
A CONTROLLER-AGNOSTIC RANDOM ORACLE
BASED INTRUSION DETECTION METHOD IN

SOFTWARE DEFINED NETWORKS

ADNAN

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya



A CONTROLLER-AGNOSTIC RANDOM ORACLE BASED
INTRUSION DETECTION METHOD IN SOFTWARE

DEFINED NETWORKS

ADNAN

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya



UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: ADNAN

Registration/Matrix No: WHA130022

Name of Degree: PH.D

Title of Thesis: A Controller-agnostic Random Oracle-based Intrusion Detection Method

in Software Defined Networks

Field of Study: Information Security

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction
of any copyright work has been disclosed expressly and sufficiently and the title of
the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copy-
right whether intentionally or otherwise, I may be subject to legal action or any other
action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

ii

Univ
ers

ity
 of

 M
ala

ya



ABSTRACT

The revolutionary concept of Software Defined Networks (SDNs) potentially provides

flexible and well-managed next-generation networks. All the hype surrounding the SDNs

is predominantly because of its centralized management functionality, the separation of

the control plane from the data forwarding plane, and enabling innovation through net-

work programmability. Such distinguishing features make SDNs flexible, vendor agnos-

tic, programmable, cost effective, and create an innovative network environment. Despite

the promising architecture, security was not considered as part of the initial SDN design.

Moreover, security concerns are potentially augmented considering the logical centraliza-

tion of network intelligence. The motivation of this dissertation is to address the defense

space against the threat of attacks in SDNs that primarily target the control plane to wrest

either full or partial control of the entire network. Additionally, this problem exacer-

bates in the context of SDNs unlike traditional networks. The SDN controller signifies a

single point of failure and thus serves as a potential primary target for attackers. Conse-

quently, the controller compromise in any way would certainly throw the entire network

into chaos. Besides, the operational semantics of the OpenFlow mandates unmatched

packets to be sent directly to the controller lower the barrier of mounting sophisticated

attacks on the SDN controller. Moreover, at present, the control plane has no built-in se-

curity mechanism that prevents malicious SDN agents from sending authorized but forged

flows to corrupt the controller state or bring the entire network down, in the worst case,

even if the OpenFlow is Transport Layer Security (TLS) enabled. Likewise, the soft pro-

grammable switches that are directly connected to the controller running atop end host

servers are attractive targets for attackers to initiate control plane flooding; apart from

authorized but untrusted hosts. To preserve the correct functioning of the entire SDN ar-

chitecture, an efficient detection of various distributed coordinated attacks and anomalies
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triggered by large-scale malicious events that predominantly target the control plane is

of paramount concern and an increasingly important research topic. As a result, devel-

oping an efficient controller-agnostic network intrusion-detection method is imperative.

We propose a diverse fusion-selection approach that stands on Oracle to be applied to the

classifier ensemble design, where the Oracle is a random linear function. We argue that

the proposed method adds extra-diversity while promoting a higher level of intrusion-

detection accuracy to effectively identify a wide variety of sophisticated network security

attacks. We perform a rigorous evaluation of the proposed method by testing using Flood-

light and Mininet to emulate SDN setting. We model the solution in the real setting of

SDNs using High Level Petri Nets (HLPN), analyze the rules with Z language, and for-

mally verified the correct functioning using Z3 SMT solver. To validate our proposed

approach, we also carried simulation using a publicly available benchmark data-set with

K-fold cross validation to exhibit the performance of the proposed method. The verifica-

tion of the proposed approach is made with current state-of-the-art algorithms. Moreover,

to show the resulting significant performance of the proposed approach to be optimisti-

cally unbiased, we employed a ten-fold cross-validation.
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ABSTRAK

Konsep revolusioner dari Software Defined Networks (SDNs) berpotensi menyediakan

rangkaian yang fleksibel dan diurus dengan baik untuk generasi akan datang. Semua

gembar-gembur yang mengelilingi SDNs adalah sebahagian besarnya kerana fungsi pe-

ngurusan berpusat, pemisahan pesawat kawalan daripada data penghantaran kapal ter-

bang, dan membolehkan inovasi melalui program menerusi rangkaian. Ciri yang mem-

bezakan tersebut membuat SDNs fleksibel, vendor agnostik, boleh aturcara, kos efektif,

dan mewujudkan persekitaran rangkaian yang inovatif. Walaupun seni binanya menjan-

jikan masa depan yang cerah, keselamatan tidak dianggap sebagai sebahagian daripada

reka bentuk awal SDN. Selain itu, masalah keselamatan berpotensi diperkukuhkan me-

mandangkan pemusatan logik perisikan rangkaian. Motivasi disertasi ini adalah untuk

menangani ruang pertahanan terhadap ancaman serangan di SDNs yang sebahagian be-

sarnya menyasarkan pesawat kawalan untuk merampas kuasa sama ada sepenuhnya atau

sebahagian daripada keseluruhan rangkaian. Selain itu, masalah ini lebih memburukkan

dalam konteks SDNs tidak seperti rangkaian tradisional. Pengawal SDN menandakan

satu titik kegagalan dan dengan itu berfungsi sebagai sasaran utama yang berpotensi un-

tuk penyerang. Oleh itu, pengawal kompromi dalam apa-apa cara pasti akan membuang

seluruh rangkaian ke dalam kekacauan. Selain itu, semantik operasi mandat OpenFlow

paket tidak dapat ditandingi untuk dihantar terus kepada pengawal mengurangkan halang-

an pemasangan serangan canggih pada pengawal SDN. Selain itu, pada masa ini, kapal

terbang kawalan tidak mempunyai terbina dalam mekanisme keselamatan yang meng-

halang ejen SDN berniat jahat daripada menghantar aliran kuasa tetapi palsu untuk me-

rosakkan pengawal negeri atau membawa seluruh rangkaian ke bawah, dalam kes yang

teruk, walaupun OpenFlow adalah Lapisan Pengangkutan Keselamatan (TLS) yang ak-

tif. Begitu juga, suis diprogramkan lembut yang secara langsung disambungkan kepada

v

Univ
ers

ity
 of

 M
ala

ya



pengawal yang berjalan di atas pelayan hos akhir adalah sasaran menarik bagi penyerang

untuk memulakan kawalan pesawat banjir; selain dari hos yang diberi kuasa tetapi tidak

dipercayai. Untuk mengekalkan fungsi yang betul bagi keseluruhan seni bina SDN, pe-

ngesanan yang cekap pelbagai serangan terancang diedarkan dan anomali dicetuskan oleh

peristiwa-peristiwa yang berniat jahat secara besar-besaran yang kebanyakannya mensa-

sarkan pesawat kawalan adalah perkara yang paling utama dan topik penyelidikan yang

semakin penting. Hasilnya, membangunkan kaedah pencerobohan pengesanan pelbagai

dan dinamik untuk kapal terbang kawalan SDN adalah mustahak. Kami mencadangkan

pendekatan pilihan pelbagai gabungan yang berdiri di atas Oracle untuk digunakan untuk

reka bentuk pengelas ensemble, di mana Oracle adalah fungsi linear rawak. Kami ber-

pendapat bahawa kaedah yang dicadangkan menambah tambahan -kepelbagaian di sam-

ping menggalakkan tahap yang lebih tinggi ketepatan pencerobohan pengesanan untuk

mengenal pasti pelbagai jenis serangan keselamatan rangkaian canggih berkesan. Kami

melakukan penilaian yang ketat untuk kaedah yang dicadangkan dengan menguji meng-

gunakan lampu dan Mininet mencontohi tetapan SDN. Kami model penyelesaian dalam

suasana sebenar SDNs menggunakan High Level Petri Nets (HLPN), menganalisis pera-

turan dengan bahasa Z, dan secara rasmi disahkan berfungsi dengan betul menggunakan

Z3 SMT penyelesai. Untuk mengesahkan pendekatan yang kami cadangkan, kami juga

menjalankan simulasi menggunakan umum penanda aras data-set dengan K-kali ganda

pengesahan silang untuk mempamerkan prestasi kaedah yang dicadangkan. Pengesahan

terhadap pendekatan yang dicadangkan dibuat dengan state-of -the -art algoritma sema-

sa. Selain itu, untuk menunjukkan prestasi yang ketara yang terhasil daripada pendekatan

yang dicadangkan itu supaya optimistik tidak berat sebelah, kita bekerja sepuluh kali

ganda merentas pengesahan.
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CHAPTER 1: INTRODUCTION

This chapter begins with a background study to provide an overview of the research work.

The chapter also presents the key motivations to value the area of research and signifi-

cance of the proposed solution. Subsequently, the statement of the problem followed by

the research objectives to be achieved are stated. The chapter also describes the proposed

methodology of the research. Finally, the structure of the dissertation organization to

show how the thesis will proceed are outlined.

The rest of the chapter is structured as follows: Section 1.1 presents the background

study of the research work. Section 1.2 provides the key motivations. In Section 1.3, we

present the statement of the problem followed by the statement of the research objectives

in Section 1.4. Section 1.5 reports the methodology of the proposed research. Finally, we

provide the layout of the thesis in section 1.6.

1.1 Background

The revolutionary concept of Software Defined Networks (SDNs) potentially provides

flexible and well-managed next-generation networks. All the hype surrounding the SDNs

is predominantly because of its centralized management functionality, the separation of

the control plane from the data forwarding plane, and enabling innovation through net-

work programmability. The emergence of the software-defined network (SDN) paradigm

simplifies network management and enables innovation through network programmabil-

ity. SDNs have given rise to radical changes in the traditional vertical integration model

of a network by decoupling the forwarding hardware (data plane) from the control logic

of the network (control plane). The data plane, which consists of switches and routers, is

responsible only for forwarding traffic, whereas control logic and functionality are moved

to an external entity known as the SDN controller. The network intelligence is logically

centralized in trusted software-based SDN controllers that provide an abstract view of
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underlying network resources. The abstraction of the flow broadly unifies the behavior of

different SDN agents. Such distinguishing features make SDNs flexible, vendor agnostic,

programmable, cost effective, and create an innovative network environment (Kreutz et

al., 2015). Despite these remarkable features and the promising architecture of SDNs,

market and industry observers are apprehensive about the security and dependability of

SDNs. Today, the security of the SDN presents a challenge and a key concern. However,

security was not considered in the initial SDN design.

The architecture of SDN poses new external and internal threats. The integrity and

security of the SDN remain untested in the logical centralization of network intelligence.

The entire network may be compromised through the SDN controller, which may be a

single point of failure and primary target. Furthermore, SDNs are more programmable

than traditional networks,thereby rendering SDNs more vulnerable in terms of security.

The abstraction of available flows at the SDN controller helps significantly in harvesting

the intelligence of underlying resources. This knowledge base can be used for further

attacks, exploitations, and, in particular, reprogramming of the entire network. Likewise,

the southbound interface of SDN can be targeted by using a diverse set of denial-of-

service (DoS) and side-channel attacks.

Moreover, SDN agents can be potentially targeted and injected with false flows.

Cyber-attacks launched through SDNs can result in more devastating effects than those

launched through simple networks. The STRIDE threat analysis methodology demon-

strates the strength and analysis of the OpenFlow (OF) protocol, which is the first viable

SDN technology. However, this analysis focused on the exploitation of DoS attacks and

execution of information disclosure Similarly, the lack of transport layer security (TLS)

at the southbound interface can also lead to DoS attacks, rule modification, and malicious

rule insertion.

Despite the fact that security was not considered as part of the initial design, each
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layer/interface of the SDN has its own security implications and requirements (Kreutz et

al., 2015; F. Hu, Hao, & Bao, 2014). Consequently, the SDN essentially necessitates dy-

namic forensic remediation and robust policy frameworks. Security must be built as part

of the SDN architecture and delivered as a service to ensure the privacy and integrity of

all connected resources. SDN necessitates a simple, scalable, cost-effective, and efficient

secure environment.

1.2 Motivation

The revolutionary idea of Software Defined Networks (SDNs) potentially provides to re-

define the future of next-generation networks. Indeed, all the hype surrounding the SDNs

is predominantly because of its centralized control, the separation of the control plane

from the data forwarding plane, flow abstraction and enabling innovation through net-

work programmability. SDNs continuous to gain market traction and will continue to

hold a long-term promising position in the networking industry. A report by the SDx-

Central (SDxCentral, 2016) indicates that the SDN market is expected to rise from $1.5

billion in 2013 to $35.6 billion in 2018. Likewise, the International Data Corporation

(IDC) (IDC, 2016) recently forecasts that the control layer/virtualization software market

as a single segment of the overall SDN market will reach $2.4 billion in 2020. Moreover,

the IDC also expects that the control layer/virtualization software and SDN applications

will observe the fastest growth world-wide in these two software categories, which will be

worth approximately $5.9 billion in 2020. Furthermore, SDN is the most rapidly evolv-

ing landscape and cloud computing is majorly driving the vast rise in SDN, which expects

a market worth more than $12.5 billion in 2020. However, the market and industry ob-

servers are still apprehensive about the security of the SDNs. Moreover, security concerns

are potentially augmented considering the logical centralization of network intelligence

(Kreutz et al., 2015; Nunes, Mendonca, Nguyen, Obraczka, & Turletti, 2014).
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Unlike traditional networks, the network intelligence is logically centralized in trusted

software-based SDN controller that represents the core of the SDN architecture. SDNs

are entirely dependent on the correct functioning of the controller and that must always

be well-preserved for two main reasons: (i) The controller signifies a single point of

failure and would always remain a hotspot and primary target for the attackers. The

controller compromise in any way would certainly throw the entire network into chaos.

Consequently, it might put the whole network under the control of the adversary. (ii) The

controller is a central decision maker and the core of centralized network intelligence.

On the contrary, traditional network attacks may also affect SDNs. However, adopting

traditional defenses are not directly applicable for two major reasons: (i) Traditional net-

work security solutions assume switches to be intelligent, whereas; in software defined

networks (SDNs) switches are just dump forwarding entities; and (ii) SDNs to provide a

comprehensive defense mechanism absolutely necessitates either patching the controller

or essential redesign of the OpenFlow protocol (Kreutz et al., 2015).

Despite the promising architecture of SDNs, security was not considered as part of

the initial design. Currently, there is no built-in control plane security mechanism to avoid

sophisticated attacks triggered by large-scale malicious events that predominantly target

the SDN controller to degrade the overall performance of the SDNs or bring the entire

network down, in the worst case, even if the OpenFlow is Transport Layer Security (TLS)

enabled. Transport Layer Security (TLS) cannot prevent malicious switches from sending

authorized but forged flows to corrupt the SDN controller state. Hence, compromised

end hosts can easily initiate control plane flooding to bring down the entire network.

Moreover, authorized but untrusted hosts can also smoothly initiate attacks to corrupt the

controller state apart from potentially malicious programmable soft switches (F. Hu et al.,

2014).
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1.3 Statement of The Problem

The distinguishing property of SDNs is the centralized control architecture, which results

in significant managerial benefits. However, this property represents a single point of

failure. The norm of SDNs is the centralized control network intelligence. Moreover, the

SDN controller has a pivotal role in management, and it is a solo decision making entity,

thus becoming a primary target. The logical centralization of network intelligence neces-

sitates the correct functioning of the controller, and that must always be well-preserved.

Moreover, security concerns are potentially augmented considering the centralized logical

control architecture of the SDNs unlike traditional networks.

On the other hand, the operational semantics of the OpenFlow mandates unmatched

packets to be sent directly to the controller lower the barrier of mounting sophisticated

attacks that predominantly target the SDN controller. When a message that is received by

an SDN switch with no match entry is directed to a controller by the OpenFlow proto-

col by default, such messages are called Packet-Ins. Manipulating Packet-Ins can easily

launch diverse attacks to corrupt the controller state against all major available OpenFlow

based SDN controllers. More importantly, at present, the control plane has no built-in

security mechanism to avoid the manipulation of Packet-In messages.

Unlike traditional networks, soft programmable switches that are directly connected

to the controller running atop end host servers are the attractive targets for the attackers.

In traditional networks, the network hardware switches are relatively difficult to physi-

cally compromise and alter routing rules that govern network communication for further

subsequent attacks. Hence, compromised soft programmable switches can easily initi-

ate control plane flooding to bring down the entire network. Moreover, authorized but

untrusted hosts can also smoothly initiate attacks to corrupt the controller state.

Currently, there is no built-in security mechanism that prevents malicious SDN agents
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(i.e. soft switches, end hosts, etc.) from authorized but forged flows that predominantly

target the SDN controller to degrade the overall performance of the SDNs or bring the

entire network down, in the worst case, even if the OpenFlow is Transport Layer Security

(TLS) enabled. Transport Layer Security (TLS) cannot prevent malicious soft switches

from sending authorized but forged flows to corrupt the state of the controller.

In order to preserve the correct functioning of the entire SDN architecture, an ef-

ficient detection of various distributed coordinated attacks and anomalies triggered by

large-scale malicious events that predominantly target the control plane is of paramount

concern and an increasingly important research topic. As a result, developing a diverse,

highly flexible intrusion-detection method that is capable to effectively identify a wide

variety of sophisticated network attacks is imperative.

1.4 Statement of Objectives

We aim to effectively identify the threat of various distributed coordinated attacks in

SDNs that primarily target the control plane by implementing a dynamic and efficient

intrusion-detection method that adds extra-diversity while promote a remarkable detec-

tion accuracy with incredible low false-positive rates.

The objectives of this research are as follows.

1. To review the security vulnerabilities, attacks, and challenges of each SDN lay-

er/interface and to establish the research gaps by analyzing the state-of-the-art SDN

security techniques considering the earliest to the latest trends.

2. To investigate the defense space and formally analyze the threat of attacks that

predominantly target the control plane in the real setting of SDNs.

3. To propose a diverse and highly flexible intrusion detection method capable of ef-

fectively identifying automatically and in real-time varied sophisticated network
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attacks and large-scale malicious events that primarily target the control-plane of

the SDNs.

4. To evaluate the proposed method by testing using Floodlight, a popular java based

SDN controller and Mininet to emulate SDN setting. Moreover, modeling the pro-

posed method in the real setting of SDNs using High Level Petri Nets (HLPN),

analyze the rules with Z language, and formally verified using the Z3 constraint

solver that is an efficient automated SMT (satisfiability modulo theories) solver by

Microsoft Research Labs, mostly used in the verification and analysis of diverse

software systems. To validate our proposed approach, we also carried simulation

using a publicly available benchmark data-set with K-fold cross validation to ex-

hibit the performance of the proposed method, where K is not a fixed parameter.

The verification of the proposed approach is made with current state-of-the-art al-

gorithms. Moreover, to show the resulting significant performance of the proposed

approach to be optimistically unbiased, we employed a ten-fold (i.e., k=10) cross-

validation.

1.5 Proposed Methodology

The whole research is carried-out in four main phases as shown in Figure 1.1. We stud-

ied the security implications of the entire SDN architecture with extant state-of-the-art

security solutions in SDN considering the earliest to the latest trends. The security vul-

nerabilities, attacks, and challenges of the promising software defined network (SDN)

architecture is reviewed and analyzed. A contemporary layered/interface taxonomy of

the reported security vulnerabilities, attacks, and challenges of the SDN to illustrate the

main categories of security implications that pertain to each SDN layer/interface is also

devised. The possible threats that may affect and target a particular layer/interface along-

side a suggested compact solution to help design secure SDNs is also highlighted. The
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Figure 1.1: Proposed Research Methodology

extant state-of-the-art security solutions are also critically analyzed to devise a compre-

hensive thematic taxonomy. Moreover, we analyze each state-of-the-art security solution

to identify the distinguishing SDN features utilized for each security mechanism, and the

exact problem addressed by a particular technique together with the simulation or emu-

lation environment of the corresponding technique. The distinguishing features of SDN

represent the potential of emerging SDNs. Additionally, we also identify the potential ef-

fect of each state-of-the-art security solution on the corresponding SDN layers/interface.

The critical discussion on the extant state-of-the-art security solutions extend the domain

knowledge of the current security trends in the SDNs, the major strengths of potential

SDNs, and the research gaps that need thorough investigations. We evidently noticed

that security is still the key concern and is an equally striking challenge that reduces the

growth of SDNs. Moreover, the deployment of novel entities and the introduction of

several architectural components of SDNs poses new security threats and vulnerabilities.

The defense space against the threat of attacks in SDNs that primarily target the
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control plane to wrest either full or partial control of the entire network is investigated

and formally analyzed. To establish the problem, a detailed analysis is carried out in the

real setting of SDNs. We carried out a formal analysis using Z language rules of the

salient features that help identify diverse network attack patterns in the control plane of

the SDNs. Few important OpenFlow (OF) messages such as Packet-In, Packet-Out, Flow-

Mod and Flow-Removed were utilized to demonstrate that how our proposed method

works identifying various network attack patterns in the real setting of SDNs. Moreover,

we provide modeling of the proposed model using High Level Petri Nets (HLPN). We

also formally verified the correct functioning of the proposed approach using Z3 con-

straint solver that is an efficient automated SMT (satisfiability modulo theories) solver by

Microsoft Research Labs, mostly used in the verification and analysis of diverse software

systems (Cok, Stump, & Weber, 2015). The key purpose as opposed to simulation and

testing is that the system is verified by providing a formal proof on an abstract mathe-

matical model of the system that exhaustively checks and proves the intended behavior

of the proposed system. We also demonstrated the impact and analysis of attack on SDN

controller and closely analyzed the detection accuracy behavior and analysis of some of

the extant state-of-the-art classification based network anomaly detection systems.

A diverse fusion-selection approach that stands on Oracle to be applied to the clas-

sifier ensemble design, where the Oracle is a random linear function is proposed. We

argue that the proposed method adds extra-diversity while promoting a higher level of

intrusion-detection accuracy. Moreover, the approach is highly flexible and is capable to

effectively detect a wide variety of sophisticated network security attacks. The method

works as apparently the proposed model utilizes the tactic of the well-known divide-

and-conquer strategy together-with the use of multiple random oracles. Moreover, our

proposed method is different and diverse from the standard model of classifier selection

(CS), whereby a single Oracle governs the whole feature space and the use of multiple
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random oracles makes our proposed model diverse and unlike from the classifier fusion

(CF) and the dynamic switching model (i.e. fusion-selection). Moreover, our proposed

network anomaly detection system is likely to identify network attack patterns that mainly

target the control plane of the SDNs without prior or having specific knowledge. We also

argue that our proposed method is capable of real-time intrusion detection in the SDN

environment.

The proposed method is evaluated by testing using Floodlight, a popular java based

SDN controller and Mininet to emulate SDN setting. We model the proposed method in

the real setting of SDNs using High Level Petri Nets (HLPN), analyze the rules with Z lan-

guage, and formally verified using the Z3 constraint solver that is an efficient automated

SMT (satisfiability modulo theories) solver by Microsoft Research Labs, mostly used in

the verification and analysis of diverse software systems (Cok et al., 2015). To validate

our proposed approach, we also carried simulation using a publicly available benchmark

data-set with K-fold cross validation to exhibit the performance of the proposed method,

where K is not a fixed parameter. The verification of the proposed approach is made with

current state-of-the-art algorithms. Moreover, to show the resulting significant perfor-

mance of the proposed approach to be optimistically unbiased, we employed a ten-fold

(i.e., k=10) cross-validation.

1.6 Thesis Layout

This thesis mainly comprises of seven chapters. Every chapter of the thesis is primar-

ily divided into three parts; Introduction-to states the key objectives; Body-to represent

the relevant material; and Conclusion-to judge or evaluate the objectives to be achieved

of the corresponding chapter with a linkage to the next chapter. The remainder of this

dissertation is organized as follows. Figure 1.2 presents an overview of the thesis layout.

Chapter 2: Literature Review
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Figure 1.2: Thesis Layout

This chapter presents a thorough review and analyze the security vulnerabilities,

attacks, and challenges of the promising software defined network (SDN) architecture.

We devised a contemporary layered/interface taxonomy of the reported security vulner-

abilities, attacks, and challenges of the SDN to illustrate the main categories of security

implications that pertain to each SDN layer/interface. The chapter also presents a broad

overview of the existing security implications and challenges on each SDN layer/inter-

face. We also highlight and analyze the possible threats that may affect and target a

particular layer/interface alongside a suggested compact solution to help design secure

SDNs. The extant state-of-the-art security solutions in SDN considering the earliest to

11

Univ
ers

ity
 of

 M
ala

ya



the latest trends are also critically analyzed to devise a comprehensive thematic taxonomy.

Moreover, the critical discussion extends the domain knowledge of the current security

trends in the SDNs, the major strengths of potential SDNs, and the research gaps that

need thorough investigations. The chapter clearly differentiates and presents two main

schools of thought in the SDN security domain. Moreover, the chapter analyzes each

state-of-the-art security solution to identify the distinguishing SDN features utilized for

each security solution and the exact problem addressed by a particular technique together

with the simulation or emulation environment of the corresponding technique. The dis-

tinguishing features of SDN represent the potential of emerging SDNs. Furthermore, the

chapter also identifies the potential effect of each state-of-the-art security solution on the

corresponding SDN layers/interface. Finally, We advocate the development of secure and

dependable SDNs by presenting potential security requirements and their key enablers.

Chapter 3: Problem Analysis

The chapter presents a detailed problem analysis in the real setting of SDNs. We

demonstrated various possible ways of sophisticated network security attacks to target

the control plane of from within the SDNs (i.e. close model). As opposed to simulation

and testing is that the system is verified by providing a formal proof on an abstract mathe-

matical model of the system that exhaustively checks and proves the intended behavior of

the system. Additionally, the chapter provides a critical analysis of the specified sophis-

ticated attacks on the control plane of the SDN even if the control channel (southbound

API) is TLS (Transport Layer Security) enabled. The chapter also briefly discusses the

preliminaries to model and analyze a system. Moreover, verification of the system and

results is provided. Finally, the chapter demonstrates briefly the impact and analysis of

attack on the control plane and closely analyzes the detection accuracy behavior and anal-

ysis of some of the extant state-of-the-art classification based network anomaly detection
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systems.

Chapter 4: A Random Oracle Based Intrusion Detection Method

The chapter elaborates our proposed diverse random oracle based intrusion-detection

method to accurately identify large-scale malicious events that predominantly target the

control plane to degrade the overall performance of the Software Defined Networks (SDNs)

or bring the entire network down in the worst case. The chapter clearly elaborates our pro-

posed diverse fusion-selection method that stands on random oracle and shows its diverse

nature from the extant main approaches used to design classifier ensembles. The chapter

provides a comprehensive understanding of the random linear oracle (RLO), which we

consider the main contribution of our proposed solution followed by a detailed descrip-

tion of the RLO training and prediction phase algorithms. The chosen classifier ensemble

employed for the proposed method. Moreover, the chapter also addresses the reason of

the employed chosen classifier ensemble. The chapter also addresses the significance of

the proposed solution and gives justification that why our proposed method works. More-

over, the work-flow of the proposed solution is also demonstrated in the real setting of

the Software Defined Networks (SDNs). Moreover, we also reason out that the proposed

solution is acceptable to be deployed for real applicable scenarios of diverse distributed

environments and in particular, for securing the control plane of the software defined net-

works. The distinguishing features of programmability make SDNs flexible, and vendor

agnostic. Once you design a module being part of the OpenFlow protocol, it is applicable

to most of the commercial controller since OpenFlow is a de-facto standard southbound

API of the SDNs. Consequently, our proposed solution becomes controller independent,

which means controller agnostic. Finally, a summary and concluding remarks of the

chapter are also provided.

Chapter 5: Evaluation

This chapter elaborates the evaluation of the proposed diverse fusion-selection intru-
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sion detection method in terms of the over-all performance and effectiveness. The chap-

ter also explains the tools, and the bench-mark data-set used for the complete evaluation

of the proposed random linear oracle (RLO) model. The set-up environments, the pre-

requisites, and the programming tools and language used for the final implementation.

Moreover, the standard parameter used for assessing the performance of the proposed

model with a model validation technique is also provided.

Chapter 6: Results and Discussions

The chapter presents the results of the experimental research (i.e. simulation, and

emulation) of the proposed intrusion-detection method. The conducted experimental re-

search demonstrates the promising results and better performance of the proposed in-

trusion detection method in identifying varied sophisticated network attacks. The main

objective of the chapter is to demonstrate the outstanding performance of the random or-

acle based proposed intrusion detection method compared to the state-of-the-art classifier

ensembles in this domain. Moreover, to verify the out-performance of the random ora-

cle based intrusion-detection method compared to state-of-the-art base-classifiers in this

domain. Additionally, to demonstrate that the proposed method is viable to identify di-

verse attacks triggered by large-scale malicious events in the control-plane of the SDNs

in real-time.

Chapter 7: Conclusion

The Chapter concludes the dissertation by reporting on the re-examination of the

objectives of the research. It summarizes the main findings of study, highlights the sig-

nificance of the proposed method. The possible future extensions and limitations of the

proposed work. Finally, in an effort to anticipate secure and dependable SDNs, the chap-

ter presents the state-of-the-art security trends and cutting-edge future research directions

to be tackled by young researchers and professional around the globe.
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CHAPTER 2: LITERATURE REVIEW

The chapter begins with a simplified overview of the complete Software Defined Net-

works (SDNs) architecture alongside the underlying fundamental concepts is provided to

help readers gain an easy and smooth understanding of the SDNs. This chapter reviews

the security vulnerabilities, attacks, and challenges of the promising SDN architecture. A

contemporary taxonomy of the reported security vulnerabilities, attacks, and challenges

is devised to illustrate the main categories of security implications that pertain to each lay-

er/interface of the SDN. Moreover, the chapter thoroughly analyzes the possible threats

that may affect and target a particular layer/interface alongside a suggested compact so-

lution to help design secure SDN.

The ensuing chapter presents the state-of-the-art security solutions in SDN consid-

ering the earliest to the latest trends. The main categorization of solutions is followed by

a critical analysis and discussion on devising a comprehensive thematic taxonomy. We

analyzes each state-of-the-art security solution to identify the distinguishing SDN fea-

tures utilized for each security solution and the exact problem addressed by a particular

technique together with the simulation or emulation environment of the corresponding

technique. The distinguishing features of SDN represent the potential of emerging SDNs.

The critical discussion extends the knowledge of the domain of the current security trends

in the SDNs, the major strengths of potential SDNs, and the research gaps that need thor-

ough investigations. Moreover, the analysis carried out clearly differentiates and presents

two main schools of thought in the SDN security domain. We also advocate the pro-

duction of secure and dependable SDNs by presenting potential requirements and key

enablers.

The remainder of this chapter is structured as follows: Section 2.2 introduces a simplified

overview of the SDN architecture. In Section 2.3, the paper provides a broad overview
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of the security implications of each SDN layer/interface. We further classify broadly the

reported security vulnerabilities, attacks, and challenges of SDN by devising a thematic

layered/interface-based taxonomy. The possible threats that may affect and target a partic-

ular layer/interface with the suggested compact solution are highlighted and analyzed in

Section 2.4. Section 2.5 presents state-of-the-art security solutions followed by a critical

discussion to present a thematic classification. Moreover, the section contains the main

categorization of state-of-the-art security mechanisms and identifies their potential effect

on each SDN layer/interface. Furthermore, the section presents the employed approach

to identify the distinguishing features of SDNs, addressed the exact problem with their

implementation environment, and illustrates the two main schools of thought. Section 2.6

discusses the requirements and key enablers for dependable and secure SDNs. Finally,

we provide the concluding remarks in Section 2.7.

2.1 A Comprehensive Overview of the SDN Architecture

The SDN architecture consists mainly of three planes, namely, application plane, con-

trol plane, and data plane, with their corresponding application programming interfaces

(APIs) (Jarraya, Madi, & Debbabi, 2014; F. Hu et al., 2014; Lara, Kolasani, & Rama-

murthy, 2014). Figure 2.1 depicts a simplified view of the SDN architecture, which is

explained by using a top–down approach. The simplified overview is provided to help

the readers gain an easy and smooth understanding of the analysis of the SDNs security

vulnerabilities, attacks, challenges, and state-of-the-art solutions.

2.1.1 Application Plane

The application plane is also known as the application layer, which is responsible for pro-

viding a set of services and applications, such as intrusion detection system (IDS), intru-

sion prevention system (IPS), deep packet inspection, load balancers, security monitoring,

and access controls (Nunes et al., 2014; Jarraya et al., 2014). The SDN applications are
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SDN Services and Applications: 

IDS, DPI, Load Balancer, OpenStack

SDN Control Plane

Northbound SDN APIs      

Southbound SDN APIs         

Data Plane

Application Plane

Control Plane

Figure 2.1: A Simplified View of the SDN Architecture

basically programs that directly, explicitly, and programmatically share the anticipated

network behavior and requirements with the SDN controller via northbound APIs. The

applications and services can extract information with regard to the policy or behavior

of the underlying architecture of SDNs. Furthermore, application-to-control plane com-

munication is carried out because of various reasons (Kreutz et al., 2015; Nunes et al.,

2014).

2.1.2 Northbound SDN Interface

To support application or service orchestration, automation, and innovation, the SDNs

employ open APIs, which are commonly known as northbound APIs. The northbound

interface enables the application-to-control plane communication, and it is also recog-

nized as the controller–service communication interface. Moreover, the interface facili-
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tates in providing the abstract view of the underlying network. Likewise, the northbound

APIs empower the direct expression of network behavior and requirements. However, the

northbound SDN interface/APIs are more likely implemented on an ad hoc basis because

no standard northbound SDN interface/APIs exist at present (Jarraya et al., 2014).

2.1.3 Control Plane

The control plane is also referred to as the control layer of the SDN (Jarraya et al., 2014).

The control plane includes a special network component called the SDN controller, which

is logically centralized but physically distributed in principle (F. Hu et al., 2014; Kreutz

et al., 2015) . The controller is a software platform that is responsible for establishing and

terminating flows and paths within SDNs. The SDN controller provides programmatic

interfaces to the underlying network. The overall management functionality of SDN is

simply entrusted in the SDN controller while it facilitates the programmability of the

entire network. Likewise, the control layer also provides an abstraction of the underlying

resources (Lara et al., 2014). Moreover, the SDN centralized logical control model can be

applied to a wide variety of applications, underlying networks, and physical media, such

as wired (e.g., Ethernet), wireless (e.g., 802.11 and 802.16), and optical networks (Yang

et al., 2015). Some popular SDN controllers and their corresponding brief descriptions

are shown in Table 2.1.

2.1.4 Southbound Interface/APIs

To support the overall programmatic control of the forwarding plane, event notifica-

tion, capability advertisement, and statistics reporting, the SDN uses southbound inter-

face/APIs (Farhady, Lee, & Nakao, 2015). The southbound interface/APIs provide a link

between the control layer (control plane) and the infrastructure layer (data plane). Partic-

ularly, the southbound SDN interface/APIs enable communication between a controller

and a switch. Thus, the interface is also known as a controller–switch communication
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Table 2.1: The SDN Controllers and their Corresponding Brief Description
SDN Controllers Open Source Language Description
NOX Yes C++ - Python NOX is the first controller written in C++ / Python to support fast, asyn-

chronous IO
POX Yes Python Written in Python. Performs well as compared to NOX applications (es-

pecially when run under PyPy )
Maestro Yes Java Maestro provides the view abstraction for grouping related network state

into a subset
Floodlight Yes Java Floodlight can manage both OpenFlow and non-OpenFlow networks
Beacon Yes Java Beacon is a cross-platform, modular, Java-based controller that supports

both event-based and threaded operation
OpenDayLight Yes Java It uses OSGi framework and provide REST API having weak consis-

tency.
Trema Yes Ruby/C Trema is a full-stack, programming framework that allows users to de-

velop and test OpenFlow controllers on a laptop
RouteFlow Yes C++ It is a special purpose controller and provides virtualized IP routing over

OpenFlow hardware
Ryu Yes Python It supports OpenFlow from version 1.0 to version 1.3 and integrates with

Open-Stack, building virtual network without using VLAN
FlowVisor Yes C It is a special purpose controller for OpenFlow network virtualization.
SNAC No C++ A NOX-0.4 based controller to manage the network, configure devices

and monitor different events
Helios No C It provides a programmatic shell for performing integrated experiments
ONOS Yes Java Building networks for service provider with performance, scale-out de-

sign, and high availability

interface. The interface assists the administrators in handling traffic of the underlying

switching hardware of the data plane by pushing out controller decisions.

Currently, OpenFlow (OF) is the most popular and common southbound interface.

People consider OF and SDN synonymous, although this is a misconception. In reality,

OpenFlow represents a part of the entire SDN architecture (Lara et al., 2014). OF is a

control-to-data plane communication protocol, and it is not the only existing protocol.

Some SDN proprietary southbound protocols include Cisco’s Open Network Environ-

ment Platform Kit and Juniper’s Contrail (Jarraya et al., 2014).

2.1.5 Data Plane

The data plane is composed of underlying network infrastructures and is also known as

the infrastructure layer of the SDN (Jarraya et al., 2014). The data plane consists of

forwarding hardware, such as switches and routers. The control function is entrusted to

the controller; thus, the underlying hardware, such as switches and routers, is responsible

only for data forwarding and is also acknowledged as the forwarding plane of the SDN

(F. Hu et al., 2014). The data plane implements the management functionality of the
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controller through SDN-enabled switches. Subsequently, the SDN-enabled switches are

used to forward data, collect network information, and send the information back to the

control plane via southbound interfaces (Govindarajan, Meng, & Ong, 2013).

2.2 SDN Security Vulnerabilities, Attacks and Challenges: A Layered/Interface
Taxonomy

The section presents a comprehensive overview of each SDN layer/interface security vul-

nerabilities, attacks, and challenges. We further broadly classify the reported security

vulnerabilities, attacks, and challenges of SDN by devising a thematic taxonomy based

on each SDN layer/interface. The layered/interface taxonomy of SDN security vulnera-

bilities, attacks, and challenges is depicted in Figure 2.2. The taxonomy clearly illustrates

the main categories of security implications of each layer/interface.

2.2.1 Application Plane Security Vulnerabilities, Attacks and Challenges

Controlling the network by using software is the principal property of SDNs. Thus, most

implemented and deployed applications of SDN represent diverse network functions and

can access the underlying network resources under certain privileges (Wen, Chen, Hu,

Shi, & Wang, 2013). SDN applications have many advantages, and yet they cause se-

rious security challenges. This section briefly yet extensively explores the application

plane-related security vulnerabilities, attacks, and challenges, which are classified into

eight main categories, namely, (1) nested applications, (2) applications abusing SDN in-

ternal storage, (3) applications abusing SDN control messages, (4) trust establishment,

(5) third-party applications and open development environments, (6) authentication, au-

thorization, and accountability, (7) exhaustion of resources, and (8) application executing

system commands.

1. Nested Applications:Nested applications present a real challenge to deal with and

are vulnerable to the following reported exploitations (Monsanto, Reich, Foster,
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Rexford, & Walker, 2013; H. Xie, Tsou, Lopez, Yin, & Gurbani, 2012).

a) Service Chain Interference: Applications with chained execution may cause

serious interference and security challenges. For instance, malign applica-

tions that participate in a service chain can drop control messages before the

awaited applications, thus causing extreme interference. Moreover, interfer-

ence may occur when a malicious application falls in an infinite loop to stop

applications with chained execution.

b) Gateway to Unauthorized Access: A malevolent nested application can sidestep

the access control by issuing the instance of another class application and can

be a gateway to unauthorized access.

2. Applications Manipulating SDN Internal Storage: The application in the applica-

tion plane receives certain privileges to access the underlying resources; thus, the

SDN controller shares internal storage among various SDN applications (Wen et

al., 2013). Eventually, applications can access and manipulate the internal database

of an SDN controller, which can further be used for many subsequent attacks, such

as manipulating network behavior (Shin et al., 2014).

3. Applications Abusing SDN Control Messages: A control message is responsible

for the two-way communication between the data plane and application plane. An

arbitrarily issued control message of SDN by an application may lead to the fol-

lowing attacks (Dover, 2013).

a) A malicious application that overwrites an existing flow rule in the controller

switch flow table may lead to unexpected network behavior; this phenomenon

is known as flow rule modification.
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b) A malicious application may block all communication by issuing a control

message that clears the flow table entries of an SDN switch.

4. Trust Establishment: To establish trust between the SDN applications and the con-

troller, compelling trust mechanisms must be present (Kreutz, Ramos, & Verissimo,

2013). An application server that stores sensitive user information can be compro-

mised, and legitimate user credentials can subsequently be used to add forged but

authorized flows to the network. Mechanisms to certify network devices exist;

however, compelling mechanisms to establish trust to certify network applications

do not exist. Moreover, the centralized control architecture of SDNs necessitates

a centralized system to certify the multitude and diversity of network applications

and presents an interesting area that is yet to be explored.

5. Third-party Applications and Open Development Environments: Third-party appli-

cations could also result in serious security vulnerabilities and challenges because

of the lack of standard and consensus-based development environments, program-

ming models, and paradigms, and the variety of vendors Use Cases for ALTO with

Software Defined Networks. Importantly, third-party applications could cause se-

rious issues of interoperability and collision in security policies. Moreover, deal-

ing properly with the diversity and multitude of third-party applications and non-

standard open software development environments is challenging.

6. Authentication, Authorization and Accountability (AAA): Authentication of nested

applications is a major challenge in programmable networks, and the diversity of

third-party applications makes this situation difficult. Authorization-related attacks

can lead to illegal access to the controller, thereby affecting the lower three corre-

sponding layers/interface (Kreutz et al., 2013). In-authentic applications can dam-

age the application layer, northbound interface, and control layer. No compelling
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authorization mechanisms exist for such application in the centralized control ar-

chitecture of SDN with open software development environments. Likewise, ac-

countability is another real challenge considering the various third-party and nested

applications responsible for the consumption of network resources (Kreutz et al.,

2013; H. Xie et al., 2012).

7. Exhaustion of Resources: Malicious applications can exclusively contribute to ex-

haust all the available system resources and seriously affect the performance of

other applications, including the SDN controller. Such attacks have been verified

(Wen et al., 2013).

a) Memory consumption: A malicious application may be involved in continu-

ous consumption of system memory or in memory allocation to exhaust all

the available system memory.

b) CPU consumption: A malicious application can seriously exhaust all the

available CPU resources by simply creating useless working threads.

c) A malicious application can execute a system exit command to dismiss the

controller instance.

8. Application Executing System Commands: A malicious SDN application is capa-

ble of terminating the controller instance by executing a system exit command. The

attack was demonstrated previously (Shin et al., 2014).

Critical Remarks: The security vulnerabilities, attacks, and challenges discussed

above are critical and can target all the corresponding SDN layers/interface. Protection

against diverse malign applications will remain a challenge for SDNs (Zhang, 2013). No

compelling mechanism for distinguishing user or third-party or network service appli-
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cations exists, and the accountability and access control of nested applications have not

been demonstrated.

2.2.2 Northbound APIs/interface Security Vulnerabilities, Attacks and Challenges

Application plane has direct implications on the overall underlying SDN architecture.

Hence, the northbound APIs are considered highly important targets for exploitation. The

reported security vulnerabilities, attacks, and challenges of the northbound interface are

stated below. Two main challenges cause the vulnerability of northbound APIs.

1. Northbound APIs/Interface Standardization: No standard northbound API exists,

and working with various northbound open APIs is challenging (Nadeau & Pan,

2011). Moreover, open independent development environments without standard

specifications are faced with increased risk from various security challenges posed

by skilled adversaries.

2. Poorly Designed Northbound APIs/ Interface: A poorly designed northbound in-

terface can be misused easily by SDN applications to manipulate the behavior of

other applications (Kreutz et al., 2013). For instance, an SDN application may ex-

ploit a poorly designed northbound API to evict an ongoing application session.

Moreover, an SDN application may use a poorly designed northbound interface to

randomly unsubscribe a target application, thereby rendering it incapable of ob-

taining important subscribed control messages that can be easily carried out by the

unsubscription of an event listener.

2.2.3 Control Plane Security Vulnerabilities, Attacks and Challenges

The distinguishing property of SDNs is centralized control architecture, which results

in significant managerial benefits. However, this property represents a single point of

failure. The norm of SDNs is the centralized control network intelligence. Moreover,
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the SDN controller has a pivotal role in management, and it is a solo decision making

entity, thus becoming a primary target. Furthermore, the visibility features of the SDN

controller also pose serious security challenges. The section elaborates control plane-

related security vulnerabilities, attacks, and challenges.

1. Packet-In Controller Manipulation Attacks: A packet-in essentially represents a

packet that does not match any flow rules at the data plane, and the OF protocol

mandates that such packets must be sent by the switch to the controller directly.

When a message that is received by an SDN switch with no match entry is directed

to a controller by the OF protocol by default, such messages are called packet-

ins. At present, the control plane has no built-in security mechanism to avoid the

manipulation of packet-in messages even if the OF is TLS enabled. Authorized

switches can also send forged packet-in messages that can subsequently be used

to corrupt the controller state by the following practical attacks that may occur on

many SDN controllers.

a) Service Chain Interference: Applications with chained execution may cause

serious interference and security challenges. For instance, malign applica-

tions that participate in a service chain can drop control messages before the

awaited applications, thus causing extreme interference. Moreover, interfer-

ence may occur when a malicious application falls in an infinite loop to stop

applications with chained execution.

b) Directed DoS Attacks: An attacker may place the controller in an unpre-

dictable state by flooding a target SDN controller with packet-ins; this at-

tack was demonstrated in a previous work (Dhawan, Poddar, Mahajan, &

Mann, 2015). One of the practical forms of launching a directed DoS attack

is packet-in flooding, which places the SDN controller in an unpredictable
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condition. Major SDN controllers are still a target of this attack. DoS attacks

using packet-ins may be carried out in many ways. A DoS attack is a serious

concern in the centralized control architecture of SDNs.

c) Poisoning the View of the Controller: An address resolution protocol (ARP)

packet relayed as a packet-in message can be forged to adversely affect the

view of the controller; this attack was demonstrated in a previous work (Hong,

Xu, Wang, & Gu, 2015).

d) Poisoning the Network Topologies and Traffic Hijacking: Manipulating the

link discovery service relayed as packet-in messages can be utilized to cre-

ate fake network topologies. Moreover, the vulnerability of the host tracking

service can be exploited to establish traffic hijacking.

e) Fabricated Links Creation: An LLDP packet relayed as a packet-in message

may also be forged to create a fabricated link.

f) Side-channel Attacks: Manipulating packet-ins can also leverage side-channel

attacks to obtain sensitive information.

g) Other Challenges and Vulnerabilities of Control Messages: Control messages

can also be manipulated to corrupt the state of the controller in many ways.

Some practical attacks and vulnerabilities of control messages include spoof-

ing a target switch and the attack, and switch-table flooding attack using Data

Path ID to place the controller in an unpredictable state.

2. Configuration Conflicts: The control plane enforces a network-wide policy. How-

ever, single-domain multiple SDN controllers, multi-tenant SDN controllers, and

multiple OF architectures may lead to serious configuration conflicts and inter-

federated configuration conflicts (Al-Shaer & Al-Haj, 2010). Moreover, stateful

applications may not work properly because the controller may not be able to syn-
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chronize the network updates, and it does not have the capability to recall past

events.

3. Manipulating the System Variables: Manipulating a system variable may also cor-

rupt the controller state. For instance, a system time alteration by an attacker may

turn the controller practically off from linked switches.

4. Visibility Features of the SDN Controller: The visibility features of SDN can also

be vulnerable to harvesting of network intelligence of the underlying architecture

for further exploitation.

5. Controller Capability of Proper Auditing and Authenticating Diverse Applications:

The security of the control plane is normally measured and challenged in terms of

controller capabilities. For instance, a real challenge is enabling the controller to

properly facilitate the authentication and authorization of network resources con-

sumed by applications implemented on top of the control plane with appropriate

tracking, auditing, and isolation (Hartman, Wasserman, & Zhang, 2013; Sezer et

al., 2013).

6. Controller Scalability Challenges: The controller is the sole entity responsible for

centralized decision making. Controllers nowadays become a bottleneck in a 10

Gbps link high-speed network. Moreover, the lack of scalability causes the follow-

ing serious problems detailed in the literature (Sezer et al., 2013).

a) Saturation attacks

b) Experience delay constraints

c) A single point of failure
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2.2.4 Southbound API/Interface Security Vulnerabilities, Attacks and Challenges

Separating the control plane and data plane results in serious disasters; more importantly,

control plane security has direct implications on the data plane (Kreutz et al., 2013).

Thus, the controller–switch communication channel remains a favorable choice for at-

tackers. The specification of Open-Flow (OF) datagram transport layer security and TLS

for channel security is optional in the latest versions of OF. However, TLS is not secure

from TCP-level security attacks (Liyanage & Gurtov, 2012) and is not reliable (Kreutz et

al., 2013) in many cases. Subsequently, the diverse attacks described below occur.

1. Man-in-the-Middle Attacks: The southbound interface provides an opportunity to

actively control the control channel, thereby causing man-in-the-middle attacks.

In this type of attack, a skilled attacker modifies the control messages exchanged

between the control plane and the data plane, such as flow rule messages, to corrupt

network behavior (Benton, Camp, & Small, 2013).

2. Eavesdropping: The southbound interface can be targeted for both active and pas-

sive eavesdropping. For instance, an opponent may steal highly sensitive infor-

mation by sniffing the control channel, i.e., learning about the advertised network

topologies by sniffing ongoing control messages.

3. TCP-level Attacks: The southbound APIs can be targeted for TCP-level attacks

because the optional TLS does not implement TCP-level protection; the attacks

were demonstrated in a previous study (Liyanage & Gurtov, 2012).

4. Southbound API Standardization: Unlike the northbound APIs, no standard south-

bound API exists, which presents a real challenge for the SDN community. A com-

pelling and consensus-based southbound interface is needed to address the security

vulnerabilities, attacks, and challenges of the interface thoroughly and uniformly.
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5. Availability Attacks: Availability-related attacks refer to DoS and distributed denial

of service (DDoS) attacks. The south-bound interface can be targeted by communi-

cation flooding attacks, which specifically affect the control layer, the control data

interface, and the data layer (Scott-Hayward, O’Callaghan, & Sezer, 2013; Benton

et al., 2013).

2.2.5 Data Plane Security Vulnerabilities, Attacks and Challenges

The SDN switches and routers are dump forwarding devices. The capability of controller

decisions is based on these data plane forwarding entities. This section explains some of

the foremost data plane-specific security vulnerabilities, attacks, and challenges.

1. Genuine Flow Recognition: The controller decisions are based on the SDN switch

flow rules. Hence, one of the key challenges for the controller is recognizing and

differentiating whether the switch-generated flow rules are candid or fraudulent. A

compromised switch that generates malicious flow rules can render the data plane

practically offline.

2. Switch Flow Entry Capability: An SDN switch has a limited ability to maintain the

number of flow entries, and an SDN switch can practically be targeted with satura-

tion attacks. These attacks subsequently lead to switch DoS attacks that render the

data plane in an unpredictable state. For instance, an attacker can simply install or

flood a large number of flow entries to exhaust the switch-limited resources. Flow

rule flooding was demonstrated in the literature (Sherwood et al., 2009; Monsanto

et al., 2013; Shin et al., 2014).

3. Compromised SDN Agents at Data Plane: A compromised host or SDN switch can

contribute to a variety of attacks. For instance, an attacker can fill up the compro-

mised target switch flow table to advertise fake topologies (logical or physical) or
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render the controller in an unpredictable state. These attacks were demonstrated in

previous works (Farhady et al., 2015). Compromised SDN agents can also lead to

a variety of man-at-the-end (MATE) attacks. Furthermore, a manipulated control

message by an attacker can render the data plane in an unpredictable state and dis-

connect the control plane from the data plane. A compromised host or SDN switch

may also trigger dynamic attacks, such as traffic rerouting, traffic hijacking, and

network DoS attacks.

4. Misuse of Switch Firmware: A previous study indicated that certain SDN switch

hardware tables cannot process crafted flow rules .

5. Side-channel Attacks: The data plane can be attacked with side-channel attacks.

For example, an input buffer can be used to identify flow rules, and analyzing the

packet processing time may determine the forwarding policy (Scott-Hayward et al.,

2013).

2.3 Possible Security Threats Affecting each SDN Layer/Interface

This section presents and analyzes the possible security threats within SDNs. Table 2.2

illustrates the analysis on a particular security threat that affects each SDN layer/interface.

Security threats that affect corresponding layers/interface must be addressed in emerging

SDNs. The table also presents the protection mechanisms, security requirements with

their corresponding affected functionalities, and SDN layers/interface against each pos-

sible threat. Operating system (OS) alteration represents the destruction or alteration of

entire SDN elements, such as controllers (Li, Raghunathan, & Jha, 2009). A threat can be

mitigated by ensuring that system integrity is protected by implementing trusted comput-

ing. OS alteration can target all the layers of SDN and affect the management of running

services and applications.
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Software framework alteration identifies the destruction or alteration of a middle-

ware or its components. Similar to securing against OS alteration, software framework

alteration can be prevented by ensuring system integrity while implementing trust com-

puting (Baldini et al., 2012). Furthermore, software framework alteration can affect all

the layers of SDNs. Likewise, the software failure threat represents a general failure in

any of the components that constitute the software framework, application, and operating

system. Software failure can be mitigated by employing high-assurance techniques while

ensuring the robustness of a system. Unlike the software framework threat, software fail-

ure can affect all layers of SDNs.

Hardware failure represents generic failure of a hardware in any component (Baldini

et al., 2012). Similar to software failure, hardware failure can be reduced by employing

high-assurance techniques while ensuring the robustness of a system. The entire set of

functionalities is affected by the hardware failure threat that targets the control and data

layer.

The configuration data alteration threat represents the destruction or alteration of

configuration data that are required by SDNs to perform different functions. Configu-

ration data can be removed or modified. The threat can be mitigated by ensuring data

integrity in the SDN middleware. Furthermore, the threat can target the control layer,

control–data interface, and data layer while possibly affecting the resource and applica-

tion management functionalities. Similarly, the configuration data extraction threat is an

eavesdropping threat (Garnaev & Trappe, 2013) where the attacker gathers configuration

information that can be utilized in subsequent attacks. The threat can target the control

layer, control–data interface, and data layer. Unauthorized access to SDN services is

identified as a security breach. The threat can be mitigated by deploying secure adminis-

tration modules while ensuring system integrity. The security requirements for mitigating

the threat are identification and verification. However, the threat can affect the entire set
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Table 2.2: Possible Security Threats Affecting Each Layer/Interface of SDNs
Possible
Security
Threats

Protection
Tech-
niques

Security Re-
quirements

Affected
Functionali-
ties

Application
Layer

Northbound
Interface

Control
Layer

Southbound
Interface

Data
Layer

Operating
System
Alteration

trusted
computing

system in-
tegrity protec-
tion

application
management

X X X

Software
Frame-
work
Alteration

trusted
computing

system in-
tegrity protec-
tion

application
management

X X X

Software
Failure

high assur-
ance

robustness, sys-
tem integrity
protection

all function-
alities

X X X

Hardware
Failure

high assur-
ance

robustness, sys-
tem integrity
protection

all function-
alities

X X

Configuration
Data Alter-
ation

data in-
tegrity
functional-
ity in SDN
middle-
ware

data integrity
protection

resource
management,
application
management.

X X X

Configuration
Data Ex-
traction

data in-
tegrity
function-
ality in
SDN

confidentiality
protection

data manage-
ment

X X X

Unauthorized
Access to
SDN
Services

deploying
secure
admin-
istration
module

identities veri-
fication, ensur-
ing system in-
tegrity

all function-
alities

X X X X X

User Data
Alteration

data in-
tegrity
function-
ality in
SDN

ensuring data
integrity

data manage-
ment

X

Masquerading
as Autho-
rized SDN
Controller

use of
digital
signatures
for SDN
software
modules

ensuring sys-
tem integrity,
identities
verification,
accountability

application
management

X X X

of functionalities and target all the layers/interfaces of SDN.

User data alteration threat involves the destruction or alteration of user data, such

as customized profiles of user traffic (Baldini et al., 2012; Li et al., 2009). The user

data alteration threat can be mitigated by ensuring data integrity. The threat can affect

data management and target the data layer. By masquerading as an authorized SDN

controller, the threat identifies the activation of a malicious software on SDNs, such as

a controller platform (Baldini et al., 2012). The threat can be mitigated by using the

digital signatures for SDN software modules. Threat mitigation requires system integrity,

identity verification, and accountability. Application management can be affected by the

threat activation and target the control layer, control–data interface, and data layer of the
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SDN.

2.4 State-of-the-art SDN Security Solutions: A Complete Analysis and Overview

In this section, we provide a complete analysis and overview of existing state-of-the-art

SDN security solutions. Basically, we present the main classification of the innovative

security solutions of SDNs, as shown in Figure 2.3. SDN security solutions are classified

into six main categories, namely, (a) secure design of SDN, (b) implementation of satis-

factory audit, (c) enforcement of security policy, (d) security monitoring and analysis, (e)

security augmentation, and (f) fault tolerance. We further classify the surveyed solutions

by devising a thematic taxonomy based on the SDN layers/interfaces, the distinguishing

features of SDNs, implementation environment, and security objectives. The taxonomy is

presented in Figure 2.3. This section also presents the identification of the distinguishing

features and the effect of security solutions on each layer/interface of the SDN.

Figure 2.3: Main Classification of the State-of-the-Art SDNs Security Solutions
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2.4.1 Secure Design of SDN

Efforts in this category are limited. FRESCO (Shin, Porras, et al., 2013) a security-

specific application development framework for OF networks, was proposed in the litera-

ture. FRESCO is a security application development platform that facilitates the exporta-

tion of API scripts, which help security experts develop threat detection logic and security

monitoring as programming libraries. Moreover, FRESCO is a click-inspired (Shin, Por-

ras, et al., 2013) programming framework that facilitates the rapid design and modular

composition of different security mitigation and detection modules using OF. The imple-

mentation and evaluation demonstration of FRESCO is performed through NOX, which

is an open-source OF controller; however, the security constraints generated by these ap-

plications are controlled and enforced by FortNox (Porras et al., 2012). FRESCO work

can be extended to different architectures (Ng, 2010; Mogul et al., 2010).

FortNox (Porras et al., 2012) employs a security enforcement kernel (SEK) to en-

force flow constraints for active defense against different threats. FortNox is basically an

enforcement engine that is responsible for avoiding rule conflicts from different security

authorizations. FortNox uses two protection mechanisms: (1) rule prioritization, which

ensures that any new rule that contradicts the rules produced by FRESCO applications are

simply overridden because of the highest priority, and (2) the conflict detection algorithm

is applied to each new rule, thus rejecting any new rule immediately when a conflict is

detected. FortNox is merely a software extension that deals mainly with particular OF

application policy violation, dynamic flow tunneling, and rule conflict detection. Fur-

thermore, it addresses flow rule contradiction in real time and avoids any adversarial OF

application attempts to inject flow rules to bypass SEK enforced rules. Work on FortNox

is highly inspired by previous research (Al-Shaer & Al-Haj, 2010; Al-Shaer, Marrero,

El-Atawy, & ElBadawi, 2009; El-Atawy et al., 2007; A. X. Liu, 2008; G. G. Xie et al.,
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2005); the FRESCO work is an extension carried out by the authors of FortNox.

Remarks: The first proposal is a major contribution toward secure programming,

which has a direct effect on the application layer, control layer, and interfaces between

the two layers, except the data layer. The second proposal focuses on rule conflict and

authorization, which primarily affect the control layer and south and northbound inter-

faces. However, this action does not improve the security of the application layer and

infrastructure layer. FortNox is classified in this category mainly because of its SEK that

is used for real-time verification.

2.4.2 Implementation of Satisfactory Audit

Security audit is an important area that must be addressed thoroughly. Verificare (R. W. Skowyra,

Lapets, Bestavros, & Kfoury, 2013) was proposed as a design and modeling tool that sat-

isfies all the requirements of a system design, and it is a key contribution in this category.

Verificare is an audit design and modeling tool for verifying real-world system properties

against a system model, which highlights and traces any property violation. Moreover,

the tool guarantees network safety, correctness, and reliability. Verificare is designed us-

ing a complementary pair of SDNs and formal verification. The authors further provide

an example for their work using OF-based learning switches to enable communication

between mobile nodes. This particular proposal also considers the verification of network

correctness and specification modeling while considering scalability issues. Some inter-

secting verification tools are available, such as PRISM (Kwiatkowska, Norman, & Parker,

2011) and Proverif (Blanchet, 2005); however, these tools are not completely comparable

to Verificare. Another major contribution in this area (Handigol, Heller, Jeyakumar, Maz-

iéres, & McKeown, 2012) allows software developers of SDNs to trace the root cause

of bugs by reconstructing a series of events that cause that particular bug. Packet back-

trace assists SDN programmers in resolving logical errors, helps implementers of the
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switch to resolve protocol compatibility errors, and helps network operators in submit-

ting a complete bug report to vendors. This tool also uses a network debugger, which is

a programmatic control used to facilitate new ways of debugging networks. For instance,

in debugging the network, servers could not connect to clients and no forwarding rule

for packet matching is found in the middle of the network; this approach is similar to the

detection of servers placed in the wrong location. Moreover, this tool effectively tracks

the root cause of the bug.

The virtual source address validation edge (VAVE) (Yao, Bi, & Xiao, 2011) is a

significant contribution in this area and is used to solve the problem of source address

validation. VAVE also checks whether the source of the packet is valid or not based

on the generated rules. The VAVE application is designed mainly to validate the source

address. However, spoofing is still a problem on the Internet. Another standard called

source address validation (SAVI) (Saucez, Bonaventure, & Iannone, 2015) does not pro-

vide complete protection against spoofing because of solution space constraints; VAVE

can be employed to improve SAVI (Yao et al., 2011). Moreover, VAVE can be used to

avoid attacks related to IP spoofing, SYN flooding, smurf attacks, and DNS amplification

(Yao et al., 2011). Furthermore, VAVE uses NOX controller to regulate the validation

rules from a global view on each SAVI device.

A more recent contribution in the area of security audit is Fleet (Matsumoto, Hitz,

& Perrig, 2014). Fleet defends against a malicious administrator who is attempting to

reprogram the entire network. Fleet is useful against damage to routing and forwarding

and disturbance of network availability by misconfiguring the SDN controller. Table 2.3

summarizes the state-of-the-art SDN security solutions. The table demonstrates clearly

the distinguishing features utilized for each state-of-the-art SDNs and the exact problem

addressed by a particular technique together with the simulation/emulation environment

of the corresponding technique. The table also shows that certain techniques with in-
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common classification exist. By contrast, techniques of a similar class are not exclusively

of the same nature. The identification of features in the table represents the potential of

emerging SDNs.

2.4.3 Enforcement of Security Policy

Enforcing security policy is a fairly important and serious issue in SDNs. The security

research community of SDNs has paid considerable attention to addressing the issue of

policy conflict resolution and enforcement. Researchers (Son, Shin, Yegneswaran, Porras,

& Gu, 2013) proposed FLOVER, which is a model-checking system that verifies the flow

policies against the security policies of a network. FLOVER is a flow verification tool

that detects inconsistencies that arise in a flow table against the security policy of the

network by using satisfiability modulo theories solver. The performance of FLOVER is

efficient. However, FLOVER is inspired by former research on modeling security policies

of firewalls, and it does not address the dynamic flow rules in SDNs.

The other major contribution is No bugs In Controller Execution (NICE) (Canini,

Venzano, Perešíni, Kostić, & Rexford, 2012). The NICE tool combines model checking

with symbolic execution to determine inconsistencies in multiple OF applications. NICE

proficiently uncovers bugs in OF programs while considering the correctness of the ap-

plication installed on multiple devices. Another technique (Kothari, Mahajan, Millstein,

Govindan, & Musuvathi, 2011) employed symbolic execution with the same principle as

NICE to detect network protocol manipulation attacks. FlowChecker (Al-Shaer & Al-

Haj, 2010) adopts binary decision diagram (BDD) to handle intra-switch misconfigura-

tion in a particular flow table. FlowChecker is used to resolve the conflicts that may arise

across several OF switches. It simply encodes the flow table configuration through BDD

and utilizes different model checking techniques to model the interconnected network of

OF switches.
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The VeriFlow scheme verifies real-time invariants (Khurshid, Zou, Zhou, Caesar,

& Godfrey, 2013). VeriFlow monitors dynamic changes in the network by constructing

a model of the network behavior. Moreover, VeriFlow employs custom algorithms to

derive network errors automatically. NetPlumber is a scheme that is similar to VeriFlow

(Kazemian et al., 2013). However, NetPlumber employs header space analysis (HSA)

and dependency graphs for real policy checking. Both VeriFlow and NetPlumber are

protocol independent and have the same runtime performance. Both schemes support

verification of forwarding actions in real time. Unlike VeriFlow, however, NetPlumber

verifies arbitrary header modifications, including encapsulation and rewriting.

An important contribution (Hinrichs, Gude, Casado, Mitchell, & Shenker, 2008)

presented a flow-based policy enforcement grounded on flow security language (FSL).

Implemented on NOX controller, FSL employs the concept of network flow and handles

policy conflicts between administrators and conflicts that arise in the rule set of the ad-

ministrators. Moreover, the decision with regard to policy is enforced on each packet and

on network links to hasten enforcement decisions per second. Another close category

of language-based security is termed splendid isolation (Schlesinger, Story, Gutz, Foster,

& Walker, 2012). The authors discussed mainly the verification of the isolation of the

program traffic. Moreover, the study addressed the problem of programming networks

securely and reliably. Slice-based network programming abstraction and isolation protect

the programs from outside interference with other important security benefits. In addi-

tion, it simplifies construction of programs. A key contribution is LiveSec (K. Wang,

Qi, Yang, Xue, & Li, 2012), which is a flexible and scalable security management ar-

chitecture (Koponen et al., 2010). The main purpose of LiveSec is interactive policy

enforcement to ensure complete end-to-end traffic control, distributed load balancing of

security workload, and application awareness monitoring through live traffic monitoring

and historical traffic replay. SANE (Casado et al., 2006) protection architecture proposed
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a logically centralized controller for all routing and access control decisions and policies.

The SANE proposal was considered a radical change to the network infrastructure. A

significant extension of SANE is Ethane (Casado et al., 2007). Ethane primarily proposes

two components for controlling the network: (a) a centralized logical controller to enforce

global policy and (b) switches that forward packets according to flow table rules. How-

ever, Ethane was proposed for flow rule enforcement. SANE and Ethane established the

foundation for emerging SDNs. A significant contribution is PermOF (Wen et al., 2013),

a fine-grained permission system that comprises a set of OF-specific permissions and

runtime isolation mechanism for applying the permissions. The set of OF-specific per-

missions is designed considering four different aspects: (a) threat model, (b) controller

implementation API set, (c) application functional requirements, and (d) control mes-

sages in OF. The proposed isolation mechanism isolates the controller and applications in

a thread container. The applications cannot call controller procedures or directly refer to

the memory of a kernel. Moreover, the application and OS are isolated by introducing a

shim layer between them called an access control layer. The shim layer is controlled by

the kernel of a controller. Basically, the design consideration is setting of permission and

isolation mechanisms to enforce permission control.

FLOWGUARD (H. Hu, Han, Ahn, & Zhao, 2014) is a comprehensive framework

responsible for the detection and resolution of policy violations of firewalls in the dynamic

environment of SDNs. This technique helps in resolving policy conflicts automatically

and in real time. The authors in (J. Wang et al., 2013) proposed a systematic approach

to detect and resolve conflicts in SDN firewalls by checking the firewall authorization

space and flow space. The main aim of the study was to build a robust SDN firewall. The

proposed technique was used to implement a cross-check on both flow tables and firewall

policies to detect conflicts efficiently. The approach searches the flow paths in the entire

network, checks these paths against all firewalls, and denies rules to determine whether
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conflict arises with the firewall deny rules. However, the conflict resolution strategies

vary with the operations involved in the flow entries and flow rules. The effectiveness and

efficiency of the proposed approach is examined through HSA.

2.4.4 Security Augmentation

This particular area addresses the promising SDNs that can be extended to enhance secu-

rity for different applicable networks (Ding, Crowcroft, Tarkoma, & Flinck, 2014). The

SDN control plane ensured that sophisticated network-wide policies can be deployed and

implemented through simple programs. SDNs can be used to enable operators to imple-

ment network policies, such as performing deep packet inspection (Kreutz et al., 2015).

Middleboxes can also be used to implement network policies (Sekar, Egi, Ratnasamy,

Reiter, & Shi, 2012; Joseph, Tavakoli, & Stoica, 2008). Recent studies have proposed

the integration of security middleboxes into SDNs to ensure that the programmability

aspect is beneficial for security purposes. Two notable contributions and extensions to

enhance security by using the distinguishing features of SDNs are Slick (Anwer, Benson,

Feamster, Levin, & Rexford, 2013) and FlowTags architecture (Fayazbakhsh, Sekar, Yu,

& Mogul, 2013). Slick is a prototypical control plane that allows middleboxes to assist

network operators and deploy refined policies efficiently. Moreover, Slick architecture

proposes a centralized controller that installs and migrates functions onto middleboxes.

Subsequently, the applications can request the corresponding functions to route particular

flows based on their prerequisite security criteria. FlowTags architecture is an extension

of the SDN architecture and uses flow tracking capability to ensure consistent policy en-

forcement. The tags are added by middleboxes, which are subsequently used by switches

to enforce policies systematically. The FlowTags architecture uses FlowTags APIs to

communicate with the controller. FlowTags comprises flow information embedded in a

packet header to track and enable supervised routing of the tagged packets. However, the
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Slick and FlowTags architectures have a serious limitation: they work based mainly on

pre-defined policies and cannot handle dynamic operations. In addition, directing traffic

through the desired sequence in traditional networks is difficult and requires both operator

expertise and manual efforts. Another major contribution is SIMPLE (Qazi et al., 2013),

which is a policy enforcement layer and an introduction to an appropriate middlebox de-

ployment that is managed thoroughly by the SDNs. SIMPLE facilitates programming

of the entire network by directing a selected traffic through the appropriate middlebox.

Realizing the benefits of SDNs for controlling the middlebox-specific traffic steering is

the primary goal of the present research proposal. Furthermore, the feasibility of us-

ing SDNs along with industry concerns for integration with the existing infrastructure

is addressed. A key contribution is OrchSec (Zaalouk, Khondoker, Marx, & Bayarou,

2014), which is an orchestrator-based architecture that enhances network security to de-

velop reliable security applications. The architecture is based on the use of the SDN

control function features and the network monitoring aspects. The proposed architecture

decouples the application development process from the SDN controller, thereby making

it controller agnostic. The proposed solution can better withstand DoS/DDoS and cache

poisoning/ARP spoofing. Researchers in (X. Liu, Xue, Feng, & Dai, 2011) proposed an

SDN-based architecture to restrict covert channel attacks in traditional networks. Tracing

the information flow from a low-level host to a high-level host or the same level host, and

vice versa, is difficult. The technique employs an OF-based module called “filter,” which

is responsible for controlling and checking the packet flow, the content of the packet, and

the delay it experiences to avoid side-channel attacks.

The solutions based on the SDN frameworks are as follows: Primarily, an active

and live IP address to be attacked should be found. Changing an IP address frequently

and proactively is a novel defense mechanism called the Moving Target Defense (MTD).

A prime contribution (Jafarian, Al-Shaer, & Duan, 2012) proposed an SDN-based MTD
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architecture, where the controller frequently assigns a random virtual IP address to each

host translated from the real IP address of the host. Moreover, IP mutation to the end

hosts is transparent; however, real IP addresses can only be reached by an authorized ac-

cess. The proposed mechanism is based on OpenFlow Random Host Mutation (OFRHM),

which is used to manage a pool of IP addresses assigned to hosts in a particular network

in which the actual IP addresses are hidden from outside the network; this approach rep-

resents a specific form of adaptive cybersecurity. The defense against stealthy scanning to

discover vulnerable targets in the entire network was presented in (Jafarian et al., 2012).

This work was inspired by previous research on proactive cyber defense (Atighetchi,

Pal, Webber, & Jones, 2003; Kewley, Fink, Lowry, & Dean, 2001; Antonatos, Akritidis,

Markatos, & Anagnostakis, 2007). Table 5 shows the main classification together with

the effect of each of the state-of-the-art security mechanism on SDN layers/interface and

its potential.

Although it is a well-understood security problem, DDoS attack detection is still a

serious concern. A major contribution toward DDoS detection was presented in (Braga,

Mota, & Passito, 2010). The technique utilizes self-organizing maps (SOMs) to identify

abnormal/injected flows. The proposal was based on the SDN programmatic interface,

which facilitates switch information handling. The DDoS attack detection is grounded on

the flow features. A complementary work that uses SOM is presented in (Ramadas, Os-

termann, & Tjaden, 2003; Min & Dongliang, 2009; Jiang, Yang, & Xia, 2009; Mitrokotsa

& Douligeris, 2005). One unique feature is lightweight detection, which can be upgraded

easily against new attacks. Moreover, the technique facilitates the addition or removal

of switches from the detection loop. Security monitoring of the entire network is a te-

dious task; one notable contribution of SDN-enabled security monitoring extension is

OpenSAFE (Ballard, Rae, & Akella, 2008), which monitors large-scale networks. Open-

SAFE is used to manage traffic routing through network monitoring agents by using its
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ALARMS policy language. ALARMS is a flow specification language that simplifies dra-

matically the management of the tools used for network monitoring. A similar prominent

solution for security monitoring solution in the cloud using SDN features is CloudWatcher

(Shin & Gu, 2012), which is a practical and feasible framework for cloud environments

and provides security monitoring to supervise the dynamic flows of the network smoothly

and efficiently.

SDNs can be useful for network-wide access control. A major contribution is Res-

onance (Nayak, Reimers, Feamster, & Clark, 2009), which uses programmable switches

and controllers to enable distributed network monitoring by using dynamic access con-

trol enforced by network devices themselves. Resonance is a dynamic access control

system based on real-time alerts and flow level information; however, it does not follow

the centralized architecture. Therefore, resonance is an interface-based policy control.

Another recent major contribution for access control is FlowNAC (Matias, Garay, Men-

diola, Toledo, & Jacob, 2014). FlowNAC is used to secure access to all available network

resources and devices. However, its design principle is subjected to a centralized pol-

icy decision, and policy enforcement should be defined once to avoid collision. Another

proposed solution is mobile application personal policy enforcement router (MAPPER)

(Sapio et al., 2014), a fine-grained access control that guarantees network and information

security. MAPPER is responsible for imposing user/role specific policies without obtain-

ing access to the device of an end user. The framework can identify and differentiate

traffic generated by diverse applications, platforms, and devices. The ident++ protocol

solution, which depends on the distributed architecture, is presented in (Naous, Stutsman,

Mazières, McKeown, & Zeldovich, 2009). The proposed protocol queries end users and

hosts for information to ensure their active involvement in forwarding decisions and to

simultaneously avoid bottleneck in the controller.

The SDNs can be better extended in the field of intrusion detection and prevention.
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An SDN-based learning intrusion detection system (L-IDS) (R. Skowyra, Bahargam, &

Bestavros, 2013) is used to protect embedded mobile devices in a particular location.

The L-IDS detects a wide variety of attacks while reconfiguring the network in real time.

The technique helps mitigate the attacks; however, this solution primarily involves del-

egating network security. A hardware-based solution for network IDS/IPS is presented

in (Goodney, Narayan, Bhandwalkar, & Cho, 2010). This technique uses NetFPGA, an

open-source field programmable gate array (FPGA) based network interface with Open-

Flow modules. The technique is a co-design of hardware/software for developing a deep

packet inspection engine. A major contribution in revisiting anomaly-based intrusion de-

tection using SDNs is proposed in (Mehdi, Khalid, & Khayam, 2011). The proposed

methodology provides high detection accuracy and is suitable small home/small office or

home networks. Researchers proved that SDNs are effective for some prominent anomaly

detection system algorithms. A significant contribution is NICE in virtual network sys-

tems (Chung, Khatkar, Xing, Lee, & Huang, 2013). NICE is an OF-based framework for

the detection of vulnerable applications installed on virtual machines. Subsequently, these

vulnerable applications can either be used to compromise VMs in the cloud, especially

in infrastructure-as-a-service clouds, or may work as a zombie for further exploitation.

NICE is a distributed vulnerability detection framework based on analytical models, pro-

grammable virtual switches (OF), and OF programming APIs to build an efficiently mon-

itored control plane to detect and mitigate sophisticated attacks. Another efficient attempt

is SnortFlow (Xing, Huang, Xu, Chung, & Khatkar, 2013), which is an IPS for the cloud

environment. The technique simply combines the capabilities and features of Snort and

OF to employ IPS. NICE and SnortFlow are implemented for the cloud environment with

almost the same objectives. However, NICE is an attack graph-based IPS, whereas Snort-

Flow utilizes snort for intrusion detection and OF-based reconfigurable network features

to prevent intrusion.
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Remarks: A critical analysis of the literature on SDN security clearly shows that

the security research community has two opinions about SDNs. One school of thought

is focused on securing SDNs and making them dependable. By contrast, the second

school of thought believes in the use of the remarkable features and capabilities of SDNs

to enhance and improve the security of different applicable networks; the latter belongs

to our main classification of SDN security augmentation. Security augmentation in our

classification implies that SDNs are equivalent to “security defined networks.” The SDNs

contribute greatly in improving the security of many modern and existing cellular, mo-

bile, and wired networks. Although SDNs have promising architecture, their security,

reliability, and dependability has not been proven.

2.4.5 Security Monitoring and Analysis

Security monitoring and analysis is an essential part of the dynamic environment of the

SDNs. The authors in (Shin, Yegneswaran, Porras, & Gu, 2013) proposed AVANT-

GUARD, an implementation of two significant changes to SDNs. One extension to

the data plane is called connection migration, which significantly minimizes the data-to-

control plane interactions that increase during DoS attacks on a southbound interface. An-

other extension called actuating trigger expedites the responsiveness to the changing flow

dynamics within the SDN data plane. Actuating triggers are introduced over the statistics

collection services of the data plane. The proposed model is resilient against different

security threats. However, AVANT-GUARD has several limitations. Although AVANT-

GUARD works well on network scanning and on transport control protocol (TCP) SYN

flooding attacks, it has no counter user datagram protocol, Internet control message pro-

tocol, or application layer DoS attacks. OpenWatch (Zhang, 2013) is an adaptive flow

counting method that detects anomalies in the SDNs. Monitoring the network adds an

overhead to the network; hence, the proposed model uses an adaptive flow-based count-
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ing mechanism to ensure accuracy while anomalies are detected, thereby considerably

reducing the overhead. The studies orthogonal to OpenWatch are (Yu, Jose, & Miao,

2013; Jose, Yu, & Rexford, 2011; Huici et al., 2012; Moshref, Yu, & Govindan, 2013).

Unique to the method is its provision of input to the anomaly detectors, simultaneously

considering the optimization of the network.

Another contribution is the FleXam (Shirali-Shahreza & Ganjali, 2013), a sampling

extension that provides access to an OF controller to obtain packet-level information.

The FleXam enables the controller to sample the packets stochastically or deterministi-

cally considering the application requirements. FleXam eliminates flow setup time and

reduces the control plane load. Consequently, such applications can directly run on small

networks. The authors in (Suh et al., 2010) recently proposed a content-oriented net-

working architecture (CONA) that introduced the content-centric communication model

to resolve the issue of accountability. CONA is a content-aware monitoring and supervi-

sion method that can be used to detect resource-exhaustive attacks. Moreover, CONA is

useful in the detection of a particular malicious host that generates a DDoS attack. Con-

tent extraction on the agent helps CONA in attaining accountability and simultaneously

taking countermeasures against different DoS attacks. CONA uses NetFPGA and OF-

enabled switches. Another major contribution in this particular area is NetFuse (Y. Wang,

Zhang, Singh, Lumezanu, & Jiang, 2013), which is responsible for monitoring surges due

to routing configuration errors, security breaches and attacks, and other operator errors.

NetFuse is based on multi-dimensional flow aggregation and detects suspicious flow clus-

ters in cloud and data-center networks. NetFuse also addresses traffic overloading, which

has several serious financial and availability implications in cloud and data center envi-

ronments.
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2.4.6 Fault Tolerance

Fault tolerance against different attacks is a serious concern in the SDN dynamic en-

vironment, particularly in SDN centralized architecture. Few contributions have been

made in this particular area. Researchers in (Staessens, Sharma, Colle, Pickavet, & De-

meester, 2011) conducted different experiments of recovery from a link failure using OF.

The technique uses OF-based switches to handle data-to-control plane failures. However,

dependency on a centralized architecture may cause delay in restoration and recovery

from failure in case of large-scale networks. Split architecture carrier grade networks

(SPARK) are another major contribution to this field (Sharma, Staessens, Colle, Pickavet,

& Demeester, 2011) and ensure fast failure recovery using OF. The SPARK project uses

OF-based switches and controllers. Furthermore, this technique is used for fast data-to-

control plane recovery failures. The SPARK project aims to develop a fast restoration and

recovery mechanism in case of failure by any means. Another solution called automated

protection switching (APS) is even faster than SPARK and may not require contacting

the controller after failure. Both techniques are highly remarkable contributions; how-

ever, the technique in (Staessens et al., 2011) caused some delay in large-scale networks.

We briefly illustrate the two main schools of thought followed by a thematic taxonomy.

2.4.7 Taxonomy of SDNs Security

The taxonomy shown in Figure 2.4 is based on state-of-the-art security solutions for SDN

security. The devised taxonomy will help the researchers to understand the problem

clearly and to consider all significant aspects of the emerging SDNs.

2.4.8 Secure Design of SDN

The existing solutions can be further classified based on the following parameters: solu-

tion categories, SDN layers/interfaces, security measures, implementation (simulation/em-

ulation) environment, and security objectives. Researchers contributed toward auditing
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the dynamic environment of SDNs for security and accountability purposes. Major con-

tributions were based on security policy enforcement and security enhancement of dif-

ferent applicable networks. Several studies focused on security monitoring and analysis,

whereas other researchers contributed to fault tolerance.

All these innovative security solutions mainly target issues of a particular layer/in-

terface of the entire SDN architecture. Addressing the issues of different layers/interfaces

against various corresponding possible attacks and threats makes these solutions unique.

However, these state-of-the-art solutions broadly consider the distinguishing features of

SDNs, including centralized management, programmable aspects, flow-based forward-

ing, and flow analysis, as explained in the introduction. Each security solution of SDNs

renders a particular eminent feature that makes these solutions even more exceptional.

Moreover, the taxonomy is based on the implementation (simulation/emulation) environ-

ment. The majority of the security solutions are based on OF standards and popular OF

controllers, as shown in Table 2.1. The extant security SDN solutions are based purely

on a particular security objective. The taxonomy presents the major security objectives,

including policy/rule conflict resolution, rapid designing and development of secure ap-

plications, monitoring for security purposes, and malware protection to prevent stealthy

scanning and propagation. Moreover, intrusion detection and prevention secure the ar-

chitecture and defend against different DOS attacks. Auditing and accountability are

considered primary objectives for the dynamic environment of SDNs. Furthermore, a key

objective is fault tolerance, with focus on the importance of the centralized management

architecture of the SDNs.

2.5 Requirements and Key enablers for SDN security

Ensuring the security of every single component of the SDN is mandatory to build a

secure SDN environment. The following are several essential requirements for securing
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the SDN key components. Figure 2.5 depicts a situation in which an attacker searches for

potential components of SDNs to be compromised. Moreover, 1 to 4 in Fig. 2.5 represent

the requirements and their key enablers.

2.5.1 Securing the SDN Controller

Securing the SDN controller, which is the central decision point, is the foremost priority.

The SDN controller is responsible for the overall management of the network. A sim-

ple compromise of the centralized SDN controller can affect the entire network (Metzler,

2012). Furthermore, as a single point of failure, the SDN controller serves as a potential

target for attackers. The SDN controller as a software platform, if compromised, essen-

tially allows a hacker to reconfigure the entire network. By spoofing the address of the

controller, the attacker can take over the entire network easily through a fake controller.

This key component needs to be protected, and it can be protected in the following

ways:

• High availability of the controller is ensured to protect against different DoS and

DDoS attacks.

• The SDN controller must be protected with security policy enforcement, high avail-

ability, and minimum possible delay during incoming packets (Vissicchio, Van-

bever, & Bonaventure, 2014).

• The OS that contains the controller must be secured against exploitable patches,

backdoor accounts, and open doors, such as vulnerable open ports, services, and

protocols.

• The protection of the system with the SDN controller must be secured against phys-

ical threats.
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• The controller must have a mechanism that alerts an administrator to limit control

communication during the attack or in case of a sudden attack (Jammal, Singh,

Shami, Asal, & Li, 2014).

• An intelligent access control list must be implemented for packet filtration, and full

isolation among the tenants that share the infrastructure must be ensured.

Figure 2.5: Attacker Searching for Potential Targets

2.5.2 Protecting Flow Paradigm of the SDN

SDN grounded on flow-based forwarding can ensure end-to-end communication security.

The flow paradigm is the soul of SDN and must be protected. A successful influx of bogus

flow may compromise the entire network (B. Wang, Zheng, Lou, & Hou, 2015). Flow

abstraction of the controller may result in harvesting of the intelligence of the connected

resources, and such harvested intelligence can be used in further attacks and exploitation
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(Kreutz et al., 2015). An updated access control mechanism should be deployed in the

network. Moreover, flows should be encrypted to prevent the injection of malicious flows.

Proper authentication and authorization should be implemented to prevent side-channel

attacks.

2.5.3 Fortifying SDN agents

The security of the SDN agent is important because it constitutes the data plane environ-

ment To compromise a strong entity, such as the SDN controller, an attacker may reach

the target by compromising any vulnerable agent of SDN. For instance, link layer discov-

ery protocol packets with forged source addresses can cause the SDN controller to install

flow rules grounded on bogus information. Moreover, many existing switches, as part of

the SDN infrastructure layer, are by default in listener mode, which may easily lead to

the launch of malicious connections (Costa & Costa, 2013; Kreutz et al., 2013). Injecting

false flow at any SDN agent can lead to its distribution to numerous agents who ultimately

cause serious network disturbance. The security of the SDN agents requires deploying

the latest identity management, threat isolation, and mitigation techniques. Moreover, the

SDN agents require physical security. Further IPS, IDS, and firewalls should be actively

deployed.

2.5.4 Hardening Application Programming Interfaces (APIs) and communication
channels

APIs can be a potential target for attackers. Most importantly, the southbound APIs can

be targeted easily for different DoS attacks to make the entire network unavailable. The

creation of malicious APIs by skilled programmers is a critical issue; this trend already

exists in the security research community. The communication channel between each

layer must be well protected; security measures include secure coding, deployment of

integrity checks, and digital signing of the code. Moreover, the communication channels
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can be hardened by using TLS/SSL security or other cryptographic alternatives, such as

threshold cryptography (Kreutz et al., 2013; Sookhak et al., 2015).

2.6 Conclusion

The emergence of SDNs has resulted in additional security requirements because of newly

deployed infrastructural entities. Despite the promising architecture of SDNs, security

was not considered part of the initial design. Significant work is in progress to develop

state-of-the-art SDN security applications and solutions. However, research on SDN se-

curity is still in its infancy. Secure and dependable SDNs remains a distant goal.

To meet the newly imposed network security requirements, this study presented a

broad overview of the security implications of each SDN layer/interface. We devised a

contemporary layered/interface taxonomy of the reported security vulnerabilities, attacks,

and challenges of SDNs to illustrate the main categories of security implications for each

SDN layer/interface. Furthermore, we highlighted and analyzed the possible threats that

may affect and target a particular layer/interface with a suggested corresponding com-

pact solution. A discussion on state-of-the-art security solutions was also presented. A

comprehensive survey, analysis, and classification of extant SDN security solutions pro-

mote ways to secure dependable SDNs. The surveyed solutions were further classified

by devising a thematic taxonomy based on the SDN layers/interfaces, the SDNs’ eminent

features, implementation environment, and security objectives. This study identified the

SDNs’ distinguishing features for each state-of-the-art security solution, thereby making

these security solutions unique. Moreover, the potential effects of each security solution

on different SDN layers/interfaces were identified and presented. This study illustrated

two main schools of thought in the SDN security research community. The potential se-

curity implications with their key enablers were elaborated for the development of secure

and dependable SDNs.
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CHAPTER 3: MODELING, ANALYSIS AND FORMAL VERIFICATION

This chapter investigates the defense space against the threat of attacks in SDNs due

to both legitimate and compromised end hosts/soft switches that wrests either full or

partial control of the entire network. Moreover, to preserve the correct functioning of the

entire SDN architecture, an efficient detection of various distributed coordinated attacks

and anomalies triggered by large-scale malicious events that predominantly target the

control plane is of paramount concern. The main purpose of this chapter is to formally

verify and validate the whole proposed system in the real-setting of SDNs rather than

just problem analysis. The main contribution as opposed to simulation and testing is that

the system is verified by providing a formal proof on an abstract mathematical model

of the system that exhaustively checks and proves the intended behavior of the system.

Additionally, the chapter provides a critical analysis of the specified sophisticated attacks

on the control plane of the SDN even if the control channel (southbound API) is TLS

(Transport Layer Security) enabled. The chapter also briefly discusses the preliminaries to

model and analyze a system. Moreover, verification of the system and results is provided.

Finally, the chapter demonstrates briefly the impact and analysis of attack on the control

plane and closely analyzes the detection accuracy behavior and analysis of some of the

extant state-of-the-art classification based network anomaly detection systems.

The remainder of the chapter is organized as follows. Section 3.1 discusses the

motivation for the verification of the proposed system. Section 3.2 elaborates the tools and

techniques used for the verification of the proposed research work. Section 3.3 presents

the complete modeling and analysis of the proposed system. Section 3.4 provides the

verification results. Section 3.5 presents a brief impact and analysis of the attack on SDN

controller. The detection accuracy analysis and behavior of some of the extant state-of-

the-art classification based network anomaly detection systems is provided in Section 3.6.
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Finally, we provide the concluding remarks in Section 3.7.

3.1 Motivation for Verification of Proposed System in SDN

The formal verification of an intrusion-detection system that is capable to effectively iden-

tify a wide variety of sophisticated network attacks in the control plane of the SDNs is

crucial and all-important. The early and efficient detection of the threat of attacks in

the SDN control plane that subsequently help raising mitigation policies is of paramount

concern and certainly necessitates to be formally verified to prove the correctness and

consistency of the proposed system. The motivation behind complete formal verification

is beyond just problem analysis, rather it formally verifies the validity of our proposed

Intrusion-Detection System (IDS) being an extended module of the controller in SDNs.

Besides, the problem is well-analyzed and established.

3.2 Preliminaries

In preliminaries section, we are discussing tools and techniques used in this research work

for the formal verification.

3.2.1 High-Level Petri Nets (HLPN)

Petri Nets are very useful for mathematical and graphical modeling of wide range of

systems, such as distributed, parallel, concurrent, stochastic, non-deterministic, and asyn-

chronous systems. However, a tradeoff must be kept between modeling generality and

analysis capability. Even a modest model can become too large for analysis process. In

this work, we have used a variant of the conventional Petri Nets, termed as High-Level

Petri Nets (HLPN) for the formal verification of the proposed migration technique. The

HLPN is a set of 7-tuple N = (P, T, F, ϕ , R, L, M0), where:

1. P is a set of finite places,

2. T is a set of finite transitions such that P and T are two distinct sets P ∩ T = φ ,
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3. F represents the flow relation from place to transition or transition to place such

that F ⊆ (P × T) ∪ (T × P),

4. φ represents the mapping function that maps places to data types, such that φ : P→

Data types,

5. R defines the set of rules that maps T to logical formulae such that R: T→ Formula,

6. L represents the labels that are mapped on each flow in F, such that L: F→ Label,

7. M0 represents the initial state/marking where flow can be initiated, such that M: P

→ Tokens.

The first three variables (P, T, F) provide information about the structure of the Petri

Net. The next three variables (φ , R, L) provide the static semantics of the Petri Net,

which means that the information does not change throughout the system. To build an

understanding of a Petri Net, we demonstrate a small example. Figure 3.1 represents a

P2

P4

P1
T3T1

P3e f

T2

Transition

PPlace

Flow

Figure 3.1: An Example of the HLPN

simple Petri Net, having 4 places (P = P1, P2, P3, P4), 3 transitions (T= T1, T2, T3), and

7 flows (F = a, b, c, d, e, f, g). In HLPN, each place has some tokens to enable adjacent

transitions, which means that the preconditions must hold for the transition to fire. The

tokens can correspond to one type or a cross product of different data types. In Table 3.1,

we have mapped places to the following data types.
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Table 3.1: Places to Data-type Mapping

Places Mapping Description
ϕ (P1) (int, bool) P1 holds variables of type int and bool
ϕ (P2) (char) P2 holds variable of type char only
ϕ (P3) (string, int, bool) P3 holds variables of type string, int

and bool
ϕ (P4) (bool) P4 holds variables of type bool only

Let α and β be the nodes of the HLPN N if and only if α,β ∈ P ∪ T. A node α is an

input node of another node β if and only if there is a directed arc from α to β such that

(α,β ) ∈ F. Node α is an output node of β if and only if (β ,α) ∈ F. The precondition is •

P1 = (P2 | (P2, P1) ∈ F) and post condition is • P1 = (P2 | (P1, P2) ∈ F). The precondition

must hold to enable the transition. For example in the Figure 3.1, precondition for T2 will

use c and d as input. Similarly, post-condition will take values from outgoing flow to

enable further transitions.

3.2.2 SMT-Lib and Z3 solver

In the context of automated reasoning and formal verification, Boolean Satisfiability

Solvers (SAT) are used. However, now the decision problems are encoded and solved as

Satisfiability Modulo Theories (SMT). The SAT are propositional satisfiability solvers.

The SMT takes the decidability problem as first order logic formula and decide for its

satisfiability based on the decidable background theory. There are a number of theo-

ries supported by the SMT solvers, such as equality and un-interpreted functions, linear

arithmetic over rationals, linear arithmetic over integers, non-linear arithmetic over reals,

over arrays, bit vectors, and combinations. The SMT-Lib provides a common input plat-

form for many solvers used for the verification of systems. Behavioral specifications of a

system can be represented using abstract models. The SMT solvers are then used to per-

form bounded model checking to explore a bounded symbolic execution of the model. A

number of solvers are available that support the SMT-Lib such as the Beaver, the Boolec-
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tor, the CVC4, the MathSAT5, the Z3, and the OpenSMT. The differentiating feature of

solvers can be the underlying logic (First Order Logic (FOL) or Temporal Logic), sup-

ported theories, input formulas, and interfaces (Cok et al., 2015).

We employed the Z3 constraint solver, which is an efficient automated SMT solver

by Microsoft Research Labs. The Z3 solver is mostly used in the analysis and verification

of software systems. The underlying verification theory for our system’s model is the

theory of array that is used to prove the satisfiability of our model’s logical formulae. The

array theory is frequently used in software modeling domain.

3.3 Modeling and Analysis

The complete HLPN model of the OpenFlow (OF)-enabled switch, an SDN controller

and an intrusion detection application built as an extended module of the controller in

software-defined network is illustrated in the Figure 3.3; whereas, the sequence diagram

is shown in Figure 3.2.

As described in Definition 1 in Section 3.2.1, HLPN is a 7-tuple N = P, T, F, φ ,

R, L, M0. Before modeling the system, we first need to state P and the associated data

types. There are 15 places and 12 transitions in the model, as depicted in Figure 3.3.

Table 3.2 contains the names and mappings of places. Table 3.3 contains types used in

the model. In the next step, we are defining the set of rules, pre, and post-conditions

to map to T. Before writing rules of transitions let us have a quick overview how the

OpenFlow-enabled switch, the SDN controller and our proposed application works. The

system comprises of an OF-enabled switch, an SDN controller and an intrusion detection

application built as an extended module of the controller.

TCP handshaking connection (i.e. TCP three-way handshake) is an automated nego-

tiation process that dynamically sets the communication channel parameters between two

different network entities (i.e. OF-enabled switch, and controller) before normal commu-
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nication starts. However, the OpenFlow latest versions also supports the optional TLS

(Transport Layer Security). We consider here a TLS enabled communication between the

switch and the controller. After successful TCP/TLS connection establishment, following

are some important messages that are exchanged between the OF-enabled switch and the

controller. The first initiative after the TCP establishment is the Hello message exchanged

between the switch and the controller. Hello message is a form of symmetric communi-

cation that can be sent in either direction, but mainly it is exchanged upon TCP/TLS

connection start-up for version negotiation (i.e. OpenFlow version). In our sequence di-

agram, these messages are just shown for the initial start-up. The rest of the messages

(i.e., Features-reply, Packet-In, Packet-Out, Flow-Mod, and Flow-Removed) exchanged

among the three entities (switch, controller, and application) as shown in the sequence

diagram in Figure 3.2. These messages are considered very important to demonstrate

specific diverse sophisticated attacks to prove the correctness of the proposed model and

to closely witness and analyze the attacks with TLS-enabled OpenFlow. Moreover, a de-

tailed analysis of the complete OpenFlow protocol messages is beyond the scope of this

thesis. Moreover a complete HPLN model for a specified communication between the

switch and the controller with detailed transitions are shown in Figure 3.3.

New tokens can only enter in the model through transition R (Start-Connection).

As there is no input arc joining the transition so pre-condition of this transition does not

exist. TCP connection three-way handshaking and establishment is by default the first

step to start communication between different network entities. We assume the connec-

tion establishment already done at this transition and can be shown at the transition R

(Start-Connection).The rules for this transitions is listed as below:
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= ∃conn-attr ∈ Conn − Attr | •conn-attr = φ

Hello message is a form of symmetric messages and can be sent in either direction,

but mainly it is exchanged upon connection start-up. The next transition R (Hello-Msg)

occurs when exchanged hello message upon connection startup. The said transition is

depicted in the formula below:

R (Hello-Msg) = ∀s-hello-msg ∈ S−Hello−Msg,

∀c-hello-msg ∈C−Hello−Msg,∀hello-msg-resp ∈

Hello−Msg−Resp | s-hello-msg[4] = c-hello-msg[1]∧

s-hello-msg[5] = c-hello-msg[2]∧ s-hello-msg[6] = c-hello-msg[3]∧

s-hello-msg[7] = c-hello-msg[4]→

hello−msg−resp[1] = true,Hello−Msg−Resp′=Hello−Msg−Resp∪(hello-msg-resp[1])

(3.1)

The controller may request the identity and the basic capabilities of a switch by

sending a features request message; the switch must respond with a features reply mes-

sage that specifies the identity and basic capabilities of the switch. This is commonly

performed upon establishment of the OpenFlow channel. Upon successful hello message

response shown as RESP1 place, the transition R (Feature-Msg) occurs. The transition R
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(Feature-Msg) is shown in the rule below:

R (Feature-Msg) = ∀hello-msg-resp ∈ Hello−Msg−Resp,

∀s-feature-msg ∈ S−Feature−Msg,

∀c-feature-msg ∈C−Feature−Msg,∀feature-msg-resp ∈ Feature−Msg−Resp,

∀app-feature-msg ∈ App−Feature−Msg, |

hello−msg− resp[1] = true∧ s-feature-msg[1] = c-feature-msg[1]

∧ s-feature-msg[2] = c-feature-msg[2]

∧ s-feature-msg[3] = c-feature-msg[3]∧

s-feature-msg[4] = c-feature-msg[4]→

c-feature-msg[5] := s-feature-msg[5]∧

c-feature-msg[6] := s-feature-msg[6]∧ c-feature-msg[7] := s-feature-msg[7]∧

c-feature-msg[8] := s-feature-msg[8]∧ c-feature-msg[9] := s-feature-msg[9]∧

c-feature-msg[10] := s-feature-msg[10]∧ c-feature-msg[11] := s-feature-msg[11]∧

feature-msg-resp[1] := true∧

app-feature-msg[1] := s-feature-msg[1]∧

app-feature-msg[2] := s-feature-msg[2]∧app-feature-msg[3] := s-feature-msg[3]∧

app-feature-msg[4] := s-feature-msg[4]∧app-feature-msg[5] := s-feature-msg[5]∧

app-feature-msg[6] := s-feature-msg[6]∧app-feature-msg[7] := s-feature-msg[7]∧

app-feature-msg[8] := s-feature-msg[8]∧

app-feature-msg[9] := s-feature-msg[9]∧

(3.2)
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app-feature-msg[10] := s-feature-msg[10]∧

app-feature-msg[11] := s-feature-msg[11]

C−Feature−Msg′ =C−Feature−Msg∪ (c-feature-msg[5],c-feature-msg[6],

c-feature-msg[7],c-feature-msg[8],c-feature-msg[9],c-feature-msg[10],c-feature-msg[11])

Feature−Msg−Resp′ = Feature−Msg−Resp∪ (feature-msg-resp[1]),

App−Feature−Msg′ = App−Feature−Msg∪ (app-feature-msg[1],

app-feature-msg[2],app-feature-msg[3],app-feature-msg[4],app-feature-msg[5],

app-feature-msg[6],app-feature-msg[7],app-feature-msg[8],app-feature-msg[9],

app-feature-msg[10],app-feature-msg[11]) (3.3)

A header/match field is used to describe and compare to which incoming packet this entry

is applicable. The rule for the transition R (Match-Fields) is depicted below.

R (Match-Fields) = ∀s-match-fields ∈ S−Match−Fields,

∀packet-match-fields ∈ Packet−Match−Fields,∀action-attr ∈ Action−Attr |

s-match-fields[8] 6= packet-match-fields[2]∨

s-match-fields[9] 6= packet-match-fields[3]∨

s-match-fields[10] 6= packet-match-fields[4]∨

s-match-fields[11] 6= packet-match-fields[5]∨

s-match-fields[12] 6= packet-match-fields[6]∨

s-match-fields[13] 6= packet-match-fields[7]∨

s-match-fields[14] 6= packet-match-fields[8]→

(3.4)
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action−attr[1] := packetin(true),

Action−Attr′ = Action−Attr∪ (action-attr[1]) (3.5)

A Packet-In essentially represents a packet that does not match any flow rules at the data

plane, and the OF protocol mandates that such packets must be sent by the switch to the

controller directly. When a message that is received by an SDN switch with no match

entry is directed to a controller by the OF protocol by default, such messages are called

Packet-Ins. At present, the control plane has no built-in security mechanism to avoid the

manipulation of Packet-In messages even if the OF is TLS enabled. Authorized switches

can also send forged Packet-In messages that can subsequently be used to corrupt the

controller state by a wide variety of network attacks. Moreover, the Packet-In operational

semantics of the Open-Flow lower the barrier of mounting sophisticated attacks on the

control plane of the SDNs. Upon failure of match fields response shown as RESP place

and successful feature message response, the transition R (Packetin-Msg) occurs. The

transition R (Packetin-Msg) is shown in the rule below:

R (Packetin-Msg) = ∀feature-msg-resp ∈ Feature−Msg−Resp,

∀packetin-action ∈ Packetin−Action,

∀s-packetin-msg ∈ S−Packetin−Msg,

∀c-packetin-msg ∈C−Packetin−Msg,∀app-packetin-attr ∈

App−Packetin−Attr |

f eature−msg− resp[1] = true∧ packetin−action[1] = true→

(3.6)
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c-packetin-msg[1] := s-packetin-msg[1]∧ c-packetin-msg[2] := s-packetin-msg[2]∧

c-packetin-msg[3] := s-packetin-msg[3]∧ c-packetin-msg[4] := s-packetin-msg[4]∧

c-packetin-msg[5] := s-packetin-msg[5]∧ c-packetin-msg[6] := s-packetin-msg[6]∧

app-packetin-attr[11] := s-packetin-msg[1]∧

app-packetin-attr[12] := s-packetin-msg[2]∧

app-packetin-attr[2] := s-packetin-msg[3]∧

app-packetin-attr[13] := s-packetin-msg[4]∧

app-packetin-attr[14] := s-packetin-msg[5]∧

app-packetin-attr[15] := s-packetin-msg[6]∧

C−Packetin−Msg′ =C−Packetin−Msg∪ (c-packetin-msg[1],c-packetin-msg

[2],c-packetin-msg[3],c-packetin-msg[4],c-packetin-msg[5],c-packetin-msg[6])

App−Packetin−Attr′=App−Packetin−Attr∪(app-packetin-attr[11],app-packetin-attr

[12],app-packetin-attr[2],app-packetin-attr[13],app-packetin-attr

[14],app-packetin-attr[15]) (3.7)

Packet-Out is a controller to switch communication message, where the controller is sub-

ject to direct packets out to a particular port on the switch, and also forward the number of

packets received via Packet-Ins. Packet-Out messages generally comprises of a full packet

or a buffer ID referencing a particular packet, which is stored in the switch. Packet-Out

also contain action’s list to be exactly followed and an empty action list simply represents

packet to be dropped. The resultant and final evaluation outcome of Packet-In message

can be a Packet-Out, Flow-Mod or Flow-Removed messages that are stored in C-FLOW

place. The transition R (Packetout-Msg) depicts the successful evaluation of the Packet-

Out message when the C-FLOW place receives the Packet-Out response. The transition
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is illustrated below:

R (Packetout-Msg) = ∀c-packetout-msg ∈C−Packetout−Msg,

∀s-flowmod-msg ∈ S−Packetout−Msg,∀app-packetout-attr ∈

App−Packetout−Attr |

c− packetout−msg[7] = packetoutresponse→

s-packetout-msg[1] := c-packetout-msg[1]∧ s-packetout-msg[2] := c-packetout-msg[2]∧

s-packetout-msg[3] := c-packetout-msg[3]∧ s-packetout-msg[7] := c-packetout-msg[8]∧

s-packetout-msg[8] := c-packetout-msg[9]∧ s-packetout-msg[9] := c-packetout-msg[10]∧

s-packetout-msg[10] := c-packetout-msg[11]∧

s-packetout-msg[11] := c-packetout-msg[12]∧

s-packetout-msg[12] := c-packetout-msg[13]∧

s-packetout-msg[13] := c-packetout-msg[14]∧

s-packetout-msg[14] := c-packetout-msg[15]∧

s-packetout-msg[15] := c-packetout-msg[16]∧

app-packetout-attr[11] := c-packetout-msg[1]∧app-packetout-attr[12] := c-packetout-msg[2]∧

app-packetout-attr[2] := c-packetout-msg[3]∧app-packetout-attr[16] := c-packetout-msg[8]∧

app-packetout-attr[17] := c-packetout-msg[9]∧

app-packetout-attr[18] := c-packetout-msg[10]∧

app-packetout-attr[19] := c-packetout-msg[11]∧

app-packetout-attr[20] := c-packetout-msg[12]∧

app-packetout-attr[21] := c-packetout-msg[13]∧

app-packetout-attr[22] := c-packetout-msg[14]∧

(3.8)
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app-packetout-attr[23] := c-packetout-msg[15]∧

app-packetout-attr[24] := c-packetout-msg[16]

S−Packetout−Msg′ = s−Packetout−Msg∪ (s-packetout-msg[1],s-packetout-msg

[2],s-packetout-msg[3],s-packetout-msg[7],s-packetout-msg[8],

s-packetout-msg[9],s-packetout-msg[10],s-packetout-msg[11],

s-packetout-msg[12],s-packetout-msg[13],s-packetout-msg[14],s-packetout-msg[15])

App−Packetout−Attr′ = App−Packetout−Attr∪ (app-packetout-attr[11],

app-packetout-attr[12],app-packetout-attr[2],app-packetout-attr[16],

app-packetout-attr[17],app-packetout-attr[18],app-packetout-attr

[19],app-packetout-attr[20],app-packetout-attr[21],

app-packetout-attr[22],app-packetout-attr[23],app-packetout-attr[24]) (3.9)

Flow-Mod is one of the main messages that allows the controller to modify the state of an

OF-enabled switch. The transition R (Flow-Mod-Msg) depicts the successful evaluation

of the flow-Mod message when the C-FLOW place receives the flow-Mod response. The

transition is illustrated below:

R (Flowmod-Msg) = ∀c-flowmod-msg ∈C−Flowmod−Msg,

∀s-flowmod-msg ∈ S−Flowmod−Msg,∀app-flowmod-attr ∈

App−Flowmod−Attr |

c− f lowmod−msg[17] = f lowmodresponse→

(3.10)
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s-flowmod-msg[1] := c-flowmod-msg[1]∧ s-flowmod-msg[2] := c-flowmod-msg[2]∧

s-flowmod-msg[3] := c-flowmod-msg[3]∧ s-flowmod-msg[16] := c-flowmod-msg[18]∧

s-flowmod-msg[17] := c-flowmod-msg[19]∧ s-flowmod-msg[18] := c-flowmod-msg[20]∧

s-flowmod-msg[8] := c-flowmod-msg[9]∧

s-flowmod-msg[5] := c-flowmod-msg[5]∧

app-flowmod-attr[11] := c-flowmod-msg[1]∧app-flowmod-attr[12] := c-flowmod-msg[2]∧

app-flowmod-attr[2] := c-flowmod-msg[3]∧app-flowmod-attr[25] := c-flowmod-msg[8]∧

app-flowmod-attr[26] := c-flowmod-msg[9]∧app-flowmod-attr[27] := c-flowmod-msg[10]∧

app-flowmod-attr[17] := c-flowmod-msg[11]∧

app-flowmod-attr[14] := c-flowmod-msg[12]∧

S−Flowmod−Msg′ = S−Flowmod−Msg∪ (s-flowmod-msg[1],s-flowmod-msg

[2],s-flowmod-msg[3],s-flowmod-msg[18],s-flowmod-msg[19],

s-flowmod-msg[20],s-flowmod-msg[9],s-flowmod-msg[5])

App−Flowmod−Attr′ = App−Flowmod−Attr∪ (app-flowmod-attr[11],

app-flowmod-attr[12],app-flowmod-attr[2],app-flowmod-attr[25],

app-flowmod-attr[26],app-flowmod-attr[27],app-flowmod-attr[17],

app-flowmod-attr[14]) (3.11)

The Flow-Removed message is used to inform the controller about the removal of a flow-

entry from a flow table. These messages are subject to be generated, when the SDN

controller asks to delete a flow-entry They are generated as the result of a controller flow

delete requests or when the flow timeout exceeds of a flow-entry (i.e. switch flow expiry

process starts). The transition R (Flow-Removed-Msg) shows the successful evaluation

of the flow removed message when the C-FLOW place evaluates and receives the Flow-
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Removed response. The transition is illustrated below:

R (Flowremovd-Msg) = ∀s-flowremovd-msg ∈ S−Flowremovd−Msg,

∀c-flowremovd-msg ∈ S−Flowremovd−Msg,∀app-flowremovd-attr ∈

App−Flowremovd−Attr |

s− f lowremovd−msg[19] = f lowmodresponse→

c-flowremovd-msg[1] := s-flowremovd-msg[1]∧

c-flowremovd-msg[2] := s-flowremovd-msg[2]∧

c-flowremovd-msg[3] := s-flowremovd-msg[3]∧

c-flowremovd-msg[19] := s-flowremovd-msg[17]∧

c-flowremovd-msg[21] := s-flowremovd-msg[20]∧

c-flowremovd-msg[4] := s-flowremovd-msg[4]∧

c-flowremovd-msg[22] := s-flowremovd-msg[21]∧

c-flowremovd-msg[23] := s-flowremovd-msg[22]∧

c-flowremovd-msg[24] := s-flowremovd-msg[23]∧

app-flowremovd-attr[11] := s-flowremovd-msg[1]∧

app-flowremovd-attr[12] := s-flowremovd-msg[2]∧

app-flowremovd-attr[2] := s-flowremovd-msg[3]∧

app-flowremovd-attr[26] := s-flowremovd-msg[17]∧

app-flowremovd-attr[28] := s-flowremovd-msg[20]

app-flowremovd-attr[13] := s-flowremovd-msg[4]

app-flowremovd-attr[29] := s-flowremovd-msg[21]

(3.12)
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app-flowremovd-attr[30] := s-flowremovd-msg[22]

app-flowremovd-attr[31] := s-flowremovd-msg[23]

C−Flowremovd−Msg′ =C−Flowremovd−Msg∪ (c-flowremovd-msg[1],

c-flowremovd-msg[2],c-flowremovd-msg[3],c-flowremovd-msg[18],

c-flowremovd-msg[19],c-flowremovd-msg[20],

c-flowremovd-msg[9],c-flowremovd-msg[5])

App−Flowmod−Attr′ = App−Flowmod−Attr∪ (app-flowremovd-attr[11],

app-flowremovd-attr[12],

app-flowremovd-attr[2],app-flowremovd-attr[25],

app-flowremovd-attr[26],app-flowremovd-attr[27],

app-flowremovd-attr[17],

app-flowremovd-attr[14]) (3.13)

Application pre-processes the relevant attributes from the messages. However, finding

the relevant attributes (feature selection) for prediction of the varied network attack pat-

terns is done through Weka. The application pre-processes these attributes in an offline

fashion while testing in real-time. The transition R (Apply-Constraints) takes the relevant

attributes of messages and apply constraints on them and store them in CONSTRAINT-

ON-ATTR place.The transition is illustrated below:

R (Apply-Constraints) = ∀app-attr ∈ App−Attr,

∀constraint-attr ∈Constraint−Attr | (3.14)
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constraint-attr[1] := Apply−Constraint(app-attr[19],app-attr[32]),

constraint-attr[2] := Apply−Constraint(app-attr[20],app-attr[32]),

constraint-attr[3] := Apply−Constraint(app-attr[29],app-attr[32]),

constraint-attr[4] := Apply−Constraint(app-attr[31],app-attr[32]),

constraint-attr[5] := Apply−Constraint(app-attr[19],app-attr[33]),

constraint-attr[6] := Apply−Constraint(app-attr[20],app-attr[33]),

constraint-attr[7] := Apply−Constraint(app-attr[29],app-attr[33]),

constraint-attr[8] := Apply−Constraint(app-attr[30],app-attr[33]),

constraint-attr[9] := Apply−Constraint(app-attr[31],app-attr[33]),

constraint-attr[10] := Apply−Constraint(app-attr[19],app-attr[34]),

constraint-attr[11] := Apply−Constraint(app-attr[20],app-attr[34]),

constraint-attr[12] := Apply−Constraint(app-attr[28],app-attr[34]),

constraint-attr[13] := Apply−Constraint(app-attr[29],app-attr[34]),

constraint-attr[14] := Apply−Constraint(app-attr[30],app-attr[34]),

constraint-attr[15] := Apply−Constraint(app-attr[31],app-attr[34])

Constraint−Attr′ =Constraint−Attr∪ (constraint-attr[1],

constraint-attr[2],constraint-attr[3],constraint-attr[4],constraint-attr[5],

constraint-attr[6],constraint-attr[7],constraint-attr[8],constraint-attr[9],

constraint-attr[10],constraint-attr[11],constraint-attr[12],constraint-attr[13],

constraint-attr[14],constraint-attr[15]) (3.15)

The transition R (Check-Constraint1) compares the constrained applied attributes of the
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messages to the offline stored attributes of the messages and evaluates a response that

is sent to the controller. The response helps the controller to analyzes thoroughly the

network attack patterns extracted triggered by large scale malicious events that predom-

inantly target the control plane to degrade the overall performance of the SDNs or bring

the entire network down in the worst case. The transition is illustrated below:

R (Check-Constraint1) = ∀stored-constraint1-attr ∈ Stored−Constraint1−Attr,

∀constraint1-attr ∈Constraint1−Attr,

∀constraint1-resp ∈Constraint1−Resp |

constraint1-attr[1]≥ stored-constraint1-attr[1]∧

constraint1-attr[2]≥ stored-constraint1-attr[2]∧

constraint1-attr[3]≥ stored-constraint1-attr[3]∧

constraint1-attr[4]≥ stored-constraint1-attr[4]→

constraint1-resp[1] = Resp,

Constraint1−Resp′ =Constraint1−Resp∪ (constraint1-resp[1]) (3.16)

The transition R (Check-Constraint2) compares the constrained applied attributes of the

messages to the offline stored attributes of the messages and evaluates a response that

is sent to the controller. The response helps the controller to analyzes thoroughly the

network attack patterns extracted triggered by large scale malicious events that predom-

inantly target the control plane to degrade the overall performance of the SDNs or bring
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the entire network down in the worst case. The transition is illustrated below:

R (Check-Constraint2) = ∀stored-constraint2-attr ∈ Stored−Constraint2−Attr,

∀constraint2-attr ∈Constraint2−Attr,

∀constraint2-resp ∈Constraint2−Resp |

constraint2-attr[5]≥ stored-constraint2-attr[1]∧

constraint2-attr[6]≥ stored-constraint2-attr[2]∧

constraint2-attr[7]≥ stored-constraint2-attr[3]∧

constraint2-attr[8]≥ stored-constraint2-attr[4]∧

constraint2-attr[9]≥ stored-constraint2-attr[5]→

constraint2-resp[2] = Resp,

Constraint2−Resp′ =Constraint2−Resp∪ (constraint2-resp[1]) (3.17)

The transition R (Check-Constraint3) compares the constrained applied attributes of the

messages to the offline stored attributes of the messages and evaluates a response that

is sent to the controller. The response helps the controller to analyzes thoroughly the

network attack patterns extracted triggered by large scale malicious events that predom-

inantly target the control plane to degrade the overall performance of the SDNs or bring
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the entire network down in the worst case. The transition is illustrated below:

R (Check-Constraint3) = ∀stored-constraint3-attr ∈ Stored−Constraint3−Attr,

∀constraint3-attr ∈Constraint3−Attr,

∀constraint3-resp ∈Constraint3−Resp |

constraint3-attr[10]≥ stored-constraint3-attr[1]∧

constraint3-attr[11]≥ stored-constraint3-attr[2]∧

constraint3-attr[12]≥ stored-constraint3-attr[3]∧

constraint3-attr[13]≥ stored-constraint3-attr[4]∧

constraint3-attr[14]≥ stored-constraint3-attr[5]∧

constraint3-attr[15]≥ stored-constraint3-attr[6]→

constraint3-resp[3] = Resp,

Constraint3−Resp′ =Constraint3−Resp∪ (constraint3-resp[1]) (3.18)
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Table 3.2: Places and Mapping of the OpenFlow Based SDN Verification

Places Mapping
ϕ(S) (syn×ack×syn-ack×version×type×length×

xid)
ϕ(C) (syn×ack×syn-ack×version×type×length×

xid×respcostraint1× respconstraint2×
respconstraint3)

ϕ(S−FEATURE) (version×type× length×xid× datapath_id×
n_buffers× n_tables×pad× feature
capabilities× feature actions × ports)

ϕ(C−FEATURE) (version×type× length×xid× datapath_id×
n_buffers× n_tables×pad× feature
capabilities× feature actions × ports)

ϕ(S−FLOW ) (Dpid×Time ×Type× Reason× Buffer ID ×
Payload× Payload (Pout Payload)×actions×
bufferIDSet× ×similarPacketcounts×
PacketInexist× EtherType× length×
Protocol× Type_s×
command× match× idle timeout×
Flowremovedresponse × FlowModsBefore×
duration× Byte-count× Packet_count )

ϕ(C−FLOW ) (Dpid×Time ×Type× Reason× Buffer ID
× Payload× Packetoutresponse× Payload
(Pout Payload) ×actions× bufferIDSet×
similarPacketcounts× PacketInexist×
EtherType× length× Protocol× Type_s×
Flowmodresponse× command× match×
idle timeout×
FlowModsBefore× duration× Byte-count×
Packet_count )

ϕ(APP) (version×type× length×xid× n_buffers×
n_tables×pad× feature capabilities× feature
actions × ports×Dpid×Time ×Type×
Reason× Buffer ID × Payload× Payload
(Pout Payload) ×actions× bufferIDSet×
×similarPacketcounts× PacketInexist×
EtherType× length× Protocol× Type_s×
command× match× idle timeout×
FlowModsBefore× duration×Byte-count×
Packet_count×Constraint1×Constraint2
×Constraint3 )
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ϕ(Constraint−Attributes) (Constraint1similarPacketcounts×
Constraint1PacketInexist×
Constraint1duration×
Constraint1Packet_count×
Constriant2similarPacketcounts×
Constraitn2PacketInexist×
Constraint2Duration× Constriant2Byte-
count× Constriant2Packet_count×
Constriant3similarPacketcounts×
Constraint3PacketInexist×
Constriaint3flowmodsbefore×
Constriaint3Duration× Constriant3Byte-
count× Constraint3Packet_count )

ϕ(Stored− constraint1) (Constraint1similarPacketcounts×
Constraint1PacketInexist×
Constraint1duration× Con-
straint1Packet_count)

ϕ(Stored− constraint2) (Constriant2similarPacketcounts×
Constraitn2PacketInexist×
Constraint2Duration× Constriant2Byte-
count× Constriant2Packet_count)

ϕ(Stored− constraint3) (Constriant3similarPacketcounts×
Constraint3PacketInexist×
Constriaint3flowmodsbefore×
Constriaint3Duration× Constriant3Byte-
count× Constraint3Packet_count )

ϕ(Packet) (Protocol-type × Src-Mac-Add× Dest-
Mac-Add× Src-ip × Dest-ip × Src-port
× Dest-port × Service × num-bytes-src-
dst × num-bytes-dst-src × Fr-no × Fr-
len × Cap-len × Head-len × Frag-off
× TTL × Seq-no × CWR × ECN ×
URG × ACK × PSH × RST × SYN ×
FIN × Land ×Mss-src-dest-requested ×
Mss-dest-src-requested × Ttt-len-src-dst
× Ttt-len-dst-src × Conn-status × count-
fr-dest × count-fr-src × count-serv-src
× count-serv-dest× num-pushed-src-dst
× num-pushed-dst-src× num-SYN-FIN-
src-dst × num-SYN-FIN-dst-src × num-
FIN-src-dst × num-FIN-dst-src × count-
dest-conn × count-src-conn × count-
serv-srcconn × count-serv-destconn ×
num-packets-src-dst × num-packets-dst-
src × num-acks-src-dst × num-acks-
dst-src × num-retransmit-src-dst× num-
retransmit-dst-src)
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Table 3.3: Data-types Used in the Algorithms

Data types Description
luser A string type for the entity
Syn A string type for the entity
Ack A string type for the entity
Syn-Ack A string type for the entity
version An integer type for the entity
type A string type for the entity
length An integer type for the entity
xid A string type for the entity
respconstraint1 A string type for the entity
respconstraint2 A string type for the entity
respconstraint3 A string type for the entity
datapath_id A string type for the entity
n_buffers An integer type for the entity
n_tables An integer type for the entity
pad A string type for the entity
feature capabilities A string type for the entity
feature actions A string type for the entity
ports A string type for the entity
Dpid A string type for the entity
Time A integer for the entity
Type A string type for the entity
Reason A string type for the entity
Buffer ID A string type for the entity
Payload A Boolean type for the entity
Payload (Pout Payload) A Boolean type for the entity
actions A string type for the entity
bufferIDSet A Boolean type for the entity
similarPacketcounts An integer type for the entity
PacketInexist A Boolean type for the entity
EtherType A string type for the entity
length An integer type for the entity
Protocol A string type for the entity
Type_s A string type for the entity
command A string type for the entity
match A string type for the entity
idle timeout An integer type for the entity
Flowremovedresponse A string type for the entity
FlowModsBefore An integer type for the entity
duration An integer type for the entity
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Byte-count An integer type for the entity
Packet_count A integer type for the entity
Packetoutresponse A string type for the entity
Flowmodresponse A string type for the entity
Constraint1 A string type for the entity
Constraint2 A string type for the entity
Constraint3 A string type for the entity
Constraint1similarPacketcounts An integer type for the entity
Constraint1PacketInexist A Boolean type for the entity
Constraint1duration An integer type for the entity
Constraint1Packet_count An integer type for the entity
Constriant2similarPacketcounts An integer type for the entity
Constraitn2PacketInexist A Boolean type for the entity
Constraint2Duration An integer type for the entity
Constriant2Byte-count An integer type for the entity
Constriant2Packet_count An integer type for the entity
Constriant3similarPacketcounts An integer type for the entity
Constraint3PacketInexist A Boolean type for the entity
Constriaint3flowmodsbefore An integer type for the entity
Constriaint3Duration An integer type for the entity
Constriant3Byte-count An integer type for the entity
Constraint3Packet_count An integer type for the entity
Protocol-type A string type for the entity
Src-Mac-Add A string type for the entity
Dest-Mac-Add A string type for the entity
Src-ip A string type for the entity
Dest-ip A string type for the entity
Src-port A string type for the entity
Dest-port A string type for the entity
Service A string type for the entity
num-bytes-src-dst An integer type for the entity
num-bytes-dst-src An integer type for the entity
Fr-no An integer type for the entity
Fr-len An integer type for the entity
Cap-len An integer type for the entity
Head-len An integer type for the entity
Frag-off A Boolean type for the entity
TTL An integer type for the entity
Seq-no An integer type for the entity
CWR A string type for the entity
ECN A string type for the entity
URG A string type for the entity
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ACK A string type for the entity
PSH A string type for the entity
RST A string type for the entity
SYN A string type for the entity
FIN A string type for the entity
Land A string type for the entity
Mss-src-dest-requested A string type for the entity
Mss-dest-src-requested A string type for the entity
Ttt-len-src-dst An integer type for the entity
Ttt-len-dst-src An integer type for the entity
Conn-status An integer type for the entity
count-fr-dest An integer type for the entity
count-fr-src An integer type for the entity
count-serv-src An integer type for the entity
count-serv-dest An integer type for the entity
num-pushed-src-dst An integer type for the entity
num-pushed-dst-src An integer type for the entity
num-SYN-FIN-src-dst An integer type for the entity
num-SYN-FIN-dst-src An integer type for the entity
num-FIN-src-dst An integer type for the entity
num-FIN-dst-src An integer type for the entity
count-dest-conn An integer type for the entity
count-src-conn An integer type for the entity
count-serv-srcconn An integer type for the entity
count-serv-destconn An integer type for the entity
num-packets-src-dst An integer type for the entity
num-packets-dst-src An integer type for the entity
num-acks-src-dst An integer type for the entity
num-acks-dst-src An integer type for the entity
num-retransmit-src-dst An integer type for the entity
num-retransmit-dst-src An integer type for the entity
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3.4 Verification

This section states the verification process using SMT-Lib Z3 solver. We used a model

checker to automatically verify if the specifications have been satisfied by the model. We

verified property 1, property 2, and property 3 as correctness properties. The correctness

properties are illustrated in Section 3.4.1 and the results are provided in Section 3.4.2.

3.4.1 Properties

Property 1: Directed Denial of Service (DoS) Attack

The four essential attributes (i.e., similarPacketcounts, PacketInexist, duration, and

Packet_count) can help identify directed denial of service (DoS) attack using Packet-

Ins in the control plane that wrests either partial control or put the entire SDN network

down. Packet-In flooding is one of the practical forms of launching a directed DoS at-

tack against all major OpenFlow based SDN controllers, which places the controller in

an unpredictable state. Major SDN controllers are still a target of this attack. A directed

DoS attack is a more serious concern in the centralized control architecture of the SDNs.

The PacketInexist is a Boolean variable as shown in the data-types used for the proposed

model. If PacketInexist equals to true, and the controller is targeted with huge number

of similar Packets for a specified duration will place the controller in an un-predictable

condition throwing the entire network into chaos. Moreover, directed DoS attacks using

Packet-Ins can be carried out in many ways. Particularly, we meant here to continuously

target the control plane of the SDN with valid and un-forged Packet-Ins for a certain pe-

riod of time and the aforementioned attributes can help identify the direct DoS attacks.

Moreover, the TLS-enabled control channel cannot even prevent such attacks. The result

that we obtained against this assertion is unsat. The code snippet for property 1 is shown

below.
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(assert(not(and(>=(select Constriant1similarPacketcounts 1)(select Constri-

ant1similarPacketcounts 1)) (>=(select Constraint1PacketInexist 2)(select

Constraint1PacketInexist 2))(>=(select Constriaint1Duration 3)(select Con-

striaint1Duration 3)) (>=(select Constraint1Packet_count 4)(select Con-

straint1Packet_count 4)))))(check-sat)

Property 2: Distributed Denial of Service (DDoS) Attack

The essential attributes (i.e., similarPacketcounts, flowmodsbefore, PacketInexist,

Byte-count, duration, Packet_count) can help identify network sophisticated attacks trig-

gered by large-scale malicious events that predominantly target the SDN controller to de-

grade the overall performance of the SDNs or bring the entire network down, in the worst

case, even if the Open-Flow is Transport Layer Security (TLS) enabled. The flowmods-

before attribute shows the number of similar flows from a source that target the control

plane for a specified time. These attacks typically represent distributed denial of service

attacks (DDoS), which is a serious threat in the Internet and particularly becomes even

more serious when targeting the centralized architecture of the SDN (i.e., Control Plane

Controller). There are many ways to launch DDoS attacks; however, a DDoS attacks can

easily be identified using the aforementioned attributes. Moreover, the PacketInexist at-

tribute shows the possibility of manipulating Packet-Ins for diverse DDoS of attacks. The

result that we obtained against this assertion is unsat.The code snippet for property 2 is

shown below.
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(assert(not(and(>=(select Constriant2similarPacketcounts 5)(select Cons-

triant2similarPacketcounts 1))(>= (select Constraint2PacketInexist 6)(se-

lect Constraint2PacketInexist 2))(>=(select Constriaint2Duration 7)(select

Constriaint2Duration 3))(>= (select Constriant2Bytecount 8)(select Con-

striant2Bytecount 4))(>=(select Constraint2Packet_count 9)(select Con-

straint2Packet_count 5)))))(check-sat)

Property 3: Denial of Service (DoS) Attack Using Forged Packet-Ins

The five essential attributes (i.e., similarPacketcounts, PacketInexist, Byte-count, du-

ration, Packet_count) can help identify denial of service (DoS) attack using authorized

but forget Packet-Ins in the control plane that wrests either partial or full control of the

SDN controller. This is also a practical forms of launching a DoS attack against major

OpenFlow based SDN controllers, which places the controller in an unpredictable state.

The additional attribute byte-count can precisely help in identifying such attacks. The

rest of the description of the attack is almost similar. The only difference here is that

the authorized switches send forged Packet-In messages that can subsequently be used

to corrupt the controller state while throwing the entire network into chaos. The result

that we obtained against this assertion is unsat. The code snippet for property 3 is shown

below.

87

Univ
ers

ity
 of

 M
ala

ya



(assert(not(and(>=(select Constriant3similarPacketcounts 10)(select Cons-

triant3similarPacketcounts 1)) (>=(select Constraint3PacketInexist 11)(se-

lect Constraint3PacketInexist 2)) (>=(select Constriaint3flowmodsbefore

12)(select Constriaint3flowmodsbefore 3)) (>=(select Constriaint3Duration

13)(select Constriaint3Duration 4)) (>=(select Constriant3Bytecount

14)(select Constriant3Bytecount 5)) (>=(select Constraint3Packet_count

15)(select Constraint3Packet_count 6)))))(check-sat)

3.4.2 Results

Executing the SDN model in Z3 solver along with asserted properties reveal the results

that the model is functioning correctly. Note that our goal in this research is to verify the

correctness of the models without measuring or analyzing the performance of the system.

Fig 3.4 depicts the execution time taken by Z3 solver on each security property of

SDN model. The values in Table 3.4 illustrate that the verification of the proposed model

in the real setting of the SDN ends up in finite time. The solver’s execution time of

proposed model is presented in Table 3.4.

Table 3.4: Execution Time of Diverse Security Properties

Security Property Execution Time
property1 0.34 sec
Property2 0.37 sec
property3 0.22 sec
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Figure 3.4: Verification Results of the Proposed Model

3.5 Impact of Attack Analysis on SDN Controller

The section presents the impact and analysis of flooding attack in the control plane of the

SDNs. We already have a detailed discussion on diverse practical attacks on the control

plane of the SDNs in the literature review. However, this section is dedicated to show

briefly the impact and analysis of control plane flooding attack in different scenarios.

Moreover, the analysis carried out here is simply to demonstrate the severity of attack

in the control plane. The impact and analysis of the attacks are evaluated in terms of

connection loss and connection set-up latency. The exact reason behind the potentially

augmented severity of the attacks is nothing but the centralized architecture of the SDNs.

The saturation of attack simply means throwing the entire network into chaos or putting

the complete network down, in the worst case.

For the experimental set-up, we use OpenDaylight v1.1.0 (ODL) (OpenDaylight,

2015), a popular SDN controller. Moreover, we employ Mininet (mininet, 2015) (Lantz,
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Figure 3.5: Average Latency When the Attack is Launched from a Remote Host on Dif-
ferent Network

Heller, & McKeown, 2010), which realistically creates a virtual network on a computer

in-order to emulate the SDN setting. The experimental set-up is implemented on a Lab

system Intel ® core i5- 2500M CPU at 3.30 GHz, and 8 GB RAM. Furthermore, for

emulating the attacks and analysis, we employed tools such as Scapy (Scapy, 2015) and

Cbench (Cbench, 2015; Tootoonchian, Gorbunov, Ganjali, Casado, & Sherwood, 2012).

The flow time-out is set to 15s. Moreover, the maximum connection timeout is set to 60s,

and after the maximum limit; the requests are considered as lost. Consequently, we take

the average of all runs.

Figure 3.5 and Figure 3.6 represents the results of a scenario, where we launch a

controller DoS (denial of service) attack using Packet-Ins from a remote host on different

network. Figure 3.5 evidently shows the extreme severity of the Packet-In flooding attack

in the control plane. The connection set-up latencies reach to 53s even before time-

out. The attack consumes the maximum controller resources because the flow rules are
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disposed due to a large number of Packet-Ins. However, in case of after time-out; the

connection set-up latencies saturation starts at 8kbps. On the other hand, Figure 3.6 shows

the loss fraction in connection set-up. Figure 3.6 clearly shows that the loss fraction in

connection saturation starts just at 6kbps, in case the requests are sent after time-out.

Figure 3.7 and Figure 3.8 represents a scenario, where we launch an a controller DoS

(denial of service) attack using Packet-Ins from a host on the same network. We observe

quite high connection set-up latency, when the requests are sent after the time-out period.

The connection set-up latencies reach to 24s at 14kbps in case of after time-out. However,

in case of before timeout, it reaches 3s at 14kbps. On the other contrary, Figure 3.8 shows

the loss fraction in connection set-up. We observe the average loss in connection set-

up increases with the gradual increase in attack frequency. However, Figure 3.6 clearly

shows that the loss fraction in connection saturation starts at 12kbps, in case of after

time-out.

3.6 Detection of Diverse Attacks Analysis

The section presents the simulation results of detection and behavioral analysis of four

diverse attacks. The objective of this section is to closely analyze the detection accuracy

analysis and behavior of the extant state-of-the-art classification based network anomaly

detection systems. The analysis is carried out to show that some of the attack’s detection

accuracy of different network anomaly detection systems is very low and largely lacks

its applicability, particularly in the control plane of the SDNs. Consequently, the overall

detection accuracy certainly necessitates to be improved to timely preserve the correct

functioning of the SDN controller.

We employed the benchmark NSL-KDD data-set (Tavallaee, Bagheri, Lu, & Ghor-

bani, 2012) and MATLAB R2013a for the implementation of the algorithms. We use four

diverse class of attacks (DoS, Probe, U2R, and R2l). Denial of service (DoS) attack rep-
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Figure 3.6: Average Loss When the Attack is Launched from a Remote Host on Different
Network
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Figure 3.7: Average Latency When the Attack is Launched from a Host on the Same
Network
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Figure 3.8: Average Loss When the Attack is Launched from a Host on the Same Network

resents an attempt to make the target networks and computing resources unavailable for

further legitimate requests, whereas; probe attacks indicate scanning and surveillance of

the victim network resources merely to gather sensitive information or to find diverse vul-

nerabilities of the attack target. However, U2R denotes an attempt to gain unauthorized

access to the root privileges of the victim machine and R2L attack essentially attempts

of gaining unauthorized local access particularly form a remote machine on the network.

This is also known as remote log-in attack. Moreover, the detailed description of the NSL-

KDD is given in Chapter 5. Furthermore, the state-of-the-art implemented algorithms are

also elaborated in Chapter 5.

Figure 3.9 presents the detection accuracy of state-of-the-art classifier ensembles

that is Bagging and Random Subspace (Oza & Tumer, 2008). Both of the algorithms

outperforms in detecting accurately the Denial of service (DoS) and U2R attack, which

is above 90%. However, the R2L detection accuracy of both the algorithms is below
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90%, which is considered low and is not feasible in critical situations. Particularly, the

R2L detection accuracy rate of the Random Subspace below 50% is extremely low and

unacceptable. Moreover, the probe attack detection accuracy is also observed below 90%.

Since the control plane represents a single point of failure and the centralized core of

network intelligence, low detection accuracy rates of any sophisticated attack can easily

throw the entire network into chaos. The detailed comparison and analysis of each attack

for state-of-the-art classifier ensembles are shown in Figure 3.11, Figure 3.13, Figure

3.15, and Figure 3.17.

Figure 3.10 presents the detection accuracy of state-of-the-art base/single classifiers

(i.e, Decision-stump, Naive-Bayes, Multilayer Perceptron (MLP), and Linear discrimi-

nant analysis (LDA)) (Chandola, Banerjee, & Kumar, 2009). Naive-Bayes, MLP, and

LDA classification based anomaly detection algorithms outperforms in detecting accu-

rately the Denial of service (DoS) . However, the DoS detection accuracy rate of the

Decision-stump algorithm is observed below 85%, which is considered very low detec-

tion accuracy rate. All the for algorithm performs well in detecting U2R attack, the

Naive-Bayes outperforms; whereas, the LDA performs relatively low. However, the R2L

detection accuracy of both the MLP and LDA algorithms is below 80%, which is con-

sidered extremely low and is not feasible in critical situations. Particularly, the R2L

detection accuracy rate of the LDA below 50% is unacceptable. Although, the other two

algorithms performs well in this category. Moreover, the probe attack detection accuracy

rate for LDA is also observed below 70%, which is also not acceptable in centralized ar-

chitectures. Although, the other three algorithms also performs well in this category. The

detailed comparison and analysis of each attack for state-of-the-art base/single classifiers

are shown in Figure 3.12, Figure 3.14, Figure 3.16, and Figure 3.18.
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Figure 3.9: State-of-the-Art Classifier Ensembles Detection Accuracy Analysis of Di-
verse Attacks
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Figure 3.10: State-of-the-Art Base classifiers Detection Accuracy Analysis of Diverse
Attacks
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Figure 3.11: Classifier Ensembles Detection Accuracy Aalysis of Denial of Service (DoS)
Attack
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Figure 3.12: Base Classifiers Detection Accuracy Analysis of Denial of Service (DoS)
Attack
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Figure 3.13: Classifier Ensembles Detection Accuracy Analysis of Probe Attack
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Figure 3.14: Base Classifiers Detection Accuracy Analysis of Probe Attack
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Figure 3.15: Classifier Ensembles Detection Accuracy Analysis of R2L Attack
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Figure 3.16: Base Classifiers Detection Accuracy Analysis of Probe Attack
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Figure 3.17: Classifier Ensembles Detection Accuracy Analysis of U2R Attack
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Figure 3.18: Base Classifiers Detection Accuracy Analysis of U2R Attack
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3.7 Conclusion

The defense space against the threat of various sophisticated attacks in SDNs that primar-

ily target the control plane to wrest either full or partial control of the entire network in

Open-Flow based SDNs is formally analyzed. Moreover, a complete modeling, analysis

and verification of the proposed system in the real-setting of SDNs is provided. Further-

more, the proposed system is verified by providing a formal proof on an abstract math-

ematical model of the system that exhaustively checks and proves the intended behavior

of the proposed system.

Executing our proposed SDN model in Z3 solver along with asserted security prop-

erties reveals the results, which proves the correctness of the proposed model. Moreover,

the execution time taken by Z3 solver on each security property of the proposed models

illustrate that the verification ends up in the finite time. A brief impact analysis of the

attack on SDN controller is also demonstrated. Finally, we closely analyze the detection

accuracy behavior and analysis of the extant state-of-the-art classification based network

anomaly detection systems. The analysis is carried out to show that some of the attack’s

detection accuracy of different classification based network anomaly detection systems

is very low, which is certainly not applicable in centralized networks; particularly in the

control plane of the SDNs. Consequently, the overall detection accuracy certainly neces-

sitates to be improved to timely preserve the correct functioning of the SDN controller.
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CHAPTER 4: A RANDOM ORACLE BASED INTRUSION DETECTION
METHOD

The chapter elaborates our proposed dynamic and robust intrusion-detection method to

accurately identify large-scale malicious events that predominantly target the control

plane to degrade the overall performance of the Software Defined Networks (SDNs) or

bring the entire network down in the worst case. We propose a diverse fusion-selection

approach that stands on Oracle to be applied to the classifier ensemble design, where

the Oracle is a random linear function. We argue that the proposed method adds extra-

diversity while promoting a higher level of intrusion-detection accuracy. Moreover, the

approach is highly dynamic, flexible and is capable to effectively detect a wide variety

of sophisticated security attacks. The method works as apparently the proposed model

utilizes the tactic of the well-known divide-and-conquer strategy together-with the use of

multiple random oracles.

The key objectives of the chapter are as follows.

• The chapter clearly elaborates our proposed diverse fusion-selection method that

stands on Random Oracle. Moreover, the chapter presents the extant main ap-

proaches used to design classifier ensembles.

• The chapter provides an understanding of the Random Linear Oracle (RLO), which

we consider the main contribution of our proposed dynamic and robust solution

followed by a detailed description of the RLO training and prediction phase algo-

rithms. The chosen classifier ensemble employed for the proposed method. More-

over, the chapter also addresses the reason of the employed chosen classifier en-

semble.

• The chapter also addresses the significance of the proposed solution and gives jus-

tification that why our proposed method works.
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• To demonstrate the work-flow of the proposed solution in the real setting of the

Software Defined Networks (SDNs). Moreover, we also reason out that the pro-

posed solution is acceptable to be deployed for real applicable scenarios of diverse

distributed environments and in particular, for securing the control plane of the

software defined networks.

• Finally, a summary and concluding remarks of the chapter is provided.

The remainder of this chapter is structured as follows: Section 4.2 gives a necessary

background knowledge of the existing major proposed approaches to design classifier

ensembles. Section 4.3 comprehensively elaborates our diverse fusion-selection method

that stands on a RLO. The section also presents the RLO model with a detailed descrip-

tion of the corresponding training and prediction phase algorithms. Moreover, the section

briefly discusses the chosen classifiers used for the proposed RLO based classifier ensem-

bles method. In Section 4.4, we briefly give justification that why our proposed method

works. Section 4.5 presents the work-flow of the proposed method in the real setting of

SDNs. Finally, we provide the concluding remarks in Section 4.5.

4.1 Proposed Approaches to Classifier Ensemble Design

We propose a dynamic and robust diverse fusion-selection method that stands on Oracle,

where the Oracle is a random linear function. The proposed Random Oracle/ Random

Linear Oracle (RLO) based method encapsulates the chosen classifier ensemble to accu-

rately identify large-scale malicious events that predominantly target the control plane of

the Software Defined Networks (SDNs). Moreover, our proposed method comprises of a

diverse fusion-selection method to classifier ensembles design that certainly necessitates

clearly elaborating the underlying key concepts.

The classifier ensembles simply represent a combination of base-classifiers. Subse-
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quently, the idea is merely not to rely on the solo decision of a single classifier; instead, a

combination of base-classifiers information is gathered to take the final decision; which is

widely recognized as classifier ensembles or multiple classifier system (MCS). Normally,

the ensembles approach yields better performances. At the same time, the effectiveness

of the ensemble method also depends on the diversity and accuracy of the individual base

classifiers. Two complementary approaches (i.e. classifier fusion and classifier selec-

tion) and switching between the two, which is also known as fusion-selection have been

primarily proposed to design different classifier ensembles strategies. Before going to

comprehensively elaborate our proposed method, we need to briefly discuss the concept

of classifier selection (CS), classifier fusion (CF), and fusion-selection respectively. For a

more clear understanding, Figure 4.1, depicts a thematic taxonomy of the major proposed

extant approaches to classifier ensembles design.

Ensembles 

(MCS)
Selection

Static

Dynamic

Accuracy

Behavior

Ranking

Oracle

Probabilistic

Fusion

Selection-Fusion

Figure 4.1: A Thematic Taxonomy of the Proposed Approaches to Classifier Ensemble
Design
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In order to design classifier ensembles or multiple classifier systems (MCS) (Roli,

2015), we have two main complementary approaches (i.e. classifier selection, classifier

fusion) and the third approach is sort of a hybrid approach that simply follows switching

between selection and fusion according to the given circumstances (Britto, Sabourin, &

Oliveira, 2014; Kuncheva, 2002; Kuncheva & Rodriguez, 2007). Moreover, the classifier

selection strategy is further divided into two sub-categories (i.e. dynamic selection, and

static selection). The dynamic selection (DS) is further divided into five sub-categories,

specifically when the classifiers individual performance is the main source of informa-

tion. The taxonomy clearly depicts the five sub-categories of the dynamic selection (DS);

however, we here are only concerned with the oracle based competence evaluation of

an individual classifier in a given ensemble designed strategy (Britto et al., 2014). The

explanation of the rest of the individual-based dynamic selection (DS) classification and

group-based dynamic selection classification is beyond the scope of this thesis.

4.1.1 Classifier Selection (CS)

The classifier selection method, utilizes each base classifier to be responsible for the clas-

sification problem. However, the final decision is based on a single most proficient base

classifier, whereas; the selection of the competent base classifier is done by an expert

called “oracle” for a given input X. Basically, the classifier selection works on the as-

sumption of the presence of a single oracle that nominates the most competent classifier.

Moreover, the idea of the CS resurfaced numerous times over the past three decades.

Nevertheless, it can be mainly classified into two main categories (i.e. static classifier se-

lection and dynamic classifier selection) (Britto et al., 2014; Burduk & Walkowiak, 2015;

Kuncheva & Rodriguez, 2007).

Static classifier selection: In case of static classifier selection, the region of compe-

tence for each base-classifier is done during the training phase, prior to actual classifica-

104

Univ
ers

ity
 of

 M
ala

ya



tion (Burduk & Walkowiak, 2015).

Dynamic classifier selection: Compared to static classifier selection, the region of

competence in the dynamic classifier selection is done during the classification where

the oracle exercises estimating diverse accuracies to announce the winner. Moreover, the

dynamic classifier selection method is viewed as the faster version compared to static

classifier selection (Britto et al., 2014).

4.1.2 Classifier Fusion (CF)

The classifier fusion (CF) approach, on the other hand, governs the whole classification

boundary and the decision is purely based on the combined results of the ensemble clas-

sifiers. Moreover, the CF governs the whole feature space and is probable to mis-classify

certain objects (Visentini, Snidaro, & Foresti, 2016; Kuncheva & Rodriguez, 2007).

4.1.3 Fusion-selection

The fusion-selection was initially proposed in (Kuncheva, 2002), whereby the statisti-

cally significant nominated classifier becomes a solo decision maker over the remaining

classifiers. On the contrary, the entire ensemble is summoned, and the classifier deci-

sions are fused; if and only if the nominated classifier is not statistically significant over

the remaining classifiers. The oracle and the classifiers are trained together to particu-

larly experience certain regions in the feature space to differentiate as part of the training.

Subsequently, the Oracle learns the most trusted classifier for a given X. literally; the

classifiers have been assigned weights of competence by the oracle for a given input X,

despite choosing the single most proficient classifier. Consequently, the classifier ensem-

ble decision is obtained from the fusion of weighted opinions (Kuncheva, 2002; Britto et

al., 2014; Burduk & Walkowiak, 2015).
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4.2 Proposed Random Oracle Based Method to Classifier Ensemble Design

We propose a dynamic and robust diverse fusion-selection method that stands on Ora-

cle, where the Oracle is a random linear function. The proposed Random Oracle/ Ran-

dom Linear Oracle (RLO) method encapsulates a chosen classifier ensemble to accurately

identify large-scale malicious events and abnormal network behavior that predominantly

target the control plane of the Software Defined Networks (SDNs). The idea is the in-

troduction of a random oracle and replacing the chosen classifier ensemble with a mini-

ensemble of two classifiers. The Oracle embeds a hyperplane and randomly split the clas-

sification data into two parts. Subsequently, a classifier is assigned to each half; however,

during the classification phase, the Oracle for each classifier is applied and the respective

sub classifier makes the decision to be fused further at the ensemble level.

Our proposed method is different and diverse from the aforementioned standard

model of classifier selection (CS), whereby a single Oracle governs the whole feature

space of the given classifier ensemble. Moreover, the use of multiple random oracles

makes our proposed model diverse and unlike from the classifier fusion (CF) and the

aforesaid dynamic switching model (i.e. fusion-selection). The proposed method is an

anomaly based network intrusion/attack detection system, where the primary goal is the

automation of intrusion detection that accurately classify large scale malicious events that

mainly target the control plane of the software defined networks. Furthermore, automa-

tion systems employed for discriminating between anomalous and normal behavior often

use machine learning algorithms such as classification or clustering. However, our pro-

posed diverse fusion-selection that stands on random oracle represents a classification

based network anomaly detection system, which subsequently belongs to the main cate-

gory of supervised network anomaly detection systems. Moreover, our proposed network

anomaly detection system is likely to identify abnormal network attacks that mainly tar-
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get the control plane of the SDNs without prior or having specific knowledge, and that is

why the anomaly based detection systems are widely applicable in diverse fields.

The key aspect of our proposed supervised anomaly based network intrusion detec-

tion system is computational complexity to be applicable to the real setting of Software

Defined Networks (SDNs). No doubt, the classification based anomaly detection systems

more often require expensive training times with usual fast testing processing time. How-

ever, it is often acceptable in real applicable scenarios to train the corresponding model

in an off-line fashion/mode while testing certainly requires being in real time. We follow

exactly the same fashion for our proposed model, which will be explained later in the

work-flow of the proposed model. On the contrary, we argue that un-supervised learning

techniques despite many advantages need no training phase, testing phase is expensive

and that can be a limitation to be applicable in the real domain of the SDNs. Moreover,

we also argue that signature based intrusion detection systems may work, but they are

not effectual for the very dynamic and distributed SDN environments. The reason is very

simple, generating a packet signature responsibility that moves from a switch or a middle-

box in SDNs must be directed to a remote control program, where not only the processing

time is slower than the hardware but also necessitates every packet to be redirected to it.

Despite many other disadvantages, the process becomes time intensive and complex to be

applicable to the real setting of SDNs distributed environments.

We also argue that our proposed diverse fusion-selection method that stands on a

random oracle adds extra-diversity while promoting a higher level of intrusion detection

accuracy, which is a real challenge to meet largely when high volume network traffic is

involved. Moreover, the approach is highly dynamic, flexible and is capable to effectively

and accurately detect a wide variety of large-scale malicious events and sophisticated

network security attacks. Furthermore, the method works as apparently the proposed

model utilizes the tactic of the well-known divide-and-conquer strategy together-with the
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use of multiple random oracles. Additionally, we majorly consider our novel contribution

as the introduction of random linear oracle to the classifier ensembles design in the field.

The random oracle; however, has the capability to encapsulate any classifier ensembles

strategy (i.e. any combination of base classifiers). Nonetheless, the chosen classifier

ensemble employed for our proposed method comprises of classification and regression

Tree (C&RT/CART) and Multilayer Perceptrons (MLP), which is also widely known as

feed-forward artificial neural network (ANN).

Since we consider our major contribution as the introduction of Random Oracle/

Random Linear Oracle (RLO) in our proposed method, a detailed description of the RLO

with their corresponding algorithms is given below. We also discuss briefly the employed

chosen base-classifier models (i.e., CART, and MLP) for the proposed method.

4.2.1 Random Linear Oracle (RLO)

The Random Linear Oracle model represents a random discriminant function that splits

the data into two subsets regardless of structure or class label. The main idea is the re-

placement of the chosen classifier ensemble by a mini-ensemble of the two classifiers and

an Oracle, where the Oracle is a random linear function. The oracle creates a random

hyperplane to divide the space into two subspaces drawn in the feature space of the data-

set.The chosen classifier ensemble comprises of a pair of base-classifiers (i.e., CART, and

MLP) that learns on diverse subspaces to be decided by random oracle. Subsequently,

each half-space data is utilized to train the classifier within our chosen ensemble strat-

egy. The oracle is applied to each classifier during the classification, and one of the sub-

classifier from each ensemble pair decides to be fused further at the level of the chosen

ensemble. For instance, the classification of a new object X, the respective classifier’s or-

acle from the chosen ensemble decides which sub-classifier to use. Finally, the ensemble

combination rule is used to combine the labels issued by the sub-classifiers. We employed
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the majority voting scheme for the ensemble combination rule in our proposed method.

The RLO whole process is based on training and prediction phase. During the train-

ing phase, the classifier ensemble and the oracle are trained together to push the classifiers

into specializing in diverse regions of the feature space of the training data-set. Subse-

quently, it makes the oracle capable of learning which classifier to trust most for a given

input X. Moreover, the oracle here assign weights of competence to the corresponding

classifiers rather than just selecting the most proficient classifier. Consequently, the clas-

sifier ensemble final decision is derived as a fusion of weighted opinions (i.e., majority

votes in our case).

Two RLO model are built and trained during the training phase, whereas; in predic-

tion phase merely one of the two models is used. Therefore, the computational complexity

of the RLO is almost similar to the base method complexity, if and only if the training and

prediction complexity of the oracle is low. The training time as usual depends linearly on

the number of training examples. The complete and clear descriptions of both training

and prediction along with their corresponding algorithms are as follows.

4.2.1.1 Building The Training Phase With Random Linear Oracle (RLO)

The random linear oracle (RLO) here comprises of a single classifier ensemble (pair of

base classifiers (i.e. CART, MLP) ) and an oracle. It is worth mentioning that during

the training phase, the classifier ensemble (pair of chosen base-classifiers) are built and

trained with a disjoint partition of the training data. Training phase of the random linear

oracle model mainly consists of the following steps respectively.

1. Select randomly the oracle.

2. Split the training data set into two subsets using random linear oracle, which means

the random oracle creates a hyperplane and divides the data space into two sub-

109

Univ
ers

ity
 of

 M
ala

ya



spaces without considering the cluster structures and class labels of the data. The

hyperplane is created through the points having same distance from the two objects

by the random discriminant function, where the distance is calculated through the

Euclidean distance formula. The length of the line segment connecting two points

normally represents the Euclidean distance between the corresponding two points.

For instance, the distance of two points having coordinates (x, y) and (x1, y1) is

given by the following formula.

Dist((x,y),(x1,y1)) =
√
(x− x1)2 +(y− y1)2

Moreover, calculating the distance between the two points X= (x1, x2,......, xn)

and Y= (y1, y2,......, yn) in Euclidean n-space can be done through the following

formula.

Dist(X ,Y ) =
√

(x1− y1)2 +(x2− y2)2 + .................+(xn− yn)2

Dist(X ,Y ) =

√
n

∑
a=1

(xi− yi)2)

3. Building and training the the pair of base classifier models using random linear

oracle (RLO) for each subset of the training data is done in the third step. Conse-

quently, the RLO is added to the current ensemble. It is to be noted that during the

training phase, the classifier ensemble (pair of base chosen classifiers) are built and

trained with a disjoint partition of the training data, whereas the training time as

usual depends linearly on the number of training examples. Moreover, building the

oracle needs two different training objects to be selected at random and finally the

pair of models and the oracle itself forms the trained random linear oracle (RLO)

model.
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Building the training phase with Random Linear Oracle (RLO) algorithm gives a

more clear demonstration of the given steps.

Algorithm 1 Algorithm-1: Building Training Phase With RLO (Random Linear Oracle)
Input: Training Data-set T, Base classifier model M
Output:Random linear oracle model RLO

1: function RANDOMLINEARORACLE

2: T 1 = 0 . T1 represents the training data-set of the 1st sub-model
3: T 2 = 0 . T2 represents the training data-set of the 2nd sub-model
4: RLO.instance[1]← [x|(x,y) is a random instance from T ]
5: RLO.instance[2]← [x|(x,y) is a random instance from T ]
6: for each instance(x,y) ∈ T do . Split the training data-set into two subsets
7: if distance(RLO.instance[1],x)> distance(RLO.instance[2],x) then
8: T 2← T 2(x,y) . add the instance to the second subset
9: else

10: T 1← T 1(x,y) . add the instance to the first subset
11: end if
12: end for
13: RLO.model[1]←M(T 1) . Train the first Sub-classifier model
14: RLO.model[1]←M(T 1) . Train the second Sub-classifier model
15: end function

4.2.1.2 Building The Prediction Phase With RLO

The RLO prediction phase is very simple. Here in the prediction phase, one of the inputs

is the already trained RLO and a given test instance X. Subsequently; the oracle decides

and selects one of the two models. The prediction phase mainly consists of the following

two steps respectively.

1. Select one of the two sub-classifier of each member of the chosen ensemble using

random linear oracle (RLO).

2. Return the expert prediction (prediction with confidence depending on which side

of the hyperplane X is). Consequently, X is assigned a class having the majority

of votes. While applying the ensemble combination rules (i.e., combine all the

decisions of the classifiers, we employed majority voting in this particular case to

announce the final decision).
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Algorithm 2 Algorithm-2: Building Prediction Phase With Trained RLO
Input: Trained Random Oracle RLO; Instance X
Output:Predicted value

1: function PREDICITION

2: if distance(RLO.instance[1],x)> distance(RLO.instance[2],x) then
3: returnRLO.model[2].predict(x) . Prediction with 2nd sub-model
4: else
5: ReturnRLO.model[1].predict(x) . Prediction with 1st sub-model
6: end if
7: end function

4.2.2 The Chosen Classifier Ensemble Used for the Proposed Method

The chosen classifier ensemble employed for our proposed method essentially comprises

of classification and Regression Tree (C&RT/CART) and Multilayer Perceptrons (MLP).

Both the classifiers are very widely known algorithms used for classification with rich

available literature. Therefore, a detailed description of both the classifiers is beyond the

scope of this thesis. However, the following section briefly explains the two classifier.

Moreover, the main reason of the employed chosen base-classifiers (current ensemble)

is their individual performances, versatile nature, better extracting complex attack data

patterns, and precise decision making during the classification. Furthermore, we already

discussed that the effectiveness of the ensemble method also depends on the diversity and

accuracy of the individual base classifiers.

4.2.2.1 Classification and Regression Tree (C&RT/CART)

The classic Classification and Regression Tree (C&RT/CART) algorithm was initially

disseminated by (Breimanetal, 1984). C&RT builds decision trees to capture complex in-

put data patterns by utilizing the concept of information theory. C&RT is a decision tree

learning mechanism that generates trees (regression and classification) based on whether

the input variable is numeric or categorical, respectively. It is a recursive partitioning

approach that creates non-overlapping regions where continuous features are represented

by rectangles and categorical features as a subset of values to identify the most likely
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dependent variable within the corresponding particular region. The tree-building algo-

rithms (classification and regression) mainly employ a bunch of if-then logical (split)

conditions (tree nodes) to achieve high detection accuracy. C&RT is very well-known for

its efficiency in terms of handling irrelevant input data, missing values, and input data

of multiple types. The main advantage of C&RT approach is that trees interpretation of

results is extremely simple. Moreover, tree-building algorithms not only boost new obser-

vation’s classification but it is too easier to evaluate few if-then logical (split) conditions

(tree nodes). For instance, simple if-then statements are easier to present to management

for decision making rather than some elaborate equations.

4.2.2.2 Multilayer Perceptrons (MLP)

A Multilayer Perceptrons (MLP) is a feed-forward artificial neural network (ANN), where

the information moves only in one direction, and that mean no formation of loops and

cycles in the network. MLP is the simplest form of neural networks, which comprises

of an input layer, one or more hidden layers, and an output layer. MLP layers having

no direct connection to the outside world are termed as hidden layers. Computational

units (Neuron/ Perceptrons) of multiple layers are connected in a directed graph, with

each layer fully connected to the subsequent layer in a feed-ward way. MLP has the

ability to remarkably process imprecise or complicated data precisely, extracting complex

patterns, and detecting multifaceted trends that is too difficult to be noticed by other

computer techniques. It’s exceptional ability of adaptive learning from a set of given

training data and mapping of any complexity, though the learning needs repetition with

training samples. MLP outperforms and yields significant generalizations in situations

where mapping and discovery derivation of relationship explicitly is almost impossible.

MLP have been applied to solve a verity of diverse and complicated problems in different

fields of pattern recognition, machine learning and information security.

113

Univ
ers

ity
 of

 M
ala

ya



4.2.3 Why Our Proposed RLO Based Approach Works

There are two main intuitive reasons that explain well why our proposed random linear

oracle (RLO) based method may work.

1. Divide-and-conquer tactic: The first and quite obvious reason of the proposed

method of working well is the use of divide-and-conquer tactic to solve the problem

of an anomaly based intrusion detection. The RLO distribution of feature space into

two parts makes the classification easier for the chosen classifier ensemble. Sub-

sequently, the accuracy of the individual ensemble members is likely to be higher

than or at least no worse than that of an ensemble classifier which operates on the

whole feature space. The RLO exactly follows the spirit of the divide-and-conquer

approach, whereby decomposing a large problem into sub-problems that are (sup-

posedly) to be solved more conveniently and accurately.

2. The second obvious reason is that the classification of a data point X is done through

one of the two sub-classifier of each classifier ensemble member. The diversity of

the sub-classifier is expected to be large as the sub-classifiers have been trained with

diverse data subsets already determined by the random oracle (RO). Consequently,

with RLO classifiers are shaped.

4.3 Work-flow of the Proposed Solution

The section presents the work-flow of the proposed intrusion detection model for identi-

fying large scale malicious events and abnormal and abnormal attacks in the control plane

of the SDN environment. We assume here that the proposed detection module is already

implemented in Floodlight, a popular java based SDN controller. Figure 4.3 presents the

work-flow of the proposed solution in the real setting of the software defined networks.

The rest of the explanation of the work-flow are as follows. To efficiently address the
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problem of expensive training time required by the classification based anomaly detec-

tion systems. The proposed RLO based detection model entire training process is carried

out in an offline mode/fashion while testing being in real time, which is often acceptable

in real applicable scenarios. In an online process, when a new packet arrives at a switch

that belongs to an existing flow-rule is forwarded to the controller while updating the flow

statistics. The packet needs to be processed by the proposed detection module to identify

the abnormal behavior. The results may indicate whether the packet is malicious repre-

senting an attack or a normal packet. In case of a normal packet, the controller is notified

and the packet is forwarded to the intended destination. In case of intrusion/attack, the

attack is either known attack or unknown attack. The known attack simply generates the

alert and notifies the controller for possible countermeasure selection. Drop the packet

is the default action, if there is no pre-set policy for handling the attack alerts. However,

a detailed discussion of the countermeasure selection and mitigation is out of the scope

of this thesis. If the attack is un-known (zero day attack), it is further analyzed to train,

model and update the system with new attack patterns for possible upcoming detections

through a model updating process.

4.4 Conclusion

We propose a diverse fusion-selection method that stands on Oracle, where the Oracle

is a random linear function. We also provide the underlying key concepts of classi-

fier ensemble design strategies to plainly show that our proposed method is different

and diverse from the standard model of classifier selection, classifier fusion, and fusion-

selection. Moreover, we elaborate comprehensively the Random Linear Oracle (RLO)

method, which we consider the main contribution of our proposed dynamic and robust

solution followed by a detailed description of the RLO training and prediction phase al-

gorithms. We briefly discuss the chosen classifier ensemble employed for the proposed
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method along-with their reason of selection.

Moreover, we also present the significance of the proposed method and provide jus-

tifications that why the method works. The divide-and-conquer tactic and the use of

multiple random oracles empowers the proposed method. Finally, we demonstrate the

work-flow of the proposed solution in the real setting of the Software Defined Networks

(SDNs) and reason out that the proposed method is acceptable to be deployed for securing

the control plane of the software defined networks.
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CHAPTER 5: EVALUATION

The chapter elaborates the evaluation of the proposed diverse fusion-selection intrusion

detection method in terms of the overall performance and effectiveness. The chapter also

explains the tools, and the bench-mark data-set used for the complete evaluation of the

proposed random linear oracle (RLO) model. The setup environments, the pre-requisites,

and the programming tools and language used for the final implementation. Moreover,

the standard parameter used for assessing the performance of the proposed model with a

model validation technique is also provided.

The remaining chapter is structured as follows. Section 5.2 explains the setup en-

vironment, the pre-requisites, and the programing tools used for the implementation and

deployment of the proposed model. Moreover, the section also elaborates the standard

parameter, the benchmark data-set employed, and comparison with the current state-of-

the-art algorithms. Section 5.3 presents the classification performance data of the state-

of-the-art ensembles and base classifiers. Section 5.4 concludes the evaluation chapter.

5.1 Evaluation of the Proposed Method

This section elaborates the complete methodology adopted for the evaluation of the pro-

posed method. It presents the experimental setup environments (i.e. emulation,simulation),

the standard parameters used, and the corresponding bench-mark data-sets employed for

the evaluation.

5.1.1 Experimental Setup

For the emulation evaluation setting of the proposed method, we choose the Floodlight

(Floodlight, 2014), as the SDN controller, and the reason behind is very simple that the

module loading system of the Floodlight is easily extended and enhanced. Moreover, we

employ Mininet (Lantz et al., 2010), which realistically creates a virtual network on a
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computer in-order to emulate the setting of the SDN. The entire experimental set-up is

implemented using Java on a Lab system Intel ® core i5- 2500M CPU at 3.30 GHz, and

8 GB RAM that runs a popular Java based SDN controller, Floodlight with our proposed

attack detection system on it as an extended module. Furthermore, for emulating the

attacks, we employed tools such as Scapy and Cbench (Cbench, 2015) to emulate diverse

attacks. The overall emulation environment is depicted in Figure 5.1.

Control Applications

Proposed Method

Business Applications Planning Applications

Application Layer

Figure 5.1: Emulation Set-up Environment

On the contrary, the algorithms were implemented in MATLAB R2013a for a com-

prehensive simulation to exhibit the effectiveness of the proposed method in detecting

diverse class of attacks. To validate our proposed approach, we applied a K-fold cross

validation using a benchmark publicly available data-set broadly known as NSL-KDD,

119

Univ
ers

ity
 of

 M
ala

ya



where K is not a fixed parameter. However, to show the resulting significant performance

of the proposed approach to be optimistically unbiased, we employed a ten-fold (i.e.,

k=10) cross-validation. K-fold validation is the most widely used model validation tech-

nique for diverse intrusion detection systems. The verification of the proposed approach

is made with state-of-the-art intrusion detection algorithms. The standard parameters and

the corresponding bench-mark data-set are detailed in upcoming sections.

5.1.2 Performance Evaluation Parameters

We evaluate the performance of our proposed Intrusion Detection System (IDS) with the

following standard parameters (i.e., accuracy, detection-rate/precision, and false alarms/False-

Positive-Rate (FPR), True-Positive-Rate (TPR)/Recall,True-Negative-Rate (TNR)/Specificity

and F-measure, which are employed globally by the majority of researchers in the litera-

ture to evaluate the performance of any IDS. The parameters selection usually varies for

diverse circumstances; however, we consider all the parameters for rigorous evaluation of

our proposed IDS. The accuracy is one of the most important and widely used evaluation

parameter. The evaluation parameters are given below.

Accuracy =
T N +T P

T N +T P+FN +FP

Precision(Detection−Rate(DR)) =
T P

T P+FP

False−Alarm(False−Positive−Rate(FPR)) =
FP

FP+T N

Recall(True−Positive−Rate(T PR)) =
T P

T P+FN

Speci f icity(True−Negative−Rate(T NR)) =
T N

T N +FP

False−Negative−Rate(FPR) =
FN

T P+FN
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F−Measure = 2∗ ( Precision∗Recall
Precision+Recall

)

Where TP,TN,FP, and FN represents the followings.

• True Positives (TP): TP classifies malicious activities correctly as malicious.

• True Negatives (TN): TN classifies non-malicious/benign activities as benign.

• False Positives (FP): FP classifies non-malicious/benign activities as malicious.

• False Negatives (FN): FN classifies malicious activities as benign/non-malicious.

5.1.3 Data-set Employed for the Performance Evaluation

The evaluation of the proposed approach is based on a publicly available data-set that is

primarily known as NSL-KDD (NSL-KDD, 2014) (Ji, Jeong, Choi, & Jeong, 2016).

5.1.3.1 Description of Data

The section represents the necessary explanation of the data-set. The NSL-KDD data-

set comprises testing set (22,544 records) and training set (125,973 records) that holds

41 attributes (six binary, three nominal, and thirty-two numeric attributes). The data-set

includes both normal and attack data. However, the attacks in particular are subsequently

grouped into four key categories as shown in Table 5.1. Our study combines the testing

and training data (148,517 records) as input data to employ ten-fold cross-validation.

Denial of service (DoS) represents an attempt to make the target networks and com-

puting resources unavailable for further legitimate requests. Probe attacks indicate scan-

ning and surveillance of the victim network resources merely to gather sensitive informa-

tion or to find diverse vulnerabilities of the attack target. U2R denotes an attempt to gain

unauthorized access to the root privileges of the victim machine. R2L attack essentially

attempts of gaining unauthorized local access particularly form a remote machine on the
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Table 5.1: Four Main Intrusion Classes and their Corresponding Sub-types

Intrusion Class Intrusion Types
R2L Sendmail, snmpguess, xlock, xsnoop, named, ftp_write, imap,

guess_passwd, multihop, phf, spy, ware-zclient, warezmaster, sn-
mpgetattack, httptunnel

DoS Processtable, smurf, teardrop, back, land, neptune, pod, ,mailbomb,
worm, apache2

Probe Portsweep, satan, saint, ipsweep, nmap, mscan
U2R sqlattack, buffer_overflow, loadmodule, perl, rootkit, ps, xterm

network. The Four main intrusion classes with their corresponding types are shown in

Table 5.1.

5.1.3.2 Detection of abnormal behavior

The data needs to be preprocessed to get the results. The three main types (i.e., nomi-

nal, protocol, and numeric) comprises the total number of 41 features having their sub

categories. For instance, the three nominal variables of the NSL-KDD data-set as shown

in Table 5.2 includes service, flag, and protocol type. Each variable contains numerous

distinct attributes values such as flag contains 11 attributes (i.e., S2, S3, S1, REJ, and

among others), protocol type holds (i.e., ICMP, TCP, and UDP) and service comprises 70

attributes (i.e. WHOIS, POP3, HTTP, SSH and among others).

Apparently, extracting information to detect the abnormal behavior from this huge

set of distinctive attributes is difficult. In order to streamline the issue, a binary cod-

ing scheme is employed to the three nominal variables where “zero” represents the non-

occurrence of a category of interest and “one” denotes the occurrence of that particular

category. For instance, the protocol type attribute value for UDP either contains 1 or 0.

5.1.4 Comparison with the Current State-of-the-art

The verification and performance evaluation of our proposed method is carried-out by

comparing the current state-of-the-art classification based network anomaly detection
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Table 5.2: Data-types and their Corresponding Detailed Features

Type Features Accumulative
Features

Nominal Flag, Protocol_type, Service 3
Binary is_host_login, root_shell, su_attempted, root_shell, Land,

logged_in, is_guest_login
6

Numeric src_bytes, urgent, duration, dst_bytes, wrong_fragment,
hot, num_compromised, num_failed_logins,
num_root, num_file_creations, num_access_files,
num_shells, num_outbound_cmds, count,
srv_count, srv_serror_rate, rerror_rate, serror_rate,
srv_rerror_rate, same_srv_rate, diff_srv_rate,
srv_diff_host_rate, dst_host_count, dst_host_srv_count,
dst_host_same_srv_rate, dst_host_diff_srv_rate,
dst_host_same_src_port_rate,dst_host_srv_diff_host_rate,
dst_host_serror_rate,dst_host_srv_serror_rate,
dst_host_srv_serror_rate , dst_host_rerror_rate

32

mechanisms. However, there are two main categories of comparison made with the ex-

tant state-of-the-art: (i) classifier ensembles and (ii) base/single classifier based anomaly

detection systems, which is detailed in the subsections.

5.1.4.1 State-of-the-art Classifier Ensembles

The section briefly describes the two customized state-of-the-art ensemble methods that

are used for the comparison to evaluate the performance of the proposed method in this

study. These approaches have two features in common: first it employs the re-sampling

techniques in order to create new training sets to add extra diversity, and second these

approaches can encapsulate any base-classifier. Table 5.3 clearly shows the state-of-the-

art ensemble methods, the problem domain, and the data-set employed.

Bagging: The method manipulates the original training data-set to construct nu-

merous versions of training sets known as bootstrap replicates of the original data set.

The method aggregates the classifications decision drawn by the base-classifiers through

voting. The predicted class is supposed to have accumulated the majority of votes. Con-

sequently, this approach is known as “bootstrap aggregating”; however, it is better recog-
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nized by its acronym “bagging” (Breiman, 1996).

Random Subspace: The random subspace selects randomly the subset of the orig-

inal features to train the base classifier ensembles. However, the method aggregates the

outputs of the ensemble members by employing the majority vote method to get the final

output. Unlike bagging, the Random space can encapsulate any base classifier. More-

over, the random selection of diverse feature subsets of the data-set can create diversity

that subsequently leads to improve the accuracy (Ho, 1998).

Table 5.3: List of Bench-marked Classifier Ensembles

State-of-the-art Classifier Ensembles Problem Domain Employed Data-set
Bagging Anomaly Detection NSL-KDD
Random Subspace Anomaly Detection NSL-KDD

5.1.4.2 State-of-the-art Base Classifiers

The state-of- the-art base classifier that we select for the comparison with our proposed

method belongs to different classification families. The simple logistic regression belongs

to the Logistic Model trees (Landwehr, Hall, & Frank, 2005). However, the Naïve Bayes

(Chen, Huang, Tian, & Qu, 2009) belongs to Bayes theorem; whereas, the BayesNet

(Murphy et al., 2001) goes to the Bayesian model. Heoffding also belongs to the tree fam-

ily (i.e., an incremental any time decision tree induction algorithm) (Pfahringer, Holmes,

& Kirkby, 2007). The multilayer perceptron (MLP) belongs to Neural Networks (Ruck,

Rogers, Kabrisky, Oxley, & Suter, 1990); whereas, Linear Discriminant Analysis (LDA)

is simply a classical statistical method (Izenman, 2013). Table 5.4 clearly shows the state-

of-the-art base-classifiers methods and , the problem domain, and the data-set employed.

5.2 Data Gathering for the Classification Performance of the Ensemble Methods

This section presents the data gathering from the experiments carried out for the classi-

fication performance comparisons of the aforementioned bench-marked algorithms with

our proposed method. Since, we compare the performance of the proposed method with
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Table 5.4: List of Bench-marked Base Classifiers

State-of-the-art Base Classifier Problem Domain Employed Data-set
Simple Logistic Anomaly Detection NSL-KDD
Naive-Bayes Anomaly Detection NSL-KDD
Linear Discriminant Analysis (LDA) Anomaly Detection NSL-KDD
BayesNet Anomaly Detection NSL-KDD
Heoffding Anomaly Detection NSL-KDD
Multilayer Perceptron (MLP) Anomaly Detection NSL-KDD

the state-of-the-art classifier ensembles as well as base classifiers in the field of classifi-

cation based network anomaly detection. For the classification performance comparison,

we have already declared all the standard three parameters used for the evaluation of any

intrusion detection method. Moreover, for the evaluation, mainly the testing performance

is taken into consideration. Additionally, the training performance where-ever necessary

is also provided. The data gathered from the varied experiments carried out to show the

classification performance comparisons of the proposed method with the state-of-the-art

classifier ensembles as well as base classifiers on the basis of these these standard param-

eters/metrics, which are exclusively shown in the following sub-sections.

5.2.1 Performance Comparison of the Proposed Method

The section presents the performance comparison of the proposed Random Oracle-based

method. For the evaluation, mainly the testing performance is taken into consideration.

Additionally, the training performance where-ever necessary is also provided. Moreover,

the section presents the 10 fold cross-validation average training and testing accuracies,

and the average training and testing per-class accuracies with corresponding 10-fold cross

validations. Additionally, we present the average results of the required performance

evaluation parameters with their corresponding 10-fold cross validations. The 10-fold

cross validations of the confusion-matrix of both training testing phase of the proposed

method is given in Appendix.

The average results of the required performance evaluation parameters with their
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corresponding 10-fold cross validation are shown in Table 5.5. The average training and

testing per-class attack detection accuracies with their corresponding 10-fold cross vali-

dation are shown below in Table 5.6, Table 5.7, and Table 5.8 respectively.

Table 5.5: The Average Results of the Required Performance Evaluation Parameters with
their Corresponding 10-Fold Cross-validation of the Random Oracle-based Intrusion De-
tection Method

Random
Linear
Oracle (RLO)

Accuracy DR (Precision) FNR TNR FPR TPR (Recall)

Fold-1 99.39% 98.95% 2.72% 99.80% 0.20% 97.28%
Fold-2 99.32% 99.16% 3.33% 99.84% 0.16% 96.67%
Fold-3 99.45% 99.20% 2.55% 99.85% 0.15% 97.45%
Fold-4 99.38% 99.03% 2.84% 99.81% 0.19% 97.16%
Fold-5 99.43% 99.37% 2.88% 99.88% 0.12% 97.12%
Fold-6 99.36% 99.12% 3.05% 99.83% 0.17% 96.95%
Fold-7 99.46% 99.16% 2.47% 99.84% 0.16% 97.53%
Fold-8 99.39% 98.99% 2.72% 99.81% 0.19% 97.28%
Fold-9 99.51% 99.79% 2.80% 99.96% 0.04% 97.20%
Fold-10 99.43% 99.24% 2.72% 99.86% 0.14% 97.28%
Average 99.41% 99.20% 2.81% 99.85% 0.15% 97.19%

Table 5.6: The Average Training Per-class Accuracies with 10-Fold Cross-validations of
the Proposed Random Oracle-based Intrusion Detection Method

Random Linear Oracle (Training) Normal DoS U2R R2L Probe
Fold1 0.999 0.999 0.986 0.912 0.989
Fold2 0.998 0.999 0.987 0.931 0.99
Fold3 0.998 0.999 0.987 0.924 0.989
Fold4 0.9987 0.999 0.985 0.929 0.989
Fold5 0.9986 0.999 0.985 0.926 0.989
Fold6 0.999 0.999 0.981 0.911 0.984
Fold7 0.998 0.999 0.984 0.929 0.99
Fold8 0.998 0.999 0.986 0.92 0.989
Fold9 0.998 0.999 0.984 0.921 0.99
Fold10 0.998 0.999 0.983 0.919 0.989
Average Training Accuracy(%) 99.89 99.97 98.53 92.28 98.93
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Table 5.7: The Average Testing Per-class Accuracies with 10-Fold Cross-validations of
the Proposed Random Oracle-based Intrusion Detection Method

Random Linear Oracle (Testing) Normal DoS U2R R2L Probe
Test1 0.997 0.998 0.981 0.863 0.972
Test2 0.998 0.999 0.971 0.899 0.992
Test3 0.997 0.999 0.994 0.889 0.988
Test4 0.997 0.999 0.971 0.914 0.982
Test5 0.997 0.999 0.971 0.899 0.982
Test6 0.997 0.999 0.976 0.891 0.984
Test7 0.997 0.998 0.984 0.909 0.985
Test8 0.997 0.999 0.966 0.894 0.99
Test9 0.996 0.999 0.989 0.902 0.985
Test10 0.996 0.999 0.968 0.899 0.983
Average Testing Accuracy (%) 99.74 99.93 97.77 89.64 98.48

Table 5.8: The 10 fold Cross Validation Per-class Average Training and Testing Accuracy
of the Proposed Random Oracle-based Intrusion Detection Method

Random Linear Oracle (RLO) Normal DoS U2R R2L Probe
Per Class Avg. Training Accuracy (%) 99.89 99.97 98.53 92.28 98.93
Per Class Avg. Testing Accuracy (%) 99.74 99.93 97.77 89.64 98.48

5.2.2 Performance Comparisons of the State-of-the-Art Ensemble Methods

The section presents the classification performance comparisons of the state-of-the-art en-

sembles methods (i.e. Bagging,and Random Subspace). Moreover, the ensembles com-

prises of base classifiers (i.e. MLP, CART). Furthermore, for the evaluation, mainly the

testing performance is taken into consideration. Additionally, the training performance

where-ever necessary is also provided. Moreover, the section also presents the per-class

average attack detection accuracies, the average 10 fold cross-validation training plus test-

ing accuracies, and the average results of the required performance evaluation parameters

with their corresponding 10-fold cross validation data of the corresponding state-of-the-

art ensembles methods.

The Bagging,Random Subspace average results of the required performance eval-

uation parameters with their corresponding 10-fold cross validation are shown in Table

5.9 and Table 5.14. The average training and testing per-class attack detection accuracies

with their corresponding ten-fold cross validation of Bagging and Random Subspace are
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shown in Table 5.10, Table 5.11, Table 5.12, Table 5.13, Table 5.15, Table 5.16, Table

5.17, and Table 5.18 respectively. Moreover, the average results of the F-measure with

10-fold cross validation of the proposed method, Bagging, and Random Subspace are

shown in 5.19. Additionally, the overall performance comparison of the state-of-the-art

classifier ensembles methods of the required evaluation parameters and the overall aver-

age detection per class accuracy performance comparisons are shown in Table 5.20, and

Table 5.21.

Table 5.9: The Average Results of the Required Performance Evaluation Parameters with
their Corresponding 10-Fold Cross-validation of the Bagging Ensemble Intrusion Detec-
tion Method

Bagging Accuracy DR (Precision) FNR TNR FPR TPR (Recall)
Fold-1 98.90% 99.66% 1.96% 99.69% 0.31% 98.04%
Fold-2 98.91% 99.80% 2.07% 99.82% 0.18% 97.93%
Fold-3 99.06% 99.70% 1.67% 99.73% 0.27% 98.33%
Fold-4 98.99% 99.80% 1.90% 99.82% 0.18% 98.10%
Fold-5 99.17% 99.76% 1.50% 99.78% 0.22% 98.50%
Fold-6 98.95% 99.72% 1.90% 99.74% 0.26% 98.10%
Fold-7 98.26% 99.71% 3.33% 99.74% 0.26% 96.67%
Fold-8 99.25% 99.33% 0.88% 99.38% 0.62% 99.12%
Fold-9 98.85% 99.71% 2.11% 99.74% 0.26% 97.89%
Fold-10 98.94% 99.69% 1.90% 99.71% 0.29% 98.10%
Average 98.93% 99.69% 1.92% 99.71% 0.29% 98.08%

Table 5.10: The 10-Fold Cross-validation Average Training and Testing Accuracies of the
Bagging Ensemble Intrusion Detection Method

Bagging Training Accuracy (%) Testing Accuracy (%)
Fold1 99.19 98.9
Fold2 99.02 98.91
Fold3 99.19 99.06
Fold4 99.13 98.99
Fold5 99.19 99.17
Fold6 99.23 98.95
Fold7 98.43 98.26
Fold8 99.61 99.25
Fold9 99.09 98.85
Fold10 99.04 98.94
Average Accuracy (%) 99.11 98.93
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Table 5.11: The Average Training Per-class Accuracies with 10-Fold Cross-validations
of the Bagging Ensemble Intrusion Detection Method

Bagging (Training ) Normal DoS U2R R2L Probe
Fold1 0.9982 0.9972 0.9773 0.8554 0.9746
Fold2 0.9986 0.9975 0.9778 0.8116 0.9621
Fold3 0.9986 0.998 0.9796 0.8351 0.9742
Fold4 0.9986 0.9971 0.9773 0.8333 0.9709
Fold5 0.9984 0.997 0.9813 0.8474 0.975
Fold6 0.9986 0.9987 0.977 0.8414 0.9747
Fold7 0.9986 0.992 0.9493 0.7199 0.9492
Fold8 0.9974 0.9992 0.9899 0.9562 0.988
Fold9 0.9987 0.9966 0.9741 0.8276 0.9713
Fold10 0.9987 0.9976 0.9758 0.8041 0.9665
Average Training Accuracies (%) 99.84 99.71 97.59 83.32 97.06

Table 5.12: The Average Testing Per-class Accuracies with 10-Fold Cross-validations of
the Bagging Ensemble Intrusion Detection Method

Bagging (Testing) Normal DoS U2R R2L Probe
Test1 0.9969 0.9968 0.9819 0.8093 0.9594
Test2 0.9982 0.9976 0.9637 0.7887 0.9623
Test3 0.9973 0.9979 0.9819 0.8273 0.9671
Test4 0.9982 0.9961 0.9714 0.817 0.9681
Test5 0.9978 0.9987 0.9663 0.8376 0.9768
Test6 0.9974 0.9974 0.9767 0.8067 0.9632
Test7 0.9974 0.9901 0.9534 0.7139 0.9458
Test8 0.9938 0.9981 0.9767 0.9356 0.9816
Test9 0.9974 0.9942 0.9793 0.8196 0.9594
Test10 0.9971 0.9974 0.9611 0.8222 0.9632
Average Testing Accuracies (%) 99.71 99.64 97.12 81.77 96.47

Table 5.13: The 10-Fold Cross-validations Per-class Average Training and Testing Accu-
racy of the Bagging Ensemble Intrusion Detection Method

Bagging Normal DoS U2R R2L Probe
Average training 99.84 99.71 97.59 83.32 97.06
Average testing 99.71 99.64 97.12 81.78 96.47
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Table 5.14: The Average Results of the Required Performance Evaluation Parameters
with their Corresponding 10-Fold Cross-validation of the Random Subspace Ensemble
Detection Method

Random
Subspace Accuracy DR (Precision) FNR TNR FPR TPR (Recall)

Fold-1 96.69% 99.79% 6.69% 99.82% 0.18% 93.31%
Fold-2 95.56% 99.80% 9.04% 99.83% 0.17% 90.96%
Fold-3 97.60% 99.72% 4.73% 99.75% 0.25% 95.27%
Fold-4 96.98% 99.88% 6.17% 99.90% 0.10% 93.83%
Fold-5 97.89% 99.82% 4.21% 99.84% 0.16% 95.79%
Fold-6 96.92% 99.69% 6.10% 99.73% 0.27% 93.90%
Fold-7 95.92% 99.62% 8.13% 99.68% 0.32% 91.87%
Fold-8 99.37% 99.68% 0.98% 99.70% 0.30% 99.02%
Fold-9 97.15% 99.85% 5.79% 99.87% 0.13% 94.21%
Fold-10 95.17% 99.60% 9.67% 99.66% 0.34% 90.33%
Average 96.93% 99.75% 6.15% 99.78% 0.22% 93.85%

Table 5.15: The 10-Fold Cross-validation Average Training and Testing Accuracies of the
Random Subspace Ensemble Detection Method

Random Subspace Training Accuracy (%) Testing Accuracy (%)
Fold1 96.91 96.69
Fold2 95.64 95.56
Fold3 97.62 97.6
Fold4 97.14 96.98
Fold5 98.04 97.89
Fold6 97.28 96.92
Fold7 96.06 95.92
Fold8 99.65 99.37
Fold9 97.3 97.15
Fold10 95.41 95.17
Average Accuracy (%) 97.11 96.92

Table 5.16: The Average Training Per-class Accuracies with 10-Fold Cross-validation of
the Random Subspace Ensemble Detection Method

Random Subspace (Training) Normal DoS U2R R2L Probe
Fold1 0.9987 0.9865 0.9732 0.4442 0.8543
Fold2 0.9989 0.9739 0.9732 0.2824 0.7963
Fold3 0.9991 0.9847 0.9695 0.502 0.9413
Fold4 0.9987 0.9856 0.9758 0.541 0.854
Fold5 0.999 0.987 0.9741 0.5965 0.9538
Fold6 0.9988 0.9871 0.9767 0.5676 0.8563
Fold7 0.9984 0.969 0.9709 0.356 0.8583
Fold8 0.9989 0.9988 0.987 0.9396 0.9917
Fold9 0.9988 0.9832 0.9603 0.6747 0.8453
Fold10 0.9989 0.9721 0.9695 0.2136 0.8001
Average Training Accuracy (%) 99.88 98.28 97.3 51.17 87.52
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Table 5.17: The Average Testing Per-class Accuracies with 10-Fold Cross-validation of
the Random Subspace Ensemble Detection Method

Random Subspace (Testing) Normal DoS U2R R2L Probe
Fold1 0.9982 0.986 0.9715 0.4072 0.8433
Fold2 0.9983 0.9757 0.9585 0.2629 0.793
Fold3 0.9975 0.9871 0.9663 0.4897 0.9439
Fold4 0.999 0.9837 0.961 0.5129 0.8549
Fold5 0.9984 0.9852 0.9767 0.5825 0.9506
Fold6 0.9973 0.9839 0.9637 0.5619 0.8395
Fold7 0.9968 0.97 0.9715 0.3557 0.8453
Fold8 0.997 0.9978 0.9741 0.9175 0.9845
Fold9 0.9987 0.9813 0.9715 0.6572 0.8356
Fold10 0.9966 0.973 0.956 0.2216 0.7793
Average Testing Accuracy (%) 99.78 98.24 96.71 49.69 86.7

Table 5.18: The 10-Fold Cross-validations Per-class Average Training and Testing Accu-
racy of the Random Subspace Ensemble Detection Method

Random Subspace Normal DoS U2R R2L Probe
Per Class Avg. Training Accuracy (%) 99.88 98.28 97.3 51.17 87.52
Per Class Avg. Testing Accuracy (%) 99.78 98.24 96.71 49.69 86.7

Table 5.19: The Average Results of the F-measure with 10-Fold Cross-validations of the
Random Linear Oracle (RLO), Random Subspace and Bagging ensembles

F-measure RandomLinearOracle (RLO) RandomSubspace Bagging
Fold1 98.11% 96.44% 98.84%
Fold2 97.90% 95.18% 98.86%
Fold3 98.32% 97.44% 99.01%
Fold4 98.09% 96.76% 98.94%
Fold5 98.23% 97.76% 99.13%
Fold6 98.02% 96.71% 98.90%
Fold7 98.34% 95.59% 98.17%
Fold8 98.13% 99.35% 99.22%
Fold9 98.48% 96.95% 98.79%
Fold10 98.25% 94.74% 98.89%
Average 99.20% 96.71% 98.88%
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Table 5.20: Overall Average Performance of the Required Evaluation Parameters of the
Proposed method with the Current State-of-the-art Classifier Ensembles using 10-Fold
Cross-validation

Classifier
Ensembles Accuracy DR (Precision) FNR TNR FPR TPR (Recall)
Random
Linear
Oracle (RLO) 99.41% 99.20% 2.81% 99.85% 0.15% 97.19%
Bagging 98.93% 99.69% 1.92% 99.71% 0.29% 98.08%
Random
Subspace 96.93% 99.75% 6.15% 99.78% 0.22% 93.85%

Table 5.21: Overall Average Detection Per-class Accuracy Performance of the Proposed
Method with the Current State-of-the-art Classifier Ensembles using 10-Fold Cross- val-
idation

Classifier Ensembles Normal DoS U2R R2L Probe
RLO Avg. Testing Accuracy (%) 99.74 99.93 97.77 89.64 98.48
Bagging Avg. Testing Accuracy (%) 99.71 99.64 97.12 81.78 96.47
Random Subspace Avg. Testing Accuracy (%) 99.78 98.24 96.71 49.69 86.7

5.3 Data Gathering for the Classification Performance Comparisons of the State-
of-the-Art Base Classifiers

The section presents the classification performance comparisons of the state-of-the-art

bench-marked base classifiers. For the evaluation, mainly the testing performance is taken

into consideration. Additionally, the training performance where-ever necessary is also

provided. Moreover, the section also presents the per-class average attack detection accu-

racies.

The average results of the required performance evaluation parameters of all the

benchmark classifiers with their corresponding 10-fold cross validation are shown in Ta-

ble 5.22, Table 5.23, Table 5.24, Table 5.25, Table 5.26 and Table 5.27. The average

training and testing per-class attack detection accuracies with their corresponding ten-

fold cross validation of the base-classifiers are shown in Table 5.28, Table 5.29, Table

5.30, Table 5.31, Table 5.32, and Table 5.33. Moreover, the average results of the F-

measure with 10-fold cross validation of the all the base classifier methods are shown in

5.34. Additionally, the overall performance comparison of the state-of-the-art base clas-
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sifier plus the given ensemble methods of the required evaluation parameters are shown

in 5.35.

Table 5.22: The Average Results of the Required Performance Evaluation Parameters
with their Corresponding 10-Fold Cross-validation of the BayesNet Intrusion Detection
Method

BayesNet Accuracy DR (Precision) FNR TNR FPR TPR (Recall)
Fold-1 94.51% 95.59% 3.15% 96.85% 4.41% 97.04%
Fold-2 94.63% 95.59% 2.64% 97.36% 4.41% 97.50%
Fold-3 94.37% 95.77% 3.34% 96.66% 4.23% 96.86%
Fold-4 94.55% 95.81% 2.63% 97.37% 4.19% 97.52%
Fold-5 94.29% 95.51% 3.26% 96.74% 4.49% 96.93%
Fold-6 94.73% 96.25% 2.67% 97.33% 3.75% 97.49%
Fold-7 94.61% 95.78% 2.95% 97.05% 4.22% 97.22%
Fold-8 94.33% 95.57% 3.26% 96.74% 4.43% 96.93%
Fold-9 94.61% 95.51% 3.07% 96.93% 4.49% 97.11%
Fold-10 94.65% 95.81% 2.91% 97.09% 4.19% 97.26%
Average 94.53% 95.72% 2.99% 97.01% 4.28% 97.19%

Table 5.23: The Average Results of the Required Performance Evaluation Parameters
with their Corresponding 10-Fold Cross-validation of the Simple Logistic Intrusion De-
tection Method

SimpleLogistice Accuracy DR(Precision) FNR FPR TNR TPR(Recall)
Fold-1 98.66% 98.69% 0.88% 1.31% 99.12% 99.18%
Fold-2 98.66% 98.40% 0.99% 1.60% 99.01% 99.07%
Fold-3 98.66% 98.64% 0.81% 1.36% 99.19% 99.24%
Fold-4 98.66% 98.30% 0.95% 1.70% 99.05% 99.11%
Fold-5 98.66% 98.51% 1.18% 1.49% 98.82% 98.91%
Fold-6 98.66% 98.86% 0.94% 1.14% 99.06% 99.13%
Fold-7 98.66% 98.60% 1.02% 1.40% 98.98% 99.05%
Fold-8 98.66% 98.43% 1.02% 1.57% 98.98% 99.05%
Fold-9 98.66% 98.65% 1.02% 1.35% 98.98% 99.05%
Fold-10 98.66% 98.61% 1.04% 1.39% 98.96% 99.04%
Average 98.66% 98.57% 0.99% 1.43% 99.01% 99.08%
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Table 5.24: The Average Results of the Required Performance Evaluation Parameters
with their Corresponding 10-Fold Cross-validation of the Hoeffding-tree Based Intrusion
Detection Method

Heoffding Accuracy DR (Precision) FNR TNR FPR TPR (Recall)
Fold-1 93.74% 97.87% 9.11% 90.89% 2.13% 92.05%
Fold-2 93.85% 97.99% 8.74% 91.26% 2.01% 92.35%
Fold-3 94.30% 98.44% 9.36% 90.64% 1.56% 91.89%
Fold-4 94.69% 98.52% 8.56% 91.44% 1.48% 92.54%
Fold-5 93.77% 98.14% 9.12% 90.88% 1.86% 92.06%
Fold-6 93.37% 97.83% 9.49% 90.51% 2.17% 91.75%
Fold-7 96.14% 98.03% 4.90% 95.10% 1.97% 95.57%
Fold-8 93.72% 97.69% 8.87% 91.13% 2.31% 92.23%
Fold-9 94.85% 98.69% 8.69% 91.31% 1.31% 92.45%
Fold-10 93.50% 97.94% 9.57% 90.43% 2.06% 91.69%
Average 94.19% 98.11% 8.64% 91.36% 1.89% 92.46%

Table 5.25: The Average Results of the Required Performance Evaluation Parameters
with their Corresponding 10-Fold Cross-validation of the NaiveBayes Intrusion Detection
Method

NaiveBayes Accuracy DR (Precision) FNR TNR FPR TPR (Recall)
Fold-1 85.78% 85.13% 6.09% 93.91% 14.87% 93.78%
Fold-2 83.65% 81.26% 5.22% 94.78% 18.74% 94.38%
Fold-3 85.33% 84.23% 5.54% 94.46% 15.77% 94.25%
Fold-4 85.65% 83.97% 4.94% 95.06% 16.03% 94.83%
Fold-5 84.72% 83.36% 5.68% 94.32% 16.64% 94.05%
Fold-6 84.19% 81.66% 5.40% 94.60% 18.34% 94.22%
Fold-7 86.15% 84.88% 5.40% 94.60% 15.12% 94.43%
Fold-8 85.33% 83.31% 5.01% 94.99% 16.69% 94.72%
Fold-9 85.69% 84.64% 5.60% 94.40% 15.36% 94.22%
Fold-10 85.79% 84.91% 5.46% 94.54% 15.09% 94.37%
Average 85.23% 83.73% 5.43% 94.57% 16.27% 94.32%

Table 5.26: The Average Results of the Required Performance Evaluation Parameters
with their Corresponding 10-Fold Cross-validation of the Multilayer Perceptron (MLP)
Intrusion Detection Method

MLP Accuracy DR (Precision) FNR FPR TNR TPR (recall)
Fold-1 98.11% 98.35% 2.29% 1.52% 98.48% 97.71%
Fold-2 98.15% 98.49% 2.35% 1.39% 98.61% 97.65%
Fold-3 98.26% 98.49% 2.11% 1.39% 98.61% 97.89%
Fold-4 97.72% 98.26% 3.02% 1.60% 98.40% 96.98%
Fold-5 98.35% 98.62% 2.06% 1.27% 98.73% 97.94%
Fold-6 97.66% 98.10% 2.99% 1.74% 98.26% 97.01%
Fold-7 97.77% 98.01% 2.66% 1.83% 98.17% 97.34%
Fold-8 97.97% 98.29% 2.52% 1.57% 98.43% 97.48%
Fold-9 97.62% 98.28% 3.26% 1.57% 98.43% 96.74%
Fold-10 98.12% 98.28% 2.20% 1.58% 98.42% 97.80%
Average 97.97% 98.32% 2.55% 1.55% 98.45% 97.45%
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Table 5.27: The Average Results of the Required Performance Evaluation Parameters
with their Corresponding 10-Fold Cross-validation of the Linear Discriminant Analysis
(LDA) Intrusion Detection Method

LDA Accuracy DR (Precision) FNR FPR TNR TPR(Recall)
Fold-1 89.90% 92.00% 13.46% 6.98% 93.02% 86.54%
Fold-2 90.51% 92.52% 12.66% 6.55% 93.45% 87.34%
Fold-3 89.97% 91.71% 12.97% 7.29% 92.71% 87.03%
Fold-4 89.85% 92.28% 13.88% 6.68% 93.32% 86.12%
Fold-5 90.32% 92.34% 12.90% 6.70% 93.30% 87.10%
Fold-6 89.94% 92.43% 13.85% 6.54% 93.46% 86.15%
Fold-7 90.06% 92.15% 13.27% 6.85% 93.15% 86.73%
Fold-8 90.37% 92.67% 13.14% 6.37% 93.63% 86.86%
Fold-9 90.27% 92.71% 13.40% 6.32% 93.68% 86.60%
Fold-10 89.91% 92.00% 13.43% 6.98% 93.02% 86.57%
Average 90.11% 92.28% 13.30% 6.73% 93.27% 86.70%

Table 5.28: Multilayer Perceptron (MLP) Average Testing Per-class Attack Detection
Accuracies with 10-Fold Cross-validation

MLP Normal DoS U2R R2L Probe
Test1 0.984815 0.995692 0.958549 0.778351 0.962282
Test2 0.986113 0.993257 0.950777 0.793814 0.968085
Test3 0.986113 0.99513 0.955959 0.798969 0.970958
Test4 0.984038 0.989698 0.955844 0.739691 0.958414
Test5 0.987283 0.995317 0.953368 0.814433 0.969022
Test6 0.982609 0.988575 0.935233 0.770619 0.962282
Test7 0.981703 0.991195 0.955959 0.783505 0.959381
Test8 0.984296 0.992319 0.940415 0.791237 0.966151
Test9 0.984296 0.988575 0.955959 0.71134 0.958414
Test10 0.984168 0.992133 0.96114 0.82732 0.968054
Avg. Testing Accuracy 98.45 99.22 95.23 78.09 96.43

Table 5.29: Linear Discriminant Analysis (LDA) Average Testing Per-class Attack De-
tection Accuracies with 10-Fold Cross-validation

LDA Normal DoS U2R R2L Probe
Test1 0.930175 0.932572 0.893782 0.420103 0.675048
Test2 0.934458 0.935007 0.917098 0.43299 0.704062
Test3 0.92706 0.927515 0.909326 0.451031 0.717328
Test4 0.933169 0.925454 0.916883 0.42268 0.673114
Test5 0.933039 0.926377 0.906736 0.525773 0.700871
Test6 0.934588 0.924143 0.878238 0.445876 0.687621
Test7 0.931482 0.927876 0.911917 0.518041 0.669246
Test8 0.936275 0.929374 0.860104 0.479381 0.704062
Test9 0.936794 0.930137 0.909326 0.456186 0.672147
Test10 0.930184 0.927515 0.904145 0.481959 0.675702
Avg. Testing Accuracy 93.27 92.86 90.08 46.34 68.79

135

Univ
ers

ity
 of

 M
ala

ya



Table 5.30: The Average Testing Detection Accuracies of the State-of-the-art Base Clas-
sifiers (i.e., LDA, and MLP) with 10-Fold Cross-validation

Testing LDA MLP
Test1 89.90035 98.108
Test2 90.50633 98.1484
Test3 89.97374 98.26274
Test4 89.85322 97.71748
Test5 90.31715 98.35028
Test6 89.94075 97.65688
Test7 90.06194 97.77134
Test8 90.37102 97.9732
Test9 90.27067 97.61648
Test10 89.91382 98.12147
Average testing Accuracies 90.1109 97.97263

Table 5.31: The Average Training Detection Accuracies of the State-of-the-art Base clas-
sifiers (i.e., LDA, and MLP) with 10-Fold Cross-validation

Training LDA MLP
Fold1 90.10212 98.22541
Fold2 90.06845 98.02267
Fold3 90.10668 98.32119
Fold4 90.13728 97.97928
Fold5 90.0805 98.36458
Fold6 90.21659 97.69798
Fold7 90.08491 97.79598
Fold8 90.13885 98.14089
Fold9 90.0924 97.79972
Fold10 90.14177 98.28601
Average training accuracies 90.1169 98.0633

Table 5.32: Average Testing Per-class Attack Detection Accuracies of the State-of-the-art
Base classifiers (i.e., LDA, and MLP) using 10-Fold Cross-validation

Avg. Testing Accuracies Normal DoS U2R R2L Probe
LDA 93.27 92.86 90.08 46.34 68.79
MLP 98.45 99.22 95.23 78.09 96.43

Table 5.33: Average Testing Per-class Attack Detection Accuracies of the State-of-the-art
Base classifiers (i.e., LDA, and MLP) 10-Fold Cross-validation

Avg. Training Accuracies Normal DoS U2R R2L Probe
LDA 93.27 92.86 90.01 46.35 68.83
MLP 98.56 99.26 95.41 78.21 96.52
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Table 5.34: The Average Results of the F-measure with 10-Fold Cross-validations of the
Bench-marked Base Classifiers

F-measure SimpleLogistic MLP LDA NaiveBayes BayesNet Hoeffiding
Fold1 98.93% 98.03% 89.19% 89.25% 96.31% 94.87%
Fold2 98.74% 98.07% 89.85% 87.33% 96.53% 95.09%
Fold3 98.94% 98.19% 89.31% 88.96% 96.31% 95.06%
Fold4 98.70% 97.61% 89.09% 89.07% 96.65% 95.44%
Fold5 98.71% 98.28% 89.64% 88.39% 96.21% 95.01%
Fold6 98.99% 97.55% 89.18% 87.49% 96.87% 94.69%
Fold7 98.82% 97.68% 89.36% 89.40% 96.50% 96.78%
Fold8 98.74% 97.89% 89.67% 88.65% 96.25% 94.88%
Fold9 98.85% 97.50% 89.55% 89.17% 96.30% 95.47%
Fold10 98.82% 98.04% 89.20% 89.39% 96.53% 94.71%
Average 98.82% 97.88% 89.40% 88.71% 96.45% 95.20%

Table 5.35: Overall Performance of the Proposed Method with all the Bench-marked
Classifiers of the Required Evaluation Parameters with 10-Fold Cross-validation

Intrusion Detection Mechanisims Accuracy Precision Recall F-measure
RandomLinearOracle (RLO) 99.41 99.2 97.19 99.2
SimpleLogistic 98.57 98.57 99.08 98.82
MultilayerPerceptron (MLP) 97.97 98.32 98.45 97.88
LinearDiscimenantAnalysis (LDA) 90.11 92.28 86.7 89.4
NaiveBayes 85.23 83.73 94.32 88.71
BayesNet 94.53 95.72 97.19 96.45
Tree-Hoeffiding 94.19 98.11 92.46 95.2
RandomSubspace 96.93 99.75 93.85 96.71
Bagging 98.93 99.69 98.08 98.88

5.4 Conclusion

The proposed random oracle based intrusion detection method is properly tested and eval-

uated. Moreover, a detailed explanation of the tools and the bench-mark data-sets used

for the entire evaluation of the proposed random linear oracle (RLO) model is also pro-

vided. The complete set-up environment, the pre-requisites, and the programming tools

and language used for the final implementation. Furthermore, the standard parameters

used for assessing the performance of the proposed model are also presented. The de-

tailed verification of the proposed method with the current state-of-the-art is also carried

out. Finally, the chapter concludes with a 10-fold cross-validation of all the performance

evaluation parameters in order to show a completely unbiased resulting performance.
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CHAPTER 6: RESULTS AND DISCUSSION

The chapter presents the results of the experimental research (i.e., simulation, and emu-

lation) of the proposed intrusion-detection method with their corresponding counterparts.

Moreover, the discussion goes one step beyond by comparing the analysis of the results to

demonstrate the validity of the proposed approach. The conducted experimental research

demonstrates the promising results and better performance of the proposed intrusion de-

tection method. The main objective of the chapter is to demonstrate the outstanding

performance of the random oracle based proposed intrusion detection method compared

to the state-of-the-art classifier ensembles (i.e, Bagging and Random Subspace) in this

domain. Moreover, to verify the out-performance of the random oracle based intrusion-

detection method compared to state-of-the-art base-classifiers (i.e, Simple Logistic, Mul-

tilayer Perceptron (MLP), Naive-Bayes, BayesNet, Linear Discriminant Analysis (LDA),

and Hoeffding)) in this domain. Additionally, to demonstrate that the proposed method is

viable to identify diverse attacks triggered by large-scale malicious events in the control-

plane of the SDNs in real-time.

The remainder of this chapter is structured as follows: Section 6.1 presents the de-

tailed performance analysis of the proposed method compared to the classifier ensembles

on the standard evaluation parameters. Section 6.2 shows the detailed performance analy-

sis of the proposed method compared to state-of-the-art single classifiers based intrusion

detection mechanisms on the standard evaluation parameters. In Section 6.3, we have

demonstrated the detailed analysis of the computation and communication cost to show

the viability of the proposed method in real-time detection of attacks in the control-plane

of the SDNs. Finally, we provide the concluding remarks in Section 6.4.
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6.1 Performance Comparison Analysis of the Proposed Approach with Classifier
Ensembles

In this section, we extensively elaborate the performance comparison of our proposed

Random Linear Oracle (RLO) based intrusion detection method with the corresponding

employed ensembles intrusion detection mechanisms. Moreover, the section also presents

the detailed analysis of each and every performance evaluation parameter.

6.1.1 Detection Accuracy Performance

Accuracy parameter is considered one of the primary and powerful parameters to demon-

strate the performance of an intrusion detection system. Figure 6.1 presents the over-

all average accuracy (in percent) for the benchmark NSL-KDD data set using 10-fold

cross validation. Although the accuracy achieved above 90% by any intrusion detection

technique is considered relatively good detection accuracy rate. However, the proposed

Random Linear Oracle (RLO) based intrusion detection method outperforms the other

tested classifier ensembles intrusion detection mechanisms. The proposed method cor-

rectly identifies diverse attacks with an average detection accuracy rate of 99.41% com-

pares to Bagging and Random Sub-space ensembles detection mechanisms that achieve

the accuracy rate of 98.93% and 96.93% respectively. Likewise, for more clarity; we

also present the accuracy rates (in percent ) using 10-fold cross validation. Figure 6.2

clearly depicts the outstanding performance in terms of detection accuracy from their

corresponding counterpart ensembles detection mechanisms.
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Figure 6.1: Average Detection Accuracy Performance Comparison of the 10-fold Cross-
validation
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Figure 6.2: Detection Accuracy Performance Comparison of the 10-fold Cross-validation
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6.1.2 Standard F-measure Performance

One of the significant parameter to measure the performance of an intrusion detection

system is F-measure, which is the harmonic mean of recall and precision. We use the

standard F-measure to evaluate the performance of Random Linear Oracle (RLO) based

intrusion detection method. F-measure represents the tradeoff between the recall and pre-

cision. Figure 6.3 presents the overall average F-measure (in percent) for the benchmark

NSL-KDD data-set using 10-fold cross validation. The F-measure rate of the proposed

Random Linear Oracle (RLO) based intrusion detection method outperforms the other

tested classifier ensembles. Similarly, for more clarity; we also present the F-measure

rates (in percent ) using 10-fold cross validation. Figure 6.4 also clearly depicts the sig-

nificant performance in terms of F-measure rates (in percent ) from their corresponding

counterpart ensembles detection mechanisms.
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Figure 6.3: Average F-measure Performance Comparison of the 10-fold Cross-validation
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Figure 6.4: F-measure Performance Comparison of the 10-fold Cross-validation

6.1.3 Precision Performance

Precision parameter is simply used for measuring the relevance and supports the accuracy

rate of an intrusion detection system. Figure 6.5 presents the overall average precision (in

percent) for the benchmark NSL-KDD data-set using 10-fold cross validation. The av-

erage precision rate of the Random Subspace and Bagging algorithm is a bit high than

the proposed Random Linear Oracle (RLO) based intrusion detection method as shown

in Figure 6.5. However, the precision rates above 99% achieved by any intrusion detec-

tion algorithms is considered a significant performance. Similarly, the precision rates (in

percent ) using 10-fold cross validation in Figure 6.6 depicts the precision performance

of all the ensemble detection mechanisms.
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Figure 6.5: Average Precision Performance Comparison of the 10-fold Cross-validation
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Figure 6.6: Precision Performance Comparison using 10-fold Cross-validation
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6.1.4 Recall Performance

Recall parameter is also used for measuring the relevance and supports the accuracy rate

of an intrusion detection system. Figure 6.7 presents the overall average recall (in per-

cent) for the benchmark NSL-KDD data-set using 10-fold cross validation. The average

recall rate of the Bagging algorithm outperforms than the other tested classifier ensem-

bles intrusion detection mechanisms. However, the average recall rate of the proposed

Random Linear Oracle (RLO) based intrusion detection method is higher than the Ran-

dom Subspace detection algorithm. Similarly, the recall rates (in percent ) using 10-fold

cross validation in Figure 6.8 depicts the recall performance of all the ensemble detection

mechanisms.
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Figure 6.7: Average Recall Performance Comparison of the 10-fold Cross-validation
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Figure 6.8: Recall Performance Comparison using 10-fold Cross-validation

6.1.5 Overall performance

The section presents the net performance of the classifier ensembles detection mecha-

nisms as shown in Figure 6.9 and Figure 6.10, when applied to the benchmark NSL-

KDD data-set. Figure 6.9 clearly demonstrates that the proposed Random Linear Oracle

(RLO) based intrusion detection method outperforms the classifier ensembles in terms

of detection accuracy and f-measure rates (in percent). Likewise, the proposed Random

Linear Oracle (RLO) based intrusion detection method shows significant performance

compare to its counterpart detection mechanism with the highest TNR values and the

minimum FPR value. However, the TPR value of the bagging detection algorithm is

slightly improved than the proposed Random Linear Oracle (RLO) based intrusion de-

tection method. Figure 6.10 depicts the overall accuracy comparison of the classifier

ensemble detection mechanisms.
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Figure 6.9: Net Performance Comparison of the Classifier Ensembles Detection Mecha-
nisms
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Figure 6.10: Overall Accuracy Comparison of the Classifier Ensembles Detection Mech-
anisms
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6.2 Performance Comparison Analysis of the Proposed Approach with State-of-
the-art Base-Classifiers

In this section, we extensively elaborate the performance comparison of our proposed

Random Linear Oracle (RLO) based intrusion detection method with state-of-the-art sin-

gle classifier based intrusion detection mechanisms. Moreover, the section also presents

the detailed performance analysis of the employed evaluation parameter.

6.2.1 Detection Accuracy Performance

Accuracy parameter is considered one of the primary and powerful parameters to demon-

strate the performance of an intrusion detection system. Figure 6.10 presents the overall

average accuracy (in percent) for the benchmark NSL-KDD data set using 10-fold cross

validation. Although the accuracy achieved above 90% by any intrusion detection tech-

nique is considered relatively good detection accuracy rate. However, the proposed Ran-

dom Linear Oracle (RLO) based intrusion detection method outperforms the other tested

single classifier based intrusion detection mechanisms. The proposed method correctly

identifies diverse attacks with an average detection accuracy rate of 99.41%, which is

the highest detection accuracy rate compared to their corresponding state-of-the-art base

classifiers. Likewise, for more clarity; we also present the accuracy rates (in percent )

using 10-fold cross validation, which clearly depicts the outstanding performance of the

proposed method in terms of detection accuracy from their corresponding counterpart

base classifiers.
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Figure 6.11: Average Detection Accuracy Performance Comparison of the 10-fold Cross-
validation
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Figure 6.12: Detection Accuracy Performance Comparison using 10-fold Cross-
validation
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6.2.2 Standard F-measure Performance

One of the significant parameter to measure the performance of an intrusion detection

system is F-measure, which is the harmonic mean of recall and precision. We use the

standard F-measure to evaluate the performance of Random Linear Oracle (RLO) based

intrusion detection method. F-measure represents the tradeoff between the recall and pre-

cision. Figure 6.3 presents the overall average F-measure (in percent) for the benchmark

NSL-KDD data-set using 10-fold cross validation. The highest F-measure rate of the pro-

posed Random Linear Oracle (RLO) based intrusion detection method outperforms the

other tested classifier ensembles. The average F-measure rate of the proposed method is

99.4% as shown in Figure 6.13, the attained F-measure rate is the highest compared to

the rest of the state-of-the-art base classifiers. Similarly, for more clarity; we also present

the F-measure rates (in percent ) using 10-fold cross validation as shown in Figure 6.14.
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Figure 6.13: Average F-measure Performance Comparison using 10-fold Cross-validation
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Figure 6.14: F-measure Performance Comparison using 10-fold Cross-validation

6.2.3 Precision Performance

Precision parameter is simply used for measuring the relevance and supports the accuracy

rate of an intrusion detection system. Figure 6.15 presents the overall average precision

(in percent) for the benchmark NSL-KDD data-set using 10-fold cross validation. The

average precision rate of the proposed Random Linear Oracle (RLO) based intrusion de-

tection method outperforms their counterparts. However, the precision rates (in percent)

using 10-fold cross validation of the proposed intrusion detection algorithms also shows

significant performance compared to their corresponding counterparts as shown in Figure

6.16.
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Figure 6.15: Average Precision Performance Comparison using 10-fold Cross-validation
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Figure 6.16: Precision Performance Comparison using 10-fold Cross-validation
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6.2.4 Recall Performance

Recall parameter is also used for measuring the relevance and supports the accuracy rate

of an intrusion detection system. Figure 6.17 presents the overall average recall (in per-

cent) for the benchmark NSL-KDD data-set using 10-fold cross validation. The average

recall rate of the Simple Logistic and MLP is a bit higher than the proposed intrusion

detection approach. However, the average recall rate of the proposed Random Linear Or-

acle (RLO) based intrusion detection method is higher than the rest of their counterparts.

Similarly, we also present the recall rates (in percent ) using 10-fold cross validation.

Moreover, Figure 6.18 depicts the recall rates (in percent) using 10-fold cross validation

of all the classification based intrusion detection methods.
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Figure 6.17: Average Recall Performance Comparison using 10-fold Cross-validation
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Figure 6.18: Recall Performance Comparison using 10-fold Cross-validation

6.2.5 Overall performance

The section presents the net performance of the classifier ensembles detection mecha-

nisms of the proposed method with their corresponding counterparts when applied to the

benchmark NSL-KDD data-set. From Figure 6.19, it can be easily concluded that the

proposed Random Linear Oracle (RLO) based intrusion detection method outperforms

the other tested base classifiers in terms of detection accuracy, precision, and F-measure

rates (in percent). However, the recall rate (in percent) of the Simple Logistics is slightly

higher than the proposed method. Likewise, the proposed Random Linear Oracle (RLO)

based intrusion detection method outperforms compare to its counterpart detection mech-

anisms with the highest TNR value and the minimum FPR value. However, the TPR

value of the Simple Logistic detection algorithm is slightly improved than the proposed

Random Linear Oracle (RLO) based intrusion detection method. Figure 6.20 depicts the

overall accuracy comparison of the classifier ensemble detection mechanisms.
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Figure 6.19: Net Performance Comparison of the Base Classifiers Intrusion Detection
Mechanisms
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Figure 6.20: Overall Accuracy Performance Comparison of the Base Classifier Intrusion
Detection Mechanisms
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6.3 Results of Computation and Communication Cost

Since the controller represents the centralized core and network intelligence of the SDNs,

the communication cost and computation overhead is a critical issue and must be taken

into consideration. The newly designed and implemented software packet processing

time in the controller may bring negative impact as long as the design is not carefully

handled to cater for the computation and communication overhead. Long delays of pro-

cessing packets may generate new attack surface areas in the control plane consequently

leading to a single-point failure. In the following section, we presents the computation

and communication cost.

6.3.1 Results of Computation Cost

The computation cost of our proposed solution mainly comes from three aspects: (1) the

training process; (2) the testing process; and (3) the model update process. Since in our

proposed architecture, we have considered the training in an offline fashion in order to

have a careful SDN control plane design architecture of the proposed solution. Moreover,

we have evaluated the overhead by employing 10% of data as the training data, and 10%

of data as the testing data while the remaining data is divided into 8 update data-sets. The

training data-set is used to generate the model and the iterative updates is done using the

updating datasets. The computation cost of both the processes (i.e., partial model update

and the complete model rebuild) is shown in Figure 6.21.

The Figure 6.21 clearly shows that the model generation time is linearly dependent

on the number of data in the data-set (i.e., a linear function with respect to the total amount

of data in the data-set). The simulation results shows that the complete model rebuilding

process is very expensive. However, the partial model update time is dependent on the

number of data in the new observations. The partial model update is much cheaper than

the complete model rebuilding process.
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Figure 6.21: Computation Cost of the Proposed Method

6.3.2 Results of Communication Cost

We have conducted several experiments in order to evaluate the communication overhead.

We have carried out the experiments in two different scenarios as shown in Figures 6.22,

6.23, 6.24, and 6.25 respectively. In the first scenario, we measured the end-user latency

by observing RTTs for ping packets between two hosts separated by 3 hops of our own

Lab. However, the second scenario is based on observing the RTTs of ping packets from

a remote server located in a different place and the server running the SDN controller of

our own Lab. We also measured the bandwidth of the network by using iperf 3 times an

hour for 48h consecutively. We measured the average bandwidth as 83.5 MB/s for the

first scenario and 29.6 MB/s for the second scenario receptively. In the first scenario, the

connection is better compared to the second scenario because of the closely located set-

up. Finally, we also test and observe the response time but having no significant effect.

Consequently, the communication overhead is only related to RTT (round trip time).
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Figure 6.22: Comparison of Ping Latencies in the First Given Scenario
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Figure 6.23: Comparison of Ping Latencies in the Second Given Scenario
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Figure 6.24: Comparison of the Response Time in the First Given Scenario
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Figure 6.25: Comparison of the Response Time in the Second Given Scenario
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6.3.3 End Users Latency with Varying Hosts

We compute the communication overhead of the proposed solution that end-users have

experience, by observing RTTs for ping packets between two hosts separated by 6 hops.

The Floodlight was modified to install rules with 1 sec idle timeout and Cbench was used

to know the effect of the varying number of hosts for the observed ping latencies. We

just plot the scenarios with 1 and 1K hosts to achieve more clarity. The overall results

as shown in Figure 6.26 and Figure 6.27 clearly shows that the latency increases with

the gradual increase in number of hosts. However; the latency overhead even with 1K

hosts is not surprisingly high. The latency with 7K is just 200 . We attribute the overall

reduced latency for both the cases with and without RLO to SDN Floodlight controller

that throttles messages at high throughput.
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Figure 6.26: End-user Latencies with Varying Hosts
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Figure 6.27: End-user Latencies with Varying 1K Hosts

6.4 Conclusion

The results of the experimental research (i.e., simulation, and emulation) of the pro-

posed intrusion-detection method with their corresponding counterparts are presented.

We clearly demonstrated the out-performance of the proposed method compared to the

state-of-the-art classifier ensembles (i.e, multiple classifier based network anomaly de-

tection systems) on the standard evaluation parameters. Moreover, we also verified the

outstanding performance of the proposed random oracle based intrusion detection method

compared to state-of-the-art base classifiers (i.e, single classifier based network anomaly

detection systems). Finally, we presented the communication and computation cost to

clearly show that the proposed method is viable to identify diverse sophisticated network

attacks in the control-plane of the SDNs in real-time.
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CHAPTER 7: CONCLUSION

This chapter concludes the thesis to put-forward the summary and accomplishments of

the study. It summarizes the main findings of study, the attained research objectives,

and highlights the significance of the proposed method. The chapter also provides the

possible future extensions, limitations, and and scope of this work. Finally, in an effort to

anticipate secure and dependable SDNs, the chapter presents the ongoing open security

issues, the state-of-the-art security trends and cutting-edge future research directions.

The remainder of this chapter is organized as follows. Section 7.1 discusses the

reassessment of the main findings and research objectives. Section 7.2 highlights contri-

bution of the research work. Section 7.3 examines the scope and limitation of the research

work. Section 7.4 provides the future plans and possible extensions of this work together

with state-of-the-art on-going open security issues, challenges, and cutting-edge future

research directions of the SDNs.

7.1 Reappraisal of the Main Findings and Research Objectives

The revolutionary idea of Software Defined Networks (SDNs) potentially provides to re-

define the future of next-generation networks. Indeed, all the hype surrounding the SDNs

is predominantly because of its centralized control, the separation of the control plane

from the data forwarding plane, flow abstraction and enabling innovation through net-

work programmability. Despite the promising architecture of SDNs, security was not

considered as part of the initial design. Moreover, security concerns are potentially aug-

mented considering the logical centralization of network intelligence.

The motivation of this dissertation is to address the defense space against the threat

of attacks in SDNs due to compromised as well legitimate end hosts or programmable

soft switches that wrest either full or partial control of the entire network. Additionally,

this problem exacerbates in the context of SDNs for various crucial reasons. We aim
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to effectively identify the threat of various distributed coordinated attacks in SDNs that

primarily target the control plane by implementing a highly dynamic and robust intrusion-

detection method that adds extra-diversity while promote a remarkable detection accuracy

with incredible low false-positive rates.

The first objective was mainly based to conduct a thorough review of the security

of SDNs. We studied the security implications of the entire SDN architecture with ex-

tant state-of-the-art security solutions in SDN considering the earliest to the latest trends.

We reviewed and analyzed the security vulnerabilities, attacks, and challenges of the

promising SDN architecture. We devised a contemporary layered/interface taxonomy of

the reported security vulnerabilities, attacks, and challenges of the SDN to illustrate the

main categories of security implications that pertain to each SDN layer/interface. We

also highlighted and analyzed the possible threats that may affect and target a particular

layer/interface alongside a suggested compact solution to help design secure SDNs. The

extant state-of-the-art security solutions are also critically analyzed to devise a compre-

hensive thematic taxonomy. Moreover, we analyzed each state-of-the-art security solu-

tion to identify the distinguishing SDN features utilized for each security mechanism,

and the exact problem addressed by a particular technique together with the simulation

or emulation environment of the corresponding technique. The distinguishing features

of SDN represent the potential of emerging SDNs. Additionally, we also identified the

potential effect of each state-of-the-art security solution on the corresponding SDN layer-

s/interface. The critical discussion on the extant state-of-the-art security solutions extend

the domain knowledge of the current security trends in the SDNs, the major strengths of

potential SDNs, and the research gaps that need thorough investigations. We evidently no-

ticed that security is still the key concern and is an equally striking challenge that reduces

the growth of SDNs. Moreover, the deployment of novel entities and the introduction of

several architectural components of SDNs poses new security threats and vulnerabilities.
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We identified that investigating the defense space against the threat of attacks in SDNs

that wrest either full or partial control of the entire network is of paramount concern and

increasingly important research topic.

The second objective was to closely analyze and establish the problem. A detailed

problem analysis using Floodlight, a popular java based SDN controller was carried-

out. Various possible ways of sophisticated network security attacks to target the control

plane of the SDN architecture followed by the overall major impact of the attacks on

SDNs were demonstrated. A complete formal analysis using Z language rules of the

salient features that help identify diverse network attack patterns in the control plane of

the SDNs to establish the problem was also carried-out. A few important OpenFLow (OF)

messages such as Packet-in, Packet-Out, Flow-Mod and Flow-Removed were utilized

to demonstrate that how our proposed method works identifying various network attack

patterns in the real setting of SDNs. Moreover, to present a more clear analysis, we

provide modeling of the proposed method using High Level Petri Nets (HLPN). We also

formally verified the correct functioning of identifying varied network attack patterns.

The third objective was to propose a dynamic and robust intrusion detection method

capable of effectively identifying varied sophisticated network attacks and large-scale

malicious event automatically and in real-time that target the controller of the SDNs. A

diverse fusion-selection approach that stands on Oracle to be applied to the classifier en-

semble design, where the Oracle is a random linear function was proposed, implemented

and tested. We argued that the proposed method adds extra-diversity while promoting a

higher level of intrusion-detection accuracy, and that is achieved through the promising

performance shown by the proposed method in chapter 6. Moreover, We also argued that

our proposed method is capable of real-time intrusion detection in the SDN environment

and that is also demonstrated.

The fourth objective was to perform a rigorous evaluation of the proposed method.
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We performed a rigorous evaluation of the proposed method by testing using Floodlight,

a popular java based SDN controller and Mininet to emulate SDN setting. We modeled

the proposed method in the real setting of SDNs using High Level Petri Nets (HLPN),

analyze the rules with Z language, and formally verified the correct functioning of our

proposed method using Z3 SMT solver. We validated our proposed approach using a

bench-marked publicly available data-set broadly known as NSL-KDD. The verification

of the proposed approach is made with benchmark algorithms. Moreover, to show the

resulting significant performance of the proposed approach to be optimistically unbiased,

we employed a ten-fold cross-validation.

7.2 Contributions of The Research

The key contributions of this dissertation to the body of knowledge are as follows. More-

over, the contributions in terms of scholarly articles are separately stated in Appendix

A.

The first contribution of this dissertation is a short tutorial paper on securing software

defined networks: taxonomy, requirements, and open issues, published in a special issue

on security and privacy in emerging networks of the IEEE Communications Magazine

online journal. To the best of our knowledge, this work was the first short tutorial paper

on research efforts made in this direction.

The second contribution of this dissertation is a comprehensive survey on secure and

dependable software defined networks, published in the Journal of Network and Com-

puter Applications. To the best of our knowledge, this work is the first to advocate an

approach to achieve secure and dependable SDNs while comprehensively surveying, an-

alyzing, and classifying the security vulnerabilities, attacks, and challenges of each SDN

layer/interface together with state-of-the-art security mechanisms of SDN. Moreover, this

paper presents a thematic layered/interface taxonomy of SDN security vulnerabilities, at-
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tacks, and challenges. Although two survey papers were presented in the past, these

works lack comprehensive thematic classifications and focus more on utilizing SDNs to

secure different networks. The paper also complements our tutorial paper.

The third contribution of this dissertation is addressing diverse Man-at-The-End At-

tacks in SDNs as our future plan, which also results a full survey paper on Man-At-

The-End attacks: analysis, taxonomy, human aspects, motivation and future directions

published in the Journal of Network and Computer Applications. This is the first com-

prehensive literature review available till date on Man-at-The-End Attacks.

The fourth contribution of this dissertation is a detailed problem analysis in the real

setting of Floodlight, a popular java based SDN controller. We demonstrated various pos-

sible ways of sophisticated network security attacks to target the control plane of the SDN

architecture followed by the overall major impact of the attacks on SDNs. We also carried

out a formal analysis using Z language rules of the salient features that help identify di-

verse network attack patterns in the control plane of the SDNs. We utilized few important

OpenFlow (OF) messages such as Packet-in, Packet-Out, Flow-Mod and Flow-Removed

to demonstrate that how our proposed intrusion detection method work identifying var-

ious network attack patterns in the real setting of SDNs. Moreover, to present a more

clear analysis, we provide modeling of the proposed method using High Level Petri Nets

(HLPN). We also formally verified the correct functioning of identifying varied network

attack patterns. The outcomes of the problem analysis also results a journal paper. My

recent work on formal verification just recently published in IEEE Transaction on Infor-

mation Forensics Security.

The fifth contribution of this dissertation is the implementation of a diverse fusion-

selection method that stands on Oracle. The proposed method adds extra-diversity while

promoting a higher level of intrusion-detection accuracy. Moreover, the approach is

highly dynamic, flexible and is capable to effectively detect a wide variety of sophisti-
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cated network security attacks.

Finally, the sixth contribution of this dissertation is the rigorous evaluation of the

proposed method by testing in the environment of Floodlight, a popular java based SDN

controller with Mininet to emulate the SDN setting, to model the proposed method in

the real setting of SDNs using High Level Petri Nets (HLPN), analyze the rules with Z

language, and formally verified the correct functioning of our proposed method using Z3

SMT solver. Moreover, to validate our proposed approach, a benchmark data-set broadly

known as NSL-KDD is used. The verification of the proposed approach is made with

benchmark algorithms and to show the resulting significant performance of the proposed

approach to be optimistically unbiased, a ten-fold cross-validation is employed. The out-

comes of the verification with the current state-of-the-art also results two journal papers.

7.3 Research Scope and Limitations

The scope of this study is restricted to three main parts: (1) Analyzing the problem in the

real setting of Floodlight, a popular java based SDN controller and modeling and formal

analysis using High Level Petri Nets (HLPN) and Z language, (2) proposing a dynamic

and robust intrusion-detection method that stands on Oracle, where the )Oracle is a ran-

dom linear function. The method promotes a higher level of intrusion-detection accuracy

with incredible low false positive rates. Moreover, the approach is highly dynamic, flex-

ible and is capable to effectively detect a wide variety of sophisticated security attacks

that primarily target the control plane of the SDN architecture, and (3) rigorous evalua-

tion and validation of the proposed method to be applicable in the real-setting of SDNs

(control-plane). The limitations of the are listed below.

• The method is highly dynamic, and works well with incredible performance in the

SDNs, it also incurs limited communication and computation overhead on the SDN

controller.
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• The proposed method is likely to identify abnormal network attacks without prior or

having specific knowledge but does not guarantee to accurately discover Zero-day

attacks.

7.4 Future Works

The future works of this study mainly comprises of two sections. First, we elaborate

the future plans and possible extension of our research work. Subsequently, we present

on-going open security issues, the state-of-the-art security trends, and cutting-edge future

research directions that might facilitate the wide acceptance of SDNs.

7.4.1 Possible Extensions of This Work

The future plans and possible extensions of this work are as follows

• The proposed research can be successfully extended to identify anomalies and di-

verse threat of attacks that mainly target the data-plane of the SDNs.

• We also plane to extend the proposed method for a hybrid model of Cloud Comput-

ing and Software Defined Networks to protect valuable computing infrastructure.

• Finally, we plan to extend this dynamic approach to ensure the security and privacy

of the emerging networks and in diverse applicable areas of network security attacks

identification.

7.4.2 SDNs Open Security Issues, Challenges and Future Research Directions

Security plays a vital role in deploying SDNs across different applicable networks. SDNs

are receiving attention because of their diverse applicability. However, security is one

of the key obstacles that hinder the growth and overall adoption of SDNs. This section

elaborates open security issues, challenges, and foreseeable directions that might facilitate

the wide acceptance of SDNs. Figure 7.1 presents the future security challenges, trends,

167

Univ
ers

ity
 of

 M
ala

ya



and direction of SDNs.

Figure 7.1: The SDNs Security Challenges, Trends and Directions

7.4.2.1 Security and SDNs Virtualization

The use of SDNs in network virtualization has introduced many security issues that need

to be addressed. Several unaddressed issues related to SDNs deployed for network virtu-

alization are presented. These issues were identified when the OF protocol was used for

network virtualization. FlowVisor, a special-purpose controller, is used to ensure isola-

tion between multiple virtual networks. In addition, it acts as a transparent proxy between

a controller and a switch. FlowVisor configures the entire network into different slices.

Moreover, it facilitates rewriting control messages according to user-defined policies to

guarantee isolation. Furthermore, FlowVisor acts as a slicer and a controller in an SDN

environment. Subsequently, it becomes a potential target for attackers because the entire
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network is compromised once it is down. The issue of confidentiality, integrity, and avail-

ability to ensure network security must be addressed to achieve secure and dependable

SDNs. FlowVisor does not implement action isolation; consequently, a controller can set

any type of action on a flow entry without any control of the FlowVisor.

Victor proposed three possible threats: a) VLAN ID access problem: This problem

occurs when a controller is denied access to any VLAN ID, whereas FlowVisor is allowed

to create flow entries whose action can change the VLAN ID of a packet. This situation

creates an opportunity for a nasty controller to inject packets into another slice or can be

utilized to steal packets; b) Field rewrite problem: This problem occurs when a controller

is given access to a particular VLAN ID tag to create a flow entry whose action can change

the VLAN ID of its own packet, thereby creating an opportunity for a malicious controller

to inject packets into another slice or to steal packets. Essentially, in a virtual environ-

ment, the header fields involved in creating a slice can experience the same problem. It

can be a modification of any header field, such as IP/MAC source/destination address and

transport source/destination numbers; c) Wildcard rewrite problem: This problem occurs

when a controller is given access to a transport source port A, and the controller wants

to create a flow entry with an unspecified transport source port (wildcard). FlowVisor

should rewrite the valid transport source (A) to the wild-card value; however, in reality,

this rewriting valid transport source does not occur, and it simply rewrites the wildcard

value with any matching transport source port and may raise serious security concerns.

The problem is the same for other fields, such as protocol type and transport destination.

Malicious injections may occur by simply following the existing field rewrite problem,

which allows the end user to change the VLAN ID tag in particular circumstances. Table

7.1 summarizes the security problems of the SDN virtual environment.

169

Univ
ers

ity
 of

 M
ala

ya



Table 7.1: Security Problems of SDNs Virtual Environment

SDNs Security Problems in Virtual
Environment

Malicious
Injection

Stealing
Packets

Denial of Ser-
vice (DoS)

Spoofing
Attack

Status

VLAN ID Access Problem X X Unexplored

Field Rewrite Problem X Unexplored

Wildcard Rewrite Problem X Unexplored

Implementation of Action Isolation Unexplored

Denial of Service (DoS) X Unexplored

Spoofing Attack X Unexplored

7.4.2.2 SDN Controller-Specific Security Issues in Virtual Environments

The controller remains a potential target for attackers and is the most likely target of the

first line of attack. The following are several unaddressed scenarios when the controller

is targeted in a virtual environment. Figure 7.2 illustrates the particular scenario of using

OpenVirteX, a special controller used to create virtual networks. When using OpenVir-

teX, several controllers, such as POX controller, are placed on the end user side, as shown

in Fig. 5. Although POX has many advantages, it is also exploitable. Using OpenVirteX

instead of FlowVisor addresses space isolation. However, it does not implement action

isolation, that is, a controller can set any type of action on a flow entry without any control

by OpenVirteX. Figure 7.2 shows the following attacks:

1. Denial of Service (DoS) Attack: A POX controller is placed on the end user side

to create a particular virtual network using OpenVirteX. POX controller possesses

critical knowledge of the network and is prone to many attacks, particularly DoS

attacks. An attacker can generate a large number of flows to bring the network

down or make it work improperly by targeting OpenVirteX.

2. Spoofing Attack: The spoofing attack can be illustrated considering the same sce-

nario discussed above. For example, the floodlight controller is already aware of

the IP address of OpenVirteX and can merely forge the IP address of OpenVirteX
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to launch a simple and easy spoofing attack.

3. Malicious injection: Malicious injections may be performed by using the existing

field rewrite problem, which allows the end user to change the VLAN ID tag in

particular circumstances. Malicious injection creates an opportunity for a nasty

controller to inject packets into another slice. OpenVirteX does not implement

action isolation, that is, a controller can set any type of action in the flow entry

without any control of the controller in this particular case.

Figure 7.2: Controller-specific Attack Scenarios of Creating Virtual Environment using
OpenVirtex

7.4.2.3 Man-at-The-End Attacks and SDNs

Any type of SDN, regardless of its architecture, design, configuration, and maintenance,

relies on people. Traditional computer and network security for home networks, the Inter-

net, the cloud, SDNs, and the Internet of Things are inadequate to address MATE attacks.

MATE attacks are fundamentally difficult to resolve under general circumstances. The

problematic part is that humans have become the edge, and auditing the human mind is
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a complex task. Moreover, we cannot install antivirus on a system administrator’s cere-

bral cortex. We still rely on perimeter defense even though the reality is that in digital

world boundaries are non-existent. We continue to imagine that we have control over

devices when we do not. We expect users to adhere to policies; however, we have no

control over policy enforcement. SDNs may be targeted by MATE attacks in many ways.

MATE attackers can primarily target the centralized control management architecture of

SDNs, which is a single point of failure that may lead to the breakdown of a network.

Furthermore, MATE attackers may penetrate and bypass the programmable aspects of

SDNs, as these attackers are highly skilled and can compromise any SDN agent for fur-

ther exploitation. A detailed description of possible MATE attack scenarios is beyond the

scope of this study. MATE attacks need to be addressed to ensure secure and dependable

SDNs. Figure 7.3 depicts a situation in which a MATE attacker has full access to his or

her capabilities to enable him or her to bypass SDN protection mechanisms.

Figure 7.3: Man-at-The-End Attacker Having Full Access to Analyze and Utilize his or
her Capabilities to Bypass the SDNs Protections
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7.4.2.4 Performance Aware Secure Applications Development

The SDN centralized architecture does not bear long latencies unlike traditional networks.

The northbound API of the SDN facilitates the development of a set of desired security

applications at the application layer of the SDN. These security applications need to ac-

cess packet-level information at different levels to be effective, particularly for digital

forensics, intrusion detection, and prevention. Moreover, accessing the payload is oblig-

atory where DPI is required. Subsequently, obtaining the required information has con-

siderable latency, which causes the entire traffic to behave abnormally. Furthermore, in a

special case of the first packet with unknown flow and having no buffer availability in the

switch, the current OF version may send the entire packet to the SDN controller. Thus,

a security application that manipulates deep packet inspection cannot benefit from the

current version of OF in this particular case, thereby degrading the overall performance.

Some studies were conducted to address this issue. Serious effort should be made to de-

velop performance-aware security applications. Studies should also focus on developing

security applications with good trade-offs among security, performance, and usability.

7.4.2.5 Secure and Dependable SDNs

SDN security and dependability are open issues. Several studies on security have focused

on enhancing the security of different networks by using SDNs. SDNs have a promising

architecture, yet they might pose potential security risks and possible threats to a network.

Literature on SDNs indicates that security and dependability have not yet been achieved.

Several potential threat vectors and vulnerabilities during the deployment of SDNs using

OF were investigated. Unlike traditional network security attacks, SDNs introduce new

threat vectors, particularly those related to the SDN controller and the southbound and the

northbound communication interfaces. These three threat vectors, which are identified in,

are predominantly related to SDNs, whereas other threat vectors are common. However,
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these threat vectors may have a more devastating and augmented effect on SDNs than on

traditional networks.

7.4.2.6 Programmability and SDNs

The SDN has to cope with the potential set of complex problems more related to the

programmability aspects of the network. The tendency of launching sophisticated DDoS,

phishing, spam and malware attacks is expected to increase massively. Subsequently, it

will change the dynamics surrounding the infrastructures of secure SDNs. Moreover, if

we see SDNs in the context of mobile wireless networks, then the possibility of injection

and eavesdropping (active, passive) is much higher because of broadcast and extant vul-

nerabilities of the wireless channels. Furthermore, the case of mobile ad-hoc networks

where typical security solutions are entirely infeasible to implement owing to their lack

of infrastructure (e.g., security servers) becomes increasingly serious and complex. Clas-

sical security solutions necessitate downtime to orchestrate topological changes during

reconfiguration, and configuration, when security services are debugged and turned on.

7.4.2.7 Data Integrity and SDNs

Security was not considered as part of the initial SDN design; thus, the certificate for-

mat to ensure data integrity is not well described by Open-Flow(OF) specifications. So-

phisticated authentication and encryption mechanisms are needed to recover from packet

failure and to prevent hackers from violating data integrity. However, the current OF

specification recommends the use of TLS, which provides encrypted secure channels.

Subsequently, eavesdropping is prevented. Yet TLS is unreliable in many cases. The

OF specifications provide no details on the use of interoperable versions. Moreover, es-

tablishing a secure connection and checking the certificates between the switches or the

controllers are not specified. For example, mutual authentication among multiple con-

trollers is performed through an exchange of certificates signed by a private key of a third
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party. The difference between these keys results in serious security vulnerabilities, and

the controllers may not be able to inter-operate. To have more sophisticated cryptographic

alternatives, this particular area needs to be well addressed.

7.4.2.8 Distributed SDNs and Security

SDNs introduce promising monitoring and management abilities in small to medium-

sized network topologies. However, security compliance and policy enforcement, trou-

bleshooting, debugging, and monitoring are problematic in distributed SDNs. Moreover,

the management decisions of SDNs are based on the behavior and information of the

network. Furthermore, the OF SDN session is subject to different actions specified in

the flow table. Responding to a wide range of diverse events, such as intrusions, ne-

cessitates the enforcement of high-level policies by corresponding network operators.

However, SDNs offer little to no automatic response mechanism for such events. Event-

driven programming interfaces for service providers are needed to manage diverse asyn-

chronous events linked with the corresponding network. The configuration of a carrier-

grade network in particular remains a tedious task, given that administrators have to cope

with vendor-specific and low-level interfaces to implement high-level functions. Conse-

quently, low-level configurations remain a difficult task in distributed SDNs. These issues

in relation to distributed SDNs need to be closely addressed.
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APPENDIX B: CONFUSION MATRIX

Table 1: List of 10-folds of Confusion Matrix (Training) for Random Oracle Based IDS
Confusion Matrix 10 Fold Cross Validation (Training RLO))
Fold1 Normal DoS U2R R2L Probe

111727 27 4 26 32
17 5563 0 0 1
43 0 3425 3 2
249 1 1 3239 2
55 4 23 1 9220

Fold2 Normal DoS U2R R2L Probe
111749 26 4 13 24
17 5562 0 0 1
40 0 3426 4 3
268 1 4 3217 2
52 0 23 2 9226

Fold3 Normal DoS U2R R2L Probe
111746 28 3 17 22
14 5566 0 0 1
43 0 3427 4 0
300 0 2 3188 2
64 1 28 2 9208

Fold4 Normal DoS U2R R2L Probe
111730 28 5 26 27
17 5564 0 0 0
42 0 3428 0 3
248 1 3 3236 4
60 1 25 1 9216

Fold5 Normal DoS U2R R2L Probe
111738 23 4 25 26
16 5564 0 0 1
40 0 3429 3 1
285 1 3 3200 3
72 1 29 1 9200

Fold6 Normal DoS U2R R2L Probe
111746 24 4 18 24
14 5567 0 0 0
41 0 3428 2 2
317 1 4 3166 4
54 0 21 1 9228

Fold7 Normal DoS U2R R2L Probe
111732 25 2 33 24
16 5565 0 0 0
47 0 3421 3 2
272 0 2 3216 2
67 0 24 2 9211

Fold8 Normal DoS U2R R2L Probe
111750 24 2 18 22
19 5561 0 0 1
42 0 3423 7 1
290 0 2 3198 2
69 3 24 3 9204

Fold9 Normal DoS U2R R2L Probe
111732 29 3 27 25
14 5566 0 0 1
36 0 3434 3 0
277 0 3 3210 2
47 0 26 2 9228

Fold10 Normal DoS U2R R2L Probe
111741 28 5 20 22
14 5566 0 0 1
47 0 3420 4 2
274 1 4 3210 3
57 0 27 1 9219
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Table 2: List of 10-folds of Confusion Matrix (Testing) for Random Oracle Based IDS
Confusion Matrix 10 Fold Cross Validation (Testing RLO)
Fold1 Normal DoS U2R R2L Probe

12399 3 1 8 13
3 617 0 0 0
4 0 380 1 1
43 0 1 341 3
8 0 2 0 1024

Fold2 Normal DoS U2R R2L Probe
12404 3 1 7 9
5 616 0 0 0
10 0 375 1 0
45 0 0 342 1
14 0 4 1 1015

Fold3 Normal DoS U2R R2L Probe
12405 5 1 7 6
3 617 0 0 0
8 0 376 1 0
41 0 0 347 0
6 1 2 0 1025

Fold4 Normal DoS U2R R2L Probe
12401 6 1 9 7
0 620 0 0 0
7 0 376 1 2
36 0 0 352 0
16 0 6 1 1011

Fold5 Normal DoS U2R R2L Probe
12409 4 1 4 6
5 615 0 0 0
6 0 379 1 0
43 0 2 343 0
10 0 2 1 1021

Fold6 Normal DoS U2R R2L Probe
12403 3 4 8 6
7 613 0 0 0
3 0 382 0 1
45 0 0 343 0
14 0 4 0 1015

Fold7 Normal DoS U2R R2L Probe
12404 4 1 11 4
2 617 0 0 1
7 0 375 2 2
33 1 1 353 0
10 0 1 0 1022

Fold8 Normal DoS U2R R2L Probe
12400 7 1 6 10
1 619 0 0 0
7 0 377 0 2
46 0 0 342 0
9 0 1 0 1024

Fold9 Normal DoS U2R R2L Probe
12419 0 0 1 4
5 615 0 0 0
6 0 379 1 0
39 0 1 348 0
10 0 6 0 1018

Fold10 Normal DoS U2R R2L Probe
12406 3 0 8 7
4 615 0 0 1
5 0 380 0 1
38 0 0 350 0
12 0 5 0 1016
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