LIST OF FIGURES

Figure 2.1: Paddle-wheel structure of (a) [Cu₂(RCOO)₄]; (b) [Cu₂(RCOO)₄(L)₂] and (c) polymeric [Cu₂(RCOO)₄] 6

Figure 2.2: Bridging coordination modes of RCOO’ ligand 7

Figure 2.3: The energy of the d-orbitals in an (a) octahedral, (b) square pyramidal, and (c) square planar geometry 9

Figure 2.4: Electron spin alignment (a) antiferromagnetism; (b) ferromagnetism; (c) ferrimagnetism 11

Figure 2.5: ORTEP view of the molecular structure of [Cu₂(OOCC₆H₅)₄(CH₃CH₂OH)₂] displaying the thermal ellipsoids at 30% probability. H atoms are omitted for clarity [4] 13

Figure 2.6: Crystal structure of [Cu₂(CH₃(CH₂)₃COO)₄] [30] 14

Figure 2.7: Crystal structure of [Cu₆(O₂CC₆H₂(OCH₂CH₃)₃)₁₂] [31] 14

Figure 2.8: Molecular arrangement in a solid, a liquid crystal and a liquid 15

Figure 2.9: An example of a molecular structure for calamitic LC 16

Figure 2.10: Examples of calamitic LC textures (a) nematic; (b) smectic A; and (c) smectic C 17

Figure 2.11: An example of molecular structure for discotic LC 17
(R = p-CN₂H₂nC₆H₄CO-)

Figure 2.12: An example of Colₜ mesophase 18

Figure 2.13: An example of a DSC scan 19

Figure 2.14: Discotic mesophase exhibited by copper(II) alkylcarboxylates [39] 19
Figure 2.15: Molecular structure of tetrakis(µ-o-decanoato)dicopper(II), showing two paddle-wheel units linked through Cu-O(axial) bonds [40]

Figure 2.16: Hexagonal columnar discotic phase [40]

Figure 2.17: Molecular structure of [Cu₂(L)₄(py)₄].2CH₂Cl₂ [43]

Figure 2.18: Crystal structure of [Cu₂(CH₃(CH₂)₁₄COO)₄(2,2’-bipyridine)₂].2CH₃OH [44]

Figure 2.19: Crystal structure of [Cu(oda)(phen)]₂.6H₂O [45]

Figure 2.20: Crystal structures of [Cu₂(3-HOC₆H₄COO)₄(4-acetylpyridine)₂].6H₂O [25]

Figure 2.21: Molecular structure of [Cu(pyrazine-2,3-dicarboxylate)(H₂O)₂].H₂O [48]

Figure 2.22: (a) Molecular structure of [Cu(R)₂(bpy)₂].RH; (b) optical textures of [Cu(R)₂(bpy)₂].RH at 71.9 °C on cooling from 81.0 °C [49]

Figure 2.23: Proposed structure of [Cu₂(R)₄(bpy)]ₙ [49]

Figure 2.24: Photomicrographs of [Cu₂(R)₄(bpy)]ₙ at: (a) 180.6 °C on cooling from 185 °C, (b) 133 °C on cooling from 185 °C, and (c) 160 °C on cooling from 190 °C [49]

Figure 2.25: Electronic arrangements in (a) HS, and (b) LS iron(II) octahedral complexes

Figure 2.26: Molecular structure of [Fe₂(µ-H₂O)(µ-OAc)₂(OAc)₃(py)₂] [56]

Figure 2.27: Molecular structure of [Fe₂(BEAN)(µ-O₂CPhCy)₃](OTf) [58]
Figure 2.28: Molecular structure of
\[\text{Fe}_2(\mu-\text{H}_2\text{O})(\mu-\text{O}_2\text{CCF}_3)_{2}\] \((\mu-\text{XDK})(\text{TMEN})_2 \) [59]

Figure 2.29: Proposed structure of
\[[\text{Fe}_2(\text{CH}_3\text{COO})_4(L)_2] \] \((R = \text{CH}_3(\text{CH}_2)_{13}) \) [60]

Figure 2.30: Photomicrograph of on heating at (a) 70 °C and (b) 78 °C [60]

Figure 2.31: Perspective view along b-axis of the syn-anti \(\mu- \) carboxylate bridged iron(II) chain [63]

Figure 2.32: Figure 2.32. Molecular structure of \[\text{[Cu}_5\text{FBF}_4] \] [65]

Figure 2.33: The experimental and simulated FTIR spectra of
\[[\text{Fe}_2(\text{CH}_3\text{COO})_4(L)_2] \] \((R = \text{CH}_3(\text{CH}_2)_{13}) \) [60]

Figure 4.1: FTIR spectrum of \(\text{CH}_3(\text{CH}_2)_6\text{COONa.½H}_2\text{O} \)

Figure 4.2: FTIR spectrum of
\[\text{[Cu}_6\text{Cl}_{10}(\text{CH}_3(\text{CH}_2)_6\text{COO})_2].3\text{H}_2\text{O.2CH}_3\text{CH}_2\text{OH} \]

Figure 4.3: UV-vis spectrum of
\[\text{[Cu}_6\text{Cl}_{10}(\text{CH}_3(\text{CH}_2)_6\text{COO})_2].3\text{H}_2\text{O.2CH}_3\text{CH}_2\text{OH} \]

Figure 4.4: (a) Molecular structure, and (b) the packing diagram of \(\text{l} \) viewed along crystallographic b-axis

Figure 4.5: (a) Molecular structure, and (b) the packing diagram of \(\text{1a} \) viewed along crystallographic b-axis

Figure 4.6: FTIR spectrum of \(\text{l} \)

Figure 4.7: UV-vis spectrum of \(\text{l} \) in DMSO-C\text{}_2\text{H}_5\text{OH}

Figure 4.8: TGA trace of \(\text{l} \)

Figure 4.9: Photomicrographs of: (a) \(\text{l} \) on cooling at 138 °C; (b) \[\text{[Cu}_2(\text{CH}_3(\text{CH}_2)_6\text{COO})_4] \] on cooling at 150 °C

Figure 4.10: DSC scans of \(\text{l} \)

xiv
Figure 4.11: FTIR spectrum of $\text{CH}_3(\text{CH}_2)_8\text{COONa}.\text{H}_2\text{O}$

Figure 4.12: FTIR spectrum of $[\text{Cu}_2(\text{CH}_3(\text{CH}_2)_8\text{COO})_4(\text{H}_2\text{O})_2]$

Figure 4.13: UV-vis spectrum of $[\text{Cu}_2(\text{CH}_3(\text{CH}_2)_8\text{COO})_4(\text{H}_2\text{O})_2]$ in DMSO-$\text{C}_2\text{H}_5\text{OH}$

Figure 4.14: (a) Molecular structure, and (b) packing diagram viewed along crystallographic b-axis

Figure 4.15: FTIR spectrum of 2

Figure 4.16: UV-vis spectrum of 2 in DMSO-$\text{C}_2\text{H}_5\text{OH}$

Figure 4.17: TGA trace of 2

Figure 4.18: Photomicrograph of 2 at 36 °C on cooling

Figure 4.19: DSC scans of 2

Figure 4.20: FTIR spectrum of $\text{CH}_3(\text{CH}_2)_{10}\text{COONa}.\frac{1}{2}\text{H}_2\text{O}$

Figure 4.21: FTIR spectrum of $[\text{Cu}_2(\text{CH}_3(\text{CH}_2)_{10}\text{COO})_4(\text{H}_2\text{O})_2].2\text{H}_2\text{O}$

Figure 4.22: UV-vis spectrum of $[\text{Cu}_2(\text{CH}_3(\text{CH}_2)_{10}\text{COO})_4(\text{H}_2\text{O})_2].2\text{H}_2\text{O}$ in DMSO-$\text{C}_2\text{H}_5\text{OH}$

Figure 4.23: (a) Molecular structure, and (b) packing diagram viewed along crystallographic b-axis

Figure 4.24: FTIR spectrum of 3

Figure 4.25: UV-vis spectrum of 3

Figure 4.26: TGA trace of 3

Figure 4.27: Pictomicrographs of: (a) 3 on heating at 103 °C; (b) 3 on cooling at 76 °C

Figure 4.28: DSC scans of 3

Figure 4.29: FTIR spectrum of $\text{CH}_3(\text{CH}_2)_{12}\text{COONa}$

Figure 4.30: FTIR spectrum of $[\text{Cu}_2(\text{CH}_3(\text{CH}_2)_{12}\text{COO})_4(\text{H}_2\text{O})_2].4\text{H}_2\text{O}$
Figure 4.31: UV-vis spectrum of \([\text{Cu}_2(\text{CH}_3(\text{CH}_2)_{12}\text{COO})_4(\text{H}_2\text{O})_2].4\text{H}_2\text{O}\) in DMSO-C\(_2\)H\(_5\)OH

Figure 4.32: FTIR spectrum of 4

Figure 4.33: UV-vis spectrum of 4

Figure 4.34: TGA trace of 4

Figure 4.35: Photomicrographs of: (a) 4 on cooling at 152 °C; (b) \([\text{Cu}_2(\text{CH}_3(\text{CH}_2)_{12}\text{COO})_4(\text{H}_2\text{O})_2].4\text{H}_2\text{O}\) on cooling at 97 °C

Figure 4.36: DSC scans of 4

Figure 4.37: FTIR spectrum of CH\(_3\)(CH\(_2\))\(_{14}\)COONa

Figure 4.38: FTIR spectrum of \([\text{Cu}_2(\text{CH}_3(\text{CH}_2)_{14}\text{COO})_4(\text{H}_2\text{O})_2]\)

Figure 4.39: UV-vis spectrum of \([\text{Cu}_2(\text{CH}_3(\text{CH}_2)_{14}\text{COO})_4(\text{H}_2\text{O})_2].\text{H}_2\text{O}\) in DMSO-C\(_2\)H\(_5\)OH

Figure 4.40: (a) Molecular structure, and (b) packing diagram 5 viewed along crystallographic b-axis.

Figure 4.41: FTIR spectrum of 5

Figure 4.42: UV-vis spectrum of 5

Figure 4.43: TGA trace of 5

Figure 4.44: Photomicrographs of: (a) 5 on cooling at 140 °C; (b) \([\text{Cu}_2(\text{CH}_3(\text{CH}_2)_{14}\text{COO})_4(\text{H}_2\text{O})_2].\text{H}_2\text{O}\) on cooling at 85 °C

Figure 4.45: DSC scans of 5

Figure 4.46: Proposed structural formula for \([\text{Fe}_2(\mu-\text{H}_2\text{O})_2(\text{CH}_3(\text{CH}_2)_{8}\text{COO})_4].\text{H}_2\text{O}\) (lattice H\(_2\)O is not shown)
Figure 4.47: FTIR spectrum of \([\text{Fe}_2(\mu-\text{H}_2\text{O})_2(\text{CH}_3(\text{CH}_2)_6\text{COO})_4] \cdot \text{H}_2\text{O}\) 100

Figure 4.48: UV-vis spectrum of \([\text{Fe}_2(\mu-\text{H}_2\text{O})_2(\text{CH}_3(\text{CH}_2)_6\text{COO})_4] \cdot \text{H}_2\text{O}\) in CHCl₃ 101

Figure 4.49: FTIR spectrum of 6 102

Figure 4.50: UV-vis spectrum of 6 in chloroform 103

Figure 4.51: Proposed structure of 6 104

\([(\text{Fe}_2(\text{CH}_3(\text{CH}_2)_6\text{COO})_4(bpy)(\text{H}_2\text{O})_2)]\)

Figure 4.52: TGA trace of 6 105

Figure 4.53: Photomicrographs of 6 on heating at: (a) 28 °C; and (b) 49 °C 105

Figure 4.54: DSC scans of 6 106

Figure 4.55: FTIR spectrum of \([\text{Fe}_2(\mu-\text{H}_2\text{O})_2(\text{CH}_3(\text{CH}_2)_6\text{COO})_4] \cdot 2\text{H}_2\text{O}\) 107

Figure 4.56: UV-vis spectrum of \([\text{Fe}_2(\mu-\text{H}_2\text{O})_2(\text{CH}_3(\text{CH}_2)_6\text{COO})_4] \cdot 2\text{H}_2\text{O}\) in chloroform 108

Figure 4.57: FTIR spectrum of 7 109

Figure 4.58: UV-vis spectrum of 7 in chloroform 110

Figure 4.59: TGA traces of 7 111

Figure 4.60: Photomicrographs of 7 on heating at: (a) 40 °C; and on cooling at (b) 39 °C 111

Figure 4.61: DSC scans of 7 112

Figure 4.62: FTIR spectrum of \([\text{Fe}_2(\mu-\text{H}_2\text{O})_2(\text{CH}_3(\text{CH}_2)_10\text{COO})_4] \cdot 2\text{H}_2\text{O}\) 113

Figure 4.63: UV-vis spectrum of \([\text{Fe}_2(\mu-\text{H}_2\text{O})_2(\text{CH}_3(\text{CH}_2)_10\text{COO})_4] \cdot 2\text{H}_2\text{O}\) in chloroform 114

Figure 4.64: FTIR spectrum of 8 115
Figure 4.65: UV-vis spectrum of 8 in CHCl₃

Figure 4.66: TGA trace of 8

Figure 4.67: Photomicrographs of 8 on heating at: (a) 50 °C; (b) 56 °C; and (c) 72 °C

Figure 4.68: DSC scans of 8

Figure 4.69: FTIR spectrum of [Fe₂(μ-H₂O)₂(CH₃(CH₂)₁₄COO)]₄

Figure 4.70: UV-vis spectrum of [Fe₂(μ-H₂O)₂(CH₃(CH₂)₁₄COO)]₄ in CHCl₃

Figure 4.71: FTIR spectrum of 9

Figure 4.72: UV-vis spectrum of 9

Figure 4.73: TGA trace of 9

Figure 4.74: Photomicrographs of 9 on heating at: (a) 45 °C; and (b) 60 °C

Figure 4.75: DSC scans of 9

Figure 4.76: ¹H-NMR spectrum of p-CH₃(CH₂)₉OC₆H₄COOCH₃

Figure 4.77: FTIR spectrum of p-CH₃(CH₂)₉OC₆H₄COOCH₃

Figure 4.78: FTIR spectrum of p-CH₃(CH₂)₉OC₆H₄COOK

Figure 4.79: FTIR spectrum of [Cu₂(p-CH₃(CH₂)₉OC₆H₄COO)]₄(H₂O)₂

Figure 4.80: UV-vis spectrum of [Cu₂(p-CH₃(CH₂)₉OC₆H₄COO)]₄(H₂O)₂

Figure 4.81: FTIR spectrum of 10

Figure 4.82: UV-vis spectrum of 10

Figure 4.83: TGA trace of 10

Figure 4.84: Photomicrographs of: (a) 10 on cooling at 121 °C; and (b) [Cu₂(p-CH₃(CH₂)₉OC₆H₄COO)]₄(H₂O)₂ on cooling
Figure 4.85: DSC scans of 10 at 142 °C

Figure 4.86: 1H-NMR spectrum of p-CH$_3$(CH$_2$)$_{11}$OC$_6$H$_4$COOCH$_2$CH$_3$

Figure 4.87: (a) Molecular structure, and (b) packing diagram for p-CH$_3$(CH$_2$)$_{11}$OC$_6$H$_4$COOCH$_2$CH$_3$ viewed along crystallographic c-axis.

Figure 4.88: FTIR spectrum of p-CH$_3$(CH$_2$)$_{11}$OC$_6$H$_4$COOCH$_2$CH$_3$

Figure 4.89: FTIR spectrum of p-CH$_3$(CH$_2$)$_{11}$OC$_6$H$_4$COOK

Figure 4.90: FTIR spectrum of [Cu$_2$(p-CH$_3$(CH$_2$)$_{11}$OC$_6$H$_4$COO)$_4$(H$_2$O)$_2$].2H$_2$O

Figure 4.91: UV-vis spectrum of [Cu$_2$(p-CH$_3$(CH$_2$)$_{11}$OC$_6$H$_4$COO)$_4$(H$_2$O)$_2$].2H$_2$O

Figure 4.92: FTIR spectrum of 11

Figure 4.93: UV-vis spectrum of 11

Figure 4.94: TGA trace of 11

Figure 4.95: Photomicrographs of: (a) 11 on cooling at 145 °C; and (b) [Cu$_2$(p-CH$_3$(CH$_2$)$_{11}$OC$_6$H$_4$COO)$_4$(H$_2$O)$_2$].2H$_2$O on cooling at 89 °C

Figure 4.96: DSC scans of 11

Figure 4.97: Proposed chemical structure of p-CH$_3$(CH$_2$)$_{13}$OC$_6$H$_4$COOCH$_3$

Figure 4.98: FTIR spectrum of p-CH$_3$(CH$_2$)$_{13}$OC$_6$H$_4$COOCH$_2$CH$_3$

Figure 4.99: FTIR spectrum of CH$_3$(CH$_2$)$_{13}$OC$_6$H$_4$COOK

Figure 4.100: FTIR spectrum of [Cu$_2$(p-CH$_3$(CH$_2$)$_{13}$OC$_6$H$_4$COO)$_4$(H$_2$O)$_2$].2H$_2$O

Figure 4.101: UV-vis spectrum of
$[\text{Cu}_2(p-\text{CH}_3(\text{CH}_2)_{13}\text{OC}_6\text{H}_4\text{COO})_4(\text{H}_2\text{O})_2].2\text{H}_2\text{O}$

Figure 4.102: FTIR spectrum of 12

Figure 4.103: UV-vis spectrum of 12

Figure 4.104: TGA trace of 12

Figure 4.105: Photomicrographs of $[\text{Cu}_2(p-\text{CH}_3(\text{CH}_2)_{13}\text{OC}_6\text{H}_4\text{COO})_4(\text{H}_2\text{O})_2].2\text{H}_2\text{O}$ on cooling at 65 °C

Figure 4.106: DSC scans of 12

Figure 4.107: H-NMR spectrum p-$\text{CH}_3(\text{CH}_2)_{15}\text{OC}_6\text{H}_4\text{COOCH}_3$

Figure 4.108: FTIR spectrum of p-$\text{CH}_3(\text{CH}_2)_{15}\text{OC}_6\text{H}_4\text{COOCH}_3$

Figure 4.109: FTIR spectrum of p-$\text{CH}_3(\text{CH}_2)_{15}\text{OC}_6\text{H}_4\text{COOK}$

Figure 4.110: FTIR spectrum of $[\text{Cu}_2(p-\text{CH}_3(\text{CH}_2)_{13}\text{OC}_6\text{H}_4\text{COO})_4(\text{H}_2\text{O})_2]$ on cooling at 65 °C

Figure 4.111: UV-vis spectrum of $[\text{Cu}_2(p-\text{CH}_3(\text{CH}_2)_{13}\text{OC}_6\text{H}_4\text{COO})_4(\text{H}_2\text{O})_2]$

Figure 4.112: FTIR spectrum of 13

Figure 4.113: UV-vis spectrum of 13

Figure 4.114: TGA trace of 13

Figure 4.115: Photomicrograph of $[\text{Cu}_2(\text{CH}_3(\text{CH}_2)_{15}\text{OC}_6\text{H}_4\text{COO})_4(\text{H}_2\text{O})_2]$ on cooling at 56 °C

Figure 4.116: DSC scans of 13

Figure 4.117: Proposed structural formula for $[\text{Fe}_2(\mu-H_2\text{O})(\mu-\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2]$ (R = p-$\text{CH}_3(\text{CH}_2)_9\text{OC}_6\text{H}_4$)

Figure 4.118: FTIR spectrum of
\[\text{[Fe}_2(\mu-\text{H}_2\text{O})(\mu-\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2] } \\
(R = p\text{-CH}_3\text{(CH}_2)_9\text{OC}_6\text{H}_4) \\

Figure 4.119: UV-vis spectrum of \[\text{[Fe}_2(\mu-\text{H}_2\text{O})(\mu-\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2] } \\
(R = p\text{-CH}_3\text{(CH}_2)_9\text{OC}_6\text{H}_4) \\

Figure 4.120: FTIR spectrum of 14

Figure 4.121: UV-vis spectrum of 14

Figure 4.122: Structure of \[\text{[Fe}_2(\mu-\text{OOCR})_2(\text{RCOO})_2(bpy)] } \\
(R = p\text{-CH}_3\text{(CH}_2)_9\text{OC}_6\text{H}_4) \\

Figure 4.123: TGA trace of 14

Figure 4.124: Photomicrographs of: (a) 14 on cooling at 101 °C; (b) 14 on cooling at 92 °C; (c) 14 on cooling at 89 °C; and (d) \[\text{[Fe}_2(\mu-\text{H}_2\text{O})(\mu-\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2] } \\
(R = p\text{-CH}_3\text{(CH}_2)_9\text{OC}_6\text{H}_4) \\

on cooling at 127 °C

Figure 4.125: DSC scans of 14

Figure 4.126: FTIR spectrum of \[\text{[Fe}_2(\mu-\text{H}_2\text{O})(\mu-\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2].\text{H}_2\text{O} } \\
(R = p\text{-CH}_3\text{(CH}_2)_11\text{OC}_6\text{H}_4) \\

Figure 4.127: UV-vis spectrum of \[\text{[Fe}_2(\mu-\text{H}_2\text{O})(\mu-\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2].\text{H}_2\text{O} } \\
(R = p\text{-CH}_3\text{(CH}_2)_11\text{OC}_6\text{H}_4) \\

Figure 4.128: FTIR spectrum of 15

Figure 4.129: UV-vis spectrum of 15

Figure 4.130: TGA trace of 15

Figure 4.131: Photomicrographs of: (a) 15 on cooling at 92 °C; (b) 15
on cooling at 85 °C; and

(c) \[\text{Fe}_2(\mu\cdot\text{H}_2\text{O})(\mu\cdot\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2\].\text{H}_2\text{O} \\
(R = p-\text{CH}_3(\text{CH}_2)_{11}\text{OC}_6\text{H}_4)\) on cooling at 100 °C

Figure 4.132 : DSC scans of 15 180

Figure 4.133 : FTIR spectrum of

\[\text{Fe}_2(\mu\cdot\text{H}_2\text{O})(\mu\cdot\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2\] \\
(R = p-\text{CH}_3(\text{CH}_2)_{13}\text{OC}_6\text{H}_4\text{COO})

Figure 4.134 : UV-vis spectrum of

\[\text{Fe}_2(\mu\cdot\text{H}_2\text{O})(\mu\cdot\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2\] \\
(R = p-\text{CH}_3(\text{CH}_2)_{13}\text{OC}_6\text{H}_4\text{COO})

Figure 4.135 : FTIR spectrum of 16 183

Figure 4.136 : UV-vis spectrum of 16 183

Figure 4.137 : TGA trace of 16 184

Figure 4.138 : Photomicrographs of: (a) 16 on cooling at 100 °C; (b) 16 on cooling at 92 °C; and

(c) \[\text{Fe}_2(\mu\cdot\text{H}_2\text{O})(\mu\cdot\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2\] \\
(R = p-\text{CH}_3(\text{CH}_2)_{13}\text{OC}_6\text{H}_4\text{COO})\) on cooling at 90 °C

Figure 4.139 : DSC scans of 16 186

Figure 4.140 : FTIR spectrum of

\[\text{Fe}_2(\mu\cdot\text{H}_2\text{O})(\mu\cdot\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2\] \\
(R = p-\text{CH}_3(\text{CH}_2)_{13}\text{OC}_6\text{H}_4)

Figure 4.141 : UV-vis spectrum of

\[\text{Fe}_2(\mu\cdot\text{H}_2\text{O})(\mu\cdot\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2\] \\
(R = p-\text{CH}_3(\text{CH}_2)_{13}\text{OC}_6\text{H}_4)

Figure 4.142 : FTIR spectrum of 17 189

Figure 4.143 : UV-vis spectrum of 17 189
Figure 4.144: TGA trace of 17

Figure 4.145: Photomicrographs of: (a) 17 on cooling at 92 °C; and
(b) $[\text{Fe}_2(\mu-\text{H}_2\text{O})(\mu-\text{RCOO})_2(\text{RCOO})_2(\text{H}_2\text{O})_2]$
(R = p-CH$_3$(CH$_2$)$_{15}$OC$_6$H$_4$) on cooling at 107 °C

Figure 4.146: DSC scans of 17

Figure 4.147: Cu-O-Cu angles for (a) 1; (b) 2; (c) 3; and (d) 5

Figure 4.148: Optimised structure of 1

Figure 4.149: Optimized structure of: (a) 6 and (b) 16

Figure 4.150: FTIR intensities for: (a) 6 and (b) 16