
FEATURE EXTRACTION FROM NATURAL LANGUAGE TO 
AID REQUIREMENTS REUSE IN SOFTWARE PRODUCT 

LINES ENGINEERING 

NOOR HASRINA BAKAR 

THESIS SUBMITTED IN FULFILMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF 

PHILOSOPHY 

FACULTY OF COMPUTER SCIENCE & INFORMATION 
TECHNOLOGY 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

2016 

Univ
ers

ity
 of

 M
ala

ya



iii 

UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: NOOR HASRINA BINTI BAKAR

(I.C/Passport No:   

Registration/Matric No:  WHA 110041

Name of Degree:  DOCTOR OF PHILOSOPHY 

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): 

Feature Extraction From Natural Language To Aid Requirements Reuse In 

Software Product Lines Engineering 

Field of Study:  SOFTWARE ENGINEERING 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work; 
(2) This Work is original; 
(3) Any use of any work in which copyright exists was done by way of fair 

dealing and for permitted purposes and any excerpt or extract from, or 
reference to or reproduction of any copyright work has been disclosed 
expressly and sufficiently and the title of the Work and its authorship have 
been acknowledged in this Work; 

(4) I do not have any actual knowledge nor do I ought reasonably to know that 
the making of this work constitutes an infringement of any copyright work; 

(5) I hereby assign all and every rights in the copyright to this Work to the 
University of Malaya (“UM”), who henceforth shall be owner of the 
copyright in this Work and that any reproduction or use in any form or by any 
means whatsoever is prohibited without the written consent of UM having 
been first had and obtained; 

(6) I am fully aware that if in the course of making this Work I have infringed 
any copyright whether intentionally or otherwise, I may be subject to legal 
action or any other action as may be determined by UM. 

           Candidate’s Signature  Date: 

Subscribed and solemnly declared before, 

           Witness’s Signature  Date: 

Name: 

Designation: 

Univ
ers

ity
 of

 M
ala

ya



iv 

ABSTRACT 

Software Product Lines Engineering (SPLE) is a systematic approach towards 
realising software reuse. Among important software assets to be reused includes 
architectural documents, test cases, source codes and also requirements. Requirements 
Reuse (RR) in SPLE is the process of systematically reusing previously defined 
requirements for an earlier software product and applying them to a new, slightly 
different product within similar domain. SRS documents are not easily accessible, 
therefore many researchers in this area opted to use other forms of requirements 
including product brochures, user manuals and software reviews when SRS is not 
available. Unfortunately, to extract reusable features from natural language 
requirements for reuse is not easy. This task if done manually can be very complicated, 
expensive, and error-prone on the results.  Many research efforts in SPLE focused on 
issues related to architectures, designs and code reuse, but research on requirements 
reuse has received slightly less attention from researchers and practitioners. Results 
from an exploratory survey gathered among SE practitioners indicated that the main 
impediments for RR practice includes the unavailability of RR tools or models for 
adoption, the conditions of existing requirements to be reused (incomplete, poorly 
structured, or not kept updated), and the lack of awareness among software practitioners 
pertaining to the systematic RR.  Additionally, a Systematic Literature Review (SLR) 
conducted for feature extraction approaches for RR in SPLE reveals that there is a 
mixture of automated and semi-automated approaches from data mining and 
information retrieval, with only some approaches coming with support tools. This SLR 
also reveals that most of the support tools proposed in the selected studies are not made 
available publicly and thus making it hard for practitioners’ adoption. Motivated by 
these findings, this research proposes a process model for feature extractions from 
natural language requirements for reuse (FENL).  FENL consists of four main phases: 
Accessing Requirements, Terms Extraction, Feature Identification and Formation of 
Feature Model. The proposed model is demonstrated through lab experiment and online 
software reviews are used as the input. In phase 1, software reviews are fetched from 
the Internet. Then, in phase 2, these reviews undergo text pre-processing stage. In phase 
3, Latent Semantic Analysis (LSA) and tfidf term weighting are used in order to 
determine document relatedness. Then, linguistic tagging is applied to extract software 
features followed by applying simple clustering algorithms to form groups of common 
features. In phase 4, the common features that are grouped together are passed to the 
feature modelling process and manual feature diagram are constructed as the final 
output.  The extraction results from the proposed semi-automated extraction is 
compared with the one obtained by the manual extraction procedure performed by 
teachers and software practitioner.  Comparisons are made in terms of accuracy metrics 
(precision, recall and F-Measure), and time efficiency. The proposed approach obtained 
a recall of up to 85.95% (78.03% average) and a precision of up to 80.16% (58.63% 
average), when evaluated against the truth data set created manually. Additionally, 
when comparing with the related works, FENL results to obtain a comparable F-
Measure.  

Univ
ers

ity
 of

 M
ala

ya



v 

ABSTRAK 

Kejuruteraan Perisian Rangkaian Produk (Software Product Lines Engineering - SPLE) 
merupakan pendekatan secara sistematik ke arah penggunaan semula perisian. Antara aset 
perisian penting yang akan diguna semula di dalam SPLE termasuklah kod, dokumen senibina, 
kes-kes pengujian, dokumen rekacipta dan juga dokumen keperluan. Penggunaan semula 
dokumen keperluan (RR) di dalam SPLE ialah satu proses sistematik untuk menguna semula 
keperluan perisian yg pernah digunakan pada masa yang lalu.  Ini bertujuan untuk 
mengeluarkan perisian produk baru yang sedikit berbeza tetapi masih di dalam domain yang 
serupa. Dokumen SRS bukanlah mudah untuk diakses, makanya ramai penyelidik menggunakan 
dokumen keperluan di dalam bentuk berlainan seperti brosur produk, manual pengguna dan juga 
semakan perisian semasa tiada SRS. Malangnya, untuk mengestrak ciri-ciri yang boleh diguna 
semula daripada keperluan di dalam bahasa tabii bukanlah sesuatu yang mudah. Proses ini boleh 
menjadi rumit, mahal dan sangat terdedah kepada ralat. Terdapat pelbagai usaha penyelidikkan 
di dalam SPLE yang memfokuskan kepada isu-isu berkaitan dengan penggunaan semula 
senibina, rekabentuk dan kod, tetapi penyelidikan di dalam penggunaan semula keperluan 
kurang mendapat perhatian daripada kalangan penyelidik dan pengamal. Berdasarkan keputusan 
kaji selidik yang dijalankan ke atas golongan yang mempraktiskan Kejuruteraan Perisian, sebab 
utama RR tidak diamalkan di Malaysia adalah kerana ketiadaan peralatan atau model untuk 
memilih keperluan untuk penggunaan semula, keadaan keperluan yang tersedia yang akan 
digunasemula (tidak lengkap, struktur yang lemah atau tidak dikemaskini), dan juga kurang 
kesedaran di kalangan golongan yang mempraktis tentang penggunaan semula secara 
sistematik. Tambahan pula, kajian literatur bersistematik (SLR) yang telah dijalankan di dalam 
kajian ini telah menunjukkan bahawa terdapat gabungan di dalam pendekatan pengekstrakan 
secara automasi dan juga semi-automasi daripada aktiviti perlombongan data dan dapatan 
semula maklumat. Kajian literatur bersistematik yang dijalankan ini juga mendedahkan bahawa 
kebanyakan alat sokongan yang dicadangkan di dalam kajian terdahulu tidak disediakan secara 
terbuka, dan ini mengehadkan pengamal perisian daripada menggunakannya. Bermotivasikan 
dapatan di atas, tesis ini mencadangkan satu model proses untuk pengekstrakan ciri-ciri perisian 
daripada bahasa tabii untuk diguna semula, FENL. Model FENL mengandungi empat fasa 
utama: Capaian kepada Keperluan, Pengestrakan Terma, Pengenalpastian Ciri-ciri serupa, dan 
Pembentukan Permodelan ciri-ciri. Proses separa-automatik ini didemonstrasikan melalui 
eksperimen di dalam makmal dengan menggunakan ulasan yang dibuat terhadap perisian 
sebagai input kepada FENL. Di dalam fasa pertama, ulasan perisian diambil daripada Internet. 
Di dalam fasa kedua pula, ulasan-ulasan ini akan melalui proses pra-pemprosesan teks. Di 
dalam fasa ketiga, teknik Latent Semantic Analysis (LSA) dan pemberatan terma tfidf 
digunakan untuk menentukan dokumen yang berkaitan. Kemudian, teknik pengelompokan 
mudah digunapakai untuk mengumpulkan ciri-ciri yang berkaitan.  Di dalam fasa keempat, 
terma-terma berkaitan yang telah dikelompokkan kini dipindahkan ke proses permodelan ciri-
ciri dan rajah ciri-ciri (feature model) dilakarkan secara manual sebagai output terakhir proses. 
Keputusan yang diperolehi daripada kaedah semi automatik ini dibandingkan dengan keputusan 
yang diperolehi melalui kaedah pengesktrakan secara manual yang dibuat oleh guru-guru dan 
penganalisis sistem. Perbandingan dibuat dari segi ukuran dan juga keefisienan masa. Kaedah 
yang dicadangkan oleh penulis apabila dinilai mencapai ketepatan (precision) 85.95% (purata 
78.03%) dan recall setinggi 80.16% (purata 58.63%), apabila dibandingkan dengan set data 
yang disediakan secara manual. Tambahan pula, apabila dibandingkan dengan kerja-kerja 
berkaitan, FENL mencapai keputusan yang setara.  

Univ
ers

ity
 of

 M
ala

ya



vi 

ACKNOWLEDGEMENTS 

       I would like to thank my supervisor, Associate Prof. Dr. Zarinah Kasirun from 

the Department of Software Engineering, University of Malaya, for her undivided 

attention and support given to this research work. Her valuable guidance, ideas, 

motivation and dedicated quality time spent for every progress meeting throughout this 

PhD research was excellent.  Not to forget, Dr. Norsaremah Salleh, my second advisor 

from the Department of Computer Science, Kulliyyah of ICT, International Islamic 

University of Malaysia, who has given me direction, assistance and encouragement in 

making this submission comes into reality.  

    Most importantly, I would like to dedicate a special thanks to my beloved 

husband, Rodzi, who has been there for me during my ups and downs in this journey. 

To my children, Adam, Elsa, Aiman and Jasmine, this achievement is for all of us, and 

thanks for being super good throughout these four years. To my late dad, if you are still 

around, I am sure this achievements will make you proud. To my mom, my sister and 

brother, my in-laws, thank you for taking care of the children when I had to go abroad 

few times to present my research papers at conferences. I will never forget your 

sacrifice and love. 

To Dr. Hamid A. Jalab, I appreciate your guidance in showing me how to do 

clustering.  To Dr. Azni Haslizan and Mdm Siti Hawa, thank you for always being there 

for me, listening to my research stories. To Arnie, you have dedicated your valuable 

time proofread all my papers and polished my grammar mistakes, how will I forget your 

valuable assistance.  

This research was made possible by IIUM sponsorship for paid study leave that have 

been awarded to me, and some part of this research was also funded by FRGS grant 

awarded by the Ministry of Higher Education of Malaysia (2013 – 2015).  

Univ
ers

ity
 of

 M
ala

ya



viii 

TABLE OF CONTENTS 

Abstract ...................................................................................................................... iv 

Abstrak ........................................................................................................................ v 

Acknowledgements .................................................................................................... vi 

List of Figures ........................................................................................................... xv 

List of Tables .......................................................................................................... xvii 

List of Symbols and Abbreviations ........................................................................ xix 

CHAPTER 1: INTRODUCTION ............................................................................. 1 

 Problems Statement ................................................................................................. 1 1.1

 Research Questions .................................................................................................. 2 1.2

 Aims and Objectives ................................................................................................ 3 1.3

 Research Design ....................................................................................................... 4 1.4

 Research Scope and Limitations ............................................................................. 5 1.5

 Contributions of the Research ................................................................................ 5 1.6

 Significance of the Research .................................................................................... 6 1.7

 Thesis Overview ....................................................................................................... 6 1.8

Univ
ers

ity
 of

 M
ala

ya



ix 

CHAPTER 2: SYSTEMATIC LITERATURE REVIEW OF FEATURE 

EXTRACTION APPROACHES FROM NATURAL LANGUAGE FOR REUSE...

 .......................................................................................................................................... 7 

Introduction ........................................................................................................................ 7 

2.1.1 Requirements versus features .............................................................................. 8 

2.1.2 Core assets development in SPLE ....................................................................... 9 

2.1.3 Contributions of this work in SPLE .................................................................. 10 

 Related Work .......................................................................................................... 14 2.2

2.2.1 Requirements engineering for software product lines ....................................... 14 

2.2.2 A systematic review of domain analysis solutions for product lines ................ 15 

2.2.3 Literature Review on Automated Modeling ...................................................... 16 

2.2.4 A systematic review of evaluation of variability management ......................... 16 

2.2.5 Review on separation of concerns in feature diagram languages ..................... 17 

2.2.6 Evaluation of a systematic approach in requirements reuse .............................. 18 

 Review Method ....................................................................................................... 18 2.3

2.3.1 Formulating Research Questions ...................................................................... 19 

2.3.2 Identification of Relevant Literature ................................................................. 20 

2.3.3 Selection of Studies ........................................................................................... 23 

2.3.4 Data Extraction Plan .......................................................................................... 24 

Univ
ers

ity
of 

Mala
ya



x 

2.3.5 Study Quality Assessment ................................................................................. 24 

 Results ..................................................................................................................... 26 2.4

2.4.1 Results of Article Searches ............................................................................... 26 

2.4.2 Online Database Search ..................................................................................... 26 

2.4.3 Complementary Citation-Based Search (Snowball Search) .............................. 27 

2.4.4 Manual Target Search ....................................................................................... 28 

2.4.5 Publication Venues ............................................................................................ 29 

2.4.6 Publication Chronology ..................................................................................... 30 

2.4.7 Quality Assessment Results .............................................................................. 31 

2.4.8 Answering the Research Questions ................................................................... 32 

 Discussion ................................................................................................................ 48 2.5

2.5.1 SLR Study Implications .................................................................................... 48 

2.5.2 The reduction in number of selected studies ..................................................... 56 

2.5.3 Threats to validity .............................................................................................. 57 

Summary ........................................................................................................................... 57 

CHAPTER 3: RESEARCH DESIGN ......................................................................... 60 

Introduction ...................................................................................................................... 60 

 Formulating the Research Design ........................................................................ 60 3.1

3.1.1 Type of Research Questions and Research Methods ........................................ 61 

Univ
ers

ity
 of

 M
ala

ya



xi 

3.1.2 Type of Results Produced ................................................................................. 62 

3.1.3 Criteria Used in the Evaluation ......................................................................... 63 

 Research Phases and Research Activities ............................................................ 63 3.2

3.2.1 Phase 1: Gather Research Problems .................................................................. 67 

3.2.2 Phase 2:  Designing the Proposed Solution ....................................................... 69 

3.2.3 Phase 3:  Evaluation of the Proposed Approach ............................................... 69 

Summary ........................................................................................................................... 70 

CHAPTER 4: EXPLORATIVE SURVEY ON THE STATE OF 

REQUIREMENTS REUSE ......................................................................................... 71 

Introduction ...................................................................................................................... 71 

 Related Surveys ...................................................................................................... 71 4.1

 The Design of Explorative Survey ........................................................................ 74 4.2

4.2.1 The survey construction .................................................................................... 75 

4.2.2 Pilot Testing ...................................................................................................... 78 

4.2.3 Actual Survey .................................................................................................... 79 

 Results And Discussions ........................................................................................ 79 4.3

4.3.1 Demographic Information ................................................................................. 79 

4.3.2 Perceptions and Experience in Requirements Reuse ........................................ 83 

4.3.3 General Comments on RR (Open-Ended Question) ......................................... 90 

Univ
ers

ity
 of

 M
ala

ya



xii 

 Threats to Validity ................................................................................................. 92 4.4

Summary ............................................................................................................................ 92 

CHAPTER 5: IMPLEMENTATION OF FENL ....................................................... 94 

Introduction ...................................................................................................................... 94 

 Process Model ......................................................................................................... 94 5.1

5.1.1 Data Set for the experiment ............................................................................... 96 

 Phase 1:  Assessing Requirements (software reviews) ........................................ 98 5.2

5.2.1 The creation of the ground truth data set ........................................................... 99 

 Phase 2: Terms Extraction .................................................................................. 103 5.3

 Phase 3:  Feature Identification .......................................................................... 109 5.4

5.4.1 Phase 3a:  Identification of Similar Documents .............................................. 109 

5.4.2 Phase 3b: Extraction of phrases that represent features .................................. 112 

5.4.3 Phase 3c: Grouping similar features ................................................................ 117 

 Phase 4:  Formation of Feature Model ............................................................... 121 5.5

Summary ......................................................................................................................... 123 

CHAPTER 6: EXPERIMENTAL RESULTS AND DISCUSSIONS .................... 125 

Introduction .................................................................................................................... 125 

 Evaluation Strategy .............................................................................................. 125 6.1

6.1.1 Manual Extraction and Grouping .................................................................... 126 

Univ
ers

ity
 of

 M
ala

ya



xiii 

6.1.2 Evaluation Procedure ...................................................................................... 127 

6.1.3 Phases in Evaluation ........................................................................................ 127 

 Results ................................................................................................................... 128 6.2

6.2.1 Truth data set ................................................................................................... 129 

6.2.2 Feature Extraction Results .............................................................................. 129 

6.2.3 Feature Grouping Results ................................................................................ 141 

 Discussions on the Results ................................................................................... 145 6.3

6.3.1 Discussions on the extraction results .............................................................. 145 

6.3.2 Discussions on the data set .............................................................................. 146 

6.3.3 Threats to validity of findings ......................................................................... 150 

6.3.4 Integration of the FENL process ..................................................................... 152 

Summary ......................................................................................................................... 152 

CHAPTER 7: CONCLUSIONS AND FUTURE WORKS ................................ 153 

Introduction .................................................................................................................... 153 

 Research Aims and Methods ............................................................................... 153 7.1

 Research Contribution ........................................................................................ 155 7.2

 Future Work ......................................................................................................... 156 7.3

REFERENCES ....................................................................................................... 157 

LIST OF PUBLICATIONS AND PAPERS PRESENTED ............................... 172 

Univ
ers

ity
 of

 M
ala

ya



xiv 

APPENDIX A : LIST OF PRIMARY STUDIES SELECTED IN THE 

SYSTEMATIC LITERATURE REVIEW ............................................................... 174 

APPENDIX B: INPUT (TYPES OF REQUIREMENTS) AND OUTPUT 

(FEATURES) FOR SELECTED STUDIES IN SYSTEMATIC LITERATURE 

REVIEW ...................................................................................................................... 176 

APPENDIX C:  DATA EXTRACTION FORM ...................................................... 177 

APPENDIX D: QUALITY ASSESSMENT CHECKLIST ..................................... 178 

APPENDIX E : COVER LETTER FOR PILOT SURVEY ................................... 179 

APPENDIX F : SURVEY QUESTIONNAIRE FOR EXPLORING THE STATE 

OF REQUIREMENTS REUSE PRACTICE IN MALAYSIA .............................. 180 

APPENDIX G : POST HOC TEST FOR ONE WAY ANOVA ............................. 188 

 

  

Univ
ers

ity
 of

 M
ala

ya



xv 

LIST OF FIGURES 

Figure  2.1 Contribution of this SLR to SPLE ................................................................ 11	  

Figure  2.2 Results of online database search ................................................................. 27	  

Figure  2.3 Results of complimentary citation-based search .......................................... 28	  

Figure  2.4 Results of manual target search .................................................................... 28	  

Figure  2.5 Distribution of papers from 2005 to 2014 .................................................... 31	  

Figure  2.6 Evaluation context ........................................................................................ 45	  

Figure  2.7 Evaluators ..................................................................................................... 46	  

Figure  2.8 Feature extraction process for requirements reuse ....................................... 50	  

Figure  3.1 Research Phases ........................................................................................... 65	  

Figure  3.2 Mind Map for Systematic Literature Review ............................................... 68	  

Figure  4.1  Important findings from related surveys on factors influencing software 
reuse ................................................................................................................................ 74	  

Figure  4.2 Requirements Engineering Experience ........................................................ 80	  

Figure  4.3 Profile of Survey Respondents ..................................................................... 81	  

Figure  4.4 Requirements Format Used by Respondents ................................................ 82	  

Figure  4.5 Awareness factors ......................................................................................... 86	  

Figure  4.6 Conditions of reusable requirements ............................................................ 89	  

Figure  5.1 Overall process of FENL .............................................................................. 95	  

Figure  5.2 Terms extraction process ............................................................................ 103	  

Figure  5.3 Python code for implementing Term Extraction ........................................ 104	  

Figure  5.4 Sample raw text scraped from the online reviews ...................................... 105	  

Figure  5.5 Sample extracted terms from a review (output) ......................................... 106	  

Figure  5.6 K-means clustering algorithm (Hand et al., 2001) ..................................... 111	  

Univ
ers

ity
 of

 M
ala

ya



xvi 

Figure  5.7 Position of reviews in document space that can be grouped into four 
categories ...................................................................................................................... 112	  

Figure  5.8 Phase 3b Extraction of phrases that represent features .............................. 114	  

Figure  5.9 Different configuration tagging for feature extraction process .................. 116	  

Figure  5.10 Finding similarity distance between extracted features ........................... 118	  

Figure  5.11 A snapshot of cosine similarity results (distance obtained in form of 
pairwise matrix) among features in PL7 ....................................................................... 119	  

Figure  5.12 LSA implementation in Gensim. .............................................................. 120	  

Figure  5.13 Feature Model with SPLOT tools ............................................................ 122	  

Figure  5.14 Feature tree generated in SPLOT for the example Cloud Storage Service
 ...................................................................................................................................... 123	  

Figure  6.1 Phases in the Evaluation ............................................................................. 128	  

Figure  6.2 Features extracted with Simple Tagging .................................................... 130	  

Figure  6.3 Features extracted with NP Only ................................................................ 131	  

Figure  6.4 Features extracted with FENL configuration. ............................................ 131	  

Figure  6.5 Number of features extracted by manual approach as compared to the 
automated approach. ..................................................................................................... 133	  

Figure  6.6 Recall results .............................................................................................. 135	  

Figure  6.7 Precision results .......................................................................................... 136	  

Figure  6.8 F-Measure results ....................................................................................... 137	  

Figure  6.9  Average performance comparisons ........................................................... 138	  

Figure  6.10  Output from K-Means clustering for PL7 ............................................... 142	  

Figure  6.11  Output from manual feature clustering for PL7 ...................................... 143	  

Figure  6.12  Matching selected terms by using LSI .................................................... 144	  

Figure  6.13  Sample user comments from mobile apps ............................................... 149	  

Figure  6.14  Sample expert reviews from Vacation Management Software ............... 150	  

Univ
ers

ity
 of

 M
ala

ya



xvii 

 

LIST OF TABLES 

Table 2-1 Summary of PICOC ....................................................................................... 19	  

Table 2-2 Research Questions for this SLR .................................................................... 20	  

Table 2-3 Quality Assessment Checklists ...................................................................... 25	  

Table 2-4 Publication Venues for the Selected Studies .................................................. 29	  

Table 2-5 Research Questions and Dimensions in Reporting the Review ..................... 33	  

Table 2-6  Various Feature Extraction Approaches from NLP ...................................... 35	  

Table 2-7  List of Feature Extraction Approaches .......................................................... 41	  

Table 2-8 Measure Used in Selected Studies .................................................................. 47	  

Table 2-9 Input, Process, and Output for Feature Extraction Process ............................ 51	  

Table 3-1 Type of Research Questions ........................................................................... 61	  

Table 3-2 Research Phases and Detail Research Activities ............................................ 66	  

Table 4-1 4A Factors Adaptation .................................................................................... 75	  

Table 4-2 Survey Questions in Part B ............................................................................ 76	  

Table 4-3 Likert Scales Rating ....................................................................................... 78	  

Table 4-4 Size of development teams ............................................................................. 81	  

Table 4-5 Intention Towards Requirements Reuse ......................................................... 83	  

Table 4-6 Crosstabulation - Reason for Reuse versus Using Support Tools in RR ....... 85	  

Table 4-7 Accessibility factors in RR ............................................................................. 88	  

Table 4-8  Reasons requirements were reuse in latest project ........................................ 90	  

Table 4-9  Mapping General Comments to 4A Factors .................................................. 91	  

Table 5-1 Characteristic Comparisons for User Comments as opposed to Expert 
Reviews for Software Products that can be Extracted from Publicly Available Sources
 ........................................................................................................................................ 97	  

Univ
ers

ity
 of

 M
ala

ya



xviii 

Table 5-2 Steps for Creating Truth Data set ................................................................... 99	  

Table 5-3 Demographics Information for teachers involved ........................................ 101	  

Table 5-4 Demographic information on Software Practitioners involved .................... 102	  

Table 5.5 Acronyms Used in the Linguistic Tagging ................................................... 115	  

Table 6-1 Steps for Manual Feature Extraction and Grouping ..................................... 127	  

Table 6-2 Truth Data Sets of Software Reviews .......................................................... 129	  

Table 6-3 Result for One-Way ANOVA test ................................................................ 139	  

Table 6-4 Tukey-HSD post hoc test for Recall ............................................................. 139	  

Table 6-5 Tukey-HSD post hoc test for Precision ........................................................ 140	  

Table 6-6  Tukey-HSD post hoc test for F-Measure .................................................... 140	  

Table 6-10 Time taken FENL ....................................................................................... 141	  

Table 6-11 FENL Versus Related Works ..................................................................... 146	  

Table 6-12 Data Sets Comparison ................................................................................ 148	  

Table 7-1 Revisiting Research Aims and Methods ...................................................... 153	  

  

 

  

Univ
ers

ity
 of

 M
ala

ya



xix 

LIST OF SYMBOLS AND ABBREVIATIONS 

 
RR : Requirements Reuse 

SPLE : Software Product Lines Engineering 

LSA : Latent Semantic Analysis 

LDA : Latent Dirichlet Allocation 

DA : Domain Analysis 

DE : Domain Engineering 

VM : Variability Modeling 

SE : Software Engineering 

RE :  Requirements Engineering 

NLP : Natural Language Processing 

IR : Information Retrieval 

SLR : Systematic Literature Review 

SRS : Software Requirements Specification 

UML : Unified Modeling Language 

RQ : Research Question 

HAC : Hierarchical Clustering 

IDC : Incremental Diffusive Clustering 

VSM : Vector Space Model 

FENL : Feature Extraction from Natural Language 

Tf-idf : Term Frequency Inverse Document Frequency 

PICOC : Population, Intervention, Comparison, Outcome & Context 

OOP : Object Oriented Programming 

 

 

Univ
ers

ity
 of

 M
ala

ya



xx 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

1 

CHAPTER 1: INTRODUCTION 

Background 
 

There are many important software reuse activities that can help to expedite new 

software development process. One of them is the reuse of requirements. Requirements 

reuse if done systematically i.e. in the context of Software Product Lines Engineering 

(SPLE), will expedite the time to market and increase developer’s productivity. SPLE is 

a systematic approach towards realising software reuse. SPLE refers to software 

engineering methods, tools and techniques for creating a collection of similar software 

systems from a shared set of software assets using a common means of production(Pohl, 

Bockle, & Van der Linden, 2005).  Software assets to be reused in SPLE consist of 

source codes, architectural documents, requirements, test cases, design documents and 

other relevant artefacts in software development.  Requirements Reuse (RR) in SPLE is 

the process of systematically reusing previously defined requirements for an earlier 

software product and applying them to a new, slightly different product within a similar 

domain. There are mainly two forms of requirements that can be reused: model based 

requirements, or natural language (textual) requirements.  Although various efforts have 

been made in the area of software product lines engineering, the process of reusing 

natural language requirements has not captured much attention from researchers or 

practitioners.  

 Problems Statement 1.1

There are three main problems investigated in this research. Firstly, reusing 

requirements in the form of natural language if done manually can be very arduous, 

time consuming, labor intensives, decrease productivity and also prone to error on the 

results. (Weston, Chitchyan, & Rashid, 2009), (Niu & Easterbrook, 2008), (Ferrari, 

Univ
ers

ity
 of

 M
ala

ya



 

 

2 

Spagnolo, & Dell’Orletta, 2013) and (Boutkova & Houdek, 2011) Secondly, the current 

state of RR practice among software practitioners is not known. Available resources on 

the RR practice mainly revolve around publications resulting from research proposals, 

and some are not empirically validated(Alves et al., 2008). Thirdly, based on the 

conducted systematic literature review, there are missing guidelines, taxonomy or even 

process model for overall process of feature extraction for the reuse of requirements 

within the software engineering body of works. However, this research will only 

propose a process model (no taxonomy or formal guidelines will be produced out of this 

thesis) 

 Research Questions 1.2

Seven research questions have been formulated based on the above mentioned 

problem statements:  

Research Question#1: What approaches are available to extract natural language 

requirements in the context of requirements reuse? 

Research Question#2:  How are the existing approaches being validated? 

To gather the answers for the first and second research questions, a Systematic 

Literature Review on the feature extraction from natural language requirements for 

requirements reuse has been conducted and the findings will be presented and discussed 

in Chapter 2 of this thesis.  

Additionally, the following research questions will also be addressed: 

Research Question#3:  To what extent has RR been used? 

Research Question#4: What are the factors that might hinder RR in practice? 

Univ
ers

ity
 of

 M
ala

ya



 

 

3 

To answer the third and fourth research questions, a survey has been conducted 

among software practitioners in Malaysia to explore the state of requirements reuse 

practice. RQ3 and RQ4 is not limited to the SPLE community only because this 

exploratory survey is to find the gap in between the systematic reuse and the non 

systematic reuse. Additionally, SPLE is known to be as common practice in Malaysia, 

thus limiting to SPLE context only will eventually reduce the number of respondents in 

this survey. These survey findings will be discussed in Chapter 4.  

Research Question#5:  What is the proposed feature extraction process and how to 

demonstrate the solution? 

The proposed solution is demonstrated through lab experiment and each of the phases 

involved is explained in Chapter 5 of the thesis.  Additionally, results obtained from the 

experiment are presented in Chapter 6. 

Research Question#6:  How is the evaluation being done?  

Research Question#7:  How is the experiment result ? 

 Aims and Objectives 1.3

This research aims to investigate the current state of requirements reuse practice and 

propose a solution to this problem.  Based on the research questions presented earlier, 

the following research objectives will be covered in this thesis: 

Objective #1:  To identify available approaches in feature extraction from natural 

language requirements for requirements reuse. 

Objective #2:  To explore the current state of practice for requirements reuse among 

software practitioners. 

Univ
ers

ity
 of

 M
ala

ya



 

 

4 

Objective #3: To propose a feature extraction process approach as the solution to 

requirements reuse problem. 

Objective 3a:  To provide a method that allows selecting textual requirements 

that can produce similar output as the one produced manually. 

Objective#4:  To evaluate the outcome of the proposed approach. 

 Research Design 1.4

This research has been divided into three phases.  During the first phase, a brief 

statement about the research problem has been firstly discussed with the research 

supervisor, which is then followed by searching for related literatures on the initial 

research problem. As the problem gradually identified and understood, a Systematic 

Literature Review following the (Kitchenham & Charters, 2007) method has been 

carried out, with the purpose to identify a more specific area of the problems. 

Concurrently, a preliminary survey has been conducted among software practitioners to 

get an overview of the current state of the problem. This simple survey has been 

administered through email link and distributed to software practitioners in Malaysia. 

The results of this survey are not deemed to reflect the global sampling of the 

requirements reuse practice, but it is merely to gauge an overview of the subject. Based 

on the findings from Phase 1, the solution to the requirements reuse problem has been 

designed to have a four-phase process. This process was demonstrated through lab 

experiment, and the results are validated.  Table 1.1 lists out the Research Phases and 

activities involved. 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

5 

Table 1-1 Research Phases and Activities Involves 

Research Phases Activities 
1) Problem 
Identification 

1. Performed Systematic Literature Review 
2. Conducted Preliminary Study (Survey) 

2) Research Design Proposed a model to perform the following tasks: 

1. Accessing Requirements 
2. Terms Extraction 
3. Feature identification 
4. Formation of Feature Model 

3) Evaluation Performed: 

1. Accuracy (Precision, Recall & F-Measure) 
Measurements 

2. Statistical Validation 

 
 

 Research Scope and Limitations 1.5

This research focuses on the feature extraction from natural language requirements 

for reuse in Software Product Lines. The reuse of model-based requirements is beyond 

the scope of this research. The features extraction approach presented is limited to 

extract the software features, i.e. the user visible characteristics of a software system, 

and might not include the non-functional requirements such as user interface or security 

requirements. Additionally, the implementation of the solution in this research is limited 

to laboratory settings, and not yet tested for industrial practice.  

 
 Contributions of the Research 1.6

This research contributes to the body of knowledge in the area of requirements reuse 

for software product lines. The first outcome of this research is the Systematic 

Literature Review entitled “Feature extraction approaches from natural language 

requirements for reuse in software product lines: A systematic literature review”, 

published in the Journal of Systems and Software (Bakar, Kasirun, & Salleh, 2015). 

Univ
ers

ity
 of

 M
ala

ya



 

 

6 

Secondly, the preliminary investigation conducted through survey contributes to the 

software engineering research pertaining to the state of the practice of requirements 

reuse in Malaysian context. This second outcome was published in (Bakar & Kasirun, 

2014). The details implementation of the feature extraction approach is presented in 

Chapter 5 and the demonstration can be used to guide further research in this area. 

Additionally, the extracted data set is made available online in case of future replication 

is needed.  

 
 Significance of the Research 1.7

Prior to this research, there is no guideline or process model exists that consider the 

feature extraction from requirements that exists in natural language forms. This research 

demonstrates the process of feature extraction from natural language, and the step-by-

step procedure is outlined for other researchers to further explore in the future.   

 
 Thesis Overview 1.8

This thesis is organised as follows:  Chapter 2 presents the systematic literature 

reviews conducted for the features extraction problems in requirements reuse. Chapter 3 

provides an overview of the research design. Chapter 4 gives an account of the 

preliminary investigation made towards the state of requirements reuse practice among 

software practitioners.  Chapter 5 presents the implementation of Feature Extraction 

from Natural Language requirement (FENL). Chapter 6 explains the evaluation strategy 

and discusses the results of the conducted FENL experiment.  Lastly, Chapter 7 

summarises the contributions of this thesis.  

 
 
  

Univ
ers

ity
 of

 M
ala

ya



 

 

7 

CHAPTER 2: SYSTEMATIC LITERATURE REVIEW OF FEATURE 

EXTRACTION APPROACHES FROM NATURAL LANGUAGE FOR REUSE 

 Introduction 2.1

Software Product Lines Engineering (SPLE) refers to software engineering methods, 

tools, and techniques for creating a collection of similar software systems from a shared 

set of software assets using a common means of production (Northrop & Clements, 

n.d.). These shared software assets or sometimes referred to as core assets may include 

all artefacts in the product lines: requirements, architecture, codes, test plans, and more 

(Pohl et al., 2005). Meanwhile, requirements reuse (RR) is the process of reusing 

previously defined requirements for an earlier product and applying them to a new, 

similar product. Generally, RR can produce more benefits than only the design code 

reuse since it is done earlier in the software development (Clements & Northrop, 2002). 

When RR was planned systematically in the SPLE context, several studies (Eriksson, 

Borstler, & Borg, 2006)(Monzon, 2008)(Moros, Toval, Rosique, & Sánchez, 

2012)(Knethen et al., 2002) indicated positive improvement in software development: 

speed up time to market, increase team productivity, reduce development costs in the 

long run, and provide a better way of sustaining core assets’ traceability and 

maintainability. Software requirements can be reused either in an ad hoc basis such as in 

clone and own applications, software maintenance, or when systematically planned in 

SPLE. However, many problems exist when dealing with ad hoc reuse of natural 

language (NL) requirements. The problems with manual requirements reuse includes 

arduous (Weston et al., 2009), costly (Niu & Easterbrook, 2008), error-prone (Ferrari et 

al., 2013), and labour-intensive (Boutkova & Houdek, 2011) process, especially when 

dealing with large requirements.  

Univ
ers

ity
 of

 M
ala

ya



 

 

8 

In the following subsections, the terms that bring together features extraction and RR 

in the SPLE context is described: Requirements versus features, core assets 

development in SPLE, and the contributions of our work in SPLE.    

2.1.1 Requirements versus features 

Firstly, it is important to understand the key distinction between software 

requirements and features. Software requirements describe the functionality of a 

software system to be developed. The definition of software requirements in accordance 

with IEEE Standard Glossary of Software Engineering Terminology, page 62 in (IEEE 

Computer Society (1990). “IEEE Standard Glossary of Software Engineering 

Terminology”. IEEE Standard., n.d.) is given as: 

1. A condition or capability needed by a user to solve a problem or achieve an 

objective.  

2. A condition or capability that must be met or possessed by a system or system 

component to satisfy a contract, standard, specification, or other formally 

imposed document.  

3. A documented representation of a condition or capability as in (1) or (2). 

The majority of requirements are written in NL (Denger, Berry, & Kamsties, 2003). 

This is because text is commonly used to convey information to communicate 

stakeholders’ needs (Niu & Easterbrook, 2008). Pohl et al. (Pohl et al., 2005) 

emphasised that in SPLE, software requirements are documented either by using NL or 

model-based. As an example, NL requirements do not only appear in the form of 

Software Requirements Specification (SRS) format. NL requirements can also be 

recorded in the forms of goals and features, product descriptions including product 

brochures, user manual, or scenarios. Model-based requirements can be recorded in the 

Univ
ers

ity
 of

 M
ala

ya



 

 

9 

forms of functional data analysis such as data flow diagram, UML models such as class 

diagram, state dependent system behaviour and more, and they are usually 

supplemented by NL descriptions of features (Nicolás & Toval, 2009).  

Meanwhile, software feature is defined as a prominent or distinctive user-visible 

aspect, quality, or characteristic of a software system or systems (K. Kang, Cohen, 

Hess, Novak, & Peterson, 1990). In most cases, requirements tend to be lengthy in 

nature, while features represent services that a system must provide to fulfil customers’ 

needs, most of the time in a shorter or precise manner. Software features tend to be 

more focused and granular as compared to software requirements.  

2.1.2 Core assets development in SPLE  

Fundamentally, in SPLE, core assets (including requirements) can be developed 

through three approaches: proactive, reactive, or extractive (Krueger, 1992). In the 

proactive approach, assets are developed prior to software development. In the reactive 

approach, common and variable artefacts are iteratively developed during the software 

development. Reuse in the context of extractive tends to be in between the proactive and 

reactive (Krueger, 2002). To ease the transition from single systems to software mass 

customisation, Krueger proposed the extractive adoption model as a means to reuse 

existing products for SPLE (Krueger, 2001). With the extractive approach, core assets 

are no longer created from scratch, but extracted from the existing repository and reused 

in developing similar system. The extractive approach is particularly very effective with 

organisations that have accumulated development experience and artefacts in a domain 

and intended to quickly shift from conventional software development to SPLE (Frakes 

& Kang, 2005). Nan Niu and Easterbrook  highlighted the basic tenets of extractive 

approach of Software Product Lines (SPL) that include maximal reuse and reactive 

Univ
ers

ity
 of

 M
ala

ya



 

 

10 

development, particularly for small and medium-sized enterprises(Niu & Easterbrook, 

2008).  

2.1.3 Contributions of this work in SPLE  

Up to date, various research works have been produced in SPLE focusing on the 

product line architecture, domain analysis tools (Lisboa et al., 2010), variability 

management (L. Chen & Ali Babar, 2011)(Metzger & Pohl, 2014), detailed design, and 

code reuse (Faulk, 2001). However, there are few works that looked at the extractions of 

features from the requirements in SPLE (Niu & Easterbrook, 2008)(Alves et al., 

2008)(Kumaki, Tsuchiya, Washizaki, & Fukazawa, 2012)(Davril et al., 2013). 

Therefore, more parties can benefit from the formulation of feature extractions from NL 

requirements when various forms of input (not only SRS) are taken into consideration. 

In particular, we are interested in how current approaches that are used to extract 

features from NL requirements can support the reuse of requirements in SPL. 

Additionally, we are also looking at the implications for further research in this area. 

None of the related reviews presented in Section 2.2 adequately covers these issues. 

Figure 2.1 illustrates the scope of this SLR contribution in regard to other related works 

in SPLE. 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

11 

 

 

 

 

 

 

 

Figure  2.1 Contribution of this SLR to SPLE 

SPLE is a paradigm to develop software applications (software intensive systems and 

software products) using platforms and mass customisation (Pohl et al., 2005). Meyer 

and Lehnerd (Meyer & Lehnerd, 1997) defined software platforms as a set of software 

subsystems and interfaces that form a common structure from which a set of derivative 

products can be efficiently developed and produced. The subsystems within a platform 

contain artefacts beyond source-codes which include requirements, architectures, test 

plans, and other items from the development process.  

SPLE is distinct from the development of a single system, in which it involves two 

life cycles: Domain Engineering (DE) and Application Engineering (AE) (Pohl et al., 

2005). In DE, the reusable assets (including requirements) are built. This is an entire 

process of reusing software assets for the production of a new similar system, with 

variation to meet customer demands. DE is responsible for defining and realising the 

commonality and the variability of software product line. On the other hand, AE is the 

process where the applications of the product lines are built by reusing the domain and 

exploiting the product line variability (Pohl et al., 2005). The most important part in 

Univ
ers

ity
 of

 M
ala

ya



 

 

12 

Figure 2.1 is the Domain Analysis (DA), where a specific set of common and variable 

features from the existing requirement documents to be reused for developing similar 

product is identified. DA is the key method for realising systematic software 

reuse(Frakes & Kang, 2005). It can provide a generic description of the requirements 

(either in model-based or Natural Language form) for that class of systems and a set of 

approaches for their implementation(K. Kang et al., 1990).  

The process of reusing requirements takes place within the DA process and it is a 

part of general Requirements Engineering.  Reuse of software artefacts is the key aspect 

of SPLE. This is different to non-SPL based methodology in Software Engineering 

where requirements are gathered through elicitations of stakeholders’ needs with or 

without using the existing documentation for similar systems. In normal RE, reuse of 

requirements is not planned systematically and always occurs in an ad hoc manner. Pohl 

describes Domain Design as a subprocess within DE that refines the variability into 

design variability, defining the reference architecture/platform (Pohl et al., 2005). 

Essentially, as a result, the outcome from all subprocesses within the DE phase should 

be the representation of most (if not all) possible application for a given domain. 

Related literature reviews around the DA area were numbered in Figure 2.1, and its 

summary is presented in Section 2.2. 

Meanwhile, the second lifecycle, AE is concerned with the configuration of a 

product line into one concrete product based on the preferences and requirements of 

stakeholders produced in DE. Usually, the domain model produced within DE will now 

be used in AE. In AE, instance software products are often derived through the 

consultation with domain stakeholders that have specific requirements in mind (Bagheri 

& Ensan, 2013). Selection of desirable features that is now readily available should be 

Univ
ers

ity
 of

 M
ala

ya



 

 

13 

gradually performed with ample interaction with the stakeholders, as described in 

(Czarnecki, Helsen, & Eisenecker, 2004) as staged configuration.  

Various literature reviews have been published in the area of DE and AE (as 

numbered in Figure 1); however, none of the reviews reported the approaches used to 

select features from NL requirements for reuse in SPLE. This SLR was performed in 

order to obtain a better comprehension of the current state-of-the-art in feature 

extraction approaches from NL requirements for reuse in SPLE.  

The key contributions of this SLR are as follows: 

• it offers detailed comparisons of the published researches regarding the 

extraction of common and variable features from NL requirements for reuse 

in SPL through a Systematic Review; and 

• it derives a number of key dimensions2 of the feature extraction processes 

from the selected studies that will provide a structured overview of the 

attributes needed in RR for SPLE. 

In particular, there are three specific objectives for this SLR:  

a) To identify the approaches for extracting features from NL requirements for reuse 
in SPL. 

b) To collectively summarise the quality of the approaches in the selected studies.  

c) To identify research implications and highlight areas of improvement for RR 

research in the future. 

                                                

2 Some of these dimensions were discussed at the Information Retrieval Approaches in Software Evolution at 22nd IEEE 
Conference on Software Maintenance (ICSM ’06): http://www.cs.wayne.edu/~amarcus/icsm2006, which were also used in B. Dit et 
al. “Feature location in source code: A taxonomy and survey” (Dit, Revelle, Gethers, & Poshyvanyk, 2013). 

Univ
ers

ity
 of

 M
ala

ya



 

 

14 

This review may benefit a wide variety of audiences ranging from Information 

Sciences and Data Mining, Mathematical Computing, Data Management and more, 

particularly audiences with interests in Software Engineering. The implication of this 

review has opened up a lot of work that have direct or indirect effect on the scientific 

and practical community, namely research on making feature extractions fully 

automated, research on enhancing the available extraction and clustering methods by 

either being replicated, hybridised, or new ideas, research on enhancing the RR metrics, 

research on investigating the state of RR practice globally, research on exploring the 

opportunity for mathematical computing in aiding the RR process, and more. 

In Section 2.2, the related literature reviews is summarised. Section 2.3 reports the 

organisation of the SLR process: the research questions, search process, inclusion and 

exclusion criteria, and study quality assessment. Section 2.4 presents the results of this 

review based on the synthesis of the evidence. Section 2.5 provides a discussion of open 

issues and research implications, and lastly Section 2.6 provides the concluding 

remarks. 

 Related Work 2.2

While conducting this review, there are other reviews found to be related to areas 

that are close to RR in SPL, namely Domain Analysis (DA), Requirements Engineering 

(RE) in SPL, and Automated Feature Modelling. This section provides a brief summary 

of the related reviews. 

2.2.1 Requirements engineering for software product lines 

Alves et al. reviewed the studies in the area of RE for SPL (Alves, Niu, Alves, & 

Valença, 2010). This work aims to assess the research quality, synthesise evidence to 

provide suggestions on important implications for practice, and provide a list of open 

Univ
ers

ity
 of

 M
ala

ya



 

 

15 

problems and areas for improvements. This work differs from ours because it reviews 

selected work on general RE area for SPLE, while our work is more focused on the 

subarea of RE, the reuse of NL requirements in SPLE. A total of 49 studies between 1 

January 1990 and 31 August 2009 have been selected for this review. Important 

findings from this review reveal that the overall quality of the reviewed studies needs 

improvement in terms of empirical validations. In addition to that, the authors report 

that most of the studies did not provide sufficient guidelines for practitioners to adopt 

the proposed approach. Furthermore, very limited commercial or open source tools are 

currently accessible, which hinders the practitioners’ adoption of the proposed 

approach. As for the research trend, a growth in the number of approaches to handle NL 

requirements in a more automated way is anticipated in the future. In terms of the type 

of SPL adoption, proactive adoption was more common among the reviewed studies. 

However, this approach was very costly and the most risky. Thus, future work is 

expected to combine the use of the extractive and reactive SPL adoption. Lastly, Alves 

et al. conclude that future research should extend and improve the present research in an 

integrative manner (joint research and industry).  

2.2.2 A systematic review of domain analysis solutions for product lines 

Khurum and Gorschek  conducted a review that covers a total of 89 primary studies 

in the DA solutions presented up until 2007 (Khurum & Gorschek, 2009). The findings 

reveal that although many DA approaches have been proposed, the absence of 

qualitative and quantitative results from empirical application makes it hard to evaluate 

the potential of the proposed approaches. In addition, many DA tools claim to base their 

approach on the need raised by the industry but fell short on the approach used to 

identify the need for a solution. Many studies claimed to apply or validate the proposed 

Univ
ers

ity
 of

 M
ala

ya



 

 

16 

solution in industry. However, the claims made were not supported by any qualitative or 

quantitative evidence. 

2.2.3 Literature Review on Automated Modeling 

Benavides et al. provided a comprehensive literature review on the automated 

analysis of feature models for a period of 20 years, from 1990 to 2010 (Benavides, 

Segura, & Ruiz-Cortes, 2010). This review collates together various works in the area 

of automated feature modelling. The authors provide a conceptual framework to help 

understand different proposals in the area as well as categorise the future contributions. 

A total of 53 studies have been reviewed by the authors to answer three main research 

questions. As the main result, the authors present 30 analysis operations and classify the 

existing proposal providing automated support for them according to logical paradigm 

such as propositional logic, constraint programming, description logic, hybrid paradigm 

or multi-solver, studies that use their own tools, and proposals that present different 

operations with no support tools. In addition, the authors provide a summary of the tools 

used to perform the analysis, with the results and trends related to the performance 

evaluation of the published proposals. The identified challenges are mainly related to 

the formalisation and computational complexity of the operations, performance 

comparison of the approaches, and the support for the extended feature models. 

2.2.4 A systematic review of evaluation of variability management 

Variability management (VM) is an important area in SPL (Northrop & Clements, 

n.d.) and has been studied for almost 20 years since the early 1990s(K. Kang et al., 

1990). The work in (L. Chen & Ali Babar, 2011) systematically investigates the 

evaluation of VM approaches. In addition, this work looks into the available evidence 

regarding the effectiveness of the VM evaluation performed in the selected studies. 

Univ
ers

ity
 of

 M
ala

ya



 

 

17 

From the 97 selected studies, the authors identified 91 different types of VM 

approaches. Most of the approaches were based on feature modelling and/or UML-

based techniques. In addition to that, only a small number of the approaches used other 

mechanisms to express variability such as NL, mathematical notations, and domain-

specific language. The authors found that only a small number of the reviewed 

approaches had been evaluated rigorously by using scientific approaches. In addition, a 

large majority of them had never been evaluated in the industrial settings. Result of the 

reviewed studies indicates that the quality of the presented evidence is quite low. Hence, 

the authors conclude that the status of the evaluation of VM approaches in SPL is quite 

dissatisfactory. 

2.2.5 Review on separation of concerns in feature diagram languages 

Hubaux et al. conducted a systematic review of separation of concerns in feature 

diagram languages (Hubaux, Tun, & Heymans, 2013). In this work, the authors 

reviewed various concerns on feature diagrams and ways in which those concerns were 

separated. The four research questions they were trying to answer include: What are the 

main concerns of Feature Diagrams? How are concerns separated and composed? What 

is the degree of formality used to define Feature Diagrams? Is there any support tool 

available? A total of 127 papers were qualitatively analysed to answer the four research 

questions. Important findings include classifying the concerns in feature diagrams into 

feature groups and types of feature relationships. Concern feature groups can be further 

separated into functional and non-functional property, facets, and configuration 

processes. While concerns separating relationships among features are various, to name 

a few, the authors collected concerns relating to aggregation relationship, composed-of, 

concurrent activation dependency, conflict, excluded configuration, and more. A very 

Univ
ers

ity
 of

 M
ala

ya



 

 

18 

detailed review and explanation of the techniques for composing concerns was also 

provided in this review. 

2.2.6 Evaluation of a systematic approach in requirements reuse  

Baretto et al. highlighted the reuse of requirement specifications by presenting a 

comparison of seven studies related to RR (Barreto, Benitti, & Cezario, 2013). Criteria 

used in the comparisons include the scope of reuse, characteristics of the approach, the 

support of some types of computational tools, and the evaluation done for the selected 

studies. They observed that six out of seven studies came from application in the SPL. 

When not applied in SPL, the reuse occurs in a very specific scope, namely in the real-

time systems. 

Although related studies presented in this section provide good information to the 

software engineering community regarding various issues in SPLE, none of the studies 

provide a thorough review of the approach that exists to extract features from NL 

requirements, from the SPL context. Knowing the available approach can be useful for 

researchers to identify what is available and what needs to be done in future research, 

and can be beneficial to practitioners for industry adoptions. Therefore, our SLR aims to 

contribute not only to the body of knowledge for RR, but also to the RE and SPLE 

practice in general. 

 Review Method 2.3

This section describes the process involved in conducting this SLR. Kitchenham and 

Charters described systematic literature review (SLR) as a process of identifying, 

assessing, and interpreting all available research evidence with the aim to answer 

specific research questions (Kitchenham & Charters, 2007). SLR provides a more 

systematic way to synthesise the research evidence by specifically using inclusion and 

Univ
ers

ity
 of

 M
ala

ya



 

 

19 

exclusion criteria to set up the boundaries of evidence to be included in the review. In 

general, we are referring to Kitchenham and Charters’ guidelines on performing SLR 

(Kitchenham & Charters, 2007); however, the guidelines on performing complementary 

snowballing search in locating articles to be included in the review suggested by 

(Wohlin & Prikladnicki, 2013) is as well considered.  Additionally, this SLR also take 

into account the recommendations on the importance to include manual target search on 

popular venues as appeared in (Jørgensen & Shepperd, 2007). 

2.3.1 Formulating Research Questions 

Petticrew and Robert in (Petticrew & Roberts, 2006) suggested that the formulation 

of research questions should focus on five elements known as PICOC. Table 2.1 shows 

the Population, Intervention, Comparison, Outcomes, and Context for the current SLR’s 

research questions. 

Table 2-1 Summary of PICOC 

Population Software requirements/specifications/software product reviews 
Intervention Feature extraction approaches 
Comparison None 
Outcomes The usability of the feature extraction approaches (empirical validation) 

Context Reviews of feature extraction approaches from all forms of requirements 
(textual-based) for reuse in the context of Software Product Lines 

 

The primary focus of this SLR is to understand the available feature extraction 

approaches from the NL requirements to be reused in SPLE. In this SLR, all empirical 

studies presenting feature extraction approaches for NL requirements, specifically in the 

SPLE context are included. Comparison for feature extraction approaches in the PICOC 

is not included, as it is not applicable to our research objectives. Our SLR aims to 

answer the following Research Questions (RQ) that are formulated based on the 

PICOC: 

Univ
ers

ity
 of

 M
ala

ya



 

 

20 

Table 2-2 Research Questions for this SLR 

RQ#	   Research Question Details	  
RQ1	   What approaches are available to extract features from Natural 

Language Requirements in the context of Software Product Lines?	  
 1.1	   How are commonality and variability being addressed? 

Which technique is used?	  
 1.2	   Is there any support tool available? If support tool is 

provided, is it Automated or Semi-automated?	  
RQ2	   How was the evaluation performed against the proposed approaches? 	  
 2.1	   What were the context, procedure, and measure used in the 

evaluation?	  
 2.2	   What application domains were the studies tested or applied 

to?	  
 2.3	   What procedures were used to evaluate the approach? Are 

proposed solutions in selected studies usable and useful? 
(Empirically validated?)	  

 

2.3.2 Identification of Relevant Literature 

Based on Kitchenham and Charters’s guidelines (Kitchenham & Charters, 2007), 

identification of relevant literature can be done by generating a search strategy. Initial 

search can be undertaken by using online database. However, there are some challenges 

to normal online database searches: mainly the nature of different interface for different 

database makes it difficult to use a standardised search string. Thus, making a 

complementary manual citation-based (snowballing) search is necessary (Wohlin & 

Prikladnicki, 2013) to minimise the possibility of missing important evidence. 

Additionally, Kitchenham and Charters (Kitchenham & Charters, 2007) also suggested 

that manual search from leading venues can bring out a number of high-quality articles 

that were not retrieved by the online and snowballing searches.  

The article search process in this review is separated into three phases; Phase 1: 

Online Database Search, Phase 2: Complementary Citation-Based Search, and Phase 3: 

Manual Target Search. 

Univ
ers

ity
 of

 M
ala

ya



 

 

21 

2.3.2.1 Phase 1: Online Database Search 

Kitchenham and Charters (Kitchenham & Charters, 2007) used structured questions 

to construct search strings for use with the electronic database. To formulate the search 

string, we use the keywords derived from the PICOC (with synonyms and alternatives 

words). The Boolean search OR is used to incorporate synonyms and alternative words. 

The Boolean AND is used to link the major terms from population, intervention, and 

context. Therefore, the complete search string derived is:	  	  

(("feature extraction" OR "feature mining" OR "feature 
clustering" OR "feature similarity") AND ("natural language" OR 
"requirement" OR "textual requirement" OR "product description" 
OR "product specification" OR "product review") AND ("Software 
Product Lines" OR "product family" OR "software family"))  

The following five databases that consist of Computer Sciences and Software 

Engineering articles are searched: ACM, IEEE Xplore, ScienceDirect, Springer, and 

Scopus. In the initial selection, the Inclusion and Exclusion criteria were applied and 

irrelevant studies were removed based on screening of titles and abstract. When the 

titles and abstracts were not sufficient to identify the relevance of the paper, the full text 

was then referred to. 

2.3.2.2 Phase 2: Complementary Citation-Based Search 

In Phase 2, the author used the citation-based search to find who cited the selected 

papers from Phase 1. The references from each selected paper (backward snowballing) 

are examined the titles that are relevant to the current SLR are listed down. In addition, 

Google Scholar is also referred to find out who have cited their papers (forward 

snowballing) and the titles that look relevant to this SLR are listed out. Selected papers 

from both citation-based searches (backward and forward snowballing) were compiled 

in a list and any duplicate studies were removed. Inclusion and exclusion criteria were 

Univ
ers

ity
 of

 M
ala

ya



 

 

22 

applied when skimming the title and abstracts. Papers with poorly written abstract were 

downloaded and read to get more information. Only relevant articles are selected.  

2.3.2.3 Phase 3: Manual Target Search  

Despite the practical limitations related to the use of manual search such as the 

required search effort, manual target search has proven to bring high-quality search 

result when combined with the use of searches from digital library (Jørgensen & 

Shepperd, 2007). Manual target search from the most relevant venues in Software 

Engineering and Requirements Engineering fields in the article search process were 

included. Twelve leading journals were manually searched: Information and Software 

Technology, Journal of Systems and Software, IEEE Transactions on Software 

Engineering, IEEE Software, IEEE System Journal, ACM Computing Surveys, ACM 

Transactions on Software Engineering and Methodology, Software Practice and 

Experience, Empirical Software Engineering Journal, Requirements Engineering 

Journal, IET Software, and Automated Software Engineering Journal. The journals were 

selected because they were known to have been used as sources for other SLRs related 

to the author’s research topic (Alves et al., 2010), (Benavides et al., 2010), and (Barreto 

et al., 2013). Additionally, the following conferences and workshop are searched 

manually too: International Conference on Software Engineering (ICSE), International 

Software Product Lines Conference (SPLC), Requirements Engineering Conferences 

(RE), International Conference on Software Reuse (ICSR), International Conference on 

Aspect-Oriented Software Development (AOSD), International Symposium on 

Foundations of Software Engineering (FSE), and International Workshop on Variability 

Modelling of Software Intensive Systems (VaMOS). These sources were selected 

because they presented a collection of flagship venues on SPL and RE. The author has 

Univ
ers

ity
 of

 M
ala

ya



 

 

23 

searched for all papers published in the selected venues starting from January 2000 up 

until December 2014.  

2.3.3 Selection of Studies 

2.3.3.1 Inclusion and Exclusion Criteria 

When conducting this review, it is necessary to set some criteria on which studies to 

be included and also those that need to be excluded. The candidate article is selected as 

one of the Primary Studies if it satisfied at least one of the inclusion criteria. Similarly, 

if a study fulfilled any of the exclusion criteria, then it will be excluded. The main 

inclusion criteria aim to only include all articles describing extraction approaches for 

NL requirements for reuse within the context of SPLE.  

The main exclusion criteria comprised of articles that did not focus on feature 

extraction approaches for SPLE. Articles describing the ad hoc reuse or opportunistic 

approach, which clearly were not appropriately applied in the SPL context, were 

excluded. Additionally, articles that fulfilled any of the criteria listed below were 

excluded: 

• Articles describing reusing model-based requirements (OOP model, feature 

model, or diagram), non-requirement artefacts in SPL (codes, test plans, 

architecture, etc.), or extraction of items not related to requirements (image 

extractions): Many articles describe research in the area of feature modelling: 

articles describing extension or improvement to elements in feature model, 

integrating specification into feature models, automated derivation from 

feature models, and more researchers related to Feature Modelling were 

excluded from our SLR. The author also found many articles mentioning 

Univ
ers

ity
 of

 M
ala

ya



 

 

24 

feature extractions; however, these are related to image processing and 

pattern recognition. 

• Short papers, proposals, lecture notes, summary of conference keynotes, work 

in progress reports, doctoral symposium papers, and posters: Articles 

describing the concepts of RR which appear in short papers, work in progress 

papers, or business model proposal for RR that are usually not empirically 

validated were excluded. 

• Review papers (tertiary studies) related to the topic: The search string from 

online database has produced many tertiary studies (related literature review 

or survey papers). These are secondary studies and therefore were not 

included as primary studies in this SLR.  

• Papers not written in English 

2.3.4 Data Extraction Plan 

Data Extraction plan is designed to accurately record the information obtained by the 

researchers from the primary studies (Kitchenham & Charters, 2007). The form for data 

extraction plan records the standard information as follows: 

• Study ID 
• Date of extraction 
• Name of the study 
• Title, Author, Publication Type (Journal/Conference), and details (if 

available) 
• Website (if available) 
• Answers obtained from each research question 

2.3.5 Study Quality Assessment 

When designing the study quality assessment, some of the questions from Quality 

Assessment section of the published literature are reused. Table 3 outlines six relevant 

criteria used to evaluate the quality of the selected studies, inspired by the quality 

Univ
ers

ity
 of

 M
ala

ya



 

 

25 

assessment criteria for performing SLR used in (Dybå & Dingsøyr, 2008)(Leedy & 

Ormrod, 2013)(Petticrew & Roberts, 2006)(Salleh, Mendes, & Grundy, 2011)	  and the 

guidelines provided in (Lam, McDermid, & Vickers, 1997) pertaining to 10 steps 

towards systematic RR. The following ratio scales are used: Yes = 1 point, No = 0 

point, and Partially = 0.5 point.   Table 2. 3 outlines these criteria: 

Table 2-3 Quality Assessment Checklists 

Item Answer 
QA1: Was the article refereed? (Leedy & Ormrod, 
2013) 

Yes/No 

QA2: Was there a clear statement of the aims of the 
research? (Dybå & Dingsøyr, 2008) 

Yes/No/Partially 

QA3: Is there an adequate description of the context 
in which the research was carried out? (Dybå & 
Dingsøyr, 2008) For example, the problems that lead 
to the research are clearly stated, descriptions of 
research methodology used, study participants, etc. 

Yes/No/Partially 

QA4: Was the data collection done very well? For 
example, did the evaluation of proposed approach 
answer the research questions and did the paper 
provide a thorough discussion of the collected 
results? (Dybå & Dingsøyr, 2008) 

Yes/No/Partially 

QA5: Were the testing results rigorously analysed? 
(Petticrew & Roberts, 2006) For example, are there 
any software metrics provided in evaluating the test 
results, is there any threat to validity being presented 
in the study, etc.  

Yes/No/Partially 

QA6: Are any practitioner-based guidelines on 
requirements reuse being produced? Lam et al. 
suggested that practitioners’ guidelines including 
producing explicit documentation is important to 
prevent reuse misuse. (Lam et al., 1997) 

Yes/No/Partially 

 

The author was responsible for reading and completing the checklist for all the 

selected studies. As a way to validate the data extraction, the first supervisor randomly 

selected 20% of the selected studies (in this case three papers were randomly picked by 

the supervisor). She then completed the QA checklist. Discrepancies found from the 

Univ
ers

ity
 of

 M
ala

ya



 

 

26 

results were compared and discussed until a consensus is met. The template used for the 

data extraction and quality assessment is available in APPENDIX C. 

 Results 2.4

In this section, the synthesis of evidence from this SLR is presented. This begins 

with the analysis of the results from article searches, followed by the quality assessment 

results. Next, the following are the answers to the main research questions from Table 

2.3.2. 

2.4.1 Results of Article Searches 

As mentioned in Section 2.2,  the article searches were divided into three phases: 

Online Database Search, Complementary Citation-Based Search, and Manual Target 

Search in journals and conferences. In this section, we will present the results of the 

search process.  

2.4.2 Online Database Search 

The results of the online database searches returned 168 hits. After screening the 

titles and abstract, and applying the Inclusion and Exclusion criteria, only five articles 

met the inclusion criteria. Figure 2.2 illustrates the result on the number of articles 

retrieved from the online database searches. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

27 

 

 

 

 

 

 

 

 

 

 

Figure  2.2 Results of online database search 

2.4.3 Complementary Citation-Based Search (Snowball Search) 

Based on selected studies in Phase 1, the backward and forward snowball searches 

were applied. Firstly, with backward snowball search, the author looked at the reference 

lists from the selected five articles from Phase 1. Six relevant papers were found from 

the first round of snowball search. Secondly, with forward snowball search, the author 

has performed searches on Google Scholar on who had cited each of the five papers. 

These backward and forward snowball searches were repeated until no new related 

article was found. After screening the titles or abstracts and applying the inclusion 

criteria, 13 additional papers are selected.  

Figure 2.3 illustrates the result of the number of articles retrieved from the 

complimentary citation-based searches.  

 

 

Phase 1: 
Online 

Database 
Search 

ACM (n=15) 

d1+d2+d3+d4

+d5= 5 

IEEEXplore (n=4) 

ScienceDirect 

Springer (n=51) 

Scopus (n=67) 

A
ut

om
at

ed
 S

ea
rc

h 
B

as
ed

 o
n 

Se
ar

ch
 S

tri
ng

 

d1 = 3 

d2 = 0 

d3= 0 

d4 = 1 

d5 = 1 

Sc
re

en
in

g 
Ti

tle
 a

nd
 A

bs
tra

ct
 a

nd
 D

et
ai

le
d 

as
se

ss
m

en
t 

Univ
ers

ity
 of

 M
ala

ya



 

 

28 

 

 

 

 

 

 

Figure  2.3 Results of complimentary citation-based search 

 

2.4.4 Manual Target Search  

As mentioned previously, the Manual Target Search was also performed to 

compliment automated search and snowball searches. Popular venues are used to 

manually locate papers that were possibly not reached by the Phase 1 and Phase 2 

searches. Figure 2.4 illustrates the result of the Manual Target Searches.  

 

 

 

  

 

 

Figure  2.4 Results of manual target search 

Manual target searches are very important to ensure that no relevant study is missed. 

However, in current case, although the titles and abstracts from more than 6000 titles in 

journals and about 2000 articles in selected conferences were screened, no new study is 

retrieved. This indicates that the search string in Phase 1 is reliable and the snowball 

search in Phase 2 is sufficient.  

Univ
ers

ity
 of

 M
ala

ya



 

 

29 

In total, this process has collected 32 articles from the three phases of article 

searches. However, after removing duplicates, only 13 studies are left. Duplicate entries 

are either articles that are already retrieved by the earlier searches or work from the 

same group of authors being published at different venues. For the second duplicate 

condition, only the most recent publication or the most comprehensive version of the 

articles is included (see Appendix A for the complete list of selected primary studies). 

2.4.5 Publication Venues 

Selected studies came from various publication venues with Software Product Line 

Conference as the most popular venue, followed by Requirements Engineering 

Conference as indicated by Table 2.4: 

Table 2-4 Publication Venues for the Selected Studies 

Venues	   Selected Studies	  

International Software Product Lines Conference (SPLC)	   S1, S3, S4, S5	  
Requirements Engineering Conferences (RE)	   S6, S12, S13	  
International Workshop on Variability Modelling of Software Intensive Systems 
(VaMOS)	  

S7	  

IEEE Systems Journal S2 
IEEE Transaction Software Engineering	   S8	  
Internetware S10	  
International Conference on Information and Multimedia Technology (ICIMT)	   S9	  

Automated Software Engineering Journal (ASE)	   S11 
 

There are duplicate publications found for three selected studies: S2 (three 

publications), S8 (three publications), and S12 (two publications). For example in S8, 

the three duplicate studies are (Dumitru et al., 2011), (Davril et al., 2013), and (Hariri, 

Castro-Herera, Mirarkholi, Cleland-Huang, & Mobasher, 2013). Two of the works were 

published in two conferences: ICSE 2011(Dumitru et al., 2011) and another one is in 

ESEC/FSE 2013(Davril et al., 2013). The other study, a more comprehensive one 

(Hariri et al., 2013), was published in a journal, the IEEE Transaction of Software 

Engineering. In general, duplicate studies would inevitably bias the result of the 

Univ
ers

ity
 of

 M
ala

ya



 

 

30 

synthesis, hence only the most comprehensive version of the articles included, in the 

case of S8, only (Hariri et al., 2013) is selected as primary study. 

2.4.6 Publication Chronology 

The work on RR emerged as early as 1988, when Finkelstein published a paper in the 

Software Engineering Journal, entitled “Re-use of formatted requirements 

specifications” (Finkelstein, 1988). This is followed by other publications pertaining to 

reusing specifications through analogy, for example work by Maiden and Sutcliffe in 

1992 (Maiden & Sutcliffe, 1992), a framework proposal on reuse of requirements and 

specification by Paredes and Fiadero in 1995 (Paredes & Fiadeiro, 1995), and work by 

Massonet and Lamswerdee in 1997 (Massonet & Lamsweerde, 1997). However, these 

works have either been restricted to small-scale academic example, use model-based 

requirements, or not describing the NL requirements for reuse. Additionally, these 

works were not specifically dedicated for the SPL domain, which clearly did not meet 

our main inclusion criteria. The paper by Lam, McDermit, and Vickers in (Lam et al., 

1997) came out in 1997 describing the systematic RR relating to system families, which 

embark on the start of work on RR in the context of software family. Although this 

work did not specify the approach on how to reuse the NL requirements, it explains the 

experience of reusing requirements patterns at Rolls Royce and Smyth Industries in the 

domain of engine controller. Since our SLR is very focused on the extractions of 

features from requirements that appear in NL or textual based for reuse within the 

context of SPLE, this work by Lam, McDermit, and Vickers as well did not fit into our 

inclusion criteria. Then, the first formal conference for SPLC, the premium venue for 

SPLE was held in July 2000 (prior to this date, SPLC was done in the forms of 

Univ
ers

ity
 of

 M
ala

ya



 

 

31 

symposium or workshop3) is identified. With this, it is credential that SPLE research 

topic has already achieved certain maturity for research publications, which potentially 

have published some works related to our interest. Thus, the year 2000 is used as the 

starting point for the automated searches of articles in databases. Unfortunately, only 

one study found to be relevant to the SLR’s RQs, which was published five years later 

(in 2005) and appeared in Requirements Engineering conference – Chen et al. (K. Chen, 

Zhang, Zhao, & Mei, 2005). Other relevant studies appear from 2008 onwards. Based 

on this, 2005 is used as the year to start the complimentary manual searches. Thus, it 

becomes clear to that 2005 marks the emergence of the interest in feature extractions 

from NL requirements for SPLE. Figure 2.5 illustrates the distribution of the selected 

studies from 2005 to 2014, with 2013 as the major contributor. There was an increasing 

trend in the number of related publications across these years. 

 

  

 

 

 

Figure  2.5 Distribution of papers from 2005 to 2014 

2.4.7 Quality Assessment Results 

A score scale of 0 to 6: Very Poor (Score < 2), Poor (Score of 2 to <3), Fair (Score of 

3 to <4), Good (Score of 4 to <5), and Very Good (Score of 5 to 6) was used in the 

Quality Assessment. Most studies (11 studies) achieved the score of more than 4, which 

                                                

3 http://splc.net/history.html 

0	  

1	  

2	  

3	  

4	  

5	  

2005	   2006	   2007	   2008	   2009	   2010	   2011	   2012	   2013	   2014	  

Publica(on	  Chronology	  

Univ
ers

ity
 of

 M
ala

ya



 

 

32 

are deemed to be of good quality. Two studies (15.39%) scored 3.5 and deemed to be of 

fair quality; one of the studies provided a very brief introduction to the problem they 

were investigating and the other study provided comprehensive numerical figures with 

less discussion on their testing results. However, it is identified that none of the studies 

claimed to have produced practitioners’ guidelines for their feature extraction approach, 

but only explained the processes in the published academic paper.    

2.4.8 Answering the Research Questions 

The overall goal of this study is to review the current state of research in the area of 

feature extraction from NL requirements for reuse in the SPL. The transformation from 

the requirements in the NL documents to features can be done manually when dealing 

with small to moderate amount of requirements. However, this process can be arduous 

(Weston et al., 2009) when dealing with a large corpus of textual documents. For a large 

size of requirements, it is impossible for humans to manually analyse all feasible 

requirements for reuse (Falessi, Cantone, & Canfora, 2010). Thus, there is a need for 

automated or semi-automated approach to cater to this extraction process. In this 

section, the available approaches that extract the features from textual requirements are 

examined, based on the studies selected for this review. To provide more structured 

results, the research questions are answered through the key dimensions of the selected 

extraction approaches as outlined in Table 2. 5. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

33 

Table 2-5 Research Questions and Dimensions in Reporting the Review 

Research Question	   Dimension	   Example	  
RQ1: What approaches 
were available to extract 
features from Natural 
Language requirements?	  

Types of Input:  
 
 
 

Types of Output: 
 

SRS Documents [S1,S2,S4,S5,S6]	  
Product Descriptions/Product Brochures 
[S3,S7,S8,S9]	  
User Comments [S13]	  
	  
Features [S3] [S13], Feature Tree/Feature Model 
[S4,S5,S6,S7,S8], Verb-phrase [S2], Clustered 
Requirements [S1,S8,S11]	  

RQ1.1: How were the 
commonality and 
variability addressed? 
Which technique was used?	  

Processes used  Text Preprocessing:	  
Natural Language Processing (NLP) and Information 
Retrieval (IR) approaches 
[S2,S3,S7,S8,S9,S10,S12,S13]	  
Similar Requirements Identification 
Latent Semantic Analysis/Vector Space Model 
(S1,S4,S5) 
Clustering of Features (See Table 2.7) 

RQ1.2:  Were there any 
support tools available? If 
support tools were 
provided, were they 
Automated or Semi-
automated? 

Availability of 
support tools: 

Support tools:	  
Automated support tool [S4,S5,S8]	  
Semi-Automated support tool [S1,S2,S3,S6,S7, S13]	  

RQ2: How was the 
evaluation performed on 
the proposed approaches? 	  
RQ 2.1: Evaluation context, 
procedure, and measure 
used in the evaluation 
 
 
 
 
RQ 2.2: Domain 
Application 

Evaluation:	   Evaluation context: 	  
Academia [S1,S2,S6], 	  
Industry [S3,S4,S5,S7]	  

Evaluation procedure: 	  
Experiment [S1,S2,S3,S4,S6,S8, S13]	  
Case Study [S2,S5] 	  
Measure Used: 	  
Recall [S8,S9, S10, S11], 	  
Precision [S8, S9, S10,], 	  
F-Measure [S9, S11, S13]	  

Domain 
Application:	  

Automarker Assignment [S2,S9]	  
SmartHome [S4,S5]	  
Antivirus [S8]	  
Wiki [S7] 
MobileApps [S13]	  

 

2.4.8.1 RQ1: What approaches were available to extract features from Natural 

Language requirements? 

Textual requirements were recorded in various forms. In seven studies (S1, S2, S4, 

S5, S6, S9, and S11), SRS has been used as the input to the extraction process. Four 

studies (S3, S7, S8, and S10) have used product descriptions and brochures, while the 

most recent work, S13, uses user comments as the input to feature extraction process. 

Univ
ers

ity
 of

 M
ala

ya



 

 

34 

As for the output, feature trees or models were produced from the extraction process, 

as appeared in most of the studies (S4, S5, S6, S7, and S8). S3 was reported to produce 

features in the form of keywords. The output from the approach presented in S1 was in 

the form of classification of sentences (or clustered requirements), which were also 

reported in S10 and S11. Meanwhile, S2 and S9 were reported to have produced verb 

phrase or direct objects as the output of their feature extraction process. See 

APPENDIX B: Input (Types of Requirements) and Output (Features).  

2.4.8.2 RQ1.1: How were the commonality and variability addressed? Which 

technique was used? 

Feature extraction process involves selecting common or variant features from the 

requirements so that they can be seen in a more structured way. Commonality is defined 

as a set of mandatory characteristics that appear in SPL while variant features are 

characteristics that can be optional in SPL. To understand feature extraction process 

from NL requirements, it is worthwhile to investigate the approaches used, in which 

NLP was used by most selected studies in this review.  

(a) Extracting Common Features: NLP approaches  

To classify the approaches used in extracting common features from NL 

requirements, the characterisation proposed in (Falessi et al., 2010) and (Falessi, 

Cantone, & Canfora, 2013) is used. Table 2.6 details out the types of NLP approaches 

across the selected studies in this review. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

35 

Table 2-6  Various Feature Extraction Approaches from NLP 

NLP 
Classification Techniques S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 

Algebraic 
Models 

i) Vector Space 
Model /   /  

 

 

 

* 

 

       
ii) Latent Semantic 
Analysis    / /        

Text 
Preprocessing 

i) Tokenisation  /    / /    / / 
ii) Part of Speech 
Tagging   / /   / / / /  / / 

Terms 
Weighting  

i) Raw  /           
ii) Hybrid (TF-
IDF)       / / /    

Similarity 
Metrics 

Vector Similarity 
Metrics ( Cosine, 
Jaccard, 
Euclidean) 

/       / /    

NLP Tools 

i)  Stanford NLP       / / / / /  
ii) Open NLP  /           
iii) NLTK Toolkit             / 

Thesaurus- 
based WordNet           /  / 

Note: Most selected studies used more than one NLP approach. The checkmarks here indicate approaches directly mentioned by the 
selected papers.  
*S6 did not specify any NLP techniques, but used clustering algorithm. 

 
The following subsections briefly describe NLP techniques employed by the selected 

studies to aid feature extractions from the requirement documents for reuse in the SPL. 

Detailed descriptions on each of the NLP techniques mentioned in section (i), (ii), (iii), 

and (iv) can be found in 4.  

i)  Algebraic Model 

Two techniques were found under the category of Algebraic Model: Vector Space 

Model (VSM) and Latent Semantic Analysis (LSA) (Falessi et al., 2010). VSM was 

used in two studies (S1 and S4), and LSA was mentioned by S4 and S5. In S1, 

Requirements and Structural models were used as objects to be analysed. Commonality 

and Variability for requirements and classes were analysed using cosine similarity 

calculation. In S4, an exploratory study was conducted to investigate the suitability of 
                                                

4 A detailed description of the NLP techniques is documented here: 
https://www.dropbox.com/s/yqnknjyp8mf6f3h/Descriptions%20of%20NLP%20Approaches.docx?dl=0 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

36 

Information Retrieval technique for identifying common and variable features by 

comparing the VSM and LSA (Alves et al., 2008). The framework was produced in an 

industrial context focusing on textual requirements. Comparisons were done towards a 

combination of Hierarchical Agglomerative Clustering (HAC) and LSA, as well as a 

combination of HAC and VSM, to observe which one would perform better. The 

findings of the study indicated that the textual requirement documents have latent 

structures that complemented both VSM and LSA. With small-sized requirements, 

VSM performed better than LSA.  

In S5, the author described ArboCraft as a tool suite that can automatically process 

NL requirements into a feature model that later can be refined by the requirement 

engineers. This approach employed the LSA in terms of grouping similar requirements. 

In-text variability was identified through a tool that detected uncommon words. 

Requirements were considered similar if they concerned similar matters. Thus, in 

ArboCraft, the subject matters of requirements were compared, resulting in similar 

subject matters to be clustered together. The GUI representation of ArboCraft was 

presented to illustrate the feature tree construction resulting from the feature extraction.   

ii) Text Preprocessing  

Text preprocessing involves tokenisation, removing of stop words, and Parts Of 

Speech tagging (POS Tagging). In some of the reviewed work, tokenisation processes 

are also referred to as Lexical Analysis (LA) (S3, S7, S8, S9, S10). S2 and S3 indirectly 

reported applying the text preprocessing. LA was presented in S2 and verb-direct object 

extractions were mentioned there. Author in S2 proposed a semi-automated approach to 

identify functional requirements assets by analysing NL documents. The functional 

requirements in each document were identified on the basis of lexical affinities and 

Univ
ers

ity
 of

 M
ala

ya



 

 

37 

“verb-direct object” relations (Niu & Easterbrook, 2008)(Niu, Savolainen, Niu, Jin, & 

Cheng, 2013). Fillmore’s case theory was used to characterise each Functional 

Requirements Profile’s (FRP) semantics. A verb followed by an object in a requirement 

sentence would be extracted as a FRP. The authors defined the FRP of a document to be 

the domain-aware LA that has a high information value and bears a verb-direct object 

relation. Fillmore’s case theory was applied to each FRP, by filling up the details for six 

semantic cases. Then, Orthogonal Variability Modelling was used to rigorously express 

the variability. Mu et al. (Mu, Wang, & Guo, 2009) improved Nan Niu’s FRP by 

proposing ten semantic cases instead of just six, naming it as Extended Functional 

Requirements Framework (EFRF). The extractions were done based on the structure of 

EFRF. The extraction process came in two phases: NLP and rule-based converting 

process. OVM and SRS were also used in this work.  

Text preprocessing technique was also highlighted in S3 to identify common features 

in product brochures from various vendors (Ferrari et al., 2013) and also used when 

mining specifications for typical antivirus products in S8 (Hariri et al., 2013). In S3, 

conceptually independent expressions (i.e. terms) were identified through POS Tagging, 

Linguistic Filters (filtering terms with adjectives and nouns), and lastly identifying C-

NC Value that computed term-hood metric. Then, Contrastive Analysis was applied to 

select the terms that were domain-specific. C1…Cn are sets of domain-specific terms for 

D1…Dn documents. Contrastive analysis is an approach in NL processing for extracting 

the domain-specific terms from textual documents. The aim of this technique is to refine 

the obtained result (from word extraction) either by filtering noise due to common 

words or by discriminating between semantically different types of terms within varied 

terminology (Bonin, Orletta, Venturi, & Montemagni, 2010). Ranking values were 

provided by calculating the average rank of each term. If a term is domain-specific and 

Univ
ers

ity
 of

 M
ala

ya



 

 

38 

appears in all of the documents, it is more likely to be a common feature. If a domain-

specific term appears in some of the documents of the different vendors, but not in all 

documents, it is more likely that it is a variant feature.  

S8 proposed an approach to mine software features from publicly available product 

descriptions and construct feature model based on extracted features for typical 

antivirus products from the Internet (Hariri et al., 2013). The approach was divided into 

two primary phases: Mining Features from product descriptions and Building the 

Feature Model. Screen-scraper facility was used to scrape raw product descriptions from 

165 antivirus products from the Internet. These product specifications were 

preprocessed by stemming each word to its morphological root and stop words were 

removed as well. The remaining descriptors were then modelled as a vector of terms.  

iii)  Terms Weighing  

Terms Weighting or sometimes referred to as Weighting Schema is the mechanism 

used to assign different weights to terms based on its occurrences in the document 

(Falessi et al., 2010), in which 𝑡𝑓𝑖𝑑𝑓 term-frequency-inverse-document frequency being 

mentioned in S8, S9, and S10. For example, in S9, 𝑡𝑓𝑖𝑑𝑓 was used to assign the 

frequency of terms to occur in a processed document that would later be fed into the 

clustering algorithm.  

iv)  Similarity Metrics 

Similarity Metrics refer to a specific formula used to compute the fraction of 

common words between two text fragments. A wide variety of measures can be used to 

group similar texts. Falessi et al. (Falessi et al., 2010), (Falessi et al., 2013) categorised 

the Similarity Metrics into two categories: Vector Similarity Metrics (Dice, Jaccard, & 

Univ
ers

ity
 of

 M
ala

ya



 

 

39 

Cosine) and WordNet Similarity Metrics. None of the selected studies mentioned the 

use of Jaccard. Cosine Similarity Metrics were used in S1, S10, and S11. S1 reported 

using Cosine Similarity Metrics to detect similar requirement text and classes. Choosing 

different similarity measures may affect the quality of clustering common features. For 

further reference, the effects of choosing different similarity measures in clustering 

problems can be found in (Huang, 2008) and (Cui, Potok, & Palathingal, 2005). 

v) NLP tools 

Few selected studies mentioned using the open source NLP tools provided by 

Stanford NLP5 (S8 and S11) while S2 used OpenNLP6. Extracted nouns were 

considered as candidate features, which can be further refined by the requirements 

engineer. Bagheri et al. in S11 used Stanford Name Entity Recogniser to train the NER 

model that was provided by The Stanford NLP Group for it to label features and 

integrity constraints (Bagheri, Ensan, & Gasevic, 2012). Additionally, the NLP Toolkit 

provided to aid with Python programming is mentioned by S13 during the text 

preprocessing stage. NLTK Toolkit is an open source platform used to build Python 

programmes that deal with human language data. The tool provides easy-to-use 

integration to suite text processing for classification, tokenisation, stemming, tagging, 

parsing, semantic reasoning, and more.7 

vi) Thesaurus-based 

                                                

5 http://nlp.stanford.edu/software/index.shtml 
6 https://opennlp.apache.org 
7 http://www.nltk.org 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

40 

WordNet is an example of a thesaurus-based variant of algebraic model capable of 

handling a large collection of synonyms to compare terms. The purpose of WordNet is 

to function like thesaurus and dictionary, and it may be used as a knowledge base of 

individual words semantically (Falessi et al., 2013). WordNet was used in S11 and S13. 

S11 proposed a decision support platform during domain engineering phase to perform 

NLP tasks over domain documents and help domain analysts to identify domain 

information. This approach employed Name Entity Recogniser (NER) to identify 

features and integrity constraints from domain documents: features and integrity 

constraints were labelled accordingly to form the annotated document. Features 

identified were cross-referenced with term definitions provided by WordNet (Bagheri et 

al., 2012). This way, annotated features inside the documents would be interrelated with 

the concepts from the widely used and well-understood source. This approach employed 

the semantic annotations of the identified features to create feature graphs. Features that 

were similar to each other were placed close together, while those not in common were 

placed as far as possible. The distribution of these features on the graph would aid the 

analysts to identify the most related features. This visualisation of feature is able to form 

clusters of features and help analysts during the design of a domain model. The final 

step in this approach is to integrate the annotated domain documents and the 

visualisation graph into the MediaWiki format for easy collaboration among analysts. In 

S13, Guzman and Maalej used WordNet lemmatiser from NLTK to group different 

inflected forms of words with similar part of speech tags (semantically equal but 

syntactically different) (Guzman & Maalej, 2014). This step reduces the number of 

feature descriptors that needed to be inspected at later stages.   

Univ
ers

ity
 of

 M
ala

ya



 

 

41 

(b) Extracting Common Features: Clustering approaches and more 

This SLR has also identified proposals from the selected studies that used other than 

NLP techniques to extract features from textual requirements. The approaches included 

various clustering algorithms, for example Hierarchical Agglomerative Clustering, K-

Means, K-Medoids, and Fuzzy K-Means (see Table 2. 1). Other approaches that are 

beyond clustering such as Latent Dirichlet Allocation, Propositional Logic, and more 

are also listed in Table 2.7. 

 
Table 2-7  List of Feature Extraction Approaches 

Clustering Approaches Paper(s) 

Hierarchical Agglomerative Clustering  S6, S4 
Incremental Diffusive Clustering S8,S10 
K-Means, K-Medoids S9, S10 
Fuzzy K-Means S8 
Miscellaneous Approaches Paper(s) 
Latent Dirichlet Allocation S10, S13 
Propositional Logic S7 
Contrastive Analysis S3 
Rule-Based Mining	   S9 
Association Mining	   S8 

 
Hariri et al. (2013) in S8 used data mining approach to find common features across 

products and also relationships among those features. An incremental diffusive 

clustering, IDC algorithm, was used to extract features from online product listings. 

Association mining was applied together with k-nearest neighbour machine learning 

method to analyse the relationships among features and make recommendations during 

the domain analysis process. The end results were a set of recommended features, which 

could be supplied to the requirements engineering process to help project stakeholders 

to define features for specific product lines.  

Univ
ers

ity
 of

 M
ala

ya



 

 

42 

Chen et al. (2005) in S6 manually constructed requirements relationship graph from 

various requirements specification documents. Hierarchical clustering was also used in 

their work to merge requirements into feature trees. Unfortunately, the paper did not 

provide a detailed description on how this is obtained. Furthermore, this approach 

required heavy manual human involvement.  

Latent Dirichlet Allocation (LDA) is a probabilistic distribution algorithm which 

uses Gibbs sampling to assign topics to documents. LDA was used in S10 (Yu, Wang, 

Yin, & Liu, 2013), together with an improved HAC algorithm to identify similar social 

feature elements from open source-based software repositories such as Sourgeforge.net, 

Softpedia.com, Onloh.com, and Freecode.com. The hidden relationships among the 

extracted features were mined and a recommender system was proposed to recommend 

relevant features to stakeholders. Students were asked to evaluate the questions. The 

findings from HESA reported achieving a reasonable precision (reasonable elements in 

a cluster) and relatively low deviations (performance across different domains, in this 

case they used Antivirus, Audio-Player, Browser, File Manager, Email, and Video 

Player during the testing). Additionally, LDA also appeared in Guzman and Maleej in 

S13 (Guzman & Maalej, 2014) to group features that tend to co-occur in the same user 

reviews of various mobile apps.  

(c) Extracting Variant Features 

Not many works mentioned explicitly how variant features were extracted from NL 

requirements. This makes it hard for us to classify the approaches used in extracting 

variant features. Indirectly, features that were not classified or clustered were somehow 

regarded as variant features. For example, Kumaki et al.  (2012) in S1 used VSM to 

determine the common or similar features, and manually determined the variant 

Univ
ers

ity
 of

 M
ala

ya



 

 

43 

(leftover) features. In S3, Ferrari et al. (2013) identified conceptually independent 

expressions (i.e. terms) through POS Tagging, Linguistic Filters (filtering terms with 

adjectives and nouns), and lastly identifying C-NC Value that computed term hood 

metric. Then, Contrastive Analysis was applied to select the terms that were domain-

specific. If a term is domain-specific and appears in all of the documents, it is more 

likely to be categorised as a common feature. If a domain-specific term appears in some 

of the documents of the different vendors, but not in all documents, it is more likely be 

considered as a variant feature. Variant candidates are identified as 

V={C1∪C2…∪Cn}\C. In order to do that, human operator is needed to assess the 

relevancies for each of the variant candidates. Meanwhile, in S5, the authors described 

EA-Miner tool to detect and flag words that may denote the presence of variability. The 

enumerators like “such as, like, as follows, etc.” and words about multitude like 

“different, various, etc.”, may denotes the presence of alternatives in requirements text. 

EA Miner provides clues on how each extracted features can be reviewed against the 

textual clues on variability (Weston et al., 2009).  

Archer et al. (2012) in S7 proposed an automated process, language, and support tool 

to extract variability for a family of product from product descriptions on public data 

(Acher et al., 2012). VariCell, the developed language, was proposed to extract features 

from the product line descriptions represented in a tabular form into a hierarchical form 

of feature model. An experiment was conducted that looked at eight different Wiki 

engines that form a family of product. Their aim was to build a model for this product 

line that represents the commonalities and variabilities of those eight Wiki Engines. 

VariCell allowed the parsing, scoping, organising, and transforming product 

descriptions into a set of feature model. Product descriptions were extracted into tabular 

form, employing Comma Separated Value (CSV) format, with some user involvement. 

Univ
ers

ity
 of

 M
ala

ya



 

 

44 

Five variability patterns were found: mandatory, optional, dead feature, multivalue, and 

real value. 

Ebrahim et al. (2012) in S11 trained the NER model that was provided by the 

Stanford NLP group for it to label features and integrity constraints, but did not offer an 

approach that would extract the structural relations between the features (i.e. type of 

variant features: alternatives or optional). It still remains as a challenge within a NLP 

approach to automatically classify variant features by only performing NLP 

programming. 

S2 and S9 transformed the extracted semantic cases into Orthogonal Variability 

Model to show the variant features. The results indicated that EFRF extraction in S9 can 

extract EFRFs to help generate the functional variability models and save manual 

efforts. However, this demand further explanation on how it can be done as the paper 

did not further elaborate on how to handle variants feature extraction. 

2.4.8.3 RQ1.2: Are there any support tools available?  

It is not easy to precisely categorise the approach to whether they have provided any 

support tools or not. Most studies were implicitly reported to provide semi-automated 

tools, in which at least the text preprocessing and clustering of features used automated 

approaches. This could be due to most approaches were validated in experimental or 

research settings, in which most likely tools provided are not fully automated. We only 

identified six studies to have named their support tools: ARBOCRAFT (S5), VariCell 

(S7), CoSS (S8), HESA (S10), AUFM (S11), and MIA (S12). The rest were mentioned 

as approaches only, with no specific tool names given. 

Univ
ers

ity
 of

 M
ala

ya



 

 

45 

2.4.8.4 RQ2: How was the evaluation being performed against the proposed 

approach? 

The second objective of this review is to assess the quality of the mechanism used in 

evaluating the approach proposed in the selected studies. For this, we will report on the 

context, subjects, evaluation procedures, and measures used in the evaluation. In 

addition, this section also reports the domain application involved in the studies. 

(a) Evaluation context 

Out of the 13 studies selected, seven studies reported having evaluation done in the 

industrial settings: S3, S4, S5, S7, S8, S9, and S11. The remaining six were done in 

academia: S1, S2, S6, S10, S12, and S13. Figure 6 indicates these distributions.  

 

 

 

 

 

 

 

 

Figure  2.6 Evaluation context 

Most of the studies were done for research purposes from the industrial or academic 

settings, or as a joint research-industry work. From the 13 selected studies, five studies 

were reported having the actual practitioners’ involvement during the evaluation. Four 

studies used students as the evaluators and the remaining used researchers as their 

evaluators. As for collaborative work, five studies reported having researchers–

Univ
ers

ity
 of

 M
ala

ya



 

 

46 

practitioners’ collaboration and four studies reported the collaboration between students 

and researchers. Figure 2.1 illustrates the summary of this result. 

 

Figure  2.7 Evaluators 

(b) Evaluation Method 

The majority of the selected studies employed quantitative method while evaluating 

their proposed approach with experiments to be the most popular method (S1, S2, S3, 

S4, S6, S7, S8, S9, S11, and S13), followed by case studies as reported in S2 and S5. 

Additionally, expert opinion was used in S2 through semi-structured interview as an 

additional effort in measuring the validity of their experiment. Feature extraction 

approach in S12 was employed and tested at an automotive industry, the Daimler 

Chrysler. 

(c) Measure Used 

In Software Engineering research, metrics are useful to improve software 

productivity and quality. Apart from having experiment or case studies, the use of 

software metrics in evaluating the performance of proposed approach is essential too. 

However, not all the selected studies in this review reported using software metrics in 

evaluating their approach. Table 2.8 details out the metrics used by eight studies. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

47 

Table 2-8 Measure Used in Selected Studies 

Metrics List of studies 
Purity8 S8 
Entropy9	   S4, S10	  
Recall and Precision10	   S2, S8, S9, S10,S11,S12, S13	  
F-measure	   S9, S10, S11, S12, S13	  

 
Purity is calculated by comparing the clusters generated by the algorithm to the 

answer set clusters. Each cluster generated is then matched with the set clusters with 

which it shares the most descriptors (Hariri et al., 2013).  Purity is measured as: 

𝑃𝑢𝑟𝑖𝑡𝑦 𝑤, 𝑐 =   
1
𝑁

𝑚𝑎𝑥!
!

𝑤! ∩   𝑐!  

Let  w = {w1,w2,…,wn} be the set of clusters found by a clustering algorithm. 

        c = {c1,…cj} be the set of classes 

 

Purity may take values between 0 to 1 with a perfect clustering solution having a 

purity value close to 1, and a poor clustering solution holding a value close to 0. In the 

context of this SLR, S8 reported employing purity together with Recall and Precision in 

their work. 

Entropy is a measure of the average information content one is missing when one 

does not know the value of the random variable. Entropy is measured as: 

𝐻 =   −    𝑃𝑖
!

!!!

log! 𝑃𝑖 

                                                

8 C.D. Manning, P. Raghavan, and H. Schutze, “Introduction to Information Retrieval”. Cambridge Univ. Press, 2008. 
9 Shannon, Claude E. (July-October 1948). “A Mathematical Theory of Communication”. Bell System Technical Journal 27(3): 

379-423. doi:10.1002/j.1538-7305.1948.tb01338.x. 
10 Source: http://en.wikipedia.org/wiki/Precision_and_recall 

Univ
ers

ity
 of

 M
ala

ya



 

 

48 

The index H equals 0 in the case of perfect clustering and log k in the case of 

maximum heterogeneity (dissimilar). From the 13 selected studies, S4 and S10 reported 

using this measure in their research. 

Precision is the probability that a (randomly selected) retrieved document is relevant. 

Recall is the probability that a (randomly selected) document is retrieved in a search. F-

measure is a metric that combines recall and precision. Observing results in Table 2.11, 

Recall and Precision, and its variation the F-measure were reported to be the most 

popular metrics used by the selected studies.  

Other works reported the use of cost estimation and man hours (S1, S3), comparing 

the result produced by the algorithm and manually produced by experts (S5), time 

complexity, and cluster quality with independency metric (S6) in their evaluation. 

(d) Application domain 

Selected studies were tested in various application domains including auto marker 

assignment (S2, S9), Robot Design Contest (S1), Antivirus Products (S10), 

Transportation (S2, S3), Media Wiki (S7), Smart Home (S4 and S5), MobileApps 

(S13), and Library Management Systems (S6).   

 Discussion 2.5

This section firstly presents a discussion on the implications of this study (Section 

2.5.1). Later in Section 2.5.2, the author presents a discussion on the reduction in the 

number of selected studies in this article when comparing with other related work 

followed by a discussion on the threats to validity in Section 2.5.3. 

2.5.1 SLR Study Implications 

This section discusses the implications made from the literature study conducted. 

Univ
ers

ity
 of

 M
ala

ya



 

 

49 

2.5.1.1 SRS documents as the main input to the extraction process 

SRS or Requirements documents were found to be the most frequently used input to 

the feature extraction process. Product line requirements define the product lines 

together with the features and constraints of those products. Most features are high-level 

functional requirements. Thus, more than one feature can be found by extracting key 

terms from the functional requirement documentation. As compared to using product 

descriptions from publicly available brochures, SRS documentation is more structured 

and may consist of technical details because it is meant to be read by the development 

team, while product description from publicly available brochures is more general in 

nature as it is intended for potential customers. The nature of SRS documentation 

allows easier feature extraction process. Commonly, SRS for earlier products were 

already tested and underwent several refinement phases and thus the risk of including 

NL ambiguity may be reduced. The nature of SRS documentation sentences which 

specifies the verb (functionality) and object makes it easier for feature extraction 

process, as features are defined as end-user’s visible characteristics of a product (K. 

Kang et al., 1990). The popular usage of SRS documentation in feature extraction area 

might imply the adoption of systematic process of reuse such as extractive adoption 

model (Krueger, 2001) as a means to extract the core assets from existing software 

assets (in this case, the SRS documentation being the software assets). 

Although detailed description from SRS documentation is good for feature 

extraction, SRS documentation is not easily accessible by everyone due to the company 

privacy or copyright issues. This SRS unavailability and inaccessibility can be the 

contributing factors to the lower number of publication in the RR research area. In fact, 

this is reported in (Bakar & Kasirun, 2014). In case where SRS documents are not 

available, product descriptions from brochures and user comments were used as 

Univ
ers

ity
 of

 M
ala

ya



 

 

50 

alternatives to extract common and variable features for a product line as appeared in 

selected studies in recent years (Davril et al., 2013), (Yu et al., 2013), (Acher et al., 

2012), and (Guzman & Maalej, 2014). 

2.5.1.2 Feature extraction approaches were done in phases and supported with 

semi-automated tools 

As an overall picture from reviewing the selected studies, the feature extraction 

process for reuse of NL requirements can be separated into four phases: Phase 1: 

Assessing the Requirements, Phase 2: Terms Extraction (Tokenisation, POS Tagging, 

and Stemming), Phase 3: Features Identifications and Phase 4: Formation of Feature 

Model. The overall feature extraction process for RR is depicted in Figure 2.8 and its 

details pertaining to input, process, and output is presented in Table 2.12. This process 

can be interpreted as taxonomy since it provides detailed granularity on the available 

processes and approaches, which is are very useful for practitioners and researchers 

interested in this area to guide future research, development, and implementation.   

 

 

 

 

 

 

  

Figure  2.8 Feature extraction process for requirements reuse 

Most primary studies proposed at least semi-automated tools for Phase 3 and Phase 

4, with Phase 1 to be done manually. Requirements in the form of product descriptions, 

Univ
ers

ity
 of

 M
ala

ya



 

 

51 

brochures, or online customer comments may be automatically scraped using open 

source scraping tools available on the Internet. On the other hand, legacy documents 

from similar systems can be retrieved manually by requirements analyst prior to term 

extraction process. As for Phase 2, term extractions were mostly done using automated 

process available from NLP. 

Many selected studies used POS tagging (e.g., S2, S3, S8, S9, and S11) for term 

extraction with the openly available tools such as StanfordNLP, OpenNLP, or NLP 

Toolkit. Phase 3 is subdivided into two smaller phases: Similar Requirements 

Identification and Clustering of Common and Variant Features. Similar requirements 

can be determined by using the LSA (S1 and S4) or VSM (S4 and S5). 

Table 2-9 Input, Process, and Output for Feature Extraction Process 

Phase Input Process & Tools (if 
available) 

(A=Auto, S=Semi-auto, 
M=Manual) 

Output 

1:Assessing 
Requirements 

Product 
Descriptions, 
Brochures, Legacy 
Requirement 
Documents, Use Case 
Descriptions, User 
Comments 

Scraping (A), Search and 
Retrieving (S), Copying and 
Pasting (M) 

Tools: Open source scrapping 
tools available on the Internet 

Domain-Specific 
Documents or 
Collection of Natural 
Language 
Requirements 

2: Term Extractions Collection of 
Domain Specific 
Requirement 
Documents 

Text preprocessing (A),  
Terms-Weighting (A) 
Tools: Stanford NLP (A), 

OpenNLP (A), NLTK Toolkit (A) 
Thesaurus-Based: WordNet 

(A) 

Terms-
Documents-Matrix, 

Keywords, 
Nouns, Verbs, and 
Objects 

3:Feature 
Identifications 

Terms-Documents-
Matrix, 
Keywords, Nouns, 
Verbs, and Objects 

Similar Requirements 
Identification (S), 
Approach: LSA (S), VSM (A) 

 
Clustering of Features (S) 
Approach: Clustering Techniques 

Document Similarity 
Distance 

 
 

Clusters of Features 

4:Formation of 
Feature Model 

 

Clusters of Features C & V Analysis (S) Feature Trees/Models 

 

The problem found with using VSM was that this approach ignored the semantic 

meaning of the identified features and thus some other significant features might be 

ignored. This problem was addressed by LSA by providing the semantic matching (that 

Univ
ers

ity
 of

 M
ala

ya



 

 

52 

includes polysemy and synonymy) with LSA to provide the matching with items from 

similar domain. However, LSA might ignore some significant features due to the noise 

reduction while applying the Singular Value Decomposition algorithm and thus human 

intervention is definitely still needed during the feature extraction process. Limitations 

of LSA that were mentioned in (Hoenkamp, 2011) included scalability issues and LSA 

did not recover optimal semantic factors as it supposed to, resulting in more proposal to 

enhance the LSA algorithm. To improve similar requirements identification, some 

studies proposed clustering algorithm used in Information Retrieval area such as 

Incremental Diffusive Clustering or IDC (as appeared in (Hariri et al., 2013)), Centroid-

based clustering (Casamayor, Godoy, & Campo, 2012; Davril et al., 2013; Yu et al., 

2013)), K-means clustering (as appeared again in S9 and S10), integrating Hierarchical 

Agglomerative Clustering (HAC) in S6 and S4, Latent Dirichlet Allocation (LDA)in 

S10 and S13, and more.  

As for Phase 4, among the selected studies, research effort on formation of feature 

tree or models are explicitly discussed in S4, S5, S6, S7, and S8.  

2.5.1.3 The evaluation metrics and evaluators 

The use of software metrics primarily serves to provide quantification on the entire 

reuse process, such as gauging the efficiency or productivity of a process, finding 

defects, or even estimating costs. From the selected studies, eight mentioned about 

quantitatively measuring their proposed approach by using either Purity, Entropy, 

Recall and Precision, or F-measure. Recall and Precision was reported to be popular 

among all selected studies. Although it is easy to implement, measuring recall requires 

certain conditions. User needs to determine the actual relevant records that exist, 

however most of the time, recall is estimated by identifying a pool of relevant records 

Univ
ers

ity
 of

 M
ala

ya



 

 

53 

and then determine what proportion of that record exists, which may require manual 

human judgements. In order to adopt suitable metrics for the problem context, one 

should consider looking at the purpose, scope, attributes, scale of the measure, and 

result expected from the measures used (see guidelines provided by the IEEE for details 

on software metric criteria). Additionally, the use of Goal Question Metrics, GQM by 

Basili (Basili & Rombach, 1994) is essential for the same purpose. Since no dedicated 

RR metrics were proposed, future research on suitable metrics in the context of RR for 

SPLE would be an interesting opportunity to explore. Similarly, issues on measuring 

variabilities and metrics on performance of variability techniques have been recently 

highlighted in (Metzger & Pohl, 2014) as open research challenges. More discussions 

on handling and measuring variability will be presented in Section 2.5.1.5 of this 

chapter. 

Pertaining to subjects used or the evaluators in the evaluation, all studies involve 

researchers (researchers or research students) as the evaluators in the evaluation (see 

Fig. 2.7). This may introduce bias towards the evaluation results. Since the researchers 

already informed about the proposed approach, time taken for them to use the approach 

might be lesser as compared to real practitioners. Ideally, evaluation subjects should be 

addressed to the actual practitioners. However, it is understood that research-industry 

collaboration requires additional effort, while most researchers which are postgraduate 

students tend to have very limited time frame in their research. 

2.5.1.4 Practitioners’ guidelines and support tools 

A question in the Quality Assessment have been included pertaining to the 

availability of practitioners’ guidelines in the selected studies. The importance of having 

practitioners’ guidelines for RR had been highlighted in (Lam et al., 1997) back in 

Univ
ers

ity
 of

 M
ala

ya



 

 

54 

1997. Although most studies described the methodology used in their work, none has 

reported to implicitly produce practitioners’ guidelines. This could be due to the 

research carried out has not reached the appropriate maturity level at the time the work 

was published. Additionally, this finding confirms an earlier observation of lack of 

practitioners’ guidelines for SPLE of which RR is an important aspect, as reported for 

the period of 1990 to 2009 in (Alves et al., 2010).   

Pertaining to support tools, most studies did not clearly mention whether they have 

produced support tools that were made available publicly. Some feature extraction 

approaches produced resulted from the fundamental research experiments and no actual 

tools were produced, instead a theoretical experimentation was set up for research 

purpose only. Some other tools were made for research purposes and no longer 

maintained at the moment this paper is written, thus making it less convenient for 

researchers to explore or for practitioners’ adoption.   

2.5.1.5 Automated variant features extraction remains as a challenge 

Selected studies indicate how to extract common features from the requirements by 

using approaches from NLP, IR, or even hybrid approaches. Relationships between 

identified features may provide some information on variability. Additionally, textual 

requirements express variability by certain keywords or phrases, but this may introduce 

ambiguity (Pohl et al., 2005). The process of variant identification either requires 

manual intervention or some approaches use too complex calculations and algorithms. 

Moreover, very limited demonstration or support tools were made available publicly, 

making automated variant features extraction from NL requirement remains as a 

challenge.  

Univ
ers

ity
 of

 M
ala

ya



 

 

55 

To minimise this, requirements variability needs to be expressed either through 

explicit variability modelling or developers need to use the model-based requirements, 

which reflects why most of the selected studies use feature models or Orthogonal 

Variability Models (OVM) when handling requirements variability. This is why feature 

models were reported to be the most frequently reported notation in the industry when it 

comes to handling variability. Moreover, the popular usage of feature models (instead 

of textual-based) when it comes to handling variability partially indicates why we have 

less number of selected studies. 

Prior to transforming features into feature models, for example, experimental settings 

in S1 and S3 used subsets formula to help identify variability candidates. S2 and S10 

mentioned transforming extracted functional requirements profile into OVM such as the 

use of XML tags. S6 derived variability information from product descriptions based on 

patterns, whereas patterns were used to guide the selection of variant features in S7 and 

S8.  

A SLR conducted by Chen and Babar in 2011 (L. Chen & Ali Babar, 2011) reported 

that a large majority of the variability approaches are based on feature modelling or 

UML-based techniques, and only small number reported on the mechanism of 

expressing variability through mathematical notations, natural languages, or domain 

specific language. Additionally, many methods for handling variability (in common) 

suffer from lack of testing. This was mentioned earlier in this chapter and also reported 

in a recent SLR publication in 2014, pertaining to variability in software systems 

(Galster, Weyns, Tofan, Michalik, & Avgeriou, 2014).  

Allowing other researchers in the area to understand the variability handling 

approaches properly by providing the details of the research design in publications or 

Univ
ers

ity
 of

 M
ala

ya



 

 

56 

manuals will definitely make the studies more attractive to practitioners and open up 

rooms for future improvements and research explorations. Lastly, more empirical 

experiments should be conducted not only to increase the validity of the proposed 

variability handling approach, but to address the actual practitioners’ needs in this area.   

2.5.2 The reduction in number of selected studies 

Thirteen studies ranging from 2005 to 2014 were selected in this review, a 

considerably lower number of selected studies comparing to the related reviews in 

SPLE area mentioned in Section 2.2. Review by (Alves et al., 2010) included 49 papers 

focusing on requirements engineering approaches for SPL and 89 studies were selected 

as primary studies when reviewing about domain analysis approaches in (Khurum & 

Gorschek, 2009). Benavides in (Benavides, Segura, & Ruiz-cort, 2009) included 53 

studies when reviewing about automated feature modelling while the authors in (L. 

Chen & Ali Babar, 2011) selected 97 studies when reviewing about variability 

management approaches. Hence, the number of selected studies in our review is small 

when comparing to other related reviews (Alves et al., 2010), (Khurum & Gorschek, 

2009), (Benavides et al., 2009), and (L. Chen & Ali Babar, 2011). This is because our 

focus is only towards feature extraction approach that deals with requirements from NL 

documents: a subset of RR topic in SPL. We disregard the studies on feature extractions 

from model-based mentioning RR, for example work in (Monzon, 2008), (Knethen et 

al., 2002), and (Robinson & Woo, 2004). We also excluded the studies regarding 

extractions of source code such as in (Marcus & Maletic, 2003) or selection of 

components for reuse in SPL (Abraham & Aguilar, 2007), or RR through pattern 

(Renault, Mendez-Bonilla, Franch, & Quer, 2009). A literature review section in 

another published paper related to RR provided only seven studies (Barreto et al., 

2013). RR is a part of Requirement Engineering activity in SPL and RR also is truly one 

Univ
ers

ity
 of

 M
ala

ya



 

 

57 

of the many activities within Domain Analysis (Neighbors, 1984). This justifies the 

reduction in the number of selected studies in our review, which is only 13, when 

comparing to other related reviews that focus on a bigger scope of research in SPL such 

as domain analysis, requirements engineering in SPL practices, or feature diagramming 

and modelling in SPL. 

2.5.3 Threats to validity 

The results of this SLR might have been affected by certain limitations such as 

inaccuracy in data extractions, bias in the selection of primary studies, and inaccuracy in 

assigning scoring to each study for the quality assessment criteria. To minimise the bias 

in data extraction and QA assessment, the second author selected about 20% of the 

selected studies and filled in the appropriate data collection forms. The accuracy of 

assigning scores to the selected studies on quality assessment criteria was very 

subjective. For example, some of the studies did not explicitly mention the strategy 

employed and required a very subjective judgement from the researchers. Any 

discrepancies found were discussed among the authors until a consensus is met. This 

SLR might have also missed out other feature extractions for reuse approaches that have 

been patented and commercialised but have not been published in literature, possibly 

due to privacy or copyright reasons. The issue of bias in study selection is addressed 

through multiphase search approaches (online database, snowballing, and manual search 

on targeted journals and conferences) that help to minimise the possibility of missing 

evidence. 

Summary 

RR if done systematically will increase the efficiency and productivity in SPLE. 

Although various approaches have been reported in this area, there was no attempt to 

Univ
ers

ity
 of

 M
ala

ya



 

 

58 

systematically review and synthesise the evidence of how to extract features from NL 

requirements for reuse in SPLE. To fill this gap, a systematic literature review for 

feature extraction approaches from NL requirements for reuse in SPLE was conducted. 

Thirteen primary studies are selected resulting from searching the literature through 

three main phases: automated database search, complimentary citation-based search, 

and manual target search. The inclusion and exclusion criteria for selecting the primary 

studies were outlined, which were meant to answer the main SLR’s research questions.  

The main research questions were answered, and importantly the result is presented 

in this chapter. The main findings from this SLR include the following: i) SRS 

documents followed by product descriptions were found to be the most frequently used 

input for the feature extraction process, while most of the approaches derive the feature 

trees or models as output; ii) Most feature extraction processes are done in four primary 

phases: assessing requirements, terms extractions, feature identifications, and formation 

of feature model; iii) Although many approaches were well-documented in research 

publications and received high scores in the quality assessment conducted, none of the 

selected studies has explicitly produced any practitioners’ guidelines and thus 

confirming the earlier observation of lack in practitioner’s guidelines for SPLE (Alves 

et al., 2010) in which RR is an important aspect to be considered; iv) This SLR revealed 

that limited software metric approaches were used in conjunction with experiments and 

case studies as part of the evaluation procedures; and v) Not many studies produced 

automated support tools that are made available publicly. 

The findings of this SLR are believed to be an important contribution to the 

practitioners and researchers as it provides them with useful information about the 

different aspects of RR approaches. For practitioners, this SLR has categorised the 

Univ
ers

ity
 of

 M
ala

ya



 

 

59 

process for features extraction from NL requirements into phases with detailed 

information on what approaches are available for adoption in each phase, including 

some information on tools that are available from open sources. For researchers, the 

lower number of selected studies in this SLR indirectly indicates that a lot of research 

work need to be done in this area. The popular publication venues gathered from our 

searches can be useful information for those who want to further perform literature 

review on RR. Our observation in this study as well highlights the areas, which needed 

immediate attention for future collaboration between researchers and practitioners, 

mainly on who can use the proposals from academia. Moreover, the summary of 

domain information reported in this study may provide significant information to 

researchers and practitioners regarding the needs to extend the applicability of feature 

extraction approach to various other domains in SPLE.   

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

60 

CHAPTER 3: RESEARCH DESIGN 

Introduction 
 

The first problem statement as specified in Chapter 1 stated that reusing requirements 

in natural language (textual) form can be arduous, complicated, time consuming, labor 

intensive, decrease productivity and exposed to the risk of errors if carried out 

manually. Secondly, the state of practice for this area is not known.  Thirdly, there are 

missing guidelines, taxonomy or even process model for the overall process for feature 

extraction in requirements reuse to guide researchers or practitioners in this area.  

Although a number of proposals have been reported in literature, there are mostly 

publications resulting from research proposals that are not empirically validated and 

reported.  Therefore, this research aims to investigate the requirements reuse problem 

and propose a suitable solution to it. This chapter provides the explanation mainly on 

how the research is conducted and what activities are involved in order to answer the 

research questions specified earlier in Chapter 1.  

 Formulating the Research Design 3.1

In scientific research, research design is defined as “a blueprint for conducting a 

study with maximum control over factors that may interfere with the validity of the 

findings” (Burns and Grove, 2003).  A research design should typically consists of how 

data to be collected, what and how selected instruments to be used and how the data 

analysis will be conducted.  Together with defining the design or methodology for this 

research, the strategies that constitute good research in software engineering as specified 

in (Shaw, 2002) is also considered. Shaw emphasised that a good research project 

should have benefit from a better understanding of the research strategies that have been 

most successful in terms of type of Research Questions being investigated, the type of 

Univ
ers

ity
 of

 M
ala

ya



 

 

61 

Results produced and the Criteria used in validating the result. According to Shaw, 

research questions can be asking about method of developing, analysing, designing, 

evaluating or implementing specific software systems.  The type of results produced by 

a research may be a specific procedure or technique in software development, or 

sometimes results can be the outcome of a specific problem or results from a particular 

analysis. Lastly, criteria for validating the results can be the actual use (experience) and 

systematic analysis.   In the following subsections, these three important elements of 

good research mentioned by Shaw will be described in terms of the current research 

settings.  

3.1.1 Type of Research Questions and Research Methods  

Table 3.1 revisited the main research questions posted in Chapter 1. Additionally, 

this table specifies what are the type of research questions being used and its research 

methods based on what being characterised by (Shaw, 2002).   

Table 3-1 Type of Research Questions 

RQ# Research Question Type of research 
question 

Research Method 

RQ1 What approaches are 
available to extract features 
from natural language 
requirements in the context 
of requirements reuse? 

Design, evaluation, or 
analysis of particular 
instance  

Literature Review 

RQ2 How does the existing 
approach being validated? 

Design, evaluation, or 
analysis of particular 
instance 

Literature Review 

RQ3 What is the current state 
requirements reuse practice? 

Design, evaluation, or 
analysis of particular 
instance 

Explorative Survey 

RQ4 Why requirements reuse is 
not that common among 
software practitioners 

Design, evaluation, or 
analysis of particular 
instance  

Explorative Survey 

RQ5 What is the proposed feature 
extraction process and how 
to demonstrate the solution? 

Method for 
development 

Experiment 

Univ
ers

ity
 of

 M
ala

ya



 

 

62 

RQ6 How is the proposed method 
being evaluated? 

Analysis method Validation 

 

The first four research questions in Table 3.1 relate best to the third type of RQ as 

characterised by (Shaw, 2002),  as “Design, evaluation, or analysis of particular 

instance”.  This type of question more specifically seek to answer questions such as 

“What is property X of method Y?” and “What is the current state of X / practice of 

Y?”. In case of this research, RQ1 until RQ4 can be answered through conducting a 

thorough literature review or a survey, or even by using both methods. The RQ5 in this 

research seeks to answer the question of “What is the proposed feature extraction 

process and how to demonstrate the solution?” This RQ type relates to the “Method of 

development”, which further explore on “How can we do/automate doing X?”, in which 

the researcher have proposed a FENL process model and conducted an experiment in 

order to answer this RQ. The RQ6 asks “How to evaluate the proposed approach?”  

This RQ type relates best to the “Method for analysis” as specified by (Shaw, 2002), in 

which further explore on “How can one evaluate the quality/correctness of X?” To 

answer this question, the researcher conducted a series of evaluation towards the results 

obtained from the experiments (Chapter 6). 

3.1.2 Type of Results Produced 

Research yields new knowledge, and the types of knowledge produced by research 

are expressed in the form of a particular results (Shaw, 2002).  From most common kind 

of paper published in ICSE, Shaw reported that most paper reports a new or better 

procedure or techniques for software development or analysis.  In this thesis, the results 

or knowledge produced by conducting the systematic literature review and explorative 

survey includes a detailed synthesise of evidence that forms the structure or taxonomy 

for the requirements reuse problem area (a process model for feature extraction is 

Univ
ers

ity
 of

 M
ala

ya



 

 

63 

presented in Chapter 2, as an implication of SLR conducted). Proposal for an improved 

feature extraction approach yields a defined procedure for solving the feature extraction 

problem. The process model and step-by-step procedure on implementing the feature 

extraction is specified in Chapter 5. This improved procedure exposes important design 

decision for the feature extraction in requirements reuse problem. 

3.1.3 Criteria Used in the Evaluation 

The most common kinds of evaluation reported in ICSE papers compiled in (Shaw, 

2002) are experience in actual use and systematic analysis.  In this thesis, the result 

from the experiment will be validated using the widely used metrics to evaluate the 

accuracy of : information retrieval that measures Recall, Precision and F-Measure 

(Cleverdon, 1970) and its time efficiency. Additionally, results from the accuracy 

evaluation will be validated for their significance using statistical method. 

 Research Phases and Research Activities 3.2

This research is divided into three phases: Problem Identification, Design of the 

Solution and the Evaluation. Figure 3.1 illustrates the Research Phases.  

In Phase 1, there are two main activities involved: reviewing literature and 

conducting explorative survey. In Phase 2, the solution to the feature extraction for 

requirements reuse problem is formulated and experiment is conducted to demonstrate 

the propose solution. This also includes conducting the manual extraction process. 

Lastly, in Phase 3 the proposed solution is evaluated. Results from manual approach are 

compared with the automated process and the performance averages are tested for 

significance.  The numbers circle in red in Figure 3.1 indicates the research objectives 

that are mapped to the activities in the research phases. Additionally, Table 3.2 outlined 

the research activities involved in order to satisfy the research questions, covering 

Univ
ers

ity
 of

 M
ala

ya



 

 

64 

specific research objectives mentioned earlier in Chapter 1. Each of the research phases 

will be further explained in the following sections of this chapter. 

Univ
ers

ity
 of

 M
ala

ya



 

 

65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.1 Research Phases 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

66 

Table 3-2 Research Phases and Detail Research Activities 

Phase Method Research Activities Objectives Covered 

Phase 1:  
Problems 
Identification 

a. Literature 
Review 

 

 
b. Exploratory 

Survey 

 

• Perform Systematic Literature 
Review in accordance to 
Kitchenham’s guidelines for 
performing SLR in Software 
Engineering research 
(Kitchenham & Charters, 2007). 
 

• Research on available literatures 
from the library online database 
pertaining to survey being 
developed in the area of software 
reuse/requirements reuse. 

• Select suitable survey elements 
for constructing Online Survey, to 
be distributed to software 
practitioners in the context of 
requirements reuse in Malaysia. 

• Distribute Online Survey to 
Software Practitioners in 
Malaysia. 

• Collect and analyse the survey 
responses. 

Objective#1: To identify 
available approaches in 
feature extraction from 
natural language 
requirements for 
requirements 
reuse.(Answers to RQ1-
RQ2) – Chapter 2 

 

Objective#2: To explore 
the current state of 
practice for 
requirements reuse 
among software 
practitioners.(Answers 
to RQ3 – RQ4) – 
Chapter 4 

 

 

Phase 2:  
Designing the 
Proposed 
Solution 

 

a. Formulation of 
process model 
based on SLR and 
survey results 

• Analyse the findings from Phase 
1. 

• Propose a process model for 
feature extraction and clustering 
in the context of RR for SPLE. 

Objective#3: To 
propose a feature 
extraction process as the 
solution to requirements 
reuse problem (Answers 
to RQ5) – Chapter 5 

 
b.   Experiments 

 

• Select applicable approach found 
in Phase 2 for experiment in this 
phase. 

• Extract raw requirements from 
online software reviews available 
on the Internet  

• Perform text preprocessing and 
data cleaning using NLP 
techniques. 

• Use Latent Semantic Analysis, 
and clustering algorithm to 
identify similar requirement 
documents. 

• Use clustering algorithm to group 
common software features 

• Use LSA to trace extracted 
features 

Phase 3:  
Evaluation of 
the Proposed 
Approach 

a.  Evaluation of 
experiment results  

• List out all evaluation methods 
used in related works.  

• Select suitable evaluation 
methods and evaluate results from 
Phase 2. 

Objective#4:  To 
evaluate the proposed 
approach (Answers to 
RQ6) – Chapter 6 

Univ
ers

ity
 of

 M
ala

ya



 

 

67 

3.2.1 Phase 1: Gather Research Problems 

Requirement Engineering is one of the most important phases for software development. 

The success of a software development relies most on the results produced by the Requirement 

Engineering phase. Simultaneously, SPLE methodology has proven to efficiently save the 

development time, in terms of reducing time to market, save the development costs and 

increase team productivity by leveraging the software reuse concepts. SPLE deals with reusing 

software artefacts namely the requirements, architectures, designs, test plans and more. Many 

works in SPLE has been devoted in terms of architectures and code reuse, but not many have 

focused on the reuse of textual requirements within the SPLE paradigm. To gather the research 

problems, the author started the literature search with two phrases from the above observations:  

“Software Product Lines” and “Requirements Reuse”.  The following subsection describes the 

process involves in obtaining the research problems: reviewing literatures and conducting a 

preliminary survey to confirm the research problems. 

3.2.1.1 Conducting Systematic Reviewing Literature 

The main aim of the conducted Systematic Literature Review is to find gap in existing 

literatures pertaining to the extraction of natural language requirements for reuse in the context 

of Software Product Lines. There are various approaches found from the existing literatures for 

the requirements reuse topic, however some were not selected because either the works did not 

fit within the context of Software Product Lines or the works did not deal with natural language 

requirements. A detail about inclusion and exclusion criteria for the Systematic Literature 

Review is presented in Chapter 2. To provide an overview for content of Literature Review 

conducted, a mind map in Figure 3.2 is prepared. 

Univ
ers

ity
 of

 M
ala

ya



 

 

68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.2 Mind Map for Systematic Literature Review 

Univ
ers

ity
 of

 M
ala

ya



 

 

69 

3.2.1.2 Conducting Exploratory Survey 

An exploratory survey is conducted to investigate the state of problem for requirements 

reuse. Studying related surveys in the area helps in formulating the survey questions. Only one 

article in IEEE (Chernak, 2012) was found to have reported a survey pertaining to requirements 

reuse in general. Additionally, article on surveys related to software reuse in general were also 

referred, for example (Agresti, 2011), (Slyngstad et al., 2006), (Mellarkod, Appan, Jones, & 

Sherif, 2007) and (Frakes & Fox, 1995). The selected articles are thoroughly reviewed, 

analysed and questions that are related to the current research objectives are adopted in the 

exploratory survey conducted for this research. This exploratory survey is distributed to 

software practitioners through emails with Google docs survey link. The detail about the survey 

conducted is presented in Chapter 4. 

3.2.2 Phase 2:  Designing the Proposed Solution 

Chapter 5 describes in detail the activities involves in Phase 2. Techniques from Natural 

language Processing and machine learning are used in the feature extraction process. 

Additionally, features extracted are grouped by using clustering algorithm.  The process model 

is realised through set of laboratory experiments on raw data extracted from the selected 

software reviews that are available on the Internet.  The implementation of feature extraction is 

made possible with Python 2.7 compiler, Matlab 2011R and Miscrosoft Excel.  

3.2.3 Phase 3:  Evaluation of the Proposed Approach 

One of the main research problem specified earlier in this chapter is the lack of empirical 

validations among the related works published in this area. As a way to contribute to the 

software engineering community, validation towards the results produced by the proposed 

Univ
ers

ity
 of

 M
ala

ya



 

 

70 

procedure is done by comparing the features obtained by the proposed approach as compared to 

the result extracted manually by human in terms of recall, precision and F-Measure (accuracy) 

and comparison of time taken by human versus the time taken by the auto-generated approach. 

Eight teachers (as the subject matter expert), and eleven software practitioners (as a 

professionals with technological background), are engaged to perform manual feature 

extractions. This manual extraction procedure was adopted from suggestion made in (Carreno 

& Windbladh, 2013). Adding to accuracy measure, statistical measure is used to determine the 

result significance, where One Way ANOVA test in SPSS is used. The details of the evaluation 

process together with its discussions are detailed out in Chapter 6.  

Summary 

This chapter describes the Research Design used in this study, and Figure 3.1 provided the 

earlier summarised phases of this research. Next, in Chapter 4 the exploratory survey is 

reported.  

 

 

 

  

Univ
ers

ity
 of

 M
ala

ya



 

 

71 

CHAPTER 4: EXPLORATORY SURVEY ON THE STATE OF REQUIREMENTS 

REUSE 

Introduction 

Reuse of software artefacts such as requirements, architectures, designs, codes, and test 

plans can produce many benefits including reducing development costs, increasing developers’ 

productivity, and expediting time to market. This is true especially when reuse is considered 

early during software development. Despite the known benefits of requirements reuse, the 

current state of practice is not known or well studied by the software engineering community. 

In this chapter, a survey conducted to explore the state of requirements reuse practice is 

reported.   

This chapter is structured as follows: Section 4.1 discusses related surveys generally in the 

area of Software Reuse and Section 4.2 describes the design for exploratory survey conducted. 

Later, Section 4.3 discusses the findings from the survey and Section 4.4 presents the threats to 

validity for the conducted survey, and lastly a summary to the chapter will be provided. 

 Related Surveys 4.1

In 1995, an empirical study was conducted to investigate the software practitioners’ 

attitudes, beliefs, and practices in reusing codes and other software development artefacts 

(Frakes & Fox, 1995). In this study, Frakes et al. (1995) conducted a survey to answer sixteen 

common questions about software reuse in organisations within the US and Europe. The 

participants include software engineers, managers, educators, and other software development 

and research communities. Important findings from their survey revealed factors promoting 

systematic reuse include education about reuse, developers’ understanding of the economic 

Univ
ers

ity
 of

 M
ala

ya



 

 

72 

benefits of reuse, instituting common development process, and making high-quality assets 

available to developers.  

Slyngstad et al. investigated the developers’ view on software reuse through a survey 

conducted at Norway’s Oil and Gas company in 2006 (Slyngstad et al., 2006). The study 

collected responses from 16 software developers at Statoil ASA. The results showed that reuse 

benefits from the developers’ view include lower costs, shorter development time, higher 

quality of reusable artefacts, and a standardised architecture. Component understanding was 

found to be sufficient; however, an improvement to documentation is needed. In addition, they 

have found that there is no relation between reuse and increased rework. 

Mellakord et al. conducted a study on multilevel analysis of factors affecting software 

developers’ intention to reuse software assets in general (Mellarkod et al., 2007). The survey 

was administered to 50 companies in India back in 2007. Technology Acceptance Model 

(TAM) from (Davis, Bagozzi, & Warshaw, 1989) was used in developing their conceptual 

research model. Results from (Mellarkod et al., 2007) revealed that technological-level 

(infrastructure) and individual-level (reuse-related experience and self-efficacy) were major 

determinants. In addition, the findings suggested that more investigation is needed on 

nontechnical factors (i.e. prevailing attitudes and perceptions) that are barriers to software 

reuse.  

Work by (Agresti, 2011) investigated the developers’ experiences and perceptions on 

software reuse in 2010. In this work, Agresti introduced the “4A” model which emphasised that 

for each organisation to obtain any benefits from code reuse, four conditions must be met: 

Availability, Awareness, Accessibility, and Acceptability. Agresti, in his study, was more 

Univ
ers

ity
 of

 M
ala

ya



 

 

73 

specific where the investigation done focused on code reuse. The findings from (Agresti, 2011) 

revealed the greatest obstacle to reuse was shown to be awareness of reusable code and the 

developers’ perceptions of its acceptability for use on their new projects. Interesting to note 

also, the developers felt that the complexity of old codes was the main reason why the codes 

were not reused.  

In 2012, Chernak, Y.,  from Valley Forge Consulting reported a survey conducted pertaining 

to the state of requirements reuse practice (Chernak, 2012). The respondents came from the 

author’s professional network across the globe. 82 responses (in which 60% of them resided in 

North America) were gathered during a six-month survey in 2010. Even though the 

respondents were aware of the reuse benefits, he found that poorly structured and badly 

maintained existing requirements were the main obstacles for adopting requirements reuse. He 

concluded that to improve reuse adoption, organisations should include refactoring existing 

requirements into a better structured model, maintaining a complete requirements model 

through releases, separating the stakeholder and product types, and imposing change impact 

analysis in their reuse practice.  

The first three related works (Frakes & Fox, 1995), (Slyngstad et al., 2006) and (Mellarkod 

et al., 2007)focused on software reuse in general and the fourth one (Agresti, 2011) focused on 

code reuse.  To summarise, Figure 4.1 illustrates the important findings from the related works 

used in this section pertaining to the factors that can influence reuse adoption among 

practitioners.  

 

Univ
ers

ity
 of

 M
ala

ya



 

 

74 

 

 

 

 

 

 

 

Figure  4.1  Important findings from related surveys on factors influencing software 
reuse 

The survey presented in this chapter is very similar to the one conducted earlier in (Chernak, 

2012). However, the author tried to adopt some of the important items imposed in (Mellarkod 

et al., 2007) and (Agresti, 2011) in this survey and place the context for understanding the 

practitioners’ perceptions and experience in requirements reuse. 

 The Design of Explorative Survey 4.2

One of the research objectives for this thesis is to investigate the current state of practice of 

requirements reuse. This objective can be achieved by examining the current state of practice 

for requirements reuse through survey, as what will be presented in this chapter. The aim of 

this survey comes in twofold: 1) to provide a brief overview on the requirements reuse practice 

among software practitioners; and 2) to explore the common obstacles for adopting 

Univ
ers

ity
 of

 M
ala

ya



 

 

75 

requirements reuse from software developer’s perspective. Hence, the following are two 

research questions to be answered in this survey: 

• RQ1:  “To what extent have the RR been in practice?”  

• RQ2:  “What are the factors that might hinder the RR practice?”  

4.2.1 The survey construction 

The Chernak’s survey was administered back in 2010, with the main findings stating on the 

challenges on requirements reuse adoption. Inspired by the findings, this survey will use the 

reason found in Chernak’s survey and mapped them to the 4A’s factors used in the survey from 

(Agresti, 2011) . Table 4.1 indicates the 4A factors from (Agresti, 2011) and how the factors 

are adapted to the survey in this research as a guide on finding the answers to the research 

questions. 

Table 4-1 4A Factors Adaptation 

4A Factors Used in Agresti (Agresti, 
2011) 

Adaptation 

Availability Reusable artefacts 1. Support tools 
Awareness The existence of reusable 

artefacts 
1. Self-efficacy 
2. Reuse benefits 

Accessibility Ability to get the reusable 
artefacts 

Ability to get the reusable 
requirements 

Acceptability Agreements on accepting the 
reusable artefacts in new projects 

1. Conditions of the 
existing requirements. 

2. Who decide to accept 
 

There were a total of 40 questions in the questionnaire. Part A comprises 12 questions 

related to demographic background of the respondents, Part B consists of 17 questions related 

to requirements reuse perceptions and experiences and Part C consists of 11 questions related 

Univ
ers

ity
 of

 M
ala

ya



 

 

76 

to general issues in requirements reuse. Survey questions were adopted from the three related 

surveys (Mellarkod et al., 2007), (Chernak, 2012) and arranged according to the 4As factors 

specified in (Agresti, 2011). The survey questions firstly were sent out for pilot testing to check 

for reliability.  

Demographic questions in Part A investigate the background of the survey respondents 

including: 

• Position in current job  
• Number of years in Requirements Engineering 
• Industry group that describes their organisations 
• Size of development team 
• Requirements format used 

Table 4.2 indicates the survey items used in Part B, which were related to the 4A factors 

presented earlier in Table 4.1. 

Table 4-2 Survey Questions in Part B 

4A Factor Survey Item  (Rating 1 to 7) 
Behavioural 
Intention 

I intend to increase my use of reusable requirements in the 
future development of application. 

Availability My organisation has appropriate support tools for: 
• developing reusable assets  
• managing reusable assets 

Awareness I feel reusing requirements requires a lot of mental effort (self-
efficacy). 

Awareness It is easier for me to understand existing requirement 
documents as compared to developing new requirements 
(reuse versus develop new). 

Awareness Reusing existing requirements:  
• improve my job performance 
• improve my team productivity 
• decrease software maintenance costs 

Univ
ers

ity
 of

 M
ala

ya



 

 

77 

Accessibility 1. Assuming I have access to existing requirements, I intend to 
use them when developing future applications. 

2. Given that I have access to existing requirements, I predict 
that I would make use of them in developing future 
applications. 

Acceptability 1. It is impossible to reuse the existing requirements because 
the existing requirements developed in previous releases are 
incomplete or do not exist. 

2. It is difficult to identify which requirements can be reused 
because the existing requirements are poorly structured.  

3. It is difficult to use the existing requirements because the 
existing requirements are not kept updated. 

 

Additional question imposed in the survey but are not related to 4As factors includes a question 

asking whether there is anyone who reuse requirements in the latest project. If they reuse, what 

are the reasons for them to reuse. Is it because reuse: 

• is systematically planned (SPL); or 

• just happens because the new project is very similar to the one completed before (ad hoc 

reuse); or 

• occurs because of maintaining previous release (software maintenance). 

For each item in Part B, the Likert-Scale 1 to 7 response options was used. Table 4.3 

indicates the score rating. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

78 

Table 4-3 Likert Scales Rating 

1 Strongly Disagree Negative attitude 
(Disagree) 2 Disagree 

3 Slightly Disagree 
4 Neutral Undecided 
5 Slightly Agree Positive attitude 

(Agree) 6 Agree 
7 Strongly Agree 

 

In the analysis, scores 1 to 3 indicate negative attitude (disagreement) while scores 5 to 7 

indicate the respondents’ positive attitude (agreement) to items in the questionnaires. The 

higher the score indicates, the more positive attitude (agreement) towards the item imposed.  

4.2.2 Pilot Testing 

For pilot testing purposes, the survey was distributed to the Software Engineering experts at 

6 public universities in Malaysia that offer Software Engineering programmes – fourty one sets 

of questionnaire were sent out and thirty six were returned.  These experts were chosen because 

the pilot survey is aiming to get fast feedback confirming the readability of the questions. Each 

of the survey questions in Part B was tested in SPSS for internal consistency check by using 

Cronbach's  before being sent to the actual survey participants. Only two items found to use 

negative words. Hence, the wordings were changed, (for example, the word “decrease” was 

changed to “increase” and “is not important” was changed to “important”) and the scores were 

reversed (i.e. from scale 1 to 7, the original score 6 was reversed to 2 and vice versa). The new 

scores were plugged in and retested in SPSS. As a result, the Cronbach’s alpha is improved to 

0.711, a more reliable value (Shull, Singer, J, & Sjoberg, 2008).  

Univ
ers

ity
 of

 M
ala

ya



 

 

79 

4.2.3 Actual Survey  

This survey is targeted to get responses from personnel who have experience dealing with 

requirement documents in software development. The respondents consist of Software 

Engineers, Project Managers, Requirements Managers, Educators and Authors in the Software 

Engineering areas, which were grouped in this survey as software practitioners. Although 

random selection is desirable, this cannot be obtained. This is because no statistics were made 

available by MDec regarding the number of software practitioners in Malaysia that dealt with 

requirement documents during software development. Thus, a snowball sampling technique 

was used as the process to gather survey responses.  

 Results And Discussions 4.3

Survey invitations through email were sent out to 48 contacts. These 48 contacts were 

identified from the researcher’s personal contacts who worked in the software development 

environment. In addition, a link to the web-based survey questionnaire was posted on IT 

Professionals in Malaysia group on LinkedIn page, Malaysian Software Engineering Interest 

Group (MySeIG) page and Malaysian Research and Education Network (MyREN) page. From 

the period of April 2013 until September 2013, 41 responses were collected from the actual 

survey. Basic quantitative data analysis was done in Microsoft Excel and Frequencies Analysis 

in SPSS.  

4.3.1 Demographic Information 

In this section, the summary for the demographic information of survey respondents is 

reported. The majority, 22 respondents (53.7%) are Software Engineers. Other respondents 

held various posts including Researchers and Educators in Software Engineering (12.19%), 

Univ
ers

ity
 of

 M
ala

ya



 

 

80 

Project Managers (7.3%), System Analysts (4.9%), Technical Specialists (4.9%), Requirements 

Manager (2.4%), and Software Tester (2.4%).  

When asking about experience in requirements engineering, more than half of the 

respondents have more than 1 year experience in Requirements Engineering as shown in Figure 

4.2.  

 

 

 

 

 

 

Figure  4.2 Requirements Engineering Experience 

 

Respondents came from various industries (Fig. 4.3), in which 36% came from Software 

Development House, 26% from IT Consultancy and 15% from Education, Research & 

Development category. 

 

 

26.83%	  
36.59%	  

14.63%	  
21.95%	  

0.00%	  
10.00%	  
20.00%	  
30.00%	  
40.00%	  
50.00%	  
60.00%	  
70.00%	  
80.00%	  
90.00%	  
100.00%	  

Less	  than	  1	  
year	  

1	  to	  3	  years	   3	  to	  5	  years	   More	  than	  5	  
years	  

Pe
rc
en

t	  

Requirements	  Engineering	  experience	  (in	  years)	  

Univ
ers

ity
 of

 M
ala

ya



 

 

81 

 

 

 

 

 

 

 

 

 

Figure  4.3 Profile of Survey Respondents 

Table 4.4 indicates that 20 of the respondents (48.78%) worked in small development teams 

(between 1 to 5 people) and the remaining worked in various development team sizes. 

Table 4-4 Size of development teams 

Team size Frequency Percent 

  

1 to 5 people 20 48.78% 
6 to 10 people 7 17.07% 
11 to 20 people 8 19.51% 
21 to 50 people 6 14.63% 
Total 41 100.00% 

 

Respondents were asked to categorise the requirements format used in the software 

development they were involved with. Requirements in the form of features (63.3%) and 

Software 
Development House 

36% 

IT Consultancy 
26% 

Business 
Services 

11% 

Telecommunications 
2% 

Education 
R&D 15% 

Government Agency 
2% 

Document 
Management 

System 
2% 

Energy 
2% 

Manufacturing 
2% 

Financial / 
Banking 

2% 

Univ
ers

ity
 of

 M
ala

ya



 

 

82 

textual (63.89%) were among the famously used form of requirements (See Fig. 4.4). Based on 

sample data gathered, natural language requirement is popular among the software practitioners 

participated in the survey. This trend is similar to the findings by Neill and LaPlante on the 

state of requirements engineering practice in (Neill & Laplante, 2003), where developers 

mostly used requirements presented in natural language during software development. This is 

because software requirement requires human interpretations, thus making natural language 

requirements more popular or commonly used (Oliveira, Alencar, & Cowan, 2011). However, 

not that big different is reported in between the adoption of use cases and textual form of 

requirements as gathered from this survey. Additionally, user stories and other requirements 

formats are reported the least to be used (5.6% - 8.3%). 

 

 

 

 

 

 

 

Figure  4.4 Requirements Format Used by Respondents 

*Note that respondents may choose more than one category, thus results to reach more than 
100%. 

 

63.3	   63.9	  

55.6	   58.3	  

8.3	   5.6	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

Features	   Textual	   UML	  
Diagrams	  

Use	  Cases	   User	  Story	   Others	  

Pe
rc
en

t	  

Requirements	  Format	  

Univ
ers

ity
 of

 M
ala

ya



 

 

83 

4.3.2 Perceptions and Experience in Requirements Reuse 

This section provides results from the responses gathered on the practitioner’s intention to 

reuse the requirements with each of the “4A” factors used in Table 4.2. Data collected were re-

coded in terms of agreement (Likert scores 5 to 7) and disagreement (Likert 1 to 3) as 

mentioned earlier in this chapter. Throughout this section, undecided responses were discarded 

from the analysis (number of items discarded will be presented at each section as and when 

applicable). 

4.3.2.1 Practitioner’s Intention 

Firstly, the survey seeks for information regarding the software practitioner’s intention 

towards requirements reuse. Results gathered indicate that 25 out of 36 respondents have the 

intention to reuse requirements in the future development (see in Table 4.5). Out of 41 

responses, with 5 undecided responses are discarded. 

Table 4-5 Intention Towards Requirements Reuse 

 Frequency Percent 
Valid Agree 25 69.4 

Disagree 11 30.6 
Total 36 100.0 

 

4.3.2.2 Availability 

The first 4A factor in determining software practitioners’ intentions to reuse is the 

availability of requirements reuse tools. For example, tools associated with managing and 

reusing requirements available in the current market are produced by BigLever, PureSystems, 

JAMA software, The Reuse Company, and some software extensions to DOORS by IBM. 

Univ
ers

ity
 of

 M
ala

ya



 

 

84 

Most of the software mentioned are available for purchase, but not available for free download. 

The availability of support tools (fully automated or semi-automated) may reduce the burden 

put on the requirements analysts while identifying the core and variant features for reuse in new 

product family development (Weston et al., 2009)(Kumaki et al., 2012). The availability of 

automatic tool support can also offer an order-of-magnitude savings over manual feature 

extraction for reuse (Niu et al., 2013), and obviously increase productivity when reuse is done 

systematically (Barreto et al., 2013). 

There were two survey questions pertaining to the availability of support tools: the first 

question seeks respondents who agreed that their organisation provided support tools for 

developing reusable requirements, while the second seeks respondents who agreed that their 

organisation provided support tools for managing reusable requirements. For the first question, 

54.2% of the respondents reported that their organisation did not provide support tools for 

developing reusable requirements. For the second question, 53.8% of the respondents reported 

that their organisation do not provide support tools for managing reusable requirements. This 

result indicates that more than 50% of the respondents reported that no support tools are 

provided by their organisation to aid RR activities (developing and managing).   

Although support tools are important, this survey data indicated that most organisations did 

not provide the tools in the RR activities. In conjunction to this, data collected also showed that 

most RR practitioners did not use any support tools during their last RR project: 27 out of 33 

respondents (81.8%) did not use any support tool while requirements were reused in their latest 

project.  Organisations did not provide support tools for RR, thus most of the practitioners did 

not use any tools in RR activities. This observation is suspected to have a relationship with the 

Univ
ers

ity
 of

 M
ala

ya



 

 

85 

ad hoc RR practice. Therefore, a further analysis is done - the crosstab analysis was conducted 

to determine the pattern between respondents who did not use support tools in their latest RR 

project and compared it with the reason why requirements are reused in their latest project 

(SPL, ad hoc or software maintenance). As suspected, 16/27 of the respondents who did not use 

support tools were actually practicing RR on ad hoc basis, 9/27 did not use support tools and 

reuse requirements for maintenance purposes, and 2/27 who did not use support tools were 

involved in systematic RR (SPL). In addition, only 4/6 practitioners who practiced SPL use 

support tools in their latest RR project. This indicates that support tools were only used by 

many of the respondents who practised systematic RR (SPL), whereas those who were not 

involved in SPL did not use any support tools to aid their RR activities.  SPL development have 

systematic way of reusing software artefacts, as for managing requirements various tools exists 

to support the SPL development, i.e commercial tools to support SPL development provided by 

BigLever, PureSystems or JAMA software. Table 4.6 details out the crosstab analysis. 

Table 4-6 Crosstabulation - Reason for Reuse versus Using Support Tools in RR 

Requirements are reused in latest project because: 
Total 

SPL 
Just-happen (ad 

hoc) 
Maintaining prior 

release 
2 16 9 27  (not using support 

tools) 
4 2 0 6  (using support tools) 
6 18 9 33 
*8 undecided responses was removed from the original 41 responses, 

totaling up to only 33 responses counted for this item. 
 

Univ
ers

ity
 of

 M
ala

ya



 

 

86 

In relation to this, three comments received in the open-ended section suggested that some 

of the practitioners still need to see a tool or framework for RR. According to the comments 

received, the closest RR tools they have seen is the UML diagrams, but not specific tools that 

are capable to search and select existing textual-based requirements for reuse in new software 

development. Based on the sample data collected, these findings provide information stating 

that support tools are needed to induce require reuse practice. 

4.3.2.3 Awareness 

Requirements reuse practice can be influenced by the practitioners’ awareness. Factors such 

as awareness on self-efficacy, awareness on easiness to reuse versus develop new requirement, 

and awareness on the impact of RR towards improving job performance, team productivity and 

decreasing software maintenance costs. Fig. 4.5 below indicates the results pertaining to the 

awareness factors based on the data collected in this survey. 

   

 

 

 

 

 

Figure  4.5 Awareness factors  

59.2%	  

81.0%	  

96.0%	   97.0%	  

52.0%	  

40.8%	  

19.0%	  

4.0%	   3.0%	  

48.0%	  

0.00%	  
10.00%	  
20.00%	  
30.00%	  
40.00%	  
50.00%	  
60.00%	  
70.00%	  
80.00%	  
90.00%	  
100.00%	  

Self	  eficacy	   Reuse	  vs	  
develop	  new	  

Impact	  on	  job	  
performance	  

Increase	  team	  
producQvity	  

Reduce	  
Maintenance	  

Agree	   Disagree	  Univ
ers

ity
 of

 M
ala

ya



 

 

87 

When answering the awareness regarding self-efficacy, 16 out of 27 or 59.2% of the 

respondents agreed that RR requires a lot of mental effort. Although the respondents were 

aware of the difficulties to reuse, 81% agreed that it is easier to understand the reusable 

requirements as compared to developing new requirement documents. The findings indicated 

that software practitioners who participated in this survey were aware that to reuse is easier 

than to develop; however, reusing existing requirements will still need careful and rigorous 

thinking.  

Regarding the awareness of the impact of RR, the majority of survey respondents agreed 

that RR provides good impact on their job performance and organisation. 26 out of 27 (96%) of 

the respondents perceived that reuse can give positive impact on their job performance, 29 out 

of 30 (97%) agreed that RR increases their team productivity, and 15 out of 29 (52%) agreed 

that RR may reduce the maintenance costs at the later stage of software development.  

4.3.2.4 Accessibility 

The next survey item seeks to answer whether RR practice is related to easy accessibility to 

reusable requirements. This was asked in two survey questions (refer to Table 4.2 for the two 

questions under Accessibility). The results are presented in Table 4.7. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

88 

Table 4-7 Accessibility factors in RR 

 Acc1* Acc2** 
N Valid 36 30 

Missing 0 0 
Median 1.00 1.00 
Mode 1(29) 1(29) 

*Acc1: Assuming I had access to reusable requirements, I intend to use them when developing future 
applications 

**Acc2: Given that I have access to reusable requirements, I predict that I would make use of them when 

developing future applications 

From Table 4.7, mode 1 indicated that the respondents agreed to the statements in Acc1 and 

Acc2. Twenty nine out of 31 intend to reuse and 29 out of 30 predict to reuse requirements if 

they have access to reusable requirements. This is reflected in the open-ended section as well, 

where the practitioners tend to refer back to existing documentation (functionality and 

templates) when developing requirements for new releases.  

4.3.2.5 Acceptability 

The next survey question deals with acceptability factor. In a previous research conducted 

by (Solemon, Shahibudin, & Abdul Ghani, 2008) on requirements engineering problems in 63 

software companies in Malaysia, the authors found out more than 70% of their respondents 

experienced problems related to requirements-process. These include inconsistent or changing 

requirements and incomplete requirements. With that in mind, RR is not being widely practiced 

could be due to the conditions of existing requirements produced from RE activities, namely 

reusable requirements are incomplete, poorly structured (inconsistent) or do not exist. In this 

survey, respondents were asked to respond to the three reasons why RR was not practiced in 

their organisations. Fig. 4.6 summarises the collected responses. 

Univ
ers

ity
 of

 M
ala

ya



 

 

89 

  

 

 

 

 

Figure  4.6 Conditions of reusable requirements 

About 33.3% of the respondents agreed that the requirements developed in previous releases 

were incomplete (or did not exist), so it is impossible to reuse them. Moreover, the results 

revealed that 38.9% of the survey respondents agreed that existing requirements were poorly 

structured, and lastly 49.9% of the respondents believed that the existing requirements were not 

kept updated.  

Although most respondents have the intentions to practice RR in the future, the three 

reasons in the acceptability factors hinder RR to happen. When mapping the behavioural 

intention to acceptability factors, 8 out of 25 who intended to reuse requirements in the future 

development reported that old requirements did not exist in their organisations. In addition, 9 

out of 25 reported to have poorly structured requirements and 13 out of 25 thought that old 

requirements were not kept updated.  

Therefore, although the intention to reuse exists, the conditions of reusable requirements (do 

not exist, not updated, and poorly structured) contribute to the reasons why RR is not widely 

practiced from the data collected in this survey. 

49.90%	  

38.90%	  

33.30%	  

0.00%	   10.00%	   20.00%	   30.00%	   40.00%	   50.00%	   60.00%	  

Not	  kept	  updated	  

Poorly	  Structured	  

Incomplete	  /	  Not	  exists	  

Percentage	  Agree	  

Univ
ers

ity
 of

 M
ala

ya



 

 

90 

4.3.2.6 Additional Item 

Additional items imposed in Section B include queries regarding the reasons why 

requirements were reused in the respondents’ latest project as captured in Table 4.8. Only 

19.4% of the respondents were involved in Systematic Reuse (SPL), while the majority of 

respondents (52.8%), reuse requirements in an ad hoc manner.  

Table 4-8  Reasons requirements were reuse in latest project 

Reasons: Frequency Percent 
We are involved in SPL 7 19.4 

Just happen the new project has similar 
requirements with the previously developed 
(ad hoc) 

19 52.8 

We are maintaining prior releases 10 27.8 

Total 36 100 
 

Software requirements gathered in ad hoc manner for reuse, for example by copying and 

pasting from the old requirements documents. This ad hoc process is unplanned, and most 

likely is done manually without tools. These activities in fact are time consuming and very 

prone to human error. 

4.3.3 General Comments on RR (Open-Ended Question) 

A section for the respondents to write their general comments on RR practice is provided at 

the end of the survey. The comments gathered are classified into the “4A” category as depicted 

in Table 4.9. Note that the general comments collected are only related to 3 out of 4 factors 

from the “4A” category, whereby there is no general comment gathered that is related to 

Accessibility factor. 

Univ
ers

ity
 of

 M
ala

ya



 

 

91 

 

Table 4-9  Mapping General Comments to 4A Factors 

4A Factors General Comments (Open-Ended) 
Availability “Software engineering community has yet to see any RR tools 

or framework” 
Availability “Currently, my organisation reuses 50% of older 

requirements. We make them as template for new 
development.” 

Availability “Need for an industry standard for exchanging and sharing 
requirements in repository.” 

Awareness 
“It is very important to educate developers on RR.” 

Awareness 
“Older requirements need to be revalidated prior to reuse 
and thus RR will not necessarily increase productivity.” 

Awareness 
“It is a good idea to use older requirements as it can help 
junior personnel involved in RE activities to learn.” 

Acceptability “RR in my organisation is a case-by-case basis.  Only those 
experienced will influence the decision-making of whether to 
reuse or not.” 

 

There were two comments that are related to the first 4A factor, Availability: to enable 

reuse, there is a need to have the RR tools, framework or the industry standard for exchanging 

and sharing requirements in repository. Tools will help to expedite reuse, while industry 

standard requirements repository will enhance reuse practice as practitioners can have a variety 

of requirements from a broad range of domain to choose from. Thus, time spent on RE 

activities can possibly be reduced. The second important factor in 4A is Awareness. From the 

general comments section, comments that are captured include remarks that are related to the 

awareness of the RR: the importance to educate developers with RR and practitioners with RR 

knowledge can educate others in the development team. The last comments mentioned that 

Univ
ers

ity
 of

 M
ala

ya



 

 

92 

only experienced personnel can make the decision whether to accept older requirements to be 

reused or not, in which reuse decision is as well related to level of authority in organisation.  

 Threats to Validity 4.4

One major threat to validity for this survey is pertaining to the method to reach the 

respondents. Using snowball sampling can introduce some threats to validity. This is because 

the survey link can be passed on to almost everyone and this is beyond my control whether the 

respondents are the actual software practitioners who deal with requirement documents in their 

job.  

At the time this thesis is written, the result from online survey captured only 41 responses. 

The reliability of the survey results can be improved if more responses are collected, thus a 

more rigorous statistical evaluation can be performed. In this chapter, only frequency analysis 

(median, mode, and manual cross-tabulation comparison) is performed against the data 

collected. Additionally, it is highly noted that this amount of respondents can not be used to 

generalize to represent the whole community practicing software reuse in Malaysia. However, 

the information gathered from this survey can provide an overview on the state of practice in 

RR among the software practitioners. 

Summary 

In this chapter, a survey have been conducted to explore regarding to what extent the RR 

have been in practice, as for current data, respondents are from Malaysia. The survey explores 

seven factors that can influenced the RR practice: behavioral intention, availability of support 

tools, awareness factors (self-efficacy, easiness to reuse versus developing new requirements 

and impact of RR), accessibility to reusable requirements, and the acceptability conditions of 

Univ
ers

ity
 of

 M
ala

ya



 

 

93 

reusable requirements. Additionally this survey indicates that the RR practice is not widely 

practiced in Malaysia mainly due to three impediments: unavailability of RR tools, 

unacceptable conditions of requirements to be reused, and the lack of RR education or 

guidelines provided. 

This chapter explores the current practice of requirements reuse among practitioners. Next, 

in Chapter 5, a proposal for a semi-automated process to aid requirements reuse will be 

presented.  

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 5: IMPLEMENTATION OF FENL  

Introduction 

Based on the findings from Systematic Literature Review, it was found that (1) most related 

studies use Software Requirements Specifications (SRS) as inputs, but product descriptions, 

brochures, and user comments are also used due to practical reasons; (2) the outputs from 

feature extraction process are commonly illustrated feature diagrams, clustered requirements, 

keywords or direct objects; and (3) the extraction process can be divided into four phases: 

requirements assessment, terms extraction, features identification, and feature model 

formation. Additionally, among important findings gathered from the Preliminary Survey in 

Chapter 4 reveals that the main impediments to RR practice include the unavailability of 

support tools or guidelines for requirements reuse process.  Motivated by the above-mentioned 

findings, this chapter presents the implementation of semi-automated process for feature 

extraction from requirements in natural language for reuse in SPLE. This implementation is 

demonstrated through experiments.  

Section 5.1 firstly describes the process model for FENL, with some descriptions about the 

data sets used in the experiment. Section 5.2 until Section 5.5 detail out the four phases 

involves in the FENL, and finally Section 5.6 concludes this chapter. 

 Process Model 5.1

FENL is separated into four main phases, with the first three phases to be automated. The 

FENL offers to extract software features from various forms of requirements, such as online 

software reviews, legacy requirements or product descriptions by using NL processing, and IR 

techniques. However, for the experiment conducted in this research, only the freely available 

Univ
ers

ity
 of

 M
ala

ya



 

 

95 

software reviews from the Internet are used. The overall process for FENL is illustrated in 

Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.1 Overall process of FENL 

Univ
ers

ity
 of

 M
ala

ya



 

 

96 

Before going through the FENL process in detail, a description of the data sets used for this 

research will be provided.  

5.1.1 Data Set for the experiment 

Due to confidentiality of most Software Requirements Specifications, SRS, software 

reviews that are available on the Internet are selected for use as the input to demonstrate the 

FENL approach. Related works in this area used various forms of requirements that include 

product descriptions, brochures, use cases, and the most recent ones used the user comments 

available for the mobile applications. In the case of this research, the software reviews 

compiled by experts that are available on the Internet are opted due to difficulty of accessing 

SRS documentation.  

When looking at recent works such as (Carreno & Windbladh, 2013), (Iacob & Harrison, 

2013), and (Guzman & Maalej, 2014), it is noted that the authors have used the first-hand user 

comments i.e. the comments left by mobile app users. The data used in their works are raw, 

unprocessed and usually contains sentiments and user complaints. In order to obtain reliable 

data, the compiled expert reviews are employed as the input to FENL process. There are some 

characteristic comparisons in between user feedbacks or comments as opposed to the 

compilation of expert reviews, as indicated in Table 5.1:  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

97 

Table 5-1 Characteristic Comparisons for User Comments as opposed to Expert 
Reviews for Software Products that can be Extracted from Publicly Available Sources 

Characteristics User 
Comments/Feedback 

Expert Reviews 

Features to be added Yes Yes 

Current Features Yes Yes 

Step by step how to use Sometimes Sometimes 

Bugs report Yes Sometimes 

User complaints Yes No 

Moods or sentiments Yes No 

Size Very Large Manageable 

Probability to find unpleasant words Yes No 

Bias Very Likely Unlikely 

Authors Anyone can write Experts appointed by 
organisations 

 

Among important aspects of data from the compiled reviews include the data used will less 

likely to contain bias, user complaints, moods or sentiments, and the use of unpleasant words. 

The reason why the firsthand reviews from users were not used in this research is because; the 

author is aware on the needs to filter out users’ complaints and sentiments from the inputs. It is 

the aim of this research to focus on information related to the software features available for 

reuse, and possibly to minimise the noises from the input. These aspects are deemed important 

to ensure features extracted are free from noise that might reduce the accuracy of feature 

extraction results. Therefore, using compiled reviews from experts will be a better choice. 

To suit this purpose, reviews are selected from toptenreviews.com websites that provide a 

compilation of software reviews by experts. Reviews in the toptenreviews.com are for users 

and developers who wanted to get an overview of the product they wanted to buy. These 

reviews are also beneficial for developers (and domain analysts) who did not have access to 

SRS and can use these expert reviews as a source for identifying features for the product they 

Univ
ers

ity
 of

 M
ala

ya



 

 

98 

want to build without having to initiate the RE process from scratch (reuse of requirements). 

In toptenreviews.com, software are reviewed by experts and compiled periodically as 

compared to the first-hand review data sets used in the related works (Guzman & Maalej, 

2014),(Iacob & Harrison, 2013)and (Carreno & Windbladh, 2013). Data used in these 

compiled reviews are more formal and are believed to contain more information about the 

product functionalities, and have fewer user complaints such as design flaws or bugs, which 

make it more usable for this research, i.e. to extract information related to software features.  

 Phase 1:  Assessing Requirements (software reviews) 5.2

Phase 1 seek for software reviews available on the Internet as an alternative to using SRS 

documents. To demonstrate this, 52 software reviews pertaining to various software products 

posted in toptenreviews.com are extracted. The 52 software reviews came from nine categories 

as follows:  

a) PL1:  Preschool Learning (10 compilations)  

b) PL2:  Algebra Learning (10 compilations) 

c) PL3:  Language and Reading Software (3 compilations) 

d) PL4:  Creative Writing (9 compilations) 

e) PL5: Vacation Management Software (10 compilations) 

f) PL6:  Social Networking Site (5 compilations) 

h) PL7:  Online Storage Service (5 compilations) 

i)  PL8:  Backup Service (10 compilations) 

j)  PL9:  Apps Maker (10 compilations) 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

99 

In this experiment, the software reviews obtained are used for two purposes:  

1) As the input to the extraction method (as it is), and  

2) For creating truth data set for evaluation (see Figure 5.1 for FENL process model).  

Section 5.2.1 describes the process for creating the ground truth data set, from the extracted 

software reviews.  

5.2.1 The creation of the ground truth data set 

Since there is no ground truth data set for comparing the feature extraction result in the 

current research context, this data set need to be manually constructed. Table 5.2 list the steps 

involved in the manual process for creating truth data set. 

Table 5-2 Steps for Creating Truth Data set 

Steps Input Action Role/Responsibilities Output 
Step 1: Raw 

Reviews 
Read reviews. Teachers and Software 

Practitioners 
List of 
software 
features  Highlight potential 

features and record on 
the spreadsheets. 

Teachers and Software 
Practitioners 

Step 2: List of 
software 
features 

Compile list of 
software features  
(from Step 1) 

The Author Truth Data set 

 

In Step 1, potential participants are identified, an invitation email is sent out with the 

instructions and sample expected output10 from the manual feature extraction process. The 

                                                

10 Sample invitation letter to teachers and the instruction is available at:  
https://www.dropbox.com/s/393u4p56ljgdeoh/LetterTeachers.docx?dl=0 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

100 

description for the task are provided to the participants including the definition of features, 

following the feature definition provided by (K. Kang et al., 1990). The participants were 

given two weeks to provide the response. When no response is received within one week, an 

email reminder is sent out.  All of these were done through emails and when questions arise, 

the questions are attended through emails and phone calls when necessary. Invitation letters 

were sent to 15 teachers and 15 Software Practitioners, however only eight teachers (see Table 

5.3) and eleven software practitioners replied (see Table 5.4) and agreed to participate.  The 

teachers came from various educational institutions (ranging from kindergartens to 

matriculation centre). The purpose of having Software Practitioners to participate is because 

there is a need to have the Software Practitioners’ perspectives on what can be considered as 

software features (from technical view), and consolidate it with features extracted by teachers 

as domain experts. Additionally, in organisations, Software Practitioners usually have 

experience dealing with various system requirements and are sometimes involved in various 

system purchasing. As the output from the manual extraction, the participants submitted list of 

features extracted from the reviews, recorded into spreadsheets.  

In Step 2, the list of features extracted by teachers and Software Practitioners are now 

combined. Some features highlighted by the Software Practitioners but not highlighted by the 

teachers were added to the truth data set. The teachers were given the reviews that are related 

to their area of teaching expertise, namely teachers who taught English subjects were asked to 

do manual extraction for the Creative Writing Software and Language & Reading Software, 

teachers teaching Mathematics were asked to perform manual extraction for Math and Algebra 

Software, and kindergarten teachers were asked to do manual extraction for the Preschool 

Learning software. Teachers who taught Information Technology (IT) or Computer Science 

Univ
ers

ity
 of

 M
ala

ya



 

 

101 

(CS) subjects at matriculation centre were asked to perform manual extraction for the 

remaining of the reviews (Online Storage Service, Social Networking and Vacation 

Management software).  

Table 5-3 Demographics Information for teachers involved 

No. Current Institution 
Address 

Total 
teaching 
experience 

Job Title SME 

1 SMK Taman Daya 3, Jalan 
Nibong 48, Taman Daya, 
81100 Johor Bahru, Johor 

15 years Teacher Maths 

2 SMK Taman Tun Aminah, 
Jln Bentara 21, Taman Tun 
Aminah, 81300 Skudai, 
Johor 

13 years Teacher English 

3 Itqan Intergrated Islamic 
School, Kampung Sungai 
Penchala, 60000 Kuala 
Lumpur 

16 years Teacher English 

4 Centre for Foundation 
Studies, UIAM Petaling Jaya 

9 years Matriculation 
Teacher 

CS/IT 

5 Centre for Foundation 
Studies, UIAM Petaling Jaya 

6 years Matriculation 
Teacher 

CS/IT 

6 Centre for Foundation 
Studies, UIAM Petaling Jaya 

10 years Matriculation 
Teacher 

Math/CS 

7 Qdees Kindergarten, Bandar 
Seri Putra, 43000 Kajang 
Selangor 

8 years Kindergarten 
teacher 

Preschool Education 

8 Qdees Kindergarten, Bandar 
Seri Putra, 43000 Kajang 
Selangor 

9 years Kindergarten 
teacher 

Preschool Education 

 

Similarly, reviews assigned to software practitioners are based on the domain they are 

currently working on or have been working on previously. The demographics information 

about the software practitioners that are involved in this process are provided in Table 5.4: 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

102 

Table 5-4 Demographic information on Software Practitioners involved 

No. Posts Organisation Address No. of years 
in current job 

1. System Developer Universiti Kuala Lumpur,  ACE - Level 
26, Jalan Sultan Ismail, 50250 Kuala 
Lumpur 

5 

2 Technical Writer Level 16 Sutra MARA, Universiti Kuala 
Lumpur, 1016 Jalan Sultan Ismail, 
50250 Kuala Lumpur 

7 

3. System Developer Tingkat 16, Universiti Kuala Lumpur, 
1016 Jalan Sultan Ismail, 50250 Kuala 
Lumpur. 

3 

4. System Developer UniKL, 1016, Jalan Sultan Ismail, 
50250 Kuala Lumpur 

8 

5. IT Consultant/ 
Analyst 

Freelance  12 

6. System Analysts Kuwait Finance House (Malaysia) 
Berhad 

12 

7. Software Engineer Motorola Solutions, Penang 16 
8. Manager - 

Development team 
Scope International, Standard Chartered 
Bank 

14 

9. Technical Writer Unikl Resources Sdn Bhd, 1016, Jln 
Sultan Ismail, 50250 Kuala Lumpur, 
Malaysia 

8 

10. System Analysts Kuwait Finance House (Malaysia) 
Berhad, Level 8, Menara Prestige, 1 
Jalan Pinang, 50450 Kuala Lumpur, 
Malaysia 

15 

11. Senior IT 
Consultant 

MYtech Consulting Services 6 months 

 

From Table 5.4, five out of eleven software professionals are from educational institutions 

and they have between 3 to 8 years of experience in the software development activities in 

educational institutions. Their working experiences provide some added values to the creation 

of the truth data sets (PL1 – PL4 are for the educational domain). Other practitioners who 

came from financial institutions, consulting services and mobile solutions mentioned to have 

Univ
ers

ity
 of

 M
ala

ya



 

 

103 

worked with various software development projects and familiar with the software domain for 

PL5 – PL7 (vacation management software, social networking and cloud storage services). 

However, it is important to note that the truth data set created for this experiment does not 

100% represent the absolute truth of the data, as manual judgement may varies from human to 

human. This is understood as the internal threat to validity. The software reviews were 

extracted in June 2015 and have been made available online11, for future replication if needed.  

 Phase 2: Terms Extraction  5.3

The documents being scraped in Phase 1 is now used as the input to the automated terms 

extraction process. Figure 5.2 lists out the process used for the terms extraction. Steps 1 until 4 

in Figure 5.2 are repeated for all selected reviews. 

Step 1: Each document went through text preprocessing to remove the 
stop-words, punctuations, numbers, and special characters. 
Step 2: Apply WordNet Lemmatization12 
Step 3: Apply the Part of Speech Tagging from NLTK2 to the document 
and select the required terms (verbs and nouns). 
Step 4: The terms with its occurrences were tabulated in a term-
document-matrix. In excel, terms that occurs only once and twice are 
removed. 

 

Figure  5.2 Terms extraction process 

Figure 5.3 shows the code snippet from python program designed to perform the terms 

extraction process:   

                                                

11https://www.dropbox.com/sh/kreg4cltqunni9o/AABeNj9kcnDwYFcGFYlG-eb6a?dl=0 

http://textanalysisonline.com/nltk-‐wordnet-‐lemmatizer	  

Univ
ers

ity
 of

 M
ala

ya



 

 

104 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.3 Python code for implementing Term Extraction 

First, each document went through text preprocessing to remove stop-words (words such as 

“a, are, the, to, an, at, is,” and more, which do not provide added meaning if 

considered). Additionally, punctuations, numbers, and special characters are filtered out from 

the review documents. In Step 2, WordNet lemmatisation was applied. Lemmatisation is a 

Univ
ers

ity
 of

 M
ala

ya



 

 

105 

process of grouping together the different inflected forms of word so they can be analysed as a 

single item. For example, words such as “coloring, colored, and colors” are now being referred 

to as the basic word “color”. This helps in reducing the number of words extracted. In Step 3, 

words are tagged with Parts of Speech Tagging from NLTK. Only nouns, verbs, and adjectives 

are selected for further processing. In Step 4, the outputs are now exported to spreadsheets. 

Finally, the term-document-matrix is constructed with terms that occurs once or twice are 

removed. 

Figures 5. 4 – 5.5 shows a sample input and output from the term extraction process: 

 

 

 

 

 

 

 

 

Figure  5.4 Sample raw text scraped from the online reviews  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

106 

 

 

 

 

 

Figure  5.5 Sample extracted terms from a review (output) 

A final spreadsheet contains n-terms by m-documents (terms-document matrix, where n 

represents number of unique terms and m represents the number of documents). Based on the 

terms collected, the term weights is calculated by using the term frequency inverse document 

frequency, 𝑡𝑓𝑖𝑑𝑓. The 𝑡𝑓𝑖𝑑𝑓 weight is the weight used in IR and text mining to evaluate how 

important a word is to a document in a collection.  For this case, the spreadsheets comprising 

collection of terms from various documents are merged and the terms occurring within each 

document can be clearly seen. This produces the term by document matrix, in which can also 

be seen as vector.  

For Vector Space Model (VSM), the idea originated in (G Salton, Wong, & Yang, 1975) 

speaks about algebraic model representing textual information as a vector. The components of 

this vector could represent the importance of a term 𝑡𝑓𝑖𝑑𝑓or even the absence or presence 

(bag of words) of it in a document. In VSM, terms that occur in documents are represented as 

vector of numbers. The raw term occurrence records how many times (frequency) each term 

occurs in every document. The 𝑡𝑓𝑖𝑑𝑓 is calculated for each of the terms that appear in every 

document by giving a weight according to how relevant a term is in regards to the whole 

Univ
ers

ity
 of

 M
ala

ya



 

 

107 

corpus.  This weight is a statistical measure used to evaluate how important a term is to a 

document in a collection or corpus. The importance increases proportionally to the number of 

times a term appears in the document but is offset by the frequency of the term in the whole 

corpus (Gerard Salton & Buckley, 1988). The 𝑡𝑓𝑖𝑑𝑓 is calculated for each of the terms that 

appear in each of the documents. Raw weight is computed as the number of times the terms 

occur in a document. Binary weight assigns 1 if a term occurs and 0 vice versa. Term 

frequency, 𝑡𝑓 is calculated by a weight proportional to the frequency of the term occurrence in 

a given text (raw count of terms x in document y divided by the length of text fragment): 

𝑡𝑓 𝑥,𝑦 =   !(!,!)
!(!,!)!

 

(1) 

𝑛(𝑥,𝑦) is the number of occurrence for term x in a document y. 

𝑛(𝑘,𝑦)!  is the sum of occurrences of all terms in document y. 

 
Inverse document frequency, 𝑖𝑑𝑓 is computed by assigning the weight depending on a 

number of a given text that include the term.  

𝑖𝑑𝑓 𝑥 = log |𝐷|
|𝑑: 𝑡 𝑥 ∈ 𝑑|

 

(2) 
where:  

|𝐷| is the total number of documents 

|𝑑: 𝑡 𝑥 ∈ 𝑑| is the number of documents where the terms  t(x) appears.  

Univ
ers

ity
 of

 M
ala

ya



 

 

108 

The underlying idea for idf is that related text within a given domain shares a lot of words; 

such frequent occurrences do not provide a lot of semantic value. For example, the word “car” 

in automobile domain occurs frequently, thus they should be given a low weight because it 

will not add much information to the documents.   

The hybrid 𝑡𝑓𝑖𝑑𝑓 computes the multiplication of 𝑡𝑓 and idf. This 𝑡𝑓𝑖𝑑𝑓 assigns to a term 

weight that is high when the terms occurs many times in a document within a small number of 

document and assigns a low term weight when the terms occurs few times in a document, or 

occurs in many documents. 𝑡𝑓𝑖𝑑𝑓 will assign the lowest weight when the terms occur virtually 

in all documents. 𝑡𝑓𝑖𝑑𝑓 value increases proportionally to the number of times a word appears 

in the document, but is offset by the frequency of the word in the corpus, which helps to 

control for the fact that some words are generally more common than others. The hybrid 𝑡𝑓𝑖𝑑𝑓 

is calculated as: 

 
𝑡𝑓𝑖𝑑𝑓 𝑡,𝑑 = 𝑡𝑓 𝑡,𝑑 ∗   𝑖𝑑𝑓(𝑡)    (3) 

 

The importance increases proportionally to the number of times a word appears in the 

document but is offset by the frequency of the word in the collection (Gerard Salton & 

Buckley, 1988). These 𝑡𝑓𝑖𝑑𝑓 value will be used to determine the document similarities with 

LSA – will be described in section 5.4. The main outputs for Phase 2 are important terms 

(verbs and nouns) in each document and their occurrences. These terms will later be used in 

Phase 3a to identify similar documents (reviews) by using LSA. 

Univ
ers

ity
 of

 M
ala

ya



 

 

109 

 Phase 3:  Feature Identification 5.4

Phase 3 is divided into three smaller processes: Phase 3a: Identification of Similar 

documents, Phase 3b: Extraction of Software Features and Phase 3c: Grouping Similar 

Features. The following subsections describe each of the phases in detail. 

5.4.1 Phase 3a:  Identification of Similar Documents 

The 𝑡𝑓𝑖𝑑𝑓 values obtained from Phase 2, is now loaded into MATLAB software to create a 

Vector Space Model’s extension, the LSA. LSA was used previously by other researchers in 

Software Engineering such as (Marcus & Maletic, 2003), (Maletic & Valluri, 1999), (Jiang, 

Nguyen, & Chen, 2008) . In this thesis, LSA will be used twice: 1) To determine document 

relatedness and 2) To trace the origin of the extracted features. In LSA, Singular Value 

Decomposition (SVD calculation) was applied to reduce the dimension of matrix 

representation to three different matrices: S,U and V. SVD computation in LSA is what 

distinguishes the LSA from the more traditional Vector Space Model, VSM. SVD 

computation reduces the dimension of the document, so that only relevant vectors are 

considered, while the traditional VSM uses the original dimension of the document which 

makes it less effective than LSA.  Furthermore, VSM uses the keyword matching techniques 

as compared to concept-based techniques in LSA. The detailed implementation of LSA with 

the SVD calculation is beyond the discussion of this chapter, and available in (Deerwester, 

Dumais, Furnas, & Landauer, 1998) for further reference.  

For implementing the LSA, MATLAB R2011a application is used. The following 

command is used to decompose the term-by-document matrix into matrices S,U and V: 

 [S U V] = svd(A) 

Univ
ers

ity
 of

 M
ala

ya



 

 

110 

Matrix S is a m x m diagonal matrix of eigenvalues for each principal component 

direction, where m is equivalent to the number of terms. Matrix U is a k X m matrix where k 

represents the number of documents while m represents the number of terms. The columns in 

Matrix V when transposed, (VT) provide a new orthogonal basis for the data, often referred to 

as principal component directions (Hand, Mannila, & Smyth, 2001). By keeping the 

dimension to lower dimensions, the SVD computation should bring together the terms with 

similar co-occurrences. Thus, in the experiment, rank 2 approximation was implemented, so 

that the first two columns of matrix U and V are kept:  

 Uk=U(:,1:2) 

 Vk=V(:,1:2)   

The rank 2 approximation was used in the notion that most of the variance in the data is 

captured by the first two principal components. By retaining these two principal components, 

when tested for the amount of information been lost (in a mean-square sense) as described in 

Hand et al.,only 7.5% loss of the information was reported. Following this evidence, the rank 

2 approximation is used in this experiment to obtain the rows in Vk which represents the 

coordinates of individual document vectors. These coordinates when projected to an x-y 

plane will indicate the position of all documents in the problem space.  As a result, unrelated 

documents were discarded: the documents that are clearly far from other documents in the 

document space (as computed by LSA) will not be taken into the next phase of the experiment. 

The basic K-means algorithm is used to confirm the groupings of the documents. K-means 

Univ
ers

ity
 of

 M
ala

ya



 

 

111 

algorithm is a commonly used clustering algorithm with the aim to optimise an objective 

function (the distance) that is described by the equation: 

𝐸 = 𝑑 𝑥,𝑚!
!∈!!

!

!!!

 

 (4) 

mi is the centre of cluster Ci, while d(x,mi) is the Euclidean distance between point x and mi. 

Figure 5 is the algorithm for K-means (Hand et al., 2001): 

1. Set a fixed number of clusters, c. 
2. Randomly pick up a cluster centre.  
3. Assign all points in the data set to the cluster whose centre is 
the nearest (closest centroid). 
4. Recompute the centres for each centroid. 
5. Repeat the process in steps 3 and 4 until the centres stop 
changing. 
 

Figure  5.6 K-means clustering algorithm (Hand et al., 2001) 

After running the K-means algorithm, a graph in Figure 5.7 is plotted to indicate the position 

of the reviews in the documents space. 

 

 

 

 

 

 
 

Univ
ers

ity
 of

 M
ala

ya



 

 

112 

 
 
 
 

	  

	  

	  

	  

	  

	  

 

 

Figure  5.7 Position of reviews in document space that can be grouped into four 
categories 

(for illustrative purposes, this figure only represent the first 32 software reviews)  

This observation indicates that LSA is able to group related documents together based on 

the occurrences of terms that exist. This is especially true when using a reasonable large size 

of term-document-matrix and producing results that are very close to the categorisation made 

by human, in the toptenreviews.com.  

5.4.2 Phase 3b: Extraction of phrases that represent features 

In the related works such as (Alves et al., 2008) and (Weston et al., 2009), similar structure 

of requirement statements are compared because their research used standard requirement 

documents (i.e. use case specifications and SRS documents). However, when dealing with 

unstructured documents such as software reviews, measuring sentence similarities is not easily 

achieved. This is because reviews were written freely and did not follow sentence structure 

Univ
ers

ity
 of

 M
ala

ya



 

 

113 

such as sentences that exist in SRS. In SRS, sentences are constructed in the form of Verb + 

Direct Object, for example,  “The user shall click on the Exit_Button to terminate the 

application.” With SRS, linguistic pattern in the extraction algorithm can specifically target on 

sentences consisting “shall, should, must, etc.”, followed by verb and objects (Exit_Button), 

thus, the sentences can directly reflect the functional requirements of a system. However, 

when comparing to sentences in software reviews (freely written text), there is no standard 

linguistic pattern specified in the documents that could resemble the structure of functional 

requirements. This makes it hard to perform comparison towards sentences, in which there is 

no guarantee that sentences in review documents contain the “shall statement” that can 

represent functional requirements.  Thus, in this thesis, the extraction of software features by 

focusing on selecting combination of noun, verb and adjectives in sentences is believed can 

bring out the underlying representation of characteristics of software systems or features, 

particularly statements that may relate to functional requirements. 

In this research, the description of features is referred as “a prominent or distinctive user-

visible aspect, quality, or characteristic of a software system or systems” as described by (K. 

C. Kang, Cohen, Hess, Novak, & Peterson, 1990). The work in this thesis is focused on 

extracting the phrases (bigrams or trigrams words, i.e. combination of nouns, verbs, and 

adjectives) which is believed to bring out the user-visible characteristics of a system. In this 

context, for example, terms such as “number recognition”, “learning colors”, 

“interactive tutorial”, “multiplechoice quiz” are considered as terms that 

represent product features. Figure 5.8 shows steps taken to extract features from reviews.  

 

Univ
ers

ity
 of

 M
ala

ya



 

 

114 

Step 1:   Remove Stop-words: 

%partial code to remove stop-words: 

important_words=[] 
for word in words: 
  if word not in stopwords.words('english'): 
   important_words.append(word) 
   important_words = filter(lambda x: x not in 

stopwords.words('english'), words) 
 

Step 2: Apply NLTK WordNet Lemmatization13 (so that different 

inflected word will be treated as one). 

Step 3: Extract the n-grams features by using the linguistic 

tag14 in Figure 5.9 

Figure  5.8 Phase 3b Extraction of phrases that represent features 

	  

Firstly in Step 1, the scraped texts underwent the stop-words removal process. In Step 2, the 

WordNet Lemmatizer is used to group different inflected words together. As mentioned earlier 

in Phase 2, lemmatisation process grouped together the different inflected forms of a word so 

they can be analysed as a single item. Then, in Step 3, linguistic tags are applied to extract n-

gram features. Parts of Speech (POS) tagger provided in NLTK are used and the combination 

of phrases that occur in form of <<adjective, noun>> or <<noun, adjective>> 

AND <<verb, adjective>> or <<adjective, verb>> AND  <<verb, nouns, 

adjective>> are extracted.  All possible sequences or arrangements of verbs are 

                                                

13 http://textanalysisonline.com/nltk-wordnet-lemmatizer 

14 This configuration is extended from the python tutorial available at https://gist.github.com/shlomibabluki/5539628, last retrieved 
1/12/2015 

Univ
ers

ity
 of

 M
ala

ya



 

 

115 

considered as well in this linguistic tagging selection. Table 5.5 describes the acronyms used 

in the linguistic tags to represent various forms of verbs, adjectives, and nouns: 

Table 5-5 Acronyms Used in the Linguistic Tagging 

#	   Acronyms	  Used	   Representing	  
1	   NN	   Nouns	  
2	   NNP	   Nouns,	  Plural	  
3	   NNS	   Nouns,	  Plural	  
4	   JJ	   Adjectives	  
5	   VB	   Verb	  Base	  Form	  
6	   VBZ	   Verb,	  3rd	  person	  Singular	  Present	  Tense	  
7	   VBD	   Verb,	  Past	  Tense	  
8	   VBN	   Verb,	  Past	  Participle	  
9	   VBG	   Verb,	  Gerund,	  or	  Present	  Participle	  

 

Various categories of online learning software were chosen because the FENL approach 

can be evaluated against diverse words used in the review describing various features. For 

each review, the title of the review and the reviewed text are extracted. The FENL process is 

applied on the reviewed text. Three rounds of execution were completed in order to compare 

which combination of parts of speech tags that extract rather accurate features. Based on the 

understanding of acronyms in Table 5.5, the three different configurations of linguistic tags for 

the feature extraction process (in Step 3) will look like: 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

116 

 

 

 

 

Figure  5.9 Different configuration tagging for feature extraction process  

The first configuration, labelled as Simple Tagging in Figure 5.9 extract the verbs and nouns 

only, similar to the related work (Niu & Easterbrook, 2008) and (Mu et al., 2009) that focusing 

on Verb + Direct Object in the extraction of functional requirements profile of a software 

system. Meanwhile the second configuration in Figure 5.9, labelled as Noun Phrase Extraction 

(NP Only) applies the extraction approach by (Ferrari et al., 2013) that uses nouns and 

adjectives which is believed to bring out the components of a software system. Additionally, 

the noun phrase extraction was also mentioned in (Babluki, 2013) tutorial that demonstrates 

the process to extract the main topics from a sentence. To reflect the definition of features by 

(K. Kang et al., 1990), FENL will take a hybrid of both configurations. 

From Figure 5.9, the tag NNP is used to label the combination of parts of speech category 

as a Normal Noun Phrase that may consist either Noun + Verb only, or Noun + Adjective + 

Verbs. The NNI is used to label a longer combination of parts of speech:  NNP + NN means 

Normal Noun Phrases tagged earlier and additional nouns that occur afterwards. Another 

example is JJ + NN = NNI is used to tagged adjectives and Nouns that forms a longer Noun 

Phrase, labelled as NNI. 

cfg = {} #Simple Tagging (Verb-direct object) 
cfg["VB+NNP"] = "NNP" 

 
cfg = {} #NP Only (Noun Phrase Extraction) 
cfg["NN+NN"] = "NNI" 
cfg["JJ+NN"] = "NNI" 

 
cfg = {} #FENL (Hybrid) 
cfg["VB+NN"] = "NNP"  
cfg["NN+JJ+VB"] = "NNP"   
cfg["NNP+NN"] = "NNI"  
cfg["JJ+NN"] = "NNI"  
 

Univ
ers

ity
 of

 M
ala

ya



 

 

117 

The accuracy for these three configurations is then analysed and reported in Chapter 6. To 

compare the results of the automated approach, the truth data set created from the manual 

extraction performed by teachers and analysts are used. 

5.4.3 Phase 3c: Grouping similar features 

To group common features together, various clustering approach were used by related 

works (Hariri et al., 2013), (K. Chen et al., 2005), (Alves et al., 2008), (Yu et al., 2013) to 

group common features, as detailed out in Chapter 2 earlier. For example, Incremental 

Diffusive Clustering was used to cluster common features that exists within product listings 

(Hariri et al., 2013) and Hierarchical Agglomerative Clustering was applied in (K. Chen et al., 

2005) to merge requirements to form feature trees.  

The following subsection describes the use of K-Means algorithm to cluster similar 

features, followed by the application of LSA to trace back the origin of extracted features from 

the actual reviews.  

5.4.3.1 Clustering common features with k-Means 

The important parameter needed in K-Means clustering includes the number of clusters, the 

position or the distance between each feature, and how many replications are needed.  To 

obtain the position of each term in the document space, the distance between each feature as 

computed by the cosine similarity metrics is used. Firstly, the tfidf is calculated for all features 

extracted. Then, the cosine similarity is obtained by finding the dot product between any two 

features: 

Univ
ers

ity
 of

 M
ala

ya



 

 

118 

Cosine Similarity (f1,f2) = Dot Product (f1,f2) / ||f1|| * ||f2||               (8)15 

In this case, the f1is the tfidf and f2 is the tfidf.T values obtained. Figure 5.10 

indicates the code snippet for finding the pairwise similarity in between extracted features: 

 
from sklearn.feature_extraction.text import TfidfVectorizer 
vect = TfidfVectorizer(min_df=1) 
tfidf = vect.fit_transform(["available idrive", 
"available space dropbox", 
"available window user web storage service", 
"basic home plan", 
"basic plan", 
"basic storage option opendrive", …. ])   
#continue for all the extracted features 
 
result=(tfidf * tfidf.T).A  #finding similarity distance 
 
import csv    
b = open('cos.csv', 'w') #output to csv 
a = csv.writer(b) 
a.writerows(result)  #to export pairwise similarity distance 
b.close() 
 

 
Figure  5.10 Finding similarity distance between extracted features 

TfidfVectorizer converts a collection of raw documents to a matrix of tf-idf. The 

function fit_transform( ) in scikitLearn16 learn the vocabulary dictionary provided and 

return the term-document matrix.  

 As a result, pairwise similarity distance in between features is exported to spreadsheet (.csv 

file) as appear in Figure 5.11.  Distance 0 means features are not related and distance of 1 

indicates two features that are very related.  

                                                

15 https://janav.wordpress.com/2013/10/27/tf-idf-and-cosine-similarity/ 
16 http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html 

Univ
ers

ity
 of

 M
ala

ya



 

 

119 

 

 

 

 

Figure  5.11 A snapshot of cosine similarity results (distance obtained in form of 
pairwise matrix) among features in PL7 

K-Means clustering can be applied based on the distance obtained. Thus, the Matlab 

command for computing the K-Means clustering will look like: 

[idx,c]=kmeans(cosPL7,10,'start','sample','replicates',100,'max

iter',1000,'display','final') 

 where : 

cosPL7 represents the cosine similarity distance obtained earlier  
x is the number of clusters  
idx is the cluster index 
c is the centroid for the clusters 

 
The idx value obtained represent the cluster index to indicate which cluster a feature 

belongs to. The result for this process is presented in Chapter 6. 

5.4.3.2 Using LSA to trace the origin of feature clusters 

The common features produced by K-Means if presented to the Domain Analysts can be more 

meaningful if it can be traced back from which sentence it actually comes from.  The 

clustering result contains group of related features. These features can be input to the LSA 

Univ
ers

ity
 of

 M
ala

ya



 

 

120 

algorithm as query, in which it will be matched with the raw text (raw reviews), to find the 

actual sentence it came from.  The Latent Semantic Analysis implementation from Gensim17 is 

adopted for this purpose.  Figure 5.12 demonstrates the code snippet for implementing the 

query, to find term “storage service” the commonly used terms in Cluster4 (refer to 

output in Figure 6.7):  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  5.12 LSA implementation in Gensim.  

 

                                                

17 https://radimrehurek.com/gensim/tutorial.html, last accessed 21st January 2015 

Univ
ers

ity
 of

 M
ala

ya



 

 

121 

The Latent Semantic Indexing, LSI or also known as Latent Semantic Analysis, LSA 

implementation in Gensim is adapted to find which sentence is related to the query. (Note that, 

the term LSA and LSI are used interchangeably, and LSA was applied earlier in this research 

to determine document relatedness in Phase 2). The idea behind LSA is that the algorithm will 

consider the semantic matching (based on the content of the corpus that are matched to the 

query) instead of using the simple keyword matching like the one in VSM. The result from the 

above query is a list of sentence number and the similarity measure, given 1 is perfect match 

and 0 is vice versa.  

 Phase 4:  Formation of Feature Model 5.5

Up to this point, the FENL process has extracted software features and the K-Means is able 

to group similar features by using software reviews as the input. The grouping result 

performed in Phase 3b indicates possible combination of features that can be fed to domain 

analysts as early features in a similar product development. The groupings formed by the 

clustering algorithm are then passed to Phase 4 for a semi-automated process of constructing 

the Feature Model.  The phrases extracted and grouped by the FENL can be manually 

transformed to a feature model. For example, from the cloud storage service 

(following example in Figure 5.12), the feature model in Figure 5.13 and feature tree in Figure 

5.14 can be generated: 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.13 Feature Model with SPLOT18 tools 

 

 

 

 

 
                                                

18 http://www.splot-research.org/ 

Univ
ers

ity
 of

 M
ala

ya



 

 

123 

 

 

 

 

 

 

 

 

 

Figure  5.14 Feature tree generated in SPLOT for the example Cloud Storage Service 

This information can be beneficial to the domain analysts. This recommendation, although 

not 100% accurate, can help analysts to have the main features that exist in publicly available 

software reviews. The proposed FENL process is hoped to reduce the time spent for 

requirements engineers reading the entire customer reviews in order to find reusable software 

features.  

Summary  

This chapter describes the implementation of the FENL process, the proposed solution for 

Objective #3 presented earlier in Chapter 3. The implementation is inspired based on the 

findings reported in Chapter 2 and Chapter 4. This chapter firstly describes the data sets 

captured from toptenreviews.com. The experimental procedure to demonstrate the FENL 

<!-- 
 This model was created online using SPLOT's Feature Model Editor 
(http://www.splot-research.org) on Thu, Jan 21, 2016 - 5:43 AM   
--> 
<feature_model name="Cloud Storage Software"> 
<meta> 
<data name="description"> 
This model provides the early features for cloud service software 
</data> 
<data name="creator">Noor Hasrina Bakar</data> 
<data name="address"/> 
<data name="email">noor.hasrina@gmail.com</data> 
<data name="phone"/> 
<data name="website"/> 
<data name="organization">University of Malaya</data> 
<data name="department"/> 
<data name="date"/> 
<data name="reference"/> 
</meta> 
<feature_tree> 
:r Cloud Storage Software(_r) :m Storage Service(_r_9) :m Full disk 
image(_r_9_10) :o Unlimited space(_r_9_10_11) :m Web Based(_r_9_12) :m Cost 
Savvy(_r_9_13) :m backup(_r_15) :m encryption(_r_15_16) :o backup for 
mobiles(_r_15_17) :o Android(_r_15_17_18) :o iPhone(_r_15_17_19) :o Windows 
Phone(_r_15_17_20) :o Blackberry(_r_15_17_21) :m share(_r_15_23) :m file 
sharing(_r_15_23_24) :m sync(_r_15_23_25) :m easy to navigate(_r_15_23_26) :g 
(_r_15_29) [1,*] : continuous backup(_r_15_29_30) : scheduled 
backup(_r_15_29_31) :m uploads(_r_32) 
</feature_tree> 
<constraints></constraints> 
</feature_model> 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

124 

process comprise of 4 main phases:  Phase 1:  Accessing requirements in Natural Language, 

Phase 2: Terms Extraction,  Phase 3: Feature Identification and Phase 4: Formation of Feature 

Model. Details for all phases are then described in this chapter. Instead of reinventing the 

wheels, the implementation of various phases of the experiment for this research is made 

possible by combining numerous readily available and related open-source APIs resulting 

from other researchers in the area of information retrieval and software product lines 

engineering, and the adaptation is made clearly in this chapter. Next, in Chapter 6, the result 

and evaluation of the experiment conducted will be presented and discussed.  

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

125 

CHAPTER 6: EXPERIMENTAL RESULTS AND DISCUSSIONS 

Introduction 

In Software Engineering, the aim of evaluation is to show that the proposed objectives were 

fulfilled. The purpose of the evaluation in this research comes in twofold:  Firstly, evaluation 

is important to observe to what extent the proposed solution works or practical to solve the 

problem, and secondly, the evaluation is needed to compare the performance of the proposed 

approach versus the manual and other related methods in this research area. This chapter 

firstly describes the evaluation strategy used for the FENL experiment as presented in section 

6.1.  The result of the FENL experiment is presented in section 6.2, followed by some 

discussions in section 6.3. Lastly, a chapter summary is provided. 

 Evaluation Strategy 6.1

In order to compare the performance of information retrieval approach, comparisons are 

normally being done for two data sets: data extracted from a proposed approach are compared 

against a truth data set(Manning, Raghavan, & H. Schtze, 2008). Here, a set of ground truth 

data set is needed, in which ideally should come from a human-defined truth data. This ground 

truth data set is a supervised data set created that aims to represent the absolute truth, and the 

data is assumed to be true or it has been validated previously. More discussion on the 

description of ground truth data set in machine learning by James Kobeilus of IBM is available 

in (Kobielus, 2014). In this research, the ground truth data set used refers to the training data 

used in the experiment – the data that is prepared by expert (human), and is assumed to be 

true. The typical accuracy measures used in information retrieval, namely the Recall, Precision 

and F-Measure can only be calculated when two data sets are compared.  For this research, the 

Univ
ers

ity
 of

 M
ala

ya



 

 

126 

extracted features resulting from the proposed approach are compared against features being 

extracted manually (ground truth data set) using the same input - the software reviews. Since 

there is no truth data set that is available for the software reviews as far as we are aware of (up 

to the date this thesis is written), the ground truth data set is created for this experiment.  The 

creation of ground truth data set is previously detailed out in Chapter 5.  

6.1.1 Manual Extraction and Grouping  

In order to evaluate the accuracy of the automated approach, results from manual feature 

extraction is needed too. This is important to determine how far the proposed approach 

performed when compared with the manual method. To assist with the manual extraction 

process, three alumni from the Kulliyyah of Engineering, International Islamic University of 

Malaysia were asked to perform the manual extraction and grouping process following the 

steps provided in Table 6.1. Since this evaluation is for experiment purposes with very limited 

time and resources, the author only able to get three people to help with the manual extraction 

and grouping. For replication with larger data set in the future, more people will be required to 

involve. These three alumni have zero knowledge pertaining to the current research project. 

Nevertheless, these three alumni are currently working as Java programmer at local software 

house, therefore they have some exposure about software development environment. The 

procedures which have been used by (Carreno & Windbladh, 2013) for conducting the manual 

classification of user reviews are adapted: 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

127 

Table 6-1 Steps for Manual Feature Extraction and Grouping 

Steps Action 
1 Read reviews. 
2 Highlight potential features and record into 

spreadsheets. 
3 Manually group features that have similar meanings. 
4 Construct Feature Model. 

 

6.1.2 Evaluation Procedure 

Previously, the conducted Systematic Literature Review has classified evaluation 

conducted to be viewed from four angles: context, evaluators, methods and measure used 

(Bakar et al., 2015).  The evaluation conducted in this chapter is in the context of academia 

and involved evaluators from both industry and academics. From industry, software 

practitioners and teachers are involved in setting up the data set, while three Java programmers 

are engaged to participate in the manual extraction process. Lab experiment has been 

conducted for this research. As for the measure use, the evaluation of FENL employs Recall, 

Precision and F-Measure.     

6.1.3 Phases in Evaluation 

The evaluation of FENL is separated into two phases, measuring the accuracy of extraction 

result, and comparing the feature grouping results produced by clustering algorithms with the 

manual grouping.  Figure 6.1 illustrates the steps taken in the evaluation process.   

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

128 

 

 

 

 

 

 

 

Figure  6.1 Phases in the Evaluation 

In addition to using the Recall, Precision and F-Measure in evaluation, statistical measures 

such as One-Way ANOVA and Tukey post hoc test are used to determine the significance of 

the results obtained. FENL performance is measured through comparing three versions of 

automated approach (Simple, NP Only and FENL), benchmarking on the manual extraction 

approach.  As for grouping common features, comparison in between the manually grouped 

features will be done towards the results produced by K-Means clustering in terms of number 

of features produced and correctness of features produced. Time taken for executing the semi-

automated extraction process is recorded as well.  

 Results 6.2

This section presents the results obtained from the implementation of FENL in 

experimental setting by firstly reporting on the distribution of the truth data sets, followed by 

the results of the features extraction and grouping.  

Univ
ers

ity
 of

 M
ala

ya



 

 

129 

6.2.1 Truth data set 

The number of software reviews that has been used as input in Phase 1 is 72, subdivided 

into 9 categories. Each document length ranges from 91 to 440 sentences, while the total word 

lists extracted from all 72 software reviews is 10,766. Table 6.2 summarises the truth data sets 

used in this study. These datasets are selected roughly based on the expertise area of the 

teachers and practitioners involved in the experiment. (Note: same reviews were used by both 

Software Practitioner and teachers). 

Table 6-2 Truth data sets of Software Reviews 

Learning Software 
Subcategory 

# of 
software being 
reviewed 

Length (# of 
sentences) 

Word Lists * 

PL1:  Preschool Learning 10 426 1998 
PL2:  Algebra Learning 10 296 1144 
PL3:  Language and Reading 
Software 

3 91 725 

 
PL4: Creative Writing 
Software 

9 440 1140 

PL5: Vacation Rental 
Software 

10 185 709 

PL6: Social Networking 5 206 883 
PL7: Online Storage Service 5 271 852 
PL8:  Backup Services 10 144 1976 
PL9: App Maker  10 261 1339 
Total 72 2,320     10,766 

* Total number of distinct words after removing stop-words, numbers, special 
characters etc. 

 

6.2.2 Feature Extraction Results 

As described in Chapter 5, the experiment was conducted to compare three configurations: i) 

Verb + Direct object (Simple Tagging), ii) Noun Phrase tagging (NP Only), and iii) a 

combination of both (FENL).  The extraction output and their accuracy are presented in below 

subsections. 

Univ
ers

ity
 of

 M
ala

ya



 

 

130 

6.2.2.1 Extraction Output 

To illustrate the sample output from the three configurations, Figure 6.2, 6.3 and 6.4 presents 

sample phrases extracted based on the three different configurations for the case of PL5 – 

reviews for vacation rental software: 

 

 

 

 

Figure  6.2 Features extracted with Simple Tagging 

 

Figure 6.2 is the sample output for extraction of PL5 (vacation rental software).  

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

131 

 

 

 

 

 

 

 

 

 

Figure  6.3 Features extracted with NP Only 

 

 

 

 

 

 

 

 

 

Figure  6.4 Features extracted with FENL configuration. 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

132 

Simple tagger extracts verb and direct objects, while the noun phrase tagger extracts the 

nouns phrase that can represent the components of the software system. When combined, the 

linguistic tags in Figure 6.4, FENL picked up some visible characteristics of a software system 

that might have been missed out by the first two methods. For example, features such as 

“individual statement generation” or “calendar integration 

synchronization” as extracted by FENL were not in the lists from the first two taggers. 

Features extracted by FENL in this example provide more information when compared with 

the previous two taggers. The details comparison on the number of features generated by each 

configuration is discussed in following sub section. 

6.2.2.2 Extraction Accuracy 

Figure 6.5 indicates the comparison between manual and the three automated extraction 

approaches in terms of number of features extracted for all nine categories of reviews. 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

133 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.5 Number of features extracted by manual approach as compared to the 
automated approach. 

All features extracted from online learning software (for all categories) are sorted by using 

pivot table features in Microsoft Excel. NP Only produces the biggest number of features 

across all product lines, because this approach extract noun phrases or objects that resides 

within the software reviews. When compared to Manual, simple tagging however produces 

slightly higher number of features for six product lines: PL1, PL2, PL3, PL7, PL8 and PL9. 

FENL performs steadily across all product lines (produces higher number of features if 

compared to manual and simple tagging, except for the case of PL6. Overall, it is observed 

that NP Only extract the highest number of features from the data set, and most of these does 

not represent features, but instead the objects mentioned in the reviews. From observing the 

NP Only results, not all the features are actually relevant, as it contains some noises -  refer to 

Figure 6.3. For example, terms such as “small enterprise” and “possible 

203	   197	  

78	  

290	  

203	   212	  

128	  

188	  

130	  

336	  

252	  

79	  

197	  

125	  

56	  

139	  

240	  
142	  

801	  

711	  

221	  

810	  

450	  

215	  

629	  

740	  

642	  

558	  

418	  

131	  

385	  

288	  

152	  

343	  

430	  

357	  

PL1	   PL2	   PL3	   PL4	   PL5	   PL6	   PL7	   PL8	   PL9	  

Manual	   Simple	   NP	  Only	   FENL	  

Univ
ers

ity
 of

 M
ala

ya



 

 

134 

customer” are noises, they did not represent software features. To compare the accuracy of 

the all extraction approach (manual and all three automated), the Recall, Precision and F-

Measure are calculated based on the total features exist in the truth data set versus total 

features extracted by all of the approach. Recall, Precision, and F-Measure are calculated as 

follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑁𝑜. 𝑜𝑓  𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
(5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑁𝑜. 𝑜𝑓  𝑇𝑟𝑢𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
(6) 

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2  𝑋  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑋  𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 (7) 
 

True Positives are obtained by calculating how many feature exists within the data set that 

are also extracted by the approach. Precision calculates the percentage of true positives over 

features retrieved by the approach. Recall calculates the percentage of true positives from the 

actual features that exist in the truth data set (correct features). In usual case, precision and 

recall are complementary measures and usually increasing one of them results in the decrease 

of the other (Poshyvanyk, Gethers, & Marcus, 2012). Figure 6.6, Table 6.7 and Table 6.8 

present the results for Recall, Precision and F-Measure. 

 

  

 

Univ
ers

ity
 of

 M
ala

ya



 

 

135 

  

 

 

 

 

 

 

Figure  6.6 Recall results 

Obtaining higher recall value indicates that an approach return most relevant results. From 

Figure 6.6, it is observed that FENL returned in between 57.06% to 85.85% recall result for all 

nine product lines. These make the average recall results for FENL to be at 78.03%, the 

highest among the three automated approach. When observing the recall result produced by 

the manual approach, lowest recall result is recorded by PL1 at 85.65% and by PL4 at 92.60%. 

This observation agrees with the problem statement specified earlier: manual requirements 

reuse process can decrease productivity, especially when dealing with larger data. (When 

referring to Table 6.2, PL1 consists of 426 sentences and PL4 consists of 440 sentences, 

categories that holds the most number of sentences). 

 

 

0.00%	  

10.00%	  

20.00%	  

30.00%	  

40.00%	  

50.00%	  

60.00%	  

70.00%	  

80.00%	  

90.00%	  

100.00%	  

PL1	   PL2	   PL3	   PL4	   PL5	   PL6	   PL7	   PL8	   PL9	  

Recall	  

Manual	  

Simple	  

Noun	  Phrase	  

FENL	  

Univ
ers

ity
 of

 M
ala

ya



 

 

136 

  

 

 

 

 

 

Figure  6.7 Precision results 

Figure 6.7 presents the precision results. Higher precision value indicates that an approach 

returned significantly more relevant results than the irrelevant ones. From the results obtained, 

FENL recorded the highest precision result for PL6.  PL2 records recall value at 85.31% but 

its precision is only at 53.04%. In PL2 case, the lower precision value is due to high number of 

false positives identified, in which FENL extracted some noises.  The average precision result 

for FENL is slightly lower (58.63%).  

F-measure combines the precision and recall with an equal weight, and this is shown in 

Figure 6.8. 

 

 

 

0.00%	  

10.00%	  

20.00%	  

30.00%	  

40.00%	  

50.00%	  

60.00%	  

70.00%	  

80.00%	  

90.00%	  

100.00%	  

PL1	   PL2	   PL3	   PL4	   PL5	   PL6	   PL7	   PL8	   PL9	  

Manual	  

Simple	  

Noun	  Phrase	  

FENL	  

Univ
ers

ity
 of

 M
ala

ya



 

 

137 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.8 F-Measure results 

 

From F-Measure results obtained, FENL performs better than NP approach for all product 

lines except for PL8. thus making the average F-Measure for FENL approach to be at 65..56%, 

about 25% lower to manual approach.  

Figure 6.9 depicted the overall performance for Manual and the three automated approach.  

 

 

 

0.00%	  

10.00%	  

20.00%	  

30.00%	  

40.00%	  

50.00%	  

60.00%	  

70.00%	  

80.00%	  

90.00%	  

100.00%	  

PL1	   PL2	   PL3	   PL4	   PL5	   PL6	   PL7	   PL8	   PL9	  

Manual	  

Simple	  

Noun	  Phrase	  

FENL	  

Univ
ers

ity
 of

 M
ala

ya



 

 

138 

  

 

 

 

 

 

 

Figure  6.9  Average performance comparisons  

With benchmarking on the manual approach, the performance for FENL is superior when 

compared to the other two automated approaches (looking at F-Measure average in Table 6.9).

 To determine whether there was statistically significant difference between the means 

produced by different extraction methods, One Way ANOVA test has been conducted by 

using SPSS software and the results is reported in Table 6.3. 

 

 

 

 

 

0.00%	  

10.00%	  

20.00%	  

30.00%	  

40.00%	  

50.00%	  

60.00%	  

70.00%	  

80.00%	  

90.00%	  

100.00%	  

Manual	   FENL	   Simple	   NP	  Only	  

Recall	  

Precision	  

F-‐Measure	  

Univ
ers

ity
 of

 M
ala

ya



 

 

139 

Table 6-3 Result for One-Way ANOVA test 

ANOVA 

 Sum of 
Squares df 

Mean 
Square F Sig. 

Recall Between 
Groups 

8541.889 3 2847.296 19.482 .000 

Within 
Groups 

4676.789 32 146.150   

Total 13218.677 35    
Precision Between 

Groups 
7518.478 3 2506.159 12.169 .000 

Within 
Groups 

6590.543 32 205.954   

Total 14109.021 35    
FMeasure Between 

Groups 
7273.421 3 2424.474 17.883 .000 

Within 
Groups 

4338.447 32 135.576   

Total 11611.867 35    
 

Based on the sample data, there was statistically significant difference between groups as 

determined by one-way ANOVA at F(3,32)=19.482, p=0.000 for Recall, at F(3,32)=12.169, 

p=0.000 for precision and at F(3,32)=17.883, p=0.000 for F-Measure.   

Table 6-4 Tukey-HSD post hoc test for Recall 

Method N 

Subset for alpha = 0.05 

1 2 3 

Simple 9 51.1700   

Noun Phrase 9  70.4922  

FENL 9  78.0289  
Manual 9   94.0167 
Sig.  1.000 .556 1.000 

 

The Tukey post hoc test indicated that based on the sample data for Recall, the Simple and 

Manual method differs significantly from the other groups (p<0.05).  

Univ
ers

ity
 of

 M
ala

ya



 

 

140 

Table 6-5 Tukey-HSD post hoc test for Precision 

Method N 

Subset for alpha = 0.05 

1 2 

Noun Phrase 9 50.6989  
FENL 9 58.6322  

Simple 9 61.2167  

Manual 9  89.0011 
Sig.  .418 1.000 

 

Table 6-6  Tukey-HSD post hoc test for F-Measure 

Method N 

Subset for alpha = 0.05 

1 2 

Simple 9 55.0144  

Noun Phrase 9 58.6011  

FENL 9 65.5644  
Manual 9  91.3622 
Sig.  .239 1.000 

 

Additionally, Table 6.5 and Table 6.6 shows that for Precision and F-Measure the Tukey post 

hoc with Manual extraction process differs significantly from the other three methods, at 

p<0.05.  (For further observation on the results, See APPENDIX G for detail statistics  

obtained for One Way ANOVA test and Tukey HSD). 

Performance in terms of time efficiency, the time taken to complete the extraction process is 

also recorded in Table 6.7. Note that, the time recorded is only for executing the feature 

extraction (Phase 3b). 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

141 

Table 6-7 Time taken FENL 

Software Review Execution time 
(in sec) 

PL1:  Preschool Learning 9.8 
PL2: Algebra Learning 6.1 
PL3: Language and Reading 
Software 

5.5 

PL4: Creative Writing 
Software 

6.6 

PL5: Vacation Rental 
Software 

6.0 

PL6: Social Networking 5.4 
PL7: Online Storage Service 5.9 
PL8:  Backup Services 6.3 
PL9:  Apps Maker 6.1 

 

6.2.3 Feature Grouping Results 

For this research experiment, the procedure for clustering similar features is explained in 

Chapter 5.  The following subsection presents the features clustering results. 

6.2.3.1 Clustering results to group common features 

The idx obtained from K-Means algorithm indicates which cluster each of the features 

belongs to. For example, in case of PL7, Figure 6.7 shows the clustering output produced after 

executing the K-Means algorithm: 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

142 

 

 

 

 

 

Figure  6.10  Output from K-Means clustering for PL7  

Features extracted by FENL are clustered with the K-means clustering. For example, in 

Figure 6.10, the result of K-Means clustering, in which most related features are grouped 

together reasonably, in a very short time.  Manual grouping by human is very prone to 

mistakes (See Figure 6.11, the FENL features when they are grouped manually by human). 

Some features are correctly grouped together, yet some features are not. Moreover, the three 

alumni reported that performing the features grouping manually is very arduous.  They did not 

complete the tasks given to group all nine product lines, but instead only 5 product lines is 

completed. On average, time taken to process each product line reaches more than 45 minutes. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

143 

 

 

 

 

 

 

Figure  6.11  Output from manual feature clustering for PL7  

The person doing manual clustering was unable to complete the clustering tasks for all nine 

product lines and complained that this grouping tasks as too tedious. In terms of correctness, 

let us observe the sample grouping results presented in Figure 6.10 and Figure 6.11 for PL7. 

Looking at cluster2 (in Figure 6.10) and cluster9 (Figure 6.11). These two clusters grouped 

features related to mobile app, and most of the features related to mobile are successfully 

clustered by K-Means, and they as well appear in the result manually formed by human.  This 

indicates that with the extracted features, normal clustering algorithms can produce cluster that 

is similar to the one done by human. However, more experiment with clustering algorithm is 

left for future work, as this thesis is focusing more on feature extractions.  

6.2.3.2 Tracing features with Latent Semantic Analysis  

The most commonly used terms from clustering results are used as query in LSI for tracing 

back the origin of extracted features. This task is needed, because if a requirement engineer is 

presented with set of features, they might not get full idea of the complete sentence of that 

Univ
ers

ity
 of

 M
ala

ya



 

 

144 

feature. Therefore, querying back on where these features come from may provide added value 

to the feature extraction results. Figure 6.12 is a sample snapshot of how the related sentences 

are matched to the query (features provided). 

 

 

 

 

Figure  6.12  Matching selected terms by using LSI 

The extracted sentences that are matched with the query in LSI provide semantic similarity. 

The parameters in the bracket consist of document number, (in this case which sentence it 

came from), and the similarity value (how similar the sentence is to the feature being queried). 

For example, the sentence number 131 in Figure 6.12, “The full disk image is a 

main selling point for Acronis”.  None of the keyword in the sentence 

overlapped with the term “storage service”. However, the term “disk image” from 

the sentence, if looking at its general definition provided by Wikipedia, “disk image”  is 

defined as “computer files containing the contents and structure of a disk volume or an 

entire data storage device, such as a hard disk drive, tape drive, floppy disk, optical 

disc or USB flash drive”19, which semantically related to the “storage service”.  

                                                

19 https://en.wikipedia.org/wiki/Disk_image 

Univ
ers

ity
 of

 M
ala

ya



 

 

145 

 Discussions on the Results 6.3

This section discusses the findings from the experiment conducted for this research. A 

discussion on the observation made towards the experiment results is provided followed by a 

discussion on the threat to validity pertaining to the data sets used in the experiment.  

6.3.1 Discussions on the extraction results 

As the final output from the experiment, the FENL process has extracted software features 

from the reviews. The phrases extracted by the FENL can be manually transformed to a 

feature model, i.e can be fed to SPLOT tools for semi-auto feature model construction (sample 

feature model constructed by SPLOT as presented in Chapter 5).  

In the experiment conducted, FENL performs comparably with manual extraction 

approach, especially when observing the recall values produced. Higher recall values indicates 

the relevant features that are finally selected. Although FENL extracted some noises 

(irrelevant items that is indicated by lower precision values), it is important to note that there is 

an average of 76.59% of the relevant items which consists of actual features (recall).    

The average recall, precision and F-measure results obtained by the FENL in comparison 

with related works that uses similar evaluation measure is presented in Table 6.8. There are 

three recent studies that reported similar evaluation results (Guzman & Maalej, 2014), 

(Carreno & Windbladh, 2013) and (Khan, Baharudin, & Khan, 2014). Other related works 

were not included in this comparison either because their approach did not present the 

evaluation results in terms of Precision, Recall and F-Measure (K. Chen et al., 2005) and 

(Ferrari et al., 2013) or they did not use the data set of similar nature, i.e. user reviews (for 

Univ
ers

ity
 of

 M
ala

ya



 

 

146 

example  (Niu & Easterbrook, 2008) , (Weston et al., 2009)  and (Boutkova & Houdek, 2011) 

uses SRS documents as their input and not user reviews, thus comparison cannot be made). 

Table 6-8 FENL Versus Related Works 
(Average Precision, Recall, and F-Measure) 

Feature Extraction Approach 
by related works 

Precision Recall F-Measure 

Guzzman (2014) 0.582 0.520 0.549 
Carreno and Windbladh (2013) 0.941 0.670 0.782 
Khan et al. (2014) 0.790 0.717 0.752 
FENL 0.586 0.780 0.656 

 

From Table 6.10, FENL reported a lower F-Measure when compared with Khan et al. 

(2014) and Carreno and Windbladh (2013), but performed slightly better if compared to 

Guzzman’s work. This result tells us that FENL approach performed comparably with related 

works.  

Even though various clustering algorithms were mentioned in other related works such as 

(Alves et al., 2008), (Weston et al., 2009), and (Davril et al., 2013), this research only explore 

on the possibility to perform clustering with K-Means algorithm. However, experimenting 

with other clustering algorithms can be an interesting future work.  

6.3.2 Discussions on the data set 

Reviews that are compiled by experts are chosen in this experiment because the objective 

of the experiment is to demonstrate the extraction of software features that can aid the RR 

process.  Hence, the focus was to extract the software features that may reside within the 

software review are believed to contain very minimal customers complaints and sentiments on 

a software product. This is different from the related works such as (Guzman & Maalej, 2014) 

Univ
ers

ity
 of

 M
ala

ya



 

 

147 

or (Carreno & Windbladh, 2013) that uses first hand user reviews as the input, thus their 

extraction approach aiming to extract the user opinions about the software products on top of 

extraction of software features.  

Due to limitation to access the SRS requirements, compilation of reviews containing 

software features available on the web can help domain analysts to gauge the idea about the 

features for a software product prior to development. For example, the reviews in the 

toptenreviews.com provide expert reviews of the top ten software (according to categories), 

which are compiled periodically. Referring to toptenreviews.com, the reviews consist of 

independent reviews by experts, which emphasised four important issues including hands-on 

use and evaluation, scoring and ranking, editorial independence, and updates. Hence, the 

reviews provided for each software in the toptenreviews.com are not the firsthand user 

feedback such as the user reviews from mobile apps used by related works (Guzman & 

Maalej, 2014), (Iacob & Harrison, 2013)and (Carreno & Windbladh, 2013). For example, 

(Guzman & Maalej, 2014) evaluated their approach with 32210 reviews from 7 apps, (Iacob & 

Harrison, 2013)) used 3279 reviews from 161 apps, while Carreno and Windbladh (2013) used 

data sets that contain 2651 reviews from 3 apps (as shown in Table 6.12). The first hand 

reviews from user feedback appeared in these three related works are important for developers 

who want to redesign the features in the product or improve/remove the current features with 

negative sentiments. However, the RR intention is not the main focus for their research. The 

use of compiled reviews in our case justifies the needs to focus on extracting software features 

for reuse.  

 

Univ
ers

ity
 of

 M
ala

ya



 

 

148 

 

Table 6-9 Data Sets Comparison 

# Authors Software 
Types 

No. of 
reviews 

Research purpose 

1 Guzman and 
Maleej (2014) 

Mobile apps 32210 Identify new feature requests or 
improve current features for new 
releases 

2 Iacob and 
Harrison 
(2013) 

Mobile apps 2651 Identify new feature requests or 
improve current features for new 
releases 

3 Carreno and 
Windbladh 
(2013) 

Mobile apps 3279 Identify user comments to aid 
requirements engineers to revise 
the requirements for new releases 

 

In this work, the length of the expert reviews extracted varies between the review 

documents:  between the range of 400 words to 1200 words, each. When compared to the user 

comments used in the related works (Table 6.9), each comment is relatively shorter (of about 

30 to 40 words each – see Figure 6.13 for sample mobile apps review, and Figure 6.14 as the 

sample of expert reviews used as the input to FENL process). This makes the data sets used in 

this research look comparably smaller compared to the related works. Furthermore, the data 

used in FENL experiment are reviews that have been compiled by experts, in which most 

sentiments and user complaints are already minimised.  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.13  Sample user comments from mobile apps 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

150 

 

	  

	  

 

 

 

 

 

 

 

 

 

Figure  6.14  Sample expert reviews from Vacation Management Software  

(*Note that expert reviews are lengthier when compared to user comments) 

	  

6.3.3 Threats to validity of findings  

Unstructured reviews were extracted from the web as the input to FENL experiment in this 

research. These data are raw, unedited, and have not been used in the RR area, as far as this 

thesis is written. The reviews may also be out dated and new features have been added to the 

software at the time these reviews are being used in this research experiment. This factor is 

identified as internal threat to validity for this research experiment.  

Univ
ers

ity
 of

 M
ala

ya



 

 

151 

In manual extraction, first, teachers and software practitioners manually extracted what 

constitute as software features from the selected reviews. Second, the extracted features are 

consolidated to form the ground truth data set. However, the extracted data might not 100% 

accurately describe the absolute truth for the data set produced, as human judgement can 

varies and very subjective. This may have some effects on the recall and precision 

measurement, in which introduces another threat to validity. Although selected teachers are 

domain subject matter experts in the subject of online learning software assigned to them, they 

however might not have the technical speciality in terms of identifying software features. 

Thus, to minimise this threat, features extracted by teachers are consolidated with features 

extracted by software practitioners. An increase in the quality of extracted features is observed 

when consolidating the features provided by both parties.    

In the experiment, extracted reviews came from four learning categories and three other 

domains (vacation rental software, online storage software and social networking site). The 

first four software categories are dedicated for various age groups of users. For example, the 

software within preschool learning categories are dedicated to children aged six and below, 

and usually the design of user interface is different to cater to children, which may constitute 

bigger font sizes or colourful animations to attract the attention of children. When looking at 

the other categories of reviews such as algebra learning, in which the audience may range 

from older primary school to teenagers in secondary schools, thus the user interface should be 

a little more mature when compared to the user interface for the preschool software categories. 

In this research, the user interface requirements are not the main focus of the extraction. Since 

the main interest of this research is to extract software functionality (software features) by 

picking up the combinations of nouns, verbs, and adjective, thus the user interface 

Univ
ers

ity
 of

 M
ala

ya



 

 

152 

requirements are not considered. Therefore, even though various learning categories for 

various age groups of users are used as the data set in this experiment, the author believe it 

will not give impact or difference to the features being extracted. 

6.3.4 Integration of the FENL process 

Our current implementation of semi-automated process, the FENL, is conducted in a 

laboratory setting and relies on three applications: Python, MicrosoftExcel, and Matlab. This 

implementation requires the researcher to have skills in Python programming, MicrosoftExcel, 

and Matlab programming. More people can benefit from this implementation better when the 

process is integrated into a single platform. 

Summary 

In this chapter, the results for FENL approach is presented and discussed. The results 

obtained from FENL approach is validated by measuring the precision, recall, and F-measure. 

One Way ANOVA test via SPSS was applied to the average precision, recall and F-Measure 

to test for their significance. The outcome from applying K-Means clustering on the related 

features extracted by FENL are also presented, and comparison are made visible for readers. 

At the end of the chapter, a comprehensive discussions covering threats to validity of the 

proposed approach is also presented.  Next, in Chapter 7, conclusion and discussion on future 

works will be presented.  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

153 

CHAPTER 7: CONCLUSIONS AND FUTURE WORKS 

Introduction 

In this thesis the problem to reuse natural language requirements has been identified. The 

process of manual feature extraction in requirements reuse can be arduous, time consuming 

and error prone on the results. Moreover, there are lack of guidelines or support tools 

published in this area, which consequently impede the RR practice in Software Product Lines. 

The assumption was made that an implementation of automated approach could provide a 

better quality features extracted and expediting time to market (Clements & Northrop, 2002). 

This is especially true when common features that can be reused are easily extracted from 

existing requirements artefacts.  

 Research Aims and Methods 7.1

In order to fulfil the research aim, four research objectives were specified. Table 7.1 

summarises the four research objectives and the methods employed in this research for 

fulfilment of the overall research aim.  

Table 7-1 Revisiting Research Aims and Methods 

# Research Objectives Methods Presentation 
1. To identify available approaches 

in feature extraction from natural 
language requirements for 
requirements reuse. 

Systematic Literature Review Chapter 2 

2. To explore the current state of 
practice of requirements reuse 

Preliminary Investigation 
through survey 

Chapter 4 

3. To propose a feature extraction 
process for requirements reuse 

Feature extraction process 
adapting the Natural 
Language Processing and 
machine learning techniques 
is demonstrated through lab 

Chapter 5 

Univ
ers

ity
 of

 M
ala

ya



 

 

154 

experiment. 
4. To evaluate the proposed 

approach 
Recall, Precision and F-
Measure along with statistical 
measures were used to 
evaluate the accuracy of the 
proposed approach 

Chapter 6 

 

In Chapter 2, a comprehensive systematic literature review was provided for the audience 

to understand the available approaches published in this area. The main conclusion from the 

Systematic Literature Review in Chapter 2 includes: (1) most related studies use Software 

Requirements Specifications (SRS) as inputs, but product descriptions, brochures, and user 

comments are also used due to practical reasons; (2) commonly the outputs from feature 

extraction process are feature diagrams, clustered requirements, keywords or direct objects; 

and (3) the extraction process can be divided into four phases: requirements assessment, terms 

extraction, features identification, and feature model formation.  

Additionally, a preliminary survey was conducted to explore the state of practice for 

requirements reuse and this was presented in Chapter 4. Among important findings from this 

survey reveals that the unavailability of guidelines or support tools and the poor conditions of 

existing requirements are among the factors that hinder software practitioners from practicing 

systematic requirements reuse in Malaysia. Thus, most reuse activities are unplanned and 

happened on ad hoc basis.  

In Chapter 5, the proposed feature extraction process was described. The proposed 

approach comprise of four phases: Accessing Natural Language Requirements, Terms 

Extractions, Feature Identifications and Formation of Feature Models. The Latent Semantic 

Univ
ers

ity
 of

 M
ala

ya



 

 

155 

Analysis and clustering technique from machine learning was used in the FENL 

implementation.  

To evaluate the proposed feature extraction process, a clearly laid out evaluation strategy 

was presented in Chapter 6.  This strategy includes the setting up of manual extraction 

approach to form the truth data set for the purpose of accuracy comparisons towards the 

automated approach. Recall, Precision and F-Measure were used to measure the accuracy of 

the extracted approach against the truth data set. The evaluation results obtained indicated that 

FENL approach produces Recall results that is significant and performed comparably to 

manual approach.  

 Research Contribution 7.2

One of the main contributions of this research is the Systematic Literature Review findings 

that is useful to addition to the body of knowledge in the area of requirements reuse for 

software product lines (Bakar et al., 2015). Secondly, the preliminary investigation conducted 

through survey contributed to the software engineering research pertaining to the state of the 

practice for requirements reuse in Malaysian context (Bakar & Kasirun, 2014). The details 

implementation of the feature extraction approach presented in Chapter 5 and its 

demonstration through lab experiment can be used to guide practitioners to get started with 

requirements reuse. Besides, the ground truth data set created for this research experiment is 

made available online in case of future replication is needed. The limitations and threat to 

validity discussed at the end of Chapter 6 as well can acts as a guidelines for other researchers 

or practitioners who are interested to perform the feature extractions for requirements reuse 

problem.  

Univ
ers

ity
 of

 M
ala

ya



 

 

156 

 Future Work 7.3

The feature extraction experiment can be further experimented in a case study settings in 

industry to determine the applicability of the FENL approach when scale up.  Additionally, in 

the near future, the FENL approach will be integrated in one open source platform, so that 

more parties can benefit from it.  

The second part of FENL that involves grouping extracted features can be further explored. 

K-Means clustering algorithm is known to have fast convergence, and this property of K-

Means might affect the performance of the feature grouping results. Experimenting with 

different clustering algorithm to determine which clustering algorithm could improve the 

feature grouping results can be explored in the near future.  Another interesting continuation of 

this work would be to enhance the linguistic tagging of FENL so that it can as well extract the 

non-functional requirements such as user interface or security features of a software system. 

For this purpose, investigation on the structure of the non-functional requirements in natural 

language documents should be carried out. 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

157 

REFERENCES 

Abraham, B. Z., & Aguilar, J. C. (2007). Software Component Selection Algorithm Using 

Intelligent Agents. In First KES International Symposium, KES-AMSTA 2007, Wroclaw, 

Poland, May 31– June 1, 2007. Proceedings. Lecture Notes in Computer Science (LNCS). 

(pp. 82–91). Berlin: Springer-Verlag Berlin Heiderberg. doi:10.1007/978-3-540-72830-

6_9 

Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P., & Lahire, P. 

(2012). On extracting feature models from product descriptions. Proceedings of the Sixth 

International Workshop on Variability Modeling of Software-Intensive Systems - VaMoS 

’12, 45–54. doi:10.1145/2110147.2110153 

Agresti, W. W. (2011). Software Reuse: Developers’ Experiences and Perceptions. Journal of 

Software Engineering and Applications, 04(01), 48–58. doi:10.4236/jsea.2011.41006 

Alves, V., Niu, N., Alves, C., & Valença, G. (2010). Requirements engineering for software 

product lines: A systematic literature review. Information and Software Technology, 

52(8), 806–820. doi:10.1016/j.infsof.2010.03.014 

Alves, V., Schwanninger, C., Barbosa, L., Rashid, A., Sawyer, P., Rayson, P., … Rummler, A. 

(2008). An Exploratory Study of Information Retrieval Techniques in Domain Analysis. 

2008 12th International Software Product Line Conference, 67–76. 

doi:10.1109/SPLC.2008.18 

Babluki, S. (2013). An Efficient Way to Extract the Main Topics from a Sentence. Retrieved 

from http://thetokenizer.com/2013/05/09/efficient-way-to-extract-the-main-topics-of-a-

Univ
ers

ity
 of

 M
ala

ya



 

 

158 

sentence/ 

Bagheri, E., & Ensan, F. (2013). Dynamic decision models for staged software product line 

configuration. Requirements Engineering, 19(2), 187–212. doi:10.1007/s00766-013-

0165-8 

Bagheri, E., Ensan, F., & Gasevic, D. (2012). Decision Support for the Software Product Line. 

Automated Software Engineering, 19(3), 335–377. doi:10.1007/s10515-011-0099-7 

Bakar, N. H., & Kasirun, Z. M. (2014). Exploring Software Practitioners Perceptions and 

Experience in Requirements Reuse An Empirical Study in Malaysia. International 

Journal of Software Engineering and Technology, 1(2), 33–42. 

Bakar, N. H., Kasirun, Z. M., & Salleh, N. (2015). Feature extraction approaches from natural 

language requirements for reuse in software product lines: A systematic literature review. 

Journal of Systems and Software, 106, 132–149. doi:10.1016/j.jss.2015.05.006 

Barreto, F., Benitti, V., & Cezario, R. (2013). Evaluation of a Systematic Approach to 

Requirements Reuse. Journal of Universal Computer Science, 19(2), 254–280. 

Basili, V. R., & Rombach, H. D. (1994). Encyclopedia of Software Engineering. In 

Encyclopedia of Software Engineering (pp. 528–532). John Wiley & Sons. 

Benavides, D., Segura, S., & Ruiz-cort, A. (2009). Automated Analysis of Feature Models  : A 

Detailed Literature Review. Seville, Spain. 

Benavides, D., Segura, S., & Ruiz-Cortes, A. (2010). Automated Analysis of Feature Models 

Univ
ers

ity
 of

 M
ala

ya



 

 

159 

20 years later: A Literature Review. Information Systems, 35, 615–636. 

doi:10.1016/j.is.2010.01.001 

Bonin, F., Orletta, F. D., Venturi, G., & Montemagni, S. (2010). A Contrastive Approach to 

Multi – word Term Extraction from Domain Corpora. In N. C. (Conference C. and K. C. 

and B. M. and J. M. and J. O. and S. P. and M. R. and D. Tapias (Ed.), Proceedings of the 

Seventh International Conference on Language Resources and Evaluation (LREC’10) 

(pp. 3222–3229). Vallette, Malta: European Language Resources Association (ELRA). 

Boutkova, E., & Houdek, F. (2011). Semi-automatic identification of features in requirement 

specifications. In 2011 IEEE 19th International Requirements Engineering Conference 

(pp. 313–318). Trento, Italy: IEEE. doi:10.1109/RE.2011.6051627 

Carreno, L. V. G., & Windbladh, K. (2013). Analysis of User Comments  : An Approach for 

Software Requirements Evolution. In International Conference of Software Engineering, 

ICSE 2013 (pp. 582–591). San Francisco, USA: IEEE. doi:10.1109/ICSE.2013.6606604 

Casamayor, A., Godoy, D., & Campo, M. (2012). Functional grouping of natural language 

requirements for assistance in architectural software design. Knowledge-Based Systems, 

30, 78–86. doi:10.1016/j.knosys.2011.12.009 

Chen, K., Zhang, W., Zhao, H., & Mei, H. (2005). An approach to constructing feature models 

based on requirements clustering. In 13th IEEE International Conference on 

Requirements Engineering (RE’05) (pp. 31–40). La Sorbonne, France: IEEE. 

doi:10.1109/RE.2005.9 

Univ
ers

ity
 of

 M
ala

ya



 

 

160 

Chen, L., & Ali Babar, M. (2011). A systematic review of evaluation of variability 

management approaches in software product lines. Information and Software Technology, 

53(4), 344–362. doi:10.1016/j.infsof.2010.12.006 

Chernak, Y. (2012). Requirements Reuse: The State of the Practice. In 2012 IEEE 

International Conference on Software Science, Technology and Engineering (pp. 46–53). 

IEEE. doi:10.1109/SWSTE.2012.12 

Clements, P., & Northrop, L. M. (2002). Software product lines: practices and patterns. 

Boston, MA, USA: Addison Wesley Professional. 

Cleverdon, C. W. (1970). Evaluation of tests of information retrieval systems. Journal of 

Documentation, 26, 55–67. 

Cui, X., Potok, T. E., & Palathingal, P. (2005). Document clustering using particle swarm 

optimization. In Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE 

(pp. 185 – 191). Pasadena, California: IEEE. doi:10.1109/SIS.2005.1501621 

Czarnecki, K., Helsen, S., & Eisenecker, U. (2004). Staged Configuration Using Feature 

Models. In R. L. Nord (Ed.), Third International Conference, SPLC 2004, Boston, MA, 

USA, (pp. 266–283). Boston, USA: Springer Berlin Heidelberg. doi:10.1007/978-3-540-

28630-1_17 

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer 

Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 

982–1003. 

Univ
ers

ity
 of

 M
ala

ya



 

 

161 

Davril, J.-M., Delfosse, E., Hariri, N., Acher, M., Cleland-Huang, J., & Heymans, P. (2013). 

Feature model extraction from large collections of informal product descriptions. 

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering - 

ESEC/FSE 2013, 290. doi:10.1145/2491411.2491455 

Deerwester, S., Dumais, S. T., Furnas, G. W., & Landauer, T. K. (1998). Indexing by Latent 

Semantic Analysis. Journal of the American Society for Information Science, 41(6), 391. 

Denger, C., Berry, D. M., & Kamsties, E. (2003). Higher Quality Requirements Specifications 

through Natural Language Patterns. In Proceedings of the IEEE International Conference 

on Software—Science, Technology & Engineering (SwSTE’03) (pp. 1–11). 

Dit, B., Revelle, M., Gethers, M., & Poshyvanyk, D. (2013). Feature location in source code: a 

taxonomy and survey. Journal of Software: Evolution and Process, 25, 53–95. 

doi:10.1002/smr.567 

Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-Herrera, C., & 

Mirakhorli, M. (2011). On-Demand Feature Recommendations Derived from Mining 

Public Software Repositories. In International Conference on Software Engineering ICSE 

2011 (pp. 181–190). Waikiki, Honolulu, HI, USA: IEEE. doi:10.1145/1985793.1985819 

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A 

systematic review. Information and Software Technology, 50(9-10), 833–859. 

doi:10.1016/j.infsof.2008.01.006 

Eriksson, M., Borstler, J., & Borg, K. (2006). Sotware Product Line Modeling Made Practical: 

Univ
ers

ity
 of

 M
ala

ya



 

 

162 

An Example from Swedish Defense Industry. Communications of the ACM, 49(12), 49 – 

53. 

Falessi, D., Cantone, G., & Canfora, G. (2010). A Comprehensive Characterization of NLP 

Techniques for Identifying Equivalent Requirements. In Proceedings of the 2010 ACM-

IEEE International Symposium on Empirical Software Engineering and Measurement 

(pp. 1–10). Balzano-Bolzen, Italy: ACM. doi:10.1145/1852786.1852810 

Falessi, D., Cantone, G., & Canfora, G. (2013). Empirical Principles and an Industrial Case 

Study in Retrieving Equivalent Requirements via Natural Language Processing 

Techniques. IEEE Transaction on Software Engineering, 39(1), 18–44. 

Faulk, S. R. (2001). Product-Line Requirements Specification (PRS): an Approach and Case 

Study. In Requirements Engineering, 2001. Proceedings. Fifth IEEE International 

Symposium on (pp. 48–55). IEEE. doi:10.1109/ISRE.2001.948543 

Ferrari, A., Spagnolo, G. O., & Dell’Orletta, F. (2013). Mining commonalities and variabilities 

from natural language documents. In Proceedings of the 17th International Software 

Product Line Conference on - SPLC ’13 (p. 116). New York, USA: ACM Press. 

doi:10.1145/2491627.2491634 

Finkelstein, A. (1988). Re-use of formatted requirements specifications. Software Engineering 

Journal, 3(5), 186–197. doi:10.1049/sej.1988.0024 

Frakes, W. B., & Fox, C. J. (1995). Sixteen Questions About Software Reuse. 

Communications of the ACM, 38(6), 75–87. 

Univ
ers

ity
 of

 M
ala

ya



 

 

163 

Frakes, W. B., & Kang, K. (2005). Software Reuse: Status and Future. IEEE Transaction on 

Software Engineering, 31(7), 529 – 536. 

Galster, M., Weyns, D., Tofan, D., Michalik, B., & Avgeriou, P. (2014). Variability in 

Software Systems — A Systematic Literature Review. IEEE Transactions on Software 

Engineering, 40(3), 282–306. 

Guzman, E., & Maalej, W. (2014). How Do Users Like This Feature  ? A Fine Grained 

Sentiment Analysis of App Reviews. In Requirement Engineering Conference 2014 (pp. 

153–162). Karskrona, Sweden. 

Hand, D., Mannila, H., & Smyth, P. (2001). Principles of Data Mining (Adaptive C.). MIT 

Press. 

Hariri, H., Castro-Herera, C., Mirarkholi, M., Cleland-Huang, J., & Mobasher, B. (2013). 

Supporting Domain Analysis Through Mining and Recommending features from Online 

Product Listings. IEEE Transactions on Software Engineering, 39(12), 1736–1752. 

Hoenkamp, E. (2011). Trading spaces: on the lore and limitations of latent semantic analysis. 

In ICTIR’11 Proceedings of the Third international conference on Advances in 

information retrieval theory (pp. 40–51). 

Huang, A. (2008). Similarity Measures for Text Document Clustering. In New Zealand 

Computer Science Research Student Conference (NZCSRSC) (pp. 1–8). Christchurch. 

Hubaux, A., Tun, T. T., & Heymans, P. (2013). Separation of concerns in feature diagram 

languages. ACM Computing Surveys, 45(4), 1–23. doi:10.1145/2501654.2501665 

Univ
ers

ity
 of

 M
ala

ya



 

 

164 

Iacob, C., & Harrison, R. (2013). Retrieving and Analyzing Mobile Apps Feature Requests 

from Online Reviews. In Mining Software Repositories (MSR), 2013 10th IEEE Working 

Conference (pp. 41–44). 

IEEE Computer Society (1990). “IEEE Standard Glossary of Software Engineering 

Terminology”. IEEE Standard. (n.d.). 

Jiang, H., Nguyen, T. N., & Chen, I. (2008). Incremental Latent Semantic Indexing for 

Effective , Automatic Traceability Link Evolution Management. In In Proceedings of the 

2008 23rd IEEE/ACM International Conference on Automated Software Engineering (pp. 

59–68). L’Aquila, Italy: IEEE Computer Society. 

Jørgensen, M., & Shepperd, M. (2007). A Systematic Review of Software Development Cost 

Estimation Studies. IEEE Transactions on Software Engineering, 33(1), 33–53. 

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990). Feasibility 

Study Feature-Oriented Domain Analysis ( FODA ). Pittsburgh, PA. 

doi:10.1080/10629360701306050 

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A. (1990). Feature Oriented Domain 

Analysis (FODA) Feasibility Study. Pittsburgh, PA. 

Khan, K., Baharudin, B., & Khan, A. (2014). Identifying Product Features from Customer 

Reviews Using Hybrid Patterns. International Arab Journal of IT, 11(3), 281–286. 

Khurum, M., & Gorschek, T. (2009). A systematic review of domain analysis solutions for 

product lines. Journal of Systems and Software, 82(12), 1982–2003. 

Univ
ers

ity
 of

 M
ala

ya



 

 

165 

doi:10.1016/j.jss.2009.06.048 

Kitchenham, B. A., & Charters, S. (2007). Procedures for Performing Systematic Literature 

Reviews in Software Engineering. EBSE Technical Report version 2.3, EBSE-2007-01. 

Keele, UK. doi:10.1.1.122.3308 

Knethen, A. Von, Paech, B., Kiedaisch, F., Houdek, F., Kaiserslautern, D.-, Ulm, D.-, & Ag, 

D. (2002). Systematic Requirements Recycling through Abstraction and Traceability. In 

Requirements Engineering (pp. 273–281). 

Kobielus, J. (2014). The Ground Truth in Agile Machine Learning. IBM Big Data Analytics. 

Retrieved from http://www.ibmbigdatahub.com/blog/ground-truth-agile-machine-

learning 

Krueger, C. (1992). Software Reuse. ACM Comput. Surv., 24(2), 131–183. 

Krueger, C. (2001). Easing the transition to software mass customization. In International 

Workshop on Product Family Engineering (pp. 282–293). Bilbao, Spain. 

Krueger, C. (2002). Eliminating the Adoption Barrier. IEEE Software, (August), 29–31. 

Kumaki, K., Tsuchiya, R., Washizaki, H., & Fukazawa, Y. (2012). Supporting commonality 

and variability analysis of requirements and structural models. In Proceedings of the 16th 

International Software Product Line Conference on - SPLC ’12 (pp. 115–118). New 

York, USA: ACM Press. doi:10.1145/2364412.2364431 

Lam, W., McDermid, J. A., & Vickers, A. J. (1997). Ten steps towards systematic 

Univ
ers

ity
 of

 M
ala

ya



 

 

166 

requirements reuse. Requirements Engineering, 2(2), 102–113. doi:10.1007/BF02813029 

Leedy, P. D., & Ormrod, J. E. (2013). Practical Research Planning and Design (11th ed.). 

Boston, MA, USA: Pearson Education Inc. 

Lisboa, L. B., Garcia, V. C., Lucrédio, D., De Almeida, E. S., De Lemos Meira, S. R., & De 

Mattos Fortes, R. P. (2010). A systematic review of domain analysis tools. Information 

and Software Technology, 52(1), 1–13. doi:10.1016/j.infsof.2009.05.001 

Maiden, N. A., & Sutcliffe, A. G. (1992). Exploiting Usable Specifications Through Analogy. 

Communications of the ACM, 35(4), 55–64. doi:10.1145/129852.129857 

Maletic, J. I., & Valluri, N. (1999). Automatic software clustering via Latent Semantic 

Analysis. In 14th IEEE International Conference on Automated Software Engineering 

(pp. 251–254). Cocoa Beach Florida: IEEE Comput. Soc. doi:10.1109/ASE.1999.802296 

Manning, C., Raghavan, P., & H. Schtze. (2008). Introduction to Information Retrieval. 

Cambridge Univ. Press. 

Marcus, A., & Maletic, J. I. (2003). Recovering documentation-to-source-code traceability 

links using latent semantic indexing. In 25th International Conference on Software 

Engineering, 2003. Proceedings. (pp. 125–135). Ieee. doi:10.1109/ICSE.2003.1201194 

Massonet, P., & Lamsweerde, A. Van. (1997). Analogical Reuse of Requirements 

Frameworks. In Proceedings of the Third IEEE International Symposium on 

Requirements Engineering, 1997. (pp. 26–37). 

Univ
ers

ity
 of

 M
ala

ya



 

 

167 

Mellarkod, V., Appan, R., Jones, D. R., & Sherif, K. (2007). A multi-level analysis of factors 

affecting software developers’ intention to reuse software assets: An empirical 

investigation. Information & Management, 44(7), 613–625. doi:10.1016/j.im.2007.03.006 

Metzger, A., & Pohl, K. (2014). Software Product Line Engineering and Variability 

Management  : Achievements and Challenges. In FOSE (pp. 70–84). Hyderabad, India. 

Meyer, M. H., & Lehnerd, A. P. (1997). The Power of Product Platform. New York: Free 

Press. 

Monzon, A. (2008). A Practical Approach to Requirements Reuse in Product Families of On-

Board Systems. In 16th IEEE International Requirements Engineering Conference (pp. 

223–228). Barcelona,Catalunya, Spain: IEEE. doi:10.1109/RE.2008.19 

Moros, B., Toval, A., Rosique, F., & Sánchez, P. (2012). Transforming and Tracing Reused 

Requirements Models to Home Automation Models. Information and Software 

Technology. doi:10.1016/j.infsof.2012.12.003 

Mu, Y., Wang, Y., & Guo, J. (2009). Extracting Software Functional Requirements from Free 

Text Documents. In 2009 International Conference on Information and Multimedia 

Technology (pp. 194–198). Ieee. doi:10.1109/ICIMT.2009.47 

Neighbors, J. M. (1984). The Draco Approach to Constructing Software from Reusable 

Components. IEEE Transactions on Software Engineering, SE-10(5), 564–574. 

doi:10.1109/TSE.1984.5010280 

Neill, C. J., & Laplante, P. A. (2003). Requirements Engineering  : The State of the Practice. 

Univ
ers

ity
 of

 M
ala

ya



 

 

168 

IEEE Software, 20(6), 40–45. doi:10.1109/MS.2003.1241365 

Nicolás, J., & Toval, A. (2009). On the generation of requirements specifications from 

software engineering models: A systematic literature review. Information and Software 

Technology, 51(9), 1291–1307. doi:10.1016/j.infsof.2009.04.001 

Niu, N., & Easterbrook, S. (2008). Extracting and Modeling Product Line Functional 

Requirements. 2008 16th IEEE International Requirements Engineering Conference, 

155–164. doi:10.1109/RE.2008.49 

Niu, N., Savolainen, J., Niu, Z., Jin, M., & Cheng, J.-R. C. (2013). A Systems Approach to 

Product Line Requirements Reuse. IEEE Systems Journal, 1–10. 

doi:10.1109/JSYST.2013.2260092 

Northrop, L. M., & Clements, P. C. (n.d.). A Framework for Software Product Line Practice, 

Version 5.0. Software Engineering Institute, Carnegie Mellon University. Retrieved April 

25, 2015, from http://www.sei.cmu.edu/productlines/frame_report/index.html 

Oliveira, T. C., Alencar, P., & Cowan, D. (2011). ReuseTool—An extensible tool support for 

object-oriented framework reuse. Journal of Systems and Software, 84(12), 2234–2252. 

doi:10.1016/j.jss.2011.06.030 

Paredes, C., & Fiadeiro, J. L. (1995). Reuse of Requirements and Specifications - A Formal 

Framework. In Symposium on Software Reusability (pp. 263–266). Seattle, WA USA: 

ACM. doi:0-89791 -739 -1/95/0004 

Petticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences: A Practical 

Univ
ers

ity
 of

 M
ala

ya



 

 

169 

Guide. Maryland USA: Blackwell Publishing. 

Pohl, K., Bockle, G., & Van der Linden, F. (2005). Software Product Line Engineering. 

Berlin/Heidelberg: Springer-Verlag. doi:10.1007/3-540-28901-1 

Poshyvanyk, D., Gethers, M., & Marcus, A. (2012). Concept location using formal concept 

analysis and information retrieval. ACM Transactions on Software Engineering and 

Methodology, 21(4), 1–34. doi:10.1145/2377656.2377660 

Renault, S., Mendez-Bonilla, O., Franch, X., & Quer, C. (2009). PABRE  : Pattern-Based 

Requirements Elicitation. In Third International Conference on Research Challenges in 

Information Science, 2009. RCIS 2009. (pp. 81–92). doi:10.1109/RCIS.2009.5089271 

Robinson, W. N., & Woo, H. G. (2004). Finding Reusable UML Sequence Diagrams 

Automatically. IEEE Software, 21(5), 60–67. doi:10.1109/MS.2004.1331304 

Salleh, N., Mendes, E., & Grundy, J. (2011). Empirical Studies of Pair Programming for 

CS/SE Teaching in Higher Education: A Systematic Literature Review. IEEE 

Transaction on Software Engineering, 37(4), 509–525. doi:doi: 10.1109/TSE.2010.59 

Salton, G., & Buckley, C. (1988). Term Weighting Approaches in Automatic Text Retrieval. 

Information Processing and Management, 24(5), 513 – 523. Retrieved from 

http://comminfo.rutgers.edu/~muresan/IR/Docs/Articles/ipmSalton1988.pdf 

Salton, G., Wong, A., & Yang, C. S. (1975). Vector Space Model for Automatic Indexing. 

Communication of ACM, 18(11). 

Univ
ers

ity
 of

 M
ala

ya



 

 

170 

Shaw, M. (2002). What Makes Good Research in Software Engineering  ? International 

Journal of Software Tools for Technology Transfer, 4(1), 1–7. 

Shull, F., Singer, J, & Sjoberg, D. I. K. (2008). Guide to Advanced Empirical Software 

Engineering. London: Springer-Verlag London. 

Slyngstad, O. P. N., Gupta, A., Conradi, R., Mohagheghi, P., Rønneberg, H., & Landre, E. 

(2006). An Empirical Study of Developers Views on Software Reuse in Statoil ASA. In 

Proceedings of the 2006 ACM/IEEE International Symposium on Empirical Software 

Engineering (pp. 242–251). Rio de Janeiro, Brazil: ACM. doi:10.1145/1159733.1159770 

Solemon, B., Shahibudin, S., & Abdul Ghani, A. A. (2008). Requirements Engineering 

Problems in 63 Software Companies in Malaysia Badariah Solemon. In International 

Symposium on Information Technology, ITSim 2008 (pp. 1–6). IEEE. 

doi:10.1109/ITSIM.2008.4631911 

Weston, N., Chitchyan, R., & Rashid, A. (2009). A Framework for Constructing Semantically 

Composable Feature Models from Natural Language Requirements. In Proceeding of the 

13th Software Product Lines Conference (pp. 211–220). San Francisco, California, USA: 

Carnegie Mellon University. 

Wohlin, C., & Prikladnicki, R. (2013). Systematic literature reviews in software engineering. 

Information and Software Technology, 55(6), 919–920. doi:10.1016/j.infsof.2013.02.002 

Yu, Y., Wang, H., Yin, G., & Liu, B. (2013). Mining and recommending software features 

across multiple web repositories. In Proceedings of the 5th Asia-Pacific Symposium on 

Univ
ers

ity
 of

 M
ala

ya



 

 

171 

Internetware (pp. 1–9). New York, USA: ACM Press. doi:10.1145/2532443.2532453 

  

Univ
ers

ity
 of

 M
ala

ya



 

 

172 

LIST OF PUBLICATIONS AND PAPERS PRESENTED 

1. Bakar, N. H., Kasirun, Z. M., & Salleh, N. (2015). Feature extraction approaches from 

natural language requirements for reuse in software product lines: A systematic 

literature review. Journal of Systems and Software, 106, 132–149. 

doi:10.1016/j.jss.2015.05.006 

2. Bakar, N. H., Kasirun, Z. M., Salleh, N., & Jalab, H. A. (2016). Extracting features 

from online software reviews to aid requirements reuse. Applied Soft Computing 

Journal (ISI cited – Q1), Accepted 27th July 2016. 

http://dx.doi.org/10.1016/j.asoc.2016.07.048 

3. Bakar, N. H., Kasirun, Z. M., & Jalab, H. A. (2014). Towards Requirements Reuse  : 

Identifying Similar Requirements with Latent Semantic Analysis and Clustering 

Algorithms. In 	
Proc. of the Second Intl. Conf. on Advances In Computing, 

Communication and Information Technology- CCIT 2014. (pp. 19–24). Birmingham, 

United Kingdom: Seek Digital Library - the REID. doi:10.15224/ 978-1-63248-051-4-

20 

4. Bakar, N. H., & Kasirun, Z. M. (2013). Empirical Survey on Requirements Reuse 

Practice Among Software Practitioners in Malaysia. In MySEC2013). 

5. Bakar, N. H., & Kasirun, Z. M. (2014). Exploring Software Practitioners Perceptions 

and Experience in Requirements Reuse An Survey in Malaysia. International Journal 

of Software Engineering and Technology, 1(2). Retrieved from 

http://se.cs.utm.my/ijset/index.php/ijset/article/view/26/20 

Univ
ers

ity
 of

 M
ala

ya



 

 

173 

6. Bakar, N. H. (2013). Latent Semantic Analysis and Particle Swarm Optimization for 

Requirements Reuse in Software Product Line  : Research Plan. Doctoral Symposium in 

conjunction with Software Product Line Conference, SPLC 2013. Tokyo, Japan. 

7. Bakar, N. H., Kasirun, Z. M., Salleh, N., & Jalab, H. A. (2015). Terms Extractions  : An 

Approach for Requirements Reuse. In 2nd International Conference on Information 

Science and Security (ICISS). 

 

 

 

 

 

 

 

 

 

 
Univ

ers
ity

 of
 M

ala
ya



 

 

174 

APPENDIX A – LIST OF PRIMARY STUDIES SELECTED IN THE SYSTEMATIC 

LITERATURE REVIEW 

ID Author  Paper Title Venue / Source 

S1 Kumaki K., 
Washizaki, H., & 
Fukazawa, Y. 

Supporting commonality and 
variability analysis of requirements 
and structural models 

SPLC 12: 115 – 118 
(Kumaki et al., 2012) 

S2 Niu, N., Savolainen, 
J., Niu, Z., Jin, M., & 
Cheng, J.-R. C. 

A systems approach to product line 
requirements reuse 

IEEE Systems Journal: 1-
10 (Niu et al., 2013) 

S3 Ferrari A., Spagnolo, 
G., & Dell Orletta 

Mining commonalities and 
variabilities from natural language 
documents 

SPLC 13: 116 – 120 
(Ferrari et al., 2013) 

S4 Alves, V., 
Schwanninger, C., 
Barbosa, L., Rashid, 
A., Sawyer, P., 
Rayson, P., Pohl, C., 
& Rummler, A. 

An exploratory study of 
information retrieval techniques in 
domain analysis 

SPLC 08:  67 – 76 (Alves 
et al., 2008) 

S5 Weston, N., 
Chitchyan, R., & 
Rashid, A. 

A framework for constructing 
semantically composable feature 
models from natural language 
requirements. 

SPLC 09: 211 – 220 
(Weston et al., 2009) 

S6 Chen, K., Zhang, W., 
Zhao, H.,  & Mei, H. 

An approach to constructing feature 
models based on requirements 
clustering 

RE 2005: 31 – 40 (K. 
Chen et al., 2005) 

S7 Acher, M., Cleve, A., 
Perrouin, G., 
Heymans, P., 
Vanbeneden, C., 
Collet, P., & Lahire, 
P. 

On extracting feature models from 
product descriptions 

VaMOS 12: 45 – 54 
(Acher et al., 2012) 

S8 Hariri, N., Castro-
Herrera, C., 
Mirakhorli, M., 
Cleland-Huang, J., & 
Mobasher, B. 

Supporting domain analysis 
through mining and recommending 
features from online product 
listings 

IEEE Trans. Software 
Engineering, 39(12), 
December 2013. (Hariri et 
al., 2013) 

S9 Mu, Y., Wang, Y., & 
Guo, J. 

 

Extracting software functional 
requirements from free text 
documents 

 

International Conference 
on Information and 
Multimedia Technology, 
2009 (ICIMT '09).  (Mu et 
al., 2009) 

S10 Yu, Y., Wang, H., 
Yin, G., & Liu, B. 

 

Mining and recommending 
software features across multiple 
web repositories 

 

Internetware, October 
2013. (Yu et al., 2013) 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

175 

S11 Bagheri, B.,  Ensan 
F., & Gasevic, D.  

Decision support for the software 
product line domain engineering 
lifecycle 

Automated Software 
Engineering, September 
2012, 19(3), 335-377. 
(Bagheri et al., 2012) 

S12 Boutkova, E., & F. 
Houdek 

Semi-automatic identification of 
features in requirement 
specifications 

RE 2011: 313 – 318 
(Boutkova & Houdek, 
2011) 

S13 Guzman, E., & 
Maalej, W.  

How do users like this feature? A 
fine grained sentiment analysis of 
app reviews 

RE 2014: 153 – 162 
(Guzman & Maalej, 2014) 

 

 

 

 

 

 

 

 

 

 

 Univ
ers

ity
 of

 M
ala

ya



 

 

176 

APPENDIX B: INPUT (TYPES OF REQUIREMENTS) AND OUTPUT (FEATURES) 

FOR SELECTED STUDIES IN SYSTEMATIC LITERATURE REVIEW 

 Classification Dimensions for Requirements (Input) and Feature (Output) Types 

Selected Studies Input Output 

 

R
eq

ui
re

m
en

ts
 / 

SR
S 

D
oc

s 

 
In

te
rn

al
 D

oc
um

en
ta

tio
n 

Pr
od

uc
t D

es
cr

ip
tio

ns
 

Pr
od

uc
t B

ro
ch

ur
es

 

U
se

r C
om

m
en

ts
 

Fe
at

ur
es

 (K
ey

w
or

ds
) 

Fe
at

ur
e 

Tr
ee

s/
M

od
el

 

V
er

b 
Ph

ra
se

/D
ire

ct
 

O
bj

ec
ts

 

C
lu

st
er

ed
 R

eq
ui

re
m

en
ts

 

S1 
 

[Kumaki, ‘12] •        • 

S2 
 

[NanNiu, ‘08] •       •  

S3 
 

[Ferrari, ‘13]    •  •    

S4 
 

[V. Alves, ‘08] •      •   

S5 
 

[Weston, ‘09] •      •   
S6 

 
[Chen, ‘05] •      •   

S7 
 

[Archer, ‘12]   •    •   

S8 
 

[Hariri, ‘13]   •    •   

S9 
 

[Yunhe, ‘09]  •       •  

S10 
 

[Yu Wang, ‘13]   •      • 

S11 
 

[Bagheri, ‘12] •        • 

S12 
 

[Boutkova, ‘11]  •    •    

S13 
 

[Guzman, ‘14]     •     

 

Univ
ers

ity
 of

 M
ala

ya



 

 

177 

APPENDIX C:  DATA EXTRACTION FORM 

Study Info Data 
Study ID (S #)  
Date of the extraction  
Paper Title  
Author(s)  
Publication Type  
Name of the tools  (if 
any) 

 

Source  
Answers to elements in RQs 

RQ1: What approaches are 
available to extract features 
from NL requirements? 

Types of Input: 

 

Types of Output: 

 
RQ1.1: How were the 
commonality and variability 
addressed?  

 

Which technique was used? 

NLP/Information Theory 

 

Machine Learning/Data mining 

 
RQ1.2: Availability of support 
tools, Automated/Semi-
automated 

Automated  

Semi-auto 

Manual  
RQ2:  Evaluation being 
performed 

Context:  Academia/Industry 

Procedure: Experiment/Case Study/Other: 
______________________ 

Measure Used: Recall/Precision/F-
Measure/Other: ______________ 

RQ 2.2: Domain Application  

 

 
 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

178 

APPENDIX D: QUALITY ASSESSMENT CHECKLIST 

Item  Answer 
QA1: Was the article refereed? (Leedy & Ormrod, 2013) Yes/No 
QA2: Was there a clear statement of the aims of the research? (Dybå & 

Dingsøyr, 2008) 
Yes/No/ 
Partially 

QA3:  Is there an adequate description of the context in which the 
research was carried out? (Dybå & Dingsøyr, 2008) For example, the 
problems that lead to the research are clearly stated, descriptions of 
research methodology used, study participants, etc. 

Yes/No/ 
Partially 

QA4:  Was the data collection done very well? For example, did the 
evaluation done on proposed approach answer the research questions, did 
the paper provide a thorough discussion of the collected results? (Dybå & 
Dingsøyr, 2008) 

Yes/No/ 
Partially 

QA5: Were the testing results rigorously analysed? (Petticrew & 
Roberts, 2006) For example, are there any software metrics provided in 
evaluating the test results, is there any threat to validity being presented in 
the study, etc.  

Yes/No/ 
Partially 

QA6: Any practitioner-based guidelines on requirements reuse being 
produced? Lam et al. suggested that practitioners’ guidelines including 
producing explicit documentation is important to prevent reuse misuse. 
(Lam et al., 1997) 

Yes/No/ 
Partially 

*Scores: Yes[1], No[0], Partially[0.5]	  
 

  

Univ
ers

ity
 of

 M
ala

ya



 

 

179 

APPENDIX E – COVER LETTER FOR PILOT SURVEY 

 

	   	   	   	   	   6th	  March	  2013	  

	  

Dear	  Y.Bhg.	  Dato’/Prof./Assoc.	  Prof.	  Dr./Dr./Sir/Madam/Ms	  
	  
Pilot	  Study:	  Requirements	  Reuse	  Practice	  Among	  Software	  Engineering	  Community	  In	  
Malaysia	  

	  

This	  pilot	  study	  is	  being	  conducted	  by	  a	  PHD	  candidate,	  Noor	  Hasrina	  Bakar	  –	  WHA110041	  
under	   supervision	   of	   Assoc.	   Prof	   Dr.	   Zarinah	   Kasirun	   from	   the	   Department	   of	   Software	  
Engineering,	   FSKTM	   of	   University	   of	  Malaya.	   The	   purpose	   of	   this	   study	   is	   to	   investigate	   the	  
current	  practice	  of	  requirements	  reuse	  among	  software	  engineering	  community	  in	  Malaysia.	  In	  
this	   study,	   you	  will	   be	   asked	   to	   complete	   a	   paper	   based	   survey.	   The	   survey	   should	   take	   no	  
longer	  than	  15	  minutes	  to	  complete.	  	  

	  
You	  are	  selected	  because	  we	  need	  your	  software	  engineering	  expert	  opinion	  in	  confirming	  the	  
questions	   specified	   in	   the	   survey.	   Please	   indicate	   your	   comments	   (if	   any)	   to	   each	   question	  
pertaining	  to	  any	  related	  issue.	  Your	  participation	  in	  this	  pilot	  study	  is	  a	  crucial	  last	  step	  before	  
the	  revised	  survey	  is	  distributed	  to	  the	  selected	  software	  practitioners	  in	  Malaysia.	  

	  
We	   recognise	   the	  additional	  effort	  needed	   to	   respond	   to	   the	   revised	   survey,	  and	  we	  greatly	  
appreciate	   your	   time	  and	  assistance.	  While	   you	  will	   not	  experience	  any	  direct	  benefits	   from	  
participation,	  information	  collected	  in	  this	  pilot	  study	  may	  benefit	  the	  researcher	  to	  clarify	  any	  
ambiguity	  from	  this	  survey	  questions.	  	  
	  	  
We	  hope	  to	  receive	  your	  feedback	  no	  later	  than	  22/3/2013.	  
	  
If	   you	   have	   any	   questions	   regarding	   the	   survey	   or	   this	   research	   project	   in	   general,	   please	  
contact	   Noor	   Hasrina	   Bakar	   at	   noor.hasrina@gmail.com	   /	   noorhasrina@siswa.um.edu.my	   	   /	  
012692-‐7506	  or	  her	  advisor,	  Assoc.	  Prof	  Dr.	  Zarinah	  Kasirun	  at	  zarinahmk@um.edu.my.	  	  	  
	  
	  
	  
Noor	  Hasrina	  Bakar,	  	  
PHD	  Candidate,	  Department	  of	  Software	  Engineering,	  	  
FSKTM	  University	  Malaya	  
	  

Univ
ers

ity
 of

 M
ala

ya



 

 

180 

APPENDIX F – SURVEY QUESTIONNAIRE FOR EXPLORING THE STATE 

OF REQUIREMENTS REUSE PRACTICE IN MALAYSIA 

SURVEY	  ON	  REQUIREMENTS	  REUSE	  PRACTICE	  AMONG	  SOFTWARE	  ENGINEERING	  

COMMUNITY	  IN	  MALAYSIA	  

Thank	  you	   for	  agreeing	   to	  participate	   in	   this	   survey.	  This	   survey	   is	   conducted	  by	   the	  
Department	  of	  Software	  Engineering,	  Faculty	  of	  Computer	  Science	  &	  IT,	  University	  of	  
Malaya.	   	  We	   are	   interested	   in	   knowing	   your	   opinion	   about	   various	   issues	   regarding	  
reuse	  of	  requirements	  in	  software	  development.	  Your	  thoughtful	  answers	  will	  provide	  
important	   input	   to	   our	   research.	   It	   is	   very	   important	   to	   us	   that	   you	   answer	   all	   the	  
questions	  to	  the	  best	  of	  your	  ability.	  	  	  

All	   information	  provided	  by	  you	  will	  be	  kept	  confidential	  and	  used	  for	  the	  purpose	  of	  
research	  only.	  	  The	  overall	  purpose	  of	  this	  survey	  is	  to	  investigate	  the	  current	  practice	  
of	  requirements	  reuse	  among	  software	  practitioners	  in	  Malaysia.	  We	  are	  aiming	  to:	  

1.	   	   collect	   the	   information	   regarding	   participants	   perceptions	   about	   reusing	  
requirements	  in	  software	  development	  
2.	   	   	   gather	   information	   about	   current	   requirements	   reuse	   practice	   in	  
participant’s	  organisations,	  including	  tools	  support	  and	  related	  problems	  faced.	  

This	  survey	  consisted	  of	  3	  parts.	  Questions	  in	  PART	  A	  aim	  to	  collect	  demographic	  info	  /	  
background	   of	   the	   survey	   respondents.	   Questions	   in	   PART	   B	   seek	   to	   understand	  
respondent’s	  perceptions	  about	  various	  requirements	  reuse	  related	  issues	  in	  software	  
development.	   	   In	  PART	  C	  we	  would	   like	   to	  know	  your	  experience	   regarding	   reuse	  of	  
requirements	  in	  your	  latest	  project.	  	  	  

PART	  A:	  DEMOGRAPHIC	  

Tell	  us	  about	  yourself:	  

1.	  Gender:	  

! Male	  
! Female	  

	  
2.	  	  Age:	  

! 25	  -‐	  30	  
! 31-‐	  40	  

Univ
ers

ity
 of

 M
ala

ya



 

 

181 

! 42-‐50	  
! 51-‐55	  

	  
3.	  	  Educational	  Qualifications:	  

! Certificate	  
! Diploma	  
! Bachelor’s	  Degree	  
! Masters	  Degree	  
! PHD	  

	  

4.	  	  Your	  job	  title:	  

! Project	  Manager	  
! Software	  Engineer	  
! Requirements	  Manager	  
! Business	  Analysts	  
! Software	  Engineering	  Expert	  /	  Consultant	  
! Other	  (please	  specify):	  _________________________________________	  

	  

5.	  	  How	  long	  have	  you	  been	  with	  the	  current	  job?	  

! <	  1	  year	  
! Between	  1	  to	  3	  years	  
! Between	  3	  to	  5	  years	  
! More	  than	  5	  years	  

	  

6.	  	  How	  many	  years	  of	  experience	  do	  you	  have	  in	  the	  following	  fields?	  

Requirements	  Engineering:	  
! 0	  year	   	  
! <	  1	  year	  
! 1	  –	  3	  years	  
! 3	  –	  5	  years	  
! >	  5	  years	  

	  
Project	  Management	  

! 0	  year	   	  
! <	  1	  year	  
! 1	  –	  3	  years	  
! 3	  –	  5	  years	  
! 5	  years	  

	  

Univ
ers

ity
 of

 M
ala

ya



 

 

182 

Tell	  us	  about	  your	  organisation:	  

7.	  	  How	  big	  is	  your	  development	  team?	  

! 1	  to	  5	  people	  
! 6	  to	  10	  people	  
! 11	  to	  20	  people	  
! 21	  to	  50	  people	  

	  

8.	  	  Which	  industry	  group	  that	  best	  describes	  your	  organisation?	  	  (you	  	  may	  choose	  

more	  than	  one	  category)	  

! Software	  Development	  House	  
! IT	  Consultancy	  
! Financial	  /	  Banking	  
! Education	  
! Automobiles	  
! Business	  Services	  
! Health	  &	  Medical	  
! Energy	  
! Telecommunications	  
! Travel	  and	  Tourism	  
! Aerospace	  
! Other	  (please	  specify)	  _______________________________________	  

	  

9.	  	  How	  does	  software	  requirements	  being	  presented	  in	  your	  organisation?	  (you	  	  

may	  choose	  more	  than	  one	  category)	  

! Features	  
! Use	  Cases	  
! UML	  Diagrams	  
! Textual	  
! Other	  (please	  specify):	  _______________________________________	  

	  

10.	  	  Your	  organisation	  is	  a:	  

! Government	  
! Semi-‐government	  
! Private	  Sector	  

	  

11.	  	  Your	  organisation's	  span	  of	  operation:	  

Univ
ers

ity
 of

 M
ala

ya



 

 

183 

! Domestic	  
! Multinational	  

	  

12.	  	  What	  kind	  of	  software	  development	  process	  model	  used	  in	  your	  organisation?	  

! Waterfall	  
! V-‐Model	  
! Incremental	  Process	  Model	  
! Agile	  
! Prototyping	  
! Other	  (please	  specify):	  _______________________________________	  

	  

PART	  B:	  Perceptions	  about	  Requirements	  Reuse	  

In	  this	  part,	  we	  would	  like	  to	  understand	  your	  perception	  about	  various	  reuse-‐

related	  issues.	  

Answer	  these	  questions	  on	  a	  scale	  from	  1	  to	  7.	  	  
1	  is	  Strongly	  Disagree.	  7	  is	  Strongly	  Agree.	  	  
	  

	   Reuse:	  Intention	   1	   2	   3	   4	   5	   6	   7	  
1	   Assuming	  I	  had	  access	  to	  reusable	  

requirements,	  I	  intend	  to	  use	  them	  when	  
developing	  future	  applications.	  

	   	   	   	   	   	   	  

2	   Given	  that	  I	  have	  access	  to	  reusable	  
requirements,	  I	  predict	  that	  I	  would	  make	  
use	  of	  them	  when	  developing	  future	  
applications.	  

	   	   	   	   	   	   	  

3	   I	  intend	  to	  increase	  my	  use	  of	  reusable	  
requirements	  in	  the	  future	  development	  of	  
application.	  

	   	   	   	   	   	   	  

	  

	   Reuse:	  Benefits	   1	   2	   3	   4	   5	   6	   7	  
1	   Reusing	  existing	  requirements	  improves	  my	  

job	  performance.	  
	   	   	   	   	   	   	  

2	   Reusing	  existing	  requirements	  in	  my	  job	  
increases	  my	  team’s	  productivity.	  

	   	   	   	   	   	   	  

3	   I	  believe,	  reusing	  existing	  requirements	  
decreases	  maintenance	  costs	  at	  the	  later	  
development	  stage.	  

	   	   	   	   	   	   	  

4	   Requirements	  Reuse	  is	  not	  important	  in	  our	  
organisation	  at	  this	  moment.	  

	   	   	   	   	   	   	  

Univ
ers

ity
 of

 M
ala

ya



 

 

184 

	  

	  

	   Reuse:	  Ease	  of	  Use	   1	   2	   3	   4	   5	   6	   7	  
1	   I	  feel	  reusing	  requirements	  does	  not	  require	  

a	  lot	  of	  mental	  effort.	  
	   	   	   	   	   	   	  

2	   It	  is	  easier	  for	  me	  to	  understand	  the	  
reusable	  requirement	  documents,	  as	  
compared	  to	  developing	  new	  requirements	  
when	  dealing	  with	  software	  solution	  from	  
similar	  domain.	  

	   	   	   	   	   	   	  

	  

	   Reuse:	  Infrastructure	  
My	  organisation	  has	  appropriate	  
standardised	  process	  for:	  

1	   2	   3	   4	   5	   6	   7	  

1	   Analysing	  a	  domain.	   	   	   	   	   	   	   	  
2	   Developing	  reusable	  codes	  and	  designs.	   	   	   	   	   	   	   	  
3	   Developing	  reusable	  requirements.	   	   	   	   	   	   	   	  
4	   Managing	  reusable	  requirements.	   	   	   	   	   	   	   	  
	  

	   Reuse:	  Support	  Tools	  
My	  organisation	  provide	  relevant	  training	  
and	  support	  tools	  for:	  

1	   2	   3	   4	   5	   6	   7	  

1	   Analysing	  a	  domain.	   	   	   	   	   	   	   	  
2	   Developing	  reusable	  codes	  and	  designs.	   	   	   	   	   	   	   	  
3	   Developing	  reusable	  requirements.	   	   	   	   	   	   	   	  
4	   Managing	  reusable	  requirements.	   	   	   	   	   	   	   	  
	  

PART	  C:	  	  Experience	  on	  Reusing	  Requirements	  

	   Reuse	  of	  Requirements	  in	  the	  latest	  project	   1	   2	   3	   4	   5	   6	   7	  
1	   In	  our	  latest	  project,	  we	  somehow	  reuse	  the	  

existing	  requirements.	  
	   	   	   	   	   	   	  

2	   In	  our	  latest	  project,	  we	  reuse	  existing	  
requirements	  from	  completed	  projects	  
because:	  

	   	   	   	   	   	   	  Univ
ers

ity
 of

 M
ala

ya



 

 

185 

a.	  	  We	  are	  involved	  in	  Software	  Product	  Line	  
development;	  thus	  reuse	  are	  systematically	  
planned	  (SPL21).	  	  	  

	   	   	   	   	   	   	  

b.	  	  It	  is	  just	  happened	  that	  the	  new	  product	  
requirements	  requested	  by	  our	  customer	  
are	  very	  similar	  to	  the	  one	  we	  have	  
produced	  before	  (Clone	  and	  Own).	  

	   	   	   	   	   	   	  

c.	  	  we	  are	  maintaining	  the	  prior	  releases,	  
therefore	  the	  old	  documentations	  are	  now	  
reused	  and	  improved	  (Software	  
Maintenance).	  

	   	   	   	   	   	   	  

3	   We	  never	  reuse	  existing	  requirements	  in	  our	  
software	  development.	  Instead	  we	  always	  
start	  new	  requirements	  engineering	  process	  
for	  new	  projects.	  

	   	   	   	   	   	   	  

	  

4	   Requirements	  Reuse	  is	  Not	  Invented	  Here	  
because:	  

1	   2	   3	   4	   5	   6	   7	  

	   a.	  	  The	  project	  team	  did	  not	  feel	  that	  reuse	  
is	  important	  and	  worth	  the	  effort.	  

	   	   	   	   	   	   	  

	   b.	  	  The	  project	  management	  did	  not	  support	  
requirements	  reuse.	  

	   	   	   	   	   	   	  

	   c.	  	  The	  requirements	  developed	  in	  previous	  
releases	  were	  incomplete	  (or	  do	  not	  exist),	  
so	  it	  is	  impossible	  to	  reuse	  them.	  

	   	   	   	   	   	   	  

	   d.	  	  The	  existing	  requirements	  were	  poorly	  
structured,	  so	  it	  is	  difficult	  to	  identify	  which	  
requirements	  can	  be	  reused.	  

	   	   	   	   	   	   	  

	   e.	  	  The	  existing	  requirements	  were	  poorly	  
structured,	  so	  it	  is	  difficult	  to	  identify	  which	  
requirements	  can	  be	  reused.	  

	   	   	   	   	   	   	  

	   f.	  	  Other	  reason	  (please	  specify):	  
	  
	  
	  
	  

	  

	   Requirements	  Reuse	  Process	  in	  your	  organisation	  
1	   In	  our	  organisation,	  requirements,	  

test	  cases	  or	  other	  assets	  within	  
(0%)	   (25%)	   (50%)	   (75%)	   (100%)	  

                                                

21 The	   term	   SPL	   used	   here	   refers	   to	   software	   engineering	   methods,	   tools	   and	   techniques	   for	   creating	   a	  
collection	  of	  similar	  software	  systems	  (family	  of	  systems)	  from	  a	  shared	  set	  of	  software	  assets	  using	  a	  common	  
means	  of	  production,	  that	  were	  systematically	  planned	  for	  long	  term	  investments	  (Carnegie	  Mellon	  (SEI),	  2003).	  

Univ
ers

ity
 of

 M
ala

ya



 

 

186 

an	  average	  project	  are	  duplicated	  
or	  commonly	  shared	  from	  other	  
projects	  for	  about:	  

	   1	   2	   3	   4	   5	   6	   7	  
2	   In	  our	  software	  development,	  we	  

follow	  	  a	  practitioner	  guidelines	  to	  
reuse	  existing	  	  software	  
requirements.	  

	   	   	   	   	   	   	  

	  

	  

	   Experience	  with	  Requirements	  Reuse	  tools	  
(if	  any)	  

Yes	   No	  

1	   We	  use	  a	  support	  tool	  to	  assist	  our	  
requirements	  reuse	  process.	  
	  

	   	  

2	   Please	  provide	  the	  name	  for	  the	  support	  
tool	  used:	  	  
	  
	  

	  
	  

3	   We	  have	  problems	  with	  the	  requirements	  
reuse	  tools	  used	  in	  our	  organisation.	  
	  

1	   2	   3	   4	   5	   6	   7	  
	   	   	   	   	   	   	  

4	   Write	  down	  any	  problem	  faced	  when	  using	  
the	  requirements	  reuse	  tools	  at	  your	  
organisation.	  
	  

	  

5	   Based	  on	  your	  experience	  working	  with	  
requirements	  reuse	  tools,	  suggest	  the	  
improvements	  needed	  to	  facilitate	  a	  better	  
requirements	  reuse	  process	  in	  future.	  

	  

	  

	  

	  

	  

	  

	  

Univ
ers

ity
 of

 M
ala

ya



 

 

187 

	  

COMMENTS	  AND	  SUGGESTIONS:	  

Please	  provide	  your	  comments	  and	  suggestions	  on	  how	  we	  can	  improve	  the	  accuracy	  

and	  readability	  of	  this	  survey.	  	  Your	  feedback	  is	  highly	  appreciated.	  

	  

	  

 

 

 

~ ~ ~ T H A N K   Y O U ~ ~ ~ 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

188 

APPENDIX G – POST HOC TEST FOR ONE WAY ANOVA 

Multiple Comparisons 

Tukey HSD 

Dependent 

Variable 

(I) 

Method (J) Method 

Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower 

Bound Upper Bound 

Recall Manual Simple 42.84667* 5.69892 .000 27.4062 58.2871 

Noun Phrase 23.52444* 5.69892 .001 8.0840 38.9649 

FENL 15.98778* 5.69892 .040 .5473 31.4282 

Simple Manual -42.84667* 5.69892 .000 -58.2871 -27.4062 

Noun Phrase -19.32222* 5.69892 .010 -34.7627 -3.8818 

FENL -26.85889* 5.69892 .000 -42.2993 -11.4185 

Noun 

Phrase 

Manual -23.52444* 5.69892 .001 -38.9649 -8.0840 

Simple 19.32222* 5.69892 .010 3.8818 34.7627 

FENL -7.53667 5.69892 .556 -22.9771 7.9038 

FENL Manual -15.98778* 5.69892 .040 -31.4282 -.5473 

Simple 26.85889* 5.69892 .000 11.4185 42.2993 

Noun Phrase 7.53667 5.69892 .556 -7.9038 22.9771 

Precision Manual Simple 27.78444* 6.76518 .001 9.4551 46.1138 

Noun Phrase 38.30222* 6.76518 .000 19.9729 56.6315 

FENL 30.36889* 6.76518 .000 12.0396 48.6982 

Simple Manual -27.78444* 6.76518 .001 -46.1138 -9.4551 

Noun Phrase 10.51778 6.76518 .418 -7.8115 28.8471 

FENL 2.58444 6.76518 .981 -15.7449 20.9138 

Noun 

Phrase 

Manual -38.30222* 6.76518 .000 -56.6315 -19.9729 

Simple -10.51778 6.76518 .418 -28.8471 7.8115 

FENL -7.93333 6.76518 .648 -26.2627 10.3960 

FENL Manual -30.36889* 6.76518 .000 -48.6982 -12.0396 

Simple -2.58444 6.76518 .981 -20.9138 15.7449 

Noun Phrase 7.93333 6.76518 .648 -10.3960 26.2627 

FMeasure Manual Simple 36.34778* 5.48891 .000 21.4763 51.2192 

Noun Phrase 32.76111* 5.48891 .000 17.8897 47.6325 

FENL 25.79778* 5.48891 .000 10.9263 40.6692 

Simple Manual -36.34778* 5.48891 .000 -51.2192 -21.4763 

Noun Phrase -3.58667 5.48891 .914 -18.4581 11.2848 

FENL -10.55000 5.48891 .239 -25.4214 4.3214 

Noun 

Phrase 

Manual -32.76111* 5.48891 .000 -47.6325 -17.8897 

Simple 3.58667 5.48891 .914 -11.2848 18.4581 

FENL -6.96333 5.48891 .589 -21.8348 7.9081 

FENL Manual -25.79778* 5.48891 .000 -40.6692 -10.9263 

Simple 10.55000 5.48891 .239 -4.3214 25.4214 

Noun Phrase 6.96333 5.48891 .589 -7.9081 21.8348 

Univ
ers

ity
 of

 M
ala

ya



 

 

189 

 

Univ
ers

ity
 of

 M
ala

ya




