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ABSTRACT 

Research in Particle Swarm Optimisation and its applications to real world 

problems has become a very interesting field in recent years. Particle Swarm Optimisation 

(PSO) despite its simplicity, ease of implementation and efficiency still has some flaws, 

which include its tendency to premature convergence and inability to escape local 

minima. To address these weaknesses, many variants of PSO have been proposed in the 

literature. Also, many of these PSO algorithms employed hybrid methods that integrate 

other optimisation algorithms with the standard PSO. It is demonstrated in the literature 

that methods that hybridize PSO and some other optimisation algorithm have a better 

performance over the standard PSO algorithm. The Primal Dual method have been used 

to solve many optimisation problems. 

We proposed the Primal-Dual Particle Swarm Optimisation (pdPSO) and Primal-

Dual Asynchronous Particle Swarm Optimisation (pdAPSO) to resolve the shortcomings 

of the standard PSO without the limitations of the IPM methods. To evaluate the 

performance of our new algorithms, we first compared the performance of pdPSO with 

IPM and PSO using nine (9) different dynamic benchmark functions. Our results revealed 

that pdPSO performed better than both the conventional PSO algorithm and the IPM 

method. The proposed algorithm is not susceptible to premature convergence, and can 

handle local minima avoidance better when compared to conventional PSO. 

Hence, pdPSO has the potential to perform better than many other PSO variants. 

Secondly, we compared the performance of our new algorithm pdAPSO with APSO, and 

PSO using 7 benchmark functions. Optimisation results reveal that pdAPSO offers similar 

(or in many test cases better) solutions than the other PSO variants to which we compared. 

Thirdly, we make a comparison between the performance 

of pdPSO and pdAPSO. Finally, we used our hybrid algorithms (pdPSO and pdAPSO) to 

solve the flocking and pattern formation problem in swarm robotics. Our simulation result 
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provides a clear indication of the effectiveness of the algorithm. The hybrid algorithms 

perform better in terms of precision, rate of convergence, steadiness, robustness and 

flocking capability for homogenous set of swarm robots compared to some other variants 

of PSO.   

We also compared the performance of pdAPSO and pdPSO with 9 state of the art 

PSO algorithms using 12 benchmark functions. Our proposed algorithms have mean 

dependability of 80.4% for pdAPSO and 69.69% for pdPSO. Also, pdAPSO and pdPSO 

is a better convergence speed compared to the other 9 algorithms. For instance, on 

Rosenbrock function, the mean FEs of 8938, 6786, 10,080, 9607, 11,680, 9287, 23,940, 

6269 and 6198 are required by PSO-LDIW, CLPSO, pPSA, PSOrank, OLPSO-G, 

ELPSO, APSO-VI, DNSPSO and MSLPSO respectively to get to the global optima.  

However, pdPSO and pdAPSO only use 2997 and 2124 respectively which shows that 

pdAPSO is the fastest convergence speed and closely followed by pdPSO. In summary, 

pdPSO and pdAPSO uses the lowest number of FEs to arrive at acceptable solutions for 

all the 12 benchmark functions.  
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ABSTRAK 

Penyelidikan dalam “Particle Swarm Optimisation” dan aplikasinya kepada 

masalah dunia sebenar telah menjadi satu bidang yang sangat menarik sejar kebelakangan 

ini. Antara teknik-teknik pengoptimuman yang wujuo, “Particle Swarm Optimisation” 

(PSO) adalah salah satu yang paling popular kerana kesederhanaan nya mudah dilaksana 

kan dan kecekapan. Algoritma tersebut Bagaimanapun, algorithma ini mempunyai 

beberapa kelemahan, seperti kecenderungan untuk penumpuan pra-matang dan 

ketidakupayaan untuk melarikan diri dari terperangkap bi dalam minima tempatan 

Ia juga telah digunakan untuk menyelesaikan fungsi kos yang berbeza tak linear 

dan bukan licin yang tersebar luas dalam reka bentuk rangkaian, pembinaan semula imej 

perubatan dan kejuruteraan industri. Ianya mempunyai keupayaan untuk menangani 

masalah pelbagai dimensi pengan berkesan. Kami berhasrat untuk menggabungkan 

kedua-dua algoritma ini untuk menghasilkan satu set algoritma PSO hibrid yang akan 

dapat menyelesaikan masalah-masalah yang dinyatakan di atas yang berkaitan dengan 

PSO. Kami mencadangkan primitif-Dual “Particle Swarm Optimisation” (pdPSO) dan 

“Primal-Dual Asynchronous Particle Swarm Optimisation” (pdAPSO) untuk 

menyelesaikan kelemahan PSO asli dan juga tanpa batasan kaedah IPM tanpa batasan. 

Integrasi ini melahirkan sistem yang mempunyai kapasiti yang besar untuk mengelakkan 

penumpuan pra-matang, dan mencegah zarah daripada terperangkap di dalam minimum 

tempatan. kami menguji prestasi pdPSO dengan IPM dan PSO menggunakan sembilan 

(9) fungsi penanda aras yang dinamik nya berbeza hasil eksperimen. Keputusan kami 

menunjukkan bahawa pdPSO menunjukkan prestasi yang lebih baik berbanding kedua-

dua algoritma PSO asal dan kaedah IPM. Algoritma yang dicadangkan tidak mudah 

terdedah kepada penumpuan pra-matang, dan boleh mengendalikan perangkap minima 

tempatan dengan lebih baik berbanding dengan PSO asal. Oleh itu, hipotesis pdPSO 

mempunyai potensi untuk berfungsi dengan lebih baik berbanding variasi PSOs dapat 
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dilaksan akan. Kedua, kami berbanding kan prestasi pdAPSO dengan APSO, dan PSO 

menggunakan tujuh fungsi penanda aras. Algoritma yang dicadangkan terbukti 

mempunyai kapasiti yang besar untuk mengelakkan penumpuan pra-matang, dan 

mengatasi kutukan zarah terperangkap di dalam minimum tempatan. Akhir sekali, kami 

menggunakan algoritma hibrid tersebut (pdPSO dan pdAPSO) untuk menyelesaikan 

masalah pengelompakan di dalam robotik selara berkurumun. Hasil simulasi kami 

memerikan petunjuk yang jelas berkenaan keberkesanan algoritma yang dicadangkan. 

Algoritma hibrid adalah lebih baik dari segi ketepatan, kadar penumpuan, keunggulan, 

keteguhan dan keupayaan pengelompokan untuk set homogen robot sekumpulan 

berbanding dengan beberapa varian lain PSO. Di samping itu, algoritma kami juga 

digunakan untuk menyelesaikan masalah pembentukan corak robotik secara berkurumun. 

Kami juga membandingkan kinerja pdAPSO dan pdPSO dengan 9 negara dari algoritma 

PSO seni menggunakan 12 fungsi patokan. algoritma yang diusulkan kami memiliki 

mean keandalan 80,4% untuk pdAPSO dan 69,69% untuk pdPSO. Juga, pdAPSO dan 

pdPSO adalah kecepatan konvergensi yang lebih baik dibandingkan dengan 9 algoritma 

lainnya. Misalnya, pada fungsi Rosenbrock, FES rata-rata 8938, 6786, 10080, 9607, 

11680, 9287, 23940, 6269 dan 6198 yang ditetapkan oleh PSO-LDIW, CLPSO, PPSA, 

PSOrank, OLPSO-G, ELPSO, APSO-VI , DNSPSO dan MSLPSO masing-masing untuk 

sampai ke optima global. Namun, pdPSO dan pdAPSO hanya menggunakan 2997 dan 

2124 masing-masing yang menunjukkan bahwa pdAPSO adalah kecepatan konvergensi 

tercepat dan diikuti oleh pdPSO. Singkatnya, pdPSO dan pdAPSO menggunakan jumlah 

terendah FES untuk sampai pada solusi yang dapat diterima untuk semua 12 fungsi 

patokan. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

This thesis is a research work on the fusion of Particle Swarm Optimisation (PSO) 

and Interior Point Methods for Swarm Robotics. The proposed technique uses the Interior 

Point Methods to choose the initial feasible path for the robots in the search space. Then 

Particle Swarm Optimisation is used to find the optimal path for the robots in the swarm. 

Interior Point Methods provides the coordination between step computation and the bounds 

to make the robots navigate through the search space that the robot will navigate. This chapter 

introduces some background information on swarm robots; the research trend and motivation 

for the thesis, the problem statement, the aim and objectives of the research, the significance 

of the research; and the expected contribution of the research.  

 

1.2 Background of the Research 

The ability of a robot to locate the safest and shortest path is a very crucial factor to 

the success of any robotic system. The need to make the robot navigate through its 

environment without colliding with any obstacle during the course of finding its target is an 

important research area in robotics. The need to reduce computation cost, computation time, 

energy consumption, and delay in communication requires that more efficient and robust 

algorithms be developed. Several techniques have been developed to solve these problems. 

Examples of algorithms used for cooperative control of swarm robotic movement are the 

artificial potential field (Chanclou & Luciani, 1996), cell decomposition (Dušan, Mario & 

Mirjana, 2009), visibility graph (de Berg, Cheong , van Kreveld & Overmars, 2008), voronoi 

diagrams (O’Dunlaing & Yap, 1982), grid (Payton, Rosenblatt & Keirsey, 1993), genetic 

algorithm (Gao et al., 2008), fuzzy logic algorithm (Saboori,  Menhaj & Karimi, 2006), and 
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neural network techniques (Yang & Luo 2004). Each of the techniques mentioned above has 

its own advantages and disadvantages. Conventionally, the major problems in swarm robots 

are the complexity of computation, the inability of the robots to escape from the local optima, 

and low ability of robots to adapt to the environment (Zheng, Jain, Koenig & Kempe, 2005). 

The artificial potential force (APF) by (Khatib, 1968) is one of the few algorithms 

that have been used for real time robot applications. It provides a simple yet effective way to 

plan a path for a robot. Navigating the robot through the use a potential field implies that 

there is no prior knowledge of the pathway of the robot, neither was there any computation 

in advance. This enables the robot to automatically select the right way to reach their target 

(Dunias, 1996). Recently, the efficiency of the Artificial Potential Force has been increased 

by hybridizing it with some other computational methods. Miao (2009) reported that 

Simulated Annealing has been used together with APF to escape local minima.  

Visibility Graphs are in the class of Deterministic Path planning methods. What is 

required to create a visibility graph is just linking two vertices of barriers, which are visible 

to each other, and linking the target and the robot to boundaries where they are completely 

visible to themselves. The merit of the visibility graphs is that there is assurance of locating 

the best path for any set of points in the graph (Russell & Norvig, 2010). The shortcoming of 

the visibility graphs is that they do not possess the ability to sustain their optimal performance 

when the maximum dimensions are high. Furthermore, they can only locate “semi-free” paths 

which are very close to barriers (Russell & Norvig, 2010). Moreover, the visibility graph 

algorithm requires that the robot has a very high accuracy in manipulating its way through 

the environment. The weakness of this algorithm is its low efficiency in searching for a path 

for the robot to navigate through (Yuan et al., 2004). 

The genetic algorithm (GA), which was proposed by Holland in 1975, is a biology 

inspired search approach that uses a procedure similar to natural reproduction. In the work 
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of Beasley, Bull & Martin (1993), a GA has been used in the field of robotics for path 

planning or trajectory planning. The major drawback of GA is the unexpected deviations 

demonstrated in the iterations during the evaluation of the fitness function and generation of 

the offspring. However, such sudden leaps are not practicable for mobile robots (Yang, Ian, 

& David, 2007). Moreover, the genes of the GA can be trapped in local minima, meaning 

that there is no solution (Beasley, Bull & Martin, 1993). It has also been observed that the 

time taken to locate the first suitable path will be high if there are many obstacles in the 

environment. The response time of a GA during the optimisation process is usually very high 

thereby resulting in a slow convergence rate of GA genes as they search for the best path. 

Tang, Zhang, and Yang (2000) observed that low convergent probability in GA can result to 

low crossover probability and high mutation probability, which will affect the efficiency of 

the algorithm drastically. For instance, in GA, mutation operators are commonly used to 

serve the function of exploration, while cross-over operators assist the population to converge 

to good solutions. This is referred to as exploitation since the cross-over seeks to converge 

to a particular point in the search space. The mutation operator tries to prevent GA from early 

convergence so that it can explore other regions. It is preferable to explore more areas in the 

start of the search as this will guarantee exploration of more areas and increase the diversity 

in the population. Conversely, it is better to do more exploitations at the expiration of the 

search. This is to warrant the convergence of the population to the global optimum. In other 

words, when mutation rate is high, the search ability of GA is reduced. And when GA 

mutation rate is too small the search will most likely stop at a local optimum. Therefore, it is 

compulsory that algorithms that are more effective be developed to handle various swarm 

robotics tasks. 
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Since the introduction of Particle swarm optimisation (PSO), it has been extensively 

used for solving different swarm robotic tasks (Ellips & Davoud, 2010). PSO is a stochastic 

algorithm centered on population which is now being applied successfully in several fields 

like Electric Power Systems (AlRashidi & El-Hawary, 2009), water distribution network 

design (Montalvo et al, 2008), parameter optimisation in suspension system (Alfi & Fateh, 

2010), resource allocation (Gong et al, 2012), task assignment (Ho et al, 2008), DNA 

sequence compression (Zhu, Zhou & Shi, 2011), e-education (Dascalu, 2011), and 

computational finance (Chiam, Tan, & Al-Mamun, 2009). Kennedy and Eberhart in 1995 

provided the first PSO algorithm. They got their inspiration from the social behaviour of 

flock of bird, school of fish, and herd of animal (Kennedy & Eberhart, 1995). Just like was 

we have in other evolution algorithms such as GA, PSO possesses several advantages which 

include which makes it a desirable optimisation algorithm (Shi & Eberhart, 1998). 

 

1.3 Research Trend and Motivation  

I drew my inspiration to this research work on the fusion PSO and the Primal Dual 

method from the fact that Particle Swarm Optimisation (PSO) is one of the most popular 

algorithm in use because of its simplicity, ease of implementation and efficiency. It however 

exhibits some shortcoming, particularly its tendency to premature convergence and inability 

to escape from local minima. To address this weaknesses, many variants of PSO have been 

proposed in the literature. Some of these approach are centered mainly on manipulating some 

of the parameters used in the PSO algorithm optimisation process, whereas many others 

employed hybrid methods that integrate other optimisation algorithms with the standard PSO. 

It have been demonstrated in the literature that methods that hybridize PSO and some other 

optimisation algorithm have a better performance over the standard PSO algorithm. 
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The modern day Interior-Point algorithms have become recognised as the most ideal 

approach for solving large-scale linear problems (Laird, 2006). The Primal Dual method has 

been applied to convex optimisation problems where strong duality is required (Rockefeller, 

1970). It has also been used for various nonlinear and non-smooth cost functions that are 

prevalent in network design, medical image reconstruction, and industrial engineering (Boyd 

& Vandenberghe, 2004). They can be easily parallelized which enables them to efficiently 

handle multi-dimensional problems (Bauschke & Combettes). The Primal dual method from 

literature can solve both linear and non-linear optimisation problems effectively (Laird, 

2006).  

We intend to develop a set of hybrid PSO algorithms that will be able to solve the 

aforementioned problems that are associated with PSO. The Primal Dual method, when 

integrated into PSO, will provide better balance between exploration and exploitation, 

preventing the particles from experiencing premature convergence and being trapped in local 

minima easily and so producing better results. The fusion of conventional PSO with Primal-

Dual Interior-Point method will resolve the common issues associated with PSO algorithm 

and many of its variants. The integration will make our proposed system to have great 

capacity to prevent premature convergence, and prevent the particles from being stuck in the 

local minima. 

In the past, many variants of PSO have been developed in the past to provide specific 

solutions for swarm robotics problem. For every swarm robotic problem investigated, a 

newly developed customized PSO is required to effectively solve the problem. For instance, 

(Hayes et al, 2003) and (Jatmiko et al, 2007) used PSO to provide solution to the odor 

localization problem of swarm robotics. Moreover, Hereford (2006) developed a distributed 

particle swarm optimisation algorithm to handle the scalability problem of swarm robotic 

system. Tang & Eberhard, (2011) proposed the Velocity Limit Augmented Lagrangian PSO 
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to solve the problem of collision with barriers in the search space by the robots in the swarm. 

Derr and Manic (2009) proposed the distributed PSO (dPSO) algorithm for navigation of 

robots in hazardous environment. Doctor 2004 applied PSO for path planning of unmanned 

vehicle. Zhang, Wu and Wang (2013) proposed the Chaotic PSO for avoiding collision with 

obstacles by swarm robots. 

Hao and colleagues (2007) proposed a PSO algorithm that uses Polar coordinate 

system to move in a dynamic environment.  Karimu (2012) proposed dynamic hybrid PSO 

algorithm to handle motion planning problem of mobile robot. Moreover, new variants of the 

PSO algorithm have been developed by fusing it with an already tested approaches which 

have been effectively used to solve complex optimisation problems. Academicians and 

researchers have improved the performance of PSO by integrating in it the basics of other 

famous methods. Some researchers have also made efforts to increase the performance of 

popular evolutionary algorithms such as Genetic Algorithm, Ant Colony and Differential 

Evolution, etc. by infusing the position and velocity update equations of the PSO. The 

purpose of the integration is to make PSO overcome some of its drawbacks like premature 

convergence, particles being trapped in the local minima, and partial optimisation. 

1.4 Problem Statement 

Though Particle Swarm Optimisation (PSO) is a widely accepted algorithm in 

different fields, it still suffers from common issues such as premature convergence, inability 

to effectively cope with a dynamic environment and failure of PSO particles to escape from 

being trapped in local minima. This provides possibilities for the development of new 

variants of PSO algorithms. Although successful in addressing those issues specific to a 

directed domain, these variants of PSO are still unable to resolve the issues effectively. The 

Interior-Point Methods (IPMs) are powerful tools for solving nonlinear optimisation 

problems. It has been depicted as the most robust algorithms for solving large-scale nonlinear 
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optimisation problems. On the other, similar to PSO, the methods are still plagued with 

several issues (e.g., how to handle non-convexity, the procedure for making the barrier 

constraint up to date is burdensome even with the presence of nonlinearities, and the necessity 

to guarantee progress in the direction of the solution). The particles in PSO are naturally 

inclined to fling to the infeasible areas from the feasible areas during the course of searching. 

This poses a threat to the searching efficiency of PSO. Many of the PSO variants are not 

really suitable for effective handling of swarm robotic tasks. The present variants of PSO 

cannot adequately handle the constraints and the complexities that characterise the dynamic 

environment. There is therefore the need to increase the efficiency of PSO algorithms for 

swarm robotic by developing new variants that can adequately handle complex constraints.  

 

1.5 Research Questions 

What are the problems associated with existing PSO algorithms that limit their 

suitability for swarm robotics tasks? What are the different ways by which PSO algorithms 

and Interior Point Methods can be applied to swarm robotics? What are the different ways 

by which we can bring together the advantages of PSO with the strengths of Interior Point 

Methods to overcome the weaknesses of PSO algorithms? What are the different ways by 

which the fusion of these two algorithms can be used to increase the performance of PSO 

and make them more suitable for handling swarm robotics cooperative movement? What are 

the processes that must be carried out for the new algorithms to perform (in terms of speed 

of convergence, escaping from been trapped in the local minima) better than the existing 

ones? What is the computational cost and computational time attached to using the new 

algorithms for swarm robotics? What are the ways of measuring the performance of the new 

algorithms (Best fitness, worst fitness, mean fitness, standard deviation of fitness)? 
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1.6  Aim and Objectives of the Research 

To address the problem statement one, our objectives are: to carry out experiments 

using standard benchmarking functions on some variants of PSO algorithms that have find 

application in the field of swarm robotics. This will enable us to know the problems 

associated with the existing PSO algorithms that limits their usefulness for solving swarm 

robotics tasks. Moreover, we want to assess the convergence properties of the algorithms 

through these benchmark functions. And to validate the presence of premature convergence, 

inability of particles to escape being trapped in the local minima, and unsuitability of PSO 

for dynamic tasks in these PSO variants.  

To tackle problem statement two, our objectives are: to propose new set of hybrid 

algorithms based on the integration of PSO and Primal Dual Interior Point Method, and use 

benchmarking functions to validate their performance with respect to the Best fitness, worst 

fitness, mean fitness, and standard deviation of the fitness for each of the algorithms. Also, 

we intend to test if the proposed algorithms have been able to overcome the problem of 

premature convergence and inability of particles to escape from local minima.  

To deal with problem statement three, our objectives are: to apply our proposed 

algorithms to solve swarm robotic tasks such as aggregation, flocking and pattern formation 

to ensure the applicability aspect of the algorithm. It is essential not only to develop 

algorithms that perform better than its predecessors, but also applicable for the intended 

domain of cooperative swarm movement. These three objectives will ensure that our aim 

towards creating a singular (in PSO algorithm) and generic PSO derivative for all dynamic 

optimisation tasks can be achieved. Thus, eliminating the need to develop a new variant of 

PSO algorithm whenever a new dynamic optimisation problem is to be solved. 
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1.7 Significance of the Research 

This thesis proposed the fusion of Particle Swarm Optimisation (PSO) and Interior 

Point Methods as cooperative movement control algorithm in swarm robotics. We developed 

the Primal-Dual Interior Point Particle Swarm Optimisation (pdPSO) algorithm to resolve 

the shortcomings of the standard PSO without the limitations of the IPM methods. We 

applied the Primal Dual to each particle in a finite number of iterations, and feed the PSO 

with the output of the Primal Dual procedure. We compared the performance of our new 

algorithm (pdPSO) with IPM and PSO using different dynamic benchmark functions. Our 

results revealed that pdPSO performed better than both independent PSO algorithm and IPM 

method. The novel algorithm is not susceptible to premature convergence, and can handle 

local minima avoidance better compared to conventional PSO, hence hypothetically has the 

potential to perform better than many variants PSOs. As part of our contribution to the field 

of swarm intelligence, we also developed the Primal-Dual Asynchronous Particle Swarm 

Optimisation (pdAPSO) algorithm. We applied the Primal Dual to each particle in a finite 

number of iterations, and feed the APSO with the output of the Primal Dual. Also, our work 

demonstrated how the Primal Dual can be used to ensure better balance between exploration 

and exploitation, preventing the particles from experiencing premature convergence and been 

trapped in local minima easily and so producing better results. We compared the performance 

of our new algorithm (pdAPSO) with APSO, PSO, and Primal-Dual Particle Swarm 

Optimisation using 7 benchmark functions. Optimisation results reveal that pdAPSO offers 

similar or in many test cases better solutions than the other approaches used for the 

performance evaluation. Our proposed algorithm is shown to have the ability to avert 

premature convergence, and prevent the particles being trapped in the local minima which 

have characterized many variants of PSO. 

Moreover, we applied our hybrid algorithms (pdPSO and pdAPSO) to adopt the 
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swarm robotics flocking motion problem. We hypothesize that the fusion of the two 

algorithms (PSO and Primal Dual) offers a robust prospect of preventing premature 

convergence of robots, and also make sure that the robots are not stuck in their local minima. 

The results of our simulation give a clear evidence of the efficacy of the algorithms.  

These hybrid algorithms contributed to the field of swarm robotics by providing novel 

algorithms that perform better in terms of accuracy, convergence rate, stability, robustness 

and ability to flock for identical set of swarm robots. Lastly, this thesis also contributed to 

the field of swarm robotics by applying the new algorithms (pdPSO and pdAPSO) to solving 

the problems of pattern formation in cooperative movements of swarm robots. 

 

1.8 Outline of Thesis 

 This thesis is organized into seven chapters. Chapter 1 provides an overview of the 

study. It outlines the general introduction, background of the research, research trend and 

motivation, statement of the problem, research questions, research aim and objectives, and 

the significance of the research work. 

Chapter two discusses the characteristics of a swarm robotic system, the advantages 

and disadvantages of swarm robotics, detailed review of the different swarm robotic 

algorithms, and comparative review of foregoing research in the field of particle swarm 

optimisation. Moreover, we did an overview of the various Interior Point method algorithms. 

The primal-dual interior-point (PDIP) method, Barrier Method, Simplex Method, strengths 

and weaknesses of the Primal dual method, feasible and infeasible interior point method, line 

search interior point method, trust region interior point method were all discussed.  

Chapter three presents a survey on the different variants of PSO and their performance 

on different benchmarking problems. We also seek to establish the grand truth about some 
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of these algorithms as discussed in literatures, and seek how they have been applied to swarm 

robotics problems. 

Chapter four discusses our new hybrid algorithm named Primal Dual Interior Point 

Method Particle Swarm Optimisation (pdPSO). A comparative study of the new algorithm 

with the conventional PSO and Primal Dual method was done using nine benchmark 

functions. The chapter also presents another new hybrid algorithm named Primal Dual 

Asynchronous Particle Swarm Optimisation (pdAPSO). We did a comparison of our new 

algorithm with the typical PSO, APSO and pdPSO using seven (7) benchmark functions. We 

also compared the performance of pdAPSO and pdPSO. The performance of pdAPSO and 

pdPSO was compared with 9 state of the art PSO algorithms using 12 benchmark functions. 

Chapter five discusses the application of pdPSO and pdAPSO to flocking problem. 

We also applied pdPSO to solve pattern formation problems of swarm robotics.  

Finally, chapter six summarizes the thesis. Our theoretical and practical contributions 

are discussed and the final conclusion is presented. In addition, we described the future 

research directions of this work. 
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CHAPTER 2: LITERATURE REVIEW  

2.1 Introduction 

 This chapter gives a general review of state of the art swarm robotic algorithms. It 

also establishes the need for the study and also provides an in-depth look at some relevant 

literatures on algorithms implemented in the past and present and applied to swarm robotics 

tasks. Experiments were carried out to ascertain the strengths and weaknesses of some of the 

algorithms we read in literature, and also to highlight the drawbacks of Particle Swarm 

Optimisation (PSO) algorithms. 

 Sahin (2005) defined swarm robotics as the study of ways through which a vast 

number of simple inexpensive agents can be made to work together to bring about a preferred 

cooperative behaviour through communications at the local neighbourhoods among robots 

as well as between the robots and their surroundings. The attributes of a swarm robotic system 

includes firstly, a huge number of independent robots. Secondly, the ability to detect and 

transfer information from one robot to the other within the same local neighbourhood is very 

crucial in swarm robotics. Thirdly, they are decentralised and independent of global 

information. Lastly, they possess cooperative behaviour that can be attained via spontaneous 

formation of spatiotemporal structure, and communications among the robots and between 

the robot and their surroundings. Some of the cooperative behaviours in swarm robotics are 

discussed briefly in the section below. 

According to Arkin (1998), there are several advantages and disadvantages of swarm 

robotic systems in comparison to a single robot. The advantages of swarm robotic system are 

as follows 
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i. Enhanced performance: breaking complex tasks into simpler ones and then 

making the robots to perform tasks cooperatively thereby increasing the 

efficiency. 

ii. Job empowerment: some set of robots are authorised carry out specific jobs which 

are difficult for an individual robot to perform. 

iii. Broad sensing: the radius of signal detection of a set of robots is broader than that 

of an individual robot. 

iv. Parallel execution of jobs: a set of robots can set in motion several tasks in diverse 

places simultaneously. 

v. Robust system: failure of one robot in the swarm does not mean that the system 

will fail or that the job will not be completed. There might be degradation in the 

performance of the system but it will complete its task even as some redundant 

robots in the swarm take up the challenge of completing the remaining tasks. 

The shortcomings of swarm robotics are listed below: 

i. Infringement: obstructions, collision, and intrusion can cause a set of robots to 

infringe on the movement of other robots. 

ii. Doubt about the plans of other robots: directing a set of robots entails knowing 

the plans other robots in the group. Vagueness of purpose can result into 

contention rather than collaboration among the robots. 

iii. Need for effective control algorithm: the fact that a large number of robots are 

involved means that there will be the need to develop an effective algorithm that 

will make the robots in the swarm to work in corporation to achieve their desired 

goal. 
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2.1.1 Cooperative behaviours 

According to Brambilla et al. (2013), swarm robotics have many cooperative 

behaviours that can be used to solve sophisticated problems. These cooperative behaviours 

can be grouped into three principal sections: 

i. Non-random arrangement behaviours: This deals with the ability of swarm 

robotic system to arrange and allocate robots and objects in the search space;  

ii. Path finding behaviours: Have to do with the capacity of the swarm robotic 

system to plan and direct the way and manner in which the robots move in the 

swarm; 

iii. Mutual decision-making and job distribution: Is the ability of the swarm to 

make a joint resolution or split the swarm into different clusters depending on 

their choice. A brief discussion about the different activities of the swarm 

robotic systems that requires joint decision are presented below. 

2.1.1.1 Aggregation  

This is a characteristics of swarm robotic system where all the robots in a swarm 

occupy the same locality in the environment and are clustered to accomplish a specific task 

(Camazine et al., 2001). Aggregation has been classified as the easiest cooperative behaviour 

in swarm robotics which is a requirement before other cooperative behaviours like flocking, 

foraging, and pattern formation (that involve the coming together of robot at the same place) 

can take place. Camazine et al. (2001), opined that the research on swarm robots’ aggregation 

have been inspired by observing the behaviour of bees, birds, cockroaches, and fish. Some 

other approaches that are different from swarm intelligence methods have been employed to 

solve some of the extremely difficult forms of aggregation tasks in swarm robotics (Ferrante, 
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2013). In such cases, there is no available information, hints or set standards to decide where 

the robots should gather. It is required that the robots gather themselves together at a 

haphazard location. Some researchers such as Minsky (1967) have used likelihood finite-

state automaton to do aggregation. Also, Nolfi and Floreano (2004) employed artificial 

evolution to achieve aggregation. These approaches that have been mentioned have their 

limitations as some of the robots can still be trapped thereby not converging with other robots 

in their destination (Ferrante, 2013). 

2.1.1.2 Pattern formation 

Pattern formation basically involves changing the position of each robot in the swarm 

based on some predefined rules in order to form a particular shape (Yukiko, 2013). This is 

also a non-regular arrangement behaviour that can be utilized to arrange robots in an ordered 

and rhythmic style. According to Meinhardt (1982), the inspiration of designing algorithms 

to make swarm of robots to form a particular pattern came from natural processes like 

development of colour patterns in animals. Another example as stated by Langer (1980) is 

physical activity such as mineral development.  

Egerstedt and Hu (2001) proposed a pattern formation method that uses the 

organization approach for a swarm of robots to form a given shape. The technique was used 

in a simulated environment that takes obstacle avoidance into consideration to control the 

movement of robots to form a triangular shape. The strength of this approach is that the 

tracking of robots was properly done thereby stabilizing the pattern formation error. 

Koo and Shahruz (2001) proposed another pattern formation approach that used a 

make a set of unmanned aerial vehicles (UAVs) to form a preferred shape using centralized 
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pattern formation method. The main emphasis of their research work is the computation of 

the Route through which the unmanned aerial vehicles will travel through. 

Belta and Kumar (2002) proposed a method that uses an invariable kinetic energy 

measurement to create plane paths for a swarm of robots to navigate. The closeness between 

one robot and other robots in the swarm can be regulated using some parameters. However 

their approach failed to consider obstacle avoidance and it is not scalable. Krishnanand & 

Ghose (2005) proposed a pattern formations algorithm of simple robots using indigenous 

prototypes and attitudinally distributed communications. Ikemoto et. al. (2005) presented a 

pattern formation approach based on steady spatial formation of similar robots into a desired 

shape. Chen, et. al. (2008) also proposed a decentralized pattern formation algorithm for 

making mobile robots to form a given shape. Elor and Bruckstein (2011) proposed a pattern 

formation approach that deploys multiple identical robots in a swarm to form a particular 

shape. 

From the research work that we have considered so far, there is no guarantee that the 

robot will converge to form the desired pattern (Gautam & Mohan, 2013). If the given shape 

is formed, it is a weak formation that has no firm symmetrical shape. Many of the determining 

factors about the formation of the patterns are based on presumptions. Examples of such 

deductions include the detection, direction-finding, interaction and computational 

competences of the robots. The robots also have negligible or no perceptive of other robots 

in the search space. Also, there is insignificant or no interaction among the robots (Gautam 

& Mohan, 2013). 

 

 

Univ
ers

ity
 of

 M
ala

ya



17 

 

2.1.1.3 Cooperative exploration 

This is an explorative behaviour utilized by robots to search the environment where 

they are positioned, locate their target(s), and successfully move to their destination 

(Camazine et al., 2001). As reported by Camazine et al. (2001), the origin of inspiration for 

cooperative exploration is from insects like ants, termite, and bees. Howard et al. (2002), 

proposed a swarm robotic cooperative exploration technique that uses a potential-field-based 

method to deploy mobile robots in a swarm. The fields are fabricated in a way that each node 

is prevented by both barriers and other nodes, thus compelling the network to extent its area 

of coverage in the environment. Their method is both decentralised and scalable. Their 

experiment is however incomplete because they did not take into consideration some external 

and internal factors such as network size, environment, original situations, weights, size of 

the node, and viscidness. 

Ducatelle et al., (2011) proposed a swarm robotic cooperative exploration technique 

that allows the robots to direct one another’s movement by passing their path finding 

information by means of wireless network created in the swarm. They conducted their 

experiments under two different situations. Firstly, the swarm directs a robot to its 

destination. Secondly, all the robots in the swarm move to and fro between two destinations. 

The method was found to be efficient and robust in the two situations. It is robust to failures 

of robots in the swarm. The approach helps the robots to organization themselves thus 

increasing the efficiency of exploration. The approach also possesses the ability to locate the 

shortest routes in chaotic environments. 
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2.1.1.4 Mutual decision-making and job distribution 

This deals with the ability of robots in the swarm to inspire one another during 

decision making (Camazine et al., 2001). The mutual decision making can either result into 

reaching a compromise to accept the joint decision or selection from the list of feasible 

options. Instances of mutual decision-making are derived from animals. For example, the 

idea of swarm robotics sprung from the study of the behaviour of cockroaches (Amé et al., 

2006). Demonstrations of job distribution are very common in animals that live in castes like 

ants and bees (Camazine et al., 2001). Various techniques have been applied for joint 

decision-making as explained by Campo (2011). Examples of approached that are used for 

mutual decision making are likelihood finite-state automaton (Garnier et al., 2005), and 

statistical-physics (Montes de Oca et al., 2011). Likelihood finite-state automaton that was 

proposed by Bonabeau et al. (1997) in their seminar work is used for job distribution in 

swarm robotics (Liu et al., 2007; Brutschy et al., 2012). 

Liu et al., (2007) presented a research work that uses a naive acclimatization system 

that spontaneously change the proportion of robots in a swarm that are involved in foraging 

and those that are resting. The advantage is that energy is conserved. The robots in the swarm 

have some set of rules that enables them to effectively search for food, avoid colliding with 

other robots in the swarm during search, and also ensure that they retrieve their food. The 

robots also help their team mates to successfully retrieve their own food as well. The job of 

searching for food is distributed among the foraging robots and the resting robots. The results 

of their simulation demonstrates that mutual decision and job distribution is achievable in 

swarm robots. Their work further revealed that mutual decision is highly necessary when 

there is shortage of food. 
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Moreover, the swarm acclimatization system helps in optimisation of the energy 

consumed regardless of the poor perception capacity and inadequate information transfer of 

the robots to the other robots around them. Another strength of their work is the ability of the 

swarm to detect and adjust to changes in the environment. 

2.2 Advances in Swarm Robotic Algorithms 

Many researchers have in the past used different approaches for the task of planning 

swarm robot’s mobility in the search space.  

 

2.2.1 Artificial Potential Fields (APF) 

One of the methods used for controlling the navigation of robots in a swarm is the 

artificial potential field (APF). It was proposed by Khatib in 1968. It is one of the few motion 

planning methods for real time robot applications. It provides a straightforward but efficient 

way to plan a path for a robot. The APF is a function whose slope angle is used to calculate 

a force applied to the robot. This force compels the robot to navigate to its target without 

being stopped by obstacles. APF is made up of force vectors, which can be as a result of the 

obstacles or the location of the targets in the search space. Depending on the state of the robot 

with respect to the environment, the forces acting on the robot can either be repulsive, 

attractive or random. The equation D = [d, q] can be taken as the position and direction of 

vector.  The attractive potential field force acting can be written as: 

 

Uatt (D) = IP2 (D, Dt), where 

 

I:  is a positive scaling factor 

D:  is the position of the robot and 
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Dt: is the target of the robot 

P (D, Dt) = || Dt – D ||:  is the distance of the robot from the target 

Fatt : is the attractive force (it is a negative gradient of the attractive 

potential field function which is less than zero) 

This means that  

 Fatt = -  [Uatt (D)] = IP (D, Dt) 

 

The repulsive potential field function is described by 

 

    Uatt (D)  = {
 0.5𝜂

0
(

1

𝑝(𝑑,𝑑0)
− 

1

𝑃𝑜
) 𝑃(𝑑,𝑑0)≤𝑃𝑜

𝑃(𝐷,𝐷0)>𝑃𝑜
  where 

 

η:   is non negative scaling factor 

P(D, Dt):  is the distance that is the shortest between the robot and obstacles 

P0:   is the distance between the robot and the obstacles 

 

P0 is a constant value, which depends on the target of the robot, the type and shape of obstacle. 

It is usually less than half the extent of space between the obstructions or shortest length from 

the obstacles to the goal. 

 

The repulsive force that is applied whenever the robot is yet to get to the target is: 

Frep = -  [Urep (D)]  

 

                 = {
 𝜂
0
(

1

𝑝(𝑑,𝑑0)
− 

1

𝑃𝑜
)

1

 𝑃2(𝑑,𝑑0)

𝑃(𝑑,𝑑0)≤𝑃𝑜
𝑃(𝐷,𝐷0)>𝑃𝑜

 

 

The resulting force is F = Fatt + Frep 
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According to Cao, Huan, and Zhou (2006), the force F controls the navigation of the 

robot from the start to the goal. Below is an illustration of how the potential force works. 

 

 

 

                       

 

 

 

 

 

Figure 2.1:  Potential Field (Diagrammatical representation of the APF showing how the 

attractive and repulsive forces compel the robots to navigate from its starting point avoiding 

obstacles on its way and getting to its destination). 

Some of the desirable qualities of the APF include its simplicity of use, efficient 

mathematical evaluation, real time usage, applicable to both redundant and non-redundant 

robots, and the incorporation of the dynamics of the robot (Ren, et al., 2006). The major 

drawback of APF is the local minima which could lead the robot been trapped before reaching 

its goal. Other weaknesses of APF according to (Wang et al., 2013) are oscillation, and Goal 

Non Reachable with Obstacle Nearby (GNRON). Also failure is possible even when a valid 

path exists and failure modes are visible to onlookers. Navigating the robot through the use 

a potential field implies that there is no prior knowledge of the pathway of the robot, neither 

Obstacle Destination 
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force 

Direction of 
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was there any computation in advance. That implies that the robot ‘chooses’ automatically 

its way to reach its goal (Dunias, 1996).  

Nowadays, the Artificial Potential Force is been hybridized with other computational 

methods to improve its efficiency (Lie Tang et al., 2010) and Miao (2009)). Wang (2000) 

used the Road Map approach to plan path for mobile robot. The shortcoming of the method 

is that it cannot be used for complex environments due to the high volume of computations 

that is involved. Latombe (1990) used the Cell Decomposition method for path planning of 

robot. Zhu, Yan, and Xing (2006) integrated Artificial Potential Field into Simulated 

Annealing for planning the path of mobile robot. They were able to solve the problem of the 

robot been trapped in the local minima. Boschian and Pruski (1993) applied the Grid method 

to robot path planning. The technique is however ineffective because it cannot solve the 

problem of been trapped in the local minimum. Visibility graph was used by Li, Ye and Tan 

(2002) for robot path planning. Swarm intelligence and Potential flow was used by Hu, Wu, 

and Wang (2007) to navigate mobile robot in both static and dynamic environment. The 

problem with this approach is that unless the obstacle is conceptualized as a normal circle 

having radius, it is difficult for the robot to move from one point to another in the search 

space. Simulated Annealing was used by Hui (2009) to plan the path for robot in a dynamic 

environment.  

2.2.2 A* Algorithm 

Another algorithm that has been used for swarm robotics is the A* algorithm. The A* 

(pronounced A star) was first described early in 1968 by Hart, Nilsson and Raphael (Chestrutt 

& Lau, 2005). The algorithm is a best-first, tree search algorithm, and able to find the shortest 

route for a robot to travel from the initial spot to the target. A modified A* algorithm that 

was applied to a real robot was developed by Chestrutt & Lau (2005) to calculate path for 

ASIMO (a robot with human characteristics). They engaged a framework of crisscrossed 
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cells to represent the environment while colour cells were used to represent the obstacles. 

The region that has no gravitational or electromagnetic fields is represented by some bits. 

The distance to be covered by step positions that will make the robot to navigate towards the 

target position is computed by the algorithm. The algorithm also includes information on 

known static and moving objects with anticipated paths. There are three cost functions been 

used by the A* algorithm. The cost functions help the algorithm to constrain the step nodes 

used by the robot. The cost functions include: one, costing the step locality with respect to 

the surroundings to resolve whether the location is safe or not. Two, calculating the attached 

cost if robot is to take the step desired. And three, using a typical mobile robot organizer to 

provide a navigational solution so as to determine the estimated remaining cost. This is used 

to prevent the robots from been caught in the local minima. Zeng, Zhang, and Wei (2012) 

proposed a Genetic Algorithm-based global path planning for mobile robot using A* 

Algorithm. The approach used the MAKLINK graph theory and Dijkstra algorithm to create 

unrestricted space prototype of robots and find best collision free path for the robot 

respectively.  A* algorithm and genetic algorithm are then used to generate the global optimal 

path of the robots.  

 

2.2.3 D* (Dynamic A*) Algorithm 

Similar to the A* also is the D* algorithm. D* (pronounced "D star") is an incremental 

search algorithms that uses graph representing cost. The basic D* method was originally 

proposed in 1994 by Stentz (1995). He described the D* as a method used in planning 

direction of mobility in non-static new environments. There is a great reduction in the 

computational cost as the robot strategies for the best target coordinate by computing the best 

routes leading to the robot’s destination. Depending on the new information gathered from 

the environment by the robot, it will replan new paths and produce a new path for the robot 
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to navigate. There is no need for D* to do a complete replannnig of the navigation direction 

all the time when it receives any new information. It updates the path cost locally when 

environment changes, and tries to get the best global path when possible. To improve the 

efficiency of the algorithm, some varieties of D* have been proposed such as the Focused 

D*, Framed-quadatree D* and Field D*. For example, the Focused D* algorithm have been 

applied in real-time path replannnig. The algorithm calculates an original path through which 

the robot will navigate from the initial state while effectively adjusting its path during the 

navigation whenever there is fluctuations in the arc costs. One of the strength of the Focused 

D* algorithm is that it is able to generate an ideal path for the robot to navigate to its target. 

The performance of the Focused D* is better than that of the original D* algorithm. The 

integration of an exploratory Focusing function to D* makes it a generalized form of A* that 

can copy in a non-static environment (Stentz, 1995). 

 

2.2.4 Genetic Algorithm (GA) 

Genetic algorithm was proposed in 1962 by Holland (Holland, 1993). GAs are a set 

of adaptive techniques which provide solution to the problems of search and optimisation 

involving substantial exploration of search landscape (Mantas & Andrius, 2007). They make 

use of natural process of choosing the most suitable chromosome in the population to proffer 

solution to optimisation problem (Mantas & Andrius, 2007). 

Genetic algorithms can also be defined as biology inspired search approach that uses 

a procedure similar in nature to evolution discovered by Charles Darwin (Goldberg & 

Holland, 1988).  According to Goldberg (1994), GAs have been extensively accepted as an 

algorithm that can solve complex problems that traditional algorithms cannot provide 

adequate answer to within a realistic time limit (Goldberg, 1994). A primary population of 

individuals is arbitrarily created, and every single individual is evaluated. After the 

Univ
ers

ity
 of

 M
ala

ya



25 

 

evaluation, many individuals with higher fitness are generated and the ones with lower fitness 

are throw out of the population. The GA uses genetic operators such as mutation, crossover 

and natural selection to produce better generation ((Forrest & Mitchell, 1993) and (Keisam, 

2014)). The process discussed here follows the natural biological process by which changes 

occur in a chromosome through crossover and haphazard mutation (Trivedi, Lai & Zhang, 

2001). In the work of David, Bull & Martin (1993), genetic algorithm has been used in the 

field of robotics for path planning or trajectory planning. Ghorbani (2009) employed Genetic 

Algorithm for the navigation of mobile robot. The path of robot was planned in a static 

environment by (Sugihara & Smith, 1997) and (Gallardo et al, 1998) using Fixed Length 

Binary Strings Genetic Algorithm. The shortcoming of this approach is that it takes longer 

time to generate solutions because chromosomes that have fixed length are not appropriate 

for complicated environment. Another approach called Binary Coded Genetic Algorithm 

where the gene indicates the subsequent bearing and distance was proposed by Tu and Yang 

(2003). The deficiency of this approach is that it leads to false solutions like paths that may 

not get to the end of the search space (or boundary condition). An evolutionary planner that 

uses simple genotype to depict suitable paths for robot to navigate was proposed by Xiao et 

al (1997). A modified visibility based method and repair operator that generate suitable paths 

which are then exposed to evolutionary technique was presented by Dozier et al (1997). 

However, the approach can only create path for robot to avoid convex obstacles, while it 

finds it very hard to proffer solution to obstacles that are concave in type. More so, the 

computation time is high as it takes longer time to convert chromosomes to phenotypes. 

According to Ripon, Kwong and Man (2007), the binary nature of the repair operator results 

in decline in accuracy as local tuning of solution is problematic. Most of the existing 

evolutionary based path planning algorithms, the computation load and execution time 

increases as the population increases. 
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There are some drawbacks with the previously proposed genetic algorithms which 

makes them unsuitable for swarm robotics. Firstly, genetic algorithm during optimisation 

usually produces unexpected deviations and such sudden leaps are not practicable for mobile 

robots. Secondly, premature convergence that makes the population to converge untimely to 

non-optimal local minima is prevalent in GA (Davis, 1991). Thirdly, there are some illusory 

functions that are ‘hard’ for most GAs to solve. Fourthly, GA finds it hard to cope with noisy 

functions (Goldberg, Deb, and Clark (1992), and 1993). Finally, optimizing many conditions 

always create problems for GA (Fonseca and Fleming, 1995). Some recent variants of GA 

proposed by Ai & Wang (2011) have made some improvement in the performance of GA in 

overcoming the problem of premature convergence that is inherent in the current GAs. One 

of their hybrid algorithm fuses GA with the downhill simplex method, while the other one 

integrate the conjugate gradient method into GA. Below is a flowchart of the genetic 

algorithm. 

 

Figure 2.2: Flowchart of the Genetic Algorithm (Adapted from Chan, Lau, & Ko, 2000) 
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2.2.5 Bacterial Foraging Optimisation Algorithm 

Bacteria Foraging Optimisation Algorithm (BFOA) was presented by Passino in 2002 

(Das et al., 2009). It is an emerging algorithm in the class of bio-inspired optimisation 

algorithms. Foraging is a characteristic exhibited by group of bacteria and not an 

individualistic character. This algorithm possesses the attributes of the bacterial foraging 

forms such as chemo taxis, digestion, procreation and detection of quorum (Binitha & Sathya, 

2012). Chemo taxis involves movement from cell to cell. It is the assembling of bacteria to 

areas where there is abundance of nutrients in an unconstrained manner. This establishes a 

process that enables transfer of information from one cell to another. Chemo taxis mimics 

the biological behaviour of how bacteria move when looking for nutrients. This is also called 

swim/tumble ((Binitha & Sathya, 2012) and (Das et al., 2009)).  

Procreation is achieved in BFOA through the process of natural selection. It is only 

the bacteria that seem to best adapt to the procedure that continue to exist, and transfer their 

genetic attributes to subsequent generations. The less adapted bacteria do not survive this 

phase. To enhance the global search capability of the algorithm and also avoid being trapped 

in local optima, the exclusion-spreading mechanism is incorporated into the algorithm 

(Binitha & Sathya, 2012). This strategy randomly chooses the sections of the bacteria 

population to reduce and scatter into arbitrary locations in the environment. 
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Figure 2.3: Flowchart of the Bacteria Foraging Optimisation Algorithm (Adapted from Das 

et al., 2009) 

 

2.2.6 Artificial Bee Colony (ABC) Algorithm 

Karaboga and Basturk (2007) proposed the Artificial Bee Colony algorithm. It was 

inspired through the study of the foraging activities of a swarm of bee. There are three (3) 

categories of artificial bees in the ABC algorithm: employed bees, onlookers and scout. A 

bee that is hanging around the dance area to decide on the origin of food to choose from is 

referred to as onlooker. The one that is going to the origin of the food inspected before by it 

is called employed bee. The last type of bee in ABC algorithm is called the scout bee. It 

conducts arbitrary exploration for finding new origins of food. The location where the origin 
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of the food is denotes a potential solution to the optimisation problem (Binitha & Sathya, 

2012). Also, the quantity of sugary fluid called nectar available at the food origin is directly 

related to the fitness of the obtained solution. Based on this principle, the ABC algorithm 

creates a swarm of simulated bees and began to move arbitrarily in the search space. 

Whenever the bees locate nectar in the targeted location, there is communication. The optimal 

solution to the problem is obtained from the massive communication among the bees (Binitha 

& Sathya, 2012). 

At the beginning a set of solutions (s1 = 1, 2… N) that is randomly dispersed across 

the N problem space. A hired bee generates an amended solution in her memory. The solution 

is based on the information she is having. It then tests the fitness value new solution (nectar). 

Given that the nectar in the earlier one is less than that of the former one, the bee will record 

in its memory the updated position and ignores the old one. All the hired bees share the sugary 

information of the origin of food and their position information with the onlooker bees as 

soon as they are through with their search process (Binitha & Sathya, 2012).  

The subsequent stage is Procreation. This depends on the value of likelihood 

connected with the origin of the food. The likelihood is represented as Li. The origin of the 

food is selected by the simulated onlooker bee. 

 

𝐿𝑥 = 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛
𝑁
𝑛=𝑥

 

 

Where, N is the number of origins of food (the number of hired bees), fitness is the fitness of 

the solution x which is relative to the amount of the sugary fluid in the origin of the food at 

the location. The final stage is called Substitution of bee and Choice making. The location of 

food is abandoned when the position cannot be enhanced by a prearranged number of circular 
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movements. The value of prearranged number of circular movements is a very vital constraint 

factor of the ABC algorithm. It is referred to as the threshold of abandonment (Binitha & 

Sathya, 2012). The simulated bee generates and evaluates the location of each bee. It then 

compared its performance with that of its previous one. The previous food origin is replaced 

with a new one in the memory of the quantity of sugary fluid in the new food is equal or 

better than that of the previous origin; else the previous one is kept in the memory. 

 

2.2.7 Ant Algorithm (AA) 

The Ant Algorithm was proposed by Dorigo, Maniezzo, and Colorni (1996). It draws 

its inspiration from the foraging behaviour of ants. The term referred to as stigmergy which 

was initiated by Grasse in 1959 (Binitha & Sathya, 2012). Stigmergy can be described as the 

oblique transfer of information among a self-arranging evolving system through parties that 

are changing their surroundings. The most fascinating part of the cooperative behavior of 

various species of ant is their capability to locate shortest routes between the ants' habitual 

resort and the food origins by trailing pheromone traces. Afterward, the ants select the route 

to follow by means of a probability method to make choices depending on the volume of 

pheromone deposited by the ant. The greater the pheromone’s trails, the more attractive it is. 

Since ants leave behind pheromone on the route they are trailing, this behaviour gives rise to 

a self-strengthening process resulting in the creation of routes indicated by high pheromone 

intensity. Through modeling and simulation of ant foraging behaviour such as brood sorting, 

nest building and self-assembling, algorithms can be created that may possibly be employed 

to solve difficult combinatorial optimisation problems. 

 The performance of the algorithm was verified using common benchmark Travelling 

Salesman Problem (Binitha & Sathya, 2012). Ant algorithm prototypes the activities of 

physical ants that possess the capacity to find the swiftest path from one food origin to the 
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successive one without any obvious sign (Gengqian et al, 2005). They also possess the ability 

to adapt fast to any environment change that may need exploring another route if they are 

confronted with any obstacle in the old one. This is because the hormone that the ants deposit 

called pheromone has an effect on the remaining ants’ choice of path. When many ants chose 

a path the quantity of the chemical secreted on the path increases, thereby serving as attractant 

to other ants of the same species to choose that same path. The pheromone will fade away as 

time goes on (Gengqian et al, 2005). The Ant algorithm uses the model of group ant to 

navigate the swarm robot. The weakness of this approach is that it is complicated as it needs 

a lot of computational time to arrive at the solution (Gengqian et al, 2005). Some of these 

weaknesses have been dealt with in the work of Dorigo and Stützle (2004) who proposed a 

MAX-MIN ant algorithm that adjust the pheromone to hinder the search from being trapped 

in local optimum.  

The Ant Colony Optimisation (ACO) which is another metaheuristic algorithm was 

designed to provide good enough solution to optimisation problem was proposed by Dorigo 

and Di Caro (1999). The aim is to simplify the general technique of providing solution to 

combinatorial problems by approximate solutions built on the universal behaviour of physical 

ants. According to Binitha & Sathya (2012), ACO have three main steps which are arranged 

as functions. They are: 

1. Create Solutions for the ant – The simulated ants navigate through neighbouring 

positions of a problem using an evolution rule to repeatedly generate solutions. 

2. Perform the updating of pheromone - This deal with providing the update of the 

pheromone traces after creating comprehensive solutions.  The ACO algorithm also 

put into consideration a situation when the traces of pheromone vaporize with time. 

Vaporization of pheromone traces assists ants only remember the good solutions that 

were created during the course of running the algorithm. 
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3. Perform deamon actions – This is an alternative step whereby the algorithm makes 

use of extra updates from overall viewpoint. This step can also involve using extra 

pheromone to boost the ability of the algorithm to get the most ideal solution 

produced.  

 

ACO have been applied to the field of swarm robotics. For instance, Brand et al 

(2010) applied the ant colony optimisation (ACO) algorithm to find the fastest and obstacle 

free route for robot motion planning in a network. In their experiment obstacles with varying 

structures and magnitudes were simulated in an environment that is dynamic. The result of 

the computer simulations showed that for the new network, the best path can be re-routed 

successfully by ACO algorithm after the addition of obstacles. The weakness of the two 

approaches discussed above is that there is a high computational cost incurred. This is 

because much time is required for the ants to deposit their pheromone, update it, and locate 

the origin of the food. Ant Colony Algorithm (ACO) was used by used by Sugawara (2004) 

to provide solution to the navigation problem of robot in a virtual dynamic environment.  

 

2.2.8 Artificial Neural Network 

The idea of neural networks (also known as artificial neural networks) was motivated 

by the recognition mechanism of the human brain (Ben & Patrick, 1996). The human brain 

can be described as a complicated, multidimensional parallel processing computer. Our 

digital computer is not as fast in performing computations as human neurons (Simon, 1998). 

According to Simon (1998), human vision is a good example for understanding this 

difference. Neural networks are a form of multiprocessor computer system with many simple 

processors called neurons. There is a high level of interconnection, simple organized 

messages and communication that are exchanged between these neurons. These neurons 
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usually have a limited memory. The neurons are saddled with the responsibility of receiving 

inputs from other neurons within the network or importing input from outside sources. These 

inputs are used to calculate the output for the neural network and can also be sent as input to 

the neurons of the next layer. The communication routes (also known as weights) transport 

the computed data. The weights which establish communication between two neurons have 

definite values and which can be timed when training the network. The weights are tuned in 

parallel, implying that the computations by many neurons can be processed concurrently. 

The learning rule is used in training the data and the extent of tuning of the neurons is subject 

to the training data.  

For example, if a neural network multiple layers. The layers are arranged as follows; 

leftmost layer is the input layer; it accepts data from a source. The rightmost layer two is the 

output layer that transports the calculated data from layer one out of the neural network. The 

other layers are referred to as the hidden layers. It’s input and output signals continue in the 

neural network. The neural network above is a case where each of the neurons in one layer 

is totally connected with all neurons in the previous layer and so on. For any given 

circumstance, a neural network is expected to figure out the most accurate results. With the 

application of the training rules and the weights which can be changed, the neurons in the 

neural networks can be used in creating a collision free path that the robot will navigate in 

the search space. The advantage of using neural network is that it is computationally simple 

(Simon & Chaomin, 2004). 

Artificial Neural Network was used by Qu (2009) for navigation and obstacle 

avoidance of mobile robots in dynamic environment. Du, Chen, and Gu (2005) proposed a 

mobile robot global path planning approach for a static environment using Neural network 

and genetic algorithm. A new path planning method based on neural network with obstacle 

avoidance that enables cleaning robots in dynamic environment to extend its search to the 
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nooks and crannies of the search space was proposed by Simon and Chaomin (2004). A 

multilayer Artificial Neural Network model was proposed was proposed by Youssef (2012) 

for rover systems to enable them carry out self-directed path-planning to favourably move 

towards their targets in difficult terrains while avoiding obstacles. 

 

2.3 Particle Swarm Optimisation (PSO) Algorithms 

Different variants of PSO algorithms have been proposed in the literature. For 

example, Robinson et al. (2002) developed the GA-PSO and PSO-GA and used them to solve 

a specific electromagnetic application problem of projection antenna. The results of their 

experiments revealed that the PSO-GA hybrid algorithm performs better than the GA-PSO, 

standard PSO only and GA only. He proposed the hybridization of GA and Hill Climbing 

algorithm the same year and used it to solve unconstrained global optimisation problems 

(Krink & Løvbjerg, 2002). Conradie, Miikkulainen, and Aldrich (2002), developed the 

symbiotic neuro memetic evolution (SMNE) algorithm when they hybridized PSO and 

‘symbiotic genetic algorithm’ and used it for neural network control devices in a 

corroboration learning context. Grimaldi et al. (2004) developed the genetic swarm 

optimisation (GSO) by hybridizing PSO and GA. They later went ahead and used their 

algorithm to solve combinatorial optimisation problems. They presented different 

hybridization approaches (Gandelli, 2007). They authenticated the genuineness of GSO using 

different multimodal benchmark problems and applied it in different domain as demonstrated 

in Gandelli et al. (2005), Grimaccia et al. (2007) and Gandelli et al. (2006).  

Juang (2004) proposed the HGAPSO by hybridizing PSO and GA. Settles and Soule 

(2005) proposed the BS algorithm which unites the velocity and position update equation of 

PSO and the concepts of selection, crossover and mutation of GA with a supplementary 

parameter referred to as the breeding ratio to decide on the percentage of the population that 
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will go through breeding in the present generation. Jian and Chen (2006) proposed the PSO-

RDL which is a PSO- GA hybrid (where the GA makes use of recombination operator and 

dynamic linkage discovery). This algorithm was used to provide solution to 25 unconstrained 

test problems having different degrees of sophistication. A new hybrid algorithm in where 

PSO was used to produce the first population for GA was proposed by Mohammadi and 

Jazaeri (2007). This algorithm was applied to proffer solution to an IEEE 68 bus problem. 

Esmin et al. (2006) introduced the HPSOM algorithm which is the hybrid of PSO and a GA 

mutation operator. The algorithm was used to solve unconstrained global optimisation 

problems. Kim (2006) presented another GA-PSO algorithm that uses the PSO and the 

concept of Euclidean distance. He applied it in getting the local and global optima of Foxhole 

function.  

Yang et al. (2007) proposed the PSO-GA centered hybrid evolutionary algorithm 

(HEA) that splits the evolution process into two phases. Kao and Zahara (2008) introduced 

another hybrid algorithm named GA-PSO. This algorithm was used to solve 17 unconstrained 

multimodal test functions. Ru and Jianhua (2008) proposed a hybrid of GA and PSO that 

combines the strengths of PSO and GA and also uses the idea of breeding individuals 

originally exhibited by GA with the idea of self- enhancement of PSO, where the particles 

improve themselves as a result of the social and cognitive scaling factors. The hybrid particle 

swarm optimisation (HPSO) was introduced by Shunmugalatha and Slochanal (2008). This 

algorithm absorbs the process of propagation and subpopulation in GA into PSO. The result 

of their experiment shows that HPSO’s convergence rate is high and the solution is better. Li 

et al (2008) proposed a PHGA which is a hybrid of PSO and GA. The algorithm employed 

enhanced genetic methods such as the nonlinear choice of position (Mahanti & Chakrabarty, 

2007) used in GA method.  

Ting et al. (2008) proposed a hybrid constricted algorithm named GA/PSO used for 
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providing solution to challenges of load flow control. A hybrid GA/PSO algorithm was 

presented by Jeong et al. (2009). This algorithm was used to give solution to multiobjective 

optimisation problems. Valdez et al. (2009) reported a PSO + GA hybrid algorithm. It works 

by using GA + PSO fuzzy rules to determine if it will select GA particles or PSO particles. 

A set of 5 unconstrained benchmark functions were used to ascertain if the algorithm is 

working according to specification or no. Bhuvaneswari et al. (2009) proposed an algorithm 

named HGAPSO which is a hybrid of genetic algorithm and particle swarm optimisation. 

The algorithm was used for alternator construction optimisation. Premalatha and Natarajan 

(2009) developed a DPSO algorithm that uses GA’s mutation and crossover operators for 

document clustering. Abdel-Kader (2010) introduced a GAI-PSO algorithm that integrates 

the velocity and position update equations of PSO together with the concept of selection and 

crossover from GAs.  

Hendtlass (2001) proposed the Swarm Differential Evolution Algorithm (SDEA) 

where PSO swarm acts as the population for Differential Evolution (DE) algorithm, and the 

DE is carried out over some generations. After the DE have performed its part in the 

optimisation, the resulting population is then optimized by PSO. Talbi and Batauche (2004) 

developed the DEPSO algorithm and used it to solve problem in the field of medical image 

processing. In Hao et al. (2007) introduced another variant of DEPSO where some probability 

distribution rules are used any of PSO or DE to produce the best solution. Omran et al. (2008) 

developed a Bare Bones Differential Evolution (BBDE) algorithm which used the idea of 

barebones PSO and self-adaptive DE approaches. They used their algorithm to solve image 

categorization problem. Jose et al. (2009) developed another variant of DEPSO algorithm 

that uses the differential modification systems of DE to update the velocities of particles in 

the swarm. Zhang et al. (2009) proposed the DE-PSO algorithm that uses three 

unconventional updating approaches. Liu et al. (2009) developed the PSO-DE algorithm that 
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combines DE with PSO and uses the DE to update the former best positions of PSO particles 

to make them escape local magnetizers thereby avoiding inertia in the population. Capanio 

et al. (2009) proposed a Superfit Memetic Differential Evolution (SFMDE) algorithm which 

is a hybrid of DE, PSO, Nelder Mead algorithm and Rosenbrock algorithm. The algorithm 

was used to solve some standard benchmark and engineering problems.  

Xu and Gu (2009) developed the particle swarm optimisation with prior crossover 

differential evolution (PSOPDE). Pant et al. (2009) reported a DE-PSO algorithm that uses 

DE for the initial optimisation process and then moved on to the PSO segment if DE fails to 

satisfy the optimum conditions. Khamsawang et al. (2009) introduced another hybrid 

algorithm name PSO-DE that centres on standard PSO and DE. They used their algorithm to 

solve economic dispatch (ED) problem having constraints. Shelokar et al. (2007) developed 

PSO with Ant Colony Optimisation (PSACO) algorithm. The algorithm has two phases. The 

PSO is employed in the first phase and the result of the optimisation is feed into ACO for the 

second phase of the optimisation. Hendtlass and Randall (2001) integrated ACO into PSO. 

The best position is selected from the list of best positions obtained and recorded. Victoire 

and Jeyakumar (2004) proposed the hybrid of PSO and sequential quadratic programming 

(SQP). It was used to solve economic dispatch problem in Boggs and Tolle (1995). Grosan 

et al. (2005) developed an independent neighborhoods particle swarm optimisation (INPSO) 

algorithm that is made up of autonomous sub-swarms that allows the production of many 

points at the end of iteration.  

Liu et al. (2007) developed a turbulent PSO (TPSO) in the effort to surmount the 

shortcomings of the traditional PSO. They later integrate TPSO with a fuzzy logic controller 

to make a Fuzzy Adaptive TPSO (FATPSO). Sha and Hsu (2006) proposed a novel hybrid 

algorithm that combine PSO with Tabu search (TS) and applied it to solve job shop problem 

(JSP). He and Wang (2007) proposed a hybrid algorithm that fuses PSO and Simulated 
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Annealing (SA) together. Mo et al. (2007) introduced Particle Swarm Assisted Incremental 

Evolution Strategy (PIES). This algorithm uses PSO for global optimisation while 

Evolutionary strategy is used for local optimisation. Fan and Zahara (2007) and Fan et al. 

(2004) proposed the NM-PSO algorithm by integrating PSO with Nelder Mead Simplex 

method. Their work was later extended by Zahara and Kao (2009) and used to solve 

constricted optimisation tasks. Guo et al. (2006) proposed an algorithm that hybridized PSO 

with gradient descent (GD) method and they used it for fault identification. Shen et al. (2007) 

introduced the HPSOTS algorithm which is a hybrid of PSO and Tabu search. Ge et al. (2008) 

developed a hybrid of PSO and Artificial Immune System (AIS). Song et al. (2008) 

developed hybrid particle swarm cooperative optimisation (HPSCO) algorithm merging 

simulated annealing algorithm and simplex method. 

Kao et al. (2008) proposed an algorithm that combine NM-PSO algorithm developed 

by (Fan & Zahara, 2007) and (Fan, Liang, & Zahara, 2004), with K-means algorithm and 

used for data clustering. Murthy et al. (2009) proposed an algorithm that have the advantages 

of the parameter-free PSO (pf-PSO) and the extrapolated particle swarm optimisation like 

algorithm (ePSO). Kuo et al. (2009) proposed the HPSO algorithm that amalgamated a 

random-key(RK) encoding system, individual enhancement (IE) system, and particle swarm 

optimisation (PSO) and used to solve the flow-shop scheduling tasks. Chen et al. (2010) 

developed the PSO-EO algorithm by hybridizing of PSO with Extremal Optimisation (EO) 

as reported in (1999). Kaveh and Talatahari (2009a) and Kaveh and Talatahari (2009b) 

proposed a heuristic particle swarm ant colony optimisation (HPSACO) and a discrete 

heuristic particle swarm ant colony optimisation (DHPSACO). Wei et al. (2002) introduced 

the concept of entrenching swarm targets into Fast Evolutionary Programming (FEP) 

algorithm to make the swarm to perform better. Pant et al. (2008) presented an AMPSO 

algorithm which combines PSO and EP mutation operator employing Beta distribution. 
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The (VL-ALPSO) was proposed by Tang and Eberhard (2011) to make planning for 

change in the physical position of swarm robots for collective search of targets more 

effective. VL-ALPSO approach to swarm robotics is the amalgamation of augmented 

Lagrangian multipliers, velocity restrictions in addition to virtual detectors to guarantee the 

implementation of constraints, obstacle avoidance and mutual avoidance which are situations 

obtainable in swarm mobile robots in coordinated movements. Augmented Lagrangian 

Particle Swarm Optimisation (ALPSO) algorithm was presented by Sedlaczek and Eberhard 

(2005). They made use of some part of the original PSO technique and combines it with 

Augmented Lagrangian Multiplier. 

PSO has been used in the area of robotics because of its ease of implementation, quick 

convergence and few control parameters that need to be adjusted.  Hayes et al (2003) and 

Jatmiko et al (2007) used PSO to solve the odor localization problem using swarm of robots. 

Another researcher employed PSO for multi-robot searching though they failed to take into 

account the ability to handle growth in the number of robots which is an attribute of the 

typical PSO (Doctor et al, 2004). In 2006, a distributed particle swarm optimisation algorithm 

was developed by Hereford (2006), which they later improve upon in (Hereford & Siebold, 

2008) and used for physical robots which can only make a circular movement in a definite 

angle. They however did not put into consideration the possibility of the robot encountering 

an obstacle in the search space (Tang & Eberhard, 2011). Pugh et al (2006) compared and 

contrast between physical robot and ideal particle in terms of their properties. They then 

broaden PSO to directly prototype many robots for investigating at a conceptual level the 

consequences of varying parameters of the swarm robots system (Pugh & Martinoli, 2007). 

A PSO algorithm was presented by Akat and Gazi in which the particle’s neighbours or the 

arrangement of neighbours surrounding a particle is altered continuously as time goes on 

(Akat & Gazi, 2008).  
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A target search PSO algorithm was presented for swarm robotics that centres on an 

elaborate and systematic search of the search space by the robots. Simulations were done to 

control the movement of the robots asynchronously. Their work put into consideration the 

mechanical properties of the robot (Xue et al, 2009). However, there was no obstacle in their 

simulation environment, and the volume of the robot was not considered. Derr and Manic 

(2009) also demonstrated how the distributed PSO (dPSO) algorithm can be used in an 

environment that is very hazardous to direct the path of robots to find their goal(s). The 

algorithm after its development was tested using many robots to look for single target, and 

also more than one target. To increase the efficiency and effectiveness of the search many 

robots were introduced to do diverse search simultaneously in some environments that are 

characterized by strepent. It was established that the presence of a frequency of 

electromagnetic radiation in the range at which radio signals are transmitted can drastically 

influence the time it will take a robot to get to its desired goal. They however left out the 

mechanical properties of the robot and only concentrate on algorithms. 

Doctor 2004 used PSO for path planning of unmanned vehicle that can converge very 

well. A soft and efficient path planning method for using Stochastic PSO was presented by 

Chen et al (2006). A Chaotic PSO was developed by Zhang, Wu and Wang (2013) for 

planning collision free path for robots. PSO was used to obtain the global best particle while 

local chaotic iterations are utilized to increase the accuracy of the solution. A path planning 

approach that used Chaotic PSO with mutation operator was proposed by Qin and Colleagues 

(2004). Also, Hao and Colleagues (2007) presented an approach that uses PSO and Polar 

coordinate system to avoid obstacles in in a non-stationary environment. PSO was used by 

Wang et al (2006) for controlling the direction and position of soccer robot.  Karimu (2012) 

used dynamic hybrid PSO algorithm to solve motion planning problem of mobile robot. Qin 

et al (2004) proposed a path planning method based on PSO with mutation operator. The 
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approach uses the Dijkstra’s algorithm to find the shortest path in the MAKLINK graph, and 

then used PSO to optimize the shortest path generated. The algorithm is suitable for stationary 

environment where the barriers are protrusive polygon in shape.  

A multi-objective PSO for avoiding obstacles which are assumed to be circles in 

dynamic environment was proposed by Min, Zhu and Zheng (2005). PSO algorithm is used 

in getting the solution by adjusting the velocity of the robot. The limitations of this approach 

include the fact that path planning will be very difficult except the obstacle is a simple circle. 

And the approach may not produce the best result for concave barriers. Raja and Pugazhenti 

(2009) proposed a PSO planner for dynamic environment which can be used to obtain the 

optimum solution for the path that the mobile robot will navigate in the search space. Ellips 

and Davoud (2010) developed a multi-objective PSO-based algorithm for robot path 

planning. They used PSO for global path planning and the Probabilistic Roadmap Method 

(PRM) was used for obstacle avoidance. Yinghua Xue and Hongpeng Liu (2011) proposed a 

new variant of PSO that centres on the degree at which the obstacle changes. This approach 

is distributed thereby increasing the flexibility of the robot path planning in the search space. 

The strength of the algorithm is that its model is simple, convergences quickly, has automatic 

obstacle avoidance and can be used to generate the best path for the robot to navigate in 

various environments. 

 According to Basturk, and Karaboga, (2007), PSO is a stochastic population based 

algorithm that operates on the optimisation of a candidate solution (or particle) 

(Venayagomoorthy et al, 2008). The original PSO algorithm was introduced by Kennedy and 

Eberhart (1995). Their algorithm was centered on the social behavior demonstrated by a flock 

of bird, a school of fish, and herds of animals. The algorithm make use of particles that go 

through ongoing transformations by means of cooperation and competition among the 

particles from one generation to the other.  PSO have been used to solve non-differentiable 
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(Guerra & Coelho, 2007), non-linear (Guerra & Coelho, 2007) and (Eberhart & Shi, 1998), 

and non-convex engineering problems (Rusman, 2013).  

 PSO is theoretically straightforward and does not require any sophisticated 

computation (Abraham, Konar & Das, 2008). PSO uses a small number of parameters, which 

have minima influence on the outcomes unlike any other optimisation algorithms. This 

property also applies to the initial generation of the algorithm. The randomness of the initial 

generation will not affect the output produced. Despite these advantages, PSO faces similar 

shortcomings as other optimisation algorithms. Specifically, PSO algorithm suffers from 

premature convergence, lack of capacity to provide solution to dynamic optimisation 

problems, the tendency of particles to be stuck in local minima and partial optimism (i.e., 

which worsens the control of its speed and direction). In swarm robotics, PSO particles 

moves within the search space to find optimal solution for the swarm by updating their 

velocity and position. According to (Xue et al, 2011) robots with actual velocities and 

physical positions that made up the swarm can be mapped to particles in PSO as they carry 

out their target search in the search space. The flowchart in figure 2.4 is the general steps of 

the PSO algorithm. 

2.4 Variants of particle swarm optimisation algorithms in swarm robotics 

In concordance with the development of a number of variant to reduce the disadvantage of 

general PSO, the application of PSO in swarm robotics has also spawned a number of 

dedicated PSO algorithms. These variants were developed to accommodate the different 

requirement of robotics tasks and characteristics. This is not limited to the extension from 

singular to multiple robots environment, but also includes the parallel operative nature of 

these swarm robots that work uniquely but at the same time in unison with the other robots. 

In this subsection, we describe some PSO algorithms that have been developed over the 

decades and are been used in the field of swarm robots. 
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Figure 2.4: Procedure of the PSO algorithm 

 

2.4.1 The Standard PSO 

It was originally proposed by James Kennedy and Russell Eberhart in 1995 (Kennedy, 

Eberhart & Shi, 2004). The algorithm is made up of particles which have position and 

velocity. Each of the particles of a swarm epitomizes a possible solution in PSO. The particles 

explore the problem search space seeking for the best or at least a solution that is suitable. 

Each of the particles changes their movement according to their own accumulated knowledge 

of moving in the environment and that of their neighbours.  

In PSO (Xi) represent the position of a particle, and (Vi) the velocity of the particle. 

The particle’s number is i. Where (i = 1,…,N), and N is the number of particles in the swarm. 

The ith particle is denoted as ),...,,(
2! iNiiI

XXXX  . The velocity is the degree at which the 

subsequent position is varying as regards the present position. ),...,,(
2! iNiiI

VVVV   represent 
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the velocity for the particle i. As the algorithm begins, the position and velocity of the 

particles are given numerical values haphazardly. This is followed by using equations (1) and 

(2) to update the position and velocity of the particles after successive iterations are 

conducted throughout the search. 
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Shi and Eberhart (2004) showed that PSO having different swarm population has 

practically alike but not identical performance.  
1

c  and 
2

c are two positive constants 

representing the cognitive scaling and social scaling factors which according to Kennedy, 

Eberhart, and Shi (2001) are usually set to 2. The stochastic variable ()1rand  and  ()2rand  

has the distribution U (0, 1). These random variables are stand-alone functions that infuse 

momentum to the particles. The most ideal position located so far by the particle is denoted 

as mi
pbest

, . The best position attained by the neighbouring particles is denoted as m
gbest . 

There are two types of particles neighbourhood in PSO, and the type of neighbourhood 

is what determines the value of m
gbest . The two types of neighbourhood are: 

1. gBest (Global neighbourhood) – Here, there is a full connection among the particles, 

and the exploration of swarm is controlled by the best particle in the swarm.  

2. lBest (Local neighbourhood) – There is no full connection among the particles in the 

swarm, rather they are connected only to their neighbours. 

 

Equation 2 is used in updating the position of the particles whereby the velocity is added 

together with the earlier position and a new search is started from its former position. Eberhart 

Univ
ers

ity
 of

 M
ala

ya



45 

 

and Shi (2000) in their work bounded 
)1(

,

t

mi
x to avoid a situation whereby particles are spending 

too much time in infeasible region. A problem dependent fitness function is used in 

evaluating the superiority of 
)1(

,

t

mi
x . Assuming the present solution is superior to the fitness of 

mi
pbest

,  or m
gbest  then the new position will replace mi

pbest
,  or m

gbest  accordingly. 

Unless the condition for ending the search (either the iteration has reached its peak or we 

have gotten the desired solution) this updating process will continue. The optimal solution is 

the best particle found when the stopping criterion is satisfied (Aziz & Ibrahim, 2012). The 

flowchart for the original PSO for collective robot search is shown in Figure 2.4 above.   

Where: i = particles identification counter form 1 to pop_size 

 𝑋𝑖
𝑑 = ith particle’s dth dimension’s value 

pop_size = Population size 

 gen_count = generation counter from 1 to max_gen 

 dimen = dimension 

 w = inertia weight (w0 = 0.9, w1= 0.4) 

 max_gen = maximum generations 

 
1

c  = 
2

c = 2 

As opined by Shi and Eberhart (1998), to prevent commotion, the value  
)1(

,

t

mi
v  is fixed 

at ±vmax. The reason is that the value of vmax is going to be extremely large if the scope of 

search is too broad. Also, if vmax is very narrow, the extent of the search will be unreasonably 

reduced thereby forcing the particles to do local exploration. The inertia weight is represented 

as w (constriction factor) is the inertia parameter; this regulates algorithm’s searching 

properties. Shi & Eberhart (1998) opined that it is better to commence the search using a 

larger inertia value (a more global search) that is automatically decreased to the end of the 
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optimisation (a more local search). Using inertia weight with smaller values mostly ensures 

fast convergence as little time is wasted on the exploration of the global space (Aziz & 

Ibrahim, 2012).  The inclusion of w in the equation is to provide equilibrium between the 

global and local search capability of the particles. There are two techniques that have been 

presented for the choice of suitable values for inertia factor. The number one technique is 

called linear method, here the inertia weight decreases linearly after each iteration until the 

highest number of iteration or the highest number of inertia parameter is reached (Eberhart 

& Shi, 2001). 

𝑤𝑖+1 = 𝑤𝑚𝑎𝑥 − 
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑚𝑎𝑥
𝑖 

The number two technique is called the dynamic method; here the value of the inertia reduces 

from the initial value to the final value fractionally by ∆w. 

𝑤𝑖+1 = ∆𝑤𝑤𝑖 

 

Where the value of ∆𝑖 varies from 1 to 0. Judging from the results of experiments that have 

been performed by Shi and Eberhart (2004), the performance of the dynamic method in term 

of convergence is superior to the one of linear method because it dynamically reduces the 

value of the inertia weight from maximum to minimum. 

 

2.4.2 Synchronous PSO (SPSO) 

Particles in the conventional PSO perform synchronous updates, i.e., the best particle 

in each neighborhood is located and then used by the other particles to update their positions. 

The entire information of the neighbours is possessed by all the particles as reported in the 

work of Juan, Mengjie, and Winston (2011). mi
pbest

,  or m
gbest  update are done after all 

particles’ fitness have been evaluated. This type of approach has the advantage of quick 

convergence and good result. Carlisle and Dozier (2001) however observed that the 
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synchronous update is costly as the first particle evaluated will be redundant for some time 

since it has to wait for other particles to be evaluated  before it can progress to a another 

position and continue exploring the search domain.  

 

2.4.3 Asynchronous PSO (APSO) 

In the Asynchronous PSO (APSO), mi
pbest

, and m
gbest  of a particle, its velocity and 

position are updated immediately after computing their fitness and, as a consequence, they 

update it having incomplete or imperfect information about the neighbourhood. This result 

into varieties in the swarm since some of the information is from the previous iteration while 

some is from the current iteration. In the work of Luo and Zhang (2006), they used the bench-

mark functions of Rosenbrock (unimodal) and Griewank (multimodal) to do a performance 

comparison of SPSO and APSO on the Rosenbrock (unimodal) and Griewank (multimodal) 

bench-mark functions. They found out that APSO performs better and has a faster 

convergence than SPSO. Perez and Basterrechea (2005) opined from the results of their 

experiments that APSO is able to find solutions faster and with a similar accuracy as SPSO. 

They concluded that APSO provides the best accuracy at the expense of computational time.  

 

 

2.4.4  Extended Particle Swarm Optimisation (EPSO) 

Extended Particle Swarm Optimisation (EPSO) was proposed by Pugh and Martinoli 

(2006, 2007). In the work of Jun-jie and Zhang- hong  (2005), the EPSO algorithm provides 

a platform whereby each of the robots are directed through unknown environment to their 

goal by their individual intuition knowledge (cognitive) and accumulated knowledge (social 

experience) of their companionship with other robots in the swarm. EPSO utilizes the 

existing advantages of gBest and lBest in previous versions of PSO.  In the EPSO algorithm, 

the robots are not connected in a multi-step nature and there is no restriction on the movement 
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of the robots in the swarm thereby guaranteeing greater level of communication among the 

robots. The Braitenberg obstacle avoidance algorithm (Braitenberg, 1984) was incorporated 

into the main equation and used to achieve obstacle avoidance mechanism in the EPSO 

algorithm. The robot will update its inner velocity and keep heading towards a different 

direction if it encounters an obstacle by implementing a step of the algorithm. The advantage 

of this technique is that it allows the collision prevention procedures to be treated separately 

from some of the other eminent characteristics of robots. However, this approach is not likely 

to be practicable if there is the need to analyze the steadiness of the algorithm in view of the 

effect the barriers have on the robots (Couceiro et al, 2012c). Moreover, it will be difficult to 

define a technique that can fit into all situations whereby it will be able to use appropriate 

information to modify all the parameters for the algorithm (Couceiro et al, 2012a). 

2.4.5  Group Decision Making Extended Particle Swarm Optimisation (GDMEPSO) 

Xue Songdong et. al. (2012) proposed the Group Decision Making Extended Particle 

Swarm Optimisation (GDMEPSO) algorithm, which is a fully distributive algorithm and was 

proved to be effective even when the size of the swarm is too large. They modified the theory 

behind EPSO by exchanging the social experience with the approximation value of location 

of the desired goal. The swarm robots were mapped to WSN (Wireless Sensor Network). To 

enhance the efficacy of the search, the RSSI (received signal strength indication) wireless 

sensor network technique was considered as a merger of aggregate selection of course of 

action among several alternatives.  

 

2.4.6  Multi-Robot, Multi-Target PSO 

Multi-Robot, Multi-Target PSO algorithm was proposed by Kurt Derr and Milos 

Manic (2009). They developed a distributed PSO that utilizes multiple small mobile robots 

to search an unfamiliar terrain with the aim of locating the target(s). The PSO algorithm made 
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use of a new adaptive RSS (received signal strength) as a very important element that direct 

the movement of robots toward their goal(s) in a highly risky environment. Their 

experimental results show that electromagnetic wave frequency between audio and infrared 

can have a dramatic effect on the time it takes the robot to reach its target.  

 

2.4.7  Physically embedded PSO (pePSO) 

The Physically embedded PSO (pePSO) algorithm was proposed by Hereford, and 

Siebold, (2008). They employed two search strategies. First, the swarm robot moves 

throughout the search space and take measurements as they move towards their targets. 

Second, trophallactic, (which is the exchange of vomited partially digested food that occurs 

between adults and larvae in colonies of social insects) was developed into an algorithm and 

utilized for the search. The second search algorithm is advantageous in that no robot-to-robot 

communication is needed; communication radius, protocol, or bandwidths are all 

unnecessary. Also, it is not necessary for the robots to have knowledge their position 

explicitly. The pePSO does not make use of any main agent to direct the movements and 

behaviours of the robots in the swarm. Unlike what we have in the standard PSO, the 

movement of particles is confined within a regulated space to circumvent the no direct 

movement obtainable in the traditional PSO. The pePSO algorithm presumed that all the 

robots in the swarm are in harmony and it is after the transferring of all relevant information 

among the robots that the calculation of the robot’s new position is done. Moreover, robots 

can only disclose information about their individual solution if their personal solution is the 

ideal solution for the entire swarm. The advantage of this approach is that it drastically 

decrease the volume of information interchange among robots. The approach can however 

lead to redundancy on the part of the robots as they would have to remain idle for some time 
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after successfully completing an iteration to process all appropriate information (Couceiro et 

al, 2013).  

 

2.4.8  Distributed PSO (dPSO) 

The Distributed PSO (dPSO) was proposed by Hereford, J. M. (2006) as an algorithm 

that can adequately handle a swarm made up of a considerable number of miniature robots. 

This variant of PSO algorithm is very efficient in locating the search goal. This algorithm 

makes provision for computation of the individual robot’s current position. The exchange of 

information and signals among the robots in the swarm will be greatly reduced. Also, there 

is no need of a representative robot to organize the robots in the swarm into a harmonious 

movement towards their target.  

 

2.4.9  Augmented Lagrangian PSO with Velocity Limits (VL-ALPSO) 

Kai Sedlaczek and Peter Eberhard (2006) presented the Augmented Lagrangian 

Particle Swarm Optimisation (ALPSO) algorithm. They made use of some parts of the 

original PSO technique and combine them with Augmented Lagrangian Multiplier. The 

Augmented Lagrangian Multiplier is a comprehensive non-stationary penalty function 

method, which will give suitable result. The authors concluded from their experiments that 

ALPSO have quick convergence properties and it is a powerful tool for solving problems in 

real life applications that have few solutions. The drawbacks of this algorithm are the 

performance is poor when a fully connected topology (global best) is used, and conflicting 

situations based on information from many neighbors. This approach however allows 

informed individuals to find better solutions, as it is more likely in the neighborhood to have 

a particle with a high quality. Tang and Eberhard (2011) proposed the Augmented 

Lagrangian PSO with Velocity Limits (VL-ALPSO). The algorithm was proposed to handle 
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changes in the physical position of swarm robots for collective search of targets to be more 

effective. VL-ALPSO approach to swarm robotics is through the amalgamation of 

augmented Lagrangian multipliers, velocity restrictions in addition to virtual detectors to 

guarantee the implementation of constraints, obstacle avoidance and mutual avoidance, 

which are situations obtainable in, swarm mobile robots in coordinated movements. The 

algorithm is decentralized and the mechanical properties of the robots are taken into 

consideration. 

 

2.4.10 Detection and responding PSO (DR PSO) 

Detection and responding PSO (DR PSO) algorithm was presented by Jatmiko, 

Sekiyama and Fukuda in 2006. According to Andries P. Engelbrecht (2005), the 

complications of the dynamic environment cannot be solved by the original PSO. There is 

therefore the need to modify or improve on the original PSO so that it can solve problems 

that are dynamic in nature. Eberhart and Shi (2001), and Hu and Eberhart (2002) suggested 

that this could only be achieved through the integration of a system that can discover 

modification and react to it favorably. The global best information gBest is monitored by the 

alteration detection function. After some certain number of iterations, if gBest is unchanged, 

it possibly means that another optimum solution exists. Some productive plan for reacting 

positively to diversities of environmental fluctuations must be employed when environmental 

changes are detected. DR-PSO’s inability to survive extreme alterations is the main drawback 

of this technique.  

 

 

2.4.11 Charged PSO (CPSO) 

Jatmiko, Sekiyama and Fukuda presented the Charged PSO (CPSO) algorithm in 

2006 alongside DR-PSO to provide solution to the circulation of odor with time in a dynamic 
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environment. CPSO algorithm adopted the idea of Coulomb’s inverse square law that 

described the electrostatic interaction between electrically charged particles. The charged 

particle here is represented as charged robot (which is used in CPSO). A non-attraction force 

is used on the charged robot while such force is not used on the neural robot. There is variety 

in the positional allocation of robots to avoid being snared in a local maximum. With this, 

the problem of inability to cope with extreme changes that characterized the DR-PSO is 

deemed solved. 

 

2.4.12 Augmented Lagrangian Particle Swarm Optimisation (ALPSO) 

This algorithm was presented by Sedlaczek and Eberhard (2005). They made use of 

some part of the original PSO technique and combines it with Augmented Lagrangian 

Multiplier. The Augmented Lagrangian Multiplier is a comprehensive non-stationary penalty 

function method which will give suitable result. The authors concluded from their 

experiments that ALPSO have quick convergence properties and it is a powerful tool for 

solving problems in real life applications that have few solutions.  

  

2.4.13 Fully Informed Particle Swarm Optimisation Algorithm (FIPS) 

Mendes et al. (2004) introduced the Fully Informed Particle Swarm Optimisation 

(FIPS) algorithm. It is a variant of PSO algorithms that exploit the velocity update approach 

of the best neighborhood. This algorithm readily reacts to alterations in the configuration of 

the population. All neighbors of a particle are carefully considered before updating their 

velocity. This is unlike some variants of PSO that only update the velocity of the best 

neighbor. FIPS performs better when the topologies have a lower degree such as the ring 

lattice topology (local best) or topologies where the particles have very few neighbors (not 

more than three).  
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2.4.14 Robotic Darwinian PSO (RDPSO) 

Couceiro, Rocha, and Ferreira (2011a & 2011b) as an extension of the Darwinian 

PSO (DPSO) presented the Robotic Darwinian PSO (RDPSO) algorithm. This algorithm like 

the standard PSO, is made up of a swarm of robots that moves as a group in the search space 

to locate the ideal solution. Each robot have a position, the direction they are going, and their 

performance. The RDPSO permits the swarm to be divided into various dynamic groups of 

sub swarm. This supports a distributed method rather than the centralized method obtainable 

in some PSO algorithms where the network is likely to have covered the whole swarm of 

robots. The advantage of this is that with the swarm divided into smaller groups of swarms, 

there is a decrease in the robots that are needed to get the ideal solution and the volume of 

exchanges information among robots also decrease thus reducing the overhead cost.  

Moreover, that means that dividing the robot swarm into mutually exclusive 

categories is an added advantage for RDPSO since the volume of information transfer among 

the robots will decrease to the barest minimum. The algorithm does not need any central 

agents to coordinate robots’ movements or actions. The RDPSO is highly scalable thereby 

allowing the addition of a huge number of robots to the swarm. The weaknesses of the 

algorithm includes the lack of adaptability to contextual information, and the changing over 

time of the sub-optimal solutions which according to J. Suarez, R. Murphy (2011) can be 

overcome by sweeping the whole scenario with robots. Couceiro et al (2012a, 2012b, & 

2012c) in some of their most recent research demonstrated that the RDPSO can solve some 

problems related to swarm robotics such as obstacle avoidance, dynamic nature of the robots 

in the search space, finding ideal solutions, and ability to handle some of the communication 

restraints (Couceiro et al, 2013). 
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Table 2.1: A summary of variants PSO algorithms implementation specifically for swarm 

robotics. 

S/No Technique Author(s) and 

Year 

Strength(s) Weakness(es) Description 

1 Original PSO Kennedy and 

Eberhert (1995) 

Fast convergence, 

simple, effective, and 

easy to implement 

without a complex 

calculation. 

Premature 

convergence, 

inability to solve 

dynamic optimisation 

problems, and cannot 

be scaled to 

accommodate large 

number of robots. 

Uses particles 

that have 

position and 

velocity rather 

than genetic 

operators. 

Inertia weight 

w is in the 

range of 0.2 to 

0.4, while c1 

and c2 equal to 

2. 

2 Synchronous 

PSO (SPSO) 

Kennedy and 

Eberhert (1995) 

Quick convergence, it 

produces good result, 

and it can be adapted 

to solve a given 

problem. 

It is costly as the first 

particle evaluated 

will be redundant for 

some time since it 

has to wait for other 

particles before its 

position can be 

updated. It also has 

poor parallel 

competence. 

Inertia weight 

w is in the 

range of 0.4 to 

0.9, while c1 

and c2 equal to 

2. 
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3 Asynchronous 

PSO (APSO) 

Koh, Fregly, 

George,  and 

Haftka (2005) 

Fully utilize the 

processor as there is 

no idle processor.  

Provides the best 

accuracy at the 

expense of 

computational time. 

Inertia weight 

w is dynamic, 

while c1 and 

c2 = 2 

4 Extended PSO 

(EPSO) 

Jun-jie and 

Zhang- hong 

(2005) 

Utilize the existing 

advantages of gBest 

and lBest version of 

PSO. It has less 

computational costs. 

It can also be easily 

mapped to robot or 

swarm of robots. 

It cannot be used to 

solve complex 

dynamic optimisation 

problems. Also, it 

cannot handle large 

number of robots in 

the swarm. 

Makes use of 

intuition 

knowledge to 

direct the 

movement of 

robots to their 

search goal. 

5 Group Decision 

Making 

Extended PSO 

(GDMEPSO) 

Xue, Zan, Zeng, 

Xue and Jing 

(2012) 

Is very effective, can 

successfully handle 

large number of 

robots in the swarm. 

The guiding effect of 

GDMEPSO is strong 

than that of EPSO 

As the swarm size 

becomes very big, the 

efficiency of 

GDMEPSO becomes 

lower than that of 

EPSO. 

Energy consumption 

increases as swarm 

size increases. 

It is a fully 

distributive 

algorithm 

where 

communication 

of swarm 

robots is taken 

as wireless 

sensor 

network. 

6 Multi-Robot 

Multi-Target 

PSO 

Kurt Derr and 

Milos Manic 

(2009) 

It can search for 

multiple targets in a 

noisy environment 

using many robots in 

the swarm. 

Signal degeneration 

can adversely affect 

robots’ navigation. 

It uses the 

combination of 

decentralised 

PSO algorithm 

and new 

adaptive RSS 

to enable 
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It can be used for 

hazardous target 

search. 

Overshooting of 

target is greatly 

prevented. 

robots to locate 

their target(s). 

7 Physically 

embedded PSO 

(pePSO) 

Hereford and 

Siebold (2008) 

Has the ability to 

locate target in 

complicated 

environment. 

The need for robot to 

robot communication 

is completely 

eradicated. 

Search time can be 

unpleasantly long 

when there are 

obstacles in the 

search space. 

Weak communication 

signal can 

unfavourably affect 

search time. 

Trophallactic 

behaviou r in 

social insects 

was developed 

into an 

algorithm. 

The algorithm 

allows robots 

to take 

measurement 

in the search 

space from the 

location where 

they are to the 

target. 

 

8 Distributed PSO 

(dPSO) 

Hereford (2006) It is computationally 

simple. 

It can efficiently 

handle swarm that is 

made up of large 

number of robots. 

The time taken to 

locate the target is 

much because the 

mobility on the path 

of the robots are 

limited 

It is a 

distributive 

algorithm and 

there is no 

need of any 

representative 

robot. 
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It has the ability to 

locate targets 

efficiently. 

Inter-robot 

communication is 

minimized. 

 

 

 

9 Augmented 

Lagrangian PSO 

with Velocity 

Limits (VL-

ALPSO) 

Tang and 

Eberhard (2011) 

It is simple and 

reliable. 

It has resilient 

convergence. 

It is scalable to a very 

huge number of 

robots. 

It can handle 

diversity in swarm 

thereby solving the 

problem of premature 

convergence. 

It can be modified to 

evade barriers that 

are dynamic in nature 

in the search space. 

There is non-

monotonous decrease 

in the value of the 

objective function. 

 

Requires making a lot 

of adjustment to get 

the best performance 

for it.  

 

 

Uses a 

decentralised 

algorithm. 

 

The technique 

employed the 

combination of 

augmented 

Lagrangian 

multiplier with 

velocity 

restrictions and 

virtual 

detectors. 

10 Detecting and 

Responding PSO 

(DR PSO) 

Jatmiko, 

Sekiyama and 

Fukuda (2006) 

It can solve the 

complexity problem 

in the dynamic 

environment. 

Cannot survive 

extreme alterations in 

dynamic 

environment. 

It uses change 

detection 

function to 

monitor gBest. 

11 Charged PSO 

(CPSO) 

Sekiyama and 

Fukuda (2006) 

It solved the problem 

of inability to cope 

The instabilities in 

the charged swarm 

It adopted the 

idea of 
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with extreme changes 

that characterized DR 

PSO. 

size can be very 

large. 

Introduction of 

charged particles 

makes it to be 

wasteful. 

The algorithm is not 

scalable. 

Coulomb’s 

law. 

A charged 

robot is 

introduced 

with a 

repulsive force 

and a neutral 

robot with non 

-repulsive 

force. 

12 Augmented 

Lagrangian PSO 

(ALPSO) 

Sedlaczek and 

Eberhard (2005) 

Quick convergence. 

Powerful tool for 

solving constrained 

problems. 

There is problem of 

incomplete 

information since 

individual robot only 

have information on 

the value of self-best 

and swarm best. 

Makes uses of 

classical PSO 

and 

Augmented 

Lagrangian 

multiplier. 

13 Fully Informed 

PSO (FPSO) 

R. Mendes, J. 

Kennedy, and J. 

Neves. (2004) 

Performance is high 

with lower degree 

topology. 

It is simpler. 

High computational 

cost is associated 

with the algorithm. 

Performs poorly 

when global best is 

used. 

Information from 

neighbourhood can 

lead to conflict. 

Performance can be 

adversely affected by 

It exploits the 

velocity update 

of its 

neighbourhood 

after careful 

consideration.  Univ
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changes in topology 

of the population. 

14 Robotic 

Darwinian PSO 

(RDPSO) 

Couceiro, 

Rocha and 

Ferreira (2011) 

It is highly scalable. 

The need for central 

coordinating robot is 

eliminated. 

The volume of 

information transfer 

from one robot to 

another is reduced to 

the barest minimum. 

Lack of adaptability 

to contextual 

information. 

 

Frequent changes of 

sub optimal solutions 

with time. 

It uses 

sociobiological 

technique to 

improve the 

ability of 

canonical PSO 

to avoid been 

trapped in local 

optimal. 

 

2.5 Interior-Point Methods (IPMs) 

The notion of the “interior point” method was derived from the linear programming 

annotation. The Interior Point Methods go through the feasible search space to arrive at the 

most favourable solution. This is contrary to what we have in the simplex method which go 

along a succession of contiguous extreme points to the best solution. Interior Point Methods 

are normally grouped into three principal classes: Affine-scaling methods, primal-dual 

methods, and Projective methods. From the aforementioned types of IPMs, the one that is 

most popular for achieving maximum productivity is the primal-dual (as well as primal-dual 

algorithms that integrate predictor - corrector) algorithms. Quintana and Torres (1997) 

reported that the most important stages in all Interior Point Methods are: Converting the 

inequality constrained optimisation problem to equality constrained one, use the logarithmic 

barrier functions to develop the Lagrange function, decide on the first-order most favourable 

conditions, and utilize the Newton’s method to the group of equations coming from the first-

order most favourable conditions. 
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Since the 1960s, different variants of the Interior Point Methods have been developed 

for solving nonlinear and linear programming problems. For more than 25 years now, 

researchers and academicians have contributed immensely to the development of the Interior 

Point Methods thereby making it a practicable set of algorithms that are suitable for solving 

different kinds of optimisation problems that are conical in shape (Quintana and Torres, 

1997). According to (Dikin, 1967), the lack of convergence in the data of the problem 

constitutes the early shortcoming in the use of Interior Point Methods for Linear 

Programming. Many of the interior-point methods employ a revised Newton method to 

decide the direction of search for each iteration. The set of equations relating to the revised 

Newton system can then be summarized to a scheme of equations whose matrix AD2AT is 

positive but habitually not in peak condition (Jorge & Stephen, 2006). The logic backing the 

development of these methods originated from the truth that the optimal conditions for linear 

programming known as the Karush-Kuhn-Tucker (KKT) conditions, is expressed as 

{z : F(x) = 0,G(x) ≥ 0}, 

where F(·) and G(·) are maps and z is a vector. Interior point methods are iterative algorithms 

generating a sequence of points {sj} lying in the interior of the set {z: G(x) ≥ 0} (hence the 

name), and then come together at a point s∗ fulfilling the KKT conditions. 

It have been shown beyond reasonable doubt in the work of (Jorge & Stephen, 2006) 

that Interior-Point Methods (IPMs) also known as barrier methods are powerful tools for 

providing solution to nonlinear optimisation problems.  The IPMs and SQP methods have 

constrains that are functional at the present stage are now believed to be the best algorithms 

for providing solution to large-scale nonlinear optimisation problems. Though they are very 

efficient, but they are still plagued with several challenges such as how to deal with non-

convexity, the way to update the barrier constraint notwithstanding the presence of 
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nonlinearities. Also, is the necessity of making sure the algorithm advance in the direction of 

the solution. The continuation methods used by IPMs include the linear and quadratic 

programming which can be classified as an extended part of interior-point methods that 

impose convergence using line searches and engage direct linear algebra for steps 

computation. IPMs also make use of the barrier methods which use a trust region constraint 

to keep stability while the quadratic model is used to define the step (Jorge & Stephen, 2006).  

Ben-Tal and Nemirovski (2001) pointed out that one of the strength of the IPMs is 

their polynomial convergence properties. Karmarkar (1984) in his work proved that an 

interior-point method for linear programming have verifiable polynomial convergence 

qualities. О(n2.5log ϵ−1) arithmetic operations is needed by the algorithm to attain an ϵ-

solution to linear programming, where the size of the decision vector is n. Also IPMs have 

the ability to solve problems that are classified as complex. Particularly, IPMs are been used 

in solving problems in conic programming that are of the form 

min {cTx : Ax − b ∈ K}, 

where K is a cone that is closed, convex, and have non-empty interior (Renegar, 2001). The 

most popular categories of conic problems for which IPMs have been developed are 

1.  Linear Programming (LP): K = 𝑅+
𝑛 = {x ∈ Rn: xi ≥ 0 for all i = 1..., n}, 

2.  Second-Order Cone Programming (SOCP): K = K1× ··· × Kp, where each  

Ki= {x ∈ Rni: xni ≥ √𝑥𝑖
2 + ⋯+ 𝑥𝑛𝑖−1

2 }, and 

3.  Semi-Definite Programming (SDP): K = {X ∈ Rn×n: X = XT, yT Xy ≥ 0 for all y ∈ Rn}. 

Ben-Tal and Nemirovski (2001) concluded that LP ⊂ SOCP ⊂ SDP when some simple 

changes are made to the variables. 
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Interior-point methods (IPMs) when contrasted with active set and cutting plane 

methods flick the amount of work; thereby making the number of iteration to be lower both 

theoretically and practically than the one we have in active set methods. When the interior-

point methods is used for solving problems in linear programming, for a hard-and-fast 

precision, a O(√n) iterations is enough hypothetically, but in practice it is deemed that only 

O(log n) iterations are needed. One of the shortcomings of Interior-Point methods is the 

excessive work per iteration that is commonly required. For a linear programming problem, 

we can have the following: 

min cTx    max bTy 

s.t. Ax = b,  and  s.t. ATy ≤ c. 

x ≥ 0, 

Despite the fact that there are many types of interior-point-algorithms that can be used 

to solve linear programming problems; unless the right linear algebra methods are employed, 

the principal work per iteration is the development and result of a system of “standard 

equations”, which can be written as: 

ADATu = f, 

where A =  the constraint matrix of the LP, and 

 D = some diagonal matrix. 

The attached costs required to develop the normal matrix is O(nm2) floating-point 

computations and that of solving the resulting system, using  Cholesky factorization (A = 

LLT) and back substitution is O(m3) when A is complex. 
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2.6  The Barrier Methods 

The 1960s witnessed the development of the barrier methods though its popularity 

has dwindled over time. The efficiency of the interior-point methods for solving linear 

programming problems has inspired new attention from researchers and Mathematicians in 

using barrier methods for solving nonlinear problems. The have led to the development of 

more innovative techniques and software for nonlinear programming at the end of the 1990s.  

Boyd and Vandenberghe (2004) have opined that Interior Points Methods make use of barrier 

function in F to convert constrained optimisation problem into a series of unconstrained 

problems. This makes the gradient of the augmented criterion unbounded at the boundary of 

the feasible domain so that its minimizers fulfill the constraints. Results of experiments 

conducted have shown that Interior-Point Methods are faster in solving large scale problems 

with thousands of free variables and constraints compared to active-set Sequential Quadratic 

Programming methods. They are likely not too robust as the problem they are to solve 

becomes larger. The terms “interior-point methods” and “barrier methods” are now used 

interchangeably.  

                                                             min
𝑥,𝑠

𝑓(𝑥)       (2.1a) 

                  subject to  𝐶𝐸(x) = 0  (2.1b) 

                                                             𝐶𝐼(x) – s = 0   (2.1c) 

                         s ≥ 0.    (2.1d) 

CI(x) is a vector that is created from the scalar functions Ci (x), i ∈ I. The same thing applies 

to CE(x). From the above equation, the insertion of a vector s of idle variables into the 

inequalities CI(x) ≥ 0 changed it into equalities. The variable l was used to represent the 

number of equality constraints which is the dimension of the vector CE, while m is the 
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dimension of CI and was used to represent the number of inequality constraints. Interior-point 

methods can also be categorised as the barrier methods or as continuation methods. The 

Karush-Kuhn-Tucker (KKT) conditions for the nonlinear program (2.1) can be written as 

 

∇f (x) – AE T (x) y – AI T (x) z = 0,    (2.2a) 

Sz − μe = 0,      (2.2b) 

                                                      𝐶𝐸(x) = 0,      (2.2c) 

                                                      𝐶𝐼(x) – s = 0,      (2.2d) 

with μ = 0, together with 

    s ≥ 0, z ≥ 0        (2.3) 

 

From the above equation, there are two Jacobian matrices AE(x) and AI(x) having CE 

and CI as functions respectively. The Lagrangian multipliers are y and z. The diagonal 

matrices S and Z are having diagonal entries s and z, where e = (1, 1, . . . , 1)T. Looking 

closely at the equation (2.2b), when the value of μ = 0, the boundary limits specified in (2.3) 

help in initiating an ordered sequence of defining the best active set of the problem. The 

variables s and z are forced to have positive values by making μ to be always positive. The 

continuation approach is also called homotopy where one path can be continuously deformed 

into the other leaving the endpoints fixed and remaining within its defined region. The idea 

of homotopy is what gave birth to the description of primal-dual trend just as the barrier 

viewpoint is central in the scheme of having iterations that have global convergence. 

This approach nearly solves the disconcerted KKT conditions (2.2) for series of 

positive variables {μk} that tends to zero, while s, z > 0.  This is to ensure that we find a spot 

where the KKT conditions for the nonlinear program (2.1) is met. The probability of the 
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iterate converging to a minimizer is very high as it becomes necessary for the iterate to reduce 

a merit function. This approach of two continuous functions from one topological space is 

locally acceptable. In a situation where (x∗, s∗, y∗, z∗) is a neighbourhood of solution that 

suits the self-sufficient linear constraint condition, the exact supplementary condition, and 

the second-order satisfactory conditions.  There is a small positive value for μ in the system 

which has a local solution that is distinctive. These solutions are represented by (x(μ), s(μ), 

y(μ), z(μ)). The primal-dual central path is the name of the path depicted by these positions, 

and it converges to (x∗, s∗, y∗, z∗) as μ → 0. 

The second derivation of interior-point methods associates with (2.1) the barrier 

problem  

 

  min
𝑥,𝑠

𝑓(𝑥) - μ∑ log 𝑠𝑚
𝑖=1 I      (2.4a) 

 

         Subject to 𝐶𝐸(x) = 0,      (2.4b) 

                       𝐶𝐸(x)- s = 0,                 (2.4c) 

 

          ∇f (x) – AE T (x) y – AI T (x) z = 0,               (2.5a) 

         μS-I e + z = 0,                 (2.5b) 

                        𝐶𝐸(x) = 0,                 (2.5c) 

                        𝐶𝐼(x) – s = 0,                 (2.5d) 

The only difference between the above equations (2.5) and the one of (2.2) in only 

the second equation because it no longer linear as s → 0 nears the solution. By multiplying 

the equation (2.5b) by S, it can be changed into a quadratic equation using Newton’s method. 

However, since the diagonal components of S are non-negative, this multiplication does not 
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have any visible effect on the solution. After equation (2.5b) has been changed to a quadratic 

equation, the KKT specifications for the barrier problem correspond with the disconcerted 

KKT structure of equation (2.2). 

According to Fiacco and  Mccormick (1990), the “interior point” terminology 

originated from the reality that the barrier methods used in those days are without any slacks 

and assumed that the initial point x0 is feasible with respect to the inequality constraints ci 

(x) ≥ 0, i ∈ I.  

 

The barrier function 

 

   𝑓(𝑥) −  𝜇 ∑ log 𝑐𝑖𝑖 ∈𝐼 (𝑥) 

is applied by these techniques to inhibit a situation in which the iterates will exit the feasible 

locality that have been identified by the lack of equalities. A good number of the state-of-

the-art interior-point methods are impracticable. The implication of this is that they can begin 

from any original point x0 and continue being interior for as long as the constraints s ≥ 0, z ≥ 

0 remain. Certain modifications can however be made in the design so that when a feasible 

iterate is produced, all the succeeding iterates will continue to be feasible. However, they can 

be designed so that once they generate a feasible iterate; all subsequent iterates remain 

feasible vis-à-vis the lack of equalities.  

 

2.7  Basic Interior-Point Algorithm 

By using Newton’s method for the nonlinear system (2.2) having the variables x, s, y, z, the 

result is the equation below: 
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[

𝛻𝑥𝑥
2  𝐿       0   −𝐴𝐸

𝑇  (𝑥)  −𝐴𝐸
𝑇(𝑥)

0            𝑍         0               𝑆
𝐴𝐸(𝑥)         0       0             0  

𝐴𝐼(𝑥)       − 𝐼          0        0

]  [

𝑃𝑥

𝑃𝑠

𝑃𝑦

𝑃𝑧

] = - 

[
 
 
 
∇𝑓(𝑥) −𝐴𝐸

𝑇(𝑥)𝑦 − 𝐴𝐼
𝑇(𝑥)𝑧

𝑆𝑧 −  𝜇𝑒

𝐶𝐸(𝑥)

𝐶𝐼(𝑥) − 𝑆 ]
 
 
 

      (2.6) 

 

where L represents the Lagrangian for (2.1a)–(2.1c): 

L(x, s, y, z) = f (x) − yT cE(x) − zT (cI(x) − s).                                 (2.7) 

 

Unlike the primal system that was reviewed in Section 2.3, the above system (2.6) is called 

the primal-dual system. After determining the step p = (px , ps, py , pz), the new iterate (x+, s+, 

y+, z+)  is calculated as:   

 

x+ = x + 𝛼𝑠
𝑚𝑎𝑥𝑝𝑥,   s+ = s +  𝛼𝑠

𝑚𝑎𝑥𝑝𝑠,    (2.8a) 

y+ =y +  𝛼𝑧
𝑚𝑎𝑥𝑝𝑦,   z+ = z + 𝛼𝑠

𝑚𝑎𝑥 pz,   (2.8b) 

 

where 

 

                           𝛼𝑠
𝑚𝑎𝑥 = max{ α ϵ (0,1]:s + α 𝑝𝑠 ≥ (1 - r)s},     (2.9a) 

                           𝛼𝑧
𝑚𝑎𝑥 = max{ α ϵ (0,1]:z + α 𝑝𝑧 ≥ (1 - r)z},     (2.9b) 

   

while τ ∈ (0, 1), 0.995 is an ideal value for τ. The criteria stated in (2.9) are referred to as the 

fraction to the boundary rule. It was introduced to stop the variables s and z from prematurely 

getting to their lower bound which is 0. The fundamental principles of the state of the art 

interior point methods were based on this iteration. It has however gone through several 

alterations to make the interior point method to cope with non-convexities and nonlinearities. 

Another very important factor is the process of selecting the arrangement of barrier 
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parameters {μk}. Fiacco and McCormick (1998) in their study revealed that unless some 

level of accuracy is achieved for the KKT conditions specified in (2.2), the barrier parameter 

μ remains constant for the sequence of iterations. Another efficient way of doing this is to 

make the barrier parameter up to date for every iteration. 

What we have in (2.2) is a primal dual matrix that continues to have a determinant 

that is not zero when the convergent solution from the iteration fulfills the conditions of the 

second-order sufficiency and strict complementarity. The nonsingular primal-dual matrix in 

(2.6) continues to be so and the iteration will converge to a solution that meets the second-

order satisfactoriness conditions and meticulous off setting of mutual lack. Particularly, let 

us assume that x* is a solution whereby meticulous off setting of mutual lack is in place, then 

for every index i either si or zi continues to be restricted from getting to zero as iterates move 

toward x*. This will ensure that the second block row of the primal-dual matrix (2.6) has full 

row rank. A superior rate of convergence can easily be created because the interior-point 

method does not produce ill conditioning or singularity. 

The above discussion can be summed up with a description of the implementation of 

the basic interior-point method. The subsequent error function, which is founded on the 

disconcerted KKT system (2.2) was used: 

 

       E(x, s, y, z;μ) = max {ǁ∇ f (x) − AE(x)T y − AI(x)T zǁ, ǁSz − μe ǁ, ǁcE(x) ǁ, ǁcI(x) − sǁ},       (2.10) 

 

representing certain vector pattern ǁ.ǁ. 

 

Algorithm 2.1 (Elementary Interior-Point Algorithm). 

Select x0 and s0 > 0, and calculate first values for the multipliers y0 and z0 > 0. 

Pick the original barrier parameter μ0 > 0 and parameters σ, τ ∈ (0, 1).  
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Let k ← 0. 

while  

condition for ending for the nonlinear program (2.1) is yet to be satisfied  

repeat 

while 

                       E(xk , sk , yk , zk ;μk) ≥ μk 

repeat  

Provide solution to (2.6) to find the search direction p = (px, ps, py, pz); 

             𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 ∝𝑠
𝑚𝑎𝑥, ∝𝑧

𝑚𝑎𝑥 applying (2.9); 

           𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (xk+1, sk+1, yk+1, zk+1) applying (2.10); 

          Let μk+1 ← μk and k ← k + 1; 

        end 

        Select μk ∈ (0, σμk); 

 End 

When we eliminate the prerequisite that the KKT conditions must fulfill for each μk  

in the inner “while - repeat” loop, we can without doubt get the up-to-date of the barrier 

parameter μk of each iteration from the Algorithm 2.1. This can be achieved by updating μk 

in the second to last line when a dynamic rule is employed. 

The quest to make the interior point algorithm to be able to solve myriad problems 

which include the non-convex nonlinear problems have made researchers to make some 

amendments and augmentations on the Algorithm 2.1. Many a times, the primal-dual system 

(2.6) is changed to the symmetric model 
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[
 
 
 
𝛻𝑥𝑥

2  𝐿            0   −𝐴𝐸
𝑇  (𝑥)  −𝐴𝐸

𝑇(𝑥)

0                ∑         0             − 𝐼

𝐴𝐸(𝑥)          0          0                0  

𝐴𝐼(𝑥)       − 𝐼          0             0 ]
 
 
 

  [

𝑃𝑥

𝑃𝑠

−𝑃𝑦

−𝑃𝑧

] = - 

[
 
 
 
∇𝑓(𝑥) −𝐴𝐸

𝑇(𝑥)𝑦 − 𝐴𝐼
𝑇(𝑥)𝑧

𝑍 −  𝜇𝑆−1𝑒

𝐶𝐸(𝑥)

𝐶𝐼(𝑥) − 𝑆 ]
 
 
 

  (2.11) 

Where  

∑ = 𝑆−1𝑍            (2.12) 

 

The workload involved in the calculation of each iteration is drastically reduced because a 

symmetric linear equation solver is used. 

 

 

2.8 Primal and Primal-Dual System 

2.8.1 Primal methods 

Barrier methods actually acted in the area of primitive variables x before the launch 

of the primal-dual interior point methods. The purpose of the primal methods was to provide 

solution to nonlinear programming problems through unrestrained reduction utilized in a 

parametric sequence of functions. Inequality constrained problems can simply be explained 

using Primal barrier methods as follows: 

 

𝑓(𝑥)𝑥
                                      𝑚𝑖𝑛  subject to c(x) ≥ 0           (2.13) 

 

While the barrier-log function is described by 

   

  P(x; μ) = f(x) - μ 𝑙𝑜𝑔𝑖∈𝐼
∑

𝑐𝑖(𝑥)      (2.14) 
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as μ > 0. It can be proved that x(μ) which minimizes P(x; μ), move towards a solution of 

(2.13) as μ ↓ 0, given some conditions. The path followed by the projectile Cp is stated as 

 

                        Cp {𝑥(𝜇)|𝜇 > 0} =
𝑑𝑒𝑓

        (2.15) 

 

this is usually described as the pivotal path of the primal. 

 

We can search for x(μ) which minimizes P(x; μ) seeing that it is positioned in the 

firmly viable set {x | c(x) > 0} where there is no operational restraints. We can use any of the 

unconstrained minimization algorithms to search for x(μ). To avoid a situation in which some 

of the steps will leave the feasible area or are too near to the restriction borders, there will be 

need to make some alteration in the algorithm. The approximate value of the Lagrange 

multipliers can be obtained by finding the differential value of P to get 

 

 

                           𝛻𝑥𝑝(𝑥; 𝜇) =  ∇𝑓(𝑥) −𝑖∈𝐼
∑ 𝜇

𝑐𝑖(𝑥)
 ∇𝑐𝑖(𝑥)     (2.16) 

 

The best Lagrangian multipliers 𝑧𝑖
∗, 𝑖 ∈ 𝐼 can be obtained when x is near the minimizer x(μ) 

and the value of μ is not large. If the value of μ is not large, and x is near the point a for which 

f(x) > f(a) at all neighboring points x,  then the ideal Lagrange multipliers 𝑧𝑖
∗, 𝑖 ∈ 𝐼 is 

approximately: 
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  𝑧𝑖
∗  ≈  𝜇/𝑐𝑖(𝑥), 𝑖 ∈ 𝐼     (2.17) 

 

The conventional architecture for algorithms built around the primal log-barrier function is 

as below. 

 

Algorithm 2.2 (Unconstrained Primal Barrier Method). 

Let 𝜇0 > 0, a series {τi} alongside τi → 0, and a initial point 𝑥0
𝑠; 

do 

Obtain the estimated minimizer xi of P(.; μi ), beginning at 𝑥𝑖
𝑠, 

and ending as soon as ǁ∇ P(xi ;μi ) ǁ ≤ τi ; 

Calculate the Lagrange multipliers zi by (2.16); 

if last test of convergence is fulfilled 

stop at solution close to xi ; 

Select another criterion penalty μi+1 < μi; 

Select another initial point 𝑥𝑖+1
𝑠 ; 

while i > 0 

         end (do) 

This class of Interior Point Method called primal barrier method was initially put 

forward by Frisck (1995) in the 1950s. The original barrier method was investigated by 

Fiacco and McCormick (1990), and they have made their own contribution towards the 

improvement and propagation of the barrier method. This approach however has become 

obsolete with the introduction and adoption of the Sequential Quadratic Programming (SQP) 
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due to several advantages it have over the barrier approach. The primal-dual Interior-Point 

method is also preferred to the barrier approach the minimizer x(μ) is very hard to find as μ 

↓ 0 since the output of the function P(x; μ) is not directly to its input. The primal-dual Interior 

Point Method by solving a series of unconstrained optimisation problems which form a part 

of another more inclusive problem is able to proffer answer to the constricted optimisation 

problem  

 

(𝐹𝜇(𝑥) = 𝐹(𝑥) + 𝜋𝐵(𝑥))
𝑥∈𝑅𝑁

𝑚𝑖𝑛  

 

when the values of the barrier parameter µ decrease to 0. A secondary function B(x) which 

is also known as the barrier function is used in the unrestricted problem that is part of another 

problem. The logarithmic barrier is the most popular among the secondary functions. 

 

𝐵(𝑥) =  − ∑ log(𝑐𝑖(𝑥)) ,

𝑚

𝑖=1

 

let 𝑐𝑐(𝑥) = [𝑐𝑥 + 𝑝]𝑖, the supplemented criterion Fµ turns out to be boundless at the border 

of the feasible area so that x µ
∗  the minimizers satisfy Ci(x µ

∗ ) > 0 for all i. 

 

2.8.2 Primal-dual methods 

It was rightly observed by Wright (1997) that the primal-dual methods are a modern 

class of interior-point methods that have been used to proffer solution to large-scale nonlinear 

optimisation problems. Primal-dual methods, unlike to what is obtainable in the conventional 

primal method, equally compute the primal variables x and dual Lagrange multipliers λ 
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correlating to the constraints simultaneously. The perturbed Karush-Kuhn-Tucker (KKT) 

equations below can be resolved through the exact primal-dual solution (x µ
∗ ,λ µ

∗ ) for a 

specified parameter µ 

 

                                                {
∇𝐹(𝑥) − 𝐶𝑇λ = 0

  λ𝑖𝐶𝑖(𝑥) =  𝜇, 𝑖 = 1,… ,𝑚
 

 

                                                with the constraint (C(x),λ) ≥ 0. 

 

The Newton’s algorithm and line search method are used to recursively solve any 

primal or primal-dual sub-problems for a given µ value (Boyd & Vandenberghe, 2004). 

Feasibility and convergence is imposed on the algorithm by judiciously choosing the size of 

step in the iteration. One of the predominant way to achieve this is to properly decrease the 

merit function used in evaluating the rate of progress towards the solution. The dual variables 

of the primal dual can be safeguarded through the use of  Fµ as a function that is capable of 

integrating the primal and dual variables (Armand, Gilbert & Jan-Jegou, 2000); and at the 

same time assesses the coherence between data and the suitable model for a specific selection 

of the parameters (Johnson, Seidel & Sofer, 2000). The key drawback of the barrier functions 

is their tendency to bring about ineffectiveness of traditional line exploration methods 

thereby necessitating the development of more efficient line search methods (Emilie, Saïd & 

Jérôme, 2011).  

According to Carl (2006), the state-of-the-art Interior-Point algorithm have gained 

popularity as the choicest approach for providing solution to large scale linear programming 

problems. They are however limited due to their inability to solve problems that are unsteady 

in nature. This is because contemporary Interior-Point algorithm might not be able to cope 
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with the increasing need of the large number of constraints. Efforts to increase the efficiency 

of the Interior-Point algorithm have led to the development of another variant of this 

algorithm that can handle unsteady linear programming problems. These algorithms lower 

the number of work per iteration by using only small number of constraints thereby 

drastically decreasing their total processing time (Luke, 2010). The primal-dual interior-point 

(PDIP) algorithm is an excellent example of an algorithm that uses the constraint-reduction 

methods. Mehrotra (1992) in his research work developed the Mehrotra’s Predictor-Corrector 

PDIP algorithm which has been executed in almost all the interior-point software suite for 

solving both linear and convex-conic problems (Frisch, 1995). 

Strengths of primal-dual algorithm: 

• It can efficiently handle large linear programming problems, and the bigger the 

problem size the more noticeable the efficiency of the primal-dual algorithm. 

• The algorithm is not susceptible to degradation and the number of iterations does not 

depend on the number of vertices in the feasible search space. 

• Primal-dual algorithm uses considerably less iteration compared to what we have in 

simplex method. 

• The algorithm is able to get the idea solution for a linear programming problem in not 

more than 100 iterations irrespective of the huge number of variables involved in 

nearly all its implementations. 

 

Shortcomings of primal-dual algorithm: 

• Inability to detect the possibility of having unbounded status of the problem, up to 

some extent the primal-dual algorithm can be tagged as incomplete. Some researchers 
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have however been able to handle this problem through the use of model that are 

undiversified in nature (Wright, 1996) and (Quintana & Torres, 1997). 

• The computational cost of each iteration of primal-dual algorithm is higher than that 

of the simplex algorithm. When we have a large linear programming problem that 

involves more than 100 variables, the primal-dual algorithms performs better than the 

simplex algorithm. This is due to the fact that the total work done in providing 

solution to a linear programming problem is the multiplication of the number of 

iterations and the work done during iteration. 

• The primal step has the inclination of producing inferior steps that defile the 

boundaries s > 0 and z > 0 extensively, causing the progress to dwindle. 

 

2.9 Feasible and Infeasible Interior-Point Methods 

Assuming we have the problem formulated below 

 

min
𝑥,𝑠

𝑓(𝑥)      (2.1a) 

subject to     𝐶𝐸(x) = 0  (2.1b) 

                       𝐶𝐼(x)  = 0  (2.1c) 

let f, CE and C1 are adequately smooth functions of the variable x ϵ Rn. Where f is a scalar-

valued function, and CE and C1 are vector-valued functions. A feasible method for (2.1) is 

the one in which the initial point and all successive iterates fulfill the inequality constraints 

(2.1c).  
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The realization of the inequality constraints during iteration is not made compulsory 

by the infeasible interior methods. The slack variable is used by the infeasible interior point 

method to convert (3:1) to the feasible equivalent of the problem. 

                                     min
𝑥,𝑠

𝑓(𝑥)              (2.2a) 

subject to     𝐶𝐸(x) = 0   (2.2b) 

                                                                𝐶𝐼(x) – s = 0   (2.2c) 

                                                          s ≥ 0.  (2.2d) 

 

The interior point methods make use of the Newton's method during iteration to provide 

solution that is accurate to a greater extent to the barrier problem. 

 

Algorithm 2.3: Generic Infeasible Interior Point Algorithm  

Given that x (probably infeasible) is a iterate and s > 0 is a slack vector  

Do 

Calculate the step dist = (distx; dists): 

Define the testing point xtesting = x + distx; stesting = s + dists: 

Do 

Calculate a smaller step dist: 

Let xtesting = x + distx; stesting = s + dists: 

while Φ(xtesting; stesting) is not satisfactorily lesser than Φ(x; s) 

Let x+ = xtesting; s+ = stesting: 

while the rule for ending is not yet fulfilled 
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When the technique in use is the trust region method, reducing the radius of the trust 

region and re-calculating a step will enable us to get a smaller step. For line search method, 

using a retrace your steps line search would produce the same result. 

If the present iterate is precisely feasible with respect to the inequality constraints, 

some alterations can be made to make sure that the next iterate is also feasible. The slack 

variable can be redefined once the step distx and dists have been computed as stesting ← g 

(xtesting).  Analysis is then carried out to see if the point (xtesting; stesting) is suitable for the merit 

function. The step is discarded and a fresh, experimental step which is shorter is calculated 

if the present step is not satisfactory. The infeasible Generic Algorithm is first employed 

when the first iterate x0 does not suit all the constraints in the inequality. This continues until 

all inequalities are more than certain positive maximum value. When such happens, the 

algorithm swaps to the feasible form and for the remaining part of the optimisation process 

continues to be feasible. The algorithm is below: 

 

Algorithm 2.4: Feasible-Reset Interior Point Algorithm  

Given that x (probably infeasible) is a iterate and s > 0 is a slack vector, and ɤ a positive 

maximum value  

if   g(xtesting) < ɤe then 

  Execute infeasible Generic Interior Point Algorithm until g (xtesting) ≥ ɤe 

  Set s = g (xtesting) 

end if 

do  

Calculate the step dist = (distx; dists): 

Specify the experimental point xtesting = x + distx; stesting = s + dists: 

do 

Univ
ers

ity
 of

 M
ala

ya



79 

 

Calculate a smaller step dist: 

Let xtesting = x + distx; stesting = s + dists: 

while Φ(xtesting; stesting) is not satisfactorily lesser than Φ(x; s) 

Let x+ = xtesting; s+ = stesting: 

while a stopping test is not yet fulfilled 

 

Other condition that does not treat each constraint equally and that put into 

consideration the range of the constraints can be applied to take the place of the test g 

(xtesting) ≥ ɤe.  It is worth noticing that the vector dists is not necessary in Feasible-Reset 

Algorithm. Richard, Jorge, and Richard (2005) presumed that during iteration there is 

calculation of a phase in the slacks and variables thereby making both the feasible and 

infeasible genres to need similar data structure and variables. It is advantageous in several 

applications that all iterates produced by an optimisation algorithm be feasible as regards 

some or all of the inequality constraints. An inherent structure for developing feasible 

algorithms is supported by the interior point method (Jorge & Stephen, 2006). 

 

2.10 Line Search Interior-Point Method 

Interior point algorithms employ the reduction of rule boosted by a barrier function 

to guarantee the satisfaction of the constraints. The existence of barrier function will however 

make the convergence speed of the iterative succession algorithm to be very slow when 

multifunctional line search methods are used. An elaborate description of a line search 

interior-point method is given in the algorithm below. The orientation end product of the 

merit function ϕν at (x, s) is given by Dϕ(x, s; p) in the direction P. The stopping conditions 

are based on the error function. 
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Algorithm 2.5: (Line Search Interior-Point Algorithm). 

Select x0 and s0 > 0, and compute initial values for the multipliers y0 and z0 > 0.  

If a quasi-Newton approach is used, choose an n×n symmetric and positive definite 

initial matrix B0. Choose an original barrier parameter μ > 0, parameters η, σ ∈ (0, 1), 

and tolerances ∈μ and ∈TOL. Set k ← 0. 

repeat until E(xk , sk , yk , zk; 0) ≤ ∈TOL 

repeat until E(xk , sk , yk, zk; μ) ≤∈μ 

Calculate the primal-dual direction p = (px, ps, py, pz)  

Calculate𝛼𝑠
𝑚𝑎𝑥, 𝛼𝑧

𝑚𝑎𝑥  

Let pw= (px , ps); 

Calculate step lengths ∝𝑠, ∝𝑧 meeting the necessary conditions 

Calculate (xk+1, sk+1, yk+1, zk+1)  

if a quasi-Newton approach is used 

update the estimate Bk; 

Set k ← k + 1; 

end 

Set μ ← σμ and update ∈μ; 

     end 

The strength of the barrier can be described as ∈μ = μ, as in the above Algorithm. A 

flexible approach that is up to date information at every step about μ which is the barrier 

parameter can easily be executed using this approach. A second-order rectification or an 

approach that is not monotonic ought to be executed to avoid the merit function triggering 

the Maratos effect. We can abandon the merit function for a filter method to execute the line 

search. This will guarantee the global convergence of the algorithm (Jorge & Stephen, 2006). 
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2.11  Trust-Region Interior-Point Method 

This is a kind of interior-point method that uses the trust regions to ensure 

convergence. The design of the trust-region tolerates unlimited autonomy in the selection of 

the Hessian. It also supports a system for handling individualities of the Jacobian and 

Hessian. This is ensured by a tradeoff between flexibility and complexity in iteration 

compared to the line search approach. 

The interior-point described below can be directly compared to the line search 

method. The two of them are however not the same as the trust region method is not 

completely a primal-dual method, as the first thing it does is to calculate the variables’ steps 

(x, s) before it computes the current estimated value of the multipliers. Moreover, the 

approach of the trust-region restricts movements in the direction of the border of the feasible 

region by ordering the variables. The advantage of this approach is that it will make the 

algorithm to produce steps that divers from that of the line search approach, and having good 

convergence properties.   There are two types of trust region algorithm that will be described 

in this section. They include: Trust-Region Interior-Point Method for Barrier Problem, and 

Trust-Region Interior-Point Method for Nonlinear Programming (Jorge & Stephen, 2006). 

 

2.11.1 Trust-Region Interior-Point Method for Barrier Problem 

The combination of trust regions and sequential quadratic programming (SQP) 

technique can be used to provide solution to the barrier problem (2.6). The SQP method when 

applied to solve the barrier problem usually produces incompetent steps which are against 

the affirmativeness of the variables that are added to a constraint to turn the inequality into 

an equation. The steps produced by the SQP are also interrupted before its planned end by 

the trust region constraint. Jorge & Stephen (2006) developed an SQP technique customized 

to the barrier problems to surmount these disadvantages of SQP. The first thing they did was 
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to calculate the approximate Lagrange multiplier (y, z) and then calculate step p = (px, ps) 

given the iterate (x, s) for a given barrier parameter μ. This provides an estimated solution to 

the problem below: 

 

  min
𝑃𝑥.𝑃𝑠

∇𝑓𝑇𝑝𝑥 +  ½𝑃𝑥
𝑇∇𝑥𝑥

2 − 𝜇𝑒𝑇𝑠−1𝑝𝑠 +  ½𝑝𝑠
𝑇∑𝑝𝑠  (2.18a) 

 Subject to 𝐴𝐸(𝑥)𝑃𝑥 + 𝐶𝐸(𝑥) = 𝑟𝐸 ,    (2.18b) 

 𝐴𝐼(𝑥)𝑃𝑥 − 𝑃𝑠 + (𝐶𝐼(𝑥) − 𝑠) = 𝑟𝐼 ,    (2.18c) 

ǁ(𝑃𝑥, 𝑠
−1𝑃𝑠)ǁ2 ≤ ∆,      (2.18d) 

𝑃𝑠  ≥ −𝑟𝑠.       (2.18e) 

 

Where  

∑  = Primal-dual matrix (2.12),  

τ   = Scalar and τ ∈ (0, 1) is made to have a value closer to 1 (e.g. 0.997), 

S-1  = Scaling 

             𝑃𝑠  = Step vector 

rE and rI. = Relaxation vectors 

According to Jorge & Stephen (2006), the function carried out by (2.18e) is similar 

to the one of the threshold principle in (2.9). Dogmatically following the conventional 

approach of setting r = (rE, rI) = 0, however this can make the constraints (2.18b) – (2.18d) 

to be unsuitable or to present a step p that cannot effectively advance to viability. They proved 

further that the calculated step of (2.18) have some correlation with the line search step of 

primal-dual.  

Jorge & Stephen (2006) observed that the constraint (2.18d) of the trust-region gives 

the assurance that the problem (2.18) can be solved predictably. Though 𝛻𝑥𝑥
2  𝐿 (x, s, y, z) 
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might not be convincingly positive, it will still produce the desired solution and there will be 

no need to amend the Hessian. Another notable advantage of the trust region is that it ensures 

that it guarantees that sufficient advancement is achieved at every iteration. To make the 

effect of the scaling S−1 vivid, the structure of the trust region need to plan for the possibility 

of the prerequisite that the slack variables do not get to zero before the due time. This is the 

rationale behind the introduction of the scaling S−1 so that it can constrain the elements i of 

the step vector 𝑃𝑠 where si is not far from zero which is its lower boundary. The algorithm 

below is the Trust-Region Algorithm for Barrier Problems: 

 

Algorithm 2.6:  (Trust-Region Algorithm for Barrier Problems). 

Input parameters: μ > 0, x0, s0 > 0,  μ, and _0 > 0.  

Calculate Lagrange multiplier estimates y0 and z0 > 0.  

Let k ← 0. 

do 

Calculate p = (px, ps) by approximately solving (2.18). 

if p offers adequate reduction in the merit function φν 

Let xk+1 ← xk + px, sk+1 ← sk + ps; 

Calculate additional multiplier estimates yk+1, zk+1 > 0 

and let 𝛻k+1 ≥ 𝛻k ; 

else 

Define xk+1 ← xk, sk+1 ← sk, and set 𝛻k+1 < 𝛻k ; 

end 

Set k ← k + 1; 

until E(xk, sk, yk, zk ; μ) ≤  ∈μ 
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        end 

 

The above algorithm is relevant for a predetermined value of the barrier parameter μ. 

A comprehensive interior-point algorithm propelled by a sequence {μk} → 0 is explained in 

the next section.  

 

2.11.2 Trust-Region Interior-Point Method for Nonlinear Programming 

 

The trust-region interior-point algorithm can also be used for providing solution to 

the nonlinear programming problem (2.1). The Fiacco–McCormick approach for bringing up 

to date the barrier parameter was used by stating the ending requirements in terms of the error 

function E. In a quasi-Newton approach, The Hessian 𝛻𝑥𝑥
2  𝐿 is substituted with a proportional 

estimation. 

 

Algorithm 2.7:  Trust-Region Interior-Point Algorithm 

Select a value for the parameters η > 0, τ ∈ (0, 1), σ ∈ (0, 1), and ζ ∈ (0, 1),  

Pick the halting tolerances μ and TOL.  

If a quasi-Newton approach is used, select an n × n symmetric initial matrix B0.  

Choose initial values for μ > 0, x0, s0 > 0, and 0.  

Let k ← 0.  

do 

       do  
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        Calculate Lagrange multipliers; 

Calculate  𝛻𝑥𝑥
2  𝐿 (xk , sk , yk , zk) or update a quasi-Newton 

approximation Bk, and define ∑k by (2.12); 

Calculate the normal step vk = (vx, vs); 

Calculate 𝑝k by using the estimated CG approach; 

Find the sum step pk; 

Update νk to fulfill the needed condition; 

Calculate predk (pk); 

if aredk(pk) ≥ η predk(pk) 

Let xk+1 ← xk + px, sk+1 ← sk + ps; 

Select ∆k+1 ≥∆k ; 

else 

set xk+1 = xk , sk+1 = sk; and select ∆k+1 < ∆k ; 

endif 

Let k ← k + 1; 

until E(xk , sk , yk , zk ;μ) ≤  μ 

Set μ ← σμ and update ϵμ ; 

until E(xk , sk , yk , zk ; 0) ≤  TOL 

end 
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This algorithm still suffers from the Maratos effect which can make it to disallow steps that 

cause beneficial advance to a solution. According to Jorge & Stephen (2006), this 

shortcoming have however been conquered through careful usage of a second-order 

amendment step. 

 

2.12 Summary of Literature Review 

In this chapter, we did discussed the characteristics of a swarm robotic system such 

as large number of autonomous robots; ability to detect and communicate from one robot to 

the other within the same local neighbourhood; distributed system that is not dependent on 

global information; and cooperative behavior, and robot to robot communication and robots 

to environment communication. The advantages and disadvantages of swarm robotics were 

examined. 

A comprehensive review of the different swarm robotic algorithms was been done in 

this chapter. We also did a comparative review of foregoing research in the field of particle 

swarm optimisation. Variants of PSO and how they have been applied to swarm robotics was 

also presented. The comprehensive discussion of the applicability of PSO as an optimisation 

algorithm to support swarm robotics (or multi-objective dynamic optimisation in general) as 

presented in this chapter exposed critical limitations that describes the recent trends of 

customizing a new swarm algorithms for each swarm robotic project. These limitations can 

be addressed with the introduction of some other technique to improve the performance of 

PSO so that it can tackle dynamic optimisation problems adequately. There is the need to 

address some of the problem associated with the existing variants of PSO that we have 

discussed such as premature convergence, and the challenge of some of the particles been 

trapped in the local minima. An exhaustive review of the literatures accessible in this subject 

is presented to give a broad understanding of this topic.  
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Furthermore, we did a holistic overview of the various Interior Point method 

algorithms. We considered the primal-dual interior-point (PDIP) method is as an excellent 

example of an algorithm that uses the constraint-reduction methods. The primal-dual 

methods were classified as a new category of interior-point methods that have of recent been 

practically employed for solving large-scale nonlinear optimisation problems. We discussed 

the major setback of the barrier functions as the ineffectiveness of traditional line exploration 

methods thereby necessitating the development of more efficient line search (Chouzenoux, 

Idier & Moussaoui, 2011). We also mentioned that primal-dual method can efficiently handle 

large linear programming problems. The bigger the problem size the more noticeable the 

efficiency of the primal-dual algorithm. The algorithm is not susceptible to degradation and 

the number of iterations does not depend on the number of vertices in the feasible search 

space (Wehenkel & Glavic, 2004). The drawbacks of the primal-dual was explained such as 

its inability to detect the possibility of having unbounded status of the problem, and the high 

computational cost per each iteration. In the next chapter we will do a survey on PSO 

algorithms using different benchmarking functions. 
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CHAPTER 3: A SURVEY OF PERFORMANCE OF PARTICLE 

SWARM OPTIMISATION (PSO) ALGORITHM ON BENCHMARK 

PROBLEMS 

3.1 Introduction 

It is evident from the previous chapter, that in order to apply PSO into any swarm 

robotics implementation, a high performing PSO algorithm is need thereby necessitating the 

development of more efficient PSO variants and thus contributing towards the ever-

expanding pool of PSO algorithm. This should have not been the norm since the natural 

characteristics of the algorithm should be able to support any swarm robotics project. 

Apparently, the algorithm is ill suited with some fundamental problems. This study is aimed 

towards identifying the performance of the conventional PSO algorithms, and from this 

comparative review, work on addressing issues related to swarm robotic applications towards 

the creation of a generic PSO, adaptable to any swarm robotic project. 

We carried out certain experiments using different benchmark functions. The purpose 

of this experiment is firstly to establish the ground truth of these existing algorithms, and to 

determine if they are functioning as described in the literature. Secondly, to determine the 

global optimum and local optimal of each of the three PSO variants under the different 

benchmarking functions, and to confirm the problem of the particles in PSO been trapped in 

local optima. Lastly, we are validating the existence of the premature convergence problem 

of PSO. In general, we wanted to investigate the performances of the three PSO variants 

using the global optimum and local optimal using the standard benchmark functions. 

Moreover we wanted to examine their convergence properties through these benchmark 

functions.  
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Our intention is to develop a single generic PSO that would be applicable for swarm 

robotics tasks. Though there are many variants of PSO that have been applied to swarm 

robotics, these variants can categorically be grouped into three main versions based on their 

properties (i.e., minor fundamental changes of each from the basic PSO) of the PSO 

algorithm. The three variants are the original PSO, synchronous PSO (SPSO), and 

asynchronous PSO (APSO).  

3.2 Benchmark functions 

 Sixteen benchmark functions were selected. They can be classified as Unimodal or 

Multimodal, and either Static or Dynamic functions. The selected functions are Sphere 

(Bijaka, Yuhui and Meng-Hiot 2011), Alpine (Clerc 2004), DeJong f3 (Xin et. al. 2004), 

DeJong f4 (Xin et. al. 2004), Foxhole (Grana et. al. 2004), Tripod (Clerc 2004), NDParabola 

(Clerc 2004), Griewank (Dervis and Bahriye 2007), Rastrigin (Dervis and Bahriye 2007), 

Rosenbrock (Dervis and Bahriye 2007), Ackley (Dervis and Bahriye 2007), Shaffer f6 (Sun, 

Lai and Wu 2012), Shaffer f6 modified (Matlab Central 2013), f6 Linear Dynamic (Matlab 

Central 2013), f6 Bubble Dynamic (Matlab Central 2013), and Shaffer f6 Spiral Dynamic 

(Matlab Central 2013). The chosen functions have been selected to test the ability of PSO 

and its variants to escape premature convergence. Moreover, some of the functions test the 

capability of the PSO algorithms to escape local minima, while the multimodal functions that 

were used test the performance of PSO algorithms in a dynamic environment. All functions 

used for the experiment are for minimization problems and their properties are outlined in 

the tables below. 
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Table 3.1: Benchmark Functions and their Mathematical Equation. 

Function 

Name 

Mathematical Equation 

 

Sphere (De 

Jong f1) 

 

 𝑓(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1  

 

Rosenbrock 

(De Jong f2) 

 

 𝑓(𝑥) = ∑ 100𝑁
𝑖=1  (xi+1 - 𝑥𝑖

2)2 +  (xi - 1)2  

 

 

Griewank 

 

 𝑓(𝑥) =
1

4000
 ∑ 𝑥𝑖

2𝑛
𝑖=1  - ∏ 𝑐𝑜𝑠𝑁

𝑖=1  
xi

√𝑖
 + 1 

 

Rastrigin 

 

 𝑓(𝑥) = ∑ (𝑥𝑖
2 − 10 cos(2𝜋𝑛

𝑖=1 xi ) + 10) 

Ackley 
𝑓(𝑥) = -20 * 𝑒−0.2√

1

𝑁
∑ 𝑥𝑖

2 − 𝑒
1

𝑁𝑁
𝑖=1  ∑ cos  (2𝜋𝑥𝑖 

𝑁
𝑖=1 + 20 + e 

 

Alpine 𝑓(𝑥𝑑) = ∑ ǀ 𝑥𝑑 sin(𝑥𝑑 ) + 0.1 𝑥𝑑 ǀ where d = 1, 2, 3  

 

De Jong f3 
𝑓(𝑥) = ∑ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑥𝑖)

5

𝑖=1
 

 

De Jong f4 
𝑓(𝑥) = ∑ 𝑖 ∗ 𝑥𝑖

4
30

𝑖=1
 

 

Shekel’s 

foxhole 

𝑓(𝑥) = −∑ (𝑚
𝑖=1 ∑

[(𝑥𝑗  𝑎𝑖𝑗)
2 + 𝑐𝑗])

−1
𝑛
𝑗=1  where cj, i=1,…,m), (aij, j = 1,…,n, i= 1,…,m) are constant numbers fixed in 

advance. 
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NDParabola 
𝑓(𝑥) = ∑ 𝑥𝑑

2
𝐷

𝑑=1
 

 

Schaffer f6 
𝑓(𝑥) = 0.5 + 

(𝑠𝑖𝑛2√𝑥2 + 𝑦2)

(1 + 0.001 (𝑥2 + 𝑦2))2
− 0.5 

Schaffer f6 

modified 

𝑓(𝑥) = 0.5 + 
(𝑠𝑖𝑛2√𝑥2 + 𝑦2)

(1 + 0.001 (𝑥2 + 𝑦2))2
− 0.5 

Tripod  𝑓(𝑥) = 𝑝(𝑥2)(1 + 𝑝(𝑥1)) + |𝑥1 + 50𝑝(𝑥2)(1 − 2𝑝(𝑥1))| + |𝑥2 + 50(1 − 2𝑝(𝑥2))| 

F6 Linear 

Dynamic 

𝑓(𝑥) = 0.5 + 
sin (√(𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑒)

2 + (𝑦 − 𝑦𝑐𝑒𝑛𝑡𝑟𝑒)
2)2

(1 + 0.01((𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑒)
2 + (𝑦 − 𝑦𝑐𝑒𝑛𝑡𝑟𝑒)

2)2)
− 0.5 

F6 Bubbles 

Dynamic 

𝑓(𝑥)

= 2 ∗ ((0.5 + 
sin (√(𝑥 − 𝑥1)

2 + (𝑦 − 𝑦1)
2)2

(1 + 0.01((𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2)2)
− 0.5) ∗ |𝑠𝑖𝑛 (

𝑐𝑝𝑢𝑡𝑖𝑚𝑒
10

−  𝑐𝑝𝑢𝑡𝑖𝑚𝑒) +
𝜋
2)

+ (0.5 + 
sin (√(𝑥 − 𝑥2)

2 + (𝑦 − 𝑦2)
2)2

(1 + 0.01((𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2)2)
− 0.5)

∗ |sin (
𝑐𝑝𝑢𝑡𝑖𝑚𝑒

10
−  𝑐𝑝𝑢𝑡𝑖𝑚𝑒) +

𝜋

2
))

− ((0.5 + 
sin (√(10000 − 𝑥1)

2 + (10000 − 𝑦1)
2)2

(1 + 0.01((10000 − 𝑥1)
2 + (10000 − 𝑦1)

2)2)
− 0.5) ∗ |𝑠𝑖𝑛 (

𝑐𝑝𝑢𝑡𝑖𝑚𝑒
10

−  𝑐𝑝𝑢𝑡𝑖𝑚𝑒) +
𝜋
2)

+ ((0.5 + 
sin (√(10000 − 𝑥2)

2 + (10000 − 𝑦2)
2)2

(1 + 0.01((10000 − 𝑥2)
2 + (10000 − 𝑦2)

2)2)
− 0.5) ∗ |𝑠𝑖𝑛 (

𝑐𝑝𝑢𝑡𝑖𝑚𝑒
10

−  𝑐𝑝𝑢𝑡𝑖𝑚𝑒) +
𝜋
2) 

F6 Spiral 

Dynamic 

𝑓(𝑥) = 0.5 + 
sin (√(𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑒)

2 + (𝑦 − 𝑦𝑐𝑒𝑛𝑡𝑟𝑒)
2)2

(1 + 0.01((𝑥 − 𝑥𝑐𝑒𝑛𝑡𝑟𝑒)
2 + (𝑦 − 𝑦𝑐𝑒𝑛𝑡𝑟𝑒)

2)2)
− 0.5 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



92 

 

Table 3.2: Parameters for Test Functions 

Function Name Properties Dimension Initial Range Global Optima 

(x*) 

Sphere  

(De Jong f1) 

Is a unimodal function, it is simple, there is no 

communication between its variables. 

30 [-100; 100]n [0,0,…,0] 

 

Rosenbrock 

(De Jong f2) 

It is a unimodal function, have complicated 

landscape due to very narrow ridge. 

30 [30; 30]n [1,1,…,1] 

 

Griewank 

Non-linear multimodal function. Highly 

multimodal due to the addition of the cosine 

modulation that produces many widespread 

local minima.   

30 [-600;600]n [0,0,…,0] 

 

Rastrigin 

This is a multi-modal version of the sphere 

function with the addition of cosine 

modulation to produce frequent local minima. 

It contains millions of local optima.  

30 [-5.12; 5.12]n [0,0,…,0] 

Ackley Multi-modal function with deep local minima. 

It has several local minima. 

30 [-32;32]n [0,0,…,0] 

Alpine It has many local and global minima of value 

zero. 

3  [0,0,…,0] 

De Jong f3 A uniformly increasing stepping function in 

five dimensions. 

5 [-5.12; 5.12]n [0,0,…,0] 

De Jong f4 Is a noisy function.  [-1.28; 1.28]n [0,0,…,0] 

Shekel’s foxhole Is a multimodal test function.  [-65.538; 

65.538] 

[1,1,…,1] 

NDParabola Was used to test for global minimization 

problems in Clerc’s “semi-continuous 

challenge.” It works very well with gradient 

30 [-20;20] [0,0,…,0] 
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methods, but presents a challenge for PSO 

which is a stochastic method. 

Schaffer f6 Is a complex multimodal function. Most hill-

climbing and reactive search methods find it 

very difficult due to its circular local maxima. 

It is considered a GA-hard function to 

optimize. 

 [-100,100] [0,0,…,0] 

Schaffer f6 modified This is the sum of five (5) Schaffer f6 

functions with different centres to look for 

local minimum. 

 [-100,100] [0,0,…,0] 

Tripod  A semi-continuous function. This function 

presents a problem that many algorithms such 

as GA and PSO that are easily trapped in one 

of the two local optima find very difficult to 

cope with. 

2 [-100,100] [0,-50] 

F6 Linear Dynamic This is a version of Schaffer f6 that moves the 

optima minimum linearly along a 45 degree 

angle in x, y space. 

 [-100,100]  

F6 Bubbles Dynamic This benchmark is made up of Schaffer f6 in 

which each goes on bubbles magnitude cycles 

up and down. They are 180 degree out of 

phase with each other. 

 [-100,100] [-8,-8] and others 

at [8,8] 

F6 Spiral Dynamic This version of Schaffer f6 moves the 

minimum about a Fermat spiral according to 

the equation: r = a*(theta^2). Where theta is a 

function of time and is checked internally. 

 𝑥𝑐𝑒𝑛𝑡𝑟𝑒 = r (cos(theta)) 

𝑦𝑐𝑒𝑛𝑡𝑟𝑒  = r (sin(theta)) 

 [-100,100]  
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Table 3.3: Parameters Settings of PSO variants  

Algorithm Parameter Settings 

PSO Population Size = 30, Dimension = 10,  

C1, c2 = 2, W = 0.9 to 0.4 

SPSO Population Size = 30, Dimension = 10,  

C1, c2 = 1.49, W = 0.9 to 0.4 

APSO Population Size = 30, Dimension = 10,  

C1, c2 = 1.49, W = 0.9 to 0.4 

 

3.3 Results and Discussion 

To affirm the existence of premature convergence, inability to escape being trapped in local 

minima, and the unsuitability of PSO algorithms and some of its variants for handling 

dynamic tasks we experimented with  the original PSO, synchronous PSO (SPSO), and 

asynchronous PSO (APSO).algorithms. In general, we wanted to investigate the 

performances of the three PSO variants using the global optimum and local optimal using the 

standard benchmark functions. Moreover we wanted to examine their convergence properties 

through these benchmark functions. We have stated our intention of developing a single 

generic PSO that would be applicable for swarm robotics. Though there are many variants of 

PSO that have been applied to swarm robotics, these variants can be categorically group into 

three main versions based on their properties (i.e., minor fundamental changes of each from 

the basic PSO) of the PSO algorithm. The three variants are the original PSO, synchronous 

PSO (SPSO), and asynchronous PSO (APSO). We run each algorithm independently for 20 
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trials. Table 3.3 shows the settings of population size, dimension of problem, the cognitive 

and social scaling factors (c1 and c2), and the inertia weight w which is decreased linearly 

from 0.9 to 0.4 during the iterations. The results of the experiment for the 16-benchmark 

functions on the three variants of the PSO algorithm are depicted in Figure 3.3.1. Each figure 

represents the performance of the variants in solving each benchmark function. The graphs 

are generated during the simulation process and are saved as .jpg file from Matlab.  

 

3.3.1 Simulation Results 

 

(a) Ackley function for PSO 

 

 

(b) Ackley function for SPSO 

 

 

(c) Ackley function for APSO 

 

 

(d) Alpine function for PSO 
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(e) Alpine function for SPSO 

 

 

(f) Alpine function for APSO 

 

 

(g) Dejong f2 function for PSO 

 

 

(h) Dejong f2 function for SPSO 

 

 

(i) Dejong f2 function for APSO 

 

 

(j) Dejong f3 function for PSO 
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(k) Dejong f3 function for SPSO 

 

 

(l) Dejong f3 function for APSO 

 

 

(m) Dejong f4 function for PSO 

 

 

(n) Dejong f4 function for SPSO 

 

 

(o) Dejong f4 function for APSO 

 

 

(p) Shekel foxhole function for PSO 

 

Univ
ers

ity
 of

 M
ala

ya



98 

 

 

(q) Shekel foxhole function for SPSO 

 

 

(r) Shekel foxhole function for APSO 

 

 

(s) Griewank function for PSO 

 

 

(t) Griewank function for SPSO 

 

 

(u) Griewank function for APSO 

 

 

(v) NDParabola function for PSO 
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(w) NDParabola function for SPSO 

 

 

(x) NDParabola function for APSO 

 

 

(y) Rastrigin function for PSO 

 

 

(z) Rastrigin function for SPSO 

 

 

(aa) Rastrigin function for APSO 

 

 

(ab) Rosenbrock function for PSO 
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(ac) Rosenbrock function for SPSO 

 

 

(ad) Rosenbrock function for APSO 

 

 

(ae) Schaffer f6 function for PSO 

 

 

(af) Schaffer f6 function for SPSO 

 

 

(ag) Schaffer f6 function for APSO 

 

 

(ah) Schaffer f6 modified function for PSO 
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(ai) Schaffer f6 modified function for SPSO 

 

 

(aj) Schaffer f6 modified function for APSO 

 

 

(ak) Tripod function for PSO 

 

 

(al) Tripod function for SPSO 

 

 

(am) Tripod function for APSO 

 

 

(an) Schaffer f6 Bubbles Dynamic function for 

PSO 
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(ao) Schaffer f6 Bubbles Dynamic function for 

SPSO 

 

 

(ap) Schaffer f6 Bubbles Dynamic function for 

APSO 

 

 

(aq) Schaffer f6 Linear Dynamic function for 

PSO 

 

 

(ar) Schaffer f6 Linear Dynamic function for 

SPSO 

 

 

(as) Schaffer f6 Linear Dynamic function for 

APSO 

 

 

(at) Schaffer f6 Spiral Dynamic function for 

PSO 
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(au) Schaffer f6 Spiral Dynamic function for 

SPSO 

 

 

(av) Schaffer f6 Spiral Dynamic function for 

APSO 

 

Figure 3.1: Simulation results of benchmark functions for PSO, SPSO, and APSO 

 

3.3.2 Discussion 

In the figure 3.1 above (a) – (c) is the Ackley function for PSO, SPSO and APSO 

respectively. There are many local minima produced by the function. We have global 

optimum for PSO at the 370th iteration, while SPSO have global optimum at the 400th 

iteration and APSO reached the global optimum at the 320th iteration. APSO therefore have 

a faster convergence speed than SPSO and PSO. The (d) – (f) above is the Alpine function 

for PSO, SPSO and APSO respectively. There are many local minima in the function. PSO 

reached the global optimum at the 380th iteration, while SPSO global optimum was reached 

at the 400th iteration and APSO has its global optimum at the 320th iteration. This further 

proves the superiority of the APSO over the SPSO and the PSO algorithms. The (g) – (i) 

above is the Dejong f2 function for PSO, SPSO and APSO respectively. We observed from 

the simulation result that there was a sharp drop in the value of the gbest as the iteration 

progresses, but convergence to the global optimum was difficult for PSO, SPSO and APSO. 

This might be the reason why this function was considered suitable for testing the 
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performance of optimisation algorithms. The (j) – (l) in figure 3.1 above is the Dejong f3 

function for PSO, SPSO and APSO respectively. There was convergence to the global 

optimum at the 52nd iteration for PSO, while SPSO reached the global optimum at the 30th 

iteration. APSO has its global optimum at the 42nd iteration. SPSO performs slightly better 

than APSO and PSO with this function. 

The (m) – (o) in the above figure is the Dejong f4 function for PSO, SPSO and APSO 

respectively. There are some local minima for PSO but convergence to global optimum was 

very difficult. SPSO and APSO do not have any local minima and there was no convergence 

to the global optimum. This is because the particles have been trapped in the local minima. 

The (p) – (r) in figure above is the Shekel foxhole function for PSO, SPSO and APSO 

respectively. There are many local minima for PSO, SPSO and APSO. The global optimum 

for PSO was reached at the 190th iteration, for SPSO it was at the 28th iteration while the 

global optimum was reached at the 22nd iteration for APSO. The (s) – (u) above is the 

Griewank function for PSO, SPSO and APSO respectively. PSO has many local optima and 

its convergence to global optima was at the 115th iteration. SPSO reached global optimum 

at the 48th iteration and APSO’s global optimum was reached at the 42nd iteration. 

The (v) – (x) above is the NDParabola function for PSO, SPSO and APSO 

respectively. There was no convergence to global optima for all the 3 algorithms used in this 

experiment. This is because the particles have been trapped in the local minima. This function 

poses a challenge to stochastic algorithms such as PSO and its variants but it has been 

discovered that it works perfectly with gradient methods. The (y) – (aa) in figure 3.1 above 

is the Rastrigin function for PSO, SPSO and APSO respectively. This highly multimodal 

function has several local minima which are regularly distributed throughout the iteration for 

all the 3 algorithms. PSO converged to global optimum at the 320th iteration, for SPSO there 

global optimum was reached at the 192nd iteration, while APSO has its global optimum at 
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the 57th iteration. The (ab) – (ad) in the above figure is the Rosenbrock function for PSO, 

SPSO and APSO respectively. For this function also called banana function, PSO have many 

local minima but convergence to global optimum was reached at the 390th iteration. SPSO 

have its global optimum at the 270th iteration, while APSO reached its global optimum at 

the 320th iteration. 

The (ae) – (ag) above is the Schaffer f6 function for PSO, SPSO and APSO. This 

multimodal function is very difficult for most hill-climbing and reactive search algorithm. 

There was quick convergence for PSO, SPSO and APSO. Global optima for APSO and SPSO 

were at the 1st iteration, while PSO converged to global optimum at the 10th iteration. The 

(ah) – (aj) above is the Schaffer f6 modified function for PSO, SPSO and APSO. PSO, SPSO 

and APSO converged quickly. Global optimum for PSO was at the 4th iteration, for SPSO it 

was at the 10th iteration and APSO reached the global optimum at the 7th iteration. The (ak) 

– (am) above is the Tripod function for PSO, SPSO and APSO. Global optimum for PSO 

was at the 3rd iteration, for SPSO it was at the 6th iteration and APSO reached the global 

optimum at the 1st iteration. The (an) – (ap) above is the Schaffer f6 Bubble Dynamic 

function for PSO, SPSO and APSO. The bubbles magnitude cycles up and down. PSO have 

many local minima as the environment changes. We have global optima for PSO from the 

55th to 100th iterations, and from the 200th to 230th and 325th to 352nd iteration. SPSO also 

have many local minima which are evenly distributed throughout the iteration. We have 

global optima between 148th and 180th, 270th to 300th and 380th to 400th iterations. APSO 

also have many evenly distributed local optima in the iteration. Global optima were reached 

between 45th and 55th, 150th and 180th, and the 400th iterations. The (aq) – (as) in figures 

above is the Schaffer f6 Linear Dynamic function for PSO, SPSO and APSO. For the 3 PSO 

algorithms used in this experiment the function moves linearly along a 45 degree angle. PSO 

has its global optimum at the 150th iteration, SPSO at the 379th iteration and APSO at the 
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179th iteration. The (at) – (av) in figure 3.1 above is the Schaffer f6 Spiral Dynamic function 

for PSO, SPSO and APSO. PSO has its global optimum at the 130th iteration, SPSO at the 

32nd iteration and APSO at the 48th iteration.  

Generally, from our observation, the three variant PSOs experimented were able to 

converge to their respective local optimal and global optimum. However, there are exceptions 

where by both the PSO and SPSO failed to find their local and global optimum on the Ackley, 

Alpine, Dejong f2, Dejong f4, and ND Parabola functions. We observed that the PSO 

converged 10% faster for the Ackley function while APSO converged 20% faster for the 

same function as compared to SPSO. APSO has the best performance because the particle’s 

velocity and position are updated immediately after the fitness is computed, thus update 

occurs with incomplete information about particles in the neighborhood. We suspect that 

SPSO did not converge slower due to the deep local minima presented by the Ackley 

function. Similar observation can be made for the Alpine function. Theoretically, Alpine 

function has many local and global minima with the values of zero and as expected, SPSO 

could not tackle these different plateaus and was outpaced by PSO (converged 5% faster) 

and APSO (converged 20% faster). 

PSO converged 5% faster as compared to SPSP and APSO for the De Jong f2 

function. The performance of the SPSO and APSO are relatively the similar for this function 

as require longer time to converge. De Jong f2 function is a unimodal function with 

complicated search landscape comprises of very narrow ridges. For De Jong f4 function, 

none of the particles reached convergence. This is simply because De Jong f4 is a noisy 

function. It is therefore likely that the particles have been trapped in the local minima. The 

three PSO algorithms did not converge under the NDParabola function as well. This is 

because NDParabola only works efficiently with gradient methods, and therefore possess a 

challenge for particle swarm algorithms (which is a stochastic method).   
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Under the Rastrigin function, PSO converged faster 19.75% of the time, SPSO 

converged faster 52.5% of the time and APSO converged faster 87% of the time. Rastrigin 

is a multi-modal version of the sphere function with the addition of cosine modulation to 

produce frequent local minima. It contains relatively millions of local optima. PSO 

converged faster 72.5% of the time; SPSO converged faster 88% of the time, while APSO 

converged faster 90% of the time under Griewank. The function Griewank is a highly 

multimodal function due to the addition of the cosine modulation that produces many 

widespread local minima.  PSO converged faster 60% of the time; SPSO converged faster 

89% of the time, while APSO converged faster 88% of the time under Shekel’s foxhole, 

which is a multimodal test function.  

PSO, SPSO and APSO all experienced premature convergence very early under the 

Schaffer f6, Schaffer f6 modified, and Tripod functions. This is because the Schaffer f6 is a 

complex multimodal function with circular local maxima. Most hill-climbing and reactive 

search methods find this very difficult to tackle (Roberto, Mauro and Srinivas (2005)). In 

addition, the Schaffer f6 modified have different centers to look for local minimum, while 

Tripod is a semi-continuous function, and this presents a problem that makes many 

algorithms such as PSO and GA to be easily trapped in the local optima (Ashish Raj (2013)).  

The F6 Linear Dynamic, F6 Bubbles Dynamic, and F6 Spiral Dynamic all have 

several local optimal. F6 Linear Dynamic is a version of Schaffer f6 that moves the optima 

minimum linearly along a 45-degree angle in x, y space. The function F6 Bubbles Dynamic 

is made up of Schaffer f6 in which each goes on bubbles magnitude cycles up and down 

which are 180 degree out of phase with each other. Moreover, the F6 Spiral Dynamic is a 

version of Schaffer f6 that moves the minimum about a Fermat spiral according to the 

equation: r = a*(theta^2). Where theta is a function of time and is checked internally.    𝑥𝑐𝑒𝑛𝑡𝑟𝑒 

= r (cos(theta)) and 𝑦𝑐𝑒𝑛𝑡𝑟𝑒 = r (sin(theta)).  
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In conclusion, we can deduce from our simulation results that Particle Swarm 

Optimisation (PSO) still suffers from issues such as premature convergence, inability to 

effectively cope with dynamic environment and failure of PSO particles to escape from been 

trapped in local minima. Based on the analysis of our results for the sixteen (16) 

benchmarking functions used, the presence of premature convergence is confirmed in ten 

(10) out of the sixteen (16) functions used for PSO, SPSO and APSO. The functions where 

premature convergence are noticed include Ackley, Dejong f3, Griewank, Foxhole, Schaffer 

f6, Schaffer f6 modified, Tripod, f6 Bubble Dynamic, f6 Linear Dynamic, and f6 spiral 

dynamic functions. The inability of PSO and its variants to escape been trapped in the local 

minima is visible in 9 out of the 16 functions that we used to carry out our tests. PSO was 

trapped in the local minima in Dejong f2, Dejong f3, Ackley, Alpine, Foxhole, Griewank, 

Rastrigin, Rosenbrock and Tripod functions. The simulation results from Schaffer f6 Bubble 

dynamic, Schaffer f6 linear dynamic, and Schaffer f6 spiral dynamic show that PSO, SPSO 

and APSO does not have the capability to effectively handle optimisation problems in a 

dynamic environment. The conditions that effect these flaws in the PSO algorithm and that 

of its variants is that particles in PSO are naturally inclined to fling to the infeasible areas 

from the feasible areas during the course of searching. This poses a threat to the searching 

efficiency of PSO. 
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CHAPTER 4: DEVELOPMENT OF HYBRID ALGORITHMS: 

PRIMAL-DUAL AND PARTICLE SWARM (pdPSO) AND PRIMAL-

DUAL AND ASYNCHRONOUS PARTICLE SWARM (pdAPSO) 

4.1 Introduction 

 From our literature review in Chapter two, we discovered that the PSO algorithm is 

an important algorithm for solving various optimisation problems. This is due to the high 

flexibility and simplicity of implementation of the algorithm. The comprehensive discussion 

of the applicability of PSO as an optimisation algorithm to support swarm robotics (or multi-

objective dynamic optimisation in general) presented in the previous chapter, exposed critical 

limitations that describes the recent trends of customizing a new swarm algorithms for each 

swarm robotic project. These limitations can be addressed with the introduction of some other 

technique to improve the performance of PSO so that it can tackle dynamic optimisation 

problems adequately. We hypothesize the applicability of embedding an Interior Point 

Method optimisation (Luke, 2010) to address some of the problem associated with the 

existing variants of PSO that we have discussed such as premature convergence, and the 

challenge of some of the particles being trapped in local minima. Why? Evidently, this would 

propel the initiative towards the creation of a general PSO that can easily be adapted to any 

swarm robotics project without the need of heavy customization. The Interior-Point 

algorithm has become recognised as the most ideal approach for solving large-scale linear 

problems (Laird, 2006). The Primal Dual has been applied to convex optimisation problems 

where strong duality is required (Rockefeller, 1970). It has also been used for various 

nonlinear and non-smooth cost functions that are prevalent in network design, medical image 

reconstruction, and industrial engineering (Boyd & Vandenberghe, 2004). They can be easily 
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parallelized which enables them to efficiently handle multi-dimensional problems. Primal 

dual from literature can solve linear optimisation problems effectively (Laird, 2006).  

In this chapter, we proposed a hybrid PSO algorithm that will be able to solve the 

aforementioned problems that are associated with PSO. The Primal Dual algorithm, when 

integrated into PSO will provide better balance between exploration and exploitation, 

preventing the particles from experiencing premature convergence and been trapped in local 

minima easily and so producing better results. The fusion of conventional PSO with Primal-

Dual Interior-Point method will resolve the common issues associated with PSO algorithm 

and many of its variants. The integration will make the system to have great capacity to 

prevent premature convergence, and prevent the particles from being stuck in local minima. 

The two key components of this implementation are the explorative capacity of PSO, and the 

exploitative capability of the Primal-Dual Interior-Point algorithm. On the one hand, 

exploration is key in searching (i.e., traversing the search landscape) to provide reliable 

approximation values of the global optimal (Abraham, Pant, Bouvry & Thangaraj, 2011). On 

the other, exploitation is critical to focus the search on the ideal solutions resulting from 

exploration to produce more refined results (Torn, 1989). The representation of PSO particle 

position and velocity update is shown in figure 4.1. 

 

Where 

Xi = the position of a particle 

Vi  = the velocity of the particle 

N = the number of particles in the swarm 

i  = the particle’s number (where i = 1…N) 

The ith particle is represented as ),...,,(
2! iNiiI

XXXX  . While the velocity is the rate 
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at which the next position is changing with respect to the current position. 

),...,,(
2! iNiiI

VVVV   represent the velocity for the particle i. At the start of the algorithm, 

initial numerical values of the position and velocity of the particles are assigned haphazardly. 

This is followed by using equations (1) and (2) to update the position and velocity of the 

particles after subsequent iterations are conducted during the search process. 

 

Figure 4.1: Diagrammatic representation of PSO particle position and velocity update 
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In a PSO algorithm, all the particles are randomly introduced and evaluated to 

calculate fitness of the particles in the swarm. It also computes the local best which is the 

best value of individual particle and global best which is the best value of particle in the entire 

swarm (Talukder, 2011). To get the optimum solution, some iterative steps are involved. 
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During the looping process, the velocity of the particles is first updated by the local and 

global bests. After this, the position of the individual particle is then updated by the up-to-

date velocity of the particle. Once the stopping criteria which has already been predetermined 

is satisfied, the loop will be terminated. 

 

4.2 Constraint Handling Techniques 

One of the limitations of the PSO algorithm is that it is only effective in providing 

solution to unconstrained global optimisation problems. PSO cannot efficiently solve 

constrained optimisation problems. There is therefore the need to employ other techniques to 

handle the constraints. This section will discuss some of the standard approaches that can be 

used to work out solution to optimisation problems that are constrained in nature. 

 

4.2.1 The Penalty Function Method 

In Interior point method, the constrained optimisation problem is solved by changing 

the problem to a set of unconstrained optimisation problems using the penalty function 

method. The penalty function is used as a substitute for the objective function. The addition 

of a penalty parameter to some degree of infringement on the constraints results into the 

origination of the penalty function. The feasible points and the infeasible points are the two 

categories of anticipated outcome that guides the search space we have in constrained 

problems. The measure of degree of infringement on the constraints is zero and non-zero for 

feasible points and infeasible points respectively. 

Stationary penalty function and non-stationary penalty function are the two main 

classes of penalty functions. The stationary penalty function makes use of penalty values that 

are constant for the whole operation of minimizing the constrained problem. The non-
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stationary penalty function uses dynamic functions that are adjusted in the course of the 

minimization operation. The outcome of the non-stationary penalty method is usually 

outstanding when compared with that of the stationary penalty method. To ensure 

convergence for this class of penalty function, it is required that a very high penalty parameter 

be used. The side effect of using very high penalty parameter is that it can result into 

complexity of numbers (Boyd and Vandenberghe, 2004). 

 

4.2.2 Augmented Lagrangian Multiplier Method 

The major shortcoming of the Penalty Function method which is the use of large 

penalty parameter in the penalty function is overcome in the Augmented Lagrangian 

Multiplier Method. This approach makes use of the combination of Lagrange multiplier and 

constrained function. The Augmented Lagrangian Multiplier Method is the multiplication of 

the Lagrange multiplier and constrained function. The constrained optimisation problem just 

like in the case of penalty function is converted into unconstrained optimisation problem by 

the Lagrange function. The Lagrangian function can be written as: 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑ 𝜆𝑖𝑔𝑖(𝑥) +
𝑚𝑔

𝑖=1
∑ 𝜆𝑗+𝑚𝑔

 ℎ𝑗(𝑥)
𝑚𝑔

𝑗=1
        (4.1) 

Where  

 𝜆   = The Lagrange multiplier 

 f(x) = The objective function 

 g(x) = Equality Constraint Violation 

 h(x) = Inequality Constraint Violation 
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The solution X* to constrained problem with the correct set of multipliers λ* is a 

stationary point on L. But X* is not necessarily a minimum of Lagrange function L. To 

convert the solution X* from stationary point to minimum, the Lagrange function is 

augmented using quadratic extension.  

𝐿𝐴(𝑥, 𝜆, 𝑟𝑝) = 𝑓(𝑥) + ∑ 𝜆𝑖
𝑚𝑒+𝑚𝑖
𝑖=1 𝜃𝑖(𝑥) + ∑ 𝑟𝑝,𝑖

𝑚𝑒+𝑚𝑖
𝑖=1 𝜃𝑖

2(𝑥)  (4.2) 

with  

𝜃𝑖= [

𝑔𝑖(𝑥), 𝑖 = 1(1)𝑚𝑒 ,

max {ℎ
𝑖−𝑚𝑔(𝑥),

−𝜆𝑗

2𝑟𝑝,𝑗

} , 𝑖 = 𝑚𝑒 + 1(1)𝑚𝑒 + 𝑚𝑖
 ]  (4.3) 

From the gradient based optimisation problems, the term    
−𝜆𝑗

2𝑟𝑝,𝑗
  in equation 4.3 is 

selected to have continuous derivatives 
𝜕𝐿𝐴

𝜕𝑋
 at Ẋ, where ℎ𝑖−𝑚𝑒Ẋ =    

−𝜆𝑗

2𝑟𝑝,𝑗
 .  The Lagrange 

function differs from penalty function due to addition of Lagrangian multipliers. In this 

method, each constraint infeasibility is penalized separately by the use of a vector of positive 

penalty factors 𝑟𝑝. It can be shown that there exist finite constraint penalty factors 𝑟𝑝 in the 

solution X* of the Lagrange function and thus of the original constrained problem. But the 

proper values of Lagrange multipliers 𝜆𝑖 and penalty factor parameter 𝑟𝑝 are unknown and 

are always problem dependent and thus the solution of the Lagrange function cannot be 

computed by single unconstrained minimization of equation 4.2 but a sequence of 

unconstrained sub-problems with subsequent updates of 𝜆𝑖 and 𝑟𝑝. The update scheme of 

Lagrange multipliers is based on the solution 𝑥∗𝑣 of the stationary condition of the v-th sub-

problem. It holds for  𝑥𝑣 ≈  𝑥∗𝑣 

[
𝜕𝑓(𝑥)

𝜕𝑥
 + ∑ 𝜆𝑖

𝑣𝑚𝑒+𝑚𝑖
𝑖=1

𝜕𝜃𝑖(𝑥)

𝜕𝑥
 +  ∑ 2𝑟𝑝,𝑗

𝑣𝑚𝑒+𝑚𝑖
𝑖=1 𝜃𝑖(𝑥) + 

𝜕𝜃𝑖(𝑥)

𝜕𝑥
  ] 𝑥 = 𝑥𝑣     (4.4) 
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The Lagrange multiplier can be formulated by comparing equations (3.4) and (3.1) 

𝜆𝑖
𝑣+1 = 𝜆𝑖

𝑣 + 2𝑟𝑝,𝑗
𝑣 𝜃𝑖(𝑥)                       (4.5) 

 

4.2.3 Primal Dual Particle Swarm Optimisation (pdPSO) 

The Interior-Point algorithm can be used to solve convex problems that have both 

equality and inequality constraints. Some state of the art of Interior-Point algorithms can be 

used to handles such problems effectively.  The Interior-Point algorithm can be used to 

compute the solution to the following optimisation problem: 

      minimize   f(x) 

      subject to c(x) < 0, 

where f(x) is a convex objective and c(x) is a vector-valued function with  outputs 

that are convex in x. The input X0 is the starting point for the solver. It must be an n x 1 

matrix, where n is the number of (primal) optimisation variables.  The descent direction can 

either be 'newton' for the Newton search direction,  'BFGS' for the quasi-Newton search 

direction with the  Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, or 'steepest' for the  

steepest descent direction. The steepest descent direction is often quite bad, and the algorithm 

may fail to converge to the solution if the option is chosen. For the Newton direction, the 

Hessian of the objective must be calculated. The quasi-Newton estimate to the objective is 

usually formed, the implication of this is that a second-order information about the inequality 

constraint functions. The Interior Point Method algorithm below was adapted from Gilbert, 

Armand and Jan-Jégou (2000). The algorithm for the Primal Dual Method is below: 
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Step 1:Initialize some of the algorithm parameters (such as The maximum centering parameter, The 

maximum forcing number, Minimum barrier parameter, Maximum step size, Minimum step 

size, Granularity of backtracking search, Amount of actual decrease we will accept in line 

search).     

Step 2: Compute the responses of the unperturbed Karush-Kuhn-Tucker optimality conditions. 

Step 3: Check for convergence  

Step 4: Update the BFGS approximation to the Hessian of the objective. 

Step 5: Find Solution to perturbed KKT system. 

Step 7: Do Backtracking line search. 

Step 8: Compute the response of the merit function and the directional gradient at the current point 

and search direction. 

Step 9: Compute the candidate point, the constraints, and the response of the objective function and 

merit function at the candidate point.            

Step 10: Stop backtracking search if we've found a candidate point that sufficiently decreases the 

merit function and satisfies all the constraints.            

Step 11: Decrease the step size if candidate point does not meet our criteria 

Step 12: Compute the response of the merit function at (x, z). 

Step 13: End 

 

 

Figure 4.2: Primal Dual Method algorithm. 

 

In an attempt to provide solution to the problem of premature convergence and 

particles being trapped in the local minima that have characterized the PSO algorithm, we 

hereby propose a hybrid PSO algorithm that can tackle the shortcomings of PSO algorithms 

and it variants. Primal Dual, when integrated into PSO will provide better balance between 

exploration and exploitation. The hybridization will enable the system to possess great ability 

to prevent premature convergence, and prevent the particles from being stuck in the local 

minimal. The new algorithm works by randomly generating the initial parameters for Primal-

Dual and the PSO. The Primal-Dual and PSO operators are applied to generate the initial 

population. The particles that made up the initial generation are evaluated. When the solution 

generated is feasible, and then the stopping criteria are checked after which the solution is 

feed into the Primal-Dual method as the objective function. The result of the Primal-Dual 

optimisation is then passed to PSO, which creates a perturbation in the population and also 
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maintain diversity in the population until there is either convergence to the global optimal or 

the termination criteria is satisfied.  The flowchart of Primal Dual PSO (pdPSO) is presented 

in figure 4.3. 

The two algorithms that are hybridised in the pdPSO: a deterministic algorithm (the 

Primal-Dual algorithm) and an evolutionary algorithm (the PSO algorithm). The Primal-Dual 

algorithm possesses a good searching capacity because its rate of convergence is high. It is 

however liable to converge to a local minima instead of a global optimal solution. In contrast, 

the PSO algorithm is efficient in converging to a global optimal solution. The implication of 

this is that a sizable number of particles are required to do a successful search, and 

consequently large memory capacity and high computation time are needed during the course 

of optimisation. On the ground of the above rationale, the pdPSO algorithm is proposed to 

solve the problems associated with the PSO algorithm and the Primal-Dual method, and to 

effectively compute the correct global optimal solution. The flowchart to implement the 

proposed pdPSO algorithm is shown above in figure 4.3. 
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Figure 4.3: Flowchart of Primal Dual PSO (pdPSO) 

 

4.2.4 Implementation of Primal Dual PSO (pdPSO) Algorithm 

We implemented our proposed algorithm and carried out some experiments to 

determine if the algorithm is functioning according to specification. Secondly, we wanted to 

determine the global optimum and local optima of each of  PSO, Primal Dual and pdPSO 

under the different benchmarking functions, and to confirm the problem of the particles in 

PSO been trapped in the local optimal. Lastly, we are validating the existence of the 
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premature convergence problem of PSO and Primal Dual Interior Point method.  

  

4.2.4.1 Parameter settings 

The dimension value of 30 is assigned for each function (i.e. n = 30). For the 

implementation of pdPSO algorithm mentioned above, a swarm of 50 particles was generated 

with global best topology. We carried out 400 iterations for each of the algorithm we are 

testing using the following 9 benchmark functions (Ackley, Sphere, Griewank, Schaffer f6, 

Schaffer f6 modified, Schaffer f6 Bubble Dynamic, NDParabola, Rastrigin, and Tripod 

function) running on MATLAB R2012a. The cognitive scaling c1 that influences local search 

is set to the value 1.49. Accordingly, the social scaling c2, which influences the global search, 

is identically set to the value 1.49. Functions rand1 and rand2 are stochastic variables that 

have the uniform distribution U (0, 1). Primal-Dual parameter setting is as follows: Primal 

Dual tolerance is set to 1e-8. The maximum centering parameter is 0.5. The Minimum barrier 

parameter is set to 1e-9.  The Maximum step size is 0.95. The Granularity of backtracking 

search is set to 0.75 

The value of the velocity is limited at ±Vmax and the value of Vmax is set to be equal 

to the value of Xmax. This helps in controlling the search range. The range of the searching 

will become wide if the value assigned is large, thus limiting the algorithm to only global 

exploration. In contrast, if the value of Vmax is small the scope of the search will be 

excessively limited thereby forcing the particles to support only local exploration. The inertia 

weight w called (constriction factor) is the inertia parameter; this regulates the algorithm’s 

searching properties. The initial value is 0.9 and this value decreases to a final value of 0.4. 

We started with a larger inertia value (a more global search) that is dynamically reduced 

towards the end of the optimisation (a more local search). Small inertia weight guarantees 
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quick convergence of the algorithms due to the reduction of time for the exploration in the 

global space. The inertia weight w is used to provide equilibrium between the global and 

local search capability of the particles in the swarm. 

For the primal-dual method, the parameter settings are as follows: Primal-dual 

tolerance is set to 1e-8. The maximum centering parameter is 0.5. Minimum barrier 

parameter is 1e-9. Maximum step size is 1e-6, and granularity of backtracking search is 0.75. 

A total of 20 independent trial runs are carried out for each of the functions that were used to 

evaluate the performance and robustness of the pdPSO algorithm. 

 

Figure 4.4: Graph of Ackley function for Primal-Dual, PSO and pdPSO (IPM and pdPSO 

are superimposed on each other before IPM got trapped in local minima) 
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Table 4.1:  Result Comparison for Ackley Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 5.79464e-10 2.28608e-05 +9.00249e-07 4.16412e-06 

Primal-Dual 1.64406e-06 3.57445e+00 +1.44513e+00 1.35517e+00 

PSO 2.72194e-10 2.20607e-08 +1.94965e-09 4.12310e-09 

The first function is Ackley (Results depicted in Tab. 4.1). It is a multi-modal function 

with deep local minima. It has several local minima. It is commonly used to test the ability 

of the optimisation algorithm to escape local minima. It also used to test the presence of 

premature convergence in the algorithm. Based on the simulation results for IPM, PSO, and 

pdPSO, there are many local minima generated by the function for PSO and pdPSO. PSO 

and pdPSO converged to global optimum, while IPM got trapped in local minima. The 

convergence rates of PSO and pdPSO are almost identical. For the pdPSO algorithm, the first 

200 iterations were handled by the IPM, while the last 200 iterations were executed by the 

PSO (thereby combining the exploitative power of IPM and the explorative ability of the 

PSO). We observed a sharp drop in the gbest of pdPSO from the first to the 50th iteration, 

and only after the output of the IPM is inserted into the PSO algorithm the convergence rate 

doubled. In our comparisons, we used the values of the Best fitness, Mean fitness, and 

Standard deviation because they are some of the performance measures mentioned in Chena 

et al. (2010). When we compared the performance of the three algorithms in terms of the 

numerical values of Best fitness, Mean fitness, and Standard deviation, we can deduce that 

there is no much significant difference between the performances of PSO and pdPSO for 

Ackley function. 

The second function is the Sphere function. It is a unimodal function, it is simple, and 

there is no communication between the variables. Optimisation algorithms commonly would 

be to solve the function efficiently. The function can also be used to test the presence of 
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premature convergence in optimisation algorithms. From the result of our simulation 

(depicted in Figure. 4.5 and Tab. 4.2), pdPSO converged faster than PSO algorithm. For the 

250 iterations run, both PSO and pdPSO converged successfully. PSO took longer iteration 

before it converges as it seems to be trapped at a local minimum. This suggests the superiority 

of the pdPSO (in terms of convergence speed) compared to the PSO algorithm. We compared 

the performance of the three algorithms based on the values of Best fitness, Mean fitness and 

Standard deviation. From the numerical results, the performance of pdPSO was better in 

terms of the Best fitness, Mean fitness and Standard deviation. 

 

Figure 4.5: Graph of Sphere function for Primal-Dual, PSO and pdPSO (IPM and pdPSO 

are superimposed on each other before) 
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Table 4.2: Result Comparison for Sphere Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 1.87349e-29 9.11685e-27 +1.19780e-27 2.20741e-27 

Primal-Dual 3.05475e-18 1.00235e-17 +6.33670e-18 1.71551e-18 

PSO 1.80186e-18 2.76436e-14 +1.05297e-15 5.02818e-15 

 

Figure 4.6: Graph of Griewank function for Primal-Dual, PSO and pdPSO (IPM and pdPSO 

are superimposed on each other before they both converged) 

 

Table 4.3: Result Comparison for Griewank Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 5.65695e-02 3.45688e+00 +8.22243e-01 7.07663e-01 

Primal-Dual 5.65695e-02 1.08272e+00 +2.73931e-01 3.61745e-01 

PSO 8.86239e-02 1.91516e+00 +4.59212e-01 5.75298e-01 
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The third function is the Griewank function. It is a non-linear multimodal function. It 

is highly multimodal due to the addition of the cosine modulation that produces many 

widespread local minima. Griewank has characteristics that are quite similar to that of 

Rastrigin function except that the number of local optima is more this time around. The 

numerous local minima have complex structure, and only multi-start algorithms can easily 

find the global minimum with increase in the dimension of the problem. When used, it tests 

the ability of the optimisation algorithm to escape been trapped in the local minima. In the 

Figure above we have the simulation result of Griewank function for IPM, PSO, and pdPSO. 

The PSO has many local optima in the function. All the three (3) algorithms converged to 

the global optimum for this function. The performance of IPM and pdPSO for Griewank 

function is far better than that of PSO based on their speed of convergence.  In term of the 

numerical value of the Best fitness, the pdPSO is superior to the other two algorithms. 

However, the performance of the Primal-dual is better in terms of Mean fitness and Standard 

deviation. The pdPSO however have a better convergence rate thereby giving it an edge over 

the Primal-Dual and PSO. 
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Figure 4.7: Graph of Schaffer f6 function for Primal-Dual, PSO and pdPSO (IPM and pdPSO 

are superimposed on each other). 

Table 4.4: Result Comparison for Schaffer f6 Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 0.00000e+00 2.42012e-01 +8.06720e-03 4.41851e-02 

Primal-Dual 2.22045e-16 4.24477e-01 +3.33300e-01 1.13677e-01 

PSO 0.00000e+00 4.99600e-16 +2.40548e-17  9.29832e-17 

 

The fourth function is the Schaffer f6 Function. It is a complex multimodal function. 

Most hill-climbing and reactive search methods find it very difficult due to its circular local 

maxima. It is considered a Genetic Algorithm-hard function to optimize. It is used to test the 

ability of the optimisation algorithm to escape local minima, as well as premature 

convergence. The challenge that this function posed to optimisation algorithms is the rise in 

the magnitude of the prospective maxima, which must be overcome to get to a minimum as 
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one move nearer to the global minimum. The Schaffer f6 function simulation result for IPM, 

PSO, and pdPSO is depicted in Figure 4.7 and Table 4.4. Apparently, this function poses a 

challenge to both PSO and pdPSO (presence of several local minima). There was a sharp and 

steady fall in the value of gbest of IPM and pdPSO up till the 150th iteration. The pdPSO 

seems to be trapped in a local minimum from the 150th to the 275th iteration after which it 

experienced a fall in the value of its gbest again. The PSO however converged faster under 

this function when compared to IPM and pdPSO. While pdPSO and PSO have better 

performance in terms of the numerical value of Best fitness, PSO is better in terms of Mean 

fitness and Standard deviation.   

The fifth is Schaffer f6 Modified Function which is the sum of five (5) Schaffer f6 

functions with different centres to look for local minimum. It also test the ability of the 

optimisation algorithm to escape been trapped in the local minima, and check for the presence 

of premature convergence. The result of the simulation for Schaffer f6 modified function for 

IPM, PSO, and pdPSO is presented in the figure above (depicted in Figure 4.8 and Table 

4.5). The IPM and pdPSO converged faster than PSO. After the 30th iteration, PSO 

experienced a sharp fall in the value of its gbest and from there got trapped in a local minima 

and remained there throughout the iteration. There was no significant difference between the 

performance of the pdPSO and the IPM. The pdPSO performs better in terms of the value of 

Best fitness. When we compare the Mean fitness and Standard deviation, the PSO performs 

better. The pdPSO is however superior to the PSO and Primal-dual because it was able to 

overcome the problem of premature convergence. Whereas the PSO and Primal-dual were 

trapped in the local minima, pdPSO was able to escape been trapped in the local minima. 
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Figure 4.8: Graph of Schaffer f6 Modified function for Primal-Dual, PSO and pdPSO (IPM 

and pdPSO are superimposed on each other before they both converged) 

 

Table 4.5: Result Comparison for Schaffer f6 Modified Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 3.95063e-01 5.66018e-01 +4.03145e-01 3.34147e-02 

Primal-Dual 3.95063e-01 4.80710e-01 +4.59061e-01 2.29854e-02 

PSO 3.98750e-01 4.84612e-01 +4.01617e-01 1.56753e-02 Univ
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Figure 4.9: Graph of Schaffer f6 Bubble Dynamic function for Primal-Dual, PSO and pdPSO 

(IPM and pdPSO are superimposed on each other) 

 

Table 4.6: Result Comparison for Schaffer f6 Bubble Dynamic Function 

 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 5.18555e-02 8.98753e-01 -6.49279e-01 5.05210e-01 

Primal-Dual 4.58057e-02 4.43780e-01 -2.89311e-01 9.56216e-02 

PSO 9.02080e-01 9.02179e-01 -9.02131e-01 1.50446e-05 

The sixth is Schaffer f6 Bubble Dynamic Function which is made up of Schaffer f6 

in which each goes on bubbles magnitude cycles up and down. They are 180 degree out of 

phase with each other. It tests the ability of the algorithm to work effectively in a dynamic 

environment. The Schaffer f6 Bubble Dynamic function simulation result for IPM, PSO, and 

pdPSO is above (depicted in Figure 4.9 and Table 4.6). The bubbles magnitude cycles up and 

down especially for IPM and pdPSO. Under this function, the pdPSO and IPM converged 
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faster that the PSO. The performance of pdPSO is better in terms of the Mean fitness, Primal-

dual was better in terms of Best fitness while PSO performs better in terms of Standard 

deviation. We can deduce that the overall performance of the pdPSO is better for this function 

than that of the other two algorithms we compared because it demonstrate its ability to handle 

a dynamic environment. This means that pdPSO will be more suitable in solving problems 

that are dynamic in nature compared to standard PSO. While PSO and Primal-dual were static 

and got trapped in the local minima, pdPSO was not. 

The seventh function is NDParabola. It was used to test for global minimization 

problems in Clerc’s “semi-continuous challenge.” It works very well with gradient methods, 

but presents a challenge for PSO, which is a stochastic method. The results of our simulation 

are depicted in Figure 4.10 and Table 4.7. This function tests the ability of the algorithm to 

converge to global optima after escaping from been trapped in the local minima.  The 

simulation result above is the NDParabola function for IPM, PSO, and pdPSO. The IPM, 

PSO and pdPSO algorithms converged to global optima. Both PSO and pdPSO have several 

local minima as shown in the result. There was a great drop in the gbest value of the IPM, 

PSO, and pdPSO from the beginning of the iteration to the end. The convergence speed of 

pdPSO and IPM was much better than that of PSO. Based on the numerical values of the 

Best fitness, Mean fitness and Standard deviation, pdPSO performs better for this function. 

Our new algorithm (pdPSO) also demonstrates its ability to escape been trapped in the local 

minima and to evade premature convergence in this function. Univ
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Figure 4.10: Graph of NDParabola function for Primal-Dual, PSO and pdPSO (IPM and 

pdPSO are superimposed on each other) 

 

Table 4.7: Result Comparison for NDParabola Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 1.87351e-29 9.11685e-27 +1.19780e-27 2.20741e-27 

Primal-Dual 3.05475e-18 1.00235e-17 +6.33670e-18 1.71551e-18 

PSO 1.80186e-18 2.76436e-14 +1.05297e-15 5.02818e-15 
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Figure 4.11: Graph of Rastrigin function for Primal-Dual, PSO and pdPSO 

 

Table 4.8: Result Comparison for Rastrigin Function 

 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 6.29026e+00 1.81783e+02 +7.29321e+01 3.88201e+01 

Primal-Dual 6.16813e+00 2.69526e+01 +1.60688e+01 5.13242e+00 

PSO 8.95462e+00 8.96635e+00 +8.95527e+00 2.32294e-03 

 

The eighth function is Rastrigin function which is a non-convex, multi-modal version 

of the sphere function with the addition of cosine modulation to produce frequent local 

minima. It contains millions of local optima which are organized in a systematic lattice. This 

function is a moderately problematic one because of its huge search space and its immense 

number of local minima. The above simulation result is the Rastrigin function for IPM, PSO, 

and pdPSO. This highly multimodal function has several local minima which are regularly 

distributed throughout the iteration for all the 3 algorithms. The results of our simulation are 
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depicted in Figure 4.11 and Table 4.8 above.  IPM, PSO and pdPSO converged to global 

optimum. The IPM, PSO and pdPSO because of the nature of the Rastrigin function have 

several local minima, and got trapped there for the rest of the iteration. The performance of 

the IPM and pdPSO was a bit better under this function than that of PSO. Judging from the 

results of the numerical values of the Best fitness and Mean fitness, pdPSO performs better. 

If we consider the value of the Standard deviation, the performance of the PSO seems to be 

better. The rate of convergence of the pdPSO is however superior to that of the other two 

algorithms. Using the numerical values of the Best fitness and Mean fitness as parameters 

for our judgment, there was no much difference between the performances of these three 

algorithms. The performance of pdPSO was better based on the numerical value of the 

Standard deviation when compared to the other two algorithms. From our experiment, pdPSO 

was able to achieve our aim of designing an algorithm that will overcome the problem of 

premature convergence that usually characterise the standard PSO. 

 The ninth function is Tripod which is a semi-continuous function. This function 

presents a problem that many algorithms such as GA and PSO that are easily trapped in one 

of the two local optima find very difficult to cope with. It is used to test if the optimisation 

algorithm will be able to escape from been trapped in the local minima, and to also know if 

it is experiencing premature convergence or not. The Tripod function simulation result for 

IPM, PSO, and pdPSO is depicted in Figure 4.13 and Table 4.9 above. The IPM, PSO and 

pdPSO converged. The gbest value of PSO fell sharply from the start of the iteration up till 

the 10th iteration and decreases steadily from there until it got trapped in a local minimum 

and remained there throughout the iteration. The IPM and pdPSO also experienced fall in the 

value of their gbest from the start up till the 30th iteration after which they got caught in the 

local minima and remained there till the end of the iteration.  Using the numerical values of 

the Best fitness and Mean fitness as parameters for our judgment, there was no much 
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difference between the performances of these three algorithms. The performance of pdPSO 

was better based on the numerical value of the Standard deviation when compared to the 

other two algorithms. From our experiment, pdPSO was able to achieve our aim of designing 

an algorithm that will overcome the problem of premature convergence that usually 

characterise the standard PSO. 

 

Figure 4.12: Graph of Tripod function for Primal-Dual, PSO and pdPSO (IPM and pdPSO 

are superimposed on each other) 

Table 4.9: Result Comparison for Tripod Function 

 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 2.00000e+00 2.00000e+00 +2.00000e+00 5.94551e-15 

Primal-Dual 2.00000e+00 2.00000e+00 +2.00000e+00 1.76109e-08 

PSO 2.00000e+00 2.00000e+00 +2.00000e+00 1.96425e-12 
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Based on the analysis of our results for the nine benchmarking functions used, pdPSO 

performs better than the other algorithms in 7 test cases out of 9; the remaining 2 cases, PSO 

was superior when compared to other algorithms. The performance of pdPSO was superior 

for Sphere, Griewank, Schaffer f6 modified, Schaffer f6 Bubble dynamic, NDParabola, and 

Tripod function. The functions where PSO performs better are Ackley and Schaffer f6. The 

ability of pdPSO to overcome the problem of premature convergence and escape been 

trapped in local minima was demonstrated in the Sphere, Griewank, Schaffer f6 modified, 

Schaffer f6 Bubble dynamic, and NDParabola. The Tripod function further confirmed the 

capacity of our algorithm to avoid premature convergence. The results from Schaffer f6 

Bubble dynamic shows that pdPSO have the capability to handle optimisation problems in a 

dynamic environment. 

With reference to convergence speed, pdPSO was faster than PSO and Primal-dual 

algorithms in 5 functions out of the total of 9 functions that we considered. We can therefore 

consider pdPSO as a fast algorithm that can be used to solve complex numerical optimisation 

problems. The pdPSO also have a higher level of steadiness in comparison to the other two 

algorithms. The values of Mean fitness and Standard deviations for Sphere, Schaffer f6 

Bubble dynamic, NDParabola and Tripod functions were very small when compared to the 

ones of PSO and Primal-dual. We can there conclude that pdPSO is a very steady algorithm 

that have the capacity to produce rational results that are reliable. Finally we can deduce that 

pdPSO is a robust algorithm as it performs better than PSO and Primal-dual in its ability to 

successfully find the global optimum on all the benchmarking functions we used especially 

on Griewank, Schaffer f6, NDParabola and Rastrigin functions which many of the most 

recent optimisation algorithms finds very problematic to solve. Consequently, pdPSO can be 

considered as an algorithm that can withstand adverse conditions such as the presence of too 

many local minima. 
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 We went further to conduct more thorough experiments to evaluate the efficiency of 

the pdPSO algorithm. The test functions that we used for the experiments are as shown in the 

table 4.10 below. Twelve benchmark functions are used in our experiment to further affirm 

the genuineness of pdPSO algorithm. A concise description of these benchmark functions are 

enumerated in table 4.10 below. Our reason for adopting these benchmark functions is 

because they have been generally accepted as suitable functions in measuring the 

performance of global optimisation algorithms (Zhan et al. 2011; Huang et al. 2012; 

Suganthan et al. 2005; Liang et al. 2005). We made use of twelve functions from the list of 

functions used in (Gang et al. 2016). Based on the attributes of these functions, they can be 

categorised into three groups. Category one comprises of three (3) unimodal functions. 

Category two is made up of four composite multimodal functions. The category three 

comprises of six functions out of which four are rotated multimodal while the remaining two 

are shifted functions.  

Table 4.10: Test functions used in the comparisons 

Function Name Dimension 

(D) 

Global 

opt 

Search Range Initialization 

Range 

Unimodal 

Sphere 30 {0} D [-100,100]D [-100,50] D 

Schwefel's 

P2.22                               

30 {0} D [-10,10] D [-10,10] D 

Rosenbrock 30 {0} D [-10,10] D [-10,10] D 

Multimodal 

Rastrigin 30 {0} D [-5.12,5.12] D [-5.12,5.12] D 

Ackley 30 {0} D [-32.768,32.768] D [-32.768,32.768] D 

Schwefel 30 {0} D [-500,500] D [-500,500]D 

Griewank  30 {0}D [-600,600]D [-600,600]D 

Rotated and Shifted  

Rotated  

Rosenbrock 

30 {0}D [-10, 10] D     [-10, 10] D     

Rotated  

Rastrigin  

30 {0}D [-5.12,5.12]D [-5.12,5.12]D 

Rotated  Ackley 30 {0}D [-32.768,32.768]D [-32.768,32.768]D 

Rotated 

Griewank    

30 {0}D [-600,600]D [-600,600]D 

Shifted 

Rosenbrock 

30 {0}D [-100,100]D [-100,100]D 
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Shifted 

Rastrigin 

30 {0}D [-100,100]D [-100,100]D 

 

Some performance metrics were used to evaluate the performance of the pdPSO in 

order to know the dependability of the algorithm and the quality of the solution generated. 

Such performance metrics include the value of mean fitness and standard deviation. The 

speed of convergence is measured by computing the average number of FEs needed to arrive 

at a satisfactory solution among successful runs. The dependability of the algorithm is 

evaluated based on the mean success rate (SR %). The computation of the Mean value of FEs 

is done only for the successful runs. The ratio of trial runs expressed as a fraction of 100 that 

successfully reach the standard accuracy is called the success rate. According to Auger and 

Hansen (2005), some algorithms may fail to attain the satisfactory solution for each run on 

some problems. Another standard of measurement is called success performance (SP). 

Where 

Success =  (Fit(x*) + (1.0E-5)) 

X* =   Theoretical global optimal solution 

NFE =  Average number of function evaluation required to find solution when all 30 

runs are successful. 

SP =   (Mean FEs)/(SR%)  

The statistical results of the experiments conducted using twelve (12) benchmarking 

functions for pdPSO algorithm is summarized in the table below. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



137 

 

Table 4.11: Statistical result of 12 benchmarking functions for pdPSO 

Algorithm Name Primal-Dual-PSO 

Function Name Best Fitness Worst 

Fitness 

Mean Fitness Standard 

Deviation 

SP Success 

Rate 

(%) 

Runtime 

(s) 

NFE 

Sphere -4.500e+002 3.521e+005 -4.500e+002 6.387e-014 1078 100 177.66 1078 

Schwefel's P2.22                               -4.500e+002 1.331e+007 -4.500e+002 3.683e-006 3268.36 91.7 142.441 2996 

Rosenbrock 3.900e+002 5.407e+011 3.925e+002 5.083e+000 8934.35 80.6 155.42 2997 

Rastrigin -3.300e+002 7.525e+002 -3.300e+002 4.198e-014 2827.00 100 156.97 2827 

Ackley 3.850e+002 5.378e+011 3.855e+002 5.052e+000 8821.14 85.7 150.12 8285 

Schwefel  -4.495e+002 2.94e+007 -4.437e+002 4.07e+000 5615.45 58.63 124.66 2981 

Griewank -1.800e+002 1.236e+004 -1.800e+002 1.084e-002 6175.20 41.66 186.46 2573 

Rotated  

Rosenbrock 

3.88e+002 5.571e+011 3.996e+002 5.542e+000 8986.74 38.79 168.42 3456 

Rotated Rastrigin -1.800e+002 1.236e+004 -1.800e+002 1.084e-002 6175.20 41.66 186.46 2573 

Rotated Ackley   -1.39e+002 5.000e+000 -1.392e+002 5.514e-002 3748.29 72.19 189.16 2455 

Rotated Griewank  -1.80e+002 2.80e+002 -1.824e+00 1.063e-00 1734.92 68.8 253.23 1124 

Shifted 

Rosenbrock 

-3.300e+002 7.519e+002 -3.300e+002 4.198e-014 2827.00 100 156.97 2827 

Shifted Rastrigin 3.09e-002 1.899e+003 -2.97e+002 7.180e+000 5873.29 59.83 174.37 2999 

 

 

4.3 Primal Dual Asynchronous Particle Swarm Optimisation (pdAPSO) algorithm 

In our effort to improve on the performance of pdPSO algorithm, we proposed 

another algorithm called Primal-Dual APSO (pdAPSO). Unlike what we have in the standard 

PSO, the Asynchronous PSO (APSO), after evaluating the fitness of the swarm, the velocity 

and position of particles are updated immediately after computing their fitness using partial 

or limited information about the neighbourhood. This results into varieties in the swarm since 

some of the information is from the previous iteration while some is from the current 

iteration. From literature, it has been discovered that APSO performs better and converges 

faster than standard PSO and SPSO (Luo & Zhang, 2006). Some other researchers concluded 

from their work that APSO provides the best accuracy at the expense of computational time. 

In this chapter, we proposed a fusion of Asynchronous PSO with Primal-Dual Interior-Point 

method to overcome some of the drawbacks of the PSO algorithm. The algorithm for the 

asynchronous PSO is in figure 4.14. 
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4.4 Implementation of Primal-Dual Asynchronous PSO (Primal-Dual-APSO) 

The purpose of this experiment is firstly to implement our new algorithm called 

Primal-Dual Asynchronous PSO (Primal-Dual-APSO) and to determine if it is working 

properly. Secondly, it is to compare the performance of APSO, Primal-Dual-PSO (pdPSO) 

proposed by Dada and Ramlan (2015), and PSO under different benchmarking functions, and 

to confirm the problem of the particles in PSO been trapped in the local optimal. Thirdly, our 

purpose is to know the global optimum and local optimal of each of APSO, Primal-Dual-

APSO (pdAPSO), and PSO under different benchmarking functions. Fourthly, we are 

authenticating the reality of the premature convergence problem of PSO algorithms. It is 

obvious from our review of related literature that based on some of the weaknesses of PSO, 

it is highly essential to develop new variants of PSO algorithms in to order to be able to apply 

it to solving problems in other fields and thus contribute towards the ever-expanding pool of 

PSO algorithms. Obviously, the algorithm is not suitable for solving dynamic problems. We 

hereby present a hybridized APSO and Primal Dual algorithm which is an improvement on 

the earlier variants that have been developed, thereby contributing to the field of swarm 

intelligence.   
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Step 1: Get initial points boundary values 

Step 2: Get initial values for particles position 

Step 2.1: Particles best positions = particles positions 

Step 2.2: Particles velocity = particles dimension 

Step 2.3: Get particles best value  

Step 2.4: Best val hist = zeros 

Step 2.5: particles positions = random particles dimension 

Step 3: Main loop starts here 

Step 3.1: For iteration = 1 to iteration number 

     Step 3.2: Loop through every single particle 

     Step 3.3: for temp = 1: particles 

Step 4: Update the position of an individual particle 

Step 4.1: Particles positions = particles positions + particles velocity 

Step 6: Evaluate the objective function for each particle 

            Step 6.1: If objective function < particles best value 

Step 7: Update position, (Best position).  

             Step 7.1: Particles best positions = particles positions 

Step 7.2: Update best value so far (Particles best value = objective function)                               

         Step 7.3: End 

Step 8: Best function value calculation 

            Step 8.1: Compute Gbest val = min (particles best value);                                       

            Step 8.1: Compute Best val hist = gbest; 

Step 9: Velocity component update for an individual particle 

Step 9.1: Compute particles velocity = c1 * particles velocity + c2 * rand (particles dim) *particles   

best positions – particles positions + c2*rand (particles dim) * (particles best positions) – 

particles positions 
     Step 9.1: End 

Step 10: End 

 

Figure 4.13: Algorithm for Asynchronous PSO (APSO)  
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Figure 4.14: Flowchart for pdAPSO Algorithm  

 

4.4.1 Parameter settings 

The dimension value of 10 is assigned for each function (i.e. n = 10). The size of the 

swarm is 30. We carried out 400 iterations for each of the algorithm we are testing using the 

following 9 benchmark functions (Ackley, Dejong f2, Sphere, Griewank, Schaffer f6, 

Schaffer f6 modified, NDParabola, Rastrigin, and Tripod function) running on MATLAB 
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R2012a. All the parameters used for the implementation of pdPSO were also adopted for 

pdAPSO. 

 

Figure 4.15: Graph of Ackley function for APSO, Primal-Dual-APSO and PSO 

 

Table 4.12:  Result Comparison for Ackley Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-APSO 5.79464e-10 2.28608e-05 +9.00249e-07 4.16412e-06 

APSO 6.51690e-09 7.56732e-08 +1.75608e-08 1.62062e-08 

PSO 2.72194e-10 2.20607e-08 +1.94965e-09 4.12310e-09 

 

The simulation results of the APSO, pdPSO, and PSO algorithms are provided in the 

figure 4.16 and table 4.12. The function Ackley is a multi-modal function with deep local 

minima. It has moderate complexities. Algorithms that only use the gradient steepest descent 

are likely to be trapped in the local optima under this function. It has several local minima. It 
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is used to test the ability of the optimisation algorithm to escape been trapped in the local 

minima. It also tests the presence of premature convergence in these algorithms. Based on 

the simulation results for APSO, pdAPSO, and PSO, there are many local minima generated 

by the function for PSO and pdAPSO. All the three algorithms converged to global optimum. 

The Primal-Dual-PSO experienced a sharp fall in the value of its gbest from the start of the 

iteration up till the 50th iteration where the particles stayed on the same gbest till the 200th 

iteration.  The convergence rates of PSO and pdAPSO are almost the same. For the pdAPSO 

algorithm, the first 200 iteration was handled by the IPM, while the last 200 iterations were 

done by the PSO thereby combining the exploitative power of IPM and the explorative ability 

of the PSO. The performance of APSO under Ackley function is not as good as that of 

pdAPSO and PSO. 

The simulation result (depicted as Figure 4.17 and Table 4.13) of the Dejong f2 

function. This is a two dimensional function with a subterranean vale that looks like that of 

a parabola which proceeds to the global minimum. As a result of the non-linearity of the vale, 

many algorithms find it very difficult to converge quickly under this function because the 

value changes the direction of the search repeatedly. This function poses a challenge to many 

optimisation algorithms. All the functions converged, and there are many local minima that 

are experienced by the APSO, pdPSO and PSO. The performance of the APSO was superior 

(in terms of convergence speed) to that of the PSO and pdPSO under this benchmark function.  

The pdPSO was trapped in the local minima from the 10th iteration to the 200th iteration 

until the result of the optimisation from IPM was fed into PSO. 
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Figure 4.16: Graph of Dejong f2 function for APSO, Primal-Dual-APSO and PSO 

 

Table 4.13:  Result Comparison for Dejong f2 Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-APSO 5.42346e-08 5.08558e+02 +1.75616e+01 9.27722e+01 

APSO 1.34362e-16 5.07726e-03 +1.70015e-04 9.26840e-04 

PSO 9.67875e-15 1.42771e+02 +4.75906e+00 2.60663e+01 
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Figure 4.17: Graph of Sphere function for APSO, Primal-Dual-APSO and PSO 

 

Table 4.14: Result Comparison for Sphere Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-APSO 1.87351e-29 9.11685e-27 +1.19781e-27 2.20741e-27 

APSO 4.81143e-19 9.88981e-16 +9.65854e-17 2.48148e-16 

PSO 1.80186e-18 2.76436e-14 +1.05297e-15 5.02818e-15 

The above function is the Sphere function. It is a unimodal function, it is simple, and 

there is no communication between its variables. Our simulation results are depicted in 

Figure 4.18 and Table 4.14 above. Optimisation algorithms usually do not find it difficulty. 

It can also be used to test the presence of premature convergence in optimisation algorithms. 

From the result of our simulation, pdAPSO converged faster than APSO and PSO algorithms. 

In short, the pdAPSO is performing better than PSO and APSO. This suggests the superiority 

Univ
ers

ity
 of

 M
ala

ya



145 

 

of the pdAPSO (in terms of convergence speed) compared to the other two algorithms. The 

performance of APSO is slightly better than that of the PSO under this function. 

 

Figure 4.18: Graph of Griewank function for APSO, Primal-Dual-APSO and PSO 

 

 

Table 4.15: Result Comparison for Griewank Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-APSO 0.00000e+00 1.11022e-16 +3.70074e-18 2.02698e-17 

APSO 7.39604e-03 7.39604e-03 +7.39604e-03 9.25946e-16 

PSO 7.39604e-03 7.39604e-03 +7.39604e-03 1.91040e-16 

 

The simulation result of the Griewank function is above. Griewank is a non-linear 

multimodal function. It is highly multimodal due to the addition of the cosine modulation 

that produces many widespread local minima. The optima are regularly distributed. The 

function was designed to produce interdependence among the variables.  Griewank has 
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characteristics that are quite similar to that that of Rastrigin function except that the number 

of local optima is more this time around. The numerous local minima have complex structure, 

and only multi-start algorithms can easily find the global minimum with increase in the 

dimension of the problem. When used, it tests the ability of the optimisation algorithm to 

escape been trapped in the local minima. In the figure 4.19 and table 4.15 above we have the 

simulation result of Griewank function for APSO, pdAPSO and PSO. The APSO and PSO 

experienced many local optima in the function. All the three (3) algorithms converged to the 

global optimum for this function. The gbest of pdAPSO experienced a very sharp fall 

throughout the iteration. The performance of PSO and APSO is the same under the Griewank 

function, as both of them got trapped at a point and stayed there till the end of the iteration.  

 

Figure 4.19: Graph of Schaffer f6 function for APSO, Primal-Dual-APSO and PSO 
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Table 4.16: Result Comparison for Schaffer f6 Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-APSO 0.00000e+00 2.42012e-01 +8.06720e-03 4.41851e-02 

APSO 0.00000e+00 1.15650e-05 +3.85499e-07 2.11147e-06 

PSO 0.00000e+00 4.99600e-16 +2.40548e-17 9.29832e-17 

 

Above in Figure 4.20 and Table 4.16 are the simulations result for APSO, pdAPSO 

and PSO using the Schaffer f6 function. It is a complex multimodal function. Most hill-

climbing and reactive search methods find it very difficult due to its circular local maxima. 

Stochastic algorithms such as PSO and its variants also find it very difficult to cope with it. 

It is considered a GA-hard function to optimize. Schaffer f6 Function is used to test the ability 

of the optimisation algorithm to escape been trapped in the local minima, and also test for 

premature convergence. The challenge that this function posed to optimisation algorithms is 

the rise in the magnitude of the prospective maxima which must be surmounted to get to a 

minimum as one move nearer to the global minimum. Both PSO and pdAPSO have several 

local minima. There was a sharp and steady fall in the value of gbest of pdAPSO up till the 

150th iteration. The pdAPSO seems to be trapped in a local minimum from the 150th to the 

275th iteration after which it experienced a fall in the value of its gbest again. The PSO 

however converged faster under this function when compared to APSO and pdAPSO. This is 

because for the pdAPSO, after the IPM's 150 iterations, PSO takes over from there.  Univ
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Figure 4.20: Graph of Schaffer f6 Modified function for APSO, Primal-Dual-APSO and 

PSO 

 

Table 4.17: Result Comparison for Schaffer f6 Modified Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-APSO 3.95063e-01 5.66018e-01 +4.03145e-01 3.34147e-02 

APSO 3.98750e-01 3.98750e-01 +3.98750e-01 1.55991e-16 

PSO 3.98750e-01 4.84612e-01 +4.01617e-01 1.56753e-02 

 

The Schaffer f6 Modified Function is the sum of five (5) Schaffer f6 functions with 

different centres to look for local minimum. It is used to test the ability of the optimisation 

algorithm to escape been trapped in the local minima, and check for the presence of premature 

convergence. The result of the simulation for Schaffer f6 modified function for APSO, PSO, 

and pdAPSO is presented in the figure 4.21 and table 4.17 above. The pdAPSO converged 
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faster than PSO and APSO, this further show the superiority in the performance of our new 

algorithm when compare to PSO and APSO. There was a sharp fall in the value of the gbest 

of pdAPSO and APSO from the start of the iteration. After the 30th iteration, PSO also 

experienced a fall in the value of its gbest and from there got trapped in local minima and 

remained there throughout the iteration. PSO converged faster than the APSO.  

 

Figure 4.21: Graph of NDParabola function for APSO, Primal-Dual-APSO and PSO 

Table 4.18: Result Comparison for NDParabola Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-APSO 1.87351e-29 9.11685e-27 +1.19780e-27 2.20741e-27 

APSO 4.81143e-19 9.88981e-16 +9.65854e-17 2.48148e-16 

PSO 1.80186e-18 2.76436e-14 +1.05297e-15 5.02818e-15 
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The NDParabola is a benchmarking function that is used to test for global 

minimization problems in Clerc’s “semi-continuous challenge.” It works very well with 

gradient methods, but presents a challenge for PSO, which is a stochastic method. This 

function tests the ability of the algorithm to converge to global optima after escaping from 

been trapped in the local minima.  The simulation result presented in figure 4.22 and table 

4.18 above is the NDParabola function for APSO, PSO, and pdAPSO. All the three 

algorithms converged to global optima, and they all have several local with massive drop in 

the gbest values from the beginning of the iteration to the end as shown in the result. The 

convergence speed of pdAPSO was much better than that of PSO and APSO.  

 

Figure 4.22: Graph of Rastrigin function for APSO, Primal-Dual-APSO and PSO 
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Table 4.19: Result Comparison for Rastrigin Function 

 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-APSO 1.25268e+01 2.04591e+02 +4.71626e+01 4.31244e+01 

APSO 1.39294e+01 1.39294e+01 +1.39294e+01 7.43627e-06 

PSO 1.69143e+01 1.69143e+01 +1.69143e+01 7.28970e-11 

 

The above simulation result depicted in figure 4.23 and table 4.19 is the Rastrigin 

function for APSO, PSO, and pdAPSO. The Rastrigin function is a non-convex, multi-modal 

version of the sphere function with the addition of cosine modulation to produce frequent 

local minima. It contains millions of local optima which are organized in a systematic lattice. 

This function is a moderately problematic one because of its huge search space and its 

immense number of local minima. This highly multimodal function has several local minima 

which are regularly distributed throughout the iteration for all the 3 algorithms. The entire 

algorithm converged to global optima. The PSO because of the nature of the Rastrigin 

function with several local minima got trapped and stayed there for the rest of the iteration. 

The performance of the pdAPSO was superior to that of the other two algorithms under this 

function.  

The Tripod is a semi-continuous benchmarking function. This function presents a 

problem that many algorithms such as GA and PSO that are easily trapped in one of the two 

local optima find very difficult to cope with. It is used to test if the optimisation algorithm 

will be able to escape from been trapped in the local minima, and to also know if it is 

experiencing premature convergence or not.  

The Tripod function simulation result for APSO, PSO, and pdAPSO is in the figure 

4.24 and table 4.20. The entire algorithm converged; the APSO and PSO converged faster 

than pdAPSO. All the algorithms experienced fall in the value of their gbest from the start up 
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till the 30th iteration after which they got caught in the local minima and remained there till 

the end of the iteration. 

 

Figure 4.23: Graph of Tripod function for APSO, Primal-Dual-APSO and PSO 

 

Table 4.20: Result Comparison for Tripod Function 

 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-APSO 2.00000e+00 2.00000e+00 +2.00000e+00 5.94551e-15 

APSO 2.00000e+00 2.00000e+00 +2.00000e+00 1.76109e-08 

PSO 2.00000e+00 2.00000e+00 +2.00000e+00 1.96425e-12 

 

  To further ascertain the efficiency of pdAPSO, more experiments were conducted 

using the 12 benchmark functions listed in table 4.21. This is because these benchmark 

functions  are popularly accepted as suitable functions in determining the performance of 

global optimisation algorithms as seen in (Zhan et al. 2011; Huang et al. 2012; Suganthan et 
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al. 2005; Liang et al. 2005). We have earlier used these functions to measure the performance 

of pdPSO in this chapter. 

 

Table 4.21: Statistical result of 12 benchmarking functions for pdAPSO 

 

Algorithm 

Name 

Primal-Dual-APSO 

Function Name Best Fitness Worst 

Fitness 

Mean 

Fitness 

Standard 

Deviation 

SP Success 

Rate 

(%) 

Runtime 

(s) 

NFE 

Sphere -4.50e+002 -4.50e+002 4.50e+002 8.88e-003 332.00 100 9.47 332 

Schwefel's P2.22                               -4.50e+002 -4.49e+002 -4.50e+002 5.83e-003 495.00 95.76 142.44 532 

Rosenbrock 3.90e+002 3.80e+002 3.90e+002 3.01e-002 3321.16 68.58 140.12 2124 

Rastrigin -3.34e+002 5.75e+002 -3.32e+002 4.14e-002 3526.79 99.55 551.27 3545 

Ackley -1.40e+002 1.70e+002 -1.40e+002 5.01e-002 3321.16 88.55 270.89 2124 

Schwefel  -4.59e+002 -3.28e+002 -4.59e+002 4.73e-002 8316.73 71.29 647.59 5929 

Griewank  -1.80e+002 2.85e+002 -1.83e+002 4.06e-002 1734.56 69.7 259.88 1160 

Rotated  

Rosenbrock 

3.89e+002 3.85e+002 3.92e+002 3.09e-002 3380.16 70.15 152.60 2197 

Rotated Rastrigin -3.30e+002 2.18e+002 -3.30e+002 2.94e-002 7301.35 74.19 693.03 5403 

Rotated Ackley   -1.40e+002 1.77e+002 -1.42e+002 5.03e-002 3378.16 68.83 296.10 2185 

Rotated 

Griewank 

 -1.85e+002 2.80e+002 -1.80e+002 4.01e-002 1860.25 70.5 249.33 1105 

Shifted 

Rosenbrock 

3.78e+002 3.84e+002 3.85e+002 2.98e-002 3182.72 69.98 148.42 2256 

Shifted Rastrigin -3.30e+002 5.72e+002 -3.31e+002 4.11e-002 3526.38 98.18 543.49 3402 

 

 

4.5 Performance Comparison of Primal-Dual-PSO (pdPSO) and Primal-Dual-APSO 

(pdAPSO) 

In this section we present a comparison between the two new algorithms that we 

proposed in this thesis. Univ
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Figure 4.24: Graph of Ackley function for pdPSO and pdAPSO 

Table 4.22: Result Comparison for Ackley function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 5.79464e-10 2.28608e-05 +9.00249e-07 4.16412e-06 

Primal-Dual-APSO 5.16059e-10 2.48315e-04 +8.65840e-06 4.52952e-05 

 

The two algorithms converged to global optimum. The convergence rates of pdPSO 

and pdAPSO are almost the same. In our comparisons, we used the values of the Best fitness, 

Mean fitness, and Standard deviation because they are some of the performance measures 

mentioned in (Chena et al, 2010). The result of our simulation is depicted in Figure 4.25 and 

Table 4.22 above. When we compared the performance of the two algorithms in terms of the 

numerical values of Best fitness, Mean fitness, and Standard deviation, we can deduce that 

the performance of pdAPSO is slightly better than that of pdPSO algorithm for Ackley 

function. 
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Figure 4.25: Graph of Schaffer f6 modified function for pdPSO and pdAPSO 

Table 4.23: Result Comparison for Schaffer f6 modified function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 3.95063e-01 5.66018e-01 +4.03145e-01 3.34147e-02 

Primal-Dual-APSO 3.95063e-01 5.70032e-01 +4.08469e-01 4.19347e-02 

 

In term of the numerical value of the Best fitness, the performance of pdAPSO and 

pdPSO are almost the same. However, the performance of the pdPSO is better in terms of 

Mean fitness and Standard deviation. The result of our simulation is depicted in Figure 4.26 

and Table 4.23 above. The pdAPSO and pdPSO were able to overcome the problem of 

premature convergence. Also, the pdAPSO and pdPSO were able to escape been trapped in 

the local minima.  
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Figure 4.26: Graph of ND Parabola function for pdPSO and pdAPSO 

Table 4.24: Result Comparison for ND Parabola function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 1.87351e-29 9.11685e-27 +1.19780e-27 2.20741e-27 

Primal-Dual-APSO 3.30328e-29 2.19468e-25 +9.62640e-27 4.03483e-26 

The simulation result above is the NDParabola function for pdAPSO and pdPSO. The 

result of our simulation is depicted in Figure 4.27 and Table 4.24 above. The two algorithms 

converged to global optima, and they all have several local optima with massive drop in the 

gbest values from the beginning of the iteration to the end as shown in the result. The 

convergence speed of pdAPSO and pdPSO are the same. Based on the numerical values of 

the Best fitness, Mean fitness and Standard deviation, pdPSO performs better for this 

function. Our new algorithm (pdAPSO) also demonstrates its ability to escape been trapped 
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in the local minima and to evade premature convergence in this function. Based on the 

numerical values of the Best fitness, Mean fitness and Standard deviation, pdPSO performs 

better for this function.  

 

Figure 4.27: Graph of Rastrigin function for pdPSO and pdAPSO 

Table 4.25: Result Comparison for Rastrigin function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 1.25268e+01 2.04591e+02 +4.71626e+01 4.31244e+01 

Primal-Dual-APSO 8.87397e+00 7.67439e+01 +2.78492e+01 1.92259e+01 

 

The simulation result above is the Rastrigin function for pdAPSO and pdPSO as depicted in 

Figure 2.28 and Table 4.25 above. The two algorithms converged to global optima, and they 

all have several local optima from the beginning of the iteration to the end as shown in the 

result. The pdAPSO algorithm converged faster than pdPSO. Based on the numerical values 

of the Best fitness, Worst fitness, Mean fitness and Standard deviation, pdAPSO performs 
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better for this function. Our new algorithm (pdAPSO) also demonstrates its ability to escape 

been trapped in the local minima and to escape premature convergence in this function. 

 

Figure 4.28: Graph of Sphere function for pdPSO and pdAPSO 

Table 4.26: Result Comparison for Sphere function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 1.87351e-29 9.11685e-27 +1.19781e-27 2.20741e-27 

Primal-Dual-APSO 3.30324e-29 2.19468e-25 +9.62640e-27 4.03483e-26 

From the result of our simulation (depicted as figure 4.29 and table 4.26), there is no 

significant difference between the performance of pdAPSO and pdPSO in term of 

convergence speed. We compared the performance of the two algorithms based on the values 

of Best fitness, Mean fitness and Standard deviation. From the numerical results, the 

performance of pdPSO was better in terms of the Best fitness, Mean fitness and Standard 
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deviation.

 

Figure 4.29: Graph of Griewank function for pdPSO and pdAPSO 

Table 4.27: Result Comparison for Griewank function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 1.25268e+01 2.04591e+02 +4.71626e+01 4.31244e+01 

Primal-Dual-APSO 8.87397e+00 7.67439e+01 +2.78492e+01 1.92259e+01 

The result of our simulation is shown in Figure 4.30 and Table 4.27 above. Using the 

numerical values of the Best fitness and Mean fitness as parameters for our judgment, there 

was no much difference between the performances of these two algorithms. The performance 

of pdPSO was better based on the numerical value of the Standard deviation when compared 

to the other three algorithms. From our experiments, pdAPSO was able to achieve our aim of 

designing an algorithm that will overcome the problem of premature convergence that 

usually characterize the standard PSO and many of its variants. 
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Figure 4.30: Graph of Tripod function for pdPSO and pdAPSO 

Table 4.28: Result Comparison for Tripod function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 

Primal-Dual-PSO 2.00000e+00 2.00000e+00 +2.00000e+00 5.94551e-15 

Primal-Dual-APSO 2.00000e+00 2.00000e+00 +2.00000e+00 9.72321e-15 

 

Simulation result of Tripod function for pdPSO and pdAPSO is presented in Figure 

4.30 and Table 4.28 above. Using the numerical values of the Best fitness and Mean fitness 

as parameters for our judgment, there was no much difference between the performances of 

these two algorithms. The performance of pdPSO was better based on the numerical value of 

the Standard deviation when compared to the other three algorithms. From our experiments, 

pdAPSO was able to achieve our aim of designing an algorithm that will overcome the 
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problem of premature convergence that usually characterize the standard PSO and many of 

its variants. 

With reference to convergence speed, pdAPSO was faster than pdPSO in 5 functions 

out of the total of 7 functions that we considered. We can therefore consider pdAPSO as a 

fast algorithm that can be used to solve complex numerical optimisation problems. The 

pdAPSO also have a higher level of steadiness in comparison to the other three algorithms. 

The values of Mean fitness and Standard deviations for Sphere, NDParabola and Tripod 

functions were very small when compared to the ones of pdPSO, PSO and APSO. We can 

therefore conclude that pdAPSO is a very stable algorithm that has the capacity to produce 

rational results that are reliable. Finally we can deduce that pdAPSO is a robust algorithm as 

it performs better than pdPSO, PSO and APSO in its ability to successfully find the global 

optimum on all the benchmarking functions we used especially on Griewank, Schaffer f6 

modified, NDParabola and Rastrigin functions which prove to be very problematic to solve 

for many modern day optimisation algorithms. Consequently, pdAPSO can be considered as 

a robust algorithm that can withstand difficulties during optimisation process. 

 

4.6 Performance Comparison of pdPSO and pdAPSO algorithms with the state-of-

the-art PSO variants 

 In this section we compared the performance of pdPSO and pdAPSO with nine (9) 

state of the art algorithms as listed in the table below. The conventional PSO algorithm that 

has been popularly applied in different field is PSO-LDIW which was proposed by Shi and 

Eberhart (1999). The comprehensive learning strategy PSO (CLPSO) was proposed by 

Liang et al. (2006) with the purpose of producing superior performance compared to the 

existing PSO variants for multimodal functions. The Perturbed particle swarm optimisation 
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for numerical optimisation was (pPSA) was proposed by Zhao (2010). The algorithms 

device a strategy for handling premature convergence by employing a particle updating 

approach that centres on the idea of perturbed global best particle. The rank based particle 

swarm optimisation algorithm with dynamic adaptation (PSOrank) was proposed by Akbari 

and Ziarati (2011). The algorithm exploits the collaborative behavior of particles to make a 

meaningful increase in the efficiency of the conventional PSO algorithm. Zhan et al. (2011) 

proposed the orthogonal learning PSO (OLPSO-G). This algorithm uses a perpendicular 

learning approach to create a favourable and effective model to pilot particles to move in 

most suitable directions. Huang et al. (2012) developed the Example-based learning PSO 

(ELPSO) for continuous optimisation. Their purpose is to use example-based learning 

scheme to proffer a superior performance for multimodal functions. An adaptive parameter 

tuning of PSO centered on velocity information (APSO-VI) algorithm was proposed by Xu 

(2013). Diversity enhanced PSO with neighbourhood (DNSPSO) was presented by Wang 

et al. (2013). This algorithm engages the variety improving method and neighborhood search 

tactics to attain a swapping between exploration and exploitation. Multiobjective sorting-

based learning PSO for continuous optimisation (MLPSO) proposed by Gang et al. (2016) 

uses the MSL approach to direct particles to move in the most suitable path by creating a 

direction paradigm that have superior fitness value and variety in swarm population.  The 

parameter settings for these PSO variations are specified in Table 4.29 with reference to 

their references. The purpose of using these PSO variants for our comparisons is because 

they are state of the art PSO algorithms which cover a broad period of time from 1999 to 

2016. Furthermore, they have been described in literature as high performing variants of 

PSO with reference to their experimented problems.  
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Table 4.29:  PSO variants used for our comparative studies. 

PSO variants Parameter Setting Reference 

PSO-LDIW w : 0.9–0.4, c1 = c2 =2 Shi and Eberhart (1999) 

CLPSO w : 0.9–0.4, c = 1.49, m =7 Liang et al. (2006) 

pPSA w = 0.9, c1 = 0.5, c2 = 0.3, 𝜎max = 0.15, 𝜎min = 0.001, 

∝ = 0.5 

Zhao (2010) 

PSOrank w is non-linear, ∝ = 0.45, 𝛽 = 0.385, m = 2 Akbari and Ziarati (2011) 

OLPSO-G w: 0.9–0.4, c = 2.0, G = 5, Vmax = 0.2 9 x Range  Zhan et al. (2011) 

ELPSO w = 0.729, c = 1.49, m = 4 Huang et al. (2012) 

APSO-VI w:0.9–0.3, c1 = c2 = 1.49 Xu (2013) 

DNSPSO w = 0.729, c1 = c2 = 1.49618, k = 2, pr = 0.9, pns = 0.6 Wang et al. (2013) 

MLSPSO w:0.9–0.4, c1 = c2 = 2 Gang,  et al (2016) 

 

From the experiments that were conducted, the algorithm configurations of pdPSO 

and pdAPSO are as follows. The inertia weight w is linearly decreasing from 0.9 to 0.4, and 

c1 and c2 are set to 1.49. For a fair comparison among all the PSO variants, the population 

size is set at 50 and the maximum fitness evaluations (FEs) is set at 30,000. We carried out 

experiment 30 times for each algorithm using twelve (12) benchmarking functions and the 

statistical values of the Best Fitness, Worst Fitness, Mean Fitness, Standard Deviation, SP, 

Success Rate (%), Runtime (s), and NFE are used in the evaluations. 

 

4.6.1 Performance Comparison on superiority of results 

We make comparison of the performance of the PSO algorithms listed in table 4.29 

with that of pdPSO and pdAPSO. The results of our comparison are in tables 4.30 – 4.42 

where we compared the mean and standard deviations of the eleven (11) algorithms. The best 

results obtained among the other eleven algorithms we evaluated their performance are 

boldfaced. The first three functions (Sphere, Schwefel’s P2.22, and Rosenbrock) we 

considered are unimodal functions. The first two are comparatively easy and virtually all the 

algorithms can solve them. The two algorithms that proffer the best results for Sphere are 
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pdPSO and ELPSO while pdPSO, pdAPSO and OLPSO-G proffers the best results for 

Schwefel's P2.22. For Rosenbrock function, pdAPSO and MSLPSO proffers the best 

solution. This function is used to test the ability of an algorithm to solve a hard problem 

because it contains very narrow valley in its landscape. It is only these two algorithms that 

were able to escape being trapped in its local optima. 

Table 4.30: Mean and Standard Deviation comparisons for sphere among eleven (11) PSO 

algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 4.68E-23 8.33E-23 

CLPSO 5.23E-14 3.66E-14  

pPSA 2.76E-07 5.93E-07 

PSOrank 3.91E-09 7.87E-09 

OLPSO-G 6.21E-52 2.19E-52  

ELPSO 3.38E-94  1.22E-94 

APSO-VI 1.37E-12 8.39E-12 

DNSPSO  8.27E-85  3.69E-85  

MSLPSO 2.73E-82 1.69E-82 

pdPSO -4.50E+00  6.38E-01 

pdAPSO 4.50E+00  8.88E-00 
 

Table 4.31: Mean and Standard Deviation comparisons for Schwefel's P2.22                               

among eleven (11) PSO algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 4.08E-09  1.09E-09  

CLPSO 2.81E-07 3.57E-07 

pPSA 2.35E-09 4.94E-09 

PSOrank 3.73E-12  5.22E-11  

OLPSO-G 3.77E228 6.77E-28 

ELPSO 8.08E-24 2.99E-24 

APSO-VI 4.66E-14  1.44E-14  

DNSPSO  7.97E-26 5.99E-26 

MSLPSO 1.35E-16 2.98E-16 

pdPSO -4.50E+00  3.68E-00 

pdAPSO -4.50E+00 5.83E-00 
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Table 4.32: Mean and Standard Deviation comparisons for Rosenbrock among eleven (11) 

PSO algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 5.59E+01  3.83E+01 

CLPSO 2.25E+01 1.21E+01  

pPSA 3.57E+01 2.56E+01 

PSOrank 4.44E+01  3.14E+01 

OLPSO-G 2.51E+01 1.77E+01  

ELPSO 1.78E+01 1.59E+01 

APSO-VI 1.50E+01  1.23E+01 

DNSPSO  7.38E+00 8.82E+00  

MSLPSO 2.90E-01 3.72E-01 

pdPSO 3.92E+00  5.08E+00 

pdAPSO -3.32E+00  4.14E-00 
 

The second category of experiments we carried out was on multimodal functions. The 

Primal Dual method provides PSO the capacity to explore the search space better and exploit 

the particle in the swarm to its advantage thereby producing enhanced fitness value and create 

diversity in the swarm population.  It is anticipated that pdPSO and pdAPSO will escape from 

being trapped in local minima and produce superior results on multimodal functions. For the 

functions Rastrigin, Ackley, Schwefel, and Griewank, pdPSO and pdAPSO converged to the 

global optimum. The close to global optima was attained by pdPSO and pdAPSO on Rastrigin 

function. The best result was however produced by pdPSO and MSLPSO. The algorithms 

pdAPSO and MSLPSO produced the best result on Ackley function. For the Schwefel 

function, pdAPSO and ELPSO achieved the best solution. On the Griewank function, the best 

solution is obtained for pdAPSO and MSLPSO algorithms. The results of our tests 

demonstrated that pdPSO and pdAPSO possess that ability to effectively handle premature 

convergence problem and escape from being trapped in local minima on majority of the 

multimodal functions. The successful attainment of global optima solutions on many of the 

multimodal functions indicates that the performances of pdPSO and pdAPSO algorithms have 

really been enhanced through the fusion of Primal-Dual method and PSO algorithm. 
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Table 4.33: Mean and Standard Deviation comparisons for Rastrigin among eleven (11) PSO 

algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 1.85E+01  2.72E+01  

CLPSO 3.98E-08 4.54E-08 

pPSA 3.07E-03 6.25E-02 

PSOrank 1.08E-12  9.74E-11  

OLPSO-G 8.25E-02 4.81E-02 

ELPSO 2.89E-14 3.18E-14 

APSO-VI 3.82E+00  4.69E+00  

DNSPSO  7.66E-15 3.38E-15 

MSLPSO 2.37E-15 1.44E-15 

pdPSO -3.30E+00  4.19E-01 

pdAPSO -1.40E+00  5.01E-00 

 

Table 4.34: Mean and Standard Deviation comparisons for Ackley among eleven (11) PSO 

algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 1.04E-04  3.85E-03  

CLPSO 3.00E-11 2.97E-12 

pPSA 8.92E-07 7.92E-07 

PSOrank 7.82E-10  5.91E-10  

OLPSO-G 1.33E-14 5.11E-14 

ELPSO 7.69E-15 8.44E-14 

APSO-VI 6.77E-14  7.35E-14  

DNSPSO  1.89E-14 2.17E-14 

MSLPSO 7.23E-16 2.94E-16 

pdPSO 3.85E+00  5.05E+00 

pdAPSO -1.40E+00  5.01E-00 

 

Table 4.35: Mean and Standard Deviation comparisons for Schwefel among eleven (11) PSO 

algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 2.98E+03  9.29E+02  

CLPSO 3.86E-03 4.19E-03 

pPSA 2.58E+03 6.23E+02 

PSOrank 2.32E+03  5.12E+02  

OLPSO-G 6.34E+02 8.09E+01 

ELPSO 6.56E-03 3.24E-03 

APSO-VI 2.43E+01  9.49E+00  

DNSPSO  5.95E+00 7.17E+00 

MSLPSO 9.36E+00 5.44E+00 

pdPSO -4.43E+00  4.07E+00 

pdAPSO -4.59E+00  4.73E-00 
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Table 4.36: Mean and Standard Deviation comparisons for Griewank among eleven (11) 

PSO algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 1.84E-04  2.77E-04  

CLPSO 2.88E-09 6.47E-08 

pPSA 9.02E-06 7.29E-06 

PSOrank 1.54E-04  4.24E-03  

OLPSO-G 3.41E-03 1.03E-03 

ELPSO 9.78E-23 3.11E-23 

APSO-VI 4.88E-12  2.07E-11  

DNSPSO  3.96E-38 2.31E-38 

MSLPSO 5.91E-43 1.38E-43 

pdPSO -1.80E+00  1.08E-00 

pdAPSO -1.83E+00 4.06E-00 

 

Finally, we investigated the performances of the eleven algorithms on rotated and 

shifted functions. Rotated Rosenbrock, Rotated Rastrigin, Rotated Ackley, and Rotated 

Griewank are multimodal functions with rotated coordinates. The results of our algorithm 

test on the rotated functions and that of shifted functions are presented in Tables 4.37 – 4.42. 

The pdPSO and pdAPSO algorithms attained global optima for all the rotated functions. On 

Rotated Rosenbrock function, pdAPSO produced the best result. MSLPSO and pdAPSO 

achieved the best result for Rotated Rastrigin function. ELPSO and pdAPSO have the best 

result for the Rotated Ackley function. For Rotated Griewank function, pdPSO and MSLPSO 

achieved the best solution. It should be noted that the rotation does not affect the performance 

of the pdAPSO and pdPSO. Infact the effectiveness of our algorithms become more 

pronounced with test on all the rotated functions especially Rotated Rosenbrock where 

pdAPSO produced the most accurate result and closely followed by pdPSO and MSLPSO 

respectively. To be precise, our experiments confirmed the observation of Wang et al. (2012) 

that the Rotated Rosenbrock function proved very difficult for other PSO algorithms to 

escape being trapped in its local optima as the function becomes more problematic after 

rotating its coordinates.  
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Table 4.37: Mean and Standard Deviation comparisons for Rotated Rosenbrock                          

among eleven (11) PSO algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 8.89E+01  7.27E+01  

CLPSO 5.27E+01 3.88E+01 

pPSA 6.06E+01 5.25E+01 

PSOrank 5.87E+01  6.29E+01  

OLPSO-G 3.46E+01 3.82E+01 

ELPSO 3.13E+01 2.44E+01 

APSO-VI 4.51E+01  1.78E+01  

DNSPSO  2.92E+01 2.13E+01 

MSLPSO 6.38E+00 5.45E+00 

pdPSO 3.99E+00 5.54E+00 

pdAPSO 3.92E+00 3.09E-00 

 

Table 4.38: Mean and Standard Deviation comparisons for Rotated Rastrigin                          

among eleven (11) PSO algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 9.26E+01  8.73E+01  

CLPSO 4.23E+01 3.78E+01 

pPSA 6.78E+01 5.33E+01 

PSOrank 5.24E+01  4.19E+01  

OLPSO-G 2.81E+01 2.21E+01 

ELPSO 1.62E+00 3.92E-01 

APSO-VI 1.23E+01  8.24E+00   

DNSPSO  6.45E-14 7.19E-14 

MSLPSO 5.89E-15 8.82E-15 

pdPSO -1.80E+00 1.08E-00 

pdAPSO -3.30E+00 2.94E-00 

 

Table 4.39: Mean and Standard Deviation comparisons for Rotated Ackley                          

among eleven (11) PSO algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 9.55E+00  7.67E+00  

CLPSO 7.21E-05 6.24E-04 

pPSA 6.34E-04 9.35E-04 

PSOrank 3.27E-06  8.47E-05  

OLPSO-G 2.93E-13 1.79E-12 

ELPSO 9.73E-14 2.04E-14 

APSO-VI 4.85E-05  5.25E-05  

DNSPSO  5.89E-14 4.75E-14 

MSLPSO 8.68E-14 7.34E-14 

pdPSO -1.39E+00 5.51E-00 

pdAPSO -1.42E+00 5.03E-00 
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Table 4.40: Mean and Standard Deviation comparisons for Rotated Griewank                          

among eleven (11) PSO algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 9.68E-02  6.33E-01  

CLPSO 4.20E-08 2.72E-09 

pPSA 5.14E-04 3.23E-04 

PSOrank 1.52E-03  2.99E-03 

OLPSO-G 4.08E-03 3.88E-03  

ELPSO 5.06E-13 4.24E-13 

APSO-VI 1.35E-06  1.03E-05 

DNSPSO  3.98E-21 4.34E-22 

MSLPSO 2.17E-35 8.92E-34 

pdPSO -1.82E+00 1.06E-00 

pdAPSO -1.80E+00 4.01E-00 

 

The outcome of our experiments also indicates that pdPSO and pdAPSO compete 

very well with other state of the art algorithms. On the Shifted Rosenbrock functions, pdPSO 

produced the best result and closely followed by pdAPSO and MSLPSO respectively. The 

other PSO algorithms are trapped in local optima this function. For Shifted Rastrigin 

function, pdAPSO produced the most accurate result and closely followed by pdPSO and 

OLPSO-G respectively. In summary, the rotation and shift affected the performance of the 

other nine algorithms while the efficiency of pdPSO and pdAPSO becomes more noticeable 

with the rotation and the shift. The comparisons reveal that the integration of Primal-Dual 

into PSO is advantageous to enhancing the performance of PSO. We hereby conclude that 

pdPSO and pdAPSO have a superior performance compared to the other PSO variants on 

majority of the rotated functions and on the two shifted functions. 
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Table 4.41: Mean and Standard Deviation comparisons for Shifted Rosenbrock                          

among eleven (11) PSO algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW 6.15E+02  9.58E+01  

CLPSO 4.87E+02 3.36E+01 

pPSA 5.29E+02 8.53E+01 

PSOrank 5.62E+02 7.87E+01 

OLPSO-G 4.63E+02  4.63E+01  

ELPSO 4.26E+02 4.04E+01 

APSO-VI 4.41E+02 3.52E+01 

DNSPSO  4.48E+02  3.27E+01  

MSLPSO 4.13E+02 3.11E+01 

pdPSO -3.30E+00 4.19E-01 

pdAPSO 3.85E+00 2.98E-00 

 

Table 4.42: Mean and Standard Deviation comparisons for Shifted Rastrigin                          

among eleven (11) PSO algorithms 

Algorithm Mean Standard Deviation 

PSO-LDIW -1.38E+02  3.65E+01   

CLPSO -3.07E+02 7.44E+00 

pPSA -2.78E+02 1.39E+00 

PSOrank -2.42E+02  1.84E+00  

OLPSO-G -3.26E+02 2.33E+00 

ELPSO -3.03E+02 5.66E+00 

APSO-VI -2.89E+02  9.24E+00  

DNSPSO  -3.11E+02 7.17E+00 

MSLPSO -3.22E+02 6.34E+00 

pdPSO -2.97E+00 7.18E+00 

pdAPSO -3.31E+00 4.11E-00 

 

4.6.2 Performance Comparison on the dependability and speed of convergence 

The dependability of an algorithm is a determined by the mean of success rate on the 

entire test functions. The convergence speed in attaining the global optimum is also a striking 

standard for determining the performance of any optimisation algorithm. The rates of success 

of all eleven variants of PSO algorithm on individual test function and the dependability of 

the algorithms are shown in Tables 4.42 – 4.54 below. 
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Table 4.43: Comparison of dependability and speed of convergence on Sphere 

Algorithm Mean FEs SR% SP 

PSO-LDIW 5571  100 5571  

CLPSO 7069 100 7069 

pPSA 6954 100 6954 

PSOrank 6631 100 6631 

OLPSO-G 3872 100 3872 

ELPSO 4396 100 4396 

APSO-VI 24,910 100 24,910 

DNSPSO  4767 100 4767 

MSLPSO 5853 100 5853 

pdPSO 1078 100 1078 

pdAPSO 332 100 332 

 

Table 4.44: Comparison of dependability and speed of convergence on Schwefel's P2.22 

Algorithm Mean FEs SR% SP 

PSO-LDIW 12,049  100 12,049  

CLPSO 14,702 100 14,702 

pPSA 11,205 100 11,205 

PSOrank 9929 100 9929 

OLPSO-G 9301 100 9301 

ELPSO 8973 100 8503 

APSO-VI 18,932 100 18,932 

DNSPSO  10,345 100 10,345 

MSLPSO 8828 100 8828 

pdPSO 2996 91.7 3268.36 

pdAPSO 495.00 95.7 532 

 

Table 4.45: Comparison of dependability and speed of convergence on Rosenbrock 

Algorithm Mean FEs SR% SP 

PSO-LDIW 8938  100 8938  

CLPSO 6786 100 6786 

pPSA 10,080 100 10,080 

PSOrank 9607 100 9607 

OLPSO-G 11,680 100 11,680 

ELPSO 9287 100 9287 

APSO-VI 23,940 100 23,940 

DNSPSO  6269 100 6269 

MSLPSO 6198 100 6198 

pdPSO 2997 80.6 8934.35 

pdAPSO 2124 68.58 3321.16 
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Table 4.46: Comparison of dependability and speed of convergence on Rastrigin 

Algorithm Mean FEs SR% SP 

PSO-LDIW 12,164  100 12,164  

CLPSO 15,423 100 15,423 

pPSA 11,835 100 11,835 

PSOrank 10,387 100 10,387 

OLPSO-G 9629 100 9629 

ELPSO 9302 100 9302 

APSO-VI 27,127 100 27,127 

DNSPSO  10,073 100 10,073 

MSLPSO 7896 100 7896 

pdPSO 2827 100 2827 

pdAPSO 3545 99.55 3526.79 

 

Table 4.47: Comparison of dependability and speed of convergence on Ackley 

Algorithm Mean FEs SR% SP 

PSO-LDIW 11,216  16.67 67,323  

CLPSO 12,957 100 12,957 

pPSA 13,720 100 13,720 

PSOrank 13,142 100 13,142 

OLPSO-G 10,751 100 10,751 

ELPSO 6698 100 6698 

APSO-VI 29,361 100 29,361 

DNSPSO  10,673 100 10,673 

MSLPSO 12,992 100 12,992 

pdPSO 8285 85.7 8821.14 

pdAPSO 2124 88.55 3321.16 

 

Table 4.48: Comparison of dependability and speed of convergence on Schwefel 

Algorithm Mean FEs SR% SP 

PSO-LDIW 18,243  30.33 60,148  

CLPSO 10,024 100 10,024 

pPSA 15,045 43.33 34,722 

PSOrank 13,956 76.67 18,205 

OLPSO-G 9827 100 9827 

ELPSO 9306 100 9306 

APSO-VI 23,194 100 23,194 

DNSPSO  10,083 100 10,083 

MSLPSO 9362 100 9362 

pdPSO 5615.45 58.63 2981 

pdAPSO 5929 71.29 8316.73 
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Table 4.49: Comparison of dependability and speed of convergence on Griewank 

Algorithm Mean FEs SR% SP 

PSO-LDIW 7781  40 19,452  

CLPSO 9204 100 9204 

pPSA 13,567 100 13,567 

PSOrank 8318 100 8318 

OLPSO-G 7432 63.33 11,735 

ELPSO 7672 100 7672 

APSO-VI 28,381 100 28,381 

DNSPSO  8315 100 8315 

MSLPSO 7159 100 7159 

pdPSO 2573 41.66 6175.20 

pdAPSO 1160 69.7 1734.56 

 

Table 4.50: Comparison of dependability and speed of convergence on Rotated Rosenbrock 

Algorithm Mean FEs SR% SP 

PSO-LDIW 9897  33.33  29,694  

CLPSO 10,623 76.67 13,857 

pPSA 14,929 63.33 23,573 

PSOrank 13,057 76.67 17,032 

OLPSO-G 12,958 93.33 13,884 

ELPSO 10,034 100 10,034 

APSO-VI 27,035 73.33 36,868 

DNSPSO  9836 100 9836 

MSLPSO 8742 100 8742 

pdPSO 3456 38.79 8986.74 

pdAPSO 2197 70.15 3380.16 

 

Table 4.51: Comparison of dependability and speed of convergence on Rotated Rastrigin 

Algorithm Mean FEs SR% SP 

PSO-LDIW 14,278  76.67 18,625  

CLPSO 16,085 100 16,085 

pPSA 12,537 100 12,537 

PSOrank 11,043 100 11,043 

OLPSO-G 10,074 100 10,074 

ELPSO 9737 100 9737 

APSO-VI 11,003 100 11,003 

DNSPSO  9265 100 9265 

MSLPSO 8792 100 8792 

pdPSO 2573 41.66 6175.20 

pdAPSO 5403  74.19  7301.35 
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Table 4.52: Comparison of dependability and speed of convergence on Rotated Ackley 

Algorithm Mean FEs SR% SP 

PSO-LDIW –  0  –  

CLPSO 24,727 40 61,817 

pPSA 16,296 16.67 97,815 

PSOrank 15,292 80 19,115 

OLPSO-G 12,707 100 12,707 

ELPSO 9318 100 9318 

APSO-VI 27,824 36.67 75,897 

DNSPSO  13,239 100 13,239 

MSLPSO 9153 100 9153 

pdPSO 2455  72.19 3748.29 

pdAPSO 2185 68.83 3378.16 

 

Table 4.53: Comparison of dependability and speed of convergence on Rotated Griewank 

Algorithm Mean FEs SR% SP 

PSO-LDIW 8241  13.33  61,823  

CLPSO 12,514 100 12,514 

pPSA 9574 60 15,957 

PSOrank 8933 43.33 20,616 

OLPSO-G 9404 33.33 28,215 

ELPSO 9242 100 9242 

APSO-VI 297,10 100 29,710 

DNSPSO  5981 100 5981 

MSLPSO 7748 100 7748 

pdPSO 1124 68.8 1734.92 

pdAPSO 1105 70.5 1860.25 

 

Table 4.54: Comparison of dependability and speed of convergence on Shifted Rosenbrock 

Algorithm Mean FEs SR% SP 

PSO-LDIW 9235  13.33  69,280  

CLPSO 13,024 43.33 30,058 

pPSA 9783 23.33 47,351 

PSOrank 12,312 16.67 73,902 

OLPSO-G 10,331 66.67 15,496 

ELPSO 10,376 73.33 14,149 

APSO-VI 26,292 83.33 31,552 

DNSPSO  8832 86.67 10,192 

MSLPSO 9783 100 9783 

pdPSO 2827 100 2827 

pdAPSO 2256  69.98 3182.72 
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Table 4.55: Comparison of dependability and speed of convergence on Shifted Rastrigin 

Algorithm Mean FEs SR% SP 

PSO-LDIW 11,097  26.66  41,624  

CLPSO 13,295 100 13,295 

pPSA 11,092 53.33 20,799 

PSOrank 10,551 63.33 16,660 

OLPSO-G 9012 100  9012 

ELPSO 10,075 100  10,075 

APSO-VI 28,039 76.67 36,575 

DNSPSO  9923 100  9923 

MSLPSO 12,081 100  12,081 

pdPSO 2999 59.83  5873.29 

pdAPSO 3402  98.18 3526.38 

 

From the results of our experiment depicted in Tables 4.43 – 4.55, the mean 

dependability of pdAPSO is 80.4% while that of pdPSO is 69.69%. This is an indication that 

the fusion of Primal Dual method and PSO will increase the dependability to PSO in 

overcoming premature convergence and converging to global optima. The MSLPSO have 

the highest percentage of dependability across all the benchmark functions used in our 

experiment with the mean dependence of 97.71%.  This is because the MSL approach offers 

a better direction for the particles to move to a promising area in the search space (Gang, 

2016). It is worthy of note that pdPSO and pdAPSO converged at the global optimum for all 

the test functions. PSO-LDIW was unable to converge on Rotated Ackley function. The ratio 

of dependability of pdPSO and pdAPSO indicated that our algorithms offer a dependable and 

robust method for providing solution to global optimisation problems. 

The pace at which an algorithm attains the global optimum is a very important 

parameter for assessing the performance of the algorithm. Since the Primal Dual method is a 

robust optimisation algorithm, it is expected that pdPSO and pdAPSO will produce superior 

result in comparison to so other state of the art algorithm with a better speed of convergence. 

Univ
ers

ity
 of

 M
ala

ya



176 

 

To substantiate our claim, the results of Mean FEs and SP, for the eleven algorithms are 

shown in Tables 4.43 – 4.55. The best results are boldface in each of the Tables.  

It is very obvious from those tables that the speed of convergence of pdAPSO and 

pdPSO algorithms is superior to the other PSO algorithms on all the benchmark functions. 

For instance, on Schwefel's function, the mean FEs of 5571, 7069, 6954, 6631, 3872, 4396, 

24,910, 4767, and 5853 are required by PSO-LDIW, CLPSO, pPSA, PSOrank, OLPSO-G, 

ELPSO, APSO-VI, DNSPSO and MSLPSO respectively to attain the global optima.  

However, pdPSO and pdAPSO only use 1078 and 332 respectively which is an indication 

that pdAPSO is the fastest while pdPSO is second to it. To be concise, pdPSO and pdAPSO 

uses the lowest number of FEs to attain satisfactory solutions for all the 12 benchmark 

functions. This is another confirmation that the Primal Dual method has enhance the PSO 

algorithm in producing better fitness value and creating diversity in the swarm population to 

improve the convergence speed of PSO particles. 

4.7 Chapter summary 

This chapter presents two new hybrid algorithm optimisation algorithm named Primal 

Dual Interior Point Method Particle Swarm Optimisation (pdPSO) and Primal Dual 

Asynchronous Particle Swarm Optimisation (pdAPSO). These algorithm combines the 

explorative ability of PSO with the exploitative capacity of the Primal Dual Interior Point 

Method thereby possessing a strong capacity of avoiding premature convergence since it 

combines the strength of both the Primal-dual method and the PSO algorithm. The hybrid 

method increases the effectiveness of the PSO method and the Primal-Dual method by speedy 

convergence and improved value of objective function. A comparative study of the proposed 

algorithm has been conducted with the conventional PSO and Primal Dual method using nine 

benchmark functions. It is very clear that our algorithm performs better in terms of precision, 
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rate of convergence, steadiness and robustness. The behaviour of pdPSO under the unimodal 

and multimodal functions shows that the algorithm will be a suitable tool in solving 

complicated optimisation problems that PSO alone or Primal Dual alone cannot solve 

efficiently. In the next chapter, we are going to present another novel algorithm called Primal 

Dual Asynchronous Particle Swarm Optimisation. 

Several experiments were conducted; firstly, a comparison of pdPSO algorithm with 

the typical PSO, APSO and pdPSO using nine (9) benchmark functions was done. Secondly, 

we compared the performance of pdAPSO with the conventional PSO, APSO and pdPSO 

using seven (7) benchmark functions was done. The performances of our algorithms (pdPSO 

and pdAPSO) are better in terms of precision, rate of convergence, steadiness and robustness 

when compared to some variants of PSO. The behaviour of pdPSO and pdAPSO under the 

unimodal and multimodal functions shows that the algorithms will be suitable tool in solving 

complicated optimisation problems that PSO alone or Primal Dual alone cannot solve 

efficiently. The result of our experiments demonstrates that there is little improvement in the 

performance of pdAPSO compared to that of pdPSO based on the statistical results of the 

best fitness, mean fitness and standard deviation. 

Thirdly, we compared the performance of pdPSO and pdAPSO with nine other state 

of the art algorithms using 12 benchmark functions. We did a comparison of the performance 

and superiority of solutions of the 11 algorithms, and the outcome of our tests show that 

pdPSO and pdAPSO have the capacity to overcome the problem premature convergence and 

prevent particles from being trapped in local minima on many all the functions. The 

comparison of dependability and speed of convergence of the 11 algorithms on 12 benchmark 

functions was also done. The result of our experiment shows that pdPSO and pdAPSO are 

reliable and robust algorithms for solving global optimisation problems. The convergence 

speed of pdAPSO and pdPSO algorithms were compared to the other state of the art PSO 
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algorithms and our proposed algorithms proved to attain the global optima on all the 

benchmark functions in the shortest run time. 
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CHAPTER 5: APPLICATIONS OF PRIMAL-DUAL-PSO TO SWARM 

ROBOTICS TASKS 

5.1 Introduction 

In this chapter, we applied one of our proposed algorithms (pdPSO) to solve the 

problem of flocking and pattern formation in swarm robotics. The problem synonym with 

the field of swarm robotics is managing and directing the movement of a considerable number 

of robots to carry out a mission together. This type of task is normally impracticable, 

demanding and laborious for a particular set of robots to accomplish. The inspiration of 

swarm robots is fundamentally drawn from the study of behaviour of animals like the flock 

of birds, herd of cattle, and shoal of fish. According to (Bayindir & Şahin, 2007) and (Şahin, 

2005), the performance of the swarm at the global level will be largely influenced by the 

performance of the individual agent at the local level.  

Some of the traits of swarm robotics that have been extensively investigated are 

convergence, foraging (Bayindir & Şahin, 2007), pattern formation (Vicsek et al., 1995), 

flocking, aggregation and segregation (Reynolds, 1987), box-pushing (Şahin, 2005), 

cooperative mapping (Jadbadaie, Lin, & Morse, 2003), soccer tournaments  (Yang, Xiong, 

Chong, Défago, 2008), site preparation (Kim, Wang, Shin, 2006), and sorting (Jeschke, Liu 

& Schilberg, 2011). From the list of the various attributes of swarms above, flocking is the 

most attractive; where potential practical applications in areas like search and rescue, system 

for monitoring behaviour or changing information, system for acquiring data which is used 

for measuring physical phenomenon, and networks of small low cost sensors  (Jeschke, Liu 

& Schilberg, 2011) can be realized.  
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There are many advantages to be derived from controlling the movement of a group 

of robots rather than moving the robots one after the other. When robots move in swarm, 

their sensing capacity is increased. This can result into better performance for carrying out 

critical missions and collecting data at a specific location in an environment. 

5.2 Flocking 

When a group of aerial or submarine robots flock in unison, they can  generate an 

energy timesaving movement, just like what was discovered in biology when shoals of fish 

flock together as described by Hoare et al., (2000) or groups of birds (Newton, 2010). Swarm 

robotics can also enhance the robustness of the robots sent on hazardous assignments like 

mine clearance, chemical cleanup, military warfare etc., in which the failure of one or some 

of the robots does not mean the total failure of the mission but a gradual degradation of the 

system which can then be rectified by sending additional reinforcement. Information sharing 

is a vital process in algorithm design for flocking (Sumpter et al., 2008), each robot in the 

swarm disclose to other robots information about their positioning or their chosen motion 

bearing. 

In swarm robotics, the problem of flocking entails directing a set of robots to move 

to a specific direction and converge to a target in an unfamiliar location. The robots that made 

up the swarm are required to accomplish this purpose as they are adjusting to their 

environments. Researchers have developed a number of control algorithms for flocking of 

swarm robots in the last few years. Reynolds (1987) was the one of the pioneers. He 

implemented a computer simulation to demonstrate the movement of a flock of birds, known 

as boids. This is based on the principal that the global behaviour of the boids as a whole is a 

direct outcome of the behaviours of every single participant (obeying certain instructions). 

There are three basic behavioural guidelines that every agent must have. They include: 
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separation, cohesion, and alignment. While separation will prevent the agents from bumping 

into one another, cohesion will make the agents to be united, and alignment will cause them 

to move with a collective speed.  

In progression to Reynolds’ work, e-boids was developed by Ward et al. (2001) to 

model the flocking behaviour of shoal of fishes. A down-to-earth flocking model of 

independent agents was developed by Vicsek et al. (1995), in which all the agents were 

assigned an unchanging fixed velocity. Jadbabie et al. (2003) went further to postulate 

hypothetical elucidations on the stated characteristics of the model presented by Vicsek. 

Some other researchers, Yang et al. (2008), did a similar work and proposed some rules for 

flocking in an anonymous environment with barriers in which the closest point on the barrier 

is considered a virtual agent.  

The flocking behavior (in a distributed environment) based on artificial potential field 

(APF) was then investigated by Kim et al. (2006). They proposed a group of systematic 

procedures that can be used to create functions in the APF so that the agents in the swarm 

will not be trapped in local minima. The focus of all the aforementioned research work is 

based on collision avoidance among the robots without considering the flocking. Genetic 

programming was implemented by Spector et al. (2003) in a virtual environment to create 

collective behaviours for agents that hover in the swarm.  

A robotic system that models the behaviour of physical ants that have the ability to 

locate the quickest route from one source of food to the subsequent one without any visible 

sign called pheromone was proposed by Payton et al. (2001). They also have the capability 

to quickly acclimatize to any environment variations that may require looking for a new 

quickest path if they encounter a new obstacle in the old one.  
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In this chapter, we proposed a hybridized swarm intelligence based algorithm, and a 

numerical optimisation algorithm i.e., a hybrid of Primal-Dual Interior-Point method and 

Particle Swarm Optimisation (PSO), to attain the best collective performance for 

considerable volume of swarm robots. The advantage of the novel hybrid Primal-Dual-PSO 

organization architecture is based in the truth that the flocking can be done in real time, it is 

decentralized, and inherently scalable because global communication is irrelevant in this 

matter. Decisions can be made by any of the agent using the local information available to 

them. The design is simple, scalable, adjustable, and has the ability to recover from 

catastrophic failure without disrupting its operations. 

 

5.2.1 Problem Statement 

In this study we assume that our swarm system consists of n entirely independent and 

identical (homogenous) robots. The robots in the swarm are individually designated by R1, 

R2…Rn and they are represented as mobile points in two-dimensional space. The robots are 

given a neighborhood coordinate structure and they have limited capacity to perceive nearby 

robots. Moreover, the system is decentralized and there is no open interaction between the 

robots. The principal axis which defines the spatial locations of the environment is taken as 

the local axis of each of the robots. In our simulation, we used a point to represent each of 

the robot’s two-dimensional space.  

The velocity of the robot is updated at regular intervals and a maximum velocity is 

assigned to the robots. In addition, the robots flock in real time independently without any 

influence from other robots in the swarm. We are focusing on the convergence of the swarm 

to a specific point in the search space, and also the flocking patterns of the robots in the 

swarm. The Primal-Dual algorithm will calculate the positions, and afterwards, the PSO 
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algorithm will gain control of the flocking movement. The PSO algorithm will guide the 

flocking of the swarm (that comprises of N agents) to converge towards a global minimum 

and then flock around in the coordinate system. The flocking is done in real time during our 

simulation.  

 

5.2.2 Using pdPSO to solve the flocking problem of swarm robotics 

We applied the Primal-Dual-PSO algorithm to solving the flocking problem of swarm 

robotics. The Primal Dual algorithm will run until its tolerance is achieved on the objective 

function, and then the PSO phase is executed until its tolerance is achieved. From our 

experimental design, the search space is assumed to have a centre (c), then four (4) zones e.g. 

z1, z2, z3, and z4. For each experiment carried out, we want to know the number of iterations 

it takes the particles to converge to the centre (c), and the number of iterations it takes the 

particles to flock from c to z1, z2, z3, and z4. The different coordinates for different points 

that we used are as follows: Z1 (-30, 30), Z2 (-30, -30), Z3 (30, 30), Z4 (30,-30). The zones 

Z1, Z2, Z3 and Z4 are all points in the Cartesian coordinate plane. Our aim is that for each 

experiment carried out, we want to know the number of iterations it takes the particles to 

converge to any given point (p), and the number of iterations it takes the particles to flock 

from P to Z1, Z2, Z3, and Z4.  

We used our Primal-Dual-PSO to make the particles to converge to the center point 

C(0,0) first, i.e., the particles will all be concentrated to a single point. Once they are there, 

we changed the target point to any zone that we want (Z1, Z2, Z3 or Z4) automatically in the 

script, and all the points that were converged to C(0,0), will start moving towards the zone in 

the form of a flock but will eventually converge again to Z1 in the form of a single point.  
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We set the termination and convergence criteria for the particles. When the objective 

function value is less than the tolerance, the algorithm will stop iterating. The threshold is 

not on gbest value, but on the value of the objective function. The Primal Dual brings down 

the objective value to 1 and then gives control to the PSO algorithm. Once, PSO brings down 

the objective function down to 1e-8, the algorithm stops iterating. The figure 5.1 below 

illustrates the search space and how the swarm flocks after converging at the centre from the 

centre to z1, z2, z3, and z4 respectively. 

 

Figure 5.1: Convergence and Flocking strategy (The figure shows the zone 1, zone 2, zone 

3, and zone 4 where the robots will flock to after converging at C) 

We demonstrated the performance of our proposed hybrid Primal-Dual-PSO 

algorithm in a decentralized environment by simulating the movement of robots in the swarm 

in a virtual environment written in Matlab. There are some constraint that were set for the 

primal-dual algorithm based on the upper bound and the lower bound. The parameters for the 

PSO that were also set include the exploration environment which is a 200 x 200 dimension 

coordinate system. Each of the robots is symbolized with the black dots, the system is 

designed to operate in real time. The number of robot and the dimension of the search is 

specified in the GUI. This simulation was run on a MATLAB R2013a on an Intel ® Core ™ 
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i3-2328M machine with 4GB memory running Windows 7. We designed a GUI to simulate 

how the robots converge to a point and then start flocking by simply clicking the mouse at 

the point where we want them to converge. The GUI is user-friendly and it easy to change 

the parameters. The user can halt, suspension, or restart the simulation any time he feels like.  

 

5.2.3 Result and Discussion 

At the beginning of simulation, there is a haphazard allocation of agents Ai (0<i≤N) 

in the environment to be explored. The new algorithm works by first starting the agents’ 

positions randomly. Then, the agents are directed to the Primal-Dual method, which gives us 

its initial optimisation result after some number of iterations. The result of the Primal-Dual 

optimisation is then feed into PSO, which creates a perturbation in the population and also 

maintain diversity in the population until there is either convergence to the global optimal or 

the termination criteria is reached.  

 During the iterations that are performed in the optimisation, the agents carry out shift 

in the search space from one point to the other (which have connection to behaviour 

evolutions in space). The cognitive and social scaling factors of the PSO are very important 

parameters for determining the optimal global behaviors of the agents in the swarm.  Figures 

6.2 – 6.7 display how the robots converged to the centre and how they flocked from the centre 

to different zones using the pdPSO algorithm. Univ
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Figure 5.2: Screenshot of 200 robots (The black dotted lines represent the robots that are in 

the search space. The pdPSO algorithm is used to control the movement of the robots.) 

 

Figure 5.3: Screenshot robots moving towards convergence (The 200 robots moves towards 

the convergence point). Univ
ers

ity
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Figure 5.4: Screenshot robots converging at a point (The black dotted lines represent the 200 

robots as they converge to the centre). 

 

 

Figure 5.5: Screenshot robots flocking to zone 1 (The black dotted lines represent the 200 

robots as they flock from the centre to zone 1). 
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Figure 5.6: Screenshot robots flocking to zone 4 (The black dotted lines represent the 200 

robots as they flock from the centre to zone 4). 

 

 

Figure 5.7: Screenshot robots flocking to zone 3 (The black dotted lines represent the 200 

robots as they flock from the centre to zone 3). 
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For pdPSO we carried out some simulations using 100 particles (robots) with each particle 

having a dimension of 10. The PSO tolerance is 1.000000e-08, and IPM Tolerance is 

1.000000e+00. The result of our simulation for the robots flocking to Zone 1 having 

coordinate points (-40, 40) is presented in Appendix C. The result of our simulation of the 

robots flocking to Zone 2 is presented in Appendix D. Appendix E contains the simulation 

result of the robots flocking to Zone 3. And the simulation result of the robots flocking to 

Zone 4 is presented in Appendix F. We summarized the values of mean and the variance of 

the number of iteration it took to converge to the centre and flock to the target zone in the 

table 5.1 below. 

 

Table 5.1: Mean and Variance for Convergence and flocking using Primal-Dual-PSO 

Zone Activity Mean Variance 

Z1 Convergence 197.820 337.906 

Flocking 335.060 428.915 

Z2 Convergence 195.880 174.026 

Flocking 340.600 318.857 

Z3 Convergence 195.160 203.811 

Flocking 325.920 299.381 

Z4 Convergence 194 261.909 

Flocking 329.320 311.161 
 

The graphs of the total iteration to converge at the centre C and that of flocking to the different 

zones for all the simulations we carried out are below.  
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Figure 5.8: Graph of total iteration to converge and flock to Zone 1 

 

 

Figure 5.9: Graph of total iteration to converge and flock to Zone 2 
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Figure 5.10: Graph of total iteration to converge and flock to Zone 3 

 

 

Figure 5.11: Graph of total iteration to converge and flock to Zone 4 
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Figures 5.12 – 5.17 below display how the robots converged to the centre and how they 

flocked from the centre to different zones using the pdAPSO algorithm. 

 

Figure 5.12: Screenshot of robots moving towards the centre (the blue dots in the figure 

depicts the 200 robots as they move towards converging at the center as shown in the GUI.) 
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Figure 5.13: Screenshot of robots converging at the centre (the blue dots depicts the robots 

converging at the centre.) 

 

Figure 5.14: Screenshot of robots flocking to zone 1 (the blue dots in the figure depicts the 

robots flocking from the centre to zone 1). 
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Figure 5.15: Screenshot of robots flocking to zone 2 (the blue dots in the figure depicts the 

robots flocking from the centre to zone 2). 

 

Figure 5.16: Screenshot of robots flocking to zone 3 (the blue dots in the figure depicts the 

robots flocking from the centre to zone 3). 
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Figure 5.17: Screenshot of robots flocking to zone 4 (the blue dots in the figure depicts the 

robots flocking from the centre to zone 4). 

We did some simulations for our pdAPSO algorithm. Using 100 particles (robots) 

with each particle having a dimension of 10. The APSO tolerance is 1.000000e-08, and IPM 

Tolerance is 1.000000e+00. The result of our simulation for the robots flocking to Zone 1 

having coordinate points (-40, 40) is presented in Appendix G. The result of our simulation 

of the robots flocking to Zone 2 is presented in Appendix H. Also presented is the simulation 

result of the robots flocking to Zone 3 as shown in Appendix I. And the simulation result of 

the robots flocking to Zone 4 is presented in Appendix J. We summarized the values of mean 

and the variance of the number of iteration it took to converge to the centre and flock to the 

target zone (Z1, Z2, Z3, and Z4) in the table 5.2 below. 

Table 5.2: Mean and Variance for Convergence and flocking using Primal-Dual-APSO 

Zone Activity Mean Variance 

Z1 Convergence 209.62 260.44 

Flocking 149.547 569.966 

Z2 Convergence 211.28 159.063 

Flocking 259.52 472.5 

Z3 Convergence 210.34 187.045 

Flocking 259.22 484.053 

Z4 Convergence 1030.440 2.088 

Flocking 1009.0 0.00 

 

To evaluate the effectiveness of flocking capability of our pdAPSO algorithm we 

compared its performance with other existing algorithms such as the PSO, APSO and Primal 

Dual. We observed from our simulations that for Primal Dual algorithm, the robots in the 

swarm flock very tightly as a single point. When the agents in the swarm move from random 

starting position to converge at the centre (0, 0), they become almost one point, which means 

they are tightly flocked. When they move from the centre position (0, 0) to different zones, 
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they are so tightly flocked that they move almost as a single point. The result is that no matter 

the zone, it always takes equal number of iterations to reach different zones (10 as given in 

results from the table in the supplementary materials). Therefore, we can say that flocking in 

Primal Dual is very tight compared to what is obtainable in pdAPSO, APSO and PSO in 

which particles still move around a center point randomly. The issue of tightness of the robots 

in the swarm when using Primal Dual for flocking is impracticable in the real world sense as 

a safe distance must be maintained between the robots to avoid collision.  

Though Primal Dual have the lowest number of iterations to flock from one zone to 

another zone followed by pdAPSO, APSO and PSO respectively. We however observed from 

our results that the value for number of iterations to flock from one zone to another for Primal 

Dual is constant (value 10). This is understandable because in Primal Dual-based methods, 

there is no random number involved. Therefore, whether the robots move from the centre (0, 

0) to z1, z2, z3 or z4, the algorithm moves in a deterministic way. As long as the distance 

between the centre (0, 0) and z1, z2, z3 and z4 points are equal, Primal Dual takes equal 

number of iterations. The fact that the number of iterations is constant further confirms the 

inability of the particles in Primal Dual algorithm to escape being trapped in the local 

minimal. We posit that Primal Dual having a lower number of iterations is not an index that 

it is better than any of the other three (3) algorithms we compared in this paper. It is possible 

that one iteration of Primal Dual is more complex and has more computations than one 

iteration of pdAPSO, APSO and PSO. However, there is a lot of variation in pdAPSO, APSO 

and PSO iterations when the robots in the swarm move from the centre (0, 0) to different 

zones, whereas in Primal Dual the variance is very low. The lower variance shows that Primal 

Dual keeps the particles tightly knit together compared to pdAPSO, APSO and PSO. If you 

look at the formula for PSO-based algorithms (pdAPSO, APSO and PSO), it has random 
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numbers involved. Therefore, when we run the pdAPSO, APSO and PSO methods, every 

time the algorithm has slightly different trajectories for the robots. The different trajectory 

results in different number of iterations every time. 

In appendix J, we have the statistical results of the experiments that we performed. 

The numerical values of the total number of iterations for the Primal-Dual-APSO (pdPSO) 

to get the robots to converge at the centre (C) are in the appendix. Also, the total number of 

iteration for the robots to flock from the centre to zone 1 is presented in the appendix. The 

computed values of the mean and variance is also included.  The values of the number of 

iterations for the pdAPSO to get the robots to converge at the centre (C) is in the table. Also, 

the total number of iterations for the robots to flock from the centre to zone 2 is presented. 

The computed values of the mean and variance is also included. We also have the results of 

our experiments for flocking from the centre to zone 3. The numerical values of the total 

number of iterations for the pdAPSO to get the robots to converge at the centre (C) is in the 

table. Also, the total number of iterations for the robots to flock from the centre to zone 3 is 

presented. The computed values of the mean and variance are also included. The appendix 

M also shows the results of our experiments for flocking from the centre to zone 4. The 

numerical values of the number of iterations for the pdAPSO to get the robots to converge at 

the centre (C) is in the appendix. Also, the total number of iteration for the robots to flock 

from the centre to zone 4 is presented. The computed values of the mean and variance is also 

included. Table 5.2 presents a summary of the mean and variance of the total number of 

iterations to converge to the centre and to flock from the centre to the different zones (zone 

1, zone 2, zone 3, and zone 4). Figures 5.18 – 5.21 show the graph of total iteration to 

converge to the centre and flock from there to the different zones (zone 1, zone 2, zone 3, 

and zone 4) using pdAPSO. 
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Figure 5.18: Graph of total iteration to converge and flock to Zone 1. This is a graphical 

illustration of the number of iterations it took the robots to converge to the center (0, 0) and 

flock to zone one (1) of the search space using the pdAPSO algorithm.  

 

Figure 5.19: Graph of total iteration to converge and flock to Zone 2. The above figure 

depicts the graphical representation of the number of iterations it took the robots to converge 

to the center (0, 0) and flock to zone two (2) of the search space using the pdAPSO algorithm. 
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Figure 5.20: Graph of total iteration to converge and flock to Zone 3. Above is a graph of 

the number of iterations it took the robots to converge to the center (0, 0) and flock to zone 

three (3) of the search space using the pdAPSO algorithm. 

 

Figure 5.21: Graph of total iteration to converge and flock to Zone 4. The figure above shows 

the graphical depiction of the number of iterations it took the robots to converge to the center 

(0, 0) and flock to zone four (4) of the search space using the pdAPSO algorithm. 
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Figure 5.22: Graph of performance comparison of total iteration for pdAPSO, PSO, APSO 

and Primal Dual algorithms as the robots flock from the centre to Zone 1. The pdAPSO 

performs better than the other three (3) algorithms by having the lowest number of iterations 

in the fifty (50) simulation that was done (except for Primal Dual that have a constant number 

of iterations for each of the simulations because of its deterministic nature). 

 

Figure 5.23: Graph of performance comparison of total iteration for pdAPSO, PSO, APSO 

and Primal Dual algorithms as the robots flock from the centre to Zone 2. The performance 

of pdAPSO is better than the one of the other three (3) algorithms by its ability to flock to 
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zone 2 in using the minimum number of iterations in the fifty (50) simulation that was done 

(except for Primal Dual that have a constant number of iterations for each of the simulations 

because of its not a heuristic algorithm). 

 

Figure 5.24: Graph showing the performance comparison of total iteration for pdAPSO, 

PSO, APSO and Primal Dual algorithms as the robots flock from the centre to Zone 3. Our 

algorithm pdAPSO shows a better flocking capability than that of PSO, APSO and Primal 

Dual algorithms by allowing the robots to flock to zone 3 by having the minimum number of 

iterations in the fifty (50) simulations that was done (except for Primal Dual that have a 

constant number of iterations value 10 for each of the simulations since it is a heuristic 

algorithm). 
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Figure 5.25: Graph showing the performance comparison of total iteration for pdAPSO, 

PSO, APSO and Primal Dual algorithms as the robots flock from the centre to Zone 4. The 

APSO algorithm performs better than pdAPSO, PSO and Primal Dual algorithms in this 

scenario by having the minimum number of iterations in the fifty (50) simulations that was 

done. The pdAPSO and Primal Dual a constant number of iterations value 1009 and 10 

respectively for each of the simulations. 

Upon closer inspection, the proposed algorithm (pdAPSO) performed better 

compared to its predecessors in zone 1, zone 2 and zone 3.  Across the 50 simulations that 

were executed for each zone, pdAPSO consistently generates the lowest number of iteration 

of flocking the swarm to the desired location. Table 5.3 summarised the mean iterations of 

each algorithm for each zone. Interestingly, the proposed algorithm performed flat in zone 4. 

The algorithm converged to the maximum iteration number, indicating that the algorithm was 

trapped in local minima. This behaviour is equivalent to the deterministic traits of the primal 

dual algorithm. It is therefore important to investigate this anomaly to improve on the 

robustness aspect of the proposed algorithm. 
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Table 5.3: The mean number of iterations for pdAPSO, PSO, APSO and Primal dual 

algorithms for all runs.  

Flocking converges to the centre than to each zone. Individual numbers are available in 

supplementary material. 

Algorithm  Centre  Zone 1 Zone 2 Zone 3 Zone 4 

pdAPSO 209.62±14.41944 260.44±14.72325 259.52±14.43984 259.22±14.39885 1009.00±0 

PSO 288.56±21.8175 349.10±23.70584 351.64±21.83863 352.48±21.78671 348.18±0 

APSO 275.82±17.89710 293.10±18.69183 296.78±21.90125 292.80±22.28676 254.84±17.1977 

Primal 

Dual 

10.00±0 10.00±0 10.00±0 10.00±0 10.00±0 

 

5.3 Pattern Formation  

Pattern formation basically involves forming a particular shape by altering the 

positions of each robots in the swarm. The most common problem in the field of swarm 

robotics deals with managing and directing how a sizable number of robots navigate in the 

search environment to accomplish an assignment in unity. This type of task is normally 

impracticable, demanding and laborious for a particular set of robots to accomplish. The 

inspiration of swarm robots is fundamentally drawn from the study of behaviour of animals 

like the flock of birds, herd of cattle, and shoal of fish. The performance of the swarm at the 

global level will be largely influenced by the performance of the individual agent at the local 

level. Some of the traits of swarm robotics that have been extensively investigated are 

convergence, foraging (Krieger, Billeter & Keller, 2000), pattern formation (Balch & Arkin, 

1999), flocking, aggregation and segregation (Martinoli, Ijspeert, & Mondada, 1999), box-

pushing (Mataric, Nilsson & Simsarian, 1995), cooperative mapping (Yamauchi, 1999), 
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soccer tournaments (Weigel, 2002), site preparation (Parker & Zhang, 2006) and sorting 

(Holland, & Melhuish, 1999).  

Researchers of recent have shifted much of their attention to the do extensive study 

on multi-robot systems from the perspective of engineering and artificial intelligence. Pattern 

formation have been considered as an initial phase for an effective flocking for many reasons 

which comprise of corresponding carriage of loads, preventing intrusion etc.) The aim of the 

pattern formation problem is to build some guidelines and principles that will make the robots 

in the swarm to work as a group from the local level to achieve complex overall tasks  

Multi-robot pattern formation is an extremely needed solution in majority of the 

problem areas where a swarm of robots are employed and it is essential to organize them in 

a particular manner. The formation can be described as an arrangement in a constrained 

working area, in which individual robot is given a predefined gap between them and their 

neighbours. Multi-robot pattern formation is defined as a configuration in a bounded 

workspace, where each robot is at a desired distance from its neighbors. The desired 

formation is specified in terms of relative distances, so that the formation can be achieved in 

any part of the workspace and at any orientation. 

Our aim is to present a solution to the problem of pattern formation on a grid map, 

for a homogeneous multi-robot system using Primal-Dual Particle Swarm Optimisation 

(pdPSO) model and Virtual Pheromone mechanism. Basically, a virtual pheromone trail 

based method is proposed as the message passing mechanism among the robots, where robots 

make distributed movement decisions through local interactions. For one individual robot, 

there are two working modes, exploration and dispersion, with different indicators in the 

pdPSO model. By cooperating and communicating through the virtual pheromone, agents of 

the multi-robot system switch between the two working modes. The pdPSO method helps to 
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allocate reasonable robots to different parts of the predefined pattern. A series of experiments 

was carried out and proves the convergence and excellent scalability of our algorithm. By 

optimizing some parameter in the pdPSO model, the efficiency of pattern formation is further 

improved. 

The virtual pheromone was introduced to guarantee the effectiveness of 

harmonization among the robots and to prevent the robots from gathering in a certain part of 

the pattern and being totally absent in some other parts. For the start, the initial value of the 

pheromone is set to 0. The robot mimic the natural boosting action of pheromone in biology 

by updating the pheromone and propagating the information to its neighbours that are within 

the limited communication range anytime it locates a grid that is still available for occupation. 

The maximum value of pheromone is set to prevent run-off. The virtual pheromone level will 

continue to decrease with time until it is finally eradicated.  Figure 5.30 below is a pictorial 

representation of how the pheromone works. 

Figure 5.26: Pictorial Representation of Pheromone 

5.3.1 World Definition 
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We presume that the environment consists of an M×N grid-based map. We vary the 

number of agents distributed in the map to 50, 100, 150, 200, and 250. Our method uses one 

type of pheromone and also holds the map of pattern (location of the grids of pattern found 

by the current agent or agents near to the current agent) in its memory. The pheromone is 

used for exploration (searching the map) and the map of pattern is used for convergence 

(converging to the grids of pattern found). The pheromone is updated when an agent moves 

in the map and the map of pattern is updated when an agent found a grid of pattern. However, 

agents communicate with other agents nearby and try to update pheromone and map of the 

pattern. In exploration mode, an agent moves in a deterministic manner based on the 

pheromone (moving to the grids with lower pheromone to explore unvisited grids). In 

convergence mode, agent moves based on map of pattern semi-stochastically (moving to the 

grids with higher pheromone to approach to the grids of the pattern). In this method, we use 

sub-area (blocks) for pheromone rather than sub-area (blocks) for map of pattern unlike the 

approach used in the work of Xu et al. (2010). This means that the agent must hold a matrix 

of pheromone, and the size of this matrix must be smaller than that of the map. It must also 

hold a matrix for map of pattern so that the size of the matrix is equal to the size of the map. 

Some of the presumptions that guide the work of the agents of this swarm robotic system are 

as follow: 

(1) Every agent in the system is indistinctive and similar; meaning they cannot be 

differentiated by their exterior look;  

(2) There is a limited range of communication for individual agents;  

(3)   There is an accurate recording of the decentralization and navigation of agents in the 

grids;  
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(4)   Agent to agent, or agent to obstruction collisions are insignificant. 

In figure 5.31 below, the flowchart for the operation of pheromone is presented. 

 

Figure 5.27: Pheromone Flowchart 
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Figure 5.32 below is the pictorial representation of the virtual pheromone grid map. 

 

Figure 5.28: Virtual Pheromone Map 

5.3.2 Problem Statement 

Assuming that we have an ellipse pattern on the grid of map, which is a group of 

coordinates. The pattern formation problem is the problem of designing an algorithm that is 

decentralized, in a way that, as the agents are distributed randomly, they will finally form the 

coveted ellipse pattern. Here, we have an unfamiliar area and a pattern defined beforehand. 

The swarm which is initially started randomly, searches grids for the coordinates that 

represent the pattern and ultimately complete taking the shape of the preferred pattern The 

aim of our experiment is to build an ellipse pattern formation algorithm that can allow more 

agents to be added to the number of agents in the swarm and thereby allowing the swarm 

robot system within the least time frame to form the predefined pattern. 

5.3.3 Pattern Formation Algorithm 
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At the onset, all the robots are haphazardly positioned on the map, and some of the 

grids on the map are designated as the predefined pattern where the information are stored in 

the matrix. A local search is first conducted since the robots are positioned randomly on the 

map with the robots set to the spreading activated mode searching for an unpopulated 

designated grid. With the spreading mode activated, each agent uses the virtual pheromone 

to communicate the information of its own local area in the grid with its neighbours, thereby 

increasing learning. A Primal-Dual PSO (pdPSO) based searching approach that uses 

pheromone information is used for allotting local jobs among robots. The algorithm uses the 

value of distance that exists amid grids as a guide to update the location of the agent on the 

map. The exploration mode is activated whenever the agent notices that there is no vacant 

designated grid in the sub-area, enabling it to find a nearby occupied sub-area that have a 

limited number robots now occupying it. This operation continues, pending the time when 

all the robots sent to the designated grids and the pattern specified by the designated grids is 

created by the robots in the swarm. We invented two approaches for switching between 

exploration and convergence: 

1 A certain number of iterations (e.g. 80) for exploration and then a certain number 

iterations (e.g. 20) for convergence. Of course, the iterations for exploration are 

always performed before the iterations for convergence. 

2 Stochastic switching between exploration and convergence. In this approach, the 

probability of exploration mode in the first iteration is very high and gradually, the 

probability of convergence mode is increased. In the last iterations, the probability of 

convergence mode is very high. We combine the two approaches mentioned above. 

There is stochastic switching between exploration and convergence while the 

probability of exploration mode is zero if the number of iterations is more than the 
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threshold. In this case, the probability of convergence mode is very low when the 

number of iterations is less than the threshold. 

 

Figure 5.29:  Flowchart of Pattern Formation Algorithm 
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5.3.4 Pattern Formation Results 

 

Figure 5.30 (a) 5th iteration 

 

 

Figure 5.30 (b) 60th iteration 
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Figure 5.30 (c) 100th iteration 

 

Figure 5.30 (a) – (c): 50-agent pattern formation, black spots stands for the robots 

 

 

Figure 5.31 (a) 5th iteration 
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Figure 5.31 (b) 60th iteration 

 

Figure 5.31 (c) 100th iteration 

 

Figure 5.31(a) – (c): 100-agent pattern formation, black spots stands for the robots 
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Figure 5.32 (a) 5th iteration 

 

Figure 5.32 (b) 60th iteration Univ
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Figure 5.32 (c) 100th iteration 

Figure 5.32 (a) – (c): 150-agent pattern formation, black spots stands for the robots 

 

 

 

Figure 5.33 (a) 5th iteration 
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Figure 5.33 (b) 60th iteration 

 

Figure 5.33 (c) 100th iteration 

Figure 5.33 (a) – (c): 200-agent pattern formation, black spots stands for the robots 
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Figure 5.34 (a) 5th iteration 

 

Figure 5.34 (b) 60th iteration Univ
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Figure 5.34 (c) 100th iteration 

Figure 5.34 (a) – (c): 250-agent pattern formation, black spots stands for the robots 

 

Figure 5.35: Graph of Pattern Formation using 50 agents 

 

Univ
ers

ity
 of

 M
ala

ya



219 

 

 

Figure 5.36: Graph of Pattern Formation using 100 agents 

 

 

Figure 5.37: Graph of Pattern Formation using 150 agents 
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Figure 5.38: Graph of Pattern Formation using 200 agents 

 

 

Figure 5.39: Graph of Pattern Formation using 250 agents 

 

The results of our simulation of 50-agents, 100-agents, 150-agents, 200-agents, and 

250-agents are presented in figures 5.30 – 5.34 and the tables in Appendix Z, Appendix AA, 

Appendix AB, Appendix AC, and Appendix AD. The figures illustrate the percentage (%) of 
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accomplishment in the process of forming Ellipse with different number of robots that 

comprise the swarm. We set the pheromone attenuation rate and pheromone accumulation 

rate to 0.01. The maximum value for pheromone is set to 1000. The PSO accelerate 

acceleration factor for local search and global search is set to 2 .0 and the inertia parameter 

to 0.1. As illustrated in the figures and tables above the percentage of accomplishment will 

get to 100% as the process continues except for where we have 50-agents and 100-agents. 

This shows that the numbers of agents have a great influence on the efficiency of our 

algorithm in forming the desired pattern. Our simulation results also signifies that the 

scalability capacity of our approach is commendable. 

 

5.4 Summary of chapter 

In this chapter the pdPSO and pdAPSO hybrid algorithm strategies were applied to 

solve flocking and pattern formation problems of swarm robots. These algorithms combine 

the explorative ability of PSO with the exploitative capacity of the Primal Dual Interior Point 

Method thereby possessing a strong capacity of avoiding premature convergence and making 

the robots to converge to a point and flock in real time. From the result of our simulations, 

the mean of the iteration for the agents to converge at the centre, and also flock from one 

zone to the other is almost the same. We decided to measure the number of iteration and not 

the time because the former is platform independent. This is an indication that the 

performance of our algorithm is good in terms of precision, convergence rate, equilibrium, 

robustness and ability to flock using homogenous set of swarm robots. Comparison was made 

among the flocking capacity of Primal Dual, PSO, APSO and pdAPSO. It was affirmed that 

pdAPSO performs better than all the other algorithms mentioned earlier. 
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We also applied one of our proposed algorithm to solve pattern formation problem in 

swarm robotics. For the sake of effective coordination and communication among the robots, 

the virtual pheromone was introduced. The use of pdPSO which is a PSO based technique 

ensures the efficiency of the pattern formation. We carried out some simulation was used to 

test the ability of our proposed algorithm to solve this problems and to evaluate its 

performance. We however have to deactivate the Primal-dual segment of our Primal-dual 

PSO algorithm to ensure increased efficiency and performance in the formation of the 

patterns. In our future work, we seek to extend the use pdPSO to solving flocking problems 

of swarm robotics with obstacle avoidance. Also, we intend implement our algorithms on 

hardware of physical swarm robots. 
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CHAPTER 6: CONCLUSION 

6.1 Research Summary 

 Many variants of PSO suffers from stagnation and premature convergence (Gang et 

al. 2016) and are therefore unsuitable for solving problems that are related to Swarm robotics. 

This demonstrated that there is a fundamental defect in many variant PSOs and therefore 

necessitate the need to develop some more generalized PSO algorithm to support the 

implementation of dynamic tasks in swarm robotics. This is fundamental to controlling the 

development of customized PSO algorithms that can be used to address the primary defects 

of the existing PSO algorithm. Though swarm robotic are simple by their design, the task of 

coordinating a swarm of robots to accomplish a specific job (such as congregating, pattern 

formation, obstacle avoidance, flocking, segregating, exploring, mapping, and dispersion) 

can be very challenging. These types of jobs require a more dedicated algorithm unlike the 

conventional PSO algorithms that have been previously implemented in the field of robotics. 

To design a new algorithm that will meet with the above requirements, we did a survey of 

generic algorithm implementation for swarm robotics applications. This is to enhance our 

understanding of the limitations of particle swarm algorithm for dynamic optimisation tasks. 

Experiments were carried out firstly to establish the ground truth of some existing PSO 

algorithms, and to determine if they are functioning as described in the literatures. The result 

of our experiments confirmed the presence of premature convergence, failure of PSO 

algorithms to handle dynamic environment effectively, and inability of particles to escape 

from local minima. Secondly, our experiments were designed to determine the global 

optimum and local optima of each of the three PSO (original PSO, APSO, and SPSO) variants 

under the different benchmarking functions. And to confirm the problem of the particles in 

PSO been trapped in the local optimal. Lastly, we validated the existence of premature 
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convergence problem in PSO algorithms. In general, we wanted to investigate the 

performances of the three PSO variants (using the global optimum and local optimal as our 

yardstick of measuring performance) on the standard benchmark functions. Moreover we 

wanted to examine their convergence properties through these benchmark functions. The 

results of our simulations showed that PSO particles still got trapped in the local minima. 

And there is the presence of premature convergence in the variants of PSO that we 

experimented with. The results of our simulations are presented in figure 3.1 in chapter 3. It 

is evident from our simulation results, that in order to apply PSO into any swarm robotics 

implementation, we have to develop (or customized) the different flavour of PSO algorithms 

and thus contributed towards the ever-expanding pool of PSO algorithms. This should have 

not been the norm since the natural characteristics of the algorithm should be able to support 

any swarm robotics project. It is obvious that the algorithm is unsuitable for solving some 

optimisation problems.  

 

6.1.1 Summary of Primal Dual Particle Swarm Optimisation (pdPSO) 

We developed a new hybrid algorithm optimisation algorithm called Primal Dual 

Interior Point Method Particle Swarm Optimisation (pdPSO). This algorithm fuses the 

searching capability of PSO with the manipulative ability of the Primal Dual Interior Point 

Method thus having a robust capacity of evading premature convergence. A comparative 

study of the algorithm was done with the conventional PSO and Primal Dual method using 

nine benchmark functions. From the results of our simulations in chapter 4, it shows that our 

algorithm performs better in terms of precision, rate of convergence, steadiness and 

robustness. The behaviour of pdPSO under the unimodal and multimodal functions shows 

that the algorithm will be a suitable tool in solving complicated optimisation problems that 

PSO alone or Primal Dual alone cannot solve efficiently. In terms of speed of convergence, 
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pdPSO was faster than PSO and Primal-dual algorithms in 5 benchmark functions out of the 

of 9 functions used for the experiment. The pdPSO can therefore be termed as a fast algorithm 

that can proffer solution to complex optimisation tasks. The pdPSO also have a higher level 

of stability compared to the PSO and APSO algorithms. We hereby summarize that pdPSO 

is a very stable, and is capable of generating good results that are dependable. Lastly we 

observed that pdPSO is more robust than PSO and Primal-dual since it was able to 

successfully locate the global optimum on each of the benchmarking functions we used for 

our experiment specifically on some functions which are known to be very problematic for 

many of the state of the art optimisation algorithms. We conclude by saying that pdPSO is 

an algorithm that can survive unfavourable conditions. 

The pdPSO algorithm was applied to solve the flocking and pattern formation 

problems of swarm robots. From the result of our simulations, the mean of the iteration for 

the agents to converge at the centre, and also flock from one zone to the other is almost the 

same. We decided to measure the number of iteration and not the time because the former is 

platform independent. The statistical results of our simulation as presented in Appendix C – 

F shows that there is no the mean of the iteration for the robots to converge at the centre and 

then to flock from one zone to other zones is almost the same. This clearly demonstrate that 

pdPSO have good convergence rate, accuracy, and the capacity to flock using identical group 

of robots.  

We also applied pdPSO algorithm to solve pattern formation problem in swarm 

robotics. To ensure successful organization and interaction among the robots, the virtual 

pheromone was introduced. The use of pdPSO which is a PSO based technique ensures the 

efficiency of the pattern formation. The result of our Pattern formation simulation is 

presented in Appendixes Z – AD. Figures 5.34 – 5.38 show how the patterns are formed with 
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the number of iterations done. The graph showing the summary of the statistical results of 

the patterns formed and the number of iteration based on the number of robots involved in 

the pattern formation task is in Figures 5.39 – 5.43 of chapter 5. We hereby conclude that 

pdPSO is scalable as there is increase in the success rate the pattern formed with increase in 

the number of robots.  

The performance of pdPSO was compared with eleven state of the art PSO algorithms 

listed in table 4.17 using twelve benchmark functions. The result of our experiments showed 

that pdPSO possesses the ability to efficiently overcome premature convergence problem and 

avoid being trapped in local minima on majority of the test functions. The efficiency of 

pdPSO becomes much more visible with the rotation and the shift benchmark functions. The 

comparisons shows that the integration of Primal-Dual into PSO is beneficial to enhancing 

the performance of PSO. We hereby conclude that apart from pdAPSO which produced the 

most accurate result, pdPSO have a superior performance compared to the other PSO variants 

on majority of the rotated functions and on the two shifted functions.  

6.1.2 Summary of Primal Dual Asynchronous Particle Swarm Optimisation 

(pdAPSO) 

The second algorithm that we presented in this thesis is Primal Dual Asynchronous 

Particle Swarm Optimisation (pdAPSO). This algorithm integrates the exploring capability 

of PSO with the exploiting ability of the Primal Dual Interior Point Method. It thereby 

combined the strength of the two algorithms and so possessing a better capacity avoid 

particles been trapped in the local minima, and also the avoidance of premature convergence.  

We did a comparison of our new algorithm (pdAPSO) with the PSO, APSO and 

pdPSO using seven (7) benchmark functions. From the experimental results in chapter 4, the 

performance of pdAPSO is better in terms of accuracy, convergence speed, reliability and 
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robustness when compared to some variants of PSO. Just like what we observed in pdPSO, 

the behaviour of pdAPSO under the unimodal and multimodal functions shows that the 

algorithm will also be another appropriate tool in solving complicated optimisation problems 

that PSO alone or Primal Dual alone cannot solve efficiently. It should be noted that there is 

no significant statistical distinction between the performance of pdAPSO and pdPSO. 

The pdAPSO was also applied to solve the problem of flocking in swarm robotics. 

Our simulation results revealed that there is great similarity between the mean of convergence 

of the iteration at the centre, and the number of iteration to flock from one zone to another 

zone. The statistical results of our simulation are presented in Appendix G – J. It confirms 

that there is no difference in the mean of the iteration for the robots to converge at the centre 

and then to flock from one zone to other zones. This plainly illustrations that pdAPSO also 

have a high convergence speed, robustness, accuracy, and ability to flock using set of robots 

that are homogenous. 

We compared the performance of pdAPSO with the other 11 state of the art PSO 

algorithms using twelve benchmark functions. The outcome of our experiments revealed that 

pdAPSO have a mean dependability of 80.4%. This is a sign that the integration of Primal 

Dual method into PSO algorithm will increase the reliability of PSO in solving the premature 

convergence problem and thereby converging to global optima. The comparisons also shows 

that the hybridisation of Primal-Dual and APSO helps in producing a more robust and 

dependable PSO algorithm. We conclude by saying that pdAPSO produced the most accurate 

result compared to the other PSO variants on majority of the rotated functions and on the two 

shifted functions. Moreover, the speed of convergence of pdAPSO algorithms is superior to 

that of other PSO algorithms on all the benchmark functions. Our algorithm called pdAPSO 

uses the smallest number of FEs to achieve acceptable solutions in all the 12 benchmark 

functions. This also proves that the Primal Dual method has augmented the PSO algorithm 
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in creating improved fitness value and generating higher diversity in the swarm population 

to increase the convergence speed of PSO particles. 

6.2 Conclusion 

The PSO algorithm, is a promising algorithm for providing solutions to different 

optimisation problems (Gang et al., 2016). Having discussed the suitability of PSO as an 

optimisation algorithm to solve swarm robotics problems in chapter two of this thesis, it 

uncovered some serious drawbacks that characterised the modern trends of developing and 

adapting a new bio-inspired algorithm for different swarm robotic tasks. These drawbacks 

can be adequately tackled by devising some other methods to increase the performance of 

PSO thereby enabling it to adequately handle dynamic optimisation tasks. We proposed the 

relevance of fusing Interior Point Method optimisation (Luke, 2010) and PSO to solve certain 

problems that are related to the existing variants of PSO which have discussed in this thesis. 

Such problem include premature convergence, the challenge of some of the particles been 

trapped in the local minima, and unsuitability of PSO for dynamic tasks. From the 

experiments conducted, it is obvious that the fusion of Primal Dual method and PSO helps 

to increase the reliability to PSO in preventing premature convergence of particles and 

thereby ensuring converging to global optima. Also, Primal Dual method has enhanced the 

performance of PSO algorithm in generating better fitness value and producing diversity in 

the swarm population to enhance the convergence speed of PSO particles. 

The Interior-Point Method is a very popular optimisation algorithm that is widely 

known for its ability to solve large-scale linear problems effectively (Laird, 2006). The 

pdPSO and pdAPSO algorithms have been develop (in chapter 4) to solve the above-

mentioned problems that are associated with PSO. The hybrid of Primal Dual and PSO 

provided a better balance between exploration and exploitation. This have solved the problem 
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of particles experiencing premature convergence and inability to escape being trapped in 

local minima thereby yielding superior results. The pdPSO and pdAPSO can be described as 

algorithms that have the ability to solve difficult optimisation problems quickly as 

demonstrated in chapter 6. They also have a higher level of stability compared to other 

variants of PSO algorithms. They are stable, robust, and capable of producing good and 

reliable results. Their robustness have helped them to be able to survive under benchmarking 

functions that many variants of PSO cannot survive when tested on them. We have been able 

to develop novel algorithms (pdPSO and pdAPSO) for swarm robotics cooperative 

movement. The results of our experiments in chapters 4 and 5 demonstrate that pdPSO and 

pdAPSO have high convergence rate, good accuracy, are robust, and they are suitable for 

control of cooperative movements in swarm robotics. 

6.3 Future Directions 

The concept of the hybridization of particle swarm optimisation (PSO) and Interior 

Point Method (IPM) as cooperative movement control algorithm in swarm robotics has been 

presented in this thesis. Many research in the field of swarm robotics have been centered on 

applications in the area of aggregation (Soysal & Sahin, 2005), box-pushing (Şahin, 2005), 

collective mapping (Jadbadaie, Lin, & Morse, 2003), flocking (Meng, Kazeem & Muller, 

2007), foraging (Bayindir & Şahin, 2007) and (Campo et. al., 2010), pattern formation 

(Huaxing, et al., 2010), and segregation (Reynolds, 1987), soccer tournaments  (Yang, et al, 

2008), site preparation (Kim, Wang & Shin, 2006), and sorting (Jeschke, Liu & Schilberg, 

2011). 

In direction to the future, we intend to improve on the performance of pdPSO and 

pdAPSO. This is because it is not on all the benchmark functions that the performance of the 

algorithms were very high since there is no algorithm that performs very well on all known 

Univ
ers

ity
 of

 M
ala

ya



230 

 

benchmark functions. There is no algorithm that is suitable for solving all know problems. It 

thereby follows that our algorithms were basically designed to solve some of the drawbacks 

of the current variants of PSO. Moreover, our algorithms were successfully used to solve the 

swarm robotics tasks of aggregation, flocking, and pattern formation. However, for pattern 

formation we have to deactivate the Primal-dual segment of our Primal-dual PSO algorithm 

to ensure increased efficiency and performance in the formation of the patterns. In our future 

work, we seek to extend the use pdPSO to solving flocking problems of swarm robotics with 

obstacle avoidance and also implement our algorithms on hardware of physical swarm robots. 

Our future research would be to apply our pdPSO and pdAPSO to flocking, pattern formation, 

and foraging in swarm robotics while having obstacle avoidance in mind.  

One of the principal weaknesses of the research work in this thesis is that the proposed 

model and approaches are yet to be executed and the performance verified on physical robots. 

There are times in which a solution may work perfectly during simulation but might not 

produce efficient result when tried on physical robots. Our intension is to implement our 

proposed algorithms on physical robots in the near future. Nevertheless, the proposed 

algorithms in this thesis should perform effectively on real world swarm robot (let's assume 

the robots can transfer information to nearby robots if they are close) since our viewpoint is 

that of cooperative movement. This means that all the robots will be affected by any 

disturbance from the environment. In the future, we intend to implement the proposed 

solution in real world swarm robotic systems.  
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