
CONSTRAINED CLUSTERING APPROACH TO AID IN
REMODULARISATION OF OBJECT-ORIENTED

SOFTWARE SYSTEMS

CHONG CHUN YONG

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

CONSTRAINED CLUSTERING APPROACH TO AID

IN REMODULARISATION OF OBJECT-ORIENTED

SOFTWARE SYSTEMS

CHONG CHUN YONG

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Chong Chun Yong

Registration/Matric No: WHA130005

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis:

Constrained Clustering Approach to aid in Remodularisation of Object-oriented

Software Systems

Field of Study: Software Engineering

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or

reproduction of any copyright work has been disclosed expressly and

sufficiently and the title of the Work and its authorship have been

acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the

making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the copyright

in this Work and that any reproduction or use in any form or by any means

whatsoever is prohibited without the written consent of UM having been first

had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any

copyright whether intentionally or otherwise, I may be subject to legal action

or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

ii

ABSTRACT

Effective execution of software maintenance requires knowledge of the detailed working

of software. The structure of a software, however, may not be clear to software

maintainers because it is poorly designed or, worse, there is no updated software

documentation. To effectively address this issue, researchers have proposed to apply

software clustering to help in recovering a high-level semantic representation of the

software design by grouping sets of collaborating software components into meaningful

subsystems. This high-level semantic representation serves to help bridge the dichotomy

between the perceived software design from the maintainers’ view and the actual code

structure. However, software clustering is typically conducted in an unsupervised and

rigid manner, where maintainers have no influence on the clustering results and only a

single solution is produced for any given dataset. Even if maintainers possess additional

information that could be useful to guide and improve the clustering results, traditional

clustering algorithms have no way to take advantage of this information. These practical

concerns have led the researcher to propose the idea of integrating domain knowledge

into traditional unsupervised clustering algorithms, herewith referred as constrained

clustering, a semi-supervised clustering technique where domain experts can explicitly

exert their opinions in the form of explicit clustering constraints to restrict whether a pair

of software components should or should not be clustered into the same subsystem. Apart

from the explicit clustering constraints from domain experts, other sources of information

to guide and improve clustering results can be derived implicitly from the source code

itself. To help maintainers effectively identify and interpret the implicit information

hidden in the source code, this study proposes representing software using weighted

complex network in conjunction with graph theory to help in understanding and analysing

the structure, behaviour, as well as the complexity of the software components and their

Univ
ers

ity
 of

 M
ala

ya

iii

relationships from the graph theory’s point of view. The results of the analysis can be

subsequently converted into implicit clustering constraints. Hence, maintainers can make

use of both the explicit and implicit constraints to help in creating a high-level semantic

representation of the software design that is coherent and consistent with the actual code

structure.

This thesis proposes a constrained clustering approach to aid in remodularisation of

poorly designed or poorly documented object-oriented software systems. The source code

of an object-oriented software system is first converted into UML class diagrams. Next,

information from the class diagrams are extracted to measure the strength of cohesion

among related classes together with their relationships, and then transform them into a

weighted complex network with its nodes and edges associated with measured weights.

Graph theory metrics are subsequently applied onto the constructed weighted complex

network so that the structure, behaviour, and the complexity of software components and

their relationships can be analysed. The results are then converted into sets of clustering

constraints. Guided by the explicit and implicit clustering constraints, sets of cohesive

clusters are progressively derived to act as a high-level semantic representation of the

software design.

This research follows an empirical research methodology, where the proposed approach

is validated using 40 object-oriented open-source software systems written in Java. Using

MoJoFM, which is a well-established technique used to compare the similarity between

multiple clustering results, the proposed approach achieves an aggregated average of

80.33% accuracy when compared against the original package diagrams of the 40

software systems, thus considerably outperforms conventional unconstrained clustering

approach. The clustering results serve as supplementary information for software

Univ
ers

ity
 of

 M
ala

ya

iv

maintainers to aid in making critical decisions for re-engineering, maintaining and

evolving software systems. Ultimately, this research helps in reducing the cost of software

maintenance through better comprehension of the recovered software design.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Penyelenggaraan perisian yang berkesan memerlukan pengetahuan tentang operasi

perisian tersebut. Bagaimanapun, struktur perisian mungkin tidak jelas kepada

penyelenggara perisian kerana perisian tersebut direka dengan buruk, atau lebih teruk

lagi, tidak ada dokumentasi yang dikemaskini. Bagi menangani isu ini dengan berkesan,

penyelidik telah mencadangkan untuk melaksanakan pengkelompokan perisian untuk

membantu dalam memulihkan perwakilan semantik peringkat tinggi secara rekabentuk

perisian dengan mengumpulkan komponen-komponen perisian yang bekerjasama ke

dalam subsistem yang bermakna. Perwakilan semantik peringkat tinggi ini berfungsi

untuk merapatkan dikotomi antara reka bentuk perisian yang dilihat dari pandangan

penyelenggara dan struktur kod yang sebenarnya. Walau bagaimanapun,

pengkelompokan perisian biasanya dijalankan secara tidak terselia dan tegar, di mana

penyelenggara tidak mempunyai pengaruh ke atas keputusan kelompok dan hanya satu

penyelesaian yang dihasilkan untuk sebarang set data yang diberikan. Walaupun

penyelenggara mempunyai maklumat tambahan yang boleh membantu dan meningkatkan

keputusan pengelompokan, algoritma pengelompokan tradisional tidak mempunyai cara

untuk mengambil kesempatan daripada maklumat tersebut. Kebimbangan yang praktikal

ini telah mendorong penyelidik kepada idea untuk menyepadukan pengetahuan domain

ke dalam algoritma pengelompokan tradisional tanpa pengawasan, bersama-sama ini

dirujuk sebagai pengkelompokan secara kekangan, teknik pengelompokan separuh selia

dimana pakar-pakar domain boleh memberi pendapat mereka dalam bentuk kekangan

kelompok untuk menyekat sama ada sepasang komponen perisian perlu atau tidak

dikelompokkan ke dalam subsistem yang sama. Selain daripada kekangan

pengelompokan yang jelas daripada pakar-pakar domain, sumber maklumat lain untuk

membimbing dan meningkatkan hasil pengelompokan boleh diperolehi secara tersirat

Univ
ers

ity
 of

 M
ala

ya

vi

dari kod sumber perisian itu sendiri. Untuk membantu penyelenggara mengenal pasti dan

mentafsir maklumat yang tersirat tersembunyi dalam kod sumber secara berkesan, kajian

ini mencadangkan untuk mewakili perisian menggunakan rangkaian kompleks

berwajaran sempena dengan teori graf untuk membantu dalam memahami dan

menganalisis struktur, kelakuan, dan juga kerumitan komponen perisian dan hubungan

mereka dari sudut pandangan teori graf. Keputusan analisis boleh kemudiannya ditukar

menjadi kekangan pengelompokan tersirat. Oleh itu, penyelenggara boleh menggunakan

kedua-dua kekangan tersurat dan tersirat untuk membantu dalam mewujudkan perwakilan

rekabentuk perisian semantik berperingkat tinggi yang koheren dan konsisten dengan

struktur kod yang sebenarnya.

Tesis ini mencadangkan satu kaedah pengelompokan kekangan untuk membantu dalam

remodularisasi sistem perisian berorientasikan objek yang direka secara buruk atau tidak

didokumenkan. Pada mulanya, kod sumber sistem perisian berorientasikan objek ditukar

kepada gambar rajah kelas UML. Seterusnya, maklumat daripada gambar rajah kelas

diekstrak untuk mengukur kekuatan perpaduan di kalangan kelas yang berkaitan, dan

kemudian diubahkan kepada rangkaian kompleks berwajaran dengan nod dan tepi

diberatkan dengan berat yang sesuai. Metrik teori graf kemudiannya digunakan ke

rangkaian kompleks wajaran yang dibina supaya struktur, tingkah laku, dan kerumitan

komponen perisian dan hubungan mereka boleh dianalisis. Keputusan ini kemudiannya

ditukar kepada set kekangan pengelompokan. Berpandukan kepada kekangan

pengelompokan yang tersurat dan tersirat, set kluster yang padu diperoleh secara

progresif untuk bertindak sebagai perwakilan semantik peringkat tinggi reka bentuk

perisian.

Univ
ers

ity
 of

 M
ala

ya

vii

Kajian ini mengikut kaedah penyelidikan empirikal, di mana kaedah yang dicadangkan

itu disahkan menggunakan 40 sistem perisian sumber terbuka berasaskan objek ditulis

dengan Java. Menggunakan MoJoFM, teknik yang mantap digunakan untuk

membandingkan persamaan antara keputusan pengelompokan berbilang, kaedah yang

dicadangkan mencapai purata agregat ketepatan 80.33% apabila dibandingkan dengan

gambar rajah pakej asal 40 sistem perisian, dan mencapai jauh lebih baik daripada kaedah

pengelompkan perisian konvensional tanpa kawalan. Keputusan pengelompokan

berfungsi sebagai maklumat tambahan bagi penyelenggara perisian untuk membantu

dalam membuat keputusan penting tentang kejuruteraan semula, pengekalan sistem, dan

perubahan sistem. Akhirnya, kajian ini boleh membantu dalam mengurangkan kos

penyelenggaraan perisian, melalui pemahaman reka bentuk perisian yang lebih baik.

Univ
ers

ity
 of

 M
ala

ya

viii

ACKNOWLEDGEMENT

I would like to thank my supervisor, Prof. Dr. Lee Sai Peck for the guidance throughout

my candidature. The continuous encouragement and advice from her have helped me

tremendously to complete this research. She has always been patience in reading and

diligently edited many of my drafts throughout this research. She has also always

provided me many constructive ideas and feedback to improve the quality of my work. I

greatly appreciate the time she has spent for discussion sessions. All these feedbacks help

shape and make my research better.

Also, I would like to express my gratitude to everyone in Software Requirements,

Architecture and Reusabilty Engineering Lab and Network Research Lab for sharing their

research experiences with me. The in-depth knowledge shared by them has provided me

with invaluable insight on the methods used for conducting research.

To my beloved family, wife, and daughter, I thank them for the support and motivation

given. Without them, the research conducted would be a difficult and lonely journey.

Lastly, I would like to express my gratitude to those I had forgotten to mention in this

section. Thanks for the assistance provided in my research.

Univ
ers

ity
 of

 M
ala

ya

ix

TABLE OF CONTENTS

ABSTRACT .. II

ABSTRAK ... V

ACKNOWLEDGEMENT .. VIII

TABLE OF CONTENTS ... IX

LIST OF FIGURES ... XV

LIST OF TABLES .. XVIII

LIST OF ABBREVIATIONS ... XX

CHAPTER 1 : INTRODUCTION .. 1

1.1 MOTIVATION ... 3

1.2 PROBLEM STATEMENT .. 5

1.3 OBJECTIVES OF THE RESEARCH ... 8

1.4 SIGNIFICANCE OF RESEARCH .. 9

1.5 OUTLINE OF THESIS .. 11

CHAPTER 2 : LITERATURE REVIEW .. 13

2.1 SOFTWARE MAINTENANCE AND REMODULARISATION.................................. 13

2.2 SOFTWARE CLUSTERING ... 14

2.3 AGGLOMERATIVE HIERARCHICAL SOFTWARE CLUSTERING 16

2.3.1 Identification of entities or components .. 16

2.3.2 Identification of features .. 17

2.3.3 Calculation of similarity measure .. 17

2.3.4 Application of clustering algorithm ... 18

2.3.5 Evaluation of clustering result ... 19

2.3.6 Related Works on Agglomerative Hierarchical Software Clustering ... 21

2.4 CONSTRAINED CLUSTERING .. 28

2.4.1 Formulation of Clustering Constraints .. 28

Univ
ers

ity
 of

 M
ala

ya

x

2.4.2 Enforcing Clustering Constraints .. 29

2.4.3 Fulfilment of Clustering Constraints ... 31

2.4.4 Applying Constrained Clustering to Remodularise Software Systems . 32

2.5 FACILITATE UNDERSTANDING OF SOFTWARE SYSTEMS WITH THE AID OF

GRAPH THEORY METRICS .. 35

2.5.1 Representing Software Systems Using Un-weighted Networks 39

2.5.2 Representing Software Systems Using Weighted Networks 43

2.5.3 Discussion .. 47

2.6 CHALLENGES AND ISSUES IN CONSTRAINED CLUSTERING 50

2.7 CHAPTER SUMMARY ... 54

CHAPTER 3 : RESEARCH METHODOLOGY .. 55

3.1 RESEARCH APPROACH .. 55

3.2 FORMULATION PHASE ... 56

3.2.1 Formulation of Initial Research Questions and Objectives 56

3.2.2 Study of Existing Literature .. 59

3.2.3 Reformulation of Research Questions and Objectives 59

3.3 CONCEPTUALISATION AND DESIGN PHASE ... 67

3.3.1 Proposed Method to Represent OO Software Systems Using Weighted

Complex Network .. 67

3.3.2 Proposed Technique for Deriving Implicit Clustering Constraints based

on Graph Theoretical Analysis of Weighted Complex Network 69

3.3.3 Proposed Method to Maximise Fulfilment of Implicit and Explicit

Clustering Constraints .. 70

3.4 EXPERIMENTATION PHASE .. 73

3.5 ANALYSIS AND INTERPRETATION PHASE .. 73

3.6 CHAPTER SUMMARY ... 74

Univ
ers

ity
 of

 M
ala

ya

xi

CHAPTER 4 : DERIVING IMPLICIT CLUSTERING CONSTRAINTS FROM

WEIGHTED COMPLEX NETWORK TRANSFORMED FROM UML

DIAGRAMS .. 76

4.1 REPRESENTING SOFTWARE SYSTEMS WITH WEIGHTED AND DIRECTED

COMPLEX NETWORKS .. 76

4.2 WEIGHTING NODES AND EDGES IN UML CLASS DIAGRAM-BASED COMPLEX

NETWORKS .. 80

4.2.1 Measuring the Structural Complexity of UML Relationships and Classes

 81

4.2.2 The Complexity of Relation 𝑅 ... 85

4.2.3 The Complexity of Classes 𝐷𝑖, 𝐷𝑗 Linked by 𝑅. 86

4.3 OVERVIEW OF THE PROPOSED METHOD TO REPRESENT SOFTWARE SYSTEMS

WITH THE AID OF WEIGHTED COMPLEX NETWORK ... 94

4.4 PROPOSED TECHNIQUE FOR DERIVING IMPLICIT CLUSTERING CONSTRAINTS

FROM GRAPH THEORETICAL ANALYSIS OF WEIGHTED COMPLEX NETWORK 99

4.4.1 Measuring Software Maintainability and Reliability through a Weighted

Complex Network .. 99

4.5 CONVERTING GRAPH THEORETICAL ANALYSIS INTO IMPLICIT CLUSTERING

CONSTRAINTS .. 102

4.5.1 Identifying Community Structure of Real-world Networks 102

4.5.2 Identify Network Hubs .. 103

4.5.3 Cannot-Link Constraints Between Hubs ... 106

4.5.4 Must-Link between Hubs and Direct Neighbours 107

4.5.5 Must-Link between Classes with High Betweenness Centrality and Their

Direct Neighbours .. 108

4.5.6 Identify Refactoring Opportunities as Supplementary Information 109

Univ
ers

ity
 of

 M
ala

ya

xii

4.6 CHAPTER SUMMARY ... 111

CHAPTER 5 : MAXIMISING THE FULFILMENT OF HARD AND SOFT

CONSTRAINTS ... 112

5.1 MANAGING DIFFERENT TYPES OF CLUSTERING CONSTRAINTS 112

5.2 CONSTRAINTS WITH HIGH LEVEL OF CONFIDENCE 113

5.2.1 Fulfilment of Must-Link Hard Constraints .. 114

5.2.2 Fulfilment of Cannot-Link Hard Constraints 115

5.2.3 Problems Associated with Enforcing MLH and CLH Constraints...... 117

5.3 CONSTRAINTS WITH LOW LEVEL OF CONFIDENCE 120

5.4 OVERVIEW OF THE PROPOSED CONSTRAINED AGGLOMERATIVE HIERARCHICAL

SOFTWARE CLUSTERING METHOD ... 125

5.4.1 Enhanced Software Clustering Algorithm ... 127

5.4.2 Identification of Entities or Components .. 128

5.4.3 Identification of Features ... 128

5.4.4 Calculation of Similarity Measure ... 128

5.4.5 Application of Clustering Algorithm ... 129

5.4.6 Evaluation of Clustering Results ... 132

5.5 PRELIMINARY EVALUATION OF THE PROPOSED CONSTRAINED CLUSTERING

APPROACH ... 140

5.5.1 Accuracy and Scalability of the Proposed Clustering Approach 145

5.5.2 Evaluation Result for MathArc System ... 151

5.5.3 Evaluation Using JSPWiki Project .. 153

5.6 CHAPTER SUMMARY ... 155

CHAPTER 6 : EXPERIMENTAL DESIGN AND EXECUTION 157

6.1 EXPERIMENT SCOPING .. 157

6.1.1 Goal Definition .. 157

Univ
ers

ity
 of

 M
ala

ya

xiii

6.1.2 Summary of Scoping ... 159

6.2 EXPERIMENT PLANNING.. 160

6.2.1 Context Selection ... 160

6.2.2 Hypothesis Formulation .. 161

6.2.3 Variables Selection .. 161

6.2.4 Selection of Subjects ... 162

6.2.5 Experiment Design .. 167

6.2.6 Instrumentation .. 174

6.2.7 Validity Evaluation .. 178

6.3 EXPERIMENT EXECUTION.. 181

6.4 CHAPTER SUMMARY ... 181

CHAPTER 7 : ANALYSIS AND INTERPRETATION OF EXPERIMENT

EVALUATION ... 182

7.1 GRAPH THEORETICAL ANALYSIS OF SOFTWARE-BASED WEIGHTED COMPLEX

NETWORK .. 182

7.2 VALIDATION OF FINDINGS AGAINST PRIOR STUDIES 184

7.2.1 Dataset Distribution Fitting ... 185

7.2.2 Result of distribution fitting for all datasets as a whole 187

7.2.3 Comparative Analysis ... 200

7.2.4 Addressing Research Objectives and Hypothesis 209

7.3 EXECUTING THE PROPOSED CONSTRAINED CLUSTERING APPROACH 212

7.3.1 Deriving MLH and CLH Constraints from the Implicit Structure of

Software 213

7.3.2 Fulfilment of Must-Link and Cannot-Link Constraints 217

7.3.3 Forming and Cutting of Dendrogram .. 227

7.3.4 Using MoJoFM to Compare Clustering Results 230

Univ
ers

ity
 of

 M
ala

ya

xiv

7.4 CHAPTER SUMMARY ... 235

CHAPTER 8 : CONCLUSION AND FUTURE WORK .. 236

8.1 THESIS SUMMARY ... 236

8.2 CONTRIBUTIONS ... 240

8.3 LIMITATIONS ... 245

8.4 FUTURE WORK ... 246

REFERENCES .. 248

LIST OF PUBLICATIONS AND PAPERS PRESENTED 262

APPENDIX A ... 263

APPENDIX B ... 265

APPENDIX C ... 273

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF FIGURES

Figure 2.1: Illustration of a dendrogram………………………………………………..20

Figure 3.1: Research methodology framework…………………………………….......58

Figure 3.2: Proposed method to represent OO software systems using weighted complex

network along with a technique to derive implicit clustering constraints based on the

constructed network…………………………………………………………...………..68

Figure 3.3: Proposed method to maximise fulfilment of software clustering constraints

……………………………………….…………………………………………………72

Figure 4.1: Example of UML classes related with different relationships……………..79

Figure 4.2: Example of UML classes with different class complexity…………………80

Figure 4.3: Illustration of converting a UML class diagram into a weighted complex

network…………………………………………………………………………………84

Figure 4.4: Degree-discounting symmetrisation based on Satuluri and Parthasarathy

(2011)……………………………………………………………………………….…..92

Figure 4.5: Flow chart of the proposed method to represent software systems with the aid

of weighted complex network…………………………………………………………..94

Figure 4.6: Details of Step 200 (Source Code Pre-processing Module)………………..96

Figure 4.7: Details of Step 600 (Class and Relationship Complexity Calculation

Module)…………………………………………………………………………………97

Figure 4.8: Details of Step 900 (Weighted Complex Network Representation

Module)…………………………………………………………………………………98

Figure 4.9: Snippet of Apache Gora project represented in weighted complex network

using the proposed method……………………………………………………………104

Figure 4.10: Identify hubs by observing the degree distribution of in-degree………..105

Figure 5.1: Example of imposing CLH constraints by modifying the distance measure

between pairs of entities………………………………………………………………117

Univ
ers

ity
 of

 M
ala

ya

xvi

Figure 5.2: Potential triangle inequality problem when imposing MLH and CLH

constraints……………………………………………………………………………..118

Figure 5.3: Triangular fuzzy number………………………………………………….121

Figure 5.4: Illustration of SLINK and CLINK linkage algorithms…………………...130

Figure 5.5: Example of a worst case high inter score…………………………………135

Figure 5.6: Polynomial regression based on the data from Table 5.2………………...139

Figure 5.7: Process-oriented taxonomy extracted from (Ducasse & Pollet, 2009)…...141

Figure 5.8: Overview of the original package diagram and the constrained clustering

results………………………………………………………………………………….144

Figure 5.9: Dendrogram tree generated using SLINK………………………………...147

Figure 5.10: Dendrogram tree generated using CLINK………………………………149

Figure 5.11: Overview of the original package diagram and the clustering results without

clustering constraints………………………………………………………………….153

Figure 6.1: Example of Java to UML Class Diagram transformation………………...168

Figure 6.2: Example of C++ to UML Class Diagram transformation………………...171

Figure 6.3: Apache Synapse system represented in a weighted complex network using

Cytoscape……………………………………………………………………………...172

Figure 6.4: Example of MoJoFM operations………………………………………….175

Figure 6.5: Output example of a dendrogram tree with 20 classes…………………....178

Figure 7.1: Close-up snippet of Apache Gora represented in weighted complex

network………………………………………………………………………………..183

Figure 7.2: Illustration of Graph-Level Metrics extracted from weighted complex network

using Network Analyser plugin…………………………………………………….....184

Figure 7.3: In-Degree (a) frequency in log-log scale, (b) fit into Generalised Pareto

Distribution……………………………………………………………………………189

Univ
ers

ity
 of

 M
ala

ya

xvii

Figure 7.4: Out-Degree (a) frequency in log-log scale, (b) fit into Generalised Pareto

Distribution……………………………………………………………………………191

Figure 7.5: Average weighted degree (a) frequency in log-log scale, (b) fit into

Generalised Pareto distribution………………………………………………………..193

Figure 7.6: Average shortest path length (a) frequency in histogram, (b) fit into Normal

distribution…………………………………………………………………………….195

Figure 7.7: Betweenness Centrality (a) frequency in log-log scale, (b) fit into Generalised

Pareto distribution……………………………………………………………………..199

Figure 7.8: Boxplots of In-Degree, Out-Degree, Average Weighted Degree, and Average

Shortest Path for A-rated, B-rated, and C-rated software systems…………………….201

Figure 7.9: Boxplots of Betweenness Centrality for A-rated, B-rated, and C-rated

software systems………………………………………………………………………203

Figure 7.10: Boxplots of different weighted degree representations for A-rated, B-rated,

and C-rated software systems…………………………………………………………206

Figure 7.11: Dendrogram generated from Apache JSPWiki project………………….227

Figure 7.12: Clustering results for JSPWiki for cutting the dendrogram at 3.712……229

Figure 7.13: Screenshot of the MoJo distance software tool………………………….231

Figure A1: Weighted complex network generated from Apache Gora project……….264

Figure B1: Scenario when the gap at the base of the cluster is the largest……………266

Figure B2: Cutting the dendrogram higher than the maximum height………………..268

Figure B3: Average number of unique forks for different dataset sizes………………270

Univ
ers

ity
 of

 M
ala

ya

xviii

LIST OF TABLES

Table 2.1 List of commonly used resemblance coefficients (RC)……………………...18

Table 2.2 Summary of related work on software clustering…..………………………..26

Table 2.3: Related Work in Representing Software Using Complex Networks………..47

Table 4.1: Ordering of class diagram relationships proposed by Dazhou et al. (2004)…81

Table 4.2: Selected graph theory metrics and implication toward the analysed software

systems………………………………………………………………………………...102

Table 4.3: Summary of graph theory metrics and their contribution toward deriving

implicit clustering constraints…………………………………………………………109

Table 5.1: Fuzzy pairwise comparison matrix………………………………………...122

Table 5.2: Example of validity index values retrieved from different cutting points…138

Table 5.3: Generated clustering constraints for MathArc system………………….….145

Table 5.4: Simulation using SLINK with 3 different dendrogram cutting methods…..146

Table 5.5: Simulation using CLINK with 3 different dendrogram cutting methods…..148

Table 5.6: Index scores of the cluster validity indices for the MathArc system……....150

Table 5.7: Clustering constraints derived from the JWPWiki project……………….....154

Table 6.1: Summary of selected software systems……………………………………166

Table 7.1: Analysis of boxplots from Figure 7.8………………………………….…...201

Table 7.2: Analysis of boxplots from Figure 7.9………………………………….…...204

Table 7.3: Analysis of boxplots from Figure 7.10………………………………….….206

Table 7.4: Clustering constraints derived from Apache Gora, openFAST, and Apache

Tika……………………………………………………………………………………214

Table 7.5 Number of clustering constraints derived from each test subject…………..216

Table 7.6: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from

Apache XBean Project………………………………………………………………...220

Univ
ers

ity
 of

 M
ala

ya

xix

Table 7.7: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from

Apache Gora Project…………………………………………………………………..220

Table 7.8: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from

Apache Rampart Project………………………………………………………………221

Table 7.9: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from

Apache XBean Project………………………………………………………………...223

Table 7.10: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from

Apache Gora Project…………………………………………………………………..223

Table 7.11: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from

Apache Rampart Project………………………………………………………………224

Table 7.12: Weightage and priority of soft constraints derived from Apache XBean..226

Table 7.13: Weightage and priority of soft constraints derived from Apache Gora….226

Table 7.14: Weightage and priority of soft constraints derived from Apache

Rampart………………………………………………………………………………..226

Table 7.15: MoJoFM values for constrained and unconstrained clustering results when

compared to the original package diagram……………………………………………232

Table B1: Simulation results for an exhaustive cut…………………………………...269

Table B2: Simulation results for cutting the dendrogram after each merging fork…...269

Table B3: Simulation results for cutting the dendrogram after each unique merging

fork……………………………………………………………………………………271

Table C1: Summary of clustering constraints derived from all the 40 test subjects….274

Univ
ers

ity
 of

 M
ala

ya

xx

LIST OF ABBREVIATIONS

AHP – Analytic Hierarchy Process

CBO - Coupling Between Object Classes

CL – Cannot-link

CLH – Cannot-link Hard

CLINK - Complete Linkage Algorithm

DIT - Depth of Inheritance Tree

GQM – Goal Question Metric

LCOM - Lack of Cohesion of Methods

MDA – Model Driven Architecture

ML – Must-link

MLH – Must-link Hard

MOOD - Metrics for Object Oriented Design

NOC - Number of Children

OO – Object-oriented

RC – Resemblance coefficient

RFC - Response for a Class

RO – Research Objective

RQ – Research Question

SLINK - Single Linkage Algorithm

SQALE – Software Quality Assessment Based on Life-Cycle Expectations

TFN – Triangular Fuzzy Number

UML – Unified Modelling Language

UPGMA - Un-weighted Pair-Group Method using Arithmetic Average

WMC - Weighted Methods per Class

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

Software requires continuous change and enhancement to satisfy new business rules and

technologies. Software maintenance is a human-intensive task that requires deep

understanding and comprehension of a software before any decision to modify it.

Therefore, software maintainers must first gain a certain level of understanding on the

structure and behaviour of the software before making any major changes.

However, if the software is poorly designed or poorly documented, the source code may

be the only resource left for recovering the system’s design. Without a proper mechanism

to recover a high-level software design, software maintainers are often forced to make ad-

hoc modifications to the source code when there is a request, without understanding the

structure and behaviour of the software in advance. As such, continually adopting an ad-

hoc approach to software maintenance will have a negative effect on the overall

modularity of the system. Over time, the structure and modularity of the software may

deteriorate to the point where it is so disorganised that the system needs to be drastically

overhauled or abandoned completely (Mitchell & Mancoridis, 2001). Therefore, means

other than relying on documentation to recover a high-level abstraction of the software

design is needed in order to improve the modularity of software systems.

The work by (G. Canfora, Cimitile, De Lucia, & Di Lucca, 2001; Gerardo Canfora,

Czeranski, & Koschke, 2000; Tonella, 2001) proposed approaches for the identification

of objects or Abstract Data Types in legacy software systems to help in remodularisation

of legacy software systems. Such approaches generally identify objects or Abstract Data

Types in legacy source code by discovering the relationships between routines, global

variables, and user-defined data types. However, the applicability of the proposed

Univ
ers

ity
 of

 M
ala

ya

2

approaches is confined to legacy software systems written in structured programming

languages. Apart from that, search-based approaches are also used in several other works

to aid in software remodularisation (Praditwong, Harman, & Yao, 2011; Harman,

Mansouri, & Zhang, 2012). In particular, the work by Harman et al. (2012) proposed a

single-objective genetic algorithm to improve the subsystem decomposition of software

systems, where the fitness function is defined using a combination of software quality

metrics. However, the complexity of search-based approaches is generally higher and

researchers often face the NP-Complete problem when searching for the optimum

solutions.

Existing studies have found that clustering analysis can help in remodularisation of poorly

designed or poorly documented software systems by grouping sets of collaborating

software components into meaningful subsystems to recover a high-level semantic

representation of the software design. Clustering generally is based on discrete

description of clustering entities (such as methods, classes, packages, etc) and is designed

to cope with very complex relationships between entities. Hence, cluster analysis is

arguably suitable for software remodularisation which involves taking a group of classes

with complex relationships and merging them together in logically coherent groups or

subsystems. Besides that, cluster analysis techniques can incorporate any number of

characteristics about a piece of software, providing the relevant information about a

characteristic that can be extracted from the code. The recovered high-level representation

of the software design helps in narrowing down the discrepancy between the perceived

software design from the maintainers’ view and the actual code structure.

Univ
ers

ity
 of

 M
ala

ya

3

1.1 Motivation

Maintenance of existing software requires plenty of time in analysing and comprehending

the available source code and software documentations. Successful accomplishment of

software maintenance is highly dependent on how much information can be extracted by

software maintainers. The time and effort spent in software maintenance could potentially

be reduced through software clustering to recover a semantic representation of the

software design, thus aiding in better comprehension of the structure and behaviour of the

software (Maqbool & Babri, 2006; Maqbool & Babri, 2007). Software clustering has

received a substantial attention in recent years because of its capability to help in

improving the modularity of poorly designed or poorly documented software systems.

However, software clustering is typically conducted in an unsupervised manner where

software maintainers have no influence on the end results because the effectiveness of

software clustering depends greatly on the algorithm used. Furthermore, unsupervised

software clustering is rigid in such a way that only a single clustering result is produced

for any given dataset. In the case if software maintainers do not agree with the outcome,

they will need to repeat the process again using a different set of configuration and

clustering algorithm.

Hence, an improvement to conventional clustering approaches was proposed in the work

by Basu, Banerjee, and Mooney (2004), where the authors proposed a semi-supervised

clustering technique by incorporating side information to further improve the accuracy of

clustering results. The side information is commonly referred as “clustering constraints”

which reveal the similarity between pairs of clustering entities, or user preferences about

how those entities should be grouped during clustering. The clustering constraints may

impose certain restrictions such as forcing a pair of clustering entities to always group

Univ
ers

ity
 of

 M
ala

ya

4

into the same cluster, or separated into disjoint clusters. These constraints are commonly

referred as must-link (ML) and cannot-link (CL) constraints respectively. This type of

semi-supervised clustering technique is commonly referred as constrained clustering

where users have a certain degree of influence to alter the final clustering results based

on the domain knowledge. It has been proven in several fields of research that constrained

clustering can significantly improve the reliability and accuracy of clustering results

(Davidson & Ravi, 2009). However, there is still a lack of studies on integrating

constrained clustering to effectively improve the modularity of poorly designed object-

oriented (OO) software systems.

In the domain of software, it is highly possible that software maintainers may have access

to additional information about the software to be maintained, either explicitly or

implicitly. For instance, domain experts or software developers who are involved in the

early stages of software design or developments are able to provide feedbacks to indicate

whether a pair of software components should be clustered into the same functional group.

This type of information, which is based on the explicit opinions and feedbacks from the

domain experts, are referred as explicit clustering constraints. On the other hand, implicit

information refers to some extra deterministic information about the interrelationships

between software components derived from the source code itself. However, software

maintainers will require tool support to effectively identify and interpret the implicit

information hidden in the source code because the quantity and level of granularity of the

information might be too overwhelming to comprehend. For instance, representing

software using weighted complex network in combination with graph theory is able to

help in identifying important classes that are responsible for providing services to other

classes, from the graph theory’s point of view. The results of the graph theoretical analysis

can then be translated into implicit clustering constraints which can help in guiding and

Univ
ers

ity
 of

 M
ala

ya

5

improving the clustering results. Thus, even if the software documentation is out of date,

maintainers are still able to salvage such useful information about the implicit structure

of the software. However, such information are worthless unless there is a proper way to

synthesis them.

This research focuses on constrained clustering to fully exploit the clustering constraints

given by the domain expert (referred as explicit constraints), or other forms of side

information (referred as implicit constraints) to help create a high-level abstraction of the

software system as perceived by the expert, with the purpose to bridge the dichotomy

between the perceived software design from the maintainer’s view and the actual code

structure.

The proposed constrained clustering approach can help to improve software maintenance

capability of a particular organisation, by providing a high-level semantic view of the

software design. The recovered software design can aid in facilitating software

maintenance work, such as when there is a request to update or remove a particular

software component, maintainers can easily identify other components that are

interrelated to the target component in order to avoid any unintentional service

interruption.

1.2 Problem Statement

Most of the existing studies use source code as the only input parameter to perform

software clustering (Anquetil & Lethbridge, 2003; Cui & Chae, 2011; Maqbool & Babri,

2007; Praditwong, Harman, & Yao, 2011; Wu, 2005). These approaches perform

clustering by analysing the dependencies in the source code such as passing of messages

Univ
ers

ity
 of

 M
ala

ya

6

between methods, shared variables and shared data. However, as software becomes more

and more complex, inspecting source code can be tedious (Fokaefs, Tsantalis,

Chatzigeorgiou, & Sander, 2009). Besides, existing works that use source code as the sole

input are often language and platform dependent due to the different style and naming

convention practised by each programming language.

Besides that, deriving explicit and implicit information of the software, and subsequently

translate them into clustering constraints, is a challenging task. For instance, deriving

explicit constraints from domain experts or software developers who have prior

knowledge regarding the software can be a very time consuming and human-intensive

task because they will need to review a high-level abstraction view of the software design

and all its relevant documentations, before providing the necessary information to the

software maintainers. Besides that, it is possible that there are conflicting opinions among

the domain experts. Thus, a way to reach a consensus among all the domain experts is

needed to ensure that all the provided explicit constraints can contribute toward forming

coherent clustering constraints.

Implicit constraints, on the other hand, are constraints derived from the implicit structure

of the software systems without the involvement of domain experts. In order to effectively

derive implicit information from the source code, in-depth understanding on the structure

and behaviour of software systems is highly needed. Representing software systems using

weighted complex network in combination with graph theory, for instance, is one way to

help in studying and analysing the structure, behaviour, as well as the complexity of the

software components and their relationships from the graph theory’s point of view.

Although the derived implicit information can reveal some extra deterministic

information about the relationships between software components, there is a lack of

Univ
ers

ity
 of

 M
ala

ya

7

studies that addressed the problem of translating the derived information into clustering

constraints. Furthermore, in representing software systems using complex network from

the literature, less attention is given to measure the weights of edges, which represent the

strength of inter-relationships between related software components.

Even more so, fulfilment of implicit and explicit clustering constraints remains a

significant research problem. Existing studies in software clustering tend to focus on

imposing only absolute constraints, i.e. constraints that must be fulfilled regardless of any

situation (Davidson & Ravi, 2009). However, in the domain of software engineering, it is

possible that the constraints given by domain experts are fuzzy and ambiguous in nature.

For instance, domain experts or software developers who were involved in the early stage

of software design might provide some constraints about the software to be maintained.

However, such constraints might not be valid anymore after several phases of software

updates and changes. Thus, the constraints given by the aforementioned experts or

developers might be ambiguous or contain erroneous information. An effective method

is needed to distinguish between absolute constraints and optional constraints, and

subsequently fulfil those constraints according to their level of importance.

Evidence based on the existing studies suggested that clustering constraints are not readily

available most of the time either due to out-dated software documentations or limited

background knowledge on the software to be maintained (Harman, Mansouri, & Zhang,

2012). Without reliable references, software maintainers can only opt for the traditional

way of relying on raw source code to manually recover a high-level abstraction of the

software design, which is an inefficient use of time and resources. Wasting software

maintainers’ man-hours would make companies less competitive, which in turn, incurring

unnecessary cost.

Univ
ers

ity
 of

 M
ala

ya

8

In summary, it is widely acknowledged in existing studies that a well-modularised

software system is easier to develop and maintain (Praditwong, Harman, & Yao, 2011).

However, as a software evolves with the introduction of new business and technology

requirements, modularity of the software tends to degrade, which imposes demands for

restructuring the software. This research focuses on using constrained clustering as one

of the techniques to recover a high-level abstraction of OO software design to aid in

remodularisation of software systems. The recovered high-level software design in the

form of highly cohesive clusters can help in improving the modularity of software by

bridging the discrepancy between the perceived software design from the maintainers’

view and the actual code structure. The proposed constrained clustering approach aims to

tackle several issues that have not been addressed in the existing studies: Most of the

existing studies only focus on a specific programming language. How to derive explicit

and implicit clustering constraints from poorly designed or poorly documented OO

software systems written in any OO programming language, and utilise these constraints

to aid in remodularisation of software systems through constrained clustering? Besides

that, how can weighted complex network aid in analysing the structure, behaviour, as well

as the complexity of software components and their relationships? If domain experts are

available to provide explicit clustering constraints based on their domain knowledge, how

to handle fuzzy and ambiguous constraints that might contradict with each other? Several

methods and techniques are introduced in this research in order to address all the above

issues.

1.3 Objectives of the Research

The objectives to be achieved by the research are as follows:

Univ
ers

ity
 of

 M
ala

ya

9

Objective 1: To propose a constrained clustering approach with the aim to recover a high-

level abstraction of OO software design that is coherent and consistent with the actual

code structure.

Objective 2: To propose a method that helps in deriving implicit clustering constraints

from the implicit structure of OO software systems with the aid of weighted complex

network and graph theoretical analysis.

Objective 3: To propose a method that is capable of deriving explicit clustering

constraints from domain experts or software developers who have prior knowledge

regarding the software systems.

Objective 4: To formulate an appropriate objective function that maximises the fulfilment

of explicit and implicit constraints, while penalising violation of the constraints.

Objective 5: To evaluate the accuracy and scalability of the proposed approach using

open-source OO software systems.

1.4 Significance of Research

Many of the software systems still remain in use after many years of commissioning.

Although the maintenance of legacy systems are costly in terms of man-hour and

monetary values, most organisations are not willing to substitute their legacy systems

because they would need to bear high risk if the systems is of a business critical type of

system. Most of the time, these aging software systems do not have up-to-date software

Univ
ers

ity
 of

 M
ala

ya

10

documentations. As a result, the structure of a software system inevitably drifts away

from its original design and becomes more complex as well as harder to maintain. As

discussed by Canfora, Di Penta, and Cerulo (2011), a major fraction of software life

cycle’s expenditure is contributed by software maintenance and support. The authors

estimated that over 50% of software development budget is spent on maintaining and

supporting the software itself. Hence, improving the software maintenance capability of

an organisation can directly contribute toward minimising the cost of maintenance in the

long run.

This research aims to use constrained clustering to aid in analysing the inherent structure,

behaviour, and complexity of poorly designed or poorly documented OO software

systems. Clustering constraints are derived from two different sources of information, i.e.

from the domain experts who possess prior knowledge regarding the software, or from

the implicit structure of the software, to aid in creating a high-level abstraction view of

the software design. The interrelationships and dependencies among classes can be

revealed based on the recovered software design. The recovered software design is

represented as disjoint sets of clusters, such that classes that contribute toward a similar

software functionality are grouped into the same cluster, while those that are dissimilar

are separated to promote the notion of high intra-cluster cohesion and low inter-cluster

coupling.

The recovered high-level software design can act as supplementary information for

software maintainers to aid in decision making when there is a request to modify or

remove a particular software component. If the classes to be modified or removed are

known to be highly complex and provide plenty of services to other classes, there is a

high chance that any modification on these problematic classes will cause a huge chain-

Univ
ers

ity
 of

 M
ala

ya

11

of-reaction that might be destructive to the system. Thus, with the aid of the recovered

software design, software maintainers can easily comprehend the source of the problem

and isolate the problematic classes during software maintenance to prevent any

unintentional interruption of software services. Eventually, this research can not only help

in minimising the cost of software maintenance, but also ensure that the maintained

software can adapt to future requirement changes.

1.5 Outline of Thesis

This thesis consists of eight chapters. Chapter 1 describes the motivation and objectives

of this research. Chapter 2 reviews the literature on software remodularisation, software

clustering, and methods to represent software systems using complex network. This

chapter classifies and analyses the mechanisms used in existing works. The outcome of

the review is provided to highlight the shortcomings found in the literature. In Chapter 3,

the research methodology used in this thesis is discussed in detail. In Chapter 4, a method

to represent software systems using weighted complex networks is proposed. The method

is based on a unique weighting mechanism to weight the edges of software-based complex

network in order to measure the complexity of software components and their

relationships. Based on the constructed weighted complex network, a way to analyse the

structure and behaviour of the software is described. The results of the analysis are

converted into implicit clustering constraints in the form of must-link and cannot-link

constraints to aid in the subsequent clustering process. Chapter 5 presents a method to

maximise the fulfilment of clustering constraints. Next, Chapter 6 discusses the

experimental setup of this research. The goal of the research, selection of subjects,

context, and variables, are discussed in detail. Two research hypotheses are declared with

the purpose to validate between the speculated observation and the results of the proposed

Univ
ers

ity
 of

 M
ala

ya

12

constrained clustering approach. Experiments are carried out using real datasets gathered

from 40 open-source OO projects. This is followed by the discussion and analysis of the

experimental results in Chapter 7. Several descriptive statistics and plotting techniques

are used to analyse the experimental results. The conclusion is presented in Chapter 8. A

summary on the research work accomplished is provided. Then, the contribution of this

thesis is highlighted. The chapter concludes with a future research direction of the

proposed approach.

Univ
ers

ity
 of

 M
ala

ya

13

CHAPTER 2: LITERATURE REVIEW

This chapter provides the background information and related works. It starts by

discussing the relationships between software maintenance and software

remodularisation. Then, the literature in software clustering, constrained clustering, graph

theory metrics, and complex networks are presented. Finally, the issues and challenges

are highlighted based on the discussed literatures.

2.1 Software Maintenance and Remodularisation

Software maintenance is vital to discover and validate the relationships between

technology and business models for existing operational software systems. Software

maintenance efforts are strongly correlated to the efficacy of the software design. The

work by Kemerer (1995) shows that software systems that exhibit high modularity, i.e.

low coupling and high cohesion, and adhere to common design practices such as modular

architecture are relatively less complex and easier to maintain. Changes and modifications

of source code are less destructive on the rest of the system because of the low inter-

module coupling advocate in modular architecture.

Modular design can be realised in forward engineering through proper planning in the

early phase of software development. However, as software systems evolve with the

introduction of new business and technology requirements, their structures inevitably get

more complex and maintainers will find harder to maintain them (Santos, Valente, &

Anquetil, 2014). Therefore, in order to improve the maintainability of existing operational

software systems that undergo frequent changes, maintainers have to remodularise them,

which includes reverse engineer the software into relatively independent subsystems.

Univ
ers

ity
 of

 M
ala

ya

14

The work by Santos et al. (2014) defines remodularisation as “a major restructuring in

the system’s architecture, with the central goal of improving its internal quality and

therefore without adding new features or fixing bugs”. Software systems that undergo

remodularisation are divided into smaller and manageable subsystems. Similar

components of software system that collaborate with each other are grouped together to

form a union of subsystems, while relationships between the subsystems are established.

The mapping of interrelationships between software components provides a means for

maintainers to easily comprehend the structure and complexity of software systems. In

most of the existing studies, remodularisation is guided by understanding the structural

aspects of a software, i.e. the interactions and dependencies between software

components (Anquetil & Laval, 2011; Passos, Terra, Valente, Diniz, & Mendonca, 2010).

Existing studies had explored the usage of software clustering as a technique to aid in

remodularisation of aging software systems.

2.2 Software Clustering

Clustering can be based on either a supervised or unsupervised approach to pick from a

collection of entities, then form multiple groups of entities such that entities within the

same group are similar to each other, while dissimilar from entities in other groups. In the

context of software clustering, entities are normally source code or classes. Similarity

measures are normally common global variables used in source code or method calls

made by classes. The identification of similarity is often depending on the availability of

reliable information.

Generally, clustering can be categorised into partitional and hierarchical clustering. Given

a collection of data, partitional clustering works by defining an initial k number of cluster

Univ
ers

ity
 of

 M
ala

ya

15

centroids, and assigning each entity to the nearest centroid to form k disjoint clusters. On

the other hand, hierarchical clustering iteratively merge smaller clusters into larger ones

or divide large clusters into smaller ones, depending on either it is a bottom-up or top-

down approach. Merging or dividing operations are usually dependent on the clustering

algorithm used in the existing studies.

The results of partitional clustering are usually presented in several disjoint clusters, with

each cluster contains at least one entity and each entity belongs to only one cluster.

Meanwhile, the results of hierarchical clustering are usually presented in a tree diagram,

called dendrogram. A dendrogram shows taxonomic relationships of clusters produced

by hierarchical clustering. Cutting the dendrogram at a certain height produces a set of

disjoint clusters.

In the domain of software clustering, partitional clustering is less viable because it is

almost impossible to know the initial number of clusters before performing software

clustering (Chong, Lee, & Ling, 2013). According to the work by Wiggerts (1997), the

working principle of agglomerative clustering (bottom-up hierarchical clustering) is

actually similar to reverse engineering where the abstractions of software designs are

recovered in a bottom-up manner.

Divisive clustering, on the other hand, is based on a top-down hierarchical clustering

approach where the clustering process starts at the top with all data in one big cluster. The

cluster is then split into smaller clusters in a recursive manner until all data resides into a

single cluster. Although the complexity of divisive clustering is lower than agglomerative

clustering, the complete information about the global distribution of the data is needed

when making the top-level clustering decisions (Dhillon, Mallela, & Kumar, 2003). Most

Univ
ers

ity
 of

 M
ala

ya

16

of the time, software maintainers are not involved in the earlier software design phases.

If the software documentations are not up-to-date, it is hard for maintainers to identify the

ideal number of software packages (or the number of clusters in the context of software

clustering) before any attempts to remodularise any software systems.

Therefore, the focus of this thesis is to utilise agglomerative hierarchical clustering as a

remodularisation technique to help improve the modularity of poorly designed or poorly

documented software systems. The next section discusses some background knowledge

on the general workflow of agglomerative hierarchical clustering.

2.3 Agglomerative Hierarchical Software Clustering

Agglomerative hierarchical clustering starts by forming all entities as initial clusters. At

each step, a pair of entities is merged and the algorithm ends with one big cluster. The

process of agglomerative hierarchical clustering can be summarised as the following

steps.

1. Identification of entities or components

2. Identification of features

3. Calculation of similarity measure

4. Application of clustering algorithm

5. Evaluation of clustering results

2.3.1 Identification of entities or components

Univ
ers

ity
 of

 M
ala

ya

17

In software clustering, the typical choices of entities are in the form of source code

because they represent the basic components and functionalities of a software system.

Chosen candidate entities need to be labelled or tagged properly in order to understand

their purpose. The labels will also assist in evaluating the performance of output at the

end of software clustering (Maqbool & Babri, 2006).

2.3.2 Identification of features

The similarities between entities are determined based on their characteristics or features

extracted from the available information. An entity may possibly have many features.

Various properties of an entity can be described by different features. Though the selected

features must contribute to the understanding of problem domain. Features are used to

analyse how closely two entities are related based on the fact that the entities are more

similar if they share many common features (Lung, Zaman, & Nandi, 2004). In software

clustering, there are typically two types of features identification methods: formal (global

variable access, passing of messages, and shared data) and non-formal (programmer’s

comment) methods to identify how close a software component is to another (Maqbool

& Babri, 2007).

2.3.3 Calculation of similarity measure

The next step is to ascertain the similarity between entities by referring to the features

identified in the previous step. Typical ways to calculate similarity are distance measures

or resemblance coefficients. Euclidean distance, for example, is the most common type

of distance measure (Danielsson, 1980). It calculates the geometric distance of two

entities in the given multidimensional space. Euclidean distance is suitable to use on

Univ
ers

ity
 of

 M
ala

ya

18

scenarios where the similarities between entities are quantifiable (represented in

numerical values). On the other hand, resemblance coefficients are calculated based on

the common attributes that two entities share. Table 2.1 shows several examples of 𝑅𝐶𝑥𝑦

formula: resemblance coefficients between entities x and y.

Table 2.1 List of commonly used resemblance coefficients (RC)

Similarity Measure Formula

Jaccard coefficient (Jain & Dubes,

1988)

𝑎

(𝑎 + 𝑏 + 𝑐)

Sorensen-Dice coefficient

(Sørensen, 1948)

2𝑎

(2𝑎 + 𝑏 + 𝑐)

Simple Matching coefficient

(Warrens, 2009)

𝑎 + 𝑑

(𝑎 + 𝑏 + 𝑐 + 𝑑)

Gower-Legendre coefficient

(Warrens, 2009)

(𝑎 + 𝑑)

(𝑎 + 1/2(𝑏 + 𝑐) + 𝑑

Variable a represents the number of features that have “1-1” relationship between two

entities, d represents the number of “0-0” relationship between two entities, while b and

c represent “1-0” and “0-1” relationships between two entities respectively. A “1-1”

relationship indicates that both entities are correlated to each other. Correlation in this

context can be referred as the existence of certain common attributes or behaviour in both

entities. Meanwhile, “1-0” and “0-1” relationships represent an indirect correlation. A “0-

0” relationship represents that both entities do not share any form of similarity at all.

Generally, a higher coefficient value indicates higher similarity between pairs of entities.

Finally, the results are stored in a pairwise matrix called the resemblance matrix which

denotes the similarity or dissimilarity strength between pairs of clustering entities.

2.3.4 Application of clustering algorithm

Univ
ers

ity
 of

 M
ala

ya

19

The next step is to group similar entities based on the resemblance matrix generated from

the previous step in Section 2.3.3. Generally, clustering is a sequence of operations that

iteratively groups similar entities into clusters. The iteration begins with each entity in a

separate cluster, which means that n number of candidate entities will result in n number

of clusters. At each iteration, the two clusters that are most similar to each other are

merged and the number of clusters is reduced by one. This process will continue until

there is only one cluster left. At the end of the iteration, a tree-like diagram called

dendrogram is formed.

A clustering algorithm is needed to decide upon how and when to merge two clusters.

Depending on the algorithm used, certain algorithms merge the most similar pair first

while others merge the most dissimilar first. Once the two chosen clusters have been

merged, the strength of similarity or dissimilarity between the newly formed cluster and

the rest of the clusters are updated to reflect the changes. It is very common that during

hierarchal clustering, there exist more than two entities which are equally similar or

dissimilar. In this kind of scenario, the selection of candidate entities to be clustered is

arbitrary (Maqbool & Babri, 2007).

2.3.5 Evaluation of clustering result

Univ
ers

ity
 of

 M
ala

ya

20

Figure 2.1: Illustration of a dendrogram

Figure 2.1 shows an example of a dendrogram. The x-axis represents the candidate

entities; there are 8 in this example. The y-axis denotes the distance of the cluster pairs,

where a greater value indicates a higher level of dissimilarity. The distance at which the

dendrogram tree is cut determines the number of clusters formed. The dotted lines in

Figure 2.1 show three tentative cuts at points 0.2, 0.4, and 0.6. At point 0.2, five clusters

(6, 3), (4), (2), (7), and (8, 5, 1) are formed. On the other hand, only three clusters are

formed at the cutting point 0.6. Cutting the dendrogram tree at a higher distance value

usually yields a lesser number of clusters. However, this decision is at the trade-off of

relaxing the constraint of cohesion in the cluster membership. Unless one is very well

versed in the problem domain, it is impossible to know the correct number of clusters in

advance. Defining a proximity measure is essential to identify the correct number of

clusters. As a result, cluster validity index is used to find and evaluate the best partitioning

formed by a particular cutting point where the actual number of clusters is unknown

(Gurrutxaga et al., 2010; Saha & Bandyopadhyay, 2009). In general, the evaluation

criteria of cluster validity index focus on two main aspects, which are the clustering

compactness and cluster separation, as discussed by Linoff and Berry (2011).

Univ
ers

ity
 of

 M
ala

ya

21

Cluster compactness measures the similarity variance for the members of each cluster. A

cluster is deemed to have high compactness if the intra-variance is low. In the context of

software clustering, cluster compactness measures the cohesion of software entities

within the cluster. Cluster separation, on the other hand, measures how widely separated

the different clusters are. The distances among different clusters are usually large if they

are well separated. The common way to measure the distance is by calculating the

distance between the centroids of two clusters (Leg & Babos, 2006).

The following steps summarise a standard agglomerative hierarchical clustering

algorithm.

Input: Set 𝑇 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} of entities.

Output: Dendrogram

1. Each entity 𝑥𝑖 forms an initial cluster 𝐺𝑖. The total number of clusters K = n.

For each pair of clusters 𝐺𝑖 and 𝐺𝑗 , 𝑖 ≠ 𝑗, the distance between 𝐺𝑖 and 𝐺𝑗 is

denoted by 𝑑(𝐺𝑖, 𝐺𝑗).

2. Find a pair of clusters with minimum distance, in {𝑑(𝐺𝑖, 𝐺𝑗)} :

Let 𝑑(𝐺𝑎, 𝐺𝑏) = 𝑚𝑖𝑛 {𝑑(𝐺𝑖 , 𝐺𝑗)} ., where 𝑚𝑖𝑛 returns the minimum

distance value over the set of candidates in {𝑑(𝐺𝑖, 𝐺𝑗)}.

Merge 𝐺𝑐 = 𝐺𝑎 ∪ 𝐺𝑏 and reduce the number of clusters K= K-1.

3. If K = 1, stop the iteration; else update distance 𝑑(𝐺𝑐, 𝐺𝑗) , for all other

clusters 𝐺𝑗. (Go to Step 2)

2.3.6 Related Works on Agglomerative Hierarchical Software Clustering

Although some clustering algorithms produce a single clustering result for any given

dataset, a dataset may have more than one natural and optimum clustering result. For

Univ
ers

ity
 of

 M
ala

ya

22

instance, source code can only tell very limited information about the architectural design

of a software system since it is a very low-level software artifact.

The work by Deursen and Kuipers (1999) adopted a greedy search method by using

mathematical analysis to analyse the structure of cluster entities and identify the features

that are shared by them. The proposed approach finds all of the possible combination of

clusters and evaluates the quality of each combination. Agglomerative hierarchical

clustering is used in this work. The authors discovered that it is hard to analyse all possible

combinations, and useful information might be missing if no attention is given to analyse

all the results generated from different dendrogram cutting points.

Merits and Limitations: The proposed approach is capable of finding the most optimum

clustering result in terms of cluster cohesiveness and separation since it adopted a greedy

search method. However, this is at the trade-off of high computational time and

complexity, which do not scale properly with huge datasets. Furthermore, the clustering

results were only validated by domain experts and there is a lack of information on how

the evaluations are conducted.

In contrast to the greedy search method proposed by Deursen and Kuipers, the work by

Fokaefs, Tsantalis, Stroulia, and Chatzigeorgiou (2012) proposed an approach that

produce multiple clustering results from which software developers and maintainers can

choose the best result based on their experiences. The goal is to decompose large classes

by identifying ‘Extract Class’ refactoring opportunities. Extract class is defined as classes

that contain many methods without a clear functionality. The authors adopted the

agglomerative clustering algorithm to generate a dendrogram and cut the dendrogram at

several places to form multiple sets of results. The authors argued that clustering

algorithms that produce a single result is too rigid and not feasible to fit into the context

Univ
ers

ity
 of

 M
ala

ya

23

of software development. According to the authors, software developers and maintainers

should have the abilities to influence and pick the optimum clustering results.

Merits and Limitations: The authors allow software developers to choose the best

solution from a collection of candidate clustering results. However, it is possible that the

number of candidate results might be too large and difficult to reach a consensus among

software developers. The authors did not discuss how to handle conflicting opinions from

different software developers and maintainers.

Work by Anquetil and Lethbridge (1999a) attempted to perform agglomerative clustering

on source files and found out that using source code alone to aid in software

remodularisation yields poor results. In their study, clustering entities are represented in

the form of source code. The authors found that the quantity of information, such as the

number of variables used in the source code, the dependency between routines, the data

passed and shared by functions helps in improving the reliability of clustering. This is

because the authors performed their experiments on software written in structured

programing languages, where most of the programs are divided into several small self-

contained functions. Therefore, extracting the interrelationships between functions are

not explicitly presented in the source code. Additionally, the authors suggested that

domain or background knowledge from software developers who are involved in the early

software design phase can greatly help improve the clustering results.

Merits and Limitations: The study covers a wide range of challenges in agglomerative

software clustering, including how the cluster entities are described, how coupling

between the cluster entities is computed, and the clustering algorithm used to

remodularise software systems. However, as pointed out by the authors, they only

experimented the proposed approach with file clustering.

Univ
ers

ity
 of

 M
ala

ya

24

Meanwhile, the work by Fokaefs, Tsantalis, Chatzigeorgiou, and Sander (2009) extends

the work of Anquetil and Lethbridge (1999a) to further enhance the reliability of

clustering results. Instead of just remodularising a piece of software, their technique

attempts to discover classes that are completely disconnected from the system (singleton

classes which have no interrelationship at all with other classes). Once the singleton

classes have been discovered, the authors seek opinions from software designers whether

or not to:

1. Exclude the singleton classes in future software upgrades and maintenance

releases;

2. Define a new subsystem for each of these singleton classes.

Merits and Limitations: The authors tackle the issue of singleton classes, which often

occurs on software systems that undergo rapid changes and maintenance. However, it is

a human-intensive activity and highly dependent on the experience and skills of software

developers.

Cui and Chae (2011) attempted to analyse the performance, strength, and weakness of

different agglomerative hierarchical clustering algorithms using multiple case studies and

setups. The authors conducted a series of experiments using 18 clustering strategies. The

clustering strategies are the combination of different similarity measures, linkage

methods, and weighting schemes. The case studies comprise 11 systems where source

codes were used as the input parameters. The performance of each clustering result was

evaluated based on a performance metric proposed by the authors. The performance

metrics consist of three criteria: size of the clustering, coupling of subsystems, and

cohesion among components. The authors attempted to analyse the performance of

agglomerative clustering at different cutting points, by increasing the value of each cut

by 5% in an iterative manner. The experiment results show that different agglomerative

Univ
ers

ity
 of

 M
ala

ya

25

clustering strategies produce various results based on different performance metrics. They

found that it is difficult to identify a perfect clustering strategy which can fulfil all

evaluation criteria proposed by the authors.

Merits and Limitations: Extensive work that covers a wide range of clustering strategies,

evaluation criteria, and performance metrics. However, the experimental results are not

conclusive because certain clustering strategies produce satisfactory performance in

coupling and cohesion, but not in size.

On the other hand, the work by Chong et al. (2013) proposed a technique to enhance

existing agglomerative clustering algorithms by minimising redundant effort and

penalising for the formation of singleton clusters during clustering. By utilising a least-

squares polynomial regression analysis, the proposed algorithm finds the optimum result

that produces sets of clusters with high cohesion and low coupling. The proposed

algorithm is based on a bottom-up approach, which starts by transforming source code

into a flat sequence of class diagrams, and finally restructure them into a package diagram

to provide a high-level semantic view of the whole system design. In one of the

evaluations, the authors requested from the contributors of an open-source project, the

JSPWiki project, to verify the quality of the clustering results. The authors concluded that

involvement of stakeholders, even with a little amount of domain knowledge, is beneficial

toward improving the modularity of software systems.

Merits and Limitations: The authors proposed a way to enhance the existing

agglomerative software clustering algorithms. The proposed approach can be adapted to

fit into different clustering algorithms and scale with large datasets. However, the

proposed approach can only be applied on unsupervised clustering algorithm.

Univ
ers

ity
 of

 M
ala

ya

26

Table 2.2 Summary of Related Works on Software Clustering

Author Clustering technique Input parameters Objectives Evaluation Methods

(Deursen & Kuipers,

1999)

Agglomerative

hierarchical clustering

Source code, routines Find the optimum clustering

result using a greedy search

approach.

Validate the accuracy of

clustering results by domain

experts.

(Fokaefs et al., 2012) Agglomerative

hierarchical clustering

Attributes, methods,

and dependencies of

source code

Remodularise software by

finding and decompose “Extract

Class”.

Retrieve ground truth from the

original designer of the systems.

Then, compare precision and

recall between the clustering

results and the retrieved ground

truth.

(Anquetil &

Lethbridge, 1999a)

Agglomerative

hierarchical clustering

Source code Identify and tackle various

challenges in software clustering.

Compare with the results with a

few agglomerative hierarchical

clustering algorithms.

(Fokaefs et al., 2009) Agglomerative

hierarchical clustering

Attributes, methods,

and dependencies of

source code

Find singleton classes and

subsequently identify solutions to

refactor them.

Evaluate the effectiveness of the

proposed clustering results by

seeking opinions from software

designers.

(Cui & Chae, 2011) Agglomerative

hierarchical clustering

Attributes, methods,

and dependencies of

source code

Identify a generic clustering

strategy that is suitable to

remodularise software systems.

Evaluate the quality of different

clustering strategies by inspecting

the size of clusters, coupling

strength, and cohesion strength.

(Chong et al., 2013) Agglomerative

hierarchical clustering

Source code, UML

class diagrams

Minimise redundant efforts when

cutting dendrogram and scale

with the size of datasets.

Evaluate the accuracy of the

proposed approach by comparing

the clustering results with the

original package diagram of the

software systems. Univ
ers

ity
 of

 M
ala

ya

27

The summary of the discussed literature is shown in Table 2.2. Based on the table, it can

be summarised that most of the existing studies evaluate their proposed approach from

the aspect of quality and accuracy. In order to evaluate the quality of the proposed

approach, the original software designers or maintainers are often involved to provide

feedbacks and opinions on the clustering results. Besides that, ground truth, which in this

context, a known good partition of the software systems, is used as a baseline comparison

to evaluate the accuracy of the proposed approaches. Ground truth can be retrieved from

domain experts or from the software documentations. Therefore, a proper way to evaluate

the accuracy and quality of software clustering techniques needs to be investigated and

discussed in the subsequent chapters to fit into the context of this thesis.

Besides that, the software clustering approaches discussed in the previous section are

typically conducted in an unsupervised and rigid manner, where software maintainers

have no influence on the clustering results and only a single solution is produced for any

given dataset. However, if software maintainers do not agree with the final clustering

result, they will need to repeat the whole clustering process again using different

clustering algorithm or configuration, which is ineffective and time consuming.

Furthermore, if software maintainers possess additional information (explicit domain

knowledge, background knowledge, or other source of implicit information) that could

be useful to guide and improve the clustering results, traditional unsupervised software

clustering algorithms do not have the ability to take advantage of this information.

Hence, an improvement was proposed in the work by Basu et al. (2004) to incorporate

domain or background knowledge into traditional unsupervised software clustering.

Domain experts or software developers who are involved in the early stages of software

design or development have the ability to exert their feedbacks and opinions in the form

Univ
ers

ity
 of

 M
ala

ya

28

of clustering constraints to guide and improve the clustering results. This type of semi-

supervised clustering technique are also commonly known as constrained clustering.

2.4 Constrained Clustering

Given a set of data to be clustered, if the cluster entities are able to form cohesive clusters

easily, there is no need for human intervention since any clustering algorithm will identify

the desired clusters (Klein, Kamvar, & Manning, 2002). Similarly, if the data to be

clustered are tightly coupled and no distinction can be made between the entities, then a

small amount of domain or background knowledge would be useful to help improve the

clustering results.

2.4.1 Formulation of Clustering Constraints

The domain or background knowledge can normally be translated into sets of explicit

constraints which involve two cluster entities and impose restrictions such as determining

whether the involved entities should be clustered into the same cluster or not. Constrained

clustering is contrary to traditional unsupervised clustering where users have a certain

degree of influence on the final clustering results. There are several ways to translate

background knowledge into clustering constraints. For instance, in movie recommender

systems, users may have prior knowledge that two movies belong to the same genre. Thus,

the user can explicitly modify the recommendations based on his or her knowledge to

improve the query results. Apart from deriving explicit clustering constraints directly

from users, implicit constraints can be derived automatically from certain features or

behaviour of the datasets. For instance, in the research area of wireless local area

networks, clustering techniques have been used to optimise placement of access points

Univ
ers

ity
 of

 M
ala

ya

29

for better network coverage and minimise data latency (Huang, Wang, & Chang, 2005).

Neighbouring access points usually form clusters and one designated access point from

each cluster will have a wired connection to a switch or router. If the access points inside

a cluster are operating within the same overlapping channels, they must be redeployed to

other clusters to avoid frequency interferences (Eisenblätter, Geerdes, & Siomina, 2007).

Thus, from a clustering’s point-of-view, these observations can be treated as implicit

clustering constraints, such that it enforces rules to prevent access points that operate in

the same overlapping channels to be clustered into the same group. Automatically derive

implicit clustering constraints from the problem domain is useful when there are no

domain experts available, although such way of extracting constraints involves several

complicated steps to identify and interpret them.

Several existing works (Basu et al., 2004; Davidson & Ravi, 2009; Wagstaff & Cardie,

2000) have attempted to discover the benefits of pairwise constraints in both hierarchical

and non-hierarchical clustering and found that even a small amount of constraints can

improve the quality of clustering when compared against those without constraints. The

work by Wagstaff and Cardie defined two types of pairwise constraints, namely the must-

link (ML) and cannot-link (CL) constraints, which specify that two entities must both be

part of or not part of the same cluster respectively. These constraints are useful when the

information of cluster entities is vague, allowing domain experts to guide the clustering

process.

2.4.2 Enforcing Clustering Constraints

Enforcement of clustering constraints are divided into three major categories, namely

distance based, constrained based, or the hybrid of both.

Univ
ers

ity
 of

 M
ala

ya

30

In distance based constrained clustering, the distance matrix of the associated clustering

entities are trained beforehand to satisfy the constraints before execution of clustering

algorithms. The distance matrix is a 𝑛 × 𝑛 two-dimensional pairwise matrix (𝑛 equals to

the number of clustering entities) that contains the distance or dissimilarity strength

between each pair of entities. Merging or splitting of clusters is based on the distance

matrix. To provide a better illustration of how distance based constrained clustering

works, given a pair of entities x and y with distance of 0.8 (1 indicates very dissimilar, 0

indicates very similar). A must-link constraint is being enforced on the pair (x, y) using

the distance based approach, by modifying the distance between (x, y) from 0.8 to 0. This

will allow any clustering algorithm to always group both entities into the same cluster.

Thus, training the distance matrix allows certain pairs of entities to be clustered into the

same group or separated if otherwise. Examples of methods to train the distance matrix

include shortest path (Klein et al., 2002), expectation maximisation (Bilenko & Mooney,

2003), and convex optimisation (Shental & Weinshall, 2003).

On the other hand, constrained based methods work by modifying the cluster

assignments, i.e. manually assign entities to designated clusters (Kestler, Kraus, Palm, &

Schwenker, 2006). Constrained based approaches ensure that all the clustering constraints

are fulfilled because the clustering assignments are manipulated by users based on the

given constraints. However, studies performed by Davidson and Ravi (2009) discovered

that manipulating with the clustering assignments might lead to “dead-end” situation

where no pair of clusters can be merged to obtain a feasible clustering result. Hybrid of

both distance based and constrained based methods is relatively more complex and harder

to execute because it might result in undesired consequences if there are contradicting

Univ
ers

ity
 of

 M
ala

ya

31

clustering constraints. Thus, a proper way to ensure the fulfilment of clustering

constraints must be formulated before enforcing any kind of constraints.

2.4.3 Fulfilment of Clustering Constraints

Fulfilment of clustering constraints can be classified as either hard or soft constraints

associated with some cost of violation if the constraints cannot be fulfilled (Basu et al.,

2004). Hard constraints are clustering constraints that cannot be violated during the

clustering process regardless of any condition. Hard constraints are usually highly reliable

knowledge or information given by domain experts. In general, the cost of violating hard

constraints supersedes the objective function of constrained clustering. Constrained based

clustering method is one of the most reliable approaches to make sure that all hard

constraints are fulfilled as much as possible.

Meanwhile, soft constraints are usually associated with uncertainties and ambiguous

information, such that these set of clustering constraints are good to have, and their

fulfilment are not absolute (Basu et al., 2004). The cost of violating soft constraints varies

depending on the importance and severity of the constraints. Clustering results will still

be acceptable if some of the soft constraints are not fulfilled, with a condition that it falls

within an acceptable threshold (Ares, Parapar, & Barreiro, 2012). Soft constraints are

more robust against “noisy” or incorrect constraints (Hong & Yiu-Ming, 2012). As a

general rule, most of the objective functions attempt to maximise the fulfilment of hard

and soft constraints. However, it is to be noted that constrained clustering can fall into a

NP-Complete problem if the must-link and cannot-link constraints are contradicting with

each other, for instance, (Must-Link ∪ Cannot-Link) > 0. Thus, potential conflicts among

constraints must be identified in advance.

Univ
ers

ity
 of

 M
ala

ya

32

The work by Davidson and Ravi (2009) examined the complexity of traditional clustering

algorithms and investigated potential methods to improve the efficiency of constrained

agglomerative hierarchical clustering. The authors introduced new constraints apart from

the traditional ML and CL constraints to further improve the runtime of agglomerative

hierarchical clustering. They discovered that small amounts of constraints not only

improve the accuracy of agglomerative hierarchical clustering but also the overall

runtime. However, the authors noticed that clustering under all types of constraints (ML

and CL) is NP-complete, which means that creating a feasible cluster hierarchy under all

types of constraints, is intractable. The NP-complete problem can be minimised if each

constraint is assigned with a certain degree of importance, i.e. constraints that must be

fulfilled, or optional constraints that are good to have.

2.4.4 Applying Constrained Clustering to Remodularise Software Systems

Existing studies in constrained clustering mainly focus on the domain of data mining and

machine learning to cluster text documents, images, and to perform biological

classifications. There is a lack of studies that focuses on applying constrained clustering

in the field of software reverse engineering to aid in remodularisation of poorly designed

or poorly documented software systems although it is technically feasible. For instance,

experienced software developers can explicitly provide opinions with a certain degree of

confidence to suggest if two classes should be clustered into the same group. However,

deriving clustering constraints from software developers can be a very time consuming

and human-intensive task because developers will need to review a high-level abstraction

view of the software and its documentations, depending on the level of abstractions,

before creating the intended clustering constraints. On the other hand, deriving clustering

Univ
ers

ity
 of

 M
ala

ya

33

constraints in the field of biological classification is relatively easier, for instance, finding

organisms that share similar polygenic traits.

Therefore, other options to automatically derive clustering constraints from the implicit

features and behaviours of the software systems are needed. For example, inheritance

between parent and child classes suggests a strong affiliation such that changes in the

parent class will directly impact on the child class. This implicit behaviour suggests a

must-link constraint between the two involved classes. Additionally, two classes that

provide completely different functionalities typically have little to none interactions

(interactions in terms of passing parameters or sharing of variables) and are usually placed

in different software packages. Each class generally handles only one responsibility to

advocate the principle of single responsibility (DeMarco, 1979). This behaviour can be

considered a cannot-link constraint from the perspective of constrained clustering because

the two associated classes are intended to be clustered into two different disjoint clusters.

However, how to identify and analyse clustering constraints, either from background

knowledge or the implicit structure of software systems, remains as a huge research

problem.

Strong understanding of software systems is needed in order to extract all the essential

information from the source code, and subsequently convert them into potential clustering

constraints. Evaluating a software system using well-established software metrics is one

of the approaches used in existing studies to provide a better understanding of the

software, and to prevent any faults from propagating to other parts of the software.

Software components that are more prone to bugs and errors can be translated to sets of

clustering constraints so that the propagation of software bugs can be controlled.

Univ
ers

ity
 of

 M
ala

ya

34

Evaluation of software systems using software metrics can be carried out at different

levels of granularity in terms of classes, packages, or the entire system.

Examples of well-established software metrics are the Chidamber and Kemerer’s Metrics

Suite (CK) (Chidamber & Kemerer, 1994) and the Metrics for Object Oriented Design

(MOOD) (Abreu & Carapuça, 1994). CK and MOOD metrics are well known for

measuring the complexity of OO software as well as identifying software defects. CK

metrics evaluate software at the class level by looking into factors such as class cohesion,

coupling, complexity, and inheritance. MOOD metrics focus on OO characteristics such

as encapsulation, polymorphism, and inheritance to provide a system-wide assessment.

In spite of their wide usage, CK and MOOD metrics share the same disadvantages where

they focus mainly on single classes and rarely take the interactions between classes into

consideration (Zimmermann & Nagappan, 2008). In addition, several studies have found

that the empirical effects of these metrics are less effective on large-scale OO software

systems (El Emam, Benlarbi, Goel, & Rai, 2001; Gyimothy, Ferenc, & Siket, 2005;

Olague, Etzkorn, Gholston, & Quattlebaum, 2007a; Subramanyam & Krishnan, 2003b).

As software systems become larger and more complex, software maintainers need to gain

a better understanding of the macroscopic properties of these systems if they were to make

critical decisions about re-engineering, maintaining and evolving such systems (Lian,

Kirk, & Dromey, 2007). Large-scale industrial software systems, such as enterprise

resource planning systems, usually involve multiple complex modules that are related

with each other. Thus, traditional ways of analysing and characterising software systems

using software metrics might not be adequate for large-scale software systems. There is

therefore a need to investigate techniques from other disciplines that had successfully

dealt with systems of high complexity. Graph theory used in combination with complex

Univ
ers

ity
 of

 M
ala

ya

35

network is one such suitable technique to solve the aforementioned problem.

Representing software systems using complex networks enable software maintainers to

gain a better understanding of the problem domain from a graph theory’s point-of-view,

and subsequently transform the findings into clustering constraints. The next section

provides an in-depth discussion on the existing studies that represent software systems

using complex networks, along with some of the challenges.

2.5 Facilitate Understanding of Software Systems with the Aid of Graph Theory

Metrics

In recent years, research in software engineering in the aspect of representing software

systems using complex networks has started to emerge with the aim to gain a high-level

abstraction view of the analysed software systems (G. Concas, Marchesi, Murgia, Tonelli,

& Turnu, 2011; Ma, He, Li, Liu, & Zhou, 2010; Tempero et al., 2010). Representing

software systems using complex networks allows software maintainers to gain more

insights on the studied software through the application of well-established graph theory

metrics (Turnu, Concas, Marchesi, & Tonelli, 2013).

Graph theory is a field of study that looks into the formal description and analysis of

graphs (Bullmore & Sporns, 2009). A graph is generally defined as a set of nodes that are

connected by edges, which may or may not be weighted. If the relationships or

interactions between the nodes are asymmetric, then the graph is usually presented as

directed graph, as opposed to the undirected ones. When describing a real-world network,

be it social network, scholarly citation network, or software system, a graph provides an

abstract representation of the network’s elements and their interactions. Real-world

networks display fundamental topological features and patterns that are not found in

Univ
ers

ity
 of

 M
ala

ya

36

random networks (Giulio Concas, Marchesi, Pinna, & Serra, 2007; Myers, 2003). Graphs

that are formed based on these real-world networks are commonly referred as complex

networks. As discussed by Simon (1991), a complex network is an integrated sets of nodes

that are organised in a hierarchical structure and interact in a non-simple way. Existing

studies have found that graphs formed based on software systems often exhibit the

topological features and behaviours of a complex network due to their inherent

complexity (G. Concas et al., 2011).

A complex network, 𝐺 = (𝑉, 𝐸), is made up of a set of nodes V, and a set of edges 𝐸 ⊆

𝑉 × 𝑉 that connect pairs of nodes. In general, a complex network can either directed or

undirected. In both directed and undirected networks, edges may be associated with

weights to denote the similarity of a pair of nodes connected by an edge or the cost of

traveling through that particular edge. In a directed network 𝐺 = (𝑉, 𝐸) , (𝑖, 𝑗) ∈ 𝐸

signifies that there is an edge in 𝐸 that is linking node 𝑖 to node 𝑗 where 𝑖 is the origin and

𝑗 is the terminus. On the other hand, in an undirected network 𝐺𝑢 = (𝑉, 𝐸), if (𝑖, 𝑗) ∈ 𝐸,

then edge (𝑗, 𝑖) ∈ 𝐸 as well because the origin and terminus are not specified in an

undirected network.

Both directed and undirected networks can be represented by their own adjacency matrix

A. The matrix A is a |𝑉| × |𝑉| matrix where the rows and columns represent the nodes of

the network. In an undirected network, the entry 𝐴𝑖𝑗 = 1, if (𝑖, 𝑗) ∈ 𝐸; ∀ 𝑖, 𝑗 ∈ 1,⋯ , |𝑉|.

Value 0 indicates that there is no relationship in between nodes 𝑖 and 𝑗. Meanwhile for a

directed network, the value 𝐴𝑖𝑗 represents the weight associated with edge (𝑖, 𝑗). The

value of adjacency matrix A is symmetric for an undirected network such that 𝐴𝑖𝑗 = 𝐴𝑗𝑖.

In a directed network, however, the relation 𝐴𝑖𝑗 is asymmetrical.

Univ
ers

ity
 of

 M
ala

ya

37

In OO software systems, objects and classes are normally related through different kinds

of binary relationships, such as inheritance, composition and dependency. Thus, the

notion of associating graph theory to represent large OO software systems and to analyse

their properties, be it structural complexity or maintainability, is feasible.

Directed network is more suitable to gain a high-level understanding of software systems

because it is capable of capturing the semantic relationships between software

components. The work conducted in (Anquetil & Lethbridge, 1999a; Davey & Burd,

2000) shows that software features are asymmetric in nature. Examples of such behaviour

are superclass and subclass relationship, master and slave relationship in Message Passing

Interface (MPI) programming, and an encapsulated object or data which has its internal

behaviour or function hidden from outside of its own definition (Chong et al., 2013).

Besides that, there are several features in graph theory that can be used to analyse the

structure and behaviour of software systems. Recent studies of representing objected-

oriented software systems as complex networks revealed that many of these networks

share some global and fundamental topological properties such as scale free and small

world (Giulio Concas et al., 2007; Louridas, Spinellis, & Vlachos, 2008; Pang & Maslov,

2013; Potanin, Noble, Frean, & Biddle, 2005).

The scale free characteristic of a network is defined as follows. In graph theory, the degree

𝑘𝑖 of a node 𝑖 is the total number of its edges. In general, a node with a higher degree

indicates that it possesses a higher impact with respect to the whole network. The average

of 𝑘𝑖 over all nodes is the average degree of the network, which is represented as < 𝑘 >.

The spread of nodes’ degrees over a complex network is described as a distribution

function 𝑃(𝑘), which is the probability that a randomly selected node has exactly 𝑘 edges

Univ
ers

ity
 of

 M
ala

ya

38

(Barabasi, Albert, & Jeong, 2000). A simple network normally has a simple distribution

function because all the nodes contain a similar number of edges (Barabasi & Albert,

1999). Therefore, the probability of finding a node with 𝑘 edges is very high. However,

studies have discovered that many complex networks derived from software systems obey

the degree distribution of a power law in the form 𝑃(𝑘)~𝑘−𝛾 where the function falls off

more rapidly than an exponential function (Giulio Concas et al., 2007). This results in

situations where a few nodes with very high degree (highly connected nodes) exist in

these complex networks. Because the aforementioned power law is free from any

characteristic scale, these complex networks are also called as scale free networks. The

scale free characteristic in software systems can be interpreted as the level of reuse of

important classes, or the number of dependencies between classes.

The small world property is related to the average shortest path length and clustering

coefficients in graph theory. A shortest path is defined as the shortest distance between a

pair of nodes in a graph. The average shortest path length, on the other hand, calculates

the average number of steps along the shortest path between every pair of nodes in a

network. The average shortest path length is often used to measure the efficiency of

information passing and response time in OO software. Existing works that use complex

networks to analyse software systems indicated that the average shortest path length of

software is around 6 (Valverde & Solé, 2003). A clustering coefficient, on the other hand,

is the average tendency of pairs of neighbours of a node that are also neighbours of each

other. It can be used to measure the degree to which nodes tend to cluster together. In

short, networks that exhibit small world property signify that the distances between nodes

are relatively shorter as compared to random networks. From a graph theory’s point of

view, software systems that exhibit a small average path length and high clustering

Univ
ers

ity
 of

 M
ala

ya

39

coefficient signify that the analysed software obey the design principles of low cohesion

and high coupling.

In short, graph theory metrics and software metrics offer different advantages for

analysing the complexity of software system. Software metrics such as CK and MOOD

excel in evaluating class-level complexities, particularly in the OO paradigm. Complex

network, on the other hand, is capable of evaluating the impact of a particular class with

respect to the whole system. The results of graph theoretical analysis can then be

translated into clustering constraints to help improve the results of software clustering.

However, before applying graph theory metrics, the software systems must be

transformed into its associated complex networks in advance. An OO software system is

typically composed of multiple classes. At the source code level, classes in OO software

may contain data structure, objects, methods, and variables. Two classes can be

considered related if there are actions such as passing of messages. Due to multiple ways

of representing nodes and edges, there is a need to perform an in-depth review on existing

works that represent software systems using complex networks.

2.5.1 Representing Software Systems Using Un-weighted Networks

The work by Valverde and Solé (2003) discusses the usage of two graphs, namely Class

Graph and Class-Method Graph, to analyse the global structure of software systems. Class

Graph is derived based on UML class diagrams, where classes are represented as nodes,

while relationships among classes, such as dependency and association, are depicted as

edges between nodes. Class-Method Graph is modelled based on source code using the

Univ
ers

ity
 of

 M
ala

ya

40

similar concept. The nodes and edges of the constructed graph are modelled to be un-

weighted.

Merits and Limitations: The authors utilise complex networks to analyse software

systems from two different levels of abstractions, namely the low level Class-Method

Graph, and the high level Class Graph. The two graphs are inter-related and can be

analysed from different perspectives to provide a better understanding of the software.

However, for both types of graphs, the complexity of nodes and edges is ignored mainly

because the authors assumed that internal complexities do not change the global structure

of software systems.

Myers (2003) proposed a method to represent software systems using complex networks

by analysing the interdependencies of source code. A software collaboration graph based

on the calling of methods is used to analyse the structure and complexity of software

systems. The authors parsed source code into a software documentation generator tool

called the Doxygen. The tool automatically generates documentation from the raw source

code. Based on the generated documentations, the authors can easily identify all the

methods declared in each class, along with the dependencies and collaborations between

each method. The work by Myers was later extended in the work by LaBelle and

Wallingford (2004) and Hyland-Wood, Carrington, and Kaplan (2006) to include the

usage of classes and packages. However, similar to the work by Valverde and Solé, the

software collaboration graphs by LaBelle et al. and Hyland et al. are constructed using

un-weighted edges and nodes.

Merits and Limitations: The work by Hyland et al. explored the usage of software

collaboration graph across different levels of granularity, namely package level, class

level, and method level. The authors attempted to discover similar network properties

from the associated networks. However, due to the way the software collaboration graph

Univ
ers

ity
 of

 M
ala

ya

41

is generated, the Doxygen tool can only identify unidirectional and symmetrical

relationships between methods. This might not be representative enough to illustrate the

behaviour of software systems because the work by (Anquetil & T. C. Lethbridge, 1999;

Davey & Burd, 2000) shows that software features are asymmetric in nature.

Jenkins and Kirk (2007) used source code as the basis to construct a software architecture

graph. Classes in the source code are identified and represented by nodes. When a class

accesses or refers to data or functionality in another class, it is represented as an un-

weighted edge that connects both classes. Similar way of representing a software

architecture graph is also presented in the work by Louridas et al. (2008) using class

interactions. The work by Louridas et al. aims to investigate the power law’s behaviour

in software systems written in Java, C, Perl, and Ruby.

Merits and Limitations: The work by Jenkins and Kirk proposed several metrics to

measure the stability and maintainability of software through various releases. The

authors discovered very strong correlation between a high growth rate and lowered

maintainability. High growth rate in this context refers to classes that undergo frequent

changes and increase in functionality. The proposed metrics are also applicable on nature

science research to explore the mechanics of phase change in living organisms. However,

although the software systems are represented as directed network, the main part of the

analysis treats the software as being an undirected and un-weighted graph due to

limitation in converting the directionality of graphs into quantifiable measurements.

The work by Taube-Schock, Walker, and Witten (2011) investigates the problem of high

coupling in software systems. Generally, the notion of high cohesion and low coupling is

a well acknowledged software design principle. However, various studies that represent

software systems using complex networks have empirically discovered that all software

Univ
ers

ity
 of

 M
ala

ya

42

exhibit the scale-free behaviour, which means that in certain cases, some high coupling

is unavoidable (Myers, 2003). In order to verify the aforementioned behaviour, the

authors performed empirical studies using the Qualitas Corpus (Tempero et al., 2010),

which is a collection of 100 independent open-source software systems written in the

Java. The source code is converted into a directed graph, where nodes represent source

code entities ranging from packages to variables, and edges represent connections

between entities. The authors found that all the studied software systems exhibit a similar

scale-free dependency structure and some high coupling might be a necessary

characteristic for good software design.

Merits and Limitations: The work is evaluated on a wide range of open-source software

systems which vary in terms of size, application domain, and complexity. Thus, the

findings are representative enough to demonstrate the common behaviour exhibited in

real-world software systems. However, the authors chose to exclude hierarchical

relationships (such as inheritance and generalisation) from their analysis because they

argued that inclusion of hierarchical relationships will skew the results of intra-cluster

analysis.

Finally, the work by Hamilton and Danicic (2012) proposes a Backward Slice Graphs

(BSGs) made up of nodes that represent program statements and un-weighted edges that

represent dependencies between these statements. The main purpose of BSG is to find

groups of strongly related software components by inspecting the number of

dependencies between program statements.

Merits and Limitations: The BSGs are constructed at the statement level, which is the

lowest level of granularity among all the discussed studies. However, since nodes and

edges of the BSGs are represented based on program statement, the structure and

Univ
ers

ity
 of

 M
ala

ya

43

behaviour of the graph are highly dependent on programmers because different

individuals might adopt different programming styles and preferences.

Several commonalities were found based on the discussed studies that use un-weighted

edges in representing software systems. Firstly, majority of these studies use source code

as a basis for representing complex networks except for the work by Valverde and Solé.

Most of the studies took a black box approach when transforming source code into nodes

and edges by assuming that the types of relationships between nodes do not change the

global structure of the constructed network. The types of relationships, such as inheritance

and method invocation, are represented by a common type of ‘dependency’ to signify

interactions between nodes. Besides that, the complexities of nodes are ignored. Instead,

most of the studies only use the frequency of in-coming and out-going dependencies as

the basis of measuring the weights of edges. The authors are more concerned on the global

structure and behaviour of the analysed software, either from a static or evolutionary point

of view. For instance, the work by Valverde and Solé, LaBelle et al., Hyland et al. and

Louridas et al. focuses on representing software using a static network abstraction and

applied statistical analysis to discover the behaviour of software systems. The work by

Myers and Jenkins et al., on the other hand, took an evolutionary approach by inspecting

software in different releases and compared the results using a statistical approach.

2.5.2 Representing Software Systems Using Weighted Networks

Next, several related works that deal with weighted complex network representation of

software systems are discussed.

Univ
ers

ity
 of

 M
ala

ya

44

Giulio Concas et al. (2007) demonstrated the use of weighted complex network to study

the structure and properties of OO software called the VisualWorks Smalltalk. Nodes are

made up of classes, while edges represent method calling between classes. By inspecting

the source code, an edge is created toward each of the classes that implements a particular

method and assigned a weightage value of 1. If the same method is called by multiple

methods of a class, the weight of that corresponding edge is then multiplied by the total

number of method invocations. Based on the number of method invocations, the

constructed graph will be able to distinguish nodes with higher inter-dependency.

Merits and Limitations: The authors investigated a wide variety of system properties,

including distributions of variables, method names, inheritance hierarchies, class sizes,

method sizes, and system architecture graph. Based on the in depth evaluations, the

authors concluded that certain complex network properties are highly correlated to

software metrics, such that these network properties can be used to evaluate the quality

of software systems. However, the effectiveness of this method is highly dependent on

the programming language and style practiced by different individuals.

The work by Sun, Xia, Chen, Sun, and Wang (2009) investigates the structural properties

of Linux kernel by constructing the network using C++ header files. The header files are

represented as nodes, and two nodes are connected with a weighted edge if both header

files are included in the same source file, i.e. using the ‘include’ operation. The weights

of the edges are calculated based on the number of include operations in the header files.

Merits and Limitations: The constructed networks are evaluated using several un-

weighted and weighted graph theory metrics, in order to provide an additional perspective

on the structural organisation of the complex network. However, the experiments are

performed solely based on header file interactions, which limit its applicability to

software systems written in C++ programming language.

Univ
ers

ity
 of

 M
ala

ya

45

In the domain of software testing, Lan, Zhou, Feng, and Chi (2010) proposed to use

complex network to study software execution process, and subsequently identified the

process that is more fault-prone. Functions are represented as nodes and function calls are

represented as weighted directed edges. The edges are weighted based on the number of

function calls between a pair of nodes, while the directionality of the edges is based on

the sequence of the execution process. Empirical validations are conducted on Linux

based programs, namely tar, gedit, and emacs. Nodes are not weighted. The authors used

in-degree as the metric to identify highly critical components. In-degree in this context

refers to the number of times a function is being called by other processes. Thus, the

weights of edges are used to measure the complexity and significance of nodes.

Merits and Limitations: Software components that are more prone to bug and errors can

be easily identified. This allows software developers to take actions before software bugs

are propagated to the rest of the system. However, the authors only focused on using in-

degree as the only indicator to identify bug prone software components, neglecting the

potential benefit of other graph theory metrics.

A hybrid approach which extracts information from both the source code and software

architecture was presented by Ma et al. (2010). The authors proposed a set of metrics to

measure OO software from multiple levels of granularity, at the class level, code level,

graph level, and system level. Representation of nodes and edges depends on how much

information is supplied during the analysis. For instance, if only the UML class diagram

is provided, classes are represented as nodes, while interactions between classes such as

inheritance and association are represented as edges. The edges can be weighted using

several well-known software metrics depending on the choice of the user, such as

Genero’s metrics (Genero, Piattini, Manso, & Cantone, 2003) (number of associations,

Univ
ers

ity
 of

 M
ala

ya

46

number of aggregations, and depth of inheritance). The same concept is applied to weight

the nodes by using well known software metrics such as CK and MOOD metrics. The

focus of the work of Ma et al. is to measure the complexity of software, and subsequently,

detect fault-prone software components.

Merits and Limitations: The proposed method allows software maintainers to measure

the quality of software systems from various levels of granularity. Apart from providing

a better understanding of the software systems, the constructed networks can be used to

identify software components that violate common design principles. However, due to

the extensive number of software metrics used in the study, software maintainers need to

possess a relatively good understanding of the software systems beforehand, which might

be challenging for legacy software systems.

The work by Wang and Lu (2012) presents an approach to represent complex software

systems using weighted complex networks. The authors used two open-source software

written in Java, namely Junit and JEDIT, to demonstrate the applicability of the approach.

Classes in the source code are used to model the nodes. If a method of a particular class

is dependent on other classes, a weighted edge is used to model this behaviour. The weight

of an edge is measured by inspecting the number of dependencies between a pair of nodes

connected by the edge.

Merits and Limitations: When comparing the statistical characteristics of weighted and

un-weighted complex networks, the authors discovered that weighted network can better

represent the exact dependency relationships among classes of software systems.

However, the authors did not attempt to differentiate between different types of

relationships, and treat all relationships as equal.

Univ
ers

ity
 of

 M
ala

ya

47

The works discussed in this sub-section use very similar technique to measure the weights

of edges. Almost all of the studies use the frequency of interactions among nodes, such

as number of class dependencies, number of method invocations, number of information

exchanges, and number of method dependencies, to measure the weights of edges.

Counting the frequency of interactions among nodes is basically based on the static

structure of software systems, which might not be representative of the dependency

relationship of the real-world software systems. Dynamic relationships between classes

of an OO software, such as polymorphism, dynamic binding, and inheritance

relationships cannot be captured easily through static analysis of source code (Arisholm,

Briand, & Foyen, 2004).

2.5.3 Discussion

A summary of the discussed literature is presented in Table 2.3. There is however an

exception; the work by Ma et al. uses well known software metrics to formulate the

weighted edges. Most work discussed in Section 2.5.2 and this section counts the number

of in-coming and out-going interactions between nodes to identify the critical nodes.

Table 2.3: Related Work in Representing Software Using Complex Networks

Related

work

Type of

Network/

Graphs

Representatio

n of Nodes

Representatio

n of Edges

Weighted

Edges

Weighte

d Nodes

(Valverde

& Solé,

2003)

Class Graph/

Class-

Method

Graph

Source code /

UML class

Method

dependencies /

UML class

relationships

No No

(Myers,

2003)

Software

collaboratio

n graph

Source code Calling of

methods

No No

(LaBelle &

Wallingfor

d, 2004)

Software

collaboratio

n graph

Classes and

packages

Access or

refer to other

classes

No No

Univ
ers

ity
 of

 M
ala

ya

48

(Hyland-

Wood et

al., 2006)

Software

collaboratio

n graph

Classes and

packages

Access or

refer to other

classes

No No

(Jenkins &

Kirk, 2007)

Software

architecture

graph

Classes Access or

refer to other

classes

No No

(Taube-

Schock et

al., 2011)

Software

collaboratio

n graph

Packages,

classes,

methods,

blocks,

statements,

and variables

Hierarchical

containment,

method

invocation,

and superclass

No No

(Hamilton

& Danicic,

2012)

Backward

Slice Graph

Program

statements

Dependencies

between

statements

No No

(Giulio

Concas et

al., 2007)

Class Graph Classes Calling of

methods

between

classes

Yes,

based on

frequency

No

(Sun et al.,

2009)

Software

collaboratio

n graph

C++ header

files

Use of include

operations

Yes,

based on

frequency

No

(Lan et al.,

2010)

Software

execution

process

Functions Functions call Yes,

based on

frequency

No

(Ma et al.,

2010)

Hybrid

Graph

Source code /

UML classes

Multiple

metrics

Yes,

software

metrics

Yes,

software

metrics

 (Wang &

Lu, 2012)

Class Graph Classes Calling of

methods,

dependencies

between

methods

Yes,

based on

frequency

No

There are potential drawbacks of relying only on counting the frequency of interactions

between nodes to quantify the weightage of edges. First of all, utility classes, such as

classes with static methods that are heavily called by other classes, might distort the result

of statistical analysis. Generally, a high number of interactions is often observed for utility

classes that are used extensively in a software system. Thus, a high out-degree or edge-

weighted value is not necessarily an indication of bad design and fault proneness (Ragab

& Hany, 2010). Besides that, an edge-weighted method based on the frequency of

Univ
ers

ity
 of

 M
ala

ya

49

interactions might not be suitable for software in the domain of parallel processing and

software that deal with a high number of information exchanges, i.e. mail servers and

database systems. Flow of information and data across all layers of the system is very

common for master and slave interactions in MPI programming, and database update or

query operations in a typical database management system.

The advantages of using weighted complex network over un-weighted complex network

are also discussed in the work by Wang and Lu (2012) and Ma et al. (2010). Specifically,

the work by Wang and Lu (2012) found that distribution of nodes with a high in-degree

and out-degree in edge-weighted networks is much more concentrated than those in un-

weighted networks. Thus, the group of nodes that are critical to the systems, as well as

those nodes that are associated with it can be identified easily. Based on the identified

nodes with a high node-strength, software developers can choose to either decompose or

reuse the associated software components to improve software stability and

maintainability. Ma et al., on the other hand, observed that nodes with a high out-degree

generally have a low in-degree, and vice versa. Nodes with an improper ratio, i.e. high in

node-strength and out node-strength, are nodes that do not adhere to high cohesion and

low coupling design principle. Thus, these sets of nodes may lead to potential defects and

bugs. Furthermore, Wang and Lu (2012) found that the effect of bug propagation in a

weighted network is lesser compared to an un-weighted network based on the analysis of

average shortest path length. Similar observations are also found in the work by Ma et al.

where the average shortest path of the analysed software is around 4.86 steps. All in all,

weighted networks are found to be able to capture the behaviour and characteristics of

software systems in a more well-defined and detailed manner, especially when

representing the relationships among nodes.

Univ
ers

ity
 of

 M
ala

ya

50

However, most of the studies discussed are working on the source code level except for

the works by Valverde and Solé. and Ma et al., which also involve the software design

level. At the software architecture level, UML classes are typically chosen to denote

cluster nodes, providing a standardised conceptual model that represents the system’s

components, operations, attributes, and relationships. UML class diagram is a better

choice when compared to raw source code because it is platform and language

independent. UML class diagrams are also less susceptible to human factors, which in

this context, refers to different programming styles practiced by different individuals.

Because the structure, notations, and modelling of UML class diagrams are standardised,

it is easier to construct complex networks based on class diagrams.

2.6 Challenges and Issues in Constrained Clustering

Through the in-depth reviews conducted, it can be summarised that even a small amount

of clustering constraints can help in improving the quality of clustering results. Generally,

the clustering constraints can be derived from two different sources, namely explicit

information or implicit information of the software to be maintained. Explicit information

refers to the feedbacks given by domain experts who are involved in the early stage of

software development, where the information can be translated into explicit clustering

constraints.

On the other hand, implicit information refers to some extra deterministic information

about the interrelationships between software components that are hidden in the source

code. Applying complex network in combination with graph theoretical analysis is one

of the techniques used in existing studies to harness the implicit information of a software

from the graph theory’s point of view. The results of the graph theoretical analysis can be

Univ
ers

ity
 of

 M
ala

ya

51

subsequently converted into implicit clustering constraints to help in improving the

accuracy of clustering results. However, the representation of nodes and edges of a

software-based complex network for the purpose of measuring complexity and their

relationships is not explicitly addressed in existing studies.

Most of the existing works that represent software systems using complex network only

focus on the static representation of the software, i.e. using undirected and un-weighted

complex network. Although there are several studies that attempted to use weighted

network to represent software systems, almost all of them depend solely on counting the

frequency of interactions among software entities, which only address the static behaviour

of software systems and might not be representative enough to illustrate the dynamic

dependency relationship of real-world software systems. The frequencies of interactions

are highly dependent on the programming languages used and the programming skills

possessed by the software developers. Valuable information such as quality and

complexities of software components might be lost in the transformation process.

Furthermore, fulfilment of the derived explicit and implicit clustering constraints in

agglomerative hierarchical clustering is a challenging task due to several reasons. Firstly,

due to the hierarchical structure of agglomerative clustering, fulfilment of clustering

constraints is relatively more complex and hard to execute compared to partitional

clustering. As shown in Figure 2.1, a dendrogram needs to be cut at a certain level to form

several disjoint clusters. Although there are several ways to enforce constraints, (such as

distance based and constraint based method discussed in Section 2.4.2) a proper

mechanism is needed to ensure that all the given must-link or cannot-link constraints are

fulfilled at any cutting point. Besides that, as discussed by Davidson and Ravi (2009),

manipulating with the clustering assignments without proper planning might lead to

Univ
ers

ity
 of

 M
ala

ya

52

“dead-end” situation where the clustering process might end prematurely because no pair

of clusters can be merged anymore to obtain a feasible clustering result.

Even if the problem of “dead-end” can be resolved, it is almost impossible to fulfil each

and every clustering constraint given by the domain expert since conflicting constraints

might occur when considering both must-link and cannot-link constraints. To provide a

simple illustration, given that there are two must-link constraints and one cannot-link

constraint such that

 Class A must-link Class B

 Class B must link Class C

 Class A cannot-link Class C

Based on the given examples, it is obvious that the two must-link constraints are

conflicting with the cannot-link constraints. This is because upon fulfilling the two must-

link constraints, all three classes A, B, and C will be merged into the same cluster, causing

the cannot-link constraint to be unrealisable. This is considered a NP-Complete clustering

problem, as mentioned in Section 2.4.3. The problem can be mitigated if software

maintainers can know beforehand which clustering constraints should be prioritised, and

which constraints are optional to be fulfilled.

Furthermore, most of the existing studies only focus on a specific programming language

when analysing the structure and behaviour of software systems. For instance, the work

by Sun et al. (2009) only focused on C++ while the work by Wang and Lu (2012) focused

on software written in Java. Since the structure, method declaration, and interactions of

methods behave slightly different across different programming languages, the finding

Univ
ers

ity
 of

 M
ala

ya

53

based on one particular programming language cannot be applied to software written in

other languages.

In terms of evaluation, it is discovered that most of the existing studies seek advice from

the original software designers to evaluate the quality of clustering results. In order to

evaluate the accuracy of the clustering results, ground truth needs to be identified

beforehand to serve as a reference model. However, if the selected test subjects are open-

source software systems, it is almost impossible to seek advice from the original designers

since most the design decisions of open-source projects are done in an ad-hoc manner.

Ground truth, on the other hand, is hard to retrieve if the software systems are not well

documented. Therefore, a proper method to evaluate the effectiveness of the proposed

constrained clustering approach needs to be devised.

In summary, representing software systems using weighted complex networks in

combination with graph theory is an effective method to understand the implicit structure,

behaviour, and complexity of software components and their relationships. The results of

the graph theoretical analysis can be subsequently translated into implicit clustering

constraints. Combined with the explicit constraints derived from domain experts, both the

implicit and explicit constraints are beneficial to software maintainers by providing a

means to guide and improve the results of software clustering. However, there are very

limited studies that focus on applying clustering constraints onto software clustering and

representing software systems using weighted complex networks to extract candidate

clustering constraints.

Univ
ers

ity
 of

 M
ala

ya

54

2.7 Chapter Summary

This chapter has presented the literature of software remodularisation, software

clustering, constrained clustering and also representing software systems using complex

networks. A thorough review on the literature is done based on the approaches used to

achieve better software modularity. Nonetheless, several issues and challenges are raised

based on the study of existing literature.

Univ
ers

ity
 of

 M
ala

ya

55

CHAPTER 3: RESEARCH METHODOLOGY

This chapter discusses the research methodology used in this research. This thesis follows

an empirical research methodology that consists of four phases, namely the Formulation

Phase, Design and Conceptualisation Phase, Experimentation Phase, and Analysis and

Interpretation Phase. A constrained clustering approach for clustering OO software

systems is proposed in this thesis. The proposed approach is facilitated by two methods

and one technique, where the first method uses complex network to represent an OO

software system with the aid of a unique weighting mechanism to construct a weighted

complex network for the OO software system. Next, a technique to automatically derive

clustering constraints from the constructed weighted complex network and evaluate the

software system based on graph theoretical analysis of the weighted complex network is

introduced. Following that, a method to maximise the fulfilment of all the identified

clustering constraints is presented to improve the accuracy and scalability of the

clustering approach. Finally, a high-level abstraction of the software design with highly

cohesive clusters is formed based on the clustering constraints derived from the implicit

structure of the software.

3.1 Research Approach

The research starts with investigating existing works related to software clustering in

order to identify the research gap. Subsequently, research questions and objectives are

refined and reformulated based on the in-depth literature review. A constrained clustering

approach supported by several methods and techniques is introduced to address the

research questions and to help achieve the research objectives. Source code of an OO

software system is first converted into UML class diagrams. Next, information from the

Univ
ers

ity
 of

 M
ala

ya

56

UML class diagrams are extracted to measure the cohesion strength among related

classes, before transforming them into a weighted complex network. Graph theory metrics

are subsequently applied onto the transformed weighted complex network so that the

structure, behaviour, as well as complexity of software components and their relationships

can be analysed. The result of the analysis is then converted into sets of implicit clustering

constraints. If domain experts are available, they are allowed to explicitly provide

feedbacks and opinions that will help in forming the explicit clustering constraints.

Guided by the explicit and implicit clustering constraints derived from the previous steps,

a constrained clustering algorithm is proposed to progressively derive cohesive clusters

that are representative enough to serve as a high-level abstraction of the software design.

Design and planning of the experiment are carried out before evaluating the proposed

approach using 40 open-source OO software systems. Finally, the experimental data are

analysed and interpreted to draw a general conclusion of the results. The overall

framework of the research methodology is shown in Figure 3.1, where each phase consists

of specific steps of the methodology.

3.2 Formulation Phase

The formulation phase consists of four major steps, beginning with the formulation of

initial research questions and objectives. Next, existing studies related to software

clustering, constrained clustering, and representation of software systems using weighted

and un-weighted complex networks are investigated. Based on the investigation, the

research questions and objectives are refined and reformulated. The following sub-

sections discuss the specific steps involved in the formulation phase.

3.2.1 Formulation of Initial Research Questions and Objectives

Univ
ers

ity
 of

 M
ala

ya

57

The initial research problems are formulated in order to identify the scope of this research.

The motivation behind conducting this research mainly is to help in recovering a high-

level software design of poorly designed or poorly documented OO software systems

through constrained clustering. This thesis focuses on utilising a constrained clustering

approach that accepts pairwise constraints derived by domain experts or from the implicit

structure of an OO software system to improve the accuracy and scalability of software

clustering in deriving clusters with strong intra-cluster cohesiveness and inter-cluster

separateness. The derived implicit and explicit constraints are formulated in the form of

pairwise constraints, such that for a pair of classes (𝑖, 𝑗), where if (𝑖, 𝑗) ∈

𝑀𝐿 (respectively, if (𝑖, 𝑗) ∈ 𝐶𝐿), then (𝑖, 𝑗) must belong to the same cluster (respectively,

to different clusters).

Univ
ers

ity
 of

 M
ala

ya

58

Study of

Existing

Literature

Refining

Research

Questions

Refining

Research

Objectives

Experiment Design

Selection of

Subjects

Selection of

Variables

Proposed Constrained

Clustering Approach

Proposed Method to

Maximise Fulfilment of

Constraints during

Clustering

Proposed Technique for

Deriving Clustering

Constraints from Graph

Theoretical Analysis of

Weighted Complex

Network

Formulation of

Initial Research

Questions and

Objectives

Reformulation of Research

Questions and Objectives

Datasets

Artificial

Constraints

Real

Constraints

Open-

Source OO

Software

Systems

Implementation and

Environments

Process Flow

Output Flow

Input Flow

Legends:

Formulation of

Research

Hypotheses

Validity evaluation

Evaluation of

Experiment Data

Validation of

Findings Against

Prior Studies

Accuracy

Comparison

Correlation

Analysis

Experiment

Data

Interpretation and

Conclusion

Validate Research

Hypothesis

Proposed Method to

Represent OO Software

Systems Using Weighted

Complex Network

Derived

Clustering

Constraints

Hard Constraints

Soft Constraints

Process

Input/Output

Stakeholders

with Prior

Knowledge

Experiment

Planning

Figure 3.1: Research methodology framework

Univ
ers

ity
 of

 M
ala

ya

59

3.2.2 Study of Existing Literature

Existing studies in the area of constrained agglomerative hierarchical software clustering

and representing software systems using un-weighted complex networks (LaBelle &

Wallingford, 2004; Myers, 2003; Valverde & Solé, 2003) (Hamilton & Danicic, 2012;

Hyland-Wood et al., 2006; Jenkins & Kirk, 2007; Taube-Schock et al., 2011) and

weighted complex networks (Giulio Concas et al., 2007; Lan et al., 2010; Ma et al., 2010;

Sun et al., 2009; Wang & Lu, 2012) are investigated. The challenges and issues of existing

studies are highlighted in Section 2.6. Based on the studies, it can be summarised that

although the idea of constrained agglomerative hierarchical software clustering is

technically feasible to be used for helping in recovering a high-level abstraction view of

OO software design, there are not many studies that explicitly discuss how to extract

clustering constraints from software systems. One of the main reasons is because

clustering constraints are not readily available most of the time and it is difficult to derive

clustering constraints directly from the software itself (Harman et al., 2012). Although it

is possible that software maintainers or domain experts may have prior knowledge on the

software to be maintained, manually retrieving clustering constraints from them is a

human-intensive and challenging task because there is a huge number of possible

constraints configurations involving pairs of classes. This leads to the emergence of using

weighted complex network to gain a high-level understanding of software systems. The

analysis of the existing literature provides a wider perspective of the problems in

constrained agglomerative hierarchical software clustering and representation of software

systems using weighted complex networks.

3.2.3 Reformulation of Research Questions and Objectives

Univ
ers

ity
 of

 M
ala

ya

60

Based on the reviewed studies, the research questions are refined to focus on the

challenges and issues in constrained agglomerative hierarchical software clustering. A

total of six main research questions (RQ) are raised in this thesis.

RQ1: How to represent OO software systems using weighted complex networks?

 A way to represent OO software systems using weighted complex networks is part

of the steps involved in the proposed constrained clustering approach before graph

theoretical analysis can be performed to derive implicit clustering constraints.

Hence this research question is aligned to RO1.

RQ2: When representing software systems using weighted complex networks, which

measure constructs are capable of quantifying the weights of nodes and edges, while

preserving the quality aspect of the software?

 This research question is aligned to RO2, where a method to automatically derive

implicit clustering constraints is proposed with the aid of graph theoretical

analysis. In order to ensure that the quality aspect of the software can be preserved,

proper measure constructs need to be chosen to quantify the weights of nodes and

edges of software-based weighted complex network.

RQ3: Is the constructed weighted complex network able to demonstrate the behaviour of

real-world complex network commonly defined in existing studies?

 This research question is aligned to RO1 and RO2 to avoid intentional bias in the

experimental results when constructing weighted complex networks using the

proposed approach.

Univ
ers

ity
 of

 M
ala

ya

61

RQ4: How to effectively derive explicit constraints from domain experts, and implicit

clustering constraints from the software itself?

 This research question is aligned to RO2 and RO3, which focus on how to derive

clustering constraints from multiple sources of information, i.e. from the domain

experts and from the implicit structure of the software system.

RQ5: How to handle different types of clustering constraints with various levels of

importance, which might potentially conflict with each other and lead to the NP-Complete

problem?

 This research question is aligned to RO4, in order to provide a way to maximise

the fulfilment of explicit and implicit clustering constraints derived from domain

experts and the implicit structure of the software itself.

RQ6: How to maximise the fulfilment of constraints during clustering without risking the

“dead-end” situation as discussed by Davidson and Ravi (2009)?

 This research question is aligned to RO5, where the proposed approach will be

evaluated using open-source OO software systems to verify if the fulfilment of

constraints during clustering can be maximised without risking the “dead-end”

situation.

The final stage of the Formulation Phase ends with refinement and reformulation of

research objectives in order to solve the problems raised in the above-mentioned refined

research questions. Sub-objectives based on the initial research objectives raised in

Section 1.3 are formulated as follows.

Univ
ers

ity
 of

 M
ala

ya

62

Objective 1: To propose a constrained clustering approach with the aim to recover a high-

level abstraction of OO software design that is coherent and consistent with the actual

code structure.

Sub-objective 1.1: To develop a method for representing OO software systems using

weighted complex network.

 Since the focus of this thesis is to recover a high-level abstraction of the

software design of poorly documented OO software systems, classes are more

suitable to be used as clustering entities where each class is represented as a

node, while relationships between classes are represented as edges. The work

by Wang and Lu (2012) and Ma et al. (2010) found that weighted

representation of nodes and edges of a complex network is more capable of

capturing the behaviour and characteristics of real-world software systems.

However, there is a lack of research that distinguishes different types of

relationships connecting two classes. Instead, most studies that use UML class

diagram as a basis for representing complex networks do not differentiate

between the types of relationships, but assume that all relationships are

equivalent. As such, semantic information between classes may be lost when

transforming UML class diagrams into complex networks. Thus, the

complexity of classes and relationships must be taken into consideration when

representing an OO software system by using a weighted complex network.

In order to limit the scope of this research, only the maintainability and

reliability of OO software systems are taken into consideration because these

two software qualities contribute directly toward measuring the quality of

clustering results.

Univ
ers

ity
 of

 M
ala

ya

63

Sub-objective 1.2: To identify appropriate measure constructs that are capable of

quantifying maintainability and reliability of software systems represented in weighted

complex networks.

 Since the focus of this research is to create a high-level abstraction view of the

software design that is coherent with the actual code structure, the constructed

weighted complex network must be representative enough to demonstrate the

modularity of the analysed software systems. Maintainability and reliability

for instance, are two software qualities that contribute directly toward

estimating the modularity of a software system. Therefore, suitable measure

constructs focusing on maintainability and reliability need to be chosen to

quantify the weights of edges and nodes in weighted complex networks.

Sub-objective 1.3: To investigate the correlation between the statistical patterns of real-

world OO software systems and their level of maintenance efforts.

 As discussed by Giulio Concas et al. (2007), several complex network

properties can be observed from software-based complex networks, such as

the power law and small world properties. However, the work by Concas et

al. was only tested on single software, called the VisualWorks Smalltalk,

which limits the generalisation of the research findings. In this thesis, the

proposed approach must be designed to be generic and flexible enough to be

applied on any kind of OO software systems. Since the selection of test

subjects are closely related to the generalisation of the results, they must be

representative enough to reflect the behaviour of different OO software

systems (Wohlin et al., 2012).

Univ
ers

ity
 of

 M
ala

ya

64

Objective 2: To propose a method that helps in deriving implicit clustering constraints

from the implicit structure of OO software systems with the aid of weighted complex

network and graph theoretical analysis.

 Several graph theory metrics, such as in-degree, out-degree, average weighted

degree, and average shortest path length, are able to reveal the quality of

software systems from a graph theory’s point of view. Detailed discussions

have been presented in Section 2.4. A way to convert the results of graph

theoretical analysis into implicit clustering constraints needs to be identified.

Objective 3: To propose a method that is capable of deriving explicit clustering

constraints from domain experts or software developers who have prior knowledge

regarding the software systems.

 Explicit constraints can be derived explicitly from domain experts or software

developers by asking them to make judgment whether two classes should or

should not be clustered into the same group. However, there are certain cases

where the domain experts are not assertive enough to judge whether the given

explicit clustering constraints are absolute, especially in the domain of

software engineering. For instance, software developers who were involved in

the early stage of software design might provide some explicit constraints

about the software to be maintained. However, such constraints might not be

valid anymore after several phases of software updates and changes. Thus, the

explicit constraints given by the aforementioned domain experts might be

misleading or contain erroneous information. Therefore, a proper method is

needed to distinguish between absolute constraints and optional constraints,

and subsequently fulfil those explicit constraints according to their level of

importance.

Univ
ers

ity
 of

 M
ala

ya

65

Objective 4: To formulate an appropriate objective function that maximises the fulfilment

of explicit and implicit constraints, while penalising violation of the constraints.

 Based on the discussed studies, clustering constraints can be originated from

two sources of information, i.e. explicit feedbacks from the domain experts or

implicit structure of the software itself. However, how to systematically

identify and fulfil the clustering constraints remains as a research problem.

 Based on the work by (Ares et al., 2012; Basu et al., 2004; Hong & Yiu-Ming,

2012), the authors discussed that given enough information, clustering

constraints can be categorised into hard and soft constraints that vary

according to their level of importance. Subsequently, an objective function

can be defined in order to maximise the fulfilment of all the hard and soft

constraints.

 This objective involves identification of an appropriate technique to categorise

clustering constraints based on their level of importance, and remove

conflicting constraints. As discussed in Section 2.3.5, the following steps

summarise the agglomerative hierarchical clustering algorithm.

Univ
ers

ity
 of

 M
ala

ya

66

Input: Set 𝑇 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} of entities.

Output: Dendrogram

1. Each entity 𝑥𝑖 forms an initial cluster 𝐺𝑖. The total number of clusters K = n.

For each pair of clusters 𝐺𝑖 and 𝐺𝑗 , 𝑖 ≠ 𝑗, the distance between 𝐺𝑖 and 𝐺𝑗 is

denoted by 𝑑(𝐺𝑖, 𝐺𝑗).

2. Find a pair of clusters with minimum distance, in {𝑑(𝐺𝑖, 𝐺𝑗)} :

Let 𝑑(𝐺𝑎, 𝐺𝑏) = 𝑚𝑖𝑛 {𝑑(𝐺𝑖, 𝐺𝑗)} ,where 𝑚𝑖𝑛 returns the minimum

distance value over the set of candidates in {𝑑(𝐺𝑖, 𝐺𝑗)}.

Merge 𝐺𝑐 = 𝐺𝑎 ∪ 𝐺𝑏 and reduce the number of clusters K= K-1.

3. If K = 1, stop the iteration; else update distance 𝑑(𝐺𝑐, 𝐺𝑗) , for all other

clusters 𝐺𝑗. (Go to Step 2)

 The “dead-end” situation would occur in Step 2 if there is no pair of clusters with

minimum distance that can be found which causes the clustering process to stop

prematurely. An appropriate method needs to be identified in order to train the

distance matrix prior to merging of cluster entities, in order to avoid the “dead-

end” situation.

Objective 5: To evaluate the accuracy and scalability of the proposed approach using

open-source OO software systems.

 Open-source software systems written in Java programming language are chosen

in this thesis. In order to improve the generality of the research findings, the

chosen test subjects must vary according to their application domains, number of

classes, and total lines of codes.

Univ
ers

ity
 of

 M
ala

ya

67

3.3 Conceptualisation and Design Phase

In this phase, a constrained clustering approach is conceptualised and designed. The

constrained clustering approach is based on two methods to help derive clustering

constraints and to maximise its fulfilment based on an objective function. The design

decision as well as the steps involved in each method is discussed in detail in Chapter 4

and 5.

In order to achieve the research objectives (RO), a method along with a technique is

proposed as illustrated in Figure 3.2. The first three steps illustrate the method to represent

OO software systems using weighted complex network. Next, based on the constructed

weighted complex network, a technique to derive clustering constraints based on graph

theoretical analysis of the constructed network is introduced in Step 4. Collectively, both

method and technique introduced are responsible for addressing RO1, RO2 and RO3. In

Steps 1-3, the proposed method involves several steps to transform an OO software

system into its respective weighted complex network. Next, the transformed weighted

complex network is analysed and evaluated with respect to maintainability and reliability,

and the results of the analysis are converted into clustering constraints in Step 4.

3.3.1 Proposed Method to Represent OO Software Systems Using Weighted

Complex Network

The steps of the proposed method are briefly explained below.

Univ
ers

ity
 of

 M
ala

ya

68

Figure 3.2: Proposed method to represent OO software systems using weighted complex

network along with a technique to derive implicit clustering constraints based on the

constructed network.

Univ
ers

ity
 of

 M
ala

ya

69

Step 1: The software maintainer can provide either the source code or UML class

diagrams as the input. If raw source code is the only reliable resource available, it is

transformed into UML class diagrams using an off-the-shelf round-trip engineering tool

such as Visual Paradigm or Eclipse Modelling Tool.

Step 2: The complexity of UML classes and their associated UML relationships are

studied. Complexity of UML classes is quantified with the aid of established software

metrics (Martin, 1994; McCabe, 1976), while the relationships are quantified based on an

ordinal scale that ranks the relative complexity of each relationship. The motivation and

justification of this step are discussed in the subsequent chapter.

Step 3: Next, based on the analysis performed in Step 2, the UML class diagrams are

converted into a weighted and directed complex network, where each UML class is

represented as a node, while each relationship is represented as an edge that connects a

pair of nodes. Weighted and directed network is more suitable to represent the asymmetric

behaviour of OO software systems, as discussed in Section 2.5.

3.3.2 Proposed Technique for Deriving Implicit Clustering Constraints based on

Graph Theoretical Analysis of Weighted Complex Network

Next, based on the weighted complex network generated from Steps 1-3, a technique to

derive implicit clustering constraints using graph theoretical analysis of the constructed

network is introduced in Step 4 in Figure 3.2.

Step 4: Several graph theory metrics are chosen to analyse the software from a graph’s

theoretical point of view. The graph theoretical analysis is used to aid in providing a high-

Univ
ers

ity
 of

 M
ala

ya

70

level understanding of the software and evaluate it from the quality aspects of

maintainability and reliability. Finally, the results are translated into a set of implicit

clustering constraints that aid in the subsequent steps of the constrained clustering

approach.

3.3.3 Proposed Method to Maximise Fulfilment of Implicit and Explicit Clustering

Constraints

The method proposed in Figure 3.3 is responsible for fulfilling RO4 raised in Section

3.2.3, which is to maximise the fulfilment of clustering constraints. Figure 3.3 depicts the

steps involved in the proposed method.

Step 1: Clustering constraints are gathered from two main sources: from the graph

theoretical analysis of the software (implicit constraints) and from the domain experts

who possess domain knowledge of the software (explicit constraints). Clustering

constraints gathered from the graph theoretical analysis are categorised as hard constraints

because they are derived from one of the most reliable sources of information (the

structure and behaviour of source code). Clustering constraints from domain experts, on

the other hand, are categorised as soft constraints because this set of constraints are

usually imprecise and fuzzy in nature, which might contain erroneous information

(Bagheri, Di Noia, Ragone, & Gasevic, 2010). A clustering result would still be

acceptable if some of the soft constraints are not fulfilled, with the condition that it falls

within an acceptable threshold. Fulfilling a handful of higher important soft constraints

might overshadow the fulfilment of several less important ones. Thus, soft constraints

must be prioritised and ranked based on their level of importance in order to create a

Univ
ers

ity
 of

 M
ala

ya

71

baseline for the said threshold. The soft constraints are prioritised and ranked using Multi

Criteria Decision Making Method (MCDM).

Step 2: Clustering constraints that are conflicting with each other are identified and

removed to prevent the NP-Complete problem. The penalty score for violating each soft

constraint is formulated based on the result of MCDM in the previous step. The penalty

score allows software maintainers to evaluate the quality of each clustering result with

respect to the fulfilment of soft constraints.

Step 3: The similarity matrix of the associated hard constraints is modified using the

distance-based method proposed by (Klein et al., 2002) in order to prevent the “dead-end”

situation. Based on the modified similarity matrix, the associated dendrogram is generated

using conventional agglomerative hierarchical clustering algorithm.

Step 4: The dendrogram is cut at several points to create several sets of clustering results.

Each clustering result is evaluated based on intra-cluster cohesion, inter-cluster

separateness, and the number of fulfilled soft constraints. Based on the evaluation criteria,

the most optimum cutting point is chosen to recover a high-level abstraction of the

software design. The final results are illustrated in several disjoint sets of clusters, where

each set of clusters bears a resemblance to one subsystem. The clustering results can help

in remodularisation of software systems through better comprehension of software

design, and alert software maintainers regarding the risk of classes that violate common

software design principles.

Next, based on the methods proposed in the Conceptualisation and Design phase, a proper

experimental plan is drafted to evaluate its effectiveness.

Univ
ers

ity
 of

 M
ala

ya

72

Figure 3.3: Proposed method to maximise fulfilment of software clustering constraints

Univ
ers

ity
 of

 M
ala

ya

73

3.4 Experimentation Phase

Due to the fact that this research follows an experimental and exploratory study, the

selection of subjects and variables as part of the experiment design must be representative

of the real-world scenario to draw a general conclusion. Therefore, 40 open-source OO

software systems that vary according to the size of project and application domain are

chosen in order to address RO5. Besides, two types of clustering constraints including

real constraints derived from the implicit structure of the software systems and artificial

constraints are used for evaluation purposes. The artificial constraints are used to test the

effectiveness of the proposed method when handling erroneous information that might

compromise the accuracy of the clustering results. Besides the two aspects of the

experiment design, two research hypotheses are defined to validate between the

speculated observation and the results of the proposed constrained clustering approach.

Finally, several threats to internal validity and external validity, along with the

countermeasures to mitigate these threats are discussed.

Based on the experimental design and setup, the proposed methods are tested on the 40

open-source software systems. The resulting experimental data are the final output in the

Experimentation Phase.

3.5 Analysis and Interpretation Phase

The work by Anquetil and Lethbridge (1999b) discussed that instead of recovering a

software system’s architecture, clustering techniques actually create a new one based on

the parameters and settings used by the clustering algorithm. Thus, a way to evaluate the

effectiveness of the produced result is needed. MoJoFM is a well-established technique

Univ
ers

ity
 of

 M
ala

ya

74

used to compare the similarity between the clustering results and gold standard (Wen &

Tzerpos, 2004). Gold standard in this context refers to a known good clustering result or

reliable reference that can act as a baseline comparison. High similarity between the

clustering result and the gold standard is more desirable as it indicates that the produced

clustering result resembles the gold standard. In order to evaluate its effectiveness, the

results of the proposed constrained clustering approach are compared against prior studies

related to software clustering and also the gold standard. MoJoFM is used as a tool to

evaluate the accuracy of the proposed constrained clustering approach. Furthermore,

several descriptive statistics and plotting techniques are adopted to find the correlation

between several qualities attributes of software systems (in terms of maintainability and

reliability) and the findings of graph theoretical analysis. The hypotheses defined in the

previous phase are also validated through the experimental data. Finally, the conclusion

is presented and discussed.

3.6 Chapter Summary

This chapter has explained the research methodology of this research including the

proposed constrained clustering approach, guided by a technique and two supporting

methods. The methods and technique are proposed based on the research questions

objectives discussed in Section 3.2.3. The first method attempts to transform an OO

software system into a weighted complex network, while preserving the maintainability

and reliability aspects of the analysed software. Next, a technique is introduced by

applying several graph theory metrics that are related to these software quality attributes

onto the transformed weighted complex network in order to identify highly reusable

classes, important classes that contain the main functional modules, classes that are more

prone to bugs and errors, and the static and dynamic relationships between all the classes.

Univ
ers

ity
 of

 M
ala

ya

75

The graph theoretical analyses of the software are then translated into clustering

constraints, which are used as the input for the second proposed method. The aim of the

second method is to maximise the fulfilment of different clustering constraints (hard and

soft constraints), while avoiding the NP-Complete and “dead-end” problems stated in the

prior studies. In-depth details of all the proposed methods and technique will be discussed

in the subsequent chapters. Furthermore, the experimental design and evaluation

strategies will also be discussed in-depth in a later chapter. A wide range of datasets

including 40 open-source software systems, real and artificial clustering constraints were

used to evaluate the quality of the proposed constrained clustering approach.

Univ
ers

ity
 of

 M
ala

ya

76

CHAPTER 4: DERIVING IMPLICIT CLUSTERING CONSTRAINTS FROM

WEIGHTED COMPLEX NETWORK TRANSFORMED FROM UML

DIAGRAMS

In this chapter, a method to represent an OO software system into a weighted complex

network is proposed. With the aid of the weighted complex network, the method aims to

analyse the software system from the aspect of maintainability and reliability.

Maintainability and reliability are chosen in this research because they contribute directly

toward estimating the modularity of classes (nodes of the constructed weighted complex

network) that can aid in revealing some implicit information regarding the interactions

among all the associated classes. Next, a technique to automatically derive implicit

clustering constraints is introduced by applying several graph theory metrics onto the

constructed weighted complex network. With the aid of these metrics, software

maintainers are able to analyse the software from a graph’s theoretical point-of-view in

order to reveal some extra deterministic information about the analysed software. Finally,

the results from the analysis are converted into implicit clustering constraints.

4.1 Representing Software Systems with Weighted and Directed Complex

Networks

Based on the current research scenario, the approaches for representing nodes and edges

in weighted complex networks are still not well defined for software based on UML class

diagrams. The edges signify direct relationships between two nodes representing classes

where the edges can be associated with some weightage values to denote the

communicational cohesion of the nodes connected by the edges. Communicational

cohesion in this context refers to classes that share similar characteristics and behaviour,

Univ
ers

ity
 of

 M
ala

ya

77

or classes that perform a certain operation on the same input or output data (Stevens,

Myers, & Constantine, 1979). The notion of communicational cohesion in complex

network can be associated with UML class diagram, where two classes with high

communicational cohesion indicate that they share similar functionalities and there is a

high tendency for these two classes to be placed into the same software package.

For instance, in the work by Wang et al., edges are weighted based on the number of

method callings between classes. A higher value of weight associated to an edge signifies

a higher communicational cohesion between the associated classes because it is an

indication that these two classes might belong to the same package. On the other hand,

one can also use distance as the basis to derive the weights instead of using

communicational cohesion to indicate the dissimilarity between the associated classes. A

typical way to convert communicational cohesion to distance measure is by calculating

the inverse of the strength of communicational cohesion (Cilibrasi & Vitanyi, 2007). For

example, if the weight of an edge (in terms of communicational cohesion) between two

nodes is in the range of [0, 1], one can convert it to a distance value by computing 1–

strength of communicational cohesion. There are diverse ways to transform the

information observed from UML class diagrams.

The greater the weight of an edge (in terms of communicational cohesion), the more

dependency exists between the two classes. For instance, given two classes A and B,

where there exists one method in class A that passes messages associated to three methods

in class B. Therefore, the weight of the edge that is linking classes A and B is assigned as

3. Such approach of transforming software systems into weighted complex networks can

be observed in the work by (Guoai, Yang, Fanfan, Aiguo, & Miao, 2008; Yang, Guoai,

Yixian, Xinxin, & Shize, 2010; Yang, Jia, Shuai, Guoai, & Gong, 2013). However, certain

Univ
ers

ity
 of

 M
ala

ya

78

semantic behaviour and relationships of class diagrams cannot be captured using this

naive transformation. For example, classes related with inheritance relationships and

classes related with common association, in this case, are assumed to have equal strength

of communicational cohesion, which is illogical from the software engineer’s point of

view.

As mentioned earlier, the work by Ma et al. (2010) explores the possibility of representing

a UML class diagram as a directed complex network to analyse the relationships between

classes at different levels of abstraction. However, the construction of edges does not

consider the different kinds of relationships connecting multiple classes or the weighted

values of edges. Instead, the authors assumed those edges to be equivalent weight.

The same assumption can also be observed in other works that relate software with

complex network (Giulio Concas et al., 2007; Myers, 2003; Valverde & Solé, 2003). In

the work by Giulio Concas et al. (2007), Myers (2003), Valverde & Solé, (2003), all kinds

of interclass relationships such as inheritance, composition, and generalisation are

simplified and represented as common dependencies. This can be a poor assumption

because different types of relationships in software such as dependency, association,

composition, and aggregation denote different degrees of communicational cohesion and

structural complexity. Figure 4.1a shows a scenario where two classes are related with

generalisation, and Figure 4.1b shows the same classes related with common association.

In general, classes that are related with generalisation signify a strong parent and child

class relationship. This is because any changes in the parent class will directly affect the

child class. Removal of the parent class would render the child class unusable. Classes

related with generalisation should have a higher degree of communicational cohesion

when compared to classes related with common association. Thus, the strength of

Univ
ers

ity
 of

 M
ala

ya

79

communicational cohesion between classes in Figure 4a should behave differently when

compared to that in Figure 4b. In this case, this is shown in the transformed nodes and

edges with random weighted values of 0.8 and 0.2 respectively.

Figure 4.1: Example of UML classes related with different relationships

In addition, the complexity of a class can also affect the complexity of a relationship. For

instance, two simple classes related with common association should have a different

strength of communicational cohesion when compared to two complex classes related

with the same type of relationship. An example is shown in Figure 4.2 to depict the

aforementioned scenario. Given two complex classes shown in Figure 4.2b that consist

of hundreds of methods and variables. If the interactions between these classes are simply

passing a few parameters, then the strength of communicational cohesion will be

insignificant. On the other hand, if the classes are very well designed, simple and only

contain two methods and variables, as depicted in Figure 4.2a, then the strength of

communicational cohesion between the two classes will be much stronger.

Univ
ers

ity
 of

 M
ala

ya

80

+getName()
+getAge()

Class 1

-name
-age

+getID()
+getCourse()

Class 2

-ID
-course

+getName()
+getAge()
+getAddress()
+getContact()
+getPhoto()
+getRole()
+....()

Class 1

-name
-age
-address
-contact
-photo
-role
-....

+getID()
+getCourse()
+getFees()
+getCreditHour()
+getSemester()
+....()

Class 2

-ID
-course
-fees
-creditHour
-semester
-....

a.)

b.)

Simple classes

Complex
classes

Figure 4.2: Example of UML classes with different class complexity

Thus, in general, the type of relationship and complexity of classes can influence the

degree of communicational cohesion between classes. This is important because the

degree of communicational cohesion can subsequently affect the weights of edges in

complex networks. Based on the studies in the previous chapter, there is a lack of attention

in formulating a proper way to calculate the weights of edges when transforming UML

class diagrams into weighted complex networks.

4.2 Weighting Nodes and Edges in UML Class Diagram-based Complex Networks

A method is proposed to represent the weights of nodes and edges of a complex network

transformed from UML Class diagrams. If only the raw source code is available, software

maintainers can convert the code into UML Class diagrams using an off-the-shelf round-

trip engineering tool for the ease of conversion. Justifications of the selected measure

constructs are discussed before introducing the proposed method.

Univ
ers

ity
 of

 M
ala

ya

81

4.2.1 Measuring the Structural Complexity of UML Relationships and Classes

In the work by Dazhou, Baowen, Jianjiang, and Chu (2004), the authors defined

“structural complexity” as the global metric to evaluate the complexity of UML class

diagrams. According to the authors, structural complexity can integrate multiple class

diagram metrics, such as metrics to evaluate individual classes, metrics to evaluate

interaction between classes, and metrics to evaluate the whole class diagram.

In this study, the proposed weighting mechanism is based on two parameters, the

complexity of classes and the complexity of relationships. Relationships (dependency,

realisation, association, etc.) are taken into consideration because each end of the

relationship must be linked to a certain class. This implies that the complexity of

relationship has direct implication toward measuring the complexity of classes. In order

to measure the complexity of relationships, the authors introduced a conceptual idea to

assign different weightage depending on the type of relationship as shown in Table 4.1.

Table 4.1: Ordering of class diagram relationships proposed by Dazhou et al. (2004)

No. Relation Weight

1 Dependency H1

2 Common association H2

3 Qualified association H3

4 Association class H4

5 Aggregation association H5

6 Composition association H6

7 Generalisation (concrete parent) H7

8 Binding H8

9 Generalisation (abstract parent) H9

10 Realise H10

The table is arranged in an ascending order of weight values. Since the complexities of

different relationships are relative with each other, arbitrary values of 1–10 are

Univ
ers

ity
 of

 M
ala

ya

82

respectively given to H1-H10. Based on this ordinal scale, software maintainers can

compare the complexities between different kinds of relationships in UML class diagram.

Empirical testing using real open-source software has been demonstrated in (Chong et al.,

2013) based on the ranking in Table 4.1.

The work by Hu, Fang, Lu, Zhao, and Qin (2012) also proposes to rank UML classes and

relationships using an ordinal scale based on PageRank algorithm. The purpose of the

ranking is to differentiate the importance of associated UML classes based on their

inherent characteristics and relationships with other classes. However, Fang et al. only

addressed three types of UML relationships in the following order:

Composition > Aggregation > Association

Similarly the research conducted by (Briand, Labiche, & Yihong, 2001, 2003) also

involves the ranking of relationships in UML class diagram. Briand et al. mentioned that

one of the most important problems during integrating and testing OO software is to

decide the order of class integration. The authors proposed a strategy to minimize the

number of test stubs to be produced during software integration and testing phase.

Relationships are ranked based on their complexities, where the most complex

relationships (i.e. inheritance relationships) are integrated first. Common associations are

perceived as the weakest links in class diagram and placed at the lowest hierarchy during

software integration and testing phase. The discussed works (Briand et al., 2001, 2003;

Hu et al., 2012) only compare three major types of relationships, namely inheritance

(generalisation and realisation), composition (aggregation), and common association. The

concept of ordering of relationships in UML class diagram based on their complexities is

similar to the aforementioned work. Thus, the notion of ordering UML class relationships

Univ
ers

ity
 of

 M
ala

ya

83

in an ordinal scale, and subsequently identifying the importance or complexity of classes,

is suitable to be used in this research as a basis of measuring the weights of the edges.

However, if multiple classes are related with the same kind of relationships, the weighting

mechanism must be able to distinguish this difference. For example, two relatively simple

classes linked with generalisation (H7) should exhibit a different weightage when

compared to two complicated classes linked with the same type of relationship. Thus, the

complexity of classes plays an important role to make a distinction between these two

cases. However, the proposed structural complexity metric in Dazhou et al. (2004) is a

conceptual idea without a proper evaluation.

This thesis attempts to integrate the concept of structural complexity in order to convert

UML class diagrams into weighted complex networks. The OO abstraction from a UML

class diagram will be represented as nodes and edges in a weighted complex network.

The weight of an edge is calculated based on the strength of communicational cohesion

between the connected nodes, which will be discussed in the next section. The

directionality of edges also plays an important role to indicate a one-way relationship

from the origin node to the terminus node, not vice versa. Thus, it is important that the

directionality of edges is captured and analysed properly in order to provide a better

understanding of the analysed software.

 Univ
ers

ity
 of

 M
ala

ya

84

Figure 4.3: Illustration of converting a UML class diagram into a weighted complex

network

As shown in Figure 4.3, a class diagram, 𝐷 = [𝐷1, 𝐷2, ⋯𝐷𝑛], consists of a set of n classes,

𝐷1, 𝐷2, ⋯ , 𝐷𝑛. The aim of the proposed method is to represent OO software systems using

weighted complex networks in order to provide a graph abstraction view of the software.

This will facilitate the application of well-established graph theory metrics onto the

constructed weighted complex network. Classes are represented as nodes while

relationships among classes are represented as edges connecting a pair of nodes.

Relationships in class diagrams can impose a one-way or a bidirectional relationship,

which needs to be interpreted in advance. As such, the transformation rules introduced by

Dazhou et al. (2004) are adopted which converts association, composition, and

aggregation into bidirectional relationships in a weighted complex network. Since

relationships such as generalisation, realisation, dependency and binding usually impose

a one-way relationship in the model-driven architecture (MDA) perspective, they will

remain as a single directed edge that links two nodes.

A relationship 𝑅 connecting two classes, 𝑅 = (𝐷𝑖 , 𝐷𝑗), where 𝐷𝑖, 𝐷𝑗 ∈ 𝐷; 𝑖 ≠ 𝑗, 𝑅 links

𝐷𝑖 to 𝐷𝑗 where 𝐷𝑖 is the origin of the relationship and 𝐷𝑗 is the terminus. 𝑅 carries a

weight which denotes the strength of this relationship. The weight of relationship R,

Univ
ers

ity
 of

 M
ala

ya

85

which denotes the strength of the communicational cohesion between classes 𝐷𝑖 , 𝐷𝑗

depends on:

1. The complexity of relationship 𝑅

2. The complexity of classes 𝐷𝑖 , 𝐷𝑗 linked by 𝑅.

4.2.2 The Complexity of Relation 𝑅

The example below explains the details in calculating the weight of a given relationship 𝑅.

Given a class 𝐷𝑖 that depends on class 𝐷𝑗 through a one-way relationship 𝑅 , such

that 𝐷𝑖 ≠ 𝐷𝑗 . The complexities of class 𝐷𝑖 and class 𝐷𝑗 are 𝐶𝑜𝑚𝑝(𝑖) and 𝐶𝑜𝑚𝑝(𝑗)

respectively. Since this is a one-way relationship and 𝐷𝑖 is dependent on 𝐷𝑗 , the

complexity of class 𝐷𝑗 will affect this relationship. For a bidirectional relationship, the

weight will be calculated based on the average of both directions. By referring to Table

4.1, software maintainers can identify the relative complexity of relationship 𝑅 and

measure the weight of the relationship R between class 𝐷𝑖 and 𝐷𝑗 using the proposed

equation formulated in Equation (1).

𝑊𝑒𝑖𝑔ℎ𝑡(𝑅𝑖→𝑗) = (𝐻𝑅𝑖→𝑗 ∗ 𝛼) + [(𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽] (1)

The first operand of Equation (1) denotes the complexity of relationship R while the

second operand denotes the complexity of terminus class linked by R. 𝐻𝑅 indicates the

relative complexity of relationship 𝑅 (by referring to Table 4.1). The complexity of a

relationship 𝐻𝑅 is relative to the other types of relationships in Table 4.1. It is more

significant to identify the ranking of this relationship in terms of influence and

Univ
ers

ity
 of

 M
ala

ya

86

complexity. This can be done by assigning a relative weight in the range of [0, 1] to each

relationship 𝐻𝑅 based on its ranking. For example, given a relationship R = Dependency

(H1), a relative weight of 0.1 is assigned to this relationship. 𝛼 and 𝛽, in this context,

carry the meaning of preferences and risk tolerance in obtaining the relative complexity

of a the terminus class 𝐷𝑗 . The preferences and risk tolerance parameters are used to relax

the constraints on obtaining the complexity of the relationships and class. Since the

ranking in Table 4.1 is presented in an ordinal scale, one can assign the weight of H1-

H10 based on their own preferences. If users are not confident about the weight to be

given on the relationship, more emphasis can be given on the complexity of the terminus

class instead. Values of 𝛼 and 𝛽 range between 0 and 1, in such a way that a lesser value

indicates a greater uncertainty in obtaining the complexity of the relationship and the

terminus class linked by it. For example, if the value of H1-H10 cannot be retrieved easily,

or users are not confident regarding the weight of relationship R, value of 0.2 can be

assigned to 𝛼, while 0.8 on 𝛽 to indicate that the complexity of terminus class linked by

R carries more significance. Value of 0.5 for 𝛼 and 𝛽 will be used in this study to

represent a balanced environment where both values can be obtained easily.

4.2.3 The Complexity of Classes 𝐷𝑖 , 𝐷𝑗 Linked by 𝑅.

For a one-way relationship, given 𝐷𝑖 is dependent on 𝐷𝑗 , only the complexity of terminus

class 𝐷𝑗 will be calculated. For a bidirectional relationship, the complexity of both origin

and terminus classes will be taken into consideration. In order to measure the complexity

of a class, the three-level metrics introduced by Ma et al are adopted. In the work by Ma

et al. (2010), the authors categorised their metrics into three levels, namely code-level,

system-level, and graph-level, in order to analyse the OO aspect of a particular system

using different levels of granularity. The authors suggested that solely relying on a

Univ
ers

ity
 of

 M
ala

ya

87

particular level of metrics is not sufficient to measure the properties of OO software

derived from source code or UML class diagrams. Hence, the proposed method in this

thesis combines the information from both the raw source code and UML class diagrams

of a software system to model its respective weighted complex network.

The code-level metrics, which are at the finest level of granularity, measure the code

complexity. Examples of metrics used are SLOC, fan in and fan out, and cyclomatic

complexity (Martin, 1994; McCabe, 1976). The system-level metrics focus on OO aspect

of the system by measuring characteristics such as inheritance, coupling, cohesion, and

modularity. Examples of metrics used are CK metrics (Chidamber & Kemerer, 1994).

The CK metrics consist of six metrics as follows:

1. Coupling Between Object Classes (CBO)

2. Weighted Methods per Class (WMC)

3. Depth of Inheritance Tree (DIT)

4. Number of Children (NOC)

5. Lack of Cohesion of Methods (LCOM)

6. Response for a Class (RFC)

CBO measures the coupling of a given class by counting the number of dependencies of

that particular class on other classes. WMC is the weighted sum of all the methods in a

given class. DIT is based on the inheritance hierarchy by identifying the longest

inheritance path for a given class. NOC of a given class is defined as the number of

immediate child classes. LCOM, on the other hand, measures cohesion of a given class

by inspecting the relationships between the methods declared in the class. Finally, RFC

measures the number of methods that can be used by other classes through the associated

messages.

Univ
ers

ity
 of

 M
ala

ya

88

The graph-level metrics are based on complex network to measure the global features and

provide an overview of large-scale software systems. Examples of graph-level metrics

are degree distribution and correlation coefficient.

While the work by Ma et al. (2010) aims to discover a variety of metrics and examine

each of them individually, this thesis focuses on only one metric at each level, except for

the graph-level metrics. The measurement of each level is then normalised locally. This

will allow software maintainers to use a standardised metric with a common scale of unit

that measures complexity as a whole. In the proposed method, code-level and system-

level metrics are used to measure the complexity of a particular class. On the other hand,

several graph-level metrics are used to examine the overall structure of the analysed

software.

In order to select an appropriate metric, a survey on the existing software metrics was

conducted in this research. Several studies that performed empirical studies of CK metrics

on real-world software systems are chosen.

The work by Li and Henry (1993) examined the correlations of CK metrics with software

maintenance effort. The software metrics were applied on two commercial software

systems in order to predict maintainability. The authors found that except for CBO, CK

metrics are able to effectively predict the software maintainability of real-world software

systems. Another work by Binkley and Schach (1998) applied CK metrics on four

software systems. The authors found that there is no correlation between NOC and the

frequency of source code changes due to field failure. The inventors of CK metrics

themselves applied the proposed metrics on three commercial software systems and found

Univ
ers

ity
 of

 M
ala

ya

89

that high LCOM was associated with lower productivity, high maintenance cycle, and

higher maintenance effort (Chidamber, Darcy, & Kemerer, 1998).

In terms of fault proneness, the work by Lionel C. Briand, Wüst, Ikonomovski, and

Lounis (1999) applied CBO, RFC, and LCOM on an industrial software and found that

the three metrics are associated with defects found in the case study. Similar observations

were found in the work by Olague, Etzkorn, Gholston, and Quattlebaum (2007b), where

the authors applied the complete suite of CK metrics, MOOD metrics and QMOOD

(Bansiya & Davis, 2002) metrics on Mozilla’s Rhino open-source software. CK and

QMOOD metrics are found to be good indicators for detecting error prone classes, while

MOOD metrics are less effective. The work by Mei-Huei, Ming-Hung, and Mei-Hwa

(1999) applied CK metrics on three industrial-grade real-time systems to identify the

correlations between the software metrics and faults found during software maintenance.

DIT and NOC were found to have almost zero correlations, while WMC and RFC are

strongly correlated to error prone classes. Based on the discussed literature, it is clear that

not all of the CK metrics are suitable to be used in this study. DIT and NOC in particular,

were found to be less effective when measuring the software maintenance effort and fault

proneness of software systems. WMC and LCOM, on the other hand, were found to be

suitable in identifying error prone classes and estimating software maintenance effort, as

claimed in (Chidamber et al., 1998) (Briand et al., 1999; Mei-Huei et al., 1999). Thus,

WMC and LCOM are chosen to be used in this study, which aligns to RO1.2 stated in

Section 3.2.3.

At the code level, WMC is chosen to measure the complexity of source code. WMC

measures the average cyclomatic complexity of methods inside a class. Cyclomatic

complexity calculates the number of independent paths through program source code

Univ
ers

ity
 of

 M
ala

ya

90

using the concept of directed network. A class that possesses high WMC value suggests

that it is very complex and does not focus on its functionality.

At the system level, the Lack of Cohesion of Methods version 4 (LCOM4) (Hitz &

Montazeri, 1995) is chosen, which is an extended metric based on the LCOM included in

CK metrics set. LCOM4 is used to measure the cohesion of a particular class by inspecting

the relationships between the methods and variables. LCOM (Chidamber & Kemerer,

1994), LCOM2 (McCabe, 1976), and LCOM3 (Henderson-Sellers, Constantine, &

Graham, 1996) are less suitable for modern OO software systems because they do not

evaluate the importance of mutator and accessor methods, which are widely used to

encapsulate information in the OO paradigm. In LCOM4, both shareable and non-

shareable variables and methods are taken into account to cater for encapsulated variables

or data. A high value of LCOM4 suggests that correlations between methods inside a

class are weak, and it is undesirable in common software engineering practices.

The choice of software metrics used in this study is not random, as it is based on previous

research (Basili, Briand, & Melo, 1996; Olague et al., 2007b; Subramanyam & Krishnan,

2003a) that WMC and LCOM4 are complementary with each other when used to predict

faults in OO software. Furthermore, the work by Ichii, Matsushita, and Inoue (2008) has

found that there is a positive correlation between WMC and LCOM4 such that an increase

in WMC will lead to an increase in LCOM4. This is mainly because a class will tend to

become less cohesive when more functionalities or modules are added into the class.

Furthermore, the focus of this study is to capture two particular software quality attributes,

namely maintainability and reliability as discussed in RO1.2. Therefore, WMC and

LOCM4 are combined and use an aggregated measure to determine the complexity of

classes when representing an OO software system using a weighted complex network.

Univ
ers

ity
 of

 M
ala

ya

91

An example is given below to calculate the complexity of a particular class. Given a class

𝐷𝑗 , LCOM4 and WMC of class 𝐷𝑗 are represented as 𝐿(𝐷𝑗) and 𝑊(𝐷𝑗) respectively. The

following equation is used to quantify the complexity of 𝐷𝑗 .

𝐶𝑜𝑚𝑝(𝐷𝑗) = (𝐿(𝐷𝑗)̃ ∗ 𝛼) + (𝑊(𝐷𝑗)
̃ ∗ 𝛽) (2)

where 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1

𝐿(𝐷𝑗)̃ and 𝑊(𝐷𝑗)
̃ represent the normalised LCOM4 and WMC values respectively over

all classes in the system using a ratio scale (value range between 0 to 1). Normalisation

is needed in this case because both metrics are measured using a different scale of unit.

The values 𝛼 and 𝛽 behave similarly to Equation (1) where it denotes the preferences and

risk tolerance in obtaining the two metric values. Depending on the difficulty and

confidence of obtaining the values 𝐿(𝐷𝑗)̃ and 𝑊(𝐷𝑗)
̃ , 𝛼 and 𝛽 can be manipulated

accordingly. Thus, higher values signify higher complexity. However, before finalising

the formula, it is important to determine if there is a direct correlation between complexity

of classes and their respective strength of communicational cohesion.

The work by Satuluri and Parthasarathy (2011) proposes a degree-discounting

symmetrisation method to analyse the contribution of each node to the strength of

communicational cohesion based on its degree (in-coming and out-going edges). Suppose

that two nodes i, j, both point to a node z, which has a high in-degree (Case 1 in Figure

4.4a), and two nodes i, j, both point to a node z, which has a low in-degree (Case 2 in

Figure 4.4b). The authors proposed that the strength of communicational cohesion

between node i and node z together with that of node j and node z contributes more in

Univ
ers

ity
 of

 M
ala

ya

92

Case 2 as compared to in Case 1 because node z of Case 2 has a low in-degree. The

communicational cohesion between nodes is inversely proportional to the in-degree.

Figure 4.4: Degree-discounting symmetrisation based on Satuluri and Parthasarathy

(2011)

The concept of degree-discounting symmetrisation can be applied to this study where the

degree is represented as UML class complexity, 𝐶𝑜𝑚𝑝(𝐷𝑗) . Given (𝐷𝑖, 𝐷𝑗) ∈ 𝑅 , 𝐷𝑖 is

dependent on 𝐷𝑗 , and the complexity of class 𝐷𝑗 will affect the weight of R. If class 𝐷𝑗

consists of 1000 methods and variables, and the interactions between 𝐷𝑖 , 𝐷𝑗 are simply

passing a few parameters, the strength of communicational cohesion between 𝐷𝑖 , 𝐷𝑗, or

the tendency of 𝐷𝑖 , 𝐷𝑗 belonging to the same package will be insignificant. On the other

hand, if class 𝐷𝑗 is very well designed and focuses on its own functionality, then the

strength of communicational cohesion between classes 𝐷𝑖 , 𝐷𝑗 will be much stronger. To

provide a more concrete illustration, given for example, a complex and unorganised class

“Alpha” which contains a lot of static methods and is constantly invoked by other classes

from different software packages. As a result, cohesion of methods inside class “Alpha”

will be very weak. Placing class “Alpha” into a suitable package will also be a

challenging task because there are lesser distinct features and common behaviour shared

by class “Alpha” with other classes. A common way to solve this problem is by

Univ
ers

ity
 of

 M
ala

ya

93

decomposing it into multiple modular classes that focus on their own functionality. The

modular classes can then be grouped into packages that share the same functionalities.

Thus, the complexity of class 𝐷𝑗 is inversely proportional to the weight (strength of

communicational cohesion) of R. Since the value 𝐶𝑜𝑚𝑝(𝐷𝑗) is normalised into the value

range between 0-1, the complexity can be inversed by using the formula 1 − 𝐶𝑜𝑚𝑝(𝐷𝑗).

Thus, Equation (1) is updated to the following Equation (3) to measure the relationships

between two classes.

𝑊𝑒𝑖𝑔ℎ𝑡(𝑅𝑖→𝑗) = (𝐻𝑅𝑖→𝑗 ∗ 𝛼) + [(1 − 𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽] (3)

Univ
ers

ity
 of

 M
ala

ya

94

4.3 Overview of the Proposed Method to Represent Software Systems with the Aid

of Weighted Complex Network

SOURCE CODE PRE-

PROCESSING MODULE

INPUT

Source Code

CONFIGURATION

 Rules for extracting source code

 Rules for identifying relationships

among source code

 Software metrics to calculate

complexity of source code

OUTPUT

 LCOM4 and WMC score of each class

 UML Class diagram representation of the

source code

CLASS AND RELATIONSHIP

COMPLEXITY CALCULATION

MODULE

OUTPUT

Quantifiable value (weight) for the complexity of

each class and relationship

WEIGHTED COMPLEX

NETWORK

REPRESENTATION

MODULE

High-level Graph Abstraction

View of Analyzed Software

CONFIGURATION

 Rules for calculating the complexity

of each class

 Ordering of UML class diagram

relationships based on their relative

complexity

 Rules for calculating the complexity

of each relationship

Source

Code

Repository

Complex

Network

Repository

100

300

200400

500

600

700

800

900

1000
1100

Figure 4.5: Flow chart of the proposed method to represent software systems with the

aid of weighted complex network

The overall workflow of the proposed method is shown in Figure 4.5, which consists of

three major software modules. The numbers ranging from 100-1100 correspond to the

steps involved in the proposed method.

 100: The user provides the source code to be analysed by the proposed method.

Univ
ers

ity
 of

 M
ala

ya

95

 200: Source Code Pre-processing Module to extract essential information and

evidence from the user’s input before representing it with a weighted complex

network.

 300: Configuration data for the Source Code Pre-processing Module. The

configuration data includes sets of rules to extract important classes and their

relationships, and a pre-weighted set of rules to calculate the complexity of source

code. The rules used are the WMC and LCOM4 mentioned in Section 4.2.3.

 400: Input source code is stored in a repository.

 500: Consist of the output of the Source Code Pre-processing Module.

 600: The output from Step 500 is parsed into the Class and Relationship

Complexity Calculation Module.

 700: Configuration data for the Class and Relationship Complexity Calculation

Module. The configuration data includes sets of rules to calculate the complexity

of each class and relationship found in the UML class diagram. The calculation is

based on Equation (3) derived in Section 4.2.3.

 800: Consist of the output of the Class and Relationship Complexity Calculation

Module.

 900: The output from Step 800 is parsed into the Weighted Complex Network

Representation Module.

 1000: Generate a corresponding weighted complex network based on the analysed

software system.

 1100: The generated weighted complex network is stored in a repository. The

weighted complex network is mapped back to the corresponding source code

stored in Step 400 in order for cross referencing and further analysis.

Univ
ers

ity
 of

 M
ala

ya

96

The details of each software module (Step 200, 600, 900) are explained in the following

paragraphs, with the aid of diagrams.

Compute the
number of classes

Compute the
WMC score of

each class

Compute the
LCOM4 score of

each class

Convert source code into
UML Class Diagram using
an off-the-shelf round-trip

engineering tool

201

202

203

204

Figure 4.6: Details of Step 200 (Source Code Pre-processing Module)

 201: The number of classes that correspond to the source code provided by the

user, is recorded.

 202: For each class in the source code, the WMC score is calculated and recorded.

 203: For each class in the source code, the LCOM4 score is calculated and

recorded.

 204: The source code is converted into its equivalent UML class diagram using

an off-the-shelf round-trip engineering tool such as the IBM Rational Rose,

Eclipse UML tool or the Visual Paradigm suite of software. The final output of

Univ
ers

ity
 of

 M
ala

ya

97

Steps 201-204 are the LCOM4 and WMC score of each class, and the UML Class

diagram representation of the given source code.

From 500

Calculate the

complexity of each

relationship based on

the configuration

rules in 700

Calculate the

complexity of each

class based on the

configuration rules in

700 and the results

from 202 and 203

Combine the

result from 602

and 603 to

measure the

weights of edges

601

602

603

604

Figure 4.7: Details of Step 600 (Class and Relationship Complexity Calculation

Module)

 602: For each associated UML class relationship retrieved from Step 601,

calculate the complexity of the relationship by referring to the configuration rules

set in Step 700.

 603: For each associated UML class retrieved from Step 601, calculate the

complexity of the class by referring to the configuration rules set in Step 700, and

the results recorded from Step 202 and 203.

 604: Combine the results from Step 602 and 603 to measure the weight of each

edge between nodes for the weighted complex network to be generated later.

Univ
ers

ity
 of

 M
ala

ya

98

From 800

Represent each

class with a

node

Represent each

relationship with

a directed edge

Assign weight to

each edge

based on the

result from 604

901

902

903

904

Figure 4.8: Details of Step 900 (Weighted Complex Network Representation Module)

902: For each UML class retrieved from Step 604, it is represented as a node for the

weighted complex network being generated.

903: For each relationship retrieved from Step 604, it is represented as a directed edge

which connects a pair of nodes.

904: Based on the output from Step 800, each calculated weight is assigned to each

relevant edge. The final output of Steps 901-904 is a weighted complex network

representation of the analysed software.

The flow charts in Figure 4.5-4.8 also serve as a guideline to help develop the prototype

for this research. The details of the implementation and examples of software systems

represented with weighted complex networks will be presented in Chapter 6.

Univ
ers

ity
 of

 M
ala

ya

99

4.4 Proposed Technique for Deriving Implicit Clustering Constraints from Graph

Theoretical Analysis of Weighted Complex Network

By using the proposed Equation (3) to calculate the complexity of relationships and

classes, the weights of edges (UML relationships) that connect two nodes (UML classes)

in a weighted complex network are determined. Finally, at the graph level, well-

established graph theory metrics are used to measure the cohesion strength among classes.

The results from the graph-level metrics offer additional insights toward understanding

the maintainability and reliability of the software, and subsequently, are converted into

implicit clustering constraints, which addresses RO2.

4.4.1 Measuring Software Maintainability and Reliability through a Weighted

Complex Network

In this thesis, six graph-level metrics are chosen, namely in-degree, out-degree, average

weighted degree, average shortest path of nodes, average clustering coefficient, and

betweenness centrality. These metrics are selected because prior studies have shown that

they are correlated to software qualities, and can be effective to measure the

maintainability and reliability of software systems (Giulio Concas et al., 2007; Jenkins &

Kirk, 2007; Valverde & Solé, 2003). Besides that, average weighted degree, average

shortest path, and average clustering coefficient in particular can be used to identify if a

network follows the scale free and small world properties. The details of the metrics are

explained in the following paragraphs.

In a generic network, the degree 𝑘𝑖 of a node 𝑖 is measured by counting the number of

edges that point toward or outward from the node. The in-degree is concerned with

Univ
ers

ity
 of

 M
ala

ya

100

measuring the number of edges pointing toward the selected node. In the domain of OO

software systems, in-degree of a class represents the usage of that class by other classes

(Giulio Concas et al., 2007). Classes with high in-degree suggest that they contain a high

degree of reusability. However, if majority of the classes exhibit very high in-degree,

software bugs can propagate easily to all related classes (Turnu et al., 2013).

On the other hand, out-degree is measured by counting the number of edges pointing out

from the selected node. As such, out-degree represents the number of classes used by the

given class. In the OO paradigm, out-degree should be kept minimal to improve the

modularity of software systems.

The average degree of a network is represented as < 𝑘 >, where it represents the average

degree of all nodes in a network. In this study, the edges are weighted. Thus, average

weighted degree is used instead. Average weighted degree of a node is calculated by

summing up the weights of all the edges linked to the selected node and dividing the total

weight by the total number of edges. If the distribution of average weighted degree, 𝑃(𝑘),

exhibits power law behaviour, it suggests that the constructed network obey the scale free

characteristic. Power law characteristic also implies that there are a few important classes

that are being heavily reused.

The average shortest path length used in this work calculates the average shortest path

length between a source and all other reachable nodes for the weighted complex network.

This will allow software maintainers to analyse the efficiency of information passing and

response time of each node in the network.

Univ
ers

ity
 of

 M
ala

ya

101

A clustering coefficient measures the probability of a node’s neighbours to be neighbours

among themselves. A node with a high clustering coefficient indicates that there is a high

tendency that the selected node will cluster together with its neighbours. The average

clustering coefficient is used to represent the clustering coefficient of the whole network.

In the OO point of view, a network with a high average clustering coefficient indicates

high cohesion strength among groups of related functionalities. It could be also used to

determine the modularity of the analysed software. Combining both the average shortest

path length and average clustering coefficient allows one to examine if the network

exhibits the small world characteristic.

The betweenness centrality of a node measures the number of shortest paths that pass

through the selected node. It measures the importance and load of a particular node over

the interactions of other nodes in the network (Yoon, Blumer, & Lee, 2006). Nodes with

a high betweenness centrality often act as the communication bridge along the shortest

path between a pair of nodes. Analysing the betweenness centrality allows one to

comprehend the robustness and structural complexity of a given software. One can

recognise in advance the potential loss of communication if nodes with high betweenness

centrality are removed from the network. Table 4.2 present a summary of the selected

graph theory metrics.

Univ
ers

ity
 of

 M
ala

ya

102

Table 4.2: Selected graph theory metrics and implication toward the analysed software

systems

Graph Theory

Metrics

Software engineering point-of-view

In-degree Represents the usage of a particular class by other classes in

the software. Demonstrate the level of reusability of a class.

Out-degree Represents the number of classes used by the given class.

High out-degree signifies that the class is composed of

relatively large and complex modules. Can be refactored into

several smaller classes that focus on specific responsibilities.

Average weighted

degree

Identify if the analysed software obeys the power law

behaviour. Provide a means to identify important classes that

contribute toward a particular software functionality.

Average shortest-path

length

The efficiency of information passing and response time of

OO software.

Clustering coefficient Probability of a class’s neighbours to be neighbours among

themselves. Helps to determine the cohesion strength of

neighbouring classes.

Betweenness centrality The number of shortest paths that pass through a particular

class. Classes with high betweenness centrality indicate that

they are more prone to propagating bugs and errors. In

general, removal of these classes can lead to potential loss of

communication between classes.

4.5 Converting Graph Theoretical Analysis into Implicit Clustering Constraints

Apart from using the graph-level metrics to analyse and evaluate the software quality

aspect of software systems, the main goal of the proposed method, as mentioned in RO2,

is to translate the result of graph theoretical analysis into implicit clustering constraints.

4.5.1 Identifying Community Structure of Real-world Networks

Domain or background knowledge supplied by experts are typically expressed in the form

of pairwise constraint, namely must-link and cannot-link constraints to specify that two

entities must both be part of or not part of the same cluster respectively. Although useful,

one important and non-trivial research question remains open. How to retrieve clustering

constraints if domain experts are non-existent? While various studies have shown that a

Univ
ers

ity
 of

 M
ala

ya

103

small amount of constraints can greatly improve the result of clustering, most of the

studies assumed that constraints are given prior to the experiment and those constraints

are absolute and without any ambiguity (Basu et al., 2004) (Kestler et al., 2006) (Klein et

al., 2002).

The work by Malliaros and Vazirgiannis (2013) discussed that real-world networks have

special structural patterns and properties that distinguish themselves from random

networks. One of the most distinctive features in a real-world network is the community

structure, such that the topology of the network is organised in several modular groups,

commonly known as communities or clusters. However, in large-scale real-world

networks (such as social network, power grid network, and World Wide Web), the

community structure are usually hidden from users, largely due to their inherit

complexity. Thus, discovering the underlying community structure of a real-world

network, or commonly referred as community detection, is crucial toward the

understanding of the analysed network. In this thesis, several community detection

techniques that are commonly used in the field of brain network research will be adopted

to discover the community structure of software systems. Next, the findings will be

converted to clustering constraints in the form of ML or CL constraints to improve the

results of software clustering.

4.5.2 Identify Network Hubs

Figure 4.9 shows a snippet of weighted complex network constructed using the proposed

method on an open-source software written in Java, called the Apache Gora. An enlarged

version of the diagram is available in Appendix A, Figure A1.

Univ
ers

ity
 of

 M
ala

ya

104

Figure 4.9: Snippet of Apache Gora project represented in weighted complex network

using the proposed method

Apache Gora is a small project with 8,668 lines of code and 112 classes. Therefore, one

can easily identify the community structure of the network through visual inspection. For

example, the node marked with the dotted-circle possesses high in-degree because a lot

of other nodes are converging and directed toward this particular node. In the field of

graph theory, the presence of a high in-degree or out-degree node is usually referred as a

hub. The work by Ravasz and Barabasi (2003) shows that a hub plays a very important

role in complex network because it is responsible for bridging multiple small groups of

clusters into a single, unified network.

From the software engineering point-of-view, hubs with high in-degree are classes that

provide methods to be used by other classes. Therefore, software maintainers can view

the hubs as the core functional class that contribute toward a particular software feature.

Univ
ers

ity
 of

 M
ala

ya

105

However, since hubs are directly linked to other classes, they are very vulnerable to bugs

and errors propagation. The work by Turnu, Marchesi, and Tonelli (2012) shows that

there is a very high correlation between the degree distribution of software-based network

and the system’s bug proneness. Therefore, hubs are responsible for maintaining the

structural integrity of software systems against failure and it is crucial for maintainers to

identify them (Liu, Slotine, & Barabasi, 2011). One simple way to identify hubs is by

observing the nodes which possess high degree at the tail of the degree distribution in log-

log scale (Ravasz & Barabasi, 2003). Figure 4.10 shows an example of the in-degree

distribution of a sample project in log-log scale. Based on the figure, most of the nodes

possess in-degree of 1, and the extreme values are roughly 60 times higher than the

average in-degree. The tail of the degree distribution, as depicted by the red circle in

Figure 4.10, shows that there are several nodes with exceptionally high in-degree. These

nodes are usually considered as the hubs, as discussed by Ravasz et al.

Figure 4.10: Identify hubs by observing the degree distribution of in-degree

However, it is possible that the identified nodes (classes) with high in-degree might

actually be god classes. God classes are classes that are associated by a huge number of

Univ
ers

ity
 of

 M
ala

ya

106

simple data container classes, resulting in unnecessary coupling. Since god classes are

tightly coupled to many other classes, maintenance of god classes are relatively more

difficult compared to modular classes. Therefore, it is important to differentiate between

hubs and god classes. Several studies have discovered that nodes that behave like god

classes share several characteristics, especially when observed from the graph theoretical

point of view (Giulio Concas et al., 2007; Turnu et al., 2013; Turnu et al., 2012). For

instance, according to (Turnu et al., 2013), god classes tend to possess high in-degree and

out-degree due to their “god-like” (all-knowing and all-encompassing) characteristic.

Therefore in this research, when a node is found to possess exceptionally high in-degree

and out-degree when compared to other classes, it is flagged as god classes instead of

hubs. However, how does identifying hubs contribute toward the formulation of

clustering constraints to help in constrained clustering of software systems?

4.5.3 Cannot-Link Constraints Between Hubs

In the research area of brain networks, hubs are usually neurons that are responsible for

the activation of important cognitive functions and they are connected mainly to nodes in

their own modules (Bullmore & Sporns, 2009). As such, hubs in brain networks usually

form sub-communities that contain neurons which are correlated to the same cognitive

functions.

On the other hand, network hubs in this research are considered as the core functional

class that contains the methods and information of a particular software feature. It is

common for other classes to invoke methods or parse parameters to and fro the hubs,

resulting in high in-degree and out-degree. Therefore, this leads to a question: from a

Univ
ers

ity
 of

 M
ala

ya

107

software design’s point-of-view, should the hubs be grouped into the same cluster, or

separated into several disjointed clusters?

In the domain of software engineering, separation of concerns is a design principle for

encapsulating software features or functionalities into separate entities to promote the

notion of localisation and high modularity (Dijkstra, 1976). Thus, in order to ensure low

coupling among different software functionalities, hubs should be separated into several

disjoint clusters. In other words, for this research, Cannot-link constraints are established

between hubs identified in the weighted complex network to promote the notion of

separation of concerns. The hubs are expected to be the core class responsible for a

particular software functionality. The enforcement and fulfilment of the clustering

constraints are discussed in the next chapter.

4.5.4 Must-Link between Hubs and Direct Neighbours

In graph theory, clustering coefficient of a node is the average tendency of pairs of

neighbours of a node that are also neighbours of each other. If all the inspected nodes are

adjacent to each other, where there exists an edge that connects each pair of the

neighbours, it is considered a complete clique (Watts & Strogatz, 1998). Nodes inside a

complete clique are considered to be tightly connected to each other and tend to be

clustered together.

Therefore, by combining the concept of hubs and clustering coefficient, software

maintainers can identify the neighbouring classes that are closely related to the hubs.

Neighbouring classes that form a complete clique with a hub should be always grouped

Univ
ers

ity
 of

 M
ala

ya

108

into the same cluster (Malliaros & Vazirgiannis, 2013). As such, Must-link constraints

can be established between a hub and its neighbouring classes that form a complete clique,

in order to ensure the formation of a baseline cluster that encompasses a group of cohesive

neighbours.

4.5.5 Must-Link between Classes with High Betweenness Centrality and Their Direct

Neighbours

As mentioned earlier, betweenness centrality calculates the number of shortest paths that

pass through a particular class. Classes with high betweenness centrality exert relatively

higher influence and impact over other neighbouring classes. Therefore, ensuring the

structural stability of classes with high betweenness centrality and their neighbouring

classes is important to safeguard that passing of parameters or messages is not obstructed

during and after software maintenance. As such, neighbouring classes that form a

complete clique with a class that possesses high betweenness centrality should be always

grouped into the same cluster, similar to Section 4.5.4. The rationale behind this decision

is straightforward. If software maintainers are to perform maintenance works on a class

with high betweenness centrality, they would need to be notified if there are classes that

are dependent on it. This is to avoid maintainers from breaking any chain of dependencies

and ensure the structural stability around classes with high betweenness centrality. As

such, must-link constraints can be established between classes with high betweenness

centrality and the neighbouring classes that form a complete clique. The relationships

between the chosen graph theory metrics and the derived clustering constraints are shown

in Table 4.3.

Univ
ers

ity
 of

 M
ala

ya

109

Table 4.3: Summary of graph theory metrics and their contribution toward deriving

implicit clustering constraints

Graph Theory

Metric

Usage Derived Implicit Clustering Constraint

In-degree Identification of

hubs

Cannot-link between hubs

Out-degree Identification of

hubs

Cannot-link between hubs

Average

weighted degree

Identification of

hubs

Cannot-link between hubs

Average

shortest-path

length

Calculation of

betweenness

centrality

-

Clustering

coefficient

Identification of

clique
 Must-link between a hub and its

neighbouring classes that form a

complete clique

 Must-link between classes with high

betweenness centrality and

neighbouring classes that form a

complete clique

Betweenness

centrality

Identification of

important classes

Must-link between classes with high

betweenness centrality and neighbouring

classes that form a complete clique

4.5.6 Identify Refactoring Opportunities as Supplementary Information

Apart from establishing clustering constraints, software maintainers can also identify

potential refactoring opportunities with the aid of graph-level metrics (Al Dallal, 2015).

Generally, software components that are more prone to defects and bugs should be

refactored and remodularised into smaller and more manageable components. Existing

studies that represent software systems using complex networks have discovered that it is

possible to predict software defects with the help of graph theoretical analysis

(Zimmermann & Nagappan, 2008). This information can act as supplementary

information for software maintainers to aid in decision making when there is a request to

modify or remove a particular software component.

Univ
ers

ity
 of

 M
ala

ya

110

For instance, Zimmermann and Nagappan (2008) discovered that there is a positive

correlation between the number of defects and the value of betweenness centrality. By

inspecting the faults reported in several releases of software, Zimmermann et al. showed

that nodes with high betweenness centrality are usually more volatile and vulnerable to

defects introduced during software changes and maintenance.

Furthermore, classes that exhibit exceptionally high value in both in-degree and out-

degree are considered as fault prone classes, as discussed in the work by Turnu et al.

(2012). Generally, a class with high in-degree suggests that it is a service provider, which

is frequently used by other classes. A class with high out-degree, on the other hand,

indicates that it is a service consumer and its operations are highly dependent on other

classes. It is rare for a class to serve as both service provider and consumer. Hence, classes

with high in-degree and out-degree are usually a result of poor design decision and must

be refactored or remodularised into smaller modules that focus on its functionality.

In short, the chosen graph-level metrics can also be utilised to alert software maintainers

regarding any potential design faults that are otherwise not noticeable using traditional

software metrics. The finding of the graph theoretical analysis will be presented to the

software maintainers, along with some recommendations to refactor bug and fault prone

classes.

All in all, the method to represent software systems with the aid of weighted complex

network proposed in this chapter aids software maintainers in several aspects:

 Provide a high-level understanding of a software system from a graph theoretical

point-of-view, especially in terms of system interaction and dependencies.

Univ
ers

ity
 of

 M
ala

ya

111

 Formulation of implicit clustering constraints to aid in improving the accuracy of

software clustering.

 Provide supplementary information to software maintainers such as identifying

classes that more prone to bugs and errors, and those that violates common

software design principles.

4.6 Chapter Summary

This chapter proposes an approach to represent OO software systems using weighted

complex network in order to capture their structural characteristics, with respect to their

maintainability and reliability. Nodes and edges are modelled based on the complexities

of classes and their dependencies. The weighting mechanism is adopted from the three-

level metrics introduced in the work by Ma et al. The choice of code-level, class-level,

and graph-level metrics used in this research, along with the justification have been

discussed. Graph theory metrics are applied onto the transformed weighted complex

network to evaluate the software system. Finally, the observations from the graph

theoretical analysis are translated into implicit clustering constraints, which help in the

subsequent constrained clustering process. The enforcement and fulfilment of the

clustering constraints will be discussed in the next chapter.

Univ
ers

ity
 of

 M
ala

ya

112

CHAPTER 5: MAXIMISING THE FULFILMENT OF HARD AND SOFT

CONSTRAINTS

In this chapter, a method to maximise the fulfilment of clustering constraints is

introduced. Unlike the work by Basu et al. (2004) where all the clustering constraints are

assumed to be absolute and rigid, a method is proposed in this chapter to handle different

types of constraints that vary according to their level of importance. The proposed method

accepts clustering constraints from two different sources, either from the implicit

structure of the software, or explicitly from domain experts who have prior knowledge

regarding the software. Implicit constraints are categorised as hard constraints, while the

explicit constraints are categorised as soft constraints. A unique constraints fulfilment

method is proposed to maximise the fulfilment of all the derived implicit and explicit

constraints. Finally, evaluations are conducted using two open-source OO software

systems to evaluate the proposed constrained clustering approach.

5.1 Managing Different Types of Clustering Constraints

In Chapter 4, a method to extract clustering constraints from the implicit structure of

software systems is introduced. Apart from extracting clustering constraints from the

software itself, constraints can also be derived explicitly from domain experts by asking

them to make judgment whether two clustering entities, or classes in this context, are

similar or not to be clustered into the same group (Hong & Yiu-Ming, 2012).

Domain experts may evaluate their judgments based on their level of confidence or based

on background knowledge to support their decisions. If the experts are highly confident

that the provided clustering constraints are reliable and a consensus can be reached among

Univ
ers

ity
 of

 M
ala

ya

113

all the experts, the explicit constraints can be categorised as hard constraints, as discussed

by Basu et al. (2004). These sets of hard constraints must be fulfilled under any kind of

circumstances. On the other hand, if the domain experts are doubtful about the given

constraints, it can categorised as soft constraints, such that these constraints are good to

have (Basu et al., 2004). Implicit clustering constraints derived from the graph theoretical

analysis are categorised as hard constraints because they are derived from one of the most

reliable source of information (the structure and behaviour of source code). Explicit

clustering constraints derived from domain experts, on the other hand, are categorised as

soft constraints because these constraints are usually imprecise and fuzzy in nature, which

might contain erroneous information (Bagheri et al., 2010).

In Section 3.2.3, the RO4 was raised based on the discussed literature to identify an

appropriate technique to maximise the fulfilment of explicit and implicit constraints,

while penalising violation of the constraints. It is possible that the explicit constraints

derived from different domain experts might conflict with each other due to differences

of opinions and experience. Therefore, in this chapter, a way to filter out conflicting

clustering constraints, and to prioritise the fulfilment of constraints with high level of

importance is introduced. This chapter focuses on interpreting and fulfilling explicit

clustering constraints given by domain experts, as well as implicit constraints extracted

from the software itself, as discussed in Chapter 4.

5.2 Constraints with High Level of Confidence

As mentioned earlier, implicit clustering constraints derived from the graph theoretical

analysis in Chapter 4 are categorised as hard constraints. However, if domain experts have

very high degree of confidence that a pair of classes must be grouped together or

Univ
ers

ity
 of

 M
ala

ya

114

separated, these two rules can be categorised as the Must-Link Hard (MLH) or Cannot-

Link Hard (CLH) constraint as well, with the condition that these two types of clustering

constraints are very clear and concise without any ambiguity.

MLH and CLH constraints are relatively easier to fulfil in k-mean clustering because

clustering assignment can be manipulated easily during the clustering process. However,

it is more difficult to achieve the same results for agglomerative hierarchical clustering

because all clustering entities are linked together at some level of the cluster hierarchy

(Bair, 2013). Therefore, when utilising hierarchical clustering algorithm to help in

remodularisation of software systems, maintainers must ensure that MLH and CLH

constraints are fulfilled indefinitely at all levels of the clustering hierarchy.

5.2.1 Fulfilment of Must-Link Hard Constraints

The work by Miyamoto (2012) introduced a distance based approach to impose MLH

constraints by requiring entities linked by a MLH constraint to be clustered together at

the lowest level of cluster hierarchy. This is done by reducing the dissimilarities between

pairs of entities linked by a MLH constraint to zero.

Given a 𝑇 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} with entities 𝑥1, 𝑥2, ⋯ , 𝑥𝑛.

For every (𝑥𝑖 , 𝑥𝑗) ∈ {𝑀𝐿𝐻}, the distance between 𝑥𝑖 and 𝑥𝑗 is modified to

 𝑑(𝑥𝑖 , 𝑥𝑗) = 0.

By modifying the distances between pairs of classes to zero, this will eventually form a

baseline for the clustering hierarchy. Since the MLH constraints are unconditionally

fulfilled at the lowest level of the hierarchy, the approach proposed by Miyamoto can

Univ
ers

ity
 of

 M
ala

ya

115

ensure that the same fulfilment can be achieved all the way through the top of cluster

hierarchy. Thus in this thesis, the same technique proposed by Miyamoto (2012) is

adopted to fulfil MLH constraints.

5.2.2 Fulfilment of Cannot-Link Hard Constraints

There are generally two ways to enforce CLH constraints, using either constrained based

or distance based methods (Malliaros & Vazirgiannis, 2013). Constrained based method

modifies the cluster assignments by inspecting the merger of two entities. Note that this

thesis focuses on agglomerative hierarchical clustering algorithm, where at each step, a

pair of classes with the highest similarity are chosen and merged together. If the chosen

classes belong to the CLH pairs, software maintainers will need to look for the next pair

of classes with the second highest similarity. However, the work by Davidson and Ravi

(2009) found that the formation of dendrogram may stop prematurely in a certain

scenario. The authors called this as the “dead-end” situation where unless CLH

constraints are violated, there will be no more merging possible to form the final

dendrogram. Thus, using constrained based approach to fulfil CLH constraints is a less

viable option in this thesis.

Distance based approaches, on the other hand, modify the distance between a pair of

entities linked by a CLH constraint to be a value high enough to prevent them from

merging.

Given a set 𝑇 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} with entities 𝑥1, 𝑥2, ⋯ , 𝑥𝑛.

For every (𝑥𝑖, 𝑥𝑗) ∈ {𝐶𝐿𝐻}, 𝑑(𝑥𝑖, 𝑥𝑗) = 𝑑(𝑥𝑖 , 𝑥𝑗) + 𝐶𝑜𝑛𝑠𝑡

where 𝐶𝑜𝑛𝑠𝑡 is a constant large enough to prevent linkage between entities 𝑥𝑖 , 𝑥𝑗.

Univ
ers

ity
 of

 M
ala

ya

116

By enforcing this rule, the pairs of entities linked by a CLH constraint will not be chosen

to be merged unless there are no more classes with distance more than 𝑑(𝑥𝑖 , 𝑥𝑗) + 𝐶𝑜𝑛𝑠𝑡.

Classes which belong to CLH constraints will then be merged at the top of the hierarchy

to form the complete dendrogram. An example is illustrated in Figure 5.1, where the circle

at the top of dendrogram indicates the merging of classes linked by CLH constraints. By

observing Figure 5.1 from another perspective, some CLH constraints are actually

violated at the top of the hierarchy since without violating them, “dead-end” situation will

occur. However, violating CLH constraints at the top of the hierarchy are negligible

because it is almost impossible to cut the dendrogram at that location (Lung et al., 2004).

In a typical scenario, cutting the dendrogram at the top of hierarchy will yield a very small

number of clusters because this decision is at the trade-off of relaxing the constraint of

cohesion in the cluster membership (Chong et al., 2013). Clusters formed when cutting

the dendrogram at the top of the hierarchy are usually made up of classes with very low

and fragile cohesion strength. Therefore, the distance based approach is adopted in this

thesis to enforce the CLH constraints.

Univ
ers

ity
 of

 M
ala

ya

117

Figure 5.1: Example of imposing CLH constraints by modifying the distance measure

between pairs of entities

5.2.3 Problems Associated with Enforcing MLH and CLH Constraints

However, changing the distance measure of entities involved in MLH and CLH

constraints will most likely result in violating the triangle inequality of resemblance

matrix – the pairwise matrix that contains the similarity or dissimilarity strengths between

pairs of classes which dictate the merging of classes during the clustering process as

discussed in Section 2.3.3. (Klein et al., 2002). Violating the triangle inequality of

resemblance matrix means that for some classes (𝑥𝑠, 𝑥𝑡) ∉ {𝑀𝐿𝐻}, (𝑥𝑠, 𝑥𝑡) ∉ {𝐶𝐿𝐻}

with distance 𝑑(𝑥𝑠, 𝑥𝑡) apart before imposing MLH or CLH constraints, may now be

Univ
ers

ity
 of

 M
ala

ya

118

𝑑′(𝑥𝑠, 𝑥𝑡) < 𝑑(𝑥𝑠, 𝑥𝑡) along some path which skips through the MLH or CLH pairs. As

pointed out by Klein et al. (2002), this problem can be solved by finding a new distance

value with respect to the modified classes involved in MLH or CLH constraints using all-

pairs-shortest-path algorithm. The algorithm will search for the shortest path between all

pairs of classes after the enforcement of MLH and CLH constraints, and the results will

be used to update the associated resemblance matrix. The usage of all-pairs-shortest-path

algorithm can prevent the violation of triangle inequality of the resemblance matrix. For

instance, Figure 5.2a shows a simple example of 6 classes, Classes A, B, C, D, E, and F.

The number on the edges indicates the distance between two classes. In the figure, the

shortest distance between Class A and Class C is 0.9 with the following order: A-D-E-F-

C.

Class A Class B Class C

Class D Class E Class F

0.9 0.5

0.1

0.30.2

0.3

Class A Class B Class C

Class D Class E Class F

0.0 0.5

0.1

0.30.2

0.3

a.)

b.)

Figure 5.2: Potential triangle inequality problem when imposing MLH and CLH

constraints

After several discussions, the original developers discovered that Class A and Class B in

fact are very closely related and impose a MLH constraint onto the two classes. Thus, the

Univ
ers

ity
 of

 M
ala

ya

119

distance between A and B is now 0.0 to reflect the MLH constraint, as illustrated in Figure

5.2b. In this case, the shortest path between Class A and Class C after the imposition of

the MLH constraint is now 0.5, with the following order: A-B-C. If the resemblance

matrix is not updated accordingly to reflect the changes, the final clustering result might

be erroneous. Therefore, the proposed constrained clustering method addresses this

violation in fulfilling both MLH and CLH constraints using the following algorithm:

Input: A set of entities S = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, a set of MLH (must-link hard constraints)

and a set of CLH (cannot-link hard constraints)

Output: A modified resemblance matrix

1. Calculate the distance between each pair of entities and store it in a resemblance

matrix D where 𝐷𝑖,𝑗 = 𝐷𝑗,𝑖

2. Let D’ = D (create a clone resemblance matrix to modify the original one)

3. while ¬ [(∀(𝑥𝑝, 𝑥𝑞) ∈ {𝑀𝐿𝐻}) ∩ (∀(𝑥𝑟 , 𝑥𝑠) ∈ {𝐶𝐿𝐻}) > 0]

i. for every (𝑥𝑖 , 𝑥𝑗) ∈ {𝑀𝐿𝐻}, the distance between 𝑥𝑖 and 𝑥𝑗 is modified to

 𝑑(𝑥𝑖 , 𝑥𝑗) = 0.

run all-pairs-shortest-path algorithm to prevent violation of triangular

inequality

ii. for every (𝑥𝑖 , 𝑥𝑗) ∈ {𝐶𝐿𝐻}, the distance between 𝑥𝑖 and 𝑥𝑗 is modified

to 𝑑(𝑥𝑖 , 𝑥𝑗) = 𝑑(𝑥𝑖 , 𝑥𝑗) + 𝐶𝑜𝑛𝑠𝑡 where 𝐶𝑜𝑛𝑠𝑡 is a constant large enough

to prevent linkage between entities 𝑥𝑖 , 𝑥𝑗

run all-pairs-shortest-path algorithm to prevent violation of triangular

inequality

4. Return 𝐷′ as the new updated resemblance matrix.

Univ
ers

ity
 of

 M
ala

ya

120

5.3 Constraints with Low Level of Confidence

In scenarios where domain experts are not confident enough to judge whether the given

clustering constraints are absolute, these sets of constraints will be categorised as soft

constraints. Since soft constraints are not definite, clustering results with partial fulfilment

of soft constraints are still acceptable in most cases (Bair, 2013). However, soft

constraints might be derived with a different level of importance and ranking, subject to

the information provided by domain experts. Fulfilling a handful of higher importance

soft constraints might overshadow the fulfilment of several less important ones. Soft

constraints are typically assigned with a penalty score. The penalty score is used to

evaluate the quality of clustering results where minimisation of the penalty score is

preferred. Thus, a prioritisation and ranking mechanism of soft constraints is introduced

in this study.

The nature of prioritising a given set of clustering constraints is a multi-criteria decision-

making (MCDM) problem. MCDM is a research of methods and procedures by which it

concerns about evaluating multiple conflicting criteria and derive a way to come to a

compromise. This set of criteria often differs in the degree of importance. Examples of

methods to handle MCDM problems are analytic hierarchical process (AHP), fuzzy AHP,

goal programming, scoring methods, and multi-attribute value functions.

In this thesis, ranking and prioritising the importance of soft constraints are achieved

using the fuzzy AHP technique. Fuzzy AHP is capable of handling the fuzziness of users’

opinions with respect to the importance of soft constraints (Chong, Lee, & Ling, 2014).

The results gathered from fuzzy AHP will be represented in a table which shows a list of

candidate criteria (soft constraints) associated with weightage (importance toward the

Univ
ers

ity
 of

 M
ala

ya

121

analysed software), where a higher weightage value represents higher priority. The result

acts as a baseline to evaluate the penalty score of each soft constraint. Must-Link Soft

(MLS) and Cannot-Link Soft (CLS) constraints are evaluated separately because the

notion of Must-Link (ML) and Cannot-Link (CL) is opposing to each other.

In both traditional and fuzzy AHP, the process starts by modelling a hierarchy of decisions

based on the problem domain. The top of the hierarchy consists of the goal for conducting

the test, followed by a group of possible choices to achieve that particular goal. The

choices can be further divided into sub-criteria if required.

A pairwise comparison among all the possible choices is conducted to justify the

importance between them. Each choice is associated with a weightage in order to reflect

the priority of each choice toward the ultimate goal. Domain experts will perform a

pairwise comparison and give weightage using a nine-point scale ranging from 1-9, where

a greater value represents higher importance. In order to reach a consensus among the

domain experts, triangular fuzzy number (TFN) is used. TFN is capable of aggregating

the subjective opinions of all the decision makers through fuzzy set theory. Figure 5.3

shows an example of TFN denoted as (L, M, H) which represents the lowest possible

value, most ideal value, and highest possible value respectively.

Figure 5.3: Triangular fuzzy number

Univ
ers

ity
 of

 M
ala

ya

122

The triangular fuzzy number Txy is constructed using the following formula:

𝑇𝑥𝑦 = (𝐿𝑥𝑦, 𝑀𝑥𝑦, 𝐻𝑥𝑦)

𝐿𝑥𝑦, 𝑀𝑥𝑦, 𝐻𝑥𝑦 ∈ (1/9 , 9)

𝑀𝑥𝑦 = √𝐽𝑥𝑦1 ∙ 𝐽𝑥𝑦2 ∙ 𝐽𝑥𝑦3… ∙ 𝐽𝑥𝑦𝑛
𝑛

where xy represent a pair of criteria being judged by domain expert. Jxy1 represents an

opinion of stakeholder “1” toward the relative importance for criteria Cx - Cy. Value Mxy

is produced by calculating the geometric mean of domain experts’ scores for a particular

comparison. The geometric mean is capable of accurately aggregating and representing

the consensus of decision makers (Saaty, 1980).

After getting the TFN value for every pair of comparison, a fuzzy pairwise comparison

matrix is established in the form of n x n matrix. Table 5.1 illustrates an example of the

matrix.

Table 5.1: Fuzzy pairwise comparison matrix

 Ca Cb ….. Cn

 Ca 1 pab ….. pan

�̃�𝑥𝑦 = Cb 1/pab 1 ….. pbn

 ⋮ ⋮ ⋮ ⋮ ⋮

 Cn 1/pan 1/pbn ….. 1

pab represents the triangular fuzzy number for the comparison between criteria Ca and Cb.

Comparison between criteria Cb to Ca is the reverse of Ca to Cb, thus making the TFN

value for Cb to Ca to be represented as 1/pab. �̃�𝑥𝑦 denotes the TFN values derived from the

formula.

Univ
ers

ity
 of

 M
ala

ya

123

Following the construction of comparison matrix, defuzzification will take place to

produce a quantifiable value based on the calculated TFN values. The defuzzification

method adopted in this thesis is derived from Liou and Wang (1992), which is based on

the alpha cut manner.

𝜇𝛼,𝛽(�̃�𝑥𝑦) = [𝛽 ∙ 𝑓𝛼(𝐿𝑥𝑦) + (1 − 𝛽) ∙ 𝑓𝛼(𝐻𝑥𝑦)]

and

0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1

such that 𝑓𝛼(𝐿𝑥𝑦) = (𝑀𝑥𝑦 − 𝐿𝑥𝑦) ∙ 𝛼 + 𝐿𝑥𝑦 , which represents the left-end boundary

value of alpha cut for �̃�𝑥𝑦 . On the other hand, 𝑓𝛼(𝐻𝑥𝑦) = 𝐻𝑥𝑦 − (𝐻𝑥𝑦 −𝑀𝑥𝑦) ∙ 𝛼

represents the right-end boundary value of alpha cut for �̃�𝑥𝑦.

𝛼 and 𝛽 in this context carry the meaning of preferences and risk tolerance of domain

experts. These two values range between 0 and 1, in such a way that a lesser value

indicates greater uncertainty in decision making. Since preferences and risk tolerance are

not the focus of this research, value of 0.5 for 𝛼 and 𝛽 will be used to represent a balanced

environment. This indicates that decision makers are neither extremely optimistic nor

pessimistic about their judgments.

The next step is to determine the eigenvalue and eigenvector of the fuzzy pairwise

comparison matrix. The purpose of calculating eigenvector is to determine the aggregated

weightage of a particular criterion. Assuming that 𝛿 denotes the eigenvector while 𝜆

denotes the eigenvalue of fuzzy pairwise comparison matrix �̃�𝑥𝑦,

[(𝜇𝛼,𝛽(�̃�𝑥𝑦) − 𝜆𝐼] ∙ 𝛿 = 0

Univ
ers

ity
 of

 M
ala

ya

124

The formula above is based on the linear transformation of vectors, where I represents the

unitary matrix. Using the above formula, the weightage of a particular criterion with

respect to all other possible criteria can be acquired. The results gathered from fuzzy AHP

will be represented in a table form. The table shows a list of candidate soft constraints

associated with weightage value, where a higher weightage represents higher priority and

higher penalty score upon violating these clustering constraints. This table will act as a

baseline to assist in formulating the objective function of MLS and CLS constraints.

The objective function of MLS and CLS constraints is shown below.

Given a set S = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} with classes 𝑥1, 𝑥2, ⋯ , 𝑥𝑛, a set of MLS (must-link soft

constraints) and a set of CLS (cannot-link soft constraints). The objective function is to

maximise the number of satisfied MLS and CLS constraints:

𝑚𝑎𝑥 𝑓(𝑍) =
1

𝑛𝑐
∑𝛾(𝑥𝑖) −

1

2
∑𝛿(𝑥𝑖) (4)

𝑚

𝑖=1

𝑚

𝑖=1

subject to 𝛾(𝑥𝑖) ≥ 0, 𝑖 = 1,⋯𝑚

 0 ≤ 𝛿(𝑥𝑖) ≤ 1, 𝑖 = 1,⋯𝑚

Where 𝑛𝑐 is the total number of available soft constraints (including MLS and CLS) and

𝛾(𝑥𝑖) is the number of satisfied soft constraints involving pairs of classes with 𝑥𝑖 as one

of the classes. The first operand is the ratio of fulfilled soft constraints over the total

number of soft constraints. Meanwhile, 𝛿(𝑥𝑖) is the penalty score for violated clustering

constraints involving pairs of entities with 𝑥𝑖 as one of the classes. The penalty score is

based on its importance toward the overall software system using fuzzy AHP technique.

The cumulative weightage (penalty score) of either MLS or CLS constraints is equal to

1. Thus, a scaling constant of 1/2 is used to normalise the second operand of the equation

Univ
ers

ity
 of

 M
ala

ya

125

when adding both the MLS and CLS constraints. Maximisation of function 𝑓(𝑍) is the

goal of this objective function. The evaluation of soft constraints fulfilment is performed

after the formation of dendrogram. The dendrogram needs to be cut at a certain height to

produce a set of disjoint clusters. Evaluation of soft constraints can then be done by

inspecting the set of disjoint clusters, to check whether or not the soft constraints are

violated. A few cutting points can be executed to compare and contrast the quality of each

cut with respect to the minimisation of soft constraints’ penalty.

5.4 Overview of the Proposed Constrained Agglomerative Hierarchical Software

Clustering Method

All in all, the complete constrained agglomerative hierarchical software clustering

method is shown below.

Given a set of clustering entities S, the distance for each pair of entities x and y in S is

1 ≥ 𝑑(𝑥, 𝑦) ≥ 0 and a set of clustering constraints 𝛼 = {𝑀𝐿𝐻}, {𝑀𝐿𝑆}, {𝐶𝐿𝐻}, {𝐶𝐿𝑆}.

1. Construct the baseline clusters from MLH constraints resulting in n number of

initial clusters 𝑀1, 𝑀2, ⋯𝑀𝑛.

2. If there is a pair of entities (𝑥, 𝑦) in 𝑀1, 𝑀2, ⋯𝑀𝑛 and CLH(𝑥, 𝑦) ∈ 𝛼, then this is

a NP-Complete problem with no solution.

3. Construct an initial clustering with 𝑡𝑚𝑎𝑥 clusters consisting of the n clusters

𝑀1, 𝑀2, ⋯𝑀𝑛 and a singleton cluster for each entity. 𝑡𝑚𝑎𝑥 is the maximum number

of clusters for the set of entities S. Initialise 𝑡 = 𝑡𝑚𝑎𝑥.

4. while 𝑡 ≠ 1

a. Find the pair of entities (𝑆𝑝, 𝑆𝑞) with minimum distance.

Univ
ers

ity
 of

 M
ala

ya

126

b. Merge 𝑆𝑟 = 𝑆𝑝 ∪ 𝑆𝑞 at the level of dissimilarity.

c. Remove 𝑆𝑝, 𝑆𝑞.

d. 𝑡 = 𝑡 − 1.

e. Repeat Step 4.

5. Generate a dendrogram tree based on the clustering results.

6. Cut dendrogram at several points.

7. Evaluate the fulfilment of MLS and CLS with respect to the objective function

proposed in Equation (4).

The overall workflow of the proposed algorithm is as follows:

i. The software maintainer provides the UML class diagrams of the software to be

analysed. If class diagrams are not available, source codes are converted into class

diagrams using an off-the-shelf round-trip engineering tool.

ii. Based on the method proposed in Chapter 4, the software is represented in a weighted

complex network to identify and derive clustering constraints.

iii. Methods related to the formation of clustering entities, identification of features,

construction of resemblance matrix, and formation of dendrogram are discussed in the

following sub-section.

iv. The software maintainer and/or the original developer can then provide domain

knowledge to aid in the software clustering process. Based on the confidence level of

the maintainer and/or developer, each clustering constraint is categorised into either

hard or soft constraint. A dendrogram is formed based on all the retrieved information.

v. The dendrogram is cut based on the available clustering constraints. Each cutting point

is evaluated using the proposed objective function and a cluster validity index, as

discussed in Step iii.

Univ
ers

ity
 of

 M
ala

ya

127

vi. The cutting point that can fulfil the most clustering constraints and the best cluster

validity index is preferred and chosen as the optimum cutting point that forms highly

cohesive clusters.

In this thesis, UML classes are represented as nodes while interrelationships between

pairs of classes are represented as edges. Due to the uniqueness of the proposed

constrained clustering method, an enhanced software clustering algorithm is proposed to

fit into the context of this research. Details of the enhanced software clustering algorithm

are discussed in Section 5.4.1.

All in all, the proposed constrained clustering method will not only fulfil RQ5, but also

address the question raised in RQ6: How to maximise the fulfilment of constraints during

clustering without risking the “dead-end” situation as discussed by Davidson and Ravi

(2009)?

5.4.1 Enhanced Software Clustering Algorithm

As mentioned in Section 2.3, software clustering involves 5 main steps as follows:

1. Identification of entities or components

2. Identification of features

3. Calculation of similarity measure

4. Application of clustering algorithm

5. Evaluation of clustering results

However, conventional software clustering algorithms are not capable of addressing the

issue of using UML classes as the basic clustering entities, as well as the introduction of

Univ
ers

ity
 of

 M
ala

ya

128

clustering constraints. Therefore, an enhanced software clustering algorithm is proposed

in this research.

5.4.2 Identification of Entities or Components

In this research, UML class diagrams are used to represent the clustering entities instead

of relying on source code alone. UML class diagrams provide a standardised conceptual

model that represents the system’s components, operations, attributes and relationships

among classes. Interrelationships among classes are used to specify either through the

presence of abstraction or accessing features of another class. This gives software

engineers a static view of the structural connections being designed. Therefore, class

diagrams can provide an informative summary of many design decisions about the

system’s organisation. In this research, it is assumed that software maintainers are

provided the UML class diagrams of the software to be analysed. If class diagrams are

not available, source codes are converted into class diagrams using an off-the-shelf round-

trip engineering tool.

5.4.3 Identification of Features

Feature identification is used to analyse how similar or closely related two entities are

based on certain common attributes. UML classes are used to represent the clustering

entities in this research. As such, class relationships such as realisation, aggregation, and

association are the best indicator to observe whether a class is related to another class.

5.4.4 Calculation of Similarity Measure

Univ
ers

ity
 of

 M
ala

ya

129

Selection of similarity measure is an important step in software clustering because it is

used to construct the resemblance matrix for the clustering entities. Resemblance matrix

is a matrix that contains the similarity strengths between all pairs of clustering entities. In

this research, selection of similarity measure, and subsequently, construction of

resemblance matrix are supported by the usage of weighted complex network, as

discussed in Chapter 4. Analysing the structure and behaviour of software systems using

graph theoretical metrics had been proven to be useful to capture the dynamic

relationships and dependencies between software components (Louridas et al., 2008).

Shortest path algorithm, in particular, enables software maintainers to identify how

closely related two classes are based on the type of weighting mechanism used in

quantifying the weights of edges. In this research, the weight of a particular edge is

measured using a unique weighting mechanism that takes into account the complexity of

UML relationship (edges) and the complexity of classes (nodes) linked by the specific

relationship. The proposed weighting mechanism provides a means to estimate the

similarity strengths between pairs of classes, such that a lower value signifies higher

similarity between a pair of classes, as shown in Equation (3), Section 4.2.3.

𝑊𝑒𝑖𝑔ℎ𝑡(𝑅𝑖→𝑗) = (𝐻𝑅𝑖→𝑗 ∗ 𝛼) + [(1 − 𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽] (3)

By using Dijkstra's shortest path algorithm (Dijkstra, 1976), software maintainers can

identify how closely related two classes are, and provide a means to indicate whether they

belong to the same functional group. As such, in this research, shortest path algorithm is

used to construct the resemblance matrix of the clustering entities.

5.4.5 Application of Clustering Algorithm

Univ
ers

ity
 of

 M
ala

ya

130

Based on the resemblance matrix produced, merging of entities will then take place.

Depending on the algorithm used, certain algorithms merge the pair with highest

similarity first, while others merge the most dissimilar first. This process is performed

iteratively until all entities are merged into a single cluster.

There are three main types of clustering algorithm:

1. Single Linkage Algorithm (SLINK)

2. Complete Linkage Algorithm (CLINK)

3. Un-weighted Pair-Group Method using Arithmetic Average (UPGMA)

Single linkage, or commonly known as nearest neighbour method, defines the similarity

measure of two chosen clusters as the maximum similarity strength among all pairs of

entities in the two clusters. Complete linkage or furthest neighbour method, on the other

hand, is the opposite of single linkage. The minimum similarity strength among all pairs

of entities is used instead of the maximum similarity strength.

Figure 5.4: Illustration of SLINK and CLINK linkage algorithms

Univ
ers

ity
 of

 M
ala

ya

131

However in condition where outliers exist, SLINK and CLINK methods are less effective.

Take Figure 5.4 for example, there is an outlier “Entity p” in Cluster B where it is very

far away from the other members of the group. If CLINK method was used, the outlier

will drastically affect the accuracy. The same goes to “Entity q” in Cluster A if SLINK

was used to merge the cluster. This would eventually cause the formation of low cohesive

clusters if the number of outliers is considerably high.

Instead, UPGMA defines the similarity measure between two clusters as the arithmetic

average of similarity strengths among all pairs of entities in the two clusters. Given a

dissimilarity matrix 𝐷𝑀 = [𝐷𝑀(𝐶𝑥, 𝐶𝑦)] from a set of clusters C:

1) Select a pair of clusters (𝐶𝑖, 𝐶𝑗) ∈ 𝐶 such that 𝑅𝐶𝑖,𝑗 is the minimum similarity

strength.

2) Remove (𝐶𝑖, 𝐶𝑗) from cluster C and substitute with a new cluster 𝐶𝑘 = (𝐶𝑖 ∪ 𝐶𝑗)

3) The similarity strength 𝑅𝐶𝑘 of the new cluster 𝐶𝑘 is calculated by using the

arithmetic average (similarity strength) of the old cluster (𝐶𝑖, 𝐶𝑗).

4) Repeat the process until all elements are connected in a single cluster.

UPGMA is the most popular clustering method due to the fact that it is less sensitive

toward the effect of outlier as compared to SLINK and CLINK (Gronau & Moran, 2007;

Lung & Zhou, 2008).

In this research, UPGMA will be used to merge clusters and form a dendrogram. After

applying the clustering algorithm, the output is in the form of dendrogram. Further

analysis of clustering results can then be performed based on the dendrogram. However,

since clustering constraints are an important focus to be considered and addressed in this

research, the dendrogram is not generated immediately after the application of clustering

Univ
ers

ity
 of

 M
ala

ya

132

algorithm. Instead, all MLH and CLH constraints will be imposed to modify the

resemblance matrix using the algorithm shown in Section 5.2.3, before generating the

dendrogram.

5.4.6 Evaluation of Clustering Results

One of the popular cluster validity indices is the Davies-Bouldin index (Davies &

Bouldin, 1979). Davies-Bouldin index is a function of the ratio of the sum of within-

cluster scatter to between clusters separation. Because a low scatter and a high distance

between clusters lead to a low value index, a minimisation of Davies-Bouldin index is

preferred. However, the algorithm is highly computational intensive because the index is

an average over the n number of clusters. When the number of entities in the dataset is

extremely huge, the number of clusters formed will also increase relatively. In return, the

computational efforts of Davies-Bouldin index increase because it needs to average out

the index values over the n number of clusters. Thus, this index does not scale well when

the search space is extremely huge.

An enhanced version of the Davies-Bouldin validity index, which focuses on scalability,

is introduced in this research to validate the performance of different cutting points of the

dendrogram. Given a dataset, X = {𝑋1, 𝑋2, … , 𝑋𝑛} , which is a set of n entities. The

dendrogram, D, is the hierarchy of clusters that are formed by the dataset X. A cutting

point 𝐷𝑦 on the dendrogram results in the partitioning of the dataset into a set of

clusters, 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑁}. 𝐶 ⊆ 𝑋 is a subset of entities in the dataset. Let 𝐶𝑘 be one of

the clusters that is formed after applying cutting point 𝐷𝑦, and it contains m entities with

their similarity strengths {𝑋1𝑑, … , 𝑋𝑚𝑑}. 𝑆𝑘, the centroid of cluster 𝐶𝑘, is the average of

all similarity strengths between all pairs of entities in the cluster.

Univ
ers

ity
 of

 M
ala

ya

133

𝑆𝑘 =
1

𝑚
∑𝑋𝑖𝑑

𝑚

𝑖=1

𝑆𝑘 is referred to as the centroid of cluster 𝐶𝑘, k ≤ N. The enhanced Davies-Bouldin index

to validate the performance of cutting point 𝐷𝑦 is defined as:

𝐼𝑛𝑑𝑒𝑥(𝐷𝑦) =
1

𝑁
∑

𝑖𝑛𝑡𝑟𝑎 (𝐶𝑖)

𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛

𝑁

𝑖=1

where N is the total number of clusters that are formed at cutting point 𝐷𝑦.

𝑖𝑛𝑡𝑟𝑎(𝐶𝑖) is the average distance between each entity in 𝐶𝑖 and its cluster centroid 𝑆𝑖.

𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛= 𝑚𝑖𝑛(𝑖𝑛𝑡𝑒𝑟 (𝐶𝑖, 𝐶𝑗)), where 𝐶𝑖, 𝐶𝑗 ∈ 𝐶; 𝑖 ≠ 𝑗, is the nearest distance between

the two centroids of clusters 𝐶𝑖 and 𝐶𝑗, i.e., it represents the minimum distance between

the centroids 𝑆𝑖 and 𝑆𝑗 of 𝐶𝑖 and 𝐶𝑗, respectively.

For each cutting point, the enhanced Davies-Bouldin index is evaluated separately, and

all of the partial calculations are averaged by its weighted mean. 𝑖𝑛𝑡𝑟𝑎(𝐶𝑖) validates the

cohesion strength among all members of the same cluster 𝐶𝑖. A lower value of 𝑖𝑛𝑡𝑟𝑎(𝐶𝑖)

signifies a higher cohesion, whereas 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛validates the coupling strength among the

neighboring clusters, 𝐶𝑖 and 𝐶𝑗. A higher 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛 value indicates that the clusters formed

are well separated.

The major difference between the original Davies-Bouldin index and the proposed

enhanced Davies-Bouldin index is that the enhanced version evaluates partial calculations

instead of averaging over all of the clusters. In cases where there are outliers (i.e.,

singleton clusters), the original Davies-Bouldin index is not capable of detecting them

because the outliers that are involved are also averaged out. A singleton cluster here refers

to a cluster that contains only one entity. Furthermore, when calculating the clusters’

Univ
ers

ity
 of

 M
ala

ya

134

separation for a specific cluster, the proposed enhanced index only inspects the cluster

centroid that is closest to the evaluated cluster. The original Davies-Bouldin index

calculates cluster separation of a cluster 𝐶𝑖 by measuring the distance from its centroid to

an average over all N clusters. The time complexity of this operation is linear O(N) to the

size of data. Because the merging points of a dendrogram are formed in an ascending

order, the enhanced version only needs to inspect the cluster formed before and the cluster

formed after the current one in order to identify its nearest neighbour instead of averaging

out its distance with all other clusters. The rationale behind this decision is that if there is

a cluster centroid that is very close to the evaluated centroid, then there is a very high

chance that the two clusters are strongly coupled. Using this approach, the complexity of

calculating cluster separation can be reduced from O(N) to O(1). Through the application

of this enhanced Davies-Bouldin index, a cutting point that produces the lowest index

value is considered to have the best balance in terms of the cohesion, coupling, and

similarity constraint.

However, in the case of a singleton cluster, the index score should be penalised. It is

always a good practice to minimise the occurrences of clusters with a single element

(Mirkin, 2004). Many cluster validity index tend to incorrectly favour clustering that

generates singleton clusters because they do not have a mechanism to detect it. Singleton

clusters are assumed to be removed by users manually. To avoid this bias, a penalty

mechanism to penalise singleton clusters is introduced, where if a single entity is found

inside a cluster 𝐶𝑖 , 𝑖𝑛𝑡𝑟𝑎(𝐶𝑖) score will be adaptively increased to penalise the final

𝐼𝑛𝑑𝑒𝑥(𝐷𝑦) of that specific cutting point.

The initial concept of penalty is by penalising the cluster cohesion value on singleton

clusters. The proposed penalty mechanism will assign a very high value to 𝑖𝑛𝑡𝑟𝑎(𝐶𝑖) for

Univ
ers

ity
 of

 M
ala

ya

135

every singleton cluster 𝐶𝑖, which increases the validity index 𝐷𝑦. This scenario forces the

algorithm to continue to search for a better partition point that will produce a lower

validity index value. Eventually, the penalty mechanism will minimise the probability of

cutting the dendrogram at an undesirable position.

The simplest way to penalise a singleton cluster is by assigning a static number (for

example, 1, 2, 3) to increase the overall validity index value. However, in a certain worst

case scenario, the penalty effect might become insignificant. This extreme scenario refers

to the case where the 𝑖𝑛𝑡𝑒𝑟 value is only a few times larger than the 𝑖𝑛𝑡𝑟𝑎 value. When

the value of 𝑖𝑛𝑡𝑒𝑟 grows exponentially, the effect of the static penalty mechanism of

𝑖𝑛𝑡𝑟𝑎 (𝐶𝑖) will be negligible. Ultimately, this strategy will cause the calculation to

incorrectly give a low 𝐼𝑛𝑑𝑒𝑥(𝐷𝑦) value to a cutting point that forms singleton clusters.

Even worse, the validity index will assume that the erroneous result is the best cutting

point. Figure 5.5 shows an example of the worst case scenario, in which the average 𝑖𝑛𝑡𝑒𝑟

value is large because of the very large distances between the pairs of cluster centroids.

Figure 5.5: Example of a worst case high 𝑖𝑛𝑡𝑒𝑟 score

Univ
ers

ity
 of

 M
ala

ya

136

To create a more concrete example, assume the case in Figure 5.5, where the dotted line

cuts the dendrogram and forms 5 clusters, A, B, C, D, and E. The average 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛 is 0.1

and a singleton cluster is found (Cluster E). If a static penalty of 1 is given to

an 𝑖𝑛𝑡𝑟𝑎 (𝐶𝐸) score, the
𝑖𝑛𝑡𝑟𝑎 (𝐶𝐸)

𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛
 will be equal to 10. This value is not sufficiently

significant to signify that this cut produces a bad clustering result because the effect of a

penalty is nullified by the denominator (note that the enhanced Davies-Bouldin index

favours a low score).

Thus, the imposition of a penalty mechanism should be adaptive instead of assigning a

static penalty value. The factor that increases the 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛value is the wide gap between

the pair of merging forks. 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛 calculates the nearest distance between the two

centroids of clusters, 𝑆𝑖 and 𝑆𝑗 of 𝐶𝑖 and 𝐶𝑗 , respectively, among all pairs of clusters.

When the gap between the merging forks is relatively large, it will cause the index value

to increase proportionally.

To address this problem, an adaptive penalty mechanism based on the relative change

between the maximum 𝑖𝑛𝑡𝑒𝑟 and average 𝑖𝑛𝑡𝑒𝑟 values is introduced. Let 𝐷𝑦 be the

cutting point that forms a set of clusters 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑁}. The average 𝑖𝑛𝑡𝑒𝑟 is given

as 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑛, while the maximum 𝑖𝑛𝑡𝑒𝑟 value is given as 𝑖𝑛𝑡𝑒𝑟𝑚𝑎𝑥.

The relative change between the average 𝑖𝑛𝑡𝑒𝑟 and maximum 𝑖𝑛𝑡𝑒𝑟 is

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 =
|𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑛 − 𝑖𝑛𝑡𝑒𝑟𝑚𝑎𝑥|

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑛

If 𝑖𝑛𝑡𝑒𝑟𝑚𝑎𝑥 is x times larger than the 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑛value, then the equivalent value of the

penalty should be imposed. Thus, the adaptive penalty P is given as

Univ
ers

ity
 of

 M
ala

ya

137

𝑃 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶ℎ𝑎𝑛𝑔𝑒

As such, if a dendrogram cutting point produces singleton clusters, penalty P is assigned

as the cluster validity index value in order to penalise the formation of singleton clusters.

Otherwise, the enhanced Davies-Bouldin index is used to evaluate the quality of each

cluster.

 Finding the Optimum Dendrogram Cutting Point

For a small dataset for which the search space is small, it is very easy to identify the

optimum cutting point through visual inspection. The optimum cutting point in this

context refers to the cutting point that produces highly cohesive sets of clusters. However,

when a large dataset is involved, visual inspection is infeasible. Finding out the optimum

cutting point can be highly computationally intensive. One way to find the optimum

cutting point is by using the exhaustive cut method, which cuts the dendrogram at each

possible point to find the best possible clustering result. This method is not feasible, and

duplicate effort will definitely occur because the possibility of producing repeating index

values is much higher. Therefore, a solution to adaptively search for the optimum point

in a large-scale dataset is proposed in this research.

Scalability is an important issue in software clustering, for recovering from a software

system that has a very large number of entities. If the proposed approach were to run on

a larger and more complex system, then what is the average number of cuts that is needed?

To address this problem and to improve the scalability of the dendrogram cutting method,

the cutting technique introduced in (Fokaefs et al., 2012) is adapted, where the

dendrogram is only cut at every unique merging fork instead of setting a threshold value.

Univ
ers

ity
 of

 M
ala

ya

138

In order to verify the performance of this method, a series of tests and simulations were

conducted, and the details of the simulations are presented in Appendix B.

Based on the results presented in Appendix B, cutting the dendrogram after every unique

merging fork produces the best result. The reason for this choice is that there is usually a

significant change in the validity index value after a merging fork. At the same time,

cutting at unique merging forks can minimise redundant effort. The redundant effort in

this context refers to the repetitive effort that is required to find optimum clustering

results. In order to further enhance the accuracy of finding the optimum cutting point, a

least-squares polynomial regression analysis is introduced in this research.

In a polynomial equation, one can identify the highest and lowest points by finding the

derivative of the polynomial function. Using this same concept, given a distribution of

different cutting points and their validity index values, the algorithm can find the cutting

point that produces the lowest validity index value if the polynomial equation can be

formed.

Table 5.2 shows an example of a dendrogram that has points cut at 0.2, 0.4, 0.6, 0.8, and

0.99, which produces different cluster validity index values. Using the information that is

retrieved from this observation, a cutting point-validity index graph can be plotted to

observe the trend with which different cutting points can affect the results of the validity

index.

Table 5.2: Example of validity index values retrieved from different cutting points

Cutting point (x-axis) Enhanced Davies-Bouldin validity index (y-axis)

0.2 15

0.4 7

0.6 4

0.8 24

0.99 27

Univ
ers

ity
 of

 M
ala

ya

139

Figure 5.6 depicts the graph that is plotted using the information that is retrieved from

Table 5.2. An estimation of the polynomial equation can then be formed using the least-

squares method (Wolberg, 2006).

Figure 5.6: Polynomial regression based on the data from Table 5.2

The 𝑅2 value indicates the correlation coefficient of the estimated polynomial equation.

The correlation values that are equal to 1 or -1 correspond to data points that lie exactly

on the estimated line which indicates that the estimation is very reliable. The next step is

to find the root of the polynomial equation. This step provides identification of the

minimum point of the x-axis, which in this context, is the cutting point that produces the

lowest validity index value.

The example in Figure 5.6 is a quartic function. The roots of y = -1554.8x4 + 3484.5x3 -

2564.2x2 + 709.4x - 49.703 are [x= 1.080, x= 0.104, x= 0.529, x= 0.454]. It is to be noted

that the curve represented in Figure 5.6 is estimated based on polynomial interpolation of

the data points, which can only be served as a visual guidance. Using the four roots, one

can find the corresponding y-axis values, which resemble the validity index values. The

y = -1554.8x4 + 3484.5x3 - 2564.2x2 + 709.4x - 49.703
R² = 1

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2

V
a
lid

it
y
 I

n
d
e
x

Cutting point

Univ
ers

ity
 of

 M
ala

ya

140

root that produces the lowest y-axis value will be deemed to be the best cutting point

because it yields the lowest validity index value. Through this method, the cutting point

x=0.529 can easily be identified, and it forms an optimum set of reliable clusters.

Eventually, the proposed adaptive penalty mechanism and the least-squares polynomial

regression technique can be applied to different types of cluster validity index and

clustering algorithms. These two techniques are generic in the sense that they do not alter

the working principles of the existing algorithms but instead improve their efficiency and

accuracy.

5.5 Preliminary Evaluation of the Proposed Constrained Clustering Approach

In order to test the applicability and performance of the proposed method, a preliminary

evaluation has been conducted using two open-source software systems. The evaluation

provides a concrete example to illustrate the general workflow of the proposed

constrained clustering approach.

Numerous remodularisation techniques have been proposed in the literature to aid in

software architecture recovery but it is hard to evaluate their performance and

applicability toward real-world software development. The work by Ducasse and Pollet

(2009) presented a comprehensive taxonomy for the state-of-the-art software architecture

recovery approaches. The taxonomy is designed in a process-oriented manner such that it

allows a potential reverse engineer who wants to reconstruct the architecture of an

existing software to clearly understand the existing approaches. Thus, software

practitioners can choose the most appropriate approaches that can fit into their problem

domain. The taxonomy proposed by (Ducasse & Pollet, 2009) is shown in Figure 5.7.

Univ
ers

ity
 of

 M
ala

ya

141

Figure 5.7: Process-oriented taxonomy extracted from Ducasse & Pollet (2009).

The taxonomy consists of several important affiliations, which are the goals, the

processes, the inputs, the techniques, and the outputs of software architecture recovery

approaches. For each affiliation, it is further categorised into several sub-groups. The

taxonomy allows researchers to claim the applicability of their proposed software

architecture recovery approaches on real-world problems and provide clear explanations

in a process-oriented manner. Thus, the proposed constrained agglomerative hierarchical

software clustering approach is described using the same taxonomy.

 Goal: The goal of this study is to recover a high-level abstraction of OO software

systems to aid in software maintenance phase. The result of clustering can aid in

understanding and analysing the underlying structure of the analysed software.

Thus, the goal of this research falls in the category of ‘Redocumentation’ and

‘Analysis’.

Univ
ers

ity
 of

 M
ala

ya

142

 Process: A hybrid constrained agglomerative hierarchical software clustering

technique, following a bottom-up approach.

 Input: From the architectural aspect, UML class diagrams of the analysed software

are used as the input, which consist of both architecture style and viewpoints.

 Technique: Semi-automatic approach which combines software clustering and

domain knowledge in the form of hard and soft constraints.

 Output: Horizontal conformance. The proposed constrained clustering result is

verified with the normal software clustering result (without involvement of

clustering constraints) and also the original package diagram of the analysed

software system. MoJoFM (Wen & Tzerpos, 2004) is used in this research to

evaluate the quality of the proposed technique.

As discussed in Section 3.5, MoJoFM is a suitable tool used to compare the similarities

between two clustering results. However, Mitchell and Mancoridis (2001) discussed that

often time, gold standard does not exist. The authors suggested another approach by

clustering the analysed software using different clustering algorithms. Then, the

similarities between the results of different algorithms are compared with each other. This

will allow software maintainers to identify not only the quality of the clustering results,

but also the stability of the clustering algorithm, when compared against other prior

studies.

Univ
ers

ity
 of

 M
ala

ya

143

Thus, in this research, the evaluation of the proposed constrained clustering approach is

conducted in the following manner:

1. Perform conventional clustering approach that do not make use of any clustering

constraints, or commonly referred as unconstrained clustering approach.

2. Perform constrained clustering using the proposed approach by incorporating hard

and soft constraints.

3. Retrieve the original package diagram of the analysed open-source software from

the project website or repository. Based on the work by Beck & Diehl (2012), a

reference decomposition or gold standard can be created by using the current,

factual architecture of the system created by the developers (e.g., the package

structure of an object-oriented system). The package structure or diagram is by no

means the gold standard since there is no way to verify the quality of the

decomposition. However, it can be treated as a guideline to evaluate and compare

between the results produced by the proposed technique and the documented

artifact.

4. Use MoJoFM to calculate the similarities between all three results (unconstrained

clustering, constrained clustering, and package diagram).

Two evaluations were carried out to assess the feasibility of the proposed method. First,

a university research project, MathArc ("MathArc - Ensuring Access to Mathematics

Over Time," August 2009), is chosen for the evaluation. This project is aimed at creating

a system that is capable of the long-term preservation and dissemination of digital journals

in mathematics and statistics. This system is a joint project by Cornell University Library

and Göttingen State University Library, which took two years to develop. The system

contains 33 classes with an average of 8 attributes and 4 methods per class. The system’s

Univ
ers

ity
 of

 M
ala

ya

144

functional modules can be visually represented as in Figure 5.8. Dotted black boxes

represent the original UML packages. There are a total of six subsystems in this software.

Figure 5.8: Overview of visual representation of the original package diagram and the

constrained clustering results

The steps involved in performing the evaluation are as follows:

1. Prior to the evaluation, all the classes are assumed to be scattered around and not

grouped in their respective packages.

2. Based on the original UML package diagram, several MLH, CLH, MLS, and CLS

constraints are extracted. For instance, based on Figure 5.8, it can be observed that

class “Monitor” and “Preservation” must be grouped into the same cluster because

they are from the same subsystem. Thus, a MLH constraint “Monitor-

Preservation” is generated in Table 5.3.

3. For MLS and CLS constraints, penalty scores for violating the soft constraints are

generated randomly. Besides that, an erroneous clustering constraint was created

Univ
ers

ity
 of

 M
ala

ya

145

intentionally, but it is assigned with a very low penalty score to see how the

proposed approach handles the fake constraint. For instance, although the original

package diagram indicates that “Media” and “Standards” classes belong to

different packages, a MLS constraint with low penalty score of 0.1 is created. This

MLS constraint simulates the situation where domain experts are not very

confident about the given clustering constraint.

4. Apply the proposed constrained clustering algorithm to restructure the class

diagram, so that similar classes are grouped into the same package, while dissimilar

ones are separated from each other.

5. Use MoJoFM to compare the result of the proposed constrained clustering

approach with the original packages to evaluate the accuracy of the proposed

approach.

Table 5.3: Generated clustering constraints for MathArc system

Clustering Constraints

MLH CLH MLS(penalty) CLS(penalty)

Submission-

QualityAssu

AccessControl-

Submission
Report-SysD(0.3)

Monitor-

Negotiator (0.5)

Monitor-

Preservation
Report-Services

Standards-

AccessControl(0.3)

Submission-

Services(0.5)

ErrorCheck-

Media

Updates-

APGeneration(0.3)

ReplaceMedia-

Media
 Media-Standards(0.1)

5.5.1 Accuracy and Scalability of the Proposed Clustering Approach

However, it is also important to validate the proposed clustering approach with prior

studies to evaluate its accuracy and scalability. The proposed dendrogram cutting

technique is compared to well-known hierarchical clustering algorithms with a different

Univ
ers

ity
 of

 M
ala

ya

146

linkage method, specifically SLINK and CLINK combined with exhaustive and static

dendrogram cutting methods (Greenacre, 2012). The exhaustive cut method cuts the

dendrogram, starting from the 0.001 level of similarity and making increases of 0.001 for

every subsequent cut, until the cutting point is equal to the maximum height. A static cut

method means cutting the dendrogram at a predefined similarity threshold. However, if

there is no information on the correct number of clusters and the number of entities inside

of a cluster, a static cut is not a feasible choice. Another form of static cut is to cut the

dendrogram at the highest gap, which would indicate that those clusters are naturally

clustered (Mirkin, 2004). The highest gap refers to cutting the dendrogram at the largest

distance between two successive entities. Thus, the highest gap cut is chosen to compare

with the proposed dendrogram cutting technique. Table 5.4 shows the result of using

SLINK combined with an exhaustive cut, a highest gap cut and the proposed dendrogram

cutting method.

Table 5.4: Simulation using SLINK with 3 different dendrogram cutting methods

 SLINK +

Exhaustive Cut

SLINK + Highest

Gap Cut

SLINK + proposed

cutting method

Runtime (in second) 21 3 8

Suggested cutting

point

0.38 0.475 0.35

Cluster validity

index (enhanced

Davies-Bouldin

index)

20.15 150.35 21.65

From the table, it can be observed that although SLINK + Exhaustive Cut discovers a

cutting point that produces the lowest index value, the runtime is significantly higher

compared to the other two methods. SLINK + Highest Gap discovers that the highest gap

locates very near to the top of the dendrogram tree. Cutting the dendrogram near the top

Univ
ers

ity
 of

 M
ala

ya

147

of the tree results in a bad cluster validity index values. This situation is very common

because these clusters usually have the highest dissimilarity between them in the

dendrogram. Figure 5.9 shows the dendrogram tree that is produced by using the SLINK

algorithm, which indicates that the highest gap is very near to the top of the dendrogram.

SLINK + the proposed cutting method, on the other hand, managed to discover a cutting

point that is very close to the exhaustive method but that has a relatively fast runtime.

Figure 5.9: Dendrogram tree generated using SLINK

Table 5.5 shows the result of using CLINK with 3 different dendrogram cutting methods.

Univ
ers

ity
 of

 M
ala

ya

148

Table 5.5: Simulation using CLINK with 3 different dendrogram cutting methods

 CLINK +

Exhaustive Cut

CLINK +

Highest Gap

Cut

CLINK +

proposed cutting

method

Runtime (in seconds) 28 6 11

Suggested cutting point 0.43 0.05 0.44

Cluster validity index

(enhanced Davies-Bouldin

index)

23.66 5035.68 23.87

Similar to the simulation with SLINK, an exhaustive cut yields the highest runtime. The

highest gap using the CLINK method cuts the dendrogram near to the base of the tree and

produces a bad result because it forms a substantial number of singleton clusters. Figure

5.10 depicts the dendrogram tree that is generated from CLINK. The proposed

dendrogram cutting method, on the other hand, detects a cutting point that is very close

to an exhaustive method while the runtime is more than two times faster.

The results shown in Table 5.4 and Table 5.5 match the outcomes of Table B1 through

Table B3 (available in Appendix B), which are generated from artificial datasets. These

results demonstrate that the accuracy of the proposed dendrogram cutting method is on

par with the exhaustive cut method while having the capability of minimizing the efforts

that are required to find the optimum cutting point.

Univ
ers

ity
 of

 M
ala

ya

149

Figure 5.10: Dendrogram tree generated using CLINK

By observing Figure 5.9 and Figure 5.10, it is found that the dendrogram trees generated

from SLINK and CLINK produce a completely different hierarchy. SLINK and CLINK

are based on opposite philosophies, where SLINK defines the similarity measure of two

clusters as the maximum coefficient between all of the pairs of entities, while the reverse

is true for CLINK. Based on the work by (Hughes, 1979), if two different clustering

methods generate an entirely different tree, the clusters are said to be weakly defined.

This result indicates that the MathArc case study does not demonstrate a well-defined

architecture, and the grouping of clusters is not as distinct. Thus, evaluation using the

UPGMA method will be more appropriate.

Next, to evaluate the effectiveness of the penalty mechanism, evaluations were conducted

using two other well-known cluster validity indices, namely the Davies-Bouldin index

and Dunn’s index (Dunn, 1973). Dunn’s index is calculated by dividing the minimum

Univ
ers

ity
 of

 M
ala

ya

150

inter-cluster separation by the maximum intra-cluster cohesion. A higher Dunn’s index

indicates a better clustering result, which is opposite from the Davies-Bouldin index. The

results gathered from all three validity indices were analysed to find out the effectiveness

of the penalty mechanism that was introduced.

To compare all of the three indices fairly, the dendrogram tree is constructed using

UPGMA. The dendrogram is then cut using the proposed dendrogram cutting method to

form a cutting point-validity index table. The table allows one to observe the variation in

the index scores at different cutting points. Table 5.6 shows the index scores of the cutting

point-validity index of all three indices.

Table 5.6: Index scores of the cluster validity indices for the MathArc system

Cutting point Davies-Bouldin Dunn’s Index Enhanced Davies-

Bouldin (with the

proposed penalty

mechanism)

0.072 0.021 ∞ 94.958

0.126 0.133 0.203 88.333

0.134 1.088 0.187 85.571

0.144 1.484 0.18 81.984

0.168 59294.83 0.129 59350.22

0.198 46914.07 0.129 46967.53

0.215 33354.08 0.135 33410.08

0.226 36865.2 0.132 36916.78

0.251 38913.63 0.12 38957.19

0.296 4360.97 0.123 4401.322

0.301 4637.941 0.098 4668.566

0.306 4949.625 0.087 4975.759

0.318 5743.269 0.065 5758.346

0.324 6224.793 0.05 6232.959

0.329 6751.137 0.054 6760.046

0.332 7435.395 0.077 7439.595

0.373 8254.413 0.099 8259.08

0.389 9283.049 0.096 9288.299

0.408 8.051 0.157 14.051

Univ
ers

ity
 of

 M
ala

ya

151

0.41 77.156 0.198 80.682

0.421 93.987 0.053 93.987

0.438 109.906 0.078 109.906

0.462 144.017 0.053 144.017

0.466 5.326 0.168 120.572

0.481 9.22E+15 0 9.22E+15

It should be noted that the Davies-Bouldin index and the enhanced Davies-Bouldin index

favour the minimisation of the index value while the Dunn’s index favours the

maximisation of the index value. As can be seen from the table, the original Davies-

Bouldin index and the Dunn’s index tend to favour cutting the dendrogram at low levels

of similarity. These cutting points range from 0.072 to 0.144, which yield a low Davies-

Bouldin index and a high Dunn’s index. However, these four cutting points are in fact

forming a substantial number of singleton clusters. Because of the lack of singleton cluster

detection, both of the indices incorrectly assume that those are the optimum cutting points.

The proposed enhanced Davies-Bouldin index, on the other hand, penalises the formation

of singleton clusters to prevent software maintainers from choosing those four cutting

points. As such, the evaluation shows that the proposed enhanced Davies-Bouldin index

coupled with the penalty mechanism are able to effectively prevent the formation of

singleton clusters, when compared to two other cluster validity indices.

5.5.2 Evaluation Result for MathArc System

Figure 5.8 shows the clustering results using the proposed approach. The blue and red

boxes represent the results of the evaluation, with each box representing one subsystem.

The blue boxes indicate the clustering results that match the original package diagram,

while the red boxes indicate the mixture of results that match and do not match the original

Univ
ers

ity
 of

 M
ala

ya

152

package diagram. The diagram was redrawn to normalise all of the association,

aggregation, and generalisation into the form of normal association notation.

Note that all the MLH and CLH constraints are fulfilled in the result. However, the MLS

constraint of "Media-Standards was violated. This is because based on Davies-Bouldin

index, fulfilling the MLS constraint of “Media-Standards” will result in low cohesion

strength among the associated clusters. Since the cost of violation is relatively smaller,

selecting another cutting point that violates this MLS constraint is a better option. The

objective function of soft constraints in this evaluation is 𝑓(𝑍) = [(5/6) − (0.05)] =

0.7833. The first operand signifies that 5 out of 6 soft constraints are fulfilled. The value

of 0.05 is calculated based on the penalty score of violating the constraint “Media-

Standards” and multiplying it with scaling constant of 1/2.

By using the MoJoFM tool provided by Wen and Tzerpos (2004), the evaluation result

using the proposed constrained clustering method managed to achieve MoJoFM metric

of 92.59% when compared against the original package diagram. The MoJoFM favours

high metric value where a 100% score is given if both clustering results are identical.

However, as mentioned earlier, the original package diagram is by no means the ‘gold

standard’ because there is no way to verify if it is the best abstraction to represent the

software design of MathArc system. Thus, another evaluation is performed by comparing

the results without imposing any constraints. The result can be visually represented as

shown in Figure 5.11.

Univ
ers

ity
 of

 M
ala

ya

153

Figure 5.11: Overview of visual representation of the original package diagram and the

clustering results without clustering constraints

Based on Figure 5.11, it can be observed that the ‘Administrator’ package (lower left hand

side) contains classes from two other packages. This is because these classes behave

similarly to utility classes, for which the association strengths within the same package

are relatively weak compared to the other packages. When compared with the original

package diagram, the MoJoFM achieves value of 88.89%. Although there are slight

improvements when using the proposed constrained clustering technique, it is not

significant enough. Thus, another evaluation is performed using a larger software.

5.5.3 Evaluation Using JSPWiki Project

Univ
ers

ity
 of

 M
ala

ya

154

An open-source project, the JSPWiki which is a Wiki engine written in J2EE component

is chosen. Wiki engines are used to host and manage Wiki web pages. JSPWiki contains

42560 lines of code and 425 classes with an average of 5.5 methods per class. A total of

326 out of these 425 classes were removed in this evaluation because it was discovered

that there were some classes that do not have any direct dependency with other classes.

These classes are either standalone features or classes with very specific functions that do

not have any interaction with other components in the system.

A total of 15 MLH and CLH constraints, and 5 MLS and CLS constraints were extracted

from the original package diagram of JSPWiki. The constraints are listed in Table 5.7.

Table 5.7: Clustering constraints derived from the JWPWiki project

Clustering Constraints

MLH CLH MLS(penalty) CLS(penalty)

GroupCommand-

AbstractCommand

Workflow-

TemplateDirTag

Tast-Outcome

(0.3)

Command-

WikiEventUtil(0.2)

AbstractCommand-

WikiCommand
MailUtil-Entry

WatchDog-

RSSThread(0.3)

WikiPrinciple-

WikiPage(0.3)

UserCheckTag-

WikiServletFilter

Workflow-

CommandResolve

r

PageManager-

EditorManager(0.2

)

Step-

ParseException(0.3

)

AdminBeanManager

-WikiEngineEvent

PageRenamer-

Entry

Feed-

RSS20Feed(0.1)

UserBean-

Editor(0.1)

UserDatabase-

WikiSession

Workflow-

WikiRPCHandler

Editor-

RSSGenerator(0.1)

BlogUtil-

FileUtil(0.1)

Entry-AclImpl
MessageTag-

Denounce

WikiSession-

UserProfile

MessageTag-

Entry

FormClose-

FormSelect

FileUtil-

RPCCallable

FormElement-

FormSet

Heading-

MarkupParser

FormOutput-

FormOpen

Heading-

ProviderException

FormInput-

FormTestArea

SecurityVerifier-

WikiException

InsertPage-

TableofContents
FileUtil-ClassUtil

Univ
ers

ity
 of

 M
ala

ya

155

Clustering Constraints

MLH CLH MLS(penalty) CLS(penalty)

Entry-

FileSystemProvider

BasicPageFilter-

CoreBean

InitializablePlugin-

Plugin

Util.PageSorter-

Outcome

TemplateDirTag-

WikiRPCHandler
Outcome-Feed

However, due to the large number of classes exist in the project, the size of the class

diagram is too large to be displayed. Only the MoJoFM metrics are reported. The full

details of the evaluation results can be accessed by the following URL:

http://sourceforge.net/projects/umltocomplexnetwork/files/.

MoJoFM metric: Constrained clustering compared to original package = 76.25%

MoJoFM metric: Unconstrained clustering compared to original package = 62.45%

The improvement by imposing pairwise constraints, observing from the results of

MoJoFM metric, is more significant in larger software systems. The same observation

was also found in the work by Davidson and Ravi (2009), where the author discovered

that when performing on large datasets, a small number of clustering constraints can

significantly improve the results of agglomerative hierarchical clustering.

5.6 Chapter Summary

This chapter presents a method to integrate explicit and implicit constraints with

agglomerative hierarchical software clustering. The proposed method is capable of

handling four types of constraints, namely MLH, CLH, MLS, and CLS constraints. Hard

constraints are fulfilled throughout the whole clustering process while soft constraints are

optional constraints associated with some validation of penalty if they are violated.

Univ
ers

ity
 of

 M
ala

ya

156

The proposed approach has been successfully implemented on two projects, the MathArc

and JSPWiki system. Comparisons against prior studies were also conducted to evaluate

the effectiveness of the proposed dendrogram cutting method and the penalty mechanism.

Several MLH, MLS, CLH, and CLS constraints were generated to test the proposed

technique. When compared against unconstrained clustering approach, the proposed

approach managed to achieve better results measured using MoJoFM metric. The

proposed method is designed to be generic and flexible enough to be applied on different

domains. For instance, the fulfilment of MLH and CLH constraints is not domain specific

and can be adapted to be used on a different field of study. The fulfilment of MLS and

CLS constraints, on the other hand, can be extended to other MCDM resolution

techniques, such as goal programming, scoring methods, and multi-attribute value

functions. The penalty score of violating a particular soft constraint can be adjusted to fit

into the domain of study. In the next chapter, the full-scale experiment, along with the

design decisions are discussed in detail.

Univ
ers

ity
 of

 M
ala

ya

157

CHAPTER 6: EXPERIMENTAL DESIGN AND EXECUTION

In this chapter, experiments to evaluate the accuracy and scalability of the proposed

approach are discussed in detail. This chapter adopts the experimental design and

framework discussed by Wohlin et al. (2012), which follows a systematic approach to

conduct software engineering research. The chapter starts by discussing the

implementation plan of the proposed approach. Next, implementation of the prototype is

carried out using real datasets gathered from open-source projects. The experimental

results are evaluated and discussed in the next chapter.

6.1 Experiment Scoping

This research follows an empirical research methodology where the proposed approach

is validated using real-world OO software systems. Therefore, the scope of the

experiment must be pre-determined in order to ensure that the experiments conducted are

aligned to the goal of the research.

6.1.1 Goal Definition

The first step is to decide whether an experiment is a suitable way to analyse the problem

at hand. In this thesis, the objective of the empirical study is to determine the suitable

measure constructs to represent OO software systems using weighted complex network,

and perform the graph theoretical analysis to reveal some extra deterministic information

about relationships among classes. This information is then used to support the

subsequent constrained clustering approach to form cohesive clusters and improve the

overall effectiveness of software clustering.

Univ
ers

ity
 of

 M
ala

ya

158

The experiment is motivated by the need to understand how constrained clustering can

help in recovering a high-level abstraction of OO software systems, as compared to

unconstrained approaches. It is well known in existing studies that even a small amount

of domain knowledge of the software in the form of pairwise constraints can help improve

the clustering results. However, there has been much less attention focused on how to

automatically derive clustering constraints without human intervention and ways to fulfil

clustering constraints in the domain of software engineering. As such, it is important to

formulate a proper method to derive explicit constraints from domain experts, and also

implicit constraints from the implicit structure of software systems to form highly

cohesive clusters that are representative enough to illustrate a high-level abstraction view

of the OO software systems. The goal of the experiment can be expressed as follows:

Object of study – The object of this research is to propose a constrained clustering

approach facilitated by the use of weighted complex network analysis.

Purpose – The purpose of the experiment is to evaluate the accuracy and scalability of

the proposed approach when compared to an existing unconstrained clustering approach.

Perspective – The perspective of the experiment is from the point of view of software

maintainers. Software maintainers can identify if there are any statistical differences when

domain knowledge in the form of pairwise constraints are integrated into software

clustering. They can also observe how graph theoretical analysis can reveal some extra

deterministic information about relationships among all the involved classes, with the

purpose to provide a high-level abstraction of the analysed software.

Quality focus – The main result studied in the experiment is the cohesiveness of the

clusters formed by the proposed constrained clustering approach. The formation of

clusters is based on the explicit constraints derived by domain experts and also implicit

Univ
ers

ity
 of

 M
ala

ya

159

constraints derived automatically using the proposed method. In terms of software

quality, two specific aspects are emphasised, which are the maintainability and reliability

of the analysed software system.

Context – A total of 40 open-source Java software systems are chosen in this study. The

sizes of the software systems vary from 128 to 2,408 classes and 7,436 to 216,093 lines

of code. The software systems are chosen to reflect some representative distribution on

the population of open-source OO software available in the market, based on the

following class count categories:

 less than 250 classes – 7 projects

 between 250-500 classes – 11 projects

 between 501-1000 classes – 14 projects

 more than 1000 classes – 8 projects

As this research is based on an exploratory study, the selected software systems must be

of high quality and reputable among the open-source communities. As it is, all the 40

software systems are being actively developed and maintained by a large number of open-

source contributors.

6.1.2 Summary of Scoping

In order to provide a clear and concise summary of the scope for this research, the Goal

Question Metric (GQM) approach proposed by Van Solingen, Basili, Caldiera, and

Rombach (2002) is adopted. GQM approach emphasises eliciting goals and research

questions to find necessary metrics for addressing the identified goals and questions. The

GQM approach is usually presented in the following template as follows:

Analyse <Object(s) of study>

for the purpose of <Purpose>

with respect to their <Quality focus>

from the point of view of the <Perspective>

Univ
ers

ity
 of

 M
ala

ya

160

in the context of <Context>.

Hence, the template is adopted and modified based on the research goal discussed in

Section 6.1.1.

Analyse the outcome of the proposed constrained clustering approach

for the purpose of evaluation

with respect to the maintainability and reliability of the analysed software, and the

cohesiveness of the clusters formed by the proposed approach

from the point of view of software maintainers

in the context of open-source OO software systems.

6.2 Experiment Planning

The next phase is the planning of the experiment study. Details such as selection of

context, formation of hypothesis, selection of variables, and the experimental design are

discussed in detail.

6.2.1 Context Selection

The use of open-source OO software systems as an experimental context provides several

benefits to simulate real-world scenario when maintaining aging and poorly designed

software systems. First of all, development of open-source projects is usually based on an

ad-hoc basis, such that contributors write their own code to fulfil certain new

requirements. Thus, the quality of the source code delivered by contributors usually varies

depending on the programming skills of each individual. In return, the maintenance

efforts of the selected test subjects are highly dependent on the skills and experience of

the open-source contributors. This behaviour is aligned to RO1.3, To investigate the

correlation between the statistical patterns of real-world OO software systems and their

level of maintenance efforts.

Univ
ers

ity
 of

 M
ala

ya

161

Furthermore, in order to improve the generalisation of the experiments and eventually

formulate more conclusive experiment results, the test subjects chosen in this research

vary depending on their application domain, class count, and lines of code to reflect some

representative distribution on the population of open-source OO software systems. All

the configuration files, input files, and test results are uploaded to a public domain to

allow for replication of the experiments.

6.2.2 Hypothesis Formulation

An important aspect of experiment is to formally state clearly what is going to be

evaluated in the experiment. This leads to the formulation of hypotheses. In this research,

two hypotheses are formulated.

Hypothesis 1: Given any number and size of test subjects, the constructed weighted

complex network based on the proposed approach should be able to demonstrate common

statistical patterns of real-world OO software systems. When the test subjects are grouped

and compared based on their levels of maintenance efforts, their statistical patterns are

more distinguishable.

Hypothesis 2: The proposed constrained agglomerative hierarchical software clustering

approach is able to form relatively more cohesive clusters as compared to the

unconstrained clustering approach.

6.2.3 Variables Selection

Univ
ers

ity
 of

 M
ala

ya

162

The independent variables are the level of maintenance efforts of the chosen test subjects,

and the number of hard and soft constraints derived from the software systems. The

dependent variables are the accuracy of software clustering results and the number of

fulfilled clustering constraints.

6.2.4 Selection of Subjects

The selection of test subjects greatly affects the results of empirical testing. In this

research, quota sampling is used to select OO software systems from various elements of

population, such as application domains, lines of code, and number of classes. The chosen

software systems have to demonstrate a certain level of quality in terms of maintainability

and reliability to allow for baseline evaluations and comparisons. Thus, the number of

defects and maintenance costs of the chosen software systems have to be identified to

allow for baseline evaluations and comparisons. However, as the selected software

systems are open-source projects, it is hard to accurately measure the maintenance costs

of the selected software systems in terms of man-day. One alternative to measure the

quality of open-source software is by the means of technical debt (Izurieta, Griffith,

Reimanis, & Luhr, 2013).

Technical debt, as discussed by Sterling (2010), is related to the issues in software that

will hinder future development if left unresolved. Software systems with a high technical

debt are at the risk of high maintenance cost. Curtis, Sappidi, and Szynkarski (2012)

discussed that it is hard to measure technical debt using a generic measurement because

identification of technical debts is based on the structural flaws that software developers

intend to fix. Certain developers might just ignore the flaws or fail to recognise the flaws.

Univ
ers

ity
 of

 M
ala

ya

163

Curtis et al. claimed that it is hard to quantify technical debt using a generic algorithm or

technique.

The work by Heitlager, Kuipers, and Visser (2007) proposes a model to measure the

maintainability of software based on ISO/IEC 9126 standard. A Maintainability Index

(MI) is used to quantify the maintainability of software systems by analysing the source

code. The algorithm to calculate MI is based on several software metrics, including

cyclomatic complexity and average number of lines of code per module. However, this

technique only focuses on one particular non-functional requirement stated in ISO/IEC

9126 standard.

The work by Letouzey and Ilkiewicz introduces a method to estimate the technical debt

of software systems by examining the source code (Letouzey & Ilkiewicz, 2012). The

authors proposed the Software Quality Assessment Based on Life-cycle Expectations

(SQALE) method that provides a systematic model to estimate technical debt, and

subsequently ranks the severity of debts using five scales, ranging from A to E. Although

there are no existing studies that attempt to demonstrate how SQALE ratings can

correspond to actual development cost or effort, the work by Lim, Taksande, and Seaman

(2012) did demonstrate a considerable finding on how software practitioners view

technical debts, and how technical debts are relevant toward the maintainability of

software systems. The authors showed that technical debts do play an important role in

commercial projects and widely recognised by software practitioners.

The SQALE method uses eight non-functional requirements, namely Testability,

Reliability, Changeability, Efficiency, Security, Maintainability, Portability, and

Reusability adapted from ISO/IEC 9126, as a reference to estimate technical debt of

Univ
ers

ity
 of

 M
ala

ya

164

software. Software components that do not comply with the non-functional requirements

are treated as debts. For each non-functional requirement, there is an estimation of time

needed to fix the debt generated from the requirements. The sum of all the identified

debts, along with the time estimated to solve them, is quantified as the total technical debt

of a software system. As mentioned earlier, the focus of this research is to measure and

analyse the maintainability and reliability of the software systems when represented using

weighted complex network, which are also software quality attributes covered by the

SQALE method. Thus, the inclusion of SQALE method as a basis of measuring the

maintenance costs of the selected software systems will allow for better comparative

analysis.

To give a more concrete example on how to measure the maintenance effort of software,

given a software system with 5000 lines of code. The average cost of developing 1000

lines of code is 100 days, resulting in 500 days for the overall development cost. While

analysing the software using the SQALE method, it was discovered that there are several

parts of the source code that do not conform to the reliability requirement. The rule

“Switch cases should end with an unconditional break statement” is part of the reliability

requirement. Given that there are 5 occurrences in source code that violate this rule, and

the cost to fix this violation is approximately 1 day each. Thus, the total technical debt for

Reliability is 5 days because of the violations. In order to measure the Reliability rating,

the technical debt is divided by the total development cost, which is 5days/500days = 1%.

There are several rules for each of the non-functional requirements, such that each of the

rules contributes toward estimating the technical debt associated with each non-functional

requirement. Hence, eight indices are produced, namely SQALE Testability Index,

SQALE Reliability Index, SQALE Changeability Index, SQALE Efficiency Index,

Univ
ers

ity
 of

 M
ala

ya

165

SQALE Security Index, SQALE Maintainability Index, SQALE Portability Index, and

SQALE Reusability Index, which estimate the amount of technical debt associated with

each of the ISO/IEC 9126 non-functional requirements. In order to provide a high-level

indicator based on the ratio between the estimated technical debt and the development

cost, all the aforementioned indices are aggregated into a single index called the SQALE

rating. A SQALE rating, ranging from “A” to “E”, where A signifies high conformance

of requirements, is rated. Thus, the overall SQALE rating for all eight non-functional

requirements provides a systematic evaluation of the analysed software.

In order to estimate the maintenance efforts of the selected test subjects, all the software

systems are evaluated using the SQALE rating method. The evaluations are performed

using the SonarQube (SonarQube, 2014) tool, with SQALE plugin installed. In the

evaluation, software systems with overall SQALE rating of 0 to <2% are rated as A, while

2% to <4% are rated as B, 4% to <8% as C, 8% to 16% as D, and E for any rating higher

than 16%. Below are the results of evaluations extracted from Table 6.1.

Software systems that achieve SQALE rating of A – Apache Maven Wagon, Apache

Tika, openFAST, Apache Synapse, IWebMvc, JEuclid, Jajuk, Apache Mahout, Fitnesse,

Apache Shindig, Apache XBean, Apache Commons VFS, and Apache Tobago.

Software systems that achieve SQALE rating of B – Apache Karaf, Apache EmpireDB,

Apache Log4j, Apache Gora, Eclipse SWTBot, Apache Deltaspike, JFreeChart, Titan,

Jackcess, Apache Pluto, Apache Roller, jOOQ, Apache Sirona, Apache Hudson, Apache

JSPWiki, Apache Wink, Apache Commons Collections, and Apache Commons BCEL.

Univ
ers

ity
 of

 M
ala

ya

166

Software systems that achieve SQALE rating of C – Apache Rampart, Kryo, Apache

Abdera, ApacheDS, Apache Archiva, Apache Helix, Apache Strusts, Apache Falcon, and

Apache Mina.

Since most of the selected software systems fall into the range of A-rated and B-rated

SQALE rating, it is assumed that the selected software can reveal some of the properties

and characteristics of good OO software.

Table 6.1: Summary of selected software systems

No. Name Number

of classes

Lines of

Code

Technical

Debt

SQALE

Rating

1 Apache Maven Wagon 128 14582 89 days A

2 Apache Gora 131 8668 112 days B

3 IWebMvc 178 7436 23 days A

4 Apache Rampart 191 20585 235 days C

5 JEuclid 230 12664 20 days A

6 Apache Falcon 235 20362 276 days C

7 openFAST 236 11656 63 days A

8 Apache Commons VFS 280 23059 34 days A

9 Jackcess 302 21452 180 days B

10 Apache Sirona 345 57736 428 days B

11 Kryo 346 23908 339 days C

12 Apache Pluto 375 25888 193 days B

13 Apache Commons

BCEL

396 28966 325 days B

14 Apache XBean 401 26845 77 days A

15 Apache JSPWiki 411 40738 398 days B

16 Apache Commons

Collections

441 26371 321 days B

17 Apache Tika 457 34558 200 days A

18 Apache EmpireDB 470 41775 307 days B

19 Apache Archiva 506 75638 535 days C

20 Apache Roller 528 55395 532 days B

21 Titan 532 35415 350 days B

22 Jajuk 543 57029 58 days A

23 Apache Mina 583 36978 723 days C

24 Apache Abdera 682 50568 783 days C

25 Apache Log4j 704 32987 209 days B

26 Apache Helix 710 51149 1561 days C

27 Eclipse SWTBot 731 52841 302 days B

28 Apache Wink 740 54416 930 days B

29 Apache Karaf 773 46544 662 days B

Univ
ers

ity
 of

 M
ala

ya

167

30 Fitnesse 852 47818 112 days A

31 Apache Tobago 873 53024 239 days A

32 Apache Shindig 950 54975 98 days A

33 Apache Deltaspike 1002 31504 502 days B

34 JFreeChart 1013 95396 670 days B

35 jOOQ 1106 96520 656 days B

36 Apache Mahout 1130 82002 143 days A

37 Apache Synapse 1276 84266 165 days A

38 Apache Hudson 1492 119005 1173 days B

39 Apache Strusts 1646 120025 2259 days C

40 ApacheDS 2408 216093 3664 days C

6.2.5 Experiment Design

This section discusses the design decisions of the experiment in order to address all the

research objectives and hypotheses as clearly and efficiently as possible. Design decisions

such as the pre-processing treatment of the datasets along with the rationale behind each

decision are discussed in detail. The general design principles are as follows:

Pre-processing: Since the proposed approach transforms software systems from UML

class diagrams to weighted complex networks, pre-processing of the source code is

needed. A round-trip engineering tool provided by Visual Paradigm is used to transform

raw source code into UML class diagrams. Although it is arguably that converting source

code into UML class diagrams might result in loss of information, this risk is mitigated

by incorporating two software metrics, namely WMC and LCOM4 discussed in Section

4.2.3 toward representing weighted complex networks. Figure 6.1 shows an example of

how Visual Paradigm converts Java source code into a UML Class diagram.

Univ
ers

ity
 of

 M
ala

ya

168

Figure 6.1: Example of Java to UML Class Diagram transformation

1. Abstract class ‘Animal’ with one abstract method.

2. Class ‘Mammal’ implements abstract class ‘Animal’ to create a concrete class.

Realisation notation is used to represent the relationship.

3. Class ‘Reptile’ extends ‘Animal’. Generalisation notation is used to represent the

relationship.

4. Class ‘Dog’ extends ‘Mammal’. Generalisation notation is used to represent the

relationship.

5. An object myOwner of class ‘Owner’ is created. Association notation is used to

represent the relationship.

6. An object myDog of class ‘Dog’ is created. Association notation is used to

represent the relationship.

7. An input parameter newHouse of class ‘House’ is parsed into the method

getHouse(). Association is used to represent this relationship.

Note that Visual Paradigm is unable to reverse engineer composition and aggregation

relationships from the source code. Thus, in this research, composition and aggregation

relationships in the source code are carefully studied and manually extracted to be

Univ
ers

ity
 of

 M
ala

ya

169

represented in the corresponding weighted complex network. One way to automatically

differentiate between composition and aggregation relationships is by checking if deep

cloning or shallow cloning is used in the clone() and equal() methods declared in the

software.

Shallow copy refers to methods that create a new object that has an exact copy of the

values in the original object. If the original object contains references to other object,

shallow copy will only copy the associated memory addresses. On the other hand, deep

copy copies the complete data structure of the original object recursively and allocates

new memory addresses in a different location. From the modelling perspective, deep

cloning implies composition relationship while shallow cloning suggests aggregation

between two classes (Karsai, Maroti, Ledeczi, Gray, & Sztipanovits, 2004; Porres &

Alanen, 2003).

According to the Java API documentation (Oracle), Java provides a <Cloneable>

interface which allows cloning of objects. Implementing this interface allows

programmers to duplicate objects by calling the clone() method in java.lang.Object class.

By default, the clone() method creates a new object instance of the class and initialises all

the fields of the new object with exactly the contents of the corresponding fields of the

original object. As such, the contents of the newly created object are not cloned directly,

which is commonly referred as shallow copy. If the programmer wants to perform a deep

copy, he/she has to override the clone() method and give his/her own definition of the

cloning operation for all the variables, methods, and constructors, declared in the original

object.

Univ
ers

ity
 of

 M
ala

ya

170

However, most of the equal() and clone() methods declared in the chosen test subjects

use the default java implementation, which is the shallow clone method. It is possible that

the programmers do not actually differentiate between deep and shallow cloning.

Therefore, it is impossible to automatically extract all the composition relationships using

a simple program parser.

There is a growing interest among the research community to formally identify

composition and aggregation relationships for UML class diagrams from raw source code

(Milanova, 2005, 2007; Yann-Ga et al., 2004). The work by Milanova has proven that

their proposed approach can achieve perfect accuracy when capturing composition

relationships from raw source code. However, Milanova suggested that there is no

definitive conclusion or solution that can be drawn from the limited and small-scale

experiment setup.

According to the UML specification documents, composition and aggregation are specific

forms of association relationship between two objects or classes. Composition is referred

as the type of association when one object owns another object, as depicted in Figure 6.1

when ‘Owner’ class owns an object of ‘House’. Aggregation, on the other hand, is

described as a whole-part relationship between source and target classes (Grand, 2003).

The work by Kollmann, Selonen, Stroulia, Systa, and Zundorf (2002) discussed that the

best way to recover composition and aggregation relationships from source code is to

acquire sufficient knowledge of the software architecture. However, without involving in

the development of the selected software systems, one can only rely on the clone() and

equal() methods to differentiate the types of relationships. Unless otherwise indicated, the

programmers did not differentiate between shallow clone and deep clone methods and it

Univ
ers

ity
 of

 M
ala

ya

171

is unable to distinguish between aggregation and composition relationships, therefore

aggregation is used to represent both scenarios.

Figure 6.2 shows an example of how Visual Paradigm converts C++ header files (.h) into

a UML Class diagram.

Figure 6.2: Example of C++ to UML Class Diagram transformation

Figure 6.3 illustrates the result of transformation from UML class diagrams to a weighted

complex network using the proposed technique, facilitated by Cytoscape, which is an

open-source software tool to visualise complex networks (Shannon et al., 2003). Figure

6.3 is represented based on Apache Synapse system which consists of 1276 classes, where

each class in the software system is represented by one node. The experimental subjects

involve all the maximal connected subgraphs of the software system. However, it is

emphasised that the proposed approach can also be applied for forward engineering in

software development to provide a better understanding of the software during the early

stage of development. The Cytoscape and Visual Paradigm data files of all 40 software

systems, along with the retrieved graph-level metrics can be accessed by the following

URL: http://sourceforge.net/projects/umltocomplexnetwork/files/

Univ
ers

ity
 of

 M
ala

ya

http://sourceforge.net/projects/umltocomplexnetwork/files/

172

Figure 6.3: Apache Synapse system represented in a weighted complex network using

Cytoscape

Randomisation: To recall, MLH and CLH constraints are clustering constraints derived

from the implicit structure of the software systems with the aid of graph theoretical

analysis. MLS and CLS constraints, on the other hand, are explicit constraints formed

based on the domain knowledge provided by the domain experts who have prior

knowledge of the analysed software systems. However, due to the fact that there are no

prior involvement and development of the chosen test subjects, it is impossible to provide

Univ
ers

ity
 of

 M
ala

ya

173

domain knowledge in this research. Therefore the steps involved to retrieve MLS and

CLS constraints are similar to the small experiment done in Section 5.5.

1. Prior to the experiment, all the clustering entities (classes) are assumed to be

scattered around and not grouped in their respective packages.

2. Based on the original UML package diagram extracted from the project

documentation, several MLS and CLS constraints are extracted.

3. For all MLS and CLS constraints, penalty scores for violating the soft constraints

are generated randomly.

While the clustering constraints are generated from an oracle/golden standard, the penalty

scores for violating the software constraints are randomised within the range of 0-1 to

simulate the importance of the soft constraints.

Blocking: Isolated classes, such as classes without any interactions with other classes are

considered as outliers in this research. The isolated classes are removed from the analysis

to avoid inconsistent results.

Balancing: It is preferable to have a balanced dataset in order to improve the

generalisation of the experimental results. In order to achieve a balanced dataset, 40

software systems were selected in order to reflect some representative class-count

distribution on the population of software systems available in the open-source

community. In terms of SQALE rating, 13 software systems are A-rated, 18 are B-rated,

and 9 are C-rated in order to perform a comparative evaluation between software systems

that possess different levels of maintenance efforts.

Standard Design Type: The next step is to decide on the type of experimental design

used in this research. The experiment includes one factor of primary interest (quality of

Univ
ers

ity
 of

 M
ala

ya

174

clustering results in terms of intra-cluster cohesiveness and inter-cluster separation) with

two treatments (proposed constrained clustering approach and traditional unconstrained

approaches). A completely randomised design where each test subject randomly uses

either the constrained or unconstrained clustering approach to generate a corresponding

clustering result is infeasible to be adopted in this research. This is because randomised

design does not allow a fair comparison between the two approaches to validate the

research hypotheses. Since the goal of the experiment is to investigate if the proposed

constrained clustering approach produces clustering results with better intra-cluster

cohesiveness and inter-cluster separateness, the example of an experiment design type is

better suited in this research. Thus, all the 40 test subjects will undergo two treatments,

i.e. the proposed constrained clustering approach and the traditional unconstrained

clustering approach, and the clustering results will be compared using several statistical

analysis techniques to identify the strength and weakness of the proposed approach.

6.2.6 Instrumentation

In general, there are three types of instruments for an experiment, namely objects,

guidelines and measurement instruments (Wohlin et al., 2012).

The experiment objects in this research are the source code and the project

documentations of the selected open-source software systems. Source code is used as the

input for the proposed constrained clustering approach, while the project documentations

are studied to extract the package diagrams of software systems. The package diagrams

are used as the benchmark to evaluate the quality of clustering results with the aid of

MoJoFM metric.

Univ
ers

ity
 of

 M
ala

ya

175

The MoJoFM metric defines the distance between two different clustering results of the

same software system as the minimum number of Move and Join operations to transform

one to the other.

 Move: Remove an object from a cluster and put it in a different cluster.

 Join: Merge two clusters into one cluster.

 Split: Split one cluster into two clusters, simulated by the Move operations.

To provide a more illustrative example, Figure 6.4 shows two different clustering results,

Decomposition A which is the gold standard, and Decomposition B as the clustering

result of the same software. MoJoFM calculates the number of Move and Join operations

needed for Decomposition B to match Decomposition A.

 Move node 4 to the cluster <1, 2, 3>

 Split the cluster <5, 6, 7, 8> into two clusters, containing node <5, 6> and <7, 8>

respectively

Figure 6.4: Example of MoJoFM operations

Thus, low number of Move and Join operations indicates that the clustering result shows

high resemblance with respect to the gold standard. Achieving 100% MoJoFM metric

Univ
ers

ity
 of

 M
ala

ya

176

value indicates that a clustering result is identical to the gold standard. Hence,

maximisation of MoJoFM metric values is preferred.

Furthermore, SQALE rating is used to measure and inspect the maintenance efforts of all

the software systems in order to provide a means to perform comparative analysis

between software of different maintenance efforts.

On the other hand, documented guidelines such as checklists and process descriptions are

not required in this research because no participants are involved in the experiments.

Instead, with the aid of weighted complex networks, clustering constraints are extracted

to help in the subsequent constrained clustering process. The clustering constraints

derived from the implicit structure of software systems can be deemed as the guidelines

to support the proposed constrained clustering approach.

A prototype to generate and cut dendrogram is developed to serve as the measurement

instrument. The prototype takes the input from the graph theoretical analysis of the

weighted complex network, and generates the corresponding dendrogram. Two important

inputs are taken from the weighted complex network, which are distance between a pair

of classes (using Dijkstra's shortest path algorithm discussed in Section 5.4.4) and the

clustering constraints derived from the implicit structure of the analysed software. The

whole process of generating and cutting dendrogram is automated using the prototype.

The algorithm to form a dendrogram is cited from the work by Durbin (1998). The

interface class UPGMACluster is shown below to list down several important classes,

methods, and attributes used to develop the prototype.

Univ
ers

ity
 of

 M
ala

ya

177

interface UPGMACluster:

/**constructor of UPGMACluster

* id = cluster id, height = cluster height, distance = distance to lower numbered

node

*/

public UPGMACluster(int id, UPGMACluster left, UPGMACluster right, double

height,

 double[] distance)

/** method to check whether the cluster is empty */

public boolean live()

/** method to find and join the closest live clusters */

void findAndJoin()

/** method to join cluster i,j to form new cluster k */

public void join(int i, int j)

/** methods to draw the dendrogram */

public void draw(Graphics g, int w, int h)

/** methods to find the root of cluster */

public UPGMACluster getRoot()

/** method to write the content of cluster to a file */

public void printRoot()throws IOException

/** method to cut the dendrogram at a specific point */

public void cutTree(double c)

Based on the inputs, the prototype will find a pair of the most similar clusters and merge

the pair. This process will continue until all the classes are merged into a single cluster,

which is performed by using the findAnJoin() and join() methods.

Figure 6.5 shows an illustration of a dendrogram formed by the prototype using 20

classes. The classes (black dots) are tagged in an ascending manner. Values from 1 to 20

represent the classes to be clustered, while values higher than 20 represent the fork nodes

Univ
ers

ity
 of

 M
ala

ya

178

(merging points of clusters). The gaps between clusters are directly proportional to the

distance between clusters.

Figure 6.5: Output example of a dendrogram tree with 20 classes

6.2.7 Validity Evaluation

This section discusses threats to the internal validity and external validity.

Countermeasures against the threats to the validity were taken and are described below.

The internal validity is examined with respect to three aspects, which are the regression

toward the mean, the selection of subjects, and the confounding variables.

With respect to the threat from regression toward the mean, the risk is mitigated by evenly

selecting test subjects that vary according to their size, class-count and maintenance

Univ
ers

ity
 of

 M
ala

ya

179

efforts to reflect some representative distribution on the population of open-source OO

software systems. If the selected test subjects are representative of the population mean,

then the threat to regress towards the mean is no longer a valid concern.

To address the threat from subject selection, 40 open-source software systems are selected

in this experiment. The test subjects are categorised into four groups – projects with less

than 250 classes, between 250-500 classes, between 501-1000 classes, and more than

1000 classes. The chosen software systems are well known projects that are actively

developed and maintained by the open-source community. Although it is impossible to

guarantee that these software systems are the best examples, good software should exhibit

similar behaviour when analysed from a graph-level abstraction.

The choice of code-level, system-level, and graph-level metrics used in this study might

impose the threat of confounding variables. The chosen code-level and system-level

metrics are WMC and LOCM4 respectively. Both metrics are originated from the CK OO

metrics suite and proven to be complimentary (Chidamber & Kemerer, 1994). An in depth

analysis of CK metrics is presented in Section 4.2.3, which discussed the development of

CK metrics in the past decade, along with its effectiveness in predicting software

maintenance cost and software bug prediction. Besides that, the preferences and risk

tolerance parameters are introduced to provide more flexibility in obtaining the values of

WMC and LCOM4. The chosen graph-level metrics are selected based on their

interpretation toward the behaviour of OO software systems. The details of explanations

have been discussed in Section 4.2.

Besides that, the choice of cluster validity index, must-link constraints, and cannot-link

constraints might also impose the threat of confounding variables. The chosen cluster

Univ
ers

ity
 of

 M
ala

ya

180

validity index in this research is based on the Davies-Bouldin index, which is the ratio of

cluster cohesion to cluster separation. According to the work by (Kim & Ramakrishna,

2005; Maulik & Bandyopadhyay, 2002), ratio type cluster validity indices, specifically

the Davies-Bouldin index, is among the best indices in terms of performance, reliability,

and computational cost. As for the choice of clustering constraints, the steps to extract

must-link soft and cannot-link soft constraints are outlined in Section 6.2.5. It is to be

stressed that the extraction of must-link soft and cannot-link soft constraints are not

arbitrary, but actually based on the original UML package diagrams of the chosen

software systems. Thus, this will allow a proper examination of the effectiveness of the

proposed approach without bias.

In order to mitigate the threat to construct validity, measure constructs that focus on

measuring the maintainability and reliability of software systems are selected in this

research. Besides that, the SQALE rating is used to estimate the maintenance costs of the

selected software systems in order to facilitate the validation of research hypotheses.

The external validity threats are concerned with the pre-test assumption of removing the

isolated classes before performing software clustering, which might result in a biased

outcome. There have been claims in several existing studies on software clustering (Patel,

Hamou-Lhadj, & Rilling, 2009; Pirzadeh, Alawneh, & Hamou-Lhadj, 2009; Wen &

Tzerpos, 2005) that isolated utility classes which can result in ambiguity in the

organization of a software system. The study in Patel et al. (2009) also makes a pre-test

assumption by removing all of the utility classes before the initiation of a clustering

process.

Univ
ers

ity
 of

 M
ala

ya

181

6.3 Experiment Execution

Experiments were carried out based on the design and setup discussed in the previous

subsections. Due to the scale of the study and number of test subjects involved in this

research, it is impossible to report all the data in this thesis alone. All the raw data are

uploaded to a public domain for ease of reading and providing a means to replicate the

experiments if necessary. The files are accessible at

http://sourceforge.net/projects/umltocomplexnetwork/files/

The analysis and interpretation of the experiment data will be discussed in the next chapter

to provide an in-depth analysis of the experiment results.

6.4 Chapter Summary

This chapter discussed the experiment design and setup used in this research. The

presentation of this chapter follows the framework discussed by the work of Wohlin et al.

(2012), where the authors propose a systematic approach to conduct software engineering

research. The goals of this research are formulated using the GQM approach discussed in

Section 6.1.2. The selection of context, subjects, and variables, along with the justification

of each decision are discussed in detail. Two research hypotheses have also been declared

in this chapter. Finally, the experiment design, instrumentation and validity evaluations

are presented to provide a clear picture on the flow and design decisions of the

experiment. The analysis and interpretation of the experiment data will be discussed in

Chapter 7 using descriptive statistics to identify the correlation between the research

hypotheses and experiment results.

Univ
ers

ity
 of

 M
ala

ya

http://sourceforge.net/projects/umltocomplexnetwork/files/

182

CHAPTER 7: ANALYSIS AND INTERPRETATION OF EXPERIMENT

EVALUATION

After collecting experimental data from the previous phase, the results need to be analysed

and interpreted in order to draw a valid conclusion with respect to the research hypotheses

and objectives. In this chapter, the experimental results are analysed using descriptive

statistics to identify the correlations between research hypotheses and the experimental

data. The results are also validated against prior studies in order to evaluate the

effectiveness of the proposed methods. Finally, with the aid of MoJoFM metric, the

accuracy of the proposed constrained clustering approach is compared against an existing

unconstrained clustering approach and the golden standard of the test subjects.

7.1 Graph Theoretical Analysis of Software-based Weighted Complex Network

The first phase of the experiment is to represent OO software systems using weighted

complex network based on the approach proposed in Chapter 4. Based on the constructed

weighted complex network, software systems are analysed from the aspect of

maintainability and reliability using graph theoretical analysis to derive clustering

constraints. The graph theoretical analysis provides a means to improve program

comprehension from the perspective of software maintainers.

All the 40 OO software systems are represented with their associated weighted complex

network. However, due to the scale and size of the diagram, it is impossible to illustrate

all the complex networks. Instead the Cytoscape (open-source program used to construct

and visualise the weighted complex network) source files are hosted in a public domain

which can be accessed using the following URL

http://sourceforge.net/projects/umltocomplexnetwork/. The Visual Paradigm source files

Univ
ers

ity
 of

 M
ala

ya

http://sourceforge.net/projects/umltocomplexnetwork/

183

which include the class diagrams of all the 40 software systems are also available at the

same URL. An example of the weighted complex network is shown in Figure 7.1, which

represent a close-up snippet of Apache Gora project. The labels on the nodes are the class

names, while the labels on the edges are the weights of all respective edges.

Figure 7.1: Close-up snippet of Apache Gora represented in weighted complex network

The next step is to analyse the constructed weighted complex networks with respect to

the selected six graph-level metrics (in-degree, out-degree, average weighted degree,

average shortest path length, average clustering coefficient, and betweenness centrality).

By analysing the statistical distribution of the graph-level metrics, several common

patterns of the selected software systems can be captured. The identified patterns are able

to represent certain structural characteristics of the software systems with respect to their

maintainability and reliability. The metrics are calculated using the Network Analyser

plugin in Cytoscape tool, illustrated in Figure 7.2.

Univ
ers

ity
 of

 M
ala

ya

184

Figure 7.2: Illustration of Graph-Level Metrics extracted from weighted complex

network using Network Analyser plugin

7.2 Validation of Findings Against Prior Studies

In Section 6.2.2, the first hypothesis declared in this research is, “given any number and

size of test subjects, the constructed weighted complex network based on the proposed

approach should be able to demonstrate common statistical patterns of real-world OO

software systems. When the test subjects are grouped and compared based on their levels

of maintenance efforts, their statistical patterns are more distinguishable”. It is important

to show that the constructed networks using the proposed approach corroborate with the

findings of existing research, such as the expected distribution of in-degree and out-

degree of nodes in software-based weighted complex network. This is because validation

of experimental results cannot proceed without proof of intentional bias in the

interpretation of these results (Kumar & Phrommathed, 2005). Therefore, a way to

identify and analyse the statistical distribution of the graph-level metrics retrieved from

the constructed weighted complex networks is needed to address the first hypothesis.

Univ
ers

ity
 of

 M
ala

ya

185

7.2.1 Dataset Distribution Fitting

In order to facilitate a better understanding and interpretation of the graph-level metrics,

the work by Ferreira, Bigonha, Bigonha, Mendes, and Almeida (2012) is adopted in this

research. Ferreira et al. (2012) discussed that although there is a large collection of

software metrics available in existing studies, it is hard to evaluate the quality of software

systems using software metrics alone because for most metrics, the range of expected or

reference values are not known. Therefore in their work, the authors proposed a

systematic approach to derive thresholds for six software metrics. The approach is

designed to be flexible and generic enough to derive thresholds, and analyse the statistical

distribution of these software metrics. Therefore, in this research, the approach proposed

by Ferreira et al. (2012) is adapted to identify the statistical distribution of graph-level

metrics. The following sections discuss the approach to identify the thresholds of graph-

level metrics in detail.

Firstly, the best fit probability distribution of each of the selected graph-level metrics is

identified. These best fit distributions are able to show common patterns and structural

characteristics of the chosen software systems, and subsequently identify the correlation

between graph-level metrics and the associated software quality attributes, i.e.

maintainability and reliability.

In terms of the statistical distribution of complex network based on software system, the

work by Giulio Concas et al. (2007) found that in-degree follows a Pareto distribution

while out-degree follows a log-normal distribution. Both distributions exhibit a power

law distribution, which corroborates with several works (Louridas et al., 2008; Valverde

& Solé, 2003; Zimmermann & Nagappan, 2008). The reason why in-degree and out-

Univ
ers

ity
 of

 M
ala

ya

186

degree are distributed in a power law manner was further analysed in the work by

Chatzigeorgiou and Melas (2012). Chatzigeorgiou and Melas discovered that software

follows a ‘preferential attachment’ where some classes tend to interact with the classes

that belong to a similar community or functional groups. The authors claimed that

important nodes (high in-degree and out-degree) in a software-based complex network

tend to act as attractors for new members that join an existing network.

A distribution fitting tool, EasyFit (MathWave, 2014) is used to fit the datasets into

various probability distributions. Once the best fit probability is found, the probability

density function (pdf), 𝑓(𝑥), is calculated to identify the continuous random variables.

Based on the data retrieved from all the 40 chosen test subjects, the Generalised Pareto

distribution and the Normal distribution have shown to be best-fitted in this research.

The pdf of Generalised Pareto distribution, 𝑓𝑔(𝑥), is defined in Equation (5) in Hosking

and Wallis (1987). The parameters 𝑘 , 𝜎 and 𝜇 denote the shape, scale, and location

respectively.

𝑓𝑔(𝑥) =

{

 1

𝜎
(1 + 𝑘

(𝑥 − 𝜇)

𝜎
)

−1−(1/𝑘)

 𝑘 ≠ 0

1

𝜎
exp (−

(𝑥 − 𝜇)

𝜎
) 𝑘 = 0

 (5)

The scale parameter, 𝜎, defines the height and spread of the distribution. The larger the 𝜎

value, the more spread out the distribution is.

The pdf of Normal distribution, 𝑓𝑛(𝑥), is defined in Equation (6) in (Stein, 1981). The

parameters 𝜎 and 𝜇 denote the scale and location respectively.

Univ
ers

ity
 of

 M
ala

ya

187

𝑓𝑛(𝑥) =

𝑒𝑥𝑝 (−
1
2 (
𝑥 − 𝜇
𝜎)

2

)

𝜎√2𝜋
 (6)

The analysis of graph-level metrics is done by examining all datasets as a whole

(combining all the data retrieved from the 40 test subjects). Two diagrams are generated

for each of the graph-level metrics. First, a scatter plot in log-log scale is drawn to show

the frequency of each graph-level metric and to identify if the distribution shows a power

law behaviour. Existing studies have shown that a candidate power law distribution

should exhibit right-skewed properties and an approximately linear relationship on a log-

log plot (Stumpf & Porter, 2012). Hence, log-log plots are used in this research to detect

the existence of power law behaviour. In the second diagram, the best fit probability

distribution for each graph-level metric is illustrated using the EasyFit tool.

7.2.2 Result of distribution fitting for all datasets as a whole

In this section, the results of the computed graph-level metrics and the best fit probability

distributions are shown and discussed. Note that the metrics are computed based on all

datasets as a whole. The results of each graph-level metric are analysed and discussed

with respect to its software maintainability and reliability.

 In-Degree

Figure 7.3(a) shows that majority of the classes in the analysed open-source software have

in-degree of less than 5, with the mean value at 1.998. The figure also shows an almost

linear behaviour, which is the characteristic of power law distribution. The in-degree is

best fitted with Generalised Pareto distribution shown in Figure 7.3(b). The goodness of

fit based on Kolmogorov–Smirnov (KS) test (Smirnov, 1948) is also shown in Figure

Univ
ers

ity
 of

 M
ala

ya

188

7.3(b). However, it is to be noted that the KS test results show a relatively low significance

level due to the large sample size, N>10,000. This is a well-known issue discussed in the

existing studies such that for a large sample size, goodness of fit test becomes sensitive

to very small and insignificant deviation from a distribution (Bollen, 1990; Inman, 1994;

Tanaka, 1987). The parameters k, σ and μ are 0.409, 1.258, and -0.125 respectively. The

parameters k, σ and μ are shown in order to provide a means to replicate the experiment

if necessary, where the diagram in Figure 7.3(b) can be redrawn using these 3 parameters.

Based on the data distribution diagram shown in Figure 7.2, it can be interpreted that

majority of the classes do not provide services to other classes because 80% of the classes

possess in-degree of less than 3. Low in-degree signifies that most of the tasks are handled

locally to promote loose coupling between classes. Although there are some classes that

contain significantly higher in-degree values, those classes are typically utility classes

that are designed to be reused frequently in the system. All in all, the observed behaviour

in terms of high modularity and loose coupling contributes toward improving the

maintainability of the software.

Univ
ers

ity
 of

 M
ala

ya

189

Figure 7.3: In-Degree (a) frequency in log-log scale, (b) fit into Generalised Pareto

Distribution

 Out-Degree

The frequency plot of out-degree in log-log scale is shown in Figure 7.4(a). The average

out-degree of the analysed open-source software is at 1.991. The maximum out-degree is

roughly 44 times higher than the average value. Figure 7.4(a) also exhibits the

characteristic of a power law distribution. The results of data fitting, depicted in Figure

Univ
ers

ity
 of

 M
ala

ya

190

7.4(b), have shown that out-degree is best fitted in Generalised Pareto distribution, with

parameters 𝑘, 𝜎 and 𝜇 at 0.2663, 1.161 and 0.420 respectively.

In the in-degree analysis, the maximum in-degree is roughly 90 times higher than the

average in-degree. The maximum out-degree is roughly 44 times higher than the average

out-degree, which is relatively lower when compared to in-degree. This observation

shows several important behaviours of the analysed software systems. Calling classes

outside of their package should be minimised to avoid unnecessary coupling. The work

by Valverde, Cancho, and Sole (2002) suggests that making use of large hubs, or in this

context, nodes with high in and out-degree are bad software design practices, or also

known as anti-patterns in existing software engineering literature. If the node becomes

too complex, it might become a burden during software maintenance. It is better to break

large hubs into smaller and more modular components that focus on specific

functionalities, as discussed in the work by Myers (2003). Thus, theoretically the

maximum in-degree and out-degree should not deviate too much from its mean value.

However, it is unavoidable in certain scenarios where important classes are being

repeatedly reused.

Univ
ers

ity
 of

 M
ala

ya

191

Figure 7.4: Out-Degree (a) frequency in log-log scale, (b) fit into Generalised Pareto

Distribution

Univ
ers

ity
 of

 M
ala

ya

192

 Average Weighted Degree

Figure 7.5(a) shows the frequency plot in log-log scale, where the mean average weighted

degree is 1.071. The maximum average weighted degree derived from all datasets is

around 80, which is about 75 times larger than the mean value. Similar to in-degree and

out-degree, average weighted degree shows the characteristic of power law distribution.

Figure 7.5(b) shows that the average weighted degree of all data can be modelled by the

Generalised Pareto distribution. The parameters 𝑘, 𝜎 and 𝜇 are 0.402, 0.658, and -0.002

respectively. The observation shows that majority of the analysed software systems have

low average weighted degree, where the probability of classes having a value of less than

5 is very high. Although there are a few nodes with a very high average weighted degree,

these classes are usually utility or main system classes that supply services to other

classes. Examples of utility classes that exhibit a high average weighted degree are

WikiEngine.java of Apache JSPWiki (77.589), Hudson.java of Apache Hudson (51.75),

Field.java of jOOQ (70.535) and Logger.java of Strusts (77.23).

Univ
ers

ity
 of

 M
ala

ya

193

Figure 7.5: Average weighted degree (a) frequency in log-log scale, (b) fit into

Generalised Pareto distribution

Univ
ers

ity
 of

 M
ala

ya

194

 Average Shortest Path Length

The frequency plot in histogram for average shortest path length is shown in Figure 7.6(a).

The mean average shortest path for all datasets is around 3.8 steps, which corroborates

with the work by Valverde and Solé (2003) who found that the average shortest path in

software is less than 6 steps. The log-log frequency plot for average shortest path length

is not included because the average shortest path length is best fitted in normal distribution

with parameters 𝜎 = 2.816 and 𝜇 = 3.877 (Figure 7.6(b)). Figure 7.6(a) shows that the

diagram is positively skewed, where the distribution is concentrated on the left of the

figure. Typically, power law behaviour is not shown in log-log plot for Normal distributed

data. This result demonstrates that most classes in OO software can communicate with

each other easily. Low average shortest path length also contributes toward high response

capability of the analysed software, especially Apache Deltaspike and Apache Synapse,

because they are usually deployed on a web-based environment.

Univ
ers

ity
 of

 M
ala

ya

195

Figure 7.6: Average shortest path length (a) frequency in histogram, (b) fit into Normal

distribution

Univ
ers

ity
 of

 M
ala

ya

196

 Average Clustering Coefficient

Clustering coefficient is a graph-level metric that measures if a given node’s neighbours

are neighbours among themselves. Average clustering coefficient provides the average

score of clustering coefficients of all nodes for the whole network. If the average

clustering coefficient of the network is equal to 1, the network is called a clique where

each pair of nodes is connected by an edge. Analysing the frequency plot of clustering

coefficient is difficult because it does not translate directly into any OO behaviour. Thus,

a different approach to analyse the average clustering coefficient is adopted.

Small world properties of a complex network can be determined by looking into the

average shortest path length and clustering coefficient. A complex network with a high

clustering coefficient has a strong characteristic of small world property. Many studies

have found that the average clustering coefficients of OO software are much higher than

those of random networks constructed based on the same node property (Giulio Concas

et al., 2007; Louridas et al., 2008; Pang & Maslov, 2013; Potanin et al., 2005). This

behaviour suggests that software systems possess a higher degree of cohesion with respect

to random networks.

The work by Newman (2006) has further proven that clustering coefficients of real-world

networks should be higher than what would be expected if edges were randomly placed,

using a ‘graph modularity’ measurement. Newman shows that in real-world networks, the

number and density of interactions among nodes belonging to a community are higher

than expected in a random network of the same size.

In order to test this particular behaviour discovered by Newman, a Cytoscape plugin

developed by Mcsweeney (2008) is used in this research. The plugin is capable of

Univ
ers

ity
 of

 M
ala

ya

197

randomising an existing network, while preserving the number of nodes and edges in the

original network. The algorithm used to generate a random network from an existing one

is shown below.

1. A random edge (u,v) is selected from the network.

2. A second random edge (s,t) is selected with the constraints that:

 u ≠ v ≠ s ≠ t

 (u,t) and (s,v) do not already exist in the network

3. Edges (u,v) and (s,t) are removed and edges (u,t) and (s,v) are inserted into the

network.

4. Repeat Steps 1-3 n times (where n = 100 to generate 100 random networks).

First, the average clustering coefficients of all datasets as a whole are calculated. Next,

based on the nodes’ properties of the original real dataset (such as number of nodes,

number of edges, weights of edges, and directions of edges), 100 random networks are

generated. The average clustering coefficients of all the 100 randomised network are then

calculated. Finally, the average clustering coefficients of all the real datasets are compared

against the average clustering coefficients of all the random networks. Hence, in total,

4000 random networks are generated for all the 40 test subjects.

Based on the test results, the average clustering coefficient of all the 40 test subjects is

reported to be 0.048, while the average clustering coefficient for 100 random networks is

0.0012. The test results show that the constructed software-based weighted complex

networks do behave like a real-world network and substantiate with the findings of

Newman (2006). Combined with the observation from average shortest path length, the

Univ
ers

ity
 of

 M
ala

ya

198

constructed networks using the proposed technique do adhere to small world properties

commonly found in the existing literature.

 Betweenness Centrality

Figure 7.7(a) shows the distribution of betweenness centrality for all analysed software

systems in log-log scale. Note that the betweenness centrality for a given node n is

normalised by dividing by the number of node pairs in the network, excluding n. Thus,

the values of betweenness centrality range from 0 to 1. The scatter plot shows that

majority of the nodes have value of less than 0.1, which indicates that they do not control

the flow of information in the network. Figure 7.7(a) suggests that power law

characteristic is present. The data is best fitted in Generalised Pareto distribution as shown

in Figure 7.7(b), where the parameters 𝑘, 𝜎 and 𝜇 are 0.887, 0.0016, and -6.63E-4. This

observation reveals that most of the classes in OO software do not have dominant power

that dictates the flow of information and data. Removing certain components from the

software will have minimal impact on the structure stability. Although there are a few

nodes with very high centrality value, those nodes are normally interface classes that act

as the ‘authority classes’, as discussed by the work by Ovatman, Weigert, and Buzluca

(2011). Ovatman et al. found that classes in UML class diagrams show distinctive

recurring patterns in terms of dependencies between each other and to other classes.

‘Authority classes’ is one of the patterns where a large number of classes are coupled with

one another. Univ
ers

ity
 of

 M
ala

ya

199

Figure 7.7: Betweenness Centrality (a) frequency in log-log scale, (b) fit into

Generalised Pareto distribution

Univ
ers

ity
 of

 M
ala

ya

200

In summary, the results and discussions presented in this sub-section are able to address

the sub-objective 1.3 discussed earlier, where all the statistical patterns of real-world OO

software systems can be identified and analysed through dataset distribution fitting.

However, certain patterns and behaviour might not be directly visible using the

aforementioned approach (Hyndman & Fan, 1996; Williamson, Parker, & Kendrick,

1989). Thus, in the next section, the empirical distributions of the datasets are analysed

by examining the quartiles of each respective dataset using boxplot.

7.2.3 Comparative Analysis

Boxplot analysis is one of the statistical methods used to visually identify patterns that

may otherwise be hidden in a dataset (Hyndman & Fan, 1996; Williamson et al., 1989).

In this study, boxplot analysis is used to perform a comparative analysis of the selected

software systems and eventually address the research hypothesis. Recall that the first

hypothesis mentioned that when the test subjects are grouped and compared based on

their levels of maintenance efforts, their statistical patterns are more distinguishable.

SQALE rating is used in this research to provide a means to estimate the levels of

maintenance efforts of all the chosen test subjects. If the test subjects can be further

grouped and analysed based on their respective SQALE rating, it will provide more

insight toward understanding the statistical behaviour of software systems, and ultimately

address the research hypothesis.

By combining all the data of A-rated projects, a boxplot can be produced to identify the

median, the approximate quartiles, spread, and symmetry of the distribution (Williamson

et al., 1989). The results of A-rated projects can then be compared against B-rated and C-

Univ
ers

ity
 of

 M
ala

ya

201

rated projects in order to identify the differences in statistical behaviour for these three

groups of datasets.

Figure 7.8 depicts the boxplots of all the graph-level metrics for A-rated, B-rated, and C-

rated software systems except for Betweenness Centrality. The boxplot of Betweenness

Centrality is separated as shown in Figure 7.9 due to the difference in the scale of values.

Figure 7.8: Boxplots of In-Degree, Out-Degree, Average Weighted Degree, and

Average Shortest Path for A-rated, B-rated, and C-rated software systems

Table 7.1: Analysis of boxplots from Figure 7.8

Metrics 1st

Quartile

Median 3rd

Quartile

Interquartile

Range

Whiskers

A-rated In-Degree 0 1 2 2 0, 5

B-rated In-Degree 0 1 2 2 0, 5

C-rated In-Degree 0 1 2 2 0, 5

A-rated Out-Degree 1 1 2 1 0, 3

B-rated Out-Degree 1 1 2 1 0, 3

C-rated Out-Degree 1 1 2 1 0, 3

C-ra
te

d A
ve

ra
ge

Sh
ort

es
t P

at
h

B-ra
te

d A
ve

ra
ge

Sh
ort

es
t P

at
h

A-ra
te

d A
ve

ra
ge

Sh
ort

es
t P

at
h

C-r
ate

d D
egre

e
Ave

ra
ge

W
ei
ght

ed

B-r
ate

d A
ve

ra
ge

W
eig

ht
ed

 D
eg

re
e

A-r
ate

d A
ve

ra
ge

W
eig

ht
ed

 D
eg

re
e

C-r
at

ed
 O

ut
-D

eg
re

e

B-r
at

ed
 O

ut
-D

eg
re

e

A-r
at

ed
 O

ut
-D

eg
re

e

C-r
ate

d In
-D

eg
re

e

B-r
ate

d In
-D

eg
re

e

A-r
ate

d In
-D

eg
re

e

14

12

10

8

6

4

2

0

D
a
ta

Boxplots of Graph-Level Metrics for A-rated, B-rated, and C-rated Software Systems

Univ
ers

ity
 of

 M
ala

ya

202

A-rated Average

Weighted Degree

0.161 0.75 1.282 1.121 0, 296

B-rated Average

Weighted Degree

0.158 0.701 1.232 1.075 0, 2.844

C-rated Average

Weighted Degree

0.157 0.810 1.618 1.461 0, 3.799

A-rated Average

Shortest Path

1.333 4.039 5.562 4.229 0, 11.898

B-rated Average

Shortest Path

1.5 4.120 5.690 4.190 0, 11.933

C-rated Average

Shortest Path

2 4.187 6.5 4.5 0, 13.098

Table 7.1 presents a summary of analysis including first quartile, median, third quartile,

interquartile range, and whiskers of the boxplots from Figure 7.8. Based on the table,

there is no variation between the in-degree and out-degree boxplots of A-rated, B-rated,

and C-rated software systems. The boxplots of in-degree are positively skewed due to the

power law behaviour observed earlier in the frequency distribution plot. The out-degree

shows lesser variability, with an interquartile range of 1. Low interquartile range of out-

degree is consistent with the observation in Figure 7.4, where it was observed that most

of the classes have a similar out-degree value except for a few exceptional cases. This

observation shows that developers of A-rated, B-rated and C-rated software systems

adhere to the high modularity concept when developing and updating the software

systems, as discussed in the work by Myers (2003).

The boxplots of average weighted degree are also positively skewed due to the power law

behaviour. When the edges and nodes are weighted, there is a slight variation from the

observed quartile, where the whisker of C-rated software systems is slightly higher at

3.799. This indicates that the coupling strength of C-rated software systems is relatively

higher when compared to A-rated and B-rated software systems, which might contribute

toward their higher maintenance efforts. In terms of average shortest path, the whiskers

of C-rated software systems are slightly higher at 13.098 when compared to A-rated and

Univ
ers

ity
 of

 M
ala

ya

203

B-rated software systems (11.898 and 11.933 respectively), which could indicate that

several classes have high communication costs. Upon further investigation, it was being

discovered that several classes in ApacheDS, namely AvlTreeImpl.java,

AvlTreeSingleton.java, ArrayTree.java, KeyTupleArrayCursor.java, and

KeyTupleAvlCursor.java, which have an average shortest path length of 12-13 steps.

These classes contain methods that depend on the class Index.java, which is located

separately in another package.

The boxplots of betweenness centrality for A-rated, B-rated, and C-rated software

systems are shown in Figure 7.9, along with the analysis in Table 7.2.

Figure 7.9: Boxplots of Betweenness Centrality for A-rated, B-rated, and C-rated

software systems

C-rated Betweenness CentralityB-rated Betweenness CentralityA-rated Betweenness Centrality

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

D
a
ta

Boxplots of Betweenness Centrality for A-rated, B-rated, and C-rated Software Systems

Univ
ers

ity
 of

 M
ala

ya

204

Table 7.2: Analysis of boxplots from Figure 7.9

Metrics 1st

Quartile

Median 3rd

Quartile

Interquartile

Range

Whiskers

A-rated Betweenness

Centrality

0 0 0.00301 0.00301 0,

0.00754

B-rated Betweenness

Centrality

0 0 0.00261 0.00261 0,

0.00651

C-rated Betweenness

Centrality

0 0 0.00517 0.00517 0, 0.0129

Betweenness centrality measures the number of shortest paths that pass through a selected

class. Classes with high betweenness centrality signify that they are important because

they usually act as the communication bridge. On the flip side, if these classes are highly

error prone, it can easily propagate bugs due to their behaviour (G. Concas et al., 2011).

As can be observed from Table 7.2, C-rated software systems have much higher value of

betweenness centrality when compared to A-rated and B-rated software systems. Upon

further investigation, it was discovered that the ApacheDS project contains a few utility

classes that possess high betweenness centrality. These classes are AvlNode.java,

Marshaller.java, KeyIntegrityChecker.java, NtpService.java,

PasswordPolicyConfiguration.java, PasswordValidator.java, NtpMessage.java,

NtpMessageModifier.java, and LdapServer.java. These classes should be given more

attention as they might be highly error prone.

 Comparison of Node-Weighted and Edge-Weighted Approaches

In Chapter 4, Equation (3) was proposed as a means to measure communicational

cohesion-based weights by looking into the complexity of classes and relationships.

𝑊𝑒𝑖𝑔ℎ𝑡(𝑅𝑖→𝑗) = (𝐻𝑅𝑖→𝑗 ∗ 𝛼) + [(1 − 𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽] (3)

Univ
ers

ity
 of

 M
ala

ya

205

The equation is based upon a hybrid of node (class) weighted and edge (relationship)

weighted approach similar to the work presented by Ma et al. (2010). There are different

strategies to represent the weights of nodes or edges, along with their own advantages and

disadvantages. Thus, in this subsection, the comparative analysis is further expanded by

contrasting the performance of different representation strategies, i.e. node-weighted and

edge-weighted approaches.

The first operand of Equation (3) represents the complexity of a relationship, while the

second operand represents the complexity of the terminus class linked by the associated

relationship. In order to compare the performance of different representation strategies,

the following steps are performed.

1. For each software system, calculate the weights of edges by using only the first

operand of Equation (3), (𝐻𝑅𝑖→𝑗 ∗ 𝛼), and repeat the process by using only the

second operand of Equation (3), [(1 − 𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽].

2. Reconstruct the weighted complex network. Since there are two representations

of weights, there will be two weighted complex networks for each software –

node-weighted only network and edge-weighted only network.

3. Recalculate the value of average weighted degree for each network.

4. Perform a comparative analysis of different representation strategies by grouping

the software based on their SQALE rating.

Figure 7.10 depicts the result of our analysis and the details of the analysis are presented

in Table 7.3.

Univ
ers

ity
 of

 M
ala

ya

206

Figure 7.10: Boxplots of different weighted degree representations for A-rated, B-rated,

and C-rated software systems

Table 7.3: Analysis of boxplots from Figure 7.10

Metrics 1st

Quartile

Median 3rd

Quartile

Interquartile

Range

Whiskers

A-rated 0.173 0.813 1.495 1.322 0, 3.476

B-rated 0.158 0.701 1.232 1.075 0, 2.844

C-rated 0.157 0.810 1.618 1.461 0, 3.799

A-rated (Node-

weighted Only)

0.234 0.5 1.485 1.251 0, 3.360

B-rated (Node-

weighted Only)

0.285 0.767 1.498 1.213 0, 3.317

C-rated (Node-

weighted Only)

0.499 1 2.258 1.758 0.125,

4.892

A-rated (Edge-

weighted Only)

0.35 0.55 1.05 0.7 0, 2.1

B-rated (Edge-

weighted Only)

0.3 0.6 0.95 0.65 0, 1.9

C-rated (Edge-

weighted Only)

0.35 0.55 0.9 0.55 0.1, 1.7

C-r
ate

d (E
dge-

w
eig

ht
ed

 O
nl
y)

B-r
at

ed
 (E

dge-w
ei
ghte

d O
nly

)

A-r
at

ed
 (E

dge-
w
ei
ght

ed
 O

nl
y)

C-ra
te

d (N
ode-

w
eig

ht
ed

 O
nl
y)

B-ra
te

d (N
ode

-w
ei

ght
ed

 O
nl
y)

A-ra
te

d (N
ode-

w
ei
ght

ed
Onl

y)

C-
ra

te
d

B-ra
te

d

A-ra
te

d

5

4

3

2

1

0

D
a
ta

Boxplots of Different Weighted Degree Representations

Univ
ers

ity
 of

 M
ala

ya

207

The first three boxplots represent the average weighted degree calculated using the exact

Equation (3). The ‘Node-weighted’ and ‘Edge-weighted’ boxplots, on the other hand,

represent the calculation based on class complexity [(1 − 𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽] and

relationship complexity (𝐻𝑅𝑖→𝑗 ∗ 𝛼) respectively.

From the ‘Node-weighted’ boxplots, it can be observed that the median values for B and

C-rated software systems are much higher compared to A-rated software systems. Several

reasons contributed toward this observation. Firstly, when calculating the weights for

classes related with unidirectional relationships (generalisation and realisation), only the

complexity of parent or supplier class is considered. Thus, for interface or utility classes

that are heavily reused, the occurrence of duplicate weightage increases significantly.

Secondly, highly reusable classes tend to be more complex and possess higher LOC

values, especially in B-rated and C-rated software systems. For example,

AbstractBTreePartition.java class in ApacheDS project which contains 1980 LOC and

WMC of 399 is a highly complex interface class. Another example is the Registries.java

class in ApacheDS which contains 1711 LOC and WMC of 392. The Registries.java acts

as a utility class and it is implemented by many other classes.

As for the ‘Edge-weighted’ boxplots, the occurrence of duplicate weightage is even more

distinguishable because only the type of relationship between two classes is considered

to measure the weights of edges. Recall that the weights of relationships are based on the

ordinal scale shown in Table 4.1. Thus, the variability of weightage is very limited and

very little information can be extracted from the boxplot. Not much useful information

related to software maintainability and reliability can be extracted based on the network

represented with ‘Edge-weighted’ weightage.

Univ
ers

ity
 of

 M
ala

ya

208

All in all, the ‘Node-weighted’ strategy to represent communicational cohesion-based

weight can be useful to identify highly reused and fault-prone classes. The comparative

analysis in Figure 7.10 shows that software systems with a higher level of maintenance

effort tend to have a higher average weighted degree. Software with a higher average

weighted degree indicates that most of the software components are entangled and depend

on each other (Giulio Concas et al., 2007; Louridas et al., 2008). Thus, more efforts are

needed to maintain this group of software systems. One disadvantage of ‘Node-weighted’

strategy is that it is unable to clearly distinguish classes and relationships that possess

higher strength of communicational cohesion over other classes because it is assumed that

all relationships are even. Furthermore, duplicate of weightage occurs very often in

‘Node-weighted’ strategy. As for the ‘Edge-weighted’ strategy, it does not provide much

useful information toward understanding the maintainability and reliability of software

systems.

Besides that, classes that violate common software design principles, or those that are

more prone to bugs and errors can be easily identified with the aid of graph theory metrics

and weighted complex networks. For instance, by using the betweenness centrality

metric, it is found that HasCurrentMarkup.java and HasIDBindingAndRendered.java of

Apache Tobago project are very vulnerable toward bug propagation. These two classes

possess a very high betweenness centrality value, which means that plenty of

communications between classes (including passing of variables or parameters) need to

go through them. From a software engineering perspective, unless these classes are

purposely designed as an interface or mediator class, it is risky to have multiple classes

that dictate the flow of communications because the failure or removal of these classes

will cause a system-wide service interruption.

Univ
ers

ity
 of

 M
ala

ya

209

Besides that, the results shown in Figure 7.10 and Table 7.3 have shown that a hybrid of

node and edge-weighted strategy is more appropriate because it is able to represent the

dynamic interactions between software features. Both the classes and their interactions

play equally important roles to quantify the communicational cohesion of classes.

Furthermore, the proposed hybrid weighting strategy can also be used in forward

engineering phase to evaluate the effectiveness of the software design.

7.2.4 Addressing Research Objectives and Hypothesis

In Section 3.2.3, RO1 outlines the goal to propose a constrained clustering approach,

which is further breakdown into 3 sub-objectives. Sub-objective 1.1 outlines the needs to

develop a method for representing OO software systems using weighted complex

networks. Based on the discussed literature, it was found that weighted and directed

network is more suitable to be used in the context of software engineering because not all

software features are symmetrical in nature.

On the other hand, sub-objective 1.2 outlines the goal to identify appropriate measure

constructs that are capable of quantifying maintainability and reliability of OO software

systems represented in weighted complex networks. The focus of this research is to

recover a high-level abstraction view of OO software design that is coherent with the

actual code structure. Thus, the constructed weighted complex network must be

representative enough to demonstrate the modularity of the analysed software system.

Maintainability and reliability, for instance, are two software qualities that contribute

directly toward estimating the modularity of a software system. Therefore, in order to

address this sub-objective, a unique weighting function which is capable of capturing the

maintainability and reliability of software systems, is proposed to quantify the weights of

Univ
ers

ity
 of

 M
ala

ya

210

edges and nodes in the constructed weighted complex network. Software systems are first

converted into UML class diagrams in order to standardise the transformation rules. The

proposed weighting function focuses on the complexity of UML classes and their

associated relationships.

Finally, sub-objective 1.3 is about finding the correlation between statistical patterns of

real-world OO software systems and their level of maintenance efforts. In Section 7.2.2,

a distribution fitting tool called the Easyfit is used to identify the best fit distribution of

all datasets. It was discovered that most of the selected graph theory metrics show the

power law behaviour, which is a typical characteristic of complex networks. A large

majority of the test subjects are shown to have low in-degree and out-degree. From a

software engineering perspective, it can be concluded that most of the classes from the

pool of test subjects are designed to be focused on their own functionalities and easy to

maintain. Classes that are frequently reused or called (i.e. utility classes and interface

classes) can be easily identified through the inspection of distribution fitting diagrams.

With respect to research hypothesis, the first hypothesis discussed that, given any number

and size of test subjects, the constructed weighted complex network based on the proposed

approach should be able to demonstrate common statistical patterns of real-world OO

software systems. When the test subjects are grouped and compared based on their levels

of maintenance efforts, their statistical patterns are more distinguishable. In order to

address the first hypothesis, the statistical patterns of all the selected graph theory metrics

are compared based on their associated SQALE rating. The datasets are grouped into three

different categories, namely A-rated, B-rated, C-rated software systems. If the proposed

weighting function and the selected graph-level metrics are able to represent the

Univ
ers

ity
 of

 M
ala

ya

211

maintainability and reliability of software systems, the resulting comparison should

exhibit a certain degree of correlation.

Based on the results shown in Section 7.2.3, it was discovered that when software systems

are grouped according to their maintenance effort, their statistical patterns are consistent

with the findings of the existing literature. For example, the average weighted degree and

shortest path length of B-rated and C-rated software systems are relatively higher than

those of A-rated software systems. A higher weighted degree is associated with high

coupling, while a high average shortest path length signifies poor communication

between classes. Both observations contribute toward low maintainability and reliability

of software systems, which is consistent with the experimental setup, and eventually

provide a concrete answer for addressing the first research hypothesis and all sub-

objectives under RO1 that concern with developing a method to represent OO software

systems using weighted complex network, while preserving the quality aspects of the

software and ensure that the constructed weighted complex network adheres to the certain

statistical behaviour commonly found in existing studies.

Next, the proposed method to derive clustering constraints based on graph theoretical

analysis is executed, followed by fulfilment of the clustering constraints using the

proposed dendrogram cutting method to address the second research hypothesis - The

proposed constrained agglomerative hierarchical software clustering approach is able

to form relatively more cohesive clusters as compared to the unconstrained clustering

approach. In this experiment, the proposed constrained clustering approach is compared

against an unconstrained clustering approach. To recall, agglomerative software

clustering consists of five main steps, as outlined in Section 2.3.

1. Identification of entities or components

Univ
ers

ity
 of

 M
ala

ya

212

2. Identification of features

3. Calculation of similarity measure

4. Application of clustering algorithm

5. Evaluation of clustering results

Different configuration for each of the five steps above will result in different clustering

results. For instance, using Jaccard coefficient and Sorensen-Dice coefficient to measure

the similarity between cluster entities (Step 3) will produce two distinctively different

clustering results. Thus, in order to perform a fair comparison, the configuration (validity

index used, clustering algorithm used, similarity measure used, etc.) used by the proposed

constrained clustering approach and the unconstrained clustering approach must be

identical. The only difference between the two clustering approaches is that the

unconstrained approach does not make use of any clustering constraints. However, this

particular setting does not compromise the generalisability of the research because all the

design decisions (choice of similarity measure, choice of clustering algorithm, choice of

validity index, etc.) have been discussed in detail in the previous chapters, i.e. to choose

the most suitable clustering algorithm, similarity metric, and validity index to be used in

this research. For instance, the decision of using UPGMA as the clustering algorithm

(instead of SLINK and CLINK) have been discussed and analysed in Section 5.4.5.

Similarly, an in-depth comparison between Davies-Bouldin index, Dunn’s index, and the

proposed enhanced Davies-Bouldin index was conducted in Section 5.5.1 in order to find

the best cluster validity index to evaluate the quality of clustering results.

7.3 Executing the Proposed Constrained Clustering Approach

Univ
ers

ity
 of

 M
ala

ya

213

First, clustering constraints are derived based on graph theoretical analysis of the

weighted complex network generated from the previous step.

7.3.1 Deriving MLH and CLH Constraints from the Implicit Structure of Software

Due to size and page constraints, all the clustering constraints derived from the 40 test

subjects are presented in Table C1 in Appendix C. Some examples of Table C1 are

illustrated in Table 7.4, which shows the clustering constraints derived from Apache

Gora, openFAST, and Apache Tika.

 The second column in Table 7.4 and Table C1 shows the hubs found in each test subject,

while the third column shows the neighbouring classes that form a complete clique with

each corresponding hub in the second column. Note that cannot-link constraints are

established for each pair of hubs in order to promote the notion of separation of concerns.

The fourth column lists down the classes that possess high betweenness centrality (high

BC), while the last column shows the list of neighbouring classes that form a complete

clique.

For hubs and high BC classes in C-rated software, fewer cliques can be identified,

resulting in less constraint derived from these test subjects. The main reason behind this

observation is due to the existence of god classes in software with a higher level of

maintenance efforts. God class in the context of software engineering refers to classes

that contain many instance variables and perform a lot of system operations on its own

(Perez-Castillo & Piattini, 2014). As a software evolves and is updated, a god class will

become denser as new classes are associated with it, causing the software to become more

and more complex.

Univ
ers

ity
 of

 M
ala

ya

214

Table 7.4: Clustering constraints derived from Apache Gora, openFAST, and Apache Tika

Projects Hubs (Cannot-link

between all pairs of hubs)

Classes that form a complete clique with

hub (Must-link)

Classes with high betweenness

centrality (high BC)

Classes that form a complete clique with

high BC (Must-link)

Apache Gora DataStoreBase MemStore Where -

Query GoraInputFormat DataStoreBase -

openFAST Session

- XMLMessageTemplateSerializer -

Context - Scalar Operator

MessageTemplate FieldSet

StaticTemplateReference

TemplateRegistry NullTemplateRegistry

FastMessageReader

TemplateExchangeDefinitionEncoder

AbstractTemplateRegistry

TemplateRegistry NullTemplateRegistry

FastMessageReader

TemplateExchangeDefinitionEncoder

AbstractTemplateRegistry

Scalar Operator

Apache Tika MediaType - LinkContentHandler

LinkBuilder

Link

Property MetadataHandler

Geographic

ElementMetadataHandler

MSOffice

HttpHeaders

TIFF

MediaType

-

XHTMLContent

Handler

XHTMLClassVisitor

PagesContentHandler

PDF2XHTML

CharsetRecognizer CharsetMatch

CharsetDetector

Parser -

Matcher NamedAttributeMatcher Univ
ers

ity
 of

 M
ala

ya

215

In particular, hubs and high BC classes in JFreeChart, Apache Falcon, and Apache

Archiva do not have neighbouring classes that can form a complete clique. The work by

Singh (2013) and Chatzigeorgiou and Melas (2012) has shown that the modularity of

JFreeChart project decreases over time due to frequent and unmanaged incremental

updates. Chatzigeorgiou et al. reported that several classes in JFreeChart became denser

with each incremental update. Based on the experimental findings in Table C1, classes

that behave like god classes are XYItemRenderer.java, Plot.java, XYDataset.java, and

Range.java. Refactoring and remodularisation of these classes should be done to minimise

unnecessary coupling and dependencies in order to improve its overall maintainability.

The results in Table 7.4 and Table C1 show that the graph theoretical analysis managed

to automatically derive clustering constraints from the implicit structure of software

systems. Existing studies in constrained clustering often assumed that user feedbacks are

always reliable and accessible prior to the clustering process, which is unrealistic in

software development especially when dealing with poorly designed or poorly

documented software systems. The proposed method has succeeded in deriving a number

of clustering constraints without the need for user feedback to help facilitate in the

subsequent constrained clustering process.

Table 7.5 lists down the number of clustering constraints derived from each test subject,

sorted according to SQALE rating.

Univ
ers

ity
 of

 M
ala

ya

216

Table 7.5 Number of clustering constraints derived from each test subject

Project Number of

Clustering

Constraints

Number of Classes SQALE rating

Apache Maven Wagon 13 128 A

IWebMvc 4 178 A

JEuclid 15 230 A

openFAST 17 236 A

Apache Commons VFS 18 280 A

Apache XBean 10 401 A

Apache Tika 24 457 A

Jajuk 27 543 A

Fitnesse 30 852 A

Apache Tobago 30 873 A

Apache Shindig 3 950 A

Apache Mahout 36 1130 A

Apache Synapse 54 1276 A

Apache Gora 3 131 B

Jackcess 11 302 B

Apache Sirona 9 345 B

Apache Pluto 12 375 B

Apache Commons BCEL 23 396 B

JSPWiki 22 411 B

Apache Commons

Collections

10 441 B

Apache EmpireDB 41 470 B

Apache Roller 14 528 B

Titan 10 532 B

Apache Log4J 41 704 B

Eclipse SWTBot 32 731 B

Apache Wink 11 740 B

Apache Karaf 69 773 B

Apache Deltaspike 53 1002 B

JFreeChart 6 1013 B

jOOQ 39 1106 B

Apache Hudson 23 1492 B

Apache Rampart 7 191 C

Apache Falcon 3 235 C

Kyro 12 346 C

Apache Archiva 15 506 C

Apache Mina 11 583 C

Apache Abdera 5 682 C

Apache Helix 7 710 C

Struts 39 1646 C

ApacheDS 14 2408 C

Univ
ers

ity
 of

 M
ala

ya

217

The experimental results show that the number of derived clustering constraints is not

positively correlated to the size of the projects. Instead, more clustering constraints were

derived from projects with lower level of maintenance effort such as those in A-rated and

B-rated projects. Due to the complexity of C-rated projects, their structural behaviour are

relatively more vague and entangled compared to A-rated and B-rated projects, resulting

in a lesser number of clustering constraints can be derived automatically. For instance,

the projects with highest number of classes in B-rated and C-rated projects, namely

Apache Hudson (1492 classes) and ApacheDS (2408 classes), only managed to derive 23

and 14 clustering constraints respectively. When compared to a relatively small-sized A-

rated project, both Apache Hudson and ApacheDS actually yield a lesser number of

clustering constraints compared to Apache Tika (457 classes, with 24 constraints derived

automatically).

After all the clustering constraints are automatically retrieved using the proposed method,

the next step is to fulfil these constraints by altering the distance between pairs of MLH

and CLH constraints using the distance based approach discussed in Section 5.2.

7.3.2 Fulfilment of Must-Link and Cannot-Link Constraints

First, the resemblance matrix of each project is constructed based on Dijkstra's shortest

path algorithm discussed in Section 5.4.4. One resemblance matrix is created for each

project. Next, conflicting MLH and CLH constraints are identified. If there is a pair of

classes (𝑥, 𝑦), such that (𝑥, 𝑦) belongs to both MLH and CLH, then this is a NP-Complete

problem with no solution, as discussed by Davidson and Ravi (2009). Software

maintainers can choose to randomly omit one of the conflicting constraints from the

system to avoid the NP-Complete problem.

Univ
ers

ity
 of

 M
ala

ya

218

Then, each MLH constraint is fulfilled by changing the distance between a pair of classes

to zero, indicating that these classes must be grouped into the same cluster regardless of

any condition. The pair of classes involved in the MLH constraint will eventually form

the base of the dendrogram. Next, each CLH constraint is fulfilled by changing the

distance between a pair of classes to a large enough constant that prevents them from

clustered into the same group. The constant is determined by calculating 𝑙 + 1, such that

𝑙 = largest distance exist in a particular resemblance matrix.

To recall, the proposed constrained clustering approach allows domain experts to

explicitly provide their domain knowledge in the form of MLS and CLS constraints to

further improve the clustering results. However, without directly involved in the design

and development of the selected test subjects, it is difficult to find experts who possess a

certain level of understanding on all the test subjects and are willing to take part in the

experiment. Therefore, the approach for generating and fulfilling the MLS and CLS

constraints is similar to the evaluation conducted as discussed in Section 5.5.

The steps involved are as follows:

1. Prior to the experiment, all the classes are assumed to be scattered around and not

grouped in their respective packages.

2. Based on the original UML package diagram, several MLS and CLS constraints

are extracted. The number of soft constraints is limited to 50% of the total number

of hard constraints derived from the proposed method. This is to prevent biasness

in the results because the soft constraints are extracted directly from the original

package diagram and will definitely improve the accuracy of clustering results

once they are imposed in the experiment. Hence, limiting the number of soft

Univ
ers

ity
 of

 M
ala

ya

219

constraints is needed to prevent such biasness when interpreting the experiment

results.

3. For MLS and CLS constraints, penalty scores for violating the soft constraints are

generated randomly.

However, solely relying on extracting soft constraints from the original package diagram

is at the risk of causing biasness in the experiment results. Hence, another approach is

taken to evaluate the accuracy of the proposed method for fulfilling MLS and CLS

constraints in Equation (4).

Five participants were recruited to take part in the experiment, where each of them has at

least 5 years of industrial experience in developing and maintaining software systems.

While it is impossible to request the participants to provide feedbacks in the form of soft

constraints on all the 40 test subjects, 3 projects with different levels of maintenance

efforts were chosen namely Apache XBean (A-rated), Apache Gora (B-rated), and

Apache Rampart (C-rated).

The five participants then provided their feedbacks in the form of soft constraints and

ranked their judgement using the fuzzy-AHP method discussed in Section 5.3. In order to

reach a consensus among the participants, they were instructed to perform pair-wise

comparison of the identified soft constraints and ranked their judgement based on the

relative scores of 1-9, where a greater value represents higher importance. Next, the

triangular fuzzy numbers (TNF) values were calculated using the formula in Section 5.3.

The results were tabulated into a comparison matrix shown in Table 7.6 to Table 7.8 for

all the 3 test subjects.

Univ
ers

ity
 of

 M
ala

ya

220

Table 7.6: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache XBean Project

BundleClassLoader-

DelegatingBundleReference (MLS)

ClassPath-SunURLClassPath

(MLS)

ConstructionException-

UrlResourceFinder(CLS)

Command-

AnnotatedMember(CLS)

BundleClassLoader-

DelegatingBundleReference

(ML)
1 0.2, 1.508, 6 0.2, 1.675, 9 0.14, 1.304, 2

ClassPath-SunURLClassPath

(MLS)
 1 0.33, 1.52, 8 0.33, 1.508, 9

ConstructionException-

UrlResourceFinder(CLS)
 1 0.2, 1.16, 6

Command-

AnnotatedMember(CLS)
 1

Table 7.7: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache Gora Project

 Persistent-StateManager (MLS)

SqlStore-

InsertUpdateStatement

(MLS)

HBaseMapping-

HBaseTableConnection

(MLS)

SqlResult-

SqlMapping

(CLS)

StatefulMap-

StatefulHashMap

(MLS)

CassandraColumn-

CassandraSubColum

n (MLS)

Persistent-StateManager

(MLS)
1 0.5, 1.488, 4 0.1, 1.2 , 2 0.2, 1.28, 6 0.25, 0.84, 5 0.15, 0.861, 6

SqlStore-

InsertUpdateStatement (MLS)
 1 0.2, 0.35, 4 0.11, 1.38, 4 0.2, 0.72, 5 0.2, 0.88, 3

HBaseMapping-

HBaseTableConnection

(MLS)

 1 0.25, 0.72, 3 0.33, 1.5, 4 0.33, 0.72, 4

SqlResult-SqlMapping (CLS) 1 0.12, 1.32, 6 0.12, 0.45, 4

StatefulMap-StatefulHashMap

(MLS)
 1 0.2, 0.38, 6

CassandraColumn-

CassandraSubColumn (MLS)
 1

Univ
ers

ity
 of

 M
ala

ya

221

Table 7.8: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache Rampart Project

EncryptedKeyToken-

Token (MLS)

TokenStorage-

SimpleTokenStore

(MLS)

AbstractIssuerConfig-

SCTIssuerConfig (MLS)

RahasData-Binding

(CLS)

Token-Layout

(CLS)

SCTIssuer-Wss10

(CLS)

EncryptedKeyToken-Token (MLS) 1 0.1, 0.5, 2 0.1, 0.878, 7 0.12, 1.032, 4 0.25, 1.32, 8 0.12, 0.861, 5

TokenStorage-SimpleTokenStore (MLS) 1 0.3, 1.052, 5 0.33, 0.897, 5 0.2, 1.025, 4 0.33, 0.52, 4

AbstractIssuerConfig-SCTIssuerConfig

(MLS)

 1 0.12, 1.16, 6 0.2, 1.02, 5 0.15, 1.03, 6

RahasData-Binding (CLS) 1 0.14, 1.218, 5 0.14, 0.98, 4

Token-Layout (CLS) 1 0.11, 0.33, 5

SCTIssuer-Wss10 (CLS) 1

Univ
ers

ity
 of

 M
ala

ya

222

Next, defuzzification was performed to produce a quantifiable value based on the

calculated TFN values. Recall that the defuzzification method adopted in this research is

based on the alpha cut method proposed by Liou and Wang (1992), as discussed in Section

5.3.

An example of calculation is shown below for the comparison between

BundleClassLoader-DelegatingBundleReference (MLS) and ClassPath-

SunURLClassPath (MLS) for the Apache XBean project:

𝑓0.5(𝐿𝑥𝑦) = (1.508 − 0.2) ∙ 0.2 + 0.2 = 0.4616

𝑓0.5(𝐻𝑥𝑦) = 6 − (6 − 1.508) ∙ 0.2 = 5.102

𝜇05,0.5(�̃�𝑥𝑦) = [0.5 ∙ 0.4616 + (1 − 0.5) ∙ 3.244] = 1.853

𝜇05,0.5(�̃�𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦−𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = 1/1.853 = 0.54

Table 7.9 – Table 7.11 show the result of fuzzy pair-wise comparison after the

defuzzification process.

Univ
ers

ity
 of

 M
ala

ya

223

Table 7.9: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache XBean Project

BundleClassLoader-

DelegatingBundleReference

(MLS)

ClassPath-SunURLClassPath (MLS) ConstructionException-UrlResourceFinder(CLS) Command-AnnotatedMember(CLS)

BundleClassLoader-

DelegatingBundleReference

(MLS)
1 1.853 4.015 1.103

ClassPath-

SunURLClassPath (MLS)
0.54 1 3.292 3.624

ConstructionException-

UrlResourceFinder(CLS)
0.249 0.304 1 2.712

Command-

AnnotatedMember(CLS)
0.907 0.276 0.369 1

Table 7.10: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache Gora Project

 Persistent-StateManager (MLS)

SqlStore-

InsertUpdateStatement

(MLS)

HBaseMapping-

HBaseTableConnection

(MLS)

SqlResult-

SqlMapping

(CLS)

StatefulMap-

StatefulHashMap

(MLS)

CassandraColumn-

CassandraSubColum

n (MLS)

Persistent-StateManager

(MLS)
1 1.869 1.065 2.736 2.179 2.743

SqlStore-

InsertUpdateStatement (MLS)
0.535 1 1.476 1.98 2.224 1.458

HBaseMapping-

HBaseTableConnection

(MLS)

0.939 0.677 1 1.4 1.946 1.688

SqlResult-SqlMapping (CLS) 0.365 0.505 0.714 1 2.851 1.947

StatefulMap-StatefulHashMap

(MLS)
0.459 0.450 0.514 0.351 1 2.556

CassandraColumn-

CassandraSubColumn (MLS)
0.365 0.687 0.592 0.514 0.391 1

Univ
ers

ity
 of

 M
ala

ya

224

Table 7.11: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache Rampart Project

EncryptedKeyToken-

Token (MLS)

TokenStorage-

SimpleTokenStore

(MLS)

AbstractIssuerConfig-

SCTIssuerConfig (MLS)

RahasData-Binding

(CLS)

Token-Layout

(CLS)

SCTIssuer-Wss10

(CLS)

EncryptedKeyToken-Token (MLS) 1 0.995 3.283 1.937 3.424 2.461

TokenStorage-SimpleTokenStore (MLS) 1.005 1 2.171 2.082 1.885 1.622

AbstractIssuerConfig-SCTIssuerConfig

(MLS)

0.305 0.461 1 1.885 2.284 2.768

RahasData-Binding (CLS) 0.516 0.480 0.531 1 2.38 1.917

Token-Layout (CLS) 0.292 0.531 0.438 0.420 1 2.31

SCTIssuer-Wss10 (CLS) 0.406 0.617 0.361 0.522 0.423 1

Univ
ers

ity
 of

 M
ala

ya

225

The next step is to determine the eigenvalue and eigenvector of the fuzzy pair-wise

comparison matrix, as shown in Section 5.3. The eigenvector can help in determining the

aggregated weightage, or in other words, relative importance of a particular soft

constraint. Assume that 𝛿 denotes the eigenvector while 𝜆 denotes the eigenvalue of

fuzzy pair-wise comparison matrix �̃�𝑥𝑦,

 [(𝜇𝛼,𝛽(�̃�𝑥𝑦) − 𝜆𝐼] ∙ 𝛿 = 0

The above formula is based on the linear transformation of vectors, where I represents the

unitary matrix. The eigenvectors of all the associated soft constraints were then calculated

using the formula. The example below shows the calculation for Apache XBean project.

[(𝜇𝛼,𝛽(�̃�𝑥𝑦) − 𝜆𝐼] = [

1 1.853 4.015 1.103
0.54 1 3.292 3.624
0.249 0.304 1 2.712
0.907 0.276 0.369 1

]

Multiplying eigenvalue 𝜆 with unitary matrix I produces an identity matrix that cancels

out each other. Thus, the notation 𝜆𝐼 is discarded in this case.

[

1 1.853 4.015 1.103
0.54 1 3.292 3.624
0.249 0.304 1 2.712
0.907 0.276 0.369 1

]

[

𝛿BundleClassLoader−DelegatingBundleReference

𝛿ClassPath−SunURLClassPath
𝛿ConstructionException−UrlResourceFinder

𝛿Command−AnnotatedMember]

=

[

0
0
0
0
0
0]

[

𝛿BundleClassLoader−DelegatingBundleReference

𝛿ClassPath−SunURLClassPath
𝛿ConstructionException−UrlResourceFinder

𝛿Command−AnnotatedMember]

= [

0.3795
0.331
0.154
0.135

]

The aggregated result in terms of weightage is tabulated in Table 7.12. The results

obtained are ordered as follows: BundleClassLoader-DelegatingBundleReference

Univ
ers

ity
 of

 M
ala

ya

226

(0.3795), ClassPath-SunURLClassPath (0.331), ConstructionException-

UrlResourceFinder (0.154), Command-AnnotatedMember (0.135).

Table 7.12: Weightage and priority of soft constraints derived from Apache XBean

Priority Derived Soft Constraints Weightage/Penalty Score

1

BundleClassLoader-

DelegatingBundleReference (MLS) 0.3795

2 ClassPath-SunURLClassPath (MLS) 0.331

3

ConstructionException-

UrlResourceFinder(CLS) 0.154

4 Command-AnnotatedMember(CLS) 0.135

Note that the weightage in Table 7.12 is equivalent to the penalty score for violating a

particular soft constraint, as in Equation (4). The results for Apache Gora and Apache

Rampart are illustrated in Table 7.13 and Table 7.14 respectively.

Table 7.13: Weightage and priority of soft constraints derived from Apache Gora

Priority Derived Soft Constraints Weightage/

Penalty Score

1 Persistent-StateManager (MLS) 0.272

2 SqlStore-InsertUpdateStatement (MLS) 0.201

3 HBaseMapping-HBaseTableConnection

(MLS)

0.180

4 SqlResult-SqlMapping (CLS) 0.151

5 StatefulMap-StatefulHashMap (MLS) 0.109

6 CassandraColumn-CassandraSubColumn

(MLS)

0.087

Table 7.14: Weightage and priority of soft constraints derived from Apache Rampart

Priority Derived Soft Constraints Weightage/ Penalty Score

1
EncryptedKeyToken-Token (MLS)

0.29

2
TokenStorage-SimpleTokenStore (MLS)

0.231

3
AbstractIssuerConfig-SCTIssuerConfig (MLS)

0.166

4
RahasData-Binding (CLS)

0.136

Univ
ers

ity
 of

 M
ala

ya

227

5
Token-Layout (CLS)

0.097

6
SCTIssuer-Wss10 (CLS)

0.08

The ranking and weighting of the identified soft constraints are able to aid in penalising

the violation of soft constraints. The penalty score will be taken into account when

evaluating the quality of clusters formed by a particular cutting point. Hence, maximising

the fulfilment of soft constraints is preferred.

7.3.3 Forming and Cutting of Dendrogram

Now that both the explicit and implicit clustering constraints are derived, the next step is

to generate a dendrogram for each of the associated test subjects. Since all the MLH

constraints are unconditionally fulfilled at the bottom of the dendrogram, users do not

have to worry about the fulfilment of these hard constraints. Due to the size and scale of

the experiment, one example is chosen and shown in Figure 7.11, where it depicts the

dendrogram generated from Apache JSPWiki project.

Figure 7.11: Dendrogram generated from Apache JSPWiki project

Univ
ers

ity
 of

 M
ala

ya

228

The circle at the bottom of the dendrogram shows the pairs of MLH constraints that form

the base of the dendrogram. On the other hand, the circle at top of the dendrogram shows

the CLH constraints. Since it is impossible to cut the dendrogram at the top of the

dendrogram, one can be assured that CLH constraints are fulfilled regardless of any

condition.

As for the soft constraints, the fulfilment of MLS and CLS constraints are evaluated after

the dendrogram is partitioned by a cutting point. For instance, if the classes

EncryptedKeyToken.java and Token.java of Apache Rampart project are grouped into

the same cluster using a cutting point x, then it is deemed that this MLS constraint is

fulfilled, hence no penalty score is enforced onto the cutting point x. However if the

cutting point x failed to group the two classes EncryptedKeyToken.java and Token.java

into the same cluster, then the penalty score of 0.29, as illustrated in Table 7.14, is

enforced to discourage software maintainers from choosing the cutting point x as the

optimum cutting point. The detailed steps involved in fulfilling soft constraints are

described earlier in Section 5.3, Equation (4).

After generating the dendrogram, it is cut using the proposed dendrogram cutting method

discussed in Section 5.4. With least-squares polynomial regression analysis, the optimum

cutting point for JSPWiki project is found at the distance level of 3.712, which is

illustrated as the dotted line in Figure 7.11. The resulting clustering results are shown in

Figure 7.12.

Univ
ers

ity
 of

 M
ala

ya

229

Figure 7.12: Clustering results for JSPWiki for cutting the dendrogram at 3.712

Univ
ers

ity
 of

 M
ala

ya

230

Cutting the dendrogram at 3.712 yields the lowest average 𝑖𝑛𝑡𝑟𝑎 value and the highest

average 𝑖𝑛𝑡𝑒𝑟 value. As stated earlier, low 𝑖𝑛𝑡𝑟𝑎 value signifies higher cohesion among

classes inside the same cluster while high 𝑖𝑛𝑡𝑒𝑟 value indicates that the clusters formed

are well separated. This indicates that cutting at 3.712 produces the most cohesive

clusters although it contains a lot of small clusters. Besides that, this particular cutting

point managed to fulfil all the soft constraints generated from the previous steps. Next,

the clustering results are compared against the original package diagram using the

MoJoFM metrics to validate the second hypothesis, which is to verify if the proposed

constrained clustering approach can produce better clustering results compared to the

unconstrained approach.

7.3.4 Using MoJoFM to Compare Clustering Results

A MoJo tool written by (Wen & Tzerpos, 2004) is used to calculate the MoJoFM metric.

Figure 7.13 shows the screenshot of the software tool.

Univ
ers

ity
 of

 M
ala

ya

231

Figure 7.13: Screenshot of the MoJo distance software tool

The software is capable of automatically comparing and calculating the MoJo metric of

two clustering results. As shown in Figure 7.13, users need to specify the source file and

the target file before running the tool. The target file in this context refers to the ground

truth or the golden result. The source file refers to the clustering result to be compared

with the golden clustering result. The tool will calculate the number of Move and Join

operations needed to transform the source file into the target file. Minimisation of Move

and Join operations are preferred. In Figure 7.13, an example source file named a.rsf is

chosen, which contains the unconstrained clustering results of jOOQ project. The target

file, which is the ground truth, is represented by b.rsf. Note that the tool only accepts Rigi

Standard Format extension (.rsf), which is a textual format to represent binary relations

between groups of entities. Next, the tool calculates the number of Move and Join

operations needed to convert a.rsf to b.rsf. Based on the result shown in Figure 7.13, 383

Univ
ers

ity
 of

 M
ala

ya

232

operations are needed to accomplish the conversion task. The value 912 indicates the

number of classes found in the input file. Hence, the final MoJoFM metric value is

calculated, where it is concluded that the source file (a.rsf) is 58.0% similar to the target

file (b.rsf). MoJoFM value of 100% indicates that the source file is identical to the target

file. Therefore, maximisation of the MoJoFM metric value is preferred.

In order to address the second hypothesis, a comparison was made between the proposed

constrained clustering approach and the conventional unconstrained clustering approach.

Each test subject undergoes two clustering processes, one using the proposed constrained

clustering approach, and another one without making use of any clustering constraint. In

order to provide a fair comparison and reduce the biasness of the result, the proposed

dendrogram cutting method and the enhanced Davies-Bouldin index are also

implemented on the unconstrained clustering approach. This allows one to observe the

effect of clustering constraints on the accuracy of clustering results. Table 7.15 shows the

MoJoFM metric value for all the 40 test subjects. The third column shows the MoJoFM

values of the unconstrained clustering approach when compared against the original

package diagram. The fourth column shows the MoJoFM values of the proposed

constrained clustering approach when compared to the original package diagram.

Table 7.15: MoJoFM values for constrained and unconstrained clustering results when

compared to the original package diagram

Project Number of

hard

constraints

Unconstrained

clustering approach

(MoJoFM value)

Proposed

constrained

clustering

approach

(MoJoFM value)

Differences

(MoJoFM)

Apache Maven

Wagon

13 75.8% 85.6% 9.8%

IWebMvc 4 80.5% 92.3% 11.8%

JEuclid 15 72.3% 85.2% 12.9%

openFAST 17 61.5% 75.3% 13.8%

Univ
ers

ity
 of

 M
ala

ya

233

Apache

Commons VFS

18 63.2% 76.5% 13.3%

Apache XBean 10 50.8% 73.5% 22.7%

Apache Tika 24 56.2% 76.2% 20%

Jajuk 27 53.1% 78.5% 25.4%

Fitnesse 30 49.8% 72.4% 22.6%

Apache Tobago 30 55.4% 80.2% 24.8%

Apache Shindig 3 58.8% 65.2% 6.4%

Apache Mahout 36 52.8% 77.9% 25.1%

Apache Synapse 54 44.5% 77.4% 32.9%

Apache Gora 3 72.3% 86.2% 13.9%

Jackcess 11 78.5% 88.4% 9.9%

Apache Sirona 9 80.4% 86.3% 5.9%

Apache Pluto 12 75.3% 80.5% 5.2%

Apache

Commons BCEL

23 72.4% 85.6% 13.2%

JSPWiki 22 68.3% 82.8% 14.5%

Apache

Commons

Collections

10 78.5% 83.6% 5.1%

Apache

EmpireDB

41 75.3% 88.5% 13.2%

Apache Roller 14 79.2% 84.5% 5.3%

Titan 10 80.4% 87.3% 6.9%

Apache Log4J 41 68.6% 90.2% 21.6%

Eclipse SWTBot 32 62.8% 83.5% 20.7%

Apache Wink 11 70.5% 78.9% 8.4%

Apache Karaf 69 55.8% 89.3% 33.5%

Apache

Deltaspike

53 64.2% 92.8% 28.6%

JFreeChart 6 52.5% 55.1% 2.6%

jOOQ 39 58.0% 82.8% 24.5%

Apache Hudson 23 60.8% 71.1% 10.3%

Apache Rampart 7 72.5% 83.9% 11.4%

Apache Falcon 3 70.5% 71.8% 1.3%

Kyro 12 77.5% 82.7% 5.2%

Apache Archiva 15 65.8% 73.2% 7.4%

Apache Mina 11 70.6% 80.5% 9.9%

Apache Abdera 5 70.5% 72.6% 2.1%

Apache Helix 7 65.3% 69.2% 3.9%

Struts 39 67.2% 87.6% 20.4%

ApacheDS 14 65.3% 78.1% 12.8%

AVERAGE 20.58 66.4% 80.1% 13.8%

Based on Table 7.15, it can be summarised that the proposed constrained clustering

approach achieves an aggregated average of 80.33% accuracy when compared against the

original package diagrams of the forty software systems, and performs better than the

Univ
ers

ity
 of

 M
ala

ya

234

unconstrained clustering approach. It has to be noted that the original package diagram is

by no means the optimum or best clustering result since there is no way to verify that it is

the best clustering result to represent the software design. However, it can be treated as a

guideline to evaluate and compare between the results produced by the proposed

constrained clustering approach and the unconstrained one.

In general, test subjects with more clustering constraints achieve better improvement in

terms of MoJoFM metric when compared against the unconstrained approach. There are

a few exceptions, such as the Apache Pluto, Apache Roller, and Apache Archiva project,

which record less than 10% improvements. This is mainly because several pairs of classes

involved in the must-link or cannot-link constraints had already been placed in the

intended clusters prior to the implementation. Furthermore, it can be observed that

improvement (in terms of MoJoFM) is more significant on larger projects with low level

of maintenance efforts such as the Jajuk (543 classes), Apache Tobago (873 classes),

Apache Synapse (1276 classes), Apache Karaf (773 classes), and Apache Deltaspike

(1002 classes). One of the contributing factors is because it is relatively easier to identify

clustering constraints such as hubs in larger projects with low maintenance efforts.

Although ApacheDS contains 2408 classes, only 14 constraints can be derived due to its

inherent complexity and complex structure.

In summary, the results presented in this subsection are capable of providing a concrete

answer toward addressing the second research hypothesis, such that the proposed

constrained clustering approach is able to produce highly cohesive clusters when

measured using the MoJoFM metric. It is when applied on larger projects, the

improvements are relatively more significant.

Univ
ers

ity
 of

 M
ala

ya

235

7.4 Chapter Summary

This chapter presented the analysis of experimental results using the proposed constrained

clustering approach. Experiments were conducted using 40 open-source OO software

systems with different sizes, complexity, and maintenance efforts. The experiment results

were analysed extensively using several statistical analyses. Finally, a discussion on the

analysed results was conducted to address the research hypotheses and objectives.

Univ
ers

ity
 of

 M
ala

ya

236

CHAPTER 8: CONCLUSION AND FUTURE WORK

This chapter summarises the research that has been conducted. Then, a discussion on the

research contribution is presented. Finally, some suggestions on the potential

enhancement to the proposed constrained clustering approach are provided for future

research work.

8.1 Thesis Summary

A thorough literature review had been conducted to search for methods to reverse

engineer poorly documented software systems. The review has successfully identified

and analysed the state-of-the-art constrained and unconstrained clustering approaches.

During the analysis, issues related to constrained clustering were identified and discussed.

As a result, a constrained clustering approach with the aid of weighted complex network

is proposed in this thesis to support remodularisation of poorly designed or poorly

documented software systems.

The main objective of the proposed constrained clustering approach is to create a high-

level abstraction of the software design with highly cohesive clusters based on the

clustering constraints derived explicitly from domain experts and also from the implicit

structure of software systems. Using a round-trip engineering tool, raw source code are

first converted into UML class diagrams. Then, a method is proposed to analyse

information extracted from the class diagrams such as complexity of classes, relationships

between classes, and the complexity of relationships, in order to represent the analysed

software with a weighted complex network. Classes are represented as nodes while

relationships such as association, generalisation and realisation are represented as edges

Univ
ers

ity
 of

 M
ala

ya

237

that connect pairs of nodes. The complex network is further extended by assigning

weights to the edges of the network using a unique weighting mechanism based on two

parameters, namely the complexity of classes and the complexity of relationships.

Based on the constructed weighted complex network, statistical analysis using best fit

distribution and boxplot is conducted to identify the common statistical behaviour of

software systems, and to address the first research hypothesis - Given any number and

size of test subjects, the constructed weighted complex network based on the proposed

approach should be able to demonstrate common statistical patterns of real-world OO

software systems. When the test subjects are grouped and compared based on their levels

of maintenance efforts, their statistical patterns are more distinguishable.

Based on the experiments conducted on 40 open-source OO software systems, it is found

that all the chosen test subjects demonstrate the power law behaviour, such that most of

the classes possess low in-degree and out-degree except for a few classes that are

frequently used by other classes. Next, with the aid of SQALE rating, the maintenance

efforts of all the chosen test subjects are rated and grouped into three categories, namely

A-rated, B-rated, and C-rated software. Based on the boxplot analysis, it is found that

graph-level metrics for C-rated software deviate away from the statistical patterns found

in A-rated and B-rated software, signifying the structural weakness in software with high

level of maintenance efforts. Then, a method to automatically derive must-link and

cannot-link constraints is introduced based on the graph theoretical analysis performed in

the previous step. The proposed method is capable of revealing some extra deterministic

information regarding the software, which is otherwise hidden using conventional

software metrics.

Univ
ers

ity
 of

 M
ala

ya

238

Constrained clustering is performed on all the 40 test subjects in order to provide a way

to address the second hypothesis - The proposed constrained agglomerative hierarchical

software clustering approach is able to form relatively more cohesive clusters as

compared to the unconstrained clustering approach. Clustering constraints are derived

from two sources of information, i.e. explicitly from domain experts and implicitly from

the results of graph theoretical analysis. The proposed method offers extra flexibility in

the way clustering constraints are supplied to software maintainers. Clustering constraints

are fulfilled by altering the resemblance matrix to ensure that classes involved in must-

link constraints are always grouped into the same clusters, while those involved in cannot-

link constraints must always be separated.

A dendrogram is then formed based on the altered resemblance matrix to illustrate the

arrangement of the clusters produced by hierarchical clustering. Then, a dendrogram

cutting technique is introduced to minimise redundant effort in finding optimum cutting

points while maintaining the integrity of results. This issue had not been tackled explicitly

in the current literature. The number of cutting points needed to find the optimum set of

clusters can be minimised due to the adaptive nature of the proposed dendrogram cutting

method.

Besides, an enhanced version of Davies-Bouldin index is introduced to measure the

quality of clustering results. A penalty mechanism is introduced in the enhanced Davies-

Bouldin index. This penalty mechanism works by penalising the formation of singleton

clusters and it is always a good practice to prevent them from happening. The penalty

mechanism is also adaptive in such a way that it penalises according to the highest gap

between a pair of cluster entities.

Univ
ers

ity
 of

 M
ala

ya

239

Then, a least-squares polynomial regression analysis technique is introduced to find the

cutting points that produce the best validity index. This technique uses the output

produced by the proposed dendrogram cutting method to perform the analysis. The

cutting point that produces the best result in terms of intra-cluster cohesion, intra-cluster

separation, and fulfilment of clustering constraints, is recommended as the optimum

cutting point.

From the software maintainers’ perspective, several implications can be drawn from the

experimental results. First, it is shown that UML class diagram can be an effective input

to aid in the modelling of a software-based weighted complex network. Majority of the

existing studies only focus on using raw source code as the sole input, which limits the

applicability of their approaches because the findings cannot be applied on software

systems written in other programming languages. With the use of UML class diagram,

software maintainers can recover a high-level abstraction of the OO software design using

the proposed approach as long as the class diagrams can be retrieved or reverse-

engineered using an off-the-shelf round-trip engineering tool. The recovered high-level

software design can then be used to raise questions about the structure and behaviour of

the software, even for very well-maintained software, to aid in software remodularisation.

Therefore when the proposed approach suggests a clustering result which should produce

a noticeable improvement in cohesion and coupling of classes, this will serve as a guide

to the software maintainers for consideration and further investigation.

In Chapter 4, a method to represent software systems using weighted complex networks

is proposed. The method is based on a unique weighting mechanism to weight the edges

and nodes of a software-based complex network. The proposed method has shown to be

able to successfully measure the complexity of classes and their relationships, and provide

Univ
ers

ity
 of

 M
ala

ya

240

an alternative to the conventional techniques that only count the frequencies of method

interactions. With the aid of graph theoretical analysis, software maintainers are able to

identify common statistical behaviour found in software with different levels of

maintenance efforts. The method to derive clustering constraints, on the other hand,

provides a means to automatically identify and derive constraints in situations where

software documentation are not up-to-date or domain experts are non-existent. Existing

studies in constrained clustering often assumed that user feedbacks are always reliable

and accessible prior to the clustering process, which is unrealistic in software

development especially when dealing with poorly designed or poorly documented

software systems.

Finally, the proposed dendrogram cutting method can be used as a complementary

mechanism to improve the effectiveness of other clustering algorithms. The adaptive

regression analysis, for instance, can help to reduce the computational cost of existing

clustering algorithms while the penalty mechanism can help to prevent the formation of

singleton clusters.

8.2 Contributions

The following summarises the contributions of the thesis:

 A constrained clustering approach supported by weighted complex network to

help in recovering a high-level software design of poorly designed or poorly

documented OO software systems. This contribution is aligned to RO1 - “To

propose a constrained clustering approach with the aim to recover a high-level

abstraction of OO software design that is coherent and consistent with the actual code

Univ
ers

ity
 of

 M
ala

ya

241

structure”, where the proposed approach is capable of analysing the structure,

behaviour, and complexity of OO software systems, and ultimately recovers a high-

level abstraction of the software design. In addition, it is capable of utilising both

explicit and implicit constraints to help in recovering a high-level software design that

is coherent and consistent with the actual code structure. The proposed approach can

not only help in minimising the cost of software maintenance, but also ensure that the

maintained software can adapt to future changes.

 Proposed method to represent software systems using weighted and directed

complex networks. This contribution is aligned to RO1.1- “To develop a method for

representing OO software systems using weighted complex network”, and RO1.2 -

“To identify appropriate measure constructs that are capable of quantifying

maintainability and reliability of software systems represented in weighted complex

networks”, where a unique weighting mechanism is proposed to weight the

constructed software-based complex network based on the complexity of classes and

the complexity of relationships. Based on the in-depth literature review done in

Chapter 2, it is concluded that weighted and directed complex network is more

suitable to capture the structure and behaviour of software systems. The proposed

weighting mechanism is capable of capturing the maintainability and reliability

aspects of software systems.

 Using statistical analysis technique to investigate the statistical pattern of

weighted complex network constructed based on the proposed approach. This

contribution is aligned to RO1.3 - “To investigate the correlation between the

statistical patterns of real-world OO software systems and their level of maintenance

efforts”, where all the weighted complex networks constructed from the 40 test

Univ
ers

ity
 of

 M
ala

ya

242

subjects are evaluated using the best fit probability distribution. Based on the

evaluation, it is found that several graph theory metrics such as in-degree, out-degree,

average weighted degree, and betweenness centrality of the constructed weighted

complex networks corroborate with observations commonly found in existing studies,

where these metrics follow a power law behaviour. Besides that, the constructed

weighted complex networks also obey the small world behaviour based on the

statistical pattern found in average shortest path length and average clustering

coefficient. Furthermore, a comparative analysis is performed using the boxplot

analysis to identify if the statistical patterns are more distinguishable when the test

subjects are grouped and compared based on their levels of maintenance efforts.

Based on the analysis, it is discovered that the statistical pattern of C-rated software

systems tend to deviate away from the patterns found in A-rated and B-rated software

systems. This finding shows that the proposed approach can be a useful alternative to

identify potential design faults and assess the maintainability of software systems if

the software documentations are not available.

 Proposed method to automatically derive implicit clustering constraints from the

implicit structure of OO software systems. This contribution is aligned to RO2 -

“To propose a method that helps in deriving implicit clustering constraints from the

implicit structure of OO software systems with the aid of weighted complex network

and graph theoretical analysis”, where clustering constraints such as must-link and

cannot-link constraints are automatically derived from the software systems itself

without human intervention. Existing studies in constrained clustering do not

explicitly address the problem of deriving clustering constraints when domain experts

are not available. Most studies assumed that constraints are provided prior to the

clustering process, which is unrealistic in software development especially when

Univ
ers

ity
 of

 M
ala

ya

243

dealing with poorly designed or poorly documented software systems. The proposed

method utilises well known graph theory metrics such as in-degree, out-degree, and

average shortest path, to automatically identify important classes that contribute

toward a particular software functionality. Based on the analysis, the results are

translated into clustering constraints such as must-link and cannot-link constraints to

help improve the accuracy of software clustering. The proposed method is beneficial

in situations where domain experts are non-existent.

 Proposed method to rank and prioritise explicit clustering constraints in order

to reach a consensus among all the domain experts and software developers. This

contribution is aligned to RO3 – “To propose a method that is capable of deriving

explicit clustering constraints from domain experts or software developers who have

prior knowledge regarding the software systems”, where the explicit constraints are

ranked using fuzzy AHP method. Explicit constraints are further categorised into soft

constraints due to their fuzzy and ambiguous nature. Furthermore, an objective

function is proposed in order to maximise the fulfilment of all the derived explicit

constraints.

 Proposed method to maximise the fulfilment of clustering constraints, while

penalising the violation of constraints. This contribution is aligned to RO4 - “To

formulate an appropriate objective function that maximises the fulfilment of explicit

and implicit constraints, while penalising violation of the constraints”, such that the

proposed method offers extra flexibility in the way clustering constraints are supplied

to the software maintainers. Implicit constraints are automatically derived using

complex network and graph theoretical analysis, while the explicit constraints are

provided by the domain experts. The proposed method has the capability to accept

Univ
ers

ity
 of

 M
ala

ya

244

either one or both sources of the input, and translate them into clustering constraints.

Constraints are categorised into hard and soft constraints in this research. Hard

constraints are constraints derived from a reliable source of information, such as those

derived from the implicit structure of the software itself. They are absolute and must

be fulfilled regardless of any condition. Soft constraints, on the other hand, are derived

from domain experts who have prior knowledge regarding the software to be

maintained. They are good to have but not compulsory. An objective function has

been proposed in this research with the aim to maximise the fulfilment of soft

constraints. The clustering result that maximises the fulfilment of both hard and soft

constraints is preferred as the optimum result.

 Evaluate the proposed approach using 40 open-source OO software systems.

This contribution is aligned to RO5 - “To evaluate the accuracy and scalability of the

proposed approach using open-source OO software systems”. In order to improve the

generalisation of the research findings, the proposed constrained clustering approach

is evaluated using 40 open-source OO software systems that vary according to number

of classes, application domains, lines of code, and levels of maintenance efforts. The

accuracy of the clustering results is evaluated using the MoJoFM metric. Based on

the MoJoFM metric, the proposed constrained clustering approach achieves an

aggregated average of 80.11% accuracy when compared against the original package

diagrams of the 40 software systems. In terms of scalability, the enhanced Davies-

Bouldin index with an adaptive penalty mechanism has been proposed to detect and

penalise singleton clusters which has not been dealt with in existing literature. The

proposed dendrogram cutting method is also able to scale properly with large datasets

such that it minimises the number of cutting points needed to perform constrained

clustering.

Univ
ers

ity
 of

 M
ala

ya

245

8.3 Limitations

Although the research managed to achieve its goals, there are some unavoidable

limitations in this research. First, because source code is considered very low-level

software artifact, there is a limited amount of information that can be reverse-engineered

to provide an exact representation of the software design. Hence, when measuring the

complexity of class relationships in order to weight the edges of software-based complex

network, it is impossible to consider all types of relationships, as shown in Table 4.1, in

the research. For instance, it is impossible to clearly differentiate between common

association, qualified association, and association class by inspecting the source code

alone. Existing round-trip engineering tools available in the market do not have the

capability to differentiate between the three types of relationships.

SQALE rating is used in this research in order to estimate the maintainability of the

chosen test subjects by grouping them according to their level of maintenance efforts. In

general, C-rated projects are deemed to be designed in a less ideal manner (poorly

designed) when compared to A-rated and B-rated projects. Thus, the usage of the SQALE

rating also provides a means to compare and contrast the accuracy of the proposed

constrained clustering approach when applied on relatively well-designed and poorly

designed software systems. However, it is difficult to evaluate the proposed approach in

extreme cases, such as evaluating on software systems that are severely and very badly

designed, i.e. highly coupled software modules and do not follow any kind of software

design principles. There are two main reasons why this research did not attempt to address

this issue. First, for a software that is severely and badly designed, it is impossible to

retrieve a ground truth to validate the accuracy of the clustering results. Unless experts’

Univ
ers

ity
 of

 M
ala

ya

246

opinions are available to validate the clustering results, it is hard to justify the accuracy

of the clustering results. Secondly, if a software is severely and very badly designed, it is

often abandoned or scrapped before entering the production stage, making it almost

impossible to obtain the source code for this type of projects to be evaluated in this

research.

Besides that, two types of software quality attributes, namely maintainability and

reliability, are considered in this research. This is mainly because maintainability and

reliability are directly related to the modularity of software systems, which is the goal of

this research – to help in remodularisation of poorly designed or poorly documented

software systems. Thus, the scope of the research is limited to these two software quality

attributes.

Finally, the proposed constrained clustering approach can only be applied on software

systems written in OO programming languages. This is because there is no way to

reverse-engineer software systems written in structured programming languages into

UML class diagrams. Thus, the proposed approach is applicable to any software systems

other than those written in non-OO programming languages.

8.4 Future Work

There are several directions in which the outcome of this research can be extended and

improved. Future work can be considered by including more software quality attributes

when converting the UML class diagrams into weighted complex networks. Furthermore,

when converting source code into UML class diagram, a simple approach is used to

identify aggregation and composition relationships. Additional work can be considered

Univ
ers

ity
 of

 M
ala

ya

247

by looking into a formal way of converting UML class diagram notations. Besides that,

further work to correlate the graph theory metrics with a more direct measurement of

maintenance effort, for instance, by measuring changes and issues of software in multiple

releases can be considered. Measuring the frequency of changes between different

releases of software systems can be a reliable way to measure the maintainability and

reliability of software systems, such that the more changes that are required to address a

bug, the greater the maintenance effort.

Univ
ers

ity
 of

 M
ala

ya

248

REFERENCES

Abreu, F. B., & Carapuça, R. (1994). Object-oriented software engineering: Measuring

and controlling the development process. Paper presented at the proceedings of

the 4th International Conference on Software Quality.

Al Dallal, J. (2015). Identifying refactoring opportunities in object-oriented code: A

systematic literature review. Information and Software Technology, 58(0), 231-

249. doi: 10.1016/j.infsof.2014.08.002

Anquetil, N., & Laval, J. (2011). Legacy Software Restructuring: Analyzing a Concrete

Case. Paper presented at the 15th European Conference on Software Maintenance

and Reengineering (CSMR), 2011.

Anquetil, N., & Lethbridge, T. C. (1999a). Experiments with clustering as a software

remodularization method. Paper presented at the Sixth Working Conference on

Reverse Engineering, 1999. Proceedings.

Anquetil, N., & Lethbridge, T. C. (1999b). Recovering software architecture from the

names of source files. Journal of Software Maintenance-Research and Practice,

11(3), 201-221.

Anquetil, N., & Lethbridge, T. C. (2003). Comparative study of clustering algorithms and

abstract representations for software remodularisation. IEEE Software

Proceedings, 150(3), 185-201.

Ares, M. E., Parapar, J., & Barreiro, A. (2012). An experimental study of constrained

clustering effectiveness in presence of erroneous constraints. Information

Processing & Management, 48(3), 537-551. doi: 10.1016/j.ipm.2011.08.006

Arisholm, E., Briand, L. C., & Foyen, A. (2004). Dynamic coupling measurement for

object-oriented software. IEEE Transactions on Software Engineering, 30(8),

491-506. doi: Doi 10.1109/Tse.2004.41

Bagheri, E., Di Noia, T., Ragone, A., & Gasevic, D. (2010). Configuring Software

Product Line Feature Models Based on Stakeholders’ Soft and Hard

Requirements. In J. Bosch & J. Lee (Eds.), Software Product Lines: Going

Beyond: Springer Berlin Heidelberg.

Bair, E. (2013). Semi-supervised clustering methods. Wiley Interdiscip Rev Comput Stat,

5(5), 349-361. doi: 10.1002/wics.1270

Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented design

quality assessment. IEEE Transactions on Software Engineering, 28(1), 4-17. doi:

10.1109/32.979986

Barabasi, A. L., & Albert, R. (1999). Emergence of Scaling in Random Networks.

Science, 286(5439), 509-512. doi: DOI 10.1126/science.286.5439.509

Barabasi, A. L., Albert, R., & Jeong, H. (2000). Scale-free characteristics of random

networks: the topology of the world-wide web. Physica A: Statistical Mechanics

Univ
ers

ity
 of

 M
ala

ya

249

and its Applications, 281(1–4), 69-77. doi: http://dx.doi.org/10.1016/S0378-

4371(00)00018-2

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented design

metrics as quality indicators. IEEE Transactions on Software Engineering,

22(10), 751-761. doi: 10.1109/32.544352

Basu, S., Banjeree, A., Mooney, E. R., Banerjee, A., & Mooney, R. J. (2004). Active

Semi-Supervision for Pairwise Constrained Clustering. In Proceedings of the

2004 SIAM International Conference on Data Mining SDM-04.

Beck, F., & Diehl, S. (2013). On the impact of software evolution on software clustering.

Empirical Software Engineering, 18(5), 970-1004. doi: 10.1007/s10664-012-

9225-9

Bilenko, M., & Mooney, R. J. (2003). Adaptive duplicate detection using learnable string

similarity measures. Paper presented at the Proceedings of the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

Washington, D.C.

Binkley, A. B., & Schach, S. R. (1998). Validation of the coupling dependency metric as

a predictor of run-time failures and maintenance measures. Paper presented at the

Proceedings of the 20th international conference on Software engineering, Kyoto,

Japan.

Bollen, K. A. (1990). Overall fit in covariance structure models: Two types of sample

size effects. Psychological bulletin, 107(2), 256.

Briand, L. C., Labiche, Y., & Yihong, W. (2001). Revisiting strategies for ordering class

integration testing in the presence of dependency cycles. Paper presented at the

12th International Symposium on Software Reliability Engineering, 2001. ISSRE

2001. Proceedings.

Briand, L. C., Labiche, Y., & Yihong, W. (2003). An investigation of graph-based class

integration test order strategies. IEEE Transactions on Software Engineering,

29(7), 594-607. doi: 10.1109/TSE.2003.1214324

Briand, L. C., Wüst, J., Ikonomovski, S. V., & Lounis, H. (1999). Investigating quality

factors in object-oriented designs: an industrial case study. Paper presented at the

Proceedings of the 21st international conference on Software engineering, Los

Angeles, California, USA.

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis

of structural and functional systems. Nat Rev Neurosci, 10(3), 186-198. doi:

10.1038/nrn2575

Canfora, G., Cimitile, A., De Lucia, A., & Di Lucca, G. A. (2001). Decomposing legacy

systems into objects: an eclectic approach. Information and Software Technology,

43(6), 401-412. doi: http://dx.doi.org/10.1016/S0950-5849(01)00149-5

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/S0378-4371(00)00018-2
http://dx.doi.org/10.1016/S0378-4371(00)00018-2
http://dx.doi.org/10.1016/S0950-5849(01)00149-5

250

Canfora, G., Czeranski, J., & Koschke, R. (2000). Revisiting the Delta IC Approach to

Component Recovery. Paper presented at the Proceedings of the Seventh Working

Conference on Reverse Engineering (WCRE'00).

Canfora, G., Di Penta, M., & Cerulo, L. (2011). Achievements and Challenges in

Software Reverse Engineering. Communications of the ACM, 54(4), 142-151. doi:

10.1145/1924421.1924451

Chatzigeorgiou, A., & Melas, G. (2012). Trends in object-oriented software evolution:

Investigating network properties. Paper presented at the 34th International

Conference on Software Engineering (ICSE), 2012.

Chidamber, S. R., Darcy, D. P., & Kemerer, C. F. (1998). Managerial use of metrics for

object-oriented software: an exploratory analysis, IEEE Transactions on Software

Engineering, 24(8), 629-639. doi: 10.1109/32.707698

Chidamber, S. R., & Kemerer, C. F. (1994). A Metrics Suite for Object-Oriented Design.

IEEE Transactions on Software Engineering, 20(6), 476-493. doi: Doi

10.1109/32.295895

Chong, C. Y., & Lee, S. P. (2015a). Analyzing maintainability and reliability of object-

oriented software using weighted complex network. Journal of Systems and

Software, 110, 28-53. doi: http://dx.doi.org/10.1016/j.jss.2015.08.014

Chong, C. Y., & Lee, S. P. (2015b). Constrained Agglomerative Hierarchical Software

Clustering with Hard and Soft Constraints. Paper presented at the ENASE 2015 -

Proceedings of the 10th International Conference on Evaluation of Novel

Approaches to Software Engineering, Barcelona, Spain.

http://dx.doi.org/10.5220/0005344001770188

Chong, C. Y., Lee, S. P., & Ling, T. C. (2013). Efficient software clustering technique

using an adaptive and preventive dendrogram cutting approach. Information and

Software Technology, 55(11), 1994-2012.

Chong, C. Y., Lee, S. P., & Ling, T. C. (2014). Prioritizing and Fulfilling Quality

Attributes For Virtual Lab Development Through Application of Fuzzy Analytic

Hierarchy Process and Software Development Guidelines. Malaysian Journal of

Computer Science, 27(1).

Cilibrasi, R. L., & Vitanyi, P. M. B. (2007). The Google Similarity Distance. IEEE

Transactions on Knowledge and Data Engineering, 19(3), 370-383. doi:

10.1109/TKDE.2007.48

Concas, G., Marchesi, M., Murgia, A., Tonelli, R., & Turnu, I. (2011). On the Distribution

of Bugs in the Eclipse System. IEEE Transactions on Software Engineering,

37(6), 872-877. doi: 10.1109/Tse.2011.54

Concas, G., Marchesi, M., Pinna, S., & Serra, N. (2007). Power-Laws in a Large Object-

Oriented Software System. IEEE Transactions on Software Engineering, 33(10),

687-708. doi: 10.1109/tse.2007.1019

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.jss.2015.08.014
http://dx.doi.org/10.5220/0005344001770188

251

Cui, J. F., & Chae, H. S. (2011). Applying agglomerative hierarchical clustering

algorithms to component identification for legacy systems. Information and

Software Technology, 53(6), 601-614. doi: 10.1016/j.infsof.2011.01.006

Curtis, B., Sappidi, J., & Szynkarski, A. (2012). Estimating the Principal of an

Application's Technical Debt. IEEE Software, 29(6), 34-42. doi:

10.1109/MS.2012.156

Danielsson, P. E. (1980). Euclidean Distance Mapping. Computer Graphics and Image

Processing, 14(3), 227-248. doi: Doi 10.1016/0146-664x(80)90054-4

Davey, J., & Burd, E. (2000). Evaluating the suitability of data clustering for software

remodularisation. Paper presented at the Seventh Working Conference on

Reverse Engineering, 2000. Proceedings.

Davidson, I., & Ravi, S. S. (2009). Using instance-level constraints in agglomerative

hierarchical clustering: theoretical and empirical results. Data Mining and

Knowledge Discovery, 18(2), 257-282. doi: 10.1007/s10618-008-0103-4

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Trans

Pattern Anal Mach Intell, 1(2), 224-227.

Dazhou, K., Baowen, X., Jianjiang, L., & Chu, W. C. (2004). A complexity measure for

ontology based on UML. Paper presented at the 10th IEEE International

Workshop on Future Trends of Distributed Computing Systems, 2004. FTDCS

2004. Proceedings.

DeMarco, T. (1979). Structured analysis and system specification: Yourdon Press.

Deursen, A. v., & Kuipers, T. (1999). Identifying objects using cluster and concept

analysis. Paper presented at the Proceedings of the 21st international conference

on Software engineering, Los Angeles, California, USA.

Dhillon, I. S., Mallela, S., & Kumar, R. (2003). A divisive information theoretic feature

clustering algorithm for text classification. The Journal of Machine Learning

Research, 3, 1265-1287.

Dijkstra, E. W. (1976). A discipline of programming: Prentice-Hall Englewood Cliffs.

Ducasse, S., & Pollet, D. (2009). Software Architecture Reconstruction: A Process-

Oriented Taxonomy. IEEE Transactions on Software Engineering, 35(4), 573-

591. doi: 10.1109/Tse.2009.19

Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

Compact Well-Separated Clusters. Journal of Cybernetics, 3(3), 32-57. doi:

citeulike-article-id:6774992

Durbin, R. (1998). Biological sequence analysis : probabalistic models of proteins and

nucleic acids. Cambridge, UK Cambridge University Press.

Eisenblätter, A., Geerdes, H.-F., & Siomina, L. (2007). Integrated Access Point

Placement and Channel Assignment for Wireless LANs in an Indoor Office

Univ
ers

ity
 of

 M
ala

ya

252

Environment. Paper presented at the IEEE International Symposium on World of

Wireless, Mobile and Multimedia Networks, 2007. WoWMoM 2007.

El Emam, K., Benlarbi, S., Goel, N., & Rai, S. N. (2001). The confounding effect of class

size on the validity of object-oriented metrics. IEEE Transactions on Software

Engineering, 27(7), 630-650.

Ferreira, K. A. M., Bigonha, M. A. S., Bigonha, R. S., Mendes, L. F. O., & Almeida, H.

C. (2012). Identifying thresholds for object-oriented software metrics. Journal of

Systems and Software, 85(2), 244-257. doi: 10.1016/j.jss.2011.05.044

Fokaefs, M., Tsantalis, N., Chatzigeorgiou, A., & Sander, J. (2009). Decomposing object-

oriented class modules using an agglomerative clustering technique. Paper

presented at the IEEE International Conference on Software Maintenance, 2009.

ICSM 2009.

Fokaefs, M., Tsantalis, N., Stroulia, E., & Chatzigeorgiou, A. (2012). Identification and

application of Extract Class refactorings in object-oriented systems. Journal of

Systems and Software, 85(10), 2241-2260. doi: 10.1016/j.jss.2012.04.013

Genero, M., Piattini, M., Manso, E., & Cantone, G. (2003). Building UML class diagram

maintainability prediction models based on early metrics. Paper presented at the

Ninth International Software Metrics Symposium, 2003.

Grand, M. (2003). Patterns in Java: a catalog of reusable design patterns illustrated with

UML (Vol. 1): John Wiley & Sons.

Greenacre, M. (2012). A simple permutation test for clusteredness. Retrieved August,

2014, from http://hdl.handle.net/10230/19856.

Gronau, I., & Moran, S. (2007). Optimal implementations of UPGMA and other common

clustering algorithms. Information Processing Letters, 104(6), 205-210. doi:

10.1016/j.ipl.2007.07.002

Guoai, X., Yang, G., Fanfan, L., Aiguo, C., & Miao, Z. (2008). Statistical Analysis of

Software Coupling Measurement Based on Complex Networks. Paper presented

at the International Seminar on Future Information Technology and Management

Engineering, 2008. FITME '08.

Gurrutxaga, I., Albisua, I., Arbelaitz, O., Martin, J. I., Muguerza, J., Perez, J. M., &

Perona, I. (2010). SEP/COP: An efficient method to find the best partition in

hierarchical clustering based on a new cluster validity index. Pattern Recognition,

43(10), 3364-3373. doi: 10.1016/j.patcog.2010.04.021

Gyimothy, T., Ferenc, R., & Siket, I. (2005). Empirical validation of object-oriented

metrics on open source software for fault prediction. IEEE Transactions on

Software Engineering, 31(10), 897-910. doi: Doi 10.1109/Tse.2005.112

Hamilton, J., & Danicic, S. (2012). Dependence communities in source code. Paper

presented at the 28th IEEE International Conference on Software Maintenance

(ICSM), 2012

Univ
ers

ity
 of

 M
ala

ya

http://hdl.handle.net/10230/19856

253

Harman, M., Mansouri, S. A., & Zhang, Y. Y. (2012). Search-Based Software

Engineering: Trends, Techniques and Applications. ACM Computing Surveys,

45(1), 11.

Heitlager, I., Kuipers, T., & Visser, J. (2007). A Practical Model for Measuring

Maintainability. Paper presented at the 6th International Conference on the

Quality of Information and Communications Technology, 2007. QUATIC 2007.

Henderson-Sellers, B., Constantine, L. L., & Graham, I. M. (1996). Coupling and

cohesion (towards a valid metrics suite for object-oriented analysis and design).

Object Oriented Systems, 3(3), 143-158.

Hitz, M., & Montazeri, B. (1995). Measuring coupling and cohesion in object-oriented

systems. Paper presented at the Proceedings of the International Symposium on

Applied Corporate Computing.

Hong, Z., & Yiu-Ming, C. (2012). Semi-Supervised Maximum Margin Clustering with

Pairwise Constraints. IEEE Transactions on Knowledge and Data Engineering,

24(5), 926-939. doi: 10.1109/tkde.2011.68

Hosking, J. R. M., & Wallis, J. R. (1987). Parameter and Quantile Estimation for the

Generalized Pareto Distribution. Technometrics, 29(3), 339-349. doi:

10.1080/00401706.1987.10488243

Hu, H., Fang, J., Lu, Z., Zhao, F., & Qin, Z. (2012). Rank-directed layout of UML class

diagrams. Paper presented at the Proceedings of the First International Workshop

on Software Mining, Beijing, China.

Huang, J.-H., Wang, L.-C., & Chang, C.-J. (2005). Deployment strategies of access points

for outdoor wireless local area networks. Paper presented at the Vehicular

Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st.

Hughes, M. M. (1979). Exploration and Play Re-Visited: A Hierarchical Analysis.

International Journal of Behavioral Development, 2(3), 215-224. doi:

10.1177/016502547900200301

Hyland-Wood, D., Carrington, D., & Kaplan, S. (2006). Scale-free nature of java

software package, class and method collaboration graphs. Paper presented at the

Proceedings of the 5th International Symposium on Empirical Software

Engineering, Rio de Janeiro, Brasil.

Hyndman, R. J., & Fan, Y. (1996). Sample Quantiles in Statistical Packages. The

American Statistician, 50(4), 361-365. doi: 10.2307/2684934

Ichii, M., Matsushita, M., & Inoue, K. (2008). An Exploration of Power-Law in Use-

Relation of Java Software Systems. Paper presented at the 19th Australian

Conference on Software Engineering, 2008. ASWEC 2008.

Inman, H. F. (1994). Pearson,Karl and Fisher,R.A. On Statistical Tests - a 1935 Exchange

from Nature. American Statistician, 48(1), 2-11. doi:

10.1080/00031305.1994.10476010

Univ
ers

ity
 of

 M
ala

ya

254

Izurieta, C., Griffith, I., Reimanis, D., & Luhr, R. (2013). On the Uncertainty of Technical

Debt Measurements. Paper presented at the International Conference on

Information Science and Applications (ICISA), 2013.

Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Englewood Cliffs,

N.J.: Prentice Hall.

Jenkins, S., & Kirk, S. R. (2007). Software architecture graphs as complex networks: A

novel partitioning scheme to measure stability and evolution. Information

Sciences, 177(12), 2587-2601. doi: 10.1016/j.ins.2007.01.021

Karsai, G., Maroti, M., Ledeczi, A., Gray, J., & Sztipanovits, J. (2004). Composition and

cloning in modeling and meta-modeling. IEEE Transactions on Control Systems

Technology, 12(2), 263-278. doi: Doi 10.1109/Tcst.2004.824311

Kemerer, C. F. (1995). Software complexity and software maintenance: A survey of

empirical research. Annals of Software Engineering, 1(1), 1-22. doi:

10.1007/bf02249043

Kestler, H. A., Kraus, J. M., Palm, G., & Schwenker, F. (2006). On the Effects of

Constraints in Semi-supervised Hierarchical Clustering. In F. Schwenker & S.

Marinai (Eds.), Artificial Neural Networks in Pattern Recognition (pp. 57-66):

Springer Berlin Heidelberg.

Kim, M., & Ramakrishna, R. (2005). New indices for cluster validity assessment. Pattern

Recognition Letters, 26(15), 2353-2363.

Klein, D., Kamvar, S. D., & Manning, C. D. (2002). From Instance-level Constraints to

Space-Level Constraints: Making the Most of Prior Knowledge in Data

Clustering. Paper presented at the Proceedings of the Nineteenth International

Conference on Machine Learning.

Kollmann, R., Selonen, P., Stroulia, E., Systa, T., & Zundorf, A. (2002). A study on the

current state of the art in tool-supported UML-based static reverse engineering.

Paper presented at the Ninth Working Conference on Reverse Engineering, 2002.

Proceedings.

Kumar, S., & Phrommathed, P. (2005). Research methodology: Springer.

LaBelle, N., & Wallingford, E. (2004). Inter-package dependency networks in open-

source software. arXiv preprint cs/0411096.

Lan, W., Zhou, K., Feng, J., & Chi, Z. (2010). Research on Software Cascading Failures.

Paper presented at the International Conference on Multimedia Information

Networking and Security (MINES), 2010.

Leg, C., & Babos, A. (2006). Cluster validity measurement techniques. Paper presented

at the Proceedings of the 5th WSEAS International Conference on Artificial

Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain.

Letouzey, J., & Ilkiewicz, M. (2012). Managing Technical Debt with the SQALE Method.

IEEE Software, 29(6), 44-51. doi: 10.1109/MS.2012.129

Univ
ers

ity
 of

 M
ala

ya

255

Li, W., & Henry, S. (1993). Object-oriented metrics that predict maintainability. Journal

of Systems and Software, 23(2), 111-122. doi: http://dx.doi.org/10.1016/0164-

1212(93)90077-B

Lian, W., Kirk, D., & Dromey, R. G. (2007). Software Systems as Complex Networks.

Paper presented at the 6th IEEE International Conference on Cognitive

Informatics.

Lim, E., Taksande, N., & Seaman, C. (2012). A Balancing Act: What Software

Practitioners Have to Say about Technical Debt. IEEE Software, 29(6), 22-27. doi:

10.1109/MS.2012.130

Linoff, G. S., & Berry, M. J. A. (2011). Data mining techniques : for marketing, sales,

and customer relationship management (3rd ed.). Indianapolis, IN: Wiley Pub.

Liou, T. S., & Wang, M. J. J. (1992). Ranking Fuzzy Numbers with Integral Value. Fuzzy

Sets and Systems, 50(3), 247-255. doi: Doi 10.1016/0165-0114(92)90223-Q

Liu, Y. Y., Slotine, J. J., & Barabasi, A. L. (2011). Controllability of complex networks.

Nature, 473(7346), 167-173. doi: 10.1038/nature10011

Louridas, P., Spinellis, D., & Vlachos, V. (2008). Power Laws in Software. ACM

Transactions on Software Engineering and Methodology, 18(1), 1-26.

Lung, C., & Zhou, C. (2008). Using Hierarchical Agglomerative Clustering in Wireless

Sensor Networks: An Energy-Efficient and Flexible Approach. Paper presented at

the Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008.

IEEE.

Lung, C., Zaman, M., & Nandi, A. (2004). Applications of clustering techniques to

software partitioning, recovery and restructuring. Journal of Systems and

Software, 73(2), 227-244. doi: 10.1016/s0164-1212(03)00234-6

Ma, Y. T., He, K. Q., Li, B., Liu, J., & Zhou, X. Y. (2010). A Hybrid Set of Complexity

Metrics for Large-Scale Object-Oriented Software Systems. Journal of Computer

Science and Technology, 25(6), 1184-1201. doi: 10.1007/s11390-010-1094-3

Malliaros, F. D., & Vazirgiannis, M. (2013). Clustering and community detection in

directed networks: A survey. Physics Reports-Review Section of Physics Letters,

533(4), 95-142. doi: 10.1016/j.physrep.2013.08.002

Maqbool, O., & Babri, H. A. (2006). Automated software clustering: An insight using

cluster labels. Journal of Systems and Software, 79(11), 1632-1648. doi:

10.1016/j.jss.2006.03.013

Maqbool, O., & Babri, H. A. (2007). Hierarchical clustering for software architecture

recovery. IEEE Transactions on Software Engineering, 33(11), 759-780. doi:

10.1109/Tse.2007.70732

Martin, R. (1994). OO design quality metrics. An analysis of dependencies, 151-170.

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/0164-1212(93)90077-B
http://dx.doi.org/10.1016/0164-1212(93)90077-B

256

MathArc - Ensuring Access to Mathematics Over Time. (2009) Retrieved 1st April, 2014,

from http://www.library.cornell.edu/dlit/MathArc/web/index.html.

MathWave. (2014). EasyFit. Retrieved 1st April, 2014, from

http://www.mathwave.com/easyfit-distribution-fitting.html

Maulik, U., & Bandyopadhyay, S. (2002). Performance evaluation of some clustering

algorithms and validity indices. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(12), 1650-1654.

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software

Engineering, SE-2(4), 308-320. doi: 10.1109/TSE.1976.233837

Mcsweeney, P. J. (2008). Random Network Plugin. Retrieved August, 2014, from

https://sites.google.com/site/randomnetworkplugin/Home

Mei-Huei, T., Ming-Hung, K., & Mei-Hwa, C. (1999). An empirical study on object-

oriented metrics. Paper presented at the Sixth International Software Metrics

Symposium, 1999. Proceedings.

Milanova, A. (2005). Precise identification of composition relationships for UML class

diagrams. Paper presented at the Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering, Long Beach, CA, USA.

Milanova, A. (2007). Composition inference for UML class diagrams. Automated

Software Engineering, 14(2), 179-213. doi: 10.1007/s10515-007-0010-8

Mirkin, B. (2004). Cluster analysis for researchers. Journal of Classification, 21(2), 279-

283. doi: DOI 10.1007/s00357-004-0020-2

Mitchell, B. S., & Mancoridis, S. (2001). Comparing the decompositions produced by

software clustering algorithms using similarity measurements. Paper presented at

the IEEE International Conference onSoftware Maintenance, 2001. Proceedings.

Miyamoto, S. (2012). An Overview of Hierarchical and Non-hierarchical Algorithms of

Clustering for Semi-supervised Classification. In V. Torra, Y. Narukawa, B.

López, & M. Villaret (Eds.), Modeling Decisions for Artificial Intelligence (Vol.

7647, pp. 1-10): Springer Berlin Heidelberg.

Myers, C. R. (2003). Software systems as complex networks: Structure, function, and

evolvability of software collaboration graphs. Physical Review E, 68(4), 046116.

Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings

of the National Academy of Sciences, 103(23), 8577-8582. doi:

10.1073/pnas.0601602103

Olague, H. M., Etzkorn, L. H., Gholston, S., & Quattlebaum, S. (2007a). Empirical

validation of three software metrics suites to predict fault-proneness of object-

oriented classes developed using highly iterative or agile software development

processes. IEEE Transactions on Software Engineering, 33(6), 402-419. doi:

10.1109/Tse.2007.1015

Univ
ers

ity
 of

 M
ala

ya

http://www.mathwave.com/easyfit-distribution-fitting.html
https://sites.google.com/site/randomnetworkplugin/Home

257

Olague, H. M., Etzkorn, L. H., Gholston, S., & Quattlebaum, S. (2007b). Empirical

Validation of Three Software Metrics Suites to Predict Fault-Proneness of Object-

Oriented Classes Developed Using Highly Iterative or Agile Software

Development Processes. IEEE Transactions on Software Engineering, 33(6), 402-

419. doi: 10.1109/TSE.2007.1015

Oracle. Java Platform SE 7 Documentation.

Ovatman, T., Weigert, T., & Buzluca, F. (2011). Exploring implicit parallelism in class

diagrams. Journal of Systems and Software, 84(5), 821-834. doi:

http://dx.doi.org/10.1016/j.jss.2011.01.005

Pang, T. Y., & Maslov, S. (2013). Universal distribution of component frequencies in

biological and technological systems. Proceedings of the National Academy of

Sciences, 110(15), 6235-6239. doi: 10.1073/pnas.1217795110

Passos, L., Terra, R., Valente, M. T., Diniz, R., & Mendonca, N. (2010). Static

Architecture-Conformance Checking: An Illustrative Overview. IEEE Software,

27(5), 82-89. doi: 10.1109/MS.2009.117

Patel, C., Hamou-Lhadj, A., & Rilling, J. (2009). Software Clustering Using Dynamic

Analysis and Static Dependencies. Paper presented at the 13th European

Conference on Software Maintenance and Reengineering, 2009. CSMR '09.

Perez-Castillo, R., & Piattini, M. (2014). Analyzing the Harmful Effect of God Class

Refactoring on Power Consumption. IEEE Software, 31(3), 48-54.

Pirzadeh, H., Alawneh, L., & Hamou-Lhadj, A. (2009). Quality of the Source Code for

Design and Architecture Recovery Techniques: Utilities are the Problem. Paper

presented at the 9th International Conference on Quality Software, 2009. QSIC

'09.

Porres, I., & Alanen, M. (2003). A generic deep copy algorithm for MOF-based models.

Paper presented at the Model Driven Architecture: Foundations and Applications.

Potanin, A., Noble, J., Frean, M., & Biddle, R. (2005). Scale-free geometry in OO

programs. Communications of the ACM, 48(5), 99-103. doi: Doi

10.1145/1060710.1060716

Praditwong, K., Harman, M., & Yao, X. (2011). Software Module Clustering as a Multi-

Objective Search Problem. IEEE Transactions on Software Engineering, 37(2),

264-282. doi: 10.1109/Tse.2010.26

Ragab, S. R., & Hany, H. A. (2010). Object oriented design metrics and tools a survey.

Paper presented at the 7th International Conference on Informatics and Systems

(INFOS), 2010

Ravasz, E., & Barabasi, A. L. (2003). Hierarchical organization in complex networks.

Phys Rev E Stat Nonlin Soft Matter Phys, 67(2 Pt 2), 026112. doi:

10.1103/PhysRevE.67.026112

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.jss.2011.01.005

258

Saaty, T. L. (1980). The analytic hierarchy process : planning, priority setting, resource

allocation. New York ; London: McGraw-Hill International Book Co.

Saha, S., & Bandyopadhyay, S. (2009). Performance Evaluation of Some Symmetry-

Based Cluster Validity Indexes. IEEE Transactions on Systems Man and

Cybernetics Part C-Applications and Reviews, 39(4), 420-425. doi:

10.1109/Tsmcc.2009.2013335

Santos, G., Valente, M. T., & Anquetil, N. (2014). Remodularization analysis using

semantic clustering. Paper presented at the IEEE Conference on Software

Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014

Software Evolution Week.

Satuluri, V., & Parthasarathy, S. (2011). Symmetrizations for clustering directed graphs.

Paper presented at the Proceedings of the 14th International Conference on

Extending Database Technology.

Sestoft, P. (1999). Programs for biosequence analysis. Retrieved August, 2014, from

http://www.itu.dk/people/sestoft/bsa.html

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., . . . Ideker,

T. (2003). Cytoscape: a software environment for integrated models of

biomolecular interaction networks. Genome research, 13(11), 2498-2504.

Shental, N., & Weinshall, D. (2003). Learning Distance Functions using Equivalence

Relations. Paper presented at the In Proceedings of the Twentieth International

Conference on Machine Learning.

Simon, H. A. (1991). The Architecture of Complexity Facets of Systems Science (Vol. 7,

pp. 457-476): Springer US.

Singh, G. (2013). Metrics for measuring the quality of object-oriented software. ACM

SIGSOFT Software Engineering Notes, 38(5), 1. doi: 10.1145/2507288.2507311

Smirnov, N. (1948). Table for Estimating the Goodness of Fit of Empirical Distributions.

Annals of Mathematical Statistics, 19(2), 279-279. doi: DOI

10.1214/aoms/1177730256

SonarQube. (2014). SonarQube. Retrieved 1st April, 2014, from

http://www.sonarqube.org/.

Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant

sociology based on similarity of species and its application to analyses of the

vegetation on Danish commons. Biol. Skr., 5, 1-34. doi: citeulike-article-

id:7654646

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The

annals of Statistics, 1135-1151.

Sterling, C. (2010). Managing software debt: building for inevitable change: Addison-

Wesley Professional.

Univ
ers

ity
 of

 M
ala

ya

http://www.itu.dk/people/sestoft/bsa.html

259

Stevens, W., Myers, G., & Constantine, L. (1979). Structured design. In Y. Edward Nash

(Ed.), Classics in software engineering (pp. 205-232): Yourdon Press.

Stumpf, M. P. H., & Porter, M. A. (2012). Critical Truths About Power Laws. Science,

335(6069), 665-666. doi: 10.1126/science.1216142

Subramanyam, R., & Krishnan, M. S. (2003a). Empirical analysis of CK metrics for

object-oriented design complexity: implications for software defects. IEEE

Transactions on Software Engineering, 29(4), 297-310. doi:

10.1109/TSE.2003.1191795

Subramanyam, R., & Krishnan, M. S. (2003b). Empirical analysis of CK metrics for

object-oriented design complexity: Implications for software defects. IEEE

Transactions on Software Engineering, 29(4), 297-310. doi: Doi

10.1109/Tse.2003.1191795

Sun, S., Xia, C., Chen, Z., Sun, J., & Wang, L. (2009). On Structural Properties of Large-

Scale Software Systems: From the Perspective of Complex Networks. Paper

presented at the Sixth International Conference on Fuzzy Systems and Knowledge

Discovery, 2009. FSKD '09.

Tanaka, J. S. (1987). "How Big Is Big Enough?": Sample Size and Goodness of Fit in

Structural Equation Models with Latent Variables. Child Development, 58(1),

134. doi: 10.2307/1130296

Taube-Schock, C., Walker, R., & Witten, I. (2011). Can We Avoid High Coupling? In M.

Mezini (Ed.), ECOOP 2011 – Object-Oriented Programming (Vol. 6813, pp. 204-

228): Springer Berlin Heidelberg.

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., . . . Noble, J. (2010).

The Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies.

Paper presented at the Software Engineering Conference (APSEC), 2010 17th

Asia Pacific.

Tonella, P. (2001). Concept Analysis for Module Restructuring. IEEE Trans. Softw. Eng.,

27(4), 351-363. doi: 10.1109/32.917524

Turnu, I., Concas, G., Marchesi, M., & Tonelli, R. (2013). The fractal dimension of

software networks as a global quality metric. Information Sciences, 245(0), 290-

303. doi: 10.1016/j.ins.2013.05.014

Turnu, I., Marchesi, M., & Tonelli, R. (2012). Entropy of the degree distribution and

object-oriented software quality. Paper presented at the 3rd International

Workshop on Emerging Trends in Software Metrics (WETSoM), 2012.

Valverde, S., Cancho, R. F., & Sole, R. V. (2002). Scale-free networks from optimal

design. EPL (Europhysics Letters), 60(4), 512.

Valverde, S., & Solé, R. V. (2003). Hierarchical small worlds in software architecture.

arXiv preprint cond-mat/0307278.

Van Solingen, R., Basili, V., Caldiera, G., & Rombach, H. D. (2002). Goal question

metric (gqm) approach. Encyclopedia of Software Engineering.

Univ
ers

ity
 of

 M
ala

ya

260

Wagstaff, K., & Cardie, C. (2000). Clustering with Instance-level Constraints. Paper

presented at the Proceedings of the Seventeenth International Conference on

Machine Learning.

Wang, B., & Lu, J. (2012, 6-8 July 2012). Modelling complex software systems via

weighted networks. Paper presented at the 10th World Congress on Intelligent

Control and Automation (WCICA), 2012

Warrens, M. J. (2009). k-Adic Similarity Coefficients for Binary (Presence/Absence)

Data. Journal of Classification, 26(2), 227-245. doi: 10.1007/s00357-009-9032-1

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks.

Nature, 393(6684), 440-442. doi: Doi 10.1038/30918

Wen, Z., & Tzerpos, V. (2004). An effectiveness measure for software clustering

algorithms. Paper presented at the 12th IEEE International Workshop on Program

Comprehension, 2004. Proceedings.

Wen, Z., & Tzerpos, V. (2005). Software clustering based on omnipresent object

detection. Paper presented at the 13th International Workshop on Program

Comprehension, 2005. IWPC 2005.

Wiggerts, T. A. (1997). Using clustering algorithms in legacy systems remodularization.

Paper presented at the Proceedings of the Fourth Working Conference on Reverse

Engineering, 1997.

Williamson, D. F., Parker, R. A., & Kendrick, J. S. (1989). The Box Plot: A Simple Visual

Method to Interpret Data. Annals of Internal Medicine, 110(11), 916-921. doi:

10.7326/0003-4819-110-11-916

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).

Experimentation in software engineering: Springer Science & Business Media.

Wolberg, J. R. (2006). Data analysis using the method of least squares : extracting the

most information from experiments. Berlin ; New York: Springer.

Wu, J., Hassan, A. E., & Holt, R. C. (2005, September). Comparison of clustering

algorithms in the context of software evolution. In Software Maintenance, 2005.

ICSM'05. Proceedings of the 21st IEEE International Conference on (pp. 525-

535). IEEE.

Yang, G., Guoai, X., Yixian, Y., Xinxin, N., & Shize, G. (2010). Empirical analysis of

software coupling networks in object-oriented software systems. Paper presented

at the IEEE International Conference on Software Engineering and Service

Sciences (ICSESS), 2010.

Yang, G., Jia, L., Shuai, S., Guoai, X., & Gong, C. (2013). Weighted Networks of Object-

Oriented Software Systems: The Distribution of Vertex Strength and Correlation.

In G. Yang (Ed.), Proceedings of the 2012 International Conference on

Communication, Electronics and Automation Engineering (Vol. 181, pp. 1185-

1190): Springer Berlin Heidelberg.

Univ
ers

ity
 of

 M
ala

ya

261

Yann-Gaël, G. (2004). A reverse engineering tool for precise class diagrams. In

Proceedings of the 2004 conference of the Centre for Advanced Studies on

Collaborative research (pp. 28-41). IBM Press.

Yoon, J., Blumer, A., & Lee, K. (2006). An algorithm for modularity analysis of directed

and weighted biological networks based on edge-betweenness centrality.

Bioinformatics, 22(24), 3106-3108. doi: 10.1093/bioinformatics/btl533

Zimmermann, T., & Nagappan, N. (2008). Predicting defects using network analysis on

dependency graphs. Paper presented at the Proceedings of the 30th international

conference on Software engineering.

Univ
ers

ity
 of

 M
ala

ya

262

LIST OF PUBLICATIONS AND PAPERS PRESENTED

Chong, C. Y., & Lee, S. P. (2015a). Analyzing maintainability and reliability of object-

oriented software using weighted complex network. Journal of Systems and

Software, 110, 28-53. doi: http://dx.doi.org/10.1016/j.jss.2015.08.014

Chong, C. Y., & Lee, S. P. (2015b). Constrained Agglomerative Hierarchical Software

Clustering with Hard and Soft Constraints. Paper presented at the ENASE 2015 -

Proceedings of the 10th International Conference on Evaluation of Novel

Approaches to Software Engineering, Barcelona, Spain.

http://dx.doi.org/10.5220/0005344001770188

Chong, C. Y., Lee, S. P., & Ling, T. C. (2013). Efficient software clustering technique

using an adaptive and preventive dendrogram cutting approach. Information and

Software Technology, 55(11), 1994-2012.

Chong, C. Y., Lee, S. P., & Ling, T. C. (2014). Prioritizing and Fulfilling Quality

Attributes For Virtual Lab Development Through Application of Fuzzy Analytic

Hierarchy Process and Software Development Guidelines. Malaysian Journal of

Computer Science, 27(1).

Univ
ers

ity
 of

 M
ala

ya

http://dx.doi.org/10.1016/j.jss.2015.08.014
http://dx.doi.org/10.5220/0005344001770188

