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ABSTRACT

Early human action detection is an important computer vision task with a wide

spectrum of potential applications. Most existing methods deal with the detection of an

action after its completion. Contrarily, for early detection it is essential to detect an action

as early as possible. Therefore, this thesis develops a solution to detect ongoing human

action as soon as it begins, but before it finishes.

In order to perform early human action detection, the conventional classification

problem is modified into frame-by-frame level classification. There exists well-known

classifiers such as Support Vector Machines (SVM), K-nearest Neighbour (KNN), etc. to

perform action classification. However, the employability of these algorithms depends

on the desired application and its requirements. Therefore, selection of the classifier to

employ for the classification task is an important issue to be taken into account. The

first part of the thesis studies this problem and fuzzy Bandler-Kohout (BK) sub-triangle

product (subproduct) is employed as a classifier. The performance is tested for human

action recognition and scene classification. This is a crucial step as it is the first attempt

of using fuzzy BK subproduct for classification.

The second part of this thesis studies the problem of early human action detection.

The method proposed is based on fuzzy BK subproduct inference mechanism and utilizes

the fuzzy capabilities in handling the uncertainties that exist in the real-world for reliable

decision making. The fuzzy membership function generated frame-by-frame from fuzzy

BK subproduct provides the basis to detect an action before it is completed, when a certain

threshold is attained in a suitable way. In order to test the effectiveness of the proposed

framework, a set of experiments is performed for few action sequences where the detector

is able to recognize an action upon seeing ∼32% of the frames.
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Finally, the proposed method is analyzed from a broader perspective and a hybrid

technique for early anticipation of human action is proposed. It combines the benefits of

computer vision and fuzzy set theory based on fuzzy BK subproduct. The novelty lies

in the construction of a frame-by-frame membership function for each kind of possible

movement, taking into account several human actions from a publicly available dataset.

Furthermore, the impact of various fuzzy implication operators and inference structures

in retrieving the relationship between the human subject and the actions performed is

discussed. The existing fuzzy implication operators are capable of handling only two-

dimensional data. A third dimension ‘time’ plays a crucial role in human action recognition

to model the human movement changes over time. Therefore, a new space-time fuzzy

implication operator is introduced, by modifying the existing implication operators to

accommodate time as an added dimension. Empirically, the proposed hybrid technique

is efficiently able to detect an action before completion and outperform the conventional

solutions with good detection rate. The detector is able to identify an action upon viewing

∼23% of the frames on an average.
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ABSTRAK

Pengesanan awal kelakuanmanusiamerupakan satu tugas visi komputer yang penting

kerana ianya mempunyai aplikasi-aplikasi berpotensi luas. Kebanyakan kaedah-kaedah

yang sedia ada hanyamengesan kelakuanmanusia setelah kelakuan tersebut telah lengkap.

Sebaliknya, ia adalah penting bagi mengesan kelakuan manusia secepat mungkin. Oleh

yang demikian, tesis ini membentuk satu penyelesaian baru untuk mengesan kelakuan

manusia, sebaik sahaja ia bermula, tetapi sebelum kelakuan tersebut disempurnakan.

Dalam usaha untuk melaksanakan pengesanan awal kelakuan manusia, masalah kla-

sifikasi konvensional diubah suai ke masalah klasifikasi bingkai demi bingkai (frame-

by-frame level classification). Kini, wujud pengelas terkenal seperti Mesin Vector So-

kongan (Support Vector Machine, SVM), K-Neighbour terdekat (K-nearest Neighbour,

KNN), dan lain-lain, untuk melaksanakan pengelasan. Walau bagaimanapun, keberke-

sanan algoritma-algoritma ini bergantung kepada aplikasinya dan syaratnya. Oleh itu,

pemilihan pengelas untuk tugas pengelasan merupakan isu penting yang perlu diprihatin.

Bahagian pertama tesis ini mengkaji masalah tersebut dan menggunakan Bandler-Kohout

kabur dengan Produk sub-segi tiga (fuzzy Bandler-Kohout sub-triangle product, atau ring-

kasannya fuzzy BK subproduct) sebagai pengelas. Prestasi pengelas tersebut diuji dalam

pengiktirafan kelakuan manusia dan klasifikasi tempat (scene). Ini adalah satu langkah

penting kerana ia adalah percubaan pertama menggunakan fuzzy BK subproduct untuk

pengelasan.

Bahagian kedua tesis ini mengkaji masalah pengesanan awal kelakuan manusia.

Kaedah yang dicadangkan adalah berdasarkan mekanisma inferens daripada fuzzy BK

subproduct dan menggunakan keupayaan kabur (fuzzy capabilities) dalam menangani

ketidakpastian yang wujud di dunia sebenar untuk membuat keputusan yang lebih tepat.
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Fungsi keahlian kabur (fuzzy membership function) dihasilkan frame-by-frame dari fuzzy

BK subproduct memberi asas yang diperlukan untuk mengesan sesuatu tindakan sebelum

ia selesai, apabila ambang (threshold) tertentu dicapai dengan cara yang sesuai. Untuk

menguji keberkesanan bagi kaedah yang dicadangkan, eksperimen dilakukan untuk bebe-

rapa kelakuan manusia yang mana pengesan dapat mengenali kelakuan tersebut apabila

melihat 32% daripada keseluruhan bingkai (frames). Akhirnya, kaedah yang dicadangk-

an dianalisis dari perspektif yang lebih luas dan satu teknik hibrid untuk jangkaan awal

kelakuan manusia adalah dicadangkan. Ia menggabungkan manfaat visi komputer dan

teori set kabur berdasarkan fuzzy BK subproduct. Kebaharuannya terletak pada pembina-

an fungsi keahlian frame-by-frame untuk setiap jenis pergerakan yang mungkin, dengan

mengambil kira beberapa kelakuan manusia dari dataset umum.

Tambahan pula, kesan pelbagai pengendali implikasi kabur dan struktur inferens da-

lam mendapatkan semula hubungan antara subjek manusia dan kelakuan yang dilakukan

telah dibincangkan. Pengendali implikasi kabur yang sedia ada hanya mampu meng-

endalikan data dalam dua dimensi. Dimensi ketiga, ’masa’, memainkan peranan yang

penting bagi mengiktiraf tindakan manusia untuk pemodelan bagi perubahan pergerakan

manusia dari semasa ke semasa. Oleh itu, satu pengendali implikasi kabur berdasarkan

ruang-masa (space-time) diperkenalkan, dengan mengubah pengendali implikasi sedia

ada untuk menampung masa sebagai dimensi tambahan. Secara empirik, teknik hibrid

yang dicadangkan adalah cekap dan dapat mengesan tindakan sebelum lengkap danmeng-

atasi penyelesaian konvensional dengan kadar pengesanan yang baik. Pengesan tersebut

dapat mengenal pasti sesuatu tindakan setelah melihat 23% daripada keseluruhan bingkai

secara purata.
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CHAPTER 1: INTRODUCTION

Temporally changing events surround us in daily life, such as the temperature variations

over time, fluctuating stock prices, and the changing human behavior. Monitoring the

temporally varying human behavior is an important task in the Computer Vision (CV)

community where researchers aim at analyzing the time series data constituting the se-

quences of actions observed over time. A temporal event is time bounded and has a

duration, whereas early detection refers to detecting an event as soon as possible i.e. after

it starts but before it finishes. In this thesis, the human behavior is studied in the con-

text of analyzing and interpreting human movements over time (Human Motion Analysis

(HMA)), with the aim of detecting human action early.

HMA has been a popular research topic that encompasses many domains such as

biology (Bobick, 1997; Troje, 2002), psychology (Barclay, Cutting, & Kozlowski, 1978;

Blake & Shiffrar, 2007), multimedia (Kirtley & Smith, 2001), etc. In the CV community,

HMA has been an active research area over years due to the advancement in video camera

technology and the availability of more sophisticated CV algorithms. The real-time

applications of HMA include video surveillance (Hatakeyama, Mitsuta, & Hirota, 2008;

Popoola & Wang, 2012), health-care monitoring (Anderson, Keller, Skubic, Chen, &

He, 2006; Sanchez-Valdes, Alvarez-Alvarez, & Trivino, 2015; Anderson, Luke, et al.,

2009b), sport analysis (Rodriguez, Ahmed, & Shah, 2008a; Yeguas-Bolivar, Muñoz-

Salinas, Medina-Carnicer, & Carmona-Poyato, 2014), etc.

However, early human action detection has not received much attention in the recent

past despite of the fertile potential applications such as criminal attack detection, risk of

elderly patients’ fall detection, affective human-robot interaction, etc. Most of themethods

(C. H. Lim, Vats, & Chan, 2015) deal with detection of the action after its completion.

Figure 1.1 explains the scenario of the state-of-the-art methods. For early detection, it is
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Figure 1.1: Traditional detector versus early detector. The traditional detector detect
an action after fully observing the video, whereas the early detector detects an action
by observing the video frame-by-frame, such that it able to detect an action before its
completion.

essential to detect an action as soon as possible by making observations frame-by-frame

(Ryoo, 2011; G. Yu, Yuan, & Liu, 2012; Ryoo, Fuchs, Xia, Aggarwal, & Matthies, 2014;

K. Li & Fu, 2012; Hoai & De la Torre, 2012). Figure 1.1 illustrates the difference

between traditional detector and the early detector, using an example of ‘bend’ action. By

definition, the traditional detector performs action classification after fully observing the

video, whereas the early detector aims at detection of an action by observing the video

frame-by-frame, such that it able to detect an action before its completion.

1.1 Motivation

The motivation behind early human action detection is driven by the need to detect an

action as soon as possible, before it finishes. To see why it is important to detect an action

before it is completed, consider the following three concrete examples (as illustrated in

Figure 1.2) with reference to the real-world applications:
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(a) Security: Robbery.

(b) Health-care: Elderly patients’ fall detection. (c) Robotics: Affective computing.

Figure 1.2: Examples of real-world applications where early human action detection is
needed. Image source: http://images.google.com.

(a) Security: Consider a surveillance scenario, where recognizing the fact that certain

objects are missing after they have been stolen may not be meaningful (Ryoo, 2011).

The system could be more useful if it is able to prevent the theft and catch the thieves

by predicting the ongoing stealing activity as early as possible based on live video

observations.

(b) Health-care: Consider an example of elderly care system. It is crucial to accurately

and rapidly detect the elderly patients’ fall, so that necessary medical help can be

provided in a timely manner before it becomes life threatening (Anderson et al., 2006;

3
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Anderson, Luke, Skubic, et al., 2008). Hence, early detection of elderly patients’ fall

is very important.

(c) Robotics: Consider an example of building a robot that can affectively interact with a

human (Hoai & De la Torre, 2012, 2014). An important characteristic of such robot

is its ability to rapidly and accurately detect a human emotion by observing facial

expressions, and therefore generate appropriate response with time. The imitation

response of the robot should be in synchronization with the current behavior of the

human. This means that it is important for the robot to detect facial expression

changes of the human, e.g., smiling, frowning, anger or disgust even before they are

completed. Therefore, early detection of human behavior is important for affective

communication between a robot and a human.

Most of the methods (C. H. Lim et al., 2015) perform after-the-fact detection, where

action classification is performed after fully observing the video. However, even if the

system detects the action (e.g. crime or patients’ fall, etc.), it may be too late to prevent it.

Therefore, early detection is required.

1.2 Objectives of Study

This study aims at developing an algorithm for early human action detection. To achieve

this goal, efforts are channeled to the following:

(a) The first objective is to select a classifier for human action classification. Therefore,

fuzzy Bandler-Kohout (BK) Sub-Triangle Product (subproduct) (Bandler & Kohout,

1980a) is employed as a classifier. The performance is tested for HMA (Three-

dimensional (3D) data) and scene classification (Two-dimensional (2D) data).

(b) The second objective is to train a detector to recognize human action as early as
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possible, without fully observing an action video. The aim is to identify an action

upon viewing minimum possible number of frames, and outperform the conventional

solutions with good detection rate.

(c) The third objective is to introduce a new space-time fuzzy implication operator, with

application in HMA. This is because a third dimension ‘time’ is not taken into account

in the existing fuzzy implication operators, that play a crucial role in a HMA system

in order to model human movement changes over time.

In the following section, challenges faced in the research community and the problem

formulation are discussed that serve as the main motivation behind this study in order to

achieve the research aims and objectives.

1.3 Challenges and Problem Formulation

As previously discussed, monitoring the temporally varying human behavior is an impor-

tant task, and has been widely studied in literature (C. H. Lim et al., 2015). However, early

human action detection has not received the much needed attention despite of the potential

applications in the field of security, health-care, etc. The main problem is that most of the

methods (C. H. Lim et al., 2015) deal with the detection of action after its completion,

and for early detection it is essential to detect an action as soon as possible by making

observations frame-by-frame, as illustrated in Figure 1.1. In this thesis, this issue is ad-

dressed and an algorithm is proposed to detect ongoing human action early by training a

detector capable of detecting a human action seeing minimum possible number of frames.

Therefore, the conventional classification problem is modified into frame-by-frame level

classification to perform early detection.

However, early human action detection is a daunting task given the vast amount of

uncertainties involved therein. Figure 1.3 illustrates the possible uncertainties that may
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Figure 1.3: Several sources of uncertainties that can exist at each step in a HMA system.
For example, human size variations, shadows, occlusions and background noises can affect
human detection and modeling process. The performance of human motion tracking algo-
rithms may be affected due to different viewpoint angles. And the classification ambiguity
can be a major source of uncertainty while performing human action recognition.

exist at each step in a HMA system. Some of the common sources of uncertainties

include background noises, occlusions, human body size variations, different viewpoint

or angles, classification ambiguity, etc. An efficient algorithm should be able to handle

even the minutest level of uncertainty for reliable decision making as cumulated errors

can deteriorate the overall system performance.

There exist some notable works that deal with early human action detection and

aim at detecting the unfinished activities, e.g. Ryoo (2011); G. Yu et al. (2012); Ryoo

et al. (2014); K. Li and Fu (2012); Hoai and De la Torre (2012). However, despite

of the advantages these methods offer, they lack in the ability to handle issues such as

uncertainty, imprecision and vagueness. An important reason behind this problem is that

their classification results are binary. This means that an action can belong to a single class

only at a time. Nonetheless, fuzzy approaches are known to offer an effective solution

and allows an action to belong to multiple classes. This is achieved by assigning a degree

of belongingness to a human action using the fuzzy membership function, and the fuzzy

rules. This work proposes a fuzzy approach for early human action detection.

From the literature review by C. H. Lim et al. (2015), it is found that there exist
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a number of fuzzy approaches for HMA. In this work, fuzzy BK subproduct approach

is selected due to its flexibility and efficacy to be employed in real-world applications

(C. K. Lim & Chan, 2015; Bui & Kim, 2006; Groenemans, Van Ranst, & Kerre, 1997;

Vats, Lim, & Chan, 2012), and its capability to imitate the natural human behavior, i.e.

modus-ponen way (C. K. Lim & Chan, 2011). Modus-ponen refers to the interpretation

of available information while solving real-life problems. For example, if A implies B,

and A is asserted to be true, therefore B must be true. Nonetheless, fuzzy BK subproduct

does not require defining rules for inference, and hence is computationally inexpensive.

Rather it is based on the study of relationship between two sets, where if there exists an

intermediate set which is in relation with both the sets, then the indirect relationship can

be established.

Using fuzzy BK subproduct inference mechanism, the detector is trained and used

separately for each of the target action classes. The challenge is to study the indirect

relationship between the human subject and the action being performed in the video.

This can be achieved by modeling the frame-by-frame arrival of data, and subsequently

performing action classification on the basis of the membership function values generated

from fuzzy BK subproduct.

In general, the CV methods and fuzzy approaches do not behave in a conflicting

manner, rather compliment one another (C. H. Lim et al., 2015). The fusion of these

techniques towards performing human action recognition as early as possible can be

achieved through proper hybridization. To this end, the relationship between a human

subject and the action being performed is studied using fuzzy BK subproduct, efficiently

integrated with CV techniques including feature extraction andmotion tracking to perform

human action recognition effectively. The fuzzy membership function provides the basis

to detect an action before it is completed when a certain threshold is attained in a suitable
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way.

A solution for early human action detection is intended that is closest to natural

human perception. The novelty lies in the hybrid based learning formulation to train the

early detector such that once the detector has been trained, it can be flexibly used in several

ways depending upon the application.

1.4 Contributions

The main contributions of this thesis are highlighted in Figure 1.4, and are as follows:

Figure 1.4: Themain problems addressed in this thesis along with the proposed solutions.

Contribution 1: Firstly, this thesis addresses the most fundamental problem of selecting

a classifier to employ for the classification task. As a solution, fuzzy BK subproduct is

used as a classifier. In order to demonstrate the capability of fuzzy BK subproduct in

handling both 3D video data and 2D image data, its performance is tested for HMA and

scene classification.

Experimental results on standard public datasets demonstrate the effectiveness of

fuzzy BK subproduct in performing HMA and scene classification. This is the first at-

tempt of using fuzzy BK subproduct as a classifier, and the research work is accepted

for publication in the proceedings of IEEE International Conference on Fuzzy Systems
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(FUZZ-IEEE 2015), held in Istanbul, Turkey, and in the Journal of Intelligent and Fuzzy

Systems (2015).

Contribution 2: Secondly, this thesis proposes a novel framework to detect human

action early based on fuzzy BK subproduct inference mechanism by utilizing the fuzzy

capabilities in handling the uncertainties that exist in the real-world for reliable decision

making. Frame-by-frame action classification is performed for early detection where the

fuzzy membership function generated from fuzzy BK subproduct provides the basis to

detect an action before it is completed when a certain threshold is attained in a suitable

way. In order to test the effectiveness of the proposed framework, a set of experiments is

performed for few action sequences where the aim of the detector is to recognize an action

upon seeing minimum number of frames possible.

To the best of my knowledge, there does not exist any work with the application of

fuzzy BK subproduct approach for human action recognition. This is the first work in

the fuzzy community dealing with early human action detection. This work is accepted

for publication in the proceedings of IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE 2015), held in Istanbul, Turkey.

Contribution 3: Thirdly, the proposed framework is analyzed from a broader perspective

where it can be represented as a hybrid model of CV and fuzzy set theory based on

fuzzy BK subproduct. Hybrid techniques address issues such as uncertainty, vagueness

or imprecision to a considerable extent by exploiting the strengths of one technique to

alleviate the limitations of another (Acampora, Foggia, Saggese, & Vento, 2012; Hosseini

& Eftekhari-Moghadam, 2013).

To this end, the proposed solution is the synergistic integration of CV solutions
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and fuzzy set theory where the relationship between a human subject and the action being

performed is studied using fuzzy BK subproduct, efficiently integratedwith CV techniques

including feature extraction and motion tracking to perform human action recognition

effectively. The novelty lies in the construction of a frame-by-frame membership function

for each kind of possible movement, taking into account several human actions from a

publicly available dataset. Another issue addressed by the proposed method is to handle

the cumulative tracking errors and precision problem. This can be achieved by using

a set of overlapped fuzzy numbers known as fuzzy qualitative quantity space, where

individual distance among them is defined by a preselected metric (H. Liu & Coghill,

2005). A solution for early human action detection closest to natural human perception is

intended. The contribution lies in the hybrid based learning formulation to train the early

detector such that once the detector has been trained, it can be flexibly used in several

ways according to different types of application.

Empirically, the proposed hybrid technique can efficiently detect a human action

before completion and outperform the conventional solutions with good detection rate.

The detector aims at identifying an action upon viewing minimum number of frames for

test data under the experimental settings. This work is accepted for publication in Applied

Soft Computing (2015).

Contribution 4: Finally, a study is performed on the impact of various fuzzy implication

operators and the inference structures in retrieving the relationship between the human

subject and the action. The existing fuzzy implication operators are capable of handling

2D data only. However, a third dimension ‘time’ plays a crucial role in human action

recognition to model human movement changes over time. Therefore, a new space-time

fuzzy implication operator is introduced, by modifying the existing implication operators
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to accommodate time as an added dimension. This work is accepted for publication in

the proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015),

held in Istanbul, Turkey, and in Applied Soft Computing (2015).

1.5 Outline of Thesis

This thesis is organized into six main chapters, as described with a brief overview on each

as follows:

Chapter 1 presents an overview on HMA and early human action detection in general,

while highlighting the motivation and the objectives of the study. Furthermore, the

challenges and problem formulation are discussed, followed by the highlights on the main

contributions of this thesis.

Chapter 2 reviews the state-of-the-art methods and solutions that are relevant to the

problem statement this thesis is addressing. Fuzzy human motion analysis is reviewed in

an elaborate manner in order to understand the necessity of employing fuzzy techniques

for HMA. Also, the challenges and the current state of the problems are discussed.

Furthermore, fuzzy BK subproduct approach is reviewed, followed by the review on the

state-of-art methods for early human action detection along with their limitations.

Chapter 3 discusses the most fundamental issue of selecting the classifier to employ

for the classification task. As a solution, fuzzy BK subproduct is employed as a classifier,

with its employability tested for HMA and scene classification.

Chapter 4 presents a detailed description of the proposed method to detect human

action early. The proposed method is based on fuzzy BK subproduct inference mechanism

and utilizes the fuzzy capabilities in handling uncertainties that exist in the real-world.

It discusses how frame-by-frame action classification is performed, thus enabling early

detection. The fuzzy membership function generated from fuzzy BK subproduct provides

the basis to detect an action before it is completed when a certain threshold is attained in
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a suitable way. A set of experiments is performed for few action sequences in order to test

the effectiveness of the proposed framework.

Chapter 5 analyzes the the proposed framework from a broader perspective where

the novelty lies in the construction of a frame-by-frame membership function for each

kind of possible movement, taking into account several human actions from a publicly

available dataset. In specific, the main idea behind the proposed framework, i.e. the

hybridization of CV and the fuzzy set theory based on fuzzy BK subproduct is discussed

and formulated. Furthermore, the impact of various fuzzy implication operators and

the inference structures in retrieving the relationship between the human subject and

the actions performed is discussed. A new space-time fuzzy implication operator is

introduced, with application in HMA. Experimental results are demonstrated to further

validate the effectiveness of the proposed hybrid technique to detect a human action early.

Chapter 6 concludes the research work and suggests a number of areas for future

investigation.
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CHAPTER 2: BACKGROUND RESEARCH

In this section, HMA is first reviewed where the current trends in HMA is studied along

with the limitations in terms of the inability to handle the uncertainties that may exist in

a real-world. The reason for adopting fuzzy approach in HMA is critically reviewed, and

the overall pipeline of HMA is represented in three levels: Low-level (LoL), Mid-level

(MiL) and High-level (HiL) HMA. Furthermore, BK subproduct approach is reviewed

with highlights on its applications, followed by a review on the state-of-the-art methods

for early human action detection and their limitations. In general, the overall background

research is conducted as presented in Figure 2.1.

Figure 2.1: Overall representation of the background research conducted.

2.1 Human Motion Analysis

Human motion analysis (HMA) refers to the analysis and interpretation of human move-

ments over time. HMA has been studied extensively in the CV literature for decades due

to its increasing demand and advancement in camera technology. Here, HMA concerns

with the detection, tracking and human action recognition, and more generally the un-

derstanding of human behaviors from image sequences involving humans. Amongst all,

video surveillance is one of the most important real-time applications (Hu, Tan, Wang,

& Maybank, 2004; Ko, 2008; Haering, Venetianer, & Lipton, 2008; I. S. Kim, Choi, Yi,
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(a) Madrid train bombing

(b) London bombing (c) Boston marathon bombing

Figure 2.2: (a) Madrid train bombing (March 11, 2004): 191 people were killed, and
1,800 others were injured in the Madrid commuter rail network bombing attack, (b)
London bombing (July 7, 2005): A series of co-ordinated suicide attacks happened in
the central London during the morning rush hour, where the civilians were targeted using
the public transport system, (c) Boston marathon bombing (April 15, 2013): During
the Boston Marathon, two pressure cooker bombs exploded, that killed three people
and injured 264 others. Image source: http://images.google.com, information source:
http://en.wikipedia.org/.

Choi, & Kong, 2010; Popoola & Wang, 2012). The need for video surveillance systems

can be well described using the example of popular bombing tragedies, such as theMadrid,

London and Boston marathon bombing tragedies, happened in 2004, 2005 and 2013 re-

spectively, as illustrated in Figure 2.2. The tragedies would not have been critical had there

been an intelligent video surveillance system installed that can automatically detect the

abnormal human behavior in the public areas. Moreover, if the video surveillance system

was trained to detect the event early, the situation could have been possibly controlled in

a timely manner.
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As highlighted in Table 2.1, the significance and popularity of HMA attracted several

researchers and hence a number of survey papers have been published in the literature.

The earliest survey paper was by Aggarwal et al. (1994), that focused on different methods

employed in the articulated and non-rigid human body motion. An overview on the

motion extraction methods using the motion capture systems was presented in Cédras

and Shah (1995). This survey was focused mainly on action recognition, individual body

parts recognition, and body configuration estimation. A similar taxonomy was used in

Aggarwal and Cai (1997), where different labels were assigned for the three classes, and

the classes were further divided into subclasses yielding a more comprehensive taxonomy.

An interesting survey was conducted by Gavrila (1999), where the applications of visual

analysis of human movements was reviewed. Their taxonomy covered the 2D and 3D

approaches with and without the explicit shape models.

The most recent papers include Rautaray and Agrawal (2015); Dawn and Shaikh

(2015); T. Li et al. (2015); C. H. Lim et al. (2015). Rautaray and Agrawal (2015)

provided an analysis of existing literature related to gesture recognition systems for human

computer interaction by categorizing it under different key parameters. A comprehensive

survey of human action recognition with spatio-temporal interest point (STIP) detector

was presented in Dawn and Shaikh (2015). The state-of-the-art techniques for crowd scene

analysis were reviewed in T. Li et al. (2015). And lastly, C. H. Lim et al. (2015) presented

a survey on the fuzzy set oriented methods for HMA. Table 2.1 and 2.2 summarizes the

available survey papers on HMA from 1994 till present, and the criterion on which these

papers emphasized.

In general, three main steps are involved in a HMA system: human detection and

modeling, human motion tracking, and human action recognition. As illustrated in Figure

1.3, there may exist uncertainties at each step in a HMA system. For example, while
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performing human detection and modeling, there may exists background noise, shadows,

occlusions etc. that can affect the detection accuracy. Also, humans differ in their body

sizes, and therefore proper generalization on the human body size variation is required.

This can otherwise affect the process of building human model for further processing.

Nonetheless, uncertainties at this level can affect the feature extraction process that serves

as the prerequisite for human motion tracking and action recognition.

Furthermore, a sophisticated human motion tracking system should be well-trained

to handle the uncertainties such as viewpoint variations. This means that since human can

perform an action irrespective of the current position, angles, etc., therefore HMA system

should be able to handle the variations in the camera viewpoints. If such uncertainties are

not taken into account, they can affect the overall system performance.

Another source of uncertainty that can affect the HMA system is the classification

ambiguity or vagueness to accurately detect an action due to high degree of similarities

amongst different action classes. For example, in Figure 1.3, it is difficult to distinguish

between ‘walk’, ‘jog’ and ‘run’ actions due to similar characteristics. The main reason

behind this problem is the binary classification output enforced on the system, where an

action can belong to one class only at a time, with zero tolerance to uncertainty.

An efficient algorithm should be able to handle even the minutest level of uncertainty

for a reliable decision making as the cumulated errors can deteriorate the overall system

performance. Fuzzy set theory (Zadeh, 1965) has inherent capability in handling the

uncertainties, and therefore can help in dealing with the above discussed limitations of

the conventional HMA system. Hence, this gave rise to a new research direction - “fuzzy

HMA”, as reviewed in the following section.
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2.2 Fuzzy Human Motion Analysis

Before reviewing the fuzzy set oriented approaches for HMA, the main advantages of

using fuzzy approach for HMA is required to be discussed. Some important factors are

identified that make fuzzy approaches successful in improving the overall system perfor-

mance. These include, firstly, the ability of the fuzzy approaches to assign soft boundary

instead of hard labels. Secondly, the linguistic support provided by the fuzzy approaches

to represent the measurement boundaries. Lastly, the flexibility of the fuzzy system to

adapt to various system designs. These important factors are discussed as follows:

(a) Soft boundary assignment:

Human reasoning is a mysterious phenomenon that scientists are trying to simulate

with machines in the past few decades. With the knowledge that “soft” boundaries exist in

concepts formation of human beings, fuzzy set theory (Zadeh, 1965) has emerged as one of

the most important methodologies in capturing humanmotion. In general, fuzzy approach

assigns “soft” boundaries, or in other words perform “soft labeling”, where a subject can

be associated with many possible classes with a certain degree of confidence. As such, the

fuzzy representation is more beneficial than the ordinary (crisp) representations. This is

because it can represent not only the information stated by a well-determined real interval,

but also the knowledge embedded in the soft boundaries of the interval. Thus, it removes,

or largely weakens the boundary interpretation problem achieved through the description

of a gradual rather than an abrupt change in the degree of membership, closer to how

humans make decisions and interpret things in the real world.

This is also supported by a few notable literary works. For example, Bezdek (1992) in

their review on computing with uncertainties emphasized on the fact that the integration of

fuzzy models always improve the computer performance in pattern recognition problems.
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Similarly, Huntsberger, Rangarajan, and Jayaramamurthy (1986); Yager (2002) presented

a survey on how to effectively represent the uncertainties using the Fuzzy Inference Struc-

ture (FIS). Nevertheless, there are a few studies reported on the type-2 FIS in this regards.

H. Wu and Mendel (2002); D. Wu and Mendel (2007) explained on how to design an

interval type-2 FIS using the uncertainty bounds, and introduced the measurement of un-

certainty for interval type-2 fuzzy sets using the information such as centroid, cardinality,

fuzziness, variance and skewness. A comprehensive review on handling the uncertainties

in pattern recognition using the type-2 fuzzy approach was provided by Zeng and Liu

(2006).

(b) Linguistic support:

Another worth highlighting aspect of human behavior is the way they interpret things

in the natural scenarios. Human beings mostly employ words in reasoning, arriving at

conclusions expressed as words from the premises in a natural language, or having the

form ofmental perceptions. As used by humans, words have fuzzy denotations. Therefore,

modeling the uncertainties in a natural format for humans (i.e. linguistic summarizations)

can yield more succinct description of human activities. Inspired from this, HMA can

be modeled efficiently by representing an activity in linguistic terms. This concept was

initiated by Zadeh (1996), where words can be used in place of numbers for computing and

reasoning (like done by human), commonly known as Computing with Words (CWW).

In CWW, a word is viewed as a fuzzy set of points drawn together by similarity, with

the fuzzy set playing the role of a fuzzy constraint on a variable. There are two major

imperatives for CWW (Zadeh, 1996). Firstly, CWW is necessary when the available

information is too imprecise to be justified using numbers. Secondly, when there is a

tolerance for imprecision that can be exploited to achieve tractability, robustness, low
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solution cost, and better rapport with reality. This concept of using CWW i.e. linguistic

support to represent the measurement boundaries can be applied in real-world scenarios.

For example, consider the human activities: walking and running, which can be inferred

using a simple cue i.e. the speed of a person. Different levels of speed can be modeled

by using the linguistic terms such as ‘very slow’, ‘slow’, ‘moderate’, ‘fast’, and ‘very

fast’, instead of representing in numerical terms. The use of linguistic terms provide

the capability to perform human like reasoning such as the feasibility of defining rules

for the inference process. With the integration of the linguistic support in the FIS, the

computational complexity of the numeric labeling and the imprecision problem in the

interpretation stage are also suppressed. Furthermore, the linguistic terms are more

understandable where they mimic how human interpret things and make decisions.

The concept of linguistic support is rooted in several papers. For example, in Zadeh

(1973) the concept of a linguistic variable and the granulation was introduced. Besides

that, Zadeh (1996) discussed the role played by fuzzy logic in CWW and vice-versa. An

interesting work by Rubin (1999) defined CWW as a symbolic generalization of fuzzy

logic. Recently, several papers have been published that utilized the concept of linguistic

summarization in the fuzzy system, and have been successfully applied in the real-world

applications. For example, the works by Anderson, Luke, et al. (2009a); Trivino and

van der Heide (2008); Kacprzyk and Yager (2001); Anderson, Keller, Anderson, and

Wescott (2011); Wilbik, Keller, and Alexander (2011); Wilbik and Keller (2013), where a

complete sentence is preferable as an output, instead of numerical data or a crisp answer

like in a conventional decision making systems. For instance, “the resident has fallen in

the living room and is down for a long time”. Such succinct linguistic summarization

output is more understandable and closest to the natural answer.
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(c) Flexibility of the fuzzy system:

Another advantage of the fuzzy approach, especially those that utilize the knowledge

based system (fuzzy rules) such as the FIS, is that they possess the flexibility and feasibility

to adapt to various system designs. The conventional approaches designed their algorithms

to be well-fitted to solve solely some specific problems with low or no extendibility. The

world is changing rapidly with the headway of technologies. The flexibility to adapt to

such changes is one of the major concerns for a good and long lasting system. Fortunately,

the fuzzy approaches allow the alterations to serve the purpose. In addition, the alterations

can be made easily on the knowledge base by designing the fuzzy rules.

The knowledge base that comprises of all the rules is considered as the most crucial

part of a decision making system where it functions as the “brain” of the overall system.

As human growth together with knowledge is capable of making better decisions, similarly

if a decision making system is provided with sophisticated knowledge, it can deal with

the problems in a better manner. The FIS consists of a knowledge base where it can store

a number of conditional “IF-THEN” rules that are used for the reasoning process in a

specific problem domain. These rules are easy to write, and as many rules as necessary

can be supplied to describe the problem adequately. For example, consider the problem

of identifying different human activities e.g. running. Rules can be designed to infer the

running activity using a simple cue (speed), as following:

Rule 1: IF (speed is FAST) THEN (person is RUNNING)

Rule 2: IF (speed is MODERATE) THEN (person is NOT RUNNING)

However, in real-world scenarios, various factors can affect the speed of a person

such as the height, body size, etc. Therefore, in order to make the system closer to natural

solution, these rules are needed to be modified accordingly. Intuitively, if one may observe

the running styles of a tall person and a shorter person, due to difference in the step size
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of their feet, the taller person tends to run with a faster speed as compared to the shorter

person, running with moderate speed. However, both are performing the running activity,

but with different rules. This situation can be modeled by modifying the “Rule 2” as

follows:

Rule 2.1: IF (HEIGHT is TALL) & (SPEED isMODERATE) THEN (person is NOT

RUNNING)

Rule 2.2: IF (HEIGHT is SHORT) & (SPEED is MODERATE) THEN (person is

RUNNING)

Similarly, the body size can also affect the speed of a person, and can be modeled using

flexible fuzzy rules that can be easily added, modified or deleted according to the objective

of the system.

In a conventional FIS, most of these rules are built with the help of human expert

knowledge. For example, such experts can be doctor, police, forensic expert or researcher,

etc. The information that they provide is considered to be themost reliable one as they build

it based on their real life experiences and historical analysis. However, human intervention

in an intelligent system is becoming a threat due to the heuristic and subjectivity of human

decisions. Therefore, automated learning systems have emerged and widely employed in

the research society, encouraging learning and generation of fuzzy rules automatically.

Several works in the literature have reported efficient methods for the automatic generation

of the fuzzy rules such as L.-X.Wang andMendel (1992); Rhee andKrishnapuram (1993);

X. Wang, Wang, Xu, Ling, and Yeung (2001); T. W. Cheng, Goldgof, and Hall (1995);

Cordón, Herrera, and Villar (2001).

For example, L.-X. Wang and Mendel (1992) proposed a method for generating the

fuzzy rules by learning from examples, more specifically by the numerical data. Similarly,

Rhee andKrishnapuram (1993) presented an alternativemethod to generate the fuzzy rules
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automatically from the training data with their rules defined in the form of possibility,

certainty, gradual, and unless rules. A new approach called the fuzzy extensionmatrix was

proposed in X. Wang et al. (2001), which incorporated the fuzzy entropy to search for the

paths, and generalized the concept of the crisp extension matrix. Their method is capable

of handling the fuzzy representation and tolerating the noisy or missing data. Fuzzy c-

means (FCM) and its variants (e.g. multi-stage random sampling) with fast performance

have also been adopted in the fuzzy rule generation, such as the work by T. W. Cheng

et al. (1995). Apart from that, there are works reported in the fuzzy rule generation

incorporated with other machine learning techniques. Mitra and Hayashi (2000) provided

an exhaustive survey on the neuro-fuzzy rule generation algorithms, while Cordón et al.

(2001) presented an approach to automatically learn the fuzzy rules by incorporating the

genetic algorithm.

2.2.1 Overall taxonomy of fuzzy HMA

The human motion can be conceptually classified into three broad levels: Low-Level

(LoL), Mid-Level (MiL), and High-Level (HiL) HMA. LoL HMA is the background

(or foreground) subtraction which contributes in the pre-processing of the raw images

to discover the areas of interest, such as the human region. MiL HMA is the object

tracking, and this level prepares data for activity recognition. HiL HMA deals with the

human behavior understanding, where the main aim is the classification of human motion

patterns into various activity classes. Figure 2.3 represents the general taxonomy of fuzzy

HMA and the fuzzy approaches that are most commonly employed in the literature.

2.2.2 Low-level HMA

Human detection is the enabling step in almost every low-level vision-based HMA system

before the higher level of processing steps such as tracking and behavior understanding
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Figure 2.3: The general taxonomy of fuzzy HMA. It is represented into three broad levels:
Low-level, Mid-level and High-level HMA, along with the fuzzy approaches that are most
commonly employed in the literature.

can be performed. Technically, human detection aims at locating and segmenting the

regions bounding the people from rest of the image. This process usually involves motion

segmentation and object classification.

2.2.2.1 Motion segmentation

Motion segmentation aims at separating the moving objects from the natural scene. The

extracted motion regions are vital for the next level of processing. For example, it relaxes

the tracking complexity as only the pixels with changes are considered in the process.

However, some critical situations in the real-world environment such as the illumination

changes, dynamic scene movements (e.g. rainy weather, waving tree, rippling water

etc.), camera jittering, and shadow effects make it a daunting task. Herewith, the fuzzy

approaches are reviewed that addressed the background subtraction problems.

Background subtraction is one of the popularmotion segmentation algorithms that has
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received much attention in the HMA system. This is due to the usefulness of its output that

is capable of preserving the shape information, and helps in extracting motion and contour

information (Bobick & Davis, 2001; Weinland, Ronfard, & Boyer, 2006; Lewandowski,

Makris, & Nebel, 2010). In general, background subtraction is to differentiate between

the image regions which have significantly different characteristics from the background

image (normally denoted as the background model). A good background subtraction

algorithm comprises of a background model that is robust to the environmental changes,

but sensitive to identify all themoving objects of interest. There are some fuzzy techniques

that endowed this capability in the background subtraction which are highlighted in Table

2.3.

2.2.2.2 Object classification

The outcome from the motion segmentation usually result in a rough estimation of the

moving targets in a natural scene. These moving targets in a natural scene can be shadow,

vehicle, flying bird, etc. Before the region is further processed at the next level, it is very

important to verify and refine the interest object by eliminating the unintended objects.

There exists some fuzzy approaches in the literature that are significant for human object

classification. For example, Type-1 FIS and Type-2 FIS, as highlighted in Table 2.4, along

with the problems and the notion of using fuzzy approaches.

2.2.3 Mid-level HMA

Human detection is followed by tracking of human movements over time. Human motion

tracking is an important step as it prepares data for higher level tasks such as anomaly

event detection, human activity recognition, etc. The aim is to reliably and efficiently

track the object of interest (e.g. human) from a video. In general, motion tracking is

classified as model based and non-model based tracking.
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2.2.3.1 Model based tracking

In model based tracking, human bodymodels are adopted to model the complex, non-rigid

structure of the human body. The human body models include the stick figures, 2D and

3D motion description models, etc. For example, as presented in Y. Guo, Xu, and Tsuji

(1994); Leung and Yang (1995); Iwai, Ogaki, and Yachida (1999); Silaghi, Plänkers,

Boulic, Fua, and Thalmann (1998); Niyogi and Adelson (1994); Ju, Black, and Yacoob

(1996); Rohr (1994); Wachter and Nagel (1997); Rehg and Kanade (1995); Kakadiaris

and Metaxas (1996). The human body is represented as a combination of line segments

or sticks connected by joints in the stick figure model (Y. Guo et al., 1994; Leung & Yang,

1995; Iwai et al., 1999; Silaghi et al., 1998). The 2D models use 2D ribbons or blobs

to represent the human body (Leung & Yang, 1995; Niyogi & Adelson, 1994; Ju et al.,

1996). While the 3D models represent the human body in much more detailed manner by

using spheres, cones, ellipses, cylinders, etc., as presented in Rohr (1994); Wachter and

Nagel (1997); Rehg and Kanade (1995); Kakadiaris and Metaxas (1996).

However, human motion tracking is not an easy task due to the complex non-rigid

structure of the human body that consist of a number of joints and each body part has

the freedom to move in several directions. This can result in self-occlusions of the body

parts, and the issue can be handled well using the 3D models. Furthermore, other factors

that can affect the tracking performance includes cluttered background, monotone clothes,

illumination changes, etc. that even 3D models fail to handle (Ning, Tan, Wang, & Hu,

2004). As a solution, the fuzzy techniques such as the fuzzy qualitative kinematics, the

fuzzy voxel person, and the fuzzy shape estimation are employed in the model based

tracking algorithms to address the problem statements (Table 2.5).
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2.2.3.2 Non-model based tracking

In non-model based tracking, the randomly dispersed points are used to represent the

objects. The association between these points depend on the object’s characteristics and

behavior. However, it is a complex task due to the presents of occlusions, new object

entries, misdetections, etc. that can generate permanent tracking errors. The fuzzy ap-

proaches explicitly handles the uncertainties involved in establishing point correspondence

between the object motions, and are commonly employed in the non-model based object

tracking. For example, the fuzzy Kalman filter, fuzzy particle filter, fuzzy optical flow

and fuzzy clustering. A summary of research works in non-model based tracking using

fuzzy techniques is presented in Table 2.6.

2.2.4 High-level HMA

The final aim of the HMA system is to perform human behavior understanding. In this

section, the employability of the fuzzy techniques to perform human behavior understand-

ing is studied with main focus on hand gesture recognition, activity recognition, style

invariant action recognition, multi-view action recognition, and anomaly event detection.

2.2.4.1 Hand gesture recognition

The aim of a gesture recognition system is to recognize meaningful expressions of the

humanmotion. The applications of gesture recognition include sign language recognition,

medical rehabilitation, virtual reality, etc. (Lyons, Budynek, & Akamatsu, 1999). Gesture

recognition is important for building efficient and intelligent human-computer interaction

applications (Y. Wu & Huang, 1999) where the system can be controlled from a distance

without screen touching, or cursor movements.

However, there exists several sources of uncertainties and ambiguities that can affect

a gesture recognition system. For example, dynamic lighting conditions, complex back-
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grounds, deformable human limb shapes, etc. Also, “pure” gestures are seldom elicited,

as human normally demonstrate “blends” of these gestures (Mitra & Acharya, 2007).

Among several solutions available to tackle the issue, fuzzy clustering algorithms and the

hybrid technique of machine learning with fuzzy set theory are often employed, and help

in achieving better system performance, as illustrated in Table 2.7.

2.2.4.2 Activity recognition

Activity recognition is an important task in the HiL HMA system. The goal of activity

recognition is to autonomously analyze and interpret the ongoing human activities and

their context from the video data. For example, in the surveillance systems for detecting

suspicious actions, or in sports analysis for monitoring the correctness of the athletes’

postures.

In recent times, the fuzzy approaches such as type-1 FIS, fuzzy HMM, and hybrid

techniques have proved to be beneficial in human activity recognition, with capability of

modeling the uncertainties in the feature data. Nonetheless, Fuzzy Vector Quantization

(FVQ) and Qualitative Normalized Template (QNT) provide the capability to handle the

complex human activities occurring in our daily life, such as walking followed by running,

then running followed by jumping, or a hugging activity where two or more people are

involved. Table 2.8 discusses the applications of the fuzzy techniques in performing

activity recognition, highlighting the problem statements and the reason for employing

fuzzy approaches.

2.2.4.3 Style invariant action recognition

Style invariant action recognition refers to recognizing the actions of different people

executed in various styles. In general, people differ from one another in their styles of

performing an action because of the physical differences that refers to size variations,
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appearances, postures, etc., or the dynamic differences that includes speed variations,

motion patterns, etc. (C. H. Lim & Chan, 2013). In order to model the style variations,

several notable works have been reported in the literature that utilizes the fuzzy techniques,

and have been listed in Table 2.9.

2.2.4.4 Multi-view action recognition

Multi-view action recognition refers to performing an action irrespective of camera view-

ing angles. In real-world, a human can perform an action at any angle, with no restriction

on being frontal parallel to the camera. However, most of the existing works fix the camera

angles, and limit the camera view. The problem of view independent action recognition

has received much attention in the CV community. Some of the noteworthy works include

Ji and Liu (2010); Weinland et al. (2006); Lewandowski et al. (2010). Nonetheless, fuzzy

techniques such as the FVQ, and fuzzy qualitative reasoning have been applied in the

literature to perform multi-view action recognition, and a summary of research works is

presented in Table 2.10.

2.2.4.5 Anomaly event detection

Anomaly detection is important in our daily life. It deals with the problem of discovering

patterns in the input data that do not conform to the expected behavior. This can help in

inferring abnormal human behavior such as an action or an activity that is not following

the routine or different from the normal behavior (Hu, Tan, et al., 2004; Kratz & Nishino,

2009; S. Wu, Moore, & Shah, 2010). For example, in video surveillance scenario, to

automatically detect the criminal acts. To understand better, a summary of research works

on anomaly event detection using the fuzzy approaches is shown in Table 2.11.

From the extensive review on fuzzy HMA, it can be seen that there exists a number

of fuzzy approaches to deal with a given problem statement and sources of uncertainties
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depending upon the different levels of HMA task to be handled. In this thesis, fuzzy BK

subproduct is employed for human action classification which is the first attempt in the

community.

2.3 BK Subproduct

BK subproduct is a study of compositions of relations between sets first proposed by

Bandler and Kohout (1980a). It can be defined in terms of crisp relations as well as fuzzy

relations. To make the review as self-contained as possible, the discussion starts with an

overview on BK subproduct.

Figure 2.4: Overview of BK subproduct: element a in set A is in relation with element c
in set C if its image under R (aR) is a subset of image Sc.

2.3.1 Overview on BK subproduct

Bandler and Kohout proposed that the relationship between two indirectly associated sets

can be studied with BK relational product which defines the relationship between the

elements within the two indirectly associated sets as the overlapping of their images in a

common set. Figure 2.4 gives an overview of BK subproduct for crisp relations.

Let us assume that there exist three sets: set A = {ai |i = 1, · · · , I}, set B = {b j | j =

1, · · · , J} and set C = {ck |k = 1, · · · , K }. If a relation R is defined between A and B such

that R ⊆ {(a, b) |(a, b) ∈ A × B}, and a relation S is defined between B and C such that
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S ⊆ {(b, c) |(b, c) ∈ B × C}, then BK subproduct can be defined as:

R / S = {(a, c) |(a, c) ∈ A × C and aR ⊆ Sc} (2.1)

BK subproduct finds all (a, c) couples such that the image of a under relation R in B

(aR) is among the subset of c under the converse relation of S in B (Sc), as illustrated in

Figure 2.4. For example, let A is a set of patients, B is a set of signs and symptoms and

C is a set of diseases. For a patient a, relation R provides the signs and symptoms that

are found on patient a (aR), while S gives the signs and symptoms that characterizes a

disease c, it can be concluded that the patient a might be suffering from the disease c.

Though BK subproduct is very useful, it suffers from vagueness and uncertainty

issues that exist in the real-world, and therefore Bandler and Kohout (1980a) extended the

crisp BK subproduct to fuzzy BK subproduct to cope with these situations. Observing Eq.

2.1, it can be seen that aR ⊆ Sc is the main element to retrieve the relationship between

a and c. Therefore, the fuzzy subsethood measure was developed in Bandler and Kohout

(1980b) based on the fuzzy implication operators ‘→’, as shown in Table 2.12.

Let P and Q be the fuzzy subsets in the universe X , such that x ∈ X . Then the

possibility that P is a subset of Q is given as:

π(P ⊆ Q) =
∧
x∈X

(µP(x) → µQ (x)) (2.2)

where
∧

represents the arithmetic mean in mean criterion or the infimum operator in

harsh criterion; µP(x), and µQ (x) represents the membership function of x in P and Q

respectively; while → is the fuzzy implication operator. Utilizing Eq. 2.1 and 2.2, BK

subproduct as the composition of relations between ai ∈ A and ck ∈ C is defined as
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Table 2.12: Fuzzy implication operators, and their respective symbols and definitions.

Name Symbol Definition

Standard Sharp r →S# s
{
1 iff r , 1 or s = 1
0 otherwise

Standard Strict r →S s
{
1 iff r ≤ 1
0 otherwise

Standard Star r →S* s
{
1 iff r ≤ s
s otherwise

Gaines 43 r →G43 s min(1,
r
s

)

Modified Gaines 43 r →KD s min(1,
r
s
,
1 − r
1 − s

)

Kleene-Dienes r →KD s max(s, 1 − r)

Reichenbach r →R s 1 − r + rs = min(1, 1 − r + s)

Łukasiewicz r →Ł s min(1, 1 − r + s)

Early Zadeh r →EZ s (r ∧ s) ∨ (1 − r)

follows (Bandler & Kohout, 1980a):

R / S(a, c) =
∧
b∈B

(R(a, b) → S(b, c)) (2.3)

where, R(a, b) represents the membership function of the relation R between a and b; and

S(b, c) represents the membership function of the relation S between b and c.

Studies by Kohout and Bandler (1992); C. H. Lim and Chan (2012) also found that

among all the fuzzy implication operators, Reichenbach fuzzy implication operator gives

the expected values in the subsethood measurement. However, in De Baets and Kerre

(1993), it was found that even if a = a′ has no image under relation R in set B, a′ is still in

relation R / S with all c ∈ C, because ∅ ⊆ Sc. This limitation was studied and improved
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by reinforcing the non-emptiness condition:

R /K S = {(a, c) |(a, c) ∈ A × C and ∅ ⊆ aR ⊆ Sc} (2.4)

R /K S(a, c) = min
( ∧
b∈B

(Rab → Sbc ),
∨
b∈B

τ(Rab, Sbc )
)

(2.5)

where ∨ is the supremum operator and τ is the t-norm. To apply Eq. 2.5 in real-world

applications, operators such as ∧, ∨ and the t-norm must be defined, where Yew and

Kohout (1996); Meng (1997) developed it into a list of inference structures. The study

in C. K. Lim and Chan (2011) found that not all of these inference structures are reliable

and proposed that the inference structures K7 and K9 deliver good performance. The

definitions of K7 and K9 are as follows:

K7 : R /K7 S(a, c) = min
( 1

J

∑
b∈B

(Rab → Sbc),OrBot
(
AndBot(Rab, Sbc)

))
(2.6)

K9 : R /K9 S(a, c) = min
(
AndTop(Rab → Sbc),OrBot

(
AndBot(Rab, Sbc)

))
(2.7)

where AndTop, AndBot and OrBot are the logical connectives defined as follows:

AndTop(p, q) = min(p, q) (2.8)

AndBot(p, q) = max(0, p + q − 1) (2.9)

OrBot(p, q) = min(1, p + q) (2.10)

2.3.2 Applications

BK subproduct is a flexible approach that can be applied in real-life applications. For

example, in developing the inference engine for several applications such as:
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(a) Medical expert system: BK relational products has been successfully applied in Meng

(1997), where the interval-valued inference structures were developed for medical

diagnosis. The comparative studies were conducted in a medical expert system where

the prime focus was on the identification of body systems.

(b) Information retrieval: The relational product architectures for information processing

has been presented in Kohout and Bandler (1985). In this work, several examples of

relational expressions demonstrated the strength of unification of relational represen-

tations in the field of information processing.

(c) Autonomous underwater vehicles’ path navigation: An obstacle avoidance technique

for autonomous underwater vehicles based on BK-products of fuzzy relation has

been presented in Bui and Kim (2006) where the autonomous underwater vehicles

are equipped with a looking-ahead obstacle-avoidance sonar. BK-products helps

in revealing the characteristics and inter-relationships of the sonar sections. The

experimental results demonstrated the capability of the proposed search technique,

that employs BK-product of a fuzzy relation, in navigating safely through the obstacle

with the optimal path.

(d) Land evaluation: In Groenemans et al. (1997), a fuzzy relational calculus based

approach is introduced for land evaluation. The method is based on fuzzy relations

between land qualities and land units, and hence describe the land suitability for a

particular crop.

(e) Scene classification: A BK subproduct approach for scene classification is presented

in Vats et al. (2012); Vats, Lim, and Chan (2015), where the experimental results

on indoor and outdoor scene classes demonstrated the benefits of employing BK

subproduct for scene classification task. By using fuzzy BK subproduct inference
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Figure 2.5: Application of fuzzy BK subproduct in human action recognition, illustrated
with the help of an example of human motion image.

mechanism, the problem of mutual exclusiveness is solved. Therefore, a scene image

can belong to multiple scene classes with a certain degree of belongingness.

In terms of human action recognition, consider an example of a human motion image

as illustrated in Figure 2.5, where an actor is performing an action. Given an input video

of action sequences, the human object is first detected for each image frame. This is

followed by feature extraction. Features are the elements to be modeled and represented

in a meaningful manner to signify the action. A popular feature extraction approach is to

represent the image window by a covariance matrix of features (Porikli, Tuzel, & Meer,

2006), where the concept of covariance implies how much two variables vary together.

Let fi denote the features extracted from image frames i = 1, · · · , I of the video

describing the human action ak , for k = 1, · · · , K action classes. The features extracted

can be associated directly with the pixel coordinates. Therefore, the pixel-wise features

fi = [x y I Ix Iy Ixx Iyy] can be extracted as represented in Fig. 2.5. By constructing

the covariance of different features of a human image window (e.g. color, gradient,

motion, edge etc.), the information from the histograms and the appearance models can

be extracted. And by using bag of covariance matrices, the detection of actions, poses and

shape changes can be taken into account efficiently (Porikli et al., 2006).

To detect human action in a given image, a BK subproduct classifier is first trained.

The indirect relationship between the features representing the human image and the action
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being performed can be deduced using fuzzy BK subproduct. This is conditional on the

presence of an intermediate set that is in relation with both fi and ak , such as the human

body part-based model m j for j = 1, · · · , J (where J denotes the number of models),

obtained as a result of covariance tracking. Fuzzy BK subproduct classifier is invoked at

each candidate image window to determine the target human action. For testing image

sequences, this entails finding the features that signify the desired human action. The

detection is triggered at frame i when the detector obtains the segment having the highest

membership value.

2.3.3 Discussion

There exists several popular methods to perform this task e.g. using the well-known clas-

sifiers such as Support Vector Machines (SVM), K-nearest Neighbour (KNN) etc., but the

employability of these algorithms depend on the desired application and its requirements.

Although BK subproduct is not a popular classifier, but it can be efficiently used for

classification tasks with the ability to provide a solution closer to how human interpret a

situation in real life. For example, the relationship between a set of features and the action

classes can be established if there exists an intermediate element that is in relationship

with both, such as a human body model generated as a result of human motion tracking.

Furthermore, the introduction of fuzzy subsethood measure in BK subproduct sim-

plifies the classification process in the sense that the crisp BK subproduct allows an action

to belong to a single class only i.e. mutually exclusive classification approach. Whereas,

fuzzy BK subproduct provides flexibility where an action can belong to a particular class

with a certain degree of belongingness defined using fuzzy membership functions. There-

fore, it offers non-mutually exclusive action classification. This is very crucial for early

human action detection, because initially there is no information available about the ac-

tion being performed. As the video progresses, the membership function values generated
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using fuzzy BK subproduct vary following a certain trend (e.g. monotonically increasing

or decreasing), and thus enabling frame-by-frame action classification.

2.4 Early Human Action Detection

Early human action detection refers to detecting an action after it has begun but before it

finishes. In real-world environment, it is essential to recognize human action before it is

too late such as criminal acts, patients’ fall etc. The sooner one can detect the action, the

faster one can generate a response. There are several human action recognition methods

existing in the CV literature (Cristani et al., 2013), and fuzzy literature (C. H. Lim et al.,

2015). Almost all are focused on detecting once an action is completed, whereas for early

detection it is necessary to detect partial (i.e. incomplete) actions.

Figure 2.6 highlights the scenario of early human action detection using an example

of three common human actions i.e. bend, jump and skip. The aim is to detect the

human action as soon as possible. The action video is observed frame-by-frame for early

detection, instead of the conventional action classification approach where a video is fully

observed to infer an action.

In the following subsections, a review is presented on the learning mechanism for

existing early event detector (Hoai & De la Torre, 2012, 2014), followed by a study on the

state-of-the-art methods for early human action detection along with their pros and cons.

2.4.1 Review on learning mechanism for early event detectors

For early event detection, partial events are used as positive training examples (Hoai &

De la Torre, 2012, 2014), instead of a complete event. For a training set X i (at time frame

i) of length li and time t = 1, 2, · · · , li, the output of the detector at time t is a partial event

represented as:

g(X i
[1,t]) = yi

t = argmax
y∈Y (t)

f (X i
y) (2.11)
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Figure 2.6: An example of early detection of three human actions: bend, jump, and skip.
The action video is observed frame-by-frame, and the aim is to detect the action before it
is completed.

where, yi
t = yi ∩ [1, t] is the part of event yi that has already happened and is possibly

empty; g(X i
[1,t]) is the output of detector on the subsequence of time series X i, not the

entire set; and f (X i
y) is the detection score function. It is required that the detector score

function is a monotonic and non-decreasing function. This means that the score of the

partial event yi
t should be greater than the score of any segment y ending before the partial

event, which has been seen in the past, i.e.

f (X i
yit

) > f (X i
y) + ∆(yi

t, y)∀y ∈ Y (t) (2.12)

where ∆(yi
t, y) is the loss of detector for outputting y when the desired output is yi

t . This

is illustrated in Figure 2.7. However, the score of the partial event is not required to be
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Figure 2.7: The desired score function for early event detection as presented in Hoai and
De la Torre (2012, 2014).

greater than the score of a future segment.

The constraint in Eq. 2.12 is enforced for all t = 1, 2, · · · , li. The learning formulation

for early event detector is obtained as in Hoai and De la Torre (2012):

min
w,b,ξ i>0

1
2
‖w‖2 +

C
n

n∑
i=1

ξi (2.13)

so that

f (X i
yit

) > f (X i
y) + ∆(yi

t, y) −
ξi

µ
(
|yit |
|yi |

)
∀i,∀t = 1, ..., li,∀y ∈ Y (t)

(2.14)

where w is a weight vector, b is a scalar bias term, C is the cost parameter, and n denotes

the number of instances of the training data. This is an extension of Structured Output

SVM (SOSVM), with the alteration on setting t = 1, 2, · · · , li instead of t = li, because

partial events are trained instead of a complete event. An additional slack variable ξi is

added as a rescaling factor for correctly detecting the occurrence of an event at time t.
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2.4.2 State-of-the-art methods and limitations

Most of the existing work dealing with early human action detection aims at detecting

unfinished activity. Ryoo (2011) proposed the integral Bag of Words (BoW) and dynamic

BoW approaches as an extension to the BoW paradigm for early recognition of ongoing

human activities, and delivered promising results. However, the model learned for activity

recognition may not be representative if the action sequences of the same action class have

large appearance variations. Also, it was found to be sensitive to outliers. The solution to

these two issues was provided in Cao et al. (2013) where the action models were built by

utilizing sparse coding to learn the feature bases, and using the reconstruction error in the

likelihood computation.

Other limitations of Ryoo (2011) include the assumption made that the activities

within the same action class always have identical speed and duration which is not true

in most cases. Also, the poor discriminative model generated to describe human action,

ignoring the BoWmodel in spatial-temporal relationships among the interest points. This

issue was taken into account in G. Yu et al. (2012) where a spatial-temporal implicit

shape model was proposed to model the relationship between the local features, and at

the same time predict multiple activities. The method proposed in Kong, Kit, and Fu

(2014) incorporated an important prior knowledge that as new observations are available

when the action video progresses, the amount of crucial information about the action also

increases. However, the methods Ryoo (2011); Cao et al. (2013); G. Yu et al. (2012)

did not utilize this prior knowledge. In addition, Kong et al. (2014) modeled the label

consistency of segments, which provides discriminative local information, and implicitly

captures the context-level information that is useful for predicting action. Moreover, Kong

et al. (2014) captured the action dynamics in both global and local temporal scales, unlike

Ryoo (2011); Cao et al. (2013) where the dynamics in single scale were captured. Despite
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of the advantages these methods offer, they lack in the ability to handle the uncertainties

that exist in a real-world.

The early recognition of human action for the dynamic first-person videos was studied

in Ryoo et al. (2014), where the pre-activity observations were considered that includes

the frames ‘before’ the starting time of the activity. However, this work is different

from the goal of this thesis. An activity forecasting method was proposed in Kitani,

Ziebart, Bagnell, and Hebert (2012), however activity forecasting and early detection

differs in the sense that forecasting makes prediction about the future events, whereas

early detection interprets the present action, as soon as possible. Autoregressive-moving-

average (ARMA) - Hidden MarkovModel (HMM) based approach was employed in K. Li

and Fu (2012) which integrates both the predictive power of sequential model HMM and

the time series model ARMA. Unfortunately, it requires building separate HMMs for each

activity and therefore is computationally expensive.

Max Margin Early Event Detector (MMED) was proposed for early events detection

in Hoai and De la Torre (2012, 2014) which is based on the SOSVM (Tsochantaridis et

al., 2005) and requires extensive labeling on each of the training samples. In terms of

timeliness and accuracy, MMED performs efficiently. For example, consider the detection

of facial expressions (e.g. disgust and fear) as illustrated in Figure 2.8, MMED fires seeing

lesser number of frames as compared to SOSVM. However, early human action detection

is a complex task given the vast amount of uncertainty involved therein. An efficient

algorithm should be able to handle even the minutest level of uncertainty for a reliable

decision making.

2.5 Summary

The conventional CV solutions (Ryoo, 2011; Cao et al., 2013; G. Yu et al., 2012; Kong et

al., 2014; Ryoo et al., 2014; K. Li & Fu, 2012; Hoai & De la Torre, 2012, 2014) often fall
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(a) Disgust

(b) Fear

Figure 2.8: From left to right: the onset frame, the frame at which MMED fires (Hoai &
De la Torre, 2012, 2014), the frame at which SOSVM fires (Tsochantaridis et al., 2005),
and the peak frame. The number in each image represents the corresponding NTtoD.

short of providing an effective solution as they are not robust enough to handle issues such

as uncertainty, imprecision and vagueness that arise in a real-world. The fuzzy approaches

are well-known to offer an effective solution with the inherent capability of assigning a

degree of belongingness to a human action using the fuzzy membership function. The

problem of early human action recognition can be efficiently addressed by integrating CV

solutions with fuzzy set oriented techniques in a way that the strength of fuzzy set theory

can alleviate the limitation of CV solutions.

An extensive review was presented in this section on the state-of-the-art methods

and solutions that are relevant to the problem statement this thesis is addressing. First

of all, fuzzy human motion analysis was reviewed in an elaborate manner in order to

understand the necessity of employing fuzzy techniques for HMA. The first fuzzy human

motion analysis review paper (C. H. Lim et al., 2015) in the research community was

hence delivered. Secondly, BK subproduct approach was reviewed, with highlight on

its applications. Lastly, the state-of-art methods for early human action detection were

reviewed, alongwith the discussion on the challenges and the current state of the problems.
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CHAPTER 3: FUZZY BK SUBPRODUCT - A CLASSIFIER

The most fundamental problem is the selection of classifier to employ for the classification

task. As a solution, in this work fuzzy BK subproduct is employed as a classifier because

of the advantages it offers in terms of providing a solution closest to natural human

perception. However, this is the first attempt of using fuzzy BK subproduct as a classifier.

Therefore, its performance is validated in terms of handling both 3D and 2D data. For 3D

video data, its performance is tested for HMA (section 3.1). For the 2D image data, an

example of outdoor and indoor scene images are taken into account, and the employability

of fuzzy BK subproduct is tested for scene classification (section 3.2).

3.1 Human Motion Analysis

The aim of a HMA system is to model human movement changes with respect to time.

It involves feature extraction in the LoL processing steps and human motion tracking in

the intermediate levels. In general, the relationship between the features representing

the human body and the human action being performed is required to be modeled. This

section discusses the capabilities of fuzzy BK subproduct in representing the indirect

relationship between the features and the action to perform HMA.

A general framework of HMA processing using fuzzy BK subproduct approach is

represented in Figure 3.1. As illustrated, the interest is to study the indirect relationship

between the human, and the actions being performed bymodeling the inferencemechanism

in a way capable of reliable decision making. The aim is to find the relationship between

set A (consisting features f ) and setC (consisting actions a), if there exists an intermediate

set B (e.g. human body model m) which is in relation with both A and C.
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Figure 3.1: Fuzzy BK subproduct approach for HMA.

3.1.1 Proposed methodology

The overall pipeline for the proposed methodology is highlighted in Figure 3.2. The

three important steps include feature extraction, covariance tracking, and human action

classification, and will be discussed step-by-step in the following subsections.

3.1.1.1 Feature extraction

For each image frame, firstly a feature image is constructed following the method in Porikli

et al. (2006). For an image I, let F be the W × H × d dimensional feature image (RGB),

such that

F (x, y) = Φ(I, x, y) (3.1)

where the function Φ can be any mapping, e.g. color, image gradients, edge magnitude

or orientation, etc. Let { fi}i=1..I ′ be the d-dimensional feature vectors inside a rectangular

window R′ (where R′ ⊂ F). A feature vector fi is constructed using two types of mapping,

i.e. spatial attributes basedmapping that is obtained from the pixel coordinates values, and

the appearance attributes based mapping (e.g. color, gradient, infrared, etc.). The feature

vector forms the set A in the proposed method, and is denoted as set A = { fi |i = 1, · · · , I′}

.
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Figure 3.2: Overall pipeline for fuzzy BK subproduct approach towards HMA.

3.1.1.2 Covariance tracking

For a given object region R′, a d × d covariance matrix of features CR′ is then computed

as the model of human object:

CR′ =
1

M N

M N∑
i=1

( fi − µR′)( fi − µR′)T (3.2)

where µR′ is the vector of the means of the corresponding features for the points in

region R′. The covariance matrix is basically a symmetric matrix where the diagonal

represents the variance of each feature in the image, and the non-diagonal values represent

their representative correlations. The reason for using covariance matrices as region

descriptors is that covariance matrix proposes an efficient way of combining multiple

features without the need to normalize features or blend weights, along with the advantage

of scale invariance property (Porikli et al., 2006). In general, a single covariance matrix

extracted from a region is sufficient to perform matching of the region in multiple views

and poses. Also, the noise in the images is filtered out with average filter during the

covariance computation. In the current image frame, the region having the minimum

covariance distance from the model is found, and assigned as the estimated location

(covariance tracking). In order to adapt to variations, a set of previous covariance matrices

is kept, and an intrinsic mean using Lie algebra is extracted. The study in Porikli et al.

(2006) presents a detailed view on the Lie algebra based covariance tracking method.
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In order to yield more succinct description of human body, the human body is

segmented into three parts: head, torso and leg. The covariance tracking is performed

on these parts, resulting in a part based model m, that forms the set B in the proposed

method. It is denoted as set B = {m j | j = 1, · · · , J}. The models are defined using the user

knowledge (researcher), utilizing the knowledge on various human actions. In general, set

B constitutes three main models (i.e. J = 3):

(i) Distance obtained by modeling the head movements from start to end frame.

(ii) Distance obtained by modeling the position changes of the human body from the

origin (first frame).

(iii) Distance between both legs.

The relationship R is therefore derived between the features and the part-based human

body models by normalizing the covariance tracking results obtained using the min-max

normalization method.

3.1.1.3 Human action classification

The main aim is to perform human action classification. Therefore, let set C = {ak |k =

1, · · · , K } constitute the action being performed by a human (e.g. bend, jump and skip).

A (image features) has no direct relation with C (as there is no information about which

action is being performed and by whom). However, if there exists an intermediate set B

(model), which is in relation with both A and C, the indirect relationship between A and

C can be derived using fuzzy BK subproduct (Eq. 3.3).

BK : R /BK S(a, c) =
1
J

∑
b∈B

(R(a, b) → S(b, c)) (3.3)
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(a) Bend

(b) Jump

(c) Skip

Figure 3.3: Example of image frames from theWeizmann human actions dataset (Gorelick
et al., 2007).

Referring to Eq. 3.3, the relation between A and B is defined by relation R; and S

defines the converse relation between B and C. BK subproduct gives all ( f , a) couples

such that the image of f under relation R in B is among the subset of a under Sa in B, as

illustrated in Figure 3.1. Therefore, Eq. 3.3 can be re-written as:

BK : R /BK S( f , a) =
1
J

∑
m∈B

(R( f ,m) → S(m, a)) (3.4)

where, R( f ,m) is the membership function of the relation R between f and m; S(m, a)

is the membership function of the relation S between m and a. The membership function

values generated from Eq. 3.4 are modeled for HMA.

3.1.2 Validation

In order to test the efficiency of fuzzy BK subproduct to perform HMA, experiments are

performed on the Weizmann human actions dataset (Gorelick et al., 2007). Weizmann

human actions dataset is a database of 90 low-resolution (180 x 144, deinterlaced 50 fps)

action video sequences. It presents nine different people where each actor performs ten
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natural actions that include run, walk, skip, jumping-jack (jack), jump-forward-on-two-

legs (jump), jump-in-place-on-two-legs (pjump), gallop sideways (side), wave-two-hands

(wave2), wave-one-hand (wave1), and bend. From the dataset, three actors, and three

actions (a1 = bend, a2 = jump, and a3 = skip) are selected, as presented in Figure 3.3. The

main reason behind selecting these three actions is that bend is distinctive as compared to

the other two; and jump and skip are quite similar in their movement patterns.

The following pseudo-code represents the implementation of fuzzy BK subproduct

as a classifier for human action recognition in a step-by-step manner:

Step 1: Input an action video.

Step 2: Perform human detection.

Step 3: Segment the human body into three parts: head, torso+arm and leg.

Step 4: Perform feature extraction by constructing covariance matrix of features.

Step 5: Feature image is constructed. Save in Set A.

Step 6: Perform part-based covariance tracking.

Step 7: Human body part-based models are obtained. Save in Set B.

Step 8: Normalize the results obtained usingmin-max normalization. Save asmembership

function R.

Step 9: Obtain the converse relation S between actions and models by normalizing the

tracking results using min-max normalization.

Step 10: Call BK subproduct inference engine utilizing R and S.

Step 11: Output the membership degree.

Step 12: Done.

The preprocessing of images, feature extraction and covariance tracking are per-

formed referring the method in Porikli et al. (2006). Their method is modified to generate

part-based human body model, and the covariance tracking is performed on each body
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(a) Bend (full body)

(b) Jump (full body)

(c) Skip (full body)

(d) Bend (Head)

(e) Jump (Torso + arm)

(f) Skip (Leg)

Figure 3.4: Sample human motion tracking results for three different action sequences.
(a) - (c) gives the tracks for full body, while (d) - (f) highlights the tracking results for
the body parts: head, torso+arm, and leg respectively, represented using blue colored
bounding box.

part. Sample human motion tracking results are presented in Figure 3.4, where the track-

ing results for body parts: head, torso+arm, and leg are highlighted (using blue colored

bounding box). The tracking results demonstrate the capability of the tracking algorithm
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(a) m1 for Bend action

(b) m2 for Jump action

(c) m3 for Skip action

Figure 3.5: Set B defining the three models used, where m1: models the changes in the
head positions with time from start to end frame; m2: models the position changes of the
human body from the origin (first frame); m3: models the distance between both legs.

to adapt to the undergoing object deformations and appearance changes. No assumption

was made on the measurement noise and the motion of the objects tracked. Hence, the

tracking results demonstrate the efficiency of the covariance tracking algorithm in mod-

eling the movements of different human body parts over time, with remarkable detection

accuracy, and its tolerance to the background noise.

Furthermore, for the set B, the euclidean distance is computed by modeling position

changes of the human body. More specifically, the changes in the head positions with

respect to time from start to end frame (m1), the position changes of the human body

from the origin i.e. the first frame (m2), and the distance between both legs (m3). Figure
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3.5 represents the results for set B. Hence, three models are generated that are crucial to

establish the relationship between the features and the action.

However, in this section, the results till the tracking stage are highlighted. Because,

the next chapter studies fuzzy BK subproduct approach for HMA in detail, where the

conventional classification problem is modified into frame-by-frame level classification to

perform early human action detection. The results are presented in section 4.3.

3.2 Scene Classification

Understanding and interpreting a natural scene is a challenging task in the CV community

because of the variability, ambiguity, illumination and scale conditions that can exist in the

scene images. A scene composed of several objects often is organized in an unpredictable

layout. A set of perceptual dimensions - naturalness, openness, roughness, expansion and

ruggedness was presented in Oliva and Torralba (2001) to represent the dominant spatial

structure of a scene. SVM classifier was employed with Gaussian kernel to classify the

scene classes. While Bosch, Zisserman, and Muñoz (2006) proposed probabilistic Latent

Semantic Analysis (pLSA) based method incorporated with the KNN classifier. Inspired

from Bosch et al. (2006), Fei-Fei and Perona (2005) proposed a Bayesian hierarchical

model for learning natural scene categories. Furthermore, Kumar and Hebert (2003)

employed the graphical models for the detection and localization of man-made features in

a scene. The concept of occurring frequency of different concepts was used by Vogel and

Schiele (2004, 2007) as the intermediate feature for scene classification.

Though all the aforementioned methods have achieved promising results, it is ob-

served that the classification errors often occur when there is an overlap between the scene

classes in the selected feature space. The reason is the assumption made that the scene

classes are mutually exclusive, where most systems learn patterns from a training set and

search similar images. Figure 3.6 explains this scenario. It is unclear in Figure 3.6b
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(a) Open Country (b) ?? (c) Coast

Figure 3.6: Example of ambiguous scene images. Which class does (b) belong? It is not
clear that it is an open country scene or a coast scene and different people may respond
inconsistently.

that it is an open country scene or a coast scene where different people may respond

inconsistently. Therefore, it is argued that the scene classes are non-mutually exclusive.

This is also stated in the work conducted by the authors in C. H. Lim, Risnumawan, and

Chan (2014).

Fuzzy BK subproduct approach is employed in this work to tackle this issue and

perform scene classification. A series of CV techniques and online surveys are used to

compute the relational products of an image and its scene classes. The proposed classifi-

cation method is closely related to some of the approximate reasoningmethods which have

been developed in the recent years, more specifically Barrenechea, Bustince, Fernandez,

Paternain, and Sanz (2013); Bustince, Burillo, and Soria (2003). In Barrenechea et al.

(2013), a fuzzy reasoning method is presented in which the Choquet integral is used as

an aggregation function for the rule-based classification systems. A wide benchmark of

numerical datasets are used to test the classification performance. However, their classifi-

cation results are binary, allowing an element in the dataset to belong to a single class only.

Most likely the chances of classification errors occur when there is an overlap between the

classes. The proposed method in this thesis deals with the multi-class, multi-label clas-

sification problem, wherein the driving force is the non-mutually exclusive scene classes.
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Nonetheless, rule-based systems require the expert knowledge in designing the rules for

the system. Fuzzy BK subproduct approach is based on the study of the relationship

between different fuzzy sets, and hence can provide a better alternative that is closer to

the natural solution. A study on the implication operators was presented in Bustince et al.

(2003). In this this, the fuzzy implication operators are employed for scene classification.

The closest research is C. H. Lim et al. (2014), where a fuzzy qualitative approach

is incorporated to address the problem. However, the proposed method in this thesis

is found to be much closer to a natural solution in the sense that fuzzy BK subproduct

inference mechanism is a flexible and efficient method (C. K. Lim & Chan, 2015) that can

be employed in the real-world scenarios. This is because it imitates how human think in

real life, i.e. modus-ponen way (if A implies B, A is asserted to be true, so therefore B

must be true.).

3.2.1 Proposed methodology

Let A = {ai |i = 1, · · · , I} denote a set of scene images, B = {b j | j = 1, · · · , J} denote a

set of features extracted from the image frames, and C = {ck |k = 1, · · · , K } denote a set

of scene classes. A has no direct relation with C. However, if there exists an intermediate

set B, which is in relation with both A and C, the indirect relationship between A and C

can be derived using fuzzy BK subproduct, along with the combination of K7 and K9,

and this information can be utilized to classify different scene images.

First of all, for each image a ∈ A, several local patches are extracted and represented

in terms of 128-dimensional numerical vectors (V1,V2, · · · ,V128) using Scale Invariant

Feature Transform (SIFT) descriptors. This is to find the features that govern the image.

With this, each image a is represented by a set of vectors a′ ∈ A′, as depicted in Figure

3.7. Instead of using the relation R ⊆ A × B, R is replaced with R′, where R′ ⊆ A′ × B.

After the key information from the images is extracted, k-means clustering is per-
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Figure 3.7: An example of fuzzy BK subproduct approach towards scene classification.

Figure 3.8: An example of the annotated images from coast scene employing Labelme
(Russell et al., 2008).

Table 3.1: Membership Function for Relation R′

Images Sand Water Sky Tree Mountain Vehicle Road Building People

Image 1 0.00 0.45 0.415 0.00 0.003 0.102 0.00 0.000 0.03
Image 2 0.00 0.51 0.49 0.00 0.00 0.00 0.00 0.00 0.00
Image 3 0.00 0.50 0.26 0.00 0.19 0.00 0.00 0.05 0.00
Image 4 0.00 0.42 0.55 0.00 0.03 0.00 0.00 0.00 0.00
Image 5 0.00 0.56 0.254 0.046 0.14 0.00 0.00 0.00 0.00
Image 6 0.24 0.16 0.41 0.19 0.00 0.00 0.00 0.00 0.00
Image 7 0.08 0.32 0.44 0.16 0.00 0.00 0.00 0.00 0.00
Image 8 0.39 0.42 0.19 0.00 0.00 0.00 0.00 0.00 0.00
Image 9 0.00 0.58 0.24 0.00 0.18 0.00 0.00 0.00 0.00
Image 10 0.00 0.38 0.42 0.00 0.20 0.00 0.00 0.00 0.00

formed to group together the similar features found on each image a. However, K-means

clustering only provides the information required by the SVM classifier, and the desired

result is the linguistic formulation of set B. Therefore, an open annotation tool LabelMe

(Russell et al., 2008) is used to detect and label the image features and generate set B, as

has been illustrated in Figure 3.8. To find the relation R′, the membership function values

are computed by calculating the distribution of each feature in the image, and normalizing

the results based on the total area covered by the feature attribute in the image. A total of
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(a) Example of coast scene

(b) Example of open country scene

(c) Example of street scene

Figure 3.9: Example of three scene classes from the Outdoor Scene Recognition (OSR)
dataset (Oliva & Torralba, 2001).

nine distinct features namely, sand, water , sky, tree, mountain, vehicle, road, building

and people are identified. An example of the membership function R′ for ten example

images from the coast scene is shown in Table 3.1. From here, it can be noticed that

the major features that represent coast scene are water and sky; and sand, tree and

mountain are the minor features.

Finally, in order to find the relation S, which denotes the membership function

between the image features and the scene classes, an online survey is conducted where

each subject is given a series of image features for scene classification. This is in contrast

to the conventional solutions (Bosch et al., 2006; Fei-Fei & Perona, 2005; Kumar &

Hebert, 2003; Oliva & Torralba, 2001; Vogel & Schiele, 2004, 2007) that learned a binary

classifier with the assumption that the scene classes are mutually exclusive.
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3.2.2 Validation

In order to test the effectiveness of the proposed framework, the public dataset: Outdoor

Scene Recognition (OSR) (Oliva & Torralba, 2001) is employed. A total of three scene

classes namely, coast, open country and street are used throughout the experiments.

Figure 3.9 shows the example of the scene classes in gray scaled. Each scene class has

60 images, and therefore there are 180 images in total. In each scene class, 40 images are

used for training and the rest are for testing. The SVM implementation is based on the

LIBSVM MATLAB toolbox.

The following pseudo-code represents the implementation of fuzzy BK subproduct

classifier for scene classification in a step-by-step manner:

Step 1: Input scene images.

Step 2: Perform feature description using SIFT.

Step 3: 128 dimensional feature vectors generated. Save in Set A.

Step 4: Perform K-means clustering.

Step 5: Using LabelMe annotate the scene images to get linguistic description. Save in

Set B.

Step 6: Calculate the area of each image feature with respect to whole image, normalize

and save as membership function R.

Step 7: Normalize the online survey results to obtain the membership function S.

Step 8: Call BK subproduct inference engine utilizing R and S.

Step 9: Output the membership degree.

Step 10: Done.

As mentioned previously, different people tend to respond inconsistently for a given

scene image. Therefore, it is possible for an image to belong to multiple classes. Herein,

a survey is conducted on 200 people via social networking website to get information
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Figure 3.10: Bar chart representing the results from the online survey on 200 people.

Table 3.2: Membership Function for Relation S

Features Coast Open Country Street

Sand 0.55 0.35 0.00
Water 1.00 0.10 0.02
Sky 1.00 1.00 0.87
Tree 0.25 0.72 0.17

Mountain 0.45 0.60 0.02
Vehicle 0.12 0.00 0.80
Road 0.00 0.02 0.95

Building 0.05 0.05 1.00
People 0.15 0.10 0.30

on how different people can classify features into various scene classes. Each subject

is given a choice of nine image features (sand, water , sky, tree, mountain, vehicle,

road, building and people). The outcome obtained is represented in Figure 3.10, where

X-axis denotes the image features and Y-axis denotes the total percentage of people. The

results are further normalized using min-max normalization method in order to obtain

the membership function values for converse relation S. On analyzing the bar charts in
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Table 3.3: Test results for all the scenes against coast scene class

Coast Accept Accept Accept Reject Reject Reject
(Threshold=0.7) Original BK K7 K9 Original BK K7 K9

Coast 20 17 20 0 3 0
Open Country 20 4 14 0 16 6

Street 0 0 5 20 20 15

Table 3.4: Test results for all the scenes against open country scene class

Open Country Accept Accept Accept Reject Reject Reject
(Threshold=0.6) Original BK K7 K9 Original BK K7 K9

Coast 20 1 19 0 19 1
Open Country 20 4 19 0 16 1

Street 0 0 4 20 20 16

Table 3.5: Test results for all the scenes against street scene class

Street Accept Accept Accept Reject Reject Reject
(Threshold=0.5) Original BK K7 K9 Original BK K7 K9

Coast 0 0 4 20 20 16
Open Country 0 0 1 20 20 19

Street 20 20 20 0 0 0

Figure 3.10, it is observed that the features sky, tree, mountain and sand are present in

both open country and coast scenes in different proportions, making them related to one

another with a certain degree. On the other hand, street scene is governed by vehicle,

road and building. The membership function values for relation S from the survey are

presented in Table 3.2.

Furthermore, a dynamic threshold value is defined for each of the scene classes, and

the number of images accepted or rejected are classified, as in Table 3.3-3.5. The proposed

methodology uses a combination of original BK subproduct (fuzzy BK subproduct) along

with K7 and K9 inference structures. From Table 3.3-3.5, it can be observed that BK

subproduct has very low discrimination as compared to K7 and K9 respectively. BK

subproduct accepts and rejects all the coast images as open country scene class as well
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(a) Coast (b) Open country

Figure 3.11: An example of images from coast and open country scene classes with
annotated objects.

Table 3.6: Membership function for coast and open country scene classes

Features Coast Open Country

Sand 0.000 0.056
Water 0.560 0.122
Sky 0.254 0.281
Tree 0.046 0.348
Mountain 0.140 0.193
Vehicle 0.000 0.000
Road 0.000 0.000
Building 0.000 0.000
People 0.000 0.000

as street scene class. For each of the coast images to be accepted and rejected as open

country, this scenario is possible, as proved in Figure 3.11 and Table 3.6, respectively.

It can be seen from Figure 3.11 that coast and open country scenes are very similar in

terms of features such as water , sky, tree and mountain. Because of the ambiguity it

might be difficult for the human to distinguish between the two scene classes. Table 3.6

provides a detailed information about the features and their degree of belongingness to
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(a) Coast (b) Street

Figure 3.12: An example of images from coast and street scene classes with annotated
objects.

Table 3.7: Membership function for coast and street scene classes

Features Coast Street

Sand 0.299 0.000
Water 0.324 0.000
Sky 0.336 0.234
Tree 0.000 0.000
Mountain 0.041 0.000
Vehicle 0.000 0.069
Road 0.000 0.266
Building 0.000 0.419
People 0.000 0.012

the scene classes using the membership function values.

Quantitatively, it has been proven that these two images are correlated, as shown in

Table 3.6, since both scene images share some common features such as water , sky, tree

and mountain. Nonetheless, qualitatively also it has been shown that it is hard for a human

to distinguish the scene class of the two scene images as depicted in Figure 3.11. It can
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either be coast or open country, different answers will be provided from different human

subjects. However, fuzzy BK subproduct also accepts and rejects all the coast images

as street class. From the investigation as shown in Table 3.7, this scenario is impossible

as there are no common features that are shared by coast and street. One of the main

reasons that fuzzy BK subproduct is not able to distinguish between the coast and street

class is due to ∅ ⊆ Sc, as identified by C. K. Lim and Chan (2011). It can be noticed that

vehicle, road, building and people for both coast and street scene are empty sets.

A further investigation is performed, as shown in Figure 3.12 and Table 3.7. Quali-

tatively, from Figure 3.12, it is clear that one of the images is coast scene, while the other

is street scene. Table 3.7 also shows quantitatively there are no common features (except

the universal feature sky) that is shared between coast and street images.

On comparing the performance of K7 and K9 inference structures, K9 is found to

be much more consistent than K7 for scene classification. As shown in Table 3.3, K9

achieves 100% precision, where it is able to classify all the coast images into coast class;

while K7 only achieves 85% accuracy. In Table 3.4, K9 presents 95% accuracy compared

to 20% by K7 in recognizing open country images belonging to open country class. In

Table 3.5, both K7 and K9 share the same precision results.

One of the main advantages of the proposed approach is that it is able to model the

non-mutually exclusive data. It allows an image to belong to multiple classes as opposed

to Bosch et al. (2006); Fei-Fei and Perona (2005); Kumar and Hebert (2003); Oliva and

Torralba (2001); Vogel and Schiele (2004, 2007), where the classification result is binary.

Instead, it classifies each scene image as a combination of different classes using the fuzzy

membership function. From Table 3.3, it can be observed that when open country scene

images are tested against coast scene, 14 images are accepted to be coast by K9. This

means an image from open country scene class can also belong to a coast scene (Figure
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3.11).

3.2.3 Performance evaluation

In general, there are several standard evaluation metrics available such as precision,

recall, accuracy, F-measure, etc. However, the performance evaluation of the multi-label

classification problem (the proposed method) is different from the evaluation of uni-label

scene classification problem in the sense that in the multi-label classification the output

result can be fully correct, partially correct, or fully incorrect (Boutell, Luo, Shen, &

Brown, 2004), hence making the process a little complicated.

For example, say there are three classes {c1, c2, c3}, and a scene image belongs to

c1, c2 with a certain degree. Then following results are possible:

c1, c2 - fully correct,

c1 - partially correct, or

c3 - fully incorrect,

where the results differ from one another in their degree of correctness. In order to evaluate

the performance of the proposed scene classification framework, α-evaluation criteria is

employed as in (Boutell et al., 2004).

α-evaluation: Let Yi be the ground truth labels for the test image samples i, and let Pi be

the set of prediction labels from the classifier. Then, using α-evaluation, each prediction

is given scores using the following formula:

score(Pi) =
(
1 −
| βMi + γFi |

|Yi ∪ Pi |

)α
∀α > 0, 0 6 β, β = 1|γ = 1

(3.5)

where, Mi =Yi - Pi denotes themissed labels, andFi = Pi -Yi denotes the false positive labels.

The parameters (α, β, γ) allows the false positives and themisses to be penalized differently

82

Univ
ers

ity
 of

 M
ala

ya



Table 3.8: Example of scores as a function of β and γ when the true label is {c1, c2, c3},
and α = 1. c1 : coast, c2 : open country and c3 : street

Parameter values Scores

β = 0.25, γ = 1 0.9000
α = 1 β = 1, γ = 1 0.8500

β = 1, γ = 0.25 0.9125

Table 3.9: Example of α-evaluation scores as a function of α when the true label is
{c1, c2, c3}.

Parameter values Scores

α = 0 1
α = 0.25 0.9602
α = 0.50 0.9220

β = γ = 1 α = 0.75 0.8852
α = 1 0.8500
α = 2 0.7225
α = 10 0.1969
α = ∞ 0

according to the application. Table 3.8 shows the example results after performing α-

evaluation on the proposed method, showing how the score varies with different β and γ

values. On setting β = γ = 1, simpler formulation is obtained as in Eq. 3.6. Table 3.9

shows some examples of the effect of α on the score.

score(Pi) =
(
|Yi ∩ Pi |

|Yi ∪ Pi |

)α
∀α > 0 (3.6)

Also, to test the feasibility of the proposed method, comparison of fuzzy BK sub-

product based scene classification approach is performed with the popular classifiers such

as KNN and SVM, as highlighted in Table 3.10. The proposed method supports both

multi-label and multi-class classification problem. Multi-label classification refers to the

classification problem where multiple target labels are assigned to each data instance.
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Table 3.10: Comparison of fuzzy BK subproduct approach based scene classification
with other popular classifiers (in terms of scene understanding).

Classifier Multi-label Multi-class

KNN No Yes
SVM No No
Ours Yes Yes

Multi-class classification deals with the problem of classifying the data instances into

multiple classes. By definition and nature of algorithm, KNN is only multi-class, and

SVM is neither multi-label nor multi-class. In terms of overall computational complexity,

the proposed method takes O(N M) time where N is the total number of scene classes,

and M is the total number of features.

3.3 Summary

As a summary, this section presents the capability of fuzzy BK subproduct to be used

as a classifier for 3D video data (HMA) and 2D image data (scene classification). The

efficiency in the classification performance delivered by fuzzy BK subproduct is supported

with experimental results on the Weizmann human actions dataset and the scene image

data (OSR dataset). The advantages of the proposed approach include: the ability tomodel

the non-mutually exclusive data; and the classification results are not binary, instead it

classifies each scene image or an action video as a combination of different classes using

the fuzzy membership function.

To the best of my knowledge, this is the first attempt of using fuzzy BK subproduct

for HMA and scene classification. Most of the fuzzy image processing works have been

focusing on applications such as object recognition (DeKruger, Hodge, Bezdek, Keller,

& Gader, 2001; Zaki & Abulwafa, 2002), color clustering (Chaira, 2012), edge detection

(Bělíček, Kidéry, Kukal, Matěj, & Rusina, 2013), threshold segmentation (Peng, Wang,
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Pérez-Jiménez, & Shi, 2013), etc. Therefore, this study introduces a new finding where

the research community can employ fuzzy BK subproduct approach as a classifier for

real-world applications.
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CHAPTER 4: EARLY HUMAN ACTION DETECTION

Humans have natural capabilities to perceive and anticipate the actions of other objects

they interact with, as well as the happenings in their surrounding. This important aspect

of human perception is widely incorporated in the CV systems these days. However, little

attention has been given to the problem of early human action detection, which is crucial

in several applications ranging from video surveillance to health-care.

Early human action detection refers to anticipating human action as early as possible,

i.e. detecting an action after it has begun but before it finishes. In a real-world environment,

it is essential to recognize a human action before it is too late such as criminal acts, patients’

fall etc. The sooner one can detect an action, the faster one can generate a response. For

instance, there is a need to build a system for monitoring the well-being of elderly patients

in the hospital. Arguably, a crucial requirement for such a system is its ability to accurately

and rapidly detect the patients’ fall so that necessary response can be generated in a timely

manner. This requires the fall to be detected as soon as possible, before it becomes life

threatening and risk the life of the patient.

This section focuses on the early human action detection. The proposed framework

is discussed and validated using experiments on real-world human action dataset.

4.1 Introduction

Can an action be detected before it is completed? How many frames are needed to detect

an action timely? These are the key requirements for a reliable detector. Figure 4.1

illustrates the idea behind early human action detection. However, the existing detectors

are trained to recognize completed action only. They require seeing the entire action

video to detect an action. This prevents early detection, as instead partial actions are to be

recognized for detecting an action early.
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Figure 4.1: Can an action be detected before it is completed? How many frames
are needed to detect an action timely? The existing detectors are trained to recognize
completed action only. They require seeing the entire action video to detect an action.
This prevents early detection, as instead partial actions are to be recognized for detecting
an action early.

Therefore, the ultimate goal is to perform early human action detection. However,

early human action detection is a daunting task given the vast amount of uncertainty

involved therein. An efficient algorithm should be able to handle even the minutest level

of uncertainties for reliable and accurate detection. The cumulated errors can further

deteriorate the overall system performance. Therefore, a fuzzy approach for early human

action detection is proposed.

The section 3.1 studied how fuzzy BK subproduct performs HMA efficiently. The

aim is to model fuzzy BK subproduct inference mechanism in a way capable of making

decisions as early as possible. This is achieved bymodifying the conventional classification

problem into frame-by-frame level classification, as illustrated in Figure 4.2. The fuzzy

membership function provides the basis to detect an action before it is completed when

a certain threshold is attained. Therefore, for a given input video, fuzzy BK subproduct

inference engine is invoked at each image frame. The output from each image frame is

a membership function value. By modeling the membership function value obtained at

each frame, early human action is performed where the detector detects an action when
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Figure 4.2: Frame-by-frame level classification using fuzzy BK subproduct. The mem-
bership function values generated from fuzzy BK subproduct inference engine at each
image frame are modeled for early human action detection.

the membership function value exceeds a pre-defined threshold in a suitable way. This is

discussed in detail in the following section.

4.2 Proposed Methodology

In this work, an algorithm is proposed for early human action detection that is capable

of detecting partial actions, instead of complete action. In specific, the human actions

are modeled sequentially frame-by-frame for training fuzzy BK subproduct inference

engine, and the detector is learned that is capable of accurately and rapidly performing

the classification of the partially observed action sequences. The overall pipeline for the

proposed method is highlighted in Figure 4.3.

Fuzzy BK subproduct approach for HMA has been discussed in detail in section

3.1.1. Here, the same methodology is followed which is further extended to perform early

detection, as can be observed in Figure 4.3. The modification is done on the classification
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Figure 4.3: Overall pipeline for proposed framework. For a given input video, frame-by-
frame BK subproduct inference engine is invoked and action classification is performed.
When the membership function values generated from BK subproduct exceeds a certain
threshold (e.g. 0.8, 0.7, represented using red dotted lines), the detector detects the action
at that particular frame number, enabling early detection.

part where frame-by-frame classification is performed, instead of performing classification

after fully observing the video, and thus enabling early human action detection.

As illustrated in Figure 4.3, firstly a feature image is constructed for each image

frame following the method in Porikli et al. (2006). A feature vector fi is constructed

using two types of mapping, i.e. spatial attributes based mapping that is obtained from the

pixel coordinates values, and appearance attributes based mapping (e.g. color, gradient,

infrared, etc.). The feature vector forms the set A in the proposed method, denoted as set

A = { fi |i = 1, · · · , I′}.

For a given object region, a covariance matrix of features is then computed as the

model of the human object, and the covariance tracking is performed. The human body is

then segmented into three parts: head, torso and leg, and covariance tracking is performed

on the parts. This results in a part based model m, which forms the set B in the proposed
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method, denoted as set B = {m j | j = 1, · · · , J}.

The ultimate goal of the proposed method is to perform early human action recogni-

tion. Therefore, let set C = {ak |k = 1, · · · , K } constitutes the actions being performed by

human (e.g. bend, jump and skip). The aim is to derive the indirect relationship between

between A and C using fuzzy BK subproduct inference mechanism, and further model it

to detect an action as early as possible.

To this end, the membership function values generated from fuzzy BK subproduct

inference engine at each image frame are modeled for early human action detection. For

example, for an action video with n number of frames, invoking fuzzy BK subproduct

inference engine for each frame yields a membership function value for each frame as

an output. The early detector models the frame-by-frame membership function values

generated from fuzzy BK subproduct. An action is triggered when a pre-defined threshold

is exceeded monotonically1. Even if a single action is being continued, the membership

grades are constructed using fuzzy BK subproduct frame-by-frame, and the early detector

detects the action in a similar manner. When the membership function value attains the

desired threshold value at a certain frame, the detector stops, and triggers the action at

that particular frame number.

1Monotonicity requirement: An important constraint is imposed on early detector

function: “monotonicity” requirement, i.e. non-decreasing detection function. This

means that the membership degree of a partial action cannot exceed the membership

degree of an encompassing partial action. However, the membership degree of a partial

action is not required to be greater than that of a future action. Hence, the detector

function is desired to be a monotonic and non-decreasing function. Figure 4.4 illustrates

the monotonicity requirement for the detector function. This idea is inspired from the

work by Hoai and De la Torre (2012), where the monotonicity constraint was imposed on
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Figure 4.4: 1Monotonicity requirement for early detection: the membership function of
the partial action should always be higher than the membership function of any segment
that ends before the partial action.

the detection score function. Here, the early detector is modeled on the basis of the fuzzy

membership function values generated from fuzzy BK subproduct inference engine for

each image frame.

4.2.1 Learning formulation for early HMA

In this subsection, the learning formulation for early HMA detector will be theoretically

justified, and henceforth empirically evaluated in the next section.

Let (X1, y1), ... , (X n, yn) be the set of series of actions being performed by human

and the associated ground truth annotations for the action of interest such that yi = [si, ei],

where si denotes the start of the action and ei denotes the end of the action in the series of

actions X i. Let the length of an action is bounded by lmin and lmax , and Y (t) denote the

set of length-bounded time intervals from the 1st frame to the tth frame in an action video
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represented as:

Y (t) = {y ∈ N2 |y ⊂ [1, t], lmin 6 |y | 6 lmax } ∪ {∅} (4.1)

Also, for a series of actions X of length l, let Y (l) denote the set of all possible

locations of an action in a video. For an interval y = [s, e] ∈ Y (l), let Xy denote the

subsegment of X from frame s to e inclusive. Then, the output of the detector, which is

the segment that has the highest membership value (degree of belongingness to an action)

is represented as:

D(X ) = argmax
y∈Y (t)

µ(Xy) (4.2)

The detector searches the action from lmin to lmax . If D(X ) = {∅}, it means no action

is detected. µ(Xy) is the membership function representing the membership degree of the

segment Xy belonging to the series of actions X i.

For early human action detection, it is important to model the detector function using

partial action frames. This means that the output of the detector on action series X i at

time t is desired to be the partial action, instead of a complete action. Therefore, Eq. 4.2

can be modified to accommodate partial actions as:

D(X i
[1,t]) = yi

t = argmax
y∈Y (t)

µ(X i
y) (4.3)

where, D(X i
[1,t]) denotes the output of the detector on the subsequence of a series of action

X i from the 1st frame to the tth frame only, not the entire X i.

However, for early human action detection, it is desirable that the membership func-

tion µ(X i
y) be monotonic and non-decreasing. This means that the membership degree of

the partial action yi
t should always be higher than the membership degree of any segment
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that ends before the partial action (i.e. seen in the past). And when the membership value

exceeds a certain pre-defined threshold monotonically, the detector triggers the occurrence

of the action. Therefore, Eq. 4.3 must hold with the desired property, or the monotonicity

constraint:

µ(X i
yit

) > µ(X i
y)∀i,∀t = 1, ..., li,∀y ∈ Y (t) (4.4)

Note that the constraint in Eq. 4.4 is enforced for all t = 1, 2, · · · , li, instead of t = li

because partial actions are trained instead of complete action.

The learning formulation for early human action detection is obtained in Eq. 4.3-4.4,

where the membership function µ(X i
y) is learned using fuzzy BK subproduct inference

engine. Themain reason behind using fuzzy BK subproduct for training the detector D(X )

is to find a solution closest to how humans anticipate actions in a real-world (i.e. modus

ponens way), along with the natural benefits fuzzy sets provide. The trick is to study the

indirect relationship between the human subject and the actions being performed in the

video. This is achieved by modeling the frame-by-frame arrival of data, and subsequently

performing action classification on the basis of the membership function values generated

from BK relational products.

As formulated in section 3.1.1, fuzzy BK subproduct inference for HMA is defined

as:

BK : R /BK S( f , a) =
1
J

∑
m∈B

(R( f ,m) → S(m, a)) (4.5)

where, R( f ,m) is the membership function of the relation R between the features f , and

the human body part-based model m; S(m, a) is the membership function of the relation

S between m and the human actions a.

Therefore, replacing R /BK S( f , a) in Eq. 4.5 with µ(X i
y), ∀i,∀t = 1, ..., li,∀y ∈ Y (t),

yields the desired membership function (Eq. 4.6) required for early human action detec-
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tion. When the membership function value monotonically exceeds a certain threshold, the

detector detects the action.

µ(X i
y) = R /BK S( f , a) =

1
J

∑
m∈B

(R( f ,m) → S(m, a)) (4.6)

4.2.2 Study on the semantic relationship between human and the action

Early human action detection can also be defined in terms of the semantic relationship

between human and the action. Given an input set of training series of action sequences

X1, X2, ..., X n performed by a human and the associated ground truth annotations y1, y2,

..., yn for the action of interest, it is assumed that each training action sequence contains at

most one action of interest, as a training sequence containing several actions can always

be divided into smaller subsequences of a single action. Therefore, yi = [si, ei] consists

of two numbers that indicate the start and end of the action in the time series of action

X i respectively. Early human action detection aims at finding the semantics (human -

action) in a set of series of actions (X1, y1), ..., (X n, yn) where yi ⊂ [si, ei]. However, the

semantics (human - action) remain invariant if all the frames have been used. If so, a Silico

DNA based computing is considered to serve the purpose effortlessly. For example, in

Ullah, D’Addona, and Arai (2014), a DNA based computing approach for understanding

complex shapes have been proposed where the authors have shown that whatever may be

the outlook of the image frames, they underlie the same semantics (fern-leaf).

However, the method in Ullah et al. (2014) is applicable only to two-dimensional

image data. The proposed method can handle these issues, in the sense that there cannot

possibly exist a situation where all the frames have been used to detect an action as then it

will be same as the conventional classification problem which requires seeing a complete

action. Instead, the early detector is trained to detect partial actions. This means that for
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an interval y = [s, e] ∈ Y (l), whereY (l) denote the set of all possible locations of an action

in a video, and Xy denote the subsegment of X from frame s to e inclusive, the detector

D(X i
[t0,t]

) outputs the segment having the highest membership degree of belongingness to

an action i.e. µ(X i
y), which is a partial segment yi

t instead of a complete action y.

Furthermore, Eq. 4.4 is modified by adding an additional variable ∆(yi
t, y), which

is the loss of detector for outputting y when the desired output is yi
t , and represented as

follows:

µ(X i
yit

) > µ(X i
y) + ∆(yi

t, y),∀i,∀t = 1, ..., li,∀y ∈ Y (t) (4.7)

where ∆(yi
t, y) handles the exceptional case where all the frames have been used and the

detector fails to detect the occurrence of an action before it finishes.

4.3 Validation

In order to test the efficiency of the early human action detector, the experiments are per-

formed on the Weizmann human actions dataset (Gorelick et al., 2007). The experimental

set up follows section 3.1.2.

The following pseudo-code represents the implementation of early human action

detection using fuzzy BK subproduct in a step-by-step manner:

Step 1: Input an action video.

Step 2: Perform human detection.

Step 3: Segment the human body into three parts: head, torso+arm and leg.

Step 4: Perform feature extraction by constructing covariance matrix of features.

Step 5: Feature image is constructed. Save in Set A.

Step 6: Perform part-based covariance tracking.

Step 7: Human body part-based models are obtained. Save in Set B.

Step 8: Normalize the results obtained usingmin-max normalization. Save asmembership
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function R.

Step 9: Obtain the converse relation S between actions and models by normalizing the

tracking results using min-max normalization.

Step 10: Call BK subproduct inference engine frame-by-frame utilizing R and S.

Step 11: Set the threshold value as the cutting point for the detector.

Step 12: When membership degree exceeds the threshold value, stop.

Step 13: Output the frame number.

Step 14: Done.

The preprocessing of images, feature extraction and covariance tracking are per-

formed using the method in Porikli et al. (2006), modified to generate part-based human

body model. Sample human motion tracking results are illustrated in Figure 3.4, and the

human body part-based model in Figure 3.5, of section 3.1.2.

Furthermore, the membership function values are generated for the relation between

image features and the models (m1, m2, m3), normalizing the results obtained from the

covariance tracking. Table 4.1 presents the examples (out of total 576 frames) of the

membership function values (R) generated from the one-to-many relationship between set

A and set B. The membership function S is obtained by studying the relationship between

the models and the actions being performed. Table 4.2 represents the membership degree

S generated for the relation between set B and set C, with each model having a degree of

belongingness to an action (one-to-many relationship).

Obtaining R and S frame-by-frame, BK subproduct inference engine is invoked, and

by empirically formulating Eq. 4.6, human action classification is performed. As partial

human actions are modeled instead of the complete actions, the detector is capable of

detecting an action before it finishes (i.e. early detection). For the experiments, the action

classification performance is tested using three inference structures: original BK (i.e.
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Table 4.1: Example of membership degree R( f ,m) generated for relation between set A
and set B.

Frame no. m1 m2 m3

1 0.9856 0 0
20 0.7318 0.6055 0
25 0.4296 0.9976 0
30 0.1592 0.6964 0
39 0 0.2604 0
50 0.4001 0.3723 0
55 0.7512 0.2094 0
67 1 0.0358 0
75 0.9852 0.0572 0
152 0.2418 0 0.4615
156 0.3634 0.0494 1
162 0.3465 0.1613 0.7692
172 0.6104 0.3442 0.3077
193 0.8549 0.7118 0
200 0.3603 0.8025 0.9231

Table 4.2: Example of membership degree S(m, a) generated for relation between set B
and set C.

Model Bend Jump Skip

m1 0.80 0.80 0.90
m2 0.20 0.80 0.90
m3 0.10 0.30 0.70

fuzzy BK subproduct) which is modified to suit the application requirements (Eq. 4.6),

K7 (Eq. 2.6) and K9 (Eq. 2.7). It is found that overall original BK subproduct performed

the best for all the three action classes, as can be seen in Table 4.3. However, for jump and

skip, originalBK performed better in the initial few frames, and later original BK and K9

delivered similar performance. K7 performed fairly poorer for all the three action classes.

The proposed early detector detects an action when the membership function values

(as presented in Table 4.3) exceeds the pre-defined threshold monotonically. For the

experiments, the threshold values is set as 0.8 and 0.7. Table 4.4 highlights the results
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Table 4.3: Results obtained after applying Original BK subproduct (fuzzy BK subprod-
uct), K7 and K9 inference structures.

Action Frame no. Original BK K7 K9

BEND 1 0.6774 0 0.0486
10 0.4847 0 0.2967
20 0.4234 0.2481 0.2967
30 0.8798 0 0.2967
40 0.9684 0 0.0818
50 0.5255 0 0.2967
60 0.5742 0.0050 0.2686
70 0.6246 0.0437 0.1150
80 0.6257 0.0404 0.1150
85 0.6281 0 0.1460

JUMP 1 0.4726 0.4166 0.4726
10 0.7386 0 0.2171
20 0.5868 0 0.3116
30 0.4595 0 0.4595
40 0.2150 0.2150 0.2150
50 0.0624 0.0624 0.0624
60 0.1116 0.1116 0.1116
67 0.2295 0.2295 0.2295

SKIP 1 0.7708 0 0.2245
10 0.5329 0.0169 0.5329
20 0.3913 0.3469 0.3913
30 0.1936 0.1936 0.1936
40 0.0361 0.0361 0.0361
48 0.1740 0.1740 0.1740

obtained using original BK, and Figure 5.7 represents the experimental results graphically.

Following observations are made from the results obtained from early human action

detection on setting different threshold values:

(i) When threshold=0.8, the detector detects the bend action for the first actor (Daria)

from seeing ∼42% of the frames, and for the second actor (Denis) from seeing ∼32%

of the frames. However, it slightly missed the detection for the third actor (Eli) due

to the fewer number of image frames in the action video. For the jump action, the

detector failed to detect the action for Daria in high threshold. However, for Denis
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(a) Daria bend (b) Denis bend (c) Eli bend

(d) Daria jump (e) Denis jump (f) Eli jump

(g) Daria skip (h) Denis skip (i) Eli skip

Figure 4.5: Graphical results for early human action detection for Bend, Jump, and
Skip performed by three actors (Daria, Denis and Eli). The threshold values are set as
0.8 and 0.7 (represented using red dotted lines), and the detector detects the action when
the membership function value exceeds the threshold monotonically. On an average, the
detector is able to detect an action from seeing ∼32% of the frames.

and Eli, the detector efficiently detected the action upon seeing ∼8% and ∼31% of

the frames respectively. Lastly, for the skip action, the detector is able to detect the

action seeing on an average ∼14% of the frames.

(ii) When threshold=0.7, the detector is able to detect all the actions performed by all the
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Table 4.4: Results for early human action detection.

Actor and action Total no. of frames Detect at frame no. (threshold=0.8) Detect at frame no. (threshold=0.7) Early detection seeing %age of frames

Daria bend 84 36 31 36.90
Denis bend 85 28 25 29.41
Eli bend 63 - 37 58.73

Daria jump 67 - 44 65.67
Denis jump 67 6 10 14.92
Eli jump 45 14 12 26.66

Daria skip 57 13 8 14.03
Denis skip 48 4 14 29.16
Eli skip 60 7 8 13.33

three actors upon seeing ∼32% of the frames on an average. Therefore, the proposed

early human action detector is capable of efficiently detecting an action before it is

completed, seeing only a few number of initial frames.

4.4 Summary

Herewith, a framework is proposed for detecting human action as early as possible using

fuzzy BK subproduct inference mechanism. Human action classification problem is

modified into frame-by-frame level classification to enable early detection. Based on the

best of my knowledge and a recent survey paper by C. H. Lim et al. (2015), this is the

first work in the fuzzy community dealing with early human action detection. The closest

research to this work is MMED proposed in Hoai and De la Torre (2012, 2014). In terms

of timeliness and accuracy of detection, MMED outperforms the other algorithms. For

human action recognition usingWeizmann human actions dataset, MMED requires seeing

∼40% of the action (with a score of 0.7). In this work, the experiments are performed using

the same human action dataset, and it is found that the detector significantly outperforms

MMED where the detector requires seeing ∼32% of the image frames on an average in an

action video (with membership function score of 0.7).

In summary, the proposed method is capable of making reliable early human action

detection by modeling the partial actions. The membership values generated from fuzzy
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BKsubproduct inference engine provides the basis to detect an action before it is completed

when a certain threshold is attained. The efficiency in the performance delivered by the

early detector is supported with the experimental results, where the detector is able to

detect an action from seeing ∼32% of the frames on an average.
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CHAPTER 5: HYBRID TECHNIQUE FOR EARLY HMA

The proposed early human action detection framework is further analyzed from a broader

perspective where it is represented as a hybrid model of CV and fuzzy set theory. Hybrid

techniques are well-known in addressing issues such as uncertainty, imprecision and

vagueness to a considerable extent by exploiting the strengths of one technique to alleviate

the limitations of another (Acampora et al., 2012; Hosseini & Eftekhari-Moghadam,

2013). Therefore, in this work a hybrid technique for early human action detection is

proposed as the synergistic integration of CV solutions and fuzzy set theory that is based

on fuzzy BK subproduct approach.

In this section, the proposed hybrid technique for early human action detection

is discussed in detail, further validated with experimental results on publicly available

human action dataset for a variety of action classes. The aim is to carry out reliable early

human action detection and infer an action upon observing minimum possible number of

image frames.

5.1 Introduction

In general, CV methods and fuzzy approaches do not behave in a conflicting manner,

rather compliment one another (C. H. Lim et al., 2015). The fusion of these techniques

towards performing human action recognition as early as possible can be achieved through

proper hybridization. To this end, the relationship between a human and the action being

performed is studied using fuzzy BK subproduct, efficiently integratedwith CV techniques

including feature extraction and motion tracking to perform human action recognition

effectively.

Another issue addressed by the proposed hybrid method is to handle the cumulative

tracking errors and precision problem that can affect the overall system performance. A
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set of overlapped fuzzy numbers known as the fuzzy qualitative quantity space are used

as a solution, where individual distance among them is defined by a pre-defined metric

(H. Liu & Coghill, 2005). FQS helps in modeling the accumulated tracking errors and

precision problem because of the uncertainties arising due to different height, size and

step size of each human.

Furthermore, a deep study is performed on the impact of various fuzzy implication

operators and inference structures in retrieving the relationship between the human subject

and the action. The existing fuzzy implication operators are capable of handling 2D data

only. However, a third dimension ‘time’ plays a crucial role in human action recognition to

model humanmovement changes over time. Therefore, a new space-time fuzzy implication

operator is introduced, by modifying the existing implication operators to accommodate

time as an added dimension.

It is intended to provide a solution for early human action detection closest to natural

human perception. The novelty lies in the hybrid based learning formulation to train the

early detector such that once the detector has been trained, it can be flexibly used in several

ways according to different types of application.

5.2 Proposed Methodology

In this work, a hybrid technique is proposed for early HMA. The proposed hybrid solution

performs hybridization on the generated tracking output and fuzzy BK subproduct. Figure

5.1 highlights the overall pipeline of the proposed methodology. The three main steps

involved are: feature extraction, human motion tracking (covariance tracking) and early

human action detection (using hybrid technique). Frame-by-frame membership function

is constructed for each kind of possible movement, taking into account several human

actions from a publicly available dataset. The partial human action is modeled, where the

fuzzy membership function provides the basis to detect an action before it is completed.
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Figure 5.1: Overall pipeline of the proposed hybrid technique. The hybridization is
performed on the tracking output from CV solutions and the set B of fuzzy BK subproduct
which includes a set of human body part-based models obtained from the human motion
tracking. Red colored dotted lines represent the hybridization.

This is achieved when a certain threshold is attained in a suitable way. The overall process

is discussed step-by-step in this section as follows.

5.2.1 Feature extraction

Given an input video of action sequences, the object window is represented as a covariance

matrix of features following the method in Porikli et al. (2006). This enables capturing

the spatial and the statistical properties along with their correlation within the same

representation. Figure 5.2 highlights the pixel-wise feature representation, where an

object window is represented as a covariance matrix of features.
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Figure 5.2: Pixel-wise feature representation of an object window using a covariance
matrix of features. In the covariance matrix, color model is used here to represent the
object region.

Let F be the W × H × d dimensional RGB feature image of an image I, such that

F (x, y) = Φ(I, x, y), where the function Φ can be any mapping such as image gradients,

color, edge magnitude or orientation. Let { fi}i=1..I ′ be the d-dimensional feature vector

inside a rectangular window R′ where R′ ⊂ F. A feature vector fi is constructed using: (i)

spatial attributes based mapping - obtained from the pixel coordinates values, and (ii) ap-

pearance attributes basedmapping - e.g. gradient, color or infrared. The features extracted

may be associated directly with the pixel coordinates ( fi = [ x y I (x, y) Ix (x, y) ... ]), or

can be arranged in a radially symmetric relationship ( f r
i = [ ‖(x′, y′)‖ I (x, y) Ix (x, y) ... ]).

5.2.2 Covariance tracking

Humanmotion tracking is important in finding the correspondences between the previously

detected objects in the current image frame. A common approach in tracking is to employ

predictive filtering, where the object’s location in the distance calculation and color

attributes are used to update the model (Wren, Azarbayejani, Darrell, & Pentland, 1997).

When the measurement noise is assumed to be Gaussian, Kalman filter (Kalman, 1960)

offers an optimal solution. Whereas, Markovian filters can be applied for tracking when

the state space consists of a finite number of states. Another well-known approach is to

employ particle filters (Isard & Blake, 1998), which are based on Monte Carlo integration
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methods. In particle filtering, the current state density (i.e. speed, size, location) is

represented using a set of random samples with associated weights. Furthermore, the new

density is computed utilizing these samples and weights. However, the main disadvantage

of particle filtering is that it is based on random sampling. Therefore, it suffers from the

problem of sample degeneracy and impoverishment, especially for higher dimensional

representations (Porikli et al., 2006).

In order to find a global optimal solution, the covariance tracking method presented

in Porikli et al. (2006) is employed. It is a simple algorithm used to track non-rigid objects

using covariance based object description. A model update mechanism is incorporated

using Lie algebra (Porikli et al., 2006) to adapt to the undergoing object deformations and

appearance changes. Unlike other tracking methods, covariance based tracking does not

make any assumption on the measurement noise and the motion of the objects tracked. It

has shown remarkable detection accuracy for the moving objects in non-stationary camera

sequences. As discussed in the previous chapter, the covariance tracking is performed as

follows.

For a given object region R′, a d × d covariance matrix of features CR′ is computed

as the model of the human object:

CR′ =
1

M N

M N∑
i=1

( fi − µR′)( fi − µR′)T (5.1)

where, µR′ is the vector of the mean of the corresponding features for the points in region

R′. A single covariance matrix extracted from a region is sufficient to perform matching

of the region in multiple views and poses. In the current image frame, the region that has

the minimum covariance distance from the model is located and assigned as the estimated

location.
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Furthermore, the covariance tracking algorithm is modified to perform part-based

human motion tracking. Human body is segmented into three parts: head, torso and leg,

and the covariance tracking is performed on each of the part, resulting in a part-based

model m. In order to model several distinct human actions, five models are generated:

(i) Head distance - model the head movement from start to end frame.

(ii) Body distance - model the position changes of the human body from the first frame.

(iii) Leg distance - model the distance between both legs.

(iv) Hand distance - model the hand movement from start to end frame.

(v) Ground distance - model the distance of the human body from the ground.

It is crucial for the tracking algorithm to be free from problems such as tracking

precision issue resulted due to the position changes of each body part (head, torso and leg)

evolving over time. Also, the tracking algorithm should take into account the cumulative

errors generated because of the uncertainties arising due to different height, size and step

size of each human. These problems can directly affect the performance of the higher level

task. Therefore, the tracking output is fuzzified using fuzzy qualitative quantity space, as

discussed in the following subsection.

5.2.2.1 Fuzzy qualitative quantity space

The fuzzy qualitative quantity space can be defined as a set of overlapped fuzzy numbers

whose individual distance among them is defined by a pre-defined metric (Chan & Liu,

2009). Four tuple fuzzy numbers [a, b, α, β] are employed to describe each state in

the fuzzy qualitative unit circle (Figure 5.3a) that is a finite and convex discretization

of the real number line. In this work, the main motivation behind employing the fuzzy

qualitative unit circle is to model the accumulated errors due to the position changes of
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(a)

(b)

Figure 5.3: (a) Conventional unit circle: The Cartesian translation and the orientation is
replaced by the fuzzy quantity space. (b) Element of the fuzzy quantity space for every
variable (translation (X , Y ), and orientation θ) in the fuzzy qualitative unit circle is a finite
and convex discretization of the real number line (Chan & Liu, 2009).
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each body part (head, torso and leg) evolving over time. Besides that, this approach helps

in dealing with the tracking errors and precision problem because of the uncertainties

arising due to different height, size and step size of each human. In the hybrid model,

fuzzy quantity space helps in the normalization of the tracking output generated as a result

of the part-based covariance tracking

In the proposed method, the rigid motion of each body part is represented using the

fuzzy qualitative translation states. A fuzzy qualitative unit circle as presented in Figure

5.3 is constructed using Eq. 5.2, by following the approach in Chan and Liu (2009):

lim
s→s0=10

Ct (s) = QS(qpl ) (5.2)

where, the translation component in the conventional unit circle is replaced by the fuzzy

qualitative quantity space; and s denotes the number of states representing the x − y

translation employed in the quantity space to represent the fuzzy qualitative unit circle.

Empirically, the translation is selected as s = 10. The fuzzy qualitative quantity space Q

consists of the translation component Qd represented as:

Qd = QSd (l j ), f or j = 1, 2, ..., n (5.3)

where, QSd (l j ) denotes the state of a distance l j , and n represents the number of elements

in the translation component. The final output generated is the fuzzified tracking result,

normalized using the fuzzy qualitative quantity space with values between 0 and 1.

5.2.3 Hybrid Model

The output from the human body part-based covariance tracking, normalized using fuzzy

qualitative quantity space, is integrated with fuzzy BK subproduct with proper hybridiza-
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tion process to perform human action recognition, as is presented in Figure 5.1.

Given an input action video, let A = { fi |i = 1, · · · , I} denote the set of features

extracted from image frames i of the video describing the human action. Let set C =

{ak |k = 1, · · · , K } be the set of human action. A has no direct relation with C, since there

is no information about which action is being performed and by whom. However, if there

exists an intermediate set B, which is in relationwith both A andC, the indirect relationship

between A and C can be derived using fuzzy BK subproduct, and utilize this information

to detect an action as early as possible. Therefore, let set B = {m j | j = 1, · · · , J} constitute

the human body part-based model, obtained as a result of covariance tracking. Using this

intermediate set, the relationship between image features f in set A and the action a in set

C can be therefore obtained as:

R / S = {( f , a) |( f , a) ∈ A × C and f R ⊆ Sa} (5.4)

where f R ⊆ Sa is the main element in retrieving the relationship between f and a, and is

obtained from the covariance tracking. The composition of relation between fi ∈ A and

ak ∈ C can be defined using the fuzzy subsethood measure as follows:

BK : R /BK S( f , a) =
1
J

∑
m∈B

(R( f ,m) → S(m, a)) (5.5)

where, R( f ,m) represents themembership function of the relation R between f and m, and

S(b, c) represents the membership function of the relation S between m and a. Therefore,

Eq. 5.5 represents the hybrid model mathematically. The hybrid model performs the

integration of the models obtained from human motion tracking into the intermediate set

B of BK subproduct. As a result, set B includes five distinct models m1 − m5 generated

from the covariance tracking, i.e. head distance, body distance, leg distance, hand distance,
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and ground distance.

For each image frame, the membership function values generated from Eq. 5.5

are modeled for early human action detection. For example, for an action video with n

number of frames, invoking fuzzy BK subproduct inference engine for each frame will

yield a membership function value for each frame as an output. The early detector models

the frame-by-frame membership function values generated from fuzzy BK subproduct

and triggers an action when it exceeds a pre-defined threshold monotonically. Even if a

single action is being continued, the membership grades are constructed using fuzzy BK

subproduct (Eq. 5.5) frame-by-frame, and the early detector detects the action in a similar

manner. When the membership function value attains the desired threshold value at a

certain frame, the detector stops, and triggers the action at that particular frame number.

Section 5.2.4 explains the overall process in detail.

5.2.4 Early Anticipation of Human Action

Early anticipation of human action involves processing in real-time. The detector reads

from a stream of input video and keeps a sequence of observations in the memory. It

continuously monitor the occurrence of the target action. If the target action is detected,

the frame number at which the detector triggers is returned.

However, in order to detect an action as early as possible, partial action are used as

positive training examples, instead of a complete action sequence. Let (X1, y1),· · · ,(X n,

yn) be the set of a series of actions performed by a human and the associated ground truth

annotations for the action of interest such that yi = [si, ei], where si denotes the start of the

action and ei denotes the end of the action in the time series of action X i. Let t0 denote

the beginning of the action video, and the length of the partial and complete action that

the detector needs to detect be bounded by lmin and lmax . Let Y (t0, t) denote the set of

length-bounded time intervals from time t0 to time t. Also, for a time series of action X

111

Univ
ers

ity
 of

 M
ala

ya



of length l, let Y (l) denote the set of all possible locations of an action in a video. For an

interval y = [s, e] ∈ Y (l), let Xy denote the subsegment of X from frame s to e inclusive.

Then, the output of detector that is the segment having the highest membership value

(degree of belongingness to an action) is represented as:

D(X i
[t0,t]) = yi

t = argmax
y∈Y (t0,t)

µ(X i
y) (5.6)

where, D(X i
[1,t]) denotes the output of detector on the subsequence of X i from the initial

frame to the tth frame only, instead of entire X i. If D(X i
[t0,t]

) = {∅}, no action is detected.

µ(X i
y) represents the membership function of the segment X i

y belonging to the time series

of action X i. Similarly, the detector’s output at t + 1 can be computed as:

D(X i
[t0,t+1]) = yi

t+1 = argmax
y∈Y (t0,t+1),y(2)=t+1

µ(X i
y) (5.7)

where yi
t+1 is the segment that attains the maximum membership function at t + 1. The

overall computational cost involved for the detection is O(l), where lmin ≤ l ≤ lmax .

For early human action detection, it is desirable for the membership function µ(X i
y)

to be monotonic and non-decreasing. Therefore, Eq. 5.6 must hold with the desired

property:

µ(X i
yit

) > µ(X i
y)∀i,∀t = 1, ..., li,∀y ∈ Y (t) (5.8)

The constraint in Eq. 5.8 is enforced for all t = 1, 2, · · · , li, instead of t = li as the

partial actions are being trained instead of a complete action. The learning formulation

for early human action detection is obtained as in Eq. 5.6-5.8, where the membership

function µ(X i
y) is learned using the proposed hybrid technique.

In this work, the target action of multiple classes is detected. Therefore, the detectors

112

Univ
ers

ity
 of

 M
ala

ya



are trained and used separately for each of the target action classes. The challenge is to

study the indirect relationship between the human subject and the action being performed

in the video, modeling the frame-by-frame arrival of data, and subsequently perform

action classification on the basis of the membership function values generated from the

hybrid model. Therefore, Eq. 5.5 can be re-written as:

µ(X i
y) = R /BK S( f , a) =

1
J

∑
m∈B

(R( f ,m) → S(m, a))

∀i,∀t = 1, ..., li,∀y ∈ Y (t)

(5.9)

where Eq. 5.9 yields the desired membership function required for early human action

detection. When the membership function value monotonically exceeds a pre-defined

threshold, the detector triggers the action.

5.3 Impact of Implication Operators

An important property of Eq. 5.9 to be taken into consideration is which implication

operator ‘→ ’ to employ to infer the relation ‘R( f ,m) → S(m, a)’. Let r and s defines the

membership functions for relations R and S respectively. There exists a number of fuzzy

implication operators in the literature (C. K. Lim & Chan, 2015). For example:

(i) Standard Sharp (S#): It is represented as r →S# s. The standard sharp operator

outputs 1 iff r , 1 or s = 1, and outputs 0 otherwise.

(ii) Standard Strict (S): It is represented as r →S s. The standard strict operator is

defined as 1 iff r ≤ 1, and 0 otherwise.

(iii) Gaines 43 (G43): It is represented as r →G43 s. This fuzzy implication operator is

defined as: min(1, r
s )

(iv) Kleene-Dienes operator (K D): It is a popularly used fuzzy implication operator and
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is represented as r →KD s. KD operator is defined as: max(s, 1 − r).

(v) Reichenbach (R): Reichenbach operator is represented as r →R s. It is mathemati-

cally defined as: 1 − r + rs = min(1, 1 − r + s).

(vi) Łukasiewicz operator (L): Łukasiewicz operator is another well-known implication

operator represented as r →Ł s, and defined as: min(1, 1 − r + s).

(vii) Yager operator (Y ): It is represented as r →Y s, and defined as: sr .

(viii) Early Zadeh operator (EZ): It is represented as r →EZ s. Early Zadeh operator is

defined as: (r ∧ s) ∨ (1 − r).

However, these fuzzy implication operators are capable of handling 2D data only. A

third dimension ‘time’ plays a crucial role in human action recognition to determine how

human movement changes over time. Therefore, there is a need to define a new fuzzy

implication operator that can handle space-time data.

Hence, in this work, a new space-time fuzzy implication operator is proposed, which

can be efficiently employed in HMA domain. To this end, the popular fuzzy implication

operators i.e. Łukasiewicz (p →Ł q) and Kleene-Dienes (p →KD q) operators are

modified to accommodate ‘time’ as an additional dimension, as follows:

p→newŁ q = min(1, 1 − pt + qt ),∀i,∀t = 1, ..., li (5.10)

p→newKD q = max(qt, 1 − pt ),∀i,∀t = 1, ..., li (5.11)

where t = 1, · · · , li taking partial action frame-by-frame, for the length of an action

bounded by lmin and lmax . With these set of implication operators, each inference yields

an interval in the range [0, 1]. The upper bound of an inference is given by Eq. 5.10,
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and the lower bound is given by Eq. 5.11. The implication operators must follow the

constraint in Eq. 5.8 for reliable detection.

5.4 Study on Inference Structures

There exists a number of inference structures developed using operators such as ∧, ∨

and t-norm (Meng, 1997) that are employed in various applications. For example, the

inference structures K7 and K9 delivered good performance for the medical expert system

in C. K. Lim and Chan (2011). K7 and K9 are represented as:

K7 : R /K7 S(a, c) = min
( 1

J

∑
b∈B

(R(a, b) → S(b, c)),OrBot
(
AndBot(R(a, b), S(b, c))

))
(5.12)

K9 : R /K9 S(a, c) = min
( 1

J

∑
b∈B

(R(a, b) → S(b, c)),OrBot
(
AndTop(R(a, b), S(b, c))

))
(5.13)

where AndTop(p, q) = min(p, q), AndBot(p, q) = max(0, p + q − 1) and OrBot(p, q) =

min(1, p+q) are the logical connectives. Furthermore, the inference structures instantiated

from the original BK subproduct (Eq. 5.14) along with the combination of K7 and K9

were applied for scene classification in (Vats et al., 2012, 2015).

BK : R /BK S(a, c) =
1
J

∑
b∈B

(R(a, b) → S(b, c)) (5.14)

However, in order to find the suitable inference structure for human action recognition,

the detector performance is tested using the classical inference structures: K7, K9 and

original BK subproduct. The comparison results are shown in section 5.5.1.

5.5 Validation

In order to test the effectiveness of the proposedmethod, the experiments are performed on

theWeizmann human actions dataset (Gorelick et al., 2007). As discussed in section 3.1.2,
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(a) Run

(b)Walk

(c) Skip

(d) Jack

(e) Jump

(f) Pjump

(g) Side

(h)Wave2

(i)Wave1

(j) Bend

Figure 5.4: Example images from the Weizmann human actions dataset for ten action
classes (Gorelick et al., 2007).
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ten natural actions: ‘run’, ‘walk’, ‘skip’, ‘jack’ (jumping-jack), ‘jump’ (jump-forward-on-

two-legs), ‘pjump’ (jump-in-place-on-two-legs), ‘side’ (gallop sideways), ‘wave2’ (wave-

two-hands), ‘wave1’ (waveone-hand), and ‘bend’ are performed by nine different people.

Figure 5.4 presents some example of image frames from the Weizmann human action

dataset, representing ten action classes used in the experiments.

The following pseudo-code represents the implementation of hybrid technique for

early human action detection in a step-by-step manner:

Step 1: Input an action video.

Step 2: Perform human detection.

Step 3: Segment the human body into three parts: head, torso+arm and leg.

Step 4: Perform feature extraction by constructing covariance matrix of features.

Step 5: Feature image is constructed. Save in Set A.

Step 6: Perform part-based covariance tracking.

Step 7: Human body part-based models are obtained. Save in Set B.

Step 8: Perform hybridization on the tracking output generated and Set B.

Step 9: Normalize the results obtained usingmin-max normalization. Save asmembership

function R.

Step 10: Obtain the converse relation S between actions and models by normalizing the

tracking results using min-max normalization.

Step 11: Call BK subproduct inference engine frame-by-frame utilizing R and S.

Step 12: Set the threshold value as the cutting point for the detector.

Step 13: When membership degree exceeds the threshold value, stop.

Step 14: Output the frame number.

Step 15: Done.

Similar to section 3.1.2, the preprocessing of images, feature extraction and covari-
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Figure 5.5: Sample human motion tracking results: From top to bottom row represents
the part-based covariance tracking results for run, walk, skip, jack, pjump, jump, wave2,
side, bend and wave1 action, represented using blue colored bounding box.
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(a) m1 for ‘bend’ (b) m2 for ‘jump’ (c) m3 for ‘skip’ (d) m4 for ‘wave2’ (e) m5 for ‘pjump’

Figure 5.6: Part-based human bodymodel generated fromhumanmotion tracking: m1-m5
for five example action sequences.

ance tracking are performed using the method in Porikli et al. (2006). And further the

method is modified to generate the part-based human body model with separate tracks for

full body, head, torso (arm included) and legs. Sample human motion tracking results for

part-based covariance tracking for the ten action classes are shown in Figure 5.5.

Utilizing the results obtained from Figure 5.5, five models are constructed: m1 -

model the head movement from start to end frame, m2 - model the position changes of

the human body from the first frame, m3 - model the distance between both the legs, m4

- model the hand movement from start to end frame, and m5 - model the distance of the

human body from the ground. Figure 5.6 represents the model which forms the set B for

BK relational product.

The membership function R( f ,m) is generated by normalizing the results obtained

from the model-based covariance tracking using the fuzzy qualitative quantity states

(s = 10). As can be seen in Table 5.1, R( f ,m) represents the one-to-many relationship
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Table 5.1: Example of membership function R( f ,m), for models m1-m5.

Frame no. m1 m2 m3 m4 m5

1 1.00 0.00 0.00 0.00 0.00
10 1.00 0.10 0.00 0.10 0.20
20 0.70 0.60 0.00 0.30 0.70
30 0.20 0.70 0.00 0.90 0.30
40 0.00 0.30 0.00 0.90 0.00
50 0.40 0.40 0.00 0.50 0.30
60 1.00 0.10 0.00 0.10 1.00
70 1.00 0.10 0.00 0.10 0.00
80 1.00 0.10 0.00 0.20 0.10
90 0.50 0.10 0.80 0.00 0.00
100 0.40 0.30 0.80 0.00 0.00
110 0.40 0.40 0.80 0.00 0.80
120 0.50 0.60 0.60 0.00 0.80
130 0.20 0.80 0.30 0.00 0.50
140 1.00 0.90 0.10 0.00 0.60
150 0.50 1.00 0.20 0.00 0.30

Table 5.2: Example of membership function S(m, a) for ten action classes.

Model Bend Jump Jack Skip Pjump Run Side Walk Wave1 Wave2

m1 0.60 0.80 0.01 0.80 0.11 0.80 0.70 0.80 0.00 0.00
m2 0.01 0.80 0.12 0.90 0.20 0.90 0.85 0.90 0.00 0.00
m3 0.01 0.10 0.82 0.25 0.01 0.85 0.75 0.88 0.00 0.00
m4 0.70 0.01 0.90 0.15 0.18 0.60 0.65 0.60 0.50 0.90
m5 0.01 0.25 0.20 0.20 0.30 0.20 0.01 0.01 0.00 0.00

between the images (set A) and the models (set B), describing the degree of belongingness

between an image and several models. The membership function S(m, a) represents the

relationship between the model (set B) and the action (set C) being performed. Table

5.2 highlights the membership function values generated for the one-to-many relationship

betweenmodel and action, with each model having a degree of belongingness to the action

classes. Generating R and S for each image frame, fuzzy BK subproduct inference engine

is invoked. Utilizing Eq. 5.9, 5.10 and 5.11, human action classification is performed.

Since the partial human action is modeled instead of the complete action, the detector is
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Table 5.3: Results for early human action detection using hybrid technique.

Action Total no. of frames t=0.70 t=0.75 t=0.80 t=0.85 t=0.90 Frames seen (%)

Bend 84 36 39 - - - 42.85
Jump 67 31 32 - - - 46.26
Jack 89 25 26 27 28 29 28.08
Skip 57 11 12 12 13 13 19.29
Pjump 62 12 13 15 17 32 19.35
Run 42 4 - - - - 9.52
Side 53 4 5 5 - - 7.54
Walk 84 8 9 - - - 9.52
Wave1 82 20 52 - - - 24.39
Wave2 81 13 13 14 14 - 16.04

capable of detecting an action early, before its completion.

The proposed detector infers an action when the membership function value exceeds

the pre-defined thresholdmonotonically. It is observed that automatic thresholding doesn’t

provide optimal solution for early detection. It is required to set a fixed threshold value

for all the actions in order to detect an action early. In the experiments, results are tested

using different threshold values i.e. 0.70, 0.75, 0.80, 0.85 and 0.90. Table 5.3 presents the

early human action detection results obtained, where ‘t’ refers to the threshold value and

the last column represents the percentage of frames observed before the detector triggers

the action when the threshold is set to 0.70.

Following observations are made on testing the detector performance for different

threshold values:

(i) When the threshold is set to 0.70, the detector is able to detect all the actions

performed upon seeing ∼23% of the frames on an average.

(ii) On increasing the threshold to 0.75, the detector misses the detection for only ‘run’

action, and able to make early detection for all other actions upon seeing ∼37% of

the frames on an average.

(iii) With the threshold value set to 0.80, the detector successfully detects all actions

121

Univ
ers

ity
 of

 M
ala

ya



0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frame no.

M
e

m
b

e
rs

h
ip

 f
u

n
c
ti
o

n

(a) Bend
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(b) Jump
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(c) Jack
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(d) Skip
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(e) Pjump
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(f) Run
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(g) Side

0 10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Frame no.

M
e

m
b

e
rs

h
ip

 f
u

n
c
ti
o

n

(h)Walk
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(i) Wave1
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(j)Wave2

Figure 5.7: Graphical results for early human action detection. The detector triggers the
action upon seeing ∼23% of the frames on an average when the membership function
attains a certain threshold (e.g. 0.70 and 0.80 here, represented using red dotted lines)
monotonically.
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except ‘bend’, ‘jump’, ‘run’, ‘walk’ and ‘wave1’, upon seeing ∼60% of the frames

on an average.

(iv) Even with the threshold value 0.90, the detector is able to detect ‘jack’, ‘skip’ and

‘pjump’ action upon seeing ∼33%, ∼23%, and ∼52% of the frames respectively.

(v) A threshold value lower than 0.70 is not recommended as then the detector will turn

out to be unreliable.

Figure 5.7 highlights the experimental results qualitatively for the ten action classes,

where the proposed early detector infers an action upon observing ∼23% of the frames

(on an average) when the membership function attains a certain threshold (e.g. 0.70 or

0.80) monotonically.

5.5.1 Comparison with the state-of-the-art

The conventional CV solutions for early human action detection includes Ryoo (2011);

G. Yu et al. (2012); Ryoo et al. (2014); K. Li and Fu (2012); Hoai and De la Torre

(2012, 2014). In terms of timeliness and accuracy of detection, MMED proposed in Hoai

and De la Torre (2012, 2014) outperforms the other algorithms. The experiments were

performed on the Auslan dataset (Australian Sign Language), the extended Cohn-Kanade

dataset (CK+) and the Weizmann human actions dataset. On an average, MMED requires

seeing ∼37% of the sentence for Australian sign language recognition. To detect facial

expression (CK+), MMED detects when it completes ∼47% of the expression. For human

action recognition using Weizmann human actions dataset, MMED requires seeing ∼40%

of the action (with a score of 0.7). In this work, the experiments were performed using

the same human action dataset, and it is found that the detector significantly outperforms

MMED where the detector requires seeing ∼23% of the image frames on an average in

an action video (with membership function score of 0.7). Nonetheless, the computational
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cost involved in MMED is high as it requires extensive labeling on each of the training

samples. Due to the inherent advantages from fuzzy BK subproduct inference mechanism,

the computational cost involved in the proposed early detector is lower as compared to

MMED, i.e. O(l), where l is length of the action. Moreover, MMED lacks in terms

of handling the vague feature data and uncertainty involved in the training stage. The

proposed method is based on fuzzy BK subproduct and therefore inherits the capabilities

of fuzzy theory in handling the uncertainties involved therein using the fuzzy membership

function values generated by invoking fuzzy BK subproduct inference engine.

However, there exists several methods that employ fuzzy logic for human action

recognition. For example, FIS was successfully applied in Le Yaouanc and Poli (2012);

Yao et al. (2014) for effectively distinguishing the human motion patterns using the

flexible membership functions and the fuzzy rules with endurance to the vague feature

data. In Gkalelis et al. (2008), FVQ incorporated with FCM was used to model the

human movements with flexibility to support complex continuous actions. Despite of

the inherent advantages of fuzzy logic in performing human action recognition, these

approaches require seeing the complete action video to detect an action. Hence, these

approaches lack in ability to detect an action early and cannot be quantitatively compared

with the proposed methodology.

Recently, there has been a tremendous growth of research exploration of fusing

elements of intelligence using efficient hybrid techniques. For example, Acampora et al.

(2012); Hosseini and Eftekhari-Moghadam (2013) effectively integrated fuzzy logic with

machine learning techniques for human action recognition where optimum membership

function and flexible fuzzy rules were used to infer the human behavior. However, the

conventional hybrid methods for human action recognition are not capable of inferring

an action early. This work reveals the inherent strength of hybridization of computational
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Table 5.4: Membership function values for inference structures.

Inference structure Frame no. Bend Jump Jack Skip Pjump Run Side Walk Wave1 Wave2

K7 1 0.60 0.66 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00
10 0.52 0.50 0.00 0.39 0.00 0.42 0.00 0.00 0.50 0.30
20 0.40 0.36 0.05 0.10 0.00 0.23 0.00 0.00 0.00 0.50
30 0.19 0.50 0.00 0.37 0.00 0.16 0.03 0.03 0.00 0.30
40 0.00 0.50 0.08 0.10 0.02 0.06 0.33 0.00 0.30 0.30

K9 1 0.60 0.66 0.14 0.55 0.02 0.61 0.29 0.13 0.00 0.00
10 0.52 0.60 0.27 0.43 0.17 0.53 0.62 0.75 0.50 0.40
20 0.40 0.36 0.27 0.50 0.17 0.23 0.55 0.64 0.00 0.60
30 0.20 0.60 0.22 0.38 0.17 0.16 0.52 0.43 0.40 0.40
40 0.00 0.57 0.22 0.29 0.17 0.18 0.49 0.43 0.50 0.40

Original BK 1 0.60 0.66 0.87 0.81 0.94 0.79 0.83 0.85 0.82 0.90
10 0.52 0.65 0.47 0.43 0.64 0.53 0.71 0.75 0.52 0.55
20 0.40 0.36 0.28 0.50 0.70 0.23 0.61 0.64 0.72 0.65
30 0.54 0.61 0.94 0.38 0.75 0.16 0.52 0.43 0.54 0.59
40 0.76 0.57 0.46 0.29 0.56 0.18 0.49 0.43 0.60 0.67

methods (CV solutions and fuzzy BK subproduct) for early human action detection in a

way that the strength of fuzzy set theory can alleviate the limitation of CV solutions. To

the best of the authors’ knowledge, this is the first work in the community that employs

hybrid technique for solving the problem of early human action detection and stands out

against other conventional methods with good detection rate where the detector requires

seeing only ∼23% of the frames on an average to detect an action.

In order to justify the choice of employing fuzzy BK subproduct for HMA, the

performance of detector is evaluated using the classical inference structures: K7, K9 and

original BK (i.e. fuzzy BK subproduct). It is found that overall the original BK performed

the best for all the action classes as shown in Table 5.4. Whereas, K9 delivered comparable

results for some action sequences (e.g. bend, jump, skip, run and walk) and K7 performed

fairly poorer for all the action classes. Figure 5.8 and 5.9 evaluates the results qualitatively

for the ten example action classes. It can be observed from the graphical representation

that the membership function values generated using K7 and K9 inference structures are

much lower as compared to original BK. Therefore, it is deduced that original BK is the

most suitable inference structure to be used to perform HMA.
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(a) Bend (K7) (b) Bend (K9) (c) Bend (BK)

(d) Jump (K7) (e) Jump (K9) (f) Jump (BK)

(g) Jack (K7) (h) Jack (K9) (i) Jack (BK)

(j) Skip (K7) (k) Skip (K9) (l) Skip (BK)

(m) Pjump (K7) (n) Pjump (K9) (o) Pjump (BK)

Figure 5.8: Graphical results representing the early detector performance using K7, K9
and original BK inference structure (BK) for example actions: bend, jump, jack, skip and
pjump.
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(a) Run (K7) (b) Run (K9) (c) Run (BK)

(d) Side (K7) (e) Side (K9) (f) Side (BK)

(g)Walk (K7) (h)Walk (K9) (i)Walk (BK)

(j) Wave1 (K7) (k)Wave1 (K9) (l)Wave1 (BK)

(m)Wave2 (K7) (n)Wave2 (K9) (o)Wave2 (BK)

Figure 5.9: Graphical results representing the early detector performance using K7, K9
and original BK inference structure (BK) for example actions: run, side, walk, wave1 and
wave2.
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(a) 0.00 (b) 0.42 (c) 0.46 (d) 1.00

Figure 5.10: NTtoD for bend. (a) Onset frame, (b) NTtoD with threshold 0.70 (the
proposed early detector fires), (c) NTtoD with threshold 0.80, (d) Peak frame.

To evaluate the timeliness of detection, NTtoD is used. Assume for a given ac-

tion sequence, where the action occurs from start frame s to end frame e, the detector

triggers the action at time t. For successful detection, s ≤ t ≤ e, NTtoD is defined as

t−s+1
e−s+1 i.e. the fraction of action occurred. When t < s, NTtoD = 0 i.e. false detec-

tion, and when t > e, NTtoD = ∞ i.e. false rejection. For the well-known classifiers

(e.g. SVM, KNN), the classification is performed observing the complete action sequence

and therefore NTtoD is 1. NTtoD for the detector in this work for the ten example ac-

tions is as follows: bend=0.42, jump=0.46, jack=0.28, skip=0.19, pjump=0.19, run=0.09,

side=0.07, walk=0.09, wave1=0.24 and wave2=0.16. Figure 5.10 highlights the NTtoD

results obtained using the detector for bend action.

5.6 Summary

This work takes the initiative to fuse the benefits of CV and fuzzy set theory to develop

a hybrid technique to perform early human action detection. Human action classification

problem is modified into frame-by-frame level classification where the partial human

actions are modeled to enable early detection. The membership function values generated

for each human action are utilized to infer an action. Detection is triggered when the

membership function attains a pre-defined threshold monotonically.

To the best of my knowledge, this is the first work in the community that employs

hybrid technique for solving the problem of early human action detection and stands out

128

Univ
ers

ity
 of

 M
ala

ya



against other conventional methods with good detection rate. The experimental results

demonstrate the capability of the proposed detector to carry out reliable early human

action detection. On average, the detector is able to infer an action upon viewing ∼23%

of the frames.
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CHAPTER 6: DISCUSSION AND CONCLUSION

This thesis presented a fuzzy approach for early human action detection and demonstrated

its benefits in understanding the human behavior from human actions performed. The

development of fuzzy BK subproduct based early human action detector was driven by the

importance of detecting temporal human actions that belong to a certain pre-defined class,

or the motions that are performed repeatedly. The framework was designed to model the

complex human action and detect them as early as possible, after the action has begun

but before it is completed. The experimental results demonstrate the capability of the

proposed detector to carry out reliable early human action detection.

6.1 Summarized Contributions

6.1.1 Fuzzy BK subproduct as a classifier

This thesis addressed the most fundamental problem of selecting a classifier to employ for

the classification task. As a solution, fuzzyBK subproductwas used as a classifier. In order

to demonstrate the capability of fuzzy BK subproduct in handling both 3D video data and

2D image data, its performance was empirically tested for HMA and scene classification.

Experimental results on standard public datasets demonstrated the effectiveness of fuzzy

BK subproduct in performing HMA and scene classification. This was the first attempt of

using fuzzy BK subproduct as a classifier.

6.1.2 Fuzzy approach for early human action detection

This thesis proposed a novel framework to detect human action early based on fuzzy

BK subproduct inference mechanism by utilizing the fuzzy capabilities in handling the

uncertainties that exist in the real-world for reliable decision making. Frame-by-frame

action classification was performed for early detection where the fuzzy membership func-

tion generated from fuzzy BK subproduct provided the basis to detect an action before
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it is completed when a certain threshold is attained in a suitable way. In order to test

the effectiveness of the proposed framework, a set of experiments was performed for few

action sequences where the aim of the detector was to recognize an action upon seeing

minimum number of frames possible.

Based on the best of my knowledge and a recent survey paper by C. H. Lim et al.

(2015), this was the first work in the fuzzy community dealing with early human action

detection. The closest research to this work was MMED proposed in Hoai and De la Torre

(2012, 2014). For human action recognition using Weizmann human actions dataset,

MMED required seeing ∼40% of the action (with a score of 0.7). In this work, the

experiments were performed using the same human action dataset, and it is found that the

detector significantly outperforms MMED where the detector required seeing ∼32% of

the image frames on an average in an action video (with membership function score of

0.7).

6.1.3 Hybrid technique for early human action detection

The proposed framework was analyzed from a broader perspective where it can be rep-

resented as a hybrid model of CV and fuzzy set theory based on fuzzy BK subproduct.

The proposed solution was the synergistic integration of CV solutions and fuzzy set the-

ory where the relationship between a human subject and the action being performed was

studied using fuzzy BK subproduct, efficiently integrated with CV techniques including

feature extraction and motion tracking to perform human action recognition effectively.

Hybrid techniques addressed issues such as uncertainty, vagueness or imprecision to a con-

siderable extent by exploiting the strengths of fuzzy set theory to alleviate the limitations

of CV solutions.

Human action classification problem was modified into frame-by-frame level clas-

sification where the partial human actions were modeled to enable early detection. The

131

Univ
ers

ity
 of

 M
ala

ya



membership function values generated for each human action were utilized to infer an

action. Detection was triggered when the membership function attained a pre-defined

threshold monotonically. To the best of my knowledge, this is the first work in the com-

munity that employs hybrid technique for solving the problem of early human action

detection and stands out against other conventional methods with good detection rate.

The experimental results demonstrate the capability of the proposed detector to carry out

reliable early human action detection. On average, the detector is able to infer an action

upon viewing ∼23% of the frames.

6.1.4 Fuzzy space-time implication operator

A study was performed on the impact of various fuzzy implication operators and the

inference structures in retrieving the relationship between the human subject and the action.

The existing fuzzy implication operators were capable of handling 2D data only. However,

a third dimension ‘time’ plays a crucial role in human action recognition to model human

movement changes over time. Therefore, a new space-time fuzzy implication operator

was introduced, by modifying the existing implication operators to accommodate time as

an added dimension.

Although the current framework is relevant to and effectual in performing early

human action detection, it has a few limitations. This chapter highlights the limitations of

the current framework, and the future directions to improve and further extend it.

6.2 Limitations and Future Directions

6.2.1 Dataset biased

The current framework is designed for limited action classes in a testing dataset, and

therefore is dataset biased (or in other words, dataset dependent). This is because the focus

of this thesis is to validate and evaluate the performance of the proposed early detector, for
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which the experiments were performed on a well-known human action dataset. However,

the lack of experiments on several complex datasets do not restrict the scope of this thesis

and its applicability in various real-world applications. The proposed framework was

tested for Weizmann human action dataset, and the early detector performs convincingly

well. Hence, one of the future works can be the extension of the current framework to

incorporate a large variety of complex datasets.

6.2.2 Detecting spatio-temporal events

In this thesis, temporal human actions were modeled for early detection. Localizing an

event in time satisfies the goal of this thesis i.e. human action detection. However, it

may not satisfy the applications where an event can occur at the same temporal locations

but different spatial locations. Therefore, a possible future direction can be extending the

current framework for detecting spatio-temporal events, localizing in both space and time.

6.2.3 Inter-segment dependency in action time series

Inter-segment dependency refers to the relationship amongst the segments of action time

series. For example, “hand waving” is often followed by greeting (saying “good bye”), or

a “hand shake” is followed by greeting (saying “hello”), or in a football match “kicking”

a ball is often followed by “running”. The current framework ignores this inter-segment

dependency. Therefore, it can be an interesting future study direction to extend the current

framework to take into account inter-segment dependency in a series of actions.

6.2.4 Optimization

In the experiments, fuzzy BK subproduct inference mechanism worked well in detecting

human action seeing minimum number of possible frames. However, the optimization of

fuzzy BK subproduct for better initialization strategies can be investigated as a potential

future work, and will be worth exploring.
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6.2.5 Fuzzy datasets

In research, public datasets play a very important role in order to show the effectiveness of

a proposed algorithm. Even so, from the findings in Table 6.1, there were not many works

from the fuzzy community that had explored these public datasets. Only a handful of

works in fuzzy HMA (as referred in Table 6.1) had employed those datasets and compared

their works with other algorithms. In order to justify and improve the competency of the

fuzzy approaches in HMA, it is believed that a way forward is to start employing these

datasets for baseline comparisons.

On the other hand, the datasets listed in Table 6.1 undeniably have met the objectives

for baseline evaluation. However, Boutell et al. (2004); Parikh and Grauman (2011);

C. H. Lim and Chan (2012) raised an argument that many situations in the real life are

ambiguous, especially the human behavior due to different perceptions of people. The

current datasets, at this stage might be too ideal to reflect the real world scenarios, i.e.

the current datasets are mutually exclusive, allowing a data to belong to one class (action)

only at a time. Therefore, another potential area which can be explored as future work

is having an appropriate psycho-physical dataset with fuzzy ground truths, or in simple

words: fuzzy datasets. To the best of my knowledge, there do not exist any fuzzy datasets

modeling the human activities and their behavior till date.

6.2.6 Fuzzy deep learning

Deep learning has created a research wave in the CV community with its outstanding

performance in the recent years. Several real-time applications of deep learning include

image recognition (Krizhevsky, Sutskever, & Hinton, 2012; Farabet, Couprie, Najman,

& LeCun, 2013; Tompson, Jain, LeCun, & Bregler, 2014; Szegedy et al., 2014), speech

recognition (Mikolov, Deoras, Povey, Burget, & Černockỳ, 2011; Hinton et al., 2012;

Sainath, Mohamed, Kingsbury, & Ramabhadran, 2013) etc. A worth exploring problem
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can be designing “fuzzy deep learning”modelwhich can be applied in several applications.

In view of the encouraging results obtained in this work, hybridization of deep learning

and fuzzy set theory for human action recognition can be a potential future work.

6.3 Conclusion

This thesis presented a fuzzy BK subproduct based approach for detecting human actions

early and utilized the benefits of both CV and fuzzy set theory. The conventional human

action classification problem was modified into frame-by-frame level classification where

the partial human actions were modeled to enable early detection. The membership func-

tion values generated for each human action from fuzzy BK subproduct inference engine

were utilized to infer an action. The detection is triggered when the membership function

attains a pre-defined threshold monotonically. The experimental results demonstrated the

capability of the proposed detector to carry out reliable early human action detection. On

an average, the detector was able to infer an action upon viewing ∼23% of the frames

for test data under the experimental settings. It is worth mentioning that the proposed

framework not only benefits the HMA applications, but also can be applied to several

other research domains.

140

Univ
ers

ity
 of

 M
ala

ya



REFERENCES

Acampora, G., Foggia, P., Saggese, A., & Vento, M. (2012). Combining neural networks
and fuzzy systems for human behavior understanding. In Ieee ninth international
conference on advanced video and signal-based surveillance (pp. 88–93).

Aggarwal, J. K., & Cai, Q. (1997). Human motion analysis: A review. In Ieee nonrigid
and articulated motion workshop (pp. 90–102).

Aggarwal, J. K., Cai, Q., Liao, W., & Sabata, B. (1994). Articulated and elastic non-rigid
motion: A review. In Ieee workshop on motion of non-rigid and articulated objects
(pp. 2–14).

Aggarwal, J. K., & Ryoo, M. S. (2011). Human activity analysis: A review. ACM
Computing Surveys (CSUR), 43(3), 16.

Al-Jarrah, O., & Halawani, A. (2001). Recognition of gestures in arabic sign language
using neuro-fuzzy systems. Artificial Intelligence, 133(1), 117–138.

Anderson, D. T., Keller, J. M., Anderson, M., & Wescott, D. J. (2011). Linguistic
description of adult skeletal age-at-death estimations from fuzzy integral acquired
fuzzy sets. In Ieee international conference on fuzzy systems (pp. 2274–2281).

Anderson, D. T., Keller, J. M., Skubic, M., Chen, X., & He, Z. (2006). Recognizing falls
from silhouettes. In International conference of the ieee engineering in medicine
and biology society (pp. 6388–6391).

Anderson, D. T., Luke, R., Skubic, M., Keller, J. M., Rantz, M., & Aud, M. (2008).
Evaluation of a video based fall recognition system for elders using voxel space.
Gerontechnology, 7(2), 68.

Anderson, D. T., Luke, R. H., Keller, J. M., & Skubic, M. (2008). Extension of a
soft-computing framework for activity analysis from linguistic summarizations of
video. In Ieee international conference on fuzzy systems (pp. 1404–1410).

Anderson, D. T., Luke, R. H., Keller, J. M., Skubic, M., Rantz, M. J., & Aud, M. A.
(2009a). Linguistic summarization of video for fall detection using voxel person
and fuzzy logic. Computer Vision and Image Understanding, 113(1), 80–89.

141

Univ
ers

ity
 of

 M
ala

ya



Anderson, D. T., Luke, R. H., Keller, J. M., Skubic, M., Rantz, M. J., & Aud, M. A.
(2009b). Modeling human activity from voxel person using fuzzy logic. IEEE
Transactions on Fuzzy Systems, 17(1), 39–49.

Anderson, D. T., Luke III, R. H., Stone, E. E., & Keller, J. M. (2009). Fuzzy voxel object.
In World congress of the international fuzzy systems association / conference of
the european society for fuzzy logic and technology (pp. 282–287).

Balcilar, M., & Sonmez, A. C. (2013). Region based fuzzy background subtraction using
choquet integral. In Adaptive and natural computing algorithms (pp. 287–296).
Springer.

Bandler, W., & Kohout, L. (1980a). Fuzzy power sets and fuzzy implication operators.
Fuzzy Sets and Systems, 4(1), 13–30.

Bandler, W., & Kohout, L. J. (1980b). Semantics of implication operators and fuzzy
relational products. International Journal of Man-Machine Studies, 12(1), 89–
116.

Barclay, C. D., Cutting, J. E., & Kozlowski, L. T. (1978). Temporal and spatial factors
in gait perception that influence gender recognition. Perception & Psychophysics,
23(2), 145–152.

Barrenechea, E., Bustince, H., Fernandez, J., Paternain, D.,&Sanz, J. A. (2013). Using the
choquet integral in the fuzzy reasoning method of fuzzy rule-based classification
systems. Axioms, 2(2), 208–223.

Bělíček, T., Kidéry, J., Kukal, J., Matěj, R., & Rusina, R. (2013). Morphological
analysis of 3d spect images via nilpotent t-norms in diagnosis of alzheimer’s
disease. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and
Technology, 24(2), 313–321.

Bezdek, J. C. (1992). Computing with uncertainty. IEEE Communications Magazine,
30(9), 24–36.

Bhattacharyya, S., & Maulik, U. (2013). Target tracking using fuzzy hostility induced
segmentation of optical flow field. In Soft computing for image and multimedia
data processing (pp. 97–107). Springer.

Bhattacharyya, S., Maulik, U., & Dutta, P. (2009). High-speed target tracking by fuzzy

142

Univ
ers

ity
 of

 M
ala

ya



hostility-induced segmentation of optical flow field. Applied Soft Computing, 9(1),
126–134.

Binh, N. D., & Ejima, T. (2005). Hand gesture recognition using fuzzy neural network.
In Conference on graphics, vision and image proces (pp. 1–6).

Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of
Psychology, 58, 47–73.

Blank, M., Gorelick, L., Shechtman, E., Irani, M., & Basri, R. (2005). Actions as
space-time shapes. In Ieee international conference on computer vision (Vol. 2,
pp. 1395–1402).

Blunsden, S., & Fisher, R. (2010). The behave video dataset: ground truthed video
for multi-person behavior classification. Annals of the British Machine Vision
Association, 2010(4), 1–12.

Bobick, A. F. (1997). Movement, activity and action: the role of knowledge in the
perception of motion. Philosophical Transactions of the Royal Society of London.
Series B: Biological Sciences, 352(1358), 1257–1265.

Bobick, A. F., & Davis, J. W. (2001). The recognition of human movement using temporal
templates. IEEETransactions onPattern Analysis andMachine Intelligence, 23(3),
257–267.

Bosch, A., Zisserman, A., &Muñoz, X. (2006). Scene classification via plsa. In European
conference on computer vision (pp. 517–530). Springer.

Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene
classification. Pattern recognition, 37(9), 1757–1771.

Bouwmans, T., & El Baf, F. (2009). Modeling of dynamic backgrounds by type-2 fuzzy
gaussians mixture models. MASAUM Journal of of Basic and Applied Sciences,
1(2), 265–276.

Bui, L.-D., & Kim, Y.-G. (2006). An obstacle-avoidance technique for autonomous un-
derwater vehicles based on bk-products of fuzzy relation. Fuzzy Sets and Systems,
157(4), 560–577.

143

Univ
ers

ity
 of

 M
ala

ya



Bustince, H., Burillo, P., & Soria, F. (2003). Automorphisms, negations and implication
operators. Fuzzy Sets and Systems, 134(2), 209–229.

Cai, Z., Wang, L., Peng, X., & Qiao, Y. (2014). Multi-view super vector for action
recognition. In Ieee international conference on computer vision and pattern
recognition (pp. 596–603).

Calvo-Gallego, E., Brox, P., & Sánchez-Solano, S. (2013). A fuzzy system for background
modeling in video sequences. In Fuzzy logic and applications (pp. 184–192).
Springer.

Candamo, J., Shreve, M., Goldgof, D. B., Sapper, D. B., & Kasturi, R. (2010). Un-
derstanding transit scenes: A survey on human behavior-recognition algorithms.
IEEE Transactions on Intelligent Transportation Systems, 11(1), 206–224.

Cao, Y., Barrett, D., Barbu, A., Narayanaswamy, S., Yu, H., Michaux, A., . . . Wang,
S. (2013). Recognize human activities from partially observed videos. In Ieee
conference on computer vision and pattern recognition (pp. 2658–2665).

Cédras, C., & Shah, M. (1995). Motion-based recognition a survey. Image and vision
computing, 13(2), 129–155.

Chaaraoui, A. A., & Flórez-Revuelta, F. (2014). Optimizing human action recognition
based on a cooperative coevolutionary algorithm. Engineering Applications of
Artificial Intelligence, 31, 116–125.

Chaira, T. (2012). Intuitionistic fuzzy color clustering of human cell images on different
color models. Journal of Intelligent & Fuzzy Systems: Applications in Engineering
and Technology, 23(2, 3), 43–51.

Chan, C. S., & Liu, H. (2009). Fuzzy qualitative human motion analysis. IEEE Transac-
tions on Fuzzy Systems, 17(4), 851–862.

Chan, C. S., Liu, H., Brown, D. J., & Kubota, N. (2008). A fuzzy qualitative approach to
human motion recognition. In Ieee international conference on fuzzy systems (pp.
1242–1249).

Chan, C. S., Liu, H., & Lai, W. K. (2010). Fuzzy qualitative complex actions recognition.
In Ieee international conference on fuzzy systems (pp. 1–8).

144

Univ
ers

ity
 of

 M
ala

ya



Chaquet, J. M., Carmona, E. J., & Fernández-Caballero, A. (2013). A survey of video
datasets for human action and activity recognition. Computer Vision and Image
Understanding, 117(6), 633–659.

Chen, C.-C., & Aggarwal, J. K. (2009). Recognizing human action from a far field of
view. In Workshop on motion and video computing (pp. 1–7).

Chen, G., Xie, Q., & Shieh, L. S. (1998). Fuzzy kalman filtering. Information Sciences,
109(1), 197–209.

Chen, L., Wei, H., & Ferryman, J. (2013). A survey of human motion analysis using
depth imagery. Pattern Recognition Letters, 34(15), 1995–2006.

Chen, X., He, Z., Anderson, D. T., Keller, J. M., & Skubic, M. (2006). Adaptive silouette
extraction and human tracking in complex and dynamic environments. In Ieee
international conference on image processing (pp. 561–564).

Chen, X., He, Z., Keller, J. M., Anderson, D. T., & Skubic, M. (2006). Adaptive silhou-
ette extraction in dynamic environments using fuzzy logic. In Ieee international
conference on fuzzy systems (pp. 236–243).

Cheng, T. W., Goldgof, D., & Hall, L. (1995). Fast clustering with application to fuzzy
rule generation. In Ieee international conference on fuzzy systems (Vol. 4, pp.
2289–2295).

Cheng, Z., Qin, L., Huang, Q., Yan, S., & Tian, Q. (2014). Recognizing human group
action by layered model with multiple cues. Neurocomputing, 136, 124–135.

Chowdhury, A., & Tripathy, S. S. (2014). Detection of human presence in a surveillance
video using fuzzy approach. In International conference on signal processing and
integrated networks (pp. 216–219).

Cordón, O., Herrera, F., & Villar, P. (2001). Generating the knowledge base of a fuzzy
rule-based system by the genetic learning of the data base. Transactions on Fuzzy
Systems, 9(4), 667–674.

Cristani, M., Raghavendra, R., Del Bue, A., &Murino, V. (2013). Human behavior analy-
sis in video surveillance: A social signal processing perspective. Neurocomputing,
100, 86–97.

145

Univ
ers

ity
 of

 M
ala

ya



Dawn, D.D.,&Shaikh, S.H. (2015). A comprehensive survey of human action recognition
with spatio-temporal interest point (stip) detector. The Visual Computer, 1–18.

De Baets, B., & Kerre, E. (1993). Fuzzy relational compositions. Fuzzy Sets and Systems,
60(1), 109–120.

DeKruger, D., Hodge, J., Bezdek, J. C., Keller, J.M., &Gader, P. (2001). Detectingmobile
land targets in ladar imagery with fuzzy algorithms. Journal of Intelligent & Fuzzy
Systems: Applications in Engineering and Technology, 10(3, 4), 197–213.

De la Torre, F., Hodgins, J., Montano, J., Valcarcel, S., & Macey, J. (2009). Guide to the
carnegie mellon university multimodal activity (cmu-mmac) database. Robotics
Institute, Carnegie Mellon University.

Denina, G., Bhanu, B., Nguyen, H. T., Ding, C., Kamal, A., Ravishankar, C., . . . Varda,
B. (2011). Videoweb dataset for multi-camera activities and non-verbal commu-
nication. In Distributed video sensor networks (pp. 335–347). Springer.

Du, J.-X., Zhai, C.-M., Guo, Y.-L., Tang, Y.-Y., & Lung, P. C. C. (2014). Recognizing
complex events in real movies by combining audio and video features. Neurocom-
puting, 137, 89–95.

El Baf, F., Bouwmans, T., & Vachon, B. (2008a). A fuzzy approach for background
subtraction. In Ieee international conference on image processing (pp. 2648–
2651).

El Baf, F., Bouwmans, T., & Vachon, B. (2008b). Fuzzy integral for moving object
detection. In Ieee international conference on fuzzy systems (pp. 1729–1736).

El Baf, F., Bouwmans, T., & Vachon, B. (2008c). Type-2 fuzzy mixture of gaussians
model: application to background modeling. In Advances in visual computing
(pp. 772–781). Springer.

El Baf, F., Bouwmans, T., & Vachon, B. (2009). Fuzzy statistical modeling of dynamic
backgrounds for moving object detection in infrared videos. In Ieee computer
society conference on computer vision and pattern recognition workshop (pp.
60–65).

Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2013). Learning hierarchical
features for scene labeling. IEEE Transactions on Pattern Analysis and Machine

146

Univ
ers

ity
 of

 M
ala

ya



Intelligence, 35(8), 1915–1929.

Fei-Fei, L., & Perona, P. (2005). A bayesian hierarchical model for learning natural
scene categories. In Ieee international conference on computer vision and pattern
recognition (Vol. 2, pp. 524–531).

Fisher, R. B. (2004). The pets04 surveillance ground-truth data sets. In Ieee international
workshop on performance evaluation of tracking and surveillance (pp. 1–5).

Fu, Y., Jia, Y., & Kong, Y. (2014). Interactive phrases: Semantic descriptions for human
interaction recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1.

García, J., Molina, J. M., Besada, J. A., Portillo, J. I., & Casar, J. R. (2002). Robust object
tracking with fuzzy shape estimation. In International conference on information
fusion (Vol. 1, pp. 64–71).

Garcia, J., Patricio, M. A., Berlanga, A., &Molina, J. M. (2011). Fuzzy region assignment
for visual tracking. Soft Computing, 15(9), 1845–1864.

Gavrila, D. M. (1999). The visual analysis of human movement: A survey. Computer
vision and image understanding, 73(1), 82–98.

Gkalelis, N., Kim, H., Hilton, A., Nikolaidis, N., & Pitas, I. (2009). The i3dpost multi-
view and 3d human action/interaction database. In Conference for visual media
production (pp. 159–168).

Gkalelis, N., Tefas, A., & Pitas, I. (2008). Combining fuzzy vector quantization with
linear discriminant analysis for continuous human movement recognition. IEEE
Transactions on Circuits and Systems for Video Technology, 18(11), 1511–1521.

Gorelick, L., Blank, M., Shechtman, E., Irani, M., & Basri, R. (2007). Actions as space-
time shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(12), 2247–2253.

Gowsikhaa, D., Abirami, S., & Baskaran, R. (2014). Automated human behavior analysis
from surveillance videos: a survey. Artificial Intelligence Review, 42(4), 747–765.

Groenemans, R., Van Ranst, E., & Kerre, E. (1997). Fuzzy relational calculus in land

147

Univ
ers

ity
 of

 M
ala

ya



evaluation. Geoderma, 77(2), 283–298.

Guo, G., & Lai, A. (2014). A survey on still image based human action recognition.
Pattern Recognition, 47(10), 3343–3361.

Guo, Y., Xu, G., & Tsuji, S. (1994). Tracking human body motion based on a stick figure
model. Journal of Visual Communication and Image Representation, 5(1), 1–9.

Haering, N., Venetianer, P. L., & Lipton, A. (2008). The evolution of video surveillance:
an overview. Machine Vision and Applications, 19(5-6), 279–290.

Hatakeyama, Y., Mitsuta, A., & Hirota, K. (2008). Detection algorithm for color dynamic
images by multiple surveillance cameras under low luminance conditions based
on fuzzy corresponding map. Applied Soft Computing, 8(4), 1344 - 1353.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., . . . Sainath, T. N.
(2012). Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal Processing Magazine, 29(6),
82–97.

Hoai, M., & De la Torre, F. (2012). Max-margin early event detectors. In Ieee conference
on computer vision and pattern recognition (pp. 2863–2870).

Hoai, M., & De la Torre, F. (2014). Max-margin early event detectors. International
Journal of Computer Vision, 107(2), 191–202.

Holte, M. B., Chakraborty, B., Gonzalez, J., & Moeslund, T. B. (2012). A local 3-
d motion descriptor for multi-view human action recognition from 4-d spatio-
temporal interest points. IEEE Journal of Selected Topics in Signal Processing,
6(5), 553–565.

Holte, M. B., Tran, C., Trivedi, M. M., & Moeslund, T. B. (2011). Human action
recognition using multiple views: a comparative perspective on recent develop-
ments. In Proceedings of the joint acm workshop on human gesture and behavior
understanding (pp. 47–52).

Hosseini, M.-S., & Eftekhari-Moghadam, A.-M. (2013). Fuzzy rule-based reasoning
approach for event detection and annotation of broadcast soccer video. Applied
Soft Computing, 13(2), 846–866.

148

Univ
ers

ity
 of

 M
ala

ya



Hu,W., Tan, T.,Wang, L., &Maybank, S. (2004). A survey on visual surveillance of object
motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 34(3), 334–352.

Hu, W., Xie, D., Tan, T., & Maybank, S. (2004). Learning activity patterns using
fuzzy self-organizing neural network. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 34(3), 1618–1626.

Huntsberger, T. L., Rangarajan, C., & Jayaramamurthy, S. N. (1986). Representation of
uncertainty in computer vision using fuzzy sets. IEEE Transactions on Computers,
100(2), 145–156.

Ikizler, N., & Duygulu, P. (2007). Human action recognition using distribution of oriented
rectangular patches. In Human motion–understanding, modeling, capture and
animation (pp. 271–284). Springer.

Iosifidis, A., Tefas, A., Nikolaidis, N., & Pitas, I. (2012). Multi-view human movement
recognition based on fuzzy distances and linear discriminant analysis. Computer
Vision and Image Understanding, 116(3), 347–360.

Iosifidis, A., Tefas, A., & Pitas, I. (2011). Person specific activity recognition using fuzzy
learning and discriminant analysis. In European signal processing conference (pp.
1974–1978).

Iosifidis, A., Tefas, A., & Pitas, I. (2012a). Activity-based person identification using
fuzzy representation and discriminant learning. IEEE Transactions on Information
Forensics and Security, 7(2), 530–542.

Iosifidis, A., Tefas, A., & Pitas, I. (2012b). Multi-view action recognition based on action
volumes, fuzzy distances and cluster discriminant analysis. Signal Processing.

Iosifidis, A., Tefas, A., & Pitas, I. (2013). Minimum class variance extreme learning
machine for human action recognition. IEEE Transactions on Circuits and Systems
for Video Technology, 23(11), 1968–1979.

Isard, M., & Blake, A. (1998). Condensation—conditional density propagation for visual
tracking. International journal of computer vision, 29(1), 5–28.

Iwai, Y., Ogaki, K., & Yachida, M. (1999). Posture estimation using structure and motion
models. In Ieee international conference on computer vision (Vol. 1, pp. 214–219).

149

Univ
ers

ity
 of

 M
ala

ya



Ji, X., & Liu, H. (2010). Advances in view-invariant human motion analysis: a review.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, 40(1), 13–24.

John, V., & Trucco, E. (2014). Charting-based subspace learning for video-based human
action classification. Machine Vision and Applications, 25(1), 119–132.

Ju, S. X., Black, M. J., & Yacoob, Y. (1996). Cardboard people: A parameterized model
of articulated image motion. In International conference on automatic face and
gesture recognition (pp. 38–44).

Juang, C.-F., & Chang, C.-M. (2007). Human body posture classification by a neural
fuzzy network and home care system application. IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans, 37(6), 984–994.

Kacprzyk, J., & Yager, R. R. (2001). Linguistic summaries of data using fuzzy logic.
International Journal of General System, 30(2), 133–154.

Kakadiaris, I. A., & Metaxas, D. (1996). Model-based estimation of 3d human motion
with occlusion based on active multi-viewpoint selection. In Ieee conference on
computer vision and pattern recognition (pp. 81–87).

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal
of basic Engineering, 82(1), 35–45.

Kamel, H., & Badawy, W. (2005). Fuzzy logic based particle filter for tracking a
maneuverable target. In Symposium on circuits and systems (pp. 1537–1540).

Kim, I. S., Choi, H. S., Yi, K. M., Choi, J. Y., & Kong, S. G. (2010). Intelligent visual
surveillance – a survey. International Journal of Control, Automation and Systems,
8(5), 926–939.

Kim, Y.-J., Won, C.-H., Pak, J.-M., & Lim, M.-T. (2007). Fuzzy adaptive particle filter
for localization of a mobile robot. In Knowledge-based intelligent information and
engineering systems (pp. 41–48).

Kirtley, C., & Smith, R. (2001). Application of multimedia to the study of human
movement. Multimedia tools and Applications, 14(3), 259–268.

150

Univ
ers

ity
 of

 M
ala

ya



Kitani, K. M., Ziebart, B. D., Bagnell, J. A., & Hebert, M. (2012). Activity forecasting.
In European conference on computer vision (pp. 201–214). Springer.

Ko, T. (2008). A survey on behavior analysis in video surveillance for homeland security
applications. In Ieee applied imagery pattern recognition workshop (pp. 1–8).

Kobayashi, K., Cheok, K. C., Watanabe, K., & Munekata, F. (1998). Accurate differential
global positioning system via fuzzy logic kalman filter sensor fusion technique.
IEEE Transactions on Industrial Electronics, 45(3), 510–518.

Kohout, L. J., & Bandler, W. (1985). Relational-product architectures for information
processing. Information Sciences, 37(1), 25–37.

Kohout, L. J., & Bandler, W. (1992). How the checklist paradigm elucidates the semantics
of fuzzy inference. In Ieee international conference on fuzzy systems (pp. 571–
578).

Kong, Y., Kit, D., & Fu, Y. (2014). A discriminative model with multiple temporal scales
for action prediction. In European conference on computer vision (pp. 596–611).
Springer.

Kratz, L., & Nishino, K. (2009). Anomaly detection in extremely crowded scenes using
spatio-temporal motion pattern models. In Ieee conference on computer vision
and pattern recognition (pp. 1446–1453).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems (pp. 1097–1105).

Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., & Serre, T. (2011). Hmdb: a large
video database for human motion recognition. In Ieee international conference on
computer visio (pp. 2556–2563).

Kumar, S., & Hebert, M. (2003). Discriminative random fields: A discriminative frame-
work for contextual interaction in classification. In Ieee international conference
on computer vision (pp. 1150–1157).

Laptev, I., Marszalek, M., Schmid, C., & Rozenfeld, B. (2008). Learning realistic
human actions from movies. In Ieee conference on computer vision and pattern
recognition (pp. 1–8).

151

Univ
ers

ity
 of

 M
ala

ya



Lara, O. D., & Labrador, M. A. (2013). A survey on human activity recognition using
wearable sensors. IEEE Communications Surveys, 15(3), 1192–1209.

Leung, M. K., & Yang, Y.-H. (1995). First sight: A human body outline labeling system.
IEEE Transactions on Pattern Analysis andMachine Intelligence, 17(4), 359–377.

Lewandowski, M., Makris, D., & Nebel, J.-C. (2010). View and style-independent action
manifolds for human activity recognition. In European conference on computer
vision (pp. 547–560). Springer.

Le Yaouanc, J.-M., & Poli, J.-P. (2012). A fuzzy spatio-temporal-based approach for
activity recognition. InAdvances in conceptual modeling (pp. 314–323). Springer.

Li, K., & Fu, Y. (2012). Arma-hmm: A new approach for early recognition of human
activity. In Ieee international conference on pattern recognition (pp. 1779–1782).

Li, T., Chang, H., Wang, M., Ni, B., Hong, R., & Yan, S. (2015). Crowded scene analysis:
A survey. Circuits and Systems for Video Technology, IEEE Transactions on,
25(3), 367–386.

Li, W., Zhang, Z., & Liu, Z. (2010). Action recognition based on a bag of 3d points.
In Ieee computer society conference on computer vision and pattern recognition
workshops (pp. 9–14).

Li, X. (2003). Gesture recognition based on fuzzy c-means clustering algorithm. Depart-
ment Of Computer Science The University Of Tennessee Knoxville.

Li, Z., Liu, W., & Zhang, Y. (2012). Adaptive fuzzy apporach to background modeling
using pso and klms. InWorld congress on intelligent control and automation (pp.
4601–4607).

Lim, C. H., & Chan, C. S. (2012). A fuzzy qualitative approach for scene classification.
In Ieee international conference on fuzzy systems (pp. 1–8).

Lim, C. H., & Chan, C. S. (2013). Fuzzy action recognition for multiple views within
single camera. In Ieee international conference on fuzzy systems (pp. 1–8).

Lim, C. H., Risnumawan, A., & Chan, C. S. (2014). A scene image is nonmutually
exclusive—a fuzzy qualitative scene understanding. IEEE Transactions on Fuzzy

152

Univ
ers

ity
 of

 M
ala

ya



Systems, 22(6), 1541–1556.

Lim, C. H., Vats, E., & Chan, C. S. (2015). Fuzzy human motion analysis: A review.
Pattern Recognition, 48(5), 1773–1796. (Lim and Vats contributed equally.)

Lim, C. K., & Chan, C. S. (2011). Logical connectives and operativeness of bk sub-
triangle product in fuzzy inferencing. International Journal of Fuzzy Systems,
13(4), 237–245.

Lim, C. K., & Chan, C. S. (2015). A weighted inference engine based on interval-valued
fuzzy relational theory. Expert Systems with Applications, 42(7), 3410–3419.

Lin, C., Chung, I., & Sheu, L. (2000). A neural fuzzy system for image motion estimation.
Fuzzy sets and systems, 114(2), 281–304.

Liu, H., Brown, D. J., & Coghill, G. M. (2008a). A fuzzy qualitative framework for
connecting robot qualitative and quantitative representations. IEEE Transactions
on Fuzzy Systems, 16(3), 808–822.

Liu, H., Brown, D. J., & Coghill, G. M. (2008b). Fuzzy qualitative robot kinematics.
IEEE Transactions on Fuzzy Systems, 16(6), 1522–1530.

Liu, H., & Coghill, G. M. (2005). Fuzzy qualitative trigonometry. In Ieee conference on
systems, man and cybernetics (pp. 1291–1296).

Liu, H., Coghill, G. M., & Barnes, D. P. (2009). Fuzzy qualitative trigonometry. Interna-
tional Journal of Approximate Reasoning, 51(1), 71–88.

Liu, J., Luo, J., & Shah,M. (2009). Recognizing realistic actions from videos “in thewild”.
In Ieee conference on computer vision and pattern recognition (pp. 1996–2003).

Lu, Y., Boukharouba, K., Boonært, J., Fleury, A., & Lecœuche, S. (2014). Applica-
tion of an incremental svm algorithm for on-line human recognition from video
surveillance using texture and color features. Neurocomputing, 126, 132–140.

Lyons, M. J., Budynek, J., & Akamatsu, S. (1999). Automatic classification of single
facial images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(12), 1357–1362.

153

Univ
ers

ity
 of

 M
ala

ya



Maddalena, L., & Petrosino, A. (2010). A fuzzy spatial coherence-based approach to
background/foreground separation for moving object detection. Neural Computing
and Applications, 19(2), 179–186.

Mahapatra, A., Mishra, T. K., Sa, P. K., & Majhi, B. (2013). Background subtraction
and human detection in outdoor videos using fuzzy logic. In Ieee international
conference on fuzzy systems (pp. 1–7).

Marín-Jiménez, M., Muñoz-Salinas, R., Yeguas-Bolivar, E., & de la Blanca, N. P. (2014).
Human interaction categorization by using audio-visual cues. Machine Vision and
Applications, 25(1), 71–84.

Marszalek, M., Laptev, I., & Schmid, C. (2009). Actions in context. In Ieee conference
on computer vision and pattern recognition (pp. 2929–2936).

Meng, Y. K. (1997). Interval-based reasoning in medical diagnosis. In Ieee iis (p. 32).

Mikolov, T., Deoras, A., Povey, D., Burget, L., & Černockỳ, J. (2011). Strategies
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