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Abstract

Let m,n be integers with m,n > 3, and let F and K be fields. We denote

by Mn(F) the linear space of n × n matrices over F, Sn(F) the linear space of

n× n symmetric matrices over F and Kn(F) the linear space of n× n alternate

matrices over F. In addition, let F be a field with an involution −, we denote by

Hn(F) the F−-linear space of n× n hermitian matrices over F and SHn(F) the

F−-linear space of n×n skew-hermitian matrices over F where F− is a fixed field

of F. We let adj A be the classical adjoint of a matrix A and In be the n × n

identity matrix. In this dissertation, we characterise mappings ψ that satisfy

one of the following conditions:

(A1) ψ :Mn(F)→Mm(F) with either |F| = 2 or |F| > n+ 1, and

ψ(adj (A+ αB)) = adj (ψ(A) + αψ(B)) for all A,B ∈Mn(F) and α ∈ F;

(A2) ψ :Mn(F)→Mm(K) where ψ is surjective and

ψ(adj (A− B)) = adj (ψ(A)− ψ(B)) for all A,B ∈Mn(F).

Besides, we also study the structure of ψ on Hn(F), Sn(F), SHn(F) and

Kn(F). We obtain a complete description of ψ satisfying condition (A1) or

(A2) on Mn(F), Hn(F) and Sn(F) if ψ(In) 6= 0. If ψ(In) = 0, we prove that

such mappings send all rank one matrices to zero. Clearly, ψ = 0 when ψ is

linear. Some examples of nonlinear mappings ψ satisfying condition (A1) or

(A2) with ψ(In) = 0 are given. In the study of ψ satisfying condition (A1)

or (A2) on Kn(F), we obtain a nice structural result of ψ if ψ(A) = 0 for some

invertible matrix A ∈ Kn(F). Some examples of nonlinear mappings ψ vanishing

all invertible matrices are included. In the case of SHn(F), some examples of
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nonlinear mappings ψ satisfying condition (A1) or (A2) that send all rank one

matrices and invertible matrices to zero are given. Otherwise, a nice structural

result of ψ is obtained.
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Abstrak

Biar m,n integer dengan m,n > 3, dan biar F dan K medan. Kami menan-

dakan Mn(F) sebagai ruang linear matriks n × n atas F, Sn(F) sebagai ruang

linear matriks symmetri n × n atas F dan Kn(F) sebagai ruang linear matriks

selang-seli n× n atas F. Tambahannya, biar F satu medan yang mempuyai su-

atu involusi − atas F, kami menandakan Hn(F) sebagai ruang F−-linear matriks

hermitean n× n atas F dan SHn(F) sebagai ruang F−-linear matriks hermitean

pencong n × n atas F, di mana F− ialah medan tetap bagi F. Biar adj A ma-

trik adjoin A dan In matriks identiti n × n. Dalam disertasi ini, kami cirikan

pemetaan ψ yang memenuhi salah satu syarat berikut:

(A1) ψ :Mn(F)→Mm(F) dengan |F| = 2 atau |F| > n+ 1, dan

ψ(adj (A+ αB)) = adj (ψ(A) + αψ(B))

untuk semua A,B ∈Mn(F) dan α ∈ F;

(A2) ψ :Mn(F)→Mm(K) di mana ψ adalah surjektif dan

ψ(adj (A− B)) = adj (ψ(A)− ψ(B)) untuk semua A,B ∈Mn(F).

Selain daripada itu, kami juga mengkaji struktur ψ pada Hn(F), Sn(F),

SHn(F) dan Kn(F). Kami memperolehi pemerihalan lengkap untuk ψ yang

mematuhi syarat (A1) atau (A2) padaMn(F), Hn(F) dan Sn(F) jika ψ(In) 6= 0.

Jika ψ(In) = 0, kami menunjukkan bahawa pemetaan ψ tersebut memetakan

semua matriks yang berpangkat satu kepada kosong. Jelasnya, ψ = 0 jika ψ

adalah linear. Beberapa contoh pemetaan ψ yang tidak linear, yang mematuhi

syarat (A1) atau (A2) dengan ψ(In) = 0 diberikan. Di dalam pengajian ψ
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yang mematuhi syarat (A1) atau (A2) pada Kn(F), kami memperolehi keputu-

san yang ψ berstruktur baik jika ψ(A) 6= 0 untuk suatu matriks A ∈ Kn(F)

yang tersongsangkan. Beberapa contoh pemetaan ψ yang tidak linear dan me-

lenyapkan semua matriks yang tersongsangkan diberikan. Untuk kes SHn(F),

beberapa contoh pemetaan ψ yang tidak linear dan mematuhi syarat (A1) atau

(A2) yang memetakan semua matriks yang berpangkat satu dan semua matriks

yang tersongsangkan kepada kosong diberikan. Selainnya, struktur ψ yang baik

diperolehi.
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Chapter 1

Introduction

Let A be a square matrix, the classical adjoint of A, denoted by adj A, is defined

by the transposed matrix of cofactors of the matrix A. More precisely, the (i, j)-

entry of adj A of an n× n matrix A is

(adj A)ij = (−1)i+j det(A[j|i])

where det(A[j|i]) denotes the determinant of the (n − 1) × (n − 1) submatrix

A[j|i] of A obtained by excluding j-th row and i-th column.

Let U1 and U2 be vector spaces such that adj A ∈ Ui whenever A ∈ Ui for

i = 1, 2. A mapping ψ : U1 → U2 is said to be classical adjoint-commuting if

ψ(adj A) = adj ψ(A) for every A ∈ U1. (1.1)

In this dissertation, we mainly study some generalised classical adjoint-

commuting mappings. In the next section, we give some notations used in this

dissertation. Since the characterisation of classical adjoint-commuting mappings

is one of the preserver problems (see [26, 1, 3, 30, 27, 29], we state several types

of preserver problems in Section 1.2. Some properties of classical-adjoint which

are used in the later part of the dissertation are given in Section 1.4.

1.1 Notations

Unless otherwise stated, the following are some notations used in this disserta-

tion. Let m,n be integers with m,n > 2 and let F be a field. We denote by

1
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Mm,n(F) the linear space of m×n matrices over F (Mn(F) =Mn,n(F) in short).

For any A ∈Mn(F), A
t denotes the transpose of A and tr(A) denotes the trace

of A. We also denote by Tn(F) the algebra of all n×n upper triangular matrices

over F.

Let − : F→ F be a field involution which is defined by a+ b = a+ b, ab = ab,

and a = a for any a, b ∈ F. We denote by F− := {a ∈ F : a = a} the set of all

symmetric elements of F on the involution − of F. A matrix A ∈Mn(F) is called

a hermitian matrix on the involution − of F, or simply hermitian if A
t
= A, A

is symmetric if At = A, and A is a skew-hermitian matrix on the involution −

of F, or skew-hermitian if A
t
= −A. Here, A is the matrix obtained from A by

applying − entrywise. We denote byHn(F) the F
−-linear space of n×n hermitian

matrices over F, and Sn(F) the linear space of n × n symmetric matrices over

F. It is obvious that Hn(F) = Sn(F) when the involution − of F is identity, i.e.

F− = F. We also denote by SHn(F) the F
−-linear space of n×n skew-hermitian

matrices over F. A matrix A ∈ Mn(F) is alternate if uAut = 0 for every row

vector u ∈ Fn, or equivalently, if At = −A with zero diagonal entries. We denote

by Kn(F) the linear space of n× n alternate matrices over F.

In denotes the n×n identity matrix, Eij denotes the unit square matrix whose

(i, j)-th entry is one and whose other entries are zero and 0n denotes the n× n

zero matrix for any integer n > 2.

1.2 Preserver problems

“Linear Preserver Problems” (LPPs) is one of the active and continuing subjects

in matrix theory which concerns the classification of linear operators on spaces of

matrices that leave certain functions, subsets, relations, etc invariant. The main

2
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objective of this dissertation is to study generalised preserver problems, that is,

to classify operators (which are not necessarily linear) on spaces of matrices or

operators that leave certain functions, subsets, relations, etc invariant. Here, we

give a brief survey of linear preserver problems.

In general, there are several types of linear preserver problems. Here, we shall

list four most common types of such problems.

Let T be a linear operator on Mn(F).

I. T preserves a (scalar valued, vector-valued or set-valued) function ϕ on

Mn(F). Characterise those linear operators T on Mn(F) that satisfy

ϕ(T (A)) = ϕ(A) for all A ∈Mn(F).

An example of Type I LPP is the classical theorem of G. Frobenius (Propo-

sition 1.2.1) which characterises bijective linear operators on complex ma-

trices Mn(C) that preserve the determinant (see [6]) in 1897:

Proposition 1.2.1. Let T be an invertible linear operator on Mn(C) pre-

serving determinants, i.e., detT (A) = detA for every A ∈ Mn(C). Then

there exist invertible matrices P and Q in Mn(C) with det(PQ) = 1 such

that either

T (A) = PAQ for every A ∈Mn(C),

or

T (A) = PAtQ for every A ∈Mn(C).

II. T preserves a subset U ofMn(F). Characterise those linear operators T on

Mn(F) that satisfy

T (U) ⊆ U or T (U) = U .

3
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In 1959, M. Marcus and R. Purves [21] proved the following proposition

(Type II LPP).

Proposition 1.2.2. Let T be a linear operator onMn(F) that preserves the

invertible matrices, i.e., T (A) is invertible whenever A is invertible. Then

there exist invertible matrices P and Q in Mn(F) such that either

T (A) = PAQ for every A ∈Mn(F),

or

T (A) = PAtQ for every A ∈Mn(F).

III. T preserves a relation or an equivalence relation ∼ onMn(F). Characterise

those linear operators T on Mn(F) that satisfy

T (A) ∼ T (B) whenever A ∼ B
or

T (A) ∼ T (B) if and only if A ∼ B

with A,B ∈Mn(F).

The following Type III LPP is proved by F. Hiai [8].

Proposition 1.2.3. Let T be a linear operator that preserves similarity on

Mn(F), i.e., T (A) is similar to T (B) whenever A is similar to B inMn(F).

Then there exist a, b ∈ F and an invertible matrix Q ∈ Mn(F) such that

either

T (A) = aQ−1AQ+ b(tr(A))In for every A ∈Mn(F),

or

T (A) = aQ−1ATQ+ b(tr(A))In for every A ∈Mn(F).

IV. T preserves or commutes with a transformation τ on Mn(F). Characterise

those linear operators T on Mn(F) that satisfy

τ(T (A)) = T (τ(A)) for every A ∈Mn(F).

4
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The following is an example of Type IV LPP where the classical adjoint-

commuting (see Definition 1.4) linear mapping on n × n complex matrices

was studied by Sinkhorn [26] in 1982.

Proposition 1.2.4. Let T be a linear operator on Mn(C) such that

T (adj A) = adj T (A) for every A ∈ Mn(C). For n > 3, there exist an

invertible complex matrix P , λ ∈ C with λn−2 = 1 such that the mapping is

of the form

T (A) = λPAP−1 for every A ∈Mn(C)

or

T (A) = λPAtP−1 for every A ∈Mn(C).

Since 1897 much effort has been devoted to the study of linear preserver

problems, there have been several excellent survey papers such as [19, 20, 7, 24,

17].

In recent years, many linear preserver results have also been extended to the

nonlinear analogues by considering additive preserver problems, multiplicative

preserver problems, and even, preserver problems on spaces of matrices without

any algebraic assumption. For an extensive expository survey of the subject of

these nonlinear preserver problems, see [9, 32] and the reference therein.

1.3 Decomposition of matrices

In this section, some results on decomposition of hermitian matrices and alternate

matrices are stated which will be useful in obtaining the main results.

Proposition 1.3.1. Let F be a field with an involution −. Then A ∈ Mn(F) is

a hermitian matrix if and only if there exists an invertible matrix P ∈ Mn(F)

5
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such that

A = P

(
k∑

i=1

αiEii

)
P

t
(1.2)

for some nonzero scalars α1, · · · , αk ∈ F with αi = αi for all i = 1, · · · k, or

A = P (L1 ⊕ · · · ⊕ Lr ⊕ 0n−2r)P
t (1.3)

where L1 = · · · = Lr =

(
0 1
1 0

)
∈ M2(F) whenever A is alternate and the

involution − is identity.

Proposition 1.3.2. Let A ∈ Mn(F). Then the following statements are equiv-

alent.

1. A ∈ Kn(F) .

2. At = −A if char F 6= 2 and At = A with zero diagonal elements if char F =

2.

3. At = −A with zero diagonal elements.

Proposition 1.3.3. A ∈ Kn(F) if and only if either A = 0 or there exist an

invertible matrix P in Mn(F) and an integer 1 6 k 6

⌊n
2

⌋
such that

A = P (J1 ⊕ · · · ⊕ Jk ⊕ 0n−2k)P
t (1.4)

where J1 = · · · = Jk =

(
0 1
−1 0

)
.

Here, ⌊x⌋ is the greatest integer less than or equal to x.

Remark 1.3.4. In view of Proposition 1.3.3, any alternate matrices are of even

rank.

6
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1.4 Some properties of classical adjoint

The classical adjoint is sometimes called adjugate and is one of the important

matrix functions on square matrices. An early history of the notion of classical

adjoint is given by Muir in his book, The Theory of Determinants [22], where

he stated that the present form of the classical adjoint is due to the study of

quadratic forms by Gauss in the fifth chapter of Gauss’ Disquisitioned Arith-

meticae, published in 1801.

The main reason to define the classical adjoint is the following well known

result.

Proposition 1.4.1. Let n be an integer with n > 2. If A ∈Mn(F), then

A(adj A) = (adj A)A = (detA)In.

If A ∈ M1(F), then adj A is defined to be the 1 × 1 identity matrix. Thus

Proposition 1.4.1 also holds for n = 1. As a consequence of Proposition 1.4.1,

adj B = (detB)B−1 if B ∈Mn(F) is invertible.

In addition, the results of the next theorem follow.

Proposition 1.4.2. Let n be an integer with n > 2 and let A,B ∈Mn(F).

(a)

rank adj A =





0 if rank A 6 n− 2,
1 if rank A = n− 1,
n if rank A = n.

(b) adj In = In.

(c) adj (αA) = αn−1adj A where α ∈ F.

(d) adj (AB) = (adj B)(adj A).

7
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(e) adj A−1 = (adj A)−1.

(f) adj At = (adj A)t.

(g) det(adj A) = (detA)n−1.

(h) adj (adj A) = (detA)n−2A.

(i) A−1 = (detA)−1adj A.

(j) (adj A)−1 = (detA)−1A.

(k) P ∈Mn(F) is invertible =⇒ adj (P−1AP ) = P−1(adj A)P .

(l) AB = BA =⇒ (adj A)B = B(adj A).

In general, adj is not a linear mapping. adj is linear when n = 2. adj is also

not onto Mn(F). The following result is proved over C, the set of all complex

numbers, in [26].

Proposition 1.4.3. Let n be an integer with n > 2. If A ∈ Mn(C) and

rank A = n, 1 or 0, then there exists B ∈Mn(C) such that A = adj B.

Let n be an integer with n > 2 and let k, n1, · · · , nk be a sequence of positive

integers satisfying n1 + · · · + nk = n. We denote by Tn1,··· ,nk
, the subalgebra of

Mn(F) consisting of all block matrices (Aij) of the form



A11 A12 · · · A1k

0 A22 · · · A2k
...

...
. . .

...
0 0 · · · Akk




where Aij ∈ Mni,nj
(F) for all 1 6 i 6 j 6 k. Tn1,··· ,nk

is said to be a triangular

matrix algebra. In particular, when ni = 1 for all i, then it forms the algebra

of all n-square upper triangular matrices, i.e. Tn(F). Proposition 1.4.4 is proved

by Chooi in [2] and we have proved a similar result on hermitian matrices (see

Proposition 1.4.6).

8
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Proposition 1.4.4. Let n be an integer with n > 2 and let F be a field. If A ∈

Tn1,··· ,nk
(F) is of rank one, then there exists a rank n− 1 matrix B ∈ Tn1,··· ,nk

(F)

such that A = adj B.

Corollary 1.4.5. Let A ∈Mn(F) be of rank one. Then there exists a rank n−1

matrix B ∈Mn(F) such that A = adj B.

Proof. By Proposition 1.4.4, when k = 1, A ∈ Mn(F). Thus, the result is

obtained.

Proposition 1.4.6. Let n be an integer with n > 2 and let F be a field which

possesses an involution − of F. If A ∈ Hn(F) is of rank one, then there exists a

rank n− 1 matrix B ∈ Hn(F) such that A = adj B.

Proof. Since A ∈ Hn(F) is of rank one, by Proposition 1.3.1, there exist an

invertible matrix P ∈ Mn(F) and a nonzero scalar α ∈ F− such that A =

P (αE11)P
−1. Let Q = adj P and θ = (detPP )n−2. Obviously, Q is an invertible

matrix in Mn(F) and θ is a nonzero scalar in F−. Let

B = Q
t
(In − E11 + (θ−1α− 1)E22)Q ∈ Hn(F)

which is of rank n− 1. Then

adj B = adj
(
Q

t
(In − E11 + (θ−1α− 1)E22)Q

)

= (adj Q)adj (In − E11 + (θ−1α− 1)E22)(adj Q
t
)

= (adj (adj P ))(θ−1αE11)(adj (adj P
t
)

= P (θ−1αE11)P
t
.

9
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1.5 Fundamental theorems of geometry of ma-

trices

To conclude this chapter, we state the fundamental theorems of geometry of

matrices which are applied in the characterisation of the preserver problems we

study in this dissertation. In this section we state the fundamental theorems

of geometry of rectangular matrices, hermitian matrices and alternate matrices

over arbitrary fields (see [31] or [10] for more details).

Definition 1.5.1. Letm,n be integers and let F be a field. Let A,B ∈Mm,n(F).

The arithmetic distance between A and B, d(A,B) = rank (A − B). A and B

are said to be adjacent if d(A,B) = 1.

Theorem 1.5.2 (Fundamental theorem of the geometry of rectangular matri-

ces). Let m,n be integers with m,n > 2 and let F be a field. Let φ :Mm,n(F)→

Mm,n(F) be a bijective mapping. Assume that for every A,B ∈ Mm,n(F), A

and B are adjacent if and only if φ(A) and φ(B) are adjacent. Then one of the

following holds:

φ(A) = PAσQ+R for every A ∈Mm,n(F); (1.5)

m = n and φ(A) = P (Aσ)tQ+R for all A ∈Mn(F) (1.6)

where σ : F→ F is an automorphism, Aσ is a matrix obtained from A by applying

σ entrywise, R ∈Mm,n(F), P ∈Mm(F) and Q ∈Mn(F) are invertible matrices.

In fact, the theorem stated above holds in the more general case when F is a

division ring. Since in this dissertation, we consider only the case where matrices

are over a field, we state the theorem over a field F.

10
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Definition 1.5.3. Let n be an integer with n > 2 and let F be a field that

possesses an involution − of F. Let A,B ∈ Hn(F). The arithmetic distance

between A and B, d(A,B) = rank (A− B). A and B are said to be adjacent if

d(A,B) = 1.

Theorem 1.5.4 (Fundamental theorem of the geometry of hermitian matrices).

Let m,n be integers with m,n > 3 and let F and K be fields which possess

involutions − of F and ∧ of K, respectively. Let φ : Hn(F) → Hm(K) be a

bijective mapping. Assume that for all A,B ∈ Hn(F), A and B are adjacent if

and only if φ(A) and φ(B) are adjacent. Then

φ(A) = αPAσP̂ t +H0 for every A ∈ Hn(F) (1.7)

where σ : (F,− ) → (K,∧ ) is a nonzero isomorphism satisfying σ̂(a) = σ(a)

for every a ∈ F, Aσ is the matrix obtained from A by applying σ entrywise,

P ∈Mm(K) is an invertible matrix, H0 ∈ Hm(K) and α ∈ K∧ is nonzero.

Definition 1.5.5. Let n be an integer with n > 2 and let F be a field. Let A,B ∈

Kn(F). The arithmetic distance between A and B, d(A,B) = 1
2
rank (A−B). A

and B are said to be adjacent if d(A,B) = 1.

Theorem 1.5.6 (Fundamental theorem of the geometry of alternate matrices).

Let n be an integer with n > 4 and let F be a field. Let φ : Kn(F)→ Kn(F) be a

bijective mapping. Assume that for every A,B ∈ Kn(F), A and B are adjacent

if and only if φ(A) and φ(B) are adjacent. Then φ is either of the form

φ(A) = αPAσP t +K0 for every A ∈ Kn(F) (1.8)

or when n = 4,

φ(A) = αP (A∗)σP t +K0 for every A ∈ K4(F), (1.9)
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where σ : F → F is an automorphism, Aσ is the matrix obtained from A by

applying σ entrywise, P ∈ Mn(F) is invertible, α ∈ F is a nonzero scalar,

K0 ∈ Kn(F) and for n = 4,

A∗ =




0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0




∗

=




0 a12 a13 a23
−a12 0 a14 a24
−a13 −a14 0 a34
−a23 −a24 −a34 0


 . (1.10)

12
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Chapter 2

Preliminary results

2.1 Introduction

There are many applications of the classical adjoint in matrix theory. In partic-

ular, it was employed to various studies of generalised invertibility of matrices

[25].

Sinkhorn [26] initiated the study of classical adjoint-commuting linear map-

pings on n × n complex matrices in 1982. By using continuity argument and

Proposition 1.2.1 (Frobenius’ classical theorem [6]), he proved, for n > 3, that

there exist an invertible complex matrix P , λ ∈ C with λn−2 = 1 such that the

mapping is either of the form A 7→ λPAP−1 or of the form A 7→ λPAtP−1 (see

Proposition 1.2.4). Since then, classical adjoint-commuting linear mappings and

classical adjoint-commuting additive mappings on various matrix spaces have

been studied. In 1987, classical adjoint-commuting linear mappings on Mn(F)

with F any infinite field and n > 2 were studied in [1]. The mappings were also

studied on Sn(F) for any field F of characteristic not equal to 2 with n > 2.

They have also characterised the classical adjoint-commuting linear mappings

on Kn(F) where F is an infinite field of characteristic not equal to 2 and n is

an even positive integer. After that, in 1998, classical adjoint-commuting linear

mappings on Tn(F) with F a field and n > 3 an integer, were studied in [3].

They proved that the mapping is a bijective classical adjoint-commuting linear

mapping on Tn(F) if and only if there exist an invertible matrix P ∈ Tn(F) and a

13
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nonzero scalar λ ∈ F such that the mapping is either of the form A 7→ λPAP−1

or A 7→ λPA∼P−1 where A∼ is the matrix obtained from A = (aij) by reflecting

the diagonal a1n, a2,n−1, · · · , an1 and λn−1 = λ. Let n > 3, m > 2. In 2010,

Chooi [2] proved that ψ : Tn1,···nk
→ Mm(F) is a classical adjoint-commuting

additive mapping if and only if ψ = 0, or m = n and there exist an invertible

matrix P ∈ Mn(F), integers 0 = s0 < s1 < · · · < sk = k, and a nonzero field

homomorphism σ on F such that

ψ(A) = P

(
r⊕

i=1

λ1Θi(Ai)
σ

)
P−1 for every A ∈ Tn1,··· ,nk

,

where
⊕r

i=1Ai is the (ǫ1, · · · , ǫr)-block diagonal matrix induced by A where

ǫi = δsi − δsi−1
with δsi = n1 + · · · + nsi , δk = n, and λ1, · · · , λr are

nonzero elements in F satisfying
∏r

j=1 λ
ǫj
j = λ2i for i = 1, · · · , r and for each

1 6 i 6 r, Θi : Tn(si−1+1),··· ,nsi
→ Mǫi(F) is a linear mapping defined by

Θi(Ai) = µAi(α) + (a − µ)Ai(α)
t for all Ai ∈ Tn1,··· ,nk

. Besides the above-

mentioned results, classical adjoint-commuting linear mappings as well as addi-

tive mappings on various matrix spaces have been studied in some papers, see

[4, 27, 28, 29, 30].

Motivated by their works, we study classical adjoint-commuting mappings ψ

between matrix algebras over an arbitrary field by dropping the linearity and

the additivity of ψ. Let m,n be integers with m,n > 3 and let F and K be

fields. Let U1 and U2 be subspaces of Mn(F) and Mm(K), respectively, such

that adj A ∈ Ui whenever A ∈ Ui for i = 1, 2. We investigate the structure of

mappings ψ : U1 → U2 satisfying one of the two conditions:

(A1) ψ(adj (A + αB)) = adj (ψ(A) + αψ(B)) for all A,B ∈ Mn(F) and α ∈ F

when F = K;

14
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(A2) ψ(adj (A− B)) = adj (ψ(A)− ψ(B)) for all A,B ∈Mn(F).

We notice that if ψ satisfies condition (A1) or (A2), then

ψ(0) = ψ(adj (0− 0)) = adj (ψ(0)− ψ(0)) = 0.

This implies

ψ(adj (A)) = ψ(adj (A− 0)) = adj (ψ(A)− ψ(0)) = adj (ψ(A)),

i.e. ψ is a classical adjoint-commuting mapping (see (1.1)).

2.2 Some requirements

In this section, we give some results established for the construction of the main

results. Recall that if we say that A ∈ Hn(F), we mean A is a hermitian matrix

over a field F which possesses an involution −.

Lemma 2.2.1. Let n > 2 and let F be a field which possesses an involution − of

F. If A ∈ Hn(F) is a nonzero rank r matrix, then A = A1 + · · · + Ak for some

rank one matrices A1, · · · , Ak ∈ Hn(F) with

k =

{
r + 1 when A is alternate and the involution − is identity,

r otherwise.

Proof. We consider two cases. First, if A is of Form (1.2) in Proposition 1.3.1,

i.e. A = P (αE11 + · · · + αrErr)P
t
for some invertible matrix P ∈ Mn(F) and

some nonzero scalars α1, · · · , αr ∈ F−, then we choose Ai = P (αiEii)P
t
for

i = 1, · · · , r. It is obvious that Ai ∈ Hn(F) is of rank one, and A = A1+ · · ·+Ar,

as claimed. Next, we consider the case where A is alternate and the involution

− of F is identity, then A is of Form (1.3) in Proposition 1.3.1 i.e. A = Q(L1 ⊕

· · ·⊕Lr/2⊕ 0n−r)Q
t for some invertible matrix Q ∈Mn(F), and hence, r is even
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and F has characteristic 2. By letting B = Q(E11 + E22)Q
t which is of rank 2,

we have A+ B ∈ Hn(F) is of odd rank r − 1. By Proposition 1.3.1, A+ B is of

Form (1.2). Thus, there exists an invertible matrix R ∈Mn(F) such that

A+B = R(β1E11 + · · ·+ βr−1Er−1,r−1)R
t

for some nonzero scalars β1 · · · , βr−1 ∈ F− = F. Now, we choose Ai = R(βiEii)R
t

for i = 1, · · · , r − 1, and Ar = Q(−E11)Q
t and Ar+1 = Q(−E22)Q

t. Evidently,

Ai ∈ Hn(F) is of rank one for i = 1, · · · , r + 1, and A = A1 + · · · + Ar + Ar+1.

We are done.

Lemma 2.2.2. Let n be an integer with n > 3 and R = Mn(F), Kn(F), or

Hn(F). If A,B ∈ R, then the following hold.

(a) If A is of rank r, then there exists a rank n − r matrix X1 ∈ R such that

rank (A+X1) = n.

(b) There exists a matrix X2 ∈ R such that rank (A+X2) = rank (B+X2) = n.

(c) There exists a nonzero matrix X3 ∈ R such that either A or X3 is of rank

n but not both with rank (A+X3) = n.

Proof.

Case I: We first consider the case where R =Mn(F).

(a) If r = 0, we chooseX1 = In. We now suppose A is of rank r 6= 0. Then there

exist invertible matrices P,Q ∈Mn(F) such that A = P (E11+ · · ·+Err)Q.

By letting X1 = P (Er+1,r+1 + · · ·+Enn)Q, we have A+X1 = PQ which is

of rank n and it is clear that rank X1 = n− r.

(b) If A = B, then we select X2 = In − A. Thus, the result holds. We now

assume A 6= B. Let C = A− B and let rank C = r 6 n. Then there exist
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invertible matrices P,Q ∈Mn(F) such that C = P (E11 + · · ·+Err)Q. Let

X2 = D − B, where

D =

{
P ((E12 + · · ·+ Er,r+1) + Er+1,1 + (Er+2,r+2 + · · ·+ Enn))Q if r < n,
P (E11 + (E12 + · · ·+ En−1,n) + En1)Q if r = n.

Then A +X2 = C +D and B +X2 = D where both C +D and D are of

rank n.

(c) If A is of rank n, then we obtain the result by letting X3 = AE12. We

consider rank A = r < n. Then there exist invertible matrices P,Q ∈

Mn(F) such that A = P (E11 + · · ·+ Err)Q. We choose

X3 = P ((E12 + · · ·+ Er,r+1) + Er+1,1 + (Er+2,r+2 + · · ·+ Enn))Q.

It can be shown that rank X3 = n and det(A+X3) = det(PQ) 6= 0 implies

A+X3 is of rank n.

Case II: Consider R = Hn(F).

Note that, here, F is a field which possesses an involution − of F. If a nonzero ma-

trix A ∈ Hn(F) is of rank r, then by Proposition 1.3.1, there exists an invertible

matrix P ∈Mn(F) such that either A is of the form:

A = P (α1E11 + · · ·+ αrErr)P
t

(2.1)

for some nonzero scalars α1, · · ·αr ∈ F−; or if A is alternate and the involution

− of F is identity, then A can be written in the form:

A = P (L1 ⊕ · · · ⊕ Lr/2)P
t (2.2)

where r is even and F is of characteristic 2, and

L1 = · · · = Lr/2 =

(
0 1
1 0

)
∈M2(F).
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(a) If r = 0, we select X1 = In and if r = n, we select X1 = 0. Now, we suppose

1 < r < n. Then we set

X1 =

{
P (Er+1,r+1 + · · ·+ Enn)P

t
if A is of Form (2.1),

P (Er+1,r+1 + · · ·+ Enn)P
t if A is of Form (2.2).

In addition, we have X1 ∈ Hn(F) is of rank n− r and rank (A +X1) = n.

We are done.

(b) If A = B, then we choose X2 = In − A. Suppose A 6= B. Let H = A− B.

Then H ∈ Hn(F) and 0 < rank H = r 6 n. First, we consider H is of Form

(2.1), then we select

C =





P (α1Z12 + · · ·+ αr−1Zr−1,r + Er+1,r+1 + · · ·+ Enn)P
t
if r < n, r is even,

P (α1Z12 + · · ·+ αn−1Zn−1,n)P
t

if r = n, r is even,

P (α1Z12 + · · ·+ αrZr,r+1 + Er+2,r+2 + Enn)P
t

if r < n, r is odd,

P (α1Z12 + · · ·+ αn−2Zn−2,n−1 + En−1,n + En,n−1)P
t

if r = n, r is odd

where αZij := Eij + Eji − αEii ∈ Hn(F) for 1 6 i < j 6 n and α ∈ F−.

Next, we consider H which is alternate and the involution − of F is identity,

then H is of Form (2.2). Let x be the greatest integer less than or equal to

n
2
, and let y be the smallest integer greater than or equal to n

2
. Let h be an

odd integer satisfying x− 1 6 h 6 x. We set

C =





PT1nP
t if r < y + 1,

P (T1n − Sh)P
t if r > y + 1, and h 6= x or h 6= y,

P (T1,n−1 − Sh−2 + Enn)P
t if r > y + 1 and h = x = y

where T1k := E1k + E2,k−1 + · · · + Ek1 for 1 6 k 6 n, and Sk := (E12 +

E21) + (E34 +E43) + · · ·+ (Ek,k+1 +Ek+1,k) for 1 6 k < n with odd integer

k. In both cases of H, it can be shown that C ∈ Hn(F) is of rank n and

rank (H + C) = n. By letting X2 = D − B, we have X2 ∈ Hn(F), and

A+X2 = H + C and B +X2 = C. We are done.
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(c) If rank A = n, then we let

X3 =

{
P (α1E11 + E12 + E21)P

t
if A is of Form (2.1),

PE11P
t if A is of Form (2.2).

In both cases of A, we see thatX3 ∈ Hn(F) with rank X3 < n and rank (A+

X3) = n. We now suppose rank A = r < n. If A = 0, then we choose

X3 = In. If A 6= 0, we first consider the case where A is of Form (2.1).

Then by using the same definition of αZij as in part (b), we let

X3 =

{
P (α1Z12 + · · ·+ αr−1Zr−1,r + Er+1,r+1 + · · ·+ Enn)P

t
if r is even,

P (α1Z12 + · · ·+ αrZr,r+1 + Er+2,r+2 + · · ·+ Enn)P
t

if r is odd.

Next, we consider the case where A is of Form (2.2). Then by using the

same definitions of x, y and h as in part (b), we let

X3 =





PT1nP
t if r < y + 1,

P (T1n − Sh)P
t if r > y + 1, and h 6= x or h 6= y,

P (T1,n−1 − Sh−2 + Enn)P
t if r > y + 1 and h = x = y.

In both cases of A, it can be verified that X3 ∈ Hn(F) is of rank n and

rank (A+X3) = n.

Case III: We now consider R = Kn(F).

By Remark 1.3.4, n is even. Recall from (1.4), if A ∈ Kn(F) is of rank r, then

r > 0 is necessarily even, and there exists an invertible matrix P ∈Mn(F) such

that

A = P (J1 ⊕ · · · ⊕ Jr/2 ⊕ 0n−r)P
t. (2.3)

where J1 = · · · = Jr/2 =

(
0 1
−1 0

)
∈M2(F).

(a) By choosing X1 = P (0r ⊕ Jr+1 ⊕ · · · ⊕ Jn/2)P
t ∈ Kn(F), we have A+X1 is

of rank n and it is obvious that rank X1 = n− r.

(b) Suppose that A = B. Then from (a), there exists a matrix X2 ∈ Kn(F) such

that rank (A+X2) = n. We consider A 6= B. Let H := A−B ∈ Kn(F) be
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of rank r with 0 < r 6 n even. By (2.3), there exists an invertible matrix

Q ∈ Mn(F) such that H = Q(J1 ⊕ · · · ⊕ Jr/2 ⊕ 0n−r)Q
t. Let h be the odd

integer such that n
2
− 1 6 h 6

n
2
. and by letting

S = (E1n − E2,n−1) + · · ·+ (En−1,2 − En1) ∈ Kn(F),

T = J1 ⊕ · · · ⊕ Jn/4 ⊕ 0n−2 ∈ Kn(F),

V = J1 ⊕ · · · ⊕ J(n+2)/4 ⊕ 0(n−2)/2 ∈ Kn(F),

Zp = E1p + E2,p−1 + · · ·+ Ep1 ∈Mp(F) with p = (n− 4)/2,

Z =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 ∈ K4(F) and

U =




0(n−4)/2 0 Z(n−4)/2

0 Z 0
−Z(n−4)/2 0 0(n−4)/2


 ∈ Kn(F),

we set

C =





QSQt if r < n
2
+ 1,

Q(S − T )Qt if r > n
2
+ 1 and h = n

2
− 1,

Q(U − V )Qt if r > n
2
+ 1 and h = n

2
.

It can be shown that C ∈ Kn(F) is of rank n and rank (H + C) = n. Let

X2 := C −B. In addition, we have X2 ∈ Kn(F), and A+X2 = H +C and

B +X2 = C are of rank n. We are done.

(c) If rank A = n, then by (2.3), we have A = P (J1⊕ · · ·⊕Jn/2)P
t. We choose

X3 := P (E1n − En1)P
t ∈ Kn(F).

It is obvious that rank X3 = 2 < n and rank (A + X3) = n. Now, we

consider rank A = r < n. If A = 0, then we select X3 = J1 ⊕ · · · ⊕ Jn/2. If

A 6= 0, we let h be the odd integer such that n
2
− 1 6 h 6

n
2
. By (2.3), we

set

X3 =





PSP t if r < n
2
+ 1,

P (S − T )P t if r > n
2
+ 1 and h = n

2
− 1,

P (U − V )P t if r > n
2
+ 1 and h = n

2
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where S, T , U , V ∈ Kn(F) are as defined in part (b). Then X3 ∈ Kn(F) is

of rank n and rank (A+X3) = n. We are done.

Lemma 2.2.3. Let n be an integer with n > 3.

(a) Let F be a field and let A,B ∈ Mn(F) or Kn(F). If |F| > n + 1 and

rank (A + B) = n, then there exists a scalar λ ∈ F with λ 6= 1 such that

rank (A+ λB) = n.

(b) Let K be a field which possesses an involution ∧ of K and let A,B ∈ Hn(K).

If |K∧| > n + 1 and rank (A + B) = n, then there exists a scalar λ ∈ K∧

with λ 6= 1 such that rank (A+ λB) = n.

Proof.

(a) For each x ∈ F, we let p(x) = det(A+ xB). Then p(x) ∈ F[x] is a nonzero

polynomial of x over F. First, we let A,B ∈ Mn(F). If B = 0, the result

holds true by choosing x = 0. So, we consider B 6= 0 and rank B = r 6 n,

then there exist invertible matrices P,Q ∈ Mn(F) such that B = P (E11 +

· · ·+ Err)Q. So,

p(x) = det(A+ xB)

= det(P (P−1AQ−1)Q+ P (x(E11 + · · ·+ Err)Q))

= det(PQ) det(P−1AQ−1 + x(E11 + · · ·+ Err))

= η det(C + x(E11 + · · ·+ Err))

with C = P−1AQ−1 and η = det(PQ). Thus, p is a polynomial of degree

at most r 6 n. Since |F| > n + 1, there exists a scalar λ ∈ F with λ 6= 1

such that p(λ) 6= 0. Therefore, rank (A+ λB) = n.
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Next, let A,B ∈ Kn(F). If B = 0, by choosing x = 0, the result is obtained.

If B 6= 0 and rank B = r 6 n, then by (2.3), there exists an invertible

matrix P ∈Mn(F) such that B = P (J1 ⊕ · · · ⊕ Jr/2 ⊕ 0n−r)P
t. Then

p(x) = det(A+ xB)

= det(P (P−1A(P−1)t)P t + P (x(J1 ⊕ · · · ⊕ Jr/2 ⊕ 0n−r)P
t))

= det(PP t) det(P−1A(P−1)t + x(J1 ⊕ · · · ⊕ Jr/2 ⊕ 0n−r))

= ζ det(H + x(J1 ⊕ · · · ⊕ Jr/2 ⊕ 0n−r))

where ζ = det(PP t) ∈ F is nonzero and H = P−1A(P−1)t ∈ Kn(F). Since

|F| > n + 1 and p is of degree at most r 6 n, it follows that there exists a

scalar λ ∈ F with λ 6= 1 such that p(λ) 6= 0. Then rank (A+ λB) = n.

(b) For each x ∈ K∧, we let p(x) = det(A + xB). Then we have p(1) 6= 0

and p̂(x) = det(A+ xB)
∧

= det(A + xB) = p(x) as A + xB ∈ Hn(K).

Thus, p is a nonzero polynomial over K∧. If B = 0, then rank A = n, and

hence the result follows by choosing x = 0. Next, we consider B 6= 0 and

rank B = r 6 n. If B is of Form (2.1), then

p(x) = det(A+ xB)

= det(P (P−1A(P̂−1)t)P̂ t + xP (α1E11 + · · ·+ αrErr)P̂
t)

= det(PP̂ t) det(P−1A(P̂−1)t + x(α1E11 + · · ·+ αrErr))

= ζ det((S + x(α1E11 + · · ·+ αrErr))

where S = P−1A(P̂−1)t ∈ Hn(K) and 0 6= ζ = det(PP̂ t) ∈ K∧.

If B is of Form (2.2), then

p(x) = det(A+ xB)

= det(P (P−1A(P−1)t)P t + xP (E12 + E21 + · · ·+ Er−1,r + Er,r−1)P
t)

= det(PP t) det(P−1A(P−1)t + x(E12 + E21 + · · ·+ Er−1,r + Er,r−1))

= η det(T + x(E12 + E21 + · · ·+ Er−1,r + Er,r−1))
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where T = P−1A(P−1)t ∈ Hn(K) and 0 6= η = det(PP t) ∈ K∧ = K. It can

be shown that for both cases p is a nonzero polynomial of degree at most

r 6 n. Since |K∧| > n + 1, there exists a scalar λ ∈ K∧ with λ 6= 1 such

that p(λ) 6= 0. Therefore, we have rank (A+ λB) = n.

In Lemma 2.2.4 and Lemma 2.2.5, we let m,n be integers with m,n > 3 and

let ψ : R1 → R2 be a mapping satisfying (A2) where R1 =Mn(F) (respectively,

Hn(F)) and R2 = Mm(K) (respectively, Hm(K)). For the case where R1 =

Hn(F) and R2 = Hm(K), F and K are fields which possess involutions − of F

and ∧ of K, respectively.

Lemma 2.2.4. Let m,n be integers with m,n > 3. Let R1 = Mn(F)

(respectively, Hn(F)) and R2 =Mm(K) (respectively, Hm(K)). Let ψ : R1 → R2

be a mapping satisfying (A2) and let A ∈ R1. Then the following statements hold.

(a) rank ψ(A) 6 1 if rank A = 1.

(b) rank ψ(A) 6 m− 1 if rank A = n− 1.

(c) rank ψ(A) 6 m− 2 if rank A 6 n− 2.

23

Univ
ers

ity
 of

 M
ala

ya



Proof.

(a) If A is of rank one, then adj ψ(A) = ψ(adj A) = 0 implies rank ψ(A) 6= m.

By Corollary 1.4.5 (respectively, Proposition 1.4.6), there exists a rank n−1

matrix B ∈ R1 such that A = adj B. Hence,

adj ψ(B) = ψ(adj B) = ψ(A) =⇒ rank ψ(B) < m

as rank ψ(A) 6= m. Thus, by ψ(A) = adj ψ(B) and rank ψ(B) < m, we

conclude that rank A 6 1.

(b) Since rank A = n−1, then adj (adj ψ(A)) = ψ(adj (adj A)) = 0. Therefore,

rank ψ(A) 6 m− 1.

(c) If rank A 6 n − 2, then adj ψ(A) = ψ(adj A) = ψ(0) = 0. This implies

rank ψ(A) 6 m− 2.

Lemma 2.2.5. Let m,n be integers with m,n > 3 and let R1 =Mn(F) (respec-

tively, Hn(F)) and R2 =Mm(K) (respectively, Hm(K)). Let ψ : R1 → R2 be a

mapping satisfying (A2) and let A ∈ R1. Then ψ is injective if and only if

rank A = n ⇐⇒ rank ψ(A) = m.

Proof. We first suppose ψ is injective. Let A ∈ R1. By Lemma 2.2.4 (b) and (c),

if rank ψ(A) = m, then rank A = n. Conversely, we let rank A = n. Suppose

rank ψ(A) < m. Then ψ(adj (adj A)) = adj (adj ψ(A)) = 0 since m > 3. It

follows that adj (adj A) = 0 as kerψ = {0}. This contradicts the fact that

rank A = n. Therefore, rank ψ(A) = m.

Next, we prove the necessity. Suppose there exist some matrices A,B ∈ R1

such that ψ(A) = ψ(B). We assume rank (A − B) = r. Then by Lemma 2.2.2
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(a), there exists a rank n − r matrix C ∈ R1 such that A − B + C is of rank

n. Then rank (adj (A− B + C)) = n. So, we have rank (adj ψ(A− B + C)) =

rank (ψ(adj (A− B + C))) = m. Thus

adj ψ(C) = adj (ψ(B − (B − C)))

= adj (ψ(B)− ψ(B − C))

= adj (ψ(A)− ψ(B − C))

= adj (ψ(A− B + C))

which is of rank m. Therefore, rank ψ(C) = m implies rank C = n. Hence,

r = 0 implies A = B. It follows that ψ is injective.

Lemma 2.2.6. Let m,n be integers with m,n > 3, and let F be a field such that

either |F| = 2 or |F| > n+ 1, K be a field which possesses an involution ∧ of K,

and K∧ is a fixed field of the involution ∧ of K with |K∧| = 2 or |K∧| > n + 1.

Let ψ be a mapping satisfying (A1) from Mn(F) into Mm(F) (respectively, from

Hn(K) into Hm(K)). If

rank (A+ αB) = n ⇐⇒ rank (ψ(A) + αψ(B)) = m (2.4)

for all A,B ∈ Mn(F) (respectively, Hn(K)) and α ∈ F (respectively, K∧), then

ψ is linear (respectively, additive).

Proof. Let A,B ∈ Mn(F) (respectively, Hn(K)), and α ∈ F (respectively, K∧)

such that rank (A+ αB) = n. We observe that from (2.4), if we let B = 0, then

we have

rank A = n ⇐⇒ rank ψ(A) = m (2.5)

for every A ∈Mn(F) (respectively, Hn(K)). By Lemma 2.2.5, ψ is injective and

hence we have

rank ψ(A+ αB) = rank (ψ(A) + αψ(B)) = m
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as adj (ψ(A+ αB)) = ψ(adj (A+ αB)) = adj (ψ(A) + αψ(B)). Then

ψ(A+ αB)adj ψ(A+ αB) = (detψ(A+ αB))Im,

(ψ(A) + αψ(B))adj (ψ(A) + αψ(B)) = (det(ψ(A) + αψ(B)))Im.

In addition,

ψ(A+ αB)

detψ(A+ αB)
adj ψ(A+ αB) = Im =

ψ(A) + αψ(B)

det(ψ(A) + αψ(B))
adj ψ(A+ αB).

By the uniqueness of the inverse of adj ψ(A+ αB), we have

ψ(A+ αB) =
detψ(A+ αB)

det(ψ(A) + αψ(B))
(ψ(A) + αψ(B)). (2.6)

By repeating similar arguments as for (2.6), we have

ψ(A+ αB) =
detψ(A+ αB)

det(ψ(A) + ψ(αB))
(ψ(A) + ψ(αB)). (2.7)

If A = 0, then rank (αB) = n and hence by (2.6),

ψ(αB) =
detψ(αB)

det(αψ(B))
(αψ(B)). (2.8)

Next, we claim that

ψ(αA) = αψ(A) (2.9)

for every nonzero scalar α ∈ F (respectively, K∧) and every rank n matrix

A ∈ Mn(F) (respectively, Hn(K)). By Lemma 2.2.2(c), there exists a nonzero

singular matrix C ∈Mn(F) (respectively, Hn(K)) such that rank (C+αA) = n.

By Lemma 2.2.5(c) and (2.4), we have

rank ψ(C + αA) = rank (ψ(C) + αψ(A)) = rank (ψ(C) + ψ(αA)) = m.

By (2.6) and (2.7), we obtain

detψ(C + αA)

det(ψ(C) + αψ(A))
(ψ(C) + αψ(A)) =

detψ(C + αA)

det(ψ(C) + ψ(αA))
(ψ(C) + ψ(αA))
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and hence

ψ(C) + αψ(A)

det(ψ(C) + αψ(A))
=

ψ(C) + ψ(αA)

det(ψ(C) + ψ(αA))
(2.10)

We let µ1 = det(ψ(C)+αψ(A)) and µ2 = det(ψ(C)+ψ(αA)) be nonzero scalars

in F (respectively, K∧). Then by (2.10), we have

µ1ψ(αA)− µ2αψ(A) = (µ2 − µ1)ψ(C). (2.11)

Suppose µ1 6= µ2. Since rank A = n, it follows from (2.8) that ψ(αA) and ψ(A)

are linearly dependent. So, ψ(αA) = γψ(A) for some γ ∈ F (respectively, K∧)

since ψ(αA), ψ(A) ∈Mn(F) (respectively, Hn(K)). Thus, we obtain

(µ1γ − µ2α)ψ(A) = (µ2 − µ1)ψ(C).

Therefore, ψ(A) and ψ(C) are linearly dependent. In addition, since ψ(A) and

ψ(C) are nonzero, we obtain rank ψ(A) = rank ψ(C), a contradiction. Thus,

µ1 = µ2 implies det(ψ(C) + αψ(A)) = det(ψ(C) + ψ(αA)). Therefore, by (2.10)

we have ψ(C) + αψ(A) = ψ(C) + ψ(αA) and this implies ψ(αA) = αψ(A).

Now, we want to show that if A,B ∈ Mn(F) (respectively, Hn(K)) with

rank (A+B) = n, then

A,B are linearly independent =⇒ ψ(A),ψ(B) are linearly independent. (2.12)

Suppose to the contrary that ψ(A) and ψ(B) are linearly dependent. Then

there exists a scalar λ ∈ F (respectively, K∧) such that ψ(B) = λψ(A). Since

rank (A + B) = n, it follows from (2.4) that rank (ψ(A) + ψ(B)) = m. This

implies rank (1 + λ)ψ(A) = m and hence rank ψ(A) = m. By Lemma 2.2.5, we

have rank A = n. Thus, ψ(B) = λψ(A) = ψ(λA) by (2.9). Since ψ is injective,

we obtain B = λA which means A and B are linearly dependent, a contradiction.

Therefore, (2.12) is proved.
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We next claim that ifA,B ∈Mn(F) (respectively,Hn(K)) such that rank (A+

B) = n with 0 < rank A < n and rank B = n, then

ψ(A+B) = ψ(A) + ψ(B). (2.13)

By substituting α = 1 into (2.6), we obtain

ψ(A+B)

detψ(A+B)
=

ψ(A) + ψ(B)

det(ψ(A) + ψ(B))
. (2.14)

Note that ψ(A + B) and ψ(A) + ψ(B) are in Mm(F) (respectively, Hm(K))

and hence detψ(A + B), det(ψ(A) + ψ(B)) ∈ F (respectively, K∧). If |F| = 2

(respectively, |K∧| = 2), then detψ(A+B) = 1 = det(ψ(A) +ψ(B)). So, we are

done. If |F| > n+1 (respectively, |K∧| > n+1), then by Lemma 2.2.3, there exists

a nonzero scalar α0 ∈ F (respectively, K∧) such that rank (A+ (1 + α0)B) = n.

By (2.14), we have

ψ(A+B) + ψ(α0B)

det(ψ(A+B) + ψ(α0B))
=

ψ(A+B + α0B)

det(ψ(A+B + α0B))
=

ψ(A) + ψ(B + α0B)

det(ψ(A) + ψ(B + α0B))
.

Since rank A < n, we have 1 + α0 6= 0, and hence rank ((1 + α0)B) = n. Thus,

by (2.9),

ψ(B + α0B) = (1 + α0)ψ(B) = ψ(B) + α0ψ(B) = ψ(B) + ψ(α0B).

So,

ψ(A+B) + ψ(α0B)

det(ψ(A+B) + ψ(α0B))
=

ψ(A) + ψ(B) + ψ(α0B)

det(ψ(A) + ψ(B + α0B))
. (2.15)

Let λ1 = det(ψ(A+B)+ψ(α0B)) and λ2 = det(ψ(A)+ψ(B+α0B)). It is clear

that λ1 and λ2 are nonzero scalars in F (respectively, K∧). In view of (2.14), we

see that ψ(A + B) and ψ(A) + ψ(B) are linearly dependent. So, there exists a

scalar β ∈ F (respectively, K∧) such that ψ(A) + ψ(B) = βψ(A + B). Then by
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(2.15), we have

(λ1β − λ2)ψ(A+B) + (λ2 − λ1)ψ(α0B) = 0. (2.16)

Since A and B are linearly independent, it follows that A + B and α0B are

linearly independent. In addition, since rank ((A + B) + α0B) = n, we obtain

ψ(A+B) and ψ(α0B) are linearly independent by (2.12). From (2.16), we have

λ1 = λ2 and this implies

ψ(A+B) + ψ(α0B) = ψ(A) + ψ(B) + ψ(α0B)

and hence ψ(A+B) = ψ(A) + ψ(B).

Next, we show that ψ is homogenous (respectively, K∧-homogeneous), that is

ψ(αA) = αψ(A) (2.17)

for every A ∈ Mn(F) (respectively, Hn(K)) and α ∈ F (respectively, K∧). It is

obvious that (2.17) holds when α = 0, A = 0 or rank A = n. Now, we consider

α 6= 0 and A is a nonzero singular matrix. By Lemma 2.2.2(c), there exists a

rank n matrix X ∈Mn(F) (respectively, Hn(K)) such that rank (αA+X) = n.

This implies rank (A+ α−1X) = n. It follows from (2.9) and (2.13) that

ψ(αA) + ψ(X) = ψ(αA+X)

= ψ(α(A+ α−1X))

= αψ(A+ α−1X)

= α(ψ(A) + ψ(α−1X))

= αψ(A) + αψ(α−1X)

= αψ(A) + ψ(X).

Therefore, ψ(αA) = αψ(A).

29

Univ
ers

ity
 of

 M
ala

ya



Now, we show that

ψ(A+B) = ψ(A) + ψ(B) (2.18)

for every A,B ∈Mn(F) (respectively, Hn(K)) with rank (A+B) = n. It is clear

that the claim holds when |F| = 2 (respectively, |K∧| = 2) by (2.14). Consider

|F| > n+1 (respectively, |K∧| > n+1). If A and B are linearly dependent, then

B = γA for some scalar γ ∈ F (respectively, K∧). By (2.17), we have

ψ(A+B) = ψ((1 + γ)A)

= (1 + γ)ψ(A)

= ψ(A) + γψ(A)

= ψ(A) + ψ(γA)

= ψ(A) + ψ(B).

Consider the case where A and B are linearly independent. By Lemma 2.2.3,

there exists β0 ∈ F (respectively, K∧) such that rank (A + (1 + β0)B) = n. By

(2.14) and (2.17), we have

ψ(A+B) + ψ(β0B)

det(ψ(A+B) + ψ(β0B))
=

ψ(A) + ψ(B) + ψ(β0B)

det(ψ(A) + ψ(B) + ψ(β0B))
. (2.19)

Since A and B are linearly independent, A + B and β0B are also linearly inde-

pendent and hence ψ(A + B) and ψ(β0B) are linearly independent by (2.12).

By using similar arguments as in the proof of (2.16), it can be shown that

det(ψ(A + B) + ψ(β0B)) = det(ψ(A) + ψ(B) + ψ(β0B)). Then by (2.19), we

obtain (2.18).

Next, we want to show that ψ is additive. Let A,B ∈ Mn(F) (respectively,

Hn(K)). By Lemma 2.2.2(b), there exists a matrix X ∈ Mn(F) (respectively,
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Hn(K)) such that rank (A+X) = rank (A+B +X) = n. By (2.18), we have

ψ(A+B) + ψ(X) = ψ(A+B +X) = ψ(A+X) + ψ(B).

Since rank (A + X) = n, by (2.18) again, we have ψ(A + X) = ψ(A) + ψ(X).

Thus, we obtain

ψ(A+B) + ψ(X) = ψ(A) + ψ(B) + ψ(X)

=⇒ ψ(A+B) = ψ(A) + ψ(B)

for all matrices A,B ∈Mn(F) (respectively, Hn(K)). We are done.
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Chapter 3

Classical adjoint-commuting mappings

between matrix algebras

3.1 Introduction

In this chapter, we let m,n be integers with m,n > 3 and let F and K be fields.

We characterise mappings ψ :Mn(F)→Mm(K) that satisfy one of the following

conditions (see (A1) and (A2) in Section 2.1):

(AM1) ψ(adj (A + αB)) = adj (ψ(A) + αψ(B)) for all A,B ∈ Mn(F) and α ∈ F

when F = K,

(AM2) ψ(adj (A− B)) = adj (ψ(A)− ψ(B)) for all A,B ∈Mn(F).

3.2 Some basic properties

Lemma 3.2.1. Let m,n be integers with m,n > 3 and let F and K be fields.

Let ψ : Mn(F) → Mm(K) be a mapping satisfying (AM2). Then the following

statements are equivalent.

(a) ψ(In) = 0.

(b) ψ(A) = 0 for every rank one matrix A ∈Mn(F).

(c) rank ψ(A) 6 m− 2 for every A ∈Mn(F).

(d) ψ(adj A) = 0 for every A ∈Mn(F).
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Proof.

(a) =⇒ (b):

Let 1 6 i 6 n. We have

ψ(Eii) = ψ(adj (In − Eii)) = adj (ψ(In)− ψ(Eii)) = adj (−ψ(Eii)) = 0

since m > 3 and rank ψ(Eii) 6 1. Therefore ψ(Eii) = 0 for all 1 6 i 6 n. We

next show that ψ(αEij) = 0 for all 1 6 i, j 6 n and α ∈ F. The result is clear

when α = 0. We now suppose α 6= 0. Since adj (In − Eii − Ejj + αEjj) = αEii

with j 6= i, we have

ψ(αEii) = ψ(adj (In − Eii − Ejj + αEjj))

= adj (ψ(In + αEjj − Eii)− ψ(Ejj))

= adj (ψ(In + αEjj)− ψ(Eii))

= adj (ψ(In)− ψ(−αEjj))

= adj (−ψ(−αEjj)) = 0

since rank ψ(−αEjj) 6 1. For each 1 6 i 6= j 6 n, adj (In − Eii − Ejj +

(−1)i+jαEij) = αEij. By similar arguments, we obtain

ψ(αEij) = ψ(adj (In − Eii − Ejj + (−1)i+jαEij))

= adj (ψ(In + (−1)i+jαEij − Eii)− ψ(Ejj))

= adj (ψ(In + (−1)i+jαEij)− ψ(Eii))

= adj (ψ(In)− ψ(−(−1)i+jαEij))

= adj (−ψ(−(−1)i+jαEij)) = 0.

Hence, ψ(αEij) = 0 for every 1 6 i, j 6 n and α ∈ F.

Let A ∈Mn(F) be of rank one. Then by Proposition 1.4.6, there exists a rank

n− 1 matrix B = (bij) ∈ Mn(F) such that A = adj B. Thus, ψ(A) = ψ(adj B)

and hence
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ψ(A) = adj ψ(B)

= adj ψ

(
n∑

i,j=1

bijEij

)

= adj ψ




n∑

i,j=1,
(i,j)6=(1,1)

bijEij − (−b11)E11




= adj ψ




n∑

i,j=1,
(i,j)6=(1,1)

bijEij − ψ(−b11E11)




= adj ψ




n∑

i,j=1,
(i,j)6=(1,1)

bijEij




= adj ψ




n∑

i,j=1,
(i,j)6=(1,1),(1,2)

bijEij − ψ(−b12E12)




= adj ψ




n∑

i,j=1,
(i,j)6=(1,1),(1,2)

bijEij


 .

By repeating similar arguments, we obtain

ψ(A) = adj ψ(bnnEnn) = 0.

(b) =⇒ (c):

Let A ∈Mn(F) with rank A 6 n−1. Then rank adj A 6 1. By (b), adj ψ(A) =

ψ(adj A) = 0. The result holds. Now we consider A ∈ Mn(F) of rank n. Then

there exist rank one matrices A1, · · · , An ∈Mn(F) such that A = A1+ · · ·+An.

Hence,
adj ψ(A) =adj ψ(A1 + · · ·+ An)

= adj (ψ(A1 + · · ·+ An−1)− ψ(−An))

= adj ψ(A1 + · · ·+ An−1)

= adj (ψ(A1 + · · ·+ An−2)− ψ(−An−1)).
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We continue in this way to obtain

adj ψ(A) = adj ψ(A1) = 0.

Therefore, rank ψ(A) 6 m− 2.

(c) =⇒ (d): Since rank ψ(A) 6 m− 2, ψ(adj A) = adj ψ(A) = 0.

(d) =⇒ (a): ψ(In) = ψ(adj In) = 0.

Lemma 3.2.2. Let m,n be integers and let F and K be fields. Let ψ :Mn(F)→

Mm(K) be a mapping satisfying (AM2). Let A,B ∈ Mn(F). If ψ(In) 6= 0, then

ψ is injective and

rank (A− B) = n ⇐⇒ rank (ψ(A)− ψ(B)) = m.

Proof. Since ψ(In) 6= 0 and adj ψ(In) = ψ(adj In) = ψ(In), we have

rank ψ(In) = m. Let 1 6 i 6 n. Then

rank adj

(
ψ(Eii)− ψ

(
n∑

j=1,j 6=i

−Ejj

))
= rank adj ψ(In) = m.

This implies rank
(
ψ(Eii)− ψ

(∑n
j=1,j 6=i−Ejj

))
= m. By Lemma 2.2.4,

rank ψ(Eii) 6 1 and rank ψ

(
n∑

j=1,j 6=i

−Ejj

)
6 m− 1.

These show that rank ψ(Eii) = 1.

Next, we show that rank ψ(αEij) = 1 for every nonzero scalar α ∈ F and

1 6 i, j 6 n. Suppose there exists a nonzero scalar α0 ∈ F such that ψ(α0Eij) = 0

for 1 6 i, j 6 n. Since n > 3, then if i = j, we can select two distinct integers

1 6 s, t 6 n with s, t 6= i; or if i 6= j, we choose an integer 1 6 s 6 n with

s 6= i, j, such that

Ess =

{
adj (In − Ess − (1 + α0)Eii − (1 + α−10 )Ett) if i = j,
adj (In − Eii − Ejj − Ess + α−10 Eji − α0Eij) if i 6= j.
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Then

ψ(Ess) =

{
ψ
(
adj (In − Ess − (1 + α0)Eii − (1 + α−10 )Ett)

)
if i = j,

ψ
(
adj (In − Eii − Ejj − Ess + α−10 Eji − α0Eij)

)
if i 6= j

=

{
adj

(
ψ(In − Ess − Eii − (1 + α−10 )Ett)− ψ(α0Eii)

)
if i = j,

adj
(
ψ(In − Eii − Ejj − Ess + α−10 Eji)− ψ(α0Eij)

)
if i 6= j

=

{
adj ψ(In − Ess − Eii − (1 + α−10 )Ett) if i = j,
adj ψ(In − Eii − Ejj − Ess + α−10 Eji) if i 6= j

=

{
ψ
(
adj (In − Ess − Eii − (1 + α−10 )Ett)

)
if i = j,

ψ
(
adj (In − Eii − Ejj − Ess + α−10 Eji)

)
if i 6= j

= ψ(0) = 0,

a contradiction. Therefore,

rank ψ(αEij) = 1 for every nonzero scalar α ∈ F and 1 6 i, j 6 n.

Let X ∈ Mn(F) be of rank one. Then there exist an invertible matrix P ∈

Mn(F) and a nonzero scalar λ ∈ F such that X = P (λEst)P
−1 for some integers

1 6 s, t 6 n. We define the mapping φP :Mn(F)→Mm(K) by

φP (A) = ψ(PAP−1) for every A ∈Mn(F).

Let A,B ∈Mn(F). We have

φP (adj (A− B)) = ψ(P (adj (A− B)P−1)

= ψ(adj (P (A− B)P−1)

= adj (ψ(PAP−1)− ψ(PBP−1))

= adj (φP (A)− φP (B)).

Therefore, φP satisfies (AM2). Since φP (In) = ψ(PInP
−1) = ψ(In) 6= 0, we

obtain rank φP (αEij) = 1 for all nonzero scalar α ∈ F and 1 6 i, j 6 n. Thus,

ψ(X) = ψ(P (λEst)P
−1) = φP (λEst) implies

rank ψ(X) = 1 for every rank one matrix X ∈Mn(F). (3.1)

Next, let A,B ∈ Mn(F) such that ψ(A) = ψ(B). Suppose A− B 6= 0. Then

there exists a matrix C ∈Mn(F) of rank at most n− 2 such that rank (A−B+
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C) = n − 1. Thus, rank adj (A − B + C) = 1. It follows that rank ψ(adj (A −

B + C)) = 1 by (3.1). On the other hand,

ψ(adj (A− B + C)) = adj (ψ(A+ C)− ψ(B))

= adj (ψ(A+ C)− ψ(A))

= adj ψ(C)

= 0

which is a contradiction. This implies A = B and hence ψ is injective.

Let A,B ∈Mn(F). Since ψ is injective, by Lemma 2.2.5,

rank (A− B) = n ⇐⇒ rank adj (A− B) = n

⇐⇒ rank ψ(adj (A− B)) = m

⇐⇒ rank adj (ψ(A)− ψ(B)) = m

⇐⇒ rank (ψ(A)− ψ(B)) = m.

3.3 Some examples

We should point out that, in order to obtain a nice structural form of ψ which

satisfies condition (AM1) or (AM2), the condition of ψ(In) 6= 0 in Theorem 3.4.1

is indispensable. In Lemma 3.2.1, we proved that ψ sends all rank one matrices

to zero if ψ(In) = 0. Under the condition of (AM1) or (AM2), beside the zero

mapping, there are some nonzero classical adjoint-commuting mappings sending

rank one matrices to zero. Thus, in this section, we give some examples of such

mappings.

Example 3.3.1. Let m,n be integers with m,n > 3 and let F and K be fields.

(i) Let τ :Mn(F) → K be a nonzero function and let ψ1 :Mn(F) →Mm(K)
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be the mapping defined by

ψ1(A) =

{
τ(A)(E11) if A ∈Mn(F) is of rank r with 1 < r < n,
0 otherwise.

(ii) Let E := {adj A : A ∈Mn(F) is invertible} and let ψ2 :Mn(F)→Mm(K)

be the mapping defined by

ψ2(A) =

{
0 if A ∈Mn(F) is of rank 0 or 1, or A ∈ E ,
E11 otherwise.

Example 3.3.2. Let m,n be integers with m,n > 4. We define the mapping

ψ3 :Mn(F)→Mm(K) by

ψ3(A) =





∑m−2
i=1 Eii if rank A = 2,

E11 + E22 if A is of rank r with 2 < r < n,
0 otherwise.

Example 3.3.3. Let m,n be integers with m,n > 5. We define the mapping

ψ4 :Mn(F)→Mm(K) by

ψ4(A) =





E11 + E22 if rank A = r and r is odd,
E22 + E33 + E44 if rank A = r and r is even,
0 otherwise.

It can be easily checked that each ψi for i = 1, 2, 3, 4 is a classical adjoint-

commuting mapping satisfying condition (AM1) or (AM2) with ψi(In) = 0. We

also observe that these mappings are neither injective nor surjective.

3.4 Characterisation of classical adjoint-

commuting mappings between matrix

algebras

Theorem 3.4.1. Let m,n be integers with m,n > 3, and let F be a field with

|F| = 2 or |F| > n + 1. Then ψ : Mn(F) → Mm(F) is a mapping satisfying
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(AM1) if and only if ψ(A) = 0 for every rank one matrix A ∈ Mn(F) and

rank (ψ(A) + αψ(B)) 6 m− 2 for all A,B ∈Mn(F) and α ∈ F; or m = n, and

ψ(A) = λPAP−1 for every A ∈Mn(F)

or

ψ(A) = λPAtP−1 for every A ∈Mn(F).

where P ∈Mn(F) is an invertible matrix and λ ∈ F is a scalar with λn−2 = 1.

Proof. The sufficiency can be proved easily. We now prove the necessity. We

observe that if ψ satisfies (AM1), then ψ satisfies (AM2). Thus, Lemmas 2.2.4,

2.2.5, 3.2.1 and 3.2.2 hold for ψ satisfying (AM1). We first consider the case

where ψ(In) = 0. By Lemma 3.2.1, ψ(A) = 0 for every rank one matrix A ∈

Mn(F) and ψ(adj A) = 0 for every A ∈ Mn(F). Then we obtain adj (ψ(A) +

αψ(B)) = ψ(adj (A+ αB)) = 0 for all A,B ∈Mn(F) and α ∈ F. Thus,

rank (ψ(A) + αψ(B)) 6 m− 2 for all A,B ∈Mn(F) and α ∈ F.

Next, consider ψ(In) 6= 0. Let A,B ∈ Mn(F) and α ∈ F. Then by Lemma

2.2.5, we have

rank (A+ αB) = n ⇐⇒ rank adj (A+ αB) = n

⇐⇒ rank ψ(adj (A+ αB)) = m

⇐⇒ rank adj (ψ(A) + αψ(B)) = m

⇐⇒ rank (ψ(A) + αψ(B)) = m.

It follows from Lemma 2.2.6 that ψ is linear. Therefore, by [27, Theorem 3.4]

(or [2, Corollary 3.10]), we are done.

Theorem 3.4.2. Let m,n be integers with m,n > 3, and let F and K be fields.

Then ψ : Mn(F) → Mm(K) is a surjective mapping satisfying (AM2) if and
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only if m = n, F and K are isomorphic, and

ψ(A) = λPAσP−1 for every A ∈Mn(F)

or

ψ(A) = λP (Aσ)tP−1 for every A ∈Mn(F)

where σ : F → K is a field isomorphism, Aσ is the matrix obtained from A by

applying σ entrywise, P ∈Mn(K) is an invertible matrix, and λ ∈ K is a scalar

with λn−2 = 1.

Proof. The sufficiency part is trivial. We now prove the necessity part. Suppose

ψ(In) = 0. Then by Lemma 3.2.1, rank ψ(A) 6 m − 2 for every A ∈ Mn(F).

This implies ψ is not surjective. Therefore, ψ(In) 6= 0 and hence by Lemma

3.2.2,

rank (A− B) = n ⇐⇒ rank (ψ(A)− ψ(B)) = m for all A,B ∈Mn(F).

We consider two cases in this proof.

Case I: |F| 6= 2.

By [14, Theorem 3.2] and the fundamental theorem of rectangular matrices (see

Theorem 1.5.2), we have m = n and either

ψ(A) = PAσQ+R for every A ∈Mn(F)

or

ψ(A) = P (Aσ)tQ+R for every A ∈Mn(F)

where σ : F→ K is an isomorphism, P,Q ∈Mn(K) are invertible matrices, and

R ∈ Mn(K). For both cases above, R = 0 since ψ(0) = 0. In addition, since
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adj ψ(In) = ψ(adj In) = ψ(In), we have adj (PQ) = PQ. Thus,

ψ(adj A) = adj (ψA)

=⇒ P (adj A)Q = adj (PAQ)

=⇒ PQ(Q−1(adj A)Q) = (adj Q)(adj A)(adj P )

=⇒ PQ(Q−1(adj A)Q) =
1

detQ
(adj Q)(adj A)(detQ)(adj P )

=⇒ PQ(Q−1(adj A)Q) = Q−1(adj A)(
det(PQ)

detP
)(adj P )

=⇒ PQ(Q−1(adj A)Q) = Q−1(adj A)P−1 det(PQ)In

=⇒ PQ(Q−1(adj A)Q) = Q−1(adj A)P−1(adj (PQ))PQ.

Hence, we obtain PQ(Q−1(adj A)Q) = (Q−1(adj A)Q)PQ for every A ∈Mn(F).

Since {Q−1EijQ : Eij ∈ Mn(K)} spans Mn(K), it follows that PQ commutes

with all matrices in Mn(K). Thus, PQ = λIn for some nonzero scalar λ ∈ K.

Again, since ψ(adj In) = adj ψ(In), we have PQ = adj (PQ) and hence λIn =

adj (λIn). Therefore λ
n−2 = 1. Consequently, the theorem holds.

Case II: |F| = 2.

Then rank (A + B) = n if and only if rank (ψ(A) + ψ(B)) = m for all A,B ∈

Mn(F). Let A,B ∈ Mn(F) with rank (A + B) = n. Then ψ(A + B) and

ψ(A) + ψ(B) are of rank m. Since

ψ(A+B)adj (ψ(A+B)) = det(ψ(A+B))Im,

(ψ(A) + ψ(B))adj (ψ(A) + ψ(B)) = det(ψ(A) + ψ(B))Im

and
adj (ψ(A+B)) = ψ(adj (A+B))

= ψ(adj (A− B))

= adj (ψ(A)− ψ(B))

= adj (ψ(A) + ψ(B)),
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we have

ψ(A+B)

detψ(A+B)
=

ψ(A) + ψ(B)

det(ψ(A) + ψ(B))
.

As detψ(A+B) = det(ψ(A) + ψ(B)) = 1, we obtain ψ(A+B) = ψ(A) + ψ(B)

for all A,B ∈ Mn(F) with rank (A + B) = n. By using similar argument as

in the last paragraph of the proof of Lemma 2.2.6, if can be shown that ψ is

additive. Therefore, the result follows from [29, Theorem 5.1] and [2, Corollary

3.10].
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Chapter 4

Classical adjoint-commuting mappings

on hermitian and symmetric matrices

4.1 Introduction

Throughout this chapter, unless otherwise stated, we let m,n be integers with

m,n > 3 and let F and K be fields which possess involutions − of F and ∧ of

K, respectively. We let F− := {a ∈ F : a = a} and K∧ the set of all symmetric

elements of F and K, respectively. It can be shown that F− is a subfield of F

and we say that F− is the fixed field on the involution − of F whereas K∧ is the

fixed field on the involution ∧ of K. The involution − of F is proper if − is not

identity and hence there exists i ∈ F such that i = −i when F has characteristic

6= 2, and i = 1 + i when F has characteristic 2, such that F = F− ⊕ iF− as an

F−-linear space. See [23] for more details .

In this chapter, we study the structure of ψ : Hn(F) → Hm(K) that satisfies

the following conditions (see (A1) and (A2) in Section 2.1):

(AH1) ψ(adj (A + αB)) = adj (ψ(A) + αψ(B)) for all A,B ∈ Hn(F) and α ∈ F−

when (F,− ) = (K,∧ ),

(AH2) ψ(adj (A− B)) = adj (ψ(A)− ψ(B)) for all A,B ∈ Hn(F).

4.2 Some basic properties

Let m,n be integers with m,n > 3. Let ψ : Hn(F) → Hm(K) be a mapping

satisfying (AH2). It can be easily shown that
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ψ(0) = 0 and ψ(adj A) = adj (ψ(A)) for every A ∈ Hn(F).

Lemma 4.2.1. Let n be an integer with n > 3 and let A ∈ Hn(F) be a nonzero

matrix. Then there exists a matrix C ∈ Hn(F) of rank at most n − 2 such that

rank (A+ C) = n− 1.

Proof. Suppose rank A = r. If r = n − 1, we choose C = 0. We are done. We

assume 1 6 r 6 n−2. We choose C = P (Er+1,r+1+ · · ·+En−1,n−1)P
t
. It is clear

that C ∈ Hn(F) and rank C 6 n−2. It can be shown that rank (A+C) = n−1

for both Forms (1.2) and (1.3) of A. If r = n, we let

C =

{
P (−αnEnn)P

t
if A is of Form (1.2),

P (E11 + E22)P
t if A is of Form (1.3).

We note that if A is of Form (1.3), rank A = n > 4. Therefore, C ∈ Hn(F) with

rank C 6 n− 2 and rank (A+ C) = n− 1.

Lemma 4.2.2. Let m,n be integers with m,n > 3. Let ψ : Hn(F)→ Hm(K) be

a mapping satisfying (AH2). Let P ∈ Mn(F) be a fixed invertible matrix, and

let φP : Hn(F)→ Hm(K) be defined by

φP (A) = ψ(PAP
t
) for every A ∈ Hn(F).

If rank φP (In) 6= m, then φP (A) = 0 for every rank one matrix A ∈ Hn(F), and

rank φP (A) 6 m− 2 for every A ∈ Hn(F).

Proof. Let A,B ∈ Hn(F). Then

adj φP (A− B) = adj ψ(P (A− B)P
t
)

= ψ(adj (PAP
t
− PBP

t
))

= adj (ψ(PAP
t
)− ψ(PBP

t
))

= adj (φP (A)− φP (B)).
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Thus, we obtain

adj φP (A− B) = adj (φP (A)− φP (B)) for all A,B ∈ Hn(F). (4.1)

By the definition of φP , Lemma 2.2.4 (a), (b) and (c) are true for φP .

Let θ := det(PP
t
)n−2, ϑ := θn−1 and Q := adj P . It is clear that θ, ϑ ∈ F−

are nonzero and rank Q = n. We now show that

φP (θIn) = 0. (4.2)

Since adj (adj (PP
t
)) = det(PP

t
)n−2PP

t
= θPP

t
and rank φP (In) 6= m, we

have
φP (θIn) = ψ(P (θIn)P

t
)

= ψ(θPP
t
)

= ψ(adj (adj (PP
t
)))

= adj (adj ψ(PP
t
))

= adj (adj φP (In))

= 0.

Since
ψ(ϑQ

t
Q) = ψ(θn−1adj (PP

t
))

= ψ(adj (θPP
t
))

= adj ψ(θPP
t
)

= adj φP (θIn),

we obtain

ψ(ϑQ
t
Q) = 0 (4.3)

by (4.2). Next, we show that

ψ(Q
t
ϑEiiQ) = 0 for every i = 1, · · · , n. (4.4)
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Let i = 1, · · · , n. By θn−1Eii = adj (θ(In − Eii)), we have

ψ(Q
t
ϑEiiQ) = ψ(Q

t
(θn−1Eii)Q)

= ψ((adj P
t
)(adj (θ(In − Eii)))(adj P )

= ψ(adj (P (θIn − θEii)P
t
))

= adj ψ(P (θIn − θEii)P
t
)

= adj φP (θIn − θEii).

It follows from (4.1), (4.2) that

ψ(Q
t
ϑEiiQ) = adj (φP (θIn)− φ(θEii))

= adj (−φP (θEii))

= 0

since rank φP (θEii) 6 1 by Lemma 2.2.4 (a). The next claim is for i = 1, · · · , n,

φP (αEii) = 0 for every α ∈ F−. (4.5)

It is clear that the result holds if α = 0. We suppose α 6= 0. Then

φP (αEii) = ψ(P (αEii)P
t
)

= ψ(θP (θ−1αEii)P
t
)

= ψ((detP )n−2P (θ−1αEii)(detP )
n−2P

t
).

Since

adj (ϑIn − ϑEii − ϑEjj + θ−1ϑ2−nαEjj)) = θ−1αEii with j 6= i

and adj Q = (detP )n−2P , we obtain

φP (αEii) = ψ((adj Q)adj (ϑIn − ϑEii − ϑEjj + θ−1ϑ2−nαEjj)(adj Q
t
))

= ψ(adj (Q
t
(ϑIn − ϑEii − ϑEjj + θ−1ϑ2−nαEjj)Q))

= adj ψ(Q
t
(ϑIn − ϑEii − ϑEjj + θ−1ϑ2−nαEjj)Q)

= adj (ψ(ϑQ
t
Q+Q

t
(θ−1ϑ2−nαEjj)Q−Q

t
ϑEiiQ)− ψ(Q

t
ϑEjjQ)).
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Thus, it follows from (4.3) and (4.4) that

φP (αEii) = adj (ψ(ϑQ
t
Q+Q

t
(θ−1ϑ2−nαEjj)Q−Q

t
ϑEiiQ))

= adj (ψ(ϑQ
t
Q+Q

t
(θ−1ϑ2−nαEjj)Q)− ψ(Q

t
ϑEiiQ))

= adj (ψ(ϑQ
t
Q+Q

t
(θ−1ϑ2−nαEjj)Q))

= adj (ψ(ϑQ
t
Q)− ψ(−Q

t
(θ−1ϑ2−nαEjj)Q))

= adj (−ψ(−Q
t
(θ−1ϑ2−nαEjj)Q))

= 0

as rank ψ(−Q
t
(θ−1ϑ2−nαEjj)Q) 6 1 and m > 3. This implies

adj φP (A+ α1E11 + · · ·+ αnEnn) = adj φP (A) (4.6)

for every A ∈ Hn(F) and α1, · · · , αn ∈ F−. Since adj (In − Eii − Ejj + αEjj) =

αEii, we have

ψ(Q
t
(αEii)Q) = ψ((adj P

t
)adj (In − Eii − Ejj + αEjj)(adj P ))

= ψ(adj (P (In − Eii − Ejj + αEjj)P
t
))

= adj ψ(P (In − Eii − Ejj + αEjj)P
t
)

= adj φP (In − Eii − Ejj + αEjj).

So, (4.1) and (4.5) imply

ψ(Q
t
(αEii)Q) = adj (φP (In − Eii − Ejj)− φP (−αEjj))

= adj (φP (In − Eii − Ejj))

= adj (φP (In − Eii)− φP (Ejj))

= adj (φP (In)− φP (Eii))

= adj φP (In).
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Again, by applying (4.1) and (4.5) repeatedly,

ψ(Q
t
(αEii)Q) = adj (φP (E11 + E22 + · · ·+ En−1,n−1)− φ(−Enn))

= adj φP (E11 + E22 + · · ·+ En−1,n−1)

...

= adj φP (E11).

Therefore,

ψ(Q
t
(αEii)Q) = 0 for every α ∈ F− and for every i = 1, · · · , n. (4.7)

It follows that

adj (ψ(A)− ψ(Q
t
(α1E11 + · · ·+ αnEnn)Q)) = adj ψ(A) (4.8)

for every A ∈ Hn(F) and α1, · · · , αn ∈ F−. Let i, j, k be distinct integers with

1 6 i, j, k 6 n. Let

Yijk := In − Eii − Ejj − 2Ekk.

Let a ∈ F− be nonzero. Then aa ∈ F− and

adj (aEij + aEji + Yijk) = aEij + aEji + aaYijk

implies

ψ(Q
t
(aEij + aEji + aaYijk)Q)

= ψ((adj P
t
)adj (aEij + aEji + Yijk)(adj P ))

= adj ψ(P (aEij + aEji + Yijk)P
t
)

= adj φP (aEij + aEji + Yijk).

Then by (4.5), we have

ψ(Q
t
(aEij + aEji + aaYijk)Q)

= adj φP (aEij + aEji + Yijk − Ess − φP (−Ess)) for s 6= i, j

= adj φP (aEij + aEji + Yijk − Ess)
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By using similar argument repeatedly, we obtain

ψ(Q
t
(aEij + aEji + aaYijk)Q) = adj φP (aEij + aEji − Ekk)

= adj (φP (aEij + aEji)− φP (Ekk))

= adj φP (aEij + aEji)

= adj ψ(P (aEij + aEji)P
t
)

= ψ(adj (P (aEij + aEji)P
t
))

= ψ((adj P
t
)adj (aEij + aEji)(adj P ))

= ψ(Q
t
EQ)

where E = −aaEkk if n = 3, or E = 0 if n > 3. Thus

ψ(Q
t
(aEij + aEji + aaYijk)Q) = 0 (4.9)

for all distinct integers 1 6 i, j, k 6 n and scalar a ∈ F−. Next, we claim that

φP (A) = 0 for every rank one matrix A ∈ Hn(F).

Let A ∈ Hn(F) be of rank one. Then by Proposition 1.4.6, there exists a matrix

B = (bij) ∈ Hn(F) of rank n− 1 such that θ−1A = adj B. Thus,

φP (A) = ψ(PAP
t
)

= ψ(θP (θ−1A)P
t
)

= ψ(det(PP
t
)n−2)P (adj B)P

t
)

by substituting θ = det(PP
t
)n−2. Then we have

φP (A) = ψ((detP )n−2P (adj B)(detP
t
)n−2P

t
)

= ψ((adj Q)(adj B)(adj Q
t
))

= ψ(adj (Q
t
BQ))

= adj ψ(Q
t
BQ).
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Since B ∈ Hn(F), bij = bji for all 1 6 i < j 6 n, and bii ∈ F− for every 1 6 i 6 n.

Then we obtain

φP (A) = adj ψ

( ∑

16i<j6n

Q
t
(bijEij + bjiEji)Q+

n∑

i=1

Q
t
(biiEii)Q

)

= adj ψ

( ∑

16i<j6n

Q
t
(bijEij + bjiEji)Q

)

by (4.8). Thus,

φP (A) = adj ψ




∑

16i<j6n,
i 6=1andj 6=2

Q
t
[(bjiEji + bjiEij) + aaY12k − (aE21 + aE12 + aaY12k)]Q




and it follows from (4.9) that

φP (A) = adj ψ




∑

16i<j6n,
i 6=1andj 6=2

Q
t
[(bjiEji + bjiEij) + aaY12k]Q


 .

By letting a = b21, we obtain

φP (A) = adj ψ




∑

16i<j6n,
i 6=1andj 6=2

Q
t
(bjiEji + bjiEij)Q+Q

t
(b21b21Y12k)Q


 .

Thus,

φP (A) = adj


ψ




∑

16i<j6n,
i 6=1andj 6=2

Q
t
(bjiEji + bjiEij)Q


− ψ(−Q

t
(b21b21Y12k)Q)




= adj ψ




∑

16i<j6n,
i 6=1andj 6=2

Q
t
(bjiEji + bjiEij)Q




by (4.8). Continuing using similar arguments, we obtain

φP (A) = adj ψ




∑

16i<j6n,
i 6=1andj 6=2,3

Q
t
(bjiEji + bjiEij)Q




...

= adj ψ(Q
t
(bn,n−1En,n−1 + bn,n−1En−1,n)Q).
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Let b = bn,n−1. Then

φP (A)

= adj ψ(Q
t
(bbYn−1,n,n−2 − ((−b)En,n−1 + (−b)En−1,n + (−b)(−b)Yn−1,n,n−2))Q)

= adj ψ(Q
t
(bbYn−1,n,n−2)Q)

= adj ψ(0− (−Q
t
(bbYn−1,n,n−2)Q))

= adj (ψ(0)− ψ(−Q
t
(bbYn−1,n,n−2)Q))

= adj ψ(0)

= 0.

Therefore, φP (A) = 0 for every rank one matrix A ∈ Hn(F).

It is clear that adj φP (A) = 0 if A = 0. Let A ∈ Hn(F) be of rank r with 1 6

r 6 n. Then by Lemma 2.2.1, there exist rank one matrices A1, · · · , As ∈ Hn(F)

with r 6 s 6 r + 1 such that A = A1 + · · ·+ As. It follows from (4.1) that

adj φP (A) = adj φP (A1 + · · ·+ As)

= adj (φP (A1 + · · ·+ As−1)− φ(−As))

= adj φP (A1 + · · ·+ As−1).

By using (4.1) repeatedly, we have

adj φP (A) = adj φP (A1) = 0.

In conclusion, rank φP (A) 6 m− 2 for every A ∈ Hn(F).

Lemma 4.2.3. Let n be an integer with n > 3. Let ψ : Hn(F) → Hn(K) be

defined by

ψ(A) = λQAσQ̂t for every A ∈ Hn(F)

where σ : (F,− )→ (K,∧ ) is a nonzero field homomorphism satisfying σ̂(a) = σ(a)

for every a ∈ F, Q ∈ Mn(F) is an invertible matrix and λ ∈ K∧ is a nonzero
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scalar. If adj ψ(In) = ψ(In), then there exists a nonzero scalar ζ ∈ K∧ such that

Q̂tQ = ζIn and (λζ)n−2 = 1.

Proof. Since adj ψ(In) = ψ(In), we obtain adj (λQQ̂t) = λQQ̂t which implies

λn−1(adj Q̂t)(adj Q) = λQQ̂t. Then

QQ̂t = λn−2(adj Q̂t)(adj Q)

and hence

(Q̂tQ)2 = Q̂t(QQ̂t)Q = Q̂t(λn−2(adj Q̂t)(adj Q))Q

= λn−2Q̂t(adj Q̂t)(adj Q)Q = λn−2 det(Q̂tQ)In.

Thus

(Q̂tQ)2 = λn−2 det(Q̂tQ)In. (4.10)

Let 1 6 i < j 6 n. Since adj (In − Eii − Ejj + Eij + Eji) = −(In − Eii − Ejj +

Eij + Eji), we obtain

adj ψ(In − Eii − Ejj + Eij + Eji) = ψ(adj (In − Eii − Ejj + Eij + Eji))

= ψ(−(In − Eii − Ejj + Eij + Eji)).

It follows that

adj (λQ(In − Eii − Ejj + Eij + Eji)Q̂
t) = −λQ(In − Eii − Ejj + Eij + Eji)Q̂

t

and hence

λn−1(adj Q̂t)adj (In − Eii − Ejj + Eij + Eji)(adj Q)

= − λQ(In − Eii − Ejj + Eij + Eji)Q̂
t

By computing

λn−2(adj Q̂t)(In−Eii−Ejj +Eij +Eji)(adj Q) = Q(In−Eii−Ejj +Eij +Eji)Q̂
t

⇒ λn−2Q̂t(adj Q̂t)(In−Eii−Ejj+Eij+Eji)(adj Q)Q = Q̂tQ(In−Eii−Ejj+Eij+Eji)Q̂
tQ
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⇒ λn−2 det(Q̂tQ)(In−Eii−Ejj+Eij+Eji) = Q̂tQ(In−Eii−Ejj+Eij+Eji)Q̂
tQ.

By (4.10), we have

(Q̂tQ)(Q̂tQ)(In−Eii−Ejj +Eij +Eji) = (Q̂tQ)(In−Eii−Ejj +Eij +Eji)(Q̂
tQ)

which implies

(Q̂tQ)(In − Eii − Ejj + Eij + Eji) = (In − Eii − Ejj + Eij + Eji)(Q̂
tQ)

for all 1 6 i < j 6 n. Hence Q̂tQ = ζIn and also QQ̂t = ζIn for some nonzero

scalar ζ ∈ K∧ since Q̂tQ ∈ Hn(K). Moreover, adj (λζIn) = adj (λQQ̂t) implies

λn−1ζn−1In = adj ψ(In) = ψ(In)

= λQQ̂t = λζIn.

Therefore, (λζ)n−2 = 1.

Lemma 4.2.4. Let m,n be integers with m,n > 3. Let ψ : Hn(F)→ Hm(K) be

a mapping satisfying (AH2). Then the following statements are equivalent.

(a) ψ(In) = 0.

(b) ψ(A) = 0 for every rank one matrix A ∈ Hn(F).

(c) rank ψ(A) 6 m− 2 for every A ∈ Hn(F).

(d) ψ(adj A) = 0 for every A ∈ Hn(F).

Proof. By letting P = In in Lemma 4.2.2, we have ψ = φP . Then we obtain (a)

=⇒ (b) =⇒ (c). ψ(In) = ψ(adj In) = 0 shows that (d) =⇒ (a).

We now show (c) =⇒ (d). Let A ∈ Hn(F). Since rank ψ(A) 6 m − 2,

ψ(adj A) = adj (ψ(A)) = 0.
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Lemma 4.2.5. Let m,n be integers with m,n > 3. Let ψ : Hn(F) → Hm(K)

be a mapping satisfying (AH2). Let P ∈ Hn(F) be an arbitrarily fixed invertible

matrix. Let φP : Hn(F)→ Hm(K) be defined by

φP (A) = ψ(PAP
t
) for every A ∈ Hn(F). (4.11)

If rank φP (In) = m, then rank φP (αEii) = 1 for all integers 1 6 i 6 n and

nonzero scalars α ∈ F−.

Proof. We let Q := adj P . Then

ψ(Q
t
Q) = ψ(adj P

t
adj P ) = ψ(adj (PP

t
)) = adj ψ(PP

t
) = adj φP (In)

which implies rank ψ(Q
t
Q) = m. Thus,

rank (adj ψ(Q
t
Q)) = m. (4.12)

We claim that

rank φ(Eii) = 1 for every i = 1, · · · , n.

By (4.1),

rank adj

(
φP (Eii)− φP

(
n∑

j=1,j 6=i

−Ejj

))
= rank adj φP

(
Eii −

(
n∑

j=1,j 6=i

−Ejj

))

= rank adj φP (In)

= m.

This implies rank
(
φP (Eii)− φP

(∑n
j=1,j 6=i−Ejj

))
= m and hence

rank (φP (Eii)) + rank

(
φP

( ∑

j=1,j 6=i

−Ejj

))
> m.

In addition, by the definition of φP , (4.13), Lemma 2.2.4(a), (b) and (c) hold for

φP as well. It follows that rank φP (Eii) 6 1 and rank φ
(∑n

j=1,j 6=i−Ejj

)
6 m−1.

Therefore, rank φP (Eii) = 1.
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By Lemma 2.2.4(a), rank φP (αEii) = rank ψ(αEii) 6 1 for every 1 6 i 6 n

and nonzero scalar α ∈ F−. Suppose there exist 1 6 i0 6 n and a nonzero

scalar α0 ∈ F− such that φP (α0Ei0i0) = 0. As n > 3, we can choose two distinct

integers 1 6 s < t 6 n with s, t 6= i0 such that

−Ess = adj (In − Ess − (1 + α0)Ei0i0 − (1− α−10 )Ett).

Then we have

ψ(Q
t
(−Ess)Q) = ψ(adj (P (In − Ess − (1 + α0)Ei0i0 − (1− α−10 )Ett)P

t
))

= adj ψ(P (In − Ess − (1 + α0)Ei0i0 − (1− α−10 )Ett)P
t
))

= adj φP (In − Ess − (1 + α0)Ei0i0 − (1− α−10 )Ett).

By (4.1),

ψ(Q
t
(−Ess)Q) = adj φP (In − Ess − Ei0i0 − (1− α−10 )Ett − (α0Ei0i0))

= adj (φP (In − Ess − Ei0i0 − (1− α−10 )Ett)− φP (α0Ei0i0))

and hence

ψ(Q
t
(−Ess)Q) = adj φP (In − Ess − Ei0i0 − (1− α−10 )Ett)

= adj ψ(P (In − Ess − Ei0i0 − (1− α−10 )Ett)P
t
)

= ψ(adj (P (In − Ess − Ei0i0 − (1− α−10 )Ett)P
t
))

= ψ((adj P
t
)(adj (In − Ess − Ei0i0 − (1− α−10 )Ett))(adj P ))

= ψ(Q
t
(adj (In − Ess − Ei0i0 − (1− α−10 )Ett))Q).

Since adj (In − Ess − Ei0i0 − (1 − α−10 )Ett) = 0, we obtain ψ(Q
t
(−Ess)Q) = 0.

Next, we compute

adj ψ(Q
t
Q) = adj ψ(Q

t
((In − Ess − Ett) + Ess + Ett)Q)

= adj ψ(Q
t
((In − Ess − Ett) + Ess)Q−Q

t
(−Ett)Q)

= adj (ψ(Q
t
((In − Ess − Ett) + Ess)Q)− ψ(Q

t
(−Ett)Q))

= adj ψ(Q
t
((In − Ess − Ett) + Ess)Q)
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and hence

adj ψ(Q
t
Q) = adj (ψ(Q

t
(In − Ess − Ett)Q)− ψ(Q

t
(−Ess)Q))

= adj ψ(Q
t
(In − Ess − Ett)Q)

= ψ((adj Q)(adj (In − Ess − Ett))(adj Q
t
)).

Since adj (In − Ess − Ett) = 0, adj ψ(Q
t
Q) = 0 which contradicts with (4.12).

We are done

Lemma 4.2.6. Let m,n be integers with m,n > 3. Let ψ : Hn(F)→ Hm(K) be

a mapping satisfying (AH2). If ψ(In) 6= 0, then ψ is injective and

rank (A− B) = n ⇐⇒ rank (ψ(A)− ψ(B)) = m

for all A,B ∈ Hn(F).

Proof. Let A ∈ Hn(F) be of rank one. Then by Proposition 1.3.1, there exist

an invertible matrix P ∈ Hn(F) and a nonzero scalar a ∈ F− such that A =

P (aE11)P
t
. Let φP : Hn(F)→ Hm(K) be defined by

φP (A) = ψ(PAP
t
) for every A ∈ Hn(F). (4.13)

Since adj ψ(In) = ψ(In) and ψ(In) 6= 0, it follows that rank ψ(In) = m and

hence rank φP ((P
t
P )−1) = m as φP ((P

t
P )−1) = ψ(P (P

t
P )−1P

t
) = ψ(In). This

implies rank φP (In) = m by Lemma 4.2.2; otherwise, rank φP (A) 6 m − 2

for every A ∈ Hn(F) which contradicts with rank φP ((P
t
P )−1) = m. Thus,

rank adj φP (In) = m. It follows from Lemma 4.2.5 that rank φP (aEii) = 1 for

all integers 1 6 i 6 n and nonzero scalars a ∈ F−. Hence,

rank ψ(A) = rank ψ(P (aE11)P
t
) = rank φP (aE11) = 1

Let A,B ∈ Hn(F) such that ψ(A) = ψ(B). Suppose A − B 6= 0. Then by

Lemma 4.2.1, there exists a matrix C ∈ Hn(F) of rank at most n− 2 such that
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rank (A − B + C) = n − 1. Hence, rank adj (A − B + C) = 1. This implies

rank ψ(adj (A− B + C)) = 1 by Lemma 4.2.5. On the other hand,

ψ(adj (A− B + C)) = adj (ψ(A+ C)− ψ(B))

= adj (ψ(A+ C)− ψ(A))

= adj ψ(C)

= 0

which is a contradiction. Therefore A = B implies ψ is injective.

Let A,B ∈ Hn(F). As ψ is injective, by Lemma 2.2.5, we have

rank (A− B) = n ⇐⇒ rank ψ(A− B) = m

⇐⇒ rank adj ψ(A− B) = m

⇐⇒ rank adj (ψ(A)− ψ(B)) = m

⇐⇒ rank (ψ(A)− ψ(B)) = m.

4.3 Some examples

If ψ satisfies condition (AH1) or (AH2), we have adj ψ(In) = ψ(In). Thus,

ψ(In) is either zero or invertible. If ψ(In) = 0, ψ sends all rank one matrices

to zero by Lemma 4.2.4. By referring to Theorem 4.4.2 and Theorem 4.5.2, the

condition ψ(In) 6= 0 is indispensable as there are some mappings ψ satisfying

condition (AH1) or (AH2) which are nonzero and send all rank one matrices to

zero. Thus, we give some examples of such mappings in this section.

Let m,n be integers with m,n > 3, and let F and K be fields which possess

involutions − of F and ∧ of K, respectively.
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Example 4.3.1. Let τ : F− → K∧ be a nonzero function. We define the mapping

ψ1 : Hn(F)→ Hm(K) by

ψ1(A) =

{
τ(a11)

∑m−2
i=1 Eii if A = (aij) ∈ Hn(F) is of rank r with 1 < r < n,

0 otherwise.

Example 4.3.2. Let m,n > 4. Let f : Hn(F)→ K∧ be a nonzero function and

let σ : (F,− ) → (K,∧ ) be a nonzero field homomorphism such that σ̂(a) = σ(a)

for every a ∈ F. Let ψ2 : Hn(F)→ Hm(K) be the mapping defined by

ψ2(A) =





f(A)E11 if rank A = 2,
σ(a12)E12 + σ(a21)E21 if A = (aij) ∈ Hn(F) is of rank r, 2 < r < n,
0 otherwise.

Example 4.3.3. Let m,n > 5. Let τ : F− → K∧ be a nonzero function and let

σ : (F,− )→ (K,∧ ) be a nonzero field homomorphism such that σ̂(a) = σ(a) for

every a ∈ F. Let A = (aij) ∈ Hn(F) and let ψ3 : Hn(F)→ Hm(K) be defined by

ψ3(A) =




τ(a11)E11 + τ(a22)E22 if rank A = r, 1 < r < n, r is odd
σ(a12)E12 + σ(a21)E21 + τ(a33)E33 if rank A = r, 1 < r < n, r is even
0 otherwise.

Example 4.3.4. Let m > n + 2 and let E = {adj A : A is invertible}. Let

g : Hn(F) → Hm(K) be a nonzero mapping and let ψ4 : Hn(F) → Hm(K) be

defined by

ψ4(A) =

{
0 if A ∈ Hn(F) is of rank 0 or 1, or A ∈ E ,
g(A)⊕ 0m−n otherwise.

It can be verified that each ψi for i = 1, 2, 3, 4 satisfies condition (AH1) or

(AH2) with ψi(In) = 0. These mappings are neither injective nor surjective.
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4.4 Characterisation of classical adjoint-

commuting mappings on hermitian ma-

trices

Letm,n be integers withm,n > 3. Let F be a field which possesses an involution

− of F. We observe that if a mapping ψ : Hn(F) → Hm(F) satisfies condition

(AH1), then it satisfies condition (AH2). Moreover, if ψ(In) 6= 0, then ψ is

injective by Lemma 4.2.6. By using similar arguments as in the proof of Lemma

4.2.6, it can be shown that

rank (A+ αB) = n ⇐⇒ rank (ψ(A) + αψ(B)) = m (4.14)

for all A,B ∈ Hn(F) and α ∈ F−.

Theorem 4.4.1. Let m,n be integers with m,n > 3. Let F and K be fields

which possess involutions − of F and ∧ of K, respectively, and − is proper. Then

ψ : Hn(F) → Hm(K) is a classical adjoint-commuting additive mapping if and

only if either ψ = 0, or m = n and

ψ(A) = λPAσP̂ t for every A ∈ Hn(F)

where σ : (F,− )→ (K,∧ ) is a nonzero field homomorphism satisfying σ̂(a) = σ(a)

for every a ∈ F, Aσ is the matrix obtained from A by applying σ entrywise,

P ∈ Mn(K) is invertible with P̂ tP = ζIn, and λ, ζ ∈ K∧ are scalars with

(λζ)n−2 = 1.

Proof. The sufficiency is obvious. We now prove the necessity. Since ψ is ad-

ditive, it can be easily shown that ψ satisfies (AH2). In addition, ψ(In) = 0 or

rank ψ(In) = m as adj ψ(In) = ψ(In).
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Case I: ψ(In) = 0.

By Lemma 4.2.4, ψ(A) = 0 for every rank one matrix A ∈ Hn(F). Then it

follows from Lemma 2.2.1 and the additivity of ψ that ψ = 0.

Case II: rank ψ(In) = m.

Then by Lemma 4.2.6, ψ is injective. Moreover, rank ψ(A) 6 1 for every rank

one matrix A ∈ Hn(F) by Lemma 2.2.4 (a). This implies that ψ preserves rank

one matrices. Next, we suppose n > m. Note that

m = rank ψ(In) 6
n∑

i=1

rank ψ(Eii) = n

by the additivity of ψ. By [5, Theorem 2.1], there exist integers 1 6 t1 < · · · <

tℓ 6 n, with m 6 ℓ < n such that rank ψ(Et1t1 + · · ·+ Etℓtℓ) = m. Thus,

m = rank adj ψ(Et1t1 + · · ·+ Etℓtℓ) = rank ψ(adj (Et1t1 + · · ·+ Etℓtℓ)) 6 1

as ℓ < n. This is a contradiction since m > 3. Thus m = n. By [23, Main

Theorem, p.g.603] and [16, Theorem 2.1 and Remark 2.4], we have

ψ(A) = λPAσP̂ t for every A ∈ Hn(F)

where σ : (F,− )→ (K,∧ ) is a nonzero field homomorphism satisfying σ̂(a) = σ(a)

for every a ∈ F, P ∈ Mn(F) is an invertible matrix and λ ∈ K∧ is a nonzero

scalar . Since adj ψ(In) = ψ(In), it follows from Lemma 4.2.3 that

P̂ tP = ζIn and (λζ)n−2 = 1.

Theorem 4.4.2. Let m,n be integers with m,n > 3 and let F be a field which

possesses a proper involution − of F such that either |F−| = 2 or |F−| > n + 1.
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Then ψ : Hn(F)→ Hm(F) is a mapping satisfying (AH1) if and only if ψ(A) = 0

for every rank one matrix A ∈ Hn(F) and rank (ψ(A) + αψ(B)) 6 m− 2 for all

A,B ∈ Hn(F) and α ∈ F−; or m = n and

ψ(A) = λPAP
t
for every A ∈ Hn(F)

where P ∈ Mn(F) is invertible with P
t
P = ζIn and λ, ζ ∈ F− are scalars with

(λζ)n−2 = 1.

Proof. The sufficiency part is obvious. We now consider the necessity. If ψ(In) =

0, then by Lemma 4.2.4, ψ(adj A) = 0 for every A ∈ Hn(F). By the definition

of ψ, this means

adj (ψ(A+ αB)) = ψ(adj (A+ αB)) = 0

for all A,B ∈ Hn(F) and α ∈ F−. Therefore,

rank (ψ(A) + αψ(B)) 6 m− 2

for all A,B ∈ Hn(F) and α ∈ F−.

Next, we consider ψ(In) 6= 0. Then we have (4.14) and hence by Lemma 2.2.6,

ψ is additive. In view of Theorem 4.4.1, the result is obtained immediately.

Theorem 4.4.3. Let m,n be integers with m,n > 3. Let F and K be fields

which possess involutions − of F and ∧ of K, respectively, such that |K∧| = 2,

or |F−|, |K∧| > 3, and F and K are not of characteristic 2 if − and ∧ are the

identity mappings. Then ψ : Hn(F)→ Hm(K) is a surjective mapping satisfying

(AH2) if and only if m = n, F and K are isomorphic, and

ψ(A) = λPAσP̂ t for every A ∈ Hn(F)
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where σ : (F,− )→ (K,∧ ) is a field isomorphism satisfying σ̂(a) = σ(a) for every

a ∈ F, Aσ is the matrix obtained from A by applying σ entrywise, P ∈ Mn(K)

is invertible with P̂ tP = ζIn, and λ, ζ ∈ K∧ are scalars with (λζ)n−2 = 1.

Proof. The sufficiency part is clear. We now consider the necessity part. If

ψ(In) = 0, then rank ψ(A) 6 m− 2 for every A ∈ Hn(F) by Lemma 4.2.4 which

contradicts that ψ is surjective. Thus ψ(In) 6= 0. Due to Lemma 4.2.6, ψ is

injective and hence bijective. In addition,

rank (A− B) = n ⇐⇒ rank (ψ(A)− ψ(B)) = m for all A,B ∈ Hn(F).

Now, we consider two cases

Case I: |K∧| = 2.

Then rank (A − B) = n ⇐⇒ rank (ψ(A) + ψ(B)) = m for all A,B ∈ Hn(F).

Let A,B ∈ Hn(F) with rank (A− B) = n, then by Lemma 2.2.5,

rank ψ(A− B) = rank (ψ(A)− ψ(B))

= rank (ψ(A) + ψ(B))

= m.

Thus,

ψ(A− B)adj ψ(A− B) = detψ(A− B)Im

and

(ψ(A) + ψ(B))adj (ψ(A) + ψ(B)) = det(ψ(A) + ψ(B))Im.

It follows that

ψ(A− B)adj ψ(A− B)

detψ(A− B)
=

(ψ(A) + ψ(B))adj (ψ(A) + ψ(B))

det(ψ(A) + ψ(B))
.

Hence,

ψ(A− B)

detψ(A− B)
=

ψ(A) + ψ(B)

det(ψ(A) + ψ(B))
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since adj (ψ(A)+ψ(B)) = adj (ψ(A)−ψ(B)) = ψ(adj (A−B)) = adj ψ(A−B).

As detψ(A− B) = det(ψ(A) + ψ(B)) = 1, we have

ψ(A− B) = ψ(A) + ψ(B) for all A,B ∈ Hn(F) if rank (A− B) = n.

By the injectivity of ψ and

ψ(−In) = ψ(0− In) = ψ(0) + ψ(In) = ψ(In),

we have In = −In and hence F is of characteristic 2. Thus, −A = A for every

A ∈ Hn(F). This implies A− B = A+B for all A,B ∈ Hn(F). Therefore,

ψ(A+B) = ψ(A) + ψ(B) for all A,B ∈ Hn(F) if rank (A− B) = n. (4.15)

Next, we consider the case where rank (A−B) < n. By Lemma 2.2.2 (b), there

exists a matrix C ∈ Hn(F) such that rank (A + C) = rank (A + B + C) = n.

Then by (4.15), ψ(A+ C) = ψ(A) + ψ(C) and

ψ(A+B) + ψ(C) = ψ(A+B +C) = ψ(A+C) + ψ(B) = ψ(A) + ψ(C) + ψ(B).

This implies

ψ(A+B) = ψ(A) + ψ(B) for all A,B ∈ Hn(F).

by Theorem 4.4.1 and the bijectivity of ψ, the result is proved.

Case II: |F−|, |K∧| > 3, and F and K are not of characteristic 2 when − and ∧

are the identity mappings.

By [14, Theorem 3.6] and the fundamental theorem of the geometry of hermitian

matrices, Theorem 1.5.4, we have m = n, F and K are isomorphic and

ψ(A) = λPAσP̂ t +R0 for every A ∈ Hn(F)
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where σ : (F,− )→ (K,∧ ) is a field isomorphism satisfying σ̂(a) = σ(a) for every

a ∈ F, Aσ is the matrix obtained from A by applying σ entrywise, P ∈ Mn(K)

is invertible, R0 ∈ Hn(K) and λ ∈ K∧ is a nonzero scalar. As ψ(0) = 0, R0 = 0.

We also have adj ψ(In) = ψ(adj In) = ψ(In). By Lemma 4.2.3, there exists a

nonzero scalar ζ ∈ K∧ such that

P̂ tP = ζIn and(λζ)n−2 = 1.

We are done.

4.5 Characterisation of classical adjoint-

commuting mappings on symmetric matri-

ces

Let F be a field which possesses an involution − of F. If − is identity, then

Hn(F) = Sn(F).

Theorem 4.5.1. Let m,n be integers with m,n > 3 and let F and K be fields.

Then ψ : Sn(F) → Sm(K) is a classical adjoint-commuting additive mapping if

and only if ψ = 0, or m = n and

ψ(A) = λPAσP t for every A ∈ Sn(F)

where σ : F → K is a nonzero field homomorphism, Aσ is the matrix obtained

from A by applying σ entrywise, P ∈ Mn(K) is invertible with P tP = ζIn, and

λ, ζ ∈ K are scalars with (λζ)n−2 = 1.

Proof. The sufficiency part can be shown easily. We now show the necessity

part. By using similar arguments as in Theorem 4.4.1, we can prove that either
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ψ = 0, or m = n, ψ is injective and preserves rank one matrices. In addition,

rank adj ψ(In) = n. By [15, Theorem 2.1], ψ is of the following forms:

(I) ψ(A) = λPAσP t for every A ∈ Sn(F), or

(II) ψ(A) = Qρ(A)Qt for every A ∈ Sn(F) if n = 3 and F = Z2 := {0, 1}

where σ : F → K is a field homomorphism, P ∈ Mn(F) and Q ∈ M3(F) are

invertible, λ ∈ K is nonzero and ρ : S3(Z2) → S3(K) is an additive mapping

preserving rank one matrices with rank ρ(I3) = 3.

Case I.

Since adj ψ(In) = ψ(adj In) = ψ(In), by Lemma 4.2.3, we have P tP = ζIn and

(λζ)n−2 = 1, as desired.

Case II.

We observe that ρ is nonzero. Since ψ is additive, ψ(A) = ψ(−A) = −ψ(A)

for every A ∈ S3(Z2). Thus, K is of characteristic 2. Let A ∈ S3(Z2). From

adj (ψ(A)) = ψ(adj A), we have

adj (Qρ(A)Qt) = Qρ(adj A)Qt

=⇒ (adj Qt)adj (ρ(A))(adj Q) = Qρ(adj A)Qt

=⇒ Q−1(adj Qt)adj (ρ(A))(adj Q)(Q−1)t = ρ(adj A)

=⇒ ρ(adj A) = Hadj (ρ(A))H t

where H = Q−1(adj Qt) ∈ M3(K). Since ψ satisfies (AH2) and ψ is injective,

by Lemma 2.2.5 ,

rank A = 3 ⇐⇒ rank ψ(A) = 3 ⇐⇒ rank ρ(A) = 3.

So, rank ρ(Eii + Ejj) = 2 for all 1 6 i 6= j 6 3 as ρ preserves rank one matrices

and rank ρ(I3) = 3. Since rank ρ(E11) = 1, by Proposition 1.3.1, there exist an
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invertible matrix P1 ∈ M3(K) and a nonzero scalar α1 ∈ K such that ρ(E11) =

α1P1E11P
t
1. Let

ρ(E22) = P1

(
u1 V1
V t
1 U1

)
P t
1

where u1 ∈ K, V1 ∈ M1,2(K) and U1 ∈ S2(K). If U1 = 0, then V1 = 0 since

rank ρ(E22) = 1 and hence rank ρ(E11+E22) < 2, a contradiction. Thus U1 6= 0.

This implies rank U1 = 1 as rank ρ(E22) = 1. Again, by Proposition 1.3.1, there

exist an invertible matrix P2 ∈ M2(K) and a nonzero scalar α2 ∈ K such that

U1 = α2P2E11P
t
2. Then we have

ρ(E22) = P1



u1 V1

V t
1 P2

(
α2 0
0 0

)
P t
2


P t

1

= P1

(
1 0
0 P2

)

u1 v11 v12
v11 α2 0
v12 0 0



(
1 0
0 P t

2

)
P t
1

where V1 = (v11 v12). As rank ρ(E22) = 1, we have v12 = 0 and u1 = v211α
−1
2 .

Thus,

ρ(E22)

= P1

(
1 0
0 P2

)

1 v11α

−1
2 0

0 1 0
0 0 1





0 0 0
0 α2 0
0 0 0






1 0 0
v11α

−1
2 1 0

0 0 1



(
1 0
0 P t

2

)
P t
1

= α2P3E22P
t
3

where P3 = P1

(
1 0
0 P2

)

1 v11α

−1
2 0

0 1 0
0 0 1


 ∈M3(K) is invertible. Let

ρ(E33) = P3

(
U2 V2
V t
2 α3

)
P t
3

with α3 ∈ K, V2 ∈ M2,1(K) and U2 ∈ S2(K). Since rank ρ(E33) = 1 and

rank ρ(I3) = 3, we have α3 6= 0 and hence U2 = α−13 V2V
t
2 . Thus,

ρ(E33) = P3

(
I2 α−13 V2
0 1

)

0 0 0
0 0 0
0 0 α3



(

I2 0
α−13 V t

2 1

)
P t
3

= α3P4E33P
t
4
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where P4 = P3

(
I2 α−13 V2
0 1

)
∈ M3(K) is invertible. Then ρ(Eii) = αiP4EiiP

t
4

for i = 1, 2, 3 and this implies

ψ(Eii) = Qρ(Eii)Q
t = αiQP4Eii(QP4)

t for i = 1, 2, 3.

By letting P = QP4 ∈M3(K), we obtain

ψ(Eii) = αiPEiiP
t for i = 1, 2, 3.

Let i, j, k be three distinct integers with 1 6 i, j, k 6 3. Then

Eii = adj (Ejj + Ekk)

=⇒ ψ(Eii) = ψ(adj (Ejj + Ekk))

=⇒ αiPEiiP
t = adj (ψ(Ejj) + ψ(Ekk))

=⇒ P (αiEii)P
t = adj (αjPEjjP

t + αkPEkkP
t).

This implies

P tP (αiEii) = P tadj (P (αjEjj + αkEkk)P
t)(P t)−1

= P t(adj P t)adj (αjEjj + αkEkk)(adj P )(P
t)−1.

Since P t(adj P t) = (detP t)I3, we obtain

P tP (αiEii) = (detP t)(αjαkEii)(adj P )(P
t)−1

= (αjαkEii)(adj P )(detP
t)(P t)−1

= (αjαkEii)(adj P )(adj P
t)

= (αjαkEii)adj (P
tP ).

Hence, P tP = diag (ζ1, ζ2, ζ3) for some nonzero scalars ζ1, ζ2, ζ3 ∈ K. Thus, we

get

ψ(Eii) = αiPEiiP
t = αiPEii(P

tP )P−1 = λiPEiiP
−1 for i = 1, 2, 3

where λi = αiζi ∈ K is nonzero. We let Dij := Eij +Eji ∈ S3(Z2). Let ψ(Dij) =

PAijP
−1 with Aij = (ast) ∈ S3(K). We now show that λi = λj = λk = 1

67

Univ
ers

ity
 of

 M
ala

ya



where i, j, k are distinct with 1 6 i, j, k 6 3 and Aij = Dij. As adj Dij = Ekk,

we obtain adj (ψ(Dij)) = ψ(adj Dij) = ψ(Ekk) is of rank one. This implies

rank ψ(Dij) = 2. Thus,

ψ(Dij)ψ(Ekk) = ψ(Dij)adj ψ(Dij) = detψ(Dij)I3 = 0

=⇒ (PAijP
−1)(λkPEkkP

−1) = 0.

Therefore, we have AijEkk = EkkAij = 0 implies ask = aks = 0 for s = 1, 2, 3.

Since rank (Dij + Eii + Ejj) = 1 implies rank ψ(Dij + Eii + Ejj) = 1, we get

rank (Aij + λiEii + λjEjj) = 1. Thus,

(aii + λi)(ajj + λj) = a2ij. (4.16)

If aij = 0, we obtain aii = −λi or ajj = −λj but not both as Aij 6= 0. Suppose

aii = −λi. Then

ψ(Dij + Eii + Ekk) = P (Aij + λiEii + λkEkk)P
−1 = P (ajjEjj + λkEkk)P

−1

implies

rank ψ(Dij + Eii + Ekk) = rank (ajjEjj + λkEkk) < 3.

However, rank ψ(Dij+Eii+Ekk) = 3 ⇐⇒ rank (Dij+Eii+Ekk) = 3 by Lemma

2.2.5. So, that is a contradiction. Therefore aii 6= −λi. By similar arguments,

ajj 6= −λj. These imply aij 6= 0. Since adj (Dij + Ekk) = Dij + Ekk, we have

adj ψ(Dij + Ekk) = ψ(adj (Dij + Ekk)) = ψ(Dij + Ekk)

and hence

adj (PAijP
−1 + λkPEkkP

−1) = PAijP
−1 + λkPEkkP

−1

which implies that

adj (Aij + λkEkk) = Aij + λkEkk.
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Thus, −λkaij = aij, aiiλk = ajj and

aiiajj − a2ij = λk. (4.17)

These imply λk = 1 and aii = ajj as K is of characteristic 2 and aij 6= 0. Since

adj (ψ(Eii + Ekk)) = ψ(adj (Eii + Ekk)) = ψ(Ejj), we have

adj (P (λiEii + λkEkk)P
−1) = P (λjEjj)P

−1

and hence λiλk = λj. Thus, λi = λj as λk = 1. In addition, adj (ψ(Eii+Ejj)) =

ψ(adj (Eii + Ejj)) = ψ(Ekk) implies

adj (P (λiEii + λjEjj)P
−1) = P (λkEkk)P

−1

and hence λiλj = λk. We obtain λi = λj = 1. Now, consider adj (ψ(Dij+Ejj)) =

ψ(adj (Dij+Ejj)) = ψ(Ekk). We have adj (P (Aij+Ejj)P
−1) = PEkkP

−1 implies

adj (Aij + Ejj) = Ekk. Thus,

aii(ajj + 1)− a2ij = 1. (4.18)

Equations (4.17) and (4.18) imply aii = ajj = 0 and hence aij = 1 as the

characteristic of K is 2. Therefore Aij = Dij. So, ψ(A) = PAP−1 for every

A ∈ S3(Z2). Since (PAP−1)t = PAP−1, we have P tPA = AP tP for every

A ∈ S3(Z2). This implies that there exists a nonzero scalar ζ ∈ K such that

P tP = ζ−1I3. Thus, we conclude that

ψ(A) = ζPAP t for every A ∈ S3(Z2).

By letting − and ∧ be identity, we obtain Theorem 4.5.2 from Theorem 4.4.2

and Theorem 4.5.3 from Theorem 4.4.3.
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Theorem 4.5.2. Let m,n be integers with m,n > 3. Let F be a field with either

|F| = 2 or |F| > n + 1. Then ψ : Sn(F) → Sm(F) is a mapping satisfying

(AH1) if and only if either ψ(A) = 0 for every rank one matrix A ∈ Sn(F) and

rank (ψ(A) + αψ(B)) 6 m− 2 for all A,B ∈ Sn(F) and α ∈ F; or m = n and

ψ(A) = λPAP t for every A ∈ Sn(F)

where P ∈ Mn(F) is invertible with P tP = ζIn and λ, ζ ∈ F are scalars with

(λζ)n−2 = 1.

Theorem 4.5.3. Let m,n be integers with m,n > 3. Let F and K be fields

with |K| = 2, or |F|, |K| > 3 and F and K are not of characteristic 2. Then

ψ : Sn(F) → Sm(K) is a surjective mapping satisfying (AH2) if and only if

m = n, F and K are isomorphic, and

ψ(A) = λPAσP t for every A ∈ Sn(F)

where σ : F → K is a field isomorphism, Aσ is the matrix obtained from A by

applying σ entrywise, P ∈ Mn(K) is invertible with P tP = ζIn, and λ, ζ ∈ K

are scalars with (λζ)n−2 = 1.

4.6 Characterisation of classical adjoint-

commuting mappings on 2 × 2 hermitian

and symmetric matrices

Let F and K be fields which possess involutions − of F and ∧ of K, respectively.

We recall that if − and ∧ are proper, then there exists i ∈ F with i = −i when

F has characteristic not 2, and i = 1 + i when F has characteristic 2 such that

F = F− ⊕ iF−. Respectively, there exists j ∈ K such that K = K∧ ⊕ jK∧. To
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conclude this chapter, we give a general description of mappings ψ : H2(F) →

H2(K) satisfying condition (AH1) or (AH2).

Let V1, · · · ,Vn be F−-vector spaces over F and let W be a K∧-vector space

over K. We know that if f : V1 × · · · × Vn →W is an additive mapping, then

f(v1, · · · , vn) = φ1(v1) + · · ·+ φn(vn) for all (v1, · · · , vn) ∈ V1 × · · · × Vn

where φi : Vi → W is an additive mapping with φi(vi) = f(0, · · · 0, vi, 0 · · · , 0)

for every vi ∈ Vi and i = 1, · · · , n. Furthermore, if (F,− ) = (K,∧ ) and f is an

F−-linear mapping which means f is an additive and F−-homogeneous mapping,

then every φi is F−-linear. Moreover, if V1 = · · · = Vn = W = F−, then every

φi : F
− → F− is a linear mapping. Thus, for every 1 6 i 6 n, there exists a

scalar βi ∈ F− such that φi(ai) = βiai for every ai ∈ F−, and hence, we have

f(a1, · · · , an) = β1a1 + · · ·+ λnan for all (a1, · · · , an) ∈M1,n(F
−).

With these observations, we obtain the following results.

Proposition 4.6.1. Let F and K be fields which possess involutions − of F and

∧ of K, respectively. Let ψ : H2(F)→ H2(K) be a mapping satisfying (AH2).

(a) If − and ∧ are proper, then

ψ

(
a b+ ic

b+ ic d

)

=

(
g1(a) + g2(b) + g3(c) + g4(d) ̂φ(a− d) + γ̂(b, c)

φ(a− d) + γ(b, c) g4(a)− g2(b)− g3(c) + g1(d)

)

for all a, b, c, d ∈ F− where g1, g2, g3, g4 : F− → K∧, φ : F− → K∧ ⊕ jK∧

and γ : F− × F− → K∧ ⊕ jK∧ are additive with

φ(a) = g5(a) + jg6(a) for every a ∈ F−,

γ(b, c) = g7(b) + g8(c) + j(g9(b) + g10(c)) for all b, c ∈ F−,

where g5, g6, g7, g8, g9, g10 : F
− → K∧ are additive mappings.
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(b) If − and ∧ are identity mappings on F and K, respectively, then ψ : S2(F)→

S2(K) satisfies (AH2) with

ψ

(
a b
b d

)
=

(
g1(a) + g2(b) + g3(d) φ1(a− d) + φ2(b)
φ1(a− d) + φ2(b) g3(a)− g2(b) + g1(d)

)

for all a, b, d ∈ F where g1, g2, g3, φ1, φ2 : F→ K are additive.

Proof. Let A,B ∈ H2(F). Then

ψ(A− B) = ψ(adj adj (A− B)) = adj adj (ψ(A)− ψ(B)) = ψ(A)− ψ(B).

This implies ψ(−B) = −ψ(B) and hence

ψ(A+B) = ψ(A− (−B)) = ψ(A)− (−ψ(B)) = ψ(A) + ψ(B)

for all A,B ∈ H2(F). Thus, ψ is a classical adjoint-commuting additive mapping.

(a) Let a, b, c, d ∈ F− and let g1, g2, g3, g4, h1, h2, h3, h4 : F− → K∧,

φ, φ1 : F− → K∧ ⊕ jK∧ and γ : F− × F− → K∧ ⊕ jK∧ be additive

mappings such that

ψ

(
a b+ ic

b+ ic d

)

=

(
g1(a) + g2(b) + g3(c) + g4(d) φ̂(a) + γ̂(b, c) + φ̂1(d)

φ(a) + γ(b, c) + φ1(d) h1(a) + h2(b) + h3(c) + h4(d)

)
.

Since ψ is a classical adjoint-commuting mapping, we have h1 = g4,

h2 = −g2, h3 = −g3, h4 = g1 and φ = −φ1. Thus,

ψ

(
a b+ ic

b+ ic d

)

=

(
g1(a) + g2(b) + g3(c) + g4(d) ̂φ(a− d) + γ̂(b, c)

φ(a− d) + γ(b, c) g4(a)− g2(b)− g3(c) + g1(d)

)
.

In addition, by the additivity of φ and γ,

φ(a) = g5(a) + jg6(a) for every a ∈ F−,

γ(b, c) = g7(b) + g8(c) + j(g9(b) + g10(c)) for all b, c ∈ F−,

where g5, g6, g7, g8, g9, g10 : F
− → K∧ are additive mappings.
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(b) Let a, b, d ∈ F and let g1, g2, g3, h1, h2, h3, φ1, φ2, φ3 : F → K be additive

mappings such that

ψ

(
a b
b d

)
=

(
g1(a) + g2(b) + g3(d) φ1(a) + φ2(b) + φ3(d)
φ1(a) + φ2(b) + φ3(d) h1(a) + h2(b) + h3(d)

)
.

Since adj is linear and ψ is a classical adjoint-commuting mapping, we have

h1 = g3, h2 = −g2, h3 = g1 and φ3 = −φ1. Thus,

ψ

(
a b
b d

)
=

(
g1(a) + g2(b) + g3(d) φ1(a− d) + φ2(b)
φ1(a− d) + φ2(b) g3(a)− g2(b) + g1(d)

)

for all a, b, d ∈ F.

Proposition 4.6.2. Let F be a field which possesses an involutions − of F. Let

ψ : H2(F)→ H2(F) be a mapping satisfying (AH1).

(a) If − is proper, then

ψ

(
a b+ ic

b+ ic d

)
=

(
α1a+ α2b+ α3c+ α4d φ(a− d) + γ(b, c)
φ(a− d) + γ(b, c) α4a− α2b− α3c+ α1d

)

for all a, b, c, d ∈ F− where

φ : F− → F− ⊕ iF− and γ : F− × F− → F− ⊕ iF− are linear with

φ(a) = (α5 + iα6)a for every a ∈ F−,

γ(b, c) = (α7b+ α8c) + i(α9b+ α10c) for all b, c ∈ F−,

and αi are some fixed scalars in F− for i = 1, · · · , 10.

(b) If − is identity, then ψ : S2(F)→ S2(F) satisfying (AH1) is linear with

ψ

(
a b
b d

)
=

(
α1a+ α2b+ α3d α4(a− d) + α5b
α4(a− d) + α5b α3a− α2b+ α1d

)

for all a, b, d ∈ F where α1, α2, α3, α4 and α5 are some fixed scalars in F.
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Proof. Let A,B ∈ H2(F) and α ∈ F−. Then

ψ(A+αB) = ψ(adj adj (A+αB)) = adj adj (ψ(A) +αψ(B)) = ψ(A) +αψ(B).

This implies ψ(αB) = αψ(B) and ψ(A+B) = ψ(A)+ψ(B) for all A,B ∈ H2(F).

Thus, ψ is a classical adjoint-commuting F−-linear mapping.

(a) Let a, b, c, d ∈ F− and let α1, α2, α3, α4, β1, β2, β3, β4 be some fixed scalars in

F−, φ, φ1 : F
− → F−⊕ iF− and γ : F−×F− → F−⊕ iF− be linear mappings

such that

ψ

(
a b+ ic

b+ ic d

)
=

(
α1a+ α2b+ α3c+ α4d φ(a) + γ(b, c) + φ1(d)
φ(a) + γ(b, c) + φ1(d) β1a+ β2b+ β3c+ β4d

)
.

Since ψ is a classical adjoint-commuting mapping, we have β4 = α1, β2 =

−α2, β3 = −α3, β4 = α1 and φ = −φ1. Thus,

ψ

(
a b+ ic

b+ ic d

)
=

(
α1a+ α2b+ α3c+ α4d φ(a− d) + γ(b, c)
φ(a− d) + γ(b, c) α4a− α2b− α3c+ α1d

)
.

In addition, by the linearity of φ and γ,

φ(a) = (α5 + iα6)a for every a ∈ F−,

γ(b, c) = (α7b+ α8c) + i(α9b+ α10c) for all b, c ∈ F−,

and αi are some fixed scalars in F− for i = 5, · · · , 10.

(b) Let a, b, d ∈ F and let α1, α2, α3, α4, α5, α6, β1, β2, β3 be some fixed scalars

in F,

ψ

(
a b
b d

)
=

(
α1a+ α2b+ α3d α4a+ α5b+ α6d
α4a+ α5b+ α6d β1a+ β2b+ β3d

)
.

Since ψ is a classical adjoint-commuting mapping, we have β1 = α3, β2 =

−α2, β3 = α1 and α6 = −α4. Thus,

ψ

(
a b
b d

)
=

(
α1a+ α2b+ α3d α4(a− d) + α5b
α4(a− d) + α5b α3a− α2b+ α1d

)
.
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Remark 4.6.3. Let F be a field of characteristic not 2 and let ψ : S2(F) →

S2(F) be a mapping satisfying (AH1). Then by using similar arguments as in [1,

Theorem 3],

ψ(A) = PA(adj P ) for every A ∈ S2(F)

where P ∈M2(F) is invertible with adj P = ±P t.
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Chapter 5

Classical adjoint-commuting mappings

on skew-hermitian matrices

5.1 Introduction

As in Chapter 4, throughout this chapter, unless otherwise stated, we let F and

K be fields which possess involutions − of F and ∧ of K, respectively, and let

m,n be integers with m,n > 3. We let F− and K∧ be the sets of all symmetric

elements of F and K, respectively. We also let SF− := {a ∈ F : a = −a} and

SK∧ := {a ∈ K : â = −a}.

We also observe that if n is a positive even integer, then µn ∈ F− and ηn ∈ K∧

for all µ ∈ F− ∪ SF− and for all η ∈ K∧ ∪ SK∧.

Remark 5.1.1. Let A ∈ Hn(F) and let µ ∈ F− ∪ SF−. If n is an even integer,

then µn−2adj A ∈ Hn(F).

In this chapter, we study the structure of ψ : SHn(F)→ SHm(K) that satisfies

the following conditions (see (A1) and (A2) in Section 2.1):

(AS1) ψ(adj (A + αB)) = adj (ψ(A) + αψ(B)) for all matrices A,B ∈ SHn(F)

and any scalar α ∈ F− when (F,− ) = (K,∧ ),

(AS2) ψ(adj (A− B)) = adj (ψ(A)− ψ(B)) for all matrices A,B ∈ SHn(F).

5.2 Some basic properties

Let m,n be even integers with m,n > 4. Let µ ∈ F− ∪ SF− and η ∈ K∧ ∪ SK∧

be fixed but arbitrarily chosen nonzero scalars and let ϕ : Hn(F)→ Hm(K) be a
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mapping satisfying

ϕ(µn−2adj (X − Y )) = ηm−2adj (ϕ(X)− ϕ(Y )) for all X, Y ∈ Hn(F). (H)

Lemma 5.2.1. Let m,n be even integers with m,n > 4. Let µ ∈ F− ∪ SF−

and η ∈ K∧ ∪ SK∧ be fixed but arbitrarily chosen nonzero scalars and let ϕ :

Hn(F) → Hm(K) be a mapping satisfying (H). Let A,B ∈ Hn(F). Then the

following statements hold.

(a) ϕ(µn−2adj A) = ηm−2adj ϕ(A).

(b) adj ϕ(A− B) = adj (ϕ(A)− ϕ(B)).

Proof.

(a) It is obvious that ϕ(0) = 0. Thus, we have

ϕ(µn−2adj A) = ϕ(µn−2adj (A− 0))

= ηm−2adj (ϕ(A)− ϕ(0))

= ηm−2adj ϕ(A).

(b) By (a) and (H), we obtain

ηm−2adj (ϕ(A− B)) = ϕ(µn−2adj (A− B))

= ηm−2adj (ϕ(A)− ϕ(B)).

Lemma 5.2.2. Let m,n be even integers with m,n > 4. Let µ ∈ F− ∪ SF−

and η ∈ K∧ ∪ SK∧ be fixed but arbitrarily chosen nonzero scalars, and let ϕ :

Hn(F) → Hm(K) be a mapping satisfying (H). Let A,B ∈ Hn(F). Then the

following statements hold.

(a) rank ϕ(A) 6 1 if rank A = 1.
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(b) rank ϕ(A) 6 m− 1 if rank A = n− 1.

(c) rank ϕ(A) 6 m− 2 if rank A 6 n− 2.

Proof.

(a) Let A ∈ Hn(F) be of rank one. Then by Proposition 1.4.6, there exists a

rank n− 1 matrix B ∈ Hn(F) such that adj B = 1
µn−2A. This implies

ϕ(A) = ϕ(µn−2adj B) = ηm−2adj ϕ(B).

Since

ηm−2adj ϕ(A) = ϕ(µn−2adj A) = ϕ(0) = 0,

we have rank ϕ(A) < m which implies rank ϕ(B) < m. Hence

rank ϕ(A) = rank (ηm−2adj ϕ(B)) 6 1.

(b) Let A ∈ Hn(F) be of rank n−1. Then rank ϕ(µn−2adj A) 6 1 by (a). Thus

we obtain adj ϕ(µm−2adj A) = 0. On the other hand,

adj ϕ(µn−2adj A) = adj (ηm−2adj ϕ(A))

= (ηm−2)m−1adj (adj ϕ(A)).

This implies adj (adj ϕ(A)) = 0. Therefore rank ϕ(A) 6 m− 1.

(c) If rank A 6 n− 2, then ηm−2adj ϕ(A) = ϕ(µn−2adj A) = ϕ(0) = 0. There-

fore, rank ϕ(A) 6 m− 2.

Lemma 5.2.3. Let m,n be even integers with m,n > 4. Let µ ∈ F− ∪ SF− and

η ∈ K∧∪SK∧ be fixed but arbitrarily chosen nonzero scalars, and let ϕ : Hn(F)→

Hm(K) be a mapping satisfying (H). Let A ∈ Hn(F). Then ϕ is injective if and

only if

rank A = n ⇐⇒ rank ϕ(A) = m.
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Proof. Since ϕ(0) = 0, we have kerϕ = {0} by the injectivity of ϕ. In addition,

by Lemma 5.2.2 (b) and (c), we observe that rank ϕ(A) = m implies rank A = n.

If rank A = n and assume that rank ϕ(A) < m, then

η−(m−2)ϕ(µn−2adj (µn−2adj A)) = η−(m−2)ηm−2adj ϕ(µn−2adj A)

= adj (ηm−2adj ϕ(A))

= (ηm−2)m−1adj (adj ϕ(A)) = 0.

This implies µn−2adj (µn−2adj A) = 0 as kerϕ = {0}. This contradicts the

assumption that rank A = n. Therefore, rank ϕ(A) = m.

Conversely, suppose ϕ(A) = ϕ(B) for some A,B ∈ Hn(F). We suppose

rank (A − B) = r. By Lemma 2.2.2 (a), there exists a rank n − r matrix

C ∈ Hn(F) such that rank (A−B +C) = n. Then rank ϕ(A−B +C) = m. In

addition, we have

adj ϕ(C) = adj (ϕ(B − B + C))

= adj (ϕ(B)− ϕ(B − C))

= adj (ϕ(A)− ϕ(B − C))

= adj (ϕ(A− B + C))

by (b). Thus, rank ϕ(C) = m implies rank C = m and hence r = 0. We obtain

A = B. Therefore, ϕ is injective.

Lemma 5.2.4. Let m,n be even integers with m,n > 4. Let µ ∈ F− ∪ SF− and

η ∈ K∧∪SK∧ be fixed but arbitrarily chosen nonzero scalars and let ϕ : Hn(F)→

Hm(K) be a mapping satisfying (H). Suppose P ∈ Mn(F) is invertible and let

φP : Hn(F)→ Hm(K) be defined by

φP (A) = ϕ(PAP
t
) for every A ∈ Hn(F).

Then the following statements hold.
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(a) If rank φP (In) 6= m, then rank φP (A) 6 m − 2 for every A ∈ Hn(F) and

φP (A) = 0 for every rank one matrix A ∈ Hn(F).

(b) If rank φP (In) = m, then rank φP (aEii) = 1 for all integers 1 6 i 6 n and

nonzero scalar a ∈ F−.

Proof. Let A,B ∈ Hn(F). Then

adj φP (A− B) = adj ϕ(P (A− B)P
t
)

= adj ϕ(PAP
t
− PBP

t
)

= adj (ϕ(PAP
t
)− ϕ(PBP

t
))

= adj (φP (A)− φP (B)).

Thus,

adj φP (A− B) = adj (φP (A)− φP (B)) for all A,B ∈ Hn(F). (5.1)

By definition of φP , Lemma 5.2.2 (a), (b) and (c) are true for φP .

We let θ := µn(n−2) det(PP )n−2, ϑ := µn−2θn−1 and H := adj P . It is obvious

that θ, ϑ ∈ F− are nonzero and rank H = n.

(a) We observe that

µn−2adj (µn−2adj (PP
t
)) = µn−2(µn−2)n−1adj (adj (PP

t
))

= µn(n−2) det(PP
t
)n−2PP

t

= θPP
t
.

This implies

φP (θIn) = ϕ(θPP
t
)

= ϕ(µn−2adj (µn−2adj (PP
t
)))

= ηm−2adj ϕ(µn−2adj (PP
t
))

= ηm−2adj (ηm−2adj ϕ(PP
t
))

= ηm−2adj (ηm−2adj φP (In)).
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Therefore,

φP (θIn) = 0 (5.2)

as rank φP (In) < m. Hence, we obtain

ϕ(ϑH
t
H) = 0 (5.3)

since
ϕ(ϑH

t
H) = ϕ(µn−2θn−1adj (PP

t
))

= ϕ(µn−2adj (θPP
t
))

= ηm−2adj ϕ(θPP
t
)

= ηm−2adj φP (θIn).

We next claim that

ϕ(H
t
ϑEiiH) = 0 for i = 1, · · · , n. (5.4)

Let i = 1, · · · , n. We compute

ϕ(H
t
ϑEiiH) = ϕ(H

t
(µn−2θn−1Eii)H)

= ϕ(µn−2H
t
(θn−1Eii)H).

Since θn−1Eii = adj (θ(In − Eii)), we obtain

ϕ(H
t
ϑEiiH) = ϕ(µn−2(adj P

t
)adj (θ(In − Eii))(adj P ))

= ϕ(µn−2adj (Pθ(In − Eii)P
t
)).

By (5.2) and Lemma 5.2.1 (a),

ϕ(H
t
ϑEiiH) = ηm−2adj ϕ(Pθ(In − Eii)P

t
)

= ηm−2adj φP (θ(In − Eii))

= ηm−2adj (φP (θIn)− φP (θEii))

= ηm−2adj (−φP (θEii))

= 0
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since rank φP (θEii) 6 1 by Lemma 5.2.2 (a). Our next claim is for every

i = 1, · · · , n,

φP (αEii) = 0 for every α ∈ F−. (5.5)

It is clear that the result holds when α = 0. We assume α 6= 0. Let

γ = µ(n−2)(n−1)α ∈ F−. Then

φP (αEii) = ϕ(P (αEii)P
t
)

= ϕ(P ((µ−1)(n−2)(n−1)γ)EiiP
t
)

= ϕ((µ−1)(n−2)(n−1)θP (θ−1γ)EiiP
t
)

= ϕ((µ−1)(n−2)(n−1)µn(n−2) det(PP )n−2P (θ−1γ)EiiP
t
)

= ϕ(µn−2(detP )n−2P (θ−1γ)Eii(detP )
n−2P

t
).

Note that adj (ϑIn−ϑEii−ϑEjj + θ
−1ϑ2−nγEjj) = θ−1γEii with i 6= j, and

adj H = (detP )n−2P . Thus, we have

φP (αEii)

= ϕ(µn−2(adj H)(adj (ϑIn − ϑEii − ϑEjj + θ−1ϑ2−nγEjj))(adj H
t
))

= ϕ(µn−2(adj (H
t
(ϑIn − ϑEii − ϑEjj + θ−1ϑ2−nγEjj)H)))

= ηm−2adj (ϕ(H
t
(ϑIn − ϑEii − ϑEjj + θ−1ϑ2−nγEjj)H))

and hence by (5.3) and (5.4), we have

φP (αEii) = ηm−2adj (ϕ(H
t
(ϑIn − ϑEii + θ−1ϑ2−nγEjj)H)− ϕ(H

t
(ϑEjj)H))

= ηm−2adj (ϕ(H
t
(ϑIn − ϑEii + θ−1ϑ2−nγEjj)H))

= ηm−2adj (ϕ(H
t
(ϑIn + θ−1ϑ2−nγEjj)H)− ϕ(H

t
(ϑEii)H))

= ηm−2adj ϕ(ϑH
t
H +H

t
(θ−1ϑ2−nγEjj)H)

= ηm−2adj (ϕ(ϑH
t
H)− ϕ(−H

t
(θ−1ϑ2−nγEjj)H))

= ηm−2adj (−ϕ(−H
t
(θ−1ϑ2−nγEjj)H))

= 0
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since rank ϕ(−H
t
(θ−1ϑ2−nγEjj)H) 6 1. It follows that

adj φp(A+ α1E11 + · · ·+ αnEnn) = adj φP (A) (5.6)

for every A ∈ Hn(F) and for all scalars α1, · · · , αn ∈ F−. We next claim

that for each 1 6 i 6 n,

ϕ(H
t
(αEiiH)) = 0 for every α ∈ F−. (5.7)

Since adj (In−Eii−Ejj+βEjj) = βEii where i 6= j and β = (µ−1)n−2α ∈ F−

as well as (5.1) and (5.6), we obtain

ϕ(H
t
(αEii)H) = ϕ((adj P

t
)(µn−2βEii)(adj P ))

= ϕ(µn−2(adj P
t
)(βEii)(adj P ))

= ϕ(µn−2(adj P
t
)(adj (In − Eii − Ejj + βEjj))(adj P ))

= ϕ(µn−2adj (P (In − Eii − Ejj + βEjj)P
t
)))

= ηm−2adj (ϕ(P (In − Eii − Ejj + βEjj)P
t
))

= ηm−2adj φP (In − Eii − Ejj + βEjj)

= ηm−2adj φP (βEjj)

= 0.

Then by Lemma 5.2.1, Lemma 5.2.2 and (5.7),

adj ϕ(A+H
t
(α1E11 + · · ·+ αnEnn)H) = adj ϕ(A) (5.8)

for every A ∈ Hn(F) and for all scalars α1, · · · , αn ∈ F−.

Let i, j and k be distinct integers with 1 6 i, j, k 6 n. Let

Yijk := In − Eii − Ejj − 2Ekk. Let a ∈ F− be a nonzero scalar. Then

aa ∈ F− and adj (aEij+aEji+Yijk) = aEij+aEji+aaYijk. Thus, we obtain
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ϕ(µn−2H
t
(aEij + aEji + aaYijk)H)

= ϕ(µn−2(adj P
t
)adj (aEij + aEji + Yijk)(adj P ))

= ϕ(µn−2adj (P (aEij + aEji + Yijk)P
t
))

= ηm−2adj ϕ(P (aEij + aEji + Yijk)P
t
)

= ηm−2adj φP (aEij + aEji + Yijk)

= ηm−2adj φP (aEij + aEji)

by Lemma 5.2.1 (a) and (5.6). Since rank φP (aEij + aEji) 6 m− 2,

ϕ(µn−1H
t
(aEij + aEji + aaYijk)H) = 0 (5.9)

for all distinct integers 1 6 i, j, k 6 n and scalar a ∈ F−.

We now claim that φP sends all rank one matrices to zero. Let A ∈ Hn(F)

be of rank one. Then by Proposition 1.4.6, there exists a rank n− 1 matrix

B = (bij) ∈ Hn(F) such that θ−1A = adj B. Hence, we obtain

φP (A) = ϕ(PAP
t
)

= ϕ(θP (θ−1A)P
t
)

= ϕ(µ(n−2)n det(PP )n−2P (adj B)P
t
)

= ϕ(µ(n−2)n((detP )n−2P )(adj B)((detP )n−2P
t
))

= ϕ(µ(n−2)n(adj H)(adj B)(adj H
t
))

= ϕ(µn−2adj (µn−2H
t
BH))

and hence φP (A) = ηm−2adj ϕ(µn−2H
t
BH) by Lemma 5.2.1 (a). It follows

from (5.8), (5.9) and Lemma 5.2.1 (b) that

adj ϕ(µn−2H
t
BH)

= adj ϕ

( ∑

16i<j6n

µn−2H
t
(bjiEji + bjiEij)H +

n∑

i=1

H
t
(µn−2biiEii)H

)
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which implies

adj ϕ(µn−2H
t
BH)

= adj ϕ

( ∑

16i<j6n

µn−2H
t
(bjiEji + bjiEij)H

)

= adj ϕ

( ∑

16i<j6n

µn−2H
t
(bjiEji + bjiEij)H + µn−2H

t
(b21b21Y12k)H

)

= adj ϕ




∑

16i<j6n
i 6=1 and j 6=2

µn−2H
t
(bjiEji + bjiEij)H


 .

We continue in this way to obtain

adj ϕ(µn−2H
t
BH) = adj ϕ

(
µn−2H

t
(bn,n−1En,n−1 + bn,n−1En−1,n)H

)
= 0

as rank ϕ
(
µn−2H

t
(bn,n−1En,n−1 + bn,n−1En−1,n)H

)
6 m− 2. Therefore,

φP (A) = 0 for every rank one matrix A ∈ Hn(F).

Let A = 0. It is clear that adj φP (A) = 0. Let A ∈ Hn(F) be of rank

r with 1 6 r 6 n. Then by Lemma 2.2.1, there exist rank one matrices

A1, · · · , Ak ∈ Hn(F) with r 6 k 6 r + 1 such that A = A1 + · · · + Ak. By

(5.1), we obtain

adj φP (A) =adj φP (A1 + · · ·+ Ak)

= adj (φP (A1 + · · ·+ Ak−1)− φP (−Ak))

= adj (φP (A1 + · · ·+ Ak−1)).

By applying (5.1) repeatedly, we have

adj φP (A) = adj φP (A1) = 0.

This implies rank φP (A) 6 m− 2 for all matrices A ∈ Hn(F), as desired.

(b) We have

ϕ(µn−2H
t
H) = ϕ(µn−2adj (PP

t
))

= ηm−2adj ϕ(PP
t
)

= ηm−2adj φP (In)
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which implies rank ϕ(µn−2H
t
H) = m as rank φP (In) = m. Suppose there

exist an integer i0 with 1 6 i0 6 n and a nonzero scalar a0 ∈ F− such that

φP (a0Ei0i0) = 0. Let s, t be two distinct integers with 1 6 s, t 6 n and

s, t 6= i0. Since adj (In − Ess − (1 + a0)Ei0i0 − (1 − a−10 )Ett) = −Ess, it

follows from (5.1) and Lemma 5.2.2 (c) that

ϕ(µn−2H
t
(−Ess)H)

= ϕ(µn−2(adj P
t
)adj (In − Ess − (1 + a0)Ei0i0 − (1− a−10 )Ett)(adj P ))

= ϕ(µn−2adj (P (In − Ess − (1 + a0)Ei0i0 − (1− a−10 )Ett)P
t
))

= ηm−2adj ϕ(P (In − Ess − (1 + a0)Ei0i0 − (1− a−10 )Ett)P
t
)

= ηm−2adj φP (In − Ess − (1 + a0)Ei0i0 − (1− a−10 )Ett)

= ηm−2adj (φP (In − Ess − Ei0i0 − (1− a−10 )Ett)− φP (a0Ei0i0))

= ηm−2adj φP (In − Ess − Ei0i0 − (1− a−10 )Ett)

= 0

as rank (In−Ess−Ei0i0 − (1− a−10 )Ett)) = n− 2. By Lemma 5.2.1 (b) and

Lemma 5.2.2 (b), we obtain

adj ϕ(µn−2H
t
H) = adj ϕ(µn−2H

t
(In − Ess + Ess)H)

= adj (ϕ(µn−2H
t
(In − Ess)H)− ϕ(µn−1H

t
(−Ess)H))

= adj ϕ(µn−2H
t
(In − Ess)H).

Since rank (µn−2H
t
(In − Ess)H) 6= n, it follows that rank ϕ(µn−2H

t
(In −

Ess)H) 6= m and hence rank ϕ(µn−2H
t
H) 6= m, a contradiction. Thus,

φP (aEii) 6= 0 for all nonzero a ∈ F−. Therefore,

rank φP (aEii) = 1 for every integer 1 6 i 6 n and nonzero scalar a ∈ F−

by Lemma 5.2.2 (a).
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Lemma 5.2.5. Let m,n be even integers with m,n > 4. Let µ ∈ F− ∪ SF−

and η ∈ K∧ ∪ SK∧ be fixed but arbitrarily chosen nonzero scalars, and let ϕ :

Hn(F) → Hm(K) be a mapping satisfying (H). If rank ϕ(In) = m, then ϕ is

injective and

rank (A− B) = n ⇐⇒ rank (ϕ(A)− ϕ(B)) = m

for all A,B ∈ Hn(F).

Proof. Let A ∈ Hn(F) be of rank one. Then by Proposition 1.3.1, there exist

an invertible matrix P ∈ Mn(F) and a nonzero scalar α ∈ F− such that A =

P (αE11)P
t
. We define the mapping φP : Hn(F)→ Hm(K) by

φP (A) = ϕ(PAP
t
) for every A ∈ Hn(F).

Since rank ϕ(In) = m and φP (P
−1P−1

t
) = ϕ(P (P−1P−1

t
)P

t
) = ϕ(In), we

have rank φP (P
−1P−1

t
) = m. Suppose rank φP (In) 6= m. Then by Lemma

5.2.4 (a), rank φP (A) 6 m − 2 for every A ∈ Hn(F). This contradicts that

rank φP (P
−1P−1

t
) = m. Thus, rank φP (In) = m and hence it follows from

Lemma 5.2.4 (b) that rank φP (aEii) = 1 for all integers 1 6 i 6 n and nonzero

scalars a ∈ F−. So, rank ϕ(A) = rank ϕ(P (αE11)P
t
) = rank φP (αE11) = 1.

Therefore ϕ preserves rank one matrices.

Let X, Y ∈ Hn(F) such that ϕ(X) = ϕ(Y ). Suppose X − Y 6= 0. Then by

Lemma 4.2.1, there exists a matrix Z ∈ Hn(F) of rank at most n− 2 such that

rank (X − Y + Z) = n− 1. Hence,

rank adj (X − Y + Z) = 1⇒ rank ϕ(µn−2adj (X − Y + Z)) = 1.
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However,

ϕ(µn−2adj (X − Y + Z)) = ηm−2adj ϕ(X − Y + Z)

= ηm−2adj (ϕ(X + Z)− ϕ(Y ))

= ηm−2adj (ϕ(X + Z)− ϕ(X))

= ηm−2adj (ϕ(X + Z −X))

= ηm−2adj (ϕ(Z))

= 0.

This is a contradiction. Therefore, X = Y implies ϕ is injective.

Let A,B ∈ Hn(F). By the injectivity of ϕ, in view of Lemma 5.2.1 (a), (b)

and Lemma 5.2.3, we obtain

rank (A− B) = n ⇐⇒ rank ϕ(µn−2adj (A− B)) = m

⇐⇒ rank ηm−2adj (ϕ(A)− ϕ(B)) = m

⇐⇒ rank (ϕ(A)− ϕ(B)) = m,

we are done.

Lemma 5.2.6. Let n be an even integer with n > 4. Let µ ∈ F− ∪ SF− and

η ∈ K∧ ∪ SK∧ be any fixed but arbitrarily chosen nonzero scalars, and let ϕ :

Hn(F)→ Hn(K) be defined by

ϕ(A) = λQAσQ̂t for every A ∈ Hn(F)

where σ : (F,− )→ (K,∧ ) is a nonzero field homomorphism satisfying σ̂(a) = σ(a)

for every a ∈ F, Q ∈ Mn(F) is an invertible matrix and λ ∈ K∧ is a nonzero

scalar. If ηn−2adj ϕ(In) = ϕ(µn−2In), then there exists a nonzero scalar ζ ∈ K∧

such that

Q̂tQ = ζIn and (ηλζσ(µ)−1)n−2 = 1.
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Proof. ηn−2adj ϕ(In) = ϕ(µn−2In) implies

ηn−2adj (λQQ̂t) = λQ(µn−2In)
σQ̂t = λσ(µ)n−2QQ̂t

and hence
ηn−2λn−1(adj Q̂t)(adj Q) = λσ(µ)n−2QQ̂t

=⇒ QQ̂t = (λησ(µ)−1)n−2(adj Q̂t)(adj Q).

Let ξ := (λησ(µ)−1)n−2 ∈ K∧. Then

(Q̂tQ)2 = Q̂t(QQ̂t)Q = Q̂t(ξ(adj Q̂t)(adj Q))Q

= ξQ̂t(adj Q̂t)(adj Q)Q = ξ det(Q̂tQ)In.

Thus,

(Q̂tQ)2 = ξ det(Q̂tQ)In. (5.10)

Let 1 6 i < j 6 n. Since adj (In − Eii − Ejj + Eij + Eji) = −(In − Eii − Ejj +

Eij + Eji), we obtain

ηn−2adj ϕ(In − Eii − Ejj + Eij + Eji) = ϕ(µn−2adj (In − Eii − Ejj + Eij + Eji)

= ϕ(−µn−2(In − Eii − Ejj + Eij + Eji)).

This implies

ηn−2adj (λQ(In−Eii−Ejj+Eij+Eji)Q̂
t) = −λQσ(µ)n−2(In−Eii−Ejj+Eij+Eji)Q̂

t

and hence

ηn−2(adj λQ̂t)adj (In − Eii − Ejj + Eij + Eji)(adj Q)

=− λQσ(µ)n−2(In − Eii − Ejj + Eij + Eji)Q̂
t.

By computing

(λησ(µ−1)n−2(adj Q̂t)(In−Eii−Ejj+Eij+Eji)(adj Q) = Q(In−Eii−Ejj+Eij+Eji)Q̂
t

⇒ ξQ̂t(adj Q̂t)(In−Eii−Ejj+Eij+Eji)(adj Q)Q = Q̂tQ(In−Eii−Ejj+Eij+Eji)Q̂
tQ

⇒ ξ det(Q̂tQ)(In − Eii − Ejj + Eij + Eji) = Q̂tQ(In − Eii − Ejj + Eij + Eji)Q̂
tQ

⇒ (Q̂tQ)(Q̂tQ)(In−Eii−Ejj +Eij +Eji) = (Q̂tQ)(In−Eii−Ejj +Eij +Eji)(Q̂
tQ),

we obtain

(Q̂tQ)(In − Eii − Ejj + Eij + Eji) = (In − Eii − Ejj + Eij + Eji)(Q̂
tQ)
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for all 1 6 i < j 6 n. Then Q̂tQ = ζIn and also QQ̂t = ζIn for some nonzero

scalar ζ ∈ K∧. In addition, ηn−2adj (λζIn) = ηn−2adj (λQQ̂t) and hence

ηn−2λn−1ζn−1In = ηn−2adj ϕ(In)

= ϕ(µn−2In)

= λσ(µ)n−2QQ̂t

= λσ(µ)n−2ζIn.

It follows that (ηλζσ(µ)−1)n−2 = 1.

Proposition 5.2.7. Let m,n be even integers with m,n > 4. Let µ ∈ F− ∪ SF−

and η ∈ K∧ ∪ SK∧ be any fixed nonzero scalars. Then ϕ : Hn(F) → Hm(K) is

an additive mapping satisfying

ϕ(µn−2adj A) = ηm−2adj ϕ(A) for every A ∈ Hn(F)

if and only if either ϕ = 0, or m = n and

ϕ(A) = λPAσP̂ t for every A ∈ Hn(F)

where σ : (F,− ) → (K,∧ ) is a nonzero field homomorphism satisfying σ̂(a) =

σ(a) for all a ∈ F, Aσ is the matrix obtained from A by applying σ entrywise,

P ∈ Mn(K) is invertible with P̂ tP = ζIn, and λ, ζ ∈ K∧ are scalars with

(λζησ(µ)−1)n−2 = 1.

Proof. The sufficiency part is clear. We now consider the necessity part. Let

A,B ∈ Hn(F). Since ϕ is additive, 0 = ϕ(0) = ϕ(A − A) = ϕ(A) + ϕ(−A)

implies ϕ(−A) = −ϕ(A). Thus

ϕ(µn−2adj (A− B)) = ηm−2adj ϕ(A− B)

= ηm−2adj (ϕ(A)− ϕ(B))
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for all A,B ∈ Hn(F) and hence (H) is satisfied. We continue the proof by

considering two cases.

Case I: rank ϕ(In) 6= m.

From Lemma 5.2.4 (a), by letting P = In, ϕ(A) = φP (A) = 0 for all rank one

matrices A ∈ Hn(F). By the additivity of ϕ, ϕ = 0.

Case II: rank ϕ(In) = m.

By Lemma 5.2.5, ϕ is injective and by Lemma 5.2.2 (a), ϕ preserves rank one

matrices. Suppose n > m. Since

m = rank ϕ(In) = rank (ϕ(E11) + · · ·+ ϕ(Enn)) 6
n∑

i=1

rank ϕ(Eii) = n,

we have rank ϕ(In) < n. By [5, Theorem 2.1], there exist integers 1 6 t1 < · · · <

tℓ 6 n, with m 6 ℓ < n such that rank ϕ(Et1t1 + · · ·+ Etℓtℓ) = m. Thus,

m = rank (ηm−2adj ϕ(Et1t1 + · · ·+ Etℓtℓ))

= rank (ϕ(µn−2adj (Et1t1 + · · ·+ Etℓtℓ)) 6 1,

a contradiction.

Hence, m = n. By [23, Main Theorem, p.g.603] and [16, Theorem 2.1 and

Remark 2.4], we have

ϕ(A) = λQAσQ̂t for every A ∈ Hn(F)

where σ : (F,− )→ (K,∧ ) is a nonzero field homomorphism satisfying σ̂(a) = σ(a)

for every a ∈ F, Q ∈ Mn(K) is an invertible matrix and λ ∈ K∧ is a nonzero

scalar. In view of Lemma 5.2.1 (a), we have ηn−2adj ϕ(In) = ϕ(µn−2In) and

hence by Lemma 5.2.6, we obtain

Q̂tQ = ζIn and (ηλζσ(µ)−1)n−2 = 1.

We are done.
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Let m,n be even integers with m,n > 4. Let µ ∈ F− ∪ SF− be a fixed but

arbitrarily chosen nonzero scalar, and let ϕ : Hn(F) → Hm(F) be a mapping

satisfying

ϕ(µn−2adj (X + αY )) = µm−2adj (ϕ(X) + αϕ(Y )) (5.11)

for all X, Y ∈ Hn(F) and α ∈ F−. Then ϕ satisfies (H) for (K,∧ ) = (F,− )

and η = µ and so Lemmas 5.2.1, 5.2.2, 5.2.3, 5.2.4 and 5.2.5 are true for ϕ. In

particular,
µn−2adj ϕ(X + αY ) = ϕ(µn−2adj (X + αY ))

= µn−2adj (ϕ(X) + αϕ(Y )).

Thus, we have

adj ϕ(X + αY ) = adj (ϕ(X) + αϕ(Y ))

for all X, Y ∈ Hn(F) and α ∈ F−. Furthermore, if rank ϕ(In) = m, then by

Lemma 5.2.5, ϕ is injective. Let A,B ∈ Hn(F) and α ∈ F−. It follows from

Lemma 5.2.3, we have

rank (A+ αB) = n ⇐⇒ rank ϕ(µn−2adj (A+ αB)) = m

⇐⇒ rank µn−2adj (ϕ(A) + αϕ(B)) = m

⇐⇒ rank (ϕ(A) + αϕ(B) = m.

Therefore, by following the arguments of the analogous proof in Lemma 2.2.6,

we have the following lemma.

Lemma 5.2.8. Let m,n be even integers with m,n > 4. Let F be a field which

possesses a proper involution − of F such that |F−| = 2 or |F−| > n + 1. Let

ϕ : Hn(F) → Hm(F) be a mapping satisfying (H). If rank ϕ(In) = m, then ϕ is

additive and

ϕ(αA) = αϕ(A) for every A ∈ Hn(F) and scalar α ∈ F−.
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Proposition 5.2.9. Let m,n be even integers with m,n > 4, and F be a field

which possesses a proper involution − of F such that either |F−| = 2 or |F−| >

n + 1. Let µ ∈ F− ∪ SF− be a fixed but arbitrarily chosen nonzero scalar. Then

ϕ : Hn(F)→ Hm(F) is a mapping satisfying

ϕ(µn−2adj (A+ αB)) = µm−2adj (ϕ(A) + αϕ(B))

for all A,B ∈ Hn(F) and α ∈ F− if and only if ϕ(A) = 0 for every rank one

matrix A ∈ Hn(F) and rank (ϕ(A) + αϕ(B)) 6 m− 2 for all A,B ∈ Hn(F) and

α ∈ F−; or m = n and

ϕ(A) = λPAσP
t
for every A ∈ Hn(F)

where σ : F → F is a field isomorphism satisfying σ(a) = σ(a) for all a ∈ F

and σ(a) = a for all a ∈ F−, Aσ is the matrix obtained from A by applying σ

entrywise, P ∈ Mn(F) is invertible with P
t
P = ζIn and λ, ζ ∈ F− are scalars

with (λζµσ(µ)−1)n−2 = 1.

Proof. The sufficiency is clear. Now, we prove the necessity. First, we suppose

ϕ(In) 6= m. Then by letting P in Lemma 5.2.1 (a) be In, we have ϕ(A) = 0 for

every rank one matrix A ∈ Hn(F), and rank ϕ(A) 6 m− 2 for every A ∈ Hn(F).

Next, we suppose rank ϕ(In) = m. Since ϕ(0) = 0, we have

ϕ(µn−2adj A) = ϕ(µn−2adj (A+ α(0)))

= µn−2adj (ϕ(A) + αϕ(0))

= µn−2adj ϕ(A).

Thus, by Lemma 5.2.8 and Proposition 5.2.7, we obtain m = n and

ϕ(A) = λQAσQ
t
for every A ∈ Hn(F)
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where σ : F→ F is a nonzero field homomorphism satisfying σ(a) = σ(a) for all

a ∈ F, Q ∈ Mn(F) is invertible with Q
t
Q = ζIn, and λ, ζ ∈ F− are scalars with

(λζµσ(µ)−1)n−2 = 1. By Lemma 5.2.8, ϕ(aIn) = aϕ(In) for all a ∈ F− and hence

λQσ(a)Q
t
= aλQQ

t
. Thus σ(a) = a for every a ∈ F−. In addition, since − is

proper, there exists a scalar i ∈ F with i = −i when char F 6= 2, and i = 1 + i

when char F = 2, such that F = F− ⊕ iF−. So, when char F 6= 2,

σ(i) = σ(i) = σ(−i) = −σ(i)

and when char F = 2,

σ(i) = σ(i) = σ(1 + i) = 1 + σ(i).

Thus, we have F = F−⊕σ(i)F−. Let γ ∈ F. Then there exist scalars β1, β2 ∈ F−

such that γ = β1 + σ(i)β2. Let δ = β1 + iβ2 ∈ F. Thus, we have

σ(δ) = σ(β1 + iβ2) = σ(β1) + σ(i)σ(β2) = β1 + σ(i)β2 = γ.

This shows that σ is surjective and so it is an isomorphism.

5.3 Some examples

In this section, we give a few examples of nonlinear mappings ψ that satisfy

condition (AS1) or (AS2) that send all rank one matrices and invertible matrices

to zero. Under the condition of (AS1) or (AS2), nice structural results are

obtained if there exists an invertible matrix X ∈ SHn(F) such that ψ(X) is

invertible.

Let m,n be even integers with m,n > 4, and let F and K be fields which

possess proper involutions − of F and ∧ of K, respectively.
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Example 5.3.1. Let α ∈ SK∧ be nonzero scalar and we define the mapping

ψ1 : SHn(F)→ SHm(K) by

ψ1(A) =

{
α
∑m−2

i=1 Eii if A ∈ SHn(F) is of rank r with 1 < r < n,
0 otherwise.

Example 5.3.2. Let β ∈ SK∧ be a nonzero scalar and let τ : (F,− ) → (K,∧ )

be a field isomorphism such that τ̂(a) = τ(a) for every a ∈ F. Let the mapping

ψ2 : SHn(F)→ SHm(K) be defined by

ψ2(A) =




βE11 if A ∈ SHn(F) is of rank 2,
τ(a12)E12 + τ(a21)E21 if A = (aij) ∈ SHn(F) is of rank r, 2 < r < n,
0 otherwise.

We observe that ψ1 and ψ2 are mappings that satisfy condition (AS1) or

(AS2). Both mappings send rank one matrices and invertible matrices to zero.

The mappings are neither injective nor surjective.

5.4 Characterisation of classical adjoint-

commuting mappings on skew-hermitian

matrices

Let F be a field which possesses an involution − of F and let µ ∈ SF− be

nonzero. If A ∈ SHn(F), then (µA)t = µA
t
= −µ(−A) = µA. It follows that

µA ∈ Hn(F). Conversely, if µA ∈ Hn(F), then µA = (µA)t = µA
t
= −µA

t
and

hence A = −A
t
. Thus, A ∈ SHn(F). Therefore, we have shown that

A ∈ SHn(F) ⇐⇒ µA ∈ Hn(F) (5.12)

for any fixed nonzero scalar µ ∈ SF−. Similarly, we can show that

A ∈ Hn(F) ⇐⇒ µA ∈ SHn(F) (5.13)
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for any fixed nonzero scalar µ ∈ SF−. Then by (5.12) and (5.13), we have

SHn(F) = µHn(F) := {µA : A ∈ Hn(F)} (5.14)

and

Hn(F) = µSHn(F) := {µA : A ∈ SHn(F)} (5.15)

for any fixed nonzero scalar µ ∈ SF−.

Lemma 5.4.1. Let m,n be even integers with m,n > 4, and let F and K be

fields which possess involution − of F and ∧ of K, respectively. Let µ ∈ SF−

and η ∈ SK∧ be fixed but arbitrarily chosen nonzero scalars. Let ψ : SHn(F)→

SHm(K) be a mapping. If ϕ : Hn(F)→ Hm(K) is defined by

ϕ(X) = η−1ψ(µX) for every X ∈ Hn(F),

then the following statements hold:

(a) ψ(adj (A− B)) = adj (ψ(A)− ψ(B)) for all A,B ∈ SHn(F) if and only if

ϕ(µn−2adj (X − Y )) = ηm−2adj (ϕ(X)− ϕ(Y )) for all X, Y ∈ Hn(F).

(b) If (K,∧ ) = (F,− ) and µ = η, then

ψ(adj (A+αB)) = adj (ψ(A)+αψ(B)) for all A,B ∈ SHn(F) and α ∈ F−

if and only if

ϕ(µn−2adj (X + αY )) = ηm−2adj (ϕ(X) + αϕ(Y ))

for all X, Y ∈ Hn(F) and α ∈ F−.

Proof.

(a) Let X, Y ∈ Hn(F). By the definition of ϕ and (5.14), we have

ηm−2adj (ϕ(X)− ϕ(Y )) = ηm−2adj (η−1ψ(µX)− η−1ψ(µY ))
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and hence

ηm−2adj (ϕ(X)− ϕ(Y )) = ηm−2η−(m−1)adj (ψ(µX)− ψ(µY ))

= η−1ψ(adj µ(X − Y ))

= η−1ψ(µn−1adj (X − Y ))

= ϕ(µn−2adj (X − Y )).

Conversely, we let A,B ∈ SHn(F). By the definition of ϕ and (5.15), we

obtain

adj (ψ(A)− ψ(B)) = adj (ηϕ(µ−1A)− ηϕ(µ−1B))

= ηm−1adj (ϕ(µ−1A)− ηϕ(µ−1B))

= η(ηm−2adj (ϕ(µ−1A)− ηϕ(µ−1B)))

= η(ϕ(µn−2adj (µ−1(A− B))))

= η(ϕ(µ−1adj (A− B)))

= ψ(adj (A− B)).

(b) This part can be proved by using similar arguments as in part (a).

Theorem 5.4.2. Let m,n be even integers with m,n > 4. Let F and K be

fields which posses proper involutions − of F and ∧ of K, respectively. Then

ψ : SHn(F) → SHm(K) is a classical adjoint-commuting additive mapping if

and only if either ψ = 0, or m = n and

ψ(A) = λPAσP̂ t for every A ∈ SHn(F)

where σ : (F,− )→ (K,∧ ) is a nonzero field homomorphism satisfying σ̂(a) = σ(a)

for all a ∈ F, P ∈Mn(F) is invertible with P̂
tP = ζIn, and λ, ζ ∈ K∧ are scalars

with (λζ)n−2 = 1.
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Proof. The sufficiency part is clear. Now, we consider the necessity part. Since ψ

is additive, we have ψ(adj (A−B)) = adj (ψ(A)−ψ(B)) for all A,B ∈ SHn(F).

Let µ ∈ SF− and η ∈ SK∧ be fixed nonzero scalars. By (5.14), we define

ϕ : Hn(F)→ Hm(K) by

ϕ(X) = η−1ψ(µX) for every X ∈ Hn(F). (5.16)

In view of Lemma 5.4.1 (a) and ψ(0) = 0, we have ϕ(µn−2adj X) =

ηm−2adj ϕ(X) for every X ∈ Hn(F). We now show that ϕ is additive. Let

X, Y ∈ Hn(F). Then

ϕ(X + Y ) = η−1ψ(µ(X + Y ))

= η−1(ψ(µX) + ψ(µY ))

= η−1ψ(µX) + η−1ψ(µY )

= ϕ(X) + ϕ(Y ).

By Proposition 5.2.7, we have either ϕ = 0, or m = n and

ϕ(X) = γPXσP̂ t for every X ∈ Hn(F)

where σ : (F,− )→ (K,∧ ) is a nonzero field homomorphism with σ̂(a) = σ(a) for

all a ∈ F, P ∈ Mn(F) is an invertible matrix with P̂ tP = ζIn, γ, ζ ∈ K∧ are

scalars with (ηγζσ(a)−1)n−2 = 1. By (5.16), we obtain

ψ(µX) = ηϕ(X) = ηγPXσP̂ t = ηγσ(µ)−1P (µX)σP̂ t for every X ∈ Hn(F).

Let λ := ηγσ(µ)−1. We observe that λ ∈ K∧ since η, σ(µ)−1 ∈ SK∧ and γ ∈ K∧.

Therefore, by (5.14)

ψ(A) = λPAσP̂ t for every A ∈ SHn(F)

with P̂ tP = ζIn and (λζ)n−2 = 1.
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Theorem 5.4.3. Let m,n be even integers with m,n > 4. Let F be a field which

possesses a proper involution − of F such that either |F−| = 2 or |F−| > n + 1.

Then ψ : SHn(F)→ SHm(F) is a mapping satisfying (AS1) if and only if either

ψ(A) = 0 for every rank one matrix A ∈ SHn(F) and rank (ψ(A) + αψ(B)) 6

m− 2 for all A,B ∈ SHn(F) and α ∈ F−; or m = n and

ψ(A) = λPAσP
t
for every A ∈ SHn(F)

where σ : F→ F is a field isomorphism satisfying σ(a) = σ(a) for all a ∈ F and

σ(a) = a for all a ∈ F−, P ∈Mn(F) is invertible with P
t
P = ζIn, and λ, ζ ∈ F−

are scalars with (λζ)n−2 = 1.

Proof. The sufficiency part can be shown easily. We now prove the necessity

part. Let µ ∈ SF− be a fixed nonzero scalar and ϕ : Hn(F) → Hm(F) be the

mapping defined by

ϕ(X) = µ−1ψ(µX) for every X ∈ Hn(F). (5.17)

By the definition of ψ and Lemma 5.4.1, ϕ satisfies (5.11). By Proposition 5.2.9,

we have either

(I) ϕ(X) = 0 for every rank one matrix X ∈ Hn(F), and rank ϕ(X) 6 m − 2

for every X ∈ Hn(F); or

(II) m = n and ϕ(X) = γPXσP
t
for every X ∈ Hn(F), where σ : F → F is a

field isomorphism satisfying σ(a) = σ(a) for all a ∈ F and σ(a) = a for all

a ∈ F−, P ∈Mn(F) is invertible with P
t
P = ζIn, and γ, ζ ∈ F− are scalars

with (γζµσ(µ)−1)n−2 = 1.

Let A ∈ SHn(F). Then by (5.17),

ψ(A) = ψ(µ(µ−1A)) = µϕ(µ−1A).
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If Case (I) is true, then

ψ(A) = µϕ(µ−1A) = 0 for every rank one matrix A ∈ SHn(F)

and

rank ψ(A) = rank ϕ(µ−1A) 6 m− 2 for every A ∈ SHn(F).

If Case (II) is true, then we have

ψ(A) = µϕ(µ−1A) = µγP (µ−1A)σP
t
= (µγσ(µ)−1)PAσP

t

Thus, we obtain

ψ(A) = λPAσP
t
for every A ∈ SHn(F),

where λ = µγσ(µ)−1 ∈ F− and ζ ∈ F− with (λζ)n−2 = 1, and P
t
P = ζIn.

Theorem 5.4.4. Let m,n be even integers with m,n > 4. Let F and K be

fields which possess proper involutions − of F and ∧ of K, respectively, such that

either |K∧| = 2, or |F−|, |K∧| > 3. Then ψ : SHn(F)→ SHm(K) is a surjective

mapping satisfying (AS2) if and only if m = n, F and K are isomorphic, and

ψ(A) = λPAσP̂ t for every A ∈ SHn(F)

where σ : (F,− )→ (K,∧ ) is a field isomorphism satisfying σ̂(a) = σ(a) for every

a ∈ F, P ∈ Mn(K) is invertible with P̂ tP = ζIn and λ, ζ ∈ K∧ are scalars with

(λζ)n−2 = 1.

Proof. The sufficiency part is obvious. We now consider the necessity part. Let

µ ∈ SF− and η ∈ SK∧ be fixed nonzero scalars and ϕ : Hn(F) → Hm(K) be

defined by

ϕ(X) = η−1ψ(µX) for every X ∈ Hn(F). (5.18)
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By Lemma 5.4.1 (a), ϕ satisfies (H). Let K ∈ Hm(K). Then ηK ∈ SHm(K) by

(5.12). Since ψ is surjective, there is a matrix H ∈ SHn(F) such that ψ(H) =

ηK. This implies µ−1H ∈ Hn(F) and

ϕ(µ−1H) = η−1ψ(H) = K.

Thus, ϕ is surjective.

We suppose rank ϕ(In) 6= m. Hence, by letting P in Lemma 5.2.4 (a) be

In, we have rank ϕ(X) 6 m − 2 for every X ∈ Hn(F). This contradicts the

surjectivity of ϕ. Thus, rank ϕ(In) = m. By Lemma 5.2.5, ϕ is bijective and

satisfies

rank (X − Y ) = n ⇐⇒ rank (ϕ(X)− ϕ(Y )) = m for all X, Y ∈ Hn(F).

Next, we consider two cases.

Case I: |K∧| = 2.

Then −1 = 1. Thus

rank (X − Y ) = n ⇐⇒ rank (ϕ(X) + ϕ(Y )) = m for all X, Y ∈ Hn(F).

We now show that ϕ is additive. Let X, Y ∈ Hn(F). If rank (X + Y ) = n, then

by Lemma 5.2.3,

rank ϕ(X + Y ) = rank ϕ(X − (−Y )) = rank (ϕ(X) + ϕ(−Y )) = m.

Thus,

ϕ(X + Y )adj ϕ(X + Y ) = detϕ(X + Y )Im

and

(ϕ(X) + ϕ(−Y ))adj (ϕ(X) + ϕ(−Y )) = det(ϕ(X) + ϕ(−Y ))Im.
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This implies

ϕ(X + Y )adj ϕ(X + Y )

detϕ(X + Y )
= Im =

(ϕ(X) + ϕ(−Y ))adj (ϕ(X) + ϕ(−Y ))

det(ϕ(X) + ϕ(−Y ))
.

It follows from Lemma 5.2.1 (b) that

adj ϕ(X+Y ) = adj ϕ(X−(−Y )) = adj (ϕ(X)−ϕ(−Y )) = adj (ϕ(X)+ϕ(−Y ))

and hence

ϕ(X + Y )

detϕ(X + Y )
=

ϕ(X) + ϕ(−Y )

det(ϕ(X) + ϕ(−Y ))
.

As detϕ(X + Y ) = det(ϕ(X) + ϕ(−Y )) = 1, we have

ϕ(X + Y ) = ϕ(X) + ϕ(−Y ) for all X, Y ∈ Hn(F) with rank X + Y = n.

Since ϕ is injective and

ϕ(−In) = ϕ(0− In) = ϕ(0) + ϕ(In) = ϕ(In),

we obtain In = −In and hence F is of characteristic 2. Thus ϕ(−Y ) = ϕ(Y ) for

every Y ∈ Hn(F). Therefore,

ϕ(X + Y ) = ϕ(X) + ϕ(Y ) for all X, Y ∈ Hn(F) with rank X + Y = n. (5.19)

We next consider the case where rank (X + Y ) < n. There exists a matrix

Z ∈ Hn(F) such that rank (X + Z) = rank (X + Y + Z) = n by Lemma 2.2.2

(b). Then by (5.19), ϕ(X + Z) = ϕ(X) + ϕ(Z) and

ϕ(X + Y ) +ϕ(Z) = ϕ(X + Y +Z) = ϕ(X +Z) +ϕ(Y ) = ϕ(X) +ϕ(Z) +ϕ(Y ).

Thus,

ϕ(X + Y ) = ϕ(X) + ϕ(Y ) for all X, Y ∈ Hn(F).
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Therefore, by Proposition 5.2.7 and the bijectivity of ϕ, we have m = n, F and

K are isomorphic, and

ϕ(X) = γPXσP̂ t for every X ∈ Hn(F)

where σ : (F,− ) → (K,∧ ) is a nonzero field isomorphism satisfying σ̂(a) = σ(a)

for all a ∈ F, P ∈Mn(F) is invertible with P̂
tP = ζIn, and γ, ζ ∈ K∧ are scalars

with (γζησ(µ)−1)n−2 = 1.

Case II: |F−|, |K∧| > 3.

As ϕ(0) = 0, [14, Theorem 3.6] and the fundamental theorem of the geometry

of hermitian matrices, Theorem 1.5.4, give m = n, F and K are isomorphic, and

ϕ(X) = γPXσP̂ t for every X ∈ Hn(F)

where σ : (F,− ) → (K,∧ ) is a nonzero field isomorphism satisfying σ̂(a) = σ(a)

for all a ∈ F, P ∈ Mn(F) is invertible and γ ∈ K∧ is nonzero. By Lemma 5.2.1

(a), ηn−2adj ϕ(In) = ϕ(µn−2In). It follows from Lemma 5.2.6 that there exists a

nonzero scalar ζ ∈ K∧ such that

P̂ tP = ζIn and (γζησ(µ)−1)n−2 = 1.

For both cases, by (5.18), we have

ψ(µX) = ηϕ(X) = ηγPXσP̂ t = γησ(µ)−1P (µX)σP̂ t = λP (µX)σP̂ t

for every X ∈ Hn(F), where λ := γησ(µ)−1 ∈ K∧, P̂ tP = ζIn and (λζ)n−2 = 1.

Therefore by (5.14),

ψ(A) = λPAσP̂ t for every A ∈ SHn(F).
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Chapter 6

Classical adjoint-commuting mappings

on alternate matrices

6.1 Introduction

Let n be an integer with n > 2 and let F be a field. A matrix A ∈ Mn(F) is

alternate if uAut = 0 for every row vector u ∈ Fn, or equivalently, if At = −A

with zero diagonal entries. We denote by Kn(F) the linear space of all n × n

alternate matrices over F.

We recall from Proposition 1.3.3 that A ∈ Kn(F) if and only if A = 0 or there

exist an invertible matrix P ∈Mn(F) and an integer 1 6 r 6
⌊n
2

⌋
such that

A = P (J1 ⊕ · · · ⊕ Jr ⊕ 0n−2r)P
t (6.1)

where J1 = · · · = Jr =

(
0 1
−1 0

)
. Let

Jn := J1 ⊕ · · · ⊕ Jn/2 ∈ Kn(F).

If n is even, Jn is invertible and adj Jn = −Jn.

Lemma 6.1.1. Let n be an even integer. If A ∈ Kn(F) , then adj A ∈ Kn(F)

and

rank adj A =

{
0 if rank A 6= n,
n if rank A = n.

(6.2)

Proof. Let A ∈ Kn(F). Then every (i, i)-cofactor of A is zero. This implies that

the diagonal entries of adj A are all zero. In addition,

(adj A)t = adj (At) = adj (−A) = (−1)n−1adj A = −adj A
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since n is even. Thus, adj A ∈ Kn(F).

If rank A = n, then it is clear that rank adj A = n. If rank A 6= n, then

rank A 6 n− 2 since rank A is even by (6.1). Hence, adj A = 0.

Remark 6.1.2. Let n be an odd integer and let A ∈ Kn(F). Then adj A 6∈ Kn(F)

since (adj A)t = adj (At) = adj (−A) = (−1)n−1adj A = adj A.

Remark 6.1.3. Let q be an integer with q > 2. Let F be a field and F[x] be the

ring of polynomials in the indeterminate x over F. If F is algebraically closed,

then

xq − c ∈ F[x] has a root in F for every c ∈ F. (6.3)

In addition, we also observe that

• if F = Fp is a Galois field of p elements with p = 2 or pr = kq for some

positive integers r and k, then condition (6.3) holds in Fp since cp = c for

every c ∈ Fp;

• if q is odd and F is the real field R, then it follows by the intermediate value

theorem that condition (6.3) holds in R.

Proposition 6.1.4. Let n be an integer with n > 2, and let F be a field. Then

F satisfies condition (6.3) for q = n − 1 if and only if for every rank n matrix

A ∈Mn(F), there exists a rank n matrix B ∈Mn(F) such that A = adj B.

Proof. Let A ∈Mn(F) be of rank n. Let d := (detA)n−2. Then d 6= 0 and there

exists a nonzero scalar d0 ∈ F such that dn−10 = d−1. Thus

A = d−1(dA) = dn−10 adj (adj A) = adj (d0adj A) = adj B

where B = d0adj A ∈Mn(F) and rank B = n.
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For the sufficiency, we let c ∈ F and we show that there exists a scalar b ∈ F

such that bn−1 − c = 0. The result is clear if c = 0. We suppose c 6= 0. Then

there exists an invertible matrix B ∈Mn(F) such that adj B = cIn. Thus

(detB)n−2B = adj (adj B) = adj (cIn) = cn−1In.

This implies B = bIn for some scalar b ∈ F.

bn−1In = adj B = cIn =⇒ bn−1 = c.

Therefore, F satisfies condition (6.3) when q = n− 1.

Following from the result above, we obtain the following Lemma.

Lemma 6.1.5. Let n be an even positive integer and let F be a field. Then F

satisfies condition (6.3) for q = n − 1 if and only if for every rank n matrix

A ∈ Kn(F), there exists a rank n matrix B ∈ Kn(F) such that A = adj B.

Proof. Let A ∈ Kn(F) be of rank n. By Proposition 6.1.4, there exists a rank n

matrix B ∈Mn(F) such that A = adj B. This implies

adj A = adj adj B = (detB)n−2B ∈ Kn(F)

by Lemma 6.1.1. Thus, ((detB)n−2B)t = −(detB)n−2B and the diagonal entries

of (detB)n−2B are zero. It follows that Bt = −B and the diagonal entries of B

are zero. That is, B ∈ Kn(F).

Next, we let c ∈ F. We now show that there exists b0 ∈ F such that bn−10 = c.

The result is clear if c = 0. We suppose c 6= 0. Then cJn = adj B for some rank

n matrix B ∈ Kn(F). As (detB)n−2B = adj (adj B) = adj (cJn) = −c
n−1Jn, we

have B = −b0Jn for some scalar b0 ∈ F. Thus bn−10 Jn = adj (−b0Jn) = adj B =

cJn. Therefore, bn−10 = c. This implies F satisfies condition (6.3) for q = n − 1.

We are done.
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6.2 Some basic properties

Here and subsequently, we let m,n be even integers with m,n > 4. Let F and

K be fields. We study the structure of ψ : Kn(F)→ Km(K) that satisfies one of

the following conditions (see (A1) and (A2) in Section 2.1):

(AK1) ψ(adj (A+ αB)) = adj (ψ(A) + αψ(B)) for all matrices A,B ∈ Kn(F) and

any scalar α ∈ F when F = K,

(AK2) ψ(adj (A− B)) = adj (ψ(A)− ψ(B)) for all matrices A,B ∈ Kn(F).

We consider only even integers m,n as adj A 6∈ Kn(F) if A ∈ Kn(F) and n is

odd by Remark 6.1.2.

Let m,n be even integers with m,n > 4. Let ψ : Kn(F) → Km(K) be a

mapping satisfying (AK2). It can be shown that

ψ(0) = 0 and ψ(adj A) = adj (ψ(A)) for every A ∈ Kn(F).

Lemma 6.2.1. Let m,n be even integers with m,n > 4. Let ψ : Kn(F)→ Km(K)

be a mapping satisfying (AK2). Let A ∈ Kn(F). Then the following statements

hold.

(a) If F satisfies condition (6.3) for q = n− 1, then

rank A = n =⇒ rank ψ(A) = 0 or m.

(b) rank ψ(A) 6 m− 2 if rank A 6 n− 2.

Proof.

(a) If rank A = n, then by Lemma 6.1.5, there exists a rank nmatrix B ∈ Kn(F)

such that A = adj B. Thus ψ(A) = ψ(adj B) = adj ψ(B). If rank ψ(B) =

m, then rank ψ(A) = m. If rank ψ(B) 6= m, then ψ(A) = 0.
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(b) If rank A 6 n− 2, then adj A = 0. Thus,

adj ψ(A) = ψ(adj A) = ψ(0) = 0.

This implies rank ψ(A) 6 m− 2.

Lemma 6.2.2. Let m,n be even integers with m,n > 4. Let ψ : Kn(F)→ Km(K)

be a mapping satisfying (AK2). Let A ∈ Kn(F). Then ψ is injective if and only

if

rank A = n ⇐⇒ rank ψ(A) = m.

Proof. By Lemma 6.2.1(b), if rank ψ(A) = m, then rank A = n. Let A be of rank

n. Suppose rank ψ(A) < m. Then ψ(adj (adj A)) = adj (adj (ψ(A))) = 0 since

m > 4. This implies adj (adj A) = 0 by the injectivity of ψ. This contradicts

that rank A = n. Thus, by Lemma 6.2.1(a), rank ψ(A) = m.

Conversely, suppose ψ(A) = ψ(B) for some A,B ∈ Kn(F). Let rank (A −

B) = r. By Lemma 2.2.2(a), there exists a rank n − r matrix C ∈ Kn(F)

such that rank (A − B + C) = n. Then rank adj (A − B + C) = n and hence

rank adj ψ(A − B + C) = rank ψ(adj (A − B + C) = m. By using (AK2), we

have
adj ψ(C) = adj ψ(B − (B − C))

= adj (ψ(B)− ψ(B − C))

= adj (ψ(A)− ψ(B − C))

= adj (ψ(A− B + C)).

Thus, rank ψ(C) = m and this implies r = 0. It follows that A = B. Therefore

ψ is injective.
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Lemma 6.2.3. Letm,n be even integers withm,n > 4. Let F be a field satisfying

condition (6.3) for q = n − 1. Let ψ : Kn(F) → Km(K) be a mapping satisfying

(AK2). Let P ∈Mn(F) be invertible and let φP : Kn(F)→ Km(K) be defined by

φP (A) = ψ(PAP t) for every A ∈ Kn(F). (6.4)

If φP (Jn) = 0, then φP (A) = 0 for every invertible matrix A ∈ Kn(F).

Proof. Let A,B ∈ Kn(F) be invertible matrices with rank (A − B) < n. Then

adj (P (A − B)P t) = 0 implies ψ(adj (P (A − B)P t)) = 0. By the definition of

φp and (AK2),

adj (φP (A)− φP (B)) = adj (ψ(PAP t)− ψ(PBP t))

= ψ(adj (PAP t − PBP t))

= ψ(adj (P (A− B)P t))

= 0.

If φP (A) = 0, then adj φP (B) = 0. This implies rank ψ(PBP t) = rank φP (B) <

m. By Lemma 6.2.1(a), φP (B) = ψ(PBP t) = 0. Therefore

φP (A) = 0 =⇒ φP (B) = 0 (6.5)

if A,B ∈ Kn(F) are invertible with rank (A− B) < n. Let

B := {J ⊕ S | S ∈ Kn−2(F) and rank S = n− 2} ⊆ Kn(F)

where J =

(
0 1
−1 0

)
∈ K2(F). Let B ∈ B. Then rank B = n and rank (Jn −

B) < n. Thus, if rank φP (Jn) = 0, then by (6.5)

φP (B) = 0 for every B ∈ B. (6.6)

Let A ∈ Kn(F) be an invertible matrix. Then A can be written in the form:

A =

(
αJ A1

−At
1 C

)
∈ Kn(F) (6.7)
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where α ∈ F, A1 = (aij) ∈ M2,n−2(F) and C ∈ Kn−2(F). We now consider two

cases.

Case I: n = 4.

Then C = cJ for some scalar c ∈ F. If a21 = a22 = 0, then α 6= 0 and c 6= 0. Let

B1 = J ⊕ C ∈ B. Then rank (A− B1) < 4. We obtain φP (A) = 0 by (6.5) and

(6.6).

Next, we suppose C 6= 0. We let

B2 =




aJ

(
a11 a12
0 0

)

(
−a11 0
−a12 0

)
C


 ∈ K4(F) where a =

{
α if α 6= 0,
1 if α = 0.

Thus, B2 is invertible in both cases. Since rank (B1 − B2) < 4 when α 6= 0,

φP (B1) = 0 implies φP (B2) = 0. When α = 0, rank (Jn − B2) < 4 implies

φP (B2) = 0. Thus, φP (A) = 0 by (6.5) since rank (A− B2) < 4.

Now, we suppose C = 0. Then A1 is invertible. If α 6= 0, we select

B3 =




αJ

(
a11 a12
0 0

)

(
−a11 0
−a12 0

)
J


 ∈ K4(F).

It can be easily seen that B3 is invertible and rank (Jn−B3) < 4. Thus, φP (B3) =

0. Since rank (A− B3) < 4, φP (A) = 0 by (6.5). If α = 0, we choose

B4 =

(
J A1

−At
1 0

)
∈ K4(F).

It is obvious that B4 is invertible and φP (B4) = 0. As rank (A − B4) < 4, we

have φP (A) = 0 by (6.5).

Case II: n > 6.

Let A ∈ Kn(F) be invertible of form (6.7). If C is invertible, then we choose
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H1 = J ⊕ C ∈ Kn(F). It is clear that H1 ∈ B and rank (A − H1) < n. Thus,

φP (A) = 0 by (6.5). We now suppose C is not invertible. We observe that

rank

((
αJ A1

−At
1 0

)
+

(
0 0
0 C

))
= rank A = n and rank

(
αJ A1

−At
1 0

)
6 4.

Thus rank C > n− 4. Since C is not invertible, rank C = n− 4. By (6.1), there

exists an invertible matrix P ∈Mn−1(F) such that

C = P (J1 ⊕ · · · ⊕ J(n−4)/2 ⊕ 02)P
t (6.8)

where Ji = J for i = 1, · · · , (n− 4)/2.

If n > 8, we choose H2 = J ⊕P (J1⊕ · · · ⊕ J(n−4)/2⊕ J)P
t ∈ Kn(F). It can be

easily shown that H2 ∈ B. Thus, φP (H2) = 0 by (6.6). Since rank (A−H2) < n,

we obtain φP (A) = 0 by (6.5).

Next, we suppose n = 6. We denote by G the set of 6× 6 invertible alternate

matrices of the form

G =

(
aJ U
−U t V

)
∈ K6(F)

where a ∈ F is nonzero, U = (uij) ∈ M2,4(F) with u2j = 0 for j = 1, · · · , 4 and

V ∈ K4(F) is invertible. We choose H3 = J ⊕ V ∈ K6(F). As V ∈ K4(F) is

invertible, we have H3 ∈ B and hence φP (H3) = 0 by (6.6). We observe that

rank (G−H3) < 6. It follows from (6.5) that

φP (G) = 0 for every G ∈ G. (6.9)

Let A ∈ K6(F) be an invertible matrix of form (6.7) with singular C. By (6.8),

C = P (J ⊕ 02)P
t ∈ K4(F). We select

H4 =




J

(
a11 a12 a13 a14
0 0 0 0

)




−a11 0
−a12 0
−a13 0
−a14 0


 P (J ⊕ J)P t



∈ K6(F).
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Then H4 ∈ G and

rank (A−H4) = rank




(α− 1)J

(
0 0 0 0
a21 a22 a23 a24

)




0 −a21
0 −a22
0 −a23
0 −a24


 P (02 ⊕ J)P t




6 4.

By (6.9) and (6.5), φP (A) = 0.

All the cases show that

φP (A) = 0 for every invertible matrix A ∈ Kn(F)

if φP (Jn) = 0. We are done.

Lemma 6.2.4. Let m,n be even integers with m,n > 4 and let F and K be fields

with F satisfying condition (6.3) for q = n − 1. Let ψ : Kn(F) → Km(K) be a

mapping satisfying condition (AK2). Then the following statements hold.

(a) ψ(Jn) = 0 if and only if rank ψ(A) 6 m− 2 for every A ∈ Kn(F).

(b) ψ(Jn) 6= 0 if and only if ψ is injective.

Proof.

(a) Let A ∈ Kn(F). If rank A 6 n − 2, then rank ψ(A) 6 m − 2 by Lemma

6.2.1(b). Next, we suppose rank A = n. Since ψ(Jn) = 0, by letting P in

Lemma 6.2.3 be In , we have ψ(A) = φP (A) = 0.

Conversely, if rank ψ(A) 6 m− 2 for every A ∈ Kn(F), then rank ψ(Jn) 6

m− 2. This implies ψ(Jn) = 0 since rank Jn = n and Lemma 6.2.1 (a).

(b) If ψ is injective and ψ(0) = 0, ψ(Jn) 6= 0. Conversely, we suppose ψ(Jn) 6= 0.

If rank ψ(A) = m, then by Lemma 6.2.1 (b), rank A = n. Next, we suppose
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rank A = n. By (6.1), there exists an invertible matrix P ∈ Mn(F) such

that A = PJnP
t. Let φP : Kn(F)→ Km(K) be defined by

φP (X) = ψ(PXP t) for every X ∈ Kn(F).

Thus, φP (P
−1Jn(P

−1)t) = ψ(P (P−1Jn(P
−1)t)P t) = ψ(Jn) 6= 0. If rank

ψ(A) 6= m, then ψ(A) = 0 by Lemma 6.2.1 (a). This implies φP (Jn) =

ψ(PJnP
t) = ψ(A) = 0. Then φP (X) = 0 for every invertible matrix

X ∈ Kn(F). In particular, φP (P
−1Jn(P

−1)t) = 0 which is a contradiction.

Therefore,

rank A = n ⇐⇒ rank ψ(A) = m.

It follows that ψ is injective by Lemma 6.2.2.

6.3 Some examples

Let m,n be even integers with m,n > 4 and let F be a field satisfying condition

(6.3) for q = n − 1. If ψ satisfies condition (AK1) or (AK2) and ψ(Jn) = 0,

we have ψ(A) = 0 for every invertible matrix A ∈ Kn(F) by Lemma 6.2.1 and

Lemma 6.2.4. In this section, we give some examples of such mappings that send

all invertible matrices to zero.

Example 6.3.1. Let m,n be even integers with m,n > 4 and let F be either

the real field R or the complex field C. Let τ : Kn(F)→ F be a nonzero function

and let ψ1 : Kn(F)→ Km(F) be the mapping defined by

ψ1(A) =

{
τ(A)(E12 − E21) if A ∈ Kn(F) is of rank r with 2 6 r 6 n− 2,
0 otherwise.
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Example 6.3.2. Let m,n be even integers with m,n > 4 and let F be a field

with n − 1 elements. Let f : F → F and g : F → F be nonzero functions. Let

A = (aij) ∈ Kn(F) and let ψ2 : Kn(F)→ Km(F) be the mapping defined by

ψ2(A) =





∑m
2
−1

i=1 f(a12)(E2i−1,2i − E2i,2i−1) if A ∈ Kn(F) is of rank two,
g(a12)(E12 − E21) if A ∈ Kn(F) is of rank r, 2 < r < n,
0 otherwise.

It can be easily verified that ψ1 and ψ2 are both classical adjoint-commuting

mappings satisfying condition (AK1) or (AK2) and send all invertible matrices

to zero.

6.4 Characterisation of classical adjoint-

commuting mappings on alternate matrices

Let A ∈ K4(F). Here, we note that A∗ ∈ K4(F) is defined as in (1.10). That is,




0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0




∗

=




0 a12 a13 a23
−a12 0 a14 a24
−a13 −a14 0 a34
−a23 −a24 −a34 0


 . (6.10)

Then adj A∗ = (adj A)∗ for every A ∈ K4(F).

Let k, n be even integers with 4 6 k 6 n and let F be a field with |F| > 3.

Let S be a subset of Kn(F) and we define

S⊥k := {B ∈ Kn(F) | rank (A− B) 6 k for every B ∈ S}

and S⊥k⊥k := (S⊥k)⊥k if S⊥k is nonempty. Let A,B ∈ Kn(F). A and B are said

to be adjacent if rank (A− B) = 2 (see Definition 1.5.5). The following lemma

was proved in [18, Lemmas 3.2 and 3.3].

Lemma 6.4.1. Let k,m be even integers with 4 6 k 6 m, and let F be a field

with |F| > 3. Let A,B ∈ Kn(F) such that rank (A − B) 6 k. Then A,B are

adjacent if and only if |{A,B}⊥k⊥k | > 3.
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Definition 6.4.2. ϕ : Kn(F) → Km(K) is called an adjacency preserving map-

ping in both directions if

rank (A− B) = 2 ⇐⇒ rank (ϕ(A)− ϕ(B)) = 2 for all A,B ∈ Kn(F).

We state the following proposition without proof. The details of the proposi-

tion can be found in [11, 18, 12, 13].

Proposition 6.4.3. Let m,n be even integers with m,n > 4. Let F and K be

fields with at least three elements. If ϕ : Kn(F)→ Km(K) is a surjective mapping

satisfying

rank (A− B) = n ⇐⇒ rank (ϕ(A)− ϕ(B)) = m (6.11)

for all A,B ∈ Kn(F), then ϕ is a bijective adjacency preserving mapping in both

directions, m = n, and F and K are isomorphic.

Theorem 6.4.4. Let m,n be even integers with m,n > 4. Let K be a field with

|K| > 3, and let F be a field with |F| > 3 such that xn−1− c ∈ F[x] has a root for

every c ∈ F. Then ψ : Kn(F)→ Km(K) is a surjective mapping satisfying (AK2)

if and only if m = n, F and K are isomorphic, and either

ψ(A) = λPAσP t for every A ∈ Kn(F)

or when n = 4,

ψ(A) = λP (A∗)σP t for every A ∈ K4(F)

where σ : F → K is a field isomorphism, Aσ is the matrix obtained from A by

applying σ entrywise, P ∈ Mn(K) is invertible with P tP = ζIn, λ, ζ ∈ K are

nonzero scalars with (λζ)n−2 = 1, and



0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0




∗

=




0 a12 a13 a23
−a12 0 a14 a24
−a13 −a14 0 a34
−a23 −a24 −a34 0


 .
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Proof. The sufficiency part can be shown easily. We now consider the necessity

part. Suppose ψ(Jn) = 0. Then rank ψ(A) 6 m − 2 for every A ∈ Kn(F) by

Lemma 6.2.4 (a). This contradicts that ψ is surjective. Thus ψ(Jn) 6= 0 and

hence ψ is injective by Lemma 6.2.4 (b). It follows from Lemma 6.2.2 that

rank (A− B) = n ⇐⇒ rank ψ(A− B) = m

⇐⇒ rank adj (ψ(A− B)) = m

⇐⇒ rank ψ(adj (A− B)) = m

⇐⇒ rank adj (ψ(A)− ψ(B)) = m

⇐⇒ rank (ψ(A)− ψ(B)) = m.

Then it follows by Proposition 6.4.3 that ψ is a bijective adjacency preserving

mapping in both directions, m = n, and F and K are isomorphic. Since ψ(0) = 0

and by Theorem 1.5.6, the fundamental theorem of geometry of alternate matri-

ces, either

ψ(A) = λPAσP t for every A ∈ Kn(F) (6.12)

or when n = 4,

ψ(A) = λP (A∗)σP t for every A ∈ K4(F), (6.13)

where σ : F → K is a field isomorphism, λ ∈ K is a nonzero scalar and P ∈

Mn(K) is invertible.

Next, we want to show that there exists a nonzero scalar ζ ∈ K such that

P tP = ζIn and (λζ)n−2 = 1. (6.14)

We first consider case (6.12). We have

λPadj (Aσ − Bσ)P t = λPadj (A− B)σP t

= ψ(adj (A− B))

= adj (ψ(A)− ψ(B))
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and hence

λPadj (Aσ − Bσ)P t = adj (λPAσP t − λPBσP t)

= adj (λP (Aσ − Bσ)P t)

= λn−1(adj P t)adj (Aσ − Bσ)(adj P )

for all A,B ∈ Kn(F). Thus,

adj (Aσ − Bσ) = λn−2P−1(adj P t)adj (Aσ − Bσ)(adj P )(P t)−1

= λn−2P−1(detP t)(P t)−1adj (Aσ − Bσ)(detP )P−1(P t)−1

= λn−2(detP tP )(P tP )−1adj (Aσ − Bσ)(P tP )−1.

It follows that

adj (Aσ − Bσ) = λn−2(detQ)Q−1adj (Aσ − Bσ)Q−1

where Q = P tP is invertible and Qt = Q. Thus, we have

H = λn−2(detQ)Q−1HQ−1

for every invertible matrix H ∈ Kn(F). Let 1 6 i 6= j 6 n. Then Jn + λ(Eij −

Eji) ∈ Kn(F) is invertible. Hence,

Jn + λ(Eij − Eji) = λn−2(detQ)Q−1(Jn + λ(Eij − Eji))Q
−1.

Since Jn ∈ Kn(F) is invertible, we have Jn = λn−2(detQ)Q−1JnQ
−1. Thus,

Jn + λ(Eij − Eji) = λn−2(detQ)Q−1JnQ
−1 + λn−2(detQ)Q−1λ(Eij − Eji)Q

−1

=⇒ λ(Eij − Eji) = λn−2(detQ)Q−1λ(Eij − Eji)Q
−1.

It follows that

Q(Eij − Eji) = λn−2(Eij − Eji)adj Q for all 1 6 i 6= j 6 n. (6.15)

Let Q = (qij). By (6.15) and Qt = Q, we have

qij = 0 and qiiqjj − q2ij = λn−2(detQ) for all 1 6 i 6= j 6 n. (6.16)

Thus, we have qiiqjj = λn−2(detQ) for all 1 6 i 6= j 6 n and hence qii = ζ for

some nonzero ζ ∈ F for every i = 1, · · · , n. This implies P tP = Q = ζIn. Then

by (6.16), ζ2 = λn−2ζn leads to (λζ)n−2 = 1.
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Since adj A∗ = (adj A)∗ for every A ∈ K4(F), case (6.13) can be shown by

using similar arguments. We are done.

The following corollary is a consequence of Theorem 6.4.4

Corollary 6.4.5. Let m,n be even integers with m,n > 4. Let K be a field with

|K| > 3, and F be a field with |F| > 3 such that xn−1 − c ∈ F[x] has a root

for every c ∈ F. Then ψ : Kn(F) → Km(K) is a surjective classical adjoint-

commuting additive mapping if and only if m = n, F and K are isomorphic, and

either

ψ(A) = λPAσP t for every A ∈ Kn(F)

or when n = 4,

ψ(A) = λP (A∗)σP t for every A ∈ K4(F)

where σ : F → K is a field isomorphism, Aσ is the matrix obtained from A

by applying σ entrywise, P ∈ Mn(K) is an invertible matrix with P tP = ζIn,

λ, ζ ∈ K are nonzero scalars with (λζ)n−2 = 1 and




0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0




∗

=




0 a12 a13 a23
−a12 0 a14 a24
−a13 −a14 0 a34
−a23 −a24 −a34 0


 .

Proof. Since ψ is a surjective classical adjoint commuting additive mapping,

ψ(adj (A− B)) = ψ(adj (A+ (−B)))

= adj (ψ(A+ (−B)))

= adj (ψ(A) + ψ(−B)).

In addition, 0 = ψ(0) = ψ(B − B) = ψ(B) + ψ(−B) implies ψ(−B) = −ψ(B).

Thus, ψ(adj (A−B)) = adj (ψ(A)−ψ(B)) which is (AK2). Therefore, the result

is obtained from Theorem 6.4.4.
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By using an analogous proof of Lemma 2.2.6, it can be shown that ψ is linear.

The result is formulated in the following lemma.

Lemma 6.4.6. Let m,n be even integers with m,n > 4, and let F be a field

with |F| = 2 or |F| > n + 1 satisfying condition (6.3) for q = n − 1. Let

ψ : Kn(F)→ Km(K) be a mapping satisfying (AK1). If

rank (A+ αB) = n ⇐⇒ rank (ψ(A) + αψ(B)) = m

for all A,B ∈ Kn(F), then ψ is linear.

Theorem 6.4.7. Let n be an even integer with n > 4. Let F be a field with

|F| > n + 1 such that xn−1 − c ∈ F[x] has a root for every c ∈ F. Then ψ :

Kn(F) → Km(F) is a mapping satisfying (AK1) if and only if either ψ(A) = 0

for every invertible A ∈ Kn(F), and rank (ψ(A) + αψ(B)) 6 n − 2 for every

A,B ∈ Kn(F) and α ∈ F; or either

ψ(A) = λPAP t for every A ∈ Kn(F)

or when n = 4,

ψ(A) = λPA∗P t for every A ∈ K4(F)

where P ∈ Mn(F) is an invertible matrix with P tP = ζIn, λ, ζ ∈ F are nonzero

scalars with (λζ)n−2 = 1 and



0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0




∗

=




0 a12 a13 a23
−a12 0 a14 a24
−a13 −a14 0 a34
−a23 −a24 −a34 0


 .

Proof. The sufficiency can be shown easily. We now proceed to the necessity.

Since ψ satisfies (AK1), ψ also satisfies (AK2).

We first consider the case where ψ(Jn) = 0. Then by Lemma 6.2.4 (a), we

have rank ψ(A) 6 n− 2 for every A ∈ Kn(F). This implies

rank ψ(A+ αB) 6 n− 2 for all A,B ∈ Kn(F) and α ∈ F.
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Let A ∈ Kn(F) be of rank n. Then there exists a rank n matrix B ∈ Kn(F) such

that A = adj B by Lemma 6.1.5. Thus, ψ(A) = ψ(adj B) = adj ψ(B) = 0 since

rank B 6 n− 2. Therefore ψ(A) = 0 for every invertible matrix A ∈ Kn(F).

Next, we consider ψ(Jn) 6= 0. Then by Lemma 6.2.4 (b), ψ is injective and

hence it follows from Lemma 6.2.2 that

rank (A+ αB) = n ⇐⇒ rank adj (A+ αB) = n

⇐⇒ rank ψ(adj (A+ αB)) = m

⇐⇒ rank adj (ψ(A) + αψ(B)) = m

⇐⇒ rank (ψ(A) + αψ(B)) = m.

Thus, by Lemma 6.4.6, ψ is linear. This implies ψ is surjective. The result

follows from Corollary 6.4.5 and the homogeneity of ψ.
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Chapter 7

Conclusion

As a conclusion of the thesis, in this research, we study the classical adjoint-

commuting mappings on various types of matrices such as full matrices, hermitian

matrices, symmetric matrices, skew-hermitian matrices and alternate matrices.

We obtained a number of characterisations of these mappings, such as:

(i) characterisations of classical adjoint-commuting mappings between matrix

algebras in Theorems 3.4.1 and 3.4.2;

(ii) characterisations of classical adjoint-commuting mappings on hermitian ma-

trices in Theorems 4.4.1, 4.4.2 and 4.4.3;

(iii) characterisations of classical adjoint-commuting mappings on symmetric

matrices in Theorems 4.5.1, 4.5.2 and 4.5.3;

(iv) characterisations of classical adjoint-commuting mappings on skew-

hermitian matrices in Theorems 5.4.2, 5.4.3 and 5.4.4;

(v) characterisations of classical adjoint-commuting mappings on alternate ma-

trices in Theorems 6.4.4, 6.4.7 and Corollary 6.4.5.

On the other hand, we have also identified some open problems for future

investigation. In our study, we apply Lemma 2.2.3 in the proofs of Theorems

3.4.1, 4.4.2, 4.5.2, 5.4.3. Since Lemma 2.2.3 does not include the case where

|F| = 3, this causes that the theorems are not proven for the case where |F| = 3.

These theorems can be improved by including the omitted case which we have
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yet to find a solution. In addition, Theorem 6.4.4 is not proven for fields with

exactly two elements. This is another open problem that this thesis has not

solved. Furthermore, the research can be continued by considering other matrix

spaces such as upper triangular matrices, strictly upper triangular matrices etc.
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