
PARTIAL DISCHARGE CLASSIFICATION ON XLPE 
CABLE JOINTS UNDER DIFFERENT NOISE LEVELS 

USING ARTIFICIAL INTELLIGENCE TECHNIQUES 

 

 

 

 

 

WONG JEE KEEN RAYMOND 

 

 

 

 

 

FACULTY OF ENGINEERING 

UNIVERSITY OF MALAYA 
KUALA LUMPUR 

 
 

2016 

Univ
ers

ity
 of

 M
ala

ya



PARTIAL DISCHARGE CLASSIFICATION ON XLPE 

CABLE JOINTS UNDER DIFFERENT NOISE LEVELS 

USING ARTIFICIAL INTELLIGENCE TECHNIQUES 

WONG JEE KEEN RAYMOND 

THESIS SUBMITTED IN FULFILMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF 

PHILOSOPHY 

FACULTY OF ENGINEERING 

UNIVERSITY OF MALAYA 

KUALA LUMPUR 

2016 Univ
ers

ity
 of

 M
ala

ya



ii 

UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate:  Wong Jee Keen Raymond     

Registration/Matric No:  KHA130001 

Name of Degree: Doctor of Philosophy 

Title of Thesis:  PARTIAL DISCHARGE CLASSIFICATION ON XLPE CABLE 

JOINTS UNDER DIFFERENT NOISE LEVELS USING 

ARTIFICIAL INTELLIGENCE TECHNIQUES  

Field of Study: High Voltage 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work; 

(2) This Work is original; 

(3) Any use of any work in which copyright exists was done by way of fair dealing 

and for permitted purposes and any excerpt or extract from, or reference to or 

reproduction of any copyright work has been disclosed expressly and 

sufficiently and the title of the Work and its authorship have been 

acknowledged in this Work; 

(4) I do not have any actual knowledge nor do I ought reasonably to know that the 

making of this work constitutes an infringement of any copyright work; 

(5) I hereby assign all and every rights in the copyright to this Work to the 

University of Malaya (“UM”), who henceforth shall be owner of the copyright 

in this Work and that any reproduction or use in any form or by any means 

whatsoever is prohibited without the written consent of UM having been first 

had and obtained; 

(6) I am fully aware that if in the course of making this Work I have infringed any 

copyright whether intentionally or otherwise, I may be subject to legal action 

or any other action as may be determined by UM. 

Candidate’s Signature  Date: 

Subscribed and solemnly declared before, 

Witness’s Signature  Date: 

Name: 

Designation: 

Univ
ers

ity
 of

 M
ala

ya



iii 

ABSTRACT 

Cross linked polyethylene (XLPE) cables are widely used in power industries due to 

their good electrical and mechanical properties. Cable joints are the weakest point in the 

XLPE cables and most susceptible to insulation failures. Any cable joint insulation 

breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose 

the insulation quality to detect early signs of insulation failure. Partial discharge (PD) 

measurement is a vital tool for assessing the insulation quality at cable joints. Since the 

past, there have been many pattern recognition methods to classify PD, where each 

method has its own strengths and weaknesses. Although many works have been done on 

PD pattern recognition, it is usually performed in a noise-free environment. Also, works 

on PD pattern recognition are mostly done on lab fabricated insulators, where works using 

actual cable joints are less likely to be found in literature. Therefore, in this work, 

classification of real cable joint defect types using partial discharge measurement under 

noisy environment was performed. Five cross-linked polyethylene (XLPE) cable joints 

with artificially created defects were prepared based on the defects commonly 

encountered on site. A novel high noise tolerance principal component analysis (PCA)-

based feature extraction was proposed and compared against conventional input features 

such as statistical features and fractal features. These input features were used to train the 

classifiers to classify each PD defect type. Classifications were performed using three 

different artificial intelligence classifiers, which include Artificial Neural Networks 

(ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine 

(SVM). The performance of each classifier and feature extraction method was evaluated. 

It was found that SVM and ANN performed well while ANFIS classification accuracy 

was the weakest. As for input features, the proposed PCA features displayed highest noise 

tolerance with the least performance degradation compared to other input features. 
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ABSTRAK 

Kabel XLPE digunakan secara meluas dalam industri tenaga kerana ia mempunyai 

ciri-ciri mekanikal dan elektrikal yang bagus. Cantuman kabel merupakan tempat yang 

sering mengalami kegagalan kerana ia bahagian yang paling lemah dalam kebel. 

Sebarang kerosakan cantuman kebel akan mengakibatkan kerugian besar. Oleh itu, ia 

amat penting untuk mengetahui kuality bahan penebat dalam cantuman kabel. 

Penyukatan pelepasa separa (PD) adalah process yang penting untuk mengetahui kuality 

penebat dalam cantuman kebel. Sejak dahulu, banyak kerja pengenalan corak untuk 

mengklasifikasi PD telah dilakukan dan setiap teknik mempunyai kekuatan dan 

kelemahan sendiri. Walaupun banyak kerja telah dilakukan dalan pengenalan corak PD, 

ia biasanya dilakukan dengan penebat buatan dalam keadaan sunyi. Lagipun kerja tentang 

pengenalan corak PD pada cantuman kabel jarang dijumpai. Oleh itu, dalam kerja ini, 

klasifikasi PD dalam cantuman kabel yang mempunyai kerosakan tiruan dilakukan dalam 

keadaan bunyi bising. Lima cantuman kabel jenis XLPE yang mempunyai kerosakan 

tiruan telah disediakan berdasarkan kerosakan yang biasa dialami dalam situasi praktical. 

Penyukatan PD dilakukan pada setiap cantuman kabel dan tiga tanda pengenalan yang 

dipetik daripada corak PD dalan keadaan bunyi bising tiruan. Satu teknik pengekstrakan 

ciri yang bertoleransi bunyi tinggi yang novel berdasarkan ciri analisis komponent utama 

(PCA) telah dicadangkan dan dibanding dengan ciri pengekstrakan tradisi seperti ciri 

statistical dan ciri fraktal. Tanda pengenalan digunakan untuk melatihkan pengelas untuk 

mengelaskan setiap jenis kerosakan PD. Tiga pengelas yang digunakan ialah pengelasan 

rangkaian tiruan (ANN), adaptif neuro-fuzzy system kesimpulan (ANFIS) dan vektor 

sokongan mesin (SVM). Prestasi setiap pengelas dan pengekstrakan ciri telah dinilai. 

SVM dan ANN amat memuaskan tetapi ANFIS adalah yang paling lemah. Bagi ciri-ciri 

input, ciri-ciri PCA dicadangkan menunjukan toleransi bunyi yang lebih tinggi dengan 

kemerosotan prestasi yang paling sikit berbanding dengan ciri-ciri lain. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Electrical insulation is a significant part in all high voltage power equipment. Failure 

in any part of the power system will be detrimental to power generation and transmission 

companies. Hence, it is extremely important to check the insulation quality frequently. 

Failure analysis reveals that insulation failure is the root cause for more than half of high 

voltage equipment damage (Tian, Lewin, & Davies, 2002). Cross-linked  polyethylene 

(XLPE) possesses excellent mechanical, thermal and electrical  attributes and has been 

widely used as insulation  of  high voltage  cables (Cho, Shim, & Kim, 1998).  For XLPE 

cables, cable joints are widely recognized as dielectrically weak points due to the 

introduction of insulation discontinuity and the manmade nature of their construction 

(Hunter, Lewin, Hao, Walton, & Michel, 2013). PD measurement is a nondestructive 

technique which has received global acceptance as an effective diagnostic tool with the 

capability to assess and monitor insulation systems for its integrity during manufacture 

and while in service (Satish & Zaengl, 1994). 

Partial discharge (PD) is a type of breakdown that does not fully connect the electrodes. 

This can lead to serious insulation damage and considerably reduce the life span of high 

voltage equipment (Angrisani, Daponte, Lupò, Petrarca, & Vitelli, 2000). PD occurs if 

the local electric field is greater than the threshold value, causing a partial breakdown of 

the surrounding medium (Satish & Gururaj, 1993a). PD has a transient nature and is 

characterized by pulsating currents with a duration of several nanoseconds to few 

microseconds (Karthikeyan, Gopal, & Venkatesh, 2006). PD charge magnitude is not 

always proportional to the damage caused since PDs of tiny magnitude may rapidly lead 

to electrical tree growth, especially for high voltage cables (Z. Hao, Blackburn, Phung, & 

Sen, 2007b).  Therefore, it is very cost effective if PD activity can be detected and 
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quantified in its early stage in order for replacement to be scheduled at a suitable time 

(Ma, Zhou, & Kemp, 2002b).  

The IEC has a specific limit of PD for all power equipment. When insulation failure 

occurs, it is replaced with no information of the type of PD since current commercial PD 

detector does not provide any information on the PD source (Karthikeyan et al., 2006). 

PD development became active since 1980 due to revision of IEC 60270 (Gulski, 1995). 

PD classification is of interest because of the relationship between the PD activity and the 

dielectric materials aging process. Since each defect has a unique deterioration behavior, 

it is important to recognize the relationship between the PD patterns and the defect type 

in order to determine the insulation quality. PD pattern recognition is crucial in 

determining substantial risk of an imminent insulation breakdown where the current 

component may require servicing and replacement or not (Hoof, Freisleben, & Patsch, 

1997). Many works have been performed on PD classification in various power system 

equipment, such as gas insulated switchgears and substations (Feng-Chang, Hong-Chan, 

& Cheng-Chien, 2013; Hamilton & Pearson, 1997; Liping, Ju, & Yilu, 2015; Meijer, 

Gulski, & Smit, 1998; Ziomek, Reformat, & Kuffel, 2000), power cables (Casals-Torrens, 

González-Parada, & Bosch-Tous, 2012; Hunter et al., 2013) and transformers (Ibrahim, 

Sharkawy, Salama, & Bartnikas, 2012; Ke, Jinzhong, Shuqi, Ruijin, et al., 2015). 

Commonly used classifiers include neural networks (Feng-Chang et al., 2013; Mehrdad 

Majidi & Oskuoee, 2015), fuzzy logic (Contin, Cavallini, Montanari, Pasini, & Puletti, 

2002; Salama & Bartnikas, 2000) and support vector machines (Jing & Hou, 2015; Khan 

et al., 2014).  

PD has a group of unique discriminatory attributes which serves as an identification 

markers, allowing them to be recognized. In order to perform PD classification, it is 

necessary to choose which discriminatory features to be extracted and which feature 
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extraction method to be used (Hui, Chan, Saha, & Ekanayake, 2013). The purpose of 

feature extraction is to extract meaningful input feature from the unprocessed PD data to 

represent the PD pattern associated with a specific defect (Karthikeyan, Gopal, & Vimala, 

2005). These extracted features are used as input of the classifier during the training 

process. Feature extraction also helps to reduce the size of raw PD data for quicker and 

simpler handling. PD classification requires some sort of data reduction method, such as 

reducing the matrix size. This is due to unprocessed PD data are too huge to be used as 

input to the classifiers as it will drastically increase the training time and cripple the 

performance of the classifier (Kranz, 1993; Yu & Song, 2003). Identification markers that 

are too huge in size will create redundancy and increase training time without 

improvement in classification accuracy. However, identification markers that are too 

small will cause unsatisfactory classification rate. Hence, ideal identification markers 

should be small in size and accurately represent the PD pattern produced by the defect. 

1.2 Problem Statement 

PD pulses have small magnitude but their long term effects will cause inevitable 

insulation breakdown. The interpretation of PD patterns is able to expose the cause of PD 

and measure the insulation performance of power equipment (Kai, Kexiong, Fuqi, & 

Chengqi, 2002). Although many researches had been done on PD classification in the 

past, they are based on self-fabricated insulation material from the laboratory instead of 

actual cable joints. Apart from that, most of PD classification works were performed in 

lab environment and under noise-free environment. However, in reality, on site PD 

measurement suffers from lower detection sensitivity due to the interference of external 

noises (Suzuki & Endoh, 1992). PD measurement often faces interference caused by radio 

transmissions, power electronic components, random noise from switching, lightning, 

arcing, harmonics and interferences from ground connections (Satish & Nazneen, 2003).  
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A lot of research works have been performed on denoising PD signals and it has 

improved over the years but a perfect and universal denoising standard has yet to be 

achieved. Most previous research works used artificial noise generated by adding evenly 

distributed random number to phase and charge or including random numbers with 

various standard deviation and zero mean instead of actual noise encountered on site. A 

more detailed research is needed for how different noise levels affect classification 

accuracy. 

1.3 Research Objectives 

This research aims to improve classification accuracy of PD under noisy conditions. The 

key objectives of this research are: 

1. To perform measurement of partial discharge (PD) from artificially-prepared 

cable joint defects 

2. To propose feature extractions using Principal Component Analysis (PCA) from 

PD data and artificial intelligence classifiers to identify PD types from cable joint 

defects 

3. To compare the performance of the proposed principal component analysis (PCA) 

based input feature against traditional input features under noisy condition using 

different classifiers 

4. To compare the performance of ANFIS classifier against SVM and ANN under 

noisy conditions 

1.4 Research Methodology 

This work focuses on obtaining PD patterns from five types of commonly encountered 

defect in actual XLPE cable joints and performing classification to identify the defect. 

Feature extractions were performed to obtain useful input features, which serve as 

identification marker for the cable joint defect. These input features were used as the 

Univ
ers

ity
 of

 M
ala

ya



5 

training input for three different classifiers. Different noise levels with increasing pulse 

count and magnitude were added to the PD signals to observe which input feature and 

classifier has the higher noise tolerance. The classifiers were trained using noise-free PD 

signals but tested with noisy PD signals. Noise levels of variable pulse count and noise 

level with variable amplitude were tested. The noise source was obtained from ground 

interference during raining which is not a randomly generated noise. This work also 

investigated a relatively new classifier, adaptive neuro-fuzzy inference system (ANFIS) 

and its feasibility as a PD classifier.  

1.5 Thesis Contributions 

The main contributions of this thesis are: 

1. A new principal component analysis (PCA)-based input feature that has high 

noise tolerance compared to traditional input features used for PD classification 

has been proposed 

2. A more realistic PD classification experiment by using actual cable joint 

samples has been performed 

3. A better representation of noise contamination effect on PD classification has 

been proposed by using actual noise pattern from ground interferences with 

varying pulse count and charge magnitude 

1.6 Thesis Organization 

This thesis is divided into five chapters. Chapter 1 consists of an introduction, which 

introduces the background, problem statement, research objectives and research 

methodology of this work.  

Chapter 2 deals with literature review while overviewing the previous related studies 

of this research area.  
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Chapter 3 presents the steps taken to achieve the objectives of this study. This includes 

preparation of the XLPE cable joints, PD measurement setup, acquisition of noisy signals 

and implementation of feature extraction and classifiers.  

In Chapter 4, all measurement and classification results that have been performed in 

this work are detailed in a systematic manner. This chapter also deals with the comparison 

between different types of input feature and classifier under different noise levels.  

Finally, Chapter 5 presents the conclusions and the future work recommended for this 

research work. 
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CHAPTER 2: PD MEASUREMENT AND CLASSIFICATION 

2.1 Introduction 

This chapter begins with information about Cross-linked polyethylene (XLPE) cable 

joints. It also provides more information about partial discharge in terms of PD pattern 

representation, PD measurement methods, PD detection methods and PD denoising 

techniques. Detailed review of previous works related to PD classification was presented.  

2.2 XLPE Cable Joints 

Cross-linked polyethylene  (XLPE)  has  well-balanced electrical,  thermal  and  

mechanical  properties and  it  has been  used  for  insulation  of  electrical  cables (Cho 

et al., 1998).  In order to connect different XLPE cables, cable joints are required. 

Installing a cable joint is a very delicate task and requires highly skilled professional cable 

jointers. 

There are two main types of cable joints used in the power industry; heat shrink and 

cold shrink cable joints. Cold shrink and heat shrink cable terminations require very 

different installation methods. Heat shrink termination requires multiple tools such as gas 

torches and igniters. Heat shrinking requires very precise skill as uneven shrinking will 

produce inconsistent installation. Overheating while performing heat shrinking will 

produce scorch and burnt damage to the XLPE cable.  

Cold shrinking cable joints do not require heat source and are more reliable and less 

susceptible to human error. It is also easier to install without any special training and 

tools. The cold shrink tube is an open ended rubber sleeve made of rubber elastomers that 

has been factory expanded and assembled onto a supporting removable plastic core. Cold 

shrink tubing shrinks upon removal of the supporting core and forms the cable joint 

connecting the two XLPE cable ends.  
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Cold shrink technology is well suited to outdoor applications as well as to medium and 

high voltage cable splices, cable joints and cable terminations. Generally, cold shrink 

tubing is more flexible than heat shrink tubing as it moves with the cable when it goes 

through thermal expansions and contractions.  

Two main cautions must be made when connecting two high voltage cables. First, the 

conducting layer at the outer side of both cables must be terminated without causing a 

field concentration. This is similar with the construction of a cable terminal. The second 

issue is to avoid a void or any free space between the area of the cable insulation and the 

cable conductors (Frederik H. Kreuger, 1991). A bi-manchet as shown in Figure 2.1 can 

be used to overcome these problems.  

 

Figure 2.1: Bi-mancet at the XLPE cable joint  

(Frederik H. Kreuger, 1991)  

In Figure 2.1, the red color represents the conductor of the HV cable and the blue color 

is the cable insulation. The black sections are the semiconductor. The outer layer 

distributes the electric field while the inner layer diverts the field as seen in Figure 2.2. 

The equipotential lines were directed from the cable core to the outer section of the bi-

mancet on both sides of the device.  
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Figure 2.2: Field distribution in the cable joint  

(Frederik H. Kreuger, 1991) 

2.3 PD Representation 

Time-resolved and phase-resolved data are the two major types of PD pattern 

representations currently used for PD related research. Phase-resolved PD (PRPD) data 

are acquired based on the AC test voltage waveform. The phase angle of the voltage is 

split into a specific amount of sections while the AC test voltage is maintained at a 

constant level. A PD detector is required to capture the individual PD signal and quantifies 

all pulses based on the phase angle occurrence (φ), charge magnitude (q) and the number 

of PD (n) over a predetermined time duration (Sahoo, Salama, & Bartnikas, 2005). The 

relevant phase and amplitude pulse numbers of PRPD patterns are usually stored in matrix 

format for computational purposes (Contin, Montanari, & Ferraro, 2000). These data are 

commonly known as φ-q-n or PRPD patterns (Ardila-Rey, Martinez-Tarifa, & Robles, 

2015). 

Time-resolved data pattern has interesting benefits because individual pulse shape can 

be observed and there is correlation between the PD signal shape and the nature of the 

insulation defect, which provides aging information of the insulation system (F. H. 

Kreuger, Gulski, & Krivda, 1993). The measurement procedure of time-resolved patterns 
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typically requires less expensive measurement system compared to phase-resolved 

measurements. 

Phase-resolved data are more widely used in PD classification research because it is 

able to represent the physical process at the PD location since individual PD pulse has a 

solid relation with the PRPD patterns (Karthikeyan, Gopal, & Venkatesh, 2008).  

2.4 Online vs. Offline PD Measurement 

PD measurement consists of two main approaches, which are off-line and on-line PD 

detections. Off-line methods refer to tests where the equipment under test is de-energized 

from normal operation and energized by an external voltage source ("IEEE Guide for 

Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment," 

2007). On-line tests are performed at operating voltage, thus the exact behavior of PD can 

be obtained and evaluated. The offline PD testing has several advantages, such as able to 

determine PD extinction voltage (PDEV) and PD inception voltage (PDIV) since 

measurement voltage can be controlled. The advantages of on-line PD testing are PD 

characteristics measurable at different load conditions and tests can be carried out without 

causing power outage. 

Currently, only offline methods have been standardized in IEC 60270. On-line 

methods remain unconventional with no benchmark that one can make comparison with. 

However, online tests have become increasingly popular in cable PD detection in recent 

years. Both online and offline PD tests are complimentary of each other. By combining 

both methods, a more valid result of cable condition can be obtained.  

Majority of the research related to PD classification uses offline detection method 

since it is convenient to conduct in a laboratory environment. In this work, offline 

measurement was used as it is more practical and feasible to be conducted in the 
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laboratory. Using a defective cable joint in an online grid is not only difficult but highly 

dangerous. 

2.5 PD Detection Methods 

The standard PD detection systems rely on electrical voltage or current pulse detection. 

Electrical pulse detection equipment is commercially available and can be installed in 

high voltage (HV) laboratory (F. H. Kreuger et al., 1993). Pulse detection method has its 

own advantages and disadvantages (Casals-Torrens et al., 2012). The advantages of this 

method are high demand for commercial applications, ability to detect PD level, auto 

calibration supported when double sensors are used, able to analyze PD direction for cable 

accessories and ability to work together with PD localization systems. However, the 

disadvantages of this method are expensive measurement equipment and challenging to 

install in the field, susceptibility to radio frequency (RF) interference when lack shielding, 

shield construction limits inductive methods and low coupling capacity reduces 

capacitive method’s sensitivity. 

Acoustic detection uses acoustic sensors to measure pressure fluctuations on the 

insulation surface. This offers an interesting measurement technique for PD detection 

(Casals-Torrens et al., 2012). The advantages of this method are electromagnetic noise 

immunity, non-destructive and non-intrusive, high sensitivity sensor, frequency spectrum 

has high range, sensor installation is not affected by shielding construction, robust 

mechanical strength, excellent electrical resistivity and more cost effective compared to 

other sensors. However, the disadvantages of this method are signal attenuation, 

measurement sensitivity is affected by temperature, cannot detect PD level, highly 

complex calibration required and limited capability when handling equipment with air 

insulation. 
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Although the acoustic detection has gained some popularity and quite a number of 

research had been done using acoustic methods (Al-geelani, Piah, Adzis, & Algeelani, 

2013; Boya, Ruiz-Llata, Posada, & Garcia-Souto, 2015; Casals-Torrens et al., 2012; 

Danouj, Tahan, & David, 2013; Kundu, Kishore, & Sinha, 2012), electrical pulse 

detection is still the common industrial method for PD measurement. In this work, 

electrical pulse detection was used because it conforms to the IEC60270 PD measurement 

standard. 

2.6 PD Denoising 

Ideally, by analyzing the specific combination of PD phase distribution, pulse 

magnitude and pulse count with time, PD patterns can be classified (Ma, Zhou, & Kemp, 

2002a). However, during PD measurement, a difficulty encountered is caused by external 

noise interference, which degrades the PD measurement detection sensitivity. Major 

interferences faced during PD measurements are caused by discrete spectral interferences, 

stochastic pulse shaped interferences and periodic pulse shaped interferences (Satish & 

Nazneen, 2003).  

One way to easily disregard the presence of noise is to set a threshold to ignore signals 

that are less than 10% of the maximum discharge amplitude (Gulski, 1993). However, 

this method is not suitable for application which requires good accuracy. This is because 

big threshold level ignores actual PD pulses that have small magnitudes while small 

threshold level mistakenly detects huge amount of noise as PD pulse (Allahbakhshi & 

Akbari, 2011; Shim, Soraghan, & Siew, 2001). 

The Mean Square Error method was used in (Sriram, Nitin, Prabhu, & Bastiaans, 2005) 

to compare the performance of 28 different types of denoising methods. It was found that 

wavelet based denoising has the best results. The fundamentals workings of wavelet 

transform can be found in (Bentley & McDonnell, 1994; Chul-Hwan & Aggarwal, 2000). 
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Steps to select an optimal mother wavelet and setting automated thresholding rule are 

documented in (Ma et al., 2002a, 2002b). The J criterion (Jin et al., 2006) can also be 

used to determine the optimum mother wavelet. For PD denoising, Daubechies (dB) was 

the most popular mother wavelet choice since the Daubechies wavelet and a single PD 

pulse shape have high similarities. Numerous research works have also used wavelet 

transform for denoising purposes, especially the Daubechies wavelet, which is capable of 

detecting high frequency, fast decaying, short duration and low amplitude signals 

(Angrisani et al., 2000; Lalitha & Satish, 2000; Satish & Nazneen, 2003; Shim et al., 

2001). 

 After an optimal mother wavelet is determined, the maximum number of 

decomposition can be calculated using the Jmax formula (Zhou, Zhou, & Kemp, 2005). 

Discreet wavelet transform (DWT) is preferred over continuous wavelet transform 

(CWT) since CWT is much more difficult to compute and produces a lot of irrelevant 

data (Satish & Nazneen, 2003). Successful denoising is achieved if it has low amplitude 

reduction, minimum pulse shape distortion and high signal to noise ratio (Satish & 

Nazneen, 2003). 

PD denoising are usually done offline because online PD denoising is much more 

challenging due to nonzero wavelet coefficients that are higher than the PD coefficients. 

A new method for online PD denoising is to raise the voltage to slightly below PD 

inception voltage (PDIV) to record noise level of the measurement system (Z. Hao, 

Blackburn, Phung, & Sen, 2007a). A threshold value is calculated using the recorded 

noise level. Lastly, wavelet transform de-noises the PD signal using the calculated 

threshold level. 

Notable recent advancement in wavelet denoising is the introduction of second 

generation wavelet transform (Xiaodi, Chengke, Hepburn, Guobin, & Michel, 2007) and 
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complex wavelet transform (Xu, Tang, & Sun, 2007). Second generation wavelet 

transform differs from DWT by providing interpretation of a fully spatial domain of the 

transform compared to the original frequency domain-based constructions. Complex 

wavelet transform is shift invariant and possesses greater directional selectivity while 

filtering multidimensional signals.  

2.7 Previous PD classification works 

There are numerous research work related to PD classification that had been done in 

the past. This section summarizes them into 5 main categories according to the 

classification method used. They are ANN, Fuzzy logic related techniques, SVM, 

combination of two or more classifiers and other miscellaneous classifiers.  

2.7.1 Artificial Neural Network (ANN)-Based Classifiers 

The earliest PD classification work was reported in (Suzuki & Endoh, 1992). The test 

sample used was a 66 kV XLPE cable with artificial defect and it was tested at 38 kV. 

The phase vs. charge plot was reduced into a 20x30 pixel image to be used as the input 

feature. The classifier used was a three layer feed forward back propagation neural 

network. The neural network has three outputs, which are “no PD” for safe PD level, 

“Warning” for moderate PD level and “Alarm” for high PD level. The neural network 

was trained using 30 input data and able to achieve 90% classification rate. 

Back propagation neural network was used in (Mazroua, Salama, & Bartnikas, 1993) 

to classify PD pattern caused by two different cavity sizes and two different cavity shapes. 

The input features used in this work include rise time, fall time, apparent charge, area and 

width of the PD pulse. The test samples used were acrylic disk with different artificially 

created cavity shape and sizes. 30 measurements were taken from each sample and 20 of 

them were used for training and 10 for testing purposes. It was found that the neural 
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network was able to differentiate different PD patterns caused by different cavity shapes 

with 100% accuracy, but only 60% average accuracy in distinguishing cavity sizes.  

In (Satish & Gururaj, 1993a), the PD pattern observed on the oscilloscope was 

captured using a camera and processed using a custom boundary tracing algorithm to 

generate input features. A multilayer back propagation neural network was used to 

classify PD patterns. A total of 21 test samples with different artificial defects were 

prepared such as laminar cavity, sharp points in various conditions, gas bubbles, cavities 

etc. However, due to equipment limitation, the pattern information cannot be shown in a 

single image capture, thus all their samples were split into two main categories. The 

classifier was trained to classify PD patterns into the 2 categories. The classifier managed 

to achieve accuracy of 85.5% and 82.25% for both category.  

ANN was used in (Satish & Zaengl, 1994) to classify PD patterns. Test samples used 

in their work were 7 different flat cylindrical void specimens.  Feature extraction was 

performed on a phase resolved PD (PRPD) pattern. The PRPD pattern was reduced to a 

smaller dimension of 16 (amplitude) x 32 (phase) to be used as the input feature. The total 

average classification accuracy was 79%. A random noise was added into the PD pattern 

to observe the implication. Random noise was created by adding random number to non-

zero values in the pulse count axis of the PRPD pattern. The classification accuracy of 

the contaminated sample reduced to 73.85% with 5% noise and 42.2% with 10% noise.  

A research work done in (Cachin & Wiesmann, 1995) attempted to classify PD pattern. 

The PD patterns used in their work were generated using stochastic computer simulations. 

8 classes of PD test pattern were used where 6 of them simulated void discharge and 2 of 

them simulated corona discharge. A total of 25 data set were prepared for each class. A 

3D PRPD pattern that had been discretized to 256x256 was used as input feature to the 

classifier. They also discretized a 2D PRPD pattern into 8x8 points for comparison. ANN 
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was used to classify the PD patterns and the combined recognition rate of all samples was 

79%. By normalizing the charge scale of the PRPD pattern and using contours, they 

managed to separate superimposed patterns that has minor overlapping.  

Research in (Mazroua, Bartnikas, & Salama, 1995) used ANN to classify cavity defect 

sizes and electric tree defect aging times by using the PD patterns measured from both 

defect. Input features such as peak amplitude, rise time, fall time, width and area of the 

PD pulse were extracted from the PD signal. The neural network was able to distinguish 

perfectly between cavity defect and electric tree defect. Average accuracy of 94% was 

achieved when classifying different cavity sizes while 91% was achieved when 

classifying different aging time for electric tree.  

A new type of ANN was proposed in (Hong, Fang, & Hilder, 1996) which is known 

as modular neural network. Modular neural network is basically 5 individual networks 

that are connected in series. Each sub network classifies one defect against the rest and 

passes the remaining test samples into the following sub network until all test samples are 

classified. The 5 test samples used in their work consist of high voltage buses with 

different defect caused by different size of needle point diameter. The discharge pulse 

count, maximum and average discharge amplitude within a 10 degree phase window were 

used as input feature to the classifier. The single neural network achieved 88.31% while 

the modular neural network achieved 93.6% accuracy. They later extended their work to 

show that modular neural network has higher training speed compared to singular neural 

network (Tao & Fang, 2001). 

Envelope extraction is a new feature extraction proposed in (Hamilton & Pearson, 

1997). Envelope extraction is an image processing technique based on mathematical 

morphology. A 420 kV GIS SF6 chamber was used as the test sample with 3 types of 

defects created using aluminum particles, needle tip of different length and diameter and 
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aluminum wire of different length. ANN was used to classify the measured PD patterns 

into 3 groups. The overall classification rate achieved was 94.6%.  

Counter propagation neural network was proposed in (Hoof et al., 1997). Test samples 

consist of low density polyethylene (LDPE) and plexi glass, six types of defects were 

created, which are electrode bound cavity, point to dielectric gap in air, surface discharge 

in air, corona discharge in air, electrical treeing in polyethylene and stochastic discharge. 

The ∆un(∆un-1) pattern which was derived from the PD pulse sequence was used as input 

feature, un is the magnitude of the PD pulse sequence. Classification of 100% was 

obtained using the counter propagation neural network. Counter propagation neural 

network (CPN) consists of partly self-organizing maps (SOM) that are combined with an 

outstar structure. CPN is used for estimating a function that is characterized by a group 

of desired pairs of input output and their function of inverse. For PD classification, the 

forward variant of the CPN (FCPN) was utilized. A FCPN is depicted in Figure 2.3 (Hoof 

et al., 1997). In this figure, part of the Kohonen self-organizing map is merged with the 

outstar structure (Grossberg, 1969). It works as a lookup table which can compare a 

pattern with the prototypes encoded in input-to-hidden weights and chooses the most 

identical one. Then, the results are encoded in the hidden-to-output weights. The previous 

weights are trained by unsupervised competitive learning while the latter weights are 

trained by supervised learning. To increase the classification efficiency, the network 

structure is dynamically modified by using a vigilant structure. The complete working of 

CPN can be found in (Hecht-Nielsen, 1988; Hoof et al., 1997). 
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Figure 2.3: Architecture of the FCPN  

(Hoof et al., 1997) 

A new feature extraction was proposed in (Lalitha & Satish, 1998), where the PRPD 

patterns were compressed using quad tree partitioning fractal image compression. Then, 

the average pulse count and phase and magnitude spreads were calculated from the 

compressed pattern and used as the input feature. PD data used for classification are single 

point corona in air, cavity discharges, surface discharges in air and multiple corona in air, 

which were obtained from their previous work in (Krivda, Gulski, Satish, & Zaengl, 

1995). Using ANN as the classifier, 20% of the data achieved 100% classification 

accuracy while the remaining 80% of test sample had classification accuracy of 75%. 

ANN was also used in (Candela, Mirelli, & Schifani, 2000) for PD classification. 

Epoxy sheet was used as test samples and different defects were created such as surface 

discharge, spherical void, discharge between metallic and dielectric surface. Fractal 
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dimension, lacunarity, skewness, kurtosis and Weibull parameters such as α and β were 

used as input feature. Classification accuracy of each samples ranges from 87% to 98%. 

Radial basis neural network was used in (Lalitha & Satish, 2000) to classify PD 

patterns obtained from single point corona in air, surface discharge and cavity discharge. 

They overlapped different types of PD to show that multi-resolution signal decomposition 

method was able to separate the PD patterns as long as the overlapping was not too severe. 

For the three discharge types, classification accuracy of more than 88% was achieved. 

Extending their previous work in (Salama & Bartnikas, 2000), Salama and Bartnikas 

used the autoregressive time-series analysis to determine the number of input features to 

be used for the cascaded neural network (CNN) (Salama & Bartnikas, 2002). The CNN 

was able to determine small variation in different cavity sizes better than normal neural 

network. This is due to CNN uses an indexed feature that sets up the highest vital input 

to the next stage of CNN that is influential in producing a classified attribute output from 

the CNN. Figure 2.4 shows an example of CNN with double outputs.  

 
Figure 2.4: CNN with double outputs  

(Salama & Bartnikas, 2002) 
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For this CNN system, the output of the first stage that is indexed Id, is created to represent 

unity output for a 1.5 mm void and zero for a 1.0 mm void. The indexed signal Id is passed 

to the second stage along with ∆V and ∆Qm inputs as one of the input. After training, CNN 

can successfully distinguish different cavity sizes efficiently using three inputs with 6 

neurons in the hidden layer.  

Kai et al. used stator bar as test samples and created artificial defects such as cavity 

discharge, surface corona, tiny cavity discharge and slot discharge (Kai et al., 2002). Back 

propagation neural network was used to test several different input features. The 6 types 

of input features used and their average classification accuracy are 95.75% for tabulated 

data, 92.25% for surface fitting parameters, 92.63% for moment features, 89.25% for 

statistical features, 75.67% for fractal features and 90.75% for combination of fractal 

features and barycenter coordinates. 

ANN was used in (C. Chang et al., 2005) to classify different PD patterns in gas 

insulated substation (GIS). Artificial defects created included corona, particle on 

enclosure, particles on bus conductor and particle on spacer. Fast Fourier transform and 

discreet Wavelet transform were used to extract four types of input features from the PD 

wave shape, which are simple count ratio, mean within partition variation, between 

partition migration count and a combination of all previous features. By using all input 

features, no misclassification occurs. Extending their work C. S. Chang et al. used local 

discriminant features obtained using wavelet packet transform to be used as input feature 

(C. S. Chang et al., 2005). ANN was used to differentiate PD signals and PD signals 

combined with corona. The error rate was 1%.  

A new variant of ANN known as probabilistic neural network (PNN) was used in 

(Karthikeyan et al., 2005) for PD classification. Perspex material was used to create three 

types of defects, void, corona in air and corona in oil. Statistical features were used as 
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input features. A total of 55 PD reading were measured from the test samples. It was 

found that 100% accuracy was achieved if larger test samples were used. PNN network 

is a network formulated by the probability density function (PDF). It is a network that 

mainly relies on competitive learning by using a winner takes all style and the 

fundamental theory based upon the multivariate probability (Karthikeyan et al., 2008). It 

offers a general key to classification of PD pattern using a statistical approach known as 

Bayesian classifiers. PNN also utilizes the Parzen Estimators created to build the PDF 

needed by Bayes theory (Karthikeyan et al., 2005; Su, Chia, Chen, & Chen, 2014). The 

architecture of a standard PNN is shown in Figure 2.5.  

 

Figure 2.5: Architecture of PNN  

(Karthikeyan et al., 2005) 

There will be an exemplar node (unit) or a single pattern of example for each training. 

Every pattern unit forms a dot product of the example given for classification and weight 

vector, where the weights entering a node came from a given example. A principal 

advantage of the PNN paradigm is that it is usually much quicker than the usual back-

propagation network, where the incremental time adaption of back propagation is a 
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considerable fraction of the total computation time (Specht, 1988, 1990). PNN has several 

variations such as Adaptive PNN (APNN), composite PNN (CPNN), Radial Basis PNN 

(RBPNN), heteroscedastic PNN (HRPNN) and robust heteroscedastic PNN (RHRPNN). 

APNN utilizes the alteration in the smoothing parameter  or the variance parameter, which 

requires different variance parameter of each class depending on the calculation of the 

average distance and Euclidean distance computation (Karthikeyan et al., 2008). CPNN 

uses multifarious inputs to obtain a precise and reliable decision on the classification 

group (Karthikeyan et al., 2008). RBPNN is trained using the forward orthogonal least 

square method (FOLS). The combination of FOLS-RBPNN is capable of handling a range 

of complexities such as ill-conditioned and large dataset training, overlapped multiple 

discharge sources with ease and varying the applied voltage (Venkatesh & Gopal, 2011a). 

HRPNN is basically similar to the original PNN with few big alterations in the exemplar 

layer and the method of vector selection during training at the output layer. RHRPNN is 

a modified version of HRPNN by including a statistical tool that is powerful for improved 

interval approximation known as the Jack-knife method (Venkatesh & Gopal, 2011b). 

Extension neural network (EXNN) was used in (Mang-Hui, 2005; Mang-Hui & Chih-

Yung, 2005). High voltage current transformer was used as test samples with artificial 

defects such as corona, low voltage coil PD and high voltage coil PD. The mean value of 

total discharge magnitude, maximum discharge magnitude and mean value of the 

maximum discharge magnitude were extracted to be used as the input features. Extension 

neural network was compared with back propagation neural network, where both network 

achieved 100% accuracy under noise-free condition. Noisy data were created by adding 

uniformly distributed 30% random error data. Extension neural network retained 92% 

classification accuracy while back propagation neural network fell to 80%. The extension 

neural network is a new type of neural network, which essentially combines extension 

theory with neural network by using extension distance instead of Euclidean distance to 
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check similarities between test data (Wang, Tseng, Chen, & Chao, 2009). Extension 

theory provides an innovative distance measurement for PD recognition while the neural 

network helps to entrench the parallel computing features and learning abilities. The 

extension neural network is able to process the clustering difficulties of a range of feature 

values with continuous input, supervised learning and descriptive output. Due to the lack 

of complicated training process, extension neural network is capable of quick adaptive 

process for huge quantity of training data and defined the lower and upper bounds straight 

from the training patterns. Figure 2.6 shows the extension neural network structure which 

consists of the output and input layers.  

 

Figure 2.6: Structure of the EXNN  

(Mang-Hui, 2005; Mang-Hui & Chih-Yung, 2005) 

There are 2 connection values known as weights between every output node and every 

input node. They represents the feature upper bound and lower bound of the classical 

domain feature. One node exists at the output layer of every pattern of the prototype and 

only single non-zero output node to designate the prototype pattern, which is closest to 
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the input vector. The inner workings of extension neural network is described in (H.-C. 

Chen, Gu, & Wang, 2012). 

The effectiveness of fractal features and statistical features as input features was tested 

in (Jian, Caixin, Grzybowski, & Taylor, 2006). Five types of PD patterns were obtained 

from a plane to electrode systems such as dielectric surface discharges in air, single point 

corona discharges, single point discharges, dielectric surface discharges in oil and 

discharges in cavity electrode system. A back propagation neural network was used as a 

classifier. It was found that fractal features achieved 84.26%, statistical features achieved 

88.44% and a combination of fractal and statistical achieved 93.64% classification 

accuracy. 

A research work done in (Jin et al., 2006) used ultra-high frequency (UHF) 

measurement of PD signals and wavelet packet transform was used to extract input 

features from the PD signals. GIS was used as test samples with artificial defects such as 

corona, particle on surface, particle on conductor and free particle on enclosure. ANN 

was used as a classifier and achieved 98.3% classification accuracy for 4 test subjects. 

This work was further expanded in (Karthikeyan et al., 2008) to compare different variant 

of probabilistic neural network.  

ANN was used in (Boczar, Borucki, Cichon, & Zmarzly, 2009)  to classify PD patterns 

measured using acoustic method. 8 types of artificial defects were created, which include 

point to point discharge in oil, point to point in oil with gas bubbles, point to plane in oil, 

surface discharge, multipoint surface discharge, multipoint plane discharge in oil, 

multipoint plane discharge in oil with gas bubbles and moving particles discharge in oil. 

Input features were extracted using short time Fourier transform and power spectrum 

density method. A classification accuracy of up to 90% were achieved.  
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Probabilistic neural network was used in (Evagorou et al., 2010) to classify PD patterns 

measured from lab created artificial PD sources. Input features used were the wavelet 

coefficients at various scales extracted using wavelet packet transform. Classification 

accuracy of 97.49%, 91.9%, 100% and 99.8% were obtained for corona in air, floating 

discharge in oil, internal discharge in oil and surface discharge in air. 

A type of ANN known as radial basis probabilistic neural network (RBPNN) was used 

in (Venkatesh & Gopal, 2011a) to classify 4 types of PD sources; void, air corona, oil 

corona and void with air corona. Forward Orthogonal Least Square algorithm was used 

for feature extraction. RBPNN managed to achieve classification accuracy between 80% 

and 90% while PNN achieved classification accuracy of 50% to 70%. Robust 

Heteroscedastic Probabilistic Neural Network was later used in (Venkatesh & Gopal, 

2011b), which achieved classification accuracy more than 90%.  

A research work done in (Al-geelani, Piah, & Shaddad, 2012) used radial basis neural 

network to classify acoustic signals caused by surface discharge. The test samples used 

were high voltage glass insulators.  Wavelet transform was performed on the measured 

signals and statistical features were calculated from the wavelet coefficients to be used as 

input feature. It was found that no misclassification occurred. 

ANN was used in (F. C. Gu, Chang, Chen, Kuo, & Hsu, 2012) to classify PD patterns 

measured from XLPE cable joints. The 3 defects created at the cable joints were short 

insulation, long insulation and knife defect. PDs were measured using acoustic method 

and processed using Hilbert Huang transform. Fractal features were extracted from the 

Hilbert energy levels and PRPD pattern. Classification accuracy was 100% for both 

fractal features under noise-free condition. However, when 30% noise was applied, 

classification accuracy of ANN when using fractal features from Hilbert energy levels 

was 76.7% while fractal features from PRPD pattern was 68.3%. The same test sample 
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and input feature was used again in (F.-C. Gu, Chang, Chen, & Kuo, 2012), but extension 

method and ANN was used as classifier. Both classifiers achieved 100% accuracy under 

noise-free condition. When 30% noise was introduced, extension method and ANN 

achieved 81.67% and 73.33% accuracy. Similar input feature and classifier were again 

used to classify defects from GIS (Feng-Chang et al., 2013) and high voltage transformer 

(Hung-Cheng, 2013).  

Particle swarm optimization (PSO) was proposed in (Al-geelani et al., 2013) to 

optimize the input features to increase classification accuracy. PD signals were measured 

using acoustic method from glass insulators contaminated by three levels of salt water 

concentration. Wavelet transform was used as feature extraction. By using PSO, 

classification accuracy of radial basis neural network managed to increase from 96.98% 

to 100%. Similar work with more detailed description was done in (Al-geelani, M. Piah, 

& Bashir, 2015).  

RF antenna was used to measure PD in a research work done in (Shurrab, El-Hag, 

Assaleh, Ghunem, & Jayaram, 2013). Silicon rubber surface was used as a test subject 

with artificial surface discharge and corona from positive and negative end. Statistical 

and wavelet analysis features were used as input features to an ANN classifier. The 

classification accuracy was 96%. 

A modified ANN known as ensemble neural network (ENN) was proposed in 

(Abubakar Mas’ud, Stewart, & McMeekin, 2014) for PD classification. 4 types of 

artificial defects were created in laboratory, which includes corona in air, surface 

discharge, single void and electrode bound cavity. Statistical features were used as input 

feature and classification accuracy of 95% was obtained. The ENN technique is based on 

training a number of neural network models with statistical parameters from PD patterns 

and combining their predictions. ENN improves upon the generalization performance of 
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a single neural network by simply training many NNs and combining their component 

predictions. These models include the naive classifier, basic ensemble network, a 

generalized ensemble network and dynamically weighted ensemble (DEM) network. 

Among various ENN output aggregation systems, DEM has been shown to outperform 

other techniques when applied to a number of dataset categories. DEM determines the 

output weight of each of the individual NNs and provides the best performance at any 

instant of evaluation. The weight is proportional to the certainty of the individual neural 

network predictions and this certainty evaluates how close the output is to any known 

target value. An example of ENN model is shown in Figure 2.7, where statistical 

parameters are used as the input (Abubakar Mas’ud et al., 2014).  

 

Figure 2.7: Structure of the ENN  

(Abubakar Mas’ud et al., 2014) 

The modular neural network proposed in (Hong et al., 1996; Tao & Fang, 2001) shares 

similar concept as ENN, where multiple individual neural networks are trained and their 

outputs combined. 
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A research work done in (Sinaga, Phung, & Blackburn, 2014) used UHF sensor to 

measure PD. Wavelet transform was used to denoise the PD signals. 3 types of PD 

patterns were measured from defects created in the laboratory such as void, floating metal, 

mixture of void and floating metal. Statistical features and wavelet features were used as 

input feature to an ANN classifier and the classification accuracy achieved was 95.3% 

when denoising was used and 75.3% with no denoising. 

A combination of phase resolved PD data and time resolved PD data was proposed in 

(Liping et al., 2015) to be used as input feature. A technique called Dempster Shafer 

evidence theory was used as a data fusion technique. GIS was used as a test sample with 

the following defects, protrusion, surface contamination, void in spacer and free particles. 

ANN was used as a classifier, which achieved classification accuracy of 82.94% when 

using time resolved PD data, 92% when using phase resolved PD data and 97.25% when 

using the fused data.  

2.7.2 Fuzzy Logic-Based Classifiers 

A fuzzy expert system was used in (Salama & Bartnikas, 2000) to classify different 

void sizes of 1 mm,1.5 mm and 2 mm based on the PD data measured. Input features such 

as pulse width apparent charge, pulse fall time, pulse rise time and area under pulse were 

extracted from the PD signal to be used as input feature to the classifier. The classification 

accuracy was not specified but it was said to be inferior compared to previous attempts 

with ANN. However, it was mentioned that fuzzy expert system is much easier to be 

implemented than neural network. 

Fuzzy C mean classifier was used in (Contin et al., 2002) to separate overlapping PD 

signals. The equivalent time length and equivalent bandwidth were calculated from the 

PD signal to be used as input feature. Weibull parameters from the pulse height 
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distribution were also used as input feature. Turbo generator stator bars and induction 

motor coil were used as test samples. Artificial defects created include internal discharge 

from micro voids, electrical noise, corona and surface delamination discharge. Their work 

shows that separation of PD signals is possible, provided that both signals are not fully 

overlapped.  

Further extending their work from (T. K. Abdel-Galil, Hegazy, Salama, & Bartnikas, 

2005) , (T. K. Abdel-Galil, R. M. Sharkawy, M. M. A. Salama, & R. Bartnikas, 2005) 

used the same apparent charge and applied voltage as input features to the adaptive neuro-

fuzzy inference system (ANFIS) and achieved classification accuracy of 82.2%. Since 

then, there have been several works which used ANFIS for PD classification (Canxin et 

al., 2009; Chalashkanov, Kolev, Dodd, & Fothergill, 2008; Fard, Akbari, Shojaee, 

Mirzaei, & Naderi, 2010; Sinaga, Phung, & Blackburn, 2010). 

Neuro fuzzy network was used in (Mazzetti et al., 2006) to classify PD patterns in heat 

shrink joints and terminations of XLPE cables. 4 types of PD pattern were obtained from 

a cable joint with burned semiconductor and cable termination with cut in dielectric layer, 

particle insertion and asymmetrical shrinking. Statistical parameters were used as input 

feature and the classification accuracy of 80% to 99% was achieved depending on the test 

voltage. Their work was extended in (Rizzi, Mascioli, Baldini, Mazzetti, & Bartnikas, 

2009) by using fuzzy min max classifier optimized by genetic algorithm. The same test 

samples and input features were used and there was no misclassification.  

2.7.3 Support Vector Machines-Based Classifiers 

Support vector machine (SVM) was used in (Sharkawy, Mangoubi, Abdel-Galil, 

Salama, & Bartnikas, 2007) for PD classification. Test samples used were cylindrical 

glass specimen holder with two parallel plane aluminum electrodes and four types of PD 
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pattern were obtained. Higher order moments and entropy of the estimated density 

function were used as input feature. Different combinations of moments were tested and 

the best classification accuracy of 98% was obtained by using 6 moments as input feature.  

SVM was used in (Si, Li, Yuan, & Li, 2008) to classify PD patterns obtained from 

internal discharge, surface discharge and corona. Input features were extracted from the 

pulse wave shapes using the equivalent time-frequency method. PD was measured at DC 

voltage instead of AC voltage. The classification accuracy was not specified but the 

proposed system was able to distinguish between different PD patterns. 

SVM was used in (L. Hao & Lewin, 2010) to classify PD patterns from artificial 

defects such as corona with remote earth, surface discharge in air and internal discharge 

in oil. The phase charge average was used as input feature. Out of 60 samples, only 2 

were misclassified.  

SVM was used as a classifier in (Hunter et al., 2013) to classify PD measured from 

PILC cables joints with the following defects; spike on the ferrule, void on the top, spike 

on the ferrule and void in the crutch. Denoising was done by ignoring PD signal below 

25pC. A combination of statistical features and features extracted from wavelet transform 

were used as input features. The classification accuracy achieved was 91.1%. 

SVM was used in (Khan et al., 2014) to classify PD patterns measured from GIS. 

Artificial defects were created by placing metal particles at different location at a Perspex 

spacer in the GIS. Statistical features were used as input features and classification 

accuracy of 94% was achieved. 

A research work done in (Xiaoxing, Song, Na, Ju, & Wei, 2014) made a GIS simulator 

in the laboratory and obtained 4 PD readings from defects such as metal needle, free 

moving particles, fixed metal particles and air gap defect. A mixture of statistical features 
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and features extracted via chaos theory was used as input features. SVM was used as a 

classifier and achieved classification accuracy of 98%.  

2.7.4 Combination of Different Classifiers 

Three types of classifiers were used in (Gulski & Krivda, 1993) for PD classifications, 

back propagation neural network, Kohonen self-organizing map (SOM) and learning 

vector quantization. Statistical features such as skewness, kurtosis, cross correlation 

factor and discharge factor were used as input feature to train the classifiers. Similar to 

previous work, noise suppression of 10% was implemented and a GIS was used as a test 

sample. Defects that can be categorized by the classifiers include cavity, surface, corona 

and treeing. Many different combinations of test and training were performed. When only 

two PD sources were classified, all classifiers were able to achieve 100% classification. 

However, when more samples are tested simultaneously, classification rate decrease 

significantly to only 30%. When all samples were tested simultaneously, back 

propagation neural network outperformed the other classifiers.  

A work was done in (Mazroua, Bartnikas, & Salama, 1994) to classify PD patterns on 

artificial cylindrical cavities of different sizes using nearest neighbor classifier, learning 

vector quantization and ANN. When performing classification between 1 mm and 2 mm, 

1 mm and 3 mm cavity size, all classifiers used achieved similar accuracy of 97.5% and 

100%. However, when classifying smaller cavity sizes of 1 mm and 1.5 mm, learning 

vector quantization has higher accuracy of 77.5% compared to the other two classifiers, 

which has 72.5% accuracy. Their works concluded that all three classifiers have 

equivalent performance for most conditions, but learning vector quantization has the 

upper hand when attempting to distinguish smaller cavity sizes. 
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A research work done in (Dey, Chatterjee, Chakravorti, & Munshi, 2010) used cross 

wavelet transform as feature extraction method. The test samples used were acrylic resin 

with four types of voids, narrow void in contact with the electrode, narrow void away 

from the electrode, large void in contact with the electrode and large void away from the 

electrode. Rough set theory (RST), ANN and fuzzy c-means (FCM) were used as 

classifiers. Their test was repeated with and without noise. RST, ANN and FCM achieved 

classification accuracy of 87.5%, 83.3%, 85.4% with noise and 91.6%, 93.7%, 91.6% 

without noise respectively.  

A comparison between SVM, ANN and self-organizing maps (SOM) was done in (Lai, 

Phung, & Blackburn, 2010). PD sources were obtained from 4 samples, which are corona 

discharge from two needle with different sharpness, surface discharge from cable 

termination and surface discharge from Perspex block. Statistical features and principal 

component analysis (PCA) features were used as input features. It was proven that SVM 

has the highest classification accuracy (98.63%), followed by ANN (96.89%) and lastly 

SOM (96.04%). 

Extension method was used in (H. C. Chen, 2012) to classify PD patterns. Fractal 

features and mean discharge values were used as input feature. XLPE cable was used as 

test samples with artificial defects such as semiconductor layer defect, insulation layer 

defect, cable termination defect and a good cable. Artificial white noise up to 30% of the 

mean discharge value was added to the test data. Classification accuracy of extension 

method was compared with ANN and K-means method. Under noise-free condition, 

extension method and ANN achieved 100% while K-means method achieved 88.75%. 

When 30% noise was added, classification accuracy of extension method, ANN and K-

means method fell to 80%, 69.9% and 60.7% respectively.  
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A research done in (Darabad, Vakilian, Phung, & Blackburn, 2013) has tested multiple 

input features and classifier pairs. PDs were measured from discharge sources such as air 

corona, discharge in oil, surface discharge, single cavity and noise. K nearest neighbor, 

regression tree and ANN were used as classifiers. Input features consist of statistical 

features, texture features, fast Fourier transform features, Cepstral features and linear 

discriminant analysis features.  Most combination achieved satisfactory classification 

accuracy between 90% and 100%. 

A research work was done in (Hui et al., 2013) to classify 5 types of PD sources such 

as corona, discharge in oil, internal discharge, surface discharge and discharge due to 

floating particles. Feature extractions used include stochastic neighbor embedding, PCA 

and discrete wavelet transform. SVM and ANN were used as the classifiers. It was shown 

all classifiers and input features achieved classification accuracy of above 90% and SVM 

outperformed ANN in all input features used. 

A research work done in (Su et al., 2014) attempted to classify PD measured from gas 

insulated load break switches (GILBS). 3 artificial defects were made in the GILBS such 

as high voltage bushing pollution, metal particles in cavity and floating electrode. 

Wavelet transform was used as a denoising method. Statistical features were used as input 

to probabilistic neural network and fuzzy C mean classifier. Classification accuracy of 

87.6% and 85.6% was achieved respectively.  

Research work done in (Harbaji, Shaban, & El-Hag, 2015) measured PD by using 

acoustic emission method. The test samples used were pressboard with artificial defects 

such as surface discharge, corona, void and PD from semi parallel planes. Discreet 

wavelet transform and PCA were used to extract features directly from the acoustic signal. 

SVM and K nearest neighbor were used as classifiers. Classification accuracy of up to 

90% was achieved for all classifiers.  
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A new feature extraction was proposed in (Ke, JinZhong, Shuqi, Fei, et al., 2015) for 

PD classification. They used a method known as two directional modified fuzzy weighted 

two dimensional linear discriminant analysis for feature extraction. Artificial PD source 

created in the laboratory include cavity discharge inside pressboard, surface discharge in 

oil, corona in oil and air.  Classification accuracy of 93% and 96% was achieved by the 

fuzzy C means and SVM classifier. Similar work was done in (Ke, Jinzhong, Shuqi, 

Ruijin, et al., 2015) but it mainly explores separation of overlapping PD signals using S 

transform and affinity propagation clustering.  

A total of 17 PD sources were created in (M. Majidi, Fadali, Etezadi-Amoli, & 

Oskuoee, 2015; Mehrdad Majidi & Oskuoee, 2015) for PD classification. The PD sources 

were categorized into 4 groups, which are corona, surface discharge and three different 

void sizes (1 mm, 1.5 mm and 2 mm) with 5 different number of voids (1 to 5 voids). 

Primal dual interior point and basis pursuit denoising algorithm were used for feature 

extraction method. Sparse representation classifier and ANN were used as the classifier. 

The classification accuracy of each group varies from 80% to 95%.  

2.7.5 Other Classifiers 

A work in (Gulski, 1993) performed PD classification on polyethylene (PE) cables and 

400kV gas insulated substation system (GIS). Artificial defects created at the PE cables 

include sharp electrode via stainless needle, cavity discharge via oval cavity under the 

semiconductor layer and treeing at cavity via sharp needle tip at flat cavity. For GIS, 

artificial defects include internal discharges via air pockets, floating part discharge via 

contact spring and corona discharge via splinter inside the GIS.  Statistical features such 

as skewness, kurtosis and number of peaks were used as input features. In order to 

overcome noise interference, a 10% noise suppression was implemented, meaning only 

signals greater than 10% of the maximum PD amplitude was taken into consideration. It 
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was mentioned that 1 to 2 minutes of PD data is sufficient to determine the statistical 

parameters of the sample. Classification was done by comparing the statistical parameters 

of known defect models to the statistical parameters of the test samples. Samples that 

have statistical parameters within 90% similarity were considered to be in the same group. 

Using this classification method, recognition rate varies from 13% to 100%, the average 

recognition rate is 49.5% for all samples.  

In a work done in (F. H. Kreuger et al., 1993), skewness, kurtosis, number of peak, 

discharge factor and modified cross correlation factor were used as input features. For 

classification, two techniques were used, which are the recognition rate and the centour 

score. Recognition rate is the same comparison method which was used in (Gulski, 1993) 

and centour score is defined as the percentage rank of the data that are further from the 

center of a known population that varies from 0 to 100%. It is not the probability of how 

the test sample is similar to a standard sample, but the best possible estimation of it. The 

test samples used are 12 dielectric sheets with different defects such as corona, surface 

discharge, treeing in air and oil surroundings. It was found that the centour score and 

recognition rate technique have similar classification capabilities and is able to achieve 

up to 80% accuracy. 

Hidden Markov models was used in (Satish & Gururaj, 1993b) for PD classification. 

A camera was used to capture the PD signal pattern. The signal pattern was split into 36 

points long horizontally and each point was scaled to the range or 0 to 1 vertically. This 

signal was used as input feature and a total of 30 data set were collected from each sample. 

This work used the same data set as in (Satish & Gururaj, 1993a) but the test samples 

were split into 3 groups and overall recognition rate of 84% was achieved. 

In a work done in (Gulski & Kridva, 1995), PD patterns were used to classify different 

insulation based on the aging duration. Test samples used include polyethylene with flat 
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cavity, current transformer and epoxy insulator. The test samples were subjected to 

accelerated aging by applying high voltage for extended period and feature extraction was 

performed at different aging stages. The classification aims to classify which stage of 

accelerated aging the insulator is based on the PD patterns measured. Statistical features 

were extracted from the PRPD distribution to be used as input feature. Classification was 

done by using statistical evaluation of mutual comparison of all measured PD data. The 

polyethylene sample was used to determine how many distinguishable aging state are 

possible. Their work managed to achieve average accuracy of 84% for 4 classes in current 

transformer and 95.6% for 6 classes in the epoxy insulator.   

A team of researchers in (Hucker & Kranz, 1995) used PD classification on GIS. GIS 

with two different gases were tested, which are SF6 and air insulation. 8 types of artificial 

defects were created in the SF6 and 7 types in air insulation. The L2-Euclidean distance 

was use as a classifier. Average classification accuracy of 66.4% was achieved for 

classifying 15 types of defects in both SF6 and air by using input feature obtained from 

electrical PD detection. When input feature from acoustic PD detection was used, average 

classification accuracy of 69.5% was achieved for classification of 8 types of defects in 

SF6 GIS.  

A new type of input feature was introduced in (Krivda et al., 1995) for PD 

classification purposes. They introduced fractal features, which consist of the fractal 

dimension and lacunarity. 7 types of PD patterns were measured from different defect 

such as single point corona in air, multi-point corona in air, surface discharge in air, single 

point corona in oil, air bubbles in oil, dielectric bounded cavity and background noise. It 

was shown that fractal dimension and lacunarity obtained from the PRPD pattern formed 

different cluster for different defect. No classification was performed as this work mainly 
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suggested that fractal features can be used as an input feature for PD classification. More 

details of fractal features can be found in (Satish & Zaengl, 1995).  

A research work done in (Rahman, Arora, & Srivastava, 2000) used a combination of 

dielectric sheet, glass and needle and plane electrode to create 4 types of PD patterns, 

which are glow corona, streamer corona, surface discharge, internal discharge, sharp point 

and multi sharp point discharge. Four types of texture analysis algorithms were used for 

feature extraction based on the PD pattern image, gray-level difference histogram, spatial 

gray-level dependence method, gray-level run-length method and power spectrum 

method. Principal component analysis was used to reduce the dimension of the input 

feature before using minimum distance classifier for classification purposes. 

Classification accuracy up to 95% was achieved by using the first three principal 

components.  

A research work done in (Ziomek et al., 2000) used genetic algorithms to assist PD 

classification. PD patterns were obtained from GIS with artificial defects such as voids in 

spacers, protrusions on electrodes, moving metallic particles and floating electrodes. 

Statistical features were obtained from the PRPD pattern and used as input feature to the 

Bayes classifier combined with genetic algorithm. The amount of PD data obtained is not 

the same for all test samples. Defects with higher amount of data points manage to achieve 

classification accuracy of 96% but samples with lower data points has only 20% to 60% 

accuracy.  

SOM was used in (Yu & Song, 2003) to classify PD patterns on stator windings. Four 

artificial defects were prepared such as normal PD, internal void discharge, slot discharge 

and end winding discharge. Input features used consist of Weibull, statistical and fractal 

features. Their investigations showed that adding fractal features does not improve SOM 

classification accuracy. Weibull features are usable but does not give good accuracy 
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alone. The best result was achieved by using four Weibull features and eight statistical 

features. 

Hidden Markov Model was used in (T. Abdel-Galil, Hegazy, Salama, & Bartnikas, 

2004) for classification of cavity size based on PD pattern. The applied charge transfer 

characteristic and applied voltage were used as input feature. The classifier used was 

compared with neural networks and the classification accuracy was slightly higher, 95.5% 

compared to 93%.  

Inductive inference algorithm was used in (T. Abdel-Galil, R. M. Sharkawy, M. M. A. 

Salama, & R. Bartnikas, 2005) as a classifier for PD patterns. High density polyethylene 

(HDPE) with different cylindrical cavities size was used as test samples. Pulse shape 

analysis such as rise time, fall time, width and area were used as input feature for 

classification purposes. The method has accuracy comparable to neural network. The 

average accuracy achieved by the inductive inference algorithm is 86.45% for 4 samples 

tested. In a similar work, (T. K. Abdel-Galil, Y. G. Hegazy, et al., 2005) used the apparent 

charged and applied voltage as the input feature to the fast match-based vector 

quantization to classify 3 different void sizes (1.0 mm, 1.5 mm and 2.0 mm). The 

classification accuracy achieved was 93%.  

Adaptive resonance theory was used in (Karthikeyan et al., 2006) to classify PD 

patterns for void, surface discharge, corona and oil corona. Statistical features were used 

as input features and the classification accuracy was compared with ANN. A 

classification accuracy of above 90% was achieved.  

Cerebellar model articulation controller (CMAC) was proposed in (H.-C. Chen & Gu, 

2012) for PD classification. Epoxy samples were used as test samples with 5 types of lab 

created defects. Fractal features and mean discharge were used as input features. The 
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CMAC method was compared with ANN and K-means classifiers. Under noise-free 

condition, CMAC, ANN and K-means classifiers achieved 96%, 100% and 82% while 

under 30% noise, their accuracy reduced to 94%, 83.8% and 67.5% respectively. 

Extension method was used in (H.-C. Chen et al., 2012) to classify the same defect as 

their previous work using the same input features. Under noise-free condition, extension 

method, ANN and K-means classifier managed to achieve 100%, 100% and 82%. Under 

30% noise condition, the accuracy fell to 93%, 83.8% and 67.5%.  

A research work done in (Jian, Tianyan, Harrison, & Grzybowski, 2012) used Linear 

discriminant analysis for classifying PD patterns measured from 6 artificial PD sources 

which are corona in oil, surface discharge in oil, gas cavity, oil cavity, floating discharge 

in oil and paper fiber discharge. Wavelet packet decomposition was used to extract input 

features. It was proven that linear discriminant analysis was able to achieve classification 

accuracy comparable to ANN and SVM. 

Five optical sensors were used in (Biswas, Dey, Chatterjee, & Chakravorti, 2013) for 

PD measurement in a custom made measurement setup. An acrylic disk with different 

void size was used as the test sample. Wavelet transform and inductive inference 

algorithms were used as feature extraction. A rough set theory based decision support 

system was used as the classifier and classification accuracy of 92% was achieved.  

A research work in (Perpiñán, Sánchez-Urán, Álvarez, Ortego, & Garnacho, 2013) has 

attempted to cluster PD signals using CLARA (clustering large applications) algorithm. 

PD signals were measured using acoustic method. A large range of input features were 

used such as wavelet variances, energy range, maximum location, damping factors and 

frequency. PD signals were measured from 4 different points of a 1.5km length of XLPE 

power cable. The CLARA algorithm managed to create 4 clusters with reasonable 

success.   
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2.8 Chapter Summary 

Numerous works have been done related to PD classification. However, there are still 

room for improvement. Previous works on PD classification were mostly done using lab 

fabricated material such as polyethylene, acrylic, Perspex and glass. Very few research 

works were done using actual XLPE cable joints. For research works that used XLPE 

cable joints as the test subject, actual noise was not used to test the noise contamination 

effect on the PD classifiers.  

Noise contamination is another factor that can be improved. Previous works used 

software simulated white noise. For example, adding evenly distributed random number 

to phase and charge of PD data, adding white noise with zero mean and fluctuating power, 

including random numbers with various standard deviation and zero mean  and merging 

randomly distributed noise that are within 10 % to 30 % of the test data. 

ANFIS is a classifier reported to be used once in 2005 for PD classification. Since 

then, they have been several works which used ANFIS to classify void shapes based on 

PD patterns and to classify PD patterns caused by void, surface, floating metal and corona 

discharge. However, all these works only used statistical features and no comparison was 

done with other types of classifier. Apart of that, only lab fabricated materials were used 

as test samples instead of actual power system components. Therefore, there is no record 

of how capable ANFIS is compared to tried and tested classifiers such as ANN and SVM. 

To address shortcomings of the current issues, this work used actual XLPE cable joints 

and actual noise caused by ground interference. A better analysis of how noise levels 

affect the classification accuracy can be done by using actual noise with varying pulse 

counts and charge magnitudes to contaminate the test data prior to classification. A novel 

PCA based feature extraction, which has high noise resistant was tested against widely 
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used methods, such as statistical features and fractal features.  The feasibility of ANFIS 

as a classifier was also tested by comparing the classification accuracy against ANN and 

SVM.  
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

This chapter describes the methodology that has been used in the work. The cable joint 

samples with artificial defect preparation, PD measurement setup and implementation of 

PD feature extraction, PD classification and the effect of noise contamination are 

described in detail. A general methodology flow chart of PD classification used in this 

work is shown in Figure 3.1. The cable joints were prepared and PD measurement was 

performed. Feature extraction was used to obtain input feature to train the classifier. The 

training process was repeated until good accuracy was achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Methodology flow chart 
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Although the rated operating voltage for the XLPE cables is 11 kV, measurement was 

conducted at 9 kV. This is because the cable joints used contain artificially created 

defects. Using higher applied voltage will greatly increase the chance of insulation 

breakdown, which will permanently damage the cable, rendering it unusable. Each cable 

was energized at 9 kV and allowed to stabilize for 1 hour before PD measurement was 

taken. Each PD measurement has a duration of 60 seconds and the time gap between each 

measurement was 15 seconds. A total of 100 measurements were done on each sample. 

This results in a grand total of 500 PD patterns captured for all 5 test samples. 

3.2 Cable Joint Samples Preparation 

Six 11 kV XLPE cables of 3 meter length with a cable joint in the middle were prepared 

in this work. Five of them contain artificially created defect and one without any defect 

at the cable joint. The good cable joint was used as a benchmark for checking noise 

contamination. The cable joint defects created were based on commonly encountered 

defects in power industries (Mazzetti et al., 2006; Yun et al., 2010). The list of cable joint 

samples is shown in Table 3.1.  

Table 3.1: Cable joint samples that have been prepared 

Cable Joint  Defect type 

C1 Insulation incision defect 

C2 Axial direction shift defect 

C3 Semiconductor layer tip defect 

C4 Metal particle on XLPE defect 

C5 Semiconductor layer air gap defect 

C6 Without defect 

 

Insulation incision defect was created by making a shallow cut at the XLPE layer using 

a sharp knife. Axial direction shift defect was made by inserting the cable at an angle 

which was off centre. Semiconductor layer tip defect was created by creating rough edges 

at the semiconductor tip. Metal particle on XLPE defect was made by sprinkling metal 
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particles on the XLPE layer. Finally, semiconductor layer air gap defect was made by 

using insulation tape to wrap a layer of air around the semiconductor edge. All defects 

were made at the XLPE cable ends before the cable joints were installed. Pictures of the 

defects are shown in Figure 3.2. 

 

(a) 

  

(b) 

 

(c) 
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(d) 

 

(e) 

Figure 3.2: Defects created; (a) Insulation incision defect, (b) Axial direction shift 

defect, (c) Semiconductor layer tip defect, (d) Metal particle on XLPE defect and (e) 

Semiconductor layer air gap defect 

3.3 Experimental Setup 

3.3.1 PD Measurement Equipment 

In this research work, the Mtronix MPD 600 manufactured by Omicron was used for 

PD measurement. The block diagram of the PD measurement system is shown in Figure 

3.3. The test setup consists of a PD-free step-up transformer, which acts as a HV source, 

measuring capacitor, which measures the operating voltage, a test object, a coupling 

capacitor and a coupling device, which acts as an equivalent RLC circuit, a USB 

controller and a PD detector connected to a PC. The PC was used to configure the PD 

detector settings and save the measured data. 
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Figure 3.3: Setup of PD measurement under AC voltage 

The Mtronix MPD 600 system is a digital system, which is excellent for both on-site 

and laboratory PD measurement. It has an operating frequency range of 0.1 Hz to 2.5 Hz. 

It supports the detection of PD signal with center frequency from 0 up to 32 MHz with a 

time resolution of less than 2 ns. These specifications enable it to have highly precise 

pulse detection. 

The MPD 600 measures PD by measuring the change in current pulses between the 

two terminals of the test object. When an electrical discharge occurs in the test object, the 

coupling capacitor will transfer charges to the test object to stabilize the voltage drop 

across the test object. This will create a current pulse in a nanosecond range to flow in the 

circuit, which leads to the generation of a voltage pulse across the coupling device. The 

total number of charged transferred is the apparent charge. This charge magnitude is 

influenced by the total number of induced dipole moments of the real charge created by 

the abrupt variation of the capacitance of the test subject and their interactions with the 

system’s electrodes (Boggs, 1990). In the event of PD occurrence, the measuring 

impedance or the coupling device will detect the short duration voltage pulse. 

The USB controller handles data transfer between the PC and PD detector. The PD 

detector sends the measurement results to the USB controller through fiber optic cables. 
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The benefit of using fiber optic cables is that they provide absolute galvanic isolation 

between the USB controller and PD detector. The exclusion of ground loops lessens 

interference and boost signal to noise ratio, which will improve the system sensitivity. 

Once the data was received by the USB controller, it transfers the data to the laptop via 

USB cable. The user is then able to analyze and store the measurement data.  

3.3.2 PD Detector Calibration 

Calibration was required each time the system was rebooted. The MPD 600 system 

can be calibrated digitally using the CAL542 charge calibrator unit, which has a charge 

range of 1 to 100 pC, where 1 mV equals to 1 pC. Calibration was done by connecting 

the CAL542 to the circuit. The CAL542 will inject a specific charge value into the 

electrodes to be detected by the PD detector. From the Mtronix software graphical user 

interface (GUI), the same value was set as the target and the software will compute and 

perform the calibration. Once completed, the calibrator was removed from the system. 

The equipment also allows calibration for the applied voltage amplitude. This was 

done similarly to the charge calibration. A known voltage amplitude was applied and the 

voltage value was set via the Mtronix software GUI. The high voltage source can be 

turned off after the calibration to make sure the setup was PD from the voltage source. 

3.3.3 PD Measurement Hardware Setup 

The actual PD measurement setup and the test sample setup are shown in Figure 3.4. 

Ideally, the PD detector should only detect PD activity from the test object. However, in 

real scenario, it is common for it to detect surface discharges from the connectors and 

grounding interference. The grounding cable was especially sensitive and must be 

carefully isolated from other conducting materials. This will cause it to detect random 

noisy signals even without any applied external voltage.  
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(a) 

 

(b) 

Figure 3.4: (a) PD measurement setup and (b) Test sample connection 

An example of noisy PD signals detected when the ground wiring was not isolated 

properly can be seen in Figure 3.5. To get rid of these unwanted noises, careful handling 

of the grounding wire and other precaution was taken. Silicon rubber was used as an 

insulating material to prevent the grounding wire from touching other conductive 

materials. The cable holder was laced with thick insulator to support the cable joint. Both 

ends of the termination were covered with insulating tape. The cable end which contains 
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the earthing braid was soaked in silicon oil suspended in an oil container. Improvements 

made to the test object setup can be seen in Figures 3.6. 

 

Figure 3.5: Noise detected at 0 kV 

 

With these steps taken, no signal was detected at 0 kV with no interference from the 

connectors as shown in Figure 3.7. When the good cable joint was connected and 

energized, it remained PD free up to 9 kV. At 9 kV, the average PD magnitude detected 

was less than 10 pC, which was very small. This shows that the entire measurement setup 

system was properly isolated and not contributing any unwanted noise.  
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(a) 

   

(b) 

 

   (c) 

Figure 3.6: Improvement made; (a) Silicon rubber supporting grounding wire, (b) 

Cable holder laced with thick insulator and (c) Earthing braid soaked in silicon oil 

Univ
ers

ity
 of

 M
ala

ya



51 

 

(a) 

  

(b) 

Figure 3.7: PD reading of good cable joint at (a) 0 kV and (b) 9 kV 
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3.3.4 PD Measurement Software Setup 

The Mtronix software GUI was used to control the PD detector settings and 

measurement parameters. As mentioned in previous section, charge and voltage 

calibration were performed using this software. For this work, the calibration value used 

was 100 pC. All settings used can be seen in the screenshot of the software GUI as shown 

in Figure 3.8.  

One of the most important functions of this software is to export recorded PD data. 

There are three ways the software can export the measured data. First, it can save the 

current PRPD pattern and pulse shape as a png image. Second, it can export the last PD 

pulse signal into a text file containing the time and voltage level of the last recorded pulse. 

The last method is to export the measured phase, voltage and charge data as binary files. 

These binary files were imported into Matlab workspace using a Matlab code.  

3.4 Noise Signal Acquisition 

After calibration, the PD detector would not detect any reading when no voltage source 

was applied, hence the PRPD pattern display would be a complete horizontal line. 

However, in the event of rain, the PD detector will detect noisy signals even though when 

no voltage was applied. Since no changes have been made to the test object and 

equipment, these noisy signals must be originated from ground interference. These noisy 

signals were recorded and used to test the noise tolerance of each PD classifiers and input 

features. The noisy signals were stored in PRPD format with phase and charge 

information. In order to contaminate a sample of PD data, the phase and charge 

information of the noisy signals and test sample of PD data were combined to form a new 

contaminated PD data. Figure 3.9 shows how noise signals were overlapped onto PD data 

to contaminate it. Feature extractions were performed on the contaminated PD data for 

noise analysis. 
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Figure 3.8: Mtronix software GUI 
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(a) 

 

(b) 

 

(c) 

Figure 3.9: (a) Uncontaminated PD pattern, (b) Noise PD pattern and (c) 

Contaminated PD pattern  
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3.5 PD Feature Extraction Methods 

The purpose of feature extraction is to obtain relevant input features from PD data to 

represent PD characteristics associated with a particu1ar defect. Apart from collecting 

relevant input features, feature extraction also tries to decrease the dimension of the 

original data for easier processing (Kranz, 1993; Yu & Song, 2003). Raw data contained 

in each of the stored patterns might be too enormous for direct handling. A form of data 

reduction such as reducing the matrix size of the data is normally required (Satish & 

Zaengl, 1994). This section explains the extracted input features used in this work, which 

includes statistical features, fractal features and the proposed PCA features. 

3.5.1 Statistical features 

Statistical parameters were first used in (Gulski, 1993) and consist of skewness, 

kurtosis, mean and standard deviation.  These are proven methods that had been used by 

many researchers ever since.  

The mean pulse height distribution, Hqn(φ) is used to represent the average PD 

magnitude vs. the phase angle φ.  The number of PD vs. phase angle φ is represented by 

the pulse count distribution, Hn(φ). Both of them can be split into two distributions, which 

are the positive and negative half cycle, the Hqn
+(φ) and Hn

+(φ) (from the positive half 

cycle of the voltage) and Hqn
-(φ) and Hn

-(φ)(from the negative half cycle of the voltage). 

Statistical parameters were calculated from these distributions.  

Skewness describes the asymmetry of the distribution with respect to normal 

distribution. Positive skewness represents asymmetric with larger left side, zero skewness 

represents symmetric and negative skewness shows asymmetric with larger right side 

(James & Phung, 1995).  
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Kurtosis describes the sharpness of the distribution with respect to a normal 

distribution. Zero kurtosis represents a normal distribution, positive kurtosis represents a 

sharp distribution and negative kurtosis represents a flat distribution (Gulski & Krivda, 

1993).  

Variance describes how much a group of numbers is spread out. Zero variance means 

all values are identical. The standard deviation is the square root of the variance. A very 

detailed mathematical description of skewness, kurtosis and cross correlation can be 

found in (F. H. Kreuger et al., 1993). The formulas of all mentioned statistical parameters 

are shown as follows, 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑚𝑒𝑎𝑛) 𝜇 =  
∑ 𝑥𝑖𝑓(𝑥𝑖)𝑁

𝑖=1

∑ 𝑓(𝑥𝑖)𝑁
𝑖=1

    (1) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝜎2 =  
∑ (𝑥𝑖−𝜇)2𝑓(𝑥𝑖)𝑁

𝑖=1

∑ 𝑓(𝑥𝑖)𝑁
𝑖=1

    (2) 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠: 𝑆𝑘 =  
∑ (𝑥𝑖−𝜇)3𝑓(𝑥𝑖)𝑁

𝑖=1

𝜎3 ∑ 𝑓(𝑥𝑖)𝑁
𝑖=1

    (3) 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠: 𝐾𝑢 =  
∑ (𝑥𝑖−𝜇)4𝑓(𝑥𝑖)𝑁

𝑖=1

𝜎4 ∑ 𝑓(𝑥𝑖)𝑁
𝑖=1

− 3   (4) 

where f(xi) is the function of interest, N is the size of the data and xi is discrete values of 

the distribution. 

Weibull analysis offers a mathematical approach for the pulse height analysis patterns. 

The probability distribution of PD pulse rate (F) versus PD magnitude (q) can be 

expressed by the Weibull function (Contin et al., 2000; Yu & Song, 2003), 

𝐹(𝑞; 𝛼; 𝛽) = 1 − 𝑒𝑥𝑝 [− (
𝑞

𝛼
)

𝛽

]    (5) 
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where α is the scale parameter and β is the shape parameter. Each pulse height analysis 

curve is represented by the features α and β and the PD pulse amplitude is represented by 

q. The features α+, β+, α- and β- are extracted from the negative and positive pulse height 

analysis curves. The pulse height analysis pattern is compressed using the Weibull 

method for digital analysis while retaining its relevant information. The values of α+, β+, 

α-, and β- are then used as input to the classifier.  

A Matlab code was written to import PD data and perform the calculations required to 

compute and save the statistical parameters. The flowchart of the Matlab code is shown 

in Figure 3.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Flowchart of statistical parameters feature extraction 
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3.5.2 Fractal Features 

Fractals are good for modeling complex shapes and natural phenomena, where existing 

mathematical techniques are found to be insufficient. Since PD can be considered a 

natural phenomenon that has complex surfaces and shapes, fractals can be used to model 

it. The usage of fractal features in PD classification is fascinating because it represents 

PRPD patterns directly (Krivda et al., 1995).  

PRPD patterns can be represented using two fractal features, lacunarity (Λ) and fractal 

dimension (D) that are extracted using box counting method. Since D is invariant to 

variation in scale, it can be utilized to gauge the roughness of the surface. Λ is the 

denseness of the fractal surface. Both D and Λ are functions of the box size L. The number 

of boxes N, of side L needed to cover a fractal set is shown in Equation (6), where D is 

the fractal dimension set and K is a constant (Satish & Zaengl, 1995):  

𝑁(𝐿) = 𝐾𝐿−𝐷        (6) 

The lacunarity Λ(L) relies on the second order statistics of p(m,L). It can be defined 

after calculating M(L) and M2(L). The formulas of Λ(L), M(L) and M2(L) are shown in 

Equations (7) to (9).  Mathematical derivation of D and Λ can be found in (Kundu et al., 

2012) 

𝛬(𝐿) =
𝑀2(𝐿)−[𝑀(𝐿)]2

[𝑀(𝐿)]2              (7) 

𝑀(𝐿) = ∑ 𝑚𝑝(𝑚, 𝐿)𝑁
𝑚=1      (8) 

𝑀2(𝐿) = ∑ 𝑚2𝑝(𝑚, 𝐿)𝑁
𝑚=1      (9) 

In order to obtain the fractal dimension and lacunarity from the PD data to be used as 

input feature, a PRPD scatter plot has to be plot from the PD data. Matlab was used to 
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load the PD data, plot the scatter plot and saved it as a JPEG picture. ImageJ software 

was used to convert the JPEG picture into binary image. The fractal dimension and 

lacunarity was then computed from the binary image and saved into an Excel file. Matlab 

was then used to load the fractal dimension and lacunarity data from the Excel and stored 

it as .mat file to be used in the classifier.  

ImageJ is a powerful image processing software with many advance features. For this 

work, it was used to convert scatter plot images into binary image (black and white) and 

compute the fractal dimension and lacunarity using the FracLac extension. A screenshot 

of ImageJ software with FracLac extension is shown in Figure 3.11. The conversion from 

JPEG to binary is shown in Figure 3.12. The settings used for the FracLac extension is 

shown in Figure 3.13 while a flowchart of this entire process is shown in Figure 3.14.  

 

Figure 3.11: ImageJ software with FracLac extension 

 

(a) 
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(b) 

Figure 3.12: Conversion from (a) JPEG to (b) binary image  

 

Figure 3.13: Settings used for the FracLac extension  
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Figure 3.14: Flowchart of fractal dimension and lacunarity feature extraction 
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samples (Harbaji et al., 2015). This linear subspace is found by solving this Eigen 

problem, 

cov(X)M=λM               (10) 

where cov(X) is the covariance matrix of the dataset X, M is a linear mapping created by 

the d principle eigenvectors of the covariance matrix and λ is the d principal eigenvalues 

(Harbaji et al., 2015; Jing & Hou, 2015). This covariance matrix is able to determine 

which direction contains the most significant variance in the dataset, making PCA an 

effective tool for feature subset selection. The low-dimensional data yi of the data points 

xi are calculated using linear mapping Y=XM. The elements of Y will produce the feature 

sets (Hui et al., 2013). The best number of principal components to represent the data can 

be found using a scree plot. Scree plot is a graph of the eigenvalue magnitude vs. its 

number. The best number is chosen at a point where the graph has a sudden change in 

slope where the slope on its left side is much higher than the right side (Babnik, Aggarwal, 

& Moore, 2007). Each PCA component has a different weighting, thus normalization is 

not recommended to be done on data reduced using PCA. Normalization will alter the 

relative significance between the components leading to high error (Lai et al., 2010).  

PCA was used as a data reduction method in previous PD classification works 

(Rahman et al., 2000). It was used to reduce the dimension of Fourier transformed signals 

(Babnik et al., 2007), simplify the acoustic emission signals (Harbaji et al., 2015) and 

reducing the dimension of energy levels for each wavelet decomposition levels (L. Hao 

et al., 2011). However, in this work, it is proposed that PCA is performed directly on the 

PRPD pattern. The original PRPD pattern was split twice into 6 groups. Firstly, the 

original PRPD pattern was split into 2 groups of positive and negative section of the 

charge magnitude. Secondly, the original PRPD pattern was split into 4 groups, which are 

the four phase quadrants (90 degrees for each quadrant). PCA was performed separately 
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on these 6 groups of data and the calculated PCA components were combined to form the 

input feature for the classifier.   

Matlab was used to import PD data and split them into the 6 groups as mentioned 

above and perform the calculations required to compute the PCA features. The flowchart 

of the Matlab code is shown in Figure 3.15.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Flowchart of PCA feature extraction 

After importing the phase (ph) and charge (Q) data, the number of times each pair 

repeats itself was counted and saved as a variable “n”. The data are sorted into φ-q-n 

format, a three column wide Matlab array. This array was split into 6 groups according to 

the charge sign and phase quadrants. PCA was performed on these φ-q-n array and the 

No

Yes

Any unprocessed 

PD data? 

End 

Perform PCA on each group 

Sort PD data into φ-q-n format 

Split into 6 groups based on charge sign and phase 

Start 

Load PD Data 

Load next 

PD data 

Save all PCA data into .mat file 

Univ
ers

ity
 of

 M
ala

ya



64 

results were stored into a .mat file. The Matlab PCA function will return 2 variables, the 

score and the latent. Principal component scores are the representations of the input 

function in the principal component space. Rows of score correspond to observations and 

columns correspond to principal components. Latent is the vector containing the 

eigenvalues of the covariance matrix of X.  

3.6 PD Classifiers 

3.6.1 Artificial Neural Networks (ANN) 

ANN is suitable for PD classification because it is insensitive to small input changes. 

ANN has the ability to continue making correct decisions even when the input presented 

is slightly different from the input used during training process. This is very important for 

PD classification where the discharge patterns are usually not the same (Mazroua et al., 

1993). 

The feed forward back propagation neural network (BPNN) is the most commonly 

used learning mode in ANN. It is a supervised learning network that is trained in a forward 

backward process. BPNN consists of one layer of input, a minimum of one hidden layer 

and one layer of output. It has been shown that with two hidden layers, any complex 

decision region can be generated (Satish & Zaengl, 1994). A typical model of BPNN is 

shown in Figure 3.16. Every layer is completely joined to the next layer.  The primary 

function of the hidden layer is to obtain PD features from different sources and pass the 

information to the output layer. The amount of processing elements in the input layer 

relies on the amount of PD fingerprint data. The amount of processing element within the 

output layer is dependent on the number of defects to be classified (Gulski & Krivda, 

1993). Details about the mathematical models and learning algorithm can be found in (Al-

geelani et al., 2015; Gulski & Krivda, 1993; M. Majidi et al., 2015; Mazroua et al., 1995; 

Mazroua et al., 1993; Suzuki & Endoh, 1992). For PD classification purposes, at least 
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two input features are required to ensure convergence of the BPNN during training  (Jin 

et al., 2006).  

A three layer feed forward ANN was created in Matlab using the “patternnet” 

command. This ANN has 15 neurons in the hidden layer. This value was chosen as it 

gives the best accuracy with lowest training time. The “train” command was used to train 

the ANN. A block diagram of the created ANN can be seen in Figure 3.17. 

In the previous section, it was mentioned that all input features were saved into a *.mat 

file. In order to use this input feature, the *.mat file was loaded into the ANN to be used 

as the input. The output was defined manually in binary form where each class has a value 

1 at different columns. There were 5 different defects in this work, therefore 5 different 

groups of output were defined. Class 1 was defined as 00001, Class 2 as 00010, Class 3 

as 00100, Class 4 as 01000 and lastly Class 5 as 10000.  

 

Figure 3.16: Typical model of BPNN with one hidden layer 
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Figure 3.17: Multilayer feed forward ANN structure 

3.6.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS uses both fuzzy system and neural network to determine the optimum fuzzy 

parameters. Neural network usage eradicates the need to choose the fuzzy parameters 

manually since it will be optimized by the neural network. The fuzzy system needs to be 

built by fuzzy logic before ANFIS is used to train the fuzzy scheme. ANFIS is a good 

tool to map PD input features to the defect class using If-Then rules created from the 

decision tree and the stipulated input output data matrices (T. K. Abdel-Galil, R. M. 

Sharkawy, et al., 2005). ANFIS is based on a fuzzy Sugeno model, where  

Rule 1: If x is A1 and y is B1, then f1= plx+ q1y+ rl,  

Rule 2: If x is A2 and y is B2, then f2= p2x+ q2y+ r2. 

The ANFIS architecture has five main layers (Sinaga et al., 2010). In the first layer, 

all nodes are adaptive nodes. The outputs of the first layer are the fuzzy membership grade 

of the inputs. The second layer contains fixed nodes that acts as the incoming signal 

multiplier. The output of this layer is the rules firing strength. The third layer also contains 

fixed nodes which focuses on normalizing the previous layer triggering strength. The 

forth layer contains adaptive nodes, which output is the product of the first order 

polynomial and the normalized firing strength. The firth layer contains one fixed node 

which sums all incoming signals. A general structure of ANFIS is shown in Figure 3.18 
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Rules fuzzification is performed by assigning fuzzy membership function (MF) to each 

condition in the premise part of the rules. Every input variable was normalized between 

zero and one in order to improve the training efficiency (Jang, 1994). Using these fuzzy 

rules, ANFIS was used to train, test and analyze the Sugeno type fuzzy inference system 

(Jang, 1993b). Each output rule acts as a linear combination of input variables and a 

constant. The final output will be each rule’s output weighted average. These weights are 

automatically adjusted using the knowledge obtained during the training process. 

 

Figure 3.18: Structure of ANFIS 

Matlab command “genfis2” was used to generate a Sugeno type fuzzy inference 

system using subtractive clustering. Genfis2 was used instead of genfis1 because the 

former was more suitable for large amount of data used in this work. The “anfis” 

command was used to train the classifier. Epoc and radii were 2 parameters that need to 

be defined prior to training. Epoc is the maximum number of times before training process 

was stopped. Radii is a vector that specifies a cluster center range of influence in each of 

the data dimensions, assuming the data falls within a unit hyperbox. 
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Using higher epoc value will increase accuracy and training time. However, there will 

be a saturation point where further increase of epoc will only increase training time 

without improving accuracy. As for radii, using larger value of radii will decrease training 

time and accuracy. After a vigorous testing, an optimum value of 20 epoc and 1 radii was 

chosen. In order to increase the efficiency of ANFIS classifier, it was recommended to 

normalize all input parameters to the value between 0 to 1. Normalization was done in 

Matlab by dividing all values in the input feature array with the largest value from the 

input feature array. 

3.6.3 Support Vector Machine (SVM) 

SVM is a machine learning algorithm that stems from statistical learning theory that 

can handle difficulties of complex pattern classification. Using a linear classification, 

SVM maps the data to a higher dimensional space (Mota, Rocha, Salles, & Vasconcelos, 

2011). SVM can be modified to various domains and tasks using kernel methods based 

on the selection of base algorithm and kernel function. SVM is good for small amount of 

sample, high dimensionality and nonlinear problems in pattern recognition (L. Hao & 

Lewin, 2010). 

SVM can be used to find functions from a set of labeled training data. Each data set 

can be represented by a vector whose dimension relies on the amount of patterns used. 

The function is either a regression or classification function (L. Hao & Lewin, 2010). 

SVM has fewer parameters to be modified, causing it to be less dependent on empirical 

procedures (Mota et al., 2011). SVM is based on several distinct concepts such as linear 

learning machines, kernel functions, feature spaces, optimization and statistical learning. 

These theories are merged to form the system of SVM learning. SVM was proven to 

outperform neural network in a numerous fields (L. Hao & Lewin, 2010).  
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SVM was initially intended to handle linearly separable cases. Unfortunately, not all 

practical problems are linearly separated. When dealing with non-linear problems, 

conventional SVM as a linear classifier will not function effectively. To overcome this 

problem, a technique known as kernel was presented to deal with non-linear problems 

using multiple linear classifier. According to the pattern recognition theory, a lower 

dimensional space and non-linear inseparable model are transformed into linear separable 

by mapping it nonlinearly into a higher dimensional feature space. Therefore, the usage of 

kernel method will avoid the curse of dimensionality (Jing & Hou, 2015).  

SVM algorithm was initially intended for binary classification, which means they can 

only classify inputs into two classes (Guo & Wang, 2015). This is due to SVM uses a 

hyper plane to split data into two categories. In Matlab, the commands “svmtrain” and 

“svmclassify” can be used to perform simple binary classification. If more than two 

groups of classification are required, multi-level SVM is needed (Carrasco, López, & 

Maldonado, 2015; Liu, You, & Cao, 2006). Multi-level SVM is a one against all 

classifiers, where multiple binary SVM is performed. During multi-level SVM training, 

a category sample will be classified as one class while the other residual samples as other 

classes. For this research, 5 classes of outputs were needed to fit 5 types of artificially 

created cable joint defects. Therefore, multi svm classification was required (Khan et al., 

2014). 

Multilevel SVM was done by performing SVM multiple times. In the first cycle, all 

inputs were split into 2 categories, which are Class 1 and non Class 1. The remaining data 

which was non Class 1 was used as input to the next SVM, which splits the data into Class 

2 and non Class 2. This process was repeated until only two classes remain. The summary 

of this process can be seen in Figure 3.19. 
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Figure 3.19: Multilevel SVM classifier 

3.7 Chapter Summary 

The procedures needed for PD classification have been explained in detail in this 

chapter. The hardware preparation such as XLPE cable joints sample preparation, 

measurement setup, equipment calibration and PD measurement have been presented. 

The software preparation such as feature extraction techniques (statistical, fractal and 

PCA features) and classifiers (ANN, ANFIS and SVM) used in this work has been 

elaborated as well. Comparison of classification results of each classifiers are shown in 

detail in Chapter 4. The classifiers were tested with contaminated noise signals with 

increasing pulse count and increasing charge magnitude to better represent the actual 

noise condition. 
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CHAPTER 4: RESULTS & DISCUSSION 

4.1 Introduction 

The steps described in Chapter 3 such as PD measurement, feature extraction and 

classification have been successfully performed and the results of this research work are 

reported in this chapter. The PRPD patterns of each cable joint sample, sample data 

obtained from feature extractions and the classification accuracy of each classifier under 

different noise levels are presented in this chapter. A summary of the result analysis and 

discussion can be found at the end of this chapter.  

4.2 Measured PRPD Patterns 

The measured PRPD patterns of all five cable joint samples are shown in Figure 4.1. 

These measurements were performed after all noise and interference prevention methods 

described in Section 3.3.3 had been implemented. Therefore, all PD patterns seen are 

contributed by the defect within the XLPE cable joints and not from the surrounding 

environment or cable connectors. It can be seen that the PRPD pattern for each sample 

are different from each other. 

Based on visual inspection on the PRPD patterns, the insulation incision defect has 

two tall peaks at the end of both positive and negative cycles. The axial directional shift 

defect has more PD activities in the positive cycle, which accumulate at the first quadrant. 

It has a very sharp peak at around 80 degrees. The semiconductor layer tip defect has PD 

activities, which extend evenly between the positive and negative cycles. It has 5 

noticeable peaks, 3 at the negative cycle and 2 at the positive cycle. The metal particle on 

XLPE defect has one main PD group at each positive and negative cycles and it has a 

prominent peak at 260 degrees. The semiconductor layer air gap defect has two main PD 

groups; one at the positive cycle and another at the negative cycle with a peak at 230 

degrees. Two small clusters of PD with high charge magnitude but low pulse count can 
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also be seen, where the negatively charged PD spread out between 180 to 360 degrees 

while the positively charged PDs are distributed between 0 and 180 degrees. The details 

of PD average and maximum charge magnitude and the pulse count are shown in Table 

4.1.  

Although different defect types of cable joint have different PRPD patterns, 

classification of different defect types in the cable joint samples can be hardly done based 

on visual inspection on these PRPD patterns alone. Therefore, feature extractions from 

PD patterns and intelligent classifiers were used in this work to classify different defect 

types in the cable joint. 

Table 4.1: Details of PRPD patterns of each cable joint samples  

Sample Defect type 
Mean charge 

(pC) 

Maximum 

charge (pC) 
Pulse count 

C1 
Insulation 

incision defect 
50.5848 578.1893 25085.25 

C2 
Axial direction 

shift defect 
62.5773 1110.9720 130852.40 

C3 
Semiconductor 

layer tip defect 
47.4091 858.4207 25720.46 

C4 
Metal particle 

on XLPE defect 
32.5417 770.1085 22576.75 

C5 

Semiconductor 

layer air gap 

defect 

243.3954 1576.8620 13682.92 
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(a) 

  

(b)                                                                          
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 (c) 

  

(d)                                                                        
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 (e) 

Figure 4.1: PRPD patterns from (a) Insulation incision defect, (b) axial direction 

shift defect, (c) semiconductor layer tip defect, (d) metal particle on XLPE defect and 

(e) semiconductor layer air gap defect 

4.3 Measured Noise Patterns 

In order to determine the classification accuracy of each feature extraction and 

intelligence classifier method under noisy environment, the classifiers were trained using 

uncontaminated inputs but tested with input signals that were contaminated with noise. 

Feature extractions were performed on the contaminated PD signals and used as the test 

input for each classifier method. The noise signals were recorded from ground 

interference during raining events.  

Four PRPD patterns of the recorded noisy signal are shown in Figure 4.2. It can be 

seen that the noise pattern occurs randomly at every phase and the number of PD activity 

increases as the duration of noise increases. In order to observe how the increased pulse 

count of noise affects the classification accuracy, different durations of the noise signal 

from 5 to 60 seconds were overlapped onto the measured PD data. This is to represent the 

scenario from a short period of noise duration to a persistent noise throughout the 

measurement. The details of the noisy data such as average and maximum charge 

magnitude are shown in Table 4.2.   
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Table 4.2: Details of noisy PD patterns with increasing pulse count 

Noise 

duration (s) 

Mean charge 

(pC) 

Maximum 

charge (pC) 
Pulse count 

5 25.10 239.63 557 

10 24.14 239.63 1101 

15 24.00 239.63 2225 

20 23.70 239.63 2739 

25 23.98 239.63 3554 

30 24.05 239.63 4265 

35 24.47 312.58 5290 

40 24.46 337.08 6310 

45 24.36 337.08 7841 

50 24.29 337.08 8412 

55 23.93 337.08 9050 

60 23.91 337.08 9181 
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(d) 

Figure 4.2: PRPD patterns of different noise duration; (a) 15 seconds, (b) 30 

seconds, (c) 45 seconds and (d) 60 seconds 

In order to investigate the effect of increasing noise magnitude on PD classification 

accuracy, noise with increasing charge magnitude is required. Since there is no way to 

control the noise magnitude from the measurement equipment physically, a noise sample 

with 25 pC average charge magnitude was recorded. This noisy signal was multiplied by 

2, 4, 6, 8, 10 and 12 to achieve average charge magnitude of 50 pC, 100 pC, 150 pC, 200 

pC, 250 pC and 300 pC. The pulse count in this noise sample remained constant while 

the charge magnitude was increased. The details of the noise with increasing charge 

magnitude are shown in Table 4.3. These noisy signals were used to investigate the 

performance of PD classifiers and input features under noisy condition with increasing 

average charge magnitude.  
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Table 4.3: Details of noisy PD patterns with increasing charge magnitude 

Mean 

charge (pC) 

Maximum 

charge 

(pC) 

Pulse 

count 

50 480 657 

100 960 657 

150 1440 657 

200 1920 657 

250 2400 657 

300 2880 657 

 

4.4 Sample Data of Input Features 

A total of 500 sets of PD data were recorded in this work, where 100 PD data were 

taken from each cable joint sample. Due to space constrain, a data was randomly chosen 

from each cable joint sample to be presented in this report. Tables 4.4 to 4.6 show the 

sample data that were extracted such as statistical features, PCA features and fractal 

features. 

Table 4.4: Extracted statistical features 

Sample C1 C2 C3 C4 C5 

Mean Hn
+(φ) 41.2944 548.2333 73.8111 45.3944 35.6944 

Mean Hn
-(φ) 43.3833 293.5556 107.9278 108.9667 52.8833 

Stdev Hn
+(φ) 78.4387 690.5267 105.5642 83.9630 46.7474 

Stdev Hn
-(φ) 69.3773 384.3038 147.7483 184.3328 81.0928 

Skewness Hn
+(φ) 2.2340 0.7831 1.5270 1.7639 1.1117 

Skewness Hn
-(φ) 1.4984 0.9107 1.6990 1.5827 2.0038 

Kurtosis Hn
+(φ) 7.1230 1.9383 4.1013 4.7041 2.8598 

Kurtosis Hn
-(φ) 3.9166 2.3737 5.2176 4.1422 6.5342 

Mean Hqn
+(φ) 29.8984 60.3932 36.7744 24.8165 239.9170 

Mean Hqn
-(φ) -46.9201 -70.9458 -50.7191 -33.0217 -168.3107 

Stdev Hqn
+(φ) 14.8031 355.9565 60.3246 44.6759 390.1542 

Stdev Hqn
-(φ) 32.0612 231.3776 72.4628 47.5718 337.4364 

Skewness Hqn
+(φ) 1.3793 16.4857 5.3307 8.0583 1.5959 

Skewness Hqn
-(φ) -0.7037 -25.4588 -5.8096 -6.9205 -2.4466 

Kurtosis Hqn
+(φ) 8.2998 278.1250 42.6534 78.3225 3.9256 

Kurtosis Hqn
-(φ) 2.5962 722.1208 76.0322 68.9398 7.5861 

Weibull α+ Hqn
+(φ) 33.8424 47.5005 49.1166 45.9543 54.6889 

Weibull β+ Hqn
+(φ) 2.1356 0.8096 1.0378 1.0411 0.8202 

Weibull α- Hqn
-(φ) 52.2874 67.0304 58.0309 55.3513 60.2303 

Weibull β- Hqn
-(φ) 1.5167 0.9212 0.9392 0.9421 0.8430 
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Table 4.5: Extracted PCA features 

Sample C1 C2 C3 C4 C5 

1st 

Principal 

component 

15466.92 53812.19 28191.27 22645.52 24781.90 

-10023.63 -86101.03 -18434.80 -13376.07 -36949.43 

-5443.29 32288.85 -9756.46 -9269.45 12167.53 

2nd 

Principal 

component 

396.12 23468.59 -1368.24 -513.11 9458.52 

1808.37 4266.60 -5982.90 -3987.69 2429.16 

-2204.49 -27735.19 7351.14 4500.80 -11887.68 

Latent 
184664096 5675854466 614888988 388830821 1063725994 

4143434 669109687 45853246 18211088 118340647 

 

Table 4.6: Extracted fractal features 

 Sample C1 C2 C3 C4 C5 

Fractal 

dimensions 

1.0194 1.1832 1.2625 1.1153 1.4403 

1.0216 1.2099 1.2707 1.1323 1.4284 

1.0165 1.2239 1.2939 1.1385 1.4472 

1.0312 1.1872 1.2455 1.0955 1.4237 

0.9945 1.1593 1.2234 1.0693 1.3844 

0.9807 1.1614 1.2184 1.0679 1.3809 

0.9745 1.1518 1.2207 1.0687 1.3734 

0.9800 1.1530 1.2161 1.0611 1.3819 

0.9801 1.1496 1.2143 1.0539 1.3809 

0.9793 1.1584 1.2269 1.0711 1.3822 

0.9774 1.1593 1.2245 1.0652 1.3759 

0.9754 1.1524 1.2124 1.0641 1.3757 

Lacunarity 

3.2030 2.8662 3.6734 4.3090 2.1689 

3.1826 2.7053 3.6556 4.2790 2.1232 

3.1259 2.6616 3.4191 4.1019 2.1006 

3.1382 2.7285 3.7433 4.4175 2.1653 

3.3055 2.9040 3.9493 4.7882 2.3764 

3.5426 2.8755 3.9130 4.7669 2.3790 

3.4176 2.8940 3.8376 4.6951 2.4244 

3.5118 2.9119 3.8289 4.7892 2.4159 

3.3419 2.8563 3.7805 4.5176 2.3105 

3.5261 2.9234 3.9009 4.7871 2.3782 

3.4471 2.8645 3.8581 4.7480 2.4381 

3.4664 2.7786 3.8659 4.7270 2.4359 
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4.5 Classification Results under Noise-Free Condition 

After performing feature extraction, the statistical features, fractal features and PCA 

features were obtained and split into 7 groups of input feature. The statistical features 

were split into 3 groups; the first group consists of variance, skewness, kurtosis and mean 

(var, skew, kur, mean), the second group consists of Weibull parameters while the third 

group is the combination of the first two groups. Fractal features were also split into 3 

groups, which are fractal dimensions, lacunarity and a combination of fractal dimensions 

and lacunarity. The last group of input feature was the proposed PCA features. These 

input features were used as the input for the classifiers to determine the classification 

accuracy. 

In order to test the accuracy of the classifier, the hold-one-out technique was used, 

where all input data were randomly split into a 70:30 ratio, where 70% of the data were 

used for training and 30% of the remaining data were used for testing purposes. The 30% 

of the data are unique data that were not used in the training and will serve as a good 

benchmark of the classification accuracy. All classification tests were repeated 100 times 

(using a new randomly selected 70:30 ratio of training and test input) to get the average 

performance. The results were sorted in a table with information such as training time 

needed for 100 tests, the size of the input feature used, individual classification accuracy 

of each sample and total classification accuracy of the classifier. 

4.5.1 ANN Classification Results 

The classification accuracy of ANN when using statistical features, fractal features and 

PCA features is shown in Table 4.7.  
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Table 4.7: ANN classification results 

Classifier Input type Size Time (s) 
Classification accuracy (%) Total  

(%) C1 C2 C3 C4 C5 

ANN 

Var, skew, kur, mean 16 95.52 92.89 90.19 88.18 88.03 94.29 90.71 

Weibull features 4 85.61 94.23 79.72 75.67 80.20 88.89 83.74 

Statistical features 20 94.25 94.71 89.89 88.91 89.65 94.67 91.57 

Fractal dimensions 12 80.63 76.49 76.42 52.23 58.3 91.65 71.02 

Lacunarity 12 97.07 79.83 83.41 91.95 80.34 91.50 85.41 

Fractal features 24 82.12 84.48 85.95 86.84 77.09 92.86 85.44 

PCA features 48 84.73 88.84 92.44 81.73 88.05 93.93 89.00 
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The classification accuracy of variance, skewness, kurtosis and mean (90.71%) is 

higher than Weibull features, which is 83.74%. When statistical and Weibull parameters 

were combined and used as one input, the total classification accuracy increases slightly 

to 91.57%. The training time needed for variance, skewness, kurtosis and mean is l0 

seconds longer compared to Weibull features. However, when both groups of features 

were combined, the training time is improved slightly to 94.25 seconds. 

It can be seen that lacunarity gives higher classification accuracy of 85.41% compared 

to fractal dimension at 71.02% but its training time is longer, which is 97.07 seconds 

compared to 80.63 seconds. However, when fractal dimension and lacunarity were used 

as the input feature, the ANN classifier was able to achieved higher classification 

accuracy of 85.44% and shorter training duration of 82.12 seconds compared to only 

using fractal dimensions. 

Using PCA features, the classification accuracy of 89.00% was achieved. The training 

time required is 84.73 seconds. The training time of ANN is relatively constant in the 

range of 80 to 100 seconds regardless of the input feature size.  

4.5.2 ANFIS Classification Results 

The classification accuracy of ANFIS when using statistical features, fractal features 

and PCA features is shown in Table 4.8.  Univ
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Table 4.8: ANFIS classification results 

Classifier Input type Size Time (s) 
Classification accuracy (%) Total  

(%) C1 C2 C3 C4 C5 

ANFIS 

Var, skew, kur, mean 16 58.29 95.87 94.48 97.88 92.66 99.92 96.16 

Weibull features 4 13.48 89.37 29.43 90.66 86.77 88.79 77.00 

Statistical features 20 97.33 95.42 94.81 98.86 93.33 99.58 96.40 

Fractal dimensions 12 54.59 42.53 88.16 73.05 54.12 78.97 67.37 

Lacunarity 12 32.93 48.74 93.30 87.00 67.70 94.54 78.23 

Fractal features 24 198.02 64.80 98.44 85.73 67.86 99.98 83.36 

PCA features 48 429.16 49.95 72.91 76.9 56.49 77.43 66.74 
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Similar to ANN, the classification accuracy of ANFIS is higher when using variance, 

skewness, kurtosis and mean (96.16%) compared to Weibull features (77.00%). When 

using a combination of statistical and Weibull features, the total accuracy has a marginal 

increase from 96.16% to 96.40%. However, this causes the training time to increase 

significantly from 58.29 seconds to 97.33 seconds. ANFIS training duration increases 

when the feature size used is increased. 

It was observed that lacunarity gives higher classification accuracy of 78.23% than 

fractal dimensions (67.37%) and its training time is also shorter, 32.93 seconds compared 

to 54.59 seconds. When fractal dimension and lacunarity were combined as one input 

feature, the ANFIS classifier was able to achieve higher classification accuracy of 

83.36%. However, the training time increases significantly to 198.02 seconds.  

For PCA features, ANFIS performed badly with only 66.74% accuracy. This is very 

low compared to statistical and fractal features. Apart of that, the training duration is 

429.16 seconds, which is the longest training duration recorded. It is observed that ANFIS 

training duration is heavily affected by the feature size, where larger feature size will 

cause the training duration to increase.  

 

4.5.3 SVM Classification Results 

The classification accuracy of SVM when using statistical features, fractal features and 

PCA features is shown in Table 4.9. Univ
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Table 4.9: SVM classification results 

Classifier Input type Size Time (s) 
Classification accuracy (%) Total  

(%) C1 C2 C3 C4 C5 

SVM 

Var,skew,kur,mean 16 21.33 99.87 99.34 98.07 86.38 99.98 94.47 

Weibull features 4 24.18 99.87 59.97 95.01 0 89.28 68.82 

Statistical features 20 20.05 99.86 99.1 98.18 96.2 100 98.67 

Fractal dimensions 12 54.07 94.47 94.48 68.19 16.61 95.81 73.91 

Lacunarity 12 56.07 92.47 100 84.86 75.54 98.44 90.26 

Fractal features 24 59.75 94.76 99.12 93.54 75.53 99.70 91.93 

PCA features 48 38.33 97.33 95.73 91.53 82.62 99.51 93.35 
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For SVM, the classification accuracy is higher when using variance, skewness, 

kurtosis and mean (94.47%) compared to Weibull parameters. Using Weibull parameters 

alone as input feature yields very low classification accuracy of 68.82%. When using a 

combination of statistical and Weibull features, the classification accuracy has a marginal 

increase to 98.67% without negatively affecting the training duration.  

It was observed that lacunarity gives higher classification accuracy than fractal 

dimension, 90.26% over 73.91% with similar training time. When both fractal dimension 

and lacunarity were used as input feature, the ANN classifier was able to achieve a 

slightly higher classification accuracy of 91.93%. 

For PCA features, the training duration is faster compared to fractal features despite 

the larger feature size. SVM achieved classification accuracy of 93.35% when using PCA 

features. It was observed that larger feature size does not affect the classification time of 

SVM, where it also has a very short overall training duration compared to ANN and 

ANFIS. 

4.6 Classification Results under Noisy Condition 

Based on observation from the classifiers under noise-free conditions, it is obvious that 

for each classifier, statistical features (combination of variance, skewness, kurtosis and 

mean and Weibull features) and fractal features (combination of fractal dimensions and 

lacunarity) performed better when they were combined instead of separated. Therefore, 

when investigating the effect of noise contamination on classification accuracy, only 

statistical features and fractal features were compared against PCA features.  

Similar to previous tests, the test data were once again split into 70:30 ratio where 70% 

of the test data were used as training input and 30% of the remaining data were used as 

test input. The 70% training input were input features extracted from noise-free PD 
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signals, but the remaining 30% test data that were not used for training were overlapped 

with noise and this contaminated data were used for testing. Therefore, the classifiers 

were trained using clean input data and tested using contaminated data that were not used 

during training process. Each test was repeated for 100 times and the average 

classification accuracy is presented in the following section.  

4.6.1 Noise with Increasing Pulse Count 

The classification accuracy of ANN, ANFIS and SVM when using statistical, fractal 

and PCA features when using input features contaminated with different noise duration 

is shown in Table 4.10. The noisy signals used range from 5 seconds and have a 5 second 

increment up to 60 seconds. More PD pulses are contained in the noise sample when 

longer noise duration was applied. The amount of PD pulse in each noise duration has 

been shown in Table 4.2. 

It can be seen that all classifiers and input feature combination experience a certain 

degree of decrement in the classification accuracy. However, the rate of decrement is not 

the same because each classifier and input feature combination has its own noise 

tolerance. To better observe the rate of accuracy reduction, a graph of classification 

accuracy against noise contamination of each classifier is shown in Figure 4.3. 
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Table 4.10: Classification accuracy of different classifier and input feature under varying duration of noise signal 

Classifier Input type 
Duration of noisy signals (s) 

5 10 15 20 25 30 35 40 45 50 55 60 

ANN 

Statistical 90.1 89.0 82.0 75.7 70.0 64.6 54.0 51.3 49.1 51.2 50.7 52.4 

Fractal 63.8 60.7 49.9 44.9 37.3 34.2 30.9 29.9 28.0 27.7 27.3 26.5 

PCA 88.1 87.8 88.0 86.3 82.9 81.8 78.8 77.5 72.0 74.3 73.8 73.3 

ANFIS 

Statistical 91.6 89.4 58.4 51.9 55.4 40.3 27.2 25.1 23.3 23.5 22.8 21.7 

Fractal 30.7 23.7 20.7 16.9 16.6 17.1 18.5 17.8 18.7 17.9 19.4 13.3 

PCA 65.7 63.8 64.0 63.5 64.4 65.3 60.4 61.8 55.5 56.9 56.9 55.6 

SVM 

Statistical 95.6 92.0 81.2 58.9 58.9 46.5 48.8 42.9 52.5 45.3 50.4 47.1 

Fractal 69.8 68.9 65.1 64.5 63.3 61.0 60.3 59.0 58.5 58.3 58.2 57.1 

PCA 92.3 91.9 86.1 86.7 82.7 80.0 77.6 76.3 74.9 74.3 74.3 73.9 
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(a) 

 
(b) 

 
(c) 

Figure 4.3: Noise tolerance against increasing pulse count for (a) ANN, (b) ANFIS 

and (c) SVM 
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For ANN, as the noise duration increases, the classification accuracy of statistical and 

fractal features decreases at a steeper rate compared to PCA feature. The classification 

accuracy of PCA feature manages to overtake the statistical and fractal features above 10 

seconds noise duration due to its slower reduction rate. At the maximum of 60 seconds 

noise duration, the statistical, fractal and PCA features achieved classification accuracy 

of 52.4%, 26.5% and 73.3% respectively. 

For ANFIS, as the noise duration increases, fractal features classification accuracy 

decreases sharply in the beginning but retains a very low classification rate. The noise 

tolerance of statistical feature is better than the fractal feature but is poorer than the PCA 

features. PCA features managed to achieve higher classification accuracy compared to 

statistical and fractal feature once the noise duration exceeded 15 seconds. At the 

maximum of 60 seconds noise duration, the statistical, fractal and PCA features achieved 

classification accuracy of 21.7%, 13.3% and 55.6% respectively. 

For SVM, as the noise duration increases, the performance of statistical features 

reduces at a faster rate than fractal features. Thus, after the 20 seconds noise duration, 

statistical features performed worse than fractal features despite having higher 

classification accuracy under noise-free condition. The classification accuracy of PCA 

features decreases at a slower rate and becomes the input feature with the highest 

classification accuracy for SVM after 10 seconds noise duration. At the maximum of 60 

seconds noise duration, the statistical, fractal and PCA features achieved classification 

accuracy of 47.1%, 57.1% and 73.9% respectively. 

4.6.2 Noise with Increasing Charge Magnitude 

The classification accuracy of ANN, ANFIS and SVM when using statistical, fractal 

and PCA features with input data contaminated with noise of different charge magnitudes 
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is shown in Table 4.11. The noisy signals have an average noise charge magnitude from 

50 pC to 300 pC. Detail specification of the noise signal has been shown in Table 4.3. 

All classifiers and input feature combinations suffer classification accuracy reduction 

when the input features were contaminated with noise of different average charge 

magnitudes. All classifiers and input feature combinations experience a certain degree of 

deterioration in the classification accuracy. However, the rate of classification accuracy 

decrement is not the same as each classifier and input feature combination has its own 

noise tolerance. A graph of classification accuracy against noise contamination is shown 

in Figure 4.4 for a clearer view of the noise tolerance of each classifier and input feature 

combination.  
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Table 4.11: Classification accuracy of different classifier and input feature under varying magnitude of noise signal 

Classifier Input type 
Average noise charge magnitude (pC) 

0 50 100 150 200 250 300 

ANN 

Statistical 91.57 78.94 72.04 68.45 65.82 60.06 57.83 

Fractal 85.44 61.45 53.95 50.60 49.59 46.18 46.18 

PCA 89.00 89.61 83.28 80.24 74.45 61.85 62.86 

ANFIS 

Statistical 96.40 46.46 19.81 19.90 7.33 2.25 4.39 

Fractal 83.36 31.45 38.14 14.30 14.63 13.49 13.49 

PCA 66.74 63.83 58.74 54.31 47.48 40.26 37.04 

SVM 

Statistical 98.67 61.74 59.46 50.90 38.96 33.61 30.92 

Fractal 91.93 61.70 56.09 51.34 38.64 40.80 35.64 

PCA 93.35 92.29 89.74 82.29 75.06 59.08 55.92 
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(a) 

 
(b) 

 
(c) 

Figure 4.4: Noise tolerance against increasing charge magnitude for (a) ANN (b) 

ANFIS and (c) SVM 
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For ANN, as the noise charge magnitude increases, the classification accuracy of 

statistical and fractal features decreases faster compared to PCA feature. PCA feature 

manages to overtake the statistical and fractal features in classification accuracy once a 

noise of 50 pC was introduced due to its slower reduction rate. At the maximum of 300 

pC charge magnitude, the statistical, fractal and PCA features achieved classification 

accuracy of 57.83%, 46.18% and 62.86% respectively.  

For ANFIS, as the noise charge magnitude increases, the classification accuracy of 

statistical and fractal features fell sharply in the beginning and fell to a very low 

classification rate of less than 20%. PCA features experienced a slower deterioration rate 

compared to statistical and fractal features. At the maximum of 300 pC charge magnitude, 

the statistical, fractal and PCA features achieved classification accuracy of 4.39%, 

13.49% and 37.04% respectively. 

For SVM, as the noise charge magnitude increases, the classification accuracy of 

statistical and fractal features experienced a very similar reduction rate. PCA features 

experienced a much slower deterioration rate compared to statistical and fractal features. 

At the maximum of 300 pC charge magnitude, the statistical, fractal and PCA features 

achieved classification accuracy of 30.92%, 35.64% and 55.92% respectively. 

4.7 Discussion 

Under noise-free condition, statistical features give the best classification accuracy for 

all three classifiers. The performance is noticeably better compared to fractal and PCA 

features, which performed differently when being used in different classifiers. For ANN 

and SVM, PCA features performed better than fractal features while in ANFIS, fractal 

features performed better than PCA features. 
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ANFIS performance is on par with ANN for statistical and fractal features. However, 

it performed very weak when using PCA features, achieving only 66.74% classification 

accuracy under noise-free condition. This is due to ANFIS requires normalizing the input 

data during the training process to improve its efficiency (Jang, 1993a). PCA components 

contain a different weighting; hence normalization will change the relative significance 

between each components, causing higher error rate in ANFIS (Lai et al., 2010). 

In terms of training speed, SVM has the fastest training speed. Regardless of the input 

feature sized used for training, SVM always finishes 100 training cycles in less than 1 

minute. ANN is slightly slower than SVM for all input features used. ANFIS training 

speed varies according to feature size, where it takes longer time to train when the input 

feature size is larger. When using input feature with a dimension of less than 20, ANFIS 

is as fast as ANN and SVM, but once input feature with larger dimension was used, the 

training time increased almost linearly. The effect of increasing feature size on the 

training duration for all classifiers is shown in Figure 4.5. It is seen that SVM and ANN 

training speed is not affected by the size of the input feature and remains relatively 

consistent when the feature size is increased. ANFIS, on the other hand, experienced an 

increased training duration when the input feature size was increased.  

 

Figure 4.5: Training time vs. input feature size for PD classifiers 
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Under noisy conditions, the performance of each classifier and input feature 

combination are different from each other. In previous works, noise analysis was 

performed using random noise generated between 10% and 30% of the PD data. Some of 

these noises were added into the input feature itself, while others were added into the 

PRPD pattern. In order to better represent the effect of actual noise contamination, real 

noise signals from ground interference were used in this work. The details of measured 

PD and noise signals used have been shown in Table 4.1 to Table 4.3. Each PD reading 

measured from all 5 test samples has different average charge magnitudes. Test samples 

1 to 4 have an average charge magnitude of around 50 pC while test sample 5 is around 

250 pC. In the first noise analysis, the noise average charge magnitude was 25 pC, which 

is approximately 50% of test samples 1 to 4 and 30% of sample 5. This is very high 

amount of noise contamination. 

In the second part of the noise contamination analysis, noise of different average 

charge magnitude was used, where the average charge magnitude was multiplied 

mathematically to observe the effect of increasing noise amplitude. The range of average 

charge magnitude tested were from 50 pC to 300 pC. This is 6 times the average charge 

magnitude of samples 1 to 4 and 120% of sample 5. Therefore, the deterioration is more 

severe in the second noise analysis. This provides a sufficient range of noise to observe 

the actual effect of noise contamination.  

Table 4.12 shows the reduction of classification accuracy under the maximum noise 

duration. The highest classification accuracy is during noise free condition and the worst 

classification accuracy is during the maximum noise duration. The first trend that can be 

observed is that PCA features show highest noise tolerance compared to statistical and 

fractal features in all three classifiers. PCA features does not have the best classification 

accuracy under noise-free condition in all three classifiers. However, once noise 
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contamination was introduced, the other input features experience huge classification 

accuracy reduction and PCA features have the best classification accuracy. Fractal 

features experienced the most reduction in classification accuracy in ANN and ANFIS. 

ANN and ANFIS are better in coping against contaminated statistical features compared 

to fractal features. On the other hand, SVM is better in coping against contaminated 

fractal features compared to statistical features. For all classifiers, the proposed PCA 

feature has the highest noise tolerance with least percentage reduction of classification 

accuracy under noisy conditions. 

Table 4.12: Percent reduction of classification accuracy under maximum noise 

duration 

Classifier 
Input 

type 

Highest 

classification 

accuracy 

(%) 

Worst 

classification 

accuracy 

(%) 

Reduction 

(%) 

ANN 

Statistical 91.57 52.4 42.78 

Fractal 85.44 26.5 68.98 

PCA 89.00 73.3 17.64 

ANFIS 

Statistical 96.40 21.7 77.49 

Fractal 83.36 13.3 84.05 

PCA 66.74 55.6 16.69 

SVM 

Statistical 98.67 47.1 52.27 

Fractal 91.93 57.1 37.89 

PCA 93.35 73.9 20.84 

 

Table 4.13 shows the reduction of classification accuracy under the maximum average 

charge magnitude. It can be seen that noise contamination with increasing charge 

magnitude has a more profound effect on classification accuracy compared to noise 

contamination with increasing pulse count. This is expected due to the high magnitude 

noisy signals used for testing. All three classifiers and input features experience a greater 

reduction rate of classification accuracy compared to Table 4.12. ANFIS classification 

accuracy fell to an unusable level for statistical and fractal features, where it no longer 

recognizes the input features under such high noise contamination. ANN and SVM 
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experienced a more linear deterioration and is noticeably better than ANFIS. Similar to 

Table 4.12, SVM is better at recognizing PD patterns under noisy conditions when using 

fractal features compared to statistical features while ANN performed better when using 

statistical features compared to fractal features. The proposed PCA feature once again 

managed to display the highest noise tolerance by having the least reduction compared to 

other input features under harsh noise contamination.  

Table 4.13: Percent reduction of classification accuracy under maximum noise 

charge amplitude 

Classifier 
Input 

type 

Highest 

classification 

accuracy 

(%) 

Worst 

classification 

accuracy 

(%) 

Reduction 

(%) 

ANN 

Statistical 91.57 57.83 36.85 

Fractal 85.44 46.18 45.95 

PCA 89.00 62.86 29.37 

ANFIS 

Statistical 96.40 4.39 95.45 

Fractal 83.36 13.49 83.82 

PCA 66.74 37.04 44.50 

SVM 

Statistical 98.67 30.92 68.66 

Fractal 91.93 35.64 61.23 

PCA 93.35 55.92 40.10 

 

The proposed PCA features exhibited high noise tolerance properties and managed to 

achieve reasonably good classification accuracy when used with ANN and SVM 

classifiers under different noise levels. This is due to changes to the original PD data due 

to noise are minimized while transforming the PD data from a higher dimension to a lower 

dimension in the PCA process. Thus, these result in classification accuracy using PCA 

features and intelligent classifiers to be less affected by different durations of noise signals 

compared to statistical and fractal features. Previous works only used PCA as a data 

reduction method. However, in this work, it is shown that PCA features performed 

directly on the PRPD data is very beneficial with its high noise tolerance properties. 
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ANFIS has slower training speed compared to ANN and SVM and the training is 

heavily affected by input feature size. Under noise-free condition, it performed similar to 

ANN. However, under noise contamination, its classification accuracy fell greatly and 

experienced a sharper decline in classification accuracy compared to ANN and SVM. It 

is less efficient in handling input feature with huge variation. Furthermore, ANFIS is 

incompatible with the proposed high noise tolerance PCA features due to the 

normalization process. Therefore, it is concluded that ANFIS is not suitable for PD 

classification with noise contamination. 

4.8 Chapter Summary 

Measurement results from a PD detector have been displayed in this chapter. The 

details of the noise signals used and PD pattern measured from the test samples have been 

presented. The classification accuracy of all input features and classifiers has been 

elaborated. From the results, it is clear that the proposed PCA input features managed to 

display very good noise tolerance in all tested noisy conditions. The feasibility of ANFIS 

as a PD classifier has been evaluated and it is not recommended as a PD classifier due to 

its slow training time and inability to recognize PD pattern accurately under noisy 

conditions.  
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CHAPTER 5: CONCLUSION & FUTURE WORK 

5.1 Conclusion 

Based on the findings from the literature review, PD classification under noise-free 

condition is well established with many works proposing numerous input features and 

classifier. They were able to achieve more than 90% classification accuracy when using 

lab fabricated materials or artificial PD source. However, the real challenge is to replicate 

that results in noise contaminated scenario as noise interference is a real problem in 

practical PD measurement. Therefore, this research work has successfully filled the gap 

in PD classification researches, where actual XLPE cable joints were used as a test sample 

and PD classification was done under noisy conditions using actual noise obtained from 

ground interference. A novel high noise tolerance PCA feature has also been successfully 

proposed. 

Five XLPE cable joints with artificial defects have been successfully prepared and PD 

measurement was successfully performed after noise isolation precautions have been 

taken. Using the PD measurement data, three feature extraction methods, which are 

statistical features, fractal features and the proposed PCA features have been performed. 

Three different artificial intelligence based classifiers, which are ANN, ANFIS and SVM 

were used to classify the PD pattern based on the extracted input feature.  

After analyzing the performance of each classifier and input feature, the tests were 

repeated with contaminated signals. Under noise-free condition, all PD classifiers and 

input features performed very well with the exception of ANFIS and PCA features. This 

is due to ANFIS requires normalizing the input during training process for efficiency 

purpose. This will lead to higher error because normalization will cause PCA feature to 

lose its relative significance. 
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Two different noisy conditions were tested, noise with increasing duration or pulse 

count and noise with increasing average charge magnitude. Under noisy conditions, all 

PD classifiers and input features suffer from degradation in classification accuracy. 

However, the proposed PCA features displayed the highest noise tolerance, suffering only 

a minimal 20% reduction under the most severe noise contamination scenario while other 

input features suffered must more severe reduction. PD classifiers were also tested against 

noise with increasing average charge amplitude, which pushed the PD classifiers to the 

limit as the charge magnitudes are higher than the average PD pulse of the test samples. 

Once again, the proposed PCA features emerged as the input feature with the highest 

classification accuracy.  

For PD classifier performance, ANFIS is weaker than ANN and SVM. Under noise-

free condition, ANFIS performed equally well as ANN. However, when noise 

contamination was introduced, ANFIS classification drops drastically as it is unable to 

cope with huge variation of input feature that have been contaminated. ANFIS also had 

very long training time when larger input features were used. Apart from that, ANFIS 

was incompatible with the proposed PCA input features, making it highly susceptible to 

noise contamination.  

In noise-free condition, SVM performed better than ANN and it also had faster training 

speed. Under noisy conditions, it was found that SVM was better at adapting to noise with 

high pulse count while ANN was better at adapting to noise with high average charge 

magnitude. SVM experienced less performance reduction when contaminated with noise 

with increasing noise pulse count compared to ANN. On the contrary, ANN experienced 

less performance reduction using all three input features when contaminated with noise 

with increasing average charge magnitude compared to SVM. 
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In conclusion, all objectives of this research work have been successfully achieved. 

PD classification of actual XLPE cables has been performed under noisy conditions and 

the proposed PCA features were found to have high noise tolerance and may benefit 

power industries in practical PD classification and condition monitoring. 

5.2 Future work 

 Future work that can be performed are: 

1. Design a PD classifier that is capable of recognizing overlapping PRPD patterns 

from two different defects. This is due to there are more than one defect that may 

exist in a test object. Hence, a PD classifier that is able to identify multiple defect 

sources will be extremely useful. It will also make the PD recognition system 

more versatile with multiple defect recognition capabilities. 

2. Use a more effective input feature that has higher accuracy and invariant to noise 

contamination. The current method has much higher noise tolerance compared to 

traditional input features. However, the classification accuracy under noisy 

conditions is lower compared to classification accuracy under noise-free 

conditions. Hence, it would be good to bridge the gap of the input feature 

performance between under noise-free and noisy conditions.  
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