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ABSTRACT

Deoxyribonucleic acids (DNA), Ribonucleic acids (RNA) and Proteins are the
computational devices of life. Compared to conventional machine, natural hardware has
data encoded as molecules and requires molecular biology tools to transform these data
in order to perform computation. The feasibility of adapting these substrates into
conventional silicon machines has been actively studied leading to the emergence of a
new computational paradigm, known as molecular computing. One of the most notable
researches under this field is DNA self-assembly computing, by which DNAs
autonomously come together and formed complex nanostructures. In this study, the
concept of Tetris game to facilitate DNA nanostructures fabrication was adapted;
whereby different DNA Tetris shapes were used to form complex 2D DNA structures.
The efforts are concerted towards self-assembly mechanism of heterogeneous DNA
shapes, construction of multiple configurations that can form the identical end-
structures, exploration of a less stringent sequence design and predicting connectivity
map for the DNA nanostructures assembly. Several approaches have been adopted
including development of an autonomous tool that incorporated evolutionary
optimization algorithm in constructing these heterogeneous DNA shapes and the
application of heuristic through undirected graph theory as an annotation schema to
produce the connectivity maps. These approaches have lead to the successful formation
of five distinct configurations based on 3 x 4 DNA rectangle, which were validated in
the laboratory (using Atomic Force Microscopy (AFM) images). This study proved that
the fabrication of the DNA nanostructures is no longer limited to sets of specific
sequences, but liberated to the conformity of both shapes and sequence combinatorics.
This proposed schema has therefore opened up the possibility for competing DNA
shapes to self-organize into molecular constructs in an autonomous manner imitating

their natural behaviour.
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ABSTRAK

Deoxyribonukleik asid (DNA), Ribonukleik asid (RNA) dan Protein merupakan
peranti pengkomputeran bagi benda hidup. Berbanding dengan mesin konvensional,
perkakasan sumber inspirasi semulajadi ini mempunyai data yang dikodkan sebagai
molekul dan menggunakan perkakasan molekular biologi untuk menjana data dan
melakukan aktiviti perkomputeran. Kebolehlaksanaan untuk menyesuaikan substrak-
substrak ini ke dalam mesin silikon sedang giat dijalankan. Ini secara tidak langsung
membawa kepada kemunculan cabang perkomputeran yang baru iaitu perkomputeran
molekul. Salah satu subjek utama dalam cabang ini ialah penstrukturan sendiri DNA,
dimana DNA secara automatik berkumpul dan membentuk nanostruktur kompleks.
Dalam kajian ini, kajian mengadaptasi konsep permainan Tetris untuk memudahkan
proses pembinaan kompleks struktur 2-dimensi DNA. Usaha ini tertumpu kepada
mekanisma penstrukturan sendiri heterogen DNA, membina pelbagai konfigurasi yang
boleh membentuk struktur terakhir yang identikal, mengeksplorasi kaedah reka bentuk
jujukan yang longgar dan meramalkan peta perhubungan bagi tujuan pembinaan DNA
nanostruktur. Antara pendekatan yang diadaptasi termasuklah pembangunan perkakasan
automatik yang menggabungkan algoritma evolusi pengoptimuman dalam membina
heterogen DNA. Aplikasi heuristik melalui teori graf tidak berarah digunakan sebagai
anotasi skema untuk menjana peta perhubungan. Pendekatan ini telah membawa kepada
kejayaan pembentukan lima konfigurasi segi empat tepat 3 x 4 yang kemudiannya
ditentusahihkan dalam makmal (menggunakan imej Atomic Force Mircoscopy (AFM)).
Kajian ini turut membuktikan bahawa pembinaan DNA nanostruktur kini tidak lagi
terhad kepada set jujukan spesifik, sebaliknya bebas daripada konformasi bentuk dan
kombinasi jujukan. Skema yang dicadangkan turut membuka peluang bagi bentuk-
bentuk DNA untuk bersaing semasa proses penstrukturan sendiri dan membentuk

konstruk molekul secara automatik yang mimik kepada ciri-ciri semulajadi DNA.
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CHAPTER 1: INTRODUCTION

1.1 DNA Nanostructures

Nucleic acid is one of the four major classes of biomolecules present in living
organisms, aside from carbohydrates, proteins and lipids. Deoxyribonucleic acid (DNA)
and ribonucleic acid (RNA) belong to the nucleic acids class by which both are
chemically different (such as the five-carbon sugar). While ribose sugar is found in the
RNA, deoxyribose sugar forms part of the DNA. The prominent role of DNA is to
encode genetic materials (Avery, Macleod, & McCarty, 1944) needed for the biological

function of living organism.

DNA nanostructures are defined as nanometer size (1 X 10 m) structures made up
of DNA (Andersen et al., 2009; Han et al., 2011; He et al., 2008; Rothemund, 2006;
Rothemund, Papadakis, & Winfree, 2004; Shih, Quispe, & Joyce, 2004; Winfree, Sun,
& Seeman, 1998). The construction of DNA nanostructures is attainable due to its
ability to interact via Watson-Crick base pairing and form double-stranded DNA
molecules (Watson & Crick, 1953). Examples of the constructed DNA nanostructures
are the platonic tiling based on the geometrical shapes of hexagon, square and triangle
(Zhang et al., 2015) (Figure 1.1a), 2D structures with intricate curved surfaces (Han et
al., 2011) (Figure 1.1b), dolphin-shaped structures with flexible tails (Andersen et al.,
2008) (Figure 1.1c) and arbitrary shapes designed from a molecular canvas (Wei, Dai,
& Yin, 2012) (Figure 1.1d). The successful construction of these nanostructures proved
that apart from having DNA roles as hereditary materials (Avery et al., 1944), DNA can

be programmed to self-assemble itself into the prescribed configurations.



Figure 1.1: DNA nanostructures

The DNA nanostructures were captured using Atomic Force Microscopy (AFM). Figure
1.1a represents the platonic tiling based on the geometrical shapes of hexagon, square
and triangle (Zhang et al.,, 2015). Figurel.lb represents the curved 2D DNA
nanostructures (Han et al., 2011). Figure 1.1c is the dolphin DNA structures in various
conformational states with the arrows indicate the tail orientation as up (u), down (d)
and normal (n) (Andersen et. al., 2008). Figure 1.1d is the arbitrary shapes designed
from a molecular canvas (Wei et al., 2012). Retrieved from (Andersen et al., 2008; Han
etal., 2011; Wei et al., 2012; Zhang et al., 2015).

1.2 Problem Statement

The approaches used by prior studies (Ke, Ong, Shih, & Yin, 2012; Rothemund,
2006) have proven to be successful in fabricating sophisticated nanostructures. As these
approaches aimed to construct DNA according to the prescribed structure, it involved
the process by which each distinct structural design would required a new backbone

(scaffold) routing and to have staple strand to specifically target x location in the



backbone (Douglas et al., 2009; Han et al., 2011; Ke et al., 2009; Rothemund, 2006). A
newer design technique known as single-stranded DNA tiles (SST) was subsequently
developed to design modular structure by using individual components that have
standardized DNA length with four domains (homogeneous block) (Wei et al., 2012;
Yin et al., 2008). However, individual component that made up a structure was required
to be flexible so that they could self-assemble like a puzzle and occupy the search
space. This proposed flexibility feature could be achieved by having different Tetris
shapes (heterogeneous blocks) to form the end-structures or in the Tetris game concept,

different types of Tetris shapes that could be used to fill the Tetris board.

This Tetris concept offered tremendous dynamicity by adapting the mechanism of
DNA self-organization into Tetris game. The search space in the Tetris technique is
dynamic because different combinations could be used to occupy the search space (m x
n) using y number of heterogeneous shapes. This advantage of constructing multiple
nanostructures within the search space was able to overcome the current restriction of

having one combination for one design.

The dynamicity of the design was crucial because when each component was
targeted to specific coordinates in a region, any error that occurred during the targeting
process would result in the structure to collapse. This was because the staple strands
served to “fold” the scaffold according to the designated structures. On the contrary,
each structural formation in the proposed schema was mutually exclusive allowing the

remaining structures to be intact even when one of the components collapsed.

The purpose of having different types of combinations occupying the search space is
important from the biological aspect of DNA nanostructures. This allowed the best fit
structure to carry out its task, since DNA nanorobots have a major concern with the

level of stability in cellular environment such as time limitation to resist enzymatic



degradation (Mei et al., 2011; Shen et al., 2012). In order to propose the concept of
multi-configurations in DNA self-assembly, Tetris concept is an ideal approach since it

can be used to elucidate the use of different shapes to fill up the search space.

Similar to the mobile-agent swarm scenario, the self-organization process of Tetris
shapes started when a shape occupied a coordinate in the search space (initial state), the
next piece of shape will then “observe” the current state (location of the initial shape)
and decide whether they could merge together. It would have two mode of actions; if it
is compatible the shape would fuse with the initial shape, otherwise it will not. The
entire complete DNA nanostructure was considered as the search space. The cycle will
reiterate until all shapes occupied the dimension. In this way, regardless of the initial

state of the search, the shape was able to self-assembly to handle dynamic situation.

1.3 Aims and Objectives

This research aimed to propose a new schema by integrating self-organization
principle and Tetris game to create a more dynamics and flexible structure design
method. The goal was to promote a complete outlook of the shapes and sequence
landscape necessary in designing any DNA structures with minimal restrictions. In this
work, the principles in computer science such as algorithm and prediction computing
processes were used to simplify the search space, and eventually helped to find suitable
solution in building the targeted structures. This was due to the fact that it was highly
impossible to build a structure manually from scratch as it involved a very large search
space and combinatorics issue. Hence, it is essential to develop computational methods

that were able to solve these problems. The objectives of this research are as follows:

Objective 1: To propose a new schema that simplifies the design search space
The proposed schema implemented the concept of popular computer game, Tetris in

constructing DNA nanostructures. This is because by using y number of heterogeneous



Tetris shapes to occupy the search space (m x n), multiple combinations could be
achieved. Search space is defined as the combinatorics of potential shapes to form a
given target DNA nanostructure. In this study, a 3 x 4 rectangle with multiple
configurations was used as the hypothetical application to show that different

combinations can be obtained using the proposed schema.

Objective 2: To develop a computational tool for structural construction to
support the proposed DNA Tetrominoes schema

Several approaches had been adopted in the development of an autonomous tool to
construct the heterogeneous DNA shapes such as evolutionary optimization algorithm.
This algorithm incorporated fitness evaluation criteria in order to mutate the DNA so
that it could autonomously form into the prescribed structures. A number of external
tools had also been integrated into developing the computational tools based on DNA
Tetrominoes concept. In order to fulfil this objective, this work will investigate the
effectiveness of the undirected graph theory as an annotation schema to produce
connectivity map. The map delineated all probable paths taken by the DNA sequences
to form the nanostructures because during the execution of self-assembly, correctly
formed DNA shapes must compete with the partially correct shapes for binding. The
mapping provided insights into these correct and partially correct DNA sequence

binding.

Objective 3: To explore the plausibility of implementing self-organization principle
in DNA nanostructure fabrication

The newly proposed schema integrated self-organization property into the design
method in order to construct a more flexible structure. Through this implementation,
each Tetris shape was considered as one entity and a search space of a nanostructure

was made up of several Tetris shapes. Each DNA Tetris shape required only



complementary sticky end at the terminal site to act as glue in order to “hold” the initial
shape in the search space with the incoming shape. The self-assembly process of these
DNA Tetris shape would result in the formation of DNA nanostructures. Hence, in
order to achieve this objective, the work will explore the formation of DNA
nanostructures through wet-lab experiment, supplemented by Atomic Force Microscopy

(AFM) imaging for further validation.

1.4 Thesis Outline

There are two leading motivations for the nucleic acids to serve as computing
substrate. Firstly, the ability of nucleic acids to function inside a living system (Beisel,
Bayer, Hoff, & Smolke, 2008; Rinaudo et al., 2007; Win & Smolke, 2008) since it is
not feasible to program the living system by integrating silicon chips into the system.
Secondly, the nucleic acids property can be predicted with the available computational
tools such as RNAstructure (Reuter & Mathews, 2010) and ViennaRNA (Hofacker,
2003). For instance, the intermolecular and intramolecular bindings that occurred
between nucleic acids (DNA or RNA) can be calculated using free energy. Although
deoxyribonucleic acid (DNA) possed a notable challenge to work with in the laboratory,
these challenges at present are still more viable to work with than attempting to design
the nanostructures using RNA. This is due to relatively more complex structure in RNA
such as the existence of many non Watson-Crick base pairing (non-canonical) (Das,
Mukherjee, Mitra, & Bhattacharyya, 2006) that caused RNA to fold itself and formed
complex tertiary motif (Chandrasekhar & Malathhi, 2003; Hermann & Westhof, 1999;

Leontis & Westhof, 2003).

In chapter 1, the work began with an overview on the model structures that used the
DNA as the construction material to fabricate different geometrical shapes at nanometer

scale. This has enabled the understanding of the current development in structural



fabrications and to strategize the protocol used to construct DNA nanostructures. Two
hypotheses (search space in the context of Tetris game and self-organization principle)
were introduced to drive the implementation for the newly proposed schema for the
nanostructure construction. This has led to the establishment of three research

objectives that centralized on the Tetris and self-organization principle.

Chapter 2 presented a general overview of the chemical structures in DNA and
discussed more thoroughly about the implementation of DNA as computational
substrate into solving Travelling Salesman Problem (Adleman, 1994). The structural
aspects of DNA such as double helix arrangement, bending profile and flexibility in
DNA were also explained in depth. The work went on to describe the applications of
DNA nanostructures in the field of nanotechnology. Since the work also integrated the
use of available computational tools in doing sequence and structure analysis, these

tools were also discussed.

In chapter 3, the current techniques (DNA origami and Single-stranded DNA
Tiles) used to construct DNA nanostructures were reviewed. This is followed by the
comparison between the current methods with the proposed schema to highlight the key
differences. The proposed schema, DNA Tetrominoes concept was introduced in the
subsequent section, which went on to identify Tetris shapes that could be derived from
DNA sequences. Each of the shape was either made up of two or four DNA sequences.
An overview on the framework that displayed the graphical flow on the computational
tool used for the structural construction was presented. This framework had two main
modules. Module 1 was for the development of sequence design tool and module 2 for

the development of DNA connectivity tool.

The development of module 1, sequence design tool was presented in chapter 4.

This tool incorporated the use of optimization algorithm to construct the heterogeneous



DNA Tetris shapes. The optimization algorithm included the process of evaluating and
mutating DNA Tetris shapes so that the DNA can self-assemble into the prescribed
nanostructures. The developed tool began by constructing a set of DNA Tetris shapes.
The respective DNA Tetris shapes were then subjected to the experimental validation.
Meanwhile, extensive sequence analysis was also carried out on the generated structures
such as investigating the list of mispairing bases and analysis of the free energy to

conclude the successful formation of the generated structures.

Chapter 5 discussed on the development of module 2, DNA connectivity tool. This
tool is a heuristic application that utilized undirected graph theory in producing the
connectivity maps. In this implementation, “nodes” were used to represent DNA
segments while the “edges” represented the binding affinity between the nodes. The
correct graphs were represented with all the nodes visited exactly once and the edges
taken by each node were correctly linked as designed, regardless of the starting points.
The resulted graph aimed to provide insight into the occurrences of correct and partially
correct binding between a set of DNA sequences. The developed tool will then put in
practice to study the generation of multiple conformations of DNA sequences in the

following chapter.

Chapter 6 demonstrated the construction of multiple configurations of Tetris shapes
to occupy the skeleton of 3 x 4 rectangle. After the successful attempt on constructing
the first configurations in chapter 3 (which has named as Set 1), four other combinations
were subsequently generated using the sequence design tool. All of these sets were
subjected to the structural validation using Atomic Force Microscopy machine. These
AFM images of DNA nanostructures were then compared against the predicted
configurations. In addition, the DNA connectivity tool was also used to study the

interactions that occur in all five combinations (Set 1- Set 5). This has resulted in the



generation of graphs and the relative binding affinity between different nodes or DNA

segments in forming the end-structures.

Finally, Chapter 7 presented the summary for the implementation of the
computational methods in constructing DNA nanostructures. It outlined explanation on
how the proposed methodology was able to address the core research objectives. Apart
from this, some of the limitations in the newly developed tool were highlighted,
specifically on the occurrences of incorrect binding and the limitation of the mutation
region due to existence of forbidden region within the DNA sequences. In addition, the
conversion of the framework into a web service that worked as graphical user
interferences (GUI) was also described. The last section in this chapter presented the

conclusions of this research followed by proposition on the prospective future work.



CHAPTER 2: LITERATURE REVIEW

2.1 DNA Computer: Computing After Silicon

Computational process can occur in different environment, for instance the
conventional approach uses transistor to perform computation in silicon machine (Chen,
Korotkov, & Likharev, 1996). Natural computing recently emerged as an alternative
computing approach (Rozenberg, Back, & Kok, 2012). It includes the development of
novel problem solving methods inspired by the nature (e.g. cellular automata (Wolfram,
1983), neural computation (Von Neumann, 1958), evolutionary computation (Back,
Fogel, & Michalewicz, 1997)) and the execution of computation using natural
molecules such as creating molecular devices using deoxyribonucleic acid (DNA) to
operate inside a living system (Amir et al., 2014). The latter belongs to the category of
molecular computing. In conventional silicon computers, electron were pushed through
silicon chips (Chen et al., 1996). The current trend for computers to attain high speed is
by decreasing the interval between different integrated circuit (IC) or chip components
and by narrowing down the size of processing chip and transistor (Moore, 1965). These
ensure that the instructions take lesser time to move between one component to another
during the execution protocol. As a result, more transistors are packed closely with each
other and caused the chip to become more compact. Moore’s law states that the number
of transistors in the circuits double every one to two years (Moore, 1965). Hence, a
point when it reaches the maximum limit will soon arrive. As of year 2015, the size of

the chip has finally reaches 10 nm (Nenni, 2015).

Unlike silicon machine, molecular computation concentrates on harnessing the
computational power of biological molecules (DNA and RNA) for information
processing process (Adleman, 1994; Faulhammer, Cukras, Lipton, & Landweber, 2000;

Hagiya, 1999; Heada et al., 2000). It performs parallel computation by taking the
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advantage in having many different DNA molecules that can search for a large number
of different possibilities at one time (Adleman, 1994; Bandyopadhyay, Pati, Sahu,
Peper, & Fujita, 2010; Lewin, 2002). The biological molecules are also much smaller in
size (nanoscale, 1 - 10°m). On the contrary, a conventional silicon computer operates on
a highly linear principle of logic (Hsu, 2002) and one computation must be completed

before the following process can begin.

In 1990s, researchers started to explore the possibility of DNA computer, when
Adleman made the breakthrough by showing that DNA could be used to solve
mathematical problems, the Hamiltonian path problem (Adleman, 1994). It was
described as a graph with seven vertices and the edge that connected between the
vertices was the path. Hamiltonian path problem was similar to the travelling salesman
problem (TSP) as the main purpose was to search for the shortest path to visit each
vertex of a given graph exactly one time. In TSP problem, given the list of cities
(vertex) and the distance between the cities, the question was to find the shortest route
for the salesman to visit each city exactly one time and then back to the city of origin.

Adleman experiment used seven cities to represent seven vertices (Figure 2.1a).

In order to solve this problem, Adleman represented each city as a separate single
stranded DNA with 20 nucleotides length (Figure 2.1b). All possible paths (solutions)
between these cities were presented as DNA molecules that were made up from a
combination of the last ten nucleotides of the departure city and the first ten nucleotides
of the arrival city. Entire DNAs were then mixed in a test tube. Adleman used
elimination approaches to get the last remaining DNA, which were the solution to the
problem. In Step 1, ligation process was used to connect DNA molecules that encoded
all paths in the graph. Then, DNAs that started and ended with the correct vertices

(cities) were amplified using polymerase chain reaction (PCR) (Step 2). PCR is a
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technology used to make many copies of DNA sequences that can be increased to over a
thousand or million copies. This is to increase the number of DNA copies so that gel
electrophoresis (Step 3) could be used to separate these DNA strands by length. This
step filtered the DNA and only kept the paths that entered exactly n vertices. Then the
DNAs were purified using affinity purification process (Step 4) so that only those paths
that entered all the vertices of the graph at least once were kept. The final step 5 was to
re-amplify the DNA from step 4 and then determined the presence of DNA sequence

encoding the paths.

20-mer oligonucleotide representing cities

@ RBGCTATTCGAGCTTAAAGCTAKYE
@ MGGCTAGGTACCAGCATGCTTIK]

20-mer oligonucleotide representing paths between cities
@ _’@ ' 3’

@ I CTTAAAGCTAGGCTAGGTAC 3

DNA representation of the path from city 2 -> city 3 -> city 4
a6 @—
GCTATTCGAGCTTAAAGCTAGGCTAGGTACKY

MICGATAAGCTCGAATTTCGATEN
3 5
e Complement of @

Figure 2.1: Principles in Adleman’s DNA computer to solve travelling salesman
problem
The seven vertices in the graph are represented as city labelled from 0 to 6. 20-mer
oligonucleotides (or DNA sequences with 20 nucleotides length) were used to represent
the cities and paths between cities. Retrieved from (Parker, 2003).
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Molecular computing that uses DNA molecules to perform computations is known as
DNA computing (Lewin, 2002). Different DNA computers might vary in the principles
of their operation. By taking silicon computer as a reference, in DNA computer, DNA is
equivalent to software whereas the biological molecule, enzyme is the hardware. One of
the most notable researches under this field is DNA self-assembly (Winfree et al.,
1998). DNA self-assembly or DNA self-organization is defined as a process by which
DNAs autonomously came together, and merged to form DNA nanostructures (Han et
al., 2011; Rothemund, 2006; Rothemund et al., 2004; Winfree, 1998; Yin et al., 2008).
DNA served as an ideal substrate for structural engineering (Aldaye, Palmer, &
Sleiman, 2008; Kuzuya & Komiyama, 2010; Seeman, 2010) due to its ability to self-

assemble.

2.2 DNA as the Molecular Basis of Life

Deoxyribonucleic acid (DNA) is a molecule that encodes the genetic materials
(Avery et al., 1944) used in the development of all living organism. DNA is made up of
basic units known as nucleotides and each nucleotide consists of a phosphate group, a
deoxyribose sugar and a single nitrogenous base (Figure 2.2a). There are four
nitrogenous base namely adenine (A), guanine (G), cytosine (C) and thymine (T)

(Figure 2.2b).

In DNA, adenine binds to thymine using two hydrogen bonds while cytosine binds to
guanine using three hydrogen bonds. In the case of RNA, besides the commonly
Watson-Crick base pairing or canonical base pairing (A bind to T and G bind to C),
there are also a range of non-canonical base pairs that often exist in RNA secondary and
tertiary structural moieties. The guanine (G) — uracil (U) (G bind to U) wobble pairs is
an example of non-canonical base pairing (Masquida & Westhof, 2000; Trikha, Filman,

& Hogle, 1999; Varani & McClain, 2000). This non-canonical base pairing often
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influences the intramolecular RNA folding into the tertiary RNA structural motif that
acts as binding or recognition sites for specific protein or ligand for enzymatic activity

(Chandrasekhar & Malathhi, 2003; Hermann & Westhof, 1999; Leontis & Westhof,

2003).
a.
@ 0o
Deoxyribose Nitrogenous Phosphate
base
Nucleotide
b.
H H CH,

Cytosine Thymine
H
N—H
Hc"’N\'c—-c/ H(,\”N)c-c”\
M==.c‘N N N—.C\NG ji=n
AR e -

/

N—H
. H
Adenine Guanine

Figure 2.2: Nucleotide as the building block of DNA
Figure 2.2a represents a single nucleotide that is made up of a deoxyribose sugar, a
single nitrogenous base and a phosphate group. Figure 2.2b represents the chemical
structure for the nitrogenous base. The nitrogenous base can be cytosine, thymine,
adenine or guanine in DNA. Adapted from (Pray, 2008).

Single-stranded DNA (ssDNA) occurs as random coils (Kowalczyk, Tuijtel,
Donkers, & Dekker, 2010) (Figure 2.3). When two ssDNA intertwined into helix
formation through hydrogen bonding, it formed double-stranded DNA (dsDNA). The
structural appearance of dsDNA is known as DNA double helix. DNA double helix can
adopt different conformation (right and left-handed helices), but right-handed helices
are energetically favourable than left-handed helices due to less steric hindrance

between their side chains and the backbone. The DNA sugar-phosphate backbones have
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direction, one of the DNA ends terminates with 5’-phosphate group (therefore known as
5’ terminal) and another end terminates with 3’-OH group (therefore known as 3’
terminal). In a dsDNA, 5’-end from one strand will bind with 3’-end from another
strands and vice versa (Figure 2.4). The structure has a diameter of 2 nm and a complete

turn of 10.4-10.5 base pairs per turn in B-form of DNA (Wang, 1979).

Sugar-phosphatete —
backbone ' _Nitrogenous

base

Figure 2.3: Single-stranded DNA in random coil conformation

Sugar-phosphate
backbone

Figure 2.4: DNA double helix structure
The bases (adenine (A), thymine (T), guanine (G) and cytosine (C)) form Watson-Crick
base pairing. Retrieved from (Pray, 2008).
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2.2.1 DNA Double Helix Structure

The helical arrangement in DNA structure is determined by a number of helical
parameters (Dickerson, 1989). These parameters use to describe the double helix
conformation can be sorted into two categories; base pair parameter and base step
parameter (Figure 2.5). The base pair parameter is the translational and rotation of bases
within a base pair while base step parameters elucidate the translational and rotation
between two neighbouring stacked base pairs (Ho & Carter, 2011). The Rise and twist
parameters refer to the relative angle and the distance between two neighbouring
stacked base pairs. Slide increases the diameter of DNA helical structure and later
affects the helical twist. A-form of DNA has a large s/ide between its base pairs, but B-
form DNA has smaller slide and thus placing the base pairs to stack on top of each
other. This has caused A-DNA to have a larger overall diameter of approximately 23 A
(2.3 nm) as opposed to B-DNA 20 A (2 nm). These different helical parameters in DNA

have resulted in major forms of DNA such as A-form and B-form.

Base Pair Parameters Base Step Parameters
/
Stretch Shear Stagger Propeller Twist Rise Slide Shift

Buckle Inclination x-Displacement y-Displacement' Helical Twist  Roll Tilt

Figure 2.5: The base pair and base step parameters for DNA helix structure
Each DNA base (adenine, thymine, guanine, cytosine) is depicted as a block. Retrieved
from (Ho & Carter, 2011).
A base pair seldom exhibits a perfect flat plane since each base has a slightly
different roll angle in relative to one another. As a result, the measurement is conducted

using the rotation per residue or twist angle in reference to the angle between two

neighbouring base pairs. The fwist angle can be calculated using the following case.
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Considering that there are 10.5 base pairs per turn for B-DNA, and each helical turn is

360° therefore the twist angle would be 34.3° (360 / 10.5 = 34.3°) (Figure 2.6).

360 = one
helical turn

10.5 bp per turn  Helix
35.74

34.3° twist angle
(rotation per residue)

Helix Diameter
20A

Figure 2.6: Parameters to calculate DNA double helix
The axial rise is the distance between two planar base pairs and tilt is the deviation from
the horizontal plane. Retrieved from (Sinden, 1994).

2.2.2 The Stability of DNA Double Helix

As the DNA function is to encode genetic information, DNA needs to be chemically
stable and avoids high mutation rate that will cause the stored genetic information to
degrade over subsequent generations (Leu, Obermayer, Rajamani, Gerland, & Chen,
2011). Besides the previously mentioned hydrogen bond (A bind to T, G bind to C), the
stability of the entire DNA double helix is also governed by the base-stacking
interactions between adjacent bases (Yakovchuk, Protozanova, & Frank-Kamenetskii,
2006). The base stacking interaction is determined by the thermodynamics energy
(Table 2.1) based on rules such as Nearest-neighbor parameters (Breslauer, Frank,

Blocker, & Marky, 1986).
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Table 2.1: Nearest-neighbor thermodynamics (Breslauer et al., 1986)

Interaction Thermodynamic
parameter (AG®)

AA/TT 1.9

AT/TA 1.5

TA/AT 0.9

CA/GT 1.9

GT/CA 1.3

CT/GA 1.6

GA/CT 1.6

CG/GC 3.6

GC/CG 3.1

GG/CC 3.1

All values are in reference to the disruption of the interaction in an existing duplex at
IM NaCl (1 molar of sodium chloride), temperature of 25 °C and pH 7. The unit for
AG® is kcal/mol of interaction.

2.2.3 The Structural Flexibility of DNA

Since DNA is naturally contained inside the nucleus cell in a very condensed and
folded form (known as chromatin) (Richmond & Davey, 2003), the flexibility of DNA
is therefore very crucial. The flexibility of DNA is greatly affected by its base
composition and sequence (Geggier & Vologodskii, 2010; Hormenio et al., 2011;
Travers, 2004). Despite the fact that stiffness of DNA is commonly associated with
guanine and cytosine content, yet the presence of base pairs repeat can also affect its
stiffness (Hogan & Austin, 1987; Hogan, LeGrange, & Austin, 1983). In a case study to
investigate the effect of guanine and cytosine (GC), DNA with high GC (70%) was
reported to be significantly harder to stretch than the 50% GC content DNA (Hormefio
et al., 2011). Despite the reduction in elasticity, double helix arrangement of the DNA

remains the same (Hormeno et al., 2011).

The bending of DNA is crucial for interaction with protein in order to regulate the

biological function of DNA such as gene expression (Lewis et al., 1996; Schultz,
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Shields, & Steitz, 1991; Schumacher, Choi, Zalkin, & Brennan, 1994). The local DNA
bending is the deviation of two or three base pairs from a straight helix in a section of a
helical repeat (Figure 2.7a) and it commonly takes place when the neighbouring base
pairs roll on each other (Goodsell & Dickerson, 1994). Figure 2.7b showed the
macroscopic curvature in DNA and the curvature is measured over several helical
repeats that is approximately twenty or more base pairs (Goodsell & Dickerson, 1994).
BEND (Goodsell & Dickerson, 1994) is an example of program used to calculate the
DNA local bending and macroscopic curvature by using the bending model that had
score for twist, roll and tilt parameters (Bolshoy, McNamara, Harrington, & Trifonov,
1991; Cacchione, Santis, Foti, Palleschi, & Savino, 1989; Calladine, Drew, & McCall,

1988; Satchwell, Drew, & Travers, 1986).

bent

=

+«——  uncurved ——

Figure 2.7: The DNA local bending and macroscopic curvature
Each segment represents 5 base pairs or half a turn of B-DNA helix. Figure 2.7a
represents uncurved DNA that has an equivalent local bend at each base step. Figure
2.7b represents alternate fraction of bent and unbent segments in the DNA that caused
macroscopic curvature. Retrieved from (Goodsell & Dickerson, 1994).
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2.3 DNA Nanotechnology

The mechanical properties of DNA structure have great impact on the functional
activities in DNA. Other biological substrates, for example protein serves as an
important role for building the structural, catalytic and regulatory components of cells.
Despite these, the folding and assembly of proteins remain challenging to be predicted
and designed due to the complexity of their 3-dimensional structure (Poole &
Ranganathan, 2006). On the contrary, DNA which serves as genetic information and has
high chemical stability and highly predictable binding properties is an ideal substrate to
be recruited into the construction of nanostructures via self-assembly process
(Feldkamp & Niemeyer, 2006; Gothelf & LaBean, 2005; Seeman, 2005). Ribonucleic
acid (RNA) has recently emerged as programmable structures (Jaeger & Leontis, 2000;
Jaeger, Westhof, & Leontis, 2001). Although it has chemical structure similar to DNA,
RNA is chemically more unstable than DNA (Elliott & Ladomery, 2011) and is prone

to fold into complex tertiary structures similar to protein.

DNA nanotechnology is a branch of nanotechnology associated with the design,
study and implementations of artificial structures based on DNA (Seeman, 1999;
Seeman, 2005; Seeman, 2007). In this field, rather than using DNA as genetic
information, it is used as engineering materials (Aldaye et al., 2008; Kuzuya &
Komiyama, 2010; Seeman, 2010). DNA nanotechnology harnesses the information
processing capabilities of nucleic acids to program matter (Toffoli & Margolus, 1991);
by executing instruction at the molecular level. Information processing in nature is
distinctly different compared to silicon machines, by which nature exploits the physics
of the materials to achieve the solutions effectively with minimal energy (Conrad,
1972). The concept of informed matter (Lehn, 2004) is to design molecules to carry
information that will enable them to autonomously interact with each other. It is known

as the orchestration of self-organization concept (Zauner, 2005). The applications of
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constructing DNA nanostructures in the field of nanotechnology will be presented in the

following section.

2.3.1 Implementation of DNA Nanotechnology

The programmability of nucleic acids to form nanodevices facilitates the
advancement across various disciplines such as in nanoelectronic circuitry (Le et al.,
2004; Liu, Park, Reif, & LaBean, 2004), drug and therapeutic delivery system (Lee et
al., 2012), diagnostic probe that functions as pH reporter (Surana, Bhat, Koushika, &
Krishnan, 2011) and as DNA cargo that transporst and delivers molecular payloads
(Bhatia, Surana, Chakraborty, Koushika, & Krishnan, 2011; S.M. Douglas, Bachelet, &
Church, 2012). In order to provide insights into the applications of the constructed DNA
nanodevices, mechanism of these nanodevices mainly in drug delivery and in

nanoelectronic circuitry will be further explained.

Small interfering RNA (siRNA) is shown as a therapeutic agent that is able to
suppresses the expression of the targeted genes (Bumcrot, Manoharan, Koteliansky, &
Sah, 2006; Elbashir et al., 2001). For instance, in order to deliver siRNA into the
targeted tumour in mouse model, DNA nanodevice bearing siRNA and folate moieties
was constructed and it was then delivered intravenously via injection into the mouse
(Lee et al., 2012). The fundamental basis is that folate receptors are overexpressed in
the cancerous cells (Zwicke, Mansoori, & Jeffery, 2012), giving an opportunity for
DNA tetrahedral with folate moieties and siRNA to bind to the folate receptors on the

cancerous cells. Details of this mechanism are illustrated in Figure 2.8.
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Figure 2.8: DNA nanodevices with tetrahedral structure
DNA tetrahedral bearing folate moieties (grey triangles) and siRNA (purple) bind to the
tumour cells with overexpressing folate receptor (red). Retrieved from (Surana, Shenoy,
& Krishnan, 2015).

Recent development has seen the integration of DNA nanodevices in electronic field
including building a nanometer scale wire by metalizing the DNA nanotube with silver
(Liu et al., 2004) and the building of 2-dimensional DNA array as nanoelectronic
circuitry system (Le et al., 2004). Many electronic circuit subsystems such as dynamic
random-access memory (DRAM) and programmable logic array (PLA) are organized in
two-dimensional array (Rabaey, Chandrakasan, & Nikolic, 2003). Le et. al. (2004) took
the same principle in their initial step towards manufacturing high-density
nanoelectronic circuit, by constructing self-assembled DNA structure with gold
prototype nanoelectronic components that turned into two-dimensional (2D) array of
gold nanoparticles. These arrays could serve as nanoscale size memory by allowing the
electronic state of these nanoparticles to be read by the scanning probes. The DNA 2D
scaffold was constructed from a set of 21 synthetic oligonucleotides (DNA strands) that

was used to form four different tiles (blue, red, green and yellow) (Figure 2.9a-d). These

22



tiles further self-assembled and formed into the arrangement of 2D array (Figure 2.9e-

g). The gold nanoparticles was further added onto the 2D array scaffold.
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Figure 2.9: Nanoelectronics device

Figure 2.9a-d represents the geometric model of each nanocomponent that is made from
self-assembly DNA. Four basic components used to form the 2D scaffold are labelled
using different colors: blue, red, green and yellow. Figure 2.9e-g represents the
flowchart of assembly steps for constructing two-dimensional arrays. Figure 2.9¢
represents DNA strands in the solution. Figure 2.9f represents the deposition of DNA
scaffold onto the mica surface. Figure 2.9g represents combination of the scaffold with
gold particles. The gold particle was labelled as Au, bind to the red color component.
Retrieved from (Le et al., 2004).

2.4 Computational Tools for Nucleic Acids Sequence and Structural Design

A number of computational tools have been developed to aid the nucleic acid
sequence and structural analysis such as RNAstructure (Reuter & Mathews, 2010),
Vienna RNA (Hofacker, 2003) and RNAsoft (Andronescu, Aguirre-Hernandez,
Condon, & Hoos, 2003). For instance, Vienna RNA offers the prediction of nucleic
acids secondary structure and also consensus secondary structure for a set of aligned

sequences (Hofacker, 2003). Strategies to assist nucleic acid sequence design are
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common in nanotechnology field as well as in general lab applications such as
microarray probe selection and primer design for polymerase chain reaction (PCR)
process (Ben-Dor, Karp, Schwikowski, & Yakhini, 2000; Gerry et al., 1999; Li &
Stormo, 2001). Although the existing computational tools are universal and all-inclusive
with broad applications in various fields, they are not specifically developed to
construct DNA nanostructures according to the newly proposed schema. However, their
concepts are crucial in sequence design process and have been integrated into this new
computational tool to generate initial random sequences, prediction of free energy and

calculation of melting temperature for DNA sequences.

2.4.1 DNA Sequences Design

In this work, DNA Sequence Generator (DSG) (Feldkamp et al., 2003; Feldkamp et
al., 2001) was used to generate single-stranded deoxyribonucleic acid (ssDNA) as initial
input as part of module 1 design tool (objective 2). The availability of DSG to work as a
standalone program in Window operating system was used as part of our design tool.
Different sequence design strategies (Feldkamp, Rauhe, & Banzhaf, 2003; Feldkamp,
Saghafi, & Rauhe, 2001; Frutos et al., 1997; Marathe, Condon, & Corn, 2001) have
been introduced to design DNA sequences that obeyed certain physical constraints.
These constraints, especially in term of uniqueness are essential for DNA to act
efficiently as molecular bar codes or tag identification in a chemical library (Brenner &
Lerner, 1992; Shoemaker, Lashkari, Morris, Mittmann, & Davis, 1996) and to perform

computation at molecular level (Adleman, 1994).

The above cases required the avoidance of non-specific binding and every DNA is
expected to bind only to its targeted sequence. However, the need to have these
sequences to be as dissimilar as possible creates a multitude of selection and

combinatorics problem. Given that a DNA strand with length » and at each position in
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the sequence, there are four probable nucleotides; adenine (A), cytosine (C), guanine
(G) and thymine (T). The number of possible combinations would be up to 4". The task
to design DNA words, with specified word size over the four alphabets that satisfied
certain combinatorial constraints would be time consuming if it is done without the aid

of computational tools.

This program employed graph-based algorithm (Niehaus, 1998) to generate a set of
unique sequences that obeyed the parameters such as melting temperature and guanine-
cytosine ratio. The sequence generation methods prohibit the existent of complementary
DNA sequence and self-complementary base pairing within the same set of generated
sequence generated. Self-complementary refers to situation whereby a sequence is able
to fold with itself, and create a double-stranded like structure. In addition, DNA
sequences generated by DSG showed a better performance in term of measurement of

dissimilarity between a set of DNAs compared to other tools (Feldkamp et al., 2003).

DSG uses directed graph to generate sequences. Each position can accommodate
either A, C, G or T bases and sequences are generated as the paths proceed throughout
the graph. During each cycle of sequence generation, a base strand (or node) may only
be used once, so that the paths of any two sequences will not have common node. In a
similar way, if a node is being used, its complement will not be utilized for the
remaining sequences and existence of self-complementary base strands are restricted.
This scenario is illustrated in Figure 2.10. Algorithm 1 described the protocol used to

generate the sequences (Feldkamp et al., 2001).
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cgcgca <
cgcgcec <

acgcgc gogota <

Soseeg <

cgcgct

= acgcgctc

Figure 2.10: The graph for the sequence generation
The graph showed the paths taken to generate the sequences. Note that the node cgcgcg
is self-complementary and therefore it’s marked as forbidden. Retrieved from
(Feldkamp et al., 2001).

Algorithm 1 Sequence generation algorithm (Feldkamp et al., 2001)

1: create graph for base strands with x length

2: labelled base strands that do not fulfil criteria as Forbidden
3: for each sequence do

4: if StartNodes exist then

5: randomly choose one StartNode

6: for each StartNode do

7: if graph path less than x length then

8: mark StartNode as Used

9: if Successor exists then

10: choose an Unused SucessorNode which are not Forbidden
11: marked the SucessorNode and its complement as Used
12: else

13: look for another StartNode

14: remark the existing StartNode as Unused
15: end if

16: end if

17: else if graph path equal to x length then

18: evaluate that new sequence

19: if new sequence passed all filter then

20: add new sequence into the pool

21: end if

22: if new sequence fail any of the filter then

23: find new start Nodes

24: end if

25: end if

26: end for

27: end if

28:  end for
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DSG provides an aid in searching a set of distinct DNA sequences without the
manual checking for all possible combinations in 4". However, the generation of the
DNA as initial sequences required downstream works in order to ensure some of these
sequences can be used to form different configurations. The command line to execute
DSG is as following.

dsg $file_name.dIn
The criteria for sequence generation are compiled into a file ($filename.dln). The main
window (Figure 2.11) showed output sequences generated from DSG according to the

user specified parameters.

4 -1o)x)
Eile Edt View Generator Pool Help

D@ =] (@] W X| &®]

No. [Length [GC% [Tm |Sequence [ |
0 2 0.50 60.8 aaagctcgtcgtttaggagg

1 20 0.50 61.9 ggcecttcacgcaaaatactce

2 20 0.50 61.8 acactaccgcgtggctaaat

3 20 0.50 61.9 attacaagctgagggccgta

4 20 0.50 61.9 tgcgctcgcatgagtagtat

5 20 0.50 6&58.3 ctaccacttagggagcgatt

) 20 0.50 60.6 cggagccctgctactaattt

7 20 0.50 ©61.3 catccggcaggcttctatat

8 20 0.50 ©61.9 cggagatttgcccactaaag

9 20 0.50 659.4 gtccgggaggtagaactttt

10 20 0.50 62.0 tcaggggttcgtaatatcgg

11 20 0.50 61.9 attattaggtatggccccgg

12 20 0.50 61.8 acccgacagacggcttaata

13 20 0.50 658.1 cgtgtggtgaacagagtaca _
14 20 0.50 61.2 aacaatcgtatagggcagcc

15 20 0.50 659.4 ggttaaggtaatgctggtcg

16 20 0.50 659.4 ctcttctgcgacggtattcet ~
For Help, press F1 [ NUM

Figure 2.11: Set of DNA sequences
No. is the number of sequence, Length is the length of the sequences, GC% is the
percentage of guanine-cytosine content, Tm is the melting temperature and Sequence is
the DNA sequences generated by the program. Retrieved from (Feldkamp et al., 2001).

2.4.2 Calculation of Free Energy

The initial step to understand the mechanism of nucleic acid is to determine its
structure (Mathews & Turner, 2006). In the earlier section, it is mentioned that besides
hydrogen bonds that formed between complementary bases, base stacking interaction

also greatly influenced the stability of DNA double helix structure (Yakovchuk et al.,
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2006). Therefore, the construction of DNA nanostructures or nanodevices needs to take
into consideration the stability of the resulted double helix structure. The calculation of
free energy is crucial as a key determinant of the stability of secondary structure
formation. Free energy is predicted in the program RNAstructure (Reuter & Mathews,
2010) to measure the stability for the candidate structures. The structural prediction
includes criteria such as the intramolecular and intermolecular binding. Intramolecular
binding happens when a nucleic acid (DNA or RNA) strand forms hydrogen bond with
its own strand and form pseudoknot structure in RNA. Intermolecular binding occurs

when a nucleic acid forms hydrogen bond with another nucleic acids strand.

RNAstructure (Reuter & Mathews, 2010) has been developed to predict free energy
in structural determination of nucleic acid (DNA and RNA). It is made up of several
individual programs such as A/[Sub which is used to generate free energy for nucleic
acid sequence (Duan, Mathews, & Turner, 2006; Wuchty, Fontana, Hofacker, &
Schuster, 1999) and bifold program used to predict lowest free energy structure for two
interacting sequences by allowing intramolecular base pairs (Mathews, Burkard, Freier,
Wyatt, & Turner, 1999). DuplexFold program also carried out the same function as
bifold except that it does not allow intramolecular base pairing (Piekna-Przybylska,

DiChiacchio, Mathews, & Bambara, 2009).

For DNA, the parameters to calculate free energy are derived from the experimental
literature (Allawi & Santalucia, 1997; Allawi & SantalLucia, 1998a; Allawi &
SantalLucia, 1998a, 1998b; Allawi & Santal.ucia, 1998b; Bolewska, Ziclenkiewicz, &
Wierzchowski, 1984; Bommarito, Peyret, & SantalLucia, 2000; Breslauer et al., 1986;
Leonard, Thomson, Watson, & Brown, 1990; Moody & Bevilacqua, 2003; Nakano,
Moody, Liang, & Bevilacqua, 2002; Peyret, Seneviratne, Allawi, & SantalL.ucia, 1999;

Plum, Grollman, Johnson, & Breslauer, 1995; Wu, Nakano, & Sugimoto, 2002). As for
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RNA, the parameters to calculate free energy were extracted from Turner group (Lu,

Turner, & Mathews, 2006; Mathews et al., 2004; Xia et al., 1998).

The availability of RNAstructure to run locally enabled the integration of this
program to aid in the calculation of the free energy in our DNA sequences. Among the
programs included, as part of the newly developed computational tool is the A/lSub
program that is used to generate all possible low free energy structures for a nucleic acid
sequence while the DuplexFold program is for the prediction of lowest free energy
between two interacting nucleic acid sequences. The command to run program A/lsub is
as following.

AllSub A.fasta AllSub.ct --DNA
The variable A.fasta refers to the file name of the nucleic acid, DNA or RNA. --DNA

refers to the type of nucleic acid, DNA or RNA.

The command to run program Duplexfold is as following.

DuplexFold A.fasta B.fasta DuplexFold.ct -DNA

The variable A4.fasta and B.fasta refer to the file names of the nucleic acids, DNA or

RNA. --DNA refers to the type of nucleic acid, DNA or RNA.

2.4.3 Calculation of DNA Melting Temperature

The stability of the DNA structure formation needs to take into consideration the
melting temperature of the DNA sequences. This is due to the fact that melting
temperature is the temperature at which half of the DNAs dissociate into single-stranded
state (ssDNA) and the other half are still in double-stranded form (Wetmur, 1991). The
melting temperature will be used to determine the start nodes in the module 2: DNA

connectivity tool (second objective). The study hypothesizes that the melting
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temperature of hydrogen bonds for each base pair is non-uniform. Therefore, the start
nodes are important as it act as the starting points for different DNA to bind together.
The prediction of melting temperature is important for PCR reaction. Upon exceeding
the melting temperature, the double-stranded DNA will lose its structural formation and
separate into sSDNA. The ssDNA will appear as random coil and this process is known
as denaturation. The melting temperature is highly dependent on the length of the DNA
and its nucleotides coupled with salt composition. Unified Nucleic Acid Folding
(UNAFold) 1s an integrated program that simulates the folding, hybridization and
melting pathways as well as for prediction of melting temperatures (Markham & Zuker,

2008).

One of the modules available under UNAFold, the melt.pl is used to compute melting
temperature for both hetero-dimer (hybridization of two distinct sequences) and homo-
dimer (hybridization of two same sequences) (Markham & Zuker, 2008). Hybridization
is another term commonly used by molecular biologist to refer to nucleic acid sequences
that bind or form complementary using hydrogen bonds. Therefore, we recruited
UNAFold as an external program in order to obtain the melting temperature for DNA
and then employed it into the DNA connectivity tool to generate the start nodes for the

graph search in chapter 5. The command line to execute melt.p/ is as below.

melt.pl -NA DNA —sodium 0.05 —temperature $T —Ct 10e-6 A.seq B.seq

The variable —NA refers to nucleic acid type, DNA or RNA. -temperature ($7) is the
temperature for energy minimization. The default value is set at 37 °C. -sodium is the
concentration in molar for sodium ion while —Ct is the total strand concentration in

molar. Variable 4.seq and B.seq refer to the file name of the DNA or RNA sequences.
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2.5 The Tetris game and Self-organization Mimicry

In this work, the first hypothesis for implementing a new schema in constructing
DNA nanostructures was derived from the popular computer game, Tetris invented by
mathematician Alezey Pazhitnov (Pazhitnov, Gerasimov, & Pavlovsky, 1985). A player
is given pieces of Tetris shapes in sequential order (Figure 2.12) starting from the top
row of a game board (Figure 2.13). While it falls down, player can rotate each piece

either in the clockwise or anticlockwise direction before it stops moving permanently.

The rule is that when the entire row 7 of the board is occupied, that respective row r
will be cleared. The objective of this game is to increase the number of cleared rows
while reducing the height of the occupied space before the player lost (Breukelaar et al.,
2004). Tetris was an example of a non-deterministic polynomial-time hard (NP-hard)
problem because there was no systematic method to calculate the essential moves to
“win”, even when pieces of Tetris shapes were known in advance (Breukelaar et al.,

2004).

H =

Figure 2.12: The Tetris shapes
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n

Figure 2.13: A Tetris board with dimension of m x n
The standard board size is set at 10 x 20 (width x height), although it may vary.

The overview of this work was to treat the entire DNA nanostructure as a Tetris
board (size m x n) by filling it with pieces of Tetris shapes. In order to execute this
hypothesis, DNA sequences were used to build the Tetris shapes that hereinafter were

named as DNA Tetris shapes.

The second hypothesis in driving the development of a new schema for DNA
nanostructures construction was derived from the principle of self-organization occurred
in nature. This principle has been adapted across different disciplines ranging from
physics, chemistry as well as computer science (Bray, 1921; Castets, Dulos,
Boissonade, & De Kepper, 1990; Misteli, 2001; Pettinaro et al., 2002; Sahin et al.,
2002; Tabony, 2006; Zhabotinsky & Zaikin, 1973). The dynamism of information
technology, for instance worldwide internet computing and ubiquitous computing has
made it unfeasible to predict the complicated chain of interactions and also the

continuous side effect from the software applications (Mameia, Menezesb, Tolksdorfc,
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& Zambonelli, 2006). In order to overcome these restrictions, each component must be
able to “think” by itself and be able to handle unexpected dynamic situations. An
example of the self-organizing phenomenon occurred in nature is the construction of
tobacco mosaic virus coat (Camazine et al., 2001; Nicolis & Prigogine, 1977) by which
the pieces of the virus’s coat are able to execute like a puzzle and self-assembled
themselves without interference. Hence, the resulted structure is highly stable (lowest

free energy) (Camazine et al., 2001; Karsenti, 2008; Nicolis & Prigogine, 1977).

This showed that self-organizing system is essentially self-managing and not
influenced by external entities (Zambonelli, 2006). Self-managing includes the
capability of the software and information systems to have self-adaptation, self-
configuration and self-healing properties (Zambonelli, 2006). It is fundamentally
different from the present computational system, which is created by the designer using
the traditional top-down technique. The main advantage of self-organization system is
that it is highly robust because it can tolerate errors, deviation or partial break down
(Heylighen & Gershenson, 2003). It also has the capability to adapt to any changes that
occurred in the environment, repair the damage and then return to their beginning state

(Heylighen & Gershenson, 2003).

Examples of robotic applications that utilize the self-organization principle into the
formation of shape and pattern are mobile-robot formations and modular robot self-
configurations (Nagpal, Zambonelli, Sirer, Chaouchi, & Smirnov, 2006). The study
focused on the self-assembly ability of the mobile-agent swarm to program and robustly
self-organize itself into coordinate system (Cheng, Cheng, & Nagpal, 2005). Figure
2.14 showed the mobile-agent swarm aggregates into a particular formation and a shape

1s able to recover from “death”.
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Figure 2.14: Self-organization in mobile-agent swarm
Figure 1.4a represents a mobile-agent swarm formed into specified shape. Figure 1.4b
represents a shape that can return from death or displacement. Retrieved from (Nagpal
et al., 20006).

Another example of implementing self-organization into structural formation was the
Swarm-bots project (Pettinaro et al., 2002; Sahin et al., 2002). This project focused on
the self-organization behaviour in structural assembly with the goal to help the robot to
function; such as for the robot to form a long chain to overpass a crack in the terrain, or
to climb a high step. Swarm-bot was formed via the self-assembly of individual
components known as s-bots (Mameia et al., 2006). The hypothesis to integrate the self-
organization principle into constructing DNA nanostructure was derived following the
development of self-organization according to the cases mentioned above. Each piece of
DNA Tetris shape was able to self-assemble itself into the specified configurations. In
order to provide a simpler understanding, each DNA Tetris shape is alike to the s-bot

mentioned in the example above.

The entire chapter conducted a background study on the core topics associated with
the research subjects in various aspects in order to provide in depth review on the
subject matter. Following these reviews, the work continues by presenting the concept

of DNA Tetrominoes in the upcoming chapter 3.
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CHAPTER 3: THE PRESENTATION OF DNA TETROMINOES CONCEPT

3.1 Structural Assembly in Linear DNA

In the early 1980s, Seeman discovered that DNA is able to form other configuration
such as a junction-like structure instead of only double helix structure (Seeman, 1982).
From a topological point of view, DNA double helix is just a linear line and thus it is
not considered as an ideal substrate for structural engineering. The idea to break DNA
from its linearity is to construct synthetic branched molecules (Seeman, 1982).
Naturally occurring branched DNA found in biological systems is known as Holliday
junction (Holliday, 1964). The existence of branched structure proved that the DNA
strands are able to associate and produce junction points or to self-assemble and form
structures. If a pair of DNA strand is considered as a two-lane highway (Figure 3.1a),
then the intersection point between these lanes is regarded as a junction point (Seeman
& Lukeman, 2005). Therefore, in the context of four-way intersection it would allow
the traffic to flow across four different lanes or directions (Figure 3.1b). A branched

DNA can also be thought of as the four-way intersections.

b. ;
I
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bt

Figure 3.1: The illustration of linear DNA and branched structure
Figure 3.1a represents a two-lane highway with cars moving towards two different
directions. Figure 3.1b represents four-way intersections with cars driving towards four
different directions.
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Branched DNA, for instance Holliday junction is an intermediate in genetic
recombination (Holliday, 1964). Genetic recombination is a biological process to
exchange DNA segments between two chromosomes in order to produce novel
combinations of genetic material in the offspring. Chromosome is a DNA molecule
packaged into thread-like structures. Branched DNA has the tendency of having
sequence symmetry that allowed its branch point to migrate and cause the junction to be
mobile (Figure 3.2) (Seeman, 1982). Sequence symmetry occurred when four DNA
strands are actually made up of two pairs of DNA strands with same sequence (Seeman,
2010). However, it is more useful to design and assemble synthetic DNA sequences that
lack sequence symmetry so that the resulted structure is more stable and immobile

(Kallenbach, Ma, & Seeman, 1983) (Figure 3.3)
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Figure 3.2: The illustration of mobile Holliday junction
The Holliday junctions with four DNA strands (1, 2, 3 and 4). Step I and II are the
migration of the branch point towards two different directions. Sequence symmetry
occurred when four DNA strands are actually made up from two pairs of same
sequences. DNA strands 1 and 3 have the same sequence; DNA strand 2 and 4 are from
another set of same sequence. Adapted from (Seeman, 1982).
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Figure 3.3: The illustration of an immobile Holliday junction
The Holliday junctions are made up of four DNA strands (labelled as 1, 2, 3 and 4).
These sequences lack two-fold symmetry at the center region, therefore branch
migration cannot occur. Adapted from (Seeman, 1982).

The ability to generate immobile-branched DNA molecule has allowed for different
structural arrangements to be formed. In order to form a larger structure, many of these
DNAs would need to join together using the sticky end. Sticky end is a fragment of
DNA that has a stretch of unpaired nucleotides located at the terminal. This scenario is
illustrated in Figure 3.4, which showed the use of sticky ends from DNA 1 and DNA 4
to form complementary base pairing and thus a larger structure. It demonstrates that

DNA structural arrangement could be extended to produce structures like lattice form.
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Sticky end

, — > 3 (DNA 3)
(BNAT) 5 GCACGAGTTGATACCG AGTTGAGGCCG

_ ATGGCTCAACTCCGGC 5  (DNA4)

(DNA2) 3 CGTGCTCAACT “—
Sticky end
Sticky end
: > > 3 (DNA3)
(DNAT) &' GCACGAGTTGATACCGAGTTGAGGCCé

(DNA2) 3 CGTGCTCAACJ'ATGGCTCAACTCCGGC 5 (DNA 4)
—

Sticky end

Figure 3.4: The sticky end
Sticky ends from DNA 1 form complementary with the sticky ends from DNA 4
through the formation of hydrogen bond. The dotted lines are the formation of hydrogen
bonds. Adapted from (Seeman et al., 1999).

3.2 Construction of Fundamental Structures: From Linear DNA to Simple
Lattice

Sticky ends have proven to be crucial in the formation of two-dimensional crystal
design (Grunbaum & Shephard, 1986; Winfree, 1996). Winfree designed synthetic
molecular units, by introducing two structural motifs, DAO (double crossover,
antiparallel, odd spacing) and DAE (double crossover, antiparallel, even spacing)
(Winfree et al.,, 1998) (Figure 3.5a) to form two-dimensional lattices. The DAO
molecules have an odd number of half-turn (3 half-turns in ~21 base pairs) between the
crossover points. On the other side, DAE molecules have an even number of half-turns
(4 half-turns in ~21 base pairs). These designs depend critically upon the twist
parameter in the DNA double helix, in which a complete turn takes place in 10.4-10.5
base pairs (Rhodes & Klug, 1980; Wang, 1979). These synthetic molecular units were
designed based on Wang tiles specification; in which each tile is labelled with coloured

edges. The tiles may be placed next to each other only if both of their edges are having
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identical color (Wang, 1961). These tiles will self-assemble into two-dimensional lattice

crystals that obey colouring conditions.

In each design, the A and B tiles are arranged alternating to each other (Figure 3.5b)
using sticky ends to “glue” among themselves. Therefore, sticky end sequences for each
desired contact must be unique to ensure that the structures would form according to the
design. The length of sticky ends is set at five nucleotides for DAO (Figure 3.5c) and
six nucleotides for DAE, so that each correct contact contributes approximately 8 or 14
kcal mol™ to the free energy of association at 25 °C, according to nearest-neighbor
model (SantalLucia, Allawi, & Seneviratne, 1996). The length of the double-crossover
arms and the sticky ends, as well as the separation between crossover points, closely

resemble the natural twist of the B-form DNA double helix structure.

To ensure that the component strands form the desired complexes, DNA strands
must be carefully designed so that undesired base pairing and conformations are
prohibited. Undesired base pairing or incorrect binding happened when a DNA strand
forms complementary with DNA strands other than the one that is assigned to (Figure
3.6). Therefore, the solution to this design problem (Seeman, 1990; Sun, Brem, Chan, &
Dill, 1995; Yue & Dill, 1992) is to maximize the free energy differences between the
desired and all other probable conformations (Winfree et al., 1998). In each double-
crossover sequence, there is no 6-bases complementarity unless required by the design
and the occurrences of 5-bases complementarity is uncommon (Winfree et al., 1998).
This feature is to ensure that during self-assembly process, the DNA strands would
spend less time in the undesired associations and in turn could form the desired

structures with higher yield (Winfree et al., 1998).
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Figure 3.5: Design of double-crossover structure and arrangement into 2D lattices
Figure 3.5a illustrates the model structure for DAO and DAE type A units. Each
component strand is displayed in unique color. Crossover points are circled. Figure 3.5b
is the logical structure for 2D lattices by which each design (DAO, DAE) comprises of
type A and B. Type A units have four coloured edge regions, each of which matches
exactly one coloured region in adjacent type B units. Figure 3.5c is the actual sequences
used to form the DAO. Retrieved from (Winfree et al., 1998).

a b.
1 23 45 678 12 34 567 8
(DNA 1) > (DNA 1) >
ACCGTAAT ACCGTAAT
ONAZ) <L G GCATTA (DNA3)‘JTGGCAT|CC
1 2 345 678 12 345 67 8

Figure 3.6: The correct and incorrect base pairing

Correct base pairing is defined as base pairing that is supposed to form according to the
design. Incorrect base pairing refers to the DNA pair that is not supposed to form base
pairing. DNA sequences are depicted as DNA 1, DNA 2, DNA 3 and DNA 4. Figure
3.6a represents correct base pairing whereby DNA 1 hybridizes with DNA 2 by forming
complementary in all their 8 base pairs. Figure 3.6b demonstrates an example of
incorrect base pairing whereby both DNA 1 and 3 are not supposed to bind. However,
due to the existence of complementary base pairing in position 1-6 of DNA 3 with the
DNA 1, both DNA strands formed partial hybridization. The arrows showed the
direction of the DNA from 5’ to 3°.
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3.3 Design Methodologies to Construct DNA Nanostructures
3.3.1 Structural Fabrication in DNA Origami

DNA origami is a technique of folding DNA to create large composite of double-
crossover (DX) motifs. The word “Origami” refers to the traditional Japanese art of
paper folding. This approach requires a long scaffold and more than hundreds of short
single-stranded DNAs known as “staple strands”, which are used to form
complementarity with the scaffolds (Figure 3.7). The scaffolds used to build DNA
origami could bend and fold when hybridized with staple strands (Rothemund, 2006).
Algorithm 2 demonstrates the summary of the protocol used in the DNA origami design

previously reported by Rothemund (2006).

INININ INININ INININ\
+ NI\ INININ NN\
NI\ INININ\ INININ\
NI\ NI\ INININ

Scaffold Staple strands

Figure 3.7: Biological components utilized by DNA origami to construct DNA
nanostructures

Algorithm 2 Summary of DNA origami protocol to construct nanostructures
following (Rothemund, 2006)

p—

for each DNA shape do
build a geometric model of the DNA structure (Figure 3.8a)
fill the geometric model using ‘cylinders’
(cylinders = even number of parallel double helices)
insert crossover (blue crosses) to hold the helices
fold the scaffold back and forth in a raster fill pattern (Figure 3.8b)
present the geometric model and folding path as lists of DNA lengths
input these lists with DNA sequence scaffold to the computer program
add staple strands to form complement with scaffold (Figure 3.8c¢)
calculate the twist of the crossover in scaffold (Figure 3.8d)
10: merge the adjacent staple to yield fewer, longer staples (Figure 3.8¢)
11:  enddo

e A A
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Figure 3.8: DNA nanostructures design using DNA origami technique

Figure 3.8a is a shape (red line) approximated by parallel double helices joined by
periodic crossover (blue x). Figure 3.8b represents folding of a scaffold (black line) that
runs through every helix and forms more crossovers (red x). Figure 3.8c presents the
use of staples strands (colored DNA strands) to bind and fold the scaffold. Figure 3.8d
represents figure similar to 3.8c but DNA strands are drawn as helices. Figure 3.8¢ is a
finished design after merging and rearrangements along the seam. Retrieved from
(Rothemund, 2006).

Every distinct DNA nanostructure would require a new scaffold routing design and
the synthesis of different sets of strands (Douglas, Dietz, et al., 2009; Han et al., 2011;
Ke et al., 2009; Rothemund, 2006). Different types of scaffolds are used to construct
DNA origami (Table 3.1), including 7,249 nucleotides and circular DNA genome
obtained from M13mp18 phage (Rothemund, 2006). The challenge of DNA origami in
using long scaffold as construction material is that in order to build a gigadalton

nanostructure it would require a scaffold of over 1 megabase which is mechanically
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fragile and difficult to synthesize (Pinheiro, Han, Shih, & Yan, 2011). The staple
strands hold the adjacent portions of the scaffold together by forming crossover at every
(n+0.5) helical turns of the DNA. DNA origami requires extensive amount of staple
strands to bend the long scaffold into the desired shapes (Andersen et al., 2008;
Andersen et al., 2009; Marchi, Saaem, Vogen, Brown, & LaBean, 2014; Rothemund,

2006).

As each staple strand is targeted to a specific location in the scaffold, any mispairing
would result in incompatible binding and thus resulted in the non-conformity of the
desired structures. On the contrary, DNA Tetrominoes concept allows each Tetris shape
to be considered as an entity on its own and therefore is independent of the overall

structure.

Table 3.1: List of scaffold and staple strands used to construct DNA nanostructures

Nanostructures Staple Scaffold References
Strands
Arbitrary planar 200 - 250 | M13mpl18 DNA (Rothemund, 2006)

structures: Square,
Rectangle, Star, Disk
with holes (smiley),
Rectangular domains

3D box with a 220 M13mpl18 DNA (Andersen et al., 2009)
controllable lid

2D asymmetric origami | > 1,600 | 51,466 nucleotides, (Marchi, Saaem,
sheets single-stranded form of | Vogen, Brown, &

scaffold produced from |1 3Bean, 2014)
A/M13 hybrid virus

Dolphin-shaped with > 200 MI13mp18 DNA (Andersen et al., 2008)
flexible tails

A number of sophisticated computational tools (Douglas, Marblestone, et al., 2009;
Williams et al., 2008; Zhou et al., 2012) have been developed to assist in the
construction of nanostructures based on DNA origami technique. For instance,

caDNAno (Douglas, Marblestone, et al., 2009) is an open-source software package
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developed to construct DNA origami structures. It is equipped with graphical user
interface to enable manual modification on the scaffold and staple paths that are used to
design 3D DNA origami shapes (Douglas, Marblestone, et al., 2009) (Figure 3.9). The
3D DNA origami scaffolds are represented as pleated layers of DNA double helices that

are based on honeycomb lattice skeleton (Douglas, Marblestone, et al., 2009).
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Figure 3.9: The screenshot of CaDNAno interface
The interface is separated into three sections. Left: The cross-sectional view of the
honeycomb framework whereby helices are added into the design. Middle: An interface
to modify the 2D schema of that particular scaffold and staple paths. Right: A real time
3D model corresponding to the design. Retrieved from (Douglas, Marblestone, et al.,
2009).

The automated processes of caDNAno involved steps such as scaffold selection,
assignment of staple paths and setting of complementary sequences (Douglas,
Marblestone, et al., 2009). Despite this, subsequent studies are needed to optimize the
design parameters that may influence the folding yield, for example scaffold routing and
densities of scaffold versus staple crossover (Jungmann, Liedl, Sobey, Shih, & Simmel,
2008). There is another tool known as FOLDNA web server that is developed to

autonomously design 2D nanostructures upon user input image (Zhou et al., 2012). This
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web server, executed by first generating the scaffold pathway based on the custom
picture, followed by generation of the DNA strands that bind to the scaffold and then

filling of the staple DNA based on DNA helix torque angle (Zhou et al., 2012).

3.3.2  Structural Fabrication in Single-stranded DNA Tiles (SST)

Following the DNA origami technique, single-stranded DNA tiles (SST) technique is
introduced to address the modularity characteristic surrounding the construction of
DNA nanostructure. SST used modular components to build the structures by which
each single component can be included, excluded or replaced without changing the
remaining structure (Ke et al., 2012). The challenge in this method is to develop a
universal strategy that will allow every component (small monomer of DNA) to be
mediated strictly by local interactions and then formed into the specific global shape

(Figure 3.10) (Wei et al., 2012).

Each component exhibits homogeneous property by which all components used
within a structure are always uniform in term of nucleotides length. For example, a
molecular cube was constructed using single-stranded DNA with 42 nucleotides (Wei et
al., 2012) while Ke et al. (2012) built a cuboid shape using single-stranded DNA with
32 nucleotides (Ke et al., 2012). The SST technique regards each of these single-
stranded DNAs as one component and multiple components are used to assemble into
the end-structures. Figure 3.11a illustrates each SST component that is comprised of
four concatenated domains; the domain 1 (orange color), domain 2 (blue color), domain
3 (green color) and domain 4 (pink color) (Wei et al., 2012). By pairing up the
complementary domains (Figure 3.11b), the motifs can be arranged to form DNA

lattices composed of parallel DNA helices connected by single-stranded linkages.
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Modular components

Global shape is self-assembled from many Targeted structure
modular components.

Figure 3.10: Self-assembly of modular components in SST
Figures on the left and right are the relative comparison of using DNA strands as

components to assemble into the prescribed targeted structure. Retrieved from (Wei et
al., 2012).
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Figure 3.11: The Single-stranded DNA tiles units

Figure 3.11a represents a SST motif with four domains (orange domain 1, blue domain
2, green domain 3 and pink domain 4). Figure 3.11b represents the assembly of
multiples SST motif into a structure. Each standard (full) tile has 42 bases (labelled as
U), and each top and bottom boundary (half) tile has 21 bases (labelled as L). Retrieved
from (Wei et al., 2012).

Although the sequence design for SST is straightforward, individualized sequence
design is still required in order to enable intermolecular binding to form between every
domain. Meanwhile in the newly proposed DNA Tetrominoes concept, each Tetris

shape is considered as an entity, and each of this entity is independent of the overall

structural design. The goal is to have these Tetris shapes to merge together with
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different type of combinations to generate a larger structure. It only requires the users to
program the sticky ends of each DNA Tetris shape in order for the shapes to be able to
form complementary and join with other shapes. Moreover, the proposed schema allows
the construction of heterogeneous components, which means the components that are
used to make a larger structure need not always be the same or uniform. This is because
different Tetris shapes (heterogeneous blocks) or from the aspect of Tetris game,
different types of Tetris shapes can be used to fill the Tetris board (search space). The
DNA sequences used to construct the DNA nanostructures were designed using
UNIQUIMER software (Zhu, Wei, Yuan, & Mi, 2009) by minimizing the sequence
symmetry (Seeman, 2010) or by utilizing an entirely random sequences of SST motif
(Wei et al., 2012). The sequence design criteria for the SST based on sequence

symmetry minimization (Wei et al., 2012) is presented as Algorithm 3.

Algorithm 3 SST sequence design criteria (Wei et al., 2012)

for each DNA sequence do
randomly generate every nucleotide from (A, T, G, C)
generate complementary nucleotide for the sequence generated in (2)
check for repeating segments beyond length 8 or 9 nucleotides

1

2

3

4

5: if repeating segments more than 8 or 9 then

6 mutate the most recent nucleotide till the condition is satisfied
7 end if

8 avoid four consecutive A, C, G, T bases

9

end for

3.4 Fundamental Concepts in DNA Tetrominoes

This section begins by presenting the fundamental concept in the proposed schema,
DNA Tetrominoes which is a new nano-fabrication strategy based on the paradigm of
self-organization. Hence, Tetris shapes were used as the representative in demonstrating
the feasibility of using multiple elementary blocks in structural assembly. The
hierarchical schema in DNA Tetrominoes started with an elementary block, followed by

shapes and then larger structural formation. As a basis, each block used two single-
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stranded DNAs to form a block. Then, multiple units of these blocks assembled into

Tetris shape. Different Tetris shape would then assemble into a larger structure (Figure

3.12).

a ]

Basic unit assembled into
Tetris shape

dpp g T

Matching connector

L S

Multiple Tetris shapes
assembled into larger structure

a © Block connector
nnn Matching connector

Figure 3.12: Hierarchical schematic of using Tetris shape to form structures
Figure 3.12a represents the Tetris shapes made up from one or multiple basic blocks.
Each block may or may not have its block connector used to join different Tetris shapes.
Figure 3.12b represents the example of joining Tetris shapes through the connector. The
shapes can only merge when both shapes have matching connector. In the case (1), both
Tetris shapes had matching connector and therefore these shapes could join together.
The Tetris shape in case (2) does not have connector, thus it cannot join with other
shape. While in case (3) only one of the shapes has the connector and thus also cannot
merge together. Multiple Tetris shapes further assembled to form larger structures.
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Each of these Tetris shapes may comprise of one or more connector on the horizontal
sides of the shape. Its function is to enable the shape to bind to another shape that had
matching connector and thus forming larger structures. In the context of DNA

sequences, the matching connector was defined as DNA with complementary sticky

ends (Figure 3.13).
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Figure 3.13: Conceptual illustration on the assembly of DNA Tetris shapes
Different DNA strands were labelled as DNA 1, DNA 2, DNA 3 and DNA 4. Figure
3.13a represents the Tetris shape that has 1 block connector. Figure 3.13b represents
Tetris shape with 3 block connectors. Figure 3.13c represents two Tetris shapes with
matching connector and then joined together to form a larger structure. Whenever there
is a presence of block connecter, its corresponding region in DNA sequence will have
sticky end. Sticky end is needed to enable two Tetris shapes to bind together.
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3.5 Construction of DNA Tetris Shape

Before beginning to construct DNA nanostructures, a list of Tetris shapes that could
be derived from DNA sequences were identified (Figure 3.14). Tetris shapes were made
from DNA sequences and were identified as DNA Tetris shape. In order to do so, every
two ssDNA was treated as one Tetris block (Figure 3.15). The initial random DNA

sequences used to form the Tetris block were generated using DSG and a Perl script.

Tetris shape Tetris shape
T Y AN )
w L
F B
E I

Figure 3.14: List of Tetris shapes
T, W, B-shapes were formed from 4 basic blocks while F, E, V and L-shapes were
formed from 3 basic blocks. I-shape was formed from 1 basic block.
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Figure 3.15: Basic blocks used to design DNA Tetris shapes
There were two types of blocks used to design the structures. Figure 3.15a represents
Type-1 block. Figure 3.15b represents Type-2. Each strand was compartmentalised into
a main block and sticky end.
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Multiples basic blocks were used to form a Tetris shape. These blocks were stacked
and merged together to form the shapes. Whenever one DNA block stacked upon
another block, a crossover between the blocks would be implemented into the design.
Each basic Tetris shape (with an exception of the [-Shape) was built from either six or
eight single-stranded DNA (ssDNA), which was then merged to form four long
continuous ssDNAs. The I-Shape, on the other hand was formed using just two

ssDNAs .

Figure 3.16 illustrates the formation of eight distinct Tetris shapes using previously
mentioned Type-2 basic block. Each of the DNA Tetris shape was made up of 4 DNA
strands except for I-shape that was formed from 2 DNA strands. Six of these shapes
were mirror image of each other (i.e., T-shape with W-shape; F-shape with E-shape and

V-shape with L-shape).

In addition to the above, the DNA strands were also subjected for sequence
modification processes such as the position of block stacking, nucleotide shifting,
sequence insertion and deletion to ensure a greater versatility in nucleotide
combinations for the resulting structures. It also described the process of the DNA
sequences to merge and form into four long continuous DNA (Figure 3.17). In this case,
Type-1 block was used to build the L-Shape, while the Type-2 was used to build the T-
Shape, B-Shape and I-Shape. Two neighbouring blocks were linked using the existing
sticky ends while a single crossover was utilised to ensure the linkage between two
blocks formed when the two blocks were stacked on top of each other. The merging of
short sequences from 3 blocks (L-Shape) and 4 blocks (T-Shape, B-Shape) resulted in

four long stretches of DNA sequences.
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Figure 3.16: Conceptual representation of the formation of DNA Tetris shapes
Figure 3.16a-c represents the formation of T-shape, W-shape and F-shape. Basic blocks
(Type-2) were used to form four long continuous single-stranded DNAs (ssDNAs).
DNA strands were represented as DNA 1, DNA 2, DNA 3 and DNA 4. The arrows in
the DNA strands indicated the 5’ to 3’ direction.
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Figure 3.16 (continued): Conceptual representation for the formation of DNA Tetris
shapes
Figure 3.16d-f represents the formation of E-shape, V-shape and L-shape. Basic blocks
(Type-2) were used to form four long continuous single-stranded DNAs (ssDNAs).

DNA strands were represented as DNA 1, DNA 2, DNA 3 and DNA 4. The arrows in
the DNA strands indicated the 5’ to 3’ direction.
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Figure 3.16 (continued): Conceptual representation for the formation of DNA Tetris
shapes
Figure 3.16e represents the formation of B-shape and I-shape. Basic blocks (Type-2)
were used to form four long continuous single-stranded DNAs (ssDNAs). DNA strands
were represented as DNA 1, DNA 2, DNA 3 and DNA 4. The arrows in the DNA
strands indicated the 5’ to 3’ direction.
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Figure 3.17: Schematic illustration of DNA sequence modifications
Figure 3.17a represents the formation of L-shape using 3 blocks or 6 DNA strands (L1-
L6). These strands were then subjected for modifications (insertion of 10 and 15
nucleotides to L1 and LS, insertion of 5 nucleotides to L6) and block stacking (Block
L5-L6 was stacked on position -5 (to the left) relative to Block L1-L2). After
modification, these 3 blocks then merged to form 4 long strands (CL1-CL4). Figure
3.17b represents formation of T-shape using 4 blocks or 8 DNA strands (T1-T8). These
strands were modified (insertion of 10 and 20 nucleotides to form blunt end on T6 and
sticky ends on T8. After modification, it was merged to form 4 newly combined strands
(CT1-CT4). Figure 3.17c represents B-shape formation using 4 blocks or 8 DNA
strands (B1-B8). These strands were subjected for modifications (Deletion of 10
nucleotides on strand B2-B4, B6 and B7) and fragment shifting (fragment “TCTAA”
shifted from strand B7 to B8). Thereafter, blocks were merged to form 4 long strands
(CB1-CB4). Figure 3.17d represents I-shape using a single block or 2 DNA strands (11,
12). These strands were subjected for modification whereby deletion of 10 nucleotides
occurred on 12 sticky ends. Following modification, CI1 and CI2 were the new strands.
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3.6 Framework To Implement DNA Tetrominoes

The use of computational tools to support the proposed schema was crucial since it
was improbable to build a structure manually from scratches as it involved a very large
search space and combinatorics issues. As a consequence, there was a need to develop
tools that were able to solve these problems. This schema would also allow different
types of combinations to be formed whereby 3 x 4 rectangle was used as a hypothetical
application to proof the feasibility of building multiple combinations of DNA

nanostructures using the newly proposed schema.

In order to demonstrate the execution of DNA Tetrominoes concept, the entire
framework was presented by displaying the graphical flow on the processes that
occurred during structural construction. It began with the input parameters such as
minimum and maximum guanine-cytosine ratio ($minGC, $maxGC) and the type of
combinations (8Rec). SRec was used to call out its own pre-generated sequence
dependency file ($Rec)DefineSeq.txt. The derivation of sequence dependency file

would be discussed in details in chapter 6.

The entire framework diagram was segregated into two main modules (Figure 3.18).
Module 1 was the development of sequence design tool to construct heterogeneous
DNA Tetris shapes that could conform to the designed structures while module 2 was
the development of DNA connectivity tool used to compute the binding affinities
between the DNA Tetris shapes. Both module 1 and 2 would be discussed thoroughly in
Chapter 4 and Chapter 5. All scripts were written in Tool Command Language (TCL)
and Perl version 5.12.4 and the completed scripts were then tested in Unix environment

in Mac OS X, version 10.7.5.
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Figure 3.18: Framework of the implementation of DNA Tetrominoes concept
It was segregated into module 1 and module 2. Module 1 was to generate DNA
sequences that could conform into a particular structure and module 2 comprised of
DNA connectivity tool to compute binding affinities between the DNA. The rectangular
shapes were the script/program used to execute the task and the parallelogram shapes

were the output/input generated by the programs.

3.7 Comparison between DNA Origami, SST and DNA Tetrominoes

This section summarized the differences that were previously discussed between

DNA origami and SST techniques as well as DNA Tetrominoes schema (Table 3.2)

Table 3.2: Comparison between DNA origami, SST and DNA Tetrominoes

Aspects DNA Origami Single-stranded DNA Tiles | DNA Tetrominoes
(SST)
Schema Each distinct structure | Modular assembly: Every Modular assembly: Every

(S. M. Douglas et al.,
2009; Han et al., 2011;
Ke et al., 2009;
Rothemund, 2006)
requires a new scaffold
routing design and the
synthesis of different
sets of staple strands.

single component in the
structure can be included,
excluded or replaced without
changing the remaining
structure (Ke et al., 2012).

Homogeneous: Components
that make up the
nanostructures are always
uniform (standardized
components).

single component in the
structure can be included,
excluded or replaced
without changing the
remaining structure.

Heterogeneous:
Components used to
make up a larger
structure need not always
be the same (Different
Tetris shapes)
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Table 3.2 (continued): Comparison between DNA origami, SST and DNA

Tetrominoes
Aspects DNA Origami Single-stranded DNA Tiles | DNA Tetrominoes
(SST)
Sequence Each staple strand is Individualized sequences Each shape is
Design targeted to a specific design is required to enable |independent of the overall
location in the scaffold. |intermolecular binding structure design (and only
between domains in every conforms to its individual
SST motif (Ke et al., 2012; shape)
Wei et al., 2012; Yin et al.,
2008).
Programma- |Required a long scaffold | One standardized length with| Any Tetris shape can
bility as construction material. | four domains is used combine together with

To build a gigadalton
nanostructure, it would
require a scaffold (> 1
megabase) (Pinheiro et
al., 2011).

throughout a structure. (e.g.
42 nucleotides ssDNA (Wei
et al., 2012), 32 nucleotides
(Ke et al., 2012)).

different combinations to
generate larger
structures. The users only
need to program the
sticky ends of each Tetris
shape to be compatible.

3.8 Summary

This chapter began by discussing different approaches adopted by the DNA origami

and SST techniques in constructing DNA nanostructures. Comparisons between various

techniques against the DNA Tetrominoes revealed the differences in strategy taken for

nanostructures fabrication. After successfully identified the core features presence in the

schema, it was crucial to identify Tetris shapes that could be derived to form DNA

Tetris shapes. These shapes were identified and then the procedures to build individual

DNA Tetris shapes through the process of block stacking and merging were elucidated.

A framework of computational tool to oversee the execution and development of the

entire computational process to support the proposed schema was presented. This

framework was segregated into two modules; by which both the development of module

1 (sequence design tool) and module 2 (DNA connectivity tool) would be described in

details in Chapter 4 and Chapter 5.
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CHAPTER 4: MODULE 1 SEQUENCE DESIGN TOOL

4.1 Introduction

The presentation of DNA Tetrominoes concept for structural construction had been
introduced in the prior chapter. In order to support the newly proposed schema, the
development of new computational tool was essential. Therefore, a sequence design tool
(Module 1) that used to generate a set of DNA sequences that could conform to the
prescribed structures were developed. This tool incorporated the use of optimization
algorithm to evaluate the candidate DNA sequences based on the fitness criteria and
further exerted mutation on the DNA sequences. Penalty scores had been derived to
enable the calculation of the total score for each of the fitness criterion. Less stringent
criteria were adopted and allowed the structures to form, subjected to the occurrences of
some unwanted aggregates. This was necessary to handle the formation of structures
under undesirable and uncontrollable physicochemical conditions. It would be
applicable for a specific scenario such as when the DNA nanostructures were built
inside the living cells, as compared to the conventional method of building the
structures externally (thus requiring a complicated delivery mechanism afterwards)
(Amir et al., 2014). The newly developed tool would autonomously generate a set of

DNA sequences based on the DNA Tetrominoes concept.

4.2 Framework for the Implementation of Sequence Design Tool

The module 1 sequence design tool was utilized to generate DNA sequences based
on the designed structures (Figure 4.1). The core script in this module is
Main RunDNATetris.tcl and it comprised of the following six scripts namely
Main2GenerateSeq.tcl, GenerateRandomSeq.pl, Adjust RandomSeq.pl,
FindStartPosition.pl, CleanEmptyPosition.pl and GetLongestComplement.pl (Appendix

A-G). It began by utilizing GenerateRandomSeq.pl or DNA sequence generator (DSG)
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to generate a set of random DNA sequences (RandomSeq.txt). These random DNA
sequences were then modified according to the sequence dependency file
($Rec)DefineSeq.txt to produce a list of unoptimized DNA sequences

(UnOptimized Seq.txt).

Module 1
Sequence design tool Main_RunDNATetris.tcl
Main2GenerateSeq.tcl
A 4
> Generate/R[?ggomSeq.pl 7 RandomSeq.t)y/
UnOptimized_Seq.txt
Adjust_RandomSeq.p! |«
> Maxlteration Y External program
FindStartPosition.pl,
> CleanEmptyPosition.pl. > RNAstructure
GetLongestComplement.pl
Penaltyoal =0 DNA sequences
Summary

<= Maxlteration
>0

Mutate

Figure 4.1: Flowchart for sequence design tool (Module 1)
The tool generated random DNA sequences to optimize the DNA sequences so that they
formed respective structure as of designed. The rectangular shapes were the
script/program used to execute the task and the parallelogram shapes were the
output/input generated by the programs. The final outputs were DNA sequences and
summary file.

The unoptimized sequences were later subjected to optimization algorithms to allow
mutation to be exerted on the candidate DNA sequences until all the candidates

complied with all fitness criteria. The fitness criteria were used to calculate the penalty
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scores (Penaltyr,) for the candidate sequences. During each mutational cycle,
whenever the score for Penaltyr,,; was more than zero, the sequence needed to undergo
mutation. However, if the sequence still did not pass the fitness evaluations after the
maximum iteration (Maxlteration), which was set to default 500 mutation cycles, the
program would proceed to regenerate a new set of initial unoptimized sequence for the
optimization algorithm. This was to reduce the time frame required to perform the
computation process. In addition, the optimization algorithm was required the call out
an external program named RNAstructure (Reuter & Mathews, 2010). It then output a
list of DNA sequences that conformed to the desired structure and the keywords to

identify the correspond Tetris Shape.

The optimization algorithm had two main sections that were the sequence evaluation
based on four fitness parameters (Table 4.1) and the sequence mutation. The four fitness
criteria were the false binding sites (FBS), free energy, G4 pattern and percentage of
guanine-cytosine. They were used to calculate the penalty scores for all the generated
candidates sequences. The protocol for the optimization process (OptimizedSeq.tcl) was

presented as Algorithm 4.

Table 4.1: Fitness evaluation criteria for sequence optimisation algorithm

Fitness criterion Description
Base pairing at false The detection program exhaustively looked for maximum
binding sites consecutive base pairing at unwanted positions (also known

as false binding sites or FBS), FBS.x = 6.

Free energy The calculation of free energy incorporated the use of
program A/lSub and DuplexFold (Reuter & Mathews,
2010). The free energy of intra-molecular pairing must be
higher compared to inter-molecular pairing.

Percentage of guanine- | Percentage of GC must be in the range of 40% to 70%
cytosine (GC) content inclusive.

No existence of G4 No existence of GGGG pattern was allowed in the
pattern sequence.
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Algorithm 4 Sequence optimization algorithm
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for each sequence (S,) in population do
initialize PenaltyScore (P)=1, initialize LoopValue (L)=1
while L =1 do
if n=1 then
exec program AllSub
initialize ADuplexFold =0
else if n>1
exec program AllSub
for each Target (MSeq) complement with Query do
exec program DuplexFold
end for
extract minimum energy of DuplexFold, AjowestbuplexFold
for each S;..S,.; do
if S, had region hybridized with S;..S;.; then
substitute the reverse complement into S,
remove hybridized match in S, and record as T,
record start position, QStart in T,, if FBS > FBSyax
find LongestComplementarity from QStart
end if
end for
end if
grab "GGGG" and "CCCC" from S,
calculate PercentageCG = (T¢ + Tg)/ Tv)
if AAlISub < ADuplexFold or ALowestDuplexFold then
incr P
else if LongestComplementarity > FBSy,x then
incr P
else if "GGGG" or "CCCC" exist then
incr P
else if PercentageCG < 40% or > 70% then
incr P
end if
if P >0 then
if forbidden region exist then
MutateRegion = AllPosition—ForbidPosition
else if forbidden region does not exist
MutateRegion = AllPosition
end if
Randomly select a nucleotide, Nyiq from MutateRegion
Randomly select Nnew from {A, T, G, C}, NNew '= Noud
Replace Nyjg with Nyew, initialize L=1
end if
if P =0 then
output S,, initialize L = 0, move to next sequence Sy
incr n
end if
end while
end for
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4.2.1 Base Pairing at False Binding Sites (FBS)

As a general rule during DNA assembly, it was crucial for DNA sequences to form
base pairings exactly at the pre-defined positions and at the same time avoided pairings
at unwanted positions (mispairing). Unfortunately, such false-binding sites (FBS) were
inevitable; otherwise the sequence diversity would be extremely low. As a consequence,
base pairings at false-binding sites were limited to shorter lengths (Dirks, Lin, Winfree,
& Pierce, 2004; J. Santalucia et al., 1996; J. J. SantalLucia & Hicks, 2004) so that the
false-binding sites were predicted to have higher free energy and accordingly, low
probability of hybridization. This criterion was included as a crucial filter and was used
to detect the longest complementary region that existed between two sequences. In this
work, base pairing at a false-binding site was defined as the occurrence of two

sequences that formed base pairings at unwanted positions.

The detection of base pairing at FBS was processed using the following three scripts
that are FindStartPosition.pl, CleanEmptyPosition.p! and GetLongestComplement.pl
(Figure 4.2). The calculations were conducted by aligning a query sequence against the
remaining corresponding target sequences. Each query sequence was shifted a
nucleotide at a time towards the 3’ terminal to search for any complementary nucleotide
in the target sequence. During each shift, if a nucleotide from a targeted strand was
complementary with the nucleotide from the query strand, the FBS score increased by
one, (if and only if the longest complementarity at unwanted position was more than
six, otherwise the FBS-score remained unchanged). The final FBS-score represented the
longest consecutive stretch of complementary bases that were detected between the two

strands.
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Figure 4.2: The search for false binding sites

The first script (FindStartPosition.pl) was employed to find all positions that had a
minimum of seven consecutive complementary (8Qmin) nucleotides between the query
and targeted sequence. It listed out every start position that matched to the minimum
complementary bases. The output of FindStartPosition.pl listed every start position in
the query (80QStart) and the target ($7Start). The function of CleanEmptyPosition.pl
was to remove the query, which did not meet the threshold value of at least seven
consecutive matching nucleotides. The GetLongestComplement.pl script was then
executed to obtain the longest matching complementary sequence using the start
position output from the first script. Parameters used in the sequence design process
were flexible to any design specification (e.g. minimum consecutive complementary

might be different depending on the DNA shapes design).

4.2.2 Free Energy of Inter-molecular and Intra-molecular DNA
The free energy for a DNA sequence to form self-folding (intra-molecular) and
double-stranded folding (intermolecular) were calculated using the AllSub and

DuplexFold programs available in the RNAstructure package (Reuter & Mathews,
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2010). The program A/lSub was selected to generate all possible low free energy
structures of a given DNA sequence. The program DuplexFold was used to predict the
lowest free energy structure for two interacting sequences with a constraint of not
allowing any intra-molecular base pairing to occur. Default parameters were selected
with the exception of the RNA/DNA option, which was set to only DNA. This fitness
evaluation required the free energy of AllSub to be higher (less negative) than the
energy of DuplexFold (more negative). This was to ensure a relatively more stable
structure when bindings occurred between the two ssDNAs as compared to the stability
of ssDNA self-folding. It was also to make sure that correct base-pairing formation for

inter-molecular assembly would occur.

4.2.3 G4 Pattern
The sequence design was prevented from having a G4 sub-sequence pattern because
such sequences is favourable to form an unintended four-stranded G4 DNA structure

(Sen & Gilbert, 1988).

4.2.4 Percentage of GC Content

The number of guanine-cytosine in oligonucleotides was set between 40% and 70%
inclusive. The GC content was calculated by obtaining the number of GC versus the
total nucleotide content. The maximum percentage of guanine and cytosine (GC) was
set to 70% since DNA with high GC (70%) content was reported to be significantly
harder to stretch than the 50% GC content DNA (Hormefio et al., 2011). The minimum
percentage of GC content was set to 40% because a low GC content will cause the

resulted DNA structure to be less stable (i.e. wobbly and flexible).

4.2.5 Mutation
The penalty score increased (i.e., increment by a point) whenever the sequence did

not pass any of the fitness evaluation criteria (otherwise, the penalty score would be
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nil). If the total penalty score of the four fitness criteria exceeded 0, the sequence would
undergo a mutation process. The algorithm would randomly select a new nucleotide to
replace the existing nucleotide (at any random position) in the permissible region. Only
a single nucleotide would be mutated at a time; the penalty score would be recalculated

and mutations would be conducted repeatedly until the penalty score became nil.

The regions for the mutations to be exercised were based on 2 conditions depending
whether a forbidden region existed. Variable $MutateRegion was a list of nucleotide
positions that allowed mutations to occur, while variable $ForbidPosition was a list of
nucleotide positions that did not allow mutations to occur mainly because these

nucleotides were hybridized with the previous strands.

The formula to determine the mutation regions was SMutateRegion = $AllPosition -
SForbidPosition. An example of the calculation for $MutateRegion during the existence
of forbidden region was depicted in Table 4.2. For this instance, sequence CB2 had 30
nucleotides, and the nucleotides numbered 16-30 from CB2 were complementary with

nucleotides numbered 1-15 from strand CB1.

Table 4.2: Condition 1 (the existence of the forbidden region in CB2)

$AllPosition 12345678910111213 14151617 18192021 2223 2425
26 27 28 29 30

SForbidPosition | 16 17 18 19 20 21 22 23 24 2526 27 28 29 30

SMutateRegion |12345678910111213 1415

Table 4.3 depicted an example of mutating region (SMutateRegion) where the
forbidden region was non-existence. In this instance, sequences in CL1 did not have
complementary binding with any sequences. The length of the molecule was 35

nucleotides.
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Table 4.3: Condition 2 (the non-existence of the forbidden region in CL1)

$AllPosition 12345678910111213 14151617 18192021 222324
25262728293031 32333435

SMutateRegion |123456789101112131415161718192021222324
25262728293031 32333435

Therefore, in order for a mutation to occur, a position would be randomly selected,
identified as X in $MutateRegion and X would be replaced with a randomly selected

nucleotide, Nyew.

4.3 Laboratory Validation Protocol
4.3.1 DNA Annealing

Oligonucleotides (DNA sequences) were purchased from Integrated DNA
Technologies Pte Ltd. To form individual shapes, oligonucleotides (4 oligonucleotides
for T, L and B-shapes; 2 oligonucleotides for I-shape) were mixed stoichiometrically in
a buffer containing 40 mM Tris base, 2.5 mM EDTA, and 13 mM MgCl,. The final
concentration of oligonucleotides was set to 0.5 uM. Then, the complexes were formed
by annealing the reaction mixture for three hours from 90 °C to 4 °C in an Eppendorf
Mastercycler Pro S thermocycler (Eppendorf, Hamburg, Germany). DNA annealing is a
process for single-stranded DNA/RNA to hybridize and form double-stranded. The
solution containing DNA sequences was not treated with any DNA polymerases, to
ensure that they were held together only by non-covalent interactions (e.g. hydrogen

bonds and base stacking).

4.3.2 Gel Electrophoresis
The results of annealing reactions were analysed by electrophoresis using 12% non-
denaturing 0.75 mm thick polyacrylamide gel (29:1 acrylamide: bisacrylamide). The

running buffers contained 1- TBE (89 mM Tris base, 89 mM Boric acid and 2 mM
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EDTA pHS8.3) and 10 mM MgCl,. The loading buffers contained 30% glycerol and
0.25% Bromophenol blue tracking dye. The gels were run at approximately 12 V/em™
for 4 hours (for L-, B-, T-, I-Shapes) at 4 °C and then stained with the GelRed Nucleic
Acid gel stain (Biotium, US). Gel electrophoresis is a method to separate biological
molecules (DNA, RNA and proteins) based on their size and charge. It uses electrical
current to separate DNA fragments by size as they migrate through a gel matrix (e.g.
polyacrylamide gel). Smaller size DNA moves further away through the gel pores faster

than the larger size DNA.

4.4 Results and Discussion

The sequence design tool began by generating individual DNA Tetris shapes. In this
work, the autonomous tool generated 500 populations for each individual shape (L-
Shape, T-Shape, B-Shape and I-Shape). A random sample from each shape was taken
for further investigation to detect the assembly of the ssDNA components into the Tetris
structures. This set of random sequences was being named as Set 1 (Figure 4.3). The
generated sequence was the result of having sequence modifications employed during
the design process. The automated sequence design tool generated these shapes based
on the sequence dependency file ($Rec)DefineSeq.txt in Table 4.4. This file listed all
positions of nucleotides that formed complementary binding between different DNA

strands.
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5

DNA DNA sequences (In the direction of 5’ to 3’)

strands

CL1 CGAGTTGCATGTTAGGACGTACTCACTACCACGTA

CL2 GCATGAGATTCCCATTTGATGATTCGCGTTAGTGGTTCCTACGACAAGATGCAGATG
AGTACGTCCTAAC

CL3 TACGTGGTAGATCCGTCGAT

CL4 ATCGACGGATTCTGCATCTTGTCGTAGGAACCACTAACGCGAATCATCAAATGGG

CT1 CTGCCGACATCAGGTCAGGCTCCGAACAGTAGATGGTGGAAGAGTATTCCGCTCGA
TGCTTATCGGTATCCTGGA

CT2 GAATTCCTGCACTATACTGTTCGGAGCCTGACCTGATGTCGGCAGCTAGAAGTTA

CT3 TCCAGGATACCGATAAGCATCGAGCGGAATACTCTTCCACCATCTCTCCACAAGG

CT4 ATGCAACTCGCCTTGTGGAGATAGTGCAGGAATTCCAAGACTCGA

CB1 CCTCTGACACTAAGATCGTTGCTATGACGTTCGAGTCTTG

CB2 GCGACCATGAGTGATTCTTAGTGTCAGAGG

CB3 ACGTCATAGCAACGAATGGACACGTCAAGCTCAAG

CB4 AATCTCATGCCTTGAGCTTGACGTGTCCATATCACTCATGGTCGC

CH1 GTAAGACGATCACCTTAACTTCTAG

ClI2 AGGTGATCGTCTTAC

Figure 4.3: DNA Tetris shapes generated by the sequence design tool (Set 1)
Figure 4.3a-d represents L-shape, T-shape, B-shape and I-shape respectively. L-Shape,
T-Shape and B-Shape are made up of 4 single-stranded DNA oligomers (CL1-CL4,
CT1-CT4, CB1-CB4). I-Shape is made up of 2 single stranded DNA oligomers (CI1
and CI2). The table shows the DNA sequences used to form the shapes.
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Table 4.4: Sequence dependency file for Set 1

DNA CurrLength | CurrStart | CurrEnd | MSeq MStart MEnd
strands, Curr

CIl 25 NIL NIL NIL NIL NIL
CI2 15 1 15 CIl 1 15
CT1 75 NIL NIL NIL NIL NIL
CT2 55 46 55 CIl 16 25
CT2 55 16 45 CT1 1 30
CT3 55 1 45 CT1 31 75
CT4 45 21 35 CT2 1 15
CT4 45 11 20 CT3 46 55
CB1 40 31 40 CT4 36 45
CB2 30 16 30 CB1 1 15
CB3 35 1 15 CB1 16 30
CB4 45 31 45 CB2 1 15
CB4 45 11 30 CB3 16 35
CL1 35 1 10 CT4 1 10
CL2 70 56 70 CL1 11 25
CL2 70 1 10 CB4 1 10
CL3 20 1 10 CL1 26 35
CL4 55 11 55 CL2 11 55
CL4 55 1 10 CL3 11 20

MSeq is the DNA strand that formed complementarity with Curr.

Region between MStart and MEnd in MSeq formed complementarity with region
between CurrStart and CurrEnd in Curr.

NIL indicates an empty value.

4.4.1 Analysis of False Binding Sites for the Generated Sequences

Previous study reported that five nucleotides (Winfree et al., 1998) are sufficient to
create the possibility of binding, although six (Seiffert & Huhle, 2008) or more are more
commonly used; and anything less than five is regarded as insufficient to form stable
binding. The generated sequences were then subjected for analysis in order to detect the

occurrences of the mispairings bases that might influence the result of the laboratory
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validation (Figure 4.4). Mispairing bases was defined as binding between bases at

incorrect base positions.

. 5' CGAGTTGCA ACGTACTCACTACCACGTA3'  CL1
3 GGGTAAACTACTAAGCGCAATCACCAAGGATGCTGTTCTACGTCTTAGGCAGCTA 5  CL4
5 CTGCCGACATCAGGTCAGGCTCCGAACAGTAGATGGTGGAAGAGTATTCCIGCTCGATGCTTATCGGTATCCTGGA 3 CT1
3 AGCTCAGAACCTTAAGGACGTGATAGAGGTGTTCCGCTCAACGTAS CT4
T
5 GAAT TCCTGCACTATACTGTTCGGAGCCTGACCTGATGTCGGCAGCTAGAAGTTA 3’ CT2
3 GGAACACCTCTCTACCACCTTCTCCGAGCTACGAATAGCCKCT 5 CT3
5' CCTCTIGACACTAAGATCGTTGCTATGACGTTCGAGTCTTG 3 CB1
3 CGCTGGTACTCACTATACETGTGCAGTTCGAGTTCCGTACTCTAA S cB4
B
5 GCGACCATGAGTGATTCTTAGTGTCAGAGG 3 CB2
3 GAACTCGAACTGCACAGGTAAGCAACGATACTGCAS  CB3

Figure 4.4: List of mispairing bases

To fully implement the proposed hierarchical schematic, a less stringent approach
was adopted during the sequence design. Mispairing of bases was allowed to occur in
the designed sequences (with subtle limitations). By referring to the list of mispairing
bases at Figure 4.4 and the resulting gel electrophoresis experiment in Figure 4.5, there
were two extra bands appeared below the major bands observed in Lane 9 (B-shape)
which were the unwanted aggregates proceeding from the mispairing between CBI1-
CB4 and CB2-CB3. As for the T-shape, there was an extra band with the same band
size observed in both Lane 12 and Lane 13. Similarly, these were the unwanted
aggregates derived from the mispairing of CT2-CT3. The complementary binding at the
correct position was set at least 10 nucleotides to provide sufficient strength in the

structure formation. Supported by the gel electrophoresis results, the formation of the
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designed DNA Tetris shape was satisfactory except for some minor unwanted

aggregates (which was expected due to the allowance of the tool).
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1 Marker 10 CT1

2 ClL4 11 CT1+CT2

3 CL2+CL4 12 CT1+CT2+CT3

4 CL2+CL3+CL4 13 CT1+CT2+CT3+CT4
5 CL1+CL2+CL3+CL4 14 CI1

6 CB1 15 CIM+CI2

7 CB1+CB2

8 CB1+CB2+CB3

9 CB1+CB2+CB3+CB4

Figure 4.5: Gel electrophoresis for the formation of individual DNA Tetris shape
The gel result showed the band increment for the sequence used to form the Tetris
shape. Gel electrophoresis was conducted on 12% non-denaturing PAGE gel.

4.4.2 Free Energy Distribution of the Populations

The free energy for the interaction pairs, AGpyplexrold Was plotted in Figure 4.6. The
distribution of the median (thick horizontal black line) showed a relatively uniform
distribution between the first and third quartile. This implied that the majority of the
populations have relatively similar free energy approximations. However for CI1-CI2
some of the generated sequences from the 500 populations were outliers and had
relatively higher free energy (less negative). The asterisks (*) show the free energy for

sequences in Set 1.
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Figure 4.6: Boxplot of free energy for 500 populations in each shape
CL4-CL2/3 implied that CL4 hybridized with CL2 and CL3. Free energy between CL4-
CL2 and CL4-CL3 were generated and the lowest energy was used to plot the graph.
The asterisk (*) represents the free energy of the strands used for gel electrophoresis
study (CL2-CL1: -18.8kcal/mol, CL3-CL1: -12.2kcal/mol, CL4-CL2/3: -63.3kcal/mol,
CB2-CBI1: -18.4kcal/mol, CB3-CB1: -20.1kcal/mol, CB4-CB2/3: -27.2kcal/mol, CT2-
CT1: -46.4kcal.mol, CT3-CT1: -60.3kcal/mol, CT4-CT2/3: -20.1kcal.mol and CI1-CI2:

-17.9kcal/mol). Free energy were obtained using program DuplexFold and graphs were
generated using R software version 2.15.1 (Team, 2005).

4.4.3 Number of Sequence Iterations

The average number of iterations for B-Shape is 9.9+0.46 cycle, L-Shape 8.5+0.53
cycle, T-Shape 22.4£1.13 cycle and I-Shape 3.1+0.15 cycle. The number of iterations
increased linearly as the number of nucleotides in mutated regions increased.
Furthermore, the number of iterations was also dependent on the complexity of the
fitness criteria. However, the approach was still effective and did not require

complicated heuristics in order to generate candidate sequences for each DNA Tetris
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shape. The number of iterations required for each shape was relatively small and the

computational process was relatively fast.

Each sequence was defined to be dependent or partially dependent on the nucleotide
pattern from the previous sequence using a top-down method (e.g. L1-L2-L3-L4). The
optimization process would only proceed when sequence L1 had satisfied all the four
criteria, and then continued with the following sequence (L2) until the design for all
sequences were completed. The lack of positions for sequence mutations such as the I-
shape (made up of two strands) caused the resulting structure to be less susceptible to
changes. This was because the sequence arrangement in CI2 depended entirely on CI1

(CI2 does not have sticky ends that could be mutated) (Figure 4.7).

(C1) 5" [GTAAGACGATCACCTTAACTTCTAG

|CATTCTGCTAGTGGA _
Cl2) 3 € 5

Figure 4.7: An example of lack of positions for sequence mutation
Sequence arrangement in CI2 depended entirely on CI1 nucleotides position 1-15.

4.5 Summary

In this chapter, the development of module 1 sequence design tool for the
construction of DNA Tetris shapes to support the newly proposed DNA Tetrominoes
concept were presented. This autonomous tool revealed successful formations of the
respective DNA Tetris shapes through integration of optimization algorithm. The
successful formations of these shapes have been concluded following the experimental
validation of gel electrophoresis and the extensive analyses on all possible mispairing
bases. The development of module 2 DNA connectivity tool would be presented in the

following Chapter 5.
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CHAPTER 5: MODULE 2 DNA CONNECTIVITY TOOL

5.1 Introduction

DNA sequences generated from the preceding chapter would require further study on
the binding interactions that occurred between these DNA sequences. As a result, DNA
connectivity tool (module 2) was developed to act as an annotation schema by
generating connectivity maps between a set of interacting DNAs forming into the
prescribed structures. It provides mapping of all probable paths taken by the DNA to
form the structures using graph theory (Biggs, Lloyd, & Wilson, 1986). This is essential
since molecular self-assembly is asynchronous and may have multitude of errors
(Rothemund, Papadakis, & Winfree, 2004). The probable shapes (i.e. the "best" unit)
must compete with partially probable shapes (i.e., the "next best" unit) during the

assembly process at all time.

5.2 Framework for the Implementation of DNA Connectivity Tool

A computational tool was developed to map the binding interaction between DNA
nucleotides based on the principle of binding dependencies (Ramlan & Zauner, 2013).
An undirected graph representation was implemented, in which DNA segments were
stored as nodes that could be connected using edges. This allowed the automated tool to
compute all probable paths taken by each DNA segment (node) in forming the
structures. It incorporated the use of two external program that is UNAFold-3.8
(Markham & Zuker, 2008) and DuplexFold (Reuter & Mathews, 2010). Figure 5.1
outlined the processes, which began by utilizing the segmented DNA sequences to
calculate the free energy and to build the binding affinity matrix. The scripts for the

connectivity tool were attached in Appendix H-Q.
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DNA sequences

UNAFold

Melting Temperature DNA segmentation DuplexFold

Binding matrix

Figure 5.1: Framework for DNA connectivity tool (module 2)

5.3 DNA Segmentation

Every DNA strand was separated into different segments based on perfect
complementarity (i.e. where all the intended bases hybridize as specified in the design)
between its pairs. The lists of segments in each set of generated sequences can be
obtained from their respective sequence dependency files. A TCL script
FindSegment TmMatchPair.tcl was written to extract these lists of DNA segments from
the sequence dependency files and then utilized the lists to create the binding matrix.
Example of how each perfect complementarity that took place in a double-stranded
DNA and 4-way junction were illustrated in Figure 5.2a and Figure 5.2b. This had
resulted in the double-stranded DNA to have 3 segments and the 4-way junction to have
10 segments. If both of these double-stranded DNA and 4-way junction were present in
the same set of sequences, this set would have a total of 13 segments (3 segments + 10

segments). So the binding matrix would comprise of 13 rows and 13 columns.
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Figure 5.2: Example of segmentation in DNA sequence
Figure 5.2a represents the double-stranded DNA with three segments (1, 2, 3). Figure
5.2b represents the 4-way junction with ten segments (3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13).

5.4 Construction of Binding Matrix

After obtaining a list of DNA segment from prior procedure, the binding affinity
between these DNA segments were measured through the calculation of free energy.
The calculation of free energy on a matrix with 13 row and 13 columns was conducted
on segment 1-1, segment 1-2...segment 1-13, segment 2-1, segment 2-2 ... segment 2-
13, until segment 13-1, segment 13-2 ... segment 13-13. Each segment was then
represented as node. The general formula for creating the free energy matrix with n

number of nodes was presented in Eq. 5.1, by which AG, ; is the free energy for node

and j.
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X] 1 Xl 2 Xl n
XZJ X2.2 X2.u
Xnvl Xn.2 Xn.u
(5.1)

X,,=AG, ;i,j=12..n;n=Total number of nodes

The free energy between each node was calculated using the program DuplexFold
(Reuter & Mathews, 2010). Default parameters for the program were used with the
"DNA" setting. This free energy matrix was later converted into a binding affinity
matrix. The conversion (Eq. 5.2) was done by dividing the free energy in every position

of the matrix, AG, ; with the lowest free energy obtained in each row (min(aG,, }). This

would generate the binding affinity between every node. The value of 1.0 indicated the
lowest free energy (strongest binding) between all available binding nodes. For
instance, when the binding affinity between node 1 and node 2 is 1.0, it indicates that
the binding strength of node 1 with node 2 is the strongest compared to the remaining

nodes (e.g. 3, 4, 5...etc). The formula for binding affinity was as follows:

AG,,

Binding affinity for P, =———*
“ min(AG. .
( i ) (5.2)

The edges connecting nodes with 1.0 binding affinity values represented the most
favourable binding among »n number of nodes. However, in circumstances where no
edges carried the most favourable binding affinity values (1.0), the highest value would

take precedence (in this implementation binding affinity must be above the threshold of

0.7).

5.5 Computation of All Probable Paths
Determining the start point: In order to determine the start point, the melting

temperature (Tm) for every DNA pair X, was calculated using UNAFold-3.8 (Markham

& Zuker, 2008). The DNA pairs with Tm value equal or higher than third quartile were
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selected. From this pair, the segments (nodes) with lowest free energy were used as the
starting point and the remainder of the nodes would act as the sticky ends. These sticky
ends would then operate as precursors in determining which node to be selected next

(Figure 5.3).

Figure 5.3: The graph search algorithm
The start point is from node 1 to node 2, leaving node 3 as sticky ends. During the next
iteration, node 3 is bound with node 4 and hence resulting in the emergence of new
potential sticky ends between node 5 and node 6. Because there are now two new sticky
ends, the search is duplicated so that node 4 will bind to both node 5 and node 6. This
will generate two paths: graph 1 (1-2-3-4-5) and graph 2 (1-2-3-4-6).
Greedy search phase: The graph would only proceed to the node with the binding

affinity value (Pw. >0.7 ) The default value was fixed at 0.7 to ensure that the graph was

restricted to only displaying strong estimation values (i.e. representative of preferable
binding interactions). Lower assignment of threshold would generate convoluted paths
full of weak interactions, which would then complicate the search process. For every
new node, two conditions were considered: the emergence of one or more new sticky
end(s) or the non-availability of sticky ends. The initial value of every node started at
1.0. The DNA uptake rate was set at 0.001. Whenever a node was selected the value of
that node would be deducted by the DNA uptake rate. The formula (Eq. 5.3) for node

calculation was as follows:
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[NOdeNewCurrent] = [NOdeCurrent] - [NOdeUptakeRate] (5 3 )

The value of every node was evaluated during each cycle. The search would continue

until the values of any node became nil (Algorithm 5).

Algorithm 5 Computation of all paths in a set of interacting DNA sequences

1: split DNA into different segments (Node), N

2: define bound node (form base pairing)=Nj

3: define unbound node (free sticky ends)=N,,

4. initialize all initial node concentration, [N] = 1.0

5: for each N, do

6: check probability matrix

7: if P. > ThresholdValue then

8: record new node, Ntemponew bind to Ny

9: for each NtempoNew dO

10: check all nodes concentration, [N] in the solution
11: if [Nan] > 0% then

12: NtempoNew binds to N,

13: compute new sticky ends, N,

14: record Ny

15: Update latest total solution concentration
16: [Niatest] =[Ncurrent]-[NUptakeRrate]

17: else

18: No binding, [NNewcurren]= [NNewCurrent]
19: end for

20: end if

21: end for

5.6 Graph Search

To address the complexity of determining "many sequences to many shapes
configuration" allowance introduced in this approach, the concept of undirected graph
was implemented (i.e. each node/vertex could be visited more than once; with no
emphasis on the order of the path taken) as an annotation schema. In our
implementation, “nodes” represented the DNA segments while the “edges” represented

binding affinity. The decision of visiting any of these nodes was dependent on the free
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sticky ends resulted from prior binding (edge). As long as the new sticky ends had a
probability value of more than the defined threshold value (0.7), it would be predicted
to be able to bind to the existing parent DNA (node). This process would be repeated
iteratively for each node (similar to a greedy search method where all paths were
traversed). The generated graph served as an annotation schema to provide insights into
the interaction of multiple DNA sequences presence in every combination of 3x4
rectangle. The following Chapter 6 will present the generation of multi-combinations of
DNA Tetris shape in 3 x 4 rectangle whereby this DNA connectivity tool would be used

to annotate the interactions that happened in the combinations.

5.7 Summary

This chapter described the development of module 2 DNA connectivity tool. This
tool was employed to compute the binding affinities between a set of interacting DNA
sequences. The binding affinity matrices were then converted into graph mapping so
that it could provide insights into the level of competition in forming the end structures.
This connectivity tool would be put into practice in the following chapter 6 to describe

the formation of DNA sequence for five sets of different structural combinations.
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CHAPTER 6: MULTIPLE COMBINATIONS FOR DNA SELF-ASSEMBLY

6.1 Introduction

In this chapter, the plausibility in supporting self-assembly DNA through the
implementation of many shapes to many combinations relationship was explored. This
approach allowed the heterogeneous property of DNA Tetris shapes to form different
combinations in a search space. As mentioned earlier, 3 x 4 rectangle was used as a

hypothetical application to show the feasibility of this multiple combinations concept.

The multiple conformations of DNA Tetris shapes increased the flexibility in
constructing DNA nanostructures given that the formation of the structures was
achieved through the self-organization of competing DNA shapes. The core principle
was to allow the most preferred shape and sequence combinations to take precedence
(i.e., survival of the fittest). For instance, if n sets (where n is more than 1) of DNAs
were initially designed to assemble into the desired conformations, in cases where a
single set of the structure collapsed, the remaining n-/ sets would still be able to form
the targeted structure. In fact, individual units inside the n-/ sets could replace the

default unit of the original set. This interchangeability was the key in this approach.

Every component in each set is modular, whereby the failure of any particular unit
would not affect the completeness of the set. The mechanism allowed a specific
substitution (i.e. to replace any incompatible shapes) or replacement of the entire shape
configurations to be executed. Total programmability was not promoted in this
approach and the formation of the structures was entirely dependent on the self-
organized characteristics of the molecule. This was necessary to handle the formation of
structures under undesirable and uncontrollable physicochemical conditions. The

multiple conformation concept would be highly significant in cases where DNA
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nanorobots inside a cellular environment that have time limitation to resist the

enzymatic degradation (Mei et al., 2011; Shen et al., 2012).

Based on the concept of having the most preferred shape and sequence combinations
to take precedence, the hypothesis would be to let the most stable DNA nanostructures
against degradation to take precedence and carry out their tasks inside a living cell
(cellular environment). Given the biological importance of having multiple sets of
configurations the plausibility of using self-organization principle was explored to

propose the concept of multi-configurations in DNA self-assembly.

6.2 Self-assembly into Multiple Combinations

After successful attempt of designing the first DNA Tetris configuration, which had
since been named as Set 1 (as discussed in Chapter 4), another additional four sets of
DNA sequences were constructed. These combinations were named as Set 2, Set 3, Set
4 and Set 5. These additional designs were an attempt to proof that in a specific
dimension, (in this case 3 x 4 rectangle) different shape arrangements could be obtained

that led to different combinations.

Figure 6.1 illustrates five different combinations that were generated to conform to
the layout in 3 x 4 rectangle. The intermolecular bindings between various DNA shapes
were loosely programmed using complementary sticky ends. Sticky ends were
positioned at the intersection point (marked with *), where different shapes were
adjacently located next to each other. The default lengths of sticky ends (for all DNA
shapes) were set to 10 nucleotides. In this study, the complementary sticky ends were

predefined to ensure different configurations were attainable.
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Figure 6.1: Five different combinations in 3 x 4 rectangles
Five different combinations (Set 1, Set 2, Set 3, Set 4 and Set 5) based on 3 x 4
rectangles skeleton. The symbol (*) represents the sticky ends, which are required to
bind different DNA Tetris shapes through intermolecular binding.

In order to demonstrate the ability of DNA Tetris shapes to form multiple
combinations for the same search space (many shapes to many combinations), a
program to search for different combinations in 3 x 4 rectangles was developed. The 3 x
4 rectangle was translated into an array with 3 horizontal rows and 4 vertical columns.
The process adapted Brute Force algorithm to evaluate whether each position could be

used to occupy the Tetris shape candidates.

Each position in the rectangle was labelled in x and y format based on the coordinate
system (Figure 6.2). For every incoming shape, the program would check whether the
candidate Tetris shape was able to fit into the respective dimension. If the candidate
passed the evaluation criteria, the array would automatically update to include that

particular shape.
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Shape | Coordinates formula Shape | Coordinate formula
T X, X X \Y X
y+1 | y+2 y
x+1 x+1 | x+1
y+1 y |y+1
W X L X
y y
x+1 | x+1 | x+1 x+1 | x+1
y-11 y | y+1 y-11 vy
F X X B X X
y |y+1 y |y+1
x+1 x+1 | x+1
y y |yl
E X X | X
y |y+1 y
x+1
y +1

Figure 6.2: Coordinate system for Tetris shapes

The array of 3 x 4 rectangle was initialized with the value of zero, which indicated
that the specific position was not occupied, by any of the Tetris shape (Figure 6.3a).
Any value other than zero, for instance T, as illustrated in Figure 6.3b indicates that the
respective position had already been occupied. Figure 6.3c demonstrates the
circumstances whereby F-Shapes cannot occupy the dimension because position 0,4
was located outside the grid. Therefore, F-Shapes could not fit into the array and the
program would then proceed with other candidate Tetris shapes to fill up the entire
array. Figure 6.3d presents another circumstances whereby E-Shape cannot occupy a
position because of its collision with the existing T-Shape. As a result, E-Shape could

not fit into the dimension and the program would proceed to the remaining shapes.

&5



o 1 2 3 o 1 2 3
ojo0ojo0oj|O0|oO O|T|T|T]|O
1]10|0|0]|O 10| T|O0O]|O
2/ 0|0]|0}|oO 2/0]0]0]|0O

c d.

o 1 2 3 o 1 2 3
O| T | T | T|F/|F O| T | T|TE| E
1 O T ]| O F 1 O|T]| O E
2/ 0|0]|0}|oO 2/0]0]|]0]|0O

Figure 6.3: Array of 3 x 4 rectangles
The 3 x 4 rectangles were treated as an array of 3 rows and 4 columns. Figure 6.3a
displays an array that was initialized with zero. Figure 6.3b shows that T-Shape
occupied the array at position (0,0), (0,1), (0,2) and (1,1). Figure 6.3c illustrates F-
Shapes (designated as F) that could not occupy the dimension due to position (0,4) that
was located outside the grid. Figure 6.3d illustrates E-Shapes (designated as E) that
could not occupy the dimension due to its position (0,2) occupied by T-Shape.

In this work, five different combinations were used to comply the 3 x 4 rectangles

framework (Figure 6.4).
I T|T|T F F | B | B T|T|T I
B|B | T]|L F B | B V|T|B|B
B | B L L w w I V|V | B|B
B|B| E|E E|E]|F F
B | B E V|E]|F L
| W w V|V ]L L

Figure 6.4: Multiple combinations of Tetris shapes
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DNA sequences representing respective DNA Tetris shapes were generated using
the autonomous tool developed in Chapter 4. The program focused on the stacking and
merging of blocks to form DNA Tetris shapes. It relied on the dependency information
(sequence dependency file) of all nucleotide positions in different DNA strands. The
sequence dependency files generated by Generate Defineseq.pl for the following four

combinations (Set 2, Set 3, Set 4 and Set 5) were presented in Table 6.1 - 6.4.

The parameters that were used during the sequence design: Length of main block,
3m=30 nucleotides and Length of sticky ends, $s=10 nucleotides. Column 1 is the
current sequence numbers; column 2, 3 and 4 are the sequence length, start and end
positions of the current sequence. Column 5, 6 and 7 are the sequence name, start and
end positions of the sequence that formed complementary regions with the respective

sequence in the first column. NIL indicated an empty value.
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Table 6.1: Sequence dependency file for Set 2

DNA CurrLength | CurrStart | CurrEnd | MSeq MStart MEnd
strands,

Curr

F1 80 NIL NIL NIL NIL NIL
F2 30 16 30 F1 1 15
F3 80 1 55 F1 16 70
F4 30 16 30 F2 1 15
F4 30 1 15 F3 56 70
B1 70 NIL NIL NIL NIL NIL
B2 80 71 80 F1 71 80
B2 80 36 70 B1 1 35
B3 70 1 35 B1 36 70
B4 80 36 70 B2 1 35
B4 80 1 35 B3 36 70
Wi 40 31 40 B4 71 80
w2 80 71 80 F3 71 80
w2 80 56 70 Wi 1 15
W3 80 1 15 Wi 16 30
W4 110 56 110 w2 1 55
W4 110 1 55 W3 16 70
I 30 NIL NIL NIL NIL NIL
12 40 31 40 W3 71 80
12 40 1 30 I 1 30

MSeq is the DNA strand that formed complementarity with Curr.

Region between MStart and MEnd in MSeq formed complementarity with region
between CurrStart and CurrEnd in Curr.

NIL indicates an empty value.
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Table 6.2: Sequence dependency file for Set 3

DNA CurrLength | CurrStart | CurrEnd | MSeq MStart MEnd
strands,

Curr

T1 120 NIL NIL NIL NIL NIL
T2 70 16 70 T1 1 55
T3 80 1 55 T1 56 110
T4 40 16 30 T2 1 15
T4 40 1 15 T3 56 70
I 30 NIL NIL NIL NIL NIL
12 40 31 40 T1 111 120
12 40 1 30 I 1 30
Vi 40 31 40 T4 31 40
V2 30 16 30 Vi 1 15
V3 80 1 15 Vi 16 30
V4 70 56 70 V2 1 15
V4 70 1 55 V3 16 70
B1 70 NIL NIL NIL NIL NIL
B2 80 71 80 T3 71 80
B2 80 36 70 B1 1 35
B3 70 1 35 B1 36 70
B4 80 71 80 V3 71 80
B4 80 36 70 B2 1 35
B4 80 1 35 B3 36 70

MSeq is the DNA strand that formed complementarity with Curr.

Region between MStart and MEnd in MSeq formed complementarity with region

between CurrStart and CurrEnd in Curr.

NIL indicates an empty value.
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Table 6.3: Sequence dependency file for Set 4

DNA CurrLength | CurrStart | CurrEnd | MSeq MStart MEnd
strands,

Curr

B1 80 NIL NIL NIL NIL NIL
B2 70 36 70 B1 1 35
B3 80 1 35 B1 36 70
B4 70 36 70 B2 1 35
B4 70 1 35 B3 36 70
El 70 NIL NIL NIL NIL NIL
E2 80 71 80 B1 71 80
E2 80 16 70 El 1 55
E3 30 1 15 El 56 70
E4 40 16 30 E2 1 15
E4 40 1 15 E3 16 30
Wi 40 31 40 E4 31 40
w2 80 71 80 B3 71 80
w2 80 56 70 Wi 1 15
W3 70 1 15 Wi 16 30
W4 120 56 110 w2 1 55
W4 120 1 55 W3 16 70
I 40 31 40 W4 111 120
12 30 1 30 I 1 30

MSeq is the DNA strand that formed complementarity with Curr.

Region between MStart and MEnd in MSeq formed complementarity with region
between CurrStart and CurrEnd in Curr.

NIL indicates an empty value.
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Table 6.4: Sequence dependency file for Set 5

DNA CurrLength | CurrStart | CurrEnd | MSeq MStart MEnd
strands,

Curr

El 80 NIL NIL NIL NIL NIL
E2 70 16 70 El 1 55
E3 40 1 15 El 56 70
E4 40 16 30 E2 1 15
E4 40 1 15 E3 16 30
F1 70 NIL NIL NIL NIL NIL
F2 40 31 40 El 71 80
F2 40 16 30 F1 1 15
F3 80 1 55 F1 16 70
F4 40 31 40 E3 31 40
F4 40 16 30 F2 1 15
F4 40 1 15 F3 56 70
Vi 40 31 40 E4 31 40
V2 30 16 30 Vi 1 15
V3 80 1 15 Vi 16 30
V4 70 56 70 V2 1 15
V4 70 1 55 V3 16 70
L1 30 NIL NIL NIL NIL NIL
L2 80 71 80 F3 71 80
L2 80 56 70 L1 1 15
L3 30 1 15 L1 16 30
L4 80 71 80 V3 71 80
L4 80 16 70 L2 1 55
L4 80 1 15 L3 16 30

MSeq is the DNA strand that formed complementarity with Curr.

Region between MStart and MEnd in MSeq formed complementarity with region
between CurrStart and CurrEnd in Curr.

NIL indicates an empty value.
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6.2.1 Derivation of Sequence Dependency Files

The sequence dependency files, ($Rec)DefineSeq.txt was a list of all nucleotide
positions that formed complementary binding between DNA strands. The algorithm for
Generate DefineSeq.pl to generate sequence dependency files was presented in

Algorithm 6.

Algorithm 6 Generation of sequence dependency file

1 initialize $mainblockLength, $StickyEndLength

2 for each rectangle do

3 for each shape do

4 compute every segmented position in the sequences
5: end for

6 identify shapes at leftmost and rightmost position in the dimension
7 identify the sticky ends positions in each shape

8 compute total number of strands

9 substitute missing positions with NIL

10: output as ($Rec)DefineSeq.txt

11:  end for

The generation of sequence dependency files required the identification of each
segmented position in the DNA sequences (Line 4, Algorithm 7). This segmented
sequence would then be used to identify the complementary nucleotides in their
corresponding sequence within the same shape. In addition, the generation of sequence
dependency files also required the identification of sticky end position whereby the
sticky end from one shape was needed to bind to other DNA Tetris shapes (Line 7,
Algorithm 7). The diagram to illustrate each segmented position in DNA sequences and
identification of intersection points for all eight DNA Tetris shapes were presented in

Figure 6.5 - 6.12 and Algorithm 7 - 14.
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Figure 6.5: The segmented positions in T-shape

The T-shape consists of four strands, T1 (blue), T2 (black), T3 (green) and T4 (orange).
Each of the strands has three segments, with T1 (1a, 1b and 1¢), T2 (2a, 2b, 2¢), T3 (3a,
3b, 3c) and T4 (4a, 4b, 4c). For example in T1, segment la starts from position 0+1 to
3/2m+s; segment 1b starts from position 3/2m+s+1 to 3m+2s and segment lc starts
from position 3m+2s+1 to 3m+3s. Overall, the 4 strands have segment 1a complement
with 2b, segment 1b complement with 3a, segment 2a complement with 4b and segment
3b complement with 4a. Variable m is the length of the main block and s is the length of
the sticky end. Midpoint is the middle position of the design and is the position where
T2 and T3 are formed. Position 0 indicates 5’ terminal.

Algorithm 7 Identification of sticky end in T-shape that bind with adjacent shape

for each block linked to adjacent shape do
if intersection point = row 1 and Position T = left then
segment 1c bind with adjacent shape
else if intersection point = row 2 and Position T = left then
segment 3¢ bind with adjacent shape
else if intersection point = row 1 and Position T = right then
segment 2¢ bind with adjacent shape
else if intersection point = row 2 and Position T =right then
segment 4¢ bind with adjacent shape
end if
end for

—_
— o 9 X RNk

93



1s

e  W-shape

Tm s
1s m
—1m__1s Tm 1s im s
m 1s m 1s 1m

3b complement with 4a. Variable m is the length of the main block and s is the length of

0 1/2m m m+s
e

2m+2s 2m+s1/2m 0

0 3/2m+s

1

I i 1
3m+3s 3m+2s 3/2m+s 0

W1=0-2%1om oy ey

2

W2 =0-225 3/2m+s 225 2m+s —25 2m+2s

3a 3b

2m+s

W3 =0 1/2m

4a b 4

W4 =0 —253/2m+s 253 m+2s —<> 3m+3s

< 2m+2s

2m-+s im+25

midpoint
_’_
form into 4 strands
Keywords
main block
sticky end e

Figure 6.6: The segmented positions in W-shape
The W-shape consists of four strands, W1 (blue), W2 (black), W3 (green) and W4
(orange). Each of the strands has three segments, with W1 (1a, 1b and 1c), W2 (2a, 2b,
2¢), W3 (3a, 3b, 3c) and W4 (4a, 4b, 4c). For example in W1, segment la starts from
position 0+1 to 1/2m; segment 1b starts from position 1/2m+1 to m and segment 1c
starts from position m+1 to m+s. Overall, the 4 strands have segment la complement
with 2b, segment 1b complement with 3a, segment 2a complement with 4b and segment

the sticky end. Midpoint is the middle position of the design and is the position where
W2 and W3 are formed. Position 0 indicates 5’ terminal.

Algorithm 8 Identification of sticky end in W-shape that bind with adjacent shape

1:

PRI

_
9

111:

for each block linked to adjacent shape do

if intersection point = row 1 and Position W = left then

segment 1c bind with adjacent shape

else if intersection point = row 2 and Position W = left then

segment 3¢ bind with adjacent shape

else if intersection point = row 1 and Position W = right then

segment 2¢ bind with adjacent shape

else if intersection point = row 2 and Position W = right then

segment 4¢ bind with adjacent shape

end if
end for
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Figure 6.7: The segmented positions in F-shape

The F-shape consists of four strands, F1 (blue), F2 (black), F3 (green) and F4 (orange).
Each of the strands has three segments, with F1 (1a, 1b and 1c¢), F2 (2a, 2b, 2¢), F3 (3a,
3b, 3c) and F4 (4a, 4b, 4c). For example in F1, segment 1a starts from position 0+1 to
1/2m; segment 1b starts from position 1/2m+1 to 2m+s and segment 1c starts from
position 2m+s+1 to 2m+2s. Overall, the 4 strands have segment 1a complement with
2b, segment 1b complement with 3a, segment 2a complement with 4b and segment 3b
complement with 4a. Variable m is the length of the main block and s is the length of
the sticky end. Midpoint is the middle position of the design and is the position where
F2 and F3 are formed. Position 0 indicates 5’ terminal.

Algorithm 9 Identification of sticky end in F-shape that bind with adjacent shape

for each block linked to adjacent shape do
if intersection point =row 1 and position F = left then
segment 1c bind with adjacent shapes
else if intersection point = row 2 and position F = left then
segment 3¢ bind with adjacent shapes
else if intersection point = row 1 and position F = right then
segment 2¢ bind with adjacent shapes
else if intersection point = row 2 and position F = right then
segment 4¢ bind with adjacent shapes
end if
end for

—_
— o 9P X 3Dk
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Figure 6.8: The segmented positions in E-shape

The E-shape consists of four strands E1 (blue), E2 (black), E3 (green) and E4 (orange).
Each of the strands has three segments, with E1 (1a, 1b and 1¢), E2 (2a, 2b, 2c), E3 (3a,
3b, 3c) and E4 (4a, 4b, 4c). For example in E1, segment la starts from position 0+1 to
3/2m+s; segment 1b starts from position 3/2m+s+1 to 2m+s and segment 1c starts from
position 2m+s+1 to 2m+2s. Overall, the 4 strands have segment 1a complement with
2b, segment 1b complement with 3a, segment 2a complement with 4b and segment 3b
complement with 4a. Variable m is the length of the main block and s is the length of
the sticky end. Midpoint is the middle position of the design and is the position where
E2 and E3 are formed. Position 0 indicates 5’ terminal.

Algorithm 10 Identification of sticky end in E-shape that bind with adjacent shape

for each block linked to adjacent shape do
if intersection point =row 1 and position E = left then
segment 1c bind with adjacent shapes
else if intersection point = row 2 and position E = left then
segment 3¢ bind with adjacent shapes
else if intersection point = row 1 and position E = right then
segment 2¢ bind with adjacent shapes
else if intersection point = row 2 and position E = right then
segment 4¢ bind with adjacent shapes
end if
end for

—_
— o 9P X 3Dk
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Figure 6.9: The segmented positions in V-shape

The V-shape consists of four strands V1 (blue), V2 (black), V3 (green) and V4
(orange). Each of the strands has three segments, with V1 (la, 1b and 1c), V2 (2a, 2b,
2¢), V3 (3a, 3b, 3¢) and V4 (4a, 4b, 4c). For example in V1, segment la starts from
position 0+1 to 1/2m; segment 1b starts from position 1/2m+1 to m and segment 1lc
starts from position m+1 to m+s. Overall, the 4 strands have segment la complement
with 2b, segment 1b complement with 3a, segment 2a complement with 4b and segment
3b complement with 4a. Variable m is the length of the main block and s is the length of
the sticky end. Midpoint is the middle position of the design and is the position where
V2 and V3 are formed. Position 0 indicates 5’ terminal.

Algorithm 11 Identification of sticky end in V-shape that bind with adjacent shape

for each block linked to adjacent shape do
if intersection point =row 1 and position V = left then
segment 1c bind with adjacent shapes
else if intersection point = row 2 and position V = left then
segment 3¢ bind with adjacent shapes
else if intersection point = row 1 and position V = right then
segment 2¢ bind with adjacent shapes
else if intersection point = row 2 and position V = right then
segment 4¢ bind with adjacent shapes
end if
end for

—_
— o P X RNk 7
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Figure 6.10: The segmented positions in L-shape
The L-shape consists of four strands L1 (blue), L2 (black), L3 (green) and L4 (orange).
Each of the strands has three segments, with L1 (1a, 1b and 1¢), L2 (2a, 2b, 2¢), L3 (3a,
3b, 3c) and L4 (4a, 4b, 4c). For example in L1, segment la starts from position 0+1 to
1/2m; segment 1b starts from position 1/2m+1 to m and segment 1c starts from position
m+1 to m+s. Overall, the 4 strands have segment 1a complement with 2b, segment 1b
complement with 3a, segment 2a complement with 4b and segment 3b complement with
4a. Variable m is the length of the main block and s is the length of the sticky end.
Midpoint is the middle position of the design and is the position where the L2 and L3
are formed. Position 0 indicates 5’ terminal.

Algorithm 12 Identification of sticky end in L-shape that bind with adjacent shape

—_
— o 9 X RNk 7

for each block linked to adjacent shape do

if intersection point =row 1 and position L = left then

segment 1c bind with adjacent shapes

else if intersection point = row 2 and position L = left then

segment 3¢ bind with adjacent shapes

else if intersection point = row 1 and position L = right then

segment 2¢ bind with adjacent shapes

else if intersection point = row 2 and position L = right then

segment 4¢ bind with adjacent shapes

end if
end for
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Figure 6.11: The segmented positions in B-shape
The B-shape consists of four strands B1 (blue), B2 (black), B3 (green) and B4 (orange).
Each of the strands has three segments, B1 (1a, 1b and 1c¢), B2 (2a, 2b, 2¢), B3 (3a, 3b,
3c) and B4 (4a, 4b, 4c¢). For example in B1, segment la starts from position 0+1 to
m+1/2s; segment 1b starts from position m+1/2s+1 to 2m+s and segment 1lc starts from
position 2m+s+1 to 2m+2s. Overall, the 4 strands have segment 1a complement with
2b, segment 1b complement with 3a, segment 2a complement with 4b and segment 3b

complement with 4a. Variable m is the length of the main block and s is the length of

the sticky end. Midpoint is the middle position of the design and is the position where
the B2 and B3 are formed. Position 0 indicates 5’ terminal.

Algorithm 13 Identification of sticky end in B-shape that bind with adjacent shape

end if
end for

— S 0 X N U AW

for each block linked to adjacent shape do

if intersection point =row 1 and position B = left then
segment 1c bind with adjacent shapes

segment 3¢ bind with adjacent shapes

segment 2¢ bind with adjacent shapes

segment 4¢ bind with adjacent shapes

else if intersection point = row 2 and position B = left then

else if intersection point = row 1 and position B = right then

else if intersection point = row 2 and position B = right then
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Figure 6.12: The segmented positions in I-shape
The I-shape consists of two strands 11 (blue) and 12 (black). Each of the strands has two
segments, with I1 (1a and 1b) and 12 (2a and 2b). For example in 11, segment 1a starts
from position 0+1 to m; segment 1b starts from position m+1 to m+s. The 2 strands
have segment 1a complement with 2a. Variable m is the length of the main block and s
is the length of the sticky end. Position 0 indicates 5’ terminal.

Algorithm 14 Identification of sticky end in I-shape that bind with adjacent shape

1:  for block linked to adjacent shape do
if intersection point = row 1 and position I = left then
segment 1b bind with adjacent shapes

segment 2b bind with adjacent shapes
end if

2
3
4: else if intersection point = row 1 and position I = right then
5
6
7 end for

6.3 Architecture for the Predicted DNA Nanostructures

Figure 6.13 illustrates the sequence arrangements for DNA Tetris shapes in Set 1-
Set 5 that conformed based on the 3 x 4 rectangle skeleton. However, the final DNA
structures would not remain static as if they were being “glued” to a planar surface.
Since every DNA Tetris shape was entirely made up of 4-way junctions except for the
double-stranded DNA structure of I-Shape, the resulted DNA architectures were
predicted to appear as in Figure 6.14. In this figure, the labelling such as CI1, T1, T2,
W1 and W2 represent the names of the DNA strands that were used to form each DNA

Tetris shape. For example, CT1-CT4 represent four DNA strands that were used to form
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T-shape in Set 1. The predicted structures showed that Set 1, 2, 3 and 4 had similar
configurations since each set was made up of 4-way junctions and 1 double-stranded
DNA. Despite this, the size of the Set 1 was smaller compared to Set 2, 3, and 4. This
was because Set 1 was made up of 25 nucleotides in each basic unit; while the

remaining sets was made up of 40 nucleotides for their basic units.

On the other side, Set 5 had a different structural configuration compared to the
remaining set. This was because all DNA Tetris shapes in Set 5 were entirely made up

of 4-way junctions without the double stranded I-Shape.

Existing techniques focused on sequence diversity in their design phase (i.e.,
sequences that conformed to the scaffolds), to the contrary of the work presented here
that introduced the combinatorics of the Tetris shapes into the equation. Therefore, this
allowed diversity not only in sequences, but also in the Tetris shapes composition as
well (i.e., many sequences to many shapes configurations that conformed to the desired
structure). The DNA sequences generated for the five combinations (Set 1-Set 5) were

listed in Table 6.5.
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a. Set1

I-shape T-shape
GTAAGACGATCACCTTAACTTCTAQFTGCCGACATCAGGTCAGGCTCCGAACAGTAGATGGTGGAAGAGTATTCCGCTCGATGCTTATCGGTATCCTGGA
CATTCTGCTAGTGGAR TTGAAGATCGACGGCTGTAGTCCAGTCCGAGGCTTGTCATCTACCACCTTCTCATAAGGCGAGCTACGAATAGCCATAGGACCT
CCTCTGACACTAAGATCGTTGCTATGACGTTCGAGTCTTd; ECTEE ‘ CTCCACAAGdCGAGTTGCATGTTAGGACGTACTCACTACCACGTA
.............................. =l ccoccncoccccococa000c0 oo IR RN N (.

GGAGACTGTGATTCTAGCAACGATACTGCAAGCTCAGAACCTTAAGGACGTGATAGAGGTGTTCCGCTCAACGTA&AATCCTGCATGAGTGATGGTGCAT
I[ ] [
GCGACCATGAGTGATATGGACACGTCAAGCTCAAQGCATGAGATTCCCATTTGATGATTCGCGTTAGTGGTTCCTACGACAAGATGCAGAATCCGTCGAT

CGCTGGTACTCACTATACCTGTGCAGTTCGAGTTCCGTACTCTAAGGGTAAACTACTAAGCGCAATCACCAAGGATGCTGTTCTACGTCTTAGGCAGCTA
B-shape L-shape

b. Set2

F-shape B-shape
TCGGCCAACGACCTTAATACTGCCACCAACTTCGTACCTGGCCTTGCATCGGTGTGTCTGCGGACTCTTGGTTTTGCTTAFGCACCTCCGTTGACCATCCAATCTGGGCTGATTCAGTGCGTCATGCTACCTTCGATAAGGCGTCGCTTG

mGCCGGTTGCTGGAATTATGACGGTGGTTGAAGCATGGACCGGAACGTAGCCACACAGACGCCTGAGAAd TCACGCAGTACGATGGAAGCTATTCCGCAGCGAA(Q
I |
CACAACAAGTGATGGTTCAACTCCAAGGGATTGTTCGTC! CATGGCGAAATCGGAGAGGACAAACTTATTTCTAT]

GTGTTGTTCACTACCAAGTTGAGGTTCCCYAACAAGCAGACTTATGTAGACTACAAATAATAGGTCAGG TACGCGCCAGTCCGTCGTAGTAACGTGCGGCGATCATCCCTCTGTACCGCTTTAGCCTCTCCTGTTTGAATAAAGATq

o _—a_¥ T
GATCAGTACAGCGTAGTGCCAGTAGTGGCGCTCGCTACTCTATAGCCTACTCACATAGGAAGTGTCACTCTATTGTCTTACATATACGCGCGCTCTATACATACTCTCATGATCTACAGqAGTTGCCGTCAGTCATAGCAGCCAGGCTCJ

CTAGTCATGTCGCATCACGGTCATCACCGCGAGCGATGAGATATCGGATGAGTGTATCCTTCACAGTGAGATAACAGAATGTATATGCGCGCGAGATATGTATGAGAGTAkTAGATGTCGTCAACGGCAGTCAGTATCGTCGGTCCGAGT

W-shape I-shape

Figure 6.13: Nucleotide arrangements of the five combinations
Figure 6.13a-b represent the nucleotide arrangements of DNA Tetris shapes that bound according to 3 x 4 rectangle in Set 1 and Set 2. The arrows
represent 5° to 3’ terminal while the complementary binding is represented by dotted lines.
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c. Set3
T-shape

CGGTTATCCGGATATTACGTTCGGAAACTAACCCGATGCACTAGTTCAGCTAGCACCGGAATCAATTATTGGGTGCGGTCTTGTCGTCCTTTCCGCAGAGAACAATGGCGTAGTGATCGT

<
CTATTGCGAGAATATATGTGCGAGCAGATCCATCTATACTTCGAGTATCCTCCCAGTATGTACGTGTAGCFCGACGAGGAAGTGAGTTTGGCGCGCTGCACCTGCCAAATTCACCGATATCGCTAGTACTCTTCAGGTTCGCCTGATGAA

V-shape B-shape

d. Set4

B-shape E-shape

CCCATTGAGGTTAGATGCCAGAGTGAGGCCCTTACCCTACGCGCACTCGGGCGTTCTTGATTGACCTGGAAGGTTGCTT%CAGCATCGCGTTTTATCATCGTGGGCTGGTATGAAGCTCGCGAGTCTCGTTTCCTGTGGTTCCGAATAGG

I-shape W-shape

Figure 6.13 (continued): Nucleotide arrangements of the five combinations

Figure 6.13c-d represent the nucleotide arrangements of DNA Tetris shapes that bound according to 3 x 4 rectangle in Set 3 and Set 4. The arrows
represent 5° to 3’ terminal while the complementary binding is represented by dotted lines.
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e. Set 5 E-Shape

F-shape

CGCTTTCACGCACCACGCGCAAAGGCAAATGGATTAAGCGAAAGGGCTTTGTTCACTACGGTATTGATAATAGACTGGTC

FCTATTGTCGGGCTCTTCTCTGGACCTAAAAAACGTGGCAGTAAATTATGAAATAGCCTGAATTGTCAGC

CTGACCAGCGATAACAGCCCGAGAAGAGACCTGGATTTTTTGCACCGTCATTTAATACTTTATCGGACTTAACAGTCG

— R O 1+ Y

GGACTGCTCGCGGT! FATGACGTGTAGAGTCGCTAGAAGTTGAAGTACGTGAGG TAGCCATCATACAGAACGGGTAGG

#CTCAGCGATCTTCAACTTCATGCACTCCTGATCGGTAGT TGTCTTGCCCATCCTGGGCTGTCTCGTGA

AAATAATCTGTTCAATCCTAGTGGCACGCGGCTGGTGGAACAATGATTGTGACTAGTGTTGCAATACTAG

TAGGATCACCGTGCGCCGACCACCTTGTTACTAACACTGATCACAACGTTATGATCTAGCACACGACGCCATTGAATGAGGGTCTAGCTGCGATACCTGCCGCCTGCTTTATGGCTCCAGA

V-shape

Figure 6.13 (continued): Nucleotide arrangements of the five combinations
Figure 6.13e represent nucleotide arrangements of DNA Tetris shapes that bound according to 3 x 4 rectangle in Set 5. The arrows represent 5’ to 3’

terminal while the complementary binding is represented by dotted lines.
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Table 6.5: DNA sequences of the five combinations

Shape | Set 1 | DNA sequences (5’ to 3°)
| CIl GTAAGACGATCACCTTAACTTCTAG
CI2 AGGTGATCGTCTTAC
T CTl1 CTGCCGACATCAGGTCAGGCTCCGAACAGTAGATGGTGGAAGAGTATTCCGCTCGATGCTTATCGGTATCCTGGA
CT2 GAATTCCTGCACTATACTGTTCGGAGCCTGACCTGATGTCGGCAGCTAGAAGTTA
CT3 TCCAGGATACCGATAAGCATCGAGCGGAATACTCTTCCACCATCTCTCCACAAGG
CT4 ATGCAACTCGCCTTGTGGAGATAGTGCAGGAATTCCAAGACTCGA
B CBI CCTCTGACACTAAGATCGTTGCTATGACGTTCGAGTCTTG
CB2 GCGACCATGAGTGATTCTTAGTGTCAGAGG
CB3 ACGTCATAGCAACGAATGGACACGTCAAGCTCAAG
CB4 AATCTCATGCCTTGAGCTTGACGTGTCCATATCACTCATGGTCGC
L CL1 CGAGTTGCATGTTAGGACGTACTCACTACCACGTA
CL2 GCATGAGATTCCCATTTGATGATTCGCGTTAGTGGTTCCTACGACAAGATGCAGATGAGTACGTCCTAAC
CL3 TACGTGGTAGATCCGTCGAT
CL4 ATCGACGGATTCTGCATCTTGTCGTAGGAACCACTAACGCGAATCATCAAATGGG
Shape | Set2 | DNA sequences (5’ to 3°)
F F1 TCGGCCAACGACCTTAATACTGCCACCAACTTCGTACCTGGCCTTGCATCGGTGTGTCTGCGGACTCTTGGTTTTGCTTA
F2 CACAACAAGTGATGGAAGGTCGTTGGCCGA
F3 CAAGAGTCCGCAGACACACCGATGCAAGGCCAGGTACGAAGTTGGTGGCAGTATTTTCAACTCCAAGGGATTGTTCGTCT
F4 TCCCTTGGAGTTGAACCATCACTTGTTGTG
B Bl CGCACCTCCGTTGACCATCCAATCTGGGCTGATTCAGTGCGTCATGCTACCTTCGATAAGGCGTCGCTTG
B2 TCAGGCAGCATCATTGCACGCCGCTAGTAGGGAGAGAATCAGCCCAGATTGGATGGTCAACGGAGGTGCGTAAGCAAAAC
B3 CAAGCGACGCCTTATCGAAGGTAGCATGACGCACTCATGGCGAAATCGGAGAGGACAAACTTATTTCTAT
B4 ATAGAAATAAGTTTGTCCTCTCCGATTTCGCCATGTCTCCCTACTAGCGGCGTGCAATGATGCTGCCTGACCGCGCATAA
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Table 6.5 (continued): DNA sequences of the five combinations

Shape | Set2 | DNA sequences (5’ to 3°)

A\ W1 GAATACATCTGATGTTTATTATCCAGTCCATTATGCGCGG
W2 GATCAGTACAGCGTAGTGCCAGTAGTGGCGCTCGCTACTCTATAGCCTACTCACAACATCAGATGTATTCAGACGAACAA
W3 TGGACTGGATAATAATAGGAAGTGTCACTCTATTGTCTTACATATACGCGCGCTCTATACATACTCTCATGATCTACAGC
w4 ATGAGAGTATGTATAGAGCGCGCGTATATGTAAGACAATAGAGTGACACTTCCTATGTGAGTAGGCTATAGAGTAGCGAGCGCCACTA

CTGGCACTACGCTGTACTGATC

| 11 AGTTGCCGTCAGTCATAGCAGCCAGGCTCA
12 TGAGCCTGGCTGCTATGACTGACGGCAACTGCTGTAGATC

Shape | Set3 | DNA sequences (5’ to 3°)

T Tl CGGTTATCCGGATATTACGTTCGGAAACTAACCCGATGCACTAGTTCAGCTAGCACCGGAATCAATTATTGGGTGCGGTCTTGTCGTCC

TTTCCGCAGAGAACAATGGCGTAGTGATCGT

T2 TGTGCTGTCGGGAGATGCTAGCTGAACTAGTGCATCGGGTTAGTTTCCGAACGTAATATCCGGATAACCG
T3 CGCCATTGTTCTCTGCGGAAAGGACGACAAGACCGCACCCAATAATTGATTCCGGCGCGTGCGTACTGTGATATACTAGC
T4 CACAGTACGCACGCGTCTCCCGACAGCACAATCAACCGGA

I 11 CGGTTACGCTGGGCCGGGCCACGGAACAAC
12 GTTGTTCCGTGGCCCGGCCCAGCGTAACCGACGATCACTA

v Vi CAGGCAGCTTGATATGTAGGATGGAGTATGTCCGGTTGAT
V2 GATAACGCTCTTATAATATCAAGCTGCCTG
V3 CATACTCCATCCTACTACACGCTCGTCTAGGTAGATATGAAGCTCATAGGAGGGTCATACATGCACATCGCGCTGCTCCT
V4 CGATGTGCATGTATGACCCTCCTATGAGCTTCATATCTACCTAGACGAGCGTGTATATAAGAGCGTTATC

B Bl CCTTTGTACCGGCACCTCGGCCAGGTCCGAAAACAAGTGCGTCGATCCTTCTGGAGCTGAGGCGTTTGCG
B2 TCACTCAAACCGCGCGACGTGGACGGTTTAAGTGGTGTTTTCGGACCTGGCCGAGGTGCCGGTACAAAGGGCTAGTATAT
B3 CGCAAACGCCTCAGCTCCAGAAGGATCGACGCACTCTATAGCGATCATGAGAAGTCCAAGCGGACTACTT
B4 AAGTAGTCCGCTTGGACTTCTCATGATCGCTATAGCCACTTAAACCGTCCACGTCGCGCGGTTTGAGTGAAGGAGCAGCG
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Table 6.5 (continued): DNA sequences of the five combinations

Shape | Set4 | DNA sequences (5’ to 3°)

B Bl CCCATTGAGGTTAGATGCCAGAGTGAGGCCCTTACCCTACGCGCACTCGGGCGTTCTTGATTGACCTGGAAGGTTGCTTA
B2 GGTCAGTCTACTCGTCTTGTTACTATCCGCCAACCGTAAGGGCCTCACTCTGGCATCTAACCTCAATGGG
B3 TCCAGGTCAATCAAGAACGCCCGAGTGCGCGTAGGCGTCGGTATTGTCTGTTATGCTTATTTTGTGGGTCTTAATGCGCG
B4 GACCCACAAAATAAGCATAACAGACAATACCGACGGGTTGGCGGATAGTAACAAGACGAGTAGACTGACC

E El CAGCATCGCGTTTTATCATCGTGGGCTGGTATGAAGCTCGCGAGTCTCGTTTCCTGTGGTTCCGAATAGG
E2 TGAGTCGGATCAGCCAGGAAACGAGACTCGCGAGCTTCATACCAGCCCACGATGATAAAACGCGATGCTGTAAGCAACCT
E3 CCTATTCGGAACCACGCCGACCAAATATAG
E4 CTATATTTGGTCGGCGGCTGATCCGACTCATTCGTTACCT

A\ W1 GTCTAGGCAACGCATATCGCCCGGTCTATGAGGTAACGAA
W2 TCGTATAGCGCGGCATTGTTTTGCGCTGTTTGGAGCAAACGATAAGAGTCATCCAATGCGTTGCCTAGACCGCGCATTAA
W3 CATAGACCGGGCGATTCAGGCACATCCATGCGTATGTGTACTCATCTTTCTACCGTATTCCCATATCTCT
w4 AGAGATATGGGAATACGGTAGAAAGATGAGTACACATACGCATGGATGTGCCTGATGGATGACTCTTATCGTTTGCTCCAAACAGCGC

AAAACAATGCCGCGCTATACGAATTGGCTTAA

| 11 TACTGCTCTGAGTGTAGCAATCTACTGATGTTAAGCCAAT
12 CATCAGTAGATTGCTACACTCAGAGCAGTA

Shape | Set 5 | DNA sequences (5’ to 3°)

E El CGCTTTCACGCACCACGCGCAAAGGCAAATGGATTAAGCGAAAGGGCTTTGTTCACTACGGTATTGATAATAGACTGGTC
E2 CACCCACCGAGGAAATGAACAAAGCCCTTTCGCTTAATCCATTTGCCTTTGCGCGTGGTGCGTGAAAGCG
E3 TTATCAATACCGTAGTTCGCATCATCCAGCGTACTGCACA
E4 GCTGGATGATGCGAATTTCCTCGGTGGGTGTACGTCCTCT

F1

GCTATTGTCGGGCTCTTCTCTGGACCTAAAAAACGTGGCAGTAAATTATGAAATAGCCTGAATTGTCAGC

F2

TCTCAGCGATCTTCAGAGCCCGACAATAGCGACCAGTCTA
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Table 6.5 (continued): DNA sequences of the five combinations

Shape | Set 5 | DNA sequences (5’ to 3°)

F F3 GCTGACAATTCAGGCTATTTCATAATTTACTGCCACGTTTTTTAGGTCCAGAGAAACTTCATGCACTCCTGATCGGTAGT
F4 AGGAGTGCATGAAGTTGAAGATCGCTGAGATGTGCAGTAC

v Vi CGACCGGACCAACCTCCTGACGAGCGCCAAAGAGGACGTA
V2 TTTATTAGACAAGTTAGGTTGGTCCGGTCG
V3 TTGGCGCTCGTCAGGAGGATCACCGTGCGCCGACCACCTTGTTACTAACACTGATCACAACGTTATGATCTAGCACACGA
V4 GATCATAACGTTGTGATCAGTGTTAGTAACAAGGTGGTCGGCGCACGGTGATCCTAACTTGTCTAATAAA

L L1 ATGTCTTGCCCATCCTGGGCTGTCTCGTGA
L2 CGCCATTGAATGAGGGTCTAGCTGCGATACCTGCCGCCTGCTTTATGGCTCCAGAGGATGGGCAAGACATACTACCGATC
L3 TCACGAGACAGCCCAACCGAACGGGACTGT
L4 ACAGTCCCGTTCGGTTCTGGAGCCATAAAGCAGGCGGCAGGTATCGCAGCTAGACCCTCATTCAATGGCGTCGTGTGCTA
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Figure 6.14: The predicted structure representation of the five combinations
Figure 6.14a-b represent the DNA Tetris shapes that combined according to 3 x 4
rectangles in Set 1 and Set 2. The numbers indicated on the black line structures in each

set was the length of the DNA sequences measured in base pairing (for example, 40 bp
denotes 40 base pairing).
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Figure 6.14 (continued): The predicted structure representation of the five
combinations
Figure 6.14c-d represent the DNA Tetris shapes that combined according to the 3 x 4
rectangles in Set 3 and Set 4. The numbers indicated on the black line structures in each
set was the length of the DNA sequences measured in base pairing (For example, 40 bp
denotes 40 base pairing).
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Legend (Set 5)
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Figure 6.14 (continued): The predicted structure representation of the five
combinations
Figure 6.14e represent the DNA Tetris shapes that combined according to the 3 x 4
rectangles in Set 5. The numbers indicated on the black line structures in each set was
the length of the DNA sequences measured in base pairing (For example, 40 bp denotes
40 base pairing).
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6.4 Experimental Validation Protocol
6.4.1 DNA Annealing

As mentioned in the previous chapter, DNA annealing is a process for single
stranded DNA/RNA to hybridize through hydrogen bond and forms double stranded
polynucleotides. DNA sequences (Oligonucleotides) were purchased from Integrated
DNA Technologies Pte. Ltd. (USA). The complexes were formed by mixing
stoichiometric quantities of DNA in an annealing buffer (40 mM Tris base, 2.5 mM
EDTA, and 13 mM MgCl,) and the annealing process from 90 °C to 40 °C for three
hours using an Eppendorf Mastercycler Pro S thermocycler (Eppendorf, Hamburg,
Germany). To form individual shape of DNA tetrominoes, four different
oligonucleotides were mixed stoichiometrically in an annealing buffer and the final

concentration was set to 0.5 uM.

6.4.2 Gel Electrophoresis

The results of the annealing reactions were analyzed using non-denaturing gel
electrophoresis  containing 4%, 5% and 8% polyacrylamide gel (29:1
acrylamide:bisacrylamide), 0.75 mm thick and run at approximately 12V/cm-1 for 2
hours at 4 °C. The running buffer contained 10 mM MgCl, and 1X TBE (89 mM Tris
base, 89 mM Boric acid and 2 mM EDTA pHS8.3) and the loading buffer contained
0.25% Bromophenol blue tracking dye and 30% glycerol. GelRed™ Nucleic Acid gel
stain (Biotium, US) was used to stain the gel. As mentioned in the previous chapter, gel
electrophoresis is a method to separate biological molecules (DNA, RNA and proteins)
based on their size and charge. It uses electric current to separate DNA fragments by
size as they migrate through the gel matrix (e.g. polyacrylamide gel). Smaller size DNA

move further away through the gel pores than the larger size DNA.
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6.4.3 Sample Preparation and Atomic force microscopy (AFM) Imaging

Atomic force microscopy (AFM) is a high-resolution microscopy that is used to
capture images of DNA structures at nanometer scale (Andersen et al., 2008; Brown et
al., 2015; Marchi, Saaem, Vogen, Brown, & LaBean, 2014; Zhang et al., 2015). All
DNA samples from Set 1 - Set 5 were subjected to a few preparation steps before the

images of the nanostructures could be captured.

Preparation of Mica Surface: A 0.1% APTES ((3-aminopropyl) triethoxysilane)
solution was prepared in ultrapure water. A drop (2 uL) of 0.1% APTES solution was
deposited onto the freshly cleaved mica surface and the surface was rinsed with

ultrapure water (20 pL) after 5 minutes incubation at room temperature.

Sample Preparation for AFM Imaging: The samples were diluted to 0.2 ng/uL
with buffer (40 mM Tris-HCI (pH 7.6), 13 mM MgCl,, 2.5 mM EDTA). 2 puL of the
sample solution was placed onto the APTES-treated mica surface for 5 minutes and the

surface was later rinsed with the buffer (20 pL) to remove unbound molecules.

Atomic Force Microscopy (AFM) Imaging: The AFM images were captured using
high-speed AFM (Nano Live Vision, Research Institute of Biomolecules Metrology
Co., Tsukuba, Japan) and cantilevers with dimensions (LxWxH) 10x2x0.1 pm’ (BL-
ACI10EGS, Olympus Corporation, Tokyo, Japan) were used. The cantilevers had a
spring constant of 0.1-0.2 N/m with a resonant frequency of 400 - 1,000 kHz in water.

The 320 - 240 pixels images were collected in tapping mode.
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6.5 Analysis of Gel Electrophoresis Result and AFM Images

DNA sequences for each shape were added sequentially during the gel
electrophoresis procedure (Figure 6.15). In the well 6 and 7 of Set 4 (Figure 6.15d),
there was no significant increment of the band size when I-shape was added to the well
7. This may due to the lower molecular size of the two DNA sequences that made up
the I-shape (I1=40 nucleotides and 12=30 nucleotides). However, when E-shape was
added into the well 8, smear was observed. This may due to the existent of many
random pairing, since DNA connectivity tool showed that it (Set 4) had the highest
competition between desired and undesired base pairing based on the list of binding
affinities (will be describe in details under section 6.6).

Although gel electrophoresis was used to detect the structural formation based on the
band size increment, it was not sufficient to elucidate the formation of the complete
DNA nanostructures. Therefore, AFM images of the structure were crucial to ascertain
the successful structural formation. Comparison between the AFM images (Figure 6.16)
and the predicted designed structures (Figure 6.14) were conducted. This led us to
believe that the formations of DNAs that resembled the designed structures had

successfully been observed for all the five combinations (Set 1 - Set 5).
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Figure 6.15: Gel electrophoresis results of the five combinations
Figure 6.15a represents the gel electrophoresis of Set 1 conducted on 8% non-
denaturing PAGE gel. Figure 6.15b-c represent the gel electrophoresis of Set 2 and Set
3 conducted on 5% non-denaturing PAGE gel.
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Figure 6.15 (continued): Gel electrophoresis results of the five combinations
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Figure 6.15d-e represent the gel electrophoresis results of Set 4 and Set 5 conducted on
4% and 5% non-denaturing PAGE gel.
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a. Set1

300 nm x 225 nm

100 nm x 75 nm Predicted structure

b. Set?2

300 nm x 225 nm

100 nm x 75 nm Predicted structure

Figure 6.16: AFM images of the five combinations
Figure 6.16a represents Set 1 while Figure 6.16b represents Set 2. The images were
taken at 300 nm x 225 nm and 100 nm X 75 nm. They were compared to the predicted
structures and each region was labelled with numerical number.
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c. Set3

300 nm x 225 nm

2 3
4 —
1
5

100 nm X 75 nm Predicted structure

d. Set4

300 nm x 225 nm

100 nm x 75 nm

Predicted structure

Figure 6.16 (continued): AFM images of the five combinations
Figure 6.16c represents Set 3 while Figure 6.16d represents Set 4. The images were
taken at 300 nm x 225 nm and 100 nm X 75 nm. They were compared to the predicted
structures and each region was labelled with numerical number.
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e. Set5

300 nm x 225 nm

100 nm x 75 nm Predicted structure

Figure 6.16 (continued): AFM images of the five combinations
Figure 6.16e represents Set 5. The images were taken at 300 nm % 225 nm and 100 nm
x 75 nm. They were compared to the predicted structures and each region was labelled
with alphabetical letter.

6.6 DNA Connectivity Map

The DNA connectivity tool developed in prior chapter was used to study the
interactions between the DNA through the binding affinity matrix. This had resulted in
the generation of graphs and the relative binding affinity between different nodes or
DNA segments (Table 6.6). The number of graphs was equivalent to the number of
potential structures that could be generated from a set of DNA strands. This number
included both the desired and misfolded structures. For example, Set 5 produced 31
different graphs with only 21 graphs indicating the formation of the desired structure.
Thus, there were 10 misleading paths that were biased towards unfavourable folding
leading to the formation of mismatch structures. The number of occurrences for binding
affinity close to 1.0 indicated the level of competition between the unintended nodes

(i.e., not design to form base pair). The higher the competition, the more number of
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graphs would be produced. Our search revealed that Set 4 had the highest number of
graphs generated, followed by Set 3, 2, 1 and 5 respectively. This was due to the higher
number of binding affinities that had value near to 1.0 existed in the sets. Set 4 had the
highest competition based on the list of binding affinities and this result was consistent

with the fact that the existence of smear on well 8 gel electrophoresis.

Table 6.6: Summary of the graphs generated through the searches

Combinations Number of correct | Number of graphs | Binding affinity
graphs

Set 1 17 200 0.74, 0.76

Set 2 16 469 0.71, 0.72,0.75, 0.77

Set 3 16 605 0.72,0.72,0.72, 0.73, 0.75

Set 4 12 757 0.72,0.72,0.72,0.73, 0.77,
0.79, 0.84

Set 5 21 31 0.73

The value P, represents the relative binding affinity between each DNA segment

estimated using the free energy from program Duplexfold (Reuter & Mathews, 2010).

P, will have the value of 1.0, if the intended binding between nodes is a perfect

L.

complementary pair. In the calculation, partially complement (£, < 1.0) DNA segments

are still included. However these partially complement segments have the tendency to
create false routes (causing the emergence of sticky ends) and eventually resulted in
false structures or miscellaneous aggregates. The threshold for binding affinity was set

at 0.7, therefore P; > 0.7 will be included. This is to ensure that the graph (Figure 6.17)

is restricted to only display strong estimation values (i.e., representative of preferable
binding interactions). Lower assignment of threshold generates convoluted paths full of
weak interactions, which will complicate the search process. The correct graphs are
represented with all the nodes visited exactly once and the edges taken by each node are

correctly linked as designed, regardless of the starting points. The order of the
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completed routes will provide a blueprint for the DNA sequences to form the desired

structures.

Figure 6.17: The connectivity map for the five combinations
Figure 6.17a-e represent connectivity map for Set 1, Set 2, Set 3, Set 4 and Set 5. Black
lines indicate the binding affinity between the respective nodes, whi ch was equals to
1.0. Blue dashed lines indicate nodes that were derived from the same DNA strands,
which were then used to decide on the emergence of potential sticky ends binding
region. Orange lines reveal the nodes with the binding affinity value of 07<P,<10.

The colour legends represent the type of DNA Tetris shapes involved in the
configuration of the rectangles.
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6.7 Summary

This chapter presented the successful construction of five distinct conformations (Set
1 to Set 5) of DNA nanostructure to address the ability of DNA sequences to self-
organize themselves into predefined configurations. The DNA sequences for these
combinations were designed using our newly developed sequence design tool while the
study of the interactions between the generated DNAs was done using the developed
DNA connectivity tool. The attempt for the structural construction was deemed
successful following the formations of DNAs that resembled the designed structures

been successfully observed for all five combinations (Set 1- Set 5).
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CHAPTER 7: CONCLUSION

The preceding chapters began by introducing the hypotheses of implementing a new
schema to construct DNA nanostructures, which derived from the principle of self-
organization and the popular computer game, Tetris. It then continued with the literature
reviews on the research subjects and previous works before commencing with the
development of the computational tools to support the proposed schema. Finally, this
chapter presents the summary of the entire research work and further concludes the
work. Several recommendations for future work on this research topic are also included

in the last section of this chapter.

7.1 Research Summary

This research proposed a new schema for constructing self-assembled DNA
nanostructures to create a dynamic and flexible structure design method. It further
promotes a complete outlook of the shapes involved and the sequence landscape
necessary in designing DNA sequences. Although there are a number of computational
tools (Andronescu, Aguirre-Hernandez, Condon, & Hoos, 2003; Hofacker, 2003; Reuter
& Mathews, 2010) available to do structure prediction and analysis, the application of
these tools are broad and they are not specifically developed to support the objectives of
this DNA Tetrominoes concept. In order to achieve this, it is crucial to utilize the
principles in computer science to compute the algorithm and manipulate it to do
prediction, simplify the search space and finally to find solutions to build the targeted

structure.

It is also not feasible to build DNA nanostructures manually from scratch since it
involves large search space and combinatorics issue. This has eventually led to the
development of computational methods to resolve this issue. Therefore, three main

research objectives have been outlined, i.e. to propose a new schema that simplifies the
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design search space, to develop an autonomous tool that support the schema and to
explore the plausibility of implementing self-organization principle in DNA

nanostructure fabrication.

To resolve the first research objective, the use of heterogeneous DNA Tetris shapes
constructed based on the Tetris game shape was introduced. Eight Tetris shapes that
could be used to derive from DNA sequences were identified. The DNA nanostructures
acted as search space for these shapes to self-assemble. These shapes were constructed
by allowing the process of block stacking and merging to form four long continuous
DNA sequences (except two DNA sequences for I-shape). The used of heterogeneous
Tetris shapes and the dynamicity in the search space based on the Tetris board, allowed

multiple conformations to be derived.

Secondly, after proposing the DNA Tetrominoes concept, the next step was to
develop a computational method for structural construction that was used to support the
newly introduced schema (objective 2). The computational tool comprised of two
modules; module 1 was the sequence design tool and the module 2 was the DNA
connectivity tool. These tools included the incorporation of optimization algorithm with
fitness evaluation criteria to mutate DNA so that it could autonomously form the
prescribed structures. Three external programs (RNAstructure (Reuter & Mathews,
2010), UNAFold (Markham & Zuker, 2008) and DNA sequence generator (Feldkamp,
Saghafi, & Rauhe, 2001)) were also subsequently manipulated to aid in the
development of the computational tools. As DNA self-assembly process is
asynchronous by which correctly formed DNA strands will compete with the partially
correct DNA strands, it was crucial to map the interaction that occurred between a set of
DNA when forming the DNA nanostructures (Module 2). The connectivity map was

used to analyse and map the level of competition between each DNA prior to forming
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the end-structures. It was used to indicate the relative binding strength between DNA
sequences, so that sequence alteration could be used to minimize the ill-formed
structures. DNA sequences that formed the structure were subsequently being analyzed
using graph method. The analysis had deciphered the interactions between DNA
sequences through the calculation of binding affinity of five different sets of
combinations. As such, Set 4 had the highest degree of competition to form the end

structure, followed by Set 3, 2, 1 and 5.

The third objective focused on exploring the plausibility to uphold the principle of
self-organization during the structural design. To implement this, each piece of Tetris
shape was mutually exclusive and considered as an entity. Each DNA Tetris shape
would self-assemble to form structures once the sticky end of its shape met with its
complementary sticky end from another shape. It enabled each component to be
included, excluded or replaced without affecting the entire structures and the resulted
components were modular. Meanwhile, in order to proof the ability of DNA
Tetrominoes concept to address the many shapes to many combinations relationship, a
hypothetical application with search space of 3 rows and 4 columns had been
conducted. A total of five distinct combinations (Set 1 — Set 5) had been utilized and the
successful formation of these DNA nanostructures had been validated using Atomic

Force Microscopy (AFM) imaging.

This work started with the goal to promote an alternative yet simpler schema to aid
in the construction of DNA nanostructures. In this dissertation, the contributions that
have been proposed and developed: A simpler schema to support the feasibility of
integrating Tetris representation into constructing DNA nanostructures. This schema
created modular DNA Tetris shapes by which each shape was considered as an entity.

These shapes were mutually exclusive and independent from the overall structural
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design. The shapes were programmed in the ways that they could bind in different type
of combinations when they met with matching sticky ends. Tetris representation was
chosen since it had heterogeneous property to show that different configurations (many
shapes to many combinations) could be used to form the same nanostructure. The core
principle of having multiple configurations was to let the most preferred shape and
sequence combinations to take precedence and in the event when any set of the structure
collapsed, the remaining sets could still be formed. Therefore, this concept was used to
address the stability issue od the resulting nanostructures against degradations (Mei et

al., 2011; Shen et al., 2012).

The development of the computational tools was used to support the dynamic
structure design method. The tools were used to introduce the combinatorics of Tetris
shapes into the equation. This allowed diversity not only in sequences, but also in the
Tetris shapes composition as well (i.e., many sequences to many shapes configurations

that conformed to the desired structure).

Despite the development of computational methods to uphold the research
objectives, there are several limitations in this study. For instance, this work does not
include the quantification on the total number of DNA nanostructures that are correctly
and incorrectly formed. The quantity of the well-formed structures is speculated to be
relatively lower than the conventional approach due to the use of less stringent
parameters. Even though the correct structures are still formed (images of these
nanostructures were successfully captured using AFM)), it is speculated to have more ill-

formed structures using this approach.

In addition, the sequence design method introduced the existence of forbidden region
in the DNA sequences. This will limit the total number of nucleotide positions available

for mutation. The forbidden region in the DNA sequences is the region that is refrained

126



from mutations process. Hence, the longer the length of the forbidden region, the less

nucleotide positions that are available for mutation.

Aside from this, the hypothetical application that was presented here has the search
space designed to be planar (being “glued” to a board). However, it is worth to note that
the resulted DNA nanostructures would not remain in planar arrangement and therefore
the images observed under AFM will vary. This shows the need to have a proper
structural interpretation so that the desired nanostructure end products could be

converted into the planar search space.

7.2 Conversion of the Framework into Web Service

The website, DNATetris was developed using Adobe Dreamweaver CS5 and
involved the setting up of a local testing server using MAMP 3.5 software (Mac OS X,
Apache, MySQL, PHP) (Figure 7.1). The server-side scripting language used PHP
version 5.6.10. Since the scripts were written in Perl and Tool Command Language
(TCL), the local server was required to have both packages installed. The address used

to access the website is http://localhost:8888/index.html. Safari, Google Chrome and

Firefox browsers have been used during the server-testing phase.

PHP
$Rec, $MInGC, $MaxGC
>
Browser Local Server
DNA sequences (MAMP 3.5)

Figure 7.1: The flow between the browser and local server
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DNATetris takes a set of random DNA sequences and further optimizes the DNA so
that it can form the end configuration according to the 3 x 4 rectangle framework. The
website receives user parameters such as percentage of guanine-cytosine content of the
DNA and the type of configurations. At one time, it generates one set of sequences
based on the type of configuration that the user selected, which will eventually generate
14 DNA strands for Set 1, Set 2, Set 3 and Set 4 or 16 DNA strands for Set 5
conformations. Upon clicking on the Submit button, the webpage will send the user
specified parameters to index2.php (Appendix R), which will then parse the parameters
to the Main RunDNATetris.tcl. It then produces the output page as illustrated in Figure

7.2.

@ HOME RUN_DNA CONTACT NCLAB

No|DNA Strands Iteration |GC%(x100)
1 |tacgtggttatgtgcggcgtagata 1 0.48
2 |gcacataaccacgta 1 0.47
3 |ataactcatcacgtcatccaagctatctagattgcttatcaccctggagagtttcgecggecttcggtagttegg 1 0.49
4 |ggttttcagtcggtactagatagcttggatgacgtgatgagttattatctacgec 1 0.44
5 |ccgaactaccgaaggccggegaaactctccagggtgataagcaatgtectgattt 1 0.53
6 |atgtggtcccaaatcaggactaccgactgaaaaccgcatgtagaa 6 0.47
7 |cgtaaaaagttacgggaactttccatagtcttctacatge 1 0.4
8 |ataagttgtggcagaccgtaactttttacg 1 0.4
9 |gactatggaaagttcagagaagacgtgcactgccg 1 0.51
10 |ccagtattgccggcagtgceacgtcttctcttctgecacaacttat 1 0.51
11 |gggaccacataacgcgtgatcatcttgcaggcata 1 0.51
12 |gcaatactggtgggaaattcgtgctacgggctcataaacaactgttccacgcatcagatgatcacgegtt 1 0.49
13 [tatgcctgcattagaggacg 1 0.5
14 |cgtcctctaagatgegtggaacagttgtttatgagcccgtagcacgaatttceca 1 0.49

Note: {I-Shape=No 1-2} {T-Shape=No 3-6} {B-Shape=No 7-10} {L-Shape=No 11-14}

Natural Computing Lab, Level 10, Wisma R&D, University of Malaya, 50603 Kuala Lumpur, Malaysia. Email: Website: https://nclab.fsktm.um.edumy.

Copyright © 2015

Figure 7.2: The output page for the generated DNA sequences
The iterations are the number of iteration used to mutate the sequences and the GC% is
the percentage of guanine-cytosine content.
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7.3 Future Work

Given the high impact of the structural design on DNA nanotechnology field, this
work hereby enlists several recommendations for the future work in order to improve
the existing research work. It is being proposed towards the direction of industrial
applications in DNA nanotechnology. Since this work has successfully demonstrated
the use of the proposed schema to construct simple structures, additional works are
needed to construct 3-dimensional and functional DNA nanostructure. For instance, the
schema could potentially be applied towards the generation of multiple conformations
of functional DNA nanostructures that have ability to carry functional payloads within

its structure.

This cutting edge application can be seen as crucial especially in the field of
medicine whereby, a real life application of delivering DNA nanorobots carrying load
has been demonstrated in a living environment (Amir et al., 2014). Another future
proposed work to improve this version would be to have multiple combinations of DNA
structures, which have different precedence in delivering the therapeutic agents to the
targeted cell for treatment. Recent advancements on the emergence of DNA
nanotechnology has seen its potential applications in nanomedicine such as drug
delivery and disease therapy (Sekhon, 2012). This field has put forward the attempt in

diagnostic, treatment and to destroy cancer cells.

Current cancer therapies involved the use of high concentration of chemotherapeutic
agents targeting the tumour site to destroy the cancerous cells. However, at the same
time it also causes injury to the healthy cells. Thereby, in order to prevent the loss of
healthy cells, recent work in nanomedicine has focused on the development of
technologies such as ligand targeted delivery of therapeutic drugs and nanocarriers.

These nanocarriers can be of liposomes or albumin-based nanoparticules and have been
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approved for clinical trials by the Food and Drug administration (FDA) in the United
States in year 2009 (Bharali, Khalil, Gurbuz, Simone, & Mousa, 2009; Sparreboom et
al., 2005). The compositions of lipid in liposomes allowed them to move across cell
membranes and deliver therapeutic product to the targeted cells (Figure 7.3). Given the
importance of the DNA nanorobots, future work on exploring into quantifying the
percentage of well-formed DNA structures that can be significantly utilized is being
proposed. This will solve the dispute on the amount of nanostructures that can work
efficiently, especially when the nanostructures are used to deliver substances. The
quantification work can hopefully lead to the successful delivery of the constructed

structure into the cellular environment.

"I"f‘"'I."'H'J""!'J" TR i R e AT TR TR T T _'Tx‘m'”f T
i N | 1 JI)llijdjldi]hHWUJl/JJIhl _JJHIIHHIHJHIJI N )l’lll # A”L

Cell membrane

Figure 7.3: Drug delivery mechanism
Figure 7.3a represents drug delivery mechanism using liposomes. Figure 7.3b
represents the emulsions to cross a cell membrane. Retrieved from (Zahid, Kim,
Hussain, Amin, & Park, 2013).
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Aside from the nanomedicine applications, the DNA nanostructures can also be
developed for implementation in electrical components and circuits. At present,
nanoelectronic depends on the complementary-symmetry metal-oxide semiconductor
(CMOS) technology as it is currently being used for circuits such as image sensor,
microcontroller and microprocessor (Baker, 2008). However, as the demand for further
miniaturization and increasing of processing speeds, CMOS has gradually being
substituted. In fact, nanoscale size electronic has been developed at the molecular level
and this devices are identified as molecular electronics (Petty, Bryce, & Bloor, 1995)

(Figure 7.4).

Figure 7.4: DNA nanostrand array
The DNA nanostrand array (Guan & Lee, 2005) serves as an important feature to
biological based electronic and medical devices. Retrieved from (Zahid et al., 2013).

As DNA offers solutions to the current CMOS issue, an extension of this current
work into forming electronic devices such as nanowires devices and transistors

(Bachtold, Hadley, Nakanishi, & Dekker, 2001; DeHon, 2003) that behave like CMOS
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circuit is highly recommended. Besides being efficient in terms of power consumption,
the main advantage of nanodevices made of DNA is that it can accumulate in a larger
density compared to a normal circuit in an electronic system (Patwardhan, Dwyer,

Lebeck, & Sorin, 2004).
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APPENDIX A: Main_RunDNATetris.tcl

#! /usr/local/bin/tclsh
# SignalRegeneratelnitialSeq 1 = need to regenerate initial seq again
#SignalRegeneratelnitialSeq 2 = solution found

# Get current working directory

proc getScriptDirectory {} {
set dispScriptFile [file normalize [info script]]
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder

}

set path [getScriptDirectory]
set originalPath $path

set Max_Iteration 500

set OutputMax_lteration [open "${path}/Max_lteration.txt" w]
puts $OutputMax_lteration "$Max_Iteration"
close $OutputMax_Iteration

set SignalRegeneratelnitialSeq 1

while {$SignalRegeneratelnitialSeq < 2} {
set path $originalPath

exec ${path}/Main2GenerateSeq.tcl

set ReadSignal [open ${path}/Signal.txt r]

while {[gets $ReadSignal lineReadSignal] >=0} {
set Signal $lineReadSignal

}

close $ReadSignal

if {$Signal == "Need to Regenerate Initial seq"} {
set SignalRegeneratelnitialSeq 1

} else {

set SignalRegeneratelnitialSeq 2

}
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APPENDIX B: Main2GenerateSeq.tcl

#! /usr/local/bin/tclsh
#cylenumber is the completion of seq 1 = seq1 etc

# Get current working directory

proc getScriptDirectory {} {
set dispScriptFile [file normalize [info script]]
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder

}

set path [getScriptDirectory]
set originalPath $path
set ReadSquareType [open ${path}/SquareType.txt r]
while {[gets $ReadSquareType lineReadSquareType] >=0} {
set SquareType $lineReadSquareType

}
close $ReadSquareType

exec ${path}/GenerateRandomSeq.pl
exec ${path}/Adjust_ RandomSeq.pl

if {[file exists ${path}/b.txt] == 1} {
file delete -force ${path}/b.txt

}

set ReadMinCG [open ${path}/MinCG.txt r]
while {[gets $ReadMinCG lineMinCG] >=0} {
set MinCG $lineMinCG

}
close $ReadMinCG

set ReadMaxCG [open ${path}/MaxCG.txt r]

while {[gets $ReadMaxCG lineMaxCG] >=0} {

set MaxCG $lineMaxCG

}
close $ReadMaxCG
set LimitGACycle 500
set DefineSeqgFilename "${path}/${SquareType}DefineSeq.txt"
set DefineSeq2Filename "${path}/${SquareType}DefineSeq2.txt"
set TotalSeqNum {}

# Generate DefineSeq2.txt, get total seqNo involved
set InDefine [open "$DefineSeqFilename" r]

while {[gets $InDefine lineDefineSeq] >=0} {

set SegNum [lindex $lineDefineSeq 0]

lappend TotalSegNum $SegNum

close $InDefine

set OutDefineSeq2 [open "$DefineSeq2Filename" w]
# Get all SegNo involved in the DefineSeq.txt

set AllSegNo [Isort -real -unique $TotalSegNum ]

set TotalStrand [lindex $AlISeqNo end]

foreach itemb $AlISegNo {
set TotalDLength {}
set TotalStartD {}
set TotalEndD {}
set InDefine [open "$DefineSeqFilename" r]
while {[gets $InDefine lineDefineSeq] >=0} {
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set SegNoD [lindex $lineDefineSeq 0]
set SegLengthD [lindex $lineDefineSeq 1]
set StartD [lindex $lineDefineSeq 2]
set EndD [lindex $lineDefineSeq 3]
if {$itemb == $SeqgNoD} {
lappend TotalDLength $SeqlLengthD
lappend TotalStartD $StartD
lappend TotalEndD $EndD

}

close $InDefine

if {$TotalStartD 1= "NIL"} {

set SeqDLength_Sort [Isort -integer $TotalDLength ]

set StartD_Sort [Isort -real $TotalStartD ]

set EndD_Sort [Isort -real $TotalEndD ]

set SeqIinDLength [lindex $SeqDLength_Sort 0]

set StartD_Lowest [lindex $StartD_Sort 0]

set EndD_Highest [lindex $EndD_Sort end]

puts $OutDefineSeq2 "$itemb  $SeqIinDLength $StartD_Lowest
$EndD_Highest"

}

if {$TotalStartD == "NIL"} {

set StartD_Lowest NIL

set EndD_Highest NIL

puts $OutDefineSeq2 "$itemb  $TotalDLength $StartD_Lowest
$EndD_Highest"

}

}
close $OutDefineSeq2

# split DefineSeq.txt into 1BEWIDefineSeq.txt, 2BEWI|DefineSeq.txt , 3BEWIDefineSeq.txt etc
set CountFileNo 1
foreach itemS $AlISeqNo {
set InDefine [open "$DefineSeqFilename" r]
set OutSplitDefineSeq [open "${path}/${CountFileNo} ${SquareType}DefineSeq.txt" w]
while {[gets $InDefine lineDefineSeq] >=0} {
set SeqNum [lindex $lineDefineSeq 0]
if { $SegNum <= $itemS} {
puts $OutSplitDefineSeq "$lineDefineSeq"
}
}
incr CountFileNo
close $InDefine
close $0utSplitDefineSeq
}

# split DefineSeq2.txt into 1BEWIDefineSeq2.txt, 2BEWIDefineSeq2.txt etc.
set CountFile2No 1
foreach itemS $AlISeqNo {
set InDefine [open "$DefineSeq2Filename" r]
set OutSplitDefineSeq?2 [open "${path}/${CountFile2No}_${SquareType}DefineSeq2.txt"
w]
while {[gets $InDefine lineDefineSeq2] >=0} {
set SegNum [lindex $lineDefineSeq?2 0]
if { $SegNum <= $itemS} {
puts $OutSplitDefineSeq2 "$lineDefineSeq2"
}

incr CountFile2No
close $InDefine
close $OutSplitDefineSeq2

}
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set countfinalseq 0

set in [open "${path}/UnOptimized_Seq.txt" r]

set strand O

while {[gets $in linesplit] >=0} {

if {[string length $linesplit] != 0} {
set SplitFile [open ${path}/FinalSeq_${strand}.txt w]
puts $SplitFile "$linesplit"
close $SplitFile
incr strand
incr countfinalseq

}
close $in

file delete -force ${path}/Summary_AfterOptimized_Seq.txt
set SummaryFinalSeq [open "${path}/Summary_AfterOptimized_Seq.txt" a+]
set CycleNumber 1
set SSType [split "$SquareType" {}]
set SegqNo 1
set SegNolnterpretation {}
foreach item $SSType {
if {Sitem 1="I"} {
set EndNo "[expr $SeqNo+3]"
lappend SegNolnterpretation "$item=SequenceNo $SeqNo-$EndNo"
incr SeqNo 4

}
if {$item == "I"} {
set EndNo "[expr $SeqNo+1]"
lappend SegNolnterpretation "$item=SequenceNo $SeqNo-$EndNo"
incr SeqNo 2
}
}

# $z is no of dna strands
for { setz 0} {$z < $TotalStrand } {incrz}{
set value 1
set CycleGA 0
set PrintCycleNumber [open "${path}/cycle.txt" w]
puts $PrintCycleNumber $CycleNumber
set CycleNoMinus1 [expr $CycleNumber-1]
close $PrintCycleNumber
set grabb [open "${path}/cycle.txt" r]
set 1stElement 0
while {[gets $grabb linegrab] >=0} {

if {$1stElement == 0} {

set CycleNumber [lindex $linegrab 0]

incr 1stElement

}

close $grabb

set fit [open "${path}/FinalSeq_${CycleNoMinus1}.txt" r]
set lines [split [read $fit] "\n"]

close $fit

set listseq {}

for {setu0}{$u<1}{incru}{

set listseq [lindex $lines $u]

}

while {$value == 1} {

if {[file exists ${path}/query1.txt] == 1} {
file delete -force ${path}/query1.txt

}
if {[file exists ${path}/target1.txt] == 1} {
file delete -force ${path}/target1.txt
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}

incr CycleGA
set number $CycleNumber

if {$CycleNumber ==1} {

if {$CycleGA == 1}{
lappend ComSeq $listseq
set NoLine 1

set Score 0

set number $CycleNumber
sett1

set SplitFile [open ${path}/$t.fasta w+]
puts $SplitFile ">DNA $t"
puts $SplitFile "$listseq"
flush $SplitFile

close $SplitFile

set AfterAdjSeq $listseq

}

if {$CycleGA != 1} {

set SplitFile [open ${path}/$CycleNumber.fasta w+]
puts $SplitFile ">DNA $CycleNumber"

puts $SplitFile $new

flush $SplitFile

close $SplitFile

set AfterAdjSeq $new

}
}

# cz 1st seq doesnot have static region

if {$CycleNumber > 1} {

set NoLine 1

set Score 0

if {$CycleGA == 1} {

set NewSegAfterMute [open "${path}/Sequence${SquareType}.txt" r]
set lines [split [read $NewSeqAfterMute] "\n"]
for { seti 0 }{ $i <= $CycleNumber-1 } {iincri}{
set t [expr {$i + 1}]

set SplitFile [open ${path}/$t.fasta w+]

puts $SplitFile ">DNA $t"

puts $SplitFile [lindex $lines $i]

flush $SplitFile

close $SplitFile

}
close $NewSeqgAfterMute

lappend ComSeq $listseq

set countAdjust 1

set infileDefineSeq [open "${path}/${CycleNumber} ${SquareType}DefineSeq.txt" r]
while {[gets $infileDefineSeq lineDefineSeq] >=0} {

set SeqNum [lindex $lineDefineSeq 0]

set ComplemSeq [lindex $lineDefineSeq 4]

set ComSeqStart [lindex $lineDefineSeq 5]

set ComSeqEnd [lindex $lineDefineSeq 6]

set CurrSeqStart [lindex $lineDefineSeq 2]

set CurrSeqEnd [lindex $lineDefineSeq 3]

if {$SegNum == $CycleNumber && ![regexp "NIL" $ComplemSeq]} {
if {$countAdjust == 1} {
set CurrSeq [lindex $ComSeq $SeqNum-1]

}
set NewAdj {}
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set ¢ [expr $ComplemSeq-1]

set SeqGetCom [lindex $ComSeq $c]

set RegToRev [string range $SeqGetCom $ComSeqStart-1 $ComSeqEnd-1]
set Rev [string reverse $RegToRev]

for {set b 0} {$b < [string length $ReV]} {incr b} {

set Com [string index $Rev $b]

if {$Com =="c"} {
lappend NewAdj "g"
}

if {$Com == "g"} {
lappend NewAd;j "c"

}
if {$Com == "a"} {
lappend NewAd;j "t"

}

if {$Com == "t"} {
lappend NewAdj "a"
}

incr countAdjust

}
set A [join $NewAdj ""]
set CurrSeq [string replace $CurrSeq $CurrSeqStart-1 $CurrSeqEnd-1 $A]

}

if {$SegNum == $CycleNumber && [regexp "NIL" $ComplemSeq]} {
set CurrSeq [lindex $ComSeq $SeqNum-1]

}

}
set AfterAdjSeq $CurrSeq
close $infileDefineSeq

set SplitFile [open ${path}/$CycleNumber.fasta w+]
puts $SplitFile ">DNA $CycleNumber"

puts $SplitFile $AfterAdjSeq

flush $SplitFile

close $SplitFile

}

if {$CycleGA != 1} {

set SplitFile [open ${path}/$CycleNumber.fasta w+]
puts $SplitFile ">DNA $CycleNumber"

puts $SplitFile $new

flush $SplitFile

close $SplitFile

}
}

set QuerySeq {}
set TargetSeq {}
seta {}
setb {}
set infileDefineSeq [open "${path}/${CycleNumber} ${SquareType}DefineSeq.txt" r]
while {[gets $infileDefineSeq lineDefineSeq] >=0} {
set QuerySeq [lindex $lineDefineSeq 0]
set TargetSeq [lindex $lineDefineSeq 4]
if {$QuerySeq == $CycleNumber} {
lappend b $TargetSeq
}

close $infileDefineSeq

set a $CycleNumber

if {$CycleNumber ==1} {
cd ${path}/RNAstructure/data_tables/
exec chmod u+rwx ${path}/1.fasta
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exec [auto_execok ${path}/RNAstructure/exe/AllSub] ${path}/1.fasta
${path}/AllSub.ct --DNA

set f [open "${path}/AllSub.ct"]

set AlISub {}

while {[gets $f lineSub] >= 0} {

if {[regexp "ENERGY" $lineSub]} {
set AlISub $lineSub

}

close $f

set EnergyAllSub [string range $AlISub 16 20]
if {[string length $EnergyAllSub] == 0} {
set EnergyAllSub 0

}
set EnergyAllDuplex 0
if {$EnergyAllSub > $EnergyAllDuplex} {

}

if {$EnergyAllSub < $EnergyAllDuplex} {
set Score 0

incr Score

}
set FinalOutAllSub $EnergyAllSub
set FinalSubDuplex $Score

}

if {$CycleNumber > 1 && ![string equal NIL $b]} {
cd ${path}/RNAstructure/data_tables/
exec chmod u+rwx ${path}/$a.fasta
exec [auto_execok ${path}/RNAstructure/exe/AllSub] ${path}/$a.fasta ${path}/AllSub.ct --DNA
set f [open "${path}/AllSub.ct"]

set AlISub {}

while {[gets $f lineSub] >= 0} {

if {[regexp "ENERGY" $lineSub]} {

set AllSub $lineSub

}

}

close $f
set EnergyAllSub [string range $AlISub 16 20]
if {[string length $EnergyAllSub] == 0} {

set EnergyAllSub 0

}
set FinalOutAllSub $EnergyAllSub
cd ${path}/RNAstructure/data_tables/
set Tot [llength $b]
set AllDuplex {}
set NoListAllDuplex {}

foreach itemb $b {

exec [auto_execok ${path}/RNAstructure/exe/DuplexFold] ${path}/$a.fasta ${path}/$itemb.fasta
${path}/DuplexFold.ct --DNA

set d [open "${path}/DuplexFold.ct"]

while {[gets $d lineduplex] >= 0 } {

if {[regexp "ENERGY" $lineduplex]} {

set AllDuplex $lineduplex

set EnergyAllDuplex [string range $AlIDuplex 16 20]
lappend NoListAllDuplex "$EnergyAllDuplex"

}

close $d
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if {[string length $EnergyAllDuplex] == 0} {
set EnergyAllSub 0

}
set numberlistDuplex [Isort -real $NoListAllDuplex]

if {$EnergyAllSub > [lindex $numberlistDuplex 07} {
}

if {$EnergyAllSub < [lindex $numberlistDuplex 0]} {
incr Score

}
set FinalOutDuplex [lindex $numberlistDuplex 0]
set FinalSubDuplex $Score
set NumberListAllDuplex {}

}

set FinalSubDuplex $Score
if {$CycleNumber ==1} {
set FinalFalseBinding 0

}

if {$CycleNumber != 1} {

set NewSegAfterMute [open "${path}/Sequence${SquareType}.txt" r]
set linesNewSeq [split [read $NewSeqgAfterMute] "\n"]

close $NewSeqgAfterMute

set SplitFileTarget [open ${path}/target1.txt a+]

for { sett 0} { $t <= $CycleNumber-1 } {incrt}{
puts $SplitFileTarget [lindex $linesNewSeq $t]
flush $SplitFileTarget

}
close $SplitFileTarget

if {$CycleGA > 1} {
set AfterAdjSeq $new
}

set CStart {}

set CEnd {}

set infileDefineSeq [open "${path}/${CycleNumber} ${SquareType}DefineSeq.txt" r]
while {[gets $infileDefineSeq lineDefineSeq] >=0} {

set QuerySeq [lindex $lineDefineSeq 0]

set CurrSeqgMatchStart [lindex $lineDefineSeq 5]

set CurrSeqMatchEnd [lindex $lineDefineSeq 6]

if {$QuerySeq == $CycleNumber && ![string equal NIL $CurrSegMatchStart]} {
lappend CStart $CurrSegMatchStart
lappend CEnd $CurrSeqMatchEnd

}

close $infileDefineSeq

if { [string length $CStart] != 0} {
set CCycle $CycleNumber
set TotalListCStart "[llength $CStart]"
set RetrieveSeq $AfterAdjSeq
for { sett 0} { $t < $TotalListCStart } { incrt} {
set IntermeRetrieveSeq [string replace $RetrieveSeq [expr [lindex $CStart $t]-1] [expr
[lindex $CENd $t]-1]]
set RetrieveSeq $IntermeRetrieveSeq

}

}
if { [string length $RetrieveSeq] != 0} {
set SplitFileQuery [open ${path}/query1.txt w]
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puts $SplitFileQuery $RetrieveSeq

flush $SplitFileQuery

close $SplitFileQuery

set path $originalPath

cd ${path}/

exec ${path}/FindStartPosition.pl

exec ${path}/CleanEmptyPosition.pl

exec ${path}/GetLongestComplement.pl

set grabFinalScoreFalseBinding [open "${path}/FinalScoreFalseBinding.txt" r]
while {[gets $grabFinalScoreFalseBinding linegrabFalseBinding] >=0} {
set FinalFalseBinding [lindex $linegrabFalseBinding 0]

close $grabFinalScoreFalseBinding

}
if { [string length $RetrieveSeq] == 0} {
set FinalFalseBinding 0
}

}

set G4Pattern gggg
set C4Pattern cccc
set NoCytosine ¢
set NoGuanine g
set scoreCG 0

set scoreCG_G4 0
set tcl_precision 2

proc FindG4 {G4Pattern DnaSeq} {
return [regexp -all $G4Pattern $DnaSeq]

}
proc FindC4 {C4Pattern DnaSeq} {

return [regexp -all $C4Pattern $DnaSeq]
}

set GrepG4 [FindG4 $G4Pattern $AfterAdjSeq]

set GrepC4 [FindC4 $C4Pattern $AfterAdjSeq]

set TotalC [regexp -all -- $NoCytosine $AfterAdjSeq]
set lengDna [string length $AfterAdjSeq]

set TotalG [regexp -all -- $NoGuanine $AfterAdjSeq]
set TotalCG [expr $TotalC + $TotalG]

set percentageCG [expr {double($TotalCG)/$lengDna}]

if {SMinCG<=$percentageCG && $percentageCG<=$MaxCG && $GrepG4 == 0} {
}

if {$percentageCG < $MInCG || $percentageCG > $MaxCG || $GrepG4 > 0 || $GrepC4} {
if {$percentageCG < $MIinCG || $percentageCG > $MaxCG} {
incr scoreCG

}
set scoreCG_G4 [expr {$scoreCG + $GrepG4 + $GrepC4}]
}

set FinalOutPercentageCG $percentageCG

set CombineStructureFalseBinding CG_G4 [expr $FinalSubDuplex + $FinalFalseBinding +
$scoreCG_G4]

set infileDefineSeq2 [open "${path}/${CycleNumber} ${SquareType}DefineSeq2.txt" r]

if {$CombineStructureFalseBinding_CG_G4 != 0 && $CycleGA <= $LimitGACycle} {

setno 1
set value 1
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proc range {from to} {
if {$to>$from} {concat [range $from [incr to -1]] $to}
}
proc RegionToMutate {WholeRange ForbidListPos} {
set diff {§
foreach i $WholeRange {
if { [Isearch -exact $ForbidListPos $i]==-1} {
lappend diff $i
}

}
return $diff

proc PickMutatePosition PositionList {
lindex $PositionList [expr {int(rand()*[llength $PositionList])}]

proc PickNucleoForReplace Nucleotide {
lindex $Nucleotide [expr {int(rand()*[llength $Nucleotide])}]
}

while {[gets $infileDefineSeq2 lineDefineSeq2] >=0} {
set SegNo [lindex $lineDefineSeq2 0]
set ForbidStartPos [lindex $lineDefineSeq2 2]
set ForbidEndPos [lindex $lineDefineSeq2 3]
set WholeSegEndPos [lindex $lineDefineSeq2 1]
set WholeSeqStartPos 1
if {$SegNo == $CycleNumber} {

if {$SegNo == $number && [string equal NIL $ForbidEndPos] != 1} {
set ForbidEndPosPlus1 [expr $ForbidEndPos + 1 ]

set WholeSeqEndPosPlus1 [expr $WholeSeqEndPos + 1]

set ForbidListPos [range $ForbidStartPos $ForbidEndPosPlus1]

set WholeRange [range $WholeSeqStartPos $WholeSeqEndPosPlus1]
set PosToMutate [RegionToMutate $WholeRange $ForbidListPos]

if {[ string length $PosToMutate ] == 0} {
set new $AfterAdjSeq
set old $AfterAdjSeq

}

if { [ string length $PosToMutate ] 1= 0 } {

set OriSeq $AfterAdjSeq

set PositionList $PosToMutate

set MutatePosition [PickMutatePosition $PositionList]
if {[string index $OriSeq $MutatePosition] == {a}} {
set Nucleotide {c g t}

}
if {[string index $OriSeq $MutatePosition] == {c}} {
set Nucleotide {a g t}

}
if {[string index $OriSeq $MutatePosition] == {g}} {
set Nucleotide {a c t}

}
if {[string index $OriSeq $MutatePosition] == {t}} {
set Nucleotide {a c g}

set NewNucleotide [PickNucleoForReplace $Nucleotide]

set NewSegAfterMutated [string replace $OriSeq $MutatePosition-1
$MutatePosition-1 $NewNucleotide]

set new $NewSeqgAfterMutated

set old $AfterAdjSeq

}
}
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if {$SegNo == $number && [string equal NIL $ForbidEndPos] == 1} {
set WholeSeqEndPosPlus1 [expr $WholeSeqEndPos + 1]
set PosToMutate [range $WholeSeqStartPos $WholeSeqEndPosPlus1]

if { [ string length $PosToMutate ] =0 } {

set OriSeq $AfterAdjSeq

set PositionList $PosToMutate

set MutatePosition [PickMutatePosition $PositionList]

if {[string index $OriSeq $MutatePosition] == {a}} {
set Nucleotide {c g t}

}
if {[string index $OriSeq $MutatePosition] == {t}} {
set Nucleotide {a c g}

}
if {[string index $OriSeq $MutatePosition] == {c}} {
set Nucleotide {a g t}

}
if {[string index $OriSeq $MutatePosition] == {g}} {
set Nucleotide {a c t}

set NewNucleotide [PickNucleoForReplace $Nucleotide]

set NewSegAfterMutated [string replace $OriSeq $MutatePosition-1
$MutatePosition-1 $NewNucleotide]

set new $NewSeqgAfterMutated

set old $AfterAdjSeq

}

}

if {$SegNo != $number && $WholeSeqStartPos == $ForbidStartPos &&
$WholeSeqEndPos == $ForbidEndPos} {

set new $AfterAdjSeq

set old $AfterAdjSeq

}
}
}
close $infileDefineSeq2
}

if {$CombineStructureFalseBinding_CG_G4 != 0 && $CycleGA > $LimitGACycle} {

puts "Exceed Threshold: CycleGA=$CycleGA. No solution found at Strand $CycleNumber"

puts "Program Terminated"

set OutputSignal [open "${path}/Signal.txt" w]

puts $OutputSignal "Need to Regenerate Initial seq"
close $OutputSignal

exit

}

if {$CombineStructureFalseBinding CG_G4 == 0} {
set value 0
set new $AfterAdjSeq

}

if {$CycleNumber > 0} {

set IntermComSeq [Ireplace $ComSeq $CycleNumber-1 $CycleNumber-1 $new]
set ComSeq $IntermComSeq

}
}

if {$CycleNumber == 1} {
puts $SummaryFinalSeq "$CycleNumber\t$new\t$CycleGA\t$FinalOutPercentageCG"

}

if {$CycleNumber >1} {

puts $SummaryFinalSeq "$CycleNumber\t$new\t$CycleGA\t$FinalOutPercentageCG"
}
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set FinalSegAfterMutate [open "${path}/Sequence${SquareType}.txt" a+]
puts $FinalSeqAfterMutate "$new"
close $FinalSeqAfterMutate
incr CycleNumber
}
close $SummaryFinalSeq
# clean up all existing temporary files run before this
file delete -force ${path}/output
file delete -force ${path}/position_query
file delete -force ${path}/position_query 1
file delete -force ${path}/position_target
file delete -force ${path}/position_target 1
file delete -force ${path}/query
file delete -force ${path}/query 1
file delete -force ${path}/query1.txt
file delete -force ${path}/target
file delete -force ${path}/target_1
file delete -force ${path}/target1.txt
file delete -force ${path}/FinalScoreFalseBinding.txt
file delete -force ${path}/DuplexFold.ct
file delete -force ${path}/cycle.txt
file delete -force ${path}/AllSub.ct
eval file delete [glob ${path}/FinalSeq_*.txt]
eval file delete [glob ${path}/* fasta]
eval file delete [glob ${path}/* ${SquareType}DefineSeq.txt]
eval file delete [glob ${path}/* ${SquareType}DefineSeq2.txt]
eval file delete [glob ${path}/${SquareType}DefineSeq2.txt]

set OutputSignal [open "${path}/Signal.txt" w]
puts $OutputSignal "Done"
close $OutputSignal

puts "Output File for Optimised Sequence: ${path}/Sequence${SquareType}.txt"
puts "Output File for Sequence Summary: ${path}/Summary_AfterOptimized_Seq.txt"
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APPENDIX C: GenerateRandomSeq.pl

#!/usr/bin/perl
# Generate random DNA
# using a random number generator to randomly select bases

use strict;
use warnings;

use Cwd;

use Cwd qw();

# Extract current working directory and pass to the script
my $CurrentDirectory = Cwd::cwd();

my $path = $CurrentDirectory;

my @Length = @_;
my $ColumnSeqgNo = @_;

my @SeqNo = @_;

open (READ_SQUARETYPE, "${path}/SquareType.txt") || die "couldn't open the file
(${path}/SquareType.txt)!";

#open THEFILE, "<filename.txt";

my $first_line = <READ_SQUARETYPE>;

my @extractWithoutNewline = split(/\n/, $first_line);

close READ_SQUARETYPE;

my $SquareType = $extractWithoutNewline[0];

print "SquareType= --$SquareType---\n";

open (READ_DEFINE, "${path}/${SquareType}DefineSeq.txt") || die "couldn't open the file
(${path}/${SquareType}DefineSeq.txt)!";

while (my $DefineSeq = <READ_DEFINE>) {

my @Column = split(/\t/,$DefineSeq);

my $ColumnLength = $Column[1];

my $ColumnSegNo = $Column[0];

push(@Length,$ColumnLength);

push(@SeqNo,$ColumnSeqNo);

}
close READ_DEFINE;

my @sortedLength = sort { $a <=> $b } @Length;
my @sortedSegNo = sort { $a <=> $b } @SeqNo;
my $MaxLengthDefineSeq = $sortedLength[-1];
my $MaxSeqgNo = $sortedSeqNo[-1];

my $size_of set = $MaxSeqNo;
my $maximum_length = $MaxLengthDefineSeq;
my $minimum_length = $MaxLengthDefineSeq;

# An array, initialized to the empty list, to store the DNA in
my @random_DNA = ( );

# Seed the random number generator.
# time|$$ combines the current time with the current process id
srand(time|$$);

# And here's the subroutine call to do the real work
@random_DNA = make_random_DNA_set( $minimum_length, $maximum_length,
$size_of set);
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open (OUTPUTSEQ, ">${path}/RandomSeq.txt");
foreach my $dna (@random_DNA) {

print OUTPUTSEQ "$dna\n";
}
close OUTPUTSEQ;
exit;

#### Subroutines
# Accept parameters setting the maximum and minimum length of
# each string of DNA, and the number of DNA strings to make

sub make_random_DNA_set {

my($minimum_length, $maximum_length, $size_of_set) = @_;

my $length;

my $dna;

my @set;

for (my $i = 0; $i < $size_of set ; ++3i) {
$length = randomlength ($minimum_length, $maximum_length);
$dna = make_random_DNA ( $length );
push( @set, $dna );

return @set;

}

# randomlength
# A subroutine that will pick a random number from
# $minlength to $maxlength, inclusive.

sub randomlength {

# Collect arguments, declare variables
my($minlength, $maxlength) = @_;
# Calculate and return a random number within the
# desired interval.
# Notice how we need to add one to make the endpoints inclusive,
# and how we first subtract, then add back, $minlength to
# get the random number in the correct interval.
return ( int(rand($maxlength - $minlength + 1)) + $minlength );
}

# Make a string of random DNA of specified length.
sub make_random_DNA {
my($length) = @_;
my $dna;
for (my $i=0 ; $i < $length ; ++8$i) {
$dna .= randomnucleotide( );

return $dna;

}

# Select at random one of the four nucleotides
sub randomnucleotide {

my(@nucleotides) = ('a', 'c’, 'g', 't');

return randomelement(@nucleotides);

}

# randomly select an element from an array
sub randomelement {

my(@array) = @_;

return $array[rand @array];

}
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APPENDIX D: Adjust RandomSeq.pl

#!/usr/bin/perl

use warnings;

use strict;

use Cwd qw();

my $CurrentDirectory = Cwd::cwd();
my $path = $CurrentDirectory;

open (READ_SQUARETYPE, "${path}/SquareType.txt") || die "couldn't open the file
(${path}/SquareType.txt)!";

#open THEFILE, "<filename.txt";

my $first_line = <READ_SQUARETYPE>;

my @extractWithoutNewline = split(\n/, $first_line);

close READ_SQUARETYPE;

my $SquareType = $extractWithoutNewline[0];

print "SquareType= --$SquareType---\n";

my $dsg_output = "${path}/RandomSeq.txt";

my $record ;

my @arrfilename;

my $count = 0;

my $DefSeqgFilename = "${path}/${SquareType}DefineSeq.txt";
my $recordDef;

my $countDef = 0;

my @arrfilenameDef;

# read raw seq from DSG

open (READFILES, "$dsg_output") || die "couldn't open the file ($dsg_output)!";
while ($record = <READFILES>){

Sarrfilename[$count] = substr($record,0,length($record)-1);

$Scount++;

}
close(READFILES);

# Read DefineFile

open (READDEF, "$DefSeqFilename") || die "couldn't open the file ($DefSeqFilename)!";
while ($recordDef = <READDEF>){

SarrfilenameDef[$countDef] = substr($recordDef,0,length($recordDef)-1);

$countDef++;

}
close(READDEF);

open (TEMPO_SEQ, ">${path}/Tempo_seq.txt");
# Extract DSGseq with specified length in defineSeq.txt
foreach (my $s=0; $s<$count; $s++) {
my $SPlus1 = $s+1;
foreach (my $d=0; $d<$countDef; $d++) {
my $arrayDef = $arrfilenameDef[$d];
my @colDef = split(’ ', $arrayDef);
if($SPlus1 == $colDef[0]) {
my $SeqgLength = $colDef[1];
my $ExtractSeqgDefLength = substr ($arrfilename[$s],0,$SeqlLength);
print TEMPO_SEQ "$ExtractSegDefLength\n";
$d=$countDef;
}
}

}
close(TEMPO_SEQ);

my $Tempo = "${path}/Tempo_seq.txt";
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my @arrTempo;

my $recordT,;

my $t = 0;

my $countTempo = 0;
my $Seqnt;

# Read seq with the specified length

open (READTEMPO, "$Tempo") || die "couldn't open the file ($Tempo)!";
while ($recordT = <READTEMPO>){

$arrTempo[$countTempo] = substr($recordT,0,length($recordT)-1);
$countTempo++;

}
close(READTEMPO);
open (SEQ_AFTER_ADJUSTCOMPLEM, ">${path}/UnOptimized_Seq.txt");

foreach (my $t=0; $t<$countTempo; $t++) {
my $Seqnt = $arrTempo[$t];
my $tPlus1 = $t+1;
foreach (my $e=0; $e<$countDef; $e++) {
my $arrayDef = $arrfilenameDef[$e];
my @colDef = split(’ ', $arrayDef);
if($tPlus1 == $colDef[0] ) {
my $CurrentSeqStartPos = $colDef[2];
my $CurrentSeqEndPos = $colDef[3];
my $PairSeqNo = $colDef[4];
my $PairSeqStartPos = $colDef[5];
my $PairSeqEndPos = $colDef[6];
## if NIl exist, move to next cz NIl cannot extract position
if ($CurrentSeqStartPos =~ /A[+-]2\d+$/ ) {
my $PairSeqNoMinus1 = $PairSeqNo-1;
my $ComplemPairSegment;
my $revComplemPairSegment;
my $DifferencesNtsPairPlus1 = $PairSeqEndPos-
$PairSeqStartPos+1;
my $Pairsegment = substr
($arrTempo[$PairSegNoMinus1],$PairSeqStartPos-1,$DifferencesNtsPairPlus1);
my $revcomplemdsegment =
reverse_complement($Pairsegment);
my $DifferencesNts = $colDef[3]-$colDef[2];
my $DifferencesNtsPlus1 = $DifferencesNts+1;
my $ColDef2Minus1 = $colDef[2]-1;
# To replace current strong position
substr($Seqnt, $ColDef2Minus1, $DifferencesNtsPlus1)
= "$revcomplemdsegment";
}
}

}
print SEQ_AFTER_ADJUSTCOMPLEM "$Segnt\n";
}

close(SEQ_AFTER_ADJUSTCOMPLEM);

sub reverse_complement {
my $dna = shift;
# reverse the DNA sequence
my $revcomp = reverse($dna);
# complement the reversed DNA sequence
$revcomp =~ tr/ACGTacgt/TGCAtgcal/;
return $revcomp;

}
unlink glob ("${path}/Tempo_seq.txt");
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APPENDIX E: FindStartposition.pl

#!/usr/bin/perl
use strict;
use warnings;

use Cwd qw();

my $CurrentDirectory = Cwd::cwd();
my $path = $CurrentDirectory;

my $FBS = 6;

my $query_file = "${path}/query1.txt";
my $target_file = "${path}/target1.txt";
my $recordq;

my @arrfilenameq;

my $g=0;

my $recordt;

my @arrfilenamet;

my $t=0;

my $i=0;

my $target;

my @values_target=@_;

my @rev_complem_query2 = @_;

open (READQUERY, "$query_file") || die "couldn't open the file ($query_file)!";
while ($recordq = <READQUERY>){

$arrfilenameq[$q] = substr($recordq,0,length($recordq)-1);

$q++;

}
close(READQUERY);

open (READTARGET, "$target_file") || die "couldn't open the file ($target_file)!";
while ($recordt = <READTARGET>){

Sarrfilenamet[$t] = substr($recordt,0,length($recordt)-1);

$t++;

}
close(READTARGET);

open (QUERY_SEQ, ">${path}/query");

open (TARGET_SEQ, ">${path}/target");

open (POS_QUERY, ">${path}/position_query");
open (POS_TARGET, ">${path}/position_target");

# search the beginner starting sequence within minimum 2 nucleotides
for ($i=0; $i<scalar @arrfilenameq; $i++) {

my $rev_query;

my $rev_complem_query;

my $query = $arrfilenameq[$i];

$rev_query = reverse($query);

$rev_complem_query = complement($rev_query) ;

for (my $j=0; $j<scalar @arrfilenamet; $j++) {

my $target = $arrfilenamet[$j];

my @values_target = split(//,$target);

my $len_target = scalar(@values_target);

my @rev_complem_query2 = split(//,$rev_complem_query);
my $len_query = scalar (@rev_complem_query2);

for (my $position_query=0; $position_query<$len_query-2; $position_query++) {
my @start_target = ();

my @start_query = ();
print QUERY_SEQ "$rev_complem_query\n";
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print TARGET_SEQ "$target\n";

print POS_QUERY "$position_query\n"; #start of query position from left to right, 1 nt at a time

for (my $position=0; $position < scalar (@values_target) ; $position++) {

if(substr($rev_complem_query,$position_query,$FBS) eq substr($target,$position, $FBS)) {

push (@start_target,$position);

}
}
print POS_TARGET "@start_target\n";
}
}
}

close QUERY_SEQ;
close TARGET_SEQ;;
close POS_QUERY ;
close POS_TARGET ;

# subroutine for complement

sub complement {
$_[0] =~ y/CGATcgat/GCTAgctal;
return $_[O];

}
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APPENDIX F: CleanEmptyPosition.pl

#!/usr/bin/perl

use strict;

use warnings;

use Cwd qw();

my $CurrentDirectory = Cwd::cwd();
my $path = $CurrentDirectory;

my $query_file = "${path}/query";
my $target_file = "${path}/target";
my $query_position = "${path}/position_query";
my $target_position = "${path}/position_target";
my $recordq;

my @arrfilenameq;

my $q = 0;

my @arrfilenamet;

my $t = 0;

my $recordt;

my @arrfilenamea;

my $recorda;

my $a=0;

my $recordb;

my @arrfilenameb;

my $b=0;

open (READQUERY, "$query_file") || die "couldn't open the file ($query_file)!";
while ($recordq = <READQUERY>){

$arrfilenameq[$q] = substr($recordq,0,length($recordq)-1);

$q++;

}
close(READQUERY);

open (READTARGET, "$target_file") || die "couldn't open the file ($target_file)!";
while ($recordt = <READTARGET>){

Sarrfilenamet[$t] = substr($recordt,0,length($recordt)-1);

$t++;

}
close(READTARGET);

open (READPOSQUERY, "$query_position") || die "couldn't open the file ($query_position)!";
while ($recorda = <READPOSQUERY>){

$arrfilenamea[$a] = substr($recorda,0,length($recorda)-1);

$a++;

}
close(READPOSQUERY);

open (READPOSTARGET, "$target_position") || die "couldn't open the file ($target_position)!";
while ($recordb = <READPOSTARGET>){

$arrfilenameb[$b] = substr($recordb,0,length($recordb)-1);

$b++;

}
close(READPOSTARGET);

QUERY_SEQ, ">${path}/query_1");
TARGET_SEQ, ">${path}/target_1");
POS_QUERY, ">${path}/position_query_1");
POS_TARGET, ">${path}/position_target_1");

open
open
open
open

—~ o~~~

for (my $i=0; $i<scalar @arrfilenameb; $i++) {

if ($arrfilenameb[$i] ne ") {
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}
}

print TARGET_SEQ "$arrfilenamet[$i]\n";
print QUERY_SEQ "$arrfilenameq[$i]\n";
print POS_QUERY "$arrfilenamea[$ij\n";

print POS_TARGET "$arrfilenameb[$i]\n";

close QUERY_SEQ;
close TARGET_SEQ;;
close POS_QUERY ;
close POS TARGET ;
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APPENDIX G: GetLongestComplement.pl

#!/usr/bin/perl

use strict;

use warnings;

use Cwd qw();

my $CurrentDirectory = Cwd::cwd();
my $path = $CurrentDirectory;

use List::Util qw(min max);

my $query_file = "${path}/query_1";
my S$target_file = "${path}/target 1";
my $query_position = "${path}/position_query 1";
my $target_position = "${path}/position_target 1";
my $recordq;

my @arrfilenameq;

my $g=0;

my $recordt;

my @arrfilenamet;

my $t=0;

my @arrfilenamea;

my $recorda;

my $a=0;

my $recordb;

my @arrfilenameb;

my $b=0;

my $start_pointt;

my @EndTarget;

my @EndQuery;

my @cycle_within_same_querypos;
my $end_query_range;

my $ori_query;

my $end_target_range;

my $get_oriquery;

my $lengthQuery;

my $BackOriQuery;

my $linesOutput =0 ;

open (READQUERY, "$query_file") || die "couldn't open the file ($query_file)!";
while ($recordq = <READQUERY>){

$arrfilenameq[$q] = substr($recordq,0,length($recordq)-1);

$q++;

}
close(READQUERY);

open (READTARGET, "$target_file") || die "couldn't open the file ($target_file)!";
while ($recordt = <READTARGET>){

Sarrfilenamet[$t] = substr($recordt,0,length($recordt)-1);

$t++;

}
close(READTARGET);

open (READPOSQUERY, "$query_position") || die "couldn't open the file ($query_position)!";
while ($recorda = <READPOSQUERY>){

$arrfilenamea[$a] = substr($recorda,0,length($recorda)-1);

$a++;

}
close(READPOSQUERY);
open (READPOSTARGET, "$target_position") || die "couldn't open the file ($target_position)!";

while ($recordb = <READPOSTARGET>){
$arrfilenameb[$b] = substr($recordb,0,length($recordb)-1);
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$b++;
}
close(READPOSTARGET);

open (OUTPUT, ">${path}/output");

my $i;

my $;

my $u;

for ($i=0; $i<scalar @arrfilenameq; $i++) {
my $target = $arrfilenamet[$i];

my $start_point_query = $arrfilenamea[$i];
my $query = $arrfilenameq[$il;

if ($arrfilenamea([$i] eq '0') {

my @cycle_within_same_querypos = ();
my @everyelement = ();

my @EndTarget = ();

my @EndQuery =();

} else {}

my @len_target = split //, $target ;

my $length_target = scalar @len_target;
my $split_pos_target = $arrfilenameb[$i];
my @after_split_position = split / /, $split_pos_target ;
my @split_position = @after_split_position;

#each position in the array targeti.e 09 18 48
foreach ($j=0; $j<scalar @split_position; $j++) {
my $start_point_target = $split_position[$;];

my @match_target= @_;

my @match_query = @_;

my @start_point_target=@_;

my @start_point_counter=@_;

my $counter = 1;

my @start_point_query = @_;

for ($u=0; $u<S$length_target;$u++) {
if(substr($query,$start_point_query,$counter) eq substr($target,$start_point_target,$counter)) {
push (@match_query,substr($query,$start_point_query,$counter));
push (@match_target,substr($target,$start_point_target,$counter));
push (@start_point_query,$start_point_target);
push (@start_point_target,$start_point_target);
push (@start_point_counter,$counter);
$counter++;
}
else {

}

my $size = (scalar @match_target) - 1;

#get the total number of match nts between query and target

my $total_sequence_target_match = $match_target[$size];

my $LengthTotalSeqTargetMatch = length($total_sequence_target_match);
my $size_pointt = (scalar @start_point_target) - 1;

$start_pointt = $start_point_target[$size_pointt];

my $size_counter = (scalar @start_point_counter) - 1;

my $last_counter = $start_point_counter[$size_counter];
$end_query_range = $start_point_query+$LengthTotalSeqTargetMatch;
$end_target_range = $start_pointt+$LengthTotalSeqTargetMatch;
$get_oriquery = reverse($query);

$ori_query = complement($get_oriquery);

$lengthQuery = length($query);

$BackOriQuery = $lengthQuery-$LengthTotalSeqTargetMatch;

my @lo_coun=@_;

push (@lo_coun,$counter);

my $max_value = max(@lo_coun);
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my $match_range = $max_value-1;

my @everyelement = ();

push (@everyelement,($query,',', $target,',', $total_sequence_target_match,',’, $start_pointt,',',
$end_target_range,',',$start_point_query,',',$end_query_range,',','Range="'$match_range,";"));
push (@cycle_within_same_querypos,$match_range);

push (@EndTarget, $end_target_range);

push (@EndQuery, $end_query_range) ;

}
my $max_cycle_within_same_querypos = max @cycle_within_same_querypos;
my $numelements = @cycle_within_same_querypos;

if ($numelements == 1) {
}
else {

my $LastTarget = $EndTarget[-1];

my $SecondLastTarget = $EndTarget[-2];

my $LastQuery = $EndQuery[-1];

my $SecondLastQuery = $EndQuery[-2];

print OUTPUT "$ori_query\t$target\t$start_pointtitfend_target_range\t$start_point_query\tSend_query_range\n”;

}
}
my $linesScore0 = 0;

my $NoOfLinesScore0 = "${path}/output";

open (OUTPUTFINALSCORE, ">${path}/FinalScoreFalseBinding.txt");

open (FILESCORE, $NoOfLinesScore0) or die "Can't open '$NoOfLinesScore0";
$linesScore0++ while (<FILESCORE>);

close FILESCORE;

#So to get the total score: line in false binding sites (filename: output) is given score 1
my $NoOfLinesOutput = "${path}/output";

open (FILEOUTPUT, $NoOfLinesOutput) or die "Can't open '$NoOfLinesOutput™;
$linesOutput++ while (<FILEOUTPUT>);

close FILEOUTPUT;

my $TotalPenaltyForEachRound = $linesOutput-$linesScore0;

print OUTPUTFINALSCORE "$TotalPenaltyForEachRound\n";

close OUTPUT;

close OUTPUTFINALSCORE;

sub complement {
$_[0] =~ y/CGATcgat/GCTAgctal;
return $_[O];

}
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APPENDIX H: MainGraph_theory.tcl

#! /usr/local/bin/tclsh
# need to 2 input file eg. 1) SeqDefineSeq.txt, 2)Sequence.txt, SquareType is $Rec
# output file: List_CorrectGraph.txt"

# Get current working directory
proc getScriptDirectory {} {
set dispScriptFile [file normalize [info script]]
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder
}
set path [getScriptDirectory]
set ReadSquareType [open ${path}/SquareType.txt r]
while {[gets $ReadSquareType lineReadSquareType] >=0} {
set SquareType $lineReadSquareType

}
close $ReadSquareType

if {[file exists ${path}/FinalLevel] == 1} {
file delete -force ${path}/FinalLevel
}

set OutputSquareType [open "${path}/SquareType.txt" w]

puts $OutputSquareType "$SquareType"

close $OutputSquareType

set OutputTM [open "${path}/MeltingTemperature.txt" w]

puts $OutputTM "$ThresholdMeltingTemperature"

close $OutputTM

set OutputDNATakeUpRate [open "${path}/DNAUptakeRate.txt" w]

puts $OutputDNATakeUpRate "$DNAUptakeRate"

close $OutputDNATakeUpRate

set OutputThresholdProbabilityEnergy [open "${path}/ThresholdProbabilityEnergy.txt" w]
puts $OutputThresholdProbabilityEnergy "$ThresholdProbabilityEnergy"
close $OutputThresholdProbabilityEnergy

set OutputMax_lteration [open "${path}/Max_lteration.txt" w]

puts $OutputMax_lteration "$Max_Iteration"

close $OutputMax_lteration

set infileDefineSeq [open "${path}/${SquareType}DefineSeq.txt" r]
set SeqFragPSSM [open "${path}/ListSeqFragPSSM.txt" w]

# LinelnMatrix.txt is the representative of each column & row in the matrix
set EachLineinMatrix [open "${path}/LinelnMatrix${SquareType}.txt" w]

# get total no of seqs involved

while {[gets $infileDefineSeq lineDefineSeq] >=0} {
set counter 1

set SegNum [lindex $lineDefineSeq 0]

set ComplemSeq [lindex $lineDefineSeq 4]
lappend CheckSeqList $SeqNum

set PreviousSeq [lindex $CheckSeqList end-1]

if { $PreviousSeq != $SeqNum} {
lappend AllSeq $SegNum
}

incr counter

close $infileDefineSeq
set TotalSeq [lindex $AlISeq end]
# start: get the occurances/ no of fragment for each seqs
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for { setp 0} { $p < $TotalSeq } {incrp }{

set NoFragmentinASeq 0

set Seq [lindex $AlISeq $p]

set SeqNumStartEnd {}

set ComplemSeqStartEnd {}

set infileDefineSeq2 [open "${path}/${SquareType}DefineSeq.txt" r]
while {[gets $infileDefineSeq?2 lineDefineSeq2] >=0} {

set SegNum [lindex $lineDefineSeq?2 0]

set SeqNumStart [lindex $lineDefineSeq?2 2]

set SeqNumENd [lindex $lineDefineSeq2 3]

set ComplemSeq [lindex $lineDefineSeq2 4]

set ComplemSeqStart [lindex $lineDefineSeq2 5]
set ComplemSeqgEnd [lindex $lineDefineSeq2 6]

if {![string equal NIL $ComplemSeq]} {
if {$Seq == $SeqNum} {
lappend SegNumStartEnd $SeqNumStart
lappend SegNumStartEnd $SegqNumEnd
incr NoFragmentinASeq

}
if {$Seq == $ComplemSeq} {
lappend ComplemSeqStartEnd $ComplemSeqStart
lappend ComplemSeqStartEnd $ComplemSeqEnd
incr NoFragmentinASeq
}

}

}

}
close $SeqFragPSSM
close $infileDefineSeq

set ExtractSeqFrag [open "${path}/ListSeqFragPSSM.txt" r]

set Matrix [open "${path}/Matrix${SquareType}.txt" w]

set TotalMatrix [open "${path}/TotalMatrix${SquareType}.txt" w]

set FreeEnergy [open "${path}/Tempo1FreeEnergy${SquareType}.txt" w]
set FragmentSeq [open "${path}/FragmentSeq.txt" w]

set InSeq [open "${path}/Sequence${SquareType}.txt" r]

set LineSeq [split [read $InSeq] "\n"]

close $InSeq

set No 1

while {[gets $ExtractSeqFrag lineExtractSeq] >=0} {

set SegNmber [lindex $lineExtractSeq 0]

set NoOccuranceFragment [lindex $lineExtractSeq 1]

set NoOccuranceFragmentTimes2 [expr $NoOccuranceFragment*2]

set SegNumberMinus1 [expr $SeqNumber-1]

set SequencelLine [lindex $LineSeq $SegqNumberMinus1]

for { set u 2 } { $u <= $NoOccuranceFragmentTimes2+1 } { incr u} {

set StartFragment [lindex $lineExtractSeq $u]

set EndFragment [lindex $lineExtractSeq $u+1]

set ExtractedFragment [string range $SequenceLine $StartFragment-1 $EndFragment-1]
puts $FragmentSeq "$No $SeqNumber $ExtractedFragment”

puts $EachLineinMatrix "$SeqNumber  $StartFragment $EndFragment”
incr No

incr u

}
}

close $FragmentSeq

close $EachLineinMatrix

set TotalRatio 0

set InFragmentSeq [open "${path}/FragmentSeq.txt" r]
set QueryNo 1
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set CountPerQueryRun 0
while {[gets $InFragmentSeq lineInFragmentSeq] >=0} {
set InFragmentSeq2 [open "${path}/FragmentSeq.txt" r]
set TargetNo 1
while {[gets $InFragmentSeq2 linelnFragmentSeq2] >=0} {
set LineFragment [lindex $lineInFragmentSeq 2]
set LineFragment2 [lindex $linelnFragmentSeq2 2]
set query [open ${path}/query.fasta w+]
puts $query ">DNA $QueryNo"
puts $query "$LineFragment"
flush $query
close $query
set target [open ${path}/target.fasta w+]
puts $target ">DNA $TargetNo"
puts $target "$LineFragment2"
flush $target
close $target
cd ${path}/RNAstructure/data_tables/
exec [auto_execok ${path}/RNAstructure/exe/DuplexFold] ${path}/query.fasta
${path}/target.fasta ${path}/DuplexFold.ct --DNA

set d [open "${path}/DuplexFold.ct"]

set NoListAllDuplex {}

while {[gets $d lineduplex] >= 0 } {

if {[regexp "ENERGY" $lineduplex]} {

set AllDuplex $lineduplex

set EnergyAllDuplex [string range $AllDuplex 16 20]
lappend NoListAllDuplex "$EnergyAllDuplex"

}

close $d

if {[string length $EnergyAllDuplex] == 0} {

set EnergyAllDuplex 0

}

set numberlistDuplex [Isort -real $NoListAllDuplex]

set LowestInADuplexRun [lindex $numberlistDuplex 0]

# check if the lowest value duplex is a negative or not
if {$LowestInADuplexRun < 0} {

lappend PerQueryRun "$LowestinADuplexRun"

incr CountPerQueryRun

}

if {$LowestInADuplexRun > 0} {

lappend PerQueryRun "0"

puts "Error message !! Positive value found $QueryNo $TargetNo"
incr CountPerQueryRun

}

incr TargetNo

close $InFragmentSeq2

#$LowestPerQueryRun is the wanted hybridization

#$IndividuListPerQueryRun is the duplexfold value for all unwanted and wanted

set SortPerQueryRun [Isort -real $PerQueryRun]

set LowestPerQueryRun [lindex $SortPerQueryRun 0]

puts $FreeEnergy "$PerQueryRun"

for { seta 0} { $a < $CountPerQueryRun } {incr a } {

set IndividuListPerQueryRun [lindex $PerQueryRun $a]

set RatioProbability [expr double($IndividuListPerQueryRun)/$LowestPerQueryRun]
set RoundedRatioProb [expr [format "%.2f" $RatioProbability]]
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set TargetNumber [expr $a+1]

set TotalRatio [expr $TotalRatio+$RatioProbability]
lappend ListMatrix "$RoundedRatioProb"

}

incr QueryNo

set TotalRatio 0

set ListMatrix {}

set PerQueryRun {}

set CountPerQueryRun 0

close $InFragmentSeq
close $TotalMatrix
close $Matrix

close $ExtractSeqFrag
close $FreeEnergy

# START : To remove {, } because List {-6.6 } so need to become -6.6

exec /bin/bash -c "sed -e 's/\{//g' ${path}/Tempo1FreeEnergy${SquareType}.txt >
${path}/Tempo2FreeEnergy${SquareType}.txt"

exec /bin/bash -c "sed -e 's/\}//g' ${path}/Tempo2FreeEnergy${SquareType}.txt >
${path}/FreeEnergy${SquareType}.txt"

cd ${path}/

eval exec ${path}/Run_Tm.pl

cd ${path}/

eval exec ${path}/Combine_TmMatchPair.tcl
cd ${path}/

eval exec ${path}/FindSegment_TmMatchPair.tcl
cd ${path}/

exec ${path}/Generate_StartNodes.tcl

cd ${path}/

exec ${path}/Run_Level1.tcl

cd ${path}/

exec ${path}/Run_Level2ToN.tcl

cd ${path}/

exec ${path}/Remove_redundacy.tcl

cd ${path}/

exec ${path}/count.tcl

cd ${path}/

exec ${path}/Find_CorrectMatch.tcl

puts "Final output at List_CorrectGraph.ixt"

cd ${path}/

file delete -force ${path}/Concentration.txt

file delete -force ${path}/DuplexFold.ct

file delete -force ${path}/Filtered_UnaFold.txt

file delete -force ${path}/FinalePairTm_PSSM.txt
file delete -force ${path}/FinaleToUse.txt

file delete -force ${path}/FinaleToUseTempo1.txt
file delete -force ${path}/FinaleToUseTempo2.txt
file delete -force ${path}/FinalMatchingPairsTm.txt
file delete -force ${path}/FragmentSeq.txt

file delete -force ${path}/LastLevelNoFile.txt

file delete -force ${path}/OutFinaleWithBracket.txt
file delete -force ${path}/OutTmColumn_Part1.txt
file delete -force ${path}/PreviousNodesConcen.txt
file delete -force ${path}/query.fasta

file delete -force ${path}/StartNode${SquareType}.txt
file delete -force ${path}/target.fasta

file delete -force ${path}/ListSeqFragPSSM.txt

file delete -force ${path}/MatchingPair.txt

file delete -force ${path}/MeltingTemperature.txt
file delete -force ${path}/RedundantList.txt
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file delete -force ${path}/SquareType.txt

file delete -force ${path}/TempoLinelnMatrix${SquareType}.txt
file delete -force ${path}/Tempo1FreeEnergy${SquareType}.txt
file delete -force ${path}/Tempo1StartNode${SquareType}.txt
file delete -force ${path}/Tempo2FreeEnergy${SquareType}.txt
file delete -force ${path}/TotalFile

file delete -force ${path}/TotalMatrix${SquareType}.txt

file delete -force ${path}/Matrix${SquareType}.txt

file delete -force ${path}/Temporary

eval file delete -force [glob ${path}/Level*]

file delete -force ${path}/2ndStepProcessResult

file delete -force ${path}/ProcessResult

file delete -force ${path}/RemovedRepeatedRows

file delete -force ${path}/List_CorrectPair

file delete -force ${path}/MaxCG.txt

file delete -force ${path}/MinCG.txt

file delete -force ${path}/Max_lteration.txt

file delete -force ${path}/RandomSeq.txt

file delete -force ${path}/Signal.txt

file delete -force ${path}/ThresholdProbabilityEnergy.txt

file delete -force ${path}/DNAUptakeRate.txt
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APPENDIX I: Run_Tm.pl

#!/usr/bin/perl

#use strict;

#use warnings;

# Output Filename: CompletedSortTmDecreasingOrder.txt

use Cwd;

use Cwd qw();

# Extract current working directory and pass to the script
my $CurrentDirectory = Cwd::cwd();

my $path = $CurrentDirectory;

my $originalpath = $path;

open (READ_SQUARETYPE, "${path}/SquareType.txt") || die "couldn't open the file
(${path}/SquareType.txt)!";

my $first_line = <READ_SQUARETYPE>;

my @extractWithoutNewline = split(A\n/, $first_line);

close READ_SQUARETYPE;

my $SquareType = $extractWithoutNewline[0];

my $file = "${path}/OutUnaFoldCompleted.txt";

my $removed = unlink($file);

# split all sequences in SequenceTILB.txt into different files for each line, 1.txt, 2.txt...14.xt
open (INSEQ, "${path}/Sequence${SquareType}.txt") or die;
my $SegNo = 1;
while (my $line = <INSEQ>) {

my @eachline = split(An/, $line);

open (SPLITSEQ, ">${path}/unafold-3.8/$SeqNo.txt");

print SPLITSEQ "$eachline[0]\n";

close SPLITSEQ;

$SegNo++;
}
close INSEQ;

# with self hybridization eg. 1-1, 2-2 homodimer

open (OUTPUTMATCHINGPAIR, ">${path}/MatchingPair.txt") || die "couldn't output to file
(MatchingPairTm)!";

my $file2 = "${path}/unafold-3.8/OutUnaFoldCompleted.txt";

my $removed?2 = unlink($file2);

my $RemovedOutunafold = unlink("${path}/OutUnaFoldCompleted.txt");
chdir("${path}/unafold-3.8/") or die "cannot change: $\n";

# run melt.pl
for (my $a=1; $a< $SeqNo; $a++) {

for (my $b=%a; $b< $SeqNo; $b++) {

system "chmod", "u+x", "${path}/";

system ("melt.pl --NA DNA --sodium 1 --C 0.00001 $a.txt $b.txt >>
OutUnaFoldCompleted.txt");

print OUTPUTMATCHINGPAIR "$a $b\n";

}

}

close OUTPUTMATCHINGPAIR;

# END run melt.pl

my $FilteredUnaFold = "${path}/Filtered_UnaFold.txt";

# Start Checking

system ("cp -i ${path}/unafold-3.8/OutUnaFoldCompleted.txt ${path}/");

system ("awk 'NR % 3 == 0' ${path}/OutUnaFoldCompleted.txt > ${path}/Filtered_UnaFold.txt");
my $Seq_MatchingPair = "${path}/MatchingPair.txt";

my $countMatchigPairLine = 0;

my @arrfilename;
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my $recordm;

open (READMATCH, "$Seq_MatchingPair") || die "couldn't open the file ($Seq_MatchingPair)!";
while ($recordm = <READMATCH>){

$arrfilename[$countMatchigPairLine] = substr($recordm,0,length($recordm)-1);
$countMatchigPairLine++;

}
close(READMATCH);

my $countTmLine = 0;
my @arrfilenameTm;
my $record;

open (READTM, "$FilteredUnaFold") || die "couldn't open the file ($FilteredUnaFold)!";
while ($record = <READTM>){

$arrfilenameTm[$countTmLine] = substr($record,0,length($record)-1);
$countTmLine++;

}
close(READTM);
my $countMatchigPairLin;

if ($countMatchigPairLine == $countTmLine) {
}
else {

print "Error in matching pairs and extracted Tm lines, Please check back original file Filename:
OutUnaFoldCompleted.txt\n";

# delete all temporary files generated during unafold
for (my $s=1; $s< $SeqNo; $s++) {
unlink glob ("${path}/unafold-3.8/$s.txt*");
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APPENDIX J: Combine TmMatchpair.tcl

#! /usr/local/bin/tclsh
# combine Matching Pair & Tm into 1 file, Output file : CompletedSortTmDecreasingOrder.txt
proc getScriptDirectory {} {
set dispScriptFile [file normalize [info script]]
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder
}
set Tpath [getScriptDirectory]
set path "${Tpath}/"
set TmList {}
set Pair1List {}
set Pair2List {}
set inputTm [open ${path}Filtered_UnaFold.txt r]
while {[gets $inputTm lineinputTm] >=0} {
set Tm [lindex $lineinputTm 3]
lappend TmList $Tm

close $inputTm
set inputMatchPair [open ${path}MatchingPair.txt r]
while {[gets $inputMatchPair lineinputMatchPair] >=0} {
set Pair1 [lindex $lineinputMatchPair 0]
set Pair2 [lindex $lineinputMatchPair 1]
lappend Pair1List $Pair1
lappend Pair2List $Pair2

close $inputMatchPair
set TotalList "[llength $Pair1List]"
set OutCombinedPairTm [open ${path}FinalMatchingPairsTm.txt w]
for { sett 0} { $t <= $TotalList-1 } {iincrt}{
puts $OutCombinedPairTm "[lindex $Pair1List $t][lindex $Pair2List $t][lindex $TmList $t]" }
close $OutCombinedPairTm
set TmDecreasingOrder {}
set ToSortTmList {}
# Start: Sort column according to Tm on descending order
set inputToSortTm [open ${path}FinalMatchingPairsTm.txt r]
while {[gets $inputToSortTm lineToSortTm] >=0} {
set ToSortTm [lindex $lineToSortTm 2]
lappend ToSortTmList $ToSortTm }
close $inputToSortTm
set TmDecreasingOrder [Isort -real -decreasing $ToSortTmList]
puts "$TmDecreasingOrder";

# Step 2: Find the pairs correspond to the Tm value ond descending order
set OutTmColumn_Part1 [open ${path}OutTmColumn_Part1.txt w]
foreach itemb $TmDecreasingOrder {
set inputToSortTm [open ${path}FinalMatchingPairsTm.txt r]
while {[gets $inputToSortTm lineToSortTm] >=0} {
set PPair1 [lindex $lineToSortTm 0]
set PPair2 [lindex $lineToSortTm 1]
set TTm [lindex $lineToSortTm 2]
if {$itemb == $TTm} {
puts $OutTmColumn_Part1 "$PPairt  $PPair2$TTm" }

}
close $inputToSortTm }
close $OutTmColumn_Part1

# step 3: remove redundant line from sorting work.
exec /bin/bash -c {awk {if (++dup[$0] == 1) print $0;}' "$path"OutTmColumn_Part1.txt >
"$path"CompletedSortTmDecreasingOrder.txt}
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APPENDIX K: FindSegment TmMatchPair.tcl

#! /usr/local/bin/tclsh
# Output : $db

# Get current working directory

proc getScriptDirectory {} {
set dispScriptFile [file normalize [info script]]
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder

}

set Tpath [getScriptDirectory]

set path "${Tpath}/"

set ReadSquareType [open ${path}SquareType.txt r]
while {[gets $ReadSquareType lineReadSquareType] >=0} {
set SquareType $lineReadSquareType

}
close $ReadSquareType

set FileNameLinelnMatrix "${path}LinelnMatrix${SquareType}.txt"
set FileNameFreeEnergy "${path}FreeEnergy${SquareType}.txt"

if {[file exists ${path}FinalePairTm_PSSM.txt] == 1} {
file delete -force ${path}FinalePairTm_PSSM.txt

}
if {[file exists ${path}OutFinaleWithBracket.txt] == 1} {
file delete -force ${path}OutFinaleWithBracket.txt

}
set FinaleFinale [open ${path}FinalePairTm_PSSM.txt w+]

# get total lines in LinelnMatrix.txt to get n number of rows and column in Free Energy
set countline 0

set inputcount [open $FileNameLinelnMatrix r]

while {[gets $inputcount linecountline] >=0} {

incr countline

}

# Step A1: foreach hybridizaton pairs, start with the highest Tm, go by row..
set inputMeltingTemp [open ${path}CompletedSortTmDecreasingOrder.txt r]
while {[gets $inputMeltingTemp lineMeltingTemp] >=0} {
set AllFinale {}

set SPair1 [lindex $lineMeltingTemp 0]

set SPair2 [lindex $lineMeltingTemp 1]

set STm [lindex $lineMeltingTemp 2]

set FindRow {}

set FindColumn {}

# Step A2: and check which row & column it situated in FreeEnergy Matrix
setline 0
set inputFindLine [open $FileNameLinelnMatrix r]
while {[gets $inputFindLine lineinputFindLine] >=0} {
incr line
if {[lindex $lineinputFindLine 0] == $SPair1} {
lappend FindRow $line

}

if {[lindex $lineinputFindLine 0] == $SPair2} {
lappend FindColumn $line

#puts "FindColumn=$FindColumn"

}
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}
set TotalRow [llength $FindRow]

set TotalColumn [llength $FindColumn]
set RepresentvFromEachRowLowest {}
# Get free energy according to columnNo and rowNo in FreeEnergy matrix table
set MatrixRow 0
set FreeEnergyMatrix [open $FileNameFreeEnergy r]
while {[gets $FreeEnergyMatrix lineFreeEnergyMatrix] >=0} {
incr MatrixRow
for { sety 0 } { $y < $TotalRow} { incry } {
set RowNo [lindex $FindRow $y]
set ListEnergy {}
set References {}
set Last [expr $TotalRow-1]
set LastRow [lindex $FindRow $Last]
if { $MatrixRow == $RowNo } {
for { setz 0} {$z < $TotalColumn} { incr z } {
set ColumnNo [lindex $FindColumn $z]
set ColumnNoMinus1 [expr $ColumnNo-1]
set ExtractedFreeEnergy [lindex $lineFreeEnergyMatrix
$ColumnNoMinus1]
lappend References "$RowNo"
lappend References "$ColumnNo"
lappend References "$ExtractedFreeEnergy"
lappend ListEnergy $ExtractedFreeEnergy

}

# get Lowest Energy (in different column but same Row
set SortEnergyRow [Isort -real $ListEnergy]
set LowestEnergyWithinRow [lindex $SortEnergyRow 0]
set TotalReferences [llength $References]
for { setr 2} { $r < $TotalReferences} {incrr}{
if {[lindex $References $r] ==
$LowestEnergyWithinRow} {
set RMinus2 [expr $r-2]
set RMinus1 [expr $r-1]
lappend RepresentvFromEachRowLowest "[lindex
$References $RMinus2]"
lappend RepresentvFromEachRowLowest "[lindex
$References $RMinus1]"
lappend RepresentvFromEachRowLowest "[lindex
$References $r]"

if { $LastRow == [lindex $References $RMinus2] } {

# Get Unique Column To Compare In Next Step
set CompareSameColumn
$RepresentvFromEachRowLowest

set LengthCompareSameColumn [llength
$RepresentvFromEachRowLowest]

set ToSortElementColumn {}

for { sets 1} { $s < $LengthCompareSameColumn} {
incrs }{

lappend ToSortElementColumn [lindex
$RepresentvFromEachRowlLowest $s]

incr s

incr s

set UnigElementIinColumn [Isort -unique
$ToSortElementColumn]
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# START : compare Columns, after get lowest Tm within Rows

set TotalUniq [llength $UnigElementinColumn]
foreach itemU $UnigElementinColumn {
set count 0
set ListLowColumn {}

if { $itemU == [lindex $RepresentvFromEachRowLowest $ul} {
incr count
if {$count == 1} {

lappend ListLowColumn [lindex $RepresentvFromEachRowLowest [expr $u-1]]
lappend ListLowColumn [lindex $RepresentvFromEachRowLowest $u]
lappend ListLowColumn [lindex $RepresentvFromEachRowLowest [expr $u+1]]

}
if {$count != 1} {
if { [lindex $ListLowColumn 2] < [lindex $RepresentvFromEachRowLowest [expr $u+1]]} {

{ [lindex $ListLowColumn 2] > [lindex $RepresentvFromEachRowLowest [expr $u+1]1} {
set ListLowColumn {}

lappend ListLowColumn [lindex $RepresentvFromEachRowLowest [expr $u-1]]
lappend ListLowColumn [lindex $RepresentvFromEachRowLowest $u]

lappend ListLowColumn [lindex $RepresentvFromEachRowLowest [expr $u+1]]

}

if { [lindex $ListLowColumn 2] == [lindex $RepresentvFromEachRowLowest [expr $u+1]] &&
[lindex $ListLowColumn 0] != [lindex $RepresentvFromEachRowLowest [expr $u-1]]} {
lappend ListLowColumn [lindex $RepresentvFromEachRowLowest [expr $u-1]]

lappend ListLowColumn [lindex $RepresentvFromEachRowLowest $u]

ListLowColumn [lindex $RepresentvFromEachRowLowest [expr $u+1]]

}
}

_ }

incr u

incr u

}
lappend AllFinale $ListLowColumn
}
}
}
incrr
incrr

}

close $FreeEnergyMatrix
# end of get free energy

# START: Use the FinaleToUse.txt consist of filtered lowest energy of Row,Column
set OutFinaleBracket [open ${path}OutFinaleWithBracket.txt w]

puts $OutFinaleBracket "$AllFinale"

close $OutFinaleBracket

exec /bin/bash -c "sed -e 's/\{//g' ${path}OutFinaleWithBracket.txt
>${path}FinaleToUseTempo1.txt"

exec /bin/bash -c "sed -e 'sN\}//g' ${path}FinaleToUseTempo1.txt >
${path}FinaleToUseTempo2.txt"

exec /bin/bash -c {awk { printf NF?$0:"\n" }' "$path"FinaleToUseTempo2.txt >
"$path"FinaleToUse.txt}

set in [open ${path}FinaleToUse.txt r]

while {[gets $in linein] >=0} {

close $in
set in [open ${path}FinaleToUse.txt r]
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set LineSeq [split [read $in] " "]

close $in

set Totalltem [llength $LineSeq]

setdb {}

for { sett 0} { $t < $Totalltem } {incrt}{

set TPlus1 [expr $t+1]

set TPlus2 [expr $t+2]

if { $t == 0} {

lappend db [lindex $LineSeq $t]

lappend db [lindex $LineSeq $TPlus1]

lappend db [lindex $LineSeq $TPlus2]

if { $t 1= 0} {

set TotalDB [llength $db]

set Incoming1 [lindex $LineSeq $t]

set Incoming2 [lindex $LineSeq $TPlus1]

Incoming3 [lindex $LineSeq $TPlus2]

for { setd 0} { $d < $TotalDB } { incr d } {

if { $Incoming1 != [lindex $db $d] || $Incoming?2 != [lindex $db [expr $d+1]] || $Incoming3
I= [lindex $db [expr $d+2]]} {

if {$d == $TotalDB-3} {

lappend db $Incoming1

lappend db $Incoming?2

lappend db $Incoming3

}

}

if { $Incoming1 == [lindex $db $d] && $Incoming2 == [lindex $db [expr $d+1]] && $Incoming3
== [lindex $db [expr $d+2]]} {

set d [expr $TotalDB-1]

}
incrd
incrd
}
}

incr t
incrt
}
puts $FinaleFinale "$SPair1 $SPair2 $STm $db"
close $inputFindLine
}
close $inputMeltingTemp
close $FinaleFinale
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APPENDIX L: Generate StartNodes.tcl

#! /usr/local/bin/tclsh

# Get current working directory

proc getScriptDirectory {} {
set dispScriptFile [file normalize [info script]]
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder

}
set path [getScriptDirectory]

set ReadSquareType [open ${path}/SquareType.txt r]
while {[gets $ReadSquareType lineReadSquareType] >=0} {
set SquareType $lineReadSquareType

}
close $ReadSquareType
set ReadDNAUptakeRate [open ${path}/DNAUptakeRate.txt r]
while {[gets $ReadDNAUptakeRate lineDNAUptakeRate] >=0} {
set DNAUptakeRate $lineDNAUptakeRate

}
close $ReadDNAUptakeRate

set FileNameStartNode "${path}/StartNode${SquareType}.txt"
set FileNameLinelnMatrix "${path}/LineInMatrix${SquareType}.txt"

# To change: first Node of DNA start binding is 0.1. Original concentration is 1.0
if {[file exists ${path}/Concentration.txt] == 1} {

file delete -force ${path}/Concentration.txt

}
if {[file exists ${path}/TempoDNAConcentration.txt] == 1} {
file delete -force ${path}/TempoDNAConcentration.txt

}
if {[file exists ${path}/StartNode${SquareType}.txt] == 1} {
file delete -force ${path}/StartNode${SquareType}.txt

}
if {[file exists ${path}/PreviousNodesConcen.txt] == 1} {
file delete -force ${path}/PreviousNodesConcen.txt

}

set StartNode [open $FileNameStartNode w+]

set DNAConcentration [open ${path}/Concentration.txt w]

set PreviousNodeConcen [open ${path}/PreviousNodesConcen.txt w+]

# Step: Set initial DNA concentration to 1.0

set ExtractLine [open $FileNameLinelnMatrix r]
while {[gets $ExtractLine lineExtractLine] >=0} {
puts $DNAConcentration "$lineExtractLine 1.0000"
}
close $ExtractLine

close $DNAConcentration

exec /bin/bash -c "sed -e 's/ / 1g' ${path}/Concentration.txt > ${path}/TempoConcen.txt"
exec /bin/bash -¢ "mv ${path}/TempoConcen.txt ${path}/Concentration.txt"

# Get the Temperature from Tm to use as Initial start node, ThresholdMeltingTemp is set by
user at list.tcl

set ExtractTm [open ${path}/MeltingTemperature.txt r]

while {[gets $ExtractTm lineExtractTm] >=0} {

set ThresholdMeltingTemp $lineExtractTm

close $ExtractTm
puts "ThresholdMeltingTemp = $ThresholdMeltingTemp"
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set ExtractLineTM [open ${path}/CompletedSortTmDecreasingOrder.txt r]
set LineLimitTm O
while {[gets $ExtractLineTM lineExtractLineTM] >=0} {
set ColumnLineTM [split $lineExtractLineTM " "]
set MeltingTemp [lindex $ColumnLineTM 2]
puts "MeltingTemp = $MeltingTemp "
if {$MeltingTemp >= $ThresholdMeltingTemp} {
incr LineLimitTm

}

close $ExtractTm

set LimitLine $LineLimitTm

set CountLine 1

set ExtractFinal [open ${path}/FinalePairTm_PSSM.txt r]
while {[gets $ExtractFinal lineExtractFinal] >=0} {

if { $CountLine <= $LimitLine } {

set ColumnFinal [split $lineExtractFinal " "]

set TotalColumnFinal [llength $ColumnFinal]

set ListLine {}

set ExistingPair {}

set BoundSeg {}

set SEndFree {}

for { sety 0} { $y < $TotalColumnFinal} { incry } {

set ToGetLowestEnergy {}

set ColNo [lindex $lineExtractFinal $y]
set ExtractLine [open $FileNameLinelnMatrix r]
set LineNo 1
while {[gets $ExtractLine lineExtractLine] >=0} {
set Col0 [lindex $lineExtractLine 0]

# STEP 1: Get The Database LinelnMatrix for that corresponded SeqNo

# Step 1a: Get The Seq No of Pair 1
if { $y == 0 && $ColNo == $Col0} {
lappend ListLine $LineNo

}

## Step 1b: Get Seq No of Pair 2
if { By == 1 && $ColNo == $Col0} {
lappend ListLine $LineNo

}

incr LineNo

}

close $ExtractLine

}
for { set ¢ 3} { $c < $TotalColumnFinal} { incr c } {
lappend ExistingP1 [lindex $lineExtractFinal $c]

lappend ToGetLowestEnergy "[lindex $lineExtractFinal $c]"

lappend ToGetLowestEnergy "[lindex $lineExtractFinal [expr $c+1]]"
lappend ToGetLowestEnergy "[lindex $lineExtractFinal [expr $c+2]]"
incr c

incr c

# STEP 3: select the lowest energy pair only
set SortLowest [Isort -real $ToGetLowestEnergy]
set LowestE [lindex $SortLowest 0]
set TotalToGetLowestEnergy [llength $ToGetLowestEnergy]
if { $TotalToGetLowestEnergy == 3 } {
lappend ExistingPair [lindex $ToGetLowestEnergy 0]
lappend ExistingPair [lindex $ToGetLowestEnergy 1]

}

if { $TotalToGetLowestEnergy > 3 } {

for { setm 2} { $m < $TotalToGetLowestEnergy } { incr m } {
if { [lindex $ToGetLowestEnergy $m] == $LowestE } {
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lappend ExistingPair [lindex $ToGetLowestEnergy [expr $m-2]]
lappend ExistingPair [lindex $ToGetLowestEnergy [expr $m-1]]
}

incrm

incrm

}

}

puts "ListLine = $ListLine"

puts "ExistingPair = $ExistingPair"

# STEP 4 : Get the free sticky end and Bound Seq
foreach itemL $ListLine {
if {[Isearch $ExistingPair $itemL] >=01} {
lappend BoundSeg $itemL
} else { lappend SEndFree $itemL }

}
set SEndFreeUnique [Isort -unique $SEndFree]
lappend ListNode_StickyEnds "$BoundSeg"
lappend ListNode_StickyEnds "; $SEndFreeUnique"
puts $StartNode "$ListNode StickyEnds"
puts $PreviousNodeConcen "$BoundSeg"
set ListNode_StickyEnds {}
# START: Adjust Concentration for BOUNDED SEQ - $BoundSegUnique
set LineNo 1
set DNAConcentration [open ${path}/Concentration.txt r]
set TempoDNAConcentration [open ${path}/TempoDNAConcentration.txt w+]
while {[gets $DNAConcentration lineConcen] >=0} {
set ConCols [split $lineConcen " "]
set TotalElementCon [llength $ConCols]
set TotalConCols [llength $ConCols]
# Step 3: foreach PairsToReduceConcentration, get the CurrConcentration
set CurrCon [lindex $ConCols $TotalConCols-1]

if { $itemBound != $LineNo } {

# Step 4: if the PairsToReduceConcentration NO need to reduce concen, therefore
LatestConcentration = CurrConcentration output in TempoConcentration.txt file

puts $TempoDNAConcentration "$ConCols" }

if { $itemBound == $LineNo } {

set LatestConcen [expr $CurrCon-$DNAUptakeRate]

set RoundedLatestConcen [expr [format "%.4f" $LatestConcen]]

# Step 5: LatestConcentration=CurrConcentration-DNAUptakeRate
puts $TempoDNAConcentration "$ConCols $RoundedLatestConcen"
puts "($LineNo) $ConCols $RoundedLatestConcen"
}

incr LineNo

close $DNAConcentration
close $TempoDNAConcentration
exec /bin/bash -¢ "mv ${path}/ TempoDNAConcentration.txt ${path}/Concentration.txt"
}
}

incr CountLine

close $ExtractFinal

close $StartNode

close $PreviousNodeConcen

exec /bin/bash -c "sed -e 's/\{//g' ${path}/StartNode${SquareType}.txt >
${path}/Tempo1StartNode${SquareType}.txt"

exec /bin/bash -c "sed -e 'sN\}//g' ${path}/Tempo1StartNode${SquareType}.txt >
${path}/Tempo2StartNode${SquareType}.txt"

exec /bin/bash -c "mv ${path}/Tempo2StartNode${SquareType}.txt
${path}/StartNode${SquareType}.txt"
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APPENDIX M: Run_Levell.tcl

#! /usr/local/bin/tclsh

# Get current working directory

proc getScriptDirectory {} {
set dispScriptFile [file normalize [info script]]
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder

}
set path [getScriptDirectory]

set ReadSquareType [open ${path}/SquareType.txt r]
while {[gets $ReadSquareType lineReadSquareType] >=0} {
set SquareType $lineReadSquareType

}
close $ReadSquareType
set FileNameStartNodes "${path}/StartNode${SquareType}.txt"
set FileNameProbabiMatrix "${path}/Matrix${SquareType}.txt"
set FileNameLinelnMatrix "${path}/LineInMatrix${SquareType}.txt"
set FileNameTempo "${path}/Temporary/Tempo.txt"
set FileNameTotalFile "${path}/TotalFile"
set DNAConcentrationFile "${path}/Concentration.txt"
set TempoDNAConcentrationFile "${path}/ TempoDNAConcentration.txt"
set DirectoryTempo "${path}/Temporary"
set DirectoryLevel1 "${path}/Level1/"

set ReadDNAUptakeRate [open ${path}/DNAUptakeRate.txt r]
while {[gets $ReadDNAUptakeRate lineReadDNAUptakeRate] >=0} {
set DNAUptakeRate $lineReadDNAUptakeRate
}

close $ReadDNAUptakeRate
set ReadProbabilityEnergy [open ${path}/ThresholdProbabilityEnergy.txt r]
while {[gets $ReadProbabilityEnergy lineReadProbabilityEnergy] >=0} {
set ThresholdProbability $lineReadProbabilityEnergy
}

close $ReadProbabilityEnergy

proc listcomp {a b} {
set diff {}
foreach i $a {
if {[Isearch -exact $b $i]==-1} {
lappend diff $i
}

}
return $diff
}

set InitialStartNode [open $FileNameStartNodes r]
set OutNo 0
set TotalLinelnLevel1 2

if {[file exists $DirectoryLevel1 ] == 1} {
file delete -force $DirectoryLevell

}
file mkdir $DirectorylLevell

while {[gets $InitialStartNode linelnitialStartNode] >=0} {
set DifferentNodeNo $OutNo

if {[file exists $DirectoryTempo ] == 1} {

file delete -force $DirectoryTempo

}
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file mkdir $DirectoryTempo

set TempoCombinedse {}

set Group [split $linelnitialStartNode ";" ]

set PairGroup [lindex $Group 0]

set SEFree [lindex $Group 1]

set TotalSE [llength $SEFree]

set Pairr {}

for { set x 0 } { $x < [expr [llength $PairGroup]-1]} { incr x } {
lappend Pairr [lindex $PairGroup $x]

set CombineAllPrevious [concat $Pairr $SEFree]
if { $TotalSE =0 } {
# STEP 1 : read Probability for the row corresponding to the Sticky Ends
foreach itemSE $SEFree {
# Get Energy from Matrix
set MatrixRow 0
set ProbabilityMatrix [open $FileNameProbabiMatrix r]
while {[gets $ProbabilityMatrix lineProbabilityMatrix] >=0} {
incr MatrixRow
set TotalColumnProbabilityMatrix [llength $lineProbabilityMatrix]
if { $itemSE == $MatrixRow} {
# STEP 2: To get each Column
for { set ¢ 0 } { $c < $TotalColumnProbabilityMatrix} { incr ¢ } {
set CPlus1 [expr $c+1]
# STEP 3: Get THe new Free Sticky Ends resulted from $CPlus1
set LineNo 0
set ListLineNo {}
set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNo
set SegNo [lindex $lineSearchLinelnMatrix 0]
if { $CPlus1 == $LineNo } {
set SeqNo2 $SegNo

}

}
close $SearchLinelnMatrix
set LineNo 0

set SEndFree {}

# STEP 4 : get INES NO that have the same SeqgNo

set SearchLinelnMatrix [open $FileNameLinelnMatrix r]

while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNo

if { [lindex $lineSearchLinelnMatrix 0] == $SeqNo2 } {

lappend ListLineNo $LineNo

}

close $SearchLinelnMatrix

foreach itemL $ListLineNo {
if { $itemL != $CPlus1} {
lappend SEndFree $itemL
}

}

# if probability of occurance > $ThresholdProbability

if { [lindex $lineProbabilityMatrix $c] > $ThresholdProbability } {
if { $TotalSE == 1} {

set BoundedDNA {}

incr OutNo

lappend BoundedDNA $itemSE

lappend BoundedDNA $CPlus1
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set NewUpcomingBindingDNAToCheck [listcomp $BoundedDNA $SEFree]
set ListCurrentSolutionConcen {}

foreach itemToCheck $NewUpcomingBindingDNAToCheck {

# CHECK IF the current dna concentration if it's enough to bind
set LineNoConcen 0

set DNAConcentration [open $DNAConcentrationFile r]

while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoConcen

if { $LineNoConcen == $itemToCheck} {

set SplitConcen [split $LineDNAConcentration " " ]

set CurrentSolutionConcen [lindex $SplitConcen end]

lappend ListCurrentSolutionConcen $CurrentSolutionConcen

}

close $DNAConcentration
set OrderListCurrentSolutionConcen [Isort -real $ListCurrentSolutionConcen]

}

set LowestCurrentConcenSolution [lindex $OrderListCurrentSolutionConcen 0]

# if current [dna] > 0, or enough to bind, else do not proceed to binding
if { $LowestCurrentConcenSolution > 0} {

set Finale [open ${DirectoryLevel1}${OutNo}.txt w]

puts $Finale "$linelnitialStartNode"

puts $Finale "$itemSE $CPlus1 [lindex $lineProbabilityMatrix $c] ; $SEndFree"
flush $Finale

close $Finale

# if used DNA got bind, update total solution concentration

foreach itemToCheck $NewUpcomingBindingDNAToCheck {

set LineNoConcen 0

set DNAConcentration [open $DNAConcentrationFile r]

set TempoDNAConcentration [open $TempoDNAConcentrationFile w]
while {[gets $DNAConcentration LineDNAConcentration] >=0} {

incr LineNoConcen

if { $LineNoConcen != $itemToCheck} {

puts $TempoDNAConcentration "$LineDNAConcentration”

}

if { $LineNoConcen == $itemToCheck} {

set SplitConcen [split $LineDNAConcentration " " ]

set CurrentSolutionConcen [lindex $SplitConcen end]

set LatestConcen [expr $CurrentSolutionConcen-$DNAUptakeRate]

RoundedLatestConcen [expr [format "%.4f" $LatestConcen]]

puts $TempoDNAConcentration
"$LineDNAConcentration$RoundedLatestConcen"

}

close $TempoDNAConcentration
close $DNAConcentration
exec /bin/bash -¢ "mv ${path}/ TempoDNAConcentration.txt ${path}/Concentration.txt"
}
} else {
set Finale [open ${DirectoryLevel1}${OutNo}.txt w]
puts $Finale "$linelnitialStartNode"
flush $Finale
close $Finale

}

}

if { $TotalSE > 1} {

lappend TempoCombinedse "$itemSE"

lappend TempoCombinedse "$CPlus1"

lappend TempoCombinedse "[lindex $lineProbabilityMatrix $c]"
}

}
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}
}
close $ProbabilityMatrix
}
}

## no SE so no need to change concentration of solution.
if { $TotalSE == 0 } {

incr OutNo

set Finale [open ${DirectoryLevel1}${OutNo}.txt w]

puts $Finale "$linelnitialStartNode"

close $Finale

}

# STEP 5: output tempo file
if { $TotalSE > 1} {
set TotalTempoCombinedse [llength $TempoCombinedse]
foreach itemSEFr $SEFree {
set List($itemSEFr) {}
for { set 10 } { $I < $TotalTempoCombinedse} { incr | } {
if { $itemSEFr == [lindex $TempoCombinedse $I]} {
lappend List($itemSEFr) "[lindex $TempoCombinedse $I] [lindex
$TempoCombinedse [expr $I+1]] [lindex $TempoCombinedse [expr $1+2]]"
}

incr |
incr |

}

if { $TotalSE == 2} {
set itemSEFr [lindex $SEFree 0]
foreach a $List($itemSEFr) {
set itemSEFr [lindex $SEFree 1]
foreach b $List($itemSEFr) {
lappend ListForFindse $a
lappend ListForFindse $b
set Tempo [open $FileNameTempo w]
puts $Tempo "$ListForFindse"
close $Tempo
exec /bin/bash -c "sed -e 's/\{//g' ${path}/Temporary/Tempo.txt >
${path}/Temporary/TempoTempo1.txt"
/bin/bash -c "sed -e 'sN\}//g' ${path}/ Temporary/TempoTempo1.txt >
${path}/Temporary/TempoTempo.txt"
exec /bin/bash -¢ "mv ${path}/Temporary/TempoTempo.txt
${path}/Temporary/Tempo.txt"
set Tempoln [open $FileNameTempo r]
while {[gets $Tempoln lineTempoln] >=0} {
set StickyendsList $lineTempoln

close $Tempoln

set ListForFindse {}

set LookForSeqgNo {
for { setj 0} { $j < [llength $StickyendsList]} { incrj } {
lappend LookForSeqNo [lindex $StickyendsList $j]
lappend LookForSeqNo [lindex $StickyendsList [expr $j+1]]
incr j
incr j

}
set ListLineNoLook {}
foreach itemO $LookForSeqNo {
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set LineNoLook 0
set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNoLook
if { $itemO == $LineNoLook} {
lappend ListLineNoLook [lindex $lineSearchLinelnMatrix 0]
}
}
close $SearchLinelnMatrix

}
set UnigListLineNoLook [Isort -unique $ListLineNoLook]
set ListLi {}

foreach itemLi $UnigListLineNoLook {
set LineNoLi 0
set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNolLi
if { [lindex $lineSearchLinelnMatrix 0] == $itemLi } {
lappend ListLi $LineNoLi

}

$SearchLinelnMatrix

}
set UnigListLineNoLook [Isort -unique $LookForSegNo]
set CombineAllPreviousCurrBound [concat $UniqListLineNoLook $CombineAllPrevious]
set UnigCombineAllPreviousCurrBound [Isort -unique $CombineAllPreviousCurrBound]
set NewStickyEnd [listcomp $ListLi $UnigCombineAllPreviousCurrBound]
set NewUpcomingBindingDNAToCheck [listcomp $UnigListLineNoLook $SEFree]
set ListCurrentSolutionConcen {}
foreach itemToCheck $NewUpcomingBindingDNAToCheck {
# Check the current dna concentration if it's enough to bind
set LineNoConcen 0
set DNAConcentration [open $DNAConcentrationFile r]
while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoConcen
if { $LineNoConcen == $itemToCheck} {
set SplitConcen [split $LineDNAConcentration " " ]
set CurrentSolutionConcen [lindex $SplitConcen end]
lappend ListCurrentSolutionConcen $CurrentSolutionConcen

}
}

close $DNAConcentration
set OrderListCurrentSolutionConcen [Isort -real $ListCurrentSolutionConcen]
}
set LowestCurrentConcenSolution [lindex $OrderListCurrentSolutionConcen 0]
incr OutNo
## If concentration is enough, proceed else print till previous line
if { $LowestCurrentConcenSolution > 0} {
set Finale [open ${DirectoryLevel1}${OutNo}.txt w]
puts $Finale "$linelnitialStartNod
puts $Finale "$StickyendsList ; $NewStickyEnd"
flush $Finale
close $Finale
foreach itemToCheck $NewUpcomingBindingDNAToCheck {
set LineNoConcen 0
set DNAConcentration [open $DNAConcentrationFile r]
set TempoDNAConcentration [open $TempoDNAConcentrationFile w]
while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoConcen
if { $LineNoConcen != $itemToCheck} {
puts $TempoDNAConcentration "$LineDNAConcentration”
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}
if { $LineNoConcen == $itemToCheck} {

set SplitConcen [split $LineDNAConcentration " " ]

set CurrentSolutionConcen [lindex $SplitConcen end]

set LatestConcen [expr $CurrentSolutionConcen-$DNAUptakeRate]
set RoundedLatestConcen [expr [format "%.4f" $LatestConcen]]
puts $TempoDNAConcentration "$LineDNAConcentration
$RoundedLatestConcen"

}
}

close $TempoDNAConcentration

close $DNAConcentration

exec /bin/bash -¢ "mv ${path}/ TempoDNAConcentration.txt
${path}/Concentration.txt"

}

}else {

set Finale [open ${DirectoryLevel1}${OutNo}.txt w]
puts $Finale "$linelnitialStartNode"

flush $Finale

close $Finale

}

}

if { $TotalSE == 3} {
set itemSEFr [lindex $SEFree 0]
foreach a $List(SitemSEFr) {

set itemSEFr [lindex $SEFree 1]

foreach b $List($itemSEFr) {
set itemSEFr [lindex $SEFree 2]
foreach ¢ $List($itemSEFr) {
lappend ListForFindse $a
lappend ListForFindse $b
lappend ListForFindse $c
set Tempo [open $FileNameTempo w]
puts $Tempo "$ListForFindse"
close $Tempo

exec /bin/bash -c "sed -e 's/\{//g' ${path}/Temporary/Tempo.txt >
${path}/Temporary/TempoTempo1.txt"
exec /bin/bash -c "sed -e 's/\}//g' ${path}/Temporary/TempoTempo1.txt >
${path}/Temporary/TempoTempo.txt"
exec /bin/bash -¢ "mv ${path}/Temporary/TempoTempo.txt ${path}/Temporary/Tempo.txt"
set Tempoln [open $FileNameTempo r]

while {[gets $Tempoln lineTempoln] >=0} {

set StickyendsList $lineTempoln

close $Tempoln

set ListForFindse {}

set LookForSeqgNo {}

for { setj 0} { $j < [llength $StickyendsList]} { incrj } {
lappend LookForSeqNo [lindex $StickyendsList $j]

lappend LookForSeqNo [lindex $StickyendsList [expr $j+1]]
incr j

incr j

}

set ListLineNoLook {}

foreach itemO $LookForSeqNo {

set LineNoLook 0

set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
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while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {

incr LineNoLook

if { $itemO == $LineNoLook} {

lappend ListLineNoLook [lindex $lineSearchLinelnMatrix 0]
}

}

close $SearchLinelnMatrix

}

set UnigListLineNoLook [Isort -unique $ListLineNoLook]
set ListLi {}

foreach itemLi $UnigListLineNoLook {

set LineNoLi 0

set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNolLi

if { [lindex $lineSearchLinelnMatrix 0] == $itemLi } {
lappend ListLi $LineNoLi

}

close $SearchLinelnMatrix

}

set UnigListLineNoLook [Isort -unique $LookForSegNo]

set CombineAllPreviousCurrBound [concat $UnigListLineNoLook
$CombineAllPrevious]

set UnigCombineAllPreviousCurrBound [Isort -unique
$CombineAllPreviousCurrBound]

set NewStickyEnd [listcomp $ListLi
$UnigCombineAllPreviousCurrBound]

set NewUpcomingBindingDNAToCheck [listcomp $UnigListLineNoLook
$SEFree]

set ListCurrentSolutionConcen {}

foreach itemToCheck $NewUpcomingBindingDNAToCheck {

set LineNoConcen 0
set DNAConcentration [open $DNAConcentrationFile r]
while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoConcen
if { $LineNoConcen == $itemToCheck} {
set SplitConcen [split $LineDNAConcentration " " ]
set CurrentSolutionConcen [lindex $SplitConcen end]
lappend ListCurrentSolutionConcen $CurrentSolutionConcen

}
}

close $DNAConcentration
set OrderListCurrentSolutionConcen [Isort -real $ListCurrentSolutionConcen]

}

set LowestCurrentConcenSolution [lindex $OrderListCurrentSolutionConcen 0]
incr OutNo

if { $LowestCurrentConcenSolution > 0} {

set Finale [open ${DirectoryLevel1}${OutNo}.txt w]
puts $Finale "$linelnitialStartNode"

puts $Finale "$StickyendsList ; $NewStickyEnd"
flush $Finale

close $Finale

foreach itemToCheck $NewUpcomingBindingDNAToCheck {

set LineNoConcen 0
set DNAConcentration [open $DNAConcentrationFile r]
set TempoDNAConcentration [open $TempoDNAConcentrationFile w]

while {[gets $DNAConcentration LineDNAConcentration] >=0} {
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incr LineNoConcen
if { $LineNoConcen != $itemToCheck} {
$TempoDNAConcentration "$§LineDNAConcentration"
}
if { $LineNoConcen == $itemToCheck} {
set SplitConcen [split $LineDNAConcentration " " ]
set CurrentSolutionConcen [lindex $SplitConcen end]
set LatestConcen [expr $CurrentSolutionConcen-$DNAUptakeRate]
set RoundedLatestConcen [expr [format "%.4f" $LatestConcen]]
puts $TempoDNAConcentration "$LineDNAConcentration
$RoundedLatestConcen"

}

close $TempoDNAConcentration

close $DNAConcentration

exec /bin/bash -¢ "mv ${path}/ TempoDNAConcentration.txt ${path}/Concentration.txt"
}

} else {

set Finale [open ${DirectoryLevel1}${OutNo}.txt w]

puts $Finale "$linelnitialStartNode"

flush $Finale

close $Finale

}

}

}

}
}
# (until sticky end 5) END of get no of lines in each nodes
}

close $InitialStartNode

set NoFile [open $FileNameTotalFile w]
puts $NoFile "$OutNo"
close $NoFile
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APPENDIX N: Run_Level2ToN.tcl

#! /usr/local/bin/tclsh

proc getScriptDirectory {} {
set dispScriptFile [file normalize [info script]]
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder

}
set path [getScriptDirectory]
set OriginalPath $path

set ReadSquareType [open ${path}/SquareType.txt r]
while {[gets $ReadSquareType lineReadSquareType] >=0} {
set SquareType $lineReadSquareType

}
close $ReadSquareType
set FileNameTotalFile "${path}/TotalFile"
set FileNameMatrixProb "${path}/Matrix${SquareType}.txt"
set FileNameLinelnMatrix "${path}/LineInMatrix${SquareType}.txt"
set FileNameDirectoryTempo "${path}/Temporary"
set DNAConcentrationFile "${path}/Concentration.txt"
set TempoDNAConcentrationFile "${path}/TempoDNAConcentration.txt"

set ReadDNAUptakeRate [open ${path}/DNAUptakeRate.txt r]
while {[gets $ReadDNAUptakeRate lineReadDNAUptakeRate] >=0} {
set DNAUptakeRate $lineReadDNAUptakeRate
}

close $ReadDNAUptakeRate

proc listcomp {a b} {
set diff {}
foreach i $a {
if {[Isearch -exact $b $i]==-1} {
lappend diff $i
}

}
return $diff

}
set ReadProbabilityEnergy [open ${path}/ThresholdProbabilityEnergy.txt r]
while {[gets $ReadProbabilityEnergy lineReadProbabilityEnergy] >=0} {
set ThresholdProbability $lineReadProbabilityEnergy

}
close $ReadProbabilityEnergy
set ReadMax_Iteration [open ${path}/Max_Iteration.txt r]
while {[gets $ReadMax_lteration lineReadMax_Iteration] >=0} {
set Max_Iteration $lineReadMax_Iteration

}
close $ReadProbabilityEnergy
set RoundedTotalPenalty 0.0000

for { sete 2 } { $e <= $Max_Iteration } {incr e } {

if { $DepletedDNA == 0} {

set NoFile [open $FileNameTotalFile r]
while {[gets $NoFile lineNoFile] >=0} {
set TotalFile $lineNoFile

close $NoFile
set LevelMinus1 [expr $e-1]
if {[file exists ${path}/Level${e}] == 1} {
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file delete -force ${path}/Level${e}
}
file mkdir ${path}/Level${e}
set OutNo 0
for { seta 1} { $a <= $TotalFile} { incra }{
set PreviousLevel [open ${path}/Level${LevelMinus1}/${a}.txt r]
while {[gets $PreviousLevel linePreviousLevel] >=0} {
set LastLine "$linePreviousLevel"
}
close $PreviousLevel
if {[file exists $FileNameDirectoryTempo ] == 1} {
file delete -force $FileNameDirectoryTempo

file mkdir $FileNameDirectoryTempo

set TempoCombinedse {}

set SplitLine [split $LastLine ";" ]

set StickyEnd [lindex $SplitLine 1]

set TotalSENo [llength $StickyEnd]

set PairGroup [lindex $SplitLine 0]

set SEFree [lindex $SplitLine 1]

set TotalSE [llength $SEFree]

set Pairr {}

for { set x 0 } { $x < [expr [llength $PairGroup]-1]} { incr x } {
lappend Pairr [lindex $PairGroup $x]

lappend Pairr [lindex $PairGroup [expr $x+1]]
incr x

incr x

set CombineAllPrevious [concat $Pairr $SEFree]
if { $TotalSENo != 0 } {
foreach itemSE $StickyEnd {
set MatrixRow 0
set ProbabilityMatrix [open $FileNameMatrixProb r]
while {[gets $ProbabilityMatrix lineProbabilityMatrix] >=0} {
incr MatrixRow
set TotalColumnProbabilityMatrix [llength $lineProbabilityMatrix]
if { $itemSE == $MatrixRow} {
for { set ¢ 0 } { $c < $TotalColumnProbabilityMatrix} { incr ¢ } {
set CPlus1 [expr $c+1]
set LineNo 0
set ListLineNo {}
set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNo
set SegNo [lindex $lineSearchLinelnMatrix 0]
if { $CPlus1 == $LineNo } {
set SeqNo2 $SegNo
}

close $SearchLinelnMatrix

set LineNo 0

set SEndFree {}

set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNo
if { [lindex $lineSearchLinelnMatrix 0] == $SeqNo2 } {

lappend ListLineNo $LineNo

}

close $SearchLinelnMatrix

foreach itemL $ListLineNo {
if { $itemL != $CPlus1} {
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lappend SEndFree $itemL

}

}
if { [lindex $lineProbabilityMatrix $c] > $ThresholdProbability } {

if { $TotalSE >= 1} {

lappend TempoCombinedse "$itemSE"

lappend TempoCombinedse "$CPlus1"

lappend TempoCombinedse "[lindex $lineProbabilityMatrix $c]"

}

}
}
}
}
close $ProbabilityMatrix
}
}
if { $TotalSENo == 0 } {
incr OutNo

set FinaleL [open ${path}/Level${e}/${OutNo}.txt w]

set PreviousLevel [open ${path}/Level${LevelMinus1}/${a}.txt r]

while {[gets $PreviousLevel linePreviousLevel] >=0} {
puts $FinaleL "$linePreviousLevel"

close $PreviousLevel
close $FinaleL

}

if { $TotalSENo >= 1} {
set TotalTempoCombinedse [llength $TempoCombinedse]
foreach itemSEFr $SEFree {
set List($itemSEFr) {}
for { set 10 } { $I < $TotalTempoCombinedse} { incr | } {
if { $itemSEFr == [lindex $TempoCombinedse $I]} {
lappend List($itemSEFr) "[lindex $TempoCombinedse $I] [lindex
$TempoCombinedse [expr $I+1]] [lindex $TempoCombinedse [expr $1+2]]"
}
incr |
incr |
}
}
if { $TotalSENo == 1} {
set SeqToReduceConcentration {}
set itemSEFr [lindex $SEFree 0]
foreach u $List($itemSEFr) {
lappend ListForFindse $u
set Tempo [open ${FileNameDirectoryTempo}/Tempo.txt w]
puts $Tempo "$ListForFindse"
close $Tempo

exec /bin/bash -c "sed -e 's/\{//g' ${path}/Temporary/Tempo.txt >
${path}/Temporary/TempoTempo1.txt"
exec /bin/bash -c "sed -e 's/N\}//g' ${path}/Temporary/TempoTempo1.txt >
${path}/Temporary/TempoTempo.txt"
exec /bin/bash -¢ "mv ${path}/Temporary/TempoTempo.txt ${path}/Temporary/Tempo.txt"
set Tempoln [open ${FileNameDirectoryTempo}/Tempo.txt r]

while {[gets $Tempoln lineTempoln] >=0} {

set NewPairs $lineTempoln

close $Tempoln
set ListForFindse {}
set LookForSeqNo {}
for { setj 0} { $j < [llength $NewPairs]} {incrj}{
lappend LookForSeqNo [lindex $NewPairs $j]
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lappend LookForSeqNo [lindex $NewPairs [expr $j+1]]
lappend SeqToReduceConcentration [lindex $NewPairs [expr $j+1]]
incr j
incr j
}
set ListCurrentSolutionConcen {}
foreach itemToCheck $SeqToReduceConcentration {
set LineNoConcen 0
set DNAConcentration [open $DNAConcentrationFile r]
while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoConcen
if { $LineNoConcen == $itemToCheck} {
set SplitConcen [split $LineDNAConcentration " " ]
set CurrentSolutionConcen [lindex $SplitConcen end]
lappend ListCurrentSolutionConcen $CurrentSolutionConcen

}

close $DNAConcentration
set OrderListCurrentSolutionConcen [Isort -real $ListCurrentSolutionConcen]
}
set LowestCurrentConcenSolution [lindex $OrderListCurrentSolutionConcen 0]
set ListLineNoLook {}
foreach itemO $LookForSeqNo {
set LineNoLook 0
set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNoLook
if { $itemO == $LineNoLook} {
lappend ListLineNoLook [lindex $lineSearchLinelnMatrix 0]
}

close $SearchLinelnMatrix

}
set UnigListLineNoLook [Isort -unique $ListLineNoLook]
set ListLi {}

foreach itemLi $UnigListLineNoLook {

set LineNoLi 0

set SearchLinelnMatrix [open $FileNameLinelnMatrix r]

while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNolLi

if { [lindex $lineSearchLinelnMatrix 0] == $itemLi } {
lappend ListLi $LineNoLi

}

close $SearchLinelnMatrix

set CombineAllPreviousUsedLineNo [concat $LookForSegNo $CombineAllPrevious]
set UnigCombineAllPreviousUsedLineNo [Isort -unique $CombineAllPreviousUsedLineNo]
set NewStickyEnd [listcomp $ListLi $UnigCombineAllPreviousUsedLineNo]
incr OutNo
set Finale [open ${path}/Level${e}/${OutNo}.txt w]
set PreviousLevel [open ${path}/Level${LevelMinus1}/${a}.txt r]
while {[gets $PreviousLevel linePreviousLevel] >=0} {
puts $Finale "$linePreviousLevel"

close $PreviousLevel
if { $LowestCurrentConcenSolution > 0 } {
puts $Finale "$NewPairs ; $SNewStickyEnd"
close $Finale
foreach itemToCheck $SeqToReduceConcentration {
set LineNoConcen 0
set DNAConcentration [open $DNAConcentrationFile r]
set TempoDNAConcentration [open $TempoDNAConcentrationFile w]
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while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoConcen
if { $LineNoConcen != $itemToCheck} {
puts $TempoDNAConcentration "$LineDNAConcentration”
}
if { $LineNoConcen == $itemToCheck} {
set SplitConcen [split $LineDNAConcentration " " ]
set CurrentSolutionConcen [lindex $SplitConcen end]
set LatestConcen [expr $CurrentSolutionConcen-$DNAUptakeRate]
set RoundedLatestConcen [expr [format "%.4f" $LatestConcen]]
puts $TempoDNAConcentration "$LineDNAConcentration $RoundedLatestConcen"

}
}

close $TempoDNAConcentration

close $DNAConcentration

exec /bin/bash -¢ "mv ${path}/ TempoDNAConcentration.txt ${path}/Concentration.txt"
}

} else {

close $Finale

}
}

}
if { $TotalSENo == 2} {
SeqToReduceConcentration {}
itemSEFr [lindex $SEFree 0]
foreach k $List($itemSEFr) {
itemSEFr [lindex $SEFree 1]
foreach | $List($itemSEFr) {
lappend ListForFindse $k
lappend ListForFindse $I
set Tempo [open ${FileNameDirectoryTempo}/Tempo.txt w]
puts $Tempo "$ListForFindse"
close $Tempo
exec /bin/bash -c "sed -e 's/\{//g' ${path}/Temporary/Tempo.txt >
${path}/Temporary/TempoTempo1.txt"
exec /bin/bash -c "sed -e 's/\}//g' ${path}/ Temporary/TempoTempo1.txt >
${path}/Temporary/TempoTempo.txt"
exec /bin/bash -¢ "mv ${path}/Temporary/TempoTempo.txt ${path}/Temporary/Tempo.txt"
set Tempoln [open ${FileNameDirectoryTempo}/Tempo.txt r]
while {[gets $Tempoln lineTempoln] >=0} {
set NewPairs $lineTempoln
}
close $Tempoln
set ListForFindse {}
set LookForSegNo {}
for { setj 0} { $j < [llength $NewPairs]} {incrj}{
lappend LookForSeqNo [lindex $NewPairs $j]
lappend LookForSeqNo [lindex $NewPairs [expr $j+1]]
lappend SeqToReduceConcentration [lindex $NewPairs [expr $j+1]]
incr j
incr j

}

set ListCurrentSolutionConcen {}
foreach itemToCheck $SeqToReduceConcentration {
set LineNoConcen 0
set DNAConcentration [open $DNAConcentrationFile r]
while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoConcen
if { $LineNoConcen == $itemToCheck} {
set SplitConcen [split $LineDNAConcentration " " ]
set CurrentSolutionConcen [lindex $SplitConcen end]
lappend ListCurrentSolutionConcen $CurrentSolutionConcen
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}
}

close $DNAConcentration
set OrderListCurrentSolutionConcen [Isort -real $ListCurrentSolutionConcen]
}
set LowestCurrentConcenSolution [lindex $OrderListCurrentSolutionConcen 0]
set ListLineNoLook {}
foreach itemO $LookForSeqNo {
set LineNoLook 0
set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNoLook
if { $itemO == $LineNoLook} {
lappend ListLineNoLook [lindex $lineSearchLinelnMatrix 0]
}

close $SearchLinelnMatrix

}
set UnigListLineNoLook [Isort -unique $ListLineNoLook]
set ListLi {}
foreach itemLi $UnigListLineNoLook {

set LineNoLi 0

set SearchLinelnMatrix [open $FileNameLinelnMatrix r]

while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNolLi
if { [lindex $lineSearchLinelnMatrix 0] == $itemLi } {

lappend ListLi $LineNoLi

}

close $SearchLinelnMatrix

set CombineAllPreviousUsedLineNo [concat $LookForSeqNo $CombineAllPrevious]
set UnigCombineAllPreviousUsedLineNo [Isort -unique $CombineAllPreviousUsedLineNo]
set NewStickyEnd [listcomp $ListLi $UnigCombineAllPreviousUsedLineNo]
incr OutNo
set Finale [open ${path}/Level${e}/${OutNo}.txt w]
set PreviousLevel [open ${path}/Level${LevelMinus1}/${a}.txt r]
while {[gets $PreviousLevel linePreviousLevel] >=0} {
puts $Finale "$linePreviousLevel"
}
close $PreviousLevel
if { $LowestCurrentConcenSolution > 0 } {
puts $Finale "$NewPairs ; $NewStickyEnd"
close $Finale
foreach itemToCheck $SeqToReduceConcentration {
set LineNoConcen 0
set DNAConcentration [open $DNAConcentrationFile r]
set TempoDNAConcentration [open $TempoDNAConcentrationFile w]
while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoConcen
if { $LineNoConcen != $itemToCheck} {
puts $TempoDNAConcentration "$LineDNAConcentration”

}
if { $LineNoConcen == $itemToCheck} {

set SplitConcen [split $LineDNAConcentration " " ]

set CurrentSolutionConcen [lindex $SplitConcen end]

set LatestConcen [expr $CurrentSolutionConcen-$DNAUptakeRate]

set RoundedLatestConcen [expr [format "%.4f" $LatestConcen]]

puts $TempoDNAConcentration "$LineDNAConcentration $RoundedLatestConcen"”

}

close $TempoDNAConcentration
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close $DNAConcentration

exec /bin/bash -¢ "mv ${path}/ TempoDNAConcentration.txt ${path}/Concentration.txt"
}

# END : if used DNA got bind, update total solution concentration

} else {

close $Finale

}

}

}

}
if { $TotalSENo == 3} {
set SeqToReduceConcentration {}
set itemSEFr [lindex $SEFree 0]
foreach k $List($itemSEFr) {
set itemSEFr [lindex $SEFree 1]
foreach | $List($itemSEFr) {
set itemSEFr [lindex $SEFree 2]
foreach m $List($itemSEFr) {
lappend ListForFindse $k
lappend ListForFindse $I
lappend ListForFindse $m
set Tempo [open ${FileNameDirectoryTempo}/Tempo.txt w]
puts $Tempo "$ListForFindse"
close $Tempo
exec /bin/bash -c "sed -e 's/\{//g' ${path}/Temporary/Tempo.txt >
${path}/Temporary/TempoTempo1.txt"
exec /bin/bash -c "sed -e 's/\}//g' ${path}/Temporary/TempoTempo1.txt >
${path}/Temporary/TempoTempo.txt"
exec /bin/bash -¢ "mv ${path}/Temporary/TempoTempo.txt ${path}/Temporary/Tempo.txt"
set Tempoln [open ${FileNameDirectoryTempo}/Tempo.txt r]
while {[gets $Tempoln lineTempoln] >=0} {
set NewPairs $lineTempoln

close $Tempoln
set ListForFindse {}
set LookForSeqNo {}
for { setj 0} { $j < [llength $NewPairs]} {incrj}{
lappend LookForSeqNo [lindex $NewPairs $j]
lappend LookForSeqNo [lindex $NewPairs [expr $j+1]]
lappend SeqToReduceConcentration [lindex $NewPairs [expr $j+1]]
incr j
incr j
}
set ListCurrentSolutionConcen {}
foreach itemToCheck $SeqToReduceConcentration {
set LineNoConcen 0
set DNAConcentration [open $DNAConcentrationFile r]
while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoConcen
if { $LineNoConcen == $itemToCheck} {
set SplitConcen [split $LineDNAConcentration " " ]
set CurrentSolutionConcen [lindex $SplitConcen end]
lappend ListCurrentSolutionConcen $CurrentSolutionConce

}

close $DNAConcentration
set OrderListCurrentSolutionConcen [Isort -real $ListCurrentSolutionConcen]

set LowestCurrentConcenSolution [lindex $OrderListCurrentSolutionConcen 0]
set ListLineNoLook {}
foreach itemO $LookForSeqNo {
set LineNoLook 0
set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
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while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
incr LineNoLook
if { $itemO == $LineNoLook} {
lappend ListLineNoLook [lindex $lineSearchLinelnMatrix 0]
}
}
close $SearchLinelnMatrix
}
set UnigListLineNoLook [Isort -unique $ListLineNoLook]
set ListLi {}
foreach itemLi $UnigListLineNoLook {
set LineNoLi 0
set SearchLinelnMatrix [open $FileNameLinelnMatrix r]
while {[gets $SearchLinelnMatrix lineSearchLinelnMatrix] >=0} {
LineNoLi
if { [lindex $lineSearchLinelnMatrix 0] == $itemLi } {
lappend ListLi $LineNoLi

}

close $SearchLinelnMatrix

set CombineAllPreviousUsedLineNo [concat $LookForSeqNo $CombineAllPrevious]
set UnigCombineAllPreviousUsedLineNo [Isort -unique $CombineAllPreviousUsedLineNo]
set NewStickyEnd [listcomp $ListLi $UnigCombineAllPreviousUsedLineNo]
incr OutNo
set Finale [open ${path}/Level${e}/${OutNo}.txt w]
set PreviousLevel [open ${path}/Level${LevelMinus1}/${a}.txt r]
while {[gets $PreviousLevel linePreviousLevel] >=0} {
puts $Finale "$linePreviousLevel"

close $PreviousLevel
if { $LowestCurrentConcenSolution > 0 } {
puts $Finale "$NewPairs ; $SNewStickyEnd"
close $Finale
foreach itemToCheck $SeqToReduceConcentration {
set LineNoConcen 0
set DNAConcentration [open $DNAConcentrationFile r]
set TempoDNAConcentration [open $TempoDNAConcentrationFile w]
while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoConcen
if { $LineNoConcen != $itemToCheck} {
puts $TempoDNAConcentration "$LineDNAConcentration”
}

if { $LineNoConcen == $itemToCheck} {

set SplitConcen [split $LineDNAConcentration " " ]

set CurrentSolutionConcen [lindex $SplitConcen end]

set LatestConcen [expr $CurrentSolutionConcen-$DNAUptakeRate]

set RoundedLatestConcen [expr [format "%.4f" $LatestConcen]]

puts $TempoDNAConcentration "$LineDNAConcentration $RoundedLatestConcen"

}
}

close $TempoDNAConcentration
close $DNAConcentration
exec /bin/bash -¢ "mv ${path}/ TempoDNAConcentration.txt ${path}/Concentration.txt"

}
} else {
close $Finale
}
}
}
}
}
}
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# (until stickyend == 10)START: check overall [DNA] if any of the [DNA strand]< 0.0000 stop
set CurrentSolutionConcen 0
set LineNoCheck 0
set DepletedDNA 0
set DNAConcentration [open $DNAConcentrationFile r]
while {[gets $DNAConcentration LineDNAConcentration] >=0} {
incr LineNoCheck
set SplitConcen [split $LineDNAConcentration " " ]
set CurrentSolutionConcen [lindex $SplitConcen end]
if { $CurrentSolutionConcen > 0.0000 } {
set LastLevel $e
}else {
incr DepletedDNA

}

close $DNAConcentration

set NoFile [open $FileNameTotalFile w]
puts $NoFile "$OutNo"

close $NoFile

}else {}

}
incr OutNo

set Finale [open ${path}/Level${LastLevel}/${OutNo}.txt w]
puts $Finale "at least 1 identical files"

close $Finale

set NoFile [open $FileNameTotalFile w]

puts $NoFile "$OutNo"

close $NoFile

# get the last generated level folder

set LastLevelFilename [open ${path}/LastLevelNoFile.txt w]
puts $LastlLevelFilename "$LastLevel"

close $LastLevelFilename
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APPENDIX O: Remove redundancy.tcl

#! /usr/local/bin/tclsh
# remove redundancy of consecutive rows and identical files

# Get current working directory

proc getScriptDirectory {} {
set dispScriptFile [file normalize [info script]]
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder

}
set path [getScriptDirectory]
set OriginalPath $path

file delete -force ${path}/RemovedRepeatedRows

set ReadTotalLastLevel [open ${path}/TotalFile r]
while {[gets $ReadTotalLastLevel lineReadTotalLastLevel] >=0} {
set TotalFileInLastLevel $lineReadTotalLastLevel

close $ReadTotalLastLevel
set ReadLastLevel [open ${path}/LastLevelNoFile.txt r]
while {[gets $ReadLastLevel lineReadLastLevel] >=0} {
set LastLevel $lineReadLastLevel

close $ReadLastLevel
file mkdir ${path}/RemovedRepeatedRows
set Step1FileNo 0
for { setg 1} { $g <= $TotalFilelnLastLevel } { incrg }{
set Line 0
set ConsecutiveOccurance 0
set ListOne {}
set ListTwo {}
set ReadLastLevel [open ${path}/Level${LastLevel}/$g.txt r]
while {[gets $ReadLastLevel lineReadLastLevel] >=0} {
lappend ListOne $lineReadLastLevel
incr Line
}
close $ReadLastLevel
set ListTwo $ListOne
# Loop into that particular 1.txt, 2.txt etc...
for {seta 0} {$a < $Line }{incra}{
set IdenticalRow 0
for { setb 0} { $b < $Line } {incrb }{
if {[lindex $ListOne $a] == [lindex $ListTwo $b] && [lindex $ListOne
$a+1] == [lindex $ListTwo $b+1]} {
incr IdenticalRow

}

}
if {$IdenticalRow >= 2} {
incr ConsecutiveOccurance

}

if { $ConsecutiveOccurance >= 1} {

} else {

incr Step1FileNo

file copy -force ${path}/Level${LastLevel}/$g.txt
${path}/RemovedRepeatedRows/$Step1FileNo.txt
}
}

# Remove the redundant of repeated row
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cd ${path}/RemovedRepeatedRows
exec /bin/bash -c {find . \! -type d -exec cksum {} \; | sort | tee /tmp/f.tmp | cut-f1,2-d "' | uniq -d
| grep -hif - /tmp/f.tmp > RedundantList.txt}
file rename -force ${path}/RemovedRepeatedRows/RedundantList.txt
${OriginalPath}/RedundantList.txt
cd ${OriginalPath}
set path $OriginalPath
if {[file exists ${path}/FinalLevel] == 1} {
file delete -force ${path}/FinalLevel
}

# Remove identical files/redundant files and output after filtered is at Folder ${path}/FinalLevel
set ListColO {}
set input_RedundantList [open ${path}/RedundantList.txt r]

while {[gets $input_RedundantList lineinput_RedundantList] >=0} {

set SplitLineRedun [split $lineinput_RedundantList " " ]

set RCol0 [lindex $SplitLineRedun 0]

lappend ListCol0 $RCol0

close $input_RedundantList
set UniqueList [Isort -real -unique $ListCol0]
set TotalElement "[llength $UniqueList]"

# Output redundant files Name into RedundantList_ ToRemove.txt
set CountToRemoveFile 0
set Outremove {}
for { setr 0} { $r < $TotalElement } {incrr}{
set UCol0 [lindex $UniqueList $r]
set countList O
set input_RedundantList2 [open ${path}/RedundantList.txt r]
while {[gets $input_RedundantList2 lineinput_RedundantList2] >=0} {
set SplitLineRedun2 [split $lineinput_RedundantList2 " " ]
set R2Col0 [lindex $SplitLineRedun2 0]
set R2Col2 [lindex $SplitLineRedun?2 2]
if { $UCol0 == $R2Col0} {
incr countList
if {$countList = 1} {
set SplitDot [split $R2Col2 "/" ]
lappend Outremove "[lindex $SplitDot 1]"
incr CountToRemoveFile

}
}
}
close $input_RedundantList2
}

set LastLevelFileNo [open ${path}/LastLevelNoFile.txt r]
while {[gets $LastLevelFileNo lineLastLevelFileNo] >=0} {
set LastLevelNo $lineLastLevelFileNo

close $LastLevelFileNo
file mkdir ${path}/FinalLevel
set NewFileNo 1
for { setc 1} {$c < $Step1FileNo-1} {incrc}{
set OldFilename "$c.txt"
if {[Isearch $Outremove $O0IdFilename] >= 0} {
}else {
file copy -force ${path}/RemovedRepeatedRows/$c.txt
${path}/FinalLevel/$NewFileNo.txt
incr NewFileNo

}
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APPENDIX P: count.tcl

#! /usr/local/bin/tclsh

# Get current working directory
proc getScriptDirectory {} {

set dispScriptFile [file normalize [info script]]

set scriptFolder [file dirname $dispScriptFile]

return $scriptFolder
}
set path [getScriptDirectory]
set ReadSquareType [open ${path}/SquareType.txt r]

while {[gets $ReadSquareType lineReadSquareType] >=0} {
set SquareType $lineReadSquareType

}
close $ReadSquareType
set DirectoryFinalLevel "${path}/FinalLevel"
set FinalFilesLastLevel [glob "${DirectoryFinalLevel}/*.txt"]
set TotalFileNo [llength $FinalFilesLastLevel]
set DirectoryProcessResult "${path}/ProcessResult/"
if {[file exists ${DirectoryProcessResult}] == 1} {
file delete -force ${DirectoryProcessResult}

file mkdir $DirectoryProcessResult
for { seta 1} { $a <= $TotalFileNo } {incra }{
set LineNo 1
set LastFile [open "${DirectoryFinalLevel}/$a.txt" r]
set InProcessResult [open "${DirectoryProcessResult}/$a.txt" w+]

while {[gets $LastFile LineLastFile] >=0} {

set SplitBoundedSegSE [split $LineLastFile ";" ]

set BoundedSegList [lindex $SplitBoundedSegSE 0]

set TotalBoundedSegList [llength $BoundedSegList]

for { setb 0} { $b < $TotalBoundedSegList } {incrb } {

if { $LineNo == 1 } {

puts $InProcessResult "[lindex $BoundedSegList $b] [lindex $BoundedSegList [expr
$b+1]1 1.0"

}

if { $LineNo 1= 1} {

puts $InProcessResult "[lindex $BoundedSegList $b] [lindex $BoundedSegList [expr
$b+1]] [lindex $BoundedSegList [expr $b+2]]"

}

incr LineNo
incr b
incr b

}

close $LastFile
close $InProcessResult

incr LineNo

}

# START: 2nd Step Filter redundancy

set DirectoryProcessResult "${path}/ProcessResult/"

set FileProcessResult [glob "${DirectoryProcessResult}/*.txt"]
set TotalFileNoProcessResult [llength $FileProcessResult]
set FilteredDirectory "${path}/2ndStepProcessResult/"

if {[file exists ${FilteredDirectory}] == 1} {
file delete -force ${FilteredDirectory}
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}

file mkdir $FilteredDirectory
for { setw 1} { $w <= $TotalFileNoProcessResult } { incr w } {
set Reference {}
set FileNoProcessResult [open ${DirectoryProcessResult}$w.txt r]
while {[gets $FileNoProcessResult lineFileNoProcessResult] >=0} {
set SplitCols [split $lineFileNoProcessResult " " ]
set ColO0 [lindex $SplitCols 0]
set Col1 [lindex $SplitCols 1]
set Forward "$Col0 $Col1"
set Reverse "$Col1 $Col0"
if { $Reference == {} } {
lappend Reference $Forward
}
set NotSame 0
if { $Reference != {}} {
foreach item $Reference {
set TotalRef [llength $Reference]

if { $Forward != $item && $Reverse != $item} {
incr NotSame

}
if { $NotSame == $TotalRef} {
lappend Reference $Forward

}
if { $NotSame == $TotalRef} {
}

}
}

close $FileNoProcessResult

set FilteredFileName [open ${FilteredDirectory}/$w.txt w+]

foreach itemR $Reference {

set Found 0
set FileNoProcessResult [open "${path}/ProcessResult/$w.txt" r]
while {[gets $FileNoProcessResult lineFileNoProcessResult] >=0} {

set SplitCols [split $lineFileNoProcessResult " " ]

set ColRO [lindex $SplitCols 0]

set ColR1 [lindex $SplitCols 1]

set ColR2 [lindex $SplitCols 2]

set ForwardR "$ColR0 $ColR1"
if { $Found == 0 && $itemR == $ForwardR } {
puts $FilteredFileName "$ColR0 $ColR1 $ColR2"
incr Found

}

close $FileNoProcessResult

close $FilteredFileName
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APPENDIX Q: Find CorrectMatch.tcl

#! /usr/local/bin/tclsh
# final output of list of correct match is at $List CorrectGraph

# Get current working directory
proc getScriptDirectory {} {
set dispScriptFile [file normalize [info script]]
set scriptFolder [file dirname $dispScriptFile]
return $scriptFolder
}
set path [getScriptDirectory]
set ReadSquareType [open ${path}/SquareType.txt r]
while {[gets $ReadSquareType lineReadSquareType] >=0} {
set SquareType $lineReadSquareType

}
close $ReadSquareType
set ExtractTm [open ${path}/MeltingTemperature.txt r]
while {[gets $ExtractTm lineExtractTm] >=0} {
set ThresholdMeltingTemp $lineExtractTm

close $ExtractTm

set ReadDNATakeUpRate [open ${path}/DNAUptakeRate.txt r]
while {[gets $ReadDNATakeUpRate lineReadDNATakeUpRate] >=0} {
set DNATakeUpRate $lineReadDNATakeUpRate

}
close $ReadDNATakeUpRate

set ReadThresholdProbability [open ${path}/ThresholdProbabilityEnergy.txt r]
while {[gets $ReadThresholdProbability lineThresholdProbability] >=0} {
set ThresholdProbability $lineThresholdProbability

}
close $ReadThresholdProbability

set FileNameLinelnMatrix "${path}/LinelnMatrix${SquareType}.txt"
set ListCorrectGraph {}
set TrueMatchPairFile "${path}/TrueMatchPair.txt"
if {[file exists ${TrueMatchPairFile}] == 1} {
file delete -force ${TrueMatchPairFile}
}

set TotalCorrect 0

set TrueMatchPair [open ${path}/TrueMatchPair.txt w+]

file rename -force ${path}/LinelnMatrix${SquareType}.txt
${path}/TempoLineInMatrix${SquareType}.txt

exec /bin/bash -c "sed -e 's/ / 19" ${path}/TempoLinelnMatrix${SquareType}.txt >
${path}/LineInMatrix${SquareType}.txt"

set DefineSeq [open ${path}/${SquareType}DefineSeq.txt r]
while {[gets $DefineSeq lineDefineSeq] >=0} {

set SplitColumn [split $lineDefineSeq " "]

set ColumnO [lindex $SplitColumn 0]

set Column1 [lindex $SplitColumn 1]

set Column2 [lindex $SplitColumn 2]

set Column3 [lindex $SplitColumn 3]

set Column4 [lindex $SplitColumn 4]

set Column5 [lindex $SplitColumn 5]

set Columné [lindex $SplitColumn 6]

set MatchPair1 {}

set MatchPair2 {}

if { $Column2 !="NIL" } {
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lappend MatchPair1 $Column0
lappend MatchPair1 $Column2
lappend MatchPair1 $Column3
lappend MatchPair2 $Column4
lappend MatchPair2 $Column5
lappend MatchPair2 $Column6é
set TrueMatch {}
set LinelnMatrix [open ${path}/LineInMatrix${SquareType}.txt r]
set LineNo 1
while {[gets $LinelnMatrix lineLinelnMatrix] >=0} {
if { $lineLinelnMatrix == $MatchPair1 || $lineLinelnMatrix == $MatchPair2 } {
lappend TrueMatch "$LineNo"
} else {

}

incr LineNo

close $LinelnMatrix

}

close $DefineSeq
close $TrueMatchPair

set TrueMatchPair [open ${path}/List_CorrectPair w+]

# 2nd Procedure: compare TrueMatch/CorrectPair to the processresult folder
set FilteredDirectory "${path}/2ndStepProcessResult"
set FilesProcessResults [glob "${FilteredDirectory}/*.txt"]
set TotalFileNo [llength $FilesProcessResults]
set List_CorrectGraph [open "${path}/List_CorrectGraph.txt" w+]
puts $List_CorrectGraph "Parameter: Square Type = $SquareType"
puts $List_CorrectGraph "Parameter: Define Filename = ${SquareType}DefineSeq.txt"
puts $List_CorrectGraph "ThresholdMeltingTemp = $ThresholdMeltingTemp degree celcius"
puts $List_CorrectGraph "DNATakeUpRate = $DNATakeUpRate"
puts $List_CorrectGraph "ThresholdProbability = $ThresholdProbability"
puts $List_CorrectGraph "Total number of Graph generated = $TotalFileNo"
# Total Lines in TrueMatch
set MatchFile [open "${path}/TrueMatchPair.txt" r]
set LineSeq [split [read $MatchFile] "\n"]
close $MatchFile
set Len [expr [llength $LineSeq]-1]

# Get all True pairs into a List

set Pair12 {}

set TotalLinelnTrueMatchPair O

set MatchFile [open "${path}/TrueMatchPair.txt" r]
while {[gets $MatchFile lineMatchFile] >=0} {

set SplitCols [split $lineMatchFile " " ]

lappend Pair12 [lindex $SplitCols 0]

lappend Pair12 [lindex $SplitCols 1]

incr TotalLinelnTrueMatchPair

}

close $MatchFile

set TotalPair12 [llength $Pair12]

for { seta 1} {$a <= $TotalFileNo } {incra } {

# Total Lines In Process Results

set InProcessresult [open ${FilteredDirectory}/$a.txt r]
set LineProcessResult [split [read $InProcessresult] "\n"]
close $InProcessresult

set LenP [expr [llength $LineProcessResult]-1]
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}

if { $Len == $LenP} {
set CountMatch O
for { set x 0 } { $x < $TotalPair12} { incr x } {

set FileNoProcessResult [open ${FilteredDirectory}/$a.txt r]

while {[gets $FileNoProcessResult lineFileNoProcessResult] >=0} {

set SplitCols [split $lineFileNoProcessResult " " ]

set Col0 [lindex $SplitCols 0]

set Col1 [lindex $SplitCols 1]

if { [lindex $Pair12 $x] == $Col0 && [lindex $Pair12 [expr $x+1]] == $Col1} {
incr x

incr CountMatch

}

if { [lindex $Pair12 $x] == $Col1 && [lindex $Pair12 [expr $x+1]] == $Col0} {
incr x

incr CountMatch

}

close $FileNoProcessResult

}

if { $CountMatch == $TotalLinelnTrueMatchPair} {
lappend ListCorrectGraph "${FilteredDirectory}/$a.txt"
incr TotalCorrect

}
puts $List_CorrectGraph "Total number of Correct Graph = $TotalCorrect"
close $List_CorrectGraph
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APPENDIX R: Index2.php

<html>
<body>
<?php
$MIinGC =$_POST['mingc;
$MaxGC = $_POST['maxgc;
$Tm = $_POST['meltingtemp'];
$Prob = $_POST['probability'];
$Uptake = $§ POST['uptakerate');
$SquareType = $ POST['square;
$Email = $_POST['email";
echo "<p><font face="Arial’>MinGC: ".$MinGC. "</font></p>";
echo "<p><font face="Arial'>MaxGC: ".$MaxGC. "</font></p>";
echo "<p><font face="'Arial'>Tm: ".$Tm. "</font></p>";
echo "<p><font face="'Arial'>Prob: ".$Prob. "</font></p>";
echo "<p><font face="Arial'>Uptake: ".$Uptake. "</font></p>";
echo "<p><font face='Arial'>Rectangular: ".$SquareType. "</font></p>";
echo "<p><font face="'Arial'>Email: ".$Email. "</font></p>";

file_put_contents("/Applications/MAMP/htdocs/MinCG.txt", ($MinGC / 100));
file_put_contents("/Applications/MAMP/htdocs/MaxCG.txt", ($MaxGC / 100));
file_put_contents("/Applications/MAMP/htdocs/MeltingTemperature.txt", $Tm);
file_put_contents("/Applications/MAMP/htdocs/ThresholdProbabilityEnergy.txt", $Prob);
file_put_contents("/Applications/MAMP/htdocs/DNAUptakeRate.txt", $Uptake);
file_put_contents("/Applications/MAMP/htdocs/SquareType.txt", $SquareType);
function print_procedure ($arg) {

echo shell_exec("/Applications/MAMP/htdocs/Main_ RunDNATetris.tcl");
}

$script_name='Main_RunDNATetris.tcl';

echo "<table border="'1"' cellpadding="1" cellspacing="2"><tr><th><font
face="Arial'>SequenceNo</th><th><font face="'Arial'>DNA Strands</th><th><font
face="Arial'>No of Iteration</th><th><font face="'Arial'>Thermodynamics Free Energy(AllSub,
kcal/mol)<th><font face='Arial'>Thermodynamics Free Energy(DuplexFold,
kcal/mol)</th><th><font face="Arial'>Percentage of CG content</th></font></tr>";

?>

</body>

</html>
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