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ABSTRACT 

 

Fuel cell systems with high-energy efficiency provides clean energy with lower 

noise and emissions that have attracted significant attention of energy. Proton exchange 

membrane (PEM) fuel cell has high power density; long stack life and low-temperature 

operation condition, which makes it a prime candidate for the vehicles. Performance 

optimization of PEM fuel cell has been a topic of research in the last decade. The 

efficiency of fuel cells is not specific; it is a subordinate to the power density where the 

system operates. The fuel cell performance is least efficient when functioning under 

maximum output power conditions. 

 Modelling the PEM fuel cell is the fundamental step in designing efficient 

systems for achieving higher performance. In spite of affecting factors in PEM fuel cell 

functionality, providing a reliable model for PEM fuel cell is the key of performance 

optimization challenge. There have been two approaches for modelling and prediction of 

commercial PEM fuel cell namely, theoretical and empirical models. Since theoretical 

modeling is not achievable in experimental conditions, the empirical modeling has 

attracted significant attention in researches. Various types of algorithms have been 

utilized for modelling these systems to achieve a high accuracy for predicting the 

efficiency and controlling the system.  

Recent models provide high accuracies using complex systems and complicated 

calculations using advanced optimization algorithms. However, designing an accurate 

dynamic model for prediction and controlling the system in a real time condition is a 

challenge in this field.   By utilizing the state of the art soft computing algorithms in 

modeling the technical systems to reduce the complexity of the models artificial neural 

networks have had a great impact in this field. This study has multifold objectives and 
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aim to design models for a 250W proton exchange membrane fuel cell system that is used 

as the power plant in electric bicycle. Classical linear regression and artificial neural 

networks as the most popular and accurate algorithms have been optimized and used for 

modeling this system. In addition, for the first time fuzzy cognitive map has been utilized 

in modeling PEM fuel cell system and targeted to provide a dynamic cognitive map from 

the affective factors of the system. Controlling and modification of the system 

performance in various conditions is more practical by correlations among the 

performance factors of the PEM fuel cell resulted from fuzzy cognitive map. On the other 

hand, the information of fuzzy cognitive map modeling is applicable for modification of 

neural networks structure for providing more accurate results based on the extracted 

knowledge from the cognitive map and visualization of the system’s performance. 
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ABSTRAK 

 

 Sistem sel bahan api dengan kecekapan tenaga tinggi menyediakan tenaga 

bersih dengan kadar bunyi dan pelepasan yang lebih rendah telah menarik perhatian besar 

tenaga. Sel bahan api membran pertukaran proton (PEM) fuel cell telah menjadi pilihan 

utama untuk kenderaan kerana mempunyai ketumpatan kuasa yang tinggi ; kadar hidup 

timbunan yang lama dan keadaan operasi di suhu rendah. Pengoptimuman prestasi PEM 

fuel cell telah menjadi topik penyelidikan untuk beberapa dekad yang lalu. Kecekapan sel 

bahan api tidak khusus ; ia adalah lebih rendah daripada ketumpatan kuasa di mana sistem 

beroperasi. Prestasi sel bahan api kurang berkesan apabila ianya berfungsi di dalam 

keadaan kuasa keluaran yang maksimum. 

  Pemodelan PEMFC adalah langkah asas dalam mereka bentuk sistem yang 

cekap untuk mencapai prestasi yang lebih tinggi. Selain faktor-faktor yang 

mempengaruhi prestasi PEMFC , menyediakan model yang boleh dipercayai adalah 

kunci kepada cabaran untuk mengoptimumkan prestasi PEMFC. Terdapat dua 

pendekatan untuk pemodelan dan ramalan komersial sel bahan api PEM iaitu model teori 

dan model empirikal. Oleh kerana pemodelan teori tidak boleh dicapai daripada kajian , 

pemodelan empirikal telah menarik perhatian yang besar dalam penyelidikan. Pelbagai 

jenis algoritma telah digunakan dalam pemodelan sistem ini untuk mencapai ketepatan 

yang tinggi dalam meramal kecekapan dan mengawal sistem. 

  Model terbaru menyediakan ketepatan tinggi dengan menggunakan sistem 

yang kompleks dan pengiraan yang rumit menggunakan algoritma pengoptimuman 

paling maju. Walau bagaimanapun, mereka bentuk model dinamik yang tepat untuk 

meramal dan mengawal sistem ini dalam keadaan masa sebenar adalah mencabar untuk 

bidang ini. Dengan menggunakan keadaan seni algoritma pengkomputeran lembut dalam 

pemodelan sistem teknikal untuk mengurangkan kerumitan model rangkaian neural tiruan 

Univ
ers

ity
 of

 M
ala

ya



 

vi 

 

mempunyai impak yang besar dalam bidang ini. Kajian ini mempunyai objektif berganda 

dan bertujuan untuk mereka bentuk model untuk sebuah sistem sel bahan api membran 

pertukaran proton berkuasa 250W yang digunakan sebagai loji kuasa dalam basikal 

elektrik. Sebagai algoritma yang paling popular dan tepat, regresi linear klasik dan 

rangkaian neural tiruan telah dioptimumkan dan digunakan untuk model sistem ini. Di 

samping itu, buat kali pertama peta kognitif kabur telah digunakan dalam pemodelan 

sistem sel bahan api PEM dan bertujuan untuk menyediakan peta kognitif dinamik dari 

faktor keberkesanan sistem. Pengawalan dan pengubahsuaian prestasi sistem dalam 

pelbagai keadaan adalah lebih praktikal dengan korelasi antara faktor prestasi sel bahan 

api PEM hasil daripada peta kognitif kabur. Selain itu, maklumat daripada pemodelan 

peta kognitif kabur boleh digunakan untuk pengubahsuaian struktur rangkaian neural 

untuk memberikan hasil yang lebih tepat berdasarkan pengetahuan yang diekstrak dari 

peta kognitif dan visualisasi prestasi sistem. 
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S   Standard deviation  

z-score   Standardization of data  
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𝜀    Error term  
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MSE    Mean of the squares  

𝐽(𝜃)   Cost function 

m     Number of iterations 

𝛼   Learning rate value 

𝜃    System weights  

wkj    Synaptic weights  

xm   Input  

𝑘    Neuron  

uk    Linear combiner outputs 
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𝑏𝑘   Bias 

𝑣𝑘    Activation potential 

𝜑(. )    Activation function 

𝐹(𝑥)    Sum of square error  

x    weights matrix and bias  

𝐻(𝑥)    Hessian matrix  

(𝑥)     Vector of network error 

𝐽(𝑥)    Jacobian matrix 

𝐶𝑗(𝑡)    Activation degree of concept  𝑗𝑡ℎ at moment t 

 𝑒𝑖𝑗    Relationship strength from concept 𝐶𝑖 to concept 𝐶𝑗 

𝑐     Real positive number  

 𝑥     Value 𝐶𝑗(𝑡) 

𝐶𝑖     Current activation of concept 𝑖𝑡ℎ 

𝐶𝑖     Current activation of concept  𝑗𝑡ℎ 

𝑒𝑖𝑗(𝑘)     Value of the weights between concepts 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ 

𝜂     Learning coefficient  

𝐶(0)    Value of concepts  

𝐸(0)     Connection matrix 

𝑊𝐹𝐼𝑁𝐴𝐿   Final connection matrix   
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𝑇𝑗      Mean target value of the concept 𝐶𝑗 

𝑒𝑚𝑎𝑥   Maximum difference  

𝑑𝑖𝑗     Value of 𝑖𝑡ℎ concept at the 𝑗𝑡ℎ time point 

𝐾    Number of available data points  

𝑁    Number of concepts in modeled system  

𝐴     Simulated data vector for every output parameter 

T    Real experimental value 

N    Sample number 

𝐷𝐶𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑   Estimated and of decision concepts (DC) 

𝐷𝐶𝑖
𝑟𝑒𝑎𝑙    Real value decision concepts (DC) 

𝐾    Number of available iterations 
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ABBREVIATIONS 

 

 

ICE   Internal combustion engine 

AFC   Alkaline fuel cell 

DMFC   Direct methanol fuel cell 

SOFC    Solid oxide fuel cell 

MCFC   Molten carbonate fuel cell  

PAFC    Phosphoric acid fuel cell  

PEMFC   Proton exchange membrane fuel cell  

ANFIS   Adaptive neuro fuzzy inference system  

ANN   Artificial neural network  

LR   Linear regression 

FCM   Fuzzy cognitive map 

DAQ    Data acquisition  

LHV    Lower heating value  

DD-NHL   Data driven nonlinear Hebbian learning 

RB-FCM   Rule-based FCM  

LMBP    Levenberg-Marquardt back propagation  

FCV   Fuel cell vehicle  
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GDL    Gas diffusion layer  

GA    Genetic algorithm  

BP   Back propagation  

RBF   Radial basis function  

NLP    Non-linear programming  

MPC   Model predicted control  

MBDO  Metamodel-Based Design Optimization  

EPSO   Enhanced particle swarm optimization  

IT    Information technology  

DCNs   Dynamic Cognitive Networks  

FGCMs  Fuzzy Gray Cognitive Maps  

IFCMs   Intuitionistic Fuzzy Cognitive Maps 

DRFCMs  Dynamic Random Fuzzy Cognitive Maps  

E-FCMs  Evolutionary Fuzzy Cognitive Maps  

FTCMs  Fuzzy Time Cognitive Map  

RCMs   Rough Cognitive Maps 

TAFCMs   Timed Automata-based fuzzy cognitive maps  

BDD-FCMs   Belief-Degree Distributed Fuzzy Cognitive Maps  

RBFCMs   Rule Based Fuzzy Cognitive Maps  
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FCN    Fuzzy Cognitive Network  

DHL    Differential Hebbian Learning  

BDA   Balanced Differential Algorithm  

NHL   Nonlinear Hebbian Learning  

AHL   Active Hebbian Learning  

ES   Evolutionary Strategies  

GA    Genetic Algorithms  

RCGA   Real Coded Generic Algorithms  

SI    Swarm Intelligence  

Mas    Memetic Algorithms  

SA    Simulated Annealing  
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TS    Tabu Search  
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NHL-RCGA   real-coded genetic algorithm and nonlinear Hebbian learning 

algorithm  

ECU    Electronic Control Unit  

HHV   Higher heating value  

R    Ideal gas constant 

RH    Related humidity  

I    Current 

 qO2   Oxygen flow rate 

 T    Temperature  

 qH2   Hydrogen flow rate  
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mbf    Membership functions  

𝜇𝑛𝑣𝑠   Membership function negatively very strong 

𝜇𝑛𝑠   Membership function negatively very strong 

𝜇𝑛𝑚   Membership function negatively medium 

𝜇𝑛𝑤   Membership function negatively weak 

𝜇𝑧   Membership function zero  
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Chapter 1 : INTRODUCTION 

 

 

 

1.1 Background of study 

 

Fossil fuel depletion has created environmental problems such as pollution, 

climate change and global warning. However, the largest fields of oil have been 

discovered and production is clearly past its peak. Factors such as awareness of the health 

problems related to high air pollution levels and dwindling oil fuel reserves have 

increased interest in the replacement of internal combustion engine (ICE) vehicles. 

However, considerable problems regarding health and environment are the result of the 

use of too many vehicles worldwide, and for the sake of the health of the environment 

and humanity, decreasing the use of fossil energy sources with the aim of zero emission 

vehicles is helpful.  

 In vehicle industry, the major distinguished achievement is development of the 

internal combustion engine vehicle (Brandon & Hommann, 1996; Chen, Hsaio, & Wu, 

1992). To date, several automobile companies and research organizations regarding the 

future generation of vehicles have focused on the production of hybrid vehicle technology 

for enhancement of fuel economy, increased efficiency and controlled emission (Faiz, 

Weaver, & Walsh, 1996; Kammen, 2002). Among the development of new energy 

technologies fuel cells with sufficient efficiency and low emission are considered one of 

the most promising vehicular power sources (Kordesch & Simader, 1996).  
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Figure 1.1 shows the theoretical voltage-current (V-I) curve of fuel cell for 

considering how the fuel cell voltage varies with output current, and it also display cause 

of voltage drop. Another important curve for developing the control strategy and 

drivetrain topology for electric vehicle power by fuel cell is efficiency versus power.  

  

 

 

 

 

 

Fuel cell powered electric vehicles have been considered a solution to the inherent 

issue of long charge and short range time of electric vehicles compared to traditional 

batteries. Fuel cells, discovered by British physicist William R Grove in 1839 (Blomen 

& Mugerwa, 2013) are electrochemical energy conversion devices which generate 

electricity by mixing hydrogen and oxygen in electrolyte. Fuel cells generate power with 

low emission, high efficiency and quiet operation compared to conventional power 

Figure 1.1: Ideal voltage versus current curve for fuel cell 
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generator. Fuel cells are categorized into six variable types based on their electrolyte type 

including:  

1) Alkaline fuel cell (AFC) with a wide range of operation temperatures and are suitable 

to use in spacecraft (McLean, Niet, Prince-Richard, & Djilali, 2002).  

2) Direct methanol fuel cell (DMFC), a rare commonly used fuel cell which operates at 

high temperature (Hamnett, 1997).  

3) Solid oxide fuel cell (SOFC) with a high temperature threshold between 600 and 

1000℃ (Hammou & Guindet, 1997).  

4) Molten carbonate fuel cell (MCFC) to perform only at temperatures higher than 650℃ 

(Dicks, 2004).  

5) Phosphoric acid fuel cell (PAFC) with operating temperature of 150-200℃ and is 

utilized in both stationary power and mobile applications, such as large vehicles 

(Bagotsky, 2012).  

6) Proton exchange membrane fuel cell (PEMFC) with a lower operating temperature, 

which renders the fuel cell viable for both portable and stationary applications 

(Vishnyakov, 2006).  

Power capacity of fuel cells are categorized according to their application 

including portable power, stationary, residential, and transportation. Proton exchange 

membrane fuel cell (PEMFC) is the most demanded type of fuel cell in popular 

technology due to its simplicity, solid membrane, quiet operation and low temperature 

operating range. In this project, PEM fuel cell has been used to run an electric bicycle. 

Chemical reactions of PEM fuel cells are as follows:  
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Anode side:   2𝐻2 → 4𝐻+ + 4𝑒− (1-1) 

Cathode side:   𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂 (1-2) 

Net reaction:   2𝐻2 + 𝑂2 → 2𝐻2𝑂 (1-3) 

 

Modelling plays a significant role in research projects by allowing investigation 

of critical situations without presenting any real-life danger, which results in a better 

evaluation of system. For accurate modeling and to define better efficiency of system, 

PEM fuel cell modeling is required to draw the pattern for critical parameters. Several 

models have been developed to improve the design and operation of fuel cells, especially 

PEM fuel cell (Baschuk & Li, 2005; Ceraolo, Miulli, & Pozio, 2003; Contreras, Posso, & 

Guervos, 2010; Gong & Cai, 2014; Haji, 2011; Meidanshahi & Karimi, 2012; Oezbek, 

Wang, Marx, & Soeffker, 2013; Rowe & Li, 2001; Tiss, Chouikh, & Guizani, 2013), 

based on theoretical and empirical modeling. Theoretical modeling involves solving 

differential equations or integration or both to determine the PEM fuel cell performance 

from various physical parameters. Empirical modeling predicts a model by using 

experimental data without determining the process parameters in detail (Napoli, Ferraro, 

Sergi, Brunaccini, & Antonucci, 2013).  

Since PEM fuel cell is a complex nonlinear system with multi-variables, 

optimizing model parameters for design improvement and performance enhancement 

using analytical models is challenging. Mathematical nature of theoretical models make 

them more complicated than empirical models (Ismail, Ingham, Hughes, Ma, & 

Pourkashanian, 2014; Jang, Cheng, Liao, Huang, & Tsai, 2012). Therefore, advanced 

algorithms are suggested to be developed in order to reduce the essential computational 

effort (Gong & Cai, 2014; Samsun et al., 2014). Soft computing techniques and machine 
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learning algorithms are reliable mediums to employ in empirical modeling for a more 

efficient prediction of affecting parameters on voltage–current (V–I) curve of fuel cell 

(Boscaino, Miceli, & Capponi, 2013).  

 In recent years, active empirical modelling techniques based on machine learning 

theory defined as adaptive neuro fuzzy inference system (ANFIS) (Rezazadeh, Mehrabi, 

Pashaee, & Mirzaee, 2012; Silva et al., 2014; Vural, Ingham, & Pourkashanian, 2009), 

support vector machine (SVM) (Q. Li, Chen, Liu, Guo, & Huang, 2014; Zhong, Zhu, & 

Cao, 2006; Zhong, Zhu, Cao, & Shi, 2007), and artificial neural network (ANN) which is 

a powerful tool for modelling the performance of PEM fuel cell (Jemeı, Hissel, Péra, & 

Kauffmann, 2003; Lee, Park, Yang, Yoon, & Kim, 2004; Ogaji, Singh, Pilidis, & 

Diacakis, 2006; S. Ou & L. E. Achenie, 2005) have been developed. The advantage of 

these models over theoretical model is that they are much simpler, enabling quick 

prediction and requiring less computational time.  

Researches in this field aim to propose methods to predict the PEM fuel cell 

performance and to compare it with experimental data to indicate the accuracy of the 

model. Most of these studies applied algorithm to decrease the error in models. 

Furthermore, some researchers have proposed a control technology for optimal control of 

the system response (J. Hasikos, H. Sarimveis, P. Zervas, & N. Markatos, 2009; Jemeï, 

Hissel, Péra, & Kauffmann, 2008; J.-M. Miao, Cheng, & Wu, 2011; Sachin V Puranik, 

Ali Keyhani, & Farshad Khorrami, 2010; Wu, Shiah, & Yu, 2009).  The focus of these 

models is on the design of PEM fuel cell rather than its application.  
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1.2 Problem statement  

 

Recent development in fuel cell efficiency and performance is based on single cell 

or fuel cell while computing the whole system efficiency plays significant role to improve 

the performance and efficiency of the system. Despite a number of limitations of PEM 

fuel cell like high production cost of hydrogen, essential features such as zero emission, 

high efficiency and low operating temperature, fast start-up, make PEM fuel cells ideal 

for transportation. There is considerable difference between the actual and ideal 

efficiency of systems that their internal components are not changeable; therefore, 

controlling these system to operate in an optimized condition is challenging. In addition, 

both empirical and theoretical models of PEM fuel cell have been aimed to improve the 

design and operation of fuel cells, but this cannot be achieved without providing an 

accurate and reliable model of the system. Although there have been numerous fuel cell 

stack models in order to benefit from its design (Buchholz & Krebs, 2007; Hu, Cao, Zhu, 

& Li, 2010; Kong & Khambadkone, 2009; Kong, Yeau, & Khambadkone, 2006; Rouss 

et al., 2008; Zhang, Pan, & Quan, 2008), there has been few models for the whole PEM 

fuel cell system (Ahmed M Azmy & István Erlich, 2005; Jemeı et al., 2003; Jemeï et al., 

2008).  

Simulation model of whole fuel cell system in electric vehicle is essential to adjust 

the optimization ability of complete vehicle with auxiliary component. Therefore, the 

problem statement can be stated as developing a dynamic model for fuel cell system in 

electric bicycle with the ability to predict each variable of PEM fuel cell and the efficiency 

of whole system, providing a cognitive map from the PEM fuel cell with a linguistic 

relationship between variables to be used for control and real-time processing 

applications.  
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1.3 Objectives  

 

Cognitive map can be used to evaluate the performance of PEMFC system and 

enable it to be used for controlling all variables in order to increase the efficiency .The 

main goal of this study is dynamic modelling of the PEM fuel cell performance in electric 

bicycle. The objectives of this study are as follows: 

1- To define an accurate relation between efficiency and power density of system 

during different operation conditions based on experimental data.  

 

2- To design a linear regression model for predicting output voltage and system 

efficiency based on (temperature, related humidity, current, hydrogen/oxygen 

flow rate).   

 

3- To improve and optimize the PEM fuel cell empirical model using artificial neural 

networks.  

 

4- To develop a fuzzy cognitive map (FCM) of PEM fuel cell variables and to 

provide the causality of these variables on each other for real-time control 

applications.  
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1.4 Methodology  

 

The data has been collected from data acquisition (DAQ). Values of (temperature, 

related humidity, current, hydrogen/oxygen flow rate and voltage) were recorded from 

the PEM fuel cell system. With reference to the problem statement and objectives of this 

study, methodology is illustrated in separate phases. First phase of the study aims to 

define an accurate relation between efficiency and power density of system during 

different operation conditions based on experimental data. Fuel cell efficiency was 

calculated by using fuel cell's stack operating voltage (𝑉𝑜𝑝𝑒𝑟) versus hydrogen’s lower 

heating value (LHV) equation. Since in the PEM fuel cell single cells are connected in 

series, the efficiency of single cell and fuel cell stack are equal. The whole system’s 

efficiency has been computed using generated electric bicycle energy versus energy of 

consumed H2. A detailed description of equations can be found in chapter 3. 

In the second phase of the study, various models of PEM fuel cell were presented 

for better understanding of fuel cell system behavior and operation process. Both linear 

and non-linear models were used for modelling the PEM fuel cell electric bicycle: 1) 

linear regression model and 2) artificial neural network model and comparison of these 

two models for better performance estimation of PEM fuel cell system. These models 

were designed based on available variables including load current, temperature, related 

humidity, and hydrogen/oxygen flow rate as inputs with load voltage and system 

efficiency as output variables. Each of these models have been optimized in order to 

minimize the cost function of models and represent optimal value of decision variables to 

provide an accurate prediction of outputs. 

Since using classical control theories to design a controller for system could 

compromise the efficiency of the system, in the final phase of this study a dynamic model 

was used to predict the system status based on the causality relations among PEM fuel 
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cell variables. Fuzzy cognitive map (FCM) was used for the first time as a convenient and 

powerful tool for dynamic system modelling based on experimental data. FCM is a 

combination of fuzzy logic and neural network through strategy of relation between all 

factors. Data driven nonlinear Hebbian learning method (DD-NHL) was used as a state 

of the art algorithm to design the cognitive map of PEMFC. FCM has been trained by the 

collected data to generate accurate causality relations between variables. The causality 

relations in this model were converted into fuzzy concepts in order to provide a rule-based 

FCM (RB-FCM). The main advantage of RBFCM is the flexibility of the model for 

providing an accurate dynamic model of the system for real-time control applications. 

 

1.5 Scope of the study  

  

In this study, a 25-Kg electric assisted bicycle special VRLA-battery 6-DZM-10 

12V 10Ah is used to determine the overall efficiency of the system by using experimental 

data. The data collection is performed on a stationary bicycle while the tire could spin 

freely on traditional Kickstand.  For this experiment, we attempted to keep the bicycle at 

the cruise condition (constant speed) with a fuel cell power average of 35.29 W, and fuel 

cell stack efficiency average of 48.45%. Parameters in the condition of this test are 

obtained in ambient temperature range 0℃ up to 35 ℃ and ambient relative humidity 

range of 30-80%.  

The linear model was designed based on gradient descent algorithm and ANN was trained 

using Levenberg-Marquardt back propagation (LMBP) algorithm. Validation data was 

used to plot learning curve and error analysis for optimizing the models variables and 

structure. The RBFCM was used only for dynamic modeling of the system variables. 

However, due to the limited accessibility to inner auxiliaries and parameters of bicycle 
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and PEMFC, real-time control of the system input parameters was not feasible. However, 

the final design of RBFCM was accurate for dynamic training and prediction of system 

status to be used for controllers. 

 

1.6 Outline of study  

 

This thesis has been organized into five chapters.  

Chapter 1 (present chapter) outlines brief introduction of the research area starting 

with the fuel cell general overview, problem statement, objective, methodology, and 

scope of the study. This chapter presents a general viewpoint to enable the reader to 

understand what has been done in this project.  

Chapter 2 provides a background about type of fuel cells and their application in 

detail. This is followed by a discussion of the types of PEM fuel cell models and a brief 

review of linear regression model and artificial neural network models as effective 

methods to give a general idea of these empirical model approaches. The fuzzy cognitive 

map and its application have been also introduced in this section.  

Chapter 3 describes the methodology employed in the current study including 

details of how data has been collected from bicycle and how the overall efficiency of 

system was calculated. The proposed procedure to model PEM fuel cell system is 

provided step by step and investigated to find optimal parameters to obtain more accurate 

and faster modelling. The fuzzy cognitive map was trained by using state of art Non-

linear Hebbian learning algorithm which has been elaborated in detail in chapter 3. 
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Chapter 4 presented the result and discussion of implementation of calculated 

overall efficiency, linear regression and neural network prediction and fuzzy cognitive 

map model.  

Chapter 5 provides the conclusion of this thesis and recommendations for future 

work.   
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Chapter 2 : LITERATURE REVIEW 

 

 

 

2.1 Introduction   

 

 Over the past three decades, the major environmental issue in many countries 

around the world has been the global warming, lead to a dramatic increase in electrical 

energy demand. Many researchers have presented an alternative energy converter at an 

affordable price. These converters are generally eco-friendly (Purkrushpan & Peng, 2004) 

 During the past decade, research and development of electric vehicles have 

attracted significant attention due to various concerns such as reducing emission and air 

pollution from the combustion of fossil fuels. This kind of promising technology has 

minimum emission, significant improvement in fuel economy and higher efficiency than 

today’s internal combustion engines (Kammen, 2002).  

 Currently, many researchers are working to produce clean electrical energy for 

future generation vehicles. One of the major challenges has been the inherent limitation 

of short range and long charge time historically related to electric power vehicles. The 

ideal solution compared to traditional battery power electric vehicles is fuel cell powered 

hybrid vehicles. The main focus of hybrid vehicles is electric cars and buses in developing 

countries because of air pollution, and smaller vehicles are widely used for transportation 

and utility purposes (Dockery et al., 1993). Z Qi (2009) (Garche et al., 2013) 

demonstrated various vehicular applications, such as bicycles, wheelchairs, forklifts, and 

scooters, that utilize PEM fuel cells instead of batteries. 

 Addressing all these issues surrounding the internal combustion engine vehicles 

and replacing these with low-emission, renewable fuel and high energy efficiency, the 
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good choice currently is hydrogen fuel cell vehicle (FCVs) which provides the chance for 

the consumer to be a both user and producer of energy (Rifkin, 2003). The background 

of fuel cell vehicles and the remaining issues for getting these vehicles on the road are 

discussed in section 2.3.   

 

2.2 Background of the Study   

 

 Fuel Cell 

 

A fuel cell is a device that releases a considerable amount of power in the form of 

electrical currents as hydrogen and oxygen atoms undergo an electrochemical reaction, 

the by-product of which is water molecules (F. Barbir & Gomez, 1997). A fuel cell is 

similar to battery in convert of chemical energy to electric energy; however, one distinct 

difference between them is that fuel cells continue to operate as long as fuel and air are 

supplied and there is no need to recharge. Sir William Grove invented the fuel cell in 

1839 based on C.F Schoenbein’s idea as he observed the fuel cell effect; Grove saw the 

capability of combining oxygen and hydrogen to make water (Bossel, Schönbein, & 

Grove, 2000) 

 Currently, fuel cells are categorized into six different types based on their 

electrolyte material, fuel diversity and operating temperature that make them suitable for 

different applications. The following sections briefly presented the main types of fuel 

cells and section 2.1.1.6 provides more details the of proton exchange membrane fuel cell 

(PEMFC).  
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2.2.1.1 Alkaline Fuel Cell (AFC)  

 

  Alkaline fuel cells (AFC) demonstrated by Francis Bacon in 1930 are one of most 

popular fuel cells developed to power NASA’s Apollo space program. They contain an 

alkaline solution derived from an alkaline electrolyte. They can operate over a wide range 

of temperatures that depend on the fuel cell application, which constitutes the main 

advantage of these fuel cells over the other types. However, the significant technical 

disadvantage of this type of fuel cell is the carbon dioxide poisoning of the electrolyte. 

They react with hydrogen at the anode, releasing four electrons and producing water: 

At anode: 2H2 + 4OH−  → 4H2O + 4e−      (2-1)  

Electrons react with oxygen and water at the cathode and produce new OH: 

At cathode:  O2 + 4e− + 2H2O → 4OH−     (2-2)  

             For continuous reaction, the mobile ion  OH− should pass through the electrolyte, 

and for electrons to go from anode to cathode, there must be an electrical circuit (Lin, 

Kirk, & Thorpe, 2006). Figure 2.1 displays the principle of alkaline fuel cell.  

 

 

Anode: 2H2+4OH-              4H2O+4e- 

OH- Ions through electrolyte  

Cathode: O2+4e-+2H2O               4OH- 

Load  

Figure 2.1: Alkaline fuel cell principle 
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2.2.1.2 Direct Methanol Fuel Cell (DMFC)  

 

 Direct methanol fuel cell was discovered by Dr. Surya Prakash and Dr. George A. 

Olah in 1990, and is the only fuel cell that consumes methanol for fuel instead of 

hydrogen. The utilization of these fuel cells is limited to applications in which the 

efficiency is superseded by the power density in terms of importance. Hence, the 

utilization of DMFCs is not as common as that of other fuel cells. Methanol is mixed with 

water at the anode and the mobile ion is H+ passes through the electrolyte and six 

electrons are released and transferred from anode to cathode: 

At the anode:   CH3OH + H2O → 6H+ + 6e− + CO2   (2-3)  

Electrons react with oxygen and hydrogen at the cathode and produce water: 

At the cathode: 
3

2
O2 + 6H+ + 6e− → 3H2O     (2-4)  

Overall reaction:  CH3OH +
3

2
O2 → 2H2O + CO2    (2-5) 

 The issue about DMFC is that  CO2 is produced as a byproduct and the reaction at 

the anode is slow and provides less power(Frano Barbir, 2012). Figure 2.2 shows the 

principle of direct methanol fuel cell.  

Figure 2.2: Direct methanol fuel cell principle  

Anode: CH3OH+H2O            6H++6e-+CO2 

H+ Ions through electrolyte  

Cathode: 
3

2
O2+6H+6e-             3H2O               

Load  
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2.2.1.3 Solid Oxide Fuel Cell (SOFC)  

 

Solid Oxide fuel cells (SOFC) are another type of fuel cell that was discovered by 

Walther Hermann Nernst, one of the earliest researchers of SOFC, in 1899. A high 

temperature threshold between 600 and 1000℃ constitutes the main concern for the 

utilization of SOFC in vehicles. SOFC contains a solid oxide or ceramic as the electrolyte 

to conduct the oxygen ions. Oxygen ion and hydrogen oxidation at the anode and produce 

water and electron:  

At the anode:   𝐻2 + 𝑂= → H2O + 2e−    (2-6) 

At the cathode, oxygen reacts with electrons and produces oxygen ion: 

At the cathode:  
1

2
O2 + 2e− → 𝑂=     (2-7) 

Overall reaction:   
1

2
O2 + 𝐻2 → H2O     (2-8)  

Hydrogen and carbon monoxide are two major fuels of solid oxide fuel cell (Fuerte, 

Valenzuela, & Daza, 2007). Figure 2.3 displays the principle of solid oxide fuel cell.  

 

Anode: H2+O=              H2O+2e- 

O= Ions through electrolyte  

Cathode: 
1

2
O2+2e-              O=                         

Load  

Figure 2.3: Solid oxide fuel cell principle  
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 Molten Carbonate Fuel Cells (MCFC)  

 

Molten carbonate fuel cell (MCFCs) was built by Erwin Baur in 1921 based on a 

mixture of molten salts that act as an electrolyte. These fuel cells can perform only at 

temperatures that are higher than 650℃. Carbonate and hydrogen react at the anode side 

and produce water and 𝐶𝑂2and electron:  

At the anode:  𝐻2 + 𝑐𝑜3
= → H2O + CO2 + 2e−   (2-9) 

Oxygen and by carbon dioxide react with electrons at the anode and produce carbonate 

anions.  

At the cathode: 
1

2
O2 + CO2 + 2e− → 𝑐𝑜3

=    (2-10)  

The exothermic overall reaction is: 

Overall reaction: 𝐻2 +
1

2
O2 + CO2 → H2O + CO2   (2-11)  

    

 To complete the circuit carbonate anions pass from the cathode to anode through 

the molten electrolyte. During oxygen reduction, carbon dioxide is passed to the cathode 

for use (Bischoff & Huppmann, 2002). Figure 2.4 shows the principle of molten carbonate 

fuel cell.  

Anode: H2+CO3
=            H2O+CO2+2e- 

CO3
= Ions through electrolyte  

Cathode: 
1

2
O2+CO2+2e-             CO3

=             

Load  

Figure 2.4: Molten carbonate fuel cell principle  
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 Phosphoric Acid Fuel Cell (PAFC)  

 

Phosphoric acid fuel cell (PAFCs) was developed by G. V. Elmore and H. A. 

Tanner in 1961 and uses liquid phosphoric acid as an electrolyte. The operating 

temperature of these devices is approximately (150-200)℃ . PAFCs are used in both 

stationary power and mobile applications such as large vehicles. The pre-heating 

requirements and its open-ended structure which requires the careful control of hydrogen 

flow are some of its drawbacks. Pure hydrogen at the anode breaks into hydrogen ion and 

produces four electrons.  

At the anode:   2𝐻2 → 4H+ + 4e−     (2-12) 

Hydrogen ions and oxygen and electrons at the cathode produce water, and electrons pass 

through the external circuit from anode to cathode.   

At the cathode: O2 + 4H+ + 4e− → 2H2O    (2-13) 

Overall reaction: 2𝐻2 + O2 → 2H2O     (2-14)  

The output is very low at the anode due to pure hydrogen and using Carbon monoxide in 

fuel increases it (Kasahara, Morioka, Yoshida, & Shingai, 2000).  Figure 2.5 displays the 

principle of phosphoric acid fuel cell.  

Anode: 2H2            4H++4e-         

CO3
= Ions through electrolyte  

Cathode: O2+ 4H+ +4e-            2H2O             

Load  

Figure 2.5: Phosphoric acid fuel cell  
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 Proton Exchange Membrane Fuel Cells (PEMFC)  

Proton exchange membrane fuel cell was invented by Willard Thomas Grubb and 

Leonard Niedrach of General Electric in the early 1960s. Some issues that accrued in fuel 

cells are removed; i.e. the requirement for expensive material, application in extreme 

conditions and it is one of the most promising systems that can be used for stationary 

application due to their size. In recent years, the high efficiency of PEMFCs has provided 

impressive capabilities for the transportation sector. Low temperature, high efficiency, 

silence and simplicity are distinguishing features that set PEMFCs apart from other fuel 

cells and allow PEM fuel cell to be operated in any orientation and easy start-up 

(Kheirandish, Kazemi, & Dahari, 2014). 

Polymer membrane, catalyst layer, gas diffusion layer, and bipolar plate are the 

main components of PEM fuel cells. Polymer membrane located on the center of the fuel 

cell, separates the anode and cathode and hydrogen ions that pass through it. Hydrogen 

oxidation and oxygen reduction react on catalyst layer at anode and cathode respectively. 

Gas diffusion layer (GDL) is after catalyst layer at anode and cathode. These three layers 

are called membrane electrode assembly. The MEA is plated between bipolar plate that 

is commonly made of graphite (Larminie, 2003; Liu & Case, 2006). Figure 2.6 shows the 

structure of polymer electrolyte membrane.  
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Figure 2.6: The structure of proton electrolyte membrane 
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 Similar to other types of fuel cells, PEMs also consists of three significant parts: 

a cathode and an anode that act as electrolytes formed by platinum-catalysis and the 

membrane(Cook, 2002). In a PEM fuel cell reflex, the hydrogen oxidation and oxygen 

reduction reactions occur simultaneously at the anode and cathode (Asl, Rowshanzamir, 

& Eikani, 2010). Figure 2.7 shows the single cell of a fuel cell. 

 At the anode, the stream of hydrogen molecules are disarticulated into protons and 

electrons as follows: 

At the anode:    𝐻2 → 2H+ + 2e−    (2-15)  

 Electrons are released from hydrogen and move along the external load circuit to 

the cathode; therefore, the flow of electrons creates the electrical output current. The 

electron arriving at the cathode from the external circuit concurrently reacts with oxygen 

molecules that are joined with a platinum catalyst of electrode and two protons (which 

have moved through the membrane) to create water molecules; this reduction is 

represented as follows:  

At the cathode:  
1

2
O2 + 2H+ + 2e− → H2O   (2-16) 

Overall reaction:  𝐻2 +
1

2
O2 → H2O    (2-17)  

 The chemical reaction is now complete. Despite the reaction, a portion of the 

energy is expended in the form of heat released from the respective redox reaction as a 

byproduct. 

The typical single cell voltage produces 0.5-0.7 V under load condition to have maximum 

power. The single cells must be connected in series to create adequate electricity.   
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 PEM fuel cells are used in many applications without geographical restrictions, 

and their superior efficiency is being capitalized on in automobiles [for more detailed 

information see: (Baschuk & Li, 2000; Marr & Li, 1999)]. Using a proton conductive 

polymer membrane as an electrolyte leads to lower operating temperatures, which render 

the fuel cell viable for both portable and stationary applications. Factors such as being 

lightweight, a minuscule amount of corrosive fluid, a long stack lifetime, the generation 

of zero emissions, and higher efficiencies, render this fuel cell to be perfect for automobile 

applications (Yilanci, Dincer, & Ozturk, 2008) 

 A low temperature and high efficiency are two distinguishing features that set 

PEMFCs apart from other fuel cells (Wee, 2007). The operating temperature range of 

PEMFCs is 50-100℃, leads to a very quick commissioning ability. The total cost is also 

rather low because cheaper materials are viable at low temperature settings as the 

operation carries less risks. The efficiency of a PEM fuel cell is also much higher 

compared to that of an internal combustion engine in vehicles while direct hydrogen acts 

 

Fuel (Hydrogen) 

2𝐻2 

Oxygen 

𝑂2 

Water 

2𝐻2𝑂 

Proton exchange membrane (PEM)  

Figure 2.7: Schematic of reaction in PEMFC's single cell 
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as its input. Furthermore, the small load on a PEM fuel cell translates into higher 

efficiencies. For a normal driving time, a vehicle will require only a small amount of 

nominal engine power, and a PEM fuel cell is especially poignant in this regard because 

its efficiency is maximized when the loads are small. This efficiency peak stands in 

contrast to that of an internal combustion engine (Salemme, Menna, & Simeone, 2009). 

Evaluation between different types of fuel cells are shown in Table 2-1(Larminie, Dicks, 

& McDonald, 2003). 

 

Table 2-1: Comparison of fuel cell types. (OT defines Operating Temperature in 

Centigrade scale) 

Fuel cell 

type 
Electrolyte OT Application Advantages Disadvantages 

Alkaline 

Fuel Cell 

(AFC) 

Potassium 

hydroxide 
90-100 

Military 

space 

-Simple operation 

- low weight & 

volume 

- low temperature 

- not have 

corrosion problems 

-extremely intolerant 

to CO2 

- relatively short 

lifetime 

 

Direct 

Methanol 

Fuel Cell 

(DMFC) 

Solid 

polymer 

membrane 

0-100 

Consumer 

goods 

Laptop 

Mobile phones 

- Easy storage and 

transport 

-High energy 

storage 

- low power output 

with respect to the 

hydrogen cells 

- Methanol is toxic 

and flammable 

Solid Oxide 

Fuel Cell 

(SOFC) 

 

Ceramic 

oxide 

650-

1000 

Electric utility 

Auxiliary 

power 

Large 

distributed 

generation 

-Fuel flexibility 

- Very fast 

chemical reactions 

-high efficiency 

-slow start up 

- high temperature 

enhances corrosion & 

breakdown of cell 

component 

- Not a mature 

technology 
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Table 2.1 continued: 

Fuel cell 

type 
Electrolyte OT Application Advantages Disadvantages 

Molten 

Carbonate 

Fuel Cells 

(MCFC) 

Alkali 

carbonates 

600-

700 

Electric utility 

Large 

distributed 

generation 

-High speed reaction 

-High efficiency 

-suitable for combine heat 

and power 

-Slow start up 

-Complex 

electrolyte 

management 

- Require 

preheating 

before starting 

work 

Phosphoric 

Acid Fuel 

Cell 

(PAFC) 

Phosphorous 
150-

200 

Distributed 

generation 

-Use air directly 

from atmosphere 

-high overall 

efficiency with 

CHP 

-low current and 

power 

-large size 

-requires expensive 

platinum catalyst 

Proton 

Exchange 

Membrane 

Fuel Cells 

(PEMFC) 

 

Solid 

polymer 

membrane 

 

50-

100 

Small 

distributed 

generation 

Backup power 

Portable power 

Transportation 

   -Low 

temperature 

  -Quick start 

-Solid electrolyte 

reduces 

corrosion& 

electrolyte 

management 

problems 

-compact and 

robust 

-simple 

mechanical design 

-High efficiency 

-High sensitivity fuel 

impurities 

-very expensive 

catalyst (platinum) and 

a membrane (solid 

polymer) 

-Low temperature 

-Waste heat 

temperature not 

Suitable for combined 

heat & power 
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2.2.2 Fuel Cell Applications 

 

The electrical power produced by different types of fuel cells, ranges from 

milliwatts to megawatts. The application of fuel cells has been categorized based on their 

power capacity can be summarized as follows.   

 

2.2.2.1 Portable Power  

 

Fuel cells are developed to power portable devices such as cellular phone without 

recharging up to a month and power laptops longer than batteries. Fuel cells also can 

power digital handheld devices such as video recorder, pagers, portable power tools and 

low power remote devices such as smoke detectors, hotels locks and hearing aids. Proton 

exchange membrane (PEM) and Direct Methanol Fuel Cell (DMFC) are two fuel cells 

used as portable power banks. Figure 2.8 shows a laptop powered by fuel cell. (Dyer, 

2002; Salameh, 2014). 

 

Figure 2.8: Laptop computer powered by fuel cell  

(source: http://www.hydrogengas.biz/hydrogenfuelcelllaptop.html) 
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2.2.2.2 Stationary  

 

Fuel cell systems can provide the main power for building applications such as 

schools, hotels, office buildings, and for back up the power for critical place such as 

airports and hospitals. Four stationary types of fuel cells that can be employed to generate 

power include solid oxide (SOFC), molten carbonate (MCFC), phosphoric acid (PAFC) 

and proton exchange membrane (PEM) fuel cells. Figure 2.9 shows a building that uses 

fuel cell to produce power(Salameh, 2014).  

 

 

 

 

 

Figure 2.9: Fuel cells used for building  

(source: http://www.fuelcells.org/uploads/bloom_constellation-place.jpg) 
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2.2.2.3  Residential 

 

For small commercial and residential applications, small fuel cell could be 

applied. Clear Edge manufactures PEM fuel cells to generate power and heat 

simultaneously to warm swimming pools and provide hot water. Moreover, hot water or 

heating for home can use the heat from the reaction. Proton exchange membrane (PEM) 

fuel cell generally used in residential and small commercial building. Figure 2.10 shows 

the fuel cell uses in residential buildings (Salameh, 2014).  

 

 

Figure 2.10: Fuel cell used in a residential building  

(source:http://www.cleantechinvestor.com/portal/interviews/1765-the-hydrogen-

home.html)  

 

 

Univ
ers

ity
 of

 M
ala

ya



 

27 

 

2.2.2.4 Transportation  

 

Design of vehicle powered by fuel cells is one of the solutions to the increasing 

cost of gasoline fuel and natural gas. Currently, fuel cells are developed for use in various 

vehicles such as buses, cars, forklifts, golf carts, airplanes, motorcycle, scooters and 

bicycles. In today’s society, electric bicycle has become more popular as it is cost 

effective and more reliable. The fuel cells that are applied in this application are proton 

exchange (PEM) fuel cells. Figure 2.11 shows the fuel cells applied in a car (Salameh, 

2014).  

 

 

Figure 2.11: Fuel cell used in transportation  

(source: http://www.fuelcells.org/uploads/Picture-003.jpg) 

 

 

Univ
ers

ity
 of

 M
ala

ya

http://www.fuelcells.org/uploads/Picture-003.jpg


 

28 

 

2.3 Fuel cell efficiency  

 

During the past decade, detailed theoretical efficiency calculation methods have 

drawn increasing attention in many available publications for better performance of PEM 

fuel cell. Low efficiency and high production cost are some of the most serious challenges 

for previous fuel cell technologies. Therefore, many research groups have focused on this 

area as a key challenge for the commercialization stage. Fuel cells are expected to 

generate power for longer periods and at higher efficiencies compared to batteries.  

Barbir and Gomez (1996) (Frano Barbir & Gomez, 1996) investigated the primary 

rule of efficiency of PEM fuel cell and surmised that the economics and operating 

efficiency of a fuel cell are interrelated. Kazim (Kazim, 2002, 2004, 2005) presented a 

novel approach on the determination on minimal operating efficiency in PEM fuel cell 

and its performance in different conditions.  Ferng et al.  (Ferng, Tzang, Pei, Sun, & Su, 

2004) investigated the performance of single-cell PEM fuel cell analytically and 

experimentally. Yongping Hou et al.  (Hou, Zhuang, & Wan, 2007) proposed models that 

detail the efficiency of fuel cells and investigated their theoretical and experimental 

efficiency while evaluating several influencing parameters that are related to the 

efficiency of a fuel cell. Meiyappan Siva Pandian (2010) (Pandian, Anwari, Husodo, & 

Hiendro, 2010) stipulated that enhancing the power output of PEM would reduce the 

efficiency, which would be detrimental to the economic aspect of the system. They carried 

out performance and efficiency testing of PEM fuel cell in different operating temperature 

and pressure.  

In order to improve the efficiency and system performance of power density, 

optimization of product and to design a PEM fuel cell system in various conditions is very 

important and challenging.  
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2.4 Fuel Cell Modeling 

 

A key issue for effective and efficient utilization of the PEM fuel cells and solar 

cells is optimal modelling. Models have been developed to represent the behaviour of the 

system at different operating conditions. However, the primary concern of vehicle 

modelling is overall characteristic of the stack.  

Optimal modelling for better knowledge of impressive and efficient utilization of 

the PEM fuel cell performance is a significant issue. Models have been developed to 

estimate and optimize the real performance of fuel cell system through the a great deal 

actual phenomena and various operating conditions (Niu, Zhang, & Li, 2014).  

The main advantages of modeling are cost effectiveness, investigation of critical 

situations without any real life danger and the system’s virtualization in variable 

conditions. PEM fuel cell modeling is required to pattern critical parameters such as 

pressure, temperature and hydrogen consumption due to natural environment reaction 

inside the fuel cell. A large number of fuel cell models have been developed during the 

past few years to provide more comprehension of the fuel cell phenomena. There have 

been two approaches for PEM fuel cell modeling namely theoretical and empirical model.  

 

2.4.1 Theoretical Models 

 

Theoretical models are based on thermodynamic, electrochemical and fluid 

dynamic relationships. Phenomenological equations such as Stefan–Maxwell equation 

for the gas phase transport and Butler–Volmer equation for cell voltage are used in this 

description. In theoretical models, for determining the performance of fuel cell, 
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mathematical partial equations have been used. For different types of fuel cell stack and 

size, the convenient method for modelling is theoretical model, however, due to the non-

linear nature of fuel cells, they are less accurate and reliable. Indeed theoretical modeling 

is not an easy task due to the dependence on specific knowledge of many parameters 

based on electrochemical phenomena and the reduced performance of the overall system 

due to computational intensity (Napoli et al., 2013). Several mathematical models have 

been presented to improve the design and operation of fuel cell but internal parameters 

need to be defined which are difficult to determine in fuel cell system and unfortunately 

many of these models are not accurate enough (Baschuk & Li, 2005; Ceraolo et al., 2003; 

Contreras et al., 2010; Gong & Cai, 2014; Haji, 2011; Meidanshahi & Karimi, 2012; 

Oezbek et al., 2013; Rowe & Li, 2001; Tiss et al., 2013).  

 

2.4.2 Empirical Models  

 

Using an experimental data for modelling is the most straightforward method to 

model fuel cells. Empirical model is based on soft computing and machine learning has 

provided a better understanding of predicting the parameters that affect the voltage-

current (V-I) curve of fuel cell without evaluating physical and electrochemical 

phenomena in depth (Boscaino et al., 2013). 

One of the advantages of this type of model is producing accurate results requiring 

very little computations. The accuracy of results is based on experimental procedures and 

instrumentation which are used to achieve the data (Chávez-Ramírez et al., 2010).  
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2.4.2.1 Linear Regression  

 

Linear regression models are used for several purposes such as data description, 

parameter estimation, prediction and estimation and control. To summarize or describe a 

set of data the majority of scientists and engineers use regression analysis equations. 

Sometimes regression method can solve the problem in estimating the parameters. 

Regression method is used for prediction of response variable and also used for control 

purposes. Figure 2.12 shows the regression model building process.  

 

 

Figure 2.12: regression model building 
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A few works of linear regression have been reported. Ii.Q et al. (Q. Li et al., 2014) 

proposed model of locomotive PEM fuel cell based on support vector regression to 

investigate the effect of different operating conditions on dynamic locomotive behaviour. 

Zhi-Dan Zhong et al. (Zhong et al., 2006) designed a proton exchange membrane fuel cell 

(PEMFC) by using support vector machine to predict the behaviour of PEM fuel cell 

under different operating conditions. Dong’an Liu et al. (Peng & Lai, 2010) proposed a 

least squares-support vector machine to simulate the PEM fuel cell to investigate the 

effect of assembly error of the bipolar plate (BPP).  

2.4.2.2 Artificial Neural Network Modelling 

 

The implementation of new technology with capability of getting close to actual 

human being is the major objective of science (Funes, Allouche, Beltrán, & Jiménez, 

2015). For various engineering problems such as modelling, control, signal processing 

and pattern recognition, artificial neural network has been applied (Powell, 1977). The 

beneficial properties that ANN can offer is the ability to predict the output using input 

data in form of both supervised and un-supervised learning methods. For modelling and 

prediction, the fuel cell due to its highly nonlinear system and neural network, can be an 

appropriate alternative choice. 

 

2.4.2.2.1 Levenberg-Marquardt back propagation (LMBP) 

 

The back propagation algorithm has been used for training  ANN generalized by 

Rumelhart et al. in 1986 (Rumelhart, Hinton, & Williams, 1985, 1988). Backpropagation 

algorithm involves two phases: forward propagation and backward propagation. In 

forward propagation to produce the networks outputs, the effect of applied input vector 
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propagates through the network between layers (Furht & Marques, 2003). In backward 

propagation, the error signal produced by the subtracted the actual output and desired 

output of the network is then propagated backward through the network. To minimize the 

error the synaptic weights are adjusted.  

Neural network modelling includes two phases: training phase and test and 

validation phase. Set of input-output parameters are applied to the network in training 

phase. According to the back propagation algorithm, an adjustment of synaptic weight is 

done until acceptable range of error signal is shown. When the network is trained, in test 

and validation phase, the network is exposed to unseen data to ensure its proper 

performance in real-life application. 

The Levenberg-Marquardt algorithm is interpolated between gradient descent 

update and the Gauss-Newton update to approach second-order training with simplified 

form of Hessian matrix (Levenberg, 1944; Marquardt, 1963).  Figure 2.13 shows the 

structure of neural network modelling.  

  
 

Test 

Validate model  

Initial model  

Select neural 

network model 

structure  

Figure 2.13: Steps of neural network modelling 

approach 
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Jemei et al. proposed back propagation network to model an entire fuel cell system. They 

considered the affected input on behavior of fuel cell with network by two inputs, one 

hidden layer and one output layer. The proposed ANN model is an efficient method to 

predict the stack voltage. The proposed model will be integrated in a complete vehicle 

powertrain(Jemei, Hissel, Péra, & Kauffmann, 2002).   

Ou et al. tested various artificial neural network including; back propagation and 

radial basis function network for PEM fuel cell output voltage prediction show 

satisfactory performance. They studied the effects of platinum (pt) loading on the 

performance of fuel cell and developed and compared multiplicative and additive, two 

neural network hybrids model that consist of an ANN component and physical component 

by full-blown ANN model. The result demonstrated that the additive hybrid model has 

better accuracy than multiplicative model (S. Ou & L. E. K. Achenie, 2005). 

Azmy et al. presented an artificial neural network (ANN) model for residential 

application to manage daily operation of PEM fuel cell using genetic algorithm (GA) to 

optimize the performance of fuel cell. The result shows good agreement between ANN 

model and optimal values and the proposed approach achieved both easy and fast 

adjustment of fuel cell setting(A. M. Azmy & I. Erlich, 2005).  

Kong et al. presented an artificial neural network to improve model accuracy of 

the PEM fuel cell under different operation conditions. The network consisted of stack 

current as an input. In addition, fuel cell temperature effect on the stack was estimated 

from the fuel cell current. It was reported that a good balance was obtained between ANN 

model and experimental result(Kong et al., 2006).  

Hatti et al.  predicted the cell voltage of single cell by applying back propagation 

Levenberg-Marquardt training algorithm to improve system performance and analysis of 
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fuel cell system. The result shows good performance in the model and demonstrated that 

the present model is suitable for design and analysis of the cell voltage of fuel cell(Hatti, 

Tioursi, & Nouibat, 2006).  

Saengrung et al.  proposed two artificial neural network (ANN) including multiple 

layer perceptron (MLP) and radial basis function (RBF) to model the fuel cell 

performance of commercial proton exchange membrane (PEM). They considered the 

model using two inputs, air flow and stack temperature and two outputs, stack voltage 

and stack current and two hidden layers for back propagation and one hidden layer for 

multiple layer perceptron. The results show that ANN predicted the performance of PEM 

fuel cell with satisfactory accuracy in a short period of time (Saenrung, Abtahi, & 

Zilouchian, 2007).  

Jemei et al. proposed an Artificial neural network for modeling the PEM fuel cell 

applied in an electric vehicle to evaluate the output variables and their variations. They 

used back propagation for training data, modeled by five inputs and two hidden layers 

and one output. The result shows that ANN is an efficient model for PEM fuel cell and it 

is possible to determine the parameters that influence the behavior of the fuel cell(Jemei, 

Hissel, Pera, & Kauffmann, 2008). 

Hasikos et al. applied a Radial basis function of neural network to simulate and 

control the PEM fuel cell system, and optimize it by non-linear programming problem 

(NLP) which minimizes the consumption of hydrogen. Finally, they designed the Model 

predicted control (MPC) for the optimal control of the fuel cell system. Results showed 

that successful dynamic behavior model can be achieved and consumption of hydrogen 

minimized (J. Hasikos, H. Sarimveis, P. L. Zervas, & N. C. Markatos, 2009).  
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Chavez Ramirez et al. proposed an Artificial neural network to model the 

performance of PEM fuel cell. The approach model shows excellent accuracy in 

modelling the PEM system by considering 7 inputs, two hidden layers and 2 outputs. 

They concluded this model can be applied in complex systems and applications(Chavez-

Ramirez et al., 2010).   

Youssef et al. developed an ANN model by using Levenberg-Marquardt back 

propagation (LMBP) algorithm to simulate the performance of PEM fuel cell by ANN 

model without complex computation. The result show that polarization curve of ANN 

model had good compliance with experimental data (Youssef, Khalil, & AL-NAdi, 2010). 

Puranik et al. presented an artificial neural network to model the 500-W proton 

exchange membrane (PEM) fuel cell to analyses the dynamic behavior after training and 

validating the model. The result show the effect of measurement noise on the performance 

of the model (Sachin V. Puranik, Ali Keyhani, & Farshad Khorrami, 2010).  

Miao et al. proposed the Metamodel-Based Design Optimization (MBDO) to 

promote the performance of the power density of the proton exchange membrane fuel 

cell. PEM fuel cell was modeled by artificial neural network (ANN) based on back 

propagation with 5 inputs and one hidden layer and one output. They applied genetic 

algorithm (GA) to optimize the performance of PEM fuel cell. The experimental result 

showed that MBDO approach is effective for PEM fuel cell performance of power 

density(J.-M. Miao et al., 2011). 

Bhagavatula et al.(Bhagavatula, Bhagavatula, & Dhathathreyan, 2012) 

investigated feedforward backpropagation neural networks to estimate the performance 

of a PEM fuel cell single cell in different temperature and flow rate. Result show that 

predictions were closely match with experimental data.  
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Chang et al. combined the back propagation neural network and Taguchi method 

to estimate the output voltage of PEM fuel cell accurately. They compared the proposed 

model and results indicated that the error of proposed method is much smaller than that 

of BPNN without applying the Taguchi method (K.-Y. Chang & Teng, 2012).  

Meiler et al investigated multilayer perceptron neural networks and semi 

empirical models to identify the parameters of the model from limited experimental data. 

Five inputs and one output have been chosen to model input-output behaviour of 

nonlinear system. Both model were validated by using experimental data to investigate 

the model ability in identification of system parameters.(Meiler, Hofer, Nuhic, & Schmid, 

2012).  

Cheng et al. demonstrated the meta-modeling constructed by Radial basis function 

neural network to improve the power density in PEM fuel cell. They applied the Genetic 

algorithm (GA) to optimize the performance of PEM fuel cell and compared the results 

with experimental data. The result defined that proposed approach is effective and 

economical to improve the performance of PEM fuel cell (Cheng, Miao, & Wu, 2013).   

Chang proposed hybrid model based on radial basis function (RBF) and enhanced 

particle swarm optimization (EPSO) to have an accurately and estimate of PEM fuel cell 

parameters. They modeled fuel cell using two inputs and one hidden layer and three 

outputs. The result showed that the proposed hybrid models can effectively estimate the 

parameters of PEM fuel cell(W.-Y. Chang, 2013).   

Summary of artificial neural network’s literature is shown in Table 2-2.  
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Table 2-2: Summary of previous works on ANN 

Author (date) 
Method for 

modelling 
Objective Results 

Jemei et al.  

(2003) 

Back propagation 

neural network (BP 

NN) 

To consider the 

affected input on 

behavior of fuel cell 

system with network 

Proposed ANN model is an 

efficient method to predict 

the stack voltage. 

Ou and 

Achnie et al. 

(2005) 

Back propagation 

(BP) and radial basis 

function(RBF)  

network 

To develop a 

quantitatively good 

model and to study 

the effects of pt 

loading on the 

performance of fuel 

cell 

The result demonstrated that 

the additive hybrid model has 

better accuracy than 

multiplicative model. 

Azmy et al. 

(2005) 

Artificial neural 

network (ANN) and 

genetic algorithm 

(GA) 

To model PEM fuel 

cell for residential 

application to 

manage daily 

operation of it 

The result shows the good 

agreement between ANN 

model and optimal values 

Kong et al. 

(2006) 

Artificial neural 

network (ANN) 

To improve accurate 

model of the PEM 

fuel cell under 

different operation 

condition. 

It was reported good 

agreement was obtained 

between ANN model and 

experimental result. 

Hatti et al.  

(2007) 

Back propagation 

Levenberg-

Marquardt 

To improve system 

performance and 

analysis of fuel cell 

system 

The result show good 

performance in the model 

and investigated present 

model is suitable for design 

and analysis the cell voltage 

of fuel cell. 
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Table 2.2 continued: 

Author (date) 
Method for 

modelling 
Objective Results 

Saengrung et 

al. (2007) 

Back propagation 

(BP) and radial basis 

function (RBF) 

To model the 

commercial (PEM) 

fuel cell 

performance. 

The results show that ANN 

predicted the performance of 

PEM fuel cell with a 

satisfactory accuracy in short 

period of time. 

Hasikos et al.  

(2009) 

Radial basis 

function of neural 

network (RBF) 

to simulate the PEM 

fuel cell model, and 

optimize it by non-

linear programming 

problem (NLP) 

Result show that successful 

dynamic behavior model can 

be achieve and minimize the 

consumption of hydrogen 

Chavez 

Ramirez et al.  

(2010) 

Artificial neural 

network (ANN) 

To model the 

performance of 

PEM fuel cell. 

The result show excellent 

accuracy in modelling the 

PEM system by considering 

7 inputs, two hidden layer 

and 2 outputs 

Youssef et al.  

(2010) 

Levenberg-

Marquardt back 

propagation 

(LMBP) algorithm. 

To simulated 

performance of 

PEM fuel cell 

The result shown that, 

polarization curve of ANN 

model had good agreement 

with experimental data. 

Puranik et al.  

(2010) 

Artificial neural 

network 

To analysis the 

dynamic behaviors 

of PEM fuel cell 

The result shows the effect of 

the measurement noise on the 

performance of the model. 

Miao et al. 

(2011) 

Back propagation 

(BP) artificial neural 

network (ANN) and 

Metamodel-Based 

Design Optimization 

To promoting the 

performance of the 

power density of the 

proton exchange 

membrane fuel cell 

The experimental result show 

that MBDO approach is 

effective for PEM fuel cell 

performance of power 

density 
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Table 2.2 continued: 

Author (date) 
Method for 

modelling 
Objective Results 

Bhagavatula 

et al. (2011) 

Feed forward back 

propagation 

To estimate the 

performance of a 

PEM fuel cell single 

cell 

Result show that predictions 

were closely match with 

experimental data. 

Chang et al. 

(2012) 

Combined the back 

propagation neural 

network and 

Taguchi method 

To estimate the 

output voltage of 

PEM fuel cell 

accurately 

They compared the proposed 

model and results indicated 

that the error of proposed 

method is much smaller than 

that of BPNN without 

applying the Taguchi method 

Meiler et al. 

(2012) 

Multilayer 

perceptron neural 

networks 

To identify the 

parameters of the 

model from limited 

experimental data 

Both model were validated 

by using experimental data to 

investigate the model ability 

in identification of system 

parameters. 

Cheng et al.  

(2013) 

Radial basis 

function neural 

network 

To improve the 

power density in 

PEM fuel cell 

The result defined that 

proposed approach is 

effective and economical to 

improve the performance of 

PEM fuel cell. 

Chang (2013) 
Radial basis 

function (RBF) 

To have an 

accurately and 

reliable estimation 

of PEM fuel cell 

parameters. 

The result show that the 

proposed hybrid models can 

effectively estimate the 

parameters of PEM fuel cell. 
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2.4.2.3 Fuzzy Cognitive Map 

 

There is limited literature about multivariate regression other than neural methods.  

Soft computing is an alternative to hard and classic math for processing uncertain and 

incomplete data. This includes modelling relationships among highly interrelated 

variables with applications in curve fitting, regression, and generalization. Fuzzy 

Cognitive Maps (FCMs), which constitute an extension of cognitive maps, are a soft 

computing method for modelling complex systems using existence knowledge and human 

experience. They were introduced by Kosko as signed directed graphs for representing 

causal reasoning and computational inference processing, using a symbolic representation 

for the description and modelling of a system (Kosko, 1996). They describe complex 

systems using nodes/concepts (variables, weights, states, inputs, outputs) and directed 

links connecting them. The FCM model is used to analyse, simulate, and test the impact 

of the parameters and predict system behaviour. Fuzzy cognitive maps (FCM) are applied 

for relations between the elements and computing their “strength of impact” (Stach, 

Kurgan, Pedrycz, & Reformat, 2005). Basically, FCM integrated the present knowledge 

and information related to the system by using human experts to define the system’s 

operation and behaviour and to find the factors required for the system. FCM is a 

distinctive approach in two domains; dynamic system modelling (Omid Motlagh, Tang, 

Khaksar, & Ismail, 2012) and controlling systems (O. Motlagh, Tang, Ismail, & Ramli, 

2012).  

 Flexibility of system design, model and control is one of the features of FCM to 

show complex system behaviour. FCM has many desirable properties compared to expert 

systems or neural networks such as hidden inter-relationships. In addition, representing 

the structured information is easily displayed by FCM. For computing the inference, 
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simple numerical matrix operations are used (Kosko, 1996). Classical mathematical 

model has many problems like uncertainty and imprecise rules for modelling. Therefore, 

to analyse imprecise problems, fuzzy cognitive maps represent important parameters by 

nodes and denote causal relationship between these elements in given domain by edge.  

Over the last decade, FCM has played an important role in various scientific area 

such as information technology, social and political science, engineering and robotics, 

medicine, environment and agriculture etc. (E. Papageorgiou, 2011). For instance, 

Information technology (IT) has several limitations in classifying, identifying and 

evaluating the indicator and these limitations can be solved by employing by FCM for 

successful modelling (Furfaro, Kargel, Lunine, Fink, & Bishop, 2010; Jose & Contreras, 

2010; Lai, Zhou, & Zhang, 2009; X. Li, Ji, Zheng, Li, & Yu, 2009). In social and political 

science, for modelling and supporting the different policies especially in decision-making 

process in imminent crisis, FCM has emerged (Acampora & Loia, 2009; A. Andreou, 

Mateou, & Zombanakis, 2003; A. S. Andreou, Mateou, & Zombanakis, 2005; Joao Paulo 

Carvalho, 2010). In medicine domain, FCM has been applied for medical diagnosis and 

decision support including radiotherapy integrated structure and model for brain and 

bladder tumours, particular language impairment, managing urinary tract infections. 

(Georgopoulos, Malandraki, & Stylios, 2003; E. Papageorgiou, Papandrianos, 

Karagianni, Kyriazopoulos, & Sfyras, 2009; E. Papageorgiou et al., 2006; E. 

Papageorgiou, Stylios, & Groumpos, 2008; E. I. Papageorgiou, Papadimitriou, & 

Karkanis, 2009; Stylios & Georgopoulos, 2008). In environment and agriculture, FCM 

has been used for modelling a generic shallow lake, in agroforestry management to 

evaluate local knowledge, and in New Zealand to predict the dryland ecosystem to 

anticipate pest management outcomes. (Isaac, Dawoe, & Sieciechowicz, 2009; Kafetzis, 
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McRoberts, & Mouratiadou, 2010; Kok, 2009; Rajaram & Das, 2010; Ramsey & 

Norbury, 2009; Tan & Özesmi, 2006).  

In engineering, FCM have been used for modelling and control of the system to 

analyse the failure modes and model the control system supervisory (Beeson, Modayil, 

& Kuipers, 2009; Gonzalez, Aguilar, & Castillo, 2009; Thodoris L Kottas, Boutalis, & 

Christodoulou, 2010; Thodoris L Kottas, Karlis, & Boutalis, 2010; E. I. Papageorgiou, 

Stylios, & Groumpos, 2006; Stylios & Groumpos, 2004). In the last decade the majority 

of FCM studies have been applied in the business and engineering fields for system 

control and prediction (E. Papageorgiou, 2011). In addition, decision making, 

management, interpreting, monitoring, classification, modelling and prediction are forms 

of typical problems solved by FCM. Table 2-3 shows some examples of the problems 

solved by FCM.  

Table 2-3: Examples of problems solved by FCM 

Scientific area Problem solved by FCM 

Information technology Classification, modelling 

Social and political Decision-making 

Medicine Classification, decision support, modelling, prediction 

Environment and agriculture Policy making, knowledge representation, reasoning 

Engineering (control, robotic) Monitoring, prediction, navigation, learning 
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Different types of FCM extensions have been applied in various applications in scientific 

areas including: 

1) Dynamic Cognitive Networks (DCNs) proposed by Y. Miao et al. in 2001 to 

explain and quantify the relationships between FCM concepts (Y. Miao, Liu, 

Siew, & Miao, 2001). 

2) Fuzzy Gray Cognitive Maps (FGCMs) proposed by Jose L. Salmon in 2010 

which is based on gray system theory for solving high uncertainly problems with 

incomplete and discrete data sets (Salmeron, 2010).  

3) Intuitionistic Fuzzy Cognitive Maps (IFCMs) developed by D.K Iakovidis and 

E.I. Papageorgiou for decision-making models which define relations between 

two concepts by managing the degree of hesitancy at the output concept.  

4) Dynamic Random Fuzzy Cognitive Maps (DRFCMs) proposed by Jose Aguilar 

in 2003 for modelling complex dynamic systems according to random neural 

models (Aguilar, 2003). 

5) Evolutionary Fuzzy Cognitive Maps (E-FCMs) proposed by Cai et al. in 2010 

which update the concept status in real time for simulation (Cai, Miao, Tan, 

Shen, & Li, 2010).   

6) Fuzzy Time Cognitive Map (FTCMs) proposed by Kyung Sam Park et al. in 

1995 for simulation between node’s relationship including time (Park & Kim, 

1995). 

7) Rough Cognitive Maps (RCMs) proposed by Chunying et al. in 2011 based on 

Rough Sets theory for solving the rough weight problems(Chunying, Lu, Dong, 

& Ruitao, 2011).   

8) Timed Automata-based fuzzy cognitive maps (TAFCMs) developed by 

Acampora et al. in 2011 in order to achieve realistic and consistent temporal 

computation(Acampora, Loia, & Vitiello, 2011). 
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9) Belief-Degree Distributed Fuzzy Cognitive Maps (BDD-FCMs) proposed by 

Ruan et al. in 2011 to express the complex relationship problems between 

concepts by belief structure (Ruan, Hardeman, & Mkrtchyan, 2011). 

10) Rule Based Fuzzy Cognitive Maps (RBFCMs) proposed by J.P. Carvalho to 

avoid some limitations of FCM such as properties of other fuzzy systems not 

shared by FCM and not exploring the capability of using fuzzy rules. Complete 

and complex cognitive representation is allowed by RB-FCM as an 

improvement of Casual Fuzzy maps. It is composed of fuzzy nodes (concepts) 

and fuzzy links (relation). RB-FCM are essentially a fuzzy rule based system 

designed to answer the complexity and variety of qualitative system fuzzy 

mechanisms added to deal with different kinds of relations. In addition, what-if 

questions in cognitive map are answered by RB-FCM. Evolving concept of RB-

FCM is defined by calculating the current values using previous inputs (João 

Paulo Carvalho & Tomè, 1999).  

11) Fuzzy Cognitive Network (FCN) proposed by Kottas et al. in 2007 which is one 

of the effective extensions of fuzzy cognitive map (FCM) for supporting the 

continuous interaction with the system described (T. Kottas, Boutalis, 

Diamantis, Kosmidou, & Aivasidis, 2006).  

Node and weight interactions are structures of the initial FCN graph. 

Nodes in FCNs are known as reference, control, output or simple operational 

nodes that describe the behavior of the system. Variables with constant or desired 

values are characterized by reference nodes. Control variables of system are 

characterized by control nodes and output variables of the system are represented 

by output nodes. All other nodes not mentioned previously are represented by 

simple operational nodes. Casual relationships between nodes are represented by 

weighted edges. FCN’s primary weights are based on expert knowledge of the 
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function of system. In each iteration, weight values are updated by using modified 

delta rule, which provides smooth and fast coverage while at the same time, 

prevents the calculated values from being saturated.  

Moreover, further enhancing and accelerating the updating mechanism is 

performed by utilizing information from earlier equilibrium point of system 

operation. This is achieved by dynamically building a database, which, for each 

encountered operational situation, assigns a fuzzy if-then rule connecting the 

involved weight and node values. In order to determine appropriate membership 

functions, range of the nodes and weights parameters are partitioned dynamically.  

This way, the speed of procedure is significantly enhanced by applying system’s 

feedback which gradually begins with values closer to the desired ones for 

updating the weights (Boutalis, Kottas, & Christodoulou, 2009; Theodore L 

Kottas, Boutalis, & Christodoulou, 2007; Thodoris L Kottas, Karlis, et al., 2010).  

The development method of FCM relies on human knowledge and 

experience.  Numerous kinds of band concepts and relations between concepts are 

defined by experts, but many weaknesses are obtained by using learning method 

due to unreliable human experience and knowledge. Experts believe that for 

managing FCM, casual relationships and weight recalculations and potential 

uncontrollable convergence lead to undesired steady state because concept values 

are one of the main deficiencies. Several learning algorithms are proposed in order 

to overcome these problems. 
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2.4.2.3.1  Learning Algorithms  

 

A learning algorithm is a mathematical method for determining the weights in order 

to train the FCM to model the behaviour of the system. Table 2-4 shows the common 

FCM training algorithms. Based on the learning paradigm, the learning algorithms are 

categorized into three groups:  

 

1) Hebbian-based as well-known unsupervised algorithm is useful for FCM in 

order to enhance the efficiency and robustness and also to improve the dynamic 

behaviour and flexibility of FCM model. The most efficient Hebbian-based 

method for training the FCM are:   

 

a) Differential Hebbian Learning (DHL) proposed by J.A. Dickerson et 

al. as an unsupervised learning method for training FCM (Dickerson 

& Kosko, 1993).  

b) Balanced Differential Algorithm (BDA) proposed by A.V. Huerga 

that presented new rules for updating the values of weights on the 

edges (Huerga, 2002).  

c)  Nonlinear Hebbian Learning (NHL) proposed by Papageorgiou et al. 

based on the nonlinear Hebbian learning rule for learning the structure 

of FCM (E. Papageorgiou et al., 2003).  

d) Active Hebbian Learning (AHL) proposed by Papageorgiou et al. 

based on the theory of sequence of activation concept (E. 

Papageorgiou, Stylios, & Groumpos, 2004).  
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e) Data-Driven Nonlinear Hebbian Learning (DD-NHL) proposed by 

Statch et al. based on same NHL learning principle and records 

historical data to learning process (E. Papageorgiou & Groumpos, 

2004; Stach, Kurgan, & Pedrycz, 2008). 

 

2) Population-based, which trained FCM based on new type of method to find 

models that simulate the input data. For training FCM, several population-based 

algorithms have been introduced such as (Koulouriotis, Diakoulakis, & Emiris, 

2001):  

 

a) Evolutionary Strategies (ES)  

b) Genetic Algorithms (GA)  

c) Real Coded Generic Algorithms (RCGA)  

d) Swarm Intelligence (SI)  

e) Memetic Algorithms (Mas) 

f) Simulated Annealing (SA) 

g) Chaotic Simulated Annealing (CSA)  

h) Tabu Search (TS) 

i) Ant Colony Optimization (ACO) 

j) Extended Great Deluge Algorithm (EGDA) 

k) Bing Bang-Big Crunch (BB-BC) 

l) Self-Organizing Migration Algorithms (SOMA)  

m) Immune Algorithms (IA)  
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3) Hybrid learning method which is based on historical data and initial experience 

updates the weights matrix. Hybrid approaches are known as(E. Papageorgiou 

& Groumpos, 2005; Ren, 2007; Yanchun & Wei, 2008):  

 

a) Combined Nonlinear Hebbian Learning algorithm and Differential 

Evolution algorithm (NHL-DE) 

b) Combined Nonlinear Hebbian Learning algorithm and Extended Great 

Deluge Algorithm (NHL-EGDA)  

c) Combined real-coded genetic algorithm and nonlinear Hebbian 

learning algorithm (NHL-RCGA). 

 

Table 2-4: Learning approaches and algorithms for FCM 

 

Learning categories 

Learning approaches 

Author and year Name of approaches 

 

Hebbian-Based 

 

Dickerson et al./1993 

 

Differential Hebbian Learning 

(DHL) 

Huerga/ 2002 
Balanced Differential Algorithm 

(BDA) 

Papageorgiou et al./2003 
Nonlinear Hebbian Learning  

(NHL) 

Papageorgiou et al./ 2004 
Active Hebbian Learning     

  (AHL) 

Statch et al./ 2008 

Data-Driven Nonlinear Hebbian 

Learning (DD-NHL) 
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Table 2.4 continued:  

Learning categories 

Learning approaches 

Author and year Name of approaches 

Population based model 

T. Back et al./ 1991 Evolutionary Strategy (ES) 

Koulouriotis et al./ 2001 Genetic Strategy (GS) 

Psaropoulos et al./ 2003 Particle Swarm Optimization (PSO) 

Stach et al./ 2005 
Real-Coded Genetic Algorithms 

(RCGAs) 

Petalas et al./ 2005 
Memetic Particle Swarm 

Optimization Algorithm (MPSO) 

Ghazanfari et al./ 2007 Simulated Annealing (SA) 

Alizadeh et al./2008 Chaotic Simulated Annealing (CSA) 

Ding et al./2011 Ant Colony Optimization (ACO) 

Baykasoglu et al./2011 
Extended Great Deluge Algorithm 

(EGDA) 

Yesil et et al./ 2010 Big Bang-Big Crunch (BB–BC) 

Vascak/ 2010 
Self-Organizing Migration 

Algorithms (SOMA) 

Lin et al./2009 Immune Algorithm (IA) 

Hybrid Learning Method  

Papageorgiou et al. /2005 

Combine Nonlinear Hebbian 

Learning algorithm and the 

Differential Evolution algorithm 

(NHL-DE) 

Ren /2007 

Combine Nonlinear Hebbian 

Learning and the Extended Great 

Deluge Algorithm (NHL-EGDA) 

Zhu et al. /2008 

Combined real-coded genetic 

algorithm  and nonlinear Hebbian 

learning algorithm (NHL-RCGA) 

Univ
ers

ity
 of

 M
ala

ya



 

51 

 

2.5 Summary 

 

In this chapter, the fuel cell background is presented and in a brief review PEM fuel 

cell history and basic principle are described. Various main types of fuel cells such as 

electrochemical reaction are briefly explained. Currently, PEM fuel cell has a wide range 

of applications and the focus of this research is on this type of fuel cell. Depending on 

power capacity of fuel cell, the main applications are categorized into residential, 

portable, stationary and transportation. For the commercialized PEM fuel cell, study on 

improving efficiency and performance are the most serious challenges. In addition, 

accurate modeling of PEM fuel cell for improving efficiency has been a topic of interest 

for researchers in the last two decades. In this chapter a review of accurate recent models 

was provided and linear regression (LR), artificial neural network (ANN) and fuzzy 

cognitive map (FCM) are proposed for modelling the PEM fuel cell.   
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Chapter 3 : METHODOLOGY 

 

 

 

3.1 Introduction  

 

Based on the reviewed literature, modelling of complete electric vehicle with 

auxiliary parts is essential to adjust the optimization ability. In addition, a reliable model 

can benefit the system’s efficiency with proper control methods to optimize its 

performance. Based on the problem statement, this study has multiple objectives: First, it 

aims to define the precise value of the whole system efficiency as well as its correlation 

with power and other affecting factors; second, it aims to design optimized linear and 

non-linear dynamic models of the system in order to enable real-time prediction of voltage 

and efficiency. Experimental data was collected by DAQ system from the electric bicycle; 

then, efficiency of whole system was calculated based on the collected data. In the next 

step, PEM fuel cell electric bicycle has been modelled by using both linear and non-linear 

approaches. Linear regression model and neural network models were used to predict the 

output voltage and efficiency. Finally, for the first time in this field, a dynamic fuzzy 

cognitive map was designed to define the causality of system concepts for active 

modeling of each system parameter. These steps are shown as a flowchart in Figure 3.1. 
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 Figure 3.1: Methodology flow chart 
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3.2 PEM fuel cell system  

 

Commercial electric bicycle and PEM fuel cell that have been installed in the system to 

provide the power are described as follows: 

 

3.2.1 Overall System Design (Electric Bicycle) 

 

The commercial electric-assisted bicycle that we used in this research is shown in 

Figure 3.2. As shown in the figure, the components of our system included a fuel cell 

stack forming the base of the system and integrated with other major components to 

generate electricity. Metal hybrid is used for storage of a large amount of hydrogen in 

small tank in electric bicycle. Fuel cell powered the electric motor located in tier and 

remote control to turn the fuel cell on and off.  

 

Figure 3.2:  Fuel cell-powered electric bicycle 
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3.2.2 PEM fuel cell powered bicycle  

 

The block diagram of the fuel cell-powered electric bicycle is shown in Figure3.3. 

The 𝐻2from a metal hydride tank and 𝑂2 from the air blower are fed to the fuel cell, where 

they are combined to form water; a process that consequently produces electricity.  

 

 

 

Figure3.3: Block diagram of the fuel cell-powered electric bicycle system 

 

Figure3.4 shows a complete fuel cell system, which consists of the fuel cell, one 

cooling and one reaction air blower, the Electronic Control Unit (ECU), and the necessary 

auxiliaries to manage the hydrogen flow.  
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Figure3.4: Fuel Cell and auxiliary components 

 

The entire system is controlled by an ECU designed by MES S.A., which monitors 

all the system's parameters and operates the system on command. The ECU features an 

accessible remote control outside of the main box, and the driver can switch the main 

power on/off and start the fuel cell on demand. The ECU operates the fuel cell during the 

start, normal operation, and shutdown procedures by monitoring various parameters such 

as the stack temperature, hydrogen pressure, stack voltage, stack current, battery voltage, 

and ambient condition. When the ECU detects an abnormal condition, it will alert the 

driver via the LED indicators placed on the remote control and handlebar throttle. If the 

condition for a security shut off (TRIP) is fulfilled and remains unchanged for a certain 

security time, the system will shut off automatically. 
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3.3 Data collection and analysis 

 

The DAQ system and its software were designed by MES S.A., and used serial 

connection between Fuel Cell ECU and monitoring software. To connect the ECU and 

PC, it is recommended to use (nine-pole) communication cable with this specification: 

RS 232 (nine-pole), Pin to pin. The connector labelled ECU has to be connected to the 

appropriate nine pole connector of the ECU, the connector labelled PC to a COM port of 

the PC.  As shown in Figure 3.5 all Fuel Cell parameters are monitored and can be logged.  

 

 

 

 

 

Figure 3.5: The panel of monitoring software for fuel cell system 
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3.3.1 Data collection  

 

In this study, data was collected from explained stationary bicycle while the tire 

could spin freely on traditional Kickstand. For collecting the data, hydrogen pressure was 

in ranges that guarantee the operation of the fuel cell. The ECU monitors humidity and 

temperature by a proper sensor to maximize the fuel cell’s performance. 

Data record file has been created that contains the variables such as current stack, 

voltage stack, temperature, humidity, hydrogen flow rate, oxygen flow rate, hydrogen 

pressure, and ambient condition. The experimental data was logged with a sampling time 

of one second to a designated computer. The data collection error encountered during 

experimentation was outliers. An observation point which is distant from other 

observations is an outlier. We set the threshold of (2× standard deviation) for detection 

and elimination of outliers. The data which is an outlier has eliminated from collected 

data were 0.12% of 9527 data sets. 

 

3.3.2 Variables selection procedure 

 

 Selecting the appropriate input and output variable for network is useful for training 

the network efficiently. Considering the effect of each variable on system performance 

provides a starting point to select the reliable variables. Since our aim is to model the 

system with a minimum number of inputs, the value of other variables which can be 

calculated by predefined equations are excluded in model design.  
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This project collected seven variables of electric bicycle performance information 

including the stack temperature, ambient humidity, stack voltage, stack current, stack 

power, hydrogen flow rate, and oxygen flow rate. The models use five inputs and two 

outputs nodes. 

 

3.4 Efficiency of fuel cell  

 

Calculating the efficiency for the entire system is necessary in order to improve the 

performance of the system. Previous studies focused more on analyzing the efficiency 

and performance of single cell.  The efficiency properties of the fuel cell stack and each 

single cell are similar because all similar single cells are connected in series. Fuel cell 

efficiency has been computed from the fuel cell's stack operating voltage (𝑉𝑜𝑝𝑒𝑟) using 

the following equation (Feroldi & Basualdo, 2012): 

 
ηfc% =

100% × Voper

1.482 × n
 

(3.1) 

where n in number of cells, 𝜂𝑓𝑐 is fuel cell efficiency and 1.482 V corresponds to 

the hydrogen higher heating value (HHV) (Feroldi & Basualdo, 2012). For hydrogen, the 

HHV is used when the amount of released hydrogen heat energy is measured by cooling 

its combustion vessel to 25 C (initial temperature of vessel). In contrast, 1.254 V is used 

in equation (3.1), which corresponds to the lower heating value (LHV) when the vessel 

cooling is halted at 150 ℃. The hydrogen LHV is used when the efficiency will be 

compared to internal combustion engine for transportation. However, many researcher 

reported fuel cell efficiencies using hydrogen HHV. Equation (3.1) cannot be used to 

calculate the efficiency of the entire system because this formula provides the instant 
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efficiency of the stack that is proportional to the stack's voltage. The system's efficiency 

during the experimental time is computed using the following equation: 

 
ηfcsystem, % =

100% × generated electric energy

energy of cunsumed H2
 

(3.2) 

The mass of the consumed hydrogen stored in a metal hydride tank for our 

experiment is calculated using the ideal gas law because the bicycle tank had been directly 

charged from a buffer tank of an electrolyzer system. The energy content of the hydrogen 

LHV is 241.98 kJmol-1, or 120.1 MJkg-1. Hydrogen can release this energy via ignition 

heat. Hence, the energy of consumed hydrogen for lower heat values is calculated using 

the following equation: 

 
Energy of consumed H2, kJ =

241.98 × ∆p × V

R × T
 

(3.3) 

where ∆𝒑 is the pressure drop (atm) of the electrolyzer storage tank after charging 

the bicycle metal hydride tank, V is the volume (L) of an electrolyzer buffer tank, T is the 

temperature (K) of the buffer tank, and R is ideal gas constant, 0.08206 L atm mol-1 K-1. 

Because 1W.h =3.6 kJ, the numerator of the equation (3.4) can be defined as follows: 

 Generated electric energy, kJ = 3.6 × ∑(V × I × ∆h) 
(3.4) 

During the transfer of two electrons from water molecules in fuel cells, the ideal cell 

voltage or standard potential to produce water in a liquid state (25 ℃, 1 atm) is 1.23 V, 

while the voltage drops to nearly 1.18 V for producing water in gaseous state or at 

operating temperatures exceeding approximately 80 ℃. Therefore, the theoretical or 

maximum efficiency of fuel cell was calculated to be 83% and 94.1% for HHV and LHV, 

respectively, by substituting the standard voltage in Equation (3.1).  

Nevertheless, the experimental efficiency is expected to be lower than the 

theoretical efficiency for emerging losses even without being connected to any external 
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load. Furthermore, the efficiency is expected to steeply decline when the load is connected 

because the voltage drops due to inevitable losses generated by the electrical current in a 

closed circuit. Furthermore, a fraction of the power generated by a primary fuel cell is 

used by the required auxiliary components, which include the control unit, blowing fan, 

cooling fan, and battery. 

 

3.5 Data-set  

 

 The Data-set which was used for training and evaluation of the regression 

algorithms consisted of 720 data points from different states of system. The data included 

current, voltage, temperature, hydrogen flow rate, oxygen flow rate, related humidity and 

efficiency. Based on the advanced machine learning consideration in accurate designing 

of a regression model, 60% of the data was used for training, 20 % for cross-evaluation 

and 20% for testing the algorithm. The exact number of dataset for training the algorithm 

to obtain the highest accuracy in evaluation dataset was chosen based on information 

extracted from the learning curve. Cross-validation and training data sets have been used 

for optimizing the regression algorithm parameters. However, data-set was pre-processed 

for better performance of the models. 

Five variables have been used as inputs (current, hydrogen flow rate, oxygen flow 

rate, temperature, related humidity) of regression models to predict voltage and efficiency 

as desired system outputs.  
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3.5.1 Data normalization 

 

  In this system, parameter values varied in the range and their standard deviations. 

Therefore, data was normalized to facilitate the training by providing a greater 

homogeneity of the input and output variables. In order to normalize the data mean has 

been calculated and consecutively standard variation of each variable has been computed 

as:  

 

𝑆 = √
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
 (3.5) 

Where n is number of random samples. The z-score of value x is computed by: 

 
𝑧 =

𝑥 − �̅�

𝑆
 (3.6) 

Where x is the sample data with mean �̅� and standard deviation named S. Standardization 

of data or z-score calculated the distance between raw data and mean in terms of standard 

deviation. When the raw score is below the mean the sign of z-score is negative and is 

positive when the score is above (Abdi, 2007).  

 

3.5.2 Principle component analysis (PCA)  

 

Processing time is one of the most essential factors in introducing reliable real-

time systems. Simplicity of the model as well as reducing the calculation needed are two 

main affected factors which can be provided by reducing the dimensionality of input 

variables. Principle component analysis (PCA) is a useful statistical technique for finding 

patterns to reduce the dimension of data set and it is a powerful tool for data analysis 

without losing more than 1% of data.  
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This section briefly describes the steps needed to perform PCA analysis on a set 

of data. Figure 3.6 shows the parameters that apply to our model. 

Step1: Get input data-set as an m × n matrix where number of measurements is 

denoted by m and the number of trails by n.  

Step2: Subtract the mean, which is the average across each dimension.  

Step3: Compute the covariance matrix. For more details on covariance calculating 

see (Smith, 2002). 

Step4: Calculate the eigenvectors and eigenvalues of the covariance matrix based 

on singular value decomposition algorithm. These calculations give us more information 

about the data.  

Step5: Choose the component and form a feature vector, which complies to the 

concept of data compression and reduces dimensionality.   

Step 6: Deriving the new data set, which is the final step in PCA 

Figure 3.6: qH2: hydrogen flow, qO2: oxygen flow, I: current load T: temperature, H: 

humidity 

Pre 

processing  

qO2 

I 

H 

T 

qH2 
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PC3 
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PCA has been applied on input data (current, temperature, related humidity, 

hydrogen flow rate and oxygen flow rate) only to reduce the complexity of calculations 

and to decrease the processing time. 

 

3.6 Regression models 

 

Researchers predict the performance of fuel cell as a function of various operating 

conditions by using empirical modelling. These models avoid identifying the knowledge 

of process parameters which is difficult to determine from fuel cell system. Empirical 

modelling of the system is based on setting measurable parameters and choosing 

appropriate inputs for predicting the behaviour of interested outputs. 

For an accurate modelling of the PEM fuel cell output voltage and system efficiency, 

two approaches have been used in this study. First approach based on linear modelling 

using linear regression algorithm. Artificial neural networks has been used for non-linear 

modelling of the system as the second approach. In both models, related humidity (RH), 

current (I), oxygen flow rate (qO2), temperature (T) and hydrogen flow rate (qH2) were 

set as input variables and fuel cell voltage (v) and efficiency (eff) were the predicted 

values. Collected data was randomly divided into three groups for training (60 %), cross 

validation and test dataset. The remaining 40% of the data was randomly assigned into 

two equal groups for cross-validation and test datasets accordingly. In both regression 

models, advanced machine learning principles were considered for optimizing the designs 

based on learning curve and error processing results as shown in Figure 3.7 (Perlich, 

2011). The number of training data sets was chosen based on learning curve analysis and 

cost function during the training procedure in order to overcome the high bias (under-

fitting) and high variance (over-fitting) problems. 
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3.6.1 Linear Regression  

 

Classical linear regression method is most commonly used in linear modeling the 

behavior of structural systems. Linear regression is a method for calculating the relation 

between explanatory variable and depended variable by fitting the linear equation to the 

observed data. Figure3.8 shows the basic linear regression model. 

        Output 

𝐲𝐢  

  

1 

𝒙𝟐 

Input  

 

 

 

 

∑ 

𝒙𝟏 

𝒙𝒏 

Figure3.8: Linear regression configuration 

Training set  
Test set  

 
Training set  Validation 

set  

Learn 

models   

Select 

model   

Learning process   

Learned model  

Regression 

model   

Artificial neural 

network model  

Figure 3.7: Flowchart depicts the training process of regression models. Training and 

validation datasets were used for model training and optimization of model parameters. 

Test data set was used for evaluation of final design 

Univ
ers

ity
 of

 M
ala

ya



 

66 

 

 The multiple linear regression equation given 𝑛 features is denoted as:  

 ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥𝑖1 + 𝜃2𝑥𝑖2 + ⋯ + 𝜃𝑘𝑥𝑖𝑘  𝑓𝑜𝑟 𝑖 = 1,2, . . , 𝑛 (3.7) 

where 𝑥 is explanatory variable, and ℎ𝜃(𝑥) is the predicted value (hypothesis),  

𝜃0 is the intercepts, and 𝜃 is the estimated slope coefficient of the line. 

 

By vectorising equation (3.5) we have: 

 

          The error term(𝜀) of this model is the difference between the real value (y) and the 

predicted value (h) of equation (3.3) which is calculated by Mean squared Error (MSE) 

of the difference between the predicted values and the actual value (hθ(xi)- yi ) as shown 

in equation (3.4) which is referred to as the cost function 𝐽(𝜃): 

 𝑦 − ℎ𝜃(𝑥) = 𝜀 (3.9) 

  

 
𝐽(𝜃) =

1

2𝑚
∑(ℎ𝜃 (𝑥(𝑖)) − 𝑦(𝑖))

𝑚

𝑖=1

2

 (3.10) 

 

Where 𝑚  is the number of iterations and 𝐽(𝜃) is function of the parameter vector. 

  

 ℎ𝜃(𝑥) = 𝜃𝑇𝑥 

𝜃 = [𝜃0, 𝜃1, … , 𝜃𝑛+1] 

𝑥 = [𝑥0, 𝑥1, … , 𝑥𝑛+1] 

While    𝑥0 = 1 

(3.8) 
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The objective of linear regression is to estimate the unknown parameters while 

cost function is minimum. To fulfill these requirements, a fundamental algorithm called 

Gradient Descent (GD) is used as a promising method for estimating the interception 

vector 𝜃 in order to minimize the cost function (MSE). 

 

3.6.1.1 Gradient Descent  

 

In this project, Gradient descent algorithm was used for updating the system 

weights (𝜃 vector) to calculate our hypothesis automatically. In gradient descent 

algorithm, each 𝜃 value is updated based on the derivation of cost function and a learning 

rate value (𝛼).   

The values are updated by assigning new value for 𝜃 using the previous values to achieve 

a lower MSE: 

 𝜃𝑗: = 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃)    

    = 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗

1

2𝑚
∑ (ℎ𝜃 (𝑥(𝑖)) − 𝑦(𝑖)𝑚

𝑖=1 )
2
 

         = 𝜃𝑗 − 𝛼 ∑ (ℎ𝜃 (𝑥(𝑖)) − 𝑦(𝑖))𝑚
𝑖=1 𝑥𝑗

𝑖 

(3.11) 

 

It is noteworthy that the updating of θj vector should be done simultaneously for 

all 𝜃  in each step for j = 0, … n. This process would be continued until convergence of Y 

and ℎ𝜃(𝑥), where m is the size of training set and the value of the training set data is 

shown by 𝑥(𝑖) , 𝑦(𝑖). 

As shown in Figure 3.9 GD moves the weights in order to decrease the derivation 

of MSE function. The final values of theta are the actual weights of the prediction model. 
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3.6.1.2 Learning curve  

 

In order to have the best possible prediction, training data was split into three 

parts: training set, cross validation set and testing set. As a general rule, 60% of the sample 

are training set and 20% for each of cross validation and test set.  A learning curve is a 

plot of the training and cross validation mean square error versus the index of the training 

data set. These plots are useful to find better prediction of the system; i.e. how beneficial 

it will be to add more data to training set. When both training set and cross validation set 

are converging to a low value, there is no need to add more data to the training set. 

 

Iteration 4 

Convergence 

Iteration 3 

F(x)  

x 

Starting point 

Final 

value 

Figure 3.9: Gradient decent  
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3.6.2 Artificial Neural Network (ANN)  

 

For non-linear modeling of the system, artificial neural network (ANN), a 

mathematical computation model introduced by McCulloch and Pitts in 1943, was used. 

In the 1950’s, some development of neural network in both theory and practice occurred 

(Braspenning, Thuijsman, & Weijters, 1995). Ability to learn from the input data with or 

without teacher is one of the features of neural networks. Nonlinearity, adaptively, input 

output mapping and fault tolerance are other important features. In ANN, can be defined 

as  computational tools which make the experimental knowledge to be available to be 

used (Zilouchian & Jamshidi, 2000). 

Currently, various fields of neural network applications have been developed such 

as pattern recognition, time series analysis, signal processing, modelling and control. The 

structure of artificial neural network neuron is based on a simple mathematical model of 

the human brain. 

 

3.6.2.1 The Neural Network Basic Architecture    

 

Neural network consists of several neurons connected to perform a specific task. 

A processing unit, as shown in Figure3.10, is the basic component of neural network. The 

synaptic weight represents acquired knowledge that has been used to connect each input 

to a neuron.  
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A nonlinear model of neuron’s output can be described as follows: 

 
uk = ∑ wkjxj

m

j=1

 (3.7) 

  

Synaptic weights (wkj) are multiplied by each input (xm) in the neuron 𝑘, and the output 

is computed as:  

 𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘 (3.13) 

     

The general model output of neuron shown by 𝑦𝑘, and 𝜑(. ) is the activation 

function effected by bias for limiting the amplitude and defines the output of neuron  

(Sablani, Datta, Rahman, & Mujumdar, 2006).   

    

 𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘) (3.148) 

        Output 

𝐲𝐤 

  

Synaptic weights  

 

Summing 

junction  

Bias 

bk 

∑ 

𝒙𝟏 𝑤𝑘1 

𝑤𝑘2 

 

𝑤𝑘𝑚 

𝒙𝟐 

𝒙𝒎 

Activation 

function  

𝒗𝒌 

𝜑(. ) 

Figure3.10: Artificial Neuron configuration 
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3.6.2.2 Network Architecture  

 

Learning algorithm and network architecture are two important factors for better 

network training performance. The fundamental neural network architecture that we use 

in this work is multiplayer feed-forward network.  

The most popular neural network is multiplayer feed-forward network that has 

one or more hidden layers. For extracting higher order of the network, one or more hidden 

layer is added which might tend to smoothing the network output. As shown in 

Figure 3.11 multiplayer feed-forward networks have one input, one or more hidden layer 

and one output. In the input layer, neurons operate by receiving the signal from the user.  

Through the connections, signals are moved to the hidden layer. In networks that have 

more hidden layers, the input of the second hidden layer is the output of the first hidden 

layer and so on. To produce the network output, the signals are transmitted to the output 

(Sablani et al., 2006).  

RH  

Output  

Input  

Input 

layer  Hidden 

layer  

Output 

layer  

Figure 3.11: Multiplayer Feedforward Network, where I: current, H2: hydrogen flow 

rate, O2: oxygen flow rate, RH: related humidity and T: temperature as an inputs and 

V: voltage and EFF efficiency of system as an outputs 
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Levenberg-Marquardt back propagation algorithm is a variation of Newton’s 

method, which implies a simplified form of Hessian matrix applied to train the proposed 

neural network model. The sum of square error is denoted by 𝐹(𝑥)and combination of 

the weights matrix and bias is indicated by x. Hessian matrix 𝐻(𝑥) is described as follows 

(Gavin, 2011).  

 𝐻(𝑥) = ∇2𝐹(𝑥) = 2𝐽𝑇(𝑥)𝐽(𝑥) (3.15) 

 

The gradient g(x) can be calculated as:  

 

 𝑔(𝑥) = ∇𝐹(𝑥) = 2𝐽𝑇(𝑥)𝑣(𝑥) (3.16) 

Where 𝑣(𝑥) is a vector of network error, and 𝐽(𝑥)is the Jacobian matrix  

The LM-BP algorithm can be calculated by the following equation: 

 𝑥𝑘+1 = 𝑥𝑘 − [𝐽𝑇(𝑥𝑘)𝐽(𝑥𝑘) + 𝜇𝑘𝐼]−1𝐽𝑇(𝑥𝑘)𝑣(𝑥𝑘) (3.17) 

 

Parameter 𝜇𝑘 is multiplied by some factor (𝜃) whenever a step increases 𝐹(𝑥). 𝜇𝑘 

is divided by (𝜃) when a step is reduced 𝐹(𝑥) (the algorithm begins with 𝜇𝑘 set to a small 

value, such as 𝜇𝑘 = 0.01and 𝜃 > 1). The algorithm becomes the steepest descent while 

𝜇𝑘is large with step 1
𝜇𝑘

⁄  and the algorithm becomes Gauss-Newton when 𝜇𝑘is small 

which provides rapid convergence and procedures approximating Hessian matrix. For 

effective agreement between the guaranteed convergence of the steepest descent method 

and the speed of Newton’s method, LM-BP algorithm is used.  
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3.6.3 Fuzzy Cognitive Map: 

 

Fuzzy cognitive map (FCM) introduced by Kosko in 1986 is a soft computing tool 

based on fuzzy logic (FL) and neural network (NN) methodologies (Kosko, 1986; O. 

Motlagh et al., 2012). FCM is classified as a neuro-fuzzy system which can easily 

incorporate and adapt human knowledge and represent a given system with a set of 

concepts and common relations between them. Inclusion of uncertainties is the one 

promising feature of FCM which means when less knowledge about the variable is 

available, no precise initial node weight is needed, and therefore FCM is more robust.  

Currently, various areas of the fuzzy cognitive map applications such as medicine, 

international relations, political science, history and engineering are being developed.  

Relationship representation is the most significant improvement concern of 

FCMs. This means instead of using only sign, the degree of considered casual relation is 

associated with a number (weight) (Stach, Kurgan, & Pedrycz, 2005). The strength of 

relationship is described by a number from [-1, 1] interval. Promoting effect is reflected 

by positive values, while inhibiting effect corresponds to negative value. Value of +1 

represents full positive, -1 corresponds to full negative, with neutral relation defined by 

0. Other values are used for different fuzzy levels of casual effect. 

As mentioned above, a FCM model is represented in the form of graphs. In a 

graphical representation, set of nodes (concept, Ci) and their connection edges correspond 

to causal effect relationships, represented by weights (Wij) between them. Three possible 

types of causal relationships between concepts are expressed as follow: Wij > 0 indicates 

positive causality between two concepts which means increasing the value of one concept 

leads to increasing the value of the other concepts. Wij < 0 indicates negative effect 
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between two concepts which means increasing the value of one concept causes a decrease 

in another concept. Wij = 0 means there is no relationship between the two concepts.  

Model can be presented by a square matrix, which is known as connection matrix. 

All values of edge weights between corresponding concepts are stored in rows and 

columns of this matrix (Stach, Kurgan, Pedrycz, et al., 2005). Figure 3.12 shows a FCM 

model and its connection matrix.  

 

 

C1 C2 C3 C4 C5 

C1 0 W2,1 W1,3 0 W1,5 

C2 W2,1 0 0 0 0 

C3 W3,1 0 0 0 0 

C4 W4,1 0 0 0 0 

C5 0 W5,2 0 W5,4 0 

 

W1, 3 

W3,1 

W4,1 

W1,5 

W5,4 
W5,2 

W1,2  

W2,1  

C1 

C4 

C3 

C5 

C2 

Figure 3.12: Example of FCM graph and corresponding connection matrix 
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Model can be simulated when the primary values of concepts have been 

determined as primary state of whole system and consequently FCM has been created.  

Simulation of the system’s dynamic is performed by functional modelling of FCM based 

on equation (3.18):  

 

∀ 𝑗 ∈ {1, … , 𝑁}, 𝐶𝑗(𝑡 + 1) = 𝑓 (𝐶𝑗(𝑡) + ∑ 𝑒𝑖𝑗𝐶𝑖(𝑡)

𝑁

𝑖=1

) (3.18) 

 

where 𝐶𝑗(𝑡) is activation degree of concept  𝑗𝑡ℎ at time t, 𝑒𝑖𝑗 denotes the 

relationship strength between concept 𝐶𝑖 with concept 𝐶𝑗 if 𝑖 ≠ 𝑗 and 𝑒𝑖𝑗 = 0 if  𝑖 = 𝑗, 

and finally 𝑓 is transformation function comprised of the periodic relationship between 

𝐶(𝑡 + 1) and 𝐶(𝑡) for 𝑡 ≥ 0 (Stach, Kurgan, & Pedrycz, 2005). 

 Starting point of simulation consists of computing initial values of the state vector 

over a number of successive iterations. Present values of all nodes in specific iteration are 

determined by state vector. Former iteration values of nodes which influence the given 

node through cause-effect relationship are used to calculate the value of a given node. 

Iterative application of the equation (3.18) leads to calculating successive states. 

The transformation function is used to preserve the weighted sum within a certain 

range normally set to [0, 1]. Quantitative analysis is lost by applying nonlinear 

transformation function, but comparison of activation levels which can be defined as 

active (value of 1), in active (value of 0) and active to a certain degree (value between 0 

and 1). Some commonly used threshold functions are listed below:  
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1) Bivalent   

 𝑓(𝑥) =  {
0,         𝑥 ≤ 1
1,          𝑥 > 0

 (3.19) 

 

2) Trivalent  

 
𝑓(𝑥) =  {

−1,              𝑥 ≤ −0.5 
0,          0.5 < 𝑥 < 0.5
1,                   𝑥 ≥ 0.5   

 (3.20) 

 

3) Logistic signal  

 

Where 𝑐 is a real positive number and 𝑥 is the value 𝐶𝑗(𝑡) on the equilibrium 

point. To reduce the unbounded weighted sum to a certain range, the threshold function 

can be used.  

3.6.3.1 Learning algorithm  

 

Learning algorithms can train the FCM which means determining the weights for 

best-fit decision-making. The most important algorithms for training FCM are classified 

into Hebbian-based, Population-based and Hybrid algorithms. 

 

 

 
𝑓(𝑥) =  

1

1 + 𝑒−𝑐𝑥
 (3.21) 
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3.6.3.1.1 Hebbian learning algorithm 

 

Hebbian based method updates the FCM weights based on Hebbian law and 

available data. More successful weight matrices are then produced. Hebbian learning 

algorithm increases the efficiency, flexibility and dynamic behavior of FCM model. For 

training FCM the most efficient Hebbian based methods are the following: 

 

3.6.3.1.2 Nonlinear Hebbian learning (NHL)  

 

   The NHL is based on the nonlinear Hebbian learning raw for training the FCM. 

NHL is based on the assumption that at each iteration, all the concepts are triggered and 

synchronously update their value. Initial FCM and values of concepts are taken by 

learning algorithm, and until the desired map is defined, weights keep on being updated. 

The values of other weights which remain zero do not change. During the learning process 

the nodes which are directly connected are updated according to their physical 

incorporation. For the entire learning process, the weight values retain their initial sign 

and direction as suggested by experts.  

For finding the weights of neuron Oja learning rule is introduced which can be 

expressed as follows:  

 𝑒𝑖𝑗(𝑘) = 𝑒𝑖𝑗(𝑘 − 1) + 𝜂𝐶𝑗(𝐶𝑖 − 𝑠𝑔𝑛(𝑒𝑖𝑗)𝐶𝑗𝑒𝑖𝑗(𝑘 − 1)) (3.22) 

 

Where 𝐶𝑖  𝑎𝑛𝑑 𝐶𝑗  are the current activation values of concept 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ 

calculated for each iteration, 𝑒𝑖𝑗(𝑘) is the value of the weights between concepts 

𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎand 𝜂 is the learning coefficient.  
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Hebbian learning principle is based on the premise that weights update  𝑒𝑖𝑗 and 

the product of the 𝐶𝑖 and 𝐶𝑗 concept activation are proportional. However, this may lead 

to infinite growth of the weight values. Oja learning rule uses forgetting term to avoid 

this effect that is reduced by iteration. In this method, the forgetting term is proportional 

to weight values and square of the value of target concepts (for𝑒𝑖𝑗, 𝐶𝑗 is the concept).   

This method has two conditions. The first one is the Desired Output Concepts 

(DOC) which utilizes information on desired value of some concepts and usually has 

predefined desired values. For each specific problem, when all desired concepts reach or 

become close enough to the desired activation level, the learning may be completed.  The 

second condition takes into consideration the variation of the subsequent values of the 

DOCs and is held if all of them change less than a predefined very small constant e.  

Algorithm stops the learning process when e is larger than the variation in DOCs.  

 

3.6.3.1.3 Data-driven nonlinear Hebbian learning (DD-NHL)  

  

The DD-NHL is based on an improved version of NHL principle and applied on 

the historical data to train the model. For training fuzzy cognitive map,  seven steps of 

generic NHL and proposed novel approach of learning FCM which is called DD-

NHL(Stach et al., 2008) are described: 

Non-linear Hebbian algorithm: 

  Step 1: 𝐶(0) 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 and 𝐸(0) as the connection matrix 

and restriction imposed on desired value of DOCs in form of  𝐶𝑗
𝑀𝑖𝑛 ≤ 𝐶𝑗 ≤ 𝐶𝑗

𝑀𝑎𝑥 

Step 2: For each iteration step k 
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Step 3: according to equation (3.22) update the weights  

Step 4: according to equation (3.18) for each concept calculate 𝐶(𝑘) 

Step 5: Evaluate termination condition using 𝐶(𝑘) from step 4, 𝐸(𝑘)and 𝐸(𝑘 −

1) 

Step 6: When both termination conditions are fulfilled go to step 2 

Step 7: Return the final connection matrix  𝑊𝐹𝐼𝑁𝐴𝐿 

Two conditions from step 6 can be defined as follows: 

Condition1: (minimize the cost function F) for each 𝑓 = √∑ ‖𝐶𝑗(𝑘) − 𝑇𝑗‖
2

𝐷𝑂𝐶𝑗
 where 

𝑇𝑗  is the mean target value of the concept 𝐶𝑗 mean: 𝑇𝑗 =
𝐶𝑗

𝑀𝑎𝑥−𝐶𝑗
𝑀𝑖𝑛

2
 

Determining the set of weights is the objective of the training process that minimizes 

function F. 

Condition 2: (after limited number of steps, terminate the algorithm)  

Step 1: Calculate the maximum difference 𝑒𝑚𝑎𝑥 between 𝑒𝑖𝑗(𝑘) and 𝑒𝑖𝑗(𝑘 − 1) 

Step 2: Return “True” if the absolute value of 𝑒𝑚𝑎𝑥 is less than 𝜀, otherwise return  

“False”.  

Now assume that for the given system the historical data are available. Matrix D 

is formed, where 𝑑𝑖𝑗 is related to the value of 𝑖𝑡ℎ concept at the 𝑗𝑡ℎ time point. In other 

words, value of concepts is defined as time series. Size of matrix D is 𝐾 × 𝑁 where the 

number of available data points is denoted by 𝐾 and the number of concepts in modeled 

system is defined by 𝑁. Figure 3.13 shows the flowchart of NHL algorithm.  
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and eij (k-1) 

For k=1 more 
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Start  

Evaluate 
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conditions  

Figure 3.13: Flowchart of NHL  
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Available historical data in step 4 are used by data-driven nonlinear Hebbian 

learning (DD-NHL) which is improved as the follows: 

Step 4:  Define  𝐶(𝑘) in accordance with the next row of matrix D. 

Therefore, based on available data used in each iteration step, the matrix is updated. Same 

data points are utilized when all data points are exploited and the termination conditions 

are not satisfied. Essentially, Oja learning rules are used in DD-NHL, but for a given 

system it takes advantage of the data available instead of creating the data used for 

training only from the current model. Initial connection matrix is still needed in DD-NHL 

but randomly generated initial map can be used instead of on expert generated map.  

Until the stable state is obtained, from primary state vector, current FCM is 

simulated after each iteration of updating the weights. Then, the value of DOCs from this 

state and the desired value of DOCs, are compared. When the answer is found, this 

technique guarantees it would meet all the learning conditions. Figure 3.14 displays the 

flowchart of DD-NHL algorithm. Thus, condition 1 is defined as follows:  

Condition 1: (checking condition imposed on DOCs)  

Step 1: Until the fixed state is reached simulate the current FCM defined by 𝐸(𝑘) 

starting from the initial condition 𝐶(0). 

Step 2: For each 𝐶𝑗 that has been defined as 𝐷𝑂𝐶𝑗, check whether the fixed value 

𝐶𝑗(𝑛) meets the constraint 𝐶𝑗
𝑀𝑖𝑛 ≤ 𝐶𝑗(𝑛) ≤ 𝐶𝑗

𝑀𝑎𝑥 

Step 3: Return “False” if there is at least one 𝐶𝑗 that does not meet the limitation 

from step 2.   

Step 4: otherwise return “True”. 

Univ
ers

ity
 of

 M
ala

ya



 

82 

 

 

 

 

Start  

Simulate the 

FCM  

If fix state 
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For DOCj check that Cj(n) 

meets the constraint   

𝐶𝑗
𝑀𝐼𝑁 ≤ 𝐶𝑗(𝑛) ≤ 𝐶𝑗

𝑀𝐴𝑋 

At the least one 

Cj(n) are not 

met restriction  

True   

Figure 3.14: Flow chart of DD-NHL 
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3.6.3.2 Rule base fuzzy cognitive maps (RB-FCMs) 

 

RB-FCM added feedback and mechanism to deal with casual relations to the 

standard rule based fuzzy system. As shown in Figure 3.15 RBFCM consists of fuzzy 

nodes (concepts) and fuzzy role bases (relations). Several membership functions (MF) 

are related to each concept that represent the possible values of concepts or their changes. 

Relations such as similarity, opposition, implication, classical fuzzy reasoning, etc. can 

be represented by fuzzy rules. RB-FCM are iterative which means previous values of each 

concept are used to compute its current value. RB-FCM allows the answer to “what if” 

question using not just casual maps but cognitive map.   

 

 

 

 

C1 

C2 

C3 C4 

RBC1 

RBC2 

RBC4 RBC3 

Figure 3.15: Rule based fuzzy cognitive map structure 
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3.6.3.3 Linguistic variables influence for FCM weights  

 

This methodology presented here makes fuzzy cognitive map structure closer to 

fuzzy logic. The influence of concept Ci on concept Cj which has been determined by 

experts as negative or positive and with linguistic variables describe the grade of influence 

such as “strong”, “weak” and etc. The interval of linguistic variable, is [-1, 1] and its term 

set T (influence) is suggested as: negatively very strong, negatively strong, negatively 

medium, negatively weak, zero, positively weak, positively medium, positively strong, 

positively very strong.  

Figure 3.16 shows the membership function characterized by fuzzy sets. Semantic 

rule M can be defined as follows:  

 M (negatively very strong): membership function 𝜇𝑛𝑣𝑠 describe fuzzy sets 

for “an influence below to -75%”. 

 M (negatively strong): membership function 𝜇𝑛𝑠 describe fuzzy sets for 

“an influence close to -75%”. 

 M (negatively medium): membership function 𝜇𝑛𝑚 describe fuzzy sets for 

“an influence close to -50%”. 

 M (negatively weak): membership function 𝜇𝑛𝑤 describe fuzzy sets for 

“an influence close to -25%”. 
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 M (zero): membership function 𝜇𝑧 describe fuzzy sets for “an influence 

close to 0”. 

 M (positively weak): membership function 𝜇𝑝𝑤 describe fuzzy sets for “an 

influence close to 25%”. 

 M (positively medium): membership function 𝜇𝑝𝑚 describe fuzzy sets for 

“an influence close to 50%”. 

 M (positively strong): membership function 𝜇𝑝𝑠 describe fuzzy sets for “an 

influence close to 75%”. 

 M (positively very strong): membership function 𝜇𝑝𝑣𝑠 describe fuzzy sets 

for “an influence above to 75%”. 

 

 

 

 

 

 

 

1 

0.5 

𝜇𝑝𝑠 𝜇𝑝𝑚 𝜇𝑛𝑤 𝜇𝑛𝑣𝑠 𝜇𝑛𝑠 𝜇𝑛𝑚 𝜇𝑝𝑤 𝜇𝑧 𝜇𝑝𝑣𝑠 

1 -1 0.25 0 -0.25 -0.75 0.75 0.50 -0.50 

Figure 3.16: Membership function for influence of the linguistic variables  
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Each interconnection defined by linguistic variables are combined and the interval 

of overall linguistic variables is transformed to [-1, 1]. A numerical weight for each 

interconnection will be the outcome of the defuzzifier where the Centre of Gravity method 

is used to produce these weights. Figure 3.17 display flowchart of linguistic variable 

influence for FCM. 

 

 

This chapter has provided an in-depth and detailed of linear regression and 

artificial neural network modelling. Network architecture and learning algorithms of both 

modelling approaches are described. In addition, the fuzzy cognitive map algorithm is 

presented. The fuzzy membership function and linguistic variables of FCM are explained 

as well.    

Figure 3.17: Flowchart of linguistic variable influence for FCM 
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Chapter 4 : RESULTS AND DISCUSSION 

 

 

 

4.1  Introduction 

 

This study aims to develop a model and control strategy for electric bicycle 

powered by PEM fuel cell to improve the efficiency and performance of system. In the 

first phase of the study, efficiency of electric bicycle was computed as the main indicator 

for PEM fuel cell system performance. In the second phase of the study the modelling 

and performance analysis of PEM fuel cell electric bicycle system has been carried out. 

This includes the study and utilizing linear and nonlinear regressions for predicting 

overall PEM fuel cell efficiency and output voltage based on some fundamental variables 

namely current, temperature, humidity, hydrogen flow rate and oxygen flow rate. Finally, 

fuzzy cognitive maps were used for the first time in this field to design a dynamic FCM 

model for convenient control of system and real-time casualty calculation model among 

the system concepts (current, temperature, humidity, hydrogen flow rate, oxygen flow 

rate, voltage and efficiency). The validation of the applied cognitive model has been 

ensured by comparison with a set of experimental data extracted from electric bicycle 

system regarding electrical performance. In the following section each stage of result 

representation will be explored in detail. 
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4.2 Data collection  

 

Data set was collected from electric bicycle powered by PEM fuel cell using DAQ 

system and are logged with sampling time of 1s to a designated computer. The installed 

fuel cell is a 250-W PEM fuel cell, which contains a 22 cell air-cooled stack that provides 

a nominal stack voltage and current at 14 V and 20 A. It generates a peak power of 250 

W to a 25-kg bicycle with a rated consumption of 3.5 normal litters of H2 per minute. The 

specifications of the fuel cell is listed in Table 4-1.  

Table 4-1: Nominal Fuel cell specifications 

 

 

Parameter Supplier Finding 

Number of single cells 22 22 

Maximum total power output (W) About 250 About 180 

Output voltage (V) 13-20 13-20 

Nominal stack current (A) 20 (max 28) 18 

Weight of the stack (kg) 0.7 0.7 

Overall dimensions of the Fuel Cell system 

(blowers Inc.) (mm3) 
approx.230×220×150 approx.230×220×150 

Ambient temperature range (°C) >0 up to +35 >0 up to +35 

Ambient relative humidity range (%) 

(recommended) 
30-80 50 

Hydrogen supply nominal pressure (bar) 0.65 0.65 

Hydrogen supply minimum flow rate 

guaranteed (Nl/min) 
3.5 3.5 

Maximum purged hydrogen flow rate (Nl/min) 0.07 0.07 
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A 150-W electric motor drives the bicycle via the regulated voltage from DC/DC 

converter, which is connected to a 13.2-20.2 V unregulated output voltage of the fuel cell. 

The DC/DC convertor is 300-W convertor from Zahn Elect with efficiency of 92% (at 

Vin=12 V, I out=8.4 A) and recommended input voltage of 10-20 V.  

The motor is activated by a handle bar mounted throttle, just like on most 

motorcycles or scooters. In the other words, this vehicle is to be operated on a power-on 

demand basis; the electric motor is only engaged and operated manually using a throttle, 

while the pedalling can be coupled with the motor in tough conditions, such as cycling 

uphill. 

 

 

 

Figure 4.1: Plot of the voltage‒current and power-current curves of 

Fuel Cell stack at temperature average of 37.6 °C 
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For a better visualization and operation dimensions of the system an example of 

V-I and P-I curves of PEM fuel cell system are shown in Figure 4.1 which have been 

obtained at approximately in constant fuel cell temperature 37.6 ℃ and relative humidity 

averaging 48.8%. This plot shows the changes in constant temperature and humidity 

condition which illustrates the typical V-I behaviour; the voltage monotonically decreases 

as the current increased. As the V-I curve shows, the pattern after the sharp voltage drop 

of the start-up experiences a steady linear decline when the current is increased.  

While the load circuit is open, the current is close to zero, and the stack voltage is 

estimated to at least be close to the theoretical value. However, the voltage is often 

considerably less when a fuel cell is utilized. The following key points are evident from 

the graph of the cell voltage versus the current: 

 The open circuit voltage is less than the theoretical value 

 A sharp initial voltage decrease is anticipated 

 The voltage then decreases less rapidly and more linearly 

In addition, the stack at higher power production or current density releases more heat 

if the system design is imperfect; the overheating that occurs during tough working 

situations can disturb the normal operation of system.  

Figure 4.2 shows that the ECU can perfectly control the temperature of stack and keep it 

almost constant. The humidity curve illustrates the humidity ratio of the input air.  
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4.3 System efficiency 

 

To study the behaviour and compute the efficiency of such system, we decided to 

study, test, and analyse the features of an electric-assisted bicycle that is powered by a 

PEM fuel cell as a common and suitable type of power source for transportation systems.  

The efficiency‒power curve of a fuel cell stack is shown in Figure 4.3. It is plotted 

using equation 3.1 for hydrogen HHV. As expected, a maximum efficiency of the fuel 

cell’s stack is available in the low power or current range, as the highest stack voltage is 

expected at an open circuit. Accordingly, while the stack power or current is increased, 

the efficiency will decrease. As previously mentioned, this characteristic is the opposite 

of the efficiency curve over power in an internal combustion engine, rendering the fuel 

cell superior in terms of city transportation, where at most only a small fraction of nominal 

power is required. 

Figure 4.2: Plot of Stack temperature and air humidity ratio versus current density of 

Fuel Cell 
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In the next step, efficiency of the whole system was analysed. As explained in 

chapter 3, the ratio between the energy output and input forms the basis of calculation of 

efficiency in any energy transformation system. This ratio in fuel cell is between the 

output electrical power and the hydrogen energy that is consumed. The consumed 

hydrogen energy for this experiment is calculated by Equation (3.3), as follows: 

  
Energy of consumed H2 =241.98×4.96×20/ (308.65×0.08206) =947.75 kJ   

 

Where for 3.92 mol of hydrogen, the pressure of 20-liter electrolyzer buffer tank was 

dropped from 19.91 bar to 14.88 bar. Thus, 947.75 kJ was used by the fuel cell as the 

system input, and the electric motor used the FC power output. The output electric power 

of the system is calculated by measuring the power consumption of the bicycle’s electric 

Figure 4.3: Plot of FC stack efficiency versus FC stack output power for relatively 

average temperature 37.6 ℃ over experiment period 
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motor over time, which is 335.82 kJ, over approximately 159 minutes of experimental 

period. Hence, the overall system efficiency for this experiment is calculated using 

Equation (3.2): 

The overall system efficiency =100×335.82/947.75=35.43 % 

 

Figure 4.4 shows the Sankey diagram, which visualizes the different energy flows 

and power losses in an analysed electric-bicycle system. As shown in the picture the entire 

amount of hydrogen energy is 947.75 kJ and only 335.82 KJ is used for motor electric 

power.   

 

 

Hydrogen input  

(947.75 kJ) 

 
 

Motor electrical power  

(335.82 kJ) 

 

  

611.93 

kJ 

 

Electrical power 

used by auxiliary 

components  

Heat 

Figure 4.4: Flow diagram for PEM fuel cell powered electric bicycle. 

This diagram illustrates the various energy flows in system 
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However, the following important point should be considered that the efficiency 

of the fuel cell stack is not constant and depends on the stack voltage (bicycle usage 

condition). Thus, this value can change for different experimental conditions for the same 

bicycle. For this experiment, we have attempted to keep the bicycle at the cruise condition 

(constant speed) with a fuel cell power average of 35.29 W, and fuel cell stack efficiency 

average of 48.45%. The specifications of our efficiency study are listed in Table 4-2. 

Table 4-2: Fuel cell powered electric bicycle parameter measurements from data 

demonstrated in Figure 4.5 (efficiency indicted by eff) 

 

 

Figure 4.5 shows the plot of the fuel cell power output throughout the efficiency 

experiment. As the curve shows, we attempted to keep the output power constant for small 

fractions of the nominal fuel cell power as needed at the cruise condition. The logged 

power data in this curve show a bold line at the bottom of the power line. The power 

differences between these higher points on top of this line and the points on the line are 

due to auxiliaries, such as 10-W cooling blower, which the ECU altered to maintain its 

Parameters 
Experiment 

duration 

Hydrogen 

consumptiona 

Load energy 

consumptionb 

System 

effc 

Max– Min 

of FC effd 

Mean 

of FC 

eff e 

Mean of 

FC 

powerf 

Value 9515 s 

3.917 mol 

(947.75 kJ) 

335.82 kJ 35.43% 

63.88% 

42.69% 

48.45 % 
35.29 

W 

a From Equation (3.3) 

b Consumption electric power obtained from the sum of 9515 load power values that logged each 

second. 

c Efficiency of fuel cell powered electric bicycle base on experimental data using Equation (3.2). 

d The maximum and minimum of fuel cell stack efficiency during this experiment. 

e Average of FC stack efficiency over 9515 individual efficiency values calculated for each second of 

experimental time. 

f The mean was calculated from 9515 individual data points shown in Figure 4.5 

Univ
ers

ity
 of

 M
ala

ya



 

95 

 

speed and compensate for the temperature of the fuel cell at the designated working 

temperature. When the fan is working at a minimum rate, the load power and other 

constant auxiliaries form the bold line in the curve, and the other variable components 

form the approximately 15-W line. 

 

Figure 4.5: Plot of fuel cell stack power measured during efficiency experiment 

 

During the experiment, it was observed that the ECU always automatically shuts 

down the system prior to reaching the full output power, which is important to the 

performance. Data analysis shows that the fuel cell stack voltage is below the minimum 

value (12 V) before reaching the maximum power due to insufficient hydrogen flow at 

stack; therefore, the ECU automatically shuts down the system to protect the fuel cell. 

 As mentioned, the temperature of Metal Hydride tank decreases during de-charging, 

the canister's surface temperature dropped from 27 ℃ to 0 ℃ in less than 15 min and this 
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affects the maximum hydrogen flow rate, which could potentially provide energy for fuel 

cell. In other words, when the fuel cell of bicycle works for a while, Metal Hydride tank 

cannot supply the minimum 3.5 Nl/ min of hydrogen in the time of high power demand 

of bicycle. Consequently, the voltage of fuel cell drops under the limitation and ECU 

shuts down the stack. Empirical model provides useful and reasonable accurate input- 

output relations for finding better performance of system and prevents any danger in real 

life for considering critical situations and investigating the system in various conditions. 

In this section the results of modelling are considered.   

 

4.4  System modelling  

 

Empirical models provide useful and reasonable accurate input-output relations in 

order to better investigate the system in various conditions to avoid any danger in real life 

considering the critical situation. In this study, both linear and nonlinear regression 

models were used for prediction of voltage and efficiency of system. In this section, the 

results of each of these designs are reported.   

For the purpose of system modelling, 720 data points of following variables have 

been used. The data set collected from 25-kg electric bicycle powered by PEM fuel cell 

for prediction of electric bicycle system included load current, temperature, humidity, 

hydrogen flow rate, oxygen flow rate as regression model inputs and voltage and 

efficiency as outputs. Classical Linear regression with gradient descent algorithm was 

used for linear modelling, while a 3-layer feed forward artificial neural network with 

Levenberg-Marquardt algorithm used for training. 
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4.4.1 Linear regression model  

 

 Based on the machine learning principles, 60 % of dataset has been used for 

training while another 40% was divided equally into both cross-validation and test 

datasets. Gradient descent algorithm is applied for training the data. Cross validation 

dataset is used for model evaluation from splitting data set into training set for training 

the classifier and validation set for evaluating the model and estimating the error rate of 

trained classifier.  

Cost function of training data set for both voltage and efficiency is shown in 

Figure 4.6 which shows the Mean Squared Error (MSE) over 300 data points for training 

for voltage and efficiency observed as 0.0302 and 0.106 respectively.  To evaluate the 

performance of PEM fuel cell linear regression model against experimental result, and in 

order to find this performance numerically, mean squared error is necessary to be 

calculated by the equation (4.1):  

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝐴 − 𝑇)2

𝑛

𝑖=1

 
(4.1) 

 

Where 𝐴 denotes the simulated data vector for every output parameter, T represents the 

real experimental value. 
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Figure 4.6: MSE for training the data a) voltage b) efficiency 

b) 

a) 
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In this study, principles of machine learning were considered for an optimized 

regression model design; therefore, learning curve based on training and cross-validation 

sets have been manipulated to process the error of the model and modification of model 

parameters using MSE. This evaluation was explained in chapter 3 and the best number 

of data points for model training was set to 300 in order to make sure there is no 

overtraining.  

The performance of the linear regression model for the output voltage and 

efficiency value are shown in Figure 4.7. The convergence of training and cross validation 

error for 300 data points in the learning curve plots confirmed the optimal number of 

training needed for this model. Cross validation has been used for model evaluation by 

splitting the data set into training set for training the classifier and validation set for 

evaluating the model and estimating the error rate of the trained classifier.  
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a) 

b) 

Figure 4.7: Training of linear regression model for output 

a) voltage value b) efficiency value 
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To train the linear regression efficiently, selecting the number of variables as 

inputs and outputs is useful.  Evaluation of system performance based on selecting the 

fewest dominate input variables can provide the fastest training, reduce unnecessary 

complications and improve instant recall. In our particular system, as shown in Figure 4.8, 

3 inputs were selected to the appropriate for modelling to avoid long run-time to achieve 

results.  

 

Once the model parameters were defined, a new random set of data were used for 

final design and evaluation of regression model using test dataset. Once satisfactory 

output has been provided by linear regression on the validation data set, cross validation 

was carried out on the test set. After the final test, linear regression model used be ready 

to predict V-I performance for different range of conditions. 

Figure 4.8: Evaluation of system performance based on input features 
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 Figure 4.9 displays Mean Square Error (MSE) of training, cross validation and 

testing for voltage and efficiency as an output separately. The errors associated with each 

distribution for voltage and efficiency are shown in Table 4-3.  

Table 4-3: Men Square Error (MSE) for train, cross validation and test in linear 

regression LR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             MSE 

Process Voltage output  Efficiency output 

Train   0.0286 0.0311 

Cross validation 0.03310 0.0482 

Test 0.106 0.319 

b) 

a) 

Figure 4.9: MSE for training, cross validation and testing a) voltage 

b) efficiency  
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Designed linear regression model was used for prediction of voltage and 

efficiency of test data and Figure 4.10 represents the sequence of simulated and real 

output data voltage and efficiency for PEM fuel cell.  

  

a) 

b) 

Figure 4.10: Comparison of predicted result and experimental data, a) voltage 

simulation b) efficiency simulation by LR 
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Figure 4.11a) demonstrates the polarization curve predicted by the proposed linear 

regression model. Representing the system behaviour with the smallest number of sensors 

in electric bicycle as perfectly as possible by the proposed model, is one of the main 

objectives here. In addition, Figure 4.11 b) represents the efficiency versus power curve 

prediction.  

 

 

Figure 4.11: Predict the a) polarization curve and b) efficiency versus power by 

linear regression (LR) and compare with experimental data of PEM fuel cell. 

a) 

b) 
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4.4.2 Artificial neural networks model  

 

Non-linear relations among numerous inner fuel cell parameters cause 

nonlinearity functions for the whole system. Therefore, in order to have a non-linear 

regression model for this electric bicycle, artificial neural network (ANN) have been 

adopted. We investigated linear regression model and neural network model to determine 

which one tends to provide better prediction in terms of accuracy and speed. Before 

designing the network, a few dominate input and output variables are recognized. 

 To accelerate the performance prediction, it is important that training data set 

goes through the normalization procedure and to be well distributed in operating range. 

For training the NN, the inputs and outputs had to be normalized to be within a [-1, 1] for 

better convergence of the model.  Input features were reduced using the same principle 

of linear regression by using first 3 principle components. Network was trained with 

Levenberg-Marquardt back propagation (LM-BP) to produce the proper output. Scheme 

neural network are shown in Figure 4.12.  

 

 

 

 

Figure 4.12: Scheme of function fitting NN model 
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For selecting the best structure of neural network model, possible different hidden 

layers and neuron structures have been designed and evaluated based on the MSE value 

of the cross-validation set. Table 4-4 indicates that LM-BP with two layer 17-4 neurons 

provided the best prediction in terms of accuracy and speed. Therefore, similar neuron 

networks may perform better than complicated ones. 

Number of epochs and the average error of prediction indicated by cost function, 

which is calculated by equation below, determine the training speed:  

    costfunction =
1

N
∑ (DCi

estimated𝑁
𝑖=1 − DCi

real)2    (4.2)  

costfunction =
1

N.(K−1)
∑ ∑ (DCi

estimatedN
j=1

K−1
K=1 − DCi

real)2   (4.3) 

Where N is the sample number. The error has been calculated by comparing real 

values against estimated values for voltage and efficiency in the validation set.  

Table 4-4: Prediction result for different network architectures 

Hidden layer Epoch MSE Processing Time 

3 10 0.074 00:00:17 

3-3 74 0.055 00:00:18 

10 70 0.044 00:00:01 

10-10 12 0.071 00:00:00 

20 12 0.035 00:00:00 

20-10 11 0.134 00:00:01 
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Figure 4.13 displays the performance of the training, testing and validation 

processes for output voltage variable. Critical convergence for best validation 

performance is set to 10-2. After training the model for 10 epochs for voltage output and 

16 epochs for efficiency output, the mean square error for voltage and efficiency is 

observed to be 0.0118 and 0.0314 respectively. Table 4-5 demonstrates the best neural 

network model performance with the higher correlation coefficient which has 17-4 hidden 

neurons. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Best validation performance of neural network model for output 

a) voltage and b) efficiency value 

a) 

b

) 

Univ
ers

ity
 of

 M
ala

ya



 

108 

 

Table 4-5: Performance of the best PEM fuel cell neural network model 

 

 

Figure 4.14 displays the error histogram of the output variables. As shown, the 

majority of error rates are in the interval of [-0.1, 0.2] and the error signal for training, 

testing and validation is stretched out to the value of 0.8 for voltage and 0.9 for efficiency 

outputs and the main portion lies between [-0.3, 0.4] and [-0.3, 0.4] for voltage and 

efficiency output respectively.  

 Variable Mean square error Correlation coefficient 

T
es

t 

Load Voltage 0.0118 0.993 

Efficiency 0.0314 0.982 

Figure 4.14: Histogram of error for a) voltage output b) efficiency output  

b) 

a

) 
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For investigating the correlation between experimental data and predicted data 

from ANN model, linear regression model of training, testing and validation set for every 

output has been calculated. The training session for output voltage presented better 

correlation rate which is R= 0.989 as shown in Figure 4.15 a) where the output efficiency 

obtained the minimum correlation rate which is R= 0.977 (Figure 4.15 b))                                                     

Figure 4.15: Rates of correlation of output variables a) 

voltage b) efficiency by linear regression for training  

a) 

b) 
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In order to provide accurate regression model, sufficient number of iterations 

should be used in training phase. As shown in Figure 4.16 this procedure demonstrated 

great behaviour. Figure 4.16 displays voltage variable obtained correlation rate of R= 

0.993 and also shows that for efficiency variable R= 0.978   

Figure 4.16: Correlation rate for testing patterns of outputs variable  

a) voltage b) efficiency 

a) 

b) 
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In order to detect and compare predicted results against experimental results, 

current sequence, temperature, humidity, hydrogen flow rate and oxygen flow rate were 

propagated through the neural network model. Figure 4.17 displays outstanding 

modelling performance of the neural network prediction, where estimated validation 

pattern by data, show great linear fit to real data. Figure 4.17 a) demonstrates the 

acceptable validation correlation rate of voltage in this procedure for R= 0.986 and 

Figure 4.17 b) displays suitable performance of efficiency variable for R= 0.976.  

a) 

b) 

Figure 4.17: Correlation rate of output variable a) voltage  

b) efficiency for validation 
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The result shows us the proposed ANN has proper performance for prediction, 

however testing them by using another set of experimental data is essential. Table 4-6 

describes for training, testing and validation process when the best fitting line is obtained 

for correlation rate. 

Table 4-6: Best linear fit for output variable for training, testing and validation 

 

 

 

 

 

Figure 4.18 represents the real and predicted value of output data voltage and 

efficiency from ANN to experimental results. The results were obtained by using 

mentioned inputs to illustrate the accuracy of estimation of the neural network modelling. 

The values of inputs are not shown in the figure.  

Figure 4.18a) shows the simulation results are in a good agreement with the 

experimental results. As we can see, voltage drops gradually when current increases. We 

found that at high voltage which is close to the open circuit voltage, large error accrues. 

Inadequate amount of experimental data which is followed by rapidly decreasing voltage 

in the polarization area is the main reason for this error. To achieve better prediction, a 

possible way is to make more data measurements during the experiment.  

Same phenomena occurs in Figure 4.18 b). As shown, for efficiency output, when 

power demand increases its slope decreases. Calculating the simulation error is necessary 

in order to numerically set the performance of prediction. 

Process Voltage best linear fit Efficiency best linear fit 

Training R= 1.001 T + 0.12 R=0.997 T+ 0.0022 

Testing R=0.986 T - 0.0503 R=0.987 T- 0.021 

Validation R= 1.00 T – 0.008 R= 0.998 T- 0.047 
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It is important to check the degree of compliance of predicted data with the 

experimental data. Hence, simulation result of polarization curve or V-I characteristics 

are validated with experimental data of electric bicycle powered by PEM fuel cell model.  

 

Figure 4.18: Comparison of predicted result and experimental data, a) voltage 

simulation b) efficiency simulation by NN 

  

a) 

b) 
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The comparison is demonstrated in Figure 4.19. The dataset used for this curve 

prediction is the same as what we used in section 4.2. It is seen that as the current is 

increased, the output voltage is decreased. The operated voltage is less than theoretical 

due to various losses. It must be noted that the value of individual voltage losses inside 

the PEM fuel cell cannot be computed by neural network model. Only general change in 

voltage losses can be determined by the system’s model. We observe from the graph that 

ANN gives fairly good prediction on voltage and current curves.  

 

 

Figure 4.19: Prediction of the polarization curve by NN and comparison with 

experimental data of PEM fuel cell  
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Figure 4.20 shows the simulation of efficiency versus power characteristics by 

neural network. It can be noticed that maximum power is predicted close to the (17A) 

fuel cell current which is similar to the experimental data.  

 

As it can be seen in Table 4.7 comparison of the mean square error (MSE) for 

voltage and efficiency as an output for regression and artificial neural networks are 

displayed and ANN has had much better results.  

Table 4.7 : Comparison MSE in artificial neural network (ANN) and  

linear regression (LR) model 

 

 

 

 

 

 

 ANN LR 

MSE Voltage Efficiency Voltage Efficiency 

Train 0.0203 0.0334 0.0286 0.0311 

Cross validation 0.0118 0.0443 0.03310 0.0482 

Test 0.0203 0.0334 0.106 0.319 

Figure 4.20: Prediction of efficiency versus power curve by NN and 

comparison with experimental data of PEM fuel cell 
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4.5 Fuzzy Cognitive Map    

 

As demonstrated earlier in chapter 2 and 3, fuzzy cognitive map (FCM) is a type 

of network for describing the behaviour of systems in terms of concepts and effect 

between concepts. In this study, measured variables were the concepts of FCM 

(Figure 4.21) which consist of 7 concepts (C1=current, C2=temperature, C3=related 

humidity, C4=hydrogen flow rate, C5= oxygen flow rate, C6=voltage, C7=efficiency). We 

described the features of the system which are crucial for modelling and represented each 

one by a concept.  

The characteristics of PEM fuel cell system are demonstrated by the concepts 

effects. The influence of the concepts on each other are represented by weights Wij among 

them. In general, the key factor of PEM fuel cell system are represented by concepts that 

can also be characteristics of the variables, inputs, outputs, events, states and trend of our 

system. The weights between concepts are shown in matrix W (Table 4-8) as the initial 

FCM of the PEMFC. As explained in chapter 3, any inner slope of self-effect of concepts 

was considered as zero which caused the diagonal values of W matrix to be equal to zero.  

The initial design of FCM with all weights consists of 42 connections among the 

concepts. However, due to complexity the initial FCM is not shown in this thesis. Source 

nodes are denoted by the rows of the matrix and destination nodes are denoted by the 

columns.  The concepts that influence other concepts are “Transmitter” and the concepts 

influenced by other concepts are “Receiver”. 
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Table 4-8: FCM connection matrix between 7 concepts of PEM fuel cell system 

 

I T RH H2 O2 V Eff 

I 0 W1,2 W1,3 W1,4 W1,5 W1,6 W1,7 

T W2,1 0 W2,3 W2,4 W2,5 W2,6 W2,7 

RH W3,1 W3,2 0 W3,4 W3,5 W3,6 W3,7 

H2 W4,1 W4,2 W4,3 0 W4,5 W4,6 W4,7 

O2 W5,1 W5,2 W5,3 W5,4 0 W5,6 W5,7 

V W6,1 W6,2 W6,3 W6,4 W6,5 0 W6,7 

Eff W7,1 W7,2 W7,3 W7,4 W7,5 W7,6 0 

 

We describe the relation between concepts by using a fuzzy value for each 

interconnection, so weights take values in the interval [-1, 1]. As we mentioned in 

chapter3, in FCM structure with three possible types of interaction between concepts 

𝐶𝑖 and 𝐶𝑗 can be expressed as follows:  

 

 Wij > 0 specifies positive causality between two concepts which means 

increase in the value of concept 𝐶𝑖 causes an increase in the value of concept 𝐶𝑗 and 

decrease in the value of concept 𝐶𝑖 causes a decrease in the value of concept 𝐶𝑗 . 

 Wij < 0 indicates negative causality between two concepts that means 

increase in the value of concept 𝐶𝑖 causes a decrease in the value of concept 𝐶𝑗 and vice 

versa. 

      Wij = 0 indicates no relationship between two concepts. 
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Based on the flowchart of FCM training procedure in chapter 3, the initial 

interconnections were chosen based on the system behaviour. This FCM is designed to 

be used for dynamic modelling and control of the PEMFC; therefore, some of the weights 

where chosen to be zero. For instance, the effect of PEM fuel cell efficiency and stack 

output voltage have no direct effect on input hydrogen, oxygen as input variables or 

temperature and humidity as experiment conditions. FCM of PEM fuel cell is shown in 

Figure 4.21, and Table 4-9 indicates the concept and relation between them in real time 

modelling of PEM fuel cell system.  

Table 4-9: FCM connection matrix between 7 concepts of PEM fuel cell system in real 

time modelling 

 I T RH H2 O2 V Eff 

I 0 W2,1 0 0 0 W1,6 W1,7 

T W2,1 0 W2,3 W2,4 W2,5 W2,6 W2,7 

RH W3,1 W3,2 0 W3,4 W3,5 W3,6 W3,7 

H2 W4,1 0 0 0 0 W4,6 W4,7 

O2 W5,1 0 0 0 0 W5,6 W5,7 

V 0 0 0 0 0 0 W6,7 

Eff 0 0 0 0 0 0 0 
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4.5.1 FCM Training Process 

 

 In this study, FCM has been used as a newly applied method for dynamic 

modelling of the system, which can generate the next state of the whole system’s 

concepts. This is the first dynamic model of a PEMFC, which predicts all variables 

(concepts) of the system. To date, FCM has been used in many engineering applications, 

and as one of the novelties of this study, FCM has been used for modelling PEMFC. It is 

notable that there have been different algorithms designed for training FCM. However, 

majority of these methods are based on an initial weight setting of FCM by an expert. 

W5,6 

W5,7 
W5,1 

W3,7 

W2,6 

W4,6 

W4,7 

W4,1 

W2,6 

W2,7 

W2,5 
W2,4 

W3,4 

W3,5 

W3,6 

W3,1 

W6,7 

W1,7 

W1,6 

W3,2 

W2,3 

W1,2 

W2,1 

I 

T 

RH 

H2 O2 

V 

Eff 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

Figure 4.21: FCM scheme of PEM fuel cell system, I: current, T: temperature, 

RH: related humidity, H2: hydrogen flow rate, O2: oxygen flow rate, V: voltage 

and Eff: efficiency  
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This initial weight setting is one of the main drawbacks of FCMs which limits its usage 

in areas where a system expert in needed to set the values. Therefore, in this study a newly 

established learning algorithm (DDNHL) was used as a state-of-art FCM training 

algorithm. DDNHL was developed based on non-linear Hebbian learning method and it 

benefits the FCM training by using previous data-points for finding the weights based on 

random initial weight setting. Therefore, the main drawback of FCM- requiring an expert 

for initial weight setting is resolved and FCM can be trained based on random initial 

weights. A detailed explanation of the training algorithm was explained in chapter 3. We 

used 1000 data points for training FCM based on DD-NHL algorithm (Figure 4.21). The 

final weight matrix is shown in Table 4-10: 

 

Table 4-10: FCM connection matrix between 7 concepts of PEM fuel cell system in 

real time modelling 

 

I T RH H2 O2 V Eff 

I 0 -0.5  0 0 0 -0.88 -0.81 

T -0.43 0 -0.62 -0.43 -0.44 0.27 0.28 

RH 0.9 -0.98 0 0.98 0.98 -0.9 -0.9 

H2 1 0 0.22 0 0 -0.89 -0.8 

O2 1 0 0 0 0 -0.87 -0.81 

V 0 0 0 0 0 0 -0.84 

Eff 0 0 0 0 0 0 0 

 

Univ
ers

ity
 of

 M
ala

ya



 

121 

 

Based on the results of this step and in order to simplify the FCM of our system, residual 

causalities and system concepts that are less effective were omitted from the final design 

and Figure 4.22 was suggested for a new weight training. This simplification increases 

the speed of FCM performance for each state prediction. The fuzzy cognitive model for 

electric bicycle contains four concept including: 

Concept 1 (C1): represents hydrogen flow rate (H2)  

Concept 2 (C2): represents temperature  

Concept 3 (C3): represents related humidity  

Concept 4 (C4): represents efficiency of the system  

 

The state-of-the-art learning method that exist in the literature is used for the investigation 

of the quality of trained models. DD-NHL has been implemented to train this FCM model. 

The simulation error was computed as follows: 

 

 

Figure 4.22: Final FCM design of system. 

-0.2 
-0.5 

C2 C1 

C3 

0.2 

-0.03 
0.56 

0.01 

0.26 
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Where 𝐷𝐶𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 and 𝐷𝐶𝑖

𝑟𝑒𝑎𝑙 are the estimated and real value of decision concepts 

(DC), 𝐾 is the number of available iterations to compare and 𝑁is the number of concepts 

(E. I. Papageorgiou, 2013). By equation (4.3) the cost function is calculated: 

 

In this condition our model can calculate the prediction error (which is the 

summation of MSE for all concepts), while using it for improving its accuracy. The cost 

function in FCM model as can be seen in Figure 4.23 is 0.0357.  

 

 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟 =
1

𝑁. (𝐾 − 1)
∑ ∑| 𝐷𝐶𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝐷𝐶𝑖
𝑟𝑒𝑎𝑙|

𝑁

𝑗=1

𝐾−1

𝐾=1

 (4.2) 

𝑐𝑜𝑠𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

𝑁. (𝐾 − 1)
∑ ∑(𝐷𝐶𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝑁

𝑗=1

𝐾−1

𝐾=1

− 𝐷𝐶𝑖
𝑟𝑒𝑎𝑙)2 (4.3) 

Figure 4.23: MSE for training the data in FCM  
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The final values of W matrix is shown In               Table 4-11, and the cost function 

is depicted in Figure 4.23. This FCM MSE value is lower than the MSE for efficiency 

and output voltage models that guarantee the highest accuracy on system modelling using 

FCM. 

              Table 4-11: FCM connection matrix between four concepts of PEMFC 

 H2 T RH Eff 

H2 0 0.2 0.22 -0.8 

T 0.26 0 -0.03 -0.2 

RH 0.56 0.01 0 -0.5 

Eff 0 0 0 0 

 

 

4.5.2 RB-FCM 

 

Prediction model for precision PEM fuel cell system is developed by proposed 

FCM approach that can be implemented for decision-making to control the system. 

Figure 4.24 shows the corresponding membership function for the four selected 

parameters (temperature, related humidity, hydrogen flow rate, and system efficiency). 

Table 4-12 describes the set of linguistic variables that every concepts can take.  
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Table 4-12: Type of value of FCM Concepts  

Type of value 

Parameter Very low low Medium High Very high 

Hydrogen flow 

rate 
<-0.2 -0.2, 0 0, 025 0.25, 0.5 >0.5 

Temperature <-0.4 -0.4, -0.20 -0.20, 0.20 0.2, 0.6 >0.6 

Related 

humidity 
<-0.4 -0.4, -0.15 -0.15, 0.25 0.25, 0.55 >0.55 

Efficiency of 

system 
<-2 -2, -1 -1, 0 0, 1.5 >1.5 

 

Figure 4.24: Membership function for a) hydrogen flow rate b) Temperature  

c) Related Humidity d) Efficiency 

a) 

d) 

c) 

b) 
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As explained in chapter 3, we use a rule-based FCM in this study which converts 

the quantitative matrix weight into qualitative values which can be understood and 

interpreted by any user. This benefits the system for a real time control and modification. 

Using these fuzzy rules, the final weight matrix was converted to rule based FCM (RB-

FCM). Therefore, each concept value and the causality (influence matrix) should be 

converted to fuzzy values. Figure 4.24 shows the fuzzy values for each concept. It is 

notable that all the values of concept were normalized between [-1, 1] and based on the 

density function of each concept, the fuzzy memberships were defined. In Figure 4.25the 

membership function of influence matrix (W) is shown. 

The influence of concept Ci to concept Cj is determined as negative or positive 

and linguistic variables describe the grade of influence such as “strong”, “weak” and etc. 

The interval of linguistic variable is [-1, 1] and its term set T (influence) are suggested as: 

negatively very strong, negatively strong, negatively medium, negatively weak, zero, 

positively weak, positively medium, positively strong, and positively very strong. Rule 

M can be defined as follows:  

 M (negatively very strong): 𝜇𝑛𝑣𝑠 for “an influence below -0.85”. 

 M (negatively strong): 𝜇𝑛𝑠 for “an influence between -0.65 to 0.85”. 

 M (negatively medium): 𝜇𝑛𝑚 for “an influence in interval -0.45 to -0.65”. 

 M (negatively weak): 𝜇𝑛𝑤 for “an influence between -0.25 to – 0.45”. 

 M (zero): 𝜇𝑧 for “an influence between -0.2to 0.2”. 
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 M (positively weak): 𝜇𝑝𝑤 d for “an influence between 0.2 to 0.45”. 

 M (positively medium): 𝜇𝑝𝑚 d for “an influence between 0.45 to 0.65”. 

 M (positively strong): 𝜇𝑝𝑠 s for “an influence between 0.65 to 0.85”. 

 M (positively very strong): 𝜇𝑝𝑣𝑠 for “an influence above to 0.85”. 

Using these fuzzy rules, the final weight matrix was converted to rule-based FCM 

(RB-FCM).  

 

 

 

 

 

Figure 4.25: Membership function for influence matrix in electric bicycle 
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Figure 4.26 indicates Rule- Based FCM model. Relationship between a numbers of nodes 

is determined by RB-FCM. For computing the new state of one node, fuzzy rules and 

Defuzzification process were used.  

 

 

 

 

In this section, a practical example of modelling the electric bicycle will be 

examined. As mentioned before, the definition of concepts which describe the system and 

relation between concepts are the most important components in developing FCM.  

For electric bicycle system a fuzzy cognitive map with four concepts that gives a 

good description of system is developed.  

 

 

…  

C1 C3 

IF C1 is low THEN C2 is 

very low  

Defuzzification 

IF C1 is high THEN C2 

is medium 

IF C1 is very high THEN 

C2 is high 

C1 
C3 C2 

RB-FCM relationship  

Figure 4.26: Sample of RB-FCM relationship 
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Concept 1 Hydrogen flow rate  

Concept 2 Temperature  

Concept 3  Related humidity  

Concept 4  Efficiency  

These concepts are connected with each other. First, we decided about connection 

between two concepts. Then, we decided the sign of connection, and at last, the weights 

between connections were determined. Each event or connection between concepts has 

weights that range in the interval [-1, 1]. The value of each concept has a range between 

[-1, 1]. 

Now the connection between concepts are as follow: 

Event 1 concept1 (hydrogen flow rate) connects with concept2 

(temperature).  

Event2  concept1 (hydrogen flow rate) relates with concept3 (related 

humidity). 

Event3  concept1 (hydrogen flow rate) connects with concept4 

(efficiency). 

Event4  concept2 (temperature) related with concept1 (hydrogen flow 

rate). 

Event5  concept2 (temperature) connects with concept3 (related humidity). 

Event6  concept3 (related humidity) related with concept1 (hydrogen flow 

rate). 

Event7  concept3 (related humidity) connects with concept2 (temperature). 
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In this work, the relation among concepts has been described and to justify the 

cause and effect of the relation between concepts, we have used IF-THEN rules, and also 

for each interconnection, we have come up with the linguistic weight. The relation 

between two concepts emerge as the weights of interconnection, are described by IF-

THEN rules. An example of fuzzy rule is as follows, where A, B, C are the linguistic 

variables:  

If an A change occurs in the value of concept Ci then a B change is caused in the value of 

concept Cj. Thus, influence of concept Ci to concept Cj is C.  

For every interconnection, we can propose linguistic rules; for the relationship 

between two concepts, linguistic value can be concluded from the rules. Therefore, a 

fuzzy rule has described the causal relationship that gives the degree of causality among 

concepts and so the corresponding weights is derived. As an example, the relation 

between two concepts will be examined (Figure 4.27).  

If-then rule: If a very low change in value of concept Ci then a very high change in value 

of concept Cj is caused.  

Conclusion: The influence of Ci to Cj is positively very high and so value of Wij is 

positively very strong.  
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To describe the relation between concepts RB-FCM used linguistic fuzzy rules 

and they are not limited to casual relations. Now fuzzy if _then rules for each membership 

function in the input concepts are defined by RB_FCM.  

Rule 1:  IF value of concept C1 (hydrogen flow rate) is very high THEN 

value of concept C4 (efficiency) is low.   

Inference: The influence of C1 to C4 is negatively strong, so value of Wij is 

negatively strong. 

Rule 2:  IF value of concept C2 (temperature) is low THEN value of 

concept C4 (efficiency) is medium. 

Inference: The influence of C2 to C4 is negatively weak, so value of Wij is 

negatively weak.  

1

1

Wij 

Positively very high  

Influence  

1

1

Ci 

Very low 

1

1

Cj 

Very high 

Figure 4.27: Example of fuzzy rule for an interconnection 
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Rule 3:  IF value of concept C3 (related humidity) is high THEN value of 

concept C4 (efficiency) is low. 

Inference: The influence of C3 to C4 is negatively medium, so value of Wij is 

negatively medium.  

Rule 4:  IF value of concept C1 (hydrogen flow rate) is very low THEN 

value of concept C3 (related humidity) is low. 

Inference: The influence of C1 to C3 is positively weak, so value of Wij is 

positively weak. 

According to the results achieved from voltage and efficiency equation shown in 

chapter3 in the final system design, where it can be used for online control, voltage as a 

system output was removed from FCM due to linearly correlation with efficiency and we 

just put the concepts that can be controlled on alternative designs. It is noteworthy that 

the design on Figure 4.21 also can be used, since capability of control system is feasible 

only by some of the variables in the system which are suitable for real-time control such 

as temperature, related humidity, hydrogen flow rate and efficiency (Figure 4.22). In 

fuzzy cognitive map which describe the system, designer can easily decide to add or 

remove connections. Moreover, for improving the system description and analyses of the 

system performance in different conditions, concept can be added or removed, without 

the reconstruction in whole model of the system. Since the initial design of the system is 

done by extracting information from the system itself, this system can be controlled by 

any operator without expert knowledge. 
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Chapter 5 : CONCLUSION AND FUTURE WORK 

 

 

 

5.1   Conclusion 

 

 In this thesis, we described and experimentally tested a commercial electric 

bicycle powered by a PEM fuel cell to investigate its performance and efficiency in real-

life operations. The polarization curve was obtained by using logged experimental data. 

The stack voltage rapidly declined during the start-up of the system due to the losses, 

which have strongly influenced later stages. The stack voltage also subtly reduces while 

the current increases. This finding proves that improving the stack behaviour during start 

up ameliorates the efficiency in future fuel cells. Furthermore, the overall system 

efficiency was measured throughout normal daily life operations. The results demonstrate 

that similar to internal combustion engines, the efficiency of the fuel cell is not a single 

value and directly depends on the output power of the system. 

However, the efficiency-power curves of fuel cells and internal combustion engines 

showed opposite behaviours. The fuel cell-powered systems are more efficient at lower 

output powers, which is the exact inverse of the behaviour of internal combustion engines. 

The overall system efficiency was calculated to be approximately 35% for close to 

cruising operations, while the stack efficiency varied 43-64% which is significantly 

higher than that of an internal-combustion engine and also in compare to other similar 

research which efficiency of 18.8-38% was recorded to be acceptable.  

Consequently, any improvement in the system's performance to amend the efficiency 

could lead to the growth of the fuel cell systems in transportation. For instance, adding a 

regenerative break system to future designs can significantly increase the system's 
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efficiency, which could also save up to 28% of energy in a similar project involving 

electric buses. 

This study has evaluated modelling and controlling the PEM fuel cell system 

using soft computing methodology including linear regression (LR) and artificial neural 

network (ANN) methods. For model a PEM fuel cell system using related humidity (RH), 

current (I), oxygen flow rate (qO2), temperature (T) and hydrogen flow rate (qH2) as the 

input factors and fuel cell voltage (V) and efficiency (E) as the model output. Although 

linear regression model has good results in predicting stack voltage, it was shown that 

neural networks are more accurate and reliable for predicting fuel cell performance. 

Neural networks are faster than other methods, including linear regression because they 

are global approximators that operate without the need for any formula. In our research 

work, for estimation of fuel cell stack voltage, an ANN model was used to predict the 

commercial electric bicycle powered by PEM fuel cell that was trained by the Levenberg– 

Marquardt back Propagation (LM-BP) algorithm.  

The proposed model is easy to use and computationally fast. Result of the analysis 

shows that the neural network algorithm fits the validation sample better than the linear 

regression model. In addition, using the neural network technique the nonlinear variances 

fit automatically, while linear regression techniques require an explicit design. 

In the last part of this study, a new soft computing approach based on fuzzy 

cognitive map (FCM) was proposed for the first time to describe the behaviour of electric 

bicycle system powered by fuel cell. For automated learning of FCM from data, data 

driven nonlinear hebbian learning (DD-NHL) is proposed. Then fuzzy rules explain the 

cause and effect between concepts. Displaying the whole system behaviour by analytical 

model is extremely difficult. Thus, it is more useful and attractive to consider system 

behaviour in graphical way to show the causal relationship between concepts. One of the 
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superior capabilities of FCM is rule-based fuzzy cognitive map (RB-FCM) potential. 

Since RB-FCM were developed to allow us to predict and analyse the cognitive map 

involved in negotiation process. The main feature of RB-FCM are improving immunity 

and stability to initial state, and flexible casual relation.   

5.2 Contributions   

 

This work has novel approaches in the following aspects: 

 

 We are experimentally compute the actual electric bicycle system's efficiency 

 Regression models were optimized for predicting the output variables (voltage 

and efficiency).   

 FCM as a novel combination of fuzzy logic (FL) and neural network (NN) 

approaches was utilized for the first time in this field. The novelty of this model 

make it possible to predict the whole system variables.   

 This approach can be further developed to allow control this system in different 

condition  

 

5.3     Future work 

 

Based on the research work in my dissertation regarding a two-wheel fuel cell 

system have motivated me to a further research in modelling and nonlinear controlling 

design related to fuel cell system and other renewable energy systems. The potential for 

future work on fuel cell vehicle design will be proposed in the following directions: 

 Any improvement in the system's performance to amend the efficiency could lead 

to the growth of the fuel cell systems in transportation. For instance, adding a 

regenerative break system to future designs can significantly increase the system's 
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efficiency, which could also save up to 28% of energy in a similar project 

involving electric buses. 

 A prediction algorithm with more variables can be considered in future work to 

increase the accuracy of the model. 

 This thesis has presented some rules for decision-making to control the electric 

bicycle; in terms of higher-level optimization of electric bicycle efficiency and 

increase the lifetime of component. The corresponding controller can be designed 

in future.  
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Appendix A 

 

Electric Bicycle and Experimental Device 

 

A.1 Electric Bicycle 

 

An electric bicycle or e-bike becoming increasingly popular in many countries due to 

cheap and efficient mode of transportation. Figure below shows an electric bicycle uses 

a low-power source to turn a small motor located at the hub to the wheel. In electric 

bicycle, for maximize power to the wheel the rider can pedal in combination with the 

power.  
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A.2  System Description 

 

The complete equipment consists of the Fuel Cell Stack with one cooling and one reaction 

air blower, the necessary auxiliaries to manage the hydrogen and the Electronic Control 

Unit (ECU). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item Description 

A PEM- fuel cell stack 

B Electronic Control Unit 

C H2 Auxiliary box 

1 Cooling Air Blower 

2 Reaction Air Blower 

3 Power Output Terminal + 

4 Power Output Terminal - 

A 

B 

C 

1

2 

3 4 
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Item Description 

A PEM- fuel cell stack 

B Electronic Control Unit 

2 Reaction Air Blower 

5 Hydrogen auxiliary pump (H2 out) 

6 H2 inlet tube connector 

7 H2 purging tube connector 

A 

2

5

B 

6

7
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Item Description 

C H2 Auxiliary box 

D Signal Wiring 

1 Cooling Air Blower 

8 External connection cables 

C 

8

1 
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Item Description 

9 
Hydrogen main valve 

(H2 in) 

10 
Hydrogen purging valve 

(H2 out) 

11 
Hydrogen pressure 

sensor 

5 
Hydrogen auxiliary 

pump (H2 out) 

Item Description 

13 H2 inlet tube connector 

14 H2 purging tube connector 

15 H2 auxiliary cables 

11 

10 9 

5 

13 14 15 
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Item Description 

3 Power output terminal + 

4 Power output terminal - 

16 
Serial communication port 

(RS232) 

17 CAN Bus port 

18 

 
Short circuit on/off switch 

19 Start/Stop switch 

20 
Status LED’s (red, yellow & 

green) 

Item Description 

21 Signal cable connector 

22 Power On/Off switch 

23 DC In cable + 

24 DC In cable - 

19 18 

20 16 17 

3 4 

21 

22

2324
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A.3 Electric Connection 

 

If there is made any modification to the stack or ECU without the written consent of the 

manufacturer, MES does not warrant the correct function of the fuel cell system. 

 

A.3.1   Connection of stack and ECU 

 

First the connection between the ECU (B) and the auxiliary devices of the stacks (e.g. 

blowers, valves) has to be established. This is done by connecting the 42 pole AMP® 

connector (19) that unites all the signal cables (C) from the stack to its connector on the 

back side of the ECU. 
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Contact Description 

27 Temperature sensor 1 + 

25  Temperature sensor 2 + 

41 
Temperature sensor 3 + ( no implemented on 

mDEA0.xx) 

33 Temperature sensor Ground 

4 Hydrogen Pressure Supply + 

17 Hydrogen Pressure Supply - 

34 Hydrogen Pressure Signal 

4 Ambient sensor Supply + 

17 Ambient sensor Supply - 

21 Ambient RH 

8 Ambient Temperature 

1 Cooling blower power + 

15 Cooling blower power pwm - 

30 Cooling blower gnd 

35 Cooling air blower fault signal 

28 Reaction air blower + supply 

31 Reaction air blower - supply 

42 Reaction air blower PWM 

19 Reaction air blower fault signal 

14 Hydrogen main, auxiliary & purging valve + supply 

13 Hydrogen main valve 

12 Hydrogen purging valve 

24 Hydrogen auxiliary pump 

16 External battery + 

3 External battery - 
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The connection of the power cables between the Fuel Cell Stack (A) and the ECU (B) is 

made according to the following scheme: 

 

 

 

 

 

 

 

 

Connect the DC In cable + (23) to the positive (+) power output terminal (5) of 

the stack and the DC In cable – (24) to the negative (-) power output terminal (6). To do 

this you have to unscrew the M6 brass nut of the power output terminals of the stack, put 

the cable lug over the brass bolt and fix it with the M6 brass nut. In principle this 

connection is already done but be absolutely sure that the connections are made as 

described above. 
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Appendix B 

 

 

Flow charts 

 

B.1 State machine flow chart 

 

The FC control is always in one of seven different states of operation. Sideways a 

representation of the possible changes of the state. 
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B.2 Start procedure flow chart 

 

In the following flow chart is reported the possible logic sequences that bring to 

the start of the system: 
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B.3 Stop procedure flow chart 

 

In the following flow chart is reported the possible logic sequences that bring to 

the stop of the system: 
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Appendix C 

 

 

Fuel cell supervisor H2 software and data collection 

 

Install the program Fuel Cell Supervisor H2 for collect the data. Figure below 

show the software of fuel cell supervisor H2.  
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C.1 Fuel cell supervisor H2 

 

In this program the operator can: 

 View the general state of each part of the system 

 Check the state of the system 

 Check the elapsed total operation time of the fuel cell system 

 Monitor the control flags of the ECU software 

 Monitor the state of the alarm level of the ECU software 

 

Figure below show the status bar:  
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C.1.1 State of the system 

 

In this box the operator can read the actual operational status of the Fuel Cell 

System control and the already elapsed total operation time of the fuel cell system: 

 

 

 

 

 

 

 

 

 

 

The picture above shows the system in HIDLE state (the control is active, but the 

fuel cell system is stopped). Other possible state are: 

 

Operational status 

of the system 

control 

Elapsed total operation 

time of the fuel cell 

system 

The control is active 

and the fuel cell 

system is executing 

the starting phase  

The control is active 

and the fuel cell is 

executing the 

stopping phase 

The control is active 

and the fuel cell 

system is in RUN 

phase 

The control is active 

and the fuel cell 

system has been 

stopped, because a 

security shut off 

condition has occurred 

The control is active 

and the fuel cell 

system has been 

realizing a power 

recovery procedure 
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C.1.2 System survey area 

 

In this area the operator can check the general state of operation of the Fuel Cell 

System; it changes its configuration according to the size of the connected fuel cell 

system. The configuration for the single fuel cell stack systems is shown here: 
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C.1.3 Data Collection 

 

Data collected by Fuel cell supervisor H2 software in excel shown in figure below:  
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Sample 

Number 

T 

  ｰC 

HR_   

% 

Vload     

V 

Iload   

A 

P Load 

    w 

Effi  H2  

flow rate  

O2  

flow rate 

1 35.3 53.1 16.6 0.3 6.64 51.6 3.42015E-05 1.71007E-05 

2 35.3 53.1 16.6 0.4 6.64 51.6 4.5602E-05 2.2801E-05 

3 35.2 53.2 16.6 0.3 6.64 51.6 3.42015E-05 1.71007E-05 

4 35.3 53.1 16.6 0.4 6.64 51.6 4.5602E-05 2.2801E-05 

5 35.2 53 16.6 0.4 6.64 51.6 4.5602E-05 2.2801E-05 

6 35.3 53.1 16.6 0.4 4.98 51.6 4.5602E-05 2.2801E-05 

7 35.3 53 16.5 0.4 6.6 51.6 4.5602E-05 2.2801E-05 

8 35.2 53.1 16.5 0.4 4.95 51.6 4.5602E-05 2.2801E-05 

9 35.1 53.1 16.6 0.4 4.98 51.6 4.5602E-05 2.2801E-05 

10 35.1 53.1 16.6 0.4 6.64 51.6 4.5602E-05 2.2801E-05 

11 35.2 53.1 16.5 0.3 4.95 51.6 3.42015E-05 1.71007E-05 

12 35.2 53 16.6 0.4 6.64 51.6 4.5602E-05 2.2801E-05 

13 35.1 53.1 16.5 0.4 9.9 51.6 4.5602E-05 2.2801E-05 

14 35.4 53 16.3 0.4 9.78 51.29 4.5602E-05 2.2801E-05 

15 35.2 53.1 16.3 0.4 8.15 50.98 4.5602E-05 2.2801E-05 

17 35.1 53.1 15.9 2.6 23.85 49.45 0.000296413 0.000148206 

18 35.1 53 15.7 1 14.13 49.45 0.000114005 5.70025E-05 

19 35.3 53.1 14.5 1 13.05 49.14 0.000114005 5.70025E-05 

20 35.3 53 14.5 1.3 18.85 46.99 0.000148206 7.41032E-05 

21 35.2 53 15.4 1.2 23.1 48.53 0.000136806 6.8403E-05 

22 35.2 53 15.6 1.2 18.72 48.22 0.000136806 6.8403E-05 

23 35.2 52.9 15.4 1.2 16.94 47.6 0.000136806 6.8403E-05 

24 35.1 53 15.4 1.4 16.94 48.83 0.000159607 7.98035E-05 

25 35.3 53 15 1.4 31.5 46.99 0.000159607 7.98035E-05 

27 35.2 52.9 14.9 4.5 50.66 46.38 0.000513022 0.000256511 

28 35.3 52.8 15.8 2.1 33.18 50.37 0.00023941 0.000119705 

29 35.3 52.9 17 0.4 1.7 53.13 4.5602E-05 2.2801E-05 

30 35.3 52.8 16.6 0.2 6.64 53.13 2.2801E-05 1.14005E-05 

31 35.3 52.9 16.6 0.3 6.64 52.21 3.42015E-05 1.71007E-05 

32 35.4 52.8 16.6 0.4 3.32 51.9 4.5602E-05 2.2801E-05 

33 35.5 52.8 16.5 0.4 6.6 51.9 4.5602E-05 2.2801E-05 

34 35.5 52.9 16.5 0.4 4.95 51.6 4.5602E-05 2.2801E-05 

35 35.5 52.9 16.6 0.3 6.64 51.9 3.42015E-05 1.71007E-05 

36 35.5 52.9 16.5 0.4 6.6 51.29 4.5602E-05 2.2801E-05 

37 35.3 52.9 16.6 0.4 6.64 51.29 4.5602E-05 2.2801E-05 

38 35.4 53 15.9 1.5 4.77 48.22 0.000171007 8.55037E-05 

39 35.5 53.1 15.8 1.5 20.54 49.14 0.000171007 8.55037E-05 

40 35.4 53.1 15.6 1 15.6 49.45 0.000114005 5.70025E-05 

41 35.5 53.1 15.6 1 14.04 50.68 0.000114005 5.70025E-05 

42 35.5 53.1 16.6 0.5 4.98 50.68 5.70025E-05 2.85012E-05 

43 35.4 53.2 16.6 0.3 6.64 51.6 3.42015E-05 1.71007E-05 

44 35.4 53.2 16.8 0.4 6.72 51.6 4.5602E-05 2.2801E-05 

45 35.3 53.2 16.6 0.4 6.64 51.6 4.5602E-05 2.2801E-05 
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46 35.5 53.3 16.8 0.4 5.04 51.6 4.5602E-05 2.2801E-05 

47 35.4 53.3 16.6 0.3 6.64 51.6 3.42015E-05 1.71007E-05 

48 35.4 53.3 16.5 0.4 4.95 51.6 4.5602E-05 2.2801E-05 

49 35.3 53.3 16.5 0.4 6.6 51.6 4.5602E-05 2.2801E-05 

52 35.5 53.4 16.6 0.4 4.98 51.9 4.5602E-05 2.2801E-05 

53 35.5 53.3 16 0.4 22.4 49.75 4.5602E-05 2.2801E-05 

54 35.4 53.4 16 0.4 3.2 49.75 4.5602E-05 2.2801E-05 

55 35.3 53.4 16.4 0.4 6.56 51.29 4.5602E-05 2.2801E-05 

57 35.3 53.5 16.5 0.4 8.25 51.29 4.5602E-05 2.2801E-05 

58 35.5 53.5 16.5 0.4 4.95 51.6 4.5602E-05 2.2801E-05 

59 35.3 53.4 15.9 1.1 41.34 51.29 0.000125405 6.27027E-05 

60 35.3 53.4 13.5 3.1 35.1 43.3 0.000353415 0.000176708 

62 35.3 53.4 13.3 4.4 47.88 40.23 0.000501622 0.000250811 

63 35.3 53.5 13.5 4.9 78.3 42.08 0.000558624 0.000279312 

64 35.5 53.5 13.5 3.8 66.15 42.08 0.000433219 0.000216609 

65 35.5 53.4 13.5 3.8 55.35 42.08 0.000433219 0.000216609 

66 35.5 53.5 13.5 3.8 55.35 42.08 0.000433219 0.000216609 

67 35.5 53.5 13.5 4 59.4 42.38 0.00045602 0.00022801 

68 35.5 53.5 13.4 4.2 54.94 41.46 0.000478821 0.00023941 

69 35.5 53.5 13.2 4 48.84 41.15 0.00045602 0.00022801 

70 35.5 53.6 13.2 3.9 48.84 41.77 0.000444619 0.00022231 

75 36 54.1 9.1 11 107.38 29.79 0.001254055 0.000627027 

158 35.5 51.7 17.1 0.2 3.42 54.05 2.2801E-05 1.14005E-05 

159 35.4 51.7 17.1 0.3 5.13 53.13 3.42015E-05 1.71007E-05 

160 35.3 51.7 17 0.3 5.1 53.13 3.42015E-05 1.71007E-05 

161 35.3 51.7 16.9 0.4 6.76 53.13 4.5602E-05 2.2801E-05 

162 35.3 51.8 16.9 0.4 6.76 52.83 4.5602E-05 2.2801E-05 

163 35.2 51.7 16.9 0.4 5.07 52.83 4.5602E-05 2.2801E-05 

164 35.2 51.8 16.9 0.4 8.45 52.83 4.5602E-05 2.2801E-05 

165 35.3 51.8 16.9 0.3 5.07 52.83 3.42015E-05 1.71007E-05 

166 35.1 51.7 16.9 0.4 1.69 52.83 4.5602E-05 2.2801E-05 

167 35 51.8 16.9 0.3 6.76 53.13 3.42015E-05 1.71007E-05 

168 35.1 51.8 16.9 0.3 5.07 52.83 3.42015E-05 1.71007E-05 

169 35.1 51.9 17 0.3 6.8 52.83 3.42015E-05 1.71007E-05 

170 35 51.9 16.9 0.3 5.07 52.83 3.42015E-05 1.71007E-05 

171 35 51.9 16.9 0.4 8.45 52.83 4.5602E-05 2.2801E-05 

172 35 51.8 15.9 10.5 190.8 42.38 0.001197052 0.000598526 

173 35 51.9 10.2 12.3 122.4 31.33 0.001402261 0.000701131 

174 35 51.9 12.4 7.8 147.56 37.78 0.000889239 0.000444619 

176 35.3 52 17.6 0.1 1.76 54.98 1.14005E-05 5.70025E-06 

177 35.1 52.1 17.4 0.1 1.74 54.67 1.14005E-05 5.70025E-06 

179 35.4 52.4 13 4.6 67.6 43 0.000524423 0.000262211 

181 35.3 52.6 14.5 3.4 52.2 45.45 0.000387617 0.000193808 

182 35.3 52.9 14.4 3.4 50.4 45.45 0.000387617 0.000193808 

183 35.5 52.9 13.9 3.7 56.99 44.53 0.000421818 0.000210909 

187 35.5 53.3 9 14.4 136.8 29.48 0.001641672 0.000820836 

198 36.7 55.1 17 0.4 28.9 53.44 4.5602E-05 2.2801E-05 

Univ
ers

ity
 of

 M
ala

ya



 

170 

 

199 36.5 55.1 16.9 0.5 5.07 52.83 5.70025E-05 2.85012E-05 

200 36.5 55.1 16.3 0.5 29.34 51.29 5.70025E-05 2.85012E-05 

201 36.6 55.1 16.2 1 17.82 50.98 0.000114005 5.70025E-05 

202 36.7 55 16 1 17.6 50.06 0.000114005 5.70025E-05 

203 36.8 54.9 15.9 1.3 22.26 50.06 0.000148206 7.41032E-05 

204 36.7 54.6 15.9 1.6 25.44 49.14 0.000182408 9.1204E-05 

205 36.9 54.6 15.6 1.7 31.2 48.83 0.000193808 9.69042E-05 

206 36.6 54.4 13.9 3.8 41.7 43 0.000433219 0.000216609 

207 36.6 53.9 14.4 3.5 63.36 44.53 0.000399017 0.000199509 

208 36.6 53.7 14.4 3.6 54.72 44.84 0.000410418 0.000205209 

209 36.5 53.5 14.3 4.4 70.07 44.53 0.000501622 0.000250811 

210 36.7 53.2 14.4 4.4 70.56 44.23 0.000501622 0.000250811 

214 36.8 52.7 9.5 13.8 143.45 28.56 0.001573269 0.000786634 

215 36.8 52.6 9.6 14.4 130.56 28.87 0.001641672 0.000820836 

223 37.4 53.6 14.8 3.3 48.84 46.68 0.000376216 0.000188108 

225 37.4 53.7 9.9 13.3 141.57 31.63 0.001516266 0.000758133 

227 37.7 53.8 8.9 14.6 127.27 29.79 0.001664473 0.000832236 

228 38.1 53.9 9.6 14.5 150.72 29.48 0.001653072 0.000826536 

229 38 54 9.4 14.8 142.88 29.18 0.001687274 0.000843637 

281 39.7 52.7 17.6 0.3 3.52 54.98 3.42015E-05 1.71007E-05 

282 39.7 53.1 16.4 3.4 4.92 50.98 0.000387617 0.000193808 

284 39.7 53.5 16.6 3 14.94 52.21 0.000342015 0.000171007 

285 39.8 53.4 16.4 1.5 26.24 52.21 0.000171007 8.55037E-05 

286 39.9 53.3 16.4 1.8 34.44 51.29 0.000205209 0.000102604 

287 39.7 53.1 15.6 4.2 84.24 46.99 0.000478821 0.00023941 

288 39.6 52.8 9.6 14.9 147.84 30.71 0.001698674 0.000849337 

289 39.4 52.6 9.7 14.1 139.68 30.41 0.00160747 0.000803735 

290 39.4 52.6 9.3 14.9 139.5 30.41 0.001698674 0.000849337 

291 39.4 52.4 9.2 15.1 143.52 29.18 0.001721475 0.000860738 

292 39.6 52.2 9.5 15.6 161.5 28.56 0.001778478 0.000889239 

293 39.5 52 8.8 15.7 136.4 29.79 0.001789878 0.000894939 

347 39.5 50.9 18 0.6 3.6 53.75 6.8403E-05 3.42015E-05 

348 39.4 51 17.7 0.3 5.31 54.98 3.42015E-05 1.71007E-05 

349 39.7 51 16.3 2.1 44.01 50.37 0.00023941 0.000119705 

350 39.5 51 15.4 3.1 58.52 47.91 0.000353415 0.000176708 

351 39.5 51 14.8 4.1 66.6 46.07 0.00046742 0.00023371 

352 39.4 51 13.8 4.7 64.86 44.53 0.000535823 0.000267912 

353 39.4 51.1 13.9 5.5 86.18 43.92 0.000627027 0.000313514 

354 39.4 51.1 13.8 5.5 85.56 42.69 0.000627027 0.000313514 

355 39.4 51.1 13.5 6.3 94.5 41.15 0.000718231 0.000359116 

356 38.9 51 13.3 6.7 85.12 41.15 0.000763833 0.000381917 

357 38.9 51 13.4 6.2 75.04 42.08 0.000706831 0.000353415 

358 38.9 50.9 13.2 6 85.8 42.08 0.00068403 0.000342015 

359 38.9 50.8 13.2 5.8 85.8 42.38 0.000661229 0.000330614 

360 38.4 50.6 13 13.4 184.6 36.55 0.001527667 0.000763833 

361 38.4 50.6 10.2 14.2 138.72 31.33 0.001618871 0.000809435 

362 38.3 50.6 9.8 15.1 140.14 28.87 0.001721475 0.000860738 
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363 38.3 50.6 9.6 15.3 144.96 30.41 0.001744276 0.000872138 

364 38.4 50.6 9.6 15.7 149.76 29.48 0.001789878 0.000894939 

366 38.4 50.5 8.4 16 142.8 59.58 0.00182408 0.00091204 

426 38.9 50.3 17.1 0.9 13.68 53.44 0.000102604 5.13022E-05 

427 38.5 50.4 16.7 0.9 13.36 52.52 0.000102604 5.13022E-05 

428 38.7 50.5 16.8 1.1 18.48 52.21 0.000125405 6.27027E-05 

429 38.7 50.6 15.1 1.1 16.61 47.6 0.000125405 6.27027E-05 

430 38.5 50.7 15.9 2.1 28.62 50.06 0.00023941 0.000119705 

431 38.5 50.8 15.9 2.1 33.39 50.06 0.00023941 0.000119705 

432 38.5 51 15.9 2.1 34.98 49.45 0.00023941 0.000119705 

433 38.7 51 15.7 2.5 39.25 48.83 0.000285012 0.000142506 

434 38.4 51 15.4 2.9 43.12 48.22 0.000330614 0.000165307 

435 38.5 51 14.1 5.2 64.86 43.61 0.000592826 0.000296413 

436 38.6 50.9 14.2 5.4 88.04 43.92 0.000615627 0.000307813 

437 38.6 50.8 12.6 7.4 99.54 39.93 0.000843637 0.000421818 

438 38.3 50.6 13.5 6.1 78.3 41.77 0.00069543 0.000347715 

439 38.3 50.5 13.5 5.9 78.3 40.85 0.000672629 0.000336315 

440 38.2 50.3 12.7 5.9 68.58 38.39 0.000672629 0.000336315 

442 38.1 50 12.4 7.9 106.64 39.31 0.000900639 0.00045032 

443 37.9 49.8 12.1 12 164.56 36.24 0.00136806 0.00068403 

444 38.1 49.8 11.8 10.3 113.28 36.24 0.001174251 0.000587126 

445 37.9 49.7 11.9 9.2 110.67 36.86 0.001048846 0.000524423 

446 37.9 49.7 12 9.2 114 37.47 0.001048846 0.000524423 

447 37.8 49.5 11.9 9 111.86 38.08 0.001026045 0.000513022 

448 37.7 49.7 12.1 8.8 113.74 38.39 0.001003244 0.000501622 

449 37.9 49.6 12.4 8.8 106.64 39 0.001003244 0.000501622 

450 37.8 49.5 12.8 7.9 102.4 39 0.000900639 0.00045032 

451 37.7 49.6 12.6 7.8 103.32 39.62 0.000889239 0.000444619 

452 37.7 49.5 12.6 6.4 78.12 39.62 0.000729632 0.000364816 

453 37.6 49.5 14.6 7.6 94.9 45.76 0.000866438 0.000433219 

454 37.7 49.5 14.6 6 86.14 46.07 0.00068403 0.000342015 

455 37.5 49.5 11.5 11.7 106.95 34.71 0.001333858 0.000666929 

456 37.5 49.4 12.7 8.8 119.38 40.85 0.001003244 0.000501622 

457 37.7 49.3 13.2 8.3 108.24 40.54 0.000946241 0.000473121 

458 37.7 49.3 12.9 7.9 109.65 41.15 0.000900639 0.00045032 

459 37.4 49.2 12.9 8.2 95.46 40.54 0.000934841 0.00046742 

460 37.6 49.2 12.9 8.1 95.46 40.54 0.00092344 0.00046172 

461 37.4 49.3 13 8.1 96.2 40.54 0.00092344 0.00046172 

462 37.5 49.3 12.5 7.7 98.75 40.85 0.000877838 0.000438919 

463 37.4 49.2 12.3 8.2 97.17 38.7 0.000934841 0.00046742 

464 37.2 49.2 12.6 9.3 120.96 38.7 0.001060246 0.000530123 

465 37.4 49.2 12.3 8.6 111.93 39 0.000980443 0.000490221 

466 37.2 49.1 12.3 8.4 105.78 40.23 0.000957642 0.000478821 

467 37.4 49.1 12.3 9 111.93 38.7 0.001026045 0.000513022 

468 37.1 49.2 12.3 8.9 105.78 39.31 0.001014644 0.000507322 

470 37.1 49.1 16 2.2 36.8 49.75 0.000250811 0.000125405 

471 37.1 49.2 15.8 2.4 42.66 49.14 0.000273612 0.000136806 
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472 37.2 49.1 15.6 2.8 43.68 48.83 0.000319214 0.000159607 

473 37 49.2 15.7 2.6 42.39 48.53 0.000296413 0.000148206 

474 37.2 49.3 15.3 2.7 41.31 48.22 0.000307813 0.000153907 

475 37 49.4 15.6 2.7 39 48.22 0.000307813 0.000153907 

476 37.1 49.3 15.4 2.7 44.66 47.91 0.000307813 0.000153907 

477 37.1 49.4 15.1 2.8 40.77 48.22 0.000319214 0.000159607 

478 37 49.4 15.1 2.6 42.28 48.22 0.000296413 0.000148206 

479 37.1 49.4 15 4.1 79.5 46.68 0.00046742 0.00023371 

480 37.1 49.4 13.6 5.1 66.64 44.23 0.000581425 0.000290713 

481 37.1 49.4 13.6 6.3 85.68 42.69 0.000718231 0.000359116 

482 37.1 49.4 14.1 6 90.24 43 0.00068403 0.000342015 

483 37.1 49.4 13.5 5.7 72.9 43 0.000649828 0.000324914 

484 37.1 49.4 14 5.5 77 43.3 0.000627027 0.000313514 

485 37.1 49.5 13.9 5.8 76.45 43 0.000661229 0.000330614 

486 37.2 49.5 12.7 5.8 69.85 39.62 0.000661229 0.000330614 

487 37.2 49.7 12.2 7 92.72 38.7 0.000798035 0.000399017 

488 37.4 50 12.8 7.5 90.88 39.93 0.000855037 0.000427519 

489 37.4 50.2 12.5 7.8 87.5 39.93 0.000889239 0.000444619 

490 37.5 50.4 12.5 8 93.75 39.93 0.00091204 0.00045602 

491 37.7 50.7 12.3 8.5 111.93 38.7 0.000969042 0.000484521 

493 37.7 50.9 13 8.4 107.9 42.69 0.000957642 0.000478821 

494 38 51.2 13.3 9.2 129.01 41.15 0.001048846 0.000524423 

495 38 51.5 12.6 9.8 128.52 39.93 0.001117249 0.000558624 

496 38.2 51.6 12.1 10.9 140.36 38.39 0.001242654 0.000621327 

497 38.2 51.6 11.8 11.6 136.88 37.16 0.001322458 0.000661229 

498 38.4 51.7 12 11.6 135.6 38.08 0.001322458 0.000661229 

499 38.4 51.7 12.3 10.1 132.84 37.47 0.00115145 0.000575725 

500 38.5 51.6 12.3 10.8 124.23 37.47 0.001231254 0.000615627 

501 38.9 51.5 12 10.1 129.6 37.47 0.00115145 0.000575725 

502 38.7 51.6 12 11.5 133.2 37.47 0.001311057 0.000655529 

503 38.9 51.5 11.8 11.1 138.06 37.16 0.001265455 0.000632728 

504 38.9 51.6 11.7 11.6 135.72 37.16 0.001322458 0.000661229 

505 39.2 51.6 11.7 11.8 131.04 35.93 0.001345259 0.000672629 

506 39.4 51.6 11.3 12 134.47 35.63 0.00136806 0.00068403 

507 39.4 51.7 11.6 12 135.72 35.63 0.00136806 0.00068403 

508 39.5 51.8 11.3 12 143.51 35.93 0.00136806 0.00068403 

509 39.6 51.8 11.4 12.6 144.78 35.01 0.001436463 0.000718231 

510 39.8 51.9 11.5 12.6 135.7 36.55 0.001436463 0.000718231 

511 39.8 52.2 10.5 12.2 135.45 35.01 0.001390861 0.00069543 

512 39.9 52.3 10.8 13.5 137.16 35.01 0.001539067 0.000769534 

513 40.1 52.5 11 13.3 134.2 34.71 0.001516266 0.000758133 

570 42.1 51.1 14.6 0.1 27.74 43.61 1.14005E-05 5.70025E-06 

574 42.1 51.1 16.6 2.2 34.86 51.6 0.000250811 0.000125405 

575 42.1 51.2 15.3 3.4 39.78 46.99 0.000387617 0.000193808 

578 42.1 51.6 13.5 4.2 60.75 45.76 0.000478821 0.00023941 

579 41.9 51.7 15.3 4.7 58.14 46.68 0.000535823 0.000267912 

580 42.3 51.8 12 4.7 62.4 37.78 0.000535823 0.000267912 
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581 42.3 51.7 12.5 10.4 131.25 38.7 0.001185652 0.000592826 

582 41.8 51.6 11.8 10 114.46 36.24 0.00114005 0.000570025 

584 41.8 51.1 11.5 11.3 135.7 35.93 0.001288256 0.000644128 

585 41.8 50.7 11.5 10.8 124.2 35.93 0.001231254 0.000615627 

586 41.8 50.5 11.6 11.4 124.12 36.86 0.001299657 0.000649828 

587 41.7 50.5 11.4 12 134.52 35.01 0.00136806 0.00068403 

588 41.4 50.2 11 12.2 137.5 35.01 0.001390861 0.00069543 

589 41.4 50 10.9 13.2 139.52 34.71 0.001504866 0.000752433 

590 41.4 49.7 10.5 13.5 139.65 33.48 0.001539067 0.000769534 

591 41.3 49.4 9.6 16.4 127.68 30.71 0.001869682 0.000934841 

592 41.2 49.4 10 16.4 164 30.41 0.001869682 0.000934841 

645 40.9 48.8 17.8 0.8 1.78 54.05 9.1204E-05 4.5602E-05 

646 40.8 48.8 17.8 0.2 3.56 55.9 2.2801E-05 1.14005E-05 

647 40.9 49 17.8 1.2 24.92 52.83 0.000136806 6.8403E-05 

648 40.8 49 15.7 3.1 43.96 49.14 0.000353415 0.000176708 

649 40.8 49 16.3 2 40.75 50.98 0.00022801 0.000114005 

650 40.8 49 15.7 2.9 50.24 48.83 0.000330614 0.000165307 

651 40.8 48.9 15.3 3.8 71.91 47.91 0.000433219 0.000216609 

652 41 48.9 15 4.4 70.5 45.76 0.000501622 0.000250811 

653 40.5 48.8 15 4.4 70.5 45.15 0.000501622 0.000250811 

654 40.5 48.6 13.4 4.4 50.92 41.77 0.000501622 0.000250811 

655 40.5 48.5 12.9 7.7 153.51 39 0.000877838 0.000438919 

656 40.2 48.4 13.2 9.9 146.52 41.77 0.001128649 0.000564325 

657 40.2 48.4 13.2 7.2 89.76 41.77 0.000820836 0.000410418 

658 40.1 48.2 14.1 5.9 90.24 43.61 0.000672629 0.000336315 

659 39.8 48.1 14.2 5.3 79.52 44.53 0.000604226 0.000302113 

660 39.8 48 13.9 6.1 75.06 42.69 0.00069543 0.000347715 

661 39.6 48 13.8 5.8 88.32 43 0.000661229 0.000330614 

662 39.6 48 13.5 7.7 106.65 41.15 0.000877838 0.000438919 

663 39.4 47.9 12.4 9.2 112.84 39 0.001048846 0.000524423 

664 39.4 47.9 11.8 10.5 125.08 36.86 0.001197052 0.000598526 

665 39.4 47.7 11.6 10.9 122.96 36.24 0.001242654 0.000621327 

666 39.1 47.8 11.1 11.3 117.66 35.63 0.001288256 0.000644128 

668 38.9 47.6 11.3 11.3 134.47 36.24 0.001288256 0.000644128 

669 38.9 47.7 11.1 11.9 126.54 35.01 0.001356659 0.00067833 

670 38.9 47.7 11.1 12.1 144.3 35.32 0.00137946 0.00068973 

672 38.9 47.7 11.1 12.2 129.87 34.4 0.001390861 0.00069543 

673 38.5 48 18 0.2 3.6 55.59 2.2801E-05 1.14005E-05 

674 38.5 48.1 17.8 0.2 3.56 55.59 2.2801E-05 1.14005E-05 

675 38.4 48.4 17.6 1.3 1.76 54.05 0.000148206 7.41032E-05 

676 38.6 48.6 15.9 1.3 34.98 49.45 0.000148206 7.41032E-05 

677 38.7 48.7 17.2 2.8 15.48 53.75 0.000319214 0.000159607 

678 38.5 48.8 16.6 0.8 33.2 51.9 9.1204E-05 4.5602E-05 

679 38.4 48.8 16.4 1.5 22.96 51.9 0.000171007 8.55037E-05 

680 38.4 48.7 16.4 2.1 41 50.98 0.00023941 0.000119705 

681 38.5 48.8 16.2 2.1 34.02 50.37 0.00023941 0.000119705 

682 38.6 48.7 15.6 2.3 32.76 48.83 0.000262211 0.000131106 
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683 38.6 48.7 15.7 2.7 37.68 49.75 0.000307813 0.000153907 

684 38.5 48.6 14 4.5 58.8 44.23 0.000513022 0.000256511 

685 38.4 48.4 14.6 4.1 61.32 45.76 0.00046742 0.00023371 

686 38.3 48.2 15.2 4.1 57.76 47.3 0.00046742 0.00023371 

687 38.2 48.1 15 3.4 52.5 46.68 0.000387617 0.000193808 

688 38.1 47.9 14.7 3.6 52.92 46.68 0.000410418 0.000205209 

689 38.1 47.6 14.5 4.2 59.45 44.53 0.000478821 0.00023941 

690 38 47.6 14.5 4.6 58 44.53 0.000524423 0.000262211 

691 37.9 47.5 14.5 4.2 60.9 45.45 0.000478821 0.00023941 

692 37.8 47.4 14.4 4.2 61.92 45.76 0.000478821 0.00023941 

693 38 47.3 14.7 6.5 102.9 44.23 0.000741032 0.000370516 

694 37.7 47.3 14.2 4.9 68.16 44.23 0.000558624 0.000279312 

695 37.7 47.3 14.2 5 65.32 44.23 0.000570025 0.000285012 

696 37.7 47.2 14.1 4.9 66.27 43.3 0.000558624 0.000279312 

697 37.5 47.1 14.1 4.7 60.63 43.92 0.000535823 0.000267912 

698 37.4 47.1 14.2 4.7 61.06 44.53 0.000535823 0.000267912 

699 37.1 47.1 14.2 4.7 65.32 45.15 0.000535823 0.000267912 

700 37 47 12.8 4.5 61.44 39.93 0.000513022 0.000256511 
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