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ABSTRACT 

The type-2 fuzzy set (T2FS) is introduced to circumvent the limitations of the type-1 

fuzzy set (T1FS). The main characteristic of type-2 fuzzy logic controller (T2FLC) is that, 

its Membership functions (MFs) are fuzzy. Therefore, it has more degree of freedom in 

designing varieties of systems with uncertainties. The control performance of type-1 

fuzzy logic controller (T1FLC) can be improved by T2FLC because it has the advantage 

of footprint of uncertainty (FOU) that can be used to improve the corresponding MFs. 

Searching the suitable values of parameters and structure of type-2 fuzzy logic systems is 

a complex task. Many types of meta-heuristic algorithms have been proposed in the 

literature to solve this complex problem. This is presently attracting tremendous attention 

from researchers in this area of research. The Genetic algorithm (GA), Particle Swarm 

Optimization (PSO) and Cuckoo Search (CS) were considered in this research as three 

different paradigms that can be used in designing the optimized T2FLCs. In this research, 

the design of an optimized Interval Type-2 Fuzzy Proportional Derivative Integral 

Controller (IT2FPIDC) in cascade form for Rotary Inverted Pendulum (RIP) system is 

reported. The Type-1 Fuzzy Proportional Derivative Integral Controller (T1FPIDC) in 

cascade form was also designed using the same procedure for IT2FPIDC for fair 

comparisons. The parameters of the T1FPIDC and IT2FPIDC are optimized using GA, 

PSO and CS. This was also done to enable the comparisons between these types of meta-

heuristic optimization algorithms. The goal is to stabilized the RIP at upright unstable 

equilibrium position and control it to follow a desired time varying trajectory. The 

performance indexes considered for the proposed controllers are steady state error (𝐸𝑠𝑠), 

settling time (𝑡𝑠), rise time (𝑡𝑟) and maximum overshoot (𝑀𝑝). Experimental and 

simulation results indicated that the effectiveness and robustness of the proposed 

IT2FPIDCs on the RIP with respect to load disturbances, parameter variation and noise 

effects has been improved over its T1FPIDC counterpart. For example, the IT2FPIDC 
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has improvement between 6.1% to 33.3%, 5.7% to 35.2% and 6.6% to 20.8% in term of 

𝑡𝑟,𝑡𝑠, and 𝐸𝑠𝑠 respectively compared to optimized T1FPIDC. Also, the performance of 

CS base IT2FPIDC and T1FPIDC were improved with respect to some performance 

indexes over GA based and PSO based IT2FPIDC and T1FPIDC respectively. For 

example, the CS based IT2FPIDC has lower 𝑡𝑟,𝑡𝑠, and 𝑀𝑝 of 0.41sec, 0.76sec and 

0.17degree respectively compared with GA and PSO based IT2FPIDC. Similarly, the CS 

based T1FPIDC has lower  𝑡𝑟,𝑡𝑠, and 𝑀𝑝  of 0.56sec, 1.18sec and 0.19degree respectably 

compared with GA and PSO based T1FPIDC. Though in all the cases the 𝐸𝑠𝑠 is all most 

similar. The proposed control strategy can be regarded as a promising strategy for 

controlling different uncertain, unstable and nonlinear systems especially in presence of 

noise and disturbances.  
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ABSTRAK 

Jenis-2 set kabur (T2FS) diperkenalkan untuk memintas batasan jenis-1 set kabur 

(T1FS). Ciri utama dari jenis-2 kabur pengawal logik (T2FLC) adalah bahawa, fungsi 

Keahlian yang (MFS) adalah kabur. Oleh itu, ia mempunyai lebih darjah kebebasan dalam 

mereka bentuk jenis sistem dengan ketidaktentuan. Prestasi kawalan jenis-1 fuzzy logik 

pengawal (T1FLC) boleh diperbaiki dengan T2FLC kerana ia mempunyai kelebihan jejak 

yang tidak menentu (FOU) yang boleh digunakan untuk meningkatkan yang sepadan 

MFS. Mencari nilai yang sesuai parameter dan struktur jenis-2 sistem logik kabur adalah 

satu tugas yang kompleks. Banyak jenis algoritma meta-heuristik telah dicadangkan 

dalam kesusasteraan untuk menyelesaikan masalah yang kompleks ini. Ini kini menarik 

perhatian yang besar dari penyelidik dalam bidang ini penyelidikan. Algoritma Genetik 

(GA), Particle Swarm Optimization (PSO) dan carian cuckoo (CS) telah dipertimbangkan 

dalam kajian ini tiga paradigma yang berbeza yang boleh digunakan dalam mereka bentuk 

T2FLCs dioptimumkan. Dalam kajian ini, reka bentuk dioptimumkan Interval Type-2 

Fuzzy berkadar Pengawal Integral Derivative (IT2FPIDC) dalam bentuk lata untuk sistem 

RIP dilaporkan. The Type-1 Kabur berkadar derivatif Pengawal Integral (T1FPIDC) 

dalam bentuk lata juga direka dengan menggunakan prosedur yang sama untuk 

IT2FPIDC untuk perbandingan yang adil. Parameter T1FPIDC dan IT2FPIDC 

dioptimumkan menggunakan GA, PSO dan CS. Ini juga telah dilakukan bagi 

membolehkan perbandingan antara jenis algoritma pengoptimuman meta-heuristik. 

Matlamatnya adalah untuk stabil RIP pada kedudukan keseimbangan stabil tegak dan 

mengawalnya untuk mengikuti pelbagai trajektori masa yang dikehendaki. Indeks 

prestasi dipertimbangkan untuk pengawal yang dicadangkan adalah ralat mantap negeri  

(𝐸𝑠𝑠), menetap masa  (𝑡𝑠), masa naik (𝑡𝑟) dan terlajak maksimum. Keputusan eksperimen 

dan simulasi menunjukkan bahawa keberkesanan dan keteguhan IT2FPIDCs yang 

dicadangkan pada RIP berkenaan dengan memuatkan gangguan, perubahan parameter 
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dan kesan bunyi yang telah diperbaiki dari rakan sejawatannya T1FPIDC itu. Sebagai 

contoh, IT2FPIDC mempunyai peningkatan antara 6.1% kepada 33.3%, 5.7% kepada 

35.2% dan 6.6% kepada 20.8% dalam tempoh 𝑡𝑟,𝑡𝑠, dan 𝐸𝑠𝑠  masing-masing berbanding 

dioptimumkan T1FPIDC. Juga, prestasi CS asas IT2FPIDC dan T1FPIDC telah 

bertambah baik berkenaan dengan beberapa indeks prestasi lebih IT2FPIDC GA 

berasaskan dan PSO berasaskan dan T1FPIDC masing-masing. Sebagai contoh, 

IT2FPIDC CS berasaskan mempunyai 𝑡𝑟, lebih rendah, 𝑡𝑠, dan 𝑀𝑝 daripada 0.41sec, 

0.76sec dan 0.17degree masing-masing berbanding dengan IT2FPIDC GA dan PSO 

berasaskan. Begitu juga dengan T1FPIDC CS berasaskan mempunyai  𝑡𝑟, lebih rendah, 

𝑡𝑠, dan 𝑀𝑝 daripada 0.56sec, 1.18sec dan 0.19degree sopan berbanding dengan T1FPIDC 

GA dan PSO berasaskan. Walaupun dalam semua kes-kes yang 𝐸𝑠𝑠 adalah semua yang 

paling serupa juga. strategi kawalan yang dicadangkan boleh dianggap sebagai strategi 

menjanjikan untuk mengawal sistem yang tidak menentu, tidak stabil dan tak linear yang 

berbeza terutamanya dalam kehadiran bunyi dan gangguan.  
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CHAPTER 1: INTRODUCTION 

1.1 Background  

The data available in many real-world problems such as control, time series 

forecasting, pattern recognition, decision making, system identification and modeling are 

quite associated with uncertainties in nature (Mendel, 2007). This is due to a deficiency 

in information which may be imprecise, incomplete, contradictory, vague, unreliable, 

fragmentary or deficient in some other way. Uncertainty is an inherent characteristic of 

information (Zadeh, 1974). In particular, most real industrial systems are nonlinear in 

nature and exhibit some level of uncertainty (Martinez-Soto et al., 2015). Some modern 

control, such as nonlinear, adaptive, variable structure and optimal control have been 

proposed for the past decades (Castillo & Melin, 2014). Although these control strategies 

exhibit a good performance, but they are complex and difficult to implement (Z. Zhang 

& Zhang, 2012). The conventional Proportional Integral Derivative (PID) controller 

exhibits good performance for linear system, and it is widely employed in the industry 

due to its simple structure and robustness in different operation conditions. However, the 

tuning of the parameters of PID accurately becomes difficult because most of the 

industrial plants are highly complex and have some issues such as nonlinearities, time 

delay, and higher order (Hassanzadeh & Mobayen, 2011). Due to the complexity of most 

industrial plants and the limitation of PID controller, an unprecedented interest was 

diverted to the applications of the Fuzzy Logic Controller (FLC). This is because it uses 

the expert knowledge and linguistic rules describe its control action. Also, the FLC does 

not require the complete mathematical model of the system to be controlled and it can 

work properly with nonlinearities and uncertainties (Mendel et al., 2014). 

The fuzzy logic theory increased the ability of systems to cope with the 

uncertainty problems. The basic feature of fuzzy reasoning allows for handling a different 

kind of uncertainties (Zadeh, 1965). The Fuzzy Logic System (FLS) are of two types viz.: 

Univ
ers

ity
 of

 M
ala

ya



2 

Type 1 Fuzzy Logic System (T1FLS) and Type 2 Fuzzy Logic System (T2FLS) (Zadeh, 

1974). In T1FLS, the uncertainty is represented by a precise number in a range of (0, 1) 

interpreted as a degree of Membership Function (MF). Given the fact that it is too difficult 

to know a precise value for uncertainty, working with T1FLS is more reasonable. 

However, some researchers argued that in cases where there is a high level of uncertainty, 

T1FLS has limited ability to handle it because its membership degree for each input is a 

crisp number (Bellman & Zadeh, 1970). 

The T2FLS which uses the Type-2 Fuzzy Set (T2FS) was introduced to 

circumvent the limitations of the T1FLS. The main characteristic of T2FLS is that its MFs 

are fuzzy. Therefore, it has more Degree of Freedom (DOF) in designing verities of 

systems with uncertainties (Karnik et al., 1999). The control performance of T1FLS can 

be improved by T2FLS because it has the advantage of Footprint of Uncertainty (FOU) 

that can be used to improve the corresponding MF (Mendel, 2007). The T2FLS is of two 

types, namely, Interval Type-2 Fuzzy Logic System (IT2FLS) that uses Interval Type-2 

Fuzzy Sets (IT2FSs) and General Type-2 Fuzzy Logic System (GT2FLS) that uses 

General Type-2 Fuzzy Sets (GT2FS) (Mendel, 2014). It was argued that in the presence 

of uncertainty, T2FLS is preferred over the T1FLS (Castillo & Melin, 2012). Similarly, 

there are several records of experimental evidence illustrating some significant 

improvements regarding accuracy of T2FLS over T1FLS counterpart (Baklouti & Alimi, 

2013; Fayek et al., 2014; Wang, & Bi, 2015). 

The design of type-2 fuzzy model based on experimental data can be categorized 

into two; the first is constructing the type-2 fuzzy model from the existing optimal type-

1 fuzzy model, and the second is the direct design of type-2 fuzzy model from the 

experimental data. In both of the methods, the manual design and tuning of the MFs of 

T2FLS to give a proper response is a difficult task (Castillo & Melin, 2014). 
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Rotary Inverted Pendulum (RIP) will be used as a benchmark for testing the 

proposed controllers. Looking at RIP from the control point of view it exhibits many 

interesting and challenging properties, such as nonlinearities and instability. The RIP is 

in the class of underactuated mechanical systems. These features make RIP to be known 

widely as an experimental setup for testing a different kind of control algorithms 

(Ramírez-Neria et al., 2014). The RIP consists of a rotational servo motor system which 

drives the output gear, rotational arm, and a pendulum. The RIP has some real application 

such as in robotics, pointing control, aerospace systems, marine systems, mobile systems, 

flexible systems, and locomotive systems. At hanging position, the RIP represents a real 

model of the simplified industry crane application. This means that any controller works 

properly on RIP is expected to work properly in the field of robotics, pointing control, 

aerospace systems, marine systems, mobile systems, flexible systems, and locomotive 

systems (Chen & Huang, 2014). The main control objectives of the RIP are Swing-up 

control, stabilization control, switching control and trajectory tracking control. 

        To the best of the author's knowledge, at this moment there is no any GA or PSO 

or CS optimized type-2 fuzzy logic control applied to RIP. A cascade control method is 

effective for a system with high level of disturbances and large time error such as the RIP 

(Oh et al., 2009). Also, as mentioned earlier that there are many records that shows the 

type-2 fuzzy control strategy is effective and give robust control response for systems 

with high level of uncertainty and/or inaccurate model. Putting the type-2 fuzzy in 

cascade topology will have the advantages of type-2 fuzzy control and cascade control 

structure which will eventually give more robust controller for a system with uncertainties 

and large time error.  

 This study proposed the design of Interval Type-2 Fuzzy Proportional Derivative 

Integral Controller (IT2FPIDC) in cascaded form for control of RIP.  The parameters of 
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the IT2FPIDC will be optimized using GA, PSO, and CS. The GA and PSO were chosen 

in this research in view of the fact that these algorithms are more established in the 

literature than other evolutionary algorithms. In addition, the GA and PSO have proven 

to improve performance over other algorithms in solving optimization problems (Castillo 

& Melin, 2012; Civicioglu & Besdok, 2013). On the other hand, CS is selected due to the 

pact that at this moment there is no record of the use of CS to optimized the T2FLC. Also, 

there is some record for other applications which shows that CS outperformed the GA 

and PSO (Abdelaziz & Ali, 2015; Gandomi et al., 2013). As such these three meta-

heuristic optimization algorithm will be used to optimized some parameters of T2FLC 

and compare their performances.  

The goal is to stabilize the pendulum in an upright position. The servo behavior 

(trajectory tracking control) of RIP is analyzed. Disturbances rejection of the proposed 

controller is analyzed by adding the internal noise and external disturbance to the system. 

Also, the controller is applied on the RIP in real time to validate the simulation results. 

The performances of GA, PSO and CS, is compared. Also, the designing of IT2FPIDC 

as an optimization dilemma that slightly altered four performance indices was formulated 

which includes steady state error, settling time, rise time and maximum overshoot of the 

response.  

1.2 Problem Statement  

The FLS has numerous attractive features which include easy incorporation of 

expert knowledge into the control law, less model dependent, robustness and easily used 

to model the linguistic rules. Moreover, the FLS can work properly with system 

uncertainties and nonlinearities (Mendel, 2007). The model of both T1FS and T2FS are 

described by their parameters. The T1FS is described by fewer parameters than T2FS. 

The FLS design DOF depends on the number of parameters associated with the FLS; 
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therefore, the T1FLS has less design DOF than T2FLS. The possibilities of T2FLS to 

outperform a T1FLS is likely based on the increase in the number of design DOF that can 

be used properly at a high level of uncertainty (Mendel, 2014). 

Despite the importance of T2FLS, there is no systematic and comprehensive 

methodology for the design of T2FLS. The main problem in the design of T2FLS is the 

process of tuning becomes more difficult and much time consuming for increasing 

number of input and output of the controller. The structural and tuning parameters are 

required to be correctly determined for FLS to work properly (Castillo & Melin, 2012). 

These parameters include: MF parameters, scaling factors, inference mechanism, fuzzy 

rule, type of MF, fuzzy linguistic set and input/output variables to the fuzzy inference. 

Trial-and-error can be used to find values for these parameters, but it is not feasible 

especially for a high number of input and output to the controller (Maldonado et al., 

2014). Due to this, there is a need of using a systematic procedure which is easier for 

finding the optimized values of the T2FLS design parameters. These stated problems 

which serve as the driving force that motivated this research. 

The use of meta-heuristic optimization algorithms is proposed in this research to help 

in obtaining an optimal T2FLC design parameters. Meta-heuristic optimization 

algorithms refer to a class of soft computing techniques that relate to the searching of 

optimal, satisfactory or best solution for a particular problem. The solution can be the 

absolute best out of other alternative solutions (Martínez-Soto et al., 2014). Recently, 

many meta-heuristic optimization algorithms such as Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO), Ant Colony Optimization (ACO), big-bang big-crunch 

optimization, bacterial foraging optimization, biogeography optimization, Chemical 

optimization, back propagation algorithm, simulated annealing, firefly algorithm, Tabu 

Search optimization, and hybrid optimization (HO) have been used for the design of a 

T2FLC for different applications. Nevertheless, there is some meta-heuristic algorithm 
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that are yet to be applied in this domain of research. Also, most of the previous work 

address the issue of optimizing the controller gain (scaling factor) only or optimizing the 

MF parameters only. The optimization of the scaling factors together with the MF 

parameters are ignored. Also, the optimization of inference mechanism, fuzzy rule, type 

of MF, fuzzy linguistic set and input/output variables to the fuzzy inference are 

disregarded in most cases. Moreover, most of the proposed optimal T2FLC are tested by 

simulation studied only. While the real-world experiment to validate the simulation work 

is ignored. Furthermore, the previous method normally used the objective functions 

which minimized one or two performance indexes. The common objective function used 

in the literature are Integral of the time-weighted absolute value of error (ITAE), Integral 

absolute error (IAE), Integral time square error (ITSE), Mean square error (MSE), Root 

mean square error (RMSE) and Integral square error (ISE). There is a need to have a 

single objective function that can minimize all the four important performance indexes 

(i.e. steady state error, settling time, rise time and maximum overshoot). 

This study is different from the Fuzzy neural networks (FNN) which are widely known 

as the combination of the fuzzy logic system (FLS) and NN in which an NN expresses 

FLS. Basically, FNN is a learning machine that can be used to find the FLS parameters 

(i.e., fuzzy rules, fuzzy sets) by using approximation techniques as in NN.  

1.3 Research Questions  

I. Can meta-heuristic optimization algorithms be used to obtain an optimal 

T2FLC design parameters? 

II. What will be the performance of T2FLC when the best controller scaling 

factor and the best membership function parameters are used? 

III. Is there any improvement in performance of optimized T2FLC over T1FLC 

under load disturbances, parameter variation and noise effects?  
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IV. Can the performance of optimal T2FLC be tested using simulation and 

experimental studies for validation? 

V. Can the single objective function be used to minimized the four important 

performance indexes (i.e. steady state error, settling time, rise time and 

maximum overshoot)? 

VI. What will be the performance of GA-based, PSO-based and CS-based T2FLC 

at normal condition and in the presence of disturbances? 

VII. What are the limitation of the controllers applied on RIP in the past? 

VIII. What will be the performance of the optimal T2FLC when it applies to RIP? 

 

1.4 Aim  

The main aim of this study is to design the type-2 fuzzy logic controllers using meta-

heuristic optimization algorithms for non-linear control systems. To realize the aim, the 

following research objectives are identified. 

1.4.1 Research Objectives  

I. To develop a mathematical model of rotary inverted pendulum 

II. To design and develop a GA based, PSO based and CS optimization based type-

2 fuzzy logic controller type-1 fuzzy logic controller for the rotary inverted 

pendulum. 

III. To simulate the developed controllers and compare their performance under 

different disturbance conditions.  

IV. To evaluate the Performance of the controllers experimentally and compare 

with the simulation results for validation. 

1.5 Scope and Limitations 

Within the framework of this research, the IT2FS is used. This is because the 

computational complexity is manageable in IT2FS compared with its GT2FS counterpart, 
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and the IT2FLS is more practicable. The design parameters considered for optimization 

in this research are the antecedent MFs parameters and scaling factor (controller gains). 

The GA, PSO, and CS are the three meta-heuristic optimization algorithms paradigms 

considered for the design of T2FLS in this research. This is because the GA and PSO are 

more established in the literature than other evolutionary algorithms in this domain. Also, 

CS is the novel metaheuristic optimization algorithms in this domain. The proposed 

controllers are applied on RIP for both the simulation and experiment.      

1.6 Contributions 

The main contribution of this study is the novel design of optimal Interval Type-2 

Fuzzy PID Controller (IT2FPIDC) in cascade structure for RIP control. This contribution 

and the other contributions to the present study are presented as follows: 

I. The novel design of optimal IT2FPIDC is proposed using CS algorithm. Also, the 

design of optimal IT2FPIDC using GA and PSO are proposed for comparisons of 

the performance of CS based IT2PIDLC.  

II.  Unlike previous Objective functions used in design the IT2FLC which commonly 

minimized one or two performance index proposed by researchers, this research 

proposed the objective function that can compromise between four important 

performance indexes namely: steady state error, settling time, rise time and 

maximum overshoot. 

III. The optimized T1FPIDCs are designed using the same method used in IT2FPIDC 

(i.e. in cascade structure using GA, PSO, and CS) for fair comparisons to 

demonstrate the advantages of IT2FPIDC  

IV. Provides analysis and synthesis of the published articles from 2012 to 2015 in the 

area of applying meta-heuristic optimization algorithms in the design of IT2FLS 

for different applications. The insight on proposed algorithms, algorithms 
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compared with, other controllers compared with IT2FLC, and major findings are 

highlighted. 

V. The review on the application of RIP as a benchmark for testing different types of 

the controller is provided. This include the friction analysis in the joints, linear 

controllers, nonlinear time-invariant controllers, self-learning and adaptive 

controllers.   

VI. The research has proposed linear and nonlinear mathematical model of RIP using 

both Newton’s Euler-Lagrange and Kane’s methods. The proposed models are 

found to be more accurate than the previous model provided by the researchers. 

The Matlab model for both mathematical models are also provided. 

VII. The proposed intelligent optimal IT2FLC has been added as an alternative to the 

controllers for RIP that are already discussed by researchers in the literature.  

VIII. The experimental and simulation results of the proposed IT2FPIDC indicate the 

advantages and disadvantages of GA, PSO and CS algorithms based on the 

performance index used. 

IX. This study used energy based controller to explain all the control objectives of the 

RIP  
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1.7 Flowchart of Research activities  

The research activities are executed based on the following flowchart.   

Start 

GA CSPSO

Critical literature 

review

T2FLS

RIP

Mathematical modeling 

and simulation of RIP

Design and development 

of CSO based T2FLC for 

RIP (simulations)

Design and development 

of PSO based T2FLC for 

RIP (simulations)

Design and development 

of GA based T2FLC for 

RIP (simulations)

Comparisons of simulated 

results for GA, PSO and CS

Real time experiment on 

RIP’s control objectives

Design and development 

of GA based T2FLC for 

RIP (real time)

Design and development 

of PSO based T2FLC for 

RIP (real time)

Design and development 

of CS based T2FLC for 

RIP (real time)

Comparisons of experimental 

results for GA, PSO and CS

Validation of results

Documentation 

End 

 

Figure 1.1: Flowchart of project activities 
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1.8 Thesis Organization  

1.8.1 Chapter 1: Introduction 

This chapter introduced the general research background, including problem statement, 

research questions, aim of the research, objectives, scope and limitation, Contribution of the 

studies, motivation, and the flowchart for the research activities. 

1.8.2 Chapter 2: Meta-heuristic Optimization Algorithms in Design T2FLS  

The recent advances in the use of meta-heuristic optimization algorithms in design 

T2FLS in intelligent control, prediction, classification, clustering and pattern recognition 

is provided in this chapter. This include the brief overview of T2FLS, structure of general 

fuzzy PID controller, review on optimization of T2FLS using HO, GA, PSO and other 

meta heuristic optimization algorithms. Future trend and a general overview of this 

domain of research were also presented. The gap of the research was found.  

1.8.3 Chapter 3: Rotary Inverted Pendulum as a Benchmark for Testing Control 

Algorithms 

The Current development on using Rotary Inverted Pendulum as a benchmark for 

testing linear and nonlinear control algorithms based on simulations and experiments was 

provided in this chapter. The linear and nonlinear mathematical model of RIP was 

developed. This is based on Kane’s and Newton-Euler Lagrange method including the 

Matlab model. The energy based controller for RIP was used to explain the control 

objectives of RIP. The effect of friction and friction compensation in RIP is provided. 

Resent review on different types of controllers applied to RIP was discussed. The 

limitation of the previous approach and the gap for the research was also provided.  

1.8.4 Chapter 4: Methodology  

The method used for modeling and simulation was explained in this chapter. This 

include the mathematical model and cascade control method. The problem formulation 
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including the parameter setting for GA, PSO and SC was explained for both simulation 

and experiment. The performance index, cost value standard deviation and mean value 

for GA, PSO and CS was discussed. The method for experiments and validation was 

provided in this chapter.   

1.8.5 Chapter 5: Results and Discussions   

The best simulation and experimental results found for GA based, PSO based and CS 

based IT2FLC is presented in this chapter. This include the comparisons for different 

weighing factor. Reference tracking and disturbance rejection ability of the proposed 

controllers was analyzed. The validation of the simulation with experiments are 

presented. The meaning and the impact of the result found was discussed.   

1.8.6 Chapter 6: Conclusion and Recommendations 

This chapter discusses the general conclusions made from the findings of this research. 

The future work to be conducted was highlighted. Recommendation are also made.  
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CHAPTER 2: META-HEURISTIC OPTIMIZATION ALGORITHMS IN 

DESIGN T2FLS 

2.1 Introduction 

This chapter presents a review of the recent advances in the use of meta-heuristic 

optimization algorithms in optimizing the design of T2FLS in intelligent control, 

prediction, classification, clustering and pattern recognition. The comprehensive 

literature review of the studies in this domain was conducted to provide a state-of-the-art 

review to prevent replication of what has already been accomplished. Additionally, the 

clear perspective with a broad and in-depth review of the research studies in this domain 

was provided. Moreover, the brief overview of T2FLS, structure of general fuzzy PID 

controller, review on optimization of T2FLS using hybrid optimization (HO), GA, PSO 

and other meta heuristic optimization algorithms was presented. Future trend and a 

general overview of this domain of research were also presented. The gap of the research 

based on optimization of T2FLC was highlighted.    

2.2 Type-2 Fuzzy Logic Systems 

The idea of FLS and T2FS was pioneered by Zadeh in 1965 and 1975 respectively 

(Zadeh, 1965, 1974). A concise overview of T2FLS was presented in this section with 

the intention of providing readers with the basic knowledge of how T2FLS operates to 

achieve its objective.  

        Imagine blurring the type-1 membership function (T1-MF) as shown in Figure 

1(a) by moving the points on the triangle from left to right. Type-2 membership function 

(T2-MF) was formed as shown in Figure 1(b).  
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Figure 2.1: (a) Type-1 MF, (b) Blurred type-1 MF 

Considering a specific value of x, say x', in T1-MF has a specific crisp value 𝜇. 

On the other hand, in blurred T1-MF, it does not have a single value. Instead, the MF has 

many values with different weight at all the point where the vertical line intersects the 

blur. The amplitude distribution can be assigned to all these points. Doing this for all 𝑥 ∈

𝑋, a three dimensional MF was created that characterised a T2FS (Mendel et al., 2006). 

A T2FS �̃�, is charaterised by T2-MF 𝜇�̃�(𝑥, 𝑦), for 𝑥 ∈ 𝑋 and 𝑢 ∈ 𝐽𝑥 ⊆ [1,0], that is., 

�̃� = {((𝑥, 𝑦), 𝜇�̃�(𝑥, 𝑦))│ ⩝ 𝑥 ∈ 𝑋,⩝ 𝑦 ∈ 𝐽𝑥 ⊆ [0,1]}                                                             (2.1) 

in which 0 ≤ 𝜇�̃�(𝑥, 𝑢) ≤ 1 

The primary membership of 𝑥 can be represented as: 𝐽𝑥 ⊆ [0,1] and the secondary 

set is 𝜇�̃�(𝑥, 𝑢) which is T1FS. Therefore, a type-2 membership grade should lie between 

or be equal to 0 and 1 (Karnik et al., 1999). Each primary membership has its 

corresponding secondary membership (also lies in [1,0]) that defines its possibilities. The 

uncertainty can be represented by foot print of uncertainty (FOU) region (Karnik & 

Mendel, 1998a).  

As stated earlier, the T2FLS are of two types, namely IT2FLS and GT2FLS. The 

scope of this research is on IT2FS. All the secondary grades of the IT2FS are equal to 1, 
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and it is completely described by upper MF and lower MF (UMF and LMF) as shown in 

Figure 2.2.  
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Figure 2.2: Interval type-2 fuzzy set 

The primary membership is called 𝐽𝑥, and its associated possible secondary MFs that 

can be trapezoidal, triangular, interval, etc. When the interval secondary MF is employed 

an Interval T2FS (IT2FS) is obtained (Karnik & Mendel, 1998a). In other words, when 

𝜇�̃�(𝑥, 𝑢) = 1 for ∀𝑢 ∈ 𝐽𝑥 [0,1], an IT2FS is constructed as shown in Figure 2.3. 

Detailed explanation and formulation of IT2FSs can be found in (Kumbasar & Hagras, 

2015; Mendel et al., 2014).  

u
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Figure 2.3: Illustration of an IT2FS 
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In the case when 𝜇�̃�(𝑥, 𝑢) ≠ 1 for ∀𝑢 ∈ 𝐽𝑥 [0,1], then a General T2FS (GT2FS) is 

obtained. Detailed explanation and formulation of GT2FSs are presented in (Kumbasar 

& Hagras, 2015; Mendel et al., 2014). The triangular MF and its corresponding secondary 

MF for T1FS, IT2FS and GT2FS are shown in Figure 2.4.  
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(a)                                            (b)                                            (c) 

Figure 2.4: Secondary MF at 𝒙 = 𝒙′ for (a) a T1FS, (b) an IT2FS, (c) a GT2FS 

In type-2 fuzzy logic literature, the main research focus is on IT2FSs and thus on 

IT2FLSs. This lies because IT2FSs are computationally less expensive in comparison 

with its General counterpart and can be defined easily by only its UMF and LMF. The 

generation of the IT2FSs is usually accomplished by extending/blurring its T1 counterpart 

(Mendel et al., 2014). In Figure 2.5, various IT2FSs are generated with respect to their 

baseline T1FSs. In Figure 2.5 (a), the IT2FS is constructed by providing uncertainty at 

the end points of its T1 counterpart while in Figure 2.5 (b) the uncertainty is provided at 

the core of the T1FSs. The IT2FSs sketched in Figure 2.5 (c) is the general case where 

both the end points and the core of the T1FS is blurred. It can be easily observed from 

Figure 2.5; the IT2FS has more design parameters to be determined in comparison with 

its T1 counterpart. The IT2FS construction methods can be roughly categorized into two, 

the first is to construct the type-2 fuzzy sets from an existing T1FS, and the second is the 

direct design of IT2FSs from either collected experimental data by employing clustering 
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methods or NN structures. Recently, various meta-heuristic optimization algorithms are 

employed to construct the optimal IT2FSs.  

(a)    (b)

       (c)  

Figure 2.5: Illustration of various IT2FS with their baseline T1FSs (dashed line)  

 Like T1FLS, the T2FLS is using IF-THEN rules but its antecedent and/or 

consequent sets are type-2. The type-2 Takagi-sugeno-king (TSK) FLS are of three 

different models based on their structure (Baron, & Balazinski, 2006) as describe in Table 

2.1. 

Table 2.1: Structure of type-2 fuzzy TSK 

Type-2 TSK FLS Antecedents Consequents 

Model I Type-2 fuzzy set Type-1 fuzzy set 

Model II Type-2 fuzzy set Crisp number 

Model III Type-1 fuzzy set Type-1 fuzzy set 

 

Furthermore, T2FLS consist of the following blocks: fuzzification, inference, and 

output processing. The output processing block comprises of the type reduction and the 

defuzzification blocks as shown in Figure 2.6. For a better illustration, a fuzzy system 

with two crisp inputs and one crisp output was used in Figure 2.6, which is the same for 

Univ
ers

ity
 of

 M
ala

ya



18 

both IT2FLS and GT2FLS. Each of the blocks is explained in brief in sections 2.2.1 to 

2.2.4. In this research, the interval type-2 fuzzy Mamdani system with centre-of-set type 

reduction was used for illustration (IT2FS TSK, GT2FS Mamdani, and GT2FS TSK also 

exist) (Mendel, 2007).  

min

min

Crisp input

Fuzzification

Inference Type reduction Defuzzzification

Crisp output

Output processing 

 

Figure 2.6: Type-2 fuzzy logic system structure 

2.2.1 Fuzzification 

The fuzzifier in T1FLS and T2FLS are doing the same work, which is 

transforming numeric vector entries 𝑋 = (𝑥1 …𝑥𝑝)
𝑇

∈ 𝑋1 ∗ 𝑋1 ∗ … ∗ 𝑋𝑝 ≡ 𝑋 in to Ã𝑥 

(T2FS) defined in X. Given the singleton numeric inputs, the mapping can be performed  

as follows (Mendel, 2007): 

𝜇Ã𝑥
(𝑥) = 1 1⁄ with   𝑋 = 𝑋′,                      

𝜇Ã𝑥
(𝑥) = 1 0⁄  , for  ∀𝑋 ∈  𝑋  with 𝑥 ≠ 𝑥′

}                                                              (2.2) 

Equation (2.2) shows that 𝜇�̃�𝑖
(𝑥𝑖) = 1 1⁄ when 𝑥𝑖 = 𝑥𝑖

′and 𝜇�̃�𝑖
(𝑥𝑖) =

1 0⁄  when 𝑥𝑖 ≠ 𝑥′𝑖 for all 𝑖 = 1, … , 𝑝. 

2.2.2 Rules 

Both T1FLS and T2FLS use IF-THEN rules. In T2FLS, the antecedent and/or 

consequent MFs are represented by T2FSs. For T2FLS characterized by 𝑀 number of 
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rulas with 𝑝 inputs 𝑥1 ∈ 𝑋1, … , 𝑥𝑝 ∈ 𝑋𝑝 and one output 𝑦 ∈ 𝑌. The 𝑖𝑡ℎ rule can be 

expressed as Equation (2.3), (Mendel et al., 2014). 

R𝑖 ∶  IF  𝑥1  is  F̃1
𝑖  and… and  𝑥𝑝 is F̃𝑝

𝑖 , THEN  𝑦 is Ỹ𝑖                                                         (2.3) 

where �̃�𝑘
𝑖  (𝑘 = 1,…𝑝) are type -2 antecedent fuzzy sets, 𝑖 = 1,… ,𝑀, and Y̌𝑖 the output 

of the 𝑖𝑡ℎ rule. The assumption here is that, all antecedent and consequent fuzzy set in 

mamdani rules are type-2. 

2.2.3 Inference 

The inference mechanism in T2FLS is same as that in T1FLS. It is a rule 

combination to produce a mapping from some input T2FSs to output T2FSs. It is 

necessary to calculate the intersection, union, and composition of type-2 relations to 

realize this mapping (Mendel, 2001). Equation (2.3) can be rewritten as:  

R𝑖 ∶  �̃�1
𝑖×…×�̃�𝑝

𝑖 → �̃�𝑖 = �̃�𝑖 → �̃�𝑖, 𝑖 = 1,… ,𝑀                                                                     (2.4)                                                                  

𝑅𝑖is described by the MF 𝜇𝑅𝑖(𝑋, 𝑦) for 𝑋 = (𝑥1, … , 𝑥𝑝),  

where 

𝜇𝑅𝑖(𝑋, 𝑦) = 𝜇
�̃�𝑖→�̃�𝑖(𝑋, 𝑦) = 𝜇�̃�1

𝑖(𝑥1)∏…∏𝜇
�̃�𝑝
𝑖
(𝑥𝑝)∏𝜇

�̃�𝑖
(𝑦) =

[∏ 𝑝
𝑙=1

𝜇
�̃�𝑙

𝑖(𝑥𝑙)]∏𝜇
�̃�𝑖

(𝑦)                                                                                        (2.5)        

The 𝑝-diamentional input to 𝑅𝑖is given by T2FS �̃�𝑥 whose MF is 

𝜇�̃�𝑥
(𝑋) = 𝜇�̃�1

(𝑥1)∏…∏𝜇�̃�𝑝
(𝑥𝑝) = ∏ 𝑝

𝑙=1
𝜇�̃�𝑙

(𝑥𝑙)                                                          (2.6) 

where �̃�𝑙(𝑙 = 1,… , 𝑝) are the labels of the fuzzy sets describing the inputs. Each rule 

determines the T2FS �̃�𝑖 = �̃�𝑥°𝑅
𝑖 such that: 
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𝜇�̃�𝑖(𝑦) = 𝜇�̃�𝑥°𝑅𝑖 = ∐𝑥∈𝑋⌊𝜇�̃�𝑥
(𝑋)∏𝜇𝑅𝑖(𝑋, 𝑦)⌋𝑦𝜖𝐺𝑖 = 1,… ,𝑀                                      (2.7) 

this Equation is the input-output relation in Figure 2.6 between the T2FS that excite a 

single rule in the inference engine and the T2FS at the output of that engine.   

In this study, the IT2FS was used in the FLS and meet under product t-norm. 

Therefore, the result of the input and antecedent operations which are contained in the 

firing set ∏ 𝑝
𝑙=1

𝜇𝐹𝑙𝑙
(𝑥𝑙

′ ≡ 𝐹𝑖(𝑋′)), is an interval T1FS (Castillo, 2012): 

𝐹𝑖(𝑋′) = [𝑓𝑖(𝑋′), 𝑓
𝑖
(𝑋′)] ≡ [𝑓𝑖, 𝑓

𝑖
],                                                                             (2.8) 

where 

𝑓𝑖(𝑋′) = 𝜇�̃�1
𝑖(𝑥1

′) ∗ …∗ 𝜇�̃�𝑝
𝑖(𝑥𝑝

′ )                                                                                     (2.9)  

and 

𝑓
𝑖
(𝑋′) = 𝜇

𝐹1
𝑖(𝑥1

′) ∗ … ∗ 𝜇
𝐹𝑝

𝑖(𝑥𝑝
′ )                                                                                   (2.10) 

2.2.4 Output Processing 

The output processing constitutes the type reduction that generates the T1FS, and 

fuzzifier that converts the generated T1FS to the crisp output (Dongrui, 2013). There are 

many kinds of type-reduction in literature, which includes centre-of-sets, centroid, height, 

and modified height (Karnik & Mendel, 1998; Karnik & Mendel, 1998b; Mendel, 2015). 

In this study, the centre-of-set type reduction will be used as follows (Karnik et al., 1999; 

Qilian & Mendel, 2000). 

𝑌𝑐𝑜𝑠(𝑌
1, … , 𝑌𝑀, 𝐹1, … , 𝐹𝑀) = [𝑦𝑙, 𝑦𝑟] = ∫ …

.

𝑦1 ∫ .
.

𝑦𝑀 ∫ …
.

𝑓1 ∫ .
.

𝑓𝑀 1
∑ 𝑓𝑖𝑦𝑖𝑀

𝑖=1

∑ 𝑓𝑖𝑀
𝑖=1

⁄                 (2.11) 
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where 𝑌𝑐𝑜𝑠 is the interval set determind by 𝑦𝑙  and 𝑦𝑟 (two end points); 𝑓𝑖𝜖𝐹𝑖 = [𝑓𝑖, 𝑓
𝑖
]; 

𝑦𝑖𝜖𝑌𝑖 = [𝑦𝑖, 𝑦
𝑖
]; 𝑖 = 1,… ,𝑀; and 𝑀 is the number of rules. 

It can be observed that each set on the right-hand side of Equation (2.11) is an 

interval T1FS, hence the left hand of that Equation(𝑌𝑐𝑜𝑠(𝑌
1, … , 𝑌𝑀, 𝐹1, … , 𝐹𝑀)) is also 

interval T1FS. Therefore, 𝑌𝑐𝑜𝑠(𝑌
1, … , 𝑌𝑀 , 𝐹1, … , 𝐹𝑀) can be found by just computing the 

𝑦𝑙 and 𝑦𝑟(Qilian & Mendel, 2000). Karnik and Mendel (Karnik & Mendel, 1998a; Karnik 

& Mendel, 1998) have shown that, 𝑦𝑙  and 𝑦𝑟 depend on maximum of  𝑓𝑖 or  𝑓
𝑖
 values as 

follows: 

𝑦𝑙 =
∑ 𝑓𝑙

𝑖𝑦𝑙
𝑖𝑀

𝑖=1

∑ 𝑓𝑙
𝑖𝑀

𝑖=1

,                                                                                                            (2.12) 

and  

 𝑦𝑟 =
∑ 𝑓𝑟

𝑖𝑦𝑟
𝑖𝑀

𝑖=1

∑ 𝑓𝑟
𝑖𝑀

𝑖=1

                                                                                                          (2.13)  

where 𝑓𝑙
𝑖 and 𝑓𝑟

𝑖 denotes the firing strength membership grade [either 𝑓𝑖or 𝑓
𝑖
 ] 

contributing to the left-most point 𝑦𝑙 and right most point 𝑦𝑟 respectively.  

The fuzzifier of an interval type-2 Fuzzy can be calculated as follows (Qilian & 

Mendel, 2000):                  

 𝑦(𝑥) =
𝑦𝑙+𝑦𝑟

2
                                                                                                                 (2.14)                                                                                                             

2.3 Structure of General Fuzzy PID Controller  

For easy demonstration, the two inputs (error 𝑒(𝑡) and the error variation∆𝑒(𝑡), )) and 

one output 𝑢 direct action type of fuzzy PID controller (FPIDC) is used as shown in Figure 

2.7.  The number of input/output depends on the problem to be solved. In most real 
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applications, the inputs are more than two. Detailed on fuzzy PID, fuzzy PD and fuzzy PI 

structures and their relationships are presented in literatures (Aliasghary et al., 2013; 

Mendel et al., 2014). The structure of FPIDC was formed from fuzzy PD controller with 

an integrator at the output. The output 𝑢 is the control signal and is define by the following 

equation 2.15 (Kumbasar & Hagras, 2015).  

𝑢 = 𝛿𝑈 + 𝛾 ∫𝑈𝑑𝑡                                                                                                                              (2.15) 

The scaling factors 𝐾𝑝, 𝐾𝐷 , 𝛾, 𝛿 are used to normalise the input/output of the FLC. The 

𝑒(𝑡) and ∆𝑒(𝑡) are normalized by the scaling factor (𝐾𝑝, 𝐾𝐷) to the common interval (-1, 

1) in which the MFs of the input are defined. After the normalization,  𝑒(𝑡) and  ∆𝑒(𝑡) 

are converted to 𝐸 and ∆𝐸  respectively. 𝛾 and 𝛿 are used to map the output 𝑈 onto the 

actual output domain 𝑢.  In Figure 2.7, there are two blocks that can be used to introduce 

the uncertainty in the system either in series with controller and plant or in the feedback 

or both. The structure in Figure 2.7 is the same for T1FLC, IT2FLC and GT2FLC. 

Tuning and storage of control parameters and/or 

scaling factors using Meta-heuristic algorithms

Type-2 

fuzzy 

logic 

controller

Enable to 

introduce the 

uncertainty 

Plant/

process  

Enable to 
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Type-2 fuzzy logic PID structure 

-

+

+

+

Output

y

Input

r

Cost function of

optimized 
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Figure 2.7: Comprehensive block diagram of FLC (FLPIDC) 

 

The design parameters of FLC can be categorized into two, namely: tuning 

parameters and structural parameters as illustrated in Figure 2.8. The tuning parameters 

include MF parameters and scaling factors, and are to be adjusted offline at the design 
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phase. Subsequently, the optimal parameters are fixed during the operation phase except 

in a case of continuous adaptation (Kumbasar & Hagras, 2015; Mendel et al., 2014). The 

structural parameters include the inference mechanism, fuzzy rule, type of MF, fuzzy 

linguistic set and input/output variables to the fuzzy inference. Normally, the structural 

parameters are determined during the offline design phase (Mendel & Rajati, 2015; 

Sánchez et al., 2015). 

Fuzzy logic controller 

design parameters 

Tuning 

parameters

Structural 

parameters 

Membership 

function 

parameters 

Scaling 

factor 

Input/output 

variables to the 

fuzzy inference 

Inference 

mechanism

Fuzzy 

rule

Type of 

membershi

p function

Fuzzy 

linguistic set

 

Figure 2.8: Design parameters of FLC 

2.4 Meta-heuristic Optimization Algorithms 

The meta-heuristic optimization algorithm refers to a searching algorithm that can give 

a significantly good solution to an optimization problem particularly the problem with 

limited computation capability or imperfect or incomplete information. It samples a set 

of solutions which is tremendous to be completely sampled and make some assumption 

about the given optimization problem. There are many types of meta-heuristic 

optimization algorithm which include GA, PSO, ant colony optimization, Big-Bang Big-

Crunch optimization, Bacterial foraging optimization, biogeography optimization, 

Chemical optimization, back propagation algorithm, simulated annealing, firefly 

algorithm and tabu Search optimization among others. The brief introduction on GA, PSO 

and CS are presented in the following sections. 

The critical issues in these optimization algorithms on the design of FLS are as follows 

(Nguyen & Meesad, 2013): 
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I. Encoding (representation) of fuzzy logic in the corresponding optimization 

paradigm, for example, the feature of FLS has to be encoded in the form of 

chromosome for GA, particle for PSO, Firefly for firefly algorithm, etc.;  

II.  Determination of the boundaries of parameters to be optimized (solution space);  

III. Choosing a suitable objective function. 

2.4.1 Genetic Algorithm (GA) 

The basic foundation of GAs was proposed in 1975 by John Holland in Haupt & Haupt 

(2004). It is based on Darwin's ideas. Darwin's stated that in a computing environment, 

the stronger individuals are more likely to be the winners. GA is a meta-heuristic search 

algorithm based on natural selection and genetic process (Sivanandam & Deepa, 2008). 

In GA, the potential solution to a problem is an individual which can be represented by a 

set of parameters. These parameters are just like a gene of a chromosome and can be 

represented by the string of values in binary form (Herrera, 2008). The fitness value is 

used to test the degree of goodness of the chromosome for solving a problem that is 

directly related to the objective value. The operators employed in a simple GA include 

selection, crossover, and mutation (Herrera, 2008). GAs are often regarded as function 

optimizers, and they have been applied in many optimization problems. In particular, the 

use of GAs for fuzzy systems design equip them with the adaptation and learning 

capabilities which brought about genetic fuzzy systems (GFSs) (Herrera, 2008). Genetic 

learning processes cover different levels of complexity according to the structural changes 

created by the algorithm (Jong, 1988), from optimization of parameters (simplest case) to 

learning the rule set of a rule-based system (highest level of complexity) (Goldberg, 

2002). The optimization of the parameter is the approach used to adapt a different variety 

of fuzzy system, as in genetic neuro-fuzzy systems or genetic fuzzy clustering (Tang, & 

Kwong, 2012). It was reported in Cordón et al. (2001) that genetic fuzzy rule-based 

systems is the most well-known types of GFSs. It is essential to differentiate between 
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learning and adaptation (tuning) problems in fuzzy systems. The Learning process 

performs a more elaborated search in the space of possible rule-base or entire knowledge 

base, irrespective of the predefined set of rules. Also, learning involves the process of 

automated fuzzy rule sets design that starts from scratch. On the other hand, the adaptation 

process assumes a predefined rule-base and have the objective of searching a set of 

optimal parameters for the data-base, scaling function, and MF. Also, adaptation includes 

the optimization of existing fuzzy rule-based systems. 

 The flowchart for simple GA for optimization of T2FLS is shown in Figure 2.6.  
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Figure 2.9: Flowchart of simple GA for optimization of T2FLS 

Univ
ers

ity
 of

 M
ala

ya



26 

2.4.2 Particle Swarm Optimization (PSO) 

The PSO was introduced in 1995 by Kennedy and Eberhart (1995). It is an 

optimization algorithm based on social and population behaviour, just like flocking of 

bird or fish schooling. The population in PSO is called swarm that can contain many 

particles. At each iteration 𝑡, the position 𝑃𝑡
𝑖 of the 𝑖𝑡ℎparticle is updated based on 

Equation (2.16). The set 𝑆 is updated to the next iteration using Equation (2.16) Dehuri 

et al. (2009). 

𝑉𝑡+1
𝑖 = 𝑉𝑡

𝑖 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡
𝑖 − 𝑃𝑡

𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑃𝑡
𝑖),

𝑃𝑡+1
𝑖 = 𝑃𝑡

𝑖 + 𝑉𝑡+1
𝑖                                                             

}                                             (2.16) 

where 𝑃𝑏𝑒𝑠𝑡
𝑖  is the best position attained for the individual particle and 𝑔𝑏𝑒𝑠𝑡 is the best 

position attained for the particle among all the population. r1 and r2 are random numbers 

between 0 and 1, while c1 and c2 are position constants learning rate. 

Modified PSO in the form of a constriction factor 𝑋, was introduced in literature 

(Clerc & Kennedy, 2002; Russell & Shi, 2001) and is given by Equations (2.17) and 

(2.18). In this, 𝑋 controls the entire three components in the update velocity rule, inorder 

to reduce the velocity as search progresses.  

𝑉𝑡+1
𝑖 = 𝑋[𝑉𝑡

𝑖 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡
𝑖 − 𝑃𝑡

𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑃𝑡
𝑖)]                                                        (2.17) 

𝑋 =
2

|2−𝛽−√𝛽2−4𝛽|
, 𝛽 = 𝑐1 + 𝑐2 > 4.                                                                                   (2.18) 

The velocity is restricted within [−𝑉𝑚𝑎𝑥 , +𝑉𝑚𝑎𝑥]. If the velocity deviates from this 

range it has to be forced to be within the range (Eberhart & Shi, 2001). 

PSO algorithm can be implemented easily and demonstrates stable convergence 

when compared with other optimization algorithms as reported in the following literatures 
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(Chiou & Liu, 2009; Maldonado et al., 2013; Oh et al., 2011). The following advantages 

of PSO over other conventional optimization method was discussed in literature Oh et al. 

(2011) as follows: PSO is less vulnerable to being trapped in local minima because it is 

population-based search algorithm and exhibits implicit parallelism. PSO can also easily 

deal with non-differentiable and nonlinear objective functions.  In addition, PSO is more 

robust and flexible than conventional methods, this is because it uses probabilistic 

transition rules rather than deterministic ones (Oh et al., 2011). Moreover, PSO has a 

unique feature of the suppleness to accomplish a sound balance between the local and 

global exploration of the search space. This enhances the overall search capabilities and 

overcomes the premature convergence problem, unlike GA and other heuristic 

algorithms. The quality of the solution in PSO is independent of the initial population, 

unlike the traditional methods (Shahsadeghi et al., 2014). The flowchart for simple PSO 

applied to a T2FLS is shown in Figure 2.7. 
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Figure 2.10: Flowchart for simple PSO for optimization of T2FLS. 
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2.4.3 Cuckoo Search Optimization  

The CS algorithm is developed by Yang and Deb (2009, 2010). The CS currently 

draws attention from researchers that are using meta-heuristic algorithms for solving 

optimization problems. Investigations on CS are growing quickly within the literature 

with applications covering many areas (Yang & Deb, 2014). Recently, CS has been 

applied in numerous areas with encouraging performances e.g., power system 

stabilization (Elazim & Ali, 2016), forecasting (Sun et al., 2016), Intelligent controllers 

(Dash et al., 2015), etc. The global search of CS uses Lévy flights non-standard random 

distribution with infinite mean and variance. Therefore, exploration of search space by 

CS is closer to the Nature, where resources are distributed non-uniformly. Hence, a global 

convergence can be better guaranteed (Yang, 2014).  

2.4.3.1 Origin of the Cuckoo Search Algorithm 

The origin and basic theoretical background of CS are described in this section, 

specifically, the origin of the algorithm, common characteristics, representation of 

solutions, the generation of new solutions, evaluation function, replacement and 

termination condition. 

The beautiful sounds and aggressive reproduction strategy of a cuckoo makes it a 

fascinating bird. Within a broader view, the cuckoo family of birds are divided in three 

major species, i.e., Musophagidae, Cuculidae and Opisthocomidae. Cuckoos can be found 

across the globe. There are over 100 different species worldwide, whereas only Cuculidae 

can be found in Europe. Typically, cuckoos feed on caterpillars. Interestingly, the Ani 

and Guira cuckoo species can lay eggs in a communal nest. In order to increase their 

hatching probability, these two cuckoo species remove eggs from other nests. Some other 

cuckoo species engage the obligate brood parasitism by laying their eggs in the nests of 

other host birds. It has been estimated that half of the cuckoos do not hatch their own eggs 
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but rather resort to parasitism. The aggressive reproduction strategies of the cuckoo’s 

breeding parasitism are summarized as follows: Typically, a female cuckoo lays between 

6 to 22 eggs with color matching the host eggs. In nature, different species produce 

different colored eggs. The size of the eggs varies within 16.3 mm to 21.9 mm. A female 

cuckoo hides close to an appropriate host nest in order to use the opportunity by dumping 

her eggs in the host nest. Typically, the new host birds are aggressively evicted by the 

new born cuckoos (Davies, 2010). The three types of breeding cuckoo parasitism 

strategies are as follows: (1) intraspecific breeding parasitism, (2) cooperative breeding, 

and (3) nest takeover. Direct conflict between the host birds and cuckoos is however 

possible. The host birds either abandon the nest or throw the alien eggs out of the nest to 

produce new eggs. 

2.4.3.2  Cuckoo Search Algorithm 

The behavior of the cuckoo is simulated in CS optimization to provide better 

performances than other distribution-based random walks when exploring large scale 

search spaces. The three major ideas of cuckoo’s behavior are proposed by Yang & Deb 

(2009) for rules governing the CS optimization algorithm as follows: 

1. Each cuckoo lays one egg at a time and dumps it into a randomly-chosen nest.  

2. Nests with the eggs of optimal quality will move to the next generation.  

3. The available host nest is fixed and the egg laid by a cuckoo is discovered by the 

host bird with the probability of the worst nests being abandoned (pa ϵ[0,1]). 

 In the CS algorithm, the quality or fitness of a solution is modelled proportional to the 

objective function value. Without difficulties, getting an optimized solution to a complete 

problem using CS does not require a comprehensive search. Each individual solution 

corresponding the host nest represents the position of the cuckoo’s egg in the CS 

algorithm. Generally, the position is defined as (Yang & Deb, 2014): 
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𝑋𝑖
(𝑡)

= {𝑥𝑖,𝑗
(𝑡)

},                    for 𝑖 = 1…𝑛   and    𝑗 = 1…𝐷                                       (2.19) 

where t denotes the current generation, n the number of host nests within the 

population and D the dimensionality of the problem. In the CS algorithm, the initial value 

of the jth attributes in the ith particle  𝑥𝑖,𝑗
(0)

 is typically determined as follows: 

𝑥𝑖,𝑗
(0)

= 𝑈(0,1). (𝑢𝑗 − 𝑙𝑗) + 𝑙𝑗                                                                                  (2.20) 

where 𝑈(0,1) determines the random value drawn from the uniform distribution within 

the interval [0,1], 𝑢𝑗  and 𝑙𝑗 are the upper and lower boundaries of the jth attributes, 

respectively. In each generation, the CS algorithm controls these boundaries as follows: 

If the value of the attributes underflows, this value is updated with the corresponding 

lower bound, while if this value overflows, it is updated with the corresponding upper 

bound. The general form of the CS algorithm which is based on a global random-walk 

appropriate for exploration of the search space through Lévy flights is described as 

follows: 

𝑋𝑖
(𝑡+1)

= 𝑋𝑖
(𝑡)

+ 𝜗 ⊕ Lévy (S, λ)         S ≫ 𝑆0 > 0,                                                (2.21) 

where 𝑡 ∈ [1,𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛] is the number of current generation, where the 

MaxGeneration is the predetermined number of maximum generations, 𝜗 is the step size 

scale factor, s the step size, λ is the standard deviation, and Lévy flight is expressed as 

follows: 

Lévy (S, λ) =
λΓ(λ) sin(𝜋λ 2⁄ )

𝜋

1

𝑆1+λ                                                                               (2.22) 

Naturally, the flight movements of many animals and insects are recognized as being 

random. Commonly, a foraging path of animals has a characteristic that their next move’s 

base on the current state and the variation probability of the next state. Anyway, it chooses 
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the path to be determined indirectly on a probability which can be modelled 

mathematically. Lévy flight is a random distribution that enables a series of straight jumps 

chosen from a heavy-tailed probability density function (Brown et al., 2007). In statistical 

terms, when the distribution is used within a stochastic algorithm for global optimization, 

like CS, this corresponding algorithm is capable of finding the global optimum 

(Pavlyukevich, 2007). The Lévy flight process step size can be calculated as follows: 

𝑆 =
𝑢

|𝑣|
1
𝛽

,                                                                                                                    (2.23) 

where 𝑢 and 𝑣 are two random values drawn from normal distribution with mean zero 

and their standard deviations 𝜑𝑢
2 and 𝜑𝑣

2 as follows: 

𝑢~𝑁(0, 𝜑𝑢
2), 𝑣~𝑁(0, 𝜑𝑣

2),                                                                                      (2.24) 

and 

𝜑𝑢 = {
𝛤(1+𝛽) sin(𝜏𝛽 2⁄ )

𝛤[
1+𝛽

2
]𝛽2(𝛽−1)2

}

1

𝛽

, 𝜑𝑣 = 1.                                                                              (2.25) 

The original CS is used in this research. This has the capability of interleaving the 

global search (according to Eqn. (2.19)) with the local search (according to Eqn. (2.20)). 

This interleaving is controlled by a switching parameter 𝑝𝑎 which determines a fraction 

of the worst nests needed to be abandoned and new one to be built in order to discover 

new probably and more promising regions of the search space. In summary, all the 

mentioned features of the CS are assembled within a pseudo-code of the original CS 

algorithm which is illustrated in Fig. 2.8 (Yang & Deb, 2009): 
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Figure 2.11: Pseudo-code of the original CS algorithm 

Some of well-known CS algorithm modifications, that are wrongly treated as the 

original one, use an explicit balancing among the exploration/exploitation components of 

the search process via the switching parameter 𝑝𝑎 . This balancing is mathematically 

expressed as 

𝑋𝑖
(𝑡+1)

= {
𝑈(0,1). (𝑢𝑗 − 𝑙𝑗) + 𝑙𝑗 ,    if  𝑈(0,1) ≤ 𝑝𝑎,

𝑋𝑖
(𝑡)

+ 𝛼 ⊕ Lévy (S, λ),           otherwise.
                                             (2.26)     

Note that the global random walk is performed only when 𝑈(0,1) ≤ 𝑝𝑎. The selection 

of better solutions in CS can be expressed as 

𝑋𝑏𝑒𝑠𝑡
(𝑡+1)

= {
𝑋𝑖

(𝑡+1)
,    𝑖𝑓  𝑓(𝑋𝑖

(𝑡+1)
) ≤ 𝑓(𝑋𝑏𝑒𝑠𝑡

(𝑡) ),

𝑋𝑏𝑒𝑠𝑡
(𝑡)

,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                                                         (2.27) 

The flowchart for CS applied for optimization of T2FLS is shown in Figure 2.9. 
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Figure 2.12: Flowchart of Lévy flight CS algorithm 

2.5 Literature Review on the Use of Meta-Heuristic Optimization Algorithms in 

Design T2FLS  

This section presents a review on recent advances (2012 to 2015) on the application of 

meta-heuristic algorithms for the optimization of type-2 fuzzy logic systems for 

intelligent control, time series prediction, classification, clustering and pattern 

recognition. The Hybrid optimization, GA and PSO are the three different paradigm 

considered in this research.   

2.5.1 Hybrid Optimization (HO) Based T2FLS 

Hybrid optimization method in T2FLS design refers to a combination of two or more 

meta-heuristic optimization algorithms for adjusting the parameters associated with 
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T2FLS to speed up the optimization task by getting lower complexity in computation, 

faster convergence and global optimization (Chaparro et al., 2008). In some cases, 

achieving an optimal solution to a problem using conventional optimization techniques 

that have high computational complexity is quite difficult (Xia & Wu, 2005). Recently, 

the applications of hybrid optimization techniques in automatic design of T2FLS for 

different complex applications have attracted interest from many researchers (Kao & 

Zahara, 2008; Kim, 2007; Kim et al., 2007). Taking the advantages of two or more 

optimization techniques, a hybrid optimization which gives better convergent rates and 

solution quality can be found. More explanation about the automatic switching among 

the constituent optimizers in hybrid optimization can be found in literature (Dulikravich 

& Colaço, 2015) 

There are many researches on the optimization of T2FLS using hybrid optimization 

algorithms. Success was recorded in most of these researches. The review of these 

literatures is discussed in this section. The review in this section demonstrates the 

effectiveness of using the hybrid optimization algorithms for automatic design of the 

T2FLS. 

 Martínez-Soto et al. (2015) presented automatic design of FLC using Hybrid PSO-

GA method for minimizing a steady state error of a plant's response. Three different plants 

were used as a benchmark, namely, stable system, unstable system and trajectory tracking 

control for autonomous mobile robot. Hybrid PSO-GA method was used to adjust the 

parameters of the FLC. To demonstrate the effectiveness and robustness of the hybrid 

PSO-GA based FLC, comparison was made between GA, PSO and Hybrid PSO-GA 

based FLC in different plant. The simulation results show that the IT2FLC and T1FLC 

obtained using hybrid PSO-GA was better than that of GA and PSO. In addition, the 

results obtained by IT2FLC are better than that of T1FLC in presence of disturbances. 
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They used objective function that minimizes the steady state error using the average of 

the absolute error represented with the following Equation: 

𝐸𝑃𝑇 = ∑
𝑎𝑏𝑠(𝑟𝑓(𝑖)−𝑐𝑟(𝑖))

2𝑖=𝑛                                                                                                   (2.28) 

where 𝑟𝑓 is the trajectory reference, 𝑐𝑟 is the control response and 𝐸𝑃𝑇 is the average 

absolute error. 

The species-based hybrid electromagnetism-like mechanism (EM) and back 

propagation (BP) algorithm (SEMBP) were hybridize for the design of interval type-2 

neural systems with asymmetric MF (AIT2FNS) in literature Li et al. (2014). The interval 

type-2 symmetric MF and the TSK-type consequents part are adopted for the 

implementation of the network structure in AIT2FNS. The SEMBP was used to train 

AIT2FNS. The simulation results obtained by nonlinear tracking control and bath 

temperature control show the performance and effectiveness of the proposed method over 

the traditional PSO, GA, EM and SEM. They used the objective function defined as:  

𝐸(𝑖) =
1

2
∑ (𝑦𝑟(𝑘) − 𝑦(𝑘))2

𝑘                                                                                                (2.29) 

where𝑦𝑟(𝑘)is the desired trajectory,  𝑦(𝑘) is the system output and 𝑘 is the discrete time 

index. 

Fayek et al. (2014) presented the systematic design and hybrid optimization 

whereby PSO and GA optimise different parameters in the same system and real time 

implementation of IT2FLCfor control of position of DC servo motor. PSO and GA were 

used for the optimization of controller input/output gains, and MFs parameters 

respectively. It was reported that the proposed controller outperformed the T1FLC and PI 

controller in terms of efficiency and effectiveness under noise and disturbances. The 
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objective function used in both stages of the design process is a multiple- objective 

function defined as: 

𝐹𝐸 = 𝑂1 − 0.5𝑂2                                                                                                                 (2.30) 

where 𝑂𝑖 = 𝐼𝐴𝐸 = ∑ |𝑒(𝑘)|𝑛
𝑘=1  

𝑂1is the first objective function, 𝑂2 is the second objective function, 𝑒(𝑘) is the error 

at 𝑘𝑡ℎ point, and 𝑛 is the number of points in the run  

Hsu & Juang (2013) hybridized a Species-Differential-Evolution and Continues 

Ant Colony Optimization (SDE-CACO) algorithms for improvement of IT2FLC 

performance. New species SDE mutation operation was introduced into a continuous 

ACO algorithm in order to improve its explorative ability. The clustering-based approach 

was used to generate all the IT2FLC rules online during the evaluating leaning process. 

The SDE-CACO was used to optimize the free generated parameters of IT2FLC online. 

The proposed algorithm was applied for simultaneous wall-following control and speed 

control of mobile robot. Comparison was made between the continuous ACO, PSO and 

DE. Based on the real-world experiments and simulation results obtained, it was reported 

that the proposed algorithm showed higher efficiency and effectiveness in wall-following 

control and speed control over comparative algorithms. They introduced the new 

objective function that includes the following three principle factors for successful wall-

following control strategy: (1) making smooth changes in steering angle; (2) moving at 

high speed; (3) maintaining a proper distance from the wall being followed. The overall 

control consists of two training stages. Each stage has different objective function 𝐶1 and 

𝐶2 for stage one and stage two respectively as follows: 

𝐶1 = 𝑓1 + 𝑓2 + 𝑓3                                                                                                    (2.31) 

Univ
ers

ity
 of

 M
ala

ya



37 

and 

𝐶2 = 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4                                                                                             (2.32) 

where 

𝑓1 =
∑ |𝑅𝐷(𝑡)−1|

𝑇𝑇𝑜𝑡𝑎𝑙
𝑡=1

𝑇𝑇𝑜𝑡𝑎𝑙
;                                                                                                   (2.33) 

 𝑅𝐷(𝑡) =
𝑆4(𝑡)

𝑑𝑤𝑎𝑙𝑙
 ;                                                                                                      (2.34) 

 𝑓2 = 𝛼2×
∑ |𝜙(𝑡)|

𝑇𝑇𝑜𝑡𝑎𝑙
𝑡=1

𝑇𝑇𝑜𝑡𝑎𝑙
;                                                                                             (2.35) 

𝑓3 = 𝛼3×(𝑇𝑇𝑜𝑡𝑎𝑙 − 𝑇𝑠𝑡𝑜𝑝);                                                                                    (2.36) 

𝑓4 = 𝛼4×
1

∑ 𝑑(𝑡)
𝑇𝑇𝑜𝑡𝑎𝑙
𝑡=1 𝑇𝑇𝑜𝑡𝑎𝑙⁄

.                                                                                      (2.37) 

𝑓1 is the average of the relative 𝑅𝐷 values occurring over all 𝑇𝑇𝑜𝑡𝑎𝑙 time steps. 𝑓2 describes 

the included angle φ between the robot front direction and the wall. 𝑓3 describes the 

difference between 𝑇𝑇𝑜𝑡𝑎𝑙 and the time step number 𝑇𝑠𝑡𝑜𝑝 when a collision occurs. 𝑓4 is 

defined as the inverse of the average moving speed. 𝛼2, 𝛼3 and 𝛼4 are weighting 

coefficients. 

Hernandez et al. (2015) hybridized the BP algorithm and recursive orthogonal least 

squares algorithm (ROLSA) for interval A2-C1 type-1 non-singleton type-2 TSK FLS. 

The ROLSA was used to tune the type-1 consequent parameters while the parameters of 

the antecedent part of the interval type-2 were tuned by BP algorithm. The proposed 

method was compared with a non-hybrid method (that only used BP algorithm for tuning 

both the antecedent and consequent parameters) which shows that, the proposed hybrid 

method outperformed the non-hybrid method in nonlinear adaptation, which enables the 
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interval type-2 fuzzy model to optimally match the nonlinear behaviour of the process. 

The proposed method was applied to the modelling and prediction of the transfer bar 

surface temperature in an industrial hot strip mill facility. The performance of each of the 

IT2TSK NSFLS1 system is evaluated based on the RMSE. The experimental results show 

improvement in the prediction.    

 Nguyen et al. (2015) presented the wavelet transformation and IT2FLS for 

automated medical data classification. The wavelet coefficient served as an input to the 

IT2FLS. The IT2FLS utilizes a hybrid learning process comprising supervised parameters 

tuning by GA and unsupervised structure learning by fuzzy c-mean (FCM) clustering. 

The experiments are implemented on Wisconsin breast cancer and Cleveland heart 

disease. The obtained results demonstrate the significant dominance of the proposed 

method compared to the ANFIS, fuzzy ARTMAP, support vector machine and 

probabilistic neural network, in terms of accuracy and specificity. The accuracy measure 

was used as an objective function as follows: 

𝐴𝑐𝑐 =
𝑃

𝑁
                                                                                                                   (2.38) 

where N denotes the number of predicted cases and P is the number of cases being 

predicted correctly. 

 Long and Meesad (2014) presented an optimal design of IT2FLS for prediction 

of short-term and long-term horizontal sea water level. The structure of fuzzy rule and 

number of rules are determined by c-means clustering algorithm, while the desirable 

parameters of MF and consequents parameters of FLS are found by using the hybrid 

Chaos firefly algorithm and GA (CFGA). The result obtained demonstrates that IT2FLS 

designed by hybrid CFGA outperformed the one designed by standalone GA and FA 

based on RMSE and scatter index. Hosseini et al. (2012) presented an automatic design 
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and tuning of Gaussian IT2MF for multidimensional pattern classification problems. The 

combination of GA and Cross-validation technique (GA-CVT) is used to tune the MFs 

and their FOU. In GA-CVT, the chromosome structure has fewer genes than ordinary GA 

and it has more precise initialization of chromosome than ordinary GA. The proposed 

method was applied to nodule classification in a lung computer-aided detection system. 

The proposed method outperformed T1FLS by more than 30% in terms of classification 

accuracy.   

 The GA and PSO optimizations of type-2 fuzzy inference system for IT2FLS 

weight in neural network were presented in literature Gaxiola et al., (2013). GA and PSO 

were used to tune the two IT2FLS that work in back-propagation leaning method with 

type-2 fuzzy weight adjustment. The proposed method was applied to Mackey-Glass time 

series benchmark. Satisfactory results were obtained for both GA and PSO. However, the 

result obtained by GA is better than the one obtained by PSO. Kim et al. (2013) presented 

a design of an optimal FCM based IT2FNN classifier. The premise part of the proposed 

classifier rules was realized from two versions of FCM clustering with different 

fuzzification coefficients values in order to form the interval T2-MF. The coefficients of 

the linear function in the consequent part were updated by using back propagation 

algorithm. PSO was used to optimize the momentum coefficient, learning rate and 

fuzzification coefficients. The machine learning data was used for the experiment and it 

was carried out in the 5 fold cross validation mode. It was concluded that the proposed 

classifier obtained the desirable performance. Juang and Jang (2014) presented the type-

2 neural fuzzy system leaned through type-1 (T2NFS-T1) and its implementation in 

FPGA chip. The antecedent part of each rule in T2NFS-T1 used IT2FSs while the 

consequent part used TSK type with interval combination weight. To reduce the cost of 

hardware implementation and training time, the T2NFS-T1 used the simplified type 

reduction. The consequent rule and antecedent parameters of T2NFS-T1 were tuned using 
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a hybrid of gradient decent (GD) and rule-order (RO) recursive least square (RLS) 

algorithm. Simulation results show the effectiveness and efficiency of the proposed 

system for modelling and prediction problem over type-1. 
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A summary of presented publications where HO has been used to optimize the T2FLS is presented in Table 2.3  

Table 2.2 Hybrid meta-heuristic algorithms use for designing T2FLS 

Reference Problem 

domain 

Hybrid 

optimization 

Algorithm 

compared with the 

hybrid 

Other system (s) 

compared with 

T2FLS 

Result 

Martinez-Soto et al. 

(2015) 

Control PSO+GA GA and PSO T1FLC PSO+GA better than GA and PSO. T2FLC 

outperform T1FLC 

Li et al. (2014) Control EM+BP PSO, GA and  EM IT2FNS EM+BP better than PSO and GA. AIT2FNS 

better than IT2FNS 

Fayek et al. (2014) Control PSO+GA Not compared 

 

T1FLC and PI T2FLC better than T1FLC and PI 

Hsu and Juang 

(2013) 

Control SDE+CACO ACO, PSO and DE Not Compared SDE+CACO better than ACO, PSO and DE 

Hernandez et al. 

(2015) 

Modelling and 

prediction 

BPA+ROSLA BPA Not compared Hybrid better than BPA 

Nguyen et al. (2015) Classification GA+FCM Not compared ANFIS, fuzzy 

ARTMAP and 

probabilistic FNN 

T2FLS better than ANFIS ,fuzzy ARTMAP and 

probabilistic FNN 

Long and Meesad 

(2014) 

Prediction FA+GA FA and GA Not compared Hybrid better than FA and GA 

Hosseini et al. 

(2012) 

Classification GA+CVT Not compared T1FLS T2FLS better than T1FLS 

Gaxiola et al. (2013) Prediction BPA+GA and 

BPA+PSO 

Not compared Not compared Hybrid BPA-GA better than Hybrid BPA-PSO 

Kim et al. (2013) Classification BPA+PSO Not compared Not compared No comparison 

Juang and Jang 

(2014) 

Modelling and 

prediction 

GD+RO RLS Not compared T1FLS T2FLS better than T1FLS 

 

4
1
 fegy 
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2.5.2 GAs Based T2FLS 

Several studies have been done on optimization of T2FLS using different variant of 

GA. Success was reported in most of these works in different area of applications. Thus, 

this section presents the state-of-the-art review.  

 Sun et al. (2015) proposed RNA genetic algorithm (RNA-GA) for the 

optimization of MFs parameters associated with T2FLC and T1FLC. Five nonlinear 

functions constraints were used to test the searching capability of the RNA-GA. The 

performance of the optimised T2FLC and T1FLC using RNA-GA and GA were tested on 

control of the double inverted pendulum system under unexpected disturbances. The 

ITAE was used as objective function. Based on the experimental results obtained, it was 

found that the optimized T2FLC demonstrates superiority perfomance in the elimination 

of obstinate vibrations and oscillations over the optimized T1FLC. In addition, 

comparative simulations show that the RNA-GA optimized T2FLC better than the 

comparative algorithms. Lu (2015) proposes an IT2FLC with GA-based type reduction 

algorithm for reduction of IT2FS as well as to obtain the optimal defuzzified output from 

type reduced set. The RMSE was used as an objective function. The proposed type 

reduction was executed offline which reduced the computational cost significantly and 

facilitate the design of IT2FLC operation in real time. The proposed controller was 

applied on truck backing control problem. The proposed IT2FLC outperformed the 

conventional IT2FLC in terms of robustness, computational cost and speed. Cervantes 

and Castillo (2015) proposed a novel method for complex control by combining several 

FLC. The proposed method is particularly useful for multivariable control system. The 

method has two levels of hierarchical architecture (individual FLC and a superior control 

to adjust the global result). Flight controls that require several individual controller was 

used to test the behaviour of the proposed method. GA was used to adjust the parameter 
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of the T2FLC.The fitness function that quantifies the errors of each controller was used 

as follows: 

𝑓(𝑌) =
(∑

|𝑦𝑟𝑒𝑓1
𝑖 |

𝑛
𝑛
𝑖=1 −

|𝑦𝑓𝑠1
𝑖 |

𝑛
+∑

|𝑦𝑟𝑒𝑓2
𝑖 |

𝑛
𝑛
𝑖=1 −

|𝑦𝑓𝑠2
𝑖 |

𝑛
+∑

|𝑦𝑟𝑒𝑓𝑚
𝑖 |

𝑛
𝑛
𝑖=1 −

|𝑦𝑓𝑠𝑚
𝑖 |

𝑛
)

𝑚
                                          (2.39) 

where 𝑦𝑟𝑒𝑓 is the reference, 𝑦𝑓𝑠 is the output of the controller and 𝑛 is the number of 

points of the dynamic response used in the comparison. 𝑚 stands for the number of the 

individual controllers used. Based on the simulation result obtained, it was concluded that 

the proposed method uses T2FLC and it decreases the control error and improve the 

overall behaviour of the plant when compared with the T1FLC. 

 Maldonado et al. (2014) optimized the average approximation of an interval type-

2 fuzzy logic controller (AT2FLC) using multi-objective GA for hardware applications 

such as speed control of DC motor in a FPGAs. The researchers considered the 

combination of triangular and trapezoidal T2-MFs of an AT2FLC such that the GA needs 

to optimize some parameters (adaptable) of the T2-MFs in order to have less execution 

time. The composite objective function that compromise between the minimum 

overshoot, undershoot and steady state error was used as shown in equation (2.40). The 

optimised AT2FLC was compared with the optimised T1FLC as well as the PID 

controller tuned by Ziegler-Nichols method. The real world experiment's results show 

that AT2FLC outperformed the T1FLC and PID controller by observing the lower error 

in presence of uncertainty. 

𝑈 = ∑ 𝜔𝑖𝑓𝑖(𝑥)𝑖=1 ;                                                                                                                 (2.40) 

where 𝜔 is the positive value.  
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 Castillo and Cervantes (2014) used GA in the design of a T1FLC and T2FLC for 

airplane longitudinal control. They used three inputs (stick, rate of elevation and angle of 

attack) to the controller. GA was applied for the optimization of MFs of the fuzzy systems. 

The fitness function used is based on the average error between the output of PID and 

fuzzy controllers as shown in equation (2.41). Based on the simulation results obtained, 

it was concluded that at higher levels of disturbances in the plant, the GA-based T2FLC 

outperform the T1FLC as well as the PID controller.  

𝐸𝑟𝑟𝑜𝑟 = ∑
|𝑦𝑃𝐼𝐷

𝑖 −𝑦𝑓𝑢𝑧𝑧𝑦
𝑖 |

𝑛

𝑛
𝑖=1                                                                                                     (2.41) 

where 𝑦𝑃𝐼𝐷 is the output of the PID controller and 𝑦𝑓𝑢𝑧𝑧𝑦 is the output of the fuzzy 

controller.  

Melendez et al. (2013) proposed the GA for the optimization of an interval type-2 

fuzzy reactive controller for autonomous mobile robot. The hierarchical genetic algorithm 

(HGA) was used for the optimization of fuzzy MF, fuzzy rules and mobile robot power 

usage. To overcome the problem of loop trajectory, the new module was added to the 

system which consists of a monolithic neural network that is used for detecting patterns 

of loop on the robot trajectory. Based on the simulation results obtained, it was concluded 

that HGA shows its effectiveness on multi objective task and the proposed type-2 neuro-

fuzzy allowed the HGA to optimise the forward movement of the robot through the maze 

and refrain from any type of collision with obstacles. Cervantes and Castillo (2013) 

presented statistical comparisons of T1FLC and T2FLC for control of water level in three 

tanks. GA was used for optimization of MFs for both controllers. MSE was used as an 

objective function. Three different paradigms, namely, empirical T1FLC, GA based 

T1FLC and GA based T2FLC were used for comparisons. It was concluded that based on 

the simulation results obtained, the GA based T2FLC shows better performance 
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compared to empirical T1FLC and GA based T1FLC. In the work of presented in Bi et 

al. (2013), a GA based T2FLC for single intersection signal control was proposed. GA 

was used to optimise the MFs parameters of T2FLC. The comparison results (simulation) 

show the superiority of GA based T2FLC over T1FLC as well as fixed time control in 

terms of reduction of vehicular delay and queue length at the traffic intersection. The 

objective function used is as follows: 

𝑂𝐹 = ∑
𝐷𝑅𝑛

𝑙 +𝐷𝐺𝑁
𝑙

𝑞𝑔𝑙+𝑞𝑟𝑙+𝑙𝑞𝑔𝑙−1+𝑙𝑞𝑟𝑙−1
𝑛
𝑙=1                                                                                           (2.42) 

where 𝐷𝑅𝑛
𝑙  and 𝐷𝐺𝑁

𝑙  are the total delay time of the vehicles in red phase and total wait 

time at green phase of  𝑙 cycle respectively. 𝑞𝑔𝑙 and 𝑞𝑟𝑙Are the number of arrival vehicles 

at green phase and red phase. 𝑙𝑞𝑔𝑙−1and 𝑙𝑞𝑟𝑙−1Are the staying number of vehicles at 

different phase in the previous cycle.  

 Shill et al. (2012) applied a real coded quantum GA for simultaneous optimization 

of T2FS and rule sets for control of robot manipulators with unstructured dynamical 

uncertainties. The main aim of their study is to make the design of IT2FLC automatic. It 

was concluded that based on the real world experiment and simulation, Quantum GA 

based T2FLC resisted noisy unstructured environment and succeeded in having higher 

control performance better than the Quantum GA based T1FLC, traditional T1FLC, and 

neural coded FLCs. Moldonado and Castillo (2012) described the automatic design of an 

AT2FLC for DC motor speed control. The GA and PSO were employed for optimization 

of parameters of AT2FLC. The objective function of PSO and GA considers three 

characteristics that makes them to be multi‐objective type as follows: 

minimum overshoot:  if 𝑦(𝑡) > 𝑟(𝑡) → 𝑜1 = min(𝑦(𝑡)) − 𝑟(𝑡);                                  (2.43) 

    minimum undershoot: 𝑜2 = |𝑚𝑖𝑛(𝑦(𝑡)) − 𝑟(𝑡)|;                                                    (2.44) 
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    minimum output steady state error: 𝑠𝑠𝑒 = ∑ 𝑦(𝑡) − 𝑟(𝑡)
1000
𝑡=201 .                                   (2.45) 

where 𝑦(𝑡) is the output of the system and 𝑟(𝑡) is the reference signal. Simulation was 

carried out in FPGA using the xilinx system generator. Satisfactory results were obtained 

for both GA and PSO. However, the result obtained by GA was better than the results 

obtained by PSO. In another work, Moldonado and Castillo (2012) used GA based T2FLC 

for velocity regulation in DC motor. Xilinx system generator of xilinxISE, and 

Matlabsimulink for synthesizing the T2FLC in a very high description language (VHDL) 

code for a field programmable gate array (FPGA) was used. GA was used to optimize 

trapezoidal and triangular MFs of T2FLC and T1FLC for hardware application such as 

FPGA. The same objective function as the one presented in literature Yazmin Maldonado 

& Oscar Castillo (2012) was used. The GA based T2FLC, GA based T1FLC and PID 

controller tuned by Ziegler-Nichols method was compared.  It was reported that, GA 

based T2FLC outperformed GA based T1FLC as well as PID controller.  

 Chengdong et al. (2012) applied a Single Input Rule Modules (SIRM) -connected 

T2FLC scheme for baking up control of the truck-trailer system. The two most important 

tasks for designing such SIRM-connected T2FLC are: Design a suitable SIRM for each 

input item, and determine the parameters of SIRM-connected T2FLC such as important 

degree of input items, scaling factors and MF of T2FLC in each SIRM. GA was used to 

optimise these parameters. The control objective is to force the vertical position 𝑦, trailer 

angle 𝛽, and relative angle 𝛼 to be zero. The following objective function was used: 

𝐽 = ∑ (𝛾𝛼𝐼𝐴𝐸𝑠(𝛼) + 𝛾𝛽𝐼𝐴𝐸𝑠(𝛽) + 𝛾𝑦𝐼𝐴𝐸𝑠(𝑦))𝑆
𝑠=1                                                               (2.46) 

where 𝑆 is the number of initial conditions used.  𝛾𝛼, 𝛾𝛽 and 𝛾𝑦 are scaling factors.  The 

comparison betweenT2FLC and T1FLC was made. The simulation results show that the 

proposed scheme with optimised T2FLC outperformed the scheme with optimised 
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T1FLC and gave less time backing up the truck-trailer system from initial state to 

expected state. Ghaemi et al. (2012) presented the hybrid combination of adaptive T2FLC 

and sliding mode control (SMC) called Adaptive Interval Type-2 Fuzzy Proportional 

Integral Sliding Mode Controller (AIT2FPISMC) for the design of a robust control 

system with high level of uncertainties and nonlinearity. The T2FLS was used to 

approximate unknown nonlinear terms, PI was used to eliminate chattering effect in SMC 

and SMC was used to address the issue of noise and disturbances. GA was employed to 

tune the parameters of AIT2FPISMC. Mean squire error (MSE) for the closed loop 

control was considered as the fitness function. It was found that based on the simulation 

results, the proposed controller has good performance and was improved with GA. 

In the study presented by Soto et al. (2014) the GA optimization of an interval type-2 

fuzzy logic integrator (IT2FLI) and type-1 fuzzy logic integrator (T1FLI) in ensembles 

of ANFIS models for the forecasting of the Dow Jones time series (DJTS) was proposed. 

GA was used for adjusting the MFs of each integrator. Both T2FLI and T1FLI have three 

input variables and one output variable (forecast). Three different MFs (Gaussian, 

Generalized Bell and Triangular) were used to test the performance of IT2FLI and T1FLI. 

The architecture of the work was divided into four phases First, the DJTS historical data 

was simulated in Ensemble of ANFIS, and secondly, the training and validation was 

sequentially performed in each ANFIS model. The third phase used the optimized T2FLI 

and T1FLI to integrate the whole results of Ensemble of ANFIS model. Finally, the 

desired prediction was compared with the forecast output determined by the architecture. 

It was reported that IT2FLI outperformed the T1FLI with 98% accuracy.  The objective 

function that can minimize the forecasting error was used as follows: 

𝑓(𝑡) = √
∑ (𝑎𝑡−𝑝𝑡)2

𝑛
𝑡=1

𝑛
                                                                                               (2.47) 
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where 𝑎𝑡, is the real data of the time series, 𝑝𝑡 is the output of each fuzzy integrator, 𝑡 and 

𝑛 are the sequence time series and the number of data in time series respectively. 

 Nguyen et al. (2014) presented an optimal design of an IT2FLS that can deal with 

the issue of uncertainty in noisy data and training set. The researchers used clustering data 

space to set up the T1FLS and a suitable method to transform T1FLS to IT2FLS. GA was 

used to adjust the parameters of an IT2FLS. The proposed method was tested on different 

forms of experiments comprising of time series prediction and nonlinear systems 

identification. The objective function used in this research is the same as that one used in 

literature Soto et al. (2014). Based on the obtained results, it was concluded that the 

proposed method can deal with difficulties of uncertainty of training set. Melin and Pulido 

(2014) provided the details of a GA based optimization method for design ensemble 

neural network with fuzzy integration for complex time series forecasting. GA was used 

to find the number of modules, neurons, layers and the parameters associated with 

IT2FLS. They used the DJTS as the benchmark. The proposed method obtained 99% 

prediction accuracy and its performance was increased with IT2FLS. 

 Sanchez  and Melin (2013b) proposed an optimization method for modular neural 

network using the multi-objective hierarchical GA (MOHGA). The data set was divided 

into granules. MOHGA was used to optimize the parameters associated with IT2FLI, 

error goals, learning algorithm, number of hidden layer, granules and neurons per hidden 

layer. The proposed method was applied for pattern recognition problem. The proposed 

method with IT2FLI creates a system with better results and behaviour. Sánchez and 

Melin (2013a) presented a new model of Hierarchical GA (HGA) for optimization of 

T2FLI. The method combines the T2FLI and modular neural network (MNN) for pattern 

recognition. HGA can deal with complex systems that cannot be handled by simple GA 
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easily. In this work, HGA was used to optimize the type of the system, number of MF 

and their parameters. Better results were obtained when the proposed HGA was used. 

 In the work presented by Pulido et al. (2013), a hybrid approach of ensemble 

neural network with T2FLI and its optimization with GA for time series prediction was 

studied. The GA was used to optimize parameters of T2FLI and the network architecture. 

The researchers used Mackey-Glass time series as the benchmark. It was proved that, 

optimized T2FLI give a better result with less error than its T1FLI counterpart under the 

noise in training network. Nguyen et al. (2013) presented the hybrid method for prediction 

of stock price which comprises of feed forward neural network (FFNN) and IT2FLS. GA 

was used for optimization of variable of IT2FLS. K-means clustering method was used 

for initialization of GA instead of a traditional random initialization. Enhancement on the 

iterative algorithm with stop condition (EIASC) was used for type-reduction as an 

alternative to Karnik-Mendel procedure which was found to be time consuming. It was 

concluded that, optimized IT2FLS produces forecasting results with higher accuracy than 

T1FLS as well as FFNN models. The GA also becomes more efficient and converges 

faster when it is initialized in a more knowledgeable way rather than random 

initialization.  The RMSE was used as an objective function. In literature Gaxiola et al. 

(2013b), the GA optimization of T2FLS and BP learning algorithm with T2FLS weight 

adjustment for pattern recognition and time series prediction was presented. The proposed 

algorithm uses T2FLS to allow neural network to handle the uncertainties. The GA was 

used to optimise the T2FIS to be used in the hidden and outer layers as well as the number 

of neurons in the hidden layer to get the T2FLS weight for each neural network forming 

the ensemble. The proposed algorithm was tested on Mackey Glass time series and the 

human iris biometric measure for time series prediction and pattern recognition 

respectively. A very good result with less error was recorded for both tests. 
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 Melin et al. (2012) presented the hybrid method combining the FLS and the neural 

networks for accurate and efficient solution of pattern recognition problem. The proposed 

method consists of modular neural network mode which uses FLS for integration of the 

response. The proposed algorithm was applied on human recognition based on 3 

biometric measures (voice, iris and ear). Two GAs were used to optimise the entire model. 

One GA for adjusting the parameters of modules of neural network. The other GA 

optimised the fuzzy logic integrator which have the ability to select the number and type 

of MFs to be used, combine different types of MF, decide the type of logic (type-1 or 

type-2 fuzzy logic) to be used and create a fuzzy rule. In all the cases they considered, a 

better rate of recognition was obtained when an optimized T2FLI was used in the presence 

of noise. Mahmoodian (2012) presented the hybrid TSK model of T2FLS rule mining 

based on support vector machine (SVM) for prediction of breast cancer relapse time on a 

continuous scale. The parameters of T2FLS were optimised by GA. It was concluded that 

the use of optimised T2FLS indicates a better performance and copes with a lot of 

uncertainty in the model. In (Hidalgo et al., 2012), the optimization strategy for design of 

Type-2 fuzzy inference system (T2FIS) based on the size of FOU of MFs was presented. 

Three cases were considered, namely: 1. Equal values of uncertainty of all MFs, 2. 

Different values of uncertainty in each input 3. Different values of uncertainty for each 

MF. The researchers compared the simple GA for optimization of each of the different 

cases separately, and the proposed complete GA where all the cases are included in an 

objective function used to find optimal T2FIS. Adaptive Noise Cancellation and Miles 

per Gallon were used as the benchmark. It was concluded that the proposed complete GA 

gives better result for more complex problems. 

A summary of review through which GAs has been used to optimize the T2FLS 

is presented in Table 2.4. 
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Table 2.3: Genetic algorithms use for designing T2FLS 

Reference Problem 

domain 

Algorithm 

compared with GA 

Other system (s) compared with 

T2FLS 

Result 

Sun et al. (2015) Control RNA-GA T1FLC RNA-GA better than GA. T2FLC better than T1FLC 

Lu (2015) Control Not compared Conventional IT2FLC Proposed IT2FLC outperformed conventional IT2FLC 

Leticia et al. (2015) Control Not compared T1FLC T2FLC better than T1FLC 

Maldonado et al. (2014) Control Not compared T1FLC and PID AT2FLC better than T1FLC and PID 

Castillo & Cervantes (2014) Control Not compared T1FLC and PID T2FLC better than T1FLC and PID 

Melendez et al. (2013) Control Not compared Not compared Not compared 

Cervantes & Castillo (2013) Control Not compared T1FLC T2FLC better than T1FLC 

Bi et al. (2013) Control Not compared T1FLC and fixt time control T2FLC better than T1FLC and fixed time control 

Shill et al. (2012) Control Not compared No, T1FLC and neural coded FLS T2FLC better than T1FLC and neural coded FLS 

Maldonado & Oscar Castillo (2012) Control PSO Not compared GA better than PSO 

Maldonado &  Castillo (2012) Control Not compared T1FLC T2FLC better than T1FLC 

Li et al. (2012) Control Not compared T1FLC T2FLC better than T1FLC 

Ghaemi et al. (2012) Control Not compared Not compared Not compared 

Soto et al. (2014) Prediction Not compared T1FLS T2FLS better than T1FLS 

Nguyen et al. (2014) Prediction Not compared T1FLS T2FLS better than T1FLS 

Melin & Pulido (2014) Prediction Not compared T1FLS T2FLS better than T1FLS 

Sanchez & Melin, (2013b) Pattern 

recognition 

Not compared Not compared Not compared 

Sanchez & Melin (2013a) Pattern 

recognition 

Not compared Not compared Not compared 

Pulido et al. (2013) Prediction Not compared T1FLS T2FLS better than T1FLS 

Nguyen et al. (2013) Prediction Not compared T1FLS and FFNN T2FLS better thanT1FLS and FFNN 

Gaxiola et al., et al. (2013b) Pattern 

recognition 

Not compared Not compared Not compared 

Melin et al. (2012) Pattern 

recognition 

Not compared Not compared Not compared 

Mahmoodian (2012) Prediction Not compared Not compared Not compared 

Hidalgo et al. (2012) Prediction Not compared Not compared Not compared 

   

5
1 

fegy 

Univ
ers

ity
 of

 M
ala

ya



52 

2.5.3 PSO Based T2FLS 

Many publications on optimization of T2FLC using different kinds of PSO exist in the 

literature. Thus, a review of the literature that used PSO for the optimization design of 

T2FLS is presented in this section. 

 Shahsadeghi et al. (2014) presented an optimal type-2 fuzzy sliding mode 

(OT2FSM) controller for control of general chaotic systems. The Random Inertia Weigh 

PSO (RNW-PSO) was used to adjust the parameters of the controller including the input 

and output MFs coefficients of type-2 fuzzy. The inertia weight enhances the efficiency 

of the PSO by equilibrating the local exploitation and the global exploration capabilities 

of the swarm. The MSE for the closed loop control was considered as the fitness function. 

The simulation results obtained by the proposed controller were compared with that of 

optimal type-2 fuzzy PID controller and optimal H-infinity adaptive PID controller. It 

was found that the proposed controller performs better than the comparatives controllers. 

Niknam et al. (2014) presented an optimal type-2 sliding mode controller for class of 

nonlinear uncertain systems under external disturbances. RNW-PSO was used to adjust 

the parameters of the controller as well as the input and output MFs coefficients of type-

2 fuzzy. The RMSE was used as an objective function. Inverted pendulum system was 

used as case study. Based on the simulation results, it was concluded that the proposed 

controller is free of chattering effect, robust and obtained the desired performance. 

Khooban et al. (2014) proposed the design of an optimal type-2 fuzzy PID controller for 

air supply pressure of air-conditioning, heating and ventilation systems. The coefficient 

of PID and the input and output MFs parameters of IT2FLC were simultaneously 

optimized by RNW-PSO. MSE was considered as the objective function. The simulation 

result shows that the proposed controller outperformed the PID, ANF and STFPIC 

controllers under the presence of the uncertainties in the parameters of the model.  
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 Allawi and Abdallah (2014) proposed an IT2FLC for multiple mobile robots. The 

researchers considered the control of robot cooperation, target reaching task and 

avoidance of collision during navigation. The parameter of the proposed controller was 

adjusted using PSO. The objective function which constitutes the number of robots and 

collision time was used as follows: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =
1

2
∑ (

𝑘

𝑡𝑐𝑖𝑗
)

2
𝑛
𝑗=1,𝑗≠𝑖                                                                                                  (2.48) 

where 𝑛 is the number of robots, 𝑡𝑐𝑖𝑗 is the collision time between robot 𝑖 and robot 𝑗 and 

𝑘 is the constant. Hybrid reciprocal velocity obstacles were used for avoidance of 

collision. They used two real E-peck mobile robots for experimental testing. It was 

concluded that the robot navigation efficiency was increased for optimized IT2FLC in 

both simulation and experimental results compared with conventional IT2FLC. 

Maldonado et al. (2013) presented the optimization of MFs of AT2FLC using PSO. To 

minimize the running time, the fuzzy rules were not modified and only certain point of 

MFs were considered. The proposed method was applied for regulation of speed of DC 

motor, and it is coded in VHDL for a FPGA xilinxspartan 3A. The experimental results 

obtained by PSO were compared with the one obtained by GA which indicated that, PSO 

has faster running time than GA. Baklouti and Alimi (2013) proposes a new adaptive 

learning procedure of IT2FLC for design of robot navigation planning task. Real time 

PSO technique was used to instantaneously optimise the MFs of the IT2FLC.The fitness 

function that minimise the angular velocity smoothness index was used. The "iRobot 

create" was used as benchmark. It was concluded that based on the real world 

experimental results found, the proposed method gives a free collision trajectory and 

smooth path for navigation of the robot. Panda et al. (2012) presented a PSO-based 

IT2FLC for the design of power system stabilizer for damping oscillations in power 

transmission line. The proposed controller was tested on the single machine infinite bus 
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and multiple machine infinite bus. PSO algorithm was used to optimise the MFs of the 

IT2FLC. The proposed controller was compared with the optimal T1FLC and optimal 

lead-lag controller. Based on the simulation results obtained, it was reported that the 

proposed controller was found to be more robust with respect to the different disturbances 

and system parameters variations.  

Son (2014) presented the novel clustering algorithm called Context Fuzzy 

Geographically Weighted Clustering (CFGWC) on IT2FLS for the enhancement of the 

clustering quality of state-of-the-art clustering algorithm called FGEC for geo-

demographic analysis. PSO was used to optimize the parameters of the IT2FLS, and to 

find the best initial centres for CFGWC. In addition to the significance of these 

optimizations, it avoids initialization which may cause other type-2 fuzzy clustering 

algorithm accelerates the convergence of the algorithm. It was reported that the proposed 

algorithm obtained a higher clustering quality compared to other algorithms. They used 

the following objective function: 

𝐽 = ∑ ∑ ‖𝑋𝑘 − 𝑉𝑗‖
2

→ 𝑚𝑖𝑛𝐶
𝑗=1

𝑁
𝑘=1                                                                           (2.49) 

 Singh and Borah (2014) presented a new T2FLS based time series model that can 

effectively use more observations in forecasting. PSO was used to optimize the 

parameters of the proposed model. The performance of the proposed model was tested on 

a daily stock index price data set of the state bank of India. In comparison with a 

conventional time series models and existing fuzzy time series model, the proposed model 

obtained results that are more effective and more robust than T1FLS. Pulido et al. (2014) 

presented the PSO based ensemble neural networks with fuzzy integrator for time series 

prediction of Mexican stock exchange. PSO was used for tuning the structure of ensemble 

neural networks as well as T1FLI and T2FLI. Simulation results indicated that the use of 

T2FLI outperformed T1FLI. It was concluded that based on the prediction results found, 
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the use of ensemble neural networks with optimized T2FLI could be a good choice in 

predicting complex time series.      

 Sanchez et al. (2013) presented a novel method for design of an interval type-2 

fuzzy inference system (IT2FIS). Two different methodologies were used. The first 

method is by using the principle of granularity where the antecedent's uncertainty was 

calculated directly. The second method is by using two T1 TSK first order function, where 

the consequents which are interval type-2 (IT2) TSK were calculated directly. PSO was 

used to obtain the spread of each IT2 TSK function so as to adjust the FOU convergence. 

Based on the final result of convergence of FOU in the presence of noise, the proposed 

IT2FISs are both robust and not very wide which cannot capture noise beyond the level 

of output. Khosla et al. (2012) presented the PSO-base IT2FLS for time series forecasting. 

The PSO was used to adjust the MFs, FOU and rule set of the IT2FLS. The proposed 

design approach was applied to Macky-Glass time series forecasting benchmark. Four 

different experiments were performed for different corrupted chaotic time-series data set. 

It was concluded that the proposed method obtained a desirable forecasting result with 

less error. 

 Chakravarty and Dash (2012) presented an integrated functional link interval 

type-2 fuzzy neural network system (IFLIT2FNNS) for stock market indices prediction. 

T2FS was employed in the antecedent part and the consequent part was the output from 

the functional link artificial neural network (FLANN). PSO and back-propagation 

methods were used independently for optimization of all the forecasting model's 

parameters. Three benchmarks were used to test the proposed method, namely: Standard's 

and Poor's 500, Bombay stock exchange and Dow jones industrial average. The proposed 

method was compared with integrated FLANN, T1FLS and local linear wavelet neural 
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network (LLWNN). The comparison indicates the better performance of the proposed 

method. 

A summary of the publications in which PSO was applied for the optimization of the 

T2FLC is presented in Table 2.5. 
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Table 2.4: PSO used for designing T2FLS 

 

Reference Problem 

domain 

Algorithm compared 

with PSO 

Other system (s) compared with 

T2FLS 

Result 

     

Shahsadeghi et al. (2014) Control Not compared PID T2FLC better than PID 

Niknam et al. (2014) Control Not compared Not compared Not compared 

Khooban et al. (2014) Control Not compared PID, ANF and STFPIC T2FLC better than PID, ANF and STFPIC 

Allawi and Abdalla  (2014) Control Not compared Un optimized T2FLC optimal T2FLC better than un-optimised T2FLC 

Maldonado et al. (2013) Control GA Not compared PSO better than GA 

Baklouti and Alimi (2013) Control Not compared T1FLC T2FLC better than T1FLC 

Panda et al. (2012) Control Not compared T1FLC and lead lag controller T2FLC better than T1FLC and lead lag controller 

Son (2014) Clustering Not compared FGWC T2FLS better than FGWC 

Singh and Borah, 2014) Prediction Not compared T1FLS T2FLS better than T1FLS 

Pulido et al. (2014) Prediction Not compared T1FLS T2FLS better than T1FLS 

Sanchez et al. (2013) Clustering Not compared Not compared Not compared 

Khosla et al. (2012) Prediction Not compared Not compared Not compared 

Chakravarty and Dash (2012) Prediction Not compared T1FLS, IFLANN and LLWNN T2FLS better than T1FLS, IFLANN and 

LLWNN 
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2.5.4 Other Meta-heuristic Optimization Algorithms Based T2FLS 

Several works on optimization of T2FLC using different types of meta-heuristic 

optimization algorithms have been reported in literature. Success was recorded in most 

of these researches in different areas of applications. The review of the representative of 

these types of research was presented in this section to demonstrate the effectiveness of 

using the corresponding optimization method for automatic design of T2FLS.  

 Castillo et al. (2012) presented an ACO and PSO method for adjusting the MFs 

parameters of an IT2FLC for design of an optimal intelligent controller for trajectory 

tracking control of autonomous mobile robot. The MSE for the closed loop control was 

considered as the objective function. The statistical analysis shows that the ACO 

outperformed PSO and GA in this particular control and IT2FLC outperformed T1FLC. 

Yesil (2014) propose a big bang-big crunch (BB-BC) optimization design strategy of 

IT2FPIDC for load frequency control in power systems. The BB-BC optimization was 

used to adjust the FOU, MFs and the scaling factor of IT2FPID controllers. The ITAE 

was used as objective function. Four area interconnected power system was used as a 

benchmark. Based on the simulation results, the comparisons were made between the 

proposed method, T1FLPID and conventional PID, while all the controllers were 

optimized using BB-BC. The IT2FPID controllers operate 51.5% and 76.5% better than 

the T1FPID and PID respectively. A novel application of BB-BC for optimization of 

cascade structure of IT2FPID and its antecedent MF parameters was presented in 

literature Kumbasar and Hagras (2014). The proposed controller was applied for the path 

tracking control of PIONEER3-DX mobile robot. Several experiments in both simulation 

and real world were performed. IAE was used as a performance measure for both inner 

and outer loop. The proposed controller was compared with self-tuning T1FPID structure 
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as well as PID and T1FPID counterpart which were optimised using BB-BC. The results 

obtained illustrate that, the IT2FPID structure enhanced the control performance 

significantly in the presence of disturbances and uncertainties when compared with self-

tuning, BB-BC based PID and BB-BC based T1FPID structures. In addition, they also 

show that the reason for superior control performance of IT2FPID controller is not just 

because it has extra parameters, but rather is in the way it is dealing with noise and 

uncertainty present in real world compared with self-tuning T1FPIDC. In addition, BB-

BC gives high quality solution with less computational time when compared with PSO.  

 El-Nagar and El-Bardini (2014) proposed the IT2FNN controller for hardware-in-

the-loop simulation to simulate the control of a multivariable anaesthesia system. The 

antecedent part consists of IT2F linguistic process while the consequent part consists of 

interval neural network. The BP algorithm was used for online training of parameters of 

IT2FNN. The performance criteria used are ISE, ITAE and RMSE. The experimental 

result obtained by the proposed controller outperformed the one obtained by the adaptive 

IT2FLC and T1FNN controller under uncertainties in terms of settling time and 

overshoot. Kiani et al. (2013) presented the optimal design of IT2FLC for automatic 

voltage regulator system. Bacterial foraging optimization algorithm (BFOA) was used for 

tuning the MFs of IT2FLC. They consider the following fitness function in the simulation: 

𝐽(𝑘) = 𝐺𝑒 ∫ 𝑒2(𝑡)𝑑𝑡 +
𝑇

0
𝐺𝑢 ∫ 𝑢2(𝑡)𝑑𝑡

𝑇

0
+ 𝐺𝑀𝑀𝑝𝑘

𝑚𝑖𝑛                                                             (2.50) 

where 𝑒(𝑡) is the error, 𝑢(𝑡) is the control signal, 𝑇 is the running time, 𝑀𝑝 is the 

overshoot, and 𝐺𝑒, 𝐺𝑢, and 𝐺𝑀are the weighted constants. The simulation results obtained 

indicated that the BFOA outperform the extended discrete action reinforcement learning 

automata (EDARLA) under noise. Sayed et al. (2013a) presented a modified 

biogeography-based optimization algorithm (MBBO) for design of an IT2FLC for the 

improvement of the performance of Egyptian second testing nuclear research reactor. 
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MBBO was employed in designing the IT2FLC in order to get optimal parameters of MFs 

of the controller. ISE was used as an objective function. In the simulation,IT2FLC 

obtained the best performance and ISE index compared to PD controller. In another work 

by Sayed et al. (2013b), an optimal design of IT2FLC for performance improvement of 

the plant control systems was presented. The MBBO and PSO were used for tuning the 

MFs parameters of IT2FLC.ISE was used as an OF. The proposed controller was tested 

on two plants with different complexity (stable and unstable). The simulation results 

obtained by MBBO are better than the PSO based on running time and overshoot. Melin 

et al. (2013) presented an optimal design of FLC for tracking problem of the dynamic 

model of a unicycle mobile robot under perturbed torques. Chemical optimization (CO) 

was used for searching the optimal parameters of IT2FLC and T1FLC. ISE was used as 

an objective function. Both experimental and simulation results show that the CO 

outperform the GA, PSO and ACO. Also CO based IT2FLC outperformed the CO based 

T1FLC. Astudillo et al. (2012, 2013) applied the Chemical Reaction Optimization (CRO) 

method for optimal design of IT2FLC for tracking control of unicycle autonomous mobile 

robot. CRO was used to search for the gain constants and MFs parameters involved in the 

tracking controller. ISE was used as an OF. Both experimental and simulation results 

show that the best error obtained by CRO was similar with the one obtained with GA with 

less running time. 

 Li et al. (2013) proposed IT2FLS based data-driven strategy for modelling and 

optimization of thermal comfort words and energy consumption. The multi-objective 

optimization was used to optimize the temperature range through energy consumption 

and balancing the thermal comfort including MFs of the FLS. The results found in the 

simulation indicated that the specific room showed the robustness and effectiveness of 

the proposed method. Cortes-Rios et al. (2014) propose the parallel model 

implementation of Simple Tuning Algorithm (STA) for IT2FLC. The effect of AND/OR 
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operators’ combinations on fuzzy rules, new integral criteria parameters, and mechanism 

to calculate the feedback gain are included to improve the algorithm applicability and 

performance. ISE, IAE, ITSE and ITAE were consider as performance criteria. The STA 

based IT2FLC was tested using Hagglund and Astrom benchmark systems and their 

performance were compared with that of PID controllers. Good performance of the 

proposed method was achieved compared to PID controller based on simulation and 

experimental results.   

 Liu et al. (2014) presented an optimal solution to a Solid Transportation Problem 

(STP) with Tabu Search Algorithm (TSA) based type-2 fuzzy variables. ISE was used as 

an objective function. Three types of new defuzzification criteria for type-2 fuzzy 

variables were proposed such as expected value, optimistic value and pessimistic value. 

The multi fold fuzzy STP is formulated as the chance-constrained programming model 

with minimum cost of expected transportation. The application and effectiveness of the 

proposed method was illustrated using numerical experiments and it was found to 

advance performance over state of the art methods.  Zhang et al. (2014) presented a 

clustering routing protocol for wireless sensor networks based on T2FLS and ACO for 

lifetime prolonging and load balancing in wireless sensor network (WSN). T2FLS is used 

to handle the rule uncertainty and balance the network load. The number of neighbour 

nodes, residual energy and the distance to the base station was considered as the input to 

the T2FLS while candidate Cluster Head (CH) competition radius and CH are considered  

as output of T2FLS. ACO was used for adjusting these input and output of T2FLS. It was 

reported that, the proposed routing protocol could reduce the transmissions energy 

consumption of CHs and balance the network load. Furthermore, it prolongs the lifetime 

of WSN. 
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 Yao et al. (2013) presented the IT2FLS for robust human behaviour recognition 

using machine vision in intelligent environments. The big bang-big crunch(BB-BC) 

optimization was used to optimize the MFs parameters and rule based of IT2FLS. 

Weizmann dataset was used as a benchmark. In terms of overall average recognition 

accuracy, the proposed method outperformed the traditional IT2FS, optimal T1FLS and 

traditional T1FLS. Gaxiola et al. (2013a) proposed the upper and lower type-2 fuzzy 

weight adjustment for neural network  performing the learning method. BP algorithm was 

used for updating the weight. The proposed method was applied to Mackey-Glass time 

series prediction. NN with greater robustness and less susceptibility under noisy time 

series data was provided by the proposed method.  Doostparast et al. (2014) presented α-

plane based automatic general type-2 fuzzy clustering method (GT2FCM) for gene 

expression data analysis. A two stage Simulated Annealing (SA) algorithm optimization 

was presented. In the first stage, the annealing process accompanied by its proposed 

perturbation mechanism was devoted. After the termination of this stage, its output was 

inserted to the second stage in order to check for possible local optima. The output of this 

stage was then reinserted to the first stage until no better solution is obtained. This 

optimization is based on the objective function using α-planes for general type-2 fuzzy c-

means clustering algorithm. The proposed method was evaluated using different artificial 

datasets and three real gene expression datasets. The results of the experiments showed 

the flexibility and effectiveness of the proposed method under highly uncertain 

environment compared with type-1 fuzzy clustering method (T1FCM) and average 

linkage methods (ALM). 

 Nguyen and Meesad (2013) presented the optimal design of IT2FLS and T1FLS 

TSK for sea water level prediction using Firefly Algorithm (FA), PSO and GA. These 

optimization methods were used to optimise the MFs parameters for IT2FLS and T1FLS. 

The prediction results obtained by FA outperformed the one obtained by PSO, GA and 
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ANFIS. Additionally, the results obtained by optimal IT2FLS outperformed the one 

obtained by T1FLS. Almaraashi and Hedar (2014) presented the comparison between 

TSA and Directed TSA (DTSA) for better improvement of configuration of IT2FLSs. 

DTSA is the hybrid of TSA which have the ability of both local and global search while 

TSA is a pure global search. STA and DSTA were used to search for the best 

configuration of IT2FLS rule base and MFs parameters. The proposed method was 

applied on Iris flowers and Haberman classification data sets benchmark. The results 

obtained showed that, DTSA gives faster and better IT2FLS configuration than TSA.  

 A summary of presented publications in which other optimization methods   that 

have been used to optimize the T2FLC is presented in Table 2.6. 
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Table 2.5: Other meta-heuristic algorithms used for designing of T2FLS 

 

 

 

 

 

 

 

 

 

 

Reference Problem 

domain 

Proposed algorithm Algorithm 

compared 

with the 

proposed 

algorithm 

Other system (s) compared 

with T2FLS 

Result 

Castillo et al. (2012) Control Ant colony optimization PSO and GA T1FLC T2FLC better than T1FLC and ACO better than PSO 

Yesil (2014) Control Big bang-big crunch Not compared T1FLC and PID T2FLC better than T1FLC and PID 

Kumbasar and 

Hagras (2014) 

Control Big bang-big crunch PSO Self-tuning T1FPIDC, BB-BC 

based T1FPIDC and PID 

T2FPID better than Self tuning T1FPIDC, BB-BC 

based T1FPIDC and PID 

El-Nagar and El-

Bardini (2014) 

Control Back propagation algorithm Not compared Adaptive IT2FLC and T1FLC T2FLC better than adaptive IT2FLC and T1FLC 

Kiani et al. (2013) Control Bacterial foraging 

optimization 

EDARLA Not compared BFO better than EDARLA 

Sayed et al. (2013a) Control Biogeography optimization Not compared PD T2FLC better than PD 

Sayed et al. (2013b) Control Biogeography optimization PSO Not compared MBBO better than PSO 

Melin et al. (2013) Control Chemical optimization GA, PSO and 

ACO 

T1FLC T2FLC better than T1FLC and CO better than GA, 

PSO and ACO 

Astudillo et al. 

(2012, 2013) 

Control Chemical optimization GA Not compared CO better than GA 

Li et al. (2013) Control Multi-objective optimization Not compared Not compared Not compared 

Cortes-Rios et al. 

(2014) 

Control Simple tuning optimization Not compared PID T2FLC better than PID 

Liu et al. (2014) Control Tabu search optimization Not compared Not compared Not compared 

Qi-Ye et al. (2014) Clustering ACO Not compared Not compared Not compared 

Yao et al. (2013) Pattern 

recognition 

BB-BC optimization Not compared T1FLS and other traditional non 

fuzzy systems 

T2FLS better than T1FLS and other traditional non 

fuzzy system 

Gaxiola et al. 

(2013a) 

Prediction BPA Not compared Not compared Not compared 

Doostparast 

Torshizi and Fazel 

Zarandi (2014) 

Classification SA Not compared T1FCM GT2FCM better than T1FCM 

Nguyen and Meesad 

(2013) 

Prediction FA PSO and GA T1FLS T2FLS better than T1FLS. FA better than PSO and 

GA 

Almaraashi and 

Hedar (2014) 

Classification TSA DTSA Not compared DSTA better than STA 

6
4 

fegy 

Univ
ers

ity
 of

 M
ala

ya



65 

2.6 Future Trend and General Overview of the Research Area 

The general summary of the area of this research i.e., the applications of Meta-heuristic 

Optimization Algorithms in the design of T2FLS is presented in this section. Based on 

the review of this area, the possible future trends that can be visualized were discussed. 

The complex problems of different kind of control (robotic, power systems, motor 

systems, mechanical systems etc.) as well as time series prediction, classification, 

clustering and pattern recognition with high level of noise and/or uncertainties can be 

handled properly by T2FLS. In recent years, the applications of T2FLS in intelligent 

control have become a common practice. It is widely known that the FLS design is not a 

simple task, particularly the design of T2FLS. This is due to the fact that T2FLS has more 

design parameters than the T1FLS. Meta-heuristic optimization algorithms have been 

used in automatic design of type-1 as well as type-2 systems that made it to become a 

standard practice as indicated in literature Castillo and Melin (2012). Now the trend has 

been extended to the use of the combination of more than one optimization algorithms in 

solving a problem. This method is referred to as hybrid optimization.  

 Based on this review it can be noted that the total number of publications for 2012 

to 2015 in intelligent control is increasing per year (Figure 2.13 (a) and (b)). It can be 

stated that the trend in the area of design of T2FLS using optimization method is 

increasing yearly and this trend is expected to continue in the future because T2FLSs have 

been used more frequently in this area of research. 

It is hard to declare one of applied optimization techniques as the best for optimization 

of T2FLS at the moment. This is because all of the reviewed methods have a record as 

successful methods of optimization of T2FLS in some applications. Although the HO 

method has outperformed some conventional optimization methods (such as GA, PSO 

and Firefly algorithm) in different applications, it cannot be declared as the best since it 
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is not compared with all of the methods. In any case, the need of application of 

optimization method in design of T2FLS was justified. This is due to the complexity in 

the design. Furthermore, it is advisable not to use gradient-based algorithms in optimizing 

T2FLS because the computations for MFs parameters will become much more 

complicated as stated in literature Mendel (2014) Therefore, researchers in this area 

should use the derivative free algorithms such as QPSO, SA, PSO, GA, CS etc. or their 

combination to form hybrid. 
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Figure 2.13: (a) total number of publications per year, (b) distribution of 

publications per type of optimization method and year 

2.6.1 Limitation of Previous T2FLS Design Methods and the Gap for future 

research  

 It is worth mentioning that based on this review, only few studies used the 

optimization based design to employ T2FLC in real-world environment. Also all the 

objective functions used by the researchers in this area are minimizing only one or two 

performance index. In addition, many studies do not compare the performance of their 

proposed optimization method with the state of the art optimization method. This is 

difficult or even impossible to measure the effectiveness of the proposed optimization 

method without any comparisons. To the best of my knowledge, there are many types of 
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optimization techniques that have not yet been applied to the optimization of T2FLC. 

These techniques include Grid search, cuckoo search optimization, genetic programming, 

harmony computing, membrane computing, bat algorithm etc. It is expected that, these 

optimization methods as well as those that will be proposed in the future will be applied 

in further studies in order to determine their effectiveness in the area of design of T2FLC. 
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CHAPTER 3: ROTARY INVERTED PENDULUM AS A BENCHMARK FOR 

TESTING CONTROL ALGORITHMS 

3.1 Introduction 

This chapter describe the four control objectives of RIP in detailed using energy based 

controller. It also, presented the review of the state of art work proposed by the researchers 

for each control objective of RIP. These comprise the linear, nonlinear time invariant, 

self-learning and adaptive nonlinear controllers. The dynamic model of RIP is developed 

based on Kane’s and Newton-Euler Lagrange methods. The advantage and disadvantages 

of each model is exploit including the review of previous model developed by researchers. 

The Simulink model for both Kane’s and Newton-Euler Lagrange methods are developed 

based on the derived equations. Comparisons between these methods was carried out 

using Matlab Simulink. Simulations was carried out to study the nonlinear behavior of 

the RIP. The trend of the studies in this area was point out from the year 2011 to date. 

Future research opportunities and challenges of the previous approaches in this area of 

research are presented. It is expected  that expert researchers can use this chapter as 

starting point for further advancement while graduate scholars can use it as an initial 

point.  

3.2 RIP 

The initial motivation of studies of the inverted pendulum (IP) arose based on the 

need to design the balance controllers for the rockets during vertical take-off. The rocket 

is highly unstable at the instant of launching, thus, there is a need of a continuous 

alteration mechanism to stay at upright position in the open loop configuration Mathew 

et al. (2013). IP is an important member of nonlinear unstable under-actuated mechanical 

systems. The IP is a suitable benchmark system that can be used for training and 

experimental validation of new control strategies in robotics and control theory. The RIP 

which is also known as Furuta pendulum was proposed in 1992 by Furuta et al. (1992) 

Univ
ers

ity
 of

 M
ala

ya



69 

and since then it has been investigated by many researchers (Acosta, 2010; Carlos 

Aguilar-Avelar & Moreno-Valenzuela, 2015; Ferreira et al., 2011). The RIP is one of the 

available version of IP that can be found in most control laboratories. This study focuses 

on the RIP which inherits under-actuated, unstable, nonlinear and non-minimum phase 

system dynamics as shown in literiture Fairus et al. (2013). The experimental setup of the 

RIP produced by Quanser is shown in Figure 4.7 in chapter four. 

 The RIP systems perform in an extensive range in real life applications such as 

aerospace systems, robotics, marine systems, mobile systems, flexible systems, pointing 

control, and locomotive systems Ghorbani et al. (2013). In addition, the study of dynamic 

model and control algorithms in controlling the RIP plays an important role in controlling 

spacecraft, rockets, maintaining the equilibrium state for two legs robots and skyscraping 

buildings (Quyen et al., 2012). Moreover, when the pendulum of RIP is at hanging 

position, it represents real model of the simplified industry crane application (Ileš et al., 

2011). 

The control objectives of the RIP can be categorized into four categories:  

I.  Controlling the pendulum from downward stable position to upward unstable 

position known as Swing-up control (Oltean, 2014),  

II. Regulating the pendulum to remain at the unstable position known as 

stabilization control (Chen & Huang, 2014),  

III. The switching between swing-up control and stabilization control known as 

switching control (Nath et al., 2014), 

IV. Controlling the RIP in such a way that the arm tracks a desired time varying 

trajectory while the pendulum remains at unstable position known as trajectory 

tracking control (Aguilar-Avelar & Moreno-Valenzuela, 2015). 
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 In this context, different kinds of control algorithms have been applied for these 

control objectives. Other control problems associated with RIP that were investigated 

by the researchers include the friction compensation (Aguilar-Avelar & Moreno-

Valenzuela, 2014; Gafvert et al., 2015), system identification (Chandran et al., 2015), 

synchronization problem (Ghorbani et al., 2013; Liu, 2014), decoupling of RIP to 

eliminate the under actuated problem (Chen & Huang, 2014; Rudra et al., 2013) and 

stability analysis (George et al., 2012). 

3.3 Mathematical Modelling of RIP 

Before designing a controller, the equations that characterize the behavior of the RIP 

system have to be developed as correctly as possible irrespective of the complexity of the 

equations. 

Normally, the nonlinear dynamic equation of a RIP is derived using the Euler-

Lagrange method (Antonio-Cruz et al., 2015) or Newton’s laws of motion method 

(Oltean, 2014). Usually the following five assumptions are made:  

I. The system consists of two ideal rigid bodies. 

II. The position of the whole system is fixed in a horizontal and flat ground surface. 

III. The motor inductance and friction on the armature are neglected. 

IV. The equivalent frictional force of motor/arm is neglected. 

V. The pendulum is rotating in a constant plane.  

Subsequently, the nonlinear dynamic equation is linearized so as to simplify the design 

and analysis of the proposed controllers. This can be done using the linear approximation 

method which is based on the nonlinear model expansion in to Taylor series about the 

operating point and discarding the nonlinear terms (NøRgaard et al., 2000).  
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The free body diagram of RIP consisting of two connected rigid bodies actuated by a 

servomotor system is shown in Figure 3.1.  These bodies are rotational arm and pendulum. 

Both arm and pendulum are one DOF. The arm is attached to the output gear of the motor 

and it can rotate around the fixed point B. The angle 𝜙 is the generalized coordinate for 

arm which is the angle between the arm and the horizontal x-axis (arm angle). The vectors 

�̂�1, �̂�2, �̂�3 are the inertial earth fixed reference frame, in which �̂�3 is away and 

perpendicular to the earth surface. The vectors �̂�𝑟 , �̂�𝜙1
, �̂�3 are the arm fixed reference in 

which �̂�𝑟 is away from fixed point B along the arm length. The pendulum is attached to 

free end of the rotating arm and has its mass centre at point C. The angle 𝛼 is the 

generalized coordinate for pendulum, which is the angle between the pendulum and the 

vertical z-axis (pendulum angle). The pendulum has two plane of symmetry through �̂�1 

axis with normal direction �̂�2 and  �̂�3 and it can rotate in a plane perpendicular to �̂�𝑟 =

�̂�3. The pendulum fixed of reference are �̂�1, �̂�2, 𝑎3  in which  �̂�1 point away from point 

A. The torque τ is applied at the fixed end of the arm by the motor and the direction of 

the torque depends on the direction of the voltage applied to the motor. The pendulum 

can move from 0 degree to 360 degrees about the arm axis in clockwise or anticlockwise 

directions. The arm is restricted to move from 0 to 75 degree about z-axis in clockwise or 

anticlockwise directions. 
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Figure 3.1: Free body diagram of RIP including the system’s coordinates 

 

3.3.1 Newton’s Euler Lagrange Model of RIP  

Most of literatures used Newton-Euler or Lagrange methods to find the dynamic 

equation of mechanical systems. The advantages of Newton-Euler Lagrange methods are: 

for simple systems this method is computationally efficient, quite intuitive and gives a 

normal extension from quasi-static analysis. The major drawback of this methods is that 

for complex configurations a significant effort is required to obtained a minimal (reduced) 

set of equations.  

3.3.1.1 Nonlinear Newton’s Euler Lagrange Model of RIP 

Contrary to most literature were they simplify the generated model by assuming that, 

the pendulum is rotating in a constant plane as in literature (Ernest & Horacek, 2011; van 

Kats, 2004). In this study, we consider the rotary motion of the arm all together. That is, 
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it was assume that the actual plane pendulum is rotating in is different in every instant. 

Which means, the assumption number V in section 3.3 was nullified.  This make the 

developed model to be more complex but with high accuracy. The newton’s Euler 

Lagrange is used to developed the nonlinear model of RIP. The RIP model can be describe 

using the general motion equation of robot as follows: 

𝐷(𝒒)�̈� + 𝐶(𝒒, �̇�)�̇� + 𝒇𝐶(�̇�) + 𝒇𝑣(�̇�) + 𝐺(𝒒) = 𝒖                                                (3.1)            

Where 𝒒 ∈ ℝ𝟐 is the position coordinate that are represented by 𝛼 and 𝜙, the vectors 

�̇� and �̈� are the velocity and acceleration respectively, 𝐷(𝒒) ∈ ℝ𝟐×𝟐 is the symmetric 

and positive definite inertia matrix, 𝐶(𝒒, �̇�)𝒒 ∈ ℝ𝟐̇  are the Coriolis and centripetal forces, 

𝒇𝐶(�̇�) ∈ ℝ𝟐 are the differentiable and continuous version of coulomb’s frictional forces, 

𝒇𝑣(�̇�) ∈ ℝ𝟐 are the viscous frictional forces, 𝐺(𝒒) ∈ ℝ𝟐 are the gravitational forces, 𝒖 ∈

ℝ𝟐 is the input torque. The step by step procedure of modelling of RIP is presented in 

Appendix A. The applied control torque and the position coordinate of the joints are 

considered in the present study.  𝜏(𝑡) is the control torque. The pendulum clockwise 

movement with respect to the upward position is considered as positive in this research 

The model of RIP in equation (3.1) is given as follows:  

[
𝑢1 + 𝑢2 −𝑢3

−𝑢3 𝑢6
] [�̈�

�̈�
] + [

𝑢4�̇� 𝑢5�̇�

−
𝑢4

2
�̇� 0

] [�̇�
�̇�
] + [

𝐵𝑟 0
0 𝐵𝑝

] [�̇�
�̇�
] + [

0
−𝑢7

] [𝑔] =

[
1
0
] [𝜏]            (3.2) 

where 𝑢1 = (𝐽𝑟 + 𝑚𝐿𝑟
2),  𝑢2 = 𝑚𝑙𝑝

2𝑠𝑖𝑛2𝛼,   𝑢4 =  𝑚𝑙𝑝
2 sin 2𝛼,    𝑢3 = 𝑚𝐿𝑟𝑙𝑝 cos 𝛼,  𝑢5 =

𝑚𝐿𝑟𝑙𝑝 sin 𝛼,  𝑢6 = (𝐽𝑝 + 𝑚𝑙𝑝
2)  𝑢7 = 𝑚𝑙𝑝 sin 𝛼, 𝜏 =

𝜂𝑚𝜂𝑔𝑘𝑡𝑘𝑔

𝑅𝑚
𝑉𝑚 −

𝜂𝑚𝜂𝑔𝑘𝑡𝑘𝑔
2𝑘𝑚

𝑅𝑚
�̇�.                                                                                                                                           

 The description and values of these parameters are given in Table 3.1.  
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Table 3.1: Parameters of RIP 

Symbol Description Value Unit 

mp Mass of pendulum 0.127 kg 

Lp Total length of Pendulum 0.337 m 

Jp 

Pendulum moment of inertia about its center of 

mass 0.0012 kg.m2 

Bp 

Pendulum viscous damping coefficient as seen at 

the pivot axis 0.0024 N.m.s/rad 

lp Length of pendulum center of mass 0.156 m 

Lr Rotary arm length 0.168 m 

Br 

Rotary arm viscous damping coefficient as seen at 

the pivot axis 0.0024 N.m.s/rad 

Jr 

Rotary arm moment of inertia about its center of 

mass 0.000998 Kg.m2 

Rm Motor armature resistance 2.6 Ω 

kt Motor current-torque constant 0.00768 N-m/A 

km Motor back-emf constant 0.00768 V/(rad/s) 

Kg High-gear total gear ratio 70  
ηm Motor efficiency 69 % 

ηg Gearbox efficiency 90 % 

Jeq Equivalent moment of inertia as seen at the load 0.0036 kg.m2 

Beq 

Equivalent viscous damping coefficient as seen at 

the load 0.004 Nms/rad 

 

The detailed proof of these dynamic equations are presented in Appendix A: 

3.3.1.2 Linear Newton’s Euler-Lagrange Model of RIP 

The linearization of the nonlinear dynamic equation is a common practice in control 

engineering design, especially for the design of linear controllers. This is to ease the 

complication of the dynamic equations. The nonlinearities in the equation of motion of 

RIP is arises from the trigonometric function present in the equation. Many types of 

linearization have been used in order to linearize the nonlinear model of RIP. This include 

Jacobian linearization, input-output feedback linearization, and optimal linearization. The 

small angle formula (at near equilibrium position of the pendulum) was used for 

linearization in literature (Mathew et al., 2013; Oltean, 2014). The Jacobian linearization 

was employed in literature (Al-Jodah et al., 2013). The linear model of RIP was found 

using partial feedback linearization in literature (Mandić et al., 2014). Feedback 

linearization method was used in literature (Chou & Chen, 2014).  The resultant linear 

model of all the mentioned linearization method are local linear. That is, the linear model 
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has similar dynamic to nonlinear model around a specific operating point it was 

linearized. The weakness of the local linearization can be overcome using the optimal 

linearization method. This method gives a linear model that have the exact dynamic of 

the nonlinear model at any operating point with minimum approximation error. The 

optimal linearization of RIP was discussed in the literature (Zhang & Zhang, 2011). The 

nonlinear model can be approximated to linear model via the Taylor series expansion 

about the operating point and discarding the nonlinear terms as follows (The detailed 

proof of the equations is presented in Appendix B):    

(𝐽𝑟 + 𝑚𝐿𝑟
2)�̈� −  𝑚𝐿𝑟𝑙𝑝�̈� = 𝜏 − 𝐵𝑟�̇�                                                                      (3.3) 

−𝑚𝐿𝑟𝑙𝑝�̈� + (𝐽𝑝 + 𝑚𝑙𝑝
2)�̈� − 𝑚𝑔𝑙𝑝𝛼 = −𝐵𝑝�̇�                                                        (3.4) 

In matrix form, the equation (3.3) and (3.4) can be written as: 

[
𝐽𝑟 + 𝑚𝐿𝑟

2 − 𝑚𝐿𝑟𝑙𝑝

−𝑚𝐿𝑟𝑙𝑝 𝐽𝑝 + 𝑚𝑙𝑝
2] [�̈�

�̈�
] + [

𝐵𝑟 0
0 𝐵𝑝

] [�̇�
�̇�
] + [

0
−𝑚𝑔𝑙𝑝𝛼] = [

𝜏
0
]                                  (3.5) 

The linear state space equation is given by 

�̇� = 𝐴𝑥 + 𝐵𝑢                                                                                                                                           (3.6) 

𝑦 = 𝐶𝑥 + 𝐷𝑢                                                                                                                                           (3.7) 

where  

𝐴 =
1

𝐽

[
 
 
 
0                            0
0                            0

 
1                          0
0                         1

 

0 𝑚2𝑙𝑝
2𝐿𝑟𝑔

0 (𝐽𝑟 + 𝑚𝐿𝑟
2)𝑚𝑔𝑙𝑝

−(𝐽𝑝 + 𝑚𝑙𝑝
2)(𝜍2 + 𝐵𝑟) −𝑚𝐿𝑟𝑙𝑝𝐵𝑝

−𝑚𝐿𝑟𝑙𝑝(𝐵𝑟 + 𝜍2) −(𝐽𝑟 + 𝑚𝐿𝑟
2)𝐵𝑝]

 
 
 

,              (3.8) 
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𝐵 =
1

𝐽
[

0
0

𝑚𝑙𝑝
2𝜍1

𝑚𝐿𝑟𝑙𝑝𝜍1

],                                                                                                                                     (3.9) 

𝐶 = [
1 0
0 1

    
0 0
0 0

] ,                                                                                                   (3.10) 

     𝐷 = [
0
0
].                                                                                                                   (3.11) 

    𝐽 = 𝐽𝑝𝑚𝐿𝑟
2 + 𝐽𝑟𝐽𝑝 + 𝐽𝑟𝑚𝑙𝑝

2                                                                                            (3.13) 

𝜏 = 𝜍1𝑉𝑚 − 𝜍2�̇�                                                                                                                                     (3.14) 

where                    

𝜍1 =
𝜂𝑚𝜂𝑔𝑘𝑡𝑘𝑔

𝑅𝑚
                                                                                                                                          (3.15) 

𝜍2 =
𝜂𝑚𝜂𝑔𝑘𝑡𝑘𝑔

2𝑘𝑚

𝑅𝑚
                                                                                                                                   (3.16) 

[

�̇�
�̇�
�̈�
�̈�

] = [

0           0
0           0

     
1       0
0       1

0 75.47
0 103.91

−119.44 −0.08945
−4.429 −1.2817

] [

𝜙
𝛼
�̇�
�̇�

] + [

0
0

53.57
2.678

]𝑉𝑚                                (3.17) 

[
𝜙
𝛼
] = [

1 0
0 1

0 0
0 0

] [

𝜙
𝛼
�̇�
�̇�

]                                                                                                        (3.18) 

The RIP system open loop poles are  𝑤 = [0, 9.447, −10.701, −119.467]. It can 

be seen that the RIP system is unstable because it has one pole at the right hand side of s-

plane. Hence there is a need to test for the system’s controllability prior to any control 

action. This can be done by testing the rank of matrix  
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𝑅 = [𝐵, 𝐴𝐵, 𝐴2𝐵, 𝐴3𝐵 …𝐴𝑛−1𝐵], using equation (3.17). If R has full rank then the system 

is fully controllable. The R has full rank when 𝑟𝑎𝑛𝑘(𝑅) = 4.  

3.3.1.3 Matlab Model based on Newton’s Euler-Lagrange Model of RIP  

The Matlab model of RIP can be found based on the developed nonlinear mathematical 

model in equations (3.1) and (3.2). This is by substituting the values of the RIP 

parameters. The parameters of the used RIP and their description is presented in Table 

3.1.  

 After the substitution and rearranging, the nonlinear equation of motion of RIP can be 

found as: 

�̈�(0.00458 + 0.006659sin2𝛼) + �̇�(0.07143 + 0.006659�̇� sin 2𝛼) −

0.0003328�̈� cos 𝛼 + 0.0003328�̇�2 sin 𝛼 = 0.128𝑉𝑚                                                (3.19) 

0.0153286�̈� − 0.0003328�̈� cos 𝛼 − 0.0033295�̇�2 sin 2𝛼 + 0.0024�̇� −

0.1946 sin 𝛼 = 0                                                                                                         (3.20) 

The Newton’s Euler-Lagrange based Nonlinear Matlab model is developed using the 

equation (3.19) and (3.20) and its shown in Figure 3.2. 
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Figure 3.2: Newton’s Euler-Lagrange based Nonlinear Matlab model of RIP 

 

The Linear Matlab model of RIP can be found based on the developed linear 

mathematical model in equations (3.3) and (3.4). This is by substituting the values of the 

parameters in Table 3.1. After the substitution and rearranging, the linear equation of 

motion of RIP can be found as: 

�̈� = 0.07259�̈� − 28.539�̇� + 15.06𝑉𝑚                                                                  (3.21) 
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�̈� = 0.04235�̈� − 0.305�̇� + 24.76𝛼                                                                      (3.22) 

The Newton’s Euler-Lagrange based linear Matlab model is developed using the 

equation (3.21) and (3.22) and its shown in Figure 3.3. 

 

Figure 3.3: Newton’s Euler-Lagrange based linear Matlab model of RIP 

3.3.2 Kane’s Method of Modelling RIP 

Numerous researchers used Kane’s method to developed the dynamic equation for 

different mechanical systems. Kane’s method is suitable for developing the dynamic 

equations for systems consisting of multiple rigid bodies like spacecraft which is moving 

under the effect of some gravitational fields (Knutson, 2012). Lagrange multiplier was 

used in the derivation using Lagrange method, while the calculation of redundant forces 
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was involved in Newton method. As a result, Newton-Euler, Lagrage-Euler and Lagrange 

methods requisite complicated and tedious formulation for a large multi-body system 

Shamsudin et al. (2013). Consequently, they likely led to an inefficient computation. 

Kane's method can be regarded as an alternative method of modeling. This method does 

not require the calculation of multipliers or redundant forces. Kane method is based on 

the partial velocities of the constituents of the system (Komistek et al., 1997). Hence, 

Kane's method is more efficient than Lagrange and Newton-Euler methods in terms of 

computation for systems consisting of multiple rigid bodies (Nukulwuthiopas et al., 

2002). In this section, a nonlinear dynamical equation of the RIP is derived using Kane's 

method. 

3.3.2.1 Nonlinear Kane’s Model of RIP 

Using the same assumption as in the Newton’s Euler-Lagrange, the nonlinear equation 

of motion of RIP can be derived using Kane’s method as follows: 

Consider the Free body diagram of RIP including the system’s coordinates in Figure 3.2. 

The equation for �̂�3 direction is the pendulum equation of motion and it can be express 

as follows: 

𝑚𝑙(𝑟�̇�1 cos 𝛼 + 𝑔 sin 𝛼) = 𝐼33�̇�2 − (𝐼22 − 𝐼11)𝑢1
2 cos 𝛼 sin 𝛼                              (3.23) 

Equation (3.23) can be written in the following form  

𝜀𝑢1
2 cos 𝛼 sin 𝛼 + 𝛽�̇�1 cos 𝛼 = �̇�2 − 𝜔𝑛

2 sin 𝛼                                                         (3.24) 

where 𝜀 =
𝐼22−𝐼11

𝐼33
, 𝛽 =

𝑚𝑟𝑙

𝐼33
  and  𝜔𝑛

2 =
𝑚𝑔𝑙

𝐼33
 in which the parameter 𝜀 is approximately 

equal to moment of inertia for thin rod and  𝜔𝑛 is the natural frequency of the pendulum. 

Based on parallel axis theorem (Bedford et al., 2008), 𝐼33 = 𝐼33 + 𝑚𝑙2,  𝐼22 = 𝐼22 + 𝑚𝑙2  

and 𝐼11 ≡ 𝐼11. 
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The right-hand side of equation (3.24) is the expression of the standard pendulum on 

the cart while left-hand side is due to the additional rotation of the base on the circular 

arc.  

    The dynamic equation of arm can be found from its �̂�3 component of moment 

equilibrium about the fixed point B as follows: 

𝜏 = 𝑏𝑢1 + 𝐼0�̇�𝑖 + 𝑇1 cos 𝛼 − 𝑇2 sin 𝛼 + 𝑟𝐹𝜙                                                          (3.25) 

where 𝑏𝑢1 is the equivalent frictional force of motor/arm, 𝐼0 is the transverse moment of 

inertia for arm at the fixed point B,  𝜏 is the torque applied to the arm by the motor. 

Substituting for  𝑇1, 𝑇2 and  𝐹𝜙 at their directions we have the dynamic equation for arm 

as follows: 

𝜏0 = (𝛾sin2𝛼 + 𝐼)�̇�1 − 𝛽�̇�2 cos 𝛼 + 𝛽𝑢2
2 sin 𝛼 + 𝛾𝑢1𝑢2 sin 2𝛼 + 𝑏𝑢1                   (3.26) 

where 𝜏0 =
𝜏

𝐼33
,  𝐼 =

𝐼0+𝐼11+𝑚𝑟2

𝐼33
 and 𝑏 =

𝑏

𝐼33
 

The detailed proof of these equations is presented in Appendix C. 

3.3.2.2 Matlab model of RIP based on Kane’s method  

 The parameters in Table 3.1 was used. By assuming the equivalent frictional force of 

motor/arm equal to zero.  Substituting the values of the parameters and rearranging 

equations (3.24) and (3.26), the equation of motion of RIP can be found as 

�̈� =
1

0.8077cos𝛼
�̈� −

sin𝛼

0.8077
�̇�2 + 58.4 tan𝛼                                                              (3.27) 

�̈� =
1.112+sin2𝛼

0.8077cos𝛼
�̈� +

14.62+0.8077sin𝛼

0.8077cos𝛼
�̇�2 −

sin2𝛼

0.8077cos𝛼
�̇��̇� +

31.06

0.8077 cos𝛼
𝑉𝑚            (3.28) 
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Based on the autonomous model in equation (3.27) and (3.28), the Matlab Simulink of 

RIP is developed as shown in Figure 3.4.  

 

Figure 3.4: Kane’s based Nonlinear Matlab model of RIP 

3.3.2.3 Open loop response for the RIP model based on Kane’s method 

Initially, the pendulum is positioned in an inverted position with very small 

displacement say 0.05°, then it is allowed to fall by applying a pulse signal to the model. 

The open loop responses for pendulum and arm are shown in Figure 3.5 and Figure 3.6 

respectively. This response of the Simulink model was revealed to be accurate in 

comparison with the widely known empirical observations of pendula characteristics as 

described in the following literature (Antonio-Cruz et al., 2015; Fairus et al., 2015; 
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Jadlovský & Sarnovský, 2013). Moreover, the adequate correctness of the simulation 

model was approved. The response shows that the whole system is nonlinear and unstable.  

 

Figure 3.5: Open loop response for Pendulum 

 

 

Figure 3.6: Open loop response for Arm 
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3.3.3 Comparisons of the developed models 

The open loop response for the nonlinear dynamic equation of RIP developed using 

Kane’s method is compared with the nonlinear dynamic equation of RIP developed using 

Newton-Euler Lagrange method as shown in Figure 3.7. This is by applying a pulse signal 

to the models. The simulation result for pendulum and arm are shown in Figure 3.8 and 

3.9 respectively. The simulation results show that the Kane’s and Newton-Euler Lagrange 

responses are similar and their behaviors are closely the same for both pendulum angle 

and arm angle.  

 

Figure 3.7: Comparison of Newton-Euler Lagrange and Kane’s methods 

It can be seen that for the Kane’s based model, the pendulum falls in about 1.4-second 

while for Newton-Euler Lagrange based model the pendulum falls in more than 1.75 

seconds. Also for the arm, it can be seen that for the Kane’s based model the arm moves 

from 0° to about 22.33° and come back to about 9° within 1.75 seconds. However, within 

the same time, the Newton-Euler Lagrange based model can only move from 0° to about 

23.33°. This demonstrate that Kane’s model based is faster in respond compared to the 

Newton-Euler Lagrange based model. These simulation results agree with the theoretical 

results; therefore, the presented model is valid to some level.  
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Figure 3.8: Comparison of pendulum’s open loop response  

 

 

Figure 3.9: Comparison of arm’s open loop response 

3.3.4 Validation of the developed model with the state of art model 

The open loop response for nonlinear-1 (developed using Newton’s Euler-Lagrange in 

section 3.3.1.1), nonlinear-2 proposed in literature Oh et al. (2009) and linear (developed 

using Newton’s Euler-Lagrange in section 3.3.1.2) dynamic models of RIP are compared 

to validate the proposed model with the state of art model. Originally the pendulum is 

placed in an inverted position with very small displacement; then it is allowed to fall by 
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applying a pulse signal to the model. The simulation results in Figure 3.10, and 3.11 show 

that the nonlinear-1 and nonlinear-2 are similar and their behaviors are the same for both 

pendulum angle and arm angle. This shows that nonlinear one can be considered as a 

nonlinear model of the RIP because the nonlinear two has already been proved and used 

in literature Oh et al. (2009). The linear model depicts the nonlinear pendulum motion for 

the first 1.3 seconds until it attains 210 then it began to deviate from the actual motion. 

The response shows that the whole system is nonlinear and unstable. 

 

Figure 3.10: Open loop response for RIP (pendulum angle) 

 

Figure 3.11: Open loop response of RIP (pivot arm angle) 
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3.4  Friction and Friction compensation in RIP system 

The investigation of friction and friction compensation is very important in 

control engineering community. Friction can be seen as a highly nonlinear component 

which can result in limit cycles (LCs), steady state error and poor system performance. 

The RIP can be used to study the effect of friction and friction compensation since the 

frictional effects in RIP are so clearly visible.  It can be shown that the friction in the 

driven arm might cause the LCs with high amplitude. The LCs can be predicted using 

widely known friction models such as LuGre model (Acosta, 2010), Coulomb friction 

model (Gafvert et al., 2015) and Coulomb friction with stiction model (Gäfvert, 1999). 

The amplitudes of the LCs and all other effects due to friction can be reduced using 

friction compensator based on these friction models (Gafvert et al., 2015). The friction 

phenomena in RIP happens in the joints (i.e. the pendulum and arm joints). The friction 

in both joints can be demonstrated as follows: 

3.4.1  Pendulum joint  

The friction in this joint can be demonstrated using a damping constant through a 

small ball bearing. Based on the Rayleigh’s dissipation function (Ogata, 1998): 

𝐷 =
1

2
(𝑏1𝜉1

2 + 𝑏2𝜉2
2 + ⋯+ 𝑏𝑖𝜉𝑖

2)                                                                                           (3.29) 

where 𝑏𝑖 is the ith viscous damper coefficient and 𝜉𝑖 is the velocity difference across the 

ith viscous damper which can be express as a function of the generalized velocity. 

Therefore, for the RIP pendulum 

  𝐷(�̇�) =
1

2
𝑏1�̇�

2                                                                                                                    (3.30) 

The non-conservative torque 𝜏𝑛 is given by: 

Univ
ers

ity
 of

 M
ala

ya



88 

 𝜏𝑛 =
𝑑𝐷(�̇�)

𝑑�̇�
=

𝑑

𝑑�̇�
(
1

2
𝑏1�̇�

2) = 𝑏1�̇�
2                                                                                      (3.31) 

The constant 𝑏𝑖 is found to be 226×10−7 based on the free motion experiment (Acosta, 

2010). This value is very small, that is why the friction in the pendulum joint is generally 

neglected.   

3.4.2 Arm Joint 

The frictional torque in the motor shaft comprised of the dynamic friction, static 

friction, and natural damping.  The Coulomb friction model can be considered as a simple 

model given as: 

𝜏 = 𝜏𝑐sgn (
𝑑𝛼

𝑑𝑡
)                                                                                                                      (3.32) 

This model does not describe the friction at zero velocity (Gäfvert, 1999). The Lund 

Institute and Grenoble Laboratory (LuGre) model can be used to describe the friction at 

all points. The dynamic equation of LuGre model is as follows (Awtar et al., 2002): 

 
𝑑𝑧

𝑑𝑡
= 𝑣 − 𝜎0

|𝑣|

𝑔(𝑣)
𝑧                                                                                                                 (3.33) 

𝑔(𝑣) = 𝜏𝑐 + (𝜏𝑠 − 𝜏𝑐)𝑒
−(

𝑣

𝑣𝑠
)
2

                                                                                               (3.34) 

𝜏𝑟 = 𝜎0𝑧 + 𝜎1
𝑑𝑧

𝑑𝑡
+ 𝜎2𝑣                                                                                                         (3.35) 

where 𝑧 is the initial state of the model, 𝑣 is the velocity at �̇� = �̇�, 𝑣𝑠 is the Stribek’s 

velocity, 𝜎0 and 𝜎1 are the internal model parameters, 𝜎2 is the dynamic friction constant, 

𝜏𝑐 is the Coulomb friction torque, 𝜏𝑠 is the static friction torque and 𝜏𝑟 is the estimated 

friction torque. 
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3.4.3 System Identification 

The physical meaning of the parameters in equation (3.33)-(3.35) is explained in detail 

in (Altpeter, 1999). Also, the explanation and steps for identification of the parameters in 

equation (3.33)-(3.35) for RIP will be presented in this section. It can be stated that for 

the identification of all these parameters only the arm and the motor is needed, thus the 

pendulum is decoupled from the system. The open loop response is used in all these 

identifications. The least square algorithm can be used to identify 𝜎2 and 𝜏𝑐 by 

considering the first order system as follows: 

𝐽𝑎
𝑑𝑣

𝑑𝑡
+ 𝜎2 = 𝜏 − 𝜏𝑐sgn(𝑣)                                                                                                (3.36)  

The moment of inertia of the arm and motor 𝐽𝑎 can be estimated experimentally. To 

identify the 𝜏𝑠 the angle of the motor is feedback with a small PI action given in the form: 

𝑢 = 𝑔1𝑒 + 𝑔2 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
                                                                                                        (3.37) 

where 𝑒 is the error between the desired reference and measured state. 𝑔1,2 are PI gains. 

The parameters 𝜏𝑠, 𝐽𝑎 and 𝜏𝑐  are required to be known for identification of 𝑣𝑠 which can 

be known based on the above identification steps. By introducing a very small speed in 

the shaft of the motor (i.e. 
𝑑𝑧

𝑑𝑡
≈ 0) the fictitious state 𝑧 in equation (3.33) can be 

approximated as: 

𝑧 ≈
𝑣

|𝑣|

𝑔(𝑣)

𝜎0
                                                                                                                              (3.38) 

Also, 𝜏𝑟 from (3.34) can be approximated as: 

𝜏𝑟 = (𝜏𝑐 + (𝜏𝑠 − 𝜏𝑐)𝑒
−(𝑣 𝑣𝑠⁄ )2)sgn(𝑣)                                                                                  (3.39) 

The equation 
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 𝐽𝑎
𝑑𝑣

𝑑𝑡
= 𝜏 − 𝜏𝑟                                                                                                                       (3.40) 

can be linearized to  

𝑣(𝑡) = 𝑣𝑠√ln𝜀(𝑡)                                                                                                                  (3.41) 

The 𝜀 is given by: 

𝜀 =
𝜏𝑠−𝜏𝑐

(𝜏−𝐽𝑎
𝑑𝑣

𝑑𝑡
)sgn(𝑣)−𝜏𝑐

                                                                                                              (3.42) 

This approximation is valid for 𝜀 ≥ 1 and 𝜏𝑠 > 𝜏𝑐. The values of 𝜀 and 𝑣𝑠 can be found 

by inputting the sinusoidal torque to the system. The parameter 𝜎0 can be estimated by 

inputting the ramp signal in such a way that the angle cross zero. The range of values of 

the ramp signal should be around ±
4

5
𝜏𝑠. Therefore 𝜎0 ≈

∆𝜏

∆𝜙
. For identification of 𝜎1 the 

small displacement is assumed and 𝑔(𝑣) ≫ |𝑧|. hence  𝑣 = �̇� = �̇� from (3.33).  

Consequently, the linear second order equation can be used as: 

𝜏 = 𝐽𝑎�̈� + (𝜎1 + 𝜎2)�̇� + 𝜎0(𝜙 + 𝜙(0))                                                                               (3.43) 

Thus, the value of 𝜎1 can be estimated easily based on equation (3.44) since it is a 

linear second order system 

𝜎1 = 2𝜉√𝐽𝑎𝜎0 − 𝜎2                                                                                                               (3.44) 

where 𝜉 is the linear model damping constant.  

The identification result presented in literature Acosta (2010) indicates that the 

LuGre model can give a precise estimation of friction. This gives a chance to design a 

good friction compensator in the arm joint. Based on this, the control method can be 

Univ
ers

ity
 of

 M
ala

ya



91 

designed considering the RIP as a conservative system. The generic diagram for friction 

compensation model is presented in Figure 3.12. 

Arm Pendulum

LuGre or Coulomb or 

Coulomb with stiction 

friction models 

Controller 

_

+

+
_

+

Actual friction 

torque 

Estimated 

friction torque 

Desired 

pendulum angle 

RIP

 

Figure 3.12: Friction compensation model for RIP 

  

3.5 Review of Controllers applied on RIP system 

The main goal of RIP control is to swing up the pendulum near to the upright 

unstable equilibrium position and balance it there. Afterward, the arm is controlled to 

track the desired time-varying trajectory while the pendulum remains at an unstable 

position. Different kinds of controllers have been used for these purposes. These include 

the linear controllers, nonlinear time-invariant controllers, self-learning, and adaptive 

nonlinear controllers. This section presents the review of the state of art work proposed 

by the researchers on the RIP control.  

3.5.1 Linear Controllers Applied to RIP 

Having a linear model of RIP, a linear controller can simply be linked for state 

reference tracking (Chan et al., 2013). The design of gain matrix K is the only requirement 

of this controller as shown in Figure 3.13.  

Univ
ers

ity
 of

 M
ala

ya



92 

RIP modelK
UReference 

signal +
-
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Figure 3.13: Linear controller for reference tracking 

 

The assumptions made are: the system is full state controllable, the state variables can 

be measured and they are available for feedback, and the control input are unconstrained. 

Pole placement (PP) method can be used in this case to obtain suitable performance for 

control of overshoot and rise time. Given a linear closed loop system: 

�̇� = 𝐴𝑋 + 𝐵𝑈
𝑌 = 𝐶𝑋            

}                                                                                                         (3.45) 

The control vector 𝑈 can be designed in a state feedback form as follows (Tewari, 

2002): 

𝑈 = −𝐾𝑋                                              (3.46) 

therefore, equation (3.45) become  

�̇� = (𝐴 − 𝐵𝐾)𝑋 = 𝐴𝐶𝐿𝑋                                                                            (3.47)              

        

The PP comprises evaluating a gain matrix K in such a way that the desired poles in 

linear model of RIP system are the eigenvalues of 𝐴𝐶𝐿. The PP was used for stabilization 

control of RIP in literatures (Jadlovska & Sarnovsky, 2013; Lee et al., 2014), also Nath 

and Mitra (2014) presented the counter based controller and PP with integrator for swing 

up and stabilization controls respectively. They used energy criteria for the switching 

control. 

Linear quadratic regulation (LQR) is slightly more complex than PP. The LQR 

provides an optimal control law for a linear system with a quadratic performance index  𝐽. 
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The design problem is that of finding a control input 𝑈, which minimizes the performance 

index given by Bemporad et al. (2002):   

𝐽 = ∫ (𝑋𝑇𝑄𝑋 + 𝑈𝑇𝑅𝑈)𝑑𝑡
∞

0
                                              (3.48) 

where 𝑅 and 𝑄 are positive definite square matrices. The matrix 𝑅 and 𝑄 are used to scale 

the relative contributions of the terms of the quadratic forms 𝑈𝑇𝑈, and 𝑋𝑇𝑄𝑋, 

respectively. In this case, the 𝐾 in equation (3.47) is given by: 

𝐾 = 𝑅−1𝐵𝑇𝑃                             (3.49) 

moreover, the symmetric definite matrix P is the solution to the algebraic Riccati equation 

given by  

𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0          (3.50) 

Many researchers employed the LQR approach to design controllers for RIP. This is 

likely because the LQR guarantee the optimal control law. For example, the stabilization 

problem of RIP was solved using LQR in literature (Barbosa et al., 2011; Fujita et al., 

2014; Ghorbani et al., 2013; Mathew et al., 2013; Nguyen & Shen, 2011; Petchithai et al., 

2015; Seman et al., 2013). The stabilization and swing-up control are implemented via a 

unified LQR controller in literature Zhang and Zhang (2011) which can efficiently evade 

switching control between the two stages. Some researchers compared the performance 

of LQR with other linear controllers. The findings for this comparisons are contradictory. 

This is because the LQR method is shown to have lower overshoot and settling time than 

PP in literature (Lee et al., 2014). However, the results reported in the literature 

(Jadlovska & Sarnovsky, 2013) shows that the PP has superior robustness than LQR. 

Also, the mix of 𝐻2/𝐻∞ control is shown to be better than the LQR control. All these 

evaluations cannot be generalised because they are peculiar to the specific model of RIP 

and specific tuning of the corresponding controller. The controllers that can be designed 

using LQR or PP are considerably different. This is because LQR depends on the 

weighting matrices Q and R in literature (Ufnalski et al., 2015) while PP depends on 
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selected pole (Wei et al., 2016). Generally, a higher gain and better convergence can be 

achieved by selecting bigger Q gains for the LQR or poles that are more to the left half 

plane for PP controller. But this produced more vibrations at equilibrium (Chan et al., 

2013). When faster settling time is required, the LQR is prepared in choosing those states 

which is impossible with PP. Thus LQR can be used to manage the trade-offs between 

actuators and states more accurately as stated in (Chan et al., 2013).  

Linear Quadratic Gaussian (LQG) controller is another type of LQR that comprises 

the Kalman filter observer and optimal LQR controller as shown in Figure 3.14. The 

Kalman filter is used for noise immunity and state estimation. The detailed explanation 

on LQG is presented in (Videcoq et al., 2015). Measured states are used in LQR without 

a filter. Though LQR is a sufficient design approach that holds its phase margin 

assurances; this is in the case where by the observer dynamics are greatly faster than the 

system dynamics. The LQG was proposed in the literature (Chiluvuri et al., 2015) to 

ensure stabilization of pendulum with a minimal deviation of arm and pendulum angles. 

This is based on applying large penalties on arm and pendulum angles in the cost function 

of the optimal control law.  

RIP 

system

Kalman 

Filter
- K

Measurement noise v

yProcess noise 

U(t)

 

Figure 3.14: Linear quadratic Gaussian controller 

 

 The 𝐻∞ and 𝐻2 controllers are alternative robust and optimal controllers. These 

controllers are using different cost function and they are less sensitive to disturbances and 
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model errors (Hassibi et al., 1999). Al-Jodah et al. (2013) proposed the energy based 

controller for swing up and the mix of 𝐻2 and 𝐻∞ state feedback for stabilization control. 

The proposed stabilization controller was compared with the conventional full state 

feedback controller and LQR controller. The results showed that the proposed 

stabilization method is better than its comparatives.  

 The Proportional Integral Derivative (PID) controller shows an excellent 

performance for the linear system of RIP. The PID controller is commonly used in 

industries because of its simple structure and robustness in different operation conditions 

(Hassanzadeh & Mobayen, 2011). The PID controller alone, or in hybrid form with other 

controller, or PI controller (when the derivative gain is zero), or PD controller (when the 

integral gain is zero) have been widely applied to different control objectives of RIP in 

literature.  The PID controller was employed for the swing up control, partial feedback 

linearization for stabilization and the angle threshold for switching control. The Genetic 

algorithm (GA) based PID controller, particle swarm optimization (PSO) based PID 

controller and ant colony optimization based PID controller are proposed for stabilization 

and reference tracking controls of RIP in literature (Hassanzadeh & Mobayen, 2011). 

Kharitnove polynomial based PI controller was designed for the same purpose in 

literature (George et al., 2012). The PD controller and fuzzy PD controller were used for 

swing up and stabilization respectively in literature (Oltean, 2014). The energy threshold 

method was employed for switching control while the fractional order PD was applied 

for stabilization control of RIP in literature (Mandic et al., 2014). The performances of 

PD and PD with the dead zone for RIP stabilization was compared in literature (Rubio et 

al., 2013).   

The main issue in PID, PI, and PD controllers is finding the appropriate gains. The 

acceptable gains can be found simply from the experimentation via trial and error. Else, 
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Ziegler–Nichols method can be employed to set the initial gains. However, meta-heuristic 

algorithms can be used to find the best gains with respect to an objective function 

(Hassanzadeh & Mobayen, 2011).  

Chou and Chen (2014) investigated the new swing-up control method for RIP using 

energy based control and the feedback linearization method. The energy function is 

chosen to design the control law in which the gain k is selected based on the trajectories 

in the phase-plane. The result found a show that the fast energy rate depends on the value 

of gain k. Seman et al. (2013) proposed two ways for swinging up control of RIP based 

on energy. The first way is the conventional method based on comparing the present total 

energy of the RIP system with the energy in its up-right position. The second way is by 

using an exponentiation operation over the pendulum position. The stabilization control 

is tackled using LQR. Mathew et al. (2013) studied the performances of energy based and 

PD controllers for swing up control of RIP and sliding mode controller and LQR 

controllers for stabilization control. The simulation results indicate that the energy based 

controller is better than PD controller with less number of oscillation to reach the 

equilibrium position. Also for stabilization, the LQR has less overshoot and a faster 

settling time, but the Sliding Mode Control (SMC) is more robust in the presence of 

parameter uncertainties. Nguyen and Shen (2011) proposed a hybrid control scheme for 

swing up and LQR control for the stabilization of RIP. The flexibility of the hybrid control 

scheme is based on the choice of energy based swing up the controller and heuristic swing 

up the controller at the different pendulum’s positions. A novel composite control method 

for tracking control of RIP is reported in the literature (Aguilar-Avelar & Moreno-

Valenzuela, 2015). This scheme comprises of an energy-based compensation and a 

feedback-linearization-based controller. The analysis of the closed loop system indicated 

that the system is uniformly ultimately bounded to the trajectories of error. The real-time 

experiments and numerical simulations show the viability of the proposed method. The 
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proposed control scheme is compared with the hybrid output tracking controller 

consisting of a differential flatness, nonlinear backstepping and small gain theorem 

proposed in in literature (Yan, 2003). 

The trajectory tracking control of RIP using active disturbance rejection control 

(ADRC) method was studied in literature (Ramírez-Neria et al., 2014). A linear controller 

of the ADRC was designed based on the linear observer. This is done on the origin of the 

flat tangent system linearization around an arbitrary equilibrium. The proposed method 

was compared with the SMC in real time. The results show that the proposed method has 

superior performance over the SMC. Aguilar-Avelar and Moreno-Valenzuela (2014) 

compared a feedback linearization control method and output tracking nonlinear 

controller for tracking control of RIP. The results indicated the superiority of the feedback 

linearization method based on regulation and tracking error with slightly higher control 

torque. 

3.5.2 Nonlinear Time Invariant Controllers 

The SMC, fuzzy logic control and back-stepping are the most commonly 

employed nonlinear control strategies applied on RIP. It is widely known that SMC 

effectively provides robust control for the nonlinear system even in the presence of 

uncertainties and disturbances (Hung et al., 1993). This method has been applied 

successfully for RIP control due to its attractive features (Fairus et al., 2015). These 

features include easy realization, compatibility to Multiple Input and Multiple Output 

(MIMO) systems, good control performance for a nonlinear systems such as good 

transient response, fast response, and insensitivity to external disturbance and plant 

parameter variation (Faradja et al., 2014). Also, it is possible to guarantee the stability of 

SMC because it benefits from the merit of switching control law (Pan et al., 2012). 

However, the switching control law introduced chattering in the system. This is due to its 
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alternating switching, which occurs from its digital implementation (Feng, 2006). The 

stabilization problem of RIP was solved using a different kind of SMC. For example, 

Linear Matrix Inequalities (LMI) based multi-objective integral SMC is proposed in 

(Fairus et al., 2015). The proposed controller indicates the superior performance 

compared with the LQR. The SMC based on higher order differentiator observer was used 

for stabilization control of RIP in literature (Faradja et al., 2014) and conventional SMC 

was proposed in (Ashrafiuon & Whitman, 2012) for the same purpose. Stabilization 

problem of RIP was solved using SMC with time delay in literature (Pan et al., 2012). 

Cascade optimal SMC was proposed in the literature (Muske et al., 2012) for RIP 

stabilization control. The parameters of SMC were optimally updated using a discrete-

time, nonlinear model predictive control structure. Kurode et al. (2011) proposed the 

SMC for both swing up and stabilization controls of RIP. The proposed method was 

compared with the PD swing up and LQR stabilization controllers. The results show that 

the SMC can swing up within a small period and it is more robust than PD and LQR 

controllers, respectively.  

The proposed controller by Kurode et al., (2011) was shown to be better than PD 

controller swing-up and LQR stabilization. The integral SMC based on the observed 

values of the state variables is proposed in in literature (Ferreira et al., 2011). The novel 

algorithm outperformed its comparative in both pendulum stabilization and trajectory 

tracking control. 

FLCs are often employed for nonlinear systems control. This due to its attractive 

features which include easy incorporation of expert knowledge into the control law, less 

model dependent, robustness and ease of use to model linguistic rules. FLC can 

approximate any nonlinear control law based on the number of the fuzzy sets. Yet, the 

stability of a general FLC is difficult to confirm. This is due to the piecewise nature of 
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the control law which makes it difficult to confirm the Lyapunov stability. Different types 

of FLC have been used for different control objective of RIP in literature. A stabilization 

control of RIP was tackled using robust FLC in cascade form (Alt et al., 2011). Both inner 

and outer FLCs in literature (Alt et al., 2011) are based on a uniform fuzzy set with a 

minimum number of rules. The Swing-up control, stabilization control, and trajectory 

tracking controls problems were solved using intelligent optimized cascade fuzzy-PD 

controller based on GA and differential evolution in literature (Oh et al., 2012). A parallel 

distributed compensation based FLC using LQR method is reported in (Fairus et al., 2013) 

for stabilization control of RIP system. The composite FLC (CFLC) for swing up and 

stabilization of RIP system is presented in literature (Li, 2013). This is essentially state 

feedback control by fuzzy summation of FLC and PD controls. In literature (Hassan et 

al., 2013), the performance of FLC was shown to be better in comparison with LQR for 

stabilizing the RIP system. The variable universe of discourse FLC (VUDFLC) was used 

for stabilization control of RIP in (Long et al., 2014). The simulation results indicate the 

robustness and effectiveness of VUDFLC over the general FLC. Fuzzy PD Controller 

was used for stabilization control in literature (Oltean, 2014; Oltean & Duka, 2014).   

The SMC have been hybridised with other controllers, especially for suppressing 

chattering. For example, SMC and FLC were hybridized in literature (Ahangar-Asr et al., 

2011) for stabilization control of RIP. This control scheme has the advantages of both 

constituents and deviates from the limitations of each constituent.   

Nonlinear LQR was applied in the stabilization of nonlinear control of RIP called 

State-Dependent Riccati Equation (SDRE) method (Jadlovská & Sarnovský, 2013). This 

is based on the transformation of the nonlinear system into its equivalent form through 

extended linearization. The results found by SDRE indicate a better performance than the 

standard LQR in terms of settling time and overshoot. A novel swing up control of RIP 
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by means of the Speed-Gradient method which is based on the measured coordinates is 

reported in the literature (Aracil et al., 2013). A nonlinear stabilization based on the 

Forwarding method was presented, and shown to be better than LQR stabilization. 

Lyapunov-based switching method was used. In work reported in the literature (Casanova 

et al., 2015), the researchers investigated the real-time application of an event-based 

control method for tracking control of RIP. The communication between the plant and 

the controller is achieved via Ethernet, i.e.  TCP/IP. This reduced the bandwidth used by 

control loop and led to a Networked Control System. The experimental results indicate 

how the proposed method can reach a substantial reduction of the bandwidth consumed 

with an insignificant worsening of the performance.   

Aguilar-Avelar and Moreno-Valenzuela (2015) hybridized a feedback-linearization-

based controller with an energy-based compensation for reference tracking control of 

RIP. The proposed method ensured that the closed-loop system is uniformly ultimately 

bounded. The proposed method demonstrate a better tracking performance than the 

combination of back-stepping, small gain theorem and differential flatness proposed in 

(Yan, 2003). Tsuge et al. (2014) developed nonlinear controller based on polynomial and 

non-polynomial representations using PSO and sum of squares methods for stabilization 

of RIP. The stability condition of polynomial and non-polynomial systems were derived 

by approximating the domain of attraction with input magnitude constraints. The tensor 

product model transformation based swing-up control of RIP was proposed using the LMI 

based control in literature (Ileš et al., 2011). The stabilization control of RIP was tackled 

using interconnection and damping assignment passivity- based control in literature 

(Ryalat & Laila, 2013). The energy shaping where the reference energy function to the 

passive map was allocated, and injection of damping to guarantee asymptotic stability. 

Fabbri et al. (2013) applied the Packet-Based Control method with the dynamic controller 

for swing-up and stabilization control of RIP. Ethernet network was used to implement 
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the network communication channel. The proposed controller was compared with the 

conventional local controller for divers time-varying actuation delays which indicate its 

effectiveness. Aracil et al. (2013) investigated a new nonlinear method for RIP control. 

The Speed-Gradient approach based on directly measured coordinates was used to swing-

up the RIP. The nonlinear controller based on the Forwarding method was proposed for 

stabilization of RIP. Türker et al. (2012) proposed the stabilization control of RIP using 

a static feedback controller based on direct Lyapunov method and partial feedback 

linearization. The asymptotic stability of the system has a region of attraction containing 

nearly all points in the upper half-plane of the pendulum independent of the physical 

parameters. The direct Lyapunov stability method based on a set of transformations for 

stabilization of RIP is proposed in (Turker et al., 2013). Fabbri et al. (2013) investigated 

the packet-based control (PBC) method for swing up and stabilization controls of RIP in 

real time. The PBC was compared with a local micro-controller for diverse time-varying 

actuation delays. The results indicate the validity and robustness of PBC method in the 

presence of actuation delays.  

3.5.3 Self-learning and Adaptive nonlinear controllers  

Quyen et al. (2012) proposed a hybridization of a PID controller and ANN for the RIP. 

Here, the ANN was trained by using the input and output data via a supervised learning 

method. The training data is derived from the model of RIP with the PID controller of 

two variables. The output controller based on Attractive Ellipsoid Method (AEM) and 

adaptive state estimator was developed in (Ordaz & Poznyak, 2012) for the stabilization 

of RIP. This method guaranties the stabilization of the controlled system trajectories 

within an ellipsoid of a “minimal size.” The same method was proposed in the literature 

(Ordaz & Poznyak, 2016) with some modification of the AEM idea that allows the use of 

online information acquired during the process. Azar and Serrano (Azar & Serrano, 2015) 

investigated the adaptive SMC, second order SMC and PD+SMC for stabilization control 
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of RIP. The variable structure design procedure and Lyapunov stability theorem are used 

to develop these control methods to obtain asymptotically stable system trajectories. The 

results obtained indicate the superiority of adaptive SMC aver second order SMC and 

PD+SMC. A novel adaptive NN-based control method for RIP was proposed in the 

literature (Moreno-Valenzuela et al., 2016). Based on the input and output weights 

adaptation laws, the proposed method can guarantee reference tracking of the signal for 

the arm while the pendulum remains at an unstable position. Three different reference 

tracking were tested namely: sinusoid trajectory with torque disturbances, complex 

trajectory and sinusoid trajectory with additive Gaussian noise in measured feedback 

signals torque. The proposed method was compared with linear PID controller, adaptive 

NN+PID, and adaptive NN+PD controller. The proposed control method was found to be 

more robust than the comparative methods. Lyapunov-based adaptive controller was 

proposed in the literature (Chen & Huang, 2014) to stabilize the RIP with time-varying 

uncertainties. The hierarchical adaptive back-stepping SMC was proposed in (Rudra et 

al., 2013) for balancing control of RIP subjected to the external disturbances. The RIP 

model was decoupled into two subsystems. To derive each subsystem to the desired 

sliding surface, an adaptive back-stepping based control law was designed for each 

subsystem. The balancing control of RIP using a Temporal Based NN (TBNN) model 

was proposed in (Hercus et al., 2013). The online training ability of TBNN controller 

makes it possible to control the RIP without the need of its exact model. The Adaptive 

Neuro-Fuzzy Inference (ANFIS) controller was presented in literature (Agrawal & Mitra, 

2013) for balancing of RIP. The simulation results demonstrate that ANFIS controller is 

better when compared with FLC and PID controller in terms of overshoot, settling time 

and parameter variation. Singh et al. (2012). Studied the linear fusion function based on 

LQR mapping, and tuning of controller parameters adaptively using ANFIS for 

stabilization of RIP. The weights tuning and number of rule explosion which are the main 
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issues in FLC are eliminated by the proposed method. The proposed method is shown to 

be better in disturbances rejection, tracking performance and robustness against 

parameters variation than the classical LQR controller.  

3.5.4 Disturbance Observer  

The external disturbances or unmodelled system dynamics can cause law frequency 

disturbances in RIP control. The law frequency disturbances can be rejected by 

disturbance observer (Chen et al., 2000). The disturbance observer aids in improving the 

control action of the proposed controller. A disturbance observer is employed to estimate 

a state of the system. Then, the estimation of disturbance can be accomplished by 

comparing the measured and predicted system states. The resulting estimated disturbance 

is added to the proposed controller’s output as shown in Figure 3.15. The generalized PI 

disturbance observer based control was used for stabilization of RIP in literature 

(Ramírez-Neria et al., 2014). Stamnes et al. (2011) confirm the presence of a globally 

exponentially convergent speed observer in closed loop form for general Euler–Lagrange 

systems. The complexity of the observer is reduced compared to the one proposed in the 

literature (Astolfi et al., 2010). The proposed observer is used to approximate the 

pendulum’s velocities. 

Proposed 

controller

RIP

Disturbance 

Observer 

_
+

+

+

 

Figure 3.15: Control Objectives of the RIP 

3.6 Control Objective of RIP 

There are four main control objectives of RIP which include: Swing-up control, 

stabilization control, switching control and trajectory tracking control. The block diagram 
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in Figure 3.16 describes how these control objectives are implemented. These control 

objectives will be discussing in this section. The demonstration of the control objectives 

of RIP is done using energy based controller in Matlab Simulink environment.  

Swing up controller

Stabilization ontroller

Switching mode 

control
Arm

Pendu

lum

Desired 

reference 

signal

Reference tracking 

control 

 

Figure 3.16: Description of the control objective of RIP 

3.6.1  Swing up control 

The swing-up control is the controlling the pendulum from downward stable position 

to upward unstable position. Normally this objective is implemented together with the 

stabilization control. When the swing up controller swing the pendulum near to the 

equilibrium position the stabilization controller is switch on by the switching mode 

controller.  

3.6.1.1 Energy based swing up controller  

The main control objective for RIP is to move the pendulum from the stable down 

position to the upright unstable position as quickly as possible and kept it there. Many 

types of control methods have been applied to solve this problem. For example, nonlinear, 

linear, SMC, partial feedback linearization has been used as disused in section 3.5.1 to  

3.5.4. The energy based control strategy for under actuated systems has been studied by 

many researchers.  This is by using the passivity and energy of the system. The major 

advantage of this method is the easiness in developing the controller from the function of 

energy storage, that adopts the system’s mechanical energy. In addition, the energy based 

controller can confirm the asymptotic stability of the equilibrium, since it derived straight 
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from the total energy of the system. The energy based controller is the original back bone 

of many other intelligent control systems (Ordaz & Poznyak, 2016). Moreover, it is easier 

to used energy as a mode of switching between swing up and stabilization controller when 

energy based controller is used. Also, the implementation of energy based controller in 

real time is more realistic. This state the motivation of selecting the energy based 

controller to illustrate the control objectives of RIP. 

Considering the nonlinear model of RIP as follows: 

(𝐽𝑟 + 𝑚𝐿𝑟
2)�̈� + 𝑚𝑙𝑝

2�̈�𝑠𝑖𝑛2𝛼 + 𝑚𝑙𝑝
2�̇��̇� sin 2𝛼 −  𝑚𝐿𝑟𝑙𝑝�̈� cos 𝛼 +  𝑚𝐿𝑟𝑙𝑝�̇�2 sin 𝛼 =

𝜏 − 𝐵𝑟�̇�                                                                                                                        (3.51) 

(𝐽𝑝 + 𝑚𝑙𝑝
2)�̈� − 𝑚�̈�𝐿𝑟𝑙𝑝 cos 𝛼 −

1

2
𝑚�̇�2𝑙𝑝

2 sin 2𝛼 −  𝑚𝑔𝑙𝑝 sin 𝛼 = −𝐵𝑝�̇�              (3.52) 

The energy based swing up a controller can be designed for a pendulum in stable down 

position. The equation (3.52) can be re arrange and presented as follows: 

�̈� = 𝛤−1(𝛿(𝛼)�̈� + 𝜎(𝛼)�̇�2 + 𝜑(𝛼) − 𝐵𝑝�̇�)                                                          (3.53) 

where 𝛤 = 𝐽𝑝 + 𝑚𝑙𝑝
2, 𝛤 > 0,   𝛿(𝛼) = 𝑚𝐿𝑟𝑙𝑝 cos 𝛼,     𝜎(𝛼) =

1

2
𝑚𝑙𝑝

2 sin 2𝛼   and   𝜑 =

𝑚𝑔𝑙𝑝 sin 𝛼. 

Now substituting equation (3.43) into equation (3.41), we have: 

�̈� =
−2𝜎�̇��̇� sin 2𝛼−𝐵𝑟�̇�− 𝑚𝐿𝑟𝑙𝑝�̇�2 sin𝛼+𝜏+𝛤−1𝛿(𝛼)𝜎(𝛼)�̇�2+𝛤−1𝛿(𝛼)𝜑(𝛼)−𝛤−1𝛿(𝛼)𝐵𝑝�̇�

𝐽𝑟+𝑚(𝐿𝑟
2+𝑙𝑝

2𝑠𝑖𝑛2𝛼)−𝛤−1𝛿2(𝛼)
       (3.54) 

Therefore, the applied torque is: 

𝜏 = 2𝜎�̇��̇� sin 2𝛼 + 𝐵𝑟�̇� +  𝑚𝐿𝑟𝑙𝑝�̇�2 sin 𝛼 − 𝛤−1𝛿(𝛼)𝜎(𝛼)�̇�2 − 𝛤−1𝛿(𝛼)𝜑(𝛼) +

𝛤−1𝛿(𝛼)𝐵𝑝�̇� + �̈�(𝐽𝑟 + 𝑚(𝐿𝑟
2 + 𝑙𝑝

2𝑠𝑖𝑛2𝛼) − 𝛤−1𝛿2(𝛼))                                           (3.55) 
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The pendulum dynamics in terms of pivot acceleration 𝑎 can be defined as (Mathew 

et al., 2013): 

𝐽𝑝�̈� +
1

2
𝑚𝑙𝑝(𝑔 sin 𝛼 − 𝑎 cos 𝛼)                                                                              (3.56) 

where 𝑎 is the pendulum link base linear acceleration which is proportional to the arm 

torque and it can be expressed as: 

  𝜏 = 𝑚𝑟𝐿𝑟𝑎                                                                                                              (3.57) 

The energy function of the RIP neglecting the linear velocity of the pendulum can be 

defining as: 

𝐸(𝑡) = 𝐾(𝑡) + 𝑃(𝑡) =
1

2
𝐽𝑝�̇�2 +

1

2
𝑚𝑙𝑝𝑔(1 − cos 𝛼)                                            (3.58) 

�̇�(𝑡) = 𝐽𝑝�̇��̈� +
1

2
𝑚𝑙𝑝𝑔�̇� sin 𝛼                                                                                (3.59) 

from equation (3.46) the sin 𝛼 can be express as follows: 

sin 𝛼 =
1

𝑚𝑔𝑙𝑝
(−2𝐽𝑝�̈� + 𝑚𝑙𝑝𝑎 cos 𝛼)                                                                       (3.60) 

substituting equation (3.60) in equation (3.59) we have: 

�̇�(𝑡) =
1

2
𝑚𝑙𝑝𝑎�̇� cos 𝛼                                                                                             (3.61) 

Using the Lyapunov theory for stability, the Lyapunov function can be chosen as 

(Chou & Chen, 2014)   

𝑉 =
1

2
𝐸2 ⇒ �̇� = 𝐸�̇�                                                                                             (3.62) 

�̇� = 𝐸 (
1

2
𝑚𝑙𝑝𝑎�̇� cos 𝛼)                                                                                           (3.63) 
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The proportional control can be used to swing up the pendulum to the desired reference 

energy 𝐸𝑟 as: 

𝑎 = (𝐸 − 𝐸𝑟)�̇� cos 𝛼                                                                                             (3.64) 

By setting 𝐸𝑟 = 𝐸𝑝, the link will swing to the upright position. Where 𝐸𝑝 is the 

potential energy of the pendulum. The control signal magnitude should be large inorder 

to have quick energy change. As such the following energy based swing up controller is 

implemented 

  𝑎 = 𝑆𝑎𝑚𝑎𝑥
𝑘. (𝐸 − 𝐸𝑟)sgn(�̇� cos 𝛼) for  𝑘 > 0                                                       (3.65) 

where 𝑘 is a control gain (tunable), all the routes initiating around the downward position 

will lastly converge to 𝐸 − 𝐸𝑟 = 0. Essentially, the speed of the convergence defends on 

the value of 𝑘, (i.e. the larger the value of 𝑘, the faster the convergence rate will be). 

𝑆𝑎𝑚𝑎𝑥
 is a function that saturate the control signal at maximum pendulum pivot 

acceleration 𝑎𝑚𝑎𝑥. The faster switching can be achiedved by taking the sign of �̇� cos 𝛼 

Let  �̈� = 𝜏1.  Therefore 𝜏1 = −
𝑙𝑝

𝐿𝑟
�̇�2 sin 𝛼 +

𝜏2

𝐿𝑟
  and it can be shown that 𝜏2 =

−𝐿𝑟�̈� + �̇�2𝑙𝑝 sin 𝛼 �̇� 

�̇� = −𝐸𝑚𝑙𝑝�̇� cos 𝛼 𝜏2                                                                                              (3.66)                                        

Obviously by selecting 𝜏2 = 𝑘. sgn(𝐸�̇� cos 𝛼). Therefore  

�̇� = −𝑘.𝑚𝑙𝑝|�̇�𝐸 cos 𝛼| ≤ 0                                                                                   (3.67) 

From the expression in (3.57), it can be seen that the function 𝑉 will stop at constant 

value or decrease to zero.  As for the trajectory of E=0, it can be determined from (3.48) 

as follows: 
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�̇�2 =
2𝑚𝑙𝑝𝑔

𝐽𝑝
(1 − cos 𝛼) =

4𝑚𝑙𝑝𝑔

𝐽𝑝
sin2 𝛼

2
 ⇒ �̇� = ±2√

𝑚𝑙𝑝𝑔

𝐽𝑝
sin

𝛼

2
                            (3.68) 

The energy based controller for swing up is shown in Figure 3.17. This is based on 

equation  (3.55). It is similar to the one used by Quanser RIP.  

 

Figure 3.17: Energy based swing up controller 

3.6.2 Switching control  

The switching control is the criteria that is used to change the control action from one 

mode to another. Energy threshold and pendulum angle threshold are used for this 

purpose in the literature. In this study, both pendulum angle and energy criteria is 

proposed for switching between swing up and stabilization control as in equation (3.59) 

switching criteria = {
Stabilization  {

|𝛼| <
𝜋

9
 and �̇� < 2.62rad/sec

|𝐸 − 𝐸𝑟| < 0.04 and �̇� < 2.62rad/sec
swing up control                                            otherwise

       (3.69) 

The Matlab switching strategy is shown in Figure 3.18. 
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Figure 3.18: Mode switching  

3.6.3  Trajectory tracking control 

The trajectory tracking control of RIP is the controlling the RIP in such a way that the 

arm tracks the desired time-varying trajectory while the pendulum remains at an unstable 

position. This objective is similar to the reference tracking of the two-wheeled robot. The 

signal generator can be used to generates the type of desired signal (i.e. Square, sine, 

sawtooth, random, etc.). The set point for trajectory tracking can be implemented as in 

Figure 3.19.  

 

Figure 3.19: Set point for trajectory tracking  

Recently, only few literature address this control objective using a different kind of 

controllers 
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3.6.4 Limitations of previous control methods applied on RIP and the 

opportunities for future research   

Most of the proposed controllers applied for RIP control are model dependent 

since most of them are based on integral and/or invariant motion. So, it is essential to 

have the accurate mathematical model of RIP. In this context, many types of RIP have 

been developed together with their mathematical models (Antonio-Cruz et al., 2015; 

Driver & Thorpe, 2004; Jadlovský & Sarnovský, 2013). Newton-Euler, Lagrange-Euler, 

and Lagrange methods were used to develop the nonlinear mathematical model of RIP 

(Driver & Thorpe, 2004; Fairus et al., 2015; Shamsudin et al., 2013). Lagrange multiplier 

was used in the derivation using Lagrange method, while the calculation of redundant 

forces was involved in Newton method. As a result, Newton-Euler, Lagrange-Euler, and 

Lagrange methods require complicated and tedious formulation for a large multi-body 

system (Nukulwuthiopas et al., 2002). Consequently, they likely led to an inefficient 

computation. There is a need to find the most accurate model of RIP that is free from the 

stated limitations. Kane's method can be regarded as an alternative method of modeling. 

This method does not require the calculation of multipliers or redundant forces. It is based 

on the partial velocities of the constituents of the system (Komistek et al., 1997). Hence, 

Kane's method is likely to be more efficient than Lagrange and Newton-Euler methods 

regarding computation. On the other hand, it should be stated that most literature are 

simplifying the generated model by assuming that the pendulum is rotating in a constant 

plane. However, in actual sense, the rotary motion of the arm should be considered all 

together with a pendulum. That is, to consider the actual plane in which the pendulum is 

rotating is different in every instant. This can make the developed model be more complex 

but with high accuracy. Moreover, the frictional force effect in pendulum and arm joint 

are normally neglected in previous works. However, the effect of friction in RIP is clearly 

visible. It has been shown in (Gafvert et al., 2015) that the friction in the driven arm might 
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cause LCs with high amplitude. This can have a significant impact on the performance of 

the proposed controllers.  

Most of the controllers proposed on RIP are for stabilization control objective of RIP. 

Though some other works deal with the stabilization control together with the swing up 

control objective which necessitate the introduction of switching control. But some of 

these work do not explain their switching control method. Another limitation is that most 

of the researchers applied their proposed intelligent self-learning or adaptive nonlinear 

controllers only on simulations. However, simulations studies can be used to demonstrate 

robustness to model uncertainties and disturbances. However, there may be some 

difficulties in practical implementation of such controllers. This includes the selection of 

the sampling time, sensor noise, and the total lag time for the real system. The 

experimental result would be more preferred to show the effectiveness and robustness of 

the controllers due to the real system effects mentioned. Also, the training of unstable 

ANN controller in real time is uncertain. It is expected that the simulation result should 

be validated with an experiment in real life settings. Many studies do not compare the 

performance of their proposed controller with the state of the art controllers. Therefore, 

it is difficult or even impossible to measure the effectiveness and robustness of the 

proposed controller over the state of the art controllers. Even for those who made the 

comparison, they could not make a general conclusion. Regarding the switching mode 

control, some researchers used pendulum angle threshold while others used the energy 

threshold. All these have the disadvantage of causing some oscillations in the system. 

There are many other intelligent controllers that are yet to be applied to the RIP, among 

which is a Type-2 fuzzy logic controller (T2FLC). Also, the hybrid T2FLC and SMC are 

yet to be tested on the RIP. Also, only a few works address the problem of trajectory 

tracking control. There is a need to have more research in this domain since it is one of 

the most important control objectives of RIP. Furthermore, the studies on the trajectory 
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tracking control have not included the swing up control. There is a need to have a 

comprehensive work that deals will all the control objectives with a detailed explanation 

to understand their relationship. All the proposed schemes used different controllers to 

achieve a single control objective (i.e. a controller for stabilization and another controller 

for swing up). 
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CHAPTER 4:  METHODOLOGY 

4.1 Introduction 

The methodology used for designing the optimized T1FPIDC and IT2FPIDC is 

presented in this chapter. The parameters optimized include the scaling factors for fuzzy 

PID controller and the MFs parameters. The cascade control method is also discussed in 

this chapter. The method for designing the internal structure for both T1FPIDC and 

IT2FPIDC are presented based on the GA, PSO, and CS algorithms. Finally, the 

methodology for applying the proposed controllers in the real world is presented.   

4.2 Cascade Control Method  

The structure of the general cascade control including the optimization of controller’s 

parameter as shown in Figure 4.1.  Numerous researchers implemented a different kind 

of control of RIP system based on cascade method. Some used the two similar controllers 

in cascade form as in literature (Casanova et al., 2015; Oh et al., 2012; Oltean, 2014) 

while others used different controllers in cascade form as in literature (Chen & Huang, 

2014; Muske et al., 2012).  

In this context, the system to be controlled is represented by two sub-systems, that is 

sub-system 1 and sub-system two as shown in Figure 4.1. The structure of cascade control 

method consists of two control loops with a controller in each loop. The input to the outer 

controller is the error between the desired input signal 𝑦𝑟𝑒𝑓 and the output of the sub-

system 2 𝑦0. The input to the inner controller is the difference between the output of the 

outer controller (𝑟0) and the output of sub-system 1 (𝑦𝑖). The output signal from inner 

controller (𝑟𝑖) serve as the control input to the sub-system 1, while the output of sub-

system 1 (𝑦𝑖) serve as the control input to sub-system 2. The tuning of the control 

parameters in cascade control strategy can be done individually as done in literature 

(Kumbasar & Hagras, 2014), i.e. to design the inner loop controller based on the propose 
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objective function firstly. Subsequently, the outer loop controller can be design after the 

tuning of the inner controller. However, the tuning can be done simultaneously since the 

two controller must be keep in touch to each other as done in literature (Oh et al. 2011). 

In this study, the optimization of the controller’s parameters will be done in two phases. 

In phased 1, the optimization algorithm is used to optimised the parameter of inner loop 

controller based on the reference trajectory generated from the outer loop controller.  In 

phase 2, the optimization algorithm is used to optimised the parameter of outer loop 

controller based on the desired reference trajectory set by the designer. At phase 2, the 

parameters of the inner controller are fixed. Both the two phases are performed to 

minimized the proposed performance criterion. 

Outer loop 

controller

Inner loop 

controller 
Sub-system 1 Sub-system 2

+

_

+

_

System 

Meta-heuristic Optimization 

method w.r.t. coast function

 

Figure 4.1: General cascade control structure with parameters optimization 

4.3 Proposed cost function 

In this research, the optimized T1FPIDC and optimized IT2FPIDC is implemented in 

cascade form. In this context, the design method for these controllers based on three 

different paradigms (i.e. GA, PSO and CS) will be presented. This will be done with 

respect to the new cost function presented as follows:  

 

cost(𝑡) =
𝑒−𝛾

2
(𝑡𝑠 − 𝑡𝑟) +

1−𝑒−𝛾

2
(𝐸𝑠𝑠 + 𝑀𝑝)                                      (4.1) 

 

where  𝐸𝑠𝑠 is the steady-state error, 𝑡𝑟 is the rise time in second, 𝑡𝑠 is the settling time 

in second, 𝑀𝑝 is the percentage overshoot and γ is the weighing factor. Two different 
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values of γ is considered in the study (i.e. 𝛾 = 1 and 1.5). The steady-state error and 

overshoot are need to be reduced in this study. The 𝛾 was chose to be greater than 0.7 in 

this study because the main control of the RIP system defends on the stability of the servo 

motor. Looking at the characteristics of the servo motor at the initial state the maximum 

overshoot and the steady state error are higher. To have the smooth control action, the 

overshoot and the steady state error need to be small (Van de Straete, Degezelle, De 

Schutter, & Belmans, 1998). This is the reason why the the overshoot and the steady state 

error are given priority in this research. The values of the 𝛾 was taken precisely to be 1 

and 1.5 becouse in all most all the literature using such kind of cost function with similar 

system as ours they take 𝛾 = 1 and 𝛾 = 1.5.  (Hassanzadeh & Mobayen, 2011, Gaing, 

2004). This is to investigate the effect of  𝛾 in the cost function and to study the possible 

different solutions.    

The dynamic behavior and convergence characteristic of GA, PSO and CS will be 

examine using the mean value (λ) and standard deviation (σ) of the cost value of all 

individuals during the computation processes. The mean value is employed to measure 

the algorithm accuracy while the standard deviation is used to measure the convergence 

speed of the algorithm. 

 Equations (4.2) and (4.3) show the formula for calculating σ and λ respectively (Haupt 

& Haupt, 2004).  

 

𝜎 = √
1

𝑛
∑ (𝑐𝑜𝑠𝑡𝑝𝑖

− 𝜆)
2𝑛

𝑖=1                                                                                                     (4.2) 

 

𝜆 =
∑ 𝑐𝑜𝑠𝑡𝑝𝑖

𝑛
𝑖=1

𝑛
                                                                                                                           (4.3) 

  

where n is the population size and cost is the individual cost value. 
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4.4 Design of T1FPIDC in cascade form  

4.4.1 Internal structure of T1FPIDC 

The standard Fuzzy PID structure with two inputs and one output discussed in section 

2.3 is used. The sigmatic diagram of proposed T1FPIDC is shown in Figure 4.2  

The inputs of the outer controller are error 𝑒1(𝑡) and change of error ∆𝑒1(𝑡) while its 

output is 𝑈. These inputs are normalized to E1(t) and ΔE1(t) in the range in which the 

input MFs of outer controller are define. This is done using the scaling factor 

𝐾𝑃1
 and  𝐾𝐷1

respectively. The output scaling factors 𝐾𝐼1 , 𝐾𝑎1
 are used to convert the 

signal U(t) in to  𝑢(𝑡). This normalization is done based on the following equations: 

𝐸1(𝑡) = 𝐾𝑃1
𝑒1(𝑡) = 𝐾𝑃1

(𝛼𝑟(𝑡) − 𝛼(𝑡)),                                                                                 (4.4) 

  ∆𝐸1(𝑡) = 𝐾𝐷1
∆𝑒1(𝑡) = 𝐾𝐷1

(𝑒1(𝑡) − 𝑒1(𝑡 − 1)),                                                                 (4.5) 

𝑢(𝑡) = 𝐾𝐼1 ∫𝑈(𝑡)𝑑𝑡 + 𝐾𝑎1
𝑈(𝑡).                                                                            (4.6)                                       

in which the instant sampling time is t, the parameter U(t) is the output of outer loop, 𝛼(𝑡) 

and 𝛼𝑟(𝑡)  are the pendulum angle and reference signal respectively. 

+

Outer type 1 Fuzzy PID Controller

Optimization of scaling factors and T1 MF  

Parameters using GA or PSO or CS algorithm

Type-1 

fuzzy 

logic 

controller_
+

+

+

Type-1 

fuzzy 

logic 

controller

Rotary Inverted Pendulum

Servo 

motor 
Pendulum 

1

1

1

1

1 1

1 1

1
1

2

2

2

2

2
2

2

_

+

+

2

2

Inner type 1 Fuzzy PID Controller

αr

α Φ

Φ
α

 

Figure 4.2 T1FPIDC in cascade form with parameter optimization  

Similarly, the inputs of the inner controller are error 𝑒2(𝑡) and change of error ∆𝑒2(𝑡) 

while its output is 𝑉. These inputs are converted to E2(t) and ΔE2(t) respectively. This will 
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be done through the normalization in the range in which the input MFs of inner controller 

are define based on the scaling factor 𝐾𝑃2
 and  𝐾𝐷2

. The output V(t) is converted to the 

control voltage to the servo motor 𝑣𝑚(𝑡) by scaling factors 𝐾𝐼2  and 𝐾𝑎2
. This 

normalization is done based on equations following equations: 

 𝐸2(𝑡) = 𝐾𝑃2
𝑒2(𝑡) = 𝐾𝑃2

(𝑢(𝑡) − 𝜙(𝑡)),                                                                                 (4.7) 

 ∆𝐸2(𝑡) = 𝐾𝐷2
∆𝑒2(𝑡) = 𝐾𝐷2

(𝑒2(𝑡) − 𝑒2(𝑡 − 1)),             (4.8)                                                           

       𝑉𝑚(𝑡) = 𝐾𝐼2 ∫𝑉(𝑡)𝑑𝑡 + 𝐾𝑎2
𝑉(𝑡).                                                                                 (4.9)                                  

where V(t) is the output of inner loop and 𝜙(𝑡) is the arm angle.  

The 𝑡ℎ𝑟𝑒𝑒 by 𝑡ℎ𝑟𝑒𝑒 asymmetrical rule based is employed in handling the T1FPIDC 

as shown in Table 4.1.  

Table 4.1 Rule base of T1FLC and IT2FLC with weights 

𝑬/∆𝑬 N Z P 

N N(𝜁1) NM(𝜁2) Z(𝜁3) 

Z NM(𝜁4) Z(𝜁5) PM(𝜁6) 

P Z(𝜁7) PM(𝜁8) P(𝜁8) 

 

The typical structure of this rule is as follows: 

𝑅𝑛 ∶  IF  E  is  𝐴𝑗
1  and  ∆E  is  𝐴𝑗

2  THEN  y is 𝑌𝑛 with 𝜁𝑛                                       (4.10) 

where 𝑛 = 1,… ,9 is the number of rules, 𝜁𝑛 is the weighing factor that is use to indicate 

the significant of corresponding rule and 𝜁𝑛 ∈ [0,1].  Three triangular MFs are used to 

defined the input of all T1FLC structure. This MFs are shown in Figure 4.3 and named 

N, Z and P that stand for negative, zero and positive respectively. Three parameters (𝑙𝑖𝑗 ,

𝑐𝑖𝑗
 and 𝑟𝑖𝑗) are used to defined the T1FSs of the T1FLC as shown in Figure 4.3. Where 
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𝑖 = 1,2 𝑎𝑛𝑑 𝑗 = 1,2,3.  The T1FLC outputs are defined by five singleton crisp 

consequents MFs as shown in Figure 4.4. Where N, NM, Z, PM and P stand for negative, 

negative medium, zero, positive medium and positive respectively. The weighing factor 

and the output MFs are not optimised in this research. The weight for all rules are set to 

1. The centre of sets type defuzzification and product implication are used in this study 

for T1FLC.  

N z P
µ

1

 

Figure 4.3: T1FS 

Z P
µ

1 PMNMN

0 0.75 1-0.75-1
 

Figure 4.4: The consequent MFs for T1FC and IT2FC 

4.4.2 Optimization of T1FPIDC cascade structure using Meta-heuristic 

optimization algorithms.  

As stated in chapter 1 that three different type of meta-heuristic algorithm will be used 

for optimization in this research (i.e., GA, PSO and CS). These optimization algorithms 

are used to optimized the scaling factors and the antecedent MFs parameters for both 

outer and inner controllers to minimized the proposed performance criterion. All the three 

antecedent MFs of T1FLC (N, Z, and P) are defined with three parameters for each input. 
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These parameters are 𝑙𝑖1 , 𝑐𝑖1 , 𝑟𝑖1 for N,  𝑙𝑖2 , 𝑐𝑖2 , 𝑟𝑖2 for Z and 𝑙𝑖3 , 𝑐𝑖3 , 𝑟𝑖3 for P (𝑖 = 1,2). 

Therefore, the total number of structural parameters of the antecedent MF to be optimized 

for two inputs T1FPIDC design are 9×2 = 18. Furthermore, four scaling factors for input 

and output of the T1FPIDC are need to be optimized. Hence the total parameters to be 

optimized using GA, PSO and CS for the design of T1FPIDC are 18 + 4 = 22 to 

minimised the performance criterion. The optimization variables for GA, PSO and CS are 

defined as 

 𝑥𝑇1𝐹𝑃𝐼𝐷𝐶inner loop
= (𝑙11

, 𝑐11
, 𝑟11

 𝑙12
, 𝑐12

, 𝑟12
 𝑙13

, 𝑐13
, 𝑟13

,

𝑙21
, 𝑐21

, 𝑟21
 𝑙22

, 𝑐22
, 𝑟22

 𝑙23
, 𝑐23

, 𝑟23
, 𝐾𝑃2

, 𝐾𝐷2
, 𝐾𝐼2 , 𝐾𝑎2

)                                               (4.11) 

for the inner loop. Similar variables are optimized using GA, PSO and CS for the outer 

loop. The optimization of T1FPIDC is accomplished in two phase. In phased 1, the GA, 

PSO, and CS are used to optimized the parameter of inner loop controller based on the 

reference trajectory generated from the outer loop controller. In phase 2, the GA, PSO, 

and CS are used to optimized the parameter of outer loop controller based on the desired 

reference trajectory set by the designer. At this phase, the parameters of the inner 

controller are fixed. Both the two-phase are performed to minimized the performance 

criterion. To have the normal convex T1FSs, the parameters of the antecedent MFs of the 

outer and inner control loop are optimized based on the constraints given by the following 

equations: 

𝑐𝑖1 < 𝑐𝑖2 < 𝑐𝑖3                                                        (4.12) 

𝑙𝑖1 < 𝑐𝑖1 < 𝑟𝑖1                           (4.13) 

𝑙𝑖2 < 𝑐𝑖2 < 𝑟𝑖2          (4.14) 

𝑙𝑖3 < 𝑐𝑖3 < 𝑟𝑖3          (4.15) 

Univ
ers

ity
 of

 M
ala

ya



120 

The pseudo codes for GA, PSO and CS methods based T1FPIDC are given in Table 

4.2, Table 4.3 and Table 4.4 respectively.  

Table 4.2: Pseudo code of GA based cascade T1FPIDC and IT2FPIDC design  

Step 1     Define the type of controller (T1FPIDC/IT2FPIDC) and its corresponding 

parameter setting  

i. Inner loop 𝑥𝑇1𝐹𝑃𝐼𝐷𝐶inner loop
 / 𝑥𝐼𝑇2𝐹𝑃𝐼𝐷𝐶inner loop

  

ii. Outer loop 𝑥𝑇1𝐹𝑃𝐼𝐷𝐶outer loop
 /  𝑥𝐼𝑇2𝐹𝑃𝐼𝐷𝐶outer loop

 

 

Step 2     Specify the upper and lower bounds of the controller parameter and define the 

population size 𝑃𝑛, number of generation 𝐺𝑛, type of crossover, crossover rate 𝐶𝑟, 

type of mutation and mutation rate 𝑀𝑟 

 

Step 3     Generate the initial random population of individual of size 𝑃𝑛 and evaluate the 

fitness of individual according to 𝑡𝑠, 𝑡𝑟, 𝑀𝑝, 𝐸𝑠𝑠, 𝐸𝑢 via equation 4.1 the value of 

the performance criteria in time domain are calculated by sending each controller 

parameter (individual) to Matlab Simulink, after that, the performance criterion is 

evaluated for each individual 

 

Step 4     IF (𝐺𝑛 > current_generation)  

THEN generate new solution 𝐶𝑟 ∗ 𝑃𝑛 by selecting the new solution of two parents 

from the current population and generate the child solution using crossover 

 

Step 5     IF (𝑀𝑟 > random_range) THEN mutate the child solution 

 

Step 6     Evaluate the child solution according to the performance criterion and add the 

child to the population. Now the population size become 𝑃𝑛 ∗ (𝐶𝑟 + 1) 

 

Step 7 Remove the extra least fit solution 𝑃𝑛 ∗ 𝐶𝑟 from the population and return the 

best fit members of population until stopping criteria 

 

Table 4.3: Pseudo code of PSO based cascade T1FPIDC and IT2FPIDC design  

Step 1 Define the type of controller (T1FPIDC/IT2FPIDC) and its corresponding 

parameter setting  

iii. Inner loop 𝑥𝑇1𝐹𝑃𝐼𝐷𝐶inner loop
 / 𝑥𝐼𝑇2𝐹𝑃𝐼𝐷𝐶inner loop

  

iv. Outer loop 𝑥𝑇1𝐹𝑃𝐼𝐷𝐶outer loop
 /  𝑥𝐼𝑇2𝐹𝑃𝐼𝐷𝐶outer loop

 

 

Step 2 Specify the upper and lower bounds of the controller parameter and generate 

the initial particles randomly,   
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Step 3 the value of the performance criteria in the time domain are calculated 

iteratively by sending each controller parameter (particle) to Matlab Simulink, 

after that, the performance criterion is evaluated for each particle according to 

𝑡𝑠, 𝑡𝑟, 𝑀𝑝, 𝐸𝑠𝑠, 𝐸𝑢 via equation 4.1 

 

Step 4 Then evaluate each particle in the initial population by using the objective 

function and search for pbest and gbest via equation 2.16 

 

Step 5 Calculate the velocity and the constriction factor for the particles via equation 

2.17 and 2.18 and check for the maximum velocity then, update the velocity and 

position of each particle. 

 

Step 6 For each particle, pbest is reset in comparison with the previous pbest  through 

fitness of objective function then gbest is updated in comparison with best pbest 

 

Step 7 If one of the terminating condition is satisfied, then stop, else go to step 5 

 

Step 8 The particle that has the latest gbest is an optimal parameter.   

 

Table 4.4: Pseudo code of CS based cascade T1FPIDC and IT2FPIDC design 

Step 1 Define the type of controller (T1FPIDC/IT2FPIDC) and its corresponding 

parameter setting  

i. Inner loop 𝑥𝑇1𝐹𝑃𝐼𝐷𝐶inner loop
 / 𝑥𝐼𝑇2𝐹𝑃𝐼𝐷𝐶inner loop

  

ii. Outer loop 𝑥𝑇1𝐹𝑃𝐼𝐷𝐶outer loop
 /  𝑥𝐼𝑇2𝐹𝑃𝐼𝐷𝐶outer loop

 

 

Step 2 Specify the upper and lower bounds of the controller parameter and define the 

number of population n, host nest 𝑥𝑖 for 𝑖 = 1,2,… , 𝑛, step size 𝑠, step size scaling 

factor 𝛼 and switching parameter 𝑃𝑎 

 

Step 3 generate the initial population of 𝑛 host nest 𝑥𝑖   

Step 4 WHILE stopping criteria or (Max_generation > Current_generation) Get a 

cuckoo randomly via Lévy flights and evaluates its fitness 𝐹𝑖 according to the 

performance criteria in time domain by sending each controller parameter to 

Matlab Simulink, after that, the performance criterion is evaluated for each nest 

according to 𝑡𝑠, 𝑡𝑟, 𝑀𝑝, 𝐸𝑠𝑠, 𝐸𝑢 via equation 4.1 

 

Step 5 Select the next 𝐹𝑗 randomly out of 𝑛  

IF(𝐹𝑗 < 𝐹𝑖) 

Replace 𝑗 by new solution  
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Step 6 Abandoned the worse nest according to a fraction 𝑃𝑎 and build new ones 

  

Step 7 Keep the nest with best solutions and find the current best by ranking the 

solutions  

4.5 Design of IT2FPIDC in cascade form  

4.5.1 Internal structure of T2FPIDC 

The sigmatic diagram of the two inputs structure of IT2FPIDC is illustrated in Figure 

4.5. This is similar to that of T1FPIDC regarding scaling factors.  

+
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Figure 4.5: IT2FPIDC in cascade form with parameter optimization 

 The rule base used here is the same as that used in T1FPIDC which is 3×3 (given in 

Table 4.1). The typical structure of the IT2FPIDC rule is as follows: 

𝑅𝑛 ∶  IF  E  is  �̃�𝑗
1  and  ∆E  is  �̃�𝑗

2  THEN  y is 𝑌𝑛 with 𝜁𝑛         (4.16) 

where 𝑛 = 1,… ,9 is the number of rules, 𝜁𝑛 ∈ [0,1]  is the weighing factor.  Three 

triangular MFs are used to defined the input of all IT2FLC structure. This MFs are 

illustrated in Figure 4.6 and named N, Z and P that stand for negative, zero and positive 

respectively. Five parameters (𝑙𝑖𝑗 , 𝑙𝑗𝑗
 𝑐𝑖𝑗

  𝑟𝑖𝑗  and 𝑟𝑗𝑗
) are used to defined the antecedent 

IT2FSs of the IT2FLC as shown in Figure 4.6. Where 𝑖 = 1,2 and 𝑗 = 1,2,3.  The upper 

and lower MF (𝜇
�̃�
 and 𝜇�̃�) are used to described the IT2FS (�̃�). In order to be fair in 

comparisons, the output of IT2FPIDC are the same as that of T1FPIDC  (five singleton 

crisp consequents) as shown in Figure 4.4. Also, the weighing factor and the output MFs 
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are not optimised in this case. The weight for all rules are set to 1. The description of all 

the process involve in the used IT2FLC is presented in chapter two. This include the 

fuzzification, rules, inference, type reduction and defuzzification. The centre-of-set type 

reduction is used in this study. It has been shown that the IT2FLC defuzzification can be 

done as follows (Karnik & Mendel, 1998): 

𝑦 =
𝑦𝑙+𝑦𝑟

2
           (4.17) 

where 𝑦𝑙  and 𝑦𝑟 are the type reduced set’s end points. These two end points can be 

calculated by reordering 𝑌𝑛𝜁𝑛 such that 𝑌1𝜁1 ≤ 𝑌2𝜁2 ≤ ⋯𝑌𝑁𝜁𝑁 and matched the 

corresponding firing interval set. The 𝑦𝑙  and 𝑦𝑟 can be calculated as follows (Qilian & 

Mendel, 2000): 

𝑦𝑙 =
∑ 𝑓𝑛𝑌𝑛𝜁𝑛+∑ 𝑓𝑛

𝑁
𝐿+1 𝑌𝑛𝜁𝑛

𝐿
𝑛=1

∑ 𝑓𝑛𝜁𝑛
𝐿
𝑛=1 +∑ 𝑓𝑛

𝑁
𝐿+1 𝜁𝑛

        (4.18) 

𝑦𝑟 =
∑ 𝑓𝑛𝑌𝑛𝜁𝑛+∑ 𝑓𝑛

𝑁
𝑅+1 𝑌𝑛𝜁𝑛

𝑅
𝑛=1

∑ 𝑓𝑛𝜁𝑛
𝑀
𝑛=1 +∑ 𝑓𝑛

𝑁
𝑀+1 𝜁𝑛

        (4.19) 

The switching points L and R are calculated using Karnik-Mendel type reduction 

method (Karnik & Mendel, 1998). The updated Matlab/Simulink toolbox for interval 

type-2 fuzzy logic system proposed by Taskin and Kumbasar (2015) is used to initialized 

the internal structure of the proposed optimized IT2FPIDC. Univ
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N Z P
µ

1

 

Figure 4.6: IT2FSs 

4.5.2 Optimization of IT2FPIDC cascade structure using Meta-heuristic 

optimization algorithms.  

The GA, PSO, and CS are used to optimized the scaling factors and the antecedent 

MFs parameters for both outer and inner controllers of IT2FPIDC to minimise the 

proposed performance criterion. All the three antecedent MFs of IT2FLC (N, Z, and P) 

are defined with five parameters for each input. These parameters are 𝐿𝑢𝑖1
, 𝐿𝑙𝑖1

,  𝐶𝑖1 , 𝑅𝑙𝑖1
,

𝑅𝑢𝑖1
  for N, 𝐿𝑢𝑖2

, 𝐿𝑙𝑖2
,  𝐶𝑖2 , 𝑅𝑙𝑖2

, 𝑅𝑢𝑖2
  for Z and 𝐿𝑢𝑖3

, 𝐿𝑙𝑖3
,  𝐶𝑖3 , 𝑅𝑙𝑖3

, 𝑅𝑢𝑖3
 for P (𝑖 = 1,2). 

Therefore, the total number of parameters of the antecedent MF to be optimized for two 

inputs IT2FPIDC design are 15×2 = 30. Obviously, it can be seen that T1FPIDC has 

less 12 structural parameters compared with IT2FPIDC. This means the IT2FPIDC has 

extra design DOF than T1FPIDC. Similar to T1FPIDC, the T2FPIDC has four scaling 

factors for input and output that are need to be optimized. Therefore, the total parameters 

to be optimized using GA, PSO and CS for the design of IT2FPIDC should be 30 = 34 

to minimised the performance criterion. The rules base and consequent MFs would not 

be optimized in the design of IT2FPID controller. This is for us to show the effectiveness 

of the extra DOF of IT2FSs provided by the FOU present in IT2FSs in a closed loop 

performance of a system. Hence the   optimization variables for GA, PSO and CS are 

defined as 
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 𝑥𝐼𝑇2𝐹𝑃𝐼𝐷𝐶inner loop
= (𝐿𝑢11

, 𝐿𝑙11
,  𝐶11

, 𝑅𝑙11
, 𝑅𝑢11

, 𝐿𝑢12
, 𝐿𝑙12

,  𝐶12
, 𝑅𝑙12

, 𝑅𝑢12
, 𝐿𝑢13

,

𝐿𝑙13
,  𝐶13

, 𝑅𝑙13
, 𝑅𝑢13

, 𝐿𝑢21
, 𝐿𝑙21

,  𝐶21
, 𝑅𝑙21

, 𝑅𝑢21
, 𝐿𝑢22

, 𝐿𝑙22
,  𝐶22

, 𝑅𝑙22
, 𝑅𝑢22

, 𝐿𝑢23
,

𝐿𝑙23
,  𝐶23

, 𝑅𝑙23
, 𝑅𝑢23

, 𝐾𝑃2
, 𝐾𝐷2

, 𝐾𝐼2 , 𝐾𝑎2
)                                                                      (4.20) 

Similar variables are to be optimised for the outer control loop.  Moreover, the 

weighing factor 𝜁𝑛 is not optimised and it is taken to be 1 for all the rules as in the case 

of T1FPIDC. The optimization of IT2FPIDC is accomplished in the same manner as 

described for T1FPIDC. Also have the normal convex IT2FSs, the parameters of the 

antecedent MFs of the outer and inner control loop are optimised based on the constraints 

given in the following equations: 

𝐿𝑢𝑖1
<  𝐿𝑙𝑖1

<  𝐶𝑖1 <  𝑅𝑙𝑖1
<  𝑅𝑢𝑖1

       (4.21) 

𝐶𝑖1 < 𝐶𝑖2 < 𝐶𝑖3             (4.22) 

𝐿𝑢𝑖1
< 𝐿𝑙𝑖1

< 𝐶𝑖1 < 𝑅𝑙𝑖1
< 𝑅𝑢𝑖1

        (4.23) 

𝐿𝑢𝑖2
< 𝐿𝑙𝑖2

< 𝐶𝑖2 < 𝑅𝑙𝑖2
< 𝑅𝑢𝑖2

        (4.24) 

𝐿𝑢𝑖3
< 𝐿𝑙𝑖3

< 𝐶𝑖3 < 𝑅𝑙𝑖3
< 𝑅𝑢𝑖3

        (4.25) 

The pseudo codes for GA, PSO and CS methods based IT2FPIDC are given in Table 

4.2, Table 4.3 and Table 4.4 respectively. I t is the same with that of T1FPIDC is in step 

1. For IT2FPIDC equation 4.20 will be used while for T1FPIDC equation 4.11 will be 

used.  

4.6 Parameter settings for optimization algorithms 

The number of particles in PSO, the population size in GA and the number of the nest 

in CS are taken to be the same (100). Also, their maximum number of iteration are taken 

to be the same (150). This is to have the fair comparisons between the proposed meta-

heuristic algorithms. The formulation and theories for GA, PSO and CS are presented in 

sections 2.4.   
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The selection of the specific parameter values is as a result of rigorous 

experimentations. All the algorithms are implemented in Matlab, and each of the methods 

is tested in 60 independent runs with 60 distinct initial trial solutions. All these were done 

in Matlab R2013a, 2.4GHz processor with 8GB RAM. The Simulink diagram for the 

implementation of these optimized controllers in cascade form is shown in Figure 4.7. 

The RIP model developed using Kane’s method was used for the simulation studies. This 

is the same for both T1FPIDC and IT2FPID; the only difference is in the controller. Also, 

the Matlab codes for IT2FPIDC optimized using the simple GA, PSO and CS used are 

shown in Appendix F. For the simulations, the initial arm, and pendulum angles are 0 and 

0.97 degrees. 

a. For GA method, population size = 100; crossover rate = 0.5; mutation rate = 0.1; 

maximum number of generation = 150, also the type of operators used for each 

population in GA are linear ranking selection algorithm, simple crossover and 

uniform mutation. The elitism method was used (i.e. to retained the best individual 

from present population to the next population).   

b. For PSO method, number of particles = 100; position acceleration constant 

learning rate c1 & c2 are set to 2; maximum number of generation = 150 and 

constriction factor = 0.4; ±𝑉𝑚𝑎𝑥 = ±20% of the search space.  

c. For CS The number of nest 𝑛 is chose to be 100. This is for us to be fair in the 

comparisons of the proposed meta-heuristic optimization method. Also it was 

stated in (Yang & Deb, 2009) that in multimodal system the nests are distributed 

at different local optima. Which means that if the number of local optima are much 

lower than the number of nest the CS can discover all the optima concurrently. 

This become advantageous and more important when dealing with multiobjective 

and multimodal optimization problems like in case of this research. step size 

scaling factor 𝛼 = 1, switching parameter 𝑃𝑎 = 0.25 
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Figure 4.7: Simulink diagram for the simulation studies 
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4.7 Experiment 

The RIP produced by Quanser is used in this research (Apkarian and collaborators 

2011). The schematic diagram and experimental setup of the used RIP is shown in Figure 

4.8 and 4.9 respectively. This setup consists of two optical encoders for measuring the 

pendulum’s and arm’s angles respectively. It also comprised of the data acquisition device 

for collecting the information from the encoders and give it to the computer.  The data 

acquisition device also received the control signal from the computer and gives it to the 

power amplifier for the amplification of the signal before feeding to the servo motor. In 

this study, the counter clockwise direction is considered as positive direction for the arm 

and the clockwise direction is the positive direction for the pendulum. The initial angle 

for the arm and pendulum in real time are 0 and -180 degrees respectively. Also, the 

experimental sampling time is 0.01sec. The stabilization controller is set to operate when 

the pendulum angle reached ±10°.  

Rotary inverted 

pendulum

Optical encoder 

pendulum

Optical encoder 

arm

Power amplifier

Computer

Data acquisition device 

(Quanser Q2 USB)

 

Figure 4.8: Schematic Diagram of RIP 
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Figure 4.9: Experimental setup of RIP 

All the control methods were implemented in Matlab/Simulink R2013a, 2.4GHz 

processor with 8GB RAM which interacts with practical RIP in real time through 

QUARC targets libraries. The experiments were performed on Quanser SRV02 RIP set 

up. The US Digital S1 single-ended optical shaft encoder that can offer a high resolution 

of 1024 lines per revolution (4096 counts per revolution in quadrature mode) was used 

for measuring both pendulum and arm angles. The Power Amplifier used was VoltPAQ-

X1. The data acquisition device used was Quanser Q2-USB (hardware in loop board 

type). It should be noted that to have a good real-time results; the power limits should be 

respected by the applied torque. The main specification of SRV02 RIP is presented in 

Table 4.5. The gearhead and sensor specifications of SRV02 RIP are presented in Table 

4.6 and Table 4.7 respectively (Apkarian and collaborators 2011).  The Simulink diagram 

is shown in Figure 4.11. 
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Table 4.5: Main SRV02 RIP Specification 

Description Values Variation 

Motor nominal input voltage 6.0 V  

Motor armature resistance 2.6 Ω ±12% 

Motor armature inductance 0.18 mH  

Motor current-torque constant      7.68×10−3N − m/A ±12% 

Motor back-emf constant      7.68×10−3V/(rad s⁄ ) ±12% 

High-gear total gear ratio 70  

Low-gear total gear ratio 14  

Motor efficiency 0.69 ±5% 

Geabox efficiency 0.9 ±10% 

Rotor moment of inertia           3.90×10−7kgm2 ±10% 

Tachometer moment of inertia           7.06×10−8kgm2 ±10% 

High-gear equivalent moment of inertia without 

external load 

          9.76×10−5kgm2  

Low-gear equivalent moment of inertia without 

external load 

         2.08×10−5kgm2  

High-gear Equivalent viscous damping coefficient          0.015Nm/(rad s⁄ )  

Low-Gear Equivalent viscous damping coefficient    1.50×10−4Nm/(rad s⁄ )  

Mass of bar load 0.038 kg  

Length of bar load 0.1525 m  

Mass of disc load 0.04 kg  

Radius of disc load 0.05 m  

Maximum load mass 5 kg  

Maximum input voltage frequency 50 Hz  

Maximum input current 1 A  

Maximum motor speed 628.3 rad/s  
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Table 4.6: Gearhead specification of SRV02 RIP 

Description Values 

Internal gearbox ratio 14 

Internal gearbox ratio (low-gear) 1 

Internal gearbox ratio (high-gear) 5 

Mass of 24-tooth gear 0.005 kg 

Mass of 72-tooth gear 0.030 kg 

Mass of 120-tooth gear 0.083 kg 

Radius of 24-tooth gear      6.35×10−3m 

Radius of 72-tooth gear 0.019 m 

Radius of 120-tooth gear 0.032 m 

 

Table 4.7: Sensor specification of SRV02 RIP 

Description Values Variation 

Potentiometer sensitivity 35.2 deg/V ±2% 

Tachometer sensitivity 1.50 V/kRPM ±2% 

SRV02-E encoder sensitivity 4096 counts/rev  

SRV02-EHR encoder sensitivity 8192 counts/rev  

 

The stabilization control and the trajectory tracking control will be examining in the 

experiments using optimized T1FPIDC and optimized IT2FPIDC. Also, the robustness 

of the proposed optimized controllers will be analyzed in real time. This will be done by 

attaching another rod to the free end of the pendulum. The additional rod has the weight 

and the length equal to the help of the length and the weight of the original pendulum (i.e. 

𝐿𝑎𝑑𝑑 = 0.1685𝑚 and 𝑚𝑎𝑑𝑑 = 0.0635𝑘𝑔). This is to temper the physical parameters of 

the pendulum and to alter the position of its center of mass.    
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4.8 Original Contributions in the Methodology of the present study 

This section will precisely present the original contributions in the methodology 

proposed in this study as follows: 

1. The performance index used in the design of T2FLCs using optimization methods 

are to minimize either the integral of squared-error (ISE), or the integrated absolute 

error (IAE), or the integrated of time-weighted-squared-error (ITSE). These 

performance indexes are often used in the design of control system due to their 

easy analytical evaluation in the frequency domain (Gaing, 2004). Nevertheless, 

these performance indexes have their individual advantages and disadvantages. 

Though the minimization of ISE and IAE can give the response with small 

overshoot but at the expense of long settling time. This is because the ISE weights 

all errors equally irrespective of time. The ITSE can overcome the shortcoming of 

the ISE. However, the processes of the derivation of the ITSE analytical formula 

are difficult and time-consuming (Krohling et al. 1997). In this research, a 

performance criterion in the time domain that includes four different control 

performance index is used. This performance criterion can fulfill the design 

requirements by manipulating with the value of γ.  As stated by Gaing (2004) that 

to reduce the steady-state error and overshoot, the weighing factor is set to be 𝛾 >

0.7. While to reduce the settiling time and rise time, the weighing factor is set to 

be 𝛾 < 0.7. This was illustrated in Figure 4.10. Univ
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Figure 4.10: Impact of weighing factor variation  

2. The dynamic behavior and convergence characteristic of the metaheuristic 

optimization algorithms was examine using the mean value  and standard deviation 

of the cost value of all individuals during the computation processes. The mean 

value is employed to measure the accuracy of the corresponding algorithm while 

the standard deviation is used to determine the convergence speed of the algorithm. 

3. The cascade control structure was used in this study due to the characteristics of 

RIP. The RIP is a single input multiple output (SIMO) system. In SIMO systems, 

change of one output by some disturbances affects the control of the other output 

(Oh et al. 2009). Considering the nonlinear behavior of RIP system, it is difficult 

to achieve the past settling time. Also, RIP has a high level of disturbances and 

large time constant. For a system like this, the best control strategy is cascade 

because it has the advantage of attenuating the effect of disturbances and improve 

the dynamics of the entire control loop (Kumbasar & Hagras, 2014). 

4. The novel CS algorithm was proposed in this study. Recent studies have confirmed 

the effectiveness of CS over other meta-heuristic algorithms (Civicioglu & 

Besdok, 2013; Jr et al., 2014). The successful record of the CS is due to its 

outstanding balance between local and global searching. Also, the CS has the fewer 

number of parameters required for its execution. In addition, based on the literature 

review performed in this study, there is no any T2FLC design using CS algorithm 

before this research. 

γ = 0.7

γ < 0.7 γ > 0.7

γ = 1 & γ = 1.5
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5. The optimization of the IT2FPIDC is accomplished in two phase. In phased 1, the 

meta-heuristic algorithm is used to optimized the parameter of inner loop controller 

based on the reference trajectory generated from the outer loop controller. In phase 

2 the meta-heuristic algorithm is used to optimized the parameter of outer loop 

controller based on the desired reference trajectory set by the designer. At this 

phase, the parameters of the inner controller are fixed. Both the two-phase are 

performed to minimized the performance criterion. In this manner, the average 

computational time taking for the controller is reduced. 

 

Univ
ers

ity
 of

 M
ala

ya



135 

 

Figure 4.11: Simulink diagram of the Experimental setup  
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CHAPTER 5: RESULTS AND DISCUSSIONS  

5.1 Introduction 

The simulations and experimental results are presented in this chapter. The results 

include the optimized antecedent MFs and best values for the scaling factors for both 

optimized T1FPIDC and optimized IT2FPIDC. The convergence characteristics of the 

proposed optimization algorithms are also presented. The stabilization control, 

disturbance rejection analysis, trajectory tracking control and validation of the simulation 

results with experimental results are also presented.  The GA based, PSO based and CS 

based T1FPIDC results will be presented before presenting the GA based PSO based and 

CS based IT2FPIDC. At the end of the chapter the comparisons between the proposed 

controllers will be presented.  

5.2 Simulation results for optimized cascade T1FPIDC 

5.2.1 Optimized antecedent MFs for T1FPIDC 

As stated in the methodology that for fair comparisons of the performance of the 

optimization algorithms, the size of the population and the maximum number of iterations 

for all T1FPIDC (GA-based, PSO-based and CS-based) design methods are chosen to be 

the same. That is the number of iteration and population size are 150 and 100 for all cases. 

The inner and the outer controllers are optimized to minimize the coast function in 

equation (4.1). By setting the weighing factor 𝛾 = 1, the optimized antecedent MFs for 

T1FPIDC inner loop 𝐸2 and ∆𝐸2, and outer loop 𝐸1 and ∆𝐸1 for GA-based, PSO based 

and CS-based are shown in Figure 5.1, 5.2 and 5.3 respectively.  Also, by setting the 

weighing factor 𝛾 = 1.5, the optimized antecedent MFs for T1FPIDC inner loop 

𝐸2 and ∆𝐸2, and outer loop 𝐸1 and ∆𝐸1 for GA-based, PSO based and CS-based are 

shown in Figure 5.4, 5.5 and 5.6 respectively. 

 

Univ
ers

ity
 of

 M
ala

ya



137 

10-1 -0.67 -0.33 0.33 0.67
0

1

0.2

0.4

0.6

0.8

N Z P

10-1 -0.67 -0.33 0.33 0.67
0

1

0.2

0.4

0.6

0.8

N Z P

10-1 -0.67 -0.33 0.33 0.67
0

1

0.2

0.4

0.6

0.8

N Z P

10-1 -0.67 -0.33 0.33 0.67
0

1

0.2

0.4

0.6

0.8

N Z P

 

Figure 5.1: Optimized antecedent MFs of T1FPIDC (GA-based), 𝜸 = 𝟏 
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Figure 5.2: Optimized antecedent MFs of T1FPIDC (PSO-based), 𝜸 = 𝟏 
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Figure 5.3: Optimized antecedent MFs of T1FPIDC (CS-based), 𝜸 = 𝟏 
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Figure 5.4: Optimized antecedent MFs of T1FPIDC (GA-based), 𝜸 = 𝟏. 𝟓 
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Figure 5.5: Optimized antecedent MFs of T1FPIDC (PSO-based), 𝜸 = 𝟏. 𝟓 
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Figure 5.6: Optimized antecedent MFs of T1FPIDC (CS-based), 𝜸 = 𝟏. 𝟓 

5.2.2 Convergence Characteristics based on T1FPIC  

To see the convergence characteristics of the proposed T1FPIDC, two statistical 

simulations are performed. That is the standard deviation of the coast value and mean 

value. The standard deviation is used to measure the speed of convergence for a given 
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algorithm while the mean value is used to indicate the accuracy of the algorithm. 

(Hassanzadeh & Mobayen, 2011). Figure 5.7 (a) and (b) shows that all T1FPIDC (i.e. 

GA-based, PSO-based and CS-based) can secure stable mean cost value, for weighing 

factor 𝛾 = 1 and 𝛾 = 1.5 using the same simulation conditions and cost function. 

However, CS-based controllers have the best mean value and cost value, which indicate 

that the CS-based T1FPIDC can achieve best accuracy than PSO-based and GA-based. 

This is the case for both 𝛾 = 1 and 𝛾 = 1.5. On the other hand, Figure 5.8. (a) and (b) 

shows that in the tendency of convergence of standard deviation of cost values, CS-based 

controllers is faster than PSO-based and GA-based controllers. However, PSO-based 

controllers are faster than GA-based controllers. This indicates that CS method have the 

best convergence efficiency than PSO and GA, also PSO have better convergence 

efficiency than GA. The optimized scaling factors for cascade T1FPIDC are shown in 

Table 5.1. 𝛾 = 1        𝛾 = 1.5 
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Figure 5.7: Tendency of convergence of mean value of cost function in T1FPIDC 
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Figure 5.8: Tendency of convergence of standard deviation value of cost 

function in T1FPIDC  
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Table 5.1 Optimized scaling factors for cascade T1FPIDC 

 Outer controller Inner Controller 

Algorithms 𝛾 𝐾𝑃1
 𝐾𝐼1 𝐾𝐷1

 𝐾𝑎1
 𝐾𝑃2

 𝐾𝐼2 𝐾𝐷2
 𝐾𝑎2

 

GA 1 8.754 6.321 0.0181 1.472 0.8321 0.6981 0.0072 0.4121 

1.5 7.914 5.106 0.0371 2.049 0.7941 0.7124 0.0091 0.3981 

PSO 1 9.625 7.769 0.0512 1.638 0.6114 0.5931 0.0065 0.5170 

1.5 9.625 7.485 0.0432 1.906 0.7096 0.5179 0.0049 0.5939 

CS 1 7.516 5.594 0.0129 1.516 0.7518 0.5593 0.0068 0.4654 

1.5 7.102 5.918 0.0351 2.319 0.6992 0.6192 0.0052 0.5467 

 

5.2.3 Stabilization control using optimized cascade T1FPIDC  

In this section, stabilization control of RIP using optimized cascade T1FPIDC has been 

analyzed. Figure 5.9 (a), (b), (c) and (d) shows the best simulation results of the pendulum 

angle, arm angle, output of outer control loop and the output of the inner control loop (i.e. 

voltage to the servo motor) respectively. These results are the one obtained by setting 𝛾 =

1. To see the effect of 𝛾, its value was change to 𝛾 = 1.5. Figure 5.10 (a), (b), (c) and (d) 

illustrate the best results for the pendulum angle, arm angle, output of outer control loop 

and the output of the inner control loop (i.e. voltage to the servo motor) respectively. The 

summary of the best simulation results in 60 runs for different values of 𝛾 are shown in 

Table 5.2. The best results was only shown because meta-heuristic optimization 

algorithms is used. The solution can be the absolute best out of other alternative solutions 

(Martínez-Soto et al., 2014). Different values are found for each run. In some cases, the 

solutions are far away from the desirable solution that if the average is taken, the whole 

solutions will be destroyed. Also, the following literature did similar work and the report 

only the best solution (Hassanzadeh & Mobayen, 2011; Kumbasar & Hagras, 2014; 
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Nguyen, Khosravi, Creighton, & Nahavandi, 2015; Yao, Hagras, Alghazzawi, & 

Alhaddad, 2013).  

  Based on these figures and Table 5.2. It can be seen that the optimized cascade 

T1FPIDC designed using CS method exhibit better results based on some performance 

measures such as rise time 𝑡𝑟, settling time 𝑡𝑠 (less than 2%), steady state error 𝐸𝑠𝑠 and 

maximum overshoot 𝑀𝑝 compared with GA and PSO based.  

For example, considering the pendulum angle results, the CS-based cascade T1FPIDC 

with 𝛾 = 1 have some improvements over GA based cascade T1FPIDC by 36.7%, 42.9% 

and 70.7% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively and over PSO based T1FPIDC by 12.6%, 45.7% 

and 69.2% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively. Similarly, the CS based cascade T1FPIDC 

pendulum angle results with  𝛾 = 1.5 have some improvement over GA based cascade 

T1FPIDC of 17.6%, 48.0% and 50.0% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively and over PSO based 

T1FPIDC of 23.3%, 49.1% and 20.8% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively. 

Also, considering the arm angle results, the CS-based cascade T1FPIDC with 𝛾 = 1 

have some improvements over GA based cascade T1FPIDC of 46.1%, 43.6% and 18.4% 

in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively and over PSO based T1FPIDC of 29.7%, 32.8% and 3.4% 

in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively. Similarly, the CS based cascade T1FPIDC pendulum angle 

results with  𝛾 = 1.5 have some improvement over GA based cascade T1FPIDC of 

38.2%, 50.3% and 31.5% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively and over PSO based T1FPIDC of 

58.8%, 32.2% and 17.3% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively. 
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Figure 5.9: Simulation results for cascade optimized T1FPIDC with 𝜸 = 𝟏  
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Figure 5.10: Simulation results for cascade optimized T1FPIDC with 𝜸 = 𝟏. 𝟓  Univ
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Table 5.2 Comparative Analysis of results for optimized cascade T1FPIDC 

 Based on GA Based on PSO Based on CS 

 𝛾 1 1.5 1 1.5 1 1.5 

𝑡𝑟(Sec) Pendulum(𝛼) 0.98 0.68 0.71 0.73 0.62 0.56 

Arm(𝜙) 0.49 0.34 0.37 0.51 0.26 0.21 

𝑡𝑠(Sec) Pendulum(𝛼) 2.10 2.27 2.21 2.32 1.20 1.18 

Arm(𝜙) 3.12 3.38 2.62 2.48 1.76 1.68 

𝐸𝑠𝑠 Pendulum(𝛼) 0.0091 0.0086 0.0089 0.0090 0.0085 0.0085 

Arm(𝜙) 0.0101 0.0088 0.0090 0.0086 0.0084 0.0082 

𝑀𝑝(%) Pendulum(𝛼) 0.41° 0.38° 0.39° 0.24° 0.12° 0.19° 

Arm(𝜙) 2.06° 1.63° 1.74° 1.39° 1.68° 1.15° 

𝐶𝑜𝑎𝑠𝑡  0.338 0.328 0.402 0.274 0.147 0.146 

 

5.2.4 Disturbances rejection analysis in stabilization control for optimized 

cascade T1FPIDCs  

The internal noise and external disturbances are added to the system to test for the 

robustness of the proposed optimized T1FPIDCs. A load of length 0.1685meter and mass 

of 0.0635 kg was added to the pendulum. Also, the white noise of 0.00634 power and 

10% parameter value changes are added to the process output (feedback) as shown in 

Figure 5.11. Figure 5.12 (a), (b), (c) and (d) shows the best simulation results of the 

pendulum angle, arm angle, output of outer control loop and the output of the inner control 

loop with disturbances for stabilization of RIP. The results indicate the effectiveness and 

robustness of the proposed controllers in present of noise, disturbances, and plant 

parameter changes. Though there is some oscillation between -0.2 to 0.2 degrees in arm 
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angle and -0.05 to 0.05 degrees in pendulum angle which are not a presence in the 

simulation without the disturbances. However, still all the controllers can stabilize the 

pendulum in an upright unstable position. Table 5.3 shows the performance of the 

controller with disturbances. It can be seen from these results that there is some difference 

in almost all the performance indexes when compared with the simulation results for no 

disturbances. Also, the optimized cascade T1FPIDC designed using CS method display 

an improved results based on some considered performance criteria (i.e. 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 ) 

compared with the T1FPIDCs designed based using PSO and CS methods.  

For the pendulum angle results, the CS-based cascade T1FPIDC in the presence of 

disturbances have some improvements over GA-based cascade T1FPIDC of 36.7%, 

42.9% and 70.7% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively and over PSO based T1FPIDC of 12.6%, 

45.7% and 69.2% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively. Note that this simulation was done for 

𝛾 = 1 only.  
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Figure 5.11: T1FPIDC including the source of noise Univ
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Figure 5.12: Disturbance rejection analysis for cascade optimized T1FPIDC 

with 𝜸 = 𝟏  
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Table 5.3 Comparative Analysis of results for disturbance rejection ability of 

optimized cascade T1FPIDC 

 GA based PSO based CS based 

𝑡𝑟(sec) Pendulum(𝛼) 0.89 0.78 0.70 

Arm(𝜙) 0.51 0.39 0.26 

𝑡𝑠(sec) Pendulum(𝛼) 2.20 2.10 1.40 

Arm(𝜙) 3.48 2.96 1.89 

𝐸𝑠𝑠 Pendulum(𝛼) 0.0100 0.0097 0.0098 

Arm(𝜙) 0.0111 0.0098 0.0096 

𝑀𝑝(%) Pendulum(𝛼) 0.75° 0.64° 0.24° 

Arm(𝜙) 4.62° 3.74° 3.68° 

Coast  0.481 0.448 0.208 

 

5.2.5 Trajectory tracking control for optimized cascade T1FPIDC  

Trajectory tracking control is one of the important control objectives of the RIP. It 

shows the ability of the controller to control the arm of RIP in such a way that the arm 

tracks the desired time-varying trajectory while the pendulum remains at an unstable 

position. This problem includes the controller design 𝜏𝜖ℝ in such a way that, the 

trajectory error �̃� and the pendulum angle are uniformly ultimately bounded (Khalil & 

Grizzle, 1996). That is the design controller guarantees the following: 

‖
�̃�(𝑡0)

𝛼(𝑡0)
‖ ≤ 𝑎 ⇒ ‖

�̃�(𝑡)

𝛼(𝑡)
‖ ≤ 𝑏, ∀𝑡 ≥ 𝑡0 + 𝑇                      (5.1) 

where 𝑎 and 𝑏 are constant, 𝑇 > 0 and �̃� = 𝜙𝑑 − 𝜙. The desired trajectory function 𝜙𝑑 

used in this study is the time varying square function. This function is continuous and 
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differentiable. Beside also, 𝜙𝑑 , �̇�𝑑 , and �̈�𝑑 are bound for all 𝑡 ≥ 0. The output function 

is define as: 

𝑦 = �̃� − 𝛼             (5.2) 

The detailed explanation and formulation of RIP trajectory tracking control can be 

found in (Aguilar-Avelar & Moreno-Valenzuela, 2015) and in chapter three.  

The best simulation results for RIP trajectory tracking control of optimized cascade 

T1FPIDC for 𝛾 = 1 is shown in Figure 5.13 (a) and (b) for pendulum angle and arm angle 

respectively. Also, the best simulation result for RIP trajectory tracking control by 

optimized cascade T1FPIDC for 𝛾 = 1.5 is presented in Figure 5.14 (a) and (b) for 

pendulum angle and arm angle respectively. It can be observed from both Figure 5.13 (a) 

and 5.14 (a) that the CS based cascade T1FPIDC reaches the set point more quickly 

compared with the GA based and PSO based cascade T1FPIDC. The detail comparative 

performance is presented in Table 5.4. It can be seen from that table that the CS based 

cascade T1FPIDC have some improved performance in terms of  𝑡𝑟, 𝑡𝑠, 𝑀𝑝 and delay 

time 𝑡𝑑. The stability of IT2FLC 's hard to confirm, Unlike sliding mode control (SMC) 

(Hung, Gao, & Hung, 1993; Utkin, 2013). The stability analysis of IT2FLC can be 

addressed within an SMC framework. The stability of hybrid IT2FSMC systems can be 

analyzed using Lyapunov stability theory (Feng, 2006). The common Lyapunov functions 

that can be used are: Global or common quadratic Lyapunov functions, piecewise 

quadratic Lyapunov functions and non-quadratic or fuzzy Lyapunov functions 

(Masumpoor & Khanesar, 2015). The stability analysis of the IT2FLC is not within the 

scope of the present research.   
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Figure 5.13: Optimized Cascade T1FPIDC simulation result for trajectory 

tracking control 𝜸 = 𝟏  
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Figure 5.14: Optimized Cascade T1FPIDC simulation result for trajectory 

tracking control 𝜸 = 𝟏. 𝟓   
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Table 5.4 Comparative trajectory tracking results for optimized cascade 

T1FPIDC (Simulation) 

Based on GA Based on PSO Based on CS 

 𝛾 1 1.5 1 1.5 1 1.5 

𝑡𝑟(Sec) Pendulum(𝛼) 0.58 0.56 0.52 0.57 0.51 0.49 

Arm(𝜙) 0.56 0.53 0.52 0.46 0.39 0.36 

𝑡𝑠(Sec) Pendulum(𝛼) 1.24 1.40 1.31 1.51 1.02 1.14 

Arm(𝜙) 1.39 1.57 1.41 1.59 1.27 1.42 

𝑡𝑑(Sec) Pendulum(𝛼) 0.62 0.69 0.58 0.61 0.53 0.55 

Arm(𝜙) 0.59 0.61 0.52 0.56 0.41 0.43 

𝐸𝑠𝑠 Pendulum(𝛼) 0 0 0 0 0 0 

Arm(𝜙) 0 0 0 0 0 0 

𝑀𝑝(%) Pendulum(𝛼) 2.19 2.37 2.05 2.12 1.93 2.01 

Arm(𝜙) 6.24 7.81 4.45 6.48 4.68 6.12 

 

5.3 Simulation results for optimized cascade IT2FPIDC 

5.3.1 Optimized Antecedent MFs for IT2FPIDC 

Similar to T1FPIDC, the size of the population and the maximum number of iterations 

for all IT2FPIDC (GA-based, PSO-based and CS-based) design strategies are chosen to 

be the same. That is the number of iteration and population size are 150 and 100 

respectively. This was done to have fair comparisons of the performance of the 

optimization algorithms as well as the performance of the IT2FPIDC and T1FPIDC.  The 

inner and the outer controllers are optimized to minimized the coast function in equation 

(4.1). By setting the weighing factor 𝛾 = 1, the optimized antecedent MFs for IT2FPIDC 

inner loop 𝐸2 and ∆𝐸2, and outer loop 𝐸1 and ∆𝐸1 for GA-based, PSO based and CS-
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based are shown in Figure 5.15, 5.16 and 5.17 respectively.  Also, by setting the weighing 

factor 𝛾 = 1.5, the optimized antecedent MFs for IT2FPIDC inner loop 𝐸2 and ∆𝐸2, and 

outer loop 𝐸1 and ∆𝐸1 for GA-based, PSO based and CS-based are shown in Figure 5.18, 

5.19 and 5.20 respectively. 
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Figure 5.15: Optimized antecedent MFs of IT2FPIDC (GA-based), 𝜸 = 𝟏 
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Figure 5.16: Optimized antecedent MFs of IT2FPIDC (PSO-based), 𝜸 = 𝟏 
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Figure 5.17: Optimized antecedent MFs of IT2FPIDC (CS-based), 𝜸 = 𝟏 
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Figure 5.18: Optimized antecedent MFs of IT2FPIDC (GA-based), 𝜸 = 𝟏. 𝟓 
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Figure 5.19: Optimized antecedent MFs of IT2FPIDC (PSO-based), 𝜸 = 𝟏. 𝟓 
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Figure 5.20: Optimized antecedent MFs of IT2FPIDC (CS-based), 𝜸 = 𝟏. 𝟓 

5.3.2 Convergence Characteristics based on IT2FPIDC 

Similar to T1FPIDC, the test for accuracy and speed of convergence was performed 

for IT2FPIDC. Figure 5.21 (a) and (b) shows that all IT2FPIDC (i.e. GA-based, PSO-

based and CS-based) can secure stable mean cost value, for 𝛾 = 1 and 𝛾 = 1.5 using the 

same simulation conditions and cost function. However, CS-based IT2FPIDC have the 
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best mean value and cost value compared to PSO and GA based IT2FPIDC. This indicates 

that the CS-based IT2FPIDC can achieve better accuracy than PSO-based and GA-based 

It2FPIDCs for both 𝛾 = 1 and 𝛾 = 1.5. On the other hand, Figure 5.22 (a) and (b) show 

that in the tendency of convergence of standard deviation of cost values, CS-based 

IT2FPIDC is faster than PSO-based and GA-based IT2FPIDCs. This indicates that CS 

method have the best convergence efficiency than PSO and GA. Also PSO, have better 

convergence efficiency than GA. The optimized scaling factors for cascade IT2FPIDC 

are shown in Table 5.4. 

Table 5.5 Optimized scaling factors for cascade IT2FPIDC 

 Outer controller Inner Controller 

Algorithms 𝛾 𝐾𝑃1
 𝐾𝐼1 𝐾𝐷1

 𝐾𝑎1
 𝐾𝑃2

 𝐾𝐼2 𝐾𝐷2
 𝐾𝑎2

 

GA 1 7.963 6.341 0.0054 1.941 0.7723 0.7052 0.0276 0.3759 

1.5 8.115 6.516 0.0061 2.011 0.7832 0.6982 0.0323 0.3870 

PSO 1 9.147 7.947 0.0089 1.798 0.6973 0.6197 0.0512 0.5545 

1.5 8.922 6.072 0.0073 1.394 0.7034 0.5991 0.0281 0.5747 

CS 1 8.014 6.136 0.0019 1.563 0.7276 0.5893 0.0205 0.5061 

1.5 7.913 5.862 0.0073 2.087 0.7134 0.6018 0.0393 0.4917 
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Figure 5.21: Tendency of convergence of mean value of cost function with 

IT2FPIDC 
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Figure 5.22: Tendency of convergence of standard deviation value of cost 

function in IT2FPIDC  

 

The best run time for T1FPIDCs and IT2FPIDCs in 100 iterations are shown in Table 

5.6. The run time for IT2FPID is higher for each corresponding optimization algorithm 

in T1FPIDCs. This due to the higher number of optimization parameters in IT2FPIDC 

compared with T1FPIDC.  

Table 5.6 Average computational time for IT2FPIDCs and T1FPIDCs 

 𝛾 = 1 𝛾 = 1.5 

Algorithms T1FPIDC IT2FPIDC T1FPIDC IT2FPIDC 

GA 385.64 minute 453.70 minute 443.41 minute 558.05 minute 

PSO 259.21 minute 294.55 minute 375.85 minute 481.10 minute 

CS 178.67 minute 196.33 minute 217.97 minute 262.25 minute 

 

5.3.3 Stabilization control using optimized cascade IT2FPIDC  

The stabilization control of RIP using optimized cascade IT2FPIDC has been analyzed 

in this section. The reference pendulum angle 𝛼𝑟 was set to zero, assuming 𝛼𝑟 = 0 is the 

upright unstable position. The pendulum is need to be stabilized at this position as quickly 
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as possible. The best results found for the pendulum angle, arm angle, output of outer 

control loop and the output of the inner control loop (i.e. voltage to the servo motor) for 

𝛾 = 1 are shown in Figure 5.23 (a), (b), (c) and (d) respectively. The effect of changing 

the  𝛾 is anlysed in stabilization control by changing its value to 𝛾 = 1.5. Figure 5.24 (a), 

(b), (c) and (d) demonstrate the best results found for the pendulum angle, arm angle, 

output the of outer control loop and the output of the inner control loop (i.e. voltage to 

the servo motor) respectively. The summary of the best simulation results in 60 runs for 

different values of 𝛾 are shown in Table 5.6.  Based on these Figures and Table 5.7 it can 

be stated that the optimized cascade IT2FPIDC designed using CS method exhibit a better 

results based on some performance indexes such as rise time 𝑡𝑟, settling time 𝑡𝑠 (less than 

2%), steady state error 𝐸𝑠𝑠 and maximum overshoot 𝑀𝑝 compared with the optimized 

IT2FPIDC designed based on GA as well as that designed based on PSO.  

For the pendulum angle results, the CS-based cascade IT2FPIDC with 𝛾 = 1 have 

some improvements over GA based cascade IT2FPIDC of 57.1%, 8.2% and 61.6% in 𝑡𝑟, 

𝑡𝑠 and 𝑀𝑝 respectively and over PSO based IT2FPIDC of 7.1%, 4.7% and 28.6% in 𝑡𝑟, 

𝑡𝑠 and 𝑀𝑝 respectively. Similarly, the CS based cascade IT2FPIDC pendulum angle 

results with  𝛾 = 1.5 have some improvement over GA based cascade IT2FPIDC of 8.8%, 

38.7% and 29.2% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively and over PSO based IT2FPIDC of 32.8%, 

16.5% and 22.7% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively. 

For the arm angle results, the CS-based cascade IT2FPIDC with 𝛾 = 1 have some 

improvements over GA based cascade IT2FPIDC of 57.1%, 41.1% and 33.3% in 𝑡𝑟, 𝑡𝑠 

and 𝑀𝑝 respectively and over PSO based IT2FPIDC of 50%, 35.8% and 20.5% in 𝑡𝑟, 𝑡𝑠 

and 𝑀𝑝 respectively. Similarly, the CS based cascade IT2FPIDC pendulum angle results 

with  𝛾 = 1.5 have some improvement over GA based cascade IT2FPIDC of 46.4%, 

54.7% and 24.5% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively and over PSO based IT2FPIDC of 60.5%, 
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46.1% and 11.3% in 𝑡𝑟, 𝑡𝑠 and 𝑀𝑝 respectively. The steady state error 𝐸𝑠𝑠 are almost the 

same in all the controllers and they can be approximated to zero. Both PSO based and CS 

based IT2FPIDC have lower cost function compared with CS based IT2FPIDC.  

0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

GA

PSO

CS

(a) Pendulum angle
 

0 1 2 3 4 5
-0.5

0

0.5

1

1.5

2.5

Time (sec)

GA

PSO

CS

2

(b) Arm angle
 

Univ
ers

ity
 of

 M
ala

ya



165 

0 0.4 0.8 1.2 1.6 2
-2

-1

0

1

2

4

Time (sec)

u
(t

) 

GA

PSO

CS

3

(c) Output of the outer controller 
 

0 0.4 0.8 1.2 1.6 2
-0.9

-0.6

-0.3

0

0.3

0.9

Time (sec)

V
m

(t
) 

GA

PSO

CS

0.6

(d) Output of the inner controller 
 

Figure 5.23: Simulation results for cascade optimized IT2FPIDC with 𝜸 = 𝟏  
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Figure 5.24: Simulation results for cascade optimized IT2FPIDC with 𝜸 = 𝟏. 𝟓  
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Table 5.7 Comparative Analysis of results for optimized cascade IT2FPIDC 

  Based on GA Based on PSO Based on CS 

 𝛾 1 1.5 1 1.5 1 1.5 

𝑡𝑟(Sec) Pendulum(𝛼) 0.88 0.45 0.42 0.61 0.39 0.41 

Arm(𝜙) 0.42 0.28 0.36 0.38 0.18 0.15 

𝑡𝑠(Sec)  Pendulum(𝛼) 1.34 1.24 1.29 0.91 1.23 0.76 

Arm(𝜙) 2.65 2.78 2.43 2.34 1.56 1.26 

𝐸𝑠𝑠 Pendulum(𝛼) 0.0089 0.0077 0.0087 0.0086 0.0076 0.0079 

Arm(𝜙) 0.0093 0.0084 0.0085 0.0082 0.0077 0.0086 

𝑀𝑝(%) Pendulum(𝛼) 0.26 0.24 0.14 0.22 0.10 0.17 

Arm(𝜙) 1.92 1.47 1.61 1.25 1.28 1.11 

𝐶𝑜𝑎𝑠𝑡  0.169 0.184 0.207 0.122 0.189 0.108 

 

5.3.4 Disturbances rejection analysis in stabilization control for optimized 

cascade IT2FPIDCs  

Similar to T1FPIDC, the internal noise and external disturbances are added to the RIP 

system to test for the robustness of the proposed optimized cascade IT2FPIDCs. A load 

of length 0.1685meter and mass of 0.0635 kg mass was added to the pendulum. Also, the 

white noise of 0.00634 power and 10% parameter value changes is added to the process 

output (feedback) as shown in Figure 5.26. Figure 5.27 (a), (b), (c) and (d) shows the best 

simulation results of the pendulum angle, arm angle, output of outer control loop and the 

output of the inner control loop with disturbances. The results indicate the effectiveness 

and robustness of the proposed IT2FPIDCs. Though there is some oscillation between -

0.1 to 0.2 degrees in arm angle and -0.04 to 0.04 degrees in pendulum angle which are 

not present in the simulation without the disturbances but still all the controllers are able 
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to stabilize the pendulum in an upright unstable position with little vibrations. Table 5.8 

shows the performance of the controller with disturbances. The advantage of IT2FPIDC 

over T1FPIDC can be seen when there result in the presence of disturbances are 

compared. For example, the performance of optimized cascade IT2FPIDC have some 

improvement between 6.1% to 33.3%, 5.7% to 35.2% and 6.6% to 20.8% in term of 𝑡𝑟,𝑡𝑠, 

and 𝐸𝑠𝑠 over the optimized cascade T1FPIDC counterpart.  

White noise

IT2FPIDC IT2FPIDC

Rotary

inverted

pendulum 
+

_

+

_

Input

reference

Output
e1 e2

Δe1
Δe2

Figure 5.25: IT2FPIDC including the source of noise 
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Figure 5.26: Disturbance rejection analysis for cascade optimized IT2FPIDC 

with 𝜸 = 𝟏  
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Table 5.8 Comparative Analysis of results for disturbance rejection ability of 

optimized cascade IT2FPIDC 

 GA based PSO based CS based 

𝑡𝑟(Sec) Pendulum(𝛼) 0.89 0.52 0.51 

Arm(𝜙) 0.48 0.37 0.23 

𝑡𝑠(Sec) Pendulum(𝛼) 1.52 1.36 1.32 

Arm(𝜙) 2.90 2.57 1.62 

𝐸𝑠𝑠 Pendulum(𝛼) 0.0092 0.0090 0.0085 

Arm(𝜙) 0.0096 0.0089 0.0088 

𝑀𝑝(%) Pendulum(𝛼) 0.70° 0.61° 0.19° 

Arm(𝜙) 4.28° 3.41° 2.75° 

𝐶𝑜𝑎𝑠𝑡  0.340 0.350 0.212 

 

5.3.5 Trajectory tracking control for optimized cascade T1FPIDC  

Similar to optimized cascade T1FPIDC, the best simulation results for RIP trajectory 

tracking control of optimized cascade IT2FPIDC for 𝛾 = 1 is shown in Figure 5.27 (a) 

and (b) for pendulum angle and arm angle respectively. Also, the best simulation result 

for RIP trajectory tracking control by optimized cascade IT2FPIDC for 𝛾 = 1.5 is 

presented in Figure 5.28 (a) and (b) for pendulum angle and arm angle respectively. It 

can be observed from both Figure 5.27 (a) and 5.28 (a) that the CS based cascade 

IT2FPIDC reaches the set point quickly compared with the GA based and PSO based 

cascade IT2FPIDC. The detail comparative performance is presented in Table 5.9. It can 

be seen from Table5.9 that the CS based cascade IT2FPIDC have some improved 

performance in terms of  𝑡𝑟, 𝑡𝑠, 𝑀𝑝 and 𝑡𝑑 . Also, comparing the performance of optimized 

cascade IT2FPIDC and optimized cascade T1FPIDCThe pendulum it can be seen based 

on the results in Table 5.4 and 5.9 that the optimized cascade IT2FPIDC exhibit a better 
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results in all the corresponding performance measures and corresponding optimization 

algorithms. This is likely due to the extra DOF that is present in IT2FPIDC.  
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Figure 5.27: Optimized Cascade IT2FPIDC simulation result for trajectory 

tracking control 𝜸 = 𝟏  
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Figure 5.28: Optimized Cascade IT2FPIDC simulation result for trajectory 

tracking control 𝜸 = 𝟏. 𝟓  
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Table 5.9 Comparative trajectory tracking results for optimized cascade 

IT2FPIDC (Simulation) 

Based on GA Based on PSO Based on CS 

 𝛾 1 1.5 1 1.5 1 1.5 

𝑡𝑟(Sec) Pendulum(𝛼) 0.44 0.43 0.38 0.44 0.38 0.37 

Arm(𝜙) 0.42 0.39 0.40 0.35 0.30 0.26 

𝑡𝑠(Sec) Pendulum(𝛼) 0.93 1.09 0.97 1.18 0.75 0.86 

Arm(𝜙) 1.04 1.22 1.03 1.19 0.97 1.08 

𝑡𝑑(Sec) Pendulum(𝛼) 0.55 0.61 0.50 0.54 0.47 0.48 

Arm(𝜙) 0.50 0.54 0.45 0.49 0.35 0.37 

𝐸𝑠𝑠 Pendulum(𝛼) 0 0 0 0 0 0 

Arm(𝜙) 0 0 0 0 0 0 

𝑀𝑝(%) Pendulum(𝛼) 1.64 1.75 1.56 1.53 1.45 1.57 

Arm(𝜙) 5.2 7.1 3.7 5.4 2.2 5.1 

 

5.4 Experimental Validation 

The CS-based controllers were proven in real time because in the simulation analysis 

CS based controllers appear to be better with respect to all the performance index 

considered to GA-based and CS based. It was stated in the following literature (Castillo 

& Cervantes, 2014; Hassanzadeh & Mobayen, 2011; Oh, Kim, & Pedrycz, 2012) that 

whenever the best-simulated controller is validated in the real experiment the other 

controller are also validated.  

The experimental result that validate the simulation results are presented in this 

section. This include the stabilization control, trajectory tracking control and disturbance 

rejection analysis. All the results were found for 𝛾 = 1 for both CS based IT2FPIDC and 
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CS based T1FPIDC. The CS based controllers and weighing factor 𝛾 = 1 are choosed for 

validation because, in the simulation studies they show the better performance than their 

comparatives.   

5.4.1 Stabilization control (Experiments) 

The experimental results that compared the proposed CS based optimized cascade 

IT2FPIDC, CS based optimized cascade T1FPIDC and conventional energy-based 

controller for pendulum angle and arm are shown in Figure 5.29 (a) and (b) respectively. 

The time starts from zero in order to show the performances from the swing-up to the 

balance mode. Looking at the real plant's results, some initial oscillations were noticed 

which is due to the swing motion needed to bring the pendulum from stable position to 

the vertically unstable position. Also, the two controllers (i.e. CS based optimized cascade 

IT2FPIDC and CS based optimized cascade T1FPIDC) manifest the considerable level 

of robustness. On the other hand, the conventional energy-based controller manifests 

many oscillations before it becomes stable. The time taken for conventional energy-based 

to reach the steady state is 4.6 seconds which is higher compared to the CS based 

optimized cascade IT2FPIDC with 2.2 seconds and CS based optimized cascade 

T1FPIDC with 2.5 seconds.  
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Figure 5.29: Experimental results for stabilization control  
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5.4.2 Trajectory tracking control (Experiments) 

A square wave with an amplitude of ±40° is employed as the reference signal that 

should be followed by the arm. Figure 5.30 (a) and (b) shows the response for the 

pendulum angle and arm angle respectively. It can be seen that both optimized cascade 

CS based IT2FPIDC and T1FPIDC can smoothly make the motor shaft to trace the 

desired trajectories while kept the pendulum stable in an upright position (around 0°) and 

continuously compensating the necessary mechanical disturbances such as friction.  
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Figure 5.30 Experimental result for trajectory tracking control comparing 

optimized cascade CS based IT2FPIDC and T1FPIDC 
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5.4.3 Disturbance rejection analysis (Experiments) 

The internal noise and external disturbances are added to the system in the real world 

to test for the robustness of the proposed cascade optimized CS based IT2FPIDC 

T1FPIDC. A load of length 0.1685meter and mass of 0.0635 kg mass was added to the 

pendulum as shown in figure 5.11. Also, the white noise of 0.00634 power and 10% 

parameter value changes is added to the process output (feedback) as shown in Figure 

5.11. The experimental results for trajectory tracking control of RIP system is shown in 

Figure 5.31 (a) and (b) for pendulum and arm respectively. The experimental and 

simulation results indicated that the effectiveness and robustness of the proposed 

optimized cascade IT2FPIDC with respect to load disturbances, parameter variation and 

noise effects has been improved over the optimized cascade T1FPIDC. Though there is 

some oscillation between in arm angle and in pendulum angle which are not present in 

the experimental results for trajectory tracking control without disturbances but still both 

controllers are able to make the motor shaft to trace the desired trajectories while kept the 

pendulum stable in upright position (around 0°) and continuously compensating the 

necessary mechanical disturbances as well as the introduced disturbances with small 

vibrations. In summary, it can be concluded based on the evidence emanated from the 

experiment results, that the optimized cascade IT2FPIDC has advanced the performance 

of the cascade optimized T1FPIDC and conventional energy-based controller on the RIP. 

The superior performance of optimized cascade IT2FPIDC over the optimized cascade 

T1FPIDC in the presence of disturbances and no disturbed condition can be seen from 

Table 5.10.  
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Figure 5.31 Experimental result for disturbed trajectory tracking control 

comparing optimized cascade CS based IT2FPIDC and T1FPIDC 

Table 5.10 Comparative trajectory tracking results for optimized cascade CS 

based IT2FPIDC and T1FPIDC (Experiment) 

Controllers Disturbances 𝒕𝒓(sec) 𝒕𝒔(sec) 𝒕𝒅(sec) Mp% 𝑬𝒔𝒔 Cost 

IT2FPIDC No disturbance 1.64 5.16 1.48 10.15 0 3.855 

With disturbance 1.89 6.94 1.66 10.55 0 4.263 

T1FPIDC No disturbance 2.12 7.81 1.39 12.37 0 4.956 

With disturbance 2.39 8.92 1.69 13.28 0 5.398 
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CHAPTER 6: CONCLUSION AND RECOMMENDATIONS  

6.1 Introduction  

It has been demonstrated in several research that IT2FLCs have the potential to 

properly handle high levels of uncertainties and nonlinearities to produce an improved 

control performance compared to its T1FLCs counterpart. However, finding the 

appropriate values of parameters and structure of IT2FLCs is a challenging and complex 

task. The main aim of this study is to examine the application of meta heuristic 

optimization algorithm methods in designing the IT2FLCs. Also to investigate the 

advantages of IT2FLC over T1FLC. Considering the higher number of parameters to be 

optimized in IT2FC, the CS method was employed because of its high convergence speed 

and less computational cost. The GA and PSO were also used for optimization to enable 

the comparisons in their performances with CS since GA is the most well-established 

optimization algorithm in the literature and PSO is also a stochastic global search 

algorithm. The performances of optimization of the IT2FPIDC in cascade structure is 

compared with the performances of optimization of the T1FPIDC in cascade structure 

based on the cost function that comprised four performance measures namely steady state 

error (𝐸𝑠𝑠), settling time (𝑡𝑠), rise time (𝑡𝑟), maximum overshoot (𝑀𝑝). 

The conclusions based on the research objectives and research question would be 

presented in this section.  

6.2 Conclusion  

Both nonlinear and linear mathematical models of RIP have been realized using 

Newton-Euler-Lagrange method and Kane’s method. The Matlab model of the developed 

model for RIP are realized. This was done to exploits the advantages and disadvantages 

of these modeling methods and to have the accurate model of RIP that would be used to 
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test the proposed controllers. The RIP system is highly nonlinear, unstable, under-

actuated and non-minimum phase system dynamics. 

In comparisons with GA and PSO based design method, the obtained results indicated 

that the CS based design strategy could achieve advanced quality solutions with fewer 

computational time. For example, for IT2FPIDC, the best computational time for CS, 

PSO and GA are 196.33minutes, 294.55 minutes and 453.70 minutes respectively. Hence 

the CS can be used in future designed of more complex IT2FLCs with a higher number 

of inputs/outputs parameters in the applications that require some excellent results of 

optimization in the fastest frame of time. To clearly indicate the advantage of FOU present 

in IT2FPIDC on the response of the system, the rule-based, rule weighing factors and the 

consequent MFs parameters were kept fixed. Only the scaling factors and the parameters 

of the antecedent MFs parameters are optimized. The same thing was done to the 

T1FPIDC for fair comparisons. Furthermore, both experimental and simulation results 

showed that the optimized cascade IT2FPIDC outperforms the optimized cascade 

T1FPIDC with respect to the 𝐸𝑠𝑠, 𝑡𝑠, 𝑡𝑟, and 𝑀𝑝 irrespective of the optimization method 

used. For example, the performance of optimized cascade IT2FPIDC in present of 

disturbances have some improvement between 6.1% to 33.3%, 5.7% to 35.2% and 6.6% 

to 20.8% in term of 𝑡𝑟,𝑡𝑠, and 𝐸𝑠𝑠 respectively over the optimized cascade T1FPIDC 

counterpart. This is likely due to the advantage of FOU present in IT2FPIDC which give 

it an ability to implement highly sophisticated control that cannot be handle by T1FPIDC 

with the same rule based as stated in many literatures. 

The proposed controllers were implanted in effective and simple cascade architecture 

that has also been developed in this research. The proposed GA based PSO based and CS 

based IT2FPIDC and T1FPIDC were evaluated in cascade structures for stabilization and 
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trajectory tracking control of RIP system using simulation studies before conducting the 

real-world experiments for validation of the simulation results. 

The experiments were performed on Quanser SRV02 RIP set up. Two US Digital S1 

single-ended optical shaft encoder that can offer a high resolution of 1024 lines per 

revolution was used for measuring the pendulum angle and arm angle. The VoltPAQ-X1 

power amplifier and Q2-USB data acquisition device were used to evaluate the 

performance of the proposed IT2FPIDC in this research.  

The results from experiments and simulations support the effectiveness and robustness 

of the proposed optimized cascade IT2FPIDC design method. It has been demonstrated 

that the reference tracking and the disturbances rejection performance of the optimized 

cascade IT2FPIDC is better in the presence of uncertainties, parameter variation and 

noise, especially in experiments, compared with optimized cascade T1FPIDC. The 

experimental results agreed with the simulation results shown which justifies the 

availability of the proposed nonlinear model of RIP and confirm the performance of the 

proposed methods. The experimental results also validate the simulation results. The 

detailed on the limitations of the state of art controllers applied to RIP are discussed.  

Since the RIP systems perform in an extensive range of real life applications like 

aerospace systems, robotics, marine systems, mobile systems, flexible systems, pointing 

control, and locomotive systems and simplified industry crane application, the proposed 

control strategy can be regarded as a promising strategy for controlling such kind of 

systems especially in the presence of noise and disturbances.  

6.3 Recommendation  

The recommendation for future research divided in two namely proposed controller 

and the test benchmark.  
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6.3.1 Proposed controller 

In future work, the optimization parameters would be extended to both antecedent 

and consequent MFs parameters, scaling factors, inference mechanism, fuzzy rule, type 

of MFs, fuzzy linguistic set and input/output variables to the fuzzy inference. This may 

need the optimization method with lower complexity in computation, faster convergence 

speed and global optimization such as hybrid optimization and some other optimization 

techniques that are yet to be applied in T2FLC design like Grid search, genetic 

programming, harmony computing, membrane computing, bat algorithm.  

 It was also intended to apply the GT2FLC in future work since the FLC are the 

parametric controller, and GT2FLC has more design parameter than IT2FLC. Therefore, 

it has extra DOF in design more sophisticated controller than IT2FLCs. That is to say, 

GT2FLC has the potential to provide better and certainly not worst control performance 

over IT2FCs.  

The comparisons with another controller with extra DOF would be made so as to 

clearly understand the reason why the T2FLC is having good performance in the presence 

of noise and uncertainties. Is it because of extra DOF? Or it is in the way it deals with 

noise and uncertainties presents in real time implementation. In this context, the T1FLC 

tuning with error based rule Weighting Adjustment (EBW) would be investigated in 

future work. The structure of self-tuning in EBW adjust the weight of each rule online on 

the signal error. This mean, additional DOF is produced by taking the weight of the rule 

as tuning parameters.   

6.3.2 Testing benchmark  

The controller that is intelligent enough to implement all the control objective is 

intended to be produced in the future work. This may avoid the oscillation due to the 

switching between different controllers in RIP. We would like to propose more general 
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inverted pendulum named Two Wheeled Rotary Inverted Pendulum (TWRIP). The 

TWRIP has all the futures in RIP with a two-wheeled robot. It is 5 DOF consisting of all 

what is in RIP and all that is in two-wheeled robot as shown in figure 14. For the 

stabilization, the TWRIP will need two controllers; one to stabilize the RIP pendulum and 

the other to stabilize the whole body of TWRIP on the two tires. Also, the two trajectory 

tracking control may be applied; one for the navigation of the whole TWRIP and the other 

for the RIP arm. The TWRIP can be used for testing intelligent and complex controllers. 

The TWRIP have many real life applications particularly in an industry where a robot that 

can move and transport the load in the form of crane is needed. It can also find application 

in the military sector where the transportation and pointing are needed. The development 

of TWRIP model is an open research in this field of research.     

Frame of 

the body

Motor for 

the armArm encoder 

Pendulum 

Pendulum 

ArmArm

Pendulum 

encoder 

DC motor

Encoder 

Driving 

wheel

Driving 

wheel

Gear 
Frame of 

the body
Driving 

wheel

Pendulum 

Arm

Gear 
DC motor

Front view Lateral view 
Top view 

 

Figure 6.1: Proposed TWRIP 
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