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Abstract

Studies on computational neuroscience through functional magnetic resonance imaging

and following human visual systems state that the mammalian brain pursues two distinct

pathways in the model. These pathways are designed to analyze not only motion infor-

mation (optical flow) but also the ventral processing stream in the brain that proceeds

with form features, in which Gabor wavelet is widely used. The original model of the

mammalian visual system represents two independent pathways, which become a subject

of interest among researchers. Model development is performed via systematic organi-

zation, where the active basis model is added into the ventral processing stream. The

Gabor wavelet-based and supervised method is efficient in terms of Gabor beam utiliza-

tion and object recognition-directed task through form pathway. In addition, the motion

information that is generated via optical flow in motion pathway is stabilized through ap-

plying the fuzzy membership scoring, which delays the changes in optical flow outcomes

and provides further robustness to the system. The interaction between these processing

pathways is another substantial matter implied in the model. The cross-connection of the

two pathways is implied throughout the present research via direct consideration, such

as shared sketch algorithm and optical flow information, fuzzy max-product involvement,

and scoring among each other. In addition, the model is considered a form information

through active basis model based on incremental slow feature analysis (denoted as slow

features). In this study, the motion perception in human visual system comprises fast and

slow feature interactions, which render biological movement understandable. Primarily,

a form feature is defined. This feature biologically follows the visual system through

applying active basis model and incremental slow feature analysis for extraction of the

slowest form features of human object for ventral stream. The interaction is considered

within the time that provides valuable features to recognize biological movements. Incre-

mental slow feature analysis provides a chance for fast action prototypes and bag-of-word

techniques, and opens a new perspective to recognize the original biological movement

model. Episodic observation is required to extract the slowest features. However, fast
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features of dorsal processing pathway through episodic ventral analysis update the pro-

cessing of motion information. Experimental results in the development of the biological

movement model indicate promising accuracies for proposed improvements and favor-

able performance on different datasets (KTH and Weizmann). The results also provide

promising direction on this area.
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Abstrak

Kajian ke atas pengiraan neurosains melalui fungsian Pengimejan Resonans Magnetik

(fMRI) dan mengikuti sistem visual manusia menyatakan bahawa otak mamalia mengejar

dua laluan yang berbeza dalam model. Ia khusus untuk analisis maklumat gerakan (aliran

optik) yang terdapat pada satu lagi laluan mengenai aliran pemprosesan berkenaan den-

gan perut di dalam otak yang meneruskan dengan ciri-ciri bentuk, dimana ombak-kecil

Gabor telah digunakan secara meluas. Model asal sistem visual mamalia mewakili dua

laluan yang bebas dan ia telah dikaji oleh ramai penyelidik lain, dengan beberapa perkem-

bangan telah dilakukan. Perkembangan model yang dilakukan dengan cara yang teratur

dan sis- tematik dengan menambah model asas aktif dalam aliran pemprosesan berkaitan

dengan perut. Ia mempunyai dua sebab utama disebabkan ombak-kecil Gabor dan kaedah

yang diselia yang boleh menjadi lebih cekap dari segi pengunaan dan pengiktirafan objek

ditugaskan melalui bentuk laluan. Selain itu, maklumat gerakan yang telah dihasilkan

oleh aliran optik dalam gerakan laluan telah lebih stabil dengan menggunakan keadah

pemarkahan keahlian kabur yang ditangguhkan perubahan hasil aliran optik, disamp-

ing memberikan lebih kemantapan kepada sistem. Interaksi antara laluan pemprosesan

juga merupakan perkara besar yang akan tersirat di dalam model. Sambungan antara dua

laluan telah tersirat dalam kajian ini dengan pertimbangan langsung, seperti perkongsian

lakarkan algoritma dan maklumat optik-aliran, penglibatan kabur max-produk, dan pe-

markahan dari satu kepada yang lain. Di samping itu, model yang dianggap mempun-

yai ciri-ciri yang cepat dan membentuk maklumat melalui model asas aktif berdasarkan

peningkatan analisis ciri perlahan. Di sini, persepsi gerakan dalam sistem visual manusia

terdiri daripada cepat dan lambat interaksi ciri yang membuat pergerakan pemahaman bi-

ologi diambil kira. Secara prinsipnya, satu bentuk ciri-ciri biologi mengikut sistem visual

memohon model asas aktif ke dalam analisis ciri tambahan perlahan untuk pengekstrakan

ciri-ciri bentuk paling perlahan objek manusia untuk aliran berkenaan dengan perut. Inter-

aksinya juga menganggap dalam siri masa yang memberikan ciri-ciri yang berharga bagi

pengiktirafan pergerakan biologi. Tambahan analisis ciri lambat menyediakan peluang
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untuk jalan pintas melalui prototaip tindakan, teknik beg perkataan, dan membuka per-

spektif baru untuk melihat pengiktirafan model asal pergerakan model. Walau bagaimana-

pun, untuk mendapatkan ciri-ciri yang paling perlahan pemerhatian episod diperlukan,

tetapi ciri-ciri cepat dorsal pemprosesan laluan sepanjang analisis episodically tentang

maklumat terbaru berkenaan dengan pemprosesan maklumat gerakan perut. Keputu-

san eksperimen dalam hierarki pembangunan model pergerakan biologi menunjukkan

ketepatan yang menjanjikan untuk penambahbaikan yang dicadangkan dalam model dan

prestasi yang baik di set data yang berbeza (KTH dan Weizmann).
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ventral processing stream, form pathway, a set of Gabor filters have

been applied at different orientations, positions and phases; outputs

of V1 part is outcomes of quadrature-phase pairs, summed,
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Figure 3.9 Different way to present the hierarchical model in terms of
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Figure 4.2 Figure represents the outcomes of the different pathways for every

action (upper set is ABM-ventral stream and lower set is optical
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Figure 4.4 Confusion matrices for recognition of human action in KTH and

Weizmann data sets applying second scenario. 88
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Figure 4.7 Confusion matrices SNN classifying KTH data set obtained by

adapted active basis model as combination of form and motion

pathways. Confusion matrices of the proposed approach has been

presented for the case of without fuzzy interference system, left

matrix, and after it, right matrix which are achieved from human

action movements of KTH dataset (Schuldt et al., 2004). The

robustness of the method after adding the fuzzy interference

stabilizer is considerably increased. The wrong recognitions in the

left confusion matrix have been decrease especially in case of

some actions i.e. clapping. Moreover, soar of robustness helps to

increase the overall accuracy and better results in classification of

biological movement. The accuracy of categorizations using

unbalanced SNN reaches to 86.46%. 95

Figure 4.8 Confusion matrices ELM classifying KTH data-set attained by

adapted active basis model as combination of form and motion

pathways. Confusion matrices of the proposed approach has been

presented which is obtained from human action movements of

KTH dataset(Schuldt et al. 2004). There are three different kernel

have been used to classifying using ELM algorithm(Huang et al.

2004; Huang et al. 2006; Liang et al. 2006; Lehky et al. 2008;

Huang, Wang et al. 2011; Rajesh & Prakash 2011) in the decision

making and categorization of the biological movement. From left

to right, RBF kernel-ELM , Wavelet kernel ELM and

Sigmoid-ELM confusion matrices have been depicted which

Sigmoid Kernel-ELM has better results in classification of

biological movement. The accuracy of categorizations are

ELM-Wav = 91.5%, ELM-RBF = 92.7% ,and ELM-Sig = 96.5%. 96
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Figure 4.9 Simulation results for simple biological movement paradigm based

on ABM (Wu et al., 2010) in the ventral processing stream and

optical-flow (Liu, 2009) in dorsal stream are shown. Each row

within the panel reveals the response of ABM during the episode

as well as flow generated for every different action. The set of

biological movements belongs to the biological movements are

from KTH dataset (Schuldt et al., 2004). (a) the simulation results

of the different actions of KTH dataset. (b) Optical-flow simulation

results; (c) The figure depicts some results of Weizmann robustness

dataset. It reveals increasing in the robustness of the proposed

approach due to utilization of ABM (Wu et al., 2010) in the ventral

stream. 100

Figure 4.10 The explanation diagram of the ventral processing of the applying

ABM (Wu et al., 2010) which represents movements pattern and

shape form of biological object within its movement episode.

ABM is a Gabor based supervised object recognition method,

which is, can learn the object shape in the training stage and can be

utilized object recognizer within the action episode. (a) it

represents the Gabor bank filter in different scales and orientations.

(b) Simulation results for training of ABM system for biological

walking movements using KTH human action recognition dataset.

At the end, walker shape has been presented in the top of the

figure. (c) the processing diagram of the ABM process for finding

human object presented. The similarity between the method and

biological finding in different level has been mentioned in different

stages. Overall, ABM have two stages SUM & MAX which make

the hierarchy from simple cells to complex cells and at the end

whole human object shape by active bases. 104
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Figure 4.11 Simulation results for simple biological movement paradigm based

on ABM based slow features in the ventral processing stream

shown. Each row within the panel reveals the response of ABM

during the episode as well as slowness features generated for every

different action. The first set of biological movements belongs to

Weizmann human action recognition dataset (Gorelick et al., 2007)

and second group of the biological movements is from KTH

dataset (Schuldt et al., 2004). Simulation results of the active bases

through incremental slow features follows the theoretical

prediction regarding simplification of recognition using ABM

based IncSFA and its application in ventral processing stream for

opening a new perspective of the original model of recognition of

biological movements. 106

Figure 4.12 Simulation results regarding dorsal processing stream applying

Optical Flow (Liu 2009) has been depicted here. As there is

episodic operation happening in the ventral processing stream,

form information, motion information, fast features, must be

considered during the time that ventral stream is performing

(t0, . . . , tn). Each row is representing an action during its episode

and the average of the flow for whole episode considered at the end

of every row. The images present flow in color form, which can

depict the biological movement flow in the episode. Average of

Optical flow throughout the biological movement considers for

recognition of the biological movement by fast features and add a

coefficient to form pathway results as the interaction between

ventral and dorsal streams. Different actions of simulation

presentation are from KTH human action recognition dataset

(Schuldt et al., 2004). 107
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Figure 4.13 Confusion metrics of the proposed approach has been presented

which is obtained from human action movements of KTH dataset.

There are three different kernel have been used to classifying using

ELM algorithm in the decision making and categorization of the

biological movement. From left to right, RBF kernel-ELM,

Wavelet kernel ELM and Sigmoid-ELM confusion matrices have

been depicted which Sigmoid Kernel-ELM has better results in

classification of biological movement. 109

Figure 4.14 Confusion matrices of the proposed approach has been presented

which is obtained from human action movements of Wiezmann

dataset (Gorelick et al. 2007). There are three different kernel have

been used to classifying usig ELM algorithm (Liang et al. 2006) in

the decision making and categorization of the biological

movement. From left to right, RBF kernel-ELM , Wavelet kernel

ELM and Sigmoid-ELM confusion matrices have been depicted

which RBF and Sigmoid Kernel-ELM have better results ,97.5%,

in classification of biological movement. 110

Figure 4.15 Confusion matrices of two pathways separately represent the

accuracy of each processing stream considering no interaction

between the pathways. These representation is for KTH human

action dataset for benchmarking without interaction of the paths. It

can be justifies the performances of two patients, DF whom

developed visual agnosia (damage to ventrolateral occipital) and

RV whom developed optic ataxia (damage on the occipitoparietal

cortex (Goodale et al. 1994)). 112
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CHAPTER 1:

Introduction

1.1 Overview

Human action recognition in monocular video is an important subject regarding

video applications, such as in human computer interaction, video search, and others. This

biological recognition is researched in different fields, such as neurophysiological, psy-

chophysical, and experimentations on imaging, and some cortical areas have been ac-

knowledged. In general, human action recognition in video streams using video process-

ing and such methods in the proposed area can be categorized into two techniques. One

technique uses global feature extraction from video streams to allocate a particular label

to the whole video. This technique clearly needs an unchanged observer within the video,

and the environments where actions are occurring should be considered (Santofimia et

al., 2013). The second technique considers local features in each frame and label for

distinct action. Afterward, sequences can be attained through simple voting for global

labeling. Temporal analysis for obtaining the features in each frame and classification

is based on the observation in temporal window. Both approaches should have attained

significant outcomes in such area (Schindler & Van Gool, 2008). An important factor of

complex action recognition and discrimination among different human motion styles and

individuals is learning (Hogg et al., 1995). Learning is also fundamental in recognizing

3D stationary human motion (Efros et al., 2003). Human action recognition using video

frames can be categorized as an object recognition problem. Such recognition is supposed

to handle object variations (e.g., style and size), and the human brain can excellently cat-

egorize human objects in different classes of action; recent methods have been inspired

by the biological outcomes of computational neuroscience (Daugman, 1980; Olshausen,

1996). In the primary visual cortex (V1), the image procedure is particularly sensitive on

bar-like structures. V1 responses are combined by extrastriate visual areas and passed to

the inferotemporal cortex (IT) for recognition (Riesenhuber & Poggio, 2002).
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1.2 Research Problem and Problem Statement

Computer vision researchers are categorized into human action recognition in terms

of computer vision-based problems, which are different from the biological model of the

visual system. The obtained results of such approaches have a high accuracy. However,

some of these methods are not considered any contribution in biologically inspired mod-

els. The original biologically inspired model 1 has proposed two independent pathways

2, which model the dorsal and ventral processing streams in the mammalian visual sys-

tem. The form pathways, which represent the ventral streams, should utilize the Gabor

filter function to obtain the shape and form information and as a good representation of

simple and complex cells. Moreover, the motion pathway has been used for optical flow

in the extraction of motion information. The slowness principle is not being used within

the pathways and the original model. Nevertheless, slowness features are important mo-

tivations in biologically inspired area and object recognition. Proposing a supervised or

unsupervised learning tool in the ventral stream can increase the robustness and recogni-

tion of human object within the streams. Here, the summary of the research problem are

mentioned below for better representation:

Problem 1: Using Gabor which has no learning mechanism in the current model,

it is not followed the actual brain model(even bio-inspired model).

Problem 2: The presented model in literature is still not efficient for interaction

between two processing pathways.

Problem 3: Slowness principle is not used as a biological inspired model (two

pathways model).

1.3 Objectives

This research aims to develop the mechanism of biological movement. It modifies

a supervised learning method in the form processing stream to increase the performance

1We will use the term original model in this thesis which represents the model reviewed by Giese &
Poggio (2003).

2Pathways are representing the streams in the brain visual system
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with respect to the original model of recognition of biological movements. In addition,

physiological models and evidence reveal some feedback toward these independent and

separated pathways, which should be considered in the original model, having the in-

teraction between the form and motion processing streams. Moreover, the utilization of

slow feature analysis in the recognition of biological movement is a good parameter to

represent this model in terms of slowness and fast features and their combinations within

the pathways. In general, the objectives of this research summarized corresponding to the

problems:

Objective 1: Improve the abilities of ventral streams in terms of detection of human

body shape with ABM.

Objective 2: Improving in the interaction between the dorsal and ventral processing

pathways.

Objective 3: Improving the motion information processing in dorsal processing stream

with fuzzy optical flow division method which guides ventral stream.

Objective 4: Modifying the mechanism for recognition of biological movement apply-

ing slowness principle.

1.4 Hypothesis

This research focuses on the improvement of recognition through the development

of the original model for biological movement recognition (the general configuration has

been shown in figure 1.1). This research follows three major hypotheses, which can be

summarized as follows:

• Active basis model (ABM), as a supervised object recognition method based on a model,

can be utilized in the ventral processing stream in the original model;

• The use of motion information in the middle of processing for both processing pathways

can be a good representation of the interaction between the ventral and dorsal streams in

visual processing paths.
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Figure 1.1: It is a general scheme diagram followed the principle of original model of
biological movement mechanism.

• The fast and slow feature interaction makes the biological movement more understand-

able.

1.5 Scope of Study

The scope of this study is defined by the improvement in the original model for the

recognition of biological movement through improving functionality using a supervised

object recognition approach (i.e. Active Basis Model) for the ventral processing stream

in the human visual system, and increasing robustness and relative comparable accuracy

as compare with the state-of-the-art methods. In addition, modeling the ventral stream by

using the slowness principle for extraction of human object form and motion information

shows optical flow application. The interaction between these two pathways occurs in

the categorization part, which obtains significant results in the decision and recognition

of movements. However, each of these pathways can separately help to recognize biolog-

ical movements by using the considerable disparity rate. Two human action recognition

4

Univ
ers

ity
 of

 M
ala

ya



Figure 1.2: Figure represents an overview on modifications of biological movement mech-
anism along with it contribution and their corresponding objective.

datasets have been utilized to benchmark the system performance.

1.6 Significance of The Study

This research study contributes in computational intelligence following the evidences

in the fields such as philological, neuroscience, neurophysiology, holonomic brain the-

ory, computational and theoretical neuroscience concerning the information of the mod-

els defined for mammalian (human) visual system. Video processing applications are

mentioned in this research (e.g., human action recognition, human activity recognition).

Moreover, applying slowness principle 3 into the mechanism provides different perspec-

tive for two independent pathways.

3Slowness principle is introduced by Wiskott & Sejnowski (2002), it is reviewed in the next chapters
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1.7 Research contributions and summary

This chapter provides a brief introduction to the research problems, objectives, hy-

pothesis, and research significance. Here, the contributions are pointed out. There are

three different problems existed in current biologically inspired human action recognition

approaches (object shape learning in ventral streams, interaction between two pathways,

and slowness principle in the mechanism). The objectives corresponding to these prob-

lems are listed below along with their contributions:

Adding ABM in ventral stream

* It improves the abilities of ventral streams in terms of detection of human body

shape (object recognition task improvement)(it corresponds to the first objective).

* It implies the interaction between pathways (related to the second objective), guid-

ance of optical flow into the Share Sketch Algorithm (SSA).

Optical Flow division

* It improves the process in dorsal streams using the divisions of optical flow which helps

more robust outcome (Corresponding to objective 3).

* The optical flow division updates the interaction between two pathways which is done in

previous method(Corresponding to objective 2).

Slow features(SF) action Prototypes

* It improves the process of prototype generation, using slow feature analysis (fulfills the 4th

objective).

* It updates interaction between the pathways, through the update the SSA into the SFs instead

of melting algorithm (it responds to objective 2).

A dual Slow and Fast features

* It develops the computational model slow and fast features interaction (Objective 2).

* It uses the slowness principle into the mechanism and converts the form process into a

incremental procedure (Objective 4th).
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1.8 Outline of the thesis

Chapter 1 presents the research introduction. Background and literature of research and

biologically inspired models are reviewed in Chapter 2. Chapters 3 and 4 discuss the methodology

and corresponding results. Concluding remarks and discussions of the developments and their

contributions in the mechanism of biological movement are given in Section 5.
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CHAPTER 2:

Literature Review

2.1 Introduction

Analysis of biological motion recognition is categorized in different research fields,

such as neurophysiology, neuropsychological, computer vision, and artificial intelligence

(AI). The present article mainly investigates the AI and computer vision perceptive of this

task, which considers the subdivision of a computer science field dealing with machine

intelligent behavior and learning. Since the 1950s, the primary experimental methods

have been classified into two main divisions: 1) symbolic methods, which follow clas-

sic approaches, are similar to expert systems and termed as connectionism approaches;

2) scruffy methods concentrate on the intelligence evolution or following artificial neural

networks. Both directions undergo rigorous restrictions. The untimely objectives, such

as human behavior reproduction and simulation, are entirely overlooked. Machine and

man have opposite abilities: man can estimate, infer, and recognize in parallel, whereas

machine can sequentially perform quick computations. Recently, biologically inspired

models, which are similar to behavior-based AI, have attracted attention. These mod-

els are more focused on the performance than on the internal processing of the machine.

Many projects have intensive collection of the mentioned facts, but none can create a

machine that takes direct advantage of this information. Nevertheless, in the field of vi-

sion combined with AI , some outcomes are obtained, but the remaining results might

not be sufficient. Modern machines can learn on the basis of statistics and follow few

determined objectives. One objective is to deal with information extraction from large

datasets, unsupervised learning, pattern recognition, and calculation based on statistical

analysis statements following hypothesis evidence. Such a machine is practically utilized

for actual problems, such as speech, image, and object recognition. Other topics, such

as actual machine intelligence and principles, are also practiced to be philosophical and

theoretical devices. Biological movement and its recognition comprise a multifield re-

search that follows many biological principles and engineering approaches, and are based
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on the human (or mammalian) visual system. In the present study, this subject is further

reviewed in terms of mechanisms and models proposed for this task.

2.2 Human action recognition and biological movement

Human action recognition is an imperative and notable part of computer vision study.

Currently, such recognition is also one of the most promising applications in this area and

has attracted considerable attention for various applications, such as human computer in-

teraction and video search. The task of human action recognition can be summarized by

automatically determining the type of human object action in video sequences or image

frames. Recognizing complex motion is also important for distance recognition, com-

munication, and imitation learning in complex motor actions. Motion recognition has

been studied in neurophysiological, psychophysical, and imaging experiments, as well

as in numerous fields. E. J. Marey and E. Muybridge carried out the initial studies on

human movement in the 1850s; they photographed moving subjects and presented on its

locomotion (Turaga et al., 2008). One of the earliest research on visual perception and

introduction of actual movement was conducted by Rubin (1927) and Duncker (1929)

(Beintema & Lappe, 2002; Hu et al., 2016). Johansson et al. (1973) presented the ini-

tial part of a study on moving object characteristic and movement perception (Leek et

al. 2012). They considered some motion patterns for living being, such as humans and

animals, as biological motion and few important points in the main joints of moving body,

which represent motion patterns. Such elements in proximal stimulus can represent the

kinetic–geometric model regarding the analysis of visual vector and basically expand in

mechanical form when biological motion perception and its patterns are combined. The

classic moving light display (MLD) provides an excellent impetus regarding the percep-

tion of human motion in neuroscience analysis and study (Leek et al., 2012; Johansson,

1975). Recognition of human walker’s gender is performed without knowledge cues by

using point-light sources established on human body’s important joints, which is not sim-

ilar to statistical experiments that have sufficient accuracy in this task. Changes in the

speed of walking and degree of arm swing, particularly in high speeds, are associated

with females, and upper body joints are excellent in determining the accuracy for gender
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recognition in light analysis (Kozlowski & Cutting, 1977). Marr et al. (1978) showed the

problem of computational process in human visual system and information obtained via

retinal images; 3D shapes are considered for problem presentation by introducing some

notes as follows: three criteria are introduced for shape recognition in judging, three as-

pects of design representation are considered (e.g., coordinate, primary shape unit infor-

mation, and information organization), shape description (e.g., coordination of the object

center, size variations, modular organization, view transferring mechanisms, and identifi-

cation of natural axes ), and constraints regarding conservation recognition applying fur-

ther information from the image. Perrett et al. (1985) reported on the temporal cortex of

macaque monkey; they found that most of the cells in the brain region are sensitive to the

type of movement and respond to specific body movements (Perrett et al., 1985). The two

cell types introduced are sensitive to the rotation and view of body movements. Further-

more, the response of majority of the cells in the areas of temporo-parieto-occipital and

PGA of temporal cortex has been considered in providing descriptions of view-centered

and view-independent responses among the mentioned cells (Pribram, 1991). Goddard

(1989) used connectionist techniques, along with spatial and temporal feature incorpo-

ration through diffused MLD data, and represented the walking recognition in 400 ms

MLDs (Goddard, 1989). This integration occurs in the low-level features of the shape

and motion by this target to make high-level features. Low-level features include sequen-

tial trajectories points, and they are grouped in line segmentation with one another to

obtain proper lower and upper body limb forms. Remarkably, shape and form pathways

are hierarchically joined to detect the three levels of complexity, i.e., component, seg-

ment, and assembly levels that signify temporal series on procedures (Goddard, 1989).

Goddard followed the biologically inspired human action recognition in determining the

complex structured motion by using MLDs. He analyzed major computational problems,

such as time-varying representation, visual stimuli integration, gestalt formation, contex-

tual formation, and particular spatial location focusing on process and its representation.

Moreover, he showed the process of “what” and “where” in the visual system tightly

coupled in a synergistic manner (Goddard, 1992). To better follow the different aspects
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Figure 2.1: Static approximations of the dynamic stimuli for the six walkers. Adapted
from (Aggarwal & Cai 1997).

of biological human action, the subject is divided into several different subsections. To

summarize this review, the following sections will discuss motion perception, modeling,

psychological and neuroscientific approaches, and other various aspects on the analysis

gathered in the previous section.

2.3 Perception of the motion

Goodale and Milner (1992) researched on the separation of the perception and ac-

tions for recognition and identification on the ventral processing stream concerning the

object recognition task. This separation allows the observer to move the hand for picking

up of object and considers the projection perceptual information for object identification

from striate and IT; furthermore, the posterior parietal region of the striate cortex has dor-

sal stream projection and needs visual sensorimotor transformations (Goodale & Milner,

1992).

Cédras and Shah (1995) reviewed motion development from the recognition aspect. Two

main stages were presented for motion-based recognition by organizing it into motion

models and matching unknown input with the constructed model. Several recognitions,
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Figure 2.2: The categorization of human action recognition and biological movement has
been represented in form of flowchart. Picture is adapted from (Aggarwal & Cai 1997).

such as cyclic motion detection and recognition, hand gesture interpretation, tacking, and

human motion recognition, were reported. Perkins (1995) presented real-time animation,

along with rhythmic and stochastic noise, for conveying only the texture of motion; this

research also avoided the computational dynamic and constraint solvers (Perkins, 1995).

He showed that each action has an internal rhythm and transition among movements,

and realized a real-time animation. The detection of cyclic motion in frequency domain

techniques of the magnitude information of Fourier transform and autocorrelation is rep-

resented as a curvature (1D signal) in function of time at 2D trajectories. Such detection is

tested by synthetic and actual data of a walking person (Tsai et al., 1993). The spatiotem-

poral method and the hidden Markov model (HMM) technique were presented for MLD

identification and classification, respectively. It provides decision based on the spatiotem-

poral sequence of the observed object features, and relatively little spatial information is

caused by the segmentation of MLD image sequences, along with object identification;

such information is highly temporal and is accessed by the HMM system, a major high

classification rate (Fielding et al., 1995).

Gallese et al. (1996) analyzed the electrical activity in the brain of macaque mon-
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keys from 532 rostral parts of six inferior neuron areas. Visual activation is required for

collaboration between the agent (i.e., hand and mouth) of object and its relevant action.

Finally, the mirror neurons form a system aimed at matching observation, motor action

execution, and its contribution in action recognition (Gallese et al., 1996). Aggarwal et al.

(1999) reviewed the human motion analysis approach that has received attention through

computer vision research, which increasingly encourages a broad spectrum of applica-

tions (Aggarwal & Cai, 1997). Some tasks in the three major areas of analysis are related

to interpreting human motion as human body parts, tracking body using single/multiple

cameras, and recognizing human activities through frame sequences. This low-level seg-

mentation of human body parts involves joints and projection of the 3D structure of the

human body in 2D representation (Aggarwal & Cai, 1997). The problem in most con-

ventional empty spaces and buildings lies in the difficulty of creating computer-generated

characters that display real-time, engaging interaction, and realistic motion. The process

of action and its perception have a common representational structure. The understand-

ing of action observation (in the observers) in another individual has a similar neural

code used to produce the same actions. Evidence of this hypothesis includes brain image

studies and examination of the functional segregation light of the perceptual mechanisms

subtending visual recognition and the same mechanism used for action (Decety & Grèzes,

1999).

Rangarajan et al. (1992) researched on matching the extended trajectories of bio-

logical motion (implying the points in the moving objects) with the information from

object recognition. They used scale-space representation, which considers the direction

and speed of the trajectories and uses spatial information to match the trajectories. The

performance of these two algorithms has been tested in synthetic and actual cases (Ran-

garajan et al., 1992). Neri et al. (1998) presented the ability of the visual system to

integrate the motion information of the standing still of walkers and such actions over

time and space, as well as their capacity comparison by viewing simple translational mo-

tion. An analysis regarding the temporal differences within the recognition of biological

movement involves the study of point-light display and human perception of movements.
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Figure 2.3: The control of action and perception showed in term of functionality in the
figure. The sensory codes generated in brain (central) and simulation’s patterns in sense
organs (peripheral) revealed by left-hand side and upward arrows. In downward arrows in
the right-hand side are excitation patterns from motor codes in muscles within the actions.
(Adapted from Ref. a, by permission of Psychology Press Limited, Hove, UK, Image and
caption adopted from (Decety & Grèzes 1999))

During this study, the temporal properties exposed to exaggeration techniques and spatial

information are constant, which affects the duration of motion sequence. The recognition

of exaggerated motions is better than the original, and the absolute duration is not a sig-

nificant cue for the recognition of biological movements. Therefore, the exaggeration in

temporal information returns the overall principle of diagnostic information, which is en-

coded for recognition in various domains (Hill & Pollick, 2000). Giese and Poggio (2000)

presented morphable models by linear combination of prototypical views to recognize bi-

ological movements and image synthesis for stationary 3D objects and its involvement in

complex motion patterns. The linear combination of prototypical image sequences is used

to recognize action patterns (even complex movements). The mentioned new approach

can be used to analyze and synthesize the biological movement, which involves the actual

and simulated video data and various patterns (which has local properties of the linear

vector space) of locomotion (Giese & Poggio, 2000). Moeslund and Granum (2001) con-

ducted a comprehensive survey on motion capture involving computer vision. This survey

targeted an overview on the taxonomy of system functionalities and summarized it into
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four processes (initialization, tracking, estimation of agent pose, and recognition); each

of these processes is divided into its subprocesses and various categories (Moeslund &

Granum, 2001). Moreover, Grèzes et al. (2001) analyzed human perception in biological

motion. Their study considers key role for action interpretation, identification, and pred-

ication. The main hypothesis of their approach lies under neural network specifications

and its verifications through fMRI for 10 healthy volunteers. Seven types of visual motion

displays are used: random dot cube, drifting random dots, random dot cube with masking

elements, upright point-light walker display with masking elements, inverted point-light

walker display with masking elements, upright point-light walker, and inverted point-light

walker. In this approach, the hemodynamic responses of both rigid and non-rigid biolog-

ical motions are connected (rigid motion responses are localized posteriorly to the rigid

responses). The left intraparietal cortex is involved in non-rigid biological movement per-

ception and associated with the posterior superior temporal sulcus (STS) and left anterior

portion of IPS responses. Regions, such as LOS/KO, MT/V5, and the posterior STS, are

included in these activations (Grezes et al., 2001). An examination on the visual percep-

tion effects used point-light display for the arm movements of two actors for knocking and

drinking movements. These actions were performed in 10 various effects. The point-light

animation influenced by the phase-scrambled and upside-down versions of actions was

shown to the actors for classification. The experimental results indicated that perception

affects the corresponding action kinematics and movement of the phase related to the dif-

ferent limb segmentations (Pollick et al., 2001). A computational approach for biological

movement perception presented the computer–human interface algorithm for initializa-

tion. The approach detects human body movement and automatically labels it. It also

estimates the maximization of the joint probability density function of the velocity and

position of the body parts (Song et al. 2001). Wiley and Hahn (1997) proposed a virtual

reality approach regarding the computer-generated characters and their engaging interac-

tions. The kinetics of human body and biological motion for the interpolation synthesis

of articulated figure motion were previously studied (Wiley & Hahn, 1997). In addition,

Grossman and Blake (2002) conducted visual system analysis on neural mechanisms,
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anatomical and functionality into two forms, and motion distinct pathways. The analysis

of point-light animation involves the mutual perception of form and motion within the

act of biological movement. Their study referred to a previous work regarding the acti-

vation of posterior superior temporal sulcus (STSp) and presented a new finding for the

activation of fusiform (FFA) and occipital within the biological movement and genera-

tion of neural signals, which can differentiate a biological motion from a non-biological

one. LOC and EBA involved in human form perception were also presented. The neural

in the form and motion pathways causes the biological motion perception (Grossman &

Blake, 2002). Jastorff at el. (2002) proposed an approach to investigate the recognition

process during neural mechanism and whether the brain can learn a completely new com-

plex pattern of action. They generated a new artificial–biological motion using the linear

combination of time–space prototypical trajectories recorded through motion capturing.

This method provides a significant improvement in discrimination for all the stimuli. The

human brain can learn entire novel action patterns (Giese et al., 2002). An investiga-

tion on the spatiotemporal generalization of biological movement perception revealed the

response of motion stimuli and interpolated this generalization among natural biologi-

cal motion patterns. A linear combination of spatiotemporal patterns is estimated using

natural movement patterns. The weight of prototypes in the morphs and the continuous

and smooth variations in category probabilities are observed in this approach. A gener-

alization exists within the motion patterns classes in the visual system (Giese & Lappe,

2002). Beintema and Lappe (2002) analyzed the perception of form pattern of human

action through moving light points. The biological motion stimulus follows limited time

perception of human motion. The figure of human motion is spontaneously recognized

without the local image motion, and the direction of the walker and walking figure coher-

ence are recognizable without the existence of image motion. The approach shows that

image motions are not the foundation for biological motion perception, and the biological

motion is derived from form information, which is dynamic (Beintem & Lappe, 2002).

Kilner et al. (2003) elucidated the connection between the actions and their perception

by representing the action in motor programs. The mirror system involves the execution
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Figure 2.4: The figure represents the motion for the human skeleton during the simple
movement and the trajectories of the person whom perform the actions also revealed.
(picture adopted from Wachter, S., & Nagel, H. H. (1997, June) .)

of actions after considering the interference between the observation and performance.

The approach hypothesizes that the overlap between observation and execution causes in-

consistent performance. Observation on incongruent movement performance also elicits

considerable interference effect on action execution and suggests the considerable cost to

motor control (Kilner et al. 2003). An approach on perceiving the complex shape orien-

tation and local geometric attribute perceptual integration was also presented for global

representations through two-part shape adjustment and 2AFC task. Such research is not

related to action recognition, but the shape analysis for visual estimation suggests that

robust statistic influences segmentation (Cohen & Singh, 2006).

The ability to recognize moving human figure using moving point light is considered

a biological motion perception. These point lights provide information on body shape and

local motion signals to such a vivid perception. Lange et al. (2006) investigated the global

form analysis by applying simple-template matching techniques through statistical pos-
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tures of walking human subjects with near-absent local motion signals. The simulation

results were compared with psychological data and extraction of sparse form data in point-

light walkers (Lange et al., 2006). An approach on the perception of object recognition

analyzes the observation features of humans. The transfer of information from particular

trained object components has been implied for other objects sharing the components, and

this transfer depends on their geometric relationship to the objects. The shared compo-

nents of objects cause a high level of recognition in the objects, but the component transfer

between the objects is limited to not more than one (Gölcü & Gilbert, 2009). A research

on motion blind patient (LM patient) considers the suspected human homolog of V5/MT

concerning the moving stimuli. The patient reports biological motion (human action) as

Johansson display (moving dots, which have particular direction and velocity). Thus, the

motion in the visual cortex is interpreted traditionally and associated with motion pro-

cessing. However, the patient did not report the spatial disposition of the actor and ability

for figural segregation on the movement basis cue and interpretation of the movements

(moving parts) independently (McLeod, 1996). Daems and Verfaillie (2010) presented

the analysis of body postures in different viewpoints and human identification using four

experiments. Some parts of their findings conclude that people who can identify the ac-

tions are basic-level objects and that an abstraction occurs in the visual system (Daems &

Verfaillie, 1999). Peripheral vision and pattern recognition concerning the theory of form

perception were summarized by Strasburger et al. (2011). Their research includes the

extension of Schwartz’s cortical mapping function, discussion about limitations, demon-

stration of Bouma’s law, and an extensive range of psychophysical tasks. It also considers

the low presentation complexity and speed of pattern categorization and cognitive pro-

cessing for peripheral vision for low-level functions (Strasburger et al., 2011). Servos

et al. (2002) researched on the relationship between biological motion and control un-

predicted stimuli by examining shape perception, motion neural subtractions, and motor

imagery. During this research, a biological motion called BOLD signal is found in the

lingual gyrus at the cuneus border (Servos et al., 2002). A study about single cells, neu-

roimaging data function, and field potential records shows the visual mechanism in STS
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in primates and humans; it also simplifies biological motion display by using point-light

markers on the limbs of walkers (Puce & Perrett 2003). Data retrieval regarding the di-

rection from scrambled point-light displays in humans and animals leads to a hypothesis

that biological motion mechanism serves for general detection system (Troje & Westhoff,

2006). A review on perception considers the human action and its advancement in motoric

and visual effects, as well as the elucidation of perceptional neural concomitants (Blake

& Shiffrar, 2007). A comparison of point-light view and human process in biological

motion shows that non-human actions do not convey the actions in the same manner as

point lights. The neural responses in pITG are also not engaged, and STSp plus FFA/FBA

and ITS are decreased merely in the point-light versions. STSp is involved only in human

actions (Pyles et al., 2007). Another research analyzed the STSp region and found that

its functionality underlies the BLOD response. Such research used fMRI to analyze the

actions with point-light animations. Viewpoint invariance of human action in STS is an

abstraction in centering its representation of visual analysis (Grossman, 2010).

Giese (2014) presented an approach to describe a body in the aspect of psychology.

This approach shows that body motion perception needs an integration of multiple visual

processes involving Gastalt-like pattern and aggregation of the bottom-up and up-down

processes with recognition based on learning (Giese 2014). A research on visual motion

perception uses the integrated dynamic motion model to handle diverse moving stimuli.

This research involves the random dot kinematograms and considers the motion integra-

tion and motion detection and perception in decision. Analysis is performed by generating

the parameters in dynamic simulation (Tlapale et al., 2015). Jung and Gu (2015) showed

another approach that combines perception and modeling in the visual motion. This ap-

proach follows the visual perception knowledge to diagnose the main details of video and

efficiently remove the noise (Jung et al., 2015). Another approach characterizes the pat-

terns and perception duration and categorizes them into three groups according to their

direction cues, namely, cardinal, diagonal, and toward diagonal (Meso & Masson, 2015).

The link between imagery and perception was investigated by putting the observers in

the dark, which rotates in the left or right. The velocity of chair rotation should be high,
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Figure 2.5: A)Schema of the model shown and symbols are shown following the brain
areas and their functionality: MT: middle temporal area; V1: primary visual cortex; FFA:
fusiform face area; STS: superior temporal sulcus; KO: kinetic occipital area. These
areas and their functionalities are considered in their timing t1, t2, . . . , tn for the input data
frames and their encoded information gathered by radial base function and optical flow.
Also (a) reveals the opponent motion detector; (b) shows the lateral coupling in complex
optical flows; (c) response of the motion pattern detector Casile & Giese (2005). ). B)The
language production and perception performance review is shown in the figure(Arbib
2005)). C) illustrate the model presented in Giese, Martin& Poggio (2003) with concerns
of receptive field as well.

and the direction of imagined rotation is different from physical rotation (Nigmatullina

et al., 2015). In addition, Tadin (2015) used perception information to suppress the sur-

rounding spatially, which involves sensory input. The ability to suppress information is

a neural process that involves both perception and cognition (Tadin, 2015). Matsumoto

et al. (2015) analyzed schizophrenia patients who have impairments in cognition, per-

ception, and visual attention; they also analyzed the biological motion perception in 17

patients and 18 healthy controls (Matsumoto et al. 2015). Ahveninen et al. (2016) in-

vestigated the combination of spatial and non-spatial information in the auditory cortex

(AC) of two parallel streams, namely, “what” and “where” that are modulated for visual

cortex subsystems, as well as their integration regarding object perception. This approach

uses animated video clips of two audiovisual objects, namely, black and gray cats, and

records the magneto- and electroencephalography data. The events in sound are initially

linked to object perception in posterior AC, with modulation representations in anterior
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Table 2.1: The perception approaches presented with their contribution in the field.

Perception 

 
Approach 

 

 
Topic of the approach 

 

 
Connection to other researches 

 

E. J. Marey and E. 
Muybridge (1850s) 

 moving photographs presenting locomotion  

Rubin (1927)  visual perception of real movement   

Duncker (1929)  visual perception of real movement   

Johansson et al. (1973)   motion patterns for humans& animals as biological motion (MLD)   

Turaga et al., 2008  locomotion analysis  

Johansson, 1975  perception of human motion in neuroscience analysis   

Kozlowski & Cutting, 1977  with females and upper body MLD, gender recognition   

Marr et al. (1978)   computational process in human visual system, 3D shapes  perception 

Perrett et al. (1985)  

 

temporal cortex of macaque monkey analysis, found two cells in brain sensitive for rotation and 
view of the body movements 

 

Perrett et al. (1989)  view centered, view independent responses among the brain cells   

Goddard (1989)   spatial and temporal feature incorporation through diffuses MLD data  perception-computer  

Goddard (1992)  synergistic manner of the process of “what” and “where” in visual system  neuroscience 

Goodale & Milner (1992)  projection perceptual information from striate and inferotemporal cortex    neuroscience-object identification 

Cédras and Shah (1995)  motion based recognition into motion models  modelling 

Perkins (1995)   animated real-time, texture of motion, avoiding computational modelling 

Tsai et al. (1993) 
 

detection of cyclic motion, applying Fourier transform highly related to computational 
modelling 

Fielding & Ruck (1995) 
 

Hidden Markov Model (HMM) technique for classification  highly related to computational 
modelling 

Gallese et al. (1996)   analysis the electrical activity in macaque monkey's brain neuroscience 

Aggarwal et al. (1999)   human motion analysis review and computer vision approaches computer vision 

Aggarwal & Cai (1997)  interpreting human motion, tracking, framely recognizing human activities  perception 

Decety & Grèzes (1999)  Process of action and its perception, functional segregation MLD  

Rangarajan ey al. (1992)   matching the biological motion trajectories (object recognition )  computer vision 

Neri et al. (1998)   visual system ability to integrate the motion information of walkers  

Hill & Pollick (2000)  temporal differences in MLD, recognition of the exaggerated motions    

Giese & Poggio (2000)  linear combination of prototypical views,3D stationary object recognition computer vision 

Moeslund & Granum 
(2001)   

comprehensive survey on the motion capture  computer vision 

Grèzes et al. (2001)  neural network specifications and its verifications through fMRI  computer vision-neuroscience 

Pollick et al. (2001)  visual perception effects used point-light display(MLD) computer vision 

Song et al. (2001)  Computer-human interface. using joint probability density function (PDF)  computer vision 

Wiley & Hahn (1997)   virtual reality approach regarding the computer generated characters  computer  

Grossman & Blake (2002)  neural mechanisms, anatomical and functionality into two pathways  neuroscience 

Jastorff at el. (2002)  investigating of recognition process in the neural mechanism  neuroscience 

Giese & Lappe (2002)  spatio-temporal generalization of the biological movement perception  computer vision  

AC (Ahveninen et al., 2016).

2.4 Knowledge based modeling approaches

Modeling of biological movements into systematical and mathematical models fol-

lows the neuro-physiological, physiological, and neuro-science evidence. This modeling

is increasingly developed and considered one branch of this research field; many com-

puter vision approaches also underlie this model. An engineering approach uses HMM

and features based bottom-up approaches in time sequence images. The computer vi-

sion aspects of action recognition are more considered than the recognition of biological

movements (Yamato et al., 1992). The linear combination of motion sequence prototyp-

ical views is considered an effective method to recognize and analyze the 3D stationary

object images. The problem on corresponding space–time computations is solved using
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the algorithm presented by Giese and Poggio (1999). Biological movement simulates

images and applies the prototypical superposition in motion sequences, thereby creat-

ing new video sequences, which are used to analyze action recognition. The topology

over space for action patterns is considered in the video sequences. A proposed method

follows the structural risk minimization principle, which provides knowledge regarding

pattern space topology for recognition (Giese & Poggio, 1999). Gavrila (1999) presented

a survey article in visual analysis regarding human movement. This survey represented

several applications in this domain (particularly for the hand and whole-body motion)

and included 2D approaches with or without shape models and 3D methods (Gavrila,

1999). A quantitative description on the geometry of human objects with movements is

considered through fitting a 3D model projection to construct image frame sequences.

The person model kinematic using homogenous transformation tree plus models the right

elliptical cones in the body parts of the human subject. This model concerns the degree

of freedom, which normally varies and is determined by solving the iteration expanded of

Kalman filter; the velocity of the person model is constant, and only simple motions are

included (Wachter & Nagel, 1997).

Gises and Poggio (2003) reviewed a complex research regarding the dual processing path-

ways in the visual system and their functions. This review discussed the mechanism for

recognizing biological movement in the mammalian brain and analyzed the motor con-

trol by using quantitative models and neurophysiologically plausible tools for model es-

tablishment (Giese & Poggio, 2003). Human perception of movement is followed by

stimulus approaches, such as point-light display. An evidence is presented on multilevel

generalization by using simple mid-level optic flow features on coarse spatial arrange-

ment. Some findings are as follows: point-light and normal walkers statistically share

similar dominant local optic flow features, inconsistency of the human body skeleton with

point-light stimulus, and critical features for considerable recognition (degraded stimuli).

The dominant form and motion feature extraction in the mid-level of the moving subject

is conducted by using principal component analysis (PCA). This analysis is commonly

employed to extract the informative directions of high-dimensional information spaces.
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Mid-level optic flow features from spatial localization are considerably effective to rec-

ognize biological movement (Casile & Giese, 2005).

Neural and its functionality grounding for language skills are analyzed by observing the

premotor area F5 in monkeys and Broca’s area in humans, which contain a mirror sys-

tem to observe and execute manual actions. The major concern of this research is related

to imitation (Arbib, 2005). Valstar and Pantic (2006) compared logically and biologi-

cally inspired methods for facial expression in human machine interaction. Face recog-

nition in six basic emotional states and atomic facial muscles called action units (AUs)

was analyzed. Classic psychological studies considered a finite number of rules to clas-

sify basic emotions and followed the recent studies using ANNs . A comparison was

conducted between the detection of emotions from features versus the determination of

AUs into an ANN for recognition. The results suggested the suitability of the biologi-

cally inspired approach on logical methods for this application (Valstar & Pantic, 2006).

Demiris and Khadhouri (2006) analyzed the action perception in motor systems. They

provided a review on computational architecture and hierarchical attentive multiple mod-

els for execution and recognition (HAMMER) for motor control systems on a robot by

selecting an action competitively and performing and perceiving it during demonstration.

Computational experiments showed the differences for controlling HAMMER. Biological

evidence compatibility of action plans in recognition, which uses action and perception

features, is also shown (Demiris & Khadhouri, 2006). Minler and Goodale (2007) also

analyzed two cortical systems regarding the vision in action and perception inspired by

Larry Weiskrantz. They summarized some essential concepts regarding the model, re-

finements, and particular clarifications (Milner & Goodale, 2008). A mid-level learning

for motion features is presented by Fathi and Mori (2008). This approach is not directly

biologically inspired, but it involves the motion patterns and optical flow (Fathi & Mori,

2008). Schindler and Gool (2008) presented a successful implementation of a biologically

inspired model of human action recognition, which involves the motion and form infor-

mation interaction. They showed the recognition of simple actions instantaneously by

using short sequences (snippets) of 1–10 frames. A reasonable performance was obtained
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Figure 2.6: A biological inspired recognition of human action overview diagram. The
two parallel processing streams are considered that log-Gabor filtering in the multiple
directions and scales generate the form information and in the other hand optical flow
extracts the information of motion considering the directions, scales and speeds. The
max-pooling have been used in the both streams. This information concatenates to create
input for linear classifiers Schindler & Van Gool (2008b).)

for the proposed approach, but its main objective is not about the biologically inspired

model (Schindler & Van Gool, 2008a). Schindler and Gool (2008a) developed a method

to recognize the action consisting of form (local shape) and motion (local flow) features

in the video sequence. This method considers two features, which are inspired by sepa-

rate independent pathways from the human visual system. Local pooling of feature maps,

down sampling, comparison with an established template, and generation of similarity

score vector for each channel were conducted. These scores are merged and given to a

discriminative classifier (Schindler & Van Gool, 2008b).

Furthermore, Webb et al. (2008) presented the mechanism in intermediate levels of

visual processing and investigation to detect circular and radial forms. This mechanism

analyzes the detection of the global structure in spiral form using the array consisting of

100 Gabor that is randomly positioned within the window. The Gabor filter randomly ro-
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tates, and the structure can be detected when the mask and test have the same spiral pitch.

The Gabor filter is extensively used in the form pathway, and the approach is significant

for elucidating the mechanism of visual processing streams (Webb et al., 2008). Yau et al.

(2009) investigated the recognition and interaction between vision and touch by studying

the single neurons in macaque monkey intermediate visual (V4 area) and somatosensory

(SII area) cortex to match the shape stimuli. The curvature direction for the mentioned

regions was tuned, and PCA was utilized to identify the underlying patterns and shape

feature selectivity for large response variances (Yau et al., 2009). A bio-inspired feed-

forward of spiking network model was performed for the influences of the motion system

(V1 and MT) on human action recognition. Two characteristics of neural code, namely,

neuron synchronization and their firing rate, were considered. Spiking networks can be a

potential alternative in actual visual applications (Escobar et al., 2009).

The dynamic representation of action recognition was analyzed through a pose descrip-

tor called histogram of oriented-rectangles to represent the human action recognition in

the video streams via rotating the human silhouette. The approach is more computa-

tional rather than bio-inspired, but it provides a considerable method (Ikizler & Duygulu,

2009). Another machine vision approach that can be considered a partially biological

method uses the bag-of-word (BOW) representation of visual features as visual word and

semilatent topic models (Wang & Mori, 2009). Ryoo and Aggarwal (2009) presented

the spatiotemporal relation for recognizing human activity. The approach considers the

known background, and spatiotemporal local features are used for short video and sim-

ple periodic actions. Notably, local spatiotemporal features are considerable because of

their similarity to the receptive field utilization in the visual system (in the ventral and

dorsal processing streams). The proposed method is an engineering approach that allows

the localization and detection of the actual complex activities (Ryoo & Aggarwal, 2009).

Shabani et al. (2010) proposed an engineering method on multiscale salient features from

motion energy, which is encoded by local events and biologically plausible on perception

model. The opponent-based motion energy from oriented motion filters is constructed

from bio-inspired time causal filters. This approach also uses the BOW idea (Shabani
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Figure 2.7: The different step of the presented approach in the block diagram is shown for
input image sequence. a) depicted the video sequence of input video of human action, b)
directional selection filtering applied to input images frames using log-polar as V1 output
and these spike train and feed the spiking MT (gathering the spatio-temporal information),
c) the motion maps through the estimation of the mean firing rates of MT or synchrony
map of the spikes for MT cells. d) Show the classification step considering the information
gathered from motion maps and training set Escobar et al. (2009).)

et al., 2010). Poppe (2010) summarized the visual-based human action recognition and

addressed some robust solutions on visual surveillance, human–computer interaction, and

video retrieval. Ward et al. (2010) investigated the reference frames applied in terms of
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visual information by using fMRI. The analysis considers the receptive field scene pro-

cessing areas, such as transverse occipital sulcus (TOS), retrosplenial complex (RSC),

and parahippocampal place area (PPA). PPA and TOS show the position response curves

on the fixation points to the screen (or the pattern), whereas RSC area does not (Ward

et al., 2010). A review survey paper summarized the human action/activity recognition

approaches that are categorized on the basis of the representation of spatial and temporal

structures of actions (Weinland et al., 2011). Bio-inspired features in action recogni-

tion are presented by involving the motion in the models of cortical areas V1 and MT

(shape and characteristics of their receptive field). A model with different surrounding

geometries for MT cell receptive field is presented, which leads to bio-inspired features

regarding the average activity of MT cells and how these features are used as a standard

in the classification of activity recognition (Escobar & Kornprobst, 2012).

In addition, a fully automatic system for human action recognition is presented using

convolutional neural networks (CNNs) in the uncontrolled environment. CNN is a deep

learning approach, which is bio-inspired and develops a 3D CNN for the task. This ap-

proach extracts the features from spatial and temporal dimensions via a convolutional

network, captures the motion information encoded from adjacent frames, and generates

and combines multiple channel information. The presented approach has successfully

implied a bio-inspired method through CNN and motion information combination for ac-

tual environments (Ji et al., 2013). Lehky et al. (2011) investigated the characteristic of

sparseness selection in the anterior inferatemporal cortex on a large dataset. This research

involves the information on 674 monkey inferotemporal cells for 806 object photographs

and the two-way analysis of the responses of the entire neurons in single image (pop-

ulation sparseness) and column-wise (response of single neurons to all images). This

research is related to the statistical analysis of stimuli in the primates and shows a large

number of various critical features to tune different neurons. The approach also represents

inconsistent structural-based object recognition tasks, and the objects are decomposed

into small standard features (Lehky et al., 2011). Collisions that mostly apply for future

robot and human interactions in complex visual environments are detected by analyzing
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two types of neurons, namely, Lobula giant movement detectors (LGMD) and directional

selective neurons, in visual pathways of locusts. This research involves a model that tunes

these two networks for collision tasks, compares them separately, and analyzes them co-

operationally. The results show that LGMD can detect collision faster and more robust

than other configurations. This research does not focus on biological movement recog-

nition but considerably analyzes visual motion (Yue & Rind, 2013). Cai et al. (2014)

presented bio-inspired model-based spatiotemporal interesting points for human action

recognition to allow interest point detection and descriptor construction compared with

the STIP framework. This model has been used for a long time and follows the dual path-

way in the visual system model (Cai et al., 2014).

Guthier et al. (2014) studied the interaction and combination of the pathways in the

visual system. The investigation focused on the recognition of complex biological articu-

lated movements, such as gestures and expressions. They introduced a model that utilizes

gradient and optical flow. The patterns are used by an unsupervised learning algorithm,

translation-invariant nonnegative sparse coding called VNMF, and shaped prototypical

optical flow patterns. In the learning processes, a lateral reserve term that eliminates

competing pattern activations provide small sparse activations (Guthier et al., 2014).

Another study investigated a bio-inspired model of human action recognition that

focuses on the influence of spiking neural networks in the visual cortex (Shu et al., 2014).

The study provided a hierarchical architecture and considered two visual cortical areas,

namely, middle temporal area (MT) and primary visual cortex (V1) for motion process-

ing. The result was obtained by analyzing the horizontal connection of spiking neurons

in every cortical area. A connection between V1 and MT areas called cross-talk, as well

as its lateral connection, was analyzed considering the linear combination of normalized

V1 direction-tuned signals. A 3D Gabor filter was tailored for V1 cells. A mean motion

map for mean firing rates in MT area neurons called action code was used to analyze

the biological movements. The action code comparatively improves recognition accuracy

and computational efficiency. The method also increases the recognition performance
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Figure 2.8: A) Two parallel processing streams in the model of biological motion recog-
nition has been shown using the spatio-temporal gradients in the static path (red), it works
by pre-learning the gradient patterns and sub-sequential pooling. On the other hand, pro-
jection of pre-learned optical flow field (OPE) in dynamic path (blue color) collected
and sub-sequential pooling is performed in it. At the end, combined pooled activations
are classified by SVM. VNMF algorithm has been used for midlevel patterns concerning
nonnegative components usage Guthier et al. (2014)). B) A serial configuration of pro-
posed approach consists of four different parts for recognition of human actions has been
presented. The core part of the model is involved by V1 layer and V1 and MT and MT
layer. In the V1 layer non-linear combination of perception information from simple cells
using 3D Gabor spatiotemporal filter and in the MT layer, MT cells perform pooling the
information from V1 cells following mapping between the MT and V1. The extraction
from spiking neurons and used for classification by SVM Shu et al. (2014).

considering the serial model for the motion and form pathways against the generalized

bio-inspired model (Shu et al., 2014). A bio-inspired approach for robust recognition of

faces using C2 features in HMAX follows the dorsal and ventral stream visual cortex neu-

ral behavior (Esmaili et al., 2014); C2 features are extracted from visual attention points.

The application of the BOW method in human action recognition was investigated on

the basis of vector quantization (VQ), which presents an efficient method called context

and locality constrained linear coding; a group-wise sparse representation-based classi-
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fication method that involves the sparse representation of the human action recognition

was also investigated (Tian et al., 2015). BOW has been used at maxima of the sparse

interest point operators, but the inconsistency of visual processing in biological systems

with sparse approaches has not been addressed. The proposed approach has three contri-

butions for bridging the gap. The approach conducts valuable analysis in human action

recognition; however, a computer vision-based method is used instead of a bio-inspired

modeling analysis (Mathe Sminchisescu, 2015). The approach was considered by Marc

Jeanerod as the basic method of action (semantics and pragmatics) and movement. The

ordinary representational resources of pragmatics and semantic types of actions following

the evidence of simulation and language understanding were investigated. Three theoret-

ical frameworks were mentioned by Prinz (2014): 1. Semantics is based on pragmatics;

2. Pragmatics is anchored on semantics; and 3. Pragmatics is a part and parcel of se-

mantics. Sparse coding was employed for the BOW application in the action recognition

approaches for basic shape extraction at the temporal structure of the action group. The

representation of BOW for every video representation in the form of histogram of group

sparse coefficients and its geometry was analyzed (Moayedi et al., 2015).

An engineering approach led to the creation of a video database for human action

recognition presented by Schldt et al. (2004). This approach analyzes adaptive local space

time features that are captured in the local events located in the video. A computational

model follows the neural plausibility assumptions for the interaction of the form and mo-

tion signals in biological motion perception from figural form cues; the receptive fields in

the images of a static human body were also analyzed (Lange Lappe, 2006). Willert et al.

(2007) presented an approach that estimates motion using optical flow through a dynamic

Bayesian network. The method involves spatiotemporal features that interact with motion

information from two-filter inference in online and offline parameter optimization (Willert

et al., 2007). This technique is similar to those used in other studies that estimated mo-

tion to analyze small numbers of temporal consecutive frames of action; at the same time,

this method presents a certain class of transition probability functions that approximate
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inferences based on Belief propagation (Willert Eggert, 2009). Sun et al. (2010) found

that the median filtering of the intermediate flow fields is the optimization gains of the

performance and provided superior energy solution. An adaptive representation of visual

motion processing was developed by Willert and Eggert (2011), resulting in an online

adaptation of velocity-tuning curves inspired by physiological experiments on macaque

MT. Another motion analysis approach considers movements in all directions, namely,

circular, radial, spiral, and translational; this property makes it an important factor in the

analysis of the primate dorsal visual system in visual perception. This approach inves-

tigates the egomotion-compatible visual stimulation in human systems and analyzes six

sensitive motion areas, namely, V3A, V6, MST+, CSv, MT, and an Intra-Parietal Sulcus

motion (IPSmot) region for different types of optical flow stimuli (Pitzalis et al., 2013).

Jhuang et al. (2007) presented a hierarchical feed forward architecture on the ob-

ject recognition task in biological models of the visual cortex. The model contains spa-

tiotemporal features with a relevant hierarchy that processes them and provides position-

invariant feature detection (Jhuang et al., 2007). Another approach involves learning

sparse spatiotemporal codes from the basis vectors, considering that the scale, direc-

tion, and velocity depend on the spatiotemporal features learned in unsupervised fashion.

Sparse coding was used to provide an initial basis and was expanded to create new basis

vectors recursively with a large temporal extent; this sparse coding propositionally con-

served the previous weights (Dean et al., 2009). A model was developed to demonstrate

an intermediate-level visual presentation comprising two stages; the first stage provides a

representation of the early features in layer, whereas the second one is related to invari-

ance. This model provides a rich representation of dynamic natural images in the visual

cortex (Cadieu & Olshausen, 2012). A human action in the sparse representation shown

in a set of overcompleted basis (dictionary) was used for human action recognition in the

video sequence. These overcompleted bases were obtained using spatiotemporal feature

descriptors and provided some linear combinations of dictionary elements; a compacted

way of representation was eventually achieved, which includes VQ and clustering (Guha
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& Ward, 2012). This result was obtained within the condition of a non-negative sparse

coding in biological motion presented by Guthier et al. (2012). The visual motion in-

volved uses the optical flow and shape information obtained from the moving objects.

This approach aims to capture the characteristics of local motion patterns following con-

stant brightness and using the feature combinations from non-negative sparse coding; this

method results in the learning of the basic patterns of motion (Guthier et al. 2013). Nayak

& Roy-Chowdhury (2014) presented an approach using spatiotemporal features and their

unsupervised relationship to dictionary learning in the model of activity recognition. This

approach provides an unsupervised sparse decomposition framework for the relationship

between the spatiotemporal features and the local information from descriptors, which

create classifiers through multiple kernel learning (Nayak & Roy-Chowdhury, 2014). An

extension to the proto-object model based on the saliency map involved depth information

using the 3D eye tracking datasets presented by Hu et al. (2016). Another unsupervised

approach performs synthetic biological movement recognition (Babaeian et al., 2015a,

Babaeian et al., 2015b) and shows great potential for use in the mechanism of biologi-

cal movements. Haghigh et al. (2016) studied human-like movements processed in the

human brain and motor control. The study involved the concept of artificial intelligence

and robotics, as well as learning the latent simple motions for imitation in more complex

movements. It proposed MOSAIC structure in motor control modeling (Haghighi et al.,

2016). Yousefi et al. (2013) presented models to recognize biological movement involv-

ing a supervised Gabor-based object recognition approach called ABM (Wu et al. 2010)

in the ventral processing stream (Yousefi et al., 2013; Yousefi et al., 2014). A fuzzy-based

optical flow proposed for dorsal streams was used to improve the model (Yousefi & Loo,

2014a; Yousefi & Loo, 2014b). Furthermore, an approach to involve slow features was

presented for ventral processing stream (Yousefi & Loo, 2014).

2.5 Psychological and neuroscience point of view

The cellular population located in the temporal lobe of macaque monkeys’ inner su-

perior temporal sulcus (partially called STPa or STSa) was analyzed. The responses of
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Table 2.2: The Knowledge based modeling approaches presented with their contribution
in the field.

Knowledge based modeling  

 
Approach 

 

 
Topic of the approach 

 

 

Connection to other researches 
 

Yamato (1992, June)  HMM and feature based bottom up approaches in time sequence images modelling 
Giese & Poggio (1999)  Linear combination of motion sequence prototypical views, 3D object recognition   
Gavrila (1999)   survey article in visual analysis regarding the human movement  
Wachter & Nagel (1997, 
June)  quantitative description on the geometry of human object   
Gises & Poggio (2003)  dual processing pathways in the visual system   
Casile & Giese (2005)  multilevel generalization using simple mid-Level optic flow features  perception 
Arbib (2005)  analysis of neural and its functionality grounding for the Language skills  perception, neuroscience 
Valstar & Pantic (2006)  comparison of Logical and biological inspired methods for facial expression  computer vision 
Demiris & Khadhouri 
(2006)   computational architecture and HAMMER for motor control systems perception 
Minler and Goodale 
(2007)   analysis of two cortical systems regarding the vision in action  perception 
Fathi & Mori (2008)  mid-Level Learning for the motion features  modelling 
Schindler & Gool (2008, 
June)  recognition of simple actions instantaneously by short sequences (snippets) 1-10 frames computer vision 
Schindler & Gool (2008)  recognition of form (Local shape) and motion (Local flow) features  computer vision 
Webb et al. (2008)  intermediate Levels of visual processing, detection circular and radial form    
Yau et al. (2009)  interaction of vision and touch, PCA for patterns shape features identification  
Escobar et al. (2009)  bio-inspired feed-forward of spiking network model  neuroscience 
Ikizler & Duygulu (2009)  analyzing the dynamic representation of action recognition using HOR  
Wang & Mori (2009)  visual features as visual word and semi-Latent topic models  modelling 
Ryoo & Aggarwal (2009)  Spatiotemporal relation for recognition of human activity  
Shabani et al. (2010)  multiscale salient features from motion energy  modelling 
Poppe (2010)  Visual based human action recognition  computer vision 
Ward et al. (2010)  references frames applied for visual information using fMRI    
WeinLand et al. (2011)  review paper for human action/activity recognition   
Escobar & Kornprobst 
(2012)  analysis motion in the models of cortical areas V1 and MT neuroscience-perception 
Ji et al. (2013)  fully automatic system for human action recognition by CNN modelling 
Lehky et al. (2011)  characteristic of selection of sparseness in anterior inferotemporal cortex  neuroscience 
Yue & Rind (2013)  detection of collisions, analysis of two types neurons: LGMD and DSNs neuroscience 
Cai et al. (2014)   spatiotemporal feature in the bio-inspired model, BIM-STIP   
Guthier et al. (2014)  survey, modelling using nonnegative sparse coding, VNMF   
Shu et al. (2014)  bio-inspired modeling human action recognition, spiking neural network    
Esmaili et al. (2014)   robust recognition of face using C2 features in HMAX  computer vision 
Tian (2015)  BOW method, VQ  ,CLLC, GSRC  in the human action recognition   
Mathe & Sminchisescu 
(2012)   BOW in maxima of sparse interest operators  
Prinz (2014)  analysis of action semantics and pragmatics perception 
Moayedi (2015)  basic shape extraction of action group sparse coding employed BOW  
SchuLdt et al. (2004)  adaptive local space time features  Computer vision 
Lange & Lappe (2006)  Neural plausibility assumptions for interaction of the form and motion signals   
Willert et al. (2007)  estimating the motion using optical flow by dynamic Bayesian network    
Willert & Eggert (2009)  estimation of motion to analyze the small number of temporal consecutive frames   
Sun et al. (2010)  median filtering of the intermediate flow fields    
Willert & Eggert (2011)   representation of visual motion processing   
PitzaLis et al. (2013)  motion analysis approach considers the movements in all directions  perception 
Jhuang et al. (2007)  hierarchical feed forward architecture on the object recognition   
Dean et al. (2009, 
December)  Learning sparse spatiotemporal codes from the basis vectors    
Cadieu & Olshausen 
(2012)  intermediate-level visual presentation  
Guha & Ward (2012)  human action in the sparse representation in overcompleted basis (dictionary) set   
Guthier et al. (2012)  non-negative sparse coding on biological motion  
Yousefi et al. (2013)  Introducing Active Basis Model for ventral stream Computer vision 
Yousefi  & Loo(2014)  fuzzy optical flow division in Dorsal stream Computer vision 
Yousefi  & Loo(2014)  Interaction between dorsal and ventral streams Computer vision 
Yousefi  & Loo(2015)  Slowness principal into modelling Computer vision 
Yousefi  & Loo(2015)  Hybrid Max-Product Neuro-Fuzzy Classifier and Quantum-Behaved PSO in the model Computer vision 
Yousefi  & Loo(2015)  Slowness prototypes in ventral stream Computer vision 
Nayak & Roy-
Chowdhury (2014)   spatiotemporal features, unsupervised way into a dictionary Learning    
Hu et al. (2016)   proto-object based on the saliency map  computer vision 
Haghigh et al. (2016)  human-Like movements    
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Table 2.3: The psychological and neuroscience approaches presented with their contribu-
tion in the field.

Psychological and neuroscience 
 

Approach 
 

 
Topic of the approach 

 

 
Connection to 

other researches 
 

Jellema et al. (2000)  analysis of the cellular population located in the temporal lobe of macaque monkey  Psychology 
Billard et al. (2000, June)  action imitation considered the actions high-level abstractions   
Vaina et al. (2001)  investigation regarding the neural network, fMRI in MLD   
Goodale & Westwood (2004)   evaluating the labour division at visual pathways   
Banquet et al. (2005)  associative learning for object location level, in CA3-CA1 region   
Cook et al. (2009)  ASCs for comparing detection of non-biological and biological motion  
Wyk et al. (2012)  action representation at STS Psychology 
Milner & Goodale (2006)  involvement of dorsal stream in movement to target following ventral stream   
Hesse & Schenk (2014)  visuomotor performance of a D.F. patient tested for letter-posting task   
Schenk (2012a)  DF patient analyzes the ability to get the object   
Schenk (2012b)  Using fMRI the functionality of DF patient    
Whitwell et al. (2014)  test by different width of the objects and DF, distinguish the shape perceptually perception 
Whitwell et al. (2015)  ability grip scaling is may rely on online visual or haptic feedback (for DF patient)   
Krigolson et al. (2015)   review of the behavior using EEG Psychology 
Cavina-Pratesi et al. (2015)  brain circulation using fMRI regarding the word recognition ability    
Ganos et al. (2015)  voluntary movement considering GTS area  
Fleischer et al. (2013)  visual recognition from motion    
Theusner et al. (2014)  motion energy based on the luminance of objects motion detectors   
Yamamoto & Miura (2016)  visual object motions on time perception   
Schindler & Bartels (2016)  on 3 dimensional visual cue involving the motion parallax analyzing   
Venezia et al. (2016)  the sensorimotor integration of visual speech through the perception  perception 
Harvey & Dumoulin (2016)  visual motion effects on neural receptive field and fMRI response   

 

these cells were associated with the agent’s action performance as it reached the targeted

position. The properties of these cells in the STSa and their relationship to these actions

were described (Jellema et al., 2000). A selective response of subset cells considers eye

gazes, body posture, and faces. The second subset cells provide response to the limb

movements in particular directions and are modulated by the direction of attention. The

combination of the direction of attention and movements of the body significantly sup-

ports action detection (Jellema et al., 2000). Another biologically inspired approach that

focuses on action imitation considers the actions high-level abstractions related to spinal

cord, pre-motor and primary cortex, temporal cortex, and cerebellum regions at the con-

nectionist level. The movement of the spinal cord is predefined by rhythmic arm and leg

movements related to open-loop walking (and such actions). Such learning has been done

through DRAMA neural architectures in spatiotemporal invariance and time series. The

approach analyzes three types of action learning, namely, oscillatory movements, repet-

itive form of the arms and legs, and exact movements of reaching and grasping (Billard

& Matarić, 2000). Vaina et al. (2001) investigated the neural network engaged in the

recognition of biological motion through fMRI using point-light for the major joints of
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Figure 2.9: A)The invariant selection in the level of recognition and modeling of cortical
object recognition has been simply shown (Riesenhuber & Poggio 2002). B) The scheme
representation of two streams of visual processing located in human cerebral cortex and in
the information gathered from retina for projections the data in the dorsal path for lateral
geniculate nucleus in the thalamus (LGNd), and the projection to primary visual cortex
(V1). The ventral stream (red) information of early visual areas (V1ρ) and its projection
in the occipito-temporal cortex and dorsal stream (blue) projection of the information to
the posterior parietal cortex are shown. The indicated routes represented by the arrows
and involvement of complex interconnections .

the agent. The study also involved the rigid and non-rigid motion responses of biological

motion with gender concerns. In particular, brain activity responses for the recognition of

biological motion involve the areas of lateral cerebellum and lateral occipital cortex in re-

sponse to area KO. The involvement of both ventral and dorsal processing stream, as well

as the activation of lingual and fusiform gyrus and Brodmannn areas 22 and 38, 19 and

37 STS, and 39 and 7, is mentioned during the biological motion. Their study examined

stroke patients with unilateral brain lesions (Vaina et al., 2001). Goodale and Westwood

(2004) presented another approach that evaluates the labor division at visual pathways

and completed their hypothesis on the primate cerebral cortex between ventral streams

dedicated to visual perception and dorsal stream for visual control in action. The study

analyzed the psychological evidence and the response to visual motor control; in partic-

ular, the neurobiological challenge in mapping these behavioral findings onto the brain

was analyzed and compared with known information about ventral and dorsal streams (in

primate neurophysiology and human neurophysiology) (Goodale & Westwood, 2004).

An associative learning type analysis was presented for object location level, spatio-
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temporal level in the CA3–CA1 region, and movement-related information in the en-

torhinal cortex. This letter also analyzed the behavioral implementation and multimodal

integration, which suggested the functional interpretation in hippocampo-cortical systems

(Banquet et al., 2005). A research on autism spectrum conditions (ASCs) compared the

detection of non-biological and biological motion in human adults through psychologi-

cal evidence obtained from participants who watched biological (hand movements) and

non-biological (falling tennis balls) stimuli. The ASC group did not show proper re-

sponses to perturbation from biological motions based on velocity profile (Cook et al.

2009). Wyk et al. (2012) presented an action representation at the superior temporal

sulcus (STS) and determined its significance in biological motion perception; they eval-

uated the actions (congruence and incongruence) of 37 children (mean age: 11) and 17

adults (mean age: 25.4) by using fMRI. In congruence actions, both groups bilaterally

showed the activation at the posterior STS; in response to incongruence, children showed

response changes in the STS regions. An incongruency effect was observed in the older

children and adolescents in the experiment (Vander Wyk et al., 2012). The dorsal stream

was suggested to be involved in movement to the target following ventral stream visual

representation processing delay (Milner & Goodale, 2008). The visuomotor performance

of a DF patient was tested through a letter-posting task. The absence of environmental

cues was observed in the DF patient, causing them to be unaffected by delay (aforemen-

tioned). The findings suggest that ventral stream damage does not consistently influence

delayed movements but affects the visual feedback and environmental landmarks (Hesse

& Schenk, 2014). Another investigation on DF patients analyzed their ability to acquire

an object by distinguishing its geometry. Using fMRI, the functionality of a DF patient

uses the intact visuomotor system housed within the posterior parietal lobe in the dorsal

stream. Moreover, Schenk (2012a, 2012b) described the non-functioning of visuomotor

networks in the dorsal stream, which was caused by a haptic feedback of the targeted

object’s edges. A test was conducted using different object widths, and the DF patients

could grasp them within the healthy range (unlike the hypothesis that they should not);

moreover, haptic feedback did not improve the ability of the DF patient to distinguish
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the shape perceptually (Whitwell et al., 2014). Another research mentioned that ability

grip scaling may rely on online visual or haptic feedback. The grip scaling of the DF

patient did not activate while her vision was suppressed in a grasp movement, showing

that the haptic feedback after perception impairs the DF patient’s performance. The re-

search showed that DF patient’s spared grasping task relies on dorsal stream functioning

at the normal mode (Whitwell et al., 2015). Krigolson et al. (2015) presented a review of

the behavior on three areas, namely, feedback processing, feed-forward control, and tar-

get perturbation; electroencephalography (EEG) was utilized to determine the temporal

nature application in the goal-directed action. The cognitive potential and neural process-

ing timing to motor control were further analyzed (Krigolson et al., 2015). A research

used fMRI to investigate brain circulation during word recognition in the left fusiform

and left inferior frontal areas of the gyrus, as well as the left middle temporal cortex of

the DF patient. The left fusiform activations called visual word form area appeared from

the FFA and hypothesized that this area lies outside the LO (Cavina-Pratesi et al. 2014).

A research on voluntary movement in the Gilles de la Tourette syndrome comprised 25

patients. The results suggested that the brain learns voluntary control by perceptually dis-

criminating signals from noise (Libet et al., 1983).

A research on visual recognition of motion involved several cortical regions, namely,

premotor, partial cortex, and STS (Fleischer et al., 2013). It research performs for hand

actions more till biological movement of human but it can be partially considered the

human action. The model provides unifying quantitative reliability using the electrophys-

iological results from action-selective visual neurons (Fleischer et al., 2013). Theusner

et al. (2014) established a model for action recognition in the brain. The model fol-

lows the motion energy based on the luminance of object motion detectors for the cortical

representation of body posture similar to spatiotemporal receptive fields in posture-time

space. This property was observed in the STS of macaque monkeys, and the 3D views for

static and moving bodies were analyzed. Perception appearance, motion phenomenon,

and static images obtained from motion neural activation were explained (Giese 2014).
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Yamamoto and Miura (2016) analyzed visual object motions on time perception. They

investigated the line segments in front or behind the occluders in different speeds and

followed the association of time perception with global motion processing (Yamamoto &

Miura, 2015). A study on 3D visual cue involving motion parallax analyzed the link be-

tween the visual motion and scene processing by using fMRI. Parallax-selective responses

were found in parietal regions IPS4 and IPS3, and in the region of occipital place area.

Some regions such as the RSC and PPA do not respond to the parallax (Schindler & Bar-

tels, 2016). Venezia et al. (2016) analyzed the sensorimotor integration of visual speech

through perception. The study used fMRI on healthy individuals to identify new visiomo-

tor circuit speech production (Venezia et al., 2016). A research on how visual motion

affects neural receptive fields and fMRI response amplitudes was carried out to examine

visual motion neural position preferences in the hierarchy of visual field maps using high-

field fMRI and population receptive field. The results showed that visual motion induces

the transformation of visuo-spatial representations through the visual hierarchy (Harvey

& Dumoulin, 2016).

2.6 Some approaches relevant to the subjects

Hubel and Wiesel proposed that object recognition occurs from simple to complex

cells, and this was investigated by Riesenhuber and Poggio (1999). Quantitative modeling

was conducted on biological feasibility for high-level recognition of the object (the model

is based on MAX-like operation) (Riesenhuber & Poggio, 1999). Tarr & Blthoff (1998)

proposed an observation analysis regarding 3D object recognition in man, monkey, and

machine by analyzing their biological plausibility and computational strengths and weak-

ness. The method was expanded to a biologically inspired model approach for human

arm movements and human action high-level abstraction by using the hierarchy of artifi-

cial neural networks. This model demonstrated that abstraction occurs in the visuo-motor

control area of the brain and detected 37 degrees of freedom and biomechanical simu-

lation with humanoids (Billard & Matarić, 2001). Another approach on action imitation

explains the natural action through visual analysis of actions and motor representation of
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the nervous system. The evidence of the existing system is mentioned by mirror system

for mapping in primates and humans (Rizzolatti et al., 2001). The human imitation of

machines has been investigated for the purpose of flexibility, usefulness, and develop-

ment of user-friendly machines. The approach concentrates on understanding how robots

determine what to imitate, as well as the process of mapping perception onto the action

it is imitating (Breazeal & Scassellati, 2002). Another method concentrates on the classi-

fication of gender in the biologically inspired approach of Troje (2002), which discusses

the sensitivity of biological movement and its social information extraction. The level of

encoded information and its retrieval in such a motion were investigated by transform-

ing this information into pattern recognition and statistical data. The classification was

analyzed by comparing it with psychological data for human observers strive for gender

classification. The results indicate that the dynamic part of the mechanism contains more

information on gender than on motion-mediated structural cues; however, its application

is not limited to gender and can be used to synthesize new motion patterns (walking)

(Troje, 2002). A study on human and monkey behavior using fMRI was conducted to

observe the mechanism of cortical object recognition (Riesenhuber & Poggio, 2002). The

study covered the invariant selection in the level of recognition and modeling of the cor-

tical object recognition.

The imitation of movement through observation suffers from pose estimation, track-

ing, movement recognition, and coordination transform, all of which were investigated

through the perceptional understanding of biological movements. The mathematical and

statistical approaches that tackle parts of the imitation problem and the motor side of

the imitation were investigated. The results argued that the perceptual system for move-

ment identification and the spatial information correspond to these actions (Schaal et al.,

2003). The cognitive development agent in the imitation and its architecture in the recog-

nition of action was presented and implemented in the robots. The understanding and

generation of actions, as well as the ability to learn new composite actions during the

mentioned architecture, were also investigated (Demiris & Johnson, 2003). Johnson and

Demiris (2005) presented an abstraction model on planning robot actions, as well as its
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recognition and imitations. The study analyzed the forward and inverse models of com-

putational substrate of actions for the mentioned purposes by arranging the hierarchy of

inverse and forward models. The top-down and bottom-up processes were checked by

human demonstration in the object manipulation tasks performance for multi-level motor

abstraction capacity analysis. These abstractions enable recognition in the different visual

systems depending on the speed of performance (Johnson & Demiris, 2005); for instance,

if the performances are slow, the noise overcomes the movement signal and causes failure

in the low level. However, the high-level recognition might be successful, as the total

failure actions result from excessively rapid performance in the mentioned architecture

(Johnson & Demiris, 2005). Analysis of object recognition and model of motion process-

ing in visual cortex comprises a hierarchy of spatiotemporal feature detectors. Motion

direction (with the experiment) and position invariant spatiotemporal feature detectors

were analyzed (Jhuang et al., 2007). Blais et al. (2009) proposed another orientation

in the investigation of shape representation detection. The study analyzed the rotation

modulates and linear non-separable effects on 2D and 3D shape targets for visual search

(Blais et al., 2009). A dynamic 3D object recognition decomposes the spatiotemporal

signature in long-term observers to examine its coding. The mental representation of the

new objects was found to be decomposed under the law of perceptual organization; more-

over, the human brain compulsively deals with such signatures, showing a non-influential

effect on the observers for the extraction of features from unsmooth sequences after a par-

ticular scrambling of temporal scales (Wang & Zhang, 2010). Absi and Abdullah (2010)

presented an approach on the human visual system recognition of objects; this approach

was inspired by the feedback and feed-forward mechanisms in the human visual system.

Livne et al. (2012) used a video-based 3D pose tracking involving biological motion to

study human attributes such as gender, weight, and mental state (e.g., sadness and hap-

piness). A high-level shape information analysis was carried out to examine 3D object

recognition through eye movement patterns (Leek et al., 2012). In this experiment, eye

movements were recorded on the objects that were analyzed. Data fixation was performed

for shape analysis based on convex surface curve, internal concave regions, and external
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bounding contour. This method provided new evidence that supports the influence of eye

movements on shape processing in the human visual system (Leek et al., 2012).

2.7 Slow Feature Analysis

2.7.1 Definition

In general, several relatively regular notations are summed up in the subsequent part.

The typical Kronecker pointer meaning that it is zero for i 6= j and equivalents one for

i = j is specified by δi j. Moreover, the probability of a signal which is continuum in time

domain xt ∈ RN more than the episode [0,T ] is indicated by < xt >:= 1
T
∫ T

0 xtdt. Two

length signals T covariance with its balanced empirical evaluator for the time-discrete

container is described as:

cx,y = cov(xt ,yt) := 〈xtyT
t −< xt >< yt >

T 〉 (2.1)

Ĉx,y = côv(xt ,yt) :=
1

t−1
XY T − 1

T 2 (XI )(YI )T (2.2)

A signal xt covariance beside a version of time-shifted of itself is worded autocovari-

ance.

Cx,∆t := cov(xt ,xt+∆t) (2.3)

Ĉx,∆t := côv(xt ,xt+∆t) (2.4)

Lacking of shifting in the time, one attains the symmetric covariance matrix of the

signal xt .

Cx = cov(xt) := cov(xt ,xt) (2.5)

Ĉx = côv(xt) := côv(xt ,xt) (2.6)
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At this time, I represents a vector including T times the component 1, I is the matrix

of unit and X ∈ RN×T has all points of data organized as vector column and is described

the matrix of data. A data matrix version of including the similar vectors as X but changed

in time, ∆t, is indicated X∆t .

2.7.2 General problem statement

The SFA task of learning as Wiskott and Sejnowski (2002) initially formulated as

follow: a time series input known as xt ∈ RN , t ∈ [0,T ] K real-valued instantaneously find

as a set of functions g1(x), ...,gk(x) ∈ F which generates the time series as the output

yt = g(xt) such that

slowness j = s(y j,t) :=< ẏ2
j,t =! = min > (2.7)

The objective of the slowness principle under the below mentioned constraints

∀ j < y j,t >= 0 zero mean,

∀ j < y2
j,t >= 1 unit variance,

i < j < yi,t ,y j,t >= 0 decorrelation and order.

Slow feature analysis basically and temporally varies as of filter of simple-low pass.

As g j functions include merely instant scope, which is they plan input xt at a specific time

t at the same time to an output y j,t . The main purpose is to attain smoothness temporally

although in the immediate restriction strong processing. The further constraints for prob-

lem of optimization certify to insignificant solutions are eliminated. The unit variance

avoids steady signals to appear, enforces the decorrelation constraint and the zero-mean

constraint for convenience. The solution uniqueness is assured while the functions are

extracted one following a different such that the function of slowest feature in F is g1 and

the function of slowest feature y j,t that is decorrelated to all signals yi,t for 1 =< i < j.

Variation is temporally computed with the first derivative squared that can be estimated

through a finite difference (Berkes & Wiskott (2005); Bohmer et al. (2011); Bray &
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Martinez (2003);).

ŷ j,t = lim
∆t→0

y j,t+∆t− y j,t

∆t

∆t

≈ y j,t+1− y j,t (2.8)

In the linear function cases g j(xt) = wT
j (xt− < xt >) by input signals having zero

mean property, like one of the constraints, the calculation can be prepared as follows:

s(y j,t) =< ŷ2
j,t >=< (y j,t+1− y j,t)

2 >= 〈(wT
j ẋt)

2〉

= wT
j cov(ẋt)w j =: wT

j Aw j

(2.9)

〈y j,t .y j,t〉= 〈wT
i (xt−< xt >).wT

j (xt−< xt >)〉

= wT
i cov(xt)w j =: wT

i Bw j

(2.10)

The solution for problem of the generalized eigenvalues can be obtained by:

AW = BWΛ (2.11)

The second order statistics matrices, A and B are positive-semidefinite and symmet-

ric and in this way all eigenvalues are real values and greater/equivalent to zero. Also Λ

denotes for eigenvalue matrix. The optimal weights w1..K straightly yields the eigenvec-

tors related to λ1..K as the smallest eigenvalues. Normalization to wT
i Bw j = δi j completes

two other constraints in the initial equations. If we consider A and B having the properties

of symmetric and thus all eigenvalues are real and greater than or equal to zero and second

order statistics they are positive semi-definite. The each function slowness for every g j is

specified through s(y j,t) = λ j and the K slowness components is s(y) = ∑
k
j=1 λ j.

2.7.3 Incremental Slow Feature Analysis

An incremental form of slow feature analysis (IncSFA) presented here, united covariance-

free incremental minor components analysis (CIMCA) and candid covariance-free incre-

mental principal components analysis (CCIPCA) (Kompella et al. 2012). Features of

IncSFA complicatedly revised is linear considering the dimensionality of input, though
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Figure 2.10: The implementation of incremental slow feature analysis in Krein space has
been revealed in the figure and it depicts the variations in different actions and it has
been examined for two video streams which were showing different actions (photo from
Liwicki et al., 2013).

updating of batch SFA’s (BSFA) difficulty is cubic. IncSFA does not require accumulat-

ing, or even calculating, any covariance matrices. IncSFA disadvantage is in the efficiency

of data: it does not apply all data point as efficiently as BSFA. However IncSFA permits

SFA to be tractably used, by a few parameters, straight input stream having high dimen-

sional (e.g., an autonomous agent in visual input), though BSFA has to resort to hierarchi-

cal architectures of receptive field while the dimension of input is too high. Additionally,

updates of IncSFA have Hebbian and anti-Hebbian simple forms, enlarging of SFA in

biological plausibility. Experimental results illustrate IncSFA finds out the features in

same set as BSFA and can have only some cases that BSFA fails. Slow Feature Analy-

sis (SFA) is a learning inspired method from human visual system subspace, though, it

is rarely observed in computer vision. The motivation of application for unsupervised

activity analysis; the method increases first implementation of SFA online temporal in

segmentation of video for detection of changes in motion within episodes. The method
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operates a particular domain indefinite kernel that obtains the representation of data into

account for robustness introduction. Since the kernel is indefinite (i.e. describes in the

place of a Hilbert, a Krein space), the approach originates Krein space-SFA. It suggests a

framework for incremental kernel SFA that uses the special characteristics of the kernel.

2.8 Chapter summary

Studies in the literature have shown many significant development in the field. Also

there are some points can be taken to the account such as:

The research on ventral processing stream can be significantly improved by applying

shape learning instead of current approaches (Gabor filter alone).

Despite, there are many researches conducted for interaction between the pathways in the

field of neurophysiology and physiology. However, there are less works done in the im-

plementation of interaction performed in the computational mechanism.

Furthermore, SFA introduced as powerful tool and can be introduced into the mechanism.

Aforementioned points consider as research gapes and will be reviewed in the methodol-

ogy chapter to find the solutions.
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CHAPTER 3:

Method

This chapter describes the representative methods proposed during this project. The main

reference of this paper is the original model for the recognition of biological movement

based on the mammalian visual system (Giese & Poggio, 2003). The highly relevant

research subjects that considerably followed this model are from Giese and Poggio (2003),

Schindler and Van Gool (2008), and Danafar et al., (2010). This chapter presents ideas

that can improve biological movement recognition models by following several steps.

First, the approach involves model development in the ventral processing streams using

the supervised Gabor wavelet-based technique of object recognition called Active Basis

Model (ABM) (Section 3.1) (Wu et al., 2010; Kompella et al., 2012; Yousefi et al., 2013;

Yousefi & Loo, 2014b). An improvement in the dorsal processing stream which generates

motion information by the fuzzy optical flow division method (in Section 3.1). Finally,

an incremental slow feature analysis was utilized into the mechanism which generates

the slow features and its combination with the fast feature from the dorsal stream for

recognition (Section 3.3).
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3.1 Active Basis Model in the ventral processing stream and balanced synergetic
neural network

A supervised Gabor wavelet based technique for object recognition task used in ven-

tral processing stream (it relates to the form of object) (Yousefi et al., 2013). The proposed

system addresses a biologically inspired system as in Giese & Poggio (2003), Schindler

and Van Gool (2008), and Guthier et al. (2014) where there a two independent paths and

the inputs of the mechanism are the video sequences.

3.1.1 Active basis Model

Active basis model (Wu et al., 2010) applies Gabor wavelets (for elements dictio-

nary) offers deformable biological template. Shared Sketch Algorithm (SSA) is followed

through AdaBoost. In each iteration, SSA follows matching pursuit chooses an element of

wavelet. It checks the objects number in different orientation, location, and scale. Select-

ing the small number of elements from the dictionary for every images (sparse coding),

therefore can be represented of image using linear combination of mentioned elements,

considering U as a minor residual.

I =
n

∑
i=1

ciβi + ε (3.1)

where β = (βi, i = 1, ...,n)is set of Gabor Wavelet elements and components of sin and

cosine, ci = 〈I,βi〉 and ε is unsolved image coefficient. By using wavelet sparse coding,

large number of pixels reduces to small number of wavelet element. Sparse coding can

train natural patches of image to a Gabor like wavelet elements dictionary that carries the

simple cells in V1 properties (Olshausen & Fiel, 1996). The extraction of local shapes

will be separately done for every frame and like responses of filter orientation and density

of each pixels computes. Also, the active basis model uses the Gabor filter bank but in

different form. A Gabor wavelets dictionary, comprising n directions and m scales is in

the form of, GWj(θ ,ω), j = 1, . . . ,m× n. Where, θ ∈ {kπ

n ,k = 0, . . . ,n− 1} and ω =

{
√

2
i , i = 1, . . . ,m}. Gabor wavelet features signifies the object form as small variance in

size, location, and posture. Though overall shape structure, it considers to be maintained
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throughout the process of recognition. Response (convolution) to each element offers

form information with θ and ω .

B = 〈GW, I〉= ∑∑GW (x0− x,y0− y : ω0,θ0)I(x,y). (3.2)

Let GWj be a [xg,yg] , I is a[xi,yi] matrices, response of I to GW is a [xi + xg,yi +

yg].Therefore, previous convolution both matrices must be padded through sufficient ze-

ros. Consequence of convolution can be eliminated via cropping the result. Additional

technique would be to shift back the center of the frequencies (zero frequency) to cen-

ter of the image though it might reason for loosing data.Obtained training image set

{Im,m = 1, ...,M}, joint sketch algorithm consecutively chooses Bi. The fundamental

opinion is to find Bi so that its edge segments obtain from Im become maximum. After-

ward, it is necessary to compute [Im.β ] =ψ | 〈Im.β 〉 |2 for different i where β ∈Dictionary

and ψ represents sigmoid, whitening, and thresholding transformations and then for maxi-

mizing [Im.β ] for all possible β will be computed. Let β = (βi, i= 1, ...,n) is the template,

for every training image Im scoring will be based on:

M(Im,θ) =
n

∑
i=1

δi | Im,β | − logΦ(λδi). (3.3)

M is the match scoring function and δi obtained from ∑
M
n=1[I

m,β ] regarding steps selection

and Φ is nonlinear function. The logarithmic likelihood relation of exponential model

attains from the score of template matching. Vectors of the weight calculate by maximum

likelihood technique and are revealed by ∆ = (δi, i = 1, ...,n) (Wu et al., 2010).

Max(x,y) = max(x,y)∈DM(Im,β ). (3.4)

MAX(x,y) calculates the maximum matching score obtained previously. D repre-

sents the lattice of I. Here, there is no summation because of updating the size based on

training system on frame (t−1). Moreover, the method tracks the object applying motion

feature for getting displacement of moving object.
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Figure 3.1: The figure reveals the flowchart of our algorithm regarding human action
recognition.

3.1.2 Motion Information

For having the features regarding the motion of subject, the layer-wised optical flow

estimation has been done. A mask that reveals the each layer visibility is the main differ-

ence between estimation of traditional and layer-wised optical flow. The mask shape is

able to perform fractal and arbitrary, and only matching applies for the pixels, which fall

inside the mask (Liu, 2009). The layer-wised optical flow method by Liu (2009)which has

baseline optical flow algorithm of Alvarez et al. (2002), Brox et al. (2004), and Bruhn et

al. (2005) is used. M1 and M2 are visible masks for two frames I1(t) and I2(t−1), the field

of flow from I1 to I2 and I2 to I1 are represent by (u1,v1), (u2,v2). The following terms

will be considered for layer-wise optical flow estimation. Objective function consists of

summing three parts, visible layer masks match to these two images using Gaussian filter

which called data term matching E(i)
γ , symmetric E(i)

δ
,and smoothness E(i)

µ .

E(u1,v1,u2,v2) =
2

∑
i=1

E(i)
γ +ρE(i)

δ
+ξ E(i)

µ . (3.5)

After optimization of objective function and using outer and inner fixed-point iterations,

image warping and coarse to fine search, flow is attained for both bidirectional. Com-

pressed optic flow for all the frames are calculated by straight matching of template to
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Figure 3.2: The figure reveals the flowchart of modification in the mechanism of biologi-
cal movement.

the earlier frame by applying the summation of absolute difference (L1-norm). Although

optic flow is particularly noisy, no smoothing techniques has been done on it as the field

of flow will be blurred in gaps and specially the places that information of motion is sig-

nificant (Jhuang et al., 2007). To obtain the proper response of the optical flow regarding

its application in the proposed model, optical flow will be applied for adjusting the active

basis model and making it more efficient. To achieve a representation reliable through the

form pathway, the optic flow estimates the velocity and flow direction. The response of

the filter based on local matching of velocity and direction will be maximal as these two

parameters are continuously changing.

3.1.3 Balanced Synergetic neural network classifier

Synergetic neural network(SNN) is presented by Haken as one the pattern recogni-

tion process, which performs in brains of human. A joint method to association of trained

samples is valued in feature averaging. Though it is not enough flexible for direction

changing, therefore the boundaries of these templates are not clear. Applying learning

object in the same view is a technique for dealing with inflexibility, which will limit the

task of classification. "Algorithm of melting" is introduced by Hogg et al. (1995) for ob-

jects combination in diverse pose. Assume a trained object sample Íi contains of n pixel
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values. By reshaping Íi to vi that is a column vector matrix and normalization will have:

n

∑
j=1

vi j = 0,
n

∑
j=1

v2
i j = 1. (3.6)

Connected prototype matrix V+ calculates: V+ = (V+V )V (1). Let V is the all learned

samples set vi = 1, ...,m. and every column satisfies condition of orthonormality: v+k v j =

δi j , for all j and k. Where δi j is delta of Kronecker. For a sample examination q,

parameters of order signify test-sampling matching. Class parameter of order for k de-

rives as,εk = v+k ,k = 1, ...,m. Due to pseudo inverse over-fitting sometime melting fails

to generalize the learning. A penalty function presents as Most Probable Optimum De-

sign (MPOD) to improve the generalization and classify face object pose application (Lee

& Loo, 2010). Following this modification, the melting combination of similar object

patterns into a template is useful for classification. So synergic template is:

v+p = E(V TV +P1O+P2I)−1V T . (3.7)

I, O, P1, and P2 are identity matrix, unitary matrix, and coefficients of penalty. E is an

enhanced identity matrix; every element of E is a row vector of size j as the following:

E =



en(1)
1 en(2)

0 · · · en(M)
0

en(1)
0 en(2)

1 · · · en(M)
0

· · · ... . . . en(M)
0

en(1)
0 en(2)

0 ... en(M)
1


ei

0 = (0, · · · ,0),ei
1 = (1, · · · ,1). (3.8)

The proposed model uses two times synergetic neural network, once for making the tem-

plates in each pathways and second time in the final classification.

3.2 Unbalanced-SNN and Quantum-Behaved PSO and Fuzzy Max-Product for in-
teraction between two pathways

Analyzing the human brain cognitive processes (Hanken, 1991; Haken, 1995; Gao

et al., 2001; Haken, 2004), particularly the visual analysis, it shows that the brain per-
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Figure 3.3: The synergistic pattern recognition.

sistently involved in a big amount of the perception re-processing, subconscious mind,

filtering, decomposition and synthesis. The brain of the human is a cooperative system,

in some cases; cognitive processes can depend on the self-organizing pattern formation.

A joint method to association of trained samples is values of feature averaging (Gao et

al., 2001). He revealed a collaborative pattern recognition of a top-down thinking: pattern

recognition process can be comprehended like a specific order parameter competition pro-

cess for recognition mode q can construct a dynamic process, so q after middle state q(t)

into a prototype pattern vk. There will be a similarity in the evaluation of some parameters

like balanced mode. The kinetic equation based on using q is as follow:

q̇ =
M

∑
k=1

λkvk(v+k q)−B ∑
ḱ 6=k

(v+k q)vk−C(q+q)q+F(t) (3.9)

The corresponding kinetic equation for the order parameter

ε̇k = λkεk−B ∑
ḱ 6=k

ε
2
ḱ εk−C ∑

ḱ=1

ε
2
ḱ εk (3.10)

Based on the competition, the order parameter, which is the strongest, will have a

victory, that is, to accomplish the pattern recognition purpose. This idea can be realized

through a layer-wised network that is depicted in Figure ??. Haken (1991) suggested the

approach with logarithmic mapping-based, FT , and followed coordinates transform tech-

nique. The supposed algorithms of learning that assign adjoin vector process of prototype

vector. Here, two ways are presented regarding assigning prototypes which is utilized

synergetic neural networks twice and another one uses key frames of actions for predict-
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ing of actions. Attention parameter is also will be determined using quantum particle

swarm optimization technique that will be presented afterward.

3.2.1 Quantum-Behaved Particle Swarm Optimization for kinetic equation of or-
der parameter

Quantum-behaved particle swarm optimization (QPSO) (Sun et al., 2012) is driven

by conceptions from quantum mechanics and particle swarm optimization (PSO), an al-

gorithm regarding probabilistic optimization adapted from the bare-bones PSO family

(Kennedy, 2010). Like PSO by M individuals, which each of them is considered as a

volume-less particle in an N-dimensional space, by the recent position vector and the

velocity vector of particle i,1≤ i≤M on the nth iteration represented as and correspond-

ingly. The particle moves based on:

V j
i,n+1 =V j

i,n + c1ri
i,n(P

j
i,n−X j

i,n)+ c2R j
i,n(G

j
i,n−X j

i,n). (3.11)

X j
i,n+1 = X j

i,n +V j
i,n+1. (3.12)

For j = 1,2, ...,N, where c1 and c2 are known as the acceleration coefficients. The

best earlier position vector of particle i is shown by Pi,n = (P1
i,n,P

2
i,n, ...,P

N
i,n) (personal

best or pbest), and the position vector of the best particle between whole particles in

the population is presented by Gn = (G1
n,G

2
n, ...,G

N
n ) (global best or gbest). Following

minimization problem will be considered:

min f (x), s.t. x ∈ S⊆ RN (3.13)

Where objective function presents by f (x) which in considers as almost continuous

function everywhere in feasible space S. Thus, for updating Pi,n we will have

Pi,n =


Xi,n f (Xi,n < f (Pi,n−1))

Pi,n−1 otherwise

(3.14)
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and Gn can be created by Gn = Pg,n, where g = argmin1≤i≤M f (Pi,n) PSO algorithm

may be converging wherever every particle converges to its local attractor Pi,n which are

defined as:

P j
i,n = ψ

j
i,nP j

i,n +(1−ψ
j

i,n)G
j
n,ψ

j
i,n ≈U(0,1) (3.15)

ψ
j

i,n) is a sequence of random number between 0, 1, uniformly. Equation shows that

stochastic attractor of ith considers in hyper-rectangle and moves by pi,n and Gn. Sun et

al. (2012) presented the position of the particle is an updated using equation as follows:

X j
i,n = p j

i,n±α|X j
i,n−β |ln( 1

u j
i,n+1

) (3.16)

where α is the Contraction-Expansion (CE) coefficient which is a positive real num-

ber and can be adjusted to balance the global and local search of the algorithm within its

process. Random numbers uniformly distributed on (0,1) revealed as sequence is shown

by u j
i,n+1 , varying with n for each i and j. Also the mean best (mbest) position is pre-

sented by Cn = (C1
n ,C

2
n , ...,C

N
n ) which is the average of the best positions (pbest) of all

particles, that is, c j
n =

1
x ∑

M
i=1 P j

i,n.

3.2.2 Centroidal Voronoi Tessellations for Choosing a Starting the attention pa-
rameter

In the previous section, it is mentioned that quantum-behaved particle swarm opti-

mization is applied for finding the optimum order parameter. As revealed in the kinetic

equation of synergetic neural networks, initialization of the attention parameter (λk) is re-

quired to calculate the order parameters updates. Voronoi tessellations can be applied as a

way to partition a viable space into partitions. The set of generators considers as a group

of points in the space, which divided into subsets following the approximation of the

generators points. Generators are associated with subsets and points are nearer to its cor-

responding generators rather than any of other generators considering distance function

(e.g., the Lz-norm). Note that the generators are not very evenly distributed throughout

the space. By dividing the spaces into the partitions, several generators are set at almost
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precisely the same point in the space. Although, the centroidal voronoi tessellations sets

the generators at centre of the voronoi cells overcomes to the poor and non-uniform dis-

tribution of the cells (Richards & Ventura, 2004).

Here, the generators were chosen similar way regarding initialization of initial atten-

tion parameters for Particle Swarm Optimization. The proposed approach follows Ju-Du-

Gunzburger (JDG) algorithm (Ju et al., 2002) which produces the feasible computational

approximation of CVTs and its combining the elements of MacQueen’s method (Mac-

Queen, 1967) and Lloyd’s method (Du et al., 1999). This algorithm finds the attention

parameter initial positions in quantum-behaved particle swarm optimization of order pa-

rameter updates more uniformly distributed in the search space.

3.2.3 Combination of two pathways and Max-product fuzzy

The recognition stage schematic regarding classification of human action recognition

based on biological inspired model is shown in Figure (??) and Figure (1.1) considering

the features calculated for both pathways, the main concern is their combination. For

that, max product fuzzy method has been utilized for transferring the information of both

pathways by Gaussian membership function and maximum of their product into fuzzy

domain that represents the class which action does it belongs. Fuzzy logic is a kind of

logic having multi-valued that is originated from the theory of fuzzy set found by Zadeh

(1965) and it deals with reasoning approximation (Kennedy, 2010). It offers high level

framework aimed at reasoning approximation which can suitably provide imprecision and

uncertainty together in linguistic semantics, model expert heuristics and handles requisite

high level organizing principles (Kumar, 2004). Artificial neural networks refer to com-

putational or mathematical models based on biological neural network and provide self-

organizing substrates for presenting information with adaptation capabilities in low level.

Fuzzy logic can be a significant complementary method for neural networks because of

plausibility and justified for combining the approaches together regarding design classi-

fication systems which referred as fuzzy neural network classifier (Kumar, 2004; Lin et

al., 2011). Also Bourke and Fisher (1996) presented that the max-product gives better

outcomes than the usual max-min operator. Consequently, similar algorithms by having
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effective learning scheme have been mentioned by Bourke and Fisher (1998), Loetamon-

phong and Fang (1999), and Wong et al. (2010) using the max-product composition later.

Here , fuzzy Max-production composition is applied inside the synergetic neural network

regarding form and motion pathways aggregation. It means the initial order parameter

will be obtained by combination of these two pathways for better decision-making.

3.2.4 Definition of motion pathway classes in different action

All possible action of human object optical flow captured and store in a database

considered as references. Each references optical flow data in every action assigns in a

specific amount of optical flow regarding specific actions, which will be assigned by in-

terpretation of an operator (human observer) as a training map, generally description of

which could be called Operator perceived activity (OPA) (Owens et al., 2002). Consid-

ering that mean and standard deviation of every class are different from each other, the

operator comments on each of reference data will be different and classification among

the classes will be done.

3.2.5 Max-product fuzzy classifier

Fuzzy production among two pathways classification is carried out through general

strategy of having result estimated as following composition from both pathways pre-

sented as below:

µFPω(ε̇k,Ci, t) and GMPω( fk,Ci, t) are outputs of quaternion correlator in enrollment

stage belong to form and motion pathways, respectively. Fuzzification is done through

Gaussian membership function as activation functions:

GMPω( fk,Ci, t) = exp[−FPω(ε̇k,Ci, t)−µFPω

σ2 ] (3.17)

(1) Where ε̇k comes from unbalanced order parameter kth subject in frame’ index t

belongs to Ci estimate from active basis model as form pathway and directly relates to λk

as its kth attention parameter tuned by quantum-behaved particle swarm optimization in

the training stage. Also for motion pathway membership is Gaussian functions deviation
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Figure 3.4: Schematic of recognition in proposed model.

as below:

GMP( f±k ,Ci, t) = exp[− (MPω( f±k ,Ci,t)−µMPω )
2

σ2 ]

GMP( f±k ,Ci, t) = GMP( f−k ,Ci, t)×GMP( f+k ,Ci, t)

GMP( f±k ,Ci, t) = GMP( f−y,k,Ci, t)×GMP( f+y,k,Ci, t)

µMP( f±
τ,k,Ci, t) = GMP( f±x,k,Ci, t)×GMP( f±y,k,Ci, t)

(3.18)

Where f±
τ,k is positive or negative (direction) flow in τ = x or y of kth subject in

frame’s index t as representation of motion pathway amount for every class ci. µFPω(ε̇k)

and µMPω are mean value and is standard deviation of both pathway.

(2) Determine the value of product by considering trained attention parameter in
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form pathway and trained parameters of motion pathway in kth subject in frame’s index t.

µMώ = GFPω(ε̇k,Ci, t)×µMP( f±
τ,k,Ci, t) (3.19)

(3) Gather the values of product in an array similar for amount of membership in

class of every action with both pathways separately:

E=



µPώ1,C1 µPώ2,C2 · · · µPώ1,Ci

µPώ2,C1 µPώ2,C2 · · · µPώ2,Ci

... . . . ...

µPώk,C1 µPώk,C2 ... µPώk,Ci


(3.21)

(4) Presents output array and a set of produced membership amounts reveals the

belonging degrees to every class Ci. The biggest amount represents the degrees of belong

to each classes and winner take all.

(5) Determine which element in classification matrix Yµ has maximum degree of the

membership among all i classes.

ψ = number of element position in classification matrix Yµ which has the maximum

value with Ci class. ψ presents the assigned number of reference image in database.

(6) Following one fuzzy IF-THEN rule, perform defuzzification:

R1
s : IF µP,ώα ,Ci from subject α in class has maximum degree in membership function

as compare with others, THEN subject classified as class Ci (Yousefi & Loo, 2014b).
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3.3 Fuzzy Optical flow divisions and interaction between two pathways

This method considers stability in the motion pathway regarding the information of

motion. Optical flow division helps to have more stable decision of these two pathways,

while following the psychological evidence about the influence of the motion information

from dorsal processing streams on the form information generated in ventral processing

stream. Making this way by fuzzy inference system creates a robustness and resistance

of the motion information regarding instantaneous changes within the biological move-

ments. In the experimental results, this part was compared with the proposed method,

applying on KTH human action dataset. It provides high level framework targeted at ap-

proximation reasoning which can appropriately deliver the imprecision and uncertainty

together in linguistic semantics, model expert heuristics, and handles requisite high level

organizing principles. Fuzzy logic can be an important balancing method which is plausi-

bility and justified for combining approaches together for design the classification, deci-

sion and inference systems (Lin et al., 2011). Different fuzzy inference systems have been

proposed and there has been substantial that many of its applications are composition of

max–min as functional basis. However, Leotamonphong and Fang (1999) mentioned that

composition of max–min is “suitable only when a system allows no compensatory among

the elements of a solution vector” (Sun et al., 2012). A time dependent fuzzy system

has also been used many times regarding solution of control and classification. Chen et

al. (2005) presents a delay-dependent robust fuzzy control for a class of nonlinear delay

systems via state feedback (Gorelick et al., 2007).

3.3.1 Problem statement and preliminary

After applying optical flow, the velocity of human object will be considered for both

x and y directions. In general, vx,vy ∈ Rm×n which m and n are sizes of image frame from

input video stream.

(1) µ
C1,2
vx (x),µC2,4

vx (x),µC1,2
vx (y),µC2,4

vx (y) are triangular membership functions for vx and it

will be the same for vy velocity in x and y directions and represent outputs of quaternion

correlator in the enrollment stage belong to motion pathways, respectively. The fuzzifica-
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tion is done through triangular membership function as activation functions:

µ
C1,2
vx (x) =


x

C1,3
0 < x≤C1,3

C2,4−x
C1,2−C3,4

C1,3 < y≤C2,4

,

µ
C2,4
vx (x) =


x−C1,3

C2,4−C1,3
C1,3 < x≤C2,4

C1,3−x
C1,3−C2,4

C2,4 < x≤ n

µ
C2,4
vx (y) =


y

C3,4
0 < y≤C3,4

C1,2−y
C1,2−C3,4

C3,4 < y≤C1,2

, µ
C1,2
vx (y) =


y−C3,4

C1,2−C3,4
C3,4 < x≤C1,2

m−y
m−C1,2

C1,2 < y≤ m

The position of highest velocity in x,y estimated by evaluating the amount of membership

functions and then membership function related to every cell will be based on aggregating

x,y for each velocity. It will evaluate for both cases of velocities. µ
Ci
vx and µ

Ci
vy are shown

the membership in each cell where z is number of the cell(i=1,. . . ,4).

µ
Ci
vx
= max{µCi

vx
,µCi

vy
} (3.24)

(2) Determine the value of motion information in motion pathway in frame’s index t. As

information of velocities can be unstable due to shaking the camera or different style in

human object, meanwhile it is acting in front of camera, the amount of velocity is de-

pendent of time. The definition of time in this context is based on the frame’s index
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per second. Here, this dependency implements by considering the previous frame mem-

bership value. Proposed time dependent fuzzy optical flow division can be utilized for

representing a class of optical flow divisions with fuzzy inference rules concerning time

regarding every frame of video stream as unit of the time defined here, as follows:

µ̃
Ci
v (t) = µ̃

Ci
v (t− τ)+η

Ci
v (t)(1− µ̃

Ci
v (t− τ))

t ∈ [t0, t0 + kτ],k ∈ (0,1, ...,N)
(3.25)

Where τ is the frame’s index, which is a parameter for camera and k is numbers of frames

pasted from the cell changing (it means k will be reset after varying of the cell member-

ship). N is the maximum number of frame distance from present frame, which does not

unreasonably increase membership function value. We call η
Ci
v (t) memory coefficient

function and add to the membership function of the winner cell and define as follows:

η
Ci
v (t) =


1

k+β
µ

C j
v (t)≤ µ̃

C j
v (t = τ)

−1
k+β́

µ
C j
v (t)> µ̃

C j
v (t = τ)

,k ≥ 0

(3.26)

Let β as adjustment parameter can be manually tuned in the system. C j presents

the cell, which is different form C j and has maximum velocity among all cells in optical

flow division. t is the time of frame which one division of the optical flow has the highest

membership amount as compare with other divisions and it will be restarted by changing

the division.

(3) Gather values produced in previous memberships in every optical flow divisions in

each frame by following rules:

1) Flow of upper limb: is attained by association of optical flow fuzzy amounts for C1 and

C2. Membership value reveals the flow for upper limb of human object. It is mentioned
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Figure 3.5: The results of dorsal processing stream applying Optical Flow and the Opti-
cal Flow division into the fuzzification has been depicted. The resolutions of divisions are
designed for categorization of actions group to have additional interfere of dorsal and ven-
tral processing streams. It can be a good representative of the interaction on MT, middle
temporal of dorsal stream, and V4, ventral stream(for shape and orientation), or the MST
area with inferior temporal(IT). The membership function of the action will be estimated
from the position of maximum flow in the flow image. Membership values are aggre-
gated through the proposed technique to increase the robustness. The input images of
action mentioned in the figures are obtained from KTH human action recognition dataset.

as follow:

µU pper−Limb(t) = µ̃
C1∪C2
v (t) = max{µ̃C1

v (t), µ̃C2
v (t)} (3.27)

2) Flow related to lower limb: calculates from union the amounts of optical flow in C1

and C2 with each-other in time t:

µLower−Limb(t) = µ̃
C3∪C4
v (t) = max{µ̃C3

v (t), µ̃C4
v (t)} (3.28)

Optional: Flow of left and right limb: are calculate by considering the optical flow mem-

bership amount among C1, C3 and C2, C4, respectively.

µLe f t−Limb(t) = µ̃
C1∪C3
v (t) = max{µ̃C1

v (t), µ̃C3
v (t)} (3.29)
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µRight−Limb(t) = µ̃
C2∪C4
v (t) = max{µ̃C2

v (t), µ̃C4
v (t)} (3.30)

This part is optional suggested but we have not used it.

(4) Following one fuzzy IF-THEN rule, perform defuzzification:

R1s: IF every membership function from the subject has maximum degree in mem-

bership function as compare with others, THEN the subject limits just some relevant ac-

tion eligible for form pathway selection and selection possibility of other actions by form

pathway eliminates.

(5) Output of aforementioned membership values can be considered as belonging

scores among the classes of actions, which shows specific movements in human subject

limbs. The biggest amount represents degree of belongs for each classes and winner take

all. e.g. running, jogging and walking involve the lower limb activities whereas boxing,

clapping and waving make flow in the upper limb of human object (Yousefi & Loo, 2104a;

2014c).
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3.4 Mechanism for the recognition of biological movement using combination of
the Fast features along with slowness principle

Slowness features of human object into the ventral stream, form pathway, along with

information of the motion pathway, fast features; to modify the original biologically in-

spired model in visual system (Yousefi & Loo, 2014d; 2015) is considered. In the main

experiment, a total of approximately 38,000 frames cuboid of human subject movements

were entered into the proposed model. Form and motion, slow and fast, information

analyzed though the model. The response of every input was estimate throughout the

time-series data applying IncSFA for slowness and its combination with motion, fast,

information.

The recognition of biological movements in the original model considered two par-

allel pathways in the mammalian visual system. The proposed perspective of the cur-

rent model occurs through slowness and quickness in the ventral and dorsal processing

streams. Modeling the ventral stream utilized the slowness principle for the active bases

for the extraction of the human object form and motion information that attained the opti-

cal flow. The interaction between these two pathways occurs in the categorization, which

obtains significant results in the decision and recognition of movements. However, each

pathway separately assigns the recognition of biological movements by the considerable

disparity rate.

The performances of two patients were analyzed, including DF, who developed vi-

sual agnosia (i.e., damage to the ventrolateral occipital), and RV, who developed optic

ataxia (i.e., damage to the occipitoparietal cortex) (Goodale et al., 1994). The perspective

of this approach considers the original model with a specified mathematical explanation

of the system.

3.4.1 Model motivation and Biological Inspired Concept

The model which presented here is for recognition of biological movements and

motivated from original biologically inspired models (Giese & Poggio, 2003) by devel-

opment under perspective of slowness and fastness context within two parallel pathways

of mammalian visual system response for a sequence of operations (Figure (3.7) ). It
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Figure 3.6: Structure overall, visual system analytical models. The approach pursues to
develop the computational models for recognition of biological movements and charac-
terize the responses for different actions. This model is the perspective of the original
model consists of particular computations of slow and fast feature data. The model can
operate in wide range of high-dimension of input and the outcome is a combination of the
ventral and dorsal processing stream.

is mostly motivated through prediction by using Active Basis Model (ABM) (Wu et al.,

2010) similar with V1-like Gabor filters to the luminance image (in V1) which has nor-

malization of filter outputs, summation of energy which is in contrast (by SUM-MAX in

ABM) (Kay et al., 2013). The novel component of this development is utilization of the

slowness principle over ventral pathway. This model like the original model has two sep-

arated pathways for form and motion information. To motivate and elaborate the concept

of temporal features, it seems essential to consider the original model of biological move-

ments which is follow four reliable assumptions by physiological, anatomical information

and imaging experiments, and several cortical areas (Giese & Poggio, 2003; Cloutman,

2012; Janssen et al., 2012; Mather et al., 2013). The model splits to two corresponding

pre-processing streams (Johansson, 1976; Oram & Perrett, 1996; Thorpe et al., 1996;

Riesenhuber & Poggio, 1999) parallel to dorsal and ventral streams which are specified

for analysis of motion and shape information, respectively. The proposed approach urges
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that motion is defined contained by spontaneous temporal variations though biological

movement shape is temporally order information and achieved throughout entire move-

ments. Researches have scrutinized the laminar creation profiles and time course of the

ventral and dorsal streams have gave several supports that two networks might connect in

straight cross-connection at several phases along their pathways, at least inside the visual

area (Cloutman, 2012). Modulating the separated pathways processing along with the

presence of recurrent feedback loops (Cloutman, 2012)and mutual links have been sug-

gested a recurrent processing loops that permits interaction of top-down and bottom-up

processing (Laycock et al., 2007; Cloutman, 2012). However, recent studies are pro-

vided better explanations for original model (Janssen et al., 2012). Kruger et al. (2013)

presents functional principles in primate visual cortex and relevant biological principles

for further advancement in computer vision researches following new findings in neuro-

physiology. Two streams has used neural detectors for motion and form feature extraction

hierarchically allows the in-dependency in size and style in both pathways, and classifica-

tion of generated features from both feed-forward pathways to categorize the biological

movements. The corresponding results on the stationary biological motion recognition

revealed that discrimination can be accomplished through particularly small latencies,

constructing an important role of top–down unlikely signals (Thorpe et al., 1996). The

body shapes are determined by set of patterns like sequences of ‘snapshots’ (Giese &

Poggio, 2003), which has constant feature within whole action episode. The proposed

approach expands an earlier model used for the stationary objects (Riesenhuber & Pog-

gio, 1999; Riesenhuber & Poggio, 2002; Giese & Poggio, 2003; Schindler and Van Gool,

2008; Danafar et al., 2010; Somayeh, Alessandro et al., 2010) recognition by adding

and combining over the temporal information in pathways. It can be a good relating to

quantity tool for organizing, summarizing and interpreting existent information based on

the data provided by neurophysiological. The proposed approach develops the original

model quantitatively for temporal analysis and even in computer simulations by respect

to previous model architecture. Interaction of these two streams is done at few levels in

the mammalian brains (Kourtzi & Kanwisher, 2000; Saleem et al., 2000) however many
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neurobiological, physiological and psychological evidences show the slow and fast infor-

mation coupling occur in many places for instance in STS level (Giese & Vaina, 2001)

and in different ways i.e. recurrent feedback loops (Cloutman, 2012) and mutual links

have been suggested a recurrent processing loops that permits interaction of top-down

and bottom-up processing (Laycock et al., 2007; Cloutman, 2012). Although, current

neuroscience and psychophysics research specifies that the more extensive form signals,

slow features, influence on motion processing, fast features, than previously assumption

(Mather et al., 2013). Motion pathway, as representative of dorsal stream in mammalian

brain and biologically inspired model, involves information of optical flow, which has

fast temporal varying nature. It has consistency with neurophysiological data from neural

detectors. Faster varying features due to its achievements within short changes between

Frame(t) and Frame(t+1) rather than whole episode, like ABM based Incremental-SFA

in form path. Local detector of optical flow is connected with motion patterns and the

model comprises population of neurons four directed neurons in area of MT, however

there is a connection between MT and V4 for motion and direction selection. Also, mo-

tion edges selectors in two opposite directions that it is found in areas of MT, MSTd,

MSTl (Dow et al., 1981; Eifuku & Wurtz, 1998) and many parts of the dorsal steams

and probably in the kinetic occipital area (KO) (Giese & Poggio, 2003) also the motion

selective edges which can be like MT (Dow et al., 1981) and MSTl (Eifuku & Wurtz,

1998) in a macaque monkey. Few models have been proposed for recognition of hu-

man body shape, which is plausible and neurophysiological about recognizing stationary

form (for instance in Riesenhuber & Poggio, 1999). The proposed approach follows an

object recognition model (Riesenhuber & Poggio, 1999), which is composed of form,

features detectors, and make them involve with slowness through ABM based IncSFA.

It has reliability and follows the data obtained from neurophysiological information con-

cerning scale, position and sizes invariance, in case of adaptive ABM, which need further

computational load along with hierarchy. The methods, which have Gabor, like filters to

modeling the detectors have good constancy by simple cells (Jones & Palmer, 1987). The

complex-like cells in V1 area or in V2 and V4 are invariant in terms of position varying
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responses (Giese & Poggio, 2003) and size in-dependency is typically in the area V4.

V2, V4 are more selective for difficult form features e.g. junctions and corners while

are not appropriate for motion recognition because of temporal dependency in these two

pathways. The snapshots detectors use to finding the shape models similar with area IT

(inferotemporal cortex) of the monkey where the view-tuned neurons located and model

of complex shapes tune (Dow et al., 1981). Snapshot neurons are like view-tuned neurons

in area IT gives independent scale and position. Previous models used Gaussian Radial

Basis functions for modeling and it adjusted in training which performed a key frame

regarding training sequences. This modification elaborates that key frame, which is con-

sidered efficient, has fast features concept whereas shape of specific human movement

is defined in the whole episode and it is independent from fast temporal change. Slow-

ness features, which have Gabor like features, can be a better representative regarding

form information of biological movements. A perspective of a model, which follows the

original models by utilizing Active Basis Model (ABM), based incSFA is introduced and

explained in the method section. The computational simulation along with testing the

method is presented in the results section. Finally, concluding remarks that the biological

motion perception in human visual system comprises of fast and slow feature association,

which makes the recognition of biological movements. For examination of the proposed

model on a broader range of high-dimensional video streams, responses are measured to

separate parallel pathways of the visual system. Results for an instance patterns model in

ventral path are revealed (Figure (3.9) ). The proposed model does a sensible job catching

the constant pattern of responses of ventral pathway to the human movements (Figure

(3.9), upper processing stream). Though, the model does not undervalue the responses of

dorsal covering almost half portion of the visual system. The slowness characteristic in

the ventral stream has been hidden and its response underestimated in the recognition of

biological movement model. It can be clearly indicated through response to different ac-

tions. Here, this pattern of slowness features by respect to visual system model regarding

application of Gabor like stimuli for the object as an object recognition task throughout

the ventral stream. ABM as Gabor based supervised method can boost the responses of
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Figure 3.7: The hierarchical model follows the original model and interpretation of the
data is in the perspective of combination of slowness and fast features provided from
ventral and dorsal processing stream. An overview of these two pathways, form and
motion pathways is revealed. Insert depicts the various types of neural detectors in diverse
parts of hierarchy. V1 and IT represent primary visual cortex and inferotemporal cortex
also KO and STS are kinetic occipital cortex and superior temporal sulcus respectively.
These abbreviations along with others indicate visual cortex in monkey and human (Giese
& Poggio, 2003).

the stream directive and can be excellent interpreted as providing the human object. The

proposed model attempted to increase the performance of the recognition of biological

movement model by incorporating of the slowness features with fast features form dorsal

stream in the previous and original model (Giese & Poggio, 2003).

Here, this pattern of slowness features by respect to visual system model regarding

application of Gabor like stimuli for the object as an object recognition task throughout

the ventral stream. ABM as Gabor based supervised method can boost the responses

of the stream directive, and can be excellent interpreted as providing the human object.

Proposed model attempted to increase the performance of the recognition of biological

movement model by incorporating of the slowness features with fast features form dorsal
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Figure 3.8: The schematic of model is presented here for both pathways. In ventral
processing stream, form pathway, a set of Gabor filters have been applied at different ori-
entations, positions and phases; outputs of V1 part is outcomes of quadrature-phase pairs,
summed, squared, and square-rooted. Then outputs of the filter normalize considering lo-
cal population. Afterwards filter outcomes are max pools and summed across space. The
MAX, SUM operations are based on the attained active bases of the object form. This
initial part of the schematic are done through using ABM (Si et al., 2010) as Gabor based
object recognition operation. Finally, the output of the ABM is utilized into the slow-
ness principle method (incremental slow feature analysis) (Kompella et al., 2011; 2012)
for extraction of form slow features. On the other hand in the dorsal processing stream,
which helps to obtain motion information throughout the high-dimensional input stream.
Motion pathway is attained using Optical Flow. Average of these flows within the episode
(t0, t1, . . . , tn) plays the fast features in this hierarchy which temporally ventral stream re-
quires for utilizing IncSFA for generation slow features. However, each pathways can has
its own decision in categorization and it justifies two patients (DF and RV) performances
(Goodale et al., 1994).

stream in the previous and original model (Giese & Poggio, 2003).

3.4.2 Theoretical Methods

Based on the biological inspired model complication mentioned in the previous sec-

tion, it looks difficult to providing analytical statement about the model. In this section

the mathematical framework relevant to actual prediction will be introduced. The model

will consider a perspective of recognition of biological movement model which is con-

cerns the task throughout two parallel pathways in slowness and fastness theoretical and

conceptual outline.
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Figure 3.9: Different way to present the hierarchical model in terms of theoretical and
computation of the form information, slow features, and motion information, fast fea-
tures is shown in thirds figure. A supervised Gabor based object recognition method,
ABM,gives this property to have human object and computation of the slowness features,
performs with IncSFA which is episodic, gives slow form features within the episode that
it combination with optical flow information, fast features, creates interaction between the
pathways.

3.4.3 Slowest features for ventral processing streams

The perception of slow feature analysis is connected to the hypothesis where the

input information (e.g. actions or activities) is included in a 2D signal sequence (e.g. a

video) does not vary rapidly, although gradually over time (Liwicki et al., 2013). Whereas,

the input signal has normally high difference (e.g. due to variation in environment and

different lighting conditions or noise) the separation between informative changes is gen-

erally hidden in the rarely changing sequence features. The video attributes, which vary

least over time, can be extracted using slowness features. Slowness features are recently

entered to the computer vision task (Kompella et al., 2011; Zhang & Tao, 2012; Liwicki

et al., 2013) and usually connected to the visual cortex (Wiskott, 2002; Franzius et al.,

2007). Incremental learning algorithm is used when applying slow feature analysis for

each time step in an unknown video input. Incremental Principle Component Analysis
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(PCA) in closely related to incremental SFA (Olshausen, 1996; Kay et al., 2013), because

PCA and Minor Component Analysis (MCA) can solve SFA. Slowness features, which

have the information of active basses from multidimensional input along with involving

the fast features, can solve the recognition of biological movement task. SFA gives in-

stantaneous scalar input-output functions, which generate signal output (2D signal) that

carry the important information and change as slow as possible. Slow Feature Analysis

(SFA) is one of the unsupervised learning methods. The functions which plan the input

stream to the most slowly changing outcomes are characteristic of a number of elemen-

tary representatives of world possessions, summarizing away unrelated details selected

up by the sensors (Franzius et al., 2007; Zito et al., 2008; Kompella et al., 2011). More-

over, considering a mobile agent that has high-dimensional video input can be a searching

an otherwise stationary room and encode the data by using the combining the situation

and direction by slow features (Jolliffe, 1986). SFA is typically concerned with the opti-

mization of complexity, it is common that for the identification of x(t) as input by the D

dimension,x(t) = [x1(t), ...,xD(t)], there is a set of functions similar to f (x) that have L

dimension, g(t) = [g1(t), ...,gL(t)],or that can produce the output for L dimension as y(t)

so that y(t) = [y1(t), ...,yL(t)]. Thus, the relationship between these sets is yl(t) := gl(t).

∆l := ∆(yl) := 〈ẏ2
l 〉. is minimal (3.31)

〈yl〉= 0. (Zero mean), (3.32)

〈y2
l 〉= 1. (Unit variance), (3.33)

∀d < 1 : 〈yd,yl〉= 0. (decorrelation and order), (3.34)

These general definitions, similar to ?? and ??, are the restrictions for having insignificant

constants in the output, and ?? is for decorrelation restrictions for features that are the
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same but are not coded. A representation of the evaluation for the derivative of y and the

sequential average are considered, correspondingly. The problem is defined by identifying

the f (x) for generating the slow varying output. It is noticeable that for the solution of this

problem, the optimization of variation calculus is not applicable, but it is predominately

straightforward especially for the eigenvector method. Considering that fl is constrained

to be a linear function that consists of a combination of a finite set of nonlinear functions

p, the output function will be:

yl(t) = fl(x(t)) = wT
d p(x(t)). (3.35)

Then, will have z(t) = p(x(t)). Based on the changes previously incorporated, the opti-

mization problem will be introduced by minimizing 3.35, the wl .

∆(yl) = 〈ẏ2
l 〉= wT

l 〈żżT 〉wl. (3.36)

If the p functions are selected such that z has a unit of covariance matrix and a zero mean,

then the three restrictions will be satisfied if and only if the weight vectors have an or-

thonormal difference. Whitening is a very common technique that is used for identifying

p. For whitening, the principle component of the input data are required; thus, consider-

ing the zero mean and the individuality covariance matrix, put the x to z and by this z,the

SFA problem will be converted to the linear problem. Equation (6) should be considered

for minimizing the L-normed set of eigenvectors of 〈żżT 〉. The desired features will be

obtained from the set of principle components of ż. The objective was to calculate the

temporal slowness, δ−value, features and g(x) as instantaneous functions of the input

2D-signal. This eigenvector-based algorithm is guaranteed to obtain the global optimum

and learn biologically plausible rules for the existing optimization problem (Hashimoto,

2003; Franzius et al., 2007; Sprekeler et al., 2007).

The modified optimization problem for the high-dimensional visual input utilizes the

information of biological movements and the human object through an ABM as a Gabor-

based kernel. Then, this pathway information is combined with fast features by optical
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Figure 3.10: Comparison of the functional imaging experiments with the outcome of
the ABM regarding features of active basis before generation of the slowness features in
the form pathway. The biological movements through the great research experiments of
Gunnar Johnsson (1973) regarding ten light bulbs on the joint and recording of the actor
within performing complex movements.recognition of the action within episode of the
actions. In addition, the dots were spontaneously interpreted as a human. Like points
light technique, which presents as static pictures, ABM has very good representative for
biological movements which adding it into IncSFA can be very good tool for increasing
the ventral pathway in the recognition task.

flow in the motion pathway with respect to the original model (Giese & Poggio, 2003;

Schindler & Van Gool, 2008; Danafar et al., 2010; Somayeh et al., 2010).

3.4.4 ABM based IncSFA

The ABM is a supervised learning Gabor wavelet model that has been successfully

used for object recognition tasks. It is motivated to apply Olshausen (1996) Field’s (1995)

representation to model the particular image object category collections. Although the Ol-

shausen (1996) and Field’s (1995) model were proposed to provide an explanation of the

role of simple cells in the primary visual cortex (V1), Riesenhuber and Poggio’s (1999)

theory grasps that the local maximum pooling of simple cell responses has been per-

formed in the V1 complex cells. Thus, the local perturbations for the orientations and

locations of linear basis elements in the model of Olshausen and Field can be derived to

a deformable template from the active basis and, prior to that, the linear basis (Yuille et

al., 1992). Riesenhuber and Poggio’s (1999) local maximum pooling represents the ac-

tive basis deforming for the image data explanation. Multiple active bases are used for
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more articulate shape representations being the simplest example of the and-or graph in

a compositional framework (Zhu & Mumford, 2007; Wu et al., 2010). Furthermore, the

model of Gabor wavelets is very similar to the receptive field profiles of cortical simple

cells (Schölkopf et al., 1998). Previously, kernel PCA conquered several restrictions of its

linear characteristics by nonlinearly transferring to a space of high-dimensional features

from the input space. Kernel PCA derives low-dimensional feature space and is nonlin-

ear in the space of input (Schölkopf et al., 1998). It originates from Cover’s theorem

regarding pattern separability and represents that in the input space, nonlinear separable

patterns are linearly distinguishable with high possibility if the input space is nonlinearly

converted to a high dimensional feature space. From the perspective of computation, ker-

nel PCA receives the Mercer equivalence condition benefit as well as feasibility because

the inner products in the high dimensional feature space are returned by those in the in-

put space, whereas the complexity of computation is connected to the training sample

numbers moderately compared with the feature space dimension (Liu, 2004). Here, the

ABM as a subset of the Gabor wavelet kernel for incremental slow feature analysis is

introduced. The inference behind this model was motivated by a schematic model of the

visual cortex. The set of Gabor wavelet filters on the various phases, orientations, and po-

sitions is initially filtered by the input stimulus, the quadrature-phase output are squared,

summed and square-rooted (energy of V1) and division normalization and summation

occur across orientations (Kay et al., 2013). The ABM has approximately similar oper-

ations and a significant consistency with this procedure. Due to the supervised learning

object recognition property, it will identify and focus on human objects more precisely

and robustly than does the original Gabor wavelet. However, the Gabor wavelet has been

successfully used as a kernel and the ABM is one subset of the Gabor kernel. The ABM

as a Gabor wavelets-based function was established to analyze images due to their com-

putational and biological significance (Marelja, 1980; Daugman ,1985; Jones & Palmer,

1987; Daugman, 1988). Such kernels are similar to the profile of the 2D receptive field

in the mammalian cortical simple and complex cells; the orientation and selectivity ex-

hibit desirable characteristics of spatial locality and are spatially localized in the optimal
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positions and domains of frequency. Previously, Gabor wavelet has been widely utilized

as a kernel and for various applications such as in face recognition (Liu, 2004). The Ga-

bor wavelet (kernels filter) has been defined in previous works (Daugman, 1980; Jones &

Palmer„1987; Lades et al., 1993; Liu, 2004):

ψµ,ν(z) =
‖κµ,ν‖2

σ2 e
‖κµ,ν ‖2‖z‖2

2σ2 eiκµ,ν z− e−
σ2
2

where µ and ν are the orientation and scale, respectively, of the Gabor kernels, z = (x,y)

,‖.‖ is the norm operator, and the wave vector κµ,ν is defined as follows:

κµ,ν ,νz− e‖2 = κνeiφµ (3.38)

where κν = κmax/ f ν and φµ = πµ/8. κmax is the frequency of the maximum, and f is

the spacing factor between kernels in the frequency domain (Moghaddam, 2002). The

active basis model is a supervised learning Gabor wavelet, and it is considered a kernel

that is related to the bases within it. Unlike the Gabor wavelet kernel that was required to

define the scales, the orientations and pixels in the ABM, these parameters and attained

in a way that is dependent upon the training. The ABM represents the image obtained by

the summation of the active base families, which are obtained through the Gabor wavelet

dictionary and match scoring function. Let I(x,y) be the gray level distribution of an

image; the image convolution I and a Gabor kernel ψµν are defined as follows:

Bzi,µ,ν = ψµ,ν(Z)∗ I(Z) i = 1,2, ...,n (3.39)

where z = (x,y) denotes the convolution operator, and Bzi,µ,ν is the active base that cor-

responds to match scoring at the proper orientation and scale. Consequently, the set

S = {Bzi,µ,ν : µ ∈ M,ν ∈ O}forms the Gabor wavelet representation of the image I(Z)

along with M and Owhich represent the orientations and scales of the Gabor wavelet

dictionary. To include the various spatial localities, spatial frequencies (scales) and orien-
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tation selectivity, concentration is done on all depiction results to obtain a supplemented

feature vector X . X is defined as a set of active bases that have the highest matching scores

based on the training sets that were used together to make the object form. This method

prefers the integration of simple cells to make complex cells.

3.4.5 ABM based Slow Feature Analysis

A method for nonlinearity utilizes the fact that SFA is solved by two-fold PCA and

entirely based on second-order statistics. Therefore, SFA is capable of being kerneled in

line with the extension of PCA to Kernel-PCA by Schlkopf et al. (1998), thus in the case

of incremental SFA, kernelled incremental PCA must be considered (Nickisch, 2006).

The presentation and implementation of a kernel based in the principle of temporal slow-

ness has been performed by Bray and Martinez (2003) using the Stone (1996) objective

function, which was in some ways not similar to SFA. Incremental SFA is needed, while

SFA is used for every time step. As the SFA solution can be reached through PCA and

Minor Components Analysis (MCA), it is closely relevant to incremental PCA (Levy &

Lindenbaum, 1998; Ross et al., 2008; Kompella et al., 2011).

3.4.6 Motion information from dorsal pathway

In the motion pathway, biological movements are recognized by patterns of opti-

cal flow. The optical flow identifies the movement pattern, which is consistent with the

neurophysiological information from the hierarchy of neural detectors. In the MT and

V1 areas, there are some neurons for motion and direction selection, respectively, in the

first level of the motion pathway. For the motion of the subject, the layer-wise optical

flow estimation has been utilized. A mask that reveals each layer’s visibility is the main

difference between the estimation of traditional and layer-wise optical flow. The mask

shape is able be fractal and arbitrary, and matching only applies for the pixels that fall

inside the mask (Liu, 2009). The layer-wise optical flow method in (Liu, 2009; Liwicki

et al., 2013) is used which has a previously described baseline optical flow algorithm

(Oram & Perrett, 1996; Thorpe et al., 1996; Mather et al., 2013). After optimization of

the objective function, the use of outer and inner fixed-point iterations, image warping
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and a coarse to fine search, bidirectional flow is obtained (more explanation mentioned in

section 3.1.2). Compressed optic flow for all frames was calculated by straight matching

the template to the earlier frame by applying the summation of the absolute difference

(L1−norm). Although optic flow is particularly noisy, lesser smoothing techniques have

been performed (one of the good one is pyramid) with it because the field of flow will be

blurred in gaps and, in particular, in the locations where information regarding motion is

significant (Kompella et al., 2011). To obtain the proper response of the optical flow with

regard to its application in the proposed model, the optical flow is applied to adjust the

ABM and increase its efficiency. To achieve a reliable representation through the form

pathway, the optic flow estimates the velocity and flow direction. The response of the

filter based on the local matching of velocity and direction will be maximal as these two

parameters are continuously changing.

3.4.7 Extreme Learning Machine (ELM)

Neural networks have been widely utilized in several research areas because of their

capability to estimate difficult nonlinear mappings straight from the input sample as well

as offering models for a large class of artificial and natural phenomena that are problem-

atic to model via classical parametric techniques. Recently, Huang and his team (Huang

et al., 2004; Wang & Huang, 2005; Huang et al., 2006) presented a novel algorithm for

learning, i.e., a single layer feed-forward neural network structural design named Ex-

treme Learning Machine (ELM). ELM solves the problems initiated through algorithms

that use gradient descent, e.g., the back-propagation used in ANNs. ELM considerably

diminishes the time quantity required for training in the neural network and has greatly

enhanced faster learning and generalization performance (these are the reasons that it has

been used for our approaches). It requires fewer human interventions and can run signif-

icantly faster than conventional techniques. It routinely concludes the parameters of the

entire network, which evades unimportant external interventions by humans and is more

effective in real-time and applications. Several advantages of ELM include the simplicity

of usage, quicker speed of learning, greater generalization performance, appropriateness

for several nonlinear kernel functions, and activation function (Rajesh & Prakash, 2011).
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The Single Hidden Layer Feed-forward Neural Network (SLFN) function with hidden

nodes (Huang et al., 2006; Liang et al., 2006) can be shown by mathematical explanation

of the SLFN, which integrates additive and Sigmoid hidden nodes together in a joined

method as follows.

fL(x) =
L

∑
i=1

βiG(s1,bi,x) x ∈ℜ
n,ai ∈ℜ

n (3.40)

Let ai and bi represent the parameters of learning in hidden nodes and βi represent the

connecting weight of the ith output node of the hidden node. G(s1,bi,x) is the output of

the ith hidden node with respect to the input x. For the additive hidden node with the

activation function G(x) : ℜ→ℜ (e.g. sigmoid and threshold), G(s1,bi,x) is provided by

G(ai,bi,x) = g(ai,x+bi) bi ∈ℜ (3.41)

Let ai represent the connecting weight vector of the input layer to the ith hidden node and

bi represent the ith hidden node bias. For N, arbitrary different examples are indicated by

(xi, ti) ∈ℜn×ℜm. Now, xi is a n vector of contribution, and ti in a m vector of target. If

the SLFN by L hidden nodes can be estimated, then these N samples have zero error. This

relationship infers a βi, ai and bi such that

fL(x j) =
L

∑
i=1

βiG(ai,bi,x) j = 1,2, ...,N. (3.42)

The equation above is described in a compacted form as follows:

Hβ = T (3.43)

where

H(â, b̂, x̂) =

 G(a1,b1,x1) G(aL,bL,x1)

G(a1,b1,xN) G(aL,bL,xN)


N×L

(3.44)
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with â = a1, ...,aL ; b̂ = b1, ...,bL; x̂ = x1, ...,xN .

β =


β T

1
...

β T
L


L×m

T =


tT
1
...

tT
L


N×m

(3.45)

Let H represent the hidden layer of the SLFN output matrix, with the ith column of H

being the ith hidden node’s output with respect to the inputs x1,x2, ...,xN .

3.5 Chapter summary

The methods discussed here were based on the stated problems mentioned in the

literature. First, the ABM employed into the ventral processing stream as a supervised

Gabor based function and increases the robustness of the form pathway in terms of object

finding. Secondly, the optical flow division also increases the robustness in motion infor-

mation along with updating the interaction between the pathways. And finally, slow Fea-

ture analysis provides the slowest features which enhances the recognition ability in form

information path independent to the style of different actions (it usually occurs among the

various people doing same action).
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CHAPTER 4:

Evaluations and Results

This chapter contends with details of implementation and empirical considerations. It

addresses the details on the various approaches that have been conducted throughout this

research, along with the modifications present in the original model of biological move-

ments. First, the application of the ABM as a supervised Gabor-based object recognition

technique in the ventral processing stream is introduced. Then, the modification outcomes

of dorsal processing stream using fuzzy optical flow divisions are presented. Finally, re-

sults from the combination of the ABM-based slowness principle with fast features are

used for the interaction of these two pathways to recognize biological movements. These

three main configurations follow the original model for recognition of biological move-

ments in mammalian visual systems.
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4.1 Results of the ABM in the ventral processing stream and balanced/unbalanced
synergetic neural network

The experimental results of the involvement of the ABM in the ventral processing

stream are presented (Yousefi et al., 2013; Yousefi & Loo, 2014b). The results are exten-

sively presented to reveal the efficiency and estimate the ability of the proposed model to

recognize human action.

4.1.1 Biologically Inspired Model and Relation to existing methods

Co-operation among information attained from two processing streams occurs at sev-

eral levels in the mammalian brain (Kourtzi & Kanwisher, 2000; Saleem et al., 2000),

simplifies the aggregation of model (for instance in the STS level (Giese & Vaina, 2001)),

and improves recognition performance. Holonomical features consider both pathways for

predefined action templates. In the form pathway, the proposed approach followed Karl

Pribram’s holonomic theory, which is based on evidence that dendritic receptive fields

in sensory cortexes are described mathematically by Gabor functions (Pribram) that are

vastly utilized by the ABM (Wu et al., 2010). As previously mentioned, the primary stage

includes local (in V1 cell) and model detectors (Gabor-like filters) in 16 (including eight

preferred) orientations, and the proper scale depends on the receptive field (Dow et al.,

1981; Riesenhuber & Poggio, 2002). The ABM also served as snapshot detectors for

human body shape models to determine the area IT (inferotemporal cortex) of monkeys

where view-tuned neurons are located and the model of complex shapes are tuned (Lo-

gothetis et al., 1995); these processes are implemented by applying the synergetic neural

network.

In unbalanced synergetic neural networks, tuning optimized attention parameters

works as view-tuned neurons in area IT and snapshot neurons to provide independency in

scale and position. The proposed model is adjusted through training as key frames. Uti-

lizing optical flow outcome and inferring it with information obtained from the form path-

way, the presented approach covers high-level integration of snapshot neurons to obtain

information on motion pattern neurons. Furthermore, ABM uses computational mech-

anism on recognized human object form, which follows up the neurobiological model
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in dorsal stream located in the visual cortex (V1) (Giese & Poggio, 2003; Jhuang et al.,

2007; Schindler & Van Gool, 2008). Local direction has been organized in the initial level

of form pathway and Gabor-like modeling detector methods, that is, the ABM constantly

models cells in the mentioned areas (Jones and Palmer, 1987). Sixteen directions and two

spatial scales were obtained from two differentiators, and information on local direction in

the pathway and complex-like cells with independent form features appropriate for form

pathways was gathered using the proposed neurophysiological plausible model. In the

motion pathway, biological movement is consistent with the neurophysiological informa-

tion of neural detectors in MT and V1, where motion and direction were determined by

applying optical flow (Giese & Poggio, 2003). Estimation of local motion is also directly

computed from optical flow in response to motion-selective neurons in areas of MT. In the

MT areas, MSTd, MSTl, other parts of the dorsal streams, and probably the kinetic occip-

ital (KO) area of motion were selected by opposite directions (Giese & Poggio, 2003) that

were modeled by Fx−,Fy−,Fx+,andFy+. The maximum pooling motion and its amount

in Gaussian membership function for each direction of optical flow were considered. The

product decision membership can be an excellent presenter for form pathway and third-

level motion pathway by snapshot neurons. This membership is also a good combination

of two pathways for the vertical stream in V2, V4 projection, and primary visual cortex

(V1), all of which have been reduced here. The proposed model in the current techniques

follows hierarchical feed-forward designs such as those of Jhuang et al. (2007). In par-

ticular, a model that follows neurobiological motion processing in the visual cortex was

developed and basically follows that of Giese and Poggio (2003). The object recognition

task in the form pathway has been changed within the researchers’ work from spatiotem-

poral features (Jhuang et al., 2007) and original Gabor filter (Schindler & Van Gool, 2008)

to the model using ABM. However, ABM has the basic characteristic of previous features

and basically uses Gabor wavelet while reducing matching operation. ABM is activated

by the limited clutters and ensures the important amount of points of interest, which falls

on the person subject. In the aspect of used features, layer-wise optical flow (Liu, 2009)

which is simply silhouette form regarding motion and form of subject and better combi-
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Figure 4.1: The figure depicts Weizmann and KTH human action datasets. To test the
recognition of biological movements, two well-known human action recognition datasets
were utilized. Here, the left set of image samples demonstrates actions from the Weiz-
mann dataset; the second set, right-hand side, shows the KTH human action dataset. It is
noticeable that the KTH dataset is one of the largest human action datasets, including six
various human actions in four different scenarios.

nation of two pathways using fuzzy inference theory and classifying by synergetic neural

network tuned by quantum particle swarm optimization that it makes the model more

biological.

4.1.2 Data Sets

The KTH action dataset (Liu, 2009) is the largest human action dataset that includes

598 action sequences and comprises six types of single-person actions, such as boxing,

clapping, jogging, running, walking, and waving. A total of 25 people performed the

actions under different conditions, namely, outdoors (s1), outdoors with scale variation

(s2), outdoors with different clothes (s3), and indoors with lighting variation (s4). In this

study, the sequence resolutions were downsampled to 200×142 pixels. For this approach,

we used five random cases (subjects) for training and developing predefined form and mo-

tion templates. As previously mentioned in the literature, KTH is a robust intra-subject

variation with a large set; a camera with some shacking is used for taking videos during

the preparation, which renders working with this database difficult. Moreover, four inde-

pendent, separately trained, and tested scenarios are involved (i.e., four visually different

databases, all of which share the same classes). Both alternatives have been tested. To

consider the symmetry problem of human actions, a mirror function for sequences along

the vertical axis is available for testing and training sets. Here, all possible overlaps of

human actions within the training and testing sets have been considered (e.g., one video
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has 32 and 24 action frames). The Weizmann human action database (Gorelick et al.,

2007) comprises nine types of single person actions, and 83 video streams reveal nine

actions, namely, running, galloping sideways, jumping in place on two legs, walking,

jumping, jack, jumping forward on two legs, waving one hand, waving two hands, and

bending. Tracking and stabilizing figures were obtained using background subtraction

masks that come with this data set. Sample frames of this data set are shown in Figure 4.1.

The above-mentioned data sets have been widely utilized to estimate methods/techniques

designed in action recognition. However, the dataset only concentrates on recognizing

single-person actions, such as clapping and walking. To understand the advantages of the

proposed approach in the testing data sets, the experimental results were illustrated using

synergetic neural network in balanced and unbalanced modes; moreover, previous studies

that proposed biological human action models were compared. The balanced and unbal-

anced classification of form pathway was compared, along with the accuracy of form and

motion pathways after the application of fuzzy product between these two pathways. The

proposed model is efficient, and computational cost will cover feature extraction of two

pathways with form and motion features that apply ABM and optical flow, respectively.

After optimizing the tune of attention parameter in unbalanced synergetic neural network

for form pathway, the system inference of a new video only requires several seconds in

an un-optimized MATLAB implementation, which is combined using existing codes for

motion and form pathway in MATLAB/C (Liu, 2009; Wu et al., 2010). Subsequently, the

system was trained and tested correspondingly by computing features in both pathways

with different settings as previously mentioned. For a specified test sequence, the action

label was assigned to the action frames. Then, the accuracy of classification was specified

by

Acc =
Numbers o f correct classi f ied f rames

Total number o f f rames
(4.1)

The algorithm correctly classifies most of the actions (the confusion matrices are

shown in Figure 4.3). Most of the mistakes are on the recognition of running, jogging,

boxing, clapping, and waving. The intuitive reason for this is the similarity between these
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Figure 4.2: Figure represents the outcomes of the different pathways for every action
(upper set is ABM-ventral stream and lower set is optical flow-dorsal stream).
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Figure 4.3: Confusion matrices representing the accuracy of recognition in KTH and
Weizmann data set using multi-prototype human action templates.

two groups of action. Upon testing the databases, the confusion matrices were obtained

for two proposed scenarios regarding the application of the methods and the overall ac-

curacy of both per-fame and per-video classification. The confusion matrices (per-video

or per-frame) of the proposed scenarios have similar patterns; hence, only one confusion

matrix is revealed for every dataset. The results of each scenario are mentioned in Table

4.1, which shows the accuracy of the proposed techniques compared with those of previ-

ous methods with the same data set. However, this comparison is not precise because of

differences in experimental setups, and the presented results are comparable with state-of-

the-art techniques. Moreover, considering various methods results in various differences

in their setups, such as un-supervision or supervision, with or without tracking, subtrac-

tion of the background, and multiple action recognition. In terms of biology, movement

contains corticofugal pathways from both peristriate cortex (V2) and striate cortex (V1).

The peristriate (V2) and striate (V1) cortices are mutually linked with minor, although

important, differences in their receptive properties. In holonomic brain theory, the peris-

triate (V2) and straite (V1) are a narrowly coupled collaborating system by virtue of both

reciprocal cortico-connectivity and connection to the brain stem’s tectal region. Upon this

carefully joined organism, the additional compound perceptual procedures converge. The

convergence locus is the region of the brain stem tectal close to the colliculi. The supe-
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Figure 4.4: Confusion matrices for recognition of human action in KTH and Weizmann
data sets applying second scenario.

rior colliculus connections to neurons in the striate cortex (V1) were visualized, showing

complex receptive fields that complete the circuit (Stone 1983). Moreover, a set of recep-

tive fields is particularly sensitive to processing movement in the visual input; in specific,

the virtual movement of one portion of input with respect to another. This sensitivity to

relative movement is critical to the formation of object-centered spaces. Another set is

principally sensitive to comparative movement among somatosensory and visual inputs.

The receptive fields of these neurons directly comprise the formation of egocentric action

spaces (Pribram, 1991). Considering the aforementioned approach in terms of biology,

the proposed model considered two structures for V1 information of form pathways to

determine the shape and form of human objects by incorporating the original frame after

ABM application; in the end, the two configurations were compared.

In V2, the proposed method used local representation and action sequence is selected

by its location. The response of ABM is directly used for classification of action.

4.1.3 Multi-prototype human action Templates

In this scenario, the recognition of human action pattern in the form pathway was car-

ried out using one predefined template, which was obtained by applying synergetic neural

network prototypes. First, multi-prototype predefined templates were used for each hu-
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man action, which were obtained by applying synergetic neural networks on human action

images. To develop a training map for every action, the human action sequences compris-

ing the five primitive movements are divided. A whole action sequence can be created

using these five basic actions. In addition, considering the style invariance difficulties

of diverse objects in the same action, the proposed training map was obtained using five

subjects from targeted human action databases. To simplify the explanation, five snippets

in different actions A1−A5 and each subject from targeted database D1−D5 were con-

sidered. First, the synergetic neural network is applied to A1 in D1−D5, and the outcome

shown by P1 serves as the first prototype obtained from first action snippet. The number

of prototypes can be completed by applying the synergetic neural network and calculat-

ing the residual prototypes called P1−P5. Calculated prototype images that consider style

invariance represent one action within five snapshots. Afterward, these prototypes melt

together using second time synergetic neural network to achieve the final prototypes, each

of which represents the specific action within different action snippets and considers style

invariance property. Let Ft represent the outcome of melting P1−P5 in a specified action.

The final prototype images for each human action and the application of synergetic neural

network procedure to synthesize a training map is presented in Figure 4.5. The recogni-

tion result of the first scenario is revealed in Figure 4.3 (the second scenario showed in

Figure 4.4). Two categories use dissimilar paradigms that cannot be directly compared.

Here, the experimental result of the proposed approach is presented. The KTH and Weiz-

mann human action databases have been previously used to benchmark the accuracy and

consistency of sets of experiments (Schuldt et al., 2004; Jhuang et al., 2007; Niebles et

al., 2008; Schindler & Van Gool, 2008; Wang & Mori, 2009; Zhang & Tao, 2012). Thus,

a set of training maps was provided, and the proposed technique was tested on the entire

data set in which the four video scenarios were combined (for KTH data set). The data set

was divided into a set of training-maps with five randomly selected subjects and a test part

by residual subjects. Afterward, the performance average of five random splits following

their frame numbers was measured.
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Figure 4.5: Figure shows the procedure of making the action active basis templates by
applying two times Melting at SNN or SFA on the training map which calculates from
randomly selected video frames from KTH human action database.

4.1.4 Second Scenario for applying action templates

The biologically motivated model in the form pathway was inspired by a computer

vision BOW method regarding problems in object recognition. The regular concept of the

previously mentioned approaches involves extracting the features in a specific location

from a set of image frames for every action, assembling a codebook of visual action

words with vector quantization, and constructing an action model by utilizing the four key

frames of each action. These models are not certainly correct, and a set of locally selected

patches is considered and may ignore many structures; however, these models have been

acknowledged as efficient object recognition methods (Grauman Darrell, 2005; Fei-Fei et

al., 2006). In the proposed approach, some frames were utilized as key frames (words) to
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recognize human action in whole action frames. Every frame of action video is consigned

as one visual word by considering the similarity of each action

Methods Accuracy(percent) Year
Schuldt. 71.72 2004
Niebles. 83.33 2006
Jhuang. 91.7 2007

Schindler. 92.7 2008
Wang. 91.2 2009
Zhang. U-SFA:84.67 2012

S-SFA:88.83
D-SFA:91.17

SD-SFA:93.50
Proposed Model 1st scenario:78.05 2013

2nd scenario:83.34

Table 4.1: The results of recognition by proposed method has presented along with com-
parison among previous methods on the KTH human action dataset.

codebook. As with problems of object recognition, particular structures were missed

by moving this representation (Wang & Mori, 2009). This method exhibits a good per-

formance. Moreover, the local distribution of action sequence is considerably similar to

the targeted action but very different from other sample sequences, all of which are in

the same action frames but in different categories. Concisely, the variance of intraclass

is large, and the variance of interclass is small. In addition, the intraclass variance of the

single-person human action recognition is lower than that of the multi-person (Zhang &

Tao, 2012). Therefore, its application shows a significant performance in the proposed

approach.

4.1.5 Evaluation of Quantum Behavior

Previously mentioned particle swarm optimization results were in the balanced mode

of synergetic neural network, which has been performed for better comparison between

both scenarios of form pathway. However, quantum particle swarm optimization exhibits

an excellent tuning performance for attention parameters, which is constant and equal to

one in the balanced mode. While a procedure is working to solve the problem at hand, one

of the most significant issues is how to choose its parameters and initiate them. For the
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initial attention parameter, centroidal Voronoi tessellations have been used. The algorithm

ran for 500 echoes and for a population size of 20 particles for 20 times.

4.1.6 Evaluation

After converging the algorithm, attention parameters have been used in an unbal-

anced synergetic neural network to obtain the form pathway. The proposed approach

was evaluated through two human action data sets and confusion matrices as previously

shown. In this study, the performance of the proposed method is shown and compared

with those of previous approaches with the same data sets (Table 4.1 and Table 4.2).

Methods Accuracy(percent) Year
Schuldt. 72.8 2004
Niebles. 72.8 2006
Jhuang. 98.8 2007

Schindler. 100 2008
Wang. 100 2009
Zhang. U-SFA:86.67 2012

S-SFA:86.40
D-SFA:89.33

SD-SFA:93.87
Proposed Model 1st scenario:70 2013

2nd scenario:81.03

Table 4.2: Comparison of the proposed approach and previous methods for Wiezmann
human action dataset.

The proposed performances from the saturated state-of-the-art methods used on the

KTH and Weizmann data sets achieved good and comparable results. A comparison of

methods using biologically inspired state-of-the-art models (with or without biological

point of view) is listed in Table 4.1 and Table 4.2. Moreover, the different methods listed

in Table 4.1 exhibited numerous variations in their experimental setups, namely, differ-

ent splits of training/testing data, whether preprocessing is needed or not (e.g., tracking,

background subtraction), with or without supervision, whether per-frame classification is

feasible, and whether a method handles multiple action classes in a video. The results of

the methods were comparable with other state-of-the-art approaches, especially in terms

of robustness, although comparing other methods is not absolutely fair; meanwhile, their
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method did not completely cover the biological point of view (Schuldt et al., 2004). How-

ever, the biologically inspired technique used by Zhang and Tao (2012) revealed that the

proposed model is almost accurate.
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4.2 Results of Fuzzy Optical flow divisions and interactions between two pathways

In the previous section, the results of applying ABM into the ventral processing

stream were presented (Yousefi & Loo, 2014a; 2014c). The model was a supervised

Gabor-based object recognition technique that exhibits a good performance in finding the

human object. However, involving the guidance of the optical flow to the Shared Sketch

Algorithm (SSA) in this model results in an excellent interaction on the combination of

form pathway and motion pathway information. This configuration has been modified to

improve recognition, particularly in human object detection; however, the other path of

the visual system, that is, the motion pathway, requires a more robust motion information

in terms of instantaneous changes and environmental distortions to help in the decision

making. Following the descriptions mentioned in the previous chapter, the optical flow

division modified the information of motion by showing resistance in instant variations

within the frames. This section presents the results of the optical flow division and its

influence on better decision making and robustness.

4.2.1 Selecting video frames

Motion analysis, video processing, and action recognition are based on frame selec-

tion for temporal order. Choosing frames based on randomization methods of temporal

order can destroy the biological perception of movement (Giese Poggio, 2003). Frame

selection through input movie follows the proposed model of form and motion pathway

connection from snapshot neurons. Snapshots follow the temporal order regarding con-

figuration motion patterns of different

object activities in both pathways. The proposed model uses feed forward structure

for form connection (active basis function) and motion pathway (optical flow). Three

frames served as the minimum number of frames for snapshots, which will be taken from

the video streams following a temporal order. Moreover, the motion information activates

the basis function through feedforward joining in SSA to achieve appropriate connections.
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Figure 4.6: Figure reveals the flowchart of our algorithm regarding human action recog-
nition. The flowchart to present the hierarchical model in terms of theoretical and com-
putation for combination of the form information, and motion information is shown. An
supervised Gabor based object recognition method, ABM, gives this property to have
human object and computation of the form data and its combination with optical flow
information, motion information, creates interaction between the pathways.

4.2.2 Relation to existing methods

The proposed approach and the current techniques on human action recognition are

basically similar to each other. In this part, differences and similarities are discussed. Pro-

cessing is needed before the core method, and the biologically inspired model in terms

of simplicity should be respected (Efros et al., 2003; Giese Poggio, 2003; Jhuang et al.,

2007; Schindler and Van Gool, 2008). The approach is based on object recognition fol-

lowing hierarchical feed-forward designs (Jhuang et al., 2007); moreover, a model was

developed following neurobiological motion processing in the visual cortex, following

the method of Giese and Poggio (2003). The object recognition task in the form pathway

was changed within the researchers’ work, from spatiotemporal features similar to those

of Jhuang et al. (2007) and Jones and Shao (2013), to the original Gabor filter (Schindler

& Van Gool, 2008) for the proposed approach using ABM. However, the ABM has the

basic characteristics of previous features and basically uses Gabor wavelet that reduces

matching operation. The ABM is activated by limited clutters and ensures that the im-

portant amounts in points of interest fall on the person subject. In terms of used features,
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Figure 4.7: Confusion matrices SNN classifying KTH data set obtained by adapted active
basis model as combination of form and motion pathways. Confusion matrices of the
proposed approach has been presented for the case of without fuzzy interference system,
left matrix, and after it, right matrix which are achieved from human action movements
of KTH dataset (Schuldt et al., 2004). The robustness of the method after adding the
fuzzy interference stabilizer is considerably increased. The wrong recognitions in the left
confusion matrix have been decrease especially in case of some actions i.e. clapping.
Moreover, soar of robustness helps to increase the overall accuracy and better results in
classification of biological movement. The accuracy of categorizations using unbalanced
SNN reaches to 86.46%.

layer-wise optical flow (Liu, 2009) is simply a silhouette of the subject motion. In this

work, the approach was used to help the active basic model to concentrate on the object

and prevent the wastage of Gabor beams. Moreover, as previously mentioned, the pro-

posed approach follows a biologically inspired model (Giese & Poggio, 2003) through

parallels to the visual cortex.

4.2.3 Experimental Results

A famous human action and the largest databases, such as the KTH human action

data set (Schuldt et al., 2004) and the Weizmann human action recognition robustness set

(Blank et al., 2005; Gorelick et al., 2007), were implemented in the tests to estimate the

ability of the proposed approach to human action recognition. As the largest human action

dataset, the KTH action dataset includes 598 action sequences, comprising six types of

single-person actions, such as boxing, clapping, jogging, running, walking, and waving.

96

Univ
ers

ity
 of

 M
ala

ya



Figure 4.8: Confusion matrices ELM classifying KTH data-set attained by adapted active
basis model as combination of form and motion pathways. Confusion matrices of the
proposed approach has been presented which is obtained from human action movements
of KTH dataset(Schuldt et al. 2004). There are three different kernel have been used to
classifying using ELM algorithm(Huang et al. 2004; Huang et al. 2006; Liang et al. 2006;
Lehky et al. 2008; Huang, Wang et al. 2011; Rajesh & Prakash 2011) in the decision
making and categorization of the biological movement. From left to right, RBF kernel-
ELM , Wavelet kernel ELM and Sigmoid-ELM confusion matrices have been depicted
which Sigmoid Kernel-ELM has better results in classification of biological movement.
The accuracy of categorizations are ELM-Wav = 91.5%, ELM-RBF = 92.7% ,and ELM-
Sig = 96.5%.

These actions were performed by 25 people under different conditions: outdoors (s1),

outdoors with scale variation (s2), outdoors with different clothes (s3), and indoors with

lighting variation (s4). Here, sequence resolutions become 200 × 142 pixels by using

down-sampling. For our approach, we used five random cases (subjects) for training and

making the form- and motion-predefined templates. As mentioned in the literature, KTH

is a robust intra-subject variation with a large set. However, the video camera during the

preparation presented a certain degree of shacking, which rendered the work with this

database extremely difficult. Moreover, the four independent scenarios were separately

trained and tested (i.e., four visually different databases that share the same classes). Both

alternatives were run. For considering the symmetry problem of human actions, a mirror

function for sequences along the vertical axis can be available for the testing and training

sets. All possible overlaps of human actions within the training and testing sets were

considered in this study (for example, one video contained 32 and 24 action frames).
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4.2.4 Contribution between motion and form features

One major strength in comparison with other human action recognition methods is

the use of fuzzy optical flow division to guide the share sketch algorithm in ABM. The

approach combines the form and motion pathways with respect to the original model.

Regarding combination, we may ask whether combining the two pathways is necessary

and how the two pathways are combined. In a modification of the original model, the

proposed method applied ABM to the form pathway and was adjusted using motion path-

way information. The use of optical flow division guidance for ABM is highly successful

in preventing Gabor beams wastage, thus offering novelty in comparison with common

methods. Optical flow is applied for updating the ABM point of application by evaluat-

ing the velocity of the object with the guidance of each optical flow division in the form

of fuzzy membership function, implying that the information attained from the motion

pathway helps the form pathway. However, the combination of motion and form gen-

erally overtakes both motion and form separately. In most conducted experiments, the

combined information of these two pathways participates in the final decision part (Giese

& Poggio, 2003; Jhuang et al., 2007; Schindler & Van Gool, 2008). In addition, relative

feed-forward structure from input data-stream does not change until the final decision and

is similar across different data-sets among two independent sets of the computed features

(Figure 1 in (Giese & Poggio, 2003) and Figure 2 in (Schindler & Van Gool, 2008)). The

proposed approach has been presented previously (Yousefi et al., 2013), but the fuzzy op-

tical flow divisions have yet to be applied. In this study, presentation is conducted with

respect to the original model regarding both pathways; the extracted features for each

pathway can be relevant. Moreover, feed-forward structure has been modified, and ex-

tracted features for both pathways are considered having dependent information.

4.2.5 Results

In this study, the biologically inspired model for human action recognition has been

studied. Principally, form features attained from ABM representing the feature form of

the pathway are described. We also mentioned that ABM is adjusted by motion pathway
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Table 4.3: The proposed comparison method recognition results has revealed among pre-
vious human action recognition method accuracies (bio- or non-bioinspired) on KTH hu-
man action dataset.

Methods Accuracy(%) Years
Schuldt. 71.72 2004
Niebles. 83.33 2006
Jhuang. 91.79 2008
Schindler. 92.79 2009
Wang. 91.29 2009
Zhang. U-SFA: 86.67 2012

S-SFA: 86.40
D-SFA: 89.33
SD-SFA: 93.87
SNN : 86.46 2014

Proposed Method ELM: 96.5

information and utilizes fuzzy optical flow division regarding adjustment for increasing

recognition accuracy. Afterward, we applied feature selection experiments and prepared

an action prototype for every specific movement of human objects applying a synergetic

neural network. These templates are established by extracting prototypes for two times

from the application of synergetic neural networks on the train set of our human action

dataset.

Finally, to examine our proposed approach, we applied it to a popular dataset to

determine the accuracy. The confusion matrices of the proposed approaches considered

without fuzzy optical flow division and without the division and with recognition of action

under consideration using the proposed method are revealed in Figure 4.7. The difference

between the two confusion matrices is substantial and can prove the advantage of using

fuzzy optical flow division for this context. Furthermore, Table 4.3 reveals a comparison

of our method with other methods in terms of recognition accuracy. The accuracy result

indicates that the accuracy of the proposed technique is relatively comparable with state-

of-the-art techniques by considering two categories with two slightly different paradigms,

which cannot be directly compared. In this study, the experimental result of the proposed

approach is presented. As the KTH human action database (Schuldt et al., 2004) has

been used for benchmarking the accuracy of consistency with a set of experiments used
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in the works of Giese and Poggio (2003), Niebles et al. (2008), Schindler and Van Gool

(2008), Wang and Mori (2009), Zhang and Tao (2012), and Jones and Shao (2013), a set

of training map and test set for proposed technique was established for the entire data set,

in which four-scenario videos were combined. The data set was split to a set of training

maps with five randomly selected subjects as well as a test part by residual subjects.

Afterward, measurements of the performance were averaged over five random splits. The

training map dataset was extremely small, comprising five video-frame snippets that were

randomly obtained from the mixture dataset.

Figures 4.7 and 4.8 present classification confusion matrices for the KTH data set.

Rows in the confusion matrix represent the corresponding classification results, whereas

each column signifies instances to be classified. In the proposed approach, the highest

confusion occurs among walking, jogging, and running. These actions are difficult to dis-

criminate because the performance of actions by certain subjects is similar. In addition,

another misclassification occurs principally between similar classes, such as previous con-

fusion or hand-clapping and, in consequence, waving (confusion matrices in Figures 4.7,

4.8).

4.2.6 If the fuzzy optical flow division helps to have better accuracy?

Previous sections of the paper focused on obtaining action prototypes through syn-

ergetic neural networks during one whole action frame. This method can yield a good

abstract from the action video but exhibits a problem (Yousefi et al., 2013; 2014) that

decreases our accuracy because of cluttered areas in action prototypes. Following this

problem, a similarity was observed among the matched image frames, causing accuracy

disparity, as clearly revealed in the confusion matrix (Figure 4.7). The presented approach

considered 0.1 s for k = 3, which means three frame times considered as dependency of

preventing the membership function value and attained from training on our training set.

During the experiment, the upper and lower limb membership functions were applied,

and the left and right limb functions can be suggested for complex actions. Disparity

was markedly diminished after the application of fuzzy optical flow division. The confu-

sion matrix after the application of this method is shown in Figure 4.7 (second confusion
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Figure 4.9: Simulation results for simple biological movement paradigm based on ABM
(Wu et al., 2010) in the ventral processing stream and optical-flow (Liu, 2009) in dorsal
stream are shown. Each row within the panel reveals the response of ABM during the
episode as well as flow generated for every different action. The set of biological move-
ments belongs to the biological movements are from KTH dataset (Schuldt et al., 2004).
(a) the simulation results of the different actions of KTH dataset. (b) Optical-flow sim-
ulation results; (c) The figure depicts some results of Weizmann robustness dataset. It
reveals increasing in the robustness of the proposed approach due to utilization of ABM
(Wu et al., 2010) in the ventral stream.
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matrix).

4.2.7 Related work

Human action recognition tasks are generally categorized as two separated classes.

First class prefers to track the part of image where the object (human) exists (Bregler

et al., 2004). The mentioned groups of techniques may not be useful in less articulate

objects. However, the techniques are considered successful. The other popular class ad-

dresses low-resolution videos, high local-resolution images (Dollár et al., 2005), or using

spatiotemporal features (Efros et al., 2003; Jones & Shao, 2013). As previously discussed

regarding neurobiologically inspired models for the analysis of movement in the dorsal

stream visual cortex and psychological and physiological information, our proposed ap-

proach was categorized under the second group of methods. The previous method (Giese

& Poggio, 2003) shows constant translation lack and a limited handcrafted feature dictio-

nary in intermediate periods (Fanti et al., 2005). Jhuang et al. (2007) and Schindler et al.

(2008) presented a biologically inspired method for human action recognition. One major

contribution is regarding the combination of both pathways with respect to the neurobi-

ological model. Action prototypes regarding human object recognition can increase the

novelty of the method. None of the existing motion processing neurobiological models

has used one prototype template dataset to recognize different actions (Hogg et al., 1995;

Lee & Loo, 2010). Furthermore, applying the ABM for the form pathway and categoriz-

ing the action by utilizing single-action prototype creates certain disparities. This problem

can be diminished by using fuzzy optical flow division. For a neuroscience model (Giese

& Poggio, 2003; Syrris & Petridis, 2011) into the real world by computer vision algo-

rithm, two important techniques have been altered to make the system more biologically

inspired and impart good organization to the proposed approach for object recognition.
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4.3 Results of Combination of slow principle and fast features in interaction be-
tween two pathways

This approach applies the mentioned theoretical framework through computer pro-

gramming and simulations of the patterns of several movements in different environments

that appear as typical experiments for benchmarking the system. In the following section,

the two human-movement data sets will be introduced as a diverse biological movement

paradigm. Simulation results are revealed by mathematical analysis to the mentioned

datasets as case experiments for benchmarking. The results of simulation for generat-

ing the slowest features in ventral streams and the combination technique for recognizing

biological movements are consequently shown. In the following sections, the results of

recognition accuracy and confusion matrices are presented. Experimental results are ex-

tensively presented to reveal the effectiveness and understanding of the proposed perspec-

tive of the biological movement model. For model evaluation, the recognition of different

biological movements is rated through model simulation and comparison with state-of-

the-art methods (Yousefi & Loo, 2014d; 2015). The aforementioned datasets have been

extensively utilized to estimate the recognition performance of biological movement ex-

amples for the proposed technique. However, these studies have concentrated on the

recognition of single-person actions, such as clapping and walking. The other advantage

of using these datasets is its comparison with state-of-the-art methods. Using our test-

ing datasets, we illustrate experimental results by using the kerneled ELM algorithm to

classify different kernel modes and a comparison among previous works that proposed

biological human action models. In addition, we compared various kernels in the form

pathway along with their accuracy. The proposed methods are efficient, and the compu-

tational cost will be due to feature extraction regarding two form and motion pathways,

slow and fast, features applying ABM-based incremental feature analysis, and optical

flow correspondingly. The system infers that a new video only takes a certain time period

for our un-optimized MATLAB implementation, which is combined by existing codes for

motion and form pathways in MATLAB/C (Huang et al., 2006; Liang et al., 2006; Liu,

2009; Wu et al., 2010; Kompella et al., 2011; 2012; Zhou & Huang, 2012).
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4.3.1 Results of simulation for the slow features of the ventral stream in biological
movement paradigm

Ventral stream results must be oriented to surround the concepts of shape and form

features, following the original biological movement model (Giese & Poggio, 2003). Nu-

merous approaches are based on a visual system. Cooperation between information at-

tained from two processing streams occurs at few levels in the mammalian brains (Kourtzi

& Kanwisher, 2000; Saleem et al., 2000) and can thus simplify the aggregation (for in-

stance in STS level in Giese& Vaina (2001)) and improve the performance of the model.

Holonomical features consider both pathways for predefined action templates. In the form

pathway, the proposed approach follows Karl Pribram’s holonomic theory, which is based

on an evidence that dendritic receptive fields in sensory cortexes are described mathemat-

ically by Gabor functions (Schuldt et al., 2004) and massively used by the ABM (Wu et

al.,2010). As mentioned before, the primary stage includes local (in V1 cell) and model

detectors (Gabor-like filters) in 16 (including eight preferred) orientations and by proper

scale depending on the receptive field (Dow et al., 1981; Riesenhuber & Poggio, 2002).

The ABM also functions as snapshot detectors of human body shapes model finding like

with the IT of monkeys, where view-tuned neurons are located and the model of complex

shapes is tuned (Logothetis et al., 1995). This model is implemented through ABM-based

IncSFA. In particular, slow feature analysis represents the performance of view-tuned

neurons in IT and snapshot neurons that provide dependence in scale and position. The

proposed model is obtained and adjusted through training as key frames. The optical flow

outcome is utilized and inferred with information known as the biological object form.

The presented approach covers a high-level integration of snapshot neuron outcomes with

motion pattern neuron information. Furthermore, the ABM uses a computational mecha-

nism regarding recognized human object form along with slowness information through-

out biological movements, following neurobiological, neuro-computational, and theoret-

ical records (Giese & Poggio, 2003; Schindler & Van Gool, 2008; Liwicki et al., 2013).

Local direction was organized at the initial level of the form pathway, and Gabor-like

modeling detector methods, such as ABM, exhibited good constancy by modeling cells

in the mentioned part (Jones & Palmer, 1987). We determined 16 directions and two spa-
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Figure 4.10: The explanation diagram of the ventral processing of the applying ABM
(Wu et al., 2010) which represents movements pattern and shape form of biological ob-
ject within its movement episode. ABM is a Gabor based supervised object recognition
method, which is, can learn the object shape in the training stage and can be utilized object
recognizer within the action episode. (a) it represents the Gabor bank filter in different
scales and orientations. (b) Simulation results for training of ABM system for biological
walking movements using KTH human action recognition dataset. At the end, walker
shape has been presented in the top of the figure. (c) the processing diagram of the ABM
process for finding human object presented. The similarity between the method and bi-
ological finding in different level has been mentioned in different stages. Overall, ABM
have two stages SUM & MAX which make the hierarchy from simple cells to complex
cells and at the end whole human object shape by active bases.

tial scales by two differentiators and found information on local direction in the pathway

and complex-like cells with independent form features. These form features are appropri-

ate for the form pathway. This approach will be applied by using the mechanism of the

proposed neurophysiological plausible model.

The outcomes of ABM for every possible action and simulations through the ventral

stream for human movements have generated complex-like cell outcomes (Figure 4.10),

which rendered the system more plausible. However, object-based techniques, such as

ABM, direct the system to the human object and decrease a weak attitude, which may

occur through a Gabor-based model (non-object detector-based techniques). The slowest
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outcome through IncSFA confirmed that active bases represent the biological object form

in the ventral streams (Figure 4.11). In Figure 4.11, the active bases of individual biolog-

ical human object movements are shown for simulation with a set of 40-direction Gabor

beam banks with a 0.7 Gabor scale in 15 orientations. In this simulation, all units resem-

ble the theoretical predictions. In addition, frameworks are similar to biological object

recognition tasks but are completed by the extraction of slowness features.

4.3.2 Slowness features in Ventral stream

The recognition of the biological movement patterns in the form pathway depends

on the slow features generated by IncSFA (Kompella et al., 2011; 2012). The slowest fea-

tures of the training set were used as human action prototypes. First, we performed multi-

prototype predefined templates for each obtained human action by applying IncSFA on

the datasets. To create a training map for every action, we divided every human movement

sequence to training and testing sets. These action prototypes are considerably preventa-

tive for different biological movements.

The result of slowness features attained through applying IncSFA is revealed in Fig-

ure 4.11. Two categories of biological movements were included for every dataset. Dif-

ferent slowness prototypes were required, and actions were not directly comparable. As

the KTH and Weizmann human action databases have been used for benchmarking the

approach performance, consistency with the set of experiments used in the references

(Schuldt et al., 2004; Schindler & Van Gool, 2008; Zhang & Tao, 2012) is required.

The training map and test of the proposed technique were defined for each data set, in

which the mixture of four scenarios videos was grouped together (for KTH data set). The

datasets were split into a set of training maps with randomly selected subjects and a test

part by the residual subjects. Afterward, IncSFA was applied to the training sets, obtaining

slowness feature prototypes, which function in form movement templates. The slowness

features and the slowest feature in the ventral stream of the proposed biological movement

model helped prevent the use of computer vision techniques, such as “bag-of-words.” The

regular concept of the mentioned approaches comprises extracting the slowest features in

the set of image frames for every action. The ABM-based IncSFA in the model performs
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Figure 4.11: Simulation results for simple biological movement paradigm based on ABM
based slow features in the ventral processing stream shown. Each row within the panel
reveals the response of ABM during the episode as well as slowness features generated
for every different action. The first set of biological movements belongs to Weizmann
human action recognition dataset (Gorelick et al., 2007) and second group of the bio-
logical movements is from KTH dataset (Schuldt et al., 2004). Simulation results of the
active bases through incremental slow features follows the theoretical prediction regard-
ing simplification of recognition using ABM based IncSFA and its application in ventral
processing stream for opening a new perspective of the original model of recognition of
biological movements.
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Figure 4.12: Simulation results regarding dorsal processing stream applying Optical Flow
(Liu 2009) has been depicted here. As there is episodic operation happening in the ventral
processing stream, form information, motion information, fast features, must be consid-
ered during the time that ventral stream is performing (t0, . . . , tn). Each row is represent-
ing an action during its episode and the average of the flow for whole episode considered
at the end of every row. The images present flow in color form, which can depict the
biological movement flow in the episode. Average of Optical flow throughout the bio-
logical movement considers for recognition of the biological movement by fast features
and add a coefficient to form pathway results as the interaction between ventral and dor-
sal streams. Different actions of simulation presentation are from KTH human action
recognition dataset (Schuldt et al., 2004).

considerably well on the mentioned datasets. The whole model outperforms reported

state-of-the-art computational methods. Moreover, the proposed model achieves superior

performance to some methods, such as bag-of-words and action key. Although the con-

sidered patch sets were not locally selected and may ignore numerous structures, the data

sets have been acknowledged as an efficient object recognition method. This method ex-

hibits significant performance (Figures 4.13 and 4.14). Meanwhile, the local distribution

of the action sequence is highly similar to the targeted action and extremely different from

other sample sequences in different categories. Concisely, the interclass variance is large,

whereas the interclass variance is small. In the case of single-person human action recog-

nition, the interclass variance is smaller (Zhang & Tao, 2012); consequently, the model

has been applied to recognize biological movements.
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4.3.3 Simulation Results for the dorsal stream and information on the motion path-
way in the biological movement paradigm

To implement this pathway, we applied optical flow, a common and extremely no-

ticeable tool, in the proposed technique (Liu, 2009) to generate information regarding

motion pathway. Motion information for the recognition of biological movements was

obtained by analyzing optical flow patterns (Giese & Poggio, 2003). The information

contains neural detectors for optical flow features with growing complication, which is

related to neurophysiological data (Tanaka, 1996). In the present study, information on

motion-processing stream was considered as a fast feature from the perspective of tempo-

ral changes through biological movements. These features are generated not as constant

representative features throughout a whole episode but instead focus on the temporal or-

der within the current frame. In contrast to the form pathway, motion path possesses

temporal-based features, and every feature represents the motion information in specific

temporal movements. On the basis of several proposed neurophysiologically plausible

models for the approximation of local motion, such as those mentioned in the references

(Rodman & Albright, 1989; Sereno, 1993; Nowlan & Sejnowski, 1995; Simoncelli &

Heeger, 1998; Grossberg et al., 2001; Giese & Poggio, 2003), the first level of the motion

pathway comprises correspondence detectors for local motion, which involve direction-

selective neurons (Smith & Snowden, 1994) and motion-selective component neurons in

MT (Giese & Poggio, 2003). In the simulation stage, the temporal optical flow patterns

are directly calculated, and motion-sensitive neural responses are computed using real-

istic physiologically parameters (Giese & Poggio, 2003). The size of the receptive field

in the range of neurons for direction selection is in V1 (foveal neurons) and MT (Hubel

& Wiesel, 1968). The second level of motion pathway includes large receptive fields for

flow local structure that induces the movement stimuli.

The selective flow translation and neurons of the motion pattern correspond to the

MT area (Rodman & Albright, 1989) with band-passed or low tuning by considering

speed. Typically in the original model, four-directional neuron populations are preferred,

and local optical flow detectors are considered for motion edges (Giese & Poggio, 2003).

The output signals are calculated using a combination of two nearby subfields with con-
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Figure 4.13: Confusion metrics of the proposed approach has been presented which is
obtained from human action movements of KTH dataset. There are three different kernel
have been used to classifying using ELM algorithm in the decision making and catego-
rization of the biological movement. From left to right, RBF kernel-ELM, Wavelet kernel
ELM and Sigmoid-ELM confusion matrices have been depicted which Sigmoid Kernel-
ELM has better results in classification of biological movement.

tradictory preferred directions. As a reminder, motion-selective neurons and opponents

have been found in several areas of dorsal processing streams containing the areas MT,

MSTD, and MSTl (Dow et al., 1981; Eifuku & Wurtz, 1998). The optical flow pattern

neurons in the third step of the motion path stream correspond to snapshot neurons in

another pathway. Optical flow pattern neurons have been found at different locations of

the visual cortex (i.e., STS or fusiform and occipital face areas). Temporally optical flow

pattern neurons are generated during action cycles and modeled like the form pattern neu-

rons from the form processing stream. The difference is that, in the feature space, motion

pattern features are considered as fast features ahead of form features, which are the slow-

est features. Figure 4.12 reveals the motion patterns features throughout action cycles in

consideration of integration in the processing stream.

4.3.4 Evaluation of Interaction between Two Paths

To analyze the model, more than 38000 frame cuboids from different biological hu-

man action movements were prepared. The recognition of human movement model is

episode based because the incremental slow feature analysis training of this algorithm re-

quires numerous inputs frames; thus, the testing and evaluation of the model are extremely

limited. The proposed models are valued through the level of prediction matching with

the data. The proposed model subsumes the original models and focuses on slowness
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Figure 4.14: Confusion matrices of the proposed approach has been presented which is
obtained from human action movements of Wiezmann dataset (Gorelick et al. 2007).
There are three different kernel have been used to classifying usig ELM algorithm (Liang
et al. 2006) in the decision making and categorization of the biological movement. From
left to right, RBF kernel-ELM , Wavelet kernel ELM and Sigmoid-ELM confusion matri-
ces have been depicted which RBF and Sigmoid Kernel-ELM have better results ,97.5%,
in classification of biological movement.

features and episodic processing; hence, the proposed model approximates the ideal and

yields satisfactory results. However, whether the proposed model reaches a completely

accurate level cannot be guaranteed. Subsequently, the system was trained and tested by

computing features in both pathways with different, previously mentioned settings. For a

specified test sequence, the action label was assigned to the action frames. The proposed

model correctly classifies most of the actions (confusion matrices are revealed below).

Most of the occurring mistakes in recognition of “running,“ “jogging,” “boxing,” “clap-

ping,” and “waving” used to occur (Danafar et al., 2010; Somayeh et al., 2010; Zhang

& Tao, 2012). The intuitive reasoning was because of the resemblance between the two

groups of movements. However, the presented model markedly diminishes this issue be-

cause of episodic learning and ABM-based slowness features in the ventral processing

stream.

The result of each human movement scenario is mentioned in Tables 4.4 and 4.5,

which represent the accuracy of the proposed approach in comparison with several earlier

methods on the same datasets. However, this comparison is not precise because of differ-

ences in experimental setup. The presented results are comparable with state-of-the-art

systems, whereas various other methods exhibit multiple differences in their setups, such

as the presence or lack of supervision and tracking, subtraction of the background, or con-
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Table 4.4: Comparison of the proposed approach and previous methods for Wiezmann
human action dataset.

Methods Accuracy Years

Schuldt. 72.8% 2004

Niebles. 72.8% 2008

Schindler. 100% 2008

Wang. 100% 2009

Zhang. U-SFA:86.67%

S-SFA:86.40%

D-SFA:89.33% 2012

SD-SFA:93.87%

Proposed Model 97.5% 2013

sidering multiple actions recognition. We evaluated the proposed approach through two

human action datasets, and the confusion matrices are shown (Figures 4.13 and 4.14).

In the present study, we reveal the performance of the proposed model in comparison

with previous approaches on the same data set (Tables 4.4 and 4.5). In addition, the

different methods listed in Table 4.4 exhibit all types of variations in their experimental

setups, including different splits of training/testing data, whether pre-processing (such as

tracking and background subtraction) is needed, presence or lack of supervision, whether

per-frame classification can be conducted, and whether a method handles multiple ac-

tion classes in a video. Model results are stable because of slow features in the ventral

stream and its combination with fast features; although comparison with some of the other

methods is not fair, their method does not completely cover the biological point of view

(Schuldt et al., 2004).

4.3.5 Further Analysis

After explaining all approaches and techniques presented previously, we assessed the

ability of the systems and analyzed the combination of ABM-based slowness features, as

well as its combination with the so-called fast features attained from the dorsal processing

stream. Figure (4.15) represents the confusion metric and experimental result accuracy

for every processing pathway in the model; however, no interaction occurred between
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Table 4.5: The results of recognition by proposed method has presented along with com-
parison among previous methods on the KTH human action dataset.

Methods Accuracy Years

Schuldt. 71.72% 2004

Niebles. 83.33% 2008

Schindler. 92.7% 2008

Wang. 91.2% 2009

Danafar 93.1% 2010

Zhang. U-SFA:84.67%

S-SFA:88.83%

D-SFA:91.17% 2012

SD-SFA:93.50%

Proposed Model 90.07% 2013

Figure 4.15: Confusion matrices of two pathways separately represent the accuracy of
each processing stream considering no interaction between the pathways. These repre-
sentation is for KTH human action dataset for benchmarking without interaction of the
paths. It can be justifies the performances of two patients, DF whom developed visual ag-
nosia (damage to ventrolateral occipital) and RV whom developed optic ataxia (damage
on the occipitoparietal cortex (Goodale et al. 1994)).

this information. Biologically inspired methods and applicable methods show consider-

able challenges. The application of the slowness principle in the extraction of ABM-based

slow features or optical flow-based methods could be used to yield higher accuracy than

the biological model and computational load. This reasonable justification shows why

computer vision methods sometimes may show higher rate of the accuracy. The com-
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bination of the information from both pathways and the interaction mode between these

paths render the system authorized and categorized in the recognition of biological move-

ment. Numerous pieces of physiological, neurophysiological, and psychological evidence

have proven the consistency of the model with the mammalian visual system. This con-

cept will be argued in the discussion chapter based on new modification on the original

model.

4.4 Chapter summary

The results of the proposed approaches mentioned in this chapter and quantitatively

compared with the state-of-the-state methods. Here, there are some related points that

should be considered for every method:

Applying ABM into ventral stream : applying ABM as a supervised object recognition

method in ventral stream increased the robustness of the mechanism for recognition of

human (as an object). The selected boundaries of human in the outcomes of ABM (see

Figure 4.2) have significant similarity with the results of MLD (used for action perception-

Figure 3.10).

Optical Flow division: Optical flow division provided reasonable robustness into the

motion pathway (Figure 4.9). It also gives interaction between both the streams.

Slowness principle : involving slow feature analysis into the mechanism for recogni-

tion biological movement, defined the concept of fast and slow features corresponding to

dynamic and static patterns.
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CHAPTER 5:

Discussion and Conclusions

The previous chapter has provided details on the implementation, presented experimental

simulation, and indicated the generated results. The original model has been significantly

modified in the proposed approaches to recognize biological movements based on the

mammalian visual system. Until this paper, the model of biological action recognition has

been modified by using Gabor wavelet in the ventral processing stream to extract form in-

formation. Optic flow has been widely used to generate motion information. Approaches

have followed psychological and computer-vision evidence with respect to neuroscience

and computational intelligence models. The discussion and conclusion for every modifi-

cation in this research included various subtitles with conclusions and discussions in these

approaches.
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5.1 ABM in the ventral processing stream and interaction between the paths

The experimental results of actively applying a basic model in the original model

for the recognition of biological movement are extensively presented to reveal the effec-

tiveness and estimate the ability of proposed model in a human action recognition task

(Yousefi et al., 2013; 2014b). The consideration of proposed technique in terms of bi-

ologically inspired models for recognition along with computer vision performances are

integrated in this project. Cooperation among information attained from two processing

streams occurs at few levels in mammalian brains (Kourtzi & Kanwisher, 2000; Saleem

et al., 2000), simplifies model aggregation (for instance in STS level (Giese & Vaina,

2001), and improves recognition performance. Holonomical features consider both path-

ways for predefined action. The correctly classified sequences are reported as the highest

results in the literature. To place the proposed technique in this context, we presented

the sequences along with state-of-the-art systems. This method, similar to other methods,

includes frame-based runs for all frames of action sequences. Individual labels obtained

from the training map are simply compared with a sequence label through majority voting

(similar to the bag-of-frames model and that in a previous study (Schindler & Van Gool,

2008)). Comparison with the state-of-the-art system was conducted, and the results are

revealed in Tables 4.1 and 4.2. Notably, original frames are adopted as system input, and

the use of different frames results in decreased performance when considering a random

location of Gabor beams on human objects in different frames. A training map dataset (in

the shape of multi-prototype template set) comprised five frames of action snippet videos

that are randomly obtained from the mixed dataset for the case of multi-templates exper-

iment. In the second scenario, four key-frames have been precisely selected from videos

randomly selected for every action. Figures 4.3 and 4.4 show the classification confusion

matrices for the KTH and Weizmann data sets. The row of confusion matrices represents

the corresponding classification results, whereas each column signifies the instances to be

classified. In terms of contribution, the application of the ABM in the form pathway is

utilized for the first time in a biological model, and the fuzzy inference system involving

the combination of the two pathways is the novelty of the proposed model. However, the
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natural questions (Schindler & Van Gool, 2008) arise regarding whether this combination

is necessary and how the model can be improved in terms of accuracy. Experiments are

conducted for this part of the presented model, in which the form pathway is modified

and combined with motion features. The combination results in a complete relation be-

tween the two almost independent feature pathways, revealing promising results. This

robust approach is superior to other human action recognition methods that use a similar

biological model because of the application of the ABM for focusing on the target. In ad-

dition, the approach combines the form and motion pathways with respect to the original

model. Regarding combination, the necessity of combining the two pathways and which

combination form is superior may be in question. These questions have been answered to

a certain extent in other approaches that considered different interaction techniques and

methods in this context. The interaction between paths using the fuzzy inference system

and the information attained from the motion pathway helps form the pathway or the other

way around. However, the combination of motion and form generally overtakes both mo-

tion and form separately; in most of the conducted experiments, the information of these

two pathways is combined in the final decision part (Giese & Poggio, 2003; Jhuang et al.,

2007; Schindler & Van Gool, 2008). In addition, the relative feed-forward structure from

the input data-stream until the final decision remains unchanged across different data sets

between two independent sets of features computed (Figure 1 in Giese and Poggio (2003)

and Figure 2 in Schindler and Van Gool (2008)). This work shows that the extracted fea-

tures for each pathway can be relatively utilized in the other pathway by referring to the

original model topology regarding both pathways. Moreover, the configuration of both

pathways was modified by using the fuzzy inference technique. We presented this ap-

proach, which involves a biologically inspired model based on inter-relevant calculated

motion and form features tested, for application in human action recognition tasks. In

principle, the approach includes defined form features with the application of the ABM

as a form extractor in the form pathway. This pathway was modified, and optical flow

was used as flow detector in the motion pathway for the video sequence stream. Unbal-

anced synergetic neural networks were utilized to classify the shapes and structures of
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human objects along with the tuning of quantum particle swarm optimization (QPSO)

by the introduction of Centroidal Voronoi Tessellations, which are utilized and proven

as good tools in the form pathway. Finally, a decision was formed through the combi-

nation of final outcomes of both pathways in the fuzzy inference domain and fusion of

these two brain pathways, considering each feature set to Gaussian membership func-

tions and then fuzzy product inference. Two configurations have been proposed for the

form pathway: the first scenario applied multi-prototype human action templates using

two time synergetic neural networks for obtaining uniform template; the second scenario

used a model motivated from bag-of-words and abstracting human action in four key-

frames. The experimental result of the proposed model shows promising accuracy, and

robust performance results from the use of the KTH and Weizmann data sets. Further-

more, the model shows good performance on different datasets, and training is done with

lower computational load and regarding final prototype template learning. However, ini-

tialization of attention parameters requires longer time to find the appropriate attention

parameters. Questions that remain for scrutiny include methods for diminishing the com-

putational load for model training and whether improvement is needed. Further works

extend the proposed approach for better integration of the present form and motion infor-

mation in the two pathways. Another extension is to find an accurate method of finding a

classifier, which has been improved in subsequent approaches.
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5.2 Fuzzy Optical flow divisions and its helps for interaction between two pathways

In the present study, the approach scrutinized the theory of the interaction of ABM,

ventral processing stream, optical flow, and dorsal stream with respect to the original

model. The proposed method investigated the influence of interaction of the optical flow

division in its fuzzy interference on the SSA in the ABM method (Giese & Poggio, 2003;

Schindler & Van Gool, 2008; Danafar et al., 2010; Somayeh et al., 2010; Yousefi & Loo,

2014a; 2014c). We applied a supervised learning Gabor-based method, which has been

successfully utilized previously for the task of object recognition (Wu et al., 2010) for the

form pathway (Yousefi et al., 2013). The form pathway is considered for ventral stream

representation and functions in biological object recognition. An active basis model can

learn the human object by considering the prototypes and find the object within frames.

This property is highly advantageous for visual system representation in the model; how-

ever, this part has been conducted with the Gabor wavelet in the previous models (Giese

& Poggio, 2003; Schindler & Van Gool, 2008; Danafar et al., 2010; Somayeh et al., 2010)

and similar works (Schindler & Van Gool, 2008). In the visual system, Gabor-like filters

mainly function in representing simple and complex cells. The ABM is a suitable preven-

tative model for this part and especially notable in its involvement in object recognition

task. The model could follow the involved encoded object shape (Mather et al., 2013).

The object shape concern in the form pathway and ventral stream was considered based

on the training stage, and its consistency was justified through human prototypes. The

ABM considers the Gabor action stimulus for pinning down form processing at two lev-

els of local information on limb angle from Gabor orientations and global body structure

signaled by the spatial arrangement of Gabor paths. Conversely, using optical flow for

extraction of motion information is followed by the second attribute and involves filtering

by direction-selection sensors and its integration for solving the famous aperture problem.

Motion information presents the local velocity of both types of motion signal. Joint mo-

tion trajectories will function as the signals to the form path by guiding SSA in the ABM

(Thurman & Lu, 2013) as a good representation of cross-connection between V4 and MT

(Cloutman, 2012; Janssen et al., 2012; Mather et al., 2013). This step follows the predom-
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inant view of form and motion processing in human visual system, which assumes that

these two attributes are handled by independent and separate modules (Giese & Poggio,

2003; Schindler & Van Gool, 2008; Danafar et al., 2010; Somayeh et al., 2010). Form

signal information can induce the influence processing of motion more extensively than

was previously thought (Mather et al., 2013). Moreover, the proposed approach considers

a direct effect on motion information during form processing. Connectivity within the

visual system is characterized by cross-connections with respect to parallel feed-forward

connection (Felleman & Van Essen, 1991; Distler et al., 1993; Cloutman, 2012). The

use of the optical flow division technique provides connection and interaction of bottom-

up and top-down processing among brain regions along the dual computational streams.

Moreover, this approach can be a good representative for the connection between ventral

and dorsal streams (that is, V4 and MT). In addition, the dorsal stream is assumed to

conduct complementary spatial computation ("where") and ventral stream for performing

object recognition (“what”) in the cortical areas V1, V2, V4, and IT along with current

evidence in opposition to a complete segregation of the ”where” and “what” information

in the brain of macaque (Felleman & Van Essen, 1991; Hung et al., 2005). These find-

ings indicate that information on the position and size of objects is also represented in the

IT of macaques as the top layer of the ventral stream. However, the proposed approach

involves an early isolation of spatial configuration and identity into divided processing

pathways that require heavy hardware computation. Given their low resolution, optical

flow divisions (four divided parts) could be a good parameter for diminishing this com-

putational load. The accurate classified sequences are reported as the highest results in

the literature. To place the proposed technique in this context, we presented the tech-

nique with a state-of-the-art system. Our method is similar to other methods that are

frame based for all action sequence frames. Then, the individual labels obtained from the

training map are simply compared with a sequence label through majority voting (like in

(Schindler & Van Gool, 2008; Danafar et al., 2010; Jones & Shao, 2013)). The results of

the comparison with the state-of-the-art system are revealed in Table 4.3. Its accuracy in

comparison with other methods indicates the relative compatibility of this approach. In
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terms of contribution among motion and form features, the ABM, being a Gabor-based

model, is a modified form pathway. In addition, the approach can learn that the object

increases system robustness, as tested using the Weizmann robustness dataset. Moreover,

the approach provides the optical flow guidance for SSA as a cross connection among the

dual computational streams and realizes the prevention of application of Gabor beams for

non-targeted objects. Considering that the fuzzy optical flow division maintains system

robustness, this method can be categorized as an improvement in this field. The presented

method was tested using experiments, in which a form pathway was modified and com-

bined with a motion path, resulting in a relationship between the two independent feature

sets. The connection revealed promising results. Overall, a human action recognition

method has been proposed. This method is an extension of the previous approaches (orig-

inal model and presented model of section before). This method is based on inter-relevant

calculated motion and form information following the biologically inspired system. The

ABM is applied for generating form information, and optical flow guides the share sketch

algorithm for better concentration on human object in video frames; thus, the model can

represent the cross-connection of V4 and MT in the brain (Schindler & Van Gool, 2008).

The synergetic neural network was used twice on the training set to find action prototypes

for each action. The approach was tested for the KTH and robustness Weizmann human

action datasets, and experimental assessment of the proposed technique showed promis-

ing results comparable with those of state-of-the-art methods. Moreover, the results are

beneficial for the proposed cross-connection into the feed-forward method on biological

movement. Moreover, the method exhibited good performance on different datasets, and

training was conducted with lower computational load regarding final action prototype

learning and computational cost. One limitation of the proposed approach is the lack of

mechanisms for invariance against rotation and viewpoint changes despite the multiscale

capability of the mechanism. Several questions arise, such as in which frame does motion

sequences consistently represent the recognition of video stream and the extent to which

the two pathways clearly follow the biologically inspired movement of mammalian brain.

Further approach has shown better episodic recognition of the biological movement by
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using an ABM-based slowness principle.

5.3 Applying slow principle

How should the proposed model with a slow and fast processing stream be gauged

in the task of recognizing biological movement? The presented results underline that the

combination of form and motion or of slow and fast information was performed by ABM-

based IncSFA, respectively (Yousefi & Loo 2014d; 2015). The temporal features in terms

of episodic or frame consideration of the features attained through pathways are our in-

stincts regarding “slow” and “fast” features, which often approach the original model. The

proposed method offers a different perspective for overlooking the original recognition of

biological movement (Giese & Poggio, 2003). In addition, the model is presented to de-

stroy a model viewpoint to perform under slowness and fastness features, which are satis-

factory according to the mammalian visual system, and the motion analysis temporal re-

sponse (Shioiri & Cavanagh, 1990) along with sensory information was gathered over di-

verse time scales (Hasson et al., 2008). Consequently, with respect to the original model,

the model was able to achieve good performance in the targeted databases (Schindler &

Van Gool, 2008; Danafar et al., 2010; Somayeh et al., 2010) and should be objectively

considered in the recognition task. From a biological viewpoint, an understanding of bi-

ological movement containing both pathways and the cooperation between information

attained from two processing streams occur at several levels in mammalian brain (Kourtzi

& Kanwisher, 2000; Saleem et al., 2000). The approach can simplify the aggregation of

model (for instance in STS level (Giese & Vaina, 2001)) and improve recognition perfor-

mance. Although current neuroscience and psychophysics research shows that the effect

of form signals on motion processing is more widespread than earlier supposed (more de-

tails in (Mather et al., 2013)), the holonomical features consider both pathway features to

recognize biological movements. In the form pathway, the approach followed Pribram’s

holonomic theory, which is based on evidence that the dendritic receptive fields in sensory

cortexes are described mathematically by Gabor functions (Pribram, 1991) that are vastly

utilized by the ABM. From this part of stream, visual information is treated incremen-

tally in a cortical stages series (e.g., motion and orientation as local features in neurons
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at early levels, such as V1 (Hubel & Wiesel, 1968). In ABM (Wu et al., 2010)-based

IncSFA (Kompella et al., 2011; 2012), basically all slow feature analysis methods can

be an important tool for extracting slow features of modeling form processing streams

in the ventral stream. As previously mentioned, the primary stage includes local (in V1

cell) and model detectors (Gabor like filters) in 16 (including eight preferred) orientations

and by the proper scale depending on the receptive field (Dow et al., 1981; Schindler &

Van Gool, 2008; Danafar et al., 2010). Conversely, wide invariance behavior is referred

from the neuron response of the central nervous system (Sprekeler et al., 2007) (e.g., early

vision complex cells phase invariance in (Hubel and Wiesel, 1968)) and in the hippocam-

pal place cells of head direction invariance (Muller et al. 1994). Human action cycles

are unlikely to possess invariant poses that are independent from environment, different

lighting conditions, and pose of the actions. These invariance forms of actions can be

an important criterion that represents form processing stream information. The slowness

principle applies the perception and inferences on which neurons are trained by invari-

ances by favoring slowly changing outputs, 2D (more details in (Muller et al., 1994)). A

good implementation of this principle is SFA, which is the mean square from the temporal

derivative of output and can be a good model for the physiological properties of complex

cells in the visual cortex (Berkes & Wiskott, 2005) and other invariances in the visual

system (Wiskott & Sejnowski, 2002). This combination can also function as snapshot

detectors for human body shape models to determine the area IT (inferotemporal cortex)

of monkeys where view-tuned neurons are located and the model of complex shapes are

tuned (Logothetis et al., 1995), which is implemented by applying a synergetic neural

network. IncSFA can function as view-tuned neurons in area IT and Snapshot neurons

that provide independence in scale and form. The proposed model follows the modeling

through slowest feature of ventral stream and adjustment through unsupervised learning

methods. Optical flow was used by fast features and inferred with slowness information

of the other pathway, which can represent a high level of integration of the snapshot neu-

ron outcomes with information on motion pattern neuron information. In conclusion, the

presented perspective recognizes the biological movement model following the original
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model (Giese & Poggio, 2003) and human visual system, which include two distinct path-

ways. The form and motion pathways are represented by ventral and dorsal processing

streams. Slowness principle using ABM-based IncSFA has been utilized to extract form

information (denoted as slow features). Optical flow generates motion information that

is considered as fast features. The model analyzed the original recognition of biological

movements in view of combining fast and slow features. Furthermore, the integration

of these features, namely, slow and fast features, showed good performance in terms of

recognition of human actions, which were evaluated through KTH and Weizmann human

action for benchmarking.

5.4 Overview

This chapter concludes the whole processes have been done through presented ap-

proaches. The contributions we have achieved by these approaches are listed as below:

ABM in ventral stream

* It improved the abilities of ventral streams in terms of detection of human body

shape (object recognition task improvement)(it corresponded to the first objective and

solved first stated problem).

* It implies the interaction between pathways (related to the second objective and

second problem).

Optical Flow division

* It improved the process in dorsal streams using the divisions of optical flow which helped

more robust outcome (Corresponding to objective 3, problem 2).

* The optical flow division updated the interaction between two pathways which was per-

formed in previous method (Corresponded to objective 2 and problem 2).

Slow features(SF) action Prototypes

* It improved the process of prototype generation, using slow feature analysis (fulfilled the 4th

objective and problem 3).
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* It updated interaction between the pathways(it responded to objective 2 and solved problem

2).

Dual Slow and Fast features

* It developed the computational model slow and fast features interaction (Objective 2 and

problem 2).

* It used the slowness principle into the mechanism and converted the form process into a

incremental procedure (Objective 4th and problem 3).

5.5 Future work

Several open problems should be solved to allow us to develop the method further and use

the proposed approaches and more applicable systems. This research involves various directions

and makes a feasible system. One direction could involve further investigation of neuroscience

evidence for a better perception of the biology of the brain. Evidently, the presented approaches

carefully follow the existing evidence in the field, and further framework requires explicit details

in biological studies.

The current framework includes different methods to cover the requirements of the different por-

tions of the model. The computational load of these combinations should also be considered

(currently the computational load is high which is considered as a limitation of the approaches).

This step would allow adapting or extending into more complex analyses, which provide advance-

ments in the current mechanism.

Finally, in terms of machine learning, another possibility would be to create another machine

learning framework (such as deep learning, further fuzzy analysis, with respect to biological lim-

itations) and modify the system from episodic recognition (particularly in the last approach) into

the frame recognition. My particular interest would be on applying the framework to learn more

complexity in biological movements as a means of carrying out further general analysis that is re-

quired for machine vision applications (considering the human visual system) and more complex

datasets.
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