

AN APPROACH TO MODELLING AND SIMULATING

MULTITHREADED SCHEDULERS FOR DIVIDE AND CONQUER

PROBLEMS ON MULTICORE ARCHITECTURE

ALAA MOHAMMED ALI WADI AL-OBAIDI

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

AN APPROACH TO MODELLING AND SIMULATING

MULTITHREADED SCHEDULERS FOR DIVIDE AND CONQUER

PROBLEMS ON MULTICORE ARCHITECTURE

ALAA MOHAMMED ALI WADI AL-OBAIDI

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Alaa Mohammed Ali Wadi Al-Obaidi

Passport No:

Registration/Matric No: WHA080001

Name of Degree: PhD in Computer Science

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

AN APPROACH TO MODELLING AND SIMULATING MULTITHREADED

SCHEDULERS FOR DIVIDE AND CONQUER PROBLEMS ON MULTICORE

ARCHITECTURE

Field of Study: Concurrency Modelling

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or

production of any copyright work has been disclosed expressly and

sufficiently and the title of the Work and its authorship have been

acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the

 making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the copyright in

this Work and that any reproduction or use in any form or by any means

whatsoever is prohibited without the written consent of UM having been first had

and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any

copyright whether intentionally or otherwise, I may be subject to legal action or

any other action as may be determined by UM.

Candidate’s Signature Date / /2016

Subscribed and solemnly declared before,

Witness’s Signature Date / /2016

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

The continuous increase in the number of cores and software size causes a distinct

problem in the software world that utilizes multicore architecture. This problem is

represented by the optimal use of the new technology and how this is reflected in

software development. In the core of the problem, there are two main issues that must

be considered. First, the partitioning of the workload of a problem at runtime so that the

resultant workload partitions can be processed concurrently. Second, the dynamic

balance of the workload that is generated by these partitions to be distributed among the

cores. This matter is highly important because it addresses the problem of idle cores. In

order to handle the problem of idle cores, this thesis adopts the work-stealing technique

which has been successfully applied in multiprocessor systems to provide a workload

balance between the multiprocessor systems by allowing the idle processors to work

individually to steal part of the workload of the non-idle processors at run time so that

the system can be balanced. However, as the number of cores increases, which may

reach several hundred in the near future; it will be time consuming to allow each core to

individually search for a non-idle core to steal part of its workload since the searching

process in the existing work-stealing techniques is done randomly. This causes frequent

failure especially when the workload is low and many cores are in an idle situation.

This thesis proposes an approach to partition Divide and Conquer algorithms into

workload partitions at run time so that they can be executed concurrently on a scaled

multicore architecture. Therefore, the researcher proposes several problem oriented

mechanisms to partition the workload. In addition, the researcher proposes a

modification to the work-stealing technique by imposing a centralized control over the

stealing process rather than allowing each core to work individually. Several

rebalancing strategies are proposed to suit the conditions of the cores. To achieve these

goals, the researcher designs scaled concurrent models that work under the principle of

Univ
ers

ity
of

Mala
ya

iv

multithreaded scheduling. Two types of schedulers are proposed. The first type is

responsible for creating, dividing, and manipulating the threads of the Divide and

Conquer algorithms. The second type of schedulers is for balancing the threads using

different rebalancing strategies. The researcher uses Colored Petri Nets as language of

modelling and Colored Petri Nets Tool as the software that creates, simulates, and

validates the models.

The results of simulation models show a high efficiency in dealing with Divide and

Conquer algorithms. The proposed concurrent models are scalable in terms of number

of cores and problem size. The models can be easily expanded by adding more cores

which influence effectively on the models’ performance. In other words, the results

indicate that adding more cores minimizes the number of steps required to complete the

simulation process of the models. In addition, the models show a high flexibility in

dealing with various problem sizes, and maintain the integrity of results even when

problem size is highly increased.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Peningkatan yang berterusan dalam bilangan teras dan saiz perisian menyebabkan satu

masalah yang nyata telah muncul dalam dunia perisian yang menggunakan senibina

berbilang teras. Masalah ini diwakili oleh pengunaan teknologi baru yang optimum dan

bagaimana ia dapat digambarkan dalam pembangunan perisian. Terdapat tiga isu utama

yang perlu dipertimbangkan dalam masalah utama tersebut. Pertama, pembahagian

beban kerja satu masalah pada masa larian supaya partisi beban kerja yang dihasilkan

boleh diproses serentak. Kedua, keseimbangan dinamik bagi beban kerja yang dijanakan

oleh partisi-partisi ini antara teras tersebut. Perkara ini adalah sangat penting kerana ia

perlu menangani masalah teras terbiar, atau tidak bekerja. Dalam usaha untuk

menangani masalah teras terbiar, tesis ini menerima pakai teknik pencurian kerja yang

telah berjaya diaplikasikan dalam sistem berbilang pemproses untuk mencapai

keseimbangan beban kerja antara sistem berbilang pemproses dengan membolehkan

pemproses terbiar untuk bekerja secara berindividu bagi mencuri sebahagian daripada

beban kerja pemproses sibuk pada masa larian supaya sistem boleh diseimbangkan.

Walau bagaimanapun, apabila bilangan teras semakin meningkat di mana ia mungkin

boleh mencapai beberapa ratus dalam masa terdekat, ia akan memakan banyak masa

untuk membenarkan setiap teras untuk mencari teras sibuk secara berindividu bagi

mencuri sebahagian daripada beban kerjanya. Ini adalah disebabkan oleh proses

pencarian dalam teknik pencurian kerja yang sedia ada dilakukan secara rawak. Ini

menyebabkan kegagalan yang kerap terutama apabila beban kerja adalah rendah dan

banyak teras berada dalam keadaan yang terbiar. Tesis ini mencadangkan satu

pendekatan untuk membahagikan algoritma Membahagi dan Menakluk ke dalam

partisi-partisi beban kerja pada masa larian supaya mereka boleh dikasanakan serentak

pada senibina berbilang teras yang diskalakan. Oleh itu, penyelidik mencadangkan

beberapa mekanisme berorientasikan masalah untuk mebahagikan beban kerja. Di

Univ
ers

ity
 of

 M
ala

ya

vi

samping itu, penyelidik mencadangkan pengubahsuaian kepada teknik pencurian kerja

dengan megenakan kawalan berpusat ke atas proses pencurian tersebut dan bukannya

membenarkan setiap teras untuk bekerja secara individu. Beberapa strategi

pengimbangan semula dicadangkan untuk disesuaikan dengan keadaan teras. Untuk

mencapai matlamat ini, penyelidik merekakan model serentak yang diskalakan di mana

mereka bekerja di bawah prinsip penjadualan berbilang bebenang. Dua jenis penjadual

dicadangkan. Jenis pertama adalah bertanggungjawab untuk menciptakan,

membahagikan, dan memanipulasikan benang algoritma Membahagi dan Menakluk.

Jenis kedua adalah penjadual untuk mengimbangi benang yang menggunakan strategi

pengimbangan semula yang berbeza. Penyelidik menggunakan Jaring Petri Berwarna

sebagai bahasa pemodelan dan alatan Jaring Petri Berwarna sebagai perisian yang

mencipta, simulasi, dan mengesahkan model tersebut. Keputusan model simulasi

menunjukkan kecekapan yang tinggi dalam menangani algoritma Membahagi dan

Menakluk. Model serentak yang dicadangkan adalah berskala dari segi bilangan teras

dan saiz masalah. Model tersebut boleh diperluaskan secara mudah dengan

menambahkan lebih banyak teras di mana ia mempengaruhi prestasi model tersebut

secara berkesan. Dalam erti kata lain, keputusan menunjukkan bahawa penambahan

lebih banyak teras boleh mengurangkan bilangan langkah yang diperlukan untuk

menyelesaikan proses simulasi untuk model tersebut. Di samping itu, model tersebut

menunjukkan fleksibiliti yang tinggi dalam menangani masalah yang berbagai saiz, dan

mampu mengekalkan integriti keputusan walaupun saiz masalah meningkat secara

tinggi.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

First and foremost, praises and thanks to the God, the Almighty, for the good health and

tranquillity that were indispensable to me since the first day in this study. I am grateful

to my supervisor, Professor Dr. Lee Sai Peck, for accepting me as her student. Her

personality, follow up, and patience were essential to complete this thesis. I am also

grateful to the Faculty of Computer Science and Information Technology for providing

me all the requirements to conduct this research.

I am very grateful to my wife and sons for their patience; they bore a great burden

during the period of my studies. I also thank my mother and sisters for their support.

Special thanks to my faithful friend Alaa Al-Janabi. I would also like to express my

gratitude to Dr. Michael Westergaard and Professor John Reppy for clarifying some

issues related with the modelling tool and the programming language.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION………….…………………..……….………... 1

1.1 Background……...……….……………………………………….….……........ 1

 1.1.1 Multicore Technology and Software Industry…………………..…….... 1

 1.1.2 Concurrency, Parallelism, and Multithreading………………..……….. 3

 1.1.3 Scheduling Algorithms in Multicore Systems……………………....…. 5

 1.1.4 Divide and Conquer Problems on Multicore Environment……...…….. 7

1.2 Motivation……………………………………………………………………... 8

 1.2.1 The Need for Modelling Concurrent Systems………………………...... 8

 1.2.2 The Need for New Techniques in Partitioning and Balancing Workload

 for Solving D&C Problem……………..……………………....………..
10

1.3 Problem Statement…………………….……………….……………………… 11

1.4 Research Objectives…………….………………………….………………….. 14

1.5 Research Significance….……………………………………….……………... 15

1.6 Thesis Scope and Assumption …………………..……………….…………… 15

1.7 Thesis Outline………………………………………………………….……… 16

CHAPTER 2: LITERATURE REVIEW……..………………..……….…...….. 18

2.1 Introduction………….……………………………………….………….......... 18

2.2 The Emergence of Work-Sharing & Work-Stealing Scheduling…….……….. 19

 2.2.1 Work-Sharing Scheduling….……………………………...…………... 20

 2.2.2 Work-Stealing Scheduling…….…………...…………….……………. 22

 2.2.3 Work-Sharing versus Work-Stealing.. 24

2.3 Significant Achievements of Work-Stealing …………………………………. 26

 2.3.1 Scheduling Fully-Strict Multithreaded Computations…...……………. 26

 2.3.2 Non-Block Work-Stealing Algorithm…..……………….…………….. 28

 2.3.3 Improving the Non-Block Work-Stealing Algorithm………...……….. 30

 2.3.3.1 Stealing the Half……………….……………………………... 30

 2.3.3.2 Data Locality…………………………………...…………….. 31

 2.3.3.3 Dynamic Deques……………………………………………… 31

 2.3.3.4 Dynamic Circular Deques……………………………………. 32

2.4 More Work-Stealing Contributions……………….……………….………….. 32

2.5 Work-Stealing in Software Industry……..………………………….….……... 32

 2.5.1 Cilk…………………………………………...………………………... 33

 2.5.2 Threading Building Blocks (TBB)…………………………………….. 33

 2.5.3 Task Parallel Library……………………………...………………….... 34

 2.5.4 Implementing Work-Stealing in Java…………..…………………….... 34

Univ
ers

ity
 of

 M
ala

ya

ix

2.6 Work-Stealing Drawbacks…………….………………………………………. 36

2.7 Summary…………….……………………….………………………………... 38

CHAPTER 3: RESEARCH METHODOLOGY…………...………………….. 24

3.1 Introduction………….…………………………………..………….…………. 24

3.2 Phase 1: Building the Research Idea ……………………….………….……… 24

3.3 Phase 2: Studying of Research Background ……………………………….…. 24

3.4 Phase 3: Conducting the Literature Review ……..………….…….…….……. 24

 3.4.1 Sub Phase 1: Reviewing the Single-Processor Difficulties and

 Multicore Challenges…………..……………………………………..…
24

 3.4.2 Sub Phase 2: Reviewing the Workload Balancing Algorithms................ 28

 3.4.3 Sub Phase 3: Reviewing the Multithreaded Scheduling Algorithms...… 28

 3.4.4 Sub Phase 4: Reviewing the Work-Stealing Scheduling Algorithm…… 28

3.5 Phase 4: Identifying Research Problem and Objectives……………………….. 24

3.6 Phase 5: Designing the Methodology……………………….…………………. 24

 3.6.1 Sub Phase 1: Designing the Low-Level Schedulers (LLSs)…………… 45

 3.6.2 Sub Phase 2: Designing the High-Level Schedulers (HLSs)…….……. 45

 3.6.3 Sub Phase 3: Designing the Guards’ Mechanisms….……….………… 44

 3.6.4 Sub Phase 4: Designing the CPN Models………….…………..……… 44

3.7 Phase 6: Simulation and Monitoring………………………..…..……..……… 44

3.8 Summary………………………………………………………………………. 42

CHAPTER 4: DESIGN OF CONCURRENT MULTITHREADED

 MODELS FOR DIVIDE AND CONQUER PROBLEMS ……
45

4.1 The Low-Level Schedulers (LLSs)…………………...……………….............. 45

 4.1.1 The Fibonacci Low-Level Scheduler (FLLS)…………...………........... 44

 4.1.2 The Binary Search Low-Level Scheduler (BSLLS)…………...…..…... 54

 4.1.3 The Towers of Hanoi Low-Level Scheduler (THLLS)……...………… 55

 4.1.4 The Matrix Multiplication Low-Level Scheduler (MMLLS)…………. 45

4.2 The High-Level Schedulers (HLSs)……………………………...…………… 45

 4.2.1 The InOrderSingleStealing Strategy (IOSSS)…………………............. 44

 4.2.2 The InOrderMultiStealing Strategy (IOMSS)……………….…............ 44

 4.2.3 The RichestFirstSingleStealing Strategy (RFSSS)…….……...………. 84

 4.2.4 The RichestFirstMultiStealing Strategy (RFMSS)…...…..……. …….. 84

 4.2.5 The CompleteMultiStealing Strategy (CMSS)…………..……............. 85

 4.2.6 The PartialMultiStealing Strategy (PMSS)……………………………. 45

 4.2.7 Discussion Threads Distribution Fairness in CMSS and PMSS…......... 44

4.3 Guards’ Mechanisms…...……………………………………………………... 45

4.4 The CPN models………………………...………………………………….…. 44

Univ
ers

ity
 of

 M
ala

ya

x

 4.4.1 The CPN Models of Fibonacci Series………………………................. 44

 4.4.2 The CPN Models of the Binary Search………………….….................. 554

 4.4.3 The CPN Models of the Towers of Hanoi…………………….............. 552

 4.4.4 The CPN Models of the Matrix Multiplication………..….................... 554

4.5 Summary……………………………………………………………………..... 555

CHAPTER 5: SIMULATION RESULTS AND DISCUSSION….………….... 558

5.1 Introduction……………..……………………………………………….…...... 558

5.2 The Results of Executing the Fibonacci CPN Models ……………..…………. 554

5.3 The Results of Executing the Binary Search CPN Models ………...………..... 544

5.4 The Results of Executing the Towers of Hanoi CPN Models ………….…...... 545

5.5 The Results of Executing the Matrix Multiplication CPN Models...…...…..... 544

5.6 Discussion…………………………………………………………………....... 544

5.7 Summary……………………………………………………………………..... 139

CHAPTER 6: CONCLUSION AND FUTURE WORK………...……….....….. 140

6.1 The Problem Addressed by This Study in Brief……………………………..... 140

6.2 The Purpose of the Thesis in Brief…………...………………………..…….... 140

6.3 The Achievement of Research Objectives and Thesis Contribution………...... 141

 6.3.1 The Achievement of Research Objectives ……………...….................. 141

 6.3.2 Thesis Contribution……………………………..................................... 143

6.4 Conclusion of Workload Partitioning………………... 144

6.5 Conclusion of Workload Distribution.....…………………………………........ 145

6.6 CPN Modelling of the Mechanism…………………………………………..... 147

6.7 Findings of the Simulation...…………………….…………..………………… 148

6.8 Future Work……………………...………………...………………………….. 148

 6.8.1 Work Related to the Low-Level Schedulers …….....…........................ 148

 6.8.1.1 Thread’s Weight…...………...…….. 148

 6.8.1.2 Number of Generated Threads…………………....................... 149

 6.8.2 Future Work Related with the High-Level Schedulers………................ 149

 6.8.2.1 Scenario of Launching the High-Level Scheduler…................. 149

 6.8.2.2 Diversity in High-Level Schedulers…...…...……..................... 150

 6.8.2.3 Choosing the Heaviest Threads………….................................. 150

6.9 Limitation of Schedulers……………………………………………………..... 150

REFERENCES……………………………………………………………………... 151

LIST OF PUBLICATIONS AND PAPERS PRESENTED……………………... 159

APPENDIX I: COLORED PETRI NETS………………………………………... 160

APPENDIX II: The NonBiasedCMSS and NonBiasedPMSS………………..…. 167

Univ
ers

ity
 of

 M
ala

ya

xi

LIST OF FIGURES

Figure 3.1 A multithreaded multicore model. The LLSs create the threads and

manipulate them while the HLS redistributes the threads between the cores.

The common memory is a shared area which used to store data and temporary

results…………………………………………………………………………….

43

Figure 3.2 Workflow of the Study………..……………………………………… 44

Figure 4.1 The Fibonacci thread where TId and TFId stand for ThreadId and

FatherId respectively. The parameter N holds the value “n” as in Fibonacci (n)

= Fibonacci (n-1) + Fibonacci (n-2)……………………………………………...

58

Figure 4.2 The Mechanism of FLLS …………..……………………………........ 61

Figure 4.3 A binary tree for computing Fibonacci (6). The root thread is (1,0,6)

which represents the main thread. The result is the summation of values inside

the squares which is equal to 8…………………………………………………...

62

Figure 4.4 The Binary Search thread……………………………..……………..... 63

Figure 4.5 The Mechanism of BSLLS………………………………..…………... 64

Figure 4.6 An example of partition a BS thread where list consists of 100000

elements………………………………………………………………………….
66

Figure 4.7 The Towers of Hanoi game with three disks….….……………..…...... 67

Figure 4.8 The Towers of Hanoi: thread and move…….………….………..…… 67

Figure 4.9 The Mechanism of THLLS…………………………….....…………... 69

Figure 4.10 An example of partition a TH thread where the main thread

(1,0,0,3,1,3,2) indicates that there are three disks. ……………………………...
70

Figure 4.11 The Matrix Multiplication thread……………………………………. 71

Figure 4.12 The Mechanism of MMLLS…………..…………………………….. 73

Figure 4.13 An example of partitioning a Matrix Multiplication thread where the

main thread indicates A3,4× B4,4, and leaf-level threads are surrounded with

bold borders …..……………..………………………………..………………....

74

Figure 4.14 An example of partitioning a Matrix Multiplication thread where the

leaf-level threads are computed directly …...…………………………………....
75

Figure 4.15 The Mechanism of DMMLLS…………………….…...……………. 75

Figure 4.16 The InOrderSingleStealing Strategy (IOSSS) located at the left...….. 78

Figure 4.17 The InOrderMultiStealing Strategy (IOMSS) where the

InOGetVictimSeq and GetThievesCoresSequences functions are already shown

in Figure 4.16

82

Figure 4.18 The RichestFirstSingleStealing Strategy (RFSSS) where the function

GetThievesCoresSeq is already illustrated in Figure 4.16 ……...……………….
84

Figure 4.19 The RichestFirstMultiStealing Strategy (RFMSS) where the

Redistributor and the RichestFirstGetVictimSeq functions are already

illustrated in Figure 4.17 (IOMSS) and Figure 4.18 (RFSSS) respectively …….

85

Figure 4.20 The CompleteMultiStealing Strategy (CMSS) with its function

GetVicThie……………………………………………………..………………...
87

Univ
ers

ity
 of

 M
ala

ya

xii

Figure 4.21 The CMSBalancer function with its sub function Calculations…..…. 88

Figure 4.22 The GetExtraThreads function……………..………………………... 89

Figure 4.23 The UpdateGroups function with its sub function

UpdateSingleGroup …………………………………………...…………………
90

Figure 4.24 The PartialMultiStealing Strategy (PMSS) with its function

GetVicThiePartialList…......……………………………………………………..
94

Figure 4.25 The PMBalance, PartialGetExtraThreads and GetThreads functions.. 95

Figure 4.26 The PartialUpdateGroups function where the UpdateSingleGroup

function is illustrated in Figure 4.23………………………………...…………...
96

Figure 4.27 The Guard Mechanism………………………..……………………... 98

Figure 4.28 A two-core CPN main model for solving Fibonacci Series problem... 99

Figure 4.29 A CPN sub model (core model) for solving Fibonacci Series.....…… 101

Figure 4.30 A six-core CPN main model for solving Fibonacci Series problem.... 102

Figure 4.31 A ten-core CPN main model for solving Fibonacci Series problem… 102

Figure 4.32 A seven-core CPN main model for solving Binary Search problem.... 103

Figure 4.33 A CPN sub model (core model) for solving Binary Search problem... 103

Figure 4.34 A CPN sub model (core model) unfolding the list of numbers……... 104

Figure 4.35 A CPN eight-core main model for solving The Towers of Hanoi

problem………………………………………………………………..…………
104

Figure 4.36 A CPN sub model for the Towers of Hanoi problem……..…………. 105

Figure 4.37 A five-core CPN main model for the Matrix Multiplication problem. 105

Figure 4.38 A CPN sub model for the problem of Matrix Multiplication with

folded matrices……..…………………………………………………………….
106

Figure 4.39 A CPN sub model for the problem of Matrix Multiplication with

unfolded matrices……..………………………………………………………….
106

Figure 5.1 A screenshot of CPN-Tool……………………………………………. 109

Figure 5.2 Sketching the AES values vs. number of cores for the Fibonacci (10)

problem using eight-thread, four-thread, two-thread partitioning, and IOSSS for

threads distribution ………………………………………………………………

116

Figure 5.3 Sketching the AES values vs. number of cores for the problem of

Fibonacci (13) using eight-thread partitioning…………….…..………………....
118

Figure 5.4 Sketching the AES values vs. number of cores for the problem of

Fibonacci (15) using eight-thread partitioning …………………………………..
119

Figure 5.5 Sketching the AES values vs. number of cores for the problem of

Fibonacci (13) using two-thread partitioning …………..……………………......
121

Figure 5.6 Sketching the AES values vs. number of cores for the problem of

Fibonacci (15) using two-thread partitioning …………..………………...……...
122

Figure 5.7 Sketching the AES values vs. number of cores for the Binary Search

Problem defined in Table 5.8 ……………………..………………………...…...
124

Figure 5.8 Sketching the AES values vs. number of cores for the Binary Search

problem defined in Table 5.9………………..……………………………….......
125

Univ
ers

ity
 of

 M
ala

ya

xiii

Figure 5.9 Sketching the results in Table 5.12…………....…………………….... 130

Figure 5.10 Sketching the results in Table 5.13……..………….……………...... 131

Figure 5.11 Sketching the results in Table 5.16……………..…...……………..... 134

Figure 5.12 Sketching the results in Table 5.17………...…..……………………. 135

Univ
ers

ity
 of

 M
ala

ya

xiv

LIST OF TABLES

Table 2.1 A summary of the most related work in this study 39

Table 5.1 The contents of the CoresLoad places for the Fibonacci problem

solved on three-core CPN model using eight, four, and two-thread partitioning.. 111

Table 5.2 The AES values for the Fibonacci (10) problem using IOSSS as the

HLS and eight-thread, four-thread, and two-thread partitioning………………... 115

Table 5.3 The averages of the AES values shown in Table 5.2 ……..………….... 116

Table 5.4 The AES values vs. strategies for the problem of solving Fibonacci

(13) using eight-thread partitioning ………..…………………...………………. 118

Table 5.5 The AES values vs. strategies for the problem of solving of Fibonacci

(15) using eight-thread partitioning ……..……………………………. 119

Table 5.6 The AES values vs. strategies for the problem of solving of Fibonacci

(13) using two-thread partitioning ...….………………………………………… 121

Table 5.7 The AES values vs. the entire strategies for solving the problem of

Fibonacci (15) using two-thread partitioning ………..………………….……... 122

Table 5.8 The AES values for the Binary Search Problem where the list size is

10000 and the list’s values are: [1, 3, 5, 7,.. 19995,19997,19999] and searching

is conducted for the value 19997 with the return list’s value 9998…..………….
124

Table 5.9 The AES values for the Binary Search Problem where list size is

10000 and the list’s values are: [1, 3, 5, 7,.. 19995,19997,19999] and searching

is conducted for the value 4 with the return value of ~1…………….………….
125

Table 5.10 The output (moves) of solving the problem of Towers of Hanoi with

seven disks ….……………………………...…………………………………… 128

Table 5.11 The moves of solving the problem of Towers of Hanoi with nine

disks……………………………………………………………………………... 128

Table 5.12 The AES values for the Towers of Hanoi problem using seven disks.. 129

Table 5.13 The AES values for the Towers of Hanoi problem using nine disks..... 130

Table 5.14 The values of the input and output matrices for the 10 × 10 matrix

multiplication example…………………………………………………………... 132

Table 5.15 The values of the input and output matrices for the 20 × 20 matrix

multiplication example…………………………………………………………... 133

Table 5.16 The AES values for the Matrix Multiplication problem 10×10………. 133

Table 5.17 The AES values for the Matrix Multiplication problem 20×20………. 134

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF ABBREVIATIONS

AES Average of Execution Steps

AMD Advanced Micro Devices

BS Binary Search

BSLLS Binary Search Low-Level Scheduler

CAS Compare and Swap

CL Cores Load

CLIn Cores Load In

CLOut Cores Load Out

CMSS Complete Multi Stealing Strategy

CPN Colored Petri Nets

CPN-ML Colored Petri Nets’ Meta Language

CPN-Tool Colored Petri Nets’ Tools

CPU Central Processing Unit

D&C Divide and Conquer

Des Destination

DistGuard Distributor's Guard

DMMLLS Direct Multi Stealing Low-Level Scheduler

DNo Disk’s Number

EC End Column

EI End Index

Ele Element

ER End Row

FatherId Father Identity

FLLS Fibonacci Low-Level Scheduler

GUI Graphical User Interface

HLS High-Level Scheduler

IBM International Business Machines

IOMSS In Order Multi Stealing Strategy

IOSSS In Order Single Stealing Strategy

JAWS Java Work Stealer

LLS Low-Level Scheduler

LM List of Moves

LN List of Numbers

LT List of Threads

Univ
ers

ity
 of

 M
ala

ya

xvi

MIT Massachusetts Institute of Technology

MM Matrix Multiplication

MMLLS Matrix Multiplication Low-Level Scheduler

NumList Numbers List

Ord Order

PMSS Partial Multi Stealing Strategy

PN Petri Nets

POSIX Portable Operating System Interface

Res Result

ResIn Result In

ResOut Result Out

RFMSS Richest First Multi Stealing Strategy

RFSSS Richest First Single Stealing Strategy

SC Start Column

SI Start Index

SML Standard Meta Language

SMP Symmetric Multi-Processor

Sou Source

SR Start Row

TBB Threading Building Blocks

TH Towers of Hanoi

ThL Threads List

THLLS Towers of Hanoi Low-Level Scheduler

Thr Through

ThreadId Thread's Identity

TPL Task Parallel Library

ZAPP Zero Assignment Parallel Processor

Univ
ers

ity
 of

 M
ala

ya

xvii

LIST OF APPENDICES

APPENDIX I: COLORED PETRI NETS 160

APPENDIX II: The NonBiasedCMSS and NonBiasedPMSS 167

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Background

In 1965, a physical chemist named Gordon E. Moore predicted that the number of

electronic components placed on an integrated circuit is going to be doubled every year.

In other words, according to the Moore’s prediction, the computing power is going to be

doubled every year (Mollick, 2006). After ten years, this prediction was revised by the

same scientist to be two years instead of one year. David House, an Intel executive at

that time, modified Moore’s prediction to be eighteen months rather than two years

(Nambiar & Poess, 2011). This prediction became well known as Moore’s Law. The

law continued its impact on the hardware industry for nearly four decades. During these

decades, all the manufacturing efforts were directed to improve the single-processor

computers through increasing the clock speed of these processors (Herlihy, 2007).

However, a barrier of physical limit stood against the manufacturers’ desire. The power

consumption and the increase in the generated heat due to the continuous adding of

more transistors were the main obstacles against the continuity of this law (Mack,

2011).

1.1.1 Multicore Technology and Software Industry

At the beginning of twenty-first century, the processors industry has witnessed a

dramatic change in its production. Chip manufacturers stopped their race in

manufacturing high-speed single-processor computers, as a result, ending the era of

single-processor improvement (Breshears, 2009). What is more, they announced the

starting of the multicore architecture era. The new architecture has been built on the

basis of replicating the processing element (core) rather than focusing on the processor

improvement. This replication becomes the key factor to measure the performance of

any modern computer system (Herlihy, 2007). In 2001, IBM released the first

Univ
ers

ity
 of

 M
ala

ya

http://en.wikipedia.org/wiki/Intel

2

commercial microprocessor that has built on the multicore technology. The POWER4

microprocessor has two cores built on a single chip (Davis & Burns, 2011). Since that

date, the general trend adopted by the giant microprocessor manufacturers such as Intel,

AMD, IBM, and Sun was represented by the continuous adding of more cores to their

microprocessors (Geer, 2005). The race between the hardware manufacturers has

continued to produce chips with a higher number of cores. However, the success in

adding more cores is not the ultimate goal for these manufacturers. There are certain

requirements related with the core technology that are needed to be achieved such as the

execution optimization and cache size (Sutter, 2005). The significant change in the

hardware side expanded to cover different types of personal computers such as desktop,

laptop, notebook, ultra book and tablet, and it also covers communication devices such

as mobile and any other computerised devices (Wikipedia, 2014a). In the software side,

software designers had totally depended in the past on the clock speed in producing

faster software. However, the improvement in the hardware side has made a real impact

on the software industry as well. This is because the new hardware offers more than one

processing element (core) that can operate at the same time (Sutter, 2005). Therefore,

software designers have no choice but to update their products to deal with the new

changes in the hardware side. This kind of update has to consider the continuous

increase in the number of cores per chip. That is, modern software should not be

restricted to deal with a fixed number of cores. It should be adapted to deal with any

number of cores in addition to exploiting these cores as much as possible (Sutter, 2005).

Although this is not an easy task since most of the algorithms used in the software

industry are designed to serve serial computations. However, failure to develop

algorithms that suit the new environment will, undoubtedly, stand as a stumbling block

against the optimal utilization of the new architecture. As a result, a new trend has

imposed in the software industry through improving the aspect of concurrency of

Univ
ers

ity
 of

 M
ala

ya

3

software products in addition to making these products more scalable to deal with any

number of cores (Ding, Wang, Gibbons, & Zhang, 2012; Sutter & Larus, 2005).

Therefore, concurrency and scalability are the two main features that modern software

should gain for the purpose of making the best use of the multicore architecture.

1.1.2 Concurrency, Parallelism, and Multithreading

Concurrency has a realistic application in the physical world in which we live. In the

process of building a new house, certain actions can be done at the same time such as

plumbing, electrical work, painting, tiling, etc. In computer science, the idea of

concurrency was closely related to the time-sharing principle of work. Back to 1960s,

mainframe computers shared their CPUs with several consoles and each CPU has its

own running program (process) (Bryant & David Richard, 2003). To increase the

overall utilization, a software model called “Scheduler” was designed to dedicate a CPU

to one of the processes for a specific period of time. After that, the Scheduler redirects

the CPU to another process. This gives the perception that all these processes are

working at the same time (concurrent executions). Another issue has also emerged

since the early eras of computers. The difference between the speed of CPUs and

peripheral devices caused a real headache to the scientist (Tucker, Barlow, & Stuart,

2012). As computers have become faster and faster, the gap between the two speeds has

been widened. Moreover, computer networks add more burden to the overall

performance since the speed of network components definitely cannot be compared

with the speed of CPUs. Although there is no magical solution for these problems since

the gap between these speeds is still big, it is possible to reduce the severity of the

problem by developing more advanced schedulers. Different schedulers have different

ways to balance requests of processes.

Univ
ers

ity
 of

 M
ala

ya

4

For a long time, the concurrency and parallelism concepts have been used

interchangeably (Bryant & David Richard, 2003). This came from the fact that both the

concurrency and parallelism refer to the state where computers are able to deal with

more than one program (process) at the same time. However, there is a major difference

between these two concepts. In single-processor computers, a system is said to be

concurrent if it is able to run more than one process at the same time. These processes

cooperate with each other in exploiting the processor time through interleaving.

However, in parallelism, we have more than one processor, each of which has a separate

running process. Usually a process typically consists of one or more pieces of code

called threads. In general, a thread is the smallest sequence of instructions that can be

managed by a scheduler. The threads that belong to the same process share the same

area of memory. Thus, we can write concurrent programs that consist of multiple

threads; however, if the computer does not include multiple processors, then these

threads will not be executed in parallel. Therefore, we can conclude that concurrency

represents the general case while parallelism represents the sub case (Knuth, 1968).

Multithreading is a mechanism of creating threads of executions. It enables running

more than one program concurrently. A good planning for multithreading can provide

an excellent utilization of computer resources. The basic concept of multithreading has

been around for some time, but gained wider attention as computers became more

commonplace during the decade of the 1990s. Dynamically growing multithreaded

computations are nowadays quite common for multicore systems. One should specify

which core executes which threads and when each thread should be executed;

obviously, there is an urgent need for efficient schedulers. The efficient execution of

such schedulers depends heavily on the runtime system. A good scheduling technique

must ensure that enough threads remain active to keep the cores busy, while at the same

time, the concurrent active threads must be within their limit in order to control the

Univ
ers

ity
 of

 M
ala

ya

5

memory needed. Moreover, in order to reduce communication among cores, one should

try to maintain related threads on the same core. Providing a scheduling technique to

achieve all of the above goals is not a trivial task (Fatourou & Spirakis, 2000).

1.1.3 Scheduling Algorithms in Multicore Systems

In a multicore system, there are basically two sets of cores, i.e. working (busy) and non-

working (idle) cores, at any one time (L. M. Nogueira, Pinho, Fonseca, & Maia, 2013;

Tchiboukdjian, Danjean, Gautier, Lementec, & Raffin, 2010; Y. Wang, Ji, Shi, & Zuo,

2013). Working cores are in action, that is, they have their own threads currently in

execution. Non-working cores are idle (out of threads). The reason behind having a core

in an idle situation is that either its threads have already completed their assignment

tasks or the scheduler did not assign any threads to the core yet. Naturally, at any time,

the status of a working core may change to non-working, and vice versa. The ultimate

goal for any software company is to direct their products to make the most use of the

available cores (concurrent working) as much as possible and never let any core in an

idle situation (Sutter & Larus, 2005). Despite this seeming to be unrealistic for all kinds

of problems due to the nature of a problem, however, in certain problems, good results

could be achieved. Therefore, in a multicore system, in order to reach to a high level of

concurrency, a scheduler plays a major role in achieving this important objective

through adopting the best scheduling algorithm that balances the working load among

the cores (Quintin & Wagner, 2010; Tchiboukdjian, et al., 2010).

During the past decades, there were many scheduling techniques that have been

developed for multiprocessor systems. These scheduling techniques fall into two

categories: static and dynamic scheduling. In static scheduling, all the information

related with tasks’ time-slice, synchronization requests, communication and dependency

with other tasks are known and planned for before starting the execution, that is, at the

Univ
ers

ity
 of

 M
ala

ya

6

compilation time (Kwok & Ahmad, 1999). In general, static scheduling guarantees the

execution of the tasks on-time, in addition to being low cost. However, static scheduling

suffers from certain drawbacks such as wastage of the processor time, besides that, no

task exceeds the time slice assigned to it; additionally, any changes in the program

sequences need a rescheduling. Moreover, modern computer systems with shared

caches added several new drawbacks for static scheduling such as the difficulty to

provide an accurate information about the tasks, the limitation of portability since the

result of scheduling is directed for a specific architecture (Mattheis, Schuele, Raabe,

Henties, & Gleim, 2012). The changing of data and input during run time plays a main

role in task scheduling which is totally incompatible with the static mechanism

(Breshears, 2009). Finally, static scheduling is inconsistent with the multicore

environment. In such environment, it is so common to execute more than one program

at the same time where each program consists of a set of processes. The operating

system in a multicore environment assigns these processes to the available cores at run

time which results in a continuous change in the number of the utilized cores during the

execution of these processes. This stands against the principle of static scheduling

where the execution time of these processes should be known prior to the execution.

However, providing such information about the execution time is particularly hard to

obtain for a multicore environment (Mattheis, et al., 2012).

In contrast to static scheduling, dynamic scheduling is implemented at run time that is

on-the-fly (Kwok & Ahmad, 1999). Dynamic scheduling succeeded in fulfilling the

requirements of the multicore technology since a dynamic scheduler has the ability to

create new tasks and assign them to the cores at the execution time, a condition that

becomes a must for most applications that wish to exploit the multicore architecture to

the full extent. In general, within dynamic scheduling, two main objectives have been

achieved; first, it becomes possible to balance workload at run time which makes the

Univ
ers

ity
 of

 M
ala

ya

7

process of task/core mapping much easier and it achieves great benefits. Second, it

becomes much easier to deal with different hardware architectures. On the other hand,

the cost of these benefits is expected to be higher run time scheduling overhead and

additional application development complexity (Kwok & Ahmad, 1999; Mattheis, et al.,

2012).

1.1.4 Divide and Conquer Problems on Multicore Environment

In this thesis, the researcher focuses on solving Divide and Conquer (D&C) problems

on a multicore environment. The term Divide and Conquer is also used to describe the

method of solving such kind of problems. In computer science, every D&C problem has

its own method of solving. That is, for example, the binary search differs from the

matrix multiplication, yet all D&C methods share some common steps. In general,

every D&C method is built on breaking the main D&C problem into two sub problems

that can be recursively broken into smaller sub problems, then solving these sub

problems, and recursively combining the results of these sub problems to form the final

result (Cormen, Leiserson, Rivest, & Stein, 2009; Miller & Vandome, 2010). The D&C

methods fit in the multicore environment, that is, any D&C problem can be split and

distributed to the cores that work in a concurrent way at run time to reach the final result

with the shortest time possible (Neill & Wierman, 2009; Tardieu, Wang, & Lin, 2012).

Taking into account the multicore development, these methods should be adapted to be

more efficient in order to suit the multicore architecture. One of the main ideas is to

provide a concurrent multithreaded scheduler model that can dynamically manage

threads creation and load distribution among the used cores.

Univ
ers

ity
 of

 M
ala

ya

8

1.2 Motivation

The multicore technology provided the solution for the shortage that single-processor

computers suffered from. A landmark achievement has been made through the success

in replicating the number of cores per chip. However, software industry is still not

consistent with development in the hardware side. The lack of providing suitable

techniques that make software more consistent with the key technology represents the

main factor that affects the software industry. This study motivates two needs that find

them necessary to promote software industry.

1.2.1 The Need for Modelling Concurrent Systems

Concurrent systems are complex, difficult to design and error prone. All these come

from a common characteristic that concurrent systems share, that is, non determinism.

One of the main challenges facing concurrent systems’ designers is the non

deterministic behaviour of these systems (Jensen, Kristensen, & Wells, 2007). In non

concurrent systems, regardless of the number of executions, the transition during the

execution, say from state A to state B is predetermined (deterministic). Even with the

decision (like if or if …else …) and selection statements (switch), there are few

predetermined states that come after it in an execution order. However, the execution of

a concurrent system may carry on in different ways each time the execution is resumed.

This is due to the large number of possible paths that can be generated from each state;

nevertheless, all these paths should lead to the same final result. Taking into account

this fact, the process of building concurrent systems that control critical and/or

dangerous projects such as atomic power plants, aircraft control systems, etc should be

error-free and well designed, otherwise it will lead to disaster (Jensen & Kristensen,

2009). As a result, such systems must be tested and debugged thoroughly prior to any

real implementation. Using the traditional methods in debugging such as the inclusion

Univ
ers

ity
 of

 M
ala

ya

9

of breakpoints is no longer effective as in non-concurrent programming due to

continuous change of execution behaviour from run to run caused by the astonishing

number of intermediate states towards reaching the final state (Wells, 2002).

Modelling provides a solution for this problem. Through modelling, many errors and

weak points in the concurrent software can be identified and corrected. Building a well-

designed model has three main advantages:

(a) Insight Look: Modelling gives an insight look into the system. It gives a general

description of the system architecture and its mechanism. That is, it shows how the

concurrent system has been designed, the way of performing the system’s actions, and

data paths inside the system. The designer should utilize these details to improve the

simplicity and the usability of the model’s parts such as those related to processing and

storing data, in addition to the linkage paths that connect the processing and storing

parts. Moreover, the insight look improves the obviousness of the design and should

remove repeated acts to the fullest extent possible. This will definitely benefit the

designer since it gives a comprehensive understanding of the system (Jensen, 1998).

(b) Specifications Completeness: The process of simulating the model reveals a lot of

gaps in the model’s specifications that clearly show the model’s real capabilities as well

its shortages. In addition, the model’s requirements can be judged accurately as fully

achieved or partly lost (Jensen & Kristensen, 2009).

(c) Model’s Correctness: Definitely any model cannot be accepted until it is simulated

and it generates proper results. Through the simulation process, many faults can be

diagnosed and corrected. In addition, a verification test is then needed to verify all the

system states so that no state is unreachable nor there is a chance for deadlocks to occur

(Kristensen, 2000).

Univ
ers

ity
 of

 M
ala

ya

10

The above three advantages that modelling offers will not be achieved unless there is a

proper modelling language and modelling tool that assists the designer in planning,

simulating, and verifying the design. In this study, the researcher uses Colored Petri

Nets (CPN) as a graphical language for building and analyzing models of concurrent

systems. CPN has been developed from Petri Nets (PN) as being the origin of CP

(Murata, 1989; Peterson, 1977). There are two main differences between CPN and PN:

CPN has included the idea of data types besides the use of expressions and functions

written in Standard Meta Language (SML) (Gansner & Reppy, 2004; Ullman, 1998). As

a software tool, the researchers uses CPN-Tool (Jensen, Christensen, Kristensen, &

Westergaard) which is developed by Kurt Jensen (Jensen & Kristensen, 2009). CPN-

Tool provides all the necessary facilities to create, simulate, and validate Colored Petri

Nets. In addition, it provides interaction methods such as menus and toolbars besides

giving feedback messages when errors are encountered during the process of

performing code’s syntax checking. CPN-Tool uses Colored Petri Nets’ Meta Language

(CPN-ML) (Jensen, et al.) as a language of writing declarations, expressions, and code

inside the model. CPN-ML has been built based on SML (Gansner & Reppy, 2004;

Ullman, 1998). Appendix I includes more details about CPN.

1.2.2 The Need for New Techniques in Partitioning and Balancing Workload for

Solving D&C Problem

Processor manufacturers are continuing in developing multicore technology towards

replicating the cores. Instead of working towards producing more efficient cores, the

real trend of these manufacturers is toward assembling more cores in one processor.

This matter puts software developers in facing a big challenge which is the ability to

utilize this growing number of cores. On the other hand, the omission of exploiting

these cores causes the failure to achieve the real benefit from the purpose for which

multicore was developed: achieving high speed in execution time through replicating

Univ
ers

ity
 of

 M
ala

ya

11

the cores. In other words, the lack of providing new software techniques that make use

of these cores to the full extent will no doubt lead to an imbalance in the workload

distribution. During the running of a multicore system, this imbalance happens in the

form of having two sets of cores: working (active) and non-working (idle), where the

number of idle cores increases far from the desired goal of the multicore technology.

Therefore, it is necessary to develop new techniques for partitioning and balancing

workload for the sake of achieving a high level of concurrency among the utilized cores

in the multicore environment.

In general, given the increase in the number of cores, it becomes gradually more

important to boost the concurrency level between the cores through making these cores

busy as much as possible. This can be achieved through the development of new

techniques to partition and balance the workload of problems at runtime. The researcher

focuses on the D&C as an example for problems, working on making such problems

more adaptable with multicore environment through adopting those techniques.

1.3 Problem Statement

Multicore technology has succeeded in solving the drawback in the single-processor

environment, that is, to get more powerful computers, more cores have to be added.

However, the evolution in the hardware creates a real challenge for software designers.

This challenge is represented in the ability of software to deal with this growing

numbers of cores. The researcher categorizes the challenge into three groups:

(a) Workload Partitioning

As stated before, the multicore technology has been built on the basis of replicating the

processing units (cores). Having more than one core working at the same time triggers

the need for mechanisms to partition the workload. The need for workload partitioning

was not urgent prior to the multicore technology because there was only one processor.

Univ
ers

ity
 of

 M
ala

ya

12

However, the significance of workload partitioning begins growing and has become a

necessity to be utilized in the new multicore architecture. In this thesis, the researcher

highlights several issues related with this kind of processes:

I- Prior to any partitioning process, are the traditional ways in representing the

workload in single-processor computers still appropriate and could be used

effectively in the multicore technology?

II- How can we partition the workload in a way that fits in the multicore

environment? What sort of mechanism can be adopted for the partition?

III- Does the partitioning process follow a unique mechanism that fits all the types of

problems? For instance, considering the D&C problems that the researcher focused

on in this thesis, is it possible to apply the same partitioning technique for all given

D&C problems?

IV- Do the partitioning techniques proposed in this study have the properties that

qualify them to work in a multicore environment? Specifically, are the partitioning

techniques scalable to deal with a variable number of cores? Do the partitioning

techniques support concurrent actions?

(b) Workload Balancing

The ultimate goal of the partitioning process is to employ the maximum number of

available cores so that workload balancing can be achieved. However, there are certain

issues related to this matter:

I- How to distribute the partitioning workload? What are the strategies that can

control the distribution process?

Univ
ers

ity
 of

 M
ala

ya

13

II- Does the work-stealing technique still appropriate with the growing number of

cores? How can we improve this technique to be more adaptable for the increasing

number of cores?

(c) Core Computations

One of the most important objectives of the multicore technology is to make all cores

involved in solving a problem. That is, each core will be responsible for part of the

problem. This requires reconsideration to the core’s computations compared to what

was previously in the single-processor computers. In this context and in relation to the

D&C problems:

I- Are the original methods for solving D&C problems still appropriate to apply on

the multicore environments, and why?

II- On what basis, the researcher attempts to build the D&C solving method that suits

a multicore environment? In other words, what are the improvements that this work

will have to make on the D&C problems in order to fit in the multicore architecture?

III- How can we coordinate the work between the strategies and the methods?

(d) Correctness and Validation

The strategies and methods both suggested new techniques to deal with D&C problems

on a multicore environment. The researcher highlights certain issues related with this

issue:

I- How can we ensure that these strategies and methods work just fine and they are

able to generate results in addition to being error free?

II- Knowing that there are no errors and correct results can be generated, how to

ensure that neither the strategies nor the methods may cause deadlock or data race?

Univ
ers

ity
 of

 M
ala

ya

14

1.4 Research Objectives

In this study, the researcher proposes a concurrent multithreaded scalable model. The

model is dedicated to solve the D&C problems (Fibonacci Series, Binary Search,

Towers of Hanoi, and Matrices Multiplications) on a multicore environment. The

objectives of this study can be identified as follows:

(a) To propose a workload distribution scheduler that is able to control the workload

distribution of the modelled cores.

The proposed scheduler should have the following properties:

I- The distribution process of this scheduler is controlled by a set of strategies which

control the distribution of the partitioned workload. The working principle of these

strategies is based on balancing the threads among the cores.

II- The proposed scheduler is concurrent and scalable. The scheduler deals with all the

cores concurrently. In addition, the scheduler can deal with an open number of

partitioned threads.

(b) To propose a core scheduler that has the ability to partition the workload and find a

solution for each D&C problem. The proposed scheduler resides in every modelled core

of the multicore model and it has the following properties:

I- The proposed scheduler works under the principle of multithreading, that is, the

D&C problems are represented as threads. The scheduler’s task is to partition the

threads residing in its core into two or more threads.

II- The partitioning technique of the proposed scheduler is not unique; it depends on

the type of the problem.

III- The core scheduler provides a solution for the D&C problems.

Univ
ers

ity
 of

 M
ala

ya

15

(c) To build CPN models implementing the two proposed types of schedulers.

(d) To perform simulation and monitoring of the models targeting at the reduction of

idleness of the modelled cores to the maximum extent.

1.5 Research Significance

The potential impacts of the proposed research are in two directions:

(a) The partitioned techniques that the researcher proposed in this study may represent a

forward step towards improving the execution of the D&C problems on the multicore

environment. The value of these techniques comes from being fully fit in this

environment taking into consideration the continuous increase of the number of cores in

different multicore platforms such as laptops, tablets, mobiles, etc.

(b) The proposed balancing strategies would provide a new perspective to achieve

workload balance among the cores. As stated before, the general trend of the

manufacturers of processors stresses on adding more cores instead of improving the

speed of the core itself. This will definitely trigger the need for balancing techniques.

1.6 Thesis Scope and Assumption

The scope of this thesis covers D&C problems. Four D&C problems have been taken as

examples, namely Fibonacci Series, the Towers of Hanoi, Binary Search and Matrix

Multiplication. The rest of D&C problems are assumed to be able to follow the same

procedure that the researcher proposed in this study. However, the partitioning

techniques are problem oriented. In other words, solving another D&C problem may

need a specific partitioned technique. On the other hand, the strategies of balancing can

be applied to any D&C problem.

The models that this thesis presents suit multicore architectures and fit well with a group

of cores that share a common memory. Due to the high level of threads’ exchange

Univ
ers

ity
 of

 M
ala

ya

16

among the cores, it would be costly in terms of communication when these models are

applied on non-shared memory systems. In addition, there is a need to assign one of the

cores to control the redistribution of threads among the cores. Although assigning one

core may affect the efficiency of the work, however, with the diminishing growth in the

number of cores, the allocation of a single core to manage the scheduling process will

not have a significant impact on the overall performance.

1.7 Thesis Outline

This thesis consists of six chapters and two appendices.

(a) Chapter 2 reviews the contributions of the existing research in the field of load

balancing algorithms. The researcher highlights the main classifications of these

algorithms with a particular focus on the classification of multithreading scheduling.

This chapter includes a description of the work-stealing evolution, its significant

achievements, and its contribution in the software industry.

(b) Chapter 3 is dedicated for the research methodology. This chapter includes a

description of the way in which the researcher conducted the study. At the beginning,

the chapter starts with a description on how the research idea arose. Then, the researcher

shows on what basis the literature review has been conducted. After that, depending on

the research idea and the literature review, the researcher defines the shortages and gaps

in the existing researches, and then, the researcher determines the problem statement

and the objectives of the study. Following that, the researcher defines, without going

into details, the techniques that the researcher suggested for dividing the workload, in

addition to the strategies of balancing. After that comes into play the simulation and

monitoring section. In this section, the researcher explains how the proposed techniques

are transformed into the elements of CPN models. Finally, this chapter ends with a

Univ
ers

ity
 of

 M
ala

ya

17

description of the results that gathered from the execution of the models, in addition to

discussing these results.

(c) Chapter 4 is reserved for the design methodology. The partition techniques of the

D&C problems are fully explained in this chapter. In addition, the chapter explains in

detail the modifications the researcher suggests for work-stealing technique and how to

apply these modifications through the proposed balancing strategies. The chapter is

supported by flowcharts that show the mechanisms of the partitioned techniques and the

balancing strategies. In addition, the chapter includes the designs of the CPN models.

This chapter also explains how the researcher builds CPN models. This includes the

elements of the models, representation of the threads, and the representation of the

partitioned and balancing mechanisms inside the models. Moreover, the chapter shows

how to simulate and validate the models. This chapter is supported by an appendix

(Appendix I), placed at the end of this thesis. Appendix I give more details about CPN,

CPN-Tool, and the simulation and validation processes.

(d) Chapter 5 is reserved for the results and discussion. This chapter includes all the

results that have been obtained from the simulation and monitoring processes of the

proposed CPN models. The results appear as graphs that show the relation between the

number of cores and the execution steps. In addition, the chapter includes a detailed

explanation of the results that have been obtained.

(e) Chapter six is dedicated for the conclusion and future work. This chapter

summarizes the problem addressed in this study and the purpose of this research. Then,

the chapter briefly explains how the research was conducted, the proposed schedulers’

mechanisms and the CPN models. Finally, the chapter discusses some of the possible

future studies. These studies comprise the development of the threads’ structure and the

mechanisms of the schedulers.

Univ
ers

ity
 of

 M
ala

ya

18

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

A new fact has imposed itself on the processor industry with the beginning of the

present century, i.e. processor manufacturers are no longer able to achieve a remarkable

development on the processors’ speed as was the case during the 80s and the 90s of the

past century. This fact has made multicore technology a suitable solution to meet the

challenges faced by the processors industry. Ostensibly, the problem seemed to be

resolved at least from the hardware point of view, however, adding more cores did not

attain what was expected from the new architecture. Many studies (Chhabra, Singh,

Waraich, Sidhu, & Kumar, 2006; Rudolph, Slivkin-Allalouf, & Upfal, 1991; Zamanifar,

Nematbakhsh, & Sadjady, 2010) have shown that in a multicore based system, the

probability of having one (or more) core being idle while other cores having a long line

of waited threads is very high. This will definitely lead to load imbalance which

ultimately causes poor efficiency. As a solution to the above problem, research studies

have been directed to develop scheduling algorithms that aim to achieve workload

balancing between the cores to reduce the chances of having some cores without

working to the minimum as much as possible (Breshears, 2009; Ding, et al., 2012;

Mattheis, et al., 2012).

There are several classifications of workload balancing algorithms; each one is built on

a particular aspect. An early classification belongs to Casey (Casey, 1981). He gives

the basis of a hierarchical classification of load balancing algorithms in distributed

systems. Since then, many other algorithms have emerged with different features since

the classification in (Casey, 1981) has been considered insufficient. (Wang & Morris,

1985) suggest a taxonomy of load balancing algorithms, yet they restrict their study

Univ
ers

ity
 of

 M
ala

ya

19

with Load-sharing algorithms. In Load-sharing, processes never migrate when they are

initiated (Cheung & Jacobsen, 2006). Therefore, load-sharing is considered a subset of

load balancing. As a result, the classifications discussed by Wang et al. describe only a

sub group within load balancing algorithms. (Casavant & Kuhl, 1988) focus on the

scheduling problem in general-purpose concurrent systems. They built their taxonomy

on the work of Casey and Wang. The taxonomy of Casavant gives more details which

are essential as it allows comparisons to be made between different approaches.

Although the work of Casavant has been considered a landmark in classifying

scheduling problems, nevertheless, the researchers are particularly dependent on the

management and allocation of system resources in building their hierarchical taxonomy.

Classification by Diekmann et al. (Diekmann, Monien, & Preis, 1997) was dedicated for

distributed and parallel systems. They depend on applications’ characteristics in

classifying different load balancing problems. In order to achieve their goals, they

introduced a model that describes the relation between the application and the computer

architecture. However, they restricted the method of exchanging data only with message

passing based systems.

2.2 The Emergence of Work-Sharing and Work-Stealing Scheduling

Multithreading scheduling has been classified into two main categories: work-sharing

and work-stealing. “In work-sharing, whenever a processor generates new threads, the

scheduler attempts to migrate some of them to other processors in an attempt of

distributing the work to under-utilized processors. In work-stealing, however, under-

utilized processors take the initiative: they attempt to “steal” threads from other

processors” (Hendler, Lev, Moir, & Shavit, 2005). Intuitively, the migration of threads

occurs less frequently with work-stealing than with work-sharing, since when all

processors have work to do, no threads are migrated by a work-stealing scheduler, but

threads are always migrated by a work-sharing scheduler (R.D. Blumofe & Leiserson,

Univ
ers

ity
 of

 M
ala

ya

20

1999). Work-stealing has been proven to be a more effective means of balancing loads

than work-sharing in sharing memory systems, especially in terms of communication

efficiency: when all processors are busy, no attempts are made to migrate work across

processors. Work-stealing has therefore been a popular strategy for multithreaded

computations (U. A. Acar, Charguéraud, & Rainey, 2013; Belal; Berenbrink,

Friedetzky, & Goldberg, 2001; Hendrickson & Devine, 2000; Osman & Ammar, 2002).

Regardless of the type of category, all scheduling algorithms target at a common main

goal: they aim to make all the processors busy as much as possible. In other words, the

real goal behind these two multithreading scheduling methods is to raise the level of

concurrency between the processors which ultimately leads to better achievement.

2.2.1 Work-Sharing Scheduling

During the 80s of the last century, the design of multiprocessor systems included a

common global memory organized as a queue where every processor in the system

deals with it. The mechanism was simple; each idle processor pops a thread from the

global memory and executes it. If the processor could not complete its thread execution

within a specific period of time, then the same processor pushes the thread back to the

end of the global memory. This type of mechanism gained the name work-sharing since

all processors share this global data structure which is employed to maintain system

threads (R.D. Blumofe & Leiserson, 1999).

Raetz (Raetz, 1987) has shown that due to the simplicity in computer architecture at that

time, the global memory scheme was sufficient to multiprocessor systems. However, as

computers become more advanced, the global memory principle has become ineffective.

Feitelson et al.(Feitelson & Rudolph, 1995) have mentioned several reasons for this

problem. First, it is quite possible to have more than one processor in the idle situation

trying concurrently to access the global memory. The system has no choice other than

Univ
ers

ity
 of

 M
ala

ya

21

serializing the processors’ requests. As a result, with the increase in the number of

processors, bottleneck arises. Second, when an incomplete thread is sent back to the

global memory, there will be a little chance to reschedule this thread to the original

processor; consequently this will cause losing valuable data such as the thread’s state,

temporary values, etc. Third, dealing with a global memory will create a big problem

with applications that have a high rate of interacting and synchronizing between their

threads.

In 1991, Rudolph et al. proposed an alteration to the principle of work-sharing from a

global memory sharing to a local memory sharing (Rudolph, et al., 1991). Their work is

built on two bases; first, they emphasize the importance of processors’ local memories

rather than on a single global memory; second, they proposed a new load balance

mechanism. Usually, each processor is accompanied with a local memory. The authors

suggest that every processor’s local memory should keep its threads even when a

thread’s execution time exceeds the time period assigned to it. New generated threads

also should be kept inside their local memories. In other words, processors should not

easily give up their threads. As a result, the migration of threads between processors

decreases. However, this also leads to imbalance between workload among the

processors since some processors may complete their jobs prior to other processors,

accordingly they become idle while the rest of the processors are still busy. What makes

matters worse is the possibility to repeat this in an ongoing basis. For the purpose of

going out of this impasse, Rudolph et al.(Rudolph, et al., 1991) suggested that any

processor periodically checks the number of its threads. Then, any processor may

launch the load balance operation with other processors if the probability of this

operation is directly proportional to the inverse number of threads in that processor, i.e.

the probability is 1/Thi, where Thi represents the number of threads in the processor i.

Therefore, a heavily loaded processor will rarely share its threads while the opposite is

Univ
ers

ity
 of

 M
ala

ya

22

true with a light loaded processor. Next, the processor that is ready to share its threads

randomly searches for another processor to migrate some of its threads.

The approach of Rudolph et al. is simple, distributed and also adaptive; however, it

suffers from a major weakness, i.e. the lack of dynamicity in initiating a load balance

process. This is because any processor pi starts looking randomly for an idle processor

pj immediately after the number of threads in processor pi exceeds a fixed threshold

value. This means that the process of searching for idle processors starts even if the

system is balanced; as a result, the system loses precious time and effort, though the

impact of this problem can be alleviated through dynamically adjusting the threshold

value.

2.2.2 Work-Stealing Scheduling

The early use of work-stealing principle goes back to the 80s of the 20
th

 century.

Burton et al.(Burton & Sleep, 1981) developed this principle of work to improve the

speed of their parallel project which is dedicated for functional programs. The ZAPP

(Zero Assignment Parallel Processor) project has been built on the idea of allowing

adjacent processors to steal tasks from each other for the sake of providing better work

diffusion. Few years later, Halstead et al. (Halstead Jr, 1984) implemented work-

stealing on MultiLisp through using SMP computer. The work has been dedicated

primarily to improve locality in multiprocessor systems. The authors claim that it would

be better to steal oldest tasks rather than newest tasks since the latter may be loaded

with heavy computations such as being a root of substantial tree of computations. This

is because Halstead et al. followed Fork-Join technique. During the Fork operation, new

recursively created tasks are added to the processor’s queue. Therefore, any added task

is less attractive to theft by a thief processor since it will have less computation. In other

Univ
ers

ity
 of

 M
ala

ya

23

words, the oldest task can achieve the highest probability to make the thief processor

busy to the maximum extent possible (Rainey, 2010; Tzannes, 2012).

Squillante et al. (Squillante & Nelson, 1991) studied shared-memory in multiprocessor

systems. The researchers have concluded that it is better to schedule a thread on the

same processor rather than allowing threads to move around processors. In other words,

the affinity of a thread for a particular processor can highly improve system

performance. This matter gets more attention in their next contribution (Squillante &

Lazowska, 1993). In addition to that, the authors in (Squillante & Nelson, 1991) deal

with the problem of idle processors through what they call threshold scheduling

policies. As in the work of Rudolph et al.(Rudolph, et al., 1991) , Squillante et

al.(Squillante & Nelson, 1991) suggest that each idle processor should randomly check

non-idle processors in order to pick one of them. If a certain picked processor has a

threshold number of threads, then one of its threads could be migrated to the idle

processor. The major difference between the work of Rudolph et al.(Rudolph, et al.,

1991) and Squillante et al.(Squillante & Nelson, 1991) is that in the former, a non-idle

processor donates some of its threads to be accessed by idle processors, while in the

later, idle processors randomly search for non-idle processors to migrate some threads

in order to process them.

Karp et al. (Karp & Zhang, 1993) developed several methods to process both back-track

search and branch-and-bound computations in parallel on a message-passing

multiprocessor system without using a global data structure. The authors applied work-

stealing in a way that makes it a donation rather than a stealing. The idle processor

randomly selects one of the busy processors and sends a request to it. Following that,

the selected processor receives the request and sends some of its work to the idle

processor. Blumofe (Robert D Blumofe, 1995) although argued about the effectiveness

Univ
ers

ity
 of

 M
ala

ya

24

of these methods in solving searching problems, they lack space requirements and

communication costs.

There are several general observations on the works (Burton & Sleep, 1981; Halstead Jr,

1984; Karp & Zhang, 1993; Squillante & Nelson, 1991). First, these works are basically

not built on the basis of work-stealing. In fact, work-stealing has been used as a

complementary part to their original works. Second, restricting the theft from only the

neighbour processor may be a waste of time since there is a chance of being the

neighbour itself in an idle situation. Third, even when selecting non-neighbour

processors for stealing, random selection does not guarantee the best choice. After all,

selecting a processor with few threads is considered a bad choice when, at the same

time, we have several wealthy processors. Finally, stealing a single thread might be

worth in certain applications but it certainly does not worth in all applications. In

addition, there is no clear indication on how many threads should be stolen and why.

2.2.3 Work-Sharing versus Work-Stealing

There are several studies that inspect both work-sharing and work-stealing. These

studies made a trade-off between the scheduling techniques and concluded that work-

stealing is preferable to work-sharing. Blumofe et al.(R.D. Blumofe & Leiserson, 1999)

stressed the importance of the number of threads migration between the two techniques.

They preferred work-stealing since threads migration happens less compared with work-

sharing. They argued that in work-sharing (Rudolph, et al., 1991), processors seek to

balance the system even when the system is already balanced or semi-balanced; while in

work-stealing, the balancing process is only initiated when there is a need. For the same

reason, Dinan et al.(Dinan et al., 2008) followed Blumofe et al. (R.D. Blumofe &

Leiserson, 1999) in their opinion. They relied on the stability measurement to

differentiate between the two techniques. They found that work-sharing suffers from a

Univ
ers

ity
 of

 M
ala

ya

25

high percentage of load balance messages being circulated among the processors even

when the system is balanced, the thing that does not happen in work-stealing. As a

result, Dinan et al. (Dinan, et al., 2008) concluded that work-sharing is unstable while

work-stealing is a stable technique. Chen et al. (Chen, Guo, & Huang, 2012) discussed

the subject of lock contention between the processors. They preferred work-stealing

since there is a low percentage of lock contention even during the stealing process. On

the other hand, work-sharing with a global memory suffers from a high percentage of

lock contention because any processor needs to lock the global memory for both adding

and removing threads. Guo et al.(Guo, Barik, Raman, & Sarkar, 2009) concluded that

work-sharing with a single shared memory unavoidably faces a future problem

represented by scalability bottleneck because the number of processors is on a

continuous increase.

On the other hand, Eager et al. (Eager, Lazowska, & Zahorjan, 1986) preferred work-

sharing rather than work-stealing in a distributed system environment. The simulation

results have shown that work-sharing with system load ranging from low to moderate

makes better progress. However, work-stealing progress is better when dealing with

high loads, assuming that the cost of load transferring is similar between the two

strategies. Despite the fact, in distributed systems, the cost will be higher in work-

stealing rather than work-sharing. The reason for this is due to the policy of work-

stealing in transferring loads that have already been started; but in the case of work-

sharing, the opposite happens, loads are transferred before they are executed. This

argument is true for distributed systems; however, it does not apply for sharing memory

systems where there is no difficulty in transferring loads that have already been started

execution.

Univ
ers

ity
 of

 M
ala

ya

26

2.3 Significant Achievements of Work-Stealing

Since the beginning of the use of work-stealing technique, a large number of research

studies have been conducted. These researches vary in importance and influence in the

development of the use of the technique. However, certain researches considered it a

landmark in the world of work-stealing which requires full attention. In this section,

some of these researches are discussed:

2.3.1 Scheduling Fully-Strict Multithreaded Computations

The work of Blumofe et al.(R.D. Blumofe & Leiserson, 1999) is considered one of the

distinguished achievements in work-stealing scheduling. They presented the first work-

stealing scheduling algorithm which features the ability to schedule fully-strict (well-

structured) multithreaded computations. Their work includes detailed analysis of the

time and space complexity for scheduling multithreaded computations. According to

their analysis, a P-fold speedup can be achieved during the execution of the parallel part

of an application running on a P-processor environment using at most P times more

space than when running on a single processor. In their approach, each processor is

accompanied with a memory organized as a deque. The processor uses the top of its

deque for two purposes: First, it pops the threads from the top in order to process them.

Second, the processor uses the top side to enqueue newly generated threads. The bottom

of the deque is dedicated for stealing. An idle (thief) processor randomly searches for

the first encountered non-idle processor (victim) to steal threads from its bottom.

Therefore, any processor is either working on its queue of threads or attempts to steal

threads from other processors’ queues. For any processor says X , the algorithm of

Blumofe et al.(R.D. Blumofe & Leiserson, 1999) can be listed as follows:

Univ
ers

ity
 of

 M
ala

ya

27

Loop:

 While processor X’s deque is not empty Do

Thread A  Processor X pops the bottommost thread from its deque

Processor X executes Thread A until one of the following actions happens:

If Thread A completed its mission (Dies) Then

Processor X removes Thread A

Else

 If Thread A stalls (for example waiting for other threads to be completed) Then

 Processor X removes Thread A

 Else

 If Thread A enables a stalled Thread say C Then

 Thread C is placed on the bottommost position of the deque

 Else

 Thread A generates another Thread say B

 Processor X pushes Thread A into the deque and starts executing Thread B

End While

If Processor X’s deque is empty and there are still victim processors Then

Processor X becomes a thief and it randomly searches for a victim processor and

steals a thread located at the topmost position of the victim’s deque. The stolen

thread is pushed into Processor X’s deque. Go to Loop

Else

 Stop

The results of Blumofe et al.(R.D. Blumofe & Leiserson, 1999) were good especially

when dealing with areas that need static partition. However, the quality of the results is

not the same when the algorithm is applied in the modern environments. In other words,

the algorithm does not work in multi-programmed environments that are supported by

modern shared-memory multiprocessors and operating systems. This is due to the

algorithm’s designed mechanism that deals with a fixed set of processors with the

assumption of the full availability of these processors. In addition, a lot of failed

attempts of theft may happen because multiple thief processors try to steal from one

victim core (Cao, Sun, Qian, & Wu, 2011). This brings us to the importance of

predetermination of the victim cores instead of wasting time in useless attempts. The

researcher has addressed this point in this study through locating the victim and thief

cores prior to any stealing process. In this way, no failed attempts of theft have ever

happened in this study.

Univ
ers

ity
 of

 M
ala

ya

28

2.3.2 Non-Block Work-Stealing Algorithm

Arora et al. (Arora, Blumofe, & Plaxton, 2001) improved the work of Blumofe et al.

(R.D. Blumofe & Leiserson, 1999) to produce a non-blocking work-stealing algorithm.

In a non-blocking system, any delay in any process will not hinder other processes from

making progress. In other words, contention can be prevented during concurrent

operations. The new algorithm soon became the favourite choice both in the academic

and industrial fields (Hendler & Shavit, 2002). The improvement lies in two points:

First, the algorithm can deal with arbitrary multithreaded computations instead of

restricting the computations with the fully-strict type only. Second, their algorithm can

manage a multi-programmed environment in contrast to (R.D. Blumofe & Leiserson,

1999) which was unable to deal with such environment. In other words, the algorithm

of Arora et al. has the ability to deal with more than one program at the same time

where each program may utilize a different number of processors. To achieve such

goals, the authors did not map threads to processors directly as in (R.D. Blumofe &

Leiserson, 1999), instead they planned for two schedulers. The first scheduler maps the

threads into P processes, while the second (complementary) scheduler maps the

processes into the processors. Therefore, the P-fold speedup cannot be achieved all the

time because the second scheduler may manage its work with less than P processors. In

addition, Arora et al. (Arora, et al., 2001) improved the behaviour of the deque which

represents the backbone of the work-stealing algorithm as in (R.D. Blumofe &

Leiserson, 1999). Here the process rather than the processor as in (R.D. Blumofe &

Leiserson, 1999) is in charge of managing its threads. Additionally, deques have the

advantage to become a non-blocking data structure that can handle concurrent

operations (U. A. Acar, et al., 2013). A CAS (compare-and-swap) instruction

("Compare-and-swap,") that stands behind the success of the concurrent updating of the

deques is an atomic instruction used in multithreading to achieve synchronization. The

Univ
ers

ity
 of

 M
ala

ya

29

CAS’ operands are a given value and a given memory location. The instruction

compares the given value with the content of memory address by the given location. If

they are the same, the CAS modifies the contents of that memory location to a given

new value. This is done as a single atomic operation. The atomicity guarantees that the

new value is calculated based on up-to-date information; if the value had been updated

by another thread in the meantime, the write would fail (Arora, et al., 2001).

However, the use of the CAS instruction is only needed when there is only one thread in

the deque. The deques are much like the one described in the work of Knuth (Knuth,

1968). However, in a work-stealing mechanism, processes can access only one end of

the deques that is the “Bottom” while other processes can access the other end, i.e. the

“Top” during the stealing operation.

Unfortunately, the algorithm of Arora et al. encountered several problems. First, due to

the use of fixed sized arrays, the algorithm can deal with only m/n threads inside a

deque where m represents the total memory size and n represents the number of

processes (Hendler, et al., 2005). The second problem is related to memory

management. Overflows can easily occur due to the use of fixed-size array (array of

pointers) in representing a deque. This drawback especially happens when running

several programs for which the authors designed their algorithm. Arora et al. tried to

reduce the effects of overflows by using cyclic array technique. However, they

succeeded in reducing the chances of overflow but could not avoid overflow from

happening. Consequently, the continuous adjustments of the deque sizes are necessary

during runtime since it cannot predict the size of each thread. There is no simple

operation to free memory locations and return them to the free space (Hendler, et al.,

2005).

Univ
ers

ity
 of

 M
ala

ya

30

Using a parallel garbage collector will definitely require precious time to accomplish

(Hendler, et al., 2005). The second problem is associated with the number of stolen

threads. Berenbrink et al.(Berenbrink, et al., 2001) criticized work-stealing systems that

steal a single item at a time. The researchers use Markov model to analyze work-

stealing technique. The authors use Markov model in arguing that a work-stealing

system that is built on the basis of single-stealing at a time could end up with an

unstable state (overflow) which becomes difficult to recover. In addition, the authors

stress that even when extra spaces are allocated, at some point, overflow may occur.

2.3.3 Improving the Non-Block Work-Stealing Algorithm

The work of Arora et al. (Arora, et al., 2001) represents a significant achievement in the

work-stealing techniques, though the work suffers from several shortages. Several

studies have been conducted to improve this work while retaining the essence of the

work at the same time.

2.3.3.1 Stealing the Half

The mechanisms of work-stealing of Blumofe et al.(R.D. Blumofe & Leiserson, 1999)

and Arora et al.(Arora, et al., 2001) have been designed to steal a single item at a time.

Several researchers argue that stealing more than one item at a time increases the

stability and achieves a better system load balance. Mitzenmacher (Mitzenmacher,

1998) analyzed work-stealing algorithms using differential equations. He came to the

conclusion that multi-stealing can improve the performance of an algorithm.

Berenbrink et al.(Berenbrink, et al., 2001) claimed that slipping into unstable state for

Arora-like algorithms can be avoided when the algorithm is modified to steal half the

deque content instead of stealing a single item. Hendler et al. (Hendler & Shavit, 2002)

applied the idea of stealing the half of the victim’s deque. The authors followed the

Arora algorithm’s features such as non-blocking and minimizing of using the CAS

Univ
ers

ity
 of

 M
ala

ya

31

instruction. The main drawback in the approach of Hendler et al. is the dependency in

using fixed-size deques. It was not clear whether it was possible to utilize resizable

deques.

2.3.3.2 Data Locality

Acar et al.(U. Acar, Blelloch, & Blumofe, 2000) studied the data locality of work-

stealing algorithms. The authors found that randomized stealing may lead to cache

unfriendliness; therefore they suggested extending the work of Arora et al. in a way that

makes stealing happen in a locality-guided way. Here, the process gives priority to the

threads that have affinity to it. If no thread has affinity to the process, then the process

follows the work-stealing mechanism in selecting another victim process randomly. The

authors claimed that their modified algorithm outperforms the standard algorithm of

work-stealing.

2.3.3.3 Dynamic Deques

The work of Arora et al. is based on using fixed-size arrays. Practical experiments

proved that the use of such data structure leads inevitably to overflow. This means that

the deques’ sizes must be continuously adjusted to accommodate the unpredictable

number of threads which dynamically change during the execution. To address this

problem, Hendler et al. (Hendler, et al., 2005) suggested using dynamic structure

instead of fixed-size arrays. The authors’ main contribution lies in implementing a

deque as a doubly linked list, where each list is a short array which is dynamically

allocated and freed. The authors have succeeded in dealing with the overflow problem;

on the other hand, there was an increase in the complexity of the algorithm. Due to the

extra work needed to maintain the dynamic list, the new algorithm shows a trade-off

between time and space complexity.

Univ
ers

ity
 of

 M
ala

ya

32

2.3.3.4 Dynamic Circular Deques

Chase et al.(Chase & Lev, 2005) introduced the idea of dynamic circular array in

implementing deques. The authors managed in eliminating the overflow problem with a

simple and efficient algorithm. In addition, space complexity is linear, that is no

memory is wasted as in Hendler et al. (Hendler, et al., 2005) besides no garbage

collector is needed. However, when the deque becomes full, a new array is created and

the elements are copied to the new deque. Although the process of copying is linear, this

can be the only factor of delay.

2.4 More Work-Stealing Contributions

Agrawal et al. (Agrawal, Leiserson, He, & Hsu, 2008) presented an adaptive thread

scheduler, called A-STEAL. They argued that their scheduler performs better than

(Arora, et al., 2001) when the machine has a large number of cores and many jobs

running on it. Vrba et al. have analysed the performance of applications running under

graph-partitioning and work-stealing schedulers (Vrba, Espeland, Halvorsen, &

Griwodz, 2009). Work-stealing has been formally proven to be optimal only for the

restricted class of fully-strict computations. Recently, Ding et al. presented in (Ding, et

al., 2012) a work-stealing scheduler for time-sharing multicore systems. Their scheduler

has been designed to deal with two important drawbacks in the work of Arora et al,

significant unfairness and degraded throughput. The scheduler improves average system

throughput and reduces average unfairness.

2.5 Work-Stealing in Software Industry

The success of work-stealing in the academic research field has motivated software

companies to adopt this principle of work in their products. Several languages and

libraries have been developed based on the idea of work-stealing. Examples of these

products are Cilk, TBB, TPL and Java.

Univ
ers

ity
 of

 M
ala

ya

33

2.5.1 Cilk

Cilk (pronounced “silk”) is a C-based multithreaded language for parallel programming.

It adds several constructs to the original C language in order to deal with parallel control

(Frigo, Leiserson, & Randall, 1998). The spawn construct creates a new thread that may

execute concurrently with the threads’ parent. The sync construct has the duty of

synchronizing a thread with its children’s threads. In other words, the sync blocks the

execution of a function until all its spawned children complete their actions. The

theoretical work of the Cilk language can be traced back to the work of (Robert D

Blumofe, 1995) . The first version of this language (Cilk-1) was born at MIT in 1994.

Parallelism has been represented with the first version; the language introduces an

efficient scheduler based on work-stealing technique. However, the first version was

awkward since parallelism was exposed “by hand” using explicit continuation passing

(Frigo, et al., 1998). Cilk Arts Inc developed the commercial version of Cilk called

Cilk++, which supports both C and C++. In July 2009, Intel Corp acquired the complete

software. Currently, Intel® Cilk™ Plus is working on version 1.2.

2.5.2 Threading Building Blocks (TBB)

Intel TBB is a C++ template library that is designed for desktop shared memory

computers. Since it does not represent a new language or even a language extension,

TBB has been included in the existing C++ compilers without doing any modification to

these compilers. The components of TBB are built at various levels of abstraction. In

TBB, we can distinguish three levels of abstractions. At the highest level of abstraction,

we can find concurrent containers and parallel algorithms. Threads scheduler is based

on work-stealing similar to Cilk and it is located at the middle level of abstraction, while

timing facility, atomic operation and mutexes are positioned at the lowest level of

abstraction (Robison, Voss, & Kukanov, 2008). The TBB has managed to spare the

Univ
ers

ity
 of

 M
ala

ya

34

programmer from getting into the complexities of using native threads packages such as

Windows and POSIX threads where the processes of threads creation, synchronization

and termination are done manually. Intel, the owner of TBB, argues that their product

has proved its efficiency in dealing with the multicore environment. Any variation in the

number of cores can easily be detected, the TBB can easily do the necessary adjustment

to deal with the new number of cores ("Threading Building Blocks,"). First version of

TBB has been introduced by Intel in August 2006 while the latest version is 4.2 was

introduced in September 2013 (Wikipedia, 2014b).

2.5.3 Task Parallel Library

Microsoft’s Task Parallel Library (TPL) works under .NET programming framework.

Microsoft aims behind designing this library to simplify parallel programming in.NET

environment (Lu & Adviser-Gannon, 2009). The library is responsible for threads

creation and termination in addition to fitting the number of threads with the number of

available processors (Wikipedia, 2013). As is the case in Cilk and TBB, TPL adopted

work-stealing mechanism as the principle of work in its scheduler. Although there are

several similarities between TBB and TPL, however, programming using TPL is easier

since it provides the usage of .NET language supports (Olivier & Adviser-Prins, 2012).

2.5.4 Implementing Work-Stealing in Java

The principle of work-stealing has also been implemented in Java programming

language in different ways. JAWS (Java Work Stealer) has been presented in (Mao, So,

& Woo, 1998). It allows programmers to write parallel programs in pure Java that can

run on a network of workstations. JAWS has been implemented as a user-level Java

library which schedules user threads using a work-stealing technique. JAWS is strongly

influenced by Cilk, however, there are two major differences between the two software:

First, JAWS has been designed to deal with a network of workstations where there is no

Univ
ers

ity
 of

 M
ala

ya

35

shared memory, while Cilk designers planned to implement their software in a

symmetric multiprocessor machine which has a shared memory. Second, Cilk adds

extension to the C language and it has the ability to access the C language faculties such

as the stack of running threads. On the other hand, JAWS depends on Java Virtual

Machine, there is no way to deal with stack frame as Cilk did. JAWS has a main

drawback in its performance especially when dealing with a large-scale cluster, this is

because any node in the cluster may steal several times from other nodes. This will

absolutely lead to an increase in nodes’ idle time besides causing a heavy overhead in

network traffic (B.-Y. Zhang, Mo, Yang, & Zheng, 2007). In general, JAWS could not

achieve optimal performance. The stealing and synchronizations processes are the main

overheads that face this software. Satin represents a system for running programs on

grid platforms (Van Nieuwpoort, Kielmann, & Bal, 2000). The programming model of

Satin has been inspired by Cilk. Satin extends Java with two simple primitives for D&C

programming. Originally, Satin has been presented by Nieuwpoort et al. in (Van

Nieuwpoort, Kielmann, & Bal, 2001). The authors claim that the software which has not

yet been applied in real grid shows an efficient load balance implementation based on

work-stealing. In (Nieuwpoort, Maassen, Kielmann, & Bal, 2001), Nieuwpoort et al.

evaluated Satin on a real grid. The authors argued that an efficient utilization of the

resources has been achieved. However, they did not depend on the original work-

stealing algorithm in their work. They extended the original algorithm to a Cluster

Random Stealing algorithm which outperforms the original one. This new extended

algorithm is specially designed for cluster-based wide area computing. Jcluster (B.-Y.

Zhang, et al., 2007; B. Y. Zhang, Yang, & Zheng, 2006) is another Java based system

that provides a parallel environment which is suitable for a large-scale heterogeneous

cluster. It implements a task scheduler based on a Transitive Random Stealing

algorithm. The proposed scheduler can be seen as an improvement to work-stealing

Univ
ers

ity
 of

 M
ala

ya

36

algorithm. The authors in (B.-Y. Zhang, et al., 2007) argued that the mentioned

scheduler outperforms the work-stealing scheduler in reducing processors’ idle time and

network communication overheads. Java language (Lea, 2005) has developed its

java.util.concurrent packages in its 7th release by adding a framework for fork-join style

parallel decomposition. The new framework provides a natural means for partitioning

many algorithms to efficiently make use of hardware parallelism. The use of work-

stealing has reduced the contention for the working deques.

It is noted the growing importance of these languages and libraries. However, there is a

common drawback which these software shared (Gautier, Lima, Maillard, & Raffin,

2013). This drawback is represented by the synchronization points of these software.

These points force some tasks to be completed before allowing new tasks to be

executed. For example, concurrent deques that are utilized in these languages and

libraries required expensive memory-fences which can affect the overall performance.

Frigo et al. have shown in (Frigo, et al., 1998) that half of Cilk work-stealing schedulers

are spent in executing memory fence.

2.6 Drawbacks of Work-Stealing

Despite the great success of work-stealing that has been achieved, the scheduling

algorithm suffers from several drawbacks. Nogueira et al. have shown in (L. Nogueira,

Fonseca, Maia, & Pinho, 2012) that the scheduler mechanism of Blumofe et al. (R.D.

Blumofe & Leiserson, 1999) is fast and easy, however, they argued that the random

approach employed in choosing the victim core cannot always determine the best victim

core. To make matters worse, the current trend and the future, at least for the

foreseeable extent to processor manufacturers is the increase in the number of cores.

This will certainly lead to an increase in the number of victim cores, as a result, the

probability of choosing the best victim core will decrease.

Univ
ers

ity
 of

 M
ala

ya

37

Moreover, there will be a considerable waste of time. A thief core that fails in stealing

from a victim core due to competition, causes the loss of system resources, in addition

to repeating this action with other victim cores, for example, two or more cores trying to

steal from the same victim core which itself is a thread-poor core. This leads the

researcher to emphasize the importance of the right choice of victims. In fact, if the

scheduler failed in tailoring unsuccessful stealing attempts, this without doubt leads to

slowing down application execution as much as 15-35% as mentioned in (R.D. Blumofe

& Leiserson, 1999).

Neill et al. discussed the cost of stealing in (Neill & Wierman, 2009). The authors

argued that this cost comes from system bus contention and threads’ transfer latency.

Another source of cost the authors highlighted is related to queues’ affinity. According

to the work-stealing principle of work, any process has the right to steal from any other

queue, that is, from any non-local memory. When we put this matter into consideration

besides having the hardware fact which says it is much faster for a processor to access

its local-memory than accessing other processors’ local-memories. The authors

concluded that stealing from other queues loses the advantage of local cached

computations. However, without stealing, there will be load balance. Therefore, it is

important to keep threads in their queues as much as possible for the sake of affinity.

Only when there is a real need to distribute them, then threads can be taken away from

their local-queues.

Univ
ers

ity
 of

 M
ala

ya

38

2.7 Summary

This chapter started by giving a quick review of the papers that highlight the importance

of scheduling algorithms on multicore systems. Then, the researcher moved towards

reviewing the papers that cover the classification of workload balancing algorithms.

Next, the range of papers was narrowed down to be dedicated to the general review of

Work-Sharing and Work-Stealing Scheduling algorithms. The reviewing process has

been redirected to focus only on Work-Stealing Scheduling algorithms. The researcher

started by reviewing the early contributions in work-stealing and how this technique

evolves during the eighties and nineties of the twentieth century. Then, the researcher

gave more attention to the contribution of Blumofe et al. and Arora et al. Following that,

the researcher reviewed the papers that discuss weaknesses and gaps in these two papers

and the proposed solutions that have been submitted by other researchers. Next, the

researcher covered the papers that criticise the drawbacks in work-stealing principle of

work. Then, the researcher reviewed the principle of work-stealing in software industry.

Finally, the researcher reviewed some of the recent papers that highlight the drawback

in work-stealing. Table 2.1 gives a summary of the most related work in this study.

Univ

ers
ity

 of
 M

ala
ya

39

Table 2.1: A Summary of the most related work in this study

Title Authors - Date Contribution

Executing functional

programs on a virtual tree

of processors

(Burton & Sleep,

1981)

This work represents the origin of work-stealing principle of work. The authors try in their project to allow

processors to steal from each other for the sake of providing better work diffusion.

Implementation of

Multilisp: Lisp on a

multiprocessor

(Halstead Jr, 1984)

The authors implemented work-stealing on MultiLisp using SMP computer. Their work was primarily

directed to improve locality in multiprocessor systems. The authors claim that it would be better to steal oldest

tasks rather than newest tasks since the latter may be loaded with heavy computations such as being a root of

substantial tree of computations.

Analysis of task migration

in shared-memory

multiprocessor scheduling

(Squillante &

Nelson, 1991)

The authors studied shared-memory in multiprocessor systems. They suggested that each idle processor

should randomly check non-idle processors in order to pick one of them. If a certain picked processor has a

threshold number of threads, then one of its threads could be migrated to the idle processor.

Randomized parallel

algorithms for backtrack

search and branch-and-

bound computation

(Karp & Zhang,

1993)

The authors applied work-stealing in their algorithm in a way that makes it a donation rather than a stealing.

The idle processor randomly selects one of the busy processors and sends a request to it. Following that, the

selected processor receives the request and sends some of its work to the idle processor.

Executing multithreaded

programs efficiently

(Robert D Blumofe,

1995)

Argued that the work of (Burton & Sleep, 1981), (Halstead Jr, 1984), (Karp & Zhang, 1993),(Squillante &

Nelson, 1991) lack space requirements and communication costs, in addition, their works did not build on the

basis of work-stealing ; it is considered secondary to the importance of their work. Moreover, stealing from

neighbouring processor happens which is considered waste of time in the case where the neighbour is idle as

well.

Scheduling multithreaded

computations by work

stealing

(R.D. Blumofe &

Leiserson, 1999)

A distinguished achievement in the work-stealing scheduling. They presented the first work-stealing

scheduling algorithm which is able to schedule fully-strict (well-structured) multithreaded computations.

However, they could not succeed in implementing their algorithm in shared-memory systems that apply

multiprogramming. This is due to the assumption that a fixed set of processors are fully available to perform a

given computation.

Thread Scheduling for

Multi-programmed

Multiprocessors

(Arora, et al., 2001)

Improving the work of (R.D. Blumofe & Leiserson, 1999) through proposing a work-stealing scheduling

algorithm which is able to do two things: First, the algorithm is able to schedule arbitrary multithreaded

computations as opposed to the special case of “fully strict” as in the work of Blumofe et al. Second, the

Univ
ers

ity
 of

 M
ala

ya

40

algorithm can deal with multiprogramming algorithm while the algorithm of Blumofe et al. is designed for a

dedicated environment.

Non-blocking Steal-Half

Work Queues

(Hendler & Shavit,

2002)

Point out to two main achievements in the work of (Arora, et al., 2001) : First, the algorithm of Arora et al.,

can deal with arbitrary multithreaded computations instead of restricting the computations with the fully-strict

type only. Second, their algorithm can manage a multi-programmed environment in contrast to (R.D. Blumofe

& Leiserson, 1999).

Apply the idea of stealing the half of the victim’s deque. The authors followed Arora algorithm’s features such

as non-blocking and minimizing of using the CAS instruction. The main drawback in the approach of Hendler

et al. is the dependency in using fixed-size deques.

Scheduling parallel

programs by work stealing

with private deques

(U. A. Acar, et al.,

2013)

Study the influence of private deques and identify one of the main points in the work of (Arora, et al., 2001), i.

e., the use of non-blocking data structure as a deque to handle concurrent operations.

A Dynamic-Sized Non-

blocking Work Stealing

Deque

(Hendler, et al.,

2005)

Discuss the work of (Arora, et al., 2001) and determine two main problems: First, the algorithm can deal with

a limited number of threads due to the use of fixed-sized arrays. Second, a fixed-size array can itself cause an

overflow problem.

The authors suggest implementing a deque as a doubly linked list instead of using fixed-size arrays. In this

way, they solved the main drawback in the work of (Arora, et al., 2001), as a result, the overflow problem has

been eliminated but it came at the expense of an increase in the complexity of the algorithm and memory

wastage.

The natural work-stealing

algorithm is stable

(Berenbrink, et al.,

2001)

Criticize the work of (R.D. Blumofe & Leiserson, 1999) (Arora, et al., 2001) for the reason of stealing a single

item. Berenbrink et al., argue that a system with single stealing could end up with an unstable state (overflow)

which becomes difficult to recover.

Analyses of load stealing

models based on

differential equations

(Mitzenmacher,

1998)

Analyzed the work-stealing algorithms using differential equations. He came to the conclusion that multi-

stealing can be improved when stealing multiple items instead of one.

The natural work-stealing

algorithm is stable

(Berenbrink, et al.,

2001)

Claim that the work of (Arora, et al., 2001) may slip into unstable state . However, this state can be avoided

when the stealing algorithm is modified to steal half of the deque instead of a single item.

The Data Locality of Work

Stealing

(U. Acar, et al.,

2000)

Suggest a method to improve the locality of work stealing. The authors found that randomized stealing may

lead to cache unfriendliness; therefore they suggested extending the work of Arora et al. in a way that makes

stealing happens in a locality-guided way.

Univ
ers

ity
 of

 M
ala

ya

41

Dynamic circular work-

stealing deque
(Chase & Lev, 2005)

The authors managed in eliminating the overflow problem in (Arora, et al., 2001) with a simple and more

efficient algorithm than in (Hendler, et al., 2005). They introduced the use of dynamic circular array in

implementing deques; as a result, a garbage collector is no more needed. However, when the deque becomes

full, there will be a need for extra time to transfer items from the old deque to the new deque.

Adaptive work-stealing

with parallelism feedback

(Agrawal, et al.,

2008)

They presented an adaptive thread scheduler, called A-STEAL. They argued that their scheduler performs

better than (Arora, et al., 2001). Agrawal, et al. point out to the fact that Arora, et al. did not provide

parallelism feedback in their work which leads to waste in processors’ cycles.

On the benefits of work

stealing in shared-memory

multiprocessors

(Neill & Wierman,

2009)

They discussed the cost of stealing generated from system bus contention and threads’ transfer latency which

comes from leaving the cores steal from each other freely. The authors stressed on queues affinity and stealing

should be allowed only when there is a real need for stealing.

Dynamic Global

Scheduling of Parallel

Real-Time Tasks

(L. Nogueira, et al.,

2012)

The authors criticised the work-stealing random approach in choosing the victim core. This is due to the

difficulty that may face a thief core in choosing a victim core because the competition between thief cores. For

example, two thief cores try to steal from the same victim core. This will undoubtedly waste system resource

and time.

BWS: Balanced Work

Stealing for Time-Sharing

Multicores

(Ding, et al., 2012)

They presented a work-stealing scheduler for time-sharing multicore systems. Their scheduler has been

designed to deal with two important drawbacks in the work of Arora et al, significant unfairness and degraded

throughput. The scheduler improves average system throughput and reduces average unfairness.

A work-stealing scheduling

framework supporting fault

tolerance

(Y. Wang, et al.,

2013)

The authors proposed a work stealing scheduling framework that supports hardware fault tolerance. The

framework is able to detect and recover both transient and permanent faults.

Friendly barriers: efficient

work-stealing with return

barriers

(Strang, 2011)

The authors address dynamic overheads that occur when a steal is taking place. They succeeded in reducing

the dynamic overhead to half which results in improving the total performance.

Univ
ers

ity
 of

 M
ala

ya

42

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction

The multicore technology has seized control of the processors industry and becomes,

without any doubts, the main player in any computer-based device. Processor

manufacturers continuously try to replicate the number of cores per chip in order to

achieve better results, i.e. executing the programs in less time. For instance, in the

laptops world, it becomes natural to see the increase of the number of cores in the

laptops. For the time being, commercial laptops have 4 to 8 cores. This also can be said

for the mobile technology where the number of cores is on the rise. All the expectations

for this technology are directed to a continuous increase in the number of cores. On the

other hand, software industry has not developed sufficiently in order to fit the on-going

development taking place in multicore technology.

This study is about building concurrent multithreaded models that solve D&C problems

(Fibonacci Series, Towers of Hanoi, Binary Search, and Matrix Multiplication) on a

multicore environment. To achieve this goal, the researcher proposes two types of

schedulers: A Low Level Scheduler (LLS) and a High Level Scheduler (HLS). As

shown in Figure 3.1, the LLS is included in each modelled core while there is only one

HLS in the entire model. The D&C workload problem is represented as threads

proposed by the researcher. Initially, every problem starts by a single main thread

located in one of the cores. The duty of each LLS is to partition and manipulate the

threads inside its core. On the other hand, the HLS balances the workload (partitioned

threads) among the entire cores through pulling (at run time) some threads from the

victim cores and adding these threads to the thieves’ cores. The entire LLSs work at the

same time with the HLS for the purpose of making the whole cores busy as much as

possible so that a high level of concurrency can be achieved. The HLS has a guard

Univ
ers

ity
 of

 M
ala

ya

43

which enables/disables the activation of the HLS. On the other hand, each core has its

own guard that enables/disables the activation of the core itself.

HLS

Core N

LLS N

Common Memory

HLS Guard

Guard N

Core 2

LLS 2

Guard 2

Core 1

LLS 1

Guard 1 …...

Figure 3.1: A multithreaded multicore model. The LLSs create the threads and

manipulate them while the HLS redistributes the threads between the cores. The

common memory is a shared area used to store data and temporary results

The methodology used in this study has been built on five main phases. Phase 1 is

dedicated for the research idea. Phase 2 introduces research background. Phase 3 is

related with literature review conducted by the researcher. Phase 4 is dedicated for

identifying research problem and objectives. Phase 5 illustrates design methodology,

and finally, Phase 6 is about the simulation and monitoring processes. Figure 3.2 shows

the workflow of the study.

3.2 Phase 1: Building the Research Idea

In any computer system, there are two main components: Hardware and Software. This

covers all types of computer systems starting from the supercomputers towards the

smallest computers. Studies have proven that best results can be achieved when there is

a great harmony between these two components. For instance, in computer systems that

apply parallel processing, these systems cannot attain high achievement without

providing a high compatibility between the parallel processors and the software that

Univ
ers

ity
 of

 M
ala

ya

44

operate these processors, i.e. providing operating systems and other software that can

deal with such an environment.

START

Phase 2

Studying of Research Background

Phase 3

Conducting the Literature Review

Sub Phase 1

Reviewing the Single-Processor

Difficulties and Multicore

Challenges

Phase 1

Building the Research Idea

Sub Phase 2

Reviewing the Workload

Balancing Algorithms

Sub Phase 3

Narrowing the Research and

Reviewing the Multithreaded

Scheduling Algorithms

Sub Phase 4

Narrowing the Research to the

Work-Stealing Scheduling

Algorithm

Phase 4

Identifying Research Problem and

Objectives

Phase 5

Designing the Methodology

Sub Phase 1

Designing the Low-Level

Schedulers (LLSs)

Sub Phase 2

Designing the High-Level

Schedulers (HLSs)

Sub Phase 3

Designing the Guards'

Mechanisms

Sub Phase 4

Designing the CPN Models

Phase 6

Simulation and Monitoring

END

Figure 3.2 Workflow of the Study

In the case of personal computer systems, these systems became well known worldwide

since 1981 when both IBM with Microsoft presented the first PC (Held, 1986). At that

Univ
ers

ity
 of

 M
ala

ya

45

time, software were designed to deal with single-processor computers. However, with

the beginning of the twenty first century, processor manufacturers adopted multicore

technology instead of continuing to develop single-processor industry. Consequently, it

was inevitable that software were influenced by this diversion in the hardware since

most software were designed to deal with a single-processor environment. For that

reason, the ability of software to deal with this expansion in the number of cores has

become the focus of attention of researchers working in academic and industrial fields.

The researcher has noticed that the success that has been made in replicating the number

of cores has not been matched with a similar success in the software side. The

researcher touches on the difficulties faced by software developers in dealing with

multicore technology. These difficulties are represented by adapting the software with

the technologies of processors that have variable numbers of cores. From this point, the

research idea has been generated. The research idea revolves around providing the

mechanisms that help in making software more adaptable with the multicore

technology. The researcher takes into consideration that these mechanisms should be

adaptable to deal with variable number of cores; in addition, these mechanisms should

operate the cores to the maximum extent, leaving a minimum number of idle cores.

Given the large scope of research topic in this area, the researcher focuses on a class of

problems, i.e. Divide and Conquer problems. Therefore, the idea of this research is built

on designing mechanisms that manage Divide and Conquer workload problems on a

multicore environment.

3.3 Phase 2: Studying of Research Background

In this sub phase, the researcher started by addressing the real reasons that prompted the

development of multicore technology and how this is reflected on the processors

manufactured. The influence of Moore’s Law and the improvement that is made on this

Univ
ers

ity
 of

 M
ala

ya

46

law are discussed in this sub phase. Following that, the researcher gives some examples

of the early processors that were built on the basis of multicore technology in the

beginning of the twentieth century.

Then, the researcher redirects the attention to the software rather than the hardware.

Here, the research touches on the difficulties faced by software developers in dealing

with multicore technology. These difficulties are represented by adapting the software

with the technologies of processors that have a variable numbers of cores. Subsequently,

the researcher clarifies the terms: concurrency, scalability, parallelism, multithreading,

working cores, and non-working cores. These terms are essential to the research and are

important to be clearly explained. The researcher stresses on the concurrency and

scalability that modern software should possess in order to exploit the new technology.

The researcher also briefly highlights the similarity and difference between concurrency

and parallelism because of their importance in the research. Then, the researcher

clarifies the role of threads and multithreading in scheduling techniques. Later, two

important terms, working (busy) core and non-working (idle) core, are defined. In

addition, the researcher discussed the reason behind having these two types of cores.

Then, the research’s background is redirected to give a glimpse of two main topics in

this thesis: the scheduling techniques and Divide and Conquer problems. The researcher

draws the attention to the types of scheduling (static and dynamic) and briefly mentions

the differences between them. The researcher concludes the importance of the dynamic

scheduling and its impacts on this study. Next, the researcher defines the problems of

Divide and Conquer. In view of the fact that this thesis proposes CPN models that solve

Divide and Conquer problems on multicore architecture, the researcher finds that it is

necessary to give a quick look to this kind of problems in the background phase.

Univ
ers

ity
 of

 M
ala

ya

47

Finally, the researcher explains the importance of modelling in designing concurrent

systems. The researcher draws the attention to the advantages of using modelling and

how these advantages can be exploited in producing robust models. Then, the researcher

introduces the modelling language (Colored Petri Nets) and the modelling tool (CPN-

Tool).

3.4 Phase 3: Conducting the Literature Review

Based on the research background, the literature review went through three sub phases.

Sub Phase 1 is related with the research background while Sub Phase 2 is to survey

workload balancing algorithms. In Sub Phase 3, the researcher narrows down the

research area and direct it to the multithreaded scheduling algorithms. Finally, in Sub

Phase 4, the researcher focuses on the work-stealing scheduling algorithm.

3.4.1 Sub Phase 1: Reviewing the Single-Processor Difficulties and Multicore

Challenges

The literature review chapter starts by discussing the difficulties faced by the processor

manufacturers in developing faster single processors within the beginning of the

twentieth century. The researcher clarified that for the purpose of continuous production

of highly efficient processors, the processor manufacturers have developed the

multicore technology with a purpose to try to get out of the single-processor

predicament. Subsequently, the researcher indicates that, although the multicore

technology is the savoir to the processor manufacturers, the new technology does not

provide a perfect solution to the problem. The researcher examined several studies that

addressed the problem of workload imbalance happening in multicore systems. The

researcher concluded that the failure to achieve the desired results due to the lack of

dynamic run-time scheduling algorithms that can balance the workload among the

cores.

Univ
ers

ity
 of

 M
ala

ya

48

3.4.2 Sub Phase 2: Reviewing the Workload Balancing Algorithms

The research is then directed to workload balancing algorithms. The researcher starts by

reviewing several classifications of these algorithms. The review includes a brief

description of each classification which points out on what basis the classifier builds its

taxonomy, in addition to mentioning the scope and limitation of the classification.

3.4.3 Sub Phase 3: Reviewing the Multithreaded Scheduling Algorithms

The researcher subsequently narrows the research scope and directs it towards

multithreaded scheduling algorithms. The researcher reviews the studies on work-

sharing algorithms, the algorithms’ mechanisms, and then discusses the reasons behind

the success that has been achieved in this type of algorithms during the 80s. Then, the

researcher clarifies how this success abated when computers become more advanced

and workload increases. To proceed, the researcher starts identifying the work-stealing

scheduling algorithm, reviewing its early implementations and the advantages of this

type of scheduling. Later, the researcher focuses on the defects in the work-sharing and

how the work-stealing has succeeded in overcoming such defects. Finally, the

researcher conducted a comparison between the two methods based on the studies in

this area and concluded that work-sharing is preferred in distributed systems while

work-steal are achieves better results in shared-memory systems.

3.4.4 Sub Phase 4: Reviewing the Work-Stealing Scheduling Algorithm

The researcher continues narrowing the scope of the thesis. The researcher reviews the

major achievements in work-stealing scheduling techniques. In each achievement, the

researcher tries to survey both the positive and negative aspects. After that, the

researcher moves to review the most recent achievements in using work-stealing

Univ
ers

ity
 of

 M
ala

ya

49

scheduling. Later, the researcher reviews the use of work-stealing in software industry.

This includes adopting this technique in C, C++, and Java based software. Finally, the

researcher discusses the drawbacks of work-stealing scheduling. Criticism was directed

to the indiscriminate way in the selection of the victim core. This drawback has been

addressed in this study and the researcher proposes a solution for it. Another drawback

has been discussed which is related to the wasting in time when the thief core fails in

stealing. This drawback has also been addressed in this thesis.

3.5 Phase 4: Identifying Research Problem and Objectives

Based on the research background and the literature review, in the next step, the

researcher determines the research problem and the objectives of the study. Regarding

the problem statement, the researcher initially defines the main problem; it is the

problem that this study revolves around. Then, the researcher stated that this main

problem actually can be divided into four sub problems. The researcher moved deep in

explaining each sub problem. After that, the researcher shifted to the objectives of the

study. Here, the researcher stated in one statement to provide a precise description of the

actions to be taken in order to solve the research problem. In other words, the researcher

tries to summarize what is to be done in this study. The researcher then described the

objectives of the study one by one in a concise manner; in addition, the objectives were

formulated based on the problem statement.

3.6 Phase 5: Designing the Methodology

This phase represents the contribution in this thesis. The researcher uses the research

idea, research background and the literature review in carving the methodology of this

study. The methodology phase consists of four sub phases. In the first and second sub

phases, the researcher explains the mechanisms of the LLSs, and HLSs. The third sub

Univ
ers

ity
 of

 M
ala

ya

50

phase is directed for explaining the Guards’ mechanisms that control the

activation/deactivation of the LLSs and HLSs. Finally, the fourth sub phase is about the

CPN models that the researcher proposed in this thesis.

3.6.1 Sub Phase 1: Designing the Low-Level Schedulers (LLSs)

This sub phase is dedicated for explaining the proposed LLSs. The research describes

the mechanisms of these schedulers one by one in detail. This includes the technique of

partitioning and manipulating the threads. Starting with Fibonacci series (Section

4.1.1), the researcher gives an explanation supported with Figure 4.1 that shows the

proposed Fibonacci thread’s template. Then, the researcher demonstrates the Fibonacci

LLS mechanism (Figure 4.2) as a flowchart. Following that, an example of threads’

partitioning and manipulation (Figure 4.3) for computing Fibonacci (6) is given.

Then, the researcher moves to the Binary Search problem (Section 4.1.2). The

researcher reviews the basis of the searching technique, the advantage and disadvantage

of the technique. Following that, the researcher proposes a thread for the Binary Search

problem (Figure 4.4). Next, a Binary Search LLS is illustrated as a flowchart which

shows the mechanism of creating and evaluating the threads (Figure 4.5). Finally, an

example to a tree of threads that shows the proposed partitioning technique is given

(Figure 4.6).

Next, the researcher shifts to another D&C problem; it is the Towers of Hanoi problem

(Section 4.1.3). The researcher reviews the history of this game. Then, the researcher

explains how this game can be played, as well as the rules, and the objective of the

game. After that, the proposed thread and move structures are explained (Figure 4.8).

Later, the proposed Towers of Hanoi LLS is given in a flowchart that shows the

partition of threads in addition to the creation of the game’s moves (Figure 4.9). Lastly,

Univ
ers

ity
 of

 M
ala

ya

51

an example for the game is given (Figure 4.10). The example includes the creation of

the tree of threads beside the creation of the list of moves.

The Matrix Multiplication problem (Section 4.1.4) comes after the Towers of Hanoi

problem. First, the researcher briefly surveys the importance of Matrix Multiplication in

mathematics, and then moves to the proposed thread for this kind of problem (Figure

4.11). Then, a flowchart is given which shows the mechanism of the Matrix

Multiplication LLS (Figure 4.12). Following that, a tree of threads’ partitioning for a

problem of multiplying two matrices is shown in detail (Figure 4.13). Next, the

researcher provides another version of LLS (Figure 4.15). In this version, leaf-level

threads are directly computed. Finally, another tree of threads’ partitioning following

the second version is shown in detail (Figure 4.14).

3.6.2 Sub Phase 2: Designing the High-Level Schedulers (HLSs)

After explaining the proposed threads and LLSs, the researcher moves to the proposed

HLSs. In this sub phase, the researcher proposes five strategies that are built on the

basis of Work-Stealing. The researcher explains the mechanisms of these strategies in

redistributing the threads. All strategies are designed to move threads from the victim(s)

core(s) to the thief cores. A set of flowcharts are given to explain the mechanisms of

these strategies: The InOrderSingleStealing Strategy (IOSSS - Figure 4.16), the

InOrderMultiStealing Strategy (IOMSS - Figure 4.17), the RichestFirstSingleStealing

Strategy (RFSSS - Figure 4.18), the RichestFirstMultiStealing Strategy (RFMSS -

Figure 4.19), the CompleteMultiStealing Strategy (CMSS - Figure 4.20), and the

PartialMultiStealing Strategy (PMSS - Figure 4.24).

Univ
ers

ity
 of

 M
ala

ya

52

3.6.3 Sub Phase 3: Designing the Guards’ Mechanisms

The researcher describes the Guards’ mechanisms. The researcher designs two types of

Guards that control the activation/deactivation of the LLSs and HLSs (Figure 4.27). The

HLS Guard is activated, that is, locks the HLS when all the modelled cores are busy,

and it unlocks the HLS when there is at least one idle core, at the same time, there is one

or more victim core(s). On the other hand, the LLS’s Guard locks the core for further

processing when the core is considered a victim core; at the same time, there are one or

more thief cores.

3.6.4 Sub Phase 4: Designing the CPN Models

In this sub phase, the researcher designs the proposed CPN models. The researcher

starts by proposing the hierarchical designs of these models. After that, the researcher

moves to explain the design of each model, starting with Fibonacci model and ending

with Matrix Multiplication model. The researcher explains the elements of these models

in detail and describes their functionality. Precisely, the researcher explains how the

LLSs, HLSs, and the guards’ mechanisms have been applied in these models. The sub

phase (Section 4.4) is supported with many figures that show the CPN models as taken

from inside the CPN-Tool: the CPN model for Fibonacci Problem (Figure 4.28, Figure

4.29, and Figure 4.30, and Figure 4.31), the CPN model for the Binary Search Problem

(Figure 4.32, Figure 4.33, and Figure 4.34), the CPN model for the Towers of Hanoi

Problem (Figure 4.35 and Figure 4.36), and finally, the CPN model for the Matrix

Multiplication Problem (Figure 4.37, Figure 4.38, and Figure 4.39).

3.7 Phase 6: Simulation and Monitoring

This phase is dedicated for illustrating the results of the simulation and monitoring

processes. This phase has been conducted as follows:

Univ
ers

ity
 of

 M
ala

ya

53

(a) At the beginning, the researcher explains the importance of the CoresLoad place

(Section 5.1) in registering the sizes of the threads which are used to calculate the

results. Following that, the researcher gives an example of the CoresLoad values (Table

5.1) by solving Fibonacci (10) problem three times: first using Eight-Thread

Partitioning, then, using Four-Thread Partitioning, and finally, Two-Thread Partitioning.

(b) Then, the researcher gives an explanation to the criteria that is adopted by the thesis

in the evaluation process. The Average Execution of Concurrent Steps (AES) is

explained in detail (Section 5.1).

(c) After that, the researcher re-executes the Fibonacci (10) problem ranging from two

until ten-core models. In each execution, the AES values (Table 5.2 and Table 5.3) are

registered and saved inside a text file. Later, the researcher uses these values in drawing

a histogram (Figure 5.2) that shows the relation between the AES values and the

number of cores. This scenario is repeated for Fibonacci (13) (Table 5.4 and Figure 5.3)

and Fibonacci (15) (Table 5.5 and Figure 5.4). The researcher solves these two

problems two times; one using the three partition methods, and the second using only

the two partition method. Finally, the researcher discusses the results.

(d) The researcher moves to the Binary Search Problems (Section 5.3). First, the

problem is illustrated, then the researcher gives an example to a Binary Search Problem

which includes the searching list, indices, and the searching item. After that, as in

Fibonacci, the researcher solves the Binary Search Problem two times using nine

models (Table 5.8 and Figure 5.7) and (Table 5.9 and Figure 5.8). The AES values are

illustrated and histograms are drawn. Following that, the researcher discusses the

results.

(e) Next problem is the Towers of Hanoi (Section 5.4). The researcher starts by giving a

brief explanation on the parameters of this game which are represented by the number

Univ
ers

ity
 of

 M
ala

ya

54

of disks and the pillar numbers. Then, the researcher explains also in brief the moves of

the game. After that, the researcher solves two problems; one for seven disks and the

other for nine disks. The results, the moves, are shown for the two examples (Table

5.10, Table 5.11, Table 5.12, and Figure 5.9) (Table 5.13 and Figure 5.10). Finally, a

detailed discussion to the results is conducted.

(f) The final problem is the Matrix Multiplication (Section 5.5). As in the previous

problems, the researcher explains the parameters of multiplying two matrices, the

dimensions of the matrices. Following that, two examples are given: the first one is

multiplying two matrices, each with dimension of 10 × 10 (Table 5.14), and the second

is multiplying two matrices, each with the dimension of 20 × 20 (Table 5.15). The AES

values are computed and listed inside the tables based on which the histograms are

sketched (Table 5.16 and Figure 5.11) and (Table 5.17 and Figure 5.12). Finally, the

researcher analyses the results.

3.8 Summary

This chapter describes the approach adopted by the researcher in conducting this study.

The researcher conducted this research through six phases to highlight the main features

of the study. This includes the purpose of each phase in this study and its relation with

other phases. Some of these phases include sub phases, in such case, the researcher

explains the purpose of each of these sub phases and its relation with other sub phases

within the same phase. In conclusion, this chapter gives a general overview of the

methodology adopted by the researcher in carrying out this study.

Starting with the first phase, Building the Research Idea, this phase represents the

starting point of this research. It gives a clear image on how the idea originated in the

researcher’s imagination. Then, in phase two, Studying of Research Background, the

researcher explains the research background that has been established. The Literature

Univ
ers

ity
 of

 M
ala

ya

55

Review Phase comes next, the researcher shows how the literature review has been

conducted in four sub phases. The first sub phase reviews the main problem, i.e.

reviewing the existing research works involving the limitations of single-processors.

Gradually moving to the second sub phase, the researcher narrows down the research

area and focuses on the algorithms that partition the workload. The researcher continues

in the next sub phases in narrowing down the search area through focusing on the

multithreaded scheduling algorithms. Finally, the researcher settled down on existing

studies covering work-stealing algorithms. These four sub phases assist the researcher in

finding the gaps and issues in the other studies. This finding represents the keystone to

formulate the problem statement and the objectives of this study in the next phase.

Then, based on the above, the researcher proposes the design methodology through four

sub phases. These sub phases clearly show the mechanisms of the low-level scheduler,

the high-level scheduler, and the guards. Next, the last sub phase is dedicated for

modelling the problem using Colored Petri Nets. The final phase is dedicated for

conducting the simulation and monitoring processes. In this phase, the researcher gives

examples of the problems that have been solved in this study and how the results have

been collected in tables and sketched in histograms.

Univ
ers

ity
 of

 M
ala

ya

56

CHAPTER 4: DESIGN OF CONCURRENT MULTITHREADED MODELS FOR

DIVIDE AND CONQUER PROBLEMS

In this thesis, the researcher focuses on solving D&C problems, namely, Fibonacci

Series, Towers of Hanoi, Binary Search, and Matrix Multiplication on a modeled

multicore environment. For this purpose, the researcher proposes two types of

schedulers: The Low-Level Schedulers (LLSs) and the High-Level Schedulers (HLSs).

The LLSs include workload partitioning and manipulating mechanisms while the HLSs

include work-stealing mechanisms. The LLSs are responsible for dividing the main

D&C problem (main thread) into smaller sub problems and then solve these sub

problems towards reaching the final solution of the main D&C problem. On the other

hand, the HLSs are in charge of balancing the workload (threads) among the modeled

cores. The mechanisms of LLSs are presented in Section 4.1 while the mechanisms of

HLSs are presented in Section 4.2. In Section 4.3, the researcher illustrates guards’

mechanisms which control the activation of the LLSs and HLSs. Section 4.4 is

dedicated for presenting the proposed CPN models, and finally, Section 4.5 is allocated

for chapter summary.

 4.1 The Low-Level Schedulers (LLSs)

In this section, the researcher proposes several workload partitioning and manipulating

mechanisms that suit D&C problems. In general, any D&C problem is represented by a

main thread and the duty of these schedulers is to partition the main thread into sub

threads and manipulate them to get the results. The scheduler creates a tree of threads,

the tree can be binary, or non-binary, it depends on the technique of partitioning. In this

study, a thread is modeled as an n-tuple of parameters that represents the D&C

problem’s specification. The number and the type of the parameters depend on the type

Univ
ers

ity
 of

 M
ala

ya

57

of the D&C problem itself. Different problems have different specifications; therefore

they have different numbers and types of parameters. The importance of the threads

comes from the fact that the division and the balancing operations are actually done on

the thread’s parameters not on the data. For this reason, it becomes crucial to decide the

number of the parameters and the type of each parameter in the threads prior to any kind

of processing. Finally, regardless of the type of D&C problem, every modeled thread is

represented as a tuple that includes at least two distinguished parameters: the ThreadId

parameter stands for thread’s number and the FatherId stands for parent thread’s

number. Both these parameters are denoted as a positive integer number (Figure 4.1).

The division process creates a tree of threads as shown in Figure 4.3. Starting with the

main (root) thread, this root thread has ThreadId with value 1 and FatherId with value 0.

On the other hand, the values of the ThreadId and FatherId in the ancestors’ threads in

the tree of threads are computed according to the division mechanism of the D&C

problem. This is because the threads’ tree is not always a binary tree as in Figure 4.3,

the tree shape depends on the D&C problem’s LLS.

4.1.1 The Fibonacci Low-Level Scheduler (FLLS)

Fibonacci series is an example of D&C problems (Cormen, et al., 2009; Miller &

Vandome, 2010). The series is given as: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,

377, 610, etc. The first two terms are 0 and 1, the other terms can be calculated as: Tn =

Tn-1 + Tn-2 , where n ≥ 2 and Tn is the n
th

 term. The proposed Fibonacci thread (Figure

4.1) is modeled as a 3-tuple: (ThreadId, FatherId, N), where the first two parameters

represent the thread’s number and the parent thread’s number. The third parameter, N,

holds the value “n”, as Fibonacci (n) = Fibonacci (n-1) + Fibonacci (n-2).

Univ
ers

ity
 of

 M
ala

ya

58

TId, TFId , N

ThreadId

ThreadFatherId Parameter N

Figure 4.1: The Fibonacci thread where TId and TFId stand for ThreadId and FatherId

respectively. The parameter N holds the value “n” as in

Fibonacci (n) = Fibonacci (n-1) + Fibonacci (n-2).

The proposed workload partitioning mechanism (FLLS) is illustrated in Figure 4.2. The

FLLS receives as input two parameters; a list of threads (LT) and the current result

“Res”. The “Res” works as a global variable that can be updated by the FLLS. Initially,

a new thread is extracted from the LT; then depending on the value of the parameter N,

one of the following states is executed:

(a) State a: If the thread’s Parameter N is less than two, then Res is directly computed

as:

Res  Res + 0  0  Fibonacci (0)  Parameter N is 0

Res  Res + 1  1  Fibonacci (1)  Parameter N is 1

 (b) State b: If the Parameter N is less than or equals three, then the FLLS can create

only two children threads at once and then connect those threads with the LT. The tree

of threads is binary, i.e. a node in the tree can hold only two children threads. Therefore,

in the case where N is equal to two, this leads to: Fibonacci (2)  Fibonacci (1) +

Fibonacci (0), while in the case where N is equal to three, this leads to: Fibonacci (3) 

Fibonacci (2) + Fibonacci (1). In both cases, two threads can be created at the same

time; however, a value of N exceeding three can generate more than two threads as in

the next state.

Univ
ers

ity
 of

 M
ala

ya

59

(c) State c: If the Parameter N is less than or equals five, then four children threads can

be created by the FLLS and then connected them with the LT. The Fibonacci equation is

computed as follows:

The original Fibonacci equation is given as:

Fibonacci (n)  Fibonacci (n-1) + Fibonacci (n-2) Equation 1

Since the FLLS is able to create four children threads, then there is a need to divide each

child thread in the right hand side of Equation 1 into two children threads. Therefore we

get:

Fibonacci (n-1)  Fibonacci (n-1-1) + Fibonacci (n-2-1)

Fibonacci (n-2)  Fibonacci (n-2-1) + Fibonacci (n-2-2)

After substituting Fibonacci (n-1) and Fibonacci (n-2) in Equation 1, we get:

Fibonacci (n)  Fibonacci (n-2) + Fibonacci (n-3) + Fibonacci (n-3) +

Fibonacci (n-4) Equation 2

The last equation is dedicated for values of N equal to four or five, four children threads

can be created. Values of N less than four are already processed in the previous states

while values of N above five are going to be processed in the next states, since a value

of N, say six or above, can create eight children threads at the same time.

(d) State d: If the Parameter N is above five, then eight children threads can be created

at the same time by the FLLS and then connected to them with the LT. The computation

is as follows:

We already have in Equation 2:

Fibonacci (n)  Fibonacci (n-2) + Fibonacci (n-3) + Fibonacci (n-3) + Fibonacci (n-4)

The FLLS extends each term in the right hand side into two children threads, so we get:

Fibonacci (n-2)  Fibonacci (n-3) + Fibonacci (n-4)

Fibonacci (n-3)  Fibonacci (n-4) + Fibonacci (n-5)

Univ
ers

ity
 of

 M
ala

ya

60

Fibonacci (n-4)  Fibonacci (n-5) + Fibonacci (n-6)

Therefore, Fibonacci (n) can be computed as:

Fibonacci (n)  Fibonacci (n-3) + Fibonacci (n-4) + Fibonacci (n-4) +

Fibonacci (n-5) + Fibonacci (n-4) + Fibonacci (n-5) + Fibonacci (n-5) + Fibonacci (n-6)

Equation 3

The last equation, Equation 3, indicates that for any value of N greater than five, eight

children can be created at the same time.

The process is repeated until the LT becomes null. Each core executes its own FLLS on

its threads. However, all the cores share the same value of Res. The value of the

ThreadId is computed as 2
Tree’s Level

, starting with zero as the first level number (main

thread’s level). On the other hand, the FatherId is computed by dividing ThreadId by

two.

Figure 4.3 gives an example to the above mechanism. The figure shows a tree of

partitioning the thread (1,0,6) which is dedicated for computing Fibonacci (6). In this

example and according to the FLLS (Figure 4.2), eight children threads (those with bold

font) are computed directly without passing through their ancestors. In other words, the

FLLS jumps directly to those children threads. The FLLS can be extended to create

sixteen children threads at once but in this case the value of N should be greater so it

can afford creating sixteen threads at the same time.

Univ
ers

ity
 of

 M
ala

ya

61

INPUT

LT , Res

START

 Thread  First Thread in LT

TId Thread.ThreadId

 FId Thread.FatherId

 N Thread.Parameter N

N < 2

LT = Nill

STOP

OUTPUT

Res

Yes

No

Yes

No

 LT  Remove the first thread from the LT and

assign the remaining of LT to LT

N = 0

Res  Res + 1

NoYes

N <= 3

N <= 5

A

A

Yes

No

Yes

No

AChild  [((8 * TId) , (8 * TId) div 2 , N - 3)

BChild  [((8 * TId) + 1,((8 * TId) + 1) div 2, N - 4)

CChild  [((8 * TId) + 2,((8 * TId) + 2) div 2, N - 4)

DChild  [((8 * TId) + 3,((8 * TId) + 3) div 2, N - 5)

EChild  [((8 * TId) + 4,((8 * TId) + 4) div 2, N - 4)

FChild  [((8 * TId) + 5,((8 * TId) + 5) div 2, N - 5)

GChild  [((8 * TId) + 6,((8 * TId) + 6) div 2, N - 5)

HChild  [((8 * TId) + 7,((8 * TId) + 7) div 2, N - 6)

LT  LT ^^ AChild ^^ BChild ^^ CChild ^^ DChild^^

EChild ^^ FChild ^^ GChild ^^ HChild

AChild  [((4 * TId) , (4 * TId) div 2 , N - 2)

BChild  [((4 * TId) + 1,((4 * TId) + 1) div 2, N - 3)

CChild  [((4 * TId) + 2,((4 * TId) + 2) div 2, N - 3)

DChild  [((4 * TId) + 3,((4 * TId) + 3) div 2, N - 4)

LT  LT ^^ AChild ^^ BChild ^^ CChild ^^ DChild

 AChild  [((2 * TId) , TId , N - 1)

BChild  [((2 * TId) + 1, TId, N - 2)

LT  LT ^^ AChild ^^ BChild

Figure 4.2: The Mechanism of FLLS

Univ
ers

ity
 of

 M
ala

ya

62

1,0,6

2,1,5
3,1,4

4,2,4 5,2,3

8,4,3 9,4,2

16,8,2 17,8,1

32,16,1

33,16,0

101

18,9,1

19,9,0

1 0

10,5,2 11,5,1

20,10,1

21,10,0

1 0 1

6,3,3 7,3,2

12,6,2 13,6,1

24,12,1 25,12,0

1 0 1

14,7,1 15,7,0

1 0

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 4.3: A binary tree for computing Fibonacci (6). The root thread is (1,0,6)

which represents the main thread. The result is the summation of values inside the

squares which is equal to 8.

4.1.2 The Binary Search Low-Level Scheduler (BSLLS)

Binary Search (BS) is another example of D&C problems (Cormen, et al., 2009; Miller

& Vandome, 2010). It is a searching algorithm that is dedicated for finding a certain

element in an ordered array (list). The algorithm’s technique starts by comparing an

input value with the element in the middle of the ordered list. If no matching exists then

the result of comparison determines in which half of the list the process will be

repeated. In case that the input value is less than the element in the middle; then the

algorithm is repeated only on the elements that come before the element in the middle

(left half). Otherwise, the searching will be focused only on the elements that come after

the element in the middle (right half). The result of the algorithm which is considered as

an algorithmic function has a running time of O(log n) and it can be applied iteratively

or recursively. A major downside in this algorithm happens when new elements are

added to the list. This will enforce to resort the list again prior to any new searching

(Lea, 2005) (Mitzenmacher, 1998).

Univ
ers

ity
 of

 M
ala

ya

63

The BS thread (Figure 4.4) is modeled as 5-tuple: (ThreadId, FatherId, Element,

StartIndex, EndIndex). The Element parameter represents the value that is to search for

while the StartIndex and EndIndex stand for the starting and ending indices of the array

or list.

TId , FId , Ele , SI , EI

ThreadId

FatherId

Element to be

searched for

Starting Index

Ending Index

Figure 4.4: The Binary Search thread

The mechanism of the BSLLS (Figure 4.5) accepts three inputs: First the list of threads

(LT) which initially holds a single (main) thread. This thread as shown in Figure 4.4

includes the element to be searched for (Ele) and the start and end indices (SI and EI)

for the entire array or list. The second input is the list of numbers (LN) where the

BSLLS is going to search inside it (the LN is kept inside the common area as shown in

Figure 3.1). In this study, the researcher does not stress on the type of LN whether it is a

list or an array. The only thing that matters is that LN can be indexed and this index is

greater than or equal zero. For simplicity, the researcher averts using negative indices.

The third input is Delta which holds the difference between the SI and EI in the thread.

The value of Delta determines the number of threads that are going to be created.

Univ
ers

ity
 of

 M
ala

ya

64

INPUT

LT , LN, Delta

START

LT = Nill OR Found

STOP

OUTPUT

Found, Loc

Yes

No

Found  False

Loc  ~1

 Thread  First Thread in LT

TId Thread.ThreadId

 FId Thread.FatherId

 Ele Thread.Element

 SI Thread.StartingIndex

EI  Thread.EndingIndex

SI = EI LN(SI) = Ele Loc  SI
Yes Yes

No

SI + 1 = EI LN(EI) = Ele Loc  EI

 LT  Remove the first thread

from the LT and assign the

remaining to the LT

No

Yes

No

Yes

Mid  (EI – SI + 1) Div 2

LN(Mid) = Ele Loc  Mid

 Ele >

LN(Mid)
SI  Mid + 1EI  Mid - 1

Yes

No

No Yes

Found  True

X  SI

I  1

X + Delta < EI

Child  [((TId * 2)+I,TId,Ele,X,X + Delta -1)]

LT  Child ^^ LT

X  X + Delta

I  I + 1

X < EI

Delta  Delta Div 2

Child  [(TId * 2,(TId * 2) + I,X,EI)]

A

A

Yes

No

No

Yes

No

Delta = 0 Delta  1

No

Yes

B

B

Figure 4.5: The Mechanism of BSLLS

Univ
ers

ity
 of

 M
ala

ya

65

Initially, the BSLLS initializes two variables: Found and Loc. In case the searching

process succeeded in finding the element required searching for, then the Boolean

variable Found and the integer variable Loc are adjusted to carry the values True and

the element’s location. Otherwise, Found gets False and Loc gets ~1 (the ~ symbol

stands for minus in SML). Next, as in the FLLS, the BSLLS extracts a thread from the

LT, takes out the parameters, and then adjusts the LT. After that, the scheduler checks

whether the thread’s range is equal to one (SI=EI) or two (EI=SI+1). In case there is a

matching, the Found and Loc variables’ values are adjusted and the searching

terminates. Otherwise, the middle location is computed and the element in that location

is tested against the searching element.

Then the process of threads’ partitioning starts, here, the BSLLS creates a number of

threads, each thread covers an area with length equal to Delta. The variables X

(originally starts with SI) and Delta are used to compute the values of SI and EI for each

thread while the variable I is used to create thread number. Because it is possible to

repeat the partitioning process on the generated threads several times, it would be

necessary to reduce the value of Delta. The searching process stops when the searching

element is found or when no threads remain, which means the searching element is not

included in LT. As an example to the above BSLSS, Figure 4.6 shows a tree of

partitioning the thread (1,0,22,1,100000) which is dedicated for searching for the value

22 in an ordered list that consists of 100000 elements. The BSLSS partitions the main

thread into 3334 threads; each is dedicated for searching for a specific range in the list.

Delta is chosen to be 30 (this value can be increased or decreased as long as it won’t

exceed the range limits). First searching area is in the range 1-30, second area is in the

range 31-60,…last one is in the range 99991-100000.

It is worth noting that the BSLLS tree of threads in Figure 4.6 differs from the FLLS

tree (Figure 4.3). The former is a non-binary tree while the latter is a binary tree. This is

Univ
ers

ity
 of

 M
ala

ya

66

because the BSLLS directly computes the leaf-level threads while the FLLS creates

intermediate threads especially when dealing with high values of arguments. From the

concurrency point of view, it is better to create leaf-level threads at once since these

threads are distributed to all the cores and processed while creating intermediate threads

may need to create more threads towards reaching leaf-level threads. In other words, it

would be a waste of time. However, the full creation to the leaf-level threads in the

BSLLS may also exhaust precious time. Therefore, there is a kind of trade-off between

the full creation of leaf-level threads and the creation of the intermediate threads.

1,0,22,1,100000

2,1,22,1,30 3,1,22,31,60 4,1,22,61,90 3333,1,22,99961,99990 3334,1,22,99991,100000……….

Figure 4.6: An example of partitioning a BS thread where list consists of 100000

elements.

4.1.3 The Towers of Hanoi Low-Level Scheduler (THLLS)

The Towers of Hanoi (TH) game is based on a puzzle that was first published by a

French mathematician (François Éduoard Anatole Lucas) in 1883(Cormen, et al., 2009).

The game (Figure 4.7) consists of three pillars and n disks. Initially, two of the pillars

are empty. The first pillar contains n disks stacked with the largest disk at the bottom.

Figure 4.7 shows an example of this game. In this example, three disks are located on

the first pillar. The smallest disk has the number 1 while the largest disk has the number

3. The objective of this game is to move all the disks one by one from pillar 1 to pillar 3

under one condition: putting a large disk on top of a small one is not allowed. The

output of this game is represented by a sequence of moves. Any single move consists of

three parameters: disk number, source pillar, and destination pillar. The number of steps

is equal to (2
n
) – 1.

Univ
ers

ity
 of

 M
ala

ya

67

Figure 4.7: The Towers of Hanoi game with three disks

The proposed TH’s thread (Figure 4.8) consists of seven parameters. The third

parameter (Ord) stands for the move’s Order. The fourth parameter (DNo) represents

disk’s number while the last three parameters represent source disk number (Sou),

destination disk number (Des), and through disk number (Thr). In addition, the THLLS

generates a list of moves (LM). A move (Figure 4.8) is an abbreviated description of a

TH thread. The move is a 4-tuple: (Ord,DNo,Sou,Des), it has the information of moving

sequence, disk number and the source and destination pillars.

TId , FId , Ord , DNo , Sou , Des ,Thr

ThreadId

FatherId

Disk Number

Move’s Order
Source, Destination , Through

Pillars’ Numbers

Ord , DNo , Sou , Des

TH Thread

TH Move

Figure 4.8: The Towers of Hanoi: thread and move

The mechanism of THLLS is given in Figure 4.9. The THLLS receives as input a list of

threads (LT) and a list of moves (LM). The THLLS mechanism starts by decomposing

the thread on the top of the LT into its components and then computes the new move.

Univ
ers

ity
 of

 M
ala

ya

68

Every new move consists of move’s order (or sequence), the disk number, the pillar

number that holds the disk, and the destination disk number. The moves are kept inside

the LM. The AddNewMove routine (located to the left) is dedicated for adding new

move to the LM. This routine works recursively in adding the moves to the LM. The

routine uses the Ord parameter in arranging the moves in an ascending order. Following

that, the THLLS checks the disk number whether it is greater than one; if it is so, the

THLLS creates two sub threads (left and right) and adds them to the LT. Otherwise, the

THLLS picks another thread from the LT. The process of computing the left and right

sub threads (children threads) consists of computing sub threads’ parameters one by

one. The disk number for both sub threads is equal to the current thread’s disk number

minus one. However, the order of the left sub thread (left child) differs from its

corresponding order in the right sub thread. Then, it is the turn of computing the pillars’

numbers. Finally, the two sub threads are added to the LT. This process continues until

the LT becomes Nil. The result of the mechanism is represented by the LM. An

example to TH thread’s partition is given in Figure 4.10. Threads are included inside

oval shapes while the moves are included inside rectangle shapes.

A simple comparison between the binary tree of threads created by the THLLS (Figure

4.10) and those that belong to FLLS (Figure 4.3) and BSLLS (Figure 4.6) shows clearly

the inability of the THLLS to create more than two threads at the same time. This is

due to the fact that no more than one disk can be moved at the same time. In other

words, the concurrent side in the Towers of Hanoi game is weak, while in the BSLLS,

all the cores deal with various sections of the searching area at the same time. The same

thing can be said regarding FLLS, where every core deals with a branch of the

Fibonacci tree, at the same time, which ultimately leverages the concurrency level.

Univ
ers

ity
 of

 M
ala

ya

69

DNo > 1

Yes

No

Yes

No

INPUT

LT, LM

START

LT = Nill

STOP

OUTPUT

LM

 Thread  First Thread in LT

TId Thread.ThreadId

 FId Thread.FatherId

 Ord  Thread.Order

 DNo  Thread.DiskNo

 Sou  Thread.SourcePillar

Dest  Thread.DestinationPillar

Thro  Thread.ThroughPillar

 LT  Remove the first thread

from the LT and assign the

remaining of LT to LT

LeftOrd  Ord – 2
(DNo - 2)

LeftDNo  DNo – 1

LeftSou  Sou

LeftDest  Thro

LeftThro  Dest

LeftChild  [(TN * 2,TN,LeftOrd,LeftDNo,LeftSou,,LeftDestLeftThro)]

RightOrd  Ord + 2
(DNo - 2)

RightDNo  DNo – 1

RightSou  Thro

RightDest  Dest

RightThro  Sou

RightChild [((TN*2)+1,TN,RightOrd,RightDNo,RightSou,RightDest,RightThro)]

LT  LeftChild ^^ RightChild ^^ LT

LM  AddNewMove

(LM,NewMove)

No

AddNewMove (LM,NewMove)

RETURN

LM^^NewMove

Yes

Size (LM) = 0

Size (LM) = 1

AND

X.Ord > NewMove.Ord

X  Point to the head move of LM

RETURN

NewMove^^X

Y  Point to the move next to the

the one pointed by X in LM

Split the LM into two sub lists

LeftList  From head move pointed by X till the move

that comes before the move pointed by Y

RightList  From the move pointed by Y to the end of

LM

RETURN

LeftList^^AddNewMove (Y,NewMove)

No

Yes

 NewMove  (Ord,Dno,Sou,Dest)

Figure 4.9: The Mechanism of THLLS

Univ
ers

ity
 of

 M
ala

ya

70

1 , 0 , 0 , 3 , 1 , 3 , 20 , 3 , 1 , 3

2 , 1 , -2 , 2 , 1 , 2 , 3-2 , 2 , 1 , 2 3 , 1 , 2 , 2 , 2 , 3 , 12 , 2 , 2 , 3

4 , 2 , -3 , 1 , 1 , 3 , 2-3 , 1 , 1 , 3 5 , 2 , -1 , 1 , 3 , 2 , 1-1 , 1 , 3 , 2
7 , 3 , 3 , 1 , 1 , 3 , 23 , 1 , 1 , 3

6 , 3 , 1 , 1 , 2 , 1 , 31 , 1 , 2 , 1

-3 , 1 , 1 , 3 -2 , 2 , 1 , 2 -1 , 1 , 3 , 2 0 , 3 , 1 , 3 1 , 1 , 2 , 1 2 , 2 , 2 , 3 3 , 1 , 1 , 3Resulted Game’s Moves:

Figure 4.10: An example of partition a TH thread where the main thread (1,0,0,3,1,3,2)

indicates that there are three disks.

4.1.4 The Matrix Multiplication Low-Level Scheduler (MMLLS)

Matrix Multiplication (MM) is one of the D&C problems that plays a main role in many

scientific applications. It represents a keystone in a numerous number of problems such

as transitive closure and reduction, solving linear systems of equations, matrix

inversion, etc. The MMLLS schedules threads creation, partition, and managing to

multiply two matrices. The MMLLS dynamically divides threads till reaching leaf-level

threads (a leaf-level thread holds a row number of the first matrix and a column number

of the second matrix). The researcher has modeled the thread (Figure 4.11) as a 7-tuple:

(ThreadId, FatherId, StartRow, EndRow, N, StartColumn, EndColumn). In

mathematics, multiplying two matrices, Am,n × Bn,p generates a new matrix Cm,p, where

m, n, p > 0. The parameter N stands for both the first matrix (A) column number and the

second matrix (B) row number. The StartRow and EndRow parameters carry the

starting and the ending numbers of the rows that belong to the first matrix (A). These

two numbers are reduced through the process of division till they match. The resulting

match number represents the required row number. The same thing can be said for

Univ
ers

ity
 of

 M
ala

ya

71

StartColumn and EndColumn. They carry the starting and ending column numbers in

the second matrix (B).

ThreadId

FatherId

Starting row number

and ending row

number of the first

matrix
Starting column number and

ending column number of

the second matrix

The number of elements

in the first matrix column

TId , FId , SR, ER , N, SC, EC

 Figure 4.11: The Matrix Multiplication thread

The mechanism of the MMLLS is illustrated in Figure 4.12. The essence of the

mechanism is in computing the values of the parameters: StartRow, EndRow,

StartColumn, and EndColumn. The scheduler receives a list of threads and it (scheduler)

continuously partitions these threads till reaching the level where a matching happens

between the (StartRow ,EndRow) and (StartColumn,EndColumn). To explain the

MMLLS in more detail, we can distinguish seven different statuses in calculating the

above parameters.

(a) In Status 1, when both the StartRow and EndRow are matched, at the same time,

StartColumn and EndColumn are matched also; here we have a leaf-level thread. The

multiplier routine is called to compute multiplying a row numbered SR from the first

matrix (MatA) by a column numbered SC from the second matrix (MatB). The

parameter N stands for the number of elements in the SR row as well as for the SC

column. The results of multiplication are assigned to the third matrix (MatC).

(b) Status 2 is reserved for threads that come one step before the leaf-level threads.

Here, both the StartRow and EndRow are matched, at the same time, EndColumn

Univ
ers

ity
 of

 M
ala

ya

72

exceeds StartColumn by one. The result is in generating two leaf-level threads, the first

for multiplying row StartRow from the first matrix by column StartColumn from the

second matrix. The second leaf-level thread is for multiplying row StartRow from the

first matrix by column EndColumn from the second matrix.

(c) Status 3 is activated when both the StartRow and EndRow are matched, at the same

time; StartColumn and EndColumn are not matched. However, EndColumn exceeds

StartColumn by more than one. Here, the MMLLS divides the threads into two sets. The

first set deals with threads that use row number StartRow from the first matrix with first

half of the columns between StartColumn and EndColumn from the second matrix. The

second set of threads uses the same row number, EndRow, from the first matrix with the

second half of columns between StartColumn and EndColumn from the second matrix.

 (d) All the mentioned statuses are dedicated for managing threads that have a matching

in the row’s parameters of the first matrix while statuses 4 and 5 are customized for

threads that have mismatching in the row’s parameters of the first matrix. In these

statuses, the MMLSS mechanism divides the rows in the first matrix. When EndRow

exceeds StartRow by one, Status 4 is called. Two normal threads are sent to the list; the

first thread deals with row number StartRow from the first matrix with a set of columns

(StartColumn, EndColumn) from the second matrix while the second thread deals with

EndRow from the first matrix with the same set of columns from the second matrix.

Status 5 manages the threads that have more than one value between StartRow and

EndRow. The MMLSS mechanism divides the set of rows into two divisions. The

((EndRow – StartRow) / 2 + StartRow) has been taken as the point of threads’ division.

An example to MM threads’ partitioning is given in Figure 4.13. The main thread

contains the dimensions of the matrices: A3,4× B4,4. The resulting leaf-level threads are

surrounded by bold borders. These threads are taken by the multiplier (Figure 4.12) to

compute the values of the matrix C3,4.

Univ
ers

ity
 of

 M
ala

ya

73

START

Thread  First Thread in LT

 LT  Remove the first thread from the list

LT and assign the remaining list to LT

 Thread  First Thread in LT , TId  Thread.ThreadId

 FId  Thread.FatherId, SR  Thread.StartRow,

ER  Thread.EndRow, N  Thread.N ,

SC  Thread.StartColumn , EC  Thread.EndColumn

(SR=ER) and

(SC=EC)

Yes

(SR=ER) and

(SC+1=EC)

No

Status 2:

LT  (TId*2,TId,SR,ER,N,SC,SC) ^^

 ((TId*2)+1,TId,SR,ER,N,EC,EC) ^^ LT

(SR = ER)

and ((SC+1)

 < EC)

Status 3: Calculate New Parameters:

e1 = ((EC - SC) / 2) + SC , e2 = e1 + 1

LT (TId*2,TId,SR,SR,N,SC,e1) ^^

 ((TId*2)+1,TId,ER,ER,N,e2,EC) ^^ LT

No

Yes

(SR + 1 = ER)

Status 4:

LT (TId*2,TId,SR,SR,N,SC,EC) ^^

((TId*2)+1,TId,ER,ER,N,SC,EC) ^^ LT

Status 5: Calculate New Parameters:

 e1 = ((ER - SR) / 2) + SR , e2 = e1 + 1

LT (TId*2,TId,SR,e1,N,SC,EC) ^^

 ((TId*2)+1,TId,e2,ER,N,SC,EC) ^^ LT

Yes

Yes

No

No

LT,MatA,MatB,

MatC

LT = Nil
Yes

No

LT,MatC

STOP

Status 1:

Multiplier (MatA,MatB,MatC,SR,N,SC)

START

MatA,MatB,MatC,

SR,N,SC

I 1

Sum 0

I <= N

Sum  Sum + MatA (SR,I)

* MatB (I,SC)

I  I + 1

MatC (SR,SC)  Sum

No

Yes

The Mechanism of

Multiplier

STOP

Figure 4.12: The Mechanism of MMLLS

Univ
ers

ity
 of

 M
ala

ya

74

 1, 0, 1, 3, 4, 1, 4

 2, 1, 1, 1, 4, 1, 4 3, 1, 2, 3, 4, 1, 4

 4, 2, 1, 1, 4, 1, 2 5, 2, 1, 1, 4, 3, 4

 8, 4, 1, 1, 4, 1, 1 9, 4, 1, 1, 4, 2, 2 10, 5, 1, 1, 4, 3, 3 11, 5, 1, 1, 4, 4, 4

 6, 3, 2, 2, 4, 1, 4

 7, 3, 3, 3, 4, 1, 4

 12, 6, 2, 2, 4, 1, 2

 13, 6, 2, 2, 4, 3, 4

 24, 12, 2, 2, 4, 1, 1 25, 12, 2, 2, 4, 2, 2

 26, 13, 2, 2, 4, 3, 3 27, 13, 2, 2, 4, 4, 4

 14, 7, 3, 3, 4, 1, 2 15, 7, 3, 3, 4, 3, 4

 30, 15, 3, 3, 4, 3, 3 31, 15, 3, 3, 4, 4, 4

 28, 14, 3, 3, 4, 1, 1 29, 14, 3, 3, 4, 2, 2

Figure 4.13: An example of partitioning a Matrix Multiplication thread where the main

thread indicates A3,4× B4,4, and leaf-level threads are surrounded with bold borders

The ultimate goal of the MMLLS is to create a set of leaf-level threads (Figure 4.13) in

order to permit the Multiplier (Figure 4.12) to compute the new matrix. However, it is

possible to get rid the intermediate threads through creating the leaf-level threads

directly from the main thread. In other words, it is possible to improve the MMLLS in a

way similar to the BSLLS where leaf-level threads are generated directly from the main

thread. The Direct Matrix Multiplication Low-Level Scheduler (DMMLLS) may be

inconsistent with principle of D&C; nevertheless, it provides a fast decomposition to the

workload. Figure 4.14 gives an example to the DMMLLS, while Figure 4.15 illustrates

the mechanism of this scheduler. The x, y variables represent counters which generate

the row and column numbers. Therefore, in DMMLLS, leaf-level threads are directly

generated and joined to the LT.

Univ
ers

ity
 of

 M
ala

ya

75

 1, 0, 1, 3, 4, 1, 4 2, 1, 1, 1, 4, 1, 1

3, 1, 1, 1, 4, 2, 2

4, 1, 1, 1, 4, 3, 3

5, 1, 1, 1, 4, 4, 4 6, 1, 2, 2, 4, 1, 1

7, 1, 2, 2, 4, 2, 2

8, 1, 2, 2, 4, 3, 3

9, 1, 2, 2, 4, 4, 4

10, 1, 3, 3, 4, 1, 1

11, 1, 3, 3, 4, 2, 2

12, 1, 3, 3, 4, 3, 3

 13, 1, 3, 3, 4, 4, 4

Figure 4.14: An example of partitioning a Matrix Multiplication thread where the

leaf-level threads are computed directly

START

Thread  First Thread in LT

 LT  Remove the first thread from the list

LT and assign the remaining list to LT

 Thread  First Thread in LT , TId  Thread.ThreadId

 FId  Thread.FatherId, SR  Thread.StartRow,

ER  Thread.EndRow, N  Thread.N ,

SC  Thread.StartColumn , EC  Thread.EndColumn

(SR=ER) and

(SC=EC)

Yes

No

LT,MatA,MatB,

MatC

LT = Nil
Yes

No

LT,MatC

STOP

Multiplier (MatA,MatB,MatC,SR,N,SC)

Id  2, x 1 , y 1

x > ER

y > EC

LT  LT ^^ [(Id,1,x,x,N,y,y)]

 y 1 , x  x + 1

 Id  Id + 1, y  y + 1

Yes

Yes

No

No

 Figure 4.15: The Mechanism of DMMLLS

Univ
ers

ity
 of

 M
ala

ya

76

4.2 The High-Level Schedulers (HLSs)

The function of the HLS is to balance the workload among the modelled cores. By

workload, we mean the threads (created by LLSs) that are scattered in the cores.

Although, the HLS has no rule in creating and manipulating these threads, its main

purpose is to reallocate these threads to achieve a better performance. In other words,

the HLS aims to make these cores busy as much as possible by moving threads from the

non-idle (busy or victim) cores to the idle (thief) cores. In this study, the researcher

didn’t allow the cores to act alone in stealing the threads from other cores. It is the

HLS’s responsibility in reallocating the threads. For this purpose, the researcher

develops several strategies (mechanisms) that control the redistribution process. The

strategies are:

(a) The InOrderSingleStealing Strategy (IOSSS)

(b) The InOrderMultiStealing Strategy (IOMSS)

(c) The RichestFirstSingleStealing Strategy (RFSSS)

(d) The RichestFirstMultiStealing Strategy (RFMSS)

(e) The CompleteMultiStealing Strategy (CMSS)

(f) The PartialMultiStealing Strategy (PMSS)

Two important variables are common to all the strategies: MainList and NumOfCores.

The variable MainList represents a list of sub lists of threads where each sub list is

dedicated for a core. That is, MainList (1) is the list of threads that belongs to core No.

1, etc; therefore, MainList is a list of sub lists of threads. The other variable is

NumOfCores which stands for the number of cores.

Univ
ers

ity
 of

 M
ala

ya

77

4.2.1 The InOrderSingleStealing Strategy (IOSSS)

This is the simplest strategy. The strategy (Figure 4.16) works as a function that accepts

as input two variables (MainList and NumOfCores), reallocates the threads, and

produces the updated MainList. The mechanism of the strategy includes the following

steps:

(a) Finding the set of thief cores’ numbers. This process is done for only once, it returns

a list of integer numbers that represent the set of thief cores’ numbers. The function

GetThievesCoresSequences is in charge of this process and the resulted list is given the

name ThievesCoresSeq. The function simply checks the number of threads in each core.

If a core is out of threads, the function assigns the core’s sequence to the list. Cores with

one or more threads are not included in the list.

(b) Finding the first encountered victim core, the researcher defines a victim core as any

core that has more than one thread. The searching process is carried on from core No. 1

to core No. NumOfCores. Although, one victim core may be enough to satisfy all the

thief cores, however, this process may be repeated when there is a need for an additional

victim core. The function InOGetVictimSeq searches for the first victim core and stores

its number in VicSeq. The function InOGetVictimSeq uses the variable CorSeq to index

the cores. A simple loop is used to investigate the size of each core through MainList

(CoreSeq). A value zero of VicSeq means there is no more victim cores. In other words,

all the cores have zero or one thread.

(c) The redistribution process. The InOrderSingleStealing function pulls a thread from

the victim core and assigns it to the variable Thread. Then, the function redistributes

this thread to one of the thief cores, one thread for each thief core.

(d) In case some of the thief cores are still idle, at the same time, there is a chance to get

another victim core then, steps (b), and (c) are repeated and so on.

Univ
ers

ity
 of

 M
ala

ya

78

(e) The mechanism stops when all the thief cores become non-idle or there are no more

victim cores.

INPUT

MainList , NumOfCores

ThievesCoresSeq  GetThievesCoresSequences

 (MainList, NumOfCores)

START

STOP

ThievesCoresSeq = NIL

OUTPUT

MainList

Yes

No

CoreSeq  1

ThiefCoresSeq NIL

CoreSeq >

NumOfCores

Len  Size (MainList (CoreSeq))

Len = 0

ThiefCoresSeq  ThiefCoresSeq ^^ CoreSeq

CoreSeq  CoreSeq + 1
RETURN

ThiefCoresSeq

Yes

No

Yes

No

GetThievesCoresSequences

 (MainList, NumOfCores)

Yes

VicSeq  InOGetVictimSeq (MainList,

NumOfCores)

VicSeq = 0

Thread  Copy the first thread from the list

MainList (VicSeq)

 Remove the first thread from the list

MainList (VicSeq)

MainList (ThiefSeq)  Thread ^^

 MainList (ThiefSeq)

ThiefSeq  Copy the first number from the list

ThievesCoresSeq

Remove the first number from the list

ThievesCoresSeq

Size (MainList (VicSeq)) > 1

AND
ThievesCoresSeq ≠ NIL

No

No

Yes

Len  Size (MainList (CoreSeq))

CoreSeq  CoreSeq + 1

Yes

No

Yes

No

CoreSeq  1

CoreSeq >

NumOfCores

Len > 1

RETURN

CoreSeq

CoreSeq  0

 InOGetVictimSeq (MainList,

NumOfCores)

Note: The rectangles with double sided bares represent

functions calls. These two functions:

GetThievesCoresSequences and InOGetVictimSeq are

illustrated to the right. The two symbols ^^ are used to

concatenate a thread with the list of threads.

 Figure 4.16: The InOrderSingleStealing Strategy (IOSSS) located at the left.

Univ
ers

ity
 of

 M
ala

ya

79

4.2.2 The InOrderMultiStealing Strategy (IOMSS)

The IOMSS shares the IOSSS way in finding the victim core and thief cores. However,

there are two differences between the two mentioned strategies. First, in the IOMSS,

more than one thread can be assigned to the thief cores whereas in the IOSSS only a

single thread can be assigned to the thief cores. Second, the IOMSS offers a way to

balance the threads between the victim core and the thief cores. In other words, the

IOMSS provides a more equitable way of threads distribution.

In mathematics, we can balance the values of any N different variables as follows:

Let V = (X1, X2, X3, X4 … Xn) be a set of non-negative integer numbers (Xi ≥ 0). To

balance the values in these variables, we need to calculate the following (Strang, 2011):

Let Sum =

Let C = Sum + K, where K is a constant (K ≥ 0). The value of C represents the smallest

value such that: C mod N = 0

Let H = (C / N)

Now, the new value of the first (N – K) variables is H, while the value of the rest is H-1.

Example: Let V = (1, 3, 2, 0, 7, 9, 1, 4).

We have N=8, Sum =  Sum = 27

Now, the smallest value of C that achieves (C mod N = 0) is 32.

Since C = Sum + K  K = 32 – 27  K = 5 , H = (32 / 8)  H = 4

Now, the first 3 variables will have the value 4, that is X1=4, X2=4, X3=4, while the rest

of the variables will have the value 3, that is: X4=3, X5=3, X6=3, X7=3, X8=3.

Univ
ers

ity
 of

 M
ala

ya

80

The IOMSS (Figure 4.17) works as follows:

(a) As in the IOSSS, the IOMSS creates a list of thief cores’ numbers; then it searches

for the first encountered victim sequence.

(b) The strategy evaluates the following variables:

I- ProcessedCores: It represents the value N, as mentioned above, plus one. The one

stands for the victim core. In other words, the variable ProcessedCores represents the

number of thief cores plus the chosen victim core.

II- Initially, the C variable holds the number of threads in the victim core. Then, the

value of C is increased to achieve the condition (C mod ProcessedCores = 0).

III- VictimThreads: This variable emulates the variable Sum. It represents the number

of threads in the victim core.

(c) The strategy calls the function Redistributor which is responsible for moving the

threads from the victim core to the thief cores. The function performs the following

actions:

I- Dividing the cores (the thief cores and the victim core) into two groups:

FirstGroup and SecondGroup. The first group includes the victim core and (all or

part of) the thief cores. The second group includes zero or the thief cores (the rest of

thief cores). Following that, computing group’s values stand for the number of

threads that are going to be assigned to each core in the group. The variables

FirstGroupValue and SecondGroupValue represent the number of threads that are

going to be assigned to the first and second group respectively. The variable

FirstGroup gets the value (N-K) while its value FirstGroupValue holds the value H.

Univ
ers

ity
 of

 M
ala

ya

81

The other two variables SecondGroup and SecondGroupValue get the values K and

(H-1) respectively.

II- Following that, the function Redistributor removes (VictimThreads –

FirstGroupValue) thread(s), i.e. (Sum – H) threads from the victim core and

assigning it to the list TempList (a temporary list that combines the separated threads

from their cores). As a result, the victim core retains its share. In the next step, the

victim core is excluded from the computation since it did its role in the computations.

The value of FirstGroup is updated to exclude the victim core.

III- Next, the strategy starts distributing the threads of the TempList to the first and

the second groups. The distribution process includes first, fetching the number of

each thief core one by one from the list ThievesCoresSeq. Second, a number of

FirstGroupValue of threads are cut from the TempList and assigned to each thief core

in the first group. The same process is repeated on the second group members who

receive SecondGroupValue of threads from the TempList.

(d) Finally, the strategy rechecks the list of the thief cores. If it is still non-empty and

there is a new candidate victim core, then the strategy is repeated. Otherwise, no more

action is taken and the strategy stops.

Univ
ers

ity
 of

 M
ala

ya

82

ProcessedCores  (Size of ThievesCoresSeq) + 1

C  (Size of MainList (VicSeq))

VictimThreads  C

C MOD ProcessedCores = 0

C  C + 1

No

Yes

INPUT

MainList , NumOfCores

ThievesCoresSeq  GetThievesCoresSequences

 (MainList, NumOfCores)

START

ThievesCoresSeq = NIL

Yes

No

Yes

VicSeq  InOGetVictimSeq (MainList,

NumOfCores)

VicSeq = 0

(MainList,ThievesCoresSeq)



Redistributor

(MainList,NumOfCores,ThievesCoresSeq,VicSeq,

C,VictimThreads,ProcessedCores)

STOP

OUTPUT

MainList

No

Redistributor

(MainList,NumOfCores,ThievesCoresSeq,VicSeq,

C,VictimThreads,ProcessedCores)

FirstGroup  ProcessedCores – C+ VictimThreads

FirstGroupValue  C DIV ProcessedCores

SecondGroup  C – VictimThreads

SecondGroupValue  FirstGroupValue - 1

TempList 

 Copy the first (VictimThreads – FirstGroupValue)

Threads from the list MainList (VicSeq)

 Remove the first (VictimThreads – FirstGroupValue)

Threads from the list MainList (VicSeq)

FirstGroup  FirstGroup - 1

I  First Number in ThievesCoresSeq

No

No

Yes

Yes

FirstGroup = 0 Or

FirstGroupValue = 0

NewList  Copy the first FirstGroupValue

Threads from the list TempList

Remove the first FirstGroupValue Threads from

the list TempList

MainList (I)  NewList

I  Next Number in ThievesCoresSeq

FirstGroup  FirstGroup - 1

NewList  Copy the SecondGroupValue

Threads from the list TempList

Remove the SecondGroupValue Threads from

the list TempList

MainList (I)  NewList

I  Next Number in ThievesCoresSeq

SecondGroup  SecondGroup - 1

SecondGroup = 0 Or

SecondGroupValue = 0

RETURN

(MainList,ThievesCoresSeq)

Figure 4.17: The InOrderMultiStealing Strategy (IOMSS) where the InOGetVictimSeq

and GetThievesCoresSequences functions are already shown in Figure 4.16

Univ
ers

ity
 of

 M
ala

ya

83

4.2.3 The RichestFirstSingleStealing Strategy (RFSSS)

The mechanism of the RFSSS (Figure 4.18) is similar to the IOSSS (Figure 4.16).

However, it differs in the way of finding the victim core. First, a search is conducted to

cover all the victim cores. The chosen core is the one with the highest (richest) number

of threads. The function RichestFirstGetVictimSeq is in charge of searching for the

wealthiest core and then returns its number. This function checks all the cores one by

one. The function returns the value zero if all the cores have one or zero threads;

otherwise, the function returns the number of core that has highest number of threads.

The mechanism of this strategy outperforms its counterpart (IOSSS). This is based on

the probability of having so many threads in the richest core to the extent that it meets

the needs of all the thief cores. As a result, dealing with richest core instead of picking

the first encountered victim core will definitely achieve better performance since the

richest core may satisfy the desire of the thief cores. Or at least, dealing with richest

core will reduce the number of calling the HLS in rebalancing the workload. On the

other hand, the process of searching for the richest core takes time. Nevertheless, this

process will not exceed O(n), where n is the number of cores.

4.2.4 The RichestFirstMultiStealing Strategy (RFMSS)

This strategy is a combination of the two strategies: RFSSS and IOMSS strategies. The

way of finding the victim core is adopted from the RFSSS while the way of stealing and

all its calculations have been taken from IOMSS. The power of this combination relies

on two factors: First, providing a better way to find the victim core and not to rely on

the in-order searching manner. Second, stealing more than one thread and let each thief

core get a fair share of threads. Consequently, combining these two factors creates a

better way of scheduling. Figure 4.19 shows the mechanism of the RFMSS.

Univ
ers

ity
 of

 M
ala

ya

84

INPUT

MainList , NumOfCores

ThievesCoresSeq  GetThievesCoresSequences

 (MainList, NumOfCores)

START

STOP

ThievesCoresSeq = NIL

OUTPUT

MainList

Yes

No

Yes

VicSeq  RichestFirstGetVictimSeq (MainList,

NumOfCores)

VicSeq = 0

Thread  Copy the first thread from the list

MainList (VicSeq)

 Remove the first thread from the list

MainList (VicSeq)

MainList (ThiefSeq)  MainList (ThiefSeq) ^^

Thread

ThiefSeq  Copy the first number from the list

ThievesCoresSeq

Remove the first number from the list

ThievesCoresSeq

Size (MainList (VicSeq)) > 1

AND
ThievesCoresSeq ≠ NIL

No

No

Yes

Yes

No

Yes

RichestFirstGetVictimSeq (MainList,

NumOfCores)

CoreSeq  1

MaxLen  Size (MainList (CoreSeq))

MaxCore  1

CoreSeq >

NumOfCores

Len  Size (MainList (CoreSeq))

Len > MaxLen

AND Len > 1

MaxLen  Len

MaxCore  CoreSeq

CoreSeq  CoreSeq + 1

No

MaxLen < 2

No

Result  0Result  MaxCore

RETURN

Result

Figure 4.18: The RichestFirstSingleStealing Strategy (RFSSS) where the function

GetThievesCoresSeq is already illustrated in Figure 4.16

Univ
ers

ity
 of

 M
ala

ya

85

ProcessedCores  (Size of ThievesCoresSeq) + 1

C  (Size of MainList (VicSeq))

VictimThreads  C

C MOD ProcessedCores = 0

C  C + 1

No

Yes

INPUT

MainList , NumOfCores

ThievesCoresSeq  GetThievesCoresSequences

 (MainList, NumOfCores)

START

ThievesCoresSeq = NIL

Yes

No

Yes

VicSeq  RichestFirstGetVictimSeq (MainList,

NumOfCores)

VicSeq = 0

(MainList,ThievesCoresSeq)



Redistributor

(MainList,NumOfCores,ThievesCoresSeq,VicSeq,

C,VictimThreads,ProcessedCores)

STOP
OUTPUT

MainList

No

Figure 4.19: The RichestFirstMultiStealing Strategy (RFMSS) where the Redistributor

and the RichestFirstGetVictimSeq functions are already illustrated in Figure 4.17

(IOMSS) and Figure 4.18 (RFSSS) respectively

Univ
ers

ity
 of

 M
ala

ya

86

4.2.5 The CompleteMultiStealing Strategy (CMSS)

In the previous strategies, only one victim was in the spotlight. However, in the

multicore environment, several cores may be busy at the same time. This motivates the

researcher to take advantage of all these victim cores to provide a better way to balance

threads distribution among the busy and the idle cores. As the name indicates, the

CMSS deals with all the cores. Here, no victim core is excluded from the computations.

However, victim cores with single threads will not lose their own threads. They may get

extra threads but they will not give up their own threads.

The CMSS (Figure 4.20) calls the following functions:

(a) The GetVicThie function (Figure 4.20) is in charge of calculating NumOfVictims

,VictimThreads, and NumOfThieves. This function serially checks the list MainLis. The

function checks the number of threads in each core. If the core is empty, then the

variable NumofThieves is increased by one. If the core is non-empty, then the variable

NumOfVictims is increased by one and this number of threads is accumulated in the

variable VictimThreads

(b) The CMSBalancer (Figure 4.21) has the duty of redistributing the threads in all the

cores. It performs the following actions:

I- Calculating the values of ProcessedCores, C, VictimThreads, FirstGroup,

SecondGroup, FirstGroupValue, and SecondGroupValue through the Calculations

function (Figure 4.21).

II- Extracting the extra threads from the first and second groups of victim cores

through GetExtraThreads (Figure 4.22).

III- Updating the two groups of threads through using UpdateGroups function

(Figure 4.23).

Univ
ers

ity
 of

 M
ala

ya

87

INPUT

MainList , NumOfCores

(NumOfVictims ,VictimThreads ,NumOfThieves) 

GetVicThie (MainList , NumOfCores ,NumOfVictims

,VictimThreads,NumOfThieves)

START

MainList  CMSBalancer

(MainList, NumOfCores,VictimThreads)

STOP

NumOfVictims = 0

OR

NumOfThieves = 0

OUTPUT

MainList

Yes

No

NumOfVictims  0 , NumOfThieves  0

VictimThreads  0
Index  1

Index >

NumOfCores

Len  Size of the list MainList (Index)

Len = 0

NumOfThieves 

NumOfThieves + 1

Index  Index + 1

RETURN

(NumOfVictims, VictimThreads

,NumOfThieves)

Yes

Yes

No

No

NumOfVictims  NumOfVictims + 1

VictimThreads  VictimThreads + Len

GetVicThie (MainList , NumOfCores

,NumOfVictims,VictimThreads,

NumOfThieves)

Figure 4.20: The CompleteMultiStealing Strategy (CMSS) with its function

GetVicThie

Univ
ers

ity
 of

 M
ala

ya

88

 TempList  NIL

(MainList,TempList)  GetExtraThreads

 (MainList, NumOfCores, TempList,

FirstGroup, FirstGroupValue,

SecondGroup, SecondGroupValue)

MainList  UpdateGroups

(MainList,NumOfCores,TempList,

FirstGroup, FirstGroupValue,

SecondGroup, SecondGroupValue)

RETURN

MainList

 (FirstGroup,FirstGroupValue,

SecondGroup,SecondGroupValue) 

Calculations (NumOfCores,

VictimThreads)

ProcessedCores  S

C  VictimThreads

C MOD ProcessedCores = 0

AND

 (C – VictimThreads) ≥ 0

C  C + 1

FirstGroup  ProcessedCores – C+ VictimThreads

FirstGroupValue  C DIV ProcessedCores

SecondGroup  C – VictimThreads

SecondGroupValue  FirstGroupValue - 1

RETURN

(FirstGroup , FirstGroupValue , SecondGroup ,

SecondGroupValue)

Calculations (S , VictimThreads)
CMSBalancer

(MainList, NumOfCores,VictimThreads)

Figure 4.21: The CMSBalancer function with its sub function Calculations

Univ
ers

ity
 of

 M
ala

ya

89

I  1

Temp  MainList(I)

TempLen  Size of Temp

(I <= FirstGroup) AND

 (TempLen > FirstGroupValue)

(I > FirstGroup) AND

 (TempLen > SecondGroupValue)

I > NumOfCores

I  I + 1

RETURN

(MainList,TempList)

CutThreads  Cut (TempLen – GroupValue) threads

from the list MainList (I)

TempList  TempList ^^ CuttedThreads

Yes

Yes

No

No

YesNo

GroupValue  FirstGroupValue

GroupValue  SecondGroupValue

GetExtraThreads

 (MainList, NumOfCores, TempList, FirstGroup,

FirstGroupValue, SecondGroup,

SecondGroupValue)

Figure 4.22: The GetExtraThreads function

 Univ
ers

ity
 of

 M
ala

ya

90

I > NumOfCores

RETURN

MainList

VicThi  MainList (I)

VicThiLen  Size of VicThi

I <= FirstGroup

(MainList, TempList)  UpdateSingleGroup

(MainList,NumOfCores,TempList,I,

VicThi,FirstGroup,FirstGroupValue)

(MainList, TempList)  UpdateSingleGroup

(MainList,NumOfCores,TempList,I,

VicThi,SecondGroup,SecondGroupValue)

I  I + 1

Yes

No

Yes

No

VicThiLen  length of VicThi

VicThiLen < Value

CutThr  Cut (Value – VicThiLen)

 threads from TempList

MainList (I) 

CutThr ^^MainList (I)

RETURN

(MainList,TempList)

Yes No

I  1

 UpdateGroups (MainList,NumOfCores,TempList,

FirstGroup, FirstGroupValue, SecondGroup,

SecondGroupValue,I)

UpdateSingleGroup

(MainList,NumOfCores,

TempList,I,VicThi,Group,Value)

Figure 4.23: The UpdateGroups function with its sub function UpdateSingleGroup

Univ
ers

ity
 of

 M
ala

ya

91

4.2.6 The PartialMultiStealing Strategy (PMSS)

The CMSS deals with all the cores; there is no exemption for anyone of them. However,

taking into account all the busy cores as victim cores may be considered non practical

when these victim cores have few numbers of threads. It is better to leave the core

handling its own threads since it is worthless to interrupt the core’s work for a trivial

number of threads. Therefore, as the name indicates, the PMSS restricts its dealing with

the victim cores that have a plenty of threads. To achieve this goal, the researcher added

another parameter named PartialFactor to the strategy. PartialFactor is given the value

3 which means any victim core having less than 3 threads will not join the set of victim

cores. The value of the PartialFactor is not fixed, it can be changed.

The PMSS mechanism (Figure 4.24) works as follows:

(a) First, the scheduler creates a list called PartialList. This list includes victim cores’

numbers (those have PartialFactor threads or more) and thief cores’ numbers. The

function GetVicThiePartialList (Figure 4.24) is in charge of creating such list, in

addition to calculating NumOfVictims, NumOfThieves, and VictimThreads.

(b) Then, the scheduler calls the function PMSBalance which is responsible for

balancing the threads among those cores in the PartialList. This function performs the

following actions:

I- As shown in Figure 4.25, the PMSBalance function first computes the values

ProcessedCores, C, VictimThreads, FirstGroup, SecondGroup, FirstGroupValue,

and SecondGroupValue through the Calculations values by calling the function

Calculations (Figure 4.21).

II- The function PMSBalance calls PartialGetExtraThreads (Figure 4.25) function

which is in charge of extracting extra threads from the victim cores. The

Univ
ers

ity
 of

 M
ala

ya

92

PartialGetExtraThreads function deals only with those cores in the PartialList. The

function GetThreads is dedicated to extract threads from each group of cores.

III- The function PMSSBalance calls PartialUpdateGroups (Figure 4.26) function

which is in charge of redistributing the threads that have been collected in TempList

to the thief cores.

4.2.7 Discussion Threads Distribution Fairness in CMSS and PMSS

The process of redistribution of threads in both CMSS and PMSS gives a privilege to

those cores that come in the front in case of CMSS and those cores that occupy the first

locations in the PartialList in the case of the PMSS. For the purpose of further

clarification: Let V1 = (2,6,0,1,8,0,0,2,0,6,0,1,13,15) be a set of fourteen cores’ sizes,

where each member in this set represents the number of threads in every core. To apply

PMSS, cores that have single or two threads are excluded assuming that PartialFactor ≥

3. So, V2 = (6,0,8,0,0,0,6,0,13,15) is a set cores’ sizes but only for those cores that have

zero threads or more than two threads, that is V2 = (X1=6, X2=0, X3=8, X4=0, X5=0,

X6=0, X7=6, X8=0, X9=13, X10=15).

We have: N = 10, Sum =  Sum = 48

C = Sum + K, the smallest value of C that achieves (C mod N = 0) is 50

K = C – Sum  K = 2 , H = (C/N)  H = 5

The new value of the first (N – K) variables is H, that is, each of the first 8 variables

will get the value 5 while the last two variables get the value 4, that is, V2 = (5, 5, 5, 5,

5, 5, 5, 5, 4,4) or V2 = (X1=5, X2=5, X3=5, X4=5, X5=5, X6=5, X7=5, X8=5, X9=4,

X10=4).

Univ
ers

ity
 of

 M
ala

ya

93

There is a notable variation in the values of victims’ threads before and after

redistribution. For instance, X1 was 6 and then becomes 5 while the value of X9 and X10

were 13 and 15; both went down to 4. There is no problem with thief cores, each has its

share. However, there is a state of non-justice among the victim cores. This is why the

PMSS is biased since the victim cores that come at the beginning of the PatialList

exceed those come at the end of the list. To generate a non-biased version of the PMSS,

the processing of the PartialList should be updated. The PartialList in the non-biased

version (NonBiasedPMSS) is the list of pairs where each pair consists of (core number,

number of threads). Adding any core to this list depends on the number of threads inside

this core. Therefore, the wealthy victim cores occupy the first positions in this list.

Consequently, any redistribution process will depend on the order of cores in this list.

As a result, the wealthiest cores retain the extra threads. The same thing can be said for

the CMSS; the distribution process is biased and gives privilege to those cores that

occupy the first positions. To generate a non-biased version to the CMSS, the

NonBiasedCMSS works in a similar way to the NonBiasedPMSS in creating a list of

pairs of cores and their threads’ sizes but this time for all the cores instead of a partial

number of cores as in NonBiasedPMSS.

Both NonBiasedCMSS and NonBiasedPMSS can be seen as an extension to the CMSS

and PMSS respectively. Those non-biased versions provide more justice in threads

distribution. This may be of importance when the threads sizes are varied. On the other

hand, having one extra thread in a certain number of cores may not be considered an

important difference especially when threads sizes are equal and small, in addition to

the cost of reordering the cores so that each core gets its fair share of threads. Anyway,

both NonBiasedCMSS and NonBiasedPMSS share many functions that have already

been described in CMSS and PMSS. Appendix II is dedicated for illustrating the

mechanisms of NonBiasedCMSS and NonBiasedPMSS.

Univ
ers

ity
 of

 M
ala

ya

94

INPUT

MainList , NumOfCores

(PartialList ,NumOfVictims ,VictimThreads

,NumOfThieves)  GetVicThiePartialList (MainList ,

NumOfCores,PartialList ,NumOfVictims

,VictimThreads,NumOfThieves,PartialFactor)

START

MainList  PMSBalance

(MainList, NumOfCores,PartiaList,VictimThreads)

STOP

NumOfVictims = 0

OR

NumOfThieves = 0

OUTPUT

MainList

Yes

No

NumOfVictims  0 , NumOfThieves  0

PartialList  NIL , VictimThreads  0

PartialFactor  3

Index  1

Index >

NumOfCores

Len  Size of the list MainList (Index)

Len = 0

NumOfThieves 

NumOfThieves + 1

Index  Index + 1

RETURN

(PartialList ,NumOfVictims,

VictimThreads ,NumOfThieves)

Yes

Yes

Yes

No

No

No

PartialList  PartialList ^^ Index

 Len ≥ PartialFactor

NumOfVictims  NumOfVictims + 1

VictimThreads  VictimThreads + Len

GetVicThiePartialList

(MainList , NumOfCores,PartialList ,NumOfVictims

,VictimThreads,NumOfThieves,PartialFactor)

Figure 4.24: The PartialMultiStealing Strategy (PMSS) with its function

GetVicThiePartialList

Univ
ers

ity
 of

 M
ala

ya

95

 TempList  NIL

(MainList,TempList)  PartialGetExtraThreads

 (MainList, NumOfCores, TempList,

PartialList,FirstGroup, FirstGroupValue,

SecondGroup, SecondGroupValue)

MainList  PartialUpdateGroups

(MainList,NumOfCores,TempList,

PartialList, FirstGroup, FirstGroupValue,

SecondGroup, SecondGroupValue)

RETURN

MainList

(FirstGroup,FirstGroupValue,

SecondGroup,SecondGroupValue) 

Calculations (Size of PartiaList,

VictimThreads)

PMSBalance (MainList,

NumOfCores,PartiaList,VictimThreads)

I  1

CNo  PartialList (I)

TempLen  Size of MainList(CNo)

I > Size of PartialList

RETURN

(MainList,TempList)

Yes

No

(I <= FirstGroup) AND

 (TempLen > FirstGroupValue)

(I > FirstGroup) AND

 (TempLen > SecondGroupValue)

I  I + 1

CutThreads  Cut (TempLen – GroupValue) threads

from the list MainList (CNo)

TempList  TempList ^^ CuttedThreads

Yes

Yes

No

No

GroupValue  FirstGroupValue

GroupValue  SecondGroupValue

(MainList,TempList , I) 

 GetThreads (MainList,TempList , I ,

FirstGroup , TempLen ,

FirstGroupValue , SecondGroupValue ,

CNo , TempLen)

RETURN

(MainList,TempList, I)

 PartialGetExtraThreads (MainList, NumOfCores,

TempList, PartialList, FirstGroup, FirstGroupValue,

SecondGroup, SecondGroupValue)

GetThreads (MainList,TempList , I , FirstGroup ,

TempLen , FirstGroupValue , SecondGroupValue ,

CNo , TempLen)

Figure 4.25: The PMBalance, PartialGetExtraThreads and GetThreads functions

Univ
ers

ity
 of

 M
ala

ya

96

I > lengrh of PartialList

RETURN

MainList

 CNo  PartialList (I)

VicThi  MainList(CNo)

VicThiLen  Size of VicThi

I <= FirstGroup

(MainList,TempList)  UpdateSingleGroup

(MainList,NumOfCores,TempList,CNo,

VicThi,FirstGroup,FirstGroupValue)

(MainList,TempList) UpdateSingleGroup

(MainList,NumOfCores,TempList,CNo,

VicThi,SecondGroup,SecondGroupValue)

I  I + 1

Yes

No

Yes

No

I  1

PartialUpdateGroups (MainList,NumOfCores,TempList,

PartialList, FirstGroup, FirstGroupValue, SecondGroup,

SecondGroupValue)

Figure 4.26: The PartialUpdateGroups function where the UpdateSingleGroup function

is illustrated in Figure 4.23

4.3 Guards’ Mechanisms

The LLSs have been designed to manage workload partitioning and manipulation while

the HLSs are responsible for reallocating the workload among the modeled cores. In

general, a guard is a kind of lock that prevents the LLS and the HLS from working

when certain conditions happen. The researcher proposes two kinds of guards, one for

the LLSs and one for the HLSs. To illustrate the mechanisms of these two guards, the

researcher proposes three variables:

Univ
ers

ity
 of

 M
ala

ya

97

(a) BusyCores: This integer variable holds the number of cores that have one or more

threads.

(b) PoorCores: It is also an integer variable, however, it counts the number of cores that

have less than two threads.

(c) CoresLoad: It is a list of integer numbers representing cores’ workload (number of

threads) in each core.

Figure 4.27 illustrates the mechanisms of the LLS and HLS guards. In the LLS, the

guard first counts the number of BusyCores and PoorCores. Then, the LLS guard

enables the LLS to work only if one of the following two conditions is met: First, all the

cores are busy. Here, the LLS is allowed to partition and manipulate its own threads

since there is no need to interrupt its work to redistribute the threads among the cores

because all the cores have work to do. Second, all the cores are poor with threads which

means every core has zero or one thread. The guard allows the LLS to work if it has a

thread since it does not make sense to freeze its activity when there is no wealthy core

to steal from it. On the other hand, the HLS guard is simpler than the LLS guard. The

HLS guard enables the HLS when the number of BusyCores does not match the number

of cores which means we have victim(s) and thief(s) cores or when PoorCores does not

match the number of cores which also means we have victim(s) and thief(s) cores.

Univ
ers

ity
 of

 M
ala

ya

98

Count

(CoresLoad,BusyCores,PoorCores)

S  Size of CoresLoad

I  1

I <= S

CoresLoad (I) > 0 BusyCores  BusyCores + 1

CoresLoad (I) < 2 PoorCores PoorCores + 1

I  I + 1

RETURN

BusyCores , PoorCores

Yes

Yes

Yes

No

No

No

START

CoresLoad, LT

BusyCores  0

PoorCores  0

Count

(CoresLoad,BusyCores,PoorCores)

BusyCores = Size of CoresLoad

AND

Size of LT <> 0

PoorCores= Size of CoresLoad

AND

Size of LT <> 0

Result  True Result  False

RETURN

Result

Yes

Yes

No

No

START

CoresLoad, LT

BusyCores  0

PoorCores  0

Count

(CoresLoad,BusyCores,PoorCores)

BusyCores = Size of CoresLoad

OR

PoorCores= Size of CoresLoad

Result  True Result  False

RETURN

Result

YesNo

The guard mechanism of

LLS

The guard

mechanism of HLS

 Figure 4.27: The Guard Mechanism

Univ
ers

ity
 of

 M
ala

ya

99

4.4 The CPN models

In this section, the researcher presents the CPN models that solve the D&C problems on

a modelled multicore environment. The models apply the LLSs, HLSs, and Guard

mechanisms that are previously mentioned in this chapter. For every D&C problem, the

researcher designed nine hierarchical CPN models. They are: two-core, three-core, four-

core, five-core, six-core, seven-core, eight-core, nine-core, and ten-core models. These

nine models work under one of the HLSs.

4.4.1 The CPN Models of Fibonacci Series

The CPN main model for the Fibonacci Series is illustrated in Figure 4.28. This figure

shows a hierarchical two-core model with three places (ThL1, ThL2, CoresLoad), one

transition (Distributor), and two substituted transitions (Core1 and Core2).

Figure 4.28: A two-core CPN main model for solving Fibonacci Series problem

Initially, place ThL1 holds the main thread [(1,0,10)] while place ThL2 is empty ([]).

Both places are of type LT which is defined as of type (Int*Int*Int) which indicates

ThreadId, FatherId, and Argument, as explained in Figure 4.1. The main thread

Univ
ers

ity
 of

 M
ala

ya

100

indicates that the model intends to calculate Fibonacci (10). The places ThL1 and ThL2

exchange threads with transition Distributor through the input parameters (In1, In2) and

the output parameters (Out1, Out2).

The CoresLoad place holds a list of integers (the type CL is defined as a list of integers)

which indicates the current workload of the cores, therefore, initially this list has the

value [1,0] since there is a single thread in the first core with null threads in the second

one. The CoresLoad place communicates with transition Distributor through the

parameters CLIn and CLOut.

The transition Distributor represents the HLS. The code segment of this transition works

as follows: it merges the lists of threads from the cores into a single list of lists of

threads All. Then it calls the InOrderSingleStealing strategy (IOSSS, Figure 4.16) to

redistributes the threads. The Partitioning function separates the All list into sub lists,

and assigns each sub list to a core. In addition, the Partitioning function computes the

size of threads in each core and saves the results inside place CoresLoad. The transition

Distributor has a guard called DistGuard which works as the HLS guard as shown in

Figure 4.28.

The main model has two substitution transitions: Core1 and Core2. Figure 4.29

illustrates the contents of Core1 sub model which matches the structure of Core2 except

in its threads. In addition, in every sub model there is a common place called Result

which stores the results of the computations.

The places CoresLoad in the main and sub models represent one common place and it

has a tag called Fusion. Fused places are a set of places that have the same type and

data. That is, any change happens to one place is immediately reflected on the other

fusion places that share the same fusion number. It is like a global variable that can be

changed from the main program or from inside any sub routine. The purpose behind

Univ
ers

ity
 of

 M
ala

ya

101

CoresLoad being fused is to let every core update (through the Update_Size function)

its own size in the list of cores’ sizes that is stored in the CoresLoad place.

Figure 4.29: A CPN sub model (core model) for solving Fibonacci Series

As a result, the CoresLoad is dynamically changed by the LLS inside each core and by

the HLS via the transition Distributor. The same thing can be said for the place Result, it

is a fused place shared by all the cores (sub models). The Distributor reads the contents

of the place Result through ResIn, update it and send it back as ResOut. Figure 4.30 and

Figure 4.31 show the CPN models for the same Fibonacci problem being solved on six

and ten cores respectively. As can be seen clearly, the CoresLoad place deals with six

cores in the first model while the same place deals with ten cores in the second model.

All the nine models are dedicated for InOrderSingleStealing strategy (IOSSS) as shown

in Figure 4.16.

Univ
ers

ity
 of

 M
ala

ya

102

Figure 4.30: A six-core CPN main model for solving Fibonacci Series problem

Figure 4.31: A ten-core CPN main model for solving Fibonacci Series problem

4.4.2 The CPN Models of the Binary Search

For the Binary Search problem, Figure 4.32 shows a sample of a main model that has

seven cores. The strategy is InOrderMultiStealing (IOMSS) as shown in Figure 4.17

and the thread structure has been defined in Figure 4.4. The core’s model (Figure 4.33)

Univ
ers

ity
 of

 M
ala

ya

103

has a place called NumList which contains a list of integer numbers. This list as

explained in the comment at the upper left corner consists of ten thousand integer

numbers, indexed from 0 to 9999. The search is targeting the number 19997. Figure

4.34 shows the same sub model but with unfolding the content of place NumList. The

places Location and Continue are used to store the values Loc and Found values as

explained in Figure 4.5.

Figure 4.32: A seven-core CPN main model for solving Binary Search problem

Figure 4.33: A CPN sub model (core model) for solving Binary Search problem

Univ
ers

ity
 of

 M
ala

ya

104

Figure 4.34: A CPN sub model (core model) unfolding the list of numbers

4.4.3 The CPN Models of the Towers of Hanoi

The main model of the Towers of Hanoi problem is shown in Figure 4.35; it is an eight-

core model that applies the RichestFirstSingleStealing strategy as previously explained

in Figure 4.18. The threads structure is explained previously in Figure 4.8. The Towers

of Hanoi sub model is shown in Figure 4.36.

Figure 4.35: A CPN eight-core main model for solving the Towers of Hanoi problem

Univ
ers

ity
 of

 M
ala

ya

105

Figure 4.36: A CPN sub model for the Towers of Hanoi problem

4.4.4 The CPN Models of the Matrix Multiplication

A sample of a main model with five cores is given in Figure 4.37. A sub model with

folded matrices’ places is illustrated in Figure 4.38 while Figure 4.39 shows the same

sub model with unfolded matrices’ places.

Figure 4.37: A five-core CPN main model for the Matrix Multiplication problem

Univ
ers

ity
 of

 M
ala

ya

106

Figure 4.38: A CPN sub model for the problem of Matrix Multiplication with folded

matrices

Figure 4.39: A CPN sub model for the problem of Matrix Multiplication with unfolded

matrices

4.5 Summary

This chapter is dedicated for explaining the methodology adopted by the researcher. The

researcher proposed two types of schedulers: The Low-Level Schedulers (LLSs) and the

High-Level Schedulers (HLSs). Each of the LLSs is dedicated for solving one of the

Univ
ers

ity
 of

 M
ala

ya

107

D&C problems: Fibonacci Series, Towers of Hanoi, Binary Search, and Matrix

Multiplication. The researcher illustrated the suggested thread, the mechanism of

partitioning and computing the threads, and an example for a tree of threads for each

D&C problem. On the other hand, the HLSs represent the mechanisms (strategies)

suggested by the researcher to redistribute the workload among the cores. The

researcher suggested six strategies: The InOrderSingleStealing Strategy, the

InOrderMultiStealing Strategy, the RichestFirstSingleStealing Strategy, the

RichestFirstMultiStealing Strategy, the CompleteMultiStealing Strategy, and the

PartialMultiStealing Strategy. In addition, the researcher demonstrated the Guard’s

Mechanism which is in charge of activating/deactivating both the LLSs and HLSs.

Finally, this chapter showed the CPN models that include the LLSs, HLSs, and the

Guards.

Univ
ers

ity
 of

 M
ala

ya

108

CHAPTER 5: SIMULATION RESULTS AND DISCUSSION

5.1 Introduction

Simulation is a representation of a system; it provides a brief but comprehensive way

for real system substitution. Another definition of simulation is given by Brown et al.

who defined simulation as: “Provides opportunities to see effects of one’s action.

Provides some feedback and may develop some intuitive understanding” (Peterson,

1977). In plain English, a simulation is the process of getting information about the

behavior of a system without running the system in reality (Jerry, 1984). The

simulation process helps in the detection of defects (inefficiency), getting reliable

results, and it certainly saves a great deal of money. In addition, the simulation process

explores the impacts of adjustment or changing to the system, makes sure all the

system’s variables are identified, and it inspires creative thinking. Simulation involves

building a model that represents a system. Actually, both modeling and simulation are

convergent in meaning. However, modeling is closely related with the abstract

representation of the system’s reality. Modeling helps in providing formal specification

of the concept of the system, assumptions, and constraints. However, simulation is more

related with implementation rather than abstraction. In fact, simulation is about

implementing the models over time.

 To put models in practice, these models have to be implemented; therefore, the

development of computer-based software tools that provide the environment to

construct and execute these models is a key factor in the success of the modeling and

simulation processes. The researcher chooses CPN-Tool since this tool is designed to

construct and execute concurrent models. CPN-Tool provides the facility to edit,

simulate, monitor, and analyze a concurrent model. A screenshot of the CPN-Tool is

given in Figure 5.1.

Univ
ers

ity
 of

 M
ala

ya

109

Figure 5.1: A screenshot of CPN-Tool

CPN-Tool provides a GUI environment that enables the designer to interact with the

design in a simple but effective way. The tool provides menu bars and pull-down menus

that facilitate this interaction with the designer. The rectangular area on the left of the

screenshot (Figure 5.1) represents the Index area. This area is a holder for the tool boxes

that assist the designer to edit, simulate, carry out analysis…etc. The Index area also

includes the standard declarations and the designer declarations written in SML (Jensen,

et al., 2007). To the right of the Index area, there is the Workspace area. In this area, the

designer can edit the CPN models. In addition, the designer can bring tool boxes from

the Index area and release them such as the Simulation tool box. Besides, in the

Workspace area, it is possible to call a Pop-up menu as shown in Figure 5.1. There are

several references (Jensen, et al.; Jensen & Kristensen, 2009) that provide

comprehensive information regarding CPN-Tool.

The execution of any CPN model by CPN-Tool consists of two processes that run at the

same time. The first one is the simulation process which is compulsory to execute any

Univ
ers

ity
 of

 M
ala

ya

110

model, while the second one, the monitoring process, is optional. Through the

simulation process, the Tool executes the SML code of the HLSs, LLSs, and the

Guards. In other words, the Tool executes the code associated with the transitions in the

CPN models. This execution results in redistribution of the threads between the places

of the models. The Tool graphically shows this redistribution, transfers the controls

between the models’ pages (cores), enables the user to interact with the models, etc. On

the other hand, the monitoring process is responsible for extracting specific results

designated by the user during the simulation process. These results represent the

contents of the places that are dynamically changed during the simulation process.

Precisely, the researcher focuses on monitoring the CoresLoad place. This place, as

defined previously, reflects the current sizes of the threads inside all the cores. The

monitoring process registers the content of this place in a text file which is used later to

evaluate the performance of the HLSs.

For instance, Table 5.1 shows the results of solving the CPN model of Fibonacci

problem on a three-core model using IOSSS for threads distribution. These results

represent the CoresLoad values for the model which has been executed three times;

first, using eight-thread partitioning; then using four-thread partitioning; and finally,

using two-thread partitioning. As noticed in the table, each partitioning method starts

with a main thread ([1,0,0]) and ends with the last step of execution where all the cores

have zero threads ([0,0,0]).

Univ
ers

ity
 of

 M
ala

ya

111

Table 5.1: The contents of the CoresLoad places for the Fibonacci problem solved

on three-core CPN model using eight, four, and two-thread partitioning

Eight-Thread

Partitioning

Eight-Thread

Partitioning

Continue

Four-Thread

Partitioning

Four-Thread

Partitioning

Continue

Two-Thread

Partitioning

Two-Thread

Partitioning

Continue

Two-Thread

Partitioning

Continue

[1,0,0] [6,3,2] [1,0,0] [7,3,2] [1,0,0] [2,3,1] [1,2,2]

[8,0,0] [5,3,2] [4,0,0] [6,3,2] [2,0,0] [2,3,2] [1,1,2]

[6,1,1] [5,3,1] [2,1,1] [6,6,2] [1,1,0] [2,3,3] [1,1,1]

[6,8,1] [4,3,1] [2,1,4] [6,7,2] [2,1,0] [2,3,4] [0,1,1]

[6,11,1] [4,2,1] [2,1,7] [5,7,2] [1,1,1] [2,3,3] [0,1,0]

[6,11,8] [4,2,0] [2,4,7] [4,7,2] [1,1,2] [2,3,2] [0,2,0]

[13,11,8] [3,2,1] [2,7,7] [4,6,2] [1,1,3] [2,3,1] [1,1,0]

[14,11,8] [3,2,0] [5,7,7] [4,5,2] [1,2,3] [3,3,1] [1,2,0]

[14,11,9] [2,2,1] [8,7,7] [4,5,1] [1,2,4] [3,3,2] [1,1,1]

[14,11,8] [9,2,1] [9,7,7] [3,5,1] [1,3,4] [4,3,2] [1,1,0]

[14,10,8] [9,2,8] [8,7,7] [3,5,2] [2,3,4] [4,4,2] [1,0,0]

[13,10,8] [8,2,8] [7,7,7] [3,5,1] [3,3,4] [4,4,1] [2,0,0]

[12,10,8] [8,1,8] [6,7,7] [3,4,1] [3,4,4] [4,4,0] [1,1,0]

[11,10,8] [8,0,8] [5,7,7] [3,4,0] [3,4,5] [3,4,1] [0,1,0]

[10,10,8] [7,1,8] [4,7,7] [2,4,1] [4,4,5] [3,5,1] [0,2,0]

[10,10,7] [7,1,7] [7,7,7] [2,4,2] [4,4,6] [3,5,0] [1,1,0]

[9,10,7] [7,1,6] [7,10,7] [2,4,1] [5,4,6] [2,5,1] [0,1,0]

[9,10,6] [6,1,6] [7,9,7] [2,4,0] [5,5,6] [1,5,1] [0,0,0]

[9,9,6] [5,1,6] [7,8,7] [1,4,1] [4,5,6] [2,5,1]

[9,8,6] [4,1,6] [7,8,8] [1,4,2] [4,5,5] [1,5,1]

[8,8,6] [3,1,6] [6,8,8] [1,4,1] [3,5,5] [0,5,1]

[8,8,5] [3,0,6] [6,8,7] [1,4,0] [3,5,4] [1,4,1]

[7,8,5] [2,1,6] [5,8,7] [1,3,1] [3,5,3] [2,4,1]

[7,7,5] [2,0,6] [4,8,7] [0,3,1] [2,5,3] [2,4,0]

[7,8,5] [1,1,6] [4,8,6] [1,2,1] [2,6,3] [1,4,1]

[7,8,4] [4,1,6] [4,8,5] [1,5,1] [2,7,3] [1,4,0]

[7,8,3] [4,0,6] [4,7,5] [1,6,1] [2,7,4] [1,3,1]

[7,7,3] [3,1,6] [4,6,5] [0,6,1] [3,7,4] [1,4,1]

[7,6,3] [3,0,6] [3,6,5] [1,5,1] [3,8,4] [1,4,0]

[7,6,2] [2,1,6] [6,6,5] [1,4,1] [3,7,4] [1,3,1]

[6,6,2] [2,1,5] [6,6,4] [0,4,1] [3,6,4] [0,3,1]

[6,7,2] [2,1,4] [6,6,3] [1,3,1] [2,6,4] [1,2,1]

[5,7,2] [2,0,4] [6,6,6] [0,3,1] [2,5,4] [1,2,0]

[5,6,2] [1,1,4] [6,6,5] [1,2,1] [2,6,4] [1,1,1]

[5,6,1] [0,1,4] [6,6,4] [1,2,0] [2,5,4] [0,1,1]

[5,6,0] [1,1,3] [5,6,4] [1,1,1] [2,5,3] [0,1,2]

[4,6,1] [0,1,3] [5,6,3] [0,1,1] [2,5,2] [1,1,1]

[4,5,1] [1,1,2] [4,6,3] [0,4,1] [2,4,2] [1,2,1]

[11,5,1] [0,1,2] [4,6,2] [1,3,1] [2,4,3] [2,2,1]

[12,5,1] [1,1,1] [4,6,5] [1,3,0] [2,5,3] [2,3,1]

[11,5,1] [1,1,0] [4,6,4] [1,2,1] [2,6,3] [2,3,0]

[11,5,8] [0,1,0] [3,6,4] [1,2,0] [1,6,3] [1,3,1]

[11,4,8] [0,0,0] [3,7,4] [1,1,1] [2,6,3] [0,3,1]

[10,4,8] [3,6,4] [0,1,1] [2,6,4] [1,2,1]

[10,4,7] [2,6,4] [0,1,0] [3,6,4] [2,2,1]

[9,4,7] [3,6,4] [0,0,0] [3,6,3] [3,2,1]

[9,5,7] [3,5,4] [3,5,3] [3,2,0]

[9,5,6] [3,6,4] [3,5,2] [2,2,1]

[8,5,6] [3,6,3] [2,5,2] [2,3,1]

[8,5,5] [2,6,3] [2,4,2] [1,3,1]

[8,5,4] [1,6,3] [2,3,2] [1,3,2]

[7,5,4] [1,6,2] [1,3,2] [2,3,2]

[6,5,4] [1,5,2] [0,3,2] [2,3,1]

[6,5,3] [4,5,2] [1,2,2] [1,3,1]

[6,4,3] [7,5,2] [1,3,2] [1,3,0]

[6,3,3] [7,4,2] [2,3,2] [1,2,1]

Univ
ers

ity
 of

 M
ala

ya

112

As shown in Table 5.1, each CoresLoad value (observation) consists of a list with three

integer numbers which indicate the current numbers of threads in the three cores of the

model. In all the CPN models, each core has a single transition (LLS), and in addition,

each model has a HLS transition which employs threads’ distribution. The CPN-Tool

randomly picks one of the ready transitions and executes it. At the beginning, the tool

has no choice other than executing the transition in the first core since other cores are

free of threads. According to the partitioning method, 8, 4, or 2 threads are generated in

the first core, following, that the IOSSS redistributes the threads among the cores.

Starting from the next step, the choice of any core is non-deterministic, that is, the re-

execution of the model will generate different sequence of cores’ selection. However,

when one of the cores becomes out of threads, the HLS redistributes the threads again.

In this case, the Tool has no choice other than picking the HLS’s transition since cores’

transitions are deactivated by their guards.

In order to compare various results of the simulation and monitoring processes, the

researcher proposes a new measurement to evaluate the results obtained from execution

of the models. The Average of Execution Steps (AES) is simply the measurement the

researcher used to compare between the results of execution of the models. The AES is

computed as follows:

AES = Number of Execution Steps / Number of Cores

In the above equation, the Number of Execution Steps is equal to the number of

CoresLoad observations starting from the initial state where only a single thread is

located in one of the cores through the last observation where all the cores have zero

threads. The best AES is the one with the lowest value. The results are sketched as MS

Excel graphs (histograms) where the AES along with the number of cores represent the

two axes of the histograms.

Univ
ers

ity
 of

 M
ala

ya

113

In Section 5.2, the researcher presents and discusses the results obtained from

simulating and monitoring the Fibonacci CPN models. Sections 5.3, 5.4, and 5.5 are

dedicated for presenting and discussing the execution of the Towers of Hanoi, Binary

Search, and Matrix Multiplication CPN models respectively. Chapter discussion and

summary are given in Sections 5.6 and 5.7.

5.2 The Results of Executing the Fibonacci CPN Models

There are two objectives behind the simulation and the monitoring processes: First,

computing the results; second, recording the contribution of the threads at the threads’

places. The first objective can be achieved through the simulation process while the

second objective is achieved through the monitoring process. In the case of Fibonacci

series, computing the results is represented by computing Fibonacci (n) where n ≥ 0.

The result is computed and sited in the place Result (Figure 4.29). On the other hand,

checking the contribution of the threads can be done by monitoring the CoresLoad

place. This place, as defined previously, reflects the sizes of the threads’ places. For

instance, Table 5.1 shows the result of executing a CPN model designed for computing

Fibonacci (10) using three cores. The general observation of the table shows that all the

methods started with a single thread [1,0,0] in the first core and ended with zero threads

[0,0,0] in all the cores. It is also clear that the eight threads partitioning takes fewer

steps (least AES). The reason behind this is the ability in one step to generate more

threads than the other two methods. As a result, the need for threads redistribution (to

satisfy thief cores) becomes less comparing with the case when using four threads

partitioning which is in turn less than the two threads partitioning. In the eight threads

partitioning, the FLLS divides the threads into eight, four, and two threads; otherwise,

the FLLS computes the thread into zero or one as Fibonacci (0) is zero and Fibonacci(1)

is one. The same thing can be said for the four threads partitioning except there is no

Univ
ers

ity
 of

 M
ala

ya

114

chance to divide threads into eight threads. The worst case is in the two threads

partitioning, here, the victim thread has no choice other than creating two threads which

are not sufficient to satisfy the hungry thief cores. Therefore, the IOSSS has to repeat

the division process more times to please the thief cores, which no doubt causes the loss

of time. It is important to note that the limit of threads that are generated in the three

ways of partitioning: 2, 4, and 8. In general, since the FLLS generates a binary tree of

threads, this tree can be extended to create 16 threads or multiples thereof , this is

possible when the argument n in Fibonacci (n) is large enough. However, doing this will

increase the time in generating the threads; in other words, the scheduler will waste

precious time in dividing threads leaving thief cores in an idle situation. Therefore, to

find an intermediate state, the researcher found that eight threads partitioning is the

suitable one. Yet, in case if there are several hundreds of cores and there is a large value

of n, then it will be more convenient to increase the number of divided threads.

The researcher solved the problem of calculating Fibonacci (10). For this purpose, nine

CPN models have been designed: two-core model, three-core model, and so forth until

ten-core model. First, the researcher solved the problem using two-thread partitioning.

The execution of each model consists of ten trials, in each trial; a new AES is calculated

and recorded with other AESs in a text file. Therefore, for the two-core model, there

will be ten trials of computing ten AESs, the same thing for three-core model, and so

forth until ten-core model. The above has been repeated for four-core and eight-core

partitioning. Table 5.2 shows the trials of executions of the CPN models designed for

computing Fibonacci (10) and adopting IOSSS as the HLS for threads distribution.

Next, the researcher computes the average of every ten trials of each model as

illustrated in Table 5.2. Finally, a histogram that shows the results in Table 5.3 is

sketched using Ms Excel (Figure 5.2).

Univ
ers

ity
 of

 M
ala

ya

115

Table 5.2: The AES values for the Fibonacci (10) problem using IOSSS as the HLS

and eight-thread, four-thread, and two-thread partitioning

Using IOSSS and Two-Thread Partitioning

Cores Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

2 56.50 57.00 56.50 58.00 55.00 56.50 56.00 59.50 55.00 55.00

3 38.67 39.67 39.33 37.67 37.33 40.67 39.67 40.67 39.00 38.33

4 29.50 31.25 29.25 33.50 30.50 29.75 28.25 29.00 30.75 30.25

5 24.00 25.20 24.60 25.20 23.40 25.80 26.20 24.00 23.40 24.80

6 20.83 23.50 22.50 20.67 22.17 22.50 21.83 20.67 21.17 21.17

7 19.14 17.71 20.14 18.71 19.29 20.00 19.00 18.86 19.00 18.71

8 16.75 16.75 16.88 17.50 15.63 17.63 16.38 17.13 17.25 17.63

9 14.33 15.33 16.33 14.44 15.56 14.22 14.89 14.89 14.56 14.89

10 13.80 13.90 14.70 15.00 13.80 14.00 14.80 14.00 14.10 14.20

Using IOSSS and Four-Thread Partitioning

Cores Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

2 46.00 47.50 45.50 46.00 47.00 48.50 48.50 49.50 46.00 50.00

3 30.33 32.00 30.00 31.67 31.33 30.00 30.33 32.33 31.00 31.00

4 24.50 23.25 24.50 23.00 23.00 24.25 23.50 24.00 23.75 23.50

5 19.80 21.40 19.80 21.80 19.80 21.00 19.80 19.60 20.80 19.80

6 17.83 16.17 18.00 17.33 17.00 16.33 18.00 16.83 17.50 17.67

7 14.71 14.29 15.43 14.71 15.57 15.86 15.57 16.14 15.43 16.43

8 13.88 13.00 12.38 13.50 14.13 13.38 13.25 13.88 13.13 15.00

9 11.67 13.11 11.67 13.22 12.00 12.33 11.22 11.33 12.56 12.44

10 10.20 10.90 11.30 10.80 10.80 10.10 10.80 10.10 10.40 11.10

Using IOSSS and Eight-Thread Partitioning

Cores Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

2 47.50 50.00 49.50 45.50 44.50 51.00 47.00 48.00 48.50 48.00

3 32.00 29.33 30.00 34.00 36.00 32.67 32.33 31.33 37.00 33.33

4 22.00 23.00 24.00 22.75 23.75 25.25 23.00 24.25 25.00 23.25

5 18.20 18.80 18.40 19.00 19.60 18.60 19.00 19.80 19.00 19.20

6 15.83 16.83 15.17 16.50 17.00 15.83 17.00 15.50 16.50 15.33

7 13.29 13.29 13.14 13.00 12.43 13.71 13.43 13.14 12.86 14.00

8 11.00 11.13 11.63 11.13 11.75 11.25 11.38 11.63 11.38 11.63

9 10.33 10.22 10.44 11.00 10.44 10.44 10.56 10.67 11.00 11.44

10 9.30 10.30 10.00 10.40 9.50 10.80 9.50 9.90 9.90 9.50

Univ
ers

ity
 of

 M
ala

ya

116

Table 5.3: The averages of the AES values shown in Table 5.2

Cores
Using Two-Thread

Partitioning

Using Four-Thread

Partitioning

Using Eight-Thread

Partitioning

2 56.50 47.45 47.95

3 39.10 31.00 32.80

4 30.20 23.73 23.63

5 24.66 20.36 18.96

6 21.70 17.27 16.15

7 19.06 15.41 13.23

8 16.95 13.55 11.39

9 14.94 12.16 10.66

10 14.23 10.65 9.91

Figure 5.2: Sketching the AES values vs. number of cores for the Fibonacci (10)

problem using eight-thread, four-thread, two-thread partitioning, and IOSSS for threads

distribution

In general, the histogram shows that as the number of cores is increased, the

performance becomes better. In other words, the values of the AES become less which

is the target behind increasing the number of the cores. It is also noted that there is a

clear difference between the two-thread method and the other two methods. This is due

to the high number of divisions comparing with other two methods. On the other hand,

the results of the four-thread and eight-thread methods are unstable in the 2-4 cores

models but the difference becomes clear starting from the fifth core. Yet, the histogram

reaches a stability point starting from the tenth core.

Univ
ers

ity
 of

 M
ala

ya

117

The weakness in the IOSSS is clear which is represented by the number of threads that

each thief core gets. The thief core gets only a single thread at a time, processes it, and

then it becomes a thief again, and after that the distribution process is invoked again.

This scenario is repeated frequently which leads to a waste of time, as a result, it has a

bad effect on the overall performance. In conclusion, the IOSSS is easy to implement

and has no complicated calculations but it cannot achieve a high level of concurrency.

The researcher resolves the Fibonacci problem but this time for Fibonacci (13) and

Fibonacci (15). This time, the researcher fixes the partitioning method to the eight-

thread and applies various stealing strategies. The researcher uses the strategies: IOSSS,

IOMSS, RFSSS, RFMSS, and CMSS. Table 5.4 and Table 5.5 show the AES values for

computing Fibonacci (13) and Fibonacci (15). The results in the previous tables are

sketched as histograms in Figure 5.3 and Figure 5.4 respectively.

Analyzing the results in the two histograms leads to the following facts:

1- Solving Fibonacci (15) consumes more steps than Fibonacci (13). This is evident

from the values of AES. In Fibonacci (15) the maximum AES value is 509. This value

appears in both IOSSS and RFSSS; however, in Fibonacci (13), the maximum AES

value is 208. This is natural since increasing the size of any problem will definitely lead

to an increase in the number of execution steps. The only exception happens in the

Binary Search problem, since the repetition of model execution with different

arguments (searching element) requires a different number of steps. The issue is related

with the location of the element searched for.

Univ
ers

ity
 of

 M
ala

ya

118

Table 5.4: The AES values vs. strategies for the problem of solving Fibonacci (13)

using eight-thread partitioning

Cores IOSSS IOMSS RFSSS RFMSS CMSS

2 208.27 193.58 208.27 193.58 193.27

3 139.90 132.43 142.88 131.47 130.51

4 105.36 98.99 106.86 99.20 98.48

5 84.52 82.22 86.76 80.82 79.66

6 68.88 68.65 70.14 67.95 66.70

7 59.71 57.99 60.55 57.11 56.57

8 53.78 51.75 55.26 50.60 49.65

9 49.34 46.95 50.70 45.34 44.96

10 45.51 43.00 47.29 41.24 41.06

Figure 5.3: Sketching the AES values vs. number of cores for the problem of Fibonacci

(13) using eight-thread partitioning

2- The general overview to the histograms indicates that as the number of cores

increases, the performance becomes better in the sense of using less execution steps.

This can be generalized to all the HLSs. The histogram descends smoothly from worst

AES values at the two-core model to the best AES values at the ten-core model.

Univ
ers

ity
 of

 M
ala

ya

119

Table 5.5: The AES values vs. strategies for the problem of solving of Fibonacci (15)

using eight-thread partitioning

Cores IOSSS IOMSS RFSSS RFMSS CMSS

2 509.47 479.76 509.47 479.76 479.15

3 341.62 324.59 353.40 322.61 321.60

4 257.39 242.60 265.97 242.92 241.49

5 207.32 199.03 214.78 196.08 194.24

6 169.78 166.57 173.34 164.19 162.15

7 146.03 141.07 147.24 139.34 138.42

8 130.32 125.49 131.79 122.63 121.32

9 118.78 113.38 119.96 109.59 108.98

10 109.06 103.40 110.85 99.13 98.50

Figure 5.4: Sketching the AES values vs. number of cores for the problem of Fibonacci

(15) using eight-thread partitioning

3- The rate of change in AES values in the low number of cores models is higher than

their counterparts with a higher number of cores. For instance, the difference between

the AES values between the two-core and three-core models is higher than the

difference between the nine-core and ten-core models. This is because as the number of

cores increases and with the same problem size, the single core’s share of threads

decreases; consequently, there will be less need to call the HLS. As a result, the AES

values become convergent. In other words, the effect of the HLSs becomes less

significant when the number of cores is relatively large comparing with the problem

Univ
ers

ity
 of

 M
ala

ya

120

size. This is why the difference between the two and three-core models can be noticed

clearly where the HLSs play a significant role in the redistribution process ultimately

generating better results.

4- In order to compare the performances of the HLSs; the IOSSS and RFSSS show the

worst performance since they consume relatively high values of AESs. The reason

behind this is that both of them distribute only single threads to the thief cores. This has

a bad effect on the overall performance since a core with a single thread quickly

becomes a thief core again and the distribution process has to be invoked continuously.

An interesting thing is the results of the IOSSS and RFSSS are convergent and

sometimes identical. That is because the main thread resides on the first core and this

thread precisely generates eight threads at the beginning of execution therefore there is a

good chance to make this core one of the wealthiest cores of threads. As a result, the

first core becomes the target of the RFSSS most of the time. As for the IOSSS, it is also

the target of this strategy since IOSSS starts from left to right. This makes both IOSSS

and RFSSS give convergent results, even so when there is a difference due to choosing

another victim core by RFSSS. The number of threads in this victim core does not

differentiate too much from the victim core chosen by IOSSS.

5- The number of threads generated in one step has a strong influence on the overall

performance. The researcher has resolved the problems of Fibonacci (13) and Fibonacci

(15) but this time using only two-thread partitioning. Table 5.6 and Figure 5.5 are

dedicated for Fibonacci (13) while Table 5.7 and Figure 5.6 are belonging to Fibonacci

(15). At first glance, a comparison between Figure 5.3 and Figure 5.5 shows a clear

difference between the AES for the same problem of Fibonacci (13).

Univ
ers

ity
 of

 M
ala

ya

121

Table 5.6: The AES values vs. strategies for the problem of solving of Fibonacci (13)

using two-thread partitioning.

Cores IOSSS IOMSS RFSSS RFMSS CMSS

2 237.85 236.05 237.85 236.05 236.30

3 162.63 160.47 163.03 160.87 160.27

4 125.50 124.15 126.50 123.40 121.05

5 102.22 100.72 101.50 99.78 98.50

6 86.12 86.55 88.13 84.40 82.75

7 76.47 73.70 75.10 73.16 71.63

8 68.56 64.95 67.09 64.75 63.93

9 59.83 60.36 60.29 57.77 56.74

10 55.08 55.62 55.37 52.85 51.92

Figure 5.5: Sketching the AES values vs. number of cores for the problem of Fibonacci

(13) using two-thread partitioning.

The results in Figure 5.5 show that more steps are needed to complete simulation

comparing with results in Figure 5.3. The same thing can be said in the case of

Fibonacci (15) where in Figure 5.6 the AES values need more steps than those in Figure

5.4.

Univ
ers

ity
 of

 M
ala

ya

122

Table 5.7: The AES values vs. the entire strategies for solving the problem of Fibonacci

(15) using two-thread partitioning

Cores IOSSS IOMSS RFSSS RFMSS CMSS

2 621.55 615.10 621.55 615.10 614.90

3 421.17 413.77 424.47 415.00 413.93

4 323.03 316.65 322.35 315.40 312.78

5 263.24 259.80 263.16 254.84 254.04

6 220.30 214.28 221.27 214.08 212.17

7 190.66 187.94 191.71 185.46 181.43

8 168.50 165.68 168.66 163.53 160.33

9 151.43 151.27 150.81 146.29 144.58

10 138.62 134.98 138.38 132.53 130.22

Figure 5.6: Sketching the AES values vs. number of cores for the problem of Fibonacci

(15) using two-thread partitioning.

In general, we can conclude the following: a partitioning technique that can generate a

higher number of threads in one step is the key to high level of concurrency between the

cores of the model. However, this cannot be generalized for generating any number of

threads; there should be a kind of balancing between the number of cores, the maximum

Univ
ers

ity
 of

 M
ala

ya

123

number of generated threads in one step, and the time consumed in generating those

threads.

5.3 The Results of Executing the Binary Search CPN Models

The Binary Search has a different technique than the Fibonacci technique. In the

Fibonacci case, all the temporary results have to be taken into consideration; they are

parts of the final result. However, in the Binary Search, the researcher builds the

mechanism on dividing the searching area into a certain number of sections where each

section is assigned to a thread, after that, the HLSs distribute those threads to the cores.

The searching may be succeeded in one of the threads being executed by one of the

cores; therefore, it is not compulsory to check all the threads. In other words, there is a

chance to find the searched element in one of the threads. Consequently, the process

stops immediately, and if there are any threads still waiting for their turn in processing,

they will be discarded.

As in Fibonacci case, the researcher designed nine Binary Search CPN models (two-

core model, three-core model, and so forth until ten-core model. To apply the searching

technique, the researcher proposes an ordered list of 10000 integer numbers [1, 3, 5, 7...

19995, 19997, 19999]. This list is already created and saved in a fused place that is

shared by all the cores. The index of the first element in the list is zero while the index

of the last element in the list is 9999. The searching is carried out for the value 19997.

The result of execution of the models results in the value 9998 which represents the

location of the searched element in the list. In other words, it signifies the success of

finding the element. On the other hand, returning the value ~1 means that the element is

not found in the list. Regarding the HLSs and their role in distributing the threads, Table

5.8 shows the AES values of conducting the binary search while Figure 5.7 shows a

histogram that reflects the values in Table 5.8.

Univ
ers

ity
 of

 M
ala

ya

124

Table 5.8: The AES values for the Binary Search Problem where the list size is

10000 and the list’s values are: [1, 3, 5, 7,.. 19995,19997,19999] and searching is

conducted for the value 19997 with the return list’s value 9998

Cores IOSSS IOMSS RFSSS RFMSS CMSS

2 56.70 38.90 56.70 38.90 38.10

3 41.90 26.67 41.90 26.17 26.33

4 32.45 20.23 32.45 19.63 19.53

5 26.34 16.56 26.34 16.20 15.38

6 22.13 14.45 22.13 13.03 12.90

7 18.96 11.97 18.96 11.56 11.29

8 16.75 10.45 16.75 9.93 9.89

9 14.69 9.93 14.69 9.09 9.06

10 13.20 8.45 13.20 8.01 8.00

Figure 5.7: Sketching the AES values vs. number of cores for the Binary Search

problem defined in Table 5.8

The researcher repeated the searching process but this time for the value 4. As expected,

the result of the searching is ~1 since there are no even numbers in the list. The AESs’

values are given in Table 5.9 while the histogram is illustrated in Figure 5.8.

Univ
ers

ity
 of

 M
ala

ya

125

Table 5.9: The AES values for the Binary Search Problem where list size is 10000

and the list’s values are: [1, 3, 5, 7,.. 19995,19997,19999] and searching is conducted

for the value 4 with the return value of ~1

Cores IOSSS IOMSS RFSSS RFMSS CMSS

2 57.75 42.90 57.75 42.90 42.95

3 43.37 29.27 42.03 29.03 28.90

4 34.83 22.28 32.75 22.08 21.93

5 28.34 18.00 27.46 17.86 17.76

6 24.05 15.42 23.08 15.07 14.87

7 21.13 13.41 20.03 13.03 12.77

8 18.38 11.85 17.60 11.39 11.29

9 16.46 10.69 15.68 10.38 10.10

10 14.82 9.65 14.27 9.45 9.23

Figure 5.8: Sketching the AES values vs. number of cores for the Binary Search

problem defined in Table 5.9

As in the Fibonacci case, the values of the AES are significantly improved with the

increase in the number of cores. However, the binary search results show a clear

difference from those of the Fibonacci results. This difference is represented precisely

in the results of IOSSS and RFSSS. The results of those schedulers are so close and

differ from the other schedulers while the results of all the schedulers in Fibonacci case

are convergent.

Univ
ers

ity
 of

 M
ala

ya

126

The reason behind this is in Fibonacci, a thread may spawn 2,4, or 8 threads or may be

more if the FLLS includes such partitioning, besides the reallocation of threads by the

HLSs makes the cores semi saturated with threads. This matter creates a state of

convergence between the HLSs, in other words, in the case of Fibonacci; the difference

between the capacities of the HLSs on distributing the threads is not as clear as in

Binary Search. In Binary Search, the BSLLS controls the size of the searching area

assigned to the thread by the value of Delta (Figure 4.5). The mechanism of the BSLLS

can generate so many threads with one step. As a result, starting from the first step of

simulation, the BSLLS creates a large number of threads and stacked them at the core

that holds the main thread. Adding to that, both the IOSSS and RFSSS steal and

distribute single threads. Therefore, there will be too much calling to the scheduler since

thief cores only get single threads. Therefore, the AES values for the IOSSS and RFSSS

are relatively high. On the other hand, the other schedulers: IOMSS, RFSSS, and CMSS

show more convergent results than IOSSS and RFSSS since they (IOMSS, RFSSS, and

CMSS) have been built on stealing more than one thread.

5.4 The Results of Executing the Towers of Hanoi CPN Models

The Towers of Hanoi problem has a restricted approach comparing with Fibonacci and

Binary Search in splitting the problem. Here, the THLLS has no choice other than

computing a move and creating two sub threads at a time. In other words, THLLS lacks

the ability of the FLLS in creating 4,8, or more threads at the same time. The same thing

can be said for the BSLLS where the scheduler can create many searching areas

(threads) that can be distributed under the HLS to the thief cores at the same time. The

reason behind THLLS’s inability is due to the accumulation of disks on each other. The

game’s player cannot move two disks at the same time; it should be one by one.

Univ
ers

ity
 of

 M
ala

ya

127

Therefore, the concurrent characteristic in this type of D&C problem is weak. As a

result, the diversity in the HLSs has no effect on the results of simulation.

As with the previous two D&C problems, the researcher has designed two types of CPN

models, one for solving the problem with seven disks, and the second one with nine

disks. The output of the seven disks problem is given in Table 5.10. As explained in

Section 4.1.3, the output of the Towers of Hanoi game is a set of disks’ moves. A move

consists of (Ord,DNo,Sou,Des), the number of moves is equal to (2
n
)

-1 where n is the

number of disks. In Table 5.10, the number of disks is seven, therefore we have 127

moves. The THLLS (Figure 4.9) creates a binary tree with 127 threads; each thread has

its move. The moves on the left side of the tree are numbered with the negative sign (~),

the move at the root is numbered with zero, and the moves at the right hand side of the

binary tree are numbered with positive sign. Therefore, for 127 moves, the first move is

(~63,1,1,3) which indicates moving disk No. 1 from pillar No.1 to pillar No. 3. The next

move is (~62,2,1,2) which includes moving disk No. 2 from pillar No.1 to pillar No. 2.

The last move is (63,1,1,3) which consists of moving disk No. 1 from pillar No.1 to

pillar No. 3. As for the nine disks example, the output is given in Table 5.11. Here, we

have 511 moves, 255 moves with negative sign resident at the left side of the binary

tree, and 255 moves with positive sign resident at the right hand side of the binary tree.

Therefore, the first move is (~255,1,1,3) and the last one is (255,1,1,3).

Regarding the distribution of threads through the five strategies, Table 5.12 shows the

AES values for solving the Towers of Hanoi game using seven disks. Figure 5.9

sketches the values in Table 5.12. For the nine disks example, Table 5.13 and Figure

5.10 are dedicated for the nine disks problem.

Univ
ers

ity
 of

 M
ala

ya

128

Table 5.10: The output (moves) of solving the problem of Towers of Hanoi with seven

disks
~63,1,1,3 ~62,2,1,2 ~61,1,3,2 ~60,3,1,3 ~59,1,2,1 ~58,2,2,3 ~57,1,1,3 ~56,4,1,2 ~55,1,3,2

~54,2,3,1 ~53,1,2,1 ~52,3,3,2 ~51,1,1,3 ~50,2,1,2 ~49,1,3,2 ~48,5,1,3 ~47,1,2,1 ~46,2,2,3

~45,1,1,3 ~44,3,2,1 ~43,1,3,2 ~42,2,3,1 ~41,1,2,1 ~40,4,2,3 ~39,1,1,3 ~38,2,1,2 ~37,1,3,2

~36,3,1,3 ~35,1,2,1 ~34,2,2,3 ~33,1,1,3 ~32,6,1,2 ~31,1,3,2 ~30,2,3,1 ~29,1,2,1 ~28,3,3,2

~27,1,1,3 ~26,2,1,2 ~25,1,3,2 ~24,4,3,1 ~23,1,2,1 ~22,2,2,3 ~21,1,1,3 ~20,3,2,1 ~19,1,3,2

~18,2,3,1 ~17,1,2,1 ~16,5,3,2 ~15,1,1,3 ~14,2,1,2 ~13,1,3,2 ~12,3,1,3 ~11,1,2,1 ~10,2,2,3

~9,1,1,3 ~8,4,1,2 ~7,1,3,2 ~6,2,3,1 ~5,1,2,1 ~4,3,3,2 ~3,1,1,3 ~2,2,1,2 ~1,1,3,2

0,7,1,3 1,1,2,1 2,2,2,3 3,1,1,3 4,3,2,1 5,1,3,2 6,2,3,1 7,1,2,1 8,4,2,3

9,1,1,3 10,2,1,2 11,1,3,2 12,3,1,3 13,1,2,1 14,2,2,3 15,1,1,3 16,5,2,1 17,1,3,2

18,2,3,1 19,1,2,1 20,3,3,2 21,1,1,3 22,2,1,2 23,1,3,2 24,4,3,1 25,1,2,1 26,2,2,3

27,1,1,3 28,3,2,1 29,1,3,2 30,2,3,1 31,1,2,1 32,6,2,3 33,1,1,3 34,2,1,2 35,1,3,2

36,3,1,3 37,1,2,1 38,2,2,3 39,1,1,3 40,4,1,2 41,1,3,2 42,2,3,1 43,1,2,1 44,3,3,2

45,1,1,3 46,2,1,2 47,1,3,2 48,5,1,3 49,1,2,1 50,2,2,3 51,1,1,3 52,3,2,1 53,1,3,2

54,2,3,1 55,1,2,1 56,4,2,3 57,1,1,3 58,2,1,2 59,1,3,2 60,3,1,3 61,1,2,1 62,2,2,3

63,1,1,3

Table 5.11: The moves of solving the problem of Towers of Hanoi with nine disks

~255,1,1,3 ~254,2,1,2 ~253,1,3,2 ~252,3,1,3 ~251,1,2,1 ~250,2,2,3 ~249,1,1,3 ~248,4,1,2 ~247,1,3,2

~246,2,3,1 ~245,1,2,1 ~244,3,3,2 ~243,1,1,3 ~242,2,1,2 ~241,1,3,2 ~240,5,1,3 ~239,1,2,1 ~238,2,2,3

~237,1,1,3 ~236,3,2,1 ~235,1,3,2 ~234,2,3,1 ~233,1,2,1 ~232,4,2,3 ~231,1,1,3 ~230,2,1,2 ~229,1,3,2

~228,3,1,3 ~227,1,2,1 ~226,2,2,3 ~225,1,1,3 ~224,6,1,2 ~223,1,3,2 ~222,2,3,1 ~221,1,2,1 ~220,3,3,2

~219,1,1,3 ~218,2,1,2 ~217,1,3,2 ~216,4,3,1 ~215,1,2,1 ~214,2,2,3 ~213,1,1,3 ~212,3,2,1 ~211,1,3,2

~210,2,3,1 ~209,1,2,1 ~208,5,3,2 ~207,1,1,3 ~206,2,1,2 ~205,1,3,2 ~204,3,1,3 ~203,1,2,1 ~202,2,2,3

~201,1,1,3 ~200,4,1,2 ~199,1,3,2 ~198,2,3,1 ~197,1,2,1 ~196,3,3,2 ~195,1,1,3 ~194,2,1,2 ~193,1,3,2

~192,7,1,3 ~191,1,2,1 ~190,2,2,3 ~189,1,1,3 ~188,3,2,1 ~187,1,3,2 ~186,2,3,1 ~185,1,2,1 ~184,4,2,3

~183,1,1,3 ~182,2,1,2 ~181,1,3,2 ~180,3,1,3 ~179,1,2,1 ~178,2,2,3 ~177,1,1,3 ~176,5,2,1 ~175,1,3,2

~174,2,3,1 ~173,1,2,1 ~172,3,3,2 ~171,1,1,3 ~170,2,1,2 ~169,1,3,2 ~168,4,3,1 ~167,1,2,1 ~166,2,2,3

~165,1,1,3 ~164,3,2,1 ~163,1,3,2 ~162,2,3,1 ~161,1,2,1 ~160,6,2,3 ~159,1,1,3 ~158,2,1,2 ~157,1,3,2

~156,3,1,3 ~155,1,2,1 ~154,2,2,3 ~153,1,1,3 ~152,4,1,2 ~151,1,3,2 ~150,2,3,1 ~149,1,2,1 ~148,3,3,2

~147,1,1,3 ~146,2,1,2 ~145,1,3,2 ~144,5,1,3 ~143,1,2,1 ~142,2,2,3 ~141,1,1,3 ~140,3,2,1 ~139,1,3,2

~138,2,3,1 ~137,1,2,1 ~136,4,2,3 ~135,1,1,3 ~134,2,1,2 ~133,1,3,2 ~132,3,1,3 ~131,1,2,1 ~130,2,2,3

~129,1,1,3 ~128,8,1,2 ~127,1,3,2 ~126,2,3,1 ~125,1,2,1 ~124,3,3,2 ~123,1,1,3 ~122,2,1,2 ~121,1,3,2

~120,4,3,1 ~119,1,2,1 ~118,2,2,3 ~117,1,1,3 ~116,3,2,1 ~115,1,3,2 ~114,2,3,1 ~113,1,2,1 ~112,5,3,2

~111,1,1,3 ~110,2,1,2 ~109,1,3,2 ~108,3,1,3 ~107,1,2,1 ~106,2,2,3 ~105,1,1,3 ~104,4,1,2 ~103,1,3,2

~102,2,3,1 ~101,1,2,1 ~100,3,3,2 ~99,1,1,3 ~98,2,1,2 ~97,1,3,2 ~96,6,3,1 ~95,1,2,1 ~94,2,2,3

~93,1,1,3 ~92,3,2,1 ~91,1,3,2 ~90,2,3,1 ~89,1,2,1 ~88,4,2,3 ~87,1,1,3 ~86,2,1,2 ~85,1,3,2

~84,3,1,3 ~83,1,2,1 ~82,2,2,3 ~81,1,1,3 ~80,5,2,1 ~79,1,3,2 ~78,2,3,1 ~77,1,2,1 ~76,3,3,2

~75,1,1,3 ~74,2,1,2 ~73,1,3,2 ~72,4,3,1 ~71,1,2,1 ~70,2,2,3 ~69,1,1,3 ~68,3,2,1 ~67,1,3,2

~66,2,3,1 ~65,1,2,1 ~64,7,3,2 ~63,1,1,3 ~62,2,1,2 ~61,1,3,2 ~60,3,1,3 ~59,1,2,1 ~58,2,2,3

~57,1,1,3 ~56,4,1,2 ~55,1,3,2 ~54,2,3,1 ~53,1,2,1 ~52,3,3,2 ~51,1,1,3 ~50,2,1,2 ~49,1,3,2

~48,5,1,3 ~47,1,2,1 ~46,2,2,3 ~45,1,1,3 ~44,3,2,1 ~43,1,3,2 ~42,2,3,1 ~41,1,2,1 ~40,4,2,3

~39,1,1,3 ~38,2,1,2 ~37,1,3,2 ~36,3,1,3 ~35,1,2,1 ~34,2,2,3 ~33,1,1,3 ~32,6,1,2 ~31,1,3,2

~30,2,3,1 ~29,1,2,1 ~28,3,3,2 ~27,1,1,3 ~26,2,1,2 ~25,1,3,2 ~24,4,3,1 ~23,1,2,1 ~22,2,2,3

~21,1,1,3 ~20,3,2,1 ~19,1,3,2 ~18,2,3,1 ~17,1,2,1 ~16,5,3,2 ~15,1,1,3 ~14,2,1,2 ~13,1,3,2

~12,3,1,3 ~11,1,2,1 ~10,2,2,3 ~9,1,1,3 ~8,4,1,2 ~7,1,3,2 ~6,2,3,1 ~5,1,2,1 ~4,3,3,2

~3,1,1,3 ~2,2,1,2 ~1,1,3,2 0,9,1,3 1,1,2,1 2,2,2,3 3,1,1,3 4,3,2,1 5,1,3,2

6,2,3,1 7,1,2,1 8,4,2,3 9,1,1,3 10,2,1,2 11,1,3,2 12,3,1,3 13,1,2,1 14,2,2,3

15,1,1,3 16,5,2,1 17,1,3,2 18,2,3,1 19,1,2,1 20,3,3,2 21,1,1,3 22,2,1,2 23,1,3,2

24,4,3,1 25,1,2,1 26,2,2,3 27,1,1,3 28,3,2,1 29,1,3,2 30,2,3,1 31,1,2,1 32,6,2,3

33,1,1,3 34,2,1,2 35,1,3,2 36,3,1,3 37,1,2,1 38,2,2,3 39,1,1,3 40,4,1,2 41,1,3,2

42,2,3,1 43,1,2,1 44,3,3,2 45,1,1,3 46,2,1,2 47,1,3,2 48,5,1,3 49,1,2,1 50,2,2,3

51,1,1,3 52,3,2,1 53,1,3,2 54,2,3,1 55,1,2,1 56,4,2,3 57,1,1,3 58,2,1,2 59,1,3,2

60,3,1,3 61,1,2,1 62,2,2,3 63,1,1,3 64,7,2,1 65,1,3,2 66,2,3,1 67,1,2,1 68,3,3,2

Univ
ers

ity
 of

 M
ala

ya

129

69,1,1,3 70,2,1,2 71,1,3,2 72,4,3,1 73,1,2,1 74,2,2,3 75,1,1,3 76,3,2,1 77,1,3,2

78,2,3,1 79,1,2,1 80,5,3,2 81,1,1,3 82,2,1,2 83,1,3,2 84,3,1,3 85,1,2,1 86,2,2,3

87,1,1,3 88,4,1,2 89,1,3,2 90,2,3,1 91,1,2,1 92,3,3,2 93,1,1,3 94,2,1,2 95,1,3,2

96,6,3,1 97,1,2,1 98,2,2,3 99,1,1,3 100,3,2,1 101,1,3,2 102,2,3,1 103,1,2,1 104,4,2,3

105,1,1,3 106,2,1,2 107,1,3,2 108,3,1,3 109,1,2,1 110,2,2,3 111,1,1,3 112,5,2,1 113,1,3,2

114,2,3,1 115,1,2,1 116,3,3,2 117,1,1,3 118,2,1,2 119,1,3,2 120,4,3,1 121,1,2,1 122,2,2,3

123,1,1,3 124,3,2,1 125,1,3,2 126,2,3,1 127,1,2,1 128,8,2,3 129,1,1,3 130,2,1,2 131,1,3,2

132,3,1,3 133,1,2,1 134,2,2,3 135,1,1,3 136,4,1,2 137,1,3,2 138,2,3,1 139,1,2,1 140,3,3,2

141,1,1,3 142,2,1,2 143,1,3,2 144,5,1,3 145,1,2,1 146,2,2,3 147,1,1,3 148,3,2,1 149,1,3,2

150,2,3,1 151,1,2,1 152,4,2,3 153,1,1,3 154,2,1,2 155,1,3,2 156,3,1,3 157,1,2,1 158,2,2,3

159,1,1,3 160,6,1,2 161,1,3,2 162,2,3,1 163,1,2,1 164,3,3,2 165,1,1,3 166,2,1,2 167,1,3,2

168,4,3,1 169,1,2,1 170,2,2,3 171,1,1,3 172,3,2,1 173,1,3,2 174,2,3,1 175,1,2,1 176,5,3,2

177,1,1,3 178,2,1,2 179,1,3,2 180,3,1,3 181,1,2,1 182,2,2,3 183,1,1,3 184,4,1,2 185,1,3,2

186,2,3,1 187,1,2,1 188,3,3,2 189,1,1,3 190,2,1,2 191,1,3,2 192,7,1,3 193,1,2,1 194,2,2,3

195,1,1,3 196,3,2,1 197,1,3,2 198,2,3,1 199,1,2,1 200,4,2,3 201,1,1,3 202,2,1,2 203,1,3,2

204,3,1,3 205,1,2,1 206,2,2,3 207,1,1,3 208,5,2,1 209,1,3,2 210,2,3,1 211,1,2,1 212,3,3,2

213,1,1,3 214,2,1,2 215,1,3,2 216,4,3,1 217,1,2,1 218,2,2,3 219,1,1,3 220,3,2,1 221,1,3,2

222,2,3,1 223,1,2,1 224,6,2,3 225,1,1,3 226,2,1,2 227,1,3,2 228,3,1,3 229,1,2,1 230,2,2,3

231,1,1,3 232,4,1,2 233,1,3,2 234,2,3,1 235,1,2,1 236,3,3,2 237,1,1,3 238,2,1,2 239,1,3,2

240,5,1,3 241,1,2,1 242,2,2,3 243,1,1,3 244,3,2,1 245,1,3,2 246,2,3,1 247,1,2,1 248,4,2,3

249,1,1,3 250,2,1,2 251,1,3,2 252,3,1,3 253,1,2,1 254,2,2,3 255,1,1,3

Table 5.12: The AES values for the Towers of Hanoi problem using seven disks

Cores IOSSS IOMSS RFSSS RFMSS CMSS

2 36.25 35.84 36.16 35.58 35.75

3 29.62 29.21 29.55 28.62 28.67

4 24.29 24.06 24.76 23.89 24.21

5 21.54 21.14 21.62 21.12 21.10

6 19.44 19.24 19.22 18.91 19.14

7 17.41 17.16 17.45 17.07 17.81

8 16.16 15.99 15.89 15.68 16.14

9 15.18 15.22 15.08 14.70 15.44

10 14.24 14.14 13.89 13.98 14.23

Univ
ers

ity
 of

 M
ala

ya

130

Figure 5.9: Sketching the results in Table 5.12

The results in the two figures show that the AES values in the nine disks example are

higher than their counterparts in the seven disks example. This is natural, since adding

more disks causes an increase in the number of moves. However, the two graphs

demonstrate different behavior of the HLSs comparing with the results in Fibonacci and

Binary Search results. Precisely, the results of the IOSSS which show in some cases

better performance than the RFSSS, RFMSS, and CMSS performances.

Table 5.13: The AES values for the Towers of Hanoi problem using nine disks

Cores IOSSS IOMSS RFSSS RFMSS CMSS

2 134.02 133.20 134.02 133.20 132.55

3 99.78 98.91 100.26 98.68 98.09

4 77.82 77.08 81.63 78.12 77.45

5 67.38 66.31 71.61 67.06 67.03

6 59.11 57.55 62.60 58.52 58.14

7 51.62 50.31 55.95 52.43 52.31

8 47.00 45.78 50.48 47.60 47.75

9 43.31 41.96 46.95 44.06 44.06

10 40.23 38.69 43.55 40.48 40.80

Univ
ers

ity
 of

 M
ala

ya

131

Figure 5.10: Sketching the results in Table 5.13

The reason behind this is in the THLLS mechanism where each core creates at the most

only two sub threads, this leads to generating relatively heavy threads. By heavy thread,

we mean a thread that is headed a heavy sub tree of threads in the Towers of Hanoi

binary tree of threads (Figure 4.10). Comparing with the threads created by BSLLS and

FLLS (eight-thread partitioning and more), the threads in those schedulers are lighter in

the sense that they deal with smaller portions of the problem. It follows that the THLLS

starts with the heavy sub threads and then accumulates the relatively smaller threads. As

a result, heavy threads are settled at the bottom of the core’s list of threads. Now, the

IOSSS steals from the first encountered victim, digging inside it looking for threads to

steal, as a result, the IOSSS relatively deals with heavy threads. On the other hand, the

RFSSS search for the wealthy victim which leads to the core that has recently got new

threads which are lighter than those targeted by IOSSS. Consequently, the performance

of the IOSSS reaches the performance of the IOMSS, RFMSS, CMSS, and sometimes

exceeds them. The heavy threads generate more sub threads, and this will definitely

Univ
ers

ity
 of

 M
ala

ya

132

make the core busier for dealing with its own threads, accordingly, calling the HLS will

be less. This is because as the cores become busy with their own threads, the need for

calling the HLS will be less.

In conclusion, the main reason behind the improvement of the IOSSS is that this

scheduler relatively deals with heavy threads while the other schedulers deal with

lighter threads. What makes worse for the other schedulers is the amount of generated

threads. Spawning only two threads at a time with the non deterministic behavior of the

model makes all the lists of cores in convergent sizes.

5.5 The Results of Executing the Matrix Multiplication CPN Models

The MMLLS behaves like the BSLLS; it can generate many threads at the same time.

A thread generated by the MMLLS holds a row number of the first matrix, the size of

the element in that row, and the number of the column of the second matrix. The

researcher solves two examples: First one is a 10 × 10 matrix and the second is a 20 ×

20 matrix. The values of the first (A) matrix and the second (B) matrix are already

created and saved inside the corresponding fused places. Table 5.14 shows the matrices’

values of the first example while Table 5.15 shows the matrices’ values of the second

example. Table 5.16 and Figure 5.11 present the AES values for the Matrix

Multiplication problem 10×10 while Table 5.17 and Figure 5.12 present the AES values

for the Matrix Multiplication problem 20×20.

Table 5.14: The values of the input and output matrices for the 10 × 10 Matrix

Multiplication example

Input

Matrix A

[[0,8,2,0,3,3,9,0,8,5],[2,9,4,1,9,5,2,3,7,9],[7,6,6,7,0,2,0,9,9,3],

[5,7,5,9,6,5,4,2,0,6],[8,0,8,1,6,0,5,3,8,5],[4,7,7,7,7,9,8,3,3,3],

[9,2,8,0,6,2,1,4,5,2],[9,1,4,4,1,4,7,0,8,1],[1,7,9,4,5,0,5,2,4,6],[3,7,9,8,9,5,5,4,2,7]];

Input

Matrix B

[[0,9,3,3,6,9,7,4,6,8],[6,5,5,4,4,8,6,6,2,7],[2,4,5,8,4,8,2,8,6,9],

[7,0,2,9,7,7,5,4,3,0],[3,7,0,0,5,6,2,0,2,6],[4,5,3,0,7,7,0,6,8,1],

[7,4,5,1,6,1,2,8,6,2],[7,4,6,4,1,7,4,9,8,4],[6,3,8,2,8,7,8,7,9,9],[5,5,2,2,6,8,2,0,8,7]];

Output

Matrix C

 [[209,169,178,83,224,224,150,210,224,220],[238,253,190,129,276,362,189,220,286,316],

[237,205,233,216,252,372,246,296,304,292],[225,221,152,188,268,341,172,218,241,233],

[170,227,183,140,244,301,185,223,277,301],[272,261,211,191,320,376,191,308,310,271],

[129,220,156,130,200,291,165,203,233,273],[163,186,173,124,247,254,179,226,248,218],

[206,185,172,172,223,290,159,220,226,264],[273,263,199,220,310,403,195,278,304,306]]

Univ
ers

ity
 of

 M
ala

ya

133

Table 5.15: The values of the input and output matrices for the 20 × 20 Matrix

Multiplication example

Input

Matrix A

[[2,1,7,2,3,3,9,6,1,6,2,2,3,0,8,0,3,4,2,2],[8,0,8,0,7,3,2,3,1,3,1,1,4,7,0,5,4,5,1,0],

[8,7,9,2,1,6,3,5,5,0,6,4,0,0,0,3,0,4,2,8],[5,1,3,5,3,4,0,6,1,6,0,2,4,0,7,4,7,8,3,1],

[9,5,0,5,9,7,5,1,4,4,3,0,7,3,9,5,8,5,9,1],[7,9,0,9,2,4,3,9,2,7,7,0,7,2,8,7,7,4,5,5],

[0,7,8,9,2,3,2,1,5,5,6,8,6,5,1,8,9,9,4,8],[3,7,1,0,8,6,8,2,8,9,1,3,4,0,1,6,3,8,4,7],

[4,8,8,4,2,0,4,6,9,7,1,2,2,1,1,0,5,3,1,1],[6,7,1,5,7,1,0,1,7,4,3,1,1,2,8,4,6,8,5,5],

[9,3,0,8,7,8,9,6,6,2,0,3,4,8,0,5,4,9,5,1],[7,3,7,4,7,7,1,2,5,9,0,3,4,2,6,4,0,2,7,6],

[4,2,2,8,7,3,3,1,7,6,0,4,0,3,9,2,9,1,4,2],[1,9,0,9,3,0,9,9,0,6,2,3,0,5,5,4,9,5,2,6],

[3,4,1,7,2,0,2,5,8,7,9,5,0,1,7,8,0,7,2,7],[0,7,1,3,8,1,2,7,5,5,5,7,4,7,5,5,7,6,5,6],

[2,9,7,5,7,5,9,9,4,3,0,4,9,2,7,8,6,7,7,3],[9,2,0,5,7,3,6,3,4,8,9,4,3,1,6,1,7,6,1,5],

[2,8,1,4,1,1,4,3,2,8,8,9,9,9,2,3,5,7,8,4],[9,1,6,1,8,0,4,3,5,8,9,2,2,6,5,0,6,2,0,6]];

Input

Matrix B

[[4,0,4,7,8,8,4,2,5,9,7,1,8,8,3,2,1,4,4,9],[8,0,3,1,2,3,7,4,7,1,2,1,8,4,1,2,4,7,6,4],

[2,9,4,6,0,5,9,9,1,2,9,9,1,7,4,8,1,3,4,9],[7,8,7,5,7,9,2,6,2,9,8,5,3,0,3,0,1,7,4,4],

[0,7,7,8,2,3,9,0,6,6,3,3,8,1,7,9,5,7,7,0],[0,6,5,7,3,6,7,3,1,5,5,6,8,1,8,2,6,5,2,1],

[9,1,9,7,3,5,3,9,5,2,8,5,4,3,1,5,1,0,7,4],[7,8,6,9,0,7,5,7,2,9,8,9,6,8,4,0,7,0,5,3],

[3,0,9,9,1,6,9,8,1,1,4,0,7,8,2,7,4,3,4,7],[7,8,6,4,9,1,8,8,2,4,7,6,2,7,7,3,0,4,8,9],

[3,7,1,0,2,7,1,1,5,6,4,4,7,0,6,1,7,2,1,8],[4,1,6,4,9,1,2,3,8,5,6,6,3,7,6,9,9,2,2,7],

[5,4,6,2,3,1,4,0,2,9,6,7,5,1,2,0,8,1,8,6],[4,1,8,9,0,3,8,2,9,7,2,2,8,9,5,0,1,1,4,4],

[1,8,9,9,2,1,7,8,6,1,9,8,6,3,8,4,1,8,1,4],[2,2,4,9,5,2,6,1,1,0,9,1,0,9,0,8,9,6,7,9],

[8,2,4,5,2,8,6,1,7,7,8,8,8,5,0,5,3,7,1,2],[2,2,8,2,5,1,0,6,2,6,9,6,1,8,4,8,2,8,1,3],

[4,6,0,7,7,9,9,1,3,0,2,2,3,9,9,2,2,6,4,6],[5,7,6,7,0,7,5,3,7,4,9,7,4,2,6,1,0,3,9,1]];

Output

Matrix C

[[299,355,411,399,216,285,364,378,248,291,477,409,301,310,303,270,188,259,293,323],

[222,254,354,400,209,272,380,226,246,343,401,295,317,377,250,287,220,254,287,339],

[293,311,364,409,223,397,386,328,279,319,471,340,364,372,303,283,263,280,322,392],

[288,345,405,412,289,309,373,308,243,368,505,398,322,373,305,280,238,361,276,338],

[393,411,543,597,385,474,581,341,405,460,589,429,551,460,437,366,335,503,424,460],

[503,485,548,575,382,515,544,411,410,522,674,506,540,478,416,285,377,477,474,517],

[473,445,571,542,381,479,545,415,431,484,690,527,457,529,404,441,395,478,462,543],

[382,338,527,513,332,365,517,383,336,347,549,384,425,451,369,409,316,396,468,417],

[359,281,401,386,224,335,421,386,250,306,436,333,348,391,235,285,206,278,323,384],

[324,337,468,479,298,380,473,329,353,351,506,345,431,418,354,345,244,452,342,384],

[420,334,593,614,375,481,509,385,376,517,587,402,511,517,379,366,339,409,431,435],

[311,440,477,548,344,391,559,371,309,361,535,403,408,441,442,339,263,393,426,454],

[330,349,475,507,300,378,480,346,339,344,488,367,416,372,345,330,216,397,312,356],

[496,374,519,502,294,421,441,408,413,424,584,454,433,420,316,286,261,387,408,362],

[352,393,493,482,328,378,417,401,325,356,570,381,371,433,372,340,312,380,373,473],

[420,406,546,554,309,408,542,356,449,445,567,457,496,497,419,383,379,419,431,433],

[503,490,648,674,369,490,645,492,426,486,731,574,533,568,438,464,438,497,536,528],

[397,398,520,487,359,432,438,367,398,479,587,441,488,389,399,340,292,395,380,443],

[476,378,514,471,395,407,494,348,453,476,557,455,472,512,426,319,375,382,437,522],

[347,387,475,488,260,399,477,346,392,430,520,404,469,401,377,318,235,317,373,441]]

Table 5.16: The AES values for the Matrix Multiplication problem 10×10

Cores IOSSS IOMSS RFSSS RFMSS CMSS

2 74.40 51.25 74.40 51.25 51.35

3 55.30 34.80 55.30 34.47 34.57

4 43.35 26.63 43.35 26.08 25.98

5 35.76 21.52 35.76 21.24 21.02

6 29.70 18.22 29.70 17.70 17.68

7 25.57 15.87 25.57 15.59 15.14

8 22.68 14.01 22.68 13.64 13.39

9 20.23 12.71 20.23 12.18 11.92

10 18.34 11.34 18.34 11.10 10.75

Univ
ers

ity
 of

 M
ala

ya

134

Figure 5.11: Sketching the results in Table 5.16

Table 5.17: The AES values for the Matrix Multiplication problem 20×20

Cores IOSSS IOMSS RFSSS RFMSS CMSS

2 299.65 201.60 299.65 201.60 201.50

3 221.67 135.13 221.67 134.80 134.70

4 174.93 101.95 174.93 101.40 101.13

5 143.50 82.62 143.50 81.34 81.16

6 121.62 69.40 121.62 68.07 67.78

7 104.56 59.93 104.56 58.47 58.13

8 93.05 52.76 93.05 51.30 50.95

9 83.29 47.21 83.29 45.77 45.34

10 74.96 42.67 74.96 41.28 40.87

Univ
ers

ity
 of

 M
ala

ya

135

Figure 5.12: Sketching the results in Table 5.17

The results clearly show an improvement in the performance of the models when the

number of cores increases, in addition, the AES values in the 20×20 example are higher

than those in the 10×10 example due to the problem size. On the other hand, the results

of the IOSSS and RFSSS are distinguishable since they steal single threads while the

other schedulers show better performance.

5.6 Discussion

There are three major factors that have direct influence on the results, they are:

(a) The number of cores and problem size: Although these are two different factors,

nevertheless, these two factors did not come up with something new. It was expected

that, the increase in the number of cores with a fixed problem size will definitely lead to

better results, i. e. low values of AES. The same thing can be said for the problem size.

As the problem size increases, the AES values will also increase. However, the only

exception may be happening in the case of binary search since this kind of D&C

problem does not necessary depend on the number of cores and problem size comparing

with other D&C problems. In binary search, the searched element may be found from

Univ
ers

ity
 of

 M
ala

ya

136

the first step or after few steps, however in other D&C problems such as matrix

multiplication, we have to multiply all the rows by all the columns. Therefore, the

increase in the problem size has a strong influence on problems such as matrix

multiplication, towers of Hanoi, Fibonacci; however, it may not have the same influence

on the binary search problem.

 (b) The stealing strategy: The stealing strategies have different issues:

I- The results of the strategies designed to steal a single thread at a time showed a

poor performance compared with the good performance of those strategies designed

to steal more than one thread at a time. The reason behind this goes to the extra

number of execution steps in the single stealing strategies. On the other hand, the

single stealing strategies are simple and easy to implement. In addition, the single

stealing strategies may be preferred when the system deals with heavy threads (a

thread that carries a lot of computations, and at the same time, the number of threads

in all the cores are few. In such a case, it will be more convenient to use single

stealing strategies such as IOSSS or RFSSS.

II- The location of the main thread is decided by the programmer prior to the

simulation process. Choosing the first core has an effect on the IOSSS and IOMSS

results. Changing the location of the main thread will weaken these two strategies

since the stealing may not be from the wealthiest core. On the other hand, the results

showed that IOSSS and RFSSS are convergent since the main thread resides in the

first core and there is a good chance to keep the first core as the wealthiest core.

However, changing the main thread’s location to another core, say in the middle of

cores, will not have an effect on the RFSSS or RFMSS since the victim core is

chosen to be the wealthiest core no matter its location.

III- The CMSS showed the best performance, however, this strategy is costly since it

deals with all the cores. In the future, the number of cores may reach hundreds or

Univ
ers

ity
 of

 M
ala

ya

137

even thousands. It will be highly costly to instruct the majority of the cores to give up

some of their threads for a single or even few idle cores. This is why PMSS can be

more convenient than CMSS in such cases.

(c) The number of generated threads in one step.

One of the important things that the researcher has achieved in this study is the

development of partitioning techniques that suit multicore technology. The results

showed that the performance of the model would be better when more threads can be

generated in one step. This is because the number of stolen threads decreases when

cores become saturated with threads. However, one of the D&C problems represents an

exceptional case to what has been mentioned above. THLLS will not be able to generate

more than two threads at a time, simply because there is no chance to move more than

one disk at a time. The movements’ generation should be serial, and this is the weakness

of the concurrency requirement in this study. Therefore, we can conclude that not every

D&C problem fully coincided with multicore technology.

An important issue that the researchers addresses in this section is that it would be vital

to compare the results of this study with other studies’ results for the sake of

highlighting the strength and weakness points of the researcher's work. In other words,

running a benchmark test that shows the quality of this study versus other studies would

be significant, however, this is could not be achieved. The main reason behind this is

due to the lack of finding similar studies. This is because this study has been built on

three elements that work together to support the uniqueness of the results:

(a) Workload Partitioning Techniques

The subject of D&C problems is not new; there are too many papers that studied the

characteristics of such problems. However, in this study, the researcher develops new

Univ
ers

ity
 of

 M
ala

ya

138

techniques for partitioning the workload of D&C problems being solved on a multicore

environment. Most researches that cover D&C problems focus on a single-processor or

parallel processors architectures where each processor has its own memory. However,

this study focuses on solving D&C problems on a multicore architecture where all the

cores share a common memory. This will definitely generates a class of results that

cannot be compared with other studies that have been implemented in totally different

architectures.

(b) Workload Balancing Strategies

The work-stealing strategies developed by the researcher have strong influence on the

results. The behaviour of the modelled systems varies depending on the adopted

strategy. For instance, using a single-stealing strategy differs from multi-stealing

strategy. The first strategy suits the systems that have relatively few number of heavy

weight threads while the second strategy suits the systems that have many light weight

threads. In spite that these strategies reach the same result; yet, these strategies

consume a different number of execution steps which make any comparison with other

studies illogical and unrealistic.

(c) The Modelling Language

The modelling language has a clear impact in supporting the uniqueness of the results

generated by this study. The researcher has chosen CPN language for modelling the

proposed models since this language is dedicated for modelling concurrent systems, and

since we have more than one core working concurrently, then the CPN language would

be the right choice for modelling. However, modelling concurrent systems is a difficult

task due to the non deterministic behaviour of such systems. In CPN models, more than

one transition can be executed at the same time and the process of choosing the

transitions is completely randomized. That is, in each run, we may have a different

sequence of transitions. This is in contrast with the imperative languages such as C-like

Univ
ers

ity
 of

 M
ala

ya

139

languages where a pre determined sequence of execution steps has to be followed. In

other words, a CPN model may run in a different sequence each time the model is

executed because the language is built on picking transitions randomly.

In conclusion, the three elements: the workload partitioning techniques, workload

balancing strategies, and the modelling language all lead to distinctive results. Any

comparison with other studies must be built on the basis on having the same modelling

language and the same utilized architecture.

5.7 Summary

The researcher started this chapter by giving a glimpse on the importance of simulation

and modelling. Then, the researcher provided a quick look into the main features of

CPN-Tool and its GUI. Following that, the researcher explained how the outputs of the

simulation and monitoring processes have been registered. Next, the researcher

presented the AES equation which represents the criteria adopted by the researcher in

this study to obtain a trade-off between the results of simulation. Subsequently, the

researcher showed the results of executing of the CPN models for every D&C problem.

The researcher organized the results (AES values) insides tables and sketched them as

histograms by using MS-Excel. The tables and histograms showed the relation between

the increases in the number of cores versus the redistribution strategies proposed by the

researcher.

Univ
ers

ity
 of

 M
ala

ya

140

CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 The Problem Addressed by This Study in Brief

This study addresses one of the important challenges facing the software both in the

academic and the industry fields. It is the adaptation of software with the multicore

environment. This adaptation is taken as a primary concern of software companies since

the early models of multicore computers. The hardware industry succeeded in solving

the obstacles that face the single-processor products through the replication of the

processing elements. Nevertheless, software could not adapt easily with such

development in the hardware. There is still a gap between the hardware and the software

in the sense that software developers could not duplicate the speed of their products as

the hardware manufacturers replicated the cores into dual, quad, and octal cores. Part of

the problem goes back to the computer architecture itself where having a common main

memory creates a kind of competition between the cores that are trying to utilize this

memory at the same time. However, the main problem lies with the software itself

where the majority of the current software being designed to be run on a single-

processor environment, the process of mapping the software onto the multicore

architecture becomes the developers’ nightmare. Despite the improvements that have

been made on the software toward the enhancement of the concurrency characteristic,

yet software need to be more improved to achieve better performance.

6.2 The Purpose of the Thesis in Brief

Univ
ers

ity
 of

 M
ala

ya

141

In this thesis, the researcher has directed his effort to deal with a class of algorithms, i.e.

D&C, which plays a major role in scientific and non-scientific applications. However,

this class of software still lacks the adaptation with a multicore environment (Miller &

Vandome, 2010). Precisely, the researcher found that the concurrent characteristic in

D&C techniques is still low and needs to be improved. Therefore, this thesis is

concerned with solving D&C problems (Fibonacci Series, Towers of Hanoi, Binary

Search, and Matrix Multiplication) on a multicore environment in a way that can

achieve a high level of concurrency.

6.3 The Achievement of Research Objectives and Thesis Contribution

In this section, the researcher reviews the objectives that have been stated in Section

1.4. The researcher re-examines these objectives and explains what has been achieved

for these objectives. In addition, the researcher addresses the research’s contributions

that have been achieved in this study.

6.3.1 The Achievement of Research Objectives

The researcher has achieved the research objectives stated in Section 1.4 of this study as

follows:

Objective (a): The proposed workload distribution scheduler was able to manage

threads distribution among the cores. If any core becomes idle, the scheduler

immediately checks whether there is any core that has extra threads, in such a case, the

scheduler steals some of those extra threads and gives them to the idle core. As a result,

no core is left idle unless the rest of the cores have a very small number of threads and

at which the process of stealing threads becomes useless. In addition, the scheduler

achieved the objectives of being scalable and concurrent. The scheduler showed

complete flexibility in dealing with any number of cores (but only maximum ten cores

had been tried) and only restricted by the modelling tool capabilities. Finally,

Univ
ers

ity
 of

 M
ala

ya

142

concurrency always was one of the main objectives in this study. The scheduler

mechanism in redistribution of the threads led to an increase of concurrency level

among the cores.

Objective (b): The proposed core scheduler dealt with the D&C problems separately. In

other words, the researcher achieved the second objective through designing a separate

core scheduler for each D&C problem. In spite of the differences in the way of

designing the threads and partitioning the workload, yet every proposed core scheduler

creates a tree (binary or non binary) of threads. In addition, the third objective of this

scheduler which is related to solving the D&C problems has also been achieved. That is

to say, in addition to be able to partition the workload, the scheduler uses its threads to

solve part of the given D&C problem.

Objective (c): This objective has been achieved through using the elements of CPN in

designing the models. The researcher relied on the SML in programming the

mechanisms of workload distribution scheduler and the core schedulers. Therefore,

there were several mechanisms of the core schedulers’ since we have different D&C

problems. On the other hand, although we have one workload distribution scheduler,

nevertheless, the researcher proposed different strategies written in SML to control

workload distribution.

Objective (d): The researcher has employed the facilities of the CPN-Tool towards the

reduction of the idleness of the cores. The use of the GUI of the tool clearly shows the

execution of the schedulers. This has had a significant benefit in confirming the right

execution of partitioning and redistributing the threads, in addition, to calculating partial

results. Moreover, the GUI of the tool confirmed that no core remained idle, and at the

same time, there was a chance to change that core to non-idle. In other words, the GUI

Univ
ers

ity
 of

 M
ala

ya

143

of the tool had a significant impact on performing the simulation and monitoring

processes.

6.3.2 Thesis Contribution

The research designed concurrent multithreaded models using CPN as a modelling

language and CPN-Tool as the modelling tool. These models are able to solve D&C

problems (Fibonacci Series, Binary Search, Towers of Hanoi, and Matrices

Multiplications) on multicore environment. The research contribution can be stated as

follows:

(a) For each D&C problem, the researcher designed nine models, they are: two-core,

three-core, four-core, five-core, six-core, seven-core, eight-core, nine-core, and ten-core

models. The models are expandable to add more cores.

(b) Every designed model has the ability to redistribute its threads by using one of the

redistribution work-stealing based strategies: InOrderSingleStealing,

InOrderMultiStealing, RichestFirstSingleStealing, RichestFirstMultiStealing,

CompleteMultiStealing, PartialMultiStealing strategies. These mechanisms vary in their

ability (efficiency) and simplicity; however, they all seek to balance the threads among

the cores.

(c) The researcher has developed new distinct mechanisms to partition the workload of

the D&C problems, i. e. a mechanism for each D&C problem. The mechanisms suit

well the multicore environment because of their ability in partitioning the workload

quickly which makes it easier for the redistribution strategies in reallocating the threads.

Univ
ers

ity
 of

 M
ala

ya

144

The mechanisms also show high flexibility in dealing with different sizes of D&C

problems.

(d) The distribution strategies work in harmony along with partitioning mechanism to

reduce the idleness of the cores and raising the concurrency level inside the models.

6.4 Conclusion of Workload Partitioning

(a) In this study, the researcher has proposed a representation to the D&C workload

called it a “Thread”, where a thread is n-tuple of parameters. Every D&C problem is

represented with a single thread. A thread can be divided into two or more sub threads.

A thread has parameters which signify the elements of the D&C problem. For instance,

a binary search thread holds the name of the array (list), the start index, the end index,

and the searched element. In general, the threads’ parameters vary in their number and

types depending on the type of D&C problem.

(b) To partition the workload, the researcher proposed several mechanisms (low-level

schedulers) that partition the workload (main thread) into sub threads. Every D&C

problem has its own scheduler that works on partitioning its threads. The way of

partitioning and the number of generated threads vary from scheduler to scheduler; in

addition, some schedulers may have different ways of partitioning. For instance, the

researcher proposes two schedulers for the matrix multiplication problem: the MMLLS

for generating two threads at a time, and DMMLLS for generating many threads at a

time.

In general, the schedulers that produce only two sub threads at a time show the worst

performance, while the one that produces many threads at a time prove its efficiency.

The reason behind this is that, with the latter type of schedulers, more idle cores can be

Univ
ers

ity
 of

 M
ala

ya

145

reinitiated to work at the same time. Therefore, the Towers of Hanoi scheduler was the

worst since this game can produce a move and two sub threads at a time. The game is

actually not suitable for concurrent environment since there is no chance to move two or

more disks at a time. On the other hand, both Binary Search and Matrix Multiplication

schedulers prove their efficiency since they can generate many threads at a time. In the

Binary Search case, many searching areas can be checked at the same time. The same

thing can be said in the Matrix Multiplication where the rows from the first matrix can

be multiplied with the columns from the second matrix at the same time. On the other

hand, the Fibonacci scheduler can be redirected to generate two, four, eight, sixteen, etc

threads or more. The higher the number of generated threads at a time, the better the

performance that can be achieved.

(c) The guard mechanism related to the core scheduler proves its effectiveness in

enabling / disabling the core for processing threads. The mechanism unlocks the core

when the core has threads inside it and there are no idle cores in the model, otherwise,

the scheduler is locked to open the way to the HLS to redistribute the threads. The

behaviour of the guard guarantees the achievement of the concurrency in execution and

the justice in distributing the threads among the cores. In general, the guard mechanism

is important for balancing the workload among the cores.

6.5 Conclusion of Workload Distribution

(a) The creation of threads will not be effected till the availability of mechanisms that

distribute those threads to the cores. Therefore, the researcher proposed five

mechanisms (high-level schedulers), namely IOSSS, IOMSS, RFSSS, RFMSS, PMSS

and CMSS. These strategies work on the basis of work-stealing. However, in this study,

the stealing process is centralized, in the sense that there is a special core that is

Univ
ers

ity
 of

 M
ala

ya

146

responsible for coordinating stealing threads from the victim cores and submits these

threads to the thief cores.

(b) The IOSSS is easy to implement and does not need extra calculation. This strategy

can be so effective when the majority of the cores are wealthy with threads and only one

or two cores are in an idle situation. Applying this strategy will not bother or interrupt

other cores, and the thief cores can be fed easily from the first encountered wealthy

core. However, if there are several thief cores, then applying this strategy is not worth

while since as soon as a thief core gets its single thread, it turns to be thief again as soon

as the core has finished processing its thread.

(c) The IOMSS is also easy to implement as the IOSSS, however, the IOMSS is more

effective since it enforces the chosen victim core to give up half of its thread to the thief

core. As a result, the thief core that has got the threads spends more time till it becomes

a thief again comparing with its counterpart in the IOSSS where the thief core gets a

single thread.

(d) The efficiency of the RFSSS lies between IOSSS and IOMSS. In general, the

RFSSS performance is better than the IOSSS when there are more than one thief core.

In this case, the IOSSS may deal with a poor victim; however, the RFSSS locates the

wealthiest core. As a result, the RFSSS reduces the time of calling the distribution

process. As in the IOSSS, the RFSSS can be useful when most of the cores are wealthy

and few of the cores are idle.

The deficiency in the IOSSS and RFSSS is caused by the single stealing. The RFMSS

overcomes this deficiency by allowing sharing the threads of the wealthiest core. The

RFMSS shows better performance than the IOMSS since the thief core gets a share of

threads higher than the share comes by the IOMSS since the chosen victim in IOMSS

may not be the wealthiest victim.

Univ
ers

ity
 of

 M
ala

ya

147

(e) The CMSS can be evaluated as the best distribution strategy. It has the ability to

balance the workload among all the cores; victims and thieves but that comes with a

price. This strategy needs extra calculation to fit the amount of threads that each core

must get, in addition, all the cores will be hindered for deciding which core gives and

which core gets. As a result, this strategy suits the case where there are many thieves

and many victims.

(f) The PMSS represents a special case in this study. This mechanism is based on

excluding the cores that have a small number of threads and focusing on zero-thread

cores and wealthy cores. It will be waste of time to interrupt poor cores especially when

the system has several hundreds of cores. It is more convenient to spotlight on wealthy

and zero-thread cores. However, since the CPN-Tool executes a single transition at a

time, the PMSS could not achieve distinguished results. The PMSS results were

identical to the CMSS; therefore, the researcher did not include these results with other

strategies’ results.

(g) The guard mechanism that is related to the HLS has special significance since it

controls the distribution of threads among the cores. This guard opens the way to

transfer the threads only when there are victim and thief cores at the same time,

otherwise, the guard deactivates such transfer.

6.6 CPN Modelling of the Mechanism

The interesting thing in CPN is that the repeated execution of any model may happen in

different paths. That is, the execution paths of the models are not unique. This is

because of the non deterministic nature of this modelling language which makes it

suitable to model multicore environment. However, the different execution paths lead

to the same destination and generate the desired result. On the other hand, the CPN-Tool

was the right choice for this study. The GUI provided by this tool enables the researcher

Univ
ers

ity
 of

 M
ala

ya

148

to interact with model during the design, simulation, and monitoring processes.

However, the tool is not able to execute two transitions at the same time. Although, this

might be more helpful for the study, nevertheless, the tool provides a complete

overview on the active transitions in the entire model.

6.7 Findings of the Simulation

(a) The simulation results have shown a high stability towards the increase in the

number of cores. The simulation of all the models shows a gradual and stable

improvement in the values of the average of execution steps as moving from a model

with a low number of cores to one with a higher number of cores.

(b) The general observation of the low-level schedulers reveals that schedulers that

produce only two threads at a time are not suitable for multicore environment in the

sense that they cannot satisfy the cores’ need. On the other hand, low-level schedulers

with a higher number of threads produced at a time can easily satisfy the cores’ need. In

other words, the cores will be busy and they no longer need any rescheduling to the

threads.

(c) The high-level schedulers vary in their influence depending on the number of

threads that can be generated by the low-level schedulers. The results of the single

stealing strategies converge with the multi stealing strategies when adopting the low-

level schedulers with few numbers of threads. However, the performance of the high-

level schedulers becomes distinctive when adopting the low-level schedulers with a

high number of threads.

6.8 Future Work

Univ
ers

ity
 of

 M
ala

ya

149

6.8.1 Work Related to the Low-Level Schedulers

6.8.1.1 Thread’s Weight

Thread’s weight points to the amount of data that a thread is going to deal with. For

instance, the thread designed for matrix multiplication is dedicated for multiplying a

single row by a single column. For this point, a research can be conducted to investigate

the extent of the benefit that can be achieved when designing a thread to multiply a

single row by all the columns instead of one column. Increasing the weight of the

thread might be useful in making the core that processes the threads more busy;

however, when one of the cores becomes idle, then it would be difficult to steal parts of

the threads. Therefore, there should be an accurate and practical study on the increase in

the thread’s weight.

6.8.1.2 Number of Generated Threads

The number of threads that is generated by the low-level schedulers plays a main role in

this study. This number, if well computed, will be the key to achieve a high level of

concurrency. A research can be conducted to find a relation between the size of the

problem and the number of the cores. That is, designing a function that can compute the

suitable number of threads needed to be generated for a given problem size and a given

number of cores.

6.8.2 Future Work Related with the High-Level Schedulers

6.8.2.1 Scenario of Launching the High-Level Scheduler

The process of launching a high-level scheduler is costly since it freezes all the cores

from continuing their job. In this thesis, whenever a core becomes idle, it turns to be a

thief and this thief core waits for the high-level scheduler to get thread(s). This scenario

could be investigated in certain directions, such as, when one of the cores becomes idle;

Univ
ers

ity
 of

 M
ala

ya

150

then it would not be necessary to freeze all the cores. A single or a few number of

victim cores can deal with this situation. Another point is, is it necessary to launch the

high-level scheduler when only a single core becomes idle? In other words, is it always

worthy to launch the high-level scheduler when one or two cores become idle? It is

possible to highlight this point with more attention.

6.8.2.2 Diversity in High-Level Schedulers

In this thesis, the researcher suggests several high-level schedulers. However, a model

can run only a predetermined distribution strategy. Now, since the contents of the cores

are dynamically changed, the distribution strategy should also change to fit the current

requirements of the model. For that reason, research can be conducted to make choosing

of the distribution strategy dynamic, i.e. based on the number of threads in the cores, the

high-level scheduler decides whether it should apply IOSSS or IOMSS, etc.

6.8.2.3 Choosing the Heaviest Threads

The high-level schedulers redistribute the threads between the cores. A research can be

conducted regarding what threads should be moved and what threads should be kept

inside the victim cores. For instance, in the Fibonacci case, is it worth to steal a thread

that headed a large sub tree or it is better to leave it inside its core? An immediate

answer to this question is to leave it inside its core since this will improve the locality.

However, in the case of IOSSS or RFSSS in an environment that has few victim

wealthy cores, it would be worthy to steal heavy threads so that the stolen threads make

the thief cores busier.

6.9 Limitation of Schedulers

Univ
ers

ity
 of

 M
ala

ya

151

The main limitation in the LLSs is they are designed for solving D&C problems where

problems can be partitioned into sub independent problems. This kind of technique does

not suit a wide range of problems which makes the proposed LLSs unsuitable for non

D&C problems. In addition, each LLS is oriented to solve a specific D&C problem, i.e.

the design of the LLS is unique and closely related to the type of the D&C problem.

Univ
ers

ity
 of

 M
ala

ya

152

REFERENCES

Acar, U., Blelloch, A., & Blumofe, R. D. (2000). The Data Locality of Work Stealing.

Paper presented at the The twelfth annual ACM symposium on Parallel

algorithms and architectures Bar Harbor, Maine, United States

Acar, U. A., Charguéraud, A., & Rainey, M. (2013). Scheduling parallel programs by

work stealing with private deques. Paper presented at the Proceedings of the

18th ACM SIGPLAN symposium on Principles and practice of parallel

programming.

Agrawal, K., Leiserson, C. E., He, Y., & Hsu, W. J. (2008). Adaptive work-stealing

with parallelism feedback. ACM Transactions on Computer Systems (TOCS),

26(3), 7.

Arora, N. S., Blumofe, R. D., & Plaxton, C. G. (2001). Thread Scheduling for

Multiprogrammed Multiprocessors. Theory of Computing Systems, 34(2), 115-

144. doi: 10.1007/s00224-001-0004-z

Belal, M. A Modified Work Stealing Algorithm Based on Randomized Spanning Trees

Approach.

Berenbrink, P., Friedetzky, T., & Goldberg, L. A. (2001). The natural work-stealing

algorithm is stable. Paper presented at the The 42th IEEE Symposium on Foun-

dations of Computer Science (FOCS).

Blumofe, R. D. (1995). Executing multithreaded programs efficiently. Massachusetts

Institute of Technology.

Blumofe, R. D., & Leiserson, C. E. (1999). Scheduling multithreaded computations by

work stealing. Journal of the ACM, 46, 720-748.

Breshears, C. (2009). The art of concurrency: A thread monkey's guide to writing

parallel applications: " O'Reilly Media, Inc.".

Bryant, R., & David Richard, O. H. (2003). Computer systems: a programmer's

perspective: Prentice Hall.

Burton, F. W., & Sleep, M. R. (1981). Executing functional programs on a virtual tree

of processors. Paper presented at the Proceedings of the 1981 conference on

Functional programming languages and computer architecture.

Univ
ers

ity
 of

 M
ala

ya

153

Cao, Y., Sun, H., Qian, D., & Wu, W. (2011). Stable Adaptive Work-Stealing for

Concurrent Multi-core Runtime Systems. Paper presented at the High

Performance Computing and Communications (HPCC), 2011 IEEE 13th

International Conference on.

Casavant, T. L., & Kuhl, J. G. (1988). A taxonomy of scheduling in general-purpose

distributed computing systems. Software Engineering, IEEE Transactions on,

14(2), 141-154.

Casey, L. M. (1981). Decentralized Scheduling. Journal of Australian Computer, 13,

58-63.

Chase, D., & Lev, Y. (2005). Dynamic circular work-stealing deque. Paper presented at

the The seventeenth annual ACM symposium on Parallelism in algorithms and

architectures, Las Vegas, Nevada, USA.

Chen, Q., Guo, M., & Huang, Z. (2012). Adaptive Cache Aware Bi-tier Work-stealing

in Multi-socket Multi-core Architectures.

Cheung, A. K. Y., & Jacobsen, H.-A. (2006). Dynamic load balancing in distributed

content-based publish/subscribe: Springer.

Chhabra, A., Singh, G., Waraich, S. S., Sidhu, B., & Kumar, G. (2006). Qualitative

parametric comparison of load balancing algorithms in parallel and distributed

computing environment. Proc. World Academy of Science, Engineering and

Technology, 39-42.

. Compare-and-swap. (4 February 2014), from http://en.wikipedia.org/wiki/Compare-

and-swap

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

Algorithms (Third ed.): MIT Press.

Davis, R. I., & Burns, A. (2011). A survey of hard real-time scheduling for

multiprocessor systems. ACM Computing Surveys (CSUR), 43(4), 35.

Diekmann, R., Monien, B., & Preis, R. (1997). Load balancing strategies for distributed

memory machines. Paper presented at the Multi-Scale Phenomena and Their

Simulation.

Dinan, J., Olivier, S., Sabin, G., Prins, J., Sadayappan, P., & Tseng, C.-W. (2008). A

message passing benchmark for unbalanced applications. Simulation Modelling

Practice and Theory, 16(9), 1177-1189.

Univ
ers

ity
 of

 M
ala

ya

http://en.wikipedia.org/wiki/Compare-and-swap
http://en.wikipedia.org/wiki/Compare-and-swap

154

Ding, X., Wang, K., Gibbons, P. B., & Zhang, X. (2012). BWS: Balanced Work Stealing

for Time-Sharing Multicores. Paper presented at the EuroSys '12 Proceedings of

the 7th ACM european conference on Computer Systems Bern, Switzerland.

Eager, D. L., Lazowska, E. D., & Zahorjan, J. (1986). A comparison of receiver-

initiated and sender-initiated adaptive load sharing. Performance evaluation,

6(1), 53-68.

Fatourou, P., & Spirakis, P. (2000). Efficient scheduling of strict multithreaded

computations. Theory of Computing Systems, 33(3), 173-232.

Feitelson, D. G., & Rudolph, L. (1995). Parallel job scheduling: Issues and

approaches. Paper presented at the Job Scheduling Strategies for Parallel

Processing.

Frigo, M., Leiserson, C. E., & Randall, K. H. (1998). The implementation of the Cilk-5

multithreaded language. Paper presented at the ACM SIGPLAN Notices.

Gansner, E. R., & Reppy, J. H. (2004). The standard ML basis library: Cambridge

University Press.

Gautier, T., Lima, J. V. F., Maillard, N., & Raffin, B. (2013). Locality-Aware Work

Stealing on Multi-CPU and Multi-GPU Architectures. Paper presented at the 6th

Workshop on Programmability Issues for Heterogeneous Multicores

(MULTIPROG).

Geer, D. (2005). Chip makers turn to multicore processors. Computer, 38(5), 11-13. doi:

10.1109/mc.2005.160

Guo, Y., Barik, R., Raman, R., & Sarkar, V. (2009). Work-first and help-first

scheduling policies for async-finish task parallelism. Paper presented at the

Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International

Symposium on.

Halstead Jr, R. H. (1984). Implementation of Multilisp: Lisp on a multiprocessor. Paper

presented at the Proceedings of the 1984 ACM Symposium on LISP and

functional programming.

Held, G. (1986). IBM PC and PC XT User's Reference Manual (Vol. 2): Longman

Higher Education.

Hendler, D., Lev, Y., Moir, M., & Shavit, N. (2005). A Dynamic-Sized Non-blocking

Work Stealing Deque. Journal of Distributed Computing, 18(3), 189-207.

Univ
ers

ity
 of

 M
ala

ya

155

Hendler, D., & Shavit, N. (2002). Non-blocking Steal-Half Work Queues. In The

twenty-first annual symposium on Principles of distributed computing

Hendrickson, B., & Devine, K. (2000). Dynamic load balancing in computational

mechanics. Computer Methods in Applied Mechanics and Engineering, 184(2),

485-500.

Herlihy, M. (2007). The multicore revolution: the challenges for theory. Paper

presented at the Proceedings of the 27th international conference on Foundations

of software technology and theoretical computer science, New Delhi, India.

Jensen, K. (1998). Special section on coloured Petri nets. Int. J. Software Tools Technol.

Transfer, 2(2), 95-191.

Jensen, K., Christensen, S., Kristensen, L. M., & Westergaard, M. CPN Tools Web

Page, 2014, from http://cpntools.org/

Jensen, K., & Kristensen, L. M. (2009). Coloured Petri Nets: Modeling and Validation

of Concurrent Systems: Springer-Verlag New York Inc.

Jensen, K., Kristensen, L. M., & Wells, L. (2007). Coloured Petri Nets and CPN Tools

for modelling and validation of concurrent systems. International Journal on

Software Tools for Technology Transfer (STTT), 9(3), 213-254.

Jerry, B. (1984). Discrete-event system simulation: Pearson Education India.

Karp, R. M., & Zhang, Y. (1993). Randomized parallel algorithms for backtrack search

and branch-and-bound computation. Journal of the ACM (JACM), 40(3), 765-

789.

Knuth, D. E. (1968). The Art of Computer Programming: Fundamental Algorithms,

Vol. I: Addison-Wesley.

Kristensen, L. M. (2000). State Space Methods for Coloured Petri Nets. University of

Aarhus.

Kwok, Y.-K., & Ahmad, I. (1999). Static scheduling algorithms for allocating directed

task graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4), 406-

471.

Lea, D. (2005). The java. util. concurrent synchronizer framework. Science of Computer

Programming, 58(3), 293-309.

Univ
ers

ity
 of

 M
ala

ya

http://cpntools.org/

156

Lu, W., & Adviser-Gannon, D. (2009). Exploiting multi-core processors for the service

oriented architecture paradigm: parallel xml processing and concurrent service

orchestration.

Mack, C. A. (2011). Fifty Years of Moore's Law. Semiconductor Manufacturing, IEEE

Transactions on, 24(2), 202-207.

Mao, Z. M., So, H.-S. W., & Woo, A. (1998). JAWS: A Java work stealing scheduler

over a network of workstations. The University of California at Berkeley,

Berkeley, USA, Technical.

Mattheis, S., Schuele, T., Raabe, A., Henties, T., & Gleim, U. (2012). Work stealing

strategies for parallel stream processing in soft real-time systems Architecture of

Computing Systems–ARCS 2012 (pp. 172-183): Springer.

Miller, F. P., & Vandome, A. F. (2010). Divide and Conquer Algorithm: Alphascript

Publishing.

Mitzenmacher, M. (1998). Analyses of load stealing models based on differential

equations. Paper presented at the Proceedings of the tenth annual ACM

symposium on Parallel algorithms and architectures.

Mollick, E. (2006). Establishing Moore's law. Annals of the History of Computing,

IEEE, 28(3), 62-75.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4), 541-580. doi: 10.1109/5.24143

Nambiar, R., & Poess, M. (2011). Transaction Performance vs. Moore’s Law: A Trend

Analysis Performance Evaluation, Measurement and Characterization of

Complex Systems (pp. 110-120): Springer.

Neill, D., & Wierman, A. (2009). On the benefits of work stealing in shared-memory

multiprocessors. Department of Computer Science, Carnegie Mellon University,

Tech. Rep.

Nieuwpoort, R. v., Maassen, J., Kielmann, T., & Bal, H. E. (2001). Satin: Simple and

efficient Java-based grid programming. Scalable Computing: Practice and

Experience, 6(3).

Nogueira, L., Fonseca, J. C., Maia, C., & Pinho, L. M. (2012). Dynamic Global

Scheduling of Parallel Real-Time Tasks. Paper presented at the Computational

Science and Engineering (CSE), 2012 IEEE 15th International Conference on.

Univ
ers

ity
 of

 M
ala

ya

157

Nogueira, L. M., Pinho, L. M., Fonseca, J., & Maia, C. (2013). On the use of Work

Stealing Strategies in Real Time Systems. Paper presented at the Workshop on

High-performance and Real-time Embedded Systems, Berlin, Germany.

Olivier, S. L., & Adviser-Prins, J. F. (2012). Locality awareness for task parallel

computation.

Osman, A., & Ammar, H. (2002). Dynamic load balancing strategies for parallel

computers. Sci. Ann. Cuza Univ., 11, 110-120.

Peterson, J. L. (1977). Petri nets. ACM Computing Surveys (CSUR), 9(3), 223-252.

Quintin, J.-N., & Wagner, F. (2010). Hierarchical work-stealing Euro-Par 2010-

Parallel Processing (pp. 217-229): Springer.

Raetz, G. (1987). Sequent general purpose parallel processing system. Paper presented

at the Northcon\87.

Rainey, M. A. (2010). Effective scheduling techniques for high-level parallel

programming languages: THE UNIVERSITY OF CHICAGO.

Robison, A., Voss, M., & Kukanov, A. (2008). Optimization via reflection on work

stealing in TBB. Paper presented at the Parallel and Distributed Processing,

2008. IPDPS 2008. IEEE International Symposium on.

Rudolph, L., Slivkin-Allalouf, M., & Upfal, E. (1991). A simple load balancing scheme

for task allocation in parallel machines. Paper presented at the Proceedings of

the third annual ACM symposium on Parallel algorithms and architectures.

Squillante, M. S., & Lazowska, E. D. (1993). Using processor-cache affinity

information in shared-memory multiprocessor scheduling. Parallel and

Distributed Systems, IEEE Transactions on, 4(2), 131-143.

Squillante, M. S., & Nelson, R. D. (1991). Analysis of task migration in shared-memory

multiprocessor scheduling (Vol. 19): ACM.

Strang, G. (2011). Introduction to linear algebra.

Sutter, H. (2005). The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb’s journal, 30(3), 202-210.

Sutter, H., & Larus, J. (2005). Software and the concurrency revolution. Queue, 3(7),

54-62.

Univ
ers

ity
 of

 M
ala

ya

158

Tardieu, O., Wang, H., & Lin, H. (2012). A work-stealing scheduler for X10's task

parallelism with suspension. Paper presented at the ACM SIGPLAN Notices.

Tchiboukdjian, M., Danjean, V., Gautier, T., Lementec, F., & Raffin, B. (2010). A work

stealing algorithm for parallel loops on shared cache multicores. HPPC 2010,

18.

. Threading Building Blocks. Retrieved March 20, 2014, 2014, from

https://www.threadingbuildingblocks.org/

Tucker, R., Barlow, N., & Stuart, L. (2012). THE BACKGROUND AND

IMPORTANCE OF EXPLOITING MULTIPLE CORES: A CASE STUDY IN

NEUROPHYSIOLOGICAL VISUALIZATION.

Tzannes, A. (2012). Enhancing Productivity and Performance Portability of General-

Purpose Parallel Programming.

Ullman, J. (1998). Elements of ML Programming: Prentice-Hall.

Van Nieuwpoort, R. V., Kielmann, T., & Bal, H. E. (2000). Satin: Efficient parallel

divide-and-conquer in java. Paper presented at the Euro-Par 2000 Parallel

Processing.

Van Nieuwpoort, R. V., Kielmann, T., & Bal, H. E. (2001). Efficient load balancing for

wide-area divide-and-conquer applications. Paper presented at the ACM

SIGPLAN Notices.

Vrba, Ž., Espeland, H., Halvorsen, P., & Griwodz, C. (2009). Limits of work-stealing

scheduling Job Scheduling Strategies for Parallel Processing, Lecture Notes in

Computer Science (Vol. 5798, pp. 280-299): Springer.

Wang, & Morris, R. J. T. (1985). Load sharing in distributed systems. Computers, IEEE

Transactions on, 100(3), 204-217.

Wang, Y., Ji, W., Shi, F., & Zuo, Q. (2013). A work-stealing scheduling framework

supporting fault tolerance. Paper presented at the Proceedings of the Conference

on Design, Automation and Test in Europe.

Wells, L. (2002). Performance analysis using coloured Petri nets. Paper presented at

the Modeling, Analysis and Simulation of Computer and Telecommunications

Systems, 2002. MASCOTS 2002. Proceedings. 10th IEEE International

Symposium on.

Univ
ers

ity
 of

 M
ala

ya

http://www.threadingbuildingblocks.org/

159

Wikipedia. (2013). Parallel Extensions, from

http://en.wikipedia.org/wiki/Parallel_Extensions

Wikipedia. (2014a). Multi-core processor, 2015, from

http://en.wikipedia.org/wiki/Multi-core_processor

Wikipedia (Ed.). (2014b). Threading Building Blocks.

Zamanifar, K., Nematbakhsh, N., & Sadjady, R. S. (2010). A New Load Balancing

Algorithm in Parallel Computing. Paper presented at the Communication

Software and Networks, 2010. ICCSN'10. Second International Conference on.

Zhang, B.-Y., Mo, Z.-Y., Yang, G.-W., & Zheng, W.-M. (2007). Dynamic load-

balancing and high performance communication in JCluster. Paper presented at

the Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE

International.

Zhang, B. Y., Yang, G. W., & Zheng, W. M. (2006). Jcluster: an efficient Java parallel

environment on a large‐scale heterogeneous cluster. Concurrency and

Computation: Practice and Experience, 18(12), 1541-1557.

Univ
ers

ity
 of

 M
ala

ya

http://en.wikipedia.org/wiki/Parallel_Extensions
http://en.wikipedia.org/wiki/Multi-core_processor

160

LIST OF PUBLICATIONS AND PAPERS PRESENTED

(a) Al-Obaidi, A., & Lee, S. P. (2011). A Concurrent Multithreaded Scheduling Model

for Solving Fibonacci Series on Multicore Architecture. International Journal of

Advancements in Computing Technology, 3(2), 24 – 37

(b) Al-Obaidi, A., & Lee, S. P. (2011, June 27- 29, 2011). A Concurrent Coloured

Petri Nets Model for Solving Binary Search Problem on a Multicore Architecture. Paper

presented at the The 2nd International Conference on Software Engineering and

Computer Systems, University Malaysia Pahang, Malaysia.

(c) Al-Obaidi, A. (2012). A Concurrent Multi-Stealing Scheduler Model For Divide

And Conquer Problems. Malaysian Journal of Computer Science 25(4), 177-195.

(d) Al-Obaidi, A., & Lee, S. P. (2012). A multithreaded scheduling model for solving

the Tower of Hanoi game in a multicore environment. Maejo International Journal of

Science and Technology, 6(2), 282-296.

(e) Al-Obaidi, A., & Lee, S. P. (2012, 3-5 July). A Partial Multi Stealing Scheduling

Model for Divide and Conquer Problems. Paper presented at the International

Conference on Computer and Communication Engineering (ICCCE 2012), Kuala

Lumpur, Malaysia.

Univ
ers

ity
 of

 M
ala

ya

161

APPENDIX I

COLORED PETRI NETS

This appendix is dedicated for giving a brief explanation with examples to the modeling

language that is used in this thesis. Colored Petri Nets (CPN) is a language designed for

modelling and validating concurrent systems (Jensen & Kristensen, 2009). The

language combines Petri Nets and SML where the aspect of Petri Nets is responsible for

providing the basics for modeling concurrency and communication between the

elements of the models, in addition to providing the graphical notations for the designed

models. On the other hand, the SML enables CPN to define data types, writing

expressions and writing user defined functions besides using a rich library of built-in

functions. CPN is a dynamic language; in other words, a system modeled in CPN can

be executed. It is possible to represent a system’s states (places) and events (transitions)

that can cause the system’s states to be changed. In this appendix, the researcher focuses

on two subjects related with CPN: the first one is about the main elements that construct

any CPN model while the second subject is related to building hierarchical CPN.

I.1 CPN Main Elements

In CPN, we can distinguish three types of graphics which constitute the elements of the

model:

(a) Places

In CPN, a place is an oval shape that holds tokens. It is also referred to as system state.

A token is a combination of the occurrence of the data and the data itself. Figure I.1

shows an example of a place named P1. Places in CPN have several characteristics:

Univ
ers

ity
 of

 M
ala

ya

162

I- A place has a data type (color set). In CPN, each place has a compulsory color set that

can be simple such as: Integer, Boolean, String, Enumerated, or it can be compound

such as: Product, Record, and List. The inscription of the place’s color set is located at

the lower right corner of the place. The type of the place in Figure I.1 is INT (Integer).

II- A place in CPN may have an initial value called the initial marking which is located

at the upper right corner. The inscription of the initial marking consists of the tokens

that reside in the place before executing the model. In Figure I.1, the initial marking has

only one token which is 1`1, that is, place P1 has one occurrence of data with the value

one.

III- A place in CPN may have a current marking. The current marking consists of two

shapes: a circle which includes the current number of tokens in the place and a rectangle

which includes the tokens’ details. In Figure I.1, the circle has the number one which

means we have one token and the rectangle includes 1`1 which indicates that we have

one data with value one. The main difference between the initial and current markings is

the first one never changed during the simulation process while the second may change.

Figure I.1: An example of a place

Figure I.2 shows another example for a CPN. It has two places (P1 and P2). Both places

of the same type, INT, however, they differ in the initial and current markings.

Initial Marking

Color Set

Current Marking

Univ
ers

ity
 of

 M
ala

ya

163

Figure I.2: An example of a CPN that is designed to find the summation of numbers

from 1 to 10

(b) Transitions

A transition is the CPN element that when executed, can change the state of the system.

A transition has a rectangle shape and it is connected with the places through directed

arcs. Usually, transitions receive token(s) from input place(s) and send token(s) to the

output places. In Figure I.2, there is a single transition called T1 which is connected

with input place (P1) and the output place (P2). A transition may have the following

characteristics:

I- A transition may have a guard which represents a Boolean expression. A value

“True” of the guard allows the transition to be executed if there are enough tokens in the

input places. Conversely, a guard with “False” value prevents its transition from being

executed. In Figure I.2, the guard has the value [i ≤ 10] which means any token comes

from the place P1 exceeds the value 10 will freeze the transition T1. Therefore, a guard

works like a lock that enables and disables its transition.

II- A transition may have a code segment which enables the programmer to write code

in CPN ML. This code segment is executed when the transition is executed. The code

Univ
ers

ity
 of

 M
ala

ya

164

segment has input, output, and action sections. The input and output sections are

dedicated for including the input and output arguments that are obtained from the input

and output places. In Figure I.2, the code segment has the duty of finding the summation

of the numbers 1 to10. At the beginning, the segment receives the value one from P1; it

(segment) accumulates it inside the variable total and sends it to P2. Next, when the T1

is executed for the second time, it (T1) receives the value two (i = 2) and computes the

summation (1 + 2) and sends it to P2. The process continues until the guard disables T1,

at that time, P2 has the token (current marking) 1`55 which represents the summation

for the numbers from 1 to 10.

III- A transition is enabled to be executed (firing) when its guard inscription returns the

value True and there are enough tokens in the input place(s), in other words, if the input

place(s) have no tokens inside them, a transition cannot be executed. On the other hand,

when an enabled transition fires, it transfers token(s) from the input places to the output

places causing changes in the system state.

(c) Directed Arcs

 The places and transitions cannot work alone. They need a kind of communication that

transfers the tokens between them. The arcs are used to connect a place with a transition

and a transition with a place. Any two places cannot be connected by arcs neither any

two transitions. An arc may have an inscription as shown in Figure. I.2, the arc that

connects P1 with T1 has the inscription i which indicates that i carries the token from P1

to T1.

Executing the model in Figure I.2 makes T1 changes the state of P1 and P2 (Figure I.3).

The current marking of P1 changes from 1`0 to 1`1, the same thing for P2, its current

marking chages from 1`0 to 1`1. P1 works as a counter from 1 to 10 while P2

accumulates the numbers from 1 to 10. After executing T1 ten times, the final state

Univ
ers

ity
 of

 M
ala

ya

165

(Figure I.4) shows the P1 holds the value 11 while P2 holds the value 55 which is the

summation of 1 to 10. T1 is no more able to be excuted since the value of i excced the

value 10, this will violate the guard condition which say that the value of i ≤ 10.

Therfore, T1 is deactivated and the simulation process is stopped.

Figure I.3: Executing the transition T1 for only once

Figure I.4: Executing the transition T1 for ten times.

In CPN, when there is more than one transition in the model, it is the simulator duty to

search for the enabled transition and executes it. In case there is more than one enabled

transition at the same time, this makes the simulator to choose one of them randomly.

Univ
ers

ity
 of

 M
ala

ya

166

Executing the model again from the beginning may leads to different transitions

executions; in other words, there is no guarantee that executing the model again will

generate the same order of transitions executions; this is because of the nondeterministic

nature of CPN.

I.2 Hierarchical Structure

In CPN, it is possible to build a hierarchical structure. In this case, a main model may

cooperate with sub models to interact with each other. It is similar to the relation

between main and sub routine in programming languages which ultimately leads too

model large concurrent systems. Figure I.5 gives an example to a simple hierarchical

model. The main model (Figure I.5.a) consists of three places (Car, Color, Car and

Color) and one transition (Connect). The places Car and Color each has four tokens, the

++ symbol is used to construct a multi-set of colors. The Connect transition has a

double line on its border; this means that this is a substitution transition. In this case,

there should be a substitution model (sub model) associated with this transition. The

name of the substitution model appears as a small tag on the lower left corner of the

substitution transition (Figure I.5.a). On the other hand, the substitution model (Figure

I.5.b) receives the inputs from the places Car and Color and produces the output and

send it to the Car and Color place. The relation between the main model and the

substitution model is similar to the one between main program and sub routine in

programming languages. In Figure I.5.b, the substitution model connect a car’s name

with a color (the ^ symbol is used for this reason). Figure I.5.c shows the main model

after executing the Connect transition four times.

Univ
ers

ity
 of

 M
ala

ya

167

Figure I.5.a: A hierarchical CPN model. The main model

Figure I.5.b: A hierarchical CPN model. The sub model

Figure I.5.c: A hierarchical CPN model. The main model after four executions to the

Connect Transition

Univ
ers

ity
 of

 M
ala

ya

168

APPENDIX II

NonBiasedCMSS and NonBiasedPMSS

This appendix is dedicated for illustrating the mechanisms of NonBiasedCMSS and

NonBiasedPMSS.

(a) The mechanism of NonBiasedCMSS

INPUT

MainList , NumOfCores

(NumOfVictims ,VictimThreads

,NumOfThieves,OrderdList) 

GetVicThie (MainList , NumOfCores ,NumOfVictims

,VictimThreads,NumOfThieves,OrderdList)

START

MainList  NBCMSBalancer

(MainList,

NumOfCores,VictimThreads,OrderdList)

STOP

NumOfVictims = 0

OR

NumOfThieves = 0

OUTPUT

MainList

Yes

No

NumOfVictims  0 , NumOfThieves  0

VictimThreads  0 , OrderdList  Nil

GetVicThie (MainList , NumOfCores ,NumOfVictims

,VictimThreads,NumOfThieves,OrderdList)

Index  1

Index >

NumOfCores

Len  Size of the list MainList (Index)

Len = 0

NumOfThieves 

NumOfThieves + 1

Index  Index + 1

RETURN

(NumOfVictims ,VictimThreads

,NumOfThieves,OrderdList)

Yes

Yes

No

No

Pair  (Index,Len)

OrderdListAddNewPair

(OrderdList,Pair)

NumOfVictims  NumOfVictims + 1

VictimThreads  VictimThreads + Len

Figure II.1: The NonBiasedCMSS and GetVicThie functions

Univ
ers

ity
 of

 M
ala

ya

169

AddNewPair (OrderdList,Pair)

OrderdList= Nil

RETURN

 Pair

Yes

X  Head’s Pair Of OrderdList

Y  OrderdList Excluding the Head

Pair

CoreNo  X’s First Parameter

CoreSize  X’s Second Parameter

Pair’s Second

Parameter > CoreSize

Yes

RETURN

[Pair] ^^ [X] ^^Y

RETURN

[X] ^^ AddNewPair (Y,Pair)

No

No

NBCMSBalancer

(MainList,

NumOfCores,VictimThreads,OrderdList)

C MOD ProcessedCores = 0

AND

 (C – VictimThreads) ≥ 0

C  C + 1
No

Yes

 TempList  NIL

(MainList,TempList)  GetExtraThreads

 (MainList, NumOfCores, TempList,

FirstGroup, FirstGroupValue,

SecondGroup,

SecondGroupValue,OrderdList)

MainList  UpdateGroups

(MainList,NumOfCores,TempList,

FirstGroup, FirstGroupValue,

SecondGroup,

SecondGroupValue,OrderdList)

RETURN

MainList

ProcessedCores  NumOfCores

C  VictimThreads

FirstGroup  ProcessedCores – C+ VictimThreads

FirstGroupValue  C DIV ProcessedCores

SecondGroup  C – VictimThreads

SecondGroupValue  FirstGroupValue - 1

Figure II.2: The AddNewPair and NBCMSBalancer Functions

Univ
ers

ity
 of

 M
ala

ya

170

GetExtraThreads

 (MainList, NumOfCores, TempList, FirstGroup,

FirstGroupValue, SecondGroup,

SecondGroupValue,OrderdList)

I  1

CNo  OrderdList (I)’s Core No.

TempLen OrderdList (I)’s Size

(I <= FirstGroup) AND

 (TempLen > FirstGroupValue)

(I > FirstGroup) AND

 (TempLen > SecondGroupValue)

I > NumOfCores

I  I + 1

RETURN

(MainList,TempList)

CutThreads  Cut (TempLen – GroupValue) threads

from the list MainList (CNo)

TempList  TempList ^^ CuttedThreads

Yes

Yes

No

No

Yes

No

GroupValue  FirstGroupValue

GroupValue  SecondGroupValue

UpdateOrderedPairList (MainList,

NumOfCores, OrderdList)

I  1 , TempList  Nil

Pair  OrderdList(I)

CNo  Pair’s Core’s Number

TempLen  Pair’s Core’s Threads’ Size

TempList  MainList (CNo)

NewPair  (CNo, Size of TempList)

OrderdList(I)  NewPair

I > Size of OrderdList

I  I + 1

RETURN

TempList

YesNo

Figure II.3: The GetExtraThreads and UpdateOrderedPairList functions

Univ
ers

ity
 of

 M
ala

ya

171

UpdateGroups (MainList,NumOfCores,TempList,

FirstGroup, FirstGroupValue, SecondGroup,

SecondGroupValue,OrderdList)

I > NumOfCores

RETURN

MainList

(CNo,CoreSize) 

OrderdList(I)

VicThi  MainList (I)

VicThiLen  Size of VicThi

I <= FirstGroup

MainList  UpdateSingleGroup

(MainList,NumOfCores,TempList,I,

VicThi,FirstGroup,FirstGroupValue)

MainList  UpdateSingleGroup

(MainList,NumOfCores,TempList,I,

VicThi,SecondGroup,SecondGroupValue)

I  I + 1

Yes

No

Yes

No

 UpdateSingleGroup (MainList,NumOfCores,

TempList,I,VicThi,Group,Value)

VicThiLen  length of VicThi

VicThiLen <= Value

CutThr  Cut (Value – VicThiLen)

 threads from TempList

MainList (I) 

CutThr ^^MainList (I)

RETURN

(MainList,TempList)

Yes No

I  1

Figure II.4: The UpdateGroups and UpdateSingleGroup functions

Univ
ers

ity
 of

 M
ala

ya

172

(a) The mechanism of NonBiasedPMSS

INPUT

MainList , NumOfCores

(PartialPairList ,NumOfVictims ,SumVicThr,

NumOfThieves,PartialFactor) 

GetVicThiePartialList (MainList , NumOfCores,PartialPairList

,NumOfVictims ,VictimThreads,NumOfThieves)

START

MainList  NonBiasedPartialMultiStealingBalance

(MainList, NumOfCores, SumVicThr, PartialPairList)

STOP

NumOfVictims = 0

OR

NumOfThieves = 0

OUTPUT

MainList

Yes

No

NumOfVictims  0 , SumVicThr 0

NumOfThieves  0 , PartialPairList  NIL

PartialFactor  3

 GetVicThiPartialPairList (MainList , NumOfCores,

PartialPairList ,NumOfVictims , SumVicThr,

NumOfThieves)

Index  1

Index >

NumOfCores

Len  Size of the list MainList (Index)

Len = 0

NumOfThieves 

NumOfThieves + 1

Index  Index + 1

RETURN

(PartialList ,NumOfVictims,

SumVicThr,NumOfThieves)

Yes

Yes

Yes

No

No

No

Pair  (Index,Len)

PartialPairList AddNewPair

(PartiaPairList,Pair)

Len > 1

AND Len ≥

PartialFactor

NumOfVictims  NumOfVictims + 1

VictimThreads  VictimThreads + Len

Figure II.5: The NonBiasedPMSS and GetVicThiePartialList

Univ
ers

ity
 of

 M
ala

ya

173

AddNewPair

(PartialPairList,Pair)

PartialPairList = Nil

RETURN

 Pair

Yes

X  Head’s Pair Of PartialPairList

Y  PartialList Excluding the Head

Pair

CoreNo  X’s First Parameter

CoreSize  X’s Second Parameter

Pair’s Second

Parameter > CoreSize

Yes

RETURN

[Pair] ^^ [X] ^^Y

RETURN

[X] ^^ AddNewPair (Y,Pair)

No

No

NonBiasedPartialMultiStealingBalance

(MainList, NumOfCores, SumVicThr, PartialPairList)

C MOD ProcessedCores = 0

AND

 (C – SumVicThr) ≥ 0

C  C + 1

No

Yes

(MainList,TempList)  NonBiasedGetThreads

 (MainList, NumOfCores, PartialPairList

,FirstGroup, FirstGroupValue, SecondGroup,

SecondGroupValue)

MainList  NonBiasedUpdateGroups

(MainList,NumOfCores,TempList,

PartialPairList , FirstGroup, FirstGroupValue,

SecondGroup, SecondGroupValue,I)

RETURN

MainList

ProcessedCores  (Size of PartialPairList)

C  SumVicThr

FirstGroup  ProcessedCores – C+ SumVicThr

FirstGroupValue  C DIV ProcessedCores

SecondGroup  C – SumVicThr

SecondGroupValue  FirstGroupValue - 1

PartialPairList  UpdatePartialPairList (MainList,

NumOfCores, PartialPairList,TempList)

Figure II.6: The AddNewPair and NonBiasedPartialMultiStealingBalance

Univ
ers

ity
 of

 M
ala

ya

174

UpdatePartialPairList (MainList, NumOfCores,

PartialPairList)

I  1 , TempList  Nil

Pair  PartialPairList (I)

CNo  Pair’s Core’s Number

TempLen  Pair’s Core’s Threads’ Size

TempList  MainList (CNo)

NewPair  (CNo, Size of TempList)

PartialPairList (I)  NewPair

I > Size of

PartialPairList

I  I + 1

RETURN

TempList

YesNo

 NonBiasedGetThreads (MainList, NumOfCores,

TempList, PartialPairList , FirstGroup, FirstGroupValue,

SecondGroup, SecondGroupValue)

I  1

CNo  PartialPairList (I) Core’s Number

Len  PartialPairList (I) Core’s Size

(I <= FirstGroup) AND

 (Len > FirstGroupValue)

(I > FirstGroup) AND

 (Len > SecondGroupValue)

I > Size of PartialList

I  I + 1

RETURN

(MainList,TempList)

CutThreads  Cut (TempLen – GroupValue) threads

from the list MainList (CNo)

TempList  TempList ^^ CuttedThreads

Yes

Yes

No

No

Yes

No

GroupValue  FirstGroupValue

GroupValue  SecondGroupValue

Figure II.7: The NonBiasedGetThreads and UpdatePartialPairList functions

Univ
ers

ity
 of

 M
ala

ya

175

NonBiasedUpdateGroups

(MainList,NumOfCores,TempList,

PartiaList, FirstGroup, FirstGroupValue, SecondGroup,

SecondGroupValue)

I > Size of

PartiaList

RETURN

MainList

(CNo,CoreSize)  PartiaList (I)

VicThi  MainList(CNo)

VicThiLen  CoreSize

I <= FirstGroup

MainList  UpdateAnyGroup

(MainList,NumOfCores,TempList,CNo,

VicThi,FirstGroup,FirstGroupValue)

MainList  UpdateAnyGroup

(MainList,NumOfCores,TempList,CNo,

VicThi,SecondGroup,SecondGroupValue)

I  I + 1

Yes

No

Yes

No

UpdateSingleGroup (MainList,NumOfCores,

TempList,CNo,VicThi,Group,Value)

VicThiLen  Size Of VicThi

 Value <= VicThiLen

RETURN

(MainList,TempList)

Yes

No

I  1

CutThr  Cut (Value – VicThiLen)

 threads from TempList

MainList (CNo)  CutThr ^^ MainList (CNo)

Figure II.8: The NonBiasedUpdateGroups and UpdateSingleGroup

Univ
ers

ity
 of

 M
ala

ya

