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ABSTRACT

Let Sn be the symmetric group on [n] = {1, . . . ,n}. The k-point fixing graph, F (n,k) is
defined to be the graph with vertex set Sn and two vertices g and h of F (n,k) are joined
if and only if gh−1 fixes exactly k points. F (n,k) is a Cayley graph on Sn generated by
S (n,k), the union of the conjugacy classes that fixes exactly k points. A subset I of Sn is
said to be an independent set in F (n,k) if and only if any two vertices in I are not adjacent
to each other. The problem of finding such a set is called the maximum independent set
problem and it is an NP-hard optimization problem. We are going to determine the size
of the largest independent set in F (n,k) for 0 < k << n by using the Delsarte-Hoffman
Bound. In order to do so, eigenvalues of the adjacency matrix of F (n,k) are required in
finding a bound for the size of a largest independent set in F (n,k).
To determine the eigenvalues of the adjacency matrix of F (n,k), we use the representa-
tion theory of symmetric groups. In particular, we use the character theory of symmetric
groups. We apply the branching rule and results from Foulkes to derive a recurrence
formula for eigenvalues of F (n,k). Then we apply our results and some of the results
regarding the eigenvalues and size of largest independent set of F (n,0) to determine
the sign of the eigenvalues of F (n,1). Then, we determine the smallest eigenvalue of
F (n,1) by techniques in extremal combinatorics. We use the largest and smallest eigen-
values of F (n,1) and apply the Delsarte-Hoffman Bound to determine a bound for the
size of a largest independent set in F (n,1). When 0 < k << n, we determine the small-
est eigenvalues of F (n,k) and the Specht module where it occurs. Similarly, we use the
largest and smallest eigenvalues of F (n,k) and apply the Delsarte-Hoffman Bound to
determine a bound for the size of a largest independent set in F (n,k).
We also consider F (n,0), the derangement graph with generating set Dn, the derange-
ment set. For any fixed positive integer k ≤ n, the Cayley graph on Sn generated by the
subset of Dn consisting of permutations without any i-cycles for all 1≤ i≤ k is a regular
subgraph of the derangement graph. We determine the smallest eigenvalue of these sub-
graphs and show that the set of all largest independent sets in these subgraphs is equal to
the set of all the largest independent sets in F (n,0) provided that k << n.
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ABSTRAK

Biar Sn sebagai kumpulan simetrik pada [n] = {1, ...,n}. Graf menetapkan k-titik, F (n,k)

ditakrifkan sebagai graf dengan Sn sebagai set bucu dan dua bucu, g dan h disambungkan
jika dan hanya jika gh−1 menetapkan setepat-tepatnya k-titik. F (n,k) adalah satu graf
Cayley pada Sn yang dijanakan oleh S (n,k), di mana Sn adalah kesatuan kelas-kelas kon-
jugasi yang menetapkan setepat-tepatnya k-titik. Suatu subset I bagi Sn dikatakan sebagai
satu set berdikari dalam F (n,k) jika dan hanya jika mana-mana dua bucu dalam I tidak
bersebelahan antara satu sama lain. Masalah mencari set seperti ini dipanggil masalah set
berdikari maksimum dan merupakan satu masalah pengoptimuman NP-susah. Kita akan
menentukan saiz set berdikari yang paling besar dalam F (n,k) untuk 0 < k << n dengan
menggunakan Batasan Delsarte-Hoffman. Untuk mencapai tujuan ini, nilai eigen bagi
matriks bersebelahan untuk F (n,k) diperlukan untuk menentukan batasan untuk saiz set
berdikari yang paling besar dalam F (n,k).
Untuk menentukan nilai eigen bagi matriks bersebelahan untuk F (n,k), kita menggu-
nakan teori perwakilan kumpulan simetri. Khususmya, kita menggunakan teori watak
kumpulan simetri. Kita menggunakan Peraturan Bercabang dan keputusan dari Foulkes
untuk memperoloehi formula pengulangan untuk nilai eigen F (n,k). Seterusnya kita
menggunakan keputasan kita serta beberapa keputusan mengenai nilai eigen dan saiz set
berdikari terbesar dalam F (n,0) untuk menentukan tanda nilai eigen bagi F (n,1). Se-
terusnya, kita menentukan nilai eigen yang terkecil dalam F (n,1) melalui teknik-teknik
kombinatorik ekstrimal. Kita menggunakan nilai eigen yang terbesar dan terkecil dalam
F (n,1) dan menggunakan Batasan Delsarte-Hoffman untuk menentukan batasan untuk
saiz set berdikari yang terbesar dalam F (n,1). Apabila 0 < k << n, kita menentukan
nilai eigen terkecil dalam F (n,k) dan modul Specht di mana ianya berlaku. Selain itu,
kita menggunakan nilai eigen yang terbesar dan terkecil dalam F (n,k) dan menggunak-
an Batasan Delsarte-Hoffman untuk menentukan batasan untuk saiz sesuatu set berdikari
yang terbesar dalam F (n,k).
Kita juga mempertimbangkan F (n,0), graf kekacauan dengan set penjana Dn, iaitu set
kekacauan. Bagi mana-mana integer positif yang tetap k ≤ n, graf Cayley pada Sn yang
dijanakan oleh subset Dn yang terdiri daripada pilih atur tanpa apa-apa i-kitaran bagi
1≤ i≤ k adalah subgraf yang biasa dari graf kekacauan itu. Kita menentukan nilai eigen
yang terkecil dalam subgraf ini dan menunjukkan bahawa set yang mengandungi semua
set berdikari yang terbesar di subgraf ini adalah sama dengan set yang mengandungi se-
mua set berdikari yang terbesar dalam F (n,0) bagi k << n.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

In computer science, several computational problems related to independent sets have

been studied. The independent set problem and the clique problem are complimentary.

Therefore, many computational results may be applied equally well to either problem.

However, the maximum independent set problem is NP-hard and it is also hard to be

determined. Therefore, we are interested in other alternatives to determine the size of a

maximum independent set.

In 1970, A.J. Hoffman (1970) proved the Delsarte-Hoffman Bound, which gives a bound

on the largest independent set of a regular graph. With this bound, we are able to bound

the largest independent set by determining the largest and smallest eigenvalues of the

graph. In particular, Cayley graph is a special kind of regular graph which is generated

by a group and a generating set. By considering some groups with certain algebraic

structures, we are able to determine the eigenvalues even though the graph structure is

complicated.

Let Sn be the symmetric group on [n] = {1, . . . ,n}. Consider the Cayley graph on Sn gen-

erated by the derangement set, Dn, i.e. the set of elements that fixes no point in [n], such a

Cayley graph is well known as the derangement graph. Several results of the derangement

graph have been well studied by various people. In particular, Renteln (2007) has proved

a recurrence formula for the eigenvalues of partitions in the derangement graph, thus

determining the smallest eigenvalue of the derangement graph. By applying Delsarte-

Hoffman Bound, the largest independent set in the derangement graph is also determined.

Furthermore, Ku and Wales (2010) have developed an Alternating Sign Property for the

eigenvalues of the derangement graph.

In this thesis, we consider the k-point fixing graph, namely F (n,k) which is the Cayley

graph on Sn generated by S (n,k), the union of the conjugacy classes that consists of

permutations that fix exactly k points. In particular, the derangement graph is a 0-point
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fixing graph. We want to determine the size of the largest independent set in F (n,k)

for 0 < k << n by using the Delsarte-Hoffman Bound. In order to do so, eigenvalues of

the adjacency matrix of F (n,k) are required in finding a bound for the size of a largest

independent set in F (n,k). Furthermore, for any fixed positive integer k ≤ n, we con-

sider a regular subgraph of the derangement graph, where this subgraph is a Cayley graph

on Sn generated by a subset of Dn consisting of permutations without any i-cycles for

all 1 ≤ i ≤ k. We want to determine the smallest eigenvalue of these subgraphs and the

largest independent set in these subgraphs given k << n.

1.1 Definitions & Terminology

In this section we will provide the basic and important definitions for the thesis.

Definition 1.1.1. We define the following terminologies:

1. A multigraph, Γ consists of a non-empty finite set of vertices, denoted by V (Γ) and

a finite (possibly empty) set of edges, denoted by E(Γ) such that each edge in E(Γ)

joins two distinct vertices in V (Γ) and two distinct vertices in V (Γ) are joined by a

finite (possibly zero) number of edges.

2. The order of Γ, denoted by v(Γ), is the number of vertices in V (Γ) while the size of

Γ, denoted by e(Γ), is the number of edges in E(Γ).

3. A multigraph Γ is called a simple graph if any two vertices in V (Γ) are joined by at

most one edge.

Throughout this thesis, we use the term graph to represent the term simple graph.

In this thesis, we are interested in Cayley graphs. They are special cases of regular graphs.

It is important for us give the definition of regular graph and we need to use the degree of

the graph later.

Definition 1.1.2. Let Γ be a graph with V (Γ) = {v1, . . . ,vn}.

1. The degree of a vertex, vi in Γ, denoted by d(vi), is the number of edges incident

with vi.

2
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2. If every vi ∈V (Γ) has the same degree, we say that Γ is a regular graph. In partic-

ular, if d(vi) = k for i ∈ {1, . . . ,n}, we say that Γ is a k-regular graph. We denote

d(Γ) = k for a k-regular graph.

We are interested in identifying independent sets in Cayley graphs. We shall observe that

the degrees of a graph are needed in determining the cardinality of an independent set.

We first define what is an independent set:

Definition 1.1.3.

1. An independent set is a set of vertices in a graph such that no two of which are

adjacent. The size of an independent set is the number of vertices which it contains.

2. A maximum independent set is a largest independent set for a given graph and its

size is the largest independent number, which is denoted by α(Γ).

For every graph with v(Γ) = n, we are able to determine an n× n real matrix A(Γ) to

represent its adjacency. In our context, A(Γ) is important as we will study its eigenvalues

in determining the largest independent number.

Definition 1.1.4. Let Γ be a simple graph with v(Γ) = n. The adjacency matrix, A(Γ) of

a graph Γ is the integer matrix with rows and columns indexed by the vertices of Γ, such

that the uv-entry of A(Γ) is 1 if u is adjacent to v and 0 otherwise.

The adjacency matrix of a simple graph Γ, A(Γ) is a real symmetric matrix. We know

that all eigenvalues of A(Γ) are real numbers by the following lemmas:

Lemma 1.1.5. Let A be a real symmetric matrix. If u and v are eigenvectors of A with

different eigenvalues, then u and v are orthogonal.

Proof. Suppose that Au = λu and Av = τv, with λ 6= τ . Since A is symmetric, uT Av =

(vT Au)T . The L.H.S of this equation is τuT v whereas the R.H.S is λuT v. Since τ 6= λ ,

then uT v = 0, giving us u⊥ v.

Lemma 1.1.6. The eigenvalues of a real symmetric matrix A are real numbers.

Proof. Let u be an eigenvector of A with eigenvalue λ . By taking the complex conjugate

of the equation Au = λu, we obtain Au = Au = λu, and so u is also an eigenvector of A.

3
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By definition an eigenvector is not the 000 vector, so uT u > 0. By Lemma 1.1.5, u and u

cannot have different eigenvalues, so λ = λ , and the assertion is true.

In the context of determining the largest independent number using the Delsarte-Hoffman

Bound, we are expecting real eigenvalues from a graph so that we can obtain an upper

bound for a largest independent set as a real number.

The focus of our thesis would be on properties of Cayley graphs. We need the following

definitions before defining Cayley graphs.

Definition 1.1.7. A group is a set, G, together with an operation ◦, i.e (G,◦) which

satisfies the following axioms

1. Closure: For all a,b ∈ G, a◦b ∈ G.

2. Associativity: For all a,b,c ∈ G, (a◦b)◦ c = a◦ (b◦ c).

3. Identity Element: There exists an element 1∈G such that ∀a∈G, a◦1= 1◦a = a.

4. For each a ∈ G, there exists an element b ∈ G such that a◦b = b◦a = 1. Such b is

denoted as a−1.

Definition 1.1.8. Let G be a finite group and let S⊆G be a subset of G such that 1 /∈ S and

s ∈ S⇒ s−1 ∈ S„ the corresponding Cayley graph, denoted as Γ(G,S) has the following

vertex set and edge set

V (Γ(G,S)) = G

E(Γ(G,S)) = {(g,h) | ∃s ∈ S such that h−1g = s}

S is called the generating set for Γ(G,S).

We now define what it means by vertex-transitivity. In particular, a Cayley graph is a

vertex-transitive graph and thus it possesses the properties of regularity.

Definition 1.1.9. A graph Γ is vertex-transitive if given any vertices v1,v2 of Γ, there is

an automorphism f : V (Γ)→V (Γ) such that f (v1) = v2.

This will mean that the graph properties of any two vertices in a vertex-transitive graph

are the same.

4
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Theorem 1.1.10. (Ku and Wong, 2013 [42]) Γ(G,S) is vertex-transitive. In particular,

Γ(G,S) is a regular graph.

Theorem 1.1.10 is a well-known result, and it is important as the properties of vertex-

transitivity and regularity are required for Theorem 1.4.1 later.

We now state some well known results of the degree of a Cayley graph and its relationship

with the largest eigenvalue of the adjacency matrix of the Cayley graph.

Theorem 1.1.11. (Ku and Wong, 2013 [42]) Let d be the degree of any vertex in Γ(G,S),

then d = |S|. Moreover, the largest eigenvalue of A(Γ(G,S)) is equal to d.

1.2 Representation Theory of Symmetric Groups

In this section, we would like to use the Frobenius-Schur-Others Theorem (Theorem

1.2.17) to determine all the eigenvalues of the adjacency matrix of some Cayley graphs.

In particular, we are interested in finding the largest and smallest eigenvalues of these

graphs.

1.2.1 Introduction and Background

We first introduce the definitions and concepts in group theory:

Definition 1.2.1. Given two groups (G, ·) and (H,∗), a group homomorphism from (G, ·)

to (H,∗) is a function φ : G→ H such that for all u,v ∈ G,

φ(u · v) = φ(u)∗φ(v)

Definition 1.2.2. A subset S of the domain U of a mapping T : U →U is an invariant set

under the mapping when

x ∈ S⇒ T (x) ∈ S.

In particular, a conjugation invariant subset is the invariant subset under conjugation

mapping.

5
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Lemma 1.2.3. Let A,B⊂G where G is a group. If A,B are inverse-closed and conjugation-

invariant subsets of G, then A∪B is an inverse-closed and conjugation-invariant subset

of G.

Proof. Let x ∈ A∪B, then x ∈ A or x ∈ B. Without loss of generality, we assume that

x ∈ A.

Since A is inverse-closed, x−1 ∈ A, giving us x−1 ∈ A∪B.

Since A is a conjugation-invariant subset of G, for all g∈G, gxg−1 ∈ A, giving us gxg−1 ∈

A∪B.

We now introduce some definitions and results in representation theory which are related

to this thesis.

Definition 1.2.4. Let V be a vector space over the field F. An automorphism of V is a

linear operator φ : V →V where φ is an isomorphism.

Definition 1.2.5. If V is a vector space over the field F, the general linear group of V ,

written GL(V ) is the group of all automorphisms of V .

Definition 1.2.6. Let G be a group and V a vector space. A group homomorphism ρ :

G→ GL(V ) is a representation of G and V is a representation space of G.

Definition 1.2.7. If G is a group and X is a set, then a (left) group action of G on X is a

binary function,

ψ : G×X → X denoted ψ((g,x)) = g · x

which satisfies the following 2 axioms:

1. (gh) · x = g · (h · x) for all g,h ∈ G and x ∈ X;

2. If 1 is the identity element of G, then 1 · x = x for all x ∈ X.

The group G is said to act on X.

Definition 1.2.8. Let G act on a set X, and V be a vector space having basis {vx|x ∈ X}.

If g ∈ G, we define ρ(g) to be the linear map V → V such that ρ(g)(vx) = vg·x, then

ρ : g 7→ ρ(g) defines a representation of G, known as the permutation representation of G

on X.

6
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Remark 1.2.9. The regular representation of G is the permutation representation of G on

G by regular left action.

Definition 1.2.10. Given two vector spaces V and W, two representations

ρ1 : G→ GL(V ) and ρ2 : G→ GL(W )

are said to be isomorphic if there exists a vector space isomorphism

Φ : V →W

such that for all g ∈ G,

Φ◦ (ρ1(g)v) = ρ2(g)◦Φ(v)

for all v ∈V . If there is no such isomorphism, then we say V and W are non-isomorphic.

Definition 1.2.11. A subspace W of V that is invariant under the group action is called a

subrepresentation. If V has exactly two subrepresentations, namely the zero-dimensional

subspace and V itself, then the representation is said to be irreducible; if it has a proper

subrepresentation of nonzero dimension, the representation is said to be reducible.

We need to use a special kind of representation, namely character of a representation to

evaluate the eigenvalues. We now define character and some related definitions in ring

and module theory.

Definition 1.2.12. A character, χ = χρ = χV : G→ C is defined by χ(g) = tr(ρ(g)) for

g ∈ G.

Definition 1.2.13. An Abelian group (G,◦) is a group which possesses commutativity,

i.e for all a,b ∈ G

a◦b = b◦a.

Definition 1.2.14. A ring, R is a set equipped with two associative binary operations,

called addition (+) and multiplication (×), such that

1. R is an Abelian group under +;

7
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2. distributive law holds, i.e

r(s+ t) = rs+ rt,

(s+ t)r = sr+ tr

for all r,s, t ∈ R.

Definition 1.2.15. A left R-module M over the ring R consists of an abelian group (M,+)

and an operation R×M→M such that for all r,s ∈ R, x,y ∈M,

1. r(x+ y) = rx+ ry;

2. (r+ s)x = rx+ sx;

3. (rs)x = r(sx);

4. 1Rx = x if R has multiplicative identity 1R.

Definition 1.2.16. For a finite group G, the group module CG is the complex vector space

with basis G and multiplication defined by extending the group multiplication linearly;

explicitly, (
∑

g∈G
xgg

)(
∑

h∈G
yhh

)
= ∑

g,h∈G
xgyh(gh).

Identifying a function f : G→ C with ∑g∈G f (g)g, we may consider C[G] as the group

module CG. If Γ is a Cayley graph on G with inverse-closed generating set X , the adja-

cency matrix of Γ, A(Γ) acts on the group module CG by left multiplication by ∑g∈X g.

With the definitions defined, we can study the following theorem in determining eigen-

values of some Cayley graphs.

The following theorem is the result of the work of many people which Frobenius and

Schur started.

Theorem 1.2.17. (Frobenius-Schur-others, Ellis, 2012 [17]) Let G be a finite group; let

X ⊂ G be an inverse-closed, conjugation-invariant subset of G and let Γ be Γ(G,X). Let

(ρ1,Vi), . . . ,(ρk,Vk) be a complete set of non-isomorphic irreducible representations of

G. Let Ui be the sum of all submodules of the group module CG which are isomorphic to
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Vi. We have

CG =
k⊕

i=1

Ui

and each Ui is an eigenspace of A with dimension dim(Vi)
2 and eigenvalue

ηVi =
1

dim(Vi)
∑

g∈X
χi(g)

where χi(g) = tr(ρi(g)) denotes the character of the irreducible representation (ρi,Vi).

We want to make use of Theorem 1.2.17 in determining the eigenvalues of Cayley graphs

on Sn. Therefore, we will discuss the representation theory of Sn in order to apply Theo-

rem 1.2.17 in the next subsection.

1.2.2 Symmetric Group, Partitions and Specht Module

We provide the perspective of representation theory of the symmetric group via general

representation theory. Our objective in this section is to build the modules Mλ , the permu-

tation module corresponding to Sλ , the Specht Module. First, we introduce the concepts

of symmetric group, partitions and Young diagram.

Definition 1.2.18. The symmetric group, Sn on a set X = {1,2, . . . ,n} is the group whose

underlying set is the collection of all bijections from X to X and whose group operation

is that of function composition

Sn = {σ | σ : X → X ,σ is a bijection}

Definition 1.2.19. A partition of n is a non-increasing sequence of integers summing to

n, i.e a sequence λ = (λ1, . . . ,λk) with λ1 ≥ . . .≥ λk and ∑
k
i=1 λi = n. We write λ ` n.

Definition 1.2.20. The cycle-type of a permutation σ ∈ Sn is the partition of n obtained by

expressing σ as a product of disjoint cycles and listing its cycle-lengths in non-increasing

order precisely.

Therefore, we know that the conjugacy classes of Sn are precisely

{σ ∈ Sn : cycle-type(σ) = α}α`n

9
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Moreoever, there is an explicit one-to-one correspondence between irreducible represen-

tations of Sn (up to isomorphism) and partitions of n, which we now describe.

Definition 1.2.21. Let α = (α1, . . . ,αr) be a partition of n. The Young diagram or Ferrers

diagram of α is an array of n dots, having k left-justified rows where row i contains αi

dots.

Definition 1.2.22. If the array contains the numbers 1,2, . . . ,n in some order in place of

the dots, we call it an α-tableau.

Definition 1.2.23. Two α-tableaux are row-equivalent if for each row, they have the same

numbers in that row. If an α-tableau t has rows R1, . . . ,Rk ⊂ [n] and columns C1, . . . ,Cl ⊂

[n], we let Rt = SR1 × . . .× SRk be the row-stabilizer of t and Ct = SC1 × . . .× SCl be the

column-stabilizer.

Definition 1.2.24. An α-tabloid is an α-tableau with unordered row entries. We write [t]

for the tabloid produced by a tableau t.

Now, we have sufficient tools to construct our Mα . Consider the natural left action of

Sn on the set Xα of all α-tabloids; let Mα = C[Xα ] be the corresponding permutation

module, the complex vector space with basis Xα and Sn action given by extending this

action linearly.

Definition 1.2.25. Given α-tableau t, we define the corresponding α-polytabloid

et := ∑
π∈Ct

ε(π)π[t]

where ε is the character of sign representation, S(1
n).

Definition 1.2.26. We define the Specht module Sα to be the submodule of Mα spanned

by the α-polytabloids:

Sα = span{et : t is an α-tableau}

Lemma 1.2.27. (Stanley, 1999 [64]) The Specht modules Sα are a complete set of pair-

wise non-isomorphic, irreducible representations of Sn. Hence any irreducible represen-

tation ρ of Sn is isomorphic to some Sα . In particular, both the conjugacy classes of Sn

and the irreducible characters of Sn are indexed by partitions λ of [n].
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We study the Specht modules, Sα because they are important in applying Theorem 1.2.17

to find the eigenvalues of Cayley graphs on Sn. Notice that Lemma 1.2.27 fulfills the

hypothesis for Theorem 1.2.17.

Example 1.2.28. A few examples of Sα ,

• S(n) = M(n) is the trivial representation.

• S(1
n) is the sign representation and M(1n) is the left-regular representation.

Definition 1.2.29. A tableau is standard if the numbers are strictly increasing along each

row and down each column.

Proposition 1.2.30. (Ellis, 2012 [17]) For any partition α of n,

{et : t is a standard α-tableau}

is a basis for the Specht module Sα .

We next define the hook length as there is a relationship between the dimension of a

Specht module, Sα and hook length. We require the dimension of Specht Module so that

we can apply Theorem 1.2.17 to find the eigenvalues.

Definition 1.2.31. Let λ ` n. For each cell (i, j) in a Young diagram of a partition α , we

define the hook-length hλ (a,b) as the size of the set of all the boxes with coordinate (i, j)

where i = a and j ≥ b, or i≥ a and j = b.

Notation 1.2.32. We use the following notations in this thesis:

• [α] - equivalence class of the irreducible representations of Sα .

• χα - irreducible character of χSα .

• ξα - character of the permutation representation Mα .

• f α - dimension of the Specht module Sα .

Theorem 1.2.33. (Ellis, 2012 [17]) Let Hα = ∏(hook lengths of [α]), then the dimension

of Sα is

f α =
n!

Hα
.

11
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Let α = (α1, . . . ,αr) be a partition of n. For each i with αi > αi+1, we define

α
i− = (α1,α2, . . . ,αi−1,αi−1,αi+1, . . . ,αr).

Note that α i− ` (n− 1). Furthermore, α i− is the partition whose Ferrers diagram is

obtained by deleting the box at the end of the ith row of the Ferrers diagram of α . We

shall also need the following theorem to find f α :

Theorem 1.2.34. (The Branching Theorem, Sagan, 2001 [62, Lemma 2.8.2 on p. 77] &

[62, Theorem 2.8.3]) For any partition α of n, the restriction [α] ↓ Sn−1 is isomorphic to

a direct sum of those irreducible representation [α i−] of Sn−1, then

[α] ↓ Sn−1 = ∑
i:αi>αi+1

[α i−]. (1.1)

and

f α = ∑
i:αi>αi+1

f α i−
. (1.2)

Theorem 1.2.35. (Ellis, 2012 [17]) The set of α-tabloids form a basis for Mα , therefore

ξα(σ), the trace of the corresponding permutation representation at σ , is precisely the

number of α-tabloids fixed by σ .

Theorem 1.2.35 is important as it gives us a combinatorial idea to calculate ξα(σ) without

looking at the algebra of the corresponding α . We need this to calculate the character

values in Theorem 1.2.17. We now study a property about the tensor product which is

important in Theorem 1.2.37.

Definition 1.2.36. If U ∈ [α] and V ∈ [β ], we define [α]+ [β ] to be the equivalence class

of U⊕V and [α]⊗ [β ] to be the equivalence class of U⊗V ; since χU⊗V = χU ·χV .

Theorem 1.2.37. (Ellis, 2012 [17]) For any partition α of n, we have

S(1
n)⊗Sα ∼= Sα ′

where α ′ (or αT ) is the transpose of α , the partition of n with Young diagram obtained by

interchanging rows and columns in the Young diagram of α . In particular, [1n]⊗ [α] =
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[α ′] and χα ′ = ε ·χα where ε is the character of sign representation.

Theorem 1.2.37 is important because one can determine the character of a partition by

taking the multiplication of its sign character and character of its transpose. The use of

Theorem 1.2.37 will be seen in later parts.

Example 1.2.38. If n = 7,

1. (3,2,2) ` 7.

2. We sometimes write (3,2,2) as (3,22).

3. The Young diagram of (3,22) is

• • •

• •

• •

4. A (3,22)-tableau

6 1 7

5 4

3 2

5. A (3,22)-tabloid

{1 6 7}

{4 5}

{2 3}

6. Dimension of Sα is

f α =
n!

∏(hook lengths of [α])
=

7!
5 ·4 ·3 ·2 ·2 ·1 ·1

= 21

with Hook lengths of α are

5 4 1

3 2

2 1

13

Univ
ers

ity
 of

 M
ala

ya



7.

[17]⊗ [3,2,2] = [3,2,2]′ =


• • •

• •

• •


′

=


• • •

• • •

•

 .

Before we decompose Mα , we need to have the following terminology:

Definition 1.2.39. Let α,β be partitions of n. A generalized α-tableau is produced by

replacing each dot in the Young diagram of α with a number between 1 and n; if a

generalized α-tableau has βi i’s (1 ≤ i ≤ n) it is said to have content β . A generalized

α-tableau is said to be semistandard if the numbers are non-decreasing along each row

and strictly increasing down each column.

Definition 1.2.40. Let α,β be partitions of n. The Kostka number, Kα,β is the number of

semistandard generalized α-tableaux with content β .

With the terminology defined, we now explain how the permutation modules Mβ decom-

pose into irreducibles.

Theorem 1.2.41. (Young’s Rule, Sagan, 2001 [62]) For any partition β of n, the permu-

tation module Mβ decomposes into irreducibles as follows:

Mβ ∼=
⊕
α`n

Kα,β Sα

Example 1.2.42. M(n−1,1) which corresponds to the natural permutation action of Sn on

[n], decomposes as

M(n−1,1) ∼= S(n−1,1)⊕S(n)

giving us

ξ(n−1,1) = χ(n−1,1)+1

as S(n) is the trivial representation with dimension 1.

We now return to consider Γ(Sn,X) using Theorem 1.2.17. To make use of Theorem

1.2.17, we must make sure the generating set X ⊂ G is an inverse-closed, conjugation-

invariant subset of G. We have the following property about conjugacy classes:

14
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Proposition 1.2.43. Let Cλ be the conjugacy class of type λ = 〈1m12m2 . . .nmn〉, then Cλ

is an inverse-closed and conjugation-invariant subset of Sn. In particular,
⋃

λ Cλ is an

inverse-closed and conjugation-invariant subset of Sn.

Proof. Let σ ∈Cλ . Then σ = (i1,1 . . . i1,a)(i2,1 . . . i2,b) . . .(i j,1 . . . i j,c) as a product of dis-

joint cycles. It follows that its inverse σ−1 =(i j,1 . . . i j,c)
−1 . . .(i2,1 . . . i2,b)−1(i1,1 . . . i1,a)−1

is also in Cλ .

By definition of conjugacy classes, for all σ ∈ Cλ , τστ−1 ∈ Cλ for all τ ∈ Sn. There-

fore Cλ satisfies the desired properties. By Lemma 1.2.3,
⋃

λ Cλ is an inverse-closed,

conjugation-invariant subset of G.

With all the tools developed, we are now ready to apply Theorem 1.2.17 to calculate the

eigenvalues of the Cayley graphs on Sn. We have the following corollary:

Corollary 1.2.44. Write Uα for the sum of all copies of Sα in CSn. We have

CSn =
⊕
α`n

Uα

and each Uα is an eigenspace of Γ(Sn,X), with dim(Uα) = ( f α)2 and corresponding

eigenvalue

ηα =
1
f α ∑

σ∈X
χα(σ).

Let S ⊆ Sn be closed under conjugation. Since central characters are algebraic integers

(Isaacs, 1976 [33, Theorem 3.7 on p. 36]) and the characters of the symmetric group are

integers (Isaacs, 1976 [33, 2.12 on p. 31] or Serre, 1977 [63, Corollary 2 on p. 103]), by

Theorem 1.2.17, the eigenvalues of Γ(Sn,S) are integers.

Corollary 1.2.45. The eigenvalues of a Cayley graph Γ(Sn,S) are integers.

1.3 k-point Fixing Graph

Let 0 ≤ k < n and S (n,k) be the set of all σ ∈ Sn such that σ fixes exactly k elements.

Note that S (n,k) is an inverse-closed subset of Sn. The k-point fixing graph is defined to

be

F (n,k) = Γ(Sn,S (n,k)).

15
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That is, two vertices g, h of F (n,k) are joined if and only if gh−1 fixes exactly k points.

Note that the 0-point fixing graph is the derangement graph.

Clearly, F (n,k) is vertex-transitive, so it is |S (n,k)|-regular and the largest eigenvalue

of F (n,k) is |S (n,k)|. Furthermore, S (n,k) is closed under conjugation. Therefore, by

Corollary 1.2.45, the eigenvalues of the k-point fixing graph are integers. Since S (n,k)

is closed under conjugation, the eigenvalue ηχλ
(k) of the k-point fixing graph can be

denoted by ηλ (k). Throughout the thesis, we shall use this notation.

1.4 Literature Review

In this section, we will review some of the results that are related to this thesis.

1.4.1 Delsarte-Hoffman Bound

We are interested in regular graphs and their adjacency matrices. In particular, we want

to determine its eigenvalues so that we can apply the Delsarte-Hoffman Bound.

We introduce the following theorem in order to bound the largest independent set of a

Cayley graph.

Theorem 1.4.1. (Delsarte-Hoffman Bound, Hoffman, 1970 [29]) Let Γ be a d-regular

graph with n vertices. Let A be the adjacency matrix of Γ . Let {v1,v2, . . . ,vn} be an

orthonormal system of eigenvectors of A, with corresponding eigenvalues d = γ1 ≥ γ2 ≥

·· · ≥ γn = τ (so that v1 = (1, . . . ,1) is the all-1’s vector). If I is an independent set in Γ,

then

|I| ≤ n
1− d

τ

.

Furthermore, if equality holds, then

1I ∈ Span({v1}∪{vi : γi = τ}) ,

where Span(b1, . . . ,bm) is the vector space spanned by b1, . . . ,bm.

By Theorem 1.1.11, we can determine the largest eigenvalue of A(Γ(G,S)) by determin-

ing the degree of any vertex in Γ(G,S). In order to use Theorem 1.4.1, we need to find

16

Univ
ers

ity
 of

 M
ala

ya



the smallest eigenvalue of the graph, which requires the use of Representation Theory of

symmetric groups.

1.4.2 0-point Fixing Graph

The 0-point fixing graph, which is well-known as derangement graph, is the Cayley graph

Γ(Sn,Dn) where Dn = S (n,0) is the set of derangements in Sn. Since Dn is closed under

conjugation, by Corollary 1.2.45, the eigenvalues of the derangement graph are integers.

We now list out some of the known results that are related to the 0-point fixing graph.

Renteln (2007) proved a recurrence formula for eigenvalues of a 0-point fixing graph. To

describe the Renteln’s recurrence formula for F (n,0), we require some terminology. To

the Ferrers diagram of a partition λ , we assign xy-coordinates to each of its boxes by

defining the upper-left-most box to be (1,1), with the x axis increasing to the right and

the y axis increasing downwards. Then the hook of λ is the union of the boxes (x′,1) and

(1,y′) of the Ferrers diagram of λ , where x′ ≥ 1, y′ ≥ 1. Let ĥλ denote the hook of λ

and let hλ denote the size of ĥλ . Similarly, let ĉλ and cλ denote the first column of λ and

the size of ĉλ respectively. Note that cλ is equal to the number of rows of λ . When λ is

clear from the context, we will replace ĥλ , hλ , ĉλ and cλ by ĥ, h, ĉ and c respectively. Let

λ − ĥ ` n−h denote the partition obtained from λ by removing its hook. Also, let λ − ĉ

denote the partition obtained from λ by removing the first column of its Ferrers diagram,

i.e. (λ1, . . . ,λr)− ĉ = (λ1−1, . . . ,λr−1) ` n− r.

Theorem 1.4.2. (Renteln’s Recurrence Formula, Renteln, 2007 [61, Theorem 6.5]) For

any partition λ = (λ1, . . . ,λr) ` n, the eigenvalues of the derangement graph F (n,0)

satisfy the following recurrence:

ηλ (0) = (−1)h
η

λ−ĥ(0)+(−1)h+λ1hηλ−ĉ(0)

with initial condition η /0(0) = 1.

Applying Theorem 1.4.2, Renteln (2007) settled the following conjecture made by Ku

and Wong (2007):
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Theorem 1.4.3. (Ku and Wong, 2007 [52]) The smallest eigenvalue of the adjacency

matrix of F (n,0) is given by

η(n−1,1) =−
dn

n−1

which occurs at the partition (n−1,1).

With the smallest eigenvalue of F (n,0) determined, we are now able to bound the largest

independent set of F (n,0). Moreover, we are able to determine the exact largest inde-

pendent number by identifying the existence of an independent set with cardinality of the

bound.

Corollary 1.4.4. The largest independent number of the derangement graph F (n,0) is

α(F (n,0)) = (n−1)!.

Proof. By Theorems 1.4.1 and 1.1.11, we have

α(F (n,0))≤ n!

1− dn
− dn

n−1

=
n!

1+n−1
= (n−1)!.

It suffices for us to verify the existence of an independent set, I with |I|= (n−1)!. Let I

be an independent set, i.e

I = {g ∈ Sn : g(1) = 1}

we have |I|= (n−1)!, giving us α(Γ) = (n−1)!.

Ku and Wong (2013) have proved a recurrence formula for eigenvalues of 0-point fixing

graph. To describe the Ku-Wong’s recurrence formula for F (n,0), we need a new termi-

nology. For a partition λ = (λ1, . . . ,λr) ` n, let l̂λ denote the last row of λ and lλ denote

the size of l̂λ . Clearly, we have lλ = λr. Let λ − l̂λ denote the partition obtained from λ

by deleting the last row. When λ is clear from the context, we will replace l̂λ , lλ by l̂ and

l respectively.

Theorem 1.4.5. (Ku-Wong’s Recurrence Formula, Ku and Wong, 2013 [42, Theorem

1.4]) For any partition λ = (λ1, . . . ,λr) ` n, the eigenvalues of the derangement graph

F (n,0) satisfy the following recurrence:

ηλ (0) = (−1)λrη
λ−l̂(0)+(−1)r−1

λrηλ−ĉ(0)

18

Univ
ers

ity
 of

 M
ala

ya



with initial condition η /0(0) = 1.

The following theorem is called the Alternating Sign Property (ASP) for F (n,0), which

is proved by Ku and Wales (2010) and Ku and Wong (2013) by using Renteln’s Recur-

rence Formula and Ku-Wong’s Recurrence Formula respectively.

Theorem 1.4.6. (Alternating Sign Property for F (n,0), Ku and Wales, 2010 [41, The-

orem 1.2]; Ku and Wong, 2013 [42, Theorem 1.3]) Let n ≥ 2. For any partition λ =

(λ1, . . . ,λr) ` n,

sign(ηλ (0)) = (−1)|λ |−λ1

= (−1)#cells under the first row of λ

where sign(ηλ (0)) is 1 if ηλ (0) is positive or −1 if ηλ (0) is negative.

The following corollary is a consequence of Theorems 1.4.5 and 1.4.6.

Corollary 1.4.7. For any partition λ = (λ1, . . . ,λr) ` n with r ≥ 2, the absolute value of

the eigenvalues of the derangement graph F (n,0) satisfy the following recurrence:

|ηλ (0)|= |ηλ−l̂(0)|+λr|ηλ−ĉ(0)|

with initial condition |η /0(0)|= 1.

1.4.3 Intersecting families

Let [n] = {1, . . . ,n}, and let
([n]

k

)
denote the family of all k-subsets of [n]. A family A of

subsets of [n] is t-intersecting if |A∩B| ≥ t for all A,B ∈ A . One of the most beautiful

results in extremal combinatorics is the Erdős-Ko-Rado theorem.

Theorem 1.4.8 (Erdős, Ko, and Rado, 1961 [20]; Frankl, 1978 [21]; Wilson, 1984 [67]).

Suppose A ⊆
([n]

k

)
is t-intersecting and n > 2k− t. Then for n ≥ (k− t + 1)(t + 1), we

have

|A | ≤
(

n− t
k− t

)
.
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Moreover, if n > (k− t +1)(t +1) then equality holds if and only if

A =

{
A ∈

(
[n]
k

)
: T ⊆ A for some t-set T

}
.

Later, Ahlswede and Khachatrian (1997, [1]) extended the Erdős-Ko-Rado theorem by

determining the structure of all t-intersecting set systems of maximum size for all possi-

ble n (see also [4, 22, 34, 45, 57, 59, 65] for some related results). There have been many

recent results showing that a version of the Erdős-Ko-Rado theorem holds for combina-

torial objects other than set systems (see [2, 5, 6, 7, 8, 11, 12, 14, 16, 19, 23, 27, 28, 30,

31, 32, 36, 37, 52, 43, 44, 46, 47, 48, 49, 50, 51, 53, 55, 58, 66, 68]).

We say that a pair of families A ,B ⊆ Sn is cross-intersecting if for any σ ∈A , π ∈B,

there exists an i ∈ [n] such that σ(i) = π(i). Recall that Si, j = {π ∈ Sn : π(i) = j}. Leader

(2005, [54]) conjectured the following theorem which was later proved by Ellis (2012,

[17, Theorem 2.6 and 2.8]).

Theorem 1.4.9. For n≥ 4, if A ,B ⊆ Sn are cross-intersecting, then

|A ||B| ≤ ((n−1)!)2.

Furthermore, equality holds if and only if A = B = Si, j for some i, j ∈ [n].
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CHAPTER 2: RECURRENCE FORMULA FOR F (n,k) AND ASP FOR F (n,1)

In this chapter, we will derive a recurrence formula for the eigenvalues of F (n,k) using

a result from Foulkes (1978). Then, we will make use of the recurrence formula to de-

termine the Alternating Sign Property for the eigenvalues of F (n,1). The results of this

chapter have been published in Ku, Lau and Wong (2015, [38]).

2.1 Recurrence formula for F (n,k)

For each σ ∈ Sn, we denote it’s conjugacy class by ConSn(σ), i.e., ConSn(σ) = {γ−1σγ :

γ ∈ Sn}. Let µ ` n be the partition that represents ConSn(σ). We shall denote the size of

ConSn(σ) by NSn(µ).

Let A⊆ Sn and α ∈ Sn. The set α−1Aα is defined as

α
−1Aα = {α−1

σα : σ ∈ A}.

Let 0 ≤ k < n. Each β ∈ Sn−k can be considered as an element β of Sn by defining

β ( j) = β ( j) for 1 ≤ j ≤ n− k and β ( j) = j for n− k+ 1 ≤ j ≤ n. The β is called the

extension of β to Sn. The set of derangements Dn−k in Sn−k can be considered as a subset

of Sn (Dn−k = {σ : σ ∈ Dn−k}). Furthermore,
⋃

σ∈Sn
σ−1Dn−kσ ⊆S (n,k).

Let γ ∈S (n,k). Then γ fixes exactly k elements, i.e., γ(i j) = i j for j = 1,2, . . . ,k and

γ(a) 6= a for a ∈ [n]\{i1, i2, . . . , ik}= {b1,b2, . . . ,bn−k}. Let σ0(b j) = j for 1≤ j ≤ n−k

and σ0(i j) = n− k + j for 1 ≤ j ≤ k. Then σ0 ∈ Sn and σ−1γσ ∈ Dn−k. Hence, the

following lemma follows.

Lemma 2.1.1.

S (n,k) =
⋃

σ∈Sn

σ
−1Dn−kσ .
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By Lemma 2.1.1, there are σk1, σk2, . . . , σksk ∈ Dn−k such that

S (n,k) =
sk⋃

i=1

ConSn(σ ki), (2.1)

and σki is not conjugate to σk j in Sn−k for i 6= j. Furthermore,

Dn−k =
sk⋃

i=1

ConSn−k(σki). (2.2)

Note that χλ (σ) = χλ (β ) for all σ ∈ ConSn(β ). Let ConSn(β ) be represented by the

partition ϕ(β ) ` n. Then by Theorem 1.2.17 and Corollary 1.2.45, the eigenvalues of

F (n,k) are integers given by

ηλ (k) =
1
f λ

sk

∑
i=1

NSn(ϕ(σ ki))χλ (ϕ(σ ki)), (2.3)

where χλ (ϕ(σ ki)) = χλ (σ ki).

Assume that 0 < k < n. Note that each σ ki (1≤ i≤ sk) must consist of at least one 1-cycle

in its cycle decomposition. Therefore ϕ(σ ki) = (ν1,ν2, . . . ,νr) ` n and νr = 1. Note that

ϕ(σ ki)− l̂ϕ(σ ki) = (ν1,ν2, . . . ,νr−1) ` (n− 1). We are now ready to state the following

lemma which is a special case of Theorem 3.4 in Foulkes (1978).

Lemma 2.1.2. (Foulkes, 1978 [24, Theorem 3.4]) If the Ferrers diagrams obtained from

λ by removing 1 node from the right hand side from any row of the diagram so that the

resulting diagram will still be a partition of (n−1) are those of µ1, . . . ,µq, then

χλ (ϕ(σ ki)) =
q

∑
j=1

χµ j(ϕ(σ ki)− l̂ϕ(σ ki)),

for all 1≤ i≤ sk.
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Example 2.1.3. Let n = 7 and λ = (3,3,1), then

χ(3,3,1)((6,1)) = χ(3,3)((6))+χ(3,2,1)((6)),

χ(3,3,1)((4,2,1)) = χ(3,3)((4,2))+χ(3,2,1)((4,2)),

χ(3,3,1)((3,3,1)) = χ(3,3)((3,3))+χ(3,2,1)((3,3)),

χ(3,3,1)((2,2,2,1)) = χ(3,3)((2,2,2))+χ(3,2,1)((2,2,2)).

We shall need the following lemma in Stanley (1999).

Lemma 2.1.4. (Stanley, 1999 [64, (7.18) on p. 299]) Let λ = (nmn, . . . ,2m2 ,1m1) ` n and

zλ = ∏
n
j=1( jm jm j!), then the size of the conjugacy class represented by λ is

NSn(λ ) =
n!
zλ

.

Lemma 2.1.5. Let λ = (λ1, . . . ,λr) ` (n− k) be a derangement, i.e., λr ≥ 2. If

ν = (λ ,1k) ` n, and µ = (λ ,1k−1) ` (n−1),

then

NSn(ν) =
n
k

NSn−1(µ).

Proof. The lemma follows from Lemma 2.1.4, by noting that

NSn(ν) =
n!

zλ ×1 · k!
, and NSn−1(µ) =

(n−1)!
zλ ×1 · (k−1)!

.

Theorem 2.1.6. (Recurrence Formula for F (n,k)) Let 0< k < n and λ ` n. If the Ferrers

diagrams obtained from λ by removing 1 node from the right hand side from any row of

the diagram so that the resulting diagram will still be a partition of (n− 1) are those of

µ1, . . . ,µq, then

ηλ (k) =
n

k f λ

q

∑
j=1

f µ jηµ j(k−1).

23

Univ
ers

ity
 of

 M
ala

ya



Proof. Suppose k = 1. By equation (2.3),

ηλ (1) =
1
f λ

s1

∑
i=1

NSn(ϕ(σ1i))χλ (ϕ(σ1i)).

Note that σ1i consists of exactly one 1-cycle and ϕ(σ1i) = (ν1,ν2, . . . ,νr)` n with νr = 1,

νr−1 ≥ 2. Therefore ϕ(σ1i)− l̂ϕ(σ1i) = (ν1,ν2, . . . ,νr−1) ` (n− 1) is a derangement. In

fact, ϕ(σ1i)− l̂ϕ(σ1i) is the partition of (n−1) that represents ConSn−1(σ1i). By Lemmas

2.1.2 and 2.1.5,

ηλ (1) =
1
f λ

s1

∑
i=1

NSn(ϕ(σ1i))

(
q

∑
j=1

χµ j(ϕ(σ1i)− l̂ϕ(σ1i))

)

=
1
f λ

s1

∑
i=1

nNSn−1(ϕ(σ1i)− l̂ϕ(σ1i))

(
q

∑
j=1

χµ j(ϕ(σ1i)− l̂ϕ(σ1i))

)

=
n
f λ

q

∑
j=1

(
s1

∑
i=1

NSn−1(ϕ(σ1i)− l̂ϕ(σ1i))χµ j(ϕ(σ1i)− l̂ϕ(σ1i))

)

=
n
f λ

q

∑
j=1

f µ jηµ j(0),

where the last equality follows from equations (2.2) and (2.3). Thus, the theorem holds

for k = 1.

Suppose k > 1. (We note here that the proof for k > 1 is similar to the proof for k = 1.

The reason we distinguish them is to make the proof easier to comprehend.)

By equation (2.3),

ηλ (k) =
1
f λ

sk

∑
i=1

NSn(ϕ(σ ki))χλ (ϕ(σ ki)).

Note that σ ki consists of exactly k 1-cycles and ϕ(σ ki) = (ν1,ν2, . . . ,νr) ` n with ν j = 1

for r− k+1≤ j ≤ r and νr−k ≥ 2. Let σ ki be the extension of σki to Sn−1, i.e., σ ki( j) =

σki( j) for 1 ≤ j ≤ n− k and σ ki( j) = j for n− k+ 1 ≤ j ≤ n− 1. Note that ϕ(σ ki)−

l̂ϕ(σ ki)=(ν1,ν2, . . . ,νr−1)` (n−1) is the partition of (n−1) that represents ConSn−1(σ ki).

Furthermore,

S (n−1,k−1) =
sk⋃

i=1

ConSn−1(σ ki).
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Therefore, by Theorem 1.2.17,

ηµ j(k−1) =
1

f µ j

sk

∑
i=1

NSn−1(ϕ(σ ki)− l̂ϕ(σ ki))χµ j(ϕ(σ ki)− l̂ϕ(σ ki)).

By Lemmas 2.1.2 and 2.1.5,

ηλ (k) =
1
f λ

sk

∑
i=1

NSn(ϕ(σ ki))

(
q

∑
j=1

χµ j(ϕ(σ ki)− l̂ϕ(σ ki))

)

=
1
f λ

sk

∑
i=1

n
k

NSn−1(ϕ(σ ki)− l̂ϕ(σ ki))

(
q

∑
j=1

χµ j(ϕ(σ ki)− l̂ϕ(σ ki))

)

=
n

k f λ

q

∑
j=1

(
sk

∑
i=1

NSn−1(ϕ(σ ki)− l̂ϕ(σ ki))χµ j(ϕ(σ1i)− l̂ϕ(σ1i))

)

=
n

k f λ

q

∑
j=1

f µ jηµ j(k−1).

Hence, the theorem holds for k > 1.

2.2 ASP for F (n,1)

In this section, we want to apply Theorem 2.1.6 to determine whether the Alternating

Sign Property for F (n,1) holds. We first prove some inequalities for the eigenvalues of

F (n,0). Then, we prove the ASP for F (n,1).

2.2.1 Inequalities for the eigenvalues of F (n,0)

For convenience, if λ = (n), we set

dn = ηλ (0).

By Theorem 1.4.5,

dn = (−1)n +ndn−1, for n≥ 1, (2.4)
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where d0 = 1. Note that d1 = 0 and dn > 0 for all n 6= 1. Furthermore, for n≥ 3,

dn = (−1)n +ndn−1

≥ ndn−1−1 (2.5)

= (n−1)dn−1 +dn−1−1≥ (n−1)dn−1. (2.6)

Lemma 2.2.1. Let 1 ≤ p ≤ n− 1. If λ = (n− p,1p) and µ = (n− p + 1,1p−1) are

partitions of [n], then

f λ |ηλ (0)| ≤ f µ
∣∣ηµ(0)

∣∣ .
Furthermore, equality holds if and only if p = 1 or n− p = 1.

Proof. Note that

f λ =
n!

Hλ
=

n!
n(n− p−1)!p!

and f µ =
n!

Hµ
=

n!
n(n− p)!(p−1)!

.

By Theorem 1.4.2 and equation (2.4),

|ηλ (0)|=
∣∣1+(−1)n−pndn−p−1

∣∣ ,
|ηµ(0)|=

∣∣1+(−1)n−p+1ndn−p
∣∣

=
∣∣1−n+(−1)n−p+1n(n− p)dn−p−1

∣∣ .
Therefore, it is sufficient to show that

PL = (n− p)
∣∣1+(−1)n−pndn−p−1

∣∣≤ p
∣∣1−n+(−1)n−p+1n(n− p)dn−p−1

∣∣= PR.

Case 1. Suppose n and p are of the same parity (both are even or both are odd). Then

PR−PL = p(n(n− p)dn−p−1 +n−1)− (n− p)(1+ndn−p−1)

= n(n− p)(p−1)dn−p−1 +(p−1)n≥ 0.

Note that PR−PL = 0 if and only if p = 1.
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Case 2. Suppose n and p are of different parity (one even and one odd). Then dn−p−1 6= 0,

for n− p 6= 2. Therefore

PR−PL = p(1−n+n(n− p)dn−p−1)− (n− p)(ndn−p−1−1)

= n(n− p)(p−1)dn−p−1− (p−1)n

= n(p−1)((n− p)dn−p−1−1)≥ 0.

Note that PR−PL = 0 if and only if p = 1 or n− p = 1.

Lemma 2.2.2. Let m ≥ q ≥ 1 and n = m+ q. If λ = (m,q) and µ = (m+ 1,q− 1) are

partitions of [n], then

(m−q+1) |ηλ (0)| ≤
∣∣ηµ(0)

∣∣ .
Furthermore, equality holds if and only if q = 1 or m = q = 2.

Proof. We shall prove by induction on q. Suppose q = 1. By Corollary 1.4.7, |ηλ (0)|=

dm +dm−1. By equation (2.4),
∣∣ηµ(0)

∣∣= dm+1 = (−1)m+1 +(m+1)dm. Therefore

∣∣ηµ(0)
∣∣−m |ηλ (0)|= (−1)m+1 +dm−mdm−1

= (−1)m+1 +(−1)m +mdm−1−mdm−1 = 0.

Suppose q≥ 2. Assume that the lemma holds for q−1. By Theorem 1.4.2,

ηλ (0) = (−1)m+1dq−1− (m+1)η(m−1,q−1)(0).

By Theorem 1.4.6, sign(ηλ (0)) = (−1)q and sign((m−1,q−1)) = (−1)q−1. Thus,

|ηλ (0)|= (−1)m−q+1dq−1 +(m+1)|η(m−1,q−1)(0)|.

Similarly, by Theorems 1.4.2 and 1.4.6,

|ηµ(0)|= (−1)m−q+1dq−2 +(m+2)|η(m,q−2)(0)|.

By induction, (m−q+1)|η(m−1,q−1)(0)| ≤ |η(m,q−2)(0)|.
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Therefore

|ηµ(0)|− (m−q+1)|ηλ (0)|

≥ (−1)m−q(m−q+1)dq−1 +(−1)m−q+1dq−2 + |η(m,q−2)(0)|.

If q = 2, then dq−1 = 0 and |ηµ(0)|− (m−q+1)|ηλ (0)| ≥ dm +(−1)m−1 ≥ 0. Further-

more, equality holds if and only if m = q = 2.

Suppose q ≥ 3. By Corollary 1.4.7, |η(m,q−2)(0)| = dm +(q− 2)|η(m−1,q−3)(0)| > dm,

where the last inequality follows from |η(m−1,q−3)(0)| 6= 0. If m≡ q mod 2, then |ηµ(0)|−

(m−q+1)|ηλ (0)|> (m−q)dq−1 +(dq−1−dq−2)+dm > 0. If m 6≡ q mod 2, then

|ηµ(0)|− (m−q+1)|ηλ (0)|>−(m−q+1)dq−1 +dq−2 +dm

≥ dm− (m−q+1)dq−1

≥ (m−1)dm−1− (m−q+1)dq−1 (equation (2.6))

≥ (q−2)dq−1 > 0.

This completes the proof of the lemma.

Lemma 2.2.3. If m > q≥ 1 and k ≥ t ≥ 1, then

(m−q+ k+1)|η(q,qt)(0)| ≤ k|η(m+1,qt)(0)|.

Furthermore, equality holds if and only if q = 1, m = 2 and k = t.

Proof. We shall prove by induction on q. Suppose q = 1. Then by Corollary 1.4.7,

|η(q,qt)(0)|= t and |η(m+1,qt)(0)|= tdm +dm+1. Note that m≥ 2. If m = 2, then

k|η(m+1,qt)(0)|− (m−q+ k+1)|η(q,qt)(0)|= k(t +2)− (k+2)t

= 2(k− t)≥ 0.

Furthermore, equality holds if and only if k = t.
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If m = 3, then

k|η(m+1,qt)(0)|− (m−q+ k+1)|η(q,qt)(0)|= k(2t +9)− (k+3)t

= kt +3(3k− t)> 0.

Suppose m≥ 4. By equation (2.6), dm ≥ (m−1)(m−2)dm−2 ≥ (m−1)(m−2). Since

k(m−1)(m−2)− (m−q+ k+1) = km2− (3k+1)m+ k

≥ 4km− (3k+1)m+ k

= (k−1)m+ k > 0,

k|η(m+1,qt)(0)|− (m−q+ k+1)|η(q,qt)(0)| ≥ t((k−1)m+ k)+dm+1 > 0.

Suppose q≥ 2. Assume that

(m′− (q−1)+ k+1)|η(q−1,(q−1)t)(0)| ≤ k|η(m′+1,(q−1)t)(0)|,

for all m′ > q−1 and k ≥ t ≥ 1.

By Corollary 1.4.7,

|η(m+1,qt)(0)|= q|η(m,(q−1)t)(0)|+ |η(m+1,qt−1)(0)|

= q|η(m,(q−1)t)(0)|+q|η(m,(q−1)t−1)(0)|+ |η(m+1,qt−2)(0)|
...

= q

(
t

∑
j=1
|η(m,(q−1) j)(0)|

)
+dm+1.

Similarly,

|η(q,qt)(0)|= q

(
t

∑
j=1
|η(q−1,(q−1) j)(0)|

)
+dq.

By induction, for 1≤ j ≤ t,

(m−q+ k+1)|η(q−1,(q−1) j)(0)| ≤ k|η(m,(q−1) j)(0)|.
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By equation (2.6), dm+1 ≥ m(m−1)dm−1 ≥ m(m−1)dq. Note that m≥ 3 and

km(m−1)− (m−q+ k+1) = km2− (k+1)m+q− k−1

≥ 3km− (k+1)m+q− k−1

= (2k−1)m+q− k−1

≥ 3(2k−1)+q− k−1

= 5k−4+q > 0.

Hence, (m−q+ k+1)|η(q,qt)(0)| ≤ k|η(m+1,qt)(0)|.

This completes the proof of the lemma.

Lemma 2.2.4. If q≥ 1 and t ≥ 1, then

|η(qt ,q−1)(0)|< |η(qt ,q)(0)|.

Proof. We shall prove by induction on q. Suppose q = 1. Then by Corollary 1.4.7,

|η(qt ,q)(0)|= t > t−1 = |η(qt ,q−1)(0)|.

Suppose q≥ 2. Assume that the lemma holds for q−1. By Corollary 1.4.7,

|η(qt ,q)(0)|= q|η((q−1)t ,q−1)(0)|+ |η(qt)(0)|,

|η(qt ,q−1)(0)|= (q−1)|η((q−1)t ,q−2)(0)|+ |η(qt)(0)|.

By induction, |η((q−1)t ,q−2)(0)|< |η((q−1)t ,q−1)(0)|. Hence, |η(qt ,q−1)(0)|< |η(qt ,q)(0)|.

This completes the proof of the lemma.

Lemma 2.2.5. Let m ≥ q ≥ 1, k ≥ 2 and n = m+ kq. If λ = (m,qk−1,q) and µ = (m+

1,qk−1,q−1) are partitions of [n], then

(m−q+1)|ηλ (0)| ≤ k|ηµ(0)|.

Furthermore, equality holds if and only if q = 1 = m.

Proof. We shall prove by induction on q. Suppose q = 1. By Corollary 1.4.7, |ηλ (0)|=

kdm−1 +dm and |ηµ(0)|= (k−1)dm +dm+1. If m = 1, then |ηλ (0)|= k = k|ηµ(0)| and
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the lemma holds. If m = 2, then 2|ηλ (0)|= 2 < k(k+1) = k|ηµ(0)| and the lemma holds.

Suppose m≥ 3. Then by equation (2.6),

k|ηµ(0)|− (m−q+1)|ηλ (0)|

= k((k−1)dm +dm+1)−m(kdm−1 +dm)

≥ k((k−1)dm +mdm)−m(kdm−1 +dm)

= (k2 +(k−1)m− k)dm− kmdm−1

≥ dm−1
(
(k2 +(k−1)m− k)(m−1)− km

)
≥ dm−1

(
2(k2 +(k−1)m− k)− km

)
= dm−1 (2k(k−1)+(k−2)m)> 0.

Suppose q≥ 2. Assume that the lemma holds for q−1. By Theorem 1.4.2,

ηλ (0) = (−1)k(m+ k)η(m−1,(q−1)k−1,q−1)(0)+(−1)m+k
η((q−1)k−1,q−1)(0).

By Theorem 1.4.6, sign(ηλ (0)) = (−1)kq, sign(η(m−1,(q−1)k−1,q−1)(0)) = (−1)k(q−1) and

sign(η((q−1)k−1,q−1)(0)) = (−1)(k−1)(q−1). Therefore,

|ηλ (0)|= (m+ k)|η(m−1,(q−1)k−1,q−1)(0)|+(−1)m−q+1|η((q−1)k−1,q−1)(0)|.

Similarly,

|ηµ(0)|= (m+ k+1)|η(m,(q−1)k−1,q−2)(0)|+(−1)m−q|η((q−1)k−1,q−2)(0)|.

By induction,

(m−q+1)|η(m−1,(q−1)k−1,q−1)(0)| ≤ k|η(m,(q−1)k−1,q−2)(0)|.
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Suppose m = q. Then

(m−q+1)|ηλ (0)|= (m−q+1)
(
(m+ k)|η(m−1,(q−1)k−1,q−1)(0)|− |η((q−1)k−1,q−1)(0)|

)
< (m+ k)

(
(m−q+1)|η(m−1,(q−1)k−1,q−1)(0)|

)
< (m+ k+1)

(
k|η(m,(q−1)k−1,q−2)(0)|

)
≤ k
(
(m+ k+1)|η(m,(q−1)k−1,q−2)(0)|+ |η((q−1)k−1,q−2)(0)|

)
= k|ηµ(0)|.

Suppose m > q. Note that

(m−q+1)|ηλ (0)| ≤ (m−q+1)
(
(m+ k)|η(m−1,(q−1)k−1,q−1)(0)|+ |η((q−1)k−1,q−1)(0)|

)
≤ (m+ k)

(
k|η(m,(q−1)k−1,q−2)(0)|

)
+(m−q+1)|η((q−1)k−1,q−1)(0)|.

By Lemma 2.2.4,

k|ηµ(0)| ≥ k
(
(m+ k+1)|η(m,(q−1)k−1,q−2)(0)|− |η((q−1)k−1,q−2)(0)|

)
> k
(
(m+ k+1)|η(m,(q−1)k−1,q−2)(0)|− |η((q−1)k−1,q−1)(0)|

)
.

Therefore,

k|ηµ(0)|− (m−q+1)|ηλ (0)|

≥ k|η(m,(q−1)k−1,q−2)(0)|− (m−q+ k+1)|η((q−1)k−1,q−1)(0)|.

If q = 2, then by Lemma 2.2.3, k|ηµ(0)|− (m− q+ 1)|ηλ (0)| ≥ 0. Suppose q ≥ 3. By

Corollary 1.4.7,

|η(m,(q−1)k−1,q−2)(0)|= (q−2)|η(m−1,(q−2)k−1,q−3)(0)|+ |η(m,(q−1)k−1)(0)|

> |η(m,(q−1)k−1)(0)|.
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It then follows from Lemma 2.2.3 that

k|ηµ(0)|− (m−q+1)|ηλ (0)|

> k|η(m,(q−1)k−1)(0)|− (m−q+ k+1)|η((q−1)k−1,q−1)(0)|> 0.

This completes the proof of the lemma.

Lemma 2.2.6. Let r ≥ 0, m≥ q≥ 1, k ≥ 1, n = m+ kq+∑
r
j=1 α j, q > α1 and

λ = (m,qk−1,q,α1, . . . ,αr),

µ = (m+1,qk−1,q−1,α1, . . . ,αr),

be partitions of [n]. Then

(m−q+1) |ηλ (0)| ≤ k
∣∣ηµ(0)

∣∣ .
Proof. If r = 0, then the lemma follows from Lemma 2.2.2 or 2.2.5, depending on whether

k = 1 or k ≥ 2. Suppose r ≥ 1. Then q≥ 2, for q > α1 ≥ 1. We shall prove by induction

on α1.

Suppose α1 = 1. Then α1 = · · ·= αr = 1. By Corollary 1.4.7,

ηλ (0) = |η(m,qk−1,q,α1,...,αr−1)
(0)|+ |η(m−1,(q−1)k−1,q−1)(0)|

= |η(m,qk−1,q,α1,...,αr−2)
(0)|+2|η(m−1,(q−1)k−1,q−1)(0)|

...

= |η(m,qk−1,q)(0)|+ r|η(m−1,(q−1)k−1,q−1)(0)|.

Similarly,

ηµ(0) = |η(m+1,qk−1,q−1)(0)|+ r|η(m,(q−1)k−1,q−2)(0)|.
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By Lemma 2.2.2 or 2.2.5,

(m−q+1)|η(m,qk−1,q)(0)| ≤ k|η(m+1,qk−1,q−1)(0)|, and

(m−q+1)|η(m−1,(q−1)k−1,q−1)(0)| ≤ k|η(m,(q−1)k−1,q−2)(0)|.

Hence, (m−q+1) |ηλ (0)| ≤ k
∣∣ηµ(0)

∣∣.
Suppose α1 ≥ 2. Assume that the lemma holds for α1−1. By Corollary 1.4.7,

ηλ (0) = |η(m,qk−1,q,α1,...,αr−1)
(0)|+αr|η(m−1,(q−1)k−1,q−1,α1−1,...,αr−1)(0)|

...

= |η(m,qk−1,q)(0)|+
r

∑
j=1

α j|η(m−1,(q−1)k−1,q−1,α1−1,...,α j−1)(0)|.

Similarly,

ηµ(0) = |η(m+1,qk−1,q−1)(0)|+
r

∑
j=1

α j|η(m,(q−1)k−1,q−2,α1−1,...,α j−1)(0)|.

By Lemma 2.2.2 or 2.2.5,

(m−q+1)|η(m,qk−1,q)(0)| ≤ k|η(m+1,qk−1,q−1)(0)|.

By induction, for 1≤ j ≤ r,

(m−q+1)|η(m−1,(q−1)k−1,q−1,α1−1,...,α j−1)(0)| ≤ k|η(m,(q−1)k−1,q−2,α1−1,...,α j−1)(0)|.

Hence, (m−q+1) |ηλ (0)| ≤ k
∣∣ηµ(0)

∣∣.
The following lemma is obvious.

Lemma 2.2.7. If u≥ v, then

(
u+1

u

)(
v−1

v

)
< 1.

34

Univ
ers

ity
 of

 M
ala

ya



Lemma 2.2.8. Let r ≥ 0, k ≥ 1, m≥ q≥ 2, n = m+ kq+∑
r
j=1 α j, q > α1 and

λ = (m,qk−1,q,α1, . . . ,αr),

µ = (m+1,qk−1,q−1,α1, . . . ,αr),

be partitions of [n]. Then

f λ

f µ
<

(m−q+1)
k

.

Proof. Note that hµ(i, j) = hλ (i, j) for all i, j except when i = q, j = 1 or j = k + 1.

Let ci = hλ (i,1) and di = hλ (i,k+ 1) for 1 ≤ i ≤ q− 1. Note that hµ(i,1) = ci + 1 and

hµ(i,k+1) = di−1 for 1≤ i≤ q−1, and hµ(q,1) = hλ (q,1). Therefore

f λ

f µ
=

Hµ

Hλ

=

(
∏

q−1
i=1 (ci +1)

)(
∏

q−1
i=1 (di−1)

)
(m+1−q)!(k−1)!(

∏
q−1
i=1 ci

)(
∏

q−1
i=1 di

)
(m−q)!k!

=

(
q−1

∏
i=1

(
ci +1

ci

)(
di−1

di

))
(m+1−q)

k

<
(m−q+1)

k
,

where the last inequality follows from ci > di and Lemma 2.2.7.

Theorem 2.2.9. Let r ≥ 0, k ≥ 1, m≥ q≥ 1, n = m+ kq+∑
r
j=1 α j, q > α1 and

λ = (m,qk−1,q,α1, . . . ,αr),

µ = (m+1,qk−1,q−1,α1, . . . ,αr),

be partitions of [n]. Then

f λ |ηλ (0)| ≤ f µ
∣∣ηµ(0)

∣∣ .
Furthermore, equality holds if and only if λ = (1,1n−1) or λ = (n−1,1).

Proof. Suppose q = 1. Then r = 0 and the theorem follows from Lemma 2.2.1. Suppose
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q≥ 2. By Lemmas 2.2.6 and 2.2.8,

f λ

f µ
|ηλ (0)|<

(m−q+1)
k

|ηλ (0)| ≤
∣∣ηµ(0)

∣∣ .
This completes the proof of the theorem.

2.2.2 Proof of ASP for F (n,1)

We now prove the Alternating Sign Property for eigenvalues of F (n,1).

Theorem 2.2.10. (ASP for F (n,1)) Let n≥ 2 and λ = (λ1, . . . ,λr) ` n.

(a) ηλ (1) = 0 if and only if λ = (n−1,1) or λ = (2,1n−2).

(b) If r = 1 and λ 6= (2), then ηλ (1)> 0.

(c) If r ≥ 2 and λ 6= (n−1,1) or (2,1n−2), then

sign(ηλ (1)) = (−1)|λ |−λ1−1

= (−1)(#cells under the first row of λ )−1

where sign(ηλ (1)) is 1 if ηλ (1) is positive or −1 if ηλ (1) is negative.

Proof. Suppose the Ferrers diagrams obtained from λ by removing 1 node from the right

hand side from any row of the diagram so that the resulting diagram will still be a partition

of (n−1) are those of µ1, . . . ,µs. Then by Theorem 2.1.6,

ηλ (1) =
n

k f λ

s

∑
j=1

f µ jηµ j(0).

Suppose r = 1. Then s = 1 and µ1 = (λ1−1) = (n−1). Thus, ηλ (1) =
n

k f λ
f µ1ηµ1(0)≥ 0

and with equality if and only if µ1 = (1), i.e., λ = (2).

Suppose r ≥ 2. If λ1 = λ2, then the first part of each µ j is λ1. By Theorem 1.4.6,

sign(ηµ j(0)) = (∑r
i=2 λi)−1 = |λ |−λ1−1. Hence,

ηλ (1) = (−1)|λ |−λ1−1 n
k f λ

s

∑
j=1

f µ j |ηµ j(0)|.
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Note that ηλ (1) = 0 if and only if s = 1 and µ1 = (1), i.e., λ = (1,1). For other partitions

λ , |ηλ (1)| 6= 0 and sign(ηλ (1)) = |λ |−λ1−1.

Suppose λ1 = m+1 > λ2 = q. Note that we may write

λ = (m+1,qk−1,q,α1, . . . ,αr),

where r ≥ 0, k ≥ 1, m≥ q≥ 1, and q > α1. Let

µ1 = (m,qk−1,q,α1, . . . ,αr),

µ2 = (m+1,qk−1,q−1,α1, . . . ,αr).

By Theorem 1.4.6, sign(ηµ1(0)) = |λ | − λ1 and sign(ηµ j(0)) = |λ | − λ1− 1 for j ≥ 2.

This implies that

ηλ (1) = (−1)|λ |−λ1−1 n
k f λ

(
f µ2|ηµ2(0))|− f µ1|ηµ1(0))|+

s

∑
j=3

f µ j |ηµ j(0)|

)
.

By Theorem 2.2.9, f µ2|ηµ2(0)| − f µ1|ηµ1(0)| ≥ 0. Furthermore, equality holds if and

only if

µ1 = (1,1n−2) or µ1 = (n−2,1),

i.e., λ = (2,1n−2) or (n− 1,1). Note also that when this happens, s = 2. Therefore

ηλ (1) = 0. For other partitions λ , f µ2 |ηµ2(0)| − f µ1|ηµ1(0)| > 0. Hence, |ηλ (1)| 6= 0

and sign(ηλ (1)) = |λ |−λ1−1.

This completes the proof of the theorem.
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CHAPTER 3: SMALLEST EIGENVALUE AND BOUNDING A LARGEST

INDEPENDENT SET IN F (n,1)

In this chapter, we will determine the smallest eigenvalue of F (n,1) by applying the

Recurrence Formula for F (n,k) (Theorem 2.1.6). Then we will determine a bound for a

largest independent set in F (n,1). The results of this chapter have been published in Ku,

Lau and Wong (2016, [40]).

3.1 Some Eigenvalues of F (n,1)

Lemma 3.1.1. (Ellis, 2012 [17, Lemma 2.4]) For n ≥ 9, the only Specht modules Sλ of

dimension f λ <
(n−1

2

)
−1 are as follows:

(a) S(n) (the trivial representation), dimension 1;

(b) S(1
n) (the sign representation), dimension 1;

(c) S(n−1,1), dimension n−1;

(d) S(2,1
n−2) (∼= S(1

n)⊗S(n−1,1)), dimension n−1.

Lemma 3.1.2. For n ≥ 13, the only Specht modules Sλ of dimension
(n−1

2

)
− 1 ≤ f λ <

1
6n(n−1)(n−5) are as follows:

(a) S(n−2,2), dimension
(n−1

2

)
−1;

(b) S(2
2,1n−4), dimension

(n−1
2

)
−1;

(c) S(n−2,12), dimension
(n−1

2

)
;

(d) S(3,1
n−3), dimension

(n−1
2

)
.

Proof. By Lemma 3.1.1, it is sufficient to prove the following statement:
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(∗) For n≥ 13, f λ < 1
6n(n−1)(n−5) if and only if

λ ∈
{
(n),(n−1,1),(1n),(2,1n−2),(n−2,2),(22,1n−4),(n−2,12),(3,1n−3)

}
.

By direct calculation using Theorem 1.2.33, (∗) can be verified for n = 13,14. We pro-

ceed by induction. Assume that (∗) holds for n− 2, n− 1; we will prove it for n. Let α

be a partition of n such that f α < 1
6n(n− 1)(n− 5). Consider the restriction [α] ↓ Sn−1,

which has the same dimension. First suppose [α] ↓ Sn−1 is reducible. If it has one of the

eight irreducible representations (in (∗)) as a constituent, then by (1.2), the possibilities

of α are as follows:

Table 3.1: The possibilities of α

constituent possibilities of α

[n−1] (n), (n−1,1)
[1n−1] (1n), (2,1n−1)
[n−2,1] (n−1,1), (n−2,2), (n−2,12)
[2,1n−3] (2,1n−2), (22,1n−4), (3,1n−3)
[n−3,2] (n−2,2), (n−3,3), (n−3,2,1)
[22,1n−5] (3,2,1n−5), (23,1n−6), (22,1n−4)
[n−3,12] (n−2,12), (n−3,2,1), (n−3,13)
[3,1n−4] (4,1n−4), (3,2,1n−5), (3,1n−3)

By Lemma 1.2.33, the new irreducible representations above all have dimension≥ 1
6n(n−

1)(n−5):

Table 3.2: α and dimension of α

α f α

(n−3,3), (23,1n−6) 1
6n(n−1)(n−5)

(n−3,2,1), (3,2,1n−5) 1
3n(n−2)(n−4)

(n−3,13), (4,1n−4) 1
6(n−1)(n−2)(n−3)

Hence, (∗) holds, provided that [α] ↓ Sn−1 has one of the eight irreducible representations

in (∗) as a constituent.

Suppose that the irreducible constituents of [α] ↓ Sn−1 do not include any of the eight ir-

reducible representations in (∗). By induction hypothesis for n−1, each irreducible con-

stituent has dimension ≥ 1
6(n−1)(n−2)(n−6). Note that 2

(1
6(n−1)(n−2)(n−6)

)
>

1
6n(n−1)(n−5) for n≥ 15. Thus, [α] ↓ Sn−1 has exactly one irreducible constituent, i.e.,

it is irreducible. Therefore, [α] = [st ] for some s, t ∈ N with st = n, i.e., it has a square
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Young diagram. Furthermore, t ≥ 2.

Now consider

[α] ↓ Sn−2 = [st−1,s−2]+ [st−2,s−1,s−1].

Note that for n ≥ 15, neither of these two irreducible constituents are any of the eight

irreducible representations in (∗). By induction hypothesis for n−2, each has dimension

≥ 1
6(n−2)(n−3)(n−7), but

2
(

1
6
(n−2)(n−3)(n−7)

)
>

1
6

n(n−1)(n−5),

for n≥ 15, contradicting dim([α] ↓ Sn−2)<
1
6n(n−1)(n−5).

This completes the proof of the lemma.

For convenience, if λ = (n), we set

dn = ηλ (0).

By Theorem 1.2.17, dn = |Dn|.

Lemma 3.1.3. For n≥ 5, the followings are the eigenvalues of F (n,1) for α with dimen-

sion f α < 1
6n(n−1)(n−5):

Table 3.3: Eigenvalues of F (n,1) for α with small dimension

λ ηλ (1)
(n) ndn−1
(n−1,1) 0
(1n) (−1)nn(n−2)
(2,1n−2) 0
(n−2,2) − 1

(n−3) [dn−1 +(−1)n(n−2)]
(n−2,12) − n

(n−1)(n−2)

[
dn−1 +(−1)n−1(n−2)

]
(22,1n−4) (−1)n−1(n−2)2

(3,1n−3) (−1)nn(n−4)

Proof. These eigenvalues can be evaluated by using Theorem 1.4.5 (or Theorem 1.4.2)

and Theorem 2.1.6.

(a) η(n)(1) =
n

f (n)

[
f (n−1)η(n−1)(0)

]
= n

1 [1 ·dn−1] = ndn−1.
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(b) By Theorem 1.4.5, η(n−2,1)(0) =−η(n−2)(0)−η(n−3)(0) =−dn−2−dn−3. Since

dn−2 = (−1)n−2 +(n−2)dn−3 ⇐⇒ dn−3 =
dn−2 +(−1)n−1

n−2

we have

η(n−2,1)(0) =−
(−1)n−1 +(n−1)dn−2

n−2
=− dn−1

n−2
(Theorem 1.4.5).

Therefore,

η(n−1,1)(1) =
n

f (n−1,1)

[
f (n−2,1)

η(n−2,1)(0)+ f (n−1)
η(n−1)(0)

]
=

n
n−1

[
(n−2) ·

(
− dn−1

n−2

)
+1 ·dn−1

]
= 0.

(c) By Theorem 1.4.2, η(1n−1)(0) = (−1)n−1 +(−1)n(n− 1) = (−1)n−2(n− 2). There-

fore,

η(1n)(1) =
n

f (1n)

[
f (1

n−1)
η(1n−1)(0)

]
=

n
1
[
1 · (−1)n−2(n−2)

]
= (−1)nn(n−2).

(d) By Theorem 1.4.2, η(2,1n−3)(0)= (−1)n−1+(−1)n+1(n−1)η(1)(0)= (−1)n−1. There-

fore,

η(2,1n−2)(1) =
n

f (2,1n−2)

[
f (2,1

n−3)
η(2,1n−3)(0)+ f (1

n−1)
η(1n−1)(0)

]
=

n
n−1

[
(n−2) · (−1)n−1 +1 · (−1)n−2(n−2)

]
= 0.

(e) By Theorem 1.4.5, η(n−3,2)(0) = η(n−3)(0)− 2η(n−4,1)(0) = dn−3 − 2
(
−dn−3

n−4

)
=

n−2
n−4dn−3. Therefore,
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η(n−2,2)(1) =
n

f (n−2,2)

[
f (n−3,2)

η(n−3,2)(0)+ f (n−2,1)
η(n−2,1)(0)

]
=

2n
n(n−3)

[
(n−1)(n−4)

2
· n−2

n−4
dn−3 +(n−2) ·

(
− dn−1

n−2

)]
=

2
(n−3)

[
−dn−1 +

(n−1)(n−2)
2

dn−3

]
=

2
(n−3)

[
−dn−1 +

(n−1)(n−2)
2

(
dn−2 +(−1)n−1

n−2

)]
=

2
(n−3)

[
−dn−1 +

(n−1)
2

dn−2−
(n−1)

2
(−1)n

]
=

2
(n−3)

[
−dn−1 +

1
2
(dn−1 +(−1)n)− (n−1)

2
(−1)n

]
=− 1

(n−3)
[dn−1 +(−1)n(n−2)] .

(f) By Theorem 1.4.5, η(n−3,12)(0) = −η(n−3,1)(0) + η(n−4)(0) = −
(
−dn−2

n−3

)
+ dn−4.

Therefore,

η(n−2,12)(1) =
n

f (n−2,12)

[
f (n−3,12)

η(n−3,12)(0)+ f (n−2,1)
η(n−2,1)(0)

]
=

2n
(n−1)(n−2)

[
(n−2)(n−3)

2
·
(

dn−4−
(
− dn−2

n−3

))
+(n−2) ·

(
− dn−1

n−2

)]
=

2n
(n−1)(n−2)

[
−dn−1 +

n−2
2

dn−2 +
(n−2)(n−3)

2
dn−4

]
=

2n
(n−1)(n−2)

[
−dn−1 +

n−2
2

dn−2 +
n−2

2
(dn−3 +(−1)n)

]
=

2n
(n−1)(n−2)

[
−dn−1 +

n−2
2

dn−2 +
n−2

2
dn−3 +

n−2
2

(−1)n
]

=
2n

(n−1)(n−2)

[
−dn−1 +

n−2
2

dn−2 +
1
2
(
dn−2 +(−1)n−1)+ n−2

2
(−1)n

]
=

2n
(n−1)(n−2)

[
−dn−1 +

n−1
2

dn−2 +
n−3

2
(−1)n

]
=

2n
(n−1)(n−2)

[
−dn−1 +

1
2
(dn−1 +(−1)n)+

n−3
2

(−1)n
]

=
2n

(n−1)(n−2)

[
−1

2
dn−1 +

(−1)n

2
(n−2)

]
=− n

(n−1)(n−2)
[
dn−1 +(−1)n−1(n−2)

]
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(g) By Theorem 1.4.2, η(22,1n−5)(0)= (−1)n−2η(1)(0)+(−1)n(n−2)η(1,1)(0)= (−1)n(n−

2)η(1,1)(0) = (−1)n−1(n−2). Therefore,

η(22,1n−4)(1) =
n

f (22,1n−4)

[
f (2,1

n−3)
η(2,1n−3)(0)+ f (2

2,1n−5)
η(22,1n−5)(0)

]
=

2n
n(n−3)

[
(n−2) · (−1)n−1 +

(n−1)(n−4)
2

· (−1)n−1(n−2)
]

= (−1)n−1(n−2)2.

(h) By Theorem 1.4.2, η(3,1n−4)(0)= (−1)n−1+(−1)n(n−1)η(2)(0)= (−1)n−1+(−1)n(n−

1) = (−1)n(n−2). Therefore

η(3,1n−3)(1) =
n

f (3,1n−3)

[
f (2,1

n−3)
η(2,1n−3)(0)+ f (3,1

n−4)
η(3,1n−4)(0)

]
=

2n
(n−1)(n−2)

[
(n−2) · (−1)n−1 +

(n−2)(n−3)
2

· (−1)n(n−2)
]

= (−1)nn(n−4).

Lemma 3.1.4. (Ellis, 2012 [17, Lemma 2.5]) Let H be a graph on N vertices whose

adjacency matrix A has eigenvalues η1 ≥ η2 ≥ . . .≥ ηN , then

N

∑
i=1

η
2
i = 2e(H),

where e(H) is the number of edges in H.

Lemma 3.1.5. |S (n,1)|= ndn−1.

Proof. Let

Ai = {α ∈ Sn : α(i) = i and α( j) 6= j ∀ j ∈ [n]\{i}}.

Note that the restriction of Ai on [n]\{i} is the derangement of [n]\{i}. Thus, |Ai|= dn−1.

Since S (n,1) =
⋃n

i=1 Ai and Ai∩A j = /0 for i 6= j, we have |S (n,1)|= ndn−1.
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Lemma 3.1.6. Let n be positive integer such that n ≥ 6, and λ ` n. If the dimension of

the Specht module Sλ , f λ ≥ 1
6n(n−1)(n−5), then

|ηλ (1)| ≤ 6

√
dn−1(n−2)(n−3)(n−4)(n−6)!

(n−1)(n−5)
.

Proof. By Theorem 1.2.17, Lemmas 3.1.4 and 3.1.5,

∑
λ`n

(
f λ

ηλ (1)
)2

= 2e(F (n,1)) = n!|S (n,1)|= n!(ndn−1) .

This implies that

|ηλ (1)| ≤
√

n!(ndn−1)

f λ
≤

6
√

n!(ndn−1)

n(n−1)(n−5)
= 6

√
dn−1(n−2)(n−3)(n−4)(n−6)!

(n−1)(n−5)
.

3.2 Smallest Eigenvalue of F (n,1)

We now prove some preliminary results to determine the smallest eigenvalue of F (n,1).

Lemma 3.2.1. For n≥ 4, dn >
n!
3 .

Proof. By Theorem 1.4.5, dn = (−1)n + ndn−1. For n = 4, the lemma holds. Suppose

n ≥ 5. Assume that the lemma holds for n− 1 , i.e., dn−1 >
(n−1)!

3 . Since both sides are

integers, dn−1 ≥ (n−1)!
3 +1. Therefore,

dn ≥−1+ndn−1 ≥−1+n
(
(n−1)!

3
+1
)
≥ n!

3
+(n−1)>

n!
3
.

Hence, the lemma follows.

Lemma 3.2.2. Let n ≥ 14 be a positive integer and λ ` n. If the dimension f λ of the

Specht module Sλ is at least 1
6n(n−1)(n−5), then

|ηλ (1)|<
∣∣η(n−2,2)(1)

∣∣ .
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Proof. By Lemma 3.1.6,

|ηλ (1)| ≤ 6

√
dn−1(n−2)(n−3)(n−4)(n−6)!

(n−1)(n−5)
.

By Lemma 3.1.3,
∣∣η(n−2,2)(1)

∣∣ = 1
(n−3) [dn−1 +(−1)n(n−2)] ≥ 1

(n−3) [dn−1− (n−2)].

So, it is sufficient to show that

6

√
dn−1(n−2)(n−3)(n−4)(n−6)!

(n−1)(n−5)
<

1
(n−3)

[dn−1− (n−2)]

⇔ 36dn−1(n−2)(n−3)(n−4)(n−6)!
(n−1)(n−5)

<
1

(n−3)2 [dn−1− (n−2)]2

⇔ 36dn−1(n−2)(n−3)3(n−4)(n−6)! < (n−1)(n−5)
[
d2

n−1−2(n−2)dn−1 +(n−2)2]
⇔ 36dn−1(n−2)(n−3)3(n−4)(n−6)!

+2dn−1(n−1)(n−2)(n−5)< (n−1)(n−5)
[
d2

n−1 +(n−2)2] . (3.1)

Note that for n≥ 7,

(n−2)(n−3)3(n−4)(n−6)! > (n−2)(n−5)(n−3)3(n−6)!

> 16(n−2)(n−5)(n−3)

> 2(n−1)(n−2)(n−5).

Therefore, equation (3.1) follows provided that

37dn−1(n−2)(n−3)3(n−4)(n−6)! < (n−1)(n−5)
[
d2

n−1 +(n−2)2] . (3.2)

By Lemma 3.2.1,

(n−1)(n−5)
[
d2

n−1 +(n−2)2]> (n−1)(n−5)
[

dn−1

(
(n−1)!

3

)
+(n−2)2

]
> (n−1)(n−5)dn−1

(n−1)!
3

.

So, equation (3.2) follows provided that

(n−1)(n−5)(n−1)! > 111(n−2)(n−3)3(n−4)(n−6)!,
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which is equivalent to

(n−1)2(n−5)2 > 111(n−3)2. (3.3)

Finally, note that equation (3.3) holds for n = 14,15 and for n≥ 16,

(n−1)2(n−5)2 > (n−3)2(n−5)2 ≥ 112(n−3)2 > 111(n−3)2.

This completes the proof of the lemma.

Lemma 3.2.3. Let n≥ 7 be a positive integer. Then

|ηλ (1)|<
∣∣η(n−2,2)(1)

∣∣ ,
for λ ∈

{
(n−2,12),(1n),(22,1n−4),(3,1n−3)

}
.

Proof. By Lemma 3.1.3, it is sufficient to show the following two equations hold:

1
(n−3)

[dn−1− (n−2)]> n(n−2); (3.4)

1
(n−3)

[dn−1− (n−2)]>
n

(n−1)(n−2)
[dn−1 +(n−2)] . (3.5)

Note that equation (3.4) is equivalent to

dn−1 > n(n−2)(n−3)+(n−2), (3.6)

and equation (3.6) holds provided that

dn−1 > n(n−1)(n−2). (3.7)

Next, equation (3.5) is equivalent to

2dn−1 > n(n−2)(n−3)+(n−1)(n−2)2. (3.8)

Note that equation (3.8) holds provided that equation (3.7) holds. Thus, it is sufficient to

show that equation (3.7) holds.
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By Lemma 3.2.1, for n≥ 7,

dn−1 >
(n−1)!

3
≥ 2(n−1)(n−2)(n−3)> n(n−1)(n−2).

This completes the proof of the lemma.

Theorem 3.2.4. For n≥ 7, the smallest eigenvalue of F (n,1) is equal to

η(n−2,2)(1) =−
1

(n−3)
(dn−1 +(−1)n(n−2))

where dn = |Dn|. Furthermore, ηλ (1) =− 1
(n−3) (dn−1 +(−1)n(n−2)) if and only if λ =

(n−2,2).

Proof. It follows from Lemmas 3.1.1, 3.1.2, 3.1.3, 3.2.2 and 3.2.3 that for n≥ 14,

− 1
(n−3)

[dn−1 +(−1)n(n−2)]

is the smallest eigenvalue of F (n,1). Furthermore, ηλ (1)=− 1
(n−3) [dn−1 +(−1)n(n−2)]

if and only if λ = (n−2,2). For 7≤ n≤ 13, the assertion can be verified by checking all

the the eigenvalues in Appendix A. This completes the proof of Theorem 3.2.4.

Corollary 3.2.5. The size of a largest independent set in F (n,1) is at most

n![dn−1 +(−1)n(n−2)]
(n2−3n+1)dn−1 +(−1)n(n−2)

.

Proof. By Lemma 3.1.5, Theorems 3.2.4 and 1.4.1, if I is an independent set in F (n,1),

then

|I| ≤ n!

1− ndn−1
− 1

(n−3) [dn−1+(−1)n(n−2)]

=
[dn−1 +(−1)n(n−2)]n!

dn−1 +(−1)n(n−2)+n(n−3)dn−1

=
n![dn−1 +(−1)n(n−2)]

(n2−3n+1)dn−1 +(−1)n(n−2)
.
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CHAPTER 4: SMALLEST EIGENVALUE AND BOUNDING A LARGEST

INDEPENDENT SET IN F (n,k) FOR k << n

Ellis (2014, [18]) proved that for sufficiently large n, if A is a family of permutations of

{1,2, . . . ,n} with no two permutations agreeing in exactly one point, then |A | ≤ (n−2)!,

with equality if and only if A is a coset of the stabiliser of two points. Such a family

can also be viewed as an independent set in the Cayley graph of the symmetric group

generated by permutations with exactly one fixed point.

In this chapter, we will determine the smallest eigenvalue of F (n,k) for k << n and the

partition where it occurs. Then we will determine a bound for a largest independent set

in F (n,k), thus settling the size of a largest family of permutations such that no two of

its elements agree in exactly k points is O((n− t0)!) for n sufficiently large in terms of k.

4.1 Dimension of Specht Module Sλ

Lemma 4.1.1. Let n, t be positive integers such that λ = (n− t,λ2, . . . ,λr) ` n with

∑
r
i=2 λi = t, and β = (λ2, . . . ,λr) ` t. Let u be the number of columns in the Ferrers

diagram of β and ai be the number of boxes in the ith column. Then

f λ = f β

(
n!
t!

)
1

(n− t−u)!∏
u
i=1 (n− t +ai− i+1)

.

Proof. By Theorem 1.2.33, f β = t!
∏hβ (a,b)

. Now,

∏hλ (a,b) =
∏hβ (a,b)

∏ j hλ (1, j)

and

∏
j

hλ (1, j) = (n− t−u)!
u

∏
i=1

(n− t +ai− i+1) .

Hence, the lemma holds.
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The following lemma is obvious.

Lemma 4.1.2. If a,u,v are positive integers with u≥ v, then

(
v+a

v

)(
u

u+a

)
≥ 1.

Lemma 4.1.3. Let n, t be positive integers such that λ = (n− t,λ2, . . . ,λr) ` n with

∑
r
i=2 λi = t, and β = (λ2, . . . ,λr) ` t. Let u be the number of columns in the Ferrers

diagram of β and ai be the number of boxes in the ith column. Let µ = (n− t, t) ` n. Then

the following hold.

(a)
f λ

f µ f β
=

(
n− t +1

n−2t +1

)(
∏

u
i=1 (n− t− i+1)

∏
u
i=1 (n− t +ai− i+1)

)
≥ 1.

(b) Let

(n− t +1)
u

∏
i=1

(n− t− i+1)− (n−2t +1)
u

∏
i=1

(n− t +ai− i+1) =
l

∑
i=0

cini.

Then l ≤ u−1≤ t−1 and cl ≥ 1. Furthermore, for 0≤ i≤ l,

|ci| ≤ 2(4t)t+1.

(c) There exists a positive integer n1 = n1(t) such that for all n≥ n1,

l

∑
i=0

cini ≥ 1.

Proof. (a) By Lemma 4.1.1,

f λ = f β

(
n!
t!

)
1

(n− t−u)!∏
u
i=1 (n− t +ai− i+1)

,

f µ =

(
n!
t!

)
1

(n−2t)!∏
t
i=1 (n− t− i+2)

.
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Therefore,

f λ

f µ f β
=

(n−2t)!∏
t
i=1 (n− t− i+2)

(n− t−u)!∏
u
i=1 (n− t +ai− i+1)

=

(
(n−2t)!∏

t
i=u+1 (n− t− i+2)

(n− t−u)!

)(
∏

u
i=1 (n− t− i+2)

∏
u
i=1 (n− t +ai− i+1)

)
=

(
n− t−u+1

n−2t +1

)(
(n− t +1)∏

u
i=2 (n− t− i+2)

∏
u
i=1 (n− t +ai− i+1)

)
=

(
n− t +1

n−2t +1

)(
∏

u
i=1 (n− t− i+1)

∏
u
i=1 (n− t +ai− i+1)

)
(4.1)

=

(
n− t +1

n−2t +1

)(u−1

∏
i=0

(
n− t−u+ i+1

n− t +au−i−u+ i+1

))
.

Note that n−2t +1+∑
u−1
j=0 au− j = n− t +1. So,

n− t +1
n−2t +1

=
n−2t +1+au

n−2t +1

(
u−1

∏
i=1

n−2t +1+∑
i
j=0 au− j

n−2t +1+∑
i−1
j=0 au− j

)
.

Since n− t−u+1≥ n−2t +1, by Lemma 4.1.2,

(
n−2t +1+au

n−2t +1

)(
n− t−u+1

n− t +au−u+1

)
≥ 1.

Note that a1≥ a2≥ ·· · ≥ au. Let 1≤ i≤ u−1 be fixed. Then ∑
i−1
j=0 au− j = t−∑

u−1
j=i au− j≤

t− u+ i where the last inequality follows from the fact that au− j ≥ 1 for i ≤ j ≤ u− 1.

So, n−2t +1+∑
i−1
j=0 au− j ≤ n− t−u+ i+1. By Lemma 4.1.2,

(
n−2t +1+∑

i
j=0 au− j

n−2t +1+∑
i−1
j=0 au− j

)(
n− t−u+ i+1

n− t +au−i−u+ i+1

)
≥ 1.

Thus, f λ

f µ f β
≥ 1.

(b) The coefficient of nu+1 on the left side of the equation is zero and the coefficient of nu

is −t + 1+∑
u
i=1(−t− i+ 1)− (−2t + 1+∑

u
i=1(−t + ai− i+ 1)) = 0. This implies that

l ≤ u−1≤ t−1. Now, if cl < 0, then for sufficiently large n,

(n− t +1)
u

∏
i=1

(n− t− i+1)− (n−2t +1)
u

∏
i=1

(n− t +ai− i+1)< 0.
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From equation (4.1), we obtain f λ

f µ f β
< 1, contradicting part (a) of this lemma. Hence,

cl ≥ 1 for cl is an integer.

Note that |− t +1|< t and |− t− i+1|< t + i≤ t +u≤ 2t for 1≤ i≤ u. So, the absolute

value of the coefficient of n j in (n−t+1)∏
u
i=1 (n− t− i+1) is at most

(u+1
j

)
(2t)u+1− j ≤

2u+1(2t)u+1 = 22u+2tu+1.

Similarly, |−2t+1|< 2t and |−t+ai− i+1|< t−ai+ i < t+ i≤ t+u≤ 2t for 1≤ i≤ u

imply that the absolute value of the coefficient of n j in (n−2t+1)∏
u
i=1 (n− t +ai− i+1)

is at most 22u+2tu+1. Therefore, |ci| ≤ 2(22u+2tu+1) = 2(4t)t+1 for u≤ t.

(c) By part (b) of this lemma, |ci| ≤ 2(4t)t+1 for 0≤ i≤ l−1, cl ≥ 1 and l < t. If l = 0,

then ∑
l
i=0 cini = cl ≥ 1. If l ≥ 1, then

l

∑
i=0

cini ≥ nl

(
cl−

l−1

∑
i=0
|ci|ni−l

)

≥ nl
(

cl−
2(4t)t+1l

n

)
> nl

(
1− 2(4t)t+1t

n

)
≥ nl

2
> 1,

provided that n≥ 4(4t)t+1t.

Lemma 4.1.4. Let n, t be positive integers with n ≥ 4t, λ = (n− t,λ2, . . . ,λr) ` n with

∑
r
i=2 λi = t, and β = (λ2, . . . ,λr) ` t. Then

f β

(
nt

22t−1t!

)
< f λ < f β

(
2tnt

t!

)
.

Proof. Let u be the number of columns in the Ferrers diagram of β and ai be the number

of boxes in the ith column. By Lemma 4.1.1,

f λ = f β

(
n!
t!

)
1

(n− t−u)!∏
u
i=1 (n− t +ai− i+1)

= f β

(
n(n−1)(n−2) . . .(n− t−u+1)

t!

)
1

∏
u
i=1 (n− t +ai− i+1)

= f β

(
nt

t!

)(
1− 1

n

)(
1− 2

n

)
. . .

(
1− t +u−1

n

)
1

∏
u
i=1

(
1− t−ai+i−1

n

) .
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Note that for 1 ≤ i ≤ u, t− ai + i− 1 ≤ t− 1+ u− 1 = t− 2+ u ≤ 2t− 2. So, for n ≥

2(2t−2), 1− t−ai+i−1
n ≥ 1

2 . Therefore,

f λ ≤ f β

(
nt

t!

)(
1− 1

n

)(
1− 2

n

)
. . .

(
1− t +u−1

n

)
2u

< f β

(
2tnt

t!

)
.

For 1 ≤ j ≤ t + u− 1, we have j ≤ t + u− 1 ≤ 2t− 1. So, for n ≥ 2(2t− 1), 1− j
n ≥

1
2 .

Since ∏
u
i=1

(
1− t−ai+i−1

n

)
< 1,

f λ > f β

(
nt

2t+u−1t!

)
≥ f β

(
nt

22t−1t!

)
.

Lemma 4.1.5. Let n, t be positive integers with n≥ (4t+4)2, and λ1,λ2, . . . ,λr be positive

integers with λ1≥ λ2≥ ·· · ≥ λr, λ1≥
√

n, ∑
r
i=2 λi = 2(t+1). Then λ = (λ1,λ2, . . . ,λr) `

(λ1 +2(t +1)) and

f λ >
nt+1

(2t +2)!24t+4 .

Proof. Clearly, λ ` (λ1 + 2(t + 1)). Let β = (λ2, . . . ,λr) ` 2(t + 1), u be the number of

columns in the Ferrers diagram of β and ai be the number of boxes in the ith column. By

Theorem 1.2.33,

f λ =
(λ1 +2(t +1))!(

∏hβ (a,b)
)(

∏
λ1
i=1 hλ (i,1)

)
= f β (λ1 +2(t +1))!

(2t +2)!
(

∏
λ1
i=1 hλ (i,1)

)
≥ (λ1 +2(t +1))!

(2t +2)!
(

∏
λ1
i=1 hλ (i,1)

) ,
for f β ≥ 1. Note that hλ (i,1) = λ1 +ai− i+1 for 1≤ i≤ u and hλ (i,1) = λ1− i+1 for
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u+1≤ i≤ λ1. Therefore,

λ1

∏
i=1

hλ (i,1) = (λ1−u)!
u

∏
i=1

(λ1 +ai− i+1)

= (λ1−u)!λ u
1

(
u

∏
i=1

(
1+

ai− i+1
λ1

))
.

Note that ai− i+1≤ 2t +2 < 4t +4≤
√

n≤ λ1. So, ∏
u
i=1

(
1+ ai−i+1

λ1

)
< 2u and

λ1

∏
i=1

hλ (i,1)< (λ1−u)!λ u
1 2u.

Therefore,

f λ >
(λ1 +2(t +1))!

(2t +2)!(λ1−u)!λ u
1 2u

=

(
∏

2t+2
i=1 (λ1 +2(t +1)− i+1)

)
(∏u

i=1(λ1− i+1))
(2t +2)!λ u

1 2u

= λ
2t+2
1

(
∏

2t+2
i=1

(
1+ 2(t+1)−i+1

λ1

))(
∏

u
i=1

(
1− i−1

λ1

))
(2t +2)!2u

> λ
2t+2
1

∏
u
i=1

(
1− i−1

λ1

)
(2t +2)!2u .

From u≤ 2t+2, we have 2(i−1)< 2u≤ 4t+4≤
√

n≤ λ1 for 1≤ i≤ u, and 22u≤ 24t+4.

Therefore,

f λ > (
√

n)2t+2
1
2u

(2t +2)!2u

= (
√

n)2t+2 1
(2t +2)!22u

≥ nt+1 1
(2t +2)!24t+4 .

4.2 Eigenvalues with small dimension

Lemma 4.2.1. Let λ ` n. Then f λ = f λ T
.

Theorem 4.2.2. Let n,k be integers with n > k ≥ 0, and λ = (n) ` n. Then
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(a) ηλ (k) =
(n

k

)
dn−k,

(b) ηλ T (k) =
(n

k

)
(−1)n−k−1(n− k−1).

Proof. Let µ = (n− 1) ` (n− 1). By Theorem 1.2.33 and Lemma 4.2.1, f λ = f λ T
=

f µ = f µT
= 1.

(a) We shall prove by induction on k. When k = 0, ηλ (0) = dn. Suppose k > 0. Assume

that it holds for k−1. By Theorem 2.1.6 and the induction hypothesis,

ηλ (k) =
n

k f λ

(
f µ

ηµ(k−1)
)

=
n
k

ηµ(k−1)

=
n
k

(
n−1
k−1

)
d(n−1)−(k−1)

=

(
n
k

)
dn−k.

(b) We shall prove by induction on k. When k = 0, ηλ T (0) = (−1)n−1(n−1) (Theorem

1.4.2). Suppose k > 0. Assume that it holds for k−1. By Theorem 2.1.6 and the induction

hypothesis,

ηλ T (k) =
n

k f λ T

(
f µT

ηµT (k−1)
)

=
n
k

ηµT (k−1)

=
n
k

(
n−1
k−1

)
(−1)(n−1)−(k−1)−1((n−1)− (k−1)−1)

=

(
n
k

)
(−1)n−k−1(n− k−1).

A function h(n) with n≥ 1 is said to be a positive function if h(n)> 0 for all n. Given a

function f (n) and a positive function h(n), we write f (n) = O(h(n)) if there is a constant

A that does not depend on n such that

| f (n)| ≤ Ah(n),∀n≥ 1.
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If A depends on the variable k, we write f (n) = Ok(h(n)).

Lemma 4.2.3. If n, t are integers with n > t, then

n(n−1) . . .(n− t)dn−t−1 = dn +Ot(nt).

Proof. By applying equation (2.4) repeatedly,

dn = ndn−1 +O(1)

= n
(
(−1)n−1 +(n−1)dn−2

)
+O(1)

= n(n−1)dn−2 +O(2n)

= n(n−1)
(
(−1)n−2 +(n−2)dn−3

)
+O(2n)

= n(n−1)(n−2)dn−3 +O(3n2)

...

= n(n−1)(n−2) . . .(n− t)dn−t−1 +O((t +1)nt)

= n(n−1)(n−2) . . .(n− t)dn−t−1 +Ot(nt).

Lemma 4.2.4. Let n, t be positive integers such that λ =(n−t,λ2, . . . ,λr)` n, ∑
r
i=2 λi = t,

and β = (λ2, . . . ,λr) ` t. Let u be the number of columns in the Ferrers diagram of β and

ai be the number of boxes in the ith column. Then

ηλ (0) = (−1)t

(
u

∏
i=1

(n− t +ai− i+1)

)
dn−t−u +Ot(nu−1).

Proof. We shall prove by induction on u. Suppose u = 1. Then λ = (n− t,

t︷ ︸︸ ︷
1, . . . ,1) and

λ − ĉ = (n− t−1). By Theorem 1.4.2,

ηλ (0) = (−1)n +(−1)tnη(n−t−1)(0) = (−1)tndn−t−1 +O(1).

Thus, the lemma holds.

Suppose u > 1. Assume that the lemma holds for u− 1. Note that λ − ĥλ = β − ĉβ =
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(λ2−1, . . . ,λr−1). Therefore η
λ−ĥλ

(0) = Ot(1). By Theorem 1.4.2,

ηλ (0) = (−1)n−t+a1η
λ−ĥλ

(0)+(−1)a1(n− t +a1)ηλ−ĉλ
(0)

= (−1)a1(n− t +a1)ηλ−ĉλ
(0)+Ot(1). (4.2)

The number of columns in the Ferrers diagram of λ − ĉλ is u−1 and ai+1 is the number

of boxes in the ith column. So, by the induction hypothesis,

ηλ−ĉλ
(0) = (−1)t−a1

(
u−1

∏
i=1

((n− t−1)+ai+1− i+1)

)
d(n−t−1)−(u−1)+Ot(nu−2)

= (−1)t−a1

(
u

∏
i=2

(n− t +ai− i+1)

)
dn−t−u +Ot(nu−2). (4.3)

Substituting equation (4.3) into equation (4.2), we obtain

ηλ (0) = (−1)t

(
u

∏
i=1

(n− t +ai− i+1)

)
dn−t−u +Ot(nu−1).

Hence, the lemma follows.

Lemma 4.2.5. Let n, t be positive integers such that λ = (n− t,λ2, . . . ,λr) ` n with

∑
r
i=2 λi = t, and β = (λ2, . . . ,λr) ` t. Then

f λ
ηλ (0) =

(−1)t

t!
f β dn +Ot(n2t−1).

Proof. Let u be the number of columns in the Ferrers diagram of β and ai be the number

of boxes in the ith column. By Lemma 4.2.4,

ηλ (0) = (−1)t

(
u

∏
i=1

(n− t +ai− i+1)

)
dn−t−u +Ot(nu−1).

By Lemma 4.1.1,

f λ = f β

(
n!
t!

)
1

(n− t−u)!∏
u
i=1 (n− t +ai− i+1)

.
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Therefore,

f λ = f β

(
n(n−1) . . .(n− t−u+1)

t!(∏u
i=1(n− t +ai− i+1))

)
= Ot(nt),

and

f λ
ηλ (0) =

(−1)t

t!
f β n(n−1) . . .(n− t−u+1)dn−t−u +Ot(nt+u−1).

Note that u≤ t. So, Ot(nt+u−1) = Ot(n2t−1). By Lemma 4.2.3,

n(n−1) . . .(n− t−u+1)dn−t−u = dn +Ot(nt+u−1) = dn +Ot(n2t−1).

Hence,

f λ
ηλ (0) =

(−1)t

t!
f β dn +Ot(n2t−1).

If β = (λ1, . . . ,λr) ` m, α = (α1, . . . ,αr′) ` n and λr ≥ α1, then we define

(β ,α) = (λ1, . . . ,λr,α1, . . . ,αr′).

Note that (β ,α) is a partition of (m+n).

When 0≤ r≤ k, the binomial coefficient
(k

r

)
= k!

r!(k−r)! . When r > k, we set
(k

r

)
= 0. Note

that for all r ≥ 0, (
k
r

)
+

(
k

r+1

)
=

(
k+1
r+1

)
. (4.4)

We shall need this equality in the proof of the next theorem.

Theorem 4.2.6. Let n,k, t be integers with k≥ 0, t > 0 and n> k+2t, λ =(n−t,λ2, . . . ,λr)`

n with ∑
r
i=2 λi = t, and β = (λ2, . . . ,λr) ` t. Then

f λ
ηλ (k) = f β

(
n
k

)( t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
dn−k +Ot(n2t−1+k).

Proof. Let T = {i : i ≥ 2 and λi > λi+1} = {t1, . . . , tq−1}, µ j = λ t j−1− for 2 ≤ j ≤ q,

and µ1 = (n− t − 1,λ2, . . . ,λr). Since ∑
r
i=2 λi = t and |T | = q− 1, we have q− 1 < t,

i.e., q ≤ t. Note that for 2 ≤ j ≤ q, β (t j−1−1)− is the partition whose Ferrers diagram is
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obtained by deleting the box at the end of the (t j−1− 1)th row of that of β . Therefore,

µ j = (n− t,β (t j−1−1)−) for 2≤ j ≤ q.

We shall prove the theorem by induction on k. Suppose k = 0. Then the theorem follows

from Lemma 4.2.5, by noting that

t

∑
r=0

(
0
r

)
(−1)t−r

(t− r)!
=

(−1)t

t!
.

Suppose k > 0. Assume that the theorem is true for k−1. By Theorem 2.1.6,

ηλ (k) =
n

k f λ

q

∑
j=1

f µ jηµ j(k−1).

Note that (n−1)> (k−1)+2t. Therefore, by the induction hypothesis,

f µ1ηµ1(k−1) = f β

(
n−1
k−1

)( t

∑
r=0

(
k−1

r

)
(−1)t−r

(t− r)!

)
d(n−1)−(k−1)+Ot(n2t−1+(k−1))

= f β

(
n−1
k−1

)( t

∑
r=0

(
k−1

r

)
(−1)t−r

(t− r)!

)
dn−k +Ot(n2t−2+k). (4.5)

Suppose t = 1. Then ∑
t−1
r=0
(k−1

r

) (−1)t−1−r

(t−1−r)! = 1, q = 2 and µ2 = (n−1). By Theorem 4.2.2,

ηµ2(k−1) =
(n−1

k−1

)
dn−k. Since f µ2 = 1 = f β (Theorem 1.2.33), we have

q

∑
j=2

f µ jηµ j(k−1) = f µ2ηµ2(k−1)

=

(
n−1
k−1

)
dn−k

= f β

(
n−1
k−1

)
dn−k +Ot(n2t−4+k)

= f β

(
n−1
k−1

)(t−1

∑
r=0

(
k−1

r

)
(−1)t−1−r

(t−1− r)!

)
dn−k +Ot(n2t−4+k). (4.6)

Suppose t > 1. Then t−1 > 0. Note also that (n−1)> (k−1)+2(t−1). Therefore, by

the induction hypothesis, for 2≤ j ≤ q,

f µ jηµ j(k−1) = f β
(t j−1−1)−

(
n−1
k−1

)(t−1

∑
r=0

(
k−1

r

)
(−1)t−1−r

(t−1− r)!

)
dn−k +Ot(n2t−4+k).
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By equation (1.2),

f β =
q

∑
j=2

f β
(t j−1−1)−

.

Since q≤ t,

q

∑
j=2

f µ jηµ j(k−1) = f β

(
n−1
k−1

)(t−1

∑
r=0

(
k−1

r

)
(−1)t−1−r

(t−1− r)!

)
dn−k +Ot(n2t−4+k).

Hence, equation (4.6) always hold for t > 0.

Next, note that (see equation (4.4))

t−1

∑
r=0

(
k−1

r

)
(−1)t−1−r

(t−1− r)!
+

t

∑
r=0

(
k−1

r

)
(−1)t−r

(t− r)!

=
t

∑
r=1

(
k−1
r−1

)
(−1)t−r

(t− r)!
+

(
k
0

)
(−1)t

t!
+

t

∑
r=1

(
k−1

r

)
(−1)t−r

(t− r)!

=

(
k
0

)
(−1)t

t!
+

t

∑
r=1

((
k−1
r−1

)
+

(
k−1

r

))
(−1)t−r

(t− r)!

=

(
k
0

)
(−1)t

t!
+

t

∑
r=1

(
k
r

)
(−1)t−r

(t− r)!

=
t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!
.

Therefore,

f λ
ηλ (k) =

n
k

(
f β

(
n−1
k−1

)( k

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
dn−k +Ot(n2t−2+k)

)

= f β

(
n
k

)( k

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
dn−k +Ot(n2t−1+k).

Hence, the theorem follows.

Lemma 4.2.7. Let A = A(t,k) be a positive constant depending only on the variables t,k

and p be a positive integer. Then there exists a positive integer n1 = n1(t,k, p) such that

for all n≥ n1,

dn−k > Anp.
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Proof. By Lemma 3.2.1,

dn−k >
(n− k)!

3
=

(
1
3

)
(n− k)(n− k−1)(n− k−2) . . .(n− k− p)(n− k− p−1)!

≥
(

np+1

3

)(
1− k

n

)(
1− k+1

n

)(
1− k+2

n

)
. . .

(
1− k+ p

n

)
>

np+1

3(2)p+1 ,

provided that n≥ 2(k+ p). Hence, the lemma follows by taking n1 =max{3(2)p+1A,2(k+

p)}.

Given any real number x, we define sign(x) = 1 if x > 0 and sign(x) =−1 if x < 0.

Corollary 4.2.8. Let n,k, t be integers with k ≥ 0, t > 0 and n > k+ 2t, and λ = (n−

t,λ2, . . . ,λr) ` n with ∑
r
i=2 λi = t. If

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!
6= 0,

then there exists a positive integer n1 = n1(t,k) such that for all n≥ n1,

sign(ηλ (k)) = sign

(
t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
.

Proof. By Theorem 4.2.6,

f λ
ηλ (k) = f β

(
n
k

)( t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
dn−k +Ot(n2t−1+k),

where β = (λ2, . . . ,λr) ` t. If ∑
t
r=0
(k

r

) (−1)t−r

(t−r)! > 0, then

f β

(
n
k

)( t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
≥ f β

(
t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
= A1 > 0.

Note that

f λ
ηλ (k)≥ A1dn−k−B1n2t−1+k,

for some positive constant B1. By Lemma 4.2.7, for sufficiently large n, dn−k >
B1n2t−1+k

A1
.

Hence, f λ ηλ (k)> 0, i.e., ηλ (k)> 0.
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If ∑
t
r=0
(k

r

) (−1)t−r

(t−r)! < 0, then

f β

(
n
k

)( t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
≤ f β

(
t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
= A1 < 0.

Note that

f λ
ηλ (k)≤ A1dn−k +B1n2t−1+k.

By Lemma 4.2.7, for sufficiently large n, we have dn−k <
−B1n2t−1+k

A1
since A1 < 0. There-

fore f λ ηλ (k)≤ A1dn−k +B1n2t−1+k < 0, i.e., ηλ (k)< 0.

This completes the proof of the corollary.

Let n,k, t be integers with 0≤ k < n and 0≤ 2t < n. We define

V (n, t) =

{
λ ` n : λ = (n− t,λ2, . . . ,λr) with

r

∑
i=2

λi = t

}
.

For instance,

V (n,0) = {(n)},

V (n,1) = {(n−1,1)},

V (n,2) = {(n−2,2),(n−2,1,1)},

V (n,3) = {(n−3,3),(n−3,2,1),(n−3,1,1,1)}.

Let t > 0. For sufficiently large n, sign(ηλ (k)) = sign
(

∑
t
r=0
(k

r

) (−1)t−r

(t−r)!

)
for all λ ∈

V (n, t) (Corollary 4.2.8). So, ηλ (k) has the same sign for all λ ∈ V (n, t). Note that

µ = (n− t, t) ∈ V (n, t). In the next theorem, we will show that |ηµ(k)| is the largest

among all |ηλ (k)|, λ ∈V (n, t).

Theorem 4.2.9. Let t > 0 and µ = (n− t, t) ` n. If

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!
6= 0,

then there exists a positive integer n0 = n0(t,k) such that for all n≥ n0,

|ηλ (k)|< |ηµ(k)|,
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for all λ ∈V (n, t)\{µ}.

Proof. Let λ = (n− t,λ2, . . . ,λr) ` n with ∑
r
i=2 λi = t. Since λ 6= µ , r ≥ 3. By Theorem

4.2.6,

f λ
ηλ (k) = f β

(
n
k

)( t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
dn−k +Ot(n2t−1+k),

where β = (λ2, . . . ,λr) ` t. So,

f µ
ηλ (k) =

f µ f β

f λ

(
n
k

)( t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
dn−k +

(
f µ

f λ

)
Ot(n2t−1+k).

By part (a) of Lemma 4.1.3, f µ

f λ
≤ 1

f β
. Therefore,

f µ
ηλ (k) =

f µ f β

f λ

(
n
k

)( t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
dn−k +Ot(n2t−1+k),

and

f µ |ηλ (k)| ≤
f µ f β

f λ

(
n
k

)∣∣∣∣∣
(

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)∣∣∣∣∣dn−k +B1(n2t−1+k),

for some positive constant B1. By Theorem 4.2.6,

f µ
ηµ(k) =

(
n
k

)( t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)
dn−k +Ot(n2t−1+k).

From |x+ y| ≥ |x|− |y|, we deduce that

f µ |ηµ(k)| ≥
(

n
k

)∣∣∣∣∣
(

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)∣∣∣∣∣dn−k−B2(n2t−1+k),

for some constant B2. So, it is sufficient to show that

(
1− f µ f β

f λ

)(
n
k

)∣∣∣∣∣
(

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)∣∣∣∣∣dn−k > (B1 +B2)n2t−1+k,

or equivalently (by Lemma 4.1.3),

(
l

∑
i=0

cini

)(
n
k

)∣∣∣∣∣
(

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)∣∣∣∣∣dn−k

> (n− t +1)

(
u

∏
i=1

(n− t− i+1)

)
(B1 +B2)n2t−1+k,
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where u is the number of columns in the Ferrers diagram of β , and

l

∑
i=0

cini = (n− t +1)
u

∏
i=1

(n− t− i+1)− (n−2t +1)
u

∏
i=1

(n− t +ai− i+1) ,

where ai is the number of boxes in the ith column in the Ferrers diagram of β , l ≤ u−1 <

t, cl > 0 and |ci| ≤ 2(4t)t+1 for 0≤ i≤ l.

Since u < t (for r ≥ 3),

(n− t +1)

(
u

∏
i=1

(n− t− i+1)

)
(B1 +B2)n2t−1+k ≤ (B1 +B2)n2t+u+k < (B1 +B2)n3t+k.

By part (c) of Lemma 4.1.3,
(n

k

)
∑

l
i=0 cini ≥

(n
k

)
≥ 1. So, it is sufficient to show that

dn−k >
(B1 +B2)n3t+k∣∣∣(∑

t
r=0
(k

r

) (−1)t−r

(t−r)!

)∣∣∣ ,
which is true for sufficiently large n (Lemma 4.2.7).

This completes the proof of the theorem.

Lemma 4.2.10. Let t > 0, µ = (n− t, t) ` n and λ ` n. If

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!
6= 0,

and ηλ (k) = Ot(np) for some positive integer p, then there exists a positive integer n0 =

n0(t,k, p) such that for all n≥ n0,

|ηλ (k)|< |ηµ(k)|.

Proof. Note that |ηλ (k)| ≤ B1np for some positive constant B1. By Theorem 4.2.6,

f µ |ηµ(k)| ≥
(

n
k

)∣∣∣∣∣
(

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)∣∣∣∣∣dn−k−B2n2t−1+k,

for some positive constant B2. By Lemma 4.1.4,

f µ <

(
2tnt

t!

)
.
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Therefore,

|ηµ(k)|>
t!

2tnt

(
n
k

)∣∣∣∣∣
(

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)∣∣∣∣∣dn−k−
B2t!
2t nt−1+k.

It is sufficient to show that

t!
2tnt

(
n
k

)∣∣∣∣∣
(

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)∣∣∣∣∣dn−k >
B2t!
2t nt−1+k +B1np,

which is equivalent to

(
n
k

)∣∣∣∣∣
(

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)∣∣∣∣∣dn−k > B2n2t−1+k +
B12t

t!
nt+p.

Note that for sufficiently large n,

B2n2t−1+k +
B12t

t!
nt+p ≤ 2nq,

where q = max{2t + k, t + p+1}. By Lemma 4.2.7,

(
n
k

)∣∣∣∣∣
(

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!

)∣∣∣∣∣dn−k > 2nq,

Hence, |ηλ (k)|< |ηµ(k)|.

Let λ ` n. Recall that λ T is the conjugate partition of λ .

Lemma 4.2.11. Let t ≥ 0 and λ ∈V (n, t). Then

ηλ T (0) = Ot(n).

Proof. If t = 0, then λ = (n). By part (b) of Theorem 4.2.2, ηλ T (0) = (−1)n−1(n−1) =

Ot(n).

Suppose t > 0. Let λ = (n− t,λ2, . . . ,λr) ` n with ∑
r
i=2 λi = t and β = (λ2, . . . ,λr) ` t.

Note that λ T − ĥλ T = (β − ĉβ )
T = (λ2−1, . . . ,λr−1)T and λ T − ĉλ T = β T . Therefore,
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η
λ T−ĥ

λT
(0) = Ot(1) = ηλ T−ĉ

λT
(0). By Theorem 1.4.2,

|ηλ T (0)| ≤ |η
λ T−ĥ

λT
(0)|+n|ηλ T−ĉ

λT
(0)|= Ot(n).

Lemma 4.2.12. Let t ≥ 0 and λ ∈V (n, t). Then

ηλ T (k) = Ot(nk+1).

Proof. We shall prove by induction on k. The case k = 0 follows from Lemma 4.2.11.

Suppose k > 0. Assume that the lemma true for k−1.

Let µ1, . . . ,µq be the only possible partitions of (n− 1) that correspond to the Ferrers

diagrams obtained by removing 1 node from the right hand side from any row of the

Ferrers diagram of λ . Then µT
1 , . . . ,µ

T
q are the only possible partitions of (n− 1) that

correspond to the Ferrers diagrams obtained by removing 1 node from the right hand side

from any row of the Ferrers diagram of λ T . By Theorem 2.1.6,

ηλ T (k) =
n

k f λ T

q

∑
j=1

f µT
j η

µT
j
(k−1).

By equation (1.2),

f λ T
=

q

∑
j=1

f µT
j .

So, f
µT

j

f λT ≤ 1. By the induction hypothesis, η
µT

j
(k−1) = Ot(nk). Note that q≤ t. Hence,

ηλ T (k) = Ot(nk+1).

Theorem 4.2.13. Let t > 0 and µ = (n− t, t) ` n. If

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!
6= 0,

then there exists a positive integer n0 = n0(t,k) such that for all n≥ n0,

|ηλ T (k)|< |ηµ(k)|,
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for all λ ∈
⋃t

j=0V (n, j).

Proof. If λ ∈
⋃t

j=0V (n, j), then by Lemma 4.2.12, ηλ T (k) = Ot(nk+1). By Lemma

4.2.10, |ηλ T (k)|< |ηµ(k)|.

4.3 Eigenvalues with large dimension

Let t0 be a fixed positive integer, and

U(n, t0) =

{
λ ` n : λ ∈

t0⋃
j=0

V (n, j) or λ
T ∈

t0⋃
j=0

V (n, j)

}
.

Let 1≤ j ≤ t0 and β ` j. By Theorem 1.2.33,

f β =
j!

∏hβ (a,b)
≤ j!≤ t0!.

By Lemma 4.1.4, for n≥ 4t0,

f λ < t0!
(

2 jn j

j!

)
≤ t0!2t0nt0 ,

for all λ ∈ V (n, j). Furthermore, f λ = 1 for λ ∈ V (n,0) = {(n)}. So, f λ < t0!2t0nt0 for

all λ ∈
⋃t0

j=0V (n, j), provided n≥ 4t0. Since f λ = f λ T
(Lemma 4.2.1),

f λ < t0!2t0nt0, (4.7)

for all λ ∈U(n, t0), provided n≥ 4t0.

Lemma 4.3.1. Let n≥max{(4t0 +4)2,(2t0 +2)!t0!25t0+4} and λ ` n. Then

f λ ≤ nt0+1

24t0+4(2t0 +2)!
,

if and only if λ ∈U(n, t0).

Proof. If λ ∈U(n, t0), then by equation (4.7),

f λ < t0!2t0nt0 ≤ nt0+1

24t0+4(2t0 +2)!
,
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provided n≥ 25t0+4t0!(2t0 +2)!. Thus, f λ ≤ nt0+1

24t0+4(2t0+2)!
for all λ ∈U(n, t0).

If λ ∈V (n, t0 +1) or λ T ∈V (n, t0 +1) , then by Lemmas 4.1.4 and 4.2.1,

f λ >
nt0+1

22t0+1(t0 +1)!
>

nt0+1

24t0+4(2t0 +2)!
,

since n≥ (4t0 +4)2 ≥ 4(t0 +1). If λ ∈
⋃2t0+2

j=t0+2V (n, j) or λ T ∈
⋃2t0+2

j=t0+2V (n, j), then by

Lemmas 4.1.4 and 4.2.1,

f λ >
n j

22 j−1 j!
≥ nt0+2

24t0+3(2t0 +2)!
>

nt0+1

24t0+4(2t0 +2)!
,

since n≥ (4t0 +4)2 ≥ 4(2t0 +2).

Let λ = (λ1,λ2, . . . ,λr) ` n and λ ,λ T /∈
⋃2t0+2

j=0 V (n, j). Since f λ = f λ T
(Lemma 4.2.1),

we may assume that λ1 ≥ r. Note that rλ1 ≥ n. This implies that λ1 ≥
√

n. Note that

∑
r
i=2 λi > (2t0 +2). Let µ1 = (λ1,λ2, . . . ,λr−1,λr−1). Then by equation (1.2),

f λ ≥ f µ1.

If we remove a node from the last row of µ1 and denote the resulting partition by µ2, then

f λ ≥ f µ1 ≥ f µ2 . We shall continue removing a node from the last row until we obtain

α = (λ1,λ2, . . . ,λr′,q) where q+∑
r′
i=2 λi = 2t0+2. Note that f λ ≥ f α . By Lemma 4.1.5,

f λ ≥ f α >
nt0+1

24t0+4(2t0 +2)!
,

provided that n≥ (4t0 +4)2. Hence, f λ ≤ nt0+1

24t0+4(2t0+2)!
if and only if λ ∈U(n, t0).

Lemma 4.3.2. |S (n,k)|=
(n

k

)
dn−k.

Proof. By Theorem 1.2.17 and part (a) of Theorem 4.2.2, |S (n,k)|= η(n)(k) =
(n

k

)
dn−k.

Lemma 4.3.3. Let n ≥ max{(4t0 + 4)2,(2t0 + 2)!t0!25t0+4} and λ ` n. If λ /∈U(n, t0),

then

|ηλ (k)|<
24t0+4(2t0 +2)!

√
n!
(n

k

)
dn−k

nt0+1 .
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Proof. By Theorem 1.2.17, Lemmas 3.1.4 and 4.3.2,

∑
λ`n

(
f λ

ηλ (k)
)2

= 2e(F (n,k)) = n!|S (n,k)|= n!
(

n
k

)
dn−k.

Therefore,

|ηλ (k)| ≤

√
n!
(n

k

)
dn−k

f λ
<

24t0+4(2t0 +2)!
√

n!
(n

k

)
dn−k

nt0+1 ,

where the last inequality follows from Lemma 4.3.1.

Theorem 4.3.4. Let µ = (n− t0, t0) ` n. If

t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!
6= 0,

then there exists a positive integer n0 = n0(t0,k) such that for all n≥ n0,

|ηλ (k)|< |ηµ(k)|,

for all λ ` n and λ /∈U(n, t0).

Proof. Throughout, we shall make n sufficiently large whenever necessary. By Lemma

4.3.3,

|ηλ (k)|<
24t0+4(2t0 +2)!

√
n!
(n

k

)
dn−k

nt0+1 .

By Theorem 4.2.6,

f µ |ηµ(k)| ≥
(

n
k

)∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣dn−k−Bn2t0−1+k,

for some positive constant B. By Lemma 4.2.7, we have

1
2

(
n
k

)∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣dn−k > Bn2t0−1+k.
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Thus,

f µ |ηµ(k)| ≥
1
2

(
n
k

)∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣dn−k.

By Lemma 4.1.4,

f µ <

(
2t0nt0

t0!

)
.

Therefore,

|ηµ(k)|>
t0!

2t0+1nt0

(
n
k

)∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣dn−k.

So, in view of Lemma 4.3.3, it is sufficient to show that

t0!
2t0+1nt0

(
n
k

)∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣dn−k >
24t0+4(2t0 +2)!

√
n!
(n

k

)
dn−k

nt0+1 ,

or equivalently,

dn−k >
210t0+10(2t0 +2)!2(n− k)!k!∣∣∣∑t0

r=0
(k

r

) (−1)t0−r

(t0−r)!

∣∣∣2 t0!2n2
. (4.8)

For sufficiently large n,

210t0+10(2t0 +2)!2(n− k)!k!∣∣∣∑t0
r=0
(k

r

) (−1)t0−r

(t0−r)!

∣∣∣2 t0!2n2
<

(n− k)!
3

.

Since dn−k >
(n−k)!

3 (Lemma 3.2.1), equation (4.8) holds.

This completes the proof of the theorem.

4.4 Smallest eigenvalues of F (n,k)

Let N be the set of positive integers, k ≥ 0 be an integer and

P =

{
t ∈ N :

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!
< 0

}
.

We shall show that P is non-empty.
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Lemma 4.4.1. If t ≥ 2k+1, then

k

∑
r=0

(
t
r

)
(−1)k−r

(k− r)!
> 0.

Proof. When k = 0, ∑
k
r=0
(t

r

) (−1)k−r

(k−r)! = 1 > 0. When k = 1, ∑
k
r=0
(t

r

) (−1)k−r

(k−r)! =−1+ t > 0.

Assume that k ≥ 2.

Suppose k = 2l for some positive integer l. Then

k

∑
r=0

(
t
r

)
(−1)k−r

(k− r)!
=

1
(2l)!

+
l

∑
r=1

(
t

2r

)
1

(2l−2r)!
−

l

∑
r=1

(
t

2r−1

)
1

(2l−2r+1)!

=
1

(2l)!
+

l

∑
r=1

((
t

2r

)
1

(2l−2r)!
−
(

t
2r−1

)
1

(2l−2r+1)!

)
.

Since t ≥ 2k+1 = 4l +1,
( t

2r

)
>
( t

2r−1

)
. Clearly, 1

(2l−2r)! >
1

(2l−2r+1)! . Thus,

k

∑
r=0

(
t
r

)
(−1)k−r

(k− r)!
> 0.

Suppose k = 2l +1 for some positive integer l. Then

k

∑
r=0

(
t
r

)
(−1)k−r

(k− r)!
=

l

∑
r=0

(
t

2r+1

)
1

(2l−2r)!
−

l

∑
r=0

(
t

2r

)
1

(2l +1−2r)!

=
l

∑
r=0

((
t

2r+1

)
1

(2l−2r)!
−
(

t
2r

)
1

(2l +1−2r)!

)
.

Since t ≥ 2k+1 = 4l +3,
( t

2r+1

)
>
( t

2r

)
. Clearly, 1

(2l−2r)! >
1

(2l−2r+1)! . Thus,

k

∑
r=0

(
t
r

)
(−1)k−r

(k− r)!
> 0.

Lemma 4.4.2. P is non-empty.
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Proof. Note that
(k

r

)
= 0 if r > k. So,

t

∑
r=0

(
k
r

)
(−1)t−r

(t− r)!
=

k

∑
r=0

(
k!

(k− r)!r!

)(
(−1)t−r

(t− r)!

)
= (−1)t+k

(
k!
t!

) k

∑
r=0

(
t!

(t− r)!r!

)(
(−1)k−r

(k− r)!

)
= (−1)t+k

(
k!
t!

) k

∑
r=0

(
t
r

)
(−1)k−r

(k− r)!
.

By Lemma 4.4.1, ∑
k
r=0
(t

r

) (−1)k−r

(k−r)! > 0 provided that t ≥ 2k+1. So, if t ′≥ 2k+1 and t ′+k

is odd, then t ′ ∈ P. Hence, P is non-empty.

Now, we choose the smallest positive integer in P, say t0 = t0(k). We are ready to show

that the smallest eigenvalue of F (n,k) occurs at (n− t0, t0).

Theorem 4.4.3. Let n,k be integers with 0≤ k < n. Let t0 = t0(k) be the smallest positive

integer such that
t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!
< 0.

Then there exists a positive integer n0 = n0(t0,k) such that for all n≥ n0, (n− t0, t0) is the

only partition associated to the smallest eigenvalue of F (n,k).

Proof. Let µ = (n− t0, t0). By Corollary 4.2.8,

sign
(
ηµ(k)

)
= sign

(
t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

)
=−1.

By part (a) of Theorem 4.2.2, η(n)(k) =
(n

k

)
dn−k > 0. So,

ηµ(k)< 0 < η(n)(k). (4.9)
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Let

J0 =

{
j ∈ N : 1≤ j ≤ t0−1,

j

∑
r=0

(
k
r

)
(−1) j−r

( j− r)!
= 0

}
;

J1 =

{
j ∈ N : 1≤ j ≤ t0−1,

j

∑
r=0

(
k
r

)
(−1) j−r

( j− r)!
> 0

}
.

By the choice of t0, J0∪J1 = { j ∈ N : 1≤ j ≤ t0−1}. If j ∈ J0, then by Theorem 4.2.6,

f λ
ηλ (k) = Ot(n2t−1+k),

for all λ ∈V (n, j). By Lemma 4.1.4,

nt

22t−1t!
< f λ .

Therefore,

ηλ (k) = Ot(nt−1+k).

By Lemma 4.2.10,

|ηλ (k)|< |ηµ(k)|.

Since ηµ(k) is negative, this implies that

ηµ(k)< ηλ (k), (4.10)

for all λ ∈V (n, j), j ∈ J0.

If j ∈ J1, then by Corollary 4.2.8,

sign(ηλ (k)) = sign

(
j

∑
r=0

(
k
r

)
(−1) j−r

( j− r)!

)
= 1,

for all λ ∈V (n, j). Thus,

ηµ(k)< 0 < ηλ (k), (4.11)
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for all λ ∈V (n, j), j ∈ J1.

By Theorem 4.2.9,

|ηλ (k)|< |ηµ(k)|,

for all λ ∈V (n, t0)\{µ}. Since sign(ηλ (k)) = sign
(
ηµ(k)

)
(Corollary 4.2.8),

ηµ(k)< ηλ (k)< 0, (4.12)

for all λ ∈V (n, t0)\{µ}.

By Theorem 4.2.13, |ηλ T (k)|< |ηµ(k)| for all λ ∈
⋃t0

j=0V (n, j). Thus, by equations (4.9),

(4.10), (4.11) and (4.12), ηµ(k) < ηλ (k) for all λ ∈U(n, t0) \ {µ}. By Theorem 4.3.4,

|ηλ (k)|< |ηµ(k)| for all λ /∈U(n, t0). So, ηµ(k)< ηλ (k) for all λ ` n and λ 6= µ . Hence,

ηµ(k) is the smallest eigenvalue of F (n,k) and µ is the only partition associated to the

smallest eigenvalue of F (n,k).

This completes the proof of the theorem.

Now we can deduce a bound for the largest independent number in F (n,k).

Theorem 4.4.4. Let n, k be integers with 0≤ k≤ n. Let t0 = t0(k) be the smallest positive

integer such that
t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!
< 0.

Then there exists a positive integer n0 = n0(t0,k) such that for all n ≥ n0, the size of a

largest independent set in F (n,k) is less than

22t0t0!

∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣(n− t0)!.

Proof. Let µ = (n− t0, t0). By Theorem 4.2.6 and Lemma 4.1.4,

nt0

22t0−1t0!
|ηµ(k)|< f µ |ηµ(k)| ≤

(
n
k

)∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣dn−k +Bn2t−1+k,

for some positive constant B. By Lemma 4.2.7,

(
n
k

)∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣dn−k > Bn2t−1+k.
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Thus,

|ηµ(k)|<
22t0t0!

nt0

(
n
k

)∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣dn−k.

By Lemma 4.3.2, |S (n,k)|=
(n

k

)
dn−k. Since ηµ(k)< 0 (Corollary 4.2.8),

1− |S (n,k)|
ηµ(k)

= 1+
|S (n,k)|
|ηµ(k)|

> 1+
1

22t0 t0!
nt0

∣∣∣∑t0
r=0
(k

r

) (−1)t0−r

(t0−r)!

∣∣∣
>

nt0

22t0t0!
∣∣∣∑t0

r=0
(k

r

) (−1)t0−r

(t0−r)!

∣∣∣ .
By Theorem 1.4.1 and Theorem 4.4.3 , if I is an independent set in F (n,k), then

|I| ≤ n!
nt0

22t0 t0!
∣∣∣∣∑t0

r=0 (
k
r)

(−1)t0−r

(t0−r)!

∣∣∣∣
= 22t0t0!

∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣
(

t0

∏
i=1

(
1− i−1

n

))
(n− t0)!

< 22t0t0!

∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣(n− t0)!.

We now list out the values of t0 = t0(k) for small values of k:

Table 4.1: t0 = t0(k) for 0≤ k ≤ 23

k t0(k) k t0(k) k t0(k)
0 1 8 6 16 13
1 2 9 7 17 13
2 2 10 8 18 14
3 3 11 9 19 15
4 3 12 9 20 16
5 4 13 10 21 17
6 5 14 11 22 17
7 6 15 12 23 18

Notice that in the case k = 1, we have t0 = 2. Hence, Theorem 4.4.4 implies that the size

of an independent set in F (n,1) is O1((n−2)!). In fact, as proved by Ellis (2014, [18]),

the optimal upper bound is (n−2)!. For general k, we have the following bounds on t0.
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Theorem 4.4.5.
k−1

2
< t0 ≤ k+1.

Proof. By Lemma 4.4.1, if k ≥ 2t0 +1, then

t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!
> 0.

So, t0 > k−1
2 .

Let

I = {σ ∈Sn : σ(i) = i, ∀1≤ i≤ k+1} .

Note that I is an independent set in F (n,k). By Lemma 4.4.4,

(n− k−1)! = |I|< 22t0t0!

∣∣∣∣∣ t0

∑
r=0

(
k
r

)
(−1)t0−r

(t0− r)!

∣∣∣∣∣(n− t0)!.

Hence, t0 ≤ k+1.

It was conjectured by Ellis (2014, [18]) that if A is an independent set in F (n,k), then

|A | ≤ (n−k−1)! for sufficiently large n. Our result implies that |A | ≤Ok
((

n− k−1
2

)
!
)

for sufficiently large n.
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CHAPTER 5: CERTAIN REGULAR SUBGRAPHS OF F (n,0)

Let V = {v1, . . . ,vn} be the vertex set of a graph Γ. Let A⊆V . The characteristic function

of A, 1A : V →{0,1} is defined as

1A(b) =


1 if b ∈ A,

0 otherwise.

The characteristic vector of A is the |V |-tuple, 1A = (1A(v1),1A(v2), . . . ,1A(vn)).

Let 1 ≤ i ≤ n. For each σ ∈ Sn, let fi(σ) denote the number of i-cycles appearing in

the cyclic decomposition of σ . Let Ci be the subset of Sn, in which, each element in Ci

contains at least an i-cycles in its cyclic decomposition, i.e.,

Ci = {σ ∈ Sn : fi(σ)> 0}.

Note that Ci is a union of conjugacy classes of Sn. Let

C(i1=1,i2,...,is) =
s⋃

j=1

Ci j .

Note that Sn\C(i1,i2,...,is) is also a union of conjugacy classes of Sn, and Γ(Sn,Sn\C(i1,i2,...,is))

is a |Sn \C(i1,i2,...,is)|-regular Cayley graph.

In this chapter, we study the Cayley graph Γ
(k)
n = Γ(Sn,Sn \C(1,2,...,k)), where 1 ≤ k < n.

Note that

Sn \C(1,2,...,k) ⊆ Dn = Sn \C(1).

Therefore Γ
(k)
n is a subgraph of the derangement graph Γ

(1)
n = Γn. In fact,

Γ
(n−1)
n ≤sub Γ

(n−2)
n ≤sub · · · ≤sub Γ

(2)
n ≤sub Γ

(1)
n ,

76

Univ
ers

ity
 of

 M
ala

ya



where H ≤sub K means H is a subgraph of K.

We determine the smallest eigenvalue of Γ
(k)
n and then we show that the set of all the

largest independent sets in Γ
(k)
n is equal to the set of all the largest independent sets in the

derangement graph, F (n,0). The results of this chapter have been published in Ku, Lau

and Wong (2016, [39]).

Since Sn \C(1,2,...,k) is closed under conjugation, the eigenvalue η
(k)
χλ

of the Cayley graph

Γ
(k)
n can be denoted by η

(k)
λ

. Throughout the chapter, we shall use this notation.

5.1 Some Eigenvalues of Γ
(k)
n

We shall use the following notations:

(a) e(k)n is the number of even permutations in Sn \C(1,2,...,k);

(b) o(k)n is the number of odd permutations in Sn \C(1,2,...,k);

(c) s(k)n = e(k)n −o(k)n ;

(d) d(k)
n = |Sn \C(1,2,...,k)|;

(e) ε is the sign function for Sn, i.e., ε(σ) = 1 if σ is an even permutation and ε(σ) =

−1 if σ is an odd permutation.

Lemma 5.1.1. Let k,n be positive integers and k < n. Then

(a) η
(k)
(n) = d(k)

n ;

(b) η
(k)
(1n)

= s(k)n ;

(c) η
(k)
(n−1,1) =−

d(k)
n

n−1 ;

(d) η
(k)
(2,1n−1)

=− s(k)n
n−1 .

Proof. We shall use Theorem 1.2.17 to calculate these eigenvalues.

(a) η
(k)
(n) =

1
f (n) ∑σ∈Sn\C(1,2,...,k)

χ(n)(σ) = 1
1 ∑σ∈Sn\C(1,2,...,k)

1 = |Sn \C(1,2,...,k)|= d(k)
n .

(b) η
(k)
(1n)

= 1
f (1n) ∑σ∈Sn\C(1,2,...,k)

χ(1n)(σ) = 1
1 ∑σ∈Sn\C(1,2,...,k)

ε(σ) = e(k)n −o(k)n = s(k)n .
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(c) η
(k)
(n−1,1)=

1
f (n−1,1) ∑σ∈Sn\C(1,2,...,k)

χ(n−1,1)(σ)= 1
n−1 ∑σ∈Sn\C(1,2,...,k)

(#{fixed points of σ}−

1) = 1
n−1 ∑σ∈Sn\C(1,2,...,k)

−1 =− d(k)
n

n−1 .

(d) η
(k)
(2,1n−1)

= 1
f (2,1n−1) ∑σ∈Sn\C(1,2,...,k)

χ(2,1n−1)(σ)= 1
n−1 ∑σ∈Sn\C(1,2,...,k)

−ε(σ)=− s(k)n
n−1 .

Lemma 5.1.2. Let k,n be positive integers, k < n, n ≥ 4, and λ ` n. If the dimension of

the Specht module Sλ , f λ ≥
(n−1

2

)
−1 = n(n−3)

2 , then

∣∣∣η(k)
λ

∣∣∣≤ 2

√
d(k)

n (n−1)(n−2)(n−4)!
n(n−3)

.

Proof. By Lemma 3.1.4,

∑
λ`n

(
f λ

η
(k)
λ

)2
= 2e

(
Γ
(k)
n

)
= n!d(k)

n .

This implies that

∣∣∣η(k)
λ

∣∣∣≤ 2

√
d(k)

n (n−1)(n−2)(n−4)!
n(n−3)

.

5.2 d(k)
n and s(k)n

Note that d(k)
j = 0 for j = 1, . . . ,k. For convenience, we set d(k)

0 = 1.

Lemma 5.2.1. Let k,n be positive integers.

(a) If n > k ≥
⌊n

2

⌋
, then d(k)

n = (n−1)!.

(b) If n > k ≥ 2, then

d(k)
n =

b n
kc

∑
i=0

(−1)in!
i!ki(n− ki)!

d(k−1)
n−ki ; (5.1)

d(k)
n = d(k−1)

n −
b n

kc
∑
i=1

n!
i!ki(n− ki)!

d(k)
n−ki. (5.2)
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(c) If n≥ k+1, then

d(k)
n = (n−1)d(k)

n−1 +
(n−1)!

(n− k−1)!
d(k)

n−k−1. (5.3)

Proof. (a) Note that σ ∈ Sn \C(1,2,...,k) if and only if σ is an n-cycles. Hence, d(k)
n =

(n−1)!.

(b) Let T be the set of all the k-cycles in Sn. Let

N(α) = {σ ∈ Sn \C(1,2,...,k−1) : σ contains α in its cycle decomposition }.

Note that

Sn \C(1,2,...,k) =
(
Sn \C(1,2,...,k−1)

)
\

(⋃
α∈T

N(α)

)
.

Therefore

d(k)
n = d(k−1)

n −

∣∣∣∣∣⋃
α∈T

N(α)

∣∣∣∣∣ . (5.4)

Now, if α1, . . . ,αi ∈ T are disjoint cycles, then

|N(α1)∩·· ·∩N(αi)|= d(k−1)
n−ki .

Furthermore, the number of subsets of T with exactly i disjoint cycles is equal to n!
i!ki(n−ki)! .

Hence, equation (5.1) follows from equation (5.4) and the Principal of Inclusion and

Exclusion.

Recall that for each σ ∈ Sn, fk(σ) denotes the number of k-cycles appearing in the cyclic

decomposition of σ . Let

Mi = {σ ∈ Sn \C(1,2,...,k−1) : fk(σ) = i}.
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Note that

Sn \C(1,2,...,k) =
(
Sn \C(1,2,...,k−1)

)
\

b n
kc⋃

i=1

Mi

 .

Furthermore, M j ∩M j′ = ∅ for j 6= j′ and |Mi| = n!
i!ki(n−ki)!d

(k)
n−ki. Hence, equation (5.2)

follows from the following equation

d(k)
n = d(k−1)

n −
b n

kc
∑
i=1
|Mi|.

(c) Given a permutation σ ∈ Sn \C(1,2,...,k), the element n may appear in a t-cycles with

t ≥ k+2 or t = k+1. If t ≥ k+2, then σ = (n r)ρ for some 2-cycles (n r) and ρ ∈ Sn−1

with fi(ρ) = 0 for i = 1,2, . . . ,k. If t = k+1, then σ = βρ , where

β = (n j1 j2 · · · jk),

is a (k + 1)-cycle and ρ is a permutation of [n− 1] \ { j1, j2, . . . , jk} with fi(ρ) = 0 for

i = 1,2, . . . ,k. Note that the number of such (n r) is n− 1 and the number of such β is
(n−1)!

(n−k−1)! . Hence, equation (5.3) follows.

Theorem 5.2.2. Let k,n be positive integers and k < n.

(a) If n≥ 2k, then

d(k)
n < d(k−1)

n < · · ·< d(1)
n .

(b) If n≥ k+1, then

d(k)
n ≥

n!
3k

.

Proof. (a) It follows from equation (5.2).

(b) We shall prove the inequality by induction on n. Suppose k+ 1 ≤ n ≤ 2k+ 1. Then

by part (a) of Lemma 5.2.1, d(k)
n = (n−1)!. On the other hand,

n!
3k(n−1)!

=
n
3k
≤ (2k+1)

3k
≤ 1.
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Thus, d(k)
n ≥ n!

3k for k+1≤ n≤ 2k+1.

Suppose n≥ 2k+2. Assume that the inequality holds for all n0 with k+1≤ n0 < n.

By equation (5.3),

d(k)
n = (n−1)d(k)

n−1 +
(n−1)!

(n− k−1)!
d(k)

n−k−1.

By induction, d(k)
n−1 ≥

(n−1)!
3k and d(k)

n−k−1 ≥
(n−k−1)!

3k . Therefore

d(k)
n ≥

(n−1)!
3k

((n−1)+1) =
n!
3k

.

This completes the proof of part (b).

Note that e(k)j = 0 = o(k)j , for j = 1, . . . ,k. For convenience, we set e(k)0 = 1 and o(k)0 = 0.

Thus, s(k)0 = e(k)0 −o(k)0 = 1.

Lemma 5.2.3. Let k,n be positive integers and k < n.

(a) s(1)n = (−1)n−1(n−1).

(b) If n > k ≥
⌊n

2

⌋
, then s(k)n = (−1)n−1(n−1)!.

(c) If n > k ≥ 2, then

s(k)n =


∑
b n

kc
i=0

n!
i!(n−ki)!ki s

(k−1)
n−ki if k is even,

∑
b n

kc
i=0

n!
i!(n−ki)!ki (−1)is(k−1)

n−ki if k is odd.

Proof. (a) See equation 2.8 in Ellis (2012, [17]).

(b) Note that σ ∈ Sn \C(1,2,...,k) if and only if σ is an n-cycle. So, s(k)n =−(n−1)! if n is

even and s(k)n = (n−1)! if n is odd.

(c) We shall use the Principal of Inclusion and Exclusion.

Suppose k is even. Note that a k-cycles has negative sign. When we remove a k-cycles
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from a permutation, the sign of the permutation changes. Therefore

e(k)n = e(k−1)
n −

(
n
k

)
(k−1)!o(k−1)

n−k +

(
n
k

)(
n− k

k

)
[(k−1)!]2

2!
e(k−1)

n−2k

−
(

n
k

)(
n− k

k

)(
n−2k

k

)
[(k−1)!]3

3!
o(k−1)

n−3k + · · · .

Similarly,

o(k)n = o(k−1)
n −

(
n
k

)
(k−1)!e(k−1)

n−k +

(
n
k

)(
n− k

k

)
[(k−1)!]2

2!
o(k−1)

n−2k

−
(

n
k

)(
n− k

k

)(
n−2k

k

)
[(k−1)!]3

3!
e(k−1)

n−3k + · · · .

Hence,

s(k)n = e(k)n −o(k)n

=
b n

kc
∑
i=0

n!
i!(n− ki)!ki s

(k−1)
n−ki .

Suppose k is odd. Note that a k-cycles has positive sign. When we remove a k-cycles

from a permutation, the sign of the permutation does not change. Therefore

e(k)n = e(k−1)
n −

(
n
k

)
(k−1)!e(k−1)

n−k +

(
n
k

)(
n− k

k

)
[(k−1)!]2

2!
e(k−1)

n−2k

−
(

n
k

)(
n− k

k

)(
n−2k

k

)
[(k−1)!]3

3!
e(k−1)

n−3k + · · · .

Similarly,

o(k)n = o(k−1)
n −

(
n
k

)
(k−1)!o(k−1)

n−k +

(
n
k

)(
n− k

k

)
[(k−1)!]2

2!
o(k−1)

n−2k

−
(

n
k

)(
n− k

k

)(
n−2k

k

)
[(k−1)!]3

3!
o(k−1)

n−3k + · · · .
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Hence,

s(k)n = e(k)n −o(k)n

=
b n

kc
∑
i=0

n!
i!(n− ki)!ki (−1)is(k−1)

n−ki .

Lemma 5.2.4. Let k,n be positive integers and k < n.

(a) sign
(

s(k)n

)
= (−1)n−1.

(b) If k ≥ 2, then

∣∣∣s(k)n

∣∣∣=


∑
l−1
i=0

n!
i!(n−ki)!ki

∣∣∣s(k−1)
n−ki

∣∣∣ if n− kl > 0,

∑
l−2
i=0

n!
i!(n−ki)!ki

∣∣∣s(k−1)
n−ki

∣∣∣+( n!
(l−1)!kl − n!

l!kl

)
if n− kl = 0,

where l =
⌊n

k

⌋
.

Proof. (a) We shall prove by induction on k. The case k = 1 follows from part (a) of

Lemma 5.2.3.

Suppose k ≥ 2. Assume that it holds for k−1.

Case 1. Suppose k is even. Then by part (c) of Lemma 5.2.3,

s(k)n =
l−1

∑
i=0

n!
i!(n− ki)!ki s

(k−1)
n−ki +

n!
l!(n− kl)!kl s(k−1)

n−kl .

Note that 0≤ n− kl < k. If n− kl 6= 0, then s(k−1)
n−kl = 0 and

s(k)n =
l−1

∑
i=0

n!
i!(n− ki)!ki s

(k−1)
n−ki .

Now, for 0≤ i≤ l−1,

n− ki =


odd if n is odd,

even if n is even.
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This implies that (−1)n−ki−1 = (−1)n−1. So, by induction, sign
(

s(k−1)
n−ki

)
= (−1)n−1.

Thus sign
(

s(k)n

)
= (−1)n−1.

Suppose n− kl = 0. Then l ≥ 2, n is even, n− ki is even for 0 ≤ i ≤ l− 2, and s(k−1)
n−kl =

s(k−1)
0 = 1. By part (b) of Lemma 5.2.3, s(k−1)

k =−(k−1)!. Therefore

s(k)n =
l−2

∑
i=0

n!
i!(n− ki)!ki s

(k−1)
n−ki +

n!
(l−1)!k!kl−1 s(k−1)

k +
n!

l!kl

=
l−2

∑
i=0

n!
i!(n− ki)!ki s

(k−1)
n−ki −

(
n!

(l−1)!kl −
n!

l!kl

)
.

Note that n!
(l−1)!kl − n!

l!kl > 0. By induction, sign
(

s(k−1)
n−ki

)
= −1 for 0 ≤ i ≤ l− 2. Thus,

sign
(

s(k)n

)
=−1.

This completes the proof of Case 1.

Case 2. Suppose k is odd. Then by part (c) of Lemma 5.2.3,

s(k)n =
l−1

∑
i=0

n!
i!(n− ki)!ki (−1)is(k−1)

n−ki +
n!

l!(n− kl)!kl (−1)ls(k−1)
n−kl .

If n− kl > 0, then s(k−1)
n−kl = 0 and

s(k)n =
l−1

∑
i=0

n!
i!(n− ki)!ki (−1)is(k−1)

n−ki .

Now, for 0≤ i≤ l−1,

n− ki =


even if i and n are odd, or i and n are even,

odd otherwise.

This implies that (−1)n−ki−1 = (−1)i+n−1. So, by induction, sign
(

s(k−1)
n−ki

)
= (−1)i+n−1

for 0≤ i≤ l−1. Thus sign
(

s(k)n

)
= (−1)n−1.

Suppose n− kl = 0. Then l ≥ 2, (−1)l = (−1)n and s(k−1)
n−kl = s(k−1)

0 = 1. By part (b) of
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Lemma 5.2.3, s(k−1)
k = (k−1)!. Therefore

s(k)n =
l−2

∑
i=0

n!
i!(n− ki)!ki (−1)is(k−1)

n−ki +(−1)n−1
(

n!
(l−1)!k!kl−1 s(k−1)

k − n!
l!kl

)
=

l−2

∑
i=0

n!
i!(n− ki)!ki (−1)is(k−1)

n−ki +(−1)n−1
(

n!
(l−1)!kl −

n!
l!kl

)
.

Note that n!
(l−1)!kl − n!

l!kl > 0 and (−1)n−ki−1 = (−1)i+n−1 for k is odd. By induction,

sign
(

s(k−1)
n−ki

)
= (−1)i+n−1 for 0≤ i≤ l−2. Thus sign

(
s(k)n

)
= (−1)n−1.

This completes the proof of Case 2.

(b) This follows from part (c) of Lemma 5.2.3 and part (a) of this lemma.

Let i, j ∈ [n] with i 6= j and σ ∈ Sn. We define

disti, j(σ) = m,

if σ = αβ with

α = (i x1 x2 · · ·xm−1 j xm+1 · · ·xr−1)

is a r-cycles and β is a permutation of [n] \ {i, j,x1, . . . ,xm−1,xm+1, . . . ,xr−1}. If i, j are

not in the same cycle in the cyclic decomposition of σ , then disti, j(σ) = ∞. Note that

disti, j(σ) ≥ 1. In general, disti, j(σ) 6= dist j,i(σ). For instance, dist1,2((1,2,3)) = 1,

whereas dist2,1((1,2,3)) = 2.

Theorem 5.2.5. Let k,n be positive integers and k < n.

(a) If n≥ 2k and k ≥ 2, then

∣∣∣s(1)n

∣∣∣< ∣∣∣s(2)n

∣∣∣< · · ·< ∣∣∣s(k)n

∣∣∣ .
(b)

∣∣∣s( j)
n

∣∣∣≤ (n−1)! for j = 1,2, . . . ,n−1.

(c) For sufficiently large n, ∣∣∣s(k)n

∣∣∣< 8k2(n−3)! lnn.
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Proof. (a) Since n≥ 2k, l ≥ 2. So, the inequality follows from part (b) of Lemma 5.2.4.

(b) By part (b) of Lemma 5.2.3, we may assume that 1 ≤ j <
⌊n

2

⌋
. By part (a) of this

lemma,
∣∣∣s( j)

n

∣∣∣< ∣∣∣∣s(b n
2c)

n

∣∣∣∣= (n−1)!.

(c) By part (a) of Lemma 5.2.3, we may assume that k ≥ 2. Let

T1 = {σ ∈ Sn \C(1,2,...,k) : (n 1)σ ∈ Sn \C(1,2,...,k)}.

Note that σ 6= (n 1)σ and σ ∈ T1 if and only if (n 1)σ ∈ T1. So, the number of elements

in T1 is even. Furthermore, σ is even if and only if (n 1)σ is odd. This implies that

s(k)n = ∑
σ∈Sn\C(1,2,...,k)

ε(σ) = ∑
σ∈T2

ε(σ),

where T2 = (Sn \C(1,2,...,k))\T1.

Note that each element in T2 is of the form αβ where

(i) α = (n x1 x2 · · · xr−1) is a r-cycles (r ≥ k+1) with 1 ∈ {x1,x2, . . . ,xk} or

1 ∈ {xr−1,xr−2, . . . ,xr−k};

(ii) β is a permutation of [n]\{n,x1,x2, . . . ,xr−1} and fi(β ) = 0 for 1≤ i≤ k.

Let

T3 = {σ ∈ T2 : distn,1(σ)≤ k and distn,2(σ) = ∞};

T4 = {σ ∈ T2 : distn,1(σ)≤ k and distn,2(σ) 6= ∞};

T5 = {σ ∈ T2 : distn,1(σ)> k, dist1,n(σ)≤ k and dist1,2(σ) = ∞};

T6 = {σ ∈ T2 : distn,1(σ)> k, dist1,n(σ)≤ k and dist1,2(σ) 6= ∞}.

Note that T2 =
⋃6

i=3 Ti and Ti∩Tj =∅ for 3≤ i < j ≤ 6. Therefore,

∑
σ∈T2

ε(σ) =
6

∑
i=3

∑
σ∈Ti

ε(σ).
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Now, for each σ ∈ T3, we have (n 2)σ ∈ T4. This implies that

∑
σ∈T3

ε(σ)+ ∑
σ∈T4

ε(σ) = ∑
σ∈T7

ε(σ),

where

T7 = {σ ∈ T2 : distn,1(σ)≤ k and (distn,2(σ)≤ k or dist2,n(σ)≤ k)}.

Note that each element in T7 is of the form αβ where

(i) α = (n x1 x2 · · · xr−1) is a r-cycles (r ≥ k+1) with 1 ∈ {x1,x2, . . . ,xk} and

either 2 ∈ {x1,x2, . . . ,xk} or 2 ∈ {xr−1,xr−2, . . . ,xr−k};

(ii) β is a permutation of [n]\{n,x1,x2, . . . ,xr−1} and fi(β ) = 0 for 1≤ i≤ k.

For such a fixed α0, when β runs through all the possible permutations,

∑
α0β

ε(α0β ) = ε(α0)∑
β

ε(β ) = ε(α0)s
(k)
n−r = (−1)r−1s(k)n−r.

Let Mr be the number of such r-cycles. Then

∑
σ∈T7

ε(σ) =
n

∑
r=k+1

(−1)r−1Mrs
(k)
n−r.

Note that

|Mr|< 2k2
(

n−3
r−3

)
(r−3)! = 2k2 (n−3)!

(n− r)!
.

If k ≥ n− r and n− r 6= 0, then s(k)n−r = 0. If k < n− r, then by part (b) of this lemma,∣∣∣s(k)n−r

∣∣∣ ≤ (n− r−1)!. In either case,
∣∣∣s(k)n−r

∣∣∣ ≤ (n− r−1)! if n− r 6= 0. If n− r = 0, then

87

Univ
ers

ity
 of

 M
ala

ya



s(k)n−r = 1. Note that 1+∑
n−1
r=k+1

1
(n−r) < 2lnn for sufficiently large n. Therefore,

∣∣∣∣∣ ∑
σ∈T7

ε(σ)

∣∣∣∣∣≤ n

∑
r=k+1

|Mr|
∣∣∣s(k)n−r

∣∣∣
=

(
n−1

∑
r=k+1

|Mr|
∣∣∣s(k)n−r

∣∣∣)+ |Mn|

<

(
n−1

∑
r=k+1

(
2k2 (n−3)!

(n− r)!

)
((n− r−1)!)

)
+2k2(n−3)!

= 2k2(n−3)!

(
1+

n−1

∑
r=k+1

1
(n− r)

)

< 4k2(n−3)! lnn.

Next, for each σ ∈ T5, we have (1 2)σ ∈ T6. This implies that

∑
σ∈T5

ε(σ)+ ∑
σ∈T6

ε(σ) = ∑
σ∈T8

ε(σ),

where

T8 = {σ ∈ T2 : distn,1(σ)> k, dist1,n(σ)≤ k and

(dist1,2(σ)≤ k or dist2,1(σ)≤ k)}.

Note that each element in T8 is of the form αβ where

(i) α = (1 x1 x2 · · · xr−1) is a r-cycles (r ≥ k+1) with n ∈ {x1,x2, . . . ,xk},

n /∈{xr−1,xr−2, . . . ,xr−k} and either 2∈{x1,x2, . . . ,xk} or 2∈{xr−1,xr−2, . . . ,xr−k};

(ii) β is a permutation of [n]\{n,x1,x2, . . . ,xr−1} and fi(β ) = 0 for 1≤ i≤ k.

By a similar argument as above, we may conclude that

∣∣∣∣∣ ∑
σ∈T8

ε(σ)

∣∣∣∣∣< 4k2(n−3)! lnn.

Hence,

∣∣∣s(k)n

∣∣∣= ∣∣∣∣∣ 8

∑
i=7

∑
σ∈Ti

ε(σ)

∣∣∣∣∣≤ 8

∑
i=7

∣∣∣∣∣∑
σ∈Ti

ε(σ)

∣∣∣∣∣< 8k2(n−3)! lnn.
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5.3 Smallest Eigenvalue of Γ
(k)
n

Lemma 5.3.1. Let k,n be positive integers, k < n, and λ ` n. If the dimension of the

Specht module Sλ , f λ ≥
(n−1

2

)
−1 = n(n−3)

2 , then for sufficiently large n,

(n−1)
∣∣∣η(k)

λ

∣∣∣< d(k)
n .

Proof. By Lemma 5.1.2,

∣∣∣η(k)
λ

∣∣∣≤ 2

√
d(k)

n (n−1)(n−2)(n−4)!
n(n−3)

.

So, it is sufficient to show that

4(n−1)3(n−2)(n−4)!
n(n−3)

< d(k)
n (5.5)

By part (b) of Theorem 5.2.2, d(k)
n ≥ n!

3k . Therefore equation (5.5) holds if

4(n−1)3(n−2)(n−4)!
n(n−3)

<
n!
3k

,

which is equivalent to

12k(n−1)2

n2(n−3)2 < 1.

Note that

12k(n−1)2

n2(n−3)2 =

(
12
n

)(
k
n

)(
n−1
n−3

)2

<

(
12
n

)(
n−1
n−3

)2

< 1,

for sufficiently large n. Hence, the lemma holds.

Lemma 5.3.2. Let k,n be positive integers and k ≤ nδ with 0 < δ < 2
3 . Then for suffi-

ciently large n,

(n−1)
∣∣∣s(k)n

∣∣∣< d(k)
n .
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Proof. By part (c) of Theorem 5.2.5,

∣∣∣s(k)n

∣∣∣< 8k2(n−3)! lnn.

By part (b) of Theorem 5.2.2, d(k)
n ≥ n!

3k . Since k ≤ nδ , d(k)
n ≥ n!

3nδ
and

∣∣∣s(k)n

∣∣∣ < 8n2δ (n−

3)! lnn. Therefore, it is sufficient to show that

8n2δ (n−1)(n−3)! lnn <
n!

3nδ
,

which is equivalent to

24n3δ lnn
n(n−2)

< 1.

Now, 2−3δ > 0. So, for sufficiently large n,

24n3δ lnn
n(n−2)

= 24
(

lnn
n2−3δ

)(
n

n−2

)
< 1.

Hence, the lemma holds.

Theorem 5.3.3. Let k,n be positive integers and k ≤ nδ with 0 < δ < 2
3 . Then for suffi-

ciently large n, the smallest eigenvalue of Γ
(k)
n is equal to

η
(k)
(n−1,1) =−

d(k)
n

n−1

where d(k)
n = |Sn \C(1,2,...,k)|. Furthermore, η

(k)
λ

=− d(k)
n

n−1 if and only if λ = (n−1,1).

Proof. It follows from Lemmas 5.1.1, 5.1.2, 5.3.1 and 5.3.2 that for sufficiently large

n, − d(k)
n

n−1 is the smallest eigenvalue of Γ
(k)
n . Furthermore, η

(k)
λ

= − d(k)
n

n−1 if and only if

λ = (n−1,1).

This completes the proof of Theorem 5.3.3.
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5.4 Largest Independent set of Γ
(k)
n

Note that for each λ ` n, the Specht module Sλ is an irreducible CSn-module. Let Uλ be

the sum of all copies of Sλ in CSn. Note that Uλ is the η
(k)
λ

-eigenspace of the adjacency

matrix of Γ
(k)
n , i.e.,

Uλ =
{

x ∈ Cn! : Bx = η
(k)
λ

x
}
,

where B is the adjacency matrix of Γ
(k)
n (see Diaconis and Shahshahani,1981 [15] and

Ellis, 2012 [17, Theorem 2.3]). In the proof of Theorem 1.4.9, Ellis (2012, [17]) used the

following two lemmas which will be needed in this chapter.

Lemma 5.4.1. (Ellis, 2012 [17, Lemma 2.7])

U(n)⊕U(n−1,1) = Span{1Si, j : i, j ∈ [n]}.

Lemma 5.4.2. (Ellis, Friedgut and Pilpel, 2011 [19, Theorem 8]) Let A ⊆ Sn. If 1A ∈

Span{1Si, j : i, j ∈ [n]}, then A is a disjoint union of some of the Si, j’s.

It follows from Lemmas 5.1.1, 5.1.2, 5.3.1 and 5.3.2 that for sufficiently large n, U(n)

and U(n−1,1) are the d(k)
n -eigenspace and− d(k)

n
n−1 -eigenspace, respectively, of the adjacency

matrix of Γ
(k)
n .

Claim. Every element in S
(k)
n is of size (n−1)!.

Proof. Let B ∈S
(k)
n . By Theorems 1.4.1 and 5.3.3,

|B| ≤ n!

1− d(k)
n

− d(k)n
n−1

= (n−1)!.

Note that S1,2 = {π ∈ Sn : π(1) = 2} is an independent set in Γ
(k)
n and

∣∣S1,2
∣∣ = (n− 1)!.

This establishes the claim.

Recall that the set

Si, j = {π ∈ Sn : π(i) = j},
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for i, j ∈ [n] is the coset of stabiliser of a point. Define S
(k)
n to be the set consisting of all

the largest independent sets in Γ
(k)
n . Cameron and Ku (2003, [11]), Godsil and Meagher

(2009, [27]), and Larose and Malvenuto (2004, [53]) showed that S(1)
n = {Si, j : i, j ∈ [n]}.

The following theorem is a generalization of this result.

Theorem 5.4.3. Let k,n be positive integers and k ≤ nδ with 0 < δ < 2
3 . Then for suffi-

ciently large n,

S
(k)
n = {Si, j : i, j ∈ [n]}.

In particular, the largest independent set in Γ
(k)
n is of size (n−1)!.

Proof. In fact, {Si, j : i, j ∈ [n]} ⊆S
(k)
n . Let S ∈S

(k)
n . Then |S| = (n− 1)!. By Theorem

1.4.1,

1S ∈U(n)⊕U(n−1,1).

It then follows from Lemmas 5.4.1 and 5.4.2 that S ∈ {Si, j : i, j ∈ [n]}. Hence,

S
(k)
n = {Si, j : i, j ∈ [n]}.

This completes the proof of Theorem 5.4.3.
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(1984), 247–257.

[68] R. Woodroofe, Erdos-Ko-Rado theorems for simplicial complexes, J. Combin. The-

ory Ser. A 118 (2011), 1218–1227.

98

Univ
ers

ity
 of

 M
ala

ya



List of Publications and Papers Presented

Papers Presented

T. Lau, Choices of Power Sum Symmetric Functions, The 22nd National Symposium on

Mathematical Sciences (SKSM22), Shah Alam, 24-26 November 2014.

Papers Published

C.Y. Ku, T. Lau, and K.B. Wong, Cayley graph on symmetric group generated by elements

fixing k points, Linear Algebra Appl. 471 (2015) 405–426.

C.Y. Ku, T. Lau, and K.B. Wong, Largest Independent Sets of Certain Regular Sub-

graphs of the Derangement Graph, Journal of Algebraic Combinatorics DOI

10.1007/s10801-015-0656-4, to appear.

C.Y. Ku, T. Lau, and K.B. Wong, The Smallest Eigenvalues of the 1-point Fixing Graph,

Linear Algebra Appl. 493 (2016) 433–446.

99

Univ
ers

ity
 of

 M
ala

ya


	Abstract
	Abstrak
	Acknowledgements
	Table of Contents
	List of Tables
	List of Appendices
	INTRODUCTION AND LITERATURE REVIEW
	Definitions & Terminology
	Representation Theory of Symmetric Groups
	Introduction and Background
	Symmetric Group, Partitions and Specht Module

	k-point Fixing Graph
	Literature Review
	Delsarte-Hoffman Bound
	0-point Fixing Graph
	Intersecting families


	RECURRENCE FORMULA FOR F(n,k) AND ASP FOR F(n,1)
	Recurrence formula for F(n,k)
	ASP for F(n,1)
	Inequalities for the eigenvalues of F(n,0)
	Proof of ASP for F(n,1)


	SMALLEST EIGENVALUE AND BOUNDING A LARGEST INDEPENDENT SET IN F(n,1)
	Some Eigenvalues of F(n,1)
	Smallest Eigenvalue of F(n,1)

	SMALLEST EIGENVALUE AND BOUNDING A LARGEST INDEPENDENT SET IN F(n,k) FOR k<<n
	Dimension of Specht Module S
	Eigenvalues with small dimension
	Eigenvalues with large dimension
	Smallest eigenvalues of F(n,k)

	CERTAIN REGULAR SUBGRAPHS OF F(n,0)
	Some Eigenvalues of n(k)
	dn(k) and sn(k)
	Smallest Eigenvalue of n(k)
	Largest Independent set of n(k)

	References
	List of Publications and Papers Presented
	Appendices



