
 

 

 

 

AN APPROACH TO MODELLING AND SIMULATING 

MULTITHREADED SCHEDULERS FOR DIVIDE AND CONQUER 

PROBLEMS ON MULTICORE ARCHITECTURE 

 

 

 

 

 

 

 

ALAA MOHAMMED ALI WADI AL-OBAIDI 

 

 

 

 

 

 

FACULTY OF COMPUTER SCIENCE AND INFORMATION 

TECHNOLOGY 

UNIVERSITY OF MALAYA  

KUALA LUMPUR 

 

2016 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 
 

 

 

 

 

AN APPROACH TO MODELLING AND SIMULATING 

MULTITHREADED SCHEDULERS FOR DIVIDE AND CONQUER 

PROBLEMS ON MULTICORE ARCHITECTURE 

 

 

 

 

 

ALAA MOHAMMED ALI WADI AL-OBAIDI 

 

 

 

THESIS SUBMITTED IN FULFILMENT OF THE  

REQUIREMENTS FOR THE DEGREE OF DOCTOR  

OF PHILOSOPHY 

 

 

 

 

 

FACULTY OF COMPUTER SCIENCE AND INFORMATION 

TECHNOLOGY 

UNIVERSITY OF MALAYA  

KUALA LUMPUR 

 

2016 

Univ
ers

ity
 of

 M
ala

ya



UNIVERSITI MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate:  Alaa Mohammed Ali Wadi Al-Obaidi     

Passport No: 

Registration/Matric No:  WHA080001         

Name of Degree: PhD in Computer Science        

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): 

AN APPROACH TO MODELLING AND SIMULATING MULTITHREADED 

SCHEDULERS FOR DIVIDE AND CONQUER PROBLEMS ON MULTICORE 

ARCHITECTURE 

Field of Study:  Concurrency Modelling

I do solemnly and sincerely declare that:  

(1)  I am the sole author/writer of this Work;  

(2)  This Work is original;  

(3)  Any use of any work in which copyright exists was done by way of fair dealing         

and for permitted purposes and any excerpt or extract from, or reference to or

production of any  copyright  work  has  been  disclosed  expressly  and       

sufficiently and the title  of  the Work and its authorship have been

acknowledged in this Work;  

(4)     I do not have any actual knowledge nor do I ought reasonably to know that the 

 making of this work constitutes an infringement of any copyright work;  

(5)     I  hereby  assign  all  and  every  rights  in  the  copyright  to  this  Work  to  the 

University of  Malaya (“UM”), who henceforth shall be owner of the copyright in 

this Work and that any reproduction or use in any form or by any means 

whatsoever is prohibited without the written consent of UM having been first had 

and obtained;  

(6)     I am fully aware that if in the course of making this Work I have infringed any 

copyright whether intentionally or otherwise, I may be subject to legal action or 

any other action as may be determined by UM.  

Candidate’s Signature     Date /       /2016 

Subscribed and solemnly declared before, 

Witness’s Signature          Date           /       /2016 

Name:

Designation: 

Univ
ers

ity
 of

 M
ala

ya



iii 

ABSTRACT 

The continuous increase in the number of cores and software size causes a distinct 

problem in the software world that utilizes multicore architecture. This problem is 

represented by the optimal use of the new technology and how this is reflected in 

software development. In the core of the problem, there are two main issues that must 

be considered. First, the partitioning of the workload of a problem at runtime so that the 

resultant workload partitions can be processed concurrently.  Second, the dynamic 

balance of the workload that is generated by these partitions to be distributed among the 

cores.  This matter is highly important because it addresses the problem of idle cores. In 

order to handle the problem of idle cores, this thesis adopts the work-stealing technique 

which has been successfully applied in multiprocessor systems to provide a workload 

balance between the multiprocessor systems by allowing the idle processors to work 

individually to steal part of the workload of the non-idle processors at run time so that 

the system can be balanced. However, as the number of cores increases, which may 

reach several hundred in the near future; it will be time consuming to allow each core to 

individually search for a non-idle core to steal part of its workload since the searching 

process in the existing work-stealing techniques is done randomly. This causes frequent 

failure especially when the workload is low and many cores are in an idle situation. 

This thesis proposes an approach to partition Divide and Conquer algorithms into 

workload partitions at run time so that they can be executed concurrently on a scaled 

multicore architecture. Therefore, the researcher proposes several problem oriented 

mechanisms to partition the workload. In addition, the researcher proposes a 

modification to the work-stealing technique by imposing a centralized control over the 

stealing process rather than allowing each core to work individually. Several 

rebalancing strategies are proposed to suit the conditions of the cores. To achieve these 

goals, the researcher designs scaled concurrent models that work under the principle of 
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multithreaded scheduling. Two types of schedulers are proposed. The first type is 

responsible for creating, dividing, and manipulating the threads of the Divide and 

Conquer algorithms.  The second type of schedulers is for balancing the threads using 

different rebalancing strategies. The researcher uses Colored Petri Nets as language of 

modelling and Colored Petri Nets Tool as the software that creates, simulates, and 

validates the models. 

The results of simulation models show a high efficiency in dealing with Divide and 

Conquer algorithms. The proposed concurrent models are scalable in terms of number 

of cores and problem size. The models can be easily expanded by adding more cores 

which influence effectively on the models’ performance. In other words, the results 

indicate that adding more cores minimizes the number of steps required to complete the 

simulation process of the models. In addition, the models show a high flexibility in 

dealing with various problem sizes, and maintain the integrity of results even when 

problem size is highly increased. 
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ABSTRAK 

Peningkatan yang berterusan dalam bilangan teras dan saiz perisian menyebabkan satu 

masalah yang nyata telah muncul dalam dunia perisian yang menggunakan senibina 

berbilang teras. Masalah ini diwakili oleh pengunaan teknologi baru yang optimum dan 

bagaimana ia dapat digambarkan dalam pembangunan perisian. Terdapat tiga isu utama 

yang perlu dipertimbangkan dalam masalah utama tersebut. Pertama, pembahagian 

beban kerja satu masalah pada masa larian supaya partisi beban kerja yang dihasilkan 

boleh diproses serentak. Kedua, keseimbangan dinamik bagi beban kerja yang dijanakan 

oleh partisi-partisi ini antara teras tersebut. Perkara ini adalah sangat penting kerana ia 

perlu menangani masalah teras terbiar, atau tidak bekerja. Dalam usaha untuk 

menangani masalah teras terbiar, tesis ini menerima pakai teknik pencurian kerja yang 

telah berjaya diaplikasikan dalam sistem berbilang pemproses untuk mencapai 

keseimbangan beban kerja antara sistem berbilang pemproses dengan membolehkan 

pemproses terbiar untuk bekerja secara berindividu bagi mencuri sebahagian daripada 

beban kerja pemproses sibuk pada masa larian supaya sistem boleh diseimbangkan. 

Walau bagaimanapun, apabila bilangan teras semakin meningkat di mana ia mungkin 

boleh mencapai beberapa ratus dalam masa terdekat, ia akan memakan banyak masa 

untuk membenarkan setiap teras untuk mencari teras sibuk secara berindividu bagi 

mencuri sebahagian daripada beban kerjanya. Ini adalah disebabkan oleh proses 

pencarian dalam teknik pencurian kerja yang sedia ada dilakukan secara rawak. Ini 

menyebabkan kegagalan yang kerap terutama apabila beban kerja adalah rendah dan 

banyak teras berada dalam keadaan yang terbiar. Tesis ini mencadangkan satu 

pendekatan untuk membahagikan algoritma Membahagi dan Menakluk ke dalam 

partisi-partisi beban kerja pada masa larian supaya mereka boleh dikasanakan serentak 

pada senibina berbilang teras yang diskalakan. Oleh itu, penyelidik mencadangkan 

beberapa mekanisme berorientasikan masalah untuk mebahagikan beban kerja. Di 
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samping itu, penyelidik mencadangkan pengubahsuaian kepada teknik pencurian kerja 

dengan megenakan kawalan berpusat ke atas proses pencurian tersebut dan bukannya 

membenarkan setiap teras untuk bekerja secara individu. Beberapa strategi 

pengimbangan semula dicadangkan untuk disesuaikan dengan keadaan teras. Untuk 

mencapai matlamat ini, penyelidik merekakan model serentak yang diskalakan di mana 

mereka bekerja di bawah prinsip penjadualan berbilang bebenang. Dua jenis penjadual 

dicadangkan. Jenis pertama adalah bertanggungjawab untuk menciptakan, 

membahagikan, dan memanipulasikan benang algoritma Membahagi dan Menakluk. 

Jenis kedua adalah penjadual untuk mengimbangi benang yang menggunakan strategi 

pengimbangan semula yang berbeza. Penyelidik menggunakan Jaring Petri Berwarna 

sebagai bahasa pemodelan dan alatan Jaring Petri Berwarna sebagai perisian yang 

mencipta, simulasi, dan mengesahkan model tersebut. Keputusan model simulasi 

menunjukkan kecekapan yang tinggi dalam menangani algoritma Membahagi dan 

Menakluk. Model serentak yang dicadangkan adalah berskala dari segi bilangan teras 

dan saiz masalah. Model tersebut boleh diperluaskan secara mudah dengan 

menambahkan lebih banyak teras di mana ia mempengaruhi prestasi model tersebut 

secara berkesan. Dalam erti kata lain, keputusan menunjukkan bahawa penambahan 

lebih banyak teras boleh mengurangkan bilangan langkah yang diperlukan untuk 

menyelesaikan proses simulasi untuk model tersebut. Di samping itu, model tersebut 

menunjukkan fleksibiliti yang tinggi dalam menangani masalah yang berbagai saiz, dan 

mampu mengekalkan integriti keputusan walaupun saiz masalah meningkat secara 

tinggi. 
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CHAPTER 1: INTRODUCTION 

1.1   Background 

In 1965, a physical chemist named Gordon E. Moore predicted that the number of 

electronic components placed on an integrated circuit is going to be doubled every year. 

In other words, according to the Moore’s prediction, the computing power is going to be 

doubled every year (Mollick, 2006). After ten years, this prediction was revised by the 

same scientist to be two years instead of one year. David House, an Intel executive at 

that time, modified Moore’s prediction to be eighteen months rather than two years 

(Nambiar & Poess, 2011). This prediction became well known as Moore’s Law. The 

law continued its impact on the hardware industry for nearly four decades. During these 

decades, all the manufacturing efforts were directed to improve the single-processor 

computers through increasing the clock speed of these processors (Herlihy, 2007). 

However, a barrier of physical limit stood against the manufacturers’ desire. The power 

consumption and the increase in the generated heat due to the continuous adding of 

more transistors were the main obstacles against the continuity of this law (Mack, 

2011). 

1.1.1   Multicore Technology and Software Industry 

At the beginning of twenty-first century, the processors industry has witnessed a 

dramatic change in its production. Chip manufacturers stopped their race in 

manufacturing high-speed single-processor computers, as a result, ending the era of 

single-processor improvement (Breshears, 2009). What is more, they announced the 

starting of the multicore architecture era. The new architecture has been built on the 

basis of replicating the processing element (core) rather than focusing on the processor 

improvement. This replication becomes the key factor to measure the performance of 

any modern computer system (Herlihy, 2007). In 2001, IBM released the first 
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commercial microprocessor that has built on the multicore technology. The POWER4 

microprocessor has two cores built on a single chip (Davis & Burns, 2011). Since that 

date, the general trend adopted by the giant microprocessor manufacturers such as Intel, 

AMD, IBM, and Sun was represented by the continuous adding of more cores to their 

microprocessors (Geer, 2005). The race between the hardware manufacturers has 

continued to produce chips with a higher number of cores. However, the success in 

adding more cores is not the ultimate goal for these manufacturers. There are certain 

requirements related with the core technology that are needed to be achieved such as the 

execution optimization and cache size (Sutter, 2005). The significant change in the 

hardware side expanded to cover different types of personal computers such as desktop, 

laptop, notebook, ultra book and tablet, and it also covers communication devices such 

as mobile and any other computerised devices (Wikipedia, 2014a). In the software side, 

software designers had totally depended in the past on the clock speed in producing 

faster software. However, the improvement in the hardware side has made a real impact 

on the software industry as well. This is because the new hardware offers more than one 

processing element (core) that can operate at the same time (Sutter, 2005). Therefore, 

software designers have no choice but to update their products to deal with the new 

changes in the hardware side. This kind of update has to consider the continuous 

increase in the number of cores per chip. That is, modern software should not be 

restricted to deal with a fixed number of cores. It should be adapted to deal with any 

number of cores in addition to exploiting these cores as much as possible (Sutter, 2005).  

Although this is not an easy task since most of the algorithms used in the software 

industry are designed to serve serial computations. However, failure to develop 

algorithms that suit the new environment will, undoubtedly, stand as a stumbling block 

against the optimal utilization of the new architecture. As a result, a new trend has 

imposed in the software industry through improving the aspect of concurrency of 
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software products in addition to making these products more scalable to deal with any 

number of cores (Ding, Wang, Gibbons, & Zhang, 2012; Sutter & Larus, 2005). 

Therefore, concurrency and scalability are the two main features that modern software 

should gain for the purpose of making the best use of the multicore architecture. 

1.1.2   Concurrency, Parallelism, and Multithreading 

Concurrency has a realistic application in the physical world in which we live. In the 

process of building a new house, certain actions can be done at the same time such as 

plumbing, electrical work, painting, tiling, etc. In computer science, the idea of 

concurrency was closely related to the time-sharing principle of work. Back to 1960s, 

mainframe computers shared their CPUs with several consoles and each CPU has its 

own running program (process) (Bryant & David Richard, 2003). To increase the 

overall utilization, a software model called “Scheduler” was designed to dedicate a CPU 

to one of the processes for a specific period of time. After that, the Scheduler redirects 

the CPU to another process. This gives the perception that all these processes are 

working at the same time (concurrent executions).  Another issue has also emerged 

since the early eras of computers. The difference between the speed of CPUs and 

peripheral devices caused a real headache to the scientist (Tucker, Barlow, & Stuart, 

2012). As computers have become faster and faster, the gap between the two speeds has 

been widened. Moreover, computer networks add more burden to the overall 

performance since the speed of network components definitely cannot be compared 

with the speed of CPUs. Although there is no magical solution for these problems since 

the gap between these speeds is still big, it is possible to reduce the severity of the 

problem by developing more advanced schedulers. Different schedulers have different 

ways to balance requests of processes. 
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For a long time, the concurrency and parallelism concepts have been used 

interchangeably (Bryant & David Richard, 2003). This came from the fact that both the 

concurrency and parallelism refer to the state where computers are able to deal with 

more than one program (process) at the same time. However, there is a major difference 

between these two concepts. In single-processor computers, a system is said to be 

concurrent if it is able to run more than one process at the same time. These processes 

cooperate with each other in exploiting the processor time through interleaving. 

However, in parallelism, we have more than one processor, each of which has a separate 

running process. Usually a process typically consists of one or more pieces of code 

called threads. In general, a thread is the smallest sequence of instructions that can be 

managed by a scheduler. The threads that belong to the same process share the same 

area of memory. Thus, we can write concurrent programs that consist of multiple 

threads; however, if the computer does not include multiple processors, then these 

threads will not be executed in parallel. Therefore, we can conclude that concurrency 

represents the general case while parallelism represents the sub case (Knuth, 1968). 

Multithreading is a mechanism of creating threads of executions. It enables running 

more than one program concurrently. A good planning for multithreading can provide 

an excellent utilization of computer resources. The basic concept of multithreading has 

been around for some time, but gained wider attention as computers became more 

commonplace during the decade of the 1990s. Dynamically growing multithreaded 

computations are nowadays quite common for multicore systems. One should specify 

which core executes which threads and when each thread should be executed; 

obviously, there is an urgent need for efficient schedulers. The efficient execution of 

such schedulers depends heavily on the runtime system. A good scheduling technique 

must ensure that enough threads remain active to keep the cores busy, while at the same 

time, the concurrent active threads must be within their limit in order to control the 
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memory needed. Moreover, in order to reduce communication among cores, one should 

try to maintain related threads on the same core. Providing a scheduling technique to 

achieve all of the above goals is not a trivial task (Fatourou & Spirakis, 2000). 

1.1.3   Scheduling Algorithms in Multicore Systems 

In a multicore system, there are basically two sets of cores, i.e. working (busy) and non-

working (idle) cores, at any one time (L. M. Nogueira, Pinho, Fonseca, & Maia, 2013; 

Tchiboukdjian, Danjean, Gautier, Lementec, & Raffin, 2010; Y. Wang, Ji, Shi, & Zuo, 

2013). Working cores are in action, that is, they have their own threads currently in 

execution. Non-working cores are idle (out of threads). The reason behind having a core 

in an idle situation is that either its threads have already completed their assignment 

tasks or the scheduler did not assign any threads to the core yet. Naturally, at any time, 

the status of a working core may change to non-working, and vice versa. The ultimate 

goal for any software company is to direct their products to make the most use of the 

available cores (concurrent working) as much as possible and never let any core in an 

idle situation (Sutter & Larus, 2005). Despite this seeming to be unrealistic for all kinds 

of problems due to the nature of a problem, however, in certain problems, good results 

could be achieved. Therefore, in a multicore system, in order to reach to a high level of 

concurrency, a scheduler plays a major role in achieving this important objective 

through adopting the best scheduling algorithm that balances the working load among 

the cores (Quintin & Wagner, 2010; Tchiboukdjian, et al., 2010).  

During the past decades, there were many scheduling techniques that have been 

developed for multiprocessor systems. These scheduling techniques fall into two 

categories: static and dynamic scheduling. In static scheduling, all the information 

related with tasks’ time-slice, synchronization requests, communication and dependency 

with other tasks are known and planned for before starting the execution, that is, at the 
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compilation time (Kwok & Ahmad, 1999). In general, static scheduling guarantees the 

execution of the tasks on-time, in addition to being low cost. However, static scheduling 

suffers from certain drawbacks such as wastage of the processor time, besides that, no 

task exceeds the time slice assigned to it; additionally, any changes in the program 

sequences need a rescheduling. Moreover, modern computer systems with shared 

caches added several new drawbacks for static scheduling such as the difficulty to 

provide an accurate information about the tasks, the limitation of portability since the 

result of scheduling is directed for a specific architecture (Mattheis, Schuele, Raabe, 

Henties, & Gleim, 2012). The changing of data and input during run time plays a main 

role in task scheduling which is totally incompatible with the static mechanism 

(Breshears, 2009). Finally, static scheduling is inconsistent with the multicore 

environment. In such environment, it is so common to execute more than one program 

at the same time where each program consists of a set of processes. The operating 

system in a multicore environment assigns these processes to the available cores at run 

time which results in a continuous change in the number of the utilized cores during the 

execution of these processes. This stands against the principle of static scheduling 

where the execution time of these processes should be known prior to the execution. 

However, providing such information about the execution time is particularly hard to 

obtain for a multicore environment (Mattheis, et al., 2012).  

In contrast to static scheduling, dynamic scheduling is implemented at run time that is 

on-the-fly (Kwok & Ahmad, 1999). Dynamic scheduling succeeded in fulfilling the 

requirements of the multicore technology since a dynamic scheduler has the ability to 

create new tasks and assign them to the cores at the execution time, a condition that 

becomes a must for most applications that wish to exploit the multicore architecture to 

the full extent. In general, within dynamic scheduling, two main objectives have been 

achieved; first, it becomes possible to balance workload at run time which makes the 
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process of task/core mapping much easier and it achieves great benefits. Second, it 

becomes much easier to deal with different hardware architectures. On the other hand, 

the cost of these benefits is expected to be higher run time scheduling overhead and 

additional application development complexity (Kwok & Ahmad, 1999; Mattheis, et al., 

2012). 

1.1.4   Divide and Conquer Problems on Multicore Environment 

In this thesis, the researcher focuses on solving Divide and Conquer (D&C) problems 

on a multicore environment. The term Divide and Conquer is also used to describe the 

method of solving such kind of problems. In computer science, every D&C problem has 

its own method of solving. That is, for example, the binary search differs from the 

matrix multiplication, yet all D&C methods share some common steps.  In general, 

every D&C method is built on breaking the main D&C problem into two sub problems 

that can be recursively broken into smaller sub problems, then solving these sub 

problems, and recursively combining the results of these sub problems to form the final 

result (Cormen, Leiserson, Rivest, & Stein, 2009; Miller & Vandome, 2010). The D&C 

methods fit in the multicore environment, that is, any D&C problem can be split and 

distributed to the cores that work in a concurrent way at run time to reach the final result 

with the shortest time possible (Neill & Wierman, 2009; Tardieu, Wang, & Lin, 2012). 

Taking into account the multicore development, these methods should be adapted to be 

more efficient in order to suit the multicore architecture. One of the main ideas is to 

provide a concurrent multithreaded scheduler model that can dynamically manage 

threads creation and load distribution among the used cores.  
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1.2   Motivation 

The multicore technology provided the solution for the shortage that single-processor 

computers suffered from.  A landmark achievement has been made through the success 

in replicating the number of cores per chip. However, software industry is still not 

consistent with development in the hardware side. The lack of providing suitable 

techniques that make software more consistent with the key technology represents the 

main factor that affects the software industry. This study motivates two needs that find 

them necessary to promote software industry. 

1.2.1   The Need for Modelling Concurrent Systems 

Concurrent systems are complex, difficult to design and error prone. All these come 

from a common characteristic that concurrent systems share, that is, non determinism. 

One of the main challenges facing concurrent systems’ designers is the non 

deterministic behaviour of these systems (Jensen, Kristensen, & Wells, 2007). In non 

concurrent systems, regardless of the number of executions, the transition during the 

execution, say from state A to state B is predetermined (deterministic). Even with the 

decision (like if or if …else …) and selection statements (switch), there are few 

predetermined states that come after it in an execution order. However, the execution of 

a concurrent system may carry on in different ways each time the execution is resumed. 

This is due to the large number of possible paths that can be generated from each state; 

nevertheless, all these paths should lead to the same final result. Taking into account 

this fact, the process of building concurrent systems that control critical and/or 

dangerous projects such as atomic power plants, aircraft control systems, etc should be 

error-free and well designed, otherwise it will lead to disaster (Jensen & Kristensen, 

2009). As a result, such systems must be tested and debugged thoroughly prior to any 

real implementation. Using the traditional methods in debugging such as the inclusion 
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of breakpoints is no longer effective as in non-concurrent programming due to 

continuous change of execution behaviour from run to run caused by the astonishing 

number of intermediate states towards reaching the final state (Wells, 2002). 

Modelling provides a solution for this problem. Through modelling, many errors and 

weak points in the concurrent software can be identified and corrected. Building a well-

designed model has three main advantages: 

(a) Insight Look: Modelling gives an insight look into the system. It gives a general 

description of the system architecture and its mechanism. That is, it shows how the 

concurrent system has been designed, the way of performing the system’s actions, and 

data paths inside the system. The designer should utilize these details to improve the 

simplicity and the usability of the model’s parts such as those related to processing and 

storing data, in addition to the linkage paths that connect the processing and storing 

parts. Moreover, the insight look improves the obviousness of the design and should 

remove repeated acts to the fullest extent possible. This will definitely benefit the 

designer since it gives a comprehensive understanding of the system (Jensen, 1998). 

(b) Specifications Completeness: The process of simulating the model reveals a lot of 

gaps in the model’s specifications that clearly show the model’s real capabilities as well 

its shortages. In addition, the model’s requirements can be judged accurately as fully 

achieved or partly lost (Jensen & Kristensen, 2009). 

(c)  Model’s Correctness: Definitely any model cannot be accepted until it is simulated 

and it generates proper results.  Through the simulation process, many faults can be 

diagnosed and corrected. In addition, a verification test is then needed to verify all the 

system states so that no state is unreachable nor there is a chance for deadlocks to occur 

(Kristensen, 2000). 
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The above three advantages that modelling offers will not be achieved unless there is a 

proper modelling language and modelling tool that assists the designer in planning, 

simulating, and verifying the design. In this study, the researcher uses Colored Petri 

Nets (CPN) as a graphical language for building and analyzing models of concurrent 

systems. CPN has been developed from Petri Nets (PN) as being the origin of CP 

(Murata, 1989; Peterson, 1977). There are two main differences between CPN and PN: 

CPN has included the idea of data types besides the use of expressions and functions 

written in Standard Meta Language (SML) (Gansner & Reppy, 2004; Ullman, 1998). As 

a software tool, the researchers uses CPN-Tool (Jensen, Christensen, Kristensen, & 

Westergaard) which is developed by Kurt Jensen (Jensen & Kristensen, 2009). CPN-

Tool provides all the necessary facilities to create, simulate, and validate Colored Petri 

Nets. In addition, it provides interaction methods such as menus and toolbars besides 

giving feedback messages when errors are encountered during the process of 

performing code’s syntax checking. CPN-Tool uses Colored Petri Nets’ Meta Language 

(CPN-ML) (Jensen, et al.) as a language of writing declarations, expressions, and code 

inside the model. CPN-ML has been built based on SML (Gansner & Reppy, 2004; 

Ullman, 1998). Appendix I includes more details about CPN. 

1.2.2   The Need for New Techniques in Partitioning and Balancing Workload for 

Solving D&C Problem 

Processor manufacturers are continuing in developing multicore technology towards 

replicating the cores. Instead of working towards producing more efficient cores, the 

real trend of these manufacturers is toward assembling more cores in one processor. 

This matter puts software developers in facing a big challenge which is the ability to 

utilize this growing number of cores. On the other hand, the omission of exploiting 

these cores causes the failure to achieve the real benefit from the purpose for which 

multicore was developed: achieving high speed in execution time through replicating 
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the cores.  In other words, the lack of providing new software techniques that make use 

of these cores to the full extent will no doubt lead to an imbalance in the workload 

distribution. During the running of a multicore system, this imbalance happens in the 

form of having two sets of cores: working (active) and non-working (idle), where the 

number of idle cores increases far from the desired goal of the multicore technology. 

Therefore, it is necessary to develop new techniques for partitioning and balancing 

workload for the sake of achieving a high level of concurrency among the utilized cores 

in the multicore environment. 

In general, given the increase in the number of cores, it becomes gradually more 

important to boost the concurrency level between the cores through making these cores 

busy as much as possible. This can be achieved through the development of new 

techniques to partition and balance the workload of problems at runtime. The researcher 

focuses on the D&C as an example for problems, working on making such problems 

more adaptable with multicore environment through adopting those techniques. 

1.3   Problem Statement 

Multicore technology has succeeded in solving the drawback in the single-processor 

environment, that is, to get more powerful computers, more cores have to be added. 

However, the evolution in the hardware creates a real challenge for software designers. 

This challenge is represented in the ability of software to deal with this growing 

numbers of cores. The researcher categorizes the challenge into three groups: 

(a) Workload Partitioning  

As stated before, the multicore technology has been built on the basis of replicating the 

processing units (cores). Having more than one core working at the same time triggers 

the need for mechanisms to partition the workload. The need for workload partitioning 

was not urgent prior to the multicore technology because there was only one processor. 
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However, the significance of workload partitioning begins growing and has become a 

necessity to be utilized in the new multicore architecture. In this thesis, the researcher 

highlights several issues related with this kind of processes: 

I- Prior to any partitioning process, are the traditional ways in representing the 

workload in single-processor computers still appropriate and could be used 

effectively in the multicore technology?  

II- How can we partition the workload in a way that fits in the multicore 

environment? What sort of mechanism can be adopted for the partition? 

III- Does the partitioning process follow a unique mechanism that fits all the types of 

problems?  For instance, considering the D&C problems that the researcher focused 

on in this thesis, is it possible to apply the same partitioning technique for all given 

D&C problems? 

IV- Do the partitioning techniques proposed in this study have the properties that 

qualify them to work in a multicore environment? Specifically, are the partitioning 

techniques scalable to deal with a variable number of cores? Do the partitioning 

techniques support concurrent actions? 

(b) Workload Balancing 

The ultimate goal of the partitioning process is to employ the maximum number of 

available cores so that workload balancing can be achieved. However, there are certain 

issues related to this matter: 

I- How to distribute the partitioning workload? What are the strategies that can 

control the distribution process?  
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II- Does the work-stealing technique still appropriate with the growing number of 

cores? How can we improve this technique to be more adaptable for the increasing 

number of cores? 

(c) Core Computations  

One of the most important objectives of the multicore technology is to make all cores 

involved in solving a problem. That is, each core will be responsible for part of the 

problem. This requires reconsideration to the core’s computations compared to what 

was previously in the single-processor computers. In this context and in relation to the 

D&C problems: 

I- Are the original methods for solving D&C problems still appropriate to apply on 

the multicore environments, and why?  

II- On what basis, the researcher attempts to build the D&C solving method that suits 

a multicore environment? In other words, what are the improvements that this work 

will have to make on the D&C problems in order to fit in the multicore architecture? 

III- How can we coordinate the work between the strategies and the methods? 

(d) Correctness and Validation 

The strategies and methods both suggested new techniques to deal with D&C problems 

on a multicore environment. The researcher highlights certain issues related with this 

issue: 

I- How can we ensure that these strategies and methods work just fine and they are 

able to generate results in addition to being error free? 

II- Knowing that there are no errors and correct results can be generated, how to 

ensure that neither the strategies nor the methods may cause deadlock or data race? 
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1.4   Research Objectives 

In this study, the researcher proposes a concurrent multithreaded scalable model. The 

model is dedicated to solve the D&C problems (Fibonacci Series, Binary Search, 

Towers of Hanoi, and Matrices Multiplications) on a multicore environment. The 

objectives of this study can be identified as follows: 

(a) To propose a workload distribution scheduler that is able to control the workload 

distribution of the modelled cores.  

The proposed scheduler should have the following properties: 

I- The distribution process of this scheduler is controlled by a set of strategies which 

control the distribution of the partitioned workload. The working principle of these 

strategies is based on balancing the threads among the cores. 

II- The proposed scheduler is concurrent and scalable. The scheduler deals with all the 

cores concurrently. In addition, the scheduler can deal with an open number of 

partitioned threads.  

(b) To propose a core scheduler that has the ability to partition the workload and find a 

solution for each D&C problem. The proposed scheduler resides in every modelled core 

of the multicore model and it has the following properties: 

I- The proposed scheduler works under the principle of multithreading, that is, the 

D&C problems are represented as threads. The scheduler’s task is to partition the 

threads residing in its core into two or more threads. 

II- The partitioning technique of the proposed scheduler is not unique; it depends on 

the type of the problem. 

III- The core scheduler provides a solution for the D&C problems. 
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(c) To build CPN models implementing the two proposed types of schedulers. 

(d) To perform simulation and monitoring of the models targeting at the reduction of 

idleness of the modelled cores to the maximum extent. 

1.5   Research Significance 

The potential impacts of the proposed research are in two directions: 

(a) The partitioned techniques that the researcher proposed in this study may represent a 

forward step towards improving the execution of the D&C problems on the multicore 

environment. The value of these techniques comes from being fully fit in this 

environment taking into consideration the continuous increase of the number of cores in 

different multicore platforms such as laptops, tablets, mobiles, etc. 

(b) The proposed balancing strategies would provide a new perspective to achieve 

workload balance among the cores. As stated before, the general trend of the 

manufacturers of processors stresses on adding more cores instead of improving the 

speed of the core itself. This will definitely trigger the need for balancing techniques.  

1.6   Thesis Scope and Assumption 

The scope of this thesis covers D&C problems. Four D&C problems have been taken as 

examples, namely Fibonacci Series, the Towers of Hanoi, Binary Search and Matrix 

Multiplication. The rest of D&C problems are assumed to be able to follow the same 

procedure that the researcher proposed in this study. However, the partitioning 

techniques are problem oriented. In other words, solving another D&C problem may 

need a specific partitioned technique. On the other hand, the strategies of balancing can 

be applied to any D&C problem. 

The models that this thesis presents suit multicore architectures and fit well with a group 

of cores that share a common memory. Due to the high level of threads’ exchange 
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among the cores, it would be costly in terms of communication when these models are 

applied on non-shared memory systems. In addition, there is a need to assign one of the 

cores to control the redistribution of threads among the cores. Although assigning one 

core may affect the efficiency of the work, however, with the diminishing growth in the 

number of cores, the allocation of a single core to manage the scheduling process will 

not have a significant impact on the overall performance. 

1.7   Thesis Outline 

This thesis consists of six chapters and two appendices. 

(a) Chapter 2 reviews the contributions of the existing research in the field of load 

balancing algorithms. The researcher highlights the main classifications of these 

algorithms with a particular focus on the classification of multithreading scheduling. 

This chapter includes a description of the work-stealing evolution, its significant 

achievements, and its contribution in the software industry. 

(b) Chapter 3 is dedicated for the research methodology. This chapter includes a 

description of the way in which the researcher conducted the study. At the beginning, 

the chapter starts with a description on how the research idea arose. Then, the researcher 

shows on what basis the literature review has been conducted. After that, depending on 

the research idea and the literature review, the researcher defines the shortages and gaps 

in the existing researches, and then, the researcher determines the problem statement 

and the objectives of the study. Following that, the researcher defines, without going 

into details, the techniques that the researcher suggested for dividing the workload, in 

addition to the strategies of balancing. After that comes into play the simulation and 

monitoring section. In this section, the researcher explains how the proposed techniques 

are transformed into the elements of CPN models. Finally, this chapter ends with a 

Univ
ers

ity
 of

 M
ala

ya



17 
 

description of the results that gathered from the execution of the models, in addition to 

discussing these results. 

(c) Chapter 4 is reserved for the design methodology. The partition techniques of the 

D&C problems are fully explained in this chapter. In addition, the chapter explains in 

detail the modifications the researcher suggests for work-stealing technique and how to 

apply these modifications through the proposed balancing strategies. The chapter is 

supported by flowcharts that show the mechanisms of the partitioned techniques and the 

balancing strategies. In addition, the chapter includes the designs of the CPN models. 

This chapter also explains how the researcher builds CPN models. This includes the 

elements of the models, representation of the threads, and the representation of the 

partitioned and balancing mechanisms inside the models. Moreover, the chapter shows 

how to simulate and validate the models. This chapter is supported by an appendix 

(Appendix I), placed at the end of this thesis. Appendix I give more details about CPN, 

CPN-Tool, and the simulation and validation processes. 

(d) Chapter 5 is reserved for the results and discussion. This chapter includes all the 

results that have been obtained from the simulation and monitoring processes of the 

proposed CPN models.  The results appear as graphs that show the relation between the 

number of cores and the execution steps. In addition, the chapter includes a detailed 

explanation of the results that have been obtained. 

(e) Chapter six is dedicated for the conclusion and future work. This chapter 

summarizes the problem addressed in this study and the purpose of this research. Then, 

the chapter briefly explains how the research was conducted, the proposed schedulers’ 

mechanisms and the CPN models. Finally, the chapter discusses some of the possible 

future studies. These studies comprise the development of the threads’ structure and the 

mechanisms of the schedulers.
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CHAPTER 2: LITERATURE REVIEW 

2.1   Introduction     

A new fact has imposed itself on the processor industry with the beginning of the 

present century, i.e. processor manufacturers are no longer able to achieve a remarkable 

development on the processors’ speed as was the case during the 80s and the 90s of the 

past century. This fact has made multicore technology a suitable solution to meet the 

challenges faced by the processors industry. Ostensibly, the problem seemed to be 

resolved at least from the hardware point of view, however, adding more cores did not 

attain what was expected from the new architecture. Many studies (Chhabra, Singh, 

Waraich, Sidhu, & Kumar, 2006; Rudolph, Slivkin-Allalouf, & Upfal, 1991; Zamanifar, 

Nematbakhsh, & Sadjady, 2010) have shown that in a multicore based system, the 

probability of having one (or more) core being idle while other cores having a long line 

of waited threads is very high. This will definitely lead to load imbalance which 

ultimately causes poor efficiency. As a solution to the above problem, research studies 

have been directed to develop scheduling algorithms that aim to achieve workload 

balancing between the cores to reduce the chances of having some cores without 

working to the minimum as much as possible (Breshears, 2009; Ding, et al., 2012; 

Mattheis, et al., 2012). 

There are several classifications of workload balancing algorithms; each one is built on 

a particular aspect.  An early classification belongs to Casey (Casey, 1981). He gives 

the basis of a hierarchical classification of load balancing algorithms in distributed 

systems. Since then, many other algorithms have emerged with different features since 

the classification in (Casey, 1981) has been considered insufficient. (Wang & Morris, 

1985) suggest a taxonomy of load balancing algorithms, yet they restrict their study 
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with Load-sharing algorithms. In Load-sharing, processes never migrate when they are 

initiated (Cheung & Jacobsen, 2006). Therefore, load-sharing is considered a subset of 

load balancing. As a result, the classifications discussed by Wang et al. describe only a 

sub group within load balancing algorithms. (Casavant & Kuhl, 1988) focus on the 

scheduling problem in general-purpose concurrent systems.  They built their taxonomy 

on the work of Casey and Wang. The taxonomy of Casavant gives more details which 

are essential as it allows comparisons to be made between different approaches.  

Although the work of Casavant has been considered a landmark in classifying 

scheduling problems, nevertheless, the researchers are particularly dependent on the 

management and allocation of system resources in building their hierarchical taxonomy. 

Classification by Diekmann et al. (Diekmann, Monien, & Preis, 1997) was dedicated for 

distributed and parallel systems. They depend on applications’ characteristics in 

classifying different load balancing problems. In order to achieve their goals, they 

introduced a model that describes the relation between the application and the computer 

architecture. However, they restricted the method of exchanging data only with message 

passing based systems. 

2.2   The Emergence of Work-Sharing and Work-Stealing Scheduling  

Multithreading scheduling has been classified into two main categories: work-sharing 

and work-stealing. “In work-sharing, whenever a processor generates new threads, the 

scheduler attempts to migrate some of them to other processors in an attempt of 

distributing the work to under-utilized processors. In work-stealing, however, under-

utilized processors take the initiative: they attempt to “steal” threads from other 

processors” (Hendler, Lev, Moir, & Shavit, 2005). Intuitively, the migration of threads 

occurs less frequently with work-stealing than with work-sharing, since when all 

processors have work to do, no threads are migrated by a work-stealing scheduler, but 

threads are always migrated by a work-sharing scheduler  (R.D. Blumofe & Leiserson, 
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1999). Work-stealing has been proven to be a more effective means of balancing loads 

than work-sharing in sharing memory systems, especially in terms of communication 

efficiency: when all processors are busy, no attempts are made to migrate work across 

processors. Work-stealing has therefore been a popular strategy for multithreaded 

computations (U. A. Acar, Charguéraud, & Rainey, 2013; Belal; Berenbrink, 

Friedetzky, & Goldberg, 2001; Hendrickson & Devine, 2000; Osman & Ammar, 2002). 

Regardless of the type of category, all scheduling algorithms target at a common main 

goal: they aim to make all the processors busy as much as possible. In other words, the 

real goal behind these two multithreading scheduling methods is to raise the level of 

concurrency between the processors which ultimately leads to better achievement. 

2.2.1   Work-Sharing Scheduling 

During the 80s of the last century, the design of multiprocessor systems included a 

common global memory organized as a queue where every processor in the system 

deals with it. The mechanism was simple; each idle processor pops a thread from the 

global memory and executes it. If the processor could not complete its thread execution 

within a specific period of time, then the same processor pushes the thread back to the 

end of the global memory. This type of mechanism gained the name work-sharing since 

all processors share this global data structure which is employed to maintain system 

threads (R.D. Blumofe & Leiserson, 1999). 

Raetz (Raetz, 1987) has shown that due to the simplicity in computer architecture at that 

time, the global memory scheme was sufficient to multiprocessor systems. However, as 

computers become more advanced, the global memory principle has become ineffective. 

Feitelson et al.(Feitelson & Rudolph, 1995) have mentioned several reasons for this 

problem. First, it is quite possible to have more than one processor in the idle situation 

trying concurrently to access the global memory. The system has no choice other than 
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serializing the processors’ requests. As a result, with the increase in the number of 

processors, bottleneck arises. Second, when an incomplete thread is sent back to the 

global memory, there will be a little chance to reschedule this thread to the original 

processor; consequently this will cause losing valuable data such as the thread’s state, 

temporary values, etc. Third, dealing with a global memory will create a big problem 

with applications that have a high rate of interacting and synchronizing between their 

threads.  

In 1991, Rudolph et al. proposed an alteration to the principle of work-sharing from a 

global memory sharing to a local memory sharing (Rudolph, et al., 1991). Their work is 

built on two bases; first, they emphasize the importance of processors’ local memories 

rather than on a single global memory; second, they proposed a new load balance 

mechanism. Usually, each processor is accompanied with a local memory. The authors 

suggest that every processor’s local memory should keep its threads even when a 

thread’s execution time exceeds the time period assigned to it. New generated threads 

also should be kept inside their local memories. In other words, processors should not 

easily give up their threads. As a result, the migration of threads between processors 

decreases. However, this also leads to imbalance between workload among the 

processors since some processors may complete their jobs prior to other processors, 

accordingly they become idle while the rest of the processors are still busy. What makes 

matters worse is the possibility to repeat this in an ongoing basis. For the purpose of 

going out of this impasse, Rudolph et al.(Rudolph, et al., 1991) suggested that any 

processor periodically checks the number of its threads. Then, any processor may 

launch the load balance operation with other processors if the probability of this 

operation is directly proportional to the inverse number of threads in that processor, i.e. 

the probability is 1/Thi, where Thi represents the number of threads in the processor i. 

Therefore, a heavily loaded processor will rarely share its threads while the opposite is 
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true with a light loaded processor. Next, the processor that is ready to share its threads 

randomly searches for another processor to migrate some of its threads.   

The approach of Rudolph et al. is simple, distributed and also adaptive; however, it 

suffers from a major weakness, i.e. the lack of dynamicity in initiating a load balance 

process. This is because any processor pi starts looking randomly for an idle processor 

pj immediately after the number of threads in processor pi exceeds a fixed threshold 

value. This means that the process of searching for idle processors starts even if the 

system is balanced; as a result, the system loses precious time and effort, though the 

impact of this problem can be alleviated through dynamically adjusting the threshold 

value.  

2.2.2   Work-Stealing Scheduling 

The early use of work-stealing principle goes back to the 80s of the 20
th

 century.  

Burton et al.(Burton & Sleep, 1981) developed this principle of work to improve the 

speed of their parallel project which is dedicated for functional programs.  The ZAPP 

(Zero Assignment Parallel Processor) project has been built on the idea of allowing 

adjacent processors to steal tasks from each other for the sake of providing better work 

diffusion. Few years later, Halstead et al. (Halstead Jr, 1984) implemented work-

stealing on MultiLisp through using SMP computer. The work has been dedicated 

primarily to improve locality in multiprocessor systems. The authors claim that it would 

be better to steal oldest tasks rather than newest tasks since the latter may be loaded 

with heavy computations such as being a root of substantial tree of computations. This 

is because Halstead et al. followed Fork-Join technique. During the Fork operation, new 

recursively created tasks are added to the processor’s queue.  Therefore, any added task 

is less attractive to theft by a thief processor since it will have less computation. In other 
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words, the oldest task can achieve the highest probability to make the thief processor 

busy to the maximum extent possible (Rainey, 2010; Tzannes, 2012). 

Squillante et al. (Squillante & Nelson, 1991) studied shared-memory in multiprocessor 

systems. The researchers have concluded that it is better to schedule a thread on the 

same processor rather than allowing threads to move around processors. In other words, 

the affinity of a thread for a particular processor can highly improve system 

performance. This matter gets more attention in their next contribution (Squillante & 

Lazowska, 1993). In addition to that, the authors in (Squillante & Nelson, 1991) deal 

with the problem of idle processors through what they call threshold scheduling 

policies. As in the work of Rudolph et al.(Rudolph, et al., 1991) , Squillante et 

al.(Squillante & Nelson, 1991)  suggest that each idle processor should randomly check 

non-idle processors in order to pick one of them. If a certain picked processor has a 

threshold number of threads, then one of its threads could be migrated to the idle 

processor. The major difference between the work of Rudolph et al.(Rudolph, et al., 

1991) and Squillante et al.(Squillante & Nelson, 1991) is that in the former, a non-idle 

processor donates some of its threads to be accessed by idle processors, while in the 

later, idle processors randomly search for non-idle processors to migrate some threads 

in order to process them. 

Karp et al. (Karp & Zhang, 1993) developed several methods to process both back-track 

search and branch-and-bound computations in parallel on a message-passing 

multiprocessor system without using a global data structure. The authors applied work-

stealing in a way that makes it a donation rather than a stealing. The idle processor 

randomly selects one of the busy processors and sends a request to it. Following that, 

the selected processor receives the request and sends some of its work to the idle 

processor. Blumofe (Robert D Blumofe, 1995) although argued about the effectiveness 
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of these methods in solving searching problems, they lack space requirements and 

communication costs. 

There are several general observations on the works (Burton & Sleep, 1981; Halstead Jr, 

1984; Karp & Zhang, 1993; Squillante & Nelson, 1991). First, these works are basically 

not built on the basis of work-stealing. In fact, work-stealing has been used as a 

complementary part to their original works. Second, restricting the theft from only the 

neighbour processor may be a waste of time since there is a chance of being the 

neighbour itself in an idle situation. Third, even when selecting non-neighbour 

processors for stealing, random selection does not guarantee the best choice. After all, 

selecting a processor with few threads is considered a bad choice when, at the same 

time, we have several wealthy processors. Finally, stealing a single thread might be 

worth in certain applications but it certainly does not worth in all applications. In 

addition, there is no clear indication on how many threads should be stolen and why. 

2.2.3   Work-Sharing versus Work-Stealing 

There are several studies that inspect both work-sharing and work-stealing. These 

studies made a trade-off between the scheduling techniques and concluded that work-

stealing is preferable to work-sharing.  Blumofe et al.(R.D. Blumofe & Leiserson, 1999) 

stressed the importance of the number of threads migration between the two techniques. 

They preferred work-stealing since threads migration happens less compared with work-

sharing. They argued that in work-sharing (Rudolph, et al., 1991), processors seek to 

balance the system even when the system is already balanced or semi-balanced; while in 

work-stealing, the balancing process is only initiated when there is a need. For the same 

reason, Dinan et al.(Dinan et al., 2008) followed Blumofe et al. (R.D. Blumofe & 

Leiserson, 1999) in their opinion. They relied on the stability measurement to 

differentiate between the two techniques. They found that work-sharing suffers from a 
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high percentage of load balance messages being circulated among the processors even 

when the system is balanced, the thing that does not happen in work-stealing. As a 

result, Dinan et al. (Dinan, et al., 2008) concluded that work-sharing is unstable while 

work-stealing is a stable technique. Chen et al. (Chen, Guo, & Huang, 2012) discussed 

the subject of lock contention between the processors. They preferred work-stealing 

since there is a low percentage of lock contention even during the stealing process. On 

the other hand, work-sharing with a global memory suffers from a high percentage of 

lock contention because any processor needs to lock the global memory for both adding 

and removing threads. Guo et al.(Guo, Barik, Raman, & Sarkar, 2009) concluded that 

work-sharing with a single shared memory unavoidably faces a future problem 

represented by scalability bottleneck because the number of processors is on a 

continuous increase. 

On the other hand, Eager et al. (Eager, Lazowska, & Zahorjan, 1986) preferred work-

sharing rather than work-stealing in a distributed system environment. The simulation 

results have shown that work-sharing with system load ranging from low to moderate 

makes better progress. However, work-stealing progress is better when dealing with 

high loads, assuming that the cost of load transferring is similar between the two 

strategies. Despite the fact, in distributed systems, the cost will be higher in work-

stealing rather than work-sharing. The reason for this is due to the policy of work-

stealing in transferring loads that have already been started; but in the case of work-

sharing, the opposite happens, loads are transferred before they are executed. This 

argument is true for distributed systems; however, it does not apply for sharing memory 

systems where there is no difficulty in transferring loads that have already been started 

execution. 
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2.3   Significant Achievements of Work-Stealing 

Since the beginning of the use of work-stealing technique, a large number of research 

studies have been conducted. These researches vary in importance and influence in the 

development of the use of the technique. However, certain researches considered it a 

landmark in the world of work-stealing which requires full attention. In this section, 

some of these researches are discussed: 

2.3.1   Scheduling Fully-Strict Multithreaded Computations  

The work of Blumofe et al.(R.D. Blumofe & Leiserson, 1999) is considered one of the 

distinguished achievements in work-stealing scheduling. They presented the first work-

stealing scheduling algorithm which features the ability to schedule fully-strict (well-

structured) multithreaded computations. Their work includes detailed analysis of the 

time and space complexity for scheduling multithreaded computations. According to 

their analysis, a P-fold speedup can be achieved during the execution of the parallel part 

of an application running on a P-processor environment using at most P times more 

space than when running on a single processor. In their approach, each processor is 

accompanied with a memory organized as a deque. The processor uses the top of its 

deque for two purposes: First, it pops the threads from the top in order to process them. 

Second, the processor uses the top side to enqueue newly generated threads. The bottom 

of the deque is dedicated for stealing. An idle (thief) processor randomly searches for 

the first encountered non-idle processor (victim) to steal threads from its bottom. 

Therefore, any processor is either working on its queue of threads or attempts to steal 

threads from other processors’ queues. For any processor says X , the algorithm of 

Blumofe et al.(R.D. Blumofe & Leiserson, 1999) can be listed as follows: 
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Loop: 

  While processor X’s deque is not empty Do 

Thread A  Processor X pops the bottommost thread from its deque 

Processor X executes Thread A until one of the following actions happens: 

If Thread A completed its mission (Dies) Then 

Processor X removes Thread A  

Else  

 If Thread A stalls (for example waiting for other threads to be completed) Then 

  Processor X removes Thread A 

 Else 

 If Thread A enables a stalled Thread say C Then 

   Thread C is placed on the bottommost position of the deque 

    Else 

   Thread A generates another Thread say B  

   Processor X pushes Thread A into the deque and starts executing Thread B 

End While 

If Processor X’s deque is empty and there are still victim processors Then 

Processor X becomes a thief and it randomly searches for a victim processor and 

steals a thread located at the topmost position of the victim’s deque. The stolen 

thread is pushed into Processor X’s deque. Go to Loop 

Else 

 Stop 

The results of  Blumofe et al.(R.D. Blumofe & Leiserson, 1999) were good especially 

when dealing with areas that need static partition. However, the quality of the results is 

not the same when the algorithm is applied in the modern environments. In other words, 

the algorithm does not work in multi-programmed environments that are supported by 

modern shared-memory multiprocessors and operating systems. This is due to the 

algorithm’s designed mechanism that deals with a fixed set of processors with the 

assumption of the full availability of these processors. In addition, a lot of failed 

attempts of theft may happen because multiple thief processors try to steal from one 

victim core (Cao, Sun, Qian, & Wu, 2011). This brings us to the importance of 

predetermination of the victim cores instead of wasting time in useless attempts. The 

researcher has addressed this point in this study through locating the victim and thief 

cores prior to any stealing process. In this way, no failed attempts of theft have ever 

happened in this study. 
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2.3.2   Non-Block Work-Stealing Algorithm 

Arora et al. (Arora, Blumofe, & Plaxton, 2001) improved the work of Blumofe et al. 

(R.D. Blumofe & Leiserson, 1999) to produce a non-blocking work-stealing algorithm. 

In a non-blocking system, any delay in any process will not hinder other processes from 

making progress. In other words, contention can be prevented during concurrent 

operations. The new algorithm soon became the favourite choice both in the academic 

and industrial fields (Hendler & Shavit, 2002). The improvement lies in two points: 

First, the algorithm can deal with arbitrary multithreaded computations instead of 

restricting the computations with the fully-strict type only. Second, their algorithm can 

manage a multi-programmed environment in contrast to (R.D. Blumofe & Leiserson, 

1999) which was unable to deal with such environment.  In other words, the algorithm 

of Arora et al. has the ability to deal with more than one program at the same time 

where each program may utilize a different number of processors. To achieve such 

goals, the authors did not map threads to processors directly as in (R.D. Blumofe & 

Leiserson, 1999), instead they planned for two schedulers. The first scheduler maps the 

threads into P processes, while the second (complementary) scheduler maps the 

processes into the processors. Therefore, the P-fold speedup cannot be achieved all the 

time because the second scheduler may manage its work with less than P processors. In 

addition, Arora et al. (Arora, et al., 2001) improved the behaviour of the deque which 

represents the backbone of the work-stealing algorithm as in (R.D. Blumofe & 

Leiserson, 1999). Here the process rather than the processor as in (R.D. Blumofe & 

Leiserson, 1999) is in charge of managing its threads.  Additionally, deques have the 

advantage to become a non-blocking data structure that can handle concurrent 

operations (U. A. Acar, et al., 2013). A CAS (compare-and-swap) instruction 

("Compare-and-swap,") that stands behind the success of the concurrent updating of the 

deques is an atomic instruction used in multithreading to achieve synchronization. The 
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CAS’ operands are a given value and a given memory location. The instruction 

compares the given value with the content of memory address by the given location. If 

they are the same, the CAS modifies the contents of that memory location to a given 

new value. This is done as a single atomic operation. The atomicity guarantees that the 

new value is calculated based on up-to-date information; if the value had been updated 

by another thread in the meantime, the write would fail (Arora, et al., 2001).  

However, the use of the CAS instruction is only needed when there is only one thread in 

the deque. The deques are much like the one described in the work of Knuth (Knuth, 

1968). However, in a work-stealing mechanism, processes can access only one end of 

the deques that is the “Bottom” while other processes can access the other end, i.e. the 

“Top” during the stealing operation.  

Unfortunately, the algorithm of Arora et al. encountered several problems. First, due to 

the use of fixed sized arrays, the algorithm can deal with only m/n threads inside a 

deque where m represents the total memory size and n represents the number of 

processes (Hendler, et al., 2005). The second problem is related to memory 

management. Overflows can easily occur due to the use of fixed-size array (array of 

pointers) in representing a deque. This drawback especially happens when running 

several programs for which the authors designed their algorithm. Arora et al. tried to 

reduce the effects of overflows by using cyclic array technique. However, they 

succeeded in reducing the chances of overflow but could not avoid overflow from 

happening. Consequently, the continuous adjustments of the deque sizes are necessary 

during runtime since it cannot predict the size of each thread. There is no simple 

operation to free memory locations and return them to the free space (Hendler, et al., 

2005).  
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Using a parallel garbage collector will definitely require precious time to accomplish 

(Hendler, et al., 2005). The second problem is associated with the number of stolen 

threads. Berenbrink et al.(Berenbrink, et al., 2001) criticized work-stealing systems that 

steal a single item at a time. The researchers use Markov model to analyze work-

stealing technique. The authors use Markov model in arguing that a work-stealing 

system that is built on the basis of single-stealing at a time could end up with an 

unstable state (overflow) which becomes difficult to recover. In addition, the authors 

stress that even when extra spaces are allocated, at some point, overflow may occur. 

2.3.3   Improving the Non-Block Work-Stealing Algorithm 

The work of Arora et al. (Arora, et al., 2001) represents a significant achievement in the 

work-stealing techniques, though the work suffers from several shortages. Several 

studies have been conducted to improve this work while retaining the essence of the 

work at the same time. 

2.3.3.1   Stealing the Half 

The mechanisms of work-stealing of Blumofe et al.(R.D. Blumofe & Leiserson, 1999) 

and Arora et al.(Arora, et al., 2001) have been designed to steal a single item at a time. 

Several researchers argue that stealing more than one item at a time increases the 

stability and achieves a better system load balance. Mitzenmacher (Mitzenmacher, 

1998)  analyzed work-stealing algorithms using differential equations. He came to the 

conclusion that multi-stealing can improve the performance of an algorithm.  

Berenbrink et al.(Berenbrink, et al., 2001) claimed that slipping into unstable state for 

Arora-like algorithms can be avoided when the algorithm is modified to steal half the 

deque content instead of stealing a single item. Hendler et al. (Hendler & Shavit, 2002) 

applied the idea of stealing the half of the victim’s deque. The authors followed the 

Arora algorithm’s features such as non-blocking and minimizing of using the CAS 
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instruction. The main drawback in the approach of Hendler et al. is the dependency in 

using fixed-size deques. It was not clear whether it was possible to utilize resizable 

deques. 

2.3.3.2   Data Locality 

Acar et al.(U. Acar, Blelloch, & Blumofe, 2000) studied the data locality of work-

stealing algorithms. The authors found that randomized stealing may lead to cache 

unfriendliness; therefore they suggested extending the work of Arora et al. in a way that 

makes stealing happen in a locality-guided way. Here, the process gives priority to the 

threads that have affinity to it. If no thread has affinity to the process, then the process 

follows the work-stealing mechanism in selecting another victim process randomly. The 

authors claimed that their modified algorithm outperforms the standard algorithm of 

work-stealing. 

2.3.3.3   Dynamic Deques 

The work of Arora et al. is based on using fixed-size arrays. Practical experiments 

proved that the use of such data structure leads inevitably to overflow. This means that 

the deques’ sizes must be continuously adjusted to accommodate the unpredictable 

number of threads which dynamically change during the execution. To address this 

problem, Hendler et al. (Hendler, et al., 2005) suggested using dynamic structure 

instead of fixed-size arrays. The authors’ main contribution lies in implementing a 

deque as a doubly linked list, where each list is a short array which is dynamically 

allocated and freed. The authors have succeeded in dealing with the overflow problem; 

on the other hand, there was an increase in the complexity of the algorithm. Due to the 

extra work needed to maintain the dynamic list, the new algorithm shows a trade-off 

between time and space complexity. 
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2.3.3.4   Dynamic Circular Deques  

Chase et al.(Chase & Lev, 2005) introduced the idea of dynamic circular array in 

implementing deques. The authors managed in eliminating the overflow problem with a 

simple and efficient algorithm. In addition, space complexity is linear, that is no 

memory is wasted as in Hendler et al. (Hendler, et al., 2005) besides no garbage 

collector is needed. However, when the deque becomes full, a new array is created and 

the elements are copied to the new deque. Although the process of copying is linear, this 

can be the only factor of delay. 

2.4   More Work-Stealing Contributions 

Agrawal et al. (Agrawal, Leiserson, He, & Hsu, 2008) presented an adaptive thread 

scheduler, called A-STEAL. They argued that their scheduler performs better than 

(Arora, et al., 2001) when the machine has a large number of cores and many jobs 

running on it. Vrba et al. have analysed the performance of applications running under 

graph-partitioning and work-stealing schedulers (Vrba, Espeland, Halvorsen, & 

Griwodz, 2009). Work-stealing has been formally proven to be optimal only for the 

restricted class of fully-strict computations. Recently, Ding et al. presented in (Ding, et 

al., 2012) a work-stealing scheduler for time-sharing multicore systems. Their scheduler 

has been designed to deal with two important drawbacks in the work of Arora et al, 

significant unfairness and degraded throughput. The scheduler improves average system 

throughput and reduces average unfairness. 

2.5   Work-Stealing in Software Industry 

The success of work-stealing in the academic research field has motivated software 

companies to adopt this principle of work in their products. Several languages and 

libraries have been developed based on the idea of work-stealing. Examples of these 

products are Cilk, TBB, TPL and Java. 
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2.5.1   Cilk 

Cilk (pronounced “silk”) is a C-based multithreaded language for parallel programming. 

It adds several constructs to the original C language in order to deal with parallel control 

(Frigo, Leiserson, & Randall, 1998). The spawn construct creates a new thread that may 

execute concurrently with the threads’ parent. The sync construct has the duty of 

synchronizing a thread with its children’s threads. In other words, the sync blocks the 

execution of a function until all its spawned children complete their actions. The 

theoretical work of the Cilk language can be traced back to the work of (Robert D 

Blumofe, 1995) . The first version of this language (Cilk-1) was born at MIT in 1994. 

Parallelism has been represented with the first version; the language introduces an 

efficient scheduler based on work-stealing technique. However, the first version was 

awkward since parallelism was exposed “by hand” using explicit continuation passing 

(Frigo, et al., 1998). Cilk Arts Inc developed the commercial version of Cilk called 

Cilk++, which supports both C and C++. In July 2009, Intel Corp acquired the complete 

software. Currently, Intel® Cilk™ Plus is working on version 1.2. 

2.5.2   Threading Building Blocks (TBB)  

Intel TBB is a C++ template library that is designed for desktop shared memory 

computers. Since it does not represent a new language or even a language extension, 

TBB has been included in the existing C++ compilers without doing any modification to 

these compilers. The components of TBB are built at various levels of abstraction. In 

TBB, we can distinguish three levels of abstractions. At the highest level of abstraction, 

we can find concurrent containers and parallel algorithms. Threads scheduler is based 

on work-stealing similar to Cilk and it is located at the middle level of abstraction, while 

timing facility, atomic operation and mutexes are positioned at the lowest level of 

abstraction (Robison, Voss, & Kukanov, 2008). The TBB has managed to spare the 
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programmer from getting into the complexities of using native threads packages such as 

Windows and POSIX threads where the processes of threads creation, synchronization 

and termination are done manually. Intel, the owner of TBB, argues that their product 

has proved its efficiency in dealing with the multicore environment. Any variation in the 

number of cores can easily be detected, the TBB can easily do the necessary adjustment 

to deal with the new number of cores ("Threading Building Blocks,").  First version of 

TBB has been introduced by Intel in August 2006 while the latest version is 4.2 was 

introduced in September 2013 (Wikipedia, 2014b). 

2.5.3   Task Parallel Library  

Microsoft’s Task Parallel Library (TPL) works under .NET programming framework. 

Microsoft aims behind designing this library to simplify parallel programming in.NET 

environment (Lu & Adviser-Gannon, 2009).  The library is responsible for threads 

creation and termination in addition to fitting the number of threads with the number of 

available processors (Wikipedia, 2013). As is the case in Cilk and TBB, TPL adopted 

work-stealing mechanism as the principle of work in its scheduler.  Although there are 

several similarities between TBB and TPL, however, programming using TPL is easier 

since it provides the usage of .NET language supports (Olivier & Adviser-Prins, 2012).  

2.5.4   Implementing Work-Stealing in Java 

The principle of work-stealing has also been implemented in Java programming 

language in different ways. JAWS (Java Work Stealer) has been presented in (Mao, So, 

& Woo, 1998). It allows programmers to write parallel programs in pure Java that can 

run on a network of workstations. JAWS has been implemented as a user-level Java 

library which schedules user threads using a work-stealing technique. JAWS is strongly 

influenced by Cilk, however, there are two major differences between the two software: 

First, JAWS has been designed to deal with a network of workstations where there is no 
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shared memory, while Cilk designers planned to implement their software in a 

symmetric multiprocessor machine which has a shared memory.  Second, Cilk adds 

extension to the C language and it has the ability to access the C language faculties such 

as the stack of running threads. On the other hand, JAWS depends on Java Virtual 

Machine, there is no way to deal with stack frame as Cilk did. JAWS has a main 

drawback in its performance especially when dealing with a large-scale cluster, this is 

because any node in the cluster may steal several times from other nodes. This will 

absolutely lead to an increase in nodes’ idle time besides causing a heavy overhead in 

network traffic (B.-Y. Zhang, Mo, Yang, & Zheng, 2007). In general, JAWS could not 

achieve optimal performance. The stealing and synchronizations processes are the main 

overheads that face this software. Satin represents a system for running programs on 

grid platforms (Van Nieuwpoort, Kielmann, & Bal, 2000). The programming model of 

Satin has been inspired by Cilk. Satin extends Java with two simple primitives for D&C 

programming. Originally, Satin  has been presented by Nieuwpoort et al. in (Van 

Nieuwpoort, Kielmann, & Bal, 2001). The authors claim that the software which has not 

yet been applied in real grid shows an efficient load balance implementation based on 

work-stealing. In (Nieuwpoort, Maassen, Kielmann, & Bal, 2001), Nieuwpoort et al. 

evaluated Satin on a real grid. The authors argued that an efficient utilization of the 

resources has been achieved. However, they did not depend on the original work-

stealing algorithm in their work. They extended the original algorithm to a Cluster 

Random Stealing algorithm which outperforms the original one. This new extended 

algorithm is specially designed for cluster-based wide area computing. Jcluster (B.-Y. 

Zhang, et al., 2007; B. Y. Zhang, Yang, & Zheng, 2006) is another Java based system 

that provides a parallel environment which is suitable for a large-scale heterogeneous 

cluster. It implements a task scheduler based on a Transitive Random Stealing 

algorithm. The proposed scheduler can be seen as an improvement to work-stealing 
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algorithm. The authors in (B.-Y. Zhang, et al., 2007) argued that the mentioned 

scheduler outperforms the work-stealing scheduler in reducing processors’ idle time and 

network communication overheads. Java language (Lea, 2005) has developed its 

java.util.concurrent packages in its 7th release by adding a framework for fork-join style 

parallel decomposition. The new framework provides a natural means for partitioning 

many algorithms to efficiently make use of hardware parallelism. The use of work-

stealing has reduced the contention for the working deques. 

It is noted the growing importance of these languages and libraries. However, there is a 

common drawback which these software shared (Gautier, Lima, Maillard, & Raffin, 

2013). This drawback is represented by the synchronization points of these software. 

These points force some tasks to be completed before allowing new tasks to be 

executed. For example, concurrent deques that are utilized in these languages and 

libraries required expensive memory-fences which can affect the overall performance. 

Frigo et al. have shown in (Frigo, et al., 1998) that half of Cilk work-stealing schedulers 

are spent in executing memory fence. 

2.6   Drawbacks of Work-Stealing 

Despite the great success of work-stealing that has been achieved, the scheduling 

algorithm suffers from several drawbacks. Nogueira et al. have shown in (L. Nogueira, 

Fonseca, Maia, & Pinho, 2012) that the scheduler mechanism of Blumofe et al. (R.D. 

Blumofe & Leiserson, 1999) is fast and easy, however, they argued that the random 

approach employed in choosing the victim core cannot always determine the best victim 

core. To make matters worse, the current trend and the future, at least for the 

foreseeable extent to processor manufacturers is the increase in the number of cores. 

This will certainly lead to an increase in the number of victim cores, as a result, the 

probability of choosing the best victim core will decrease. 
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Moreover, there will be a considerable waste of time. A thief core that fails in stealing 

from a victim core due to competition, causes the loss of system resources, in addition  

to repeating this action with other victim cores, for example, two or more cores trying to 

steal from the same victim core which itself is a thread-poor core. This leads the 

researcher to emphasize the importance of the right choice of victims. In fact, if the 

scheduler failed in tailoring unsuccessful stealing attempts, this without doubt leads to 

slowing down application execution as much as 15-35% as mentioned in (R.D. Blumofe 

& Leiserson, 1999). 

Neill et al. discussed the cost of stealing in (Neill & Wierman, 2009). The authors 

argued that this cost comes from system bus contention and threads’ transfer latency. 

Another source of cost the authors highlighted is related to queues’ affinity. According 

to the work-stealing principle of work, any process has the right to steal from any other 

queue, that is, from any non-local memory. When we put this matter into consideration 

besides having the hardware fact which says it is much faster for a processor to access 

its local-memory than accessing other processors’ local-memories. The authors 

concluded that stealing from other queues loses the advantage of local cached 

computations.  However, without stealing, there will be load balance. Therefore, it is 

important to keep threads in their queues as much as possible for the sake of affinity. 

Only when there is a real need to distribute them, then threads can be taken away from 

their local-queues. 
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2.7   Summary 

This chapter started by giving a quick review of the papers that highlight the importance 

of scheduling algorithms on multicore systems.  Then, the researcher moved towards 

reviewing the papers that cover the classification of workload balancing algorithms. 

Next, the range of papers was narrowed down to be dedicated to the general review of 

Work-Sharing and Work-Stealing Scheduling algorithms. The reviewing process has 

been redirected to focus only on Work-Stealing Scheduling algorithms. The researcher 

started by reviewing the early contributions in work-stealing and how this technique 

evolves during the eighties and nineties of the twentieth century. Then, the researcher 

gave more attention to the contribution of Blumofe et al. and Arora et al. Following that, 

the researcher reviewed the papers that discuss weaknesses and gaps in these two papers 

and the proposed solutions that have been submitted by other researchers. Next, the 

researcher covered the papers that criticise the drawbacks in work-stealing principle of 

work. Then, the researcher reviewed the principle of work-stealing in software industry. 

Finally, the researcher reviewed some of the recent papers that highlight the drawback 

in work-stealing. Table 2.1 gives a summary of the most related work in this study. 
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Table 2.1: A Summary of the most related work in this study 

 

Title  Authors - Date Contribution 

Executing functional 

programs on a virtual tree 

of processors 

(Burton & Sleep, 

1981) 

This work represents the origin of work-stealing principle of work. The authors try in their project to allow 

processors to steal from each other for the sake of providing better work diffusion. 

Implementation of 

Multilisp: Lisp on a 

multiprocessor 

(Halstead Jr, 1984) 

The authors implemented work-stealing on MultiLisp using SMP computer. Their work was primarily 

directed to improve locality in multiprocessor systems. The authors claim that it would be better to steal oldest 

tasks rather than newest tasks since the latter may be loaded with heavy computations such as being a root of 

substantial tree of computations. 

Analysis of task migration 

in shared-memory 

multiprocessor scheduling 

(Squillante & 

Nelson, 1991) 

The authors studied shared-memory in multiprocessor systems. They suggested that each idle processor 

should randomly check non-idle processors in order to pick one of them. If a certain picked processor has a 

threshold number of threads, then one of its threads could be migrated to the idle processor. 

Randomized parallel 

algorithms for backtrack 

search and branch-and-

bound computation 

(Karp & Zhang, 

1993) 

The authors applied work-stealing in their algorithm in a way that makes it a donation rather than a stealing. 

The idle processor randomly selects one of the busy processors and sends a request to it. Following that, the 

selected processor receives the request and sends some of its work to the idle processor. 

Executing multithreaded 

programs efficiently 

(Robert D Blumofe, 

1995) 

Argued that the work of (Burton & Sleep, 1981), (Halstead Jr, 1984), (Karp & Zhang, 1993),(Squillante & 

Nelson, 1991) lack space requirements and communication costs, in addition, their works did not build on the 

basis of work-stealing ; it is considered secondary to the importance of their work. Moreover, stealing from 

neighbouring processor happens which is considered waste of time in the case where the neighbour is idle as 

well. 

Scheduling multithreaded 

computations by work 

stealing 

(R.D. Blumofe & 

Leiserson, 1999) 

A distinguished achievement in the work-stealing scheduling. They presented the first work-stealing 

scheduling algorithm which is able to schedule fully-strict (well-structured) multithreaded computations. 

However, they could not succeed in implementing their algorithm in shared-memory systems that apply 

multiprogramming. This is due to the assumption that a fixed set of processors are fully available to perform a 

given computation. 

Thread Scheduling for 

Multi-programmed 

Multiprocessors 

(Arora, et al., 2001) 

Improving the work of (R.D. Blumofe & Leiserson, 1999) through proposing a work-stealing scheduling 

algorithm which is able to do two things: First, the algorithm is able to schedule arbitrary multithreaded 

computations as opposed to the special case of “fully strict” as in the work of Blumofe et al. Second, the 
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algorithm can deal with multiprogramming algorithm  while the algorithm of  Blumofe et al. is designed for a 

dedicated environment. 

Non-blocking Steal-Half 

Work Queues 

(Hendler & Shavit, 

2002) 

Point out to two main achievements in the work of (Arora, et al., 2001) : First, the algorithm of Arora et al., 

can deal with arbitrary multithreaded computations instead of restricting the computations with the fully-strict 

type only. Second, their algorithm can manage a multi-programmed environment in contrast to (R.D. Blumofe 

& Leiserson, 1999). 

Apply the idea of stealing the half of the victim’s deque. The authors followed Arora algorithm’s features such 

as non-blocking and minimizing of using the CAS instruction. The main drawback in the approach of Hendler 

et al. is the dependency in using fixed-size deques. 

Scheduling parallel 

programs by work stealing 

with private deques 

(U. A. Acar, et al., 

2013) 

Study the influence of private deques and identify one of the main points in the work of (Arora, et al., 2001), i. 

e., the use of non-blocking data structure as a deque to handle concurrent operations. 

A Dynamic-Sized Non-

blocking Work Stealing 

Deque 

(Hendler, et al., 

2005) 

Discuss the work of (Arora, et al., 2001) and determine two main problems: First, the algorithm can deal with 

a limited number of threads due to the use of fixed-sized arrays. Second, a fixed-size array can itself cause an 

overflow problem. 

The authors suggest implementing a deque as a doubly linked list instead of using fixed-size arrays. In this 

way, they solved the main drawback in the work of (Arora, et al., 2001), as a result, the overflow problem has 

been eliminated but it came at the expense of an increase in the complexity of the algorithm and memory 

wastage. 

The natural work-stealing 

algorithm is stable 

(Berenbrink, et al., 

2001) 

Criticize the work of (R.D. Blumofe & Leiserson, 1999) (Arora, et al., 2001) for the reason of stealing a single 

item. Berenbrink et al., argue that a system with single stealing could end up with an unstable state (overflow) 

which becomes difficult to recover. 

Analyses of load stealing 

models based on 

differential equations 

(Mitzenmacher, 

1998) 

Analyzed the work-stealing algorithms using differential equations. He came to the conclusion that multi-

stealing can be improved when stealing multiple items instead of one.   

The natural work-stealing 

algorithm is stable 

(Berenbrink, et al., 

2001) 

Claim that the work of (Arora, et al., 2001) may slip into unstable state . However, this state can be avoided 

when the stealing algorithm is modified to steal half of the deque instead of a single item. 

The Data Locality of Work 

Stealing 

(U. Acar, et al., 

2000) 

Suggest a method to improve the locality of work stealing. The authors found that randomized stealing may 

lead to cache unfriendliness; therefore they suggested extending the work of Arora et al. in a way that makes 

stealing happens in a locality-guided way. 
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Dynamic circular work-

stealing deque 
(Chase & Lev, 2005) 

The authors managed in eliminating the overflow problem in (Arora, et al., 2001) with a simple and more 

efficient algorithm than in (Hendler, et al., 2005). They introduced the use of dynamic circular array in 

implementing deques; as a result, a garbage collector is no more needed. However, when the deque becomes 

full, there will be a need for extra time to transfer items from the old deque to the new deque. 

Adaptive work-stealing 

with parallelism feedback 

(Agrawal, et al., 

2008) 

They presented an adaptive thread scheduler, called A-STEAL. They argued that their scheduler performs 

better than (Arora, et al., 2001).  Agrawal, et al. point out to the fact that Arora, et al. did not provide 

parallelism feedback in their work which leads to waste in processors’ cycles. 

On the benefits of work 

stealing in shared-memory 

multiprocessors 

(Neill & Wierman, 

2009) 

They discussed the cost of stealing generated from system bus contention and threads’ transfer latency which 

comes from leaving the cores steal from each other freely. The authors stressed on queues affinity and stealing 

should be allowed only when there is a real need for stealing. 

Dynamic Global 

Scheduling of Parallel 

Real-Time Tasks 

(L. Nogueira, et al., 

2012) 

The authors criticised the work-stealing random approach in choosing the victim core. This is due to the 

difficulty that may face a thief core in choosing a victim core because the competition between thief cores. For 

example, two thief cores try to steal from the same victim core. This will undoubtedly waste system resource 

and time. 

BWS: Balanced Work 

Stealing for Time-Sharing 

Multicores 

(Ding, et al., 2012) 

They presented a work-stealing scheduler for time-sharing multicore systems. Their scheduler has been 

designed to deal with two important drawbacks in the work of Arora et al, significant unfairness and degraded 

throughput. The scheduler improves average system throughput and reduces average unfairness. 

A work-stealing scheduling 

framework supporting fault 

tolerance 

(Y. Wang, et al., 

2013) 

The authors proposed a work stealing scheduling framework that supports hardware fault tolerance. The 

framework is able to detect and recover both transient and permanent faults. 

Friendly barriers: efficient 

work-stealing with return 

barriers 

(Strang, 2011) 

The authors address dynamic overheads that occur when a steal is taking place. They succeeded in reducing 

the dynamic overhead to half which results in improving the total performance. 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1   Introduction 

The multicore technology has seized control of the processors industry and becomes, 

without any doubts, the main player in any computer-based device. Processor 

manufacturers continuously try to replicate the number of cores per chip in order to 

achieve better results, i.e. executing the programs in less time. For instance, in the 

laptops world, it becomes natural to see the increase of the number of cores in the 

laptops. For the time being, commercial laptops have 4 to 8 cores. This also can be said 

for the mobile technology where the number of cores is on the rise. All the expectations 

for this technology are directed to a continuous increase in the number of cores. On the 

other hand, software industry has not developed sufficiently in order to fit the on-going 

development taking place in multicore technology. 

 

This study is about building concurrent multithreaded models that solve D&C problems 

(Fibonacci Series, Towers of Hanoi, Binary Search, and Matrix Multiplication) on a 

multicore environment. To achieve this goal, the researcher proposes two types of 

schedulers: A Low Level Scheduler (LLS) and a High Level Scheduler (HLS). As 

shown in Figure 3.1, the LLS is included in each modelled core while there is only one 

HLS in the entire model. The D&C workload problem is represented as threads 

proposed by the researcher.  Initially, every problem starts by a single main thread 

located in one of the cores. The duty of each LLS is to partition and manipulate the 

threads inside its core. On the other hand, the HLS balances the workload (partitioned 

threads) among the entire cores through pulling (at run time) some threads from the 

victim cores and adding these threads to the thieves’ cores. The entire LLSs work at the 

same time with the HLS for the purpose of making the whole cores busy as much as 

possible so that a high level of concurrency can be achieved. The HLS has a guard 
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which enables/disables the activation of the HLS. On the other hand, each core has its 

own guard that enables/disables the activation of the core itself. 

HLS

Core N

LLS N

Common Memory

HLS Guard

Guard N

Core 2

LLS 2

Guard 2

Core 1

LLS 1

Guard 1 …...

 

Figure 3.1: A multithreaded multicore model. The LLSs create the threads and 

manipulate them while the HLS redistributes the threads between the cores. The 

common memory is a shared area used to store data and temporary results 

 

The methodology used in this study has been built on five main phases. Phase 1 is 

dedicated for the research idea. Phase 2 introduces research background. Phase 3 is 

related with literature review conducted by the researcher. Phase 4 is dedicated for 

identifying research problem and objectives. Phase 5 illustrates design methodology, 

and finally, Phase 6 is about the simulation and monitoring processes. Figure 3.2 shows 

the workflow of the study. 

3.2   Phase 1: Building the Research Idea 

In any computer system, there are two main components: Hardware and Software. This 

covers all types of computer systems starting from the supercomputers towards the 

smallest computers. Studies have proven that best results can be achieved when there is 

a great harmony between these two components. For instance, in computer systems that 

apply parallel processing, these systems cannot attain high achievement without 

providing a high compatibility between the parallel processors and the software that 
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operate these processors, i.e. providing operating systems and other software that can 

deal with such an environment.  

 

START

Phase 2

Studying of Research Background

Phase 3

Conducting the Literature Review

Sub Phase 1

Reviewing the Single-Processor 

Difficulties and Multicore 

Challenges

Phase 1

Building the Research Idea

Sub Phase 2

Reviewing the Workload 

Balancing Algorithms

Sub Phase 3

Narrowing the Research and 

Reviewing the Multithreaded 

Scheduling Algorithms

Sub Phase 4

Narrowing the Research to the 

Work-Stealing Scheduling 

Algorithm

Phase 4

Identifying Research Problem and 

Objectives

Phase 5

Designing the Methodology

Sub Phase 1

Designing the Low-Level 

Schedulers (LLSs)

Sub Phase 2

Designing the High-Level 

Schedulers (HLSs)

Sub Phase 3

Designing the Guards' 

Mechanisms

Sub Phase 4

Designing the CPN Models

Phase 6

Simulation and Monitoring

END

 

Figure 3.2 Workflow of the Study 

In the case of personal computer systems, these systems became well known worldwide 

since 1981 when both IBM with Microsoft presented the first PC (Held, 1986). At that 
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time, software were designed to deal with single-processor computers. However, with 

the beginning of the twenty first century, processor manufacturers adopted multicore 

technology instead of continuing to develop single-processor industry. Consequently, it 

was inevitable that software were influenced by this diversion in the hardware since 

most software were designed to deal with a single-processor environment. For that 

reason, the ability of software to deal with this expansion in the number of cores has 

become the focus of attention of researchers working in academic and industrial fields.  

 

The researcher has noticed that the success that has been made in replicating the number 

of cores has not been matched with a similar success in the software side. The 

researcher touches on the difficulties faced by software developers in dealing with 

multicore technology. These difficulties are represented by adapting the software with 

the technologies of processors that have variable numbers of cores. From this point, the 

research idea has been generated. The research idea revolves around providing the 

mechanisms that help in making software more adaptable with the multicore 

technology. The researcher takes into consideration that these mechanisms should be 

adaptable to deal with variable number of cores; in addition, these mechanisms should 

operate the cores to the maximum extent, leaving a minimum number of idle cores. 

Given the large scope of research topic in this area, the researcher focuses on a class of 

problems, i.e. Divide and Conquer problems. Therefore, the idea of this research is built 

on designing mechanisms that manage Divide and Conquer workload problems on a 

multicore environment. 

3.3   Phase 2: Studying of Research Background 

In this sub phase, the researcher started by addressing the real reasons that prompted the 

development of multicore technology and how this is reflected on the processors 

manufactured. The influence of Moore’s Law and the improvement that is made on this 
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law are discussed in this sub phase. Following that, the researcher gives some examples 

of the early processors that were built on the basis of multicore technology in the 

beginning of the twentieth century. 

Then, the researcher redirects the attention to the software rather than the hardware. 

Here, the research touches on the difficulties faced by software developers in dealing 

with multicore technology. These difficulties are represented by adapting the software 

with the technologies of processors that have a variable numbers of cores. Subsequently, 

the researcher clarifies the terms: concurrency, scalability, parallelism, multithreading, 

working cores, and non-working cores.  These terms are essential to the research and are 

important to be clearly explained. The researcher stresses on the concurrency and 

scalability that modern software should possess in order to exploit the new technology. 

The researcher also briefly highlights the similarity and difference between concurrency 

and parallelism because of their importance in the research. Then, the researcher 

clarifies the role of threads and multithreading in scheduling techniques. Later, two 

important terms, working (busy) core and non-working (idle) core, are defined. In 

addition, the researcher discussed the reason behind having these two types of cores. 

Then, the research’s background is redirected to give a glimpse of two main topics in 

this thesis: the scheduling techniques and Divide and Conquer problems. The researcher 

draws the attention to the types of scheduling (static and dynamic) and briefly mentions 

the differences between them. The researcher concludes the importance of the dynamic 

scheduling and its impacts on this study. Next, the researcher defines the problems of 

Divide and Conquer. In view of the fact that this thesis proposes CPN models that solve 

Divide and Conquer problems on multicore architecture, the researcher finds that it is 

necessary to give a quick look to this kind of problems in the background phase. 
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Finally, the researcher explains the importance of modelling in designing concurrent 

systems. The researcher draws the attention to the advantages of using modelling and 

how these advantages can be exploited in producing robust models. Then, the researcher 

introduces the modelling language (Colored Petri Nets) and the modelling tool (CPN-

Tool).  

3.4   Phase 3: Conducting the Literature Review 

Based on the research background, the literature review went through three sub phases. 

Sub Phase 1 is related with the research background while Sub Phase 2 is to survey 

workload balancing algorithms. In Sub Phase 3, the researcher narrows down the 

research area and direct it to the multithreaded scheduling algorithms. Finally, in Sub 

Phase 4, the researcher focuses on the work-stealing scheduling algorithm. 

 

3.4.1   Sub Phase 1: Reviewing the Single-Processor Difficulties and Multicore 

Challenges 

The literature review chapter starts by discussing the difficulties faced by the processor 

manufacturers in developing faster single processors within the beginning of the 

twentieth century. The researcher clarified that for the purpose of continuous production 

of highly efficient processors, the processor manufacturers have developed the 

multicore technology with a purpose to try to get out of the single-processor 

predicament. Subsequently, the researcher indicates that, although the multicore 

technology is the savoir to the processor manufacturers, the new technology does not 

provide a perfect solution to the problem. The researcher examined several studies that 

addressed the problem of workload imbalance happening in multicore systems. The 

researcher concluded that the failure to achieve the desired results due to the lack of 

dynamic run-time scheduling algorithms that can balance the workload among the 

cores. 
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3.4.2   Sub Phase 2: Reviewing the Workload Balancing Algorithms 

The research is then directed to workload balancing algorithms. The researcher starts by 

reviewing several classifications of these algorithms. The review includes a brief 

description of each classification which points out on what basis the classifier builds its 

taxonomy, in addition to mentioning the scope and limitation of the classification. 

 

3.4.3   Sub Phase 3: Reviewing the Multithreaded Scheduling Algorithms 

The researcher subsequently narrows the research scope and directs it towards 

multithreaded scheduling algorithms. The researcher reviews the studies on work-

sharing algorithms, the algorithms’ mechanisms, and then discusses the reasons behind 

the success that has been achieved in this type of algorithms during the 80s. Then, the 

researcher clarifies how this success abated when computers become more advanced 

and workload increases. To proceed, the researcher starts identifying the work-stealing 

scheduling algorithm, reviewing its early implementations and the advantages of this 

type of scheduling. Later, the researcher focuses on the defects in the work-sharing and 

how the work-stealing has succeeded in overcoming such defects. Finally, the 

researcher conducted a comparison between the two methods based on the studies in 

this area and concluded that work-sharing is preferred in distributed systems while 

work-steal are achieves better results in shared-memory systems. 

 

3.4.4   Sub Phase 4: Reviewing the Work-Stealing Scheduling Algorithm 

The researcher continues narrowing the scope of the thesis. The researcher reviews the 

major achievements in work-stealing scheduling techniques. In each achievement, the 

researcher tries to survey both the positive and negative aspects. After that, the 

researcher moves to review the most recent achievements in using work-stealing 
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scheduling. Later, the researcher reviews the use of work-stealing in software industry. 

This includes adopting this technique in C, C++, and Java based software. Finally, the 

researcher discusses the drawbacks of work-stealing scheduling. Criticism was directed 

to the indiscriminate way in the selection of the victim core. This drawback has been 

addressed in this study and the researcher proposes a solution for it. Another drawback 

has been discussed which is related to the wasting in time when the thief core fails in 

stealing. This drawback has also been addressed in this thesis. 

 

3.5   Phase 4: Identifying Research Problem and Objectives 

Based on the research background and the literature review, in the next step, the 

researcher determines the research problem and the objectives of the study. Regarding 

the problem statement, the researcher initially defines the main problem; it is the 

problem that this study revolves around. Then, the researcher stated that this main 

problem actually can be divided into four sub problems.  The researcher moved deep in 

explaining each sub problem. After that, the researcher shifted to the objectives of the 

study. Here, the researcher stated in one statement to provide a precise description of the 

actions to be taken in order to solve the research problem. In other words, the researcher 

tries to summarize what is to be done in this study. The researcher then described the 

objectives of the study one by one in a concise manner; in addition, the objectives were 

formulated based on the problem statement. 

 

3.6   Phase 5: Designing the Methodology 

This phase represents the contribution in this thesis. The researcher uses the research 

idea, research background and the literature review in carving the methodology of this 

study. The methodology phase consists of four sub phases. In the first and second sub 

phases, the researcher explains the mechanisms of the LLSs, and HLSs. The third sub 
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phase is directed for explaining the Guards’ mechanisms that control the 

activation/deactivation of the LLSs and HLSs. Finally, the fourth sub phase is about the 

CPN models that the researcher proposed in this thesis. 

 

3.6.1   Sub Phase 1: Designing the Low-Level Schedulers (LLSs) 

This sub phase is dedicated for explaining the proposed LLSs. The research describes 

the mechanisms of these schedulers one by one in detail. This includes the technique of 

partitioning and manipulating the threads.  Starting with Fibonacci series (Section 

4.1.1), the researcher gives an explanation supported with Figure 4.1 that shows the 

proposed Fibonacci thread’s template. Then, the researcher demonstrates the Fibonacci 

LLS mechanism (Figure 4.2) as a flowchart. Following that, an example of threads’ 

partitioning and manipulation (Figure 4.3) for computing Fibonacci (6) is given. 

Then, the researcher moves to the Binary Search problem (Section 4.1.2). The 

researcher reviews the basis of the searching technique, the advantage and disadvantage 

of the technique. Following that, the researcher proposes a thread for the Binary Search 

problem (Figure 4.4). Next, a Binary Search LLS is illustrated as a flowchart which 

shows the mechanism of creating and evaluating the threads (Figure 4.5). Finally, an 

example to a tree of threads that shows the proposed partitioning technique is given 

(Figure 4.6). 

Next, the researcher shifts to another D&C problem; it is the Towers of Hanoi problem 

(Section 4.1.3). The researcher reviews the history of this game. Then, the researcher 

explains how this game can be played, as well as the rules, and the objective of the 

game.  After that, the proposed thread and move structures are explained (Figure 4.8). 

Later, the proposed Towers of Hanoi LLS is given in a flowchart that shows the 

partition of threads in addition to the creation of the game’s moves (Figure 4.9). Lastly, 
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an example for the game is given (Figure 4.10). The example includes the creation of 

the tree of threads beside the creation of the list of moves. 

The Matrix Multiplication problem (Section 4.1.4) comes after the Towers of Hanoi 

problem. First, the researcher briefly surveys the importance of Matrix Multiplication in 

mathematics, and then moves to the proposed thread for this kind of problem (Figure 

4.11). Then, a flowchart is given which shows the mechanism of the Matrix 

Multiplication LLS (Figure 4.12). Following that, a tree of threads’ partitioning for a 

problem of multiplying two matrices is shown in detail (Figure 4.13). Next, the 

researcher provides another version of LLS (Figure 4.15). In this version, leaf-level 

threads are directly computed. Finally, another tree of threads’ partitioning following 

the second version is shown in detail (Figure 4.14). 

 

3.6.2   Sub Phase 2: Designing the High-Level Schedulers (HLSs) 

After explaining the proposed threads and LLSs, the researcher moves to the proposed 

HLSs. In this sub phase, the researcher proposes five strategies that are built on the 

basis of Work-Stealing. The researcher explains the mechanisms of these strategies in 

redistributing the threads. All strategies are designed to move threads from the victim(s) 

core(s) to the thief cores. A set of flowcharts are given to explain the mechanisms of 

these strategies: The InOrderSingleStealing Strategy (IOSSS - Figure 4.16), the 

InOrderMultiStealing Strategy (IOMSS - Figure 4.17), the RichestFirstSingleStealing 

Strategy (RFSSS - Figure 4.18), the RichestFirstMultiStealing Strategy (RFMSS - 

Figure 4.19), the CompleteMultiStealing Strategy (CMSS - Figure 4.20), and the 

PartialMultiStealing Strategy (PMSS - Figure 4.24). 
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3.6.3   Sub Phase 3: Designing the Guards’ Mechanisms 

The researcher describes the Guards’ mechanisms.  The researcher designs two types of 

Guards that control the activation/deactivation of the LLSs and HLSs (Figure 4.27). The 

HLS Guard is activated, that is, locks the HLS when all the modelled cores are busy, 

and it unlocks the HLS when there is at least one idle core, at the same time, there is one 

or more victim core(s). On the other hand, the LLS’s Guard locks the core for further 

processing when the core is considered a victim core; at the same time, there are one or 

more thief cores. 

 

3.6.4   Sub Phase 4: Designing the CPN Models 

In this sub phase, the researcher designs the proposed CPN models. The researcher 

starts by proposing the hierarchical designs of these models. After that, the researcher 

moves to explain the design of each model, starting with Fibonacci model and ending 

with Matrix Multiplication model. The researcher explains the elements of these models 

in detail and describes their functionality. Precisely, the researcher explains how the 

LLSs, HLSs, and the guards’ mechanisms have been applied in these models. The sub 

phase (Section 4.4) is supported with many figures that show the CPN models as taken 

from inside the CPN-Tool: the CPN model for Fibonacci Problem (Figure 4.28, Figure 

4.29, and Figure 4.30, and Figure 4.31), the CPN model for the Binary Search Problem 

(Figure 4.32, Figure 4.33, and Figure 4.34), the CPN model for the Towers of Hanoi 

Problem (Figure 4.35 and Figure 4.36), and finally, the CPN model for the Matrix 

Multiplication Problem (Figure 4.37, Figure 4.38, and Figure 4.39). 

 

3.7   Phase 6: Simulation and Monitoring 

This phase is dedicated for illustrating the results of the simulation and monitoring 

processes. This phase has been conducted as follows: 
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(a) At the beginning, the researcher explains the importance of the CoresLoad place 

(Section 5.1) in registering the sizes of the threads which are used to calculate the 

results. Following that, the researcher gives an example of the CoresLoad values (Table 

5.1) by solving Fibonacci (10) problem three times: first using Eight-Thread 

Partitioning, then, using Four-Thread Partitioning, and finally, Two-Thread Partitioning.  

(b) Then, the researcher gives an explanation to the criteria that is adopted by the thesis 

in the evaluation process. The Average Execution of Concurrent Steps (AES) is 

explained in detail (Section 5.1). 

(c) After that, the researcher re-executes the Fibonacci (10) problem ranging from two 

until ten-core models. In each execution, the AES values (Table 5.2 and Table 5.3) are 

registered and saved inside a text file. Later, the researcher uses these values in drawing 

a histogram (Figure 5.2) that shows the relation between the AES values and the 

number of cores. This scenario is repeated for Fibonacci (13) (Table 5.4 and Figure 5.3) 

and Fibonacci (15) (Table 5.5 and Figure 5.4).  The researcher solves these two 

problems two times; one using the three partition methods, and the second using only 

the two partition method. Finally, the researcher discusses the results.  

(d) The researcher moves to the Binary Search Problems (Section 5.3). First, the 

problem is illustrated, then the researcher gives an example to a Binary Search Problem 

which includes the searching list, indices, and the searching item. After that, as in 

Fibonacci, the researcher solves the Binary Search Problem two times using nine 

models (Table 5.8 and Figure 5.7) and (Table 5.9 and Figure 5.8). The AES values are 

illustrated and histograms are drawn. Following that, the researcher discusses the 

results.  

(e) Next problem is the Towers of Hanoi (Section 5.4). The researcher starts by giving a 

brief explanation on the parameters of this game which are represented by the number 
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of disks and the pillar numbers. Then, the researcher explains also in brief the moves of 

the game. After that, the researcher solves two problems; one for seven disks and the 

other for nine disks. The results, the moves, are shown for the two examples (Table 

5.10, Table 5.11, Table 5.12, and Figure 5.9) (Table 5.13 and Figure 5.10). Finally, a 

detailed discussion to the results is conducted. 

(f) The final problem is the Matrix Multiplication (Section 5.5). As in the previous 

problems, the researcher explains the parameters of multiplying two matrices, the 

dimensions of the matrices. Following that, two examples are given: the first one is 

multiplying two matrices, each with dimension of 10 × 10 (Table 5.14), and the second 

is multiplying two matrices, each with the dimension of 20 × 20 (Table 5.15). The AES 

values are computed and listed inside the tables based on which the histograms are 

sketched (Table 5.16 and Figure 5.11) and (Table 5.17 and Figure 5.12). Finally, the 

researcher analyses the results. 

 

3.8   Summary 

This chapter describes the approach adopted by the researcher in conducting this study. 

The researcher conducted this research through six phases to highlight the main features 

of the study.  This includes the purpose of each phase in this study and its relation with 

other phases. Some of these phases include sub phases, in such case, the researcher 

explains the purpose of each of these sub phases and its relation with other sub phases 

within the same phase. In conclusion, this chapter gives a general overview of the 

methodology adopted by the researcher in carrying out this study. 

Starting with the first phase, Building the Research Idea, this phase represents the 

starting point of this research. It gives a clear image on how the idea originated in the 

researcher’s imagination. Then, in phase two, Studying of Research Background, the 

researcher explains the research background that has been established. The Literature 
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Review Phase comes next, the researcher shows how the literature review has been 

conducted in four sub phases. The first sub phase reviews the main problem, i.e. 

reviewing the existing research works involving the limitations of single-processors. 

Gradually moving to the second sub phase, the researcher narrows down the research 

area and focuses on the algorithms that partition the workload. The researcher continues 

in the next sub phases in narrowing down the search area through focusing on the 

multithreaded scheduling algorithms. Finally, the researcher settled down on existing 

studies covering work-stealing algorithms. These four sub phases assist the researcher in 

finding the gaps and issues in the other studies. This finding represents the keystone to 

formulate the problem statement and the objectives of this study in the next phase. 

Then, based on the above, the researcher proposes the design methodology through four 

sub phases. These sub phases clearly show the mechanisms of the low-level scheduler, 

the high-level scheduler, and the guards. Next, the last sub phase is dedicated for 

modelling the problem using Colored Petri Nets. The final phase is dedicated for 

conducting the simulation and monitoring processes. In this phase, the researcher gives 

examples of the problems that have been solved in this study and how the results have 

been collected in tables and sketched in histograms. 
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CHAPTER 4: DESIGN OF CONCURRENT MULTITHREADED MODELS FOR 

DIVIDE AND CONQUER PROBLEMS  

 

In this thesis, the researcher focuses on solving D&C problems, namely, Fibonacci 

Series, Towers of Hanoi, Binary Search, and Matrix Multiplication on a modeled 

multicore environment. For this purpose, the researcher proposes two types of 

schedulers: The Low-Level Schedulers (LLSs) and the High-Level Schedulers (HLSs). 

The LLSs include workload partitioning and manipulating mechanisms while the HLSs 

include work-stealing mechanisms. The LLSs are responsible for dividing the main 

D&C problem (main thread) into smaller sub problems and then solve these sub 

problems towards reaching the final solution of the main D&C problem. On the other 

hand, the HLSs are in charge of balancing the workload (threads) among the modeled 

cores. The mechanisms of LLSs are presented in Section 4.1 while the mechanisms of 

HLSs are presented in Section 4.2. In Section 4.3, the researcher illustrates guards’ 

mechanisms which control the activation of the LLSs and HLSs. Section 4.4 is 

dedicated for presenting the proposed CPN models, and finally, Section 4.5 is allocated 

for chapter summary. 

 4.1   The Low-Level Schedulers (LLSs)  

In this section, the researcher proposes several workload partitioning and manipulating 

mechanisms that suit D&C problems. In general, any D&C problem is represented by a 

main thread and the duty of these schedulers is to partition the main thread into sub 

threads and manipulate them to get the results.  The scheduler creates a tree of threads, 

the tree can be binary, or non-binary, it depends on the technique of partitioning. In this 

study, a thread is modeled as an n-tuple of parameters that represents the D&C 

problem’s specification. The number and the type of the parameters depend on the type 
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of the D&C problem itself. Different problems have different specifications; therefore 

they have different numbers and types of parameters. The importance of the threads 

comes from the fact that the division and the balancing operations are actually done on 

the thread’s parameters not on the data. For this reason, it becomes crucial to decide the 

number of the parameters and the type of each parameter in the threads prior to any kind 

of processing.  Finally, regardless of the type of D&C problem, every modeled thread is 

represented as a tuple that includes at least two distinguished parameters: the ThreadId 

parameter stands for thread’s number and the FatherId stands for parent thread’s 

number. Both these parameters are denoted as a positive integer number (Figure 4.1). 

The division process creates a tree of threads as shown in Figure 4.3. Starting with the 

main (root) thread, this root thread has ThreadId with value 1 and FatherId with value 0. 

On the other hand, the values of the ThreadId and FatherId in the ancestors’ threads in 

the tree of threads are computed according to the division mechanism of the D&C 

problem. This is because the threads’ tree is not always a binary tree as in Figure 4.3, 

the tree shape depends on the D&C problem’s LLS. 

4.1.1   The Fibonacci Low-Level Scheduler (FLLS) 

Fibonacci series is an example of D&C problems (Cormen, et al., 2009; Miller & 

Vandome, 2010). The series is given as: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 

377, 610, etc. The first two terms are 0 and 1, the other terms can be calculated as: Tn = 

Tn-1 + Tn-2 , where n ≥ 2 and Tn is the n
th

 term. The proposed Fibonacci thread (Figure 

4.1) is modeled as a 3-tuple: (ThreadId, FatherId, N), where the first two parameters 

represent the thread’s number and the parent thread’s number. The third parameter, N, 

holds the value “n”, as Fibonacci (n) = Fibonacci (n-1) + Fibonacci (n-2). 
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TId, TFId  , N 

ThreadId

ThreadFatherId Parameter N

 

Figure 4.1: The Fibonacci thread where TId and TFId stand for ThreadId and FatherId 

respectively. The parameter N holds the value “n” as in  

Fibonacci (n) = Fibonacci (n-1) + Fibonacci (n-2). 

 

The proposed workload partitioning mechanism (FLLS) is illustrated in Figure 4.2. The 

FLLS receives as input two parameters; a list of threads (LT) and the current result 

“Res”. The “Res” works as a global variable that can be updated by the FLLS. Initially, 

a new thread is extracted from the LT; then depending on the value of the parameter N, 

one of the following states is executed: 

(a) State a:  If the thread’s Parameter N is less than two, then Res is directly computed 

as: 

Res  Res + 0  0  Fibonacci (0)  Parameter N is 0 

Res  Res + 1  1  Fibonacci (1)  Parameter N is 1 

 (b) State b:  If the Parameter N is less than or equals three, then the FLLS can create 

only two children threads at once and then connect those threads with the LT. The tree 

of threads is binary, i.e. a node in the tree can hold only two children threads. Therefore, 

in the case where N is equal to two, this leads to: Fibonacci (2)  Fibonacci (1) + 

Fibonacci (0), while in the case where N is equal to three, this leads to: Fibonacci (3)  

Fibonacci (2) + Fibonacci (1). In both cases, two threads can be created at the same 

time; however, a value of N exceeding three can generate more than two threads as in 

the next state. 
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(c) State c:  If the Parameter N is less than or equals five, then four children threads can 

be created by the FLLS and then connected them with the LT. The Fibonacci equation is 

computed as follows: 

The original Fibonacci equation is given as: 

 

Fibonacci (n)  Fibonacci (n-1) + Fibonacci (n-2)       Equation 1 

 

Since the FLLS is able to create four children threads, then there is a need to divide each 

child thread in the right hand side of Equation 1 into two children threads. Therefore we 

get: 

Fibonacci (n-1)  Fibonacci (n-1-1) + Fibonacci (n-2-1) 

Fibonacci (n-2)  Fibonacci (n-2-1) + Fibonacci (n-2-2) 

 

After substituting Fibonacci (n-1) and Fibonacci (n-2) in Equation 1, we get: 

 

Fibonacci (n)  Fibonacci (n-2) + Fibonacci (n-3) + Fibonacci (n-3) +  

Fibonacci (n-4)      Equation 2 

 

The last equation is dedicated for values of N equal to four or five, four children threads 

can be created. Values of N less than four are already processed in the previous states 

while values of N above five are going to be processed in the next states, since a value 

of N, say six or above, can create eight children threads at the same time. 

(d) State d: If the Parameter N is above five, then eight children threads can be created 

at the same time by the FLLS and then connected to them with the LT. The computation 

is as follows: 

We already have in Equation 2: 

Fibonacci (n)  Fibonacci (n-2) + Fibonacci (n-3) + Fibonacci (n-3) + Fibonacci (n-4) 

The FLLS extends each term in the right hand side into two children threads, so we get: 

 

Fibonacci (n-2)  Fibonacci (n-3) + Fibonacci (n-4) 

Fibonacci (n-3)  Fibonacci (n-4) + Fibonacci (n-5) 
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Fibonacci (n-4)  Fibonacci (n-5) + Fibonacci (n-6)  

 

Therefore, Fibonacci (n) can be computed as: 

 

 

Fibonacci (n)  Fibonacci (n-3) + Fibonacci (n-4) + Fibonacci (n-4) +  

Fibonacci (n-5) + Fibonacci (n-4) + Fibonacci (n-5) + Fibonacci (n-5) + Fibonacci (n-6) 

Equation 3 

 

The last equation, Equation 3, indicates that for any value of N greater than five, eight 

children can be created at the same time.  

The process is repeated until the LT becomes null. Each core executes its own FLLS on 

its threads. However, all the cores share the same value of Res. The value of the 

ThreadId is computed as 2 
Tree’s Level

, starting with zero as the first level number (main 

thread’s level). On the other hand, the FatherId is computed by dividing ThreadId by 

two. 

Figure 4.3 gives an example to the above mechanism. The figure shows a tree of 

partitioning the thread (1,0,6) which is dedicated for computing Fibonacci (6). In this 

example and according to the FLLS (Figure 4.2), eight children threads (those with bold 

font) are computed directly without passing through their ancestors. In other words, the 

FLLS jumps directly to those children threads. The FLLS can be extended to create 

sixteen children threads at once but in this case the value of N should be greater so it 

can afford creating sixteen threads at the same time. 
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INPUT 

LT , Res

START

  Thread   First Thread in LT

TId Thread.ThreadId

    FId Thread.FatherId

 N Thread.Parameter N
  

N < 2

LT = Nill

STOP

OUTPUT 

Res 

Yes

No

Yes

No

 LT  Remove the first thread from the LT and 

assign the remaining of LT to LT

N = 0

Res  Res + 1

NoYes

N <= 3

N <= 5

A

A

Yes

No

Yes

No

AChild   [((8 * TId) , (8 * TId) div 2  , N -  3)           

BChild   [((8 * TId) + 1,((8 * TId) + 1) div 2, N - 4)

CChild   [((8 * TId) + 2,((8 * TId) + 2) div 2, N - 4)

DChild   [((8 * TId) + 3,((8 * TId) + 3) div 2, N - 5)

EChild   [((8 * TId) + 4,((8 * TId) + 4) div 2, N - 4)

FChild   [((8 * TId) + 5,((8 * TId) + 5) div 2, N - 5)

GChild   [((8 * TId) + 6,((8 * TId) + 6) div 2, N - 5)

HChild   [((8 * TId) + 7,((8 * TId) + 7) div 2, N - 6)

LT    LT ^^ AChild ^^ BChild ^^ CChild ^^ DChild^^

EChild ^^ FChild ^^ GChild ^^ HChild

AChild   [((4 * TId) , (4 * TId) div 2  , N -  2)           

BChild   [((4 * TId) + 1,((4 * TId) + 1) div 2, N - 3)

CChild   [((4 * TId) + 2,((4 * TId) + 2) div 2, N - 3)

DChild   [((4 * TId) + 3,((4 * TId) + 3) div 2, N - 4)

LT    LT ^^ AChild ^^ BChild ^^ CChild ^^ DChild

 AChild   [((2 * TId) , TId  , N -  1)           

BChild   [((2 * TId) + 1, TId, N - 2)

LT    LT ^^ AChild ^^ BChild

 

Figure 4.2: The Mechanism of FLLS  
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1,0,6

2,1,5
3,1,4

4,2,4 5,2,3

8,4,3 9,4,2

16,8,2 17,8,1

32,16,1

33,16,0

101

18,9,1

19,9,0

1 0

10,5,2 11,5,1

20,10,1

21,10,0

1 0 1

6,3,3 7,3,2

12,6,2 13,6,1

24,12,1 25,12,0

1 0 1

14,7,1 15,7,0

1 0

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

 

Figure 4.3: A binary tree for computing Fibonacci (6). The root thread is (1,0,6) 

which represents the main thread. The result is the summation of values inside the 

squares which is equal to 8. 

 

4.1.2   The Binary Search Low-Level Scheduler (BSLLS) 

Binary Search (BS) is another example of D&C problems (Cormen, et al., 2009; Miller 

& Vandome, 2010). It is a searching algorithm that is dedicated for finding a certain 

element in an ordered array (list). The algorithm’s technique starts by comparing an 

input value with the element in the middle of the ordered list. If no matching exists then 

the result of comparison determines in which half of the list the process will be 

repeated. In case that the input value is less than the element in the middle; then the 

algorithm is repeated only on the elements that come before the element in the middle 

(left half). Otherwise, the searching will be focused only on the elements that come after 

the element in the middle (right half). The result of the algorithm which is considered as 

an algorithmic function has a running time of O(log n) and it can be applied iteratively 

or recursively. A major downside in this algorithm happens when new elements are 

added to the list. This will enforce to resort the list again prior to any new searching 

(Lea, 2005) (Mitzenmacher, 1998). 
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The BS thread (Figure 4.4) is modeled as 5-tuple:  (ThreadId, FatherId, Element, 

StartIndex, EndIndex).  The Element parameter represents the value that is to search for 

while the StartIndex and EndIndex stand for the starting and ending indices of the array 

or list. 

TId , FId  , Ele , SI , EI

ThreadId 

FatherId

Element to be 

searched for

Starting Index

Ending Index

 

Figure 4.4: The Binary Search thread 

The mechanism of the BSLLS (Figure 4.5) accepts three inputs: First the list of threads 

(LT) which initially holds a single (main) thread. This thread as shown in Figure 4.4 

includes the element to be searched for (Ele) and the start and end indices (SI and EI) 

for the entire array or list. The second input is the list of numbers (LN) where the 

BSLLS is going to search inside it (the LN is kept inside the common area as shown in 

Figure 3.1). In this study, the researcher does not stress on the type of LN whether it is a 

list or an array.  The only thing that matters is that LN can be indexed and this index is 

greater than or equal zero. For simplicity, the researcher averts using negative indices. 

The third input is Delta which holds the difference between the SI and EI in the thread. 

The value of Delta determines the number of threads that are going to be created. 
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INPUT 

LT , LN, Delta

START

LT = Nill OR Found

STOP

OUTPUT 

Found, Loc 

Yes

No

Found  False

Loc  ~1

  Thread   First Thread in LT

TId Thread.ThreadId

    FId Thread.FatherId

 Ele Thread.Element

   SI Thread.StartingIndex

EI  Thread.EndingIndex

SI = EI LN(SI) = Ele Loc  SI
Yes Yes

No

SI + 1 = EI LN(EI) = Ele Loc  EI

 LT  Remove the first thread 

from  the LT and assign the 

remaining to the LT

No

Yes

No

Yes

Mid  (EI – SI + 1) Div 2

LN(Mid) = Ele Loc  Mid

 Ele > 

LN(Mid)
SI  Mid + 1EI  Mid - 1

Yes

No

No Yes

Found  True

X  SI

I  1

X + Delta < EI

Child   [((TId * 2)+I,TId,Ele,X,X + Delta -1)]

LT  Child ^^ LT
 

X  X + Delta

I  I + 1

 

X < EI

Delta  Delta Div 2

 

Child   [(TId * 2,(TId * 2) + I,X,EI)]

A

A

Yes

No

No

Yes

No

Delta = 0 Delta  1

 
No

Yes

B

B

 

Figure 4.5: The Mechanism of BSLLS 
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Initially, the BSLLS initializes two variables: Found and Loc. In case the searching 

process succeeded in finding the element required searching for, then the Boolean 

variable Found and the integer variable Loc are adjusted to carry the values True and 

the element’s location. Otherwise, Found gets False and Loc gets ~1 (the ~ symbol 

stands for minus in SML). Next, as in the FLLS, the BSLLS extracts a thread from the 

LT, takes out the parameters, and then adjusts the LT. After that, the scheduler checks 

whether the thread’s range is equal to one (SI=EI) or two (EI=SI+1). In case there is a 

matching, the Found and Loc variables’ values are adjusted and the searching 

terminates. Otherwise, the middle location is computed and the element in that location 

is tested against the searching element.  

Then the process of threads’ partitioning starts, here, the BSLLS creates a number of 

threads, each thread covers an area with length equal to Delta. The variables X 

(originally starts with SI) and Delta are used to compute the values of SI and EI for each 

thread while the variable I is used to create thread number. Because it is possible to 

repeat the partitioning process on the generated threads several times, it would be 

necessary to reduce the value of Delta. The searching process stops when the searching 

element is found or when no threads remain, which means the searching element is not 

included in LT. As an example to the above BSLSS, Figure 4.6 shows a tree of 

partitioning the thread (1,0,22,1,100000) which is dedicated for searching for the value 

22 in an ordered list that consists of 100000 elements.  The BSLSS partitions the main 

thread into 3334 threads; each is dedicated for searching for a specific range in the list. 

Delta is chosen to be 30 (this value can be increased or decreased as long as it won’t 

exceed the range limits). First searching area is in the range 1-30, second area is in the 

range 31-60,…last one is in the range 99991-100000. 

It is worth noting that the BSLLS tree of threads in Figure 4.6 differs from the FLLS 

tree (Figure 4.3). The former is a non-binary tree while the latter is a binary tree. This is 
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because the BSLLS directly computes the leaf-level threads while the FLLS creates 

intermediate threads especially when dealing with high values of arguments. From the 

concurrency point of view, it is better to create leaf-level threads at once since these 

threads are distributed to all the cores and processed while creating intermediate threads 

may need to create more threads towards reaching leaf-level threads. In other words, it 

would be a waste of time. However, the full creation to the leaf-level threads in the 

BSLLS may also exhaust precious time. Therefore, there is a kind of trade-off between 

the full creation of leaf-level threads and the creation of the intermediate threads.  

1,0,22,1,100000

2,1,22,1,30 3,1,22,31,60 4,1,22,61,90 3333,1,22,99961,99990 3334,1,22,99991,100000……….

 
Figure 4.6: An example of partitioning a BS thread where list consists of 100000 

elements.  

 

4.1.3   The Towers of Hanoi Low-Level Scheduler (THLLS) 

The Towers of Hanoi (TH) game is based on a puzzle that was first published by a 

French mathematician (François Éduoard Anatole Lucas) in 1883(Cormen, et al., 2009). 

The game (Figure 4.7) consists of three pillars and n disks. Initially, two of the pillars 

are empty. The first pillar contains n disks stacked with the largest disk at the bottom. 

Figure 4.7 shows an example of this game. In this example, three disks are located on 

the first pillar. The smallest disk has the number 1 while the largest disk has the number 

3. The objective of this game is to move all the disks one by one from pillar 1 to pillar 3 

under one condition: putting a large disk on top of a small one is not allowed. The 

output of this game is represented by a sequence of moves. Any single move consists of 

three parameters: disk number, source pillar, and destination pillar. The number of steps 

is equal to (2
n
) – 1. 
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Figure 4.7: The Towers of Hanoi game with three disks 

The proposed TH’s thread (Figure 4.8) consists of seven parameters. The third 

parameter (Ord) stands for the move’s Order. The fourth parameter (DNo) represents 

disk’s number while the last three parameters represent source disk number (Sou), 

destination disk number (Des), and through disk number (Thr). In addition, the THLLS 

generates a list of moves (LM). A move (Figure 4.8) is an abbreviated description of a 

TH thread. The move is a 4-tuple: (Ord,DNo,Sou,Des), it has the information of moving 

sequence, disk number and the source and destination pillars. 

TId , FId  , Ord , DNo , Sou , Des ,Thr 

ThreadId

FatherId

Disk Number

Move’s Order 
Source, Destination , Through 

Pillars’ Numbers

Ord , DNo , Sou ,  Des

TH Thread

TH Move

 

Figure 4.8: The Towers of Hanoi: thread and move 

The mechanism of THLLS is given in Figure 4.9. The THLLS receives as input a list of 

threads (LT) and a list of moves (LM). The THLLS mechanism starts by decomposing 

the thread on the top of the LT into its components and then computes the new move. 
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Every new move consists of move’s order (or sequence), the disk number, the pillar 

number that holds the disk, and the destination disk number. The moves are kept inside 

the LM. The AddNewMove routine (located to the left) is dedicated for adding new 

move to the LM. This routine works recursively in adding the moves to the LM. The 

routine uses the Ord parameter in arranging the moves in an ascending order. Following 

that, the THLLS checks the disk number whether it is greater than one; if it is so, the 

THLLS creates two sub threads (left and right) and adds them to the LT. Otherwise, the 

THLLS picks another thread from the LT. The process of computing the left and right 

sub threads (children threads) consists of computing sub threads’ parameters one by 

one. The disk number for both sub threads is equal to the current thread’s disk number 

minus one. However, the order of the left sub thread (left child) differs from its 

corresponding order in the right sub thread. Then, it is the turn of computing the pillars’ 

numbers. Finally, the two sub threads are added to the LT. This process continues until 

the LT becomes Nil. The result of the mechanism is represented by the LM. An 

example to TH thread’s partition is given in Figure 4.10. Threads are included inside 

oval shapes while the moves are included inside rectangle shapes. 

A simple comparison between the binary tree of threads created by the THLLS (Figure 

4.10) and those that belong to FLLS (Figure 4.3) and BSLLS (Figure 4.6) shows clearly 

the inability of the THLLS to create more than two threads at the same time.  This is 

due to the fact that no more than one disk can be moved at the same time. In other 

words, the concurrent side in the Towers of Hanoi game is weak, while in the BSLLS, 

all the cores deal with various sections of the searching area at the same time. The same 

thing can be said regarding FLLS, where every core deals with a branch of the 

Fibonacci tree, at the same time, which ultimately leverages the concurrency level. 
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DNo > 1

Yes

No

Yes

No

INPUT 

LT, LM

START

LT = Nill

STOP

OUTPUT 

LM

  Thread   First Thread in LT

TId Thread.ThreadId

    FId Thread.FatherId

  Ord  Thread.Order

    DNo  Thread.DiskNo

 Sou  Thread.SourcePillar

Dest  Thread.DestinationPillar

Thro  Thread.ThroughPillar

 LT  Remove the first thread 

from  the LT and assign the 

remaining of LT to LT

LeftOrd  Ord – 2 
(DNo - 2)

LeftDNo  DNo – 1

LeftSou  Sou

LeftDest  Thro

LeftThro  Dest

LeftChild   [(TN * 2,TN,LeftOrd,LeftDNo,LeftSou,,LeftDestLeftThro)]

RightOrd  Ord + 2 
(DNo - 2)

RightDNo  DNo – 1

RightSou  Thro

RightDest  Dest

RightThro  Sou

RightChild [((TN*2)+1,TN,RightOrd,RightDNo,RightSou,RightDest,RightThro)]

LT  LeftChild ^^ RightChild ^^ LT

LM  AddNewMove 

(LM,NewMove)

No

AddNewMove (LM,NewMove)

RETURN

LM^^NewMove

Yes

Size (LM) = 0 

Size (LM) = 1

AND

X.Ord > NewMove.Ord 

X  Point to the head move  of LM

RETURN

NewMove^^X

Y  Point to the move next to the 

the one pointed by X in LM

Split the LM into two sub lists

LeftList  From head move pointed by X till the move 

that comes before the move pointed by Y

RightList  From the move pointed by Y to the end of 

LM

RETURN

LeftList^^AddNewMove (Y,NewMove)

No

Yes

 NewMove  (Ord,Dno,Sou,Dest)

 

Figure 4.9: The Mechanism of THLLS 
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1 , 0  , 0 , 3 , 1 , 3 , 20 , 3 , 1 , 3

2 , 1 , -2 , 2 , 1 , 2 , 3-2 , 2 , 1 , 2 3 , 1 , 2 , 2 , 2 , 3 , 12 , 2 , 2 , 3

4 , 2 , -3 , 1 , 1 , 3 , 2-3 , 1 , 1 , 3 5 , 2 , -1 , 1 , 3 , 2 , 1-1 , 1 , 3 , 2
7 , 3 , 3 , 1 , 1 , 3 , 23 , 1 , 1 , 3

6 , 3 , 1 , 1 , 2 , 1 , 31 , 1 , 2 , 1

-3 , 1 , 1 , 3 -2 , 2 , 1 , 2 -1 , 1 , 3 , 2 0 , 3 , 1 , 3 1 , 1 , 2 , 1 2 , 2 , 2 , 3 3 , 1 , 1 , 3Resulted Game’s Moves:

 

 

Figure 4.10: An example of partition a TH thread where the main thread (1,0,0,3,1,3,2) 

indicates that there are three disks.  

 

4.1.4   The Matrix Multiplication Low-Level Scheduler (MMLLS) 

Matrix Multiplication (MM) is one of the D&C problems that plays a main role in many 

scientific applications. It represents a keystone in a numerous number of problems such 

as transitive closure and reduction, solving linear systems of equations, matrix 

inversion, etc. The MMLLS schedules threads creation, partition, and managing to 

multiply two matrices. The MMLLS dynamically divides threads till reaching leaf-level 

threads (a leaf-level thread holds a row number of the first matrix and a column number 

of the second matrix).  The researcher has modeled the thread (Figure 4.11) as a 7-tuple: 

(ThreadId, FatherId, StartRow, EndRow, N, StartColumn, EndColumn). In 

mathematics, multiplying two matrices, Am,n × Bn,p generates a new matrix Cm,p, where 

m, n, p > 0. The parameter N stands for both the first matrix (A) column number and the 

second matrix (B) row number. The StartRow and EndRow parameters carry the 

starting and the ending numbers of the rows that belong to the first matrix (A). These 

two numbers are reduced through the process of division till they match. The resulting 

match number represents the required row number. The same thing can be said for 
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StartColumn and EndColumn. They carry the starting and ending column numbers in 

the second matrix (B). 

ThreadId 

FatherId

Starting row number 

and ending row 

number of the first 

matrix
Starting column number and 

ending column number of 

the second matrix

The number of elements 

in the first matrix column

TId , FId , SR, ER , N, SC, EC
 

       Figure 4.11: The Matrix Multiplication thread 

The mechanism of the MMLLS is illustrated in Figure 4.12. The essence of the 

mechanism is in computing the values of the parameters: StartRow, EndRow, 

StartColumn, and EndColumn. The scheduler receives a list of threads and it (scheduler) 

continuously partitions these threads till reaching the level where a matching happens 

between the (StartRow ,EndRow) and (StartColumn,EndColumn). To explain the 

MMLLS in more detail, we can distinguish seven different statuses in calculating the 

above parameters. 

(a) In Status 1, when both the StartRow and EndRow are matched, at the same time, 

StartColumn and EndColumn are matched also; here we have a leaf-level thread. The 

multiplier routine is called to compute multiplying a row numbered SR from the first 

matrix (MatA) by a column numbered SC from the second matrix (MatB). The 

parameter N stands for the number of elements in the SR row as well as for the SC 

column. The results of multiplication are assigned to the third matrix (MatC). 

(b) Status 2 is reserved for threads that come one step before the leaf-level threads. 

Here, both the StartRow and EndRow are matched, at the same time, EndColumn 
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exceeds StartColumn by one. The result is in generating two leaf-level threads, the first 

for multiplying row StartRow from the first matrix by column StartColumn from the 

second matrix. The second leaf-level thread is for multiplying row StartRow from the 

first matrix by column EndColumn from the second matrix. 

(c) Status 3 is activated when both the StartRow and EndRow are matched, at the same 

time; StartColumn and EndColumn are not matched. However, EndColumn exceeds 

StartColumn by more than one. Here, the MMLLS divides the threads into two sets. The 

first set deals with threads that use row number StartRow from the first matrix with first 

half of the columns between StartColumn and EndColumn from the second matrix. The 

second set of threads uses the same row number, EndRow, from the first matrix with the 

second half of columns between StartColumn and EndColumn from the second matrix. 

 (d) All the mentioned statuses are dedicated for managing threads that have a matching 

in the row’s parameters of the first matrix while statuses 4 and 5 are customized for 

threads that have mismatching in the row’s parameters of the first matrix. In these 

statuses, the MMLSS mechanism divides the rows in the first matrix. When EndRow 

exceeds StartRow by one, Status 4 is called. Two normal threads are sent to the list; the 

first thread deals with row number StartRow from the first matrix with a set of columns 

(StartColumn, EndColumn) from the second matrix while the second thread deals with 

EndRow from the first matrix with the same set of columns from the second matrix. 

Status 5 manages the threads that have more than one value between StartRow and 

EndRow. The MMLSS mechanism divides the set of rows into two divisions. The 

((EndRow – StartRow) / 2 + StartRow) has been taken as the point of threads’ division. 

An example to MM threads’ partitioning is given in Figure 4.13. The main thread 

contains the dimensions of the matrices: A3,4× B4,4. The resulting leaf-level threads are 

surrounded by bold borders. These threads are taken by the multiplier (Figure 4.12) to 

compute the values of the matrix C3,4. 
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START

Thread  First Thread in LT

 LT  Remove the first thread from the list 

LT and assign the remaining list to LT

  Thread    First Thread in LT ,  TId   Thread.ThreadId

    FId  Thread.FatherId,  SR  Thread.StartRow, 

ER  Thread.EndRow, N  Thread.N ,

SC  Thread.StartColumn , EC   Thread.EndColumn

(SR=ER) and 

(SC=EC)

Yes

(SR=ER) and 

(SC+1=EC)

No

Status 2: 

LT  (TId*2,TId,SR,ER,N,SC,SC) ^^

 ((TId*2)+1,TId,SR,ER,N,EC,EC) ^^ LT

(SR = ER) 

and ((SC+1)

 < EC)

Status 3: Calculate New Parameters:

e1 = ((EC - SC) / 2) + SC  ,  e2 = e1 + 1

LT (TId*2,TId,SR,SR,N,SC,e1) ^^ 

  ((TId*2)+1,TId,ER,ER,N,e2,EC) ^^ LT

No

Yes

(SR + 1 = ER) 

Status 4: 

LT (TId*2,TId,SR,SR,N,SC,EC) ^^ 

((TId*2)+1,TId,ER,ER,N,SC,EC) ^^ LT

Status 5: Calculate New Parameters:

 e1 = ((ER - SR) / 2) + SR  ,   e2 = e1 + 1

LT (TId*2,TId,SR,e1,N,SC,EC) ^^

 ((TId*2)+1,TId,e2,ER,N,SC,EC) ^^ LT

Yes

Yes

No

No

LT,MatA,MatB,

MatC

LT = Nil
Yes

No

LT,MatC

STOP

Status 1: 

Multiplier (MatA,MatB,MatC,SR,N,SC)

START

MatA,MatB,MatC, 

SR,N,SC

I 1

Sum 0

I <= N

Sum  Sum + MatA (SR,I) 

* MatB (I,SC) 

I  I + 1 

MatC (SR,SC)  Sum

No

Yes

The Mechanism of 

Multiplier

STOP

 

Figure 4.12: The Mechanism of MMLLS 
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 1, 0, 1, 3, 4, 1, 4

 2, 1, 1, 1, 4, 1, 4  3, 1, 2, 3, 4, 1, 4

 4, 2, 1, 1, 4, 1, 2  5, 2, 1, 1, 4, 3, 4

 8, 4, 1, 1, 4, 1, 1  9, 4, 1, 1, 4, 2, 2  10, 5, 1, 1, 4, 3, 3  11, 5, 1, 1, 4, 4, 4

 6, 3, 2, 2, 4, 1, 4

 7, 3, 3, 3, 4, 1, 4

 12, 6, 2, 2, 4, 1, 2

 13, 6, 2, 2, 4, 3, 4

 24, 12, 2, 2, 4, 1, 1  25, 12, 2, 2, 4, 2, 2

 26, 13, 2, 2, 4, 3, 3  27, 13, 2, 2, 4, 4, 4

 14, 7, 3, 3, 4, 1, 2  15, 7, 3, 3, 4, 3, 4

 30, 15, 3, 3, 4, 3, 3  31, 15, 3, 3, 4, 4, 4

 28, 14, 3, 3, 4, 1, 1  29, 14, 3, 3, 4, 2, 2

 

Figure 4.13: An example of partitioning a Matrix Multiplication thread where the main 

thread indicates A3,4× B4,4, and leaf-level threads are surrounded with bold borders 

 

  

The ultimate goal of the MMLLS is to create a set of leaf-level threads (Figure 4.13) in 

order to permit the Multiplier (Figure 4.12) to compute the new matrix. However, it is 

possible to get rid the intermediate threads through creating the leaf-level threads 

directly from the main thread. In other words, it is possible to improve the MMLLS in a 

way similar to the BSLLS where leaf-level threads are generated directly from the main 

thread. The Direct Matrix Multiplication Low-Level Scheduler (DMMLLS) may be 

inconsistent with principle of D&C; nevertheless, it provides a fast decomposition to the 

workload. Figure 4.14 gives an example to the DMMLLS, while Figure 4.15 illustrates 

the mechanism of this scheduler. The x, y variables represent counters which generate 

the row and column numbers. Therefore, in DMMLLS, leaf-level threads are directly 

generated and joined to the LT. 
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 1, 0, 1, 3, 4, 1, 4 2, 1, 1, 1, 4, 1, 1

 

3, 1, 1, 1, 4, 2, 2

 

4, 1, 1, 1, 4, 3, 3

 

5, 1, 1, 1, 4, 4, 4  6, 1, 2, 2, 4, 1, 1

 

7, 1, 2, 2, 4, 2, 2

 

8, 1, 2, 2, 4, 3, 3

 

9, 1, 2, 2, 4, 4, 4

 

10, 1, 3, 3, 4, 1, 1

 

11, 1, 3, 3, 4, 2, 2

 

12, 1, 3, 3, 4, 3, 3

 13, 1, 3, 3, 4, 4, 4

 

Figure 4.14: An example of partitioning a Matrix Multiplication thread where the 

leaf-level threads are computed directly 

 

START

Thread  First Thread in LT

 LT  Remove the first thread from the list 

LT and assign the remaining list to LT

  Thread    First Thread in LT ,  TId   Thread.ThreadId

    FId  Thread.FatherId,  SR  Thread.StartRow, 

ER  Thread.EndRow, N  Thread.N ,

SC  Thread.StartColumn , EC   Thread.EndColumn

(SR=ER) and 

(SC=EC)

Yes

No

LT,MatA,MatB,

MatC

LT = Nil
Yes

No

LT,MatC

STOP

Multiplier (MatA,MatB,MatC,SR,N,SC)

Id   2, x 1 , y 1

x > ER

y > EC

 

LT  LT ^^ [(Id,1,x,x,N,y,y)]

 

 y 1 , x  x + 1

 

 Id  Id + 1, y  y + 1

Yes

Yes

No

No

 Figure 4.15: The Mechanism of DMMLLS 
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4.2   The High-Level Schedulers (HLSs) 

The function of the HLS is to balance the workload among the modelled cores. By 

workload, we mean the threads (created by LLSs) that are scattered in the cores. 

Although, the HLS has no rule in creating and manipulating these threads, its main 

purpose is to reallocate these threads to achieve a better performance. In other words, 

the HLS aims to make these cores busy as much as possible by moving threads from the 

non-idle (busy or victim) cores to the idle (thief) cores. In this study, the researcher 

didn’t allow the cores to act alone in stealing the threads from other cores. It is the 

HLS’s responsibility in reallocating the threads.  For this purpose, the researcher 

develops several strategies (mechanisms) that control the redistribution process. The 

strategies are:  

(a) The InOrderSingleStealing Strategy (IOSSS)  

(b) The InOrderMultiStealing Strategy (IOMSS)  

(c) The RichestFirstSingleStealing Strategy (RFSSS)  

(d) The RichestFirstMultiStealing Strategy (RFMSS)  

(e) The CompleteMultiStealing Strategy (CMSS)  

(f) The PartialMultiStealing Strategy (PMSS) 

 

Two important variables are common to all the strategies: MainList and NumOfCores. 

The variable MainList represents a list of sub lists of threads where each sub list is 

dedicated for a core. That is, MainList (1) is the list of threads that belongs to core No. 

1, etc; therefore, MainList is a list of sub lists of threads. The other variable is 

NumOfCores which stands for the number of cores. 
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4.2.1   The InOrderSingleStealing Strategy (IOSSS)  

This is the simplest strategy. The strategy (Figure 4.16) works as a function that accepts 

as input two variables (MainList and NumOfCores), reallocates the threads, and 

produces the updated MainList. The mechanism of the strategy includes the following 

steps: 

(a) Finding the set of thief cores’ numbers. This process is done for only once, it returns 

a list of integer numbers that represent the set of thief cores’ numbers. The function 

GetThievesCoresSequences is in charge of this process and the resulted list is given the 

name ThievesCoresSeq. The function simply checks the number of threads in each core. 

If a core is out of threads, the function assigns the core’s sequence to the list. Cores with 

one or more threads are not included in the list. 

(b) Finding the first encountered victim core, the researcher defines a victim core as any 

core that has more than one thread.  The searching process is carried on from core No. 1 

to core No. NumOfCores. Although, one victim core may be enough to satisfy all the 

thief cores, however, this process may be repeated when there is a need for an additional 

victim core. The function InOGetVictimSeq searches for the first victim core and stores 

its number in VicSeq. The function InOGetVictimSeq uses the variable CorSeq to index 

the cores. A simple loop is used to investigate the size of each core through MainList 

(CoreSeq). A value zero of VicSeq means there is no more victim cores. In other words, 

all the cores have zero or one thread.  

(c) The redistribution process. The InOrderSingleStealing function pulls a thread from 

the victim core and assigns it to the variable Thread. Then, the function redistributes 

this thread to one of the thief cores, one thread for each thief core. 

(d) In case some of the thief cores are still idle, at the same time, there is a chance to get 

another victim core then, steps (b), and (c) are repeated and so on.  
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(e) The mechanism stops when all the thief cores become non-idle or there are no more 

victim cores. 

INPUT 

MainList , NumOfCores

ThievesCoresSeq  GetThievesCoresSequences

 (MainList, NumOfCores)

START

STOP

ThievesCoresSeq = NIL

OUTPUT 

MainList 

Yes

No

CoreSeq  1

ThiefCoresSeq  NIL

CoreSeq  > 

NumOfCores

Len   Size (MainList (CoreSeq))

Len  = 0 

ThiefCoresSeq  ThiefCoresSeq ^^ CoreSeq

CoreSeq  CoreSeq + 1
RETURN

ThiefCoresSeq 

Yes

No

Yes

No

GetThievesCoresSequences

 (MainList, NumOfCores)

Yes

VicSeq  InOGetVictimSeq (MainList, 

NumOfCores) 

VicSeq = 0

Thread  Copy the first thread from the list 

MainList (VicSeq)

 Remove the first thread from the list 

MainList (VicSeq)

MainList (ThiefSeq )  Thread ^^

 MainList (ThiefSeq ) 

ThiefSeq  Copy the first number from the list 

ThievesCoresSeq

Remove the first number from the list 

ThievesCoresSeq 

Size (MainList (VicSeq)) > 1

AND
ThievesCoresSeq ≠ NIL

No

No

Yes

Len   Size (MainList (CoreSeq))

CoreSeq  CoreSeq + 1

Yes

No

Yes

No

CoreSeq  1

CoreSeq  > 

NumOfCores

Len  > 1 

RETURN

CoreSeq

CoreSeq   0

 InOGetVictimSeq (MainList, 

NumOfCores) 

Note: The rectangles with double sided bares represent 

functions calls. These two functions: 

GetThievesCoresSequences and InOGetVictimSeq are 

illustrated to the right. The two symbols ^^ are used to 

concatenate a thread with the list of threads.

 

 

 Figure 4.16: The InOrderSingleStealing Strategy (IOSSS) located at the left.  
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4.2.2   The InOrderMultiStealing Strategy (IOMSS)  

The IOMSS shares the IOSSS way in finding the victim core and thief cores. However, 

there are two differences between the two mentioned strategies. First, in the IOMSS, 

more than one thread can be assigned to the thief cores whereas in the IOSSS only a 

single thread can be assigned to the thief cores. Second, the IOMSS offers a way to 

balance the threads between the victim core and the thief cores. In other words, the 

IOMSS provides a more equitable way of threads distribution. 

 

In mathematics, we can balance the values of any N different variables as follows:            

Let V = (X1, X2, X3, X4 … Xn) be a set of non-negative integer numbers (Xi ≥ 0). To 

balance the values in these variables, we need to calculate the following (Strang, 2011): 

Let Sum =   

Let C = Sum + K, where K is a constant (K ≥ 0). The value of C represents the smallest 

value such that:  C mod N = 0 

Let H = (C / N) 

Now, the new value of the first (N – K) variables is H, while the value of the rest is H-1. 

 

Example: Let V = (1, 3, 2, 0, 7, 9, 1, 4).  

We have N=8, Sum =    Sum = 27 

Now, the smallest value of C that achieves (C mod N = 0) is 32.  

Since C = Sum + K  K = 32 – 27  K = 5  ,  H = (32 / 8)  H = 4 

Now, the first 3 variables will have the value 4, that is X1=4, X2=4, X3=4, while the rest 

of the variables will have the value 3, that is: X4=3, X5=3, X6=3, X7=3, X8=3. 
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The IOMSS (Figure 4.17) works as follows: 

(a) As in the IOSSS, the IOMSS creates a list of thief cores’ numbers; then it searches 

for the first encountered victim sequence.  

(b) The strategy evaluates the following variables: 

I- ProcessedCores: It represents the value N, as mentioned above, plus one. The one 

stands for the victim core. In other words, the variable ProcessedCores represents the 

number of thief cores plus the chosen victim core. 

II- Initially, the C variable holds the number of threads in the victim core. Then, the 

value of C is increased to achieve the condition (C mod ProcessedCores = 0). 

III- VictimThreads: This variable emulates the variable Sum. It represents the number 

of threads in the victim core. 

(c) The strategy calls the function Redistributor which is responsible for moving the 

threads from the victim core to the thief cores. The function performs the following 

actions:  

I- Dividing the cores (the thief cores and the victim core) into two groups: 

FirstGroup and SecondGroup. The first group includes the victim core and (all or 

part of) the thief cores. The second group includes zero or the thief cores (the rest of 

thief cores). Following that, computing group’s values stand for the number of 

threads that are going to be assigned to each core in the group. The variables 

FirstGroupValue and SecondGroupValue represent the number of threads that are 

going to be assigned to the first and second group respectively. The variable 

FirstGroup gets the value (N-K) while its value FirstGroupValue holds the value H. 
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The other two variables SecondGroup and SecondGroupValue get the values K and 

(H-1) respectively. 

II- Following that, the function Redistributor removes (VictimThreads – 

FirstGroupValue) thread(s), i.e. (Sum – H) threads from the victim core and 

assigning it to the list TempList (a temporary list that combines the separated threads 

from their cores). As a result, the victim core retains its share. In the next step, the 

victim core is excluded from the computation since it did its role in the computations. 

The value of FirstGroup is updated to exclude the victim core. 

III- Next, the strategy starts distributing the threads of the TempList to the first and 

the second groups. The distribution process includes first, fetching the number of 

each thief core one by one from the list ThievesCoresSeq. Second, a number of 

FirstGroupValue of threads are cut from the TempList and assigned to each thief core 

in the first group. The same process is repeated on the second group members who 

receive SecondGroupValue of threads from the TempList. 

(d) Finally, the strategy rechecks the list of the thief cores. If it is still non-empty and 

there is a new candidate victim core, then the strategy is repeated. Otherwise, no more 

action is taken and the strategy stops. 
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ProcessedCores   (Size of ThievesCoresSeq) + 1

C   (Size of MainList (VicSeq))  

VictimThreads   C

C MOD ProcessedCores = 0

C  C + 1 

No

Yes

INPUT 

MainList , NumOfCores

ThievesCoresSeq  GetThievesCoresSequences

 (MainList, NumOfCores)

START

ThievesCoresSeq = NIL

Yes

No

Yes

VicSeq  InOGetVictimSeq (MainList, 

NumOfCores) 

VicSeq = 0

(MainList,ThievesCoresSeq)



Redistributor

(MainList,NumOfCores,ThievesCoresSeq,VicSeq,

C,VictimThreads,ProcessedCores )

STOP

OUTPUT 

MainList 

No

Redistributor

(MainList,NumOfCores,ThievesCoresSeq,VicSeq,

C,VictimThreads,ProcessedCores)

FirstGroup  ProcessedCores – C+ VictimThreads

FirstGroupValue  C  DIV   ProcessedCores

SecondGroup  C – VictimThreads

SecondGroupValue  FirstGroupValue  -  1

 

TempList 

 Copy the first ( VictimThreads – FirstGroupValue) 

Threads from  the list MainList (VicSeq)

 Remove the first ( VictimThreads – FirstGroupValue) 

Threads from  the list MainList (VicSeq)

FirstGroup  FirstGroup  -  1

I  First Number in ThievesCoresSeq

No

No

Yes

Yes

FirstGroup = 0 Or

FirstGroupValue = 0

NewList  Copy the first  FirstGroupValue 

Threads from the list TempList

Remove the first FirstGroupValue Threads from 

the list TempList

MainList (I)  NewList

I  Next Number in ThievesCoresSeq 

FirstGroup  FirstGroup  -  1

 

NewList  Copy the SecondGroupValue 

Threads from the list TempList

Remove the  SecondGroupValue Threads from 

the list TempList

MainList (I)  NewList

I  Next Number in ThievesCoresSeq 

SecondGroup   SecondGroup  -  1

 

SecondGroup = 0 Or

SecondGroupValue = 0

RETURN

(MainList,ThievesCoresSeq)

 

Figure 4.17: The InOrderMultiStealing Strategy (IOMSS) where the InOGetVictimSeq 

and GetThievesCoresSequences functions are already shown in Figure 4.16 
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4.2.3   The RichestFirstSingleStealing Strategy (RFSSS)  

The mechanism of the RFSSS (Figure 4.18) is similar to the IOSSS (Figure 4.16).  

However, it differs in the way of finding the victim core. First, a search is conducted to 

cover all the victim cores.  The chosen core is the one with the highest (richest) number 

of threads. The function RichestFirstGetVictimSeq is in charge of searching for the 

wealthiest core and then returns its number. This function checks all the cores one by 

one. The function returns the value zero if all the cores have one or zero threads; 

otherwise, the function returns the number of core that has highest number of threads. 

The mechanism of this strategy outperforms its counterpart (IOSSS). This is based on 

the probability of having so many threads in the richest core to the extent that it meets 

the needs of all the thief cores. As a result, dealing with richest core instead of picking 

the first encountered victim core will definitely achieve better performance since the 

richest core may satisfy the desire of the thief cores. Or at least, dealing with richest 

core will reduce the number of calling the HLS in rebalancing the workload. On the 

other hand, the process of searching for the richest core takes time. Nevertheless, this 

process will not exceed O(n), where n is the number of cores. 

 

4.2.4   The RichestFirstMultiStealing Strategy (RFMSS)  

This strategy is a combination of the two strategies: RFSSS and IOMSS strategies. The 

way of finding the victim core is adopted from the RFSSS while the way of stealing and 

all its calculations have been taken from IOMSS. The power of this combination relies 

on two factors: First, providing a better way to find the victim core and not to rely on 

the in-order searching manner. Second, stealing more than one thread and let each thief 

core get a fair share of threads. Consequently, combining these two factors creates a 

better way of scheduling. Figure 4.19 shows the mechanism of the RFMSS. 
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INPUT 

MainList , NumOfCores

ThievesCoresSeq  GetThievesCoresSequences

 (MainList, NumOfCores)

START

STOP

ThievesCoresSeq = NIL

OUTPUT 

MainList 

Yes

No

Yes

VicSeq  RichestFirstGetVictimSeq (MainList, 

NumOfCores) 

VicSeq = 0

Thread  Copy the first thread from the list 

MainList (VicSeq)

 Remove the first thread from the list 

MainList (VicSeq)

MainList (ThiefSeq )  MainList (ThiefSeq ) ^^ 

Thread

ThiefSeq  Copy the first number from the list 

ThievesCoresSeq

Remove the first number from the list 

ThievesCoresSeq 

Size (MainList (VicSeq)) > 1

AND
ThievesCoresSeq ≠ NIL

No

No

Yes

Yes

No

Yes

RichestFirstGetVictimSeq (MainList, 

NumOfCores) 

CoreSeq  1 

MaxLen   Size (MainList (CoreSeq))

MaxCore  1

CoreSeq  > 

NumOfCores

Len   Size (MainList (CoreSeq))

Len > MaxLen

AND Len > 1  

MaxLen   Len

MaxCore  CoreSeq

CoreSeq  CoreSeq + 1

No

MaxLen < 2

No

Result   0Result   MaxCore 

RETURN

Result

 

 

 

 

Figure 4.18: The RichestFirstSingleStealing Strategy (RFSSS) where the function 

GetThievesCoresSeq is already illustrated in Figure 4.16  
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ProcessedCores   (Size of ThievesCoresSeq) + 1

C   (Size of MainList (VicSeq))  

VictimThreads   C

C MOD ProcessedCores = 0

C  C + 1 

No

Yes

INPUT 

MainList , NumOfCores

ThievesCoresSeq  GetThievesCoresSequences

 (MainList, NumOfCores)

START

ThievesCoresSeq = NIL

Yes

No

Yes

VicSeq  RichestFirstGetVictimSeq (MainList, 

NumOfCores) 

VicSeq = 0

(MainList,ThievesCoresSeq)



Redistributor 

(MainList,NumOfCores,ThievesCoresSeq,VicSeq,

C,VictimThreads,ProcessedCores )

STOP
OUTPUT 

MainList 

No

 

Figure 4.19: The RichestFirstMultiStealing Strategy (RFMSS) where the Redistributor 

and the RichestFirstGetVictimSeq functions are already illustrated in Figure 4.17 

(IOMSS) and Figure 4.18 (RFSSS) respectively  

 

Univ
ers

ity
 of

 M
ala

ya



86 
 

4.2.5   The CompleteMultiStealing Strategy (CMSS)  

In the previous strategies, only one victim was in the spotlight. However, in the 

multicore environment, several cores may be busy at the same time. This motivates the 

researcher to take advantage of all these victim cores to provide a better way to balance 

threads distribution among the busy and the idle cores. As the name indicates, the 

CMSS deals with all the cores. Here, no victim core is excluded from the computations. 

However, victim cores with single threads will not lose their own threads. They may get 

extra threads but they will not give up their own threads.  

The CMSS (Figure 4.20) calls the following functions: 

(a) The GetVicThie function (Figure 4.20) is in charge of calculating NumOfVictims 

,VictimThreads, and NumOfThieves. This function serially checks the list MainLis. The 

function checks the number of threads in each core. If the core is empty, then the 

variable NumofThieves is increased by one. If the core is non-empty, then the variable 

NumOfVictims is increased by one and this number of threads is accumulated in the 

variable VictimThreads 

(b) The CMSBalancer (Figure 4.21) has the duty of redistributing the threads in all the 

cores. It performs the following actions: 

I- Calculating the values of ProcessedCores, C, VictimThreads, FirstGroup, 

SecondGroup, FirstGroupValue, and SecondGroupValue through the Calculations 

function (Figure 4.21). 

II- Extracting the extra threads from the first and second groups of victim cores 

through GetExtraThreads (Figure 4.22).  

III- Updating the two groups of threads through using UpdateGroups function 

(Figure 4.23). 
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INPUT 

MainList , NumOfCores

(NumOfVictims ,VictimThreads ,NumOfThieves)  

GetVicThie  (MainList , NumOfCores ,NumOfVictims 

,VictimThreads,NumOfThieves )

START

MainList  CMSBalancer

(MainList, NumOfCores,VictimThreads)

STOP

NumOfVictims = 0

OR

NumOfThieves  = 0

OUTPUT 

MainList 

Yes

No

NumOfVictims   0 , NumOfThieves    0

VictimThreads    0
Index  1

Index   > 

NumOfCores

Len  Size of the list MainList (Index)

Len = 0

NumOfThieves   

NumOfThieves  + 1

Index  Index + 1

RETURN

(NumOfVictims, VictimThreads 

,NumOfThieves)

Yes

Yes

No

No

NumOfVictims  NumOfVictims + 1

VictimThreads  VictimThreads + Len

GetVicThie (MainList , NumOfCores 

,NumOfVictims,VictimThreads,

NumOfThieves )

 

Figure 4.20: The CompleteMultiStealing Strategy (CMSS) with its function 

GetVicThie 
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 TempList  NIL

(MainList,TempList)  GetExtraThreads

 (MainList, NumOfCores, TempList, 

FirstGroup, FirstGroupValue, 

SecondGroup, SecondGroupValue)

MainList   UpdateGroups 

(MainList,NumOfCores,TempList,

FirstGroup, FirstGroupValue, 

SecondGroup, SecondGroupValue) 

RETURN

MainList

 (FirstGroup,FirstGroupValue, 

SecondGroup,SecondGroupValue)  

Calculations (NumOfCores, 

VictimThreads)

ProcessedCores   S

C   VictimThreads  

C MOD ProcessedCores = 0

AND

  ( C – VictimThreads ) ≥ 0

C  C + 1 

FirstGroup  ProcessedCores – C+ VictimThreads

FirstGroupValue  C  DIV   ProcessedCores

SecondGroup  C – VictimThreads

SecondGroupValue  FirstGroupValue  -  1

 

RETURN

(FirstGroup , FirstGroupValue , SecondGroup , 

SecondGroupValue)

Calculations (S , VictimThreads)
CMSBalancer

(MainList, NumOfCores,VictimThreads)

 

Figure 4.21: The CMSBalancer function with its sub function Calculations 
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I  1

Temp  MainList(I )

TempLen  Size of Temp

(I <= FirstGroup) AND

 (TempLen > FirstGroupValue)  

(I > FirstGroup) AND

 (TempLen > SecondGroupValue)  

I  > NumOfCores

I  I + 1

RETURN

(MainList,TempList)

CutThreads  Cut (TempLen – GroupValue ) threads 

from the list MainList (I)

TempList  TempList ^^ CuttedThreads

Yes

Yes

No

No

YesNo

GroupValue   FirstGroupValue

GroupValue   SecondGroupValue

GetExtraThreads

 (MainList, NumOfCores, TempList, FirstGroup, 

FirstGroupValue, SecondGroup, 

SecondGroupValue)

 

Figure 4.22: The GetExtraThreads function 
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I  > NumOfCores

RETURN

MainList

VicThi   MainList (I)

VicThiLen  Size of VicThi

I <= FirstGroup 

(MainList, TempList)   UpdateSingleGroup 

(MainList,NumOfCores,TempList,I, 

VicThi,FirstGroup,FirstGroupValue) 

(MainList, TempList)    UpdateSingleGroup 

(MainList,NumOfCores,TempList,I, 

VicThi,SecondGroup,SecondGroupValue) 

I  I + 1

Yes

No

Yes

No

VicThiLen   length of VicThi

VicThiLen < Value 

CutThr   Cut (Value – VicThiLen)

 threads from TempList

MainList (I)  

CutThr ^^MainList (I) 

RETURN

(MainList,TempList)

Yes No

I   1 

 UpdateGroups (MainList,NumOfCores,TempList,

FirstGroup, FirstGroupValue, SecondGroup, 

SecondGroupValue,I)  

UpdateSingleGroup 

(MainList,NumOfCores, 

TempList,I,VicThi,Group,Value)

 

 

Figure 4.23: The UpdateGroups function with its sub function UpdateSingleGroup 
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4.2.6   The PartialMultiStealing Strategy (PMSS)  

The CMSS deals with all the cores; there is no exemption for anyone of them. However, 

taking into account all the busy cores as victim cores may be considered non practical 

when these victim cores have few numbers of threads. It is better to leave the core 

handling its own threads since it is worthless to interrupt the core’s work for a trivial 

number of threads. Therefore, as the name indicates, the PMSS restricts its dealing with 

the victim cores that have a plenty of threads. To achieve this goal, the researcher added 

another parameter named PartialFactor to the strategy. PartialFactor is given the value 

3 which means any victim core having less than 3 threads will not join the set of victim 

cores. The value of the PartialFactor is not fixed, it can be changed.  

The PMSS mechanism (Figure 4.24) works as follows: 

(a) First, the scheduler creates a list called PartialList. This list includes victim cores’ 

numbers (those have PartialFactor threads or more) and thief cores’ numbers. The 

function GetVicThiePartialList (Figure 4.24) is in charge of creating such list, in 

addition to calculating NumOfVictims, NumOfThieves, and VictimThreads.  

(b) Then, the scheduler calls the function PMSBalance which is responsible for 

balancing the threads among those cores in the PartialList. This function performs the 

following actions: 

I- As shown in Figure 4.25, the PMSBalance function first computes the values 

ProcessedCores, C, VictimThreads, FirstGroup, SecondGroup, FirstGroupValue, 

and SecondGroupValue through the Calculations values by calling the function 

Calculations (Figure 4.21). 

II- The function PMSBalance calls PartialGetExtraThreads (Figure 4.25) function 

which is in charge of extracting extra threads from the victim cores. The 
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PartialGetExtraThreads function deals only with those cores in the PartialList. The 

function GetThreads is dedicated to extract threads from each group of cores.  

III- The function PMSSBalance calls PartialUpdateGroups (Figure 4.26) function 

which is in charge of redistributing the threads that have been collected in TempList 

to the thief cores. 

4.2.7   Discussion Threads Distribution Fairness in CMSS and PMSS 

The process of redistribution of threads in both CMSS and PMSS gives a privilege to 

those cores that come in the front in case of CMSS and those cores that occupy the first 

locations in the PartialList in the case of the PMSS.  For the purpose of further 

clarification: Let V1 = (2,6,0,1,8,0,0,2,0,6,0,1,13,15) be a set of fourteen cores’ sizes, 

where each member in this set represents the number of threads in every core. To apply 

PMSS, cores that have single or two threads are excluded assuming that PartialFactor ≥ 

3.  So, V2 = (6,0,8,0,0,0,6,0,13,15) is a set cores’ sizes but only for those cores that have 

zero threads or more than two threads, that is V2 = (X1=6, X2=0, X3=8, X4=0, X5=0, 

X6=0, X7=6, X8=0, X9=13, X10=15). 

We have: N = 10, Sum =    Sum = 48  

C = Sum + K, the smallest value of C that achieves (C mod N = 0) is 50 

  

K = C – Sum    K = 2 , H = (C/N)    H = 5 

The new value of the first (N – K) variables is H, that is, each of the first 8 variables 

will get the value 5 while the last two variables get the value 4, that is, V2 = (5, 5, 5, 5, 

5, 5, 5, 5, 4,4) or V2 = (X1=5, X2=5, X3=5, X4=5, X5=5, X6=5, X7=5, X8=5, X9=4, 

X10=4).  
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There is a notable variation in the values of victims’ threads before and after 

redistribution. For instance, X1 was 6 and then becomes 5 while the value of X9 and X10 

were 13 and 15; both went down to 4. There is no problem with thief cores, each has its 

share. However, there is a state of non-justice among the victim cores. This is why the 

PMSS is biased since the victim cores that come at the beginning of the PatialList 

exceed those come at the end of the list. To generate a non-biased version of the PMSS, 

the processing of the PartialList should be updated. The PartialList in the non-biased 

version (NonBiasedPMSS) is the list of pairs where each pair consists of (core number, 

number of threads). Adding any core to this list depends on the number of threads inside 

this core. Therefore, the wealthy victim cores occupy the first positions in this list. 

Consequently, any redistribution process will depend on the order of cores in this list. 

As a result, the wealthiest cores retain the extra threads. The same thing can be said for 

the CMSS; the distribution process is biased and gives privilege to those cores that 

occupy the first positions. To generate a non-biased version to the CMSS, the 

NonBiasedCMSS works in a similar way to the NonBiasedPMSS in creating a list of 

pairs of cores and their threads’ sizes but this time for all the cores instead of a partial 

number of cores as in NonBiasedPMSS. 

Both NonBiasedCMSS and NonBiasedPMSS can be seen as an extension to the CMSS 

and PMSS respectively. Those non-biased versions provide more justice in threads 

distribution. This may be of importance when the threads sizes are varied. On the other 

hand, having one extra thread in a certain number of cores may not be considered an 

important difference especially when threads sizes are equal and small, in addition to 

the cost of reordering the cores so that each core gets its fair share of threads. Anyway, 

both NonBiasedCMSS and NonBiasedPMSS share many functions that have already 

been described in CMSS and PMSS. Appendix II is dedicated for illustrating the 

mechanisms of  NonBiasedCMSS and NonBiasedPMSS. 
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INPUT 

MainList , NumOfCores

(PartialList ,NumOfVictims ,VictimThreads 

,NumOfThieves)  GetVicThiePartialList   (MainList , 

NumOfCores,PartialList ,NumOfVictims 

,VictimThreads,NumOfThieves,PartialFactor )

START

MainList  PMSBalance 

(MainList, NumOfCores,PartiaList,VictimThreads)

STOP

NumOfVictims = 0

OR

NumOfThieves  = 0

OUTPUT 

MainList 

Yes

No

NumOfVictims   0 , NumOfThieves    0

PartialList   NIL , VictimThreads    0

PartialFactor  3

Index  1

Index   > 

NumOfCores

Len  Size of the list MainList (Index)

Len = 0

NumOfThieves   

NumOfThieves  + 1

Index  Index + 1

RETURN

(PartialList ,NumOfVictims, 

VictimThreads ,NumOfThieves)

Yes

Yes

Yes

No

No

No

PartialList  PartialList ^^ Index

 Len ≥ PartialFactor

NumOfVictims  NumOfVictims + 1

VictimThreads  VictimThreads + Len

GetVicThiePartialList   

(MainList , NumOfCores,PartialList ,NumOfVictims 

,VictimThreads,NumOfThieves,PartialFactor)

 

Figure 4.24: The PartialMultiStealing Strategy (PMSS) with its function 

GetVicThiePartialList 
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 TempList  NIL

(MainList,TempList)  PartialGetExtraThreads

 (MainList, NumOfCores, TempList, 

PartialList,FirstGroup, FirstGroupValue, 

SecondGroup, SecondGroupValue)

MainList   PartialUpdateGroups 

(MainList,NumOfCores,TempList,

PartialList, FirstGroup, FirstGroupValue, 

SecondGroup, SecondGroupValue) 

RETURN

MainList

(FirstGroup,FirstGroupValue, 

SecondGroup,SecondGroupValue)  

Calculations (Size of PartiaList, 

VictimThreads)

PMSBalance (MainList, 

NumOfCores,PartiaList,VictimThreads)

I  1

CNo  PartialList (I)

TempLen  Size of  MainList(CNo )

I  > Size of PartialList

RETURN

(MainList,TempList)

Yes

No

(I <= FirstGroup) AND

 (TempLen > FirstGroupValue)  

(I > FirstGroup) AND

 (TempLen > SecondGroupValue)  

I  I + 1

CutThreads  Cut (TempLen – GroupValue ) threads 

from the list MainList (CNo)

TempList  TempList ^^ CuttedThreads

Yes

Yes

No

No

GroupValue   FirstGroupValue

GroupValue   SecondGroupValue

(MainList,TempList , I) 

 GetThreads  (MainList,TempList , I , 

FirstGroup , TempLen , 

FirstGroupValue , SecondGroupValue , 

CNo , TempLen)

RETURN

(MainList,TempList, I)

 PartialGetExtraThreads (MainList, NumOfCores, 

TempList, PartialList, FirstGroup, FirstGroupValue, 

SecondGroup, SecondGroupValue)

 

GetThreads  (MainList,TempList , I , FirstGroup , 

TempLen , FirstGroupValue , SecondGroupValue , 

CNo , TempLen)

  

Figure 4.25: The PMBalance, PartialGetExtraThreads and GetThreads functions 
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I  > lengrh of PartialList

RETURN

MainList

 CNo    PartialList (I)

VicThi   MainList(CNo)

VicThiLen  Size of VicThi

I <= FirstGroup 

(MainList,TempList)   UpdateSingleGroup 

(MainList,NumOfCores,TempList,CNo, 

VicThi,FirstGroup,FirstGroupValue) 

(MainList,TempList) UpdateSingleGroup 

(MainList,NumOfCores,TempList,CNo, 

VicThi,SecondGroup,SecondGroupValue) 

I  I + 1

Yes

No

Yes

No

I   1 

PartialUpdateGroups (MainList,NumOfCores,TempList,

PartialList, FirstGroup, FirstGroupValue, SecondGroup, 

SecondGroupValue)

 

Figure 4.26: The PartialUpdateGroups function where the UpdateSingleGroup function 

is illustrated in Figure 4.23 

 

4.3   Guards’ Mechanisms 

The LLSs have been designed to manage workload partitioning and manipulation while 

the HLSs are responsible for reallocating the workload among the modeled cores. In 

general, a guard is a kind of lock that prevents the LLS and the HLS from working 

when certain conditions happen. The researcher proposes two kinds of guards, one for 

the LLSs and one for the HLSs. To illustrate the mechanisms of these two guards, the 

researcher proposes three variables: 
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(a) BusyCores: This integer variable holds the number of cores that have one or more 

threads. 

(b) PoorCores: It is also an integer variable, however, it counts the number of cores that 

have less than two threads. 

(c) CoresLoad: It is a list of integer numbers representing cores’ workload (number of 

threads) in each core. 

Figure 4.27 illustrates the mechanisms of the LLS and HLS guards. In the LLS, the 

guard first counts the number of BusyCores and PoorCores. Then, the LLS guard 

enables the LLS to work only if one of the following two conditions is met: First, all the 

cores are busy. Here, the LLS is allowed to partition and manipulate its own threads 

since there is no need to interrupt its work to redistribute the threads among the cores 

because all the cores have work to do. Second, all the cores are poor with threads which 

means every core has zero or one thread. The guard allows the LLS to work if it has a 

thread since it does not make sense to freeze its activity when there is no wealthy core 

to steal from it. On the other hand, the HLS guard is simpler than the LLS guard. The 

HLS guard enables the HLS when the number of BusyCores does not match the number 

of cores which means we have victim(s) and thief(s) cores or when PoorCores does not 

match the number of cores which also means we have victim(s) and thief(s) cores. 
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Count 

(CoresLoad,BusyCores,PoorCores)

S  Size of CoresLoad

I  1

I <= S

CoresLoad (I) > 0 BusyCores  BusyCores + 1

CoresLoad (I) < 2 PoorCores PoorCores + 1

I  I + 1

RETURN

BusyCores , PoorCores 

Yes

Yes

Yes

No

No

No

START 

CoresLoad, LT

BusyCores  0

PoorCores  0

Count 

(CoresLoad,BusyCores,PoorCores)

BusyCores = Size of CoresLoad

AND

Size of LT <> 0

PoorCores= Size of CoresLoad

AND

Size of LT <> 0

Result  True Result  False

RETURN

Result 

Yes

Yes

No

No

START 

CoresLoad, LT

BusyCores  0

PoorCores  0

Count 

(CoresLoad,BusyCores,PoorCores)

BusyCores = Size of CoresLoad

OR

PoorCores= Size of CoresLoad

Result  True Result  False

RETURN

Result 

YesNo

The guard mechanism of 

LLS

The guard 

mechanism of HLS

 

 Figure 4.27: The Guard Mechanism 
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4.4   The CPN models 

In this section, the researcher presents the CPN models that solve the D&C problems on 

a modelled multicore environment. The models apply the LLSs, HLSs, and Guard 

mechanisms that are previously mentioned in this chapter. For every D&C problem, the 

researcher designed nine hierarchical CPN models. They are: two-core, three-core, four-

core, five-core, six-core, seven-core, eight-core, nine-core, and ten-core models. These 

nine models work under one of the HLSs. 

4.4.1   The CPN Models of Fibonacci Series  

The CPN main model for the Fibonacci Series is illustrated in Figure 4.28. This figure 

shows a hierarchical two-core model with three places (ThL1, ThL2, CoresLoad), one 

transition (Distributor), and two substituted transitions (Core1 and Core2). 

 

Figure 4.28: A two-core CPN main model for solving Fibonacci Series problem 

Initially, place ThL1 holds the main thread [(1,0,10)] while place ThL2 is empty ([]). 

Both places are of type LT which is defined as of type (Int*Int*Int) which indicates 

ThreadId, FatherId, and Argument, as explained in Figure 4.1. The main thread 
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indicates that the model intends to calculate Fibonacci (10).  The places ThL1 and ThL2 

exchange threads with transition Distributor through the input parameters (In1, In2) and 

the output parameters (Out1, Out2).  

The CoresLoad place holds a list of integers (the type CL is defined as a list of integers) 

which indicates the current workload of the cores, therefore, initially this list has the 

value [1,0] since there is a single thread in the first core with null threads in the second 

one. The CoresLoad place communicates with transition Distributor through the 

parameters CLIn and CLOut. 

The transition Distributor represents the HLS. The code segment of this transition works 

as follows: it merges the lists of threads from the cores into a single list of lists of 

threads All. Then it calls the InOrderSingleStealing strategy (IOSSS, Figure 4.16) to 

redistributes the threads.  The Partitioning function separates the All list into sub lists, 

and assigns each sub list to a core. In addition, the Partitioning function computes the 

size of threads in each core and saves the results inside place CoresLoad. The transition 

Distributor has a guard called DistGuard which works as the HLS guard as shown in 

Figure 4.28.  

The main model has two substitution transitions: Core1 and Core2. Figure 4.29 

illustrates the contents of Core1 sub model which matches the structure of Core2 except 

in its threads. In addition, in every sub model there is a common place called Result 

which stores the results of the computations. 

The places CoresLoad in the main and sub models represent one common place and it 

has a tag called Fusion. Fused places are a set of places that have the same type and 

data. That is, any change happens to one place is immediately reflected on the other 

fusion places that share the same fusion number. It is like a global variable that can be 

changed from the main program or from inside any sub routine. The purpose behind 
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CoresLoad being fused is to let every core update (through the Update_Size function) 

its own size in the list of cores’ sizes that is stored in the CoresLoad place. 

 

Figure 4.29: A CPN sub model (core model) for solving Fibonacci Series 

As a result, the CoresLoad is dynamically changed by the LLS inside each core and by 

the HLS via the transition Distributor. The same thing can be said for the place Result, it 

is a fused place shared by all the cores (sub models). The Distributor reads the contents 

of the place Result through ResIn, update it and send it back as ResOut. Figure 4.30 and 

Figure 4.31 show the CPN models for the same Fibonacci problem being solved on six 

and ten cores respectively. As can be seen clearly, the CoresLoad place deals with six 

cores in the first model while the same place deals with ten cores in the second model. 

All the nine models are dedicated for InOrderSingleStealing strategy (IOSSS) as shown 

in Figure 4.16.  
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Figure 4.30: A six-core CPN main model for solving Fibonacci Series problem 

 

 

Figure 4.31: A ten-core CPN main model for solving Fibonacci Series problem 

4.4.2   The CPN Models of the Binary Search 

For the Binary Search problem, Figure 4.32 shows a sample of a main model that has 

seven cores. The strategy is InOrderMultiStealing (IOMSS) as shown in Figure 4.17 

and the thread structure has been defined in Figure 4.4. The core’s model (Figure 4.33) 
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has a place called NumList which contains a list of integer numbers. This list as 

explained in the comment at the upper left corner consists of ten thousand integer 

numbers, indexed from 0 to 9999. The search is targeting the number 19997. Figure 

4.34 shows the same sub model but with unfolding the content of place NumList. The 

places Location and Continue are used to store the values Loc and Found values  as 

explained in Figure 4.5. 

 

Figure 4.32: A seven-core CPN main model for solving Binary Search problem 

 

Figure 4.33: A CPN sub model (core model) for solving Binary Search problem 
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Figure 4.34: A CPN sub model (core model) unfolding the list of numbers 

4.4.3   The CPN Models of the Towers of Hanoi 

The main model of the Towers of Hanoi problem is shown in Figure 4.35; it is an eight-

core model that applies the RichestFirstSingleStealing strategy as previously explained 

in Figure 4.18. The threads structure is explained previously in Figure 4.8. The Towers 

of Hanoi sub model is shown in Figure 4.36.  

 

Figure 4.35: A CPN eight-core main model for solving the Towers of Hanoi problem 

Univ
ers

ity
 of

 M
ala

ya



105 
 

 

Figure 4.36: A CPN sub model for the Towers of Hanoi problem 

4.4.4   The CPN Models of the Matrix Multiplication 

A sample of a main model with five cores is given in Figure 4.37. A sub model with 

folded matrices’ places is illustrated in Figure 4.38 while Figure 4.39 shows the same 

sub model with unfolded matrices’ places. 

 

Figure 4.37: A five-core CPN main model for the Matrix Multiplication problem 
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Figure 4.38: A CPN sub model for the problem of Matrix Multiplication with folded 

matrices 

 

 

Figure 4.39: A CPN sub model for the problem of Matrix Multiplication with unfolded 

matrices 

 

4.5   Summary 

This chapter is dedicated for explaining the methodology adopted by the researcher. The 

researcher proposed two types of schedulers: The Low-Level Schedulers (LLSs) and the 

High-Level Schedulers (HLSs). Each of the LLSs is dedicated for solving one of the 
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D&C problems: Fibonacci Series, Towers of Hanoi, Binary Search, and Matrix 

Multiplication. The researcher illustrated the suggested thread, the mechanism of 

partitioning and computing the threads, and an example for a tree of threads for each 

D&C problem. On the other hand, the HLSs represent the mechanisms (strategies) 

suggested by the researcher to redistribute the workload among the cores. The 

researcher suggested six strategies: The InOrderSingleStealing Strategy, the 

InOrderMultiStealing Strategy, the RichestFirstSingleStealing Strategy, the 

RichestFirstMultiStealing Strategy, the CompleteMultiStealing Strategy, and the 

PartialMultiStealing Strategy. In addition, the researcher demonstrated the Guard’s 

Mechanism which is in charge of activating/deactivating both the LLSs and HLSs. 

Finally, this chapter showed the CPN models that include the LLSs, HLSs, and the 

Guards. 
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CHAPTER 5: SIMULATION RESULTS AND DISCUSSION 

 

5.1   Introduction 

Simulation is a representation of a system; it provides a brief but comprehensive way 

for real system substitution.  Another definition of simulation is given by Brown et al. 

who defined simulation as: “Provides opportunities to see effects of one’s action. 

Provides some feedback and may develop some intuitive understanding”  (Peterson, 

1977). In plain English, a simulation is the process of getting information about the 

behavior of a system without running the system in reality  (Jerry, 1984). The 

simulation process helps in the detection of defects (inefficiency), getting reliable 

results, and it certainly saves a great deal of money. In addition, the simulation process 

explores the impacts of adjustment or changing to the system, makes sure all the 

system’s variables are identified, and it inspires creative thinking. Simulation involves 

building a model that represents a system. Actually, both modeling and simulation are 

convergent in meaning. However, modeling is closely related with the abstract 

representation of the system’s reality. Modeling helps in providing formal specification 

of the concept of the system, assumptions, and constraints. However, simulation is more 

related with implementation rather than abstraction. In fact, simulation is about 

implementing the models over time. 

 To put models in practice, these models have to be implemented; therefore, the 

development of computer-based software tools that provide the environment to 

construct and execute these models is a key factor in the success of the modeling and 

simulation processes. The researcher chooses CPN-Tool since this tool is designed to 

construct and execute concurrent models. CPN-Tool provides the facility to edit, 

simulate, monitor, and analyze a concurrent model. A screenshot of the CPN-Tool is 

given in Figure 5.1. 
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Figure 5.1: A screenshot of CPN-Tool 

CPN-Tool provides a GUI environment that enables the designer to interact with the 

design in a simple but effective way. The tool provides menu bars and pull-down menus 

that facilitate this interaction with the designer. The rectangular area on the left of the 

screenshot (Figure 5.1) represents the Index area. This area is a holder for the tool boxes 

that assist the designer to edit, simulate, carry out analysis…etc. The Index area also 

includes the standard declarations and the designer declarations written in SML (Jensen, 

et al., 2007). To the right of the Index area, there is the Workspace area. In this area, the 

designer can edit the CPN models. In addition, the designer can bring tool boxes from 

the Index area and release them such as the Simulation tool box. Besides, in the 

Workspace area, it is possible to call a Pop-up menu as shown in Figure 5.1. There are 

several references (Jensen, et al.; Jensen & Kristensen, 2009) that provide 

comprehensive information regarding CPN-Tool. 

The execution of any CPN model by CPN-Tool consists of two processes that run at the 

same time. The first one is the simulation process which is compulsory to execute any 

Univ
ers

ity
 of

 M
ala

ya



110 
 

model, while the second one, the monitoring process, is optional.  Through the 

simulation process, the Tool executes the SML code of the HLSs, LLSs, and the 

Guards. In other words, the Tool executes the code associated with the transitions in the 

CPN models. This execution results in redistribution of the threads between the places 

of the models. The Tool graphically shows this redistribution, transfers the controls 

between the models’ pages (cores), enables the user to interact with the models, etc.  On 

the other hand, the monitoring process is responsible for extracting specific results 

designated by the user during the simulation process. These results represent the 

contents of the places that are dynamically changed during the simulation process. 

Precisely, the researcher focuses on monitoring the CoresLoad place. This place, as 

defined previously, reflects the current sizes of the threads inside all the cores. The 

monitoring process registers the content of this place in a text file which is used later to 

evaluate the performance of the HLSs. 

 

For instance, Table 5.1 shows the results of solving the CPN model of Fibonacci 

problem on a three-core model using IOSSS for threads distribution. These results 

represent the CoresLoad values for the model which has been executed three times; 

first, using eight-thread partitioning; then using four-thread partitioning; and finally, 

using two-thread partitioning. As noticed in the table, each partitioning method starts 

with a main thread ([1,0,0]) and ends with the last step of execution where all the cores 

have zero threads ([0,0,0]). 
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Table 5.1: The contents of the CoresLoad places for the Fibonacci problem solved 

on three-core CPN model using eight, four, and two-thread partitioning 

 

Eight-Thread 

Partitioning 

 

Eight-Thread 

Partitioning 

Continue 

Four-Thread 

Partitioning 

 

Four-Thread 

Partitioning 

Continue 

Two-Thread 

Partitioning 

 

Two-Thread 

Partitioning 

Continue 

Two-Thread 

Partitioning 

Continue 

[1,0,0] [6,3,2] [1,0,0] [7,3,2] [1,0,0] [2,3,1] [1,2,2] 

[8,0,0] [5,3,2] [4,0,0] [6,3,2] [2,0,0] [2,3,2] [1,1,2] 

[6,1,1] [5,3,1] [2,1,1] [6,6,2] [1,1,0] [2,3,3] [1,1,1] 

[6,8,1] [4,3,1] [2,1,4] [6,7,2] [2,1,0] [2,3,4] [0,1,1] 

[6,11,1] [4,2,1] [2,1,7] [5,7,2] [1,1,1] [2,3,3] [0,1,0] 

[6,11,8] [4,2,0] [2,4,7] [4,7,2] [1,1,2] [2,3,2] [0,2,0] 

[13,11,8] [3,2,1] [2,7,7] [4,6,2] [1,1,3] [2,3,1] [1,1,0] 

[14,11,8] [3,2,0] [5,7,7] [4,5,2] [1,2,3] [3,3,1] [1,2,0] 

[14,11,9] [2,2,1] [8,7,7] [4,5,1] [1,2,4] [3,3,2] [1,1,1] 

[14,11,8] [9,2,1] [9,7,7] [3,5,1] [1,3,4] [4,3,2] [1,1,0] 

[14,10,8] [9,2,8] [8,7,7] [3,5,2] [2,3,4] [4,4,2] [1,0,0] 

[13,10,8] [8,2,8] [7,7,7] [3,5,1] [3,3,4] [4,4,1] [2,0,0] 

[12,10,8] [8,1,8] [6,7,7] [3,4,1] [3,4,4] [4,4,0] [1,1,0] 

[11,10,8] [8,0,8] [5,7,7] [3,4,0] [3,4,5] [3,4,1] [0,1,0] 

[10,10,8] [7,1,8] [4,7,7] [2,4,1] [4,4,5] [3,5,1] [0,2,0] 

[10,10,7] [7,1,7] [7,7,7] [2,4,2] [4,4,6] [3,5,0] [1,1,0] 

[9,10,7] [7,1,6] [7,10,7] [2,4,1] [5,4,6] [2,5,1] [0,1,0] 

[9,10,6] [6,1,6] [7,9,7] [2,4,0] [5,5,6] [1,5,1] [0,0,0] 

[9,9,6] [5,1,6] [7,8,7] [1,4,1] [4,5,6] [2,5,1]  

[9,8,6] [4,1,6] [7,8,8] [1,4,2] [4,5,5] [1,5,1]  

[8,8,6] [3,1,6] [6,8,8] [1,4,1] [3,5,5] [0,5,1]  

[8,8,5] [3,0,6] [6,8,7] [1,4,0] [3,5,4] [1,4,1]  

[7,8,5] [2,1,6] [5,8,7] [1,3,1] [3,5,3] [2,4,1]  

[7,7,5] [2,0,6] [4,8,7] [0,3,1] [2,5,3] [2,4,0]  

[7,8,5] [1,1,6] [4,8,6] [1,2,1] [2,6,3] [1,4,1]  

[7,8,4] [4,1,6] [4,8,5] [1,5,1] [2,7,3] [1,4,0]  

[7,8,3] [4,0,6] [4,7,5] [1,6,1] [2,7,4] [1,3,1]  

[7,7,3] [3,1,6] [4,6,5] [0,6,1] [3,7,4] [1,4,1]  

[7,6,3] [3,0,6] [3,6,5] [1,5,1] [3,8,4] [1,4,0]  

[7,6,2] [2,1,6] [6,6,5] [1,4,1] [3,7,4] [1,3,1]  

[6,6,2] [2,1,5] [6,6,4] [0,4,1] [3,6,4] [0,3,1]  

[6,7,2] [2,1,4] [6,6,3] [1,3,1] [2,6,4] [1,2,1]  

[5,7,2] [2,0,4] [6,6,6] [0,3,1] [2,5,4] [1,2,0]  

[5,6,2] [1,1,4] [6,6,5] [1,2,1] [2,6,4] [1,1,1]  

[5,6,1] [0,1,4] [6,6,4] [1,2,0] [2,5,4] [0,1,1]  

[5,6,0] [1,1,3] [5,6,4] [1,1,1] [2,5,3] [0,1,2]  

[4,6,1] [0,1,3] [5,6,3] [0,1,1] [2,5,2] [1,1,1]  

[4,5,1] [1,1,2] [4,6,3] [0,4,1] [2,4,2] [1,2,1]  

[11,5,1] [0,1,2] [4,6,2] [1,3,1] [2,4,3] [2,2,1]  

[12,5,1] [1,1,1] [4,6,5] [1,3,0] [2,5,3] [2,3,1]  

[11,5,1] [1,1,0] [4,6,4] [1,2,1] [2,6,3] [2,3,0]  

[11,5,8] [0,1,0] [3,6,4] [1,2,0] [1,6,3] [1,3,1]  

[11,4,8] [0,0,0] [3,7,4] [1,1,1] [2,6,3] [0,3,1]  

[10,4,8]  [3,6,4] [0,1,1] [2,6,4] [1,2,1]  

[10,4,7]  [2,6,4] [0,1,0] [3,6,4] [2,2,1]  

[9,4,7]  [3,6,4] [0,0,0] [3,6,3] [3,2,1]  

[9,5,7]  [3,5,4]  [3,5,3] [3,2,0]  

[9,5,6]  [3,6,4]  [3,5,2] [2,2,1]  

[8,5,6]  [3,6,3]  [2,5,2] [2,3,1]  

[8,5,5]  [2,6,3]  [2,4,2] [1,3,1]  

[8,5,4]  [1,6,3]  [2,3,2] [1,3,2]  

[7,5,4]  [1,6,2]  [1,3,2] [2,3,2]  

[6,5,4]  [1,5,2]  [0,3,2] [2,3,1]  

[6,5,3]  [4,5,2]  [1,2,2] [1,3,1]  

[6,4,3]  [7,5,2]  [1,3,2] [1,3,0]  

[6,3,3]  [7,4,2]  [2,3,2] [1,2,1]  
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As shown in Table 5.1, each CoresLoad value (observation) consists of a list with three 

integer numbers which indicate the current numbers of threads in the three cores of the 

model. In all the CPN models, each core has a single transition (LLS), and in addition, 

each model has a HLS transition which employs threads’ distribution. The CPN-Tool 

randomly picks one of the ready transitions and executes it. At the beginning, the tool 

has no choice other than executing the transition in the first core since other cores are 

free of threads. According to the partitioning method, 8, 4, or 2 threads are generated in 

the first core, following, that the IOSSS redistributes the threads among the cores. 

Starting from the next step, the choice of any core is non-deterministic, that is, the re-

execution of the model will generate different sequence of cores’ selection. However, 

when one of the cores becomes out of threads, the HLS redistributes the threads again. 

In this case, the Tool has no choice other than picking the HLS’s transition since cores’ 

transitions are deactivated by their guards. 

In order to compare various results of the simulation and monitoring processes, the 

researcher proposes a new measurement to evaluate the results obtained from execution 

of the models. The Average of Execution Steps (AES) is simply the measurement the 

researcher used to compare between the results of execution of the models. The AES is 

computed as follows: 

AES = Number of Execution Steps / Number of Cores 

In the above equation, the Number of Execution Steps is equal to the number of 

CoresLoad observations starting from the initial state where only a single thread is 

located in one of the cores through the last observation where all the cores have zero 

threads. The best AES is the one with the lowest value. The results are sketched as MS 

Excel graphs (histograms) where the AES along with the number of cores represent the 

two axes of the histograms.  
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In Section 5.2, the researcher presents and discusses the results obtained from 

simulating and monitoring the Fibonacci CPN models. Sections 5.3, 5.4, and 5.5 are 

dedicated for presenting and discussing the execution of the Towers of Hanoi, Binary 

Search, and Matrix Multiplication CPN models respectively. Chapter discussion and 

summary are given in Sections 5.6 and 5.7.  

 

5.2   The Results of Executing the Fibonacci CPN Models 

There are two objectives behind the simulation and the monitoring processes: First, 

computing the results; second, recording the contribution of the threads at the threads’ 

places. The first objective can be achieved through the simulation process while the 

second objective is achieved through the monitoring process. In the case of Fibonacci 

series, computing the results is represented by computing Fibonacci (n) where n ≥ 0. 

The result is computed and sited in the place Result (Figure 4.29). On the other hand, 

checking the contribution of the threads can be done by monitoring the CoresLoad 

place. This place, as defined previously, reflects the sizes of the threads’ places. For 

instance, Table 5.1 shows the result of executing a CPN model designed for computing 

Fibonacci (10) using three cores. The general observation of the table shows that all the 

methods started with a single thread [1,0,0] in the first core and ended with zero threads 

[0,0,0] in all the cores. It is also clear that the eight threads partitioning takes fewer 

steps (least AES). The reason behind this is the ability in one step to generate more 

threads than the other two methods. As a result, the need for threads redistribution (to 

satisfy thief cores) becomes less comparing with the case when using four threads 

partitioning which is in turn less than the two threads partitioning. In the eight threads 

partitioning, the FLLS divides the threads into eight, four, and two threads; otherwise, 

the FLLS computes the thread into zero or one as Fibonacci (0) is zero and Fibonacci(1) 

is one. The same thing can be said for the four threads partitioning except there is no 

Univ
ers

ity
 of

 M
ala

ya



114 
 

chance to divide threads into eight threads. The worst case is in the two threads 

partitioning, here, the victim thread has no choice other than creating two threads which 

are not sufficient to satisfy the hungry thief cores. Therefore, the IOSSS has to repeat 

the division process more times to please the thief cores, which no doubt causes the loss 

of time. It is important to note that the limit of threads that are generated in the three 

ways of partitioning: 2, 4, and 8. In general, since the FLLS generates a binary tree of 

threads, this tree can be extended to create 16 threads or multiples thereof , this is 

possible when the argument n in Fibonacci (n) is large enough. However, doing this will 

increase the time in generating the threads; in other words, the scheduler will waste 

precious time in dividing threads leaving thief cores in an idle situation. Therefore, to 

find an intermediate state, the researcher found that eight threads partitioning is the 

suitable one. Yet, in case if there are several hundreds of cores and there is a large value 

of n, then it will be more convenient to increase the number of divided threads.  

 

The researcher solved the problem of calculating Fibonacci (10). For this purpose, nine 

CPN models have been designed: two-core model, three-core model, and so forth until 

ten-core model. First, the researcher solved the problem using two-thread partitioning. 

The execution of each model consists of ten trials, in each trial; a new AES is calculated 

and recorded with other AESs in a text file. Therefore, for the two-core model, there 

will be ten trials of computing ten AESs, the same thing for three-core model, and so 

forth until ten-core model.  The above has been repeated for four-core and eight-core 

partitioning. Table 5.2 shows the trials of executions of the CPN models designed for 

computing Fibonacci (10) and adopting IOSSS as the HLS for threads distribution. 

Next, the researcher computes the average of every ten trials of each model as 

illustrated in Table 5.2. Finally, a histogram that shows the results in Table 5.3 is 

sketched using Ms Excel (Figure 5.2). 
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Table 5.2: The AES values for the Fibonacci (10) problem using IOSSS as the HLS 

and eight-thread, four-thread, and two-thread partitioning 

Using IOSSS and Two-Thread Partitioning 

Cores Trial  1 Trial  2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

2 56.50 57.00 56.50 58.00 55.00 56.50 56.00 59.50 55.00 55.00 

3 38.67 39.67 39.33 37.67 37.33 40.67 39.67 40.67 39.00 38.33 

4 29.50 31.25 29.25 33.50 30.50 29.75 28.25 29.00 30.75 30.25 

5 24.00 25.20 24.60 25.20 23.40 25.80 26.20 24.00 23.40 24.80 

6 20.83 23.50 22.50 20.67 22.17 22.50 21.83 20.67 21.17 21.17 

7 19.14 17.71 20.14 18.71 19.29 20.00 19.00 18.86 19.00 18.71 

8 16.75 16.75 16.88 17.50 15.63 17.63 16.38 17.13 17.25 17.63 

9 14.33 15.33 16.33 14.44 15.56 14.22 14.89 14.89 14.56 14.89 

10 13.80 13.90 14.70 15.00 13.80 14.00 14.80 14.00 14.10 14.20 

 

Using IOSSS and Four-Thread Partitioning 

Cores Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

2 46.00 47.50 45.50 46.00 47.00 48.50 48.50 49.50 46.00 50.00 

3 30.33 32.00 30.00 31.67 31.33 30.00 30.33 32.33 31.00 31.00 

4 24.50 23.25 24.50 23.00 23.00 24.25 23.50 24.00 23.75 23.50 

5 19.80 21.40 19.80 21.80 19.80 21.00 19.80 19.60 20.80 19.80 

6 17.83 16.17 18.00 17.33 17.00 16.33 18.00 16.83 17.50 17.67 

7 14.71 14.29 15.43 14.71 15.57 15.86 15.57 16.14 15.43 16.43 

8 13.88 13.00 12.38 13.50 14.13 13.38 13.25 13.88 13.13 15.00 

9 11.67 13.11 11.67 13.22 12.00 12.33 11.22 11.33 12.56 12.44 

10 10.20 10.90 11.30 10.80 10.80 10.10 10.80 10.10 10.40 11.10 

 

Using IOSSS and Eight-Thread Partitioning 

Cores Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

2 47.50 50.00 49.50 45.50 44.50 51.00 47.00 48.00 48.50 48.00 

3 32.00 29.33 30.00 34.00 36.00 32.67 32.33 31.33 37.00 33.33 

4 22.00 23.00 24.00 22.75 23.75 25.25 23.00 24.25 25.00 23.25 

5 18.20 18.80 18.40 19.00 19.60 18.60 19.00 19.80 19.00 19.20 

6 15.83 16.83 15.17 16.50 17.00 15.83 17.00 15.50 16.50 15.33 

7 13.29 13.29 13.14 13.00 12.43 13.71 13.43 13.14 12.86 14.00 

8 11.00 11.13 11.63 11.13 11.75 11.25 11.38 11.63 11.38 11.63 

9 10.33 10.22 10.44 11.00 10.44 10.44 10.56 10.67 11.00 11.44 

10 9.30 10.30 10.00 10.40 9.50 10.80 9.50 9.90 9.90 9.50 
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Table 5.3: The averages of the AES values shown in Table 5.2  

 

Cores 
Using Two-Thread 

Partitioning 

Using Four-Thread 

Partitioning 

Using Eight-Thread 

Partitioning 

2 56.50 47.45 47.95 

3 39.10 31.00 32.80 

4 30.20 23.73 23.63 

5 24.66 20.36 18.96 

6 21.70 17.27 16.15 

7 19.06 15.41 13.23 

8 16.95 13.55 11.39 

9 14.94 12.16 10.66 

10 14.23 10.65 9.91 

 

 

Figure 5.2: Sketching the AES values vs. number of cores for the Fibonacci (10) 

problem using eight-thread, four-thread, two-thread partitioning, and IOSSS for threads 

distribution 

 

In general, the histogram shows that as the number of cores is increased, the 

performance becomes better. In other words, the values of the AES become less which 

is the target behind increasing the number of the cores. It is also noted that there is a 

clear difference between the two-thread method and the other two methods. This is due 

to the high number of divisions comparing with other two methods. On the other hand, 

the results of the four-thread and eight-thread methods are unstable in the 2-4 cores 

models but the difference becomes clear starting from the fifth core. Yet, the histogram 

reaches a stability point starting from the tenth core. 
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The weakness in the IOSSS is clear which is represented by the number of threads that 

each thief core gets. The thief core gets only a single thread at a time, processes it, and 

then it becomes a thief again, and after that the distribution process is invoked again. 

This scenario is repeated frequently which leads to a waste of time, as a result, it has a 

bad effect on the overall performance. In conclusion, the IOSSS is easy to implement 

and has no complicated calculations but it cannot achieve a high level of concurrency. 

 

The researcher resolves the Fibonacci problem but this time for Fibonacci (13) and 

Fibonacci (15). This time, the researcher fixes the partitioning method to the eight-

thread and applies various stealing strategies. The researcher uses the strategies: IOSSS, 

IOMSS, RFSSS, RFMSS, and CMSS. Table 5.4 and Table 5.5 show the AES values for 

computing Fibonacci (13) and Fibonacci (15). The results in the previous tables are 

sketched as histograms in Figure 5.3 and Figure 5.4 respectively. 

 

Analyzing the results in the two histograms leads to the following facts: 

1- Solving Fibonacci (15) consumes more steps than Fibonacci (13). This is evident 

from the values of AES. In Fibonacci (15) the maximum AES value is 509. This value 

appears in both IOSSS and RFSSS; however, in Fibonacci (13), the maximum AES 

value is 208. This is natural since increasing the size of any problem will definitely lead 

to an increase in the number of execution steps. The only exception happens in the 

Binary Search problem, since the repetition of model execution with different 

arguments (searching element) requires a different number of steps. The issue is related 

with the location of the element searched for. 
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Table 5.4:  The AES values vs. strategies for the problem of solving Fibonacci (13) 

using eight-thread partitioning 

Cores IOSSS IOMSS RFSSS RFMSS CMSS 

2 208.27 193.58 208.27 193.58 193.27 

3 139.90 132.43 142.88 131.47 130.51 

4 105.36 98.99 106.86 99.20 98.48 

5 84.52 82.22 86.76 80.82 79.66 

6 68.88 68.65 70.14 67.95 66.70 

7 59.71 57.99 60.55 57.11 56.57 

8 53.78 51.75 55.26 50.60 49.65 

9 49.34 46.95 50.70 45.34 44.96 

10 45.51 43.00 47.29 41.24 41.06 

 

 

Figure 5.3: Sketching the AES values vs. number of cores for the problem of Fibonacci 

(13) using eight-thread partitioning 

 

 

2- The general overview to the histograms indicates that as the number of cores 

increases, the performance becomes better in the sense of using less execution steps. 

This can be generalized to all the HLSs. The histogram descends smoothly from worst 

AES values at the two-core model to the best AES values at the ten-core model. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



119 
 

Table 5.5: The AES values vs. strategies for the problem of solving of Fibonacci (15) 

using eight-thread partitioning 

Cores IOSSS IOMSS RFSSS RFMSS CMSS 

2 509.47 479.76 509.47 479.76 479.15 

3 341.62 324.59 353.40 322.61 321.60 

4 257.39 242.60 265.97 242.92 241.49 

5 207.32 199.03 214.78 196.08 194.24 

6 169.78 166.57 173.34 164.19 162.15 

7 146.03 141.07 147.24 139.34 138.42 

8 130.32 125.49 131.79 122.63 121.32 

9 118.78 113.38 119.96 109.59 108.98 

10 109.06 103.40 110.85 99.13 98.50 

 

 

Figure 5.4: Sketching the AES values vs. number of cores for the problem of Fibonacci 

(15) using eight-thread partitioning 

 

3- The rate of change in AES values in the low number of cores models is higher than 

their counterparts with a higher number of cores. For instance, the difference between 

the AES values between the two-core and three-core models is higher than the 

difference between the nine-core and ten-core models. This is because as the number of 

cores increases and with the same problem size, the single core’s share of threads 

decreases; consequently, there will be less need to call the HLS. As a result, the AES 

values become convergent. In other words, the effect of the HLSs becomes less 

significant when the number of cores is relatively large comparing with the problem 

Univ
ers

ity
 of

 M
ala

ya



120 
 

size. This is why the difference between the two and three-core models can be noticed 

clearly where the HLSs play a significant role in the redistribution process ultimately 

generating better results. 

 

4- In order to compare the performances of the HLSs; the IOSSS and RFSSS show the 

worst performance since they consume relatively high values of AESs. The reason 

behind this is that both of them distribute only single threads to the thief cores. This has 

a bad effect on the overall performance since a core with a single thread quickly 

becomes a thief core again and the distribution process has to be invoked continuously. 

An interesting thing is the results of the IOSSS and RFSSS are convergent and 

sometimes identical. That is because the main thread resides on the first core and this 

thread precisely generates eight threads at the beginning of execution therefore there is a 

good chance to make this core one of the wealthiest cores of threads. As a result, the 

first core becomes the target of the RFSSS most of the time. As for the IOSSS, it is also 

the target of this strategy since IOSSS starts from left to right. This makes both IOSSS 

and RFSSS give convergent results, even so when there is a difference due to choosing 

another victim core by RFSSS. The number of threads in this victim core does not 

differentiate too much from the victim core chosen by IOSSS. 

 

5- The number of threads generated in one step has a strong influence on the overall 

performance. The researcher has resolved the problems of Fibonacci (13) and Fibonacci 

(15) but this time using only two-thread partitioning. Table 5.6 and Figure 5.5 are 

dedicated for Fibonacci (13) while Table 5.7 and Figure 5.6 are belonging to Fibonacci 

(15).  At first glance, a comparison between Figure 5.3 and Figure 5.5 shows a clear 

difference between the AES for the same problem of Fibonacci (13).  
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Table 5.6:  The AES values vs. strategies for the problem of solving of Fibonacci (13) 

using two-thread partitioning. 

 

Cores IOSSS IOMSS RFSSS RFMSS CMSS 

2 237.85 236.05 237.85 236.05 236.30 

3 162.63 160.47 163.03 160.87 160.27 

4 125.50 124.15 126.50 123.40 121.05 

5 102.22 100.72 101.50 99.78 98.50 

6 86.12 86.55 88.13 84.40 82.75 

7 76.47 73.70 75.10 73.16 71.63 

8 68.56 64.95 67.09 64.75 63.93 

9 59.83 60.36 60.29 57.77 56.74 

10 55.08 55.62 55.37 52.85 51.92 

 

 

Figure 5.5: Sketching the AES values vs. number of cores for the problem of Fibonacci 

(13) using two-thread partitioning. 

 

 

The results in Figure 5.5 show that more steps are needed to complete simulation 

comparing with results in Figure 5.3. The same thing can be said in the case of 

Fibonacci (15) where in Figure 5.6 the AES values need more steps than those in Figure 

5.4.  
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Table 5.7: The AES values vs. the entire strategies for solving the problem of Fibonacci 

(15) using two-thread partitioning 

 

Cores IOSSS IOMSS RFSSS RFMSS CMSS 

2 621.55 615.10 621.55 615.10 614.90 

3 421.17 413.77 424.47 415.00 413.93 

4 323.03 316.65 322.35 315.40 312.78 

5 263.24 259.80 263.16 254.84 254.04 

6 220.30 214.28 221.27 214.08 212.17 

7 190.66 187.94 191.71 185.46 181.43 

8 168.50 165.68 168.66 163.53 160.33 

9 151.43 151.27 150.81 146.29 144.58 

10 138.62 134.98 138.38 132.53 130.22 

 

 

Figure 5.6: Sketching the AES values vs. number of cores for the problem of Fibonacci 

(15) using two-thread partitioning. 

 

 

In general, we can conclude the following: a partitioning technique that can generate a 

higher number of threads in one step is the key to high level of concurrency between the 

cores of the model. However, this cannot be generalized for generating any number of 

threads; there should be a kind of balancing between the number of cores, the maximum 
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number of generated threads in one step, and the time consumed in generating those 

threads. 

 

5.3 The Results of Executing the Binary Search CPN Models 

The Binary Search has a different technique than the Fibonacci technique. In the 

Fibonacci case, all the temporary results have to be taken into consideration; they are 

parts of the final result. However, in the Binary Search, the researcher builds the 

mechanism on dividing the searching area into a certain number of sections where each 

section is assigned to a thread, after that, the HLSs distribute those threads to the cores. 

The searching may be succeeded in one of the threads being executed by one of the 

cores; therefore, it is not compulsory to check all the threads. In other words, there is a 

chance to find the searched element in one of the threads. Consequently, the process 

stops immediately, and if there are any threads still waiting for their turn in processing, 

they will be discarded.  

As in Fibonacci case, the researcher designed nine Binary Search CPN models (two-

core model, three-core model, and so forth until ten-core model. To apply the searching 

technique, the researcher proposes an ordered list of 10000 integer numbers [1, 3, 5, 7... 

19995, 19997, 19999]. This list is already created and saved in a fused place that is 

shared by all the cores. The index of the first element in the list is zero while the index 

of the last element in the list is 9999. The searching is carried out for the value 19997. 

The result of execution of the models results in the value 9998 which represents the 

location of the searched element in the list. In other words, it signifies the success of 

finding the element. On the other hand, returning the value ~1 means that the element is 

not found in the list. Regarding the HLSs and their role in distributing the threads, Table 

5.8 shows the AES values of conducting the binary search while Figure 5.7 shows a 

histogram that reflects the values in Table 5.8.  
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Table 5.8:  The AES values for the Binary Search Problem where the list size is 

10000 and the list’s values are: [1, 3, 5, 7,.. 19995,19997,19999] and searching is 

conducted for the value 19997 with the return list’s value 9998 

 

Cores IOSSS IOMSS RFSSS RFMSS CMSS 

2 56.70 38.90 56.70 38.90 38.10 

3 41.90 26.67 41.90 26.17 26.33 

4 32.45 20.23 32.45 19.63 19.53 

5 26.34 16.56 26.34 16.20 15.38 

6 22.13 14.45 22.13 13.03 12.90 

7 18.96 11.97 18.96 11.56 11.29 

8 16.75 10.45 16.75 9.93 9.89 

9 14.69 9.93 14.69 9.09 9.06 

10 13.20 8.45 13.20 8.01 8.00 

 

 

 

 
 

 

Figure 5.7: Sketching the AES values vs. number of cores for the Binary Search 

problem defined in Table 5.8  

 

 

The researcher repeated the searching process but this time for the value 4. As expected, 

the result of the searching is ~1 since there are no even numbers in the list. The AESs’ 

values are given in Table 5.9 while the histogram is illustrated in Figure 5.8.  
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Table 5.9:  The AES values for the Binary Search Problem where list size is 10000 

and the list’s values are: [1, 3, 5, 7,.. 19995,19997,19999] and searching is conducted 

for the value 4 with the return value of ~1 

 

Cores IOSSS IOMSS RFSSS RFMSS CMSS 

2 57.75 42.90 57.75 42.90 42.95 

3 43.37 29.27 42.03 29.03 28.90 

4 34.83 22.28 32.75 22.08 21.93 

5 28.34 18.00 27.46 17.86 17.76 

6 24.05 15.42 23.08 15.07 14.87 

7 21.13 13.41 20.03 13.03 12.77 

8 18.38 11.85 17.60 11.39 11.29 

9 16.46 10.69 15.68 10.38 10.10 

10 14.82 9.65 14.27 9.45 9.23 

 

 

Figure 5.8: Sketching the AES values vs. number of cores for the Binary Search 

problem defined in Table 5.9 

 

As in the Fibonacci case, the values of the AES are significantly improved with the 

increase in the number of cores. However, the binary search results show a clear 

difference from those of the Fibonacci results. This difference is represented precisely 

in the results of IOSSS and RFSSS. The results of those schedulers are so close and 

differ from the other schedulers while the results of all the schedulers in Fibonacci case 

are convergent. 
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The reason behind this is in Fibonacci, a thread may spawn 2,4, or 8 threads or may be 

more if the FLLS includes such partitioning, besides the reallocation of threads by the 

HLSs makes the cores semi saturated with threads. This matter creates a state of 

convergence between the HLSs, in other words, in the case of Fibonacci; the difference 

between the capacities of the HLSs on distributing the threads is not as clear as in 

Binary Search.  In Binary Search, the BSLLS controls the size of the searching area 

assigned to the thread by the value of Delta (Figure 4.5). The mechanism of the BSLLS 

can generate so many threads with one step. As a result, starting from the first step of 

simulation, the BSLLS creates a large number of threads and stacked them at the core 

that holds the main thread. Adding to that, both the IOSSS and RFSSS steal and 

distribute single threads. Therefore, there will be too much calling to the scheduler since 

thief cores only get single threads. Therefore, the AES values for the IOSSS and RFSSS 

are relatively high. On the other hand, the other schedulers: IOMSS, RFSSS, and CMSS 

show more convergent results than IOSSS and RFSSS since they (IOMSS, RFSSS, and 

CMSS) have been built on stealing more than one thread. 

  

5.4   The Results of Executing the Towers of Hanoi CPN Models  

The Towers of Hanoi problem has a restricted approach comparing with Fibonacci and 

Binary Search in splitting the problem. Here, the THLLS has no choice other than 

computing a move and creating two sub threads at a time. In other words, THLLS lacks 

the ability of the FLLS in creating 4,8, or more threads at the same time. The same thing 

can be said for the BSLLS where the scheduler can create many searching areas 

(threads) that can be distributed under the HLS to the thief cores at the same time. The 

reason behind THLLS’s inability is due to the accumulation of disks on each other. The 

game’s player cannot move two disks at the same time; it should be one by one. 
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Therefore, the concurrent characteristic in this type of D&C problem is weak. As a 

result, the diversity in the HLSs has no effect on the results of simulation.  

As with the previous two D&C problems, the researcher has designed two types of CPN 

models, one for solving the problem with seven disks, and the second one with nine 

disks. The output of the seven disks problem is given in Table 5.10.  As explained in 

Section 4.1.3, the output of the Towers of Hanoi game is a set of disks’ moves. A move 

consists of (Ord,DNo,Sou,Des), the number of moves is equal to (2
n
)
 
-1 where n is the 

number of disks. In Table 5.10, the number of disks is seven, therefore we have 127 

moves. The THLLS (Figure 4.9) creates a binary tree with 127 threads; each thread has 

its move. The moves on the left side of the tree are numbered with the negative sign (~), 

the move at the root is numbered with zero, and the moves at the right hand side of the 

binary tree are numbered with positive sign. Therefore, for 127 moves, the first move is 

(~63,1,1,3) which indicates moving disk No. 1 from pillar No.1 to pillar No. 3. The next 

move is (~62,2,1,2) which includes moving disk No. 2 from pillar No.1 to pillar No. 2. 

The last move is (63,1,1,3) which consists of moving disk No. 1 from pillar No.1 to 

pillar No. 3. As for the nine disks example, the output is given in Table 5.11. Here, we 

have 511 moves, 255 moves with negative sign resident at the left side of the binary 

tree, and 255 moves with positive sign resident at the right hand side of the binary tree. 

Therefore, the first move is (~255,1,1,3) and the last one is (255,1,1,3). 

Regarding the distribution of threads through the five strategies, Table 5.12 shows the 

AES values for solving the Towers of Hanoi game using seven disks. Figure 5.9 

sketches the values in Table 5.12.  For the nine disks example, Table 5.13 and Figure 

5.10 are dedicated for the nine disks problem. 
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Table 5.10: The output (moves) of solving the problem of Towers of Hanoi with seven 

disks 
~63,1,1,3 ~62,2,1,2 ~61,1,3,2 ~60,3,1,3 ~59,1,2,1 ~58,2,2,3 ~57,1,1,3 ~56,4,1,2 ~55,1,3,2 

~54,2,3,1 ~53,1,2,1 ~52,3,3,2 ~51,1,1,3 ~50,2,1,2 ~49,1,3,2 ~48,5,1,3 ~47,1,2,1 ~46,2,2,3 

~45,1,1,3 ~44,3,2,1 ~43,1,3,2 ~42,2,3,1 ~41,1,2,1 ~40,4,2,3 ~39,1,1,3 ~38,2,1,2 ~37,1,3,2 

~36,3,1,3 ~35,1,2,1 ~34,2,2,3 ~33,1,1,3 ~32,6,1,2 ~31,1,3,2 ~30,2,3,1 ~29,1,2,1 ~28,3,3,2 

~27,1,1,3 ~26,2,1,2 ~25,1,3,2 ~24,4,3,1 ~23,1,2,1 ~22,2,2,3 ~21,1,1,3 ~20,3,2,1 ~19,1,3,2 

~18,2,3,1 ~17,1,2,1 ~16,5,3,2 ~15,1,1,3 ~14,2,1,2 ~13,1,3,2 ~12,3,1,3 ~11,1,2,1 ~10,2,2,3 

~9,1,1,3 ~8,4,1,2 ~7,1,3,2 ~6,2,3,1 ~5,1,2,1 ~4,3,3,2 ~3,1,1,3 ~2,2,1,2 ~1,1,3,2 

0,7,1,3 1,1,2,1 2,2,2,3 3,1,1,3 4,3,2,1 5,1,3,2 6,2,3,1 7,1,2,1 8,4,2,3 

9,1,1,3 10,2,1,2 11,1,3,2 12,3,1,3 13,1,2,1 14,2,2,3 15,1,1,3 16,5,2,1 17,1,3,2 

18,2,3,1 19,1,2,1 20,3,3,2 21,1,1,3 22,2,1,2 23,1,3,2 24,4,3,1 25,1,2,1 26,2,2,3 

27,1,1,3 28,3,2,1 29,1,3,2 30,2,3,1 31,1,2,1 32,6,2,3 33,1,1,3 34,2,1,2 35,1,3,2 

36,3,1,3 37,1,2,1 38,2,2,3 39,1,1,3 40,4,1,2 41,1,3,2 42,2,3,1 43,1,2,1 44,3,3,2 

45,1,1,3 46,2,1,2 47,1,3,2 48,5,1,3 49,1,2,1 50,2,2,3 51,1,1,3 52,3,2,1 53,1,3,2 

54,2,3,1 55,1,2,1 56,4,2,3 57,1,1,3 58,2,1,2 59,1,3,2 60,3,1,3 61,1,2,1 62,2,2,3 

63,1,1,3         

 

 

Table 5.11: The moves of solving the problem of Towers of Hanoi with nine disks 

~255,1,1,3 ~254,2,1,2 ~253,1,3,2 ~252,3,1,3 ~251,1,2,1 ~250,2,2,3 ~249,1,1,3 ~248,4,1,2 ~247,1,3,2 

~246,2,3,1 ~245,1,2,1 ~244,3,3,2 ~243,1,1,3 ~242,2,1,2 ~241,1,3,2 ~240,5,1,3 ~239,1,2,1 ~238,2,2,3 

~237,1,1,3 ~236,3,2,1 ~235,1,3,2 ~234,2,3,1 ~233,1,2,1 ~232,4,2,3 ~231,1,1,3 ~230,2,1,2 ~229,1,3,2 

~228,3,1,3 ~227,1,2,1 ~226,2,2,3 ~225,1,1,3 ~224,6,1,2 ~223,1,3,2 ~222,2,3,1 ~221,1,2,1 ~220,3,3,2 

~219,1,1,3 ~218,2,1,2 ~217,1,3,2 ~216,4,3,1 ~215,1,2,1 ~214,2,2,3 ~213,1,1,3 ~212,3,2,1 ~211,1,3,2 

~210,2,3,1 ~209,1,2,1 ~208,5,3,2 ~207,1,1,3 ~206,2,1,2 ~205,1,3,2 ~204,3,1,3 ~203,1,2,1 ~202,2,2,3 

~201,1,1,3 ~200,4,1,2 ~199,1,3,2 ~198,2,3,1 ~197,1,2,1 ~196,3,3,2 ~195,1,1,3 ~194,2,1,2 ~193,1,3,2 

~192,7,1,3 ~191,1,2,1 ~190,2,2,3 ~189,1,1,3 ~188,3,2,1 ~187,1,3,2 ~186,2,3,1 ~185,1,2,1 ~184,4,2,3 

~183,1,1,3 ~182,2,1,2 ~181,1,3,2 ~180,3,1,3 ~179,1,2,1 ~178,2,2,3 ~177,1,1,3 ~176,5,2,1 ~175,1,3,2 

~174,2,3,1 ~173,1,2,1 ~172,3,3,2 ~171,1,1,3 ~170,2,1,2 ~169,1,3,2 ~168,4,3,1 ~167,1,2,1 ~166,2,2,3 

~165,1,1,3 ~164,3,2,1 ~163,1,3,2 ~162,2,3,1 ~161,1,2,1 ~160,6,2,3 ~159,1,1,3 ~158,2,1,2 ~157,1,3,2 

~156,3,1,3 ~155,1,2,1 ~154,2,2,3 ~153,1,1,3 ~152,4,1,2 ~151,1,3,2 ~150,2,3,1 ~149,1,2,1 ~148,3,3,2 

~147,1,1,3 ~146,2,1,2 ~145,1,3,2 ~144,5,1,3 ~143,1,2,1 ~142,2,2,3 ~141,1,1,3 ~140,3,2,1 ~139,1,3,2 

~138,2,3,1 ~137,1,2,1 ~136,4,2,3 ~135,1,1,3 ~134,2,1,2 ~133,1,3,2 ~132,3,1,3 ~131,1,2,1 ~130,2,2,3 

~129,1,1,3 ~128,8,1,2 ~127,1,3,2 ~126,2,3,1 ~125,1,2,1 ~124,3,3,2 ~123,1,1,3 ~122,2,1,2 ~121,1,3,2 

~120,4,3,1 ~119,1,2,1 ~118,2,2,3 ~117,1,1,3 ~116,3,2,1 ~115,1,3,2 ~114,2,3,1 ~113,1,2,1 ~112,5,3,2 

~111,1,1,3 ~110,2,1,2 ~109,1,3,2 ~108,3,1,3 ~107,1,2,1 ~106,2,2,3 ~105,1,1,3 ~104,4,1,2 ~103,1,3,2 

~102,2,3,1 ~101,1,2,1 ~100,3,3,2 ~99,1,1,3 ~98,2,1,2 ~97,1,3,2 ~96,6,3,1 ~95,1,2,1 ~94,2,2,3 

~93,1,1,3 ~92,3,2,1 ~91,1,3,2 ~90,2,3,1 ~89,1,2,1 ~88,4,2,3 ~87,1,1,3 ~86,2,1,2 ~85,1,3,2 

~84,3,1,3 ~83,1,2,1 ~82,2,2,3 ~81,1,1,3 ~80,5,2,1 ~79,1,3,2 ~78,2,3,1 ~77,1,2,1 ~76,3,3,2 

~75,1,1,3 ~74,2,1,2 ~73,1,3,2 ~72,4,3,1 ~71,1,2,1 ~70,2,2,3 ~69,1,1,3 ~68,3,2,1 ~67,1,3,2 

~66,2,3,1 ~65,1,2,1 ~64,7,3,2 ~63,1,1,3 ~62,2,1,2 ~61,1,3,2 ~60,3,1,3 ~59,1,2,1 ~58,2,2,3 

~57,1,1,3 ~56,4,1,2 ~55,1,3,2 ~54,2,3,1 ~53,1,2,1 ~52,3,3,2 ~51,1,1,3 ~50,2,1,2 ~49,1,3,2 

~48,5,1,3 ~47,1,2,1 ~46,2,2,3 ~45,1,1,3 ~44,3,2,1 ~43,1,3,2 ~42,2,3,1 ~41,1,2,1 ~40,4,2,3 

~39,1,1,3 ~38,2,1,2 ~37,1,3,2 ~36,3,1,3 ~35,1,2,1 ~34,2,2,3 ~33,1,1,3 ~32,6,1,2 ~31,1,3,2 

~30,2,3,1 ~29,1,2,1 ~28,3,3,2 ~27,1,1,3 ~26,2,1,2 ~25,1,3,2 ~24,4,3,1 ~23,1,2,1 ~22,2,2,3 

~21,1,1,3 ~20,3,2,1 ~19,1,3,2 ~18,2,3,1 ~17,1,2,1 ~16,5,3,2 ~15,1,1,3 ~14,2,1,2 ~13,1,3,2 

~12,3,1,3 ~11,1,2,1 ~10,2,2,3 ~9,1,1,3 ~8,4,1,2 ~7,1,3,2 ~6,2,3,1 ~5,1,2,1 ~4,3,3,2 

~3,1,1,3 ~2,2,1,2 ~1,1,3,2 0,9,1,3 1,1,2,1 2,2,2,3 3,1,1,3 4,3,2,1 5,1,3,2 

6,2,3,1 7,1,2,1 8,4,2,3 9,1,1,3 10,2,1,2 11,1,3,2 12,3,1,3 13,1,2,1 14,2,2,3 

15,1,1,3 16,5,2,1 17,1,3,2 18,2,3,1 19,1,2,1 20,3,3,2 21,1,1,3 22,2,1,2 23,1,3,2 

24,4,3,1 25,1,2,1 26,2,2,3 27,1,1,3 28,3,2,1 29,1,3,2 30,2,3,1 31,1,2,1 32,6,2,3 

33,1,1,3 34,2,1,2 35,1,3,2 36,3,1,3 37,1,2,1 38,2,2,3 39,1,1,3 40,4,1,2 41,1,3,2 

42,2,3,1 43,1,2,1 44,3,3,2 45,1,1,3 46,2,1,2 47,1,3,2 48,5,1,3 49,1,2,1 50,2,2,3 

51,1,1,3 52,3,2,1 53,1,3,2 54,2,3,1 55,1,2,1 56,4,2,3 57,1,1,3 58,2,1,2 59,1,3,2 

60,3,1,3 61,1,2,1 62,2,2,3 63,1,1,3 64,7,2,1 65,1,3,2 66,2,3,1 67,1,2,1 68,3,3,2 
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69,1,1,3 70,2,1,2 71,1,3,2 72,4,3,1 73,1,2,1 74,2,2,3 75,1,1,3 76,3,2,1 77,1,3,2 

78,2,3,1 79,1,2,1 80,5,3,2 81,1,1,3 82,2,1,2 83,1,3,2 84,3,1,3 85,1,2,1 86,2,2,3 

87,1,1,3 88,4,1,2 89,1,3,2 90,2,3,1 91,1,2,1 92,3,3,2 93,1,1,3 94,2,1,2 95,1,3,2 

96,6,3,1 97,1,2,1 98,2,2,3 99,1,1,3 100,3,2,1 101,1,3,2 102,2,3,1 103,1,2,1 104,4,2,3 

105,1,1,3 106,2,1,2 107,1,3,2 108,3,1,3 109,1,2,1 110,2,2,3 111,1,1,3 112,5,2,1 113,1,3,2 

114,2,3,1 115,1,2,1 116,3,3,2 117,1,1,3 118,2,1,2 119,1,3,2 120,4,3,1 121,1,2,1 122,2,2,3 

123,1,1,3 124,3,2,1 125,1,3,2 126,2,3,1 127,1,2,1 128,8,2,3 129,1,1,3 130,2,1,2 131,1,3,2 

132,3,1,3 133,1,2,1 134,2,2,3 135,1,1,3 136,4,1,2 137,1,3,2 138,2,3,1 139,1,2,1 140,3,3,2 

141,1,1,3 142,2,1,2 143,1,3,2 144,5,1,3 145,1,2,1 146,2,2,3 147,1,1,3 148,3,2,1 149,1,3,2 

150,2,3,1 151,1,2,1 152,4,2,3 153,1,1,3 154,2,1,2 155,1,3,2 156,3,1,3 157,1,2,1 158,2,2,3 

159,1,1,3 160,6,1,2 161,1,3,2 162,2,3,1 163,1,2,1 164,3,3,2 165,1,1,3 166,2,1,2 167,1,3,2 

168,4,3,1 169,1,2,1 170,2,2,3 171,1,1,3 172,3,2,1 173,1,3,2 174,2,3,1 175,1,2,1 176,5,3,2 

177,1,1,3 178,2,1,2 179,1,3,2 180,3,1,3 181,1,2,1 182,2,2,3 183,1,1,3 184,4,1,2 185,1,3,2 

186,2,3,1 187,1,2,1 188,3,3,2 189,1,1,3 190,2,1,2 191,1,3,2 192,7,1,3 193,1,2,1 194,2,2,3 

195,1,1,3 196,3,2,1 197,1,3,2 198,2,3,1 199,1,2,1 200,4,2,3 201,1,1,3 202,2,1,2 203,1,3,2 

204,3,1,3 205,1,2,1 206,2,2,3 207,1,1,3 208,5,2,1 209,1,3,2 210,2,3,1 211,1,2,1 212,3,3,2 

213,1,1,3 214,2,1,2 215,1,3,2 216,4,3,1 217,1,2,1 218,2,2,3 219,1,1,3 220,3,2,1 221,1,3,2 

222,2,3,1 223,1,2,1 224,6,2,3 225,1,1,3 226,2,1,2 227,1,3,2 228,3,1,3 229,1,2,1 230,2,2,3 

231,1,1,3 232,4,1,2 233,1,3,2 234,2,3,1 235,1,2,1 236,3,3,2 237,1,1,3 238,2,1,2 239,1,3,2 

240,5,1,3 241,1,2,1 242,2,2,3 243,1,1,3 244,3,2,1 245,1,3,2 246,2,3,1 247,1,2,1 248,4,2,3 

249,1,1,3 250,2,1,2 251,1,3,2 252,3,1,3 253,1,2,1 254,2,2,3 255,1,1,3   

 

 

 

Table 5.12:  The AES values for the Towers of Hanoi problem using seven disks 

 

Cores IOSSS IOMSS RFSSS RFMSS CMSS 

2 36.25 35.84 36.16 35.58 35.75 

3 29.62 29.21 29.55 28.62 28.67 

4 24.29 24.06 24.76 23.89 24.21 

5 21.54 21.14 21.62 21.12 21.10 

6 19.44 19.24 19.22 18.91 19.14 

7 17.41 17.16 17.45 17.07 17.81 

8 16.16 15.99 15.89 15.68 16.14 

9 15.18 15.22 15.08 14.70 15.44 

10 14.24 14.14 13.89 13.98 14.23 
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Figure 5.9: Sketching the results in Table 5.12  

 

 

The results in the two figures show that the AES values in the nine disks example are 

higher than their counterparts in the seven disks example. This is natural, since adding 

more disks causes an increase in the number of moves. However, the two graphs 

demonstrate different behavior of the HLSs comparing with the results in Fibonacci and 

Binary Search results. Precisely, the results of the IOSSS which show in some cases 

better performance than the RFSSS, RFMSS, and CMSS performances.  

 

Table 5.13:  The AES values for the Towers of Hanoi problem using nine disks 

 

Cores IOSSS IOMSS RFSSS RFMSS CMSS 

2 134.02 133.20 134.02 133.20 132.55 

3 99.78 98.91 100.26 98.68 98.09 

4 77.82 77.08 81.63 78.12 77.45 

5 67.38 66.31 71.61 67.06 67.03 

6 59.11 57.55 62.60 58.52 58.14 

7 51.62 50.31 55.95 52.43 52.31 

8 47.00 45.78 50.48 47.60 47.75 

9 43.31 41.96 46.95 44.06 44.06 

10 40.23 38.69 43.55 40.48 40.80 
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Figure 5.10: Sketching the results in Table 5.13  

 

 

The reason behind this is in the THLLS mechanism where each core creates at the most 

only two sub threads, this leads to generating relatively heavy threads.  By heavy thread, 

we mean a thread that is headed a heavy sub tree of threads in the Towers of Hanoi 

binary tree of threads (Figure 4.10). Comparing with the threads created by BSLLS and 

FLLS (eight-thread partitioning and more), the threads in those schedulers are lighter in 

the sense that they deal with smaller portions of the problem. It follows that the THLLS 

starts with the heavy sub threads and then accumulates the relatively smaller threads. As 

a result, heavy threads are settled at the bottom of the core’s list of threads. Now, the 

IOSSS steals from the first encountered victim, digging inside it looking for threads to 

steal, as a result, the IOSSS relatively deals with heavy threads. On the other hand, the 

RFSSS search for the wealthy victim which leads to the core that has recently got new 

threads which are lighter than those targeted by IOSSS. Consequently, the performance 

of the IOSSS reaches the performance of the IOMSS, RFMSS, CMSS, and sometimes 

exceeds them. The heavy threads generate more sub threads, and this will definitely 
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make the core busier for dealing with its own threads, accordingly, calling the HLS will 

be less. This is because as the cores become busy with their own threads, the need for 

calling the HLS will be less. 

In conclusion, the main reason behind the improvement of the IOSSS is that this 

scheduler relatively deals with heavy threads while the other schedulers deal with 

lighter threads. What makes worse for the other schedulers is the amount of generated 

threads. Spawning only two threads at a time with the non deterministic behavior of the 

model makes all the lists of cores in convergent sizes. 

  

5.5   The Results of Executing the Matrix Multiplication CPN Models 

The MMLLS behaves like the BSLLS; it can generate many threads at the same time.  

A thread generated by the MMLLS holds a row number of the first matrix, the size of 

the element in that row, and the number of the column of the second matrix. The 

researcher solves two examples: First one is a 10 × 10 matrix and the second is a 20 × 

20 matrix. The values of the first (A) matrix and the second (B) matrix are already 

created and saved inside the corresponding fused places. Table 5.14 shows the matrices’ 

values of the first example while Table 5.15 shows the matrices’ values of the second 

example. Table 5.16 and Figure 5.11 present the AES values for the Matrix 

Multiplication problem 10×10 while Table 5.17 and Figure 5.12 present the AES values 

for the Matrix Multiplication problem 20×20. 

Table 5.14:  The values of the input and output matrices for the 10 × 10 Matrix 

Multiplication example 

Input 

Matrix A 

[[0,8,2,0,3,3,9,0,8,5],[2,9,4,1,9,5,2,3,7,9],[7,6,6,7,0,2,0,9,9,3], 

[5,7,5,9,6,5,4,2,0,6],[8,0,8,1,6,0,5,3,8,5],[4,7,7,7,7,9,8,3,3,3], 

[9,2,8,0,6,2,1,4,5,2],[9,1,4,4,1,4,7,0,8,1],[1,7,9,4,5,0,5,2,4,6],[3,7,9,8,9,5,5,4,2,7]]; 

Input 

Matrix B 

[[0,9,3,3,6,9,7,4,6,8],[6,5,5,4,4,8,6,6,2,7],[2,4,5,8,4,8,2,8,6,9], 

[7,0,2,9,7,7,5,4,3,0],[3,7,0,0,5,6,2,0,2,6],[4,5,3,0,7,7,0,6,8,1], 

[7,4,5,1,6,1,2,8,6,2],[7,4,6,4,1,7,4,9,8,4],[6,3,8,2,8,7,8,7,9,9],[5,5,2,2,6,8,2,0,8,7]]; 

Output 

Matrix C 

 [[209,169,178,83,224,224,150,210,224,220],[238,253,190,129,276,362,189,220,286,316], 

[237,205,233,216,252,372,246,296,304,292],[225,221,152,188,268,341,172,218,241,233], 

[170,227,183,140,244,301,185,223,277,301],[272,261,211,191,320,376,191,308,310,271], 

[129,220,156,130,200,291,165,203,233,273],[163,186,173,124,247,254,179,226,248,218], 

[206,185,172,172,223,290,159,220,226,264],[273,263,199,220,310,403,195,278,304,306]] 
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Table 5.15:  The values of the input and output matrices for the 20 × 20 Matrix 

Multiplication example 

Input 

Matrix A 

[[2,1,7,2,3,3,9,6,1,6,2,2,3,0,8,0,3,4,2,2],[8,0,8,0,7,3,2,3,1,3,1,1,4,7,0,5,4,5,1,0], 

[8,7,9,2,1,6,3,5,5,0,6,4,0,0,0,3,0,4,2,8],[5,1,3,5,3,4,0,6,1,6,0,2,4,0,7,4,7,8,3,1], 

[9,5,0,5,9,7,5,1,4,4,3,0,7,3,9,5,8,5,9,1],[7,9,0,9,2,4,3,9,2,7,7,0,7,2,8,7,7,4,5,5], 

[0,7,8,9,2,3,2,1,5,5,6,8,6,5,1,8,9,9,4,8],[3,7,1,0,8,6,8,2,8,9,1,3,4,0,1,6,3,8,4,7], 

[4,8,8,4,2,0,4,6,9,7,1,2,2,1,1,0,5,3,1,1],[6,7,1,5,7,1,0,1,7,4,3,1,1,2,8,4,6,8,5,5], 

[9,3,0,8,7,8,9,6,6,2,0,3,4,8,0,5,4,9,5,1],[7,3,7,4,7,7,1,2,5,9,0,3,4,2,6,4,0,2,7,6], 

[4,2,2,8,7,3,3,1,7,6,0,4,0,3,9,2,9,1,4,2],[1,9,0,9,3,0,9,9,0,6,2,3,0,5,5,4,9,5,2,6], 

[3,4,1,7,2,0,2,5,8,7,9,5,0,1,7,8,0,7,2,7],[0,7,1,3,8,1,2,7,5,5,5,7,4,7,5,5,7,6,5,6], 

[2,9,7,5,7,5,9,9,4,3,0,4,9,2,7,8,6,7,7,3],[9,2,0,5,7,3,6,3,4,8,9,4,3,1,6,1,7,6,1,5], 

[2,8,1,4,1,1,4,3,2,8,8,9,9,9,2,3,5,7,8,4],[9,1,6,1,8,0,4,3,5,8,9,2,2,6,5,0,6,2,0,6]]; 

Input 

Matrix B 

[[4,0,4,7,8,8,4,2,5,9,7,1,8,8,3,2,1,4,4,9],[8,0,3,1,2,3,7,4,7,1,2,1,8,4,1,2,4,7,6,4], 

[2,9,4,6,0,5,9,9,1,2,9,9,1,7,4,8,1,3,4,9],[7,8,7,5,7,9,2,6,2,9,8,5,3,0,3,0,1,7,4,4], 

[0,7,7,8,2,3,9,0,6,6,3,3,8,1,7,9,5,7,7,0],[0,6,5,7,3,6,7,3,1,5,5,6,8,1,8,2,6,5,2,1], 

[9,1,9,7,3,5,3,9,5,2,8,5,4,3,1,5,1,0,7,4],[7,8,6,9,0,7,5,7,2,9,8,9,6,8,4,0,7,0,5,3], 

[3,0,9,9,1,6,9,8,1,1,4,0,7,8,2,7,4,3,4,7],[7,8,6,4,9,1,8,8,2,4,7,6,2,7,7,3,0,4,8,9], 

[3,7,1,0,2,7,1,1,5,6,4,4,7,0,6,1,7,2,1,8],[4,1,6,4,9,1,2,3,8,5,6,6,3,7,6,9,9,2,2,7], 

[5,4,6,2,3,1,4,0,2,9,6,7,5,1,2,0,8,1,8,6],[4,1,8,9,0,3,8,2,9,7,2,2,8,9,5,0,1,1,4,4], 

[1,8,9,9,2,1,7,8,6,1,9,8,6,3,8,4,1,8,1,4],[2,2,4,9,5,2,6,1,1,0,9,1,0,9,0,8,9,6,7,9], 

[8,2,4,5,2,8,6,1,7,7,8,8,8,5,0,5,3,7,1,2],[2,2,8,2,5,1,0,6,2,6,9,6,1,8,4,8,2,8,1,3], 

[4,6,0,7,7,9,9,1,3,0,2,2,3,9,9,2,2,6,4,6],[5,7,6,7,0,7,5,3,7,4,9,7,4,2,6,1,0,3,9,1]]; 

Output 

Matrix C 

[[299,355,411,399,216,285,364,378,248,291,477,409,301,310,303,270,188,259,293,323], 

[222,254,354,400,209,272,380,226,246,343,401,295,317,377,250,287,220,254,287,339], 

[293,311,364,409,223,397,386,328,279,319,471,340,364,372,303,283,263,280,322,392], 

[288,345,405,412,289,309,373,308,243,368,505,398,322,373,305,280,238,361,276,338], 

[393,411,543,597,385,474,581,341,405,460,589,429,551,460,437,366,335,503,424,460], 

[503,485,548,575,382,515,544,411,410,522,674,506,540,478,416,285,377,477,474,517], 

[473,445,571,542,381,479,545,415,431,484,690,527,457,529,404,441,395,478,462,543], 

[382,338,527,513,332,365,517,383,336,347,549,384,425,451,369,409,316,396,468,417], 

[359,281,401,386,224,335,421,386,250,306,436,333,348,391,235,285,206,278,323,384], 

[324,337,468,479,298,380,473,329,353,351,506,345,431,418,354,345,244,452,342,384], 

[420,334,593,614,375,481,509,385,376,517,587,402,511,517,379,366,339,409,431,435], 

[311,440,477,548,344,391,559,371,309,361,535,403,408,441,442,339,263,393,426,454], 

[330,349,475,507,300,378,480,346,339,344,488,367,416,372,345,330,216,397,312,356], 

[496,374,519,502,294,421,441,408,413,424,584,454,433,420,316,286,261,387,408,362], 

[352,393,493,482,328,378,417,401,325,356,570,381,371,433,372,340,312,380,373,473], 

[420,406,546,554,309,408,542,356,449,445,567,457,496,497,419,383,379,419,431,433], 

[503,490,648,674,369,490,645,492,426,486,731,574,533,568,438,464,438,497,536,528], 

[397,398,520,487,359,432,438,367,398,479,587,441,488,389,399,340,292,395,380,443], 

[476,378,514,471,395,407,494,348,453,476,557,455,472,512,426,319,375,382,437,522], 

[347,387,475,488,260,399,477,346,392,430,520,404,469,401,377,318,235,317,373,441]] 

 

Table 5.16: The AES values for the Matrix Multiplication problem 10×10 

Cores IOSSS IOMSS RFSSS RFMSS CMSS 

2 74.40 51.25 74.40 51.25 51.35 

3 55.30 34.80 55.30 34.47 34.57 

4 43.35 26.63 43.35 26.08 25.98 

5 35.76 21.52 35.76 21.24 21.02 

6 29.70 18.22 29.70 17.70 17.68 

7 25.57 15.87 25.57 15.59 15.14 

8 22.68 14.01 22.68 13.64 13.39 

9 20.23 12.71 20.23 12.18 11.92 

10 18.34 11.34 18.34 11.10 10.75 
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Figure 5.11: Sketching the results in Table 5.16 

Table 5.17: The AES values for the Matrix Multiplication problem 20×20 

Cores IOSSS IOMSS RFSSS RFMSS CMSS 

2 299.65 201.60 299.65 201.60 201.50 

3 221.67 135.13 221.67 134.80 134.70 

4 174.93 101.95 174.93 101.40 101.13 

5 143.50 82.62 143.50 81.34 81.16 

6 121.62 69.40 121.62 68.07 67.78 

7 104.56 59.93 104.56 58.47 58.13 

8 93.05 52.76 93.05 51.30 50.95 

9 83.29 47.21 83.29 45.77 45.34 

10 74.96 42.67 74.96 41.28 40.87 
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Figure 5.12: Sketching the results in Table 5.17 

The results clearly show an improvement in the performance of the models when the 

number of cores increases, in addition, the AES values in the 20×20 example are higher 

than those in the 10×10 example due to the problem size. On the other hand, the results 

of the IOSSS and RFSSS are distinguishable since they steal single threads while the 

other schedulers show better performance. 

5.6   Discussion  

There are three major factors that have direct influence on the results, they are:  

(a) The number of cores and problem size: Although these are two different factors, 

nevertheless, these two factors did not come up with something new. It was expected 

that, the increase in the number of cores with a fixed problem size will definitely lead to 

better results, i. e. low values of AES. The same thing can be said for the problem size. 

As the problem size increases, the AES values will also increase. However, the only 

exception may be happening in the case of binary search since this kind of D&C 

problem does not necessary depend on the number of cores and problem size comparing 

with other D&C problems. In binary search, the searched element may be found from 
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the first step or after few steps, however in other D&C problems such as matrix 

multiplication, we have to multiply all the rows by all the columns. Therefore, the 

increase in the problem size has a strong influence on problems such as matrix 

multiplication, towers of Hanoi, Fibonacci; however, it may not have the same influence 

on the binary search problem.  

 (b)  The stealing strategy: The stealing strategies have different issues: 

I- The results of the strategies designed to steal a single thread at a time showed a 

poor performance compared with the good performance of those strategies designed 

to steal more than one thread at a time. The reason behind this goes to the extra 

number of execution steps in the single stealing strategies. On the other hand, the 

single stealing strategies are simple and easy to implement. In addition, the single 

stealing strategies may be preferred when the system deals with heavy threads (a 

thread that carries a lot of computations, and at the same time, the number of threads 

in all the cores are few. In such a case, it will be more convenient to use single 

stealing strategies such as IOSSS or RFSSS.  

II- The location of the main thread is decided by the programmer prior to the 

simulation process. Choosing the first core has an effect on the IOSSS and IOMSS 

results. Changing the location of the main thread will weaken these two strategies 

since the stealing may not be from the wealthiest core. On the other hand, the results 

showed that IOSSS and RFSSS are convergent since the main thread resides in the 

first core and there is a good chance to keep the first core as the wealthiest core. 

However, changing the main thread’s location to another core, say in the middle of 

cores, will not have an effect on the RFSSS or RFMSS since the victim core is 

chosen to be the wealthiest core no matter its location. 

III- The CMSS showed the best performance, however, this strategy is costly since it 

deals with all the cores. In the future, the number of cores may reach hundreds or 
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even thousands. It will be highly costly to instruct the majority of the cores to give up 

some of their threads for a single or even few idle cores. This is why PMSS can be 

more convenient than CMSS in such cases. 

(c) The number of generated threads in one step.  

One of the important things that the researcher has achieved in this study is the 

development of partitioning techniques that suit multicore technology. The results 

showed that the performance of the model would be better when more threads can be 

generated in one step. This is because the number of stolen threads decreases when 

cores become saturated with threads. However, one of the D&C problems represents an 

exceptional case to what has been mentioned above. THLLS will not be able to generate 

more than two threads at a time, simply because there is no chance to move more than 

one disk at a time. The movements’ generation should be serial, and this is the weakness 

of the concurrency requirement in this study. Therefore, we can conclude that not every 

D&C problem fully coincided with multicore technology. 

 

An important issue that the researchers addresses in this section is that it would be vital 

to compare the results of this study with other studies’ results for the sake of 

highlighting the strength and weakness points of the researcher's work. In other words, 

running a benchmark test that shows the quality of this study versus other studies would 

be significant, however, this is could not be achieved. The main reason behind this is 

due to the lack of finding similar studies. This is because this study has been built on 

three elements that work together to support the uniqueness of the results: 

(a) Workload Partitioning Techniques 

The subject of D&C problems is not new; there are too many papers that studied the 

characteristics of such problems. However, in this study, the researcher develops new 
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techniques for partitioning the workload of D&C problems being solved on a multicore 

environment. Most researches that cover D&C problems focus on a single-processor or 

parallel processors architectures where each processor has its own memory. However, 

this study focuses on solving D&C problems on a multicore architecture where all the 

cores share a common memory. This will definitely generates a class of results that 

cannot be compared with other studies that have been implemented in totally different 

architectures. 

(b) Workload Balancing Strategies 

The work-stealing strategies developed by the researcher have strong influence on the 

results. The behaviour of the modelled systems varies depending on the adopted 

strategy. For instance, using a single-stealing strategy differs from multi-stealing 

strategy. The first strategy suits the systems that have relatively few number of heavy 

weight threads while the second strategy suits the systems that have many light weight 

threads.  In spite that these strategies reach the same result; yet, these strategies 

consume a different number of execution steps which make any comparison with other 

studies illogical and unrealistic.  

(c) The Modelling Language  

The modelling language has a clear impact in supporting the uniqueness of the results 

generated by this study. The researcher has chosen CPN language for modelling the 

proposed models since this language is dedicated for modelling concurrent systems, and 

since we have more than one core working concurrently, then the CPN language would 

be the right choice for modelling. However, modelling concurrent systems is a difficult 

task due to the non deterministic behaviour of such systems. In CPN models, more than 

one transition can be executed at the same time and the process of choosing the 

transitions is completely randomized. That is, in each run, we may have a different 

sequence of transitions. This is in contrast with the imperative languages such as C-like 
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languages where a pre determined sequence of execution steps has to be followed. In 

other words, a CPN model may run in a different sequence each time the model is 

executed because the language is built on picking transitions randomly. 

  

In conclusion, the three elements: the workload partitioning techniques, workload 

balancing strategies, and the modelling language all lead to distinctive results. Any 

comparison with other studies must be built on the basis on having the same modelling 

language and the same utilized architecture. 

 

5.7   Summary 

The researcher started this chapter by giving a glimpse on the importance of simulation 

and modelling. Then, the researcher provided a quick look into the main features of 

CPN-Tool and its GUI. Following that, the researcher explained how the outputs of the 

simulation and monitoring processes have been registered. Next, the researcher 

presented the AES equation which represents the criteria adopted by the researcher in 

this study to obtain a trade-off between the results of simulation. Subsequently, the 

researcher showed the results of executing of the CPN models for every D&C problem.  

The researcher organized the results (AES values) insides tables and sketched them as 

histograms by using MS-Excel. The tables and histograms showed the relation between 

the increases in the number of cores versus the redistribution strategies proposed by the 

researcher.
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

 

6.1   The Problem Addressed by This Study in Brief 

This study addresses one of the important challenges facing the software both in the 

academic and the industry fields. It is the adaptation of software with the multicore 

environment. This adaptation is taken as a primary concern of software companies since 

the early models of multicore computers. The hardware industry succeeded in solving 

the obstacles that face the single-processor products through the replication of the 

processing elements. Nevertheless, software could not adapt easily with such 

development in the hardware. There is still a gap between the hardware and the software 

in the sense that software developers could not duplicate the speed of their products as 

the hardware manufacturers replicated the cores into dual, quad, and octal cores. Part of 

the problem goes back to the computer architecture itself where having a common main 

memory creates a kind of competition between the cores that are trying to utilize this 

memory at the same time. However, the main problem lies with the software itself 

where the majority of the current software being designed to be run on a single-

processor environment, the process of mapping the software onto the multicore 

architecture becomes the developers’ nightmare. Despite the improvements that have 

been made on the software toward the enhancement of the concurrency characteristic, 

yet software need to be more improved to achieve better performance. 

 

6.2   The Purpose of the Thesis in Brief 

Univ
ers

ity
 of

 M
ala

ya



141 
 

In this thesis, the researcher has directed his effort to deal with a class of algorithms, i.e. 

D&C, which plays a major role in scientific and non-scientific applications. However, 

this class of software still lacks the adaptation with a multicore environment (Miller & 

Vandome, 2010). Precisely, the researcher found that the concurrent characteristic in 

D&C techniques is still low and needs to be improved. Therefore, this thesis is 

concerned with solving D&C problems (Fibonacci Series, Towers of Hanoi, Binary 

Search, and Matrix Multiplication) on a multicore environment in a way that can 

achieve a high level of concurrency.  

6.3   The Achievement of Research Objectives and Thesis Contribution 

In this section, the researcher reviews the objectives that have been stated in Section 

1.4. The researcher re-examines these objectives and explains what has been achieved 

for these objectives. In addition, the researcher addresses the research’s contributions 

that have been achieved in this study.  

6.3.1   The Achievement of Research Objectives 

The researcher has achieved the research objectives stated in Section 1.4 of this study as 

follows: 

Objective (a): The proposed workload distribution scheduler was able to manage 

threads distribution among the cores. If any core becomes idle, the scheduler 

immediately checks whether there is any core that has extra threads, in such a case, the 

scheduler steals some of those extra threads and gives them to the idle core. As a result, 

no core is left idle unless the rest of the cores have a very small number of threads and 

at which the process of stealing threads becomes useless. In addition, the scheduler 

achieved the objectives of being scalable and concurrent. The scheduler showed 

complete flexibility in dealing with any number of cores (but only maximum ten cores 

had been tried) and only restricted by the modelling tool capabilities. Finally, 
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concurrency always was one of the main objectives in this study. The scheduler 

mechanism in redistribution of the threads led to an increase of concurrency level 

among the cores. 

Objective (b): The proposed core scheduler dealt with the D&C problems separately. In 

other words, the researcher achieved the second objective through designing a separate 

core scheduler for each D&C problem. In spite of the differences in the way of 

designing the threads and partitioning the workload, yet every proposed core scheduler 

creates a tree (binary or non binary) of threads. In addition, the third objective of this 

scheduler which is related to solving the D&C problems has also been achieved. That is 

to say, in addition to be able to partition the workload, the scheduler uses its threads to 

solve part of the given D&C problem. 

Objective (c): This objective has been achieved through using the elements of CPN in 

designing the models. The researcher relied on the SML in programming the 

mechanisms of workload distribution scheduler and the core schedulers. Therefore, 

there were several mechanisms of the core schedulers’ since we have different D&C 

problems. On the other hand, although we have one workload distribution scheduler, 

nevertheless, the researcher proposed different strategies written in SML to control 

workload distribution. 

Objective (d): The researcher has employed the facilities of the CPN-Tool towards the 

reduction of the idleness of the cores. The use of the GUI of the tool clearly shows the 

execution of the schedulers. This has had a significant benefit in confirming the right 

execution of partitioning and redistributing the threads, in addition, to calculating partial 

results. Moreover, the GUI of the tool confirmed that no core remained idle, and at the 

same time, there was a chance to change that core to non-idle. In other words, the GUI 
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of the tool had a significant impact on performing the simulation and monitoring 

processes. 

 

 

6.3.2   Thesis Contribution 

The research designed concurrent multithreaded models using CPN as a modelling 

language and CPN-Tool as the modelling tool. These models are able to solve D&C 

problems (Fibonacci Series, Binary Search, Towers of Hanoi, and Matrices 

Multiplications) on multicore environment. The research contribution can be stated as 

follows: 

(a) For each D&C problem, the researcher designed nine models, they are: two-core, 

three-core, four-core, five-core, six-core, seven-core, eight-core, nine-core, and ten-core 

models. The models are expandable to add more cores. 

(b) Every designed model has the ability to redistribute its threads by using one of the 

redistribution work-stealing based strategies: InOrderSingleStealing, 

InOrderMultiStealing, RichestFirstSingleStealing, RichestFirstMultiStealing, 

CompleteMultiStealing, PartialMultiStealing strategies. These mechanisms vary in their 

ability (efficiency) and simplicity; however, they all seek to balance the threads among 

the cores. 

(c) The researcher has developed new distinct mechanisms to partition the workload of 

the D&C problems, i. e. a mechanism for each D&C problem. The mechanisms suit 

well the multicore environment because of their ability in partitioning the workload 

quickly which makes it easier for the redistribution strategies in reallocating the threads. 
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The mechanisms also show high flexibility in dealing with different sizes of D&C 

problems.  

(d) The distribution strategies work in harmony along with partitioning mechanism to 

reduce the idleness of the cores and raising the concurrency level inside the models. 

 

6.4   Conclusion of Workload Partitioning 

(a) In this study, the researcher has proposed a representation to the D&C workload 

called it a “Thread”, where a thread is n-tuple of parameters. Every D&C problem is 

represented with a single thread. A thread can be divided into two or more sub threads. 

A thread has parameters which signify the elements of the D&C problem. For instance, 

a binary search thread holds the name of the array (list), the start index, the end index, 

and the searched element. In general, the threads’ parameters vary in their number and 

types depending on the type of D&C problem. 

(b) To partition the workload, the researcher proposed several mechanisms (low-level 

schedulers) that partition the workload (main thread) into sub threads. Every D&C 

problem has its own scheduler that works on partitioning its threads. The way of 

partitioning and the number of generated threads vary from scheduler to scheduler; in 

addition, some schedulers may have different ways of partitioning. For instance, the 

researcher proposes two schedulers for the matrix multiplication problem: the MMLLS 

for generating two threads at a time, and DMMLLS for generating many threads at a 

time.  

In general, the schedulers that produce only two sub threads at a time show the worst 

performance, while the one that produces many threads at a time prove its efficiency. 

The reason behind this is that, with the latter type of schedulers, more idle cores can be 
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reinitiated to work at the same time. Therefore, the Towers of Hanoi scheduler was the 

worst since this game can produce a move and two sub threads at a time. The game is 

actually not suitable for concurrent environment since there is no chance to move two or 

more disks at a time. On the other hand, both Binary Search and Matrix Multiplication 

schedulers prove their efficiency since they can generate many threads at a time. In the 

Binary Search case, many searching areas can be checked at the same time. The same 

thing can be said in the Matrix Multiplication where the rows from the first matrix can 

be multiplied with the columns from the second matrix at the same time. On the other 

hand, the Fibonacci scheduler can be redirected to generate two, four, eight, sixteen, etc 

threads or more. The higher the number of generated threads at a time, the better the 

performance that can be achieved. 

(c) The guard mechanism related to the core scheduler proves its effectiveness in 

enabling / disabling the core for processing threads. The mechanism unlocks the core 

when the core has threads inside it and there are no idle cores in the model, otherwise, 

the scheduler is locked to open the way to the HLS to redistribute the threads. The 

behaviour of the guard guarantees the achievement of the concurrency in execution and 

the justice in distributing the threads among the cores. In general, the guard mechanism 

is important for balancing the workload among the cores. 

6.5   Conclusion of Workload Distribution 

(a) The creation of threads will not be effected till the availability of mechanisms that 

distribute those threads to the cores. Therefore, the researcher proposed five 

mechanisms (high-level schedulers), namely IOSSS, IOMSS, RFSSS, RFMSS, PMSS 

and CMSS. These strategies work on the basis of work-stealing. However, in this study, 

the stealing process is centralized, in the sense that there is a special core that is 
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responsible for coordinating stealing threads from the victim cores and submits these 

threads to the thief cores.  

(b) The IOSSS is easy to implement and does not need extra calculation. This strategy 

can be so effective when the majority of the cores are wealthy with threads and only one 

or two cores are in an idle situation. Applying this strategy will not bother or interrupt 

other cores, and the thief cores can be fed easily from the first encountered wealthy 

core. However, if there are several thief cores, then applying this strategy is not worth 

while since as soon as a thief core gets its single thread, it turns to be thief again as soon 

as the core has finished processing its thread. 

(c) The IOMSS is also easy to implement as the IOSSS, however, the IOMSS is more 

effective since it enforces the chosen victim core to give up half of its thread to the thief 

core. As a result, the thief core that has got the threads spends more time till it becomes 

a thief again comparing with its counterpart in the IOSSS where the thief core gets a 

single thread. 

(d) The efficiency of the RFSSS lies between IOSSS and IOMSS. In general, the 

RFSSS performance is better than the IOSSS when there are more than one thief core. 

In this case, the IOSSS may deal with a poor victim; however, the RFSSS locates the 

wealthiest core. As a result, the RFSSS reduces the time of calling the distribution 

process. As in the IOSSS, the RFSSS can be useful when most of the cores are wealthy 

and few of the cores are idle. 

The deficiency in the IOSSS and RFSSS is caused by the single stealing. The RFMSS 

overcomes this deficiency by allowing sharing the threads of the wealthiest core. The 

RFMSS shows better performance than the IOMSS since the thief core gets a share of 

threads higher than the share comes by the IOMSS since the chosen victim in IOMSS 

may not be the wealthiest victim. 
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(e) The CMSS can be evaluated as the best distribution strategy. It has the ability to 

balance the workload among all the cores; victims and thieves but that comes with a 

price. This strategy needs extra calculation to fit the amount of threads that each core 

must get, in addition, all the cores will be hindered for deciding which core gives and 

which core gets. As a result, this strategy suits the case where there are many thieves 

and many victims. 

(f) The PMSS represents a special case in this study. This mechanism is based on 

excluding the cores that have a small number of threads and focusing on zero-thread 

cores and wealthy cores. It will be waste of time to interrupt poor cores especially when 

the system has several hundreds of cores. It is more convenient to spotlight on wealthy 

and zero-thread cores. However, since the CPN-Tool executes a single transition at a 

time, the PMSS could not achieve distinguished results. The PMSS results were 

identical to the CMSS; therefore, the researcher did not include these results with other 

strategies’ results. 

(g) The guard mechanism that is related to the HLS has special significance since it 

controls the distribution of threads among the cores. This guard opens the way to 

transfer the threads only when there are victim and thief cores at the same time, 

otherwise, the guard deactivates such transfer. 

6.6   CPN Modelling of the Mechanism   

The interesting thing in CPN is that the repeated execution of any model may happen in 

different paths. That is, the execution paths of the models are not unique. This is 

because of the non deterministic nature of this modelling language which makes it 

suitable to model multicore environment.  However, the different execution paths lead 

to the same destination and generate the desired result. On the other hand, the CPN-Tool 

was the right choice for this study. The GUI provided by this tool enables the researcher 
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to interact with model during the design, simulation, and monitoring processes. 

However, the tool is not able to execute two transitions at the same time. Although, this 

might be more helpful for the study, nevertheless, the tool provides a complete 

overview on the active transitions in the entire model. 

 

 

6.7   Findings of the Simulation  

(a) The simulation results have shown a high stability towards the increase in the 

number of cores. The simulation of all the models shows a gradual and stable 

improvement in the values of the average of execution steps as moving from a model 

with a low number of cores to one with a higher number of cores. 

(b) The general observation of the low-level schedulers reveals that schedulers that 

produce only two threads at a time are not suitable for multicore environment in the 

sense that they cannot satisfy the cores’ need. On the other hand, low-level schedulers 

with a higher number of threads produced at a time can easily satisfy the cores’ need. In 

other words, the cores will be busy and they no longer need any rescheduling to the 

threads. 

(c) The high-level schedulers vary in their influence depending on the number of 

threads that can be generated by the low-level schedulers. The results of the single 

stealing strategies converge with the multi stealing strategies when adopting the low-

level schedulers with few numbers of threads. However, the performance of the high-

level schedulers becomes distinctive when adopting the low-level schedulers with a 

high number of threads. 

6.8   Future Work 
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6.8.1   Work Related to the Low-Level Schedulers 

6.8.1.1   Thread’s Weight 

Thread’s weight points to the amount of data that a thread is going to deal with. For 

instance, the thread designed for matrix multiplication is dedicated for multiplying a 

single row by a single column. For this point, a research can be conducted to investigate 

the extent of the benefit that can be achieved when designing a thread to multiply a 

single row by all the columns instead of one column.  Increasing the weight of the 

thread might be useful in making the core that processes the threads more busy; 

however, when one of the cores becomes idle, then it would be difficult to steal parts of 

the threads. Therefore, there should be an accurate and practical study on the increase in 

the thread’s weight.  

6.8.1.2   Number of Generated Threads 

The number of threads that is generated by the low-level schedulers plays a main role in 

this study. This number, if well computed, will be the key to achieve a high level of 

concurrency.  A research can be conducted to find a relation between the size of the 

problem and the number of the cores. That is, designing a function that can compute the 

suitable number of threads needed to be generated for a given problem size and a given 

number of cores.  

6.8.2   Future Work Related with the High-Level Schedulers 

6.8.2.1   Scenario of Launching the High-Level Scheduler 

The process of launching a high-level scheduler is costly since it freezes all the cores 

from continuing their job. In this thesis, whenever a core becomes idle, it turns to be a 

thief and this thief core waits for the high-level scheduler to get thread(s).  This scenario 

could be investigated in certain directions, such as, when one of the cores becomes idle; 
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then it would not be necessary to freeze all the cores. A single or a few number of 

victim cores can deal with this situation. Another point is, is it necessary to launch the 

high-level scheduler when only a single core becomes idle? In other words, is it always 

worthy to launch the high-level scheduler when one or two cores become idle? It is 

possible to highlight this point with more attention.  

 

6.8.2.2   Diversity in High-Level Schedulers 

In this thesis, the researcher suggests several high-level schedulers. However, a model 

can run only a predetermined distribution strategy. Now, since the contents of the cores 

are dynamically changed, the distribution strategy should also change to fit the current 

requirements of the model. For that reason, research can be conducted to make choosing 

of the distribution strategy dynamic, i.e. based on the number of threads in the cores, the 

high-level scheduler decides whether it should apply IOSSS or IOMSS, etc.  

6.8.2.3   Choosing the Heaviest Threads 

The high-level schedulers redistribute the threads between the cores. A research can be 

conducted regarding what threads should be moved and what threads should be kept 

inside the victim cores. For instance, in the Fibonacci case, is it worth to steal a thread 

that headed a large sub tree or it is better to leave it inside its core? An immediate 

answer to this question is to leave it inside its core since this will improve the locality. 

However, in the case of IOSSS or RFSSS in an environment that has few victim 

wealthy cores, it would be worthy to steal heavy threads so that the stolen threads make 

the thief cores busier. 

6.9   Limitation of Schedulers 
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The main limitation in the LLSs is they are designed for solving D&C problems where 

problems can be partitioned into sub independent problems. This kind of technique does 

not suit a wide range of problems which makes the proposed LLSs unsuitable for non 

D&C problems. In addition, each LLS is oriented to solve a specific D&C problem, i.e. 

the design of the LLS is unique and closely related to the type of the D&C problem. 
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APPENDIX I 

COLORED PETRI NETS  

This appendix is dedicated for giving a brief explanation with examples to the modeling 

language that is used in this thesis. Colored Petri Nets (CPN) is a language designed for 

modelling and validating concurrent systems (Jensen & Kristensen, 2009). The 

language combines Petri Nets and SML where the aspect of Petri Nets is responsible for 

providing the basics for modeling concurrency and communication between the 

elements of the models, in addition to providing the graphical notations for the designed 

models. On the other hand, the SML enables CPN to define data types, writing 

expressions and writing user defined functions besides using a rich library of built-in 

functions.  CPN is a dynamic language; in other words, a system modeled in CPN can 

be executed. It is possible to represent a system’s states (places) and events (transitions) 

that can cause the system’s states to be changed. In this appendix, the researcher focuses 

on two subjects related with CPN: the first one is about the main elements that construct 

any CPN model while the second subject is related to building hierarchical CPN.  

I.1 CPN Main Elements 

In CPN, we can distinguish three types of graphics which constitute the elements of the 

model: 

(a)   Places  

In CPN, a place is an oval shape that holds tokens. It is also referred to as system state. 

A token is a combination of the occurrence of the data and the data itself. Figure I.1 

shows an example of a place named P1. Places in CPN have several characteristics: 
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I- A place has a data type (color set). In CPN, each place has a compulsory color set that 

can be simple such as: Integer, Boolean, String, Enumerated, or it can be compound 

such as: Product, Record, and List. The inscription of the place’s color set is located at 

the lower right corner of the place. The type of the place in Figure I.1 is INT (Integer). 

II- A place in CPN may have an initial value called the initial marking which is located 

at the upper right corner. The inscription of the initial marking consists of the tokens 

that reside in the place before executing the model. In Figure I.1, the initial marking has 

only one token which is 1`1, that is, place P1 has one occurrence of data with the value 

one.  

III- A place in CPN may have a current marking. The current marking consists of two 

shapes: a circle which includes the current number of tokens in the place and a rectangle 

which includes the tokens’ details. In Figure I.1, the circle has the number one which 

means we have one token and the rectangle includes 1`1 which indicates that we have 

one data with value one. The main difference between the initial and current markings is 

the first one never changed during the simulation process while the second may change.  

                 

Figure I.1: An example of a place 

 

Figure I.2 shows another example for a CPN. It has two places (P1 and P2). Both places 

of the same type, INT, however, they differ in the initial and current markings.            

Initial Marking 

Color Set 

Current Marking 
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Figure I.2: An example of a CPN that is designed to find the summation of numbers  

from 1 to 10 

 

(b)   Transitions 

A transition is the CPN element that when executed, can change the state of the system. 

A transition has a rectangle shape and it is connected with the places through directed 

arcs. Usually, transitions receive token(s) from input place(s) and send token(s) to the 

output places. In Figure I.2, there is a single transition called T1 which is connected 

with input place (P1) and the output place (P2). A transition may have the following 

characteristics: 

I- A transition may have a guard which represents a Boolean expression. A value 

“True” of the guard allows the transition to be executed if there are enough tokens in the 

input places. Conversely, a guard with “False” value prevents its transition from being 

executed. In Figure I.2, the guard has the value [i ≤ 10] which means any token comes 

from the place P1 exceeds the value 10 will freeze the transition T1. Therefore, a guard 

works like a lock that enables and disables its transition. 

II- A transition may have a code segment which enables the programmer to write code 

in CPN ML. This code segment is executed when the transition is executed. The code 

Univ
ers

ity
 of

 M
ala

ya



164 
 

segment has input, output, and action sections. The input and output sections are 

dedicated for including the input and output arguments that are obtained from the input 

and output places. In Figure I.2, the code segment has the duty of finding the summation 

of the numbers 1 to10. At the beginning, the segment receives the value one from P1; it 

(segment) accumulates it inside the variable total and sends it to P2. Next, when the T1 

is executed for the second time, it (T1) receives the value two (i = 2) and computes the 

summation (1 + 2) and sends it to P2. The process continues until the guard disables T1, 

at that time, P2 has the token (current marking) 1`55 which represents the summation 

for the numbers from 1 to 10. 

III- A transition is enabled to be executed (firing) when its guard inscription returns the 

value True and there are enough tokens in the input place(s), in other words, if the input 

place(s) have no tokens inside them, a transition cannot be executed. On the other hand, 

when an enabled transition fires, it transfers token(s) from the input places to the output 

places causing changes in the system state.  

(c) Directed Arcs 

 The places and transitions cannot work alone. They need a kind of communication that 

transfers the tokens between them. The arcs are used to connect a place with a transition 

and a transition with a place. Any two places cannot be connected by arcs neither any 

two transitions. An arc may have an inscription as shown in Figure. I.2, the arc that 

connects P1 with T1 has the inscription i which indicates that i carries the token from P1 

to T1. 

Executing the model in Figure I.2 makes T1 changes the state of P1 and P2 (Figure I.3). 

The current marking of P1 changes from 1`0 to 1`1, the same thing for P2, its current 

marking chages from 1`0 to 1`1. P1 works as a counter from 1 to 10 while P2 

accumulates the numbers from 1 to 10. After executing T1 ten times, the final state 
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(Figure I.4) shows the P1 holds the value 11 while P2 holds the value 55 which is the 

summation of 1 to 10.  T1 is no more able to be excuted since the value of i excced the 

value 10, this will violate the guard condition which say that the value of i ≤ 10. 

Therfore, T1 is deactivated and the simulation process is stopped. 

 

 

 
 

Figure I.3: Executing the transition T1 for only once 

 

 

Figure I.4: Executing the transition T1 for ten times.  

In CPN, when there is more than one transition in the model, it is the simulator duty to 

search for the enabled transition and executes it. In case there is more than one enabled 

transition at the same time, this makes the simulator to choose one of them randomly. 
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Executing the model again from the beginning may leads to different transitions 

executions; in other words, there is no guarantee that executing the model again will 

generate the same order of transitions executions; this is because of the nondeterministic 

nature of CPN. 

I.2 Hierarchical Structure  

In CPN, it is possible to build a hierarchical structure. In this case, a main model may 

cooperate with sub models to interact with each other. It is similar to the relation 

between main and sub routine in programming languages which ultimately leads too 

model large concurrent systems. Figure I.5 gives an example to a simple hierarchical 

model. The main model (Figure I.5.a) consists of three places (Car, Color, Car and 

Color) and one transition (Connect).  The places Car and Color each has four tokens, the 

++ symbol is used to construct a multi-set of colors. The Connect transition has a 

double line on its border; this means that this is a substitution transition. In this case, 

there should be a substitution model (sub model) associated with this transition. The 

name of the substitution model appears as a small tag on the lower left corner of the 

substitution transition (Figure I.5.a). On the other hand, the substitution model (Figure 

I.5.b) receives the inputs from the places Car and Color and produces the output and 

send it to the Car and Color place. The relation between the main model and the 

substitution model is similar to the one between main program and sub routine in 

programming languages. In Figure I.5.b, the substitution model connect a car’s name 

with a color (the ^ symbol is used for this reason). Figure I.5.c shows the main model 

after executing the Connect transition four times. 
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Figure I.5.a:  A hierarchical CPN model. The main model 

 

 

 

 

 

Figure I.5.b:  A hierarchical CPN model. The sub model 

 

 

Figure I.5.c: A hierarchical CPN model. The main model after four executions to the 

Connect Transition 
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APPENDIX II 

NonBiasedCMSS and NonBiasedPMSS 

This appendix is dedicated for illustrating the mechanisms of NonBiasedCMSS and 

NonBiasedPMSS.  

(a) The mechanism of NonBiasedCMSS 

 

INPUT 

MainList , NumOfCores

(NumOfVictims ,VictimThreads 

,NumOfThieves,OrderdList )  

GetVicThie  (MainList , NumOfCores ,NumOfVictims 

,VictimThreads,NumOfThieves,OrderdList)

START

MainList  NBCMSBalancer

(MainList, 

NumOfCores,VictimThreads,OrderdList)

STOP

NumOfVictims = 0

OR

NumOfThieves  = 0

OUTPUT 

MainList 

Yes

No

NumOfVictims   0 , NumOfThieves    0

VictimThreads    0 , OrderdList  Nil

GetVicThie  (MainList , NumOfCores ,NumOfVictims 

,VictimThreads,NumOfThieves,OrderdList)

Index  1

Index   > 

NumOfCores

Len  Size of the list MainList (Index)

Len = 0

NumOfThieves   

NumOfThieves  + 1

Index  Index + 1

RETURN

(NumOfVictims ,VictimThreads 

,NumOfThieves,OrderdList)

Yes

Yes

No

No

Pair   (Index,Len)

OrderdListAddNewPair 

(OrderdList,Pair)

NumOfVictims  NumOfVictims + 1

VictimThreads  VictimThreads + Len

 
 
 
 

Figure II.1: The NonBiasedCMSS and GetVicThie functions 
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AddNewPair (OrderdList,Pair)

OrderdList= Nil 

RETURN

 Pair

Yes

X  Head’s Pair Of OrderdList

Y  OrderdList Excluding the Head 

Pair

CoreNo  X’s First Parameter

CoreSize  X’s Second Parameter

Pair’s Second 

Parameter > CoreSize

Yes

RETURN

[Pair] ^^ [X] ^^Y

RETURN

[X] ^^ AddNewPair (Y,Pair)

No

No

NBCMSBalancer

(MainList, 

NumOfCores,VictimThreads,OrderdList)

C MOD ProcessedCores = 0

AND

  ( C – VictimThreads ) ≥ 0

C  C + 1 
No

Yes

 TempList  NIL

(MainList,TempList)  GetExtraThreads

 (MainList, NumOfCores, TempList, 

FirstGroup, FirstGroupValue, 

SecondGroup, 

SecondGroupValue,OrderdList)

MainList   UpdateGroups 

(MainList,NumOfCores,TempList,

FirstGroup, FirstGroupValue, 

SecondGroup, 

SecondGroupValue,OrderdList) 

RETURN

MainList

ProcessedCores  NumOfCores

C   VictimThreads  

FirstGroup  ProcessedCores – C+ VictimThreads

FirstGroupValue  C  DIV   ProcessedCores

SecondGroup  C – VictimThreads

SecondGroupValue  FirstGroupValue  -  1

 

 
 

Figure II.2: The AddNewPair and NBCMSBalancer Functions 
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GetExtraThreads

 (MainList, NumOfCores, TempList, FirstGroup, 

FirstGroupValue, SecondGroup, 

SecondGroupValue,OrderdList)

I  1

CNo  OrderdList (I)’s Core No.

TempLen OrderdList (I)’s Size 

(I <= FirstGroup) AND

 (TempLen > FirstGroupValue)  

(I > FirstGroup) AND

 (TempLen > SecondGroupValue)  

I  > NumOfCores

I  I + 1

RETURN

(MainList,TempList)

CutThreads  Cut (TempLen – GroupValue ) threads 

from the list MainList (CNo)

TempList  TempList ^^ CuttedThreads

Yes

Yes

No

No

Yes

No

GroupValue   FirstGroupValue

GroupValue   SecondGroupValue

UpdateOrderedPairList    (MainList, 

NumOfCores, OrderdList)

I  1 , TempList  Nil

Pair   OrderdList(I)

CNo  Pair’s Core’s Number

TempLen  Pair’s Core’s Threads’ Size

TempList  MainList (CNo)

NewPair  (CNo, Size of  TempList)

OrderdList(I)  NewPair

I  > Size of OrderdList

I  I + 1

RETURN

TempList

YesNo

 
 
 

Figure II.3: The GetExtraThreads and UpdateOrderedPairList functions 
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UpdateGroups (MainList,NumOfCores,TempList,

FirstGroup, FirstGroupValue, SecondGroup, 

SecondGroupValue,OrderdList) 

I  > NumOfCores

RETURN

MainList

(CNo,CoreSize)   

OrderdList(I)

VicThi   MainList (I)

VicThiLen  Size of VicThi

I <= FirstGroup 

MainList   UpdateSingleGroup 

(MainList,NumOfCores,TempList,I, 

VicThi,FirstGroup,FirstGroupValue) 

MainList    UpdateSingleGroup 

(MainList,NumOfCores,TempList,I, 

VicThi,SecondGroup,SecondGroupValue) 

I  I + 1

Yes

No

Yes

No

 UpdateSingleGroup (MainList,NumOfCores, 

TempList,I,VicThi,Group,Value)

VicThiLen   length of VicThi

VicThiLen <= Value 

CutThr   Cut (Value – VicThiLen)

 threads from TempList

MainList (I)  

CutThr ^^MainList (I) 

RETURN

(MainList,TempList)

Yes No

I   1 

 
 
 
 

Figure II.4: The UpdateGroups and UpdateSingleGroup functions 
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(a) The mechanism of NonBiasedPMSS 

INPUT 

MainList , NumOfCores

(PartialPairList ,NumOfVictims ,SumVicThr, 

NumOfThieves,PartialFactor)  

GetVicThiePartialList   (MainList , NumOfCores,PartialPairList 

,NumOfVictims ,VictimThreads,NumOfThieves )

START

MainList  NonBiasedPartialMultiStealingBalance 

(MainList, NumOfCores, SumVicThr, PartialPairList )

STOP

NumOfVictims = 0

OR

NumOfThieves  = 0

OUTPUT 

MainList 

Yes

No

NumOfVictims  0 , SumVicThr 0

NumOfThieves  0 , PartialPairList  NIL

PartialFactor  3

 GetVicThiPartialPairList (MainList , NumOfCores, 

PartialPairList ,NumOfVictims , SumVicThr, 

NumOfThieves )

Index  1

Index   > 

NumOfCores

Len  Size of the list MainList (Index)

Len = 0

NumOfThieves   

NumOfThieves  + 1

Index  Index + 1

RETURN

(PartialList ,NumOfVictims, 

SumVicThr,NumOfThieves)

Yes

Yes

Yes

No

No

No

Pair   (Index,Len)

PartialPairList AddNewPair 

(PartiaPairList,Pair)

Len > 1 

AND Len ≥ 

PartialFactor

NumOfVictims  NumOfVictims + 1

VictimThreads  VictimThreads + Len

 

 

Figure II.5: The NonBiasedPMSS and GetVicThiePartialList  
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AddNewPair 

(PartialPairList,Pair)

PartialPairList = Nil 

RETURN

 Pair

Yes

X  Head’s Pair Of PartialPairList  

Y  PartialList Excluding the Head 

Pair

CoreNo  X’s First Parameter

CoreSize  X’s Second Parameter

Pair’s Second 

Parameter > CoreSize

Yes

RETURN

[Pair] ^^ [X] ^^Y

RETURN

[X] ^^ AddNewPair (Y,Pair)

No

No

NonBiasedPartialMultiStealingBalance 

(MainList, NumOfCores, SumVicThr, PartialPairList )

C MOD ProcessedCores = 0

AND

  ( C – SumVicThr) ≥ 0

C  C + 1 

No

Yes

(MainList,TempList)  NonBiasedGetThreads 

 (MainList, NumOfCores, PartialPairList 

,FirstGroup, FirstGroupValue, SecondGroup, 

SecondGroupValue)

MainList   NonBiasedUpdateGroups 

(MainList,NumOfCores,TempList,

PartialPairList , FirstGroup, FirstGroupValue, 

SecondGroup, SecondGroupValue,I) 

RETURN

MainList

ProcessedCores   (Size of PartialPairList ) 

C   SumVicThr

FirstGroup  ProcessedCores – C+ SumVicThr

FirstGroupValue  C  DIV   ProcessedCores

SecondGroup  C – SumVicThr

SecondGroupValue  FirstGroupValue  -  1

 

PartialPairList  UpdatePartialPairList (MainList, 

NumOfCores, PartialPairList,TempList)

 

 

Figure II.6: The AddNewPair and NonBiasedPartialMultiStealingBalance 
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UpdatePartialPairList (MainList, NumOfCores, 

PartialPairList)

I  1 , TempList  Nil

Pair   PartialPairList (I)

CNo  Pair’s Core’s Number

TempLen  Pair’s Core’s Threads’ Size

TempList  MainList (CNo)

NewPair  (CNo, Size of  TempList)

PartialPairList (I)  NewPair

I  > Size of 

PartialPairList 

I  I + 1

RETURN

TempList

YesNo

 NonBiasedGetThreads (MainList, NumOfCores, 

TempList, PartialPairList , FirstGroup, FirstGroupValue, 

SecondGroup, SecondGroupValue)

I  1

CNo  PartialPairList (I) Core’s Number

Len  PartialPairList (I) Core’s Size

(I <= FirstGroup) AND

 (Len > FirstGroupValue)  

(I > FirstGroup) AND

 (Len > SecondGroupValue)  

I  > Size of PartialList

I  I + 1

RETURN

(MainList,TempList)

CutThreads  Cut (TempLen – GroupValue ) threads 

from the list MainList (CNo)

TempList  TempList ^^ CuttedThreads

Yes

Yes

No

No

Yes

No

GroupValue   FirstGroupValue

GroupValue   SecondGroupValue

 

 

Figure II.7: The NonBiasedGetThreads and UpdatePartialPairList functions 
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NonBiasedUpdateGroups 

(MainList,NumOfCores,TempList,

PartiaList, FirstGroup, FirstGroupValue, SecondGroup, 

SecondGroupValue) 

I  > Size of 

PartiaList

RETURN

MainList

(CNo,CoreSize)   PartiaList (I)

VicThi    MainList(CNo)

VicThiLen  CoreSize

I <= FirstGroup 

MainList   UpdateAnyGroup 

(MainList,NumOfCores,TempList,CNo, 

VicThi,FirstGroup,FirstGroupValue) 

MainList   UpdateAnyGroup 

(MainList,NumOfCores,TempList,CNo, 

VicThi,SecondGroup,SecondGroupValue) 

I  I + 1

Yes

No

Yes

No

UpdateSingleGroup (MainList,NumOfCores, 

TempList,CNo,VicThi,Group,Value)

VicThiLen   Size Of VicThi

 Value <= VicThiLen 

RETURN

(MainList,TempList)

Yes

No

I  1

CutThr   Cut (Value – VicThiLen)

 threads from TempList

MainList (CNo)  CutThr ^^ MainList (CNo) 

 

 

 
 

Figure II.8: The NonBiasedUpdateGroups and UpdateSingleGroup 
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