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ABSTRACT 

Polythiophene, poly(3-hexylthiophene), poly(N-phenyl-1-(2-thienyl)methanimine) 

and poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidine)amine) were 

successfully coated on the surface of Fe3O4 magnetic nanoparticles (MNP). Two of 

the functionalized monomers, N-phenyl-1-(2-thienyl)methanimine and phenyl(4-(6-

thiophen-3-yl-hexyloxy)-benzylidine)amine were successfully synthesized. 

Characterization by FT-IR, TGA, XRD, VSM and BET confirmed the coating has 

taken place. Further characterization of MNP coated poly(phenyl-(4-(6-thiophen-3-

yl-hexyloxy)-benzylidine)amine) (P3TArH) was conducted using TEM and FESEM. 

Among those nanocomposites, MNP coated P3TArH has shown higher 

determination capabilities of phthalates. The adsorption behaviour of di(2-

ethylhexyl) phthalate (DEHP) onto the MNP coated P3TArH showed fast kinetics, 

occurred heterogenously on the adsorption sites and exothermic. The activation 

energy determined found was -40.6 kJ mol
−1 

K
−1

, indicated the process is

physisorption. The successful synthesised magnetic nanoparticles were further 

optimized for magnetic solid-phase extraction (MSPE) of environmental samples. 

Separation and determination of the extracted phthalates namely dimethyl phthalate 

(DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), dibutyl phthalate (DBP), 

butyl benzyl phthalate (BBP), dicyclohexyl phthalate (DCP), di(2-ethylhexyl) 

phthalate (DEHP) and di-n-octyl phthalate (DNOP)  were conducted by gas 

chromatography-flame ionization detector (GC-FID). The best working conditions 

were as follows; sample at pH 7, 30 min extraction time, ethyl acetate as elution 

solvent, 500 µL elution solvent volumes, 10 min desorption time, 10 mg adsorbent 

dosage, 20 mL sample loading volume and 15 g L
-1

 concentration of NaCl. Under the

optimized conditions, the analytical performances were determined with linear range 

Univ
ers

ity
 of

 M
ala

ya



iv 

of 0.1-50 µg L
-1

 and limit of detection at 0.054-0.468 µg L
-1

 for all the studied 

analytes. The intra-day (n=7) and inter-day (n=3) relative standard deviations, RSD 

(%) of three replicates each demonstrated in the range of 3.7-4.9 and 3.0-5.0 

respectively. The steadiness and reusability studies suggested that the 

MNP@P3TArH could be used up to five cycles. The proposed method was executed 

to analysis of real water samples namely commercial bottled mineral waters and 

fresh milk and recoveries in the range of 68-101 % and relative standard deviation 

(RSD %) lower than 7.7 % were attained.  
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ABSTRAK 

Politiofena, poli(3-hexiltiofena), poli(N-fenil-1-(2-tienil)metanimina) dan poli(fenil-

[4-(6-tiofena-3-il-heksilloksi)-benzilidina]amina) telah berjaya disalut pada 

permukaan nanopartikel magnet Fe3O4 (MNP). Dua daripada pemfungsian monomer, 

N-fenil-1-(2-tienil)metanimina dan fenil-[4-(6-tiofena-3-il-heksilloksi)-benzilidina] 

amina telah berjaya disintesis. Analisis oleh FT-IR, TGA, XRD, VSM dan BET 

mengesahkan proses salutan telah berlaku. Analisis lanjut MNP bersalut poli(fenil-

[4-(6-tiofena-3-il-heksilloksi)-benzilidina]-amina) (P3TArH) dilakukan 

menggunakan TEM dan FESEM. Antara semua nanokomposit, MNP bersalut 

P3TArH mempunyai keupayaan yang lebih tinggi dalam mengesahkan kehadiran 

ftalat. Kelakuan penjerapan di(2-etilhexil) ftalat (DEHP) ke MNP bersalut P3TArH  

menunjukkan kinetik yang cepat, berlaku secara heterogen pada tapak penjerapan 

dan eksotermik. Tenaga pengaktifan ditentukan adalah -40.6 kJ mol
−1 

K
−1

, 

menunjukkan proses penjerapan ini adalah penjerapan fizikal. Nanokomposit yang 

berjaya disintesis juga telah dioptimumkan untuk magnet pengekstrakan fasa pepejal 

(MSPE) sampel alam sekitar. Pemisahan dan penentuan ftalat diekstrak iaitu dimetil 

ftalat (DMP), dietil ftalat (DEP), dipropil ftalat (DPP), dibutil ftalat (DBP), butil 

benzil ftalat (BBP), disiklohexil ftalat (DCP), di(2-etilhexil) ftalat  (DEHP) dan di-n-

oktil ftalat (DNOP) telah dijalankan oleh gas kromatografi pengesan api pengionan 

(GC-FID). Hasil yang  yang terbaik adalah seperti berikut; sampel pada pH 7, 30 min 

masa pengekstrakan, etil asetat sebagai pelarut, 500 µl jumlah pelarut, 10 min masa 

nyahserap, 10 mg jisim penjerap, 20 mL isipadu sampel dan 15 g L
-1

 kepekatan 

natrium klorida (NaCl). Di bawah keadaan yang dioptimumkan, persembahan 

analisis telah ditentukan dengan linear 0.1-50 μg L
-1

 dan had pengesanan di 0.054-

0.468 μg L
-1

 untuk semua analit dikaji. Analisis antara hari (n=7) dan hari yang sama 
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(n=3) sisihan piawai relative, RSD (%) daripada tiga replikasi setiap menunjukkan 

masing-masing dalam julat 3.7-4.9 dan 3.0-5.0. Kajian keunggulan dan boleh 

digunapakai mencadangkan bahawa MNP@P3TArH boleh digunakan sehingga lima 

kali. Kaedah yang dicadangkan dilaksanakan analisis sampel air sebenar iaitu 

komersial air mineral dan susu segar. Peratus pengambilan semula adalah dalam 

lingkungan 68-101 % dan sisihan piawai relatif yang lebih rendah daripada 7.7 % 

telah dicapai.  
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1 

 INTRODUCTION  CHAPTER 1:

1.1 Background of Study   

Phthalates or phthalate esters which belong to non-halogenated esters of phthalic 

acid are used as plasticizers for nitrocellulose since it was first recognized in 1880, 

replacing camphor (Franck & Stadelhofer, 1988). Nowadays, phthalates can be found in 

many different matrices in our environment and are widely utilized in the PVC 

industries as a plasticizer for floors, hoses, cables (building materials), toys and medical 

appliances (Jones-Lepp et al., 2000). Other consumer-based products utilizing 

phthalates are as a component in inks, adhesive materials, lacquers, sealing and packing 

materials, materials for treating surfaces, solvents and fixing agents in fragrances, as 

well as additives in cosmetics (Serôdio & Nogueira, 2006; Wypych, 2004; Yuan et al., 

2008).  

 

Phthalates become emerging pollutants and harmful to humans, especially 

children, since they are not chemically bound in plastics and could be leached out into 

the environment (Serodio & Nogueira, 2006). Thus, the usage of phthalates in the 

production of toys, baby bottles and pacifiers is banned in many countries 

(Sathyanarayana et al., 2008). Exposure to phthalates over long-term periods could 

result in health issues, for example potential carcinogenic effects or critical impact on 

the hormonal systems, since they own lipophilic properties, which make them easily 

stored in fatty tissues (Foster, 2006; Latini et al., 2004; Ohtani et al., 2000; Pitter, 

2009). The higher molecular weight of phthalates, such as DEHP, DBP and DNOP 

often leads to serious health illnesses and is alleged to be carcinogenic and lethal to liver 

and kidneys, as well as reproductive organs (Gomez-Hens & Aguilar-Caballos, 2003; 

Swan et al., 2005). In Malaysia, due to the awareness of the migration of phthalates 

from food packaging, baby bottles and pacifiers, a regulation has been proposed, which 
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in stated in Law of Malaysia (1985) under Food Regulation, which regulated plastic 

materials, and articles shall be examined in agreement with Standard Malaysia (2014) in 

MS 2234: ―Plastic Materials and Articles Intended to Come into Contact with Food‖, 

which clarified the specific migration limits as follows; 1.5 mg kg
−1

 for DEHP, 0.3 mg 

kg
−1

 for DBP, 30 mg kg
−1

 for BBP and 9.0 mg kg
−1

 for DIDP. 

 

 Recently, phthalates have been found in polyethylene terephthalate (PET) bottles 

which may lead to many serious consequences, since the PET bottles are widely used as 

containers for mineral water, milk and soft drinks. The existence of phthalates in PET 

bottles may be explained through several possibilities: the type of raw materials, the 

chemicals or processes involved in bottle manufacturing, the practice of the use of PET 

bottles, as well as cross contamination in the bottling plant and cap resins (Amiridou & 

Voutsa, 2011; Bach et al., 2012; Leivadara et al., 2008; Liu et al., 2008; Schmid et al., 

2008; Wu et al., 2012). Studies conducted by Plotan et al. and Wagner et al. reported 

that in most of the inspected PET-bottled water samples, endocrine disruptor activity 

was found (Plotan et al., 2013; Wagner & Oehlmann, 2009). 

 

Given the unlimited toxic effects arising from these materials, much research  

have been conducted to find a solution to eliminate its contamination of the 

environment (Chen & Chung, 2006; Julinová & Slavík, 2012). However, the 

determination of phthalates in environmental samples is challenging due to their trace 

amounts and the intervention of an intricate matrix (Yuan et al., 2002). Therefore, a 

sample preparation step for the extraction and preconcentration of the analytes is 

required (Lopez-Jimenez et al., 2005). Solid phase extraction (SPE) is one of the 

established and popular methods for sample enrichment prior to analysis using high 

performance liquid chromatography (HPLC) and gas chromatography (GC) (Farahani et 
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al., 2008; Kerienė et al., 2011; Ling et al., 2007). The advantages of SPE over liquid-

liquid extraction (LLE) are its simplicity, rapidness, that the adsorbent is recyclable, the 

steadiness, low cost, high enrichment factors and low usage of organic solvents 

(Tahmasebi & Yamini, 2014). Numerous types of sorbents were synthesized and used 

for the determination of plasticizers, for example an octadecyl packed column (C18), α-

cyclodextrin functionalized chitosan, poly(styrene–divinylbenzene) polymers and 

zeolitic imidazolate (Holadova & Hajslova, 1995; Khan et al., 2015; Kvistad et al., 

1998). The selection of adsorbent plays an important role in SPE, since it can determine 

the efficiency, anti-interference ability and selectivity of the method for the targeted 

analytes (Raoov et al., 2014). 

 

Magnetic nanoparticles (MNPs), especially iron oxides, have become one of the most 

useful materials in numerous applications since their discovery, for example magnetic 

fluids, catalysis, magnetic resonance imaging and environmental disciplines (Farrukh et al., 

2013; Li et al., 2005; Lin et al., 2012). In the application for the removal of pollutants from 

the environment, the nano-sized particles provide a high surface area to volume ratio, which 

enhances adsorption capacity and efficiency (Shahabuddin et al., 2016). Moreover, the 

distinct feature of MNPs is their rapid response to an external magnetic field. This special 

property, called superparamagnetism, does not preserve magnetism after the elimination of 

an external field. Thus, it helps to isolate the adsorbents from an aqueous solution in a 

complex matrix without the need for centrifugation or filtration and can be referred to as 

magnetic solid-phase extraction (MSPE) (Li et al., 2010; Xie et al., 2014). Due to the 

simplicity of the technique, much research has been published on utilizing Fe3O4 as the 

adsorbent for MSPE in water samples, for example determining antimicrobial residue, 

heavy metals, non-steroidal anti-inflammatory drugs and pesticides (Aguilar-Arteaga et al., 

2010; Fayazi et al., 2016; Ibarra et al., 2014; Mehdinia et al., 2016). 

Univ
ers

ity
 of

 M
ala

ya



4 

However, the smaller the particle size, the more it becomes unstable, which initiates 

particle accumulation. Moreover, metal oxide may be oxidize easily and reduce its 

magnetism properties. Therefore, an appropriate surface functionalization can be done, 

which can be tailored to the specific targeted analyte. The strategy to protect the magnetic 

core can be either by organic or inorganic compounds, for example Al2O3, SiO2, 

surfactants, alkyl carboxylates and polymeric coatings (Ballesteros-Gomez & Rubio, 2009; 

Faraji et al., 2010; Sun et al., 2010; Zhai et al., 2010). Recently, research articles reported 

on the utilization of conducting polymers as a coating agent of the MNPs (Gao et al., 2011; 

Tahmasebi et al., 2012; Zhao et al., 2013). These nanocomposites have multifunctional and 

diverse properties, which may enhance the surface functionalization and protect the 

magnetic core from environmental agitation. Moreover, it may reduce aggregation and 

disperse the nanoparticles‘ core shell distribution within the suspension media (Shin & 

Jang, 2007). Herein, we prepared a modified polythiophene containing an additional 

aromatic ring and aliphatic sides on the surface of Fe3O4 magnetic nanoparticles 

(MNPs) to investigate its performance as a magnetic solid phase extraction of 

phthalates, as shown in Figure 1.1. Thus, in this work, the sorbent was further tested for 

real aqueous samples, including commercial mineral water and commercial fresh milk 

which were kept in a PET bottle. 
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Figure 1.1: Phthalates used in this study 

 

 

1.2 Objectives of Study 

In this study, four objectives were achieved as follows: 

a) Synthesis and characterization of magnetic nanoparticles (MNP) coated 

functionalized polythiophene nanocomposites, 

b)  Adsorption studies of di(2-ethylhexyl) phthalates (DEHP) using MNP coated 

poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidine)amine) (P3TArH),  

c)  The application of MNP coated P3TArH as a new sorbent for magnetic solid-

phase extraction (MSPE) of phthalates in real sample analyses.  
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1.3 Scope of Study 

In this study we utilized four different thiophene monomers functionalities as 

coating materials on the surface of magnetic nanoparticles (MNP). Figure 1.2 shows 

two commercially available monomers thiophene (Th) and 3-hexylthiophene (3Th), 

meanwhile N-phenyl-1-(2-thienyl)methanimine) (TCN) and phenyl(4-(6-thiophen-3-yl-

hexyloxy)-benzylidine)amine (3TArH) were two successfully synthesized monomers.   

These functionalized materials had a potential within the molecular architecture that can 

extracts phthalates from aqueous solution. Among those nanocomposites, MNP coated 

P3TArH revealed superior determination capability of phthalates. Kinetic, isotherms 

and thermodynamic studies for adsorption of DEHP with MNP coated P3TArH was 

determined. Optimization parameters for magnetic solid-phase extraction (MSPE) were 

pH, extraction time, sample volume, elution solvent, elution solvent volume, desorption 

time, adsorbent dosage and effect of NaCl.  Reusability studies were conducted for five 

cycles to determine the possibilities for reutilizing and regeneration. 

Under the optimized conditions, analytical performance were carried out to 

determine linear dynamic range (LDR), limit of detection (LOD), limit of quantitation 

(LOQ), and repeatability. To evaluate reliability of proposed method for extraction and 

preconcentration of phthalates from real samples, two real water samples were tested. 

The real samples were water from commercial mineral water bottle and milk samples 

stored in PET bottle. Univ
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Figure 1.2: Functionalized thiophene monomers 

 

 

1.4 Significance of Study 

Functionalized thiophene monomers were polymerized on the surface of magnetic 

nanoparticles. The study of the molecular architecture of the functionalized thiophene 

monomers gave information on their capability for selectively extraction of phthalates 

from aqueous solution. This information is crucial in terms of developing a new, 

advanced and reusable material to extract contaminants from the environments. 

 

 

1.5 Thesis Outline 

The present thesis is organized into five chapters. Chapter 1 gives a brief 

introduction on background, research objectives of study, scope of study and 

significance of study. A review of related literature is presented in Chapter 2. Chapter 3 

covered experimental methodologies on the preparation of functionalized polythiophene 

coated magnetic nanoparticle, screening studies, adsorption studies of DEHP with MNP 

coated P3TArH and application of MNP coated P3TArH as a sorbent for MSPE of 

phthalates. Chapter 4 presented the results and discussion which divided into three 
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parts. First part is the characterization of synthesized materials. Meanwhile, in second 

part, the results of adsorption studies of DEHP with MNP coated P3TArH were 

elaborated, whereas last part discussed on the application of MNP coated P3TArH as a 

sorbent for magnetic solid-phase extraction (MSPE) of phthalates and real sample 

analyses. Lastly, in Chapter 5, conclusions and recommendations were elaborated. 
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 LITERATURE REVIEW  CHAPTER 2:

2.1 Polymers 

The term "polymer" originates from the ancient Greek word polus, meaning 

"many, much" and meros, "parts", and denotes to a molecule whose structure is 

composed of multiple repeating units, from which originates a characteristic of high 

relative molecular mass and attendant properties (Skotheim, 1997). The units 

composing polymers derive, actually or conceptually, from molecules of low relative 

molecular mass (Chen et al., 2012). 

Polymers are high molecular mass compounds formed by polymerization of 

monomers. The simple repeating structural units of a polymer are known as monomer. 

A polymer is chemically defined by its degree of polymerization, molecular weight 

distribution, tacticity, copolymer distribution, the degree of branching, end-groups, 

crosslinks, crystallinity and thermal properties such as its glass transition temperature 

and melting temperature. Polymers in solution have distinct characteristics with regard 

to solubility, viscosity and gelation. Many polymers are prepared by the mutual reaction 

of complementary monomers (Cornil et al., 1998). 

 

2.1.1 Conducting Polymers 

Conducting polymers is a polymer having an extended n conjugated system, for 

example double and single bonds alternate along the polymer backbone known. 

Conjugated polymers have an ability to conduct electricity when partially oxidized and 

reduced. The development in the comprehensive study of greatly conducting polymers 

initiated in 1977 with the finding of the variation in the electrical conductivity of 

polyacetylene on doping with Br2, I2 and AsFs (Chiang et al., 1978). Further conjugated 
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polymers which display fascinating electrical and electrochemical assets related with 

their extended n-bonding system are polyphenylene, polyaniline, polythiophene, 

polypyrrole and polyphenylene vinylene. The electrical conductivity of all these 

polymers can be augmented over suitable chemical or electrochemical oxidation (p-type 

doping) and reduction (n-type doping). Although, poly(acetylene) exhibits highly 

conducting on doping compares to other conjugated polymers, yet it is may susceptible 

to thermal and environmental perturbation, has insolubility issue and difficult to process 

(Schopf & Kossmehl, 1997). 

Polymers containing conjugated heterocyclic units in the backbone such as 

polythiophene, has outstanding electrical conductivities and high stability in air/humid, 

thermal steadiness and mechanical robustness in doped and undoped states. The 

conjugated structure with alternating single and double bonds or conjugated segments 

coupled with atoms providing p-orbitals for a continuous orbital overlap (e.g. nitrogen, 

sulfur) seems to be necessary for polymers to become intrinsically conducting. This is 

because just as metals have high conductivity due to be free movement of electrons 

through their structure, in order for polymers to be electronically conductive they must 

possess not only charge carriers but also an orbital system that allows the charge carriers 

to move (Fichou, 2008). 

 

2.1.2 Polythiophene  

 Polythiophene belongs to a class of heterocyclic compounds containing a five 

membered ring made up of one sulphur as heteroatom with the formula C4H4S. 

Thiophene and its derivatives isolated from petroleum or coal. Thiophene is taken from 

the word theion, the Greek word for sulfur, and another Greek word phaino which 

means shinning (Tourillon & Skotheim, 1986). Owing to their efficient light harvesting, 
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structural versatility and intrinsic charge transport behavior, thiophene-based π-

conjugated systems have attracted much attention in developing high performance 

conducting cells. Figure 2.1 demonstrates structure of thiophene repeating units.  

 

 

Figure 2.1: Repeating unit of polythiophene 

 

Conjugated thiophene has been the focus of much research owing to its interesting 

properties that are well suited for organic electronic applications including field effect 

transducers (OFET), light emitting diodes (OLED), photovoltaics (OPD), and nonlinear 

optical devices (NLO) (Huo et al., 2011; Mannerbro et al., 2008; Yang & Jenekhe, 

1991). This is in part due to its low oxidation potential relative to its homoaryl 

analogues. Subsequently, it can be chemically doped resulting in stable p-type materials 

with high conductivities and charge mobilities (Sinha et al., 2009). Furthermore, 

property tuning to match a specific electronic application is possible by incorporating 

electronic groups along the conjugated framework in addition to copolymerizing with 

other heterocyclic monomers. Copolymerization and homopolymerization are typically 

done electrochemically. Alternatively, chemical polymerization is possible via oxidation 

using FeCl3 Suzuki, Negishi, and Kumada coupling protocols (Xu et al., 2008; 

Yokozawa et al., 2008). It has been found that polythiophene exhibits inimitable 

properties and efficiency in terms of chemical stability, conjugation and flexibility to be 

functionalized (McCullough & Williams, 1993). 
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2.1.3 Functionalized Polythiophene 

Poly(3-substituted thiophenes) with a diversity of substituents such as alkyl, 

alkoxy, alkyl heteroatom-functionalized side chains have been studied extensively. 

Overcoming insolubility problems by introducing alkylic chains in the 3-position of the 

thiophenic ring, thus providing soluble and processable materials. -functionalized 

thiophene monomer is a thiophene monomer that has functional group in the  position 

of the carbon. Interestingly it exhibits advantages such as enhance more regioselective 

thiophene by electro polymerization, reduce the oxidation potential with electron-rich 

substituents and improving the mechanical property with introduction of alkyl chain 

functionalities. 

 

Electron-releasing and electron-withdrawing group in  position of thiophene 

show different property. Electron-donor group reduces the oxidation potential of the 

thiophene monomer whereas electron-acceptor increases the oxidation potential 

(Waltman et al., 1983). Physical property of the subjected polythiophene will enhance 

by introducing functionalized material as a dopant (McQuade et al., 2000). Many 

approaches for functionalizing thiophene have been developed for examples the 

thiophene structure with addition of organic active species and introduction of inorganic 

metals to polythiophene compounds (inorganic-organic hybrid materials) (Aradilla et 

al., 2012). Figure 2.2 exhibits examples of functionalized polythiophenes.  

 

Recently, thiophene functionalized Schiff base has been extensively studied in the 

photovoltaic and environmental sensor application (Pedras et al., 2007). Apart being a 

sensor, Issaadi et al. claimed that thiophene containing Schiff base is one of the best 

inhibitor that protects surface of a metal from corrosion in acidic media (Issaadi et al., 
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2011). The functionalized Schiff base can enhance the stability of hybrid inorganic-

organic polythiophene compounds from environmental perturbation (Ismail, 2007). 
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S

S
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Poly(2,5-thiophenediyl- 1,3-butadiynediyl)

 Poly (3-((2':2'',5'':2"-Terthiophene)-3"-yl) acrylic acid Poly(3-hexylthiophene-stat-3-(6-azidohexyl)thiophene)

S

Poly(3-hexylthiophene)

 

Figure 2.2: Functionalized polythiophenes (Cornil et al., 1998) 

 

Intensive studies of the development of organic-inorganic hybrid of polythiophene 

based materials have become one of the main focuses by many researchers. Owing to 

enhancement properties, these hybrid materials are being applied in various fields. 

Example of hybrid polythiophene based materials are magnetic nanoparticles coated 

polythiophene, titanium-dioxide functionalized polythiophene and polythiophene doped 

zinc chloride (Mrowetz et al., 2003; Tahmasebi & Yamini, 2014).  

 

2.1.4   Application of Polythiophene in Environmental Application 

Due to its good environmental stability, ease of synthesis and good conducting 

properties, polythiophene, functionalized polythiophene and polythiophene metal 

composite have been widely applied in environmental fields, for examples, heavy metal 
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sensor, photocatalytic degradation and adsorption (Ansari et al., 2015; Din et al., 2014; 

Udhayakumari et al., 2014).  

Rapid environmental monitoring and management assisted in on-site and real time 

measurements of many different heavy metals. An approach to identify these heavy 

metals is based on deviation of electrical/fluorescence responses of the active species. 

Due to the high conductivity and stability many heavy metal sensors have been 

developed by polythiophene based compounds (Ng et al., 1998). For instance, 

nanocomposite of regioregular poly(3-hexylthiophene) (P3HT) with metal oxide ZnO 

has been designed and applied as a sensor to detect zinc and lead (Saeteaw et al., 2011). 

Moreover, rhodamine-thiophene conjugate has been proposed by Mandal et al. (2013) 

to sense mercury ion (Hg
+
). 

Band gap of polythiophene is in the range of 2.0 eV and may change rendering to 

the nature of doping. This band gap is adequately small compared to metal oxides, such 

as TiO2, ZnO etc. Due to this sufficiently small band gap, it is possible to excite an 

electron from the valence band to the conduction band with UV and visible light, which 

is suited for photocatalysis application (Krüger et al., 2011). High degradation of 

methyl orange was successfully obtained with poly hexylthiophene-titanium dioxide 

nanocomposite (P3Th/TiO2). In addition, Chandra et al. (2015) described that a 

polythiophene-titanium dioxide-functionalized-copper composite (PTh/TiO2–Cu) 

prepared by a sol–gel process has been photocatalytically degraded rhodamine-B dye. 

Adsorption seems to be a competent tool for processing greater quantities of 

wastewater containing pollutant. Whole ranges of adsorbent from polythiophene based 

were developed. In the heavy metals removal, utilization of polythiophene based 

materials are due to the sulphur atom that can easily conjugate with heavy metals ion 

whereas, in removal of organic pollutants, interactions are mainly based on π-π 
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conjugation and hydrophobicity in the polythiophene (Julinová & Slavík, 2012; Shin & 

Jang, 2007). Recently, functionalization of polythiophene in the surface of nanoparticles 

has become research interest in environmental treatment management. These 

combinations of high surface area and great surface chemistry have enhanced the 

progress of water remediation for a wide range of pollutants (Khalili et al., 2014).  

 

2.2 Nanoparticles  

2.2.1 Overview 

Nanoparticles have been extensively used worldwide in many fields such as 

material sciences, physics, medicine, electronic and chemistry. Different kind of shapes 

and types of nanomaterials were prepared from organics and inorganics based including 

nanotubes, nanohorns and nanocages (de Dios & Díaz-García, 2010; Ozin et al., 2009; 

Boal, 2004). Nanoscale often have different physical, chemical, and biological 

properties compares to macro, micro scale, due to the quantum size influence 

(Alivisatos, 2000). Nanoparticles considered exquisite materials since they have a high 

surface area-to-volume ratio and provides a surface functionalization which can be 

tailored according to applications.  

 

2.2.2 Magnetic Nanoparticles 

They are different kinds of magnetic nanoparticles, for examples iron oxides, 

ferrites of cobalt, manganese, nickel, magnesium and platinum. However, only iron 

oxides considered biological safe and, therefore, is the only nanoparticle material that 

have been permitted by the U.S. Food and Drug Administration. Besides, iron oxides is 

easy to synthesis and give high magnetic moment (Teja & Koh, 2009). Moreover, iron 

oxide nanoparticle showed an advanced property and widely used in many area such as 
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magnetic fluids, catalysis,  magnetic resonance imaging, and environmental remediation 

(Chikazumi et al., 1987; Farrukh et al., 2013; Lin et al., 2012). Due to increase in 

research interest for the iron oxide nanoparticles, intensive studies on nanoparticle 

structure, physical and chemical properties as well as toxicity has force to the evolution 

of magnetic nanoparticles for industrial and biomedical applications.  

 

2.2.3 Properties of Iron Oxide Nanoparticles 

Magnetite (Fe3O4), maghemite (-Fe2O3), and hematite (-Fe2O3) is the most 

common of iron oxides present in nature (Cornell & Schwertmann, 2003). These types 

of iron oxides are widely used in the various applications. Table 2.1 summarized some 

of their physical properties. Recognized as black iron oxide, magnetite displays the 

sturdiest magnetism among transition metal oxide. Whereas, hematite typically known 

as ferric oxide or martite is the first iron oxide ever found and abundantly exists in rocks 

and soils. They are having blood-red color in bulk and grey in coarse crystal. 

Meanwhile, heating of iron oxides or effect of weathering could lead to formation of 

maghemite (Majewski & Thierry, 2007).   

A reason for high magnetic moment in the iron atom is due to its four unpaired 

electrons in 3d orbitals.  As demonstrates in Figure 2.3, different magnetic behaviours 

can occur upon crystallization for example paramagnetic, ferromagnetic, 

antiferromagnetic and ferrimagnetic. Zero magnetic moment was observed in 

paramagnetic state which each atomic magnetic moment are arbitrarily arranged. 

Meanwhile, ferromagnetism behaviour demonstrated the property when all the moments 

are aligned in the absence of external field.  Whereas, ferrimagnetic crystals often have 

two diverse moments of strength and are organized in inverse orde
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Table 2.1: Properties of iron oxides 

Property Oxide   

Hematite Magnetite Maghemite 

Molecular formula -Fe2O3  Fe3O4  -Fe2O3 

Density (g cm
-3

) 5.26  5.18  4.87 

Melting point (°C) 1350  1583-1597  - 

Hardness 6.5  5.5  5 

Type of magnetism Weakly ferromagnetic 

or antiferromagnetic 

Ferromagnetic Ferrimagnetic 

Curie temperature (K) 956 850 820-986 

Magnetization saturation at 300 K (A-m
2
 kg

-1
) 0.3 92-100 60-80 

Standard free 

energy of formation ΔGf° 

 (kJ mol
-1

) 

-742.7 -1012.6 -711.1 

Crystallographic system Rhombohedral, hexagonal Cubic Cubic or tetrahedral 

Structural type Corundum Inverse spinel Defect spinel 

Space group R3c (hexagonal) Fd3m P4332 (cubic); P41212 

(tetragonal) 

Lattice parameter (nm) a = 0.5034, c = 1.375 

(hexagonal)  

aRh = 0.5427,  = 55.3° 

(rhombohedral) 

a = 0.8396 a = 0.83474 (cubic); a = 

0.8347, c = 2.501 

(tetragonal) 

Source: (Cornell & Schwertmann, 2003) 

1
7
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The magnetic manners of hematite subject to its crystallinity, particle size and on 

the degree of cation substitution (Bodker & Morup, 2000; Raming et al., 2002). 

Hematite displays paramagnetic at more than 956 K, but at 260 K, it demonstrates 

weakly ferromagnetic and go through a phase evolution to antiferromagnetic behaviour 

(Besser et al., 1967; Morin, 1950; Zysler et al., 2001). Superparamagnetic property 

which is a property when the material does not preserve magnetism after the elimination 

of an external field often observed in the iron oxide nanoparticles especially magnetite 

with size smaller than 20 nm, but, it is also depends on the approaches used in the 

preparation (Aydın et al., 2011; Kado, 2008; Margulies et al., 1996; Sena et al., 1997; 

Xu et al., 2012).  

 
 

Figure 2.3: Alignment of atomic magnetic moments (Devine, 2013) 

 

 

2.2.4 Method for Preparation of Magnetic Nanoparticles 

Preparation method is important since it determines particle size distribution, 

shape and surface chemistry of the material. Recently, many synthesis pathways have 

Paramagnetic Ferromagnetic

Antiferromagnetic Ferrimagnetic
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been established to manipulate particle size, polydispersity, shape, crystallinity and 

magnetic behaviours (Lian et al., 2004; Takami et al., 2007; Tartaj et al., 2003). There 

several methods for the preparation of magnetite for example chemical vapour 

deposition, co-precipitation, two phase, sol-gel method and hydrothermal. 

 

2.2.4.1 Chemical Vapour Deposition 

  Gas phase includes thermal decomposition, hydrolysis, and oxidation process to 

produce solid products via gas phase (Pierson, 1999). Example of gas phase method is 

chemical vapour deposition (CVD). In this process, a gas carrier delivers a precursor to 

a reaction compartment which is controlled at  ~900 °C (Chang et al., 1994; Tavakoli et 

al., 2007). Figure 2.4 presents a schematic diagram of chemical vapour deposition 

reactor. Under extreme temperature condition, the products are joined to form nano 

powders. Particles growth and accumulation are alleviated by hasty extension of double 

phase gas stream in the reaction compartment. Compositional and structural alteration 

are made by continual heat treatment which include crystallization, purification as well 

as conversion to a anticipated size, arrangement and morphology (Tavakoli et al., 2007). 

 In the preparation of iron oxide via chemical vapour deposition method, 

probability of accomplishment is highly influences by a low concentration of precursors 

and express enlargement and extinguishing of nanoparticles once they reached end of 

the process (Chang et al., 1994). Park et al. (2006) synthesized magnetite thin films at 

300 °C in oxygen using iron(II) dihydride complexes (H2Fe[P(CH3)3]4) as precursor. 

Another, magnetite successfully prepared via low pressure chemical vapour deposition 

by Dhara et al. (1994) utilizing metal-organic ferric dipivaloyl methanate. Chemical 

vapor deposition is capable to produce high purity products, but the yield is often low. 
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Besides, set up of the equipment is extremely expensive and tedious as it must be 

properly and precisely controlled (Casas et al., 2001). 

 

Figure 2.4: Schematic diagram of a CVD setup (Tavakoli et al., 2007) 

 

 

2.2.4.2 Two Phases Method 

 Magnetic nanoparticles can be prepared using water in oil micro emulsion. In 

this technique, a wetting agent (surfactant) is required to reduce the surface tension 

between oil and water. Various type of surfactant have been utilized in the preparation 

of magnetite nanoparticles for examples sodium dodecyl sulfate (SDS), 

cetyltrimethylammonium bromide (CTAB), polyvinylpyrrolid (PVP) and diethyl 

sulfosuccinate (DES) (Esquivel et al., 2007; Hasany et al., 2012; Nassar & Husein, 

2006; Zhang et al., 2008).  

As demonstrates in Figure 2.5, there are three alternatives in micro emulsion 

techniques, these approaches are applicable according to application acquired. In the 

first approach, reactants A and B are liquefied in the solution, upon mixing, collision 
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and coalescence of between reactants molecules forming a precipitate AB. Meanwhile, 

in the second approach, nanoparticles are formed by reduction reaction of metal salts in 

the presence of reducing agent such as hydrazine or hydrogen. For the third approach, 

micro emulsion of soluble salts cations are bubbled with gas (O2, NH3, or CO2) forming 

either oxide, hydroxide or carbonate precipitates (Pillai et al., 1995). Limitations of 

micro emulsion technique are the challenging in producing high scale products and 

toxicity of remaining surfactants in the surface of particles (Teja & Koh, 2009). 

 

 

Figure 2.5: Diagram of nanoparticle synthesis in microemulsions (I) by mixing two 

microemulsions, (II) by adding a reducing agent and (III) by bubbling gas through the 

microemulsion (Teja & Koh, 2009) 
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2.2.4.3 Sol-gel Method 

Sol-gel method involves in, hydrolysis and condensation of alkoxide precursors to 

form a solution of oxide particles, the solution (‗sol‘) is removed (‗gel‘) by solvent 

removal or chemical reaction. As describes in Figure 2.6, the sol-gel processes involve 

few synthesis routes. Solvent used in this method is normally water, but the precursor 

must be reagent that can be hydrolysed by acid or base. In the basic condition, a 

colloidal gel is produced, whereas in acidic condition a polymeric gel is formed (Lam et 

al., 2008). Parameters in the sol-gel method that influenced the shape, size, morphology 

and surface chemistry of nanoparticles are rates of hydrolysis and condensation, 

solution composition, pH and temperature. For examples slower and controlled 

hydrolysis rate produced smaller nanoparticle size. (Tavakoli et al., 2007).  Iron oxide 

nanoparticles in the size range of 20 to 160 nm were synthesized by Casas et al. (2001), 

utilizing ethylene diaminetetraacetic acid (EDTA) as a precursor.  

The sol-gel technique has successfully prepared magnetite and maghemite thin 

films, transparent iron-doped titanium oxide thin films, ferroelectromagnetic bismuth 

iron oxide films, mixed iron oxides and iron oxide-alumina nanocomposites (Chang et 

al., 1997; Ismail, 2005; Lang, 2005; Liu et al., 2006; Liu et al., 2005). The major 

problem of sol-gel methods are occurrence of contamination from side products, 

extensive treatment of the products after reactions, difficulty to control reaction rates 

which eventually effect the material morphology and structure and different reactivity 

of metal oxides results in the lack of judgment over composition and homogeneity of 

the materials (Niederberger & Pinna, 2009).  

 

Univ
ers

ity
 of

 M
ala

ya



 23 

 

Figure 2.6: Steps in the sol-gel process (Niederberger & Pinna, 2009) 

 

2.2.4.4 Hydrothermal Method 

Hydrothermal method is environmental safe technique to synthesis nanoparticles 

since the method does not require any use of organic solvent and calcination (Sue et al., 

2004). Hydrothermal method is a method utilizing high temperature and high pressure 

for crystallizing substances. The hydrothermal setup shown in Figure 2.7 displays a 

hydrothermal, fine crystals which are obtained by this technique through formation of 

super saturation of metal salts at elevated pressure and temperature due to the low 

solubility of metal hydroxides and oxides (Eckert, 1996; Sue et al., 2006). Variables 

that influence the crystal growth are pressure, temperature, reaction time and starting 

materials. For instance, mean particle size exhibits bigger size and different shape of the 

nanoparticles is observed when operation temperature is increased (Burda et al., 2005). 
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Figure 2.7: Diagram of hydrothermal setup (Grange et al., 2011) 

 

 

Hydrothermal ‗continuous flow‘ reactor created by Matson et al. (1994) has been 

successfully prepared fine magnetite nanoparticles by rapid elevated temperature and 

supercritical water flows in the reactor for 5 to 30 seconds using ferrous sulphate and 

urea. Influence of precursor concentration, temperature and contact time on particle size 

and morphology were comprehensively studied, and as the precursor concentration 

increased the particle size also increases and monodisperse particles is obtained with 

short contact time (Xu et al., 2008). Even though hydrothermal method offers 

advantages for controlling particle size and morphology, it required additional post-

treatment steps and some of the surface functionalization cannot be achieved on the site.  
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2.2.4.5 Co-precipitation Method 

Co-precipitation technique is one of the liquid phase techniques and widely used 

in preparation magnetite nanoparticles due to its simplicity, have economic value and 

good yields of product. This technique involves the reaction of stoichiometric mixtures 

of hydrated ferrous and ferric chloride with the presence of base in aqueous media 

(Sugimoto & Matijević, 1980). Spherical magnetite nanoparticles with mean diameters 

ranging from 30 to 100 nm were obtained from reaction of iron(II) salts, base and nitrate 

ions as oxidant (Tartaj et al., 2003). Concentration of cations, counter ions involve and 

pH give influence to the phase and particle size distribution (Khaleel, 2004; Tamaura et 

al., 1983; Tronc et al., 1992).  

Aggregation of nanoparticles may occur in the co-precipitation technique due to 

the large surface-area to volume ratio. Thus, addition of dispersing agent may stabilize 

the nanoparticles (Kim et al., 2003a). Examples of dispersing agents are protein, 

starches, non-ionic detergents, polyelectrolyte, oleic acid, saturated and unsaturated 

fatty acid as well as dodecanoic acid (Khalafalla & Reimers, 1980; Kim et al., 2003b; 

Mikhaylova et al., 2004; Wooding et al., 1991; Xu et al., 2006). Therefore, in this study 

we prepared magnetic nanoparticle by co-precipitation technique with water as medium 

of reaction because it is an effective technique to prepare magnetite with high yield of 

products, low cost and environmental safe. 

 

2.2.5 Magnetic Nanoparticles in Environmental Application 

In a determination to encounter water contamination, speedy and effective 

developments in wastewater handling have been made, including photocatalytic 

oxidation, adsorption, separation and biotreatment process. Nevertheless, their usages 

have been constrained by many aspects, for examples removal ability, technical routine, 
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energy supplies, and cost-effective value (Dastjerdi & Montazer, 2010). Recently, 

magnetic nanoparticles have been widely explored in the field of waste water treatment 

due to few advantages such as high surface area, simple preparation step, 

superparamagnetism, provide surface modification, low toxicity, inert, biocompatibility 

and low cost (Boyer et al., 2010; Gupta & Gupta, 2005; Pan et al., 2010).  

A combination of adsorptive process with magnetic dissociation has therefore 

been used comprehensively in water and environmental purification especially as a solid 

sorbent in a magnetic solid-phase extraction (MSPE) (Ambashta & Sillanpaa, 2010; 

Mahdavian & Mirrahimi, 2010). Magnetic solid-phase extraction has been successfully 

preconcentrate many inorganics and organics pollutant in a very complex matrix. For 

example, Ballesteros-G´omez and Rubio (2009) performed a solid-phase extraction of 

carcinogenic polycyclic aromatic hydrocarbons from effluent water samples with high 

preconcentration factors and also low limit of detection in the range 0.2-0.5 ng L
-1

 . The 

capability of iron oxide nanoparticles to extract pollutants has been established at both 

laboratory and field scale tests (Girginova et al., 2010; White et al., 2009). Figure 2.8 

depicts an illustration for the application of magnetic nanoparticles in magnetic solid-

phase extraction (MSPE).  

 

However, the smaller the particle the more it becomes unstable since it possess 

high surface energies and tend to accumulate to each other in the solution to reduce the 

surface energies (Lin et al., 2005). This stability is affected by the electrostatic and Van 

der Waals interactions (Chen et al., 2007). Besides, bare metallic nanoparticles are 

chemically active, and are readily oxidized, which eventually reduce its magnetism and 

ability to disperse (Xie et al., 2014). Thus, the fact that surface of magnetite can be 

chemically functionalized, modification of magnetite nanoparticles can be one of the 

approaches to overcome the stability problem with appropriate functional group (Boyer 
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et al., 2010; Dias et al., 2011). The strategies of modification are including grafting and 

coating the surface of magnetite. Besides, helping in stabilizing the magnetic core, 

functionalization or modification may also provide functional properties that can be 

tailored according to the application.  

 

 

Figure 2.8:  Illustration for the application of magnetic nanoparticles in magnetic solid-

phase extraction (MSPE) (Zhang et al., 2013) 

 

 

2.2.6 Functionalized Magnetic Nanoparticle in Environmental Application 

Due to the stability problem of bare magnetite nanoparticle, there has been an 

increase trend on the development of multifunctional magnetite nanoparticles. 

Functional agents that are used to modify the nanoparticles are from organic and 

inorganic based. Modification strategies and type of modifier greatly influence the 

particle size, morphology, magnetic behaviour and surface chemistry of the 

nanoparticles (Jeong et al., 2007; Machala et al., 2007). 
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2.2.6.1 Silica Coated Magnetic Nanoparticles 

Silica is an outstanding material which is extensively used because of its low cost, 

chemically inert and thermodynamically stable. Furthermore, silica shell assists in 

shielding the magnetite core from unwanted interactions in the solution. The silanol 

group in the silica offers OH functionalities which can be modified with other 

molecules or biomolecules for examples titania, zirconia, proteins, nucleic acid and 

enzymes (Garcia-Calzon & Diaz-García, 2012). Figure 2.9 exhibits silane interaction on 

the surface of magnetic nanoparticles. O-H functionalities in magnetic nanoparticles 

reacted with -O-R bonds which results in formation of readily available sites for further 

substances impregnation (Arkles, 1977). 

 

 

Figure 2.9: Silane coating on the surface of magnetic nanoparticles (Arkles, 1977) 

 

Presence of non-magnetic coating agent reduces saturation magnetization (Ms) of 

the magnetic materials and provides low inter-particle diffusion. Thus, a proper 

optimization strategy is important to obtain useful materials. For instance, saturation 

magnetization of naked Fe3O4 nanoparticles reduced from 81.2 emu g
−1

 to 49.7 emu g
−1

 

after coating with a 15 nm silica (Tian et al., 2009).  
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Silica based materials such as 3-aminopropyltriethoxysilane (APTEOS), p-

aminophenyltrimethoxysilane (APTS) and mercaptopropyltrimethoxysilane (γ-MPTES) 

are coating agents that provide amino and sulfhydryl functionalities. Tian et al. (2009) 

prepared γ-mercaptopropyltrimethoxysilane (γ-MPTMS)-modified silica coated 

magnetic nanoparticles as an adsorbent for extraction and enrichment of trace amounts 

of Cd, Cu, Hg, and Pb prior analysis via inductively coupled plasma mass spectrometry 

(ICP–MS) which have high adsorption capacity, high enrichment factor, high sensitivity 

and can be reused up to 10 times without significantly impact its extraction efficiencies . 

Furthermore, due to the presence of thiol functional group in (γ-MPTMS) modified 

silica coated magnetic nanoparticles, this nanocomposite also has been employed in 

separation of Tellurium (Te) in seawater (Huang & Hu, 2008). Despite the fact that, 

these agents enhance the selectivity of nanoparticles for target pollutant, there is some 

unavoidable problem associated with residual silanol group in the product leads to the 

incomplete dehydration reaction which eventually enhance chemical reactivity (de Dios 

& Díaz-García, 2010). Thus, further end capping with appropriate reagent must be 

employed to overcome this constraint. For instance, aminated-CoFe2O4–SiO2 

nanoparticles for scavenging cadmium from environmental samples successfully 

synthesized (Wang et al., 2013a). 

Recently, metal organic frame work (MOF) has been widely explored due to the 

high surface area, thermally stable, uniform pores, in-pore and surface modification 

readiness. Integration of metal organic frame work, MIL-101 with silica coated 

magnetic nanoparticles (Fe3O4–SiO2–MIL-101) has been successfully removed 

polyaromatic hydrocarbon from aqueous solution under sonication. Existence of MIL-

101 enhance adsorption capability as well sensitivity with only required small amount 

of adsorbent (Huo & Yan, 2012). Integration of silica coated magnetic nanoparticles 
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with organic frame work such as diphenyl group has been employed by Bianchi et al. 

(2012) in determining polyaromatic hydrocarbon in urine smokers and non-smokers. 

Removal of metal from aqueous solution requires an efficient ligand to form a 

stable metal complex and at once treat the water. Silica coated magnetic nanoparticles 

functionalized Schiff base was utilized as solid-phase adsorbent for removal  of Pb(II), 

Cd(II) and Cu(II) (Bagheri et al., 2012). Example of Schiff base functionalizing agent is 

3-(4-methoxybenylideneamino)-2-thioxothiazolidin-4-one. Figure 2.10 proposed a 

synthesis routes for Schiff base modified silica coated magnetic nanoparticles. 

   

 

Figure 2.10: Synthesis routes for Schiff base silica coated magnetite nanoparticles 

(Bagheri et al., 2012) 

 

 

β-cyclodextrin silica coated magnetic nanoparticles (Fe3O4–SiO2–β-CD) 

demonstrated great adsorption capacity in removing bisphenol A (BPA) and 

diethylstilbestrol (DES) from aqueous sample. This is because β-cyclodextrin  has a 

unique structural properties which is truncated cone with both  hydrophilic and 

hydrophobic hollow which can offers inclusion of many guest molecules (Ji et al., 2009; 

Qin et al., 2008). Moreover, carboxymethyl-β-cyclodextrin (CM-β-CD) has been 

L = ligand      TEOS = triethoxysilane 
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introduced in the surface of silica coated magnetic nanoparticles by Ghosh et al. (2011) 

via carbodiimide stimulation. This material has been employed in analysis of chiral 

aromatic enantiomers . 

The C18-functionalized silica coated magnetite microsphere (Fe3O4–SiO2–C18) 

was produced by of a sol–gel approach with the use of a surfactant. Abundant silanol 

groups on the outer surface and the functional C18 groups on the interior surface provide 

both  hydrophilic and hydrophobic properties which gave good adsorption capacity for 

the extraction of phthalates from waste water sample (Deng et al., 2008). Moreover, this 

adsorbents also assist in extraction of Sudan dye via ultra-fast liquid chromatography 

with limit of detection in the range 0.066 to 0.12 ng mL
−1

 (Jiang et al., 2012).
 
  

 

2.2.6.2 Carbon Coated Magnetic Nanoparticles 

Recently, magnetic nanoparticles carbon coated has fascinated researchers 

worldwide since it offers strong adsorption affinity to varieties of organics substances. 

The advantages of carbon based materials as compared to silica are higher chemical 

resistance, more thermal steadiness, and biological safer. Moreover, carbon based 

materials also provide surface functionalization as well as pores formation.  Examples 

of carbon based materials are activated carbon, carbon nanotubes (CNTs), graphene and 

fullerene. 

Activated carbon-magnetic nanocomposite designed by Bai et al. (2010) 

contained inner hydrophobic layer and  outer hydrophilic surface. The hydrophobic 

property enhances extraction capacity for hydrophobic analytes, such as PAH, whereas 

hydrophilic property facilitates the dispersability of the sorbent in aqueous solution. 

Moreover, due to well distributed nanoparticles, there is no requirement for shaking and 

Univ
ers

ity
 of

 M
ala

ya



 32 

stirring which offers on site sampling and extraction (Xie et al., 2014). By utilizing 

hydrothermal technique, Zhang et al. (2010) managed to obtain Fe3O4–C sorbent which 

has high surface area and high adsorption affinity with the presence of carbon chain. 50 

mg of the sorbent can efficiently remove 1 L PAH with recoveries in the range of 76-

110 %. Another novel sorbent which is great in extraction of PAH is ceramic carbon 

coated Fe3O4 magnetic nanoparticle (Fe3O4–C–ceramic) which has been developed by 

Heidari et al. (2012) via sol-gel.   

A carbon encapsulated metal nanoparticle (CEMNPs) has been extensively 

explored recently. The preparation of carbon-encapsulated metal nanoparticles 

(CEMNPs) is by cocarbonization in autogenous pressure at 420–510 °C using either 

heavy oil or phenolic resin as a carbon source and ferrocene as metal source (Huo et al., 

2007). Surface properties of carbon encapsulated metal nanoparticles (CEMNPs) can be 

tailored by modifying the graphitization degree and monitor the oxygen-containing 

substances at different heat phases. In carbon-encapsulated metal nanoparticles 

(CEMNPs) the adsorption of organic contaminants involves in the interaction of π–π 

stacking, hydrophobic and hydrogen bonding. Although, in carbon encapsulated metal 

nanoparticles (CEMNPs), the method of preparation is simple and have good potential 

in scavenging organic pollutant, yet it involves in the usage of toxic materials (Niu et 

al., 2011). 

Ever since carbon nanotubes (CNTs) first discovered by Iijima in 1991, this 

material has been widely studied in many different fields due to their outstanding 

mechanical, electrical and thermal characteristic. Utilizing wet chemical method, Qu et 

al. (2008) managed to diffuse magnetic nanoparticles into multiwall carbon nanotube 

which further used as an adsorbent to remove dyes as methylene blue and neutral red.  

Magnetic nanoparticles coated multi-wall carbon nanotube was applied as a sorbent in 
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the adsorption of bisphenol A (BPA), bisphenol F (BPF), and their diglycidyl ethers as 

well as phthalates in drinking water samples (Jiao et al., 2012a; Jiao et al., 2012b). 

Recently, Ding et al. (2012) prepared magnetic carbon nanotube by wrapping the 

magnetic nanoparticles inside the carbon nanotubes bundles during aggregation process. 

This material has been successfully employed as a sorbent to extract phthalic acid from 

beverages, environmental water and perfume. Limit of the detection found was in the 

range of 4.9 to 38 ng L
-1

. Magnetic silica particles coated with hydroxyl terminated 

multi-walled carbon nanotubes prepared by sol–gel technology was synthesized to 

overcome the solubility limitation of conventional magnetic nanoparticle coated multi 

wall carbon nanotube. This functionalized MWCNTs-OH was effective in extraction of 

diethylstilbestrol, estrone and estriol from water (Guan et al., 2010). 

Another type of carbon based material is graphene. Graphene is an inimitable 

material which has two dimensional planar structure, high surface area and good 

electrical, thermal and mechanical properties (Yang et al., 2009). Since graphene has a 

large delocalized π-electron system, it can readily produce a steady π- π interaction with 

organic substances especially benzenoic compounds (Chen et al., 2010). Outstanding 

adsorption performance was observed in magnetic nanoparticles coated graphene 

(Fe3O4-G). For instance, a variety of pollutants in environmental sample were extracted 

using magnetic nanoparticles coated graphene (Fe3O4-G) as a sorbent which were 

neonicotinoid insecticides, imide fungicides, carbamate pesticides, fuchsine, triazine 

herbicides and chloroacetanilide herbicides (Li et al., 2013a; Li et al., 2013b; Wang et 

al., 2011; Wang et al., 2012; Wu et al., 2011). Magnetic nanoparticles functionalized 

graphene oxide (Fe3O4–GO) also proved to be competitive sorbent for extraction several 

kinds of contaminants.  
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2.2.6.3 Surfactants Coated Magnetic Nanoparticles 

Ionic surfactants such as sodium dodecylesulfate (SDS), cetyltrimethylammonium 

bromide (CTAB), cetylpyridinium chloride (CPC) or dioctadecyldimethylammonium 

chloride (DODMAC) functionalized magnetic nanoparticles offer to an establishment of 

hemimicelles sorbents. Hemimicelles contains ionic head group and hydrocarbon in the 

tail group. Li et al. (2008) developed cetyltrimethylammonium bromide coated Fe3O4 

nano-magnets (Fe3O4–CTAB) as a sorbent to remove chlorophenols in water samples. 

Moreover, this sorbent also managed to extract phenolic compounds in contaminated 

aqueous samples (Zhao et al., 2008).  

Meanwhile, sulfonamides from environmental water samples was preconcentrated 

using magnetic functionalized octadecyl octadecyltrimethylammonium bromide (Fe3O4-

OTAB) nanocomposite by Sun et al. (2009). Cheng et al. (2012) reported a preparation 

of magnetic functionalized hexadecyl-3-methylimidazolium bromide nanocomposites 

(Fe3O4-C16mimBr) and further employed in the extraction of chlorophenols with 

satisfactory extraction recoveries. Magnetic nanoparticles have also been functionalized 

with sodium dodecylesulfate (SDS) and applied as sorbent to remove mercury(II), 

malachite green, and leuco-malachite green from water samples (Afkhami et al., 2010; 

Faraji et al., 2010).   

Thus, a suitable surfactant which can form a covalent bonding with magnetic 

nanoparticles is crucial. For instance, several alkyl carboxylates or n-

octadecylphosphonic acid were chemically adsorbed on magnetic nanoparticles and 

further employed for the extraction of organic substances (Roman et al., 2011).  
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2.2.6.4 Polymer Coated Magnetic Nanoparticles 

Hybrid polymer magnetic nanoparticles are a potent material which can be applied 

in various fields. The polymers linked to the magnetic nanoparticles can be attached 

either by covalent or electrostatic interaction. For instance, covalent bond formed when 

polypyrrole or molecurlarly imprinted polymer (MIP) reacts with magnetic 

nanoparticles, whereas electrostatic interaction occurred when use biopolymers as 

chitosan and alginates (Geng et al., 2012). The sorbent having mean particle size 

distribution in the range of 300-700 nm and the coating thickness was measured 

approximately 10 nm.  

Magnetic nanoparticles coated polydopamine (Fe3O4–PDA) was prepared by 

Wang et al. (2013b) without using any organic solvents. 20 mg of the sorbent was 

adequate to remove 500 mL PAH in natural water. Furthermore, another fascinating 

sorbent proposed by Reyes-Gallardo et al. (2013) using an intergration of cobalt 

magnetic nanoparticles coated Oasis MCX. Oasis MCX was a commercial polymeric 

microparticles which is a cation-exchanger and water-wettable polymer. This 

nanocomposite were effectively  applied in the determination of nitroaromatic 

hydrocarbon in water. Some of nanocomposites of polymer coated magnetic 

nanoparticles may not be able to withstand in an acidic condition, thus an appropriate 

coating layer must first introduce to the magnetic nanoparticles prior polymerization. 

For instance, polymethyl methacrylate coated magnetic silica (Fe3O4–SiO2–PMMA) as 

an adsorbent to confiscate sulphonamides for aqueous samples has recently been 

reported (Gao et al., 2010).  

Synthesis of chitosan functionalized octadecyl coated magnetic nanoparticles was 

reported by Zhang et al. (2010) involves in the introduction of magnetic nanoparticles 

to the octadecyl group by silylation, then the functionalized Fe3O4–C18 was 
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encapsulated with chitosan tripolyphosphate via ionotropic gelation. The synthesized 

material has inner side of hydrophobic C18 and outer side of hydrophilic chitosan which 

was successfully  extracted  phthalates and perfluorinated compounds .  

Recently, an application molecular imprinting polymer (MIP) in environmental 

treatment has increased significantly. Their approaches to targeted pollutant are similar 

to the recognition process in antigens and antibodies. MIP contains template and 

monomer in the existence of cross-linking agent. Integration of magnetic nanoparticles 

with molecularly imprinted polymer microspheres enhances the selectivity and 

magnetic separation. For example, a newly designed magnetic and hydrophilic 

molecularly imprinted polymers (Fe3O4-MIPs) were prepared by converse emulsion–

suspension polymerization to eliminate acid dyes from polluted water with 1-(α-methyl 

acrylate)-3-methylimidazolium bromide (1-MA-3MI-Br) being exploited as a monomer 

(Luo et al., 2011). The superparamagnetic Fe3O4@MIP for bisphenol A (BPA) were 

obtained coated with a polychloromethylstyrene (PCMS) sheet by mini-emulsion 

polymerization (Liu et al., 2011). 

Magnetic nanoparticles functionalized conducting polymers offers interesting 

diverse properties with prominence stability and simplicity of synthesis. Examples of 

conducting polymers that were comprehensively studied are polypyrrole (PPy), 

polyaniline (PANI) and polythiophene (PTh). Phthalates from water samples were 

effectively removed by polypyrrole coated Fe3O4 with the involvement of π–π and 

hydrophobic interaction between polypyrrole and phthalates (Meng et al., 2011). 

Besides, this material also being employed as sorbent to remove pesticides residues in 

tea, juices and natural water samples (Zhao et al., 2013). Application of polyaniline 

coated Fe3O4 as extractor of methyl mercury was designed with diameters in the range 

of 50 to 100 nm (Mehdinia et al., 2011). Sulfate functionalized polyaniline coated 
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magnetic nanoparticles was obtained by Tahmasebi et al. (2013) for the removal of 

ionizable parabens. Both electrostatic, π–π and hydrophobic interaction enhanced the 

adsorption affinity of the sorbent to the targeted analytes. Moreover, polyaniline coated 

carbon magnetic nanoparticles (Fe3O4–C–PANI) prepared via hydrothermal technique 

was effectively remove phenolic compounds with low limit of detection and high 

recoveries (Meng et al., 2011).  

Among conducting polymers, polythiophene exhibited remarkable stability in air 

and humid environment. Recently, the polythiophene coated magnetic nanoparticles 

(Fe3O4–PTh) was properly designed and employed as a sorbent to extract some of 

phthalates in environmental water samples prior analysis by gas chromatography with 

flame ionization detector (GC-FID) (Tahmasebi et al., 2013). For this work, we have 

modified the thiophene monomers with certain functionalities to tailor with the required 

applications (Baharin et al., 2016). 

 

2.4 Phthalates  

2.4.1 Overview 

Non-halogenated ester of phthalic acid (1, 2-benzene dicarboxilic acid), generally 

known as phthalates, have wide-ranging use in industrial applications. Normally, high 

molecular mass of phthalates become a useful plasticizers which improves the 

flexibility of vinyl resins. Addition of plasticizers is able to reduce intramolecular forces 

by decreasing the glass transition temperature of the respective molecules which lead to 

desirable properties of high polymeric chain such lowered brittleness, enhanced 

elasticity, decreased hardness and improved adhesion when needed (Staples, 2003). 

Supreme plasticizer must be unscented, colourless, unaffected against water, light, 

Univ
ers

ity
 of

 M
ala

ya



 38 

neutral, not toxic and it should offer low inflammability and low volatility (Stales et al., 

1997). Table 2.2 demonstrates uses of phthalates. 

Table 2.2:  Some uses of phthalates 

Phthalates Uses 

DEP Personal care products, cosmetics 

BBP 
Vinyl tiles; food conveyor belts, artificial leather,   

automotive trim, traffic cones 

DBP 
PVC plastics, latex adhesives, cosmetics, personal care 

products, cellulose plastics, solvent for dyes 

DEHP 

Building products (wallpaper, wire and cable 

insulation), car products (vinyl upholstery, car seats), 

clothing (footwear, raincoats), food packaging, 

children‘s products (toys, grip bumpers), medical 

devices 

DnHP 

Dip-molded products, such as tool handles, dish-

washer baskets; flooring, vinyl gloves, flea collars, 

conveyer belts used in food processing 

DNOP 

In mixtures C6–C10 phthalates: garden hoses, pool 

liners, flooring tiles, tarps Seam cements, bottle cap 

liners, conveyor belts (indirect food additive) 

DINP Garden hoses, pool liners, flooring tiles, tarps, toys 

DIDP 
PVC plastics, covering on wires and cables, artificial 

leather, toys, carpet backing, pool liners 

Source: (Heudorf et al., 2007; Fromme et al., 2002)   

Low molecular weight of phthalates are normally utilized as plasticizers in few of 

non-vinyl resins for examples acrylics, urethanes and cellulosics. Phthalates with alkyl 
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chain 1 to 4 carbon atoms are not commonly used as plasticizers due to the volatility 

distresses however they are widely used in the production of consumer products 

including pharmaceuticals. For example DMP, is utilized as stabilizing eluent for 

transportation of organic peroxides. Meanwhile, DEP acts as compounder in cellulosic 

films and as preservatives in fragrances. DBP is mainly used as a plasticizer in PVC. 

Overall, factors for the selection of phthalates in industrial applications are its 

functionality, adaptability, durability, competence and process ability and economical 

value (Heudorf et al., 2007).  

By 21st century, there are arisen fears over the application of phthalates in 

production of children's toys and other regularly used household items since they are not 

chemically bound in plastics and could easily being released onto the environment; 

readily leaching out from products (Serodio & Nogueira, 2006). Due to the fact that 

phthalates are hazardous to human, a regulatory oversight of the manufacture, transport, 

use and disposal of phthalates have been implemented and with that huge data regarding 

the properties, environmental fate, exposure, and toxicity of phthalates were collected. 

These critical data enhance the safety practice for the production, effluent discharge 

limits, and human exposure limits for a better environment. 

 

2.4.2 Occurrence of Phthalates in Environment 

During industrial process, only a small amount phthalates is leached out to the 

environment and air. Basically phthalates are discharged in wastewater during 

manufacture and processing. Poorly functioning furnaces may also contribute to the 

existence of phthalates into air. However, foremost contribution of phthalates especially 

DMP, DEP, DBP, BBP, DINP, DIDP and DEHP that are found in environment are from 

the plastics and other phthalates containing products since it not chemically linked and 
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can be diffused out slowly (Schettler, 2006; Wormuth et al., 2006). Thus, usage of 

phthalates containing product during lifetime may lead to a sustainable phthalates 

concentration in the earth. 

Polymer toys, bottles and pacifier contained phthalates were alleged as a possible 

cause of phthalate exposure in infant and children. DINP was estimated of contacts 

ranged from 5 to 44 mg kg
-1

 bodyweight per day (Kavlock et al., 2002). Meanwhile, 

Agency for Toxic Substance and Disease Registry (2002a) recorded the DEHP exposure 

from the imbibing or chewing of the pacifier or toys for everyday use projected up to 85 

mg kg
-1

 bodyweight per day. Overall, the exposure of phthalates to children surpasses 

adults. Significant concentration of DMP and DEP were found in indoor air due to the 

usage of consumer products for example skin care, shampoo and body wash adults 

(Wormuth et al., 2006). 

Medical tools comprising DEHP for example PVC/DEHP tubing is one of major 

source of phthalates exposure specifically for patient that undertaking severe attention, 

blood transfusion, haemodialysis and extracorporeal membrane oxygenation (ECMO) 

(infants) (Karle et al., 1997). In addition, usage of specific coatings for dosage 

medication containing DEP and DBP also contributes to the exposure of phthalates to 

the patient (Hauser et al., 2004). However, due to low concentration of these 

substances, it were permitted as inert ingredient by U.S. Food and Drug Administration 

(2003). 

Several phthalates also found in food or drink packaging or processing. In 1999, 

the utilization of disposable PVC gloves throughout meals preparation is one of the 

main source of DEHP contamination, the concentration found was in the range of 10 to 

4400 ng g
-1

 (Tsumura et al., 2001, 2003). In 2009 and 2013 a studies conducted by 

Pinto et al. (2009), Plotan et al. (2013) and Wagner et al. (2009) have found an 
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endocrine disruptor activity in most of the examined PET bottled water samples. Even 

though, concentration found was not grasped to the serious levels, but the effects on 

glucocorticoid activity is unidentified. Keresztes et al. (2013) claimed that, the 

migration of phthalates from PET bottle to water samples are influenced by PET bottle 

material (virgin vs. polymer comprising reused PET), pH (carbonated vs. non-

carbonated samples), packaging volume and temperature. From their study, DEHP, 

DIBP and DBP were found in recycled PET bottle, low pH (carbonated samples) 

showed no activity of phthalates compared to non-carbonated, low volume of packaging 

contributed to high surface/volume ratio and at 60 °C, majority of phthalates studied 

was observed. In 2011, Hong Kong was shocked by the existence of DEHP in the 

flavour wrapper of ramen noodle (Huang, 2011).  

Furthermore, the contamination of Canadian dairy samples with phthalates also 

being tested, among other phthalates, DBP and DEHP found were 11.9 mg kg
-1

 and 

47.8 mg kg
-1

 (Wagner & Oehlmann, 2009). The exposure to phthalates to dairy products 

may arise from the containers also from the tubing during milk processing. Other 

published works emphasized on the existence of DEP, DBP, BBP, DEHP, DNOP and 

DINP in all kinds of food packaging including; paper, cardboard, plastic, glass jar metal 

cap and cans (Balafas et al., 1999; Bononi & Tateo, 2009; Fankhauser-Noti et al., 2006; 

Jarošová, 2006; Lopez-Espinosa et al., 2007; Nerin et al., 1993).  

 

2.4.3 Adverse Effects 

Toxicology evaluations on phthalates have been performed by different expert 

panels in Europe and America, for examples European Chemicals Bureau (2008), 

European Food Safety Authority (2005), European Scientific Committee on Toxicity, 

Ecotoxicity and the Environment (2004), U.S. Agency for Toxic Substances and 
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Disease Registry (2002a, 2002b) and U.S Department of Health and Human Service 

(2006).   

Normally, toxicology tests were executed with rats, mice and other rodents since 

these organisms are seem to be more delicate to toxic effects of phthalates than humans.  

Organs studied were liver, kidney and testis. The most extensively applied phthalate is 

DEHP, which not only is supervised under the strictest regulation but is also viewed as 

the trickiest from the perspective of adverse effects on health. Other frequently used 

phthalates are DBP, DEP, DINP, BBP, DIDP and DNOP. DEHP and DBP were 

categorized as reprotoxic (toxic toward reproductives organs) substances by European 

Union in the guideline 67/548/EHS. All phthalates have been verified negative for 

mutagenicity and/ or genotoxicity (Heudorf et al., 2007). 

BBP and DINP were found to be harmful to reproductive organs (Regulation, 

2001). However, the most serious case occurred with DINP where it attacks liver 

function and regarded as nephrotoxicity (Keresztes et al., 2013). Moreover, a significant 

concentration of DEHP in household dust is one of the caused for the incidence of 

asthma, whereas high level of BBP amounts resulted in rhinitis and eczema in children 

(Bornehag et al., 2004).  

Recent study investigated DEP possibility on the retardation of sperm 

development in men since it is widely used as additives in fragrances (Duty et al., 

2003). Overall, DEHP demonstrated utmost toxicity, resulting in the definition of 

specific risk groups such as children below 1 year, critically sick children and pregnant 

women undertaking treatments using medical devices with DEHP (U.S. Department of 

Health and Services, 2006). As for DNOP, animal studies concluded no toxicity effects 

up to 7500 mg kg
-1

 day
-1

, but in exposure in the range of 5000–10,000 kg
-1

 day
-1 

toxic 

effects were observed in all groups (U.S. Department of Health and Services, 2003a).  
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Tumor stimulating activity was found with DBP and exposure of DEHP 

promoting hepatocellular carcinoma, proliferation of peroxysomes and mitochondria 

which escalates in Cyp4A1 and PCoA activities, liver tissue propagation, destruction of 

apoptosis in mice (U.S. Department of Health and Services, 2003b). Exposure to 

phthalates also contributes to increases in stillbirth, growth and birth weight retardation, 

incomplete formation of skeletal and visceral (Heudorf et al., 2007). 

Due to high production volume and limitless toxic effects, phthalates are 

subjected to strict regulations covering manufacturing process, shipping and 

transportation, utilization and discarding. In United State, phthalates are monitored 

under Clean Water Act Section 307, according to this act all effluent must be treated 

and follow pre-treatment standard before being discharge. (U.S. Environmental 

Protection Agency, 1999) legalizes maximum pollution restrictions for DEHP and 

DEHA 6 mg L
-1

 and 400 mg L
-1

. In addition to the standard, the screening of phthalates 

in drinking water must be done at the concentration above 0.6 µg L
-1

.  Whereas, DEHP 

tolerable daily intake is 20 µg kg
-1

 body weight per day.  

European Union (EU) has listed DBP, BBP and DEHP as endocrine disruptor 

subtances. Thus, these types of substances are strictly monitored. European Union and 

World Health Organization (WHO) has set a limit for DEHP in fresh and drinking water 

8 mg L
-1

 (Serodio & Nogueira, 2006). European Union Scientific Committee on 

Toxicity, Ecotoxicity and the Environment 13 (CSTEE) has recognized an acceptable 

daily consumption value for DEHP of 37 µg kg
-1

 body weight per day (Koch et al., 

2003).  
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2.4.4 Analysis of Phthalates  

The determination of phthalates in environmental samples is challenging due to 

their trace amounts and the intervention of an intricate matrix (Sha et al., 2011). 

Therefore, a sample preparation step for the extraction and preconcentration of the 

analytes is required (Lopez-Espinosa et al., 2007). Sample preparation technique 

depends on the nature of the samples. For water samples two classes of methods will be 

described which are solid-phase extraction and liquid-liquid extraction. These 

techniques are briefly discussed below.  

Liquid-liquid extraction involves in a high volume of water samples (1-2 L) and 

low solubility solvent. Common solvents which offer high extraction efficiency are for 

water samples are dichloromethane, cyclohexane or hexane (Braaten et al., 1996). 

Important parameter that needs to be monitor is the ratio of the water sample volume to 

the volume of the organic solvent. The optimum ratio should be less than 20. Higher 

ratio results in the high recovery for high molecular weight phthalates as DEHP whereas 

low recovery was obtained for low molecular weight phthalates as DMP. This is 

because, low molecular weight of phthalates is more prone to the water (Cousins & 

Mackay, 2000). Post-extraction organic phase is dried over anhydrous magnesium 

sulphate and enriched. For samples with complex matrices, several compounds are co-

extracted and can be further refined by column chromatography with packed column for 

examples alumina or silica. 

Disadvantages in liquid-liquid extraction are existence of contamination from the 

trace levels of phthalates in some commercially available solvents gives error to the 

preconcentration factor. For instance, Vikelsoe et al., (1998) reported a questionable 

result on the contamination of 1 ng L
-1

 of DEHP leads to 50 ng L
-1

 background value . 

Besides, a huge amount of solvent are used in this techniques results in more waste 
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issues. Recent, development over traditional liquid-liquid extraction, micro liquid-liquid 

extraction have been designed and applied (Cinelli et al., 2013). In this method, solvent 

usage is low and extraction can be accomplished in a small volume (10-15 mL). Micro 

liquid-liquid extraction for BBP, DBP, DCP and DEHP were employed in water 

samples (Sha et al., 2011). Typically, liquid-liquid extraction technique is preferable to 

heavily contaminated waste water. For determination of phthalates in less complex 

matrices such as drinking water, beverages, river water, surface water, sea water solid 

phase extraction is favoured (Staples, 2003). 

In solid phase extraction (SPE), solvent consumption is low and a solid sorbent is 

used as an analyte extractor from the samples. Most commonly applied sorbent for 

determination of phthalates is octadecyl silicagel (ODS, C18). In solid phase extraction 

strategies, samples are passed through the adsorbent, adsorbent will attract targeted 

analyte to the specific active sites in the adsorbent. Then, the water phase is removed 

and the sorbent is eluted with different type of solvents for examples dichloromethane, 

ethyl acetate, methanol or acetonitrile. Targeted analyte in the elution solvent is dried 

via nitrogen gas prior instrument detection. Recently, many sorbents were synthesized 

and utilized in the solid phase extraction for analysis of phthalates. Jiao et al. (2012b) 

designed and applied multi-walled carbon nanotube as a sorbent in SPE to 

preconcentrate DEHP, DPP, DIBP and DCP in river and sea water samples. Another 

examples of sorbents are bamboo charcoal, Nylon6 nanofibers mat, graphene, 1-

dodecyl-3-methylimidazolium bromide ([C12mim]Br)-coated silica and etc. (Li et al., 

2008; Wu et al., 2013; Xu et al., 2010; Zhao et al., 2008).  

Furthermore, the application of nanoparticles as a sorbent in determination of 

phthalates also widely studied. This is due to nanoparticles offers high surface area, 

tuneable functionalization, chemically and thermally stable, facile synthesis routes, 
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sustainable and cost-effective (Han et al., 2012). For example, TiO2 nanoparticles 

deposited into stainless steel fibres was applied to enriched DEHP prior gas 

chromatography flame ionization detector analysis (Banitaba et al., 2013). Recently, a 

quite numbers of publications have been applied magnetic nanoparticles as a sorbent for 

magnetic solid-phase extraction (MSPE) (Reyes-Gallardo et al., 2013; Roman et al., 

2011). This is because magnetic nanoparticles can give a prompt response to the 

external magnetic field which helps in magnetic isolation. Magnetic isolation offer 

facile and rapid sample preparation steps without the need of any centrifugation or 

filtration (Xie et al., 2014). 

Solid-phase extraction offers advantage over liquid-liquid extraction in terms of 

high enrichment factor, cost effectives, rapidness, simplicity, environmental benign and 

low trace level contamination from the organic solvent. Besides, chosen of high 

selective sorbent for extraction provide good sensitivity and high extraction efficiency 

(Liška, 2000). 
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 RESEARCH METHODOLOGY  CHAPTER 3:

3.1 Reagent and Materials 

Analytical grade ferric chloride (FeCl3·6H2O), ferrous chloride (FeCl2·4H2O), 

ammonia solution (25 wt. %), benzene, thiophene, tetrahydrofuran, potassium iodide, 

potassium carbonate, acetonitrile, methanol, hydrochloric acid, acetone, ethyl acetate, 

polyvinyl alcohol, 3-bromothiophene, acetic acid, sodium hydrogen bicarbonate and 4-

hydroxybenzaldehyde were purchased from Merck (Darmstadt, Belgium).  3-thiophene 

carboxaldehyde, 1, 6-dibromohexane, 3-hexylthiophene, n-butylithium, DMP, DEP, 

DPP, DBP, BBP, DCP, DEHP, DNOP were obtained from Sigma Aldrich 

(Milwaukee,WI USA). Acetone and aniline bought from Fisher Scientific (UK). 

Magnesium sulphate anhydrous, ethanol denatured and hexane purchased from 

Friedemann Schmidt (Parkwood, Australia). 18-crown 6, chloroform (CDCl3) and CaH2 

attained from Acros Organics (UK). The ultrapure water was prepared by a model Aqua 

Max-Ultra ultra-pure water purification system (United State). Stock solutions of 1000 

mg L
−1

 of standards were prepared by dissolving appropriate amount of compounds in 

methanol, which remain stable for three months if stored in a fridge at 4 °C. Working 

standard solutions were prepared daily by diluting the stock standard solution with 

methanol to the required concentrations. 

 

3.2 Instrumentation 

The Fourier transform infrared (FT-IR) spectra were recorded on a Perkin–Elmer 

FT-IR between 4000 and 400 cm
−1

 (Perkin Elmer, Massachusetts, USA). Structural 

elucidation was determined using 
1
H NMR, JEOL 400 MHz (JEOL, Tokyo Japan). X-

ray powder diffraction (XRD) analysis was conducted with Panalytical model 

Empyrean at 40 kV and 35 mA using Cu K radiation (= 1.54059 Å) (Panalytical, 
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Almelo, Netherlands). Morphological analysis of the synthesized products were 

performed using JEOL JSM-7600F field emission scanning electron microscope 

operated at 3 kV (JEOL, Tokyo Japan) and transmission electron microscopy (TEM) 

analysis using an FEI Tecnai G2 spectra microscope (FEI, Hillsboro, USA). The 

magnetic property was tested using a vibration sample magnetometer (VSM) Model 

9600 (Quantum Design Inc., San Diego, USA). Magnetization measurements were 

carried out in an external field of up to 15 kOe at room temperature. The thermal 

stability was investigated by thermo gravimetric analysis (TGA); model TGA-STA 

1500, with heating rate of 10 °C min
−1 

between 25–900 °C under nitrogen atmosphere 

(Perkin Elmer, Massachusetts, USA). Brunauer-Emmett-Teller (BET) analysis was 

carried out using Micromeritics ASAP2020 surface area analyser for determining the 

pore diameter and the specific surface area of nanosorbents (Micromeritics, Georgia, 

USA). Adsorption studies were investigated using Shimadzu Ultraviolet-Visible 

spectroscopy (UV–Vis), equipped with 1 cm quartz cells (Shimadzu, Kyoto, Japan). 

 

3.3 Chromatographic Condition 

Separation and detection of target analytes were performed by a Shimadzu 2010 

gas chromatograph (Shimadzu, Kyoto, Japan) equipped with a split/splitless injector 

and a flame ionization detector (FID). A DB-5 Agilent fused-silica capillary column 

(Agilent, California, USA) (30 m × 0.32 mm i.d. × 0.25 µm film thickness) was applied 

for separation of analytes. Helium (with 99.999% purity) was used as the carrier gas at a 

constant flow rate of 4 mL min
−1

. Chromatographic conditions were controlled as 

described; the temperatures of the injector and detector were set at 260 °C and 280 °C, 

respectively. The injection port was operated at splitless mode. Oven temperature was 

held at 150 °C for 1 min and increased to 280 °C at 8 °C min
−1

 for 3 min. 
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3.4 Preparation of MNP Coated Functionalized Polythiophene Nanocomposites 

3.4.1 Synthesis of Functionalized Thiophene Monomers 

Figure 3.1 shows thiophene and its derivatives used in this study. Two were 

commercially available monomers; thiophene (Th) and 3-hexylthiophene (3Th) were 

distilled prior used. Other two monomers were synthesized as shown in Scheme 3.1 and 

Scheme 3.2.  

N-Phenyl-1-(2-thienyl)methanimine) (TCN)

C6H13

S

S

HC N

S

Phenyl (4-(6-thiophen-3-yl-hexyloxy)-benzylidene)-amine (3TArH)

C6H12

S

O CH N H

Thiophene (Th) 3-hexylthiophene (3Th)

 

Figure 3.1: Thiophene monomers used in this study 

 

S

O

+
NH2

S

N

(A) (B) (C)

Ethanol

Reflux 24 h

 

Scheme 3.1: Reaction pathway of N-phenyl-1-(2-thienyl)methanimine) (TCN) 
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C
H

NHO

S

Br
+

S

C
H

N
O

(F)

(D) 1. K2CO3

2. 18-Crown-6

3.Acetone

Reflux
24 h

(E)

 

Scheme 3.2: Reaction pathway of phenyl (4-(6-thiophen-3-yl-hexyloxy)-

benzylidene)amine (3TArH) 

 

3.4.1.1 Synthesis of N-phenyl-1-(2-thienyl)methanimine) (TCN) 

  N-phenyl-1-(2-thienyl)methanimine), TCN prepared from method established 

by Borque (2010) with some modifications. 3-thiophene carboxaldehyde (A) (10 

mmol, 1.12 g) was added to 30 mL of absolute ethanol. Subsequently, (10 

mmol, 0.93 g) of aniline (B) was poured into the solution. The mixture was 

refluxed at 70 °C for 4 h and stirred at room temperature for 15 h. Solvent 

removal by vacuum distillation (0.8 Torr) gave viscous orange oil. Yield: 78 %. 

1
H NMR (400 MHz, CDCl3)  (ppm): 7.18 (m, 1H, CH=Cthiophene), 7.36 (m, 2H, 

CH-S-CH), 7.59-7.63 (m, 5H, ArH), 8.55 (s, 1H, CH=N), refer Appendix B. FT-

IR (cm
-1

): 3062 (C-Haromatic), 1623.05 (C=N), 1589.22, 1423.89 (C=C), 709.86 

(C-S). 

 

3.3.1.2 Synthesis of Phenyl(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)amine 

(3TArH) 

Synthesis of phenyl(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)amine, 3TArH 

consists of two steps. The first step is to prepare the intermediates which were 3-
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bromohexylthiophene, 3BHT and 4-((phenylimino)methyl)phenol, 4PIMP. Second step 

was combining the two intermediates by Williamson etherification method.  

 3-bromohexylthiophene, 3BHT: 3-bromothiophene (2 mL, 21.3 mmol) was 

added to the dry, degassed hexane (50 mL). The reaction started by cooling the 

flask at -78 
o
C. n-butylithium in hexane (2.0 M, 10.16 mL) was poured into the 

reaction flask and stirred for 10 min. THF (5 mL) was injected drop wise for 15 

minutes and continuously stirred for 1 h which produced white precipitate and 

clear supernatant liquid. The supernatant liquid was removed and changed with 

hexane/THF (10:1 v/v, 55 mL). 1, 6-dibromohexanes (32.7 mL, 213 mmol) was 

added and stirred for 2 h. The reaction was stopped with addition of saturated 

NaHCO3 (50 mL), diluted diethyl (100 mL). The organic layer was washed with 

water (100 mL), brine (100 mL), dried with magnesium sulfate anhydrous, 

treated with decolorizing charcoal, filtered and concentrated in vacuum to give 

orange oil. Removed excess 1, 6-dibromohexane via vacuum distillation (0.04 

torr, 55 
o
C) and purified silica gel column chromatography (ethyl 

acetate/hexane, 1/99 to 5/95 v/v) to obtain oily product. Yield: 52 %. 
1
H NMR 

(400 MHz, CDCl3)  (ppm): 1.25-1.50 (m, 4H, (CH2)2(CH2)2Br), 1.57 (m, 2H, 

CH2CH2C=CHthiophene), 1.78 (m, 2H, CH2CH2Br), 2.45-2.60 (m, 2H, CH2 

C=CHthiophene), 3.51 (m, 2H, CH2Br), 6.98 (m, 2H, HC=CCHthiophene), 7.42 (m, 

1H, SCH=CHthiophene), refer Appendix C. FT-IR (cm
-1

):  3005.47 (C-Haromatic), 

2933.71 (C-Haliphatic), 1551.4, 1459.60 (C=Caromatic), 773.32 (C-Sthiophene), 643.4 

(C-Br), refer Appendix A (b). 

 4-((phenylimino)methyl)phenol, 4PIMP: 4-hydroxybenzaldehyde (122 mg, 10 

mmol) was added to (112 mg, 10 mmol) 2-aminobenzenethiol in 50 mL ethanol. 

The mixture was refluxed for 3 h. Yellow crystal was obtained after 

recrystallized with ethanol. Yield: 95 %.
1
H NMR (400 MHz, CDCl3)  (ppm): 
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6.91 (m, 2H, ArHOH), 7.10-7.41 (m, 5H, ArH), 7.77 (m, 2H, ArHOH), 8.46 (s, 

1H, HC=N), 10.13 (s, 1H, ArHOH), refer Appendix D. FT-IR (cm
-1

): 3411 (C-

OH), 3098 (C-Haromatic), 1609 (C=N), 1588, 1504 (C=Caromatic), refer Appendix A 

(a).  

 Phenyl(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)amine, 3TArH: A mixture of 

4PIMP (1.97 g, 10 mmol), anhydrous potassium carbonate (4.14 g, 30 mmol) 

and 18-Crown-6 (16.6 mg, 0.1 mmol) was stirred in dried acetone (50 mL) at 

room temperature. Then compound 3BHT (0.81 g, 2 mmol) was added. The 

reaction mixture was refluxed under nitrogen with stirring for 24 h. After 

cooling to room temperature, the reaction mixture was poured into the saturated 

solution of potassium carbonate. The organic phase was collected and washed 

by water (3 × 100 ml), dried by anhydrous sodium sulphate. The solvent was 

removed by reduced pressure, and the residue was dried by vacuum to give the 

crude product. Purification was accomplished by column chromatography on 

silica with 25 % hexane in chloroform to afford the monomer (Chen et al., 

2012). Yield: 67.6 %. 
1
H NMR (400 MHz, DMSO-D6)  (ppm): 

1
H NMR (400 

MHz, CDCl3)  (ppm): 0.88 (m, 2H, CH2(CH2)2O), 1.35-1.55 (m, 2H, 

CH2(CH2)2C=CHthiophene), 1.65 (m, 2H, CH2CH2C=CHthiophene), 1.85 (m, 2H, 

CH2CH2O), 2.75 (m, 2H, CH2C=CHthiophene), 4.02 (t, 2H, CH2O), 6.67 (m, 1H, 

CH-Cthiophene), 6.75 (m, 1H, SCH=Cthiophene), 6.88 (m, 1H, SCH=CHthiophene), 6.97 

(m, 2H, ArHCH=N), 7.10 (m, 2H, ArH), 7.20 (m, 2H, OArH), 7.35 (m, 1H, 

ArH), 7.85 (m, 2H, ArHN=CH), 8.48 (s, 1H, HC=N), refer Appendix E. FT-IR 

(cm
-1

): 2980 (C-Haromatic), 2934 (C-Haliphatic), 1617 (C=N), 1599.9, 1426.71 

(C=Caromatic), 1239.71, 1018.26 (C-O), 709.24 (C-S), refer Appendix A (c). 
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3.4.2 Synthesis of Fe3O4 Nanoparticles (MNP) 

Briefly, Fe3O4 has been prepared by co-precipitation method refer to previous 

study (Shen et al., 1999).  FeCl3·6H2O (8.48 g) and FeCl2·4H2O (2.25 g) were dissolved 

in 400 mL deionized water under nitrogen atmosphere with vigorous stirring (1000 

rpm) at 80 °C. Then, 20 mL ammonia solution (25% wt.) was added to the solution. The 

colour of bulk solution immediately changed from orange into black. After stirring the 

mixture for 5 min, the Fe3O4 NPs precipitate obtained was separated by magnetic 

decantation and washed several times with deionized water. Finally, the Fe3O4 NPs 

obtained were dried in a vacuum oven at 70 °C for 12 h. 

 

3.4.3 Synthesis of MNP Coated Functionalized Polythiophene Nanocomposites 

The surface of Fe3O4 nanoparticles were modified by coating with newly designed 

modified thiophene monomers via oxidation polymerization with generation of ferric 

cations on the MNP surface (Shin & Jang, 2007). The preparation of MNP coated 

functionalized polythiophene is illustrated in Figure 3.2 by giving example of schematic 

diagram for the preparation of MNP coated poly(phenyl(4-(6-thiophen-3-yl-hexyloxy)-

benzylidene)amine) (P3TArH). MNP (1 mmol, 0.235 g) were discreted in polyvinyl 

alcohol aqueous solution (0.001 M). Later, monomer (10 mmol) was added into the 

mixed solution with vigorous stirring. Subsequently, 30 mL of HCl (0.5 M) solution 

was introduced into the mixture. Then the obtained product was dried in a vacuum oven 

at 70 °C for 12 h. The experiment was repeated for other different monomers 

(thiophene, 3-hexylthiophene and N-phenyl-1-(2-thienyl)methanimine)).  
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Figure 3.2: Schematic diagram for preparation of Fe3O4 coated poly(phenyl(4-(6-

thiophen-3-yl-hexyloxy)-benzylidene)-amine) (P3TArH) (Baharin et al., 2016) 

 

 

3.5 Screening Study  

All the synthesized nanocomposites were screened to determine optimum sorbent for 

the extraction of phthalates. Screening procedures were conducted with 10 mg of each 

synthesized nanocomposites (MNP@PTh, MNP@P3Th, MNP@PTCN and 

MNP@P3TArH) to the 20 mL of phthalate solution at pH 7. Samples were shaken via 

orbital shaker for 30 min. Then, the sorbent were separated from the liquid via magnetic 

decantation. After that, sorbents were added with 500 µL ethyl acetate with and shaken 

for 10 min. The supernatant liquid were collected and dried with purified nitrogen prior 

analysis using GC-FID. 

 

3.6 Adsorption Studies of DEHP on MNP Coated Poly(phenyl(4-(6-thiophen-3-yl-

hexyloxy)-benzylidene)amine) (P3TArH). 

Experimental parameters were optimized using batch experiments for effect of 

pH, kinetics and thermodynamic studies, effect of initial concentration, equilibrium 

studies and reusability studies. Sorption experiments were determined by the following 

MNP
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batch method: in each experiment, 5 mg of adsorbent was mixed with 5 mL of an 

aqueous solution of DEHP at a known concentration in a tightly sealed vial. The 

solution was shaken for 1 h on a shaker at room temperature. After the adsorption 

process, the adsorbent was separated by magnetic decantation, and the residual 

concentration was determined using Shimadzu Ultraviolet-Visible spectroscopy (UV–

Vis), equipped with 1 cm quartz cells (Shimadzu, Kyoto, Japan). All the samples were 

performed in triplicate. The removal efficiency, R (%) was calculated using the 

following equation: 

                                         
    -      

  
           (3.1) 

The amount of DEHP adsorbed per unit mass of the adsorbent (qe) was calculated as: 

                                           
    -      

 
                                                                (3.2) 

Co and Ce are the initial and equilibrium concentrations of the solutions (mg L
−1

), 

respectively. V (L) is the volume of the solution, and W (g) is the mass of the dry 

adsorbent being used. 

 

3.7 Application of MNP Coated Poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-

benzylidine)amine) as a New Sorbent for Magnetic Solid-Phase Extraction (MSPE) 

of Phthalates 

3.7.1 Optimization Parameters 

Factors affecting the extraction efficiency of the proposed method such as pH, 

extraction time, sample volume, elution solvent, elution solvent volume, desorption 

time, adsorbent dosage and effect of NaCl were studied. Reusability studies were 
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conducted for five cycles to determine the possibilities for reutilizing and regeneration 

were investigated and optimized. The study and optimization of the above-mentioned 

variables were performed using the one variable at a time method. The chromatographic 

peak area was used to evaluate influence of the factors on the extraction efficiency of 

MSPE of the target analytes. All the experiments were performed in triplicate, and the 

means of the results were used in plotting of the optimization curves. 

10 mg of MNP coated poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-

benzylidine)amine) was dispersed to the 20 mL of phthalates solution at pH 7 

containing 15 g L
−1

 concentration of NaCl. Samples were shaken via orbital shaker for 

30 min. Then, the sorbent were separated from the liquid via magnetic decantation. 

After that, sorbents were added with 500 µL ethyl acetate with and shaken for 10 min. 

The supernantant liquid were collected and dried with purified nitrogen prior analysis 

using GC-FID. 

 

3.7.2 Method Validation 

In order to evaluate the figures of merit of the proposed technique, linearity, limit 

of detection (LOD) and repeatability were investigated under optimized conditions. The 

linearity was analysed through the standard curves ranging from 0.08 to 1 μgL
−1

 by 

diluting appropriate amounts of phthalates stock solution (1000 mgL
−1

) with methanol 

and prepared in triplicate. The calibration curves were prepared using 10 spiking levels 

of analytes concentration. For each level, three replicate experiments were performed. 

Method chosen for this study is linear regression that can be exposed to model as; 

                                                                                                                   (3.3) 
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This model is used to determine the sensitivity in the LOD and LOQ. Therefore, the 

LOD and LOQ can be stated as; 

                                        
     

 
                                                             (3.4) 

                                              
       

 
                                                               (3.5) 

where s.d  is the standard deviation of the response and m is the slope of the calibration 

curve. The standard deviation of the response can be estimated by the standard deviation 

of y-intercepts (Shrivastava & Gupta, 2011). Preconcentration factor (P.F) can be 

calculated as following equation; 

                                               
             

             
                                       (3.6) 

Precision of the method was investigated by repeatability (intra-day) and 

intermediate precision (inter-day) of both standard and sample solutions. Precision was 

determined in seven replicates of phthalates on the same day (intra-day precision) and 

daily for 3 days (inter-day precision). Results were presented as  RSD (%) (Bhadra et 

al., 2011). 

                                                    
   

    
                                           (3.7) 

 

3.7.2.1 Real Sample Analyses 

To evaluate reliability of the proposed method for extraction and preconcentration 

of the plasticizers from real samples, two real water samples were selected, spiked (50 

µg L
-1

) and subjected to the MSPE–GC–FID analysis with the optimized condition of 
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10 mg of MNP coated poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidine)amine) 

was dispersed to the 20 mL of samples volume solution at pH 7 containing 15 g L
−1

 

concentration of NaCl. Samples were shaken via orbital shaker for 30 min. Then, the 

sorbent were separated from the liquid via magnetic decantation. After that, sorbents 

were added with 500 µL ethyl acetate with and shaken for 10 min. The supernantant 

liquid were collected and dried with purified nitrogen prior analysis using GC-FID. 

Two real samples were a commercial bottled mineral water and a bottled of fresh 

milk. Recovery was calculated using following equation; 

             
                                           

                     
             (3.8) 
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 RESULTS AND DISCUSSION CHAPTER 4:

4.1 Characterization of Samples 

Characterization of naked magnetic nanoparticles (MNP) and synthesized 

nanocomposites (MNP@PTh, MNP@P3Th, MNP@PTCN and MNP@P3TArH) were 

performed and elaborated at below section. 

 

4.1.1 Fourier Transform Infra-Red Spectroscopy (FT-IR)  

Figure 4.1 shows several additional peaks in the spectrum of nanocomposites, 

proportional to the iron oxide spectrum, which might be due to the surface 

functionalization. The strong absorption peaks in the range of ~3400 cm
−1

 for naked 

MNP and all nanocomposites indicated the presence of OH vibration, while the peak at 

530–632 cm
−1

 corresponds to Fe–O stretching modes (Aydın et al., 2011).  
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Figure 4.1: FT-IR spectrum of (a) naked magnetic nanoparticles, (b) MNP@PTh, (c) 

MNP@PTCN, (d) MNP@P3Th and (e) MNP@P3TArH nanocomposites 
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The C–H aromatic stretching peak was observed for all nanocomposites, which 

falls at ~2980 cm
−1

. C–H sp
3
 stretching (hexyl aliphatic side) occurred at 2934 cm

−1
 for 

MNP@P3Th and MNP@P3TArH. Schiff base peaks C=N was observed at 1653 cm
-1 

MNP@PTCN and 1685 cm
-1 

for MNP@P3TArH (Vasanthi & Ravikumar, 2013). C=C 

aromatic symmetric and asymmetric absorption bands demonstrated in the range of 

1573–1461 cm
−1

 for MNP@PTh, 1563-1451 cm
−1 

for MNP@PTCN, 1565-1473 cm
−1 

for MNP@P3Th and 1564-1420 cm
−1

 for MNP@P3TArH. Two absorption band peaks 

at 1250 and 1072 cm
−1

 indicated the presence of C–O in MNP@P3TArH. Hence, FT-IR 

study clearly revealed that all nanocomposites prepared has been successfully coated. 

 

4.1.2 X-Ray Difractometer (XRD) 

Figure 4.2 displays the characteristic peaks observed for naked MNP and all 

nanocomposites prepared (MNP@PTh, MNP@P3Th, MNP@PTCN and 

MNP@P3TArH). The peak of the nanocomposites was slightly wider than MNP. This 

is might be because of the presence of amorphous and polymeric materials (Cótica et 

al., 2010). The characteristic peaks of were observed at 2ϴ = 30°, 35.7°, 43°, 53.4°, 

57.0°, and 62.6°, which are marked by their respective indices [(220), (311), (400), 

(422), (511) and (440)] (Giri et al., 2005). This showed that the surface 

functionalization does not change crystalline phase of MNP.  Univ
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Figure 4.2: Diffractograms of (a) naked magnetic nanoparticles, (b) MNP@PTh, (c) 

MNP@PTCN, (d) MNP@P3Th and (e) MNP@P3TArH nanocomposites 

 

 

4.1.3 Brunauer–Emmett–Teller (BET)  

The BET surface area is measured using the multipoint BET method, within the 

relative pressure (P/P0) range of 0.05 to 1. As described in Appendix F, the MNP and all 

nanocomposites display a H3 type hysteresis loop based on the Brunauer-Deming-

Deming-Teller (BDDT) classification, demonstrating the existence of mesopores with 

pore diameters between 2-50 nm (Sing, 1985). The pore size and BET surface area of 

MNPs and nanocomposites are tabulated in Table 4.1. The decrease in pore size of 

nanocomposites is due to the addition of polymer coating on the surface. Increase in the 

surface area maybe attributed by the aggregation of particles that resulted in the 

enhancement of the spaces between them (Darab et al., 1994; Wang et al., 2008). 
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Table 4.1: BET pore size and surface area 

. 

 

4.1.4 Thermo Gravimetric Analysis (TGA)  

Figure 4.3 shows TG analysis for MNP and nanocomposites. Small weight loss 

was detected under 200 °C in MNP and nanocomposite, speculated to be due to 

desorption of adsorbed water on the surface of the nanoparticles. Since Fe-O is 

thermodynamically steady within a temperature range of 280 °C to 850 °C, thus no 

weight loss is observed for Fe3O4 after 200 °C (Mahdavi et al., 2013). The thermograms 

of nanocomposite indicated that it is stable up to 210 °C. However, above this 

temperature all nanocomposites exhibited rapid weight loss in the temperature ranging 

from 240 °C and 450 °C. This might be due to the decomposition of polymer coating.  

Herein, thermal analysis study showed that the surface of MNP has been successfully 

coated with functionalized polythiophenes. 

Sample Pore size (nm) Surface Area (m
2
 g

-1
) 

MNP 20.2 37.37 

MNP@PTh 18.3 95.6 

MNP@PThC=N 13.3 97.3 

MNP@P3HexTh 12.6 96.5 

MNP@P3TARH 12.09 103.80 
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Figure 4.3: Thermogram of (a) naked magnetic nanoparticles, (b) MNP@PTh, (c) 

MNP@PTCN, (d) MNP@P3TArH and (e) MNP@P3Th nanocomposites 

 

4.1.5 Vibrating Sample Magnetometer (VSM)  

Magnetic properties of the samples were recorded at room temperature with an 

external field of ±15 kOe. M-H hysteris curves of MNP, MNP@PTh, MNP@PThC=N, 

MNP@P3HexTh and MNP@P3TArH are presents in Figure 4.4. Important magnetic 

parameter, which is saturation magnetization (MS), was assessed.  As clear from the 

hysteresis loops, magnetization did not occur until maximum applied field and exhibited 

superparamagnetic behavior (Jayabharathi et al., 2015). Maximum saturation (MS) of 

MNP and nanocomposites appeared at 92 (bulk magnetization) and ~63.2 emu g
-1

, 

respectively. MNP@PTCN and MNP@P3TArH demonstrated high magnetization 

saturation compares to other nanocomposites. This can be due to the Schiff base groups 

have been designed for shielding the magnetic core of MNP from oxidation that may 

reduce its magnetization (Issaadi et al., 2011). 
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Figure 4.4: Magnetization analysis of MNP and nanocomposites 

 

Reduced magnetization signify the presence of a dead magnetic layer on the 

surface of the nanocomposites (Aydın et al., 2011). Although magnetization is reduced 

in nanocomposite, but still the value of magnetization falls within the acceptable range, 

which suggest that they can be separated conveniently from a solution with an external 

magnetic field (Ma et al., 2005). 

 

4.1.6 Morphological Analysis  

Significance improvement in surface area of MNP@P3TArH as shown by BET 

results, we decided to further study its morphological properties. Figure 4.5 

demonstrates morphological analyses of the MNP and MNP@P3TArH using field 

emission scanning electron microscopy (FESEM) and transmission electron microscopy 

(TEM) techniques. FESEM and TEM images of all materials exhibited a sphere-shaped 

geometry. As evident from the TEM analysis, the distribution of the modified 

-10000 -5000 0 5000 10000

-80

-60

-40

-20

0

20

40

60

80

100
 MNP

 MNP@PTh

 MNP@P3Th

 MNP@P3TArH

 MNP@PTCN

M
a

g
n

et
iz

a
ti

o
n

 (
em

u
 g

-1
)

Magnetic field (G)

Univ
ers

ity
 of

 M
ala

ya



 65 

nanoparticles (MNP@P3TArH) is very uniform and nanoparticles are segregated. This 

may be due to the presence of polymeric material coating, reduces the aggregation and 

stabilizes the magnetic nanoparticles (Shin & Jang, 2007).  

Analysis of TEM images using the IMAGEJ software determined the average of 

particle diameter distribution by computing the values corresponding to at least 300 

nanoparticles. Based on the histogram plotted in Figure 4.5 (e) and (f), DTEM, an 

average diameter, and , a standard deviation values were calculated. TEM average 

particle size for MNP@P3TArH was found to be 13.070 ± 2.916 nm. The average 

particle size MNP was larger than the average particle size of MNP@P3TArH  

determined from the TEM which might be due to many nanoparticles are accumulated 

and overlaid on top of one another, and cannot be measured accordingly (Cótica et al., 

2010).  
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Figure 4.5: FESEM images of a) MNP, b) MNP@P3TArH; TEM images of c) MNP, 

d) MNP@P3TArH; and  diameter distribution of e) MNP, f) MNP@P3TArH 
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4.2 Screening Studies 

Hypothetically, the adsorption of phthalates is based on the hydrophobicity and π–π 

dispersion (Moreno-Castilla, 2004). To prove that the structure architecture can influence 

the adsorption of phthalates, five different types of sorbent, which are naked magnetic 

nanoparticles (MNP), MNP@PTh, MNP@PTCN, MNP@P3Th, and MNP@P3TArH 

were tested. As shows in Figure 4.6, MNP resulted in an insignificant peak area for all of 

the analytes studied. After the introduction of polythiophene derivatives on the surface of 

MNP, the peak area of phthalates increased 
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Figure 4.6: Effect of adsorbent for the extraction of the targeted phthalates 

 

The presence of aliphatic and aromatic groups in the MNP@P3TArH enhances the 

dispersion of phthalates, which enhances the π–π dispersion and hydrophobic interactions. 

As evidenced, butyl benzyl phthalate (BBP) is more prone to the adsorbent with more 

aromatic sides, as in the MNP@PT3ArH, compared to the other adsorbents. Besides, the 

high surface area of MNP@P3TArH also contributes to the increase of extraction 

performance. Since the MNP@P3TArH has demonstrated the high peak area for all 

analytes studied, it was selected for further adsorption and MSPE optimization. 
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4.3 Adsorption of Studies of DEHP on P3TArH Coated Magnetic Nanoparticles 

4.3.1 Effect of Magnetic Nanoparticle Loading 

Optimum amount Fe3O4 loading on P3TArH for the adsorption of DEHP was 

investigated. As described in Figure 4.7, when the loading of Fe3O4 reached to 10 % the 

adsorption efficiency increased and decreased later after 10 %. This can be due to the, 

less amount of loading, contributes to low surface area  and reduced the actives site for 

adsorption, while the increase of loading beyond the optimum can caused particles 

agglomeration (Akpan & Hameed, 2009; Munusamy et al., 2013). Therefore, 10 % of 

Fe3O4 from the total moles of monomer was chosen as the optimized loading and used 

for further experiments. 
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Figure 4.7: Percentage of Fe3O4 nanoparticles added to the total mole of monomer 

for adsorption of DEHP 

 

 

4.3.2 Effect of pH 

Adsorption was performed under different pH conditions, ranging from pH 3 - 10. 

As evidenced by Figure 4.8(a), adsorption efficiency increases when the pH increases 
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from 5 to 7, but decreases later from 7 to 10. Whereas, Figure 4.8(b) demonstrated zeta 

potential analysis of MNP@P3TArH with effect of pH range 3 to 9 which represents the 

surface charge of MNP@P3TArH. At low pH, C=N groups in MNP@P3TArH were 

protonated, making the adsorbent surface positively charge. As described in Scheme 4.1 

(a), at pH<7, DEHP hydrolyzes to phthalic acid, since the carbonyl group in the phthalic 

acid is nucleophilic in nature, it can easily react with hydrogen ions in the solution to 

form positively charged species. Due to both absorbate and adsorbent acquiring positive 

charges, the electrostatic repulsion occurred and retarded the adsorption performance 

(Mohan et al., 2002).  

Moreover, based on zeta potential result at higher pH, surface of the adsorbent 

became negatively charge due to deprotonation of C=N in MNP@P3TArH, whereas 

adsorbate hydrolyzes to phthalate anions as shown in Scheme 4.1(b) resulting in the 

repulsion and thereby, reduces the adsorption efficiency (Fang & Huang, 2009). Strong 

adsorptive performance in neutral pH can be explained by strong interactions between 

the hydrophobic and - interactions in MNP@P3TArH with DEHP. Since the 

optimum performance of adsorption of DEHP was demonstrated at pH 7, this pH was 

selected for the entire experiments. 
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Figure 4.8: (a) Effect of solution pH (b) The zeta potential of MNP@P3TArH at 

various pHs 

 

O
O

CH3

CH3

CH3

CH3

O

O

+ H2O O
O

CH3

CH3

CH3

CH3

OH+

OH+

H+

(a)

 

O
O

CH3

CH3

CH3

CH3

O

O

+ -OH O-
O-

O

O

+ n C16H33OH

(b)

 

Scheme 4.1: (a) DEHP at pH<7 and (b) DEHP at pH>7 
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4.3.3 Kinetic and Thermodynamic Studies 

The effect of contact time for the removal of DEHP by MNP@P3TArH was 

investigated in the time range of 0–180 min at four different temperatures of 298.15 K, 

318.15 K, 323.15 K and 333.15 K. Figure 4.9 demonstrates that the adsorption capacity 

was rapid for the first 15 min; which might be due to the many available active sites for 

adsorption. From 120 min to 180 min, the removal capacity was observed to be 

constant; therefore, 120 min could be regarded as the equilibrium time.  
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Figure 4.9: Effect of contact time and temperature for the adsorption of DEHP onto 

MNP@P3TArH 

 

To further determine the adsorption mechanism and kinetics parameters, the data 

gained were fitted into three types of kinetics models, pseudo first-order, pseudo 

second-order, and intraparticle diffusion (Febrianto et al., 2009; Ho & McKay, 2000; 

Memon et al., 2011; Pan et al., 2008; Weber & Rumer, 1965). The pseudo first-order 

kinetic model is extensively used to study the adsorption of an adsorbate from an 

aqueous solution. The equation can be expressed as; 
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                        –              –  
  

    
                                                     (4.1) 

where qe and qt are the amount of DEHP adsorbed (mg g
−1

) at equilibrium and time, t is 

the contact time (min), and k1 is the rate constant of this equation (min
−1

). k1 and qe were 

determined from the plot of log(qe−qt) versus t. Meanwhile, pseudo-second order 

kinetic model is based on the assumption that the adsorption mechanism depends on the 

both adsorbate and adsorbent (Pavan et al., 2008). The linear equations pertaining to 

this area follows; 

      
  

  
  

 

    
 
  

 

  
  , where        

  and   
 
 
     

                             (4.2) 

where h is the initial adsorption rate (mg g
−1

) min, t1/2 is half equilibrium time (min), 

and k2 is the pseudo second-order rate constant (g mg
−1

 min). A linear plot of t/qt vs. t 

could be used to determine the value of qe, k2, h and t1/2 respectively. The kinetics 

parameters and correlation coefficient are listed in Table 4.2. It can be seen that the 

experimental data is fitted with pseudo second-order kinetic model with R
2
 near to unity 

and can be further confirmed by the nearness of the calculated and experimental qe 

value. Similar adsorption behavior was also found for the removal of diethyl phthalate 

by activated carbon (Venkata Mohan et al., 2007). Next, the parameters for intraparticle 

diffusion models were calculated according to the linear equation as follows; 

                                                                                                                   (4.3) 

where c is thickness of boundary layer (mg g
−1

) and K is the rate constant (mg g
−1

 

min
−1

).  
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Table 4.2: Kinetic parameters for the adsorption of DEHP onto MNP@P3TArH 

 

Figure 4.10 reveals that the plots are not linear throughout the contact time, 

however, a similar trend for four temperatures were observed, and the plots were 

divided into two parts; at the start of the experiment, a steeper line was detected, which 

might be due to a massive transfer of DEHP from the boundary layer to the surface of 

the MNP@P3TArH. After 8 min, the line continued to be linear, due to diffusion of 

DEHP through the mesopores of MNP@P3TArH (Jalil et al., 2010).  

Kinetic Models MNP@P3TArH 

 
298.15 K 318.15 K 323.15 K 333.15 K 

Pseudo-first order     

qe, exp(mg g
-1

) 12.22 11.413 10.09 8.914 

qe, cal(mg g
-1

) 10.6 7.45 6.06 11.57 

k1(min
-1

) 0.0363 0.0317 0.0221 0.0603 

R
2
 0.7296 0.8754 0.8193 0.9216 

Pseudo-second order     

qe, cal(mg g
-1

) 12.30 11.89 10.60 9.85 

k2(min
-1

) 0.083 0.015 0.014 0.008 

R
2
 0.9999 0.9957 0.9936 0.9926 

Intraparticle Diffusion     

K (mg g
−1

 min
−1

) 0.831 0.744 0.695 0.692 

c (mg g
−1

) 3.278 3.251 3.214 1.321 

R
2
 0.705 0.842 0.957 0.9057 
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From the intraparticle diffusion model parameters, the adsorption of DEHP onto 

MNP@P3TArH can be assumed as an exothermic reaction, since the value of boundary 

layer thickness decreases with the increases of temperature (Tewari et al., 1972). Higher 

temperature resulting the increment of solubility of DEHP to aqueous solution and 

increased the collision between adsorbents molecules which led to lower intraparticle 

diffusion rate (Yadava et al., 1989).  
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Figure 4.10: Intraparticle diffusion plots 

 

The thermodynamic parameters were determined to investigate the mechanism of 

the adsorption process. The values of adsorption enthalpy (ΔH°), entropy (ΔS) and 

Gibbs free energy (ΔG°), are revealed in Table 4.3, which were calculated using the 

following equations; 

                                                   
  

 
   

  

  
                                                   (4.4) 

                                                    
              

             
                                                (4.5) 
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                                                                                                               (4.6) 

 From the plot of ln Kc against 1/T, the (ΔH°) value was found to be negative, 

which confirms that the adsorption process is exothermic in nature. The increase in 

temperature enhanced the surface activity of DEHP, increasing its affinity to water 

(Minling et al., 2015). The (ΔS) value was negative, demonstrating that the system 

reached an ordered state due to the decrease in the randomness of adsorbate/aqueous 

phase (Aydın & Aksoy, 2009). Decreased ΔG° values with elevating temperature 

indicated that the process favours low temperature (Salleh et al., 2015). Moreover, 

negative values of ΔG° was in the range between -20 and 0 kJ mol
-1

, indicating that the 

adsorption process is thermodynamically feasible, physically controlled, and 

spontaneous (Kilic et al., 2011; Zarrouk et al., 2011). The activation energy of the 

adsorption process can be calculated from the plot of k2 (pseudo second order rate 

constant) against 1/T using the Arrhenius equation; 

                                                         
  

 
(
 

 
)                                         (4.7) 

The value of activation energy for the adsorption of DEHP onto MNP@P3TArH 

was found to be -40.6 kJ mol
−1 

K
−1

. Negative value of sorption activation energy 

demonstrating the process favors at low temperature (Saha & Chowdhury, 2011). 

Moreover, the value of activation energy could be used to determine the adsorption 

behavior; if the value is less than <40 kJ mol
-1

, the process is physisorption, and if its 

>40 kJ mol
-1

, it is predominantly a chemical adsorption process.  
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Table 4.3: Thermodynamic parameters for DEHP adsorption onto MNP@P3TArH 

 

 

4.3.4 Effect of Initial DEHP Concentration and Isotherms Equilibrium Studies 

Figure 4.11 demonstrates the effect of initial concentration of DEHP in the range 

of 5-90 mg L
-1

 at 298 K. The adsorptive capacity increases with the increasing of initial 

concentration of DEHP from 5 mg L
-1

 and reaches equilibrium at 15 mg L
-1

 with 11.8 

mg g
-1

. This indicates that a maximum concentration for 5 mg of MNP@P3TArH in 5 

mL aqueous solution is 15 mg L
-1

 DEHP to give significant adsorption efficiency. At 

low concentration, the removal is significant due to the readiness of many active sites 

for adsorption whereas at high concentration, the removal is persistent due to all 

available active sites in adsorbent are fully occupied by DEHP. 

To study the adsorption isotherm, four models, Langmuir, Freundlich, Temkin, 

and Dubinin-Radushkevich (D-R) were utilized to explain the adsorption behaviour of 

DEHP onto MNP@P3TArH. The Langmuir isotherms model is based on the 

expectations that the monolayer adsorption homogenously occurred on all active sites, 

with no additional adsorption after the sites are fully occupied by the solute at uniform 

energy (Srivastava et al., 2006).The Langmuir equation is, 

                                      
 

  
  

 

   
  

  

  
                                                               (4.8) 

T (K) 

qe, 

(mg g
-1

) 

ΔG° 

(kJ mol
−1

) 

ΔH° 

(kJ mol
−1

) 

ΔS 

(kJ mol
−1 

K 
−1

) 

298.15 12.22 -2.883 

-19.77 -0.057 318.15  11.41 -1.650 

323.15 10.09 -1.151 

333.15 9.10 -0.881   
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 where Ce (mg L
−1

) is the equilibrium concentration of the adsorbate, Co (mg L
−1

) is the 

initial adsorbate concentration, qe (mg g
−1

) is the adsorption capacity at equilibrium, 

0 20 40 60 80 100
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15

q
t 

(m
g

 g
-1

)

Initial Concentration (mg g-1)
 

Figure 4.11: Effect of DEHP initial concentration 

 

qm (mg g
−1

) and b (L mg
−1

) are Langmuir constant related to the adsorption capacity and 

rate of adsorption, respectively. To determine whether the process is either favourable 

or unfavourable, the dimensionless separation factor (RL) can be calculated from;  

                                                 
 

     
                                                               (4.9) 

From the plot of Ce/qe versus Ce, the values of Langmuir parameters were 

determined. In contrast to the Langmuir isotherm model, the Freundlich isotherm model 

assumed that adsorption heterogeneously occurred on the adsorbent's surfaces, with 

different energies of active sites (Mckay et al., 1982). The following equations 

determined the values of Freundlich constant; 

                                                     
 

 
                                         (4.10) 
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where KF ((mg g
−1

) (L mg
−1

)
1/n

) is the adsorption capacity, while 1/n represents 

Freundlich constants, respectively. The Dubinin-Radushkevich isotherm model takes 

into account the porosity of the adsorbent. The experimental data was fitted with a plot 

of ln qe against є
2
 as a linear equation in the following form;  

                                                                                                          (4.11) 

where  (mol
2
 kJ

−2
) denotes the adsorption energy constant and the Polanyi potential (ε) 

is mean free energy respectively. E (kJmol
-1

) can be obtained using the following 

equations; 

                                                           
 

  
 ,                                          (4.12) 

                                                               (     )                                   (4.13) 

where R is the universal gas constant in kJ mol
-1

 K
-1

, and T is the temperature. The 

Temkin model was established on the basis that the heat of adsorption would reduce 

linearly as the layer is covered, resulting in an uneven relationship of adsorbent–

adsorbate interfaces on heterogeneous surfaces in adsorption systems (Temkin & 

Pyzhev, 1940). The Temkin model linear equation is as follows: 

                                                 ,     where     
  


                       (4.14) 

A plot of qe versus ln Ce from the linear equation could be used to determine the 

Temkin constant, where KT (L mg
−1

) is the Temkin constant related to the equilibrium 

binding energy, and bT (J mol
-1

) is Temkin constant related to the heat of adsorption.  

Amid the four isotherms studied, from Table 4.4, the result showed that the 

adsorption of DEHP onto MNP@P3TArH was better described by Freundlich isotherm 
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models (R
2
 = 0.9833), suggesting that adsorption occurred heterogeneously on 

adsorption sites. Comparable studies were also found for the adsorption of diethyl 

phthalate (DEP) using multiwall carbon nanotubes (Wang et al., 2010). Additionally, 

the Freundlich constant, adsorption capacity KF, and adsorption intensity 1/n value were 

determined to be 0.6945 mg g
-1

 and 1.168, respectively. High KF value represented great 

adsorption affinity towards adsorbate (Xu et al., 2007). Whereas 1/n  1 indicated 

favourable adsorption process (Pelit et al., 2011).  

 

Table 4.4: Isotherms parameters for DEHP adsorption of onto MNP@P3TArH 

Isotherms model Fe3O4@P3TArH 

Langmuir  

qm (mg g
−1

) 52.63 

b (L mg
−1

) 0.010 

R
2
 0.8259 

RL 0.8695 

Freundlich  

KF ((mg g
−1

) (L mg
−1

)1/n) 0.6945 

1/n 1.168 

R
2
 0.9833 

Temkin  

KT (L mg
−1

) 0.217 

bT (kJ/mol) 276.88  

R
2
 0.9682 

Dubinin-Radushkevich  

qm (mg g
−1

) 20.00 

 10.575 

E 0.615 

R
2
 0. 8502 
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Figure 4.12 demonstrates an illustration of proposed interaction for multilayer 

adsorption according to the Freundlich isotherms. When DEHP and MNP@P3TArH 

come into contact, sorbent active sites which are mesopores (which are confirmed by 

BET), hydrophobicity (aliphatic) and - interaction (aromatic) enhance the attraction 

of DEHP. At the same time, DEHP-DEHP also attracts to each other which create 

multilayer adsorption that often observed as physical adsorption process (Lyubchik et 

al., 2011; Venkata Mohan et al., 2007).   

 

  

Figure 4.12: Propose interactions for multilayer adsorption (Freundlich) 
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4.3.5 Reusability Studies 

 To determine reusability of MNP@P3TArH for adsorption of DEHP, the 

adsorbent was recycled after being washed with methanol and water, and was dried in 

vacuum at 70 °C for 12 hours. From Figure 4.13, it could be summarized that after five 

repeated experiments, the adsorption performance was reduced from 84 % to 64 %. To 

further confirm the modifications on the sorbent properties, BET surface area analysis 

and FT-IR of the sorbent were performed after the fifth cycles. 
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Figure 4.13: Reusability graph for five cycles 

 

From the surface area analysis in Table 4.5, it was found that surface area of the 

recycled sorbent was significantly reduced. This can be due to the surface modification 

of the sorbent material which occur up until fifth cycle as confirmed by FT-IR analysis 

of the recycled sorbent (Cherian et al., 2002). The IR spectrum of recycled sorbent is 

presented in Figure 4.14, which clearly reveals that the intensity of the polymer coating 
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reduced significantly after the fifth cycle. As a result, active sites (mesopores) and other 

physical interactions which have played significant role in adsorption (hydrophobicity, 

- interaction) of DEHP were decreased from the recycled MNP@P3TArH which 

eventually hampered theirs adsorptive performance with every cycle. 

Table 4.5: BET surface area analysis of MNP@P3TArH and recycled MNP@P3TArH 

Sample BET Surface Area (m
2
 g

-1
) 

MNP@P3TArH  103.8 

Recycled MNP@P3TArH  49.566 
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Figure 4.14: FT-IR spectrum of (a) MNP@P3TArH; (b) recycled MNP@P3TArH 

 

4.3.6 Comparative studies 

Table 4.6 reveals the comparison of the maximum adsorption capacities of various 

adsorbents. Chan. H et al. (2004) confirmed that breached seaweed resulted in higher 

adsorption capacity (5.68 mg g
-1

) as compared to S.siliquastrum (6.54 mg g
-1

)
 
for an 

adsorbent mass of 0.025 g at 3 hours reaction time. Cheng and Chung (2006) utilized 
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chitosan bead as an adsorbent to remove DEHP from a plastic manufacturing plant. The 

value of qmax in this study was found to be 11.8 mg g
-1

, which suggests the 

MNP@P3TArH used could readily adsorb DEHP.  

 

Table 4.6: Comparison on adsorption capacities 

Adsorbent Analyte 

Reaction 

time  

(Hours) 

Maximum 

adsorption 

Capacities 

(mg g
-1

) 

References 

S. siliquastrum DEHP 3 5.68 (Chan et al., 

2004) Beached seaweed DEHP 3 6.54 

Chitosan bead DEHP 6 0.49 

(Chen & Chung, 

2006) 

Chitosan bead/ - 

cyclodextrine 

DEHP 6 

3.09 

(C.-Y. Chen et 

al., 2007) 

Bioslurry 

DEHP 264 

0.972 

(Shailaja et al., 

2008) 

Biofilms DEHP - 0.161 (Cao et al., 2014) 

MNP@P3TArH DEHP 2 52.63 This study 
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4.4 Magnetic Solid-Phase Extraction (MSPE) of Phthalates by Functionalized 

Polythiophene Coated Magnetic Nanoparticles. 

4.4.1. Solid-Phase Extraction Optimization  

4.4.1.2 Effect of Sample pH 

To study the influence of the surface charge of adsorbent/adsorbate in the 

extraction process, experiments were performed under different pH conditions, ranging 

from pH 2–9. Zeta potential analysis for MNP@P3TArH surface charges at different 

pH were described in previous discussion (Figure 4.8(b)). As described from Figure 

4.15, the peak areas for phthalates increase when the pH rise from 2–7, but decline later 

from 8–9. At low pH, C=N, alkoxy in P3TArH was protonated, making the adsorbent 

surface positively charged. 

 

 At pH<7, phthalates hydrolyze to phthalic acid, thus making the carbonyl group 

nucleophilic, reacting with hydrogen ions in the aqueous solution, producing positive 

charges (see Scheme 4.1(a)). Due to both the absorbate and adsorbent acquiring positive 

charges, the electrostatic repulsion occurred and retarded the adsorption performance 

(Mohan et al., 2002). At basic conditions, the surface adsorbent became negatively 

charged, while the adsorbate hydrolyzed to phthalate anions (see Scheme 4.1(b)), 

reducing the extraction efficiency (Fang & Huang, 2009). Thus, in neutral pH, the 

extraction increased due to the absence of electrostatic repulsion that disturbed the 

extraction capability. As the optimum performance was demonstrated at pH 7, this pH 

was selected for all of the experiments. 
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Figure 4.15: Effect of sample pH for the extraction of the targeted phthalates 

4.4.1.3 Extraction Time 

It has been understood that prolonged extraction time might increase the recovery 

of analytes. Thus, the influence of extraction time on the recoveries of the analyte has 

been investigated. As demonstrated in Figure 4.16, the peak area increased rapidly for 

the first 20 min, since more adsorption sites were available and phthalates could easily 

interact with these sites. After 30 min, the peak area was almost persistent; therefore, 30 

min was sufficient to extract the maximum of the target analytes. In order to ensure that 

the extraction time was satisfactory, further experiments were carried out until 90 min, 

and they were found to be constant. Univ
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ity
 of

 M
ala

ya



 86 

0 20 40 60 80 100

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

2,400,000

P
ea

k
 A

re
a

Extraction Time (min)

 DMP  DEP  DPP  DEHP

 DBP  BBP  DCP  DNOP

 
Figure 4.16: Effect of extraction time for the extraction of the targeted phthalates 

 

 

4.4.1.4 Desorption Studies 

The elution solvent is one of the crucial parameters to be considered. In order to 

determine the best elution solvent, the solvent must be able to elute all of the analytes 

that were retained from the adsorbent in a small volume (Miskam et al., 2014). Six 

eluting solvents with dissimilar polarities, namely hexane, toluene, diethyl ether, 

acetonitrile, methanol and ethyl acetate were studied. As evidenced by Figure 4.17, 

polar solvents (acetonitrile, methanol and ethyl acetate) were the best solvents, with 

high peak areas compared to non-polar solvents (hexane, toluene and diethyl ether), 

since phthalates contain a polar carbonyl group (Wade, 2016). Among the polar 

solvents, ethyl acetate showed high solvent strength; since it gave the maximum peak 

area for the phthalates studied and was thus selected to be the eluent. 
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Figure 4.17: Type of organic eluent for the extraction of targeted phthalates 

 

 

The volume of ethyl acetate was tested from 0.1 mL–2.5 mL. As observed in 

Figure 4.18, the peak area increased from 0.1 mL and remained constant after 0.5 mL. 

This shows that 0.5 mL may accommodate the maximum phthalates extracted from the 

sorbent. 
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Figure 4.18: Volume of organic eluent for the extraction of targeted phthalates 
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Further, desorption time was optimized to investigate the best time taken for the 

analytes to desorb from the sorbent ranging from 0–12 min. As reveals in Figure 4.19, 

analytes were desorbed rapidly in the first 4 min and started to become linear after 10 

min. This indicated that 10 min of time are sufficient to desorb back all of the analytes 

from the adsorbent. As for the case of BBP, desorption was found to be slower than 

other phthalates. This could be due to the presence of an additional aromatic ring in 

BBP, which makes it less polar to the eluent (ethyl acetate). After 6 min of desorption, 

most of the phthalates had reached near to equilibrium, whereas BBP was desorbed 

steeply after 6 min until it reached equilibrium at 10 min. 
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Figure 4.19: Desorption time for the extraction of targeted phthalates 

 

 

4.4.1.5 Mass of Adsorbent 

Investigation of the adsorbent amount was executed in the range of 1–25 mg. As 

exposes in Figure 4.20, the extraction peak area increased up to 10 mg, but decreased 

later with a further increase of the adsorbent. Increasing the adsorbent amount provides 
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more active sites for the adsorption of target analytes. However, a high amount of adsorbent 

at a specific volume has weakened elution efficiency (Tahmasebi & Yamini, 2014). It is 

shown that this adsorbent only required a small amount of adsorbent to remove phthalates 

efficiently, which added the advantage of economic value. Therefore, for further 

experiments, the adsorbent amount of 10 mg was applied. 
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Figure 4.20: Adsorbent dosage for the extraction of targeted phthalates 

 

 

4.4.1.6 Sample Loading Volume 

The effect of sample volume was investigated by the extraction of the phthalates 

ranging from 5–100 mL and reveals in Figure 4.21. Each sample was spiked with 10 mg 

L
−1

 analytes and 10 mg adsorbent. As can be seen, peak area increased until 20 mL and 

further decreased till 100 mL. A 20 mL volume of sample demonstrated the most 

efficient extraction. An increase in sample volume could lead to a high distribution of 

adsorbent to the aqueous phase, which lowered the amount of adsorbent in the volume 

unit sample solution, and the extraction became less effective (Tahmasebi et al., 2013). 

Thus, a 20 mL sample volume was chosen as the optimized sample volume. 
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Figure 4.21: Adsorbent dosage for the extraction of targeted phthalates 

 

 

4.4.1.7 Effect of NaCl 

Indeed, the addition of salt in the sample matrices affects the extraction efficiency. 

Thus, studies on the concentration of NaCl ranging from 0–25 g L
−1

 were conducted. 

Figure 4.22 demonstrates peak areas of the studied analytes increased from 0–15 g L
−1

, 

but decreased later from 20–25 g L
−1

. This can be due to the addition of salt, which 

increases the ionic strength and eventually decreases the solubility of the analytes in the 

media. However, as the concentration of salt increases, the diffusion rate of the analytes 

may reduce, since the solvation cage of the analytes is disturbed (Tahmasebi et al., 

2012). Since a 15 g L
−1

 NaCl concentration gave a high peak area for all analytes 

studied, it was chosen for subsequent experiments. 
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Figure 4.22: Effect of NaCl concentration for the extraction of targeted phthalates 

 

 

4.4.2 Reusability Studies 

To investigate the probability of reusing and regenerating the sorbent, a 

reusability test was designed and implemented for MNP@P3TArH, which was recycled 

after being washed with methanol and water and was dried in a vacuum at 70 °C for 12 

h. From Figure 4.23, it could be surmised that after five repeated experiments extraction 

efficiency was reduced. This might cause by  the adsorbent surface properties was 

modified which decreases the surface area as confirmed by BET surface area (see Table 

4.5) and FT-IR analysis (see Figure 4.14) of the sorbent after five cycles. Univ
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Figure 4.23: Reusability cycles 

 

 

4.4.3 Analytical Performances  

The optimized method obtained for the extraction of phthalates using 

MNP@P3TArH involved the sample at pH 7, 30 min extraction time, ethyl acetate as 

the elution solvent, 500 µL elution solvent volumes, 10 min desorption time, 10 mg 

adsorbent dosage, 20 mL sample loading volume and a 15 g  L
−1

 concentration of NaCl. 

In order to assess the validation of the proposed method, linearity, the limit of detection, 

the limit of quantitation and repeatability were performed under optimum conditions. 

Analytical performance figures of merits are tabulated in Table 4.7. 

 

Calibration curves obtained for the studied phthalates were linear over the range 

of 0.1–50 µg L
−1

 with R
2
 more than 0.99. As per the U.S. EPA standard, the screening 

of phthalates in drinking water must be done at a concentration above 0.6 µg L
−1 

(Serôdio & Nogueira, 2006). However, the LOD of our method lies within the range of 

0.054–0.468, indicating the suitability of this method as an efficient phthalate extractor.
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Table 4.7: Method validation data for magnetic-solid phase extraction (MSPE) of phthalates with MNP@P3TArH 

Analytes R
2
 

Linear range 

(µg L
−1

) 

LOD 

(µg L
−1

) 

LOQ 

(µg L
−1

) 

RSD (%) 

Inter-day, n = 3 

RSD (%) 

Intra-day, n = 7 

DMP 0.992 0.5–50 0.462 1.539 3.4 4.8 

DEP 0.992 0.5–50 0.468 1.562 5.0 4.3 

DPP 0.997 0.5–50 0.286 0.954 4.6 3.7 

DBP 0.998 0.1–50 0.063 0.213 4.5 4.5 

BBP 0.996 0.1–50 0.080 0.268 4.8 4.3 

DCP 0.993 0.5–50 0.332 1.106 4.7 4.0 

DEHP 0.997 0.1–50 0.054 0.182 3.0 4.0 

DNOP 0.997 0.1–50 0.073 0.244 3.6 4.9 

9
4
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Repeatability studies were conducted for inter-day (three consecutives replicates 

for three days) and intra-day (seven consecutives replicates on the same day). The 

results were expressed as relative standard deviations RSD (%). This method 

demonstrated good precision, since the RSD (%) values were in the range of 3%–5% 

(Le Zhang et al., 2010). Comparative studies on the analytical performance between the 

proposed methods with other developed methods are shown in Table 4.8. Obviously, the 

extraction of phthalates using MNP@P3TArH provides sensitivity and repeatability. 

 

Table 4.8: Comparatives study of the proposed method with other MSPE adsorbents for 

the extraction of phthalates 

Analyte Method 
LOD  

(µg L
−1

) 
LDR (µg L

−1
) 

RSD 

(%) 
Ref. 

-DBP, 

DEHP, 

DOA 

MNP@PTh-GC-FID 0.2–0.4 0.4–100 4–12 
(Tahmasebi 

et al., 2013) 

-DPP, DBP, 

DCP, 

DNOP 

MNP@Chitosan-

C18-HPLC-UV 
0.012–0.037 0.001–0.01 2–6 

(Le Zhang 

et al., 2010) 

-DBP, 

DEHP 

MNP@Zeolite-

GC-FID 
2.8–3.2 10–1200 10–13 

(Mollahosse

ini et al., 

2015) 

-DMP, DEP, 

DBP, BBP, 

DNOP 

MNP@ZIF-8-

HPLC 
0.08–0.24 1–100 <5 

(Liu et al., 

2015) 

-DMP, DPP, 

DEP, DBP, 

BBP, DCP, 

DEHP, 

DNOP 

MNP@P3TArH- GC-

FID 
0.05–0.09 0.1–50 3–5 This study 

 

4.4.3.1 Real Sample Analyses 

To endorse the reliability of the method using MNP@P3TArH, it was applied to 

determine phthalates in the water from the mineral bottle store in room temperature, and 

from the commercial fresh milk. Figure 4.24 shows the chromatogram of all samples 

unspiked and spiked with phthalates. None of the targeted phthalates were found in the 

samples under the optimized condition described. To evaluate the matrix effect, all 
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samples were spiked with 50 µg L
−1

 of the studied phthalates. Recoveries and RSD % 

for the real samples were determined and are tabulated in Table 4.9.  

 

From the optimization procedures until the real sample analyses, DMP, DEP and 

DPP demonstrated lower recoveries; this could be due to the lower molecular weights of 

phthalates being more prone to aqueous solution than to the adsorbent (Staples, 2003). 

The recoveries obtained for water in the mineral bottle in both storage conditions 

demonstrated higher values compared to the recovery for the milk sample. This may be 

caused by the matrix effect that holds the analyte in the milk sample to be higher 

compared to the water sample. RSD (%) values were found to be in the range of 1.3 %–

5.8 %, which indicated a precise method. 
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Figure 4.24: GC-FID chromatogram of mineral water stored at room temperature: a) 

spiked (50 µg L
−1

), b) unspiked phthalates; and commercial fresh milk: c) spiked (50 µg 

L
−1

), d) unspiked phthalates; and peaks: 1) DMP, 2) DEP, 3) DPP, 4) DBP, 5) BBP, 6) 

DCP; 7) DEHP, 8) DNOP 

 

Table 4.9: Recovery values obtained from the spiked sample in different matrices 

Analyte 

Recoveries of MNP@P3TArH MSPE (%) (± RSD (%), n=3) 

Mineral water 

 

Commercial fresh milk 

DMP 85(5.8) 68(5.0) 

DEP 85 (4.9) 67(3.0) 

DPP 88(1.3) 72(7.7) 

DBP 95(2.4) 85(3.3) 

BBP 93(3.0) 82(3.8) 

DCP 90(4.7) 77(5.8) 

DEHP 99(1.3) 89(4.5) 

DNOP 101(4.2) 91(3.3) 

 

(c)

(d)

(a)

(b)
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 CONCLUSIONS AND RECOMMENDATIONS CHAPTER 5:

5.1 Conclusion  

Unmodified polythiophene and three functionalized polythiophene were 

successfully coated on the surface of Fe3O4 magnetic nanoparticles. The synthesized 

nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray 

diffractometry (XRD), Brunauer–Emmett–Teller (BET) surface area analysis and 

vibrating sample magnetometer (VSM). From the FT-IR results, the presence of 

functional groups of the modified polythiophenes were found in the spectra indicated 

that the coating has taken place. X-ray diffraction exhibits no change in magnetic 

nanoparticles crystalline phase after coating. Magnetization saturation analyses by VSM 

showed MNP@PTCN and MNP@P3TArH have high magnetization saturation 

compared to other nanocomposites. Among nanocomposites, MNP@P3TArH displayed 

high BET surface area and its morphology was further confirmed with field emission 

scanning electron microscope (FESEM). In addition, the transmission electron 

microscopy (TEM) result has verified the high dispersity of MNP@P3TArH with 

average particle size at 13.070 ± 2.916 nm after coating was performed.  

The adsorption processes of DEHP onto MNP@P3TArH were shown to be pH 

dependent, with the optimum removal being observed at pH 7. Kinetics analysis 

indicated that the kinetic data is well fitted in the pseudo second-order equation model. 

Thermodynamic studies revealed that the adsorption process was exothermic, 

spontaneous, and in an ordered state. The equilibrium isotherm data fitted well into the 

Freundlich isotherm with 1/n indicating a favorable process. The adsorption suggests a 

multilayer adsorption behavior by considering - interaction and hydrophobic 

interaction of the MNP@P3TArH with DEHP. The reusability studies suggested that 
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after five cycles, surface modification of MNP@P3TArH occurred; thus, retarded the 

adsorption efficiency.  

Overall performances for the extraction of selected phthalates were in the order of 

MNP@P3TArH>MNP@P3Th>MNP@PTCN>MNP@PTh>MNP. The presence of new 

interfaces (π-π and hydrophobic interactions) among the sorbent and target analytes 

increased the adsorption capability. The optimized conditions of MNP@P3TArH for 

MSPE were carefully selected as follows: sample at pH 7, 30 min extraction time, ethyl 

acetate as the elution solvent, 500 µL elution solvent volume, 10 min desorption time, 

10 mg adsorbent dosage, 20 mL sample loading volume and 15 g L
−1

 concentration of 

NaCl. The steadiness and reusability studies suggested that the MNP@P3TArH could 

be used up to five cycles without significantly impacting its extraction capacity. The 

adsorbent covers a wide range of phthalates with a dynamic linear range of 0.1–50 µg 

L
−1

 and a limit of detection at 0.054–0.468 µg L
−1

. The application of MNP@P3TArH 

as the MSPE sorbent was successfully executed by the analysis of phthalates in the 

mineral water and commercial fresh milk. 

 

5.2 Recommendations 

The weaknesses and limitations techniques developed in the research study have 

indicated the following areas as recommendations for future work. 

a) Synthesis and application for extraction of different functionalized 

conducting polymers. 

b) Study adsorption and extraction efficiencies for various kinds of 

magnetic nanoparticles beside iron oxide. 

c) Magnetic solid-phase extraction of phthalates via different kind of 

polymer coating. 
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d) Extend the scope of study with extraction of other possible pollutants 

such as heavy metals and organic compounds with simultaneous 

detection. 
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APPENDIX 

Appendix A: FT-IR for Compounds (a) 4-((phenylimino)methyl)phenol (4PIMP) 

(b) 3-(6-bromohexyl) thiophene (3BHT) and (c) Phenyl-(4-(6-thiophen-3-yl-

hexyloxy)-benzylidine)-amine (3TArH). 
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Appendix B: 
1
H NMR of N-phenyl-1-(2-thienyl)methanimine) (TCN) 
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Appendix C: 
1
H NMR for 3-bromohexylthiophene (3BHT) 
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Appendix D: 
1
H NMR for 4-((phenylimino)methyl)phenol (4PIMP)  
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Appendix E: 
1
H NMR for Phenyl(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)amine (3TArH) 
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Appendix F: BET Profile a) MNP and b) MNP@P3TArH 
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Appendix G: a) Pseudo Second-Order Kinetics Model and b) Van’t Hoff Function 

 

 

 

0 20 40 60 80 100 120 140 160 180

0

5

10

15

20

 

 

t/
q

t

Time (min)

 298.15 K

 318.15 K

 323.15

 333.15 K

0.00300 0.00315 0.00330

0.2

0.4

0.6

0.8

1.0

1.2

 

 

ln
 k

c

1/T

 

 

 

 

(a) (b) 

1
3

2
 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

 133 

Appendix H: a) Adsorption Efficiency over Time and b) Arrhenius Function 
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Appendix I: a) Langmuir Isotherm Model and b) Temkin Isotherm Model 
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crine disruptor di-(2-ethylhexyl)
phthalate by modified polythiophene-coated
magnetic nanoparticles: characterization,
adsorption isotherm, kinetic study,
thermodynamics†

Siti Nor Atika Baharin,ad Norazilawati Muhamad Sarih,*a Sharifah Mohamad,ab

Syed Shahabuddin,a Khaulah Sulaimanc and Azman Ma'amora

Core–shell magnetic nanoparticles have received significant attention and are actively explored due to their

prospective applications. In the current study, superparamagnetic nanosorbent poly(phenyl(4-(6-thiophen-3-

yl-hexyloxy)-benzylidene)-amine)/Fe3O4 nanoparticles (Fe3O4@P3TArH) was successfully synthesized via

a simplistic method for the enhanced extraction of a potent endocrine disruptor, di-(2-ethylhexyl)phthalate

(DEHP). The synthesized materials were characterized by Fourier transform infra-red (FTIR), X-ray

diffractometry (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, field emission scanning electron

microscope (FESEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM).

The extraction efficiencies of the synthesized sorbent materials were evaluated by monitoring the

extraction of DEHP from aqueous solution. Removal of DEHP using Fe3O4@P3TArh was found to be pH

and temperature dependent with a maximum adsorption capacity found to be at 298.15 K at pH 7 and the

adsorption kinetics followed a pseudo second-order kinetics model. Thermodynamic studies revealed that

adsorption occurred heterogeneously on the adsorption sites, and adsorption of di-(2-ethylhexyl)phthalate

onto Fe3O4@P3TArh was found to be spontaneous, feasible, ordered, and exothermic. The activation

energy was determined to be �40.6 kJ mol�1, which indicated the adsorption process was physisorption.y o
f M

ala
ya
t

1. Introduction

Contamination caused by phthalates in the form of plasticizers
for polyvinyl chloride resins, adhesives, and cellulose lm
coatings has recently increased due to widespread use.1 They
are favored as plasticizing agents due to their capabilities of
enhancing the placidity and the exibility of plastics.2,3 To date,
93% of plasticizers are phthalates, while the rest are esters and
polyesters of adipate, phosphoric acid, and sebacic acid.4 Due to
massive consumption of phthalates by many industries,
these toxic materials eventually penetrate into the environment.
Di-(2-ethylhexyl)phthalate (DEHP) is an important molecule in
the phthalates family which is extensively used in medical
devices, children's toys, water containers, textiles, and all kinds
of packaging.5–8 It is harmful to humans, especially children,
due to the fact that there is no chemical linkage between DEHP
molecules and the plastic-based compound, making them
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easily released to the environment where they can come into
contact with consumers.9 DEHP is also classied as an endo-
crine disruptor in the context of reproductive health.10–12

Moreover, DEHP is listed as a signicant pollutant in many
countries due to its carcinogenic nature.13

Due to its toxic and carcinogenic nature, removal of DEHP
from waste waters recently has gained immense scientic
interest with many crucial methods being reported by several
researchers for its removal from an aqueous environment.
Biodegradation of phthalates using bacteria culture is one of
the potential techniques and has been reported by many
researchers.14,15 However, this method is time consuming, and
does not result in complete degradation of phthalates. The
coagulation step, during the water treatment process, is useful
for removing organic pollutants. Nevertheless, degrading
phthalates via coagulation using ferric chloride seemed inef-
fective.16,17 Another method, called the advanced oxidation
dFaculty of Applied Science, Universiti Teknologi MARA, Malaysia

† Electronic supplementary information (ESI) available. See DOI:
10.1039/c6ra04172h
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Scheme 1 Synthesis of 3TArH.
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process (AOP), is based on addition of a highly active oxidizing
agent which prociently oxidizes very stable molecules, such as
the degradation of DEHP via UV/H2O2.18 Despite the fact that
the AOP technique could result in signicant degradation, this
method requires expensive and toxic reagents, which them-
selves are considered as pollutants, and are difficult to handle.
The adsorption method has been proved to be an effective
technique with higher efficacy and capability to remove
pollutants on a large scale besides having other advantages
including recovery and recycling of adsorbents. Thus, adsorp-
tion would be a competent technique for the efficient removal of
larger quantities of phthalates from polluted wastewater.19

Fe3O4 magnetic nanoparticles are one of the most important
nanomaterials and technologically important objects for phys-
ical and chemical research, with many promising applications.
Magnetic nanoparticles (MNPs) were demonstrated to be an
efficient adsorbent for adsorption of trace amounts of organic
and inorganic analytes from complex media, since they do not
require any centrifugations or ltrations.20 Use of MNPs coated
with polymeric material gained much interest, as it enhances
surface functionalization and protects the magnetic core from
environmental agitation. Moreover, the presence of polymeric
surface coated magnetic nanoparticles prevented aggregation
and homogenized the nanoparticles core shell distribution
within the suspension media.21 Elevating research interest on
using conducting polymer as a polymeric coating material is
due to its multifunctional and diverse properties, which
includes its cheaper costs, environmental stability, and
mechanical robustness.22–24

Herein, we report a facile synthesis route to develop a newly
designed magnetic nanoparticle of Fe3O4 coated with poly-
thiophenes containing Schiff-base, biphenyl pendant, and
aliphatic linkage, with its adsorptive performance linked to the
removal of DEHP from aqueous solutions. The presence of
aliphatic and aromatic side groups in the material signicantly
enhanced the adsorptive performance for the removal of DEHP
from aqueous solution in terms of hydrophobic and p–p

interactions. Oxidation/corrosion may reduce magnetic
moment of Fe3O4 which is responsible for diminishing its
magnetization and therefore became a limiting factor in effi-
cient utilization of Fe3O4 in various applications. To the best of
our knowledge, some Schiff bases containing thiophene
substituents have been previously reported as effective erosion
inhibitors.25–27 In the present investigation, Schiff base groups
were designed for shielding the magnetic core of Fe3O4 from
corrosion besides augmenting the adsorption of phthalates due
to physical interactions. Simplistic synthesis, cost-effectiveness,
and enhanced adsorption behaviour towards DEHP make these
nanosorbents a potential adsorbent material for phthalates
waste water treatment.

2. Materials and methods
2.1 Reagent and chemicals

Analytical grade ferric chloride, ferrous chloride, ammonia
solution (25 wt%), thiophene, 4-hydroxybenzaldehyde, aceto-
nitrile, potassium permanganate, 4-aminophenol, 3-
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bromothiophene, 1,6-dibromohexane, N-bromosuccinimide,
acetic acid, sodium hydrogen bicarbonate, potassium iodide,
potassium carbonate, tetrahydrofuran, methanol, hydrochloric
acid, acetone, and ethyl acetate were purchased from Merck
(Darmstadt, Germany). Acetone was procured from Fisher
Scientic (Loughborough, UK). Thiophene carboxaldehyde,
polyvinyl alcohol, and n-butyllithium (2.0 M in cyclohexane)
were obtained from Sigma-Aldrich (Milwaukee, WI, USA).
Magnesium sulfate anhydrous, ethanol denatured, and hexane
were received from J. Kollins (Parkwood, Australia), while
dimethyl sulfoxide-d6 (DMSO-d6) and di-(2-ethylhexyl)phtha-
late (DEHP) were purchased from Acros Organics (Geel, Bel-
gium). Ultrapure water was prepared with a model Aqua Max-
Ultra ultra-pure water purication system (Zef Scientic Inc.,
San Diego, CA, USA). Stock solutions of 1000 mg L�1 of stan-
dards were prepared by dissolving appropriate amounts of
compounds in methanol, which remains stable for three
months if stored in a refrigerator at 4 �C. Working standard
solutions were prepared daily by diluting the stock standard
solution to the required concentrations.ay

a

2.2 Synthesis method

2.2.1 Preparation of (phenyl-(4-(6-thiophen-3-yl-hexyloxy)-
benzylidine)-amine) (3TArH). A mixture of 4-((phenylimino)
methyl)phenol (1.97 g, 10 mmol) (S1) anhydrous potassium
carbonate (4.14 g, 30mmol) (S2), and 18-crown-6 ether (16.6 mg,
0.1 mmol) was stirred in dry and degassed acetone (50 mL) at
room temperature followed by the addition of 3-(6-bromohex-
ylthiophene) (0.81 g, 2 mmol) (Scheme 1). The reaction mixture
was reuxed under nitrogen with stirring for 24 h. Later, the
reaction mixture was cooled to room temperature and poured
into the saturated solution of potassium carbonate. The organic
phase was collected and washed with water (100 mL), dried with
anhydrous sodium sulfate, and subsequently ltered. The
solvent was removed via reduced pressure, and the residue was
dried under vacuum to produce a crude product.28 Purication
was accomplished by column chromatography using silica, with
25% hexane in chloroform to afford the monomer.

2.2.2 Preparation of modied polythiophene-coated
magnetic nanoparticles (Fe3O4@P3TArH NP) and poly-
thiophene coated magnetic nanoparticles (Fe3O4@PTh). Fe3-
O4@P3TArH NPs were synthesized in two steps. Briey, Fe3O4

was prepared by a co-precipitation method.29 FeCl3$6H2O
(8.48 g) and FeCl2$4H2O (2.25 g) were dissolved in 400 mL
deionized water under nitrogen atmosphere via vigorous
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Fig. 1 FT-IR of (a) P3TArH, (b) Fe3O4, (c) Fe3O4@P3TArH.

Fig. 2 XRD of Fe3O4 and Fe3O4@P3TArH.
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stirring (1000 rpm) at 80 �C. Then, a 20 mL ammonia solution
(25% wt) was added to the solution. The color of the bulk
solution immediately changed from orange to black. Aer
stirring the mixture for 5 min, the Fe3O4 NPs precipitates were
obtained via magnetic decantation, and washed several times
with deionized water. Finally, the Fe3O4 NPs were dried in
a vacuum oven at 70 �C for 12 h. Next, the surface of the Fe3O4

NPs was modied by coating with newly designed modied
thiophene monomers containing biphenyl pendant (3TArH) via
oxidation polymerization with the generation of ferric cations
on Fe3O4 NPs surface.21 Fe3O4 NPs (1 mmol, 0.236 g) was dis-
cretized in a PVA aqueous solution (0.5 M). Later, 3TArH
(10 mmol, 3.640 g) was added into the mixed solution via
vigorous stirring. Subsequently, 30 mL of HCl (0.5 M) solution
was introduced into the mixture. Then, the product was dried
under vacuum at 70 �C for 12 h.

Additionally, the above experiments were repeated using
freshly distilled thiophene monomer (10 mmol, 0.84 g) to
obtain polythiophene coated magnetic nanoparticles (Fe3O4@-
PTh) which acted as a control adsorbent for comparative study
of the adsorption efficiency of different adsorbents.

2.3 Characterization of the samples

Fourier transform infrared (FT-IR) spectra were recorded on
a PerkinElmer FT-IR between 4000 and 400 cm�1 (PerkinElmer,
Massachusetts, USA). Structural elucidation was determined
using 1H NMR, JEOL 400 MHz (JEOL, Tokyo Japan). X-ray
powder diffraction (XRD) analysis was conducted with Pan-
alytical model Empyrean at 40 kV and 35 mA using Cu Ka
radiation (l ¼ 1.54059 Å) (Panalytical, Almelo, Netherlands).
Morphological analysis of the synthesized products were per-
formed using a JEOL JSM-7600F eld emission scanning elec-
tron microscope operated at 3 kV (JEOL, Tokyo Japan) and
transmission electron microscopy (TEM) analysis using an FEI
Tecnai G2 spectra microscope (FEI, Hillsboro, USA). The
magnetic property was tested using a vibration sample
magnetometer (VSM) Model 9600 (Quantum Design Inc., San
Diego, USA). Magnetization measurements were carried out in
an external eld of up to 15 kOe at room temperature. The
thermal stability of Fe3O4@P3TArH was investigated by ther-
mogravimetric analysis (TGA); model TGA-STA 1500, with
a heating rate of 10 �C min�1 between 25 and 900 �C under
nitrogen atmosphere (PerkinElmer, Massachusetts, USA). Bru-
nauer–Emmett–Teller (BET) analysis was carried out using
a Micromeritics ASAP2020 surface area analyser for deter-
mining the pore diameter and the specic surface area of
nanosorbents (Micromeritics, Georgia, USA).

2.4 Batch experiments

Experimental parameters were optimized using batch experi-
ments for type of adsorbent, effect of pH, kinetics and ther-
modynamic studies, effect of initial concentration, equilibrium
studies, and reusability studies. Sorption experiments were
determined by the following batch method: in each experiment,
5 mg of adsorbent was mixed with 5 mL of an aqueous solution
of (DEHP) at a known concentration in a tightly sealed vial. The
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solution was shaken for 1 h on a shaker at room temperature.
Aer the adsorption process, the adsorbent was separated by
magnetic decantation, and the residual concentration was
determined using a Shimadzu Ultraviolet-Visible spectropho-
tometer (UV-Vis), equipped with 1 cm quartz cells (Shimadzu,
Kyoto, Japan). All the samples were performed in triplicate. The
removal efficiency, R (%) was calculated using the following
equation:

R% ¼ ðCo � CeÞ
Co

� 100 (1)

The amount of DEHP adsorbed per unit mass of the adsor-
bent (qe) was calculated as:

qe ¼ ðCo � CeÞ
W

V (2)

Co and Ce are the initial and equilibrium concentrations of
the solutions (mg L�1), respectively. V (L) is the volume of theya
RSC Adv., 2016, 6, 44655–44667 | 44657
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solution, and W (g) is the mass of the dry adsorbent being
used.
3. Result and discussion
3.1 Characterization of the nanocomposites

3.1.1 FT-IR analysis. Fig. 1 show several additional peaks in
the spectrum of Fe3O4@P3TArH, proportional to the Fe3O4 NPs
Fig. 3 FESEM images of (a) Fe3O4; (b) Fe3O4@P3TArH, TEM images of (c
Fe3O4@P3TArH.

44658 | RSC Adv., 2016, 6, 44655–44667
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spectrum, which belong to the coating. The intense peaks in the
range of �3400 cm�1 for Fe3O4 and Fe3O4@P3TArH indicated
the presence of OH vibration. For both P3TArH and Fe3O4@-
P3TArH, the C–H aromatic stretching peaks were observed at
2980 cm�1, whereas C–H sp3 stretching (hexyl aliphatic side)
occurred at 2934 cm�1. Meanwhile, Schiff base (C]N) was
observed at 1601 cm�1 for P3TArH, and 1685 cm�1 for the
Fe3O4@P3TArH.30 C]C aromatic stretching peaks exhibited at
) Fe3O4; (d) Fe3O4@P3TArH and diameter distribution of (e) Fe3O4; (f)

This journal is © The Royal Society of Chemistry 2016
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Fig. 4 VSM spectra of Fe3O4 and Fe3O4@P3TArH.

Fig. 5 TGA and DTG (inset) thermograms of Fe3O4, and
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ya
1562 cm�1 and 1462 cm�1 for P3TArH, whereas 1564 cm�1 and
1462 cm�1 for Fe3O4@P3TArH. Two absorption band peaks at
1250 and 1072 cm�1 indicated the presence of C–O observed in
the P3TArH as well as Fe3O4@P3TArH. The strong absorption
peaks at 868 cm�1 for P3TArH and 846 cm�1 for the nano-
composite indicated the presence of C]C symmetric stretching
from the thiophene ring. The C–S bending mode occurred at
689 cm�1 for P3TArH and 639 cm�1 for nanocomposites.
Meanwhile, Fe–O stretching modes occurred at 530–632 cm�1.31

Hence, the FT-IR study clearly revealed the functionalization of
Fe3O4 NPs with P3TArH.

3.1.2 XRD analysis. Fig. 2 shows the XRD pattern which
revealed presence of the characteristic peaks of Fe3O4 in the
synthesized materials. The peak of the nanocomposites was
slightly broader than the ones corresponding to Fe3O4. This
could be due to the presence of amorphous and polymeric
materials.32 The distinctive peaks of Fe3O4 and nanocomposites
were observed at 2q ¼ 30�, 35.7�, 43�, 53.4�, 57.0�, and 62.6�,
which are marked by their respective indices [(220), (311), (400),
(422), (511), and (440)].33 This indicated that the coating process
with P3TArH does not change the crystalline phase of Fe3O4.

3.1.3 Morphological analysis. Fig. 3 demonstrates
morphological analysis of the synthesized products using
FESEM and TEM techniques. FESEM and TEM images of all
materials exhibited a sphere-shaped geometry. As evident from
the TEM analysis, the distribution of the modied nano-
particles (Fe3O4@P3TArH) is very uniform and nanoparticles
are segregated. This may be due to the presence of polymeric
material coating, which reduces the aggregation and stabilizes
the magnetic nanoparticles.21 Analysis of TEM images using the
IMAGEJ soware determined the average of particle diameter
distribution by computing the values corresponding to at least
300 nanoparticles. Based on the histogram plotted in Fig. 3(e)
and (f), DTEM, an average diameter, and s (standard deviation
values) were calculated. TEM average particle size for Fe3O4@-
P3TArH was found to be 13.070 nm � 2.916. The average
particle size Fe3O4 was larger than the average particle size of
Fe3O4@P3TArH as determined from the TEM; this may be due
to the fact that many nanoparticles are accumulated and over-
laid on top of one another, and thus cannot be measured
accordingly.32

3.1.4 VSM analysis. Magnetic properties of the samples
were recorded at room temperature with an external eld of�15
kOe. M–H hysteresis curves of Fe3O4 and Fe3O4@P3TArH are
presented in Fig. 4. An important magnetic parameter, which is
saturation magnetization (MS), was assessed. As is clear from
the hysteresis loops, magnetization did not occur until the
maximum applied eld and exhibited superparamagnetic
behavior.34 Maximum saturation (MS) of Fe3O4 and Fe3O4@
P3TArH appeared at 92 (bulk magnetization) and 63.2 emu g�1,
respectively. Reduced magnetization signies the presence of
a dead magnetic layer on the surface of the nanocomposites.31

Magnetization is reduced in nanocomposite, but still the value
of magnetization falls within the acceptable range, which sug-
gested that the nanocomposites still can be separated conve-
niently from a solution with an external magnetic eld.35
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3.1.5 Thermal analysis. Fig. 5 shows TG and DTG analyses
for Fe3O4 and Fe3O4@P3TArH. A small weight loss was detected
under 200 �C in Fe3O4 and was speculated to be due to
desorption of adsorbed water on the surface of the nano-
particles. Since Fe–O is thermodynamically steady within
a temperature range of 280 �C to 850 �C, no weight loss was
observed for Fe3O4 aer 200 �C.36 The TGA thermogram of the
nanocomposite indicated that it is stable up to 210 �C. However,
above this temperature Fe3O4@P3TArH exhibited rapid weight
loss in the temperature range from 240 �C and 450 �C. This
might be due to the decomposition of P3TArH. Herein, thermal
analysis study showed that the surface of Fe3O4 was successfully
coated with P3TArH.

3.1.6 N2 physisorption analysis. The BET surface area was
measured using the multipoint BET method within the relative
pressure (P/P0) range of 0.05 to 1. As described in Fig. S5 (ESI†),
the Fe3O4 and Fe3O4@P3TArH displays a H3 type hysteresis
loop, based on the Brunauer–Deming–Deming–Teller (BDDT)
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Fe3O4@P3TArH.
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Table 1 BET pore size and surface area

Sample Pore size (nm) Surface area (m2 g�1)

Fe3O4 20.2 37.37
Fe3O4@P3TArH 12.09 103.80
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classication, indicating the presence of mesopores with pore
diameters between 2 and 50 nm.37 The pore size and BET
surface area of both Fe3O4 and nanocomposites are tabulated in
Table 1. The decrease in pore size of nanocomposites is due to
the addition of polymer coating on the surface. Increase in the
surface area may be attributed to the aggregation of particles
that resulted in the enhancement of the spaces between
them.38,39
Fig. 7 (a) Effect of solution pH (DEHP concentration, 15 mg L�1;
adsorbent, 1 mg L�1; contact time, 60 min); (b) the zeta potential of
Fe3O4@P3TArH at various pHs.
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3.2 Adsorptive performance

3.2.1 Type of adsorbent. The adsorption efficiency of DEHP
for three different types of sorbent namely, Fe3O4, poly-
thiophene coated Fe3O4 (Fe3O4@PTh), and Fe3O4@P3TArH is
shown in Fig. 6. As evident from the gure, Fe3O4 showed
adsorption efficiency of 32.52%, while with Fe3O4@PTh the
value increased to 46.93%. Aer coating the surface of Fe3O4

with P3TArH, the adsorption efficiency increased to 68.73%.
This might be due to the presence of more active sites in the
Fe3O4@P3TArH as well as various physical interactions between
adsorbent and adsorbate (hydrophobicity and p–p interaction)
as compared to other sorbents, which enhanced the adsorption
of DEHP.40

3.2.2 Effect of pH. Adsorption was performed under
different pH conditions, ranging from pH 3–10. As evidenced
from Fig. 7(a), adsorption efficiency increased when the pH
increased from 5 to 7, but decreased later from 7 to 10. Fig. 7(b)
demonstrated zeta potential analysis of Fe3O4@P3TArH with
effects of pH range 3 to 9 which represented the surface chargersi

ty
Fig. 6 Type of adsorbent (DEHP concentration, 15 mg L�1; adsorbent,
1 mg L�1; contact time, 60 min; pH 7).

Scheme 2 DEHP at pH < 7.

44660 | RSC Adv., 2016, 6, 44655–44667
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of Fe3O4@P3TArH. At low pH, C]N groups in Fe3O4@P3TArH
were protonated, making the adsorbent surface positively
charged. As described in Scheme 2, at pH < 7, DEHP hydrolyzes
to phthalic acid; since the carbonyl group in the phthalic acid is
nucleophilic in nature, it can easily react with hydrogen ions in
the solution to form positively charged species. Due to both
adsorbate and adsorbent acquiring positive charges, electro-
static repulsion occurred and retarded the adsorption
This journal is © The Royal Society of Chemistry 2016
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Scheme 3 DEHP at pH > 7.

Table 2 Kinetics parameters of DEHP adsorption onto Fe3O4@P3TArH

Kinetic models

Fe3O4@P3TArH

298.15 K 318.15 K 323.15 K 333.15 K

Pseudo-rst order
qe,exp (mg g�1) 12.22 11.413 10.09 8.914
qe,cal (mg g�1) 10.6 7.45 6.06 11.57
k1 (min�1) 0.0363 0.0317 0.0221 0.0603
R2 0.7296 0.8754 0.8193 0.9216

Pseudo-second order
qe,cal (mg g�1) 12.30 11.89 10.60 9.85
k2 (min�1) 0.083 0.015 0.014 0.008
R2 0.9999 0.9957 0.9936 0.9926

Intraparticle diffusion
K (mg g�1 min�1) 0.831 0.744 0.695 0.692
c (mg g�1) 3.278 3.251 3.214 1.321
R2 0.705 0.842 0.957 0.9057
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performance.41 Moreover, based on zeta potential results at
higher pH, the surface of the adsorbent became negatively
charged due to deprotonation of C]N in Fe3O4@P3TArH,
whereas the adsorbate hydrolyzed to phthalate anions as shown
in Scheme 3, resulting in repulsion and, thereby, reduced the
adsorption efficiency.42 Strong adsorptive performance in
neutral pH can be explained by strong interactions between the
hydrophobic and p–p interactions in Fe3O4@P3TArH with
DEHP. Since the optimum performance of adsorption of DEHP
is demonstrated at pH 7, this pH was selected for all of the
experiments.

3.2.3 Kinetic and thermodynamic studies. The effect of
contact time for the removal of DEHP by Fe3O4@P3TArH was
investigated in the time range of 0–180 min at four different
temperatures of 298.15 K, 318.15 K, 323.15 K, and 333.15 K.
Fig. 8 demonstrated that the adsorption capacity was rapid for
the rst 15 min; which might be due to the many available
active sites for adsorption. From 120 min to 180 min the
removal capacity was observed to be constant; therefore,
120 min could be regarded as the equilibrium time. To further
determine the adsorption mechanism and kinetics parameters,
the data gained were tted into three types of kinetic models:
pseudo rst-order, pseudo second-order, and intraparticle
diffusion.43–47 The pseudo rst-order kinetic model was exten-
sively used to study the adsorption of an adsorbate from an
aqueous solution. The equation can be expressed as;rsi

ty
Fig. 8 Effect of contact time and temperature (DEHP concentration,
15 mg L�1; adsorbent, 1 mg L�1; pH 7).

This journal is © The Royal Society of Chemistry 2016
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logðqe � qtÞ ¼ log qe �
�

k1

2:30

�
t (3)

where qe and qt are the amount of DEHP adsorbed (mg g�1) at
equilibrium and time, t is the contact time (min), and k1 is the
rate constant of this equation (min�1). k1 and qe were deter-
mined from the plot of log(qe � qt) versus t. Meanwhile,
a pseudo-second order kinetic model is based on the assump-
tion that the adsorptionmechanism depends on both adsorbate
and adsorbent.48 The linear equations pertaining to this area
follows;

t

qt
¼ 1

k2qe2
þ 1

qe
t; where h ¼ k2qe

2 and t1
2
¼ k2qe

�1 (4)

where h is the initial adsorption rate (mg g�1) min, t1/2 is half
equilibrium time (min), and k2 is the pseudo second-order rate
constant (g mg�1 min). A linear plot of t/qt vs. t could be used to
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Fig. 9 Intraparticle diffusion plots.
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determine the value of qe, k2, h, and t1/2 respectively. The
kinetics parameters and correlation coefficients are listed in
Table 2. It can be seen that the experimental data is tted with
the pseudo second-order kinetic model with R2 near to unity
and can be further conrmed by the nearness of the calculated
and experimental qe value. Similar adsorption behavior is also
found for the removal of diethyl phthalate by activated carbon.49

Next, the parameters for intraparticle diffusion models were
calculated according to the linear equation as follows;

qt ¼ Kt0.5 + c (5)

where c is thickness of boundary layer (mg g�1) and K is the rate
constant (mg g�1 min�1). Fig. 9 reveals that the plots are not
linear throughout the contact time. However, a similar trend for
four temperatures were observed, and the plots were divided
into two parts: at the start of the experiment, a steeper line is
detected, which might be due to a massive transfer of DEHP
from the boundary layer to the surface of the Fe3O4@P3TArH.
Aer 8 min the line continued to be linear, due to diffusion of
DEHP through the mesopores of Fe3O4@P3TArH.50

From the intraparticle diffusion model parameters, the
adsorption of DEHP onto Fe3O4@P3TArH may be assumed as
an exothermic reaction, since the value of boundary layer
thickness decreases with increasing temperature.51 Higher
temperature resulted in the solubility of DEHP in aqueous
solution increasing and that increased the collision between
adsorbent molecules which led to a lower intraparticle diffusion
rate.52

The thermodynamic parameters were determined to inves-
tigate the mechanism of the adsorption process. The values of
adsorption enthalpy (DH�), entropy (DS), and Gibbs free energy
(DG�), as shown in Table 3, were calculated using the following
equations;

ln Kc ¼ DS

R
� DH

RT
(6)

Kc ¼ CeðadsorbentÞ
CeðsolutionÞ

(7)

DG� ¼ �RT ln Kc (8)

From the plot of ln Kc against 1/T, the (DH�) value was found
to be negative, which conrms that the adsorption process is
exothermic in nature. The increase in temperature enhancedUniv

ers
ity
Table 3 Thermodynamic parameters for DEHP adsorption onto
Fe3O4@P3TArH

T (K)
qe,exp
(mg g�1)

DG�

(kJ mol�1)
DH�

(kJ mol�1)
DS
(kJ mol�1 K�1)

Ea
(kJ mol�1 K�1)

298.15 12.22 �2.883 �19.77 �0.057 �40.6
318.15 11.41 �1.650
323.15 10.09 �1.151
333.15 9.10 �0.881

44662 | RSC Adv., 2016, 6, 44655–44667
the surface activity of DEHP, increasing its affinity to water.53

The (DS) value was negative, demonstrating that the system
reached an ordered state due to the decrease in the randomness
of adsorbate/aqueous phase.54 Decreased DG� values with
elevating temperature indicated that the process favors low
temperature.55 Moreover, negative values of DG� were in a range
between �20 and 0 kJ mol�1, indicating that the adsorption
process is thermodynamically feasible, physically controlled,
and spontaneous.56,57 The activation energy of the adsorption
process can be calculated from the plot of k2 (pseudo second
order rate constant) against 1/T using the Arrhenius equation;

ln k2 ¼ ln A� Ea

R

�
1

T

�
(9)

The value of activation energy for the adsorption of DEHP
onto Fe3O4@P3TArH was found to be �40.6 kJ mol�1 K�1. The
negative value of sorption activation energy demonstrated that
the process favors low temperature.58 Moreover, the value of
activation energy could be used to determine the adsorption
behavior; if the values are less than <40 kJ mol�1, then the
process is physisorption, and if it's >40 kJ mol�1, then it is
predominantly a chemical adsorption process.

3.2.4 Effect of initial DEHP concentration and isotherm
equilibrium studies. Fig. 10 demonstrates the effect of initial
concentrations of DEHP in the range of 5–90 mg L�1 at 298 K. The
adsorptive efficiency increased with increasing initial concentra-
tion of DEHP from 5 mg L�1 and equilibrium was reached at 15
mg L�1 with 83.4%. This indicated that a maximum concentration
for 5mg of Fe3O4@P3TArH in 5mL aqueous solution is 15mg L�1

DEHP, giving signicant adsorption efficiency. At low concentra-
tion the removal is signicant due to the readiness of many active
sites for adsorption, whereas at high concentration the removal is
persistent due to all the available active sites in adsorbent being
fully occupied by DEHP.

To study the adsorption isotherm, four models (Langmuir,
Freundlich, Temkin, and Dubinin–Radushkevich (D–R)) were
utilized to explain the adsorption behaviour of DEHP onto
Fe3O4@P3TArH. The Langmuir isotherms model is based on
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Fig. 10 Effect of DEHP initial concentration (contact time 60 min;
adsorbent, 1 mg L�1; pH 7, 298.15 K).

This journal is © The Royal Society of Chemistry 2016
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Table 4 Isotherms parameters for DEHP adsorption of onto
Fe3O4@P3TArH

Isotherms model Fe3O4@P3TArH

Langmuir
qm (mg g�1) 52.63
b (L mg�1) 0.010
R2 0.8259
RL 0.8695

Freundlich
KF ((mg g�1) (L mg�1)1/n) 0.6945
1/n 1.168
R2 0.9833

Temkin
KT (L mg�1) 0.217
bT (kJ mol�1) 276.88
R2 0.9682

Dubinin–Radushkevich
qm (mg g�1) 20.00
b 10.575
E 0.615
R2 0.8502

Fig. 11 Proposed interactions for multi-layer adsorption (Freundlich).

This journal is © The Royal Society of Chemistry 2016
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the expectations that the monolayer adsorption homogenously
occurred on all active sites, with no additional adsorption aer
the sites are fully occupied by the solute at uniform energy.59

The Langmuir equation is,

1

qe
¼ 1

bqm
þ Ce

qm
(10)

where Ce (mg L�1) is the equilibrium concentration of the
adsorbate, Co (mg L�1) is the initial adsorbate concentration, qe
(mg g�1) is the adsorption capacity at equilibrium, qm (mg g�1)
and b (L mg�1) is the Langmuir constant related to the
adsorption capacity and rate of adsorption, respectively. To
determine whether the process is either favourable or unfav-
ourable, the dimensionless separation factor (RL) can be
calculated from;

RL ¼ 1

1þ bCo

(11)

From the plot of Ce/qe versus Ce, the values of Langmuir
parameters were determined and listed in Table 4. In contrast to
the Langmuir isotherm model, the Freundlich isotherm model
assumed that adsorption heterogeneously occurred on the
adsorbent's surfaces, with different energies of active sites.60
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Fig. 12 Reusability graph for five cycles.

Table 5 BET surface area analysis of Fe3O4@P3TArH and recycled
Fe3O4@P3TArH

Sample BET surface area (m2 g�1)

Fe3O4@P3TArH 103.8
Recycled Fe3O4@P3TArH 49.566

Fig. 13 FT-IR spectrum of (a) Fe3O4@P3TArH; (b) recycled
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The following equations determined the values of Freundlich
constant;

log qe ¼ log KF þ 1

n
log Ce (12)

where KF ((mg g�1) (L mg�1)1/n) is the adsorption capacity, while
1/n represents Freundlich constants, respectively. The Dubinin–
Radushkevich isotherm model takes into account the porosity
of the adsorbent. The experimental data was tted with a plot of
ln qe against 3

2 as a linear equation in the following form;

ln qe ¼ ln qm � b32 (13)

where b (mol2 kJ�2) denotes the adsorption energy constant and
the Polanyi potential (3) is mean free energy respectively. E (kJ
mol�1) can be obtained using the following equations;

3 ¼ RT ln

�
1þ 1

Ce

�
; (14)

E (kJ mol�1) ¼ (2b�0.5) (15)

where R is the universal gas constant in kJmol�1 K�1, and T is the
temperature. The Temkin model was established on the basis
that the heat of adsorption would reduce linearly as the layer is
covered, resulting in an uneven relationship of adsorbent–
adsorbate interfaces on heterogeneous surfaces in adsorption
systems.61 The Temkin model linear equation is as follows:

qe ¼ b ln KT þ b ln Ce; where bT ¼ RT

b
(16)

A plot of qe versus ln Ce from the linear equation could be
used to determine the Temkin constant, where KT (L mg�1) is
the Temkin constant related to the equilibrium binding energy,
and bT (J mol�1) is Temkin constant related to the heat of
adsorption.

Amid the four isotherms studied, the result showed that the
adsorption of DEHP onto Fe3O4@P3TArH was better described
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by Freundlich isotherm models (R2 ¼ 0.9833), suggesting that
adsorption occurred heterogeneously on adsorption sites.
Comparable studies were also found for the adsorption of
diethyl phthalate (DEP) using multiwall carbon nanotubes.62

Additionally, from the linear plot illustrated from Table 4
values, the Freundlich constant, adsorption capacity KF,
and adsorption intensity 1/n value were determined to be
0.6945 mg g�1 and 1.168, respectively. A high KF value repre-
sented great adsorption affinity towards adsorbate,63 whereas
1/n $ 1 indicated favourable adsorption process.64 Fig. 11
demonstrated an illustration of proposed interaction for
multilayer adsorption according to the Freundlich isotherms.
When DEHP and Fe3O4@P3TArH come into contact, sorbent
active sites which are mesopores (conrmed by BET), hydro-
phobicity (aliphatic) and p–p interaction (aromatic) enhance
the attraction of DEHP. At the same time, DEHP–DEHP also
attract each other causing multilayer adsorption which is oen
observed as a physical adsorption process.49,65ya

3.3 Reusability studies

To determine reusability of Fe3O4@P3TArH for adsorption of
DEHP, the adsorbent was recycled aer being washed with
methanol and water, and was dried in vacuum at 70 �C for 12
hours. From Fig. 12, it could be summarized that aer ve
repeated experiments, the adsorption performance was reduced
from 84% to 64%. To further conrm the modications on the
sorbent properties, BET surface area analysis and FT-IR of the
sorbent was performed aer the h cycles. From the surfaceof 

Mala
Fe3O4@P3TArH.
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Table 6 Comparison on adsorption capacities

Adsorbent Analyte
Adsorbent mass
(g)

Reaction time
(hours)

Maximum adsorption
capacities (mg g�1) References

S. siliquastrum DEHP 0.025 3 5.68 64
Beached seaweed DEHP 0.025 3 6.54
Chitosan bead DEHP 1.5 6 0.49 65
Chitosan bead/a-cyclodextrin DEHP 1.5 6 3.09 66
Bioslurry DEHP 15 264 0.972 67
Biolms DEHP 1 — 0.161 68
Fe3O4@P3TArH DEHP 0.01 2 52.63 This study
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area analysis in Table 5, it was found that surface area of the
recycled sorbent was signicantly reduced. This may be due to
the surface modication of the sorbent material which occurred
until h cycle as conrmed by FT-IR analysis of the recycled
sorbent.66 The IR spectrum of the recycled sorbent is presented
in Fig. 13, and clearly reveals that the intensity of the polymer
coating was reduced signicantly aer the h cycle. As
a result, active sites (mesopores) and other physical interac-
tions, which played a signicant role in adsorption (hydro-
phobicity, p–p interaction) of DEHP, were decreased from the
recycled Fe3O4@P3TArH which eventually hampered its
adsorptive performance with every cycle.
3.4 Comparative studies

Table 6 reveals a comparison of the maximum adsorption capac-
ities of various adsorbents. Chan H. et al. conrmed that breached
seaweed resulted in higher adsorption capacity (5.68 mg g�1)
compared to S. siliquastrum, (6.54 mg g�1) for an adsorbent mass
of 0.025 g and 3 hours reaction time,67 Chen and Chung utilized
chitosan bead as an adsorbent to remove DEHP from a plastic
manufacturing plant. The maximum adsorption capacity gained
from 1.5 g adsorbent dosage and a reaction time of 6 hours was
0.494mg g�1.68The adsorption capacity of DEHP (3.09mg g�1) was
enhanced by modifying chitosan via the introduction of a-cyclo-
dextrin by the same author.69 Shailaja et al., who determined the
maximum adsorption capacity was 0.97 mg g�1, removed DEHP
through a soil slurry.70 A study conducted by Cao et al. using bio-
lms obtained 0.161 mg g�1 adsorption capacity with 1 g adsor-
bent.71 The value of qmax in this study was found to be 52.64 mg
g�1, which suggests the Fe3O4@P3TArH used could readily adsorb
DEHP.
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4. Conclusion

Magnetic nanoparticles of Fe3O4 coated with modied poly-
thiophenes (Fe3O4@P3TArH) were successfully synthesized and
characterized. FTIR conrmed the presence of P3TArH on the
surface of nanoparticles aer surface modication. The
adsorption processes were shown to be pH dependent, with the
optimum removal being observed at a pH of 7. Kinetics analysis
indicated that the kinetic data is well tted in a pseudo second-
order equation model. Thermodynamic studies revealed that
the adsorption process was exothermic, spontaneous, and in an
This journal is © The Royal Society of Chemistry 2016
ordered state. The equilibrium isotherm data t well into the
Freundlich isotherm with 1/n indicating a favorable process.
The adsorption suggests a multilayer adsorption behavior by
considering p–p interaction and hydrophobic interaction of the
Fe3O4@P3TArH with DEHP. Reusability studies suggested that
aer ve cycles, surface modication of Fe3O4@P3TArH
occurred; thus, retarding adsorption efficiency.
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Abstract: Poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)-amine) (P3TArH) was successfully
synthesized and coated on the surface of Fe3O4 magnetic nanoparticles (MNPs). The nanocomposites
were characterized by Fourier transform infra-red (FTIR), X-ray diffractometry (XRD),
Brunauer-Emmett-Teller (BET) surface area analysis, analyzer transmission electron microscopy
(TEM) and vibrating sample magnetometry (VSM). P3TArH-coated MNPs (MNP@P3TArH) showed
higher capabilities for the extraction of commonly-used phthalates and were optimized for the
magnetic-solid phase extraction (MSPE) of environmental samples. Separation and determination
of the extracted phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl
phthalate (DPP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), dicyclohexyl phthalate
(DCP), di-ethylhexyl phthalate (DEHP) and di- n-octyl phthalate (DNOP), were conducted by a gas
chromatography-flame ionization detector (GC-FID). The best working conditions were as follows;
sample at pH 7, 30 min extraction time, ethyl acetate as the elution solvent, 500-µL elution solvent
volumes, 10 min desorption time, 10-mg adsorbent dosage, 20-mL sample loading volume and
15 g¨ L´1 concentration of NaCl. Under the optimized conditions, the analytical performances were
determined with a linear range of 0.1–50 µg¨ L´1 and a limit of detection at 0.08–0.468 µg¨ L´1 for
all of the analytes studied. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations
(RSD%) of three replicates were each demonstrated in the range of 3.7–4.9 and 3.0–5.0, respectively.
The steadiness and reusability studies suggested that the MNP@P3TArH could be used up to five
cycles. The proposed method was executed for the analysis of real water samples, namely commercial
bottled mineral water and bottled fresh milk, whereby recoveries in the range of 68%–101% and
RSD% lower than 7.7 were attained.

Keywords: polythiophene; Fe3O4 magnetic nanoparticles; phthalates; magnetic solid-phase extraction

1. Introduction

Belonging to non-halogenated esters of phthalic acid, phthalates or phthalate esters are used as
plasticizers for nitrocellulose, since it was first recognized in 1880, replacing camphor [1]. Nowadays,
phthalates can be found in many different matrices in our environment and are widely utilized in
the PVC industries as a plasticizer, from floors, hoses, cables (building materials), toys and medical
appliances [2]. Other consumer-based products utilizing phthalates are as a component in inks,
adhesive materials, lacquers, sealing and packing materials, materials for treating surfaces, solvents
and fixing agents in fragrances, as well as additives in cosmetics [3–5]. They become emerging
pollutants and harmful to humans, especially children, since they are not chemically bound in plastics
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and could be leached out into the environment [4]. Thus, the usage of phthalates in the production of
toys, baby bottles and pacifiers is banned in many countries [6]. Exposure to phthalates over long-term
periods could result in health issues, for example potential carcinogenic effects or critical impact
on the hormonal systems, since they own lipophilic properties, which make them easily stored in
fatty tissues [7–10]. The higher molecular weight of phthalates, such as di(2-ethyl-hexyl) phthalate
(DEHP), di-n-butyl phthalate (DBP) and di-n-octyl phthalate (DNOP) often leads to serious health
illnesses and is alleged to be carcinogenic and lethal to liver and kidneys, as well as reproductive
organs [11,12]. In Malaysia, due to the awareness of the migration of phthalates from food packaging,
baby bottles and pacifiers, a regulation has been proposed, which in stated in Food Regulation
27(B) 1985, which regulated plastic materials, and articles shall be examined in agreement with
Malaysia Standard MS 2234: “Plastic Materials and Articles Intended to Come into Contact with Food”,
which clarified the specific migration limits as follows; 1.5 mg¨ kg´1 for di(2-ethyl-hexyl) phthalate
(DEHP), 0.3 mg¨ kg´1 for di-n-butyl phthalate (DBP), 30 mg¨ kg´1 for butyl benzyl phthalate (BBP)
and 9.0 mg¨ kg´1 for diisodecyl phthalate (DIDP) [13,14]. Recently, phthalates have been found in
polyethylene terephthalate (PET) bottles which may lead to many serious consequences, since the
PET bottles are widely used as containers for mineral water, milk and soft drinks. The existence of
phthalates in PET bottles may be explained through several possibilities: the type of raw materials,
the chemicals or processes involved in bottle manufacturing, the practice of the use of PET bottles,
as well as cross contamination in the bottling plant and cap resins [15–20]. Studies conducted by
Plotan et al. and Wagner et al. reported that in most of the inspected PET-bottled water samples,
endocrine disruptor activity was found [21,22].

Given the unlimited toxic effects arising from these materials, much research has been conducted
to find a solution to eliminate its contamination of the environment [23,24]. However, the determination
of phthalates in environmental samples is challenging due to their trace amounts and the intervention of
an intricate matrix [25]. Therefore, a sample preparation step for the extraction and preconcentration of
the analytes is required [26]. Solid phase extraction (SPE) is one of the established and popular methods
for sample enrichment prior to analysis using high performance liquid chromatography (HPLC) and
gas chromatography (GC) [27–29]. The advantages of SPE over liquid-liquid extraction (LLE) are
its simplicity, rapidness, that the adsorbent is recyclable, the steadiness, low cost, high enrichment
factors and low usage of organic solvents [30]. Numerous types of sorbents were synthesized and used
for the determination of plasticizers, for example an octadecyl packed column (C18), α-cyclodextrin
functionalized chitosan, poly(styrene–divinylbenzene) polymers and zeolitic imidazolate [31–34].
The selection of adsorbent plays an important role in SPE, since it can determine the efficiency,
anti-interference ability and selectivity of the method for the targeted analytes [35].

Magnetic nanoparticles (MNPs), especially iron oxides, have become one of the most useful
materials in numerous applications since their discovery, for example magnetic fluids, catalysis,
magnetic resonance imaging and environmental disciplines [36–38]. In the application for the removal
of pollutants from the environment, the nano-sized particles provide a high surface area to volume ratio,
which enhances adsorption capacity and efficiency [39,40]. Moreover, the distinct feature of MNPs is
their rapid response to an external magnetic field. This special property, called superparamagnetism,
does not preserve magnetism after the elimination of an external field. Thus, it helps to isolate
the adsorbents from an aqueous solution in a complex matrix without the need for centrifugation
or filtration and can be referred to as magnetic solid-phase extraction (MSPE) [41,42]. Due to the
simplicity of the technique, much research has been published on utilizing Fe3O4 as the adsorbent for
MSPE in water samples, for example determining antimicrobial residue, heavy metals, non-steroidal
anti-inflammatory drugs and pesticides [43–46].

However, the smaller the particle size, the more it becomes unstable, which initiates particle
accumulation. Moreover, metal oxide may be oxidize easily and reduce its magnetism properties.
Therefore, an appropriate surface functionalization can be done, which can be tailored to the specific
targeted analyte. The strategy to protect the magnetic core can be either by organic or inorganic
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compounds, for example Al2O3, SiO2, surfactants, alkyl carboxylates and polymeric coatings [47–50].
Recently, research articles reported on the utilization of conducting polymers as a coating agent of
the MNPs [51–53]. These nanocomposites have multifunctional and diverse properties, which may
enhance the surface functionalization and protect the magnetic core from environmental agitation.
Moreover, it may reduce aggregation and disperse the nanoparticles’ core shell distribution within
the suspension media [54]. Herein, we prepared a modified polythiophene containing an additional
aromatic ring and aliphatic sides on the surface of Fe3O4 magnetic nanoparticles (MNPs) to investigate
its performance as a magnetic solid-phase extraction of phthalates, as shown in Figure 1. Thus, in this
work, the sorbent was further tested for real aqueous samples, including commercial mineral water
and commercial fresh milk kept in a PET bottle.
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Figure 1. Phthalates used in this study.

2. Materials and Methods

2.1. Standard, Reagents and Chemicals

Analytical grade ferric chloride, ferrous chloride, ammonia solution (25 wt %), thiophene,
4-hydroxybenzaldehyde, acetonitrile, potassium permanganate, 4-aminophenol, 3-bromothiophene,
1,6-dibromohexane, N-bromosuccinimide, acetic acid, sodium hydrogen bicarbonate, potassium
iodide, potassium carbonate, tetrahydrofuran, methanol, hydrochloric acid, acetone and ethyl acetate
were purchased from Merck (Darmstadt, Germany). Acetone was procured from Fisher Scientific
(Loughborough, UK). Thiophene carboxaldehyde, polyvinyl alcohol and n-butyllithium (2.0 M in
cyclohexane) were obtained from Sigma Aldrich (Milwaukee, WI, USA). Magnesium sulfate anhydrous,
ethanol denatured and hexane were received from J. Kollins (Parkwood, Australia), while dimethyl
sulfoxide-d6 (DMSO-d6) and phthalate esters were purchased from Acros Organics (Geel, Belgium).
Ultrapure water was prepared by a model Aqua Max-Ultra ultra-pure water purification system
(Zef Scientific Inc., San Diego, CA, USA). Stock solutions of 1000 mg̈ L´1 of standards were prepared
by dissolving appropriate amounts of compounds in methanol, which remain stable for three months
if stored in a refrigerator at 4 ˝C. Working standard solutions were prepared daily by diluting the stock
standard solution to the required concentrations.
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2.2. Instruments

The Fourier transform infrared (FTIR) spectra were recorded on a Perkin–Elmer FTIR between
4000 and 400 cm´1, with a resolution of 2 cm´1. Structural elucidation was determined using 1H NMR,
JEOL 400 MHz. The pore diameter and surface area of Brunauer-Emmett-Teller (BET) analysis were
determined from low-temperature nitrogen adsorption isotherms at 77.40 K using a Quantachrome
Autosorb Automated Gas Sorption System (Quantachrome Instruments, Boynton Beach, FL, USA).
X-ray powder diffraction (XRD) analysis was conducted with Panalytical model Empyrean (Panalytical,
Almelo, Netherlands) at 40 kV and 35 mA using Cu Kα radiation (λ = 1.54059 Å). Morphological
analyses of the synthesized products were conducted using transmission electron microscopy (TEM)
analysis using an FEI Tecnai G2 spectra microscope (FEI, Hillsboro, OR, USA). The magnetic property
was tested using a vibration sample magnetometer (VSM) Model 9600 (Quantum Design Inc.,
San Diego, CA, USA). Magnetization measurements were carried out in an external field of up
to 15 kOe at room temperature.

Separation and detection of target analytes were performed by a Shimadzu 2010 gas
chromatograph (Shimadzu, Kyoto, Japan) equipped with a split/splitless injector and a flame
ionization detector (FID). A DB-5 Agilent fused-silica capillary column (Agilent, Santa Clara,
CA, USA) (30 m ˆ 0.32 mm i.d. ˆ 0.25 µm film thickness) was applied for separation of analytes.
Helium (with 99.999% purity) was used as the carrier gas at a constant flow rate of 4 mL¨ min´1.
Chromatographic conditions were controlled as described; the temperatures of the injector and detector
were set at 260 and 280 ˝C, respectively. The injection port was operated at splitless mode. Oven
temperature was held at 150 ˝C for 1 min and increased to 280 ˝C at 8 ˝C¨ min´1 for 3 min.

2.3. Synthesis of Adsorbents

2.3.1. Synthesis of (Phenyl-(4-(6-Thiophen-3-yl-Hexyloxy)-Benzylidene)-Amine) Monomer (3) (3TArH)

Synthesis of (3) consists of two steps (Scheme 1). The first step is to prepare the intermediates,
which were 3-(6-bromohexyl)thiophene (1) and 4-((phenylimino)methyl)phenol (2). The second step
was combining the two intermediates by the Williamson etherification method [55]. FT-IR spectrums
of synthesized compounds were demonstrated in (Figure S1, Supplementary Material)

‚ 3-(6-bromohexyl)thiophene (1): 3-bromothiophene (2 mL, 21.3 mmol) was added to the dry,
degassed hexane (50 mL). The reaction started by cooling the flask at ´78 ˝C. n-Butyllithium
in hexane (10.16 mL) was poured into the reaction flask and stirred for 10 min. THF (5 mL)
was injected drop-wise for 15 min and continuously stirred for 1 h, which produced a white
precipitate and clear supernatant liquid. The supernatant liquid was removed and changed with
hexane/THF (10:1 v/v, 55 mL). 1,6-dibromohexanes (32.7 mL, 213 mmol) was added and stirred
for 2 h. The reaction was stopped with the addition of saturated NaHCO3 (50 mL) and diluted
diethyl (100 mL). The organic layer was washed with water (100 mL), brine (100 mL), dried with
magnesium sulfate anhydrous, treated with decolorizing charcoal, filtered and concentrated
in a vacuum to give an oil with an orange color. Excess 1,6-dibromohexane was removed
via vacuum distillation (0.04 torr, 55 ˝C) and purified by silica gel column chromatography
(ethyl acetate/hexane, 1/99–5/95 v/v) to obtain an oily product. Yield: 52%. 1H NMR (Figure S2,
Supplementary Material) (400 MHz, DMSO-D6) δ (ppm): 7.42–6.97, (Ha, b, c), 3.51 (Hi), 2.57 (Hd),
1.6–1.32 (He, f, g, h). FTIR (cm´1): 3062.45 (C–H aromatic), 2983 and 2912 (C–H (sp3)), 1589.22 and
1423.89 (C=C aromatic), 651.02 (C–Br).

‚ 4-((Phenylimino)methyl)phenol (2): 4-hydroxybenzaldehyde (122 mg, 10 mmol) was added to
(112 mg, 10 mmol) 2-aminobenzenethiol in 50 mL ethanol. The mixture was refluxed for 3 h.
A yellow crystal was obtained after recrystallization with ethanol. Yield: 95%. 1H NMR (Figure S3,
Supplementary Material) (400 MHz, DMSO-D6) δ (ppm): 10.13 (Ha), 8.46 (Hd), 7.80–6.89 (Hb, c, f).
FTIR (cm´1): 3413.56 (O–H), 3100.34 (C–H aromatic), 1623.05 (C=N) 1589.45 and 1454.65.
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‚ Phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)-amine) (3): A mixture of 4-((phenylimino)
methyl)phenol (1.97 g, 10 mmol), anhydrous potassium carbonate (4.14 g, 30 mmol) and
18-Crown-6 (16.6 mg, 0.1 mmol) was stirred in dried acetone (50 mL) at room temperature.
Then, compound 3-(6-bromohexylthiophene) (0.81 g, 2 mmol) was added. The reaction mixture
was refluxed under nitrogen with stirring for 24 h. After cooling to room temperature, the reaction
mixture was poured into the saturated solution of potassium carbonate. The organic phase was
collected and washed by water (3 ˆ 100 mL), dried by anhydrous sodium sulfate and filtered.
The solvent was removed by reduced pressure, and the residue was dried by vacuum to produce
the crude product. Purification was accomplished by column chromatography on silica with
25% hexane in chloroform to afford the monomer [56]. Yield: 67.6%. 1H NMR (Figure S4,
Supplementary Material) (400 MHz, DMSO-D6) δ (ppm): 8.5 (Hl), 7.8 (Hk), 7.4–6.9 (Hj, m, n, o),
6.6–6.9 (Ha, b, c), 3.97 (Hi), 2.67 (Hd), 1.74–1.41 (He, f, g, h). FTIR (cm´1): 2938.38, 1617, 1499.9,
1426.71, 1239.71, 1018.26.
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2.3.2. Polymerization of 3TArH and Thiophene Monomers on the Surface of MNPs

The preparation of MNP@PTh and MNP@P3TArH NPs involves two steps. Briefly, Fe3O4 has
been prepared by the co-precipitation method [57]. FeCl3¨ 6H2O (8.48 g, 30 mmol) and FeCl2¨ 4H2O
(2.25 g, 11.3 mmol) were dissolved in 400 mL deionized water under nitrogen atmosphere via vigorous
stirring (1000 rpm) at 80 ˝C. Then, a 20-mL ammonia solution 25% (w/w) was added to the solution.
The color of the bulk solution immediately changed from orange to black. After stirring the mixture
for 5 min, the Fe3O4 NP precipitates were obtained via magnetic decantation and washed three times
with deionized water. Finally, the Fe3O4 NPs were dried in a vacuum oven at 70 ˝C for 12 h.

The surface of Fe3O4 NPs was modified by being coated with the newly-designed modified
thiophene monomers via oxidation polymerization with the generation of ferric cations on the Fe3O4

NPs’ surface [54]. Fe3O4 NPs (1 mmol, 0.235 g) were discrete in polyvinyl alcohol (PVA) aqueous
solution (0.001 M). Later, 3TArH (3.64 g, 10 mmol) was added into the mixed solution with vigorous
stirring. Subsequently, 30 mL of HCl (0.5 M) solution were introduced into the mixture. Then,
the products obtained were dried in a vacuum oven at 70 ˝C for 12 h. Experiments were repeated
using freshly-distilled thiophene monomer (10 mmol, 0.84 g).

2.4. Solid Phase Extraction Optimization and Reusability Studies

Factors affecting the extraction efficiency of the proposed method, such as type of adsorbents, pH,
extraction time, sample volume, elution solvent, elution solvent volume, desorption time, adsorbent
dosage and effect of NaCl, were studied. All of the experiments were performed in triplicate, and the
means of the results were used in plotting the optimization curves.

The reusability of the adsorbent was determined with optimized conditions for up to five cycles.
The adsorbent was recycled after being washed with methanol and water and dried in vacuum at
70 ˝C for 12 h.
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2.5. Analytical Performances and Real Sample Analysis

In order to evaluate the figures of merit of the proposed technique, linearity, the limit of detection
(LOD), the limit of quantitation (LOQ) and repeatability were investigated under optimized conditions.
The linearity was analyzed through the standard curves ranging from 0.1–50 µg¨ L´1 by diluting
appropriate amounts of phthalates stock solution (1000 mg¨ L´1) with methanol and prepared in
triplicate. The calibration curves were prepared using 10 spiking levels of analytes. For each level,
three replicate experiments were performed.

To evaluate the reliability of the proposed method for the extraction of the plasticizers from real
samples, two real samples were selected, spiked and subjected to the MSPE-GC-FID analysis. The two
real samples were commercial bottled mineral water and bottled fresh milk.

3. Results and Discussion

3.1. Characterization of the Samples

Figure 2 shows several additional peaks in the spectrum of nanocomposites, proportional to
the MNP spectrum, which might be due to the surface functionalization. The strong absorption
peaks in the range of ~3400 cm´1 for MNP and all nanocomposites indicated the presence of OH
vibration, while the peak at 530–632 cm´1 corresponds to Fe–O stretching modes [58]. The C–H
aromatic stretching peak was observed for all nanocomposites, which falls at 3000 cm´1 for MNP@PTh
and 2980 cm´1 for MNP@P3TArH. C–H sp3 stretching (hexyl aliphatic side) occurred at 2934 cm´1 for
MNP@P3TArH. Schiff base peaks (C=N) were observed at 1674 and 1685 cm´1 for MNP@P3TArH [59].
C=C aromatic symmetric and asymmetric absorption bands demonstrated in the range of 1573–1461
cm´1 occurred for both nanocomposites. Two absorption band peaks at 1250 and 1072 cm´1 indicated
the presence of C–O in MNP@P3TArH. Hence, the FTIR study clearly revealed that the MNPs prepared
have been successfully functionalized.
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presence of amorphous and polymeric materials, which coat the surfaces of the MNPs [60]. The 
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Figure 2. FTIR of: (i) MNP; (ii) MNP@PTh; (iii) MNP@P3TArH.

Figure 3 displayed the characteristic peaks observed for the MNPs and all nanocomposites.
The peaks of the nanocomposites were slightly wider than unmodified MNP. This may be due to
the presence of amorphous and polymeric materials, which coat the surfaces of the MNPs [60].
The characteristic peaks of all nanocomposites were observed at 2θ = 30˝, 35.7˝, 43˝, 53.4˝, 57.0˝ and
62.6˝, which are marked by their respective indices ((220), (311), (400), (422), (511) and (440)) [61].
This showed that the surface functionalization does not change the crystalline phase of MNPs [62].
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The BET surface area is measured using the multipoint BET method, within the relative pressure
(P/P0) range of 0.05–1. As described in (Figure S5, Supplementary Material), the MNPs and all
nanocomposites display an H3-type hysteresis loop, based on the Brunauer-Deming-Deming-Teller
(BDDT) classification, demonstrating the existence of mesopores with pore diameters between 2 and
50 nm [63]. The pore size and BET surface area of MNPs and nanocomposites are tabulated in Table 1.
The reduction in the pore size of nanocomposites is due to the addition of polymers on the surface.
Meanwhile, escalation in the surface area could be because of the dispersity of particles that results
from the enhancement of the spaces between them [64,65].

Table 1. BET pore size and surface area.

Sample Pore size (nm) Surface area (m2¨ g´1)

MNP 20.2 37.37
MNP@PTh 18.3 95.6

MNP@P3TArH 12.09 103.80

Morphological analysis of the synthesized products was performed using TEM techniques.
As shown in Figure 4, TEM images of all materials demonstrated a sphere-shaped property. From
the images, we could clearly observe the good dispersion of the functionalized nanoparticles
(MNP@PTArH) in the TEM image. For instance, before polymerization, magnetic nanoparticles were
highly agglomerated with each other. After polymerization of MNP with 3TArH, they showed lower
agglomeration, and the nanocomposite became well dispersed. The dispersity of the nanocomposite
influenced its surface area, as evidence by the BET result of MNP@P3TArH, which is higher compared
to MNP@PTh and MNP, as tabulated in Table 1.
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The magnetic properties of the samples were recorded at room temperature with an external field
of ˘15 kOe. Important magnetic variables, such as saturation magnetization (MS), were evaluated.
The maximum saturation (MS) of MNPs occurred at 69.2 emu¨ g´1, respectively. After surface
functionalization, the magnetization of MNP@PTh and MNP@P3TArH was reduced to 65.3 and
61.5 emu¨ g´1 respectively. The magnetization decrease signified the presence of a dead magnetic layer
on the surface of the nanocomposites [58]. Although the magnetization has declined, the value is still
within the acceptable range, which suggests that it can be applied as the MSPE sorbent [66].

3.2. Solid Phase Extraction Optimization and Reusability Studies

3.2.1. Type of Adsorbent

Hypothetically, the adsorption of phthalates is based on the hydrophobicity and π–π
dispersion [67]. To prove that the structure architecture influences the adsorption studies of phthalates,
three different types of sorbents, which are naked magnetic nanoparticles (MNP), MNP-PTh and
MNP@P3TArH, were tested. As seen in Figure 5, MNP resulted in an insignificant peak area for
all of the analytes studied. After the introduction of polythiophene derivatives on the surface
of MNP, the peak area of phthalates increased. The presence of aliphatic and aromatic groups in
the MNP@P3TArH enhances the dispersion of phthalates, which enhances the π–π dispersion and
hydrophobic interaction. As evidenced, butyl benzyl phthalate (BBP) is more prone to the adsorbent
with more aromatic sides, as in the MNP@PT3ArH, compared to the other adsorbents. Besides, the high
surface area of MNP@P3TArH also contributes to the increase of extraction performance. Since the
MNP@P3TArH has demonstrated the high peak area for all analytes studied, it was selected for further
MSPE optimization.
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Figure 5. Comparison of MNP@P3TArH with naked MNP and MNP@PTh for the extraction of
targeted phthalates.

3.2.2. Sample pH

To study the influence of the surface charge of adsorbent/adsorbate in the extraction process,
experiments were performed under different pH conditions, ranging from pH 2–9. As shown from
Figure 6a, the peak areas for phthalates increase when the pH rise from 2–7, but decline later from 8–9.
At low pH, C=N, alkoxy in P3TArH was protonated, making the adsorbent surface positively charged.
At pH < 7, phthalates hydrolyze to phthalic acid, thus making the carbonyl group nucleophilic, reacting
with hydrogen ions in the aqueous solution, producing positive charges. Due to both the absorbate and
adsorbent acquiring positive charges, the electrostatic repulsion occurred and retarded the adsorption
performance [68]. At basic conditions, the surface adsorbent became negatively charged, while the
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adsorbate hydrolyzes to phthalate anions, reducing the extraction efficiency [69]. Thus, in neutral
pH, the extraction increased due to the absence of electrostatic repulsion that disturbed the extraction
capability. As the optimum performance was demonstrated at pH 7, this pH was selected for all of
the experiments.
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Figure 6. (a) Effect of sample pH; (b) effect of extraction time for the extraction of targeted phthalates.

3.2.3. Extraction Time

It has been understood that prolonged extraction time might increase the recovery of analytes.
Thus, the influence of extraction time on the recoveries of the analyte has been investigated.
As demonstrated in Figure 6b, the peak area increased rapidly for the first 20 min, since more adsorption
sites were available and phthalates could easily interact with these sites. After 30 min, the peak area
was almost persistent; therefore, 30 min was sufficient to extract the maximum of the target analytes.
In order to ensure that the extraction time was satisfactory, further experiments were carried out until
90 min, and they were found to be constant.

3.2.4. Desorption Studies

The elution solvent is one of the crucial parameters to be considered. In order to determine
the best elution solvent, the solvent must be able to elute all of the analytes that were retained from
the adsorbent in a small volume [70]. Six eluting solvents with dissimilar polarities, namely hexane,
toluene, diethyl ether, acetonitrile, methanol and ethyl acetate, were studied.

As evidenced in Figure 7a, polar solvents (acetonitrile, methanol and ethyl acetate) were the best
solvents, with high peak areas compared to non-polar solvents (hexane, toluene and diethyl ether),
since phthalates contain a polar carbonyl group [71]. Among the polar solvents, ethyl acetate showed
high solvent strength, since it gave the maximum peak area for the phthalates studied and was thus
selected to be the eluent.
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Figure 7. Desorption studies for the extraction of targeted phthalates: (a) effect of eluent type;
(b) volume of organic eluent; (c) desorption time.

The volume of ethyl acetate was tested from 0.1 mL–2.5 mL. As observed in Figure 7b, the peak
area increased from 0.1 mL and remained constant after 0.5 mL. This showed that 0.5 mL may
accommodate the maximum phthalates extracted from the sorbent.

Further, desorption time was optimized to investigate the best time taken for the analytes to
desorb from the sorbent ranging from 0–12 min. As revealed in Figure 7c, analytes were desorbed
rapidly in the first 4 min and started to become linear after 10 min. This indicated that 10 min of time
are sufficient to desorb back all of the analytes from the adsorbent. As for the case of BBP, desorption
was found to be slower than other phthalates. This could be due to the presence of an additional
aromatic ring in BBP, which makes it less polar to the eluent (ethyl acetate). After 6 min of desorption,
most of the phthalates had reached near to equilibrium, whereas BBP was desorbed steeply after 6 min
until it reached equilibrium at 10 min.

3.2.5. Mass of Adsorbent

Investigation of the adsorbent amount was executed in the range of 1–25 mg. As exposed
in Figure 8a, the extraction peak area increased up to 10 mg, but decreased later with a further
increase of the adsorbent. Increasing the adsorbent amount provides more active sites for the
adsorption of target analytes. However, a high amount of adsorbent at a specific volume has weakened
elution efficiency [30]. It is shown that this adsorbent only required a small amount of adsorbent to
remove phthalates efficiently, which added the advantage of economic value. Therefore, for further
experiments, the adsorbent amount of 10 mg was applied.
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Figure 8. (a) Effect of adsorbent dosage; (b) effect of sample volume; (c) effect of NaCl concentration,
for the extraction of targeted phthalates.

3.2.6. Sample Loading Volume

The effect of sample volume was investigated by the extraction of the phthalates ranging from
5–100 mL and shown in Figure 8b. Each sample was spiked with 10 mg¨ L´1 analytes and 10 mg
adsorbent. As can be seen, peak area increased until 20 mL and further decreased till 100 mL. A 20-mL
volume of sample demonstrated the most efficient extraction. An increase in sample volume could
lead to a high distribution of adsorbent to the aqueous phase, which lowered the amount of adsorbent
in the volume unit sample solution, and the extraction became less effective [72]. Thus, a 20-mL sample
volume was chosen as the optimized sample volume.

3.2.7. Effect of NaCl

Indeed, the addition of salt in the sample matrices effects the extraction efficiency. Thus, studies
on the concentration of NaCl ranging from 0–25 g¨ L´1 were conducted. As observed in Figure 8c, peak
areas of the studied analytes increased from 0–15 g¨ L´1, but decreased later from 20–25 g¨ L´1. This can
be due to the addition of salt, which increases the ionic strength and eventually decreases the solubility
of the analytes in the media. However, as the concentration of salt increases, the diffusion rate of the
analytes may reduce, since the solvation cage of the analytes is disturbed [51]. Since a 30 g¨ L´1 NaCl
concentration gave a high peak area for all analytes studied, it was chosen for subsequent experiments.

3.2.8. Reusability Studies

To investigate the probability of reusing and regenerating the sorbent, a reusability test was
designed and implemented for Fe3O4@P3TArH, which was recycled after being washed with methanol
and water and was dried in a vacuum at 70˝C for 12 h. From Figure 9, it could be surmised that after
five repeated experiments, the adsorbent was still active. This may be due to some of the particles
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in the adsorbent accumulating due to the heat treatment after several cycles, which decreases the
surface area.
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Figure 9. Reusability cycles.

3.3. Analytical Performances and Real Sample Analysis

The optimized method obtained for the extraction of phthalates using MNP@P3TARH involved
the sample at pH 7, 30 min extraction time, ethyl acetate as the elution solvent, 500-µL elution solvent
volumes, 10 min desorption time, 10 mg adsorbent dosage, 20-mL sample loading volume and a
15 g¨ L´1 concentration of NaCl. In order to assess the validation of the proposed method, linearity,
the limit of detection, the limit of quantitation and repeatability were performed under optimum
conditions. Analytical performance figures of merits are tabulated in Table 2.

Table 2. MNP@P3TArH (magnetic-solid phase extraction (MSPE)) analytical figures of merit.

Analytes R2 Linear range
(µg¨ L´1)

LOD
(µg¨ L´1)

LOQ
(µg¨ L´1)

RSD (%) Interday
n = 3

RSD (%) Intraday
n = 7

DMP 0.992 0.5–50 0.462 1.539 3.4 4.8
DEP 0.992 0.5–50 0.468 1.562 5.0 4.3
DPP 0.997 0.5–50 0.286 0.954 4.6 3.7
DBP 0.998 0.1–50 0.063 0.213 4.5 4.5
BBP 0.996 0.1–50 0.080 0.268 4.8 4.3
DCP 0.993 0.5–50 0.332 1.106 4.7 4.0

DEHP 0.997 0.1–50 0.054 0.182 3.0 4.0
DNOP 0.997 0.1–50 0.073 0.244 3.6 4.9

Calibration curves obtained for the studied phthalates were linear over the range of 0.1–50 µg¨ L´1

with R2 more than 0.99. As per the U.S. EPA standard, the screening of phthalates in drinking water
must be done at a concentration above 0.6 µg¨ L´1 [4]. However, the LOD of our method lies within
the range of 0.080–0.468, indicating the suitability of this method as an efficient phthalate detector.

Repeatability studies were conducted for inter-day (three consecutives replicates for three days)
and intra-day (seven consecutives replicates on the same day). The results were expressed as relative
standard deviations (RSD%). This method demonstrated good precision, since the RSD (%) values
were in the range of 3%–5% [73]. Comparative studies on the analytical performance between the
proposed methods with other developed methods are shown in Table 3. Obviously, the extraction of
phthalates using MNP@P3TArH provides sensitivity and repeatability.
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Table 3. Comparatives study of the proposed method with other MSPE adsorbents for the extraction
of phthalates.

Analyte Method LOD
(µg¨ L´1)

LDR
(µg¨ L´1) RSD (%) Reference

DBP, DEHP, DOA MNP@PTh-GC-FID 0.2–0.4 0.4–100 4–12.3 [72]
DPP, DBP, DCP, DNOP MNP@Chitosan-C18-HPLC-UV 0.012–0.037 0.001–0.01 2.1–6.8 [73]

DBP, DEHP MNP@Zeolite-GC-FID 2.80–3.2 10–1200 10%–13% [74]
DMP, DEP, DBP, BBP, DNOP MNP@ZIF-8-HPLC 0.08–0.24 1–100 <5.5 [75]
DMP, DPP, DEP, DBP, BBP,

DCP, DEHP, DNOP MNP@P3TArH- GC-FID 0.05–0.09 0.1–50 3.0–5.0 This study

To endorse the reliability of the method using MNP@P3TArH, it was applied to determine
phthalates in the water from the mineral water bottle stored at room temperature and commercial
fresh milk. Figure 10 shows the chromatogram of commercial fresh milk unspiked and spiked with
phthalates. None of the targeted phthalates were found in the water samples under the optimized
condition described. To evaluate the matrix effect, all of the samples were spiked with 50 µg¨ L´1 of
the phthalates studied. Recoveries and RSD (%) for all of the water samples were determined and
are shown in Table 4. From the optimization procedures until the real sample analyses, DMP, DEP
and DPP demonstrated lower recoveries; this may be due to the lower molecular weight of phthalates
being more prone to aqueous solution than to the adsorbent [76]. From the chromatogram of mineral
bottle stored at room temperature as shown in (Figure S6, Supplementary Material), the recoveries
obtained for water in the mineral bottle demonstrated higher values compared to the recovery for the
milk sample. This might be caused by the matrix effect that holds the analyte in the milk sample to be
higher compared to the water sample. RSD (%) values were found to be in the range of 1.3%–5.8%,
which indicated a precise method.
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Table 4. Analysis of analytes in the real samples.

Analyte MNP@P3TArH MSPE (˘RSD%, n = 3)

Mineral water Commercial fresh milk

DMP 85(5.8) 68(5.0)
DEP 85 (4.9) 67(3.0)
DPP 88(1.3) 72(7.7)
DBP 95(2.4) 85(3.3)
BBP 93(3.0) 82(3.8)
DCP 90(4.7) 77(5.8)

DEHP 99(1.3) 89(4.5)
DNOP 101(4.2) 91(3.3)
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4. Conclusions

MNP@P3TArH has been successfully synthesized, characterized and utilized as a sorbent for the
analysis of GC-FID in the determination of selected phthalates. The optimized conditions of MSPE
were carefully selected as follows: sample at pH 7, 30 min extraction time, ethyl acetate as the elution
solvent, 500-µL elution solvent volume, 10 min desorption time, 10 mg adsorbent dosage, 20-mL
sample loading volume and a 15 g̈ L´1 concentration of NaCl. The steadiness and reusability studies
suggested that the MNP@P3TArH could be used up to five cycles without significantly impacting its
extraction capacity. The adsorbent covers a wide range of phthalates with a dynamic linear range of
0.1–50 µg¨ L´1 and a limit of detection at 0.08–0.468µg¨ L´1. The presence of new interfaces (π–π and
hydrophobic interactions) among the sorbent and target analytes increased the adsorption capability.
The application of MNP@P3TArH as the MSPE sorbent was successfully executed by the analysis of
phthalate esters in the mineral water and commercial fresh milk.

Supplementary Materials: Supplementary Materials can be found at www.mdpi.com/2073-4360/8/5/117/s1.
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