ABSTRACT

With the exponential growth in the number of automobiles in Malaysia in recent years, the problem generated by waste tyres has also increased. Therefore, incorporating waste tyres as an additive in road pavement might be an option to overcome the increase in the number of waste tyres as well as address some of the pavement problems, such as rutting deformation.

Crumb rubber modified binder is acknowledged to provide better rutting resistance. Many research works have been implemented on the effects of chemical additives to further increase the performance of crumb rubber modified binders. Recent studies have shown that the properties of crumb rubber modified binders can be improved by adding crosslinking agents, such as trans-polyoctenamer (TOR) for which the main function is to activate the rubber-bitumen interaction and improve crosslinking.

This study was conducted to determine a method to improve the rutting resistance of SMA 20 bituminous mixtures. Accordingly, different percentages of crumb rubber were added to bitumen using different blending methods (continuous blend and terminal blend) in order to produce different concentrations of crumb rubber modified binder. In addition, a crosslinking agent, namely, trans-polyoctenamer (TOR), was introduced in the crumb rubber modified binder with the intention of further improving the binder properties and minimizing the rutting problem.

In order to analyse the performance of the binders and mixtures as well as to evaluate the relationship of the rutting characteristics between them, a series of binder tests and bituminous mixture tests were performed. In the final analysis, the author found that the binder tests were not adequate to evaluate the rutting characteristics of bituminous mixtures. For instance, in the case of the crumb rubber modified binder prepared using
the terminal blend method, most of the binder tests show that the terminal blend binder displays the best performance; however, in respect of the bituminous mixtures it became worse.

To further study the creep behaviour (rutting characteristics) of bituminous mixtures, the dynamic creep test was performed using the universal testing machine (UTM) at different temperatures and stress levels. Finally, the creep behaviour of the specimens was estimated using the Zhou three-stage creep model. The results show that crumb rubber and TOR significantly affected the rutting parameters, especially at high stress levels and temperatures. Moreover, based on the Zhou model, it was concluded that resistance to permanent deformation (rutting resistance) was improved by the application of crumb rubber and TOR.

In addition, multiple linear regression (stepwise method) was used for statistical analysis for which the main objective was to develop an equation (regression model) that could be used for predicting the rutting of the mixtures for all factors engaged. A secondary purpose was to use regression analysis as a means of explaining the causal relationship among the factors (significant level).
ABSTRAK

Dengan pertumbuhan yang pesat dalam bilangan kenderaan di Malaysia pada tahun-tahun kebelakangan ini, masalah yang dihasilkan oleh tayar sisa juga telah meningkat. Oleh itu, dengan tayar terpakai sebagai bahan tambahan dalam turapan jalan raya mungkin menjadi satu pilihan untuk mengatasi peningkatan dalam jumlah tayar sisa serta menyelesaikan masalah jalan raya, seperti aluran ubah bentuk.

Crumb getah diubahsuai pengikat diakui untuk menyediakan rintangan aluran yang lebih baik. Banyak kerja-kerja penyelidikan telah dilaksanakan pada kesan bahan tambahan kimia untuk meningkatkan lagi prestasi remah getah pengikat diubah suai. Kajian terbaru menunjukkan bahawa sifat-sifat remah getah diubahsuai pengikat boleh diperbaiki dengan menambah ejen silang, seperti trans-polyoctenamer (TOR) yang mana fungsi utama adalah untuk mengaktifkan interaksi getah - bitumen dan meningkatkan silang.

Kajian ini dijalankan untuk menentukan kaedah untuk memperbaiki rintangan aluran SMA 20 campuran bitumen. Oleh itu, peratusan yang berbeza getah remah telah ditambah kepada bitumen menggunakan kaedah pengadunan yang berbeza (gabungan berterusan dan gabungan terminal) untuk menghasilkan kepekatan yang berbeza remah getah pengikat diubah suai. Di samping itu, ejen silang, iaitu trans-polyoctenamer (TOR), telah diperkenalkan pada remah getah pengikat diubah suai dengan niat untuk meningkatkan lagi sifat-sifat pengikat dan meminimumkan masalah aluran.

Dalam usaha untuk menganalisis prestasi pengikat dan campuran dan juga untuk menilai hubungan ciri-ciri aluran antara mereka, satu siri ujian pengikat dan ujian aggregate campuran bitumen telah dijalankan. Dalam analisis terakhir, penulis mendapati bahawa ujian pengikat tidak mencukupi untuk menilai ciri-ciri aluran.
campuran bitumen. Sebagai contoh, dalam kes getah remah pengikat diubahsuai disediakan dengan menggunakan kaedah gabungan terminal, kebanyakan ujian pengikat menunjukkan bahawa gabungan pengikat terminal memaparkan prestasi yang terbaik; walau bagaimanapun, berkenaan dengan campuran bitumen ia menjadi lebih teruk.

Mengkaji lagi kelakuan rayapan (aluran ciri-ciri) campuran bitumen, ujian rayapan dinamik dilakukan dengan menggunakan mesin ujian universal (UTM) pada suhu yang berbeza dan tahap tekanan berbeza. Akhir sekali, tingkah laku rayapan daripada spesimen dianggarkan menggunakan Zhou tiga peringkat model rayapan. Hasil kajian menunjukkan bahawa serbuk getah dan TOR ketara dipengaruhi parameter aluran, terutama pada tahap tekanan dan suhu yang tinggi. Selain itu, berdasarkan model Zhou, ia telah membuat kesimpulan bahawa rintangan kepada ubah bentuk kekal (rintangan aluran) telah bertambah baik dengan penggunaan getah remah dan TOR.

Di samping itu, regresi linear (kaedah langkah demi langkah) telah digunakan untuk analisis statistik yang mana objektif utama adalah untuk membangunkan (model regresi) persamaan yang boleh digunakan untuk meramalkan aluran dari campuran untuk semua faktor-faktor yang terlibat. Analisis regresi juga digunakan sebagai satu cara untuk menjelaskan hubungan sebab akibat antara faktor (tahap penting).
ACKNOWLEDGEMENTS

First I would like to thank my supervisor, Prof. Ir. Dr. Mohamed Rehan bin Karim for giving me the opportunity to work under their supervision, valuable advices, supporting assistance and continues guidance during this research.

My thanks also go to the staff of Civil Engineering Department, University of Malaya, highway laboratory technician, Mr. Muahirizam bin Manan, and former highway laboratory technician, Mr. Khairul Anwar bin Abu and Mr. Khairul Azri bin Ngadan for their help and technical guidance during the laboratory sessions. My laboratory-mates, Mr. Mehrtash Soltani, Mrs. Suhana binti Koting, Mr. Sina Mirzapour Mounes, Mrs. Nuha Salim Mashaan, Mr. Mohammad Hadi Almasi, and Mr. Mohammad Saeed Pourtahmasb who have been helping and supporting me throughout the laboratory experiments and thesis writing.

My appreciation also goes to the Universiti Tenaga Nasional (UNITEN) for supporting my study by giving me full study leave. To the Vice Chancellor of UNITEN, Dato’ Prof. Ir. Dr. Kamal Nasharuddin bin Mustapha, my head of department, Ir. Zakaria bin Che Muda and to all staffs of Civil Engineering Department, UNITEN, thank you very much for your support and kindness.

Not to forget, my deepest appreciations to my beloved husband for his precious assistance, guidance and encouragement especially during the stressful moment of my study. Lastly, I offer my regards to my parents and parents in law for their endless support, love and prayers.
DEDICATION

This thesis is especially dedicated to:

My husband, Mohd Rasdan bin Ibrahim

My parents, Hj. Katman bin Madikon and Hjh. Buninah binti Kusor

My parents in law, Hj. Ibrahim bin Haron and Hjh Fathilah binti Othman
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>i</td>
</tr>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Abstrak</td>
<td>vi</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ix</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>x</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xx</td>
</tr>
<tr>
<td>List of Abbreviations / Notations</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Overview | 1 |
1.2 Problem Statement | 4 |
1.3 Research Objectives | 5 |
1.4 Research Questions | 6 |
1.5 Scope of Work | 7 |
1.6 Significance of the Study | 8 |
1.7 Outline of the Thesis | 8 |

CHAPTER 2 LITERATURE REVIEW

2.0 Introduction | 10 |
2.1 Mechanisms of Rutting | 10 |
2.2 Permanent Deformation Criteria | 12 |
2.3 Factors Influencing Rutting | 13 |
2.3.1 Effect of Traffic Loading on Rutting Potential | 13 |
2.3.2 Effect of Temperature on Rutting Potential | 15 |
2.3.3 Other Factors Affecting Rutting | 17 |
3.2.3 Crumb Rubber 64
3.2.4 Trans-Polyoctenamer 64

3.3 Preparation of Modified Binder 66

3.4 Preparation of Specimen 67

3.5 Physical Properties Test of Binders 70
3.5.1 Penetration Test 70
3.5.2 Softening Point Test 70

3.6 Rheological Properties Tests of Binders 71
3.6.1 Apparent Viscosity by Rotational (Brookfield type) Viscometer 71
3.6.2 Multiple Stress Creep Recovery (MSCR) Test 72

3.7 Marshall Specimen Tests 75
3.7.1 Bulk Specific Gravity 75
3.7.2 Marshall Stability and Flow 76
3.7.3 Indirect Tensile Stiffness Modulus (ITSM) 76
3.7.4 Dynamic Creep Test 77

3.8 Creep Model: Zhou's Three-Stage Model 79

3.9 Statistical Analysis 79
3.9.1 Multiple Linear Regression 80

3.10 Summary 80

CHAPTER 4 RESULTS AND DISCUSSION

4.0 Introduction 83

4.1 Analysis and Discussion of Physical Binder Tests 83
4.1.1 Penetration Value 84
4.1.1.1 Multiple Linear Regression Analysis on Penetration Value 87
4.1.2 Softening Point Value 88
4.1.2.1 Multiple Linear Regression Analysis on Softening Point Value

4.1.3 Apparent Viscosity Value

4.1.3.1 Multiple Linear Regression Analysis on Apparent Viscosity Value

4.2 Temperature Susceptibility

4.3 Penetration Index

4.4 Activation Energy

4.4.1 Arrhenius Equation

4.4.2 Activation Energy Analysis

4.5 Multiple Stress Creep and Recovery (MSCR) Test Results

4.5.1 Effects of Shear Stress to Non-Recoverable Creep Compliance (J_{nr})

4.5.1.1 Multiple Linear Regression Analysis on Non-Recoverable Creep Compliance

4.5.2 MSCR Test Results at 100 Pa and 3200 Pa

4.5.2.1 Actual Strain Curve

4.5.2.2 Non-Recoverable Compliance (J_{nr}) and Percent Recovery (%R)

4.5.3 Effects of Temperature on MSCR Test Results

4.6 Summary of Multiple Linear Regression Model: Binders

4.7 Volumetric Test Results and Discussion

4.7.1 Voids in Mix (VIM)

4.7.1.1 Multiple Linear Regression Analysis on VIM

4.7.2 Voids in Mineral Aggregate (VMA)

4.7.2.1 Multiple Linear Regression on VMA
4.8 Marshall Stability and Flow of Bituminous Mix Test Results 126

4.8.1 Marshall Stability 126

4.8.1.1 Multiple Linear Regression Analysis on Marshall Stability 130

4.8.2 Marshall Flow 131

4.8.2.1 Multiple Linear Regression Analysis on Marshall Flow 134

4.8.3 Marshall Quotient 135

4.9 Performance Test Results 136

4.9.1 Indirect Tensile Stiffness Modulus (ITSM) Results 136

4.9.1.1 Multiple Linear Regression on ITSM Value 138

4.9.2 Dynamic Creep Test at 200 kPa, 40°C 139

4.9.2.1 Dynamic Creep Curve at 200 kPa, 40°C 140

4.9.2.2 Ultimate Strain at 200 kPa, 40°C 143

4.9.2.3 Zhou’s Three-Stage Model at 200 kPa, 40°C: End Point at First Stage at 200 kPa, 40°C 145

4.9.2.4 Zhou’s Three-Stage Model at 200 kPa, 40°C: Slope of Secondary Stage at 200 kPa, 40°C 149

4.9.2.5 Multiple Linear Regression on Ultimate Strain at 200 kPa, 40°C 151

4.9.2.6 Multiple Linear Regression on Slope of Secondary Stage at 200 kPa, 40°C 152

4.9.2.7 Comparison of Creep Parameter and MSCR 153

4.9.3 Results of Dynamic Creep Test at Different Test Conditions 154

4.9.3.1 Dynamic Creep Curve at Different Test Conditions 157

4.9.3.2 Effects of Temperature and Stress Level on Dynamic Creep Curve 161
4.9.3.3 Ultimate Strain at Different Test Conditions 163
4.9.3.4 Zhou’s Three-Stage Model at Different Test Conditions: Effects of Temperature and Stress Levels 165
4.9.3.5 Zhou’s Three-Stage Model at Different Test Conditions: Predicted Strain versus Measured Strain 166
4.9.3.6 Zhou’s Three-Stage Model at Different Test Conditions: End Point at First Stage at Different Test Conditions 169
4.9.3.7 Zhou’s Three-Stage Model at Different Test Conditions: Slope of Secondary Stage at Different Test Conditions 170
4.9.3.8 Zhou’s Three-Stage Model at Different Test Conditions: Flow Number (FN) at Different Test Conditions 171
4.9.3.9 Relationship between Ultimate Strain and Slope of Secondary Stage 173
4.9.3.10 Multiple Linear Regression on Slope of Secondary Stage at Different Temperature and Stress Levels 174
4.9.4 Comparison of Multiple Stress Creep Recovery (MSCR) Test Results and Dynamic Creep Test Results Different Test Conditions 175
4.10 Summary of Multiple Linear Regression Model: Mixtures 183
4.11 Summary 184

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction 185
5.2 Conclusions 186
5.3 Recommendations for Future Study 192
5.4 Proposed Construction Guidelines of the SMA20 Rubberized Pavement 193
REFERENCES 196
APPENDICES
Appendix A: Multiple Linear Regression Analysis 211
Appendix B: Publications / Proceedings 247
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Limiting Mixture Stiffness (Sousa et al., 1991)</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Factors Affecting the Rutting of Bituminous Concrete Mixtures (Sousa et al., 1991)</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparative Assessment of Test Methods (Mohammad, L. N., 2006)</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Brief Summary of Permanent Deformation Models</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Types of physical modifier and additive used in the material (Read and Whiteoak, 2003)</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Matrix of Binders Developed</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Properties of Crushed Granite Aggregate used in this Study</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>Specification of Bitumen 80/100 Penetration used in this Study</td>
<td>65</td>
</tr>
<tr>
<td>3.4</td>
<td>Specification of Crumb Rubber used in this Study</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>Specification of Trans-polyoctenamer used in this Study</td>
<td>65</td>
</tr>
<tr>
<td>3.6</td>
<td>SMA 20 Aggregate Gradation</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical Properties of Binders</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Model Summary: Penetration Value</td>
<td>88</td>
</tr>
<tr>
<td>4.3</td>
<td>Coefficients for Final Model: Penetration Value</td>
<td>88</td>
</tr>
<tr>
<td>4.4</td>
<td>Model Summary: Softening Point Value</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>Coefficients for Final Model: Softening Point Value</td>
<td>92</td>
</tr>
<tr>
<td>4.6</td>
<td>Model Summary: Viscosity Value</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>Coefficients for Final Model: Viscosity Value</td>
<td>99</td>
</tr>
<tr>
<td>4.8</td>
<td>Model Summary: Non-Recoverable Compliance</td>
<td>107</td>
</tr>
<tr>
<td>4.9</td>
<td>Coefficients for Final Model: Non-Recoverable Compliance</td>
<td>108</td>
</tr>
<tr>
<td>4.10</td>
<td>Summary of the Multiple Linear Regression Model for Penetration Value, Softening Point Value, Viscosity Value at 175°C and Non-Recoverable Compliance at 40°C (J_{nr})</td>
<td>118</td>
</tr>
<tr>
<td>4.11</td>
<td>Model Summary: VIM Value</td>
<td>123</td>
</tr>
<tr>
<td>4.12</td>
<td>Coefficients for Final Model: VIM Value</td>
<td>123</td>
</tr>
</tbody>
</table>
Table 4.13: Model Summary: VMA Value
Table 4.14: Coefficients for Final Model: VMA Value
Table 4.15: Model Summary: Stability Value
Table 4.16: Coefficients for Final Model: Stability Value
Table 4.17: Model Summary: Flow Value
Table 4.18: Coefficients for Final Model: Flow Value
Table 4.19: Model Summary: Indirect Tensile Stiffness Modulus
Table 4.20: Coefficients for Final Model: Indirect Tensile Stiffness Modulus
Table 4.21: Difference in Ultimate Strain between CRMM and CRMM-TOR
Table 4.22: Zhou's Three-Stage Models and Boundary Points at 200 kPa Stress and 40°C Temperature
Table 4.23: Model Summary: Ultimate Strain at 200 kPa, 40°C
Table 4.24: Coefficients for Final Model: Ultimate Strain at 200 kPa, 40°C
Table 4.25: Model Summary: Slope of Secondary Stage at 200 kPa, 40°C
Table 4.26: Coefficients for Final Model: Slope of Secondary Stage at 200 kPa, 40°C
Table 4.27: Properties of the Mixtures
Table 4.28: Zhou's Three-Stage Models and Boundary Points at 200 kPa stress
Table 4.29: Zhou's Three-Stage Models and Boundary Points at 400 kPa stress
Table 4.30: Model Summary: Slope of secondary stage at different temperatures and stress levels
Table 4.31: Coefficients for Final Model: Slope of secondary stage at different temperatures and stress levels
Table 4.32: Summary of ranking for all binders and mixtures based on the J_{mr} and slope of the secondary stage from Figures 4.35(a) – 4.35(f)
Table 4.33: Summary of Multiple Linear Regression Model for Mixtures
LIST OF FIGURES

Figure 2.1: Effect of Number of Passes on Transverse Surface Profile (Eisenmann and Hilmer, 1987) 14
Figure 2.2: Relationship Between the Accumulated Permanent Deformations and the Loading Cycles in the Dynamic Creep Tests 26
Figure 2.3: Model for Each Stage in Accordance with Zhou's Three-Stage Model 30
Figure 2.4: Progress in Recovery Routes of Waste Tyres Between 1994 and 2006 38
Figure 2.5: Activity of Organizations in the Recovery and Recycling of Tyres 38
Figure 2.6: Synthesis of Trans-polyoctenamer 47
Figure 3.1: Methodology Flow Chart for Binder 61
Figure 3.2: Methodology Flow Chart for Bituminous Mixture 62
Figure 3.3: Rubber Crumb used in this Study 66
Figure 3.4: Trans-polyoctenamer used in this Study 66
Figure 3.5: SMA 20 Aggregate Gradation 69
Figure 3.6: Brookfield Rotational Viscometer 71
Figure 3.7: Dynamic Shear Rheometer 74
Figure 3.8: An Example of MSCR Test Loading Results at a Stress Level of 100 Pa and 3200 Pa 74
Figure 3.9: Universal Testing Machine 78
Figure 4.1(a): Penetration Value versus Rubber Content 86
Figure 4.1(b): Relationship between Penetration Value and Rubber Content 86
Figure 4.2(a): Softening Point Value versus Rubber Content 89
Figure 4.2(b): Relationship between Softening Point Value and Rubber Content 90
Figure 4.3(a): Viscous Properties of Binders at Different Test Temperatures 94
Figure 4.3(b): Viscous Properties of Binders at 95°C and 115°C 94
Figure 4.3(c): Viscous Properties of Binders at 135°C, 155°C, 165°C and 95
Figure 4.3(d): 175°C Viscous Properties of Binders at 195°C

Figure 4.4: Penetration Index

Figure 4.5: Arrhenius Representations for Binders

Figure 4.6: Effects of Rubber Crumb and TOR on the Activation Energy of Binders

Figure 4.7: Comparisons of J_{nr} Values for Binders at 40°C

Figure 4.8: Actual Strains of the Binders at 40°C: (a) 100 Pa and (b) 3200 Pa

Figure 4.9: Non-Recoverable Compliance of Binders at 100 Pa and 3200 Pa

Figure 4.10: Per cent Recovery of Binders at 100 Pa and 3200 Pa

Figure 4.11: Per cent Non-Recoverable Compliance versus Temperature at (a) 100 Pa (b) 3200 Pa

Figure 4.12: Per cent Recovery versus Temperature at (a) 100 Pa (b) 3200 Pa

Figure 4.13: VIM Value Versus: (a) Binder Content (b) Rubber Content

Figure 4.14: VMA Value versus Rubber Content

Figure 4.15: Marshall Stability at Different (a) Binder Content, (b) Rubber Content

Figure 4.16: Marshall Stability versus VIM

Figure 4.17: Marshall Flow Value versus (a) Binder Content, (b) Rubber Content

Figure 4.18: Marshall Quotient Value versus Rubber Content

Figure 4.19: Stiffness Modulus Value versus: (a) Binder Content, (b) Rubber Content

Figure 4.20: Cumulative Permanent Strains versus Load Cycle for Mixtures

Figure 4.21: Ultimate Strain versus Rubber Content

Figure 4.22: Ultimate Strain versus Binder Content

Figure 4.23: End Point of First Stage for Mixtures

Figure 4.24: End Point of First Stage versus Binder Content
Figure 4.25: Slope of Secondary Stage versus Rubber Content 150
Figure 4.26: Slope of Secondary Stage versus Binder Content 150
Figure 4.27: Ultimate Strain at 200 kPa, 40°C versus Non-Recoverable Compliance (J_{nr}) 154
Figure 4.28(a): Cumulative Permanent Strain versus Load Cycle for Mixtures at 200 kPa at 40°C 158
Figure 4.28(b): Cumulative Permanent Strain versus Load Cycle at 200 kPa and 50°C 158
Figure 4.28(c): Cumulative Permanent Strain versus Load Cycle at 200 kPa and 60°C 159
Figure 4.28(d): Cumulative Permanent Strain versus Load Cycle at 400 kPa and 40°C 159
Figure 4.28(e): Cumulative Permanent Strain versus Load Cycle at 400 kPa and 50°C 160
Figure 4.28(f): Cumulative Permanent Strain versus Load Cycle at 400 kPa and 60°C 160
Figure 4.29: Creep Curve at Different Temperatures at (a) 200 kPa (b) 400 kPa 162
Figure 4.30: Ultimate Strains at Different Stress Levels and Temperature. 164
Figure 4.31: End Point at First Stage for Different Test Conditions 169
Figure 4.32: Slope of Secondary Stage for Different Stress Levels and Temperatures 170
Figure 4.33: Flow Number (FN) for Different Stress Levels at 60°C 172
Figure 4.34: Ultimate Strain versus Slope of Secondary Stage 173
Figure 4.35(a): Non-recoverable compliance at 100 Pa, 40°C vs. Slope of secondary stage at 200 kPa, 40°C 177
Figure 4.35(b): Non-recoverable compliance at 100 Pa, 50°C vs. Slope of secondary stage at 200 kPa, 50°C 177
Figure 4.35(c): Non-recoverable compliance at 100 Pa, 60°C vs. Slope of secondary stage at 200 kPa, 60°C 178
Figure 4.35(d): Non-recoverable compliance at 3200 Pa, 40°C vs. Slope of secondary stage at 400 kPa, 40°C 178
Figure 4.35(e): Non-recoverable compliance at 3200 Pa, 50°C vs. Slope of 179
secondary stage at 400 kPa, 50°C

Figure 4.35(f): Non-recoverable compliance at 3200 Pa, 60°C vs. Slope of secondary stage at 400 kPa, 60°C
LIST OF ABBREVIATIONS AND NOTATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APA</td>
<td>Asphalt Pavement Analyzer</td>
</tr>
<tr>
<td>AS</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CR</td>
<td>Crumb Rubber</td>
</tr>
<tr>
<td>CRMB</td>
<td>Crumb Rubber Modified Binder</td>
</tr>
<tr>
<td>CRMB-TOR</td>
<td>Crumb Rubber Modified Binder Reinforced with TOR</td>
</tr>
<tr>
<td>CRMM</td>
<td>Crumb Rubber Modified Mixture</td>
</tr>
<tr>
<td>CRMM-TOR</td>
<td>Crumb Rubber Modified Mixture Reinforced with TOR</td>
</tr>
<tr>
<td>ELT</td>
<td>End of life tyres</td>
</tr>
<tr>
<td>ETRMA</td>
<td>European Tyre and Rubber Manufacturers’ Association</td>
</tr>
<tr>
<td>FHWA</td>
<td>The Federal Highway Administration</td>
</tr>
<tr>
<td>HMA</td>
<td>Hot Mix Asphalt</td>
</tr>
<tr>
<td>ID</td>
<td>Identification name</td>
</tr>
<tr>
<td>ITSM</td>
<td>Indirect Tensile Stiffness Modulus</td>
</tr>
<tr>
<td>JATMA</td>
<td>Japan Automobile Tyre Manufacturers Association</td>
</tr>
<tr>
<td>J_{nr}</td>
<td>Non-Recoverable Compliance</td>
</tr>
<tr>
<td>JKR</td>
<td>Jabatan Kerja Raya (Public Works Department)</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>MQ</td>
<td>Marshall Quotient</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>OBC</td>
<td>Optimum Binder Content</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland cement</td>
</tr>
<tr>
<td>PWD</td>
<td>Public Works Department</td>
</tr>
<tr>
<td>%R</td>
<td>% Recovery</td>
</tr>
<tr>
<td>R^2</td>
<td>Reliability value</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>REAM</td>
<td>Road Engineering Association of Malaysia</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per Minute</td>
</tr>
<tr>
<td>RMA</td>
<td>Rubber Manufacturers Association</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>SBR</td>
<td>Styrene Butadiene Rubber</td>
</tr>
<tr>
<td>SMA</td>
<td>Stone Mastic Asphalt</td>
</tr>
<tr>
<td>SMA 20</td>
<td>Stone Mastic Asphalt with aggregate nominal size 20mm</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>TOR</td>
<td>Trans-polyoctenamer</td>
</tr>
<tr>
<td>TRL</td>
<td>Transport Research Laboratory</td>
</tr>
<tr>
<td>UMATTA</td>
<td>Universal Material Testing Apparatus</td>
</tr>
<tr>
<td>VFB</td>
<td>Voids Filled with Bitumen</td>
</tr>
<tr>
<td>VIM</td>
<td>Voids in Mix</td>
</tr>
<tr>
<td>VMA</td>
<td>Voids in Mineral Aggregate</td>
</tr>
<tr>
<td>WBCSD</td>
<td>World Business Council for Sustainable Development</td>
</tr>
</tbody>
</table>