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ABSTRACT

Let S, be the symmetric group on [n] = {1,...,n}. The k-point fixing graph, .7 (n,k) is
defined to be the graph with vertex set S, and two vertices g and & of .% (n, k) are joined
if and only if gh~! fixes exactly k points. . (n,k) is a Cayley graph on S, generated by
< (n,k), the union of the conjugacy classes that fixes exactly k points. A subset / of S, is
said to be an independent set in .% (n, k) if and only if any two vertices in I are not adjacent
to each other. The problem of finding such a set is called the maximum independent set
problem and it is an NP-hard optimization problem. We are going to determine the size
of the largest independent set in .% (n,k) for 0 < k << n by using the Delsarte-Hoffman
Bound. In order to do so, eigenvalues of the adjacency matrix of .% (n, k) are required in
finding a bound for the size of a largest independent set in .% (n, k).

To determine the eigenvalues of the adjacency matrix of .% (n,k), we use the representa-
tion theory of symmetric groups. In particular, we use the character theory of symmetric
groups. We apply the branching rule and results from Foulkes to derive a recurrence
formula for eigenvalues of .% (n,k). Then we apply our results and some of the results
regarding the eigenvalues and size of largest independent set of .# (n,0) to determine
the sign of the eigenvalues of .% (n,1). Then, we determine the smallest eigenvalue of
Z (n,1) by techniques in extremal combinatorics. We use the largest and smallest eigen-
values of .# (n,1) and apply the Delsarte-Hoffman Bound to determine a bound for the
size of a largest independent set in .% (n,1). When 0 < k << n, we determine the small-
est eigenvalues of .7 (n, k) and the Specht module where it occurs. Similarly, we use the
largest and smallest eigenvalues of .% (n,k) and apply the Delsarte-Hoffman Bound to
determine a bound for the size of a largest independent set in . (n, k).

We also consider .Z (n,0), the derangement graph with generating set D,, the derange-
ment set. For any fixed positive integer k < n, the Cayley graph on S, generated by the
subset of D,, consisting of permutations without any i-cycles for all 1 <i < k is a regular
subgraph of the derangement graph. We determine the smallest eigenvalue of these sub-
graphs and show that the set of all largest independent sets in these subgraphs is equal to
the set of all the largest independent sets in .% (n,0) provided that k << n.
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ABSTRAK

Biar S, sebagai kumpulan simetrik pada [n] = {1, ...,n}. Graf menetapkan k-titik, .7 (n, k)
ditakrifkan sebagai graf dengan S,, sebagai set bucu dan dua bucu, g dan / disambungkan
jika dan hanya jika gh~! menetapkan setepat-tepatnya k-titik. .7 (n,k) adalah satu graf
Cayley pada S, yang dijanakan oleh .%(n, k), di mana S, adalah kesatuan kelas-kelas kon-
jugasi yang menetapkan setepat-tepatnya k-titik. Suatu subset I bagi S, dikatakan sebagai
satu set berdikari dalam .% (n, k) jika dan hanya jika mana-mana dua bucu dalam / tidak
bersebelahan antara satu sama lain. Masalah mencari set seperti ini dipanggil masalah set
berdikari maksimum dan merupakan satu masalah pengoptimuman NP-susah. Kita akan
menentukan saiz set berdikari yang paling besar dalam .% (n, k) untuk 0 < k << n dengan
menggunakan Batasan Delsarte-Hoffman. Untuk mencapai tujuan ini, nilai eigen bagi
matriks bersebelahan untuk .7 (n,k) diperlukan untuk menentukan batasan untuk saiz set
berdikari yang paling besar dalam .7 (n, k).

Untuk menentukan nilai eigen bagi matriks bersebelahan untuk .% (n, k), kita menggu-
nakan teori perwakilan kumpulan simetri. Khususmya, kita menggunakan teori watak
kumpulan simetri. Kita menggunakan Peraturan Bercabang dan keputusan dari Foulkes
untuk memperoloehi formula pengulangan untuk nilai eigen % (n,k). Seterusnya kita
menggunakan keputasan kita serta beberapa keputusan mengenai nilai eigen dan saiz set
berdikari terbesar dalam .# (n,0) untuk menentukan tanda nilai eigen bagi .%# (n,1). Se-
terusnya, kita menentukan nilai eigen yang terkecil dalam .% (n, 1) melalui teknik-teknik
kombinatorik ekstrimal. Kita menggunakan nilai eigen yang terbesar dan terkecil dalam
Z (n,1) dan menggunakan Batasan Delsarte-Hoffman untuk menentukan batasan untuk
saiz set berdikari yang terbesar dalam % (n,1). Apabila 0 < k << n, kita menentukan
nilai eigen terkecil dalam .% (n,k) dan modul Specht di mana ianya berlaku. Selain itu,
kita menggunakan nilai eigen yang terbesar dan terkecil dalam .% (n,k) dan menggunak-
an Batasan Delsarte-Hoffman untuk menentukan batasan untuk saiz sesuatu set berdikari
yang terbesar dalam .7 (n, k).

Kita juga mempertimbangkan .% (n,0), graf kekacauan dengan set penjana D,,, iaitu set
kekacauan. Bagi mana-mana integer positif yang tetap k < n, graf Cayley pada S, yang
dijanakan oleh subset D,, yang terdiri daripada pilih atur tanpa apa-apa i-kitaran bagi
1 <i < k adalah subgraf yang biasa dari graf kekacauan itu. Kita menentukan nilai eigen
yang terkecil dalam subgraf ini dan menunjukkan bahawa set yang mengandungi semua
set berdikari yang terbesar di subgraf ini adalah sama dengan set yang mengandungi se-

mua set berdikari yang terbesar dalam .# (n,0) bagi k << n.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

In computer science, several computational problems related to independent sets have
been studied. The independent set problem and the clique problem are complimentary.
Therefore, many computational results may be applied equally well to either problem.
However, the maximum independent set problem is NP-hard and it is also hard to be
determined. Therefore, we are interested in other alternatives to determine the size of a
maximum independent set.

In 1970, A.J. Hoffman (1970) proved the Delsarte-Hoffman Bound, which gives a bound
on the largest independent set of a regular graph. With this bound, we are able to bound
the largest independent set by determining the largest and smallest eigenvalues of the
graph. In particular, Cayley graph is a special kind of regular graph which is generated
by a group and a generating set. By considering some groups with certain algebraic
structures, we are able to determine the eigenvalues even though the graph structure is
complicated.

Let S, be the symmetric group on [n] ={1,...,n}. Consider the Cayley graph on S, gen-
erated by the derangement set, Dy, i.e. the set of elements that fixes no point in [n], such a
Cayley graph is well known as the derangement graph. Several results of the derangement
graph have been well studied by various people. In particular, Renteln (2007) has proved
a recurrence formula for the eigenvalues of partitions in the derangement graph, thus
determining the smallest eigenvalue of the derangement graph. By applying Delsarte-
Hoffman Bound, the largest independent set in the derangement graph is also determined.
Furthermore, Ku and Wales (2010) have developed an Alternating Sign Property for the
eigenvalues of the derangement graph.

In this thesis, we consider the k-point fixing graph, namely .% (n,k) which is the Cayley
graph on S, generated by .%(n,k), the union of the conjugacy classes that consists of

permutations that fix exactly k points. In particular, the derangement graph is a 0-point



fixing graph. We want to determine the size of the largest independent set in .% (n, k)
for 0 < k << n by using the Delsarte-Hoffman Bound. In order to do so, eigenvalues of
the adjacency matrix of .% (n,k) are required in finding a bound for the size of a largest
independent set in .% (n,k). Furthermore, for any fixed positive integer k < n, we con-
sider a regular subgraph of the derangement graph, where this subgraph is a Cayley graph
on S, generated by a subset of D, consisting of permutations without any i-cycles for
all 1 <i < k. We want to determine the smallest eigenvalue of these subgraphs and the

largest independent set in these subgraphs given k << n.

1.1 Definitions & Terminology

In this section we will provide the basic and important definitions for the thesis.
Definition 1.1.1. We define the following terminologies:

1. A multigraph, I" consists of a non-empty finite set of vertices, denoted by V (I") and
a finite (possibly empty) set of edges, denoted by E () such that each edge in E(I")
Jjoins two distinct vertices in V(I') and two distinct vertices in V(') are joined by a

finite (possibly zero) number of edges.

2. The order of T, denoted by v(I"), is the number of vertices in V (I') while the size of

I, denoted by e(T'), is the number of edges in E ().

3. A multigraph T is called a simple graph if any two vertices in V (I') are joined by at

most one edge.
Throughout this thesis, we use the term graph to represent the term simple graph.

In this thesis, we are interested in Cayley graphs. They are special cases of regular graphs.
It is important for us give the definition of regular graph and we need to use the degree of

the graph later.
Definition 1.1.2. Let I" be a graph with V(') = {vy,..., vy }.

1. The degree of a vertex, v; in I, denoted by d(v;), is the number of edges incident

with v;.



2. Ifevery v; € V(') has the same degree, we say that I is a regular graph. In partic-
ular, if d(vi) = k fori € {1,...,n}, we say that T is a k-regular graph. We denote

d(T') = k for a k-regular graph.

We are interested in identifying independent sets in Cayley graphs. We shall observe that
the degrees of a graph are needed in determining the cardinality of an independent set.

We first define what is an independent set:
Definition 1.1.3.

1. An independent set is a set of vertices in a graph such that no two of which are

adjacent. The size of an independent set is the number of vertices which it contains.

2. A maximum independent set is a largest independent set for a given graph and its

size is the largest independent number, which is denoted by a(T').

For every graph with v(I') = n, we are able to determine an n x n real matrix A(I") to
represent its adjacency. In our context, A(I") is important as we will study its eigenvalues

in determining the largest independent number.

Definition 1.1.4. Let I be a simple graph with v(I') = n. The adjacency matrix, A(T") of
a graph U is the integer matrix with rows and columns indexed by the vertices of I', such

that the uv-entry of A(T) is 1 if u is adjacent to v and 0 otherwise.

The adjacency matrix of a simple graph I', A(T") is a real symmetric matrix. We know

that all eigenvalues of A(I") are real numbers by the following lemmas:

Lemma 1.1.5. Let A be a real symmetric matrix. If u and v are eigenvectors of A with

different eigenvalues, then u and v are orthogonal.

Proof. Suppose that Au = Au and Av = 7v, with A # 7. Since A is symmetric, u’ Av =
(vI Au)T. The L.H.S of this equation is Tu’ v whereas the R.H.S is Auv. Since T # A,

T

then u’ v =0, giving us u L v. L

Lemma 1.1.6. The eigenvalues of a real symmetric matrix A are real numbers.

Proof. Let u be an eigenvector of A with eigenvalue A. By taking the complex conjugate

of the equation Au = Au, we obtain Al = Au = Iﬁ, and so u is also an eigenvector of A.

3



By definition an eigenvector is not the 0 vector, so u”% > 0. By Lemma 1.1.5, u and

cannot have different eigenvalues, so A = I, and the assertion is true. L]

In the context of determining the largest independent number using the Delsarte-Hoffman
Bound, we are expecting real eigenvalues from a graph so that we can obtain an upper
bound for a largest independent set as a real number.

The focus of our thesis would be on properties of Cayley graphs. We need the following

definitions before defining Cayley graphs.

Definition 1.1.7. A group is a set, G, together with an operation o, i.e (G,o0) which

satisfies the following axioms
1. Closure: Forall a,b € G, aob € G.
2. Associativity: For all a,b,c € G, (aob)oc=ao(boc).
3. Identity Element: There exists an element 1 € G such thatVa € G, aol =1oa=a.

4. For each a € G, there exists an element b € G such thataob =boa = 1. Such b is

denoted as a= .

Definition 1.1.8. Let G be a finite group and let S C G be a subset of G such that 1 ¢ S and
s €S =s"1¢€8, the corresponding Cayley graph, denoted as I'(G,S) has the following
vertex set and edge set

V(I'(G,S)) =G
E(F(G>S)) = {(g,h) | ds € S such that hilg = s}
S is called the generating set for I'(G,S).

We now define what it means by vertex-transitivity. In particular, a Cayley graph is a

vertex-transitive graph and thus it possesses the properties of regularity.

Definition 1.1.9. A graph I is vertex-transitive if given any vertices vi,v, of I, there is

an automorphism f : V(') — V(') such that f(vi) = v;.

This will mean that the graph properties of any two vertices in a vertex-transitive graph

are the same.



Theorem 1.1.10. (Ku and Wong, 2013 [42]) ['(G,S) is vertex-transitive. In particular,

I'(G,S) is a regular graph.

Theorem 1.1.10 is a well-known result, and it is important as the properties of vertex-
transitivity and regularity are required for Theorem 1.4.1 later.
We now state some well known results of the degree of a Cayley graph and its relationship

with the largest eigenvalue of the adjacency matrix of the Cayley graph.

Theorem 1.1.11. (Ku and Wong, 2013 [42]) Let d be the degree of any vertex in I'(G, S),

then d = |S|. Moreover, the largest eigenvalue of A(I'(G,S)) is equal to d.

1.2 Representation Theory of Symmetric Groups

In this section, we would like to use the Frobenius-Schur-Others Theorem (Theorem
1.2.17) to determine all the eigenvalues of the adjacency matrix of some Cayley graphs.
In particular, we are interested in finding the largest and smallest eigenvalues of these

graphs.

1.2.1 Introduction and Background

We first introduce the definitions and concepts in group theory:
Definition 1.2.1. Given two groups (G,-) and (H,*), a group homomorphism from (G, -)

to (H,*) is a function ¢ : G — H such that for all u,v € G,

O(u-v) = ¢(u)*xo(v)

Definition 1.2.2. A subset S of the domain U of a mapping T : U — U is an invariant set
under the mapping when

xeS=T(x)E€S.

In particular, a conjugation invariant subset is the invariant subset under conjugation

mapping.



Lemma 1.2.3. Let A,B C G where G is a group. If A, B are inverse-closed and conjugation-
invariant subsets of G, then AUB is an inverse-closed and conjugation-invariant subset

of G.

Proof. Let x € AUB, then x € A or x € B. Without loss of generality, we assume that
x €A.

Since A is inverse-closed, x ! € A, giving us x e AUB.

Since A is a conjugation-invariant subset of G, for all g € G, gxg~! € A, givingus gxg~! €

AUB. U

We now introduce some definitions and results in representation theory which are related

to this thesis.

Definition 1.2.4. Let V be a vector space over the field F. An automorphism of V is a

linear operator ¢ : V. —V where ¢ is an isomorphism.

Definition 1.2.5. If V is a vector space over the field F, the general linear group of V,

written GL(V) is the group of all automorphisms of V.

Definition 1.2.6. Let G be a group and V a vector space. A group homomorphism p :

G — GL(V) is a representation of G and V is a representation space of G.

Definition 1.2.7. If G is a group and X is a set, then a (left) group action of G on X is a
binary function,

V:GxX —X denoted y((g,x)=g-x

which satisfies the following 2 axioms:

1. (gh)-x=g-(h-x)forallgh€ Gandx € X;

2. If 1 is the identity element of G, then 1 -x = x for all x € X.
The group G is said to act on X.

Definition 1.2.8. Ler G act on a set X, and V be a vector space having basis {vy|x € X }
If g € G, we define p(g) to be the linear map V. — 'V such that p(g)(vx) = Vg.x, then
p : g — p(g) defines a representation of G, known as the permutation representation of G

onX.



Remark 1.2.9. The regular representation of G is the permutation representation of G on

G by regular left action.

Definition 1.2.10. Given two vector spaces V and W, two representations

p1:G—GL(V) and pr:G— GL(W)

are said to be isomorphic if there exists a vector space isomorphism

d:V-W

such that for all g € G,

Do (pi(g)v) = p2(g) o (V)
forall v € V. If there is no such isomorphism, then we say V and W are non-isomorphic.

Definition 1.2.11. A subspace W of 'V that is invariant under the group action is called a
subrepresentation. If V has exactly two subrepresentations, namely the zero-dimensional
subspace and V itself, then the representation is said to be irreducible; if it has a proper

subrepresentation of nonzero dimension, the representation is said to be reducible.

We need to use a special kind of representation, namely character of a representation to
evaluate the eigenvalues. We now define character and some related definitions in ring

and module theory.

Definition 1.2.12. A character, x = xp = xv : G — C is defined by x(g) = tr(p(g)) for
ge€G.

Definition 1.2.13. An Abelian group (G,o) is a group which possesses commutativity,
i.eforalla,be G

aob=boa.

Definition 1.2.14. A ring, R is a set equipped with two associative binary operations,

called addition (+) and multiplication (X ), such that

1. R is an Abelian group under +;



2. distributive law holds, i.e

r(s+t)=rs+rt,
(s+t)r=sr+tr
forall r,s,t € R.

Definition 1.2.15. A left R-module M over the ring R consists of an abelian group (M, +)

and an operation R X M — M such that for all r,s € R, x,y € M,
1 r(x+y)=rx+ry;
2. (r+s)x=rx+sx;

3. (rs)x = r(sx);

A

. 1gx = x if R has multiplicative identity 1g.

Definition 1.2.16. For a finite group G, the group module CG is the complex vector space
with basis G and multiplication defined by extending the group multiplication linearly;

explicitly,

(Z xgg> (Z yhh> = Y xov(gh).

8€G heG g,heG
Identifying a function f : G — C with ¥, f(g)g, we may consider C[G] as the group
module CG. If T" is a Cayley graph on G with inverse-closed generating set X, the adja-
cency matrix of I', A(T") acts on the group module CG by left multiplication by Yeex 8-
With the definitions defined, we can study the following theorem in determining eigen-
values of some Cayley graphs.
The following theorem is the result of the work of many people which Frobenius and

Schur started.

Theorem 1.2.17. (Frobenius-Schur-others, Ellis, 2012 [17]) Let G be a finite group; let
X C G be an inverse-closed, conjugation-invariant subset of G and let T" be I'(G,X). Let
(p1,Vi)y-- -, (Pr, Vi) be a complete set of non-isomorphic irreducible representations of

G. Let U; be the sum of all submodules of the group module CG which are isomorphic to



V. We have

k
CG=EPU;
i=1

and each U; is an eigenspace of A with dimension dim(Vi)2 and eigenvalue

Zx,

gEX

Vi =

dlm

where xi(g) =tr(pi(g)) denotes the character of the irreducible representation (p;,V;).

We want to make use of Theorem 1.2.17 in determining the eigenvalues of Cayley graphs
on S,. Therefore, we will discuss the representation theory of §,, in order to apply Theo-

rem 1.2.17 in the next subsection.

1.2.2 Symmetric Group, Partitions and Specht Module

We provide the perspective of representation theory of the symmetric group via general
representation theory. Our objective in this section is to build the modules M A the permu-
tation module corresponding to S*, the Specht Module. First, we introduce the concepts

of symmetric group, partitions and Young diagram.

Definition 1.2.18. The symmetric group, S, on a set X = {1,2,...,n} is the group whose
underlying set is the collection of all bijections from X to X and whose group operation

is that of function composition
S, ={0|0:X — X,0 is a bijection}
Definition 1.2.19. A partition of n is a non-increasing sequence of integers summing to

n, i.e a sequence A = (Ay,..., A) with Ay > ... > A and Z§:1 Ai =n. We write A - n.

Definition 1.2.20. The cycle-type of a permutation o € S, is the partition of n obtained by
expressing © as a product of disjoint cycles and listing its cycle-lengths in non-increasing

order precisely.

Therefore, we know that the conjugacy classes of S, are precisely

{o €8,: cycle-type(c) = 0t} grn



Moreoever, there is an explicit one-to-one correspondence between irreducible represen-

tations of S, (up to isomorphism) and partitions of n, which we now describe.

Definition 1.2.21. Let o = (0, ..., o) be a partition of n. The Young diagram or Ferrers
diagram of a is an array of n dots, having k left-justified rows where row i contains Q;

dots.

Definition 1.2.22. If the array contains the numbers 1,2, ... n in some order in place of

the dots, we call it an o-tableau.

Definition 1.2.23. Two a-tableaux are row-equivalent if for each row, they have the same
numbers in that row. If an a-tableaut has rows Ry, ..., Ry C [n] and columns Cy,...,C; C
[n], we let R, = Sg, % ... X Sg, be the row-stabilizer of t and C; = S¢, X ... X S¢, be the

column-stabilizer.

Definition 1.2.24. An a-tabloid is an o-tableau with unordered row entries. We write [t

for the tabloid produced by a tableau t.

Now, we have sufficient tools to construct our M%. Consider the natural left action of
S, on the set X% of all a-tabloids; let M* = C[X%] be the corresponding permutation
module, the complex vector space with basis X* and S, action given by extending this

action linearly.

Definition 1.2.25. Given a-tableau t, we define the corresponding a-polytabloid

e =) g(m)m[i]

TCGCI

where € is the character of sign representation, s,

Definition 1.2.26. We define the Specht module S to be the submodule of M* spanned
by the o-polytabloids:

S§% = span{e; : t is an a-tableau}

Lemma 1.2.27. (Stanley, 1999 [64]) The Specht modules S* are a complete set of pair-
wise non-isomorphic, irreducible representations of S,. Hence any irreducible represen-
tation p of S, is isomorphic to some S*. In particular, both the conjugacy classes of S,

and the irreducible characters of S, are indexed by partitions A of [n].
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We study the Specht modules, S* because they are important in applying Theorem 1.2.17
to find the eigenvalues of Cayley graphs on §,. Notice that Lemma 1.2.27 fulfills the

hypothesis for Theorem 1.2.17.
Example 1.2.28. A few examples of S%,
o S0 = MW s the trivial representation.
o SU") s the sign representation and M (") is the left-regular representation.

Definition 1.2.29. A tableau is standard if the numbers are strictly increasing along each

row and down each column.

Proposition 1.2.30. (Ellis, 2012 [17]) For any partition o of n,

{e; : t is a standard a-tableau}

is a basis for the Specht module S*.

We next define the hook length as there is a relationship between the dimension of a
Specht module, S* and hook length. We require the dimension of Specht Module so that

we can apply Theorem 1.2.17 to find the eigenvalues.

Definition 1.2.31. Let A - n. For each cell (i, j) in a Young diagram of a partition &, we
define the hook-length hy (a,b) as the size of the set of all the boxes with coordinate (i, j)

wherei=aand j > b, ori > aand j = b.
Notation 1.2.32. We use the following notations in this thesis:
o o] - equivalence class of the irreducible representations of S%.
* Xo - irreducible character of Xse.
o &, - character of the permutation representation M*.
o % - dimension of the Specht module S*.

Theorem 1.2.33. (Ellis, 2012 [17]) Let H* = [](hook lengths of |a]), then the dimension
of S% is

11



Let o = (ay,...,0) be a partition of n. For each i with o; > 041, we define

a” =(0,00,. . 0,0 — 1,0y, 0).
Note that o~ - (n — 1). Furthermore, o~ is the partition whose Ferrers diagram is
obtained by deleting the box at the end of the ith row of the Ferrers diagram of oc. We

shall also need the following theorem to find f*:

Theorem 1.2.34. (The Branching Theorem, Sagan, 2001 [62, Lemma 2.8.2 on p. 77] &
[62, Theorem 2.8.3]) For any partition & of n, the restriction [o] | S, is isomorphic to

a direct sum of those irreducible representation [0~ ] of S,_1, then

@] LS =Y, [a ] (1.1)
006> 041
and
= r (12)
1:04> 041

Theorem 1.2.35. (Ellis, 2012 [17]) The set of a-tabloids form a basis for M*, therefore

Eu(0), the trace of the corresponding permutation representation at o, is precisely the

number of o-tabloids fixed by ©.

Theorem 1.2.35 is important as it gives us a combinatorial idea to calculate &y (o) without
looking at the algebra of the corresponding ¢c. We need this to calculate the character
values in Theorem 1.2.17. We now study a property about the tensor product which is

important in Theorem 1.2.37.

Definition 1.2.36. IfU <€ [o] and V € [B], we define [a] + [B] to be the equivalence class

of U@V and [a] ® [B] to be the equivalence class of U @ V; since Xugv = Xu * Xv-

Theorem 1.2.37. (Ellis, 2012 [17]) For any partition o of n, we have

S @ 5% = g

where o (or ol ) is the transpose of ., the partition of n with Young diagram obtained by
interchanging rows and columns in the Young diagram of a. In particular, [1"] ® [a] =

12



(o] and Yo = € - xo Where € is the character of sign representation.

Theorem 1.2.37 is important because one can determine the character of a partition by
taking the multiplication of its sign character and character of its transpose. The use of

Theorem 1.2.37 will be seen in later parts.
Example 1.2.38. Ifn =7,

1. (3,2,2) 7.

2. We sometimes write (3,2,2) as (3,2?).

3. The Young diagram of (3,2?) is

4. A (3,2%)-tableau

5. A (3,2%)-tabloid
{1 6 7}

{4 5}
{2z 3}

6. Dimension of S is

n! 7!
[1(hook lengths of [&])  5-4-3-2-2-1-1

%= 21

with Hook lengths of o are
541

3 2
2 1

13



/

1M®[3,2,2]=3,22=| e » =] o o o

Before we decompose M, we need to have the following terminology:

Definition 1.2.39. Let a, 3 be partitions of n. A generalized a-tableau is produced by
replacing each dot in the Young diagram of o with a number between 1 and n; if a
generalized a-tableau has B; i’s (1 <i < n) it is said to have content B. A generalized
a-tableau is said to be semistandard if the numbers are non-decreasing along each row

and strictly increasing down each column.

Definition 1.2.40. Let o, 8 be partitions of n. The Kostka number, K, g is the number of

semistandard generalized o-tableaux with content 3.

With the terminology defined, we now explain how the permutation modules M? decom-

pose into irreducibles.

Theorem 1.2.41. (Young’s Rule, Sagan, 2001 [62]) For any partition B of n, the permu-

tation module MP decomposes into irreducibles as follows:

MP = DK, 55

akn

Example 1.2.42. M (=11 \which corresponds to the natural permutation action of S, on

[n], decomposes as

ML) &~ gr=1.1) o ¢(n)
giving us
En-1,1) = X(n—1,1) + 1
as S is the trivial representation with dimension 1.

We now return to consider I'(S,,X) using Theorem 1.2.17. To make use of Theorem
1.2.17, we must make sure the generating set X C G is an inverse-closed, conjugation-

invariant subset of G. We have the following property about conjugacy classes:

14



Proposition 1.2.43. Let C; be the conjugacy class of type A = (1™12"2 .. .n"™), then C),
is an inverse-closed and conjugation-invariant subset of S,. In particular, | J; C,, is an

inverse-closed and conjugation-invariant subset of S,.

Proof. Let 6 € Cy. Then 0 = (i1,1...i1,4)(i2,1---12p) ... (ij1..-ijc) as a product of dis-
joint cycles. It follows that its inverse 6! = (ij1- ..l']~,c)_1 (i ..i27b)_1(i171 . ..1'176,)_1
is also in Cy.

By definition of conjugacy classes, for all ¢ € C;, T6t~! € C; for all T € S,,. There-
fore Cj satisfies the desired properties. By Lemma 1.2.3, |J, C; is an inverse-closed,

conjugation-invariant subset of G. []

With all the tools developed, we are now ready to apply Theorem 1.2.17 to calculate the

eigenvalues of the Cayley graphs on §,,. We have the following corollary:

Corollary 1.2.44. Write Uy, for the sum of all copies of S* in CS,,. We have

CSy =PUq

akn

and each Uy is an eigenspace of T(Sy,X), with dim(Ug) = (f*)? and corresponding
eigenvalue

Na = f—la Z Xa(0).

oeX

Let S C S, be closed under conjugation. Since central characters are algebraic integers
(Isaacs, 1976 [33, Theorem 3.7 on p. 36]) and the characters of the symmetric group are
integers (Isaacs, 1976 [33, 2.12 on p. 31] or Serre, 1977 [63, Corollary 2 on p. 103]), by

Theorem 1.2.17, the eigenvalues of I'(S,,S) are integers.

Corollary 1.2.45. The eigenvalues of a Cayley graph I'(S,,S) are integers.

1.3 k-point Fixing Graph

Let 0 < k < n and .”(n,k) be the set of all o € S, such that o fixes exactly k elements.
Note that .”(n, k) is an inverse-closed subset of S,,. The k-point fixing graph is defined to
be

F(n,k) =T(S,,~(n,k)).

15



That is, two vertices g, 1 of .% (n, k) are joined if and only if gh~! fixes exactly k points.
Note that the O-point fixing graph is the derangement graph.

Clearly, .% (n,k) is vertex-transitive, so it is |-(n,k)|-regular and the largest eigenvalue
of F (n,k) is |.#(n,k)|. Furthermore, .# (n, k) is closed under conjugation. Therefore, by
Corollary 1.2.45, the eigenvalues of the k-point fixing graph are integers. Since .¥(n, k)
is closed under conjugation, the eigenvalue 7y, (k) of the k-point fixing graph can be

denoted by 1, (k). Throughout the thesis, we shall use this notation.

1.4 Literature Review

In this section, we will review some of the results that are related to this thesis.

1.4.1 Delsarte-Hoffman Bound

We are interested in regular graphs and their adjacency matrices. In particular, we want
to determine its eigenvalues so that we can apply the Delsarte-Hoffman Bound.
We introduce the following theorem in order to bound the largest independent set of a

Cayley graph.

Theorem 1.4.1. (Delsarte-Hoffman Bound, Hoffman, 1970 [29]) Let I be a d-regular
graph with n vertices. Let A be the adjacency matrix of I . Let {v{,va,...,V,} be an
orthonormal system of eigenvectors of A, with corresponding eigenvalues d =y > Y >
o> Y =71 (sothatvi = (1,...,1) is the all-1’s vector). If I is an independent set in T,
then

1) <

d .
T

Furthermore, if equality holds, then

1; € Span ({vi}U{vi : % =1}),

where Span(by,...,b,,) is the vector space spanned by by, ... by,.

By Theorem 1.1.11, we can determine the largest eigenvalue of A(I'(G,S)) by determin-

ing the degree of any vertex in I'(G,S). In order to use Theorem 1.4.1, we need to find

16



the smallest eigenvalue of the graph, which requires the use of Representation Theory of

symmetric groups.

1.4.2 0-point Fixing Graph

The 0-point fixing graph, which is well-known as derangement graph, is the Cayley graph
I'(S,,D,) where D,, = .%(n,0) is the set of derangements in S,,. Since D, is closed under
conjugation, by Corollary 1.2.45, the eigenvalues of the derangement graph are integers.
We now list out some of the known results that are related to the 0-point fixing graph.

Renteln (2007) proved a recurrence formula for eigenvalues of a O-point fixing graph. To
describe the Renteln’s recurrence formula for .7 (n,0), we require some terminology. To
the Ferrers diagram of a partition A, we assign xy-coordinates to each of its boxes by
defining the upper-left-most box to be (1,1), with the x axis increasing to the right and
the y axis increasing downwards. Then the hook of A is the union of the boxes (x, 1) and
(1,y') of the Ferrers diagram of A, where x' > 1,y > 1. Let Z,l denote the hook of A
and let &) denote the size of il\;L. Similarly, let ¢; and c; denote the first column of A and
the size of ¢, respectively. Note that ¢, is equal to the number of rows of A. When A is
clear from the context, we will replace El’ h;, ¢, and ¢, by iz\, h, ¢ and c respectively. Let
A —h '+ n— h denote the partition obtained from A by removing its hook. Also, let A — ¢
denote the partition obtained from A by removing the first column of its Ferrers diagram,

ie. AyeosA) == =1, =D n—r.

Theorem 1.4.2. (Renteln’s Recurrence Formula, Renteln, 2007 [61, Theorem 6.5]) For
any partition A = (Ay,...,A) b n, the eigenvalues of the derangement graph .7 (n,0)

satisfy the following recurrence:

M2.(0) = (=1)"m; _5(0) + (=1)"**1my_(0)

with initial condition ng(0) = 1.

Applying Theorem 1.4.2, Renteln (2007) settled the following conjecture made by Ku
and Wong (2007):

17



Theorem 1.4.3. (Ku and Wong, 2007 [52]) The smallest eigenvalue of the adjacency

matrix of % (n,0) is given by
dn
n—1

Nn—1,1) = —
which occurs at the partition (n—1,1).

With the smallest eigenvalue of .% (n,0) determined, we are now able to bound the largest
independent set of .% (n,0). Moreover, we are able to determine the exact largest inde-
pendent number by identifying the existence of an independent set with cardinality of the

bound.
Corollary 1.4.4. The largest independent number of the derangement graph % (n,0) is
o(F(n,0))=(n—1)

Proof. By Theorems 1.4.1 and 1.1.11, we have

n! n!
1— b 14n-—1

d
n—1

oa(#(n,0)) <

=n-1).

It suffices for us to verify the existence of an independent set,  with |I| = (n—1)!. Let [

be an independent set, i.e

I={geS,:g(1)=1}
we have |I| = (n—1)!, givingus a(I") = (n—1)!. O

Ku and Wong (2013) have proved a recurrence formula for eigenvalues of 0-point fixing
graph. To describe the Ku-Wong’s recurrence formula for .% (n,0), we need a new termi-
nology. For a partition A = (4,...,4,) F n, let lA;L denote the last row of A and [, denote
the size of [;. Clearly, we have [, = A,. Let A — I, denote the partition obtained from A
by deleting the last row. When A is clear from the context, we will replace lA;L, [; by Tand

[ respectively.

Theorem 1.4.5. (Ku-Wong’s Recurrence Formula, Ku and Wong, 2013 [42, Theorem
1.4]) For any partition A = (A1,...,A,) & n, the eigenvalues of the derangement graph

F (n,0) satisfy the following recurrence:

M(0) = (=1)* 1, _50) + (=1)""" 21 _(0)
18



with initial condition 1g(0) = 1.

The following theorem is called the Alternating Sign Property (ASP) for .% (n,0), which
is proved by Ku and Wales (2010) and Ku and Wong (2013) by using Renteln’s Recur-

rence Formula and Ku-Wong’s Recurrence Formula respectively.

Theorem 1.4.6. (Alternating Sign Property for .%# (n,0), Ku and Wales, 2010 [41, The-
orem 1.2]; Ku and Wong, 2013 [42, Theorem 1.3]) Let n > 2. For any partition A =
(ll,...,)ur) l—n,

sign(;(0)) = (—1)AH

(_ 1)#cells under the first row of 4

where sign(n (0)) is 1 if Ny (0) is positive or —1 if n; (0) is negative.
The following corollary is a consequence of Theorems 1.4.5 and 1.4.6.

Corollary 1.4.7. For any partition A = (Ay,...,A,) = n with r > 2, the absolute value of

the eigenvalues of the derangement graph .7 (n,0) satisfy the following recurrence:

M(0)] = 1, _7(0)] + A —2(0)]

with initial condition |ng(0)| = 1.

1.4.3 Intersecting families

Let [n] = {1,...,n}, and let ([Z}) denote the family of all k-subsets of [n]. A family .27 of
subsets of [n] is t-intersecting if |ANB| >t for all A,B € /. One of the most beautiful

results in extremal combinatorics is the Erdés-Ko-Rado theorem.

Theorem 1.4.8 (Erdds, Ko, and Rado, 1961 [20]; Frankl, 1978 [21]; Wilson, 1984 [67]).

Suppose o/ C ([Z]) is t-intersecting and n > 2k —t. Then forn > (k—t+1)(t+ 1), we

n—t
| < .
<)

have
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Moreover, if n > (k—1t+1)(t + 1) then equality holds if and only if
o = {A € <[Z]> . T C A for some t-set T} )

Later, Ahlswede and Khachatrian (1997, [1]) extended the Erd6s-Ko-Rado theorem by
determining the structure of all z-intersecting set systems of maximum size for all possi-
ble n (see also [4, 22, 34, 45, 57, 59, 65] for some related results). There have been many
recent results showing that a version of the Erdds-Ko-Rado theorem holds for combina-
torial objects other than set systems (see [2, 5, 6, 7, 8, 11, 12, 14, 16, 19, 23, 27, 28, 30,
31, 32, 36, 37, 52, 43, 44, 46, 47, 48, 49, 50, 51, 53, 55, 58, 66, 68]).

We say that a pair of families <7, % C S, is cross-intersecting if for any o € &7, 7 € A,
there exists an i € [n] such that 6 (i) = 7(i). Recall that S; ; = {m € S, : 7(i) = j}. Leader
(2005, [54]) conjectured the following theorem which was later proved by Ellis (2012,
[17, Theorem 2.6 and 2.8]).

Theorem 1.4.9. Forn >4, if of |2 C S, are cross-intersecting, then
| ||| < ((n—1)1)°.

Furthermore, equality holds if and only if o/ = 98 =S, j for some i, j € [n].
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CHAPTER 2: RECURRENCE FORMULA FOR % (n,k) AND ASP FOR % (n,1)

In this chapter, we will derive a recurrence formula for the eigenvalues of .# (n,k) using
a result from Foulkes (1978). Then, we will make use of the recurrence formula to de-
termine the Alternating Sign Property for the eigenvalues of .% (n, 1). The results of this

chapter have been published in Ku, Lau and Wong (2015, [38]).

2.1 Recurrence formula for .% (n, k)

For each o € S,, we denote it’s conjugacy class by Cong, (), i.e., Cong, (c) = {y oy :
Y € Sp}. Let u = n be the partition that represents Cong, (6). We shall denote the size of
Consn (G) by NSn (H)'

Let A C S, and o € S,,. The set a 'Aa is defined as
a'Aa={a"'oa : c €A}

Let 0 < k < n. Each B € S,_; can be considered as an element B of S, by defining
B(j)=B(j) for 1 < j<n—kand B(j)=jforn—k-+1<j<n. The B is called the
extension of B to S,,. The set of derangements D,,_; in S,,_; can be considered as a subset
of Sy (Dy_x = {6 : 6 € D,_;}). Furthermore, Ugcs, 6 'Dy_i0 C .7 (n,k).

Let y € 7 (n,k). Then y fixes exactly k elements, i.e., y(i;) = i; for j=1,2,...,k and
Y(a) #afora € [n]\{i1,i2,...,ix} ={b1,b2,...,by_i}. Letop(b;) = jfor 1 < j<n—k
and Go(ij) =n—k+jforl1 <j<k Then oy €S, and G*IYG € D,_x. Hence, the

following lemma follows.

Lemma 2.1.1.
(k)= ) 07'D, 0.

oS,
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By Lemma 2.1.1, there are Oy, Oy, ..., Ok, € D, such that

S (n,k) = | J Cong, (Gx), 2.1)
i=1

and oy; is not conjugate to Oy in S, for i # j. Furthermore,

Sk

D, = J Cong, ,(ow). (2.2)
i=1

Note that x; (o) = x2(B) for all o € Cong, (). Let Cong, () be represented by the
partition @ () - n. Then by Theorem 1.2.17 and Corollary 1.2.45, the eigenvalues of

F (n,k) are integers given by

(k) = f% iz"]zvsn<<p<6k,->m<<p<6ki>>, 23)

where %, (¢(61i)) = xp(Oki)-
Assume that 0 < k < n. Note that each 6; (1 <i < s;) must consist of at least one 1-cycle
in its cycle decomposition. Therefore ¢(6;) = (vi, V2,...,V,) F n and v, = 1. Note that

?(Oki) —lpi,) = (Vi,V2,...,Vp—1) I (n—1). We are now ready to state the following

lemma which is a special case of Theorem 3.4 in Foulkes (1978).

Lemma 2.1.2. (Foulkes, 1978 [24, Theorem 3.4]) If the Ferrers diagrams obtained from
A by removing 1 node from the right hand side from any row of the diagram so that the

resulting diagram will still be a partition of (n— 1) are those of l1,..., iy, then

-~

q
O'kl Z XIJ] O-kl (p(Gki))a

forall1 <i<sy.
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Example 2.1.3. Letn=7 and A = (3,3,1), then

233, ((6,1)) = x33)((6)) + X32,1)((6)),
X331)((4,2,1)) = x33)((4,2)) + 23.2,1)((4,2)),
X3,31)((3,3,1)) = x33)((3,3)) + 2(3.2,1)((3,3)),

233.1)((2,2,2,1)) = x33)((2,2,2)) + 23.2.1)((2,2,2)).

We shall need the following lemma in Stanley (1999).

Lemma 2.1.4. (Stanley, 1999 [64, (7.18) on p. 299]) Let A = (n™,...,2"2 1™) - n and

) = ’}:1 (/™im;!), then the size of the conjugacy class represented by A is
n!
NSn (2') =
9

Lemma 2.1.5. Let A = (Ay,...,A) b (n—k) be a derangement, i.e., A, > 2. If

v=A15Fn andpu = A, 15 (n-1),

then
_n

Ns,(v) =+

NSn71(nu)’

Proof. The lemma follows from Lemma 2.1.4, by noting that

n! (n—1)!
Ng (V)= — " and = .

O

Theorem 2.1.6. (Recurrence Formula for .% (n,k)) Let 0 < k < nand A \- n. If the Ferrers
diagrams obtained from A by removing 1 node from the right hand side from any row of

the diagram so that the resulting diagram will still be a partition of (n— 1) are those of

M1y .., Mg, then
n & o,
(k) = KfL Zf“”?uj(k— 1).
j=1
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Proof. Suppose k = 1. By equation (2.3),

mm:%iwmwmmwam
i=1

Note that G; consists of exactly one 1-cycle and ¢(G1;) = (v, Va,..., V) Fnwith v, =1,

V,_1 > 2. Therefore ¢(0y;) —lA(p(gli) = (v, V2,...,V,_1) F (n—1) is a derangement. In

fact, 9(G1;) — ly(s,,) is the partition of (n — 1) that represents Cong, ,(01;). By Lemmas

2.1.2 and 2.1.5,
1 4 q ~
(1) = f_;LZNSn((P(O-ll)) Z%u,(‘P(Gh)—l<p(61,))
i=1 j=1
1 51 . - q . v
=7 Y 1Ns, ((9(C11) ~lp,)) | X X, (9(01) — lp5,)
i—=1 j=1

where the last equality follows from equations (2.2) and (2.3). Thus, the theorem holds
fork=1.

Suppose k > 1. (We note here that the proof for k£ > 1 is similar to the proof for k = 1.
The reason we distinguish them is to make the proof easier to comprehend.)

By equation (2.3),

1

mwzﬁiwmmew@m
i=1

Note that Gy; consists of exactly k 1-cycles and ¢(6y;) = (V1,V2,...,V,) Fnwithv; =1
for r —k-+1< j <rand v,_; > 2. Let G; be the extension of 6y, to S,_1, i.e., G (j) =

oxi(j) for 1 < j <n—kand Gy(j) = jforn—k+1< j<n—1. Note that ¢(Gy;) —

lo(sy) = (V1,V2,...,Vp—1) = (n—1) is the partition of (n— 1) that represents Cong, | (Gki).

Furthermore,
Sk
S (n—1,k—1)=JCongs, ,(Gk).
i=1
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Therefore, by Theorem 1.2.17,

-~

Ny, (k— fu ZNSn (0(Gw) —1, 0(6:)) X1 (P(Oki) — lo@,,))-

By Lemmas 2.1.2 and 2.1.5,

1 Sk q -
na (k) = F ZNSn((p(le (Z %/JJ le (p(aki))>
i=1 -1
1 Kn 7
- f_A ; zNSH( ?(Oui) ~ lp(sy) Z Xu;(@(Oi) (Gki))
kf}{ Z (ZNSn 1 le l (Gk,))x,u]((p(all) _Z:P(Gli))>
= L,l Zf'ujrllij(k_ 1).
kf =
Hence, the theorem holds for £ > 1. ]

2.2 ASPfor #(n,1)

In this section, we want to apply Theorem 2.1.6 to determine whether the Alternating
Sign Property for .% (n,1) holds. We first prove some inequalities for the eigenvalues of

Z (n,0). Then, we prove the ASP for .7 (n,1).

2.2.1 Inequalities for the eigenvalues of .7 (n,0)

For convenience, if A = (n), we set

dn =13 (O)

By Theorem 1.4.5,

dy = (—=1)"+nd,_, forn>1, (2.4)
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where dy = 1. Note that d; = 0 and d,, > O for all n # 1. Furthermore, for n > 3,

dp = (—1)" +ndy_1
> ndy_y — 1 (2.5)

=(n—1Ddyp1+dp_1—1> (n—1)dy_,. 2.6)

Lemma 2.2.1. Let 1 < p<n—1. IfA=m—p,1?) and u = (n—p+1,177"1) are
partitions of [n], then

P O)] < 7 [ (0).
Furthermore, equality holds if and only if p=1o0orn—p = 1.

Proof. Note that

n! n! n! n!

H* n(n—p—1)!p! and f HY  n(n—p)!(p—1)!

fk
By Theorem 1.4.2 and equation (2.4),

M (0) = |1+ (=1)" Pndy—p1 ],
Mu ()] = [T+ (=1)""" nd, |

=[1=n+(=1)"" " n(n—p)dyp1|.
Therefore, it is sufficient to show that
PL=(n—p)|1+(=1)"Pndy_p_1| < p[l—n+ (=1)" P a(n — p)dn—p—1| = Pr.
Case 1. Suppose n and p are of the same parity (both are even or both are odd). Then

Pr—P,=pn(n—p)dy_p-1+n—1)—(n—p)(1+nd,_,_1)

=n(n—p)(p—1D)dn—p-1+(p—1)n=0.

Note that P — P = 0 if and only if p = 1.
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Case 2. Suppose n and p are of different parity (one even and one odd). Thend,_, 1 #0,

for n — p # 2. Therefore

Pr—P=p(l —n+n(n—p)dy—p—1)— (n—p)(ndp—p-1—1)
=n(n—p)(p—1)dp—p-1—(p—1)n

=n(p—1)((n—p)dp—p-1—1) 2 0.

Note that Pr — Pp =0ifandonlyif p=1orn—p=1.

O

Lemma 2.2.2. Letm>¢g>landn=m+gq. If A = (m,q) and u = (m+1,qg— 1) are

partitions of [n], then

(m—q+1)[m.(0)] < [nu(0)].

Furthermore, equality holds if and only if g =1 orm =g = 2.

Proof. We shall prove by induction on g. Suppose ¢ = 1. By Corollary 1.4.7, |1, (0)| =

dy, +d,,_1. By equation (2.4),

Nu(0)| = dpiy = (= 1) + (m+ 1)d,y.. Therefore

M (0)] = m i (0)] = (=1)"! +dy — medyy -y

= (=)™ (=" +md,,_, —md,,_; = 0.
Suppose g > 2. Assume that the lemma holds for ¢ — 1. By Theorem 1.4.2,
M.(0) = (=1)"dy—1 — (m+ )Ny 4-1)(0).
By Theorem 1.4.6, sign(n; (0)) = (—1)9 and sign((m —1,g—1)) = (—=1)4~1. Thus,
M (0)] = (1) dyy + (m+ 1) |11 4-1)(0)].
Similarly, by Theorems 1.4.2 and 1.4.6,
Mu(0)] = (=1)"" 7" dyz+ (m+2) N g-2) (0) -

By induction, (m — g+ 1)[Mu—1,4-1)(0)] < [Nmg—2)(0)].
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Therefore

Mu(0)| = (m— g+ 1)[nx(0)]

> (1) (m =g+ Ddg—1 + (=1)"" 7" dy 2+ [N 4-2)(0)].

If g =2, then d,—; = 0 and |1, (0)| — (m — g+ 1)[1n,.(0)] > dp+ (—1)"~! > 0. Further-
more, equality holds if and only if m = g = 2.

Suppose g > 3. By Corollary 1.4.7, |1 4-2)(0)| = di + (¢ — 2)[M(m—1,4-3)(0)| > dm,
where the last inequality follows from |1, ,3)(0)| #0. If m=g mod 2, then |1, (0)| -

(m—q+1)[n(0)] > (m—q)dy—1 + (dg—1 —dy—2) +dn > 0. If m # g mod 2, then

Mu(0)] = (m—gq+ 1)y (0)| > —(m—q+1)dy—1 +dg-2+dpn
de_<m_q+1)dq,1
>(m—=1)dp—1—(m—q+1)dy_1 (equation (2.6))

> (q—2)dg—1>0.

This completes the proof of the lemma. [

Lemma 2.2.3. Ifm>qg>1andk >t > 1, then

(m_ q+k+ 1)|n(q,q’)(0)| < k|n(m+1,q’)(0)|'

Furthermore, equality holds if and only if g =1, m =2 and k = t.

Proof. We shall prove by induction on g. Suppose ¢ = 1. Then by Corollary 1.4.7,
‘T](%qz)(())’ =t and ‘n(m—i-l,q’)(())’ =tdy +dp1. Note that m > 2. If m = 2, then

KN nr1,4)(0)] = (m =g +k+1)[0g 4 (0)] = k(t +2) — (k+2)t

=2(k—1t)>0.

Furthermore, equality holds if and only if k =¢.
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If m = 3, then

kN nr1,¢)(0)] = (m =g+ k+ 1)1 4 (0)] = k(21 +9) = (k+3)1

=kt +3(3k—1t)>0.
Suppose m > 4. By equation (2.6), d,, > (m—1)(m —2)dy_2 > (m—1)(m—2). Since

k(m—1)(m—2)— (m—q+k+1)=km* — (3k+1)m+k
> 4km — (3k+1)m+k

=(k—=1)m+k>0,

KMmr1,4)(0)] = (m = g +k+1)[n(g,4)(0)] = 1((k = )m + k) + d1 > 0.

Suppose g > 2. Assume that

(m' —(g—1)+k+1)Mg—1,g-17)(0)] < kIMw11,(g-1y)(0)],

forallm’ >g—1landk>1t>1.

By Corollary 1.4.7,

Mm+1.4)(0)] = @M, g 1)) (O)] + M (1,41 (0)]

= 4[N m (1)) O+ aMm,(g—1y-1) (O + [Mns1,4-2)(0)]

—q<Z|n >+dm+1

Similarly,

t
|n(q,qt)(0)| =q (Z |n(q—l7(q—1)j)<0)|> +dq

=

By induction, for 1 < j <1,
(m—q+k+1)[Ny_1,4-1)7(O)] < kN g-1)7)(O)].
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By equation (2.6), dy41 > m(m — 1)dy,—1 > m(m— 1)d,. Note that m > 3 and

km(m—1) — (m—q+k+1) =km*> — (k+D)m+q—k—1
>3km— (k+1)m+qg—k—1
=QRk—1)m+q—k—1
>3(2%k—1)+q—k—1

=5k—4+4+4>0.

Hence, (m — g+ k+ 1) 1. (0) < KMyrs1,49(0)].

This completes the proof of the lemma. [

Lemma 2.24. If g > 1 andt > 1, then

|n(q’7q71) (O) | < |n(q’7q) (O) | :

Proof. We shall prove by induction on g. Suppose ¢ = 1. Then by Corollary 1.4.7,

Mg .q)(O) =1 >1—1= [Ny 4-1)(0)].
Suppose g > 2. Assume that the lemma holds for ¢ — 1. By Corollary 1.4.7,

Mg (0] = aIM((g-1y.g—1)(0) | + 114 (0)],

’n(q’,q—l)(o)’ = (q_ 1)|n((q—l)f,q—2)(0)| + ’n(q’)(o)‘

By induction, ’n((q_l)t’q_z)(())’ < ‘T]((q_l)zﬂ_l)(())‘. Hence, ‘T](qrﬂ_l)(())l < ‘T](qzm (0)’

This completes the proof of the lemma. O]

Lemma 2.2.5. Letm >q> 1, k>2andn=m+kq. If A = (m,q* ', q) and u = (m +

k—1

1,47",q — 1) are partitions of [n], then

(m—g+1)[nx(0)] < k1w (0)].

Furthermore, equality holds if and only if g =1 = m.

Proof. We shall prove by induction on g. Suppose ¢ = 1. By Corollary 1.4.7, |1, (0)| =
kdy—1 + dy and |1,(0)| = (k — D)y + dypy1. If m = 1, then |1,,(0)| = k = k|,,(0)| and
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the lemma holds. If m = 2, then 2|0, (0)| =2 < k(k+1) = k|n,(0)| and the lemma holds.

Suppose m > 3. Then by equation (2.6),

kInu(0)| = (m—gq+1)|n; (0)]

= k((k— 1)y +dpi1) —m (kdp 1 +dy)

> k((k—1)dy +mdy,) — m (kdy—1 + dy)
= (K24 (k—1)m — k)dyy — kmdy, |

> dpy— 1( k—1)m—k)(m—1) —km)
(2(

v

dm12 —lm k)k)

A1 (2k(k = 1) + (k—2)m) > 0.

Suppose g > 2. Assume that the lemma holds for ¢ — 1. By Theorem 1.4.2,

12.(0) = (—=1)*(m+ )N m—1,(g—11,4-1)(0) + (—1)m+krl((q71)k*1,q71) (0).

By Theorem 1.4.6, sign(n3(0)) = (= 1), sign(n,_ (4 1)-1,4—1)(0)) = (=14~ and
sign(N(g—1)-1,4-1)(0)) = (—1)*=1(@=1) Therefore,

M4(0)] = (m+K) Mt (g1t 141y (O + (= 1) TN ye1 41y (0)]-
Similarly,

1 (0)] = (m 4K+ DM 11,02 O+ (=11 g1y g2y O)]-
By induction,

(m =g+ DMt (g-1y-1,4-1) O] < kMg (g-1-1 g-2) (0)]-
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Suppose m = g. Then

(m =g+ D)2 (0)] = (m— g+ 1) ((m+K) M1 g1y 1.g-1) O = Moy -1y O)])
< (m+K) (0m =+ DI 11,41 (0)])
< m k1) (kM g1t g2y (O)])
< ((m+ K4 1) 11 g2y O]+ g1yt gy (O)])

= k[nu(0)].

Suppose m > g. Note that

(m =g+ DM (0)] < (m—q-+1) ((m+K) M1 (111 O]+ Mg 1-1,4-1)(O)])

< (m+8) (KM g1t g2 O]) + (m= g+ DI g 1)1 41 (O):

By Lemma 2.2 .4,

K (0)] 2 K 4K+ 1) M 161 g2 (0)] = g1 42 O)])

> e (m+K 4 1) 1131 -2 O] = Mgyt g1y (O)1)

Therefore,

ki (0)] = (m—g+1)[n,.(0)]

> KM (g-1y0-1g-2)(0)] = (m = g +k+ 1) 1)61 4-1) (0)]

If ¢ = 2, then by Lemma 2.2.3, k|1, (0)| — (m — g+ 1)|n,(0)| > 0. Suppose ¢ > 3. By
Corollary 1.4.7,

M m,(g— 161 g—2) (O = (@ = 2) M1 (g—2)61 4-3) (O + [N, (g—1)%-1)(0)]

> ‘n(m,(q—l)"_l)(()) | :
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It then follows from Lemma 2.2.3 that

kN (0) = (m—gq+1)[n,.(0)]

> k[N, (g—1y-1)(0)| = (m =g+ k+ 1)[N 411 4-1)(0)] > 0.
This completes the proof of the lemma. ]
Lemma 2.2.6. Letr >0, m>qg>1,k>1,n= m—i—kq-i—Z;:l o, q > oy and

k

2’ = (maq _17q7a17"'7a7')a

u= (m+17qk_17q_ 17a17"'7ar)7
be partitions of [n]. Then
(m—q+1)[m(0)] < k[nu(0)].

Proof. If r =0, then the lemma follows from Lemma 2.2.2 or 2.2.5, depending on whether

k=1ork > 2. Suppose r > 1. Then g > 2, for g > a1 > 1. We shall prove by induction

on (.
Suppose oy = 1. Then o; = --- = a, = 1. By Corollary 1.4.7,

M (O) = |n(m,qk*1,q,(x],.,.,oc,,l)(o)| + ‘n(mfl,(qfl)kfl,qfl)(o)’
= ’n(m,qk*l,q,(xl,...ﬂr,z) (O)‘ +z‘n(mfl,(qfl)kfl,qfl)(0)|
= |T’(m,qk_l .q) (O) | + r|n(m—l,(q—l)k_l q—1) (0) | :

Similarly,

Nu(0) = Mps1,gt-1.g—1) O+ 7N (1151 g—2) (0)]-

33



By Lemma 2.2.2 or 2.2.5,

(m =g+ 1) N ge1,4) (O] < KMy g 4-1)(0)], and

(m q+1)|nm 1(g—1)k"1gq ( )‘<k’77 — 1)kl g 2)(0)‘

Hence, (m—qg+1)|n;(0)| < k|7”lu(0)‘-

Suppose o > 2. Assume that the lemma holds for o; — 1. By Corollary 1.4.7,

P (O) = |n(m7qk*17q7061,...706,_1)(O)| + a”|n(m—L(q—l)k*l7q—1,a1—17...,ar—1)(O)|

- |n(m7qk*17q) (O)| + Z aj|n(m—l,(q—l)k*17q—l,a1—17...7061-—1)(0)|'

j=1
Similarly,
Mu(0) = [Mpni1.g-1 4 |+Z%In D1 g—2,0-1,...a5-1) (0]
By Lemma 2.2.2 or 2.2.5,

(m —q+ 1)’n(m,qk*1,q) (0)’ < k‘n(m+1,qk*1,q71)(0)|'

By induction, for 1 < j <,

(m_q+1)m(mfl,(qfl)kfl,qfl,oclfl,...,(xjfl (0)] <k’71 —11 g—2,00—1,. ajfl)(o)’-

Hence, (m—q+1) [1;.(0)| < k| (0)). 0
The following lemma is obvious.

Lemma 2.2.7. If u > v, then
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Lemma 2.2.8. Letr >0, k> 1, m>q > 2, n:m+kq+Z;~:1aj, q > ap and

k

A= (m,q _1,q,a1,...,ocr),

‘u“ = (m+ 17qk_17q_ 17“1?"'7(1}“)7

be partitions of [n]. Then

o (m—gq+1)
T koo
Proof. Note that hy (i, j) = hy (i, ) for all i,j except when i =g, j=1or j=k+ 1.
Let ¢; = hy (i,1) and d; = hy (i,k+1) for 1 <i < g—1. Note that h,(i,1) = ¢; + 1 and
hy(i,k+1)=d;—1for1 <i<g—1,and hy(q,1) = hy(q,1). Therefore
f*_HH
i
(M e+ 1) (T (di— 1) (m+1— ) (k= 1)!
(H?;ll Ci) (H?;ll di) (m—q)!k!

(e ) =
q
k

where the last inequality follows from ¢; > d; and Lemma 2.2.7. L

Theorem 2.2.9. Letr >0, k>1,m>g>1, n=m+kq+Y_, 0, g> o and

k

A= (maq 717Q7a17"'7ar)7

u= (m+17qk717q_ 17ala'~~7ar)7

be partitions of [n]. Then

P (O) < 7% 1 (0).
Furthermore, equality holds if and only if A = (1,1"" V) or A = (n—1,1).

Proof. Suppose g = 1. Then r = 0 and the theorem follows from Lemma 2.2.1. Suppose
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q > 2. By Lemmas 2.2.6 and 2.2.8,

f?L
H

ma0) < "= 1, ) < (0]

This completes the proof of the theorem. [

2.2.2 Proof of ASP for .% (n,1)
We now prove the Alternating Sign Property for eigenvalues of .% (n, 1).
Theorem 2.2.10. (ASP for .% (n,1)) Letn >2and A = (Ay,...,A;) F n.

(@) Ny (1) =0ifand only if A = (n—1,1) or A = (2,1"72).

(b) If r=1and A # (2), then (1) > 0.

() Ifr>2and A # (n—1,1) or (2,1"2), then

sign(my (1)) = (DA

(_ 1)(#cells under the first row of 1)—1
where sign(n (1)) is 1if Ny (1) is positive or —1 if Ny (1) is negative.

Proof. Suppose the Ferrers diagrams obtained from A by removing 1 node from the right
hand side from any row of the diagram so that the resulting diagram will still be a partition

of (n— 1) are those of uy, ..., 1. Then by Theorem 2.1.6,
noxs
(1) = Kf% Zlf”’nuj(o)-
J:

Suppose r=1. Thens=1and u; = (A; — 1) = (n—1). Thus, n; (1) = #f”l N, (0) >0
and with equality if and only if u; = (1), i.e., A = (2).

Suppose r > 2. If A; = A,, then the first part of each u; is Aj. By Theorem 1.4.6,
sign(n;(0)) = (Yo Ai) — 1= [A| =41 — 1. Hence,

A N
w0 = (DM Y s, 0]
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Note that 7, (1) =0 if and only if s = 1 and p; = (1), i.e., A = (1, 1). For other partitions
A, M (1) # O and sign(my (1)) = [A] = A4 — 1.

Suppose A; = m+ 1 > A; = g. Note that we may write

l = (m+17qk71;q7a17"'7ar)7
where r >0,k >1,m>¢g>1,and g > ;. Let

Hr = (mﬂkil»q,al,---,ar)»

Ho = (m—f—l?qkilaq_17a17"'7ar)-

By Theorem 1.4.6, sign(ny, (0)) = [A]| — A, and sign(n;(0)) = [A| —A; — 1 for j > 2.

This implies that

m() = (—1)'“1'1$ (f“zmuz(o))l — S (0))+ gf“"\nuj(o)o :

By Theorem 2.2.9, f*2|n,,(0)| — f*1|ny, (0)| > 0. Furthermore, equality holds if and
only if

= (1,1"72) or py = (n—2,1),

ie, A =(2,1"2) or (n—1,1). Note also that when this happens, s = 2. Therefore
N (1) = 0. For other partitions A, f*2|n,,(0)| — f*'[ny, (0)] > 0. Hence, |0, (1)| # 0
and sign(n, (1)) =|A| —A; — 1.

This completes the proof of the theorem. O]
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CHAPTER 3: SMALLEST EIGENVALUE AND BOUNDING A LARGEST
INDEPENDENT SET IN % (n,1)

In this chapter, we will determine the smallest eigenvalue of .% (n, 1) by applying the
Recurrence Formula for .% (n,k) (Theorem 2.1.6). Then we will determine a bound for a
largest independent set in .% (n, 1). The results of this chapter have been published in Ku,

Lau and Wong (2016, [40]).

3.1 Some Eigenvalues of .7 (n,1)

Lemma 3.1.1. (Ellis, 2012 [17, Lemma 2.4]) For n > 9, the only Specht modules s* of

dimension f* < (”51) — 1 are as follows:
(a) s (the trivial representation), dimension 1;
(b) s (the sign representation), dimension 1;
(©) S(”_Ll), dimensionn— 1;
(d) S@1"?) (= 50" @ §=1D)Y), dimension n— 1.

Lemma 3.1.2. For n > 13, the only Specht modules S* of dimension (";1) —1< f)L <

en(n—1)(n—>5) are as follows:
(@) S22 dimension ("g]) —1;
(b) S dimension (";1) —1;
(©) St=2.1%) " dimension (”51);
(d) S(371n73), dimension ("51)

Proof. By Lemma 3.1.1, it is sufficient to prove the following statement:
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(x) Forn > 13, f* < In(n—1)(n—5) if and only if
A {(n),(n—1,1),(1"),(2,1"72),(n~2,2),(2%,1"™), (n = 2,1%),(3,1" ) }..

By direct calculation using Theorem 1.2.33, () can be verified for n = 13, 14. We pro-
ceed by induction. Assume that (x) holds for n — 2, n — 1; we will prove it for n. Let o
be a partition of n such that f* < #n(n—1)(n—5). Consider the restriction [a] | Sy_1,
which has the same dimension. First suppose [a] | S,—; is reducible. If it has one of the
eight irreducible representations (in (x)) as a constituent, then by (1.2), the possibilities

of « are as follows:

Table 3.1: The possibilities of &

constituent | possibilities of &

[n—1] (n), (n=1,1)
1] am), 2,
n—2,1] | (n—1,1),(n—2,2), (n—2,1?)
[2’ 1n73] (2’ 17— 2) (22 17— 4), (3 1n73)
[n—3,2] (n—2,2), (n—3,3), (n—3,2,1)
[22’1n75] (372’ 1n75) (23 ln 6) (22’1n74)
n—3,1%] | (n—2,1%), (n—3,2,1

(

3 (n—3,13)
3

[3,1"4] 4,_1 4, (3,2, 1" %), (3,1"73)

By Lemma 1.2.33, the new irreducible representations above all have dimension > % (n—
1)(n—75):

Table 3.2: o and dimension of

o fe

(n—3,3), (23,1"79) %n(n—l)(n—S)
(n—3,2,1), (3,2,1"7) | 3n(n—2)(n—4)
(n—13,1 ) (4,1"%) th—1)(n—2)(n-3)

Hence, (x) holds, provided that [¢] | S,,—; has one of the eight irreducible representations
in (*) as a constituent.

Suppose that the irreducible constituents of [¢t] | S,—; do not include any of the eight ir-
reducible representations in (x). By induction hypothesis for n — 1, each irreducible con-
stituent has dimension > £(n—1)(n —2)(n—6). Note that 2 (3 (n—1)(n—2)(n—6)) >
1

gn(n—1)(n—>5) forn > 15. Thus, [a] | S, -1 has exactly one irreducible constituent, i.e.,

it is irreducible. Therefore, [a] = [s'] for some 5,7 € N with st = n, i.e., it has a square
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Young diagram. Furthermore, t > 2.
Now consider

s—2]+[s" 2,5

(@] L S,_p=[s""" —1,s—1].

Note that for n > 15, neither of these two irreducible constituents are any of the eight
irreducible representations in (x). By induction hypothesis for n — 2, each has dimension
> 4(n—2)(n—3)(n—17), but

2 (é(n—Z)(n—3)(n—7)) > én(n— 1)(n—75),

for n > 15, contradicting dim ([o] | S,—2) < 6 n(n—1)(n—75).
This completes the proof of the lemma. ]
For convenience, if A = (n), we set

dn =1(0).

By Theorem 1.2.17, d,, = |Dy|.

Lemma 3.1.3. Forn > 5, the followings are the eigenvalues of F (n, 1) for a with dimen-

sion f* < gn(n—1)(n—>5):

Table 3.3: Eigenvalues of .% (n, 1) for o with small dimension

(1)
(l’l) nd,_1
(n—1,1) 0
(1) (=1)"'n(n—-2)
(2,1"72) 0
(n—2,2) — gy 1+ (=1 (1= 2)]
(n—2,1%) =) [dn1+ (1)1 (n—2)]
(22,1 %) (=" '(n—2)
(3,1"79) (—1)"'n(n—4)

Proof. These eigenvalues can be evaluated by using Theorem 1.4.5 (or Theorem 1.4.2)

and Theorem 2.1.6.

£ (O)] = § 11 dar] = 1.
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(b) By Theorem 1.4.5, 1’](,,,271)(0) = Nn-2) (0) - T](n,g,)(()) = —d,—2 —d,_3. Since

d, -1 n—1
dia=(—1)"4+(n—-2)dy 3 <= dy3=— ZZEZ )
we have
(=D)" '+ (n=Ddyy  dp
Nin—2,1)(0) = — — D (Theorem 1.4.5).
Therefore,

(c) By Theorem 1.4.2, nja-1y(0) = (=)' (=1)"(n—1) = (—1)"2(n—2). There-

fore,

[1-(=1)" 2(n—=2)] = (=1)"n(n—2).

\’5
PEN
—
3
0
—
=
~
—

)

L
N>
Yy
(=)
N—
[E——
— 3

(d) By Theorem 1.4.2, 115 1»-3)(0) = (=) (= 1) (n— 1)1y (0) = (—1)"~1. There-

fore,

N2 (1) = f(Z,rllnz) [f(2’1n73)71(2,1n—3)(0) +f(ln71)77(1n—1)(0)]
= [(1=2)- ()" 1 (=) 20 —2)]

(e) By Theorem 1.4.5, 1,_32)(0) = N(,—3)(0) — 2N(,—4,1)(0) = dy—3 — 2 (— ,,_4> =

%dn_} Therefore,
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’ [f(n_372)77(n73,2) (0) +f(n_271)77(n72,1) (0)]

—dp—1+

_dn—l +

2 n—4"
(n—1)(n—2)

[(n—l)(n—“) A st (n-2). <_:n—12)}

—dp—1+ —dn—3:|

(n— 1)i(n2) (dn_z :E_zl)n_lﬂ

(n_l) (n_l) n
) dn—Z_T(_l) :|

(f) By Theorem 1.4.5, 1,_312(0) = =1(,-3,1)(0) + N(,—4)(0) = — (—Z"_’é) +dy_4.

Therefore,

n
f(n72712)
B 2n

n(n—Z,lz) ( 1) =

212 n—
A0 1(0)+ £ a1 (0)]

- (n=1)(n-2)
2n

- (n-1(n-2) |

2n

- (n—=1)(n—-2) !

2n

T D2 |

2n

(=12 |

2n

C(n=1)(n-2) |

2n

(n=1(m-2)|

2n

~(n=1(m-2)|

n

2 (o () o ()]

n— 2dn_2 + wdH}

—dp—1+ D) D)

[ n—2 n—2
—dp—1+ Tdn72 + T (dn*3 + (_1)’1)}

n—2 n—2 n—2
1+ Ty + T+ (—1)"]

n—2 1 1
_n71+Tdn,2+§(dnf2+(—l)” )+ 5

[ n—1 n—3
- nfl‘Jl‘Tdan‘*' D) (_l)n:|

1 (—1)"

_(n—l)(n—2)[

—5dn-1t " (n—z)]

dp1 +(=1)""1(n—2)]
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(g) By Theorem 1.4.2, 152 1-5)(0) = (= 1)" 211 (0) + (= 1)"(n=2)1(1,1) (0) = (—1)" (n—
2)n1,1y(0) = (—=1)""!(n—2). Therefore,

n—3 2 1n—5
N2, n-4y(1) = @ [f(z’l )n(z,1n73)(0)+f(2 ! )77(22,1»175)(0)]

— s |2t O )

= (~1)" (n—2)%

(h) By Theorem 1.4.2, 3 yu-4)(0) = (=1)" "'+ (=1)"(n—=1)1(2)(0) = (= 1)" "+ (= 1)"(n—
1) = (—1)"(n—2). Therefore

n

£G.1m3) )77(3,1%4)(0)}

= (n_j+_2) [(” —2)- (="' W (=1)"(n— 2)]

1n—4

n-3
N3 (1) = [f(z’l )77(2,1'1*3)(0) + 3

[]

Lemma 3.1.4. (Ellis, 2012 [17, Lemma 2.5]) Let H be a graph on N vertices whose

adjacency matrix A has eigenvalues 1y > 1 > ... > Ny, then

N

Y 7 =2e(H),

i=1
where e(H) is the number of edges in H.
Lemma 3.1.5. |7 (n,1)| = nd,_.

Proof. Let

Ai={aeS, : ai)=iand a(j)#j Vje[n]\{i}}.

Note that the restriction of A; on [n]\ {i} is the derangement of [r]\ {i}. Thus, |A;| =d,—.

Since .7’ (n,1) = U_;A; and A;NA; = 0 for i # j, we have |.(n,1)| = nd,_;. O
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Lemma 3.1.6. Let n be positive integer such that n > 6, and A + n. If the dimension of

the Specht module S*, f* > en(n—1)(n—5), then

dyp1(n=2)(n—3)(n—4)(n—6)!
Im(l)|§6\/ : RN .

Proof. By Theorem 1.2.17, Lemmas 3.1.4 and 3.1.5,

Y (A1) =2e(F (1) = . (n.1)] =t (nd ).

Abn

This implies that

_VAllnd, ) _ 6/ ndn 1 \/ 1 (n—2)(n—3)(n—4)(n—6)!

ma(1)] < R < e e

3.2 Smallest Eigenvalue of .7 (n,1)

We now prove some preliminary results to determine the smallest eigenvalue of .% (n, 1).
Lemma 3.2.1. Forn >4, d, > %'

Proof. By Theorem 1.4.5, d, = (—1)"+nd,,—. For n = 4, the lemma holds. Suppose
n > 5. Assume that the lemma holds forn—1 , i.e., d,—1 > (n— ) . Since both sides are

integers, d,,_1 > (1) ) + 1. Therefore,

—1)! ! !
dnz—1+ndnlz—1+n((” . ) +1) z%+(n—1)>%-

Hence, the lemma follows. ]

Lemma 3.2.2. Let n > 14 be a positive integer and A + n. If the dimension f* of the

Specht module S* is at least en(n—1)(n—5), then

Im (D] < [Mp-22)(1)]-
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Proof. By Lemma 3.1.6,

dp—1(n—2)(n—3)(n—4)(n—06)!
|m(1)|§6\/ (=100 =% .

By Lemma 3.1.3, [1(,_22)(1)] = (711T3)[dn,1+(—1)"(n—2)] > (n13) [dy1 — (n—2)].

So, it is sufficient to show that

dyp1(n—=2)(n—3)(n—4)(n—106)! 1
6\/ T -0 RS R
36d,—1(n—2)(n—3)(n—4)(n—6)! 1
1( (n)_( 1)(n)_(5) )( ) < (n_3)2 [dn—l_(n_2)]2

& 36d,_1(n—2)(n—3)*(n—4)(n—6)! < (n—1)(n—75) [d,%,l —2(n—2)d,— —|—(n—2)2}
& 36d,_1(n—2)(n—3)}(n—4)(n—6)!

+2d,_1(n—1)(n—=2)(n—5) < (n—1)(n="5) [dy_; + (n—2)*]. (3.1)
Note that forn > 7,

(n—=2)(n—=37>n—-4)(n—6)! > (n—2)(n—5)(n—3)*(n—6)!
>16(n—2)(n—5)(n—23)

>2(n—1)(n—2)(n-75).
Therefore, equation (3.1) follows provided that

37dy—1(n—2)(n—3)*(n—4)(n—6)! < (n—1)(n—5)[dr_; +(n—2)*].  (3.2)

n

By Lemma 3.2.1,

(= 0)00=3) [+ 0-22) > - 00-5) ey (P52 ) -2

> (n—1)(n—5)dy_i (”_31)!.

So, equation (3.2) follows provided that

(n—1)(n=5)(n—1)! > 111(n—2)(n—3)*(n—4)(n—6)!,
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which is equivalent to

(n—1)*(n—5)> > 111(n—3). (3.3)

Finally, note that equation (3.3) holds for n = 14,15 and for n > 16,
(n—1)2(n=5)2>n-3)>2n-5)?%>11%(n—-3)>> 111(n—3)%

This completes the proof of the lemma. [

Lemma 3.2.3. Let n > 7 be a positive integer. Then

1M ()] < [Nu—22y(1)],

for A € {(n—2,1%),(1"), (22,1 %),(3,1"3) }.

Proof. By Lemma 3.1.3, it is sufficient to show the following two equations hold:

1
1 n
dp1—(n—=2 ———— |dn— —-2)]. 3.5
Note that equation (3.4) is equivalent to
dp—1>nn—-2)(n—3)+(n—-2), (3.6)
and equation (3.6) holds provided that
dy—1>nn—1)(n—2). 3.7
Next, equation (3.5) is equivalent to
2d,_1 >n(n—2)(n—3)+(n—1)(n—2)> (3.8)

Note that equation (3.8) holds provided that equation (3.7) holds. Thus, it is sufficient to

show that equation (3.7) holds.
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By Lemma 3.2.1, forn > 7,

(n—1)!

dy_1 > 3

>2n—1)(n—=2)(n—=3) >n(n—1)(n—2).

This completes the proof of the lemma. [

Theorem 3.2.4. For n > 7, the smallest eigenvalue of % (n,1) is equal to

Nn—2,2)(1) = —ﬁ (dp—1+(=1)"(n—2))

where d, = |D,|. Furthermore, n,/(1) = —ﬁ (dp—1+(=1)"(n—2)) ifand only if L =

(n—2,2).

Proof. It follows from Lemmas 3.1.1, 3.1.2, 3.1.3, 3.2.2 and 3.2.3 that for n > 14,

—m[dn—l +(=1)"(n—2)]

is the smallest eigenvalue of . (n, 1). Furthermore, 1 (1) = —ﬁ [dp—1+(—1)"(n—2)]
if and only if A = (n—2,2). For 7 < n < 13, the assertion can be verified by checking all

the the eigenvalues in Appendix A. This completes the proof of Theorem 3.2.4. L

Corollary 3.2.5. The size of a largest independent set in .7 (n, 1) is at most

nlldy 1+ (=1)"(n - 2)]
(n2=3n+1)d,—1 +(=1)*(n—2)"

Proof. By Lemma 3.1.5, Theorems 3.2.4 and 1.4.1, if I is an independent set in . (n, 1),

then

n!
1— ndy, 1
S 1))

et 12
Cdp (=) (n—2)+n(n—3)d,_
Al (—1)(2-2)

(n2=3n+1)d,_1 +(=1)*(n—2)"

1] <
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CHAPTER 4: SMALLEST EIGENVALUE AND BOUNDING A LARGEST
INDEPENDENT SET IN .# (n,k) FOR k <<n

Ellis (2014, [18]) proved that for sufficiently large n, if <7 is a family of permutations of
{1,2,...,n} with no two permutations agreeing in exactly one point, then |.&7| < (n—2)!,
with equality if and only if <7 is a coset of the stabiliser of two points. Such a family
can also be viewed as an independent set in the Cayley graph of the symmetric group
generated by permutations with exactly one fixed point.

In this chapter, we will determine the smallest eigenvalue of .7 (n, k) for k << n and the
partition where it occurs. Then we will determine a bound for a largest independent set
in % (n,k), thus settling the size of a largest family of permutations such that no two of

its elements agree in exactly k points is O((n —1y)!) for n sufficiently large in terms of k.

4.1 Dimension of Specht Module $*

Lemma 4.1.1. Let n,t be positive integers such that A = (n —t,A3,...,A,) b n with
Y A=t and B = (Aa,...,Ar) Ft. Let u be the number of columns in the Ferrers

diagram of B and a; be the number of boxes in the ith column. Then

s (M :
fr=1 (t!)(n—t—u)!n?1(”_t+ai_i+l)'

|

Proof. By Theorem 1.2.33, fF = W. Now,

hg(a,b
[17(a.b) = [Lrg(a,)
H]hl(L])
and
u
Hhk(l,j):(n—t—u)!H(n—t+ai—i+1)
Jj i=1
Hence, the lemma holds. ]

48



The following lemma is obvious.

Lemma 4.1.2. If a,u,v are positive integers with u > v, then

() (72) =+

Lemma 4.1.3. Let n,t be positive integers such that A = (n —t,A3,...,A,) b n with

Yi,Ai=t and B = (Aa,...,A) b t. Let u be the number of columns in the Ferrers
diagram of B and a; be the number of boxes in the ith column. Let it = (n—t,t) b n. Then

the following hold.

A (n—t+1 (=it )\
fufB T \n—2t+1 Y (n—t+ai—i+1)) T

(a)

(b) Let

u u

(n—t—|—1)H(n—t—i—|—1)—(n—2t+1)H(n—t—|—a,-—i—i—l): icini.
i=0

i=1 i=1

Thenl <u—1<t—1andc; > 1. Furthermore, for 0 <i <1,

lei| < 2(4e) .

(c) There exists a positive integer ny = ny(t) such that for all n > ny,

Proof. (a) By Lemma4.1.1,

r_ b (M !

=1 (t!)(n—t—u)!]_[;-‘_l(n—t—}—a,-—i+1)7
w_ (™ 1

U _(r!)(n—zz)!ng_l(n—z—i+2)'
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Therefore,

V& (n=2t)'TT\ (n—t—i+2)
fufﬁ —t—u)! T (—t+a,~—i+1)

(n—2t)! ,uH( —t—i+2)>( “i(n—t—i+2) )

(n
( (n—t—u)! “i(n—t+a—i+1)
n—t—u+1\ ((n—t+ 1)L, (n—t—i+2)
n—2t+1 i (n—t+a—i+1)
_ u i
t+1 ,1( t—i+1) @.1)
n—2t+1 Ci(n—t+ai—i+1)
[ n—t+1 ”1—11 n—t—u+i+1
C\n—2r+1 o \n—t+ta,i—u+i+l '

Note that n—2¢ + 14 Y—ja, j=n—t+1. So,

n—t+1  n-2+1+a, (“—1n—2t+1+23~ oau—j)

n—2t+1  n-2t+1 Hn—2t+1+ -

Sincen—t—u+1>n—2t+1,by Lemma4.1.2,

n—2t+1+a, n—t—u+1 > 1
n—2t+1 n—t+a,—u+1)

Note thata; >ar > --->a,. Let 1 <i<u—1be fixed. Then Z’ Oau j= Z?;,-l ay—j <

t — u~+i where the last inequality follows from the fact that a,; > 1 fori < j <u—1.

So, n— 2t—|—1—|—2’ Oau j<n—t—u+i+1. By Lemma4.1.2,
n—2t+1+Y} 0% ( n—t—u+i+1 >>1
n=2+1+Y {a, ;) \n—t+ai—u+i+1) =

> 1.

o
Thus, B =

(b) The coefficient of n*! on the left side of the equation is zero and the coefficient of n*

is—t+1+Y" ((—t—i+1)—(=2t+1+Y" (—t+a;—i+1)) =0. This implies that

[ <u—1<t—1.Now,if ¢; <0, then for sufficiently large n,

u u

(n—t+)][(n—t—i+1)—(n—2+1)[J(n—t+a;—i+1) <O0.
i=1 i=1
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f}L

From equation (4.1), we obtain 7P

< 1, contradicting part (a) of this lemma. Hence,
c; > 1 for ¢; is an integer.

Note that | —t+ 1| <tand | —t—i+ 1| <t+i<t+u <2t for 1 <i<u. So, the absolute
value of the coefficient of n/ in (n—t+1)[T%; (n —t — i+ 1) is at most (”J;l) (2t)v+1=i <

2u+1 (2t)u+l — 22u—|—2tu+1'

Similarly, | =2t + 1| <2fand |—t+a;,—i+ 1| <t—ai+i<t+i<t+u<2for1 <i<u
imply that the absolute value of the coefficient of n/ in (n—2¢+ 1) [T, (n—t +a; —i+1)

is at most 22“+2¢4+1 Therefore, |c;| < 2(224+ 214+ 1) = 2(4¢)*! for u < t.

(c) By part (b) of this lemma, |¢;| < 2(4t) ! for0<i<I—1,¢;>landl <t. If1=0,

then Zf:o ceint =c¢; > 1.1f1> 1, then

n
2(4r)* 1t
>nt(1-— ( )
n
1
n
> —>1,
—2
provided that n > 4(4¢)/ 1z, O

Lemma 4.1.4. Let n,t be positive integers with n > 4t, L = (n—1t,A3,...,A;) = n with

Yo Ai=tand B = (Aa,...,A) Ft. Then

n' 2'n!
7 <2Ztlzz) AR (t_') '

Proof. Let u be the number of columns in the Ferrers diagram of 3 and a; be the number

of boxes in the ith column. By Lemma 4.1.1,

A !
=2 () oo e

fﬁ(n(n—l)(n—2)...(n—t—u—|—l)) - 1

t! I’l—t+a,‘—i—|-1)

s (n\ (. 1\(, 2 Cttu—1 1
P () 00) ) ey
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Note that for 1 <i<u,t—a;+i—1<t—14+u—1=t—2+4+u<2t—2. So, forn >

2(2t—2),1— # > % Therefore,

t! n n n
2'n!

< /B (_)
t!

For 1< j<t+u—1,wehave j<t+u—1<2r—1. So,forn>2(2r—1),1-1>1.

Since [T, (1 . %) <1,

A n! n
f > fﬁ (2t+u—1“) Zfﬁ (22t—lt!> 4

[]

Lemma 4.1.5. Let n,t be positive integers withn > (4t +4)%, and A1, A2, . . ., A, be positive
integers with Ay > Ay > -+~ > A, My > /0, Yy Ai=2(t+1). Then A = (A1, A2,..., A) -

(M +2(t+1)) and

n'tl

A
> .
7> iy
Proof. Clearly, A - (A1 +2(t+1)). Let B = (A2,...,A;) F 2(¢ + 1), u be the number of
columns in the Ferrers diagram of 8 and a; be the number of boxes in the ith column. By

Theorem 1.2.33,

- (A +2(t+1))!
(Tlg a.b) (12, (i, 1)

B a+20+D)!
(2e+2)! (T2 12 (i 1))
(M +2(t+1))!

T ) (TR G )

for fB > 1. Note that iy (i,1) = Ay +a; —i+1for 1 <i<uwandhy(i,1) = A —i+ 1 for
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u+1 <i<A. Therefore,

Hh/l M—u) H(ll—ka,—l—i—l)
i=1

— (A1 —u) 1A (Ii (H%)) '

Note that a; — i+ 1< 2r+2 < 4r+4 < v < Ay So, [T (14455 ) < 2¢ and

Hh/l i,1) < (A& —u)!Af2

Therefore,

(A +2(+1)!

21+ 2)1(A — )1 A2

(T2 M +2(e+ 1) —i+1)) (T (A — i+ 1))
(2 +2)122"

(T2 ., ()

(2t +2)12

>

i—1
> A’ZH—Z ;4 1 (1 _ll_l>
(21 +2)12¢

Fromu <2t+2,wehave 2(i— 1) <2u<4t+4 < /n< A for1 <i<u, and 221 < 44,

Therefore,
1
A 2t+2 2u
> ) e
_ (\/E)ZH-Z

1
(2t +2)122

e 1
=7 (2r+2)124+H

4.2 Eigenvalues with small dimension

Lemma 4.2.1. Let A - n. Then f* = f)LT.

Theorem 4.2.2. Let n,k be integers withn >k > 0, and A = (n) - n. Then
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@ M (k) = () dn—s
®) mr(k) = () (=1)"*(n—k—1).
Proof. Let 4 = (n— 1)+ (n—1). By Theorem 1.2.33 and Lemma 4.2.1, f* = f»" =

==

(a) We shall prove by induction on k. When k =0, 1, (0) = d,,. Suppose k > 0. Assume
that it holds for k — 1. By Theorem 2.1.6 and the induction hypothesis,

(b) We shall prove by induction on k. When k =0, 1,7 (0) = (—=1)""!(n— 1) (Theorem
1.4.2). Suppose k > 0. Assume that it holds for k— 1. By Theorem 2.1.6 and the induction

hypothesis,

n

kA"

n
= znuT (k_ 1)

—H (1)) e e e e -y

_ (Z)(—l)”_k_](n—k—l).

Mar (6) = — = (4 nur (k= 1))

O

A function h(n) with n > 1 is said to be a positive function if h(n) > 0 for all n. Given a
function f(n) and a positive function h(n), we write f(n) = O(h(n)) if there is a constant

A that does not depend on n such that

|f(n)| <Ah(n),Vn > 1.
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If A depends on the variable k, we write f(n) = Oy (h(n)).

Lemma 4.2.3. If n,t are integers with n > t, then
n(n—1)...(n—1t)dy,_;_1 = d,+ O (n").
Proof. By applying equation (2.4) repeatedly,

dy = nd,,_1 +0(1)
=n((=1)"""+(n—=1)d,2) +0(1)
= n(n—1)d,_»+0(2n)
=n(n—1) ((—=1)" 2+ (n—2)dy_3) +0(2n)

=n(n—1)(n—2)d,_3+0(3n?)

=n(n—1)(n—=2)...(n—t)d,__1 +O((t +1)n")

=nn—1)(n=2)...(n—t)dy__1 + O, (n").

]

Lemma 4.2.4. Let n,t be positive integers such that A = (n—t, Ay, ..., A) Fn, Y, Ai=t,
and B = (Aa,...,A;) Ft. Let u be the number of columns in the Ferrers diagram of B and

a; be the number of boxes in the ith column. Then

N.(0) = (=1) (ﬁ(n—t+ai—i+ l)) dnt—u+O0;(n"7 1),

t

—
Proof. We shall prove by induction on u. Suppose u =1. Then A = (n—t,1,...,1) and

A—c=(n—t—1). By Theorem 1.4.2,

Thus, the lemma holds.

Suppose u > 1. Assume that the lemma holds for u — 1. Note that A —E;L =B —cp=
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(A2—1,...,A4—1). Therefore M-, (0) = O;(1). By Theorem 1.4.2,

12(0) = (=1)"""m; 5 (0)+ (=) (n—t+a1)m ¢, (0)

= (=) (n—t+a)ny_5 (0)+0:(1). (4.2)

The number of columns in the Ferrers diagram of A — ¢, is u — 1 and a;; is the number

of boxes in the ith column. So, by the induction hypothesis,

i=1

u—1
M-, (0) = (=1)""" (H((” —t—1)+a—i+ 1)) i) (u—1) + O (0" ?)

i=2

=(=1)"* (ﬁ(n—t+ai —i+ 1)) dpt—u+O0i(n"72). (4.3)

Substituting equation (4.3) into equation (4.2), we obtain

m.(0) = (=1) (ﬁ(”‘”‘ai—i“‘ 1)) dni—u+ O (n" 7).

i=1
Hence, the lemma follows. O

Lemma 4.2.5. Let n,t be positive integers such that A = (n —t,A3,...,A,) b n with

Y Ai=t and B = (Ay,...,A;) Ft. Then

—1)
P =S a4 0,),

Proof. Let u be the number of columns in the Ferrers diagram of 8 and a; be the number

of boxes in the ith column. By Lemma 4.2 .4,

1’]1(0) = (—1)t (ﬁ(n—t+ai—i+ 1)) dn,t,u%—O,(n”_l).

r_ (M 1
=1 (rs)(n—z—u)zn;t_l(n—r+ai—i+1)'
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Therefore,

PR nn—1)...(n—t—u+1)\ o
rm= <m( yzl(n—z+a,~—i+1>))_0’( )

and

(=1

t!

P (0) == (a1 (n =t Dy O (),
Note that u < 1. So, O;(n'*~1) = 0,(n*~"). By Lemma 4.2.3,

l’l(n— 1) e (l’l—t—u—l— l)dl’l—t—u = dn+0[(nt+u_1) = dn+0t(n2t_1).

Hence,
(=1)

t!

A0) = fPd,+0,(n* 1.

If=(A1,...,A4) Fm, o= (oy,...,00) F nand A, > oy, then we define
(B,a)=(A1,..., A, Q1,..., Q).

Note that (B, &) is a partition of (m+n).

When 0 < r < k, the binomial coefficient (’;) = % When r > k, we set (l;) = 0. Note

@ i (rL) - (fﬂ) (4.4)

We shall need this equality in the proof of the next theorem.

that for all » > 0,

Theorem 4.2.6. Let n,k,t be integers withk >0,t >0andn > k+2t, A = (n—t,A3,...,A,)
nwithY! ,Ai=t, and B = (Aa,...,Ar) - t. Then

P =) (i () %) )

r=0

Proof Let T ={i : i>2and A; > A1} ={11,... 151}, gj =A%~ for2 < j <gq,
and gy = (n—t—1,42,...,A,). Since Y.\ ,A; =t and |[T|=¢g—1, we have g — 1 <1,

i.e., ¢ <t. Note that for 2 < j <g, B(’f—lfl)* is the partition whose Ferrers diagram is
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obtained by deleting the box at the end of the (r;_; — 1)th row of that of B. Therefore,
U= (n—t,BL-1=D") for2 < j<gq.
We shall prove the theorem by induction on k. Suppose k = 0. Then the theorem follows

from Lemma 4.2.5, by noting that

() em=

Suppose k > 0. Assume that the theorem is true for k — 1. By Theorem 2.1.6,

q
M) = 1o X /4, (k= 1)
j=1

Note that (n — 1) > (k— 1) + 2¢. Therefore, by the induction hypothesis,

ot~ (3 0) (5 () P2 i vt
v [ Gl Pt RS A

Suppose £ = 1. Then Y=} (1) % =1,g=2and tp = (n—1). By Theorem 4.2.2,

N (k—1) = (1-1)dy . Since f*2 =1 = fB (Theorem 1.2.33), we have

q
Y Ay (k—1) = fony, (k—1)
j=2

n—1
B (k—l)d"k

_ fﬁ (ﬂ— 1)dnk+ Ot(nzt—4+k)

A

Suppose r > 1. Thent — 1 > 0. Note also that (n — 1) > (k— 1) +2(¢ — 1). Therefore, by

the induction hypothesis, for 2 < j <g,

- /n— t—1 - 1\t —1-r
[ (k—1) = fﬁ o (k—}) (%(k r 1) ((t_li—r)!> dy_i+ O, (n*~*1F),
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By equation (1.2),
q (ti_—1)—
fﬁ _ fﬁ J

Since g <'t,

if”fnuj(k 1) = fﬁ( 1) (tZl (k_ 1) %) i+ Oy (n*~41H),

=2 =0\ T

Hence, equation (4.6) always hold for ¢ > 0.

Next, note that (see equation (4.4))
t k—1 ( l)t 1—r t 1>t7r
() )@_l_r ()
k t k—l (_l)l—r
*() *,:ZI( : )(z—r)!
(—

=

N X
v
Z
;—n
~—
N
\/
“

Therefore,

frm) =2 <fB (Z: D (g (f) %) s+ 0t<n2f2+k>>

Hence, the theorem follows. ]

Lemma 4.2.7. Let A = A(t,k) be a positive constant depending only on the variables t,k

and p be a positive integer. Then there exists a positive integer ny = n|(t,k, p) such that

foralln > ny,

d,_ > An?.
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Proof. By Lemma 3.2.1,

dyy > :(;) (n—k—1)(n—k—2)...(n—k—p)(n—k—p—1)!
: () (l") (=50 (-57)-(-50)

provided that n > 2(k+ p). Hence, the lemma follows by taking n; = max{3(2)?*!A,2(k+

p)}- 0

Given any real number x, we define sign(x) = 1 if x > 0 and sign(x) = —1 if x < 0.

Corollary 4.2.8. Let n,k,t be integers with k >0, t >0 and n > k+2t, and L = (n —
t,A,... ., M) EnwithY! A=t If

X () o o

r=0

then there exists a positive integer ny = n|(t,k) such that for all n > ny,

sign (1 (k)) = sign (g (i) &;?;;) .

Proof. By Theorem 4.2.6,

Pt =1 () (ZO () i,‘?;f) it O 1),

where 8 = (A,...,A) b2 T X!, () % > 0, then
AR (ECTR) = (EOF) ame

f/lnl(k) Z Aldn—k _Bln21—l+k7

Note that

. . 2t—1+k
for some positive constant B;. By Lemma 4.2.7, for sufficiently large n, d,,_; > Bin A

Hence, f*n; (k) >0, i.e., m (k) > 0.
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Note that

f/lnl (k) <Aidy— +Bln2’_1+k_
By Lemma 4.2.7, for sufficiently large n, we have d,,_; < %IHH since A, < 0. There.

fore fAn;, (k) < Aidy_;+ Bin® 1% <0, 1i.e., n, (k) <0.

This completes the proof of the corollary. ]

Let n,k,t be integers with 0 < k < n and 0 < 2r < n. We define

V(n,t):{/ll—n : A=(n—-tA,...,A) with Z?Li:t}.
i=2

For instance,

V(n,0) ={(n)},
V(I’l, 1) S {(n_ 1, 1)}7
V(I’l,Z) = {(n—2,2),(n—2, 1, 1)},

V(n,3)={(n-3,3),(n—3,2,1),(n—3,1,1,1)}.

r) (t—r)!

V(n,t) (Corollary 4.2.8). So, m; (k) has the same sign for all A € V(n,t). Note that

Let t+ > 0. For sufficiently large n, sign(n, (k)) = sign( f 0 (k) (71)H> for all A €

u = (n—t,t) € V(n,t). In the next theorem, we will show that |1, (k)| is the largest

among all |, (k)|, A € V(n,t).
Theorem 4.2.9. Lett >0and i = (n—t,t) Fn. If

() 7o

r=0

then there exists a positive integer ng = ny(t,k) such that for all n > ny,

M ()] < [ (k)]
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forall A € V(n,t)\{u}.

Proof. Let A = (n—t,Ay,...,A,) Fnwith Y} ,A; =t. Since A # u, r > 3. By Theorem

P =1 () ( ¥ () ) ot 0L,
where B = (%,....A) F£. So,
) 0I5 (o

By part (a) of Lemma 4.1.3, Q < g Therefore,

Pt = 0) (£ () 2 o

ime) < (1) | (ZO ) ot )

for some positive constant B;. By Theorem 4.2.6,

(k) = (Z) (g (’;) %) di+ O (0™ 1),

From |x+y| > |x| — ||, we deduce that

G (k) ‘ ( ZO (k) (<i);>_!r ) !

4.2.6,

and

d, 1+ B (n2171+k),

o — Bz(nZt—H—k)

Y

for some constant B,. So, it is sufficient to show that

(-2 LG 52)

or equivalently (by Lemma 4.1.3),

(ch )( JEO

u
_t_|_ ( _t—l+l )(Bl +Bz>n2[71+k,
1=

dy_x > (Bl +Bz)l’l2t71+k,

nfk
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where u is the number of columns in the Ferrers diagram of f3, and

l ) u u
Zcinlz (n—t—l—l)H(n—t—H—l)—(n—2t+l)H(n—t+a,-—i+l),
i=0 i=1 i=1

where a; is the number of boxes in the ith column in the Ferrers diagram of B,/ <u—1<
t,c;>0and |¢;| <2(4t) ! for0<i <L

Since u < t (for r > 3),

u
(n—t+1) (H (n—t—i+ 1)) (B1 4 By)n® 1% < (By + By)n® Ttk < (By + By)n®' K,
i=1

By part (c) of Lemma 4.1.3, (}) Yi_gent > (7) = 1. So, it is sufficient to show that

(Bl +B2)n3l+k

(Zo ()]

which is true for sufficiently large n (Lemma 4.2.7).

dy_j >

This completes the proof of the theorem. ]
Lemma 4.2.10. Lett >0, u = (n—t,t)Fnand A - n. If

X () e o

r=0

and M, (k) = O,(nP) for some positive integer p, then there exists a positive integer ny =

ny(t,k, p) such that for all n > ny,

M (k)] < (k).

Proof. Note that |1, (k)| < Bin? for some positive constant B;. By Theorem 4.2.6,

(£0)7)

for some positive constant B;. By Lemma 4.1.4,

2'nt
< <t—') .

2t—1+k
dn,k—le’l + )

Pinaol = ()
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Therefore,

t! (n Lok (—1) Bot!
k A d. . — == l‘—1+k‘
’n,u( )’>2[n[ (k) (};)(r) (t—r>' n—k 21‘
It is sufficient to show that
1! (n Lok (—1)" Bot! s )
ZI_nI(k) ‘(;) (r) (r—r)! dn*k>7n B
which is equivalent to
n Lok (=1)" ) B2
d .>B t—1+k |, 21= t+p.
(k)‘(%() (=)l ||k B
Note that for sufficiently large n,
t
an2171+k_i_ Btl_'znﬂrp < 2nq7
where ¢ = max{2t +k,t+ p+ 1}. By Lemma 4.2.7,
n t k (_1),,,,
dy_ >2n
(k) (Zo () (=1 )|
Hence, [0, (k)] < [nu(k)|. O

Let A - n. Recall that A7 is the conjugate partition of A.

Lemma 4.2.11. Lett > 0and A € V(n,t). Then

Mt (0) = Oy(n).

Proof. Ift =0, then A = (n). By part (b) of Theorem 4.2.2, 1;7(0) = (—=1)" '(n—1) =
O;(n).

Suppose t > 0. Let A = (n—1,42,...,A4) Fnwith Y, ;A =tand B = (A2,...,4,) 1.
Note that AT —7yr = (B —¢5)T = (A2 —1,...,4— 1)" and A7 —¢,r = BT. Therefore,
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Mt (0)=0(1)= M2,z (0). By Theorem 1.4.2,

Mar O) < [Myr 5, (O) +nimar_z, ;. (0)] = O (m).

Lemma 4.2.12. Lett > 0 and A € V(n,t). Then

Mar (k) = O ().

Proof. We shall prove by induction on k. The case k = 0 follows from Lemma 4.2.11.
Suppose k > 0. Assume that the lemma true for k — 1.

Let uy,..., Uy be the only possible partitions of (n — 1) that correspond to the Ferrers
diagrams obtained by removing 1 node from the right hand side from any row of the
Ferrers diagram of A. Then /.LIT, ceey [,LqT are the only possible partitions of (n — 1) that
correspond to the Ferrers diagrams obtained by removing 1 node from the right hand side

from any row of the Ferrers diagram of A7. By Theorem 2.1.6,

PRI T
—_ j _
Mt (k) kfﬂj:]f Mur (k—1).

By equation (1.2),
T q T
D Wish
x

ul
So, {TJT < 1. By the induction hypothesis, nur(k— 1) = OI(nk). Note that g < 7. Hence,
J

Mar (k) = Oy (nF). -

Theorem 4.2.13. Lett >0and u = (n—t,t) Fn. If

¥ () %o

then there exists a positive integer no = ny(t,k) such that for all n > ny,

[Mar (k)| < [mu (k)]
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forall A € Utj:o V(n,j).

Proof. If A € Jj—¢V(n,j), then by Lemma 4.2.12, m;7 (k) = 0,(**1). By Lemma
4.2.10, [nyr (k)| < [nu(k)|. O
4.3 Eigenvalues with large dimension

Let 7o be a fixed positive integer, and

U(n,ty) = {ll—n VS C)JV(n,j) or AT e C)JV(n,j)}.

J=0 J=0

Let 1 < j<tpand B+ j. By Theorem 1.2.33,

fﬁ:L<j!<t0!.
[Thg(a,b) = —

By Lemma 4.1.4, for n > 4,

ini

2
A <! (—7) < 1p1200,
]

for all A € V(n, j). Furthermore, f* =1 for A € V(n,0) = {(n)}. So, f* < 1o!2%0n" for

all € UV (n, j), provided n > 4. Since f* = A" (Lemma 4.2.1),
A < o120/, 4.7

forall A € U(n,ty), provided n > 4t.
Lemma 4.3.1. Let n > max{ (4t +4)?, (2t +2)'19!2>0**Y and A - n. Then

nl()+l

A
<
T T

if and only if A € U (n, ).
Proof. If A € U(n,1y), then by equation (4.7),

A o1 nt0+l
<tp12n0 <
f 0 — 24t0+4(2t0+2)!7
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nto+1
24014 (2194-2)!

IfA €V(nto+1)or AT € V(n,to+1), then by Lemmas 4.1.4 and 4.2.1,

provided n > 250+4£)1(21 42)!. Thus, f* < for all A € U(n,1o).

nt0+1 nl‘o-l—l

20t (g1 1)~ 2804 (20 4 2)1

A >

since n > (49 +4)> > 4(to+1). If A € U?:O:gizV(n,j) or AT € U?;O:gizvm,j), then by

Lemmas 4.1.4 and 4.2.1,

n] nt0+2 nlo+ 1

. >
7 2211 T W (219 +2)1 280 A (20 4 2)

fl

since n > (4tg +4)% > 4(2tp+2).
Let A = (A1, A2,...,A) F nand A, AT ¢ U352V (n, j). Since f* = f*' (Lemma 4.2.1),
we may assume that A; > r. Note that rA; > n. This implies that A; > /n. Note that

Y, A > (2t0+2). Let uy = (A1, A2,...,A4—1,4— 1). Then by equation (1.2),
=

If we remove a node from the last row of (| and denote the resulting partition by L, then
f7L > fH1 > fH2. 'We shall continue removing a node from the last row until we obtain

o =(A1,A,...,Av,q) where q—i—Z{,:Z Ai = 2to+2. Note that f* > f*. By Lemma 4.1.5,

nto-H

A o
> >
f - f 241+4 (2t0 2)! ’

nt0+1

provided that n > (4fo +4)2. Hence, f* < 0 (219 72)1

if and only if A € U(n,1). O
Lemma 4.3.2. |7 (n,k)| = (})dy—.

Proof. By Theorem 1.2.17 and part (a) of Theorem 4.2.2, |7 (n,k)| = 1, (k) = (%) dn—r-
O

Lemma 4.3.3. Let n > max{(dtg +4)2, (2o +2)14!120*} and A - n. If A ¢ U(n,ty),

then

2404 (210 4+ 2) 1y /! () dy—i

|TI?L (k)| < nt0+1
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Proof. By Theorem 1.2.17, Lemmas 3.1.4 and 4.3.2,

Y (Fmal) =2(F(mnk) = nll7 (n.6)| =n! (k) a2

Abn
Therefore,
n! (D) du—i 28074219+ 2)1 /0! (}) dyi
|777L (k)| S f}L < nl‘()+1 )
where the last inequality follows from Lemma 4.3.1. U

Theorem 4.3.4. Let 1 = (n—1ty,19) Fn. If

5

r=0

then there exists a positive integer ng = ng(ty, k) such that for all n > ny,

M (k)] < [ (k)];

forall A -nand A ¢ U(n,ty).

Proof. Throughout, we shall make n sufficiently large whenever necessary. By Lemma

4.3.3,

2404 (219 +2) 1y /! () di

(k)] < s
By Theorem 4.2.6,

i k (_1)t0_r d _Bn2t0—1+k
r ([0 — 7‘)! n—k ’

r=0

n
Pna(o) = (7)
for some positive constant B. By Lemma 4.2.7, we have

(150

r=0

d,_p > Bn20 1k
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Thus,

im0l 5 (3) 13 (7)o e o
< <2TOTZO> :

1
2

By Lemma 4.1.4,

Therefore,

to! n
o> 50 (7) -

So, in view of Lemma 4.3.3, it is sufficient to show that
fo! n\ | (kY (—1)0" d 240 (200 +2)! \ n! (3)dn—x
- - ——\d,_; >
2t 1pt \ k ;) r) (to—r)! k

nlo+l ’
or equivalently,

210010215 +2)12(n — k) k!

i (4.8)

Lo () Gomr | fo?n?
For sufficiently large n,

2100+10 (24 4+ 2)12(n — k) k! _ (n—k)!
—1)y0o-r |2 3
o () % fo!n?

Since d,,_; > @ (Lemma 3.2.1), equation (4.8) holds.
This completes the proof of the theorem. ]

4.4 Smallest eigenvalues of .7 (n, k)

Let N be the set of positive integers, kK > 0 be an integer and

P:{teN : rg(ﬁ) ((;1);)_; <0}.

We shall show that P is non-empty.
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Lemma 4.4.1. Ift > 2k+ 1, then

Proof. When k=0, ¥%_o (1) 05 = 1> 0. When k=1, 55 (1) G247 = —141>0.
Assume that k > 2.
Suppose k = 2[ for some positive integer /. Then

() a5 amm L6l ae

r=

1
:ﬁjté ((Ztr)ﬁ (zrt_1>M)'

Sincer >2k+1=4I+1, () > (5, ). Clearly,

Thus,

- 2) > G- 2r+1)

rio (I) (@1—) k) =0

Suppose k = 21+ 1 for some positive integer /. Then

¥ () i(m s L) e
Z

(e (&)ariam)

Since t > 2k+1=41+3, (,,.,) > (5,). Clearly,

a- 2r)' > o= % +1i- Thus,

Lemma 4.4.2. P is non-empty.
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Proof. Note that (¥) =0if r > k. So,

)5 ) (7257
)R () (25)

- (50w

By Lemma 4.4.1, Z () ® )), > 0 provided that r > 2k+ 1. So, if/ > 2k+1and ' +k

is odd, then ¢’ € P. Hence, P is non-empty. ]

Now, we choose the smallest positive integer in P, say to = to(k). We are ready to show

that the smallest eigenvalue of .% (n, k) occurs at (n— fo,1).

Theorem 4.4.3. Let n,k be integers with 0 < k < n. Let ty = to(k) be the smallest positive

r=0

integer such that

Then there exists a positive integer no = ny(ty, k) such that for all n > ng, (n—to,to) is the

only partition associated to the smallest eigenvalue of F (n,k).

Proof. Let u = (n—ty,tp). By Corollary 4.2.8,

sign (nu(k)) = sign (ZO’ (l;) %) =—1.

r=0

By part (a) of Theorem 4.2.2, 1) (k) = (})dn—x > 0. So,

Nu (k) <0 < My (k). (4.9)
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Let

By the choice of 7y, JoUJy ={j € N : 1 < j <f9— 1}. If j € Jy, then by Theorem 4.2.6,

Frma (k) = 0 (1),

forall A € V(n, j). By Lemma 4.1.4,

Therefore,

By Lemma 4.2.10,

M (k)] < (k).

Since 1y (k) is negative, this implies that

(k) < my(k), (4.10)

forall A € V(n,j), j € Jo.

If j € Ji, then by Corollary 4.2.8,

sign (1 () = sign (i () Z?j;) -1,

forall A € V(n, j). Thus,

Nu(k) <0 <My (k), (4.11)
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forall A € V(n,j), j € J;.
By Theorem 4.2.9,

M (k)] < [ ()],

forall A € V(n,10) \ {}. Since sign(ny (k)) = sign (nu(k)) (Corollary 4.2.8),

Nu(k) <my.(k) <O, (4.12)

forall A € V(n,19) \ {u}.

By Theorem 4.2.13, [0, (k)| < [y (k)| forall A € UY_yV (n, j). Thus, by equations (4.9),
(4.10), (4.11) and (4.12), nu(k) < Ny (k) for all A € U(n,19) \ {1}. By Theorem 4.3.4,
Ny (k)| < nu(k)| forall A ¢ U(n,tg). So, Nu(k) <y (k) forall A =nand A # u. Hence,
Nu (k) is the smallest eigenvalue of .7 (n,k) and u is the only partition associated to the
smallest eigenvalue of .7 (n, k).

This completes the proof of the theorem. [
Now we can deduce a bound for the largest independent number in .% (n, k).
Theorem 4.4.4. Let n, k be integers with 0 < k < n. Let t) = to(k) be the smallest positive

()

r=0

integer such that

Then there exists a positive integer ny = no(to,k) such that for all n > ny, the size of a

largest independent set in .7 (n, k) is less than

L6

r=0

2204 (n—1o)!.

Proof. Let 4 = (n—1ty,ty). By Theorem 4.2.6 and Lemma 4.1 4,

% ()&

r=0

dnfk + anl*I‘Fk,

nto " n
mmu("ﬂ < fHnu (k)| < <k)

for some positive constant B. By Lemma 4.2.7,

()% ()

dn—k > Bn21‘7 1 ‘HC.
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Thus,

2%0g)
o <220 ()

n—k-
r=0

By Lemma 4.3.2, | (n,k)| = (})dy—. Since Ny (k) < 0 (Corollary 4.2.8),

O e Y]
N (k) [N (k)|
1
> 14 =
1 ! -1 to—r
: n?(:o Zi’ozo (I;') ((1‘02}’)!
nfo
= to ky (=1)0" ’
22010 | X0 0 () " o

By Theorem 1.4.1 and Theorem 4.4.3 , if [ is an independent set in .7 (n, k), then

n!

n'o

_ to—r
£ (5) ((I(]))fr)!

= 2204 g(ﬁ)% (ﬁ(l—i;l>)(n—t0)!
< 2%0g,! i (k>(_1—)t0_r (n—1)!.

1l <

22011

We now list out the values of #y = 7 (k) for small values of &:

Table 4.1: 1y = to(k) for 0 < k <23

k| to(k) || k | to(k) || k | to(k)
0 1 8 6 16 | 13
1 2 9 7 17 ] 13
2 2 10 8 18| 14
3 3 11 9 19| 15
4 3 12 9 20| 16
5 4 13| 10 21 | 17
6 5 14 | 11 22 1 17
7 6 15 12 23| 18

Notice that in the case k = 1, we have ty) = 2. Hence, Theorem 4.4.4 implies that the size
of an independent set in .% (n, 1) is O;((n—2)!). In fact, as proved by Ellis (2014, [18]),

the optimal upper bound is (n — 2)!. For general k, we have the following bounds on 7.
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Theorem 4.4.5.

k—1
—— <t <k+1.
2
Proof. By Lemma 4.4.1, if k > 2ty + 1, then
fo K\ (=1)o—7
£
—o \ (l‘o—l’).

So, tg > &1,
Let

I={cec. :0(i)=i, VI1<i<k+1}.

Note that / is an independent set in .% (n,k). By Lemma 4.4.4,

Hence, to < k—+1. ]

(n—k—1)! = |I] < 2%z (n—to)!.

It was conjectured by Ellis (2014, [18]) that if <7 is an independent set in .% (n,k), then
|o7| < (n—k—1)! for sufficiently large n. Our result implies that /| < O ((n —%51)1)

for sufficiently large n.
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CHAPTER 5: CERTAIN REGULAR SUBGRAPHS OF .7 (n,0)

LetV ={vy,...,v,} be the vertex set of a graph I". Let A C V. The characteristic function

of A, 14 : V — {0, 1} is defined as

| ifbeA,
14(b) =

0 otherwise.

The characteristic vector of A is the |V|-tuple, 14 = (14(v1),14a(v2),...,1a(vn)).
Let 1 <i<n. For each ¢ € S,, let fi(c) denote the number of i-cycles appearing in
the cyclic decomposition of . Let C; be the subset of S,,, in which, each element in C;

contains at least an i-cycles in its cyclic decomposition, i.e.,

={oe€S, : fi(lo)>0}.

Note that C; is a union of conjugacy classes of S,. Let

N
Clin=tir.i) = U Cij

j=1

Note that S, \ C(; ;) is also a union of conjugacy classes of S, and T'(Sy, 84 \C(;, is.....i,))

ll ;.

isalS,\C i;)|-regular Cayley graph.

l] 12

In this chapter, we study the Cayley graph Fﬁlk) =T(S0,8:\C(12,...1))> Where 1 <k <n.
Note that

Si\C12,...) € Dn=Sx\C(y)

Therefore Fg,k) is a subgraph of the derangement graph Fg,]) =TI, In fact,

FSzn_l) sub F( ) sub sub F( ) sub rl(’l )7
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where H <q,;, K means H is a subgraph of K.

We determine the smallest eigenvalue of F,(lk) and then we show that the set of all the
largest independent sets in F,(f) is equal to the set of all the largest independent sets in the
derangement graph, .% (n,0). The results of this chapter have been published in Ku, Lau
and Wong (2016, [39]).

Since S, \ C12,....k) 1s closed under conjugation, the eigenvalue n)(ci) of the Cayley graph

F,gk) can be denoted by n /%k). Throughout the chapter, we shall use this notation.

5.1 Some Eigenvalues of Fflk)

We shall use the following notations:
(a) e,gk) is the number of even permutations in S, \ Ca2,.k)

(b) ng) is the number of odd permutations in S, \ C1 5, x)

© s = B _ ,H).

n =€y —O0np’;
) dy? =18\ Cira. il

(e) € is the sign function for S,, i.e., €(0) = 1 if & is an even permutation and £(c) =

—1if o is an odd permutation.

Lemma 5.1.1. Let k,n be positive integers and k < n. Then

(@) n =d;

(b) np) =i

k
(©) n((n)fl,l) = a1
(k)
(d) n((;)ln—l) - _,fn_l-

Proof. We shall use Theorem 1.2.17 to calculate these eigenvalues.

k
(a) Tl((n)) = ﬁZaeSn\C@z

..........

(b) Tl((fzz) = jﬁxoesn\cm_z o Xm(0) = %Zcesn\cu_z nE(0) = er) — oy =51,

..........
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k
(C) n(n)_l 1 f n— 1 ,1) ZGESH\C(] 2,...k) X(n—ll) (G) n—1 ZGESn\C 12,...k) (#{ﬁxed pOIHtS Of G} -
e

J— n

l)zn 12065n\C12 ..... ) 1—_m~
0

2]n 1) ZGGS \C12 k) %(271”_])(6) n— IZGES \C12 k) E(G)Z_HTI. D

(k)
(d) 77(2’1,1—1) f( ,,,,,,,,,,

Lemma 5.1.2. Let k,n be positive integers, k < n, n > 4, and A - n. If the dimension of

the Specht module S*, f* > (”El) —1= ”(”2_3), then

W[ o (1= 1)(n—2)(n—4)!
‘rll ‘SZ\/ win3) .

Proof. By Lemma 3.1.4,

This implies that

O]
52 4 and s
Note that d](-k) =0 for j=1,...,k. For convenience, we set d(()k) = 1.
Lemma 5.2.1. Let k,n be positive integers.
@ Ifn>k> |2, thend = (n—1)1.
(b) Ifn>k > 2, then
a )'nt e,
=X G
i) |
(k) _ (k=1) n: (k)
dp’ =dy — Z{ mdﬂ_ki. (5.2)

1=
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(c) If n>k+1, then

n—1)!
df :(n—l)d,(ll—l—ﬁdflk_)k_l. (5.3)

Proof. (a) Note that ¢ € S, \ Ca2,..k if and only if o is an n-cycles. Hence, d,(,k) =

(n—1)\

(b) Let T be the set of all the k-cycles in §,,. Let

N(a) ={0 €S, \C(1 2, k1) : O contains ¢ in its cycle decomposition }.

Note that
Sa\Ci12,..0 = (Sa\C1 2, k1)) \ < U N(“)) :
acT
Therefore
k k—1
at =al" —| | N(a))|. (5.4)
ocT
Now, if «,...,o; € T are disjoint cycles, then
k—1
IN(ag)N--- N (ap)| = d* 0.

Furthermore, the number of subsets of 7 with exactly i disjoint cycles is equal to m

Hence, equation (5.1) follows from equation (5.4) and the Principal of Inclusion and
Exclusion.
Recall that for each 6 € S, fi(0) denotes the number of k-cycles appearing in the cyclic

decomposition of . Let

M; ={0 €S, \Cup, x-1) : filo)=1i}.
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Note that

| %]
Su\C12,d) = (Sn\Ciz,p—1) \ | UM |-
i—1

Furthermore, M; \My = @ for j # j and |M;| = mdflk_)kl Hence, equation (5.2)

follows from the following equation

n

2]
di =af V=Y .
i=1

(c) Given a permutation ¢ € S, \ Ca2,...k)> the element n may appear in a 7-cycles with
t>k+2ort=k+1.1ft > k+2, then 6 = (n r)p for some 2-cycles (nr) and p € S,

with fi(p) =0fori=1,2,... k. Ift =k+ 1, then o = Bp, where
ﬁ = (l’l]] j2 jk)7
is a (k+ 1)-cycle and p is a permutation of [n— 1]\ {1, j2,...,jk} With fi(p) =0 for
i =1,2,...,k. Note that the number of such (n r) is n — 1 and the number of such f is
(n1)! Hence, equation (5.3) follows. O

(n—k=1)!

Theorem 5.2.2. Let k,n be positive integers and k < n.

(a) Ifn > 2k, then
d < d% V< <al.

(b) Ifn>k—+1, then

Proof. (a) It follows from equation (5.2).

(b) We shall prove the inequality by induction on n. Suppose k+ 1 <n < 2k+ 1. Then

by part (a) of Lemma 5.2.1, d,gk) = (n—1)!. On the other hand,

3k(n—1)!
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Thus, d\¥) > 2 for k+1 < n < 2k+1.
Suppose n > 2k + 2. Assume that the inequality holds for all ny with k+1 < ng < n.
By equation (5.3),

0) _ g0 (n=1D!
d (n l)d’l—'——(n—k—l)!d”_k_l'

By induction, dlg )1 (n ;kl)! and d,(lli)k_l > ("7;{;1)!. Therefore

g > ;kl)' (n—1)+1)= ;’IL

This completes the proof of part (b). O]
Note that esk) =0= 0§k), for j =1,...,k. For convenience, we set e(ok) =1and oék) =0.
Thus, s(()k) = e(()k) — oék) =1.
Lemma 5.2.3. Let k,n be positive integers and k < n.

@ st = (=11 (n—1).

(b) Ifn>k> |4], then s = (=) (m—1)

(c) If n>k > 2, then

® Z,L (J e "ILZ),k, sflk ki) if k is even,

i (k—1 . .
ZL J l‘ (n n]‘(l ki (_1) s,(,l_kl') l‘fk is odd.

Proof. (a) See equation 2.8 in Ellis (2012, [17]).

(b) Note that o € S, \C(l,z,...,k) if and only if o is an n-cycle. So, sﬁ,") =—(n—1)lifnis

(k)

evenand s, = (n—1)!if nis odd.

(c) We shall use the Principal of Inclusion and Exclusion.

Suppose k is even. Note that a k-cycles has negative sign. When we remove a k-cycles
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from a permutation, the sign of the permutation changes. Therefore

k) _ (k1) (n k1) | (7 (n=k\[(k=1)T* &)
ey’ =ep, —(k)(k—l)!on_k +(k>( r )2—!en_2k

GO

Similarly,

(k) _ (k1) _ (7 (k-1) , (M) (n=k\ (k=D 1)
oy’ = oy —(k)(k—l)!en_ +(k>( r )2—!0n_2k

O e

Hence,

Suppose k is odd. Note that a k-cycles has positive sign. When we remove a k-cycles

from a permutation, the sign of the permutation does not change. Therefore

k) _ (k1) (n k1) | (7 (n=k\[(k=1)T* G-
en’ =e, —(k)(k—l)!enk +<k)( r )2—!en2k

O

Similarly,
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Hence,

Lemma 5.2.4. Let k,n be positive integers and k < n.
(a) sign (sg,k)> = (—1)"1,

(b) If k > 2, then

(k—1)
Sy ki

' .
Z, 0 T IF ifn—ki>0,

(k=1)

Zl 0 il(n— kl % Sn—ki

<(lfnl!)!kl - %) ifn—ki=0,
where | = L%J

Proof. (a) We shall prove by induction on k. The case k = 1 follows from part (a) of
Lemma 5.2.3.

Suppose k > 2. Assume that it holds for k — 1.

Case 1. Suppose £ is even. Then by part (c) of Lemma 5.2.3,

Y Sk n! (k=1)
; (n— kz T TP

Note that 0 < n— kI < k. If n— ki # 0, then s ) = 0 and

[—1
(k—1)

l'n kl'k‘"k"
i=0

Now, for0<i<[-—1,

odd ifnisodd,
n—ki=

even ifniseven.
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o ki _ k—1 _
This implies that (—1)"~%~! = (—=1)"~1. So, by induction, sign (s( kl)> = (=11,
Thus sign <s,(1">> = (=11,

Suppose n —kl =0. Then !/ > 2, nis even, n — ki is even for 0 <i <[/ —2, and sflk__k}) =

s(()kfl) = 1. By part (b) of Lemma 5.2.3, S,(Ckfl) = —(k—1)!. Therefore

Y Sk n! st n!
Z (n— kz ok T e T

Z ey _ (ot
“il(n— kz il(n— ki) ki K (I—1)% 1K)

AL~ 0. By induction, mgn( (k k?) =—1for0 <i<[—-2. Thus,

||
i
NO

Notethat( )‘kl l,k

sign (sg,k)> =—1.

This completes the proof of Case 1.

Case 2. Suppose k is odd. Then by part (c) of Lemma 5.2.3,
li‘i

|
-1 i (k_l.) n -1 l (k_l)_
=il(n— kl ‘kl Vsuwa )‘kl( S $n-

n=ki " N (n—kl)!

If n—kI > 0, then s\~ ) =0 and

Now, for0<i<[-—1,

even if i and n are odd, or i and # are even,

odd otherwise.

This implies that (—1)"~*%=1 = (—1)#"~1 S0, by induction, sign <s£lk__ki)> = (—1)i*n1
for 0 <i <I—1. Thus sign (s,(lk)) = (—1)”_1.
Suppose n —kl = 0. Then [ > 2, (—1)! = (—~1)" and s( k}) = s(()k D1 By part (b) of
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Lemma 5.2.3, s,(ck_l) = (k—1)!. Therefore

=2 ! ! !
(k) _ nl i) el n! (k-1) _ n!
*n _i:Oi!(n—ki)!k"( Dispgi +(=1) ((l—l)!k!kl—lsk l!kl)
=2 ! ! !
n! (k1) ne1 n! n!
S W LN | BEELE—————
i:Oi!(n—ki)!k’( Vsnosi +(=1) ((z—l)zkl z!k1>
Note that U+W — 25 >0 and (—1)"K=1 = (=1)""! for k is odd. By induction,

sign (sﬁlk__k})) = (—1)"*""! for 0 <i <1—2. Thus sign (s(k)> = (=11,

This completes the proof of Case 2.

(b) This follows from part (c) of Lemma 5.2.3 and part (a) of this lemma. O

Leti, j € [n] with i # j and 0 € S,,. We define
dist; j(0) = m,
if o = off with
o= (ix]1 X2 X1 J X1 =" Xp—1)

is a r-cycles and B is a permutation of [n] \ {i, j,x1,. .., Xm—1,Xm+1,---,Xr—1}. If i, j are
not in the same cycle in the cyclic decomposition of &, then dist; j(0) = . Note that
dist; j(o) > 1. In general, dist; (o) # dist;;(0). For instance, dist;»((1,2,3)) =1,

whereas dist; 1((1,2,3)) = 2.
Theorem 5.2.5. Let k,n be positive integers and k < n.

(a) If n > 2k and k > 2, then

sl < |57 << |5

® [P <m—1)tfor j=1,2,....n—1.

(c) For sufficiently large n,

s,gk) < 8k2(n —3)!lnn.
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Proof. (a) Since n > 2k, [ > 2. So, the inequality follows from part (b) of Lemma 5.2.4.

(b) By part (b) of Lemma 5.2.3, we may assume that 1 < j < L%J By part (a) of this

s,(,m)‘ — (-1,

lemma, sﬁ,’ ) <

(c) By part (a) of Lemma 5.2.3, we may assume that k > 2. Let

Ti={0 €Sy \Clp,..p: M1)o €S \Cip,. 1}

Note that 6 # (n 1)o and ¢ € T if and only if (n 1)o € T1. So, the number of elements

in T} is even. Furthermore, o is even if and only if (n 1)o is odd. This implies that

where T, = (S, \C(l,z,..,,k)) \Ti.

Note that each element in 7 is of the form o8 where

(1) o= (nx;xy -+ x—1)isar-cycles (r > k+1) with 1 € {xy,x,...,x;} or

le {xr—lrxr—Za <o 7xr7k};
(ii) B is a permutation of [n] \ {n,x;,x,...,x,—1} and fi(B) =0for 1 <i<k.

Let

Tz={c €T : dist, (0) < k and dist, »(G) = oo};
Ty={oc €T, : dist,(0) < kanddist, 2(0) # o};
Ts={c el : dist,1(0) >k, dist; ,(0) <k and dist; 5(0) = o};

To={0c €T, : dist, 1(0) >k, dist; ,(0) < k and dist; »(0) # oo}.

Note that 7, = Ul-623 T;and ;NT; = @ for 3 <i < j < 6. Therefore,

6
Y e(o)=) ) e(o).

oceclh i=30¢cT;
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Now, for each ¢ € T3, we have (n 2)o € Ty. This implies that

) e(o)+ ) &(o)=} £(o),

ocTz ocTy ocTy

where
T ={c €T, : dist, (o) <kand (dist, 2(0) <k ordisty ,(0) <k)}.

Note that each element in 77 is of the form o3 where

(i) = (nx;xy -+ x,—1)isar-cycles (r > k+1) with 1 € {x1,x2,...,x} and

either 2 € {x1,x2,..., Xk} Or 2 € {X,_1,X-2, .., Xr_k};
(ii) B is a permutation of [n]\ {n,x1,x2,...,x,—1} and f;(B) =0for 1 <i<k.

For such a fixed ap, when 3 runs through all the possible permutations,
k 1 (k
Y e(00B) = e(a0) L e(B) = e(en)s,”, = (—1) s,
of B

Let M, be the number of such r-cycles. Then

n

Y o)=Y (=1 "M,

oET r=k+1

Note that

(n—3)!
(n—r)!

IM,| < 2k2(”_§> (r—3)! =2k>
e

If k>n—rand n—r+#0, then s,(lk_), = 0. If kK <n—r, then by part (b) of this lemma,
(k) (k)

n—r n—r

s < (n—r—1)!. In either case, |s <(n—r—1)ifn—r+#0. lf n—r=0, then
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s = 1. Note that 1+ ¥"~

— k 1T ) < 2Inn for sufficiently large n. Therefore,

6)§Zn:

r=k+1

n—1
:< Y M, sff_h>+|Mn|
r=k+1
=) (n—3)!
< ( ) (2k2(n_r)!) ((n—r—l)!)) +2k*(n—3)!

2

occly

r=k+1

:2k2(n—3)!<1+ f ( ir)>

r=k+1 n

< 4k*(n—3)!Inn.

Next, for each o € Ts, we have (1 2)o € Ts. This implies that

Y e(o)+ ) e(o)=) (o)

o€Ts ocTy ocTg

where

={o e : dist,(0) >k, dist ,(0) <k and

(distljz(G) <kor distzjl(G) <k)}.

Note that each element in 7y is of the form o3 where

(1) o= (1x;x3 -+ xp—1) isar-cycles (r > k+1) with n € {x1,x2,...,x},

n&{x,—1,%—-2,...,%—_xy and either 2 € {xy,xp,...,x, } or2 € {x,_1,x_2,...

(ii) B is a permutation of [n]\ {n,x,x2,...,x—1} and f;(f) =0for 1 <i<k.

By a similar argument as above, we may conclude that

< 4k*(n—3)!1nn.

Y e(o)

ocTg

Hence,

8 8
=Y ) (o) Z )| < 8k*(n—3)!nn.

i=70€T;

A

,Xr,k};
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5.3 Smallest Eigenvalue of Fg,k)

Lemma 5.3.1. Let k,n be positive integers, k < n, and A + n. If the dimension of the

Specht module SA, f7L > ("gl) —1= @ then for sufficiently large n,
(n—1) W)‘ <ab.

Proof. By Lemma 5.1.2,

(k) d (n—1)(n—2)(n—4)!
‘rll ‘SZ\/ n(n—3) .

So, it is sufficient to show that

<dl (5.5)

By part (b) of Theorem 5.2.2, d\\’ > 4L Therefore equation (5.5) holds if

4n—13m-2)(n—4)! n!

< JR—
n(n—3) 3k’
which is equivalent to
12k(n—1)*
& <1.
n*(n—3)>?
Note that
12k(n—1)> (12 (kY (n—1 2< 12\ /n—1 2<1
n2(n—3)2  \ n n)\n—3 n n—3 ’
for sufficiently large n. Hence, the lemma holds. L

Lemma 5.3.2. Let k,n be positive integers and k < n® with 0 < § < % Then for suffi-

ciently large n,

e

(n—1)[sP| < a®.
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Proof. By part (c) of Theorem 5.2.5,

sV < 8k2(n—3)!nn.

By part (b) of Theorem 5.2.2, djt > . Since k < n®, i) > 25 and |5 | < 83 (n —
3)!Inn. Therefore, it is sufficient to show that
!
810 (n—1)(n—3)!nn < ——,
3nd
which is equivalent to
24n3% Inn <
n(n—2)
Now, 2 —38 > 0. So, for sufficiently large n,
24n3% Inn Inn n
- =724 < 1.
oy -2 () (523)
Hence, the lemma holds. O

Theorem 5.3.3. Let k,n be positive integers and k < n® with 0 < § < % Then for suffi-

ciently large n, the smallest eigenvalue of ng) is equal to
k
w
N1, =~

(k)
where d,sk) = [Sx\Cr12,..k)|- Furthermore, n/(lk) =— dfl ifand only if A = (n—1,1).

n

Proof. 1t follows from Lemmas 5.1.1, 5.1.2, 5.3.1 and 5.3.2 that for sufficiently large

dy (k) k) _ _a

n, — 5 is the smallest eigenvalue of I';’. Furthermore, 1, = — 5 if and only if
A=(n-1,1).
This completes the proof of Theorem 5.3.3. []
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5.4 Largest Independent set of F,S")

Note that for each A - n, the Specht module S is an irreducible CS,-module. Let U, be

the sum of all copies of §* in CS,,. Note that %, is the nik)-eigenspace of the adjacency

matrix of FS,"), 1.e.,

Uy, = {X eC" : Bx= n/(lk)x},

where B is the adjacency matrix of l“,(f) (see Diaconis and Shahshahani, 1981 [15] and
Ellis, 2012 [17, Theorem 2.3]). In the proof of Theorem 1.4.9, Ellis (2012, [17]) used the

following two lemmas which will be needed in this chapter.

Lemma 5.4.1. (Ellis, 2012 [17, Lemma 2.7])
02/(}1) EBOZ/(IL*I,I) = Span{ls,-,j : l?] S [l’l]}

Lemma 5.4.2. (Ellis, Friedgut and Pilpel, 2011 [19, Theorem 8]) Let A C S,. If 14 €

Span{ls,; : i,j € [n]}, then A is a disjoint union of some of the S; j's.

It follows from Lemmas 5.1.1, 5.1.2, 5.3.1 and 5.3.2 that for sufficiently large n, ?/(n)
M
n—1

and %, 1) are the d,(lk)—eigenspace and —
(k)

matrix of I5,”.

-eigenspace, respectively, of the adjacency

Claim. Every element in &Y is of size (n—1).

Proof. Let B € 6,(1k). By Theorems 1.4.1 and 5.3.3,

Note that §1, = {m € S, : ®(1) =2} is an independent set in " and |Si2] = (m—1).

This establishes the claim. L]
Recall that the set

S,'J = {7'5 S 717(1) :j},
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(k)

for i, j € [n] is the coset of stabiliser of a point. Define G, to be the set consisting of all
the largest independent sets in F,(Zk). Cameron and Ku (2003, [11]), Godsil and Meagher
(2009, [27]), and Larose and Malvenuto (2004, [53]) showed that &) = {S; ; i, j € [n]}.

The following theorem is a generalization of this result.

Theorem 5.4.3. Let k,n be positive integers and k < n® with 0 < § < % Then for suffi-
ciently large n,

k .o
S¥ = {Sij:i,j € n]}.
In particular, the largest independent set in F,gk) is of size (n—1)\.

Proof. In fact, {S;;:i,j € [n]} C &P, Let S € & Then |S| = (n—1)!. By Theorem
1.4.1,

Ls € %) © Yn-1,1)-
It then follows from Lemmas 5.4.1 and 5.4.2 that S € {S; j : i, j € [n]}. Hence,
k

sl {Sij:i,j € n]}.

This completes the proof of Theorem 5.4.3. [
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