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ABSTRACT 

 

Effective execution of software maintenance requires knowledge of the detailed working 

of software. The structure of a software, however, may not be clear to software 

maintainers because it is poorly designed or, worse, there is no updated software 

documentation. To effectively address this issue, researchers have proposed to apply 

software clustering to help in recovering a high-level semantic representation of the 

software design by grouping sets of collaborating software components into meaningful 

subsystems. This high-level semantic representation serves to help bridge the dichotomy 

between the perceived software design from the maintainers’ view and the actual code 

structure. However, software clustering is typically conducted in an unsupervised and 

rigid manner, where maintainers have no influence on the clustering results and only a 

single solution is produced for any given dataset. Even if maintainers possess additional 

information that could be useful to guide and improve the clustering results, traditional 

clustering algorithms have no way to take advantage of this information. These practical 

concerns have led the researcher to propose the idea of integrating domain knowledge 

into traditional unsupervised clustering algorithms, herewith referred as constrained 

clustering, a semi-supervised clustering technique where domain experts can explicitly 

exert their opinions in the form of explicit clustering constraints to restrict whether a pair 

of software components should or should not be clustered into the same subsystem. Apart 

from the explicit clustering constraints from domain experts, other sources of information 

to guide and improve clustering results can be derived implicitly from the source code 

itself. To help maintainers effectively identify and interpret the implicit information 

hidden in the source code, this study proposes representing software using weighted 

complex network in conjunction with graph theory to help in understanding and analysing 

the structure, behaviour, as well as the complexity of the software components and their 
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relationships from the graph theory’s point of view. The results of the analysis can be 

subsequently converted into implicit clustering constraints. Hence, maintainers can make 

use of both the explicit and implicit constraints to help in creating a high-level semantic 

representation of the software design that is coherent and consistent with the actual code 

structure.  

 

This thesis proposes a constrained clustering approach to aid in remodularisation of 

poorly designed or poorly documented object-oriented software systems. The source code 

of an object-oriented software system is first converted into UML class diagrams. Next, 

information from the class diagrams are extracted to measure the strength of cohesion 

among related classes together with their relationships, and then transform them into a 

weighted complex network with its nodes and edges associated with measured weights. 

Graph theory metrics are subsequently applied onto the constructed weighted complex 

network so that the structure, behaviour, and the complexity of software components and 

their relationships can be analysed. The results are then converted into sets of clustering 

constraints. Guided by the explicit and implicit clustering constraints, sets of cohesive 

clusters are progressively derived to act as a high-level semantic representation of the 

software design.  

 

This research follows an empirical research methodology, where the proposed approach 

is validated using 40 object-oriented open-source software systems written in Java. Using 

MoJoFM, which is a well-established technique used to compare the similarity between 

multiple clustering results, the proposed approach achieves an aggregated average of 

80.33% accuracy when compared against the original package diagrams of the 40 

software systems, thus considerably outperforms conventional unconstrained clustering 

approach. The clustering results serve as supplementary information for software 
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maintainers to aid in making critical decisions for re-engineering, maintaining and 

evolving software systems. Ultimately, this research helps in reducing the cost of software 

maintenance through better comprehension of the recovered software design. 
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ABSTRAK 

 

Penyelenggaraan perisian yang berkesan memerlukan pengetahuan tentang operasi 

perisian tersebut. Bagaimanapun, struktur perisian mungkin tidak jelas kepada 

penyelenggara perisian kerana perisian tersebut direka dengan buruk, atau lebih teruk 

lagi, tidak ada dokumentasi yang dikemaskini. Bagi menangani isu ini dengan berkesan, 

penyelidik telah mencadangkan untuk melaksanakan pengkelompokan perisian untuk 

membantu dalam memulihkan perwakilan semantik peringkat tinggi secara rekabentuk 

perisian dengan mengumpulkan komponen-komponen perisian yang bekerjasama ke 

dalam subsistem yang bermakna. Perwakilan semantik peringkat tinggi ini berfungsi 

untuk merapatkan dikotomi antara reka bentuk perisian yang dilihat dari pandangan 

penyelenggara dan struktur kod yang sebenarnya. Walau bagaimanapun, 

pengkelompokan perisian biasanya dijalankan secara tidak terselia dan tegar, di mana 

penyelenggara tidak mempunyai pengaruh ke atas keputusan kelompok dan hanya satu 

penyelesaian yang dihasilkan untuk sebarang set data yang diberikan. Walaupun 

penyelenggara mempunyai maklumat tambahan yang boleh membantu dan meningkatkan 

keputusan pengelompokan, algoritma pengelompokan tradisional tidak mempunyai cara 

untuk mengambil kesempatan daripada maklumat tersebut. Kebimbangan yang praktikal 

ini telah mendorong penyelidik kepada idea untuk menyepadukan pengetahuan domain 

ke dalam algoritma pengelompokan tradisional tanpa pengawasan, bersama-sama ini 

dirujuk sebagai pengkelompokan secara kekangan, teknik pengelompokan separuh selia 

dimana pakar-pakar domain boleh memberi pendapat mereka dalam bentuk kekangan 

kelompok untuk menyekat sama ada sepasang komponen perisian perlu atau tidak 

dikelompokkan ke dalam subsistem yang sama. Selain daripada kekangan 

pengelompokan yang jelas daripada pakar-pakar domain, sumber maklumat lain untuk 

membimbing dan meningkatkan hasil pengelompokan boleh diperolehi secara tersirat 
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dari kod sumber perisian itu sendiri. Untuk membantu penyelenggara mengenal pasti dan 

mentafsir maklumat yang tersirat tersembunyi dalam kod sumber secara berkesan, kajian 

ini mencadangkan untuk mewakili perisian menggunakan rangkaian kompleks 

berwajaran sempena dengan teori graf untuk membantu dalam memahami dan 

menganalisis struktur, kelakuan, dan juga kerumitan komponen perisian dan hubungan 

mereka dari sudut pandangan teori graf. Keputusan analisis boleh kemudiannya ditukar 

menjadi kekangan pengelompokan tersirat. Oleh itu, penyelenggara boleh menggunakan 

kedua-dua kekangan tersurat dan tersirat untuk membantu dalam mewujudkan perwakilan 

rekabentuk perisian semantik berperingkat tinggi yang koheren dan konsisten dengan 

struktur kod yang sebenarnya. 

 

Tesis ini mencadangkan satu kaedah pengelompokan kekangan untuk membantu dalam 

remodularisasi sistem perisian berorientasikan objek yang direka secara buruk atau tidak 

didokumenkan. Pada mulanya, kod sumber sistem perisian berorientasikan objek ditukar 

kepada gambar rajah kelas UML. Seterusnya, maklumat daripada gambar rajah kelas 

diekstrak untuk mengukur kekuatan perpaduan di kalangan kelas yang berkaitan, dan 

kemudian diubahkan kepada rangkaian kompleks berwajaran dengan nod dan tepi 

diberatkan dengan berat yang sesuai. Metrik teori graf kemudiannya digunakan ke 

rangkaian kompleks wajaran yang dibina supaya struktur, tingkah laku, dan kerumitan 

komponen perisian dan hubungan mereka boleh dianalisis. Keputusan ini kemudiannya 

ditukar kepada set kekangan pengelompokan. Berpandukan kepada kekangan 

pengelompokan yang tersurat dan tersirat, set kluster yang padu diperoleh secara 

progresif untuk bertindak sebagai perwakilan semantik peringkat tinggi reka bentuk 

perisian. 
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Kajian ini mengikut kaedah penyelidikan empirikal, di mana kaedah yang dicadangkan 

itu disahkan menggunakan 40 sistem perisian sumber terbuka berasaskan objek ditulis 

dengan Java. Menggunakan MoJoFM, teknik yang mantap digunakan untuk 

membandingkan persamaan antara keputusan pengelompokan berbilang, kaedah yang 

dicadangkan mencapai purata agregat ketepatan 80.33% apabila dibandingkan dengan 

gambar rajah pakej asal 40 sistem perisian, dan mencapai jauh lebih baik daripada kaedah 

pengelompkan perisian konvensional tanpa kawalan. Keputusan pengelompokan 

berfungsi sebagai maklumat tambahan bagi penyelenggara perisian untuk membantu 

dalam membuat keputusan penting tentang kejuruteraan semula, pengekalan sistem, dan 

perubahan sistem. Akhirnya, kajian ini boleh membantu dalam mengurangkan kos 

penyelenggaraan perisian, melalui pemahaman reka bentuk perisian yang lebih baik. 
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CHAPTER 1: INTRODUCTION 

 

Software requires continuous change and enhancement to satisfy new business rules and 

technologies. Software maintenance is a human-intensive task that requires deep 

understanding and comprehension of a software before any decision to modify it. 

Therefore, software maintainers must first gain a certain level of understanding on the 

structure and behaviour of the software before making any major changes.  

 

However, if the software is poorly designed or poorly documented, the source code may 

be the only resource left for recovering the system’s design. Without a proper mechanism 

to recover a high-level software design, software maintainers are often forced to make ad-

hoc modifications to the source code when there is a request, without understanding the 

structure and behaviour of the software in advance. As such, continually adopting an ad-

hoc approach to software maintenance will have a negative effect on the overall 

modularity of the system. Over time, the structure and modularity of the software may 

deteriorate to the point where it is so disorganised that the system needs to be drastically 

overhauled or abandoned completely (Mitchell & Mancoridis, 2001). Therefore, means 

other than relying on documentation to recover a high-level abstraction of the software 

design is needed in order to improve the modularity of software systems.  

 

The work by (G. Canfora, Cimitile, De Lucia, & Di Lucca, 2001; Gerardo Canfora, 

Czeranski, & Koschke, 2000; Tonella, 2001) proposed approaches for the identification 

of objects or Abstract Data Types in legacy software systems to help in remodularisation 

of legacy software systems. Such approaches generally identify objects or Abstract Data 

Types in legacy source code by discovering the relationships between routines, global 

variables, and user-defined data types. However, the applicability of the proposed 
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approaches is confined to legacy software systems written in structured programming 

languages. Apart from that, search-based approaches are also used in several other works 

to aid in software remodularisation (Praditwong, Harman, & Yao, 2011; Harman, 

Mansouri, & Zhang, 2012). In particular, the work by Harman et al. (2012) proposed a 

single-objective genetic algorithm to improve the subsystem decomposition of software 

systems, where the fitness function is defined using a combination of software quality 

metrics. However, the complexity of search-based approaches is generally higher and 

researchers often face the NP-Complete problem when searching for the optimum 

solutions. 

 

Existing studies have found that clustering analysis can help in remodularisation of poorly 

designed or poorly documented software systems by grouping sets of collaborating 

software components into meaningful subsystems to recover a high-level semantic 

representation of the software design. Clustering generally is based on discrete 

description of clustering entities (such as methods, classes, packages, etc) and is designed 

to cope with very complex relationships between entities. Hence, cluster analysis is 

arguably suitable for software remodularisation which involves taking a group of classes 

with complex relationships and merging them together in logically coherent groups or 

subsystems. Besides that, cluster analysis techniques can incorporate any number of 

characteristics about a piece of software, providing the relevant information about a 

characteristic that can be extracted from the code. The recovered high-level representation 

of the software design helps in narrowing down the discrepancy between the perceived 

software design from the maintainers’ view and the actual code structure.  
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1.1 Motivation 

 

Maintenance of existing software requires plenty of time in analysing and comprehending 

the available source code and software documentations. Successful accomplishment of 

software maintenance is highly dependent on how much information can be extracted by 

software maintainers. The time and effort spent in software maintenance could potentially 

be reduced through software clustering to recover a semantic representation of the 

software design, thus aiding in better comprehension of the structure and behaviour of the 

software (Maqbool & Babri, 2006; Maqbool & Babri, 2007). Software clustering has 

received a substantial attention in recent years because of its capability to help in 

improving the modularity of poorly designed or poorly documented software systems. 

However, software clustering is typically conducted in an unsupervised manner where 

software maintainers have no influence on the end results because the effectiveness of 

software clustering depends greatly on the algorithm used. Furthermore, unsupervised 

software clustering is rigid in such a way that only a single clustering result is produced 

for any given dataset. In the case if software maintainers do not agree with the outcome, 

they will need to repeat the process again using a different set of configuration and 

clustering algorithm. 

 

Hence, an improvement to conventional clustering approaches was proposed in the work 

by  Basu, Banerjee, and Mooney (2004), where the authors proposed a semi-supervised 

clustering technique by incorporating side information to further improve the accuracy of 

clustering results. The side information is commonly referred as “clustering constraints” 

which reveal the similarity between pairs of clustering entities, or user preferences about 

how those entities should be grouped during clustering. The clustering constraints may 

impose certain restrictions such as forcing a pair of clustering entities to always group 

Univ
ers

ity
 of

 M
ala

ya



4 

 

into the same cluster, or separated into disjoint clusters. These constraints are commonly 

referred as must-link (ML) and cannot-link (CL) constraints respectively. This type of 

semi-supervised clustering technique is commonly referred as constrained clustering 

where users have a certain degree of influence to alter the final clustering results based 

on the domain knowledge. It has been proven in several fields of research that constrained 

clustering can significantly improve the reliability and accuracy of clustering results 

(Davidson & Ravi, 2009). However, there is still a lack of studies on integrating 

constrained clustering to effectively improve the modularity of poorly designed object-

oriented (OO) software systems.  

 

In the domain of software, it is highly possible that software maintainers may have access 

to additional information about the software to be maintained, either explicitly or 

implicitly. For instance, domain experts or software developers who are involved in the 

early stages of software design or developments are able to provide feedbacks to indicate 

whether a pair of software components should be clustered into the same functional group. 

This type of information, which is based on the explicit opinions and feedbacks from the 

domain experts, are referred as explicit clustering constraints. On the other hand, implicit 

information refers to some extra deterministic information about the interrelationships 

between software components derived from the source code itself. However, software 

maintainers will require tool support to effectively identify and interpret the implicit 

information hidden in the source code because the quantity and level of granularity of the 

information might be too overwhelming to comprehend. For instance, representing 

software using weighted complex network in combination with graph theory is able to 

help in identifying important classes that are responsible for providing services to other 

classes, from the graph theory’s point of view. The results of the graph theoretical analysis 

can then be translated into implicit clustering constraints which can help in guiding and 

Univ
ers

ity
 of

 M
ala

ya



5 

 

improving the clustering results. Thus, even if the software documentation is out of date, 

maintainers are still able to salvage such useful information about the implicit structure 

of the software. However, such information are worthless unless there is a proper way to 

synthesis them.  

 

This research focuses on constrained clustering to fully exploit the clustering constraints 

given by the domain expert (referred as explicit constraints), or other forms of side 

information (referred as implicit constraints) to help create a high-level abstraction of the 

software system as perceived by the expert, with the purpose to bridge the dichotomy 

between the perceived software design from the maintainer’s view and the actual code 

structure.  

 

The proposed constrained clustering approach can help to improve software maintenance 

capability of a particular organisation, by providing a high-level semantic view of the 

software design. The recovered software design can aid in facilitating software 

maintenance work, such as when there is a request to update or remove a particular 

software component, maintainers can easily identify other components that are 

interrelated to the target component in order to avoid any unintentional service 

interruption.   

 

1.2 Problem Statement 

 

Most of the existing studies use source code as the only input parameter to perform 

software clustering (Anquetil & Lethbridge, 2003; Cui & Chae, 2011; Maqbool & Babri, 

2007; Praditwong, Harman, & Yao, 2011; Wu, 2005). These approaches perform 

clustering by analysing the dependencies in the source code such as passing of messages 
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between methods, shared variables and shared data. However, as software becomes more 

and more complex, inspecting source code can be tedious (Fokaefs, Tsantalis, 

Chatzigeorgiou, & Sander, 2009). Besides, existing works that use source code as the sole 

input are often language and platform dependent due to the different style and naming 

convention practised by each programming language.  

 

Besides that, deriving explicit and implicit information of the software, and subsequently 

translate them into clustering constraints, is a challenging task. For instance, deriving 

explicit constraints from domain experts or software developers who have prior 

knowledge regarding the software can be a very time consuming and human-intensive 

task because they will need to review a high-level abstraction view of the software design 

and all its relevant documentations, before providing the necessary information to the 

software maintainers. Besides that, it is possible that there are conflicting opinions among 

the domain experts. Thus, a way to reach a consensus among all the domain experts is 

needed to ensure that all the provided explicit constraints can contribute toward forming 

coherent clustering constraints.  

 

Implicit constraints, on the other hand, are constraints derived from the implicit structure 

of the software systems without the involvement of domain experts. In order to effectively 

derive implicit information from the source code, in-depth understanding on the structure 

and behaviour of software systems is highly needed. Representing software systems using 

weighted complex network in combination with graph theory, for instance, is one way to 

help in studying and analysing the structure, behaviour, as well as the complexity of the 

software components and their relationships from the graph theory’s point of view. 

Although the derived implicit information can reveal some extra deterministic 

information about the relationships between software components, there is a lack of 
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studies that addressed the problem of translating the derived information into clustering 

constraints. Furthermore, in representing software systems using complex network from 

the literature, less attention is given to measure the weights of edges, which represent the 

strength of inter-relationships between related software components. 

 

Even more so, fulfilment of implicit and explicit clustering constraints remains a 

significant research problem. Existing studies in software clustering tend to focus on 

imposing only absolute constraints, i.e. constraints that must be fulfilled regardless of any 

situation (Davidson & Ravi, 2009). However, in the domain of software engineering, it is 

possible that the constraints given by domain experts are fuzzy and ambiguous in nature. 

For instance, domain experts or software developers who were involved in the early stage 

of software design might provide some constraints about the software to be maintained. 

However, such constraints might not be valid anymore after several phases of software 

updates and changes. Thus, the constraints given by the aforementioned experts or 

developers might be ambiguous or contain erroneous information. An effective method 

is needed to distinguish between absolute constraints and optional constraints, and 

subsequently fulfil those constraints according to their level of importance. 

 

Evidence based on the existing studies suggested that clustering constraints are not readily 

available most of the time either due to out-dated software documentations or limited 

background knowledge on the software to be maintained (Harman, Mansouri, & Zhang, 

2012). Without reliable references, software maintainers can only opt for the traditional 

way of relying on raw source code to manually recover a high-level abstraction of the 

software design, which is an inefficient use of time and resources. Wasting software 

maintainers’ man-hours would make companies less competitive, which in turn, incurring 

unnecessary cost.   
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In summary, it is widely acknowledged in existing studies that a well-modularised 

software system is easier to develop and maintain (Praditwong, Harman, & Yao, 2011). 

However, as a software evolves with the introduction of new business and technology 

requirements, modularity of the software tends to degrade, which imposes demands for 

restructuring the software. This research focuses on using constrained clustering as one 

of the techniques to recover a high-level abstraction of OO software design to aid in 

remodularisation of software systems. The recovered high-level software design in the 

form of highly cohesive clusters can help in improving the modularity of software by 

bridging the discrepancy between the perceived software design from the maintainers’ 

view and the actual code structure. The proposed constrained clustering approach aims to 

tackle several issues that have not been addressed in the existing studies: Most of the 

existing studies only focus on a specific programming language. How to derive explicit 

and implicit clustering constraints from poorly designed or poorly documented OO 

software systems written in any OO programming language, and utilise these constraints 

to aid in remodularisation of software systems through constrained clustering? Besides 

that, how can weighted complex network aid in analysing the structure, behaviour, as well 

as the complexity of software components and their relationships? If domain experts are 

available to provide explicit clustering constraints based on their domain knowledge, how 

to handle fuzzy and ambiguous constraints that might contradict with each other? Several 

methods and techniques are introduced in this research in order to address all the above 

issues. 

 

1.3 Objectives of the Research 

 

The objectives to be achieved by the research are as follows: 
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Objective 1: To propose a constrained clustering approach with the aim to recover a high-

level abstraction of OO software design that is coherent and consistent with the actual 

code structure. 

 

Objective 2: To propose a method that helps in deriving implicit clustering constraints 

from the implicit structure of OO software systems with the aid of weighted complex 

network and graph theoretical analysis.  

 

Objective 3: To propose a method that is capable of deriving explicit clustering 

constraints from domain experts or software developers who have prior knowledge 

regarding the software systems. 

 

Objective 4: To formulate an appropriate objective function that maximises the fulfilment 

of explicit and implicit constraints, while penalising violation of the constraints. 

 

Objective 5: To evaluate the accuracy and scalability of the proposed approach using 

open-source OO software systems. 

 

1.4 Significance of Research 

 

Many of the software systems still remain in use after many years of commissioning. 

Although the maintenance of legacy systems are costly in terms of man-hour and 

monetary values, most organisations are not willing to substitute their legacy systems 

because they would need to bear high risk if the systems is of a business critical type of 

system. Most of the time, these aging software systems do not have up-to-date software 
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documentations. As a result, the structure of a software system inevitably drifts away 

from its original design and becomes more complex as well as harder to maintain. As 

discussed by Canfora, Di Penta, and Cerulo (2011), a major fraction of software life 

cycle’s expenditure is contributed by software maintenance and support. The authors 

estimated that over 50% of software development budget is spent on maintaining and 

supporting the software itself. Hence, improving the software maintenance capability of 

an organisation can directly contribute toward minimising the cost of maintenance in the 

long run.  

 

This research aims to use constrained clustering to aid in analysing the inherent structure, 

behaviour, and complexity of poorly designed or poorly documented OO software 

systems. Clustering constraints are derived from two different sources of information, i.e. 

from the domain experts who possess prior knowledge regarding the software, or from 

the implicit structure of the software, to aid in creating a high-level abstraction view of 

the software design. The interrelationships and dependencies among classes can be 

revealed based on the recovered software design. The recovered software design is 

represented as disjoint sets of clusters, such that classes that contribute toward a similar 

software functionality are grouped into the same cluster, while those that are dissimilar 

are separated to promote the notion of high intra-cluster cohesion and low inter-cluster 

coupling.  

 

The recovered high-level software design can act as supplementary information for 

software maintainers to aid in decision making when there is a request to modify or 

remove a particular software component. If the classes to be modified or removed are 

known to be highly complex and provide plenty of services to other classes, there is a 

high chance that any modification on these problematic classes will cause a huge chain-
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of-reaction that might be destructive to the system. Thus, with the aid of the recovered 

software design, software maintainers can easily comprehend the source of the problem 

and isolate the problematic classes during software maintenance to prevent any 

unintentional interruption of software services. Eventually, this research can not only help 

in minimising the cost of software maintenance, but also ensure that the maintained 

software can adapt to future requirement changes. 

 

1.5 Outline of Thesis 

 

This thesis consists of eight chapters. Chapter 1 describes the motivation and objectives 

of this research. Chapter 2 reviews the literature on software remodularisation, software 

clustering, and methods to represent software systems using complex network. This 

chapter classifies and analyses the mechanisms used in existing works. The outcome of 

the review is provided to highlight the shortcomings found in the literature. In Chapter 3, 

the research methodology used in this thesis is discussed in detail. In Chapter 4, a method 

to represent software systems using weighted complex networks is proposed. The method 

is based on a unique weighting mechanism to weight the edges of software-based complex 

network in order to measure the complexity of software components and their 

relationships. Based on the constructed weighted complex network, a way to analyse the 

structure and behaviour of the software is described. The results of the analysis are 

converted into implicit clustering constraints in the form of must-link and cannot-link 

constraints to aid in the subsequent clustering process. Chapter 5 presents a method to 

maximise the fulfilment of clustering constraints. Next, Chapter 6 discusses the 

experimental setup of this research. The goal of the research, selection of subjects, 

context, and variables, are discussed in detail. Two research hypotheses are declared with 

the purpose to validate between the speculated observation and the results of the proposed 

Univ
ers

ity
 of

 M
ala

ya



12 

 

constrained clustering approach. Experiments are carried out using real datasets gathered 

from 40 open-source OO projects. This is followed by the discussion and analysis of the 

experimental results in Chapter 7. Several descriptive statistics and plotting techniques 

are used to analyse the experimental results. The conclusion is presented in Chapter 8. A 

summary on the research work accomplished is provided. Then, the contribution of this 

thesis is highlighted. The chapter concludes with a future research direction of the 

proposed approach.  
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CHAPTER 2: LITERATURE REVIEW 

 

This chapter provides the background information and related works. It starts by 

discussing the relationships between software maintenance and software 

remodularisation. Then, the literature in software clustering, constrained clustering, graph 

theory metrics, and complex networks are presented. Finally, the issues and challenges 

are highlighted based on the discussed literatures.  

 

2.1 Software Maintenance and Remodularisation 

 

Software maintenance is vital to discover and validate the relationships between 

technology and business models for existing operational software systems. Software 

maintenance efforts are strongly correlated to the efficacy of the software design. The 

work by Kemerer (1995) shows that software systems that exhibit high modularity, i.e. 

low coupling and high cohesion, and adhere to common design practices such as modular 

architecture are relatively less complex and easier to maintain. Changes and modifications 

of source code are less destructive on the rest of the system because of the low inter-

module coupling advocate in modular architecture.  

 

Modular design can be realised in forward engineering through proper planning in the 

early phase of software development. However, as software systems evolve with the 

introduction of new business and technology requirements, their structures inevitably get 

more complex and maintainers will find harder to maintain them (Santos, Valente, & 

Anquetil, 2014). Therefore, in order to improve the maintainability of existing operational 

software systems that undergo frequent changes, maintainers have to remodularise them, 

which includes reverse engineer the software into relatively independent subsystems. 
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The work by Santos et al. (2014) defines remodularisation as “a major restructuring in 

the system’s architecture, with the central goal of improving its internal quality and 

therefore without adding new features or fixing bugs”. Software systems that undergo 

remodularisation are divided into smaller and manageable subsystems. Similar 

components of software system that collaborate with each other are grouped together to 

form a union of subsystems, while relationships between the subsystems are established. 

The mapping of interrelationships between software components provides a means for 

maintainers to easily comprehend the structure and complexity of software systems. In 

most of the existing studies, remodularisation is guided by understanding the structural 

aspects of a software, i.e. the interactions and dependencies between software 

components (Anquetil & Laval, 2011; Passos, Terra, Valente, Diniz, & Mendonca, 2010).  

Existing studies had explored the usage of software clustering as a technique to aid in 

remodularisation of aging software systems.  

 

2.2 Software Clustering 

 

Clustering can be based on either a supervised or unsupervised approach to pick from a 

collection of entities, then form multiple groups of entities such that entities within the 

same group are similar to each other, while dissimilar from entities in other groups. In the 

context of software clustering, entities are normally source code or classes. Similarity 

measures are normally common global variables used in source code or method calls 

made by classes. The identification of similarity is often depending on the availability of 

reliable information. 

Generally, clustering can be categorised into partitional and hierarchical clustering. Given 

a collection of data, partitional clustering works by defining an initial k number of cluster 
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centroids, and assigning each entity to the nearest centroid to form k disjoint clusters. On 

the other hand, hierarchical clustering iteratively merge smaller clusters into larger ones 

or divide large clusters into smaller ones, depending on either it is a bottom-up or top-

down approach. Merging or dividing operations are usually dependent on the clustering 

algorithm used in the existing studies.  

 

The results of partitional clustering are usually presented in several disjoint clusters, with 

each cluster contains at least one entity and each entity belongs to only one cluster. 

Meanwhile, the results of hierarchical clustering are usually presented in a tree diagram, 

called dendrogram. A dendrogram shows taxonomic relationships of clusters produced 

by hierarchical clustering. Cutting the dendrogram at a certain height produces a set of 

disjoint clusters.   

 

In the domain of software clustering, partitional clustering is less viable because it is 

almost impossible to know the initial number of clusters before performing software 

clustering (Chong, Lee, & Ling, 2013). According to the work by Wiggerts (1997), the 

working principle of agglomerative clustering (bottom-up hierarchical clustering) is 

actually similar to reverse engineering where the abstractions of software designs are 

recovered in a bottom-up manner.  

 

Divisive clustering, on the other hand, is based on a top-down hierarchical clustering 

approach where the clustering process starts at the top with all data in one big cluster. The 

cluster is then split into smaller clusters in a recursive manner until all data resides into a 

single cluster. Although the complexity of divisive clustering is lower than agglomerative 

clustering, the complete information about the global distribution of the data is needed 

when making the top-level clustering decisions (Dhillon, Mallela, & Kumar, 2003). Most 
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of the time, software maintainers are not involved in the earlier software design phases. 

If the software documentations are not up-to-date, it is hard for maintainers to identify the 

ideal number of software packages (or the number of clusters in the context of software 

clustering) before any attempts to remodularise any software systems.  

 

Therefore, the focus of this thesis is to utilise agglomerative hierarchical clustering as a 

remodularisation technique to help improve the modularity of poorly designed or poorly 

documented software systems. The next section discusses some background knowledge 

on the general workflow of agglomerative hierarchical clustering.  

 

2.3 Agglomerative Hierarchical Software Clustering 

 

Agglomerative hierarchical clustering starts by forming all entities as initial clusters. At 

each step, a pair of entities is merged and the algorithm ends with one big cluster. The 

process of agglomerative hierarchical clustering can be summarised as the following 

steps. 

 

1. Identification of entities or components 

2. Identification of features 

3. Calculation of similarity measure 

4. Application of clustering algorithm 

5. Evaluation of clustering results 

 

2.3.1 Identification of entities or components 
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In software clustering, the typical choices of entities are in the form of source code 

because they represent the basic components and functionalities of a software system. 

Chosen candidate entities need to be labelled or tagged properly in order to understand 

their purpose. The labels will also assist in evaluating the performance of output at the 

end of software clustering (Maqbool & Babri, 2006). 

 

2.3.2 Identification of features 

 

The similarities between entities are determined based on their characteristics or features 

extracted from the available information. An entity may possibly have many features. 

Various properties of an entity can be described by different features. Though the selected 

features must contribute to the understanding of problem domain. Features are used to 

analyse how closely two entities are related based on the fact that the entities are more 

similar if they share many common features (Lung, Zaman, & Nandi, 2004). In software 

clustering, there are typically two types of features identification methods: formal (global 

variable access, passing of messages, and shared data) and non-formal (programmer’s 

comment) methods to identify how close a software component is to another (Maqbool 

& Babri, 2007).  

 

2.3.3 Calculation of similarity measure 

 

The next step is to ascertain the similarity between entities by referring to the features 

identified in the previous step. Typical ways to calculate similarity are distance measures 

or resemblance coefficients. Euclidean distance, for example, is the most common type 

of distance measure (Danielsson, 1980). It calculates the geometric distance of two 

entities in the given multidimensional space. Euclidean distance is suitable to use on 
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scenarios where the similarities between entities are quantifiable (represented in 

numerical values). On the other hand, resemblance coefficients are calculated based on 

the common attributes that two entities share. Table 2.1 shows several examples of 𝑅𝐶𝑥𝑦 

formula: resemblance coefficients between entities x and y. 

 

Table 2.1 List of commonly used resemblance coefficients (RC) 

Similarity Measure Formula 

Jaccard coefficient (Jain & Dubes, 

1988) 

𝑎

(𝑎 + 𝑏 + 𝑐)
 

Sorensen-Dice coefficient 

(Sørensen, 1948) 

2𝑎

(2𝑎 + 𝑏 + 𝑐)
 

Simple Matching coefficient 

(Warrens, 2009) 

𝑎 + 𝑑

(𝑎 + 𝑏 + 𝑐 + 𝑑)
 

Gower-Legendre coefficient 

(Warrens, 2009) 

(𝑎 + 𝑑)

(𝑎 + 1/2(𝑏 + 𝑐) + 𝑑
 

 

Variable a represents the number of features that have “1-1” relationship between two 

entities, d represents the number of “0-0” relationship between two entities, while b and 

c represent “1-0” and “0-1” relationships between two entities respectively. A “1-1” 

relationship indicates that both entities are correlated to each other.  Correlation in this 

context can be referred as the existence of certain common attributes or behaviour in both 

entities. Meanwhile, “1-0” and “0-1” relationships represent an indirect correlation. A “0-

0” relationship represents that both entities do not share any form of similarity at all.  

Generally, a higher coefficient value indicates higher similarity between pairs of entities. 

Finally, the results are stored in a pairwise matrix called the resemblance matrix which 

denotes the similarity or dissimilarity strength between pairs of clustering entities. 

 

2.3.4 Application of clustering algorithm 
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The next step is to group similar entities based on the resemblance matrix generated from 

the previous step in Section 2.3.3. Generally, clustering is a sequence of operations that 

iteratively groups similar entities into clusters. The iteration begins with each entity in a 

separate cluster, which means that n number of candidate entities will result in n number 

of clusters. At each iteration, the two clusters that are most similar to each other are 

merged and the number of clusters is reduced by one. This process will continue until 

there is only one cluster left. At the end of the iteration, a tree-like diagram called 

dendrogram is formed.  

 

A clustering algorithm is needed to decide upon how and when to merge two clusters. 

Depending on the algorithm used, certain algorithms merge the most similar pair first 

while others merge the most dissimilar first. Once the two chosen clusters have been 

merged, the strength of similarity or dissimilarity between the newly formed cluster and 

the rest of the clusters are updated to reflect the changes. It is very common that during 

hierarchal clustering, there exist more than two entities which are equally similar or 

dissimilar. In this kind of scenario, the selection of candidate entities to be clustered is 

arbitrary (Maqbool & Babri, 2007). 

 

2.3.5 Evaluation of clustering result 
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Figure 2.1: Illustration of a dendrogram 

Figure 2.1 shows an example of a dendrogram. The x-axis represents the candidate 

entities; there are 8 in this example. The y-axis denotes the distance of the cluster pairs, 

where a greater value indicates a higher level of dissimilarity. The distance at which the 

dendrogram tree is cut determines the number of clusters formed. The dotted lines in 

Figure 2.1 show three tentative cuts at points 0.2, 0.4, and 0.6. At point 0.2, five clusters 

(6, 3), (4), (2), (7), and (8, 5, 1) are formed. On the other hand, only three clusters are 

formed at the cutting point 0.6. Cutting the dendrogram tree at a higher distance value 

usually yields a lesser number of clusters. However, this decision is at the trade-off of 

relaxing the constraint of cohesion in the cluster membership. Unless one is very well 

versed in the problem domain, it is impossible to know the correct number of clusters in 

advance. Defining a proximity measure is essential to identify the correct number of 

clusters. As a result, cluster validity index is used to find and evaluate the best partitioning 

formed by a particular cutting point where the actual number of clusters is unknown 

(Gurrutxaga et al., 2010; Saha & Bandyopadhyay, 2009). In general, the evaluation 

criteria of cluster validity index focus on two main aspects, which are the clustering 

compactness and cluster separation, as discussed by Linoff and Berry (2011).  
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Cluster compactness measures the similarity variance for the members of each cluster. A 

cluster is deemed to have high compactness if the intra-variance is low. In the context of 

software clustering, cluster compactness measures the cohesion of software entities 

within the cluster. Cluster separation, on the other hand, measures how widely separated 

the different clusters are. The distances among different clusters are usually large if they 

are well separated. The common way to measure the distance is by calculating the 

distance between the centroids of two clusters (Leg & Babos, 2006).  

 

The following steps summarise a standard agglomerative hierarchical clustering 

algorithm. 

Input: Set 𝑇 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} of entities. 

Output: Dendrogram 

1. Each entity 𝑥𝑖 forms an initial cluster 𝐺𝑖. The total number of clusters K = n. 

For each pair of clusters 𝐺𝑖  and 𝐺𝑗 , 𝑖 ≠ 𝑗, the distance between 𝐺𝑖  and 𝐺𝑗  is 

denoted by 𝑑(𝐺𝑖, 𝐺𝑗).  

2. Find a pair of clusters with minimum distance, in {𝑑(𝐺𝑖, 𝐺𝑗)} :  

Let 𝑑(𝐺𝑎, 𝐺𝑏)  = 𝑚𝑖𝑛 {𝑑(𝐺𝑖 , 𝐺𝑗)} ., where 𝑚𝑖𝑛  returns the minimum        

distance value over the set of candidates in {𝑑(𝐺𝑖, 𝐺𝑗)}.  

Merge 𝐺𝑐 = 𝐺𝑎 ∪ 𝐺𝑏 and reduce the number of clusters K= K-1. 

3. If K = 1, stop the iteration; else update distance  𝑑(𝐺𝑐, 𝐺𝑗) , for all other 

clusters 𝐺𝑗. (Go to Step 2) 

 

2.3.6 Related Works on Agglomerative Hierarchical Software Clustering 

 

Although some clustering algorithms produce a single clustering result for any given 

dataset, a dataset may have more than one natural and optimum clustering result. For 
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instance, source code can only tell very limited information about the architectural design 

of a software system since it is a very low-level software artifact.  

 

The work by Deursen and Kuipers (1999) adopted a greedy search method by using 

mathematical analysis to analyse the structure of cluster entities and identify the features 

that are shared by them. The proposed approach finds all of the possible combination of 

clusters and evaluates the quality of each combination. Agglomerative hierarchical 

clustering is used in this work. The authors discovered that it is hard to analyse all possible 

combinations, and useful information might be missing if no attention is given to analyse 

all the results generated from different dendrogram cutting points.  

Merits and Limitations: The proposed approach is capable of finding the most optimum 

clustering result in terms of cluster cohesiveness and separation since it adopted a greedy 

search method. However, this is at the trade-off of high computational time and 

complexity, which do not scale properly with huge datasets. Furthermore, the clustering 

results were only validated by domain experts and there is a lack of information on how 

the evaluations are conducted.  

 

In contrast to the greedy search method proposed by Deursen and Kuipers, the work by 

Fokaefs, Tsantalis, Stroulia, and Chatzigeorgiou (2012) proposed an approach that 

produce multiple clustering results from which software developers and maintainers can 

choose the best result based on their experiences. The goal is to decompose large classes 

by identifying ‘Extract Class’ refactoring opportunities. Extract class is defined as classes 

that contain many methods without a clear functionality. The authors adopted the 

agglomerative clustering algorithm to generate a dendrogram and cut the dendrogram at 

several places to form multiple sets of results. The authors argued that clustering 

algorithms that produce a single result is too rigid and not feasible to fit into the context 
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of software development. According to the authors, software developers and maintainers 

should have the abilities to influence and pick the optimum clustering results.  

Merits and Limitations: The authors allow software developers to choose the best 

solution from a collection of candidate clustering results. However, it is possible that the 

number of candidate results might be too large and difficult to reach a consensus among 

software developers. The authors did not discuss how to handle conflicting opinions from 

different software developers and maintainers.  

 

Work by Anquetil and Lethbridge (1999a) attempted to perform agglomerative clustering 

on source files and found out that using source code alone to aid in software 

remodularisation yields poor results. In their study, clustering entities are represented in 

the form of source code. The authors found that the quantity of information, such as the 

number of variables used in the source code, the dependency between routines, the data 

passed and shared by functions helps in improving the reliability of clustering. This is 

because the authors performed their experiments on software written in structured 

programing languages, where most of the programs are divided into several small self-

contained functions. Therefore, extracting the interrelationships between functions are 

not explicitly presented in the source code. Additionally, the authors suggested that 

domain or background knowledge from software developers who are involved in the early 

software design phase can greatly help improve the clustering results.   

Merits and Limitations: The study covers a wide range of challenges in agglomerative 

software clustering, including how the cluster entities are described, how coupling 

between the cluster entities is computed, and the clustering algorithm used to 

remodularise software systems. However, as pointed out by the authors, they only 

experimented the proposed approach with file clustering. 
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Meanwhile, the work by Fokaefs, Tsantalis, Chatzigeorgiou, and Sander (2009) extends 

the work of Anquetil and Lethbridge (1999a) to further enhance the reliability of 

clustering results. Instead of just remodularising a piece of software, their technique 

attempts to discover classes that are completely disconnected from the system (singleton 

classes which have no interrelationship at all with other classes). Once the singleton 

classes have been discovered, the authors seek opinions from software designers whether 

or not to:  

1. Exclude the singleton classes in future software upgrades and maintenance 

releases; 

2. Define a new subsystem for each of these singleton classes. 

Merits and Limitations: The authors tackle the issue of singleton classes, which often 

occurs on software systems that undergo rapid changes and maintenance. However, it is 

a human-intensive activity and highly dependent on the experience and skills of software 

developers.  

 

Cui and Chae (2011) attempted to analyse the performance, strength, and weakness of 

different agglomerative hierarchical clustering algorithms using multiple case studies and 

setups. The authors conducted a series of experiments using 18 clustering strategies. The 

clustering strategies are the combination of different similarity measures, linkage 

methods, and weighting schemes. The case studies comprise 11 systems where source 

codes were used as the input parameters. The performance of each clustering result was 

evaluated based on a performance metric proposed by the authors. The performance 

metrics consist of three criteria: size of the clustering, coupling of subsystems, and 

cohesion among components. The authors attempted to analyse the performance of 

agglomerative clustering at different cutting points, by increasing the value of each cut 

by 5% in an iterative manner. The experiment results show that different agglomerative 
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clustering strategies produce various results based on different performance metrics. They 

found that it is difficult to identify a perfect clustering strategy which can fulfil all 

evaluation criteria proposed by the authors. 

Merits and Limitations: Extensive work that covers a wide range of clustering strategies, 

evaluation criteria, and performance metrics. However, the experimental results are not 

conclusive because certain clustering strategies produce satisfactory performance in 

coupling and cohesion, but not in size. 

 

On the other hand, the work by Chong et al. (2013) proposed a technique to enhance 

existing agglomerative clustering algorithms by minimising redundant effort and 

penalising for the formation of singleton clusters during clustering. By utilising a least-

squares polynomial regression analysis, the proposed algorithm finds the optimum result 

that produces sets of clusters with high cohesion and low coupling. The proposed 

algorithm is based on a bottom-up approach, which starts by transforming source code 

into a flat sequence of class diagrams, and finally restructure them into a package diagram 

to provide a high-level semantic view of the whole system design. In one of the 

evaluations, the authors requested from the contributors of an open-source project, the 

JSPWiki project, to verify the quality of the clustering results. The authors concluded that 

involvement of stakeholders, even with a little amount of domain knowledge, is beneficial 

toward improving the modularity of software systems.  

Merits and Limitations: The authors proposed a way to enhance the existing 

agglomerative software clustering algorithms. The proposed approach can be adapted to 

fit into different clustering algorithms and scale with large datasets. However, the 

proposed approach can only be applied on unsupervised clustering algorithm.   
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Table 2.2 Summary of Related Works on Software Clustering  

Author Clustering technique Input parameters Objectives Evaluation Methods 

(Deursen & Kuipers, 

1999)  

Agglomerative 

hierarchical clustering 

Source code, routines Find the optimum clustering 

result using a greedy search 

approach. 

Validate the accuracy of 

clustering results by domain 

experts.  

(Fokaefs et al., 2012) Agglomerative 

hierarchical clustering 

Attributes, methods, 

and dependencies of 

source code 

Remodularise software by 

finding and decompose “Extract 

Class”. 

Retrieve ground truth from the 

original designer of the systems. 

Then, compare precision and 

recall between the clustering 

results and the retrieved ground 

truth. 

(Anquetil & 

Lethbridge, 1999a) 

Agglomerative 

hierarchical clustering 

Source code Identify and tackle various 

challenges in software clustering. 

Compare with the results with a 

few agglomerative hierarchical 

clustering algorithms.  

(Fokaefs et al., 2009) Agglomerative 

hierarchical clustering 

Attributes, methods, 

and dependencies of 

source code 

Find singleton classes and 

subsequently identify solutions to 

refactor them.  

Evaluate the effectiveness of the 

proposed clustering results by 

seeking opinions from software 

designers. 

(Cui & Chae, 2011) Agglomerative 

hierarchical clustering 

Attributes, methods, 

and dependencies of 

source code 

Identify a generic clustering 

strategy that is suitable to 

remodularise software systems. 

Evaluate the quality of different 

clustering strategies by inspecting 

the size of clusters, coupling 

strength, and cohesion strength. 

(Chong et al., 2013) Agglomerative 

hierarchical clustering 

Source code, UML 

class diagrams 

Minimise redundant efforts when 

cutting dendrogram and scale 

with the size of datasets. 

Evaluate the accuracy of the 

proposed approach by comparing 

the clustering results with the 

original package diagram of the 

software systems. Univ
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The summary of the discussed literature is shown in Table 2.2. Based on the table, it can 

be summarised that most of the existing studies evaluate their proposed approach from 

the aspect of quality and accuracy. In order to evaluate the quality of the proposed 

approach, the original software designers or maintainers are often involved to provide 

feedbacks and opinions on the clustering results. Besides that, ground truth, which in this 

context, a known good partition of the software systems, is used as a baseline comparison 

to evaluate the accuracy of the proposed approaches. Ground truth can be retrieved from 

domain experts or from the software documentations. Therefore, a proper way to evaluate 

the accuracy and quality of software clustering techniques needs to be investigated and 

discussed in the subsequent chapters to fit into the context of this thesis.  

 

Besides that, the software clustering approaches discussed in the previous section are 

typically conducted in an unsupervised and rigid manner, where software maintainers 

have no influence on the clustering results and only a single solution is produced for any 

given dataset. However, if software maintainers do not agree with the final clustering 

result, they will need to repeat the whole clustering process again using different 

clustering algorithm or configuration, which is ineffective and time consuming. 

Furthermore, if software maintainers possess additional information (explicit domain 

knowledge, background knowledge, or other source of implicit information) that could 

be useful to guide and improve the clustering results, traditional unsupervised software 

clustering algorithms do not have the ability to take advantage of this information.  

 

Hence, an improvement was proposed in the work by Basu et al. (2004) to incorporate 

domain or background knowledge into traditional unsupervised software clustering. 

Domain experts or software developers who are involved in the early stages of software 

design or development have the ability to exert their feedbacks and opinions in the form 
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of clustering constraints to guide and improve the clustering results. This type of semi-

supervised clustering technique are also commonly known as constrained clustering.  

  

2.4 Constrained Clustering 

 

Given a set of data to be clustered, if the cluster entities are able to form cohesive clusters 

easily, there is no need for human intervention since any clustering algorithm will identify 

the desired clusters (Klein, Kamvar, & Manning, 2002). Similarly, if the data to be 

clustered are tightly coupled and no distinction can be made between the entities, then a 

small amount of domain or background knowledge would be useful to help improve the 

clustering results. 

 

2.4.1 Formulation of Clustering Constraints 

 

The domain or background knowledge can normally be translated into sets of explicit 

constraints which involve two cluster entities and impose restrictions such as determining 

whether the involved entities should be clustered into the same cluster or not. Constrained 

clustering is contrary to traditional unsupervised clustering where users have a certain 

degree of influence on the final clustering results. There are several ways to translate 

background knowledge into clustering constraints. For instance, in movie recommender 

systems, users may have prior knowledge that two movies belong to the same genre. Thus, 

the user can explicitly modify the recommendations based on his or her knowledge to 

improve the query results. Apart from deriving explicit clustering constraints directly 

from users, implicit constraints can be derived automatically from certain features or 

behaviour of the datasets. For instance, in the research area of wireless local area 

networks, clustering techniques have been used to optimise placement of access points 
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for better network coverage and minimise data latency (Huang, Wang, & Chang, 2005). 

Neighbouring access points usually form clusters and one designated access point from 

each cluster will have a wired connection to a switch or router. If the access points inside 

a cluster are operating within the same overlapping channels, they must be redeployed to 

other clusters to avoid frequency interferences (Eisenblätter, Geerdes, & Siomina, 2007). 

Thus, from a clustering’s point-of-view, these observations can be treated as implicit 

clustering constraints, such that it enforces rules to prevent access points that operate in 

the same overlapping channels to be clustered into the same group. Automatically derive 

implicit clustering constraints from the problem domain is useful when there are no 

domain experts available, although such way of extracting constraints involves several 

complicated steps to identify and interpret them.   

 

Several existing works (Basu et al., 2004; Davidson & Ravi, 2009; Wagstaff & Cardie, 

2000) have attempted to discover the benefits of pairwise constraints in both hierarchical 

and non-hierarchical clustering and found that even a small amount of constraints can 

improve the quality of clustering when compared against those without constraints. The 

work by Wagstaff and Cardie defined two types of pairwise constraints, namely the must-

link (ML) and cannot-link (CL) constraints, which specify that two entities must both be 

part of or not part of the same cluster respectively. These constraints are useful when the 

information of cluster entities is vague, allowing domain experts to guide the clustering 

process.  

 

2.4.2 Enforcing Clustering Constraints 

 

Enforcement of clustering constraints are divided into three major categories, namely 

distance based, constrained based, or the hybrid of both.  
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In distance based constrained clustering, the distance matrix of the associated clustering 

entities are trained beforehand to satisfy the constraints before execution of clustering 

algorithms. The distance matrix is a 𝑛 × 𝑛 two-dimensional pairwise matrix (𝑛 equals to 

the number of clustering entities) that contains the distance or dissimilarity strength 

between each pair of entities. Merging or splitting of clusters is based on the distance 

matrix. To provide a better illustration of how distance based constrained clustering 

works, given a pair of entities x and y with distance of 0.8 (1 indicates very dissimilar, 0 

indicates very similar). A must-link constraint is being enforced on the pair (x, y) using 

the distance based approach, by modifying the distance between (x, y) from 0.8 to 0. This 

will allow any clustering algorithm to always group both entities into the same cluster. 

Thus, training the distance matrix allows certain pairs of entities to be clustered into the 

same group or separated if otherwise. Examples of methods to train the distance matrix 

include shortest path (Klein et al., 2002), expectation maximisation (Bilenko & Mooney, 

2003), and convex optimisation (Shental & Weinshall, 2003).  

 

On the other hand, constrained based methods work by modifying the cluster 

assignments, i.e. manually assign entities to designated clusters (Kestler, Kraus, Palm, & 

Schwenker, 2006). Constrained based approaches ensure that all the clustering constraints 

are fulfilled because the clustering assignments are manipulated by users based on the 

given constraints. However, studies performed by Davidson and Ravi (2009) discovered 

that manipulating with the clustering assignments might lead to “dead-end” situation 

where no pair of clusters can be merged to obtain a feasible clustering result. Hybrid of 

both distance based and constrained based methods is relatively more complex and harder 

to execute because it might result in undesired consequences if there are contradicting 
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clustering constraints. Thus, a proper way to ensure the fulfilment of clustering 

constraints must be formulated before enforcing any kind of constraints.  

 

2.4.3 Fulfilment of Clustering Constraints 

 

Fulfilment of clustering constraints can be classified as either hard or soft constraints 

associated with some cost of violation if the constraints cannot be fulfilled (Basu et al., 

2004). Hard constraints are clustering constraints that cannot be violated during the 

clustering process regardless of any condition. Hard constraints are usually highly reliable 

knowledge or information given by domain experts. In general, the cost of violating hard 

constraints supersedes the objective function of constrained clustering. Constrained based 

clustering method is one of the most reliable approaches to make sure that all hard 

constraints are fulfilled as much as possible.  

 

Meanwhile, soft constraints are usually associated with uncertainties and ambiguous 

information, such that these set of clustering constraints are good to have, and their 

fulfilment are not absolute (Basu et al., 2004). The cost of violating soft constraints varies 

depending on the importance and severity of the constraints. Clustering results will still 

be acceptable if some of the soft constraints are not fulfilled, with a condition that it falls 

within an acceptable threshold (Ares, Parapar, & Barreiro, 2012). Soft constraints are 

more robust against “noisy” or incorrect constraints (Hong & Yiu-Ming, 2012). As a 

general rule, most of the objective functions attempt to maximise the fulfilment of hard 

and soft constraints. However, it is to be noted that constrained clustering can fall into a 

NP-Complete problem if the must-link and cannot-link constraints are contradicting with 

each other, for instance, (Must-Link ∪ Cannot-Link) > 0. Thus, potential conflicts among 

constraints must be identified in advance.  
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The work by Davidson and Ravi (2009) examined the complexity of traditional clustering 

algorithms and investigated potential methods to improve the efficiency of constrained 

agglomerative hierarchical clustering. The authors introduced new constraints apart from 

the traditional ML and CL constraints to further improve the runtime of agglomerative 

hierarchical clustering. They discovered that small amounts of constraints not only 

improve the accuracy of agglomerative hierarchical clustering but also the overall 

runtime. However, the authors noticed that clustering under all types of constraints (ML 

and CL) is NP-complete, which means that creating a feasible cluster hierarchy under all 

types of constraints, is intractable. The NP-complete problem can be minimised if each 

constraint is assigned with a certain degree of importance, i.e. constraints that must be 

fulfilled, or optional constraints that are good to have.  

 

2.4.4 Applying Constrained Clustering to Remodularise Software Systems 

 

Existing studies in constrained clustering mainly focus on the domain of data mining and 

machine learning to cluster text documents, images, and to perform biological 

classifications. There is a lack of studies that focuses on applying constrained clustering 

in the field of software reverse engineering to aid in remodularisation of poorly designed 

or poorly documented software systems although it is technically feasible. For instance, 

experienced software developers can explicitly provide opinions with a certain degree of 

confidence to suggest if two classes should be clustered into the same group. However, 

deriving clustering constraints from software developers can be a very time consuming 

and human-intensive task because developers will need to review a high-level abstraction 

view of the software and its documentations, depending on the level of abstractions, 

before creating the intended clustering constraints. On the other hand, deriving clustering 
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constraints in the field of biological classification is relatively easier, for instance, finding 

organisms that share similar polygenic traits.    

 

Therefore, other options to automatically derive clustering constraints from the implicit 

features and behaviours of the software systems are needed. For example, inheritance 

between parent and child classes suggests a strong affiliation such that changes in the 

parent class will directly impact on the child class. This implicit behaviour suggests a 

must-link constraint between the two involved classes. Additionally, two classes that 

provide completely different functionalities typically have little to none interactions 

(interactions in terms of passing parameters or sharing of variables) and are usually placed 

in different software packages. Each class generally handles only one responsibility to 

advocate the principle of single responsibility (DeMarco, 1979). This behaviour can be 

considered a cannot-link constraint from the perspective of constrained clustering because 

the two associated classes are intended to be clustered into two different disjoint clusters. 

However, how to identify and analyse clustering constraints, either from background 

knowledge or the implicit structure of software systems, remains as a huge research 

problem.  

 

Strong understanding of software systems is needed in order to extract all the essential 

information from the source code, and subsequently convert them into potential clustering 

constraints. Evaluating a software system using well-established software metrics is one 

of the approaches used in existing studies to provide a better understanding of the 

software, and to prevent any faults from propagating to other parts of the software. 

Software components that are more prone to bugs and errors can be translated to sets of 

clustering constraints so that the propagation of software bugs can be controlled. 
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Evaluation of software systems using software metrics can be carried out at different 

levels of granularity in terms of classes, packages, or the entire system.  

 

Examples of well-established software metrics are the Chidamber and Kemerer’s Metrics 

Suite (CK) (Chidamber & Kemerer, 1994) and the Metrics for Object Oriented Design 

(MOOD) (Abreu & Carapuça, 1994). CK and MOOD metrics are well known for 

measuring the complexity of OO software as well as identifying software defects. CK 

metrics evaluate software at the class level by looking into factors such as class cohesion, 

coupling, complexity, and inheritance. MOOD metrics focus on OO characteristics such 

as encapsulation, polymorphism, and inheritance to provide a system-wide assessment. 

In spite of their wide usage, CK and MOOD metrics share the same disadvantages where 

they focus mainly on single classes and rarely take the interactions between classes into 

consideration (Zimmermann & Nagappan, 2008). In addition, several studies have found 

that the empirical effects of these metrics are less effective on large-scale OO software 

systems (El Emam, Benlarbi, Goel, & Rai, 2001; Gyimothy, Ferenc, & Siket, 2005; 

Olague, Etzkorn, Gholston, & Quattlebaum, 2007a; Subramanyam & Krishnan, 2003b). 

 

As software systems become larger and more complex, software maintainers need to gain 

a better understanding of the macroscopic properties of these systems if they were to make 

critical decisions about re-engineering, maintaining and evolving such systems (Lian, 

Kirk, & Dromey, 2007). Large-scale industrial software systems, such as enterprise 

resource planning systems, usually involve multiple complex modules that are related 

with each other. Thus, traditional ways of analysing and characterising software systems 

using software metrics might not be adequate for large-scale software systems. There is 

therefore a need to investigate techniques from other disciplines that had successfully 

dealt with systems of high complexity. Graph theory used in combination with complex 
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network is one such suitable technique to solve the aforementioned problem. 

Representing software systems using complex networks enable software maintainers to 

gain a better understanding of the problem domain from a graph theory’s point-of-view, 

and subsequently transform the findings into clustering constraints. The next section 

provides an in-depth discussion on the existing studies that represent software systems 

using complex networks, along with some of the challenges. 

 

2.5  Facilitate Understanding of Software Systems with the Aid of Graph Theory 

Metrics 

 

In recent years, research in software engineering in the aspect of representing software 

systems using complex networks has started to emerge with the aim to gain a high-level 

abstraction view of the analysed software systems (G. Concas, Marchesi, Murgia, Tonelli, 

& Turnu, 2011; Ma, He, Li, Liu, & Zhou, 2010; Tempero et al., 2010). Representing 

software systems using complex networks allows software maintainers to gain more 

insights on the studied software through the application of well-established graph theory 

metrics (Turnu, Concas, Marchesi, & Tonelli, 2013).   

 

Graph theory is a field of study that looks into the formal description and analysis of 

graphs (Bullmore & Sporns, 2009). A graph is generally defined as a set of nodes that are 

connected by edges, which may or may not be weighted. If the relationships or 

interactions between the nodes are asymmetric, then the graph is usually presented as 

directed graph, as opposed to the undirected ones. When describing a real-world network, 

be it social network, scholarly citation network, or software system, a graph provides an 

abstract representation of the network’s elements and their interactions. Real-world 

networks display fundamental topological features and patterns that are not found in 

Univ
ers

ity
 of

 M
ala

ya



36 

 

random networks (Giulio Concas, Marchesi, Pinna, & Serra, 2007; Myers, 2003). Graphs 

that are formed based on these real-world networks are commonly referred as complex 

networks. As discussed by Simon (1991), a complex network is an integrated sets of nodes 

that are organised in a hierarchical structure and interact in a non-simple way. Existing 

studies have found that graphs formed based on software systems often exhibit the 

topological features and behaviours of a complex network due to their inherent 

complexity (G. Concas et al., 2011).  

 

A complex network, 𝐺 = (𝑉, 𝐸), is made up of a set of nodes V, and a set of edges 𝐸 ⊆

𝑉 × 𝑉 that connect pairs of nodes. In general, a complex network can either directed or 

undirected. In both directed and undirected networks, edges may be associated with 

weights to denote the similarity of a pair of nodes connected by an edge or the cost of 

traveling through that particular edge. In a directed network 𝐺 = (𝑉, 𝐸) , (𝑖, 𝑗) ∈ 𝐸 

signifies that there is an edge in 𝐸 that is linking node 𝑖 to node 𝑗 where 𝑖 is the origin and 

𝑗 is the terminus. On the other hand, in an undirected network 𝐺𝑢 = (𝑉, 𝐸), if (𝑖, 𝑗) ∈ 𝐸, 

then edge (𝑗, 𝑖) ∈ 𝐸  as well because the origin and terminus are not specified in an 

undirected network.  

 

Both directed and undirected networks can be represented by their own adjacency matrix 

A. The matrix A is a |𝑉| × |𝑉| matrix where the rows and columns represent the nodes of 

the network. In an undirected network, the entry 𝐴𝑖𝑗 = 1, if (𝑖, 𝑗) ∈ 𝐸; ∀ 𝑖, 𝑗 ∈ 1,⋯ , |𝑉|. 

Value 0 indicates that there is no relationship in between nodes 𝑖 and 𝑗. Meanwhile for a 

directed network, the value 𝐴𝑖𝑗  represents the weight associated with edge (𝑖, 𝑗). The 

value of adjacency matrix A is symmetric for an undirected network such that 𝐴𝑖𝑗 = 𝐴𝑗𝑖. 

In a directed network, however, the relation 𝐴𝑖𝑗 is asymmetrical.  
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In OO software systems, objects and classes are normally related through different kinds 

of binary relationships, such as inheritance, composition and dependency. Thus, the 

notion of associating graph theory to represent large OO software systems and to analyse 

their properties, be it structural complexity or maintainability, is feasible.  

 

Directed network is more suitable to gain a high-level understanding of software systems 

because it is capable of capturing the semantic relationships between software 

components. The work conducted in (Anquetil & Lethbridge, 1999a; Davey & Burd, 

2000) shows that software features are asymmetric in nature. Examples of such behaviour 

are superclass and subclass relationship, master and slave relationship in Message Passing 

Interface (MPI) programming, and an encapsulated object or data which has its internal 

behaviour or function hidden from outside of its own definition (Chong et al., 2013).  

 

Besides that, there are several features in graph theory that can be used to analyse the 

structure and behaviour of software systems. Recent studies of representing objected-

oriented software systems as complex networks revealed that many of these networks 

share some global and fundamental topological properties such as scale free and small 

world (Giulio Concas et al., 2007; Louridas, Spinellis, & Vlachos, 2008; Pang & Maslov, 

2013; Potanin, Noble, Frean, & Biddle, 2005).  

 

The scale free characteristic of a network is defined as follows. In graph theory, the degree 

𝑘𝑖 of a node 𝑖 is the total number of its edges. In general, a node with a higher degree 

indicates that it possesses a higher impact with respect to the whole network. The average 

of 𝑘𝑖 over all nodes is the average degree of the network, which is represented as < 𝑘 >.  

The spread of nodes’ degrees over a complex network is described as a distribution 

function 𝑃(𝑘), which is the probability that a randomly selected node has exactly 𝑘 edges 
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(Barabasi, Albert, & Jeong, 2000). A simple network normally has a simple distribution 

function because all the nodes contain a similar number of edges (Barabasi & Albert, 

1999). Therefore, the probability of finding a node with 𝑘 edges is very high. However, 

studies have discovered that many complex networks derived from software systems obey 

the degree distribution of a power law in the form 𝑃(𝑘)~𝑘−𝛾 where the function falls off 

more rapidly than an exponential function (Giulio Concas et al., 2007). This results in 

situations where a few nodes with very high degree (highly connected nodes) exist in 

these complex networks. Because the aforementioned power law is free from any 

characteristic scale, these complex networks are also called as scale free networks. The 

scale free characteristic in software systems can be interpreted as the level of reuse of 

important classes, or the number of dependencies between classes.  

 

The small world property is related to the average shortest path length and clustering 

coefficients in graph theory. A shortest path is defined as the shortest distance between a 

pair of nodes in a graph. The average shortest path length, on the other hand, calculates 

the average number of steps along the shortest path between every pair of nodes in a 

network. The average shortest path length is often used to measure the efficiency of 

information passing and response time in OO software. Existing works that use complex 

networks to analyse software systems indicated that the average shortest path length of 

software is around 6 (Valverde & Solé, 2003). A clustering coefficient, on the other hand, 

is the average tendency of pairs of neighbours of a node that are also neighbours of each 

other. It can be used to measure the degree to which nodes tend to cluster together. In 

short, networks that exhibit small world property signify that the distances between nodes 

are relatively shorter as compared to random networks. From a graph theory’s point of 

view, software systems that exhibit a small average path length and high clustering 
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coefficient signify that the analysed software obey the design principles of low cohesion 

and high coupling.  

 

In short, graph theory metrics and software metrics offer different advantages for 

analysing the complexity of software system. Software metrics such as CK and MOOD 

excel in evaluating class-level complexities, particularly in the OO paradigm. Complex 

network, on the other hand, is capable of evaluating the impact of a particular class with 

respect to the whole system. The results of graph theoretical analysis can then be 

translated into clustering constraints to help improve the results of software clustering.  

 

However, before applying graph theory metrics, the software systems must be 

transformed into its associated complex networks in advance. An OO software system is 

typically composed of multiple classes. At the source code level, classes in OO software 

may contain data structure, objects, methods, and variables. Two classes can be 

considered related if there are actions such as passing of messages. Due to multiple ways 

of representing nodes and edges, there is a need to perform an in-depth review on existing 

works that represent software systems using complex networks.  

 

2.5.1 Representing Software Systems Using Un-weighted Networks 

 

The work by Valverde and Solé (2003) discusses the usage of two graphs, namely Class 

Graph and Class-Method Graph, to analyse the global structure of software systems. Class 

Graph is derived based on UML class diagrams, where classes are represented as nodes, 

while relationships among classes, such as dependency and association, are depicted as 

edges between nodes. Class-Method Graph is modelled based on source code using the 
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similar concept. The nodes and edges of the constructed graph are modelled to be un-

weighted.   

Merits and Limitations: The authors utilise complex networks to analyse software 

systems from two different levels of abstractions, namely the low level Class-Method 

Graph, and the high level Class Graph. The two graphs are inter-related and can be 

analysed from different perspectives to provide a better understanding of the software. 

However, for both types of graphs, the complexity of nodes and edges is ignored mainly 

because the authors assumed that internal complexities do not change the global structure 

of software systems.  

 

Myers (2003) proposed a method to represent software systems using complex networks 

by analysing the interdependencies of source code. A software collaboration graph based 

on the calling of methods is used to analyse the structure and complexity of software 

systems. The authors parsed source code into a software documentation generator tool 

called the Doxygen. The tool automatically generates documentation from the raw source 

code. Based on the generated documentations, the authors can easily identify all the 

methods declared in each class, along with the dependencies and collaborations between 

each method. The work by Myers was later extended in the work by LaBelle and 

Wallingford (2004) and Hyland-Wood, Carrington, and Kaplan (2006) to include the 

usage of classes and packages. However, similar to the work by Valverde and Solé, the 

software collaboration graphs by LaBelle et al. and Hyland et al. are constructed using 

un-weighted edges and nodes.  

Merits and Limitations: The work by Hyland et al. explored the usage of software 

collaboration graph across different levels of granularity, namely package level, class 

level, and method level. The authors attempted to discover similar network properties 

from the associated networks. However, due to the way the software collaboration graph 
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is generated, the Doxygen tool can only identify unidirectional and symmetrical 

relationships between methods. This might not be representative enough to illustrate the 

behaviour of software systems because the work by (Anquetil & T. C. Lethbridge, 1999; 

Davey & Burd, 2000) shows that software features are asymmetric in nature.  

 

Jenkins and Kirk (2007) used source code as the basis to construct a software architecture 

graph. Classes in the source code are identified and represented by nodes. When a class 

accesses or refers to data or functionality in another class, it is represented as an un-

weighted edge that connects both classes. Similar way of representing a software 

architecture graph is also presented in the work by Louridas et al. (2008) using class 

interactions. The work by Louridas et al. aims to investigate the power law’s behaviour 

in software systems written in Java, C, Perl, and Ruby.  

Merits and Limitations: The work by Jenkins and Kirk proposed several metrics to 

measure the stability and maintainability of software through various releases. The 

authors discovered very strong correlation between a high growth rate and lowered 

maintainability.  High growth rate in this context refers to classes that undergo frequent 

changes and increase in functionality. The proposed metrics are also applicable on nature 

science research to explore the mechanics of phase change in living organisms. However, 

although the software systems are represented as directed network, the main part of the 

analysis treats the software as being an undirected and un-weighted graph due to 

limitation in converting the directionality of graphs into quantifiable measurements. 

 

The work by Taube-Schock, Walker, and Witten (2011) investigates the problem of high 

coupling in software systems. Generally, the notion of high cohesion and low coupling is 

a well acknowledged software design principle. However, various studies that represent 

software systems using complex networks have empirically discovered that all software 
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exhibit the scale-free behaviour, which means that in certain cases, some high coupling 

is unavoidable (Myers, 2003). In order to verify the aforementioned behaviour, the 

authors performed empirical studies using the Qualitas Corpus (Tempero et al., 2010), 

which is a collection of 100 independent open-source software systems written in the 

Java. The source code is converted into a directed graph, where nodes represent source 

code entities ranging from packages to variables, and edges represent connections 

between entities. The authors found that all the studied software systems exhibit a similar 

scale-free dependency structure and some high coupling might be a necessary 

characteristic for good software design.  

Merits and Limitations: The work is evaluated on a wide range of open-source software 

systems which vary in terms of size, application domain, and complexity. Thus, the 

findings are representative enough to demonstrate the common behaviour exhibited in 

real-world software systems. However, the authors chose to exclude hierarchical 

relationships (such as inheritance and generalisation) from their analysis because they 

argued that inclusion of hierarchical relationships will skew the results of intra-cluster 

analysis.   

 

Finally, the work by Hamilton and Danicic (2012) proposes a Backward Slice Graphs 

(BSGs) made up of nodes that represent program statements and un-weighted edges that 

represent dependencies between these statements. The main purpose of BSG is to find 

groups of strongly related software components by inspecting the number of 

dependencies between program statements.  

Merits and Limitations: The BSGs are constructed at the statement level, which is the 

lowest level of granularity among all the discussed studies. However, since nodes and 

edges of the BSGs are represented based on program statement, the structure and 
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behaviour of the graph are highly dependent on programmers because different 

individuals might adopt different programming styles and preferences.    

 

Several commonalities were found based on the discussed studies that use un-weighted 

edges in representing software systems. Firstly, majority of these studies use source code 

as a basis for representing complex networks except for the work by Valverde and Solé. 

Most of the studies took a black box approach when transforming source code into nodes 

and edges by assuming that the types of relationships between nodes do not change the 

global structure of the constructed network. The types of relationships, such as inheritance 

and method invocation, are represented by a common type of ‘dependency’ to signify 

interactions between nodes. Besides that, the complexities of nodes are ignored. Instead, 

most of the studies only use the frequency of in-coming and out-going dependencies as 

the basis of measuring the weights of edges. The authors are more concerned on the global 

structure and behaviour of the analysed software, either from a static or evolutionary point 

of view. For instance, the work by Valverde and Solé, LaBelle et al., Hyland et al. and 

Louridas et al. focuses on representing software using a static network abstraction and 

applied statistical analysis to discover the behaviour of software systems. The work by 

Myers and Jenkins et al., on the other hand, took an evolutionary approach by inspecting 

software in different releases and compared the results using a statistical approach.  

 

2.5.2 Representing Software Systems Using Weighted Networks 

 

Next, several related works that deal with weighted complex network representation of 

software systems are discussed.  
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Giulio Concas et al. (2007) demonstrated the use of weighted complex network to study 

the structure and properties of OO software called the VisualWorks Smalltalk. Nodes are 

made up of classes, while edges represent method calling between classes. By inspecting 

the source code, an edge is created toward each of the classes that implements a particular 

method and assigned a weightage value of 1. If the same method is called by multiple 

methods of a class, the weight of that corresponding edge is then multiplied by the total 

number of method invocations. Based on the number of method invocations, the 

constructed graph will be able to distinguish nodes with higher inter-dependency.  

Merits and Limitations: The authors investigated a wide variety of system properties, 

including distributions of variables, method names, inheritance hierarchies, class sizes, 

method sizes, and system architecture graph. Based on the in depth evaluations, the 

authors concluded that certain complex network properties are highly correlated to 

software metrics, such that these network properties can be used to evaluate the quality 

of software systems. However, the effectiveness of this method is highly dependent on 

the programming language and style practiced by different individuals.  

 

The work by Sun, Xia, Chen, Sun, and Wang (2009) investigates the structural properties 

of Linux kernel by constructing the network using C++ header files. The header files are 

represented as nodes, and two nodes are connected with a weighted edge if both header 

files are included in the same source file, i.e. using the ‘include’ operation. The weights 

of the edges are calculated based on the number of include operations in the header files.  

Merits and Limitations: The constructed networks are evaluated using several un-

weighted and weighted graph theory metrics, in order to provide an additional perspective 

on the structural organisation of the complex network. However, the experiments are 

performed solely based on header file interactions, which limit its applicability to 

software systems written in C++ programming language.   
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In the domain of software testing, Lan, Zhou, Feng, and Chi (2010) proposed to use 

complex network to study software execution process, and subsequently identified the 

process that is more fault-prone. Functions are represented as nodes and function calls are 

represented as weighted directed edges. The edges are weighted based on the number of 

function calls between a pair of nodes, while the directionality of the edges is based on 

the sequence of the execution process. Empirical validations are conducted on Linux 

based programs, namely tar, gedit, and emacs. Nodes are not weighted. The authors used 

in-degree as the metric to identify highly critical components. In-degree in this context 

refers to the number of times a function is being called by other processes. Thus, the 

weights of edges are used to measure the complexity and significance of nodes.  

Merits and Limitations: Software components that are more prone to bug and errors can 

be easily identified. This allows software developers to take actions before software bugs 

are propagated to the rest of the system. However, the authors only focused on using in-

degree as the only indicator to identify bug prone software components, neglecting the 

potential benefit of other graph theory metrics.  

 

A hybrid approach which extracts information from both the source code and software 

architecture was presented by Ma et al. (2010). The authors proposed a set of metrics to 

measure OO software from multiple levels of granularity, at the class level, code level, 

graph level, and system level. Representation of nodes and edges depends on how much 

information is supplied during the analysis. For instance, if only the UML class diagram 

is provided, classes are represented as nodes, while interactions between classes such as 

inheritance and association are represented as edges. The edges can be weighted using 

several well-known software metrics depending on the choice of the user, such as 

Genero’s metrics (Genero, Piattini, Manso, & Cantone, 2003) (number of associations, 
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number of aggregations, and depth of inheritance). The same concept is applied to weight 

the nodes by using well known software metrics such as CK and MOOD metrics. The 

focus of the work of Ma et al. is to measure the complexity of software, and subsequently, 

detect fault-prone software components.  

Merits and Limitations: The proposed method allows software maintainers to measure 

the quality of software systems from various levels of granularity. Apart from providing 

a better understanding of the software systems, the constructed networks can be used to 

identify software components that violate common design principles. However, due to 

the extensive number of software metrics used in the study, software maintainers need to 

possess a relatively good understanding of the software systems beforehand, which might 

be challenging for legacy software systems.  

 

The work by Wang and Lu (2012) presents an approach to represent complex software 

systems using weighted complex networks. The authors used two open-source software 

written in Java, namely Junit and JEDIT, to demonstrate the applicability of the approach. 

Classes in the source code are used to model the nodes. If a method of a particular class 

is dependent on other classes, a weighted edge is used to model this behaviour. The weight 

of an edge is measured by inspecting the number of dependencies between a pair of nodes 

connected by the edge.  

Merits and Limitations: When comparing the statistical characteristics of weighted and 

un-weighted complex networks, the authors discovered that weighted network can better 

represent the exact dependency relationships among classes of software systems. 

However, the authors did not attempt to differentiate between different types of 

relationships, and treat all relationships as equal.  
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The works discussed in this sub-section use very similar technique to measure the weights 

of edges. Almost all of the studies use the frequency of interactions among nodes, such 

as number of class dependencies, number of method invocations, number of information 

exchanges, and number of method dependencies, to measure the weights of edges. 

Counting the frequency of interactions among nodes is basically based on the static 

structure of software systems, which might not be representative of the dependency 

relationship of the real-world software systems. Dynamic relationships between classes 

of an OO software, such as polymorphism, dynamic binding, and inheritance 

relationships cannot be captured easily through static analysis of source code (Arisholm, 

Briand, & Foyen, 2004).  

 

2.5.3 Discussion  

 

A summary of the discussed literature is presented in Table 2.3. There is however an 

exception; the work by Ma et al. uses well known software metrics to formulate the 

weighted edges. Most work discussed in Section 2.5.2 and this section counts the number 

of in-coming and out-going interactions between nodes to identify the critical nodes.  

Table 2.3: Related Work in Representing Software Using Complex Networks 

Related 

work 

Type of 

Network/ 

Graphs 

Representatio

n of Nodes 

Representatio

n of Edges 

Weighted 

Edges 

Weighte

d Nodes 

(Valverde 

& Solé, 

2003) 

Class Graph/ 

Class-

Method 

Graph 

Source code / 

UML class 

Method 

dependencies / 

UML class 

relationships 

No No 

(Myers, 

2003) 

Software 

collaboratio

n graph 

Source code Calling of 

methods 

No No 

(LaBelle & 

Wallingfor

d, 2004)  

Software 

collaboratio

n graph 

Classes and 

packages 

Access or 

refer to other 

classes 

No No 
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(Hyland-

Wood et 

al., 2006) 

Software 

collaboratio

n graph 

Classes and 

packages 

Access or 

refer to other 

classes 

No No 

(Jenkins & 

Kirk, 2007) 

Software 

architecture 

graph 

Classes Access or 

refer to other 

classes 

No No 

(Taube-

Schock et 

al., 2011) 

Software 

collaboratio

n graph 

Packages, 

classes, 

methods, 

blocks, 

statements, 

and variables 

Hierarchical 

containment, 

method 

invocation, 

and superclass 

No No 

(Hamilton 

& Danicic, 

2012) 

Backward 

Slice Graph 

Program 

statements 

Dependencies 

between 

statements 

No No 

(Giulio 

Concas et 

al., 2007) 

Class Graph Classes Calling of 

methods 

between 

classes 

Yes, 

based on 

frequency 

No 

(Sun et al., 

2009) 

Software 

collaboratio

n graph 

C++ header 

files 

Use of include 

operations 

Yes, 

based on 

frequency 

No 

(Lan et al., 

2010) 

Software 

execution 

process 

Functions Functions call Yes, 

based on 

frequency 

No 

(Ma et al., 

2010) 

Hybrid 

Graph 

Source code / 

UML classes 

Multiple 

metrics 

Yes, 

software 

metrics 

Yes, 

software 

metrics 

 (Wang & 

Lu, 2012) 

Class Graph Classes Calling of 

methods, 

dependencies 

between 

methods 

Yes, 

based on 

frequency 

No 

 

There are potential drawbacks of relying only on counting the frequency of interactions 

between nodes to quantify the weightage of edges. First of all, utility classes, such as 

classes with static methods that are heavily called by other classes, might distort the result 

of statistical analysis. Generally, a high number of interactions is often observed for utility 

classes that are used extensively in a software system. Thus, a high out-degree or edge-

weighted value is not necessarily an indication of bad design and fault proneness (Ragab 

& Hany, 2010). Besides that, an edge-weighted method based on the frequency of 
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interactions might not be suitable for software in the domain of parallel processing and 

software that deal with a high number of information exchanges, i.e. mail servers and 

database systems. Flow of information and data across all layers of the system is very 

common for master and slave interactions in MPI programming, and database update or 

query operations in a typical database management system.  

 

The advantages of using weighted complex network over un-weighted complex network 

are also discussed in the work by  Wang and Lu (2012) and Ma et al. (2010). Specifically, 

the work by Wang and Lu (2012) found that distribution of nodes with a high in-degree 

and out-degree in edge-weighted networks is much more concentrated than those in un-

weighted networks. Thus, the group of nodes that are critical to the systems, as well as 

those nodes that are associated with it can be identified easily. Based on the identified 

nodes with a high node-strength, software developers can choose to either decompose or 

reuse the associated software components to improve software stability and 

maintainability. Ma et al., on the other hand, observed that nodes with a high out-degree 

generally have a low in-degree, and vice versa. Nodes with an improper ratio, i.e. high in 

node-strength and out node-strength, are nodes that do not adhere to high cohesion and 

low coupling design principle. Thus, these sets of nodes may lead to potential defects and 

bugs. Furthermore, Wang and Lu (2012) found that the effect of bug propagation in a 

weighted network is lesser compared to an un-weighted network based on the analysis of 

average shortest path length. Similar observations are also found in the work by Ma et al. 

where the average shortest path of the analysed software is around 4.86 steps. All in all, 

weighted networks are found to be able to capture the behaviour and characteristics of 

software systems in a more well-defined and detailed manner, especially when 

representing the relationships among nodes.  
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However, most of the studies discussed are working on the source code level except for 

the works by Valverde and Solé. and Ma et al., which also involve the software design 

level. At the software architecture level, UML classes are typically chosen to denote 

cluster nodes, providing a standardised conceptual model that represents the system’s 

components, operations, attributes, and relationships. UML class diagram is a better 

choice when compared to raw source code because it is platform and language 

independent. UML class diagrams are also less susceptible to human factors, which in 

this context, refers to different programming styles practiced by different individuals. 

Because the structure, notations, and modelling of UML class diagrams are standardised, 

it is easier to construct complex networks based on class diagrams.  

 

2.6 Challenges and Issues in Constrained Clustering 

 

Through the in-depth reviews conducted, it can be summarised that even a small amount 

of clustering constraints can help in improving the quality of clustering results. Generally, 

the clustering constraints can be derived from two different sources, namely explicit 

information or implicit information of the software to be maintained. Explicit information 

refers to the feedbacks given by domain experts who are involved in the early stage of 

software development, where the information can be translated into explicit clustering 

constraints.  

 

On the other hand, implicit information refers to some extra deterministic information 

about the interrelationships between software components that are hidden in the source 

code. Applying complex network in combination with graph theoretical analysis is one 

of the techniques used in existing studies to harness the implicit information of a software 

from the graph theory’s point of view. The results of the graph theoretical analysis can be 
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subsequently converted into implicit clustering constraints to help in improving the 

accuracy of clustering results. However, the representation of nodes and edges of a 

software-based complex network for the purpose of measuring complexity and their 

relationships is not explicitly addressed in existing studies.  

 

Most of the existing works that represent software systems using complex network only 

focus on the static representation of the software, i.e. using undirected and un-weighted 

complex network. Although there are several studies that attempted to use weighted 

network to represent software systems, almost all of them depend solely on counting the 

frequency of interactions among software entities, which only address the static behaviour 

of software systems and might not be representative enough to illustrate the dynamic 

dependency relationship of real-world software systems. The frequencies of interactions 

are highly dependent on the programming languages used and the programming skills 

possessed by the software developers. Valuable information such as quality and 

complexities of software components might be lost in the transformation process.  

 

Furthermore, fulfilment of the derived explicit and implicit clustering constraints in 

agglomerative hierarchical clustering is a challenging task due to several reasons. Firstly, 

due to the hierarchical structure of agglomerative clustering, fulfilment of clustering 

constraints is relatively more complex and hard to execute compared to partitional 

clustering. As shown in Figure 2.1, a dendrogram needs to be cut at a certain level to form 

several disjoint clusters. Although there are several ways to enforce constraints, (such as 

distance based and constraint based method discussed in Section 2.4.2) a proper 

mechanism is needed to ensure that all the given must-link or cannot-link constraints are 

fulfilled at any cutting point. Besides that, as discussed by Davidson and Ravi (2009), 

manipulating with the clustering assignments without proper planning might lead to 
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“dead-end” situation where the clustering process might end prematurely because no pair 

of clusters can be merged anymore to obtain a feasible clustering result. 

 

Even if the problem of “dead-end” can be resolved, it is almost impossible to fulfil each 

and every clustering constraint given by the domain expert since conflicting constraints 

might occur when considering both must-link and cannot-link constraints. To provide a 

simple illustration, given that there are two must-link constraints and one cannot-link 

constraint such that 

 Class A must-link Class B 

 Class B must link Class C 

 Class A cannot-link Class C 

 

Based on the given examples, it is obvious that the two must-link constraints are 

conflicting with the cannot-link constraints. This is because upon fulfilling the two must-

link constraints, all three classes A, B, and C will be merged into the same cluster, causing 

the cannot-link constraint to be unrealisable. This is considered a NP-Complete clustering 

problem, as mentioned in Section 2.4.3.  The problem can be mitigated if software 

maintainers can know beforehand which clustering constraints should be prioritised, and 

which constraints are optional to be fulfilled.  

 

Furthermore, most of the existing studies only focus on a specific programming language 

when analysing the structure and behaviour of software systems. For instance, the work 

by Sun et al. (2009) only focused on C++ while the work by Wang and Lu (2012) focused 

on software written in Java. Since the structure, method declaration, and interactions of 

methods behave slightly different across different programming languages, the finding 
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based on one particular programming language cannot be applied to software written in 

other languages.  

 

In terms of evaluation, it is discovered that most of the existing studies seek advice from 

the original software designers to evaluate the quality of clustering results. In order to 

evaluate the accuracy of the clustering results, ground truth needs to be identified 

beforehand to serve as a reference model. However, if the selected test subjects are open-

source software systems, it is almost impossible to seek advice from the original designers 

since most the design decisions of open-source projects are done in an ad-hoc manner. 

Ground truth, on the other hand, is hard to retrieve if the software systems are not well 

documented. Therefore, a proper method to evaluate the effectiveness of the proposed 

constrained clustering approach needs to be devised.  

 

In summary, representing software systems using weighted complex networks in 

combination with graph theory is an effective method to understand the implicit structure, 

behaviour, and complexity of software components and their relationships. The results of 

the graph theoretical analysis can be subsequently translated into implicit clustering 

constraints. Combined with the explicit constraints derived from domain experts, both the 

implicit and explicit constraints are beneficial to software maintainers by providing a 

means to guide and improve the results of software clustering. However, there are very 

limited studies that focus on applying clustering constraints onto software clustering and 

representing software systems using weighted complex networks to extract candidate 

clustering constraints.  
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2.7 Chapter Summary 

 

This chapter has presented the literature of software remodularisation, software 

clustering, constrained clustering and also representing software systems using complex 

networks. A thorough review on the literature is done based on the approaches used to 

achieve better software modularity. Nonetheless, several issues and challenges are raised 

based on the study of existing literature.   
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CHAPTER 3: RESEARCH METHODOLOGY 

 

This chapter discusses the research methodology used in this research. This thesis follows 

an empirical research methodology that consists of four phases, namely the Formulation 

Phase, Design and Conceptualisation Phase, Experimentation Phase, and Analysis and 

Interpretation Phase. A constrained clustering approach for clustering OO software 

systems is proposed in this thesis. The proposed approach is facilitated by two methods 

and one technique, where the first method uses complex network to represent an OO 

software system with the aid of a unique weighting mechanism to construct a weighted 

complex network for the OO software system. Next, a technique to automatically derive 

clustering constraints from the constructed weighted complex network and evaluate the 

software system based on graph theoretical analysis of the weighted complex network is 

introduced.  Following that, a method to maximise the fulfilment of all the identified 

clustering constraints is presented to improve the accuracy and scalability of the 

clustering approach. Finally, a high-level abstraction of the software design with highly 

cohesive clusters is formed based on the clustering constraints derived from the implicit 

structure of the software. 

 

3.1 Research Approach 

 

The research starts with investigating existing works related to software clustering in 

order to identify the research gap. Subsequently, research questions and objectives are 

refined and reformulated based on the in-depth literature review. A constrained clustering 

approach supported by several methods and techniques is introduced to address the 

research questions and to help achieve the research objectives. Source code of an OO 

software system is first converted into UML class diagrams. Next, information from the 
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UML class diagrams are extracted to measure the cohesion strength among related 

classes, before transforming them into a weighted complex network. Graph theory metrics 

are subsequently applied onto the transformed weighted complex network so that the 

structure, behaviour, as well as complexity of software components and their relationships 

can be analysed. The result of the analysis is then converted into sets of implicit clustering 

constraints. If domain experts are available, they are allowed to explicitly provide 

feedbacks and opinions that will help in forming the explicit clustering constraints. 

Guided by the explicit and implicit clustering constraints derived from the previous steps, 

a constrained clustering algorithm is proposed to progressively derive cohesive clusters 

that are representative enough to serve as a high-level abstraction of the software design. 

Design and planning of the experiment are carried out before evaluating the proposed 

approach using 40 open-source OO software systems. Finally, the experimental data are 

analysed and interpreted to draw a general conclusion of the results. The overall 

framework of the research methodology is shown in Figure 3.1, where each phase consists 

of specific steps of the methodology. 

 

3.2 Formulation Phase 

 

The formulation phase consists of four major steps, beginning with the formulation of 

initial research questions and objectives. Next, existing studies related to software 

clustering, constrained clustering, and representation of software systems using weighted 

and un-weighted complex networks are investigated. Based on the investigation, the 

research questions and objectives are refined and reformulated. The following sub-

sections discuss the specific steps involved in the formulation phase.  

 

3.2.1 Formulation of Initial Research Questions and Objectives 
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The initial research problems are formulated in order to identify the scope of this research. 

The motivation behind conducting this research mainly is to help in recovering a high-

level software design of poorly designed or poorly documented OO software systems 

through constrained clustering. This thesis focuses on utilising a constrained clustering 

approach that accepts pairwise constraints derived by domain experts or from the implicit 

structure of an OO software system to improve the accuracy and scalability of software 

clustering in deriving clusters with strong intra-cluster cohesiveness and inter-cluster 

separateness. The derived implicit and explicit constraints are formulated in the form of 

pairwise constraints, such that for a pair of classes (𝑖, 𝑗), where if (𝑖, 𝑗)  ∈

𝑀𝐿 (respectively, if (𝑖, 𝑗)  ∈ 𝐶𝐿), then (𝑖, 𝑗) must belong to the same cluster (respectively, 

to different clusters).  

 

 

Univ
ers

ity
 of

 M
ala

ya



58 

 

 

Study of 

Existing 

Literature

Refining 

Research 

Questions

Refining 

Research 

Objectives

Experiment Design

Selection of 

Subjects

Selection of 

Variables

Proposed Constrained 

Clustering Approach

Proposed  Method to 

Maximise Fulfilment of 

Constraints during 

Clustering

Proposed Technique for 

Deriving Clustering 

Constraints from Graph 

Theoretical Analysis of 

Weighted Complex 

Network

Formulation of 

Initial Research 

Questions and 

Objectives

Reformulation of Research 

Questions and Objectives

Datasets

Artificial 

Constraints

Real 

Constraints

Open-

Source OO 

Software 

Systems

Implementation and 

Environments

Process Flow

Output Flow

Input Flow

Legends:

Formulation of 

Research 

Hypotheses

Validity evaluation

Evaluation of 

Experiment Data

Validation of 

Findings Against 

Prior Studies

Accuracy 

Comparison

Correlation 

Analysis

Experiment 

Data

Interpretation and 

Conclusion

Validate Research 

Hypothesis

Proposed Method to 

Represent OO Software 

Systems Using Weighted 

Complex Network

Derived 

Clustering 

Constraints

Hard Constraints

Soft Constraints

Process

Input/Output

Stakeholders 

with Prior 

Knowledge

Experiment 

Planning

 
Figure 3.1: Research methodology framework
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3.2.2 Study of Existing Literature 

 

Existing studies in the area of constrained agglomerative hierarchical software clustering 

and representing software systems using un-weighted complex networks (LaBelle & 

Wallingford, 2004; Myers, 2003; Valverde & Solé, 2003) (Hamilton & Danicic, 2012; 

Hyland-Wood et al., 2006; Jenkins & Kirk, 2007; Taube-Schock et al., 2011) and 

weighted complex networks (Giulio Concas et al., 2007; Lan et al., 2010; Ma et al., 2010; 

Sun et al., 2009; Wang & Lu, 2012) are investigated. The challenges and issues of existing 

studies are highlighted in Section 2.6. Based on the studies, it can be summarised that 

although the idea of constrained agglomerative hierarchical software clustering is 

technically feasible to be used for helping in recovering a high-level abstraction view of 

OO software design, there are not many studies that explicitly discuss how to extract 

clustering constraints from software systems. One of the main reasons is because 

clustering constraints are not readily available most of the time and it is difficult to derive 

clustering constraints directly from the software itself (Harman et al., 2012). Although it 

is possible that software maintainers or domain experts may have prior knowledge on the 

software to be maintained, manually retrieving clustering constraints from them is a 

human-intensive and challenging task because there is a huge number of possible 

constraints configurations involving pairs of classes. This leads to the emergence of using 

weighted complex network to gain a high-level understanding of software systems. The 

analysis of the existing literature provides a wider perspective of the problems in 

constrained agglomerative hierarchical software clustering and representation of software 

systems using weighted complex networks.  

 

3.2.3 Reformulation of Research Questions and Objectives 
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Based on the reviewed studies, the research questions are refined to focus on the 

challenges and issues in constrained agglomerative hierarchical software clustering. A 

total of six main research questions (RQ) are raised in this thesis. 

 

RQ1: How to represent OO software systems using weighted complex networks? 

 A way to represent OO software systems using weighted complex networks is part 

of the steps involved in the proposed constrained clustering approach before graph 

theoretical analysis can be performed to derive implicit clustering constraints. 

Hence this research question is aligned to RO1. 

 

RQ2: When representing software systems using weighted complex networks, which 

measure constructs are capable of quantifying the weights of nodes and edges, while 

preserving the quality aspect of the software?  

 This research question is aligned to RO2, where a method to automatically derive 

implicit clustering constraints is proposed with the aid of graph theoretical 

analysis. In order to ensure that the quality aspect of the software can be preserved, 

proper measure constructs need to be chosen to quantify the weights of nodes and 

edges of software-based weighted complex network.  

 

RQ3: Is the constructed weighted complex network able to demonstrate the behaviour of 

real-world complex network commonly defined in existing studies? 

 This research question is aligned to RO1 and RO2 to avoid intentional bias in the 

experimental results when constructing weighted complex networks using the 

proposed approach.  
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RQ4: How to effectively derive explicit constraints from domain experts, and implicit 

clustering constraints from the software itself?  

 This research question is aligned to RO2 and RO3, which focus on how to derive 

clustering constraints from multiple sources of information, i.e. from the domain 

experts and from the implicit structure of the software system.  

 

RQ5: How to handle different types of clustering constraints with various levels of 

importance, which might potentially conflict with each other and lead to the NP-Complete 

problem?  

 This research question is aligned to RO4, in order to provide a way to maximise 

the fulfilment of explicit and implicit clustering constraints derived from domain 

experts and the implicit structure of the software itself.  

 

RQ6: How to maximise the fulfilment of constraints during clustering without risking the 

“dead-end” situation as discussed by Davidson and Ravi (2009)? 

 This research question is aligned to RO5, where the proposed approach will be 

evaluated using open-source OO software systems to verify if the fulfilment of 

constraints during clustering can be maximised without risking the “dead-end” 

situation.  

 

The final stage of the Formulation Phase ends with refinement and reformulation of 

research objectives in order to solve the problems raised in the above-mentioned refined 

research questions. Sub-objectives based on the initial research objectives raised in 

Section 1.3 are formulated as follows. 
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Objective 1: To propose a constrained clustering approach with the aim to recover a high-

level abstraction of OO software design that is coherent and consistent with the actual 

code structure. 

 

Sub-objective 1.1: To develop a method for representing OO software systems using 

weighted complex network. 

 Since the focus of this thesis is to recover a high-level abstraction of the 

software design of poorly documented OO software systems, classes are more 

suitable to be used as clustering entities where each class is represented as a 

node, while relationships between classes are represented as edges. The work 

by Wang and Lu (2012) and Ma et al. (2010) found that weighted 

representation of nodes and edges of a complex network is more capable of 

capturing the behaviour and characteristics of real-world software systems. 

However, there is a lack of research that distinguishes different types of 

relationships connecting two classes. Instead, most studies that use UML class 

diagram as a basis for representing complex networks do not differentiate 

between the types of relationships, but assume that all relationships are 

equivalent. As such, semantic information between classes may be lost when 

transforming UML class diagrams into complex networks. Thus, the 

complexity of classes and relationships must be taken into consideration when 

representing an OO software system by using a weighted complex network. 

In order to limit the scope of this research, only the maintainability and 

reliability of OO software systems are taken into consideration because these 

two software qualities contribute directly toward measuring the quality of 

clustering results.   
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Sub-objective 1.2: To identify appropriate measure constructs that are capable of 

quantifying maintainability and reliability of software systems represented in weighted 

complex networks. 

 Since the focus of this research is to create a high-level abstraction view of the 

software design that is coherent with the actual code structure, the constructed 

weighted complex network must be representative enough to demonstrate the 

modularity of the analysed software systems. Maintainability and reliability 

for instance, are two software qualities that contribute directly toward 

estimating the modularity of a software system. Therefore, suitable measure 

constructs focusing on maintainability and reliability need to be chosen to 

quantify the weights of edges and nodes in weighted complex networks. 

 

Sub-objective 1.3: To investigate the correlation between the statistical patterns of real-

world OO software systems and their level of maintenance efforts.  

 As discussed by Giulio Concas et al. (2007), several complex network 

properties can be observed from software-based complex networks, such as 

the power law and small world properties. However, the work by Concas et 

al. was only tested on single software, called the VisualWorks Smalltalk, 

which limits the generalisation of the research findings. In this thesis, the 

proposed approach must be designed to be generic and flexible enough to be 

applied on any kind of OO software systems. Since the selection of test 

subjects are closely related to the generalisation of the results, they must be 

representative enough to reflect the behaviour of different OO software 

systems (Wohlin et al., 2012).  
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Objective 2: To propose a method that helps in deriving implicit clustering constraints 

from the implicit structure of OO software systems with the aid of weighted complex 

network and graph theoretical analysis.  

 Several graph theory metrics, such as in-degree, out-degree, average weighted 

degree, and average shortest path length, are able to reveal the quality of 

software systems from a graph theory’s point of view. Detailed discussions 

have been presented in Section 2.4. A way to convert the results of graph 

theoretical analysis into implicit clustering constraints needs to be identified.   

 

Objective 3: To propose a method that is capable of deriving explicit clustering 

constraints from domain experts or software developers who have prior knowledge 

regarding the software systems. 

 Explicit constraints can be derived explicitly from domain experts or software 

developers by asking them to make judgment whether two classes should or 

should not be clustered into the same group. However, there are certain cases 

where the domain experts are not assertive enough to judge whether the given 

explicit clustering constraints are absolute, especially in the domain of 

software engineering. For instance, software developers who were involved in 

the early stage of software design might provide some explicit constraints 

about the software to be maintained. However, such constraints might not be 

valid anymore after several phases of software updates and changes. Thus, the 

explicit constraints given by the aforementioned domain experts might be 

misleading or contain erroneous information. Therefore, a proper method is 

needed to distinguish between absolute constraints and optional constraints, 

and subsequently fulfil those explicit constraints according to their level of 

importance.  
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Objective 4: To formulate an appropriate objective function that maximises the fulfilment 

of explicit and implicit constraints, while penalising violation of the constraints. 

 Based on the discussed studies, clustering constraints can be originated from 

two sources of information, i.e. explicit feedbacks from the domain experts or 

implicit structure of the software itself. However, how to systematically 

identify and fulfil the clustering constraints remains as a research problem.  

 Based on the work by (Ares et al., 2012; Basu et al., 2004; Hong & Yiu-Ming, 

2012), the authors discussed that given enough information, clustering 

constraints can be categorised into hard and soft constraints that vary 

according to their level of importance. Subsequently, an objective function 

can be defined in order to maximise the fulfilment of all the hard and soft 

constraints.  

 This objective involves identification of an appropriate technique to categorise 

clustering constraints based on their level of importance, and remove 

conflicting constraints. As discussed in Section 2.3.5, the following steps 

summarise the agglomerative hierarchical clustering algorithm.  
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Input: Set 𝑇 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} of entities. 

Output: Dendrogram 

1. Each entity 𝑥𝑖 forms an initial cluster 𝐺𝑖. The total number of clusters K = n. 

For each pair of clusters 𝐺𝑖  and 𝐺𝑗 , 𝑖 ≠ 𝑗, the distance between 𝐺𝑖  and 𝐺𝑗  is 

denoted by 𝑑(𝐺𝑖, 𝐺𝑗).  

2. Find a pair of clusters with minimum distance, in {𝑑(𝐺𝑖, 𝐺𝑗)} :  

Let 𝑑(𝐺𝑎, 𝐺𝑏)  = 𝑚𝑖𝑛 {𝑑(𝐺𝑖, 𝐺𝑗)} ,where 𝑚𝑖𝑛  returns the minimum        

distance value over the set of candidates in {𝑑(𝐺𝑖, 𝐺𝑗)}. 

Merge 𝐺𝑐 = 𝐺𝑎 ∪ 𝐺𝑏 and reduce the number of clusters K= K-1. 

3. If K = 1, stop the iteration; else update distance  𝑑(𝐺𝑐, 𝐺𝑗) , for all other 

clusters 𝐺𝑗. (Go to Step 2) 

 

 The “dead-end” situation would occur in Step 2 if there is no pair of clusters with 

minimum distance that can be found which causes the clustering process to stop 

prematurely. An appropriate method needs to be identified in order to train the 

distance matrix prior to merging of cluster entities, in order to avoid the “dead-

end” situation.   

 

Objective 5: To evaluate the accuracy and scalability of the proposed approach using 

open-source OO software systems. 

 Open-source software systems written in Java programming language are chosen 

in this thesis. In order to improve the generality of the research findings, the 

chosen test subjects must vary according to their application domains, number of 

classes, and total lines of codes.  
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3.3 Conceptualisation and Design Phase 

 

In this phase, a constrained clustering approach is conceptualised and designed. The 

constrained clustering approach is based on two methods to help derive clustering 

constraints and to maximise its fulfilment based on an objective function. The design 

decision as well as the steps involved in each method is discussed in detail in Chapter 4 

and 5.  

  

In order to achieve the research objectives (RO), a method along with a technique is 

proposed as illustrated in Figure 3.2. The first three steps illustrate the method to represent 

OO software systems using weighted complex network. Next, based on the constructed 

weighted complex network, a technique to derive clustering constraints based on graph 

theoretical analysis of the constructed network is introduced in Step 4. Collectively, both 

method and technique introduced are responsible for addressing RO1, RO2 and RO3. In 

Steps 1-3, the proposed method involves several steps to transform an OO software 

system into its respective weighted complex network. Next, the transformed weighted 

complex network is analysed and evaluated with respect to maintainability and reliability, 

and the results of the analysis are converted into clustering constraints in Step 4. 

 

3.3.1 Proposed Method to Represent OO Software Systems Using Weighted 

Complex Network 

 

The steps of the proposed method are briefly explained below.  
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Figure 3.2: Proposed method to represent OO software systems using weighted complex 

network along with a technique to derive implicit clustering constraints based on the 

constructed network. 
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Step 1: The software maintainer can provide either the source code or UML class 

diagrams as the input. If raw source code is the only reliable resource available, it is 

transformed into UML class diagrams using an off-the-shelf round-trip engineering tool 

such as Visual Paradigm or Eclipse Modelling Tool.  

 

Step 2: The complexity of UML classes and their associated UML relationships are 

studied. Complexity of UML classes is quantified with the aid of established software 

metrics (Martin, 1994; McCabe, 1976), while the relationships are quantified based on an 

ordinal scale that ranks the relative complexity of each relationship. The motivation and 

justification of this step are discussed in the subsequent chapter. 

 

Step 3: Next, based on the analysis performed in Step 2, the UML class diagrams are 

converted into a weighted and directed complex network, where each UML class is 

represented as a node, while each relationship is represented as an edge that connects a 

pair of nodes. Weighted and directed network is more suitable to represent the asymmetric 

behaviour of OO software systems, as discussed in Section 2.5.  

 

3.3.2 Proposed Technique for Deriving Implicit Clustering Constraints based on 

Graph Theoretical Analysis of Weighted Complex Network 

 

Next, based on the weighted complex network generated from Steps 1-3, a technique to 

derive implicit clustering constraints using graph theoretical analysis of the constructed 

network is introduced in Step 4 in Figure 3.2.  

 

Step 4: Several graph theory metrics are chosen to analyse the software from a graph’s 

theoretical point of view. The graph theoretical analysis is used to aid in providing a high-
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level understanding of the software and evaluate it from the quality aspects of 

maintainability and reliability. Finally, the results are translated into a set of implicit 

clustering constraints that aid in the subsequent steps of the constrained clustering 

approach.  

 

3.3.3 Proposed Method to Maximise Fulfilment of Implicit and Explicit Clustering 

Constraints 

 

The method proposed in Figure 3.3 is responsible for fulfilling RO4 raised in Section 

3.2.3, which is to maximise the fulfilment of clustering constraints. Figure 3.3 depicts the 

steps involved in the proposed method.  

 

Step 1: Clustering constraints are gathered from two main sources: from the graph 

theoretical analysis of the software (implicit constraints) and from the domain experts 

who possess domain knowledge of the software (explicit constraints). Clustering 

constraints gathered from the graph theoretical analysis are categorised as hard constraints 

because they are derived from one of the most reliable sources of information (the 

structure and behaviour of source code). Clustering constraints from domain experts, on 

the other hand, are categorised as soft constraints because this set of constraints are 

usually imprecise and fuzzy in nature, which might contain erroneous information 

(Bagheri, Di Noia, Ragone, & Gasevic, 2010). A clustering result would still be 

acceptable if some of the soft constraints are not fulfilled, with the condition that it falls 

within an acceptable threshold. Fulfilling a handful of higher important soft constraints 

might overshadow the fulfilment of several less important ones. Thus, soft constraints 

must be prioritised and ranked based on their level of importance in order to create a 
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baseline for the said threshold. The soft constraints are prioritised and ranked using Multi 

Criteria Decision Making Method (MCDM).  

 

Step 2: Clustering constraints that are conflicting with each other are identified and 

removed to prevent the NP-Complete problem. The penalty score for violating each soft 

constraint is formulated based on the result of MCDM in the previous step. The penalty 

score allows software maintainers to evaluate the quality of each clustering result with 

respect to the fulfilment of soft constraints.  

 

Step 3: The similarity matrix of the associated hard constraints is modified using the 

distance-based method proposed by (Klein et al., 2002) in order to prevent the “dead-end” 

situation. Based on the modified similarity matrix, the associated dendrogram is generated 

using conventional agglomerative hierarchical clustering algorithm.  

 

Step 4: The dendrogram is cut at several points to create several sets of clustering results. 

Each clustering result is evaluated based on intra-cluster cohesion, inter-cluster 

separateness, and the number of fulfilled soft constraints. Based on the evaluation criteria, 

the most optimum cutting point is chosen to recover a high-level abstraction of the 

software design. The final results are illustrated in several disjoint sets of clusters, where 

each set of clusters bears a resemblance to one subsystem. The clustering results can help 

in remodularisation of software systems through better comprehension of software 

design, and alert software maintainers regarding the risk of classes that violate common 

software design principles.  

 

Next, based on the methods proposed in the Conceptualisation and Design phase, a proper 

experimental plan is drafted to evaluate its effectiveness.  
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Figure 3.3: Proposed method to maximise fulfilment of software clustering constraints 
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3.4 Experimentation Phase 

 

Due to the fact that this research follows an experimental and exploratory study, the 

selection of subjects and variables as part of the experiment design must be representative 

of the real-world scenario to draw a general conclusion. Therefore, 40 open-source OO 

software systems that vary according to the size of project and application domain are 

chosen in order to address RO5. Besides, two types of clustering constraints including 

real constraints derived from the implicit structure of the software systems and artificial 

constraints are used for evaluation purposes. The artificial constraints are used to test the 

effectiveness of the proposed method when handling erroneous information that might 

compromise the accuracy of the clustering results. Besides the two aspects of the 

experiment design, two research hypotheses are defined to validate between the 

speculated observation and the results of the proposed constrained clustering approach. 

Finally, several threats to internal validity and external validity, along with the 

countermeasures to mitigate these threats are discussed. 

 

Based on the experimental design and setup, the proposed methods are tested on the 40 

open-source software systems. The resulting experimental data are the final output in the 

Experimentation Phase.  

 

3.5 Analysis and Interpretation Phase 

 

The work by Anquetil and Lethbridge (1999b) discussed that instead of recovering a 

software system’s architecture, clustering techniques actually create a new one based on 

the parameters and settings used by the clustering algorithm. Thus, a way to evaluate the 

effectiveness of the produced result is needed. MoJoFM is a well-established technique 
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used to compare the similarity between the clustering results and gold standard (Wen & 

Tzerpos, 2004). Gold standard in this context refers to a known good clustering result or 

reliable reference that can act as a baseline comparison. High similarity between the 

clustering result and the gold standard is more desirable as it indicates that the produced 

clustering result resembles the gold standard.  In order to evaluate its effectiveness, the 

results of the proposed constrained clustering approach are compared against prior studies 

related to software clustering and also the gold standard. MoJoFM is used as a tool to 

evaluate the accuracy of the proposed constrained clustering approach. Furthermore, 

several descriptive statistics and plotting techniques are adopted to find the correlation 

between several qualities attributes of software systems (in terms of maintainability and 

reliability) and the findings of graph theoretical analysis. The hypotheses defined in the 

previous phase are also validated through the experimental data. Finally, the conclusion 

is presented and discussed.  

 

3.6 Chapter Summary 

 

This chapter has explained the research methodology of this research including the 

proposed constrained clustering approach, guided by a technique and two supporting 

methods. The methods and technique are proposed based on the research questions 

objectives discussed in Section 3.2.3. The first method attempts to transform an OO 

software system into a weighted complex network, while preserving the maintainability 

and reliability aspects of the analysed software. Next, a technique is introduced by 

applying several graph theory metrics that are related to these software quality attributes 

onto the transformed weighted complex network in order to identify highly reusable 

classes, important classes that contain the main functional modules, classes that are more 

prone to bugs and errors, and the static and dynamic relationships between all the classes. 
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The graph theoretical analyses of the software are then translated into clustering 

constraints, which are used as the input for the second proposed method. The aim of the 

second method is to maximise the fulfilment of different clustering constraints (hard and 

soft constraints), while avoiding the NP-Complete and “dead-end” problems stated in the 

prior studies. In-depth details of all the proposed methods and technique will be discussed 

in the subsequent chapters. Furthermore, the experimental design and evaluation 

strategies will also be discussed in-depth in a later chapter. A wide range of datasets 

including 40 open-source software systems, real and artificial clustering constraints were 

used to evaluate the quality of the proposed constrained clustering approach.  
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CHAPTER 4: DERIVING IMPLICIT CLUSTERING CONSTRAINTS FROM 

WEIGHTED COMPLEX NETWORK TRANSFORMED FROM UML 

DIAGRAMS 

 

In this chapter, a method to represent an OO software system into a weighted complex 

network is proposed. With the aid of the weighted complex network, the method aims to 

analyse the software system from the aspect of maintainability and reliability. 

Maintainability and reliability are chosen in this research because they contribute directly 

toward estimating the modularity of classes (nodes of the constructed weighted complex 

network) that can aid in revealing some implicit information regarding the interactions 

among all the associated classes. Next, a technique to automatically derive implicit 

clustering constraints is introduced by applying several graph theory metrics onto the 

constructed weighted complex network. With the aid of these metrics, software 

maintainers are able to analyse the software from a graph’s theoretical point-of-view in 

order to reveal some extra deterministic information about the analysed software. Finally, 

the results from the analysis are converted into implicit clustering constraints. 

 

4.1 Representing Software Systems with Weighted and Directed Complex 

Networks 

 

Based on the current research scenario, the approaches for representing nodes and edges 

in weighted complex networks are still not well defined for software based on UML class 

diagrams. The edges signify direct relationships between two nodes representing classes 

where the edges can be associated with some weightage values to denote the 

communicational cohesion of the nodes connected by the edges.  Communicational 

cohesion in this context refers to classes that share similar characteristics and behaviour, 
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or classes that perform a certain operation on the same input or output data (Stevens, 

Myers, & Constantine, 1979). The notion of communicational cohesion in complex 

network can be associated with UML class diagram, where two classes with high 

communicational cohesion indicate that they share similar functionalities and there is a 

high tendency for these two classes to be placed into the same software package.  

 

For instance, in the work by Wang et al., edges are weighted based on the number of 

method callings between classes. A higher value of weight associated to an edge signifies 

a higher communicational cohesion between the associated classes because it is an 

indication that these two classes might belong to the same package. On the other hand, 

one can also use distance as the basis to derive the weights instead of using 

communicational cohesion to indicate the dissimilarity between the associated classes. A 

typical way to convert communicational cohesion to distance measure is by calculating 

the inverse of the strength of communicational cohesion (Cilibrasi & Vitanyi, 2007). For 

example, if the weight of an edge (in terms of communicational cohesion) between two 

nodes is in the range of [0, 1], one can convert it to a distance value by computing 1– 

strength of communicational cohesion. There are diverse ways to transform the 

information observed from UML class diagrams.  

 

The greater the weight of an edge (in terms of communicational cohesion), the more 

dependency exists between the two classes. For instance, given two classes A and B, 

where there exists one method in class A that passes messages associated to three methods 

in class B. Therefore, the weight of the edge that is linking classes A and B is assigned as 

3. Such approach of transforming software systems into weighted complex networks can 

be observed in the work by (Guoai, Yang, Fanfan, Aiguo, & Miao, 2008; Yang, Guoai, 

Yixian, Xinxin, & Shize, 2010; Yang, Jia, Shuai, Guoai, & Gong, 2013). However, certain 
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semantic behaviour and relationships of class diagrams cannot be captured using this 

naive transformation. For example, classes related with inheritance relationships and 

classes related with common association, in this case, are assumed to have equal strength 

of communicational cohesion, which is illogical from the software engineer’s point of 

view.  

 

As mentioned earlier, the work by Ma et al. (2010) explores the possibility of representing 

a UML class diagram as a directed complex network to analyse the relationships between 

classes at different levels of abstraction. However, the construction of edges does not 

consider the different kinds of relationships connecting multiple classes or the weighted 

values of edges. Instead, the authors assumed those edges to be equivalent weight. 

  

The same assumption can also be observed in other works that relate software with 

complex network (Giulio Concas et al., 2007; Myers, 2003; Valverde & Solé, 2003). In 

the work by Giulio Concas et al. (2007), Myers (2003), Valverde & Solé, (2003), all kinds 

of interclass relationships such as inheritance, composition, and generalisation are 

simplified and represented as common dependencies. This can be a poor assumption 

because different types of relationships in software such as dependency, association, 

composition, and aggregation denote different degrees of communicational cohesion and 

structural complexity. Figure 4.1a shows a scenario where two classes are related with 

generalisation, and Figure 4.1b shows the same classes related with common association. 

In general, classes that are related with generalisation signify a strong parent and child 

class relationship. This is because any changes in the parent class will directly affect the 

child class. Removal of the parent class would render the child class unusable. Classes 

related with generalisation should have a higher degree of communicational cohesion 

when compared to classes related with common association. Thus, the strength of 
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communicational cohesion between classes in Figure 4a should behave differently when 

compared to that in Figure 4b. In this case, this is shown in the transformed nodes and 

edges with random weighted values of 0.8 and 0.2 respectively.  

 

 

Figure 4.1: Example of UML classes related with different relationships 

 

In addition, the complexity of a class can also affect the complexity of a relationship. For 

instance, two simple classes related with common association should have a different 

strength of communicational cohesion when compared to two complex classes related 

with the same type of relationship. An example is shown in Figure 4.2 to depict the 

aforementioned scenario. Given two complex classes shown in Figure 4.2b that consist 

of hundreds of methods and variables. If the interactions between these classes are simply 

passing a few parameters, then the strength of communicational cohesion will be 

insignificant. On the other hand, if the classes are very well designed, simple and only 

contain two methods and variables, as depicted in Figure 4.2a, then the strength of 

communicational cohesion between the two classes will be much stronger. 
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+getName()
+getAge()

Class 1

-name
-age

+getID()
+getCourse()

Class 2

-ID
-course

+getName()
+getAge()
+getAddress()
+getContact()
+getPhoto()
+getRole()
+....()

Class 1

-name
-age
-address
-contact
-photo
-role
-....

+getID()
+getCourse()
+getFees()
+getCreditHour()
+getSemester()
+....()

Class 2

-ID
-course
-fees
-creditHour
-semester
-....

a.)

b.)

Simple classes

Complex 
classes

 

Figure 4.2: Example of UML classes with different class complexity 

 

Thus, in general, the type of relationship and complexity of classes can influence the 

degree of communicational cohesion between classes. This is important because the 

degree of communicational cohesion can subsequently affect the weights of edges in 

complex networks. Based on the studies in the previous chapter, there is a lack of attention 

in formulating a proper way to calculate the weights of edges when transforming UML 

class diagrams into weighted complex networks.  

 

4.2 Weighting Nodes and Edges in UML Class Diagram-based Complex Networks 

 

A method is proposed to represent the weights of nodes and edges of a complex network 

transformed from UML Class diagrams. If only the raw source code is available, software 

maintainers can convert the code into UML Class diagrams using an off-the-shelf round-

trip engineering tool for the ease of conversion.  Justifications of the selected measure 

constructs are discussed before introducing the proposed method. 
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4.2.1 Measuring the Structural Complexity of UML Relationships and Classes 

 

In the work by Dazhou, Baowen, Jianjiang, and Chu (2004), the authors defined 

“structural complexity” as the global metric to evaluate the complexity of UML class 

diagrams. According to the authors, structural complexity can integrate multiple class 

diagram metrics, such as metrics to evaluate individual classes, metrics to evaluate 

interaction between classes, and metrics to evaluate the whole class diagram.  

 

In this study, the proposed weighting mechanism is based on two parameters, the 

complexity of classes and the complexity of relationships. Relationships (dependency, 

realisation, association, etc.) are taken into consideration because each end of the 

relationship must be linked to a certain class. This implies that the complexity of 

relationship has direct implication toward measuring the complexity of classes. In order 

to measure the complexity of relationships, the authors introduced a conceptual idea to 

assign different weightage depending on the type of relationship as shown in Table 4.1.  

 

Table 4.1: Ordering of class diagram relationships proposed by Dazhou et al. (2004) 

No. Relation Weight 

1 Dependency H1 

2 Common association H2 

3 Qualified association H3 

4 Association class H4 

5 Aggregation association H5 

6 Composition association H6 

7 Generalisation (concrete parent) H7 

8 Binding H8 

9 Generalisation (abstract parent) H9 

10 Realise H10 

 

The table is arranged in an ascending order of weight values. Since the complexities of 

different relationships are relative with each other, arbitrary values of 1–10 are 
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respectively given to H1-H10. Based on this ordinal scale, software maintainers can 

compare the complexities between different kinds of relationships in UML class diagram. 

Empirical testing using real open-source software has been demonstrated in (Chong et al., 

2013) based on the ranking in Table 4.1.  

 

The work by Hu, Fang, Lu, Zhao, and Qin (2012) also proposes to rank UML classes and 

relationships using an ordinal scale based on PageRank algorithm. The purpose of the 

ranking is to differentiate the importance of associated UML classes based on their 

inherent characteristics and relationships with other classes. However, Fang et al. only 

addressed three types of UML relationships in the following order: 

 

Composition > Aggregation > Association 

 

Similarly the research conducted by (Briand, Labiche, & Yihong, 2001, 2003) also 

involves the ranking of relationships in UML class diagram. Briand et al. mentioned that 

one of the most important problems during integrating and testing OO software is to 

decide the order of class integration. The authors proposed a strategy to minimize the 

number of test stubs to be produced during software integration and testing phase. 

Relationships are ranked based on their complexities, where the most complex 

relationships (i.e. inheritance relationships) are integrated first. Common associations are 

perceived as the weakest links in class diagram and placed at the lowest hierarchy during 

software integration and testing phase. The discussed works (Briand et al., 2001, 2003; 

Hu et al., 2012) only compare three major types of relationships, namely inheritance 

(generalisation and realisation), composition (aggregation), and common association. The 

concept of ordering of relationships in UML class diagram based on their complexities is 

similar to the aforementioned work. Thus, the notion of ordering UML class relationships 
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in an ordinal scale, and subsequently identifying the importance or complexity of classes, 

is suitable to be used in this research as a basis of measuring the weights of the edges.   

 

However, if multiple classes are related with the same kind of relationships, the weighting 

mechanism must be able to distinguish this difference. For example, two relatively simple 

classes linked with generalisation (H7) should exhibit a different weightage when 

compared to two complicated classes linked with the same type of relationship. Thus, the 

complexity of classes plays an important role to make a distinction between these two 

cases. However, the proposed structural complexity metric in Dazhou et al. (2004) is a 

conceptual idea without a proper evaluation.  

 

This thesis attempts to integrate the concept of structural complexity in order to convert 

UML class diagrams into weighted complex networks. The OO abstraction from a UML 

class diagram will be represented as nodes and edges in a weighted complex network. 

The weight of an edge is calculated based on the strength of communicational cohesion 

between the connected nodes, which will be discussed in the next section. The 

directionality of edges also plays an important role to indicate a one-way relationship 

from the origin node to the terminus node, not vice versa. Thus, it is important that the 

directionality of edges is captured and analysed properly in order to provide a better 

understanding of the analysed software.  
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Figure 4.3: Illustration of converting a UML class diagram into a weighted complex 

network 

 

As shown in Figure 4.3, a class diagram, 𝐷 = [𝐷1, 𝐷2, ⋯𝐷𝑛], consists of a set of n classes, 

𝐷1, 𝐷2, ⋯ , 𝐷𝑛. The aim of the proposed method is to represent OO software systems using 

weighted complex networks in order to provide a graph abstraction view of the software. 

This will facilitate the application of well-established graph theory metrics onto the 

constructed weighted complex network. Classes are represented as nodes while 

relationships among classes are represented as edges connecting a pair of nodes. 

Relationships in class diagrams can impose a one-way or a bidirectional relationship, 

which needs to be interpreted in advance. As such, the transformation rules introduced by 

Dazhou et al. (2004) are adopted which converts association, composition, and 

aggregation into bidirectional relationships in a weighted complex network. Since 

relationships such as generalisation, realisation, dependency and binding usually impose 

a one-way relationship in the model-driven architecture (MDA) perspective, they will 

remain as a single directed edge that links two nodes. 

 

A relationship 𝑅 connecting two classes, 𝑅 = (𝐷𝑖 , 𝐷𝑗), where 𝐷𝑖, 𝐷𝑗 ∈ 𝐷; 𝑖 ≠ 𝑗, 𝑅 links 

𝐷𝑖  to 𝐷𝑗  where 𝐷𝑖  is the origin of the relationship and 𝐷𝑗  is the terminus. 𝑅  carries a 

weight which denotes the strength of this relationship. The weight of relationship R, 
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which denotes the strength of the communicational cohesion between classes 𝐷𝑖 , 𝐷𝑗 

depends on: 

1. The complexity of relationship 𝑅  

2. The complexity of classes 𝐷𝑖 , 𝐷𝑗  linked by 𝑅.  

 

4.2.2 The Complexity of Relation 𝑅 

 

The example below explains the details in calculating the weight of a given relationship 𝑅.  

 

Given a class 𝐷𝑖  that depends on class 𝐷𝑗  through a one-way relationship  𝑅 , such 

that  𝐷𝑖 ≠ 𝐷𝑗 . The complexities of class 𝐷𝑖  and class 𝐷𝑗  are 𝐶𝑜𝑚𝑝(𝑖)  and  𝐶𝑜𝑚𝑝(𝑗) 

respectively. Since this is a one-way relationship and 𝐷𝑖  is dependent on  𝐷𝑗 , the 

complexity of class 𝐷𝑗  will affect this relationship. For a bidirectional relationship, the 

weight will be calculated based on the average of both directions. By referring to Table 

4.1, software maintainers can identify the relative complexity of relationship 𝑅  and 

measure the weight of the relationship R between class 𝐷𝑖 and 𝐷𝑗   using the proposed 

equation formulated in Equation (1).  

 

𝑊𝑒𝑖𝑔ℎ𝑡(𝑅𝑖→𝑗) = (𝐻𝑅𝑖→𝑗 ∗ 𝛼) + [(𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽]                                           (1) 

 

The first operand of Equation (1) denotes the complexity of relationship R while the 

second operand denotes the complexity of terminus class linked by R. 𝐻𝑅 indicates the 

relative complexity of relationship 𝑅 (by referring to Table 4.1). The complexity of a 

relationship 𝐻𝑅  is relative to the other types of relationships in Table 4.1. It is more 

significant to identify the ranking of this relationship in terms of influence and 
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complexity. This can be done by assigning a relative weight in the range of [0, 1] to each 

relationship 𝐻𝑅 based on its ranking. For example, given a relationship R = Dependency 

(H1), a relative weight of 0.1 is assigned to this relationship. 𝛼 and 𝛽, in this context, 

carry the meaning of preferences and risk tolerance in obtaining the relative complexity 

of a the terminus class 𝐷𝑗 . The preferences and risk tolerance parameters are used to relax 

the constraints on obtaining the complexity of the relationships and class. Since the 

ranking in Table 4.1 is presented in an ordinal scale, one can assign the weight of H1-

H10 based on their own preferences. If users are not confident about the weight to be 

given on the relationship, more emphasis can be given on the complexity of the terminus 

class instead. Values of 𝛼 and 𝛽 range between 0 and 1, in such a way that a lesser value 

indicates a greater uncertainty in obtaining the complexity of the relationship and the 

terminus class linked by it. For example, if the value of H1-H10 cannot be retrieved easily, 

or users are not confident regarding the weight of relationship R, value of 0.2 can be 

assigned to 𝛼, while 0.8 on 𝛽 to indicate that the complexity of terminus class linked by 

R carries more significance. Value of 0.5 for 𝛼  and 𝛽 will be used in this study to 

represent a balanced environment where both values can be obtained easily. 

 

4.2.3 The Complexity of Classes 𝐷𝑖 , 𝐷𝑗  Linked by 𝑅.  

 

For a one-way relationship, given 𝐷𝑖 is dependent on 𝐷𝑗 , only the complexity of terminus 

class 𝐷𝑗  will be calculated. For a bidirectional relationship, the complexity of both origin 

and terminus classes will be taken into consideration. In order to measure the complexity 

of a class, the three-level metrics introduced by Ma et al are adopted. In the work by Ma 

et al. (2010), the authors categorised their metrics into three levels, namely code-level, 

system-level, and graph-level, in order to analyse the OO aspect of a particular system 

using different levels of granularity. The authors suggested that solely relying on a 
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particular level of metrics is not sufficient to measure the properties of OO software 

derived from source code or UML class diagrams. Hence, the proposed method in this 

thesis combines the information from both the raw source code and UML class diagrams 

of a software system to model its respective weighted complex network.  

 

The code-level metrics, which are at the finest level of granularity, measure the code 

complexity. Examples of metrics used are SLOC, fan in and fan out, and cyclomatic 

complexity (Martin, 1994; McCabe, 1976). The system-level metrics focus on OO aspect 

of the system by measuring characteristics such as inheritance, coupling, cohesion, and 

modularity.  Examples of metrics used are CK metrics (Chidamber & Kemerer, 1994). 

The CK metrics consist of six metrics as follows: 

1. Coupling Between Object Classes (CBO) 

2. Weighted Methods per Class (WMC) 

3. Depth of Inheritance Tree (DIT) 

4. Number of Children (NOC) 

5. Lack of Cohesion of Methods (LCOM) 

6. Response for a Class (RFC) 

 

CBO measures the coupling of a given class by counting the number of dependencies of 

that particular class on other classes. WMC is the weighted sum of all the methods in a 

given class. DIT is based on the inheritance hierarchy by identifying the longest 

inheritance path for a given class. NOC of a given class is defined as the number of 

immediate child classes. LCOM, on the other hand, measures cohesion of a given class 

by inspecting the relationships between the methods declared in the class. Finally, RFC 

measures the number of methods that can be used by other classes through the associated 

messages.  
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The graph-level metrics are based on complex network to measure the global features and 

provide an overview of large-scale software systems. Examples of graph-level metrics 

are degree distribution and correlation coefficient.   

 

While the work by Ma et al. (2010) aims to discover a variety of metrics and examine 

each of them individually, this thesis focuses on only one metric at each level, except for 

the graph-level metrics. The measurement of each level is then normalised locally. This 

will allow software maintainers to use a standardised metric with a common scale of unit 

that measures complexity as a whole. In the proposed method, code-level and system-

level metrics are used to measure the complexity of a particular class. On the other hand, 

several graph-level metrics are used to examine the overall structure of the analysed 

software.  

 

In order to select an appropriate metric, a survey on the existing software metrics was 

conducted in this research. Several studies that performed empirical studies of CK metrics 

on real-world software systems are chosen.  

 

The work by Li and Henry (1993) examined the correlations of CK metrics with software 

maintenance effort. The software metrics were applied on two commercial software 

systems in order to predict maintainability. The authors found that except for CBO, CK 

metrics are able to effectively predict the software maintainability of real-world software 

systems. Another work by Binkley and Schach (1998) applied CK metrics on four 

software systems. The authors found that there is no correlation between NOC and the 

frequency of source code changes due to field failure. The inventors of CK metrics 

themselves applied the proposed metrics on three commercial software systems and found 
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that high LCOM was associated with lower productivity, high maintenance cycle, and 

higher maintenance effort (Chidamber, Darcy, & Kemerer, 1998).  

 

In terms of fault proneness, the work by Lionel C. Briand, Wüst, Ikonomovski, and 

Lounis (1999) applied CBO, RFC, and LCOM on an industrial software and found that 

the three metrics are associated with defects found in the case study. Similar observations 

were found in the work by Olague, Etzkorn, Gholston, and Quattlebaum (2007b), where 

the authors applied the complete suite of CK metrics, MOOD metrics and QMOOD 

(Bansiya & Davis, 2002) metrics on Mozilla’s Rhino open-source software. CK and 

QMOOD metrics are found to be good indicators for detecting error prone classes, while 

MOOD metrics are less effective. The work by Mei-Huei, Ming-Hung, and Mei-Hwa 

(1999) applied CK metrics on three industrial-grade real-time systems to identify the 

correlations between the software metrics and faults found during software maintenance. 

DIT and NOC were found to have almost zero correlations, while WMC and RFC are 

strongly correlated to error prone classes. Based on the discussed literature, it is clear that 

not all of the CK metrics are suitable to be used in this study. DIT and NOC in particular, 

were found to be less effective when measuring the software maintenance effort and fault 

proneness of software systems. WMC and LCOM, on the other hand, were found to be 

suitable in identifying error prone classes and estimating software maintenance effort, as 

claimed in (Chidamber et al., 1998) (Briand et al., 1999; Mei-Huei et al., 1999). Thus, 

WMC and LCOM are chosen to be used in this study, which aligns to RO1.2 stated in 

Section 3.2.3.   

 

At the code level, WMC is chosen to measure the complexity of source code. WMC 

measures the average cyclomatic complexity of methods inside a class. Cyclomatic 

complexity calculates the number of independent paths through program source code 
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using the concept of directed network. A class that possesses high WMC value suggests 

that it is very complex and does not focus on its functionality.  

 

At the system level, the Lack of Cohesion of Methods version 4 (LCOM4) (Hitz & 

Montazeri, 1995) is chosen, which is an extended metric based on the LCOM included in 

CK metrics set. LCOM4 is used to measure the cohesion of a particular class by inspecting 

the relationships between the methods and variables. LCOM (Chidamber & Kemerer, 

1994), LCOM2 (McCabe, 1976), and LCOM3 (Henderson-Sellers, Constantine, & 

Graham, 1996) are less suitable for modern OO software systems because they do not 

evaluate the importance of mutator and accessor methods, which are widely used to 

encapsulate information in the OO paradigm. In LCOM4, both shareable and non-

shareable variables and methods are taken into account to cater for encapsulated variables 

or data. A high value of LCOM4 suggests that correlations between methods inside a 

class are weak, and it is undesirable in common software engineering practices.  

 

The choice of software metrics used in this study is not random, as it is based on previous 

research (Basili, Briand, & Melo, 1996; Olague et al., 2007b; Subramanyam & Krishnan, 

2003a) that WMC and LCOM4 are complementary with each other when used to predict 

faults in OO software. Furthermore, the work by Ichii, Matsushita, and Inoue (2008) has 

found that there is a positive correlation between WMC and LCOM4 such that an increase 

in WMC will lead to an increase in LCOM4. This is mainly because a class will tend to 

become less cohesive when more functionalities or modules are added into the class. 

Furthermore, the focus of this study is to capture two particular software quality attributes, 

namely maintainability and reliability as discussed in RO1.2. Therefore, WMC and 

LOCM4 are combined and use an aggregated measure to determine the complexity of 

classes when representing an OO software system using a weighted complex network. 
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An example is given below to calculate the complexity of a particular class. Given a class 

𝐷𝑗 , LCOM4 and WMC of class 𝐷𝑗  are represented as 𝐿(𝐷𝑗) and 𝑊(𝐷𝑗) respectively. The 

following equation is used to quantify the complexity of 𝐷𝑗 . 

 

𝐶𝑜𝑚𝑝(𝐷𝑗) = (𝐿(𝐷𝑗)̃ ∗ 𝛼) + (𝑊(𝐷𝑗)
̃ ∗ 𝛽)                                                            (2)  

where  0 ≤  𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1 

 

𝐿(𝐷𝑗)̃ and 𝑊(𝐷𝑗)
̃  represent the normalised LCOM4 and WMC values respectively over 

all classes in the system using a ratio scale (value range between 0 to 1). Normalisation 

is needed in this case because both metrics are measured using a different scale of unit. 

The values 𝛼 and 𝛽 behave similarly to Equation (1) where it denotes the preferences and 

risk tolerance in obtaining the two metric values. Depending on the difficulty and 

confidence of obtaining the values 𝐿(𝐷𝑗)̃  and 𝑊(𝐷𝑗)
̃ , 𝛼  and 𝛽  can be manipulated 

accordingly. Thus, higher values signify higher complexity. However, before finalising 

the formula, it is important to determine if there is a direct correlation between complexity 

of classes and their respective strength of communicational cohesion.  

 

The work by Satuluri and Parthasarathy (2011) proposes a degree-discounting 

symmetrisation method to analyse the contribution of each node to the strength of 

communicational cohesion based on its degree (in-coming and out-going edges). Suppose 

that two nodes i, j, both point to a node z, which has a high in-degree (Case 1 in Figure 

4.4a), and two nodes i, j, both point to a node z, which has a low in-degree (Case 2 in 

Figure 4.4b). The authors proposed that the strength of communicational cohesion 

between node i and node z together with that of node j and node z contributes more in 
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Case 2 as compared to in Case 1 because node z of Case 2 has a low in-degree. The 

communicational cohesion between nodes is inversely proportional to the in-degree. 

   

Figure 4.4: Degree-discounting symmetrisation based on Satuluri and Parthasarathy 

(2011) 

 

The concept of degree-discounting symmetrisation can be applied to this study where the 

degree is represented as UML class complexity, 𝐶𝑜𝑚𝑝(𝐷𝑗) . Given (𝐷𝑖, 𝐷𝑗) ∈ 𝑅 , 𝐷𝑖  is 

dependent on 𝐷𝑗 , and the complexity of class 𝐷𝑗  will affect the weight of R. If class 𝐷𝑗  

consists of 1000 methods and variables, and the interactions between 𝐷𝑖 , 𝐷𝑗 are simply 

passing a few parameters, the strength of communicational cohesion between 𝐷𝑖 , 𝐷𝑗, or 

the tendency of 𝐷𝑖 , 𝐷𝑗 belonging to the same package will be insignificant. On the other 

hand, if class 𝐷𝑗  is very well designed and focuses on its own functionality, then the 

strength of communicational cohesion between classes 𝐷𝑖 , 𝐷𝑗 will be much stronger. To 

provide a more concrete illustration, given for example, a complex and unorganised class 

“Alpha” which contains a lot of static methods and is constantly invoked by other classes 

from different software packages. As a result, cohesion of methods inside class “Alpha” 

will be very weak. Placing class “Alpha” into a suitable package will also be a 

challenging task because there are lesser distinct features and common behaviour shared 

by class “Alpha” with other classes. A common way to solve this problem is by 
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decomposing it into multiple modular classes that focus on their own functionality. The 

modular classes can then be grouped into packages that share the same functionalities. 

Thus, the complexity of class 𝐷𝑗  is inversely proportional to the weight (strength of 

communicational cohesion) of R. Since the value 𝐶𝑜𝑚𝑝(𝐷𝑗) is normalised into the value 

range between 0-1, the complexity can be inversed by using the formula 1 − 𝐶𝑜𝑚𝑝(𝐷𝑗). 

Thus, Equation (1) is updated to the following Equation (3) to measure the relationships 

between two classes.  

 

𝑊𝑒𝑖𝑔ℎ𝑡(𝑅𝑖→𝑗) = (𝐻𝑅𝑖→𝑗 ∗ 𝛼) + [(1 − 𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽]                                   (3) 
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4.3 Overview of the Proposed Method to Represent Software Systems with the Aid 

of Weighted Complex Network 

 

SOURCE CODE PRE-

PROCESSING MODULE

INPUT

Source Code

CONFIGURATION

 Rules for extracting source code 

 Rules for identifying relationships 

among source code 

 Software metrics to calculate 

complexity of source code

OUTPUT

 LCOM4 and WMC score of each class

 UML Class diagram representation of the 

source code

CLASS AND RELATIONSHIP 

COMPLEXITY CALCULATION 

MODULE

OUTPUT

Quantifiable value (weight) for the complexity of 

each class and relationship 

WEIGHTED COMPLEX 

NETWORK 

REPRESENTATION 

MODULE

High-level Graph Abstraction 

View of Analyzed Software

CONFIGURATION

 Rules for calculating the complexity 

of each class 

 Ordering of UML class diagram 

relationships based on their relative 

complexity

 Rules for calculating the complexity 

of each relationship

Source 

Code 

Repository

Complex 

Network 

Repository

100

300

200400

500

600

700

800

900

1000
1100

Figure 4.5:  Flow chart of the proposed method to represent software systems with the 

aid of weighted complex network 

 

The overall workflow of the proposed method is shown in Figure 4.5, which consists of 

three major software modules. The numbers ranging from 100-1100 correspond to the 

steps involved in the proposed method. 

 100: The user provides the source code to be analysed by the proposed method. 
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 200: Source Code Pre-processing Module to extract essential information and 

evidence from the user’s input before representing it with a weighted complex 

network. 

 300: Configuration data for the Source Code Pre-processing Module. The 

configuration data includes sets of rules to extract important classes and their 

relationships, and a pre-weighted set of rules to calculate the complexity of source 

code. The rules used are the WMC and LCOM4 mentioned in Section 4.2.3. 

 400: Input source code is stored in a repository. 

 500: Consist of the output of the Source Code Pre-processing Module.  

 600: The output from Step 500 is parsed into the Class and Relationship 

Complexity Calculation Module.  

 700: Configuration data for the Class and Relationship Complexity Calculation 

Module. The configuration data includes sets of rules to calculate the complexity 

of each class and relationship found in the UML class diagram. The calculation is 

based on Equation (3) derived in Section 4.2.3.  

 800: Consist of the output of the Class and Relationship Complexity Calculation 

Module.  

 900: The output from Step 800 is parsed into the Weighted Complex Network 

Representation Module.  

 1000: Generate a corresponding weighted complex network based on the analysed 

software system.  

 1100: The generated weighted complex network is stored in a repository. The 

weighted complex network is mapped back to the corresponding source code 

stored in Step 400 in order for cross referencing and further analysis.  
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The details of each software module (Step 200, 600, 900) are explained in the following 

paragraphs, with the aid of diagrams.  

Compute the 
number of classes

Compute the 
WMC score of 

each class

Compute the 
LCOM4 score of 

each class

Convert source code into 
UML Class Diagram using 
an off-the-shelf  round-trip 

engineering tool

201

202

203

204

 

Figure 4.6: Details of Step 200 (Source Code Pre-processing Module) 

 

 201: The number of classes that correspond to the source code provided by the 

user, is recorded. 

 202: For each class in the source code, the WMC score is calculated and recorded. 

 203: For each class in the source code, the LCOM4 score is calculated and 

recorded.  

 204: The source code is converted into its equivalent UML class diagram using 

an off-the-shelf round-trip engineering tool such as the IBM Rational Rose, 

Eclipse UML tool or the Visual Paradigm suite of software. The final output of 
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Steps 201-204 are the LCOM4 and WMC score of each class, and the UML Class 

diagram representation of the given source code.  

From 500

Calculate the 

complexity of each 

relationship based on 

the configuration 

rules in 700

Calculate the 

complexity of each 

class based on the 

configuration rules in 

700 and the results 

from 202 and 203

Combine the 

result from 602 

and 603 to 

measure the 

weights of edges

601

602

603

604

 

Figure 4.7: Details of Step 600 (Class and Relationship Complexity Calculation 

Module) 

 

 602: For each associated UML class relationship retrieved from Step 601, 

calculate the complexity of the relationship by referring to the configuration rules 

set in Step 700.  

 603: For each associated UML class retrieved from Step 601, calculate the 

complexity of the class by referring to the configuration rules set in Step 700, and 

the results recorded from Step 202 and 203.  

 604: Combine the results from Step 602 and 603 to measure the weight of each 

edge between nodes for the weighted complex network to be generated later.  
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From 800

Represent each 

class with a  

node

Represent each 

relationship with 

a directed edge

Assign weight to 

each edge 

based on the 

result from 604

901

902

903

904

 

Figure 4.8: Details of Step 900 (Weighted Complex Network Representation Module) 

 

902: For each UML class retrieved from Step 604, it is represented as a node for the 

weighted complex network being generated.  

903: For each relationship retrieved from Step 604, it is represented as a directed edge 

which connects a pair of nodes.  

904: Based on the output from Step 800, each calculated weight is assigned to each 

relevant edge. The final output of Steps 901-904 is a weighted complex network 

representation of the analysed software.  

 

The flow charts in Figure 4.5-4.8 also serve as a guideline to help develop the prototype 

for this research. The details of the implementation and examples of software systems 

represented with weighted complex networks will be presented in Chapter 6.  
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4.4 Proposed Technique for Deriving Implicit Clustering Constraints from Graph 

Theoretical Analysis of Weighted Complex Network 

 

By using the proposed Equation (3) to calculate the complexity of relationships and 

classes, the weights of edges (UML relationships) that connect two nodes (UML classes) 

in a weighted complex network are determined. Finally, at the graph level, well-

established graph theory metrics are used to measure the cohesion strength among classes. 

The results from the graph-level metrics offer additional insights toward understanding 

the maintainability and reliability of the software, and subsequently, are converted into 

implicit clustering constraints, which addresses RO2.  

 

4.4.1 Measuring Software Maintainability and Reliability through a Weighted 

Complex Network 

 

In this thesis, six graph-level metrics are chosen, namely in-degree, out-degree, average 

weighted degree, average shortest path of nodes, average clustering coefficient, and 

betweenness centrality. These metrics are selected because prior studies have shown that 

they are correlated to software qualities, and can be effective to measure the 

maintainability and reliability of software systems (Giulio Concas et al., 2007; Jenkins & 

Kirk, 2007; Valverde & Solé, 2003). Besides that, average weighted degree, average 

shortest path, and average clustering coefficient in particular can be used to identify if a 

network follows the scale free and small world properties. The details of the metrics are 

explained in the following paragraphs. 

 

In a generic network, the degree 𝑘𝑖 of a node 𝑖 is measured by counting the number of 

edges that point toward or outward from the node. The in-degree is concerned with 
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measuring the number of edges pointing toward the selected node. In the domain of OO 

software systems, in-degree of a class represents the usage of that class by other classes 

(Giulio Concas et al., 2007). Classes with high in-degree suggest that they contain a high 

degree of reusability. However, if majority of the classes exhibit very high in-degree, 

software bugs can propagate easily to all related classes (Turnu et al., 2013).  

 

On the other hand, out-degree is measured by counting the number of edges pointing out 

from the selected node. As such, out-degree represents the number of classes used by the 

given class. In the OO paradigm, out-degree should be kept minimal to improve the 

modularity of software systems.  

 

The average degree of a network is represented as < 𝑘 >, where it represents the average 

degree of all nodes in a network. In this study, the edges are weighted. Thus, average 

weighted degree is used instead. Average weighted degree of a node is calculated by 

summing up the weights of all the edges linked to the selected node and dividing the total 

weight by the total number of edges. If the distribution of average weighted degree, 𝑃(𝑘), 

exhibits power law behaviour, it suggests that the constructed network obey the scale free 

characteristic. Power law characteristic also implies that there are a few important classes 

that are being heavily reused.  

 

The average shortest path length used in this work calculates the average shortest path 

length between a source and all other reachable nodes for the weighted complex network. 

This will allow software maintainers to analyse the efficiency of information passing and 

response time of each node in the network.  
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A clustering coefficient measures the probability of a node’s neighbours to be neighbours 

among themselves. A node with a high clustering coefficient indicates that there is a high 

tendency that the selected node will cluster together with its neighbours. The average 

clustering coefficient is used to represent the clustering coefficient of the whole network. 

In the OO point of view, a network with a high average clustering coefficient indicates 

high cohesion strength among groups of related functionalities. It could be also used to 

determine the modularity of the analysed software. Combining both the average shortest 

path length and average clustering coefficient allows one to examine if the network 

exhibits the small world characteristic.  

 

The betweenness centrality of a node measures the number of shortest paths that pass 

through the selected node. It measures the importance and load of a particular node over 

the interactions of other nodes in the network (Yoon, Blumer, & Lee, 2006). Nodes with 

a high betweenness centrality often act as the communication bridge along the shortest 

path between a pair of nodes. Analysing the betweenness centrality allows one to 

comprehend the robustness and structural complexity of a given software. One can 

recognise in advance the potential loss of communication if nodes with high betweenness 

centrality are removed from the network. Table 4.2 present a summary of the selected 

graph theory metrics.  
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Table 4.2: Selected graph theory metrics and implication toward the analysed software 

systems 

Graph Theory 

Metrics 

Software engineering point-of-view 

In-degree Represents the usage of a particular class by other classes in 

the software. Demonstrate the level of reusability of a class.  

Out-degree Represents the number of classes used by the given class. 

High out-degree signifies that the class is composed of 

relatively large and complex modules. Can be refactored into 

several smaller classes that focus on specific responsibilities.  

Average weighted 

degree 

Identify if the analysed software obeys the power law 

behaviour. Provide a means to identify important classes that 

contribute toward a particular software functionality.  

Average shortest-path 

length 

The efficiency of information passing and response time of 

OO software.  

Clustering coefficient  Probability of a class’s neighbours to be neighbours among 

themselves. Helps to determine the cohesion strength of 

neighbouring classes. 

Betweenness centrality The number of shortest paths that pass through a particular 

class. Classes with high betweenness centrality indicate that 

they are more prone to propagating bugs and errors. In 

general, removal of these classes can lead to potential loss of 

communication between classes. 

 

4.5 Converting Graph Theoretical Analysis into Implicit Clustering Constraints 

 

Apart from using the graph-level metrics to analyse and evaluate the software quality 

aspect of software systems, the main goal of the proposed method, as mentioned in RO2, 

is to translate the result of graph theoretical analysis into implicit clustering constraints.   

 

4.5.1 Identifying Community Structure of Real-world Networks 

 

Domain or background knowledge supplied by experts are typically expressed in the form 

of pairwise constraint, namely must-link and cannot-link constraints to specify that two 

entities must both be part of or not part of the same cluster respectively. Although useful, 

one important and non-trivial research question remains open. How to retrieve clustering 

constraints if domain experts are non-existent? While various studies have shown that a 
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small amount of constraints can greatly improve the result of clustering, most of the 

studies assumed that constraints are given prior to the experiment and those constraints 

are absolute and without any ambiguity (Basu et al., 2004) (Kestler et al., 2006) (Klein et 

al., 2002).  

 

The work by Malliaros and Vazirgiannis (2013) discussed that real-world networks have 

special structural patterns and properties that distinguish themselves from random 

networks. One of the most distinctive features in a real-world network is the community 

structure, such that the topology of the network is organised in several modular groups, 

commonly known as communities or clusters. However, in large-scale real-world 

networks (such as social network, power grid network, and World Wide Web), the 

community structure are usually hidden from users, largely due to their inherit 

complexity. Thus, discovering the underlying community structure of a real-world 

network, or commonly referred as community detection, is crucial toward the 

understanding of the analysed network. In this thesis, several community detection 

techniques that are commonly used in the field of brain network research will be adopted 

to discover the community structure of software systems. Next, the findings will be 

converted to clustering constraints in the form of ML or CL constraints to improve the 

results of software clustering.  

 

4.5.2 Identify Network Hubs 

 

Figure 4.9 shows a snippet of weighted complex network constructed using the proposed 

method on an open-source software written in Java, called the Apache Gora. An enlarged 

version of the diagram is available in Appendix A, Figure A1.  
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Figure 4.9: Snippet of Apache Gora project represented in weighted complex network 

using the proposed method 

 

Apache Gora is a small project with 8,668 lines of code and 112 classes. Therefore, one 

can easily identify the community structure of the network through visual inspection. For 

example, the node marked with the dotted-circle possesses high in-degree because a lot 

of other nodes are converging and directed toward this particular node. In the field of 

graph theory, the presence of a high in-degree or out-degree node is usually referred as a 

hub. The work by Ravasz and Barabasi (2003) shows that a hub plays a very important 

role in complex network because it is responsible for bridging multiple small groups of 

clusters into a single, unified network. 

 

From the software engineering point-of-view, hubs with high in-degree are classes that 

provide methods to be used by other classes. Therefore, software maintainers can view 

the hubs as the core functional class that contribute toward a particular software feature.  
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However, since hubs are directly linked to other classes, they are very vulnerable to bugs 

and errors propagation. The work by Turnu, Marchesi, and Tonelli (2012) shows that 

there is a very high correlation between the degree distribution of software-based network 

and the system’s bug proneness. Therefore, hubs are responsible for maintaining the 

structural integrity of software systems against failure and it is crucial for maintainers to 

identify them (Liu, Slotine, & Barabasi, 2011). One simple way to identify hubs is by 

observing the nodes which possess high degree at the tail of the degree distribution in log-

log scale (Ravasz & Barabasi, 2003). Figure 4.10 shows an example of the in-degree 

distribution of a sample project in log-log scale. Based on the figure, most of the nodes 

possess in-degree of 1, and the extreme values are roughly 60 times higher than the 

average in-degree. The tail of the degree distribution, as depicted by the red circle in 

Figure 4.10, shows that there are several nodes with exceptionally high in-degree. These 

nodes are usually considered as the hubs, as discussed by Ravasz et al.  

 

 

Figure 4.10: Identify hubs by observing the degree distribution of in-degree 

 

However, it is possible that the identified nodes (classes) with high in-degree might 

actually be god classes.  God classes are classes that are associated by a huge number of 
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simple data container classes, resulting in unnecessary coupling. Since god classes are 

tightly coupled to many other classes, maintenance of god classes are relatively more 

difficult compared to modular classes. Therefore, it is important to differentiate between 

hubs and god classes. Several studies have discovered that nodes that behave like god 

classes share several characteristics, especially when observed from the graph theoretical 

point of view (Giulio Concas et al., 2007; Turnu et al., 2013; Turnu et al., 2012). For 

instance, according to (Turnu et al., 2013), god classes tend to possess high in-degree and 

out-degree due to their “god-like” (all-knowing and all-encompassing) characteristic. 

Therefore in this research, when a node is found to possess exceptionally high in-degree 

and out-degree when compared to other classes, it is flagged as god classes instead of 

hubs. However, how does identifying hubs contribute toward the formulation of 

clustering constraints to help in constrained clustering of software systems? 

 

4.5.3 Cannot-Link Constraints Between Hubs 

 

In the research area of brain networks, hubs are usually neurons that are responsible for 

the activation of important cognitive functions and they are connected mainly to nodes in 

their own modules (Bullmore & Sporns, 2009). As such, hubs in brain networks usually 

form sub-communities that contain neurons which are correlated to the same cognitive 

functions.  

 

On the other hand, network hubs in this research are considered as the core functional 

class that contains the methods and information of a particular software feature. It is 

common for other classes to invoke methods or parse parameters to and fro the hubs, 

resulting in high in-degree and out-degree. Therefore, this leads to a question: from a 

Univ
ers

ity
 of

 M
ala

ya



107 

 

software design’s point-of-view, should the hubs be grouped into the same cluster, or 

separated into several disjointed clusters?  

 

In the domain of software engineering, separation of concerns is a design principle for 

encapsulating software features or functionalities into separate entities to promote the 

notion of localisation and high modularity (Dijkstra, 1976).  Thus, in order to ensure low 

coupling among different software functionalities, hubs should be separated into several 

disjoint clusters. In other words, for this research, Cannot-link constraints are established 

between hubs identified in the weighted complex network to promote the notion of 

separation of concerns. The hubs are expected to be the core class responsible for a 

particular software functionality. The enforcement and fulfilment of the clustering 

constraints are discussed in the next chapter. 

 

 

4.5.4 Must-Link between Hubs and Direct Neighbours 

 

In graph theory, clustering coefficient of a node is the average tendency of pairs of 

neighbours of a node that are also neighbours of each other. If all the inspected nodes are 

adjacent to each other, where there exists an edge that connects each pair of the 

neighbours, it is considered a complete clique (Watts & Strogatz, 1998). Nodes inside a 

complete clique are considered to be tightly connected to each other and tend to be 

clustered together.  

 

Therefore, by combining the concept of hubs and clustering coefficient, software 

maintainers can identify the neighbouring classes that are closely related to the hubs.  

Neighbouring classes that form a complete clique with a hub should be always grouped 
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into the same cluster (Malliaros & Vazirgiannis, 2013). As such, Must-link constraints 

can be established between a hub and its neighbouring classes that form a complete clique, 

in order to ensure the formation of a baseline cluster that encompasses a group of cohesive 

neighbours. 

 

4.5.5 Must-Link between Classes with High Betweenness Centrality and Their Direct 

Neighbours 

 

As mentioned earlier, betweenness centrality calculates the number of shortest paths that 

pass through a particular class. Classes with high betweenness centrality exert relatively 

higher influence and impact over other neighbouring classes. Therefore, ensuring the 

structural stability of classes with high betweenness centrality and their neighbouring 

classes is important to safeguard that passing of parameters or messages is not obstructed 

during and after software maintenance. As such, neighbouring classes that form a 

complete clique with a class that possesses high betweenness centrality should be always 

grouped into the same cluster, similar to Section 4.5.4. The rationale behind this decision 

is straightforward. If software maintainers are to perform maintenance works on a class 

with high betweenness centrality, they would need to be notified if there are classes that 

are dependent on it. This is to avoid maintainers from breaking any chain of dependencies 

and ensure the structural stability around classes with high betweenness centrality. As 

such, must-link constraints can be established between classes with high betweenness 

centrality and the neighbouring classes that form a complete clique. The relationships 

between the chosen graph theory metrics and the derived clustering constraints are shown 

in Table 4.3.  
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Table 4.3: Summary of graph theory metrics and their contribution toward deriving 

implicit clustering constraints 

Graph Theory 

Metric 

Usage Derived Implicit Clustering Constraint 

In-degree Identification of 

hubs 

Cannot-link between hubs 

Out-degree Identification of 

hubs 

Cannot-link between hubs 

Average 

weighted degree 

Identification of 

hubs 

Cannot-link between hubs 

Average 

shortest-path 

length 

Calculation of 

betweenness 

centrality 

- 

Clustering 

coefficient 

Identification of 

clique 
 Must-link between a hub and its 

neighbouring classes that form a 

complete clique 

 Must-link between classes with high 

betweenness centrality and 

neighbouring classes that form a 

complete clique 

Betweenness 

centrality 

Identification of 

important classes 

Must-link between classes with high 

betweenness centrality and neighbouring 

classes that form a complete clique 

 

4.5.6 Identify Refactoring Opportunities as Supplementary Information 

 

Apart from establishing clustering constraints, software maintainers can also identify 

potential refactoring opportunities with the aid of graph-level metrics (Al Dallal, 2015). 

Generally, software components that are more prone to defects and bugs should be 

refactored and remodularised into smaller and more manageable components. Existing 

studies that represent software systems using complex networks have discovered that it is 

possible to predict software defects with the help of graph theoretical analysis 

(Zimmermann & Nagappan, 2008). This information can act as supplementary 

information for software maintainers to aid in decision making when there is a request to 

modify or remove a particular software component.  
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For instance, Zimmermann and Nagappan (2008) discovered that there is a positive 

correlation between the number of defects and the value of betweenness centrality. By 

inspecting the faults reported in several releases of software, Zimmermann et al. showed 

that nodes with high betweenness centrality are usually more volatile and vulnerable to 

defects introduced during software changes and maintenance.  

 

Furthermore, classes that exhibit exceptionally high value in both in-degree and out-

degree are considered as fault prone classes, as discussed in the work by Turnu et al. 

(2012). Generally, a class with high in-degree suggests that it is a service provider, which 

is frequently used by other classes. A class with high out-degree, on the other hand, 

indicates that it is a service consumer and its operations are highly dependent on other 

classes. It is rare for a class to serve as both service provider and consumer. Hence, classes 

with high in-degree and out-degree are usually a result of poor design decision and must 

be refactored or remodularised into smaller modules that focus on its functionality.  

 

In short, the chosen graph-level metrics can also be utilised to alert software maintainers 

regarding any potential design faults that are otherwise not noticeable using traditional 

software metrics. The finding of the graph theoretical analysis will be presented to the 

software maintainers, along with some recommendations to refactor bug and fault prone 

classes.  

 

All in all, the method to represent software systems with the aid of weighted complex 

network proposed in this chapter aids software maintainers in several aspects: 

 Provide a high-level understanding of a software system from a graph theoretical 

point-of-view, especially in terms of system interaction and dependencies.  
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 Formulation of implicit clustering constraints to aid in improving the accuracy of 

software clustering. 

 Provide supplementary information to software maintainers such as identifying 

classes that more prone to bugs and errors, and those that violates common 

software design principles.  

 

4.6 Chapter Summary 

 

This chapter proposes an approach to represent OO software systems using weighted 

complex network in order to capture their structural characteristics, with respect to their 

maintainability and reliability. Nodes and edges are modelled based on the complexities 

of classes and their dependencies. The weighting mechanism is adopted from the three-

level metrics introduced in the work by Ma et al. The choice of code-level, class-level, 

and graph-level metrics used in this research, along with the justification have been 

discussed. Graph theory metrics are applied onto the transformed weighted complex 

network to evaluate the software system. Finally, the observations from the graph 

theoretical analysis are translated into implicit clustering constraints, which help in the 

subsequent constrained clustering process. The enforcement and fulfilment of the 

clustering constraints will be discussed in the next chapter.  
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CHAPTER 5: MAXIMISING THE FULFILMENT OF HARD AND SOFT 

CONSTRAINTS 

 

In this chapter, a method to maximise the fulfilment of clustering constraints is 

introduced. Unlike the work by Basu et al. (2004) where all the clustering constraints are 

assumed to be absolute and rigid, a method is proposed in this chapter to handle different 

types of constraints that vary according to their level of importance. The proposed method 

accepts clustering constraints from two different sources, either from the implicit 

structure of the software, or explicitly from domain experts who have prior knowledge 

regarding the software. Implicit constraints are categorised as hard constraints, while the 

explicit constraints are categorised as soft constraints. A unique constraints fulfilment 

method is proposed to maximise the fulfilment of all the derived implicit and explicit 

constraints. Finally, evaluations are conducted using two open-source OO software 

systems to evaluate the proposed constrained clustering approach.  

 

5.1 Managing Different Types of Clustering Constraints 

 

In Chapter 4, a method to extract clustering constraints from the implicit structure of 

software systems is introduced. Apart from extracting clustering constraints from the 

software itself, constraints can also be derived explicitly from domain experts by asking 

them to make judgment whether two clustering entities, or classes in this context, are 

similar or not to be clustered into the same group (Hong & Yiu-Ming, 2012).  

 

Domain experts may evaluate their judgments based on their level of confidence or based 

on background knowledge to support their decisions.  If the experts are highly confident 

that the provided clustering constraints are reliable and a consensus can be reached among 
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all the experts, the explicit constraints can be categorised as hard constraints, as discussed 

by Basu et al. (2004). These sets of hard constraints must be fulfilled under any kind of 

circumstances. On the other hand, if the domain experts are doubtful about the given 

constraints, it can categorised as soft constraints, such that these constraints are good to 

have (Basu et al., 2004). Implicit clustering constraints derived from the graph theoretical 

analysis are categorised as hard constraints because they are derived from one of the most 

reliable source of information (the structure and behaviour of source code). Explicit 

clustering constraints derived from domain experts, on the other hand, are categorised as 

soft constraints because these constraints are usually imprecise and fuzzy in nature, which 

might contain erroneous information (Bagheri et al., 2010). 

 

In Section 3.2.3, the RO4 was raised based on the discussed literature to identify an 

appropriate technique to maximise the fulfilment of explicit and implicit constraints, 

while penalising violation of the constraints. It is possible that the explicit constraints 

derived from different domain experts might conflict with each other due to differences 

of opinions and experience. Therefore, in this chapter, a way to filter out conflicting 

clustering constraints, and to prioritise the fulfilment of constraints with high level of 

importance is introduced. This chapter focuses on interpreting and fulfilling explicit 

clustering constraints given by domain experts, as well as implicit constraints extracted 

from the software itself, as discussed in Chapter 4.  

 

5.2 Constraints with High Level of Confidence 

 

As mentioned earlier, implicit clustering constraints derived from the graph theoretical 

analysis in Chapter 4 are categorised as hard constraints. However, if domain experts have 

very high degree of confidence that a pair of classes must be grouped together or 
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separated, these two rules can be categorised as the Must-Link Hard (MLH) or Cannot-

Link Hard (CLH) constraint as well, with the condition that these two types of clustering 

constraints are very clear and concise without any ambiguity.  

 

MLH and CLH constraints are relatively easier to fulfil in k-mean clustering because 

clustering assignment can be manipulated easily during the clustering process. However, 

it is more difficult to achieve the same results for agglomerative hierarchical clustering 

because all clustering entities are linked together at some level of the cluster hierarchy 

(Bair, 2013). Therefore, when utilising hierarchical clustering algorithm to help in 

remodularisation of software systems, maintainers must ensure that MLH and CLH 

constraints are fulfilled indefinitely at all levels of the clustering hierarchy.  

 

5.2.1 Fulfilment of Must-Link Hard Constraints  

 

The work by Miyamoto (2012) introduced a distance based approach to impose MLH 

constraints by requiring entities linked by a MLH constraint to be clustered together at 

the lowest level of cluster hierarchy. This is done by reducing the dissimilarities between 

pairs of entities linked by a MLH constraint to zero.   

 

Given a 𝑇 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} with entities 𝑥1, 𝑥2, ⋯ , 𝑥𝑛.  

For every (𝑥𝑖 , 𝑥𝑗)  ∈ {𝑀𝐿𝐻}, the distance between 𝑥𝑖 and 𝑥𝑗 is modified to 

 𝑑(𝑥𝑖 , 𝑥𝑗) = 0.  

 

By modifying the distances between pairs of classes to zero, this will eventually form a 

baseline for the clustering hierarchy. Since the MLH constraints are unconditionally 

fulfilled at the lowest level of the hierarchy, the approach proposed by Miyamoto can 
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ensure that the same fulfilment can be achieved all the way through the top of cluster 

hierarchy. Thus in this thesis, the same technique proposed by Miyamoto (2012) is 

adopted to fulfil MLH constraints.  

 

5.2.2 Fulfilment of Cannot-Link Hard Constraints 

 

There are generally two ways to enforce CLH constraints, using either constrained based 

or distance based methods (Malliaros & Vazirgiannis, 2013). Constrained based method 

modifies the cluster assignments by inspecting the merger of two entities. Note that this 

thesis focuses on agglomerative hierarchical clustering algorithm, where at each step, a 

pair of classes with the highest similarity are chosen and merged together. If the chosen 

classes belong to the CLH pairs, software maintainers will need to look for the next pair 

of classes with the second highest similarity. However, the work by Davidson and Ravi 

(2009) found that the formation of dendrogram may stop prematurely in a certain 

scenario. The authors called this as the “dead-end” situation where unless CLH 

constraints are violated, there will be no more merging possible to form the final 

dendrogram. Thus, using constrained based approach to fulfil CLH constraints is a less 

viable option in this thesis.  

 

Distance based approaches, on the other hand, modify the distance between a pair of 

entities linked by a CLH constraint to be a value high enough to prevent them from 

merging.  

 

Given a set 𝑇 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} with entities 𝑥1, 𝑥2, ⋯ , 𝑥𝑛.  

For every (𝑥𝑖, 𝑥𝑗)  ∈ {𝐶𝐿𝐻}, 𝑑(𝑥𝑖, 𝑥𝑗) = 𝑑(𝑥𝑖 , 𝑥𝑗) + 𝐶𝑜𝑛𝑠𝑡  

where 𝐶𝑜𝑛𝑠𝑡 is a constant large enough to prevent linkage between entities 𝑥𝑖 , 𝑥𝑗.  
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By enforcing this rule, the pairs of entities linked by a CLH constraint will not be chosen 

to be merged unless there are no more classes with distance more than 𝑑(𝑥𝑖 , 𝑥𝑗) + 𝐶𝑜𝑛𝑠𝑡. 

Classes which belong to CLH constraints will then be merged at the top of the hierarchy 

to form the complete dendrogram. An example is illustrated in Figure 5.1, where the circle 

at the top of dendrogram indicates the merging of classes linked by CLH constraints. By 

observing Figure 5.1 from another perspective, some CLH constraints are actually 

violated at the top of the hierarchy since without violating them, “dead-end” situation will 

occur. However, violating CLH constraints at the top of the hierarchy are negligible 

because it is almost impossible to cut the dendrogram at that location (Lung et al., 2004). 

In a typical scenario, cutting the dendrogram at the top of hierarchy will yield a very small 

number of clusters because this decision is at the trade-off of relaxing the constraint of 

cohesion in the cluster membership (Chong et al., 2013). Clusters formed when cutting 

the dendrogram at the top of the hierarchy are usually made up of classes with very low 

and fragile cohesion strength. Therefore, the distance based approach is adopted in this 

thesis to enforce the CLH constraints.  
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Figure 5.1: Example of imposing CLH constraints by modifying the distance measure 

between pairs of entities 

 

5.2.3 Problems Associated with Enforcing MLH and CLH Constraints 

 

However, changing the distance measure of entities involved in MLH and CLH 

constraints will most likely result in violating the triangle inequality of resemblance 

matrix – the pairwise matrix that contains the similarity or dissimilarity strengths between 

pairs of classes which dictate the merging of classes during the clustering process as 

discussed in Section 2.3.3. (Klein et al., 2002). Violating the triangle inequality of 

resemblance matrix means that for some classes (𝑥𝑠, 𝑥𝑡) ∉ {𝑀𝐿𝐻}, (𝑥𝑠, 𝑥𝑡) ∉ {𝐶𝐿𝐻} 

with distance 𝑑(𝑥𝑠, 𝑥𝑡) apart before imposing MLH or CLH constraints, may now be 
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𝑑′(𝑥𝑠, 𝑥𝑡)  <  𝑑(𝑥𝑠, 𝑥𝑡) along some path which skips through the MLH or CLH pairs. As 

pointed out by Klein et al. (2002), this problem can be solved by finding a new distance 

value with respect to the modified classes involved in MLH or CLH constraints using all-

pairs-shortest-path algorithm. The algorithm will search for the shortest path between all 

pairs of classes after the enforcement of MLH and CLH constraints, and the results will 

be used to update the associated resemblance matrix. The usage of all-pairs-shortest-path 

algorithm can prevent the violation of triangle inequality of the resemblance matrix. For 

instance, Figure 5.2a shows a simple example of 6 classes, Classes A, B, C, D, E, and F. 

The number on the edges indicates the distance between two classes. In the figure, the 

shortest distance between Class A and Class C is 0.9 with the following order: A-D-E-F-

C.  

 

Class A Class B Class C

Class D Class E Class F

0.9 0.5

0.1

0.30.2

0.3

Class A Class B Class C

Class D Class E Class F

0.0 0.5

0.1

0.30.2

0.3

a.)

b.)  

Figure 5.2: Potential triangle inequality problem when imposing MLH and CLH 

constraints 

 

After several discussions, the original developers discovered that Class A and Class B in 

fact are very closely related and impose a MLH constraint onto the two classes. Thus, the 
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distance between A and B is now 0.0 to reflect the MLH constraint, as illustrated in Figure 

5.2b. In this case, the shortest path between Class A and Class C after the imposition of 

the MLH constraint is now 0.5, with the following order: A-B-C. If the resemblance 

matrix is not updated accordingly to reflect the changes, the final clustering result might 

be erroneous. Therefore, the proposed constrained clustering method addresses this 

violation in fulfilling both MLH and CLH constraints using the following algorithm: 

 

Input: A set of entities S = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, a set of MLH (must-link hard constraints) 

and a set of CLH (cannot-link hard constraints) 

Output: A modified resemblance matrix  

1. Calculate the distance between each pair of entities and store it in a resemblance 

matrix D where 𝐷𝑖,𝑗 = 𝐷𝑗,𝑖 

2. Let D’ = D (create a clone resemblance matrix to modify the original one) 

3. while ¬ [(∀(𝑥𝑝, 𝑥𝑞) ∈ {𝑀𝐿𝐻}) ∩ (∀(𝑥𝑟 , 𝑥𝑠) ∈ {𝐶𝐿𝐻}) > 0] 

i. for every (𝑥𝑖 , 𝑥𝑗)  ∈ {𝑀𝐿𝐻}, the distance between 𝑥𝑖 and 𝑥𝑗 is modified to 

 𝑑(𝑥𝑖 , 𝑥𝑗) = 0. 

run all-pairs-shortest-path algorithm to prevent violation of triangular 

inequality 

ii. for every (𝑥𝑖 , 𝑥𝑗)  ∈ {𝐶𝐿𝐻},  the distance between 𝑥𝑖  and 𝑥𝑗  is modified 

to  𝑑(𝑥𝑖 , 𝑥𝑗) = 𝑑(𝑥𝑖 , 𝑥𝑗) + 𝐶𝑜𝑛𝑠𝑡 where  𝐶𝑜𝑛𝑠𝑡 is a constant large enough 

to prevent linkage between entities 𝑥𝑖 , 𝑥𝑗 

run all-pairs-shortest-path algorithm to prevent violation of triangular 

inequality 

4. Return 𝐷′ as the new updated resemblance matrix. 
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5.3 Constraints with Low Level of Confidence 

 

In scenarios where domain experts are not confident enough to judge whether the given 

clustering constraints are absolute, these sets of constraints will be categorised as soft 

constraints. Since soft constraints are not definite, clustering results with partial fulfilment 

of soft constraints are still acceptable in most cases (Bair, 2013). However, soft 

constraints might be derived with a different level of importance and ranking, subject to 

the information provided by domain experts. Fulfilling a handful of higher importance 

soft constraints might overshadow the fulfilment of several less important ones. Soft 

constraints are typically assigned with a penalty score. The penalty score is used to 

evaluate the quality of clustering results where minimisation of the penalty score is 

preferred. Thus, a prioritisation and ranking mechanism of soft constraints is introduced 

in this study.  

 

The nature of prioritising a given set of clustering constraints is a multi-criteria decision-

making (MCDM) problem. MCDM is a research of methods and procedures by which it 

concerns about evaluating multiple conflicting criteria and derive a way to come to a 

compromise. This set of criteria often differs in the degree of importance. Examples of 

methods to handle MCDM problems are analytic hierarchical process (AHP), fuzzy AHP, 

goal programming, scoring methods, and multi-attribute value functions.      

 

In this thesis, ranking and prioritising the importance of soft constraints are achieved 

using the fuzzy AHP technique. Fuzzy AHP is capable of handling the fuzziness of users’ 

opinions with respect to the importance of soft constraints (Chong, Lee, & Ling, 2014). 

The results gathered from fuzzy AHP will be represented in a table which shows a list of 

candidate criteria (soft constraints) associated with weightage (importance toward the 

Univ
ers

ity
 of

 M
ala

ya



121 

 

analysed software), where a higher weightage value represents higher priority. The result 

acts as a baseline to evaluate the penalty score of each soft constraint. Must-Link Soft 

(MLS) and Cannot-Link Soft (CLS) constraints are evaluated separately because the 

notion of Must-Link (ML) and Cannot-Link (CL) is opposing to each other.  

 

In both traditional and fuzzy AHP, the process starts by modelling a hierarchy of decisions 

based on the problem domain. The top of the hierarchy consists of the goal for conducting 

the test, followed by a group of possible choices to achieve that particular goal. The 

choices can be further divided into sub-criteria if required.  

 

A pairwise comparison among all the possible choices is conducted to justify the 

importance between them. Each choice is associated with a weightage in order to reflect 

the priority of each choice toward the ultimate goal. Domain experts will perform a 

pairwise comparison and give weightage using a nine-point scale ranging from 1-9, where 

a greater value represents higher importance. In order to reach a consensus among the 

domain experts, triangular fuzzy number (TFN) is used. TFN is capable of aggregating 

the subjective opinions of all the decision makers through fuzzy set theory. Figure 5.3 

shows an example of TFN denoted as (L, M, H) which represents the lowest possible 

value, most ideal value, and highest possible value respectively. 

 

Figure 5.3: Triangular fuzzy number 
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The triangular fuzzy number Txy is constructed using the following formula:  

𝑇𝑥𝑦 = (𝐿𝑥𝑦, 𝑀𝑥𝑦, 𝐻𝑥𝑦)                                                                            

𝐿𝑥𝑦, 𝑀𝑥𝑦, 𝐻𝑥𝑦  ∈ ( 1/9 , 9 )        

𝑀𝑥𝑦 = √𝐽𝑥𝑦1 ∙ 𝐽𝑥𝑦2 ∙ 𝐽𝑥𝑦3… ∙ 𝐽𝑥𝑦𝑛
𝑛                                                          

where xy represent a pair of criteria being judged by domain expert. Jxy1 represents an 

opinion of stakeholder “1” toward the relative importance for criteria Cx - Cy.  Value Mxy 

is produced by calculating the geometric mean of domain experts’ scores for a particular 

comparison. The geometric mean is capable of accurately aggregating and representing 

the consensus of decision makers (Saaty, 1980).  

 

After getting the TFN value for every pair of comparison, a fuzzy pairwise comparison 

matrix is established in the form of n x n matrix. Table 5.1 illustrates an example of the 

matrix. 

Table 5.1: Fuzzy pairwise comparison matrix 

 Ca Cb ….. Cn 

               Ca 1 pab ….. pan 

�̃�𝑥𝑦 =      Cb 1/pab 1 ….. pbn 

                  ⋮  ⋮ ⋮ ⋮ ⋮ 

                Cn 1/pan 1/pbn ….. 1 

 

pab represents the triangular fuzzy number for the comparison between criteria Ca and Cb.  

Comparison between criteria Cb to Ca is the reverse of Ca to Cb, thus making the TFN 

value for Cb to Ca to be represented as 1/pab. �̃�𝑥𝑦 denotes the TFN values derived from the 

formula.  
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Following the construction of comparison matrix, defuzzification will take place to 

produce a quantifiable value based on the calculated TFN values. The defuzzification 

method adopted in this thesis is derived from Liou and Wang (1992), which is based on 

the alpha cut manner. 

 

𝜇𝛼,𝛽(�̃�𝑥𝑦) = [𝛽 ∙ 𝑓𝛼(𝐿𝑥𝑦) + (1 − 𝛽) ∙ 𝑓𝛼(𝐻𝑥𝑦)] 

and  

0 ≤  𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1 

 

such that 𝑓𝛼(𝐿𝑥𝑦) = (𝑀𝑥𝑦 − 𝐿𝑥𝑦) ∙ 𝛼 + 𝐿𝑥𝑦 , which represents the left-end boundary 

value of alpha cut for �̃�𝑥𝑦 . On the other hand, 𝑓𝛼(𝐻𝑥𝑦) =  𝐻𝑥𝑦 − (𝐻𝑥𝑦 −𝑀𝑥𝑦) ∙ 𝛼 

represents the right-end boundary value of alpha cut for �̃�𝑥𝑦.  

 

𝛼 and 𝛽 in this context carry the meaning of preferences and risk tolerance of domain 

experts. These two values range between 0 and 1, in such a way that a lesser value 

indicates greater uncertainty in decision making. Since preferences and risk tolerance are 

not the focus of this research, value of 0.5 for 𝛼 and 𝛽 will be used to represent a balanced 

environment. This indicates that decision makers are neither extremely optimistic nor 

pessimistic about their judgments. 

 

The next step is to determine the eigenvalue and eigenvector of the fuzzy pairwise 

comparison matrix. The purpose of calculating eigenvector is to determine the aggregated 

weightage of a particular criterion. Assuming that 𝛿  denotes the eigenvector while 𝜆 

denotes the eigenvalue of fuzzy pairwise comparison matrix �̃�𝑥𝑦,  

 

[(𝜇𝛼,𝛽(�̃�𝑥𝑦) − 𝜆𝐼] ∙ 𝛿 = 0   
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The formula above is based on the linear transformation of vectors, where I represents the 

unitary matrix. Using the above formula, the weightage of a particular criterion with 

respect to all other possible criteria can be acquired. The results gathered from fuzzy AHP 

will be represented in a table form. The table shows a list of candidate soft constraints 

associated with weightage value, where a higher weightage represents higher priority and 

higher penalty score upon violating these clustering constraints. This table will act as a 

baseline to assist in formulating the objective function of MLS and CLS constraints. 

 

The objective function of MLS and CLS constraints is shown below. 

 

Given a set S = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} with classes 𝑥1, 𝑥2, ⋯ , 𝑥𝑛, a set of MLS (must-link soft 

constraints) and a set of CLS (cannot-link soft constraints). The objective function is to 

maximise the number of satisfied MLS and CLS constraints: 

𝑚𝑎𝑥 𝑓(𝑍) =
1

𝑛𝑐
∑𝛾(𝑥𝑖) −

1

2
∑𝛿(𝑥𝑖)                                                                               (4)

𝑚

𝑖=1

𝑚

𝑖=1

 

subject to  𝛾(𝑥𝑖)  ≥ 0, 𝑖 = 1,⋯𝑚 

   0 ≤ 𝛿(𝑥𝑖) ≤ 1, 𝑖 = 1,⋯𝑚 

Where 𝑛𝑐 is the total number of available soft constraints (including MLS and CLS) and 

𝛾(𝑥𝑖) is the number of satisfied soft constraints involving pairs of classes with  𝑥𝑖 as one 

of the classes. The first operand is the ratio of fulfilled soft constraints over the total 

number of soft constraints. Meanwhile, 𝛿(𝑥𝑖) is the penalty score for violated clustering 

constraints involving pairs of entities with 𝑥𝑖 as one of the classes. The penalty score is 

based on its importance toward the overall software system using fuzzy AHP technique. 

The cumulative weightage (penalty score) of either MLS or CLS constraints is equal to 

1. Thus, a scaling constant of 1/2 is used to normalise the second operand of the equation 
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when adding both the MLS and CLS constraints.  Maximisation of function 𝑓(𝑍) is the 

goal of this objective function. The evaluation of soft constraints fulfilment is performed 

after the formation of dendrogram. The dendrogram needs to be cut at a certain height to 

produce a set of disjoint clusters. Evaluation of soft constraints can then be done by 

inspecting the set of disjoint clusters, to check whether or not the soft constraints are 

violated. A few cutting points can be executed to compare and contrast the quality of each 

cut with respect to the minimisation of soft constraints’ penalty.  

 

5.4 Overview of the Proposed Constrained Agglomerative Hierarchical Software 

Clustering Method 

 

All in all, the complete constrained agglomerative hierarchical software clustering 

method is shown below. 

 

Given a set of clustering entities S, the distance for each pair of entities x and y in S is  

1 ≥ 𝑑(𝑥, 𝑦) ≥ 0 and a set of clustering constraints 𝛼 = {𝑀𝐿𝐻}, {𝑀𝐿𝑆}, {𝐶𝐿𝐻}, {𝐶𝐿𝑆}. 

1. Construct the baseline clusters from MLH constraints resulting in n number of 

initial clusters 𝑀1, 𝑀2, ⋯𝑀𝑛. 

2. If there is a pair of entities (𝑥, 𝑦) in 𝑀1, 𝑀2, ⋯𝑀𝑛 and CLH(𝑥, 𝑦) ∈ 𝛼, then this is 

a NP-Complete problem with no solution. 

3. Construct an initial clustering with 𝑡𝑚𝑎𝑥  clusters consisting of the n clusters 

𝑀1, 𝑀2, ⋯𝑀𝑛 and a singleton cluster for each entity. 𝑡𝑚𝑎𝑥 is the maximum number 

of clusters for the set of entities S. Initialise 𝑡 = 𝑡𝑚𝑎𝑥. 

4. while 𝑡 ≠ 1 

a. Find the pair of entities (𝑆𝑝, 𝑆𝑞) with minimum distance. 
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b. Merge 𝑆𝑟 = 𝑆𝑝 ∪ 𝑆𝑞 at the level of dissimilarity. 

c. Remove 𝑆𝑝, 𝑆𝑞. 

d. 𝑡 = 𝑡 − 1. 

e. Repeat Step 4. 

5. Generate a dendrogram tree based on the clustering results. 

6. Cut dendrogram at several points. 

7. Evaluate the fulfilment of MLS and CLS with respect to the objective function 

proposed in Equation (4). 

 

The overall workflow of the proposed algorithm is as follows: 

 

i. The software maintainer provides the UML class diagrams of the software to be 

analysed. If class diagrams are not available, source codes are converted into class 

diagrams using an off-the-shelf round-trip engineering tool.  

ii. Based on the method proposed in Chapter 4, the software is represented in a weighted 

complex network to identify and derive clustering constraints.  

iii. Methods related to the formation of clustering entities, identification of features, 

construction of resemblance matrix, and formation of dendrogram are discussed in the 

following sub-section.  

iv. The software maintainer and/or the original developer can then provide domain 

knowledge to aid in the software clustering process. Based on the confidence level of 

the maintainer and/or developer, each clustering constraint is categorised into either 

hard or soft constraint. A dendrogram is formed based on all the retrieved information.   

v. The dendrogram is cut based on the available clustering constraints. Each cutting point 

is evaluated using the proposed objective function and a cluster validity index, as 

discussed in Step iii.  
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vi. The cutting point that can fulfil the most clustering constraints and the best cluster 

validity index is preferred and chosen as the optimum cutting point that forms highly 

cohesive clusters.  

 

In this thesis, UML classes are represented as nodes while interrelationships between 

pairs of classes are represented as edges. Due to the uniqueness of the proposed 

constrained clustering method, an enhanced software clustering algorithm is proposed to 

fit into the context of this research. Details of the enhanced software clustering algorithm 

are discussed in Section 5.4.1. 

 

All in all, the proposed constrained clustering method will not only fulfil RQ5, but also 

address the question raised in RQ6: How to maximise the fulfilment of constraints during 

clustering without risking the “dead-end” situation as discussed by Davidson and Ravi 

(2009)?  

 

5.4.1 Enhanced Software Clustering Algorithm 

 

As mentioned in Section 2.3, software clustering involves 5 main steps as follows: 

1. Identification of entities or components 

2. Identification of features 

3. Calculation of similarity measure 

4. Application of clustering algorithm 

5. Evaluation of clustering results 

 

However, conventional software clustering algorithms are not capable of addressing the 

issue of using UML classes as the basic clustering entities, as well as the introduction of 
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clustering constraints. Therefore, an enhanced software clustering algorithm is proposed 

in this research.  

 

5.4.2 Identification of Entities or Components 

 

In this research, UML class diagrams are used to represent the clustering entities instead 

of relying on source code alone. UML class diagrams provide a standardised conceptual 

model that represents the system’s components, operations, attributes and relationships 

among classes. Interrelationships among classes are used to specify either through the 

presence of abstraction or accessing features of another class. This gives software 

engineers a static view of the structural connections being designed. Therefore, class 

diagrams can provide an informative summary of many design decisions about the 

system’s organisation. In this research, it is assumed that software maintainers are 

provided the UML class diagrams of the software to be analysed. If class diagrams are 

not available, source codes are converted into class diagrams using an off-the-shelf round-

trip engineering tool.  

 

5.4.3 Identification of Features 

 

Feature identification is used to analyse how similar or closely related two entities are 

based on certain common attributes. UML classes are used to represent the clustering 

entities in this research. As such, class relationships such as realisation, aggregation, and 

association are the best indicator to observe whether a class is related to another class.  

 

5.4.4 Calculation of Similarity Measure 
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Selection of similarity measure is an important step in software clustering because it is 

used to construct the resemblance matrix for the clustering entities. Resemblance matrix 

is a matrix that contains the similarity strengths between all pairs of clustering entities. In 

this research, selection of similarity measure, and subsequently, construction of 

resemblance matrix are supported by the usage of weighted complex network, as 

discussed in Chapter 4. Analysing the structure and behaviour of software systems using 

graph theoretical metrics had been proven to be useful to capture the dynamic 

relationships and dependencies between software components (Louridas et al., 2008). 

Shortest path algorithm, in particular, enables software maintainers to identify how 

closely related two classes are based on the type of weighting mechanism used in 

quantifying the weights of edges. In this research, the weight of a particular edge is 

measured using a unique weighting mechanism that takes into account the complexity of 

UML relationship (edges) and the complexity of classes (nodes) linked by the specific 

relationship. The proposed weighting mechanism provides a means to estimate the 

similarity strengths between pairs of classes, such that a lower value signifies higher 

similarity between a pair of classes, as shown in Equation (3), Section 4.2.3.  

 

𝑊𝑒𝑖𝑔ℎ𝑡(𝑅𝑖→𝑗) = (𝐻𝑅𝑖→𝑗 ∗ 𝛼) + [(1 − 𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽]                                    (3) 

 

By using Dijkstra's shortest path algorithm (Dijkstra, 1976), software maintainers can 

identify how closely related two classes are, and provide a means to indicate whether they 

belong to the same functional group. As such, in this research, shortest path algorithm is 

used to construct the resemblance matrix of the clustering entities.  

 

5.4.5 Application of Clustering Algorithm 
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Based on the resemblance matrix produced, merging of entities will then take place. 

Depending on the algorithm used, certain algorithms merge the pair with highest 

similarity first, while others merge the most dissimilar first. This process is performed 

iteratively until all entities are merged into a single cluster.  

 

There are three main types of clustering algorithm: 

1. Single Linkage Algorithm (SLINK)  

2. Complete Linkage Algorithm (CLINK)  

3. Un-weighted Pair-Group Method using Arithmetic Average (UPGMA) 

 

Single linkage, or commonly known as nearest neighbour method, defines the similarity 

measure of two chosen clusters as the maximum similarity strength among all pairs of 

entities in the two clusters. Complete linkage or furthest neighbour method, on the other 

hand, is the opposite of single linkage. The minimum similarity strength among all pairs 

of entities is used instead of the maximum similarity strength. 

 

 

Figure 5.4: Illustration of SLINK and CLINK linkage algorithms 
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However in condition where outliers exist, SLINK and CLINK methods are less effective. 

Take Figure 5.4 for example, there is an outlier “Entity p” in Cluster B where it is very 

far away from the other members of the group. If CLINK method was used, the outlier 

will drastically affect the accuracy. The same goes to “Entity q” in Cluster A if SLINK 

was used to merge the cluster. This would eventually cause the formation of low cohesive 

clusters if the number of outliers is considerably high.  

 

Instead, UPGMA defines the similarity measure between two clusters as the arithmetic 

average of similarity strengths among all pairs of entities in the two clusters. Given a 

dissimilarity matrix 𝐷𝑀 = [𝐷𝑀(𝐶𝑥, 𝐶𝑦)] from a set of clusters C: 

1) Select a pair of clusters (𝐶𝑖, 𝐶𝑗) ∈ 𝐶  such that 𝑅𝐶𝑖,𝑗  is the minimum similarity 

strength.   

2) Remove (𝐶𝑖, 𝐶𝑗) from cluster C and substitute with a new cluster  𝐶𝑘 = (𝐶𝑖 ∪ 𝐶𝑗) 

3) The similarity strength 𝑅𝐶𝑘  of the new cluster 𝐶𝑘  is calculated by using the 

arithmetic average (similarity strength) of the old cluster (𝐶𝑖, 𝐶𝑗). 

4) Repeat the process until all elements are connected in a single cluster. 

 

UPGMA is the most popular clustering method due to the fact that it is less sensitive 

toward the effect of outlier as compared to SLINK and CLINK (Gronau & Moran, 2007; 

Lung & Zhou, 2008). 

 

In this research, UPGMA will be used to merge clusters and form a dendrogram. After 

applying the clustering algorithm, the output is in the form of dendrogram. Further 

analysis of clustering results can then be performed based on the dendrogram. However, 

since clustering constraints are an important focus to be considered and addressed in this 

research, the dendrogram is not generated immediately after the application of clustering 
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algorithm. Instead, all MLH and CLH constraints will be imposed to modify the 

resemblance matrix using the algorithm shown in Section 5.2.3, before generating the 

dendrogram.  

 

5.4.6 Evaluation of Clustering Results 

 

One of the popular cluster validity indices is the Davies-Bouldin index (Davies & 

Bouldin, 1979). Davies-Bouldin index is a function of the ratio of the sum of within-

cluster scatter to between clusters separation. Because a low scatter and a high distance 

between clusters lead to a low value index, a minimisation of Davies-Bouldin index is 

preferred. However, the algorithm is highly computational intensive because the index is 

an average over the n number of clusters. When the number of entities in the dataset is 

extremely huge, the number of clusters formed will also increase relatively. In return, the 

computational efforts of Davies-Bouldin index increase because it needs to average out 

the index values over the n number of clusters. Thus, this index does not scale well when 

the search space is extremely huge.  

 

An enhanced version of the Davies-Bouldin validity index, which focuses on scalability, 

is introduced in this research to validate the performance of different cutting points of the 

dendrogram. Given a dataset, X = {𝑋1, 𝑋2, … , 𝑋𝑛} , which is a set of n entities. The 

dendrogram, D, is the hierarchy of clusters that are formed by the dataset X. A cutting 

point 𝐷𝑦  on the dendrogram results in the partitioning of the dataset into a set of 

clusters, 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑁}. 𝐶 ⊆ 𝑋 is a subset of entities in the dataset. Let 𝐶𝑘 be one of 

the clusters that is formed after applying cutting point 𝐷𝑦, and it contains m entities with 

their similarity strengths {𝑋1𝑑, … , 𝑋𝑚𝑑}. 𝑆𝑘, the centroid of cluster 𝐶𝑘, is the average of 

all similarity strengths between all pairs of entities in the cluster.   
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𝑆𝑘 = 
1

𝑚
∑𝑋𝑖𝑑

𝑚

𝑖=1

 

𝑆𝑘 is referred to as the centroid of cluster 𝐶𝑘, k ≤ N. The enhanced Davies-Bouldin index 

to validate the performance of cutting point 𝐷𝑦 is defined as:  

𝐼𝑛𝑑𝑒𝑥(𝐷𝑦) =
1

𝑁
∑

𝑖𝑛𝑡𝑟𝑎 (𝐶𝑖)

𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛

𝑁

𝑖=1

 

where N is the total number of clusters that are formed at cutting point  𝐷𝑦. 

𝑖𝑛𝑡𝑟𝑎(𝐶𝑖) is the average distance between each entity in 𝐶𝑖 and its cluster centroid 𝑆𝑖. 

 

𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛= 𝑚𝑖𝑛(𝑖𝑛𝑡𝑒𝑟 (𝐶𝑖, 𝐶𝑗)), where 𝐶𝑖, 𝐶𝑗 ∈ 𝐶; 𝑖 ≠ 𝑗, is the nearest distance between 

the two centroids of clusters 𝐶𝑖 and 𝐶𝑗, i.e., it represents the minimum distance between 

the centroids 𝑆𝑖 and 𝑆𝑗 of 𝐶𝑖 and 𝐶𝑗, respectively.  

 

For each cutting point, the enhanced Davies-Bouldin index is evaluated separately, and 

all of the partial calculations are averaged by its weighted mean. 𝑖𝑛𝑡𝑟𝑎(𝐶𝑖) validates the 

cohesion strength among all members of the same cluster 𝐶𝑖. A lower value of 𝑖𝑛𝑡𝑟𝑎(𝐶𝑖) 

signifies a higher cohesion, whereas 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛validates the coupling strength among the 

neighboring clusters, 𝐶𝑖 and 𝐶𝑗. A higher 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛 value indicates that the clusters formed 

are well separated.  

 

The major difference between the original Davies-Bouldin index and the proposed 

enhanced Davies-Bouldin index is that the enhanced version evaluates partial calculations 

instead of averaging over all of the clusters. In cases where there are outliers (i.e., 

singleton clusters), the original Davies-Bouldin index is not capable of detecting them 

because the outliers that are involved are also averaged out. A singleton cluster here refers 

to a cluster that contains only one entity. Furthermore, when calculating the clusters’ 
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separation for a specific cluster, the proposed enhanced index only inspects the cluster 

centroid that is closest to the evaluated cluster. The original Davies-Bouldin index 

calculates cluster separation of a cluster 𝐶𝑖 by measuring the distance from its centroid to 

an average over all N clusters. The time complexity of this operation is linear O(N) to the 

size of data. Because the merging points of a dendrogram are formed in an ascending 

order, the enhanced version only needs to inspect the cluster formed before and the cluster 

formed after the current one in order to identify its nearest neighbour instead of averaging 

out its distance with all other clusters. The rationale behind this decision is that if there is 

a cluster centroid that is very close to the evaluated centroid, then there is a very high 

chance that the two clusters are strongly coupled. Using this approach, the complexity of 

calculating cluster separation can be reduced from O(N) to O(1). Through the application 

of this enhanced Davies-Bouldin index, a cutting point that produces the lowest index 

value is considered to have the best balance in terms of the cohesion, coupling, and 

similarity constraint. 

 

However, in the case of a singleton cluster, the index score should be penalised. It is 

always a good practice to minimise the occurrences of clusters with a single element 

(Mirkin, 2004). Many cluster validity index tend to incorrectly favour clustering that 

generates singleton clusters because they do not have a mechanism to detect it. Singleton 

clusters are assumed to be removed by users manually. To avoid this bias, a penalty 

mechanism to penalise singleton clusters is introduced, where if a single entity is found 

inside a cluster 𝐶𝑖 , 𝑖𝑛𝑡𝑟𝑎(𝐶𝑖 ) score will be adaptively increased to penalise the final 

𝐼𝑛𝑑𝑒𝑥(𝐷𝑦) of that specific cutting point.  

 

The initial concept of penalty is by penalising the cluster cohesion value on singleton 

clusters. The proposed penalty mechanism will assign a very high value to 𝑖𝑛𝑡𝑟𝑎(𝐶𝑖) for 
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every singleton cluster 𝐶𝑖, which increases the validity index 𝐷𝑦. This scenario forces the 

algorithm to continue to search for a better partition point that will produce a lower 

validity index value. Eventually, the penalty mechanism will minimise the probability of 

cutting the dendrogram at an undesirable position. 

 

The simplest way to penalise a singleton cluster is by assigning a static number (for 

example, 1, 2, 3) to increase the overall validity index value. However, in a certain worst 

case scenario, the penalty effect might become insignificant. This extreme scenario refers 

to the case where the 𝑖𝑛𝑡𝑒𝑟 value is only a few times larger than the 𝑖𝑛𝑡𝑟𝑎 value. When 

the value of 𝑖𝑛𝑡𝑒𝑟 grows exponentially, the effect of the static penalty mechanism of 

𝑖𝑛𝑡𝑟𝑎 (𝐶𝑖) will be negligible. Ultimately, this strategy will cause the calculation to 

incorrectly give a low 𝐼𝑛𝑑𝑒𝑥(𝐷𝑦) value to a cutting point that forms singleton clusters. 

Even worse, the validity index will assume that the erroneous result is the best cutting 

point. Figure 5.5 shows an example of the worst case scenario, in which the average 𝑖𝑛𝑡𝑒𝑟 

value is large because of the very large distances between the pairs of cluster centroids.  

 

Figure 5.5: Example of a worst case high 𝑖𝑛𝑡𝑒𝑟 score 
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To create a more concrete example, assume the case in Figure 5.5, where the dotted line 

cuts the dendrogram and forms 5 clusters, A, B, C, D, and E. The average 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛 is 0.1 

and a singleton cluster is found (Cluster E). If a static penalty of 1 is given to 

an  𝑖𝑛𝑡𝑟𝑎 (𝐶𝐸)  score, the 
𝑖𝑛𝑡𝑟𝑎 (𝐶𝐸)

𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛
 will be equal to 10. This value is not sufficiently 

significant to signify that this cut produces a bad clustering result because the effect of a 

penalty is nullified by the denominator (note that the enhanced Davies-Bouldin index 

favours a low score). 

 

Thus, the imposition of a penalty mechanism should be adaptive instead of assigning a 

static penalty value. The factor that increases the 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛value is the wide gap between 

the pair of merging forks. 𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑛 calculates the nearest distance between the two 

centroids of clusters, 𝑆𝑖  and 𝑆𝑗  of 𝐶𝑖 and 𝐶𝑗 , respectively, among all pairs of clusters. 

When the gap between the merging forks is relatively large, it will cause the index value 

to increase proportionally. 

 

To address this problem, an adaptive penalty mechanism based on the relative change 

between the maximum 𝑖𝑛𝑡𝑒𝑟  and average 𝑖𝑛𝑡𝑒𝑟  values is introduced. Let 𝐷𝑦 be the 

cutting point that forms a set of clusters 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑁}. The average 𝑖𝑛𝑡𝑒𝑟 is given 

as 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑛, while the maximum 𝑖𝑛𝑡𝑒𝑟 value is given as 𝑖𝑛𝑡𝑒𝑟𝑚𝑎𝑥.  

The relative change between the average 𝑖𝑛𝑡𝑒𝑟 and maximum 𝑖𝑛𝑡𝑒𝑟 is 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 =
|𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑛  − 𝑖𝑛𝑡𝑒𝑟𝑚𝑎𝑥|

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑛 
 

 

If 𝑖𝑛𝑡𝑒𝑟𝑚𝑎𝑥 is x times larger than the 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑛value, then the equivalent value of the 

penalty should be imposed. Thus, the adaptive penalty P is given as 
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𝑃 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 

 

As such, if a dendrogram cutting point produces singleton clusters, penalty P is assigned 

as the cluster validity index value in order to penalise the formation of singleton clusters. 

Otherwise, the enhanced Davies-Bouldin index is used to evaluate the quality of each 

cluster.  

 

 Finding the Optimum Dendrogram Cutting Point 

For a small dataset for which the search space is small, it is very easy to identify the 

optimum cutting point through visual inspection. The optimum cutting point in this 

context refers to the cutting point that produces highly cohesive sets of clusters. However, 

when a large dataset is involved, visual inspection is infeasible. Finding out the optimum 

cutting point can be highly computationally intensive. One way to find the optimum 

cutting point is by using the exhaustive cut method, which cuts the dendrogram at each 

possible point to find the best possible clustering result. This method is not feasible, and 

duplicate effort will definitely occur because the possibility of producing repeating index 

values is much higher. Therefore, a solution to adaptively search for the optimum point 

in a large-scale dataset is proposed in this research.  

 

Scalability is an important issue in software clustering, for recovering from a software 

system that has a very large number of entities. If the proposed approach were to run on 

a larger and more complex system, then what is the average number of cuts that is needed?  

To address this problem and to improve the scalability of the dendrogram cutting method, 

the cutting technique introduced in (Fokaefs et al., 2012) is adapted, where the 

dendrogram is only cut at every unique merging fork instead of setting a threshold value. 
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In order to verify the performance of this method, a series of tests and simulations were 

conducted, and the details of the simulations are presented in Appendix B.  

 

Based on the results presented in Appendix B, cutting the dendrogram after every unique 

merging fork produces the best result. The reason for this choice is that there is usually a 

significant change in the validity index value after a merging fork. At the same time, 

cutting at unique merging forks can minimise redundant effort. The redundant effort in 

this context refers to the repetitive effort that is required to find optimum clustering 

results. In order to further enhance the accuracy of finding the optimum cutting point, a 

least-squares polynomial regression analysis is introduced in this research.  

 

In a polynomial equation, one can identify the highest and lowest points by finding the 

derivative of the polynomial function. Using this same concept, given a distribution of 

different cutting points and their validity index values, the algorithm can find the cutting 

point that produces the lowest validity index value if the polynomial equation can be 

formed.  

Table 5.2 shows an example of a dendrogram that has points cut at 0.2, 0.4, 0.6, 0.8, and 

0.99, which produces different cluster validity index values. Using the information that is 

retrieved from this observation, a cutting point-validity index graph can be plotted to 

observe the trend with which different cutting points can affect the results of the validity 

index. 

Table 5.2: Example of validity index values retrieved from different cutting points 

Cutting point (x-axis) Enhanced Davies-Bouldin validity index (y-axis) 

0.2 15 

0.4 7 

0.6 4 

0.8 24 

0.99 27 
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Figure 5.6 depicts the graph that is plotted using the information that is retrieved from 

Table 5.2. An estimation of the polynomial equation can then be formed using the least-

squares method (Wolberg, 2006). 

 

 

Figure 5.6: Polynomial regression based on the data from Table 5.2 

 

The 𝑅2 value indicates the correlation coefficient of the estimated polynomial equation. 

The correlation values that are equal to 1 or -1 correspond to data points that lie exactly 

on the estimated line which indicates that the estimation is very reliable. The next step is 

to find the root of the polynomial equation. This step provides identification of the 

minimum point of the x-axis, which in this context, is the cutting point that produces the 

lowest validity index value.  

 

The example in Figure 5.6 is a quartic function. The roots of y = -1554.8x4 + 3484.5x3 - 

2564.2x2 + 709.4x - 49.703 are [x= 1.080, x= 0.104, x= 0.529, x= 0.454]. It is to be noted 

that the curve represented in Figure 5.6 is estimated based on polynomial interpolation of 

the data points, which can only be served as a visual guidance. Using the four roots, one 

can find the corresponding y-axis values, which resemble the validity index values. The 
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root that produces the lowest y-axis value will be deemed to be the best cutting point 

because it yields the lowest validity index value. Through this method, the cutting point 

x=0.529 can easily be identified, and it forms an optimum set of reliable clusters.  

 

Eventually, the proposed adaptive penalty mechanism and the least-squares polynomial 

regression technique can be applied to different types of cluster validity index and 

clustering algorithms. These two techniques are generic in the sense that they do not alter 

the working principles of the existing algorithms but instead improve their efficiency and 

accuracy.  

 

5.5 Preliminary Evaluation of the Proposed Constrained Clustering Approach 

 

In order to test the applicability and performance of the proposed method, a preliminary 

evaluation has been conducted using two open-source software systems. The evaluation 

provides a concrete example to illustrate the general workflow of the proposed 

constrained clustering approach.  

 

Numerous remodularisation techniques have been proposed in the literature to aid in 

software architecture recovery but it is hard to evaluate their performance and 

applicability toward real-world software development. The work by Ducasse and Pollet 

(2009) presented a comprehensive taxonomy for the state-of-the-art software architecture 

recovery approaches. The taxonomy is designed in a process-oriented manner such that it 

allows a potential reverse engineer who wants to reconstruct the architecture of an 

existing software to clearly understand the existing approaches. Thus, software 

practitioners can choose the most appropriate approaches that can fit into their problem 

domain. The taxonomy proposed by (Ducasse & Pollet, 2009) is shown in Figure 5.7. 
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Figure 5.7: Process-oriented taxonomy extracted from Ducasse & Pollet (2009). 

 

The taxonomy consists of several important affiliations, which are the goals, the 

processes, the inputs, the techniques, and the outputs of software architecture recovery 

approaches. For each affiliation, it is further categorised into several sub-groups. The 

taxonomy allows researchers to claim the applicability of their proposed software 

architecture recovery approaches on real-world problems and provide clear explanations 

in a process-oriented manner. Thus, the proposed constrained agglomerative hierarchical 

software clustering approach is described using the same taxonomy.  

 

 Goal: The goal of this study is to recover a high-level abstraction of OO software 

systems to aid in software maintenance phase. The result of clustering can aid in 

understanding and analysing the underlying structure of the analysed software. 

Thus, the goal of this research falls in the category of ‘Redocumentation’ and 

‘Analysis’.  
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 Process: A hybrid constrained agglomerative hierarchical software clustering 

technique, following a bottom-up approach. 

 

 Input: From the architectural aspect, UML class diagrams of the analysed software 

are used as the input, which consist of both architecture style and viewpoints.  

 

 Technique: Semi-automatic approach which combines software clustering and 

domain knowledge in the form of hard and soft constraints.  

 

 Output: Horizontal conformance. The proposed constrained clustering result is 

verified with the normal software clustering result (without involvement of 

clustering constraints) and also the original package diagram of the analysed 

software system. MoJoFM (Wen & Tzerpos, 2004) is used in this research to 

evaluate the quality of the proposed technique.  

 

As discussed in Section 3.5, MoJoFM is a suitable tool used to compare the similarities 

between two clustering results. However, Mitchell and Mancoridis (2001) discussed that 

often time, gold standard does not exist. The authors suggested another approach by 

clustering the analysed software using different clustering algorithms. Then, the 

similarities between the results of different algorithms are compared with each other. This 

will allow software maintainers to identify not only the quality of the clustering results, 

but also the stability of the clustering algorithm, when compared against other prior 

studies.  
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Thus, in this research, the evaluation of the proposed constrained clustering approach is 

conducted in the following manner: 

1. Perform conventional clustering approach that do not make use of any clustering 

constraints, or commonly referred as unconstrained clustering approach.  

2. Perform constrained clustering using the proposed approach by incorporating hard 

and soft constraints.  

3. Retrieve the original package diagram of the analysed open-source software from 

the project website or repository. Based on the work by Beck & Diehl (2012), a 

reference decomposition or gold standard can be created by using the current, 

factual architecture of the system created by the developers (e.g., the package 

structure of an object-oriented system). The package structure or diagram is by no 

means the gold standard since there is no way to verify the quality of the 

decomposition. However, it can be treated as a guideline to evaluate and compare 

between the results produced by the proposed technique and the documented 

artifact.  

4. Use MoJoFM to calculate the similarities between all three results (unconstrained 

clustering, constrained clustering, and package diagram).  

 

Two evaluations were carried out to assess the feasibility of the proposed method. First, 

a university research project, MathArc ("MathArc - Ensuring Access to Mathematics 

Over Time," August 2009), is chosen  for the evaluation. This project is aimed at creating 

a system that is capable of the long-term preservation and dissemination of digital journals 

in mathematics and statistics. This system is a joint project by Cornell University Library 

and Göttingen State University Library, which took two years to develop. The system 

contains 33 classes with an average of 8 attributes and 4 methods per class. The system’s 
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functional modules can be visually represented as in Figure 5.8. Dotted black boxes 

represent the original UML packages. There are a total of six subsystems in this software.  

 

Figure 5.8: Overview of visual representation of the original package diagram and the 

constrained clustering results 

 

The steps involved in performing the evaluation are as follows: 

1. Prior to the evaluation, all the classes are assumed to be scattered around and not 

grouped in their respective packages. 

2. Based on the original UML package diagram, several MLH, CLH, MLS, and CLS 

constraints are extracted. For instance, based on Figure 5.8, it can be observed that 

class “Monitor” and “Preservation” must be grouped into the same cluster because 

they are from the same subsystem. Thus, a MLH constraint “Monitor-

Preservation” is generated in Table 5.3.  

3. For MLS and CLS constraints, penalty scores for violating the soft constraints are 

generated randomly. Besides that, an erroneous clustering constraint was created 
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intentionally, but it is assigned with a very low penalty score to see how the 

proposed approach handles the fake constraint. For instance, although the original 

package diagram indicates that “Media” and “Standards” classes belong to 

different packages, a MLS constraint with low penalty score of 0.1 is created. This 

MLS constraint simulates the situation where domain experts are not very 

confident about the given clustering constraint.  

4. Apply the proposed constrained clustering algorithm to restructure the class 

diagram, so that similar classes are grouped into the same package, while dissimilar 

ones are separated from each other. 

5. Use MoJoFM to compare the result of the proposed constrained clustering 

approach with the original packages to evaluate the accuracy of the proposed 

approach.  

 

Table 5.3: Generated clustering constraints for MathArc system 

Clustering Constraints 

MLH CLH MLS(penalty) CLS(penalty) 

Submission-

QualityAssu 

AccessControl-

Submission 
Report-SysD(0.3) 

Monitor-

Negotiator (0.5) 

Monitor-

Preservation 
Report-Services 

Standards-

AccessControl(0.3) 

Submission-

Services(0.5) 

ErrorCheck-

Media 
 

Updates-

APGeneration(0.3) 
 

ReplaceMedia-

Media 
 Media-Standards(0.1)  

 

5.5.1 Accuracy and Scalability of the Proposed Clustering Approach 

 

However, it is also important to validate the proposed clustering approach with prior 

studies to evaluate its accuracy and scalability. The proposed dendrogram cutting 

technique is compared to well-known hierarchical clustering algorithms with a different 
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linkage method, specifically SLINK and CLINK combined with exhaustive and static 

dendrogram cutting methods (Greenacre, 2012). The exhaustive cut method cuts the 

dendrogram, starting from the 0.001 level of similarity and making increases of 0.001 for 

every subsequent cut, until the cutting point is equal to the maximum height. A static cut 

method means cutting the dendrogram at a predefined similarity threshold. However, if 

there is no information on the correct number of clusters and the number of entities inside 

of a cluster, a static cut is not a feasible choice. Another form of static cut is to cut the 

dendrogram at the highest gap, which would indicate that those clusters are naturally 

clustered (Mirkin, 2004). The highest gap refers to cutting the dendrogram at the largest 

distance between two successive entities. Thus, the highest gap cut is chosen to compare 

with the proposed dendrogram cutting technique. Table 5.4 shows the result of using 

SLINK combined with an exhaustive cut, a highest gap cut and the proposed dendrogram 

cutting method. 

Table 5.4: Simulation using SLINK with 3 different dendrogram cutting methods 

 SLINK + 

Exhaustive Cut 

SLINK + Highest 

Gap Cut 

SLINK + proposed 

cutting method 

Runtime (in second) 21 3 8 

Suggested cutting 

point 

0.38 0.475 0.35 

Cluster validity 

index (enhanced 

Davies-Bouldin 

index) 

20.15 150.35 21.65 

 

From the table, it can be observed that although SLINK + Exhaustive Cut discovers a 

cutting point that produces the lowest index value, the runtime is significantly higher 

compared to the other two methods. SLINK + Highest Gap discovers that the highest gap 

locates very near to the top of the dendrogram tree. Cutting the dendrogram near the top 
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of the tree results in a bad cluster validity index values. This situation is very common 

because these clusters usually have the highest dissimilarity between them in the 

dendrogram. Figure 5.9 shows the dendrogram tree that is produced by using the SLINK 

algorithm, which indicates that the highest gap is very near to the top of the dendrogram. 

SLINK + the proposed cutting method, on the other hand, managed to discover a cutting 

point that is very close to the exhaustive method but that has a relatively fast runtime.  

 

 

Figure 5.9: Dendrogram tree generated using SLINK 

 

Table 5.5 shows the result of using CLINK with 3 different dendrogram cutting methods.  
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Table 5.5: Simulation using CLINK with 3 different dendrogram cutting methods 

 CLINK + 

Exhaustive Cut 

CLINK + 

Highest Gap 

Cut 

CLINK + 

proposed cutting 

method 

Runtime (in seconds) 28 6 11 

Suggested cutting point 0.43 0.05 0.44 

Cluster validity index 

(enhanced Davies-Bouldin 

index) 

23.66 5035.68 23.87 

 

Similar to the simulation with SLINK, an exhaustive cut yields the highest runtime. The 

highest gap using the CLINK method cuts the dendrogram near to the base of the tree and 

produces a bad result because it forms a substantial number of singleton clusters. Figure 

5.10 depicts the dendrogram tree that is generated from CLINK. The proposed 

dendrogram cutting method, on the other hand, detects a cutting point that is very close 

to an exhaustive method while the runtime is more than two times faster. 

 

The results shown in Table 5.4 and Table 5.5 match the outcomes of Table B1 through 

Table B3 (available in Appendix B), which are generated from artificial datasets. These 

results demonstrate that the accuracy of the proposed dendrogram cutting method is on 

par with the exhaustive cut method while having the capability of minimizing the efforts 

that are required to find the optimum cutting point.  
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Figure 5.10: Dendrogram tree generated using CLINK 

 

By observing Figure 5.9 and Figure 5.10, it is found that the dendrogram trees generated 

from SLINK and CLINK produce a completely different hierarchy. SLINK and CLINK 

are based on opposite philosophies, where SLINK defines the similarity measure of two 

clusters as the maximum coefficient between all of the pairs of entities, while the reverse 

is true for CLINK. Based on the work by (Hughes, 1979), if two different clustering 

methods generate an entirely different tree, the clusters are said to be weakly defined. 

This result indicates that the MathArc case study does not demonstrate a well-defined 

architecture, and the grouping of clusters is not as distinct. Thus, evaluation using the 

UPGMA method will be more appropriate. 

 

Next, to evaluate the effectiveness of the penalty mechanism, evaluations were conducted 

using two other well-known cluster validity indices, namely the Davies-Bouldin index 

and Dunn’s index (Dunn, 1973). Dunn’s index is calculated by dividing the minimum 

Univ
ers

ity
 of

 M
ala

ya



150 

 

inter-cluster separation by the maximum intra-cluster cohesion. A higher Dunn’s index 

indicates a better clustering result, which is opposite from the Davies-Bouldin index. The 

results gathered from all three validity indices were analysed to find out the effectiveness 

of the penalty mechanism that was introduced.  

 

To compare all of the three indices fairly, the dendrogram tree is constructed using 

UPGMA. The dendrogram is then cut using the proposed dendrogram cutting method to 

form a cutting point-validity index table. The table allows one to observe the variation in 

the index scores at different cutting points. Table 5.6 shows the index scores of the cutting 

point-validity index of all three indices. 

 

Table 5.6: Index scores of the cluster validity indices for the MathArc system 

Cutting point Davies-Bouldin Dunn’s Index Enhanced Davies-

Bouldin (with the 

proposed penalty 

mechanism) 

0.072 0.021 ∞ 94.958 

0.126 0.133 0.203 88.333 

0.134 1.088 0.187 85.571 

0.144 1.484 0.18 81.984 

0.168 59294.83 0.129 59350.22 

0.198 46914.07 0.129 46967.53 

0.215 33354.08 0.135 33410.08 

0.226 36865.2 0.132 36916.78 

0.251 38913.63 0.12 38957.19 

0.296 4360.97 0.123 4401.322 

0.301 4637.941 0.098 4668.566 

0.306 4949.625 0.087 4975.759 

0.318 5743.269 0.065 5758.346 

0.324 6224.793 0.05 6232.959 

0.329 6751.137 0.054 6760.046 

0.332 7435.395 0.077 7439.595 

0.373 8254.413 0.099 8259.08 

0.389 9283.049 0.096 9288.299 

0.408 8.051 0.157 14.051 
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0.41 77.156 0.198 80.682 

0.421 93.987 0.053 93.987 

0.438 109.906 0.078 109.906 

0.462 144.017 0.053 144.017 

0.466 5.326 0.168 120.572 

0.481 9.22E+15 0 9.22E+15 

 

It should be noted that the Davies-Bouldin index and the enhanced Davies-Bouldin index 

favour the minimisation of the index value while the Dunn’s index favours the 

maximisation of the index value. As can be seen from the table, the original Davies-

Bouldin index and the Dunn’s index tend to favour cutting the dendrogram at low levels 

of similarity. These cutting points range from 0.072 to 0.144, which yield a low Davies-

Bouldin index and a high Dunn’s index. However, these four cutting points are in fact 

forming a substantial number of singleton clusters. Because of the lack of singleton cluster 

detection, both of the indices incorrectly assume that those are the optimum cutting points. 

The proposed enhanced Davies-Bouldin index, on the other hand, penalises the formation 

of singleton clusters to prevent software maintainers from choosing those four cutting 

points. As such, the evaluation shows that the proposed enhanced Davies-Bouldin index 

coupled with the penalty mechanism are able to effectively prevent the formation of 

singleton clusters, when compared to two other cluster validity indices.  

 

5.5.2 Evaluation Result for MathArc System 

 

Figure 5.8 shows the clustering results using the proposed approach. The blue and red 

boxes represent the results of the evaluation, with each box representing one subsystem. 

The blue boxes indicate the clustering results that match the original package diagram, 

while the red boxes indicate the mixture of results that match and do not match the original 
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package diagram. The diagram was redrawn to normalise all of the association, 

aggregation, and generalisation into the form of normal association notation. 

 

Note that all the MLH and CLH constraints are fulfilled in the result. However, the MLS 

constraint of "Media-Standards was violated. This is because based on Davies-Bouldin 

index, fulfilling the MLS constraint of “Media-Standards” will result in low cohesion 

strength among the associated clusters. Since the cost of violation is relatively smaller, 

selecting another cutting point that violates this MLS constraint is a better option. The 

objective function of soft constraints in this evaluation is 𝑓(𝑍) = [(5/6) − (0.05)] =

0.7833. The first operand signifies that 5 out of 6 soft constraints are fulfilled. The value 

of 0.05 is calculated based on the penalty score of violating the constraint “Media-

Standards” and multiplying it with scaling constant of 1/2.  

 

By using the MoJoFM tool provided by Wen and Tzerpos (2004), the evaluation result 

using the proposed constrained clustering method managed to achieve MoJoFM metric 

of 92.59% when compared against the original package diagram. The MoJoFM favours 

high metric value where a 100% score is given if both clustering results are identical. 

However, as mentioned earlier, the original package diagram is by no means the ‘gold 

standard’ because there is no way to verify if it is the best abstraction to represent the 

software design of MathArc system. Thus, another evaluation is performed by comparing 

the results without imposing any constraints. The result can be visually represented as 

shown in Figure 5.11. 
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Figure 5.11: Overview of visual representation of the original package diagram and the 

clustering results without clustering constraints 

 

Based on Figure 5.11, it can be observed that the ‘Administrator’ package (lower left hand 

side) contains classes from two other packages. This is because these classes behave 

similarly to utility classes, for which the association strengths within the same package 

are relatively weak compared to the other packages. When compared with the original 

package diagram, the MoJoFM achieves value of 88.89%. Although there are slight 

improvements when using the proposed constrained clustering technique, it is not 

significant enough. Thus, another evaluation is performed using a larger software. 

 

5.5.3 Evaluation Using JSPWiki Project 
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An open-source project, the JSPWiki which is a Wiki engine written in J2EE component 

is chosen. Wiki engines are used to host and manage Wiki web pages. JSPWiki contains 

42560 lines of code and 425 classes with an average of 5.5 methods per class. A total of 

326 out of these 425 classes were removed in this evaluation because it was discovered 

that there were some classes that do not have any direct dependency with other classes. 

These classes are either standalone features or classes with very specific functions that do 

not have any interaction with other components in the system.  

 

A total of 15 MLH and CLH constraints, and 5 MLS and CLS constraints were extracted 

from the original package diagram of JSPWiki. The constraints are listed in Table 5.7.  

 

Table 5.7: Clustering constraints derived from the JWPWiki project 

Clustering Constraints 

MLH CLH MLS(penalty) CLS(penalty) 

GroupCommand-

AbstractCommand 

Workflow-

TemplateDirTag 

Tast-Outcome 

(0.3) 

Command-

WikiEventUtil(0.2) 

AbstractCommand-

WikiCommand 
MailUtil-Entry 

WatchDog-

RSSThread(0.3) 

WikiPrinciple-

WikiPage(0.3) 

UserCheckTag-

WikiServletFilter 

Workflow-

CommandResolve

r 

PageManager-

EditorManager(0.2

) 

Step-

ParseException(0.3

) 

AdminBeanManager

-WikiEngineEvent 

PageRenamer-

Entry 

Feed-

RSS20Feed(0.1) 

UserBean-

Editor(0.1) 

UserDatabase-

WikiSession 

Workflow-

WikiRPCHandler 

Editor-

RSSGenerator(0.1) 

BlogUtil-

FileUtil(0.1) 

Entry-AclImpl 
MessageTag-

Denounce 
  

WikiSession-

UserProfile 

MessageTag-

Entry 
  

FormClose-

FormSelect 

FileUtil-

RPCCallable 
  

FormElement-

FormSet 

Heading-

MarkupParser 
  

FormOutput-

FormOpen 

Heading-

ProviderException 
  

FormInput-

FormTestArea 

SecurityVerifier-

WikiException 
  

InsertPage-

TableofContents 
FileUtil-ClassUtil   
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Clustering Constraints 

MLH CLH MLS(penalty) CLS(penalty) 

Entry-

FileSystemProvider 

BasicPageFilter-

CoreBean 
  

InitializablePlugin-

Plugin 

Util.PageSorter-

Outcome 
  

TemplateDirTag-

WikiRPCHandler 
Outcome-Feed   

 

However, due to the large number of classes exist in the project, the size of the class 

diagram is too large to be displayed. Only the MoJoFM metrics are reported. The full 

details of the evaluation results can be accessed by the following URL: 

http://sourceforge.net/projects/umltocomplexnetwork/files/. 

MoJoFM metric: Constrained clustering compared to original package = 76.25% 

MoJoFM metric: Unconstrained clustering compared to original package = 62.45% 

 

The improvement by imposing pairwise constraints, observing from the results of 

MoJoFM metric, is more significant in larger software systems. The same observation 

was also found in the work by Davidson and Ravi (2009), where the author discovered 

that when performing on large datasets, a small number of clustering constraints can 

significantly improve the results of agglomerative hierarchical clustering.  

 

5.6 Chapter Summary 

 

This chapter presents a method to integrate explicit and implicit constraints with 

agglomerative hierarchical software clustering. The proposed method is capable of 

handling four types of constraints, namely MLH, CLH, MLS, and CLS constraints. Hard 

constraints are fulfilled throughout the whole clustering process while soft constraints are 

optional constraints associated with some validation of penalty if they are violated. 
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The proposed approach has been successfully implemented on two projects, the MathArc 

and JSPWiki system. Comparisons against prior studies were also conducted to evaluate 

the effectiveness of the proposed dendrogram cutting method and the penalty mechanism. 

Several MLH, MLS, CLH, and CLS constraints were generated to test the proposed 

technique. When compared against unconstrained clustering approach, the proposed 

approach managed to achieve better results measured using MoJoFM metric. The 

proposed method is designed to be generic and flexible enough to be applied on different 

domains. For instance, the fulfilment of MLH and CLH constraints is not domain specific 

and can be adapted to be used on a different field of study. The fulfilment of MLS and 

CLS constraints, on the other hand, can be extended to other MCDM resolution 

techniques, such as goal programming, scoring methods, and multi-attribute value 

functions. The penalty score of violating a particular soft constraint can be adjusted to fit 

into the domain of study. In the next chapter, the full-scale experiment, along with the 

design decisions are discussed in detail.  
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CHAPTER 6: EXPERIMENTAL DESIGN AND EXECUTION 

 

In this chapter, experiments to evaluate the accuracy and scalability of the proposed 

approach are discussed in detail. This chapter adopts the experimental design and 

framework discussed by Wohlin et al. (2012), which follows a systematic approach to 

conduct software engineering research. The chapter starts by discussing the 

implementation plan of the proposed approach. Next, implementation of the prototype is 

carried out using real datasets gathered from open-source projects. The experimental 

results are evaluated and discussed in the next chapter. 

 

6.1 Experiment Scoping 

 

This research follows an empirical research methodology where the proposed approach 

is validated using real-world OO software systems. Therefore, the scope of the 

experiment must be pre-determined in order to ensure that the experiments conducted are 

aligned to the goal of the research.  

 

6.1.1 Goal Definition 

 

The first step is to decide whether an experiment is a suitable way to analyse the problem 

at hand. In this thesis, the objective of the empirical study is to determine the suitable 

measure constructs to represent OO software systems using weighted complex network, 

and perform the graph theoretical analysis to reveal some extra deterministic information 

about relationships among classes. This information is then used to support the 

subsequent constrained clustering approach to form cohesive clusters and improve the 

overall effectiveness of software clustering. 
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The experiment is motivated by the need to understand how constrained clustering can 

help in recovering a high-level abstraction of OO software systems, as compared to 

unconstrained approaches. It is well known in existing studies that even a small amount 

of domain knowledge of the software in the form of pairwise constraints can help improve 

the clustering results. However, there has been much less attention focused on how to 

automatically derive clustering constraints without human intervention and ways to fulfil 

clustering constraints in the domain of software engineering. As such, it is important to 

formulate a proper method to derive explicit constraints from domain experts, and also 

implicit constraints from the implicit structure of software systems to form highly 

cohesive clusters that are representative enough to illustrate a high-level abstraction view 

of the OO software systems. The goal of the experiment can be expressed as follows: 

 

Object of study – The object of this research is to propose a constrained clustering 

approach facilitated by the use of weighted complex network analysis.  

Purpose – The purpose of the experiment is to evaluate the accuracy and scalability of 

the proposed approach when compared to an existing unconstrained clustering approach. 

Perspective – The perspective of the experiment is from the point of view of software 

maintainers. Software maintainers can identify if there are any statistical differences when 

domain knowledge in the form of pairwise constraints are integrated into software 

clustering. They can also observe how graph theoretical analysis can reveal some extra 

deterministic information about relationships among all the involved classes, with the 

purpose to provide a high-level abstraction of the analysed software. 

Quality focus – The main result studied in the experiment is the cohesiveness of the 

clusters formed by the proposed constrained clustering approach. The formation of 

clusters is based on the explicit constraints derived by domain experts and also implicit 
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constraints derived automatically using the proposed method. In terms of software 

quality, two specific aspects are emphasised, which are the maintainability and reliability 

of the analysed software system.  

Context – A total of 40 open-source Java software systems are chosen in this study. The 

sizes of the software systems vary from 128 to 2,408 classes and 7,436 to 216,093 lines 

of code. The software systems are chosen to reflect some representative distribution on 

the population of open-source OO software available in the market, based on the 

following class count categories: 

 less than 250 classes – 7 projects 

 between 250-500 classes – 11 projects 

 between 501-1000 classes – 14 projects 

 more than 1000 classes – 8 projects 

As this research is based on an exploratory study, the selected software systems must be 

of high quality and reputable among the open-source communities. As it is, all the 40 

software systems are being actively developed and maintained by a large number of open-

source contributors. 

 

6.1.2 Summary of Scoping 

 

In order to provide a clear and concise summary of the scope for this research, the Goal 

Question Metric (GQM) approach proposed by Van Solingen, Basili, Caldiera, and 

Rombach (2002) is adopted. GQM approach emphasises eliciting goals and research 

questions to find necessary metrics for addressing the identified goals and questions. The 

GQM approach is usually presented in the following template as follows:  

Analyse <Object(s) of study> 

for the purpose of <Purpose> 

with respect to their <Quality focus> 

from the point of view of the <Perspective> 
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in the context of <Context>. 

 

Hence, the template is adopted and modified based on the research goal discussed in 

Section 6.1.1. 

Analyse the outcome of the proposed constrained clustering approach 

for the purpose of evaluation 

with respect to the maintainability and reliability of the analysed software, and the 

cohesiveness of the clusters formed by the proposed approach 

from the point of view of software maintainers 

in the context of open-source OO software systems. 

 

6.2 Experiment Planning 

 

The next phase is the planning of the experiment study. Details such as selection of 

context, formation of hypothesis, selection of variables, and the experimental design are 

discussed in detail.  

 

6.2.1 Context Selection 

 

The use of open-source OO software systems as an experimental context provides several 

benefits to simulate real-world scenario when maintaining aging and poorly designed 

software systems. First of all, development of open-source projects is usually based on an 

ad-hoc basis, such that contributors write their own code to fulfil certain new 

requirements. Thus, the quality of the source code delivered by contributors usually varies 

depending on the programming skills of each individual. In return, the maintenance 

efforts of the selected test subjects are highly dependent on the skills and experience of 

the open-source contributors. This behaviour is aligned to RO1.3, To investigate the 

correlation between the statistical patterns of real-world OO software systems and their 

level of maintenance efforts. 
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Furthermore, in order to improve the generalisation of the experiments and eventually 

formulate more conclusive experiment results, the test subjects chosen in this research 

vary depending on their application domain, class count, and lines of code to reflect some 

representative distribution on the population of open-source OO software systems. All 

the configuration files, input files, and test results are uploaded to a public domain to 

allow for replication of the experiments.  

 

6.2.2 Hypothesis Formulation 

 

An important aspect of experiment is to formally state clearly what is going to be 

evaluated in the experiment. This leads to the formulation of hypotheses. In this research, 

two hypotheses are formulated. 

 

Hypothesis 1: Given any number and size of test subjects, the constructed weighted 

complex network based on the proposed approach should be able to demonstrate common 

statistical patterns of real-world OO software systems. When the test subjects are grouped 

and compared based on their levels of maintenance efforts, their statistical patterns are 

more distinguishable. 

 

Hypothesis 2: The proposed constrained agglomerative hierarchical software clustering 

approach is able to form relatively more cohesive clusters as compared to the 

unconstrained clustering approach.    

 

6.2.3 Variables Selection 
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The independent variables are the level of maintenance efforts of the chosen test subjects, 

and the number of hard and soft constraints derived from the software systems. The 

dependent variables are the accuracy of software clustering results and the number of 

fulfilled clustering constraints.  

 

6.2.4 Selection of Subjects 

 

The selection of test subjects greatly affects the results of empirical testing. In this 

research, quota sampling is used to select OO software systems from various elements of 

population, such as application domains, lines of code, and number of classes. The chosen 

software systems have to demonstrate a certain level of quality in terms of maintainability 

and reliability to allow for baseline evaluations and comparisons. Thus, the number of 

defects and maintenance costs of the chosen software systems have to be identified to 

allow for baseline evaluations and comparisons. However, as the selected software 

systems are open-source projects, it is hard to accurately measure the maintenance costs 

of the selected software systems in terms of man-day. One alternative to measure the 

quality of open-source software is by the means of technical debt (Izurieta, Griffith, 

Reimanis, & Luhr, 2013). 

 

Technical debt, as discussed by Sterling (2010), is related to the issues in software that 

will hinder future development if left unresolved. Software systems with a high technical 

debt are at the risk of high maintenance cost. Curtis, Sappidi, and Szynkarski (2012) 

discussed that it is hard to measure technical debt using a generic measurement because 

identification of technical debts is based on the structural flaws that software developers 

intend to fix. Certain developers might just ignore the flaws or fail to recognise the flaws. 
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Curtis et al. claimed that it is hard to quantify technical debt using a generic algorithm or 

technique. 

 

The work by Heitlager, Kuipers, and Visser (2007) proposes a model to measure the 

maintainability of software based on ISO/IEC 9126 standard. A Maintainability Index 

(MI) is used to quantify the maintainability of software systems by analysing the source 

code. The algorithm to calculate MI is based on several software metrics, including 

cyclomatic complexity and average number of lines of code per module. However, this 

technique only focuses on one particular non-functional requirement stated in ISO/IEC 

9126 standard.  

 

The work by Letouzey and Ilkiewicz  introduces a method to estimate the technical debt 

of software systems by examining the source code (Letouzey & Ilkiewicz, 2012). The 

authors proposed the Software Quality Assessment Based on Life-cycle Expectations 

(SQALE) method that provides a systematic model to estimate technical debt, and 

subsequently ranks the severity of debts using five scales, ranging from A to E. Although 

there are no existing studies that attempt to demonstrate how SQALE ratings can 

correspond to actual development cost or effort, the work by Lim, Taksande, and Seaman 

(2012) did demonstrate a considerable finding on how software practitioners view 

technical debts, and how technical debts are relevant toward the maintainability of 

software systems. The authors showed that technical debts do play an important role in 

commercial projects and widely recognised by software practitioners. 

 

The SQALE method uses eight non-functional requirements, namely Testability, 

Reliability, Changeability, Efficiency, Security, Maintainability, Portability, and 

Reusability adapted from ISO/IEC 9126, as a reference to estimate technical debt of 

Univ
ers

ity
 of

 M
ala

ya



164 

 

software. Software components that do not comply with the non-functional requirements 

are treated as debts. For each non-functional requirement, there is an estimation of time 

needed to fix the debt generated from the requirements. The sum of all the identified 

debts, along with the time estimated to solve them, is quantified as the total technical debt 

of a software system. As mentioned earlier, the focus of this research is to measure and 

analyse the maintainability and reliability of the software systems when represented using 

weighted complex network, which are also software quality attributes covered by the 

SQALE method. Thus, the inclusion of SQALE method as a basis of measuring the 

maintenance costs of the selected software systems will allow for better comparative 

analysis.  

 

To give a more concrete example on how to measure the maintenance effort of software, 

given a software system with 5000 lines of code. The average cost of developing 1000 

lines of code is 100 days, resulting in 500 days for the overall development cost. While 

analysing the software using the SQALE method, it was discovered that there are several 

parts of the source code that do not conform to the reliability requirement. The rule 

“Switch cases should end with an unconditional break statement” is part of the reliability 

requirement. Given that there are 5 occurrences in source code that violate this rule, and 

the cost to fix this violation is approximately 1 day each. Thus, the total technical debt for 

Reliability is 5 days because of the violations. In order to measure the Reliability rating, 

the technical debt is divided by the total development cost, which is 5days/500days = 1%.  

 

There are several rules for each of the non-functional requirements, such that each of the 

rules contributes toward estimating the technical debt associated with each non-functional 

requirement. Hence, eight indices are produced, namely SQALE Testability Index, 

SQALE Reliability Index, SQALE Changeability Index, SQALE Efficiency Index, 
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SQALE Security Index, SQALE Maintainability Index, SQALE Portability Index, and 

SQALE Reusability Index, which estimate the amount of technical debt associated with 

each of the ISO/IEC 9126 non-functional requirements. In order to provide a high-level 

indicator based on the ratio between the estimated technical debt and the development 

cost, all the aforementioned indices are aggregated into a single index called the SQALE 

rating. A SQALE rating, ranging from “A” to “E”, where A signifies high conformance 

of requirements, is rated. Thus, the overall SQALE rating for all eight non-functional 

requirements provides a systematic evaluation of the analysed software.  

 

In order to estimate the maintenance efforts of the selected test subjects, all the software 

systems are evaluated using the SQALE rating method. The evaluations are performed 

using the SonarQube (SonarQube, 2014) tool, with SQALE plugin installed. In the 

evaluation, software systems with overall SQALE rating of 0 to <2% are rated as A, while 

2% to <4% are rated as B, 4% to <8% as C, 8% to 16% as D, and E for any rating higher 

than 16%. Below are the results of evaluations extracted from Table 6.1. 

 

Software systems that achieve SQALE rating of A – Apache Maven Wagon, Apache 

Tika, openFAST, Apache Synapse, IWebMvc, JEuclid, Jajuk, Apache Mahout, Fitnesse, 

Apache Shindig, Apache XBean, Apache Commons VFS, and Apache Tobago. 

 

Software systems that achieve SQALE rating of B – Apache Karaf, Apache EmpireDB, 

Apache Log4j, Apache Gora, Eclipse SWTBot, Apache Deltaspike, JFreeChart, Titan, 

Jackcess, Apache Pluto, Apache Roller, jOOQ, Apache Sirona, Apache Hudson, Apache 

JSPWiki, Apache Wink, Apache Commons Collections, and Apache Commons BCEL.  
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Software systems that achieve SQALE rating of C – Apache Rampart, Kryo, Apache 

Abdera, ApacheDS, Apache Archiva, Apache Helix, Apache Strusts, Apache Falcon, and 

Apache Mina.  

 

Since most of the selected software systems fall into the range of A-rated and B-rated 

SQALE rating, it is assumed that the selected software can reveal some of the properties 

and characteristics of good OO software. 

 

Table 6.1: Summary of selected software systems 

No. Name Number 

of classes 

Lines of 

Code 

Technical 

Debt 

SQALE 

Rating 

1 Apache Maven Wagon 128 14582 89 days A 

2 Apache Gora 131 8668 112 days B 

3 IWebMvc 178 7436 23 days A 

4 Apache Rampart 191 20585 235 days C 

5 JEuclid 230 12664 20 days A 

6 Apache Falcon 235 20362 276 days C 

7 openFAST 236 11656 63 days A 

8 Apache Commons VFS 280 23059 34 days A 

9 Jackcess 302 21452 180 days B 

10 Apache Sirona 345 57736 428 days B 

11 Kryo 346 23908 339 days C 

12 Apache Pluto 375 25888 193 days B 

13 Apache Commons 

BCEL 

396 28966 325 days B 

14 Apache XBean 401 26845 77 days A 

15 Apache JSPWiki 411 40738 398 days B 

16 Apache Commons 

Collections 

441 26371 321 days B 

17 Apache Tika 457 34558 200 days A 

18 Apache EmpireDB 470 41775 307 days B 

19 Apache Archiva 506 75638 535 days C 

20 Apache Roller 528 55395 532 days B 

21 Titan 532 35415 350 days B 

22 Jajuk 543 57029 58 days A 

23 Apache Mina 583 36978 723 days C 

24 Apache Abdera 682 50568 783 days C 

25 Apache Log4j 704 32987 209 days B 

26 Apache Helix 710 51149 1561 days C 

27 Eclipse SWTBot 731 52841 302 days B 

28 Apache Wink 740 54416 930 days B 

29 Apache Karaf 773 46544 662 days B 
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30 Fitnesse 852 47818 112 days A 

31 Apache Tobago 873 53024 239 days A 

32 Apache Shindig 950 54975 98 days A 

33 Apache Deltaspike 1002 31504 502 days B 

34 JFreeChart 1013 95396 670 days B 

35 jOOQ 1106 96520 656 days B 

36 Apache Mahout 1130 82002 143 days A 

37 Apache Synapse 1276 84266 165 days A 

38 Apache Hudson 1492 119005 1173 days B 

39 Apache Strusts 1646 120025 2259 days C 

40 ApacheDS 2408 216093 3664 days C 

 

6.2.5 Experiment Design 

 

This section discusses the design decisions of the experiment in order to address all the 

research objectives and hypotheses as clearly and efficiently as possible. Design decisions 

such as the pre-processing treatment of the datasets along with the rationale behind each 

decision are discussed in detail. The general design principles are as follows:  

 

Pre-processing: Since the proposed approach transforms software systems from UML 

class diagrams to weighted complex networks, pre-processing of the source code is 

needed. A round-trip engineering tool provided by Visual Paradigm is used to transform 

raw source code into UML class diagrams. Although it is arguably that converting source 

code into UML class diagrams might result in loss of information, this risk is mitigated 

by incorporating two software metrics, namely WMC and LCOM4 discussed in Section 

4.2.3 toward representing weighted complex networks. Figure 6.1 shows an example of 

how Visual Paradigm converts Java source code into a UML Class diagram. 
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Figure 6.1: Example of Java to UML Class Diagram transformation 

1. Abstract class ‘Animal’ with one abstract method. 

2. Class ‘Mammal’ implements abstract class ‘Animal’ to create a concrete class. 

Realisation notation is used to represent the relationship.  

3. Class ‘Reptile’ extends ‘Animal’. Generalisation notation is used to represent the 

relationship. 

4. Class ‘Dog’ extends ‘Mammal’. Generalisation notation is used to represent the 

relationship. 

5. An object myOwner of class ‘Owner’ is created. Association notation is used to 

represent the relationship. 

6. An object myDog of class ‘Dog’ is created. Association notation is used to 

represent the relationship. 

7. An input parameter newHouse of class ‘House’ is parsed into the method 

getHouse(). Association is used to represent this relationship. 

Note that Visual Paradigm is unable to reverse engineer composition and aggregation 

relationships from the source code. Thus, in this research, composition and aggregation 

relationships in the source code are carefully studied and manually extracted to be 
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represented in the corresponding weighted complex network. One way to automatically 

differentiate between composition and aggregation relationships is by checking if deep 

cloning or shallow cloning is used in the clone() and equal() methods declared in the 

software.  

 

Shallow copy refers to methods that create a new object that has an exact copy of the 

values in the original object. If the original object contains references to other object, 

shallow copy will only copy the associated memory addresses. On the other hand, deep 

copy copies the complete data structure of the original object recursively and allocates 

new memory addresses in a different location. From the modelling perspective, deep 

cloning implies composition relationship while shallow cloning suggests aggregation 

between two classes (Karsai, Maroti, Ledeczi, Gray, & Sztipanovits, 2004; Porres & 

Alanen, 2003).  

 

According to the Java API documentation (Oracle), Java provides a <Cloneable> 

interface which allows cloning of objects. Implementing this interface allows 

programmers to duplicate objects by calling the clone() method in java.lang.Object class. 

By default, the clone() method creates a new object instance of the class and initialises all 

the fields of the new object with exactly the contents of the corresponding fields of the 

original object. As such, the contents of the newly created object are not cloned directly, 

which is commonly referred as shallow copy. If the programmer wants to perform a deep 

copy, he/she has to override the clone() method and give his/her own definition of the 

cloning operation for all the variables, methods, and constructors, declared in the original 

object.   
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However, most of the equal() and clone() methods declared in the chosen test subjects 

use the default java implementation, which is the shallow clone method. It is possible that 

the programmers do not actually differentiate between deep and shallow cloning. 

Therefore, it is impossible to automatically extract all the composition relationships using 

a simple program parser.  

 

There is a growing interest among the research community to formally identify 

composition and aggregation relationships for UML class diagrams from raw source code 

(Milanova, 2005, 2007; Yann-Ga et al., 2004). The work by Milanova has proven that 

their proposed approach can achieve perfect accuracy when capturing composition 

relationships from raw source code. However, Milanova suggested that there is no 

definitive conclusion or solution that can be drawn from the limited and small-scale 

experiment setup.  

 

According to the UML specification documents, composition and aggregation are specific 

forms of association relationship between two objects or classes. Composition is referred 

as the type of association when one object owns another object, as depicted in Figure 6.1 

when ‘Owner’ class owns an object of ‘House’. Aggregation, on the other hand, is 

described as a whole-part relationship between source and target classes (Grand, 2003). 

The work by Kollmann, Selonen, Stroulia, Systa, and Zundorf (2002) discussed that the 

best way to recover composition and aggregation relationships from source code is to 

acquire sufficient knowledge of the software architecture. However, without involving in 

the development of the selected software systems, one can only rely on the clone() and 

equal() methods to differentiate the types of relationships. Unless otherwise indicated, the 

programmers did not differentiate between shallow clone and deep clone methods and it 
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is unable to distinguish between aggregation and composition relationships, therefore 

aggregation is used to represent both scenarios.  

 

Figure 6.2 shows an example of how Visual Paradigm converts C++ header files (.h) into 

a UML Class diagram. 

 

 

Figure 6.2: Example of C++ to UML Class Diagram transformation 

 

Figure 6.3 illustrates the result of transformation from UML class diagrams to a weighted 

complex network using the proposed technique, facilitated by Cytoscape, which is an 

open-source software tool to visualise complex networks (Shannon et al., 2003). Figure 

6.3 is represented based on Apache Synapse system which consists of 1276 classes, where 

each class in the software system is represented by one node. The experimental subjects 

involve all the maximal connected subgraphs of the software system. However, it is 

emphasised that the proposed approach can also be applied for forward engineering in 

software development to provide a better understanding of the software during the early 

stage of development. The Cytoscape and Visual Paradigm data files of all 40 software 

systems, along with the retrieved graph-level metrics can be accessed by the following 

URL: http://sourceforge.net/projects/umltocomplexnetwork/files/  

Univ
ers

ity
 of

 M
ala

ya

http://sourceforge.net/projects/umltocomplexnetwork/files/


172 

 

 

Figure 6.3: Apache Synapse system represented in a weighted complex network using 

Cytoscape 

 

Randomisation: To recall, MLH and CLH constraints are clustering constraints derived 

from the implicit structure of the software systems with the aid of graph theoretical 

analysis. MLS and CLS constraints, on the other hand, are explicit constraints formed 

based on the domain knowledge provided by the domain experts who have prior 

knowledge of the analysed software systems. However, due to the fact that there are no 

prior involvement and development of the chosen test subjects, it is impossible to provide 
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domain knowledge in this research. Therefore the steps involved to retrieve MLS and 

CLS constraints are similar to the small experiment done in Section 5.5. 

1. Prior to the experiment, all the clustering entities (classes) are assumed to be 

scattered around and not grouped in their respective packages. 

2. Based on the original UML package diagram extracted from the project 

documentation, several MLS and CLS constraints are extracted.  

3. For all MLS and CLS constraints, penalty scores for violating the soft constraints 

are generated randomly. 

While the clustering constraints are generated from an oracle/golden standard, the penalty 

scores for violating the software constraints are randomised within the range of 0-1 to 

simulate the importance of the soft constraints.  

 

Blocking: Isolated classes, such as classes without any interactions with other classes are 

considered as outliers in this research. The isolated classes are removed from the analysis 

to avoid inconsistent results. 

 

Balancing: It is preferable to have a balanced dataset in order to improve the 

generalisation of the experimental results. In order to achieve a balanced dataset, 40 

software systems were selected in order to reflect some representative class-count 

distribution on the population of software systems available in the open-source 

community. In terms of SQALE rating, 13 software systems are A-rated, 18 are B-rated, 

and 9 are C-rated in order to perform a comparative evaluation between software systems 

that possess different levels of maintenance efforts.  

 

Standard Design Type: The next step is to decide on the type of experimental design 

used in this research. The experiment includes one factor of primary interest (quality of 
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clustering results in terms of intra-cluster cohesiveness and inter-cluster separation) with 

two treatments (proposed constrained clustering approach and traditional unconstrained 

approaches). A completely randomised design where each test subject randomly uses 

either the constrained or unconstrained clustering approach to generate a corresponding 

clustering result is infeasible to be adopted in this research. This is because randomised 

design does not allow a fair comparison between the two approaches to validate the 

research hypotheses. Since the goal of the experiment is to investigate if the proposed 

constrained clustering approach produces clustering results with better intra-cluster 

cohesiveness and inter-cluster separateness, the example of an experiment design type is 

better suited in this research. Thus, all the 40 test subjects will undergo two treatments, 

i.e. the proposed constrained clustering approach and the traditional unconstrained 

clustering approach, and the clustering results will be compared using several statistical 

analysis techniques to identify the strength and weakness of the proposed approach.   

 

6.2.6 Instrumentation 

 

In general, there are three types of instruments for an experiment, namely objects, 

guidelines and measurement instruments (Wohlin et al., 2012).  

 

The experiment objects in this research are the source code and the project 

documentations of the selected open-source software systems. Source code is used as the 

input for the proposed constrained clustering approach, while the project documentations 

are studied to extract the package diagrams of software systems. The package diagrams 

are used as the benchmark to evaluate the quality of clustering results with the aid of 

MoJoFM metric.  
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The MoJoFM metric defines the distance between two different clustering results of the 

same software system as the minimum number of Move and Join operations to transform 

one to the other.  

 Move: Remove an object from a cluster and put it in a different cluster. 

 Join: Merge two clusters into one cluster. 

 Split: Split one cluster into two clusters, simulated by the Move operations. 

 

To provide a more illustrative example, Figure 6.4 shows two different clustering results, 

Decomposition A which is the gold standard, and Decomposition B as the clustering 

result of the same software. MoJoFM calculates the number of Move and Join operations 

needed for Decomposition B to match Decomposition A.   

 Move node 4 to the cluster <1, 2, 3> 

 Split the cluster <5, 6, 7, 8> into two clusters, containing node <5, 6> and <7, 8> 

respectively 

 

 

Figure 6.4: Example of MoJoFM operations 

Thus, low number of Move and Join operations indicates that the clustering result shows 

high resemblance with respect to the gold standard. Achieving 100% MoJoFM metric 
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value indicates that a clustering result is identical to the gold standard. Hence, 

maximisation of MoJoFM metric values is preferred.  

 

Furthermore, SQALE rating is used to measure and inspect the maintenance efforts of all 

the software systems in order to provide a means to perform comparative analysis 

between software of different maintenance efforts.  

 

On the other hand, documented guidelines such as checklists and process descriptions are 

not required in this research because no participants are involved in the experiments. 

Instead, with the aid of weighted complex networks, clustering constraints are extracted 

to help in the subsequent constrained clustering process. The clustering constraints 

derived from the implicit structure of software systems can be deemed as the guidelines 

to support the proposed constrained clustering approach.  

 

A prototype to generate and cut dendrogram is developed to serve as the measurement 

instrument. The prototype takes the input from the graph theoretical analysis of the 

weighted complex network, and generates the corresponding dendrogram. Two important 

inputs are taken from the weighted complex network, which are distance between a pair 

of classes (using Dijkstra's shortest path algorithm discussed in Section 5.4.4) and the 

clustering constraints derived from the implicit structure of the analysed software. The 

whole process of generating and cutting dendrogram is automated using the prototype. 

The algorithm to form a dendrogram is cited from the work by Durbin (1998). The 

interface class UPGMACluster is shown below to list down several important classes, 

methods, and attributes used to develop the prototype.  
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interface UPGMACluster:  

/**constructor of UPGMACluster 

*  id = cluster id, height = cluster height, distance = distance to lower numbered 

node 

*/ 

public UPGMACluster(int id, UPGMACluster left, UPGMACluster right, double 

height,  

   double[] distance)  

 

/** method to check whether the cluster is empty */ 

public boolean live() 

 

/** method to find and join the closest live clusters */ 

void findAndJoin()  

 

/** method to join cluster i,j to form new cluster k */ 

public void join(int i, int j) 

 

/** methods to draw the dendrogram */ 

public void draw(Graphics g, int w, int h)  

 

/** methods to find the root of cluster */ 

public UPGMACluster getRoot() 

 

/** method to write the content of cluster to a file */ 

public void printRoot()throws IOException 

 

/** method to cut the dendrogram at a specific point */ 

public void cutTree(double c)  

 

 

Based on the inputs, the prototype will find a pair of the most similar clusters and merge 

the pair. This process will continue until all the classes are merged into a single cluster, 

which is performed by using the findAnJoin() and join() methods.  

 

Figure 6.5 shows an illustration of a dendrogram formed by the prototype using 20 

classes. The classes (black dots) are tagged in an ascending manner. Values from 1 to 20 

represent the classes to be clustered, while values higher than 20 represent the fork nodes 

Univ
ers

ity
 of

 M
ala

ya



178 

 

(merging points of clusters). The gaps between clusters are directly proportional to the 

distance between clusters.  

 

 

Figure 6.5: Output example of a dendrogram tree with 20 classes 

 

6.2.7 Validity Evaluation 

 

This section discusses threats to the internal validity and external validity. 

Countermeasures against the threats to the validity were taken and are described below. 

The internal validity is examined with respect to three aspects, which are the regression 

toward the mean, the selection of subjects, and the confounding variables.  

 

With respect to the threat from regression toward the mean, the risk is mitigated by evenly 

selecting test subjects that vary according to their size, class-count and maintenance 
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efforts to reflect some representative distribution on the population of open-source OO 

software systems. If the selected test subjects are representative of the population mean, 

then the threat to regress towards the mean is no longer a valid concern.  

 

To address the threat from subject selection, 40 open-source software systems are selected 

in this experiment. The test subjects are categorised into four groups – projects with less 

than 250 classes, between 250-500 classes, between 501-1000 classes, and more than 

1000 classes. The chosen software systems are well known projects that are actively 

developed and maintained by the open-source community. Although it is impossible to 

guarantee that these software systems are the best examples, good software should exhibit 

similar behaviour when analysed from a graph-level abstraction.  

 

The choice of code-level, system-level, and graph-level metrics used in this study might 

impose the threat of confounding variables. The chosen code-level and system-level 

metrics are WMC and LOCM4 respectively. Both metrics are originated from the CK OO 

metrics suite and proven to be complimentary (Chidamber & Kemerer, 1994). An in depth 

analysis of CK metrics is presented in Section 4.2.3, which discussed the development of 

CK metrics in the past decade, along with its effectiveness in predicting software 

maintenance cost and software bug prediction. Besides that, the preferences and risk 

tolerance parameters are introduced to provide more flexibility in obtaining the values of 

WMC and LCOM4. The chosen graph-level metrics are selected based on their 

interpretation toward the behaviour of OO software systems. The details of explanations 

have been discussed in Section 4.2.  

 

Besides that, the choice of cluster validity index, must-link constraints, and cannot-link 

constraints might also impose the threat of confounding variables. The chosen cluster 
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validity index in this research is based on the Davies-Bouldin index, which is the ratio of 

cluster cohesion to cluster separation. According to the work by (Kim & Ramakrishna, 

2005; Maulik & Bandyopadhyay, 2002), ratio type cluster validity indices, specifically 

the Davies-Bouldin index, is among the best indices in terms of performance, reliability, 

and computational cost. As for the choice of clustering constraints, the steps to extract 

must-link soft and cannot-link soft constraints are outlined in Section 6.2.5. It is to be 

stressed that the extraction of must-link soft and cannot-link soft constraints are not 

arbitrary, but actually based on the original UML package diagrams of the chosen 

software systems. Thus, this will allow a proper examination of the effectiveness of the 

proposed approach without bias.  

 

In order to mitigate the threat to construct validity, measure constructs that focus on 

measuring the maintainability and reliability of software systems are selected in this 

research. Besides that, the SQALE rating is used to estimate the maintenance costs of the 

selected software systems in order to facilitate the validation of research hypotheses.   

 

The external validity threats are concerned with the pre-test assumption of removing the 

isolated classes before performing software clustering, which might result in a biased 

outcome. There have been claims in several existing studies on software clustering (Patel, 

Hamou-Lhadj, & Rilling, 2009; Pirzadeh, Alawneh, & Hamou-Lhadj, 2009; Wen & 

Tzerpos, 2005) that isolated utility classes which can result in ambiguity in the 

organization of a software system. The study in Patel et al. (2009) also makes a pre-test 

assumption by removing all of the utility classes before the initiation of a clustering 

process.  
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6.3 Experiment Execution 

 

Experiments were carried out based on the design and setup discussed in the previous 

subsections. Due to the scale of the study and number of test subjects involved in this 

research, it is impossible to report all the data in this thesis alone. All the raw data are 

uploaded to a public domain for ease of reading and providing a means to replicate the 

experiments if necessary. The files are accessible at  

http://sourceforge.net/projects/umltocomplexnetwork/files/ 

 

The analysis and interpretation of the experiment data will be discussed in the next chapter 

to provide an in-depth analysis of the experiment results.  

 

6.4 Chapter Summary 

 

This chapter discussed the experiment design and setup used in this research. The 

presentation of this chapter follows the framework discussed by the work of Wohlin et al. 

(2012), where the authors propose a systematic approach to conduct software engineering 

research. The goals of this research are formulated using the GQM approach discussed in 

Section 6.1.2. The selection of context, subjects, and variables, along with the justification 

of each decision are discussed in detail. Two research hypotheses have also been declared 

in this chapter. Finally, the experiment design, instrumentation and validity evaluations 

are presented to provide a clear picture on the flow and design decisions of the 

experiment. The analysis and interpretation of the experiment data will be discussed in 

Chapter 7 using descriptive statistics to identify the correlation between the research 

hypotheses and experiment results.   
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CHAPTER 7: ANALYSIS AND INTERPRETATION OF EXPERIMENT 

EVALUATION 

 

After collecting experimental data from the previous phase, the results need to be analysed 

and interpreted in order to draw a valid conclusion with respect to the research hypotheses 

and objectives. In this chapter, the experimental results are analysed using descriptive 

statistics to identify the correlations between research hypotheses and the experimental 

data. The results are also validated against prior studies in order to evaluate the 

effectiveness of the proposed methods. Finally, with the aid of MoJoFM metric, the 

accuracy of the proposed constrained clustering approach is compared against an existing 

unconstrained clustering approach and the golden standard of the test subjects. 

 

7.1 Graph Theoretical Analysis of Software-based Weighted Complex Network 

 

The first phase of the experiment is to represent OO software systems using weighted 

complex network based on the approach proposed in Chapter 4. Based on the constructed 

weighted complex network, software systems are analysed from the aspect of 

maintainability and reliability using graph theoretical analysis to derive clustering 

constraints. The graph theoretical analysis provides a means to improve program 

comprehension from the perspective of software maintainers.  

 

All the 40 OO software systems are represented with their associated weighted complex 

network. However, due to the scale and size of the diagram, it is impossible to illustrate 

all the complex networks. Instead the Cytoscape (open-source program used to construct 

and visualise the weighted complex network) source files are hosted in a public domain 

which can be accessed using the following URL 

http://sourceforge.net/projects/umltocomplexnetwork/. The Visual Paradigm source files 
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which include the class diagrams of all the 40 software systems are also available at the 

same URL. An example of the weighted complex network is shown in Figure 7.1, which 

represent a close-up snippet of Apache Gora project. The labels on the nodes are the class 

names, while the labels on the edges are the weights of all respective edges.  

 

 

Figure 7.1: Close-up snippet of Apache Gora represented in weighted complex network 

 

The next step is to analyse the constructed weighted complex networks with respect to 

the selected six graph-level metrics (in-degree, out-degree, average weighted degree, 

average shortest path length, average clustering coefficient, and betweenness centrality). 

By analysing the statistical distribution of the graph-level metrics, several common 

patterns of the selected software systems can be captured. The identified patterns are able 

to represent certain structural characteristics of the software systems with respect to their 

maintainability and reliability. The metrics are calculated using the Network Analyser 

plugin in Cytoscape tool, illustrated in Figure 7.2.  
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Figure 7.2: Illustration of Graph-Level Metrics extracted from weighted complex 

network using Network Analyser plugin 

 

7.2 Validation of Findings Against Prior Studies 

 

In Section 6.2.2, the first hypothesis declared in this research is, “given any number and 

size of test subjects, the constructed weighted complex network based on the proposed 

approach should be able to demonstrate common statistical patterns of real-world OO 

software systems. When the test subjects are grouped and compared based on their levels 

of maintenance efforts, their statistical patterns are more distinguishable”. It is important 

to show that the constructed networks using the proposed approach corroborate with the 

findings of existing research, such as the expected distribution of in-degree and out-

degree of nodes in software-based weighted complex network. This is because validation 

of experimental results cannot proceed without proof of intentional bias in the 

interpretation of these results (Kumar & Phrommathed, 2005). Therefore, a way to 

identify and analyse the statistical distribution of the graph-level metrics retrieved from 

the constructed weighted complex networks is needed to address the first hypothesis.  
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7.2.1 Dataset Distribution Fitting 

 

In order to facilitate a better understanding and interpretation of the graph-level metrics, 

the work by Ferreira, Bigonha, Bigonha, Mendes, and Almeida (2012) is adopted in this 

research.  Ferreira et al. (2012) discussed that although there is a large collection of 

software metrics available in existing studies, it is hard to evaluate the quality of software 

systems using software metrics alone because for most metrics, the range of expected or 

reference values are not known. Therefore in their work, the authors proposed a 

systematic approach to derive thresholds for six software metrics. The approach is 

designed to be flexible and generic enough to derive thresholds, and analyse the statistical 

distribution of these software metrics. Therefore, in this research, the approach proposed 

by Ferreira et al. (2012) is adapted to identify the statistical distribution of graph-level 

metrics. The following sections discuss the approach to identify the thresholds of graph-

level metrics in detail. 

 

Firstly, the best fit probability distribution of each of the selected graph-level metrics is 

identified. These best fit distributions are able to show common patterns and structural 

characteristics of the chosen software systems, and subsequently identify the correlation 

between graph-level metrics and the associated software quality attributes, i.e. 

maintainability and reliability.   

 

In terms of the statistical distribution of complex network based on software system, the 

work by Giulio Concas et al. (2007) found that in-degree follows a Pareto distribution 

while out-degree follows a log-normal distribution. Both distributions exhibit a power 

law distribution, which corroborates with several works (Louridas et al., 2008; Valverde 

& Solé, 2003; Zimmermann & Nagappan, 2008). The reason why in-degree and out-
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degree are distributed in a power law manner was further analysed in the work by 

Chatzigeorgiou and Melas (2012). Chatzigeorgiou and Melas discovered that software 

follows a ‘preferential attachment’ where some classes tend to interact with the classes 

that belong to a similar community or functional groups. The authors claimed that 

important nodes (high in-degree and out-degree) in a software-based complex network 

tend to act as attractors for new members that join an existing network.  

 

A distribution fitting tool, EasyFit (MathWave, 2014) is used to fit the datasets into 

various probability distributions. Once the best fit probability is found, the probability 

density function (pdf), 𝑓(𝑥), is calculated to identify the continuous random variables. 

Based on the data retrieved from all the 40 chosen test subjects, the Generalised Pareto 

distribution and the Normal distribution have shown to be best-fitted in this research.  

 

The pdf of Generalised Pareto distribution, 𝑓𝑔(𝑥), is defined in Equation (5) in Hosking 

and Wallis (1987). The parameters  𝑘 ,  𝜎  and 𝜇  denote the shape, scale, and location 

respectively.  

𝑓𝑔(𝑥) =

{
 
 

 
 1

𝜎
(1 + 𝑘

(𝑥 − 𝜇)

𝜎
)

−1−(1/𝑘)

 𝑘 ≠ 0

1

𝜎
exp (−

(𝑥 − 𝜇)

𝜎
)                 𝑘 = 0 

                                                   (5) 

 

The scale parameter, 𝜎, defines the height and spread of the distribution. The larger the 𝜎 

value, the more spread out the distribution is.  

 

The pdf of Normal distribution, 𝑓𝑛(𝑥), is defined in Equation (6) in (Stein, 1981). The 

parameters 𝜎 and 𝜇 denote the scale and location respectively.  
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𝑓𝑛(𝑥) =

𝑒𝑥𝑝 (−
1
2 (
𝑥 − 𝜇
𝜎 )

2

)

𝜎√2𝜋
                                                                                 (6) 

 

The analysis of graph-level metrics is done by examining all datasets as a whole 

(combining all the data retrieved from the 40 test subjects). Two diagrams are generated 

for each of the graph-level metrics. First, a scatter plot in log-log scale is drawn to show 

the frequency of each graph-level metric and to identify if the distribution shows a power 

law behaviour. Existing studies have shown that a candidate power law distribution 

should exhibit right-skewed properties and an approximately linear relationship on a log-

log plot (Stumpf & Porter, 2012). Hence, log-log plots are used in this research to detect 

the existence of power law behaviour. In the second diagram, the best fit probability 

distribution for each graph-level metric is illustrated using the EasyFit tool.  

 

7.2.2 Result of distribution fitting for all datasets as a whole 

 

In this section, the results of the computed graph-level metrics and the best fit probability 

distributions are shown and discussed. Note that the metrics are computed based on all 

datasets as a whole. The results of each graph-level metric are analysed and discussed 

with respect to its software maintainability and reliability. 

 

 In-Degree 

Figure 7.3(a) shows that majority of the classes in the analysed open-source software have 

in-degree of less than 5, with the mean value at 1.998. The figure also shows an almost 

linear behaviour, which is the characteristic of power law distribution. The in-degree is 

best fitted with Generalised Pareto distribution shown in Figure 7.3(b). The goodness of 

fit based on Kolmogorov–Smirnov (KS) test (Smirnov, 1948) is also shown in Figure 
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7.3(b). However, it is to be noted that the KS test results show a relatively low significance 

level due to the large sample size, N>10,000. This is a well-known issue discussed in the 

existing studies such that for a large sample size, goodness of fit test becomes sensitive 

to very small and insignificant deviation from a distribution (Bollen, 1990; Inman, 1994; 

Tanaka, 1987). The parameters k, σ and μ are 0.409, 1.258, and -0.125 respectively. The 

parameters k, σ and μ are shown in order to provide a means to replicate the experiment 

if necessary, where the diagram in Figure 7.3(b) can be redrawn using these 3 parameters. 

Based on the data distribution diagram shown in Figure 7.2, it can be interpreted that 

majority of the classes do not provide services to other classes because 80% of the classes 

possess in-degree of less than 3. Low in-degree signifies that most of the tasks are handled 

locally to promote loose coupling between classes. Although there are some classes that 

contain significantly higher in-degree values, those classes are typically utility classes 

that are designed to be reused frequently in the system. All in all, the observed behaviour 

in terms of high modularity and loose coupling contributes toward improving the 

maintainability of the software. 
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Figure 7.3: In-Degree (a) frequency in log-log scale, (b) fit into Generalised Pareto 

Distribution 

 Out-Degree 

The frequency plot of out-degree in log-log scale is shown in Figure 7.4(a). The average 

out-degree of the analysed open-source software is at 1.991. The maximum out-degree is 

roughly 44 times higher than the average value. Figure 7.4(a) also exhibits the 

characteristic of a power law distribution. The results of data fitting, depicted in Figure 
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7.4(b), have shown that out-degree is best fitted in Generalised Pareto distribution, with 

parameters 𝑘, 𝜎 and 𝜇 at 0.2663, 1.161 and 0.420 respectively.  

 

In the in-degree analysis, the maximum in-degree is roughly 90 times higher than the 

average in-degree. The maximum out-degree is roughly 44 times higher than the average 

out-degree, which is relatively lower when compared to in-degree. This observation 

shows several important behaviours of the analysed software systems. Calling classes 

outside of their package should be minimised to avoid unnecessary coupling. The work 

by Valverde, Cancho, and Sole (2002) suggests that making use of large hubs, or in this 

context, nodes with high in and out-degree are bad software design practices, or also 

known as anti-patterns in existing software engineering literature. If the node becomes 

too complex, it might become a burden during software maintenance. It is better to break 

large hubs into smaller and more modular components that focus on specific 

functionalities, as discussed in the work by Myers (2003). Thus, theoretically the 

maximum in-degree and out-degree should not deviate too much from its mean value. 

However, it is unavoidable in certain scenarios where important classes are being 

repeatedly reused.  
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Figure 7.4: Out-Degree (a) frequency in log-log scale, (b) fit into Generalised Pareto 

Distribution 
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 Average Weighted Degree 

Figure 7.5(a) shows the frequency plot in log-log scale, where the mean average weighted 

degree is 1.071. The maximum average weighted degree derived from all datasets is 

around 80, which is about 75 times larger than the mean value. Similar to in-degree and 

out-degree, average weighted degree shows the characteristic of power law distribution. 

Figure 7.5(b) shows that the average weighted degree of all data can be modelled by the 

Generalised Pareto distribution. The parameters 𝑘, 𝜎 and 𝜇 are 0.402, 0.658, and -0.002 

respectively. The observation shows that majority of the analysed software systems have 

low average weighted degree, where the probability of classes having a value of less than 

5 is very high. Although there are a few nodes with a very high average weighted degree, 

these classes are usually utility or main system classes that supply services to other 

classes. Examples of utility classes that exhibit a high average weighted degree are 

WikiEngine.java of Apache JSPWiki (77.589), Hudson.java of Apache Hudson (51.75), 

Field.java of jOOQ (70.535) and Logger.java of Strusts (77.23).   
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Figure 7.5: Average weighted degree (a) frequency in log-log scale, (b) fit into 

Generalised Pareto distribution 
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 Average Shortest Path Length 

The frequency plot in histogram for average shortest path length is shown in Figure 7.6(a). 

The mean average shortest path for all datasets is around 3.8 steps, which corroborates 

with the work by Valverde and Solé (2003) who found that the average shortest path in 

software is less than 6 steps. The log-log frequency plot for average shortest path length 

is not included because the average shortest path length is best fitted in normal distribution 

with parameters 𝜎 = 2.816 and 𝜇 = 3.877 (Figure 7.6(b)). Figure 7.6(a) shows that the 

diagram is positively skewed, where the distribution is concentrated on the left of the 

figure. Typically, power law behaviour is not shown in log-log plot for Normal distributed 

data. This result demonstrates that most classes in OO software can communicate with 

each other easily. Low average shortest path length also contributes toward high response 

capability of the analysed software, especially Apache Deltaspike and Apache Synapse, 

because they are usually deployed on a web-based environment.  
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Figure 7.6: Average shortest path length (a) frequency in histogram, (b) fit into Normal 

distribution 
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 Average Clustering Coefficient 

Clustering coefficient is a graph-level metric that measures if a given node’s neighbours 

are neighbours among themselves. Average clustering coefficient provides the average 

score of clustering coefficients of all nodes for the whole network. If the average 

clustering coefficient of the network is equal to 1, the network is called a clique where 

each pair of nodes is connected by an edge. Analysing the frequency plot of clustering 

coefficient is difficult because it does not translate directly into any OO behaviour. Thus, 

a different approach to analyse the average clustering coefficient is adopted.  

 

Small world properties of a complex network can be determined by looking into the 

average shortest path length and clustering coefficient. A complex network with a high 

clustering coefficient has a strong characteristic of small world property. Many studies 

have found that the average clustering coefficients of OO software are much higher than 

those of random networks constructed based on the same node property (Giulio Concas 

et al., 2007; Louridas et al., 2008; Pang & Maslov, 2013; Potanin et al., 2005). This 

behaviour suggests that software systems possess a higher degree of cohesion with respect 

to random networks.  

 

The work by Newman (2006) has further proven that clustering coefficients of real-world 

networks should be higher than what would be expected if edges were randomly placed, 

using a ‘graph modularity’ measurement. Newman shows that in real-world networks, the 

number and density of interactions among nodes belonging to a community are higher 

than expected in a random network of the same size.  

 

In order to test this particular behaviour discovered by Newman, a Cytoscape plugin 

developed by Mcsweeney (2008) is used in this research. The plugin is capable of 
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randomising an existing network, while preserving the number of nodes and edges in the 

original network. The algorithm used to generate a random network from an existing one 

is shown below.  

 

1. A random edge (u,v) is selected from the network. 

2. A second random edge (s,t) is selected with the constraints that: 

 u ≠ v ≠ s ≠ t 

 (u,t) and (s,v) do not already exist in the network 

3. Edges (u,v) and (s,t) are removed and edges (u,t) and (s,v) are inserted into the 

network. 

4. Repeat Steps 1-3 n times (where n = 100 to generate 100 random networks). 

 

First, the average clustering coefficients of all datasets as a whole are calculated. Next, 

based on the nodes’ properties of the original real dataset (such as number of nodes, 

number of edges, weights of edges, and directions of edges), 100 random networks are 

generated. The average clustering coefficients of all the 100 randomised network are then 

calculated. Finally, the average clustering coefficients of all the real datasets are compared 

against the average clustering coefficients of all the random networks. Hence, in total, 

4000 random networks are generated for all the 40 test subjects.  

 

Based on the test results, the average clustering coefficient of all the 40 test subjects is 

reported to be 0.048, while the average clustering coefficient for 100 random networks is 

0.0012. The test results show that the constructed software-based weighted complex 

networks do behave like a real-world network and substantiate with the findings of 

Newman (2006). Combined with the observation from average shortest path length, the 
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constructed networks using the proposed technique do adhere to small world properties 

commonly found in the existing literature. 

 

 Betweenness Centrality 

Figure 7.7(a) shows the distribution of betweenness centrality for all analysed software 

systems in log-log scale. Note that the betweenness centrality for a given node n is 

normalised by dividing by the number of node pairs in the network, excluding n. Thus, 

the values of betweenness centrality range from 0 to 1. The scatter plot shows that 

majority of the nodes have value of less than 0.1, which indicates that they do not control 

the flow of information in the network. Figure 7.7(a) suggests that power law 

characteristic is present. The data is best fitted in Generalised Pareto distribution as shown 

in Figure 7.7(b), where the parameters 𝑘, 𝜎 and 𝜇 are 0.887, 0.0016, and -6.63E-4. This 

observation reveals that most of the classes in OO software do not have dominant power 

that dictates the flow of information and data. Removing certain components from the 

software will have minimal impact on the structure stability. Although there are a few 

nodes with very high centrality value, those nodes are normally interface classes that act 

as the ‘authority classes’, as discussed by the work by Ovatman, Weigert, and Buzluca 

(2011). Ovatman et al. found that classes in UML class diagrams show distinctive 

recurring patterns in terms of dependencies between each other and to other classes. 

‘Authority classes’ is one of the patterns where a large number of classes are coupled with 

one another.  Univ
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Figure 7.7: Betweenness Centrality (a) frequency in log-log scale, (b) fit into 

Generalised Pareto distribution 
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In summary, the results and discussions presented in this sub-section are able to address 

the sub-objective 1.3 discussed earlier, where all the statistical patterns of real-world OO 

software systems can be identified and analysed through dataset distribution fitting. 

However, certain patterns and behaviour might not be directly visible using the 

aforementioned approach (Hyndman & Fan, 1996; Williamson, Parker, & Kendrick, 

1989). Thus, in the next section, the empirical distributions of the datasets are analysed 

by examining the quartiles of each respective dataset using boxplot. 

 

7.2.3 Comparative Analysis 

 

Boxplot analysis is one of the statistical methods used to visually identify patterns that 

may otherwise be hidden in a dataset (Hyndman & Fan, 1996; Williamson et al., 1989). 

In this study, boxplot analysis is used to perform a comparative analysis of the selected 

software systems and eventually address the research hypothesis. Recall that the first 

hypothesis mentioned that when the test subjects are grouped and compared based on 

their levels of maintenance efforts, their statistical patterns are more distinguishable. 

SQALE rating is used in this research to provide a means to estimate the levels of 

maintenance efforts of all the chosen test subjects. If the test subjects can be further 

grouped and analysed based on their respective SQALE rating, it will provide more 

insight toward understanding the statistical behaviour of software systems, and ultimately 

address the research hypothesis.  

 

By combining all the data of A-rated projects, a boxplot can be produced to identify the 

median, the approximate quartiles, spread, and symmetry of the distribution (Williamson 

et al., 1989). The results of A-rated projects can then be compared against B-rated and C-
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rated projects in order to identify the differences in statistical behaviour for these three 

groups of datasets.  

 

Figure 7.8 depicts the boxplots of all the graph-level metrics for A-rated, B-rated, and C-

rated software systems except for Betweenness Centrality. The boxplot of Betweenness 

Centrality is separated as shown in Figure 7.9 due to the difference in the scale of values.  

 

 

Figure 7.8: Boxplots of In-Degree, Out-Degree, Average Weighted Degree, and 

Average Shortest Path for A-rated, B-rated, and C-rated software systems 

 

Table 7.1: Analysis of boxplots from Figure 7.8 

Metrics 1st 

Quartile 

Median 3rd 

Quartile 

Interquartile 

Range 

Whiskers 

A-rated In-Degree 0 1 2 2 0, 5 

B-rated In-Degree 0 1 2 2 0, 5 

C-rated In-Degree 0 1 2 2 0, 5 

A-rated Out-Degree 1 1 2 1 0, 3 

B-rated Out-Degree 1 1 2 1 0, 3 

C-rated Out-Degree 1 1 2 1 0, 3 
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A-rated Average 

Weighted Degree 

0.161 0.75 1.282 1.121 0, 296 

B-rated Average 

Weighted Degree 

0.158 0.701 1.232 1.075 0, 2.844 

C-rated Average 

Weighted Degree 

0.157 0.810 1.618 1.461 0, 3.799 

A-rated Average 

Shortest Path 

1.333 4.039 5.562 4.229 0, 11.898 

B-rated Average 

Shortest Path 

1.5 4.120 5.690 4.190 0, 11.933 

C-rated Average 

Shortest Path 

2 4.187 6.5 4.5 0, 13.098 

 

Table 7.1 presents a summary of analysis including first quartile, median, third quartile, 

interquartile range, and whiskers of the boxplots from Figure 7.8. Based on the table, 

there is no variation between the in-degree and out-degree boxplots of A-rated, B-rated, 

and C-rated software systems. The boxplots of in-degree are positively skewed due to the 

power law behaviour observed earlier in the frequency distribution plot. The out-degree 

shows lesser variability, with an interquartile range of 1. Low interquartile range of out-

degree is consistent with the observation in Figure 7.4, where it was observed that most 

of the classes have a similar out-degree value except for a few exceptional cases. This 

observation shows that developers of A-rated, B-rated and C-rated software systems 

adhere to the high modularity concept when developing and updating the software 

systems, as discussed in the work by Myers (2003).  

 

The boxplots of average weighted degree are also positively skewed due to the power law 

behaviour. When the edges and nodes are weighted, there is a slight variation from the 

observed quartile, where the whisker of C-rated software systems is slightly higher at 

3.799. This indicates that the coupling strength of C-rated software systems is relatively 

higher when compared to A-rated and B-rated software systems, which might contribute 

toward their higher maintenance efforts. In terms of average shortest path, the whiskers 

of C-rated software systems are slightly higher at 13.098 when compared to A-rated and 
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B-rated software systems (11.898 and 11.933 respectively), which could indicate that 

several classes have high communication costs. Upon further investigation, it was being 

discovered that several classes in ApacheDS, namely AvlTreeImpl.java, 

AvlTreeSingleton.java, ArrayTree.java, KeyTupleArrayCursor.java, and 

KeyTupleAvlCursor.java, which have an average shortest path length of 12-13 steps. 

These classes contain methods that depend on the class Index.java, which is located 

separately in another package. 

  

The boxplots of betweenness centrality for A-rated, B-rated, and C-rated software 

systems are shown in Figure 7.9, along with the analysis in Table 7.2.  

 

 

Figure 7.9: Boxplots of Betweenness Centrality for A-rated, B-rated, and C-rated 

software systems 
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Table 7.2: Analysis of boxplots from Figure 7.9 

Metrics 1st 

Quartile 

Median 3rd 

Quartile 

Interquartile 

Range 

Whiskers 

A-rated Betweenness 

Centrality 

0 0 0.00301 0.00301 0, 

0.00754 

B-rated Betweenness 

Centrality 

0 0 0.00261 0.00261 0, 

0.00651 

C-rated Betweenness 

Centrality 

0 0 0.00517 0.00517 0, 0.0129 

 

Betweenness centrality measures the number of shortest paths that pass through a selected 

class. Classes with high betweenness centrality signify that they are important because 

they usually act as the communication bridge. On the flip side, if these classes are highly 

error prone, it can easily propagate bugs due to their behaviour (G. Concas et al., 2011). 

As can be observed from Table 7.2, C-rated software systems have much higher value of 

betweenness centrality when compared to A-rated and B-rated software systems.  Upon 

further investigation, it was discovered that the ApacheDS project contains a few utility 

classes that possess high betweenness centrality. These classes are AvlNode.java, 

Marshaller.java, KeyIntegrityChecker.java, NtpService.java, 

PasswordPolicyConfiguration.java, PasswordValidator.java, NtpMessage.java, 

NtpMessageModifier.java, and LdapServer.java. These classes should be given more 

attention as they might be highly error prone.   

 

 Comparison of Node-Weighted and Edge-Weighted Approaches 

 

In Chapter 4, Equation (3) was proposed as a means to measure communicational 

cohesion-based weights by looking into the complexity of classes and relationships.  

 

𝑊𝑒𝑖𝑔ℎ𝑡(𝑅𝑖→𝑗) = (𝐻𝑅𝑖→𝑗 ∗ 𝛼) + [(1 − 𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽]                                   (3) 
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The equation is based upon a hybrid of node (class) weighted and edge (relationship) 

weighted approach similar to the work presented by Ma et al. (2010). There are different 

strategies to represent the weights of nodes or edges, along with their own advantages and 

disadvantages. Thus, in this subsection, the comparative analysis is further expanded by 

contrasting the performance of different representation strategies, i.e. node-weighted and 

edge-weighted approaches.  

 

The first operand of Equation (3) represents the complexity of a relationship, while the 

second operand represents the complexity of the terminus class linked by the associated 

relationship. In order to compare the performance of different representation strategies, 

the following steps are performed. 

 

1. For each software system, calculate the weights of edges by using only the first 

operand of Equation (3), (𝐻𝑅𝑖→𝑗 ∗ 𝛼), and repeat the process by using only the 

second operand of Equation (3),  [(1 − 𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽].  

2. Reconstruct the weighted complex network. Since there are two representations 

of weights, there will be two weighted complex networks for each software – 

node-weighted only network and edge-weighted only network.  

3. Recalculate the value of average weighted degree for each network.  

4. Perform a comparative analysis of different representation strategies by grouping 

the software based on their SQALE rating.  

 

Figure 7.10 depicts the result of our analysis and the details of the analysis are presented 

in Table 7.3.  
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Figure 7.10: Boxplots of different weighted degree representations for A-rated, B-rated, 

and C-rated software systems 

 

Table 7.3: Analysis of boxplots from Figure 7.10 

Metrics 1st 

Quartile 

Median 3rd 

Quartile 

Interquartile 

Range 

Whiskers 

A-rated  0.173 0.813 1.495 1.322 0, 3.476 

B-rated  0.158 0.701 1.232 1.075 0, 2.844 

C-rated  0.157 0.810 1.618 1.461 0, 3.799 

A-rated (Node-

weighted Only) 

0.234 0.5 1.485 1.251 0, 3.360 

B-rated (Node-

weighted Only) 

0.285 0.767 1.498 1.213 0, 3.317 

C-rated (Node-

weighted Only) 

0.499 1 2.258 1.758 0.125, 

4.892 

A-rated (Edge-

weighted Only) 

0.35 0.55 1.05 0.7 0, 2.1 

B-rated (Edge-

weighted Only) 

0.3 0.6 0.95 0.65 0, 1.9 

C-rated (Edge-

weighted Only) 

0.35 0.55 0.9 0.55 0.1, 1.7 
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The first three boxplots represent the average weighted degree calculated using the exact 

Equation (3). The ‘Node-weighted’ and ‘Edge-weighted’ boxplots, on the other hand, 

represent the calculation based on class complexity [(1 − 𝐶𝑜𝑚𝑝(𝐷𝑗)) ∗ 𝛽]  and 

relationship complexity (𝐻𝑅𝑖→𝑗 ∗ 𝛼) respectively.  

 

From the ‘Node-weighted’ boxplots, it can be observed that the median values for B and 

C-rated software systems are much higher compared to A-rated software systems. Several 

reasons contributed toward this observation. Firstly, when calculating the weights for 

classes related with unidirectional relationships (generalisation and realisation), only the 

complexity of parent or supplier class is considered. Thus, for interface or utility classes 

that are heavily reused, the occurrence of duplicate weightage increases significantly. 

Secondly, highly reusable classes tend to be more complex and possess higher LOC 

values, especially in B-rated and C-rated software systems. For example, 

AbstractBTreePartition.java class in ApacheDS project which contains 1980 LOC and 

WMC of 399 is a highly complex interface class. Another example is the Registries.java 

class in ApacheDS which contains 1711 LOC and WMC of 392. The Registries.java acts 

as a utility class and it is implemented by many other classes.  

 

As for the ‘Edge-weighted’ boxplots, the occurrence of duplicate weightage is even more 

distinguishable because only the type of relationship between two classes is considered 

to measure the weights of edges. Recall that the weights of relationships are based on the 

ordinal scale shown in Table 4.1. Thus, the variability of weightage is very limited and 

very little information can be extracted from the boxplot. Not much useful information 

related to software maintainability and reliability can be extracted based on the network 

represented with ‘Edge-weighted’ weightage.  
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All in all, the ‘Node-weighted’ strategy to represent communicational cohesion-based 

weight can be useful to identify highly reused and fault-prone classes. The comparative 

analysis in Figure 7.10 shows that software systems with a higher level of maintenance 

effort tend to have a higher average weighted degree. Software with a higher average 

weighted degree indicates that most of the software components are entangled and depend 

on each other (Giulio Concas et al., 2007; Louridas et al., 2008). Thus, more efforts are 

needed to maintain this group of software systems. One disadvantage of ‘Node-weighted’ 

strategy is that it is unable to clearly distinguish classes and relationships that possess 

higher strength of communicational cohesion over other classes because it is assumed that 

all relationships are even. Furthermore, duplicate of weightage occurs very often in 

‘Node-weighted’ strategy. As for the ‘Edge-weighted’ strategy, it does not provide much 

useful information toward understanding the maintainability and reliability of software 

systems. 

 

Besides that, classes that violate common software design principles, or those that are 

more prone to bugs and errors can be easily identified with the aid of graph theory metrics 

and weighted complex networks. For instance, by using the betweenness centrality 

metric, it is found that HasCurrentMarkup.java and HasIDBindingAndRendered.java of 

Apache Tobago project are very vulnerable toward bug propagation. These two classes 

possess a very high betweenness centrality value, which means that plenty of 

communications between classes (including passing of variables or parameters) need to 

go through them. From a software engineering perspective, unless these classes are 

purposely designed as an interface or mediator class, it is risky to have multiple classes 

that dictate the flow of communications because the failure or removal of these classes 

will cause a system-wide service interruption.    
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Besides that, the results shown in Figure 7.10 and Table 7.3 have shown that a hybrid of 

node and edge-weighted strategy is more appropriate because it is able to represent the 

dynamic interactions between software features. Both the classes and their interactions 

play equally important roles to quantify the communicational cohesion of classes. 

Furthermore, the proposed hybrid weighting strategy can also be used in forward 

engineering phase to evaluate the effectiveness of the software design. 

 

7.2.4 Addressing Research Objectives and Hypothesis 

 

In Section 3.2.3, RO1 outlines the goal to propose a constrained clustering approach, 

which is further breakdown into 3 sub-objectives. Sub-objective 1.1 outlines the needs to 

develop a method for representing OO software systems using weighted complex 

networks. Based on the discussed literature, it was found that weighted and directed 

network is more suitable to be used in the context of software engineering because not all 

software features are symmetrical in nature.  

 

On the other hand, sub-objective 1.2 outlines the goal to identify appropriate measure 

constructs that are capable of quantifying maintainability and reliability of OO software 

systems represented in weighted complex networks. The focus of this research is to 

recover a high-level abstraction view of OO software design that is coherent with the 

actual code structure. Thus, the constructed weighted complex network must be 

representative enough to demonstrate the modularity of the analysed software system. 

Maintainability and reliability, for instance, are two software qualities that contribute 

directly toward estimating the modularity of a software system. Therefore, in order to 

address this sub-objective, a unique weighting function which is capable of capturing the 

maintainability and reliability of software systems, is proposed to quantify the weights of 
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edges and nodes in the constructed weighted complex network. Software systems are first 

converted into UML class diagrams in order to standardise the transformation rules. The 

proposed weighting function focuses on the complexity of UML classes and their 

associated relationships.  

 

Finally, sub-objective 1.3 is about finding the correlation between statistical patterns of 

real-world OO software systems and their level of maintenance efforts. In Section 7.2.2, 

a distribution fitting tool called the Easyfit is used to identify the best fit distribution of 

all datasets. It was discovered that most of the selected graph theory metrics show the 

power law behaviour, which is a typical characteristic of complex networks. A large 

majority of the test subjects are shown to have low in-degree and out-degree. From a 

software engineering perspective, it can be concluded that most of the classes from the 

pool of test subjects are designed to be focused on their own functionalities and easy to 

maintain. Classes that are frequently reused or called (i.e. utility classes and interface 

classes) can be easily identified through the inspection of distribution fitting diagrams.  

 

With respect to research hypothesis, the first hypothesis discussed that, given any number 

and size of test subjects, the constructed weighted complex network based on the proposed 

approach should be able to demonstrate common statistical patterns of real-world OO 

software systems. When the test subjects are grouped and compared based on their levels 

of maintenance efforts, their statistical patterns are more distinguishable. In order to 

address the first hypothesis, the statistical patterns of all the selected graph theory metrics 

are compared based on their associated SQALE rating. The datasets are grouped into three 

different categories, namely A-rated, B-rated, C-rated software systems. If the proposed 

weighting function and the selected graph-level metrics are able to represent the 
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maintainability and reliability of software systems, the resulting comparison should 

exhibit a certain degree of correlation.   

 

Based on the results shown in Section 7.2.3, it was discovered that when software systems 

are grouped according to their maintenance effort, their statistical patterns are consistent 

with the findings of the existing literature. For example, the average weighted degree and 

shortest path length of B-rated and C-rated software systems are relatively higher than 

those of A-rated software systems. A higher weighted degree is associated with high 

coupling, while a high average shortest path length signifies poor communication 

between classes. Both observations contribute toward low maintainability and reliability 

of software systems, which is consistent with the experimental setup, and eventually 

provide a concrete answer for addressing the first research hypothesis and all sub-

objectives under RO1 that concern with developing a method to represent OO software 

systems using weighted complex network, while preserving the quality aspects of the 

software and ensure that the constructed weighted complex network adheres to the certain 

statistical behaviour commonly found in existing studies. 

 

Next, the proposed method to derive clustering constraints based on graph theoretical 

analysis is executed, followed by fulfilment of the clustering constraints using the 

proposed dendrogram cutting method to address the second research hypothesis - The 

proposed constrained agglomerative hierarchical software clustering approach is able 

to form relatively more cohesive clusters as compared to the unconstrained clustering 

approach. In this experiment, the proposed constrained clustering approach is compared 

against an unconstrained clustering approach. To recall, agglomerative software 

clustering consists of five main steps, as outlined in Section 2.3.  

1. Identification of entities or components 
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2. Identification of features 

3. Calculation of similarity measure 

4. Application of clustering algorithm 

5. Evaluation of clustering results 

 

Different configuration for each of the five steps above will result in different clustering 

results. For instance, using Jaccard coefficient and Sorensen-Dice coefficient to measure 

the similarity between cluster entities (Step 3) will produce two distinctively different 

clustering results. Thus, in order to perform a fair comparison, the configuration (validity 

index used, clustering algorithm used, similarity measure used, etc.) used by the proposed 

constrained clustering approach and the unconstrained clustering approach must be 

identical. The only difference between the two clustering approaches is that the 

unconstrained approach does not make use of any clustering constraints. However, this 

particular setting does not compromise the generalisability of the research because all the 

design decisions (choice of similarity measure, choice of clustering algorithm, choice of 

validity index, etc.) have been discussed in detail in the previous chapters, i.e. to choose 

the most suitable clustering algorithm, similarity metric, and validity index to be used in 

this research. For instance, the decision of using UPGMA as the clustering algorithm 

(instead of SLINK and CLINK) have been discussed and analysed in Section 5.4.5. 

Similarly, an in-depth comparison between Davies-Bouldin index, Dunn’s index, and the 

proposed enhanced Davies-Bouldin index was conducted in Section 5.5.1 in order to find 

the best cluster validity index to evaluate the quality of clustering results.  

 

7.3 Executing the Proposed Constrained Clustering Approach 
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First, clustering constraints are derived based on graph theoretical analysis of the 

weighted complex network generated from the previous step.  

 

7.3.1 Deriving MLH and CLH Constraints from the Implicit Structure of Software 

 

Due to size and page constraints, all the clustering constraints derived from the 40 test 

subjects are presented in Table C1 in Appendix C. Some examples of Table C1 are 

illustrated in Table 7.4, which shows the clustering constraints derived from Apache 

Gora, openFAST, and Apache Tika. 

 

 The second column in Table 7.4 and Table C1 shows the hubs found in each test subject, 

while the third column shows the neighbouring classes that form a complete clique with 

each corresponding hub in the second column. Note that cannot-link constraints are 

established for each pair of hubs in order to promote the notion of separation of concerns. 

The fourth column lists down the classes that possess high betweenness centrality (high 

BC), while the last column shows the list of neighbouring classes that form a complete 

clique. 

 

For hubs and high BC classes in C-rated software, fewer cliques can be identified, 

resulting in less constraint derived from these test subjects. The main reason behind this 

observation is due to the existence of god classes in software with a higher level of 

maintenance efforts. God class in the context of software engineering refers to classes 

that contain many instance variables and perform a lot of system operations on its own 

(Perez-Castillo & Piattini, 2014). As a software evolves and is updated, a god class will 

become denser as new classes are associated with it, causing the software to become more 

and more complex. 
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Table 7.4: Clustering constraints derived from Apache Gora, openFAST, and Apache Tika 

Projects Hubs (Cannot-link 

between all pairs of hubs) 

Classes that form a complete clique with 

hub (Must-link) 

Classes with high betweenness 

centrality (high BC)  

Classes that form a complete clique with 

high BC (Must-link) 

Apache Gora DataStoreBase MemStore Where - 

Query GoraInputFormat DataStoreBase - 

openFAST Session 

 

- XMLMessageTemplateSerializer - 

Context - Scalar Operator 

MessageTemplate FieldSet 

StaticTemplateReference 

TemplateRegistry NullTemplateRegistry 

FastMessageReader 

TemplateExchangeDefinitionEncoder 

AbstractTemplateRegistry 

TemplateRegistry NullTemplateRegistry 

FastMessageReader 

TemplateExchangeDefinitionEncoder 

AbstractTemplateRegistry 

  

Scalar Operator   

Apache Tika MediaType - LinkContentHandler 

 

LinkBuilder 

Link 

Property MetadataHandler 

Geographic 

ElementMetadataHandler 

MSOffice 

HttpHeaders 

TIFF 

MediaType 

 

- 

XHTMLContent 

Handler 

XHTMLClassVisitor 

PagesContentHandler 

PDF2XHTML 

CharsetRecognizer CharsetMatch 

CharsetDetector 

Parser -   

Matcher NamedAttributeMatcher   Univ
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In particular, hubs and high BC classes in JFreeChart, Apache Falcon, and Apache 

Archiva do not have neighbouring classes that can form a complete clique. The work by 

Singh (2013) and Chatzigeorgiou and Melas (2012) has shown that the modularity of 

JFreeChart project decreases over time due to frequent and unmanaged incremental 

updates. Chatzigeorgiou et al. reported that several classes in JFreeChart became denser 

with each incremental update. Based on the experimental findings in Table C1, classes 

that behave like god classes are XYItemRenderer.java, Plot.java, XYDataset.java, and 

Range.java. Refactoring and remodularisation of these classes should be done to minimise 

unnecessary coupling and dependencies in order to improve its overall maintainability.  

 

The results in Table 7.4 and Table C1 show that the graph theoretical analysis managed 

to automatically derive clustering constraints from the implicit structure of software 

systems. Existing studies in constrained clustering often assumed that user feedbacks are 

always reliable and accessible prior to the clustering process, which is unrealistic in 

software development especially when dealing with poorly designed or poorly 

documented software systems. The proposed method has succeeded in deriving a number 

of clustering constraints without the need for user feedback to help facilitate in the 

subsequent constrained clustering process.  

 

Table 7.5 lists down the number of clustering constraints derived from each test subject, 

sorted according to SQALE rating. 
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Table 7.5 Number of clustering constraints derived from each test subject 

Project Number of 

Clustering 

Constraints 

Number of Classes SQALE rating 

Apache Maven Wagon 13 128 A 

IWebMvc 4 178 A 

JEuclid 15 230 A 

openFAST 17 236 A 

Apache Commons VFS 18 280 A 

Apache XBean 10 401 A 

Apache Tika 24 457 A 

Jajuk 27 543 A 

Fitnesse 30 852 A 

Apache Tobago 30 873 A 

Apache Shindig 3 950 A 

Apache Mahout 36 1130 A 

Apache Synapse 54 1276 A 

Apache Gora 3 131 B 

Jackcess 11 302 B 

Apache Sirona 9 345 B 

Apache Pluto 12 375 B 

Apache Commons BCEL 23 396 B 

JSPWiki 22 411 B 

Apache Commons 

Collections 

10 441 B 

Apache EmpireDB 41 470 B 

Apache Roller 14 528 B 

Titan 10 532 B 

Apache Log4J 41 704 B 

Eclipse SWTBot 32 731 B 

Apache Wink 11 740 B 

Apache Karaf 69 773 B 

Apache Deltaspike 53 1002 B 

JFreeChart 6 1013 B 

jOOQ 39 1106 B 

Apache Hudson 23 1492 B 

Apache Rampart 7 191 C 

Apache Falcon 3 235 C 

Kyro 12 346 C 

Apache Archiva 15 506 C 

Apache Mina 11 583 C 

Apache Abdera 5 682 C 

Apache Helix 7 710 C 

Struts 39 1646 C 

ApacheDS 14 2408 C 
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The experimental results show that the number of derived clustering constraints is not 

positively correlated to the size of the projects. Instead, more clustering constraints were 

derived from projects with lower level of maintenance effort such as those in A-rated and 

B-rated projects. Due to the complexity of C-rated projects, their structural behaviour are 

relatively more vague and entangled compared to A-rated and B-rated projects, resulting 

in a lesser number of clustering constraints can be derived automatically. For instance, 

the projects with highest number of classes in B-rated and C-rated projects, namely 

Apache Hudson (1492 classes) and ApacheDS (2408 classes), only managed to derive 23 

and 14 clustering constraints respectively. When compared to a relatively small-sized A-

rated project, both Apache Hudson and ApacheDS actually yield a lesser number of 

clustering constraints compared to Apache Tika (457 classes, with 24 constraints derived 

automatically).  

 

After all the clustering constraints are automatically retrieved using the proposed method, 

the next step is to fulfil these constraints by altering the distance between pairs of MLH 

and CLH constraints using the distance based approach discussed in Section 5.2. 

 

7.3.2  Fulfilment of Must-Link and Cannot-Link Constraints 

 

First, the resemblance matrix of each project is constructed based on Dijkstra's shortest 

path algorithm discussed in Section 5.4.4. One resemblance matrix is created for each 

project. Next, conflicting MLH and CLH constraints are identified.  If there is a pair of 

classes (𝑥, 𝑦), such that (𝑥, 𝑦) belongs to both MLH and CLH, then this is a NP-Complete 

problem with no solution, as discussed by Davidson and Ravi (2009). Software 

maintainers can choose to randomly omit one of the conflicting constraints from the 

system to avoid the NP-Complete problem.  
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Then, each MLH constraint is fulfilled by changing the distance between a pair of classes 

to zero, indicating that these classes must be grouped into the same cluster regardless of 

any condition. The pair of classes involved in the MLH constraint will eventually form 

the base of the dendrogram. Next, each CLH constraint is fulfilled by changing the 

distance between a pair of classes to a large enough constant that prevents them from 

clustered into the same group. The constant is determined by calculating 𝑙 + 1, such that 

𝑙 = largest distance exist in a particular resemblance matrix.  

 

To recall, the proposed constrained clustering approach allows domain experts to 

explicitly provide their domain knowledge in the form of MLS and CLS constraints to 

further improve the clustering results. However, without directly involved in the design 

and development of the selected test subjects, it is difficult to find experts who possess a 

certain level of understanding on all the test subjects and are willing to take part in the 

experiment. Therefore, the approach for generating and fulfilling the MLS and CLS 

constraints is similar to the evaluation conducted as discussed in Section 5.5. 

The steps involved are as follows: 

1. Prior to the experiment, all the classes are assumed to be scattered around and not 

grouped in their respective packages. 

2. Based on the original UML package diagram, several MLS and CLS constraints 

are extracted. The number of soft constraints is limited to 50% of the total number 

of hard constraints derived from the proposed method. This is to prevent biasness 

in the results because the soft constraints are extracted directly from the original 

package diagram and will definitely improve the accuracy of clustering results 

once they are imposed in the experiment. Hence, limiting the number of soft 

Univ
ers

ity
 of

 M
ala

ya



219 

 

constraints is needed to prevent such biasness when interpreting the experiment 

results.  

3. For MLS and CLS constraints, penalty scores for violating the soft constraints are 

generated randomly. 

 

However, solely relying on extracting soft constraints from the original package diagram 

is at the risk of causing biasness in the experiment results. Hence, another approach is 

taken to evaluate the accuracy of the proposed method for fulfilling MLS and CLS 

constraints in Equation (4).  

 

Five participants were recruited to take part in the experiment, where each of them has at 

least 5 years of industrial experience in developing and maintaining software systems. 

While it is impossible to request the participants to provide feedbacks in the form of soft 

constraints on all the 40 test subjects, 3 projects with different levels of maintenance 

efforts were chosen namely Apache XBean (A-rated), Apache Gora (B-rated), and 

Apache Rampart (C-rated).  

 

The five participants then provided their feedbacks in the form of soft constraints and 

ranked their judgement using the fuzzy-AHP method discussed in Section 5.3. In order to 

reach a consensus among the participants, they were instructed to perform pair-wise 

comparison of the identified soft constraints and ranked their judgement based on the 

relative scores of 1-9, where a greater value represents higher importance. Next, the 

triangular fuzzy numbers (TNF) values were calculated using the formula in Section 5.3. 

The results were tabulated into a comparison matrix shown in Table 7.6 to Table 7.8 for 

all the 3 test subjects.  
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Table 7.6: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache XBean Project 

 
BundleClassLoader-

DelegatingBundleReference (MLS) 

ClassPath-SunURLClassPath 

(MLS) 

ConstructionException-

UrlResourceFinder(CLS) 

Command-

AnnotatedMember(CLS) 

BundleClassLoader-

DelegatingBundleReference 

(ML) 
1 0.2, 1.508, 6 0.2, 1.675, 9 0.14, 1.304, 2 

ClassPath-SunURLClassPath 

(MLS) 
 1 0.33, 1.52, 8 0.33, 1.508, 9 

ConstructionException-

UrlResourceFinder(CLS) 
  1 0.2, 1.16, 6 

Command-

AnnotatedMember(CLS) 
   1 

 

Table 7.7: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache Gora Project 

 Persistent-StateManager (MLS) 

SqlStore-

InsertUpdateStatement 

(MLS) 

HBaseMapping-

HBaseTableConnection 

(MLS) 

SqlResult-

SqlMapping 

(CLS) 

StatefulMap-

StatefulHashMap 

(MLS) 

CassandraColumn-

CassandraSubColum

n (MLS) 

Persistent-StateManager 

(MLS) 
1 0.5, 1.488, 4 0.1, 1.2 , 2 0.2, 1.28, 6 0.25, 0.84, 5 0.15, 0.861, 6 

SqlStore-

InsertUpdateStatement (MLS) 
 1 0.2, 0.35, 4 0.11, 1.38, 4 0.2, 0.72, 5 0.2, 0.88, 3 

HBaseMapping-

HBaseTableConnection 

(MLS) 

  1 0.25, 0.72, 3 0.33, 1.5, 4 0.33, 0.72, 4 

SqlResult-SqlMapping (CLS)    1 0.12, 1.32, 6 0.12, 0.45, 4 

StatefulMap-StatefulHashMap 

(MLS) 
    1 0.2, 0.38, 6 

CassandraColumn-

CassandraSubColumn (MLS) 
     1 
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Table 7.8: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache Rampart Project 

 

EncryptedKeyToken-

Token (MLS) 

TokenStorage-

SimpleTokenStore 

(MLS) 

AbstractIssuerConfig-

SCTIssuerConfig (MLS) 

RahasData-Binding 

(CLS) 

Token-Layout 

(CLS) 

SCTIssuer-Wss10 

(CLS) 

EncryptedKeyToken-Token (MLS) 1 0.1, 0.5, 2 0.1, 0.878, 7 0.12, 1.032, 4 0.25, 1.32, 8 0.12, 0.861, 5 

TokenStorage-SimpleTokenStore (MLS)  1 0.3, 1.052, 5 0.33, 0.897, 5 0.2, 1.025, 4 0.33, 0.52, 4 

AbstractIssuerConfig-SCTIssuerConfig 

(MLS) 

  1 0.12, 1.16, 6 0.2, 1.02, 5 0.15, 1.03, 6 

RahasData-Binding (CLS)    1 0.14, 1.218, 5 0.14, 0.98, 4 

Token-Layout (CLS)     1 0.11, 0.33, 5 

SCTIssuer-Wss10 (CLS)      1 
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Next, defuzzification was performed to produce a quantifiable value based on the 

calculated TFN values. Recall that the defuzzification method adopted in this research is 

based on the alpha cut method proposed by Liou and Wang (1992), as discussed in Section 

5.3. 

 

An example of calculation is shown below for the comparison between 

BundleClassLoader-DelegatingBundleReference (MLS) and ClassPath-

SunURLClassPath (MLS) for the Apache XBean project: 

𝑓0.5(𝐿𝑥𝑦) = (1.508 − 0.2) ∙ 0.2 + 0.2 = 0.4616 

 

𝑓0.5(𝐻𝑥𝑦) =  6 − (6 − 1.508) ∙ 0.2 = 5.102 

 

𝜇05,0.5(�̃�𝑥𝑦) = [0.5 ∙ 0.4616 + (1 − 0.5) ∙ 3.244] = 1.853 

 

𝜇05,0.5(�̃�𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦−𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = 1/1.853 = 0.54 

 

Table 7.9 – Table 7.11 show the result of fuzzy pair-wise comparison after the 

defuzzification process. 
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Table 7.9: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache XBean Project 

 

BundleClassLoader-

DelegatingBundleReference 

(MLS) 

ClassPath-SunURLClassPath (MLS) ConstructionException-UrlResourceFinder(CLS) Command-AnnotatedMember(CLS) 

BundleClassLoader-

DelegatingBundleReference 

(MLS) 
1 1.853 4.015 1.103 

ClassPath-

SunURLClassPath (MLS) 
0.54 1 3.292 3.624 

ConstructionException-

UrlResourceFinder(CLS) 
0.249 0.304 1 2.712 

Command-

AnnotatedMember(CLS) 
0.907 0.276 0.369 1 

 

Table 7.10: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache Gora Project 

 Persistent-StateManager (MLS) 

SqlStore-

InsertUpdateStatement 

(MLS) 

HBaseMapping-

HBaseTableConnection 

(MLS) 

SqlResult-

SqlMapping 

(CLS) 

StatefulMap-

StatefulHashMap 

(MLS) 

CassandraColumn-

CassandraSubColum

n (MLS) 

Persistent-StateManager 

(MLS) 
1 1.869 1.065 2.736 2.179 2.743 

SqlStore-

InsertUpdateStatement (MLS) 
0.535 1 1.476 1.98 2.224 1.458 

HBaseMapping-

HBaseTableConnection 

(MLS) 

0.939 0.677 1 1.4 1.946 1.688 

SqlResult-SqlMapping (CLS) 0.365 0.505 0.714 1 2.851 1.947 

StatefulMap-StatefulHashMap 

(MLS) 
0.459 0.450 0.514 0.351 1 2.556 

CassandraColumn-

CassandraSubColumn (MLS) 
0.365 0.687 0.592 0.514 0.391 1 
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Table 7.11: Fuzzy pair-wise TFN values for MLS and CLS constraints derived from Apache Rampart Project 

 

EncryptedKeyToken-

Token (MLS) 

TokenStorage-

SimpleTokenStore 

(MLS) 

AbstractIssuerConfig-

SCTIssuerConfig (MLS) 

RahasData-Binding 

(CLS) 

Token-Layout 

(CLS) 

SCTIssuer-Wss10 

(CLS) 

EncryptedKeyToken-Token (MLS) 1 0.995 3.283 1.937 3.424 2.461 

TokenStorage-SimpleTokenStore (MLS) 1.005 1 2.171 2.082 1.885 1.622 

AbstractIssuerConfig-SCTIssuerConfig 

(MLS) 

0.305 0.461 1 1.885 2.284 2.768 

RahasData-Binding (CLS) 0.516 0.480 0.531 1 2.38 1.917 

Token-Layout (CLS) 0.292 0.531 0.438 0.420 1 2.31 

SCTIssuer-Wss10 (CLS) 0.406 0.617 0.361 0.522 0.423 1 
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The next step is to determine the eigenvalue and eigenvector of the fuzzy pair-wise 

comparison matrix, as shown in Section 5.3. The eigenvector can help in determining the 

aggregated weightage, or in other words, relative importance of a particular soft 

constraint. Assume that 𝛿  denotes the eigenvector while 𝜆  denotes the eigenvalue of 

fuzzy pair-wise comparison matrix �̃�𝑥𝑦,  

 

 [(𝜇𝛼,𝛽(�̃�𝑥𝑦) − 𝜆𝐼] ∙ 𝛿 = 0                                  

 

The above formula is based on the linear transformation of vectors, where I represents the 

unitary matrix. The eigenvectors of all the associated soft constraints were then calculated 

using the formula. The example below shows the calculation for Apache XBean project.  

[(𝜇𝛼,𝛽(�̃�𝑥𝑦) − 𝜆𝐼] = [

1 1.853 4.015 1.103
0.54 1 3.292 3.624
0.249 0.304 1 2.712
0.907 0.276 0.369 1

] 

 

 

Multiplying eigenvalue 𝜆 with unitary matrix I produces an identity matrix that cancels 

out each other. Thus, the notation 𝜆𝐼 is discarded in this case. 

[

1 1.853 4.015 1.103
0.54 1 3.292 3.624
0.249 0.304 1 2.712
0.907 0.276 0.369 1

]

[
 
 
 
𝛿BundleClassLoader−DelegatingBundleReference

𝛿ClassPath−SunURLClassPath 
𝛿ConstructionException−UrlResourceFinder

𝛿Command−AnnotatedMember ]
 
 
 

=

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

 

[
 
 
 
𝛿BundleClassLoader−DelegatingBundleReference

𝛿ClassPath−SunURLClassPath 
𝛿ConstructionException−UrlResourceFinder

𝛿Command−AnnotatedMember ]
 
 
 

= [

0.3795
0.331
0.154
0.135

] 

 

The aggregated result in terms of weightage is tabulated in Table 7.12. The results 

obtained are ordered as follows: BundleClassLoader-DelegatingBundleReference 
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(0.3795), ClassPath-SunURLClassPath (0.331), ConstructionException-

UrlResourceFinder (0.154), Command-AnnotatedMember (0.135).  

 

Table 7.12: Weightage and priority of soft constraints derived from Apache XBean 

Priority Derived Soft Constraints Weightage/Penalty Score 

1 

BundleClassLoader-

DelegatingBundleReference (MLS) 0.3795 

2 ClassPath-SunURLClassPath (MLS) 0.331 

3 

ConstructionException-

UrlResourceFinder(CLS) 0.154 

4 Command-AnnotatedMember(CLS) 0.135 

 

Note that the weightage in Table 7.12 is equivalent to the penalty score for violating a 

particular soft constraint, as in Equation (4). The results for Apache Gora and Apache 

Rampart are illustrated in Table 7.13 and Table 7.14 respectively.  

 

Table 7.13: Weightage and priority of soft constraints derived from Apache Gora 

Priority Derived Soft Constraints Weightage/ 

Penalty Score 

1 Persistent-StateManager (MLS) 0.272 

2 SqlStore-InsertUpdateStatement (MLS) 0.201 

3 HBaseMapping-HBaseTableConnection 

(MLS) 

0.180 

4 SqlResult-SqlMapping (CLS) 0.151 

5 StatefulMap-StatefulHashMap (MLS) 0.109 

6 CassandraColumn-CassandraSubColumn 

(MLS) 

0.087 

 

Table 7.14: Weightage and priority of soft constraints derived from Apache Rampart 

Priority Derived Soft Constraints Weightage/ Penalty Score 

1 
EncryptedKeyToken-Token (MLS) 

0.29 

2 
TokenStorage-SimpleTokenStore (MLS) 

0.231 

3 
AbstractIssuerConfig-SCTIssuerConfig (MLS) 

0.166 

4 
RahasData-Binding (CLS) 

0.136 
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5 
Token-Layout (CLS) 

0.097 

6 
SCTIssuer-Wss10 (CLS) 

0.08 

 

The ranking and weighting of the identified soft constraints are able to aid in penalising 

the violation of soft constraints. The penalty score will be taken into account when 

evaluating the quality of clusters formed by a particular cutting point. Hence, maximising 

the fulfilment of soft constraints is preferred.  

 

7.3.3 Forming and Cutting of Dendrogram  

 

Now that both the explicit and implicit clustering constraints are derived, the next step is 

to generate a dendrogram for each of the associated test subjects. Since all the MLH 

constraints are unconditionally fulfilled at the bottom of the dendrogram, users do not 

have to worry about the fulfilment of these hard constraints. Due to the size and scale of 

the experiment, one example is chosen and shown in Figure 7.11, where it depicts the 

dendrogram generated from Apache JSPWiki project. 

 

 

Figure 7.11: Dendrogram generated from Apache JSPWiki project 
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The circle at the bottom of the dendrogram shows the pairs of MLH constraints that form 

the base of the dendrogram. On the other hand, the circle at top of the dendrogram shows 

the CLH constraints. Since it is impossible to cut the dendrogram at the top of the 

dendrogram, one can be assured that CLH constraints are fulfilled regardless of any 

condition.  

 

As for the soft constraints, the fulfilment of MLS and CLS constraints are evaluated after 

the dendrogram is partitioned by a cutting point. For instance, if the classes 

EncryptedKeyToken.java and Token.java of Apache Rampart project are grouped into 

the same cluster using a cutting point x, then it is deemed that this MLS constraint is 

fulfilled, hence no penalty score is enforced onto the cutting point x. However if the 

cutting point x failed to group the two classes EncryptedKeyToken.java and Token.java 

into the same cluster, then the penalty score of 0.29, as illustrated in Table 7.14, is 

enforced to discourage software maintainers from choosing the cutting point x as the 

optimum cutting point. The detailed steps involved in fulfilling soft constraints are 

described earlier in Section 5.3, Equation (4).  

  

After generating the dendrogram, it is cut using the proposed dendrogram cutting method 

discussed in Section 5.4. With least-squares polynomial regression analysis, the optimum 

cutting point for JSPWiki project is found at the distance level of 3.712, which is 

illustrated as the dotted line in Figure 7.11. The resulting clustering results are shown in 

Figure 7.12. 
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Figure 7.12: Clustering results for JSPWiki for cutting the dendrogram at 3.712 
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Cutting the dendrogram at 3.712 yields the lowest average 𝑖𝑛𝑡𝑟𝑎 value and the highest 

average 𝑖𝑛𝑡𝑒𝑟 value. As stated earlier, low 𝑖𝑛𝑡𝑟𝑎 value signifies higher cohesion among 

classes inside the same cluster while high 𝑖𝑛𝑡𝑒𝑟 value indicates that the clusters formed 

are well separated. This indicates that cutting at 3.712 produces the most cohesive 

clusters although it contains a lot of small clusters. Besides that, this particular cutting 

point managed to fulfil all the soft constraints generated from the previous steps. Next, 

the clustering results are compared against the original package diagram using the 

MoJoFM metrics to validate the second hypothesis, which is to verify if the proposed 

constrained clustering approach can produce better clustering results compared to the 

unconstrained approach.  

  

7.3.4 Using MoJoFM to Compare Clustering Results 

 

A MoJo tool written by (Wen & Tzerpos, 2004) is used to calculate the MoJoFM metric. 

Figure 7.13 shows the screenshot of the software tool. 
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Figure 7.13: Screenshot of the MoJo distance software tool 

 

The software is capable of automatically comparing and calculating the MoJo metric of 

two clustering results. As shown in Figure 7.13, users need to specify the source file and 

the target file before running the tool. The target file in this context refers to the ground 

truth or the golden result. The source file refers to the clustering result to be compared 

with the golden clustering result. The tool will calculate the number of Move and Join 

operations needed to transform the source file into the target file. Minimisation of Move 

and Join operations are preferred. In Figure 7.13, an example source file named a.rsf is 

chosen, which contains the unconstrained clustering results of jOOQ project. The target 

file, which is the ground truth, is represented by b.rsf. Note that the tool only accepts Rigi 

Standard Format extension (.rsf), which is a textual format to represent binary relations 

between groups of entities. Next, the tool calculates the number of Move and Join 

operations needed to convert a.rsf to b.rsf. Based on the result shown in Figure 7.13, 383 
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operations are needed to accomplish the conversion task. The value 912 indicates the 

number of classes found in the input file. Hence, the final MoJoFM metric value is 

calculated, where it is concluded that the source file (a.rsf) is 58.0% similar to the target 

file (b.rsf). MoJoFM value of 100% indicates that the source file is identical to the target 

file. Therefore, maximisation of the MoJoFM metric value is preferred.  

 

In order to address the second hypothesis, a comparison was made between the proposed 

constrained clustering approach and the conventional unconstrained clustering approach. 

Each test subject undergoes two clustering processes, one using the proposed constrained 

clustering approach, and another one without making use of any clustering constraint. In 

order to provide a fair comparison and reduce the biasness of the result, the proposed 

dendrogram cutting method and the enhanced Davies-Bouldin index are also 

implemented on the unconstrained clustering approach. This allows one to observe the 

effect of clustering constraints on the accuracy of clustering results. Table 7.15 shows the 

MoJoFM metric value for all the 40 test subjects. The third column shows the MoJoFM 

values of the unconstrained clustering approach when compared against the original 

package diagram. The fourth column shows the MoJoFM values of the proposed 

constrained clustering approach when compared to the original package diagram. 

 

Table 7.15: MoJoFM values for constrained and unconstrained clustering results when 

compared to the original package diagram 

Project Number of 

hard 

constraints 

Unconstrained 

clustering approach 

(MoJoFM value) 

Proposed 

constrained 

clustering 

approach 

(MoJoFM value) 

Differences 

(MoJoFM) 

Apache Maven 

Wagon 

13 75.8% 85.6% 9.8% 

IWebMvc 4 80.5% 92.3% 11.8% 

JEuclid 15 72.3% 85.2% 12.9% 

openFAST 17 61.5% 75.3% 13.8% 
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Apache 

Commons VFS 

18 63.2% 76.5% 13.3% 

Apache XBean 10 50.8% 73.5% 22.7% 

Apache Tika 24 56.2% 76.2% 20% 

Jajuk 27 53.1% 78.5% 25.4% 

Fitnesse 30 49.8% 72.4% 22.6% 

Apache Tobago 30 55.4% 80.2% 24.8% 

Apache Shindig 3 58.8% 65.2% 6.4% 

Apache Mahout 36 52.8% 77.9% 25.1% 

Apache Synapse 54 44.5% 77.4% 32.9% 

Apache Gora 3 72.3% 86.2% 13.9% 

Jackcess 11 78.5% 88.4% 9.9% 

Apache Sirona 9 80.4% 86.3% 5.9% 

Apache Pluto 12 75.3% 80.5% 5.2% 

Apache 

Commons BCEL 

23 72.4% 85.6% 13.2% 

JSPWiki 22 68.3% 82.8% 14.5% 

Apache 

Commons 

Collections 

10 78.5% 83.6% 5.1% 

Apache 

EmpireDB 

41 75.3% 88.5% 13.2% 

Apache Roller 14 79.2% 84.5% 5.3% 

Titan 10 80.4% 87.3% 6.9% 

Apache Log4J 41 68.6% 90.2% 21.6% 

Eclipse SWTBot 32 62.8% 83.5% 20.7% 

Apache Wink 11 70.5% 78.9% 8.4% 

Apache Karaf 69 55.8% 89.3% 33.5% 

Apache 

Deltaspike 

53 64.2% 92.8% 28.6% 

JFreeChart 6 52.5% 55.1% 2.6% 

jOOQ 39 58.0% 82.8% 24.5% 

Apache Hudson 23 60.8% 71.1% 10.3% 

Apache Rampart 7 72.5% 83.9% 11.4% 

Apache Falcon 3 70.5% 71.8% 1.3% 

Kyro 12 77.5% 82.7% 5.2% 

Apache Archiva 15 65.8% 73.2% 7.4% 

Apache Mina 11 70.6% 80.5% 9.9% 

Apache Abdera 5 70.5% 72.6% 2.1% 

Apache Helix 7 65.3% 69.2% 3.9% 

Struts 39 67.2% 87.6% 20.4% 

ApacheDS 14 65.3% 78.1% 12.8% 

AVERAGE 20.58 66.4% 80.1% 13.8% 

 

Based on Table 7.15, it can be summarised that the proposed constrained clustering 

approach achieves an aggregated average of 80.33% accuracy when compared against the 

original package diagrams of the forty software systems, and performs better than the 
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unconstrained clustering approach. It has to be noted that the original package diagram is 

by no means the optimum or best clustering result since there is no way to verify that it is 

the best clustering result to represent the software design. However, it can be treated as a 

guideline to evaluate and compare between the results produced by the proposed 

constrained clustering approach and the unconstrained one. 

 

In general, test subjects with more clustering constraints achieve better improvement in 

terms of MoJoFM metric when compared against the unconstrained approach. There are 

a few exceptions, such as the Apache Pluto, Apache Roller, and Apache Archiva project, 

which record less than 10% improvements. This is mainly because several pairs of classes 

involved in the must-link or cannot-link constraints had already been placed in the 

intended clusters prior to the implementation. Furthermore, it can be observed that 

improvement (in terms of MoJoFM) is more significant on larger projects with low level 

of maintenance efforts such as the Jajuk (543 classes), Apache Tobago (873 classes), 

Apache Synapse (1276 classes), Apache Karaf (773 classes), and Apache Deltaspike 

(1002 classes). One of the contributing factors is because it is relatively easier to identify 

clustering constraints such as hubs in larger projects with low maintenance efforts. 

Although ApacheDS contains 2408 classes, only 14 constraints can be derived due to its 

inherent complexity and complex structure.  

 

In summary, the results presented in this subsection are capable of providing a concrete 

answer toward addressing the second research hypothesis, such that the proposed 

constrained clustering approach is able to produce highly cohesive clusters when 

measured using the MoJoFM metric. It is when applied on larger projects, the 

improvements are relatively more significant. 
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7.4 Chapter Summary 

 

This chapter presented the analysis of experimental results using the proposed constrained 

clustering approach. Experiments were conducted using 40 open-source OO software 

systems with different sizes, complexity, and maintenance efforts. The experiment results 

were analysed extensively using several statistical analyses. Finally, a discussion on the 

analysed results was conducted to address the research hypotheses and objectives. 
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CHAPTER 8: CONCLUSION AND FUTURE WORK 

 

This chapter summarises the research that has been conducted. Then, a discussion on the 

research contribution is presented. Finally, some suggestions on the potential 

enhancement to the proposed constrained clustering approach are provided for future 

research work.  

 

8.1 Thesis Summary  

 

A thorough literature review had been conducted to search for methods to reverse 

engineer poorly documented software systems. The review has successfully identified 

and analysed the state-of-the-art constrained and unconstrained clustering approaches. 

During the analysis, issues related to constrained clustering were identified and discussed. 

As a result, a constrained clustering approach with the aid of weighted complex network 

is proposed in this thesis to support remodularisation of poorly designed or poorly 

documented software systems.  

 

The main objective of the proposed constrained clustering approach is to create a high-

level abstraction of the software design with highly cohesive clusters based on the 

clustering constraints derived explicitly from domain experts and also from the implicit 

structure of software systems. Using a round-trip engineering tool, raw source code are 

first converted into UML class diagrams. Then, a method is proposed to analyse 

information extracted from the class diagrams such as complexity of classes, relationships 

between classes, and the complexity of relationships, in order to represent the analysed 

software with a weighted complex network. Classes are represented as nodes while 

relationships such as association, generalisation and realisation are represented as edges 

Univ
ers

ity
 of

 M
ala

ya



237 

 

that connect pairs of nodes. The complex network is further extended by assigning 

weights to the edges of the network using a unique weighting mechanism based on two 

parameters, namely the complexity of classes and the complexity of relationships. 

 

Based on the constructed weighted complex network, statistical analysis using best fit 

distribution and boxplot is conducted to identify the common statistical behaviour of 

software systems, and to address the first research hypothesis - Given any number and 

size of test subjects, the constructed weighted complex network based on the proposed 

approach should be able to demonstrate common statistical patterns of real-world OO 

software systems. When the test subjects are grouped and compared based on their levels 

of maintenance efforts, their statistical patterns are more distinguishable.  

 

Based on the experiments conducted on 40 open-source OO software systems, it is found 

that all the chosen test subjects demonstrate the power law behaviour, such that most of 

the classes possess low in-degree and out-degree except for a few classes that are 

frequently used by other classes. Next, with the aid of SQALE rating, the maintenance 

efforts of all the chosen test subjects are rated and grouped into three categories, namely 

A-rated, B-rated, and C-rated software. Based on the boxplot analysis, it is found that 

graph-level metrics for C-rated software deviate away from the statistical patterns found 

in A-rated and B-rated software, signifying the structural weakness in software with high 

level of maintenance efforts. Then, a method to automatically derive must-link and 

cannot-link constraints is introduced based on the graph theoretical analysis performed in 

the previous step. The proposed method is capable of revealing some extra deterministic 

information regarding the software, which is otherwise hidden using conventional 

software metrics. 
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Constrained clustering is performed on all the 40 test subjects in order to provide a way 

to address the second hypothesis - The proposed constrained agglomerative hierarchical 

software clustering approach is able to form relatively more cohesive clusters as 

compared to the unconstrained clustering approach. Clustering constraints are derived 

from two sources of information, i.e. explicitly from domain experts and implicitly from 

the results of graph theoretical analysis. The proposed method offers extra flexibility in 

the way clustering constraints are supplied to software maintainers. Clustering constraints 

are fulfilled by altering the resemblance matrix to ensure that classes involved in must-

link constraints are always grouped into the same clusters, while those involved in cannot-

link constraints must always be separated.  

 

A dendrogram is then formed based on the altered resemblance matrix to illustrate the 

arrangement of the clusters produced by hierarchical clustering. Then, a dendrogram 

cutting technique is introduced to minimise redundant effort in finding optimum cutting 

points while maintaining the integrity of results. This issue had not been tackled explicitly 

in the current literature. The number of cutting points needed to find the optimum set of 

clusters can be minimised due to the adaptive nature of the proposed dendrogram cutting 

method.  

 

Besides, an enhanced version of Davies-Bouldin index is introduced to measure the 

quality of clustering results. A penalty mechanism is introduced in the enhanced Davies-

Bouldin index. This penalty mechanism works by penalising the formation of singleton 

clusters and it is always a good practice to prevent them from happening. The penalty 

mechanism is also adaptive in such a way that it penalises according to the highest gap 

between a pair of cluster entities.  
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Then, a least-squares polynomial regression analysis technique is introduced to find the 

cutting points that produce the best validity index. This technique uses the output 

produced by the proposed dendrogram cutting method to perform the analysis. The 

cutting point that produces the best result in terms of intra-cluster cohesion, intra-cluster 

separation, and fulfilment of clustering constraints, is recommended as the optimum 

cutting point. 

From the software maintainers’ perspective, several implications can be drawn from the 

experimental results. First, it is shown that UML class diagram can be an effective input 

to aid in the modelling of a software-based weighted complex network. Majority of the 

existing studies only focus on using raw source code as the sole input, which limits the 

applicability of their approaches because the findings cannot be applied on software 

systems written in other programming languages. With the use of UML class diagram, 

software maintainers can recover a high-level abstraction of the OO software design using 

the proposed approach as long as the class diagrams can be retrieved or reverse-

engineered using an off-the-shelf round-trip engineering tool. The recovered high-level 

software design can then be used to raise questions about the structure and behaviour of 

the software, even for very well-maintained software, to aid in software remodularisation. 

Therefore when the proposed approach suggests a clustering result which should produce 

a noticeable improvement in cohesion and coupling of classes, this will serve as a guide 

to the software maintainers for consideration and further investigation. 

In Chapter 4, a method to represent software systems using weighted complex networks 

is proposed. The method is based on a unique weighting mechanism to weight the edges 

and nodes of a software-based complex network. The proposed method has shown to be 

able to successfully measure the complexity of classes and their relationships, and provide 
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an alternative to the conventional techniques that only count the frequencies of method 

interactions. With the aid of graph theoretical analysis, software maintainers are able to 

identify common statistical behaviour found in software with different levels of 

maintenance efforts. The method to derive clustering constraints, on the other hand, 

provides a means to automatically identify and derive constraints in situations where 

software documentation are not up-to-date or domain experts are non-existent. Existing 

studies in constrained clustering often assumed that user feedbacks are always reliable 

and accessible prior to the clustering process, which is unrealistic in software 

development especially when dealing with poorly designed or poorly documented 

software systems. 

 

Finally, the proposed dendrogram cutting method can be used as a complementary 

mechanism to improve the effectiveness of other clustering algorithms. The adaptive 

regression analysis, for instance, can help to reduce the computational cost of existing 

clustering algorithms while the penalty mechanism can help to prevent the formation of 

singleton clusters. 

 

8.2 Contributions 

 

The following summarises the contributions of the thesis: 

 

 A constrained clustering approach supported by weighted complex network to 

help in recovering a high-level software design of poorly designed or poorly 

documented OO software systems. This contribution is aligned to RO1 - “To 

propose a constrained clustering approach with the aim to recover a high-level 

abstraction of OO software design that is coherent and consistent with the actual code 
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structure”, where the proposed approach is capable of analysing the structure, 

behaviour, and complexity of OO software systems, and ultimately recovers a high-

level abstraction of the software design. In addition, it is capable of utilising both 

explicit and implicit constraints to help in recovering a high-level software design that 

is coherent and consistent with the actual code structure. The proposed approach can 

not only help in minimising the cost of software maintenance, but also ensure that the 

maintained software can adapt to future changes. 

 

 Proposed method to represent software systems using weighted and directed 

complex networks. This contribution is aligned to RO1.1- “To develop a method for 

representing OO software systems using weighted complex network”, and RO1.2 - 

“To identify appropriate measure constructs that are capable of quantifying 

maintainability and reliability of software systems represented in weighted complex 

networks”, where a unique weighting mechanism is proposed to weight the 

constructed software-based complex network based on the complexity of classes and 

the complexity of relationships. Based on the in-depth literature review done in 

Chapter 2, it is concluded that weighted and directed complex network is more 

suitable to capture the structure and behaviour of software systems. The proposed 

weighting mechanism is capable of capturing the maintainability and reliability 

aspects of software systems.  

 

 Using statistical analysis technique to investigate the statistical pattern of 

weighted complex network constructed based on the proposed approach. This 

contribution is aligned to RO1.3 - “To investigate the correlation between the 

statistical patterns of real-world OO software systems and their level of maintenance 

efforts”, where all the weighted complex networks constructed from the 40 test 

Univ
ers

ity
 of

 M
ala

ya



242 

 

subjects are evaluated using the best fit probability distribution. Based on the 

evaluation, it is found that several graph theory metrics such as in-degree, out-degree, 

average weighted degree, and betweenness centrality of the constructed weighted 

complex networks corroborate with observations commonly found in existing studies, 

where these metrics follow a power law behaviour. Besides that, the constructed 

weighted complex networks also obey the small world behaviour based on the 

statistical pattern found in average shortest path length and average clustering 

coefficient. Furthermore, a comparative analysis is performed using the boxplot 

analysis to identify if the statistical patterns are more distinguishable when the test 

subjects are grouped and compared based on their levels of maintenance efforts. 

Based on the analysis, it is discovered that the statistical pattern of C-rated software 

systems tend to deviate away from the patterns found in A-rated and B-rated software 

systems. This finding shows that the proposed approach can be a useful alternative to 

identify potential design faults and assess the maintainability of software systems if 

the software documentations are not available.  

 

 Proposed method to automatically derive implicit clustering constraints from the 

implicit structure of OO software systems. This contribution is aligned to RO2 - 

“To propose a method that helps in deriving implicit clustering constraints from the 

implicit structure of OO software systems with the aid of weighted complex network 

and graph theoretical analysis”, where clustering constraints such as must-link and 

cannot-link constraints are automatically derived from the software systems itself 

without human intervention. Existing studies in constrained clustering do not 

explicitly address the problem of deriving clustering constraints when domain experts 

are not available. Most studies assumed that constraints are provided prior to the 

clustering process, which is unrealistic in software development especially when 
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dealing with poorly designed or poorly documented software systems. The proposed 

method utilises well known graph theory metrics such as in-degree, out-degree, and 

average shortest path, to automatically identify important classes that contribute 

toward a particular software functionality. Based on the analysis, the results are 

translated into clustering constraints such as must-link and cannot-link constraints to 

help improve the accuracy of software clustering. The proposed method is beneficial 

in situations where domain experts are non-existent.  

 

 Proposed method to rank and prioritise explicit clustering constraints in order 

to reach a consensus among all the domain experts and software developers. This 

contribution is aligned to RO3 – “To propose a method that is capable of deriving 

explicit clustering constraints from domain experts or software developers who have 

prior knowledge regarding the software systems”, where the explicit constraints are 

ranked using fuzzy AHP method. Explicit constraints are further categorised into soft 

constraints due to their fuzzy and ambiguous nature. Furthermore, an objective 

function is proposed in order to maximise the fulfilment of all the derived explicit 

constraints.    

 

 Proposed method to maximise the fulfilment of clustering constraints, while 

penalising the violation of constraints. This contribution is aligned to RO4 - “To 

formulate an appropriate objective function that maximises the fulfilment of explicit 

and implicit constraints, while penalising violation of the constraints”, such that the 

proposed method offers extra flexibility in the way clustering constraints are supplied 

to the software maintainers. Implicit constraints are automatically derived using 

complex network and graph theoretical analysis, while the explicit constraints are 

provided by the domain experts. The proposed method has the capability to accept 
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either one or both sources of the input, and translate them into clustering constraints. 

Constraints are categorised into hard and soft constraints in this research. Hard 

constraints are constraints derived from a reliable source of information, such as those 

derived from the implicit structure of the software itself. They are absolute and must 

be fulfilled regardless of any condition. Soft constraints, on the other hand, are derived 

from domain experts who have prior knowledge regarding the software to be 

maintained. They are good to have but not compulsory. An objective function has 

been proposed in this research with the aim to maximise the fulfilment of soft 

constraints. The clustering result that maximises the fulfilment of both hard and soft 

constraints is preferred as the optimum result.  

 

 Evaluate the proposed approach using 40 open-source OO software systems. 

This contribution is aligned to RO5 - “To evaluate the accuracy and scalability of the 

proposed approach using open-source OO software systems”. In order to improve the 

generalisation of the research findings, the proposed constrained clustering approach 

is evaluated using 40 open-source OO software systems that vary according to number 

of classes, application domains, lines of code, and levels of maintenance efforts. The 

accuracy of the clustering results is evaluated using the MoJoFM metric. Based on 

the MoJoFM metric, the proposed constrained clustering approach achieves an 

aggregated average of 80.11% accuracy when compared against the original package 

diagrams of the 40 software systems. In terms of scalability, the enhanced Davies-

Bouldin index with an adaptive penalty mechanism has been proposed to detect and 

penalise singleton clusters which has not been dealt with in existing literature. The 

proposed dendrogram cutting method is also able to scale properly with large datasets 

such that it minimises the number of cutting points needed to perform constrained 

clustering.  
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8.3 Limitations 

 

Although the research managed to achieve its goals, there are some unavoidable 

limitations in this research. First, because source code is considered very low-level 

software artifact, there is a limited amount of information that can be reverse-engineered 

to provide an exact representation of the software design. Hence, when measuring the 

complexity of class relationships in order to weight the edges of software-based complex 

network, it is impossible to consider all types of relationships, as shown in Table 4.1, in 

the research. For instance, it is impossible to clearly differentiate between common 

association, qualified association, and association class by inspecting the source code 

alone. Existing round-trip engineering tools available in the market do not have the 

capability to differentiate between the three types of relationships.  

 

SQALE rating is used in this research in order to estimate the maintainability of the 

chosen test subjects by grouping them according to their level of maintenance efforts. In 

general, C-rated projects are deemed to be designed in a less ideal manner (poorly 

designed) when compared to A-rated and B-rated projects. Thus, the usage of the SQALE 

rating also provides a means to compare and contrast the accuracy of the proposed 

constrained clustering approach when applied on relatively well-designed and poorly 

designed software systems. However, it is difficult to evaluate the proposed approach in 

extreme cases, such as evaluating on software systems that are severely and very badly 

designed, i.e. highly coupled software modules and do not follow any kind of software 

design principles. There are two main reasons why this research did not attempt to address 

this issue. First, for a software that is severely and badly designed, it is impossible to 

retrieve a ground truth to validate the accuracy of the clustering results. Unless experts’ 
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opinions are available to validate the clustering results, it is hard to justify the accuracy 

of the clustering results. Secondly, if a software is severely and very badly designed, it is 

often abandoned or scrapped before entering the production stage, making it almost 

impossible to obtain the source code for this type of projects to be evaluated in this 

research.     

 

Besides that, two types of software quality attributes, namely maintainability and 

reliability, are considered in this research. This is mainly because maintainability and 

reliability are directly related to the modularity of software systems, which is the goal of 

this research – to help in remodularisation of poorly designed or poorly documented 

software systems. Thus, the scope of the research is limited to these two software quality 

attributes.  

 

Finally, the proposed constrained clustering approach can only be applied on software 

systems written in OO programming languages. This is because there is no way to 

reverse-engineer software systems written in structured programming languages into 

UML class diagrams. Thus, the proposed approach is applicable to any software systems 

other than those written in non-OO programming languages.  

 

8.4 Future Work 

 

There are several directions in which the outcome of this research can be extended and 

improved. Future work can be considered by including more software quality attributes 

when converting the UML class diagrams into weighted complex networks. Furthermore, 

when converting source code into UML class diagram, a simple approach is used to 

identify aggregation and composition relationships. Additional work can be considered 
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by looking into a formal way of converting UML class diagram notations. Besides that, 

further work to correlate the graph theory metrics with a more direct measurement of 

maintenance effort, for instance, by measuring changes and issues of software in multiple 

releases can be considered. Measuring the frequency of changes between different 

releases of software systems can be a reliable way to measure the maintainability and 

reliability of software systems, such that the more changes that are required to address a 

bug, the greater the maintenance effort.  
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