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ABSTRACT 

 Interest in some medical problems has raised the need for the development of 

appropriate statistical techniques in order to provide reliable solutions. We look at two 

local medical scenarios which are of current interest; firstly, identifying the optimal 

number of lymph nodes removed for maximizing the survival and adequate nodal 

staging of local breast cancer patients, and secondly, studying the outlier detection in 

cross-over design for kinesiology study. In this thesis, we will discuss alternative and 

new methods to provide the solution to the scenarios above. For the breast cancer study, 

we investigate the influence of the number of lymph nodes removed (LNR) on survival 

of breast cancer patients using Chi-square test of independence and Wilcoxon test. We 

proceed to find the best-fitted logistic and Cox’s regression models using forward 

selection and Bayesian model averaging procedures. The models are then used to assess 

the prognostic values of independent factors for survival at all thresholds of the number 

of LNR. For both types of regression models, we use not only the Wald statistic but also 

present the use of the Akaike Information Criterion to determine the optimal number of 

LNR which results in maximum differential in survival of the breast cancer patients.  

Similar procedure will be extended to the case of finding the dependence of number of 

LNR to the adequate nodal staging of the patients. For the kinesiology study, we employ 

both non-Bayesian and Bayesian framework to detect outliers in a  2 × 2 cross-over 

design. We consider the mixed model with different factors representing subject, period, 

treatment and carry-over effects. In non-Bayesian framework, we consider the classical 

studentized residual and provide a studentized residual using median absolute deviation 

to identify possible outlying subjects. The performances of both procedures in detecting 

subject outliers are compared via simulation. On the other hand, in Bayesian framework, 

we assume that the random subject effect and the errors are normal distributed. 

However, the outlying subjects come from normal distribution with different variance. 
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Due to the complexity of the resulting joint posterior distribution, we obtain the 

information on the posterior distribution from samples by using Markov Chain Monte 

Carlo method. We use two real data sets, the Malaysian Breast Cancer data and 

kinesiology data, obtained from the University of Malaya Medical Centre (UMMC). 

This study is able to provide solutions to the problems which are very beneficial to the 

local medical practitioners. The findings are very important as guidelines in the surgical 

management of breast cancer patients and in the usage of kinesiotapes in sports.  
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ABSTRAK 

 Kepentingan dalam beberapa masalah perubatan telah meningkatkan keperluan 

bagi pembangunan teknik statistik yang sesuai bagi menyediakan penyelesaian yang 

boleh dipercayai. Kami melihat dua jenis senario perubatan yang merupakan kegemaran 

semasa; pertama, mengenal pasti bilangan optimum nodus limfa yang dikeluarkan 

dalam peningkatan survival dan kecukupan pementasan nodus pesakit kanser payudara 

tempatan, dan kedua, mengkaji pengesanan titik tersisih dalam kajian cross-over bagi 

bidang kinesiologi. Dalam tesis ini, kami akan membincangkan kaedah-kaedah 

alternatif dan baru untuk menyediakan penyelesaian bagi senario di atas. Bagi kajian 

kanser payudara, kami menyiasat pengaruh bilangan nodus limfa yang dikeluarkan 

(LNR) terhadap survival pesakit kanser payudara dengan menggunakan ujian 

kemerdekaan Chi-square dan ujian Wilcoxon. Kami meneruskan untuk mencari model-

model logistik dan Cox yang dilengkapi terbaik dengan menggunakan prosedur-

prosedur pemilihan ke hadapan dan kaedah model Bayesian purata. Model-model 

tersebut kemudian digunakan untuk memperolehi nilai ramalan setiap peramal bebas 

untuk survival pada setiap ambang bilangan LNR. Bagi kedua-dua jenis model regresi, 

kami menggunakan bukan sahaja statistik Wald tetapi juga memperkenalkan 

penggunaan Akaike Information Criterion untuk menentukan bilangan optimum LNR 

supaya memberikan perbezaan maksimum dalam survival pesakit kanser payudara. 

Prosedur yang sama akan diperluaskan kepada kes yang mencari pergantungan bilangan 

LNR untuk kecukupan pementasan nodus pesakit. Bagi kajian kinesiologi, kami 

menggunakan kedua-dua rangka kerja bukan Bayesian dan Bayesian untuk mengesan 

titik tersisih dalam 2 × 2 kajian cross-over. Kami mengambil kira model bercampur 

dengan faktor-faktor berbeza yang mewakili subjek, tempoh, rawatan dan kesan 

sampingan. Dalam rangka kerja bukan Bayesian, kami membincangkan pengiraan 

studentized reja klasik dan mencadangkan satu studentized reja baharu yang 
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menggunakan sisihan mutlak median untuk mengesan subjek-subjek tersisih yang 

mungkin wujud. Prestasi kedua-dua prosedur dalam pengesanan subjek-subjek tersisih 

dibandingkan melalui simulasi. Di sebaliknya, dalam rangka kerja Bayesian, kami 

menganggap bahawa kesan subjek rawak dan ralat akan dijana daripada taburan normal. 

Walau bagaimanapun, subjek tersisih berasal daripada taburan normal dengan varians 

yang berbeza. Disebabkan taburan posterior tercantum yang kompleks, kami 

mendapatkan maklumat mengenai taburan posterior dari sampel yang dijana melalui 

pensampelan Markov Chain Monte Carlo (MCMC). Kami menggunakan dua set data 

sebenar; data Kanser Payudara Malaysia dan data kinesiologi, yang diperolehi daripada 

University of Malaya Medical Centre (UMMC). Kajian ini dapat memberikan 

penyelesaian kepada masalah yang amat memberi manfaat kepada pengamal perubatan 

tempatan. Hasil kajian adalah amat penting sebagai garis panduan dalam pengurusan 

pembedahan pesakit kanser payudara dan dalam penggunaan kinesiotapes dalam sukan. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Background of the study 

 Statistics is the process of collection, analysis, interpretation, presentation, and 

organization of data. Statistics has been shown to be useful to describe different 

scenario found in scientific, industrial, or societal problems. The choice of relevant 

statistical techniques for a data analysis can be made based on the needs of the existing 

problems. In other words, the statistical techniques should not be applied rigidly in all 

situations according to their general guidelines, but need to be tailored according to the 

situation. Here, we are interested to further show the important role of statistics in 

medical studies by suggesting alternative and new statistical methods as the solution for 

some medical problems, in particular breast cancer and the sport related studies.  

 In this century, cancer arises as a great hazard against human health. Cancer is 

one of the top ten leading causes of death. In the report of World Health Statistics 2008, 

it is estimated that 7.4 million people died of cancer in 2004 and, if current trends 

continue, 80 million more will have died after 2015. Breast cancer has attracted a lot of 

interest among the researchers for the past few decades since it is the most common 

cancer among women in many countries. Breast cancer incidence rates are increasing 

steadily in all low- and medium-resource countries. The cause of breast cancer is not 

known, although risk factors such as family history of breast or ovarian cancer 

(particularly first-degree relatives on either the mother’s or father’s side); early age at 

menarche and late age at first childbirth, menopausal hormone use, obesity, and alcohol 

intake have been identified to increase the risk (Sankaranarayanan et al., 2011).   

 Prevention is better than cure. Effective breast cancer awareness program is 

needed to reduce the incidence of breast cancer. Early detection and appropriate 

treatment are very important in preventing breast cancer deaths. As highlighted by 
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Sankaranarayanan et al. (2011), different factors will influence the choice of treatments. 

In recent years, there has been an explosion of life-saving treatment advances against 

breast cancer, such as radiation, surgery, hormonal therapy and chemotherapy. However, 

a multimodal approach is generally adopted as treatment for patients with breast cancer. 

Surgery is fundamental to management on the treatment choices of breast cancer 

patients. The surgical options include breast-conserving surgery with radiation therapy, 

or mastectomy with reconstruction, or mastectomy alone. The axillary lymph nodes 

should be explored and histologically studied in order to decide on the relevant 

treatment and prognosis.  

 Axillary lymph node dissection is a surgical procedure to remove the lymph 

nodes from under the arm (Bembenek and Schlag, 2000). It is the standard way to 

diagnose cancer by investigating the axillary lymph nodes in most breast cancer centers. 

Lymph node-negative means the lymph nodes is free from cancer while, lymph node-

positive refer to cancer spreading to the lymph nodes. The results are then used to 

diagnose and stage breast cancer according to the number of positive lymph nodes and 

eventually to make informed decisions on the treatment. Also, axillary lymph node 

dissection is one of the way to remove cancer on cell that may have spread to the lymph 

nodes and reduce the risk of recurrence of cancer in the axilla. Previous studies 

provided substantial evidence that axillary lymph node dissection provides excellent 

local control of disease in the axilla, which may lead to improved overall survival (Diab 

et al., 1998; Haffty et al., 1997). As the number of lymph nodes removed is an 

important prognostic predictor for survival in breast cancer, question arises regarding 

the minimum number of nodes that should be removed in order to maximize the 

survival of breast cancer patients (Krag et al., 2003). Here, in the study, we investigate 

the influence of the number of lymph nodes removed on the survival for both node-

positive and node-negative patients. The study is then proceeded to determine the 

Univ
ers

ity
 of

 M
ala

ya



3 
 

optimal number of lymph nodes to be removed for maximizing the survival in Malaysia 

context. Breast cancer patients in Malaysia have different level of exposure and 

awareness on the subject compared to patients from other developed country. Hence, 

there is a different in the characteristics of breast cancer patients for the studies 

conducted by different countries (Yip et al., 2006; Taib et al., 2008; Taib et al., 2011).   

 On the other hand, axillary lymph node dissection is a standard surgical 

technique used in the staging and treatment of the node positive breast cancer patient. 

Since the number of lymph nodes removed is significantly associated with the survival 

of breast cancer patients, it is imperative that accurate staging for the axilla is performed 

i.e. removing a minimum number of lymph nodes that accurately gives information on 

whether or not cancer has spread to the lymph node. Although axillary lymph node 

staging surgery has evolved towards sentinel node biopsy in early breast cancer, axillary 

dissection remains the gold standard in staging the axilla in low and middle income 

countries where the majority of patients are symptomatic and in advanced stages of the 

disease (Saxena et al., 2012). The minimum thresholds of lymph nodes removed for 

staging have been recommended (Fisher et al., 1981; Singletary et al., 2002; National 

Comprehensive Cancer Network, 2014; Erbes et al., 2014). However, these numbers 

vary depending on the surgeon’s own experience, the thoroughness of pathologist 

reporting, and patient anatomy. As stated by Sakorafas et al. (2000), traditionally, 

clinical staging of axillary lymph nodes is performed by physical examination. If lymph 

nodes are felt, they are further categorized as being enlarged owing either to benign 

causes or to malignant involvement, depending on the consistency of the node (AJJC, 

1993). However, clinical evaluation of axillary lymph nodes can be highly inaccurate. 

The simplest imaging technique for lymph nodes in patients with breast cancer is 

axillary mammography, but it is far from satisfactory. Ultrasonography or color Doppler 

studies of the axillary node basin may be useful in the identification of involved axillary 
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lymph nodes. Computed tomography (CT) of the axilla is more informative than 

physical examination or mammography. On the other hand, patient with different levels 

of axillary lymph node dissection remove different number of lymph nodes. For 

example, partial axillary lymph node dissection removes levels I and II, without 

transecting the muscle, and an average of 15–20 nodes are retrieved. Low axillary 

lymph node dissection removes level I and an average of 4–6 nodes are retrieved. 

Notably, the methodologies used to obtain these optimal numbers were not statistically 

sound. Most of them use tabulated data only to reach the conclusion (Fisher et al., 1981; 

Carter et al., 1989; Somner et al., 2004). Therefore, in this study, we are interested to 

further investigate the optimal number of lymph nodes to be removed for a reliable 

staging of the axilla and increase the survival of the breast cancer patients in Malaysia 

context.  

 Exercising is very important to maintain one’s good health especially for those 

who are involved seriously in sport. The safety and performance aspect are of concern. 

In recent times, there is a great interest in the use of kinesiotape (KT) in sport, 

noticeably by well-known sportsman including tennis player. KT is an elastic tape that 

had been introduced in the 1970’s to mimic human skin in elasticity and thickness for 

correcting of muscle function (Kase et al., 2003). Combination of its unique design and 

its peculiar taping methods has attracted many to consider the tape as an alternative 

therapy to alleviate musculoskeletal symptoms and to improve the performance of the 

sports.    

 In sport, KT is used widely among practitioners and sportsmen although there is 

little scientific evidence to support KT use (Williams et al., 2012). This leads one to 

wonder if there is a novel mechanism through which the tape is able to impart a sense of 

improved athletic performance, barring the placebo effect. In a review of KT study, 

many musculoskeletal outcome measures, such as muscle strength, proprioception, 
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power, range of movement, endurance and various functional performance tests had 

been studied, but none of these parameters demonstrated convincing association with 

KT use (Baltaci et al., 2011; Huang et al., 2011; De Hoyo et al., 2013; Ujino et al., 

2013). At present, the effect of KT on the other outcome measure, including the peak 

oxygen consumption (��� peak), has not been investigated yet. ���  peak is usually 

used to gauge cardiorespiratory fitness of an individual. In addition, we will also look at 

the problem of outlier in the data set from a study in kinesiology. In the presence of 

outliers, the resulting statistical inferences of the kinesiology studies may be inaccurate. 

This is because the presence of outliers will affect the investigation of the effectiveness 

of certain treatments we study (Chow and Tse, 1990; Liu and Weng, 1991). Hence, 

before conducting any relevant statistical analyses, the detection and removal of 

possible outliers from data set is an important step to ensure the accuracy of its 

corresponding outcomes. Here, we present two methods of outlier detection in crossover 

design for kinesiology study, using Bayesian and non-Bayesian approaches.  

 

1.2 Statement of problem 

 In Malaysia scenario, no work can be found on determining the optimal 

threshold of lymph nodes removed for maximal survival and adequate nodal staging of 

local breast cancer patients. On the other hand, the detection of outliers in crossover 

study is also an important issue since the outcome of the study may be affected by 

including the outliers in the analysis.  With the availability of data set provided by the 

UMMC, this study will present appropriate statistical techniques in order to provide 

reliable solutions to the problems. We provide alternative methods of identifying the 

optimal threshold of lymph nodes to be removed for maximal survival and adequate 

nodal staging of local breast cancer patients. We also provide both non-Bayesian and 

Bayesian frameworks to detect outliers in a cross-over design with application in 
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kinesiology study. The findings of the study are very important as guidelines in the 

surgical management of breast cancer patients and in the usage of kinesiotape in sports. 

 

1.3 Objectives of study 

 Based on the statement of problem above, the researcher has outlined the 

following objectives for this study: 

1 To provide alternative methods of identifying the optimal threshold of lymph 

nodes removed for maximizing the survival of local breast cancer patients. 

2 To provide alternative methods of identifying the optimal threshold of lymph 

nodes removed for adequate nodal staging of local breast cancer patients. 

3 To provide a method of detecting outliers in 2 × 2  crossover design with 

application in kinesiology study using non-Bayesian framework. 

4 To provide a method of detecting outliers in 2 × 2  crossover design with 

application in kinesiology study using Bayesian framework. 

5 To apply the proposed methods on real data set. 

 

1.4 Thesis outline  

 This research attempts to provide new statistical methods of identifying the 

optimal threshold of lymph nodes to be removed for breast cancer patients and; 

investigating the outlier detection of 2 × 2 crossover design using Bayesian and non-

Bayesian frameworks. This thesis is divided into four parts: introduction, breast cancer 

study, kinesiology study and conclusion.  

 

Chapter 2 provides a literature review on the fundamental of axillary lymph node 

dissection for breast cancer patients and on the problem of optimal number of lymph 

nodes to be removed for maximal survival. A brief discussion on the 2 × 2 crossover 
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design with application in kinesiology study using Bayesian and non-Bayesian 

framework also included.  

 

Chapter 3 presents the description of Malaysia breast cancer data obtained from 

University of Malaya Medical Centre (UMMC) breast cancer registry. We conduct the 

survival analysis of Malaysia breast cancer data and discuss the output in detail. 

 

Chapter 4 presents the study of optimal number of lymph nodes removed for maximal 

survival in breast cancer patients. The influence of the number of lymph nodes removed 

on survival of breast cancer patients is investigated using chi-square test of 

independence and Wilcoxon test. We proceed to find the best-fitted logistic and Cox 

regression models using forward selection and the Bayesian model averaging (BMA) 

procedures. The models are then used to assess the prognostic values of independent 

prognostic factors of survival at all thresholds of the number of lymph nodes removed. 

For both types of regression models, we use not only the Wald statistic but also present 

the use of the Akaike Information Criterion to determine the optimal number of lymph 

nodes to be removed that give maximum differential in survival of local breast cancer 

patients. In this study, we apply the logistic and Cox regression models for analyses as 

both models are the simplest and well-understood by the medical practitioners. Besides, 

the medical data collected contain information on the survival status and time, which are 

suitable for Cox and logistic modeling. Furthermore, the BMA procedure is considered 

as it accounts for model uncertainty in linear regression models, but not in the forward 

selection procedure. According to Raftery et al. (1997), ignoring of model certainty may 

leads to the underestimation of uncertainty when making inferences about quantities of 

interest. As a Bayesian solution to this problem, the BMA procedure involves averaging 

over all possible models when making inferences about quantities of interest.  
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Chapter 5 presents the study of optimal number of lymph nodes removed for adequate 

nodal staging in breast cancer patients. Similar methodology used in Chapter 4, by 

excluding the Cox regression model, is considered here specifically for reliable staging 

of the axilla. In this chapter, we only consider the best-fitted logistic model as the 

response of the logistic model is the probability of lymph nodes positive/involved which 

does not involve the information on survival status. 

 

Chapter 6 provides a literature review on the fundamental of the 2 × 2  crossover 

design with application in kinesiology study using Bayesian and non-Bayesian 

framework also included.  

 

Chapter 7 presents the description of a kinesiology data obtained from University of 

Malaya Medical Centre (UMMC). 

 

Chapter 8 presents two methods for outlier detection in standard 2 × 2  crossover 

design in non-Bayesian framework. We discuss the classical calculation of studentized 

residual and propose a new studentized residual using median absolute deviation to 

identify possible outlying subjects. The performances of both procedures in detecting 

subject outliers are compared via simulation. We then illustrate their applications on a 

real data set from a study in kinesiology. 

 

Chapter 9 introduces a method for outlier detection in a standard 2 × 2  crossover 

design in Bayesian framework. We assume that the random subject effect and the errors 

to be generated from normal distributions. However, the outlying subjects are assumed 

to come from normal distribution with different variance. Due to the complexity of the 
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resulting joint posterior distribution, we obtain the information on the posterior 

distribution from samples by using Markov Chain Monte Carlo method. 

 

Chapter 10 presents the summary in this research work and the suggestions for further 

research works. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1 Breast cancer 

 Cancer is a result of mutated cells. There are countless cells in a human body 

and cells are the body’s basic unit of life. Each cell is pre-programmed to live, 

reproduce and die according to a precise schedule.  Deoxyribonucleic acid (DNA) is the 

substance that directs a cell’s activities. Normally, cells stop reproducing when the body 

has no need for them. However, carcinogens, which are any substances or radionuclide 

that are agent directly involved in causing cancer, may cause DNA in cells to change or 

mutate. Instead of dying, these abnormal cells continue to grow and multiply in an 

uncontrolled manner to form tumors.  

 There are two main types of tumors, based on shapes and effects, namely benign 

and malignant. Benign tumors are not cancerous. They refer to cells that reproduce at a 

slower rate and grow at their original site. They can be surgically removed and 

generally do not pose a serious health risk. Benign tumors usually do not recur once 

removed. On the other hand, malignant tumors are cancerous. They consist of cells that 

grow rapidly and invade normal tissues, and even spread to other parts of the body 

through the circulatory system or lymphatic system. Malignant tumors may be 

surgically removed. However, if their cells are not removed completely, they may 

metastasize or spread to other parts of the body to cause cancer recurrence. Cancer is a 

term used for diseases in which abnormal cells divide without control and are able to 

invade other tissues. 

 In our body, human cells metabolize naturally. However, many cancer risk 

factors such as chemical carcinogens, ionizing radiation, free radicals, microorganisms 

(bacteria, fungi, viruses), metabolic toxins, family history of cancer, endocrine 

malfunctions and immune disorders can cause the DNA in cells to change or mutate and 
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these abnormal cells begin to grow uncontrollably. In reality, there are abnormal cells or 

abnormal cell growth in every human body at every life stage. A healthy immune 

system is like an army in the body that provides around-the-clock protection by 

destroying these abnormal cells. However, the body cannot destroy these abnormal cells 

under some circumstances. For example, if the immune system is too weak, the body 

cannot identify, fight and overcome these abnormal cells effectively. These abnormal 

cells then reproduce uncontrollably, growing exponentially from a single cancer cell to 

form a malignant tumor and suppress surrounding tissues in the body, finally disrupting 

the natural biological order in the body to destroy health and lead to death.  

 According to Breastcancer.org (2015), the term “breast cancer” refers to a 

malignant tumor that developed from cells in the breast known as carcinoma in situ 

(CIS). Usually breast cancer either begins in the cells of the lobules (L), which are the 

milk-producing glands, or the ducts (D), the passages that drain milk from the lobules to 

the nipple as shown in Figure 2.1(a). Less commonly, breast cancer can begin in the 

stromal tissues, which include the fatty and fibrous connective tissues of the breast. The 

malignant tumor can be categorized into non-invasive or invasive tumor. Non-invasive 

tumor (ductal carcinoma in situ (DCIS) or lobular carcinoma in situ (LCIS)) has not 

spread beyond the milk duct into any normal surrounding breast tissue, while invasive 

tumor is a tumor that has spread outside the milk duct or milk-masking glands and has 

grown into normal tissue inside the breast (invasive ductal carcinoma (IDC) or invasive 

lobular carcinoma (ILC)). The DCIS, LCIS, IDC and ILC images are presented in 

Figure 2.1 (b) – (d). Over time, cancer cells can invade nearby healthy breast tissue and 

make their way into the underarm lymph nodes, small organs that filter out foreign 

substances in the body as shown in Figure 2.2. If cancer cells get into the lymph nodes, 

they then have a pathway into other parts of the body. In fact, the stage of breast cancer  
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Figure 2.1: Breast structure with cancer (Breastcancer.org, 2015) 

 

 

Breast profile: (a) to (e) 

A Ducts 
B Lobules 
C Dilated section of duct to hold milk 
D Nipple 
E Fat 
F Pectoralis major muscle 
G Chest wall/rib cage 

Enlargement (a)  
A Normal duct cells 
B Basement membrane 
C Lumen (center of duct) 

(a) Normal cell in Lobules 

(b) DCIS (c) LCIS (d) IDC (e) ILC 

Enlargement: (b) 
A  Normal duct cells 
B  Ductal cancer cells 
C  Basement membrane 
D  Lumen (center of duct) 
 

Enlargement: (c) 
A  Normal lobular cells 
B  Lobular cancer cells 
C  Basement membrane 

Enlargement: (d) 
A  Normal duct cells 
B  Ductal cancer cells breaking through  
     the basement membrane 
C  Basement membrane 
 

Enlargement: (e) 
A  Normal lobular cells 
B  Lobular cancer cells breaking through     
     the basement membrane 
C  Basement membrane 
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is defined based on how far the cancer cells have spread beyond the original tumor and 

to be discussed in Chapter 3.  

 Malaysia is a developing country in the Asia Pacific region with a population of 

28.1 million. According to Taib et al. (2011), breast cancer is the commonest cancer in 

Malaysia with the age standardized incidence rate for females of 47.4 per 100,000 

women. Malaysia has a multiracial composition with Malays being the majority 

followed by the Chinese and Indians. Lim et al. (2008) pointed out that the incidence 

was higher in Chinese women (ASR 59.9 per 100,000 women) compared to Indian 

(ASR 54.2) and Malay (ASR 34.9). Breast cancer specific information such as observed 

survival can be obtained with the mandatory reporting of deaths in Malaysia (Yip et al., 

2006; Taib et al., 2008). 

 To reduce the incidence of advanced stage breast cancer, breast cancer 

awareness among women is needed. There are many factors that can influence a 

woman’s risk of getting breast cancer, such as a person’s age or race, family history, 

genetic risk factors, pregnancy, breastfeeding, food intake, stress level, alcohol, obesity, 

diet, physical activity (Herrinton and Brinton, 1993; Lam et al., 2000; Amir et al., 2010; 

Stephenson et al., 2010; Martin et al., 2010). The key to cancer prevention lies in a 

healthy, balanced diet and a healthy lifestyle to prevent cells from mutating into cancer 

cells and to nourish the immune system so that it can perform optimally when fighting 

cancer cells. 

Figure 2.2:  Lymphatic system and lymph node (Whitlock, 2014) 
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2.2 Axillary lymph node dissection 

 Lymph nodes are small clumps of immune cells that act as filters for the 

lymphatic system. The lymphatic system runs throughout the body and carries fluid and 

cells. The lymph nodes in the underarm, which are called the axillary lymph nodes, are 

the first place breast cancer is likely to spread. Hence, lymph node status is highly 

related to prognosis of breast cancer. Lymph node-negative means the lymph nodes do 

not contain cancer while lymph node-positive means the lymph nodes contain cancer. 

As mentioned by Chang and Hilsenbeck (2010), cancer found only in the breast (lymph 

node-negative) has the best prognosis of breast cancer. Prognosis is poorer when cancer 

has spread to the lymph nodes (lymph node-positive). The more lymph nodes that 

contain cancer, the poorer prognosis of breast cancer tend to be.  

 Axillary lymph node dissection is known as a surgical procedure that incises the 

axilla (also called armpit) to identify, examine, or remove lymph nodes. It has been the 

standard technique used in the staging and the treatment of node positive breast cancer. 

Although axillary lymph nodes staging has evolved towards sentinel node biopsy in 

early breast cancer, axillary dissection remains the gold standard in staging the axilla in 

low and middle income countries. Also, axillary lymph node dissection is done to 

remove any cancer that may have spread to the lymph nodes and reduce the risk of 

recurrence of cancer in the axilla.  

 Normally, axillary lymph node dissection is carried out during a modified 

radical mastectomy or radical mastectomy. It may also be performed with breast-

conserving surgery. It is always a better choice when a sentinel lymph node biopsy is 

not suitable or if the sentinel lymph node is positive. There are three levels of an 

axillary lymph node dissection, from least aggressive to most aggressive, as showed in 

Table 2.1 and Figure 2.3. In fact, a traditional axillary lymph node dissection usually 

includes removal of the nodes in levels I and II from the “fat pad” under the arm. In the 
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Table 2.1: Three levels of an axillary lymph node dissection  
(Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), 2015) 

Level Description 
I The surgical removal of all tissue below the lower edge of the pectoralis minor 

muscle. 
II The surgical removal of the tissue lying underneath the pectoralis minor 

muscle. 
III The most aggressive dissection and is the surgical removal of tissue lying 

above the pectoralis minor muscle. 
 

                             

Figure 2.3: Lymph node areas adjacent to breast area (Breastcancer.org, 2012) 
 

output of this surgery procedure, a negative lymph node means that no cancer is found 

in the lymph node, while a positive lymph node means that cancer is found in the lymph 

node.  

 Side effects can happen any time during axillary lymph node dissection. Some 

may happen during, immediately after, or a few days or weeks after the procedure. 

These side effects include infection, bruising, seroma, lymphedema, chronic pain and so 

on. Van Bemmel et al. (2011) reviewed several methods to minimize seroma formation 

and associated morbidity. They found that the number of lymph nodes and extent of 

lymph nodes involved have shown to be significant influencing factors for seroma 

formation according to the results of some studies. In addition, Hashemi et al. (2004) 

and Woodworth et al. (2000) reported that removal of a larger number of lymph nodes 

results in greater injury of the lymph vessels. This may increase the painful of patients 

and might cause the formation of seroma. 

A pectoralis major muscle 
B axillary lymph nodes: levels I 
C axillary lymph nodes: levels II 
D axillary lymph nodes: levels III 
E supraclavicular lymph nodes 
F internal mammary lymph nodes 
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2.3 Optimal number of lymph nodes removed for maximizing the survival of 

breast cancer patients 

 Axillary lymph node dissection is a standard surgical technique used in the 

treatment of node positive breast cancer. Previous studies provided substantial evidence 

that axillary lymph node dissection gave excellent local control of disease in the axilla, 

which may lead to improved overall survival. (Atkins et al., 1972; Langlands et al., 

1980; Cabanes et al., 1992; Sosa et al., 1998; Orr et al., 1999; Bembenek and Schlag, 

2000; Krag and Single, 2003; Sanghani, 2009).  

 Studies have found not only the importance of number of lymph nodes involved 

but also those removed. Lymph node ratio which takes into account number of nodes 

involved divided by number of nodes removed has been found to be an important 

prognostic factor (Taib et al. ;2008, 2011), and hence, highlighting the importance of 

the number of nodes removed in the management of breast cancer (Sosa et al., 1998; 

van der Wal, 2002; Weir et al., 2002; Krag and Single, 2003). Consequently, the 

optimal number of nodes to be removed for maximizing the survival has attracted a lot 

of attention among medical researchers.  

For node-positive breast cancer patients, Sosa et al. (1998) investigated whether 

extent of axillary dissection is associated with survival based on the remaining cohort of 

464 patients with stage I breast cancer, which had undergone axillary lymph node 

dissection. They estimated the overall survival, disease-free survival and recurrence for 

breast cancer patients according to two groups of the number of lymph nodes removed 

(< 10 or ≥ 10; < 15 or ≥ 15). The data suggested that the survival was improved with 

the removal of ≥ 10 and ≥ 15 lymph nodes, respectively. The criteria used for these 

lymph node groups were based on similar and previously-reported criteria. It was shown 

that there was no statistical difference between these lymph node groups.  
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Meanwhile, Bembenek and Schlag (2000) provided an overview of the current 

knowledge of the breast cancer and the surgical therapy. They suggested a removal of a 

minimum of 10 lymph nodes for the survival benefit based on previous studies (Cady 

and Sears, 1986; Graversen et al., 1988; Axelsson et al., 1992; Sosa et al., 1998).  

Sakorafas et al. (2000) noted that Fisher et al. (1985) began a randomized trial to 

compare alternative local and regional treatments of breast cancer in 1971, all of which 

employ breast removal. There were 1765 patients at 34 United State and Canadian 

institutions participating in the National Surgical Adjuvant Breast Project enrolled in the 

trial and randomly assigned to treatment. However, only 1665 patients were judged to 

be eligible for a mean of 126 months. Their findings recommended a minimum 

threshold of 6 lymph nodes so that no axillary recurrence was observed.  

Furthermore, Krag and Single (2003) analyzed the data from the Surveillance, 

Epidemiology, and End Results (SEER) database, from which 72102 patients were 

selected whose breast cancer had been diagnosed in 1988 or later and who were aged 

40-79 years at diagnosis, had a single primary lesion, and had 0 to 3 positive lymph 

nodes. Their study only reported that the hazard rate of death was between 8% and 9% 

less for each additional 5 nodes removed, but lack of the discussion regarding the 

survival on the particular threshold of lymph nodes removed.  

 For node-negative breast cancer patients, Axelsson et al. (1992) examined the 

effect of extent of axillary node dissection in group of 7,145 patients enrolled onto their 

“low-risk” protocols. All patients had negative nodes and received no adjuvant 

systematic therapy. They found a highly significant correlation between the number of 

nodes removed and axillary recurrence-free survival, overall recurrence-free survival, 

and overall survival at a median observation time of 76 months. They found that a 

significantly better prognosis in all survival end points when a minimum threshold of 10 

axillary lymph nodes are dissected.  
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Besides, Camp et al. (2000) carried out a study to determine whether the 

considered pathologic parameter can predict the outcomes of lymph node negative in 

breast cancer patients. The cohort for this study consisted of 290 patients who 

underwent breast resection at Yale – New Haven Hospital for invasive ductal breast 

carcinoma from 1 July 1983 to 1 July 1993, and followed through 8 September 1998. 

One of their findings conversely showed that a maximum threshold of 20 is considered 

for the benefit in survival of the patients. They reported that patients with 20 or more 

lymph nodes in their axillary resection had an overall survival of 82% compared to   

87.3% for those with fewer lymph nodes removed. The 5-year survival rates were    

84.7% and 96.3%, respectively.  

In addition, Blancas et al. (2006) investigated whether the number of lymph 

nodes removed at axillary dissection is associated with recurrence and survival in node-

negative breast cancer patients. The eligible patients of the study had to have survived at 

least 30 days from the time of diagnosis, to have undergone an axillary dissection with 

at least one lymph node recovered (not eligible if a sentinel lymph node biopsy was 

performed), and to have received no neoadjuvant systemic treatment. These eligible 

patients were diagnosed between 1 January 1982 and 31 December 2000 and treated at 

Clinic Hospital, University of Valencia, Spain. Their study found that node-negative 

breast cancer patients who have fewer than 6 nodes removed during axillary node 

dissection have worse outcome with a greater risk of relapse and a shorter breast cancer-

specific survival.  

On the other hand, Weir et al. (2002) evaluated the association between the 

number of lymph node removed at axillary dissection and recurrence and survival for 

patients with node-negative invasive breast cancer. Subjects of the study were 2278 

women with pathologically node-negative invasive breast cancer, diagnosed from 1989 

to 1993 in British Columbia, Canada. Women aged > 90 years, with pure in-situ, 
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bilateral invasive breast cancer or T4, N1, N2, or M1 stage, or who had axillary 

radiation were excluded. Two groups were defined for analysis: node-negative with no 

systemic therapy (n = 1468) and node-negative with systemic therapy (n = 810). Median 

follow-up was 7.5 years. The results showed that node-negative patients who received 

systemic therapy did not have a higher regional relapse rate or shorter overall survival 

when fewer nodes were removed.  

Gao et al. (2014) performed a systematic and retrospective evaluation to 

examine the association between the number of tumor-free axillary lymph nodes 

removed and the outcomes for patients with pathologically negative nodes in a cohort of 

603 patients with lymph node negative breast cancer. Their findings suggested that the 

number of tumor-free lymph nodes removed is an independent predictor in cases of 

lymph node-negative breast cancer. They mentioned that patients who had more than 10 

tumor-free lymph nodes removed had a higher risk of death from breast cancer 

compared to patients who had 10 or fewer tumor-free lymph nodes removed. They 

chose 10 as a critical value because the median number of lymph nodes removed in the 

study was 10. They concluded that simple pursuit of a higher number of tumor-free 

lymph nodes removed may be of little use for improving survival rate.   

 

2.4 Optimal number of lymph nodes removed for adequate nodal staging 

 The number of lymph nodes removed is one of the most important prognostic 

factors for survival in breast cancer. Hence, it is imperative that accurate staging for the 

axilla is performed. Although axillary lymph node staging surgery has evolved towards 

sentinel node biopsy in early breast cancer, in low and middle income countries, where 

the majority of patients are symptomatic and in advanced stages of the disease, axillary 

dissection remains the standard way used in staging the axilla.  
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The minimum threshold of lymph nodes removed for nodal staging varies across 

studies. Fisher et al. (1981) reported that the majority of histologic positive nodes breast 

cancer patients considered in their study have 1-3 involved nodes. The more nodes were 

removed, the more involved nodes were identified. Patients included in their study came 

from 34 National Surgical Adjuvant Breast Project member institutions in the United 

State and Canada. There were 641 women having a conventional radical mastectomy 

(node negative patients = 355 and node positive patients = 286) and 296 women having 

a total mastectomy with removal of 1 to 10 lymph nodes (node negative patients = 197 

and node positive patients = 99). 

On the other hand, Singletary et al. (2002) revised the American Joint 

Committee on Cancer (AJCC) staging system for breast cancer. This revised staging 

system was officially adopted for use in tumor registries in January 2003. They reported 

that the AJCC Cancer Staging Manual, Sixth Edition (2002) required 6 axillary lymph 

nodes to be removed and examined.  

Under the auspices of the College of American Pathologists, Fitzgibbons et al. 

(2000) considered prognostic and predictive factors in breast cancer and stratified them 

into categories reflecting the strength of published evidence. They recommended a 

minimum threshold of 10 lymph nodes for staging. Similar suggestion was reported by 

the National Comprehensive Cancer Network (2014) in the United State.  

Furthermore, Erbes et al. (2014) also mentioned that current guidelines 

recommend the removal of at least 10 lymph nodes (Carter et al., 1989; Somner et al., 

2004), based on a mathematical model which determined the cut off at 10 lymph nodes 

to allow a 90% certainty of a true negative axillary status (Kiricuta and Tausch, 1992; 

Somner et al., 2004). Erbes et al. (2014) analyzed retrospectively the lymph node 

removed in 182 patients with axillary lymph node dissection after neoadjuvant 

chemotherapy and 351 patients with primary axillary lymph node dissection. They 
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found that the lower lymph nodes had no impact on clinical outcome. They showed that 

the lymph node count of less than 10 by axillary lymph nodes dissection after 

neoadjuvant chemotherapy might not be indicative for an insufficient axillary staging.  

In addition, Somner et al. (2004) investigated the minimum number of lymph 

nodes needed in an axillary lymph node dissection specimen to be confident that the 

axilla is free from metastases. Data of the study were collected from the Edinburgh 

Breast Unit. Patients with large and high grade tumor were selected for axillary lymph 

node dissection. About 609 consecutive axillary lymph node dissections performed 

between October 1999 and December 2002 were reviewed. Full data about the 

underlying invasive breast cancer were available for 520 patients. Somner et al. (2004) 

suggested that 16 nodes should be regarded as a target to ensure a high level of 

confidence that the nodes are negative.  

In literature, these optimal numbers vary based on surgeon philosophy and 

technique, the thoroughness of pathologist reporting, and patient anatomy. Notably, 

there is scarce information on the scientific basis of how these optimal numbers were 

obtained. 

 

2.5 Chi-square test of independence    

Chi-square test is one of the basic tests for statistical significance that is 

particularly appropriate for testing hypotheses about frequencies arranged in a 

frequency or contingency table (William G. Zikmund, 2010). There are several types of 

chi-square tests depending on the way the data are collected and the hypothesis being 

tested. It may be used both as a test of goodness-of-fit (comparing a collection of 

categorical data with some theoretical expected distribution) and as a test of 

independence (determine whether an association exists between two categorical 

variables of a population). For both tests, the underlying arithmetic is the same, but the  
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way expected values are calculated is different (McDonald, 2009).  

 In this study, chi-square test of independence is used to determine whether an 

association exists between two categorical variables of a population. For a test of 

independence, categorical data may be displayed in a contingency table as given in 

Table 2.2 (Diener-West, 2008).  

Table 2.2: Layout of a contingency table 

Criterion 2 Criterion 1 
1 2 3 

 
c Total 

1 ��� ��� ��
 
 

��� �� 
2 ��� ��� ��
 

 
��� �� 

3 �
�    
  

  
   

  
r ��� 

   
��� �� 

Total �� �� 
  

�� � 

 

Under the null and alternative hypotheses below: 

��: The two categorical variables are independent  

 (i.e., there is no relationship between them) 

��: The two categorical variables are dependent  

 (i.e, there is a relationship between them), 

the test statistic is 

�� =����� − ������ ��
� �  

and the degrees of freedom are 

�� − 1��� − 1�, 
where � = number of rows, 

 � = number of columns, 

 �� = the observed frequency in the "#$ cell of the table, 

 �� = the expected frequency in the "#$ cell of the table. 
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Here, the chi-square statistic compares the observed count in each table cell to the count  

which would be expected under the assumption of no association between the row and 

column classifications. That is, observed counts are compared to expected counts. If the 

computed value of the �� test statistic is greater than �%� , the upper-tail critical value 

from a chi-square distribution with �� − 1��� − 1� degree of freedom, then the null 

hypothesis is rejected. Finally, the existence of the association between the two 

categorical variables can be determined.  

Sosa et al. (1998) compared the breast cancer patient and tumor characteristics 

among nodal groups using the chi-square statistics. They show the distribution of 

patients according to the number of lymph nodes removed at surgery. The results 

showed that the lymph node groups were similar in terms of age, menopausal status, 

type of surgery, tumor size, hormonal receptor status, and adjuvant therapy. They found 

that there was no statistical difference in the number of lymph nodes removed between 

the two decades considered in their study. 

Kuru (2006) investigated whether total number of nodes removed, negative 

nodes removed, and ratio of positive nodes to total nodes removed are predictors of 

survival in node positive patients. The comparisons between the total number of nodes 

removed and the probable potential prognostic factors and number of positive nodes 

based on chi-square analysis. The results indicate that the comparisons of the categories 

of total number of nodes removed with the categories of age, size, lymphovascular 

invasion (LVI), ER status, histological type, grade, menopausal status and adjuvant 

systematic therapy showed no differences. The proportion of patients with 4 or more 

positive nodes was significantly higher among patients with more than 15 axillary nodes 

removed compared to 1 – 15 nodes removed.  

 Gao et al. (2014) investigated the relationship between the number of lymph 

nodes removed and survival of patients diagnosed with lymph node-negative breast 
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cancer. Demographic data by the number of lymph nodes removed then were analyzed 

by chi-square test. They found that there was no statistical difference in the survival of 

patients between the categories of patient age, marital status, histologic grade, tumor 

size and adjuvant therapy.  

 

2.6 Wilcoxon test    

The Wilcoxon test is a nonparametric test for comparing survival curves and is 

an extension of the Wilcoxon rank sum test in the presence of censoring. It also requires 

that the censoring patterns for the two treatment groups be the same, but it does not 

assume proportional hazards. Hence, Wilcoxon test is preferred to the log-rank test 

when the hazard functions are thought to vary in ways other than proportionally. 

 Refer to Collett (2003), the Wilcoxon test, sometimes known as the Breslow test, 

is used to test the null hypothesis that there is no difference in the hazard functions for 

two groups of survival data. The Wilcoxon test is based on the statistic 

&' =���()�* − +�*,�
* � 	, 

where  )�* =  the number of deaths at time .�*� in the first group, 

             +�* = /0121/1 , 

             �* = ��* + ��*, 
             ��* = individuals at risk of death in the first group just before time .�*�, 
             ��* = individuals at risk of death in the second group just before time .�*�. 
 The variance of the Wilcoxon statistic &' is given by  

�' =��*��
* � 4�* 	, 

where  4�* = /01/5121(/1621,/15(/16�, 	, and so the Wilcoxon test statistic is  
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7' = &'��' 	, 
which has a chi-square distribution on one degree of freedom when the null hypothesis 

is true. 

 Sosa et al. (1998) made the survival curve comparisons between lymph node 

groups using the Wilcoxon test. From their results, the variables that were significantly 

associated with improved overall survival were younger age, premenopausal status, lack 

of breast cancer recurrence, and tumor size ≤ 1 cm, as well as increased number of 

nodes removed in the LN10 (<10 or ≥10 nodes) or LN15 (<15 or ≥15 nodes) groups. 

They also found that variables associated with the improved disease-free survival were 

tumor size ≤ 1  cm, no adjuvant therapy, later decade of diagnosis, and increased 

number of nodes removed in the LN10 or LN15 groups. 

 Peyre et al. (2008) investigated the relationship between number of lymph nodes 

removed and survival in esophageal cancer. Univariate analysis was performed using 

Wilcoxon test as appropriate to determine factors associated with survival at 5 years. 

Those factors with a p-value less than 0.2 then were used to construct a Cox regression 

model for all-cause mortality to determine independent predictors of survival. The 

choice of 0.2 had been used by Goodman et al. (1996), Milleron et al. (2004) and Peyre 

et al. (2008). 

 

2.7 Logistic regression analysis   

The goal of a logistic regression model is to understand a binary or proportional 

response (dependent variable) on the basis of one or more predictors. The response 

variable, 9, is binary and parameterized in term of 1 or 0, in which 1 indicates a success 

and 0 as a failure. Success is to be thought of in a very wide sense, such as in term of 

yes or no, present or not present, dead or alive. There are two major uses to which 

statisticians employ a logistic model. It is widely used in the interpretation of parameter 
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estimates as odds ratio, and related to the calculation of the fitted values, which can be 

understood as the probability of success. Both of these usages play important roles in 

fields such as social science, health and medical research.   

 Logistic regression enables us to use regression models to predict the probability 

of a particular categorical response for a given set of independent variables (Hilbe, 

2009). Logistic regression analysis is based on a generalized linear model for binary 

response using a logit link function (Stauffer, 2008). Let : be a binary random variable, 

taking on the values 1 and 0 with probability ; and 1 − ; respectively, where 0 ≤ ; ≤
1. If there are � independent random variables :�, :�, … , :/  with probability ;� , then 

their joint probability distribution is given by 

           =�:�, :�, … , :/; ?�, ?�, … , ?/� = ∏ ;�AB�1 − ;���6AB/� �  

                                                           = +C; D∑ :� ∙ GHI J KB�6KBL + ∑ GHI�1 − ;��/� �/� � M 
which is a member of the exponential family.  

 The link function for logistic regression is given by the logit function 

GHI". = I�;� = GHI N ;1 − ;O	, 
the log of the odds ratio. Here, the odds ratio represents the probability of an event of 

interest compared with the probability of not having an event of interest. For the logistic 

regression model with one explanatory variable C, the link function, or logit, is given by   

GHI". = I�;� = GHI N ;1 − ;O = P� + P�C			. 
For the more general logistic regression model with one or more explanatory variable 

R = SC�, C�, ⋯ , C�U	, the link function is given by 

GHI". = I�;� = GHI N ;1 − ;O = P�C� + P�C� +⋯+ P�C�		, 
where V is the number of parameters, P�, P�, ⋯ , P�	, and C� = 1. Hence, the inverse of 

the logit link function I is then given by  
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; = +C;�P�C� + P�C� +⋯+ P�C��1 + +C;�P�C� + P�C� +⋯+ P�C��		. 
 Peyre et al. (2008) investigated the relationship between number of lymph nodes 

removed and survival in esophageal cancer. Logistic regression was performed to 

determine independent predictors of survival at 5 years. They showed that the number 

of nodes removed was one of the important predictor of survival. 

 Ghosh et al. (2010) examined the involution and density association in a large 

benign breast disease (BBD) cohort. They investigated associations between involution 

and parenchymal pattern using logistic regression analysis with parenchymal pattern as 

the outcome and involution as the predictor variable. Among 317 women with BBD in 

the Mayo Mammography Health Study, there was an inverse association between 

involution and quantitative percent density, and a strong positive association of 

involution with nondense area. No association was seen between involution and dense 

area. 

 

 2.8 Cox regression model    

 Cox proportional hazards model is the basic model for survival data and 

proposed by Cox (1972). It has also come to be known as the proportional hazards 

model. Although the model is based on the assumption of proportional hazard, no 

particular form of probability distribution is assumed for the survival times. The model 

is therefore referred to as a semi-parametric model. Cox proportional hazards model is 

commonly used to determine which combination of potential explanatory variables 

affect the form of the hazard function. It may also be used to obtain an estimate of the 

hazard function itself for an individual. 

 As explained by Collett (2003), suppose that patients are randomized to receive 

either a standard treatment or a new treatment, and let ℎX�.� and ℎY�.� be the hazards of 

death at time . for patients on the standard treatment and new treatment, respectively. 

Univ
ers

ity
 of

 M
ala

ya



28 
 

According to a simple model for the survival times of the two groups of patients, the 

hazard at time . for a patient on the new treatment is proportional to the hazard at that 

same time for a patient on the standard treatment. The Cox proportional hazards model 

then can be expressed in the form 

ℎY�.� = ZℎX�.�, 
for any non-negative value of ., where Z is a constant. 

 In this model,  Z is known as the relative hazard or hazard ratio. The value of Z 

is the ratio of the hazards of death at any time for an individual on the new treatment 

relative to an individual on the standard treatment. If Z < 1, the hazard of death at . is 

smaller for an individual on the new drug, relative to the standard. However, if  Z > 1, 

the hazard of death at . is greater for an individual on the new drug, and the standard 

treatment is superior. 

 The Cox regression model above can be generalized to the situation where the 

hazard death at a particular time depends on the values C�, C�, … , CK of ; explanatory 

variables, \�, \�, … , \K. Let C = (C�, C�, … , CK,] and ℎ��.� be the hazard function for an 

individual for whom the values of all the explanatory variables that make up the vector 

R  are zero. The function ℎ��.�  is called the baseline hazard function. The hazard 

function for "th individual can then be written as 

ℎ��.� = Z�R��ℎ��.�, 
where Z�R�� is a function of the values of the vector of explanatory variables for the "th 

individual. Finally, let Z�R�� = +C;�^��, where ^� = P�C�� + P�C�� +⋯+ PKCK�  , the 

general Cox regression model then becomes 

ℎ��.� = +C;(P�C�� + P�C�� +⋯+ PKCK�,ℎ��.�	. 
 To determine whether extent of axillary dissection in patients with stage I breast 

cancer is associated with survival, Sosa et al. (1998) performed a multivariate analysis 

using Cox proportional hazards model in order to adjust for confounding prognostic 

Univ
ers

ity
 of

 M
ala

ya



29 
 

variables. For each lymph node group, they created separate models for overall survival, 

disease-free survival and recurrence-free survival. The hazard ratios and their 

corresponding 95% confidence intervals for the models were then calculated.  

Van der Wal et al. (2002) conducted a study to determine the prognostic 

importance of the lymph node ratio (for node-positive patients) and the total number of 

removed lymph nodes (for node-negative patients) in addition to known prognostic 

factors in relation to disease recurrence or survival. The Cox proportional hazards 

model was used to calculate hazard ratios and 95% confidence intervals. Survival 

curves were also obtained using the Cox proportional hazards model, depicted as 

proportional survival. 

 Weir et al. (2002) evaluated the association between the number of lymph nodes 

removed at axillary dissection and recurrence and survival for patients with node-

negative invasive breast cancer. They performed multivariate tests of the effect of 

number of nodes removed using Cox proportional hazards analysis. 

 In addition, Kuru (2006) investigated whether total number of nodes removed, 

negative nodes removed, and ratio of positive nodes to total nodes removed are 

predictors of survival in node positive patients. He carried out a multivariate analysis 

using Cox proportional hazards model. He then calculated the hazard ratios and 95% 

confidence intervals for the risk of dying from breast carcinoma. 

 Duraker et al. (2011) evaluated the prognostic significance of lymph node ratio, 

number of metastatic lymph nodes divided by number of removed nodes in 924 breast 

carcinoma patients with 1 – 3 metastatic axillary lymph nodes. The relative importance 

of the features was investigated using the Cox proportional hazards model. 

 Wu et al. (2013) examined the prognostic value of axillary lymph node ratio as 

compared to the number of involved nodes in patients with axillary lymph node-positive 
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breast cancer with mastectomy without radiation. Cox stepwise regression analysis was 

used for multivariate analysis, and significant variables in univariate analysis then were  

included in the Cox proportional hazards model. 

 

2.9 Selection procedures    

2.9.1 Forward selection 

In the multiple regression model building, an efficient model selection strategy 

is needed to ensure a parsimonious model that fits the data well. The selected model 

should be simple to interpret and smooth the data rather than over fitting it.   

 Forward selection is a variable selection procedure that successively adds a 

single explanatory variable to a regression model a step at a time. At each step, each 

variable that is not already in the model is tested for inclusion in the model. Among the 

significant variables we obtain, the variable that having the lowest p-value will be 

chosen as the most significant one. Forward selection begin with a model including the 

explanatory variable that is most significant in the initial analysis, and continue adding 

variables until none of remaining explanatory variables are significant when added into 

the model. It is worth to point out that this multiple use of hypothesis testing means that 

the real probability of Type I error for an explanatory variable (i.e. the chance of 

including it into the model given it is not really necessary) does not equal the critical 

level we choose, that is 0.05. In fact, because of the complexity that arises from the 

complex nature of the procedure, it is essentially impossible to control the probability of 

error and it must be viewed as exploratory (Brant, 2004).  

 Consider a data set with V possible explanatory variable. A complete procedure 

of the forward selection can be illustrated as follow: 

Univ
ers

ity
 of

 M
ala

ya



31 
 

Step 1.  Fit V single-variable regression models, each having one of the predictor 

  variables in it. Calculate the overall model �� value for each of the V fits. 

  Select the fit with the highest value of ��. 

Step 2. Using a significant level of _ =  0.05, the significance of predictor 

variable is tested. If it is not significant, terminate the procedure and 

conclude that  none of the predictors are useful in predicting the 

response. If it is significant, retain the predictor variable, set � = 1, and 

proceed to step3. 

Step 3. Fit V − � reduced models, each having the � predictor variables from the 

previous stage of the selection process and one of the remaining 

candidate predictors. Calculate the overall model �� value for each of the 

fits. Select the fit with the highest value of ��. 

Step 4. Using a significant level of _ =  0.05, test the significance of the 

additional predictor variable using the ��  value with the model 

�̀containing the � + 1 predictors and the reduced model `� containing 

the � predictors from the previous stage of the selection process. 

Step 5. If the �� value is not significant, terminate the procedure and retain the � 

predictors from the previous stage. If it is significant, add the additional 

predictor to the � previously selected, increment � by 1, and return to 

step 3.   

 Weir et al. (2002) evaluated the association between the number of lymph nodes 

removed at axillary dissection and recurrence and survival for patients with node-

negative invasive breast cancer. Multivariate tests of the effect of number of nodes 

removed were performed with Cox proportional hazards analysis. Using forward 

selection, the best-fitted prognostic model for each index of outcome then was 

constructed.  
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 Taib et al (2011) investigated survival trends and factors that affect survival in 

Malaysia. As for identifying important prognostic factors, they employed the forward 

selection approach in the multivariate Cox regression model. The selection was based 

on the log-likelihood ratio statistic. 

 

2.9.2 Bayesian model averaging    

 Referring to Raftery et al. (1997), a typical approach to data analysis is to carry 

out a model selection leading to a single “best” model and then to make inferences as if 

the selected model was the true model. However, this ignores a major component of 

uncertainty, namely uncertainty about model itself (Draper, 1995; Hodges, 1987; 

Leamer, 1978; Moulton, 1991; Raftery, 1988, 1996). As a consequence, uncertainty 

about quantities of interest can be underestimated. A complete Bayesian solution to this 

problem involves averaging over all possible combinations of predictors when making 

inferences about quantities of interest. This approach is called Bayesian model 

averaging (BMA). The idea of BMA was developed by Leamer (1978), and recently 

received a lot of attention in the literature. Leamer (1978) presented the basic paradigm 

for BMA and the fundamental idea that BMA accounts for the uncertainty involved in 

selecting the model. George (1999) discussed the use of BMA in the context of decision 

theory. Meanwhile, Draper (1995), Chatfield (1995), and Kass and Raftery (1995) 

reviewed BMA and the costs of ignoring model uncertainty. Hoeting et al. (1999) 

explained in detail the implementation of BMA. This approach provides optimal 

prediction ability (Madigan and Raftery, 1994).  

 According to Montgomery and Nyhan (2010), BMA is a more comprehensive 

approach to addressing model uncertainty, which allows us to assess the robustness of 

results to alternative specifications by calculating posterior distributions over 
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coefficients and models. Let \ denote the � × ; matrix of all the independent variables 

theorized to be predictors of outcome a. Standard analyses would assume that 

a = \P + b	, 
where b	~	d�0, e�f�. However, we might have uncertainty about which of the g = 2K 

model configurations from the model space ` = h �̀, `�, … ,`ij is the “correct” model. 

 The purpose of BMA is to explicitly incorporate this uncertainty into the model  

and therefore its inferences. The standard BMA approach represents the data as coming 

from a hierarchical mixture model. Firstly, a prior probability distribution is assign to 

the model parameters P and e� and the model `�. The model,	`�, is assumed to come 

from the prior probability distribution 

`�	~	k�`�� 
and the vector of model parameters is generated from the conditional distribution 

e�|`�	~	k�e�|`�� 
and                                           Pm|e�, `�	~	k�Pm|`�, e��,  
where Ω = o�, … , oK represents a vector of zeroes and ones indicating the inclusion (or 

exclusion) of variables in model `�.  

 The data generating process then is parameterized using the following 

conditional model:   

a|Pm, e�, `�	~	d�\mPm, e�f�	. 
The marginal distribution of the data under model `� can therefore be written as 

;�a|`�� = p;�a|Pm, e�, `��k �Pm|e�, `��k�e�|`��)Pm)e�	. 
The posterior probability of model `� is  

;�`�|a� = ;�a|`��k�`��∑ ;�a|`��k�`��i� � 	. 
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It provides a coherent way of summarizing model uncertainty after observing the data. 

For instance, the expected value for the coefficient P�  can be easily derived after 

averaging across the model space `: 

��P�|a� = �;�`�|a���P�|`� , a�i
� � 	. 

��P�|a�  represents the weighted expected value of P�  across every possible model 

configuration (with the weights determined by our priors and the performance of the 

models). 

The difficulties associated with implementing the BMA approach are primarily 

computational. Calculating any quantities of interest involves solving or approximating  

;�`�|a�, which is often an intractable high-dimensional integral, for all g = 2K models 

under consideration. In practice, the calculations of these quantities use Bayes factors 

(Jeffreys, 1935,1961), a method for assessing the evidence in favor of two competing 

models, to compare each model with either the null model or the full specification (Kass 

and Raftery, 1995). 

Given modest numbers of plausible covariates, even standard Markov chain 

Monte Carlo (MCMC) approaches become increasingly impractical as the model space 

expands. Hence, BMA computation has been radically improved. With the combination 

of increased computing power, the development of more analytically tractable prior 

specifications and the distribution of the BMA and Bayesian Adaptive Sampling (BAS) 

packages for R have made these techniques far more accessible.  

 For this study, we utilize the bic.glm software available for R in model selection. 

We use the Bayesian information criterion (BIC), as an approximation to a Bayes factor, 

in calculating the quantities of interest. The best-fitted model then is selected as that 

which corresponds to the lowest value of BIC. 
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2.10 Wald statistic and Akaike’s information criterion  

 In statistical analysis approaches, a rigorous and theoretically justifiable 

approach to model fitting, selection and inference is required. Traditionally, with 

multiple linear regression modeling, analysts have used statistics such as parameter 

coefficient estimates and their significance, the coefficient of determination q� , the 

residual standard error, the ANOVA r  test, the adjusted q� , and Mallows’sK  to 

evaluate the relative fit of models (Stauffer, 2008). In this study, we use the Wald 

statistic (��) for this purpose. 

 According to Kyngas and Rissanen (2001), the Wald test is a way of testing the 

significance of particular explanatory variables in a statistical model. The Wald statistic, 

7, can be used to test under the hypotheses set as below, 

��: ? = ?� 

�t: ? ≠ ?� 

and is calculated to be: 

7 = (?v − ?�,�1f/(?v,
 

                                                                     = f/(?v,h?v − ?�j� 
where ?v is the maximum likelihood estimate (MLE), and f/(?v, is the expected Fisher 

information evaluated at the MLE. When the null hypothesis is true, 7 tend to a chi-

square distribution. The Wald test is easy to calculate but their reliability is questionable, 

particularly for small samples. 

 The Wald test, described by Polit (1996) and Agresti (1990), is one of a number 

of ways of testing whether the parameters associated with a group of explanatory 

variables are zero. If for a particular explanatory variable, or group of explanatory 

variables, the Wald test is significant, then we conclude that the parameters associated 

with these variables are not zero, so that the variables should be included in the model. 
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If the Wald test is not significant then these explanatory variables can be omitted from 

the model. When considering a single explanatory variable, Altman (1991) uses a t-test 

to check whether the parameter is significant. For a single parameter, the Wald statistic 

is the square of the t-statistic and so will give exactly equivalent results. 

 However, refer to Stauffer (2008), the statistic mentioned above test various 

assumptions of the model fit, such as whether the model is statistically equivalent to the 

null model. They do not directly assess the issue of whether the model is the best-fitting 

to the sample dataset. Unfortunately, they also sometimes tend to overfit the model to 

the sample dataset, with compounding of error. Therefore, one of a more appropriate 

information-theoretic approach to model fitting, using Akaike’s information criteria 

(AIC), is recommended. This criterion provides a more rigorous and theoretically 

justified approach to model fitting that avoids the overfitting of models to the sample 

dataset and the compounding of error. The AIC was developed by the Japanese 

mathematician Hirotugu Akaike (1973, 1974). In general, for any probabilistic 

statistical model for a sample dataset with a likelihood function ℒ, AIC is defined using 

the deviance	= x = −2 ∙ GHI�ℒ� as below: 

AIC = x + 2 ∙ V 

																											= −2 ∙ GHI�ℒ� + 2 ∙ V 

where V =  the number of parameters in the model. It is a first-order Taylor series 

approximation of the relative Kullback-Leibler distance (KL distance) between a model 

and the dataset. The best-fitted model in a collection of models which has the lowest 

AIC value. In our study, we propose the AIC instead of �� to evaluate the relative fit of 

models. Their performance in model fitting is compared. 
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2.11 Summary 

 It is of interest to look at the problems of finding alternative statistical methods 

of identifying the optimal threshold of lymph nodes to be removed for survival and 

adequate nodal staging of breast cancer patients. We have presented the literature 

review of different methods as solutions for the problems we considered. This will be 

explored further in subsequent chapters. 
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CHAPTER 3:  UMMC BREAST CANCER DATA – DESCRIPTION 

AND SURVIVAL ANALYSIS 

 

3.1 Introduction 

 University Malaya Medical Centre (UMMC) is a government-funded medical 

institution located in Petaling Jaya, southwest corner of Kuala Lumpur. It was 

established in 1962. Breast cancer data for this study are obtained from the UMMC 

breast cancer registry, which contains information on 3280 patients diagnosed between 

January 1998 and December 2008. The patients are followed-up until 19 February 2013. 

Patients with missing information are excluded. These 1890 patients with complete 

details then are categorized into two groups: 1019 patients who do not have lymph 

nodes involvement (Nneg) and 871 patients with at least one of axillary nodes involved 

(Npos). Both groups of patients are considered separately for the analysis in Chapter 4 

but group as a whole in Chapter 5.  

  

3.2 Description of data 

 The information recorded for each patient consists of age at diagnosis, race 

(Chinese, Malay, India or others), date of diagnosis, date of death or date of last contact, 

and pathological characteristics of tumor. The pathological characteristics considered 

include tumor size, tumor stage, lymphovascular invasion (LVI), total number of lymph 

nodes removed (NRN) and number of lymph nodes positive or involved (Npos).  In 

addition, the survival times of patients and status of patients are recorded at the end of 

the study. The mortality information is confirmed by referring to the records in the 

National Registration Department Malaysia. In our statistical modeling, we treated 

tumor size and NRN as continuous variables and the rest as categorical variables. We 
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note that Npos was treated as continuous variable in Chapter 4 but as categorical variable 

in Chapter 5. 

 The first pathological characteristic considered in this study is tumor size. It 

indicates how large across the tumor is at its widest point and usually measured in 

millimeters (mm) or centimeters (cm). As we can see from Figure 3.1, tumor size 2 cm 

in diameter is as big as a peanut while 5 cm tumor is about the size of a lemon. Tumor 

size is used to determine the stage of cancer. 

 

 

 

 The second pathological characteristic considered in this study is tumor stage. 

Staging is a way of describing where the cancer is located, how much the cancer has 

grown, and if or where it has spread. The staging of the breast cancer may provide some 

guidance for appropriate treatment regimen for patients. The most commonly used tool 

to describe the stage of cancer is the TNM system. TNM is an abbreviation for tumor 

(T), node (N), and metastasis (M). To determine the stage of cancer for each person, 

these three factors are considered as follows: 

1. How large is the primary tumor and where is it located?  

2. Has the tumor spread to the lymph nodes, and if so, how many nodes are involved?  

3. Has the cancer metastasized to other parts of the body?  

Figure 3.1: Four types of food representing the tumor size 
(Mayo Foundation for Medical Education and Research) 
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 There are five stages: stage 0 (zero), which is noninvasive ductal carcinoma in 

situ (DCIS), and stages I through IV (one through four), which are used for invasive 

breast cancer. The details of these five stages are discussed as follows: 

1. Stage 0 describes disease that is only in the ducts and lobules of the breast tissue and 

has not spread to the surrounding tissue of the breast. It is also called noninvasive 

cancer (see Figure 3.2). 

 

 

 

 

2. Stage I describes invasive breast cancer and it is divided into stages IA and IB (see 

Figure 3.3).  

a. In stage IA, the tumor is 2 centimeters or smaller and has not spread outside 

the breast. 

b. In stage IB, no tumor is found in the breast or the tumor is 2 centimeters or 

smaller. Small clusters of cancer cells (larger than 0.2 millimeters but not 

larger than 2 millimeters) are found in the lymph nodes.  

Figure 3.2: Abnormal cells are found in the lining of a breast duct and in the lobules of 
the breast (Cancer.Net, 2015) 
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3. Stage II describes invasive breast cancer and it is divided into stages IIA and IIB 

(see Figures 3.4 and 3.5). 

a. In stage IIA, no tumor is found in the breast and cancer is found in 1 to 3 

axillary lymph nodes or lymph nodes near the breastbone, or the tumor is 2 

centimeters or smaller and cancer is found in 1 to 3 axillary lymph nodes or 

lymph nodes near the breastbone, or the tumor is larger than 2 centimeters 

but not larger than 5 centimeters and has not spread to the lymph nodes. 

b. In stage IIB, the tumor is larger than 2 centimeters but not larger than 5 

centimeters and small clusters of cancer cells (larger than 0.2 millimeter but 

not larger than 2 millimeters) are found in the lymph nodes, or the tumor is 

larger than 2 centimeters but not larger than 5 centimeters and cancer is 

found in 1 to 3 axillary lymph nodes or lymph nodes near the breastbone, or 

the tumor is larger than 5 centimeters and has not spread to the lymph nodes. 

Figure 3.3: Stages IA and IB breast cancer (National Cancer Institute, 2015) 
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4. Stage III describes invasive breast cancer and it is divided into stages IIIA, IIIB and 

IIIC (see Figures 3.6 to 3.8). 

a. In stage IIIA, no tumor is found in the breast or the tumor may be any size and 

cancer is found in 4 to 9 axillary lymph nodes or lymph nodes near the 

breastbone, or the tumor is larger than 5 centimeters and small clusters of cancer 

cells (larger than 0.2 millimeter but not larger than 2 millimeters) are found in 

the lymph nodes, or the tumor is larger than 5 centimeters and cancer is found in 

1 to 3 axillary lymph nodes or lymph nodes near the breastbone. 

Figure 3.5: Stages IIB breast cancer (National Cancer Institute, 2015) 
 

Figure 3.4: Stages IIA breast cancer (National Cancer Institute, 2015) 
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b. In stage IIIB, the tumor may be any size and cancer has spread to the chest wall 

and/or to the skin of the breast and caused swelling or an ulcer. Cancer may 

have spread to up to 9 axillary lymph nodes or the lymph nodes near the 

breastbone. Cancer that has spread to the skin of the breast may be 

inflammatory breast cancer. 

c. In stage IIIC, no tumor is found in the breast or the tumor may be any size and 

may have spread to the chest wall and/or to the skin of the breast and caused 

swelling or an ulcer. Also, cancer has spread to 10 or more axillary lymph nodes, 

or to lymph nodes above or below the collarbone, or to axillary lymph nodes 

and lymph nodes near the breastbone. Cancer that has spread to the skin of the 

breast may be inflammatory breast cancer. 

 

 

Figure 3.6: Stages IIIA breast cancer (National Cancer Institute, 2015) 
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5. Stage IV can be described as the cancer has spread to other parts of the body, most 

often the bones, lungs, liver, or brain (see Figure 3.9). 

Figure 3.7: Stages IIIB breast cancer (National Cancer Institute, 2015) 
 

Figure 3.8: Stages IIIC breast cancer (National Cancer Institute, 2015) 
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 The third pathological characteristic considered in this study is lymphovascular 

invasion denoted as LVI. The LVI is defined as tumor emboli present within a definite 

endothelial-lined space in the breast surrounding invasive carcinoma. The existence of 

LVI may help identify who is at increased risk for axillary lymph node and distant 

metastasis (Song et al., 2011). 

 The fourth and fifth pathological characteristics considered in this study are the 

total number of lymph nodes removed (NRN) and number of lymph nodes involved 

(Npos), respectively. As a part of the lymphatic system, lymph nodes are small structures 

that work as filters for harmful substances. They contain immune cells that can help 

fight infection by attacking and destroying germs that are carried in through the lymph 

fluid. Lymph nodes removed (NRN) are the nodes that have been removed during 

Figure 3.9: Stages IV breast cancer (National Cancer Institute, 2015) 
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cancer surgery. Lymph node-negative (Nneg) means the lymph nodes do not contain 

cancer while lymph node-positive/involved (Npos) means the lymph nodes contain 

cancer. The Npos is rated N1, N2, or N3 depending on the number affected and the 

location. The details are as below: 

1. N1: Cancer is found in 1-3 lymph nodes under the arm or lymph nodes within the 

breast. 

2. N2: Cancer is found in 4-9 lymph nodes under the arm or lymph nodes within the 

breast. 

3. N3: Cancer is found in 10 or more lymph nodes under the arm, or has spread under 

or over the collarbone. It may have been found in the underarm nodes as well as 

lymph nodes within the breast.  

 

3.2.1 Background of data 

 Summary of the prognostic factors are given in Table 3.1. The age at diagnosis 

of a patient is divided into three levels; level one is for ≤ 40 years old, level two is for 

41 − 59 years old and level three is for ≥ 60 years old. The race is categorized into four 

levels; Chinese as level one, Malay as level two, India as level three and other races as 

level four. 

 The tumor stage is stratified into five levels where level zero is for stage 0, level 

one is for stage I, level two is for stage II, level three is for stage III, while level four 

represents stage IV. Further, the LVI are divided into two levels; “absent” status as level 

zero and “present” status as level. The tumor size (mm), NRN and Npos are treated as 

continuous variables.  

 Two other important information recorded are the survival times measured in 

days and the status of patients. The survival times of patients take the number of days in 

which the individual enters the study until the date on which the individual die or last 
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known to be alive. The mortality information is confirmed with the records obtained 

from the National Registration Department Malaysia. Patients who are still alive at the 

end of the study or die because of non-breast cancer death are given status zero, while 

patients who die because of breast cancer are given status one.  

Table 3.1: Description of breast cancer data 
 

Prognostic Factors  Level 

 
Age 

≤ 40 
41 – 59 ≥ 60 

age1 
age2 
age3 

 
Race 

Chinese 
Malay 
India 

Others 

race1 
race2 
race3 
race4 

 
 

Tumor stage 

Stage 0 
Stage I 
Stage II 
Stage III 
Stage IV 

stage0 
stage1 
stage2 
stage3 
stage4 

LVI Absent 
Present 

LVI0 
LVI1 

Tumor size  Continuous 
NRN  Continuous 
Npos  Continuous 

 

 Table 3.2 gives the number of patients for every prognostic factor of breast 

cancer patients in the group as a whole and for each group of patients (Npos and Nneg 

patients). Generally, it can be seen that most breast cancer patients were in the age range 

41 – 59 years old, followed by age more than 60 and less than 40 years old. That is, 

patients between 41 to 59 years old are more prone to cancer compared to patients in the 

other two age groups. It is observed that Chinese has the highest number of patients who 

are diagnosed with breast cancer, followed by the Malay, the India and then the other 

race. The majority of breast cancer patients are Chinese because they seek treatment 

early at the hospital compare to other races (Taib et al., 2008; Taib et al., 2011). 

 Besides, the majority of breast cancer patients are diagnosed as having stage II 

and stage III, whereas stage II is the commonest stage. Next, it is found that around  
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Table 3.2: Breast cancer patient characteristics 
 

 

Prognostic Factors 

All patients 

 

Node Positive 

Patients 

Node Negative 

Patients 

Frequency % Frequency % Frequency % 

Age 
 

age1 ≤ 40 264 13.97 116 43.94 148 56.06 
age2 41 – 59 1156 61.16 555 48.01 601 51.99 
age3 ≥ 60 470 24.87 200 42.55 270 57.45 

Race race1 Chinese 1266 66.98 539 42.58 727 57.42 
race2 Malay 353 18.68 196 55.52 157 44.48 
race3 India 255 13.49 132 51.76 123 48.24 
race4 Others 16 0.85 4 25 12 75 

Tumor 
stage 

stage0 Stage 0 25 1.32 0 0 25 100 
stage1 Stage I 436 23.07 0 0 436 100 
stage2 Stage II 817 43.23 327 40.02 490 59.98 
stage3 Stage III 540 28.57 478 88.52 62 11.48 
stage4 Stage IV 72 3.81 66 91.67 6 8.33 

LVI LVI0 Absent 1024 54.18 300 29.3 724 70.7 
LVI1 Present 866 45.82 571 65.94 295 34.06 

Tumor 
size 
(cm) 

 ≤ 2 649 34.34 185 28.51 464 71.49 
 2.1 – 5 946 50.05 472 49.89 474 50.11 
 > 5 295 15.61 214 72.54 81 27.46 

NRN  0 1 0.05 0 0 1 100 
 1 – 5 107 5.66 27 25.23 80 74.77 
 6 – 10 443 23.44 145 32.73 298 67.27 
 11 – 15 610 32.28 277 45.41 333 54.59 
 16 – 20 423 22.38 224 52.96 199 47.04 
 21 – 25 179 9.47 97 54.19 82 45.81 
 > 25 127 6.72 101 79.53 26 20.47 

Status  Alive 1401 74.13 521 36.99 880 63.01 
 Dead 489 25.87 350 72.12 139 27.88 

 

45.82% of patients had a positive lymphovascular invasion while 54.18% of patients 

had a negative lymphovascular invasion. More patients with Npos had a positive 

lymphovascular invasion compared to patients with Nneg.  

 In addition, 50.05% of patients were found to have 2 cm to 5 cm size of tumor. It 

is obviously showed that patients with Npos were diagnosed with large sized tumor 

compared to patients with Nneg. This might be due to lack of awareness among patients 

to go for early check-up. Further, most of the patients had between 6 and 20 lymph 

nodes removed during surgery. In this study, the survival was high for patients with Nneg 

(63%) but low for patients with Npos (37%).  
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3.3 Survival analysis 

3.3.1 Survival probability of breast cancer patients 

 Figures 3.10(a) and 3.10(b) give the plot of overall survival probability for the 

group as a whole and for each group of patients (Npos and Nneg patients). Figure 3.10(b) 

shows that the Kaplan-Meier curves of Npos and Nneg patients do not cross each other. 

The log-rank tests confirm that the survival of both groups are significantly different (p-

value = 0). The five-year survival probability S(60) of total patients is high, that is 0.786. 

The five-year survival probability is the estimated value in the confidence interval at 

time . = 60 months. It should be noted that the five-year rate has conventionally been 

used as an index for comparing survival across groups of patients by stage, race etc. and 

is often taken as a measure of cure rate. By comparing the five-year survival 

probabilities of both groups, we can conclude that Nneg patients had a better chance of 

survival compared to the Npos patients as given in Table 3.3. It is noted that the 95% 

confidence intervals (C.I.) of the survival probabilities for both groups of patients do not 

overlap. 
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                       b) Node positive and node negative patients (p-value = 0) 
 

Figure 3.10: Kaplan-Meier plot of overall survival for breast cancer patients 
         y-axis is survival probability, x-axis is observation 
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Table 3.3: Five-year probability of overall survival S(60) for breast cancer patients 
 

Patients S(60) 95% C.I. 

All  0.786 (0.768, 0.805) 
Node Positive 0.664 (0.634, 0.697) 
Node Negative 0.890 (0.871, 0.909) 

 

We then proceed to look at the survival probabilities for every prognostic factor. 

Figure 3.11 gives the Kaplan-Meier plots of each prognostic factor. The survival of 

patients in different levels of stage and LVI were significantly different. Their 

respective Kaplan-Meier curves do not cross each other and the p-values of the log-rank 

tests were less than 0.05. Meanwhile, the prognostic factor of age gave insignificant 

result and the Kaplan-Meier curve does cross.  

Besides, Figure 3.12 gives the Kaplan-Meier plots of each prognostic factor for 

Npos patients. The survival of patients in different levels of stage and LVI were 

significantly different. Their respective Kaplan-Meier curves do not cross each other 

and the p-values of the log-rank tests were less than 0.05. While, the other two 

prognostic factor; age and race gave insignificant result and the Kaplan-Meier curve 

does cross. 

      Furthermore, the Kaplan-Meier plots of each prognostic factor for Nneg patients 

were shown in Figure 3.13. The survival of patients in different levels of age and stage 

were significantly different, where their respective Kaplan-Meier curves do not cross 

each other and the p-values of the log-rank tests were less than 0.05. On the other hand, 

the survival of patients in different levels of race and LVI were not significantly 

different and the Kaplan-Meier curve does cross. 
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a)  Age (p-value = 0.131) 
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b)  Race (p-value = 0.004) 
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c)  Stage (p-value = 0) 
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d)  LVI (p-value = 0) 

  

 Figure 3.11: Kaplan-Meier plot of variables for all patients 
         y-axis is survival probability, x-axis is observation 
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a)  Age (p-value = 0.313) 
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b)  Race (p-value = 0.148) 
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c)  Stage (p-value = 0) 
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d)  LVI (p-value = 0.007) 

 

Figure 3.12: Kaplan-Meier plot of variables for node positive patients 
y-axis is survival probability, x-axis is observation 
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a)  Age (p-value = 0.034) 
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b)  Race (p-value = 0.804) 
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c)  Stage (p-value = 0) 
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d)  LVI (p-value = 0.396) 

 
Figure 3.13: Kaplan-Meier plot of variables for node negative patients 

y-axis is survival probability, x-axis is observation 
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 Table 3.4 gives the five-year probabilities of breast cancer patients for each 

prognostic factor in the group of patients we considered. The five-year probabilities of 

survival showed that patients in age group between 41 to 59 years old had a better 

chance of survival compared to other age groups. In general, Chinese patients have best 

chance of survival compared to other races. We observed that Malay patients had 

significantly highest probability of mortality among both groups of Npos and Nneg 

patients. 

 

Table 3.4: Five-year probability survival S(60) for breast cancer patients 
 

Prognostic 

Factors 

All patients Node Positive Patients  Node Negative Patients  

S(60) 95% C.I. S(60) 95% C.I. S(60) 95% C.I. 

Age age1 
(≤ 40) 

0.737 
 

(0.685, 0.792) 
 

0.609 
 

(0.526, 0.705) 
 

0.834 
 

(0.776, 0.897) 
 

age2 
(41 – 59) 

0.799 
 

(0.776, 0.822) 
 

0.684 
 

(0.646, 0.724) 
 

0.906 
 

(0.882, 0.929) 
 

age3 
(≥ 60) 

0.779 
 

(0.742, 0.817) 
 

0.635 
 

(0.571, 0.706) 
 

0.884 
 

(0.846, 0.923) 
 

Race race1 
(Chinese) 

0.807 
 

(0.785, 0.829) 
 

0.686 
 

(0.648, 0.727) 
 

0.895 
 

(0.873, 0.918) 
 

race2 
(Malay) 

0.737 
 

(0.692, 0.784) 
 

0.618 
 

(0.553, 0.690) 
 

0.881 
 

(0.832, 0.934) 
 

race3 
(India) 

0.738 
 

(0.686, 0.794) 
 

0.621 
 

(0.543, 0.711) 
 

0.860 
 

(0.801, 0.924) 
 

race4 
(Others) 

0.901 
 

(0.760, 1.000) 
 

0.670 
 

(0.423, 1.000) 
 

0.846 
 

(0.672, 1.000) 
 

Tumor 
stage 

stage0 
(Stage 0) 

1.000 
 

(1.000, 1.000) 
 

- 
 

- 1.000 
 

(1.000, 1.000) 
 

stage1 
(Stage I) 

0.911 
 

(0.885, 0.938) 
 

- 
 

- 0.911 
 

(0.885, 0.938) 
 

stage2 
(Stage II) 

0.856 
 

(0.832, 0.881) 
 

0.814 
 

(0.773, 0.858) 
 

0.884 
 

(0.856, 0.913) 
 

stage3 
(Stage 

III) 

0.639 
 
 

(0.600, 0.681) 
 
 

0.618 
 
 

(0.575, 0.663) 
 
 

0.791 
 
 

(0.691, 0.906) 
 
 

stage4 
(Stage 

IV) 

0.238 
 
 

(0.157, 0.363) 
 
 

0.245 
 
 

(0.160, 0.377) 
 
 

0.167 
 
 

(0.028, 0.997) 
 
 

LVI Absent 
(LVI0) 

 

0.847 
 
 

(0.825, 0.869) 
 
 

0.726 
 
 

(0.677, 0.779) 
 
 

0.897 
 
 

(0.875, 0.919) 
 
 

Present 
(LVI1) 

0.714 
 

(0.684, 0.744) 
 

0.631 
 

(0.592, 0.672) 
 

0.872 
 

(0.834, 0.911) 
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In addition, the five-year survival probability for stage 0 breast cancer patients is 

1. This means that all patients diagnosed with stage 0 breast cancer will be alive for at 

least five years after being diagnosed. In fact, patients diagnosed with this precancerous 

condition usually live long and healthy lives. Besides, patients in stage 1 had better 

chance of survival compared to other stages, while patients diagnosed with stage IV had 

significantly worse probability of survival compared to other stages. It was obviously 

shown that the early stage of cancer had a better survival compared to the advanced 

stage of cancer. Therefore, it is important that breast cancer patients come early for 

check-up upon noticing any symptom of breast cancer. 

 Further, we found that patients with negative lymphovascular invasion had 

better survival probability compared to those with positive lymphovascular invasion. 

 

3.4 Summary 

 For the breast cancer data in this study, most of the patients were in the age 

range 41 to 59 years old and most were Chinese. The majority of them were stage 2 

patients and their tumor size was less than 5 cm. Most of the patients had between 6 and 

20 lymph nodes removed during surgery. The survival of patients was high for patients 

with Nneg, but low for patients with Npos.  
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CHAPTER 4:  BREAST CANCER – OPTIMAL NUMBER OF 

LYMPH NODES TO BE REMOVED FOR MAXIMAL SURVIVAL 

 

4.1 Introduction 

 The number of lymph nodes removed is one of the most important prognostic 

factors for survival in breast cancer. In this chapter, we aim to investigate the influence 

of the number of lymph nodes removed on survival and then to determine the optimal 

number of lymph nodes to be removed for maximizing the survival. Data were obtained 

from University Malaya Medical Centre (UMMC) breast cancer registry. The analysis 

consists of three stages. Firstly, the chi-square test of independence is performed to 

determine the significant association between prognostic factors and survival status, 

while the Wilcoxon test is used to compare the hazard functions of the two or more 

levels at each observed time event. Secondly, we find the best-fitted logistic and Cox 

regression models using forward selection and Bayesian model averaging (BMA) 

procedures when applied on binary and time-to-event responses, respectively. Thirdly, 

the models are used to assess the prognostic values of independent prognostic factors of 

survival at all thresholds of number of lymph nodes removed. For both types of 

regression models, we use not only the Wald statistic (��) but also introduce the use of 

the Akaike Information Criterion (AIC) to determine the optimal number of lymph 

nodes to be removed which results in maximum differential in survival of breast cancer 

patients. In this study, we apply the logistic and Cox regression models for analyses as 

both models are the simplest and well-understood by the medical practitioners. Besides, 

the medical data collected contain information on the survival status and time, which are 

suitable for Cox and logistic modeling. Furthermore, the BMA procedure is considered 

as it accounts for model uncertainty in linear regression models, but not in the forward 

selection procedure. According to Raftery et al. (1997), ignoring of model certainty may 
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leads to the underestimation of uncertainty when making inferences about quantities of 

interest. As a Bayesian solution to this problem, the BMA procedure involves averaging 

over all possible models when making inferences about quantities of interest. 

  

4.2 Data description  

 Data for this study were obtained from the University of Malaya Medical Center 

(UMMC) breast cancer registry, which contains information on 3280 patients diagnosed 

between Jan 1998 and Dec 2008. The patients were followed-up until 19 February 2013. 

Patients with missing information were excluded. These 1890 patients with complete 

details were then categorized into two groups: 1019 patients who did not have lymph 

nodes involvement (Nneg) and 871 patients with at least one or more axillary nodes 

involved (Npos). Both groups of patients were considered separately for the analysis. The 

information recorded for each patient can be found in Chapter 3. 

 

4.3 Statistical analysis 

4.3.1 Hypothesis testing 

 We first use the chi-square test of independence to assess individually whether 

the prognostic factors and survival status are independent of each other.  This enables us 

to identify important prognostic factors associated with the survival of the breast cancer 

patients. Similarly, the statistical significance of the difference between the hazard 

functions for each level in individual prognostic factor is determined using Wilcoxon 

test. This is constructed by computing the observed and expected number of death in 

each of the level at each observed event time and then adding these to obtain an overall 

summary across all event time points. The null hypothesis tested here is that the risk of 

death is the same in all levels.  
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4.3.2 Regression modeling 

 It is also our intention to identify important prognostic factors taking into 

account the contribution of other factors. This is achieved using the logistic and Cox 

regression modeling. In logistic regression analysis, the model predicts the probability 

of death for a given set of independent prognostic factors based on a generalized linear 

model for binary response using a logit link function. Additionally, Cox regression 

model is used to estimate the risk or hazard of death at any time after the time origin of 

the study. The best-fitted models are obtained using forward selection and BMA 

procedures, respectively. 

 To obtain the best-fitted logistic and Cox regression models, the procedures are 

presented in detail as below: 

Step 1.  The data set are categorized according to all thresholds of NRN involved. 

Step 2.  For each threshold of NRN, a multiple logistic regression model is fitted 

  using all predictor we consider in this study, using a significance level of 

  _	= 0.05. 

Step 3. At each threshold of NRN, the procedure of forward selection is 

conducted to find the best-fitted logistic regression model. The procedure 

starts with a simple model and adds terms sequentially until further 

additions do not significantly improve the fit. 

Step 4. The best-fitted logistic regression model then is obtained for each 

thresholds of NRN. 

Step 5.  The Step 1 – 4 are repeated using the Bayesian model averaging (BMA) 

  procedure. 

Step 6.  The complete procedure (Step 1 – 5) is repeated using Cox regression 

  analysis in order to obtain the best-fitted Cox regression model for each 

  thresholds of NRN.  
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4.3.3 Determination of optimal number of lymph nodes to be removed 

The focus of the study is to determine the optimal number of lymph nodes to be 

removed (NRN_T), for two groups of patients (Nneg and Npos). This is carried out in 

several steps.  Firstly, we treat NRN as a categorical variable such that dqd�V� = 0 or 

1, according to whether dqd > V  or dqd ≤ V , with V  taking all possible values of 

NRN in the data. Secondly, for each V, we find the best-fitted logistic regression model 

using forward selection and BMA. We then record the values of ��,  and also those of 

AIC. Finally, the value of NRN_T is identified as that which corresponds to the highest 

value of ��, or the lowest value of AIC. A similar procedure is applied to the case using 

Cox regression model.  

To determine the optimal number of lymph nodes to be removed (NRN_T) for 

maximal survival using logistic and Cox regression analyses, the procedure are 

summarized as follow: 

Step 1.  The data set are categorized according to all thresholds of NRN involved. 

Step 2. Each NRN is treated as a categorical variable such that dqd�V� = 0 or 1, 

according to whether dqd > V or dqd ≤ V, with V taking all possible 

values of NRN in the data.       

Step 3. Use the best-fitted logistic regression model (under forward selection 

procedure), which is obtained in section 4.3.2. 

Step 4. The values of �� and AIC are recorded from logistic regression models 

for all thresholds of nodes to be removed. 

Step 5.  Choose the NRN_T, which has the highest value of ��  or the lowest 

  value of AIC. 

Step 6.  The Step 1 – 5 are repeated using the best-fitted logistic regression model 

  (under BMA procedure) we obtain in section 4.3.2. 
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Step 7.  The complete procedure (Step 1 – 6) is repeated using the best-fitted Cox 

  regression models we obtain in the previous section.  

 

4.4 Results 

 Figure 4.1 presents the distributions of NRN for the group as a whole, patients 

with Nneg only and patients with Npos only. We notice that the same patterns are 

observed for both groups such that more than 30% of patients have at least 11 to 15 

nodes removed during axillary dissection. This number seems to be larger than those 

found in the literature. This study hopes to provide a better guideline for deciding the 

sufficient number of lymph node to be removed that give maximum differential in 

survival of local breast cancer patients. 

 

 

Figure 4.1:  Number of lymph nodes removed for the group as a whole and for each 
group of patients (node positive and node negative patients) 

 

  

As illustrated in Table 4.1, the chi-square test of independence reveals that the 

survival status of patients with Nneg were related to age at diagnosis and tumor stage, 

while the survival status of patients with Npos were associated with LVI, tumor size, 

tumor stage and NRN.  
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Table 4.1: Significant prognostic factors of survival for  
node positive and node negative patients using chi-square test 

 
 

Prognostic factors 

Node negative patients Node positive patients 

 �� p-value  �� p-value 

Age 6.9297 0.0313* 1.4656 0.4806 
Race 1.2572 0.7393 4.5286 0.2098 
LVI 0.5725 0.4493 5.1158 0.0237* 

Tumor Size 70.8077 0.1395 101.5575 0.0001* 
Tumor Stage 33.5602 <.0001* 80.3832 <.0001* 

NRN 42.4062 0.2492 66.9182 0.0453* 
    * Significant  

In addition, the results of the Wilcoxon test in Table 4.2 indicate that there was a 

significant difference in the survivor functions for each level of age at diagnosis, tumor 

size, tumor stage and NRN for patients with Nneg. However, for patients with Npos, the 

significant differences not only occur for each level of tumor size, tumor stage and NRN, 

as presented in the case Nneg, but also for each level of LVI. 

 

Table 4.2: Significant difference between the survival functions for node positive and 
node negative patients in all prognostic factors of survival using Wilcoxon test 

 
 

Prognostic factors 

Node negative patients Node positive patients 

 �� p-value  �� p-value 

Age 6.5 0.038* 3.2 0.2 
Race 1 0.797 5.8 0.124 
LVI 0.8 0.373 8.3 0.00388* 

Tumor Size 192 0* 357 0* 
Tumor Stage 77.7 0* 152 0* 

NRN 58.2 0.0147* 274 0* 
     * Significant  

 

The results of chi square and Wilcoxon tests are not consistent as they are 

different in criteria of testing. The former investigates the significant association 

between prognostic factors and survival status, while the latter is used to compare the 

hazard functions of the two or more levels at each observed time event.  

Using forward selection procedure, for patients with Nneg, the best-fitted logistic 

and Cox regression models indicate that tumor size was the important prognosis factor 

of survival, except for the case which k was 30 in the best-fitted Cox regression model. 
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In this particular case, the best-fitted Cox regression model show that not only tumor 

size but also tumor stage as the important prognosis factors of survival. As tumor size 

was the important prognosis factor of survival, for each increase in one unit of tumor 

size, the estimated odds of survival increase by 1.14 based on the best-fitted logistic 

model, while the hazard increases by 13% based on the best-fitted Cox model. On the 

other hand, for patients with Npos, both best-fitted logistic and Cox regression models 

point out that the important prognosis factor were tumor size and tumor stage. For each 

increase in one unit of tumor size, the estimated odds of survival increase by 1.06 based 

on the best-fitted logistic model, while the hazard increases by 3% based on the best-

fitted Cox model. Meanwhile, for each increase in one level of stage, the estimated odds 

of survival increase by 2.58 based on the best-fitted logistic model, while the hazard 

increases by 134% based on the best-fitted Cox model. 

Figure 4.2 gives the plots for patients with Nneg, which use the logistic and Cox 

regressions with AIC and Wald’s statistics as the decision rule. Using logistic regression, 

the plots recommend that the NRN_T for patients with Nneg was 19 nodes, where its 

value of �� was the highest, or its value of AIC was the lowest. The corresponding 

values of �� and AIC were 23.75 and 794.33 respectively. Using Cox regression, the 

plots suggest that the NRN_T for patients with Nneg was 19 nodes based on the value of 

�� while 30 nodes based on the value of AIC. The corresponding values of �� and AIC 

were 35.40 and 1846.78. 

Meanwhile, Figure 4.3 gives the plots for patients with  Npos. From these plots, it 

is seen that the recommended number of nodes to be removed was 10 as it gave the 

highest value of ��, or the lowest value of AIC. The corresponding values of �� and 

AIC were 81.82 and 1084.08 for the logistic regression model respectively, while 

130.21 and 4398.73 for the Cox regression model. That is, NRN_T for patients with Npos 

was 10.  
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   Figure 4.2: The optimal threshold for patients with Nneg using forward selection procedure 

Figure 4.3: The optimal threshold for patients with Npos using forward selection procedure 

      

  

   

   

Univ
ers

ity
 of

 M
ala

ya



64 
 

We notice that most of the results using AIC are consistent with those using �� 

values for both logistic and Cox regression models using forward selection procedure, 

except cases for patients with Nneg using Cox regression model.  

On the other hand, using the BMA procedure, the best-fitted logistic and Cox 

regression models show that the important prognosis factor was tumor size for patients 

with Nneg while tumor stage for patients with Npos. Similar to those cases using the 

forward selection procedure, Figure 4.4 gives the plots for patients with Nneg, which use 

the logistic and Cox regressions with AIC and Wald’s statistics as the decision rule. 

These plots recommend that the NRN_T for patients with Nneg was 19 nodes in where its 

value of �� was the highest, or its value of AIC was the lowest. The corresponding 

values of ��  and AIC were 23.75 and 794.33 for the logistic regression model 

respectively, while 35.40 and 1847.15 for the Cox regression model. 

Meanwhile, Figure 4.5 gives the plots for patients with  Npos. From these plots, it 

is seen that the recommended number of nodes to be removed was 10 as it gave the 

highest value of ��, or the lowest value of AIC. The corresponding values of �� and 

AIC were 79.41 and 1086.22 for the logistic regression model respectively, while 

121.03 and 4400.62 for the Cox regression model. That is, NRN_T for patients with Npos 

was 10. 

We also observe that the results using AIC are consistent with those using �� 

values for both logistic and Cox regression models using the BMA procedure. It is 

recommended that 19 nodes should be removed for patient with Nneg and 10 nodes for 

patient with Npos.  

Furthermore, we also look at the survival characteristics of patients in groups 

categorized by the optimal threshold NRN. The analysis is conducted based on the 

results of the BMA procedure due to the consistency of results using both measures. For 

patient with Nneg, only size of tumor was identified as significant prognosis factor. The  
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Figure 4.4: The optimal threshold for patients with Nneg using the BMA procedure 

Figure 4.5: The optimal threshold for patients with Npos using the BMA procedure 
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Kaplan-Meier plots of the survival in patients who had 19 or more nodes 

removed to those with less than 19 nodes removed were presented for the whole data 

(Figure 4.6) and for each level of tumor size as defined in Table 1 (Figure 4.7 – 4.9). In 

each situation, survival was significantly better when 19 or more nodes were removed 

for the case of tumor size less than 5 mm. 

As for patient with Npos, stage was identified as the only important prognosis 

factor. From the Kaplan-Meier plots given for the group as a whole (Figure 4.10) and 

for each stage of disease (Figure 4.11 – 4.13), we find that the survival in patients who 

had 10 or more nodes removed was significantly better as compared to those with less 

than 10 nodes removed for those with stage 3 cancer.   

0 50 100 150

0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Less than 19
Greater and equal 19

 

 

0 50 100 150

0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Less than 19
Greater and equal 19

 

 

Figure 4.6: Kaplan Meier estimates of survival for all patients with Nneg 
         y-axis is survival probability, x-axis is observation 

(Log-rank test:  p-value = 0.12) 

Figure 4.7: Kaplan Meier estimates of survival for Nneg patients with tumor size < 5mm 
y-axis is survival probability, x-axis is observation  

(Log-rank test:  p= 0.0618) 
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Figure 4.8: Kaplan Meier estimates of survival for Nneg patients with 5mm ≤ tumor	size < 10�� 
y-axis is survival probability, x-axis is observation  

(Log-rank test: p-value = 0.443) 

Figure 4.10: Kaplan Meier estimates of survival for all patients with Npos 
y-axis is survival probability, x-axis is observation  

(Log-rank test:  p-value = 0.0412) 
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Figure 4.9: Kaplan Meier estimates of survival for Nneg patients of with tumor	size > 10�� 
y-axis is survival probability, x-axis is observation  

(Log-rank test:  p-value = 0.677) 
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Figure 4.12: Kaplan Meier estimates of survival for patients with Npos of stage 3 
y-axis is survival probability, x-axis is observation 

(Log-rank test: p-value= 0.0249) 

Figure 4.13: Kaplan Meier estimates of survival for patients with Npos of stage 4 
y-axis is survival probability, x-axis is observation  

(Log-rank test: p-value = 0.486) 
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Figure 4.11: Kaplan Meier estimates of survival for patients with Npos of stage 2 
y-axis is survival probability, x-axis is observation 

(Log-rank test:  p-value = 0.908) 
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4.5 Discussion  

 The significant influence of the number of lymph nodes removed in the survival 

of breast cancer patients has been proven in the literature. Sosa et al. (1998) carried out 

a bivariate analysis using the Wilcoxon-Gehan statistic and they found that increasing 

the number of lymph nodes removed had improved the overall survival, disease-free 

survival and recurrence in breast cancer patients.  Using the Cox regression model, van 

der Wal et al. (2002) showed that total number of lymph nodes removed was one of the 

significant prognostic factors of survival for node-negative and node-positive patients. 

Krag and Single (2003) investigated the survival according to age and a cutoff of 10 

nodes removed in node-negative and 1-3 node positive women with breast cancer. They 

concluded that a larger number of nodes removed were associated with a better survival 

experience for each of the analysis groups. In our study, the number of lymph nodes 

removed is identified as an independent prognostic factor of survival, similarly treated 

in most of the previous studies.  

 Due to the importance of the number of nodes removed in the management of 

breast cancer, the optimal number of nodes to be removed for maximizing the survival 

then becomes the main concern for most of medical researchers. In a review of literature, 

some recommendations regarding the suitable threshold as the optimal cutoff point for 

survival benefit have been given as in the previous section. These numbers vary due to 

the difference in the surgeon’s philosophy and technique, the thoroughness of 

pathologist reporting, and patient anatomy. 

 To obtain the optimal cutoff point that give maximum differential in survival of 

esophageal cancer patients, Peyre et al. (2008) calculated the ��  scores for the Cox 

regression model and the q� values for the logistic model for thresholds ranging from 1 

to 60 nodes. Both regression models indicated that the best threshold ranges from 23 to 

29 nodes removed. Meanwhile, Rizk et al. (2010) determined the optimum number of 
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nodes that should be resected to maximize 5-year survival of esophageal cancer patients 

by random forest multivariable regression. Maximum 5-year survival was modulated by 

tumor (T) classification. They recommended the resecting of 10 nodes for pT1, 20 for 

pT2, and ≥30 for pT3/T4. Based on the mortality rates using Cox regression model, 

Groth et al. (2010) reported that esophageal cancer patients should have at least 30 

lymph nodes removed pathologically as part of esophageal resection in order to 

maximize all-cause and cancer-specific survival. On the other hand, based on the Cox 

regression model, Kuru (2006) stated that axillary lymph node dissection with a 

minimum threshold of 15 was associated with increased survival for node positive 

breast cancer patients.   

 In our study, we use Akaike Information Criterion (AIC) as a measure in 

determining the optimal number of lymph nodes that give maximum differential in 

survival of local breast cancer patients. While sentinel node biopsy is a standard of care 

for the management of node negative patients, this study suggests that a minimum of 10 

nodes for patients with Npos may be sufficient for maximizing the survival in a setting 

where sentinel node is not available. On the other hand, a minimum of either 19 or 30 

nodes is recommended for patients with Nneg when two different model selection 

methods are applied. These numbers are obtained from both logistic and Cox regression 

modeling under procedures of forward selection and BMA, and based on both  �� and 

AIC values. For instance, when NRN=10, the value of �� is the highest or the value of 

AIC is the lowest. These results are quite close to the findings in the literature, where 

they depend on their corresponding population of patients used in the study. It is worth 

pointing out that the results are consistent for both measures when procedure of BMA is 

applied. This strongly suggests that AIC can be considered as an alternative choice to 

�� using Bayesian framework in future related works.  
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4.6 Summary 

 The survival of breast cancer patients is associated with the number of lymph 

nodes removed. To maximize the outcome of surgical resection for breast cancer, 

lymphadenectomy that removes a minimum of 10 nodes need to be included for patients 

with Npos, while at least 19 nodes are recommended for patients with Nneg. These finding 

are very important as a guideline in the surgical management of breast cancer patients. 
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CHAPTER 5:  BREAST CANCER – OPTIMAL NUMBER OF 

LYMPH NODES REMOVED FOR ADEQUATE NODAL STAGING  

 

5.1 Introduction 

 The number of lymph nodes removed is one of the most important prognostic 

factors for survival in breast cancer. Hence, it is imperative that accurate staging for the 

axilla is performed. Although axillary lymph node staging surgery has evolved towards 

sentinel node biopsy in early breast cancer, in low and middle income countries, where 

the majority of patients are symptomatic and in advanced stages of the disease, axillary 

dissection remains the gold standard in staging the axilla. In this chapter, we intend to 

investigate the association of the number of lymph nodes removed on nodal 

involvement and then to determine the optimal number of lymph nodes to be removed 

for a reliable staging of the axilla. Similar data set of breast cancer in Chapter 4 was 

used. The analysis consists of three stages. Firstly, the chi-square test of independence is 

performed to determine the significant association between factors and nodal 

involvement. Secondly, we find the best-fitted logistic model using forward selection 

and Bayesian model averaging (BMA) procedures applied to binary response. We only 

consider the best-fitted logistic model as the response of the logistic model is the 

probability of lymph nodes positive/involved which does not involve the information on 

survival status. Thirdly, the model is used to assess the prediction values of independent 

factors of nodal involvement at all thresholds of number of lymph nodes removed. In 

this study, we use not only the Wald statistic (��) but also present the use of the Akaike 

Information Criterion (AIC) to determine the optimal number of lymph nodes to be 

removed for adequate nodal staging in breast cancer patients. 
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 The study population consists of 1890 patients who underwent at least a level II 

axillary dissection: 1019 patients who did not have lymph nodes involvement (Nneg) and 

871 patients with at least one or more axillary node involved (Npos).  

 

5.2 Data description 

 Similar data set of breast cancer from Chapter 4 was used for the analysis in this 

chapter. The background of breast cancer data can be found in Chapter 3 and Chapter 4. 

For this study, 1890 patients were grouped as a whole for the analysis. Variable Npos 

was excluded from the analysis since it is dependent on lymph node status.  

 

5.3 Statistical analysis 

 The methodology of this study is mostly similar to the analysis in Chapter 4. We 

carry out the chi-square test of independence, logistic regression modeling, forward 

selection and Bayesian model averaging (BMA) procedures for the analysis. Refer to 

Chapter 4 for their details.  

 We first use the chi-square test of independence to assess individually whether 

the factors and nodal involvement are independent of each other. This enables us to 

identify important factors associated with the lymph node involvement of the breast 

cancer patients. It is also our intention to identify important factors taking into account 

the contribution of other factors.  This is achieved using the logistic regression modeling. 

In logistic regression analysis, the model predicts the probability of lymph nodes 

positive/involved for a given set of independent factors based on a generalized linear 

model for binary response using a logit link function. The best-fitted model then is 

obtained using forward selection and BMA procedures, where the details of these 

procedures had been discussed in section 4.3. 
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The focus of the study is to determine the optimal number of lymph nodes to be 

removed (NRN_T*), for adequate nodal staging in breast cancer patients. This is carried 

out in several steps as similar as the procedures of determining the optimal number of 

lymph nodes to be removed for maximizing the survival of breast cancer patients.  

Firstly, we treat NRN as a categorical variable such that dqd�V� = 0 or 1, according to 

whether dqd > V or dqd ≤ V, with V taking all possible values of NRN in the data. 

Secondly, for each V, we find the best-fitted logistic regression model using forward 

selection and BMA. We then record the values of ��,  and also those of AIC. Finally, 

the value of NRN_T* is identified as that which corresponds to the highest value of ��, 

or the lowest value of AIC.  

 

5.4 Results 

 As presented in Table 5.1, the results of the chi-square test of independence 

show that the nodal involvement of patients was associated with race, LVI, tumor size 

and NRN. Using forward selection and the BMA procedures, the best-fitted logistic 

models indicated that race, LVI and tumor size were the important predictors for nodal 

involvement, except for cases which k were 7 and 8 using the BMA procedure. In these 

particular cases, the best-fitted logistic models point out that only LVI and tumor size 

were the important predictors for nodal involvement. As race, LkVI and tumor size 

were the important predictors for nodal involvement, the estimated odds of survival 

increase by 1.20 for each changes in race. The estimated odds that a patient with 

positive lymphovascular invasion survives is 4.32 greater than the corresponding odds 

for a patient with negative lymphovascular invasion. Meanwhile, for each increase in 

one unit of tumor size, the estimated odds of survival increase by 1.21. 
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Table 5.1: Significant factors of nodal involvement for  
breast cancer patients using chi square test 

Prognostic factors        ��   p-value 

Age 4.5734 0.1016 
Race 25.1088 <.0001* 
LVI 253.4905 <.0001* 

Tumor Size 276.0854 <.0001* 
NRN 158.1551 <.0001* 

 
Under forward selection and the BMA procedures, Figure 5.1 and 5.2 give the 

plots for the group as a whole, which use the logistic regression with AIC and Wald’s 

statistics as the decision rule. These plots recommend that NRN_T* for patients was 10 

nodes in where its value of �� was the highest, or its value of AIC was the lowest. For 

both procedures, the corresponding values of �� and AIC were 324.57 and 2188.94, 

respectively.  

We also notice that the results using AIC are consistent with those using �� 

values for logistic regression model using both procedures.  

 

 

 

 

 

 

 

 

 

 

 

    

 Figure 5.1: The optimal threshold for adequate nodal staging in breast cancer patients 
using forward selection procedure 
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      Figure 5.2: The optimal threshold for adequate nodal staging in breast cancer 
patients using the BMA procedure 

 

5.5 Discussion 

 Axillary lymph node dissection is a standard surgical technique used in the 

staging and treatment of the axilla in node positive breast cancer. Previous studies 

provided substantial evidence that axillary lymph node dissection gave excellent local 

control of disease in the axilla, which may lead to improved overall survival (Atkins et 

al., 1972; Langlands et al., 1980; Cabanes et al., 1992; Sosa et al., 1998; Orr et al., 1999; 

Bembenek and Schlag, 2000; Krag and Single, 2003; Sanghani, 2009). Studies have 

found not only the importance of number of lymph nodes involved but also those 

removed. Lymph node ratio which takes into account number of nodes involved divided 

by number of nodes removed has been found to be an important prognostic factor (Taib 

et al. ;2008, 2011), and hence, highlighting the importance of the number of nodes 

removed in the management of breast cancer (Sosa et al., 1998; van der Wal, 2002; 
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Weir et al., 2002; Krag and Single, 2003; Saxena et al., 2012). Therefore, the optimal 

number of nodes to be removed for adequate staging has attracted a lot of attention.  

 Fisher et al. (1981) reported that the majority of histologic positive nodes breast 

cancer patients considered in their study have 1-3 involved nodes. The more nodes were 

removed, the more involved nodes were identified. On the other hand, the National 

Comprehensive Cancer Network (2014) in the US recommended a minimum threshold 

of 10 lymph nodes for staging, whereas Singletary et al. (2002) noted that the American 

Joint Committee on Cancer (AJCC) Cancer Staging Manual, Sixth Edition (2002) 

required 6 axillary lymph nodes to be removed and examined. These numbers vary 

based on surgeon’s philosophy and technique, the thoroughness of pathologist reporting, 

and patient anatomy. Notably, there is scarce information on the scientific basis of how 

these optimal numbers were obtained. Here, we aim to determine the optimal cut-off 

point for staging the axilla in breast cancer patients in Malaysia.  

 To investigate the optimal number of nodes to be removed to obtain the 

maximum differential in survival of esophageal cancer patients, Peyre et al. (2008) 

calculated the �� values for the Cox regression model and the q� values for the logistic 

model for thresholds ranging from 1 to 60 nodes. Both regression models indicated that 

the best threshold ranged from 23 to 29 nodes removed. However, in this study, we 

propose the use of Akaike Information Criterion (AIC) as an alternative measure instead 

of �� in determining the optimal number of lymph nodes that need to be removed for 

adequate nodal staging in local breast cancer patients. 

The aim of this study then was to find the optimal number of lymph nodes to be 

removed for adequate nodal staging in breast cancer patients. This threshold value may 

provide guidance in the management of these patients. While sentinel node biopsy is a 

standard of care for the management of node negative patients, this study suggests that a 

minimum of 10 nodes for patients with Npos may be sufficient for reliable staging of 
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lymph nodes in a setting where sentinel node is not available. This result is quite close 

to the findings in the literature, where it is all depend on the corresponding population 

of patients used in each study. It is worth pointing out the consistency of results using 

logistic regression model under forward selection and the BMA procedures. This 

strongly suggests that AIC can be considered as a good measure in future related works. 

 

5.6 Summary 

 The nodal involvement of patients is related to race, LVI, tumor size and NRN. 

To reduce the risk of understaging for breast cancer, axillary lymph node dissection that 

removed a minimum of 10 nodes should be performed for breast cancer patients. This 

finding is very important as a guideline in the surgical management of breast cancer 

patients. 
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CHAPTER 6:  LITERATURE REVIEW  

 

6.1 Kinesiology studies  

 Kinesiology comes from the Greek word kinesis, which means motion.  In the 

medical sciences, it is the name given to the study of muscles and the movement of the 

body, the mechanics of body movements. Dr. George Goodheart, an American 

chiropractor, the acknowledged founder of Applied Kinesiology in 1964, used the 

model of muscle testing to evaluate what he was doing chiropractically. The model of 

muscle testing he used was developed in the 1930s by the husband and wife team of 

Kendal and Kendal. 

In neurology contacts, muscle testing is defined as “a means of testing the motor 

function of limbs”. Muscle testing therefore was accepted as a valid technique and used 

extensively in orthopaedic medicine by physiotherapists, chiropractors and osteopaths. 

As part of the foundation of expanding the application of muscle testing, Dr Goodheart 

and his colleagues took on board work done by Drs Bennet and Chapman with regard to 

the lymphatic and vascular systems. They also looked at the subtle energy system as 

used within acupuncture. This then was the basis of muscle testing that was to develop 

and become known as Applied Kinesiology (AK). Applied Kinesiology was the name 

given by Dr George Goodheart, to the system of applying muscle testing diagnostically 

and therapeutically to different aspects of health care.  

 In the early 1970’s, Dr. John Thie recognized the need to educate the public in 

many of the self-help techniques within AK and this educational program then became 

known as Touch For Health (TFH), a program for the layman and is taught and used 

throughout the world. Brian Butler then expanded further Systematic Kinesiology from 

the concepts of TFH in 1982 (Source: Association of Systematic Kinesiology in Ireland). 
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6.2 Kinesiotape     

 Kinesiotape tape (KT) is an elastic tape that had been introduced in the 1970 to 

mimic human skin in elasticity and thickness for correcting of muscle function (Kase et. 

al., 2003). Combination of its unique design and its peculiar taping methods has 

attracted many to consider the tape as an alternative therapy to alleviate musculoskeletal 

symptoms, and to enhance sports performance. It has expanded over the years and 

multiple disciplines as well as the public population have begun seeing its advantages 

over other taping methods. Physical therapists, physical therapists assistants, 

occupational therapists, certified occupational therapy assistants, chiropractors, massage 

therapists, athletic trainers, and both professional and amateur athletes are among those 

who use KT. This useful tape has been featured by many athletes in Olympic Games; 

including Phil Dalhausser, Kerri Walsh, and Patty Schnyder (Tabott, 2008). Dancers 

and dance trainers are another group that have seen and promoted the benefits KT can 

provide (Wozny, 2009). 

 

6.3 Crossover design    

According to Jones and Kenward (1989), in a crossover trial, each experiment 

subject receives two or more different treatments. The order in which each subject 

receives the treatments depends on the particular design chosen for the trial. The 

simplest design is the 2 × 2 design. In this design, each subject receives two different 

treatments, which are labeled as A and B. Half the subjects receive treatment A first and 

then, after a suitably chosen period of time, cross over to treatment B. The remaining 

subjects receive treatment B first and then cross over to treatment A. Jones and 

Kenward (1989) discuss the theory, methods and practice for crossover trials in details.  

Crossover trials are widely used in medical and pharmaceutical industry. These 

trials are applicable in most situations such as veterinary research, animal feeding trials, 
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sport science and psychological experiments. For example, Parkes (1982) has described 

the use of a crossover trial to investigate occupational stress, and Raghavarao (1989) has 

described a potential application of crossover trials in non-pharmaceutical industry. In 

the literature, the use of crossover design for clinical trials also has been discussed 

extensively by Brown (1980), Huitson et al. (1982), Senn (1993), and Jones and 

Kenward (2003). 

 

6.4 Outlier detection in � × � crossover design 

 In the standard 2 × 2 crossover design, we assume that there are two different 

groups of subjects. Each group receives the two treatments in a different order and the 

trial is to last for two treatment periods, with the order of treatments reversed in the 

second period. A common problem in crossover trials is the occurrence of extremely 

large or small observations. These extraordinary observations are called outliers and 

they may influence the conclusion drawn from the data set. An outlier is a data point 

which is significantly different from the remaining data (Aggarwal, 2013). Hawkins 

(1980) formally defined the concept of outlier as an observation which deviates so much 

from the other observations as to arouse suspicions that it was generated by a different 

mechanism. 

 Chow and Tse (1990) proposed two procedures based on Cook’s likelihood 

distance and the estimated distance for the detection of outliers in crossover studies. Liu 

and Weng (1991) carried out procedures based on Hotelling T2 statistics and residuals 

for the same purpose. Wang and Chow (2003) presented a general test procedure based 

on a mean-shift model. Furthermore, Ramsay and Elkum (2005) compared different 

outlier detection methods proposed by Chow and Tse (1990) and Liu and Weng (1991) 

via simulation study. They concluded that the estimated distance test performs better 

than other tests. Most recently, Karasoy and Daghan (2012) applied these existing 
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methods to a real data set in order to investigate outliers. In crossover studies, 

Enachescu and Enachescu (2009) initially used principal components for the 

identification of outliers. Meanwhile, Singh et al. (2014) provided details regarding a 

studentized residual test and the Lund test for identification of outlier subjects. It is 

therefore important that methods of identifying outliers in 2×2 crossover design are 

developed for proper handling of the data in studies. These methods are usually 

graphical or numerical. 

 

6.5 Summary 

 It is of interest to look at the problems of investigating the outlier detection of 

2 × 2  crossover design using Bayesian and non-Bayesian frameworks. We have 

presented the literature review on different methods as solutions for the problems we 

considered. This will be explored further in subsequent chapters. 
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CHAPTER 7:  UMMC KINESIOLOGY DATA – DESCRIPTION 

 

7.1 Introduction 

 This chapter presents a real data set from a study of kinesiology which is 

obtained from University of Malaya Medical Centre (UMMC) Sport Medicine Clinic. A 

two period crossover and randomized placebo-controlled trial of AB (treatment 

followed by sham taping)/BA (placebo followed by treatment taping) design is 

conducted. There are 77 subjects, from eighty one subjects volunteered, completed the 

study (AB = 37, BA = 40) which observed a minimum washout period of one week. Pre 

and post measurements of peak oxygen consumption or ���  peak (in ml/kg/min) 

recorded from a six-minute Astrand submaximal cycling exercise test conducted at least 

one week apart. Since there is none of the musculoskeletal outcome measures 

demonstrated convincing association with kinesiotape (KT) use, we therefore propose to 

investigate the effect of KT on the ���  peak. ���  peak is mainly used to gauge 

cardiorespiratory fitness of an individual. Theoretically, KT is expected to improve ��� 

peak. Even though it is a feasible theory, no study or investigation has explored the 

effect of kinesiotape on measurements of ��� peak thus far. 

  

7.2 Subject recruitment and procedure  

 At the beginning of the study, a total of 81 subjects are deemed feasible by 

researchers. The study has a power of 90% to detect a standard deviation of 0.4 by 

assuming 10% attrition rate with 72 subjects completing the study. The subjects 

included in the study are volunteers who are between 18 – 25 years of age, any gender, 

free from cardiorespiratory and musculoskeletal disorders such as knee, hip or ankle 

pain that may preclude cycling testing. On the other hand, those with known allergies to 
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taping material unfit to perform exercise, or reluctant to follow the testing protocol, are 

excluded from the study. 

 The subjects involved are advised to refrain from strenuous activity the day 

before and avoid consumption of caffeine at least six hours prior to the test. Their 

demographic data and information of anthropometry are recorded before starting the 

testing. It is important that subjects are weighed in sport attire without their shoes and at 

least one hour after light meals in order to ensure the accuracy of the information 

recorded. Heart rate monitoring device, that is Polar Wearlink Coded, then is attached to 

the subjects throughout the testing session. The subjects have to take a rest for 5 – 10 

minutes to make sure their heart rate reaches steady state. After familiar with the cycle 

ergometer (Monark 939E), the subjects proceed to start the cycling protocol and 

maintain a 55 – 65 cadences per minute pacing. The peak oxygen consumption (��� 

peak) measurements finally are obtained after 6 minutes submaximal Astrand cycling 

protocol.     

 The study then is proceed by the taping on the subjects’ bilateral quadriceps 

muscles either according to Dr. Kase’s recommended Kinesio Tex®method(6); or a 

sham taping method following random assignment of sequence. The researcher in 

blocks of 10 conduct the randomization of the study using 1:1 sequence assignment in 

accordance to the order of subject enrollment into the studies. The subjects are 

requested to repeat the 6 minutes submaximal Astrand cycling after a lapse of at least 

one hour from the time of taping. 

At the early stage of the analysis, graphical plots of the data are constructed for 

description and comparison purposes. A linear model analysis of variance (ANOVA) 

for the 2 x 2 crossover design is then used to determine if there are any carryover, direct 

treatments or periods effects in the data. Analysis of residuals is also conducted to check 

the assumptions underlaying the ANOVA model used in this study. 
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7.3 Data summary 

 As presented in Figure 7.1, a total of 81 university students (Age: 21.0 ± 1.0; 

Male = 24, Female = 57) volunteered to be recruited as the subjects of the study. 

However, only 77 subjects completed the tests (Age: 21.1 ± 1.0; Male = 24, Female= 53) 

with washout period = 17.8 ± 17.7 days, ��� peak of baseline 1 = 44.04 ± 10.40 and 

��� peak of baseline 2 = 45.93 ± 8.37, while another 4 subjects are excluded from the 

study.  

 

 

 

 

 

 

Figure 7.1: Flow chart containing details of number of subjects in each stage 
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 Furthermore, Figure 7.2 illustrates the pre and post plot for Group 1 and 2, 

where 1A, 1B, 2A and 2B are the means of the ��� peak measurement in terms of the 

group and treatment they currently received at that period. For instance, 1A implies that 

Group 1 was receiving treatment A in period 1. For both groups, there is no much 

difference between the pre and post measurement of ��� peak in the period 1, but there 

is a distinct drop between them in the period 2. 

 Besides, Table 7.1 shows the group-by-period means of the ���  peak 

measurement while Figure 7.3a and Figure 7.3b present its corresponding plots. We 

notice that the pattern of Figure 7.3a and Figure 7.3b are similar. Despite of the periods, 

Figure 7.3b suggests that treatment B is superior to treatment A since the means of ��� 

peak for treatment B for both groups are higher than the ones for treatment A.  

 

 

 

 

Table 7.1: Group-by-period means 

 Period 1 Period 2 Mean 

Group 1  43.94 45.59 44.76 
Group 2 44.14 44.73 44.44 

Mean 44.04 45.14 44.59 
 

Figure 7.2: Pre and post plot 
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a) using only the pre measurements          b)   using only the post measurements 

Figure 7.3: Groups-by-periods plots  

 

 For comparing the groups, we join the outermost points of each group and obtain 

the plot of differences against totals for the data and its convex hull, as illustrated in 

Figure 7.4. When comparing the groups in the horizontal direction (total axis), it 

suggests that there is no carryover effect in the data as there is no clear separation of the 

groups. On the other hand, as comparing the groups in the vertical direction (difference 

axis), the overlap suggests that there is no direct treatment effect in the data. From 

Figure 7.4, one might suspect the appearance of outliers in data since there are 2 

subjects of Group 1, which stand out, have either an unusually large difference or an 

unusually large total.  

 
 

Figure 7.4: Plot of differences vs. total of the ��� peak for both periods 
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 Table 7.2 presents the ANOVA result for the data using the full crossover model, 

which is discussed in details in Chapter 8. It is observed that there is significantly no 

carryover, direct treatment and period effects for the data, where their corresponding p-

values are 0.78, 0.07 and 0.20. The tests are arbitrarily separated by a minimum 

duration of 1 week to minimize the inherent variation of ���  peak with time and 

training. Meanwhile, this will also allow enough time for the subjects to recover from 

the previous testing and time to negate the effects of the previous taping. In the analysis 

of residuals, Figure 7.5 – 7.7 suggest that the assumptions used for the model also 

violated which may due to outlier. Investigation of the occurrence of outlier will be 

investigated in the next two chapters.  

Table 7.2:  ANOVA result for the data 

Source df SS MS F P(F) 

Btw subjects: 
 
Carryover 
B-S residual 
 

  
 
1 
75 

  
 
10.94 
10247.00 

  
 
10.9372 
136.6267 

  
 
0.08005148   

  
 
0.7780071  

Within subjects: 
 
Periods 
Treatments 
W-S residual 
 

  
 
1 
1 
75 

  
 
132.563 
65.878   
3022.464   

  
 
132.5630 
65.8777 
40.2995            

  
 
3.289442 
1.634702 
  

  
 
0.0737268 
0.2049962  

Total 153 13478.845       
 

 
Figure 7.5: Plot of studentized within-subject residuals vs. fitted values of the data 
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Figure 7.6: Normal probability plot of studentized within-subject residuals for the data 

(Shapiro-Wilk normality test, p-value = 0.00) 

 
Figure 7.7: Normal probability plot of studentized between-subject residuals for the 

data (Shapiro-Wilk normality test, p-value = 0.06) 
 

7.4 Summary 

 For the kinesiology data in this study, we consider 77 measurements of peak 

oxygen consumption or ��� peak (in ml/kg/min) recorded from a six-minute Astrand 

submaximal cycling exercise test conducted at least one week apart. Regardless of the 

taping method, it is observed that kinesiotape can possibly improve ��� peak, both on 

immediate application and the effect can be augmented with repeated use even after a 

week. 
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CHAPTER 8:  KINESIOLOGY STUDY – OUTLIER DETECTION 

IN � × � CROSSOVER DESIGN USING  

NON-BAYESIAN FRAMEWORK 

 

8.1 Introduction 

 In this chapter, we discuss methods for outlier detection in standard 2 × 2 

crossover studies. Two outlier detection procedures are carried out based on residual 

analysis. Under a simplified model of 2 × 2 crossover design, we present the classical 

calculation of studentized residual (�q1) and provide a new studentized residual using 

median absolute deviation (�q2) to identify possible outlying subjects. We shall denote 

the procedure using �q1 by ���q1� and that using �q2 by ���q2�. We investigate the 

performances of both procedures via simulation. As an illustration, these procedures are 

applied to two real data sets from studies of bioavailability and kinesiology, the later is 

discussed in Chapter 7. 

   

8.2 Outlier detection for the standard � × � crossover design 

 In the standard 2×2 crossover design, we assume that there are two different 

groups of subjects. Each group receives the two treatments in a different order and the 

trial is to last for two treatment periods, with the order of treatments reversed in the 

second period. A common problem in crossover trials is the occurrence of extremely 

large or small observations. These extraordinary observations are called outliers and 

they may influence the conclusion drawn from data set. It is therefore important that 

methods of identifying outliers in standard 2 × 2 crossover design are developed for 

proper handling of the outlier in the data. These methods are either in graphical or 

numerical form. In this study, we carry out the outlier detection based on residuals. 

Under a simplified model of 2 × 2 crossover design, we present a classical calculation 
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of studentized residual (�q1) and provide a new studentized residual using median 

absolute deviation (�q2). Suitable outlier tests can then be applied to the resulting sets 

of studentized residuals in order to detect the possible outliers in the study.      

 Let a�*� be the response of the Vth subject in sequence " during period � under 

the )S", �Uth treatment, where ", � = 1,2; ��  is the size of group with treatment	)S", �U 
and V = 1,2, … ,��. Refer to Jones and Kenward (1989), the full model is                                              

                                          a�*� = � + ;* + �2S�,*U + �2S�,*6�U + ��� + +�*�                   (8.1) 

where � is the overall mean, ;* the fixed effect of the �th period, �2S�,*U the fixed effect 

of the treatment administered in period � of sequence ", �2S�,*6�U the fixed effect of the 

carryover of the treatment administered in period � − 1 of sequence " where �S�,�U = 0 , 

���  the random effect of the V th subject, and +�*�  the random error. The variance 

components ����� and �+�*�� are assumed to be independent and normally distributed 

with mean 0 and variances e�� and e��, respectively. We also consider here the crossover 

model used by Chow and Tse (1990): 

                                                 a�*� = � + ;* + �2S�,*U + ��� + +�*�                              (8.2)                  

with ∑ ∑ �2S�,*U*� = 0, ∑ ;** = 0 and no carryover effect is assumed. According to Liu 

and Weng (1991), when no period effect is assumed, model (8.2) can be reduced as 

follows:  

                                                        a�*� = � + �2S�,*U + ��� + +�*�  

                                                              = _2S�,*U + ��� + +��*,											                            (8.3) 

where _2S�,*U = � + �2S�,*U and V = 1,2, … ,�� for " = 1,2. 

 Regulatory authorities generally do not allow the exclusion of outliers from the 

statistical analysis of 2 × 2  crossover design based solely on statistical criteria. 

However, if such a data set does contain outliers, then it might be of interest to present 

the results of analysis with and without outliers. 
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8.2.1 Outlier detection using ��� 

 For calculation of �q1, we refer to model (8.3) in the previous section. The 

repeated measurements on each subject are assumed to be independent, normally 

distributed random variables with equal variances. The residual ��*� is then given by  

                                       	��*� = J1 − ��BLa�*� − J ��BL h(∑ a�*#�B# � , − a�*�j                   (8.4) 

for each  ", respectively. 

 The ��*�  are estimators of the random error ℯ�*�  in model (8.3). These ��*�  are 

normally distributed with mean zero and variance  

                                                             �(��*�, = J1 − ��BL e�� .                                   (8.5) 

Refer to Liu and Weng (1991) for the details of the derivation of residuals and their 

variance. Thus the studentized residuals are 

																																																																					�q1 = ��*�J�v(��*�,L�/� 																																												�8.6� 
where �v(��*�, is the estimated value of �(��*�, obtained by replacing e�� by the mean 

square of the within-subject residual. As stated by Liu and Weng (1991), �q1  are 

treated as standard normal variables.  

 According to Jones and Kenward (1989), the response values corresponding to 

unusually large �q1 are called outliers or discordant values. The larger the residual, the 

more discordant is the corresponding response. To identify the outlier, the largest |�q1| 
is significantly large at the 10%, 5%, 2.5% and 1% levels if it is greater than 3. 

 

8.2.2 Outlier detection using ��� 

As stated by Rousseeuw and Croux (1993), although many robust estimators of 

location exist, the sample median is still the most widely used in the literature. If 

�C�, … , C/� is a batch of numbers with sample size of �, its sample median is denoted by  
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                                                       �+)"���C��                                                (8.7) 

which is simply the middle order statistic when � is odd. When � is even, the average of 

the order statistics with ranks ��/2� and ��/2� + 1. The median has a breakdown point 

of 50% (which is the highest possible), because the estimate remains bounded when 

fewer than 50% of the data points are replaced by arbitrary numbers. Its influence 

function is also bounded, with the sharpest bound for any location estimator (Hampel et 

al., 1986). 

A very robust scale estimator is the median absolute deviation about the median 

(MADN), is given by 

                                             `�xd =  	�+)"���|	C� −�+)"���C��|� .                    (8.8) 

where   = 1.4826, as suggested by Rousseeuw and Croux (1993), Ruppert (2010), and 

Leyset al. (2013). The MADN has the best possible breakdown point and its influence 

function is bounded, with the sharpest possible bound among all scale estimators. The 

MADN was first promoted by Hampel (1974), who attributed it to Gauss. The constant   

in (8.8) is needed to make the estimator consistent for the parameter of interest. 

 The sample median and the MADN are simple and easy to calculate, but 

nevertheless very useful. Their extreme sturdiness makes them ideal for detecting the 

outliers in the data, by computing the absolute value of  

																																																																									C� −�+)"���C��`�xd 																																														�8.9� 
for each C� and flagging those C� as spurious for which this statistic exceeds a certain 

cutoff, x.  

For this study, C� in equations (8.8) and (8.9) is replaced by ��*�. Here ��*� can be 

any observations since it is a non-parametric method and it does not require any 

assumptions. The value of b remains the same (Mustafi, 1991). Therefore the median 

absolute deviation about the median of ��*�  (MADNred) and scaled residual ��q2� are 

given by  
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                                  `�xd��2 =  	�+)"���¡	��*� −�+)"��(��*�,¡�.                    (8.10) 

and 

																																																										�q2 = ��*� −�+)"��(��*�,`�xd��2 	,																																				�8.11� 
respectively. Responses will be labeled outliers when |�q2| > x in Table 8.1 – 8.4, 

where x is the critical value of the largest |�q2| at the significance level of 10%, 5%, 

2.5% and 1%.  

 Simulation studies are carried out to construct a table of critical values for the 

largest |�q2| under model (8.3). The mean of treatment 2 (��) is set to 60, 80, 90, 100, 

110, 125. The values of the constant ¢ are chosen to be 0.5, 5, 10 and 15, so that the 

coefficient of the intra-subject variation for the treatment 1 are 0.5%, 5%, 10% and 15%, 

respectively. For each total sample size considered �d = 20, 40	,60	, 80	,100� , we 

calculate the �q2, and determine the largest |�q2|. The procedure of finding the largest 

|�q2| is repeated 1000 times. They are then sorted in ascending order and the 90%, 

95%, 97.5% and 99% percentiles are obtained. These percentiles approximate the 

critical values for significance levels of 0.10, 0.05, 0.025 and 0.01, respectively, and 

tabulated in Table 8.1 – 8.4. The values generally increase as ¢  increases, for �� 

different from 100.    

 

8.3 Simulation study 

 In this section, we compare the power of the ���q2�  in testing for subject 

outliers with that of the ���q1� in a standard 2 × 2 crossover design. Random samples 

are generated under a two-sequence, two-period crossover model based on the 

procedure used in Luzar-Stiffler and Stiffler (2005). Random samples a�*�  are first 

generated based on the following formula: 

                                                           a�*� = ¢(:�*� + :�*�, + ��                               (8.11) 

Univ
ers

ity
 of

 M
ala

ya



95 
 

Table 8.1:  Critical values of the largest |�q2| at significance level of 10% 

£ ¤� ¥ 

0.5 5 10 15 

20 
 
 
 
 
 

60 0.701 0.943 1.212 1.530 
80 0.728 1.212 1.688 1.591 
90 0.782 1.688 1.551 1.427 

100 1.220 1.220 1.220 1.220 
110 0.782 1.688 1.551 1.427 
125 0.718 1.105 1.582 1.645 

40 
 
 
 
 

 

60 0.716 1.087 1.526 1.917 
80 0.757 1.526 2.018 2.026 
90 0.839 2.018 2.043 2.013 

100 1.789 1.789 1.789 1.789 
110 0.839 2.018 2.043 2.013 
125 0.740 1.334 1.971 2.026 

60 
 
 
 
 
 

60 0.715 1.076 1.506 1.927 
80 0.755 1.506 1.964 1.989 
90 0.835 1.964 2.001 1.931 

100 1.714 1.714 1.714 1.714 
110 0.835 1.964 2.001 1.931 
125 0.739 1.317 1.946 2.001 

80 
 
 
 
 

 

60 0.724 1.170 1.708 2.129 
80 0.774 1.708 2.305 2.393 
90 0.873 2.305 2.436 2.396 

100 2.177 2.177 2.177 2.177 
110 0.873 2.305 2.436 2.396 
125 0.754 1.503 2.192 2.408 

100 
 
 
 
 
 

60 0.720 1.132 1.610 2.017 
80 0.766 1.610 2.128 2.178 
90 0.858 2.128 2.167 2.115 

100 1.900 1.900 1.900 1.900 
110 0.858 2.128 2.167 2.115 
125 0.748 1.413 2.061 2.171 
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Table 8.2:  Critical values of the largest |�q2| at significance level of 5% 

£ ¤� ¥ 

0.5 5 10 15 

20 
 
 
 
 
 

60 0.704 0.973 1.271 1.640 
80 0.734 1.271 1.781 1.724 
90 0.794 1.781 1.693 1.641 

100 1.408 1.408 1.408 1.408 
110 0.794 1.781 1.693 1.641 
125 0.722 1.152 1.705 1.767 

40 
 
 
 
 

 

60 0.714 1.073 1.501 1.896 
80 0.754 1.501 1.964 1.959 
90 0.834 1.964 2.023 1.978 

100 1.728 1.728 1.728 1.728 
110 0.834 1.964 2.023 1.978 
125 0.738 1.311 1.916 2.003 

60 
 
 
 
 
 

60 0.718 1.111 1.585 1.983 
80 0.762 1.585 2.100 2.139 
90 0.849 2.100 2.146 2.121 

100 1.947 1.947 1.947 1.947 
110 0.849 2.100 2.146 2.121 
125 0.744 1.380 2.014 2.149 

80 
 
 
 
 

 

60 0.723 1.164 1.682 2.056 
80 0.772 1.682 2.241 2.353 
90 0.870 2.241 2.295 2.220 

100 1.999 1.999 1.999 1.999 
110 0.870 2.241 2.295 2.220 
125 0.753 1.473 2.106 2.282 

100 
 
 
 
 
 

60 0.724 1.165 1.702 2.104 
80 0.773 1.702 2.266 2.351 
90 0.871 2.266 2.356 2.300 

100 2.167 2.167 2.167 2.167 
110 0.871 2.266 2.356 2.300 
125 0.753 1.482 2.137 2.318 
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Table 8.3:  Critical values of the largest |�q2| at significance level of 2.5% 

£ ¤� ¥ 

0.5 5 10 15 

20 
 
 
 
 
 

60 0.703 0.960 1.245 1.564 
80 0.732 1.245 1.749 1.660 
90 0.789 1.749 1.605 1.533 

100 1.306 1.306 1.306 1.306 
110 0.789 1.749 1.605 1.533 
125 0.720 1.131 1.638 1.728 

40 
 
 
 
 

 

60 0.711 1.041 1.446 1.890 
80 0.748 1.446 1.957 1.921 
90 0.821 1.957 1.991 1.824 

100 1.648 1.648 1.648 1.648 
110 0.821 1.957 1.991 1.824 
125 0.733 1.261 1.886 1.965 

60 
 
 
 
 
 

60 0.716 1.091 1.546 1.943 
80 0.758 1.546 2.034 2.061 
90 0.841 2.034 2.066 2.046 

100 1.833 1.833 1.833 1.833 
110 0.841 2.034 2.066 2.046 
125 0.741 1.341 1.976 2.047 

80 
 
 
 
 

 

60 0.721 1.139 1.663 2.046 
80 0.767 1.663 2.225 2.284 
90 0.860 2.225 2.255 2.180 

100 1.964 1.964 1.964 1.964 
110 0.860 2.225 2.255 2.180 
125 0.749 1.446 2.086 2.209 

100 
 
 
 
 
 

60 0.722 1.145 1.666 2.060 
80 0.769 1.666 2.192 2.278 
90 0.863 2.192 2.278 2.216 

100 2.015 2.015 2.015 2.015 
110 0.863 2.192 2.278 2.216 
125 0.750 1.453 2.087 2.245 
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Table 8.4:  Critical values of the largest |�q2| at significance level of 1% 

£ ¤� ¥ 

0.5 5 10 15 

20 
 
 
 
 
 

60 0.707 1.001 1.327 1.734 
80 0.740 1.327 1.842 1.818 
90 0.805 1.842 1.815 1.769 

100 1.546 1.546 1.546 1.546 
110 0.805 1.842 1.815 1.769 
125 0.727 1.196 1.775 1.841 

40 
 
 
 
 

 

60 0.711 1.039 1.438 1.854 
80 0.747 1.438 1.950 1.901 
90 0.820 1.950 1.909 1.747 

100 1.527 1.527 1.527 1.527 
110 0.820 1.950 1.909 1.747 
125 0.733 1.257 1.871 1.905 

60 
 
 
 
 
 

60 0.720 1.130 1.649 2.024 
80 0.766 1.649 2.194 2.248 
90 0.857 2.194 2.281 2.260 

100 2.050 2.050 2.050 2.050 
110 0.857 2.194 2.281 2.260 
125 0.747 1.426 2.072 2.247 

80 
 
 
 
 

 

60 0.720 1.125 1.649 2.036 
80 0.765 1.649 2.209 2.209 
90 0.855 2.209 2.189 2.145 

100 1.851 1.851 1.851 1.851 
110 0.855 2.209 2.189 2.145 
125 0.747 1.432 2.057 2.187 

100 
 
 
 
 
 

60 0.725 1.180 1.745 2.158 
80 0.776 1.745 2.353 2.447 
90 0.877 2.353 2.466 2.438 

100 2.249 2.249 2.249 2.249 
110 0.877 2.353 2.466 2.438 
125 0.755 1.519 2.209 2.419 
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where :�*�  and :�*�  are i.i.d. standard normal (", � = 1,2;  V = 1,2, … ,�� ). Note that 

:�*�  and :�*�  are used to account for the between- and within-subject variations, 

respectively. Without loss of generality, the mean of treatment 1 (��) is set to 100, while 

the mean of treatment 2 (��) is set to 60, 80, 90, 100, 110, 125, as suggested by Wang 

and Chow (2003). The ability of ���q1� and ���q2� in detecting outlier then can be 

observed when the difference between �� and �� increases. The values of the constant ¢ 

are chosen to be 0.5, 5, 10 and 15, so that the coefficient of the intra-subject variation 

for the treatment 1 are 0.5%, 5%, 10% and 15%, respectively. For our study, the 

effectiveness of kinesiotape in improving the ��� peak increases with the coefficient of 

the intra-subject variation of less than 20%. 

 For simplicity, in generating the random samples a�*�, we assume the values of 

�� are equal. Three values of ��, 10, 30 and 50, are considered in the simulation. Let 

the total sample size, d = ∑�� . The corresponding values of d  therefore take the 

values 20, 60 and 100, respectively. The first subject is made into an outlier by 

multiplying the responses a��� and a��� by a constant p which varies from 10% to 200%. 

As an example, let the responses a��� = 34 and a��� = 52, p = 50%, after multiplying 

the responses a��� and a��� by a constant ;, then we have new responses a��� = 17 and 

a��� = 26 as the designated outlier. The process is repeated 200 times and the power of 

performance is assessed by computing the percentage of times that the outlier is 

identified correctly.    

 To conduct the power studies for ���q1�, the procedure are summarized as 

below,  

Step 1. Using S-plus, random samples of :�*�  and :�*�  are generated from the 

standard normal distribution, where ", � = 1,2 and V = 1,2, … , ��. 
Step 2. Calculate the sum of each pair :�*�  and :�*� . Each value of sum then 

multiplied with the chosen constant ¢. 
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Step 3. Set the mean of treatment 1 (��) to 100. Repeat the Step 1 – 2 and 

calculate a�*� for different mean of treatment 2 (���.  
Step 4. The first subject is made into an outlier by multiplying the responses a��� 

and a���  by a constant p . The contaminated sample of a�*�  then is 

obtained. 

Step 5. Calculate the residual ��*� in model (8.3) using the contaminated sample 

of a�*�. 

Step 6. Conduct the analysis of variance for the contaminated sample of a�*�.  

Then, estimate the variance of ��*�, �(��*�, in model (8.4), by replacing  

e�� with the within-subjects residual mean squares. 

Step 7. Calculate the studentized residuals �q1 in model (8.5) using the ��*� and 

�(��*�, in Step 4 and 5. 

Step 8. The Steps 1 – 7 are repeated (200) times and the times that the outlier is 

identified correctly are recorded. 

Step 9. Calculate the power, which is the percentage of times (out of 200 

simulated samples) that the outlier is identified correctly. 

Step 10. The Steps 1 – 9 are repeated for different constant ¢ (¢ = 0.5, 5, 10, 15), 

mean of treatment 2 (�� = 60, 80, 90, 100, 110, 125) and constant p 

(p = 10, 30, 50, 130, 150, 200). 

Step 11. The complete procedure (Steps 1 – 10) is repeated for different sizes of 

group with treatment " (�� = 10, 30, 50). The corresponding total sample 

sizes d will be 20, 60 and 100, respectively.    

 To conduct the power studies for ���q2�, we use the same contaminated sample 

of a�*�  in the power studies for ���q1�, which is obtained using Steps 1 – 4 in the 

procedure above. We then calculate the scaled residuals �q2, as given by model (8.8). 
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We repeat this calculation 200 times and record the times that the outlier is identified 

correctly. With the same combination of constant ¢ , mean of treatment 2 (��) and 

constant ; , the power of ���q2�  can then be obtained. The complete procedure is 

repeated for the same sizes of group with treatment " in the power studies for ���q1�. 
 Tables 8.5 – 8.7 show the percentages of correctly detecting the designated 

outlier for sample sizes of 20, 60 and 100, respectively. For example, refer to Table 8.7 

for both methods of ���q1� and ���q2�, when  �� = 60 and p = 50%, increasing the 

values of ¢ decreases the percentage of correctly identifying the designated outlier. Note 

that ¢ is the coefficient of variation within the subjects. For all sample sizes considered, 

the percentages of detection for both ���q1� and ���q2� are almost 100% when ¢ = 

0.5 or 5. However, when ¢ = 10 or 15, the performance of ���q2� is always better than 

that of ���q1� since it has higher percentages of detection. These results show that 

���q2� is obviously more powerful than ���q1� for detecting outliers in a standard 

2 × 2 crossover design. 

 

8.4 Numerical Examples  

 As an illustration, both procedures above are applied to Clayton and Leslie’s 

data (1981) and kinesiology data.  

 

8.4.1 Clayton and Leslie’s data 

Clayton and Leslie (1981) considered the blood concentration-time curve (AUC) data 

from two erythromycin formulations in a bioavailability study. In their study, a standard 

2 × 2  crossover experiment was conducted with 18 subjects to compare a new 

erythromycin formulation (erythromycin stearate) with a reference formulation 

(erythromycin base). As no sequence identification of each subject was provided in 

Clayton and Leslie (1981), we adapt the order of periods given in Weiner (1989) and  
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Table 8.5:  Percentage of correctly identifying the designated outlier  
for sample size of 20 

 ¤� 

 © 

(%) 

��� ��� ¥  ¥  

0.5 5 10 15 0.5 5 10 15 

60 10 100 100 100 74 100 100 100 99.5 
30 100 100 96.5 64.5 100 100 100 95 
50 100 100 96.5 74 100 100 98 88.5 

130 100 100 99 90 100 100 98 92.5 
150 100 100 99.5 92 100 100 100 94 
200 100 100 100 95.5 100 100 100 99 

80 10 100 100 100 86 100 100 100 100 
30 100 100 98.5 53 100 100 100 100 
50 100 100 75.5 29 100 100 99 96 

130 100 99 74.5 43 100 100 93 95 
150 100 100 87.5 67.5 100 100 98.5 98.5 
200 100 100 100 94 100 100 100 99.5 

90 10 100 100 100 92 100 100 100 100 
30 100 100 99 57 100 100 100 100 
50 100 100 77 24.5 100 100 100 98.5 

130 100 96.5 53 28.5 100 99.5 97.5 96.5 
150 100 100 85.5 60.5 100 100 99 98.5 
200 100 100 100 93.5 100 100 100 100 

100 10 100 100 100 96 100 100 100 100 
30 100 100 99.5 67.5 100 100 100 100 
50 100 100 82.5 24.5 100 100 100 98.5 

130 100 95.5 45.5 22 100 100 98.5 96 
150 100 100 85.5 58.5 100 100 100 98.5 
200 100 100 100 96 100 100 100 100 

110 10 100 100 100 97.5 100 100 100 100 
30 100 100 100 76.5 100 100 100 100 
50 100 100 85.5 34 100 100 100 99 

130 100 98.5 56 34.5 100 100 98 96 
150 100 100 91.5 63.5 100 100 100 98 
200 100 100 100 98 100 100 100 100 

125 10 100 100 100 98.5 100 100 100 100 
30 100 100 100 85.5 100 100 100 100 
50 100 100 92.5 54.5 100 100 100 94.5 

130 100 100 86 61 100 100 95 93.5 
150 100 100 97.5 76.5 100 100 100 98.5 
200 100 100 100 99 100 100 100 100 
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Table 8.6:  Percentage of correctly identifying the designated outlier  
for sample size of 60 

 ¤� 

 © 

(%) 

��� ��� ¥  ¥  

0.5 5 10 15 0.5 5 10 15 

60 10 100 100 100 76 100 100 100 99 
30 100 100 100 68 100 100 100 91.5 
50 100 100 98 74.5 100 100 96 88 

130 100 100 100 83.5 100 100 98 95 
150 100 100 99.5 88.5 100 100 99.5 95.5 
200 100 100 100 97.5 100 100 100 99 

80 10 100 100 100 87 100 100 100 100 
30 100 100 99.5 33.5 100 100 100 99 
50 100 100 68.5 20        100 100 100 94 

130 100 100 71 37 100 100 96 94.5 
150 100 100 86 57.5 100 100 98.5 97 
200 100 100 100 92.5 100 100 100 100 

90 10 100 100 100 94.5 100 100 100 100 
30 100 100 100 39.5 100 100 100 100 
50 100 100 64.5 11.5 100 100 100 97.5 

130 100 95 42.5 23.5 100 100 96.5 94 
150 100 100 83 50 100 100 99 98 
200 100 100 100 92.5 100 100 100 100 

100 10 100 100 100 98.5 100 100 100 100 
30 100 100 100 47.5 100 100 100 100 
50 100 100 71.5 7.5 100 100 100 98 

130 100 96 33.5 16 100 100 98.5 96.5 
150 100 100 82 46.5 100 100 99 98.5 
200 100 100 100 96 100 100 100 99.5 

110 10 100 100 100 100 100 100 100 100 
30 100 100 100 65.5 100 100 100 100 
50 100 100 87 15 100 100 100 98.5 

130 100 99 49.5 25 100 100 98 94 
150 100 100 89.5 54 100 100 100 99 
200 100 100 100 98 100 100 100 100 

125 10 100 100 100 100 100 100 100 100 
30 100 100 100 86 100 100 100 100 
50 100 100 97.5 41.5 100 100 100 98 

130 100 100 88 53 100 100 96.5 95.5 
150 100 100 98 77.5 100 100 100 96.5 
200 100 100 100 99 100 100 100 100 
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Table 8.7:  Percentage of correctly identifying the designated outlier  
for sample size of 100 

 ¤� 

 © 

(%) 

��� ��� ¥  ¥  

0.5 5 10 15 0.5 5 10 15 

60 10 100 100 100 76 100 100 100 100 
30 100 100 99 73.5 100 100 100 95 
50 100 100 99 81 100 100 96.5 94.5 

130 100 100 100 88 100 100 97 96 
150 100 100 100 90 100 100 99.5 97 
200 100 100 100 96 100 100 100 100 

80 10 100 100 100 92.5 100 100 100 100 
30 100 100 99.5 35.5 100 100 100 99.5 
50 100 100 70.5 25.5 100 100 100 95 

130 100 100 66.5 38 100 100 95.5 95.5 
150 100 100 84 54 100 100 98 97 
200 100 100 99.5 93 100 100 100 99 

90 10 100 100 100 97.5 100 100 100 100 
30 100 100 99.5 32.5 100 100 100 100 
50 100 100 66 11 100 100 100 97 

130 100 95 40.5 26.5 100 99.5 96 96 
150 100 100 77 42 100 100 99 97.5 
200 100 100 100 92 100 100 100 99 

100 10 100 100 100 98 100 100 100 100 
30 100 100 100 43 100 100 100 100 
50 100 100 71 9.5 100 100 100 98.5 

130 100 91.5 31.5 16.5 100 100 96.5 96 
150 100 100 74 44.5 100 100 99.5 97 
200 100 100 100 92.5 100 100 100 100 

110 10 100 100 100 99.5 100 100 100 100 
30 100 100 100 63.5 100 100 100 100 
50 100 100 86 15 100 100 100 99 

130 100 98.5 50 25 100 100 98.5 97 
150 100 100 83 56 100 100 100 97.5 
200 100 100 100 96.5 100 100 100 100 

125 10 100 100 100 100 100 100 100 100 
30 100 100 100 90.5 100 100 100 100 
50 100 100 98 44.5 100 100 100 98 

130 100 100 87.5 53.5 100 100 98 96 
150 100 100 97.5 77 100 100 99.5 97.5 
200 100 100 100 99.5 100 100 100 100 
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assign subject 1 through 9 to sequence 1 and the remaining subjects to sequence 2. 

Figures 8.1 and 8.2 indicate the scatter plots of AUC data for period 1 and 2, 

respectively. A point (7th measurement from group 1 with erythromycin base) seems 

tobe far from others at the top of Figure 8.1. Using both procedures (���q1� and 

���q2�), subject 7 in group 1 is identified as an outlying subject as shown in Figures 

8.3 and 8.4 respectively. Similar result is showed by either the two-sample Hotelling ª� 

or likelihood distance as stated by Chow and Liu (2009). Subject 7 has exceptionally 

high value of blood concentration in period 1 (12.39 μg ∙ h/mL against mean value 4.95 

μg ∙ h/mL for group 1) but low value in period 2 (0.99 μg ∙ h/mL against mean value 

3.51 μg ∙ h/mL for group 1), suggesting the identification of the subject as an outlier is 

acceptable. Upon repeating the procedure after removing subject 7, ���q1� does not 

identify any more outliers but ���q2�  detect two new outliers; subject 11 (blood 

concentration are 7.14 μg ∙ h/mL  and 9.83 μg ∙ h/mL  respectively in period 1 and 

period 2) and subject 2 (blood concentration are 4.84 μg ∙ h/mL and 8.87 μg ∙ h/mL 

respectively in period 1 and period 2). As can be seen, both subjects have high values of 

blood concentration in period 2 compared to their means (3.51 μg ∙ h/mL in group 1 and 

4.72 μg ∙ h/mL in group 2) indicating the subjects are candidates to be outliers. 
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Figure 8.1: Scatter plot of AUC data 

for period 1 

 

Figure 8.2: Scatter plot of AUC data 
for period 2 
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8.4.2 Kinesiology data 

Using the real data set of peak oxygen consumption or ��� peak, as described in 

Chapter 7, we consider 77 measurements of peak oxygen consumption or ��� peak (in 

ml/kg/min) recorded from a six-minute Astrand submaximal cycling exercise test 

conducted at least one week apart. Figures 8.5 and 8.6 indicate the scatter plots of ��� 
peak for period 1 and 2, respectively. A point (34th measurement from group 1 with 

treatment A) seems to be far from others at the bottom of Figure 8.5. We fit the full data 

to model (8.3) and proceed to both procedures (���q1� and ���q2�) for detecting the 

possible outliers in the data.  

 From Figures 8.7 and 8.8, we see that at each plot, the 34th measurement (from 

group 1 with treatment A) gives the largest values of |�q1| and |�q2|. The largest 

values of |�q1| is greater than 3 while the largest values of |�q2| is greater than its 

corresponding tabulated critical value. Figures 8.7 and 8.8, therefore, reveal a dramatic 

outlier for subject 34.  

Figure 8.3: Studentized residual using �q1 for AUC data 
Figure 8.4: Studentized residual using �q2 for AUC data 
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To compare the ability of both procedures in detecting the possible outliers in 

the data, we proceed to test the subsequent largest values of |�q1| and |�q2| in the 

same manner. The sequential testing procedure stops when only the subsequent largest 

values of |�q1| are less than 3 for ���q1�, or the subsequent largest values of |�q2| 
less than its corresponding tabulated critical values for ���q2� . Both ���q1�  and 

���q2� detect six possible outliers from the data as listed in Table 8.8. As can be seen, 

at least one of the values of ���  in either period of the six subjects are distinctly 

different from the means given in the last two rows. 

 

 

 

 

Figure 8.5: Scatter plot of ��� peak 
for period 1 

 

Figure 8.6: Scatter plot of ��� peak 
for period 2 

 

Figure 8.7: Studentized residual 
using �q1 

Figure 8.8: Studentized residual 
using �q2 
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Table 8.8: List of outliers 

Sequence Subject Group Reading 

Period 1 Period 2 

1 34 1 1.75 49.26 
2 9 1 81.98 71.47 
3 32 1 52.55 65.92 
4 50 2 53.56 65.92 
5 3 1 63.06 52.55 
6 75 2 30.62 26.45 

Mean 1 43.36 46.58 
Mean 2 44.14 44.73 

 

8.5 Summary 

In this study, we investigated the detection of outliers based on residuals in a 

standard 2 × 2 crossover design. We calculated two types of studentized residual:	�q1 

using a classical procedure and �q2 using a new procedure based on median absolute 

deviation. Their performances in testing for within-subject outliers are compared. Based 

on a simulation study, we concluded that ���q2� is more powerful than ���q1�. As an 

illustration, both procedures were applied to Clayton and Leslie’s data (1981) and 

kinesiology data. The results showed that ���q2�  is comparable for ���q1�  in 

detecting outliers. 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



109 
 

CHAPTER 9:  KINESIOLOGY STUDY – OUTLIER DETECTION 

IN � × � CROSSOVER DESIGN USING BAYESIAN FRAMEWORK 

 

9.1 Introduction  

 This chapter considers the problem of outlier detection method in 2 × 2 

crossover design via Bayesian framework. The usual Bayesian approach for outlier 

detection uses the maximum posterior probability as the criteria to identify outlier, and 

not use cut-off point (Chaloner and Brant, 1988; Shotwell and Slate, 2011). We study 

the problem of outlier detection in bivariate data fitted using generalized linear model 

(GLM) in Bayesian framework presented by Nawama et al. (2015) and the work 

outlined by Unnikrishnan (2010). We follow closely their works but adapt them into 

2×2 crossover design. In Bayesian framework, we assume that the random subject effect 

and the errors to be generated from normal distributions. However, the outlying subjects 

come from normal distribution with different variance. Due to the complexity of the 

resulting joint posterior distribution, we obtain the information on the posterior 

distribution from samples by using Markov Chain Monte Carlo method. 

 

9.2 Modified generalized linear model with outlier 

 Unnikrishnan (2010) has developed an outlier model using Bayesian approach 

and it is modeled as a generalized linear model (GLM). As mentioned by Unnikrishnan 

(2010), consider d = �1, … , d� be a finite population with known d . For each unit 

" ∈ d , we have the real valued response variable 9�  and known ; × 1  vector of 

explanatory variables R° where R°] = (C�� 	⋯	C�K, 
Assume that a random sample of size � is obtained with a number of suspected 

outliers. Let 4$ be the set of all outlying observations where ℎ denotes the number of 

outliers. We consider the models with/without outliers based on GLM such that 
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        =�9�|?� , ±�, ²� = ³+C;�±��9�?�� + ���?�, ±�� + )��9���																	" ∈ d − 4$ 	+C; ´µB¶ �9�?�� + ���², ?� , ±�� + )��9��· 											" ∈ 4$										     (9.1) 

where ?�  is a location parameter, ±�  and ²  are scale parameters, and ��∙� , )�∙�  are 

known functions. This model was used by Pettit (1988) for the case of exponential 

distribution with known scale parameter ². The parameters ?�  are modeled through a 

link function ℎ�∙� and is given by 

                                            ℎ�?�� = R°]¸ + ¹�		,												" = 1,… ,d                               (9.2) 

where ¸º = (P� 	⋯	PK,  is an unknown regression coefficients of ; × 1  vector 

parameters and the error components ¹�’s are independently and normally distributed. In 

other words, 

ℎ�?��|e�		~		d�R°]¸, e��	. 
For conventional outlier models, it is usually assumed that they have the same mean for 

all observations. However, we expect to see higher variance for outlying observations, 

that is, when ² > 1.   

By considering the exponential regression model, Unnikrishnan (2010) 

suggested that model (9.1) can be reparameterized to fit their general framework as 

follows: 

                               =�9�|?� , ±�, ²� = ³±?�+C;�−±?�9��																	" ∉ 4$ 									µ¼B¶ +C; J− µ¼B¶ 9�L 															" ∈ 4$									            (9.3) 

with the link function  

GHI?� = P�C� − C̅� + ¹� 
where C̅ is the mean of the sample. 

Nawama et al. (2015) consider the problem of outlier detection in bivariate 

exponential samples using GLM via Bayesian approach. They follow closely the work 

outlined by Unnikrishnan (2010) but present every step of the detection procedure by 

considering the model (9.3). Due to the complexity of the resulting joint posterior 
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distribution, they obtain the information on the posterior distribution from samples 

generated by Markov chain Monte Carlo (MCMC) sampling, in particular, using the 

Gibbs sampler with Metropolis-Hastings (MH) algorithm. They use these samples to 

identify the observation which has the highest probability of being an outlier. 

 

9.3 The model  

 We follow closely the works of Nawama et al. (2015) and Unnikrishnan (2010) 

but adapt them into 2×2 crossover design. Under the full model (8.1), for case without 

outliers, the expected value of 9�*� is  

�(9�*�, = �(� + ;* + �2S�,*U + �2S�,*6�U + ��� + +�*�, 
                                         = � + ;* + �2S�,*U + �2S�,*6�U  
while the variance of 9�*� is 

���(9�*�, = ���(� + ;* + �2S�,*U + �2S�,*6�U + ��� + +�*�, 
                                         = �������� + ���(+�*�, = e�� + e��, 

Hence, 

                                      9�*�	~	d(� + ;* + �2S�,*U + �2S�,*6�U, e�� + e��,. 
On the other hand, for the case with outliers, the variance component ����� is assumed 

to be independent and normally distributed with mean 0 and variances ²�e��. Therefore,  

9�*�	~	d J� + ;� + �)S",�U + �)S",�−1U, ²2e¾2 + e+2L. 
 Assume that a random sample size of � = ∑�� is obtained with a number of 

suspected outliers. Define 9�*� = �9���, 9���, ⋯ , 9��/�. Let 4$ be the set of all outlying 

observations, where ℎ  denotes the number of outliers. We consider the model 

with/without outliers such that 
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=(9�*�¡�, ;* , �2S�,*U, �2S�,*6�U, ²,
=
¿ÀÁ
ÀÂS2k�e�� + e���U6��+C; �− 12�e�� + e��� (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�� 															for	V ∉ 4$S2k�²�e�� + e���U6��+C; �− 12�²�e�� + e��� (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�� 					for	V ∈ 4$

							 
   (9.4)                     

Using the Bayesian approach, we consider normal prior distributions for the overall 

mean, � , the period effect, ;* , the treatment effect, �2S�,*U , and the carryover effect, 

�2S�,*6�U, as suggested by Chen and Huang (2015). For the parameter ², Unnikrishnan 

(2010) assume that this extra variance component of the outlying observations is 

bounded above by a known constant ²�ÄÅ, so that  1 < ² < ²�ÄÅ < ∞ and therefore 

Uniform(1,	²�ÄÅ) prior is assigned to it. According to the suggestions in Unnikrishnan 

(2010), we shall assume that any distinct V-tuples are equally likely to be outliers and 

prior for 4$ assigns equal probability of (Y$,6�. In other words, we assume that  

� ∼ d(��, eÈ�, 
;* ∼ d(�K, eK�,,							� = 1,2 

�2S�,*U ∼ d��É, eÉ��,						" = 1,2; � = 1,2 

�2S�,*6�U ∼ d(�Ê, eÊ�, 
²	~	&�"=H���1, ²�ÄÅ� 
;�4$|ℎ� = NdℎO6� 

  (9.5)                      

where the hyperparameters ��, eÈ�, �K, eK�, �É, eÉ�, �Ê, eÊ�, ²�ÄÅ , d, ℎ are all pre-specified. 

Then, the joint likelihood function is given by  
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Ë�Ì|�, Í, Î, Ï, ², 4$� 
=ÐÐÐ=(9�*�¡�, ;* , �2S�,*U, �2S�,*6�U,�∉ÑÒ

�
* �

�
� � ×ÐÐÐ=(9�*�¡�, ;*, �2S�,*U, �2S�,*6�U, ²,�∈ÑÒ

�
* �

�
� � 		 

=ÐÐÐS2k�e�� + e���U6��+C; Ó− 12�e�� + e��� (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∉ÑÒ
�
* �

�
� �  

									×ÐÐÐS2k�²�e�� + e���U6��+C; Ó− 12�²�e�� + e��� (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∈ÑÒ
�
* �

�
� �  

                                                                                                                                       (9.6)                     

Consequently, from the result obtain in equations (9.5) and (9.6), the full joint posterior 

distribution for the parameters �, Í, Î, Ï, ², 4$ is given by  

=��, Í, Î, Ï, ², 4$|Ì� 
∝ Ë(9�*�¡�, ;* , �2S�,*U, �2S�,*6�U, ², 4$, × =(�, ;*, �2S�,*U, �2S�,*6�U, ², 4$,																																	 
∝ÐÐÐ=(9�*�¡�, ;* , �2S�,*U, �2S�,*6�U, ², 4$,/

� �
�
* �

�
� � × =��� × =(;*, × =(�2S�,*U, × =(�2S�,*6�U, 

									× =�²� × =�4$� 
∝ÐÐÐS2k�e�� + e���U6��+C; Ó− 12�e�� + e��� (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∉ÑÒ

�
* �

�
� �  

							×ÐÐÐS2k�²�e�� + e���U6��+C; Ó− 12�²�e�� + e��� (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∈ÑÒ
�
* �

�
� �  

    				× (2keÈ�,605+C; Ó− �È6ÈÖ�5�×Ø5 Ô × (2keK�,605+C; �− (K16ÈÙ,5�×Ù5 � × �2keÉ��605+C; �− (ÉÚSB,1U6ÈÛ,5�×Û5 � 
     			× �2keÊ��605+C; Ó− (ÊÚSB,1Ü0U6ÈÝ,5�×Ý5 Ô × �¶Þßà6�× J Y!�Y6$�!$!L                                                                          
                                                                                                                                                   (9.7) 

Since this posterior distribution is intractable, sampling is carried out using the MCMC 

sampling method, in particular using Metropolis-Hastings (MH) algorithm. 
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9.4 Sampling methods of the parameters 

 Note that model (9.4) involves multiple parameters that are structured 

hierarchically such that the dependency of the parameters is reflected in the joint 

probability distribution. The conditional posterior distributions of the parameters are 

intractable and therefore we use the MH algorithm for sampling purposes. The sampling 

methods for each of the parameters �, Í, Î, Ï, ², 4$ are given in detail as below. 

 

a) Parameter ² 

 Based on the full joint posterior distribution (9.7), the conditional posterior 

distribution for parameter ² given �, Í, Î, Ï, 4$ is given by 

=�²|�, Í, Î, Ï, 4$�																																																																																																																 
∝ÐÐÐ S2k�²�e�� + e���U6��²�ÄÅ − 1 +C; Ó− 12�²�e�� + e��� (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∈ÑÒ

�
* �

�
� � 	. 

Here we propose to use a proposal density for ²K�âK as 

I�²� = 1²�ÄÅ − 1 

so that ²K�âK has a uniform (1, ²�ÄÅ) distribution. Using the MH algorithm, candidate 

point ²K�âK is accepted with probability 

_(², ²K�âK, = min ä1, =(²K�âK¡�, Í, Î, Ï, 4$,I�²�=�²|�, Í, Î, Ï, 4$�I(²K�âK,å 

= minæ1, ∏ ∏ ∏ çh�è(¶ÙéêÙ5 ×ë5ì×í5,jÜ05�ÅK�6 05JîÙéêÙ5 ïë5ðïí5L(ñB1ò6È6K16ÉÚSB,1U6ÊÚSB,1Ü0U,5�óò∈ôÒ51õ05Bõ0
∏ ∏ ∏ çh�è(¶5×ë5ì×í5,jÜ05�ÅKÓ6 05(î5ïë5ðïí5,(ñB1ò6È6K16ÉÚSB,1U6ÊÚSB,1Ü0U,5Ôóò∈ôÒ51õ05Bõ0

ö  

The explanations of MH algorithm for calculating _(², ²K�âK,  can be found in 

Appendix. 
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b) Parameter � 

 Based on the full joint posterior distribution (9.7), the conditional posterior 

distribution for parameter � given Í, Î, Ï, ², 4$ is given by 

=��|Í, Î, Ï, ², 4$�  
∝ÐÐÐS2k�e�� + e���U6��+C; Ó− 12�e�� + e��� (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∉ÑÒ

�
* �

�
� �  

										×ÐÐÐS2k�²�e�� + e���U6��+C; Ó− 12�²�e�� + e��� (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∈ÑÒ
�
* �

�
� �  

    						× (2keÈ�,605+C; Ó− �È6ÈÖ�5�×Ø5 Ô	.    
Here, we introduce a function o� where 

                                                        o� = ÷1													for	V ∈ 4$	0													for	V ∉ 4$		                                   (9.8) 

 so that                                                                  

=��|Í, Î, Ï, ², 4$� 
∝ ∏ ∏ ∏ ÷S2k�e�� + e���U605+C; Ó− ��(×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ôø�6mò/� ��* ��� � 	   
		× ∏ ∏ ∏ ÷S2k�²�e�� + e���U605+C; Ó− ��(¶5×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ôømò/� ��* ��� �    

  × (2keÈ�,605+C; Ó− �È6ÈÖ�5�×Ø5 Ô  
∝ ∏ ∏ ∏ ÷S2k�e�� + e���U6(0Üùò,5 +C; Ó− ��6mò��(×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ôø/� ��* ��� �   

  	× ∏ ∏ ∏ ÷S2k�²�e�� + e���U6ùò5 +C; Ó− mò�(¶5×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ôø/� ��* ��� �  

  	× (2keÈ�,605+C; Ó− �È6ÈÖ�5�×Ø5 Ô	. 
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Here we choose the proposal density for �K�âK as 

I��� = (2keÈ�,6��+C; �− �� − ����2eÈ� �	, 
so that �K�âK  has a d(��, eÈ�, distribution. Using the MH algorithm, candidate point 

�K�âK is accepted with probability 

_(�, �K�âK, = minä1, =(�K�âK¡Í, Î, Ï, ², 4$,I���	=��|Í, Î, Ï, ², 4$�g(�K�âK, å 

= min N1, ��ú�O																																													 
where 

�� =ÐÐÐ�� × +C;S  × g�U�/
� �

�
* �

�
� � ×ÐÐÐ�� × +C;S) × g�U�/

� �
�
* �

�
� �  

ú� =ÐÐÐ�� × +C;S  × ��U�/
� �

�
* �

�
� � ×ÐÐÐ�� × +C;S) × ��U�/

� �
�
* �

�
� �  

� = S2k�e�� + e���U6��6mò��  

  = − �1 − o��2�e�� + e��� 
� = S2k�²�e�� + e���U6mò�  

) = − o�2�²�e�� + e��� 
g� = (9�*� − �K�âK − ;* − �2S�,*U − �2S�,*6�U,� 
�� = (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,� 
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c) Parameter Í 

 Based on the full joint posterior distribution (9.7), the conditional posterior 

distribution for parameter ;*, � = 1, 2 given �, Î, Ï, ², 4$ is given by 

=*(;*¡�, Î, Ï, ², 4$, Í, 
∝ ∏ ∏ ∏ S2k�e�� + e���U605+C; Ó− ��(×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∉ÑÒ�* ��� �   

   	× ∏ ∏ ∏ S2k�²�e�� + e���U605+C; Ó− ��(¶5×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∈ÑÒ�* ��� �  

   	× (2keK�,6	05+C; Ó− (K16ÈÙ,5�×Ù5 Ô	.  
We use the function o� as defined in equation (9.8) so that 

=*(;*¡�, Î, Ï, ², 4$, Í, 
∝ ∏ ∏ ∏ ÷S2k�e�� + e���U6(0Üùò,5 +C; Ó− ��6mò��(×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ôø/� ��* ��� �   

  	× ∏ ∏ ∏ ÷S2k�²�e�� + e���U6ùò5 +C; Ó− mò�(¶5×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ôø/� ��* ��� �  

  	× (2keK�,6	05+C; Ó− (K16ÈÙ,5�×Ù5 Ô	. 
Here we propose to use a proposal density for ;* as 

I*(;*, = (2keK�,6	��+C; û− (;* − �K,�2eK� ü	. 
Therefore, by using MH algorithm, for parameter Í, we update ;� and ;� one by one, 

where for each ;*, the candidate point ;*ÙéêÙ is accepted with probability 

Univ
ers

ity
 of

 M
ala

ya



118 
 

_ J;* , ;*ÙéêÙL = �"� æ1, =*ÙéêÙ J;*ÙéêÙý�, Î, Ï, ², 4$, ÍL I*(;*,	=*(;*¡�, Î, Ï, ², 4$, Í,I*ÙéêÙ J;*ÙéêÙL ö	

= �"� N1, ��ú�O																																																						 
where 

�� =ÐÐÐ�� × +C;S  × g�U�/
� �

�
* �

�
� � ×ÐÐÐ�� × +C;S) × g�U�/

� �
�
* �

�
� �  

ú� =ÐÐÐ�� × +C;S  × ��U�/
� �

�
* �

�
� � ×ÐÐÐ�� × +C;S) × ��U�/

� �
�
* �

�
� �  

� = S2k�e�� + e���U6��6mò��  

  = − �1 − o��2�e�� + e��� 
� = S2k�²�e�� + e���U6mò�  

) = − o�2�²�e�� + e��� 
g� = J9�*� − � − ;*K�âK − �2S�,*U − �2S�,*6�UL� 
�� = (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,� 

 

d) Parameter Î 

 Based on the full joint posterior distribution (9.7), the conditional posterior 

distribution for parameter �2S�,*U, ", � = 1, 2,	given �, Í, Ï, ², 4$ is given by 
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=2S�,*U(�2S�,*U¡�, Í, Ï, ², 4$ , Î,         
∝ ∏ ∏ ∏ S2k�e�� + e���U605+C; Ó− ��(×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∉ÑÒ�* ��� �   

   				×∏ ∏ ∏ S2k�²2e¾2 + e+2�U−12+C; Ó− 12(²2e¾2+e+2, J9"�V − � − ;� − �)S",�U − �)S",�−1UL2ÔV∈4ℎ2�=12"=1  

    			× �2keÉ��605+C; Ó− (ÉÚSB,1U6ÈÛ,5�×Û5 Ô	.  
We use the function o# as defined in equation (9.8) so that 

=2S�,*U(�2S�,*U¡�, Í, Ï, ², 4$ , Î, 
∝ ∏ ∏ ∏ ÷S2k�e�� + e���U6(0Üùò,5 +C; Ó− ��6mò��(×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ôø/� ��* ��� �   

 			× ∏ ∏ ∏ ÷S2k�²�e�� + e���U6ùò5 +C; Ó− mò�(¶5×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ôø/� ��* ��� �  

  		× (2keK�,6	05+C; Ó− (ÉÚSB,1U6ÈÛ,5�×Û5 Ô	. 
Here we propose to use a proposal density for �2S�,*U as 

I2S�,*U(�2S�,*U, = �2keÉ��6��+C; û− (�2S�,*U − �É,�2eÉ� ü	. 
Therefore, by using MH algorithm, for parameter Î, we update ���, ���, ��� and ��� one 

by one, where for each �2S�,*U, the candidate point �2S�,*UÙéêÙ is accepted with probability 

_ J�2S�,*U, �2S�,*UÙéêÙL = �"� æ1, =2S�,*UÙéêÙ J�2S�,*UÙéêÙý�, Í, Ï, ², 4ℎ, ÎL I2S�,*U(�2S�,*U,	=2S�,*U(�2S�,*U¡�, Í, Ï, ², 4ℎ, Î,I2S�,*UÙéêÙ J�2S�,*UÙéêÙL ö 

= �"� N1, �
ú
O																																																										 
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where 

�
 =ÐÐÐ�� × +C;S  × g
U�/
� �

�
* �

�
� � ×ÐÐÐ�� × +C;S) × g
U�/

� �
�
* �

�
� �  

ú
 =ÐÐÐ�� × +C;S  × �
U�/
� �

�
* �

�
� � ×ÐÐÐ�� × +C;S) × �
U�/

� �
�
* �

�
� �  

� = S2k�e�� + e���U6��6mò��  

  = − �1 − o��2�e�� + e��� 
� = S2k�²�e�� + e���U6mò�  

) = − o�2�²�e�� + e��� 
g
 = J9�*� − � − ;* − �2S�,*UÙéêÙ − �2S�,*6�UL� 
�
 = (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,� 

 

e) Parameter Ï 

 Based on the full joint posterior distribution (9.7), the conditional posterior 

distribution for parameter �2S�,*6�U, ", � = 1, 2,	given �, Í, Î, ², 4$ is given by 

=2S�,*6�U(�2S�,*6�U¡�, Í, Î, ², 4$, Ï, 
∝ ∏ ∏ ∏ S2k�e�� + e���U605+C; Ó− ��(×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∉ÑÒ�* ��� �   

    		× ∏ ∏ ∏ S2k�²�e�� + e���U605+C; Ó− ��(¶5×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∈ÑÒ�* ��� �  

    		× �2keÊ��605+C; Ó− (ÊÚSB,1Ü0U6ÈÝ,5�×Ý5 Ô	. 
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We use the function o# as defined in equation (9.8) so that 

=2S�,*6�U(�2S�,*6�U¡�, Í, Î, ², 4$, Ï, 
∝ ∏ ∏ ∏ ÷S2k�e�� + e���U6(0Üùò,5 +C; Ó− ��6mò��(×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ôø/� ��* ��� �   

  	× ∏ ∏ ∏ ÷S2k�²�e�� + e���U6ùò5 +C; Ó− mò�(¶5×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ôø/� ��* ��� �  

  	× (2keK�,605+C; Ó− (ÊÚSB,1Ü0U6ÈÝ,5�×Ý5 Ô . 
Here we propose to use a proposal density for �2S�,*6�U as 

I2S�,*6�U(�2S�,*6�U, = (2keK�,6��+C; û− (�2S�,*6�U − �Ê,�2eÊ� ü	. 
Therefore, by using MH algorithm, for parameter Ï, we have ���, = ��� = 0 and update 

���  and ���  one by one, where for each �2S�,*6�U , the candidate point �2S�,*6�UÙéêÙ  is 

accepted with probability 

_ J�2S�,*6�U, �2S�,*6�UÙéêÙL 
= �"�æ1, =2S�,*6�UÙéêÙ J�2S�,*6�UÙéêÙý�, Í, Î, ², 4$, ÏL I2S�,*6�U(�2S�,*6�U,	=2S�,*6�U(�2S�,*6�U¡�, Í, Î, ², 4$, Ï,I2S�,*6�UÙéêÙ J�2S�,*6�UÙéêÙL ö 

= �"� N1, �þúþO 

where 

�þ =ÐÐÐ�� × +C;S  × gþU�/
� �

�
* �

�
� � ×ÐÐÐ�� × +C;S) × gþU�/

� �
�
* �

�
� �  

úþ =ÐÐÐ�� × +C;S  × �þU�/
� �

�
* �

�
� � ×ÐÐÐ�� × +C;S) × �þU�/

� �
�
* �

�
� �  
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� = S2k�e�� + e���U6��6mò��  

  = − �1 − o��2�e�� + e��� 
� = S2k�²�e�� + e���U6mò�  

) = − o�2�²�e�� + e��� 
gþ = J9�*� − � − ;* − �2S�,*U − �2S�,*6�UÙéêÙL� 
�þ = (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,� 

 

f) Parameter 4$ 

 Based on the full joint posterior distribution (9.7), the conditional posterior 

distribution for parameter 4$ given �, Í, Î, Ï, ² is given by 

=�4$|�, Í, Î, Ï, ²� 
∝ ∏ ∏ ∏ S2k�e�� + e���U605+C; Ó− ��(×ë5ì×í5, (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,�Ô�∉ÑÒ�* ��� �   

   		×∏ ∏ ∏ S2k�²2e¾2 + e+2�U−	12+C; Ó− 12(²2e¾2+e+2, J9"�V − � − ;� − �)S",�U − �)S",�−1UL2ÔV∈4ℎ2�=12"=1 	. 
For the case of ℎ = 1, we let 4� = 4 = �4��. To find a new value of 4�, we select a unit 

at random from 4�, say 4K�âK. If the proposal is accepted, then 4� goes out and 4K�âK 

replace the value 4�  as the current outlier. Then, using MH algorithm, this state is 

accepted with probability 
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_(4�, 4K�âK, = �"�
�
��
�1,

∏ ∏ ∏ =(9�*�¡�, ;* , �2S�,*U, �2S�,*6�U,ÑÙéêÙ∉Ñ�* ��� �×∏ ∏ ∏ =(9�*�¡�, ;*, �2S�,*U, �2S�,*6�U, ²,ÑÙéêÙ∈Ñ�* ��� �∏ ∏ ∏ =(9�*�¡�, ;* , �2S�,*U, �2S�,*6�U,�∉Ñ�* ��� �×∏ ∏ ∏ =(9�*�¡�, ;* , �2S�,*U, �2S�,*6�U, ²,�∈Ñ�* ��� � �
��
�

 

= �"� N1, ��ú�O																																																																							 
where 

�� =ÐÐÐ ¾× +C;S. × g�U�∉ÑÒ
�
* �

�
� � ×ÐÐÐ � × +C;S	 × g�U�∈ÑÒ

�
* �

�
� �  

ú� =ÐÐÐ ¾× +C;S. × ��U�∉ÑÒ
�
* �

�
� � ×ÐÐÐ � × +C;S	 × ��U�∈ÑÒ

�
* �

�
� �  

¾ = S2k�e�� + e���U6�� 
. = − 12�e�� + e��� 
� = S2k�²�e�� + e���U6�� 

	 = − 12�²�e�� + e��� 
g� = (9K�âK − � − ;* − �2S�,*U − �2S�,*6�U,� 
�� = (9�*� − � − ;* − �2S�,*U − �2S�,*6�U,� 

 

9.5 Numerical examples 

 The method as described in the previous section is now applied to Clayton and 

Leslie’s data (1981) and kinesiology data. The values of  ��, �è , �É	and	�Ê equal to 0 while 
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the values of eÈ�, eK�, eÉ�, eÊ�,e¾2 and e�� equal to 1000; these values are suggested by Chen 

(2015), and ²�ÄÅ equals to 10. 

 

9.5.1 Clayton and Leslie’s data 

 Using this real data set, as described in section 8.4.1, we run the method for 

1000 iterations, with a burn-in of 500. We are especially interested in estimating the 

probability of a subject being an outlier. The probability of subject " being an outlier in 

this model can be estimated using the proportion of iterations that 4 = �"�. Figure 9.1 

shows the estimated probability of being an outlier for subjects 1 to 18. Given that there 

is one outlier; subject 11 has the highest probability of being an outlier with the 

probability of approximately 0.30. This is to be expected since for subject 11 (that is, 

subject 2 from group 2), the blood concentration is unusually large in the data set for 

period 2. Therefore, we may conclude that subject 11 is likely an outlier. Note that 

subject 11 is one of the outliers identified using ���q2� as described in Section 8.4.1. 
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Figure 9.1: Clayton and Leslie’s data: probability for an observation being outlier 
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9.5.2 Kinesiology data 

 The real data set of peak oxygen consumption or ���  peak, as described in 

Chapter 7, is used as illustration in this section. However, only 74 subjects who 

completed the study (AB = 37, BA = 37) are included for analyses. We run the method 

for 10000 iterations, with a burn-in of 5000. With the same interest in previous section, 

Figure 9.2 shows the estimated probability of being an outlier for subjects 1 to 74 using 

the proportion of iterations that 4 = �"�. Given that there is one outlier, subject 50 has 

the highest probability of being an outlier with the probability of approximately 0.32. 

This is likely because for subject 50 (that is, subject 13 from group 2), the ���  is 

unusually large in the data set for period 1. Therefore, we may conclude that subject 13 

from group 2 is likely an outlier. Note that subject 50 is one of the outliers identified 

using ���q1� and ���q2� as described in Section 8.4.2.   
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Figure 9.2: Kinesiology data: probability for an observation being outlier 
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9.6 Summary  

 In this chapter, we have considered the problem of detecting outlier using 

Bayesian approach in 2 × 2 crossover design. We have shown that with the chosen prior 

distributions for the parameter, we can obtain the information from samples generated 

by MCMC sampling, in particular using the MH algorithm. When applied to both 

Clayton and Leslie’s data (1981) and kinesiology data, this method is able to detect an 

unusual large observation as being an outlier with the highest probability as compared 

to the other observations. These subjects are also identified as outliers using the non-

Bayesian approach. We expect to identify other outliers found in Chapter 8 when we 

generalized the Bayesian approach presented in this chapter to the case of more than one 

outlier. 
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CHAPTER 10:  CONCLUDING REMARKS 

 

10.1 Summary of study 

 This study looks at three local medical problems of current interest. Firstly, this 

study considers the optimal number of lymph nodes to be removed (LNR) for 

maximizing the survival of breast cancer patients. We investigate the influence of the 

number of lymph nodes to be removed on survival using chi-square test of 

independence and Wilcoxon test. We then find the best-fitted logistic and Cox 

regression models using forward selection and BMA procedures. The models are used 

to assess the prognostic values of independent factors of survival at all thresholds of the 

number of LNR. For both types of regression models, we present the use of the Akaike 

Information Criterion (AIC) instead of Wald statistic ���� in determining the optimal 

number of LNR that give maximum differential in survival of the breast cancer patients.   

 Secondly, this study considers the optimal LNR for adequate nodal staging of 

breast cancer patients. We explore the association of LNR on nodal involvement using 

chi-square test of independence. With logistic regression analysis, we use similar 

procedure above to find the best-fitted logistic regression model and determine the 

optimal LNR for adequate nodal staging of breast cancer patients. 

 Finally, this study considers the problem of detection outliers in 2 × 2 crossover 

design using non-Bayesian and Bayesian frameworks. In the non-Bayesian framework, 

we consider the classical studentized residual and provide a new studentized residual 

using median absolute deviation to identify possible outliers. The performances of both 

procedures in detecting outliers are compared via simulation. In Bayesian framework, 

since the joint posterior distribution is intractable, we obtain information on the 

posterior distribution from samples generated by Markov chain Monte Carlo (MCMC) 
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sampling, in particular with Metropolis-Hastings algorithm to obtain the estimated 

values of the parameters and to identify the outliers in the data sets. 

 The methods mentioned above have been applied to the Malaysian Breast 

Cancer data and kinesiology data, obtained from the University of Malaya Medical 

Centre (UMMC).  This study is able to provide solutions to the problems which are very 

beneficial to the local medical practitioners. Hence, the findings are very important as 

guidelines in the surgical management of breast cancer patients and in the usage of 

kinesiotapes in sports. 

 

10.2 Contributions 

 The study has contributed in the following ways: 

1. We have provided an alternative method of identifying the optimal number of 

lymph  nodes to be removed for maximizing the survival of local breast cancer 

patients.  

2. We have provided an alternative method of identifying the optimal threshold of 

lymph  nodes removed for adequate nodal staging of local breast cancer patients.  

3. We have presented the use of studentized residual using median absolute 

deviation to identify outliers in 2 × 2  crossover design with application in 

kinesiology study. 

4. We have shown the procedure to identify the outliers in 2 × 2 crossover design 

by generating sample using MCMC method with application in kinesiology 

study. 
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10.3 Further research 

 There are various possibilities for further research in these areas. Some 

suggestions are given as below: 

1. To propose Bayesian information criterion (BIC), instead of AIC, as an 

alternative measure for the �� in determination optimal cut-offs for the issues 

considered. 

2. To propose more advanced group deleted Studentized residuals such as 

Generalized Studentized Residuals proposed by Imon (2005) and Generalized 

Pearson Residuals proposed by Imon and Hadi (2008), as the alternative choice 

for the studentized residual in the work of Chapter 8. 

3. To extend the work in Chapter 9 to cases with two or more outliers. 

4. To extend the work in Chapter 9 to unknown number of outliers. 
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