
RESTORATION OF BLURRED IMAGES USING GEOMETRIC AND
TCHEBICHEF MOMENTS

AHLAD KUMAR

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA

KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya



RESTORATION OF BLURRED IMAGES USING
GEOMETRIC AND TCHEBICHEF MOMENTS

AHLAD KUMAR

THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA

KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya



UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Ahlad Kumar

Registration/Matrix No.: KHA120025

Name of Degree: Doctor of Philosophy (Ph.D)

Title of Thesis("RESTORATION OF BLURRED IMAGES USING GEOMETRIC AND

TCHEBICHEF MOMENTS"):

Field of Study: Electronic

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction
of any copyright work has been disclosed expressly and sufficiently and the title of
the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copy-
right whether intentionally or otherwise, I may be subject to legal action or any other
action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

ii

Univ
ers

ity
 of

 M
ala

ya



ABSTRACT

Blur affects the edges of an image that leads to the degradation of the image quality.

Several methods have been developed in both spatial and frequency domains to deblur

Gaussian and motion blurred images by using iterative methods to estimate the blur pa-

rameters. In this study geometric moments (GM) and Tchebichef moments (TM), from

the family of non-orthogonal and orthogonal moments respectively, are utilized for de-

blurring of images. Here, three methods are proposed for deblurring of images. In the

first method, the framework of variational method is formulated in moment domain to

implement deblurring of the Gaussian and motion blurred images using Euler-Lagrange

identity and alternate minimization (AM) algorithm. It uses an iterative procedure in the

form of partial differential equations (PDE) to restore the deblurred GMs. This is ad-

dressed for both non-blind and blind methods which use an iterative procedure to restore

the deblurred GMs. Then, a reconstruction method using Stirling numbers is used to re-

store the deblurred image from the deblurred GMs. Three experiments are carried out

to demonstrate the effectiveness of the proposed method on the quality of the restored

images by considering the effects of the regularization parameter and blur size. In the

second method, Gaussian blur estimation problem is modelled as regression problem and

is solved using Weighted Geometric moments (WGM) and extreme learning machine

(ELM). In particular, WGMs are formulated as linear combination of fundamental basis

GMs which are used as feature vectors that can effectively capture the behavior of edges

present in an image subjected to Gaussian blur. These feature vectors along with ELM

are used in estimating the blur parameters. Once the blur parameters are estimated, the

restoration of the degraded image is performed in moment domain using the cascaded

digital filters operating as subtractors to perform the task of image reconstruction. Here,

two experiments are performed on six publicly available standard databases of images in
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order to validate the performance of the proposed method. In the first experiment, the

cross database analysis of the proposed method for blur estimation is carried out and the

results show that the blur parameters can be estimated. In the second experiment, the

proposed methods are compared with the five existing methods and the quality of the

restored images is evaluated using BRISQUE and SSIM. The results show the proposed

method performed well in most cases. In the third method, Tchebichef moments (TM)

of low order are selected as features used as inputs to ELM to estimate the Gaussian blur

parameters. Once the blur parameters are estimated, image restoration of the proposed

method is carried out using split Bregman algorithm. The performance analysis using

the proposed TM method is compared with the same five existing methods. It has been

observed that TMs based image restoration perform well compared to the five existing

methods when evaluated using image quality metrics.
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ABSTRAK

Kabur memberi kesan kepada bahagian tepi imej yang akan mengakibatkan penurun-

an kualiti imej. Beberapa kaedah telah dibangunkan dalam kedua-dua domain spasial dan

frekuensi untuk menyah-kabur Gaussian dan kabur gerakan di dalam imej, dengan meng-

gunakan kaedah lelaran untuk menganggarkan parameter kabur. Dalam kajian ini, momen

geometri (GM) dan momen Tchebichef (TM) dari keluarga momen yang tidak ortogonal

dan ortogonal, digunakan untuk menyahkaburkan kabur yang terdapat pada imej. Dalam

kaedah pertama, rangka kerja kaedah variasi dirumuskan dalam domain masa untuk me-

laksanakan proses nyahkabur imej menggunakan kedua-dua identiti Euler-Lagrange dan

algoritma Alternate Minimization (AM). Ia menggunakan prosedur lelaran dalam ben-

tuk persamaan pembezaan separa (PDE) untuk memulihkan GM. Kaedah ini menggu-

nakan prosedur lelaran untuk memulihkan GM yang telah dinyahkabur. Kemudian, satu

kaedah pembinaan semula menggunakan nombor Stirling digunakan untuk memulihkan

imej yang telah dinyahkabur dari GM yang dinyahkabur. Tiga eksperimen dijalankan un-

tuk menunjukkan keberkesanan kaedah yang dicadangkan terhadap kualiti gambar yang

telah dinyahkabur dengan mengambil kira kesan daripada penggunaan parameter varia-

si dan saiz kabur. Dalam kaedah kedua, masalah penganggaran PSF dimodelkan seba-

gai masalah regresi dan diselesaikan dengan menggunakan momen berwajaran geometri

(WGM) dan Extreme Learning Machine (ELM). Khususnya, WGMs dirumuskan sebagai

gabungan linear asas utama GM yang digunakan sebagai vektor ciri yang berkesan bagi

menangkap kelakuan tepi di dalam imej yang tertakluk kepada kaburan Gaussian. Vek-

tor ciri ini bersama-sama dengan ELM digunakan dalam penganggaran parameter kabur.

Setelah kabur dianggar, pemulihan imej yang rosak dilakukan dalam domain masa. Ini

diikuti dengan penggunaan litar penolak yang menggunakan penapis digital berlapis un-

tuk melaksanakan tugas pembinaan semula imej dari domain momen ke domain ruang.
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Di sini, untuk mengesahkan keberkesanan kedua-dua kaedah cadangan, kedua-dua ekspe-

rimen ini dijalankan ke atas enam pengkalan data umum untuk imej. Dalam eksperimen

pertama, analisa silang antara pengkalan data untuk kaedah dicadangkan untuk mengang-

gar PSF dijalankan dan keputusan eksperimen menunjukkan nilai PSF yang dianggarkan.

Dalam eksperimen kedua, kaedah dicadangkan dibandingkan dengan tiga kaedah sedia

ada dan kualiti imej yang terhasil dinilai menggunankan BRISQUE and SSIM. Keputus-

an eksperimen menunjukkan kaedah cadangan berfungsi dengan baik di setiap kes. Akhir

sekali, detik-detik Tchebichef rendah dipilih sebagai ciri yang digunakan sebagai input

kepada ELM untuk menganggar parameter kabur . Setelah PSF dianggar , kaedah pemu-

lihan imej yang dicadangkan dijalankan menggunakan algoritma split Bregman. Analisis

prestasi menggunakan kaedah cadangan bagi TM dibandingkan dengan tiga kaedah sedia

ada. Berdasarkan pemerhatian dan nilai kualiti metric bagi imej, proses penghasilan se-

mula imej menggunakan TM mempunyai prestasi yang lebih baik berbanding tiga kaedah

sedia ada.
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CHAPTER 1 : INTRODUCTION

1.1 Overview

Images are produced in order to record or display useful information. Due to im-

perfections in the electronic or photographic medium, however, the recorded image often

represents a degraded version of the original scene. The degradations may have many

causes, but two types of degradations are often dominant: blurring and noise. Blurring is

a form of bandwidth reduction of the image due to the imperfect image formation process.

It can be caused by relative motion between the camera and the original scene, or by an

optical system which is out of focus. When aerial photographs are produced for remote

sensing purposes, blurs are introduced by atmospheric turbulence, aberrations in the opti-

cal system, and relative motion between the camera and the ground. Such blurring is not

confined to optical images, for example, electron micrograph are corrupted by spherical

aberrations of the electron lenses and Computed Tomographys (CTs) scans suffer from

X-ray scatter. In addition to these blurring effects, the recorded image is also corrupted by

noises. These may be introduced by the transmission medium (e.g. a noisy channel), the

recording medium (e.g. film grain noise), measurement errors due to the limited accuracy

of the recording system, and quantization of the data for digital storage.

The term deblurring is commonly used to refer to restoration of images degraded

by blur. Although the degradation process is in general nonlinear and space varying, a

large number of problems could be addressed with a Linear Shift Invariants (LSIs) model.

Because the output of an LSI system is the convolution of the true image with the impulse

response of the system, the point spread function (PSF), image restoration in LSI systems

is called image deconvolution. Typically, the phenomena of degradation is modeled as

g(x,y) = h(x,y)∗ f (x,y)+η(x,y) (1.1)
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where g(x,y) is the observed degraded image, f (x,y) is the original image, h(x,y) is the

PSF, η(x,y) is the noise present in the system and ∗ is the convolution operator.

The degraded images, generally, masks and blurs important but subtle features in

the images. Other sources of blur degradation are geometric and motion un-sharpness.

The geometric un-sharpness owes its origin from the lack of beam collimation, statistical

fluctuation due to low intensities or high background. Similarly, motion un-sharpness is

due to object motion during exposure, and limitations in acquisition/processing systems.

Hence, it becomes important to deblur the image which is subjected to aforementioned

degradations. To overcome these problems, image restoration is a solution to reduce the

blurring effects on the image. It tries to perform an inverse transformation of the observed

blurred image to estimate the original one. Modeling the degradation is an essential part

in performing the inverse transformation.

Image restoration is widely used in almost all technical areas involving images; as-

tronomy, remote sensing, microscopy, medical imaging, photography, surveillance, and

High Definition Televisions (HDTVs) systems are just a few. For example, license plates

may appear illegible due to motion blur; photographs captured under low-light conditions

may suffer from noise; out-of-focus photographs may look blurry; standard TV signals

may not be sufficiently sharp for high definition TV sets; archived movies may be cor-

rupted by artifacts and noise; atmospheric distortions may degrade the quality of images

in remote sensing. In these examples and in many other scenarios, the importance of

image restoration ranges from beneficial to essential.

Typically the research involved in the restoration of a degraded image can be clas-

sified as non-blind (G. Chantas, Galatsanos, Likas, & Saunders, 2008; Schuler, Burger,

Harmeling, & Scholkopf, 2013; Schmidt, Rother, Nowozin, Jancsary, & Roth, 2013) and

blind methods (Shi, Hong, Song, & Hua, 2015; Kundur & Hatzinakos, 1996; M. S. Almeida,

Figueiredo, et al., 2013). In the case of non-blind method, the PSF h(x,y) is assumed to
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be known and a sharp image can be induced from both the blurry image and the PSF.

Typical methods include the Richardson-Lucy method (Richardson, 1972) and Wiener

filter (Wiener, 1949). Ill-posedness is the most severe problem in image deblurring. In

the case of non-blind deblurring, the observed blurred image g(x,y) does not uniquely

determine the original image due to the ill-conditioned nature of the blur operator. This

means that if there is a slight mismatch between the assumed PSF and the true PSF, or

if the observed blurred image is corrupted by noise, the recovered image may be much

worse than the underlying original image f (x,y). Driven by these problems and the fact

that in most situations of practical interest the PSF, is not known with good accuracy,

blind methods for restoring the degraded image are introduced in the literature. The task

of simultaneously estimating the PSF and deblurring an unknown image using partial or

no information about the imaging system is known as blind image restoration. A good

review article on blind deconvolution can be found in (Ruiz, Zhou, Mateos, Molina, &

Katsaggelos, 2015; Banham & Katsaggelos, 1997). This problem is highly ill-posed since

there are an infinite set of image-blur pairs that can synthesize the observed blurry image.

In recent years, many novel approaches have been introduced to handle both the non-blind

and blind deblurring problem, driven by a various motivations.

Researchers have been working to develop new models, or improving the efficiency

of optimization methods, to deal with ill-posedness nature of deblurring. Most of the

techniques related to developing of models can be grouped into the following categories:

Bayesian inference framework (G. K. Chantas, Galatsanos, & Likas, 2006; Y. Zhang,

Duijster, & Scheunders, 2012), variational methods (Vega, Mateos, Molina, & Katsagge-

los, 2012; Danielyan, Katkovnik, & Egiazarian, 2012), and sparse representation-based

methods (Amizic, Molina, & Katsaggelos, 2012; Dong, Zhang, Shi, & Li, 2013). In the

Bayesian framework, the introduction of priors is included in order to impose uncertainty

attributes on the unknown sharp image, the unknown PSF, or both. This operation is
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intended to reduce the volume of the search space, where the problem’s solution lies,

to suppress the ill-posedness. Variational methods provide the unique and stable solu-

tion through the incorporation of regularization techniques whose role is similar to the

prior’s used in Bayesian inference. Sparse representation, in recent years, benefits from

the fact that natural images are intrinsically sparse in some domains like Wavelets, Fourier

etc. (Figueiredo & Nowak, 2003; Portilla, Strela, Wainwright, & Simoncelli, 2003). In

(M. S. Almeida & Almeida, 2010) authors explored the sparsity of natural images to

propose new regularizer that eventually helps in restoring the blurred images. In partic-

ular, their method is based on the facts that the leading edges in the natural images are

sparse and the edges of the blurred image are less sparse when compared to the sharp

image as they tend to occupy wide area. Based on these observations they proposed a

prior that promotes sparsity of the edges which in turn will make the image sharp. Image

restoration model based on a new wavelet frame is proposed that treats natural images as

piecewise smooth functions (Cai, Dong, & Shen, 2016). The proposed model seeks piece-

wise smooth solutions to the linear inverse problem stated in (1.1). The proposed model

estimates the restored image and its singularity. Further the method well protects the sin-

gularities which are important natural image features and simultaneously provides enough

regularization in smooth regions. The proposed model is a combination of the advantages

of partial differential equations and wavelets frames. (L. Ma & Zeng, 2016) proposed

image deblurring based on the sparse representation of the natural images. In order to

achieve this, instead of using over-complete dictionary which is not well structured and

exhibits some shortcoming like unstability due to approximations and high computational

time; authors made use of structured sparse model selection. Recently, a new regularizer

has been employed in the task of image deblurring known as overlapping group spar-

sity. (He, Fan, & Zheng, 2015) proposed an image restoration model by introducing a

novel edge-continuous overlapping group sparsity regularizer. This regularizer is based
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on the observation that the non-zero entries in an image gradient domain often distribute

along its edges. Some researchers adopt a slightly different approach to image restora-

tion problems. Here, the estimation of the PSF is performed independently using various

techniques involving machine learning, polynomial transforms (Kayargadde, 1995), ex-

ploiting the sharpness of the natural images (Dijk, Van Ginkel, Van Asselt, Van Vliet, &

Verbeek, 2003), using derivatives of the images (Bouma, Dijk, & van Eekeren, 2012).

Once the PSF is estimated by these methods, the restoration is performed using non-blind

method which can restore the image effectively as the PSF is already estimated.

The role of moments in image processing constitute an important feature extraction

method which generates highly discriminative features, able to capture the particular char-

acteristics of the described pattern, which distinguish it among similar or totally different

objects. The ability of fully describing an image by encoding its features makes them

suitable for image analysis (Sim, Kim, & Park, 2004), watermarking (G. Papakostas,

Tsougenis, & Koulouriotis, 2010) and pattern recognition (G. A. Papakostas, Boutalis,

Karras, & Mertzios, 2007; G. Papakostas, Boutalis, Karras, & Mertzios, 2009; Hosny,

2007). Work has also been done for the moment extraction through Very Large Scale

Integrations (VLSIs) structures (Hatamian, 1986; Wong & Siu, 1999; Kotoulas & An-

dreadis, 2006, 2005, 2008). Recently, their use in the field of medical imaging is also

explored (Maidment, Bakic, & Gavenonis, 2012; Meyer-Baese & Schmid, 2014; Hosny,

Papakostas, & Koulouriotis, 2013). Moments of an image provide an efficient local de-

scriptors and have been used extensively in image analysis. The features of an image like

shape of boundary segments, can be described quantitatively by using statistical moments

such as mean, variance and other higher order moments. These statistical measures pro-

vide many important image characteristics; for example the mean, m = ∑zk pzk, provides

the measure of average intensity and the variance σ2 = ∑(zk−m)2 pzk gives a measure of

image contrast, where zk and pzk denote the intensity and the probability of a pixel. The
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third moment measures the skewness of the histogram. A measure of its relativeness has

been obtained by the fourth moment. The fifth and higher order moments are not so easily

related to the histogram shape, but they do provide further discrimination of the texture

content. Simple image properties are derived via raw moments, which include area, sum

of gray levels, and centroid information. The main advantage of the moments is their

ability to provide invariant measures of shape. The moments calculation for a digital im-

age are important for its successful application in pattern recognition problems, aircraft

identification, position detection, scene matching, image reconstruction, restoration, seg-

mentation, color and character recognition (Ghorbel, Derrode, Dhahbi, Mezhoud, et al.,

2005; P.-T. Yap & Raveendran, 2002; P. Yap, Raveendran, & Ong, 2001).

Hu(M.-K. Hu, 1962) used these moments for the first time in extracting the image

features and employed them for image analysis and object representations. His Unique-

ness Theorem states that, if an image f (x,y) is piecewise continuous and has nonzero

values only in the finite part of the (x,y) plane then geometric moments of all orders

exist. It can then be shown that the moment set is uniquely determined by f (x,y) and

vice-versa. Some popular moments, which have been commonly used are like Geomet-

ric, Complex, Legendre, Zernike, Tchebichef, and Hann. Geometric moments (Martinez

& Thomas, 2002) present low computational cost and are invariant under linear trans-

formations. Complex moments (Teh & Chin, 1988) are invariant descriptors, but have

drawback when dealing with noise and image reconstruction. Continuous orthogonal

moments Legendre and Zernike (Abu-Mostafa & Psaltis, 1985; Mukundan, Ong, & Lee,

2001b) proposed by Teague (Teague, 1980) are less sensitive to noise, linear transfor-

mation invariant and can effectively be used for image reconstruction. However, their

computational complexity is a major issue and their real-time implementation has not

been reported.
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1.2 Motivation

The field of image deblurring is explored in spatial and wavelet domains and no work

has been reported in moment domain. This motivated to carry out this research in moment

domain. In particular, images degraded due to Gaussian and motion blur are considered.

The blur models are formulated in moment domain and the restoration is performed using

geometric and Tchebichef moments. Moreover, the task of image reconstruction was not

possible due to non-orthogonal nature of basis function of geometric moments. But this

problem has been solved recently using Stirling numbers (Honarvar, Paramesran, & Lim,

2014) which paves the way to carry out image restoration in moment domain. Also, there

exist a relationship between the blurred and original images in the moment domain which

is one of the reasons to explore deblurring in moment domain.

1.3 Objectives

The main objectives of this thesis are

1. To develop an algorithm in moment domain for restoring the blurred images via

Euler Lagrange and Alternate Minimization techniques

In this work the geometric moments are used for the implementation of deblur-

ring algorithms. Geometric moment are projections of the image intensity function

f (x,y), onto monomials xpyq. The basis set xpyq is not orthogonal. This non-

orthogonality causes information redundancy in the extracted moments and it is

more difficult to reconstruct images from the moments. Since, the problem of im-

age reconstruction has been solved recently (Honarvar et al., 2014). This provides

motivation and new opportunities to explore the potential of using geometric mo-

ments in the area of image restoration. In particular, restoration of images degraded

due to Gaussian and motion blur is addressed. It involves the formulation of prob-

lem in moment domain and subsequent restoration of the blurred images using
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variational method proposed in moment domain along with Euler Lagrange and

alternate minimization techniques. This results in the formulation of the partial

differential equations in moment domain which is iterated in time resulting in the

solution that leads to the global minimum solution i.e. the restored image (Chapter

3).

2. Blurred image restoration by estimating the PSF parameters using Weighted Geo-

metric moments

In the proposed method, Weighted geometric moments Weighted Geometric Mo-

ments (WGMs) which are linear combinations of the basic geometric moments are

used for estimating the PSF. It has been observed that the WGM can effectively

characterize the edges of the natural images subjected to varying degree of blur.

Using this as the motivation, estimation of the PSF is performed using WGM as

feature vectors along with the use of extreme learning machine. Once the PSF is

estimated, a non-blind deblurring method in the geometric moment domain is pro-

posed to estimate the moments of the restored image. In order to transform the

restored image from moment domain to spatial domain, a fast architecture for do-

ing this inverse transform is employed, which make use of digital filters operating

as subtractors (Chapter 4).

3. Blurred image restoration by estimating the PSF parameters using Tchebichef mo-

ments

Generally, images are often blurred either due to Gaussian, motion or combination

of both. This research is motivated by two facts: (1) Tchebichef moments (TM)

are good edge descriptors. (2) Blurring of an image mostly affects the edges of an

image leaving behind plains least affected. Using these two crucial observations

the degraded image is restored by estimating the Gaussian blur parameters with the
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use of Tchebichef Moments (TMs) and extreme learning machine (ELM). Once

the blur is estimated, an existing non-blind deconvolution algorithm known as split

Bregman is adopted to restore the degraded images (Chapter 5).

1.4 Organization

This thesis develops the image restoration algorithms using Geometric and Tchebichef

moments. A block diagram representing the content of the thesis is shown in Figure 1.1.

The following is a summary of the content of the chapters

Image 
Restoration

Chapter 2
Geometric Moments and

its implementation

:

Non-Blind

Restoration Restoration

Blind

Chapter 3:

Chapter 4:

Using WGM and ELM

Chapter 5:

Using TM and ELM

Figure 1.1: Flowchart of thesis contents

Chapter 2: Review of Geometric and Tchebichef moments for image deblur-

ring. In this chapter a brief overview of geometric and Tchebichef moments is presented.

This includes the mathematical preliminaries of both the moments and their role in the

field of image processing. Further, some of the earlier work done with a specific target
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of improving the computational speed of the Geometric and Tchebichef moments is dis-

cussed here. In particular, the computation of geometric moments via cascaded digital

filters is explained in details. It has been shown that with the use of cascaded digital fil-

ters, geometric moments are calculated with fewer number of multiplication operations.

A new cascaded digital filter structure with fast computation of geometric moments is

also proposed.

Chapter 3: Restoration of blurred images using Geometric Moments. In this

chapter, the use of geometric moments in the field of image deblurring is proposed. Us-

ing the developed relationship of geometric moments for original and blurred images, a

mathematical formulation based on Euler-Lagrange identity and variational techniques

is proposed. It uses an iterative procedure to deblur the image in moment domain. The

theoretical framework is validated by a set of experiments. A comparative analysis of

the results obtained using the spatial and moment domains are evaluated using a qual-

ity assessment method known as Blind/Reference-less Image Spatial Quality Evaluators

(BRISQUEs). The results show that the proposed method gives competitive results in

terms of quality score when compared to the existing methods.

Chapter 4: Restoration of the blurred images in moment domain via Cascaded

Digital Filters Image moments such as Zernike, Tchebichef and geometric moments have

been widely used in image processing applications. They have useful properties to de-

tect edges. In this chapter, one of the moment families, in particular Geometric moments

(GM) can be utilized in estimating the (σ) and size (w) of the Gaussian point spread

function (PSF) that degrades the images. With the knowledge of how edges vary in the

presence of Gaussian blur, a method that uses low order geometric moments is proposed

to estimate the PSF parameter. This is achieved by using the difference of the Weighted

geometric moments (WGM) of the original and the reblurred images as feature vectors

to train extreme learning machine (ELM) to estimate the PSF parameters respectively.
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By estimating the PSF parameter along with using the mathematical relationship between

the GMs of the original image, PSF and the blurred image a restoration method is used to

obtain the deblurred GM of the sharp image. Further, a novel method that uses a cascaded

digital filters operating as subtractor is used to transform the image from Geometric mo-

ment domain to spatial domain. The effectiveness of the proposed method for estimating

the PSF parameters is examined using cross database validation. The results show that

the proposed method in most of the cases performs better than the three existing methods

when examined in terms of the visual quality evaluated using Structural Similarity Indexs

(SSIMs) index.

Chapter 5: Estimation of the blur parameters using Tchebichef moments for

image restoration. With the knowledge of how edges vary in the presence of the Gaus-

sian blur, this chapter presents a method that uses low order Tchebichef moments is pro-

posed to estimate the blur parameters: sigma (σ) and size (w). The difference of the

Tchebichef moments of the original and the reblurred images is used as feature vectors to

train extreme learning machine (ELM) for estimating the blur parameters (σ ,w) respec-

tively. The effectiveness of the proposed method to estimate the blur parameters is exam-

ined using cross database validation. The estimated blur parameters from the proposed

method are used in the split Bregman based image restoration algorithm. A comparative

analysis of the proposed method with three existing methods using all the images from

the LIVE database is carried out. The results show that the proposed method in most of

the cases performs better than the three existing methods in terms of the visual quality

evaluated using structural similarity (SSIM) index.

Chapter 6: Conclusion. The thesis is concluded by summarizing the contents of

the thesis and discussing the possibilities of future work in this direction.
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1.5 Contributions

One of the contributions of this thesis is that it proposes a method of deblurring the

images in the geometric moment domain. In particular, images degraded due to Gaussian

and motion blur are analyzed. A mathematical framework is established in the form of

partial differential equations that results in the optimum solution i.e. the deblurred image.

A comparative analysis of the proposed method with the recent state of the art methods

is performed. In order to provide a fair comparison with the proposed method, images

are selected from the existing methods. Next contribution of this thesis is to propose a

new feature vector known as Weighted geometric moment (WGM) that has an ability to

describe the behavior of the edges of an image in the presence of blur. WGM along with

ELM is used for the estimation of blur parameters followed by restoration performed in

moment domain. Further, an inverse transform that uses cascaded digital filter as subtrac-

tor is employed to convert the image from moment domain back to the spatial domain for

quality evaluations. For evaluating the performance of the proposed approach, standard

databases such as LIVE, Berkeley, CSIQ, CDIQ, TID2008, VCL and Caltech are used.

Using these databases provides a fair comparison with the proposed method as the images

used are the same across the platform. Lastly, the use of Tchebichef moments (TM) for

the estimation of blur parameters by using it as the feature vectors along with the use of

extreme learning machine (ELM) is proposed. Once the PSF is estimated, widely used

non-blind algorithm known as split Bregman is used to restore the original image. The

performance of the proposed TM based estimation method is evaluated using the afore-

mentioned six databases along with the images used in the existing methods with which

the comparison is performed. Lastly, the quality of the restored images in all these contri-

butions is evaluated using no-reference and full-reference image quality metrics such as

SSIM, BRISQUE, VIF and FSIM available in the literature. The proposed contributions
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provide competitive quality scores when compared with the other existing methods.
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CHAPTER 2 : REVIEW OF GEOMETRIC AND TCHEBICHEF MOMENTS

FOR IMAGE DEBLURRING

This chapter starts with a brief overview of the theory of geometric and Tchebichef

moments. A relationship of the geometric moments of the original image, blurred im-

age and the point spread function (PSF) is discussed. The relationship along with the

developed reconstruction algorithms to restore the deblurred image from its geometric

moments are elaborated. The basic kernel of the geometric moment can be represented as

an impulse response and hence digital filters can be designed to compute the geometric

moments. The advantage of using cascaded digital filters is to avoid the use of multi-

plication algorithms which reduces the computational time of calculating the geometric

moments of higher order. These digital filters can also be used to restore the image from

its geometric moments.

2.1 Introduction

The task of image restoration involves deblurring of images degraded due to various

distortions present in nature such as atmospheric turbulence etc. Typical restoration algo-

rithms available in the literature are implemented in spatial, wavelet and sparse domains.

Wavelet analysis turns out to be invaluable in dealing with a wide class of images with

spatially localized features (Daubechies et al., 1992; Mallat, 1999). They are designed to

capture most of the energy of the images and signal using fewer number of coefficients.

This property turns out to be effectively used in various estimation algorithms that are

based on shrinking of the wavelet coefficients (Chambolle, De Vore, Lee, & Lucier, 1998;

Coifman & Donoho, 1995). Its discrete version allows for fast implementation of linear

wavelet methods. The ability to capture sharp signal discontinuity with sparse coefficients

makes them the suitable choice. The WV (wavelet-vaguelette) decomposition is proposed
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for image deblurring problem in (Donoho, 1995b). Here, the signal obtained as an out-

put of the deconvolution is expanded using wavelet basis. A scale-dependent shrinkage

is used to estimate the signal wavelet coefficients. Further improvement in the wavelet

domain is proposed in (Candes & Donoho, 2002) with a new decomposition which is

better adapted to edge-dominated objects and simultaneously providing a diagonal repre-

sentation of the Radon operator. It is achieved by proposing a new basis functions, such

as curvelets. These are smooth, anisotropic directional functions suited for curved edge

detections. An effective hybrid wavelet based deconvolution algorithm was developed in

(Neelamani, Choi, & Baraniuk, 2004). It consist of Fourier-domain regularized inversion

followed by noise suppression in wavelet domain. The developed algorithm performs bet-

ter compared to the conventional Wiener filters and other wavelet-based image restoration

algorithms. Moreover, the expectation-maximization (EM) algorithm used for image de-

blurring based on penalizing the maximum likelihood setting is proposed in (Figueiredo

& Nowak, 2003). The algorithm implements the EM method in the wavelet domain. It is

shown that the algorithm is very efficient and competitive.

The success of image restoration depends on the selection of good image prior mod-

els. In wavelet based image deblurring (Donoho, 1995a), researchers have found that the

sparsity of wavelet coefficients can serve as good prior. This provides an important fact

about the images, that it can be sparsely represented using a dictionary, such as DCT or

wavelet bases. Nowadays, sparse representation is successfully applied in various im-

age processing applications (Elad, Figueiredo, & Ma, 2010; Fadili & Starck, 2006). An

important issue in sparse representation modeling is the proper selection of dictionary

. Typically designed dictionaries, such as DCT and wavelet, has the advantages of fast

implementation. However, their adaptivity to the local structures of an image is lacking.

Now days, much emphasis is laid on designing the dictionaries learned from the image

patches (Elad et al., 2010; Mairal, Elad, & Sapiro, 2008; Mairal, Bach, Ponce, Sapiro, &
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Zisserman, 2009). This leads to state-of-the-art image deblurring.

This work addresses the task of image deblurring in moment domain. Therefore, it

becomes essential to discuss their role in image processing. Geometric moments (GM)

were first introduced by (M.-K. Hu, 1962). The typical application of geometric mo-

ments is in pattern recognition problems, aircraft identification, position detection, scene

matching, image reconstruction, restoration, segmentation, color and character recogni-

tion (P.-T. Yap & Raveendran, 2002; P. Yap et al., 2001). Hu employed the geometric

moments for the calculation of moment invariants which are invariant to translation, rota-

tion and scale change. These invariant features are derived using non linear combination

of geometric moments which are projection of the image intensity f (x,y) onto the mono-

mial xpyq. Due to this the computational cost of evaluating the geometric moments is

exhaustive because of the presence of an exponential factor in its definition.

Most of the work related to the geometric moment calculations have been done using

software and there are very few digital filter implementations for deriving geometric mo-

ments. In order to perform real time image processing, it is desirable to have a digital filter

implementation for geometric moment calculation. Li et al. (B. Li, 1993) proposed the

method of Pascal-triangle-transform to compute the geometric moments. The advantage

of the approach is that it doesn’t involve any multiplications.

Recently moments have gained importance in the field of image processing for per-

forming various image related tasks like object recognition, feature extraction (Flusser,

Zitova, & Suk, 2009) etc. The basic monomial kernel (xp) of the geometric moment can

be expressed as an impulse response. Hence, this paves the way for the implementa-

tion of using digital filters to compute geometric moments. An early effort was made by

Mehdi Hatamian (Hatamian, 1986) who proposed a cascaded 2D digital filter structure

for implementation for geometric moments for real time image processing in which the

basic building block used is a single pole feed forward digital filter. The filters have been
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cascaded in such a way that the structure looks quite symmetrical and thus suitable for

very large scale integration. Li (B. Li, 1993) employs a fast moment calculation based on

Hatamian filter method. However, the setback of Hatamian’s digital filter structure is the

delay involved in the feed-forward path. Wong and Siu (Wong & Siu, 1999) improves the

filter configuration by employing a feedback digital filter structure with reduced compu-

tational time for calculating geometric moments.

Similarly, Tchebichef moments are also implemented using cascaded digital filters.

Kotoulas et al. (Kotoulas & Andreadis, 2006) proposed an efficient method for calculat-

ing Tcehbichef moments from cascaded digital filters. The fast architecture was based

on Hatamian structure which calculates Techbichef moments from geometric moments.

They showed that the elapsed CPU time decreased to as low as 99.81% when compared

to the recursive method proposed by Wang et al. (G. Wang & Wang, 2006). Further, Ko-

toulas et al. proposed a FPGA implementation for fast generation of moments (Kotoulas

& Andreadis, 2008). Hardware implementation of the Tchebichef moments is also pro-

posed by Chang et al.(K.-H. Chang, Paramesran, Asli, & Lim, 2012).

The rest of the chapter is organized as follows. Section 2.2 gives a theoretical back-

ground of Geometric moments which reviews the feed-forward and feedback based 2D

digital filter method for computing the geometric moments. Further, the proposed archi-

tecture is presented for fast implementation of Geometric moments. Experimental results

of the proposed architecture with the existing architectures is presented. Next, techniques

for obtaining the original image back from the geometric moments are discussed. Section

2.3 presents the brief overview of Tchebichef moments and its computational aspects.

Finally, Section 2.4 concludes the chapter.

17

Univ
ers

ity
 of

 M
ala

ya



2.2 Geometric Moments

For an image function f (x,y), a two dimensional geometric moment mpq of order

(p+q) is defined as

mpq =
N−1

∑
x=0

M−1

∑
y=0

xpyq f (x,y) (2.1)

where N, M are the number of rows and column of an image matrix f (x,y).

The moment m00 represents the total intensity in an image. The first order moments,

m01 and m10 about the intensity of the image about x-axis and y-axis respectively. The

centroid of the image is defined as

x =
m10

m00
(2.2)

y =
m01

m00
(2.3)

Central moments are translation invariants and are defined as

µpq =
N−1

∑
x=0

M−1

∑
y=0

(x− x)p(y− y)q f (x,y) (2.4)

The second order central moments µ02 and µ20 provide the variance about the mean.

The central moment µ11 provides the covariance measure. The central moments can be

used to provide translation and scale invariant moments given as

ηpq =
(µ00)

(p+q+2)
2

(µ20)
(p+1)

2 (µ02)
(q+1)

2

µpq (2.5)

where ηpq is invariant to scaling.

The most commonly used moment invariants proposed by Hu are given as

I1 = η20 +η02 (2.6)

I2 = (η20−η02)
2 +2(η11)

2 (2.7)

I3 = (3η30−η12)
2 +(3η21−η03)

2 (2.8)
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I4 = (3η30 +η12)
2 +(3η21 +η03)

2 (2.9)

I5 = (3η30−η12)(3η30 +η12) [(3η30 +η12)
2−3(3η21−η03)

2 ]+ (2.10)

(3η21−η03)(η21 +η03) [(3η30 +η12)
2− (η21 +η30)

2 ]

I6 = (η20−η02); [(η30 +η12)
2− (η21 +η03)

2 ]+ (2.11)

4η11(η30 +η12)(η21 +η03)

I7 = (3η21−η03)(η30 +η12) [(η30 +η12)
2−3(η21 +η03)

2 ] (2.12)

−(η30−3η12)(η21 +η03) [3(η30 +η12)
2− (η21 +η03)

2 ]

I1 denotes the moment of inertia around the centroid of the image while I7 is skew

invariant.

2.2.1 Relationship between blurred and original image in Geometric moments do-
main

The mathematical concept of moments has been around for many years and has been

used in many diverse fields ranging from mechanics, statistics, pattern recognition and

feature extraction. Describing images with moments instead of other more commonly

used image features means that global properties of the image are used rather than local

properties. In particular, the shape of boundary segments can be described quantitatively

by using statistical moments such as mean, variance and other higher order moments.

These statistical measures provide an important image characteristic.

In this thesis, the restoration of blurred images using moments via variational meth-

ods is presented. Geometric moments are taken for this task as they have a representative

equation like (1.1) in spatial domain which relates the blurred image with the original
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image and the system PSF. Therefore, to develop a similar relationship in moments do-

main the following derivation is performed. Geometric moments of an image f (x,y) in

continuous domain are defined as

m( f )
p,q =

∫
∞

−∞

∫
∞

−∞

xpyq f (x,y)dxdy (2.13)

Geometric moments of blurred image g(x,y) and the PSF h(x,y) are defined using (2.13)

as

m(g)
p,q =

∫
∞

−∞

∫
∞

−∞

xpyqg(x,y)dxdy (2.14)

m(h)
p,q =

∫
∞

−∞

∫
∞

−∞

xpyqh(x,y)dxdy (2.15)

Substituting g(x,y) = h(x,y)∗ f (x,y) in (2.14), one can obtain

m(g)
p,q =

∫
∞

−∞

∫
∞

−∞

xpyq
{∫ ∫

R2
h(a,b) f (x−a,y−b)dadb

}
dxdy (2.16)

As shown in (Flusser et al., 2009), by changing the order of integration of (2.16) results

in

m(g)
p,q =

∫ ∫
R2

h(a,b)
{∫

∞

∞

∫
∞

−∞

xpyq f (x−a,y−b)dxdy
}

dadb (2.17)

Using a change of variable x
′
= x−a and y

′
= y−b in (2.17) gives

m(g)
p,q =

∫ ∫
R2

h(a,b)
{∫

∞

−∞

∫
∞

−∞

(x
′
+a)p(y

′
+b)q f (x

′
,y
′
)dx

′
dy
′
}

dadb (2.18)

Substituting back x
′
= x and y

′
= y and binomial expanding (2.18) results in

m(g)
p,q =

∫ ∫
R2

h(a,b)×{∫
∞

−∞

∫
∞

−∞

p

∑
i=0

(
p
i

)
xiap−i

q

∑
j=0

(
q
j

)
y jbq− j f (x,y)dxdy

}
dadb (2.19)
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Bringing the summations outside integration of (2.19) gives

m(g)
p,q =

p

∑
i=0

(
p
i

) q

∑
j=0

(
n
j

){∫ ∫
R2

h(a,b)ap−ibq− jdadb
}

×
{∫

∞

−∞

∫
∞

−∞

xiy j f (x,y)dxdy
}

(2.20)

Finally, (2.20) is simplified using the definitions given in (2.13) and (2.15) as

m(g)
p,q =

{
p

∑
i=0

q

∑
j=0

(
p
i

)(
q
j

)
m(h)

p−i,q− j m( f )
i, j

}
(2.21)

The relationship between original image moments m( f )
p,q and blurred image moments

m(g)
p,q is established using (2.21) which provides motivation for performing restoration us-

ing geometric moments. Blurring affects the edges present in an image which is quantified

in moments domain as given in (2.21). For a 2D Gaussian PSF h(x,y) = 1
2πσ2 e−

x2+y2

2σ2 , Liu

et al. (J. Liu & Zhang, 2005) derived an explicit formula for the GMs of the Gaussian

PSF which is simplified as

m(h)
pq =


2−

p+q
2

p!q!
( p

2 )!( p
2 )!

σ p+q, if p and q are even.

0, otherwise.

(2.22)

Substituting (2.22) into (2.21) and taking inverse transform to derive the expression

for original image GMs in terms of the blurred image GMs (Honarvar et al., 2014) as

m( f )
pq =

p

∑
k=0

q

∑
l=0

(
p
k

)(
q
l

)
(−2)−

k+l
2

k!l!( k
2

)
!
( l

2

)
!
σ

k+l m(g)
p−k,q−l (2.23)

The restoration of deblurred geometric moments cannot be achieved easily due to

its non-orthogonal basis functions xpyq. Recently, (Honarvar et al., 2014) solved this

problem by using Stirling numbers. However, this method is computationally intensive.

Based on the methods which use cascaded digital filters operating as an adder to compute

geometric moments, a technique that uses these filters as subtractor is discussed. These

subtractor based cascaded digital filters can restore the image from its geometric moments

faster.
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Figure 2.1 shows the flowchart of the chapter content. It consist of two paths, namely

forward path and inverse path. The forward path calculates the geometric moments m f
pq

from the image f (x,y) via the digital filter output Y . It consist of cascaded digital filters

and Geometric moment calculation blocks. This will be discussed in detail in Sections

2.2.2 and 2.2.3 . While the inverse path is used to restore back the image f (x,y) from

its geometric moments m f
pq via digital filter output Y . It consists of an inverse geometric

moment calculation followed by the use of subtractor based cascaded digital filter blocks.

The detail description of these blocks will be carried out in Sections 2.2.4 and 2.2.5

Cascaded 

Digital Filter

Geomteric 

Moment

Calculation

f(x,y) Y mpq
f

Subtractor based

Digital Filter
Y

Inverse
Geometric Moment

Calculation
f(x,y)

Forward path

Backward Path

Figure 2.1: Flowchart of the chapter content

2.2.2 Computation of Geometric moments using Feed-forward digital filter

H(z) H(z) H(z) H(z)

H
(z)

H
(z)

H
(z)

H
(z)

H
(z)

H
(z)

H
(z)

H
(z)

H
(z)

H
(z)

Y00

Y10

Y20

Y30

Y01

Y11

Y02 Y03

Y0 Y1 Y2 Y3

Y12

Y21

f(x,y)

Figure 2.2: 2D digital filter structure for calculating geometric moment up to 3rd order
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The geometric moments given in Eq. 2.1 can be implemented using cascaded digital

filters and the resultant structure has been shown in Figure 2.2. Here, the implementa-

tion is restricted to third order moments for a two dimensional image f (x,y), which can

be extended easily for higher order moments. These cascaded digital filters operate as

adders. These filters are of feed-forward and feedback filters. In this section the theory

about feed-forward filters is discussed, followed by feedback filters in the next section.

The feed-forward filter structure has been shown in Figure 2.3. Its input-output

relationship is given as

y(n)− y(n−1) = x(n−1) (2.24)

Taking Z-transform of Eq. 2.24 results in

H1(z) =
Y (z)
X(z)

=
z−1

1− z−1 (2.25)

z -1x(n) y(n)

Figure 2.3: Feed-forward filter

The basic kernel of geometric moments can be represented in terms of a filter whose

impulse response can be given by

h(n) = npu(n) (2.26)

where p is the order of the required moment and u(n) is the unit step function. The higher

order filter structures for calculating the moments can be implemented by cascading the

single pole digital filters to form a multi-pole filter with a transfer function as

hp(z) = 1/(z−1)p+1 (2.27)

23

Univ
ers

ity
 of

 M
ala

ya



Thus, one can use filter banks to calculate various orders of moments. In general,

for each value of p, hp(z) has poles at z = 1 and no zeros. For one dimensional sequence

(a1,a2,a3...aN), the output of the digital filters (Hatamian, 1986) can be evaluated at point

n = N using convolution theorem as

y(N) =
N

∑
i=1

x(i)(N− i)p (2.28)

x(n)
y y y y0 1 2 3

1H  (z) H  (z)1 H  (z)1 H  (z)1

Figure 2.4: One dimensional feed-forward filter structure

Consider a one-dimensional input of length 4-input sequence i.e. N = 4, and p =

0,1,2,3. The corresponding impulse response for the transfer function given in (2.26) for

the filter structure shown in Figure 2.4 is given as

h0(n) = u(n−1) (2.29)

h1(n) = (n−2)u(n−2)+u(n−2) (2.30)

h2(n) =
1
2
(n−3)2u(n−3)+

3
2
(n−3)u(n−3)+u(n−3) (2.31)

h3(n) =
1
6
(n−4)3u(n−4)+(n−4)2u(n−4)+

11
6
(n−4)u(n−4)+u(n−4)(2.32)

It can be observed from (2.29)-(2.32) that the impulse response of the cascaded feed-

forward filter are a linear combination of the delayed version of the desired impulse re-

sponse given in (2.26).

Now, the working principle of the cascaded digital filter structure (Figure 2.2) pro-

posed by Hatamian which used feed-forward digital filter H1(z) given in (2.25) in terms of
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their architecture and clocking schemes is discussed. In order to understand the working

principle of this structure, the following test matrix is used

A =


5 6 7 8

9 10 11 12

13 14 15 16

 (2.33)

as an input to the system. In this operation, the data A(3,4) enters the filter at the first

clock pulse. This is followed by A(3,3), A(3,2) and A(3,1). Then the data A(2,4),

A(2,3), A(2,2), A(2,1), A(2,1), A(1,4), A(1,3), A(1,2), and A(1,1) will be the inputs

to the filter. The row outputs Y0 and Y1 after every clock pulse are given in Figure 2.5a,

where ∆ is the delay in resetting the system to allow new set of inputs. These outputs

are applied to column filters to give the column output Y00, Y01, Y10 and Y11. The

outputs of the column filter after 5th, 11th, 17th, 23rd , and 29th clock period is shown in

Figure 2.5b. The column outputs Y00, Y01, Y10, Y11 after 23rd , 24th, 29th and 30th

clock pulse are 126, 284, 330 and 740 respectively. The clocking scheme used in feed-

forward structure is very simple and the details of this clocking scheme can be seen in

reference(Hatamian, 1986).

2.2.3 Computation of Geometric moments using Feedback digital filter

Another popular filter is the feedback type structure, shown in Figure 2.6, whose

input-output relationship is

y(n)− y(n−1) = x(n) (2.34)

Taking Z-transform of Eq. 2.34 results in

H2(z) =
Y (z)
X(z)

=
1

1− z−1 (2.35)
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0 0
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0
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Figure 2.5: Feed-forward based structure (a) Row Filtering (b) Column Filtering Opera-
tion

-1z

x(n) y(n)

Figure 2.6: Feedback filter

To generate higher order moments for 1D case, the transfer function of the cascaded

digital feedback filter is given as

hp(z) =
(

1
1− z−1

)p+1

(2.36)

26

Univ
ers

ity
 of

 M
ala

ya



where p is the order of moment. The MacLaurian expansion of (2.36) is given as

1+
(

p+1
1

)
z−1 +

(
p+2

2

)
(z−1)−2 +

(
p+3

3

)
(z−1)−3 + ...+

(
p+ k

k

)
(z−1)−k (2.37)

The impulse response of the feedback filter can be found by taking inverse of the Maclau-

rin expansion in (2.37) and is given as

hp(n) =
(

p+n
n

)
u(n) (2.38)

x(n)
y y y y0 1 2 3

2H  (z) H  (z)2 H  (z)2 H  (z)2

Figure 2.7: One dimensional feedback filter structure

Consider a one-dimensional input of length 4-input sequence i.e. N = 4, and p =

0,1,2,3. The corresponding impulse response for the transfer function given in (2.38) for

the filter structure shown in Figure 2.7 is given as

h0(n) = u(n) (2.39)

h1(n) = (n+1)u(n) (2.40)

h2(n) =
1
2
[(n+1)2 +(n+1)]u(n) (2.41)

h3(n) =
1
6
[(n+1)3 +3(n+1)2 +2(n+1]u(n) (2.42)

It can be observed from (2.39)-(2.42) that the impulse response in case of feedback filter

starts at n = 0, which means that the response time of the feedback filters is not affected

by the delay element of the filter.

The cascaded digital filter structure (Figure 2.2) for moment extraction proposed

by Wong (Wong & Siu, 1999) used feedback filter shown in Figure 2.6. In order to

understand its working, same test matrix A has been taken as an input. In this operation,

the data A(3,4) enters the filter at first clock pulse. This is followed by A(3,3), A(3,2)
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and A(3,1). Then the data A(2,4), A(2,3), A(2,2), A(2,1), A(2,1), A(1,4), A(1,3),

A(1,2), A(1,1) will be input to the filter. The row outputs Y0, Y1 and Y2 after every

clock pulse are given in Figure 2.8a. Here ∆ represents the delay in resetting the system

to allow new set of inputs. These outputs are applied to the column filters to give column

output Y00, Y01, Y02, Y03, Y10, Y11, Y12, Y20, Y21, and Y30. The outputs obtained

from the column filters after 4th, 10th, 16th clock period have been shown in Figure 2.8b.

The column outputs Y00, Y01, Y02, Y03, Y10, Y11, Y12, Y20, Y21, and Y30 after 16th

clock pulse have been found to be 126, 330, 675, 1197, 284, 740, 1510, 500, 1300 and

774, respectively.
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Y03

4 10 16
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539 938 1197

Y20 Y21
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58 216 500 150 560 1300

58 274 774

Y0 Y1 Y2 Y3

(b)

Figure 2.8: Feedback based structure (a) Row Filtering (b) Column Filtering Operation
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From Figs. 2.5 and 2.8, two significant differences in the working of both the struc-

tures is observed

1. In feed-forward structure row filter outputs (Y0 and Y1) and column filter outputs

(Y00 and Y10) occurs with a delay of one clock cycle (shown by the presence of

zeros in Figure 2.5). However, in the case of feedback structure (Figure 2.8) there

is no such delay.

2. The final column outputs obtained using feedback structure occur earlier as com-

pared to feed-forward. For example, in the case of feedback structure, output Y00

is obtained at 16th clock cycle while in feed-forward structure it is obtained at 23rd

clock cycle.

These differences are the use of feedback filters in Wong’s system which increase the

speed and simplify the clocking.

Though, the Wong structure is faster (Wong & Siu, 1999) as compared to Hatamian

but it was implemented only in software. The architecture implementation of this sys-

tem is not available. Figure 2.9 shows the proposed 2D digital filter structure based on

feedback filters (Figure 2.6) to obtain output Y’s for 3rd order Geometric moments calcu-

lations.

To speed up the Wong’s feedback structure shown in Figure 2.9 further, an archi-

tecture by making use of dual edge triggered flip flops (D-type) (Afghahi & Yuan, 1991)

in feedback filters is proposed. However, the core structure of the 2D digital filter re-

mains the same as shown in Figure 2.9. Details of the work can be found in (Kumar &

Paramesran, 2014).

The outputs Y’s from the cascaded digital filter (Figure 2.9) are to be processed

further in order to calculate the geometric moments matrix, M. Hence, the output of
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Y00 Y01 Y02

Y10 Y11 Y12

Register Latch Register Latch Register Latch

f(x,y)

Y20

Y30

Y21

Register Latch

Y03

z-1 z-1 z-1 z-1

z-1
z-1

z-1
z-1

z-1
z-1

z-1

z-1
z-1

z-1

Y0 Y1 Y2 Y3

Figure 2.9: Proposed 2D digital filter structure for geometric moment calculation

digital filters passes through an appropriate digital block which implements following

transformation

M = CYCT (2.43)

where, M is the geometric moments matrix, Y is the 2D digital filter output matrix defined

as

Y =



Y00 Y01 Y02 Y03 ... Y0N

Y10 Y11 Y12 Y13 ... Y1N

Y20 Y21 Y22 Y23 ... Y2N

Y30 Y31 Y32 Y33 ... Y3N

. . . . . .

. . . . . .

. . . . . .

YN0 YN1 YN2 YN3 ... YNN



(2.44)
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The coefficients of matrix C in case of Hatamian’s approach is defined as (Al-Rawi, 2008)

Cp,r =



0 (p > 0,r = 0)or(r > p)

1 p = 0,r = 0

r(Cp−1,r−1−Cp−1,r) otherwise

(2.45)

while for Wong’s approach is given as (Al-Rawi & Jie, 2002)

Cp,r =



0 r > p

(−1)p r = 0, p≥ 0

rCp−1,r−1− (r+1)Cp−1,r r > 0, p > 0

(2.46)

2.2.4 Restoration of original image using Subtractor based digital filter

Here, the restoration of original image from its geometric moments using cascaded

digital filters is discussed. Once the digital filter output Y is obtained from cascaded

digital filters (Figure 2.9), Geometric moments are obtained using

mp,q =
p

∑
r=0

q

∑
s=0

CprCqsYrs (2.47)

where, C is the transformation matrix given as (2.45) for feed-forward architecture and

(2.46) for feedback architecture (Al-Rawi & Jie, 2002). From the GMs of the original

image given in (2.47), main focus is to restore the original image from its geometric mo-

ments by using an inverse moment transform based on the feedback architecture proposed

by Wong et al. (Wong & Siu, 1999). For this, there is a need to calculate the inverse of

the matrix C given in (2.46) as

E =C−1 (2.48)
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Once the inverse is calculated, the digital filter output Y can be calculated from the re-

stored GMs of the sharp image as

Yp,q =
p

∑
r=0

q

∑
s=0

EprEqsmrs (2.49)

Using the digital filter output Y given in (2.49), cascaded subtractor circuit to trans-

form the digital filter outputs back into the image f (x,y) in the spatial domain is dis-

cussed. To explain the inverse transform process, 1D signal sequence (Y1,Y2, . . . ,YN) of

size 1×N is taken for illustration which then generalized to 2D images later. For a 1D

sequence, a complete cascaded subtractor digital filter is shown in Figure 2.10.

Figure 2.10: Subtractor block diagram for N input sequence

It comprises of horizontal subtractor filters (Shv) and vertical filters (S f v). The output

of the subtractor is the reconstructed input data (X0,X1,X2, . . . ,XN). Next, the details of

both the horizontal and vertical subtractors is discussed in detail as follows

2.2.4.1 Horizontal Cascaded Subtractor Digital Filters

The basic building block of a horizontal subtractor digital filter is shown in Figure

2.11.
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Figure 2.11: Basic building block of horizontal subtractor digital filter (S f h)

Its transfer function Hh0(z) is expressed as

Hh0(z) = 1− z−1 (2.50)

while for the series of cascaded horizontal subtractor digital filters for N input sequence

is given as

HhN(z) = (1− z−1)N+1 (2.51)

2.2.4.2 Vertical Cascaded Subtractor Digital Filters

Once all the diagonal values are obtained, the values are inserted into the vertical

subtractor digital filters. Here, the subtraction process is performed until all the image

pixel intensity values are computed. The image pixel intensity values are denoted as X0

to XN−1 in Fig 2.10.

Figure 2.12: Basic building block of vertical subtractor digital filter (S f v)

The basic building block of vertical subtractor digital filter is shown in Figure 2.12

and the transfer function in the Z-transform domain is given as

Hv0(z) = 1− z (2.52)
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For N input sequence, to compute xn of the image pixel intensity value where 0 ≤

n < N−1 , there is a need of n+1 vertical subtractor digital filters connected in cascade.

The transfer function of the cascaded vertical subtractor digital filters of N input sequence

can be expressed generally as

Hvn(z) = (1− z)n+1 for 0≤ n < N−1 (2.53)

2.2.4.3 Working Principle of the 1D Subtractor Circuit

The working principle of the complete subtraction process can be explained using

subtractor matrix. In general, the size of the subtractor matrix depends on the image size.

For N × N image, the size of the subtractor matrix is (N+1)× (N+1) and Si j represents

the elements of the subtractor matrix where i = 0,1, ...N− 1 and j = 0,1, ...N. Initially,

all the elements in the subtractor matrix are set to zero.

Thus, for an image of 4 × 4, the subtractor matrix is a 5 × 5 as shown in Figure

2.13. The red triangle represents the working principle of the horizontal subtractor digital

filters, the blue rectangle represents the intersection process between the horizontal and

vertical subtractor digital filters and the green triangle represents the working principle of

the vertical subtractor digital filters.

As an example, consider an arbitrary 1-dimensional digital filter the output of

(y0,y1,y2,y3) = (10,27,55,97) are inserted into the subtractor circuit which consist of

12 cascaded subtractor digital filters as shown in Figure 2.14. This process can be rep-

resented using the process shown in Figure 2.15(a). Next, the horizontal subtraction

process, Si j = Si−1, j−Si−1, j+1 is performed to the input until all the diagonal values are

computed as shown in Figure 2.15(b). For simplicity, the zero values are removed from

the subtractor matrix in this example. These diagonal values (3,11,17,10) are denoted as

d0 to d3 respectively in Figure 2.14.

The last row of the subtractor matrix has the same value as the last diagonal value,
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Figure 2.13: Subtractor matrix

Figure 2.14: 1D cascaded subtractor digital filter for 4-input sequence

d3 as shown in Figure 2.15(c). This is the intersection process between the horizontal and

vertical subtractor digital filters. Finally, the vertical subtraction process, Si j = Si, j−1−

Si+1, j+1 is performed to complete the subtractor matrix as shown in Figure 2.15(d). The

image pixel intensity can be found in the last column of the subtractor matrix. For this

example, the image pixel intensity values are (x0,x1,x2,x3) = (1,4,2,3).
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Figure 2.15: Data flow in subtractor matrix shown in Fig 2.13

2.2.4.4 2D Subtractor Circuit

For 2-dimensional case, the 2D subtractor circuit is formed by arranging multiple

1D subtractor circuits horizontally and vertically. The number of 1D subtractor circuit

required are depending on the size N × N of the square image used, i.e., a 4 × 4 image

reconstruction requires 4 vertically arranged 1D subtractor circuits, Sv and 4 horizontally

arranged 1D subtractor circuits, Sh. Both Sv and Sh in this case are similar to the 1D

cascaded digital filters as shown in Figure 2.14.

In general, the number of subtractor digital filters for the 2D subtractor circuit is

represented by 2N2(N−1) and the block diagram is shown in Figure 2.16. Consider a 4
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Figure 2.16: Block diagram of the 2D subtractor circuit for N × N image

× 4 digital filters output as shown below.

y(m,n) =



y00 y01 y02 y03

y10 y11 y12 y13

y20 y21 y22 y23

y30 y31 y32 y33


(2.54)

In the 2D case, the digital filter outputs are inserted row by row into the 1D vertical

subtractor circuits, Sv,N−1, i.e, for row 0, y00 to y03 are inserted into Sv,0; for row 1, y10

to y13 are inserted into Sv,1 and so on. Each row will undergo 1D subtractor processes as

explained in the previous section. Then, the outputs of the 2D vertical subtractor circuit

are inserted accordingly into the 1D horizontal subtractor circuits, Sh. The 1D subtractor

process is repeated at this stage. The restored image is reconstructed using the final

outputs of the 2D subtractor circuit.
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To understand more about the process, consider an artificial test image with the fol-

lowing the digital filter outputs matrix as follows:

y(m,n) =



304 750 1490 2597

692 1710 3400 5929

1316 3250 6460 11263

2226 5490 10905 19005


Using the 2D subtractor circuit as shown in Figure 2.16, the first row values of the

digital filter output matrix are inserted into the first 1D vertical subtractor digital circuit

Sv,0, the second row values of the digital filter output matrix are inserted into the sec-

ond 1D vertical subtractor digital circuit Sv,1 and so on. All these values will undergo

the subtraction process and the resulting values will then be inserted into the horizontal

subtractor circuit.

The first output values from each 1D vertical subtractor digital circuit will then be

inserted into the first 1D horizontal subtractor digital filter Sh,0, the second output values

into the second 1D horizontal subtractor digital filter and so on. The final values obtained

from this process are the recovered artificial test image pixel intensity, f (m,n) and is

given as follows:

f (m,n) =



27 26 25 24

18 17 16 15

20 21 22 23

14 13 12 11



2.2.4.5 Experimental studies

In this section, subtractor method is validated and evaluated through a series of exper-

iments. Here, the reconstruction process is explored where grayscale images are tested.

The CPU elapsed time of the reconstruction of images is evaluated. In this experiment,
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the reconstruction process to two grayscale images as shown in Figure 2.17 with the res-

olution of 64 × 64, 128 × 128 and 256 × 256 is performed. The reconstruction process

was performed using the complete set of the geometric moments. For this, geometric

moments of the images are computed and used as the input to the reconstruction process.

(a) (b)

Figure 2.17: Grayscale images used in the reconstruction process (a) ’blonde’ image (b)
’pepper’ image

The CPU elapsed time is computed for this experiment and the experiment results

are shown in Table 2.1. Using the subtractor method, the digital filter outputs is com-

puted directly using the geometric moments and the inverse coefficient matrix. Moreover,

subtraction operation used in the second process reduced larger values to smaller values.

Thus, the computational complexity is reduced since both processes use direct and simple

computations.

Table 2.1: CPU time (sec) for grayscale images using Subtractor circuit

Original Image Size: 64×64 Size: 128×128 Size: 256×256

10.23 25.12 35.65

10.15 25.71 35.56
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2.2.5 Restoration of original image using Stirling Numbers

Images can be easily constructed from the finite sets of orthogonal moments. But,

geometric and complex moments basis function does not satisfy the orthogonal criterion,

as a result reconstruction from these moments become difficult. Recently (Honarvar et al.,

2014) accomplished the task of image reconstruction by using the relationship between

geometric moments and Stirling numbers of the second kind. The Stirling number of

second kind S2(p,k) is given as

xp =
p

∑
k=0

k!S2(p,k)
(

x
k

)
(2.55)

where xp is the 1D monomial kernel of geometric moment. By substituting (2.55) into

1D form of (2.1) results in

mp =
N

∑
x=1

p

∑
k=0

k! f (x) S2(p,k)
(

x
k

)
(2.56)

By using the relationship between the Stirling numbers of first and second kinds, the

original sequence f (x) can be restored from its geometric moments and is given as

f (x) =
N−1

∑
p=0

N−1

∑
i=0

(−1)i−x

i!

(
i
x

)
S1(i+1, p+1)mp (2.57)

Generalizing (2.57) for 2D images of size N×N as

f (x,y) =
N−1

∑
p=0

M−1

∑
q=0

N−1

∑
i=0

M−1

∑
j=0

(−1)i+ j−x−y

i! j!

(
i
x

)(
j
y

)
S1(i+1, p+1)S1( j+1,q+1)mpq (2.58)

Since geometric moments are related to Stirling numbers and an inverse exist between

Stirling numbers of the first and second kind, Eq. 2.58 provides a a mathematical rela-

tionship to obtain the original image from its geometric moments.
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2.3 Tchebichef Moments

The Tchebichef moment of order (p+q) for an image with intensity function f (x,y)

has been defined as

Tp,q =
N−1

∑
x=0

N−1

∑
y=0

t̃p(x;N )̃tq(y;N) f (x,y) (2.59)

where, the image is of size N×N and t̃p(x;N) and t̃q(y;N) are the normalized Tchebichef

polynomials defined as (Mukundan et al., 2001b)

t̃p(x;N) =
tp(x;N)√

ρ(p,N)
, t̃q(y;N) =

tq(y;N)√
ρ(q,N)

(2.60)

and tn(x;N) is the nth-order N-point Tchebichef polynomial defined as

tn(x;N) = n!
n

∑
k=0

(−1)n−k
(

N−1− k
n− k

)(
n+ k

n

)(
x
k

)
(2.61)

For simplicity, the convention t̃n(x) is adopted to represent t̃p(x;N). The orthonormal

version of Tchebichef polynomial t̃n(x) is calculated using the recurrence relation as

t̃n(x) = α1(2x+1−N )̃tn−1(x)+α2t̃n−2(x) (2.62)

n = 2,3, ....,N−1;x = 0,1, ...,N−1

where

α1 =
1
n

√
4n2−1
N2−n2 (2.63)

α2 =
1−n

n

√
2n+1
2n−3

√
N2− (n−1)2

N2−n2 (2.64)

The initial conditions for the recurrence relation given in (2.60) is given as

t̃0(x) =
1√
(N)

(2.65)

t̃1(x) = (2x+1−N)

√
3

N(N2−1)
(2.66)
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Tchebichef moments are selected as feature vectors in this thesis due to the following

desirable properties

1. Due to its discrete and orthogonal nature, these moments can be directly applied to

digital images without incurring any discretization errors and co-ordinate mapping.

2. The feature vectors of Tchebichef moments are efficient image descriptors which

can represent the information present in an image without any redundancy and can

detect any small variation in the pixel intensities.

3. It can effectively extract the statistical and structural content of the image and hence

these features can be widely used in various applications of image processing.

Tchebichef moments in (2.59) can be represented in matrix form which is easily

implemented in MATLAB. The Tchebichef moments for an image X = f (x,y)|N−1
x,y=0 up

to the order (p+q) can be implemented as

T = PXQT (2.67)

where P and Q are the Tchebichef polynomials defined in matrix form as

P =



K0(0) ... K0(N−1)

. . .

. . .

. . .

Kn(0) ... Kn(N−1)


(2.68)
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Q =



K0(0) ... K0(N−1)

. . .

. . .

. . .

Km(0) ... Km(N−1)


(2.69)

Tchebichef moments of an image X are basically the projections of the image on to

the basis function φpq, which is the product of t̃p and t̃q defined as

t̃p = [̃tp(0)̃tp(1)...̃tp(N−1)] (2.70)

t̃q = [̃tq(0)̃tq(1)...̃tq(N−1)] (2.71)

φpq = [̃tp]
T t̃q (2.72)

Figure 2.18 shows the plots of the basis function of Tchebichef moments.

φ
00

φ
04

φ
40

φ
44

Figure 2.18: Basis function of Tchebichef moments

It can be observed from these basis function plot that for φpq, ∀p = 0;q = 0,1,2,3,4

consist of mostly the vertical edges while for φpq, ∀p = 0,1,2,3,4;q = 0 are mostly

horizontal edges. If these basis functions are applied to images of varying edge contents,

it will certainly extract vertical and horizontal edge information present. This information
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can be used as edge features which will be later in this thesis along with learning machines

is used to estimate the Gaussian blur present in an image.

2.4 Conclusion

In this chapter, an overview of the use of Geometric and Tchebichef moments in the

field of image analysis is presented. In particular, their computational aspects are dis-

cussed. Here, the details of the two different 2D digital filter structures for implementing

geometric moments is discussed. All the structures (Wong and Hatamian) presented will

generate the same values of geometric moments, however the novelty of the structure lie

in the fact that how fast the execution of moments will be performed. Further, two meth-

ods used for image reconstruction from its geometric moments which are used later in the

study are also explored.
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CHAPTER 3 : RESTORATION OF BLURRED IMAGES USING GEOMETRIC

MOMENTS

In this chapter a mathematical framework for restoring the degraded image is pro-

posed in moment domain for both the Gaussian and the motion blurred images. This is

achieved using the relationship of geometric moments for original and blurred images

along with Euler-Lagrange identity and variational framework. The proposed method

is formulated as a Partial Differential Equations (PDEs) where the solution to the global

minimum i.e restored image is achieved using iterative computation. In order to perform a

fair comparison with the existing methods, same images used in the existing methods are

taken for comparison. Experimental results are conducted to validate the proposed the-

oretical framework using various quality assessment methods such as SSIM, BRISQUE

and VIF. It has been observed that the proposed method gives competitive results in terms

of quality score when compared to the existing methods.

3.1 Introduction

Images are produced to record or display useful information. However, due to imper-

fections in the imaging and capturing processes, the observed image invariably represents

a degraded version of the original image. To recover these imperfections is crucial in

various image processing tasks. There are various types of degradations affecting the im-

age such as noise, illumination, color contrast and blur. Here the focus is primarily on

degradations due to the Gaussian blur. Typically, the degradation model of an image is

given as

g(x,y) = h(x,y)∗ f (x,y)+n(x,y) (3.1)

where, f (x,y) is the true image that one would like to recover from the degraded image

g(x,y). Here, ∗ denotes the convolution operator, h(x,y) is the Point Spread Functions
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(PSFs) of the imaging system, and n(x,y) is the additive noise. This degradation model

can also be represented in matrix-vector form as

g = Hf+n (3.2)

For a N×M true image f (x,y), f, g and n are the vectors of size NM× 1 and H is the

two-dimensional degradation matrix of size NM ×NM.

The research involved in deblurring of an image can be classified as blind and non-

blind problems. In the case of non-blind, the PSF h(x,y) is assumed to be known. How-

ever, in case of blind deblurring, both of the original image and the PSF are unknown.

Despite of the narrower applicability of non-blind deblurring approach, it is already a

challenging problem as the convolution operators of interest are typically ill-posed. As

a result of this lot of research has been still going on (J. Chen, Dong, Feng, Xu, & Li,

2013; M. Almeida & Figueiredo, 2013; Tao, Dong, Feng, Xu, & Li, 2013; Tang, Gong,

Li, & Wang, 2014; Vera, Vega, Molina, & Katsaggelos, 2013b; Stoker, Wedd, Lavelle, &

van der Laan, 2013). A typical application of image deblurring lies in various areas of

astronomy, optics and surveillance.

In many scientific applications, the PSF is known. For example, in computational

photography systems (Fergus, Singh, Hertzmann, Roweis, & Freeman, 2006), the PSF

is known up to a scale. Also the PSF due to the camera motion can be effectively es-

timated from a single image, a sensor image or through an accelerometer (Ben-Ezra &

Nayar, 2003; Yuan, Sun, Quan, & Shum, 2007). Estimation of the PSF due to one-

dimensional motion, affine transformation can be estimated automatically or through it-

erations (Raskar, Agrawal, & Tumblin, 2006; Levin, 2006; Jia, 2007).

To solve blind deblurring problem, implementation in various domains has been pro-

posed. One of the solutions to restore the original image in the spatial domain is by using

the iterative regularization algorithm proposed based on the use of Bregman distances
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(Osher, Burger, Goldfarb, Xu, & Yin, 2005). Recently, a normalized regularization func-

tion L1-L2 has been proposed in (Krishnan, Tay, & Fergus, 2011). The L1-L2 function is

scale invariant and the gradient information obtained can be used to provide a tractable

optimization algorithm. However, due to the non-convex nature of the L1-L2 function,

multiple local minima are produced from this process. Further, a novel image restoration

process using principal components analysis (PCA) can be applied to multi-channel and

single-channel deconvolution cases as introduced by Li et al. in (D.Li & Simske, 2007).

This method was later modified by Nakamura et al. in (Nakamura, Mitsukura, & Hamada,

2013) to improve the quality of the restoration process in single-channel cases. The ma-

jority of the solutions in blind deblurring estimate the blur operator before restoring the

image using a non-blind restoration process (Schelten, Nowozin, Jancsary, Rother, &

Roth, 2015). Here, using Regression Tree Fieldss (RTFSs), an alternate process between

estimating the blur operator and discriminative deblurring is used for blind deblurring. In

this method, the errors produced by the estimation process are learned during training and

the errors are compensated for in the image restoration method. Xin (X. Li, 2011) used

projection based image deblurring which helped to achieve an improved tradeoff between

image recovery and noise suppression. In (Bioucas-Dias, Figueiredo, & Oliveira, 2006),

a new TV-based image deblurring algorithm under the assumptions of linear observations

is proposed which used a majorization-minimization approach to solve image deblurring

problem which replaces a difficult optimization problem by a sequence of simpler ones.

Masschaele et al. (Masschaele et al., 2005) developed an iterative, accelerated,

damped algorithm to enhance the Neutron Computed Tomography images by iterative de-

blurring of neutron transmission projections. Gou et.al (Guo, Lee, & Teo, 1997) used iter-

ative Constrained Least Squares algorithm for both blur identification and image restora-

tion in blind restoration of images degraded by space-variant blurs. They extended the

Expectation Maximizations (EMs) algorithm and combined it with the region adaptive
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technique to handle the problem of identifying the spatially variant blurs. A variational

approach in a Bayesian framework using the expectation maximization (EM) is success-

fully applied to blind restoration problems (Likas & Galatsanos, 2004). A combination of

Haar wavelet and Lucy Richardson algorithm has been used to restore Positron Emission

Tomographys (PETs) images (Tam, Lee, Hu, Liu, & Chen, 2011).

Ziya et al. (Telatar, 2005) introduces a novel method to enhance the quality of

blurred images. The proposed method is based on the estimation of the multi-criteria

information about degraded images. The multi-criteria information is extracted from the

distribution model. Langer et al. (Langer, Osher, & Schönlieb, 2013) discusses a fast

computational algorithm to solve domain decomposition for total variation minimization.

An accelerated computation of the sub-problems is achieved by nested Bregman itera-

tions. Further, a Bregmanized Operator Splitting- Split Bregmans (BOS-SBs) algorithm

is proposed, which enforces the restriction onto the respective sub-domain by a Breg-

man iteration that is subsequently solved by a Split Bregman strategy. Xian et al. (Xiang,

Meng, Wang, Pan, & Zhang, 2012) presents a supervised learning algorithm for image de-

blurring using the conceptual framework of of matrix regression and gradient evolution.

For a pair of blurred image patches and their corresponding sharp images,an optimiza-

tion framework of matrix regression is formulated to learn matrix mapping. Pang et al.

(Pang & Yang, 2011) proposed a projected gradient algorithm for image restoration and

texture extraction based on the augmented Lagrangian strategy. It is based on the ba-

sis of a mixed model which combines the Rudin Osher Fatemis (ROFs) model with the

Lysaker-Lundevold-Tai (LLT) model to reduce the staircase effect and blur phenomenon.

Su et al. (M. Su & Basu, 2002) proposed a 3-stage hybrid learning system with unsu-

pervised learning as an application for image deblurring. Also Kennedt et al. (Kennedy

& Basu, 2000) used the Projection pursuit learning networks Projection Pursuit Learn-

ing Networkss (PPLNs) to be used in the field of image processing. They showed how
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PPLNs are effectively used to connect edges and produce continuous boundaries. Fur-

ther, an application of PPLN to deblurring a degraded image when little or no a priori

information about the blur is available is also demonstrated. Other solutions to deblur-

ring in the spatial domain can be found in (Katsaggelos, 1989; Campisi & Egiazarian,

2007; Money & Kang, 2008; Ceccarelli, 2007; Shi & Yang, 2010). Vairy et al. (Vairy

& Venkatesh, 1995) propose a multi-scale inversion method based on wavelet arrays. It

is applicable to a wide class of images, and show that the inversion is stable with re-

spect to noise both in the blurred signal and in the blur variance. Dobrosotskaya et al.

(Dobrosotskaya & Bertozzi, 2008) proposed a new variational method for blind decon-

volution of images utilizing PDE-based techniques involving the Ginzburg-Landau func-

tional along with wavelet-based methods. Other restoration methods that utilized wavelet

domain for image deblurring are reported in (Figueiredo & Nowak, 2003; Bioucas-Dias

et al., 2006; Duijster, Scheunders, & De Backer, 2009).

In image restoration an important measure to be considered is the quality of the

restored image. In deciding the quality of an image, subjective human perception has

been, and still is, considered the benchmark of quality. This is because the end user (the

human being) and his perception of quality are deemed critical. Based on the charac-

teristics of the human visual system (HVS), a number of subjective metrics have been

introduced (Z. Wang, Bovik, Sheikh, & Simoncelli, 2004a; Xue, Zhang, Mou, & Bovik,

2014). There are three categories in image quality assessment: Full References (FRs),

Reduced-References (RRs) and No-References (NRs) which are explained as follows:

1. Full-Reference (FR): This metric requires the availability of the original images

(L. Zhang, Zhang, & Mou, 2011; Sheikh & Bovik, 2006). These images are as-

sumed to be of perfect quality. The distorted images are compared with the refer-

ence images to construct an objective metric.
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2. Reduced Reference (RR): It provides score to the distorted images when only par-

tial information of the original image is available (L. Ma, Li, Zhang, & Ngan, 2011).

3. No-Reference (NR): This metric provides score to distorted image when the users

do not have access to the original image (Mittal, Moorthy, & Bovik, 2012; Sheikh,

Bovik, & Cormack, 2005).

These methods compute an absolute value based on the given image rather than a

metric that is relative to the reference image. This scenario is arguably the most common

and therefore a lot of research attention has been on the production of metrics that can be

used in such situations. Here, one can use both NR and FR quality metrics to justify the

effectiveness of the proposed approach.

The role of moments in image processing constitute an important feature extraction

method which generates highly discriminative features, able to capture the particular char-

acteristics of the described pattern, which distinguish it among similar or totally different

objects. Work has also been done for the moment extraction through VLSI structures

(Hatamian, 1986; Kumar & Paramesran, 2014). Recently, their use in the field of medical

imaging is also explored (Maidment et al., 2012; Meyer-Baese & Schmid, 2014; Hosny

et al., 2013).

Here, a blind restoration technique for blurred images in the moment domain is

proposed. The study is based on the alternate minimization principle which applies to

restoration techniques in spatial domain (Chan & Wong, 1998; Sroubek & Flusser, 2003).

Geometric moments are projections of the image intensity function f (x,y), onto monomi-

als xpyq. The basis set xpyq is not orthogonal. This non-orthogonality causes information

redundancy in the extracted moments and it is more difficult to reconstruct images from

the moments (Teague, 1980). However, the problem of image reconstruction has been

solved recently (Honarvar et al., 2014). This provides motivation and new opportunities
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to explore the potential of using geometric moments in the area of image restoration.

The rest of the chapter is organized as follows. Section 3.2 gives theoretical and

experimental results for the image deblurring performed using non-blind algorithm. The

applicability of the proposed method in restoring the blurred image degraded due to mo-

tion blur is studied in Section 3.3. Here, the mathematical framework is formulated in

moment domain for the motion blur case. Moreover, comparative analysis is performed

with the recently introduced methods (Deshpande & Patnaik, 2014; Dash & Majhi, 2014).

Section 3.4 describes the details of blind algorithm for image deblurring. Section 3.5 con-

cludes the chapter.

3.2 Non-Blind Deblurring in Moment Domain

In this section, a deblurring algorithm in moment domain that uses Euler Lagrange

and variational technique is discussed. A blurred image possesses higher energy and

therefore seeks out a lower energy state. Thus, the goal of the variational approach is to

construct an energy that describes the quality of the image and then minimize that energy

(Chan & Shen, 2005). For this a well established theory of partial differential equations

(PDE) has been used. PDE approach treats an image as a function of space and time

which evolves gradually. Finally, an estimation of the original image can be obtained by

iterating the PDE for a fixed number of iterations.

Hence, one can begin by using an established relationship between geometric mo-

ments for original and blurred image. Here, the formulation has been discussed for 1D

and then extended to 2D. For a 1D N-length signal, f (x) the geometric moment defined

in (2.1) is given here as

m( f )
p =

N

∑
x=1

xp f (x) (3.3)

51

Univ
ers

ity
 of

 M
ala

ya



and for a 2D images as

m( f )
p,q =

N−1

∑
x=0

N−1

∑
y=0

xpyq f (x,y) (3.4)

where m( f )
p is the geometric moment of signal f (x) of order p while m( f )

p,q is the geometric

moment of an image f (x,y) of order p,q.

As shown in (Flusser et al., 2009), the relationship between the degraded signal moments

with original signal moments in 1D is given by

m(g)
p =

p

∑
i=0

(
p
i

)
m( f )

i m(h)
p−i (3.5)

where m(g)
p , m( f )

p , m(h)
p are the moments of the degraded signal, original signal, PSF

respectively and p is the order of moment. Using (3.5), one can now write the energy

function, Ep for a specific order, p as

Ep =

(
p

∑
i=0

(
p
i

)
m( f̂ )

i m(h)
p−i−m(g)

p

)2

(3.6)

where m( f̂ )
p is the estimated original signal. Taking derivative of (3.6) with respect to m( f̂ )

p ,

one can obtain

∂Ep

∂m( f̂ )
p

= 2m(h)
0

(
p

∑
i=0

(
p
i

)
m( f̂ )

i m(h)
p−i−m(g)

p

)
(3.7)

Using Euler Lagrange identity, the partial differential equation (PDE) can be modeled as

∂m( f̂ )
p

∂ t
=−

∂Ep

∂m( f̂ )
p

(3.8)

This variational procedure consists of iteratively updating the PDE given in (3.8)

which is consistent with gradient descent approach of Ep. Substituting (3.7) in (3.8)

yields,

∂m( f̂ )
p

∂ t
=−2m(h)

0

(
p

∑
i=0

(
p
i

)
m( f̂ )

i m(h)
p−i−m(g)

p

)
(3.9)

Finally, by discretization of (3.9), one can get

m( f̂ )
p [n+1] = m( f̂ )

p [n]−2m(h)
0

(
p

∑
i=0

(
p
i

)
m( f̂ )

i [n] m(h)
p−i−m(g)

p

)
(3.10)
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where n is the number of iterations performed.

Similarly for 2D image, (3.10) can be generalized as

m( f̂ )
p,q[n+1] = m( f̂ )

p,q[n]−2m(h)
0,0

(
p

∑
k=0

q

∑
j=0

(
p
k

)(
q
j

)
m( f̂ )

k, j [n] m(h)
p−k,q− j−m(g)

p,q

)
(3.11)

where p and q are the order of moments.

For a fixed number of iterations or when the error criterion is met, (3.11) is iterated.

However, the proposed method needs an additional task of reconstructing the image from

m( f̂ )
p,q, which can be performed using subtractor technique discussed in Chapter 2 Section

2.2.5 (Honarvar et al., 2014).

3.2.1 Experimental Results

In this section, the validity of the proposed method for 1D signals is shown followed

by a comparative analysis with spatial domain. Lastly, experiments have been performed

on real astronomical images and their perceptual quality has been evaluated through the

use of recently introduced quality metric (Mittal et al., 2012) .

3.2.1.1 Deblurring of 1D Signals

In order to verify the mathematical formulation provided in (3.10), an example of a

1D signal given as f (x) = {2,1,4,3,5,1} and the PSF as h(x) = {0.2,0.2,0.2,0.2,0.2}

is taken. The moments of the original image, PSF and blurred image are obtained using

(3.3) as

m( f )
p = {16,43,149,559,2213,9103} (3.12)

m(h)
p = {1,2,6,20,70.8} (3.13)

m(g)
p = {16,75,417,25470,16622,113960} (3.14)

where p varies from 0 to 5.
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Figure 3.1: (a) Estimated m( f̂ )
1 and (b) Estimated m( f̂ )

2

By making use of observed blurred image moments, m(g)
p (3.14) and the moments

of the PSF, m(h)
p (3.13), estimated original image moments, m( f̂ )

p can be calculated using

(3.10). From Figure 3.1 it can be observed that after 25 and 20 iterations the estimated

value of m( f̂ )
1 and m( f̂ )

2 comes close to the original image moment 43 and 149 as calculated

in (3.12) for p = 1,2. Hence, the simulation results confirm the validity of the proposed

approach in (3.10).
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Figure 3.2: Error vs Iterations
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3.2.1.2 Deblurring of 2D Images

Further carrying the discussion to 2-D image processing, a comparative performance

of the proposed work in moment domain with spatial domain is carried out. In this exper-

iment, the original image was blurred using Gaussian PSF. Here, the image size is 32×32

and p,q = 32. First, a comparison is performed in terms of how fast the error in spatial

domain | f̂ (x,y)− f (x,y)| and |m( f̂ )
p,q−m( f )

p,q| in moments domain converges. From Figure

3.2 it can be observed that error drops rapidly in the case of the moment domain when

compared to spatial domain for a fixed number of iterations. In this work, the number of

iterations performed is 80.

3.2.1.3 Comparative Analysis

Comparative study of the image obtained through both the domains is carried out.

In this work image quality assessment is used to predict perceptual image quality scores

without access to reference images. One such technique is known as BRISQUE (Mittal

et al., 2012) which is used to quantify the quality of an image and gives the objective

score. The lower score indicates a higher quality image. Table.3.1 shows the 32× 32

binary image of letter E and its blurred images. Using this original image, two sets of

blurred images were created. In both the cases, the σ and mask size w are (σ = 0.5 ,

w = 5× 5) and (σ = 1.167 , w = 7× 7). By applying BRISQUE to each set of blurred

images it can be observed that the objective score obtained using moment domain is

less than the spatial domain. Hence, it shows that the perceptual quality of an image is

better in the case of moment domain. In the next experiment astronomical images of

size 64× 64 and 128× 128 is used. Two data sets of blurred images are created with

(σ = 0.833 , w = 5× 5),(σ = 2.167 , w = 13× 13) for 64× 64 image and (σ = 1.667,

w = 7×7), (σ = 3.167 , w = 19×19) for 128×128. Values of mask size(w) and sigma

(σ) are selected on the basis of (“http://classes.soe.ucsc.edu/ee264/Winter09/SECURE/5-
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LocalOperations.pdf”, n.d.). Table. 3.2 shows the results of the BRISQUE score for both

the spatial and moment domain. It can be seen that the BRISQUE score in case of moment

domain is less than the spatial domain. Further, Table. 3.3 shows the comparative analysis

with the existing methods. It can be observed that the proposed method provides good

quality images as evaluated in terms of the BRISQUE scores.

Table 3.1: Image deblurring using spatial and moment domain for a binary image of
32× 32 with different Gaussian kernel, σ and mask size, w with their corresponding
BRISQUE

Blur Deblurred Images Original

Image Spatial Domain Moment Domain Image

σ = 0.5, w = 5×5
BRISQUE 16.45 13.21

σ1 = 1.167, w = 7×7
BRISQUE 18.23 15.41

3.3 Restoration of motion blurred images degraded by motion blur

In this section, the applicability of the proposed algorithm for restoring the images

degraded using motion blur is explored. Mathematically, a uniform motion blur is char-

acterized as

h(x,y) =


1
L , if

√
x2 + y2 ≤ L

2 ,
y
x
= tanθ .

0, otherwise.

(3.15)

where L and θ are the length and angle parameters of the motion blur PSF.

In order to restore the blurred image, an estimation of the original moments m( f )
p,q is

needed. This can be done with the use of (2.21) provided an approximate modeling of

the m(h)
p,q is known. Here, we propose a mathematical model of m(h)

p,q for motion blur as
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Table 3.2: Image deblurring using spatial and moment domain approaches for test images
of various sizes with different Gaussian kernel, σ and mask size, w and their correspond-
ing BRISQUE.

Blur Deblurred Images Original
Image Spatial domain Moment domain Image

σ = 0.833, w = 5 Size=64×64
BRISQUE 15.34 12.21

σ = 2.167, w = 13 Size=64×64
BRISQUE 18.76 16.37

σ = 1.667, w = 7 Size = 128×128
BRISQUE 16.35 14.27

σ = 3.167, w = 19 Size = 128×128
BRISQUE 19.45 17.67
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Table 3.3: Comparative analysis of the different methods evaluated in terms of BRISQUE
score

Blurred Deblurred Image
Image (Tao et al., 2013) (J. Chen et al., 2013) Proposed

BRISQUE 14.56 17.23 9.12

BRISQUE 15.47 16.21 10.13

follows: The PSF of the motion blurred image is given as (Stern, Kruchakov, Yoavi, &

Kopeika, 2002)

h(x,y) =
1
ta

∫ ta

0
δ (x− vx(t),y− vy(t))dt (3.16)

Here vx(t) and vy(t) are the velocities in x and y direction and ta is the aperture time. The

geometric moments of the PSF can be formulated using (3.16) as

m(h)
p,q =

∫
∞

−∞

∫
∞

−∞

xpyqh(x,y)dxdy

=
1
ta

∫
∞

−∞

∫
∞

−∞

xpyq
∫ ta

0
δ (x− vx(t),y− vy(t))dtdxdy

=
1
ta

∫ ta

0
vp

x (t)v
q
y(t)dt (3.17)

Substituting vx(t) = v(t) cosθ and vy(t) = v(t) sinθ , (3.17) becomes

m(h)
p,q =

(
cospθsinqθ

ta

)∫ ta

0
vp(t)vq(t)dt (3.18)

By assuming constant velocity v(t)=v, (3.18) can be approximated as

m(h)
p,q = v(p+q) cosp

θsinq
θ (3.19)
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(3.19) is the proposed modeling of the PSF in moment domain represented as m(h)
pq . Sub-

stituting it in (2.21) results in

m(g)
p,q = v(p+q)(cosp

θsinq
θ)

p

∑
k=0

q

∑
l=0

(
p
k

)(
q
l

)
m( f )

p−k,q−l (3.20)

The estimates of the original image moments m( f̂ )
p,q can be obtained using the varia-

tional model in moment domain discussed in Sections 3.2-3.4. Using the gradient descent

technique with the help of Euler-Lagrange equation, the estimates of the original image

moments m( f̂ )
p,q can be obtained by substituting (3.19) into a 2D version of (3.9) as

∂m( f̂ )
p,q

∂ t
= −2v(p+q) cosp

θ sinq
θ × p

∑
k=0

q

∑
l=0

(
p
k

)(
q
l

) m( f̂ )
kl

v(k+l) coskθsinlθ

−m(g)
p,q

 (3.21)

By discretization of (3.21), we obtain the partial differential equation (PDE) used for

estimating the moments of original image as

m( f̂ )
p,q[n+1] = m( f̂ )

p,q[n]−2v(p+q) cosp
θ sinq

θ × p

∑
k=0

q

∑
l=0

(
p
k

)(
q
l

)
m( f̂ )

kl [n]
v(k+l) coskθsinlθ

−m(g)
p,q

 (3.22)

Once the estimates of the original moments are obtained using (3.22), the image

can be reconstructed from its geometric moments using Stirling numbers as discussed in

Section 2.2.5.

3.3.1 Comparative analysis on images degraded by motion blur

The restored images are compared using the existing methods proposed by (Deshpande &

Patnaik, 2014) and (Dash & Majhi, 2014). For fair comparison, the images used in these

papers are taken to evaluate the restoration performance of the proposed method. Table

3.4 presents the comparative analysis of the proposed work with the existing methods
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evaluated in terms of PSNR, SSIM and BRISQUE scores. Specifically, the first three

figures are taken from (Deshpande & Patnaik, 2014) are blurred with (L = 35 pixels,θ =

15o), (L= 10 pixels,θ = 25o) and (L= 25 pixels,θ = 10o) respectively. It can be observed

that the proposed method performs less when compared to (Deshpande & Patnaik, 2014).

It can be observed that there is significant ringing at the borders of the restored image in

our method. As a result the performance score in terms of SSIM, PSNR and BRISQUE

degrades for our method as compared to the existing methods. But nevertheless, the

overall quality of the restored image is still better. Further, the last two images of Table

3.4 are taken from (Dash & Majhi, 2014) for fair comparison and are blurred using (L =

10 pixels,θ = 45o) and (L = 15 pixels,θ = 30o) respectively. For these two images it

can be observed that the proposed method provides competitive scores with the existing

methods. In this case noticeable artifacts are observed in the restored image obtained

through the methods by (Deshpande & Patnaik, 2014) and (Dash & Majhi, 2014). In all

the experiments performed the average time elapsed in evaluating the results is around 1

minute which is slightly higher. This can be reduced to a larger extent by vectorization of

the codes and use of parallel computation.

3.4 Blind deblurring in Moment domain

The deblurring of an image from the Bayesian perspective has been discussed which

results into the idea of restoring the image in spatial and moment domains. Bayesian

estimation provides an elegant statistical perspective to the image restoration problem.

The maximum a posteriori (MAP) estimator maximizes p( f |g). Using the Bayes rule,

the MAP estimator can be written in terms of the conditional probability density function

p(g| f ) and the prior probability of p( f ) as

f̂ = argmax
f

p(g| f )p( f )
p(g)

= argmax
f

p(g| f )p( f ) (3.23)
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Table 3.4: PSNR, SSIM and BRISQUE results of the methods on four different images
with motion blurred PSF

Blurred Deblurred Image
Image (Deshpande & Patnaik, 2014) (Dash & Majhi, 2014) Proposed

PSNR 28.19 26.23 20.67
SSIM 0.84 0.81 0.70

BRISQUE 17.67 18.54 25.87

50 100 150 200 250

20

40

60

80

100

120

140

160

PSNR 29.23 27.79 28.12
SSIM 0.89 0.82 0.86

BRISQUE 11.69 15.12 12.84

PSNR 28.89 26.51 21.79
SSIM 0.84 0.82 0.73

BRISQUE 13.43 15.73 23.12

PSNR 27.24 26.12 28.56
SSIM 0.84 0.81 0.88

BRISQUE 13.23 15.37 10.84

PSNR 27.12 28.3 29.13
SSIM 0.82 0.89 0.91

BRISQUE 15.31 14.63 11.21
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where p(g) has been dropped in the last term, being constant with respect to the argument

f . And the last term reveals that the MAP solution indeed reduces to the maximum like-

lihood (ML) solution when image prior does not favor a specific solution, in other words,

when p( f ) is of uniform distribution. In most of the image restoration problems, the er-

ror e(x,y) between the blurred and original image has been modeled to be a zero-mean

independent and identically distributed (iid) Gaussian random variable with probability

density function given as

p(e(x,y)) =
1√

2πσn
exp
(
−(e(x,y))2

2σ2
e

)
(3.24)

where e(x,y)=g(x,y)− h(x,y) ∗ f (x,y). Using this relationship along with (3.24), the

conditional probability density function p(g| f ) is written as

p(g| f ) = ∏
x,y

1
(
√

2πσe)
exp
(
−
||g(x,y)−h(x,y)∗ f (x,y)||22

2σ2
e

)
(3.25)

=
1

(
√

2πσe)M
exp

(
− 1

2σ2
e

∑
x,y
||g(x,y)−h(x,y)∗ f (x,y)||22

)
(3.26)

(3.26) can be written in matrix form and hence the conditional probability density

function p(g| f ) of the observed image is written as (Gunturk & Li, 2012)

p(g| f ) = 1
(
√

2πσe)M
exp
(
−
||g−Hf||22

2σ2
e

)
(3.27)

where σe is the standard deviation of the error and M is the total number of pixels in the

observed image. Substituting (3.27) into (3.23) after taking the logarithm of the argument

and neglecting the irrelevant terms, one can obtain

f̂ = argmax
f

(log p(g| f )+ log p( f )) = argmax
f

{
−
||g−Hf||22

2σ2
e

+ log p( f )
}

(3.28)

When the prior probability density function p( f ) has an exponential form given as

p( f ) ∝ exp(−||L f ||2), where L is the operator acting on the image, then

f̂ = argmax
f

{
−
||g−Hf||22

2σ2
e

−||L f ||2
}

(3.29)
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Here, the first term is known as data fidelity term and second term in known as

regularization prior. The solution to (3.29) can be obtained using energy minimization

technique, which can be given as

E( f̂ ) = argmin
f

{
||g−Hf||22

2σ2
e

+ ||L f ||2
}

(3.30)

(3.30) provides the solution to the Bayesian approach with the help of energy minimiza-

tion technique. Normally, the energy minimization is performed using alternate mini-

mization (AM) or expectation maximization (EM) algorithms (Sroubek & Flusser, 2003;

Likas & Galatsanos, 2004). In this chapter AM algorithm is used for minimizing the en-

ergy (3.30) proposed in moment domain. But before this, a brief discussion of the AM

algorithm is explained, followed by its implementation in spatial domain. The flowchart

of the alternate minimization algorithm is shown in Figure 3.3. Here, the image deblur-

Input blurred 
Image

PSF
Estimation

Image

Estimation

Check

convergence

Yes

No

Estimated

Image

AM algorithm

Sharp

Figure 3.3: Flowchart of the alternate minimization algorithm

ring problem is split into two sub-problems, namely the PSF estimation and the image

estimation. These sub-problems alternates between each other till the convergence crite-

ria is achieved. Once the convergence is satisfied, the output of the AM algorithm is the

sharp image. In this work, a blind restoration technique for blurred images in moment

domain is proposed. It is based on the alternate minimization principle which is applied

to restoration techniques in spatial domain (Chan & Wong, 1998; Sroubek & Flusser,

2003).
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The basis sets xpyq (3.4) in case of 2D images is not orthogonal. This non-orthogonality

causes information redundancy in the extracted moments and it is more difficult to recon-

struct images from the moments (Teague, 1980). However, the problem of 2D image

reconstruction has been solved recently (Honarvar et al., 2014). This provides new op-

portunities to explore the potential of using geometric moments in the area of image

restoration. Hence, it motivated to formulate a similar variational model in moment do-

main for solving the blind restoration problem.

Using the reference in (Chan & Wong, 1998), the energy functional E can be ex-

pressed in moment domain as follows

E(m( f̂ )
p ) = argmin

m( f̂ )
p


(

p

∑
i=0

(
p
i

)
m( f̂ )

i m(h)
p−i−m(g)

p

)2

︸ ︷︷ ︸
1stTerm

+λ (∇m( f̂ )
p )2︸ ︷︷ ︸

2ndTerm

 (3.31)

Here, the first term is the data fidelity term and the second term is the regularization

prior, m( f̂ )
p is the estimated image, λ is the regularization parameter and ∇m( f̂ )

p = m( f̂ )
p+1−

m( f̂ )
p . With the help of Euler-Lagrange identity, the energy functional in (3.31) can be

minimized. The Euler-Lagrange identity in moment domain can be expressed as

dE(m( f̂ )
p )

dm( f̂ )
p

=

∂L(m( f̂ )
p ,m( f̂ )′

p )

∂m( f̂ )
p

−∇

∂L(m( f̂ )
p ,m( f̂ )′

p )

∂m( f̂ )′
p

 (3.32)

where, m( f̂ )′
p = ∇m( f̂ )

p and

L(m( f̂ )
p ,m( f̂ )′

p ) =

(
p

∑
i=0

(
p
i

)
m( f̂ )

i m(h)
p−i−m(g)

p

)2

+λ (∇m( f̂ )
p )2 (3.33)

Evaluating (3.32) using (3.33) results in

dE(m( f̂ )
p )

dm( f̂ )
p

= 2

(
m(h)

0

(
p

∑
i=0

(
p
i

)
m( f̂ )

i m(h)
p−i−m(g)

p

)
−λ (∆m( f̂ )

p )

)
(3.34)

where ∆m( f̂ )
p = m( f̂ )

p+1−2m( f̂ )
p +m( f̂ )

p−1. The relationship of Euler-Lagrange with gradient

descent is given as

∂m( f̂ )
p (t)
∂ t

=−
dE(m( f̂ )

p )

dm( f̂ )
p

(3.35)
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Substituting (3.34) in (3.35), one can obtain

∂m( f̂ )
p (t)
∂ t

=−2

(
m(h)

0

(
p

∑
i=0

(
p
i

)
m( f̂ )

i m(h)
p−i−m(g)

p

)
−λ (∆m( f̂ )

p )

)
(3.36)

Notice the constant zero order moment (m(h)
0 ) in (3.36) acts as an accelerator during

the gradient descent. Also can be observed that it is a partial differential equation (PDE)

which needs to be iterated with time. Numerical implementation of (3.36) results in

m( f̂ )
p [n+1] = m( f̂ )

p [n]−2

(
m(h)

0

(
p

∑
i=0

(
p
i

)
m( f̂ )

i [n]m(h)
p−i−m(g)

p

)
−λ (∆m( f̂ )

p [n])

)
(3.37)

where, n is the number of iterations performed. Using a similar argument, one can write

the discrete formulation of PSF as follows: The energy functional is given as

E(m(ĥ)
p ) = argmin

m(ĥ)
p


(

p

∑
i=0

(
p
i

)
m( f )

i m(ĥ)
p−i−m(g)

p

)2

+λ (∇m(ĥ)
p )2

 (3.38)

where, m(ĥ)
p is the estimated kernel moment. Using the relationship of Euler-Lagrange

and gradient descent, the PDE can be modeled as

∂m(ĥ)
p (t)
∂ t

=−2

(
m( f )

0

(
p

∑
i=0

(
p
i

)
m( f )

i m(ĥ)
p−i−m(g)

p

)
−λ (∆m(ĥ)

p )

)
(3.39)

Numerical implementation of (3.39) is given as

m(ĥ)
p [n+1] = m(ĥ)

p [n]−2

(
m( f )

0

(
p

∑
i=0

(
p
i

)
m(ĥ)

p−i [n]m
( f )
i −m(g)

p

)
−λ (∆m(ĥ)

p [n])

)
(3.40)

Here, m(ĥ)
p is the estimated PSF moment and λ is the regularization parameter. (3.37)

and (3.40) are iterated using alternate minimization algorithm (Chan & Wong, 1998). In

order to verify the mathematical formulations derived for (3.37) and (3.40), an example

of a 1D signal given as f (x) = {2,1,4,2,4} and the PSF as h(x) = {0,0,1,0,0} is taken.

The geometric moments of order p are calculated for original signal, PSF and blurred

signal using (3.3). The computed moment values are as follows where p varies from 0 to

4.

m( f )
p = {13,31,99,343,1251} (3.41)
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m(h)
p = {1,2,4,8,16} (3.42)

m(g)
p = {13,57,275,1413,7571} (3.43)

The estimated original image moment, m( f̂ )
p and PSF moments m(ĥ)

p , are calculated

by iterating (3.37) and (3.40), respectively as shown in Figure 3.4. The values of m(ĥ)
p and

m( f̂ )
p for 80 and 290 iterations respectively are as follows

m( f̂ )
p = {12.99,30.99,98.98,342.99,1250.99} (3.44)

m(ĥ)
p = {0.98,1.99,3.98,7.99,15.98} (3.45)

It can be observed that the calculated values of m(ĥ)
p and m( f̂ )

p are close to m( f )
p and

m(h)
p respectively. The proposed approach can be extended to 2D image for orders p and
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p .

q as follows

m(ĥ)
p,q [n+1] = m(ĥ)

p,q [n]−2

(
m( f )

0,0

(
p

∑
i=0

q

∑
j=0

(
p
i

)(
q
j

)
m(ĥ)

p−i,q− j [n]m
( f )
i, j −m(g)

p,q

)
−λ (∆m(ĥ)

p,q [n])

)
(3.46)

m( f̂ )
p,q [n+1] = m( f̂ )

p,q [n]−2

(
m(h)

0,0

(
p

∑
i=0

q

∑
j=0

(
p
i

)(
q
j

)
m(h)

p−i,q− jm
( f̂ )
i, j [n]−m(g)

p,q

)
−λ (∆m( f̂ )

p,q [n])

)
(3.47)
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Notice the constant zero order moment m( f )
0,0 and m(h)

0,0 in (3.46)-(3.47) respectively

which acts as an accelerator during the gradient descent. The image can be reconstructed

from m( f̂ )
p,q (Honarvar et al., 2014) using

f (x,y) =
N−1

∑
p=0

M−1

∑
q=0

N−1

∑
i=0

M−1

∑
j=0

(−1)i+ j−x−y

i! j!

(
i
x

)(
j
y

)
S1(i+1, p+1)S1( j+1,q+1)m( f̂ )

pq (3.48)

where f (x,y) is the reconstructed image and S1(i, j) is the Stirling number of first kind

which can be obtained recursively using

S1(n+1,k) =−nS1(n,k)+S1(n,k−1) (3.49)

with S1(0,0) = 1, S1(n,0) = S1(0,n) = 0 and k = 0,1,2, . . .n. The details are discussed

in Chapter 2 Section 2.2.5.

The convex nature of the problem i.e. (3.31) and (3.38) ensures convergence. How-

ever, the ill-composed nature of matrix H that arises in a typical inverse problem has been

avoided as follows

1. The value of regularization parameter λ needs to be adjusted and selected using L-

curve so that the damped least squares problem is well conditioned (Fieguth, 2010;

Hansen, 2010).

2. There is a possibility that the determinant of matrix H going to zero during inversion

of the matrix H to get the solution vector f (3.2). However, the proposed method

is based on an iterative scheme that converges to the final solution with time index

(n) and there is no inversion of the matrix H involved (Gunturk & Li, 2012).

3. The algorithms are incorporated using the multiple precision arithmetic library to

increase the precision limits of the arithmetic operators so that system remains well

conditioned.
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3.4.1 Selection Procedure for (λ )

The regularization parameter λ is very important for obtaining a good restoration re-

sult, since it controls the trade-off between data fidelity and smoothness of the solution. If

λ is too small, the small features in the regularized solution is over-smooth. On the other-

hand if λ is too large, the regularized solution is under-smooth. Hence, there is a need to

select λ which balances both smoothness and data fidelity in an optimal way. There are

various methods for obtaining the optimal selection of the regularization parameter (λ ).

Some of them are L-curve (Hansen, 1992), Discrepancy Principle (Vainikko, 1982) and

Generalized Cross Validation (Golub, Heath, & Wahba, 1979). Here, the L-curve method

is used. It is a log-log plot of the data fidelity against the smoothness term for a range

of values of regularization parameters. To illustrate how the regularization parameter is

obtained for both the moment and spatial domains, the standard test image of Lena is

blurred using PSF of size 11 × 11 and σ=1.53. In the case of the moment domain, the

data fidelity term ||g−Hf||22 and the smoothness term ||L f ||22 are equated as

||g−Hf||22 =

(
p

∑
i=0

(
p
i

)
m( f )

i m(ĥ)
p−i−m(g)

p

)2

(3.50)

||L f ||22 = (∇m( f̂ )
p )2 (3.51)

From the L-curves shown in Figure 3.5, it can be seen how the regularization pa-

rameter λ increases and eventually settles to a value at the corners of the L-curve which

balances both the data fidelity and smoothness term. The optimal values of the regulariza-

tion parameters λ obtained from the L-curve as shown in Figure 3.5 for both the moment

and spatial domains are 0.0045 and 0.0041 respectively.
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Figure 3.5: L-curve for Optimal λ selection

3.4.2 Experimental Results

To establish the theoretical analysis, various experiments have been carried out. For

all the experiments access to noise free original images as shown in Figure 3.6 is there.

The proposed algorithm presented here for deblurring is processed on a notebook com-

puter with an Intel Core(TM) i7 CPU, 8GB RAM, scripted in C++ and MATLAB.

Figure 3.6: Test Images

3.4.2.1 Performance metrics

The proposed method has been evaluated using both simulated open access and real

databases. The quality of the restored image has been measured using recently introduced

quality metrics such as BRISQUE (Mittal et al., 2012), SSIM (Z. Wang et al., 2004a)
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and PSNR. Generally, a deblurring technique is a problem of finding a reasonably good

estimate f̂ (x,y) of its blur-free version f (x,y) from the corresponding degraded version

g(x,y). One of the common and simplest performance metric is the Mean Square Errors

(MSEs), defined as

MSE =
1

MN

M−1

∑
i=0

N−1

∑
i=0

(
f (i, j)− f̂ (i, j)

)2
(3.52)

where N×M is the size of an image.

Another most commonly used performance metric is Peak Signal to Noise Ratios

(PSNRs), which is defined in decibels (dB) for 8-bit grayscale images as PSNR measures

the extent to which noise has been suppressed and has been defined as

PSNR = 10log10

(
2552

MSE

)
(3.53)

The MSE and PSNR are appealing performance metrics as they can be calculated

mathematically and have clear physical meaning. But, these are not very well matched to

visual quality, i.e. they do not measure the visual features of the resulting image directly.

Apart from this, the images with large differences in their psycho-visual quality can have

similar MSE or PSNR values. To resolve this issue BRISQUE and SSIM have also been

used.

BRISQUE is a no-reference image quality assessment model based on natural scene

statistic and operates in the spatial domain. It uses features from scene statistics of locally

mean subtracted contrast normalized (MSCN) luminance coefficients and the pairwise

products of MSCN. The features are then fed into support vector machine regressor (SVR)

to quantify possible losses of naturalness in the image due to the presence of different type

of distortions. The lower BRISQUE score indicates a good quality image.

The Structural SIMilarity (SSIM) index is a method for measuring the similarity

between two images. The SSIM index can be viewed as a quality measure of one of the
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images being compared, provided the other image is regarded as of perfect quality. SSIM

for the two images x and y is defined as

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
(3.54)

where µx,µy are the average of x and y respectively, σ2
x ,σ

2
y are the variances of x and y,

σ2
xy is the covariance of x and y while c1,c2 are the two variables to stabilize the division

with weak denominator defined as (k1a)2 and (k2a)2 where the default value of k1 = 0.01

and k2 = 0.03 and the dynamic range of pixel as a, typically for 8 bits pixel is given as

255. The SSIM score is less than or equal to 1 and it is maximal when two images are

coinciding. Furthermore, the full reference quality metrics FSIM (L. Zhang et al., 2011),

VIF (Sheikh & Bovik, 2006) and SSIM (Z. Wang et al., 2004a) are also used to verify the

proposed approach. The Structural SIMilarity (SSIM) index is a method for measuring

the similarity between two images. The SSIM index can be viewed as a quality measure

of one of the images being compared, provided the other image is regarded as of perfect

quality. Feature-similarity (FSIM) index is an image quality assessment method based on

the fact that Human Visual Systems (HVSs) understands an image mainly according to its

low-level features whereas Visual Information Fidelity measure (VIF) provides the scores

by combining an image information measure that quantifies the information that is present

in the reference image and how much of this reference information can be extracted from

the distorted image. Combining these two quantities, a score is provided. For all the FR

metrics considered here, a higher score indicates a good quality image.

In this study, three experiments are carried out to demonstrate the effectiveness of

the proposed method on the quality of the restored images by considering the effects

of the regularization parameter and PSF size. The quality of the restored images from

the proposed method is compared with the restored image obtained using the alternate
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minimization method in spatial domain. In all the experiments, images shown in Figure

3.6 are used, where they are subjected to various degrees of Gaussian blur parameters.

3.4.2.2 Variation of Regularization Parameter (λ ) and Quality scores using No Ref-
erence

In this section the significance of regularization parameter λ on the quality of the

restored image is studied. In order to carry out the experimental work images shown

in Figure 3.6 are taken into consideration. These test images are blurred using different

PSF’s. For example Barbara, Lena and Cameraman images are blurred using PSF’s of

(σ = 0.76 , w = 7×7), (σ = 1.53 , w = 11×11), (σ = 3.26 , w = 13×13) respectively.

The optimal values of λ shown in Table 3.5 for the test images of Figure 3.6 for both

spatial and moment domains are obtained using the L-curve method.

Table 3.5: Optimal values of λ

Images Spatial Domain Moment Domain
Lena 0.0041 0.0045
Cameraman 0.0059 0.0062
Barbara 0.0071 0.0073
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Figure 3.7: BRISQUE with regularization parameter λ

Henceforth, these optimal values of λ are used in the experimental work to determine

whether they gave the best scores of the restored images for both the proposed and spatial

domains. Here, the regularization parameter λ is varied from 0.0010 to 0.0009 and the

effect of the regularization parameter on the BRISQUE scores is shown in Figure 3.7. It
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can be seen that the best quality scores for both the spatial and moment domains for all

the test images are obtained when λ is used from the L-curve as shown in Table 3.5.

Additionally, it shows the quality scores for all the three experiments using the pro-

posed method is better than the alternate method in spatial domain for all the values of λ .

In all the experimental results shown in Figure 3.7, the PSF size (w) is fixed. But in most

of the applications, the PSF size is unknown. In the next section one wants to study the

effects of varying PSF size on quality scores using the optimal regularization parameter

as shown in Table 3.5.

Table 3.6: BRISQUE scores variation with PSF size (w)

A B C D

w= 17× 17, σ=2.83 w=19× 19, σ=3.16 w=33× 33, σ=5.5 w=43× 43, σ=7.163
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3.4.2.3 Effect of varying PSF Size (w) on Image Quality

In this study, the original image shown in Figure 3.6(a) is blurred using various values

of Gaussian blur parameters σ and w. The columns of Table 3.6 show the blurred images

with their corresponding Gaussian blur parameters. Here, the significance of the PSF size

in relation to the quality scores of the restored images using BRISQUE is shown. The

variation of the PSF size (w) for a fixed optimal λ = 0.0045 and the obtained BRSIQUE

scores of the restored images are also shown in Table 3.6. It can be seen that there is a

variation in the BRSIQUE scores of the restored images (L. Chen & Yap, 2003; Fahmy,

Raheem, Mohamed, & Fahmy, 2012). For instance, the first column in Table 3.6, the best
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Table 3.7: Image debluring in Spatial and Moment domain

Blur Deblurred Images Original

Image Spatial domain Moment domain Image

σ1 = 0.76, w = 7×7
BRISQUE 17.1421 9.97 6.71

σ = 1.53, w = 11×11
BRISQUE 18.4590 12.0411 9.28

σ1 = 3.26, w = 13×13
BRISQUE 19.2305 11.35 8.23

quality scores are obtained for both the spatial and proposed method when w=17×17.

The selection of wrong PSF size results in an increase of the BRISQUE scores when

compared with the exact PSF size with which the image was originally blurred. A mini-

mum BRISQUE scores is registered for both the proposed method and spatial domain if

the PSF size is the same with which the image is originally blurred. Additionally, it can

be seen that the variations in the BRISQUE scores for the proposed method is lower as

compared to that method used in the spatial domain.

To show the quality of the restored images, an experiment is carried with two ad-

ditional images together with the Lena image as shown in Table 3.7. It can be seen that

the BRISQUE scores in case of moment domain are lower than the spatial domain. This

observation shows that there is an increase the quality of the restored image in case of the

moment domain when compared to the image restored in spatial domain.
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Table 3.8: Quality evaluation for Lena image

PPPPPPPPPλ

w
13 19∗ 23

0.0035 17.23 18.23 19.34
0.0045∗ 16.23 15.23 17.21
0.0055 18.21 19.23 20.47

Table 3.9: Quality evaluation for Cameraman image

PPPPPPPPPλ

w
17 21∗ 27

0.0052 17.76 19.45 21.34
0.0062∗ 16.23 15.31 18.72
0.0072 18.87 20.76 22.65

Table 3.10: Quality evaluation for Barbara image

PPPPPPPPPλ

w
13 17∗ 23

0.0063 17.12 18.65 19.23
0.0073∗ 16.42 14.65 16.43
0.0083 19.87 20.76 22.34

3.4.2.4 Effect of varying regularization parameter and PSF size

In this section, one explores the possibility of obtaining better quality scores when

the regularization parameter λ is other than the optimal value used and the PSF size is

not the exact one. The images shown in Figure 3.6 are used and the results are shown in

Tables 3.8-3.10 for the proposed method. It can be observed that a minimum BRISQUE

is registered when both λ and w are optimal as indicated by λ ∗ and w∗ respectively.

However, the BRISQUE scores are higher when either of the two parameter deviates from

the optimal value. For instance, in Table 3.8 for the optimal values of the parameters w=19

and λ=0.0045, a minimum BRISQUE score of 15.23 is registered. However, the value of

BRISQUE scores are higher if the parameters deviate from the optimal values. Similar

observations are seen from Tables 3.9-3.10 respectively. Hence, this experiment shows

that proper selection of parameters λ and w are essential for determining the quality of

the restored image.
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3.4.2.5 Quality Analysis using Full Reference

In the previous section, a no-reference quality metric was used to evaluate the restored

images. However, in order to prove the robustness of the proposed approach, in this sec-

tion the quality of the restored images is evaluated using Full Reference quality metrics.

This experimental work is similar to the one shown in Figure 3.7 with a difference that

now the quality scores are evaluated using FSIM (L. Zhang et al., 2011) and VIF (Sheikh

& Bovik, 2006). It is performed to observe whether FSIM and VIF also provide the best

quality scores at optimal λ or not.
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Table 3.11: Full-Reference quality evaluation for Lena image

Regularization VIF FSIM
Parameter (λ ) Spatial domain Moment domain Spatial domain Moment domain

0.0025 0.7912 0.8931 0.7943 0.9131
0.0035 0.8216 0.9112 0.8146 0.9212
0.0045∗ 0.8521 0.9412 0.8372 0.9361
0.0055 0.8148 0.9381 0.8281 0.9321
0.0065 0.7859 0.9246 0.8164 0.9012

Table 3.12: Full-Reference quality evaluation for Cameraman image

Regularization VIF FSIM
Parameter (λ ) Spatial domain Moment domain Spatial domain Moment domain

0.0042 0.8271 0.9012 0.8371 0.8862
0.0052 0.8532 0.9276 0.8451 0.9021
0.0062∗ 0.8681 0.9331 0.8546 0.9152
0.0072 0.8273 0.9123 0.8363 0.8991
0.0082 0.8043 0.8921 0.8217 0.8831

Table 3.13: Full-Reference quality evaluation for Barbara image

Regularization VIF FSIM
Parameter (λ ) Spatial domain Moment domain Spatial domain Moment domain

0.0053 0.8187 0.9064 0.7981 0.9089
0.0063 0.8354 0.9217 0.8148 0.9151
0.0073∗ 0.8413 0.9318 0.8243 0.9298
0.0083 0.8371 0.9112 0.8171 0.9189
0.0093 0.8065 0.8949 0.8041 0.8971

Tables 3.11-3.13 provide the variations of FSIM and VIF quality scores for a range

of λ values that include the optimal value λ ∗ for all the images shown in Figure 3.6.

For instance, the optimal regularization parameter λ=0.0045 shown in Table 3.11, one

can obtain the best VIF and FSIM scores for both the spatial and moment domains as

highlighted in boldface. The spatial and moment domain registered quality scores (VIF,

FSIM) as (0.8521, 0.9412) and (0.8372, 0.9361) respectively. However, as the regulariza-

tion parameter deviates from its optimal value, the quality of a restored image is degraded

as indicated by its lower quality scores. Similar observations can be seen from Tables

3.12-3.13 respectively. By observing the quality scores in the Tables it can be seen that

the moment domain gives better quality scores when compared to spatial domain.
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3.4.2.6 Comparative analysis performed on images degraded due to Gaussian blur
PSF

The experiments are performed on four of the classical gray scale images shown

in Figure 3.6 to demonstrate viability and efficiency of the proposed method. The re-

sults obtained are compared with the three state-of-the-art image deblurring methods:

wavelet (Dobrosotskaya & Bertozzi, 2008), majorization-minimization (Bioucas-Dias et

al., 2006) and multiplicative-iterative (J. Zhang, Zhang, & He, 2008) based methods.

Here, the test images are blurred using a 7×7 Gaussian blur PSF with standard deviation

1.2 and a 9× 9 average blur PSF. The blurred images obtained as a result of the Gaus-

sian and average blur are shown in the first column of Tables 3.14 and 3.15 respectively.

Comparative analysis of the methods is evaluated in terms of PSNR, SSIM and BRISQUE

scores. It can be observed from Table 3.14 that the evaluated scores of the restored images

using the proposed method are comparable to the state-of-the-art methods. To summarize

the comparative results, it can be concluded from Tables 3.14 and 3.15 that the proposed

technique works fairly well along with other methods, hence paving the way for using

geometric moments in the field of image restoration.

3.5 Conclusion

In this chapter, restoration of blurred images using geometric moments is proposed.

A mathematical formulation for restoration is proposed using an Euler-Lagrange identity

together with the Alternate Minimizations (AMs) algorithm set up in a variational frame-

work in the moment domain. In the restoration of the blurred images, selection of the

regularization parameter λ plays an important role in restoring the quality of the images.

Therefore, the L-curve is adopted to select an optimal value of the regularization parame-

ter. Further, the experimental results show the evidence of how the quality of an image is

affected by the variation of the regularization parameter and the PSF size (w) on both the

proposed and the spatial domain methods. Image quality is measured using the state-of-
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Table 3.14: PSNR, SSIM and BRISQUE results of the methods on four different images
with a Gaussian PSF of size 7x7 and σ=1.2

Blurred Deblurred Image
Image (Dobrosotskaya & Bertozzi, 2008) (Bioucas-Dias et al., 2006) (J. Zhang et al., 2008) Proposed

PSNR 28.83 27.12 28.3 28.13
SSIM 0.87 0.82 0.86 0.89

BRISQUE 12.32 15.73 13.23 11.21

PSNR 27.32 27.12 29.3 29.32
SSIM 0.88 0.79 0.89 0.91

BRISQUE 13.24 14.63 12.31 12.21

PSNR 26.12 25.23 27.13 27.14
SSIM 0.82 0.76 0.85 0.84

BRISQUE 13.32 14.42 13.23 13.13

PSNR 27.89 26.65 27.93 27.32
SSIM 0.86 0.84 0.85 0.88

BRISQUE 13.86 14.19 13.63 13.84

the-art quality metrics like BRSIQUE, Feature Similaritys (FSIMs), Visual Information

Fidelitys (VIFs) and SSIMs. It has been observed that the variation of the image quality

scores with respect to λ and w is less in the case of the proposed method when compared

to the spatial domain method. This is justified in terms of the image quality scores. Also

the proposed method exhibits good restored image quality when compared to the exist-

ing method. Further, the applicability of the proposed method is explored in the case of

motion blur and it has been observed that the proposed method gives satisfactory results

when compared to the existing methods.
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Table 3.15: PSNR, SSIM and BRISQUE results of the methods on four different images
with an average PSF of size 9x9

Blurred Deblurred Image
Image (Dobrosotskaya & Bertozzi, 2008) (Bioucas-Dias et al., 2006) (J. Zhang et al., 2008) Proposed

PSNR 29.3 26.12 27.5 29.86
SSIM 0.91 0.88 0.89 0.92

BRISQUE 11.73 13.73 12.65 11.76

PSNR 28.34 26.24 27.54 28.56
SSIM 0.87 0.79 0.82 0.89

BRISQUE 12.46 13.43 11.87 12.45

PSNR 28.98 27.86 27.73 28.43
SSIM 0.87 0.81 0.79 0.88

BRISQUE 12.53 13.12 13.73 12.87

PSNR 29.89 27.51 28.79 29.23
SSIM 0.88 0.86 0.87 0.89

BRISQUE 11.86 12.69 12.12 11.84
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CHAPTER 4 : RESTORATION OF THE BLURRED IMAGES IN MOMENT

DOMAIN VIA CASCADED DIGITAL FILTERS

In this chapter, the estimation of the Gaussian PSF is carried out using the Weighted

Geometric moments (WGM). It works as an effective edge descriptor which together with

extreme learning machine (ELM) is used for the estimation of PSF parameters. The esti-

mation performance of the ELM using cross-database analysis performed on six different

standard databases such as LIVE, CSIQ, CIDIQ, TID2008, Caltech and Berkeley. This is

followed by restoration in moments domain and reconstructing the restored image using

2D cascaded digital filters operating as subtractors. To validate, the proposed method

experimental work has been carried out on the aforementioned databases and results is

compared with the existing methods. The results obtained using the proposed method

demonstrates effectiveness of the method compared to the existing methods.

4.1 Introduction

A typical image restoration task can be casted as a linear inverse problem as

g = Hf+n (4.1)

where H ∈ Rn2×n2
is a two dimensional blurring matrix where the elements are taken

from the point spread function (PSF) h(x,y), f ∈ Rn2
is an original image of size n× n,

g ∈ Rn2
is the degraded image and n is usually additive Gaussian white noise. When

H is an identity matrix, the problem is define as image denoising; when H is a diago-

nal matrix with elements 1 or 0, the problem is casted as image inpainting; when H is a

Gaussian PSF, the problem becomes image deblurring. In this chapter, focus is on prob-

lem of image deblurring. Image deblurring is an inverse problem where the objective is to

recover a sharp image from its degraded version affected due to various distortions such

as atmospheric turbulence, optical aberrations, sensor or motion blur etc. This deblurring
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task is widely used in various areas of remote sensing, medical imaging, astronomy and

surveillance systems.

With the applications in wide areas, the research on deblurring is divided into two

categories, namely non-blind image debluring, in which the PSF is assumed to be known,

and more realistically the blind image deconvolution, in which both the image and PSF

are unknown. The focus of this chapter is on Blind Image Deblurrings (BIDs) subjected

to Gaussian PSF degradation. The problem of BID is an ill-posed problem since there

are infinitely large number of solutions, i.e. pair of image and PSF estimates, which are

compatible with the blurred image. A typical minimization problem to achieve the task

of BID is given as

argmin
f

{
||g−Hf||22 +λφ(H)

}
(4.2)

where the first term is the data fidelity term, second is the regularization term denoting

the PSF prior whereas λ is the regularization term. In order to obtain the reasonable ap-

proximation of the solution given in (4.1), most of the BID methods restricts the class

of PSF using various types of regularizers/priors or parametric models. For instance,

in (Carasso, 2003), use the parametric model in which the proposed method performs

the blind restoration of the blurred images with the restricted class of shift-invariant PSF,

which are expressed as finite convolution products of two-dimensional radially symmetric

Levy stable probability density functions. This constraint on PSF generalizes the Gaus-

sian and Lorentzian densities but does not include the defocus and motion blurs. Chang

et. al. (M. S. Chang, Yun, & Park, 2007) restricts the PSF to the dual-exposure type and

proposes an effective PSF search algorithm, by incorporating the concept that the gain

of PSF has a relatively small influence over the quality of the restored image. Krylov et

al. (Krylov & Nasonov, 2009) proposed the method of splitting the image into low and

high frequency components. Further, use the regularization-based sharpening to low fre-
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quency image component and combine the sharpened low frequency image with the high

frequency image. In (Oliveira, Figueiredo, & Bioucas-Dias, 2007) the estimates of the

PSF parameters are obtained using the spectral behavior of the natural images and Radon

transform. Yin (Yin & Hussain, 2006) proposed a blind image restoration technique based

on the Blind Signal Seperations (BSSs) technique in conjugation with the genetic algo-

rithm for PSF parameters estimation. Amizic et al. (Amizic et al., 2012) used a Total

Variations (TVs) based prior for the PSF. Further, the concept of Bayesian inference is

carried out for both the image and PSF priors by making use of majorization-minimization

technique. Fergus et al. (Fergus et al., 2006) employs the heavy tailed distribution over

gradient magnitudes along with a zero mean mixture-of-Gaussian models to estimate the

PSF and the image. Krishnan et al. (Krishnan et al., 2011) proposed the use of L1/L2

norm for the image and PSF estimations. Other methods using a similar approach to PSF

estimation, but using different priors can be found in (Levin, Weiss, Durand, & Freeman,

2009; Likas & Galatsanos, 2004; Shan, Jia, & Agarwala, 2008; Money & Kang, 2008).

(Vera, Vega, Molina, & Katsaggelos, 2013a) proposed an algorithm for image restora-

tion based on fusion of non-stationary and edge preserving priors. A Bayesian model

is developed followed by an approximated inference approach for deriving the proposed

restoration method. With a series of approximations, the implementation of the proposed

restoration algorithm is iterative based and takes advantage of the Fourier domain. (Yan,

Fang, & Zhong, 2012) used a blind deconvolution algorithm with spatially adaptive regu-

larization. The information about the different region is incorporated in to the regularizer

by using edge indicator. The proposed algorithm can effectively preserve the edges in the

restored image along with detailed information. Further, it is robust to the change in the

regularization parameter.

There are essentially two different approaches to solve blind image deblurring prob-

lem: (i) to estimate the image and the PSF simultaneously using optimization techniques
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(Bar, Sochen, & Kiryati, 2004; Chan & Wong, 1998; Šroubek & Milanfar, 2012; Osher

et al., 2005); (ii) perform the step of PSF estimation first and then use this PSF estimate

into an existing non-blind image deblurring algorithms. Here, a PSF estimation method

to be used in an approach of the type (ii) is proposed. Similar type of approach had

been adopted in (Rooms, Pizurica, & Philips, 2002). Here, the authors used the wavelet

domain to estimate the PSF parameters. Next, Moghaddam (Moghaddam, 2008) pro-

posed the estimation of PSF parameters using genetic algorithms. Also Aizenberg et al.

(Aizenberg et al., 2002) proposed a neural network based framework for PSF parame-

ters estimation and used this information in restoring the degraded image using several

kinds of restoration methods. Motivated by these contributions, we adopted the method

of training the Extreme Learning Machines (ELMs) (Huang, Zhu, & Siew, 2006) using

the images with geometric moments (GM) as features in order to estimate the PSF param-

eters of a Gaussian blurred images. Once the PSF is estimated, the restoration together

with reconstruction is performed using geometric moments.

Unlike other domains such as Wavelet and Sparse, moment domain is well explored

in the field of image processing. Specifically, their application in the field of texture clas-

sification (Albregtsen, Schulerud, & Yang, 1995), text recognition (Altuwaijri, Bayoumi,

et al., 1994), watermarking (Alghoniemy & Tewfik, 2004), robot sensing (Markandey &

DeFigueiredo, 1992) and content based image retrieval (Jones, Schaefer, & Zhu, 2004) is

well understood and explored. geometric moments (GM) for 2D image defined in Chapter

2 (2.1) is given as

mpq =
N−1

∑
x=0

N−1

∑
y=0

xpyq f (x,y) (4.3)

GMs are the projection of image intensity function f (x,y), onto monomials xpyq. In or-

der to obtain the image f (x,y) back from its moments mpq, there is a need for doing an

inverse transform. However, due to the non-orthogonality of the monomials this problem
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is difficult. Another type of non-orthogonal moments are complex moment (Abu-Mostafa

& Psaltis, 1985) that carry the same amount of information as geometric moments. Al-

though orthogonal moments hold an advantage over non-orthogonal moments due to their

orthogonality property, geometric moments are commonly used in image reconstruction

and have proven to be the most efficient tool for image analysis (Bimbo, 1999). This is

due to the fact that geometric moments not only illustrate the characteristics and features

of the image, but the ability to allow the encoding of a shape offers a practical advantage

as compared to orthogonal moments. Moreover, the redundancy produced from the non-

orthogonality property is useful when dealing with noisy images. Despite all the practical

advantages, one area of concern when dealing with geometric moments is the duration of

the computational process, especially when it involves higher order geometric moments

(Flusser, 1998).

One of the earliest methods to calculate the geometric moments of an N × N image

is a straightforward computation method using N2 additions and 2N2 multiplication pro-

cess proposed by Reeves (Reeves, 1982). Hatamian in (Hatamian, 1986) uses cascaded

single pole digital filter to compute 16 geometric moments of an N × N image and man-

age to reduce the number of additions and multiplications used in Reeves’s method. To

further improve the computation time, a computational process using the delta method is

proposed in (Zakaria, Vroomen, Zsombor-Murray, & Van Kessel, 1987). In this method,

the image is decomposed into individual rows of pixel and the image’s moment is given

as a sum of all the row moments. Yang and Albregtsen in (Yang & F., 1996) proposed a

method based on Green theorem where they evaluate the double integral over an image

by means of single integration along the image boundary. However, (Zakaria et al., 1987)

and (Yang & F., 1996) are only suitable for binary images. Based on Hatamian’s digital

filter concept, Li in (B. Li, 1993) designed a fast computation method to compute geomet-

ric moments but the delay element in Hatamian filter design has become a major setback
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to the design. In order to improve the computation complexity, Wong and Siu moved the

delay element from feed-forward path to the feedback path (Wong & Siu, 1999).

A novel method was introduced by Spiliotis and Mertzios in (Spiliotis & Mertzios,

1998) where binary image representation is employed using non-overlapping rectangular

homogeneous block. The geometric moments are obtained by summing up the moments

of all blocks. This method is refined by Flusser in (Flusser, 2000). Moreover, the method

in (Spiliotis & Mertzios, 1998) is extended in (Chung & Chen, 2005) to compute the low

order geometric moments of a gray-scale image. Recently, a novel extended algorithm

based on the method in (Spiliotis & Mertzios, 1998) is used to compute accurate values

of the geometric moments of gray-scale and binary images (G. A. Papakostas, Karakasis,

& Koulouriotis, 2008). Khalid in (Hosny, 2007) computed the exact values of geometric

moments using the mathematical integration of the monomial terms over digital image

pixels. This method removed the numerical approximation errors in conventional meth-

ods. Another method to minimize the numerical instability problem in higher order ge-

ometric moments is by using an appropriate transformation of image coordinates (Wee,

Paramesran, & Mukundan, 2008). In (Wee et al., 2008), a novel set of geometric moments

called symmetrical geometric moments (SGMs) are computed over an interval of (-1,1)

instead of (0, N−1).

Image reconstruction is needed to restore the original image after the distortions

occurred in them are removed. However, non-orthogonal moments such as geometric

moments do not have direct reconstruction ability (Ghorbel et al., 2005; Teague, 1980).

Using the relationship between geometric moments and family of orthogonal moments

such as Zernike, Tchebichef and Krawchouk moments, an indirect approach to recon-

struct the original image can be performed as shown in (Mukundan, Ong, & Lee, 2001a)

for Tchebichef moments. Ghorbel et. al (Ghorbel et al., 2005) uses the concept of char-

acteristic function proposed in (Teague, 1980) to reconstruct the original image from
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its geometric moments. In this method, they computed the Discrete Fourier Transforms

(DFTs) of an image from its geometric moments and reconstruct the original image us-

ing the inverse DFT (IDFT). However, when the order of the geometric moments is the

same as the size of the image, the computation produces error (Flusser et al., 2009). A

direct method to reconstruct images from its computed geometric moments is proposed

by Flusser et. al in (Flusser et al., 2009). This method successfully reconstructs the exact

image up to 11 × 11. For larger images, this method lost its precision and is unable to

reconstruct the exact image. Recently, (Honarvar et al., 2014) introduced a novel method

of image reconstruction from its geometric moments using Stirling numbers of the first

and second kinds . By using the full set of the geometric moments of an image, the

original image is reconstructed. This method is computationally intensive and has long

computational time. These observations provided a motivation to explore the potential of

using Geometric moments in the area of image restoration. To summarize, following are

the three contributions in this chapter

1. A method of estimating the parameters of the PSF from the degraded image is

proposed. This is achieved by training ELM using geometric moments as feature

vectors.

2. Once the estimate of the PSF is done, a mathematical framework for deconvolution

is proposed in moment domain to obtain the GM’s of the restored image.

3. A fast inverse reconstruction architecture is proposed to transform the restored

sharp image from moment domain back to the spatial domain.

The main contributions of this chapter are clearly explained in the block diagram

shown in Figure 4.1. To explain this in detail, feature vectors (WGM) are taken from the

blurred image. These vectors are fed in to extreme learning machine (ELM) for training
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the network. Once the network is trained, it estimates the parameters (σ ,w) of the PSF,

which is used to deconvolve the images in the proposed moment domain. The estimation

result is fed into the subtractor circuitry to transform the image from moment domain

back to the spatial domain.

Figure 4.1: Flowchart of the proposed method

The rest of the chapter is organized as follows. Section 4.2 discusses the proposed

formulation of feature vectors using Weighted geometric moments. Further their role

as edge descriptors is explored. The proposed PSF parameter estimation via Extreme

learning machine is discussed in Section 4.3. Section 4.4 presents the experimental study

on PSF parameters estimation. This involves a discussion on cross-database analysis.

Section 4.5 describes the proposed image restoration in moment domain. Comparative

study with the state of the art methods (Kotera et al., 2013; A. Goldstein & Fattal, 2012;

G. Liu et al., 2014; Vera et al., 2013a; Yan et al., 2012) is described in Section 4.6,

where the images are taken from the same databases used in the existing methods for fair

evaluation. Further, recently introduced methods that deals with Gaussian deblurring are
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also compared with the existing methods. Finally, Section 4.7 concludes the chapter.

4.2 Formulation of feature vectors using Weighted geometric moments (WGM)

The classical restoration methods require a complete information about the PSF prior

to restoring the degraded image. However, practically in many real applications, the PSF

is often unknown or partial information is available within a certain range due to various

practical constraints. As the information is rarely available, identification of the PSF from

the observed degraded images has been of great interest.

In some applications such as remote sensing, the PSF of the atmospheric turbulence

is modeled as

h(x,y) =


1√

(2π)σ
exp
(
−(x2+y2)

2σ2

)
, if (x,y) ∈ w.

0, otherwise.

(4.4)

where, x and y are the horizontal and vertical space variables, σ is the standard deviation

which parametrize the degree of blur, w is the region of support size of the PSF. Thus, the

Gaussian PSF is characterized by the two parameters σ and w respectively. To obtain a

good restored image quality, proper estimation of these PSF parameters is essential.

In this chapter, a new identification method for Gaussian PSF parameters is proposed

based on the observations that some of the geometric moments can represent the PSF

information in terms of the edges present in an image when subjected to varying degree

of Gaussian PSF. This is achieved using a well known fact that Tchebichef moments are

well known edge descriptors of an image. Using the information geometric moments is

expressed in terms of Tchebichef moments which are then used as feature vectors.

It has been shown that the low order Tchebichef moments can be used for edge detec-

tion (Thung, Paramesran, & Lim, 2012). Using the relationship between the Tchebichef

moments and Geometric Moments (Mukundan et al., 2001b), a set of weighted Geometric

moments (WGM) can be derived and used for edge detection. The weighted Geometric
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moments (WGM) is defined as

WGMpq =
p

∑
k=0

α̃1(p,N;k)
q

∑
l=0

α̃2(q,N; l)
k

∑
i=0

l

∑
j=0

s(i)k s( j)
l mi j (4.5)

where

α̃1(p,N;k) = (−1)p−k

(
N p

(2p)!
(N+p

2p+1

)) ( p!
k!

) (
N−1− k

p− k

) (
p+ k

p

)

α̃2(q,N; l) = (−1)q−l

(
Nq

(2q)!
(N+q

2q+1

)) (q!
l!

) (
N−1− l

q− l

) (
q+ l

q

)

The proposed weighted geometric moments (WGM) are defined as

WGM01 = A m00 +B m01

WGM10 = A m00 +B m10 (4.6)

WGM02 = C m00 +D m01 +E m02

WGM20 = C m00 +D m10 +E m20 (4.7)

WGM03 = F m00 +G m01 +H m02 + I m03

WGM30 = F m00 +G m10 +H m20 + I m30 (4.8)

WGM04 = J m00 +K m01 +L m02 +M m03 +N m04

WGM40 = J m00 +K m10 +L m20 +M m30 +N m40 (4.9)
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where, the weights are defined as

A=
(

3(3−N)

N(N2−1)

)
and B=

(
6

N(N2−1)

)
;

C=
(

5(N−1)(N−2)
(N2−4)(N2−1)

)
, D=

(
30(1−N)

(N2−4)(N2−1)

)
and E=

(
30

(N2−4)(N2−1)

)
;

F=
(
−7N(N−1)(N−2)(N−3)
(N2−9)(N2−4)(N2−1)

)
, G=

(
14N(N−3)(6N−53)

(N2−9)(N2−4)(N2−1)

)

H=
(

7N(150−30N)

(N2−9)(N2−4)(N2−1)

)
and I=

(
140N

(N2−9)(N2−4)(N2−1)

)
;

J=
(

9N2(N−1)(N−2)(N−3)(N−4)
(N2−16)(N2−9)(N2−4)(N2−1)

)
,

K=
(

45N2((N−3)(N−4)(17−4N)

(N2−16)(N2−9)(N2−4)(N2−1)

)
,

L=
(

405N2(N−3)(N−4)−3780N2(N−1)+6930N2

(N2−16)(N2−9)(N2−4)(N2−1)

)
,

M=
(

9N2(560−140N)

(N2−16)(N2−9)(N2−4)(N2−1)

)
and

N=
(

63N2

(N2−16)(N2−9)(N2−4)(N2−1)

)
.

4.2.1 Weighted Geometric Moments (WGM) as edge descriptors

By employing these WGM’s for edge description, it will certainly encode the PSF

information in a similar way as Tchebichef moment did. Now, the applicability of these

WGM for the estimation of PSF parameters is discussed. Here, the characteristics of

WGMs defined in (4.6)-(4.9) for various types of edge contributions i.e. horizontal, verti-
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cal or diagonal present in an image is explored. This is done because edges provide vital

information for humans to subjectively quantify the sharpness of the image. For this the

proposed feature vector is as follows

F = [β1, β2 , ... β4] (4.10)

where, βi is defined as

βi =
√

WGM2
0i +WGM2

i0, for i=1,2,..4 (4.11)

The advantage of using the feature vector F is that it can characterize not only hori-

zontal and vertical edges but also the diagonal edges as well. This is explained by studying

the behavior of the feature vector F for varying degree of Gaussian PSF parameter σ by

selecting the random patches of size 8×8 from the Cameraman image.
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Figure 4.2: (a) Vertical (b) Horizontal and (c) Diagonal edge blocks of size 8×8; (d)-(f)
F variation with σ

One of the important characteristic in choosing the features for estimating the de-

gree of blurriness in an image is that they should closely exhibit human visual system

(HVS) perception of image blur distortion. It can be observed from Figure 4.2 that the

components of the feature vector F i.e β given in (4.11) decreases monotonically with the
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increase in PSF parameter σ (the degree of blurriness increases). This is in accordance

with the correlation between the human subjective score with the sigma σ for the LIVE

image database. The same holds true for most of the natural images present in other

databases also.

Now, the proposed algorithm for estimating the PSF parameters σ and w is dis-

cussed. As notified earlier that it is important to identify the edge blocks (patches of size

8× 8) in an image as it encodes the information about the PSF. And the proposed algo-

rithm relies on this concept. Hence, it becomes absolutely essential pre-process the image

by classifying it into a plain and edge blocks first and then apply the proposed algorithm

on the edge blocks to estimate the PSF parameters. Next, the proposed classification

technique followed by the proposed algorithm is discussed.

4.2.2 Plain and Edge block classification

Here, a classification method based on Geometric moments to classify the image into

plain and edge blocks is proposed. The method is based on the principle that for each

8× 8 image block, the best fit ellipse is computed using Geometric moments (Teague,

1980). The ellipse is defined using two parameters as follows

a =

(
µ20 +µ02 +[(µ20−µ02)

2 +4µ2
11]

1/2

µ00/2

)1/2

(4.12)

b =

(
µ20 +µ02− [(µ20−µ02)

2 +4µ2
11]

1/2

µ00/2

)1/2

(4.13)

where, a and b are known as semi-major and semi-minor axis respectively, of an ellipse

while µi j are the central moments (Teague, 1980). Based on the value of b/a, the image

block is classified as plain or edge block. The threshold value of b/a for the classification

is 0.98. Any value less than that is classified as an edge, else its a plain block. This is

verified by performing the classification of all the images present in the LIVE database.
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For illustration, three images with varying image content are presented in Figure 4.3 along

with their classification map which shows the location of edge patches present.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: (a-c) Images with varying edge content (d)-(f) Classification map showing
edge patches

Table 4.1 shows the detail breakdown of the image into edges and plain blocks. The

reason for selecting these images of varying edge content is to serve two objectives: (1) To

show the performance of the proposed PSF parameter algorithm for varying edge block

contributions. (2) Most of the natural images fall into one of these three categories and

hence can represent a large class of images.

Table 4.1: Classification of LIVE database images based on image content

Images Plain Edges
Women 30% 70%
house 58% 42%
caps 77% 23%

parrots 85% 15%

4.3 PSF parameters estimation via Extreme learning machine (ELM)

The proposed algorithm for estimating the PSF parameters σ and w requires the

use of weighted geometric moments (WGM) which are shown to work as good feature

descriptors that can effectively measure the edge profile of an image subjected to Gaussian

blurring. In the proposed work, reblurring of the image is done to obtain the relative edge
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information between the blurred and the reblurred image in terms of the WGM features.

This is followed by the use of ELM, which uses these feature vectors to estimating the

PSF parameters sigma (σ) and size (w) respectively.

Extreme learning machine (ELM) (Huang et al., 2006) is basically a feed-

forward neural network used for the purpose of classification and regression analysis.

It comprises of a single layer of hidden nodes, where the weights connecting the inputs

to the hidden nodes are randomly initialized and are never updated. These weights con-

nected between the hidden and output nodes are learned in a single step, which is similar

to a learning of a linear model. The training of the extreme learning machine algorithm

is to learn a model of the form

Ŷ = W2σ(W1x) (4.14)

where, W1 is the input-to-hidden-layer weight matrix ; W2 is the hidden-to-output-layer

weight matrix; σ is an activation function and x is the input feature vectors.

The flowchart of the proposed algorithm to estimate the PSF parameters is given in

Figure 4.4. The detailed description of the algorithm is given as follows:

1. Identify the edges and plain blocks in an image. Blurring of an image mostly affects

the edges while keeping plain blocks are least affected. Hence, the algorithm will

use the feature vectors that correspond to edge blocks rather than the plains to

estimate the PSF parameters. The size of the edge block is 8×8.

2. Once the edge blocks are identified, the mean of feature vector Fb is calculated for

all the edge blocks given as

Fb =
1
M

M

∑
j=1

F j (4.15)

where, M is the total number of edge blocks in an image and F is the feature vector

evaluated using (4.10).
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3. Reblur the degraded image.

4. Calculate the re-blurred feature vector Frb by repeating step (2).

5. Use the feature vector |Fb−Frb| for training the ELM.

6. Once the ELM is trained, the estimated PSF parameters (σ ,w) are used in the image

restoration techniques to restore back the original image.

Identify the 

an image
edge blocks (8x8)

in

Calculate
feature vectors

F

Reblur
the degraded

image

Calculate
feature vectors

F

Use features

to train

Estimate

(b) (rb)

(b) (rb)
F - F| |

Image
Restoration

blur parameters
ELM

Figure 4.4: Proposed algorithm for PSF estimation

To ensure the better generalization ability of the ELM network, the optimal selec-

tion of the hidden neurons, the corresponding input weights (W ) and bias values (B) are

required. One way of achieving this is by randomly selecting the fixed input weights and

the bias values, the optimal output weights are evaluated using least square approach.

However, the generalization performance of the ELM depends on the proper selection

of the hidden neurons, input weights and bias values. A selection of these parameters is

crucial for proper generalization by ELM. In the proposed work, ELM network with 80

hidden neurons is considered. ELM algorithm is called 500 times for the same and cross

database training/testing data and finds the mean and variance of the testing and training

accuracies. Each time the ELM is called, the fixed parameters, namely weights (W ) and

bias (B) are initialized randomly from a uniform distribution. The input feature vectors

are normalized between 0 to 1 and the weights (W ) and bias (B) are initialized between

±1. Here, the unipolar sigmoidal activation function for the hidden neurons is opted. The
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slope of the sigmoidal function is selected as 0.1 which is approximately equal to the

number of input neurons (Suresh, Babu, & Kim, 2009; X. Ma et al., 2014).

For the case of testing and training from the same database, i.e. in this case LIVE

database; the mean and the standard deviation of training efficiency are 96.32 and 0.0941

respectively. Similarly, the mean and standard deviation for testing efficiency are 92.46

and 0.0183 respectively. This is shown in Figure 4.5 for different runs. Further for the

cross-database analysis shown in Figure 4.6, where training is performed using Berkeley

dataset and testing using LIVE dataset; the mean and the standard deviation of training

efficiency are 91.13 and 0.0163 respectively. Similarly, the mean and standard deviation

for testing efficiency are 90.57 and 0.0146 respectively. From the Figs. 4.5-4.6, it can be

seen that the random selection of the fixed parameters does not affect the generalization

performance of the ELM regressor for the work.
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Figure 4.5: Effects of the initial parameter selection on training and testing performance
for same database

Moreover, the generalization of the ELM depends on the number of hidden neurons.

To illustrate this behavior, an experimental study is conducted by varying the hidden

neurons from 20 to 100 with the steps of 10. The variation of the testing and training

efficiency for the same and cross database analysis is shown in Figure 4.7 and 4.8 respec-

tively. From Figure 4.7 it can be observed that the training and testing efficiency does

not vary much with the variations of the hidden number of neurons and initial parameter
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Figure 4.6: Effects of the initial parameter selection on training and testing performance
for cross database

changes. In specific for the LIVE database under consideration, the training efficiency

increases by a small amount from 94.14 to 96.62 as the hidden neurons increased from 20

to 100, which is not significant. The testing efficiency, however remains nearly constant

to 92.53. Similarly, Figure 4.8 shows the training and testing efficiency for cross database

analysis (Berkeley for training and LIVE for testing). It can be observed that both the

testing and training accuracy remains nearly constant to 91.23 and 90.15 respectively,

for the variation in the number of hidden neurons and initial parameter settings. These

trends hold true for all the databases considered in the work for both individual and cross

database analysis.
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Figure 4.7: (a) Training (b) Testing accuracy variation with respect to hidden neurons
and initial parameters for same database
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Figure 4.8: (a) Training (b) Testing accuracy variation with respect to hidden neurons
and initial parameters for cross database

4.4 Experimental study for the estimated PSF parameters

In this section, first the importance of edge blocks in an image for the successful

estimation of the PSF parameters (σ ,w) is discussed. This is followed by performing two

experiments in order to validate the performance of the proposed method on six different

standard databases. In the first experiment, the proposed method of PSF estimation is

trained using all the images in one database and tested on the remaining five database

images i.e. cross-database analysis is performed. This is repeated for all the databases

under consideration. In the second experiment the application of the proposed method in

image restoration is explored where the restoration of the degraded images is performed

in the geometric moment domain. The quality of the restored image is evaluated in terms

of SSIM scores. Moreover, the comparative analysis with the three existing methods is

also performed.

4.4.1 Data description

In this study, images are taken from six publicly accessible databases for training

and testing of the proposed algorithm in order to estimate the PSF parameters: LIVE

(Sheikh, Wang, Cormack, & Bovik, 2005), CSIQ (Larson & Chandler, 2010), CIDIQ

(CIDIQ, n.d.), TID2008 (Ponomarenko et al., 2009), Caltech (Fink, 2003) and Berkeley
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(Martin, Fowlkes, Tal, & Malik, 2001). Here, original images from all the databases are

used except for Caltech and Berkeley, where a random selection of 34 and 32 images

respectively is done. The images in all the databases vary in terms of its content and size.

These images are successively degraded using Gaussian PSF with varying sigma (σ) and

size (w) thus producing a total of 38,988 images to be used for training and testing of the

proposed algorithm. The range of sigma (σ) varies from 0.3 to 4 in steps of 0.1 and size

(w) from 7x7 to 17x17 in steps of 2x2. The details of the original images present in all

the databases along with the number of images used for training and testing are shown in

Table 5.1. The details of the original images present in all the databases along with the

number of images used for training and testing are shown in Table 4.2.

Table 4.2: Details of testing and training samples for various databases

Database Original Images Total Images Training Testing
LIVE 29 6612 4600 2012

CIDIQ 23 5244 3670 1574
CSIQ 30 6840 4788 2052

Berkeley 32 7296 5107 2189
TID2008 25 5700 3990 1710
Caltech 34 7752 5425 2327

4.4.2 Significance of using Edge blocks for PSF estimation

As discussed earlier, the performance of the proposed PSF estimation algorithm relies

on the edge blocks present in an image. For this a selection of four different images from

the LIVE database is done. These images are of varying edge contributions as shown in

Figure 4.3 along with Table 4.1. Two experiments are performed based on cross database

evaluation i.e. TID2008 dataset (Ponomarenko et al., 2009) with 5700 images are used

for training the ELM while testing is performed using LIVE [32] database having these

four images. In the first experiment, only the edge blocks of the image are considered

while in the second experiment, both the plain and edge blocks of the image are used

in the computation. The proposed algorithm is implemented for both the cases and the
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results are shown in Tables 4.3 and 4.4. Table 4.3 shows the estimation of σ for both the

experiments along with their relative errors defined as
(

x0− x
x

)
where x0 is the measured

and x is the true value. It can be observed that the edge blocks play an important role in

the estimation of σ as can be seen from the third column of Table 4.3, where the algorithm

closely estimates the actual sigma with a small relative error. However, the fifth column

shows the results of the second experiment where the estimation of σ is not accurate when

compared to the first experiment as can be observed from their relative errors. Hence, it

can be concluded that edge blocks play an important role in the proposed algorithm for

the estimation of σ .

Table 4.3: Role of edge block in estimating the PSF sigma (σ)

Images σ

Edges Edges +Plains

Images σ

Edges Edges+Plain

Estimated σ Relative error Estimated σ Relative error Estimated σ Relative error Estimated σ Relative error

women

0.5 0.49 0.02 1.10 1.2

caps

0.5 0.52 0.04 1.3 1.6

1.0 1.06 0.06 0.76 0.24 1.0 0.97 0.03 1.23 0.23

1.5 1.53 0.02 1.67 0.11 1.5 1.47 0.02 2.17 0.44

2.0 2.14 0.07 1.53 0.235 2.0 1.98 0.01 1.56 0.22

2.5 2.48 0.008 1.58 0.368 2.5 2.62 0.04 2.89 0.16

3.0 3.10 0.03 3.89 0.3 3.0 3.21 0.07 3.76 0.25

3.5 3.61 0.03 3.12 0.10 3.5 3.67 0.04 2.54 0.27

4.0 3.97 0.007 2.76 0.31 4.0 4.31 0.07 3.23 0.19

house

0.5 0.51 0.02 0.82 0.64

parrots

0.5 0.47 0.06 0.3 0.4

1.0 0.98 0.02 0.57 0.43 1.0 0.96 0.04 1.6 0.6

1.5 1.52 0.01 2.31 0.54 1.5 1.67 0.11 0.9 0.4

2.0 1.97 0.01 1.56 0.22 2.0 2.12 0.06 2.65 0.32

2.5 2.49 0.004 2.98 0.19 2.5 2.37 0.05 3.24 0.29

3.0 3.23 0.07 3.67 0.22 3.0 3.32 0.1 2.27 0.24

3.5 3.62 0.03 4.26 0.21 3.5 3.43 0.02 4.21 0.2

4.0 4.23 0.05 3.76 0.06 4.0 3.64 0.09 3.26 0.18

A similar experiment to estimate the PSF size (w) is carried out and shown in Table

4.4. It can be observed that by considering the edge blocks of an image, the proposed

algorithm closely estimates the PSF size effectively. On the other hand the error increases

in the estimation if both the edge and plain blocks are considered.
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Table 4.4: Role of edge block in estimating the PSF size (w)

Images (w)
Edges Edges +Plains

Images (w)
Edges Edges+Plain

Estimated
(w)

Estimated
(w)

Estimated
(w)

Estimated
(w)

women

5×5 5×5 11×11

caps

5×5 5×5 9×9
7×7 9×9 13×13 7×7 5×5 13×13
9×9 7×7 5×5 9×9 11×11 5×5
11×11 11×11 5×5 11×11 13×13 7×7
13×13 13×13 9×9 13×13 13×13 7×7
15×15 17×17 7×7 15×15 13×13 9×9
17×17 17×17 13×13 17×17 13×13 11×11

house

5×5 5×5 11×11

parrots

5×5 7×7 9×9
7×7 5×5 9×9 7×7 7×7 13×13
9×9 11×11 5×5 9×9 7×7 5×5
11×11 9×9 17×17 11×11 13×13 17×17
13×13 11×11 9×9 13×13 13×13 7×7
15×15 17×17 7×7 15×15 15×15 5×5
17×17 15×15 9×9 17×17 15×15 9×9

4.4.3 Cross-database validation

To obtain a good quality of the restored image, correct estimation of the PSF param-

eters is essential. This is achieved using the ELM, which is a single hidden layer feed-

forward network, where the input weights are chosen randomly and the output weights are

calculated analytically. For hidden neurons, many activation functions can be used such as

sigmoid, sine, Gaussian and hard limiting functions. Compared to other traditional com-

putational intelligence techniques, ELM can provide better generalization performance at

a much faster learning speed and with less human intervention. To validate the proposed

method for the PSF estimation, all six databases are used.

A way to determine the generality of a machine-learning based PSF parameter esti-

mation is the cross-database validation since images and/or distortions vary across databases.

For the cross-database testing, the images from one database are used for training the

ELM and tested using the images from the other remaining databases. Table 4.5 provides

the Correlation Coefficients (CCs) values of the regression results of estimating sigma

σ for all the possible combinations of datasets. In particular, the first row provides the

CC values of the regression results when training is performed using TID2008 database

and tested using other databases. In this case, the correlation coefficients (CC) values
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of LIVE and CSIQ databases are 0.9245 and 0.9121 respectively, while Berkeley, CAL-

TECH and CIDIQ provide CC values of 0.8312, 0.8023 and 0.8421 respectively. It can be

observed that LIVE and CSIQ databases provide better prediction accuracies compared

to other databases. Similarly, when Berkeley database is used for training, the CC scores

registered for LIVE, CSIQ and CIDIQ are better compared to other databases. From this

observation, it can be concluded that the proposed algorithm can estimate the PSF param-

eter σ well as indicated by the CC values. Similarly, Table 4.6 provides the CC values

for the estimation of size w. For TID2008 database the CC values of LIVE and CSIQ

databases are 0.8867 and 0.9232 respectively, while Berkeley, CALTECH and CIDIQ

provide CC values of 0.8121, 0.8512 and 0.8032 respectively. In this case CSIQ database

provides better prediction accuracies compared to other databases. However, when other

databases like Berkeley, Caltech and CSIQ are used as training databases, the predication

performance of the LIVE database is better.

Table 4.5: Correlation coefficient (CC) values for cross database performance of estimat-
ing PSF’s sigma (σ).

Training
Testing
TID2008 Berkeley LIVE Caltech CSIQ CIDIQ

TID2008 - 0.8312 0.9245 0.8023 0.9121 0.8421
Berkeley 0.8257 - 0.8942 0.8021 0.8721 0.8736
LIVE 0.8511 0.8263 - 0.8138 0.8432 0.8045
Caltech 0.8182 0.8591 0.8021 - 0.8487 0.7821
CSIQ 0.7951 0.8421 0.9171 0.8161 - 0.8032
CIDIQ 0.8045 0.7976 0.7832 0.8287 0.8917 -

Table 4.6: Correlation coefficient (CC) values for cross database performance of estimat-
ing PSF’s size (w).

Training
Testing
TID2008 Berkeley LIVE Caltech CSIQ CIDIQ

TID2008 - 0.8121 0.8867 0.8512 0.9232 0.8032
Berkeley 0.8491 - 0.8912 0.8275 0.8421 0.8612
LIVE 0.8421 0.8367 - 0.8034 0.8845 0.8363
Caltech 0.8412 0.8243 0.8523 - 0.7776 0.7892
CSIQ 0.8123 0.8267 0.9321 0.8261 - 0.8189
CIDIQ 0.7827 0.8237 0.7876 0.8225 0.9023 -
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4.5 Proposed Image restoration in moment domain

Once the PSF is estimated, the restoration is performed using the Geometric Moments

(GMs) domain. In order to estimate the GMs of the sharp image f (x,y), knowledge of the

GMs of the degraded image g(x,y) and the PSF h(x,y) is required. This is not a difficult

task as the information about the g(x,y) is already there while h(x,y) is estimated using

the proposed algorithm discussed in Figure 4.4. Transforming the g(x,y) and h(x,y) to

GM domain is performed using (4.3) and the corresponding GMs are denoted as M(g)
pq and

M(h)
pq respectively. The relationship between GMs of blurred image, sharp image and the

PSF is given as

m(g)
p,q =

p

∑
i=0

q

∑
j=0

(
p
i

) (
q
j

)
m( f )

i, j m(h)
p−i,q− j (4.16)

The GMs of sharp image m( f )
p,q can be estimated by inverting the (4.16) as follows

m( f )
p,q =



 1

m(h)
0,0

[m(g)
p,q−

p−1
∑

i=0

q−1
∑
j=0

(p
i

) (q
j

)
m( f )

i, j m(h)
p−i,q− j

]
, p,q 6= 0.

m(g)
0,0

m(h)
0,0

, p,q=0

(4.17)

To explain the working principle of (4.17), a small image patch f (x,y) of size 6×6

is blurred with a PSF h(x,y) of size 3×3 PSF respectively. Let

f (x,y) =



1 1 1 1 1 1

0 1 0 1 1 0

1 1 1 0 0 1

0 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



(4.18)
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and

h(x,y) =


0 0 1

1 0 1

1 1 0

 (4.19)

Using g(x,y) = f (x,y)∗h(x,y) one can obtain the blurred image as

g(x,y) =



1 2 3 2 3 2

3 4 6 5 4 3

2 3 4 4 3 1

3 4 3 2 1 1

1 2 2 1 0 0

0 0 0 0 0 0



(4.20)

Using (2.1) and (2.21), the corresponding geometric moments of the blurred image

g(x,y) and PSF h(x,y) denoted as m(g)
p,q and m(h)

p,q respectively are given as

m(g)
p,q =



75 247 983 4399 21239 108007

200 625 2383 10321 48631 242905

640 1909 6983 29257 134423 659089

2318 6655 23449 95155 426313 2051275

9124 25417 86675 341269 1490963 7035517

38030 103495 343153 1313611 5596801 25874275



(4.21)
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and

m(h)
p,q =



5 11 27 71 195 551

10 20 46 116 310 860

24 44 94 224 574 1544

64 110 220 494 1204 3110

180 296 562 1196 2770 6836

520 830 1516 3086 6820 16070



(4.22)

Using (4.17) one can obtain the restored geometric moments of the original image

f (x,y) given in (4.18) denoted by m( f̂ )
p,q, is obtained as

m( f̂ )
p,q =



15 32 86 266 890 3122

49 99 253 753 2449 8409

199 383 929 2633 8189 26993

925 1731 4057 11061 32965 103821

4663 8639 19961 53297 154373 469049

24709 45819 105793 280653 801709 2384229



(4.23)

Once the GMs of the original image is estimated, there is need to do the inverse

moment transform which converts the image from moment domain back to the spatial

domain. This is performed using the cascaded digital filters operating as subtractor. To

understand the proposed approach better, Figure 4.9 shows the flowchart of the forward

and the inverse transform process when applied to an image f (x,y) and its GMs m( f )
p,q

respectively.

With reference to Figure 4.9 the basic 2D cascaded digital filter architecture used by

Hatamian and Wong et.al (Hatamian, 1986; Wong & Siu, 1999) is shown in Figure 4.10.

Here, H(z) is the digital filter. It takes the input as an image f (x,y) and generates the

digital filter output Y as shown in Figures 4.9 and 4.10 respectively. The only difference
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Figure 4.9: Moment transform (forward-inverse) via cascaded digital filters

between the Hatamian and Wong et al. work is the use of H(z). In case of Hatamian, the

H(z) = z−1

1−z1 known as feed-forward filter while in Wong case it is H(z) = 1
1−z1 known

as feedback filter. Once the digital filter output Y is obtained, the forward transform i.e

H(z) H(z) H(z) H(z)

H
(z)

H
(z)

H
(z)

H
(z)

H
(z)

H
(z)

H
(z)
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Y00
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Y21

f(x,y)

Figure 4.10: 2D cascaded digital filter architecture

geometric moments are obtained using

mp,q =
p

∑
r=0

q

∑
s=0

DprDqsYrs (4.24)
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where, D is the transformation matrix for feed-forward architecture is given as (Al-Rawi

& Jie, 2002)

Dp,r =



0 r > p

(−1)p r = 0, p≥ 0

rDp−1,r−1− (r+1)Dp−1,r r > 0, p > 0

(4.25)

while for the feedback architecture it is given as (Al-Rawi, 2008)

Dp,r =



0 (p > 0,r = 0)or(r > p)

1 p = 0,r = 0

r(Dp−1,r−1−Dp−1,r) otherwise

(4.26)

Since the information of the restored GMs of the sharp image is given in (4.17),

the focus of this chapter is to use an inverse moment transform based on the feedback

architecture proposed by Wong et al. (Wong & Siu, 1999). For this, there is a need to

calculate the inverse of the matrix D given in (4.26) as

E = D−1 (4.27)

Once the inverse is calculated, the digital filter output Y can be calculated from the re-

stored GMs of the sharp image as

Yp,q =
p

∑
r=0

q

∑
s=0

EprEqsm
( f )
rs (4.28)

Using the digital filter output Y given in (4.28), one can use the cascaded subtractor

circuit to transform the digital filter outputs back into the image estimate f̂ (x,y) in the
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spatial domain as discussed in Chapter 2 (See Section 2.2.4) and is given as

f̂ (x,y) =



1 1 1 1 1 1

0 1 0 1 1 0

1 1 1 0 0 1

0 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



(4.29)

which is the same as the image f (x,y) given in (4.18)

4.6 Comparative analysis with the existing state of the art methods

Once the estimation of the PSF is done using the proposed algorithm, image restora-

tion is performed to deblur the image in geometric moment domain as discussed in Sect 3.

The quality of the restored image is compared with three existing methods: Kotera et al.

(Kotera et al., 2013), Goldstein et al. (A. Goldstein & Fattal, 2012) and Liu et al.(G. Liu

et al., 2014). These methods require the information of the PSF to restore the deblurred

image by adopting different varieties of optimization techniques.

In this study, two experiments are performed using the blurred images of the LIVE

database to evaluate the performance of the proposed method with the three existing meth-

ods. In the first experiment four images from the LIVE database that vary in image content

as shown in Figure 4.3 are used to evaluate the visual quality in terms of SSIM scores.

Further, visual quality of the two images is shown to demonstrate the effectiveness of the

proposed approach. In the second experiment, a comparative analysis of the 29 original

images blurred with specific pairs of (σ ,w) is shown in terms of SSIM scores. Further, a

detailed analysis of the proposed method with the images used in the existing methods is

carried out to have a fair comparison in terms of SSIM scores.
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4.6.1 Experiment 1

Table 4.7 presents the first experiment where the comparison of the proposed method

with the existing ones in terms of the SSIM score is carried out. Here, the cross database

evaluation is performed using the Berkeley database as training and LIVE database im-

ages for testing. The second and third column of the table shows the actual and the

estimated PSF parameters. It can be observed that the proposed method estimates these

parameters closely. Further, the SSIM scores of the proposed method along with the

existing methods are given for the test images. The score provided in bold shows the

maximum score. It can be seen that proposed method gives better SSIM scores when

compared to the existing methods for blurred images caused by sigma (σ) less than 2.5.

For sigma σ greater than 2.5 the proposed method in most cases performs better than the

existing methods.

Table 4.7: Comparative analysis with the existing methods in terms of SSIM scores

SSIM

Images Actual
(σ ,w)

Estimated
(σ ,w) Proposed (Kotera et al., 2013) (G. Liu et al., 2014) (A. Goldstein & Fattal, 2012)

women

(0.5,7) (0.49, 9) 0.9673 0.9579 0.9236 0.9157
(1.0,7) (1.06,9) 0.9490 0.9276 0.9137 0.8905
(1.5,9) (1.53,7) 0.8978 0.8876 0.8643 0.8571
(2.0,11) (2.14,11) 0.8673 0.8602 0.8521 0.8469
(2.5,13) (2.48,13) 0.8251 0.8136 0.8175 0.8123
(3.0,15) (3.10,17) 0.8163 0.8089 0.8121 0.8103
(3.5,15) (3.61,17) 0.7986 0.7956 0.8032 0.8053
(4.0,17) (3.97,17) 0.7863 0.7921 0.7821 0.7769

house

(0.5,9) (0.51,11) 0.9721 0.9703 0.9632 0.9613
(1.0,7) (0.98,5) 0.9695 0.9587 0.9512 0.9445
(1.5,9) (1.52,11) 0.9486 0.9412 0.9409 0.9312
(2.0,11) (1.97, 9) 0.9145 0.9043 0.8912 0.8832
(2.5,13) (2.49, 11) 0.9021 0.8921 0.8732 0.8702
(3.0,13) (3.23, 11) 0.8742 0.8834 0.8529 0.8489
(3.5,15) (3.62, 17) 0.8241 0.8308 0.7963 0.7843
(4.0,17) (4.23, 15) 0.8032 0.7952 0.7854 0.7784

caps

(0.5,7) (0.52, 5) 0.9743 0.9521 0.9476 0.9212
(1.0,7) (0.97, 5) 0.9523 0.9356 0.9265 0.9087
(1.5,11) (1.47, 13) 0.9375 0.9245 0.9027 0.8945
(2.0,9) (1.98, 11) 0.9026 0.8875 0.8756 0.8721
(2.5,11) (2.62, 13) 0.8723 0.8652 0.8534 0.8487
(3.0,11) (3.21, 13) 0.8348 0.8479 0.8219 0.8067
(3.5,17) (3.67, 13) 0.8167 0.8054 0.7952 0.8012
(4.0,15) (4.31, 13) 0.7897 0.7921 0.7734 0.7864

parrots

(0.5,7) (0.47, 7) 0.9521 0.9397 0.9263 0.9123
(1.0,9) (0.96, 7) 0.9358 0.9178 0.9032 0.8978
(1.5,7) (1.67, 7) 0.9183 0.8976 0.8875 0.8786
(2.0,13) (2.12, 13) 0.8832 0.8754 0.8813 0.8678
(2.5,11) (2.37, 13) 0.8434 0.8542 0.8412 0.8367
(3.0,17) (3.32, 15) 0.8253 0.8372 0.8045 0.7965
(3.5,15) (3.43, 15) 0.8026 0.7932 0.7861 0.7812
(4.0,15) (3.64, 15) 0.7945 0.7876 0.7732 0.7853

Two images from the Figure 4.3 are selected to show the visual comparison of the

restoration performed using proposed and the existing methods. The two images women
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and house are selected because of their varying edge content. The women image has the

largest number of edge blocks while the image house has the nearly equal number of

edge and plain blocks. Figure 4.11 shows the visual comparison of the image restoration

performed on the women image. Here, the image is Gaussian blurred using σ = 1.5and

w = 11. It also shows the estimated PSF obtained using the proposed and the existing

methods. It can be observed that the quality of the restored image is comparable for both

the proposed and the method in (Kotera et al., 2013). One possible reason for the differ-

ence in the quality of the restored images with the other two methods in (A. Goldstein

& Fattal, 2012; G. Liu et al., 2014) is the close estimation of the PSF from the degraded

image. Any discrepancy in the estimation of the PSF will result in the degradation of the

image quality. The PSF estimated using proposed method and the method in (Kotera et

al., 2013) is quite close to the PSF with which the original image is distorted. Similar

observations and conclusions can be made in the case of house image which is Gaussian

blurred using σ = 2.0 and w = 15 as shown in Figure 4.12.

3 4 5 6 7 8 9

2

3

4

5

6

7

8

9

10

11

(a) Original image (b) Blurred image (c) (Kotera et al., 2013)

(d) (G. Liu et al., 2014) (e) (A. Goldstein & Fattal, 2012) (f) Proposed

Figure 4.11: Comparison of the deblurring results on woman image blurred with Gaus-
sian PSF of (σ ,w)=(1.5,11)

4.6.2 Experiment 2

In this experiment, Figure 4.13 presents the detailed comparative analysis of the pro-

posed method with the existing ones in terms of the SSIM score for all the 29 LIVE

database images. The analysis is based on cross database evaluation performed using
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(a) Original image (b) Blurred image (c) (Kotera et al., 2013)

(d) (G. Liu et al., 2014) (e) (A. Goldstein & Fattal, 2012) (f) Proposed

Figure 4.12: Comparison of the deblurring results on house image blurred with Gaussian
PSF of (σ ,w)=(2.0,15)

Berkeley database images for training and LIVE database images for testing. For in-

stance, Figure 4.13(a) shows the SSIM score for all the restored 29 test images of LIVE

database that are degraded using the PSF parameters (σ ,w)=(1.0,11). It can be seen that

the proposed method provides better SSIM scores when compared to the restoration per-

formed in (Kotera et al., 2013; A. Goldstein & Fattal, 2012; G. Liu et al., 2014) for most

of the test images. Similar observations can be seen for Figure 4.13(b) where the SSIM

scores of the restored test images degraded with PSF parameters (2.0,13). Further, Figs.

4.13(c)-(d) shows the restored test images degraded by (3.0,15) and (4.0,15) respectively.

In this case it can be observed that in most cases (Kotera et al., 2013) performs better

when compared to the proposed method. However, the proposed method performs well

than (A. Goldstein & Fattal, 2012) and (G. Liu et al., 2014)for all the images present in

the LIVE database.

4.6.3 Comparative Analysis using images from the published database images

In order to gauge the effectiveness of the proposed method with the existing ones, a

fair comparison in terms of the restoration is performed using the images present in the ex-

isting methods. Table 4.8 presents the comparative analysis of the restoration performed

on the blurred images. Here, the blurred images are taken from the existing method by

(G. Liu et al., 2014) for fair comparison. The restoration results obtained by the proposed
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(a) (σ ,w)=(3.0,15) (b) (σ ,w)=(4.0,15)

Figure 4.13: Comparative analysis of SSIM score for the LIVE database images for
different values of PSF parameters (σ ,w) with existing methods namely: Kotera et al.
(Kotera et al., 2013), Goldstein et al. (A. Goldstein & Fattal, 2012) and (G. Liu et al.,
2014)

method are based on the training of ELM using the Berkeley database and testing using

the LIVE database and the images taken from (G. Liu et al., 2014). It can be observed

that the proposed method does not provide satisfactory restoration results when compared

to the work done by (G. Liu et al., 2014). The reason for this is that the images used in

(G. Liu et al., 2014) are blurred using arbitrary PSF: a combination of Gaussian and mo-

tion PSF and the proposed method is based on restoration performed using Gaussian PSF.

Due to the mismatch in the PSF estimation, the quality of the restored image using the

proposed method is degraded compared to (G. Liu et al., 2014). This is observed strongly

in the case of two images shown in second and third row of Table 4.8 where the qual-

ity of the restoration is not as good as other methods when evaluated in terms of SSIM

score. However, for the images shown in first and last row of the table, the results are
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Table 4.8: Quantitative comparison with the existing methods by using the images
present in them

Blurred Image
Restored Image
(Kotera et al., 2013) (G. Liu et al., 2014) (A. Goldstein & Fattal, 2012) Proposed

SSIM 0.7932 0.8312 0.7876 0.8279

SSIM 0.7834 0.7912 0.7543 0.7215

SSIM 0.7638 0.7852 0.7722 0.7621

SSIM 0.7965 0.8534 0.7651 0.8689

competitive with the existing methods.

Moreover, two recently proposed methods by (Vera et al., 2013a) and (Yan et al.,

2012) that focus specifically for Gaussian blurred images are selected for a fair compar-

ison with the proposed approach. Further, the two sharp images used in (G. Liu et al.,

2014) are Gaussian blurred and taken for comparison with the proposed method. Doing

this will explore the advantages and shortcomings of the proposed approach when com-

pared with these methods. The restoration results obtained by the method is based on the

training of ELM using Caltech database and testing using CSIQ database and the images

taken from (G. Liu et al., 2014; Vera et al., 2013a; Yan et al., 2012). A detailed analysis

of the restoration performed on the blurred images taken from these existing papers is

carried out and shown in Table 4.9. The second and third column of the table shows the

actual and the estimated PSF parameters. It can be observed that the proposed method es-

timates these parameters closely. Further, the SSIM scores of the proposed method along

with the existing methods are given for the test images. The score provided in bold shows
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the maximum score. It can be seen that proposed method gives better SSIM scores when

compared to the existing methods for blurred images caused by sigma (σ) less than 2.5.

For sigma σ greater than 2.5 the proposed method in most cases performs better than the

existing methods. Further, Table 4.10 presents the quantitative comparison of the restora-

Table 4.9: Comparative analysis with the existing methods in terms of SSIM scores

SSIM

Images Actual
(σ ,w)

Estimated
(σ ,w) Proposed (Vera et al., 2013a) (Yan et al., 2012) (G. Liu et al., 2014)

(0.5,7) (0.52, 5) 0.9742 0.9645 0.9567 0.9357
(1.0,9) (0.98,11) 0.9432 0.9236 0.9187 0.9021
(1.5,11) (1.53,11) 0.9289 0.9034 0.8798 0.8723
(2.0,11) (2.12,11) 0.8956 0.8645 0.8541 0.8421
(2.5,13) (2.48,15) 0.8545 0.8325 0.8267 0.8176
(3.0,13) (3.13,15) 0.8457 0.8248 0.8125 0.8067
(3.5,15) (3.52,15) 0.8053 0.8124 0.8056 0.7978
(4.0,17) (4.05,17) 0.7986 0.8045 0.7897 0.7675
(0.5,7) (0.52,5) 0.9736 0.9631 0.9434 0.9315
(1.0,9) (1.12,7) 0.9276 0.9125 0.9035 0.8879
(1.5,11) (1.49,11) 0.9157 0.9072 0.8967 0.8746
(2.0,11) (1.88, 11) 0.9045 0.8921 0.8764 0.8658
(2.5,13) (2.46, 15) 0.8578 0.8469 0.8257 0.8445
(3.0,13) (3.17, 17) 0.8023 0.8034 0.8153 0.7812
(3.5,15) (3.65, 17) 0.7836 0.7971 0.8049 0.7851
(4.0,17) (4.16, 17) 0.7732 0.7845 0.7743 0.7621
(0.5,7) (0.51, 7) 0.9624 0.9543 0.9212 0.9145
(1.0,9) (1.12, 11) 0.9335 0.9065 0.9043 0.8956
(1.5,11) (1.49, 11) 0.9037 0.8723 0.8996 0.8732
(2.0,11) (2.12, 11) 0.8769 0.8582 0.8459 0.8256
(2.5,13) (2.47, 13) 0.8321 0.8497 0.8365 0.8171
(3.0,13) (3.16, 15) 0.8247 0.8136 0.8037 0.7937
(3.5,15) (3.48, 15) 0.8176 0.7959 0.7947 0.7745
(4.0,17) (4.17, 17) 0.7732 0.7818 0.7786 0.7632
(0.5,7) (0.52, 7) 0.9513 0.9456 0.9387 0.9261
(1.0,9) (1.17, 11) 0.9345 0.9214 0.9102 0.9073
(1.5,11) (1.62, 11) 0.9145 0.9025 0.8812 0.8942
(2.0,11) (2.16, 11) 0.8947 0.8867 0.8671 0.8468
(2.5,13) (2.32, 13) 0.8665 0.8734 0.8486 0.8271
(3.0,13) (3.21, 13) 0.8481 0.8346 0.8136 0.7936
(3.5,15) (3.77, 13) 0.8109 0.8347 0.8074 0.7645
(4.0,17) (3.66, 15) 0.7742 0.8067 0.7547 0.7321

tion results by the proposed method with the existing ones. In the first row of the table, it

can be observed that the sharp features near the rings of the saturn are restored effectively

using both the proposed and the method in (Vera et al., 2013a). This is reflected when

a comparison is evaluated in terms of SSIM scores. Similarly, the texture of the moon

shown in second row of table is restored effectively using the proposed method.

4.7 Conclusion

This chapter proposed the use of Weighted geometric moments (WGM) and extreme

learning machine (ELM) for estimating the PSF. Once the PSF is known, deconvolution

approach in moment domain is used to obtain the geometric moments of the restored

image. This is followed by performing the transformation from moment domain to spatial
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Table 4.10: Quantitative comparison with the existing methods by using the images
present in them

Original Image Blurred Image
Restored Image
(Vera et al., 2013a) (Yan et al., 2012) Proposed

SSIM 0.6245 0.8136 0.8037 0.8247

SSIM 0.5873 0.8067 0.7547 0.7742

domain using 2D cascaded digital filters operating as subtractors. The quality of the

restored image is assessed using SSIM. A detailed comparative analysis is carried out

with the three existing methods using the images from their database and it has been

found that in most cases the proposed method gave better SSIM scores. Further, two

recent methods that specifically deal with Gaussian blurred images are taken for a fair

comparison with our method and it has been found that the proposed method provides

competitive results.
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CHAPTER 5 : ESTIMATION OF THE PSF PARAMETERS USING

TCHEBICHEF MOMENTS FOR IMAGE RESTORATION

In this chapter, the estimation of the PSF parameter for Gaussian blurred images is

carried out. The objective is to estimate the sigma and size (σ , w) as accurately as possible

so that the performance of the restoration scheme is maximized. Tchebichef moments and

extreme learning machine (ELM) are utilized for estimating these parameters. To validate

the proposed method, experimental work has been carried out on six different databases,

namely LIVE, CSIQ, CIDIQ, VCL, Caltech and Berkeley. These databases are used for

the purpose of training/testing of the ELM and performs cross database analysis for PSF

parameter estimation. Once the parameters are estimated, the information of the PSF is

used along with widely used split Bregman algorithm to restore the degraded images. The

restoration results obtained from the proposed method provides competitive results when

compared with the existing methods in terms of SSIM score.

5.1 Introduction

PSF estimation is applicable to several practical image processing applications, such

as image restoration, deblurring and autofocus (Rooms, Ronsse, Pizurica, & Philips,

2002), turbulence removal (van Eekeren et al., 2012) and super-resolution (Van Eekeren,

Schutte, Dijk, de Lange, & van Vliet, 2006). The goal of image restoration is to recover

an approximate version of the original image from the degraded image. The image degra-

dation happens due to various reasons such as camera motion, atmospheric turbulence

and out of focus.

Generally, a typical image deblurring problem can be categorized into non-blind and

blind. Non-blind image deblurring requires the prior model for image deblurring while in

blind deblurring the PSF operator is unknown. However, in most of the practical applica-
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tions the PSF is not known exactly resulting in the limited applications of non-blind image

deblurring. Hence, blind deconvolution is the practical method for restoring the blurred

images. The Bayesian framework method for achieving the blind restoration task is con-

sidered in (Likas & Galatsanos, 2004). Here, the parameters of the Gaussian PSF are

estimated using Wavelet decomposition (Rooms, Philips, & Portilla, 2004). Restoration

of the images caused by motion blur is also discussed in (Rekleitis, 1996). Furthermore,

Radon transforms is also used to estimate the PSF kernel by analyzing the prominent

edges in the image (Cho, Paris, Horn, & Freeman, 2011). Other methods explored are

cepstral method and steerable filters (Krahmer et al., 2006).

In image deblurring, edges are the prominent structures that are affected the most.

The standard approach to edge detection fails to estimate the PSF parameters in the case of

blur. In (Elder & Zucker, 1998) the method of local scale control is applied to the problem

of estimating the edges in an image which in turns helps in estimating the PSF parameters.

Furthermore, they proved that the edges covering a large range of blur scales and contrast

can be recovered accurately with no input parameter other than the second moment of

the sensor noise. Bouma et al. (Bouma et al., 2012) estimates the PSF parameters using

the first order derivative. They showed that accurate, precise and efficient PSF estimation

can be computed at the edge locations. The method is robust against the small variations

that occur due to noise and dislocation. Dijik et al. (Dijk et al., 2003) estimated the

sharpness of the natural image using Gaussian models. They located the edges in an

image followed by application of Gaussian derivatives. It provides a response function to

which an estimate of the edge width is obtained and the corresponding sharpness measure

is proposed. Hu et al. (H. Hu & De Hann, 2006) proposed a novel PSF estimation method

in which the blurred input image is first re-blurred by Gaussian PSF of different blur radii.

Then the difference ratios are calculated between the multiple re-blurred images and the

input image to determine the unknown PSF radius.
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Chiang et al.(Chiang & Boult, 1997) proposed a super-resolution algorithm for en-

hancing image resolution based on edge models and PSF estimation. A cubic polynomial

is used for estimating these parameters. Their technique is robust to lighting variation

and edge localization. Bae et al. (Bae & Durand, 2007) adopted the method proposed in

(Elder & Zucker, 1998) along with the addition of bilaterally filtering step to remove the

outliers in the estimate present due to blurry features such as soft shadows. This modified

approach of using brute-force strategy for fitting second order derivative models is more

robust than the original one as they found that the localization of the zero crossing for

the third order derivative is not robust. Apart from spatial domain, wavelet domain is

also explored for the estimation of PSF parameters (Rooms, Pizurica, & Philips, 2002;

Tong, Li, Zhang, & Zhang, 2004). Rooms et al. (Rooms, Pizurica, & Philips, 2002) used

the fact that the sharpness of the sharpest edges in the blurred image, contains the infor-

mation about the blurring PSF. Hence, they proposed a smoothness measure known as

Lipschitz exponent, which is computed for these sharpest edges. A relationship between

the variance of a Gaussian PSF and the Lipschitz exponent is derived and it was shown

that it depends only on the blur in the image and not on the image contents. Hence, it was

used to estimate the sigma σ of the PSF. Bayes classification based blur feature detection,

which uses local auto-correlation congruency is explored in (R. Liu, Li, & Jia, 2008).

Another method proposed by (B. Su, Lu, & Tan, 2011) is based on alpha channel feature

which was used to detect the local blur feature in an image. Ducottet et al. (Ducottet,

Fournel, & Barat, 2004) proposed a new method for edge detections and its characteri-

zation using wavelet technique. The technique depends on the modeling of contours as

smoothed singularities of transition, peak and line. Kayargadde (Kayargadde, 1995) used

polynomial to transform along with multi-filter banks to derive the relationship between

the Hermite coefficients of blurred and un-blurred images. This result helped in solv-

ing PSF related problems as they exploit the relationship to estimate the parameters of
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a blurred edge and the parameters of the image blurring kernel. Recently Soleimani et

al. (Soleimani, Rooms, & Philips, 2013) proposed an efficient PSF estimation technique

with the use of multi-scale quadrature filters. They used the energy of the filters with first

and second order derivatives of the Gaussian for estimation.

Once the parameters of the PSF are estimated, its values can be used in several

restoration algorithms to obtain the restored image. In particular, Zhang et al. (J. Zhang,

Zhao, & Gao, 2014) proposed the group based sparse restoration technique for restoring

the image. It uses advance dictionary learning method that promotes the grouping of sim-

ilar patches for achieving the task of image restoration. Hu et al. (Z. Hu, Huang, & Yang,

2010) proposed deblurring algorithm that exploits sparsity constraints of image patches

and use over-complete dictionary that facilitate in recovering the latent image without

solving an ill-posed deconvolution problem. The dictionary is learned and updated au-

tomatically without using additional images. Once the PSF is estimated, deblurring is

performed to restore the degraded image.

The concept of reblurring the blurred image is adopted to obtain the edge informa-

tion from the image. Li et al. (C. Li, Yuan, Bovik, & Wu, 2011) and Bong et al. (Bong

& Khoo, 2014) showed how it can be used for image quality assessment. Li et al. (C. Li

et al., 2011) method reblurs the test image intentionally and computes the local sample

statistics in the vicinity of detected edges of the original and reblurred images, respec-

tively. The statistical information is differenced and normalized to construct a blur index

for quality score. Bong et al. (Bong & Khoo, 2014) used the concept of reblurring to

calculate the differential statistics in terms of the local histograms. Further, Haibo et al.

also used the concept of reblurring for the estimation of PSF parameter in which the prob-

lem was modeled as Gaussian low pass filtering and the PSF kernel is identified from it

(H. Hu & De Hann, 2006).

Leida et al. proposed a no-reference image quality for blurred images based on the
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use of Tchebichef moments which acts as effective shape descriptors (L. Li et al., 2015).

The earlier work in (Thung et al., 2012), which showed that Tchebichef features, encodes

the edge information efficiently, paved the way to propose a method to estimate the PSF

parameters of a degraded image using Tchebichef moments as feature vectors. In the

proposed work, the image is reblurred to obtain the relative edge information between

the blurred and the reblurred image in terms of the Tchebichef features. These feature

vectors are obtained by taking the difference of the Tchebichef moments of the blurred

and the re-blurred images which are together used with the extreme learning machine

(ELM) (Huang et al., 2006) to estimate the PSF parameters. Once the PSF is estimated,

the split Bregman algorithm is used to restore the deblurred image and the quality of the

restored image is evaluated using structural similarity (SSIM) index (Z. Wang, Bovik,

Sheikh, & Simoncelli, 2004b) which is a method for measuring the similarity between

two images.

The contributions and the overall layout of the chapter is clearly explained in the

block diagram which is shown in Figure 5.1. It can be observed here that the Tchebichef

moment based feature vectors are extracted from the blurred image. The feature vectors

are used for training the extreme learning machine. Once the network is trained, it esti-

mates the parameters of the PSF namely (σ ,w) for the unknown blurred image. Using this

information, split Bregman algorithm is adopted to restore the original image back. The

rest of the chapter is organized as follows. In Section 5.2, preliminaries for Gaussian PSF

model and Tchebichef moments are discussed. This is followed by the brief introduction

on the necessity to classify the image into edge and plain blocks. Further, how Tchebichef

moments are used as edge descriptors in this study. A detail explanation of the proposed

algorithm is explained in Section 5.3. In Section 5.4, the experiment using cross-database

validation from six publicly available databases in carried out to assess the performance

of the proposed method to estimate the PSF parameters. A brief discussion about the
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Figure 5.1: Flowchart of the proposed method

image restoration carried out using split Bregman algorithm is discussed in Section 5.5.

A comparative analysis of the proposed method with the existing methods (Kotera et al.,

2013; A. Goldstein & Fattal, 2012; G. Liu et al., 2014; Vera et al., 2013a; Yan et al.,

2012) is carried out to verify the quality of the restored image using SSIM scores. More-

over, images are taken from their database to have a fair comparison with the proposed

method. Further, two more methods (Vera et al., 2013a; Yan et al., 2012) that focuses on

deblurring of the Gaussian blurred images are taken for comparison with the proposed

method. This task is performed in Section 5.6. Section 5.7 gives the concluding remarks.

5.2 Formulation of feature vectors using Tchebichef moments (TM)

Gaussian based point spread function is the most common blur found in number of

optical and image processing applications. In general, the Gaussian PSF is given as

h(x,y) =


1√

(2π)σ
exp
(
−(x2+y2)

2σ2

)
, if (x,y) ∈ w.

0, otherwise.

(5.1)
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where, σ is the standard deviation; w is the support size of the PSF. In general, w is

represented by a matrix of size of P×P. The parameters that govern the Gaussian PSF

are the standard deviation (σ) and size (w). Proper estimation of these parameters are

essential to have a good restored image quality. This chapter deals with the estimations

of PSF parameters using Tchebichef moments and ELM.

The Tchebichef moment of order (p+q) for an image with intensity function f (x,y)

defined in Chapter 2 (Section 2.3) is given as

Tp,q =
N−1

∑
x=0

N−1

∑
y=0

t̃p(x;N )̃tq(y;N) f (x,y) (5.2)

where, the image is of size N×N and t̃p(x;N) and t̃q(y;N) are the normalized Tchebichef

polynomials defined as (Mukundan et al., 2001b)

t̃p(x;N) =
tp(x;N)√

ρ(p,N)
, t̃q(y;N) =

tq(y;N)√
ρ(q,N)

(5.3)

and tn(x;N) is the nth-order N-point Tchebichef polynomial defined as

tn(x;N) = n!
n

∑
k=0

(−1)n−k
(

N−1− k
n− k

)(
n+ k

n

)(
x
k

)
(5.4)

For simplicity, the convention t̃n(x) is adopted to represent t̃p(x;N). The orthonormal

version of Tchebichef polynomial t̃n(x) is calculated using recurrence relation as

t̃n(x) = α1(2x+1−N )̃tn−1(x)+α2t̃n−2(x) (5.5)

n = 2,3, ....,N−1;x = 0,1, ...,N−1

where

α1 =
1
n

√
4n2−1
N2−n2 (5.6)

α2 =
1−n

n

√
2n+1
2n−3

√
N2− (n−1)2

N2−n2 (5.7)

123

Univ
ers

ity
 of

 M
ala

ya



The initial conditions for the recurrence relation given in (5.5) is given as

t̃0(x) =
1√
(N)

(5.8)

t̃1(x) = (2x+1−N)

√
3

N(N2−1)
(5.9)

Tchebichef moments in (5.2) can be represented in matrix form which is easily im-

plemented in MATLAB. The Tchebichef moments for an image X = f (x,y)|N−1
x,y=0 up to

the order (p+q) can be implemented as

T = PXQT (5.10)

where P and Q are the Tchebichef polynomials defined in matrix form as

P =



K0(0) ... K0(N−1)

. . .

. . .

. . .

Kn(0) ... Kn(N−1)


(5.11)

Q =



K0(0) ... K0(N−1)

. . .

. . .

. . .

Km(0) ... Km(N−1)


(5.12)

Tchebichef moments of an image X are basically the projections of the image on to the

basis functions φpq, which is the product of t̃p and t̃q defined as

t̃p = [̃tp(0)̃tp(1)...̃tp(N−1)] (5.13)

t̃q = [̃tq(0)̃tq(1)...̃tq(N−1)] (5.14)
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φpq = [̃tp]
T t̃q (5.15)

φ
00

φ
04

φ
40

φ
44

Figure 5.2: Basis function φpq for Tchebichef moment

A complete set of basis image φpq for a 8×8 image block is shown in Figure 5.2.The

Tchebichef moments Tpq measures the correlation between the basis image φpq and the

image X.

5.2.1 Tchebichef moments as edge block descriptor

For image processing applications features of an image play an important role. As

the proposed work is in estimating the PSF parameter of the degraded image, one can

explore the possibility of using Tchebichef features in achieving this task. It is well

known fact that blurring of an image affects its edges most when compared to the plain

or texture regions. Therefore, the selection of feature vectors should be in such a way

that it can capture the edges in the presence of blur and be able to help in estimating the

PSF parameter from the degraded image. This chapter explores the use of Tchebichef

features for the estimation of PSF parameter. From Figure 5.2 it can be observed that

the basis image vector φpq(v) = [φ01, φ02, ... φ08] comprises of mostly the vertical edges

and φpq(h) = [φ10, φ20, ... φ80] consist of mostly the horizontal edges. Therefore, the

Tchebichef moments Tpq will give a high positive value of correlation with φpq(v) or

φpq(h) if there are strong vertical or horizontal edges present in an image. Therefore,

the feature vectors Fh = [T10, T20, T30, T40] and Fv = [T01, T02, T03, T04] are selected to
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characterize the edges of an image. To understand the features Fh and Fv better their

behavior on various kinds of edges is studied under varying PSF parameter σ . For this

some practical edges are selected that are normally found in images and perform the

following experiments as follows:

A typical vertical edge image block found in most of the images is shown in Figure

5.3(a). Here, one can study the effect of Gaussian PSF parameter σ applied to this image

block and observe the corresponding behavior of Tchebichef moments Tpq which are

used as components of the feature vector Fh and Fv. As discussed earlier, the correlation

will be high with the basis image vector φpq(v) and will be low for φpq(h). Hence, the

components of the feature vectors Fv will be of large magnitude when compared to Fh

as shown in Figs. 5.3(b)-(c). The plot shows the variation of Tpq which are used as

components of the feature vectors Fh and Fv with σ respectively.
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Figure 5.3: (a) Vertical edge block of size 8×8 (b)-(d) Tpq variation with σ

Further, Figure 5.4(a) shows an example of a horizontal edge image block. Here,

the basis image vector φpq(h) has large correlation when compared to φpq(v). Hence, the

magnitude of Fh vector is large when compared to Fv. The magnitude plot of the Tpq

which are used as components of feature vector Fh and Fv is shown in Figs. 5.4(b)-(c)

respectively. Similarly, Figure 5.5 shows the magnitude plot of the feature vectors for

diagonal edges present in an image.

From observing Figs. 5.3-5.5 it can be concluded that depending on the horizontal

or vertical edge the magnitude of the feature vector Fh and Fv varies. This makes the
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Figure 5.4: (a) Horizontal edge block of size 8×8 (b)-(d) Tpq variation with σ
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Figure 5.5: (a) Diagonal edge block of size 8×8 (b)-(d) Tpq variation with σ

components of feature vector exhibits large dynamic range. In order avoid this problem,

the components of the feature vector F are proposed as

F = [λ1, λ2 , ... ,λ4] (5.16)

where, λi is defined as

λi =
√

T 2
0i +T 2

i0, for i=1,2,..4 (5.17)

The dynamic range of the components (λi) of the feature vector F is invariant to horizontal

or vertical edges as can be seen from Figs. 5.3(d), 5.4(d) and 5.5(d). This feature vector

will be used for training the ELM for estimating sigma (σ) and w .

5.2.2 Plain and Edge block classification

Since the Gaussian PSF affects the edges which the low order Tchebichef moments

captures well, it is essential that the edge blocks of an image are identified. Therefore, this

section presents a brief review of image block classification method (Thung et al., 2012).

Here, the images are divided into non-overlapping 8× 8 blocks which are transformed

into moment domain using discrete Tchebichef transform. In general, there are two types
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of blocks present in an image, namely plain and edge. Among them the plain block

has the lowest moment energy compared to edge blocks. They proposed moment block

energy for horizontal edge (HE) and vertical edge (V E) and diagonal edges (DE) as

HE =
3

∑
i=1

T 2
i0 (5.18)

V E =
3

∑
i=1

T 2
0 j (5.19)

DE =
3

∑
i=1

T 2
0 j +

3

∑
i=1

T 2
i0 (5.20)

where Ti j represents the moment value of the i-th row and j-th column of the moment

block. These values are normalized using SSM defined as

SSM =

(
7

∑
i, j=0

T 2
i j

)
−T 2

00 (5.21)

=
7

∑
i, j=0

[Ib(i, j)− Ib]

Here, T 2
00 is removed as it corresponds to dc component of the image and contains no

valuable information about the image content. It has been observed that plain block has

lower moment energy when compared to edge block. Hence, the HE/Ei j, V E/Ei j are

used as input features for the classifier proposed in (Thung et al., 2012) for the selection

of edge block. This is required as the proposed algorithm relies on the selection of these

edge blocks.

5.3 PSF parameters estimation via Extreme learning machine (ELM)

In this section the proposed algorithm to estimate the (σ ,w) of the Gaussian PSF

is discussed. Low order Tchebichef moments act as a good feature descriptor that can

efficiently encode the information of the edges present in an image. In the proposed

work, the image is reblurred to obtain the relative edge information between the blurred

and the reblurred image in terms of the Tchebichef features. This is followed by the use
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of ELM, which uses these feature vectors to estimating the PSF parameters sigma (σ)

and size (w) respectively. The flowchart of the proposed algorithm to estimate the PSF

parameters (σ ,w) is given in Figure 5.6. The detail description of the algorithm is given

as follows

Identify the 

an image
edge blocks (8x8)

in

Calculate
feature vectors

F

Reblur
the degraded

image

Calculate
feature vectors

F

Use features

to train

Estimate

(b) (rb)

(b) (rb)
F - F| |

Image
Restoration

blur parameters
ELMusing Split Bregman 

Figure 5.6: Flowchart of the proposed algorithm

1. Identify the edges and plain blocks in an image. Blurring of an image mostly affects

the edges while keeping plain blocks are least affected. Hence, the algorithm will

use the feature vectors that correspond to edge blocks rather than plains to estimate

the PSF parameters. The size of the edge block is 8×8.

2. Once the edge blocks are identified, the mean of feature vector F(b) is calculated

for all the edge blocks given as

F(b) =
1
M

M

∑
j=1

Fj (5.22)

where, M is the total number of edge blocks in an image and F is the feature vector

evaluated using (5.16).

3. Reblur the degraded image.

4. Calculate the re-blurred feature vector F(rb) by repeating step (2).

5. Use the feature vector |F(b)−F(rb)| for training the ELM.
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6. Once the ELM is trained, the estimated PSF parameters (σ ,w) are used in the split

Bregman based image restoration technique to restore back the original image.

To ensure the better generalization ability of the ELM network, the optimal selec-

tion of the hidden neurons, the corresponding input weights (W ) and bias values (B) are

required. One way of achieving this is by randomly selecting the fixed input weights and

the bias values, the optimal output weights are evaluated using least square approach.

However, the generalization performance of the ELM depends on the proper selection

of the hidden neurons, input weights and bias values. A selection of these parameters is

crucial for proper generalization by ELM. In the proposed work, one can consider ELM

network with 80 hidden neurons. ELM algorithm is called 500 times for the same and

cross database training/testing data and finds the mean and variance of the testing and

training accuracies. Each time the ELM is called, the fixed parameters, namely weights

(W ) and bias (B) are initialized randomly from a uniform distribution. The input feature

vectors are normalized between 0 to 1 and the weights (W ) and bias (B) are initialized

between ±1. Here, one can opt for unipolar sigmoidal activation function for the hidden

neurons. The slope of the sigmoidal function is selected as 0.1 which is approximately

equal to the number of input neurons.

In the case of testing and training from the same database, i.e. in this case LIVE

database; the mean and the standard deviation of training efficiency are 93.13 and 0.0953

respectively. Similarly, the mean and standard deviation for testing efficiency are 91.26

and 0.0196 respectively. This is shown in Figure 5.7 for different runs. Further for the

cross-database analysis shown in Figure 5.8, where training is performed using Berkeley

dataset and testing using LIVE dataset; the mean and the standard deviation of training

efficiency are 98.38 and 0.0121 respectively. Similarly, the mean and standard deviation

for testing efficiency are 97.93 and 0.0178 respectively. From the Figs. 5.7-5.8, it can be
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seen that the random selection of the fixed parameters does not affect the generalization

performance of the ELM regressor for the proposed work.
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Figure 5.7: Effects of the initial parameter selection on training and testing performance
for same database.
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Figure 5.8: Effects of the initial parameter selection on training and testing performance
for cross database.

Moreover, the generalization of the ELM depends on the number of hidden neurons.

To illustrate this behavior, an experimental study is conducted by varying the hidden

neurons from 20 to 100 with the steps of 10. The variation of the testing and training

efficiency for the same and cross database analysis is shown in Figure 5.9 and 5.10 re-

spectively. From Figure 5.9 it can be observed that the training and testing efficiency do

not vary much with the variations of the hidden number of neurons and initial parameter

changes. In specific for the LIVE database under consideration, the training efficiency

increases by a small amount from 93.6 to 94.2 as the hidden neurons increased from 20 to
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100, which is not significant. The testing efficiency, however remains nearly constant to

91.2. Similarly, Figure 5.10 shows the training and testing efficiency for cross database

analysis (Berkeley for training and LIVE for testing). It can be observed that both the

testing and training accuracy remains nearly constant to 98.38 and 97.9 respectively, for

the variation in the number of hidden neurons and initial parameter settings. These trends

hold true for all the databases considered in the proposed work for both individual and

cross database analysis.
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Figure 5.9: (a) Training (b) Testing accuracy variation with respect to hidden neurons
and initial parameters for same database
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Figure 5.10: (a) Training (b) Testing accuracy variation with respect to hidden neurons
and initial parameters for cross database

5.4 Experimental study for the estimated PSF parameters

In this section, three experiments are carried out to validate the performance of the

proposed method on six different standard databases. In the first experiment, the proposed
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method is trained and tested using the same database. In the second experiment, the pro-

posed method is trained using all the images in one database and tested on the remaining

five database images. This is repeated for all the databases under consideration. In the

third experiment the application of the proposed method in image restoration using a split

Bregman algorithm is carried out where the quality of the restored image is evaluated in

terms of SSIM scores. Further, the comparative analysis with the three existing methods

is also performed.

5.4.1 Data description

In this study, images are taken from six publicly accessible databases for training and

testing of the proposed algorithm in order to estimate the PSF parameters: LIVE (Sheikh,

Wang, et al., 2005), CSIQ (Larson & Chandler, 2010), CIDIQ (CIDIQ, n.d.), VCL (Zarić

et al., 2012), Caltech (Fink, 2003) and Berkeley (Martin et al., 2001). Here, original

images from all the databases are used except for Caltech and Berkeley, where one can

randomly selected 34 and 32 images respectively. The images in all the databases vary

in terms of its content and size. These images are successively degraded using Gaussian

PSF with varying sigma (σ) and size (w) thus producing a total of 38,988 images to be

used for training and testing of the proposed algorithm. The range of sigma (σ) varies

from 0.3 to 4 in steps of 0.1 and size (w) from 7x7 to 17x17 in steps of 2x2. The details

of the original images present in all the databases along with the number of images used

for training and testing are shown in Table 5.1.

Table 5.1: Details of testing and training samples for various databases

Database Original Images Total Images Training Testing
LIVE 29 6612 4600 2012
CSIQ 30 6840 4788 2052
CIDIQ 23 5244 3670 1574
VCL 23 5244 3670 1574

Caltech 34 7752 5425 2327
Berkeley 32 7296 5107 2189
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5.4.2 Significance of using edge blocks in PSF estimation

This section shows the importance of using only the edge blocks for the estimation

of PSF parameters using the proposed algorithm. As blurring of the image affects the

edges present in an image, hence, edge block provides useful information about the PSF

parameters. In order to justify the dependence of the proposed algorithm on the edges

present in an image, four images are selected from the LIVE database with varying con-

tent as shown in Figure 5.11. These images are selected based on the percentage of edges

present in them (Thung et al., 2012).

(a) building2 (b) painted house (c) light house 2 (d) parrots

Figure 5.11: Test Images taken from LIVE database

Table 5.2 shows the detail breakdown of the selected images into edge and plain

blocks. Images are arranged in Table 5.2 with decreasing contribution of edges. This is

done to observe the performance of the proposed algorithm on images with varying edge

contribution.

Table 5.2: Classification of LIVE database images based on image content

Images Plain Edges
Building2 3% 97%

painted house 31% 69%
light house 2 51% 49%

parrots 85% 15%

Two experiments are conducted which are based on cross database evaluation i.e.

Berkeley dataset (Martin et al., 2001) with 7296 images are used for training the ELM

while testing is performed using LIVE (Sheikh, Wang, et al., 2005) database of 4 images

mentioned in Table 5.2. In the first experiment, only the edge blocks of the image are
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considered for training while in the second experiment, both the plain and edge blocks

of the image are used for training the ELM. The estimation of the PSF parameters (σ ,w)

obtained using ELM for both the experiments are shown in Tables 5.3 and 5.4.

The estimation of σ for both the experiments along with their relative errors defined

as (x0− x)/x where x0 is the measured and x is the true value is shown in Table 5.3. It

can be observed that the edge blocks play an important role in the estimation of σ as can

be seen from the third column of Table 5.3, where the algorithm closely estimates the

actual sigma with a small relative error. However, the fifth column shows the results of

the second experiment where the estimation of σ is not accurate when compared to the

first experiment as can be observed from their relative errors. Hence, it can be concluded

that edge blocks play an important role in the proposed algorithm for the estimation of σ .

Table 5.3: Role of edge block in estimating the PSF sigma (σ)

Images σ

Edges Edges +Plains

Images σ

Edges Edges+Plain

Estimated σ Relative error Estimated σ Relative error Estimated σ Relative error Estimated σ Relative error

building2

0.5 0.51 0.02 1.51 2.02

paintedhouse

0.5 0.52 0.04 1.12 1.24

1.0 0.99 0.01 2.14 1.14 1.0 1.05 0.05 2.54 0.54

1.5 1.54 0.02 2.23 0.48 1.5 1.48 0.01 1.23 0.18

2.0 2.07 0.03 2.87 0.43 2.0 2.08 0.04 3.22 0.61

2.5 2.49 0.004 1.76 0.29 2.5 2.48 0.008 1.32 0.47

3.0 3.11 0.03 3.95 0.31 3.0 3.12 0.04 4.13 0.37

3.5 3.51 0.002 2.84 0.18 3.5 3.49 0.002 2.81 0.19

4.0 4.11 0.02 4.52 0.13 4.0 4.15 0.03 3.21 0.19

lighthouse2

0.5 0.52 0.04 1.24 1.48

parrots

0.5 0.54 0.08 1.83 2.66

1.0 1.04 0.04 0.78 0.22 1.0 1.07 0.07 0.32 0.68

1.5 1.54 0.02 1.02 0.32 1.5 1.63 0.08 2.56 0.70

2.0 1.89 0.05 1.32 0.34 2.0 2.19 0.09 1.67 0.17

2.5 2.45 0.02 3.65 0.46 2.5 2.34 0.06 3.26 0.30

3.0 3.16 0.05 2.15 0.28 3.0 3.26 0.08 2.24 0.25

3.5 3.65 0.04 4.12 0.17 3.5 3.78 0.09 4.32 0.23

4.0 4.16 0.04 3.23 0.19 4.0 3.67 0.08 3.27 0.182

A similar experiment to estimate the PSF size (w) is carried out and shown in Table

5.4. It can be observed that by considering the edge blocks of an image, the proposed

algorithm closely estimates the PSF size. On the other hand the error increases in the

estimation of PSF size (w) if both the edge and plain blocks are considered.
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Table 5.4: Role of edge block in estimating the PSF size (w)

Images (w)
Edges Edges +Plains

Images (w)
Edges Edges+Plain

Estimated
(w)

Estimated
(w)

Estimated
(w)

Estimated
(w)

building2

5×5 7×7 11×11

paintedhouse

5×5 5×5 13×13
7×7 5×5 3×3 7×7 7×7 11×11
9×9 11×11 13×13 9×9 11×11 3×3
11×11 11×11 17×17 11×11 13×13 17×17
13×13 15×15 7×7 13×13 11×11 9×9
15×15 15×15 9×9 15×15 15×15 7×7
17×17 17×17 11×11 17×17 15×15 9×9

lighthouse2

5×5 5×5 13×13

parrots

5×5 5×5 7×7
7×7 5×5 3×3 7×7 7×7 11×11
9×9 7×7 3×3 9×9 11×11 15×15
11×11 11×11 17×17 11×11 11×11 5×5
13×13 15×15 9×9 13×13 13×13 7×7
15×15 17×17 9×9 15×15 13×13 7×7
17×17 17×17 7×7 17×17 15×15 9×9

5.4.3 Training and testing using same databases

Estimating the PSF parameters is essential to obtain a good quality image, for which

ELM is used (Section 4.3). Here, the evaluation is done using 10 runs. In this vali-

dation scheme, for each run, a random partition is done by selecting 70% of the data

for testing while the remaining 30% as training. This is motivated by a similar method

adopted in recent state of the art methods for cross validation analysis of the estimated

parameters (Mittal, Soundararajan, & Bovik, 2013; Mittal et al., 2012; Xie, Lu, Bovik,

Jiang, & Meng, 2016). Once each run is done, the performance of the regression analysis

is carried in terms of correlation coefficient (CC). The task of partitioning the data and

its CC evaluation is repeated for all the 10 runs. Once this is done, the average accu-

racy which is the mean of the CC values obtained for each run is reported. To validate

the proposed method for the PSF estimation, all six databases are used. The Tchebichef

features |Fb−Frb| are calculated for each of the blurred images using the proposed al-

gorithm. Once the ELM is trained, the performance of the proposed method is evaluated

from the same database. Tables. 5.5 and 5.6 show the scatter plot for the estimated

value of σ and w respectively for different databases. From Table 5.5, it can be ob-

served that the correlation coefficients (CC) values for all the databases are in the range
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of 0.9712(VLC) to 0.9934(CSIQ). Similarly for Table 5.6 the CC values obtained are in

the range of 0.9348(CIDIQ) to 0.9883(Caltech).

Table 5.5: Estimation of PSF parameter σ for various databases
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Table 5.6: Estimation of PSF parameter (w) for various databases
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5.4.4 Cross-database validation

A way to determine the generality of a machine-learning based PSF parameter estima-

tor is the cross-database validation since images and/or distortions vary across databases.

For the cross-database testing, the images from one database are used for training the
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ELM and tested using the images from the other remaining databases. Table 5.11 pro-

vides the correlation coefficient (CC) values of the regression results of estimating sigma

(σ) for all the possible combinations of datasets. For instance, the first row provides the

CC values of the regression results when training is performed using VCL database and

tested using other databases.

Table 5.7: Correlation coefficient (CC) values for cross database performance of estimat-
ing PSF’s sigma (σ).

Training
Testing
VCL Berkeley LIVE Caltech CSIQ CIDIQ

VCL - 0.8521 0.9235 0.8157 0.9178 0.8612
Berkeley 0.8527 - 0.8658 0.8045 0.8812 0.8478
LIVE 0.8712 0.8134 - 0.8268 0.8537 0.8147
Caltech 0.8257 0.8267 0.8145 - 0.8512 0.7834
CSIQ 0.8124 0.8356 0.8856 0.7862 - 0.8234
CIDIQ 0.8178 0.8024 0.7945 0.8345 0.9078 -

In this case, the correlation coefficients (CC) values of LIVE and CSIQ databases

are 0.9235 and 0.9178 respectively, while Berkeley, CALTECH and CIDIQ provide CC

values of 0.8521, 0.8157 and 0.8612 respectively. It can be observed that LIVE and CSIQ

databases provide better prediction accuracies compared to other databases. Similarly,

when Berkeley database is used for training, the CC scores registered for LIVE and CSIQ

is better compared to other databases. From this it can be observed that the proposed algo-

rithm can estimate the PSF parameter (σ) well as indicated by the CC values. Similarly,

Table 5.7 provides the CC values for the estimation of size (w). For VCL database the

CC values of LIVE and CSIQ databases are 0.9335 and 0.9034 respectively, while Berke-

ley, CALTECH and CIDIQ provide CC values of 0.8921, 0.8412 and 0.8367 respectively.

In this case also LIVE database provides better prediction accuracies compared to other

databases. The same holds true when Berkeley, CSIQ and CIDIQ are used as training

databases.
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Table 5.8: Correlation coefficient (CC) values for cross database performance of estimat-
ing PSF’s size (w).

Training
Testing
VCL Berkeley LIVE Caltech CSIQ CIDIQ

VCL - 0.8921 0.9335 0.8412 0.9034 0.8367
Berkeley 0.8521 - 0.8834 0.8436 0.8523 0.8723
LIVE 0.8265 0.9025 - 0.8425 0.8932 0.8451
Caltech 0.8425 0.8702 0.8623 - 0.8726 0.8266
CSIQ 0.8325 0.8627 0.9145 0.8568 - 0.7923
CIDIQ 0.8046 0.8315 0.9056 0.8734 0.8923 -

5.5 Image restoration using split Bregman algorithm

Once the estimation of PSF is done using the proposed algorithm, image restoration

is performed to deblur the image using the existing optimization technique known as split

Bregman as shown in Figure 5.12. The quality of the restored image is compared with

three existing methods: Kotera et al. (Kotera et al., 2013), Goldstein et al. (A. Goldstein

& Fattal, 2012) and Liu et al. (G. Liu et al., 2014). These methods require the information

of the PSF to restore the deblurred image by adopting different varieties of optimization

techniques. In particular, Kotera et al. (Kotera et al., 2013) proposed the deconvolution

algorithm that employs maximum a posterior estimation combined with sparse priors and

advance numerical methods to restore the degraded image. Goldstein et al. (A. Goldstein

& Fattal, 2012) proposed a method for estimating the PSF using statistical irregularities

in their power spectrum. The power law model together with spectral whitening is used

to estimate the power spectrum of the PSF. Later, PSF is recovered using a phase retrieval

algorithm. Further, the task of image restoration is performed using Bregman technique.

Liu et al. (G. Liu et al., 2014) proposed the method of PSF estimation by analyzing and

comparing the spectrum of an image as a convolution operator that changes before and

after blurring operation. Once the estimation is done, deblurring is performed using the

technique discussed in Krishnan et al. (Krishnan & Fergus, 2009).

Here, the details of the Split Bregman algorithm used for solving the general image
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Estimation
Blurred 

Image

Tchebichef based
blur Image Restoration

using ELM adopted by Kotera et al.

Figure 5.12: Proposed restoration method

restoration problems is discussed which appears in the following form

f̂ = argmax
f

1
2
||g−H f ||22 +β || f ||1 (5.23)

where g is the observed blurred image, H and f̂ are the estimated PSF and original image

respectively. Further, ||(.)||22 and ||(.)||1 are the L2 and L1 norms respectively. The L1

norm of a vector x = [x1,x2,x3, . . .xN ] of length N is defined as

||x||1 =
N

∑
j=1
|x j| (5.24)

while L2 norm is defined as

||x||22 =
N

∑
j=1
|x j|2 (5.25)

The L1 norm involved in (5.23) is non-smooth and non-separable which makes it dif-

ficult for the optimization methods to obtain the optimal solution. A natural idea to solve

(5.23) is to use a smoothed L1 norm to approximate the actual L1 norm and then apply

optimization methods for smooth functions. This approach was commonly used in total

variation methods earlier. However, the better the approximation is to L1 norm, the algo-

rithm will converge slower. Therefore, in order to make this algorithm converge faster,

smoother approximation to L1 norm is not the proper solution. Another difficulty arises

due to non-separability issue of the priors involved in (5.23). To overcome these issues

of non-separable and discontinuous behavior the method of split Bregman algorithm is

proposed. The split Bregman algorithm for (5.23) is demonstrated to be an efficient tool

for solving the problems arising from total variation norm minimization problems for im-

age restoration such as image deblurring. The optimization problem given in (5.23) can

be solved by the split Bregman algorithm which was proposed by (T. Goldstein & Osher,
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2009). Here, the steps involved in solving the optimization problem using split Breg-

man are carried out. In particular, the estimate of the original image f̂ given in (5.23) is

obtained by solving the following sub-problems

f̂i← argmax
f

1
2
||g−H f ||22 +

λ

2
|| f −ui−1 +bi−1||22 (5.26)

ui← argmax
u

β ||u||1 +
λ

2
||u− f̂i−bi−1||22 (5.27)

bi← bi−1 +( f̂i−ui) (5.28)

where b is the Bregman relaxation variable. Here the equations (5.26)-(5.28) are iterated

recursively for a given number of iterations i. These equations as a whole constitutes the

split Bregman algorithm. The sub-problem defined in (5.26) is easy to solve as it involves

least square solution. If information about H is available one can employ the conjugate

gradients method to solve the equations. Further, (5.27) is an L1 optimization problem

that can be solved easily using iterative threshold methods (Fadili & Starck, 2006). The

final step shown in (5.28) is to update the Bregman relaxation variable. Further details of

the algorithm can be found in (T. Goldstein & Osher, 2009).

5.6 Comparative analysis with the existing state of the art methods

In this study, two experiments are performed using the blurred images of the LIVE

database to evaluate the performance of the proposed method with the three existing meth-

ods. In the first experiment four images from the LIVE database that vary in image con-

tent as shown in Table 5.2 are used to evaluate the visual quality in terms of SSIM scores.

Further, visual quality of the two images is shown to demonstrate the effectiveness of the

proposed approach. In the second experiment, a comparative analysis of the 29 original

images blurred with specific pairs of (σ ,w) is shown in terms of SSIM scores. Further,

analysis of the proposed method with the images used in the existing methods is carried

out to have a fair comparison in terms of SSIM scores.
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5.6.1 Experiment 1

Table 5.9 presents the first experiment where the comparison of the proposed method

with the existing ones in terms of the SSIM score is carried out. Here, the cross database

evaluation is performed using the Berkeley database as training and LIVE database im-

ages for testing. The second and third column of the table shows the actual and the

estimated PSF parameters. It can be observed that the proposed method estimates these

parameters closely. Further, the SSIM scores of the proposed method along with the

existing methods are given for the test images. The score provided in bold shows the

maximum score. It can be seen that proposed method gives better SSIM scores when

compared to the existing methods for blurred images caused by sigma (σ) less than 2.0.

For sigma (σ) greater than 2.0 the proposed method in most cases performs better than

the existing methods.

Table 5.9: Comparative analysis with the existing methods in terms of SSIM scores

SSIM

Images Actual
(σ ,w)

Estimated
(σ ,w) Proposed (Kotera et al., 2013) (G. Liu et al., 2014) (A. Goldstein & Fattal, 2012)

building2

(0.5,7) (0.51, 5) 0.9742 0.9645 0.9567 0.9357
(1.0,9) (0.99,11) 0.9512 0.9354 0.9234 0.9134
(1.5,11) (1.54,11) 0.9132 0.8956 0.8867 0.8678
(2.0,11) (2.07,11) 0.8876 0.8582 0.8478 0.8356
(2.5,13) (2.49,15) 0.8612 0.8476 0.8354 0.8112
(3.0,13) (3.11,15) 0.8329 0.8251 0.8121 0.8092
(3.5,15) (3.51,15) 0.8113 0.7989 0.7923 0.7843
(4.0,17) (4.11,17) 0.8067 0.8145 0.7767 0.7512

lighthouse2

(0.5,7) (0.52,5) 0.9736 0.9631 0.9434 0.9315
(1.0,9) (1.04,7) 0.9331 0.9236 0.9125 0.8926
(1.5,11) (1.54,11) 0.9223 0.9175 0.9067 0.8824
(2.0,11) (1.89, 11) 0.9165 0.9031 0.8882 0.8752
(2.5,13) (2.45, 15) 0.8678 0.8569 0.8361 0.8318
(3.0,13) (3.16, 17) 0.8354 0.8236 0.8153 0.7925
(3.5,15) (3.65, 17) 0.8143 0.8371 0.8049 0.7851
(4.0,17) (4.16, 17) 0.7832 0.8178 0.7843 0.7721

paintedhouse

(0.5,7) (0.52, 7) 0.9832 0.9643 0.9587 0.9432
(1.0,9) (1.05, 11) 0.9456 0.9303 0.9278 0.9272
(1.5,11) (1.48, 11) 0.9165 0.9015 0.8996 0.8732
(2.0,11) (2.08, 11) 0.8856 0.8784 0.8578 0.8341
(2.5,13) (2.48, 13) 0.8621 0.8697 0.8486 0.8271
(3.0,13) (3.12, 15) 0.8556 0.8612 0.8265 0.8072
(3.5,15) (3.49, 15) 0.8376 0.8359 0.7974 0.7745
(4.0,17) (4.15, 17) 0.8032 0.8118 0.7786 0.7632

parrots

(0.5,7) (0.54, 7) 0.9692 0.9594 0.9487 0.9332
(1.0,9) (1.07, 11) 0.9465 0.9364 0.9212 0.9173
(1.5,11) (1.63, 11) 0.9367 0.9252 0.8996 0.8732
(2.0,11) (2.19, 11) 0.9132 0.9013 0.8778 0.8541
(2.5,13) (2.34, 13) 0.8732 0.9108 0.8486 0.8271
(3.0,13) (3.26, 13) 0.8456 0.8381 0.8265 0.8072
(3.5,15) (3.78, 13) 0.8212 0.8280 0.7974 0.7745
(4.0,17) (3.67, 15) 0.7897 0.8167 0.7786 0.7632

Two images from the Table 5.9 are selected to show the visual comparison of the

restoration performed using proposed and the existing methods. The two images parrots
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and buliding2 are selected because of their varying edge content. The building2 image

has the largest number of edge blocks while the image parrot has the lowest number of

edge blocks. Figure 5.13 shows the visual comparison of the image restoration performed

on the parrots image. Here, the image is Gaussian blurred using σ = 2.5 and w = 13. It

also shows the estimated PSF obtained using the proposed and the existing methods. It

can be observed that the quality of the restored image is comparable for both the proposed

and the method in (Kotera et al., 2013). One possible reason for the difference in the

quality of the restored images with the other two methods in (A. Goldstein & Fattal,

2012; G. Liu et al., 2014) is the close estimation of the PSF from the degraded image.

Any discrepancy in the estimation of the PSF will result in the degradation of the image

quality. The PSF estimated using proposed method and the method in (Kotera et al., 2013)

is quite close to the PSF with which the original image is distorted. This is validated by

zooming into the details of the parrots image shown in Figure 5.14. Here, the sharp

features near the eyes of the parrots are restored effectively using both the proposed and

method in (Kotera et al., 2013). Similar observations and conclusions can be made in the

case of building2 image which is Gaussian blurred using σ = 1.5 and w = 11 as shown

in Figure 5.15. Further, Figure 5.16 shows the zoomed region of the highlighted section

of the image. It can be observed that the texture of the wall is well restored using the

proposed method when compared to the existing methods.

5.6.2 Experiment 2

In this experiment, Figure 5.17 presents the detailed comparative analysis of the pro-

posed method with the existing ones in terms of the SSIM score for all the 29 LIVE

database images. The analysis is based on cross database evaluation performed using

the Berkeley database images for training and LIVE database images for testing. For in-

stance, Figure 5.17(a) shows the SSIM score for all the restored 29 test images of LIVE
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(a) Original image (b) Blurred image (c) (Kotera et al., 2013)

(d) (A. Goldstein & Fattal, 2012) (e) (G. Liu et al., 2014) (f) Proposed

Figure 5.13: Comparison of the deblurring results on parrots image blurred with Gaus-
sian PSF of σ=2.5 and w = 13

(a) Original image (b) (Kotera et al., 2013) (c) (A. Goldstein & Fattal, 2012)

(d) (G. Liu et al., 2014) (e) Proposed

Figure 5.14: Zooming the details of parrots image for observing the local edge restora-
tion

(a) Original image (b) Blurred image (c) (Kotera et al., 2013)

(d) (A. Goldstein & Fattal, 2012) (e) (G. Liu et al., 2014) (f) Proposed

Figure 5.15: Comparison of the deblurring results on building image blurred with Gaus-
sian PSF of σ=1.5 and w = 11
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(a) Original image (b) (Kotera et al., 2013) (c) (A. Goldstein & Fattal, 2012)

(d) (G. Liu et al., 2014) (e) Proposed

Figure 5.16: Zooming the details of building2 image for observing the local edge restora-
tion

database that are degraded using the PSF parameters (σ ,w)=(1.0,9). It can be seen that

the proposed method provides better SSIM scores when compared to the restoration per-

formed in (Kotera et al., 2013), (A. Goldstein & Fattal, 2012),(G. Liu et al., 2014) for

most of the test images. Similar observations can be seen for Figure 5.17(b) where the

SSIM scores of the restored test images degraded with PSF parameters (2.0,13). Further,

Figs. 5.17(c)-(d) shows the restored test images degraded by (3.0,15) and (4.0,17) re-

spectively. In this case it can be observed that in most cases (Kotera et al., 2013) performs

better when compared to the proposed method. However, the proposed method performs

well than (A. Goldstein & Fattal, 2012) and (G. Liu et al., 2014) for all the images present

in the LIVE database.

5.6.3 Comparative Analysis using images from the published database images

In order to measure the effectiveness of the proposed method with the existing ones,

a fair comparison in terms of the restoration is performed using the images present in

the existing methods. The restoration results obtained by the proposed method is based

on the training of ELM using Berkeley database and testing using the images taken from

(Kotera et al., 2013) and (A. Goldstein & Fattal, 2012). Table 5.10 presents the compara-

tive analysis of the restoration performed on the blurred images. Here, the blurred images

are taken from the existing method by (Kotera et al., 2013) and (A. Goldstein & Fattal,
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Figure 5.17: Comparative analysis of SSIM score for the LIVE database images for
different values of PSF parameters (σ ,w) with existing methods namely: Kotera et al.
(Kotera et al., 2013), Goldstein et al. (A. Goldstein & Fattal, 2012) and Liu et al.(G. Liu
et al., 2014)

2012) for fair comparison. It can be observed that the proposed method does not provide

satisfactory restoration results when compared to the work done by (Kotera et al., 2013).

The reason for this is that the images used in (Kotera et al., 2013) are blurred using arbi-

trary PSF: a combination of Gaussian and motion PSF and the proposed method is based

on restoration performed using Gaussian PSF. Due to the mismatch in the PSF estima-

tion, the quality of the restored image using the proposed method is degraded compared

to (Kotera et al., 2013). This is observed strongly in the case of two images shown in

second and third row of Table 4.8 where the quality of the restoration is not as good as

other methods when evaluated in terms of SSIM score. However, for the images shown

in first and last row of the table, the results are competitive with the existing methods.

Moreover, two recently proposed methods by (Vera et al., 2013a) and (Yan et al.,
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Table 5.10: Quantitative comparison with the existing methods by using the images
present in them

Original Image Blurred Image
Restored Image
(Kotera et al., 2013) (A. Goldstein & Fattal, 2012) (G. Liu et al., 2014) Proposed

SSIM 0.6275 0.8214 0.8092 0.8378 0.8426

SSIM 0.6973 0.8472 0.8295 0.8356 0.8366

SSIM 0.6758 0.8472 0.8167 0.8223 0.8412

SSIM 0.6135 0.8045 0.7934 0.8247 0.8321

2012) that focus specifically for Gaussian blurred images are selected for a fair compar-

ison with the proposed approach. Further, taking two of the images used in the paper

(A. Goldstein & Fattal, 2012) for restoration helps us to understand the advantages and

shortcomings of the proposed approach. Here, the restoration results obtained by the pro-

posed method are based on the training of ELM using Caltech database and testing using

the images taken from (A. Goldstein & Fattal, 2012). Table 5.11 presents the restoration

results of the proposed method with the existing ones. For the restoration of face image

shown in the first row, the proposed method and (Vera et al., 2013a) provides SSIM scores

of 0.8346 and 0.8312 respectively. While for the other image, the proposed method pro-

vides a slightly less score when compared to (Vera et al., 2013a). These observations

show that the proposed method is competitive with the existing methods when evaluated

in terms of SSIM scores.
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Table 5.11: Quantitative comparison with the existing methods by using the images
present in them

Original Image Blurred Image
Restored Image
(Vera et al., 2013a) (Yan et al., 2012) Proposed

SSIM 0.6534 0.8312 0.8225 0.8346

SSIM 0.5821 0.8167 0.8024 0.8112

5.7 Conclusion

This chapter focused on estimating the PSF present in the images by using edge in-

formation. The low order Tchebichef moments are good edge descriptors and hence they

are used in this study. The proposed algorithm first identifies the edge blocks in the im-

age by using low order Tchebichef moments. The difference in the Tchebichef moments

between the edge blocks of the original and the reblurred image is used in the training

and testing of ELM to estimate the PSF parameters sigma and size. From the results of

the cross-database validation, the proposed method estimates the PSF parameters well, as

shown by the correlation coefficient (CC) values. Further, once the PSF is estimated, the

degraded image is restored and its quality is assessed using SSIM scores. A comparative

analysis with the three existing methods is carried out using the LIVE databases images

and the images from their own database. Also, the comparison is performed with the

recently proposed methods that deals with Gaussian deblurring. In both the analysis, it

has been found that most of the time the proposed method gave better SSIM scores.
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CHAPTER 6 : CONCLUSION

Geometric moments (GM) were introduced by Hu (1962) and are widely used in im-

age processing applications. The use of GMs in past was not considered for any image

restoration task. This is due to the non-orthogonal nature of the geometric moments that

leads to information redundancy. However, this problem has been solved recently which

paves the way for us to explore the potential of using geometric moments in the area of

image restoration. Hence, in this thesis the restoration of blurred images degraded due

to Gaussian and motion blur is addressed using geometric moments. This is achieved by

mathematically formulating the blur in moment domain, followed by using variational

method along with Euler-Lagrange identity and alternate minimization (AM) framework

to implement the restoration of the blurred images. The proposed method formulates the

partial differential equation (PDE) in moment domain which uses an iterative procedure

to deblur the image. Once the image is deblurred using Geometric moments, a reconstruc-

tion method using Stirling numbers is used to restore the image from moment domain to

spatial domain. In this study, detailed experiments are carried out to demonstrate the ef-

fectiveness of the proposed method on the quality of the restored images by considering

the effects of the regularization parameter and blur size. The quality of the restored im-

age is evaluated using image quality assessment methods such as Structural SIMilarity

(SSIM) index and Blind/Reference-less Image Spatial Quality Evaluator (BRISQUE). It

has been observed that the proposed method is efficient for the task of deblurring when

compared to the other existing methods.

Next, a different approach to restore the blurred images is adopted in this thesis.

In this method, first the Gaussian blur is estimated followed by the use of existing non-

blind algorithms for carrying out the image restoration task. In particular, the task of blur

estimation is performed using Weighted geometric moments (WGM) and Tchebichef mo-
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ments (TM) methods respectively. These moments are used as feature vectors which can

efficiently capture the edge behavior under the influence of the blur. The proposed fea-

ture vectors along with the extreme learning machine (ELM) can be used to estimate the

Gaussian blur parameters (σ ,w) that creates the blurring effects. The effectiveness of

the proposed methods to estimate the blur parameters is examined using cross validation.

The image used in this analysis are from the standard databases, namely LIVE, CSIQ,

CIDIQ, VCL, Caltech, TID2008 and Berkeley. The images in all the databases vary in

terms of its content and size. These images are successively degraded using Gaussian blur

with varying sigma (σ ) and size (w) thus producing a total of 38,988 images to be used

for training and testing of the proposed algorithm. The range of sigma (σ ) varies from

0.3 to 4 in steps of 0.1 and size (w) from 7×7 to 17×17 in steps of 2×2. Further, the

cross validation evaluation is done using 10 runs. In this validation scheme, for each run,

a random partition is done by selecting 70% of the data for testing while the remaining

30% as training. Once each run is done, the performance of the regression analysis is car-

ried in terms of correlation coefficient (CC). The task of partitioning the data and its CC

evaluation is repeated for all the 10 runs. Once this is done, the average accuracy which is

the mean of the CC values obtained from each run is reported. Once the blur is estimated

from the proposed methods, its information is utilized in the image restoration algorithms

implemented in the moment and spatial domains. Specifically, for the case of TM based

method, it is done using split Bregman technique, while in case of WGM method, images

are deblurred using proposed moment domain technique. Once the image is deblurred

using WGM method, a proposed reconstruction method known as subtractor based cas-

caded digital filter is employed to transform the image from moment domain to spatial

domain. The method can deal with geometric moments computed from any coordinate

format such as (0,N−1) and (−1,1). However, this transformation is not needed in the

case of TM based method because the image deblurred using a split Bregman algorithm

150

Univ
ers

ity
 of

 M
ala

ya



is already in spatial domain. Once the images are restored using the proposed method, a

fair comparison is carried out with the five existing methods. The existing methods are

selected based on their ability to restore Gaussian and complex motion blurs. The results

show that the proposed methods (TM and WGM) in most of the cases performs better

than the five existing methods in terms of the visual quality evaluated using structural

similarity (SSIM) index.

6.1 Future Research Directions

There are still many possibilities for extensions of the theory and improvement for the

applications discussed in this thesis. Discrete orthogonal moments such as Krawtchouk,

Zernike and Legendre etc. can be used for restoring the images via non-blind and blind

algorithms proposed in Chapter 3. A comparative study in terms of the quality of the

restored image can be carried out. Further, the role of these orthogonal moments can also

be explored to see whether they can be used as an effective edge indicator or not. If they

can be used as an effective edge indicator, then whether they can provide a better blur

estimation or not. A comparative analysis can be carried out to evaluate the estimation

accuracy of the blur and quality of the restored image using these discrete orthogonal

moments.
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APPENDIX A : DATABASE

Figure A.1: 29 Reference Images of LIVE Database
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Figure A.2: 30 Reference Images of CSIQ Database
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Figure A.3: 25 Reference Images of TID2008 Database
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Figure A.4: 12 Reference Images of Caltech Database

Figure A.5: 12 Reference Images of Berkeley Database
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Figure A.6: Sample of blurred images obtained from Caltech and Berkeley Databases

Figure A.7: Sample of blurred images obtained from LIVE, CSIQ and TID2008
Databases
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APPENDIX B : SOURCE CODES

%%%%% Restoration using Geometric Moments %%%%%%%%

warning off all;

clear all;

clc;

order=8;

f=im;

[m,n,lev]=size(f);

if(lev>1)

f1 = rgb2gray(f);

else

f1=f;

end

image_final=double(f1);

image_final=image_final./(max(image_final(:)));

colormap(gray);imagesc(image_final)

h=fspecial(’gaussian’,[5 5],4);

tic

[mf mh mg]=moments(image_final,h,order);

h_est=fspecial(’gaussian’,[5 5],4);

est_mh=double(zeros(order+1,order+1));

for p=0:order

for q=0:order

for y=1:size(h_est,1)

for x=1:size(h_est,2)

est_mh(p+1,q+1) = est_mh(p+1,q+1)+(x-1)^p*(y-1)^q*h_est(x,y);

end

end

end

end

for j3=0:order

for k3=0:order

fprintf(’order j=%d , k=%d \n’,j3,k3);

if ((j3==0)&&(k3==0))

A(j3+1)=iterate_moment_0(est_mh,mg); %Errors incurred in estimating
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else

[B,plot1]=fast_general_moment(est_mh,mg,j3,k3,A); %Errors incurred in estimating

A(j3+1,k3+1)=B;

% fprintf(’A %d \n’,A);

end

end

end

reconst = image_reconst(A,order+1,order+1);

subplot(121),colormap(gray);imagesc(image_final);

subplot(122),colormap(gray);imagesc(reconst);

%%%%%%%%%%%%%%%%%%%%%%%%%%%Moment Calculation%%%%%%

function [mf,mh,mg]=moments(f,h,order)

mf = double(zeros(order+1,order+1));

mh = double(zeros(order+1,order+1));

mg = double(zeros(order+1,order+1));

for p=0:order

for q=0:order

for y=1:size(f,1)

for x=1:size(f,2)

mf(p+1,q+1) = mf(p+1,q+1)+(x-1)^p*(y-1)^q*f(x,y);

end

end

for y=1:size(h,1)

for x=1:size(h,2)

mh(p+1,q+1) = mh(p+1,q+1)+(x-1)^p*(y-1)^q*h(x,y);

end

end

for r=0:p

for s=0:q

mg(p+1,q+1) = mg(p+1,q+1)+nchoosek(p,r)*nchoosek(q,s)*mh(p-r+1,q-s+1)*mf(r+1,s+1);

end

end

end

end

function [image]=iterate_moment_0(mh,mg)

dt=0.0001;

store=mg(1,1);
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for iter = 1:200

if (iter ==1)

C(1,1)=mh(1,1)*(mh(1,1)*mg(1,1)-store);

new_mf(1) = store-2*dt*C;

else

C(1,1)=mh(1,1)*(mh(1,1)*new_mf(iter-1)-store);

new_mf(iter) = new_mf(iter-1)-2*dt*C;

end

end

image=new_mf(end);

end

function [image,plo]=fast_general_moment(mh,mg,ord1,ord2,A)

dt=0.01;

p=ord1;

q=ord2;

% new_mf=zeros(1,order+1);

store=mg(p+1,q+1);

B=0;

for i=0:p

% fprintf(’p=%d’,p);

for j=0:q

% fprintf(’, q=%d\n’,q);

if((i==p)&& (j==q))

A1=nchoosek(p,i)*nchoosek(q,j)*mh(p-i+1,q-j+1)*store;

% fprintf(’p=%d,q=%d,i= %d, j=%d , A1= %d \n’,p,q,i,j,A1);

else

B=B+nchoosek(p,i)*nchoosek(q,j)*mh(p-i+1,q-j+1)*A(i+1,j+1);

%fprintf(’p=%d,q=%d,i= %d , j=%d , B= %d \n’,p,q,i,j,B);

end

end

end

D=(A1+B)-store;

% fprintf(’D %d\n’,D);

C=mh(1,1)*(D);

% fprintf(’c %d\n’,C);

new_mf(1) = store-2*dt*C;

B=0; beta=1;
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for i=0:p

for j=0:q

if((i~=p)||(j~=q))

B=B+nchoosek(p,i)*nchoosek(q,j)*mh(p-i+1,q-j+1)*A(i+1,j+1);

end

for iter = 2:5000

if((i==p)&& (j==q))

A1=nchoosek(p,i)*nchoosek(q,j)*mh(p-i+1,q-j+1)*new_mf(iter-1);

end

D=(A1+B)-store;

C=mh(1,1)*(D);

% fprintf(’D %d\n’,D);

new_mf(iter) = new_mf(iter-1)-2*dt*C;

end

end % plo(1,:,beta)=new_mf;

% beta=beta+1;

end

image=new_mf(end);

plo(:,1)=new_mf;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%% C Code to evaluate higher order images %%%%

#include<stdio.h>

#include<stdlib.h>

#include<stddef.h>

#include<string.h>

#include<conio.h>

#include<iostream>

#include<math.h>

#include<fstream>

#include<time.h>

#define SP ""

#define LF "\n"

#define pi 3.141592653589793

#define N 1 //number of images

#define NP 16384 //Change this to N*M of image

#define IP 47

//#define YSIZE 64
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//#define XSIZE 64

#include"error_functions.h"

#include "additional_function.h"

#include"Geometric_Moments.h"

#include"Geometric_Moments_1.h"

#include"image_operations.h"

#include"PDE_moment_0.h"

#include"PDE_moments.h"

void main()

{

int i,j,order,count=0,count_img;

long int FILESIZE,FILESIZE_PSF;

float ***B,**a,**D;

long double **Mf,**Mh,**Mg,**IMAGE,*temp,**restore_image,*New_mf,**restore_image1;

//FILESIZE=YSIZE*XSIZE;

//FILESIZE_PSF=49;

//cout<<"FILESIZE="<<FILESIZE<<LF;

temp=Doubvector(0,NP);

IMAGE=Doubmatrix(0,500,0,500); //Size of the image is 0 to 64

B=D3fmatrix(0,40,40,4096);

Mf=Doubmatrix(0,1000,0,1000); //why incresing this solves large order problem

D=fmatrix(0,500,0,500);

Mh=Doubmatrix(0,500,0,500);

Mg=Doubmatrix(0,1000,0,1000); //why incresing this solves large order problem

New_mf=Doubvector(0,2000);

restore_image=Doubmatrix(0,500,0,500);

// Calculate moments of Image

cout<<"Enter order";

cin>>order;

char name[50];

ifstream infile;

infile.open("lena_128.txt");

//infile.open("Lena_128.txt");

//infile.open("original_image.txt");

if(!infile)

{

cout<<"Cannot open file 1"<<LF;
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exit(0);

}

count_img=1;

for(i=0;i<NP;i++)

{

infile>>temp[i];

}

vector2matrix(temp,IMAGE,128,128); // Change this to N,M of image

moments(IMAGE,order,Mf); // change inside the moments function limits of image

cout<<"Mf done";

free_Doubvector(temp,0);

// free_ivector(New_mf,0);

// free_fmatrix(Mf,0,500,0);

free_Doubmatrix(IMAGE,0,500,0);

// free_fmatrix(Z,0,64,0);

free_D3fmatrix(B,0,40,40);

infile.close();

// Calculation of Moments of PSF

temp=Doubvector(0,NP);

IMAGE=Doubmatrix(0,500,0,500); //Size of the image is 0 to 64

B=D3fmatrix(0,40,40,4096);

ifstream infile2;

infile2.open("psf.txt");

if(!infile)

{

cout<<"Cannot open file 1"<<LF;

exit(0);

}

count_img=1;

for(i=0;i<NP;i++)

{

infile2>>temp[i];

}

vector2matrix(temp,IMAGE,5,5);

moments_h(IMAGE, order, Mh);

cout<<"Mh done";
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b_moments(Mf,Mh,Mg,order); // Blurred Image Moments

cout<<"Mg done";

free_Doubvector(temp,0);

// free_ivector(New_mf,0);

// free_fmatrix(Mh,0,500,0);

free_Doubmatrix(IMAGE,0,500,0);

// free_fmatrix(Z,0,64,0);

free_D3fmatrix(B,0,40,40);

infile2.close();

cout<<"ÃŃND"<<LF;

// Program for calculation

long double vijeta=0.0;

for(int j3=0;j3<order;j3++)

{

for(int k3=0;k3<order;k3++)

{

if((j3==0)&&(k3==0))

{

iterate_moment1(Mh, Mg, restore_image);

//cout<<"Hello";

//cout<<"Image is ";

//cout<<restore_image[0][0];

}

else

{

restore_image[j3][k3]=iterate_moment(Mh, Mg, j3, k3, restore_image,New_mf,vijeta);

//cout<<"GOLA";

}

}

}

//Write_Into_disc(New_mf);

for(i=0;i<order;i++)

{

for(j=0;j<order;j++)

{

//restore_image2[i][j]=Mf[i][j]-restore_image[i][j];

//restore_image3[i][j]=restore_image2[i][j]/Mf[i][j];
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cout<<" "<<restore_image[i][j];

}

cout<<"\n";

}

ofstream myfile("orginal_moments.txt");

if(myfile.is_open())

{

for( i=0;i<order;i++)

{

for(j=0;j<order;j++)

{

myfile<<Mf[i][j]<<"\n";

}

cout<<"\t";

}

myfile.close();

}

else

cout<<"Unable to open file lah";

ofstream myfile1("restored_moments.txt");

if(myfile1.is_open())

{

for( i=0;i<order;i++)

{

for(j=0;j<order;j++)

{

myfile1<<restore_image[i][j]<<"\n";

}

cout<<"\t";

}

myfile1.close();

}

else

cout<<"Unable to open file lah";

}

/*

free_Doubmatrix(Mf,0,1000,0);
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free_Doubmatrix(Mg,0,1000,0);

free_Doubmatrix(Mh,0,500,0);

free_Doubmatrix(restore_image,0,500,0);

/*

for(i=0;i<200;i++)

{

cout<<New_mf[i]<<"\n";

}

*/

#include<stdio.h>

#include<stdlib.h>

#include<stddef.h>

#include<string.h>

#include<conio.h>

#include<iostream.h>

#include<math.h>

#include<fstream.h>

#include<time.h>

#define SP ""

#define LF "\n"

#define pi 3.141592653589793

#define N 1 //number of images

#define NP 16384 //Change this to N*M of image

#define IP 47

//#define YSIZE 64

//#define XSIZE 64

#include"error_functions.h"

#include "additional_function.h"

#include"Geometric_Moments.h"

#include"Geometric_Moments_1.h"

#include"image_operations.h"

#include"PDE_moment_0.h"

#include"PDE_moments.h"

void main()

{

int i,j,order,count=0,count_img;

long int FILESIZE,FILESIZE_PSF;
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float ***B,**a,**D;

long double **Mf,**Mh,**Mg,**IMAGE,*temp,**restore_image,*New_mf,**restore_image1;

//FILESIZE=YSIZE*XSIZE;

//FILESIZE_PSF=49;

//cout<<"FILESIZE="<<FILESIZE<<LF;

temp=Doubvector(0,NP);

IMAGE=Doubmatrix(0,500,0,500); //Size of the image is 0 to 64

B=D3fmatrix(0,40,40,4096);

Mf=Doubmatrix(0,1000,0,1000); //why incresing this solves large order problem

D=fmatrix(0,500,0,500);

Mh=Doubmatrix(0,500,0,500);

Mg=Doubmatrix(0,1000,0,1000); //why incresing this solves large order problem

New_mf=Doubvector(0,2000);

restore_image=Doubmatrix(0,500,0,500);

// Calculate moments of Image

cout<<"Enter order";

cin>>order;

char name[50];

ifstream infile;

infile.open("original_image.txt");

//infile.open("original_image.txt");

if(!infile)

{

cout<<"Cannot open file 1"<<LF;

exit(0);

}

count_img=1;

for(i=0;i<NP;i++)

{

infile>>temp[i];

}

vector2matrix(temp,IMAGE,128,128); // Change this to N,M of image

moments(IMAGE,order,Mf); // change inside the moments function limits of image

cout<<"Mf done";

free_Doubvector(temp,0);

// free_ivector(New_mf,0);
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// free_fmatrix(Mf,0,500,0);

free_Doubmatrix(IMAGE,0,500,0);

// free_fmatrix(Z,0,64,0);

free_D3fmatrix(B,0,40,40);

infile.close();

// Calculation of Moments of PSF

temp=Doubvector(0,NP);

IMAGE=Doubmatrix(0,500,0,500); //Size of the image is 0 to 64

B=D3fmatrix(0,40,40,4096);

ifstream infile2;

infile2.open("psf.txt");

if(!infile)

{

cout<<"Cannot open file 1"<<LF;

exit(0);

}

count_img=1;

for(i=0;i<NP;i++)

{

infile2>>temp[i];

}

vector2matrix(temp,IMAGE,5,5);

moments_h(IMAGE, order, Mh);

cout<<"Mh done";

b_moments(Mf,Mh,Mg,order); // Blurred Image Moments

cout<<"Mg done";

free_Doubvector(temp,0);

// free_ivector(New_mf,0);

// free_fmatrix(Mh,0,500,0);

free_Doubmatrix(IMAGE,0,500,0);

// free_fmatrix(Z,0,64,0);

free_D3fmatrix(B,0,40,40);

infile2.close();

cout<<"ÃŃND"<<LF;

// Program for calculation

long double vijeta=0.0;
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for(int j3=0;j3<order;j3++)

{

for(int k3=0;k3<order;k3++)

{

if((j3==0)&&(k3==0))

{

iterate_moment1(Mh, Mg, restore_image);

//cout<<"Hello";

//cout<<"Image is ";

//cout<<restore_image[0][0];

}

else

{

restore_image[j3][k3]=iterate_moment(Mh, Mg, j3, k3, restore_image,New_mf,vijeta);

//cout<<"GOLA";

}

}

}

//Write_Into_disc(New_mf);

for(i=0;i<order;i++)

{

for(j=0;j<order;j++)

{

//restore_image2[i][j]=Mf[i][j]-restore_image[i][j];

//restore_image3[i][j]=restore_image2[i][j]/Mf[i][j];

cout<<" "<<restore_image[i][j];

}

cout<<"\n";

}

free_Doubmatrix(Mf,0,1000,0);

free_Doubmatrix(Mg,0,1000,0);

free_Doubmatrix(Mh,0,500,0);

free_Doubmatrix(restore_image,0,500,0);

/*

for(i=0;i<200;i++)

{

cout<<New_mf[i]<<"\n";
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}

*/

}

// Convert data to matrix form

void vector2matrix(long double *TEMP,long double **IMAGE,int XSIZE,int YSIZE)

{

int i,j,k;

float vector_k;

for (i=0;i<YSIZE;i++)

{

for(j=0;j<XSIZE;j++)

{

IMAGE[i][j]=0;

}

}

k=0;

for (i=0;i<YSIZE;i++)

{

for(j=0;j<XSIZE;j++)

{

vector_k=TEMP[k];

IMAGE[i][j]=vector_k;

k=k+1;

}

}

}

// Writing the file to output

void Write_Into_disc(float **Output)

{

int i,j;

char process_data[15];

cout<<"Writing to disc\t"<<LF;

cout<<Output[0][1]<<"writ\n";

char filename[25],*s=".txt";

cout<<"Enter file name"<<LF;

cin>>process_data;

strcpy(filename,"E:");
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strcat(filename,process_data);

strcat(filename,s);

puts(filename);

getch();

ofstream outfile(filename);

if(!outfile)

cout<<"cannot open file"<<LF;

for(int i=0; i<IP;i++)

{

//for(int j=1;j<N;j++)

//{

outfile<<Output[i][1]<<SP;

//}

outfile<<LF;

}

outfile.close();

}

void moments( long double **f,int order, long double **mf)

{

//long double mf[32][32];

int i,j,p,q,y,x;

long double temp;

for(i=0;i<order;i++)

{

for(j=0;j<order;j++)

{

mf[i][j] = 0;

}

}

// Calculation of Moments

for(p=0;p<order;p++)

{

for(q=0;q<order;q++)

{

for(y=0;y<128;y++)

{

for(x=0;x<128;x++)
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{

if(x==0 || y==0)

{

mf[p][q]=mf[p][q]+ f[x][y];

}

else

{

mf[p][q]=mf[p][q]+ (long double) (pow(double(x),double(p))* pow(double(y),double(q)) * f[x][y]);

}

}

}

// cout<<mf[p][q]<<" \n";

}

//cout<<"counter"<<p<<"\n";

//ak=ak+1;

}

// Transpose

for(p=0;p<order;p++)

{

for(q=0;q<order;q++)

{

temp=mf[q][p];

mf[p][q]=temp;

}

}

}

// For Blurred Image Calculation form Mg and Mf

void b_moments( long double **Mf, long double **Mh, long double **Mg, int order)

{

int i,j,p,q,y,x;

long double alpha=0,beta=0,alpha1,beta1;

for(i=0;i<order;i++)

{

for(j=0;j<order;j++)

{

Mg[i][j] = 0;

}
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}

for(p=0;p<order;p++)

{

for(q=0;q<order;q++)

{

for(y=0;y<=p;y++)

{

for(x=0;x<=q;x++)

{

alpha1=nchoosek(p,y,alpha);

beta1=nchoosek(q,x,beta);

Mg[p][q]+=alpha1*beta1*Mh[p-y][q-x]*Mf[y][x];

}

}

//cout<<Mg[p][q]<<" ";

}

//cout<<"\n";

}

}

void moments_h( long double **f,int order, long double **mf)

{

//long double mf[32][32];

int i,j,p,q,y,x;

for(i=0;i<order;i++)

{

for(j=0;j<order;j++)

{

mf[i][j] = 0;

}

}

// Calculation of Moments

for(p=0;p<order;p++)

{

for(q=0;q<order;q++)

{
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for(y=0;y<5;y++)

{

for(x=0;x<5;x++)

{

if(x==0 || y==0)

{

mf[p][q]=mf[p][q]+ f[x][y];

}

else

{

mf[p][q]=mf[p][q]+ (long double) (pow(double(x),double(p))* pow(double(y),double(q)) * f[x][y]);

}

}

}

}

}

// Transpose

for(p=0;p<order;p++)

{

for(q=0;q<order;q++)

{

mf[p][q]=mf[q][p];

}

}

}

#include<math.h>

void Stirling_Unsigned(double S[32][32],int order);

void Stirling_Signed(double S[32][32],int order)

{

int n,k;

Stirling_Unsigned(S,order);

for(n=0;n<=order;n++)

{

for(k=0;k<=order;k++)

{

S[n][k] = S[n][k]*pow(-1,(n-k));
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}

}

}

//#include<gmpxx.h>

#include<iostream>

#include<math.h>

#include"psf.h"

using namespace std;

double nchoosek(int n,int k);

double factorial(int a);

void Stirling_Unsigned(double S[32][32],int order);

void Stirling_Signed(double S[32][32],int order);

void moments(long double mf[200][200],double f[256][256],int order, int N);

int main()

{

int i,j,x,y,p,q,n,order;

double f[32][32],a,b,c;

long double mf[200][200];

double f1[256][256];

double S[32][32];

//N=8;

order=N-1;

Stirling_Signed(S,order);

//Stirling_Unsigned(S,order);

/*for(i=0;i<=N-1;i++)

{

for(j=0;j<=N-1;j++)

{

cout<<S[i][j]<<"\t";

}

cout<<"\n";

}*/

//Reading an Image

for(i=0;i<=N-1;i++)

{

for(j=0;j<=N-1;j++)
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{

f1[i][j] = (double)I[i][j];

}

}

for(i=0;i<=N-1;i++)

{

for(j=0;j<=N-1;j++)

{

f[i][j] = 0;

}

}

// Calculation of Moments

//cout<<"Enter the order of moments put (N-1";

for (int i=0;i<=order;i++)

{

for(int j=0;j<=order;j++)

{

cout<<f1[i][j]<<"\t";

}

cout<<"\n";

}

cout<<"\n";

moments(mf,f1,order,N);

for(i=0;i<=N-1;i++)

{

for(j=0;j<=N-1;j++)

{

cout<<mf[i][j]<<"\t";

}

cout<<"\n";

}

// Reconstruction

for (x=0;x<=N-1;x++)

{

for(y=0;y<=N-1;y++)
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{

for(p=0;p<=N-1;p++)

{

for(q=0;q<=N-1;q++)

{

for(i=x;i<=N-1;i++)

{

for(j=y; j<=N-1;j++)

{

//f[x][y]=f[x][y]+pow(-1.0,(double)(i+j-x-y))/(factorial(i)*factorial(j))*nchoosek(i,x)

*nchoosek(j,y)*S[i][p]*S[j][q]*mf[p][q];

a=pow(-1.0,(double)(i+j-x-y))/(factorial(i)*factorial(j));

// cout<<a<<endl;

b=nchoosek(i,x)*S[i][p];

//cout<<b<<endl;

c=nchoosek(j,y)*S[j][q];

//cout<<c<<endl;

f[x][y]=f[x][y]+a*b*c*mf[p][q];

cout<<b*c*mf[p][q]<<"\t";

}

}

}

}

}

}

cout<<"\nValue of f is "<<endl;

for (i=0;i<=N-1;i++)

{

for (j=0;j<=N-1;j++)

{

cout<<f[i][j]<<"\t";

}

cout<<"\n";

}

// Exporting to Matlab Code

/*

FILE *outfile;
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outfile = fopen("Ahlad.txt","w");

// let’s say your variable is F and of float type

fprintf(outfile,"%d\n",N);

for(int i=0;i<N;i++){

for(int j=0;j<N;j++){

if(f[i][j]>255)

f[i][j] = 255;

if(f[i][j]<0)

f[i][j] = 0;

fprintf(outfile,"%.0Ff\n",f[i][j]);

}

}

fclose(outfile);

*/

return(0);

}

%%%%%%%%Blind restoration using Alternate Minimization%%%%%%%

clear all;

clc;

%For Orignal Input Images

y=imread(’camera256.bmp’);

%y = imresize(y,[541 541]);

%Check for the image for gray scale or not and convert it to double

[m,n,num_colors]=size(y);

if num_colors > 1

y=rgb2gray(y);

end

y=double(y);

sigma=4;

patch=7;

psf_ideal=(fspecial(’gaussian’,[patch patch],sigma));

blurr_image_ideal=imfilter(y,psf_ideal,’conv’,’replicate’);

blurr_model=blurr_image_ideal;

l=1;

[image_sharp,psf_estimated,z]=Blind_De(blurr_model,patch);

subplot(1,3,1),colormap(gray);imagesc(blurr_model);

subplot(1,3,2),colormap(gray);imagesc(image_sharp);
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subplot(1,3,3),surf(psf_estimated./max(max(psf_estimated)));

function [im,psf,z] = Blind_De(blurr_model,patch)

dt=0.1;

dt2=0.01;

alpha1=0.01;

alpha2=5;

ep_U = 0.00001;

ep_k = 0.01;

stepmax=4000;

[row, col]=size(blurr_model);

%Blurring the Image

blurred_orignal=blurr_model;

psf_orignal(patch,patch)=0;

psf_orignal(ceil(patch/2),ceil(patch/2))=1;

blurred_final=blurred_orignal;

psf_final=psf_orignal;

blurred_previous=0;

psf_previous=0;

for j=1:3

m=0;

fprintf(’PSF step: %d Overall: %d \n’,m,j);

while((mean(mean(abs(psf_final-psf_previous)))>ep_k*dt2) &&(m~=stepmax))

m=m+1;

% fprintf(’PSF step: %d Overall: %d \n’,m,j);

psf_previous=psf_final;

[reg]=FV(psf_final);

blurred_norm=blurred_final./sum(sum(blurred_final));

psf_increment=conv2(blurred_norm,psf_final,’same’);

psf_derivative=conv2(psf_previous,(psf_increment-blurred_norm),’same’);

psf_step=psf_final+dt2.*(alpha2*reg-psf_derivative);

% fprintf(’psf step %d \n’,psf_step);

psf_final=psf_step;

% subplot(133); imagesc(psf_final); title(’Original’);

% colormap gray;

% drawnow;

%assure positive filter

for r=1:patch
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for c=1:patch

psf_final(r,c)=max(psf_final(r,c),0);

end

end

end

i=0;

fprintf(’Image step: %d Overall: %d \n’,i,j);

while((mean(mean(abs(blurred_final-blurred_previous)))>ep_U*dt) &&(i~=stepmax))

i=i+1;

% fprintf(’Image step: %d Overall: %d \n’,i,j);

z(i)=mean(mean(abs(blurred_final-blurred_previous)));

%fprintf(’Image step: %d \n’,i);

blurred_previous=blurred_final;

%blurred_replicate=padarray(blurred_final,[1 1],’replicate’);

[reg]=FV(blurred_previous);

blurred_increment=imfilter(blurred_final,psf_final,’replicate’,’conv’);

derivative=imfilter((blurred_increment-blurred_orignal),psf_final’,’replicate’,’conv’);

%Update Step

blurred_step = blurred_final+dt.*(alpha1.*reg-derivative);

blurred_final=blurred_step;

% subplot(131); imagesc(blurred_orignal); title(’Original’);

% subplot(132); imagesc(blurred_final); xlabel([’i=’,num2str(i)]);

% colormap gray;

% drawnow;

% subplot(133);

if(j==3)

hold on;

plot(i,z(i),’--mo’,’linewidth’,1);

drawnow;

end

for r=1:row

for c=1:col

blurred_final(r,c)=max(blurred_final(r,c),0);

end

end

end

end
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im=blurred_final;

psf=psf_final;

end

function [reg]=FV(u)

a = 0.01; %Fudge factor to avoid division by zero.

[m,n] = size(u);

u_x = (u(:,[2:n,n]) - u(:,[1,1:n-1]))/2;

u_y = (u([2:m,m],:) - u([1,1:m-1],:))/2;

u_xx = u(:,[2:n,n]) - 2*u + u(:,[1,1:n-1]);

u_yy = u([2:m,m],:) - 2*u + u([1,1:m-1],:);

u_xy = ( u([2:m,m],[2:n,n]) + u([1,1:m-1],[1,1:n-1]) - u([1,1:m-1],[2:n,n]) - u([2:m,m],[1,1:n-1]) ) / 4;

%TV term = Num/Den

Num = u_xx.*(1+u_y.^2) - 2*u_x.*u_y.*u_xy + u_yy.*(1+u_x.^2);

Den = (1+u_x.^2 + u_y.^2).^(3/2);

reg = Num./Den;

end

%%%%%%%%%%%%%%%%%%%%%%%Sigma Estimation using WGM %%%%%

clear all; close all; clc;

loc = ’laptop’;

load T.mat

addpath(’D:\Simga_estimation_using_Tchebichef_moments_\CSIQ’)

addpath(’D:\Simga_estimation_using_Tchebichef_moments_\CIDIQ’);

Nh = 7;

sig_start = 0.3;

sig_step = 0.1;

sig_stop = 4.0;

psf=[3:2:17];

image_count=23;

%image_count=30;

Lsig = length(sig_start:sig_step:sig_stop);

F = double(zeros(image_count*Lsig,4)); %chenge 6 to the number of feature vectors used

Target = repmat((sig_start:sig_step:sig_stop)’,[image_count 1]);

t = tchebichef_polynomial(8,7);

filename = {’final01’,’final02’,’final03’,’final04’,’final05’,’final06’,’final07’,

’final08’,’final09’,’final10’,’final11’,’final12’,’final13’,’final14’,’final15’,

’final16’,’final17’,’final18’,’final19’,’final20’,’final21’,’final22’,’final23’};
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count = 1;

for k=1:image_count

Icolor = imread([filename{k} ’.bmp’]);

%Icolor = imread([filename{k} ’.png’]);

Iori = rgb2gray(Icolor);

[M N] = size(Iori);

N1=max(M,N);

display([’Image: ’ filename{k}])

for sig = sig_start:sig_step:sig_stop

F1 = [];

index=randi([1,8],[1,1]);

mask=psf(1,index);

h = fspecial(’gaussian’,[mask mask],sig);

Iblur = imfilter(Iori,h,’same’);

h1 = fspecial(’gaussian’,[Nh Nh],1.0);

Iblur1 = imfilter(Iblur,h1,’same’);

edge_no=1;

for i=1:8:M-7

for j=1:8:N-7

if(i==1 || j==1 || i==M-7 || j==N-7)

else

Ib = double(Iblur(i:i+7,j:j+7));

GM2=T(1:8,1:8)*Ib*T(1:8,1:8)’;

GM2=GM2’;

Tblur(1,2)=(3*((3-N1)*GM2(1,1)+2*GM2(1,2)))/(N1*(N1^2-1));

Tblur(2,1)=(3*((3-N1)*GM2(1,1)+2*GM2(2,1)))/(N1*(N1^2-1));

Tblur(1,3)=(5*((N1-1)*(N1-2)*GM2(1,1)+6*(1-N1)*GM2(1,2)

+6*GM2(1,3)))/((N1^2-4)*(N1^2-1));

Tblur(3,1)=(5*((N1-1)*(N1-2)*GM2(1,1)+6*(1-N1)*GM2(2,1)

+6*GM2(3,1)))/((N1^2-4)*(N1^2-1));

Tblur(1,4)=(7*N1*(-1*(N1-1)*(N1-2)*(N1-3)*GM2(1,1)+

2*(N1-3)*(6*N1-53)*GM2(1,2)+(150-30*N1)*GM2(1,3)+

20*GM2(1,4)))/((N^2-9)*(N1^2-4)*(N1^2-1));

Tblur(4,1)=(7*N1*(-1*(N1-1)*(N1-2)*(N1-3)*GM2(1,1)+

2*(N1-3)*(6*N1-53)*GM2(2,1)+(150-30*N1)*GM2(3,1)+

20*GM2(4,1)))/((N^2-9)*(N1^2-4)*(N1^2-1));

Tblur(1,5)=(9*N1^2*((N1-1)*(N1-2)*(N1-3)*(N1-4)*GM2(1,1)+(5*(N1-3)*(17-4*N1)-
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70*(4*N1-10))*GM2(1,2)+(45*(N1-3)*(N1-4)-420*(N1-1)+770)*GM2(1,3)+(560-140*N1)*GM2(1,4)+

70*GM2(1,5)))/((N1^2-16)*(N1^2-9)*(N1^2-4)*(N1^2-1));

Tblur(5,1)=(9*N1^2*((N1-1)*(N1-2)*(N1-3)*(N1-4)*GM2(1,1)+(5*(N1-3)*(17-4*N1)-

70*(4*N1-10))*GM2(2,1)+(45*(N1-3)*(N1-4)-420*(N1-1)+770)*GM2(3,1)+(560-140*N1)*GM2(4,1)+

70*GM2(5,1)))/((N1^2-16)*(N1^2-9)*(N1^2-4)*(N1^2-1));

[Blc_type,Tblur,edgebox_count] = TM_Blk_Classification(Ib,t,edge_no);

if Blc_type ==2

Ireblur1 = double(Iblur1(i:i+7,j:j+7));

GM=T(1:8,1:8)*Ireblur1*T(1:8,1:8)’;

%GM=moments_2D(Ireblur1,4);

GM=GM’;

Treblur(1,2)=(3*((3-N1)*GM(1,1)+2*GM(1,2)))/(N1*(N1^2-1));

Treblur(2,1)=(3*((3-N1)*GM(1,1)+2*GM(2,1)))/(N1*(N1^2-1));

Treblur(1,3)=(5*((N1-1)*(N1-2)*GM(1,1)+6*(1-N1)*GM(1,2)+6*GM(1,3)))/((N1^2-4)*(N1^2-1));

Treblur(3,1)=(5*((N1-1)*(N1-2)*GM(1,1)+6*(1-N1)*GM(2,1)+6*GM(3,1)))/((N1^2-4)*(N1^2-1));

Treblur(1,4)=(7*N1*(-1*(N1-1)*(N1-2)*(N1-3)*GM(1,1)+2*(N1-3)*(6*N1-53)*GM(1,2)+

(150-30*N1)*GM(1,3)+20*GM(1,4)))/((N^2-9)*(N1^2-4)*(N1^2-1));

Treblur(4,1)=(7*N1*(-1*(N1-1)*(N1-2)*(N1-3)*GM(1,1)+2*(N1-3)*(6*N1-53)*GM(2,1)+

(150-30*N1)*GM(3,1)+20*GM(4,1)))/((N^2-9)*(N1^2-4)*(N1^2-1));

Treblur(1,5)=(9*N1^2*((N1-1)*(N1-2)*(N1-3)*(N1-4)*GM(1,1)+

(5*(N1-3)*(17-4*N1)-70*(4*N1-10))*GM(1,2)+

(45*(N1-3)*(N1-4)-420*(N1-1)+770)*GM(1,3)

+(560-140*N1)*GM(1,4)+70*GM(1,5)))/((N1^2-16)*(N1^2-9)*(N1^2-4)*(N1^2-1));

Treblur(5,1)=(9*N1^2*((N1-1)*(N1-2)*(N1-3)*(N1-4)*GM(1,1)+

(5*(N1-3)*(17-4*N1)-70*(4*N1-10))*GM(2,1)+

(45*(N1-3)*(N1-4)-420*(N1-1)+770)*GM(3,1)+

(560-140*N1)*GM(4,1)+70*GM(5,1)))/((N1^2-16)*(N1^2-9)*(N1^2-4)*(N1^2-1));

Freblur = [sqrt(Treblur(2,1)^2+Treblur(1,2)^2) sqrt(Treblur(3,1)^2

+Treblur(1,3)^2) sqrt(Treblur(4,1)^2+Treblur(1,4)^2)

sqrt(Treblur(5,1)^2+Treblur(1,5)^2)];

Fblur = [sqrt(Tblur(2,1)^2+Tblur(1,2)^2) sqrt(Tblur(3,1)^2+Tblur(1,3)^2)

sqrt(Tblur(4,1)^2+Tblur(1,4)^2) sqrt(Tblur(5,1)^2+Tblur(1,5)^2)];

F1 = [F1; abs(abs(Fblur)-abs(Freblur))];

end

end

end

end
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F(count,:) = mean(F1);

count = count+1;

end

end

save TM_Not_Normalized.mat F Target

%%%ELM

function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy,TY] = elm(TrainingData_File,

TestingData_File, Elm_Type, NumberofHiddenNeurons, ActivationFunction,C)

%%%%%%%%%%% Macro definition

REGRESSION=0;

CLASSIFIER=1;

%%%%%%%%%%% Load training dataset

train_data=TrainingData_File;

T=train_data(:,1)’;

P=train_data(:,2:size(train_data,2))’;

clear train_data; % Release raw training data array

%%%%%%%%%%% Load testing dataset

test_data=TestingData_File;

TV.T=test_data(:,1)’;

TV.P=test_data(:,2:size(test_data,2))’;

clear test_data; % Release raw testing data array

NumberofTrainingData=size(P,2);

NumberofTestingData=size(TV.P,2);

NumberofInputNeurons=size(P,1);

if Elm_Type~=REGRESSION

%%%%%%%%%%%% Preprocessing the data of classification

sorted_target=sort(cat(2,T,TV.T),2);

label=zeros(1,1); % Find and save in ’label’ class label from training and testing data sets

label(1,1)=sorted_target(1,1);

j=1;

for i = 2:(NumberofTrainingData+NumberofTestingData)

if sorted_target(1,i) ~= label(1,j)

j=j+1;

label(1,j) = sorted_target(1,i);

end

end

number_class=j;
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NumberofOutputNeurons=number_class;

%%%%%%%%%% Processing the targets of training

temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData);

for i = 1:NumberofTrainingData

for j = 1:number_class

if label(1,j) == T(1,i)

break;

end

end

temp_T(j,i)=1;

end

T=temp_T*2-1;

%%%%%%%%%% Processing the targets of testing

temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData);

for i = 1:NumberofTestingData

for j = 1:number_class

if label(1,j) == TV.T(1,i)

break;

end

end

temp_TV_T(j,i)=1;

end

TV.T=temp_TV_T*2-1;

end % end if of Elm_Type

%%%%%%%%%%% Calculate weights & biases

start_time_train=cputime;

%%%%%%%%%%% Random generate input weights InputWeight (w_i) and biases

% BiasofHiddenNeurons (b_i) of hidden neurons

InputWeight=rand(NumberofHiddenNeurons,NumberofInputNeurons)*2-1;

BiasofHiddenNeurons=rand(NumberofHiddenNeurons,1);

tempH=InputWeight*P;

clear P; % Release input of training data

ind=ones(1,NumberofTrainingData);

BiasMatrix=BiasofHiddenNeurons(:,ind); % Extend the bias matrix BiasofHiddenNeurons to

% match the demention of H

tempH=tempH+BiasMatrix;
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%%%%%%%%%%% Calculate hidden neuron output matrix H

switch lower(ActivationFunction)

case {’sig’,’sigmoid’}

%%%%%%%% Sigmoid

H = 1 ./ (1 + exp(-tempH));

case {’sin’,’sine’}

%%%%%%%% Sine

H = sin(tempH);

case {’hardlim’}

%%%%%%%% Hard Limit

H = double(hardlim(tempH));

case {’tribas’}

%%%%%%%% Triangular basis function

H = tribas(tempH);

case {’radbas’}

%%%%%%%% Radial basis function

H = radbas(tempH);

%%%%%%%% More activation functions can be added here

end

clear tempH; % Release the temparary array for calculation of hidden neuron output matrix H

%%%%%%%%%%% Calculate output weights OutputWeight (beta_i)

% OutputWeight=pinv(H’) * T’;

OutputWeight=(eye(size(H,1))/C+H * H’) \ H * T’;

end_time_train=cputime;

TrainingTime=end_time_train-start_time_train;

% Calculate CPU time (seconds) spent for training ELM

%%%%%%%%%%% Calculate the training accuracy

Y=(H’ * OutputWeight)’; % Y: the actual output of the training data

if Elm_Type == REGRESSION

%TrainingAccuracy=sqrt(mse(T - Y))

% Calculate training accuracy (RMSE) for regression case

Zd= corrcoef(T,Y);

TrainingAccuracy= abs(Zd(1,2));

end

clear H;

%%%%%%%%%%% Calculate the output of testing input

start_time_test=cputime;
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tempH_test=InputWeight*TV.P;

clear TV.P; % Release input of testing data

ind=ones(1,NumberofTestingData);

BiasMatrix=BiasofHiddenNeurons(:,ind);

% Extend the bias matrix BiasofHiddenNeurons to match the demention of H

tempH_test=tempH_test + BiasMatrix;

switch lower(ActivationFunction)

case {’sig’,’sigmoid’}

%%%%%%%% Sigmoid

H_test = 1 ./ (1 + exp(-tempH_test));

case {’sin’,’sine’}

%%%%%%%% Sine

H_test = sin(tempH_test);

case {’hardlim’}

%%%%%%%% Hard Limit

H_test = hardlim(tempH_test);

case {’tribas’}

%%%%%%%% Triangular basis function

H_test = tribas(tempH_test);

case {’radbas’}

%%%%%%%% Radial basis function

H_test = radbas(tempH_test);

%%%%%%%% More activation functions can be added here

end

TY=(H_test’ * OutputWeight)’; % TY: the actual output of the testing data

end_time_test=cputime;

TestingTime=end_time_test-start_time_test; % Calculate CPU time (seconds) spent

% by ELM predicting the whole testing data

if Elm_Type == REGRESSION

%TestingAccuracy=sqrt(mse(TV.T - TY)) % Calculate testing accuracy (RMSE) for regression case

Zd2= median(corrcoef(TV.T,TY)); %my chnage

TestingAccuracy= abs(Zd2(1,2)); %my change

end

if Elm_Type == CLASSIFIER

%%%%%%%%%% Calculate training & testing classification accuracy

MissClassificationRate_Training=0;

MissClassificationRate_Testing=0;
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for i = 1 : size(T, 2)

[x, label_index_expected]=max(T(:,i));

[x, label_index_actual]=max(Y(:,i));

if label_index_actual~=label_index_expected

MissClassificationRate_Training=MissClassificationRate_Training+1;

end

end

TrainingAccuracy=1-MissClassificationRate_Training/size(T,2)

for i = 1 : size(TV.T, 2)

[x, label_index_expected]=max(TV.T(:,i));

[x, label_index_actual]=max(TY(:,i));

if label_index_actual~=label_index_expected

MissClassificationRate_Testing=MissClassificationRate_Testing+1;

end

end

TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2)

end

%%%%%%%%%%%Sigma Estimation using TM

%VLC with LIVE

clear all; close all; clc;

% loc = ’home’;

loc = ’laptop’;

addpath(’D:\Simga_estimation_using_Tchebichef_moments_Ahlad\VLC’);

addpath(’D:\Simga_estimation_using_Tchebichef_moments_Ahlad\Caltech’);

Nh = 7;

sig_start = 0.3;

sig_step = 0.1;

sig_stop = 4.0;

Lsig = length(sig_start:sig_step:sig_stop);

psf=3:3:17;

images=23;

F = double(zeros(images*Lsig,6)); %chenge 6 to the number of feature vectors used

Target = repmat((sig_start:sig_step:sig_stop)’,[images 1]);

t = tchebichef_polynomial(8,7);

dir_image=dir(’D:\Simga_estimation_using_Tchebichef_moments_Ahlad\Berkely\test’);

[im_num,im_n]=size(dir_image);

count=1;
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imc=1;

for k=3:23

im_route=[’D:\Simga_estimation_using_Tchebichef_moments_Ahlad\Berkely\test\’,dir_image(k).name];

Icolor=imread(im_route);

[m1,n1,num_colors]=size(Icolor);

if num_colors > 1

Iori = rgb2gray(Icolor);

end

[M N] = size(Iori);

fprintf(’Image: %d \n’, imc)

imc=imc+1;

for sig = sig_start:sig_step:sig_stop

F1 = [];

index=randi([1,8],[1,1]);

mask=psf(1,index);

h = fspecial(’gaussian’,[mask mask],sig);

Iblur = imfilter(Iori,h,’same’);

h1 = fspecial(’gaussian’,[Nh Nh],0.5);

Iblur1 = imfilter(Iblur,h1,’same’);

edge_no=1;

for i=1:8:M-7

for j=1:8:N-7

if(i==1 || j==1 || i==M-7 || j==N-7)

else

Ib = double(Iblur(i:i+7,j:j+7));

[Blc_type,Tblur,edgebox_count] = TM_Blk_Classification(Ib,t,edge_no);

if Blc_type ==2

Ireblur1 = double(Iblur1(i:i+7,j:j+7));

Treblur = t*Ireblur1*t’;

Freblur = [sqrt(Treblur(2,1)^2+Treblur(1,2)^2) sqrt(Treblur(3,1)^2+

Treblur(1,3)^2) sqrt(Treblur(4,1)^2+Treblur(1,4)^2) sqrt(Treblur(5,1)^2+

Treblur(1,5)^2) sqrt(Treblur(6,1)^2+

Treblur(1,6)^2) sqrt(Treblur(7,1)^2+Treblur(1,7)^2)];

Fblur = [sqrt(Tblur(2,1)^2+Tblur(1,2)^2) sqrt(Tblur(3,1)^2+Tblur(1,3)^2) sqrt(Tblur(4,1)^2+

Tblur(1,4)^2) sqrt(Tblur(5,1)^2+Tblur(1,5)^2)

sqrt(Tblur(6,1)^2+Tblur(1,6)^2) sqrt(Tblur(7,1)^2+Tblur(1,7)^2)];
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F1 = [F1; abs(Freblur)];

end

end

end

end

F(count,:) = mean(F1);

count = count+1;

end

end

save TM_Not_Normalized1.mat F Target

Nh = 7;

sig_start = 0.3;

sig_step = 0.1;

sig_stop = 4.0;

Lsig = length(sig_start:sig_step:sig_stop);

images=23;

F2 = double(zeros(images*Lsig,6)); %chenge 6 to the number of feature vectors used

Target2 = repmat((sig_start:sig_step:sig_stop)’,[images 1]);

t = tchebichef_polynomial(8,7);

dir_image=dir(’D:\Simga_estimation_using_Tchebichef_moments_Ahlad\Caltech’);

[im_num,im_n]=size(dir_image);

count=1;

imc=1;

for k=3:23

im_route=[’D:\Simga_estimation_using_Tchebichef_moments_Ahlad\Caltech\’,dir_image(k).name];

Icolor=imread(im_route);

[m1,n1,num_colors]=size(Icolor);

if num_colors > 1

Iori = rgb2gray(Icolor);

end

[M N] = size(Iori);

fprintf(’Image: %d \n’, imc)

imc=imc+1;

for sig = sig_start:sig_step:sig_stop

F1 = [];

index=randi([1,8],[1,1]);
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mask=psf(1,index);

h = fspecial(’gaussian’,[mask mask],sig);

Iblur = imfilter(Iori,h,’same’);

h1 = fspecial(’gaussian’,[Nh Nh],0.5);

Iblur1 = imfilter(Iblur,h1,’same’);

edge_no=1;

for i=1:8:M-7

for j=1:8:N-7

if(i==1 || j==1 || i==M-7 || j==N-7)

else

Ib = double(Iblur(i:i+7,j:j+7));

[Blc_type,Tblur,edgebox_count] = TM_Blk_Classification(Ib,t,edge_no);

if Blc_type ==2

Ireblur1 = double(Iblur1(i:i+7,j:j+7));

Treblur = t*Ireblur1*t’;

Freblur = [sqrt(Treblur(2,1)^2+Treblur(1,2)^2) sqrt(Treblur(3,1)^2

+Treblur(1,3)^2) sqrt(Treblur(4,1)^2+

Treblur(1,4)^2) sqrt(Treblur(5,1)^2+Treblur(1,5)^2)

sqrt(Treblur(6,1)^2+Treblur(1,6)^2) sqrt(Treblur(7,1)^2+Treblur(1,7)^2)];

Fblur = [sqrt(Tblur(2,1)^2+Tblur(1,2)^2)

sqrt(Tblur(3,1)^2+Tblur(1,3)^2) sqrt(Tblur(4,1)^2+

Tblur(1,4)^2) sqrt(Tblur(5,1)^2+Tblur(1,5)^2)

sqrt(Tblur(6,1)^2+Tblur(1,6)^2) sqrt(Tblur(7,1)^2+Tblur(1,7)^2)];

F1 = [F1; abs(Freblur)];

end

end

end

end

F2(count,:) = mean(F1);

count = count+1;

end

end

save TM_Not_Normalized2.mat F2 Target2

%%%%%%MATHEMATICA CODE FOR SUBTRACTOR

input3 = Import[

"D:\\Dropbox\\Mathematica Codes_Subtractor_PhD\\Final_3rd \

version\\lena256.png"];
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input4 = Floor[255*ImageData[input3]];

M1 = 256;

M2 = 256;

lev = 0;

y = ConstantArray[0.0, {M1, M2, M2}];

T = ConstantArray[0.0, {M1, M2, M2}];

inte = ConstantArray[0.0, {M1, M2}];

Dig = ConstantArray[0.0, {M1, M2}];

input = ConstantArray[0.0, {M1, M2}];

Dignew = ConstantArray[0.0, {M1, M2}];

secinput = ConstantArray[0.0, {1, M2}];

newinput = ConstantArray[0.0, {M1, M2}];

level = ConstantArray[0, {M2, M2, M2}];

level2 = ConstantArray[0, {M2, M2, M2 + 1}];

level3 = ConstantArray[0, {M2, M2, M2}];

level4 = ConstantArray[0, {M2, M2}];

thirdinput = ConstantArray[0, {M2, M2, M2}];

xval = ConstantArray[0, {1, (M1 - 1)*(M1 - 2)/2}];

yval = ConstantArray[0, {1, (M1 - 1)*(M1 - 2)/2}];

xval2 = ConstantArray[0, {1, M1}];

yval2 = ConstantArray[0, {1, M1}];

temp = ConstantArray[0, {1, M1}];

For[i1 = 1, i1 <= M1, i1++,

For[j1 = 1, j1 <= M1, j1++,

input[[i1, j1]] = input4[[M1 - i1 + 1, M1 - j1 + 1]]

]

]

Image[input4/255]

For[horiz = 1, horiz <= M2, horiz++,

Print[horiz]

If[horiz == 1,

For[i = 1, i <= M1, i++,

For[j = 1, j <= M2, j++,

If[ j == 1,

y[[horiz, i, j]] = input[[i, j]],

y[[horiz, i, j]] = input[[i, j]] + y[[horiz, i, j - 1]]

]
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]

]

,

For[i = 1, i <= M1, i++,

For[j = 1, j <= M2, j++,

If[j == 1,

y[[horiz, i, j]] = y[[horiz - 1, i, j]],

y[[horiz, i, j]] = y[[horiz - 1, i, j]] + y[[horiz, i, j - 1]]

]

]

]

]

]

"First stage completed"

For[horiz = 1, horiz <= M2, horiz++,

Print[horiz]

For[vert = 1, vert <= M1, vert++,

If[vert == 1,

inte[[1, 1 ;; M1]] =

y[[horiz, 1 ;; M1, M2]];

For[i2 = 1, i2 <= M1, i2++,

If[i2 == 1,

T[[vert, i2, horiz]] = inte[[1, i2]],

T[[vert, i2, horiz]] = inte[[1, i2]] + T[[vert, i2 - 1, horiz]]

]

]

,

For[i2 = 1, i2 <= M1, i2++,

If[i2 == 1,

T[[vert, i2, horiz]] = T[[vert - 1, i2, horiz]],

T[[vert, i2, horiz]] =

T[[vert - 1, i2, horiz]] + T[[vert, i2 - 1, horiz]]

]

]

]

]

]
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For[i1 = 1, i1 <= M1, i1++,

Dig[[i1, 1 ;; M1]] = T[[i1, M1, 1 ;; M1]]

]

Dignew = Transpose[Dig];

For[i1 = 1, i1 <= M1, i1++,

For[j1 = 1, j1 <= M1, j1++,

newinput[[i1, j1]] = Dignew[[M1 - i1 + 1, M1 - j1 + 1]]

]

]

"Second stage completed"

For[i = 1, i <= M1, i++,

secinput[[1, 1 ;; M1]] = newinput[[i, 1 ;; M1]];

lev = M1 - 1;

level[[i, 1, 1 ;; M1]] = secinput[[1, 1 ;; M1]];

For[j1 = 2, j1 <= M1, j1++,

For[j2 = 1, j2 <= M1 - (j1 - 1), j2++,

level[[i, j1, j2]] =

level[[i, j1 - 1, j2]] - level[[i, j1 - 1, j2 + 1]];

]

]

]

For[i = 1, i <= M1, i++,

level[[i, M1, 1 ;; M1]] = level[[i, M1, 1]]

]

count = 1;

For[j = 1, j <= M1, j++,

For[i = 1, i <= M1, i++,

If[level[[1, i, j]] == 0,

xval[[1, count]] = i;

yval[[1, count]] = j;

count = count + 1;

]

]

]

range = (M1 - 1)*(M1 - 2)/2;

For[k = 1, k <= M1, k++,

For[i = 1, i <= range - 1, i++,
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If[xval[[1, i]] != M1 && yval[[1, i]] != 1,

level[[k, xval[[1, i]], yval[[1, i]]]] =

level[[k, xval[[1, i]], yval[[1, i]] - 1]] -

level[[k, xval[[1, i]] + 1, yval[[1, i]] - 1]]

]

]

]

For[k = 1, k <= M1, k++,

If[xval[[1, range]] != M1 || yval[[1, range]] != M1,

level[[k, xval[[1, range]], yval[[1, range]]]] =

level[[k, xval[[1, range]], yval[[1, range]] - 1]] -

level[[k, xval[[1, range]] + 1, yval[[1, range]] - 1]]

]

]

xzeros = ConstantArray[0, {M1, 1}];

For [k = 1, k <= M1, k++,

For[i = 1, i <= M1, i++,

For[j = 1, j <= M1, j++,

level2[[k, i, j]] = level[[k, i, j]]

]

]

]

count = 1;

For[j = 1, j <= M1 + 1, j++,

For[i = 1, i <= M1 + 1, i++,

If[level2[[1, i, j]] == 0,

xval2[[1, count]] = i;

yval2[[1, count]] = j;

count = count + 1;

]

]

]

For[k = 1, k <= M1, k++,

level2[[k, M1, M1 + 1]] = level2[[k, M1, 1]]

]

For[k = 1, k <= M1, k++,

For[i = 1, i <= M1 - 1, i++,
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level2[[k, i, M1 + 1]] =

level2[[k, i, M1]] - level2[[k, i + 1, M1]]

]

]

For[j = 1, j <= M1, j++,

cnt = M1;

For[i = 1, i <= M1, i++,

level3[[i, j]] = level2[[j, cnt, M1 + 1]];

cnt = cnt - 1;

]

]

"Third stage completed"

For[i = 1, i <= M1, i++,

secinput[[1, 1 ;; M1]] = level3[[i, 1 ;; M1]];

lev = M1 - 1;

level[[i, 1, 1 ;; M1]] = secinput[[1, 1 ;; M1]];

For[j1 = 2, j1 <= M1, j1++,

For[j2 = 1, j2 <= M1 - (j1 - 1), j2++,

level[[i, j1, j2]] =

level[[i, j1 - 1, j2]] - level[[i, j1 - 1, j2 + 1]];

]

]

]

For[i = 1, i <= M1, i++,

level[[i, M1, 1 ;; M1]] = level[[i, M1, 1]]

]

count = 1;

For[j = 1, j <= M1, j++,

For[i = 1, i <= M1, i++,

If[level[[1, i, j]] == 0,

xval[[1, count]] = i;

yval[[1, count]] = j;

count = count + 1;

]

]

]
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range = (M1 - 1)*(M1 - 2)/2;

For[k = 1, k <= M1, k++,

For[i = 1, i <= range - 1, i++,

If[xval[[1, i]] != M1 && yval[[1, i]] != 1,

level[[k, xval[[1, i]], yval[[1, i]]]] =

level[[k, xval[[1, i]], yval[[1, i]] - 1]] -

level[[k, xval[[1, i]] + 1, yval[[1, i]] - 1]];

]

]

]

For[k = 1, k <= M1, k++,

If[xval[[1, range]] != M1 || yval[[1, range]] != M1,

level[[k, xval[[1, range]], yval[[1, range]]]] =

level[[k, xval[[1, range]], yval[[1, range]] - 1]] -

level[[k, xval[[1, range]] + 1, yval[[1, range]] - 1]];

]

]

xzeros = ConstantArray[0, {M1, 1}];

For [k = 1, k <= M1, k++,

For[i = 1, i <= M1, i++,

For[j = 1, j <= M1, j++,

level2[[k, i, j]] = level[[k, i, j]];

]

]

]

count = 1;

For[j = 1, j <= M1 + 1, j++,

For[i = 1, i <= M1 + 1, i++,

If[level2[[1, i, j]] == 0,

xval2[[1, count]] = i;

yval2[[1, count]] = j;

count = count + 1;

]

]

]

For[k = 1, k <= M1, k++,

level2[[k, M1, M1 + 1]] = level2[[k, M1, 1]];
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]

For[k = 1, k <= M1, k++,

For[i = 1, i <= M1 - 1, i++,

level2[[k, i, M1 + 1]] =

level2[[k, i, M1]] - level2[[k, i + 1, M1]];

]

]

For[k = M1, k >= 1, k--,

For [t = 1, t <= M1, t++,

temp[[1, t]] = level2[[k, t, M1 + 1]];

]

For[j = 1, j <= M1, j++,

level4[[M1 - k + 1, j]] = temp[[1, j]];

]

]

Image[level4/255]

Clear[y];

Clear[T];

Clear[inte];

Clear[Dig];

Clear[Dignew];

Clear[secinput];

Clear[newinput];

Clear[thirdinput];

Clear[level];

Clear[level2];

Clear[level3];

Clear[level4];

Clear[xval];

Clear[yval];

Clear[xval2];

Clear[yval2];

Clear[temp];

TimeUsed[]

%%%%Subtractor in C++

//2 dimension complete cycle (Input-DigitalFilter-Output-GeometricMoment)

#include <iostream>
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#include <math.h>

#include <gmp.h>

#include <time.h>

#include "lena64.h"

#include "invcf_64.h"

void mpf_array_clear(mpf_t*,int,int);

void mpf_array_init(mpf_t*,int,int);

void mpz_array_clear(mpz_t*,int,int);

void mpf_array_clear(mpf_t *input, int a, int b){

for(int i=0;i<a;i++){

for(int j=0;j<b;j++){

mpf_set_d(*(input+j+i*b),0);

}

}

}

void mpf_array_init(mpf_t *input, int a, int b){

for(int i=0;i<a;i++){

for(int j=0;j<b;j++){

mpf_init(*(input+j+i*b));

}

}

}

void mpz_array_clear(mpz_t *input, int a,int b){

for(int i=0;i<a;i++){

for(int j=0;j<b;j++){

mpz_clear(*(input+j+i*b));

}

}

}

int main(){

clock_t t_start,t_end;

int order = N-1;

mpf_t sz;

mpf_init(sz);

mpf_set_ui(sz,(unsigned short int)N);

std::cout<<"\n\n\tImage size: " << (sz) << " by " << (sz);

std::cout<<"\n\t";
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std::cout<<"\n\n\t********************************************";

//===========================================================

//Initialization

//===========================================================

mpz_t y[N][N]; //for 1D output and Wong&Siu matrix

mpz_array_init(y[0][0],N*N,4096);

mpz_t yy[N][N]; //for 2D output and 2D input

mpz_array_init(yy[0][0],N*N,4096);

mpz_t cf;

mpz_init(cf);

mpz_t M[N][N]; //for GM

mpz_array_init(M[0][0],N*N,4096);

mpz_t MM[N][N]; //for GM and 1D input

mpz_array_init(MM[0][0],N*N,4096);

mpf_t MMZ[N][N]; //for GM in mpf

mpf_array_init(*MMZ,N,N);

mpf_t EE[N][N];

mpf_array_init(*EE,N,N);

mpf_t AA,BB,CC;

mpf_init(AA);

mpf_init(BB);

mpf_init(CC);

mpf_t RMM[N][N];

mpf_array_init(*RMM,N,N);

mpf_array_clear(*RMM,N,N);

mpz_t xoo[N][N+1]; //for subtractor

mpz_array_init(xoo[0][0],N*(N+1),4096);

//===========================================================

//2-dimensional adder filter

//===========================================================

for(int i=0;i<N;i++){

for(int j=0;j<N;j++){

mpz_add_ui(y[i][0],y[i][0],(unsigned long int)I[N-i-1][N-j-1]);

for(int k=1;k<order+1;k++)

mpz_add(y[i][k],y[i][k],y[i][k-1]);

}

for(int j=0;j<order+1;j++){
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mpz_add(yy[0][j],yy[0][j],y[i][j]);

for(int k=1;k<order+1;k++)

mpz_add(yy[k][j],yy[k][j],yy[k-1][j]);

}

}

//*****************************************************

//Showing the output

// std::cout<<"\n\n\tDigital Filter Output:";

// std::cout<<"\n\t";

// for(int i=0;i<N;i++)

// {std::cout<<"\n\t";

// for(int j=0;j<N;j++)

// std::cout<<yy[i][j]<<" ";}

//===========================================================

//The coefficient for Wong & Siu filter

//===========================================================

for(int i=0;i<N;i++)

{for(int j=0;j<N;j++)

mpz_init(y[i][j]);}

mpz_set_d(y[0][0],1.0);

for(int i=1;i<order+1;i++){

mpz_set_d(cf,-1.0);

mpz_pow_ui(y[i][1],cf,(unsigned long int)(i-1));

for(int j=2;j<i+1;j++){

mpz_sub(cf,y[i-1][j-1],y[i-1][j]);

mpz_mul_ui(y[i][j],cf,(unsigned long int)j);

}

}

//===========================================================

//Geometric Moments calculation

//===========================================================

for(int i=0;i<order+1;i++){

for(int j=0;j<order+1;j++){

for(int r=0;r<i+1;r++)

{

for(int s=0;s<j+1;s++)

mpz_addmul(M[i][j],y[j][s],yy[s][r]);
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mpz_mul(M[i][j],y[i][r],M[i][j]);

mpz_add(MM[i][j],MM[i][j],M[i][j]);

mpz_init(M[i][j]);

}

}

}

//*****************************************************

//Showing the geometric moment

// std::cout<<"\n\n\tGeometric Moments: ";

// std::cout<<"\n\t";

// for(int i=0;i<N;i++)

// {std::cout<<"\n\t";

// for(int j=0;j<N;j++)

// std::cout<<MM[j][i]<<" ";}

//===========================================================

//Converting mpz to mpf - decimal to float

//===========================================================

for(int i=0;i<N;i++){

for(int j=0;j<N;j++)

mpf_set_z(MMZ[i][j],MM[i][j]);}

//*****************************************************

//RECONSTRUCTION STARTS HERE ======

t_start = clock();

//===========================================================

//Inverse Matrix Coefficient of Wong & Siu

//===========================================================

for(int i=0;i<N;i++){

for(int j=0;j<N;j++)

mpf_set_d(EE[i][j],E[i][j]);}

//===========================================================

//Digital Filter Outputs Calculation

//===========================================================

for(int i=0;i<N;i++){

for(int j=0;j<N;j++){

for(int r=0;r<i+1;r++){

mpf_set_d(BB,0);

for(int s=0;s<j+1;s++){
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mpf_mul(AA,EE[j][s],MMZ[r][s]);

mpf_add(BB,BB,AA);

}

mpf_mul(CC,EE[i][r],BB);

mpf_add(RMM[i][j],RMM[i][j],CC);

}

}

}

//Showing the output

// std::cout<<"\n\n\tDigital Filter Output:";

// std::cout<<"\n\t";

// for(int i=0;i<N;i++)

// {std::cout<<"\n\t";

// for(int j=0;j<N;j++)

// std::cout<<RMM[j][i]<<" ";}

for(int i=0;i<N;i++)

{for(int j=0;j<N;j++)

mpz_init(M[i][j]);}

for(int i=0;i<N;i++)

{for(int j=0;j<N;j++)

mpz_init(MM[i][j]);}

//===========================================================

//Converting mpf to mpz for digital filter output - float to decimal

//===========================================================

for(int i=0;i<N;i++){

for(int j=0;j<N;j++)

mpz_set_f(M[i][j],RMM[i][j]);}

for(int i=0;i<N;i++){

for(int j=0;j<N;j++)

mpz_get_d(M[i][j]);}

// std::cout<<"\n\n\tDecimal";

// std::cout<<"\n\t";

// for(int i=0;i<N;i++)

// {std::cout<<"\n\t";

// for(int j=0;j<N;j++)

// std::cout<<M[j][i]<<" ";}
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//===========================================================

//Subtractor - Y direction

//===========================================================

for(int cl=0;cl<N;cl++){

for(int j=0;j<N;j++)

mpz_set(xoo[0][j],yy[order-j][cl]);

//upper triangle

for(int i=1;i<N;i++)

{for(int k=0;k<N-i;k++)

mpz_sub(xoo[i][k],xoo[i-1][k],xoo[i-1][k+1]);}

//last row

{for(int p=1;p<N+1;p++)

mpz_set(xoo[order][p],xoo[order][0]);}

//lower triangle

for(int p=2;p<N+1;p++)

{for(int q=0;q<N-1;q++)

mpz_sub(xoo[q][p],xoo[q][p-1],xoo[q+1][p-1]);

{for(int n=0;n<N;n++)

mpz_set(MM[n][order-cl],xoo[n][order+1]);

}}}

for(int i=0;i<N;i++)

{for(int j=0;j<N;j++)

mpz_init(xoo[i][j]);}

for(int i=0;i<N;i++)

{for(int j=0;j<N;j++)

mpz_init(y[i][j]);}

for(int i=0;i<N;i++)

{for(int j=0;j<N;j++)

mpz_init(yy[i][j]);}

//===========================================================

//Subtractor - X direction

//===========================================================

for(int cl=0;cl<N;cl++)

{for(int j=0;j<N;j++)

mpz_set(xoo[0][j],MM[cl][j]);

//upper triangle

for(int i=1;i<N;i++)
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{for(int k=0;k<N-i;k++)

mpz_sub(xoo[i][k],xoo[i-1][k],xoo[i-1][k+1]);}

//last row

{for(int p=1;p<N+1;p++)

mpz_set(xoo[order][p],xoo[order][0]);}

//lower triangle

for(int p=2;p<N+1;p++)

{for(int q=0;q<N-1;q++)

mpz_sub(xoo[q][p],xoo[q][p-1],xoo[q+1][p-1]);

{for(int n=0;n<N;n++)

mpz_set(yy[cl][n],xoo[n][order+1]);

}}}

t_end = clock();

//*****************************************************

//Showing the output

std::cout<<"\n\n\tThe Digital Filter Input:";

std::cout<<"\n\t";

for(int i=0;i<N;i++)

{std::cout<<"\n\t";

for(int j=0;j<order+1;j++)

std::cout<<yy[j][i]<<" ";}

//Timing of the process

std::cout<<"\n\n\tImage size: " << (sz) << " by " << (sz);

std::cout<<"\n\tTime taken to compute the 2-D Digital Filter Input is "

<< (double)(t_end-t_start)/(double)CLOCKS_PER_SEC << " seconds\n";

}

%%%%Split Brergman iterations%%%%

function [ deblur1,deblur2 ] = deconvbregman( img , kernel , numIterations)

%DECONVBREGMAN Summary of this function goes here

% Detailed explanation goes here

[h w c] = size(img);

opts.kernel_size = size(kernel,1);

opts.gamma_correct = 1.0;

opts.nb_lambda = 3000;

opts.nb_alpha = 1.0;

opts.use_ycbcr = 1;

yorig = img;
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b = zeros(opts.kernel_size);

bhs = floor(size(b, 1)/2);

padsize = bhs;

dx = [1 -1];

dy = dx’;

if (opts.use_ycbcr)

if (size(yorig, 3) == 3)

ycbcr = rgb2ycbcr(yorig);

else

ycbcr = yorig;

end;

opts.nb_alpha = 1;

end;

if (nargout == 2)

kernels = [];

kernels(:,:,1) = kernel;

kernels(:,:,2) = rot90(kernel,2);

numKernels = size(kernels,3);

ppm = ParforProgMon( ’Deconvolution’ , numKernels*numIterations);

else

kernels = kernel;

ppm = [];

end

numKernels = size(kernels,3);

deblurImages = cell(numKernels,1);

parfor q=1:size(kernels,3)

kernel = kernels(:,:,q);

deblur = zeros(h,w,c);

if (opts.use_ycbcr == 1)

ypad = padarray(ycbcr(:,:,1), [padsize padsize], ’replicate’, ’both’);

for a = 1:4

ypad = edgetaper(ypad, kernel);

end;

tmp = fast_deconv_bregman(ypad, kernel, opts.nb_lambda, opts.nb_alpha, numIterations, ppm);

deblur(:, :, 1) = tmp(bhs + 1 : end - bhs, bhs + 1 : end - bhs);

if (size(ycbcr, 3) == 3)

deblur(:, :, 2:3) = ycbcr(:, :, 2:3);
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deblur = ycbcr2rgb(deblur);

end;

else

for j = 1:3

ypad = padarray(yorig(:, :, j), [1 1] * bhs, ’replicate’, ’both’);

for a = 1:4

ypad = edgetaper(ypad, kernel);

end;

tmp = fast_deconv_bregman(ypad, kernel, opts.nb_lambda, opts.nb_alpha, numIterations, ppm);

deblur(:, :, j) = tmp(bhs + 1 : end - bhs, bhs + 1 : end - bhs);

end;

end;

deblurImages{q} = deblur;

end

deblur1 = deblurImages{1};

if (nargout == 2)

deblur2 = deblurImages{2};

end

end

function [g] = fast_deconv_bregman(f, k, lambda, alpha, outiter_max, progress)

beta = 400;

initer_max = 1;

[m n] = size(f);

% initialize

g = f;

% make sure k is odd-sized

if ((mod(size(k, 1), 2) ~= 1) || (mod(size(k, 2), 2) ~= 1))

fprintf(’Error - blur kernel k must be odd-sized.\n’);

return;

end;

ks = floor((size(k, 1)-1)/2);

dx = [1 -1];

dy = dx’;

dxt = fliplr(flipud(dx));

dyt = fliplr(flipud(dy));

[Ktf, KtK, DtD, Fdx, Fdy, FN] = computeConstants(f, k, dx, dy);

gx = conv2(g, dx, ’valid’);
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gy = conv2(g, dy, ’valid’);

fx = conv2(f, dx, ’valid’);

fy = conv2(f, dy, ’valid’);

ks = size(k, 1);

ks2 = floor(ks / 2);

% store some of the statistics

lcost = [];

pcost = [];

outiter = 0;

bx = zeros(size(gx));

by = zeros(size(gy));

wx = gx;

wy = gy;

totiter = 1;

gk = conv2(g, k, ’same’);

lcost(totiter) = (lambda / 2) * norm(gk(:) - f(:))^2;

pcost(totiter) = sum((abs(gx(:)) .^ alpha));

pcost(totiter) = pcost(totiter) + sum((abs(gy(:)) .^ alpha));

for outiter = 1:outiter_max

% fprintf(’Outer iteration %d\n’, outiter);

initer = 0;

for initer = 1:initer_max

totiter = totiter + 1;

if (alpha == 1)

tmpx = beta * (gx + bx);

betax = beta;

tmpx = tmpx ./ betax;

tmpy = beta * (gy + by);

betay = beta;

tmpy = tmpy ./ betay;

betay = betay;

wx = max(abs(tmpx) - 1 ./ betax, 0) .* sign(tmpx);

wy = max(abs(tmpy) - 1 ./ betay, 0) .* sign(tmpy);

else

wx = solve_image_bregman(gx + bx, beta, alpha);

wy = solve_image_bregman(gy + by, beta, alpha);
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end

bx = bx - wx + gx;

by = by - wy + gy;

wx1 = conv2(wx - bx, dxt, ’full’);

wy1 = conv2(wy - by, dyt, ’full’);

tmp = zeros(size(g));

gprev = g;

gxprev = gx;

gyprev = gy;

num = lambda * Ktf + beta * fft2(wx1 + wy1) ;

denom = lambda * KtK + beta * DtD;

Fg = num ./ denom;

% Fg = num .* FN ./ denom;

g = real(ifft2(Fg));

gx = conv2(g, dx, ’valid’);

gy = conv2(g, dy, ’valid’);

gk = conv2(g, k, ’same’);

% imagesc(k);

% pause(0.01);

lcost(totiter) = (lambda / 2) * norm(gk(:) - f(:))^2;

pcost(totiter) = sum((abs(gx(:)) .^ alpha));

pcost(totiter) = pcost(totiter) + sum((abs(gy(:)) .^ alpha));

if (~isempty(progress))

progress.increment();

end

end;

end;

function [Ktf, KtK, DtD, Fdx, Fdy, FN] = computeConstants(f, k, dx, dy)

szK = size(k);

szR = floor(szK/2);

exponent = 2.5;

[xI,yI] = meshgrid(-szR(1):szR(1),-szR(2):szR(2));

D = 1+sqrt(xI.^2 + yI.^2);

FN = 1./(D.^exponent);

FN = FN / sum(FN(:));

FN = psf2otf(FN,size(f));

sizef = size(f);
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otfk = psf2otf(k, sizef);

Ktf = conj(otfk) .* fft2(f);

KtK = abs(otfk) .^ 2;

Fdx = abs(psf2otf(dx, sizef)).^2;

Fdy = abs(psf2otf(dy, sizef)).^2;

DtD = Fdx + Fdy;
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