.8 above. IPM, PSO and pdPSO converged to global

optimum. The IPM, PSO and pdPSO because of the nature of the Rastrigin function have

several local minima, and got trapped there for the rest of the iteration. The performance of

the IPM and pdPSO was a bit better under this function than that of PSO. Judging from the

results of the numerical values of the Best fitness and Mean fitness, pdPSO performs better.

If we consider the value of the Standard deviation, the performance of the PSO seems to be

better. The rate of convergence of the pdPSO is however superior to that of the other two

algorithms. Using the numerical values of the Best fitness and Mean fitness as parameters

for our judgment, there was no much difference between the performances of these three

algorithms. The performance of pdPSO was better based on the numerical value of the

Standard deviation when compared to the other two algorithms. From our experiment, pdPSO

was able to achieve our aim of designing an algorithm that will overcome the problem of

premature convergence that usually characterise the standard PSO.

 The ninth function is Tripod which is a semi-continuous function. This function

presents a problem that many algorithms such as GA and PSO that are easily trapped in one

of the two local optima find very difficult to cope with. It is used to test if the optimisation

algorithm will be able to escape from been trapped in the local minima, and to also know if

it is experiencing premature convergence or not. The Tripod function simulation result for

IPM, PSO, and pdPSO is depicted in Figure 4.13 and Table 4.9 above. The IPM, PSO and

pdPSO converged. The gbest value of PSO fell sharply from the start of the iteration up till

the 10th iteration and decreases steadily from there until it got trapped in a local minimum

and remained there throughout the iteration. The IPM and pdPSO also experienced fall in the

value of their gbest from the start up till the 30th iteration after which they got caught in the

local minima and remained there till the end of the iteration. Using the numerical values of

the Best fitness and Mean fitness as parameters for our judgment, there was no much

Univ
ers

ity
 of

 M
ala

ya

133

difference between the performances of these three algorithms. The performance of pdPSO

was better based on the numerical value of the Standard deviation when compared to the

other two algorithms. From our experiment, pdPSO was able to achieve our aim of designing

an algorithm that will overcome the problem of premature convergence that usually

characterise the standard PSO.

Figure 4.12: Graph of Tripod function for Primal-Dual, PSO and pdPSO (IPM and pdPSO

are superimposed on each other)

Table 4.9: Result Comparison for Tripod Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 2.00000e+00 2.00000e+00 +2.00000e+00 5.94551e-15

Primal-Dual 2.00000e+00 2.00000e+00 +2.00000e+00 1.76109e-08

PSO 2.00000e+00 2.00000e+00 +2.00000e+00 1.96425e-12

Univ
ers

ity
 of

 M
ala

ya

134

Based on the analysis of our results for the nine benchmarking functions used, pdPSO

performs better than the other algorithms in 7 test cases out of 9; the remaining 2 cases, PSO

was superior when compared to other algorithms. The performance of pdPSO was superior

for Sphere, Griewank, Schaffer f6 modified, Schaffer f6 Bubble dynamic, NDParabola, and

Tripod function. The functions where PSO performs better are Ackley and Schaffer f6. The

ability of pdPSO to overcome the problem of premature convergence and escape been

trapped in local minima was demonstrated in the Sphere, Griewank, Schaffer f6 modified,

Schaffer f6 Bubble dynamic, and NDParabola. The Tripod function further confirmed the

capacity of our algorithm to avoid premature convergence. The results from Schaffer f6

Bubble dynamic shows that pdPSO have the capability to handle optimisation problems in a

dynamic environment.

With reference to convergence speed, pdPSO was faster than PSO and Primal-dual

algorithms in 5 functions out of the total of 9 functions that we considered. We can therefore

consider pdPSO as a fast algorithm that can be used to solve complex numerical optimisation

problems. The pdPSO also have a higher level of steadiness in comparison to the other two

algorithms. The values of Mean fitness and Standard deviations for Sphere, Schaffer f6

Bubble dynamic, NDParabola and Tripod functions were very small when compared to the

ones of PSO and Primal-dual. We can there conclude that pdPSO is a very steady algorithm

that have the capacity to produce rational results that are reliable. Finally we can deduce that

pdPSO is a robust algorithm as it performs better than PSO and Primal-dual in its ability to

successfully find the global optimum on all the benchmarking functions we used especially

on Griewank, Schaffer f6, NDParabola and Rastrigin functions which many of the most

recent optimisation algorithms finds very problematic to solve. Consequently, pdPSO can be

considered as an algorithm that can withstand adverse conditions such as the presence of too

many local minima.

Univ
ers

ity
 of

 M
ala

ya

135

 We went further to conduct more thorough experiments to evaluate the efficiency of

the pdPSO algorithm. The test functions that we used for the experiments are as shown in the

table 4.10 below. Twelve benchmark functions are used in our experiment to further affirm

the genuineness of pdPSO algorithm. A concise description of these benchmark functions are

enumerated in table 4.10 below. Our reason for adopting these benchmark functions is

because they have been generally accepted as suitable functions in measuring the

performance of global optimisation algorithms (Zhan et al. 2011; Huang et al. 2012;

Suganthan et al. 2005; Liang et al. 2005). We made use of twelve functions from the list of

functions used in (Gang et al. 2016). Based on the attributes of these functions, they can be

categorised into three groups. Category one comprises of three (3) unimodal functions.

Category two is made up of four composite multimodal functions. The category three

comprises of six functions out of which four are rotated multimodal while the remaining two

are shifted functions.

Table 4.10: Test functions used in the comparisons

Function Name Dimension

(D)

Global

opt

Search Range Initialization

Range

Unimodal

Sphere 30 {0} D [-100,100]D [-100,50] D

Schwefel's

P2.22

30 {0} D [-10,10] D [-10,10] D

Rosenbrock 30 {0} D [-10,10] D [-10,10] D

Multimodal

Rastrigin 30 {0} D [-5.12,5.12] D [-5.12,5.12] D

Ackley 30 {0} D [-32.768,32.768] D [-32.768,32.768] D

Schwefel 30 {0} D [-500,500] D [-500,500]D

Griewank 30 {0}D [-600,600]D [-600,600]D

Rotated and Shifted

Rotated

Rosenbrock

30 {0}D [-10, 10] D [-10, 10] D

Rotated

Rastrigin

30 {0}D [-5.12,5.12]D [-5.12,5.12]D

Rotated Ackley 30 {0}D [-32.768,32.768]D [-32.768,32.768]D

Rotated

Griewank

30 {0}D [-600,600]D [-600,600]D

Shifted

Rosenbrock

30 {0}D [-100,100]D [-100,100]D

Univ
ers

ity
 of

 M
ala

ya

136

Shifted

Rastrigin

30 {0}D [-100,100]D [-100,100]D

Some performance metrics were used to evaluate the performance of the pdPSO in

order to know the dependability of the algorithm and the quality of the solution generated.

Such performance metrics include the value of mean fitness and standard deviation. The

speed of convergence is measured by computing the average number of FEs needed to arrive

at a satisfactory solution among successful runs. The dependability of the algorithm is

evaluated based on the mean success rate (SR %). The computation of the Mean value of FEs

is done only for the successful runs. The ratio of trial runs expressed as a fraction of 100 that

successfully reach the standard accuracy is called the success rate. According to Auger and

Hansen (2005), some algorithms may fail to attain the satisfactory solution for each run on

some problems. Another standard of measurement is called success performance (SP).

Where

Success = (Fit(x*) + (1.0E-5))

X* = Theoretical global optimal solution

NFE = Average number of function evaluation required to find solution when all 30

runs are successful.

SP = (Mean FEs)/(SR%)

The statistical results of the experiments conducted using twelve (12) benchmarking

functions for pdPSO algorithm is summarized in the table below.

Univ
ers

ity
 of

 M
ala

ya

137

Table 4.11: Statistical result of 12 benchmarking functions for pdPSO

Algorithm Name Primal-Dual-PSO

Function Name Best Fitness Worst

Fitness

Mean Fitness Standard

Deviation

SP Success

Rate

(%)

Runtime

(s)

NFE

Sphere -4.500e+002 3.521e+005 -4.500e+002 6.387e-014 1078 100 177.66 1078

Schwefel's P2.22 -4.500e+002 1.331e+007 -4.500e+002 3.683e-006 3268.36 91.7 142.441 2996

Rosenbrock 3.900e+002 5.407e+011 3.925e+002 5.083e+000 8934.35 80.6 155.42 2997

Rastrigin -3.300e+002 7.525e+002 -3.300e+002 4.198e-014 2827.00 100 156.97 2827

Ackley 3.850e+002 5.378e+011 3.855e+002 5.052e+000 8821.14 85.7 150.12 8285

Schwefel -4.495e+002 2.94e+007 -4.437e+002 4.07e+000 5615.45 58.63 124.66 2981

Griewank -1.800e+002 1.236e+004 -1.800e+002 1.084e-002 6175.20 41.66 186.46 2573

Rotated

Rosenbrock

3.88e+002 5.571e+011 3.996e+002 5.542e+000 8986.74 38.79 168.42 3456

Rotated Rastrigin -1.800e+002 1.236e+004 -1.800e+002 1.084e-002 6175.20 41.66 186.46 2573

Rotated Ackley -1.39e+002 5.000e+000 -1.392e+002 5.514e-002 3748.29 72.19 189.16 2455

Rotated Griewank -1.80e+002 2.80e+002 -1.824e+00 1.063e-00 1734.92 68.8 253.23 1124

Shifted

Rosenbrock

-3.300e+002 7.519e+002 -3.300e+002 4.198e-014 2827.00 100 156.97 2827

Shifted Rastrigin 3.09e-002 1.899e+003 -2.97e+002 7.180e+000 5873.29 59.83 174.37 2999

4.3 Primal Dual Asynchronous Particle Swarm Optimisation (pdAPSO) algorithm

In our effort to improve on the performance of pdPSO algorithm, we proposed

another algorithm called Primal-Dual APSO (pdAPSO). Unlike what we have in the standard

PSO, the Asynchronous PSO (APSO), after evaluating the fitness of the swarm, the velocity

and position of particles are updated immediately after computing their fitness using partial

or limited information about the neighbourhood. This results into varieties in the swarm since

some of the information is from the previous iteration while some is from the current

iteration. From literature, it has been discovered that APSO performs better and converges

faster than standard PSO and SPSO (Luo & Zhang, 2006). Some other researchers concluded

from their work that APSO provides the best accuracy at the expense of computational time.

In this chapter, we proposed a fusion of Asynchronous PSO with Primal-Dual Interior-Point

method to overcome some of the drawbacks of the PSO algorithm. The algorithm for the

asynchronous PSO is in figure 4.14.

Univ
ers

ity
 of

 M
ala

ya

138

4.4 Implementation of Primal-Dual Asynchronous PSO (Primal-Dual-APSO)

The purpose of this experiment is firstly to implement our new algorithm called

Primal-Dual Asynchronous PSO (Primal-Dual-APSO) and to determine if it is working

properly. Secondly, it is to compare the performance of APSO, Primal-Dual-PSO (pdPSO)

proposed by Dada and Ramlan (2015), and PSO under different benchmarking functions, and

to confirm the problem of the particles in PSO been trapped in the local optimal. Thirdly, our

purpose is to know the global optimum and local optimal of each of APSO, Primal-Dual-

APSO (pdAPSO), and PSO under different benchmarking functions. Fourthly, we are

authenticating the reality of the premature convergence problem of PSO algorithms. It is

obvious from our review of related literature that based on some of the weaknesses of PSO,

it is highly essential to develop new variants of PSO algorithms in to order to be able to apply

it to solving problems in other fields and thus contribute towards the ever-expanding pool of

PSO algorithms. Obviously, the algorithm is not suitable for solving dynamic problems. We

hereby present a hybridized APSO and Primal Dual algorithm which is an improvement on

the earlier variants that have been developed, thereby contributing to the field of swarm

intelligence.

Univ
ers

ity
 of

 M
ala

ya

139

Step 1: Get initial points boundary values

Step 2: Get initial values for particles position

Step 2.1: Particles best positions = particles positions

Step 2.2: Particles velocity = particles dimension

Step 2.3: Get particles best value

Step 2.4: Best val hist = zeros

Step 2.5: particles positions = random particles dimension

Step 3: Main loop starts here

Step 3.1: For iteration = 1 to iteration number

 Step 3.2: Loop through every single particle

 Step 3.3: for temp = 1: particles

Step 4: Update the position of an individual particle

Step 4.1: Particles positions = particles positions + particles velocity

Step 6: Evaluate the objective function for each particle

 Step 6.1: If objective function < particles best value

Step 7: Update position, (Best position).

 Step 7.1: Particles best positions = particles positions

Step 7.2: Update best value so far (Particles best value = objective function)

 Step 7.3: End

Step 8: Best function value calculation

 Step 8.1: Compute Gbest val = min (particles best value);

 Step 8.1: Compute Best val hist = gbest;

Step 9: Velocity component update for an individual particle

Step 9.1: Compute particles velocity = c1 * particles velocity + c2 * rand (particles dim) *particles

best positions – particles positions + c2*rand (particles dim) * (particles best positions) –

particles positions
 Step 9.1: End

Step 10: End

Figure 4.13: Algorithm for Asynchronous PSO (APSO)

Univ
ers

ity
 of

 M
ala

ya

140

Figure 4.14: Flowchart for pdAPSO Algorithm

4.4.1 Parameter settings

The dimension value of 10 is assigned for each function (i.e. n = 10). The size of the

swarm is 30. We carried out 400 iterations for each of the algorithm we are testing using the

following 9 benchmark functions (Ackley, Dejong f2, Sphere, Griewank, Schaffer f6,

Schaffer f6 modified, NDParabola, Rastrigin, and Tripod function) running on MATLAB

Univ
ers

ity
 of

 M
ala

ya

141

R2012a. All the parameters used for the implementation of pdPSO were also adopted for

pdAPSO.

Figure 4.15: Graph of Ackley function for APSO, Primal-Dual-APSO and PSO

Table 4.12: Result Comparison for Ackley Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-APSO 5.79464e-10 2.28608e-05 +9.00249e-07 4.16412e-06

APSO 6.51690e-09 7.56732e-08 +1.75608e-08 1.62062e-08

PSO 2.72194e-10 2.20607e-08 +1.94965e-09 4.12310e-09

The simulation results of the APSO, pdPSO, and PSO algorithms are provided in the

figure 4.16 and table 4.12. The function Ackley is a multi-modal function with deep local

minima. It has moderate complexities. Algorithms that only use the gradient steepest descent

are likely to be trapped in the local optima under this function. It has several local minima. It

Univ
ers

ity
 of

 M
ala

ya

142

is used to test the ability of the optimisation algorithm to escape been trapped in the local

minima. It also tests the presence of premature convergence in these algorithms. Based on

the simulation results for APSO, pdAPSO, and PSO, there are many local minima generated

by the function for PSO and pdAPSO. All the three algorithms converged to global optimum.

The Primal-Dual-PSO experienced a sharp fall in the value of its gbest from the start of the

iteration up till the 50th iteration where the particles stayed on the same gbest till the 200th

iteration. The convergence rates of PSO and pdAPSO are almost the same. For the pdAPSO

algorithm, the first 200 iteration was handled by the IPM, while the last 200 iterations were

done by the PSO thereby combining the exploitative power of IPM and the explorative ability

of the PSO. The performance of APSO under Ackley function is not as good as that of

pdAPSO and PSO.

The simulation result (depicted as Figure 4.17 and Table 4.13) of the Dejong f2

function. This is a two dimensional function with a subterranean vale that looks like that of

a parabola which proceeds to the global minimum. As a result of the non-linearity of the vale,

many algorithms find it very difficult to converge quickly under this function because the

value changes the direction of the search repeatedly. This function poses a challenge to many

optimisation algorithms. All the functions converged, and there are many local minima that

are experienced by the APSO, pdPSO and PSO. The performance of the APSO was superior

(in terms of convergence speed) to that of the PSO and pdPSO under this benchmark function.

The pdPSO was trapped in the local minima from the 10th iteration to the 200th iteration

until the result of the optimisation from IPM was fed into PSO.

Univ
ers

ity
 of

 M
ala

ya

143

Figure 4.16: Graph of Dejong f2 function for APSO, Primal-Dual-APSO and PSO

Table 4.13: Result Comparison for Dejong f2 Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-APSO 5.42346e-08 5.08558e+02 +1.75616e+01 9.27722e+01

APSO 1.34362e-16 5.07726e-03 +1.70015e-04 9.26840e-04

PSO 9.67875e-15 1.42771e+02 +4.75906e+00 2.60663e+01

 Univ
ers

ity
 of

 M
ala

ya

144

Figure 4.17: Graph of Sphere function for APSO, Primal-Dual-APSO and PSO

Table 4.14: Result Comparison for Sphere Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-APSO 1.87351e-29 9.11685e-27 +1.19781e-27 2.20741e-27

APSO 4.81143e-19 9.88981e-16 +9.65854e-17 2.48148e-16

PSO 1.80186e-18 2.76436e-14 +1.05297e-15 5.02818e-15

The above function is the Sphere function. It is a unimodal function, it is simple, and

there is no communication between its variables. Our simulation results are depicted in

Figure 4.18 and Table 4.14 above. Optimisation algorithms usually do not find it difficulty.

It can also be used to test the presence of premature convergence in optimisation algorithms.

From the result of our simulation, pdAPSO converged faster than APSO and PSO algorithms.

In short, the pdAPSO is performing better than PSO and APSO. This suggests the superiority

Univ
ers

ity
 of

 M
ala

ya

145

of the pdAPSO (in terms of convergence speed) compared to the other two algorithms. The

performance of APSO is slightly better than that of the PSO under this function.

Figure 4.18: Graph of Griewank function for APSO, Primal-Dual-APSO and PSO

Table 4.15: Result Comparison for Griewank Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-APSO 0.00000e+00 1.11022e-16 +3.70074e-18 2.02698e-17

APSO 7.39604e-03 7.39604e-03 +7.39604e-03 9.25946e-16

PSO 7.39604e-03 7.39604e-03 +7.39604e-03 1.91040e-16

The simulation result of the Griewank function is above. Griewank is a non-linear

multimodal function. It is highly multimodal due to the addition of the cosine modulation

that produces many widespread local minima. The optima are regularly distributed. The

function was designed to produce interdependence among the variables. Griewank has

Univ
ers

ity
 of

 M
ala

ya

146

characteristics that are quite similar to that that of Rastrigin function except that the number

of local optima is more this time around. The numerous local minima have complex structure,

and only multi-start algorithms can easily find the global minimum with increase in the

dimension of the problem. When used, it tests the ability of the optimisation algorithm to

escape been trapped in the local minima. In the figure 4.19 and table 4.15 above we have the

simulation result of Griewank function for APSO, pdAPSO and PSO. The APSO and PSO

experienced many local optima in the function. All the three (3) algorithms converged to the

global optimum for this function. The gbest of pdAPSO experienced a very sharp fall

throughout the iteration. The performance of PSO and APSO is the same under the Griewank

function, as both of them got trapped at a point and stayed there till the end of the iteration.

Figure 4.19: Graph of Schaffer f6 function for APSO, Primal-Dual-APSO and PSO

Univ
ers

ity
 of

 M
ala

ya

147

Table 4.16: Result Comparison for Schaffer f6 Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-APSO 0.00000e+00 2.42012e-01 +8.06720e-03 4.41851e-02

APSO 0.00000e+00 1.15650e-05 +3.85499e-07 2.11147e-06

PSO 0.00000e+00 4.99600e-16 +2.40548e-17 9.29832e-17

Above in Figure 4.20 and Table 4.16 are the simulations result for APSO, pdAPSO

and PSO using the Schaffer f6 function. It is a complex multimodal function. Most hill-

climbing and reactive search methods find it very difficult due to its circular local maxima.

Stochastic algorithms such as PSO and its variants also find it very difficult to cope with it.

It is considered a GA-hard function to optimize. Schaffer f6 Function is used to test the ability

of the optimisation algorithm to escape been trapped in the local minima, and also test for

premature convergence. The challenge that this function posed to optimisation algorithms is

the rise in the magnitude of the prospective maxima which must be surmounted to get to a

minimum as one move nearer to the global minimum. Both PSO and pdAPSO have several

local minima. There was a sharp and steady fall in the value of gbest of pdAPSO up till the

150th iteration. The pdAPSO seems to be trapped in a local minimum from the 150th to the

275th iteration after which it experienced a fall in the value of its gbest again. The PSO

however converged faster under this function when compared to APSO and pdAPSO. This is

because for the pdAPSO, after the IPM's 150 iterations, PSO takes over from there. Univ
ers

ity
 of

 M
ala

ya

148

Figure 4.20: Graph of Schaffer f6 Modified function for APSO, Primal-Dual-APSO and

PSO

Table 4.17: Result Comparison for Schaffer f6 Modified Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-APSO 3.95063e-01 5.66018e-01 +4.03145e-01 3.34147e-02

APSO 3.98750e-01 3.98750e-01 +3.98750e-01 1.55991e-16

PSO 3.98750e-01 4.84612e-01 +4.01617e-01 1.56753e-02

The Schaffer f6 Modified Function is the sum of five (5) Schaffer f6 functions with

different centres to look for local minimum. It is used to test the ability of the optimisation

algorithm to escape been trapped in the local minima, and check for the presence of premature

convergence. The result of the simulation for Schaffer f6 modified function for APSO, PSO,

and pdAPSO is presented in the figure 4.21 and table 4.17 above. The pdAPSO converged

Univ
ers

ity
 of

 M
ala

ya

149

faster than PSO and APSO, this further show the superiority in the performance of our new

algorithm when compare to PSO and APSO. There was a sharp fall in the value of the gbest

of pdAPSO and APSO from the start of the iteration. After the 30th iteration, PSO also

experienced a fall in the value of its gbest and from there got trapped in local minima and

remained there throughout the iteration. PSO converged faster than the APSO.

Figure 4.21: Graph of NDParabola function for APSO, Primal-Dual-APSO and PSO

Table 4.18: Result Comparison for NDParabola Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-APSO 1.87351e-29 9.11685e-27 +1.19780e-27 2.20741e-27

APSO 4.81143e-19 9.88981e-16 +9.65854e-17 2.48148e-16

PSO 1.80186e-18 2.76436e-14 +1.05297e-15 5.02818e-15

Univ
ers

ity
 of

 M
ala

ya

150

The NDParabola is a benchmarking function that is used to test for global

minimization problems in Clerc’s “semi-continuous challenge.” It works very well with

gradient methods, but presents a challenge for PSO, which is a stochastic method. This

function tests the ability of the algorithm to converge to global optima after escaping from

been trapped in the local minima. The simulation result presented in figure 4.22 and table

4.18 above is the NDParabola function for APSO, PSO, and pdAPSO. All the three

algorithms converged to global optima, and they all have several local with massive drop in

the gbest values from the beginning of the iteration to the end as shown in the result. The

convergence speed of pdAPSO was much better than that of PSO and APSO.

Figure 4.22: Graph of Rastrigin function for APSO, Primal-Dual-APSO and PSO

Univ
ers

ity
 of

 M
ala

ya

151

Table 4.19: Result Comparison for Rastrigin Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-APSO 1.25268e+01 2.04591e+02 +4.71626e+01 4.31244e+01

APSO 1.39294e+01 1.39294e+01 +1.39294e+01 7.43627e-06

PSO 1.69143e+01 1.69143e+01 +1.69143e+01 7.28970e-11

The above simulation result depicted in figure 4.23 and table 4.19 is the Rastrigin

function for APSO, PSO, and pdAPSO. The Rastrigin function is a non-convex, multi-modal

version of the sphere function with the addition of cosine modulation to produce frequent

local minima. It contains millions of local optima which are organized in a systematic lattice.

This function is a moderately problematic one because of its huge search space and its

immense number of local minima. This highly multimodal function has several local minima

which are regularly distributed throughout the iteration for all the 3 algorithms. The entire

algorithm converged to global optima. The PSO because of the nature of the Rastrigin

function with several local minima got trapped and stayed there for the rest of the iteration.

The performance of the pdAPSO was superior to that of the other two algorithms under this

function.

The Tripod is a semi-continuous benchmarking function. This function presents a

problem that many algorithms such as GA and PSO that are easily trapped in one of the two

local optima find very difficult to cope with. It is used to test if the optimisation algorithm

will be able to escape from been trapped in the local minima, and to also know if it is

experiencing premature convergence or not.

The Tripod function simulation result for APSO, PSO, and pdAPSO is in the figure

4.24 and table 4.20. The entire algorithm converged; the APSO and PSO converged faster

than pdAPSO. All the algorithms experienced fall in the value of their gbest from the start up

Univ
ers

ity
 of

 M
ala

ya

152

till the 30th iteration after which they got caught in the local minima and remained there till

the end of the iteration.

Figure 4.23: Graph of Tripod function for APSO, Primal-Dual-APSO and PSO

Table 4.20: Result Comparison for Tripod Function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-APSO 2.00000e+00 2.00000e+00 +2.00000e+00 5.94551e-15

APSO 2.00000e+00 2.00000e+00 +2.00000e+00 1.76109e-08

PSO 2.00000e+00 2.00000e+00 +2.00000e+00 1.96425e-12

 To further ascertain the efficiency of pdAPSO, more experiments were conducted

using the 12 benchmark functions listed in table 4.21. This is because these benchmark

functions are popularly accepted as suitable functions in determining the performance of

global optimisation algorithms as seen in (Zhan et al. 2011; Huang et al. 2012; Suganthan et

Univ
ers

ity
 of

 M
ala

ya

153

al. 2005; Liang et al. 2005). We have earlier used these functions to measure the performance

of pdPSO in this chapter.

Table 4.21: Statistical result of 12 benchmarking functions for pdAPSO

Algorithm

Name

Primal-Dual-APSO

Function Name Best Fitness Worst

Fitness

Mean

Fitness

Standard

Deviation

SP Success

Rate

(%)

Runtime

(s)

NFE

Sphere -4.50e+002 -4.50e+002 4.50e+002 8.88e-003 332.00 100 9.47 332

Schwefel's P2.22 -4.50e+002 -4.49e+002 -4.50e+002 5.83e-003 495.00 95.76 142.44 532

Rosenbrock 3.90e+002 3.80e+002 3.90e+002 3.01e-002 3321.16 68.58 140.12 2124

Rastrigin -3.34e+002 5.75e+002 -3.32e+002 4.14e-002 3526.79 99.55 551.27 3545

Ackley -1.40e+002 1.70e+002 -1.40e+002 5.01e-002 3321.16 88.55 270.89 2124

Schwefel -4.59e+002 -3.28e+002 -4.59e+002 4.73e-002 8316.73 71.29 647.59 5929

Griewank -1.80e+002 2.85e+002 -1.83e+002 4.06e-002 1734.56 69.7 259.88 1160

Rotated

Rosenbrock

3.89e+002 3.85e+002 3.92e+002 3.09e-002 3380.16 70.15 152.60 2197

Rotated Rastrigin -3.30e+002 2.18e+002 -3.30e+002 2.94e-002 7301.35 74.19 693.03 5403

Rotated Ackley -1.40e+002 1.77e+002 -1.42e+002 5.03e-002 3378.16 68.83 296.10 2185

Rotated

Griewank

 -1.85e+002 2.80e+002 -1.80e+002 4.01e-002 1860.25 70.5 249.33 1105

Shifted

Rosenbrock

3.78e+002 3.84e+002 3.85e+002 2.98e-002 3182.72 69.98 148.42 2256

Shifted Rastrigin -3.30e+002 5.72e+002 -3.31e+002 4.11e-002 3526.38 98.18 543.49 3402

4.5 Performance Comparison of Primal-Dual-PSO (pdPSO) and Primal-Dual-APSO

(pdAPSO)

In this section we present a comparison between the two new algorithms that we

proposed in this thesis. Univ
ers

ity
 of

 M
ala

ya

154

Figure 4.24: Graph of Ackley function for pdPSO and pdAPSO

Table 4.22: Result Comparison for Ackley function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 5.79464e-10 2.28608e-05 +9.00249e-07 4.16412e-06

Primal-Dual-APSO 5.16059e-10 2.48315e-04 +8.65840e-06 4.52952e-05

The two algorithms converged to global optimum. The convergence rates of pdPSO

and pdAPSO are almost the same. In our comparisons, we used the values of the Best fitness,

Mean fitness, and Standard deviation because they are some of the performance measures

mentioned in (Chena et al, 2010). The result of our simulation is depicted in Figure 4.25 and

Table 4.22 above. When we compared the performance of the two algorithms in terms of the

numerical values of Best fitness, Mean fitness, and Standard deviation, we can deduce that

the performance of pdAPSO is slightly better than that of pdPSO algorithm for Ackley

function.

Univ
ers

ity
 of

 M
ala

ya

155

Figure 4.25: Graph of Schaffer f6 modified function for pdPSO and pdAPSO

Table 4.23: Result Comparison for Schaffer f6 modified function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 3.95063e-01 5.66018e-01 +4.03145e-01 3.34147e-02

Primal-Dual-APSO 3.95063e-01 5.70032e-01 +4.08469e-01 4.19347e-02

In term of the numerical value of the Best fitness, the performance of pdAPSO and

pdPSO are almost the same. However, the performance of the pdPSO is better in terms of

Mean fitness and Standard deviation. The result of our simulation is depicted in Figure 4.26

and Table 4.23 above. The pdAPSO and pdPSO were able to overcome the problem of

premature convergence. Also, the pdAPSO and pdPSO were able to escape been trapped in

the local minima.

Univ
ers

ity
 of

 M
ala

ya

156

Figure 4.26: Graph of ND Parabola function for pdPSO and pdAPSO

Table 4.24: Result Comparison for ND Parabola function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 1.87351e-29 9.11685e-27 +1.19780e-27 2.20741e-27

Primal-Dual-APSO 3.30328e-29 2.19468e-25 +9.62640e-27 4.03483e-26

The simulation result above is the NDParabola function for pdAPSO and pdPSO. The

result of our simulation is depicted in Figure 4.27 and Table 4.24 above. The two algorithms

converged to global optima, and they all have several local optima with massive drop in the

gbest values from the beginning of the iteration to the end as shown in the result. The

convergence speed of pdAPSO and pdPSO are the same. Based on the numerical values of

the Best fitness, Mean fitness and Standard deviation, pdPSO performs better for this

function. Our new algorithm (pdAPSO) also demonstrates its ability to escape been trapped

Univ
ers

ity
 of

 M
ala

ya

157

in the local minima and to evade premature convergence in this function. Based on the

numerical values of the Best fitness, Mean fitness and Standard deviation, pdPSO performs

better for this function.

Figure 4.27: Graph of Rastrigin function for pdPSO and pdAPSO

Table 4.25: Result Comparison for Rastrigin function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 1.25268e+01 2.04591e+02 +4.71626e+01 4.31244e+01

Primal-Dual-APSO 8.87397e+00 7.67439e+01 +2.78492e+01 1.92259e+01

The simulation result above is the Rastrigin function for pdAPSO and pdPSO as depicted in

Figure 2.28 and Table 4.25 above. The two algorithms converged to global optima, and they

all have several local optima from the beginning of the iteration to the end as shown in the

result. The pdAPSO algorithm converged faster than pdPSO. Based on the numerical values

of the Best fitness, Worst fitness, Mean fitness and Standard deviation, pdAPSO performs

Univ
ers

ity
 of

 M
ala

ya

158

better for this function. Our new algorithm (pdAPSO) also demonstrates its ability to escape

been trapped in the local minima and to escape premature convergence in this function.

Figure 4.28: Graph of Sphere function for pdPSO and pdAPSO

Table 4.26: Result Comparison for Sphere function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 1.87351e-29 9.11685e-27 +1.19781e-27 2.20741e-27

Primal-Dual-APSO 3.30324e-29 2.19468e-25 +9.62640e-27 4.03483e-26

From the result of our simulation (depicted as figure 4.29 and table 4.26), there is no

significant difference between the performance of pdAPSO and pdPSO in term of

convergence speed. We compared the performance of the two algorithms based on the values

of Best fitness, Mean fitness and Standard deviation. From the numerical results, the

performance of pdPSO was better in terms of the Best fitness, Mean fitness and Standard

Univ
ers

ity
 of

 M
ala

ya

159

deviation.

Figure 4.29: Graph of Griewank function for pdPSO and pdAPSO

Table 4.27: Result Comparison for Griewank function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 1.25268e+01 2.04591e+02 +4.71626e+01 4.31244e+01

Primal-Dual-APSO 8.87397e+00 7.67439e+01 +2.78492e+01 1.92259e+01

The result of our simulation is shown in Figure 4.30 and Table 4.27 above. Using the

numerical values of the Best fitness and Mean fitness as parameters for our judgment, there

was no much difference between the performances of these two algorithms. The performance

of pdPSO was better based on the numerical value of the Standard deviation when compared

to the other three algorithms. From our experiments, pdAPSO was able to achieve our aim of

designing an algorithm that will overcome the problem of premature convergence that

usually characterize the standard PSO and many of its variants.

Univ
ers

ity
 of

 M
ala

ya

160

Figure 4.30: Graph of Tripod function for pdPSO and pdAPSO

Table 4.28: Result Comparison for Tripod function

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation

Primal-Dual-PSO 2.00000e+00 2.00000e+00 +2.00000e+00 5.94551e-15

Primal-Dual-APSO 2.00000e+00 2.00000e+00 +2.00000e+00 9.72321e-15

Simulation result of Tripod function for pdPSO and pdAPSO is presented in Figure

4.30 and Table 4.28 above. Using the numerical values of the Best fitness and Mean fitness

as parameters for our judgment, there was no much difference between the performances of

these two algorithms. The performance of pdPSO was better based on the numerical value of

the Standard deviation when compared to the other three algorithms. From our experiments,

pdAPSO was able to achieve our aim of designing an algorithm that will overcome the

Univ
ers

ity
 of

 M
ala

ya

161

problem of premature convergence that usually characterize the standard PSO and many of

its variants.

With reference to convergence speed, pdAPSO was faster than pdPSO in 5 functions

out of the total of 7 functions that we considered. We can therefore consider pdAPSO as a

fast algorithm that can be used to solve complex numerical optimisation problems. The

pdAPSO also have a higher level of steadiness in comparison to the other three algorithms.

The values of Mean fitness and Standard deviations for Sphere, NDParabola and Tripod

functions were very small when compared to the ones of pdPSO, PSO and APSO. We can

therefore conclude that pdAPSO is a very stable algorithm that has the capacity to produce

rational results that are reliable. Finally we can deduce that pdAPSO is a robust algorithm as

it performs better than pdPSO, PSO and APSO in its ability to successfully find the global

optimum on all the benchmarking functions we used especially on Griewank, Schaffer f6

modified, NDParabola and Rastrigin functions which prove to be very problematic to solve

for many modern day optimisation algorithms. Consequently, pdAPSO can be considered as

a robust algorithm that can withstand difficulties during optimisation process.

4.6 Performance Comparison of pdPSO and pdAPSO algorithms with the state-of-

the-art PSO variants

 In this section we compared the performance of pdPSO and pdAPSO with nine (9)

state of the art algorithms as listed in the table below. The conventional PSO algorithm that

has been popularly applied in different field is PSO-LDIW which was proposed by Shi and

Eberhart (1999). The comprehensive learning strategy PSO (CLPSO) was proposed by

Liang et al. (2006) with the purpose of producing superior performance compared to the

existing PSO variants for multimodal functions. The Perturbed particle swarm optimisation

Univ
ers

ity
 of

 M
ala

ya

162

for numerical optimisation was (pPSA) was proposed by Zhao (2010). The algorithms

device a strategy for handling premature convergence by employing a particle updating

approach that centres on the idea of perturbed global best particle. The rank based particle

swarm optimisation algorithm with dynamic adaptation (PSOrank) was proposed by Akbari

and Ziarati (2011). The algorithm exploits the collaborative behavior of particles to make a

meaningful increase in the efficiency of the conventional PSO algorithm. Zhan et al. (2011)

proposed the orthogonal learning PSO (OLPSO-G). This algorithm uses a perpendicular

learning approach to create a favourable and effective model to pilot particles to move in

most suitable directions. Huang et al. (2012) developed the Example-based learning PSO

(ELPSO) for continuous optimisation. Their purpose is to use example-based learning

scheme to proffer a superior performance for multimodal functions. An adaptive parameter

tuning of PSO centered on velocity information (APSO-VI) algorithm was proposed by Xu

(2013). Diversity enhanced PSO with neighbourhood (DNSPSO) was presented by Wang

et al. (2013). This algorithm engages the variety improving method and neighborhood search

tactics to attain a swapping between exploration and exploitation. Multiobjective sorting-

based learning PSO for continuous optimisation (MLPSO) proposed by Gang et al. (2016)

uses the MSL approach to direct particles to move in the most suitable path by creating a

direction paradigm that have superior fitness value and variety in swarm population. The

parameter settings for these PSO variations are specified in Table 4.29 with reference to

their references. The purpose of using these PSO variants for our comparisons is because

they are state of the art PSO algorithms which cover a broad period of time from 1999 to

2016. Furthermore, they have been described in literature as high performing variants of

PSO with reference to their experimented problems.

Univ
ers

ity
 of

 M
ala

ya

163

Table 4.29: PSO variants used for our comparative studies.

PSO variants Parameter Setting Reference

PSO-LDIW w : 0.9–0.4, c1 = c2 =2 Shi and Eberhart (1999)

CLPSO w : 0.9–0.4, c = 1.49, m =7 Liang et al. (2006)

pPSA w = 0.9, c1 = 0.5, c2 = 0.3, 𝜎max = 0.15, 𝜎min = 0.001,

∝ = 0.5

Zhao (2010)

PSOrank w is non-linear, ∝ = 0.45, 𝛽 = 0.385, m = 2 Akbari and Ziarati (2011)

OLPSO-G w: 0.9–0.4, c = 2.0, G = 5, Vmax = 0.2 9 x Range Zhan et al. (2011)

ELPSO w = 0.729, c = 1.49, m = 4 Huang et al. (2012)

APSO-VI w:0.9–0.3, c1 = c2 = 1.49 Xu (2013)

DNSPSO w = 0.729, c1 = c2 = 1.49618, k = 2, pr = 0.9, pns = 0.6 Wang et al. (2013)

MLSPSO w:0.9–0.4, c1 = c2 = 2 Gang, et al (2016)

From the experiments that were conducted, the algorithm configurations of pdPSO

and pdAPSO are as follows. The inertia weight w is linearly decreasing from 0.9 to 0.4, and

c1 and c2 are set to 1.49. For a fair comparison among all the PSO variants, the population

size is set at 50 and the maximum fitness evaluations (FEs) is set at 30,000. We carried out

experiment 30 times for each algorithm using twelve (12) benchmarking functions and the

statistical values of the Best Fitness, Worst Fitness, Mean Fitness, Standard Deviation, SP,

Success Rate (%), Runtime (s), and NFE are used in the evaluations.

4.6.1 Performance Comparison on superiority of results

We make comparison of the performance of the PSO algorithms listed in table 4.29

with that of pdPSO and pdAPSO. The results of our comparison are in tables 4.30 – 4.42

where we compared the mean and standard deviations of the eleven (11) algorithms. The best

results obtained among the other eleven algorithms we evaluated their performance are

boldfaced. The first three functions (Sphere, Schwefel’s P2.22, and Rosenbrock) we

considered are unimodal functions. The first two are comparatively easy and virtually all the

algorithms can solve them. The two algorithms that proffer the best results for Sphere are

Univ
ers

ity
 of

 M
ala

ya

164

pdPSO and ELPSO while pdPSO, pdAPSO and OLPSO-G proffers the best results for

Schwefel's P2.22. For Rosenbrock function, pdAPSO and MSLPSO proffers the best

solution. This function is used to test the ability of an algorithm to solve a hard problem

because it contains very narrow valley in its landscape. It is only these two algorithms that

were able to escape being trapped in its local optima.

Table 4.30: Mean and Standard Deviation comparisons for sphere among eleven (11) PSO

algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 4.68E-23 8.33E-23

CLPSO 5.23E-14 3.66E-14

pPSA 2.76E-07 5.93E-07

PSOrank 3.91E-09 7.87E-09

OLPSO-G 6.21E-52 2.19E-52

ELPSO 3.38E-94 1.22E-94

APSO-VI 1.37E-12 8.39E-12

DNSPSO 8.27E-85 3.69E-85

MSLPSO 2.73E-82 1.69E-82

pdPSO -4.50E+00 6.38E-01

pdAPSO 4.50E+00 8.88E-00

Table 4.31: Mean and Standard Deviation comparisons for Schwefel's P2.22

among eleven (11) PSO algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 4.08E-09 1.09E-09

CLPSO 2.81E-07 3.57E-07

pPSA 2.35E-09 4.94E-09

PSOrank 3.73E-12 5.22E-11

OLPSO-G 3.77E228 6.77E-28

ELPSO 8.08E-24 2.99E-24

APSO-VI 4.66E-14 1.44E-14

DNSPSO 7.97E-26 5.99E-26

MSLPSO 1.35E-16 2.98E-16

pdPSO -4.50E+00 3.68E-00

pdAPSO -4.50E+00 5.83E-00

Univ
ers

ity
 of

 M
ala

ya

165

Table 4.32: Mean and Standard Deviation comparisons for Rosenbrock among eleven (11)

PSO algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 5.59E+01 3.83E+01

CLPSO 2.25E+01 1.21E+01

pPSA 3.57E+01 2.56E+01

PSOrank 4.44E+01 3.14E+01

OLPSO-G 2.51E+01 1.77E+01

ELPSO 1.78E+01 1.59E+01

APSO-VI 1.50E+01 1.23E+01

DNSPSO 7.38E+00 8.82E+00

MSLPSO 2.90E-01 3.72E-01

pdPSO 3.92E+00 5.08E+00

pdAPSO -3.32E+00 4.14E-00

The second category of experiments we carried out was on multimodal functions. The

Primal Dual method provides PSO the capacity to explore the search space better and exploit

the particle in the swarm to its advantage thereby producing enhanced fitness value and create

diversity in the swarm population. It is anticipated that pdPSO and pdAPSO will escape from

being trapped in local minima and produce superior results on multimodal functions. For the

functions Rastrigin, Ackley, Schwefel, and Griewank, pdPSO and pdAPSO converged to the

global optimum. The close to global optima was attained by pdPSO and pdAPSO on Rastrigin

function. The best result was however produced by pdPSO and MSLPSO. The algorithms

pdAPSO and MSLPSO produced the best result on Ackley function. For the Schwefel

function, pdAPSO and ELPSO achieved the best solution. On the Griewank function, the best

solution is obtained for pdAPSO and MSLPSO algorithms. The results of our tests

demonstrated that pdPSO and pdAPSO possess that ability to effectively handle premature

convergence problem and escape from being trapped in local minima on majority of the

multimodal functions. The successful attainment of global optima solutions on many of the

multimodal functions indicates that the performances of pdPSO and pdAPSO algorithms have

really been enhanced through the fusion of Primal-Dual method and PSO algorithm.

Univ
ers

ity
 of

 M
ala

ya

166

Table 4.33: Mean and Standard Deviation comparisons for Rastrigin among eleven (11) PSO

algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 1.85E+01 2.72E+01

CLPSO 3.98E-08 4.54E-08

pPSA 3.07E-03 6.25E-02

PSOrank 1.08E-12 9.74E-11

OLPSO-G 8.25E-02 4.81E-02

ELPSO 2.89E-14 3.18E-14

APSO-VI 3.82E+00 4.69E+00

DNSPSO 7.66E-15 3.38E-15

MSLPSO 2.37E-15 1.44E-15

pdPSO -3.30E+00 4.19E-01

pdAPSO -1.40E+00 5.01E-00

Table 4.34: Mean and Standard Deviation comparisons for Ackley among eleven (11) PSO

algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 1.04E-04 3.85E-03

CLPSO 3.00E-11 2.97E-12

pPSA 8.92E-07 7.92E-07

PSOrank 7.82E-10 5.91E-10

OLPSO-G 1.33E-14 5.11E-14

ELPSO 7.69E-15 8.44E-14

APSO-VI 6.77E-14 7.35E-14

DNSPSO 1.89E-14 2.17E-14

MSLPSO 7.23E-16 2.94E-16

pdPSO 3.85E+00 5.05E+00

pdAPSO -1.40E+00 5.01E-00

Table 4.35: Mean and Standard Deviation comparisons for Schwefel among eleven (11) PSO

algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 2.98E+03 9.29E+02

CLPSO 3.86E-03 4.19E-03

pPSA 2.58E+03 6.23E+02

PSOrank 2.32E+03 5.12E+02

OLPSO-G 6.34E+02 8.09E+01

ELPSO 6.56E-03 3.24E-03

APSO-VI 2.43E+01 9.49E+00

DNSPSO 5.95E+00 7.17E+00

MSLPSO 9.36E+00 5.44E+00

pdPSO -4.43E+00 4.07E+00

pdAPSO -4.59E+00 4.73E-00

Univ
ers

ity
 of

 M
ala

ya

167

Table 4.36: Mean and Standard Deviation comparisons for Griewank among eleven (11)

PSO algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 1.84E-04 2.77E-04

CLPSO 2.88E-09 6.47E-08

pPSA 9.02E-06 7.29E-06

PSOrank 1.54E-04 4.24E-03

OLPSO-G 3.41E-03 1.03E-03

ELPSO 9.78E-23 3.11E-23

APSO-VI 4.88E-12 2.07E-11

DNSPSO 3.96E-38 2.31E-38

MSLPSO 5.91E-43 1.38E-43

pdPSO -1.80E+00 1.08E-00

pdAPSO -1.83E+00 4.06E-00

Finally, we investigated the performances of the eleven algorithms on rotated and

shifted functions. Rotated Rosenbrock, Rotated Rastrigin, Rotated Ackley, and Rotated

Griewank are multimodal functions with rotated coordinates. The results of our algorithm

test on the rotated functions and that of shifted functions are presented in Tables 4.37 – 4.42.

The pdPSO and pdAPSO algorithms attained global optima for all the rotated functions. On

Rotated Rosenbrock function, pdAPSO produced the best result. MSLPSO and pdAPSO

achieved the best result for Rotated Rastrigin function. ELPSO and pdAPSO have the best

result for the Rotated Ackley function. For Rotated Griewank function, pdPSO and MSLPSO

achieved the best solution. It should be noted that the rotation does not affect the performance

of the pdAPSO and pdPSO. Infact the effectiveness of our algorithms become more

pronounced with test on all the rotated functions especially Rotated Rosenbrock where

pdAPSO produced the most accurate result and closely followed by pdPSO and MSLPSO

respectively. To be precise, our experiments confirmed the observation of Wang et al. (2012)

that the Rotated Rosenbrock function proved very difficult for other PSO algorithms to

escape being trapped in its local optima as the function becomes more problematic after

rotating its coordinates.

Univ
ers

ity
 of

 M
ala

ya

168

Table 4.37: Mean and Standard Deviation comparisons for Rotated Rosenbrock

among eleven (11) PSO algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 8.89E+01 7.27E+01

CLPSO 5.27E+01 3.88E+01

pPSA 6.06E+01 5.25E+01

PSOrank 5.87E+01 6.29E+01

OLPSO-G 3.46E+01 3.82E+01

ELPSO 3.13E+01 2.44E+01

APSO-VI 4.51E+01 1.78E+01

DNSPSO 2.92E+01 2.13E+01

MSLPSO 6.38E+00 5.45E+00

pdPSO 3.99E+00 5.54E+00

pdAPSO 3.92E+00 3.09E-00

Table 4.38: Mean and Standard Deviation comparisons for Rotated Rastrigin

among eleven (11) PSO algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 9.26E+01 8.73E+01

CLPSO 4.23E+01 3.78E+01

pPSA 6.78E+01 5.33E+01

PSOrank 5.24E+01 4.19E+01

OLPSO-G 2.81E+01 2.21E+01

ELPSO 1.62E+00 3.92E-01

APSO-VI 1.23E+01 8.24E+00

DNSPSO 6.45E-14 7.19E-14

MSLPSO 5.89E-15 8.82E-15

pdPSO -1.80E+00 1.08E-00

pdAPSO -3.30E+00 2.94E-00

Table 4.39: Mean and Standard Deviation comparisons for Rotated Ackley

among eleven (11) PSO algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 9.55E+00 7.67E+00

CLPSO 7.21E-05 6.24E-04

pPSA 6.34E-04 9.35E-04

PSOrank 3.27E-06 8.47E-05

OLPSO-G 2.93E-13 1.79E-12

ELPSO 9.73E-14 2.04E-14

APSO-VI 4.85E-05 5.25E-05

DNSPSO 5.89E-14 4.75E-14

MSLPSO 8.68E-14 7.34E-14

pdPSO -1.39E+00 5.51E-00

pdAPSO -1.42E+00 5.03E-00

Univ
ers

ity
 of

 M
ala

ya

169

Table 4.40: Mean and Standard Deviation comparisons for Rotated Griewank

among eleven (11) PSO algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 9.68E-02 6.33E-01

CLPSO 4.20E-08 2.72E-09

pPSA 5.14E-04 3.23E-04

PSOrank 1.52E-03 2.99E-03

OLPSO-G 4.08E-03 3.88E-03

ELPSO 5.06E-13 4.24E-13

APSO-VI 1.35E-06 1.03E-05

DNSPSO 3.98E-21 4.34E-22

MSLPSO 2.17E-35 8.92E-34

pdPSO -1.82E+00 1.06E-00

pdAPSO -1.80E+00 4.01E-00

The outcome of our experiments also indicates that pdPSO and pdAPSO compete

very well with other state of the art algorithms. On the Shifted Rosenbrock functions, pdPSO

produced the best result and closely followed by pdAPSO and MSLPSO respectively. The

other PSO algorithms are trapped in local optima this function. For Shifted Rastrigin

function, pdAPSO produced the most accurate result and closely followed by pdPSO and

OLPSO-G respectively. In summary, the rotation and shift affected the performance of the

other nine algorithms while the efficiency of pdPSO and pdAPSO becomes more noticeable

with the rotation and the shift. The comparisons reveal that the integration of Primal-Dual

into PSO is advantageous to enhancing the performance of PSO. We hereby conclude that

pdPSO and pdAPSO have a superior performance compared to the other PSO variants on

majority of the rotated functions and on the two shifted functions.

Univ
ers

ity
 of

 M
ala

ya

170

Table 4.41: Mean and Standard Deviation comparisons for Shifted Rosenbrock

among eleven (11) PSO algorithms

Algorithm Mean Standard Deviation

PSO-LDIW 6.15E+02 9.58E+01

CLPSO 4.87E+02 3.36E+01

pPSA 5.29E+02 8.53E+01

PSOrank 5.62E+02 7.87E+01

OLPSO-G 4.63E+02 4.63E+01

ELPSO 4.26E+02 4.04E+01

APSO-VI 4.41E+02 3.52E+01

DNSPSO 4.48E+02 3.27E+01

MSLPSO 4.13E+02 3.11E+01

pdPSO -3.30E+00 4.19E-01

pdAPSO 3.85E+00 2.98E-00

Table 4.42: Mean and Standard Deviation comparisons for Shifted Rastrigin

among eleven (11) PSO algorithms

Algorithm Mean Standard Deviation

PSO-LDIW -1.38E+02 3.65E+01

CLPSO -3.07E+02 7.44E+00

pPSA -2.78E+02 1.39E+00

PSOrank -2.42E+02 1.84E+00

OLPSO-G -3.26E+02 2.33E+00

ELPSO -3.03E+02 5.66E+00

APSO-VI -2.89E+02 9.24E+00

DNSPSO -3.11E+02 7.17E+00

MSLPSO -3.22E+02 6.34E+00

pdPSO -2.97E+00 7.18E+00

pdAPSO -3.31E+00 4.11E-00

4.6.2 Performance Comparison on the dependability and speed of convergence

The dependability of an algorithm is a determined by the mean of success rate on the

entire test functions. The convergence speed in attaining the global optimum is also a striking

standard for determining the performance of any optimisation algorithm. The rates of success

of all eleven variants of PSO algorithm on individual test function and the dependability of

the algorithms are shown in Tables 4.42 – 4.54 below.

Univ
ers

ity
 of

 M
ala

ya

171

Table 4.43: Comparison of dependability and speed of convergence on Sphere

Algorithm Mean FEs SR% SP

PSO-LDIW 5571 100 5571

CLPSO 7069 100 7069

pPSA 6954 100 6954

PSOrank 6631 100 6631

OLPSO-G 3872 100 3872

ELPSO 4396 100 4396

APSO-VI 24,910 100 24,910

DNSPSO 4767 100 4767

MSLPSO 5853 100 5853

pdPSO 1078 100 1078

pdAPSO 332 100 332

Table 4.44: Comparison of dependability and speed of convergence on Schwefel's P2.22

Algorithm Mean FEs SR% SP

PSO-LDIW 12,049 100 12,049

CLPSO 14,702 100 14,702

pPSA 11,205 100 11,205

PSOrank 9929 100 9929

OLPSO-G 9301 100 9301

ELPSO 8973 100 8503

APSO-VI 18,932 100 18,932

DNSPSO 10,345 100 10,345

MSLPSO 8828 100 8828

pdPSO 2996 91.7 3268.36

pdAPSO 495.00 95.7 532

Table 4.45: Comparison of dependability and speed of convergence on Rosenbrock

Algorithm Mean FEs SR% SP

PSO-LDIW 8938 100 8938

CLPSO 6786 100 6786

pPSA 10,080 100 10,080

PSOrank 9607 100 9607

OLPSO-G 11,680 100 11,680

ELPSO 9287 100 9287

APSO-VI 23,940 100 23,940

DNSPSO 6269 100 6269

MSLPSO 6198 100 6198

pdPSO 2997 80.6 8934.35

pdAPSO 2124 68.58 3321.16

Univ
ers

ity
 of

 M
ala

ya

172

Table 4.46: Comparison of dependability and speed of convergence on Rastrigin

Algorithm Mean FEs SR% SP

PSO-LDIW 12,164 100 12,164

CLPSO 15,423 100 15,423

pPSA 11,835 100 11,835

PSOrank 10,387 100 10,387

OLPSO-G 9629 100 9629

ELPSO 9302 100 9302

APSO-VI 27,127 100 27,127

DNSPSO 10,073 100 10,073

MSLPSO 7896 100 7896

pdPSO 2827 100 2827

pdAPSO 3545 99.55 3526.79

Table 4.47: Comparison of dependability and speed of convergence on Ackley

Algorithm Mean FEs SR% SP

PSO-LDIW 11,216 16.67 67,323

CLPSO 12,957 100 12,957

pPSA 13,720 100 13,720

PSOrank 13,142 100 13,142

OLPSO-G 10,751 100 10,751

ELPSO 6698 100 6698

APSO-VI 29,361 100 29,361

DNSPSO 10,673 100 10,673

MSLPSO 12,992 100 12,992

pdPSO 8285 85.7 8821.14

pdAPSO 2124 88.55 3321.16

Table 4.48: Comparison of dependability and speed of convergence on Schwefel

Algorithm Mean FEs SR% SP

PSO-LDIW 18,243 30.33 60,148

CLPSO 10,024 100 10,024

pPSA 15,045 43.33 34,722

PSOrank 13,956 76.67 18,205

OLPSO-G 9827 100 9827

ELPSO 9306 100 9306

APSO-VI 23,194 100 23,194

DNSPSO 10,083 100 10,083

MSLPSO 9362 100 9362

pdPSO 5615.45 58.63 2981

pdAPSO 5929 71.29 8316.73

Univ
ers

ity
 of

 M
ala

ya

173

Table 4.49: Comparison of dependability and speed of convergence on Griewank

Algorithm Mean FEs SR% SP

PSO-LDIW 7781 40 19,452

CLPSO 9204 100 9204

pPSA 13,567 100 13,567

PSOrank 8318 100 8318

OLPSO-G 7432 63.33 11,735

ELPSO 7672 100 7672

APSO-VI 28,381 100 28,381

DNSPSO 8315 100 8315

MSLPSO 7159 100 7159

pdPSO 2573 41.66 6175.20

pdAPSO 1160 69.7 1734.56

Table 4.50: Comparison of dependability and speed of convergence on Rotated Rosenbrock

Algorithm Mean FEs SR% SP

PSO-LDIW 9897 33.33 29,694

CLPSO 10,623 76.67 13,857

pPSA 14,929 63.33 23,573

PSOrank 13,057 76.67 17,032

OLPSO-G 12,958 93.33 13,884

ELPSO 10,034 100 10,034

APSO-VI 27,035 73.33 36,868

DNSPSO 9836 100 9836

MSLPSO 8742 100 8742

pdPSO 3456 38.79 8986.74

pdAPSO 2197 70.15 3380.16

Table 4.51: Comparison of dependability and speed of convergence on Rotated Rastrigin

Algorithm Mean FEs SR% SP

PSO-LDIW 14,278 76.67 18,625

CLPSO 16,085 100 16,085

pPSA 12,537 100 12,537

PSOrank 11,043 100 11,043

OLPSO-G 10,074 100 10,074

ELPSO 9737 100 9737

APSO-VI 11,003 100 11,003

DNSPSO 9265 100 9265

MSLPSO 8792 100 8792

pdPSO 2573 41.66 6175.20

pdAPSO 5403 74.19 7301.35

Univ
ers

ity
 of

 M
ala

ya

174

Table 4.52: Comparison of dependability and speed of convergence on Rotated Ackley

Algorithm Mean FEs SR% SP

PSO-LDIW – 0 –

CLPSO 24,727 40 61,817

pPSA 16,296 16.67 97,815

PSOrank 15,292 80 19,115

OLPSO-G 12,707 100 12,707

ELPSO 9318 100 9318

APSO-VI 27,824 36.67 75,897

DNSPSO 13,239 100 13,239

MSLPSO 9153 100 9153

pdPSO 2455 72.19 3748.29

pdAPSO 2185 68.83 3378.16

Table 4.53: Comparison of dependability and speed of convergence on Rotated Griewank

Algorithm Mean FEs SR% SP

PSO-LDIW 8241 13.33 61,823

CLPSO 12,514 100 12,514

pPSA 9574 60 15,957

PSOrank 8933 43.33 20,616

OLPSO-G 9404 33.33 28,215

ELPSO 9242 100 9242

APSO-VI 297,10 100 29,710

DNSPSO 5981 100 5981

MSLPSO 7748 100 7748

pdPSO 1124 68.8 1734.92

pdAPSO 1105 70.5 1860.25

Table 4.54: Comparison of dependability and speed of convergence on Shifted Rosenbrock

Algorithm Mean FEs SR% SP

PSO-LDIW 9235 13.33 69,280

CLPSO 13,024 43.33 30,058

pPSA 9783 23.33 47,351

PSOrank 12,312 16.67 73,902

OLPSO-G 10,331 66.67 15,496

ELPSO 10,376 73.33 14,149

APSO-VI 26,292 83.33 31,552

DNSPSO 8832 86.67 10,192

MSLPSO 9783 100 9783

pdPSO 2827 100 2827

pdAPSO 2256 69.98 3182.72

Univ
ers

ity
 of

 M
ala

ya

175

Table 4.55: Comparison of dependability and speed of convergence on Shifted Rastrigin

Algorithm Mean FEs SR% SP

PSO-LDIW 11,097 26.66 41,624

CLPSO 13,295 100 13,295

pPSA 11,092 53.33 20,799

PSOrank 10,551 63.33 16,660

OLPSO-G 9012 100 9012

ELPSO 10,075 100 10,075

APSO-VI 28,039 76.67 36,575

DNSPSO 9923 100 9923

MSLPSO 12,081 100 12,081

pdPSO 2999 59.83 5873.29

pdAPSO 3402 98.18 3526.38

From the results of our experiment depicted in Tables 4.43 – 4.55, the mean

dependability of pdAPSO is 80.4% while that of pdPSO is 69.69%. This is an indication that

the fusion of Primal Dual method and PSO will increase the dependability to PSO in

overcoming premature convergence and converging to global optima. The MSLPSO have

the highest percentage of dependability across all the benchmark functions used in our

experiment with the mean dependence of 97.71%. This is because the MSL approach offers

a better direction for the particles to move to a promising area in the search space (Gang,

2016). It is worthy of note that pdPSO and pdAPSO converged at the global optimum for all

the test functions. PSO-LDIW was unable to converge on Rotated Ackley function. The ratio

of dependability of pdPSO and pdAPSO indicated that our algorithms offer a dependable and

robust method for providing solution to global optimisation problems.

The pace at which an algorithm attains the global optimum is a very important

parameter for assessing the performance of the algorithm. Since the Primal Dual method is a

robust optimisation algorithm, it is expected that pdPSO and pdAPSO will produce superior

result in comparison to so other state of the art algorithm with a better speed of convergence.

Univ
ers

ity
 of

 M
ala

ya

176

To substantiate our claim, the results of Mean FEs and SP, for the eleven algorithms are

shown in Tables 4.43 – 4.55. The best results are boldface in each of the Tables.

It is very obvious from those tables that the speed of convergence of pdAPSO and

pdPSO algorithms is superior to the other PSO algorithms on all the benchmark functions.

For instance, on Schwefel's function, the mean FEs of 5571, 7069, 6954, 6631, 3872, 4396,

24,910, 4767, and 5853 are required by PSO-LDIW, CLPSO, pPSA, PSOrank, OLPSO-G,

ELPSO, APSO-VI, DNSPSO and MSLPSO respectively to attain the global optima.

However, pdPSO and pdAPSO only use 1078 and 332 respectively which is an indication

that pdAPSO is the fastest while pdPSO is second to it. To be concise, pdPSO and pdAPSO

uses the lowest number of FEs to attain satisfactory solutions for all the 12 benchmark

functions. This is another confirmation that the Primal Dual method has enhance the PSO

algorithm in producing better fitness value and creating diversity in the swarm population to

improve the convergence speed of PSO particles.

4.7 Chapter summary

This chapter presents two new hybrid algorithm optimisation algorithm named Primal

Dual Interior Point Method Particle Swarm Optimisation (pdPSO) and Primal Dual

Asynchronous Particle Swarm Optimisation (pdAPSO). These algorithm combines the

explorative ability of PSO with the exploitative capacity of the Primal Dual Interior Point

Method thereby possessing a strong capacity of avoiding premature convergence since it

combines the strength of both the Primal-dual method and the PSO algorithm. The hybrid

method increases the effectiveness of the PSO method and the Primal-Dual method by speedy

convergence and improved value of objective function. A comparative study of the proposed

algorithm has been conducted with the conventional PSO and Primal Dual method using nine

benchmark functions. It is very clear that our algorithm performs better in terms of precision,

Univ
ers

ity
 of

 M
ala

ya

177

rate of convergence, steadiness and robustness. The behaviour of pdPSO under the unimodal

and multimodal functions shows that the algorithm will be a suitable tool in solving

complicated optimisation problems that PSO alone or Primal Dual alone cannot solve

efficiently. In the next chapter, we are going to present another novel algorithm called Primal

Dual Asynchronous Particle Swarm Optimisation.

Several experiments were conducted; firstly, a comparison of pdPSO algorithm with

the typical PSO, APSO and pdPSO using nine (9) benchmark functions was done. Secondly,

we compared the performance of pdAPSO with the conventional PSO, APSO and pdPSO

using seven (7) benchmark functions was done. The performances of our algorithms (pdPSO

and pdAPSO) are better in terms of precision, rate of convergence, steadiness and robustness

when compared to some variants of PSO. The behaviour of pdPSO and pdAPSO under the

unimodal and multimodal functions shows that the algorithms will be suitable tool in solving

complicated optimisation problems that PSO alone or Primal Dual alone cannot solve

efficiently. The result of our experiments demonstrates that there is little improvement in the

performance of pdAPSO compared to that of pdPSO based on the statistical results of the

best fitness, mean fitness and standard deviation.

Thirdly, we compared the performance of pdPSO and pdAPSO with nine other state

of the art algorithms using 12 benchmark functions. We did a comparison of the performance

and superiority of solutions of the 11 algorithms, and the outcome of our tests show that

pdPSO and pdAPSO have the capacity to overcome the problem premature convergence and

prevent particles from being trapped in local minima on many all the functions. The

comparison of dependability and speed of convergence of the 11 algorithms on 12 benchmark

functions was also done. The result of our experiment shows that pdPSO and pdAPSO are

reliable and robust algorithms for solving global optimisation problems. The convergence

speed of pdAPSO and pdPSO algorithms were compared to the other state of the art PSO

Univ
ers

ity
 of

 M
ala

ya

178

algorithms and our proposed algorithms proved to attain the global optima on all the

benchmark functions in the shortest run time.

Univ
ers

ity
 of

 M
ala

ya

179

CHAPTER 5: APPLICATIONS OF PRIMAL-DUAL-PSO TO SWARM

ROBOTICS TASKS

5.1 Introduction

In this chapter, we applied one of our proposed algorithms (pdPSO) to solve the

problem of flocking and pattern formation in swarm robotics. The problem synonym with

the field of swarm robotics is managing and directing the movement of a considerable number

of robots to carry out a mission together. This type of task is normally impracticable,

demanding and laborious for a particular set of robots to accomplish. The inspiration of

swarm robots is fundamentally drawn from the study of behaviour of animals like the flock

of birds, herd of cattle, and shoal of fish. According to (Bayindir & Şahin, 2007) and (Şahin,

2005), the performance of the swarm at the global level will be largely influenced by the

performance of the individual agent at the local level.

Some of the traits of swarm robotics that have been extensively investigated are

convergence, foraging (Bayindir & Şahin, 2007), pattern formation (Vicsek et al., 1995),

flocking, aggregation and segregation (Reynolds, 1987), box-pushing (Şahin, 2005),

cooperative mapping (Jadbadaie, Lin, & Morse, 2003), soccer tournaments (Yang, Xiong,

Chong, Défago, 2008), site preparation (Kim, Wang, Shin, 2006), and sorting (Jeschke, Liu

& Schilberg, 2011). From the list of the various attributes of swarms above, flocking is the

most attractive; where potential practical applications in areas like search and rescue, system

for monitoring behaviour or changing information, system for acquiring data which is used

for measuring physical phenomenon, and networks of small low cost sensors (Jeschke, Liu

& Schilberg, 2011) can be realized.

Univ
ers

ity
 of

 M
ala

ya

180

There are many advantages to be derived from controlling the movement of a group

of robots rather than moving the robots one after the other. When robots move in swarm,

their sensing capacity is increased. This can result into better performance for carrying out

critical missions and collecting data at a specific location in an environment.

5.2 Flocking

When a group of aerial or submarine robots flock in unison, they can generate an

energy timesaving movement, just like what was discovered in biology when shoals of fish

flock together as described by Hoare et al., (2000) or groups of birds (Newton, 2010). Swarm

robotics can also enhance the robustness of the robots sent on hazardous assignments like

mine clearance, chemical cleanup, military warfare etc., in which the failure of one or some

of the robots does not mean the total failure of the mission but a gradual degradation of the

system which can then be rectified by sending additional reinforcement. Information sharing

is a vital process in algorithm design for flocking (Sumpter et al., 2008), each robot in the

swarm disclose to other robots information about their positioning or their chosen motion

bearing.

In swarm robotics, the problem of flocking entails directing a set of robots to move

to a specific direction and converge to a target in an unfamiliar location. The robots that made

up the swarm are required to accomplish this purpose as they are adjusting to their

environments. Researchers have developed a number of control algorithms for flocking of

swarm robots in the last few years. Reynolds (1987) was the one of the pioneers. He

implemented a computer simulation to demonstrate the movement of a flock of birds, known

as boids. This is based on the principal that the global behaviour of the boids as a whole is a

direct outcome of the behaviours of every single participant (obeying certain instructions).

There are three basic behavioural guidelines that every agent must have. They include:

Univ
ers

ity
 of

 M
ala

ya

181

separation, cohesion, and alignment. While separation will prevent the agents from bumping

into one another, cohesion will make the agents to be united, and alignment will cause them

to move with a collective speed.

In progression to Reynolds’ work, e-boids was developed by Ward et al. (2001) to

model the flocking behaviour of shoal of fishes. A down-to-earth flocking model of

independent agents was developed by Vicsek et al. (1995), in which all the agents were

assigned an unchanging fixed velocity. Jadbabie et al. (2003) went further to postulate

hypothetical elucidations on the stated characteristics of the model presented by Vicsek.

Some other researchers, Yang et al. (2008), did a similar work and proposed some rules for

flocking in an anonymous environment with barriers in which the closest point on the barrier

is considered a virtual agent.

The flocking behavior (in a distributed environment) based on artificial potential field

(APF) was then investigated by Kim et al. (2006). They proposed a group of systematic

procedures that can be used to create functions in the APF so that the agents in the swarm

will not be trapped in local minima. The focus of all the aforementioned research work is

based on collision avoidance among the robots without considering the flocking. Genetic

programming was implemented by Spector et al. (2003) in a virtual environment to create

collective behaviours for agents that hover in the swarm.

A robotic system that models the behaviour of physical ants that have the ability to

locate the quickest route from one source of food to the subsequent one without any visible

sign called pheromone was proposed by Payton et al. (2001). They also have the capability

to quickly acclimatize to any environment variations that may require looking for a new

quickest path if they encounter a new obstacle in the old one.

Univ
ers

ity
 of

 M
ala

ya

182

In this chapter, we proposed a hybridized swarm intelligence based algorithm, and a

numerical optimisation algorithm i.e., a hybrid of Primal-Dual Interior-Point method and

Particle Swarm Optimisation (PSO), to attain the best collective performance for

considerable volume of swarm robots. The advantage of the novel hybrid Primal-Dual-PSO

organization architecture is based in the truth that the flocking can be done in real time, it is

decentralized, and inherently scalable because global communication is irrelevant in this

matter. Decisions can be made by any of the agent using the local information available to

them. The design is simple, scalable, adjustable, and has the ability to recover from

catastrophic failure without disrupting its operations.

5.2.1 Problem Statement

In this study we assume that our swarm system consists of n entirely independent and

identical (homogenous) robots. The robots in the swarm are individually designated by R1,

R2…Rn and they are represented as mobile points in two-dimensional space. The robots are

given a neighborhood coordinate structure and they have limited capacity to perceive nearby

robots. Moreover, the system is decentralized and there is no open interaction between the

robots. The principal axis which defines the spatial locations of the environment is taken as

the local axis of each of the robots. In our simulation, we used a point to represent each of

the robot’s two-dimensional space.

The velocity of the robot is updated at regular intervals and a maximum velocity is

assigned to the robots. In addition, the robots flock in real time independently without any

influence from other robots in the swarm. We are focusing on the convergence of the swarm

to a specific point in the search space, and also the flocking patterns of the robots in the

swarm. The Primal-Dual algorithm will calculate the positions, and afterwards, the PSO

Univ
ers

ity
 of

 M
ala

ya

183

algorithm will gain control of the flocking movement. The PSO algorithm will guide the

flocking of the swarm (that comprises of N agents) to converge towards a global minimum

and then flock around in the coordinate system. The flocking is done in real time during our

simulation.

5.2.2 Using pdPSO to solve the flocking problem of swarm robotics

We applied the Primal-Dual-PSO algorithm to solving the flocking problem of swarm

robotics. The Primal Dual algorithm will run until its tolerance is achieved on the objective

function, and then the PSO phase is executed until its tolerance is achieved. From our

experimental design, the search space is assumed to have a centre (c), then four (4) zones e.g.

z1, z2, z3, and z4. For each experiment carried out, we want to know the number of iterations

it takes the particles to converge to the centre (c), and the number of iterations it takes the

particles to flock from c to z1, z2, z3, and z4. The different coordinates for different points

that we used are as follows: Z1 (-30, 30), Z2 (-30, -30), Z3 (30, 30), Z4 (30,-30). The zones

Z1, Z2, Z3 and Z4 are all points in the Cartesian coordinate plane. Our aim is that for each

experiment carried out, we want to know the number of iterations it takes the particles to

converge to any given point (p), and the number of iterations it takes the particles to flock

from P to Z1, Z2, Z3, and Z4.

We used our Primal-Dual-PSO to make the particles to converge to the center point

C(0,0) first, i.e., the particles will all be concentrated to a single point. Once they are there,

we changed the target point to any zone that we want (Z1, Z2, Z3 or Z4) automatically in the

script, and all the points that were converged to C(0,0), will start moving towards the zone in

the form of a flock but will eventually converge again to Z1 in the form of a single point.

Univ
ers

ity
 of

 M
ala

ya

184

We set the termination and convergence criteria for the particles. When the objective

function value is less than the tolerance, the algorithm will stop iterating. The threshold is

not on gbest value, but on the value of the objective function. The Primal Dual brings down

the objective value to 1 and then gives control to the PSO algorithm. Once, PSO brings down

the objective function down to 1e-8, the algorithm stops iterating. The figure 5.1 below

illustrates the search space and how the swarm flocks after converging at the centre from the

centre to z1, z2, z3, and z4 respectively.

Figure 5.1: Convergence and Flocking strategy (The figure shows the zone 1, zone 2, zone

3, and zone 4 where the robots will flock to after converging at C)

We demonstrated the performance of our proposed hybrid Primal-Dual-PSO

algorithm in a decentralized environment by simulating the movement of robots in the swarm

in a virtual environment written in Matlab. There are some constraint that were set for the

primal-dual algorithm based on the upper bound and the lower bound. The parameters for the

PSO that were also set include the exploration environment which is a 200 x 200 dimension

coordinate system. Each of the robots is symbolized with the black dots, the system is

designed to operate in real time. The number of robot and the dimension of the search is

specified in the GUI. This simulation was run on a MATLAB R2013a on an Intel ® Core ™

Univ
ers

ity
 of

 M
ala

ya

185

i3-2328M machine with 4GB memory running Windows 7. We designed a GUI to simulate

how the robots converge to a point and then start flocking by simply clicking the mouse at

the point where we want them to converge. The GUI is user-friendly and it easy to change

the parameters. The user can halt, suspension, or restart the simulation any time he feels like.

5.2.3 Result and Discussion

At the beginning of simulation, there is a haphazard allocation of agents Ai (0<i≤N)

in the environment to be explored. The new algorithm works by first starting the agents’

positions randomly. Then, the agents are directed to the Primal-Dual method, which gives us

its initial optimisation result after some number of iterations. The result of the Primal-Dual

optimisation is then feed into PSO, which creates a perturbation in the population and also

maintain diversity in the population until there is either convergence to the global optimal or

the termination criteria is reached.

 During the iterations that are performed in the optimisation, the agents carry out shift

in the search space from one point to the other (which have connection to behaviour

evolutions in space). The cognitive and social scaling factors of the PSO are very important

parameters for determining the optimal global behaviors of the agents in the swarm. Figures

6.2 – 6.7 display how the robots converged to the centre and how they flocked from the centre

to different zones using the pdPSO algorithm. Univ
ers

ity
 of

 M
ala

ya

186

Figure 5.2: Screenshot of 200 robots (The black dotted lines represent the robots that are in

the search space. The pdPSO algorithm is used to control the movement of the robots.)

Figure 5.3: Screenshot robots moving towards convergence (The 200 robots moves towards

the convergence point). Univ
ers

ity
 of

 M
ala

ya

187

Figure 5.4: Screenshot robots converging at a point (The black dotted lines represent the 200

robots as they converge to the centre).

Figure 5.5: Screenshot robots flocking to zone 1 (The black dotted lines represent the 200

robots as they flock from the centre to zone 1).

Univ
ers

ity
 of

 M
ala

ya

188

Figure 5.6: Screenshot robots flocking to zone 4 (The black dotted lines represent the 200

robots as they flock from the centre to zone 4).

Figure 5.7: Screenshot robots flocking to zone 3 (The black dotted lines represent the 200

robots as they flock from the centre to zone 3).

Univ
ers

ity
 of

 M
ala

ya

189

For pdPSO we carried out some simulations using 100 particles (robots) with each particle

having a dimension of 10. The PSO tolerance is 1.000000e-08, and IPM Tolerance is

1.000000e+00. The result of our simulation for the robots flocking to Zone 1 having

coordinate points (-40, 40) is presented in Appendix C. The result of our simulation of the

robots flocking to Zone 2 is presented in Appendix D. Appendix E contains the simulation

result of the robots flocking to Zone 3. And the simulation result of the robots flocking to

Zone 4 is presented in Appendix F. We summarized the values of mean and the variance of

the number of iteration it took to converge to the centre and flock to the target zone in the

table 5.1 below.

Table 5.1: Mean and Variance for Convergence and flocking using Primal-Dual-PSO

Zone Activity Mean Variance

Z1 Convergence 197.820 337.906

Flocking 335.060 428.915

Z2 Convergence 195.880 174.026

Flocking 340.600 318.857

Z3 Convergence 195.160 203.811

Flocking 325.920 299.381

Z4 Convergence 194 261.909

Flocking 329.320 311.161

The graphs of the total iteration to converge at the centre C and that of flocking to the different

zones for all the simulations we carried out are below.

Univ
ers

ity
 of

 M
ala

ya

190

Figure 5.8: Graph of total iteration to converge and flock to Zone 1

Figure 5.9: Graph of total iteration to converge and flock to Zone 2

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60

N
o

 o
f

It
er

at
io

n

Simulation

Graph of Total Iteration to Converge and Flock to Z1

TOTAL ITERATION TO CONVERGE TOTAL ITERATION TO FLOCK TO Z1

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

N
o

 o
f

It
er

at
io

n

Simulation

Graph of Total Iteration to Converge and Flock to Z1

TOTAL ITERATION TO CONVERGE TOTAL ITERATION TO FLOCK TO Z2Univ
ers

ity
 of

 M
ala

ya

191

Figure 5.10: Graph of total iteration to converge and flock to Zone 3

Figure 5.11: Graph of total iteration to converge and flock to Zone 4

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

N
o

 o
f

It
er

at
io

n

Simulation

Graph of Total Iteration to Converge and Flock to Z3

TOTAL ITERATION TO CONVERGE TOTAL ITERATION TO FLOCK TO Z3

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

N
o

 o
f

it
er

at
io

n

Simulation

Graph of Total Iteration to Converge and Flock to Z4

TOTAL ITERATION TO CONVERGE TOTAL ITERATION TO FLOCK TO Z4Univ
ers

ity
 of

 M
ala

ya

192

Figures 5.12 – 5.17 below display how the robots converged to the centre and how they

flocked from the centre to different zones using the pdAPSO algorithm.

Figure 5.12: Screenshot of robots moving towards the centre (the blue dots in the figure

depicts the 200 robots as they move towards converging at the center as shown in the GUI.)

Univ
ers

ity
 of

 M
ala

ya

193

Figure 5.13: Screenshot of robots converging at the centre (the blue dots depicts the robots

converging at the centre.)

Figure 5.14: Screenshot of robots flocking to zone 1 (the blue dots in the figure depicts the

robots flocking from the centre to zone 1).

Univ
ers

ity
 of

 M
ala

ya

194

Figure 5.15: Screenshot of robots flocking to zone 2 (the blue dots in the figure depicts the

robots flocking from the centre to zone 2).

Figure 5.16: Screenshot of robots flocking to zone 3 (the blue dots in the figure depicts the

robots flocking from the centre to zone 3).

Univ
ers

ity
 of

 M
ala

ya

195

Figure 5.17: Screenshot of robots flocking to zone 4 (the blue dots in the figure depicts the

robots flocking from the centre to zone 4).

We did some simulations for our pdAPSO algorithm. Using 100 particles (robots)

with each particle having a dimension of 10. The APSO tolerance is 1.000000e-08, and IPM

Tolerance is 1.000000e+00. The result of our simulation for the robots flocking to Zone 1

having coordinate points (-40, 40) is presented in Appendix G. The result of our simulation

of the robots flocking to Zone 2 is presented in Appendix H. Also presented is the simulation

result of the robots flocking to Zone 3 as shown in Appendix I. And the simulation result of

the robots flocking to Zone 4 is presented in Appendix J. We summarized the values of mean

and the variance of the number of iteration it took to converge to the centre and flock to the

target zone (Z1, Z2, Z3, and Z4) in the table 5.2 below.

Table 5.2: Mean and Variance for Convergence and flocking using Primal-Dual-APSO

Zone Activity Mean Variance

Z1 Convergence 209.62 260.44

Flocking 149.547 569.966

Z2 Convergence 211.28 159.063

Flocking 259.52 472.5

Z3 Convergence 210.34 187.045

Flocking 259.22 484.053

Z4 Convergence 1030.440 2.088

Flocking 1009.0 0.00

To evaluate the effectiveness of flocking capability of our pdAPSO algorithm we

compared its performance with other existing algorithms such as the PSO, APSO and Primal

Dual. We observed from our simulations that for Primal Dual algorithm, the robots in the

swarm flock very tightly as a single point. When the agents in the swarm move from random

starting position to converge at the centre (0, 0), they become almost one point, which means

they are tightly flocked. When they move from the centre position (0, 0) to different zones,

Univ
ers

ity
 of

 M
ala

ya

196

they are so tightly flocked that they move almost as a single point. The result is that no matter

the zone, it always takes equal number of iterations to reach different zones (10 as given in

results from the table in the supplementary materials). Therefore, we can say that flocking in

Primal Dual is very tight compared to what is obtainable in pdAPSO, APSO and PSO in

which particles still move around a center point randomly. The issue of tightness of the robots

in the swarm when using Primal Dual for flocking is impracticable in the real world sense as

a safe distance must be maintained between the robots to avoid collision.

Though Primal Dual have the lowest number of iterations to flock from one zone to

another zone followed by pdAPSO, APSO and PSO respectively. We however observed from

our results that the value for number of iterations to flock from one zone to another for Primal

Dual is constant (value 10). This is understandable because in Primal Dual-based methods,

there is no random number involved. Therefore, whether the robots move from the centre (0,

0) to z1, z2, z3 or z4, the algorithm moves in a deterministic way. As long as the distance

between the centre (0, 0) and z1, z2, z3 and z4 points are equal, Primal Dual takes equal

number of iterations. The fact that the number of iterations is constant further confirms the

inability of the particles in Primal Dual algorithm to escape being trapped in the local

minimal. We posit that Primal Dual having a lower number of iterations is not an index that

it is better than any of the other three (3) algorithms we compared in this paper. It is possible

that one iteration of Primal Dual is more complex and has more computations than one

iteration of pdAPSO, APSO and PSO. However, there is a lot of variation in pdAPSO, APSO

and PSO iterations when the robots in the swarm move from the centre (0, 0) to different

zones, whereas in Primal Dual the variance is very low. The lower variance shows that Primal

Dual keeps the particles tightly knit together compared to pdAPSO, APSO and PSO. If you

look at the formula for PSO-based algorithms (pdAPSO, APSO and PSO), it has random

Univ
ers

ity
 of

 M
ala

ya

197

numbers involved. Therefore, when we run the pdAPSO, APSO and PSO methods, every

time the algorithm has slightly different trajectories for the robots. The different trajectory

results in different number of iterations every time.

In appendix J, we have the statistical results of the experiments that we performed.

The numerical values of the total number of iterations for the Primal-Dual-APSO (pdPSO)

to get the robots to converge at the centre (C) are in the appendix. Also, the total number of

iteration for the robots to flock from the centre to zone 1 is presented in the appendix. The

computed values of the mean and variance is also included. The values of the number of

iterations for the pdAPSO to get the robots to converge at the centre (C) is in the table. Also,

the total number of iterations for the robots to flock from the centre to zone 2 is presented.

The computed values of the mean and variance is also included. We also have the results of

our experiments for flocking from the centre to zone 3. The numerical values of the total

number of iterations for the pdAPSO to get the robots to converge at the centre (C) is in the

table. Also, the total number of iterations for the robots to flock from the centre to zone 3 is

presented. The computed values of the mean and variance are also included. The appendix

M also shows the results of our experiments for flocking from the centre to zone 4. The

numerical values of the number of iterations for the pdAPSO to get the robots to converge at

the centre (C) is in the appendix. Also, the total number of iteration for the robots to flock

from the centre to zone 4 is presented. The computed values of the mean and variance is also

included. Table 5.2 presents a summary of the mean and variance of the total number of

iterations to converge to the centre and to flock from the centre to the different zones (zone

1, zone 2, zone 3, and zone 4). Figures 5.18 – 5.21 show the graph of total iteration to

converge to the centre and flock from there to the different zones (zone 1, zone 2, zone 3,

and zone 4) using pdAPSO.

Univ
ers

ity
 of

 M
ala

ya

198

Figure 5.18: Graph of total iteration to converge and flock to Zone 1. This is a graphical

illustration of the number of iterations it took the robots to converge to the center (0, 0) and

flock to zone one (1) of the search space using the pdAPSO algorithm.

Figure 5.19: Graph of total iteration to converge and flock to Zone 2. The above figure

depicts the graphical representation of the number of iterations it took the robots to converge

to the center (0, 0) and flock to zone two (2) of the search space using the pdAPSO algorithm.

Univ
ers

ity
 of

 M
ala

ya

199

Figure 5.20: Graph of total iteration to converge and flock to Zone 3. Above is a graph of

the number of iterations it took the robots to converge to the center (0, 0) and flock to zone

three (3) of the search space using the pdAPSO algorithm.

Figure 5.21: Graph of total iteration to converge and flock to Zone 4. The figure above shows

the graphical depiction of the number of iterations it took the robots to converge to the center

(0, 0) and flock to zone four (4) of the search space using the pdAPSO algorithm.

Univ
ers

ity
 of

 M
ala

ya

200

Figure 5.22: Graph of performance comparison of total iteration for pdAPSO, PSO, APSO

and Primal Dual algorithms as the robots flock from the centre to Zone 1. The pdAPSO

performs better than the other three (3) algorithms by having the lowest number of iterations

in the fifty (50) simulation that was done (except for Primal Dual that have a constant number

of iterations for each of the simulations because of its deterministic nature).

Figure 5.23: Graph of performance comparison of total iteration for pdAPSO, PSO, APSO

and Primal Dual algorithms as the robots flock from the centre to Zone 2. The performance

of pdAPSO is better than the one of the other three (3) algorithms by its ability to flock to

Univ
ers

ity
 of

 M
ala

ya

201

zone 2 in using the minimum number of iterations in the fifty (50) simulation that was done

(except for Primal Dual that have a constant number of iterations for each of the simulations

because of its not a heuristic algorithm).

Figure 5.24: Graph showing the performance comparison of total iteration for pdAPSO,

PSO, APSO and Primal Dual algorithms as the robots flock from the centre to Zone 3. Our

algorithm pdAPSO shows a better flocking capability than that of PSO, APSO and Primal

Dual algorithms by allowing the robots to flock to zone 3 by having the minimum number of

iterations in the fifty (50) simulations that was done (except for Primal Dual that have a

constant number of iterations value 10 for each of the simulations since it is a heuristic

algorithm).

 Univ
ers

ity
 of

 M
ala

ya

202

Figure 5.25: Graph showing the performance comparison of total iteration for pdAPSO,

PSO, APSO and Primal Dual algorithms as the robots flock from the centre to Zone 4. The

APSO algorithm performs better than pdAPSO, PSO and Primal Dual algorithms in this

scenario by having the minimum number of iterations in the fifty (50) simulations that was

done. The pdAPSO and Primal Dual a constant number of iterations value 1009 and 10

respectively for each of the simulations.

Upon closer inspection, the proposed algorithm (pdAPSO) performed better

compared to its predecessors in zone 1, zone 2 and zone 3. Across the 50 simulations that

were executed for each zone, pdAPSO consistently generates the lowest number of iteration

of flocking the swarm to the desired location. Table 5.3 summarised the mean iterations of

each algorithm for each zone. Interestingly, the proposed algorithm performed flat in zone 4.

The algorithm converged to the maximum iteration number, indicating that the algorithm was

trapped in local minima. This behaviour is equivalent to the deterministic traits of the primal

dual algorithm. It is therefore important to investigate this anomaly to improve on the

robustness aspect of the proposed algorithm.

Univ
ers

ity
 of

 M
ala

ya

203

Table 5.3: The mean number of iterations for pdAPSO, PSO, APSO and Primal dual

algorithms for all runs.

Flocking converges to the centre than to each zone. Individual numbers are available in

supplementary material.

Algorithm Centre Zone 1 Zone 2 Zone 3 Zone 4

pdAPSO 209.62±14.41944 260.44±14.72325 259.52±14.43984 259.22±14.39885 1009.00±0

PSO 288.56±21.8175 349.10±23.70584 351.64±21.83863 352.48±21.78671 348.18±0

APSO 275.82±17.89710 293.10±18.69183 296.78±21.90125 292.80±22.28676 254.84±17.1977

Primal

Dual

10.00±0 10.00±0 10.00±0 10.00±0 10.00±0

5.3 Pattern Formation

Pattern formation basically involves forming a particular shape by altering the

positions of each robots in the swarm. The most common problem in the field of swarm

robotics deals with managing and directing how a sizable number of robots navigate in the

search environment to accomplish an assignment in unity. This type of task is normally

impracticable, demanding and laborious for a particular set of robots to accomplish. The

inspiration of swarm robots is fundamentally drawn from the study of behaviour of animals

like the flock of birds, herd of cattle, and shoal of fish. The performance of the swarm at the

global level will be largely influenced by the performance of the individual agent at the local

level. Some of the traits of swarm robotics that have been extensively investigated are

convergence, foraging (Krieger, Billeter & Keller, 2000), pattern formation (Balch & Arkin,

1999), flocking, aggregation and segregation (Martinoli, Ijspeert, & Mondada, 1999), box-

pushing (Mataric, Nilsson & Simsarian, 1995), cooperative mapping (Yamauchi, 1999),

Univ
ers

ity
 of

 M
ala

ya

204

soccer tournaments (Weigel, 2002), site preparation (Parker & Zhang, 2006) and sorting

(Holland, & Melhuish, 1999).

Researchers of recent have shifted much of their attention to the do extensive study

on multi-robot systems from the perspective of engineering and artificial intelligence. Pattern

formation have been considered as an initial phase for an effective flocking for many reasons

which comprise of corresponding carriage of loads, preventing intrusion etc.) The aim of the

pattern formation problem is to build some guidelines and principles that will make the robots

in the swarm to work as a group from the local level to achieve complex overall tasks

Multi-robot pattern formation is an extremely needed solution in majority of the

problem areas where a swarm of robots are employed and it is essential to organize them in

a particular manner. The formation can be described as an arrangement in a constrained

working area, in which individual robot is given a predefined gap between them and their

neighbours. Multi-robot pattern formation is defined as a configuration in a bounded

workspace, where each robot is at a desired distance from its neighbors. The desired

formation is specified in terms of relative distances, so that the formation can be achieved in

any part of the workspace and at any orientation.

Our aim is to present a solution to the problem of pattern formation on a grid map,

for a homogeneous multi-robot system using Primal-Dual Particle Swarm Optimisation

(pdPSO) model and Virtual Pheromone mechanism. Basically, a virtual pheromone trail

based method is proposed as the message passing mechanism among the robots, where robots

make distributed movement decisions through local interactions. For one individual robot,

there are two working modes, exploration and dispersion, with different indicators in the

pdPSO model. By cooperating and communicating through the virtual pheromone, agents of

the multi-robot system switch between the two working modes. The pdPSO method helps to

Univ
ers

ity
 of

 M
ala

ya

205

allocate reasonable robots to different parts of the predefined pattern. A series of experiments

was carried out and proves the convergence and excellent scalability of our algorithm. By

optimizing some parameter in the pdPSO model, the efficiency of pattern formation is further

improved.

The virtual pheromone was introduced to guarantee the effectiveness of

harmonization among the robots and to prevent the robots from gathering in a certain part of

the pattern and being totally absent in some other parts. For the start, the initial value of the

pheromone is set to 0. The robot mimic the natural boosting action of pheromone in biology

by updating the pheromone and propagating the information to its neighbours that are within

the limited communication range anytime it locates a grid that is still available for occupation.

The maximum value of pheromone is set to prevent run-off. The virtual pheromone level will

continue to decrease with time until it is finally eradicated. Figure 5.30 below is a pictorial

representation of how the pheromone works.

Figure 5.26: Pictorial Representation of Pheromone

5.3.1 World Definition

Univ
ers

ity
 of

 M
ala

ya

206

We presume that the environment consists of an M×N grid-based map. We vary the

number of agents distributed in the map to 50, 100, 150, 200, and 250. Our method uses one

type of pheromone and also holds the map of pattern (location of the grids of pattern found

by the current agent or agents near to the current agent) in its memory. The pheromone is

used for exploration (searching the map) and the map of pattern is used for convergence

(converging to the grids of pattern found). The pheromone is updated when an agent moves

in the map and the map of pattern is updated when an agent found a grid of pattern. However,

agents communicate with other agents nearby and try to update pheromone and map of the

pattern. In exploration mode, an agent moves in a deterministic manner based on the

pheromone (moving to the grids with lower pheromone to explore unvisited grids). In

convergence mode, agent moves based on map of pattern semi-stochastically (moving to the

grids with higher pheromone to approach to the grids of the pattern). In this method, we use

sub-area (blocks) for pheromone rather than sub-area (blocks) for map of pattern unlike the

approach used in the work of Xu et al. (2010). This means that the agent must hold a matrix

of pheromone, and the size of this matrix must be smaller than that of the map. It must also

hold a matrix for map of pattern so that the size of the matrix is equal to the size of the map.

Some of the presumptions that guide the work of the agents of this swarm robotic system are

as follow:

(1) Every agent in the system is indistinctive and similar; meaning they cannot be

differentiated by their exterior look;

(2) There is a limited range of communication for individual agents;

(3) There is an accurate recording of the decentralization and navigation of agents in the

grids;

Univ
ers

ity
 of

 M
ala

ya

207

(4) Agent to agent, or agent to obstruction collisions are insignificant.

In figure 5.31 below, the flowchart for the operation of pheromone is presented.

Figure 5.27: Pheromone Flowchart

Univ
ers

ity
 of

 M
ala

ya

208

Figure 5.32 below is the pictorial representation of the virtual pheromone grid map.

Figure 5.28: Virtual Pheromone Map

5.3.2 Problem Statement

Assuming that we have an ellipse pattern on the grid of map, which is a group of

coordinates. The pattern formation problem is the problem of designing an algorithm that is

decentralized, in a way that, as the agents are distributed randomly, they will finally form the

coveted ellipse pattern. Here, we have an unfamiliar area and a pattern defined beforehand.

The swarm which is initially started randomly, searches grids for the coordinates that

represent the pattern and ultimately complete taking the shape of the preferred pattern The

aim of our experiment is to build an ellipse pattern formation algorithm that can allow more

agents to be added to the number of agents in the swarm and thereby allowing the swarm

robot system within the least time frame to form the predefined pattern.

5.3.3 Pattern Formation Algorithm

Univ
ers

ity
 of

 M
ala

ya

209

At the onset, all the robots are haphazardly positioned on the map, and some of the

grids on the map are designated as the predefined pattern where the information are stored in

the matrix. A local search is first conducted since the robots are positioned randomly on the

map with the robots set to the spreading activated mode searching for an unpopulated

designated grid. With the spreading mode activated, each agent uses the virtual pheromone

to communicate the information of its own local area in the grid with its neighbours, thereby

increasing learning. A Primal-Dual PSO (pdPSO) based searching approach that uses

pheromone information is used for allotting local jobs among robots. The algorithm uses the

value of distance that exists amid grids as a guide to update the location of the agent on the

map. The exploration mode is activated whenever the agent notices that there is no vacant

designated grid in the sub-area, enabling it to find a nearby occupied sub-area that have a

limited number robots now occupying it. This operation continues, pending the time when

all the robots sent to the designated grids and the pattern specified by the designated grids is

created by the robots in the swarm. We invented two approaches for switching between

exploration and convergence:

1 A certain number of iterations (e.g. 80) for exploration and then a certain number

iterations (e.g. 20) for convergence. Of course, the iterations for exploration are

always performed before the iterations for convergence.

2 Stochastic switching between exploration and convergence. In this approach, the

probability of exploration mode in the first iteration is very high and gradually, the

probability of convergence mode is increased. In the last iterations, the probability of

convergence mode is very high. We combine the two approaches mentioned above.

There is stochastic switching between exploration and convergence while the

probability of exploration mode is zero if the number of iterations is more than the

Univ
ers

ity
 of

 M
ala

ya

210

threshold. In this case, the probability of convergence mode is very low when the

number of iterations is less than the threshold.

Figure 5.29: Flowchart of Pattern Formation Algorithm

Univ
ers

ity
 of

 M
ala

ya

211

5.3.4 Pattern Formation Results

Figure 5.30 (a) 5th iteration

Figure 5.30 (b) 60th iteration
Univ

ers
ity

 of
 M

ala
ya

212

Figure 5.30 (c) 100th iteration

Figure 5.30 (a) – (c): 50-agent pattern formation, black spots stands for the robots

Figure 5.31 (a) 5th iteration

Univ
ers

ity
 of

 M
ala

ya

213

Figure 5.31 (b) 60th iteration

Figure 5.31 (c) 100th iteration

Figure 5.31(a) – (c): 100-agent pattern formation, black spots stands for the robots

Univ
ers

ity
 of

 M
ala

ya

214

Figure 5.32 (a) 5th iteration

Figure 5.32 (b) 60th iteration Univ
ers

ity
 of

 M
ala

ya

215

Figure 5.32 (c) 100th iteration

Figure 5.32 (a) – (c): 150-agent pattern formation, black spots stands for the robots

Figure 5.33 (a) 5th iteration

Univ
ers

ity
 of

 M
ala

ya

216

Figure 5.33 (b) 60th iteration

Figure 5.33 (c) 100th iteration

Figure 5.33 (a) – (c): 200-agent pattern formation, black spots stands for the robots

Univ
ers

ity
 of

 M
ala

ya

217

Figure 5.34 (a) 5th iteration

Figure 5.34 (b) 60th iteration Univ
ers

ity
 of

 M
ala

ya

218

Figure 5.34 (c) 100th iteration

Figure 5.34 (a) – (c): 250-agent pattern formation, black spots stands for the robots

Figure 5.35: Graph of Pattern Formation using 50 agents

Univ
ers

ity
 of

 M
ala

ya

219

Figure 5.36: Graph of Pattern Formation using 100 agents

Figure 5.37: Graph of Pattern Formation using 150 agents

Univ
ers

ity
 of

 M
ala

ya

220

Figure 5.38: Graph of Pattern Formation using 200 agents

Figure 5.39: Graph of Pattern Formation using 250 agents

The results of our simulation of 50-agents, 100-agents, 150-agents, 200-agents, and

250-agents are presented in figures 5.30 – 5.34 and the tables in Appendix Z, Appendix AA,

Appendix AB, Appendix AC, and Appendix AD. The figures illustrate the percentage (%) of

0

20

40

60

80

100

120

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Results of Patter Formation for where Number of Agent = 250

Iteration Found % Accomplishment %Univ
ers

ity
 of

 M
ala

ya

221

accomplishment in the process of forming Ellipse with different number of robots that

comprise the swarm. We set the pheromone attenuation rate and pheromone accumulation

rate to 0.01. The maximum value for pheromone is set to 1000. The PSO accelerate

acceleration factor for local search and global search is set to 2 .0 and the inertia parameter

to 0.1. As illustrated in the figures and tables above the percentage of accomplishment will

get to 100% as the process continues except for where we have 50-agents and 100-agents.

This shows that the numbers of agents have a great influence on the efficiency of our

algorithm in forming the desired pattern. Our simulation results also signifies that the

scalability capacity of our approach is commendable.

5.4 Summary of chapter

In this chapter the pdPSO and pdAPSO hybrid algorithm strategies were applied to

solve flocking and pattern formation problems of swarm robots. These algorithms combine

the explorative ability of PSO with the exploitative capacity of the Primal Dual Interior Point

Method thereby possessing a strong capacity of avoiding premature convergence and making

the robots to converge to a point and flock in real time. From the result of our simulations,

the mean of the iteration for the agents to converge at the centre, and also flock from one

zone to the other is almost the same. We decided to measure the number of iteration and not

the time because the former is platform independent. This is an indication that the

performance of our algorithm is good in terms of precision, convergence rate, equilibrium,

robustness and ability to flock using homogenous set of swarm robots. Comparison was made

among the flocking capacity of Primal Dual, PSO, APSO and pdAPSO. It was affirmed that

pdAPSO performs better than all the other algorithms mentioned earlier.

Univ
ers

ity
 of

 M
ala

ya

222

We also applied one of our proposed algorithm to solve pattern formation problem in

swarm robotics. For the sake of effective coordination and communication among the robots,

the virtual pheromone was introduced. The use of pdPSO which is a PSO based technique

ensures the efficiency of the pattern formation. We carried out some simulation was used to

test the ability of our proposed algorithm to solve this problems and to evaluate its

performance. We however have to deactivate the Primal-dual segment of our Primal-dual

PSO algorithm to ensure increased efficiency and performance in the formation of the

patterns. In our future work, we seek to extend the use pdPSO to solving flocking problems

of swarm robotics with obstacle avoidance. Also, we intend implement our algorithms on

hardware of physical swarm robots.

Univ
ers

ity
 of

 M
ala

ya

223

CHAPTER 6: CONCLUSION

6.1 Research Summary

 Many variants of PSO suffers from stagnation and premature convergence (Gang et

al. 2016) and are therefore unsuitable for solving problems that are related to Swarm robotics.

This demonstrated that there is a fundamental defect in many variant PSOs and therefore

necessitate the need to develop some more generalized PSO algorithm to support the

implementation of dynamic tasks in swarm robotics. This is fundamental to controlling the

development of customized PSO algorithms that can be used to address the primary defects

of the existing PSO algorithm. Though swarm robotic are simple by their design, the task of

coordinating a swarm of robots to accomplish a specific job (such as congregating, pattern

formation, obstacle avoidance, flocking, segregating, exploring, mapping, and dispersion)

can be very challenging. These types of jobs require a more dedicated algorithm unlike the

conventional PSO algorithms that have been previously implemented in the field of robotics.

To design a new algorithm that will meet with the above requirements, we did a survey of

generic algorithm implementation for swarm robotics applications. This is to enhance our

understanding of the limitations of particle swarm algorithm for dynamic optimisation tasks.

Experiments were carried out firstly to establish the ground truth of some existing PSO

algorithms, and to determine if they are functioning as described in the literatures. The result

of our experiments confirmed the presence of premature convergence, failure of PSO

algorithms to handle dynamic environment effectively, and inability of particles to escape

from local minima. Secondly, our experiments were designed to determine the global

optimum and local optima of each of the three PSO (original PSO, APSO, and SPSO) variants

under the different benchmarking functions. And to confirm the problem of the particles in

PSO been trapped in the local optimal. Lastly, we validated the existence of premature

Univ
ers

ity
 of

 M
ala

ya

224

convergence problem in PSO algorithms. In general, we wanted to investigate the

performances of the three PSO variants (using the global optimum and local optimal as our

yardstick of measuring performance) on the standard benchmark functions. Moreover we

wanted to examine their convergence properties through these benchmark functions. The

results of our simulations showed that PSO particles still got trapped in the local minima.

And there is the presence of premature convergence in the variants of PSO that we

experimented with. The results of our simulations are presented in figure 3.1 in chapter 3. It

is evident from our simulation results, that in order to apply PSO into any swarm robotics

implementation, we have to develop (or customized) the different flavour of PSO algorithms

and thus contributed towards the ever-expanding pool of PSO algorithms. This should have

not been the norm since the natural characteristics of the algorithm should be able to support

any swarm robotics project. It is obvious that the algorithm is unsuitable for solving some

optimisation problems.

6.1.1 Summary of Primal Dual Particle Swarm Optimisation (pdPSO)

We developed a new hybrid algorithm optimisation algorithm called Primal Dual

Interior Point Method Particle Swarm Optimisation (pdPSO). This algorithm fuses the

searching capability of PSO with the manipulative ability of the Primal Dual Interior Point

Method thus having a robust capacity of evading premature convergence. A comparative

study of the algorithm was done with the conventional PSO and Primal Dual method using

nine benchmark functions. From the results of our simulations in chapter 4, it shows that our

algorithm performs better in terms of precision, rate of convergence, steadiness and

robustness. The behaviour of pdPSO under the unimodal and multimodal functions shows

that the algorithm will be a suitable tool in solving complicated optimisation problems that

PSO alone or Primal Dual alone cannot solve efficiently. In terms of speed of convergence,

Univ
ers

ity
 of

 M
ala

ya

225

pdPSO was faster than PSO and Primal-dual algorithms in 5 benchmark functions out of the

of 9 functions used for the experiment. The pdPSO can therefore be termed as a fast algorithm

that can proffer solution to complex optimisation tasks. The pdPSO also have a higher level

of stability compared to the PSO and APSO algorithms. We hereby summarize that pdPSO

is a very stable, and is capable of generating good results that are dependable. Lastly we

observed that pdPSO is more robust than PSO and Primal-dual since it was able to

successfully locate the global optimum on each of the benchmarking functions we used for

our experiment specifically on some functions which are known to be very problematic for

many of the state of the art optimisation algorithms. We conclude by saying that pdPSO is

an algorithm that can survive unfavourable conditions.

The pdPSO algorithm was applied to solve the flocking and pattern formation

problems of swarm robots. From the result of our simulations, the mean of the iteration for

the agents to converge at the centre, and also flock from one zone to the other is almost the

same. We decided to measure the number of iteration and not the time because the former is

platform independent. The statistical results of our simulation as presented in Appendix C –

F shows that there is no the mean of the iteration for the robots to converge at the centre and

then to flock from one zone to other zones is almost the same. This clearly demonstrate that

pdPSO have good convergence rate, accuracy, and the capacity to flock using identical group

of robots.

We also applied pdPSO algorithm to solve pattern formation problem in swarm

robotics. To ensure successful organization and interaction among the robots, the virtual

pheromone was introduced. The use of pdPSO which is a PSO based technique ensures the

efficiency of the pattern formation. The result of our Pattern formation simulation is

presented in Appendixes Z – AD. Figures 5.34 – 5.38 show how the patterns are formed with

Univ
ers

ity
 of

 M
ala

ya

226

the number of iterations done. The graph showing the summary of the statistical results of

the patterns formed and the number of iteration based on the number of robots involved in

the pattern formation task is in Figures 5.39 – 5.43 of chapter 5. We hereby conclude that

pdPSO is scalable as there is increase in the success rate the pattern formed with increase in

the number of robots.

The performance of pdPSO was compared with eleven state of the art PSO algorithms

listed in table 4.17 using twelve benchmark functions. The result of our experiments showed

that pdPSO possesses the ability to efficiently overcome premature convergence problem and

avoid being trapped in local minima on majority of the test functions. The efficiency of

pdPSO becomes much more visible with the rotation and the shift benchmark functions. The

comparisons shows that the integration of Primal-Dual into PSO is beneficial to enhancing

the performance of PSO. We hereby conclude that apart from pdAPSO which produced the

most accurate result, pdPSO have a superior performance compared to the other PSO variants

on majority of the rotated functions and on the two shifted functions.

6.1.2 Summary of Primal Dual Asynchronous Particle Swarm Optimisation

(pdAPSO)

The second algorithm that we presented in this thesis is Primal Dual Asynchronous

Particle Swarm Optimisation (pdAPSO). This algorithm integrates the exploring capability

of PSO with the exploiting ability of the Primal Dual Interior Point Method. It thereby

combined the strength of the two algorithms and so possessing a better capacity avoid

particles been trapped in the local minima, and also the avoidance of premature convergence.

We did a comparison of our new algorithm (pdAPSO) with the PSO, APSO and

pdPSO using seven (7) benchmark functions. From the experimental results in chapter 4, the

performance of pdAPSO is better in terms of accuracy, convergence speed, reliability and

Univ
ers

ity
 of

 M
ala

ya

227

robustness when compared to some variants of PSO. Just like what we observed in pdPSO,

the behaviour of pdAPSO under the unimodal and multimodal functions shows that the

algorithm will also be another appropriate tool in solving complicated optimisation problems

that PSO alone or Primal Dual alone cannot solve efficiently. It should be noted that there is

no significant statistical distinction between the performance of pdAPSO and pdPSO.

The pdAPSO was also applied to solve the problem of flocking in swarm robotics.

Our simulation results revealed that there is great similarity between the mean of convergence

of the iteration at the centre, and the number of iteration to flock from one zone to another

zone. The statistical results of our simulation are presented in Appendix G – J. It confirms

that there is no difference in the mean of the iteration for the robots to converge at the centre

and then to flock from one zone to other zones. This plainly illustrations that pdAPSO also

have a high convergence speed, robustness, accuracy, and ability to flock using set of robots

that are homogenous.

We compared the performance of pdAPSO with the other 11 state of the art PSO

algorithms using twelve benchmark functions. The outcome of our experiments revealed that

pdAPSO have a mean dependability of 80.4%. This is a sign that the integration of Primal

Dual method into PSO algorithm will increase the reliability of PSO in solving the premature

convergence problem and thereby converging to global optima. The comparisons also shows

that the hybridisation of Primal-Dual and APSO helps in producing a more robust and

dependable PSO algorithm. We conclude by saying that pdAPSO produced the most accurate

result compared to the other PSO variants on majority of the rotated functions and on the two

shifted functions. Moreover, the speed of convergence of pdAPSO algorithms is superior to

that of other PSO algorithms on all the benchmark functions. Our algorithm called pdAPSO

uses the smallest number of FEs to achieve acceptable solutions in all the 12 benchmark

functions. This also proves that the Primal Dual method has augmented the PSO algorithm

Univ
ers

ity
 of

 M
ala

ya

228

in creating improved fitness value and generating higher diversity in the swarm population

to increase the convergence speed of PSO particles.

6.2 Conclusion

The PSO algorithm, is a promising algorithm for providing solutions to different

optimisation problems (Gang et al., 2016). Having discussed the suitability of PSO as an

optimisation algorithm to solve swarm robotics problems in chapter two of this thesis, it

uncovered some serious drawbacks that characterised the modern trends of developing and

adapting a new bio-inspired algorithm for different swarm robotic tasks. These drawbacks

can be adequately tackled by devising some other methods to increase the performance of

PSO thereby enabling it to adequately handle dynamic optimisation tasks. We proposed the

relevance of fusing Interior Point Method optimisation (Luke, 2010) and PSO to solve certain

problems that are related to the existing variants of PSO which have discussed in this thesis.

Such problem include premature convergence, the challenge of some of the particles been

trapped in the local minima, and unsuitability of PSO for dynamic tasks. From the

experiments conducted, it is obvious that the fusion of Primal Dual method and PSO helps

to increase the reliability to PSO in preventing premature convergence of particles and

thereby ensuring converging to global optima. Also, Primal Dual method has enhanced the

performance of PSO algorithm in generating better fitness value and producing diversity in

the swarm population to enhance the convergence speed of PSO particles.

The Interior-Point Method is a very popular optimisation algorithm that is widely

known for its ability to solve large-scale linear problems effectively (Laird, 2006). The

pdPSO and pdAPSO algorithms have been develop (in chapter 4) to solve the above-

mentioned problems that are associated with PSO. The hybrid of Primal Dual and PSO

provided a better balance between exploration and exploitation. This have solved the problem

Univ
ers

ity
 of

 M
ala

ya

229

of particles experiencing premature convergence and inability to escape being trapped in

local minima thereby yielding superior results. The pdPSO and pdAPSO can be described as

algorithms that have the ability to solve difficult optimisation problems quickly as

demonstrated in chapter 6. They also have a higher level of stability compared to other

variants of PSO algorithms. They are stable, robust, and capable of producing good and

reliable results. Their robustness have helped them to be able to survive under benchmarking

functions that many variants of PSO cannot survive when tested on them. We have been able

to develop novel algorithms (pdPSO and pdAPSO) for swarm robotics cooperative

movement. The results of our experiments in chapters 4 and 5 demonstrate that pdPSO and

pdAPSO have high convergence rate, good accuracy, are robust, and they are suitable for

control of cooperative movements in swarm robotics.

6.3 Future Directions

The concept of the hybridization of particle swarm optimisation (PSO) and Interior

Point Method (IPM) as cooperative movement control algorithm in swarm robotics has been

presented in this thesis. Many research in the field of swarm robotics have been centered on

applications in the area of aggregation (Soysal & Sahin, 2005), box-pushing (Şahin, 2005),

collective mapping (Jadbadaie, Lin, & Morse, 2003), flocking (Meng, Kazeem & Muller,

2007), foraging (Bayindir & Şahin, 2007) and (Campo et. al., 2010), pattern formation

(Huaxing, et al., 2010), and segregation (Reynolds, 1987), soccer tournaments (Yang, et al,

2008), site preparation (Kim, Wang & Shin, 2006), and sorting (Jeschke, Liu & Schilberg,

2011).

In direction to the future, we intend to improve on the performance of pdPSO and

pdAPSO. This is because it is not on all the benchmark functions that the performance of the

algorithms were very high since there is no algorithm that performs very well on all known

Univ
ers

ity
 of

 M
ala

ya

230

benchmark functions. There is no algorithm that is suitable for solving all know problems. It

thereby follows that our algorithms were basically designed to solve some of the drawbacks

of the current variants of PSO. Moreover, our algorithms were successfully used to solve the

swarm robotics tasks of aggregation, flocking, and pattern formation. However, for pattern

formation we have to deactivate the Primal-dual segment of our Primal-dual PSO algorithm

to ensure increased efficiency and performance in the formation of the patterns. In our future

work, we seek to extend the use pdPSO to solving flocking problems of swarm robotics with

obstacle avoidance and also implement our algorithms on hardware of physical swarm robots.

Our future research would be to apply our pdPSO and pdAPSO to flocking, pattern formation,

and foraging in swarm robotics while having obstacle avoidance in mind.

One of the principal weaknesses of the research work in this thesis is that the proposed

model and approaches are yet to be executed and the performance verified on physical robots.

There are times in which a solution may work perfectly during simulation but might not

produce efficient result when tried on physical robots. Our intension is to implement our

proposed algorithms on physical robots in the near future. Nevertheless, the proposed

algorithms in this thesis should perform effectively on real world swarm robot (let's assume

the robots can transfer information to nearby robots if they are close) since our viewpoint is

that of cooperative movement. This means that all the robots will be affected by any

disturbance from the environment. In the future, we intend to implement the proposed

solution in real world swarm robotic systems.

Univ
ers

ity
 of

 M
ala

ya

231

REFERENCES

Abdel-Kader, R.F. (2010). Genetically improved PSO algorithm for efficient data clustering,

in: Proceedings of International Conference on Machine Learning and Computing, pp.

71–75.

Abraham, A., Konar, A., & Das, S. (2008). Particle Swarm Optimisation and Differential

Evolution Algorithms: Technical Analysis, Applications and Hybridization

Perspectives. Studies in Computational Intelligence, (SCI) 116, 1–38.

Abraham, A., Pant, M., Bouvry, P., & Thangaraj, R. (2011). Particle swarm optimisation:

Hybridization perspectives and experimental illustrations, Appl. Math. Comput, vol.

217, 5208 – 5226, doi:10.1016/j.amc.2010.12.053

Aguirre, A. H., Muñoz Z. A. E., Diharce E. V. & Botello, R. S. (2007). COPSO: Constraints

Optimisation via PSO algorithm, Comunicación Técnic, (CC/CIMAT).

Akat, S. B. & Gazi, V. (2008) Particle swarm optimisation with dynamic neighborhood

topology: three neighborhood strategies and preliminary results, in: IEEE swarm

intelligence symposium, St Louis, USA, pp 1–8.

Al-Hassan, W., Fayek, M. B. & Shaheen, S. I. (2007). PSOSA: An optimized particle swarm

technique for solving the urban planning problem, In: Computer Engineering and

Systems, the 2006 International Conference on, IEEE. pp 401–405.

Amé, J., Halloy, J., Rivault, C., Detrain, C., & Deneubourg, J. L. (2006). Collegial decision

making based on social amplification leads to optimal group formation. Proceedings

of the National Academy of Sciences, 103(15):5835–5840.

Andries, P. Engelbrecht (2005). Fundamentals of Computational Swarm Intelligence, Wiley

1st edition. ISBN-10: 0470091916, 672 pages.

Akbari R & Ziarati K. (2011). A rank based particle swarm optimization algorithm with

dynamic adaptation. J Comput Appl Math, vol. 235, pp. 2694–2714

Univ
ers

ity
 of

 M
ala

ya

232

Arkin, R. C. (1998). Behaviour-Based Robotics, MIT Press.

Armand, P., Gilbert, J. C. & Jan-Jégou, S. (2000). A feasible BFGS interior point algorithm

for solving strongly convex minimization problems. SIAM J. Optimisation, vol. 11, pp.

199–222.

Ashish Raj (1994). Evolutionary Optimisation Algorithms for Nonlinear Systems, Thesis

Submitted to the Department Electrical and Computer Engineering, Utah State

University, Logan, Utah. 1994

Ashish, R. (1994). Evolutionary Optimisation Algorithms for Nonlinear Systems, Thesis

Submitted to the Department Electrical and Computer Engineering, Utah State

University, Logan, Utah.

Auger A & Hansen N (2005). Performance evaluation of an advanced local search

evolutionary algorithm. In: Proceedings of the IEEE congress on evolutionary

computation, vol. 1772, pp 1777–1784.

Aziz, N. A. A. & Ibrahim, Z. (2012). Asynchronous Particle Swarm Optimisation for Swarm

Robotics, International Symposium on Robotics and Intelligent Sensors (IRIS 2012).

Procedia Engineering, vol. 41 pp. 951 – 957.

Bai, Q. (2010). Analysis of Particle Swarm Optimisation Algorithm, Computer and

Information Science, vol. 3 no 1, February, pp. 180 – 184.

Balch T. & Arkin, R. C. (1999). Behavior-based Formation Control for Multi-robot Teams,

IEEE Trans. on Robotics and Automation.

Univ
ers

ity
 of

 M
ala

ya

233

Basterrechea, J., & Perez, J. R. (2005). Particle swarm optimisation and its application to

antenna far field-pattern prediction from planar scanning. Microwave and optical

technology letters, vol. 44(5), pp. 398–400.

Basturk, B., & Karaboga, D. (2007). A powerful and Efficient Algorithm for Numerical

Function Optimisation: Artificial Bee Colony (ABC) algorithm, J. Glob Optim, vol.

39, 459-471.

Bayindir, L. & Şahin, E. (2007). A Review of Studies in Swarm Robotics. Turk. J. Elec.

Engin. 15(2):115–147.

Beasley D. B., David R. Bull. & Ralph, R. Martin. (1993). An overview of Genetic

Algorithms, University Computing, Vol. 15, No. 2 and 4, pp.58-69 and 170-181.

Belta C. & Kumar V. (2002). Trajectory design for formations of robots by kinetic energy

shaping. In Proceedings. ICRA ’02. IEEE International Conference on Robotics and

Automation, vol.3, pp. 2593 – 2598.

Ben Kr¨ose & Patrick van der Smagt (1996). An introduction to neural networks. The

University of Amsterdam.

Beni, G. (2004). From Swarm Intelligence to Swarm Robotics, in: Proceedings of

International Conference on Swarm Robotics, pp. 1-9.

Ben-Tal, A. & Nemirovski, A. (2001). Lectures on Modern Convex Optimisation: Analysis,

Algorithms, and Engineering Applications. SIAM.

Besdok, E., & Civicioglu, P., (2013). A conceptual comparison of the Cuckoo-search,

particle swarm optimisation, differential evolution and artificial bee colony algorithms

Artif Intell Rev, 39, (pp. 315-346). DOI 10.1007/s10462-011-9276-0.

Bhuvaneswari, R., Sakthivel, V.P., Subramanian, S., & Bellarmine, G. T. (2009). Hybrid

approach using GA and PSO for alternator design, in: Proceedings of the IEEE

International Conference Southeastcon, Atlanda, 2009, pp. 169–174.

Univ
ers

ity
 of

 M
ala

ya

234

Binitha S, & Sathya Siva S (2012). A Survey of Bio inspired Optimisation Algorithms.

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307,

Volume-2, Issue-2, pp 137-151.

Boettcher, S. & Percus, A.G. (1999). Extremal optimisation: methods derived from

coevolution, in: Proceedings of the Genetic and Evolutionary Computation

Conference, pp. 825–832.

Boggs, P.T. & Tolle, J.W. (1995). Sequential quadratic programming, Acta Numerica, vol.

4, Cambridge University Press, Cambridge, 1995. pp. 1–52.

Bonabeau, E., Sobkowski, A., Theraulaz, G., & Deneubourg, J.L. (1997). Adaptive task

allocation inspired by a model of division of labor in social insects. In Narayana, A.,

editor, Biocomputing and emergent computation: Proceedings of BCEC97, pp 36–45,

London, UK. World Scientific Press.

Boyd, S. & Vandenberghe, L. (2004), Convex Optimisation, Cambridge University Press,

New York, 1st edition.

Brand, M., Masuda, M., Wehner, N. & Yu, X. H. (2010). Ant Colony Optimisation

Algorithm for Robot Path Planning, International Conference on Computer Design and

Applications (ICCDA), IEEE, Volume 3, page 436 – 440.

Brian B. (2014). Retrieved from http://www.mathworks.com/matlabcentral/file exchange/

7506-particle-swarm-optimisation-toolbox/content/testfunctions/

Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2012). Self-organized task

allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents

and Multi-Agent Systems, 2012:1–25.

Campo, A. (2011). On the Design of Self-Organized Decision Making in Robot Swarms. PhD

thesis, IRIDIA, Université Libre de Bruxelles, Belgium.

Caponio, Neri, F. & Tirronen, V. (2009). Superfit control adaption in memetic differential

evolution frameworks, Soft Computing 13, pp. 811–831.

Carlisle, A., & Dozier, G. (2001). An off-the-shelf PSO. In: Workshop on Particle Swarm

Optimisation.

Univ
ers

ity
 of

 M
ala

ya

http://www.mathworks.com/matlabcentral/file%20exchange/%20%207506-particle-swarm-optimization-toolbox/content/testfunctions/
http://www.mathworks.com/matlabcentral/file%20exchange/%20%207506-particle-swarm-optimization-toolbox/content/testfunctions/

235

Chen, F., Chen, Z., Liu, Z., Xiang, L., and Yuan, Z. (2008). Decentralized formation control

of mobile agents: A unified framework, Physical A: Statistical Mechanics and its

Applications, Vol. 387, Issues 19–20, August 2008, Pages 4917-4926, ISSN 0378-

4371, 10.1016/j.physa.2008.04.018.

Chen, M. R., Li, X., Zhang, X. & Lu, Y Z. (2010). A novel particle swarm optimizer

hybridized with extremal optimisation, Applied Soft Computing, 10, pp. 367– 373.

Chena, M. R., Lia, X., Zhanga, X. & Lu, Y. Z. (2010). A novel particle swarm optimizer

hybridized with extremal optimisation. Applied Soft Computing, vol. 10, Issue 2, pp.

367–373.

Chouzenoux, E., Idier, J., & Moussaoui, S. (2011). Efficiency of Line Search Strategies in

Interior Point Methods for Linearly Constrained Signal Restoration. In: Proceedings

of the IEEE Workshop on Statistical Signal Processing (SSP), Nice, France, pp.101-

104.

Cieliebak, M. & Flocchini, P. (2002). Gathering autonomous mobile robots, In: Proceeding

9th Int. Colloq. on Struct. Info. and Commun. Complex, page 57-72.

Clerc, M. & Kennedy, J. (2002). The particle swarm optimisation: explosion, stability, and

adaptive particle swarm optimisation. IEEE Transactions on Evolutionary

Computation, vol. 6, pp. 58–73.

Clerc, M. (2004). Semi-Continuous Challenge. Retrieved from clerc.maurice.free.fr/pso

/semi-continuous_challenge/semi-continuous_challenge.htm

Conradie, E., Miikkulainen, R., Aldrich, C. (2002). Intelligent process control utilising

symbiotic memetic neuro-evolution, Proceedings of the IEEE Congress on

Evolutionary Computation, pp. 623 – 628.

Couceiro, M. S., Rocha, R. P. & Ferreira, N. M. F. (2011). Ensuring Ad Hoc connectivity in

distributed search with Robotic Darwinian swarms, in: Proceedings of the IEEE

Univ
ers

ity
 of

 M
ala

ya

236

International Symposium on Safety, Security, and Rescue Robotics, SSRR2011, Kyoto,

Japan, pp. 284–289.

D. E. Goldberg & J. H. Holland (1988), “Genetic algorithms and machine learning,” Machine

learning, vol. 3, no. 2, pp. 95–99.

Dada, E. G., & Ramlan, E. I. (2015). Primal-Dual Interior Point Method Particle Swarm

Optimisation (pdipmPSO) Algorithm. In: 3rd Int'l Conference on Advances in

Engineering Sciences & Applied Mathematics (ICAESAM’2015), London (UK), pp.

117-124.

Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009). Bacterial Foraging Optimisation

Algorithm: Theoretical Foundations, Analysis, and Applications, Volume 203/2009 of

Studies in Computational Intelligence. Springer Berlin/Heidelberg, pp. 23-55.

David, E. G. (1994). Genetic and Evolutionary Algorithms come of age, Commun. ACM,

Vol. 37, No. 3, pp.113-119, March 1994.

Davis, L. (1991). The Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.

Davoud, S. & Ellips M. (2009). Particle Swarm Optimisation Methods, Taxonomy and

Applications. International Journal of Computer Theory and Engineering, Vol. 1, No.

5, December 2009.

de Berg M, Cheong O, van Kreveld M, & Overmars M (2008). Computational Geometry

Algorithms and Applications. XII, 386 p. 370 illus., Hardcover ISBN: 978-3-540-

77973-5

Univ
ers

ity
 of

 M
ala

ya

237

Del, V. Y, Venayagomoorthy, G. K., Mohagheghi, S., Hernandez, J. C. & Harley, R. G.

(2008). Particle swarm optimisation: basic concepts, variants and applications in power

systems. IEEE Trans Evol Comput 12(2):171 – 195.

Derr, K. & Manic, M. (2009). Multi-robot, multi-target particle swarm optimisation search

in noisy wireless environments. In: Proceedings of the 2nd conference on human system

interactions, Catania, Italy, pp 78–83.

Dervis, K. & Bahriye, B. (2007). A powerful and Efficient Algorithm for Numerical Function

Optimisation: Artificial Bee Colony (ABC) algorithm. J. Glob Optim 39:459-471.

Dikin, I. (1967). Iterative solution of problems of linear and quadratic programming (in

Russian), Doklady Akademia Nauk SSSR, vol. 8, pp. 674–675.

Doctor, S., Venayagamoorthy, G. & Gudise, V. (2004). Optimal PSO for collective robotic

search applications. In: IEEE congress on Evolutionary Computation, pp 1390–1395.

Dorigo, M., Maniezzo, V. & Colorni, A. (1996). Ant System: Optimisation by a Colony of

Cooperating Agents, IEEE Transactions on Systems, Man, and Cybernetics - Part B:

Cybernetics, Vol. 26, No. 1, pp 29–41.

Ducatelle, F., Di Caro, G. A., Pinciroli, C., Mondada, F., & Gambardella, L. M. (2011).

Communication assisted navigation in robotic swarms: self-organization and

cooperation. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2011), IEEE Computer Society Press, Los Alamitos, CA,

pages 4981–4988.

Duniasn, P. (1996). Autonomous Robots Using Artificial Potential Fields, PhD Thesis.

Universiteit Eindhoven. Page 1793-8201.

Dušan Glavaški, Mario Volf, & Mirjana Bonković (2009). Robot motion planning using

exact cell decomposition and potential field methods. Proceedings of the 9th WSEAS

International Conference on simulation, modelling and optimisation.

Univ
ers

ity
 of

 M
ala

ya

238

Easton, K. & Burdick, J. (2005). A coverage algorithm for multi-robot boundary inspection,

in Proceeding of the IEEE International Conference on Robotics and Automation,

ICRA, Barcelona, Spain, page 727 – 734.

Eberhart, R. C. & Shi, Y. (2000). Comparing Inertia Weights and Constriction Factors in

Particle Swarm Optimisation, In: Proceedings of the Congress on Evolutionary

Computation Vol. 1 pp. 84 – 88.

Eberhart, R. C. & Shi, Y. (2001). Tracking and optimizing dynamic systems with particle

swarms, Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2001),

pp. 94-97.

Eberhart, R. C. & Shi, Y. (2002). Tracking and optimizing dynamic systems with particle

swarms, In Evolutionary Computation, 2001. Proceedings of the IEEE

Congress on Evolutionary Computation, volume 1, pages 94–100.

Eberhart, R. C., & Shi, Y. (1998). Parameter Selection in particle swarm optimisation, in:

Proceedings of the 7th International Conference on Evolutionary Programming,

Washington DC., pp. 591 – 600.

Egerstedt M. & Hu X. (2001). Formation constrained multi-agent control. IEEE Transactions

on Robotics and Automation, 17(6):947–951.

Elor, Y., & Bruckstein, A. M. (2011). Uniform multi-agent deployment on a ring, Theoretical

Computer Science, Vol. 412, Issues 8–10, 4 March 2011, Pages 783-795, ISSN 0304-

3975, 10.1016/j.tcs.2010.11.023.

Emilie Chouzenoux, Saïd Moussaoui, & Jérôme Idier (2011). Efficiency of Line Search

Strategies In Interior Point Methods For Linearly Constrained Signal Restoration. 2011

IEEE Statistical Signal Processing Workshop (SSP).

Univ
ers

ity
 of

 M
ala

ya

239

Esmin, A.A., Lambert-Torres, G., & Alvarenga, G.B. (2006). Hybrid evolutionary algorithm

based on PSO and GA mutation, in: Proceedings of 6th International Conference on

Hybrid Intelligent Systems, pp. 57–62.

Fan, S.K. & Zahara, E. (2007). A hybrid simplex search and particle swarm optimisation for

unconstrained optimisation, European Journal of Operational Research 181, pp. 527–

548.

Fan, S.K., Liang, Y. C. & Zahara, E. (2004). Hybrid simplex search and particle swarm

optimisation for the global optimisation of multimodal functions, Engineering

Optimisation 36, pp. 401–418.

Ferrante Eliseo (2013). Information Transfer in a Flocking Robot Swarm. UNIVERSITÉ

LIBRE DE BRUXELLES, Ecole Polytechnique de Bruxelles, IRIDIA - Institut de

Recherches Interdisciplinaires, et de Développements en Intelligence Artificielle, page

17-18.

Fiacco A. V. & Mccormick G. P. (1990). Nonlinear Programming: Sequential

Unconstrained Minimization Techniques. John Wiley & Sons, New York, N. Y., 1968.

Reprinted by SIAM Publications.

Fiacco, A. V. & McCormick, G. P. (1967). The sequential unconstrained minimization

technique (SUMT) without parameters, vol. 15, no. 5, pp. 820–827, September.

Fonseca, C. D. M, & Fleming, P. J. (1995). An Overview of Evolutionary Algorithms in

Multiobjective Optimisation. Evolutionary Computation, vol 3:1, pp 1-16.

Fourie, P.C. & Groenwold, A. A. (2002). The particle swarm optimisation algorithm in size

and shape optimisation. Structural and Multidisciplinary Optimisation, 23(4):252–267.

Frisch, K. R. (1995). The logarithmic potential method of convex programming, Technical

Report, University Institute of Economics, Oslo, Norway.

Gandelli, F. Grimaccia, Mussetta, M., Pirinoli, P., & Zich, R.E. (2007). Development and

validation of different hybridization strategies between GA and PSO, Proceedings of

the IEEE Congress on Evolutionary Computation, pp. 2782–2787.

Univ
ers

ity
 of

 M
ala

ya

240

Gandelli, Grimaccia F., Mussetta, M., Pirinoli, P., & Zich, R.E. (2005). Genetical swarm

optimisation: a new hybrid evolutionary algorithm for electromagnetic application, in:

Proceedings of the 18th International Conference on Applied Electromagnetics,

ICECcom, Dubrovnik, Croatia, 2005, pp. 269–272.

Gandelli, Grimaccia F., Mussetta, M., Pirinoli, P., & Zich, R.E., (2006). Genetical swarm

optimisation: an evolutionary algorithm for antenna design, Journal of AUTOMATIKA

47 (3-4), pp. 105–112.

Gang Xu, Binbin Liu, Jun Song, Shuijing Xiao & Aijun Wu (2016). Multiobjective sorting-

based learning particle swarm optimisation for continuous optimisation. Nat Comput,

DOI 10.1007/s11047-016-9548-3

Garnier, S., Gautrais, J., & Theraulaz, G. (2007). The biological principles of swarm

intelligence. Swarm Intelligence, 1(1):3–31.

Gasparri, A., & Prosperi, M. (2008). A Bacterial Colony Growth Framework for

Collaborative Multi-Robot Localization, IEEE International Conference on Robotics

and Automation Pasadena, CA, USA, May 19-23, 2008, pp. 2806 – 2811.

Gautam, A. & Mohan, S. (2013). A distributed algorithm for circle formation by multiple

mobile robots, in Proceedings of International Conference on Control, Automation,

Robotics and Embedded Systems, pp. 1-5, 16-18.

Ge, H. W., Sun, L., Liang, Y. C. & Qian, F. (2008). An effective PSO and AIS-based hybrid

intelligent algorithm for job-shop scheduling, IEEE Transactions on Systems, Man,

And Cybernetics - Part A: Systems and Humans 38, pp. 358–368.

Gengqian Liu, Tiejun Li, Yuqing Peng & Xiangdan Hou (2005). The Ant Algorithm for

Solving Robot Path Planning Problem, Information Technology and Applications, third

International Conference on Information Technology and Applications (ICITA'05),

vol. 2, no. , pp. 25, 27.

George, A., Koh, B. I., Fregly, B. & Haftka, R. (2006). Parallel asynchronous particle swarm

optimisation. International Journal for Numerical Methods in Engineering, vol. 67, pp.

578–595.

Univ
ers

ity
 of

 M
ala

ya

241

George, M. C. J., Carmelo, J. A. B. & Fernando, B. D. (2012). Volitive Clan PSO - An

Approach for Dynamic Optimisation Combining Particle Swarm Optimisation and Fish

School Search, Theory and New Applications of Swarm Intelligence, Dr. Rafael

Parpinelli (Ed.), ISBN: 978-953-51-0364-6, InTech , Available

from:http://www.intechopen.com/books/theory-and-new-applications-of-

swarmintelligence/volitive-clan-pso-an-approach-for-dynamic-optimisation-

combining-particle-swarm-optimisationand-fis

Gilbert, J. C., Armand, P., Jan-Jégou, S. (2000). A feasible BFGS interior point algorithm

for solving strongly convex minimization problems, SIAM J. Optimisation, vol. 11, pp.

199 – 222.

Goldberg D E, Deb K, & Clark J H (1992). Genetic Algorithms, Noise, and the Sizing of

Populations. Complex Systems 6, pp 333-362.

Goldberg, D. E., Deb, K. & Clark, J. H. (1993). Accounting for noise in the sizing of

populations. In L.D Whitley, editor, Foundations of Genetic Algorithms 2, Morgan

Kaufmann, San Francisco, pp 127–140.

Grana, M., Duro, R. d’Anjou, A., & Wang, P. P. (2004). Information Processing with

Evolutionary Algorithms: from Industrial Applications to Academic Speculations,

Springer – ISBN 18523338660, pp 319.

Grimaccia, Mussetta, M., Pirinoli, P. & Zich, R.E. (2007). Genetical swarm optimisation:

self-adaptive hybrid evolutionary algorithm for electromagnetic, IEEE Transactions on

Antennas and Propagation 55 (3), pp. 781–785.

Grimaldi, E.A., Grimacia, F., Mussetta, M., Pirinoli, P., & Zich, R.E. (2004). A new hybrid

genetical – swarm algorithm for electromagnetic optimisation, in: Proceedings of

International Conference on Computational Electromagnetics and its Applications,

Beijing, China, pp. 157–160.

Grosan, Abraham, A. & Nicoara, M. (2005). Search optimisation using hybrid particle sub-

swarms and evolutionary algorithms, International Journal of Simulation Systems,

Science and Technology 6, pp. 60–79.

Univ
ers

ity
 of

 M
ala

ya

242

Guerra, F. A., & Coelho, L. D. S. (2007). Applying Particle Swarm Optimisation to Adaptive

Controller. A. Saad et al. (Eds.): Soft Computing in Industrial Applications, ASC, vol.

39, pp. 82–91.

Guo, Q. J., Yu, H. B. & Xu, A.D. (2006). A hybrid PSO-GD based intelligent method for

machine diagnosis, Digital Signal Processing 16, pp. 402–418.

Hao, Z. F., Gua, G. H. & Huang, H. (2007). A particle swarm optimisation algorithm with

differential evolution, in: Proceedings of Sixth International Conference on Machine

Learning and Cybernetics, pp. 1031–1035.

Hayes, A. T., Martinoli, A., & Goodman, R. M. (2003). Swarm robotic odor localization:

off-line Optimisation and Validation with Real Robots, Robotica, 21(4):427–441.

He, Q. & Wang, L. (2007). A hybrid particle swarm optimisation with a feasibility-based rule

for constrained optimisation, Applied Mathematics and Computation 186, pp. 1407–

1422.

Hendtlass, T. (2001). A Combined Swarm differential evolution algorithm for optimisation

problems, in: Proceedings of 14th International Conference on Industrial and

Engineering Applications of Artificial Intelligence and Expert Systems, Lecture Notes

in Computer Science, vol. 2070, Springer Verlag, pp. 11–18.

Hendtlass, T., & Randall, M. (2001). A survey of ant colony and particle swarm meta-

heuristics and their application to discrete optimisation problems, in: Proceedings of

the Inaugural Workshop on Artificial Life, pp. 15–25.

Hereford, J. M. & Siebold, M. (2008) Multi-Robot Search using a Physically Embedded

Particle Swarm Optimisation, Int. Journal of Comput. Intell. Res. 4(2):197–209.

Hereford, J. M. & Siebold, M. A. (2010). Bio-Inspired Search Strategies for Robot Swarms,

Swarm Robotics from Biology to Robotics, Ester Martinez Martin (Ed.), ISBN: 978-

953-307-075-9, InTech. Available from: http://www.intechopen.com/books/swarm-

robotics-from-biology-to-robotics/bio-inspired-searchstrategies-for-robot-swarms.

Univ
ers

ity
 of

 M
ala

ya

http://www.intechopen.com/books/swarm-robotics-from-biology-to-robotics/bio-inspired-searchstrategies-for-robot-swarms
http://www.intechopen.com/books/swarm-robotics-from-biology-to-robotics/bio-inspired-searchstrategies-for-robot-swarms

243

Hereford, J. M. (2006). A distributed particle swarm optimisation algorithm for swarm

robotic applications, In IEEE congress on Evolutionary Computation, pp 1678–1685.

Hoare, D. J., Krause, J., Peuhkuri, N. & Godin, J. G. J. (2000). Body size and shoaling in

fish. Journal of Fish Biology, 57(6):1351–1366.

Holland, O. E. & Melhuish, C. (1999). Stigmergy, Self-Organization, and Sorting in

Collective Robotics, Artificial Life, Vol. 5, pp. 173-202.

Holland, O. E. & Melhuish, C. (1999). Stigmergy, Self-Organization, and Sorting in

Collective Robotics, Artificial Life, Vol. 5, pp. 173-202, 1999.

Howard, A., Matari c, M. J., & Sukhatme, G. S. (2002). Mobile sensor network deployment

using potential fields: a distributed, scalable solution to the area coverage problem. In

Proceedings of the 2002 International Symposium on Distributed Autonomous Robotic

Systems (DARS 2002), Piscataway, NJ. IEEE Press, pages 299–308.

Hu, X. & Eberhart, R. C. (2002). Adaptive particle swarm optimisation: detection and

response to dynamic systems, Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 2002), pp.l666-1670.

Hu, X. & Eberhart, R. C. (2002). Multi objective optimisation using dynamic neighborhood

particle swarm optimisation. Proc. of the IEEE/ CEC, pp. 1677-1681.

Huang H, Qin H, Hao Z & Lim A (2012). Example-based learning particle swarm

optimisation for continuous optimisation. Inf Sci, vol. 182 pp. 125–138.

Ikemoto Y. & Hasegawa, Y., Fukuda, T., Matsuda, K. Gradual spatial pattern formation of

homogeneous robot groupǁ, Information Sciences, Vol. 171, Issue 4, 13 May 2005,

Pages 431-445, ISSN 0020-0255, 10.1016/j.ins.2004.09.013.

Univ
ers

ity
 of

 M
ala

ya

244

J. C. Gilbert, P. Armand & S. Jan-Jégou (2000). A feasible BFGS interior point algorithm

for solving strongly convex minimization problems, SIAM J. Optimisation, vol. 11, pp.

199 – 222.

J. Ren, K.A. McIsaac, R.V. Patel, & T. M. Peters, (2006). A Potential Field Model Using

Generalized Sigmoid Functions, IEEE Trans. on Systems, Man, and Cybernetics, Part

B: Cybernetics, vol.37, pp.477–484, 2006.

Jadbadaie, A., Lin, J. & Morse, A.S. (2003). Coordination of Groups of Mobile Autonomous

Agents Using Nearest Neighbor Rules. IEEE Transactions on Automatic Control

48(6), 988–1001.

Jäger, M. & Nebel, B. (2002). Dynamic decentralized area partitioning for cooperative

cleaning robots, in Proceeding of IEEE International Conference on Robotics and

Automation, ICRA, Washington DC, USA, page 3577 – 3582.

Jatmiko, W., Sekiyama, K. & Fukuda, T. (2006). A Mobile Robots PSO-based for Odor

Source Localization in Dynamic Advection-Diffusion Environment. Proceedings of the

2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, October

9 – 15, Beijing, China. Page 4527 - 4532.

Jatmiko, W., Sekiyama, K. & Fukuda, T. (2007). A PSO-based mobile robot for odor source

localization in dynamic advection-diffusion with obstacles environment: theory,

simulation and measurement. IEEE Comput Intell Mag, 2(2):37–51.

Jeong, S., Hasegawa, S., & Shimoyama, K., & Obayashi, S. (2009). Development and

investigation of efficient GA/PSO-hybrid algorithm applicable to real-world design

optimisation, IEEE Computational Intelligence Magazine, pp. 36–44.

Jeschke, S., Liu, H. & Schilberg, D. (2011). Swarm Robot Flocking: An Empirical Study.

(Eds.): ICIRA 2011, Part II, LNAI 7102, pp. 495–504.

Jian, M., & Chen, Y. (2006). Introducing recombination with dynamic linkage discovery to

particle swarm optimisation, Proceedings of the Genetic and Evolutionary

Computation Conference, 85–86.

Univ
ers

ity
 of

 M
ala

ya

245

John H. Holland (1992). Adaptation in natural and artificial systems, MIT Press, Cambridge,

MA.

Johnson, C. A. Seidel, J. & Sofer, A. (2000). Interior-point methodology for 3-D PET

reconstruction,” IEEE Trans. Medical Imaging, vol. 19, no. 4, April 2000.

Jorge Nocedel & Stephen J. Wright (2006). Numerical Optimisation, 2nd Edition. Springer

Science + Business Media, LLC.

Jose, G. N., Alba, E. & Apolloni, J. (2009). Particle swarm hybridized with differential

evolution: black box optimisation benchmarking for noisy functions, in: Proceedings

of International Conference Genetic and Evolutionary Computation, pp. 2343–2350.

Juan R. V., Zhang, M. & Winston, S. (2011). A Performance Study on Synchronous and

Asynchronous Updates in Particle Swarm Optimisation, GECCO’11, July 12–16,

Dublin, Ireland. Pp.: 21 – 28.

Juang, C. F. (2004). A hybrid of genetic algorithm and particle swarm optimisation for

recurrent network design, IEEE Transactions On Systems, Man, And Cybernetics-Part

B: Cybernetics 34, pp. 997–1006.

Jun-jie, Xu. and Zhan-hong, Xin., (2005) "An extended particle swarm optimizer",

Proceedings of the 19th IEEE International Parallel and Distributed Processing

Symposium (IPDPS’05), 1530-2075/05.

Kao, Y. T., Zahara, E. & Kao, I. W. (2008). A hybridized approach to data clustering, Expert

Systems with Applications, 34, pp. 1754–1762.

Kao, Y.T., & Zahara, E. (2008). A hybrid genetic algorithm and particle swarm optimisation

for multimodal functions, Applied Soft Computing 8, pp. 849–857.

Kavehand, S. T. (2009). A particle swarm ant colony optimisation for truss structures with

discrete variables, Constructional Steel Research, 65, pp. 1558–1568.

Univ
ers

ity
 of

 M
ala

ya

246

Keisam Thoiba Meetei (2014). A Survey: Swarm Intelligence vs. Genetic Algorithm.

International Journal of Science and Research (IJSR), ISSN (Online): 2319-7064,

Impact Factor (2012): 3.358.

Kenned, J. & Eberhart, R. C. (1997). A discrete binary version of the particle swarm

algorithm, Int. IEEE Conf. on Systems, Man, and Cyber, Vol.5, pp.4104 – 4108.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimisation, in: Proceedings of the

International Conference on Neural Networks, vol. 4, IEEE Press, Piscataway, NJ, pp.

1942-1948.

Kennedy, J., Eberhart, R. & Shi, Y. (2001). Swarm Intelligence, Morgan Kaufmann

Publishers, US.

Kennedy, J., Eberhart, R. & Shi, Y. (2004) Swarm Intelligence, Morgan Kaufmann

Publishers, San Francisco, CA.

Khamsawang, S., Wannakarn, P. & Jiriwibhakorn, S. (2010). Hybrid PSO-DE for solving

the economic dispatch problem with generator constraints, in: Proceedings of the IEEE

International Conference on Computer and Automation Engineering, vol. 5, pp. 135–

139.

Khatib, O. (1968). Real time obstacle avoidance for manipulators and mobile robots,

International Journal of Rob. Res. 5 (1): 90-98.

Kim, D. H., Wang, H. & Shin, S. (2006). Decentralized Control of Autonomous Swarm

Systems Using Artificial Potential Function-Analytical Design Guidelines. J. Int.

Robot Systems 45, 36–394.

Kim, H., (2006). Improvement of genetic algorithm using PSO and Euclidean data distance,

International Journal of Information Technology 12, pp. 142–148.

Univ
ers

ity
 of

 M
ala

ya

247

Koh, B. I., Fregly, B. J., George, A. D. & Haftka, R. T. (2005). Parallel asynchronous

particles swarm for global biomechanical, Int Journal of Number Methods Eng., 67(4):

578–595.

Koo T.J. & Shahruz S.M. (2001). Formation of a group of unmanned aerial vehicles (UAVS).

Proceedings of the American Control Conference Arlington, VA June 25-27, pp. 69-

74.

Krieger, M. J. B., Billeter, J. B. & Keller, L. (2000). Ant-like Task Allocation and

Recruitment in Cooperative Robots, Nature, Vol. 406, pp. 992-995.

Krink, T., & Løvbjerg, M. (2002). The lifecycle model: combining particle swarm

optimisation, genetic algorithms and hill climbers, Proceedings of the Parallel

Problem Solving From Nature, pp. 621–630.

Krishnanand K.N. & Ghose, D. (2005). Formations of minimaist mobile robots using local-

templates and spatially distributed interactions, Robotics and Autonomous Systems,

Vol. 53, Issues 3–4, 31. Pages 194-213, ISSN 0921-8890, 10.1016/j.robot.2005.09.006.

Kuo, I. H., Horng, S. J., Kao, T. W., Lin, T. L., Lee, C. L., Terano, T. & Pan, Y. (2009). An

efficient flow-shop scheduling algorithm based on a hybrid particle swarm

optimisation model, Expert Systems with Applications, 36, pp. 7027–7032.

Laird, C. D., (2006). Structured Large-Scale Nonlinear Optimisation Using Interior-Point

Method: Applications in Water Distribution Systems. PhD Thesis Department of

Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Langer, J. S. (1980). Instabilities and pattern formation in crystal growth. Reviews of Modern

Physics, vol 52, no 1, pp 1-28.

Lee, T. Y. (2007b) Optimal Spinning Reserve for a Wind-Thermal Power System Using

EIPSO, IEEE/ TPWRS, Vol. 22, No.4, pp. 1612 – 1621.

Li, T., Xu, L. & Shi, X.W. (2008). A hybrid of genetic algorithm and particle swarm

optimisation for antenna design, PIERS online 4, pp. 56–60.

Univ
ers

ity
 of

 M
ala

ya

248

Liang J. J, Suganthan P. N & Deb K (2005). Novel composition test functions for numerical

global optimisation. In: Proceedings of the IEEE swarm intelligence symposium, pp 1–

14.

Liang, J. J., & Qin, A. K., Suganthan, P. N. & Baskar, S. (2006). Comprehensive Learning

Particle Swarm Optimizer for Global Optimisation of Multimodal Functions, IEEE

transactions on evolutionary computation, Vol. 10, No. 3, June, pp. 281 – 295.

Liang, J. J., Qin, A. K., & Baskar, S. (2006). Comprehensive Learning Particle Swarm

Optimizer for Global Optimisation of multimodal Functions, IEEE Trans. Evolutionary

Computation, Vol. 10, No. 3.

Liu, G., Li, T., Peng, Y. & Hou, X. (2005). The Ant Algorithm for Solving Robot Path

Planning Problem, Proceedings of the Third International Conference on Information

Technology and Applications (ICITA’05), IEEE.

Liu, H. Cai, Z. & Wang, Y. (2009). Hybridizing particle swarm optimisation with differential

evolution for constrained numerical and engineering optimisation, Applied Soft

Computing 10, pp. 629–640.

Liu, H., Abraham, A. & Zhang, W. (2007). A fuzzy adaptive turbulent particle swarm

optimisation, International Journal of Innovative Computing and Applications 1, pp.

39–47.

Liu, W., Winfield, A. F. T., Sa, J., Chen, J., & Dou, L. (2007). Towards energy optimisation:

emergent task allocation in a swarm of foraging robots. Adaptive Behavior, 15(3):289–

305.

Locatelli, M. (2003). A note on the Griewank test function, Journal of Global Optimisation,

25 (2), pp. 169-174, doi:10.1023/A:1021956306041

Luh, G. C. & Liu, W. W. (2004). Reactive Immune Network Based Mobile Robot

Navigation, In G. Nicosia, V. Cutello, P. J. Bentley, and J. Timmis, editors, Proceeding

of the Third Conference ICARIS, Springer. pp. 119 – 132.

Univ
ers

ity
 of

 M
ala

ya

249

Luke Michael Blohm Winternitz (2010). Primal-Dual Interior-Point Algorithms for Linear

Programs with Many Inequality Constraints. Dissertation submitted to the Faculty of

the Graduate School of the University of Maryland, College Park in partial fulfillment

of the requirements for the degree of Doctor of Philosophy.

Luo, J. & Zhang, Z. (2006). Research on the Parallel Simulation of Asynchronous Pattern of

Particle Swarm Optimisation, Computer Simulation, 22(6):78–70.

Mahanti, G.K. & Chakrabarty, A. (2007). Phase-only and amplitude-phase synthesize of

dual- pattern linear antenna arrays using floating-point genetic algorithms, Progress in

Electromagnetics Research, PIER 68 pp. 247–259.

Mantas Paulinas & Andrius Ušinskas (2007). A survey of genetic algorithms applications for

image enhancement and segmentation. Information technology and control, Vol.36,

No.3, pp. 278 - 284.

Marco Dorigo & Thomas Stützle (2004). Ant Colony Optimisation. A Bradford Book, The

MIT Press, Cambridge, Massachusetts, London, England.

Martinoli, A., Ijspeert, A. J. & Mondada, F. (1999). Understanding Collective Aggregation

Mechanisms: From Probabilistic Modeling to Experiments with Real Robots, Robotics

and Autonomous Systems, Vol. 29, pp. 51-63.

Mataric, M. J., Nilsson, M. & Simsarian, K. T. (1995). Cooperative Multirobot Box-Pushing,

IEEE/RSJ International Conference on Intelligent Robots and Systems.

Matlab Central (2013). Retrieved from http://www.mathworks.com/matlabcentral/file

exchange/ 7506-particle-swarm-optimisation-toolbox/content/testfunctions/

Mehrotra, S. (1992). On the implementation of a primal-dual interior point method, SIAM

Journal on Optimisation, vol. 2, pp. 575-601.

Univ
ers

ity
 of

 M
ala

ya

http://www.mathworks.com/matlabcentral/file%20exchange/%20%207506-particle-swarm-optimization-toolbox/content/testfunctions/
http://www.mathworks.com/matlabcentral/file%20exchange/%20%207506-particle-swarm-optimization-toolbox/content/testfunctions/

250

Mei Wang, Zhiyong Su, Dawei Tu, & Xichang Lu (2013). A Hybrid Algorithm Based on

Artificial Potential Field and BUG for Path Planning of Mobile Robot. IEEE 2nd

International Conference on Measurement, Information and Control, pp 1393 - 1398.

Meinhardt, H. (1982). Models of biological pattern formation, volume 6. Academic Press,

London, UK.

Mendes, R., Kennedy, J. & Neves, J. (2004). The fully informed particle swarm: Simpler,

may be better, IEEE Transactions on Evolutionary Computation, 8(3): page 204–210.

Miao, H. (2009). Robot Path Planning in Dynamic Environments Using a Simulated

Annealing Based-Approach, MSc. Thesis Faculty of Science and Technology,

Queensland University of Technology.

Minsky, M. (1967). Computation: Finite and Infinite Machines. Prentice-Hall, Upper Saddle.

Mo, W., Guan, S. U. & Puthusserypady, S. K. (2007). A novel hybrid algorithm for function

optimisation: particle swarm assisted incremental evolution strategy, Studies in

Computational Intelligence 75, pp. 101–125.

Mohammadi, A., & Jazaeri, M. (2007). A hybrid particle swarm optimisation-genetic

algorithm for optimal location of SVC devices in power system planning, in:

Proceedings of 42nd International Universities Power Engineering Conference,

pp.1175–1181.

Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M.

(2011). Majority-rule opinion dynamics with differential latency: a mechanism for self-

organized collective decision-making. Swarm Intelligence, 5(3–4):305–327.

Murthy, R., Arumugam, M.S. & Loo, C.K. (2009). Hybrid particle swarm optimisation

algorithm with fine tuning operators, International Journal of Bio-Inspired

Computation 1, pp. 14–31.

Univ
ers

ity
 of

 M
ala

ya

251

Navarro I. & Matía F. (2013). An Introduction to Swarm Robotics. Hindawi Publishing

Corporation ISRN Robotics, Volume 2013, Article ID 608164, 10 pages.

Newton, I. (2010). The Migration Ecology of Birds. Elsevier, Amsterdam, Netherlands.

Nolfi, S. & Floreano, D. (2004). Evolutionary Robotics: The Biology, Intelligence, and

Technology of Self-Organizing Machines. Intelligent Robots and Autonomous Agents.

MIT Press, Cambridge, MA.

Omran, M., Engelbrecht, A.P., & Salman, A. (2008). Bare bones differential evolution,

European Journal of Operational Research 196, pp. 128–139.

Panigrahi, B. K., Lim, M. H., & Shi, Y. (2011). Handbook of Swarm Intelligence: Concepts,

Principles and Applications, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-

17389-9, pp. 119-132.

Panigrahi, B. K., Shi, Y. & Lim, M. H. (2011). Handbook of Swarm Intelligence: Concepts,

Principles and Applications, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-

17389-9, pp.119-132.

Pant, M. Thangaraj, R. & Abraham, A. (2009). DE-PSO: a new hybrid meta-heuristic for

solving global optimisation problems, New Mathematics and Natural Computation.

Pant, M., Thangaraj, R. & Abraham, A. (2008). Particle swarm optimisation using adaptive

mutation, in: Proceedings of 19th International Conference on Database and Expert

Systems Application, Italy, pp. 519–523.

Park, J. B., Shin, J. R., Lee, K. Y. & Jeong, Y. W. (2010). An Improved Particle Swarm

Optimisation for Nonconvex Economic Dispatch Problems, IEEE Transactions on

Power Systems, Vol. 25, No. 1, pp. 156- 166.

Parker C.A.C. & Zhang, H. (2006). Collective Robotic Site Preparation. Adaptive Behavior.

Vol.14, No. 1, 2006, pp. 5-19.

Payton, D., Daily, M., Estowski, R., Howard, M. & Lee, C. (2001). Pheromone Robotics,

Vol. 11, No. 3, November.

Univ
ers

ity
 of

 M
ala

ya

252

Peleg, D. (2005). Distributed Coordination Algorithms for Mobile Robot Swarms: A New

Directions and Challenges, IWDG 2005, LNCS 3741, Springer-Verlag Berlin

Heidelberg, page 1-12.

Perez, J. R. & Basterrechea, J. (2005). Particle swarm optimisation and its application to

antenna far field-pattern prediction from planar scanning, Microwave and optical

technology letters, 44(5):398–403.

Pinar, C. & Erkan B. (2013). A conceptual comparison of the Cuckoo-search, particle swarm

optimisation, differential evolution and artificial bee colony algorithms. Artif Intell Rev,

39:315-346, DOI 10.1007/s10462-011-9276-0.

Poli, R., Langdon, W. B. & Holland, O. (2005b). Extending particle swarm optimisation via

genetic programming. In M. Keijzer et al. (Eds.), Lecture notes in computer science:

Vol. 3447. Proc. of the 8th European conf. on genetic programming, Springer, pp. 291–

300.

Premalatha, K., & Natarajan, A.M. (2009). Discrete PSO with GA operators for document

clustering, International Journal of Recent Trends in Engineering 1, pp. 20–24.

Pugh, J. & Martinoli, A. (2007). Inspiring and modeling multi-robot search with particle

swarm optimisation, in IEEE swarm intelligence symposium, Honolulu, USA, pp 332–

339.

Pugh, J., Segapelli, L. & Martinoli, A. (2006). Applying aspects of multi robot search to

particle swarm optimisation, in Proceedings of the 5th international workshop on ant

colony optimisation and swarm intelligence, Brussels, Belgium, pp. 506–507.

Quintana, V. H. & Torres, G. L. (1997). Introduction to Interior-Point Methods, IEEE PES

task Force on Interior-Point Methods Applications to Power Systems, Available online

at http://wathvdc3.uwaterloo.ca/~iee-ipm.

Univ
ers

ity
 of

 M
ala

ya

http://wathvdc3.uwaterloo.ca/~iee-ipm

253

Rekleitis, I., Dudek, G. & Milios, E. (2001). Multi-robot collaboration for robust exploration,

Annals of Mathematics and Artificial Intelligence, 31 (1-4) 7-14.

Renegar, J. (2001). A Mathematical View of Interior-Point Methods in Convex Optimisation.

SIAM.

Reynolds, C. (1987). Flocks, herds and schools: A distributed behavioral model. In Stone,

M. C., editor, SIGGRAPH ’87: Proceedings of the 14th annual conference on computer

graphics and interactive techniques, New York, NY. ACM Press, pages 25–34.

Richard H. B., Jorge N., & Richard A. W (2005). “Feasible Interior Methods Using Slacks

for Nonlinear Optimisation.” Retrieved from

http://users.eecs.northwestern.edu/~rwaltz/articles/ feasible.pdf

Roberto B., Mauro B. & Srinivas P. (2005). Do Not Be Afraid of Local Minima: Affine Shaker

and Particle Swarm. Department of Information and Communication Technology,

Universita Degli Studi Di Trento. Retrieved from http://dit.unitn.it/

Ru, N., & Jianhua, Y. (2008). A GA and particle swarm optimisation based hybrid algorithm,

in: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1047–1050.

Rusman, H. (2013). An Efficient Particle Swarm Optimisation Technique for Solving the

Non-convex Economic Dispatch Problems. International Journal of Engineering

Sciences, 2(5).

Ružica, M. G., Dragan, I. O., & Branko, M. K. (2007). Particle Swarm Optimisation

Algorithm and Its Modifications Applied to EM Problems, IEEE, pp. 427- 430.

Şahin, E. Swarm Robotics (2005). From Sources of Inspiration to Domains of Application.

In: Şahin, E., Spears, W. M. (eds.) Swarm Robotics (2004). LNCS, Springer,

Heidelberg, vol. 3342, pp. 10–20.

Univ
ers

ity
 of

 M
ala

ya

http://users.eecs.northwestern.edu/~rwaltz/articles/%20feasible.pdf
http://dit.unitn.it/

254

Samuel, R., Nikolause, C. & Alcherio, M. (2009). Collaborative coverage using a swarm of

networked miniature robots, Journal of Robotics and Autonomous Systems, vol. 57.

Page 517 – 525.

Schutte, J. (2001). Particle Swarms in Sizing and Global Optimisation. Master’s thesis,

University of Pretoria, South Africa.

Sedlaczek K. & Eberhard P. (2005). Constrained Particle Swarm Optimisation of Mechanical

Systems, 6th World Congresses of Structural and Multidisciplinary Optimisation, Rio

de Janeiro, 30 May - 03 June, Brazil.

Settles, M., & Soule, T. (2005). Breeding swarms: a GA/PSO hybrid, Proceedings of Genetic

and Evolutionary Computation Conference, 161–168.

Sha, D.Y., & Hsu, C.Y. (2006). A hybrid particle swarm optimisation for job shop scheduling

problem, Computers & Industrial Engineering 51, pp. 791–808.

Shelokar, P.S., Siarry, P., Jayaraman, V. K. & Kulkarni, B.D. (2007). Particle swarm and ant

colony algorithms hybridized for improved continuous optimisation, Applied

Mathematics and Computation 188, pp. 129–142.

Shen, Q., Shi, W. M. & Kong, W. (2007). Hybrid particle swarm optimisation and tabu search

approach for selecting genes for tumor classification using gene expression data,

Computational Biology and Chemistry, 32, pp. 53–60.

Shengli Ai & Yude Wang (2011). Application of Improved Genetic Algorithms in Structural

Optimisation Design. International Conference, ICCIC 2011, Wuhan, China,

September 17-18, 2011. Proceedings, Part VI pp 480-487. DOI 10.1007/978-3-642-

24097-3_72

Shi, Y. & Eberhart, R. (2001). Particle Swarm Optimisation with Fuzzy Adaptive Inertia

Weight, Proc. of the Workshop on Particle Swarm Optimisation. Indianapolis, IN.

Univ
ers

ity
 of

 M
ala

ya

255

Shi, Y. & Eberhart, R. C. (1998). Parameter Selection in particle swarm optimisation, In

Proceedings of the 7th International Conference on Evolutionary Programming, pp.

591 – 600.

Shunmugalatha, A. & Slochanal, S.M.R. (2008). Optimum cost of generation for maximum

loadability limit of power system using hybrid particle swarm optimisation,

International Journal of Electrical Power & Energy Systems, 30, pp. 486–490.

Simin, M. O., Zeng, J. & Weibin, X. U. (2011). An Extended Particle Swarm Optimisation

Algorithm Based On Self-Organization Topology Driven By Fitness. Journal of

Computational Information Systems, pp. 4441-4454. Available at

http://www.Jofcis.com

Simon Haykin (1999). Neural Networks, A Comprehensive Foundation. Prentice Hall, 2nd

edition.

Sofer, A., Johnson, C. A., & Seidel, J. (2000). Interior-point methodology for 3-D PET

reconstruction,” IEEE Trans. Medical Imaging, vol. 19, no. 4, 271-285.

Song, S., Kong, L., Gan, Y. & Su, R. (2008). Hybrid particle swarm cooperative optimisation

algorithm and its application to MBC in alumina production, Progress in Natural

Science, 18 pp. 1423–1428.

Spector, L., Klein, J., Perry, C. & Feinstein, M. D. (2003). Emergence of collective behavior

in evolving populations of flying agents. In E. Cantu-Paz et al. editor. Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO-2003), Berlin,

Germany, pp.61-73.

Stenz, A. (1994). Optimal and Efficient Path Planning for Partially-known Environments,

Proceedings of the IEEE International Conference on Robotics and Automation, pages

3310 – 3317.

Stephanie Forrest & Melanie Mitchell (1993).What Makes a Problem Hard for a Genetic

Algorithm? Some Anomalous Results and Their Explanation. Machine Learning 13,

285-319, 1993.

Univ
ers

ity
 of

 M
ala

ya

http://www.jofcis.com/

256

Suarez, J. & Murphy, R. (2011). A survey of animal foraging for directed, persistent search

by rescue robotics, in: Proceedings of the IEEE International Symposium on Safety,

Security and Rescue Robotics, Kyoto, Japan, pp. 314–320.

Suganthan P. N, Hansen N, Liang J. J, Deb K, Chen Y. P, Auger A & Tiwari S (2005).

Problem definitions and evaluation criteria for the CEC 2005 special session on real-

parameter optimisation. In: Proceedings of the congress on evolutionary computation,

pp 1–50.

Sumpter, D. J. T. (2010). Collective Animal Behavior. Princeton University Press, Princeton,

NJ.

Sun, J., Lai, C. H. & Jun, X. J. (2012). Particle Swarm Optimisation: Classical and Quantum

Perspectives, CRC press, Taylor and Francis Group. ISBN: 978-1-4398-3576-0, pp 60-

61.

Talbi, H., & Batouche, M. (2004). Hybrid particle swarm with differential evolution for

multimodal image registration, Proceedings of the IEEE International Conference on

Industrial Technology, vol. 3, pp. 1567–1573.

Talukder, S. (2011). Mathematical modelling and applications of particle swarm

optimisation. Master's thesis, Blekinge Institute of Technology, The School of

Engineering, 2011.

Tang, Q. & Eberhard, P. (2011). A PSO-based algorithm designed for a swarm of mobile

robots, Journal of Industrial Application. Struct Multidisc Optim. vol. 44, page 483-

498.

Ting, T.O., Wong, K.P. & Chung, C.Y. (2008). Hybrid constrained genetic algorithm/particle

swarm optimisation load flow algorithm, in: IET Proceedings of Generation,

Transmission & Distribution, vol. 2, pp. 800–812.

Univ
ers

ity
 of

 M
ala

ya

257

Torn, A. Z. (1989). Global Optimisation, Lecture Notes in Computer Science, vol. 350,

Springer-Verlag.

Torres, G. L., & Quintana, V. H. (1997). Introduction to Interior-Point Methods, IEEE PES

task Force on Interior-Point Methods Applications to Power Systems.

Trivedi, N., Lai, W. & Zhang, Z. (2001). Optimizing Windows Layout by Applying a Genetic

Algorithm, Proceedings of the 2001 Congress on Evolutionary Computation, Seoul,

Korea, pp. 431- 435.

Valdez, F., Melin, P. & Castillo, O. (2009). Evolutionary method combining particle swarm

optimisation and genetic algorithms using fuzzy logic for decision making, in:

Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2114–2119.

Vandenberghe, L. & Boyd, S. (2004). Convex Optimisation. (1st edition). Cambridge

University Press, New York.

Vanneschi, L. D., Codecasa, G. & Mauri (2011). A Comparative Study of Four Parallel and

Distributed PSO Methods. New Generation Computing, Ohmsha, Ltd. and Springer,

vol 29, page 129 – 161.

Venayagomoorthy, G. K., Hernandez, J. C., Harley, R. G., Valle, Y. D., & Mohagheghi, S.

(2008). Particle swarm optimisation: basic concepts, variants and applications in power

systems. IEEE Trans Evol. Comput, 12(2), 171 – 195.

Vicsek, T., Czirok, A., Jacob, E. B., Cohen, I. & Schochet, O. (1995). Novel Type of Phase

Transitions in a System of Self-Driven Particles. Physical Review Letters, 75, 1226–

1229.

Victoire, T.A.A. & Jeyakumar, A.E. (2004). Hybrid PSO–SQP for economic dispatch with

valve-point effect, Electric Power Systems Research 71, pp. 51–59.

Wang H, Sun H, Li C. H., Rahnamayan S, & Pan J. S. (2013) Diversity enhanced particle swarm

optimization with neighborhood search. Inf Sci, vol. 223, pp. 119–135

Univ
ers

ity
 of

 M
ala

ya

258

Wang H F, Moon I, Yang S X & Wang D W (2012). A memetic particle swarm optimisation

algorithm for multimodal optimisation problems. Inf Sci, vol. 197 pp. 38–52.

Ward, C. R., Gobet, F. & Kendall, G. (2001). Evolving collective behavior in an artificial

ecology. Artificial Life, Vol. 7, No. 2, 2001, pp.191-209.

Wehenkel, L., & Glavic, V. (2004). Interior Point Methods: A Survey, Short Survey of

Applications to Power Systems, and Research Opportunities. Technical Report.

University of Liège Electrical Engineering and Computer Science Department Sart

Titman B-28 4000 Liege, Belgium.

Wei, Z. He & Pei, W. (2002). Swarm directions embedded in fast evolutionary programming,

in: Proceedings of the World Congress on Computational Intelligence, vol. 2, pp.

1278–1283.

Weigel, T., Gutmann, J. S., Dietl, M., Kleiner, A. & Nebel, B. (2002). CS Freiburg:

Coordinating Robots for Successful Soccer Playing”, Special Issue on Advances in

Multi-Robot Systems, T. Arai, E. Pagello, and L. E. Parker, Editors, IEEE Trans. on

Robotics and Automation, Vol. 18, No.5, pp. 685-699.

Winternitz, L. M. B. (2010). Primal-Dual Interior-Point Algorithms for Linear Programs with

Many Inequality Constraints. Dissertation submitted to the Faculty of the Graduate

School of the University of Maryland, College Park in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Wright, S. J. (1996). Primal-Dual Interior-Point Methods, SIAM, Philadelphia.

Xie, X. F., Zhang, W. J. & Yang, Z. L. (2002b). Adaptive Particle Swarm Optimisation on

Individual Level, Int. Conf. On Signal Processing (ICSP), pp: 1215-1218.

Xu, G. (2013). An adaptive parameter tuning of particle swarm optimization algorithm. Appl

Math Comput, vol. 219, pp.4560–4569

Univ
ers

ity
 of

 M
ala

ya

259

Xu H, Guan H, Liang A & Yan X. (2010). A Multi-robot Pattern Formation Algorithm Based

on Distributed Swarm Intelligence. 2010 Second International Conference on

Computer Engineering and Applications. doi:10.1109/iccea.2010.22

Xu, H., Guan, H., Liang, A., & Yan X. (2010). A Multi-Robot Pattern Formation Algorithm

Based on Distributed Swarm Intelligence. Second International Conference on Computer

Engineering and Applications, IEEE. DOI 10.1109/ICCEA.2010.22, pp. 77-75.

Xu, W. & Gu, X. (2009). A hybrid particle swarm optimisation approach with prior crossover

differential evolution, in: Proceedings of ACM/SIGEVO Summit on Genetic and

Evolutionary Computation, pp. 671–678.

Xue, S. D., Zhang, J. H. & Zeng, J. C. (2009). Parallel asynchronous control strategy for

target search with swarm robots, Int Journal of Bio-Inspired Comput (IJBIC) 1(3):151–

163.

Xue, S., Li, J., Zeng, J., He X. & Zhang, G. (2011). Synchronous and Asynchronous

Communication Modes for Swarm Robotics Search, in Mobile Robots – Control

Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator

Training, J. Bedkowski, Editor, Intech. Retrieved from http://www.intechopen.com/

Xue, S., Zan, Y., Zeng, J., Xue, Z., & Du, J. (2012). Group Decision Making Aided PSO-

Type Swarm Robotic Search, International Symposium on Computer, Consumer and

Control, IEEE 2012. Page 785 – 788.

Yamauchi, B. (1999). Decentralized Coordination for Multi-robot Exploration, Robotics and

Autonomous Systems, Vol. 29, No. 1, pp. 111-118.

Yamauchi, B. (1999). Decentralized Coordination for Multi-robot Exploration, Robotics and

Autonomous Systems, Vol. 29, No. 1, pp. 111-118.

Univ
ers

ity
 of

 M
ala

ya

http://www.intechopen.com/

260

Yang, Chen, Y., & Zhao, Z. (2007). A hybrid evolutionary algorithm by combination of PSO

and GA for unconstrained and constrained optimisation problems, in: Proceedings of

the IEEE International Conference on Control and Automation, pp. 166–170.

Yang, X. S. (2012). Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems,

Theory and New Applications of Swarm Intelligence, Dr. Rafael Parpinelli (Ed.),

ISBN: 978-953-51-0364-6, InTech Available from:

http://intechopen.com/books/theory-and-new-applications-of-swarm-

intelligence/swarm-based-metaheuristic-algorithms-and-no-free-lunch-theorems

Yang, Y., Xiong, N., Chong, N.Y. & Défago, X. (2008). A Decentralized and Adaptive

Flocking Algorithm for Autonomous Mobile Robots. In: the 3rd International

Conference on Grid and Pervasive Computing Workshops, IEEE Press. pp. 262–268.

Yao, X., Bullinaria, J. A., Rowe, J., Tino, P. & Kaban, A. (2004). Parallel Problem Solving

from Nature, PPSN VIII, 8th International Conference Birmingham, UK, September

Proceedings.

Yukiko Yamauchi (2013). A survey on pattern formation of autonomous mobile robots:

asynchrony, obliviousness and visibility, ELC International Meeting on Inference,

Computation, and Spin Glasses (ICSG2013), Journal of Physics: Conference Series

473 (2013) 012016, doi:10.1088/1742-6596/473/1/012016.

Zahara, Y. T. Kao (2009). Hybrid Nelder–Mead simplex search and particle swarm

optimisation for constrained engineering design problems, Expert Systems with

Applications, 36, pp. 3880–3886.

Zeng, J., Hu, J. & Jie, J. (2006). Adaptive Particle Swarm Optimisation Guided by

Acceleration Information, Proc. IEEE/ ICCIAS, Vol.1, pp.351-355.

Zhan Z. H, Zhang J, Li Y & Shi Y. H (2011). Orthogonal learning particle swarm

optimisation. IEEE Trans Evol Comput 15:832–847.

Zhang, C., Ning, J., Lu, S. Ouyang, D. & Ding, T. (2009). A novel hybrid differential

evolution and particle swarm optimisation algorithm for unconstrained optimisation,

Operations Research Letters 37 (2009) 117–122.

Univ
ers

ity
 of

 M
ala

ya

http://intechopen.com/books/theory-and-new-applications-of-swarm-intelligence/swarm-based-metaheuristic-algorithms-and-no-free-lunch-theorems
http://intechopen.com/books/theory-and-new-applications-of-swarm-intelligence/swarm-based-metaheuristic-algorithms-and-no-free-lunch-theorems

261

Zhang, N. & Wunsch, D. (2003a). Fuzzy logic in collective robotic search, in the 12th IEEE

International Conference on Fuzzy Systems, Vol. 2, page 1471 – 1475.

Zhang, N. & Wunsch, D. (2003b). A comparison of dual heuristic programming (DHP) and

neural network based stochastic optimisation approach on collective robotic search

problem, In Proceedings of the International Joint Conference on Neural Networks,

vol. 1, page 248 – 253.

Zhang Yudong, Wu Lenan, & Wang Shuihua (2013). “UCAV path planning by fitness-

scaling adaptive chaotic particle swarm optimisation,” Mathematical Problems in

Engineering, vol. 2013, page 1 – 9, Article ID 705238.

Zhao X. (2010). A perturbed particle swarm algorithm for numerical optimization. Appl Soft

Comput., 10(1), pp. 119–124

Zheng, X., Jain, S., Koenig, S. & Kempe, D. (2005). Multi-robot forest coverage, in

Proceeding of the IEEE/RS. International Robots and Systems, IROS, Edmonton,

Alberta, Canada. Page 3852 – 3857.

Univ
ers

ity
 of

 M
ala

ya

262

APPENDIX A

LIST OF PUBLICATIONS AND PAPERS

1. Dada, E. G., & Ramlan, E. I. (2016). Understanding the limitations of particle swarm

algorithm for dynamic optimisation tasks. ACM Computing Survey. Status (Accepted

for publication).

2. Dada, E. G., & Ramlan, E. I. (2016). pdPSO: The Fusion of Primal-Dual interior point

method and particle swarm optimisation algorithm. Malaysian Journal of Computer

Science. Status (Under Review).

3. Dada, E. G., & Ramlan, E. I. (2016). Improving particle swarm optimization through

better localization of dynamic search spaces: A primal-dual asynchronous PSO

(APSO) as cooperative movement control algorithm. Applied Soft Computing. Status

(Under Review).

Conference Papers

1. Dada, E. G., & Ramlan, E. I. (2015). Primal-Dual Interior Point Method Particle Swarm

Optimisation (pdipmPSO) Algorithm. In: 3rd Int'l Conference on Advances in

Engineering Sciences & Applied Mathematics (ICAESAM’2015), London (UK), pp.

117-124. (Published).

 Best oral presenter award

2. Dada, E. G., & Ramlan, E. I. (2015). A Hybrid Primal-Dual-PSO (pdipmPSO)

Algorithm for Swarm Robotics Flocking Strategy. The Second International

Conference on Computing Technology and Information Management (ICCTIM2015).

Malaysia, IEEE. (Published).

Univ
ers

ity
 of

 M
ala

ya

