
i

DEVELOPMENT AND USAGE OF SELF-ORGANISING
MAPS IN HIGH ENERGY PHYSICS ANALYSIS WITH HIGH

PERFORMANCE COMPUTING

MOHD ADLI BIN MD ALI

THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS
FACULTY OF SCIENCE

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

ii

UNIVERSITY OF MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: MOHD ADLI BIN MD ALI

Registration/Matric No: SHC120046

Name of Degree: DOCTOR OF PHILOSOPHY (EXCEPT MATHEMATICS &
SCIENCE PHILOSOPHY)

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): Development

and Usage of Self-Organizing Map in High Energy Physics Analysis with High

Performance Computing.

Field of Study: EXPERIMENTAL PHYSICS

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

 Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

iii

ABSTRACT

The Self-Organizing Map (SOM) was put forward by Teuvo Kohonen in 1982 as a

computational technique to produce a set of globally ordered quantized vectors. At the

present time, it is regarded as one of the primary machine learning techniques to perform

unsupervised clustering analysis on a large variety of huge data. Implementation wise,

the algorithm is also parallelizable to a large extent thus allowing it to scale up/down

vertically and horizontally and its adaptable to the high-performance computing

environment. Thus, development of an SOM algorithm for high energy physics datasets

was performed. In this research, the effects of several SOM hyperparameters such as the

similarity functions, learning rate functions and map size on the clustering outcome was

also performed. Moreover, a test case on how the Kullback-Leibler divergence and

Multivariate Bhattacharyya Distance equation can be used as a validation parameter for

SOM is performed. Additionally, it is demonstrated that a classification model can be

created by staking the SOM model with a Linear Discrimination Analysis model, and the

performance of this model is compared with other classification models. A demonstration

of unsupervised clustering of particle physics datasets with SOM and SOM+Dirichelet

Gaussian Mixture Modelling was also carried out in this research

iv

ABSTRAK

Algoritma Petaan Swaorganisasi (SOM) telah dikemukakan oleh Teuvo Kohonen pada

tahun 1982 sebagai teknik pengkomputeran bagi menghasilkan set rangkaian vektor yang

tersusun secara global. Pada masa kini, teknik ini telah pun dianggap sebagai salah satu

teknik utama bagi analisis kelompok tanpa pengawasan, terutama sekali bagi set data

yang mengandungi bilangan entri yang tinggi dan pelbagai. Dari segi implementasinya,

ia dapat dikomputasikan secara selari pada skala tinggi, sekali gus membolehkan ia

dilakukan pada skala besar menggunakan komputer berprestasi tinggi. Oleh itu, satu

aplikasi SOM untuk menganalisis set dat daripada fizik tenaga tinggi telah dibangunkan

di dalam kajian ini. Kajian ini juga meneliti kesan beberapa hiperparameter SOM seperti

fungsi persamaan, fungsi kadar pembelajaran dan saiz peta terhadap gugusan sampel

yang dihasilkan. Selain itu, penulisan ini juga menunjukkan cara bagaimana persamaan

Perbezaan Kullback-Leibler dan Jarak Multivariasi Bhattacharyya boleh digunakan

sebagai ujian-pengesahan terhadap output yang dihasilkan oleh SOM. Penulisan ini juga

menunjukkan suatu modal pengklasifikasian boleh dihasilkan dengan menggandingkan

SOM bersama teknik Linear Discrimination Analysis (LDA), dan prestasi

pengklasifikasian ini apabila dibandingkan dengan teknik pengklasifikasian yang lain.

Kajian ini juga menilai kebolehan SOM+Dirichelet Gaussian Mixture Modelling dalam

mengelompokkan data fizik tenaga tinggi yang tidak mempunyai label.

 v

ACKNOWLEDGEMENTS

To my god, I say the verses that come out from the lips of your prophet;

‘I am content with Allah as my Rubb, with Muhammad as my

Messenger and with Islam as my Deen’

(Muslim)

An immense gratitude is also should be given to my mother, Pn. Rosnah Sharif,

whom with her single hand raise me up till I can successfully write my Ph.D. thesis.

A special acknowledgment also should be given to Prof Wan Ahmad Tajuddin,

the main supervisor of this research. He also acts as the head of National Centre for

Particle Physics (NCPP) and without his effort, the centre would not even existed. The

acknowledgment is also extended to the rest of NCPP member, it’s visiting lecture,

research students, and support staffs.

To Luis Eduardo Medina Medrano, the verse 'Tú eres el jardín de mi corazón' is

written for you.

A sincere gratitude and thanks are given to Marius Cornelis van Woerden, Aidan

Randle-Conde, Khoi Nguyen Nguyen, and Matt Behlmann, who all have become dearest

closet friends to me.

This thesis will also be incomplete without the guidance provided by Marco

Mascheroni, the Big Boss of CRAB3 Development group and a mentor in the world of

Python coding. The same acknowledgment is also extended to Justas Balcas, Andres

Jorge Tanasijczuk and the rest of CRAB3 team.

 vi

CONTENTS

ORIGINAL LITERARY WORK DECLARATION ii

ABSTRACT iii

ABSTRAK iv

ACKNOWLEDGEMENTS v

CONTENTS vi

LIST OF FIGURES xiii

LIST OF TABLES xxi

LIST OF ACRONYMS xxiii

1 CHAPTER 1: THESIS INTRODUCTION 1

 1.1 Introduction 1

 1.2 Objective 2

 1.3 Scope of Study 3

 1.4 Thesis Structure 4

2 INTRODUCTION TO PARTICLE PHYSICS AND THE COMPACT

 MUON SELENOID DETECTOR

7

 2.1 Chapter Introduction 7

 2.1.1 Standard Model Particle and Forces 8

 2.1.2 The Quark 9

 2.1.3 The Lepton 10

 2.1.4 Standard Model Forces and the Higgs Boson 11

 2.1.5 Electromagnetic Force 12

 vii

 2.1.6 Weak Force 13

 2.1.7 Strong Force 14

 2.2 SM Dimuon Channel 15

 2.2.1 Beyond SM Dimuon Channel 19

 2.2.2 Dimuon Dataset 19

 2.2.3 Beyond Standard Model Higgs 21

 2.2.4 The Higgs Dataset 22

 2.2.5 Supersymmetry 24

 2.2.6 Supersymmetry Dataset 25

 2.2.7 Dataset Production 28

 2.2.8 Dataset Conclusion 29

 2.3 Introduction The CMS Detector 29

 2.3.1 General Overview 30

 2.3.2 CMS Superconducting magnet 32

 2.3.3 CMS Inner Tracker 33

 2.3.4 CMS Electromagnetic Calorimeter 34

 2.3.5 CMS Hadron Calorimeter 35

 2.3.6 CMS Muon System 36

 2.3.7 CMS TriDAS 38

 2.3.8 CMS Detector Conclusion 39

3 COMPUTATIONAL DEVELOPMENT FOR CMS AND SIFIR 40

 3.1 Chapter Introduction 40

 3.2 CMS Computing Challenges 41

 3.2.1 CMS Grid-Computing Infrastructure 41

 3.2.2 CMS Computing Activity During Run 1 43

 viii

 3.2.3 CMS Grid-Computing Software 44

 3.2.4 CMS Submission Infrastructure 45

 3.3 Introduction to CMS Remote Analysis Builder (CRAB) 48

 3.3.1 User Perspective 49

 3.3.2 CRAB Architecture 50

 3.3.3 User Adoption 53

 3.4 Development of CRAB3 54

 3.4.1 CRAB3 Error Report Mechanism 55

 3.4.2 Validation of User Read/Write Access 56

 3.4.3 Parallel Remote Copy 59

 3.4.4 CRABClient API 60

 3.4.5 Minor Development Contribution 62

 3.4.6 CRAB3 Development Conclusion 64

 3.5 The sifir Initiative 65

 3.5.1 sifir original system architecture 65

 3.5.2 Weaknesses in the Original Architecture 67

 3.5.3 Improvement Initiative for The Sifir Cluster 70

 3.5.4 Lessons Learnt in Managing an HPC Cluster for

 Scientific Purpose

71

 3.5.5. sifir Conclusion 72

4 MACHINE LEARNING AND THE DEVELOPMENT OF SELF-

 ORGANIZING MAP APPLICATION

73

 4.1 Chapter Introduction 73

 4.1.1 Machine Learning Terminology: Supervised and

 Unsupervised Learning

74

 ix

 4.1.2 Instance and Datasets 75

 4.1.3 Feature and Hyperparameter 75

 4.1.4 Variance and Bias 76

 4.2 Classification Algorithm 76

 4.2.1 Random Forest (RF) 77

 4.2.2 Support Vector Machine (SVM) 78

 4.2.3 Linear and Quadratic Discrimination Analyses (LDA &

 QDA)

79

 4.2.4 Neural Network in Particle Physics Analysis 80

 4.2.5 Support Vector Machine in Particle Physics Analysis 82

 4.2.6 Random Forest in Particle Physics Analysis 83

 4.2.7 Quadratic and Linear Discrimination Analyses in

 Particle Physics Analysis

84

 4.3 Clustering Algorithm Review 85

 4.3.1 Clustering Algorithm 87

 4.3.2 Dirichlet Process Gaussians Mixture Modelling

 Algorithm

88

 4.3.4 Clustering in Particle Physics 89

 4.4 Introduction to Self-Organizing Map 90

 4.4.1 How SOM Model Learns? 92

 4.4.2 Example of SOM in Particle Physics Research 94

 4.5 Development of Self-Organizing Map 96

 4.5.1 Initiation Phase 97

 4.5.2 Training Phase 98

 4.5.3 Mapping Phase 102

 4.5.4 Post-Processing Phase 104

 x

 4.5.5. SOM Development Conclusion 104

 4.6 Parallelization 105

 4.6.1 Training on the Cloud 107

 4.6.2 Cloud-Based SOM Prototype 108

 4.6.3 Cloud vs CRAB3 109

 4.6.4 Prototype Implementation 110

 4.6.5 Recorded Ideal Time 112

 4.6.6 Conclusion for the Cloud-Based SOM 114

5 SELF-ORGANIZING MAP HYPERPARAMETER 115

 5.1 Chapter Introduction 115

 5.2 Developed Hyperparameter 116

 5.2.1 Centroid and Instance Number 117

 5.2.2 Training Iteration Length 118

 5.2.3 Learning Rate Function and Radius Decay Function 119

 5.2.4 Homogenous and Heterogeneous Learning Rates 121

 5.2.5 Similarity Function 124

 5.3 Higgs Dataset Feature Engineering 127

 5.3.1 Measurement Method for The Single Higgs Sub-dataset 129

 5.3.2 Measurement Results for The Single Higgs Sub-dataset 130

 5.3.3 Discussion for Higgs Sub-dataset Feature Engineering 136

 5.3.4 Multiple Higgs Sub-dataset Similarity Measurement 138

 5.4 Subspace in SOM Feature Map 141

 5.5 SOM Model Optimization 147

 5.5.1 Results for Feature Engineering 149

 5.5.2 Results for Different Training Iterations 152

 xi

 5.5.3 Results for Different Learning Rate Function Iterations 153

 5.5.4 Discussion on SOM Model Optimization based on MB

 and KL Distances

156

 5.6 SOM Hyperparameter Conclusion 157

6 SOM FOR CLASSIFICATION 159

 6.1 Chapter Introduction 159

 6.2 SOM-Q/LDA Higgs Dataset Classification Method 160

 6.2.1 Mapping Results 161

 6.2.2 Local QDA and LDA Classification Results 164

 6.2.3 Comparison with Other Classifiers 166

 6.2.4 Classification Results Discussion 168

 6.2.5 Role of SOM in LDA Classification 169

 6.2.6 SOM+LDA Classification Conclusion 174

 6.3 Cluster Purity Analysis 174

 6.3.1 Correlation Between Weight-Vector and Purity 175

 6.4 SOM +LDA/QDA Model Conclusion 179

7 SOM FOR CLUSTERING 180

 7.1 Chapter Introduction 180

 7.2 SOM+DPGMM Model 181

 7.3 SOM Algorithm Sanity Check 182

 7.4 Supersymmetry Dataset Clustering 185

 7.4.1 Clustering Results 186

 7.4.2 DPGMM-class Purity Results 188

 7.4.3 SOM Model Instance Mapping Results 190

 xii

 7.4.4 SOM+DPGMM Clustering Discussion 196

 7.4.5 Significance 199

 7.5 Dimuon Clustering 200

 7.5.1 Dimuon SOM model 201

 7.5.2 Dimuon Invariant Mass 203

 7.5.3 Low Count LIC Centroid 204

 7.6 SOM Clustering Conclusion 206

8 CONCLUSION 208

 8.1 Conclusion 208

 8.2 Suggestions 210

REFERENCE 212

LIST OF PUBLICATION 227

APPENDIX A1 228

Higgs Feature Distribution

APPENDIX A2 233

SUSY Feature Distribution

APPENDIX B1 237

Implemented SOM application architecture

APPENDIX C1 238

Hyperparameter for SOM model in Chapter 5

 xiii

LIST OF FIGURES

Figure 2.1 Feynman diagram of an electron emitting a photon (left) and

electron – positron annihilation emitting a photon (right).

12

Figure 2.2 Feynman diagram of weak fundamental vertices for neutral

(left) and charged (centre) leptonic interaction, and charged

quark interaction (right)

14

Figure 2.3 The dimuon invariant mass spectrum from the 2010 CMS

collaboration data taking. The inset showing the zoom

between 8-12 GeV/c2, showing the resolution of upsilon

particle.

16

Figure 2.4 The invariant mass spectrum for the upsilon particle between

two pseudorapidity range 𝜂" < 2.4 (right) and 𝜂" < 1.0

(left).

17

Figure 2.5 The invariant mass of J/𝜓 and 𝜓(2S) in the region of rapidity

region of 𝑦 < 1.2	 and momentum 8 < pT < 9 GeV/c for the

7 TeV proton-proton collision at CMS Collaboration, (2011)

18

Figure 2.6 The Invariant mass spectrum obtained from the dimuon

dataset that is being use for this thesis

20

Figure 2.7 The dimuon invariant mass between 8 Gev and 12 GeV

depicting the Υ(1S) and Υ(2S)

21

Figure 2.8 The two event simulated in the Higgs dataset 23

Figure 2.9 The simulated signal (Left) and noise (Right) in the SUSY

dataset

26

Figure 2.10 The decay mode of chargino two opposite dilepton with

missing energy by the that has been search by the CMS

Collaboration, (2014)

26

Figure 2.11 Additional decay mode of chargino to two oppositely charged

leptons with missing energy by the that has been search by the

ATLAS Collaboration,(2014)

27

Figure 2.12 A perspective view of the CMS detector 30

Figure 2.13 Comparison of the CMS detector magnet with other detector

magnet in term of energy over mass ratio, (CMS

Collaboration, 2008).

32

 xiv

Figure 2.14 The schematic diagram of the CMS silicon inner tracker,

taken

34

Figure 2.15 A schematic of the CMS HCAL and its four

subsystems.

35

Figure 2.16 A schematic diagram of a quadrant lay out for the CMS

detector showing the position of drift tube (DT), resistive plate

chamber (RPC) and cathode strip chambers (CSC).

37

Figure 2.17 A longitudinal view (a) and a transverse view (b) of an event

with 4 reconstructed muon track, using all three muon system.

All the muon detector are orientated perpendicular to the

muon trajectories.

37

Figure 3.1 The network topology of CMS computing sites according to

its Tiers. All Tier-1 and Tier-2 sites are interconnected with

each other

44

Figure 3.2 The general system design for the CMS glideinWMS global

pool

46

Figure 3.3 The CRAB3 Components and the internal mechanism of the

job submission

53

Figure 3.4 The cumulative number of users using CRAB3 from Jun 2014

until May 2015

54

Figure 3.5 sifir cluster hardware and middleware architecture. 66

Figure 3.6 Traceroute result from the se.sifir.um to cern.ch network 68

Figure 4.1 SVM decision boundary (purple line) is created in a

hyperplane to give the best separation of classes

79

Figure 4.2 Comparison ROC between shallow ANN (right) and deep

ANN (Left); the value of AUC proved that deep ANN was

better the shallow ANN (taken from Baldi et al., 2014).

82

Figure 4.3 The ROC comparison between ANN and SVM for charm

tagging (left) and muon identification (right) (taken from

Vannerem et al., 1999)

83

Figure 4.4 The BDT and ANN (labeled as MLP) gave higher purity

results for classification than the LDA (labeled as Fisher) in

85

 xv

classification of 𝑲∗± in Badala et al., (2008) (Left), whereas a

study on 𝛕 event tagging by Heikkinen et al., (2010) (right).

Figure 4.5 The three main objectives of clustering 87

Figure 4.6 The classification of different clustering algorithms by Fahad

et al., (2014).

91

Figure 4.7 General depiction of neural network (Right) and SOM (left)

fundamental units.

92

Figure 4.8 Each circle denotes a centroid, while the square is the

collection of centroids with a distance from the winning

centroid less than 𝑹𝒎𝒂𝒙

94

Figure 4.9 Left) SOM centroids with 30 × 30 square shape distribution,

(Right) randomized initial centroid with Z-axis is the

magnitude value of the centroid weight-vector.

98

Figure 4.10 The evolution of the centroid weight-vector magnitude across

the SOM map from 1%, 30%, 50%, and 100% of the max

training iteration.

101

Figure 4.11 Centroids that are close to each other (group) have more

similar magnitude to one another

102

Figure 4.12 Local Instance Cluster (LIC) and Global Instance Cluster

(GIC) explanation

103

Figure 4.13 The intercommunication between the main and the child

processes in the training phase, where all sub-processes are

ideal after step 3 until the next iterative.

107

Figure 4.14 Physical location of the servers across the globe 111

Figure 4.15 The ideal time for one-to-one connection based on master and

worker server locations

112

Figure 4.16 The ideal time for 5-way multiconnection based on worker

server locations

113

Figure 5.1 Different SOM map topologies from various researches, (a) is

the shape of SOM map that had been used in this research, (b)

from Kohonen (2013), and (c) from Wu and Takatsuka (2006)

118

Figure 5.2 Different forms of learning-rate function with different values

of k.

120

 xvi

Figure 5.3 The ratio between the number of times a centroid had been

perturbed in the training phase to the maximum training

iteration

122

Figure 5.4 The total learning rate distribution for each learning rate

function in both homogenous (Homo) and heterogeneous

(Hetero) modes

124

Figure 5.5 The cumulative distribution of similarity between noise-noise

and noise-signal under different feature combinations for

Euclidean Distance

131

Figure 5.6 The similarity measurement cumulative distribution

between noise-noise and noise-signal under different

feature combinations for City Block

132

Figure 5.7 The similarity measurement cumulative distribution between

noise-noise and noise-signal under different feature

combinations for Chebyshev

133

Figure 5.8 The similarity measurement cumulative distribution between

noise-noise and noise-signal under different feature

combinations for Cosine.

134

Figure 5.9 The similarity measurement cumulative distribution between

noise-noise and noise-signal under different feature

combinations for Correlation

135

Figure 5.10 The absolute difference in mean between noise-noise

similarity values and noise-signal similarity versus feature

dimension number for Euclidean and City Block functions

139

Figure 5.11 The absolute difference in mean between noise-noise

similarity values and noise-signal similarity versus feature

dimension number for Correlation, Cosine, and Chebyshev

Functions

139

Figure 5.12 The distribution of centroids vector magnitude for

different SOM maps, which had been train with

different learning functions. X-axis and Y-axis refer to

the position of each centroid on XY plane of SOM

map, while Z-axis is the magnitude value

142

 xvii

Figure 5.13 The distribution of various features on the trained SOM map

for the Higgs dataset

143

Figure 5.14 The distribution of various features on the trained SOM map

for the SUSY dataset

144

Figure 5.15 The feature map for lepton PT, MET, Jet1 PT, and Jet2 Pt that

belonged from one single SOM map, where the value of the

marked region is pointed out

145

Figure 5.16 The value of 4 different features for each centroid along the x

= 3 (Reg1) and x = 23 (Reg2) axes from the SOM model in

146

Figure 5.17 The MB-distance and the KL-Distance for SOM model that

had been trained by using various feature selections for the

Higgs dataset

150

Figure 5.18 The MB-distance and the KL-Distance for SOM model that

had been trained by using various feature selections for the

SUSY dataset

151

Figure 5.19 The MB-distance and the KL-Distance for SOM model that

had been trained by using various training iterations for the

Higgs dataset

152

Figure 5.20 The MB-distance and the KL-Distance for SOM model that

had been trained by using various training iterations for the

SUSY dataset

153

Figure 5.21 The MB-distance and the KL-Distance for SOM model that

had been trained by using various learning rate functions on

mode for Higgs dataset.

154

Figure 5.22 The MB-distance and the KL-Distance for SOM model that

had been trained by using various learning rate functions on

mode for Higgs dataset

155

Figure 6.1 The adopted stacking model for classifying the Higgs

dataset instances.

160

Figure 6.2 The distribution of LIC count across the SOM map that was

created by different similarity functions. The color-bar

denotes the number of instances at each centroid

162

 xviii

Figure 6.3 The difference in number of instances for each centroid

LIC across the SOM map between the training dataset

and the dummy dataset for each similarity function.

163

Figure 6.4 The ROC curve of various classification algorithms for the

Higgs dataset.

168

Figure 6.5 The scatter of each local SOM+LDA classifier based on the

model local training-instance-count, local instance purity, and

consequence test accuracy

170

Figure 6.6 (Left) Scattering of local classifier based on their local

training instance count and subsequent test accuracy, while

(Right) is the scattering of local classifier based on the local

instances purity and subsequent test accuracy

170

Figure 6.7 The 2-Dimensional Histogram of Absolute Instance purity

versus Training Instance Count for different similarity

functions. The encircled region portrays high level of purity

and instance count

172

Figure 6.8 : (Left) The cumulative count for each local instance purity for

different SOM similarity functions, (Right) the zoomed plot

for region in the dashed line box

173

Figure 6.9 The distribution of Jet-3-Pt (a), Lepton-Pt (b), and jlv mass

(c) across the Euclidean SOM map which resulted in different

purity

175

Figure 6.10 The 2-Dimensional histogram of centroid purity versus certain

feature magnitude for the Euclidean SOM model. Most

centroids resided in the area bordered by the dashed line

177

Figure 6.11 The 2-Dimensional histogram of centroid purity versus certain

feature magnitude for the Cosine SOM model

178

Figure 7.1 : DPGMM cluster for both centroids 1 and 2 in the same

cluster, thus all inherited instances (Xa –Xc and Xd – Xf)

belonged to same instance cluster.

182

Figure 7.2 Scattering of points for the sanity-check dataset, which

contained 900 instances of point.

184

 xix

Figure 7.3 The distribution of instances on the SOM feature map,

which had been color-based on their original blob

cluster in Figure 7.2

184

Figure 7.4 The distribution of centroid weight-vector magnitudes for

Euclidean (a), city block (b), and Chebyshev (c) SOM models,

as well angle distribution for Cosine SOM model (d). Each

distribution resembled the Gaussian mixture model

186

Figure 7.5 The distribution of centroid vector magnitudes (angle for

cosine SOM) based on the group created by the DPGMM

algorithm

187

Figure 7.6 Centroid labeled based on their DPGMM cluster for different

SOM models

188

Figure 7.7 The purity of the class displayed tendency to decrease as the

number of instance per class rose.

190

Figure 7.8 The distribution of centroid LIC count across the SOM feature

map.

191

Figure 7.9 The purity of each centroid on the SOM feature map for

different SOM models.

193

Figure 7.10 Centroid LIC purity vs LIC count for the Euclidean SOM 194

Figure 7.11 Centroid LIC purity vs LIC count for the Cosine SOM 194

Figure 7.12 Centroid LIC purity vs LIC count for the City Block SOM 195

Figure 7.13 Centroid LIC purity vs LIC count for the Chebyshev SOM 195

Figure 7.14 Comparison between the signal and the noise instance

distributions on the Euclidean SOM map

197

Figure 7.15 The missing momentum spectrum for signal dominant

DPGMM class

198

Figure 7.16 The MTR spectrum for signal dominant DPGMM class 199

Figure 7.17 The comparison of centroid LIC count between centroid with

LIC purity < 0.8 and > 0.8 for Cosine and Euclidean SOM

models

201

Figure 7.18 The log LIC count distribution on the SOM map for

the dimuon dataset. Centroid with LIC count = 0, is

given the value -1.

202

 xx

Figure 7.19 The spectrum of the centroid LIC log average invariant mass,

centroid with LIC = 0, was given the value -1

203

Figure 7.20 The average of log dimuon invariant mass for each

centroid on the SOM map.

204

Figure 7.21 2D-Histogram of centroid log LIC count versus the centroid

log average invariant mass

205

Figure 7.22 The number of centroids for a given log average invariant

mass, for centroid in the SOM model with LIC count < 4

206

 xxi

LIST OF TABLES

Table 2.1 The Standard Model of particle physics 9

Table 2.2 The Standard Model version of quarks and its mass 10

Table 2.3 Mass of lepton 10

Table 2.4 Force carrying particles and their masses, including the Higgs

boson under the SM.

11

Table 2.5 Supersymmetry particle and its Standard model partner 25

Table 2.6 A summary regarding the three muon chamber of CMS detector 38

Table 3.1 The various middleware applications used in the CMS computing

environment in Run1 and Run 2

47

Table 3.2 List of crab commands available for user as of January 2016 50

Table 3.3 The code structure for crab auto-upload-log 56

Table 3.4 The code structure for the crab checkwrite 58

Table 3.5 The code structure for the remotecopy module 60

Table 4.1 The implemented training phase for SOM algorithm 99

Table 4.2 Ideal time mean and standard deviation (STD) according to server

locations

112

Table 4.3 The ideal time mean and standard deviation (STD) for worker

servers located at different cities

114

Table 5.1 List of several SOM hyperparameters 116

Table 5.2 Similarity/distance functions studied in this research, all functions

were taken from Cha (2007), except correlation distance, which

had been taken from the scipy module

126

Table 5.3 Higgs dataset feature groups 128

 xxii

Table 6.1 Comparison of mean and standard deviation (STD) for instance

number per centroid LIC between training and dummy datasets

for each similarity function

163

Table 6.2 The results of SOM-LDA Classification for the Higgs training and

test datasets

165

Table 6.3 The results of SOM-QDA Classification for the Higgs training

and test datasets.

165

Table 6.4 Comparison of results between the different types of classification

algorithms for the Higgs dataset

167

Table 6.5 Comparison of results between different typed of classification

algorithms for the Higgs dataset using higher evaluation metric

167

Table 6.6 The correlation between different future magnitude and the

centroid purity

176

Table 7.1 The hyperparameter for the sanity check training 183

Table 7.2 The hyperparameter of SUSY dataset training 185

Table 7.3 The purity of each class generated by the DPGMM algorithm for

various SOM models trained by using different similarity

functions

189

Table 7.4 The mean, the standard deviation (STD), the min, and the max of

centroid LIC count for SOM trained with various similarity

functions

191

Table 7.5 The mean, 𝜇: , and the absolute mean, 𝜇: , for centroid purity

for each SOM model, as well as the percentage of centroids with

purity exceeding 0.0, 0.5, and 0.8

192

Table 7.6 The hyperparameter for to train the SOM model on the dimuon

dataset

202

 xxiii

LIST OF ACRONYMS

2HDM type-II two-Higgs-Doublet

Acc Accuracy

ANN Artificial neural network

APD avalanche photodiodes

API Application Programming Interface

ATLAS A Toroidal LHC ApparatuS

AUC Area Under Curve

BDT Boosted Decision Tree

CE Computing Element

CERN Centre for European Nuclear Research

CMS Compact Muon Solenoid

CMSSW CMS Software

CRAB CMS Remote Analysis Builder

CSC cathode strips chambers

DAS Data Aggregation System

DBS CMS Dataset Bookkeeping System

DPGMM Dirichlet Process Gaussian Mixture Modelling

DT drift tubes

DT decision tree

ECAL electromagnetic calorimeter

Fn False Negative

Fp False Positive

GIC Global Instance Cluster

GPGPU general-purpose graphic processing unit

HB HCAl Barrel

HCAL Hadron Calorimeter

HE HCAL Endcap

HF HCAL Forward

HO HCAL Outer

HPC high-performance computing

I/O input/output

IS Information System

 xxiv

JSON JavaScript Object Notation

KL-Distance Multivariate Kullback-Leibler distance

LDA Linear Discrimination Analysis

LFN Logical File Name

LHC Large Hadron Collider

LIC Local Instance Cluster

MB-Distance Multivariate Bhattacharyya Distance

MET missing transverse energy magnitude

ML Machine Learning

MSSM Minimal Supersymmetry Standard Model

N.No Noise Instance Number

NCPP National Centre for Particle Physics

PFN Physical File Name

PhEDEx Physic Experiment Data Export

QCD Quantum Chromo Dynamic

QDA Quadratic Discrimination Analysis

RF Random Forest

ROC Receiver Operating Characteristic

RPC resistive plate chamber

S.No. Signal Instance Number

SE Storage Element

SiteDB Site Database

SM Standard Model

SOM Self-Organising Map

SRM Storage Resource Manager

STD Standard Deviation

SUSY Supersymmetry

SVM Support Vector Machine

TEC Tracker EndCap

TIB Tracker Inner Barrel

TID Tracker Inner Disk

Tn True Negative

TOB Tracker Outer Barrel

Tp True Positive

UI User Interface

 xxv

UM Universiti Malaya

WLCG Worldwide LHC Computing Grid

WMAgent Workload Management Agent

Pt Momentum

1

CHAPTER 1

THESIS INTRODUCTION

““Necessity is the mother of invention” is a silly proverb. “Necessity is the mother of

futile dodges” is much near to the truth. The basis of the growth of modern invention is

science, and science is almost wholly the outgrowth of pleasurable intellectual curiosity

(Singler, 1996, P. 140)

1.1 Introduction

Particle physics study has always been seen as a field that is too theoretical and

has little direct benefit to the society. This claim is not true of course as technologies such

as X-ray, world wide web (www) and proton radiotherapy are all originated from particle

physics research. Even in the current time, research into particle physics keeps pushing

the limit in computing technology.

Each year, the Compact Muon Selenoid (CMS) detector record several petabytes

worth of data, either from events directly coming out from the proton-proton collision or

by computer simulation. There is also user-generated analysis data, computational-

operation metadata and a staggering pile of detector calibration constants. In short, a

particle detector produces and stores a massive amount of data in its day to day operation.

To analyse and interpret this large amount of data, particle physicists practice

various computational methodologies, among them is Machine Learning (ML). In fact,

ML techniques such as the Boltzmann machine, Fisher Analysis, and Decision Tree have

always been employed in particle physics analysis, either on their own or in addition to

statistical analysis.

	 2

Nonetheless, the development of ML techniques in particle physics itself has

become stagnant in recent times. The method has not been abandoned, but there is a lack

of interest in making it better. Questions such as: how can the ML technique be more

efficient in using computing resources in a particle physics computational environment?

Is there any new ML technique that can increase background suppression? This kind of

question is not being answered in current research.

Other research fields, such as finance, meteorology, robotic and DNA sequencing

are aggressively exploiting ML, employing the most contemporary techniques. Thus, it

is only logical that with the amount of data, the particle physics field should also be

aggressively striving for more advanced ML techniques.

This thesis is created to try fills the gap or, at least, revive the interest of employing

different ML techniques in particle physics analysis. Therefore, it focuses more on the

potential usage of ML, more specifically a technique calls the Self-Organizing Map

(SOM) in particle physics analysis. Introduction is also given on the several

computational practice that is currently being employ in the CMS collaboration.

1.2 Objective

The research objectives for this thesis are;

1. To understand the CMS computational-grid analysis workflow and contribute to

its development

2. To develop a clustering and classification algorithm base on the Self-Organizing

Map method for particle physics datasets

	 3

3. To measure the overall performance of the Self-Organizing Map method in

clustering and classifying particle physics events.

1.3 Scope of Study

The content of this thesis sits at the interface between particle physics, ML and

high-performance computing (HPC) since the ML algorithm is developed for particle

physics datasets and requires HPC hardware to be executed promptly. Hence, a general

introduction regarding these three different subjects is required.

This thesis emphasizes the applied aspect of ML technique for particle physics

analysis. As such, only a minimum level of theoretical framework regarding the particle

physics and ML algorithms is presented in this thesis.

This research will be using three datasets, plus a trivial dummy dataset, which is

described in chapter 1. All three datasets are open access dataset so that all result obtain

in this thesis are neutral and can be reproduced easily by other party.

The result obtained from the develop self-organizing map (SOM) technique will

be compared to other ML algorithms such as the ensemble decision tree and support

vector machine. However, the main algorithm studied for this research is SOM, thus,

only the SOM result will be given a detail look.

Any algorithm, middleware or software that was developed in this study is meant

to be executed in an HPC environment that uses commodity hardware and Linux base

operating system. Specialized hardware such as supercomputers, including machine with

	 4

general-purpose graphical processing unit (GPGPU) are excluded, since this type of

hardware is generally not openly available in the particle physics grid-computing

environment. The content regarding computational grid environment is solely focused on

the one employed by the CMS collaboration. The computational ecosystem of other

particle physics collaborations is not discussed in the thesis.

1.4 Thesis Structure

In this thesis, the literature review is given in chapter 2, the first part of chapter 3

and the first part of chapter 4. The detail for computational software development effort

is given in the second part of section 3 and the second part of chapter 4. The experimental

result and discussion is given in chapter 5, 6 and 7. The content of each chapter is as

follows:

Chapter 1: This chapter give a general overview of the research, presenting keywords

such as machine learning, self-organizing map, high-performance computer, particle

physics and the boundary of the overall thesis

Chapter 2: This chapter has two function; first it gives the necessary introduction to the

physics involve in the three datasets that are being used in this research. This chapter

covers topics such as the standard model, the extended standard model Higgs and

Supersymmetry. The second part of the chapter consist of a general overview concerning

the CMS detector and its components.

Chapter 3: This chapter combines three topics, first it provides an explanation regarding

the CMS grid-computing ecosystem, such as the analysis and production workflow.

	 5

Secondly it focuses on the usage of a software called CMS remote analysis builder

(CRAB) and the author’s contribution in developing this application. The chapter ends

with a short discussion regarding the effort that has been contributed by the author to the

development of University Malaya High-Performance Computing Cluster called ‘sifir’.

Chapter 4: The chapter starts by explaining some terminology that is commonly used in

the study of ML. It then proceeds to provide an explanation regarding some of the well-

known ML algorithms for classification which are, Random Forest, Support Vector

Machine, Linear/Quadratic Discrimination Analysis (LDA/QDA) and shallow Neural

Network. The chapter also gives some examples of particle physics research that uses ML

algorithm. The chapter then provides the necessary discussion about the Dirichlet

Gaussian Mixture Modelling (DPGMM) algorithm which is a clustering algorithm. From

there, the chapter shifts its focus to the SOM algorithm and its implementation. A short

discussion regarding the practicality of employing SOM on the global cloud infrastructure

concludes this chapter.

Chapter 5: Each ML model has certain configuration parameters call hyperparameters

which dictates the model performance. The objective of this chapter is to conduct

experiments to study which hyperparameter configuration gives the optimum SOM

model. In the conducted experiment, the Multivariate Bhattacharyya Distance and the

Multivariate Kullback-Leibler distance equation are uses to gauge the SOM model

performance. The first part of this chapter gives detail regarding the various SOM model

hyperparameters while the second part of the chapter is about the experiment conducted.

This is followed by a discussion of the obtained result, and the optimum SOM model

configuration is given.

	 6

Chapter 6: The chapter gives detail about the conducted experiment to measure the

performance of the SOM+LDA/QDA model in classifying events from the Higgs dataset.

The accuracy and other performance scores for the SOM+LDA/QDA model are given

and compared with other ML classification algorithms. The chapter also discusses on how

the SOM model can be used to determine which feature combination that gives the best

separation between signal and noise in the Higgs dataset.

Chapter 7: The content of this chapter is about the experiment that was carried out in

determining SOM+DPGMM model clustering capability on the SUSY dataset. It shows

that the developed model is capable of clustering together similar events without having

explicit information about the underlying physics that is involved. This chapter also

provides a demonstration on how SOM can reveal hidden patterns in the particle physics

dataset.

Chapter 8: This chapter provides the research conclusion as well as suggestions for

improvements that can be done.

	 	

	 7

CHAPTER 2

INTRODUCTION TO PARTICLE PHYSICS AND THE COMPACT

MUON SELENOID DETECTOR

…the finder of a new elementary particle used to be rewarded by a

Nobel Prize, but such a discovery now ought to be punished by a

$10,000 fine.

(Willis E. Lamb Jr. 1955)

2.1 Chapter Introduction

In 2012, both the Compact Muon Solenoid (CMS) collaboration and the A

Toroidal LHC ApparatuS (ATLAS) collaboration announced the discovery of a boson

particle with a mass of 125 GeV (ATLAS, 2012; CMS Collaboration, 2012a) at the Large

Hadron Collider (LHC) experiment, Geneva, Switzerland. The newly discovered particle

is believed to be the Higgs boson, thus marking the end of a very long search for the

elusive particle, a search that has been going on for the last ~48 years.

The Higgs Boson is the last remaining particle required to complete the Standard

Model (SM) of particle physics. Since the introduction of the SM by several theorists

such as Abdus Salam, Sheldon Glashow, and Steven Weinberg, the model has proven to

be accurate in describing the interaction between elementary particle.

The first objective of this chapter is to give a basic introduction to particle physics

so that the content of a particular dataset can be understood (subchapters: 2.12 - 2.2.7).

Three different datasets were used in this research, a beyond-SM Higgs dataset,

	 8

supersymmetry (SUSY) dataset and the dimuon dataset. All three datasets are public, with

the first two datasets published by the Centre for Machine Learning and Intelligent

Systems, University of California, Irvine, while the CMS collaboration has published the

third dataset (Baldi eta., 2014; McCauley, 2014).

The second objective of this chapter is to give the required information regarding

the CMS detector (subchapter 2.3 - 2.3.6). The discussion concerning the CMS detector

does not have a direct relation to the objective of this research. However, it provides the

context for understanding the scale of computing requirements for the CMS detector that

will be discussed in chapter 2.

The author would like to reiterate that this research is concern with the applied

aspects of ML algorithms in particle physics analysis. Thus, only introductory level of

theoretical particle physics is provided.

2.1.1 Standard Model Particle and Forces

 Table 2.1 show all the particles in the current standard model (SM) which can be

further divided into fermions and bosons. Both the quarks and leptons have half-integer

spin, which makes them fermion particles following Fermi-Dirac statistics. On the other

hand, bosons have integer spin and follow Bose-Einstein Statistics.

	 9

Table 2.1: The Standard Model of particle physics.

Quarks Force
Carrying

Higgs Boson
(H)

up (u) charm (c) top (t) gluon (g)
down (d) strange (s) bottom (b) photon (!)

Leptons Z (Z)
electron (e) muon (") tau (#)

W (W) electron
neutrino($%)

muon neutrino
($&)

tau neutrino
($')

2.1.2 The Quark

In 1969, Bjorken & Paschos suggested a model in which the proton is composed

of point-like constituents as a way to interpret the result from the deep-inelastic scattering

on a proton at the Stanford linear accelerator (SLAC), see Bjorken & Paschos, (1969) and

Bloom et al., (1969). The idea of a point-like structure to describe the composition of the

proton and neutron originates from the Quark model, introduced by Gell-Mann and

Zweig in 1964, (Riordan, 1992).

The quark model states that (Griffiths, 1987);

1. All baryons are composed of three quarks, consequently all antibaryon are

composed of three antiquarks

2. All mesons are composed of a quark and anti-quark.

The mass and charge of each quark are given in Table 2.2. It is worth noting that

the quarks masses are free parameters of the SM (Uzan & Leclercq, 2008), thus they have

to be determined experimentally. However, the mass value obtained also depends on

which renormalization scheme is used, therefore the quark mass is a scheme- dependent

value, see Olive et al., (2014).

	 10

Table 2.2: The Standard Model version of quarks and its mass, (Olive et al., 2014)

Flavour
Electrical Charge

Mass (MeV)
Quark Antiquark

Up +
2
3

 −
2
3

 2.3-../
0..1

Down −
1
3

 +
1
3

 4.8-..5
0../

Strange −
1
3

 +
1
3

 95 ± 5

Charm +
2
3

 −
2
3

 1275 ± 25

Bottom −
1
3

 +
1
3

 4180 ± 30

Top +
2
3

 −
2
3

173210 ± 510 (stat err) ±

710 (sys err)

2.1.3 The Lepton

Different to the quarks, the charged lepton masses can be measured directly in an

experiment and the values obtained are not scheme dependent (Cahn & Goldhaber,

2001).Table 2.3 show all known lepton and their properties;

Table 2.3: Mass of lepton (Olive et al., 2014)

Name Mass (MeV)

Electron 0.51099 ± 11 × 10-9

Muon 105.65837 ± 3.5 × 10-6

Tau 1776.82 ± 0.16

Electron-Neutrino < 2 × 10-6

Muon-Neutrino <0.19

Tau- Electron < 18.2

	 11

2.1.4 Standard Model Forces and the Higgs Boson

The SM contains three fundamental forces, which are the electromagnetic force,

the weak force and the strong force, listed in Table 2.4. The gravitational force that is

postulated to be carried by a particle called the graviton is excluded from the standard

model, due to its formalism being based on general relativity, while SM is based on

quantum field theory. Combining these two frameworks has been the primary effort in

the field of quantum gravity and related fields.

 Table 2.4, Table 2.4 shows the strength of each force (taken from Griffiths, (1987)

). However, the value should not be taken literally as a force’s strength depends upon the

particle’s couplings and separation. The masses and charges are taken from Olive, (2014)

Table 2.4: Force carrying particles and their masses, including the Higgs boson under

the SM.

Name-Symbol Force Charge Mass

Photon - γ Electromagnetic < 1 × 10−35 e < 1 × 10−18 eV

W+ / W- Weak +1/-1 80.385 ± 0.015 GeV

Z Weak 0 91.1876 ± 0.0021 GeV

Gluon - g Strong 0 < 6 × 10−32 eV

Higgs - 0 125.7 ± 0.4 GeV

	 12

2.1.5 Electromagnetic Force

The electromagnetic force governs the interactions between electrically charged

particles, and it is formalized using Quantum Electrodynamics (QED). According to

Griffiths (1987, p. 60), all QED interactions can be reduced to the interaction shown in

Figure 2.1 (Left) which is an electron emitting a photon. Whereas, Figure 2.1 (Right) is

a positron and electron annihilating each other and forming a photon. If this diagram is

turned by 180°, it depicted a photon decaying into an electron-positron pair, an event that

is called the ‘pair production’. Another example of an electromagnetic decay is the Dalitz

pair, in which a neutral pion decays into an electron, positron and photon, 6. → 808-!.

Few particles decay via the electromagnetic force and it often only happens when

the decay via the strong force is forbidden. For example, the decay of the eta particle to

three pions, 9 → 606-6. is an electromagnetic decay since it is forbidden by the

selection rules of the strong force, see Perkin (1987, p. 83).

Figure 2.1 Feynman diagram of an electron emitting a photon (left) and

electron – positron annihilation emitting a photon (right). Time is projected

onto the x-axis with the positive time to the right. Taken from (Griffiths,

1987)

	 13

Each force has an associated coupling constant that is associated with the force

strength. The coupling constant of the electromagnetic force is known as the Fine

structure constant because it determines the magnitude of the spin-orbit splitting in atomic

spectra, shown in equation (2.1)

8:

ℏ<
= > ≈

1
137

 (2.1)

2.1.6 Weak Force

 All particles experience the weak force; however, the force is much weaker than

the electromagnetic and strong forces. A key signal that an interaction is mediated by the

weak force is that it involves a neutrino particle. An example of this interaction is the beta

decay of the neutron, A	 → C	+8- + $% and antineutrino absorption by a proton, $% +

C	 → A +	80.

 Particle flavour change is also a key signal of a weak interaction, for example the

purely hadronic decay of Sigma-hyperon to neutron and pion, Σ- → A + 6-, in which

the strange quark in the Sigma changes to a non-strange quark (Perkins, 1987).

 The mediators of the weak force are the W± and Z particles and the fundamental

vertices for the weak force are shown in Figure 2.2,

	 14

Figure 2.2: Feynman diagram of weak fundamental vertices for neutral (left)

and charged (centre) leptonic interaction, and charged quark interaction

(right) (Griffiths, 1987)

 In 1967-1968, Glashow, Salam and Weinberg proposed that the weak coupling

constant should be similar to the electromagnetic constant, thus for the weak force it will

be the dimensionless constant g instead of e, equation (2.2), (Perkins, 1987). This idea

leads to the unification of weak and electromagnetic forces, into the electroweak theory

that in turn leads to the formalism of standard model

E ≡
G:

HI
: 	≅ 10-/	GeV-: (2.2)

2.1.7 Strong Force

 The strong force is only experienced by the quarks that make up the hadron via

the mediator massless particle call the gluon. However, different to the photon which only

has two charge polarities (– and +, two degrees of freedom), the gluon has three colour

charges and three anticolour charge (six degrees of freedom). The colour symmetry is

supposed to be exact, thus, the quark-quark interaction is independent of the colour charge

involved. The theoretical basis for gluon and quark interaction is called Quantum

	 15

Chromodynamics, (QCD), and the force coupling constant is given in equation (2.3)

where GO is the strong coupling.

>O =
GO:

46
≅ 1 (2.3)

 An example of a strong interaction is the decay of the Sigma resonance Σ°(1385)

in P- + C	 → Σ° 1385 → Λ + 6°. One important property of the strong force is that the

colour-charge confinement; the colour charge potential,	TO between two quarks (say UU)

is usually given in the form of equation (2.4), (Perkins, 1987);

TO = −
4
3
>O
V
+ WV (2.4)

In (2.4) it can be seen that at small distance, V,	the potential is small but will

continue to rise with distance as the second term (of the right hand side) become more

dominant. The potential will continue to increase until it is energetically more favourable

to create a new pair of UU, which explains why individual quarks are never observed.

2.2 SM Dimuon Channel

 The dimuon channel ("0"-) is an interesting decay branch since it provides access

to study quarkonia particles and higher order QCD corrections. Quarkonia are particles

that consist of a quark and an antiquark (meson) of the same flavour, for example, J/Y

are composed of cc quark and the Upsilon meson, Υ, is composed of bb quark. Both these

quarkonia can decay directly into the dimuon final state, J/Y → "0"- , Υ → "0"-,	 (D0

Collaboration, 2014; LHCb Collaborations, 2014). It is important to note here that meson

that are composed of light flavour quark (up, down and strange) are not usually

considered as quarkonia.

	 16

 At the moment, no theoretical formalism can entirely account for the total

production cross-section and spin configuration of heavy quarkonia. Estimation based on

the non-relativistic QCD factorization scheme provide a first complete next-to-leading-

order calculation of Υ production, however, they overestimates production in the low

transverse momentum (pT) region (LHCb Collaborations, 2014).

 Figure 2.3 shows the distribution of invariant mass from the dimuon decay mode

obtained by the CMS Collaboration, (2012b) during the 2010 data taking at a proton-

proton collisions of 7 TeV. Resonance peaks belonging to the quarkonia state(s), the Z

boson and other light mesons (phi and omega mesons) can be clearly seen.

Figure 2.3: The dimuon invariant mass spectrum from the 2010 CMS

collaboration data taking. The inset shows the energy between 8-12

GeV/c2, showing the resolution of the upsilon particle.

	 17

The three upsilon (Υ(1S) , Υ(2S) , Υ(3S)) mass resolution in the dimuon channel

was later refined by the CMS Collaboration, (2010) for the 7 TeV data and it is shows in

Figure 2.4.

Figure 2.4: The invariant mass spectrum for the upsilon particle between

two pseudorapidity ranges, 9& < 2.4 (right) and 9& < 1.0 (left). Error

bars show data, the blue line shows the fit to data, and the dashed line

shows the fit to background processes.

The J/Y and its excited state Y(2S) mass resolution was later refined by the CMS

Collaboration, (2011) as shown in Figure 2.5. With Figure 2.4 and Figure 2.5, it can be

stated the mass of for Υ(1S) , Υ(2S) , and Υ(3S) is 9460.30 ± 0.26 MeV, 10023.26 ± 0.31

MeV and 10355.2 ± 0.5 MeV respectively, while the mass for J/Y and Y(2S) is 3096.916

± 0.011 MeV and 3686.109-...cd	0	...c:MeV, respectively, (Olive et al, 2014)

Υ(1S)

Υ(2S)
Υ(3S)

Υ(1S)

Υ(2S)
Υ(3S)

	 18

Figure 2.5: The invariant mass of J/Y and Y(2S) in the region of rapidity

e < 1.2	 and momentum 8 < pT < 9 GeV/c for the 7 TeV proton-proton

collision at CMS Collaboration, (2011)

For a proton-proton collision, dimuon production mostly originated from the

Drell-Yan process and decay of resonances. The decay of top quark to multi leptonic final

states contributes to the background. In the Drell-Yan process, the quark and anti-quark

from two different hadrons annihilate each other to produce a virtual photon or Z boson

that decays into a dimuon pair of opposite charge, leading to the so-called dimuon

continuum.

 Despite the dimuon being a great channel for quarkonia and QCD formalism

study, the Higgs to dimuon channel, H → "0"- is one of the smallest decay branching

ratios for a Higgs boson with mass of 125 GeV. The ATLAS Collaboration, (2014) has

stated that the branching ratio for this process is 1.5	×	10-5 at 95% confidence level,

whereas the CMS Collaboration, (2015) set the upper branching limit at 1.6	×	10-5.

J/!

!(2S)

	 19

2.2.1 Beyond SM Dimuon Channel

The dimuon channel also has been used to extract relevant information and set

new limits regarding searches for physics beyond the SM, particularly for the Minimal

Supersymmetry Standard Model (MSSM) Higgs model (CMS Collaboration, 2016; CMS

Collaborations, 2012) and supersymmetry (ATLAS Collaboration, 2012). For a SM

Higgs boson at the mass of 126 GeV, the upper limit of the branching ratio for H → "0"-

is 1.5	×10-5	according to ATLAS Collaboration, (2014). To date, no excess event

beyond the SM prediction in the dimuon channel has been observed.

2.2.2 Dimuon Dataset

 The CMS collaboration openly published the dimuon dataset, see McCauley,

(2014). For this thesis, the total number of events used is 100,000. Even with this minute

amount of data (compared to the data regularly collected by the CMS collaboration),

plotting the invariant mass, Figure 2.6, still clearly shows the peaks of multiple

resonances as seen in Figure 2.3, however the resonance peak for	Υ(3S) could not be

resolved from the background as shown in Figure 2.7;

 The dimuon dataset contains the following parameters (feature) for each event;

1. The total momentum and momentum along the x, y, and z axis for both muons

2. The energy carried by both muons

	 20

3. Indication whether a given muon is a globally reconstructed muon or a tracker

muon. The discussion of global and tracker muon is out of scope for this thesis,

please see (CMS Collaboration, 2008) for the detail.

4. The invariant mass of the two muons

Figure 2.6: The Invariant mass spectrum obtained from the dimuon

dataset that is being use for this thesis

	 21

Figure 2.7: The dimuon invariant mass between 8 GeV and 12 GeV

depicting the Υ(1S) and Υ(2S)

2.2.3 Beyond Standard Model Higgs

 It is widely believed that the standard model of the particle physics is incomplete

as it fails to provide an answer to certain phenomena such as the origin of dark matter and

neutrino oscillations. On top of that, the model contains several phenomenological

anomalies such as the hierarchy problem (the quadratic divergence of self-energy

corrections at high energy, (ATLAS Collaboration, 2013)), extent of CP violation and the

exclusion of gravity (please see Griffiths, (1987) for further discussion).

Due to these weaknesses, several models such as supersymmetry (SUSY),

technicolor, and extra dimensions have been proposed as extensions or alternatives to the

	 22

towards SM. In this subchapter, a short review regarding the Two-Higgs-Doublet

(2HDM) is presented. The 2HDM model extends the Higgs family to additionally contain

two heavy charged Higgs boson (h±) and a heavier neutral state (h.) on top of the neutral

light Higgs, ℎ. = 126 GeV/c. Certain 2HDM models also adds a pseudoscalar particle, A

(ATLAS Collaboration, 2013). Both the h. and A can decay into an electroweak boson

including ℎ. and it is possible to detect them at the LHC if their mass is below 1

TeV(CMS Collaborations, 2014). At the time of writing this thesis, no collaborations

have announced any observations of an extended Higgs sector.

2.2.4 The Higgs Dataset

In this thesis, an open access dataset containing the simulated events of cascading

decay of neutral heavy Higgs, h. is used. The dataset was created by Baldi et al., (2014)

and it is based on a case study done by ATLAS Collaboration, (2013), which in turn is

based on the work of Evans et al., (2012). According to the ATLAS Collaboration, (2013)

the decay mode does not follow a specific theoretical framework, but a simplified model

of the (2HDM).

This dataset contains a mixture of two simulated event types that are labelled as

signal and noise. Entries labelled as signal are events that originated from the process of

gluon fusion that creates the h.and have a final product k∓k±mm, shown in Figure

2.8(a). The full decay mode is given as below;

GG → h. → 	k∓h± → k∓k±ℎ. → k∓k±mm

	 23

The entries that are labelled as noise also originated from gluon fusion, but then

decay into nn and a have the same final product as the signal evens, k∓k±mm, Figure

2.8(b). In this datasets the masses of h. and h± are assumed to be opq =

425	GeV	and	op± = 325	GeV.

Figure 2.8: The two events simulated in the Higgs dataset.

In this dataset, each event contains the following variables;

1. The low level inputs which include;

a. lepton energy and direction,

b. missing transverse energy magnitude (MET),

c. 4 B-tag jet energy and direction

2. The high-level inputs which include;

a. the calculated mass of two jets, mjj and three jets, mjjj

b. calculated mass of lepton plus missing energy, mlv

c. calculated combined mass of lepton, jet and missing energy, mjlv

d. calculated mass of two bottom quarks mbb

e. calculated combined mass of two bottom quark with a single W boson,

mwbb and two W boson, mwwbb

	 24

The distribution of the given feature is shown in Appendix A.1

2.2.5 Supersymmetry

The foundation for supersymmetry (SUSY) models is that for every fermion there

exists a boson as its counterpart and vice versa for boson, Table 2.5. Due to the fact that

it is not known which supersymmetric particle is the lightest, it is common to call the

charged and natural SUSY particles produced in an event as the chargino, u±, and the

neutralino u..

The difficulty in the SUSY theoretical framework is that it contains a large

collection of free parameters that have to be determined experimentally, thus giving

various versions of SUSY. For example, the popular Minimal Supersymmetric Model

(MSSM) contain 105 free parameters, which can be reduced when the method of breaking

the symmetry is specified (Robichaud-Véronneau, 2013). This in turn leads to different

versions of the MSSM, including;

• Gravity-mediated supersymmetry breaking (Falkowski, Lee, & Lüdeling, 2005)

• Gauge-mediated supersymmetry breaking (Giudice & Rattazzi, 1999)

• Anomaly-mediated supersymmetry breaking (Alwis, 2008)

• Gaugino-mediated supersymmetry breaking (Chacko, Luty, Nelson, & Pontón,

2000)

Nevertheless, in September of 2013, after the LHC finished its first run, Nathaniel

Craig in his workshop lecture at the Galileo Galilei Institute, stated;

	 25

I do not mean this to say that there is no supersymmetry in nature.

Rather, I mean that the march of null results suggests that we were

mostly wrong about precisely how supersymmetry would appear at the

LHC.

(Craig, 2013, p. 4)

Table 2.5: Supersymmetry particles and their Standard model partners, (Perkins, 1987)

SM – Particle Spin Supersymmetry – Particle Spin

Quark, U
1
2

 Squark, U 0

Lepton, v
1
2

 Slepton, v 0

Photon, ! 1 Photino, !
1
2

Gluon, E 1 Gluino, E
1
2

W 1 Wino, k
1
2

Higgs, h 0 Shiggs, h
1
2

Craig continued to suggest that the failure is due to the approach in building the SUSY

framework that focuses on naturalness (the hierarchy problem, see Martin, (1997)) and

parsimony (minimality).

2.2.6 Supersymmetry Dataset

 The third dataset that is used in this thesis is called the SUSY dataset, published

by Baldi et al., (2014). It contains the simulated SUSY process of: GG → ℎ → u0u- →

$$ℓ0ℓ-u.u., labelled as signal, as well as the SM process: xx → kk → $$ℓ0ℓ- . Both

of these event topologies have the same detectable final products which is a dilepton plus

missing energy. The Feynman diagram for this process is given by Figure 2.9.

	 26

Nevertheless it is necessary to point out that Baldi et al., (2014) did not state which

version of SUSY phenomenology is to be adopted as the theoretical framework for

process. The mass of u± and u. is assumed to be oy± = 200	GeV	and		oyq	 =

	100	GeV.

Figure 2.9: The simulated signal (Left) and noise (Right) in the SUSY dataset

To the best knowledge of the author, neither the CMS and ATLAS collaboration

published any search for this particular decay channel mode. Nevertheless, the decay

channel for the signal event can be considered as a neutral and oppositely charged SUSY

particles decaying into an oppositely charged dilepton pair with missing energy. Hence,

the most similar decay channel that has been searched by the CMS collaboration is the

CC → 	u0u- → 	zℓzℓ → zzℓℓu.u. and CC → 	u0u- → ℓℓ → ℓℓu.u., Figure 2.10,

(CMS Collaboration, 2014).

Figure 2.10: The production and decay of two chargino into two

oppositely charged dileptons with missing energy by the that has been

search by the CMS Collaboration, (2014)

	 27

The ATLAS Collaboration has also searched on the same channel with an

additional decay mode: 	CC → 	u0u- → u.u.kk → 	zzℓℓu.u. , Figure 2.11, (ATLAS

Collaboration, 2014). At the time of writing, no deviation from the expected background

SM process is observed in any of the channels.

Figure 2.11: Additional decay mode of chargino to two oppositely

charged leptons with missing energy that has been searched by the

ATLAS Collaboration,(2014)

According to Baldi et al., (2014), each entry in the dataset has the following variable:

1. Low level features which include:

a. Both lepton energy and direction in pseudorapidity

b. Missing energy magnitude and direction

2. High-level features which include:

a. Axial ET which is the missing transvers energy along the vector defined

by the charged leptons

b. MT2 : Estimated mass for a particle produced in a pair and decaying in a

semi-invisible manner

c. {|}%~	defined by equation (2.5) where ∆∅	is the minimum angle between

ET and a jet or lepton

	 28

{|
}%~ = 	

{|	if	∆∅ > 	
6
2

{| sin ∆∅ 	if	∆∅ < 	
6
2
	
 (2.5)

d. Ö, Ü	and	H} are razor quantities defined in Rogan, (2010)

e. Ö}0c, cos à}0c , ∆∅}
â ,H∆

},H}
|	and	 ä} are super razor quantities

defined in Buckley et al., (2014)

Discussion regarding these high-level features is out of the scope of this thesis.

However, the parameter H}
| will be used later and it is given by equation (2.6);

H}
| : = 	

1
2
{|
ãåOO xc| − x:| − çé

èêëë ∙ ìîé − ìïé (2.6)

where {|ãåOO, xc| and x:| is the missing transverse energy, visible transverse

moment particle 1 and the visible transverse moment particle 2 respectively. The

distributions of these variables is given in Appendix A.2

2.2.7 Dataset Production

 Both the Higgs and SUSY datasets are produced by computer simulation.

According to the authors of the dataset, Baldi et al., (2014), MADGRAPH5 and

MADGRAPH were used for the event generator for the Higgs and SUSY dataset

respectively. Assuming a proton-proton collision at 8 TeV(Alwall et al.,2011).

Furthermore, PYTHIA was used to simulate the showering and hardonization, while

DELPHES was used for detector response (Ovyn et al., 2009; Sjöstrand et al., 2006).

	
	
	
	
	

	 29

2.2.8 Dataset Conclusion

This research used three different datasets with each dataset physics is governed

by three different branches of particle physics. The dimuon dataset contains events

recorded by the CMS muon chambers and it follow the Standard Model framework. The

majority of the events registered in this dataset come from the Drell-Yan process, the

decays of light mesons and the Z boson. On the other hand, the Higgs dataset contains

the simulated events of a cascading decay of neutral Higgs. The simulation is based on

the 2HDM model in which extends the Higgs sector to contain 2 additional heavy neutral

Higgs bosons and 2 heavy charged Higgs. The third dataset is the SUSY dataset; it

contains simulated events of two charginos decaying into neutralinos, a dilepton pair with

opposite charge and two neutralinos. The simulated event is based on an MSSM model.

2.3 Introduction to the CMS Detector

The events in the dimuon dataset were recorded by The Compact Muon Selenoid

(CMS) muon chamber. CMS is one of four large detectors situated at the LHC, located

in Cessy, France. It was designed to record events from proton-proton (pp) collisions with

a centre-of-mass energy = 14 TeV as well as events from lead-lead collisions at 5.5 TeV

pre nucleon. This subchapter will provide a short overview of the CMS detector according

to the report published by the CMS Collaboration, (2008). This thesis only uses the 2010

dimuon dataset (the other two datasets are Monte Carlo simulated data); hence, only the

original design of the detector will be given and information regarding detector upgrades

during the 2014 first long shutdown is not included.

	 30

2.3.1 General Overview

In terms of size, the CMS detector has a length of 21.6m, with a diameter of 14.6

m and a total weight of 12500t. The proton-proton collision point is enveloped by an all-

silicon pixel-strip tracker, which in turn is surrounded by a lead-tungstate scintillating-

crystal electromagnetic -calorimeter, which is also surrounded by a brass-scintillator

sampling hadron calorimeter. All the inner detector is positioned inside a large-bore

superconducting solenoid that also submerges the detector in a high magnetic field. The

magnetic field is returned by the iron yoke which also contains four stations of muon

detector. Two forward calorimeters are positioned outside the iron yoke (CMS

Collaboration, (2008). A perspective view of the detector is shown in Figure 2.12

Figure 2.12: A perspective view of the CMS detector

	 31

The CMS detector was designed to meet the following objectives:

• Muons can be identified with an excellent momentum resolution in a broad range

of momenta and angle. Good dimuon mass resolution and it is able to determine

muon charge with little unambiguity.

• Have excellent momentum resolution and reconstruction efficiency in the inner

tracker for charged particles. Have efficient triggering and online tagging for the

tau, # particle and b-jets.

• Good electromagnetic energy resolution, efficient photon and lepton isolation,

and 6.	rejection wide geometric coverage, giving good mass resolution for

diphoton and dielectron states.

• A large hermetic geometric coverage with fine lateral segmentation for the hadron

calorimeter so that a good resolution on missing transverse energy and dijet mass

can be obtained.

According to CMS Collaboration, (2014), the following coordination system is

adopted for each event recorded:

• The origin point is located at the nominal collision points inside the detector.

• Y-axis points vertically upward, X-axis points towards the centre of the LHC

radial beam and Z-axis lies in the counter clockwise direction of the beam line

• The polar angle à is the angle between the positive Z-axis and XY-plane, while

the azimuthal angle ∅ is measured in the XY-plane

• Pseudorapidity, 9 is defined by equation (2.7)

9 = −vA tan	(
à
2
) (2.7)

	 32

2.3.2 CMS Superconducting magnet

 According to the CMS Collaboration, (2008), the CMS superconducting magnet

is designed to sustain a 4T magnetic field during operation, storing energy up to 2.6GJ at

full current, Figure 2.13. The flux of the magnetic field is returned by the 10,000t yoke,

which is comprised of 5 wheels and 2 endcaps. The superconducting solenoid has three

new features compared to the previous detector magnet:

1. Four layers of winding instead of the usual one layer (Aleph and Delphi) or a

maximum of 2 layers (ZEUS and BaBar) to support the necessary ampere-turns

in generating 4T of magnetic field, (ALEPH Collaboration, 1990; BaBar

Collaboration, 2002; DELPHI Collaboration, 1991; ZEUS Collaboration, 1993).

2. The conductor is made from Rutherford-type cable co-extruded with pure

aluminium and mechanically reinforced with aluminium alloy

3. The solenoid size is massive: 6.3m cold-bore, 12.5m in length and has a mass of

220t

Figure 2.13: Comparison of the CMS detector magnet with other detector

magnet in term of energy over mass ratio, (CMS Collaboration, 2008).

	 33

 It is worth noting that even though in (CMS Collaboration, 2008) is stated that the

superconducting coil is supposed to deliver a homogenous 4T magnetic field to the inner

detector, subsequent publications state that the magnitude of the magnetic field deliver is

only at 3.8T, (CMS Collaboration, 2010b, 2012b).

2.3.3 CMS Inner Tracker

According to (CMS Collaboration, 2008), the inner tracker has the function of

providing a precise and efficient measurement of charged particle tracks emerging from

LHC collisions and secondary vertices. As the LHC will produce a luminosity up to

1034cm-2s-1, which produce an average of 1000 particles from 20 overlapping proton-

proton collisions for every 25 ns, the tracker is required to have high granularity, fast

response time, be efficiently cooled and able to operate in a harsh environment with an

expected lifetime of 10 years. To achieve this, CMS adopted silicon detector technology.

The detector has about 200 m2 of active silicon area which makes the CMS tracker the

largest silicon tracker in the world.

The tracker layout is as follow and shows in Figure 2.14;

• Three hybrid pixel detector modules (at radii of 4.4, 7.3 and 10.2 cm) surround

the interaction point. It also has two-pixel module disks on each side. In total, the

pixel detector has an area of 1m-2 and contains 66 million pixels

• The silicon-strip tracker covers the radial region between 20 cm and 116 cm and

has three subsystems. The Tracker Inner Barrel (TIB) and Tracker Inner Disk

(TID) extend in radius to 55 cm and are composed of 4 barrel layers with three

	 34

disks at each end. Both TIB and TIC are surrounded by the Tracker Outer Barrel

(TOB)

• The Tracker EndCap (TEC), covers the region of 124 cm < ó < 282 cm and 22.5

cm < V < 113.5 cm. It compromises 9 disks, carrying up to 7 rings of silicon

micro-strip.

Figure 2.14: The schematic diagram of the CMS silicon inner tracker,

(CMS Collaboration, 2008).

2.3.4 CMS Electromagnetic Calorimeter

Similar to the inner tracker, the electromagnetic calorimeter (ECAL) has to have

fine granularity, fast response time and be resistant to high radiation damage. This can be

achieved by using lead tungstate (PbW04), a homogenous high-density crystal. In the

barrel section, the CMS ECAL consists of crystal with avalanche photodiodes (APD) as

the photodetector. In the endcap, it consists of a preshower detector, vacuum phototriodes

(VPTs) with same crystal material. One of the design criteria for the ECAL is that is can

detect the diphoton decay of the Higgs boson.

	 35

2.3.5 CMS Hadron Calorimeter

The CMS Hadron Calorimeter (HCAL) consists of four subsystems, which are:

the HCAl Barrel (HB), HCAL Endcap (HE), HCAL Outer (HO) and HCAL Forward

(HF), shown in Figure 2.15. Both HB and HE are located inside the CMS solenoid,

immersed in 4T of magnetic field during operation. Both of these HCAL systems are

sampling calorimeters (7% sampling) with the brass as the absorber material and

scintillator as the active material. To catch energy deposited beyond the HB, the HO is

placed surrounding the solenoid and consisted of several layers of scintillator. The HF

covers the forward region and it is made of quartz fibre as the active medium and steel as

the absorber, so that it can with stand the harsh radiation damage, (CMS Collaboration,

2008, 2010b)

Figure 2.15: A schematic of the CMS HCAL and its four subsystems.

	 36

2.3.6 CMS Muon System

According to the CMS technical design report (CMS Collaboration, 2016), muons

are the signature of most physics that is investigated at the LHC experiments. This

requires the CMS detector to be able to identify (trigger) and reconstruct the muon while

operating at high luminosity. In addition to that, most events of interest will have multiple

muons at higher rapidity, thus, the CMS muon system must be also able to detect and

measure muon over a broad range of angle. The role of the CMS muon system can be

summarized into three task: muon identification, muon measurement and triggering,

(CMS Collaboration, 2008)

The CMS muon system uses three different detectors, which are; the drift tubes

(DT) in barrel region, the cathode strips chambers (CSC) in the endcap region and the

resistive plate chambers (RPC) in both the barrel and endcap, Figure 2.15. All the muon

chambers are orientated to be perpendicular to the muon trajectories and provide a

hermetic coverage for the 9 range from 0.0 to 2.4, Figure 2.16 & Figure 2.17. The

summary regarding the three muon detectors is given in Table 2.6.

	 37

Figure 2.16: A schematic diagram of a quadrant lay out for the CMS

detector showing the position of drift tube (DT), resistive plate chamber

(RPC) and cathode strip chambers (CSC). Taken from (CMS

Collaboration, 2012b)

Figure 2.17: A longitudinal view (a) and a transverse view (b) of an event

with 4 reconstructed muon tracks, using all three muon systems. All the

muon detectors are orientated perpendicular to the muon trajectories.

Taken from (CMS Collaboration, 2012b)

	 38

Table 2.6: A summary regarding the three muon chambers of the CMS detector, taken

from CMS Collaboration,(2016)

Detector DT CSC RPC
Function Tracking Tracking BXID

 pT Trigger pT Trigger pT Trigger
 BXID BXID Resolve tracking ambiguities

9 Region 0.0 - 1.3 0.9 - 2.4 0.0 - 2.1
Station
number 4 4 Barrel – 6, Endcap - 4

Chamber 250 540 Barrel – 360, Endcap - 252
Time

Resolution 5 ns 6 ns 3 ns

2.3.7 CMS TriDAS

As stated before, the LHC will produce a luminosity up to 1034cm-2s-1, leading

to an average of 1000 particle from 20 overlapping proton-proton collisions every 25 ns.

It will be impossible to permanently store all the recorded responses coming from all the

CMS subdetector as this rate. Thus, the CMS Trigger and Data Acquisition System

(TriDAS) drastically reduces the recorded bandwidth to a manageable amount. According

to the CMS Collaboration, (2008), The CMS TriDAS system is the combination of the

Level-1 (L1) trigger, High-Level Trigger (HLT) system and the Data Acquisition System.

The L1 trigger is largely custom-designed programmable electronic hardware which

gives a maximal output rate of 30kHz.

 The HLT are software systems implemented on a high-performance computing

cluster with about 1000 commercial processers. Since the HLT takes the read out from

the L1 trigger, it can perform complex calculations similar to offline analysis. The

combination of L1-trigger and HLT is designed to reduce the data by at least a factor of

	 39

106 (CMS Collaboration, 2008). The Data Acquisition System manages the flow of

information between the L1-trigger to the HLT.

2.3.8 CMS Detector Conclusion

The CMS detector is one the four large detectors at the LHC accelerator. It

consists of an all-silicon pixel-strip tracker, a lead-tungstate scintillating-crystal electro-

calorimeter, a brass-scintillator sampling hadron calorimeter and several muon detectors.

A large-bore superconducting solenoid provides a homogenous magnetic field at a

magnitude of 4 Tesla while an iron yoke returns the field. All parts of the detector are

designed to be able to operate in a high radiation environment and provide high-efficiency

responses throughout the lifetime of the detector.

	
	 	

	 40

CHAPTER 3

COMPUTATIONAL DEVELOPMENT FOR CMS AND SIFIR

3.1 Chapter Introduction

 During run 1, the various subdetectors in CMS had to record events coming from

an average of 1000 particles from 20 overlapping proton-proton bunches every 25 ns.

Thus, these subdetectors generated a massive amount of data. The recorded data were

then filtered and reduced by the CMS High-Level Trigger farm before being permanently

stored for further analysis. In order to store and analyse these data, the CMS collaboration

adopted the grid-computing technology, which combined the computing resources in

several sites into one common shared resource.

This chapter focuses on the CMS high-performance computing environment with

the content divided into three sections; starting with a brief review of the CMS grid-

computing architecture, follow by a discussion pertaining to the CMS Remote Analysis

Builder (CRAB), and the author’s contribution to the development of this software. The

last section of the chapter describes a High-Performance Computing (HPC) Cluster

developed in Universiti Malaya called ‘sifir’ and the author’s contribution in developing

this cluster. The sifir computing cluster had been vital in this research as it was the

primary hardware used to execute machine learning algorithms developed for this

research.

	 41

3.2 CMS Computing Challenges

 Based on CMS Collaboration (2008), the computing system architecture was

designed to tackle four challenges;

• Large scale data: The physics done at CMS required a large statistics dataset in

finding rare signals, thus it required enormous volumes of data. This required a

system that was efficient in data reduction and pattern recognition.

• High flexibility: The system must be able to let a user access any data item during

the lifetime of the experiment, as well as to support a variety of analysis methods

that evolve along the goals of the experiment.

• Manageability: The complex and extensive computing system must be designed

in a way that allows the software and the hardware to be maintained and

monitored.

• Longevity: The system must be sustainable for 15 years or more; adaptive to

changes in hardware, software, and personnel.

3.2.1 CMS Grid-Computing Infrastructure

 In order to provide a large-scale computing resource for storing and analysing all

the data produced by the CMS detector, the collaboration adopted the grid computing

infrastructure. The CMS grid computing infrastructure is built on top of the Worldwide

LHC Computing Grid (WLCG) infrastructure (Bird et al., 2005) and uses the middleware

provided by the European Grid Initiative (EGI), Advanced Resource Connector (ARC)

by NorduGrid (Ellert et al., 2007), and Opens Science Grid (OSG) (Pordes et al., 2007).

	 42

The CMS computing sites are classified based on their tier level; from Tier-0 to

Tier-3. According to Bloom (2015), CMS has approximately seven Tier-1 sites and 50

Tier-2 sites. The role played by each tier is given in the following:

Tier-0: The CERN computing site itself, which records raw data directly from the detector

and archives them as a cold backup on tape.

Tier-1: Copies the raw data from Tier-0 as custodial replica. It provides a central

processing unit (CPU) farm, as well as a mass storage system (MSS) on both disk and

tape with 24/7 support operation. Since Tier-1 sites have both the data and the computing

resource, this site is capable of data production from computer simulation, as well as

experimental data reconstruction. Only in Run-2, analysis jobs are also executed in Tier-

1 sites (K. Bloom, 2015).

Tier-2: Different to Tier-1 sites, sites at this level are not required to provide tape storage

services and only provide computing support during business hours. Computing-intensive

jobs with low input/output (I/O) bound run more efficiently here, so that simulation

production and analysis jobs are executed here. Only in Run-2, were simulation

reconstructions are also executed in Tier-2 sites (K. Bloom, 2015). The University

Malaya’s sifir is in Tier-2 site.

Tier-3: Volunteer site that is more focused on user analysis (Mascheroni et al., 2015). (A

volunteering site are computing site that are not bound with the CMS to give specific

resource at all time)

	 43

CMS also has a high-performance computing cluster called the High-level Trigger

farm that is used to filter irrelevant events during data taking and can also be used as an

opportunistic computing resource during a technical stop. (An opportunistic computing

resource is a resource that is only available in a certain period. For example, if all

computers in a computer-lab are idle at night, this computer can be used as an

opportunistic resource to provide additional computing resource for some other means.

See Thain, 2005, for discussion of opportunistic computing)

In term of computing network, all sites except Tier-0 sites, are interconnected in

a full-mesh network topology through a general purpose scientific network. Meanwhile,

Tier-0 is connected to Tier-1 sites by a dedicated network called the LHC Optical Private

Network (LHCOPN), as illustrated in Figure 3.1.

3.2.2 CMS Computing Activity During Run 1

According to Adelman et al., (2014), during LHC Run 1 alone, the CMS

collaboration through its computing division recorded around 10 Billion data and 15

billion simulated events, while Boudoul et al., (2015) reported only 12 billon simulated

events, which required the management of 100,000 processor cores and 100 petabytes of

storage. Additionally, between 2010 and 2014, an average of 32.76 petabyte of data were

transferred between the CMS computing sites annually (Wildish, 2015) and up to 500

active concurrent users were handled at any given time (Adelman et al., 2014). Besides,

an average of 18,500 and 54,300 computing jobs were run on Tier-1 and Tier-2 sites

respectively during Run 1 (K. Bloom, 2015).

	 44

Figure 3.1: The network topology of CMS computing sites according to

Tier. All Tier-1 and Tier-2 sites are interconnected with each other.

3.2.3 CMS Grid-Computing Software

 The CMS computing division has three primary tasks; data storage, transfer, and

analysis. In order to perform these tasks, a variety of software programs are adopted into

the computing environment or developed in-house when they are required. Table 3.1 lists

the primary software programs that are utilized in the CMS computing based on their

roles.

Only software from the analysis and submission infrastructure group are relevant

for this research, hence the detail regarding the software from these two groups will be

given in the subsequent subchapter. An in-depth study of each middleware is outside the

scope of this thesis; however, the interested reader is directed to the article given in the

references.

	 45

3.2.4 CMS Submission Infrastructure

All computing jobs submitted to the CMS grid-computing infrastructure originate

from two workflows; analysis and production workflows. Production workflow is

reserved for simulation and event reconstructions that are managed and produced

centrally by a few experts (Adelman et al., 2014), while user analysis and private

simulation jobs are submitted through the analysis workflow channel (Mascheroni et al.,

2015).

The front end for the production and the analysis workflow are the Workload

Management Agent (WMAgent) and the CMS Remote Analysis Builder (CRAB)

respectively (Boudoul et al., 2015; Mascheroni et al., 2015). Nevertheless, these two

workflows use the same computing resource, thus, they are merged at the submission

infrastructure level, as shown in Figure 3.2. According to Belforte et al., (2014), in the

initial phase of the CMS experiment, direct submission to the computing node (in various

sites) or an intermediate workload management system is used. The dominant high-level

scheduler in Europe (Marco et al., 2009) is the gLite WMS while the HTCondor G

scheduler is dominant in the United States of America (Thain, Tannenbaum, & Livny,

2005).

However, the direct submission method has been proven to be inefficient during

Run 1 due to its high dependence on the network and the instability of a site’s middleware.

Furthermore, in Run 2, different computing architectures, such as cloud, local batch, and

opportunistic resources, are incorporated into the overall CMS computing resources

(Balcas et al., 2015). Furthermore, the single submission entry point eliminates the need

for complex job prioritization at the computing node, since it could be collectively

	 46

controlled at the central management level. Hence, there is a strong need for a single

submission infrastructure that can control all (global) computing resources.

Therefore, CMS has moved towards a unitary submission method, which is call

the glideinWMS global pool (Belforte et al., 2014), as depicted in Figure 3.2. The system

is based on 'pilot', in which a lightweight job is first submitted to a compute element at a

site. Only when the pilot job starts to execute in the compute element will the actually

analysis job be run. The glideinWMS is based on the HTCondor system, and according

to Fajardo et al., (2015), it can manage up to 200,000 simultaneously running jobs for a

single internationally distributed dynamic pool.

Figure 3.2: The general system design for the CMS glideinWMS global

pool (taken from Belforte et al., 2014)

	47

Table 3.1: The various middleware applications used in the CMS computing environment in Run1 and Run 2 sources: Adelman et al.,

(2014)

Purpose Function Software Reference

Transfer Transfer data between
sites

Physic Experiment Data Export (PhEDEx), Data
Aggregation System (DAS), and Any Data Any
Time Anywhere (AAA)

Giffels et al.,(2014), Bloom et al., (2015)

Bookkeeping Files and dataset
metadata catalogued CMS Dataset Bookkeeping System (DBS) Giffels et al.,(2014)

Constant
Information on
alignment and
calibration constant

Frontier, SQUID Blumenfeld et al., (2008)

Software
Distribution

Allows software to be
accessed on all sites

CERN Virtual Machine Software Application
(CVFMS)

Buncic et al., (2010)

Submission Submits computing job
to sites gLite, HTCondor_G, glidein Belforte et al., (2014), Marco et al., (2009),

Sfiligoi et al., (2009), Thain et al., (2005)
Stress Test Does stress test on sites Hammercloud Ster et al., (2011)

Monitoring Monitors site, job, and
transfer

Dashboard, WLCG SAM, SiteDB Andreeva et al., (2008), Metson et al., (2010)

Production
System

Centrally produces
simulation workflow Workload Management Agent (WMAgent) Fajardo et al., (2012)

Analysis
System

User-orientated job
submission

CMS Remote Analysis Builder (CRAB),
AsyncStageOut(Run2) Mascheroni et al., (2015), Riahi et al., (2015)

	 48

3.3 Introduction to CMS Remote Analysis Builder (CRAB)

The front end of the analysis workflow is the CMS Remote Analysis Builder

(CRAB), which takes the user algorithm, configuration parameter, as well as the defined

dataset, and then, manages the job execution on a remote computing element. CRAB is

designed to accept a variety of analysis algorithms and input sources (hence, adaptable to

changes in analysis goals), as well as in shielding the user from the technicality difficulty

of CMS submission infrastructure (Mascheroni et al., 2015).

The CRAB has undergone three reincarnations with its first version in production

since the Spring of 2004. Its first version was a stand-alone Python application that could

be run on a user’s workstations. The application handles all interactions with other CMS

specific and Grid Middleware services. In CRAB2, the application adopted the server-

client framework; delegating and synchronizing all operations with the CRAB2-server.

However, the CRAB2-client still carried out multiple tasks, including data discovery and

location via DBS and PhEDEx. It also retrieved information on how to interact with

different site computing elements and storage elements via SiteDB (Cinquilli et al., 2012).

One of the key motivations of redeveloping the CRAB system from scratch to the

current version of CRAB3 has been due to the high failure rate during the stage-out

process. In CRAB2, once an analysis job has finished executing a remote computing

element (CE), it will try to stage-out the job output directly from the CE to a user-defined

storage element. In a grid computing environment, a user storage element can be

physically located across the globe from the CE. Thus, the stage-out process can take

valuable computational time, rendering CE in an idle state until the process is complete.

	 49

 Furthermore, the direct stage-out process is prone to failure due to grid

middleware and network instability. If the stage-out process fails, the whole analysis job

has to be repeated (Adelman et al., 2014; Mascheroni et al., 2015). From here, the

discussion focuses only on CRAB3 implementation and the term CRAB refers to the

CRAB3 version.

	
	
	
3.3.1 User Perspective

 CRAB is a command-line-based application that runs on the CERN ssh-terminal

node. Once a user has logged onto the node, the user only needs to deploy the CMS

Software (CMSSW) environment via the command line cmsenv and export the CRAB

source-code path available in the CMS CVFMS. Having done that, the user now can use

multiple crab commands as shown in Table 3.2;

	 50

Table 3.2: List of crab commands available for user as of January 2016

Command Action
submit The application takes a user-defined configuration file and

creates a task on the grid base on the parameter in the

configuration
status Retrieves information of all or a given submitted task
kill Kills a given task that has been submitted
getlog Retrieves the log file of a given task
getoutput Retrieves the output of a given task
resubmit Resubmits a failed task
proceed Continues submission that is previously in a 'dryrun' mode
purge Clears a user’s sandbox (a cache area for user’s code)
remake Recreates a user’s task information in the local directory
report Retrieves the list of good 'lumi' section of a given task
checkusername Validates if the user's username is identical with the

information in SiteDB
checkwrite Validates if the user has read/written access to a given site

storage element
uploadlog Uploads a crab log file to the developer in case of bug

3.3.2 CRAB Architecture

Cinquilli et al., (2012) designed the initial CRAB3 architecture and a majority of

the initial design still holds in the current version (as of January 2016), including:

1. A central service without any single point failure

2. Asynchronous stage-out implementation

3. A HTTP transaction at the interface (RESTful Interface)

4. A central global queue

5. A distributed agent processing the workflow

	 51

6. Global monitoring

Points 4, 5, and 6 are implemented through the glideinWMS global pool, as

explained in subchapter 3.2.4, whereas points 1, 2, and 3 are implemented on the CRAB3

system. The CRAB3 system is divided into multiple components, which are:

CRABClient: The interface between the user and the rest of the CRAB system, where it

receives all the crab commands listed in Table 3.2 from the user. It is written fully in the

Python language and it is designed to be lightweight, parsing, and receiving information

from the CRABserver or other CMS service through the Python-pycurl module in

JavaScript Object Notation (JSON) form. The client also validates the parameters given

by the users before submitting them to other services.

CRABServer: Acts as the front end (gateway) for a user’s request and handles user

authentication. The request is validated again before submitting it as an entry into the task

database; the current implementation uses, and Oracle database, nevertheless, the

component is also compatible with the MySQL database.

TaskWorker: It checks the CRABServer database at a regular period of time for a new

request; it executes the command given by user via CRABClient such as submission,

kills, and resubmits. The TaskWorker has the capability to spawn multiple slave-

processes in parallel, with each slave-process responsible for executing only one unit of

work on a task. For example, the job submission command requires the slave process to

initiate data discovery by using DBS, job splitting, and then send the full description of

the task to the HTConder scheduler. The component also stores the status of each task

and synchronizes it with another task worker instance so that the same task is not executed

twice.

	 52

AsynchronousStageOut (ASO): The stage out process of a user’s job output happens in

two steps: 1) First, the output is copied to a local temporary storage area in the execution

site. 2) An ASO component is notified to do the transfer via File Transfer Protocol (FTP)

on a predefined channel, similar to PhEDEx. Once the transfer is over, the ASO would

update the DBS to specify the final location of the output. A full description of the ASO

is given in Riahi et al., (2015).

Each job submission from CRAB to the CE is wrapped in a job wrapper script. The script:

1. Sets up the CMSSW environment at the CE

2. Executes the user’s code

3. Records monitoring information

4. Reports any error during execution

5. Initiates the output transfer process.

The CRAB components, along with the scheduler, and CE are shown in Figure 3.3.

Each component can have multiple instances running simultaneously to create

load balancing between instance and redundancy in the overall system. Each component

can also be developed independently from each other as long as the interface between

them is consistent. Since the component is also centrally managed, rolling out an updated

version (with added features and to eliminate bugs) is done automatically without the

user’s participation.

	 53

Figure 3.3: The CRAB3 Components and the internal mechanism of the

job submission (taken from Mascheroni et al., 2015)

3.3.3 User Adoption

Figure 3.4 shows that the number of unique users steadily increased from Jun

2014 (declared production ready) until May 2015. The last release of CRAB2 was issued

in November 2014, and after that, CRAB3 has become the primary front end for CMS

users to submit their jobs to the grid computing infrastructure.

	 54

Figure 3.4: The cumulative number of users using CRAB3 from Jun 2014

until May 2015 (taken from Mascheroni et al., 2015)

3.4 Development of CRAB3

 The author’s contribution to the development of CRAB3 was carried out between

October 2013 and September 2014. A total of 66 improvements (Github pull request) had

been merged into the main CRAB3 production algorithm. Considering that the

contribution period was carried out during the LHC’s first Long Shutdown and the

CRAB3 was still in the pre-production phase, most of the development done was focused

on creating a stable release, as well as adding new features present in CRAB2, but not yet

in the CRAB3. The subsequent subchapter provides the details pertaining to the primary

development contribution to the CRAB3 system.

Contributed codes can be accessed at: https://github.com/qunox/CRABClient and

https://github.com/qunox/CRABServer.

N
um

be
r o

f U
se

r

Date

	 55

3.4.1 CRAB3 Error Report Mechanism

As stated before, one of the main goals during this development period was to

create a stable release of CRAB3, and at the same time, to include new features. These

two goals are working against each other as creating new features tends to introduce an

unexpected bug into the code that is meant to be stable. Thus, one of the main

contributions to CRAB3 was to create a rapid semi-automatic feedback mechanism for

handling unexpected errors.

If the CRABClient component encounters an unexpected error, an internal

mechanism is flagged, which automatically uploads the user’s CRABClient log file to the

CRABServer. A CRAB3 developer will then receive the notification regarding the error

and fetch the user tarball and log file for debugging. In the event that a user complains

that a bug has occurred, but the CRABClient fails to notice it, the user can still notify the

developer and upload the CRABClient log file manually by using the crab

uploadlog command.

This feedback mechanism had been a major development effort due to the following

reasons;

1. In the original logging mechanism, nearly half of all the unexpected errors occurs

before the logging module is initiated, thus, no recording of the error is done and

debugging in this situation is impossible. Even if the error is logged, the full

information about the error were not given. Hence, the internal logging

mechanism of the CRABClient component have to be re-written from scratch.

2. Reproducing the error experienced by the user requires the developer to have

enough information, such as the user’s job configuration, terminal environment

	 56

parameters, as well as the CMSSW version. This information was not available

initially, hence, a mechanism in which all the necessary information was uploaded

when the user submits a job was also developed.

3. A new crab command: crab uploadlog was created so that a user can

manually upload the log file.

The code structure for the automatic auto-upload-log is given in Table 3.3;

Table 3.3: The code structure for crab auto-upload-log

crab auto-upload-log code

 if unexpected error flag == True:

 if user proxy file exists && log file exists:

 get CRABServer instance in use URL (base URL)

get user cache address on CRABServer with the given proxy and

base URL

upload log file to user cache

 else:

 Advice user to upload log manually

3.4.2 Validation of User Read/Write Access

 One of the key policies in the CMS collaboration is that each user must have

his/her personal storage area maintained by the home institution. Thus, each user can only

permanently stage-out their analysis output to his/her particular storage area.

Furthermore, the storage address (pathway) also must be discoverable by the PhEDEx

	 57

and the DBS service for CRAB to create the necessary Logical Filename (LFN) and

Physical Filename (PFN) for the stage-out process.

Moreover, it is common for a user to be unaware of their read/write access to a

particular storage and/or their LFN address differs from that registered under PhEDEx

and DBS. Both these situations raise an exception (error) during the stage-out process by

CRAB.

The crab checkwrite command allows a user to validate if they have

read/write access to a particular storage area. This was a major development because:

1. Failed stage-out creates a very inefficient usage of the grid computing resources

since the analysis job that has been computed is useless. This error was common

during the CRAB3 pre-production phase.

2. The crab checkwrite command establishes a direct I/0 bond between the

CRAB3 service and the user storage element. Establishing such connection

requires proxy delegation mechanism for authentication purpose, which is a

complex process. On top of that, the command also requires proxy for the LFN

validation by PhEDEx services. Thus, the consistency of API between various

CMS computing services has to be maintained.

3. During the First Long Shutdown, there was no standardization between CMS

computing sites on which read/write protocol to be use. Different sites used

different versions of the Storage Resource Manager (SRM). The management of

contain in the grid-computing storage are done by using one of two Linux

command which is the lcg command family (lcg-ls, lcg-cp, and lcg-

del, (Gross, 2012), and the gfal command family (gfal-copy, gfal-ls,

and gfal-rm, (“GFAL2 utility tools,” 2016). The gfal command was used to

	 58

replace the lcg due to the lcg command have consistency error between its

version.

The mechanism for the crab checkwrite in its original version is given in Table

3.4;

Table 3.4: The code structure for the crab checkwrite

crab checkwrite code

Retrieves user CERN proxy (‘myproxy’) based on the user’s role and group

Creates a dummy file in the user local space

Retrieves the user’s CERN username from the DBS service

Retrieves user storage PFN from the PhEDEx service

Tries to copy the dummy file to the given PFN by using lgcp -srmv2 command

if exitcode == 0:

 Tries to delete the dummy file by using lg-del -srmv2

else if exitcode != 0 && exiterror == timeout error:

 prints ‘Try again latter’

else if exitcode != 0 && exiterror == dummy file already exist error:

 Tries to delete the dummy file by using lg-del -srmv2

 Tries to copy the dummy file again by using lgcp -srmv2 command

 exitcode = new exitcode

if exitcode == 0:

 return User is able to write on the given PFN by using the given proxy

else:

 return User is unable to write on the given PFN by using the given proxy

	 59

3.4.3 Parallel Remote Copy

The crab getoutput and crab getlog command use the same module,

call remotecopy.py to copy an output file from the sites where the analysis job was

executed. The user commonly uses these two crab commands for debugging their analysis

algorithm

In the original version of remotecopy.py, files are copied to the user local space

in a serial manner, resulting in a very slow (almost crawling) download speed. Hence, a

change to parallel downloading was deemed necessary.

This development was initially considered to be minor, but progressively grew to

be a substantial development effort. The root of the complexity was caused by the need

for the module to be re-written, while retaining certain parts of the algorithm due to legacy

issues.

Complexity also arose during the initial test of the parallel download mechanism,

as it was discovered that if the number of parallel connections per user was set too high,

it resulted in multiple connection attempts by multiple users (all originated from CERN)

to one single execution site; such massive-multiple connection attempts were deemed to

be a Denial of Service Attack (DOS). In this situation, the connecting site would tend to

kill all connections (connection-reset-by-peer error). Setting the number of parallel

connections per user at a lower number would however contribute to poor performance

since certain computing sites set low downloading speed limits per connection. In such a

situation, the number of allowed connections should be high.

	 60

After several trials were made, it was determined that the default number of

connections per user should be set at 10 with a maximum of 20 connections. The remote

copy algorithm is given in Table 3.5;

Table 3.5: The code structure for the remotecopy module

remotecopy algorithm

Retrieves files PFN

Verifies if the number of connection(s) requested is appropriate

Calculates timeout period based on file size

Starts sub-process according to the number of connection(s) requested

Creates python queue manager (python inter-process piping manager)

In parallel:

 Sub-process takes a file PFN

 Tries to download file with the given PFN

 if the file is downloaded:

 Do checksum on the download file

 if checksum fails, try downloading again

 else:

 Flag as failed to download

Report successful download or failed download.

3.4.4 CRABClient API

During the pre-production of CRAB3, the 'multiCRAB' had been one of the most

requested features to be ported from CRAB2 into CRAB3. The idea behind multiCRAB

is to give the user the ability to submit and to monitor multiple analysis jobs in one single

command line. In CRAB3, the idea of multiCRAB is expanded to become a Python

	 61

Application Programming Interface (API) that allows a user to develop their own job

management script. Thus, the CRABClient API development project was initiated.

 By employing the CRABClient API, users are expected to write a python script

for a job submission, such as below;

from __future__ import division

from CRAB3 import Command, ClientLogger

log = ClientLogger.ClientLogger().add()

cmd = Command.Command()

crabconfigpath = ‘~/foo/cranbconfig.py’

cmd(‘submit’,crabconfigpath)

 In this design, the Command() function input is exactly similar to the

CRABClient application command (as shown in Table 3.1), as well as the command line

parameter. Thus, users need not memorize a new set of commands when using the

CRABClient API.

Examples of case scenarios for the CRABClient API are;

• Serial analysis: An analysis routine that takes the product of the previous analysis

as the input of the next analysis job; by using the CRABClient API, a script can

be made to create atomization of task management.

• Optimization analysis: User submits a batch of analysis job with each job having

a different value for a certain parameter. Batch submission and monitoring can be

easily developed by the user via CRABClient API.

• Corrupt sector analysis: In some instance, a file may contain certain recording

error that could not be read by the computer (corrupted sector). A batch of

	 62

submissions is executed on a small sector from a large input source. The sector

becomes smaller on each batch submission until the exact corrupted sector is

pinpointed. The CRABClient API allows users to automatize such task.

The CRABClient API consists of only two additional modules on top of the

original CRABClient application library. They are the logger (ClientLogger.py) and the

command module (Command.py). The logger gives the user the ability to customize

various logging criteria, such as the logging level and the output path. It is worth noting

error logging was crucial for debugging purposes.

The command module acts as an interface between the CRABClient API and the

CRABClient application library. It reinterprets the command given by the API side into

a set of inputs that is understandable by a module in the CRABClient library. It also

handles and translates errors and exceptions raised by the CRAB or other CMS services

to a message that can be understood by the user. Minor development effort was also done

on the CRABClient library to accept the input from the CRABClient API.

3.4.5 Minor Development Contribution

Other minor development contributions to CRAB3 include;

crab purge: Each CRAB3 user has a cache space on the CRAB3 Server that is used

to store the user’s submitted job tarball. This cache tends to fill up quickly for super users

who regularly submit jobs or have analysis code that is large. A user cannot submit any

additional job if his/her cache area is already full. The command contacts the CRAB3

Server to flush the user’s cache system so that the user can submit additional job(s).

	 63

crab remake: Certain crab commands, such as crab status and crab kill,

take a file in the user local directory that contains the necessary information about a given

task. This file is lightweight and it is created during task submission. Nevertheless, in

case the user accidently deletes this file, the crab remake draws available information

about the given task from the CRABServer and remakes the file.

Multiple shells: In the original version of CRAB, a run-time bug will occur if a user runs

CRAB3 in multiple shells. This happens because the multiple CRAB instance tries to

read/write on the same temporary-output file, causing inconsistency. The resolution is

simply to have multiple copies of this temporary-output file for every shell the user opens.

Nonsynchronous submission: This parse command offers the ability for a user to submit

and wait until his/her submission is marked as successful. This eliminates the need for

the user to keep giving crab status command to the CRAB Server to check if his/her

submission has been accepted.

Force ASCII character: This improvement is minor, but proved to be important. CMS

Collaboration members come from across the globe and use various types of keyboards,

where some keyboards have Non-ASCII characters on them. Therefore, a user who gives

Non-ASCII characters in the CRAB configuration file tends to raise an unexpected error

in CRAB3. Thus, a filter was introduced in CRAB to refuse any input with Non-ASCII

characters.

	 64

3.4.6 CRAB3 Development Conclusion

 The CMS Remote Analysis Builder (CRAB) is the front end of the analysis

workflow; it provides a way for physicists to submit their analyses or private simulation

jobs to the CMS grid-computing infrastructure. In its 3rd version, the CRAB3 adopts the

client-server model and uses the Asynchronous Stageout (ASO) method to minimize

stageout error that was common in CRAB2. The author has contributed several

improvements to the system, including: rewriting the CRAB3 error reporting mechanism,

a method for users to validate their read/write access (crab checkwrite); introducing

parallel remotecopy; and creating the CRABClient API. Meanwhile, the minor

improvements made to the CRAB3 system include; crab purge, crab remake,

multiple shell instances, nonsynchronous submission, and force ASCII character.

As stated before, the primary objective of this research had been to investigate the

application of a machine-learning algorithm for particle physics analysis. The original

plan was to use the developed CRABClient API to encapsulate the machine-learning code

so that it can run on the CMS grid-computing. This method is possible given that CRAB

is designed to be flexible in accepting any privately developed analysis code. However,

the CMS computing element does not support the multicore execution that is necessary

for the machine-learning code. Thus, the original plan to use CRAB and CMS grid

computing was abandoned and the project was shifted to run solely on the UM High-

performance computing cluster, sifir.

	 65

3.5 The sifir Initiative

The CMS Collaboration expects each user to have a storage area provided by their

respective home institute. Thus, it is an indirect requirement for University Malaya (UM)

to have a computing site that is linked to the CMS grid computing network. Under the

National Centre for Particle Physics (NCPP) and the University Malaya High-

Performance Computing Centre (UMHPC), the sifir project was born in the middle of

2014. sifir is a computing cluster developed with the following objectives;

• To become a Tier-2 site for CMS grid computing

• To become one of the participating sites for the Academic Grid Malaysia

• To provide central computing resources for the UM research need.

Therefore, the computing resource in sifir is shared among three organizations; CMS

collaboration, Academic Grid Malaya, and the UM community. In this research, sifir was

employed as the main computing hardware used to execute the developed machine-

learning code.

3.5.1 sifir Original System Architecture

sifir is a general-purpose high-performance computing (HPC) cluster that uses the

Linux-based operating system (OS) that runs on the commodity hardware. In an addition,

open source software is used to manage and monitor the cluster at all levels. The grid

middleware was sourced from the European Middleware Initiative (EMI), as it is intended

to be compatible with the WLCG.

sifir originally consisted of a single master node, a single general-purpose server

call controller, ten worker nodes, as well as one single storage node (Figure 3.5). An

	 66

Ethernet router and fibre-optic switch support the cluster network backbone. Four virtual

machines are placed inside the controller node, where their label and purpose are given

in the following;

• Computing Element (ce.sifir.um): Houses the middleware that is related to the

computing resource management, such as the Computing Resource Execution and

Management (CREAM), as well as the Sun Grid Engine (SGE).

• Storage Element (se.sifir.um): Encapsulates the Disk Pool Manager (DPM)

middleware that functions as a disk storage management for grid purposes.

• Information system (is.sifir.um): The Berkeley Database Information Index runs

in this VM, functions as the information provider about the sifir system to the

grid.

• User Interface (ui.sifir.um): The cluster login node for local users.

Figure 3.5: sifir cluster hardware and middleware architecture.

Components marked * are additional new hardware.

However, the hardware of sifir has quickly grown to additionally have;

• Two general purpose workstations (server)

CE SE UIIS

Controller Master Node

General Server 1*

General Server 2*

10 X Worker Node

Disk Pool
1

Disk Pool
2*

GPGPU 1*

GPGPU 2*

Ethernet Router

Fiber optic Switch

sifir cluster

	 67

• Two machines with general-purpose computing with graphic processing unit

(GPGPU)

• An additional storage node

The original system architecture with the additional hardware is shown in Figure

3.5;

3.5.2 Weaknesses in the Original Architecture

There are multiple weaknesses in the original design implementation, which are:

a. The main flaw of sifir in its initial period was in the network, both for the Local Area

Network (LAN) and the Wide Area Network (WAN). Starting with LAN, difficulty

occurs when the additional hardware (marked with * in Figure 3.5) did not have a

fibre-optic network interface and was only connectable via Ethernet, which is 10

times slower than the fibre-optic connection. Using the Ethernet to establish I/0

connection between the new hardware and the disk pool led to degradation in the

whole system network.

b. Another weakness was on the WAN network between CERN and sifir, since one of

the main purposes of the cluster is to become one of the CMS Tier 2 sites. In its initial

phase, the average download speed (through the scp command) between a CERN

node and se.sifir.um node was only 33.3 kB/s. On top of that, the average yum (a

Linux command line) update download speed for all nodes was at 18 kB/s. It was later

found that the University firewall was dropping packages coming from sifir at a rate

of more than 90% (Figure 3.6), which caused significant network instability. In terms

	 68

of the network route, the connection began from the UM internal network route to

Jaring (a domestic internet service provider), then to the Malaysian Research Network

(MYREN), proceeded to China's Trans-Eurasia Information Network (TIEN3),

continued to the French GÉANT network, and finally reaching the CERN network

(Figure 3.6). Moreover, three networks hops with considerable latency was required

before the sifir packet reached MYREN; and hence, the connection would have been

already slowed domestically.

Figure 3.6: Traceroute result from the se.sifir.um to cern.ch network

c. The original sifir system architecture had been meant to be grid first, and local cluster

second. Thus, the software that is needed for cluster management such as the resource

provisioning software and identity management software has not been deployed

properly. This create problems when local user wants to access sifir resource.

d. The login node (UI) VM had been placed on the same physical node as other critical

grid services (CE, SE, and SI). However, users are also encouraged to execute their

developed code on the UI before submitting it to the grid/cluster working node so that

system-specific-bug can be discover before submission. This will lead to a greater

UM – main Firewall

High Latency

High Drop rate
Proxmox
se.sifir.um

MYREN

Jaring

TIEN3

GEANT

	 69

efficiency in the overall grid/cluster resources usage. On the other hand, if a high

number of user test-run their codes inside the UI at the same time, a resources scarcity

(including network) between UI and other services would occur. Thus, this design is

not scalable as users increase. In an idle implementation, both UI and other critical

services should run on a separate physical node with resource redundancy.

e. Visualization has become an integral part of computing system management. For the

system admin, it can be used to create a lightweight VM as a testbed, encapsulating

past middleware versions as a fallback, and fragmentizing the system to slow down

intrusion due to security breach. A VM can also act as a toybox for end-user, which

uses a non-standard application that is not maintained by the system admin. The

original software that was used for virtualization purpose in sifir was proxmox. In

practice, proxmox does provide stability and coherence in managing VM, however,

it lacks the valuable end-user feature that is provided by other software programs,

such as OpenStack and Eucalyptus. Without this end-user feature, the system admin

would ultimately have to manage the end-user VM, which is not feasible if sifir were

to continue scaling up its end-user numbers.

f. The original high-level scheduler for the cluster was the Sun Grid Engine (SGE),

which was later made open source software through the Open Grid Scheduler;

however, the SGE or Open Grid Scheduler was last updated in 2013 (“Open Grid

Scheduler,” 2016). It is not a best practice to use an unmaintained software since it

can cause a security thread.

	 70

3.5.3 Improvement Initiative for The Sifir Cluster

The following improvements were made on the sifir cluster;

a. At the time of writing this thesis, the sifir's LAN problem had not been fully resolved

since it required a fibre-optic network card to be installed on all additionally acquired

nodes.

b. A Level 3 switch was installed on the sifir cluster with a physical network connection

between sifir and MYREN, which considerably increased the connection speed.

c. For cluster management at the local level, the Ganglia software (Massie et al., 2012)

was used for resource monitoring and the openLDAP software for identity

management.

d. In order to solve problems d. and e. in subchapter 3.5.2, the OpenStack solution was

adopted. In this solution, The OpenStack compute element (NOVA), identity manager

(keystone), and image manager (Glance) were deployed in general server 1, while

general server 2 only had Nova. The OpenStack storage component (Cinder) was

planned to be deployed in the disk pool 2, in this way, VM in general servers 1 and 2

would use disk pool 2 for storage. Since OpenStack has the ability for automatic load

balancing between the computing nodes, the problem of balancing resource between

the UI and other critical services is solved. The OpenStack also provides end-user

features through a web-based application, which provides a practical means for users

to create and manage their VM, with minimum support by the system admin. In the

	 71

event of inadequate resources for additional VM deployment, scaling up the

OpenStack can be easily achieved by deploying Nova on a new node.

3.5.4 Lessons Learnt in Managing an HPC Cluster for Scientific Purposes

A set of computer nodes does not become an HPC cluster due to its hardware

specification, but only becomes one through great software architecture design. At the

fundamental level, a computer cluster (or grid for that matter) is only several computer

nodes exchanging messages between them to complete a given task. The control and the

management of this inter-node message are entirely done via the designed software; thus,

an HPC cluster is only good as its software implementation.

Choosing and designing an HPC system architecture is a not a small task as there

is no conventional system architecture, but it does help to start the design process by

knowing the limitations that are in place and the overall objective of the cluster.

Limitations such as in financial resources, hardware availability, and human resources

provide an indication of what can be achieved in practice. The objectives provide

guidelines on what is the minimum necessary performance a cluster should provide.

Having a test bed is crucial to allow the system admin to test a solution (new

feature, bug fix, patch, etc.) before deploying it into production.

	 72

3.5.5 sifir Conclusion

sifir is a high-performance computing cluster developed with several objectives,

including in becoming a CMS Tier-2, as well as in becoming the primary computing

cluster in University Malaya. However, the original system architecture was too grid-

computing centric, and improvements were made to balance between the grid-computing

need and the local-cluster computing requirement. The improvements that were made on

the cluster included; upgrading the cluster WAN, as well as the deployment of OpenStack

and other cluster-management middleware. With this improvement, the machine-learning

code that has been developed in this research can now be executed and monitored

properly on the cluster.

	 73

CHAPTER 4

MACHINE LEARNING AND THE DEVELOPMENT OF SELF-

ORGANIZING MAP APPLICATIONS

Akan tetapi akal atau roh itu ialah bekas daripada perjalanan otak

yang sihat laksana gejala api itu timbul daripada lilin yang sedang

terbakar

Hamka, 2009, p.31

4.1 Chapter Introduction

 This research uses the University Malaya High-Performance Computing Cluster,

sifir, as its main hardware, as well as an internally developed application based on the

Self-Organizing Map (SOM) algorithm as its main software. SOM is a type of machine

learning (ML) that clusters instances without supervision.

Before going into the details of SOM, this chapter, first, introduces some ML

terminologies to the reader. It, then, introduces several other ML algorithms that are

relevant to this research and some instances concerning the application of these

algorithms in the study of particle physics. After that, an in-depth focus regarding SOM

and the development of an SOM application is given. The chapter ends with details

concerning the deployment of the SOM application prototype in a cloud-computing

environment.

	 74

4.1.1 Machine Learning Terminology: Supervised and Unsupervised Learning

Before discussing various ML algorithms, an introduction to common ML

terminologies is given. ML algorithms are categorized by their learning methods, which

include supervised learning, semi-supervised learning, unsupervised learning, and

reinforced learning. In this research, only supervised and unsupervised learning is

relevant and the details concerning these learning types are given in the following;

Supervised Learning: This type of learning is commonly associated with classification

algorithms, in which labels are already defined before learning. The algorithm learns from

a fully labelled dataset and classifies new instances based on these labels. In this process,

the ML does not create a new label.

Unsupervised Learning: This type of learning is usually associated with a clustering

algorithm. In clustering algorithms, no label is pre-defined before the learning process

and the algorithm has to create new labels based on the patterns it discovers in the dataset.

Unsupervised learning is commonly used since real-world data are usually unlabelled.

Most ML algorithms accept two kinds of inputs, hyperparameter and dataset. An

explanation of hyperparameters is given in the next subchapter, whereas an explanation

about datasets is provided in the following;

	 75

4.1.2 Instance and Datasets

ML requires certain inputs to learn, which are known as datasets. A dataset is a

collection of data that has a defined structure like column and row. Supervised ML

algorithm requires two kinds of dataset, which are:

Training Dataset: The algorithm uses this type of dataset to learn patterns and

associations between instance features.

Test Dataset: After learning from the training dataset, the classification model is tested

using this kind of dataset. In common practice, a test dataset has three times more

instances than the training dataset.

4.1.3 Feature and Hyperparameter

Other than datasets, ML also requires parameter(s) as input. In fact, there are two

types of parameters in ML practice, which are:

Hyperparameter: Each ML algorithm has certain parameter(s) that require explicit

value(s) before the learning process takes place. These parameters(s) are called

hyperparameter(s), and they have a direct effect on the ML learning output.

Feature: Feature refers to dataset attributes. For example, a dataset describing the

condition of a liquid may have temperature, pressure, and volume as its features, while

datasets regarding people could have feature of age, sex, address, and name.

	 76

4.1.4 Variance and Bias

 Variance and bias are two terminologies that are commonly used to characterize the

output of a classification model (supervised learning);

Variance: If a predictive model is said to have a high degree of variance, it means that

the algorithm can learn minute detail for each class in the dataset. However, if the model

variance it too high, it will memorize the details of each instance (overfitting). In this

situation, the model would fail to have a generalized understanding about the difference

between the classes. In practice, an overfitted model will have low accuracy in classifying

new instances.

Bias: The opposite of variance is bias; it describes how an algorithm creates a generalized

pattern about the difference between the classes. A biased algorithm will ignore the fine

details in the sample, but emphasize more on the overall difference between the classes.

Nevertheless, a model that is too biased cannot differentiate between classes at all as it

ignores all the details for each class. In this situation, the model is said to be underfitting.

The objective of ML modelling is to develop a model with adequate levels of

variance and bias at the same time.

4.2 Classification Algorithm

The following subchapter provides a short review of various classification

algorithms, including Random Forest (RF), Support Vector Machine (SVM), Artificial

Neural Network (ANN), Linear Discrimination Analysis (LDA), and Quadratic

	 77

Discrimination Analysis (QDA). Discussion about these algorithms is relevant to the

research as the classification performance of each of these algorithms, except ANN, have

been compared to the developed algorithm, as discussed in chapter 6.

Discussion regarding the ANN model and its usage in particle physics is given in

the text. However, the algorithm itself had not been implemented in this research since

vast literature is available concerning the implementation of the algorithm in particle

physics.

4.2.1 Random Forest (RF)

 The Decision Tree (DT) algorithm, by default, is a weak classifier; it has high

variance and low bias properties. However, its accuracy can be enhanced by the

‘ensemble’ technique, in which multiple weak learners (such as DT) can be ensemble

together to create a stronger ‘committee’ of classifiers. There are two popular ensemble

methods; bagging (bootstrap aggregation) and boosting. The AdaBoost tree classifier is

the boosting implementation of the decision tree classifier, while Random Forest is the

bagging implementation (Hastie et al., 2009).

 In bagging, the training dataset is broken into smaller sub-datasets and each DT

is trained only with a single sub-dataset. The objective of this learning method is to create

diversity among DT rather than creating a single strong classifier. With this method, the

overall bias is increased compared to one individual DT (Breiman, 2001). When a new

dataset needs to be classified, it can be classified based on the majority vote or by

averaging the multiple DT output (Breiman, 1996).

	 78

 One advantage of using RF over AdaBoost is that the bagging technique is an

‘embarrassingly parallel’ computing job since each individual tree that makes up the

random forest can be trained independently without the need for inter-process

communication. Thus, the RF model can be created in a highly parallel manner by using

a machine that is multicore, multiprocess, and multithreaded. This high degree of

parallelism is friendly to the CMS grid-computing system.

4.2.2 Support Vector Machine (SVM)

 Support Vector Machine (SVM) is one of the most commonly used classifiers

(outside the particle physics field) as it can scale to various types of data (robust) and

does not require a large training dataset. The basic idea of SVM is to create a ‘decision-

boundary’ in a mathematically-defined hyperplane, in which instances can be classified

according to which side of the boundary they are located in, as illustrated in Figure 4.1.

The hyperplane that is needed to separate the instance according to its class may

have a higher dimension than the original dataset dimension. However, creating a higher

dimension is computationally costly, and the SVM algorithm employs the ‘kernel trick’

to solve this issue. The kernel trick is based on Mercer's theorem that avoid the need for

computing at higher degree of hyperplane dimension, by just computing the inner dot

product of the dataset-vector in a transformed space by using some kernel functions (Ingo

& Andreas, 2008). In this research, the kernel function that was used together with SVM

was the polynomial kernel function. The discussion pertaining to Mercer’s theorem and

kernel functions is beyond the scope of this research; interested readers are directed to

the work done by Cristianini and Shawe-Taylor (2000), and Minh et al., (2006).

	 79

Figure 4.1: In SVM data, a decision boundary (purple line) is created in

a hyperplane to give the best separation of classes. The shape of the

decision boundary depends on the kernel of SVM; it can be linear (left) or

non-linear (right) (taken from Hastie et al., 2009).

 Moreover, it is worth noting that there are two popular versions of the SVM

algorithm; the single-class SVM and the multiclass SVM. The multiclass SVM algorithm

is the conventional method, in which the algorithm learns a training dataset that contains

multiple labels. On the other hand, the single-class SVM learns the pattern(s) in the

original dataset and predicts if a new instance belongs to the initial data set, hence

detecting novelty/abnormality. Please see Khan and Madden (2010) and Yu (2003) for a

more in-depth discussion regarding one-class SVM.

4.2.3 Linear and Quadratic Discrimination Analyses (LDA & QDA)

In the writing of Narsky and Porter (2013 p. 221), the Linear Discrimination

Analysis (LDA) algorithm is described as:

	 80

‘Because of their high interpretability, linear methods are often the first (to be

used) for data analysis.’

 The algorithm, which is also known as Fisher Discrimination, is commonly used

in many branches of physics, including particle physics and astrophysics. Given a mixture

of distributions with classes, k = 1, 2, the ratio of probability for an instance that belongs

to each class is given as !, and the quadratic discrimination is stated in equation 4.1;

log
%(' = 1|!)

%(' = 2|!)
= −	

1

2
(/0

120
30/0 − 	/4

124
30/4) (4.1)

 Where / and 2 are the means and the covariance matrix for each class. If 25 =

	26 , then it becomes a linear discriminator for the LDA, whereas if	25 ≠ 	26, then it

becomes a quadratic discrimination for the QDA algorithm. The hyperplane that separates

the two classes can be obtained by equating the equation to zero.

 In the following subchapter, example of application(s) for each classification

algorithm in a particle physics analysis is given.

4.2.4 Neural Network in Particle Physics Analysis

The Artificial Neural Network (ANN) model can be classified into two type; the

deep ANN and the shallow ANN. The fundamental unit in ANN is call a neuron, similar

to the neuron in the human brain, the neuron will give a certain output if the input exceed

certain threshold, interested reader on the subject of ANN are directed to the work of Du

& Swamy, (2014).

	 81

The difference between deep ANN and shallow ANN, is that shallow ANN have

fewer number of hidden layers of neuron between the input and the output layers then the

deep ANN. Shallow ANN is more commonly used in the particle physics field than the

deep ANN, as the it requires less computational resources.

Whiteson and Whiteson (2009) used ANN with two hidden layers to construct a

top quark-Higgs event classifier. What is interesting about this research is that they used

a technique call NeuroEvolution of Augmenting Topology (NEAT) to stochastically

optimize their neural network, (stochastic optimization means the hyperparameter values

are generated randomly until certain optimization level is obtained). The NEAT algorithm

allows the neuron layer to evolve and mutate, creating new links between neurons; thus,

the particular neuron linkage is not inherent to the original architecture. Furthermore,

their study was conducted on a real experiment dataset collected by the Tevatron detector.

Other implementations of shallow ANN that are worth mentioning are the

researchers conducted by Gupta et al., (1992) that developed a classifier between light-

quark and heavy-quark events, as well as a two-tier neural network for b-tagging by Wan

Abdullah (1992). Other applications of shallow ANN were by the ATLAS collaboration

for its pixel detector (ATLAS collaboration, 2014) and in the search for associated

production of Higgs with the top quark (The ATLAS Collaboration, 2012). Lastly, some

work was carried out by Bakhet et al., (2015) to classify charged Higgs.

 On the other hand, the deep ANN technique was only very recently introduced to

particle physics by the pioneering work of Baldi et al., (2014). In their research, they

looked into the classification of Monte Carlo-generated samples of datasets where gg →

	H: → 2W+ 2b as signal events and gg → 	tt → 2W+ 2b as noise events. It was found

	 82

that the deep ANN offered better background rejection than the shallow ANN and

Boosted DT, as shown in Figure 4.2;

In ML, a Receiver Operating Characteristic (ROC) is used to measure the

performance of binary classifier. It shows the classifier sensitivity (true positive rate) as

a function of its fall-out (false positive rate, i.e. false alarm). The higher the Area Under

the Curve (AUC), the better the ML performance is.

Figure 4.2: Comparison ROC between shallow ANN (right) and deep

ANN (Left); the value of AUC proved that deep ANN was better the

shallow ANN (taken from Baldi et al., 2014).

4.2.5 Support Vector Machine in Particle Physics Analysis

 The use of SVM in particle physics field is less prevalent with notable research

examples are fewer. It can be argued that SVM is a weaker classifier than ANN; however,

it is more robust and requires fewer training sample than ANN.

	 83

 Important research includes the work done by Vaiciulis (2002), in which the SVM

was compared to other multivariate analysis methods in identifying top-quark events via

the dilepton channel. The study did not find any significant difference between using

SVM with the Gaussian kernel or the sigmoid kernel. The work of Vannerem et al.,

(1999), compared SVM to ANN as a classification tool for charm-quark tagging and

muon identification for the Omni-Purpose Apparatus for LEP (OPAL) experiment. The

research shows that the ANN have slightly better efficiency than SVM, as presented in

Figure 4.3.

Figure 4.3: The ROC comparison between ANN and SVM for charm

tagging (left) and muon identification (right) (taken from Vannerem et al.,

1999).

4.2.6 Random Forest in Particle Physics Analysis

 The D0 Collaboration frequently uses the random forest in its analyses; a notable

one is an attempt to find the Higgs particles in the event of H → WW → lνq′q. In this

research, a Random Forest (RF) with 50 decision trees (a small number by today’s

standard) had been trained with simulated signal and background events. The

	 84

significance of this research is that the source of noise were large, including V+ jets, top

quark, and diboson production (D0 Collaboration, 2011). Other examples of D0

collaboration research that used RF include the search for the Higgs boson in BC →

2D± + FF (D0 Collaboration, 2012b) and the measurements of WW and WZ productions

in W+ jet final state (D0 Collaboration, 2009, 2012a).

 In addition, it is worth nothing that RF is also frequently used in astrophysics

analysis. For example, the Major Atmospheric Gamma Imaging Cherenkov Telescope

(MAGIC) and the High Energy Stereoscopic System (H.E.S.S), both employed RF in

their analysis to classify events originating either from gamma rays or hadrons (MAGIC

Collabration, 2007; H.E.S.S Collaborations, 2009).

4.2.8 Quadratic and Linear Discrimination Analyses in Particle Physics Analysis

In particle physics, the LDA/QDA method has been frequently used to

demonstrate the superiority of multivariate classification methods over linear

classification methods. For example, research conducted by Badala et al., (2008) showed

that the ANN and the boosted decision tree (BDT) gave higher-purity results than the

LDA method in classifying G∗± event in a simulated pp collision at ALICE, as given in

Figure 4.4 (Left).

The superiority of ANN and BDT over LDA was again shown in the work of

Heikkinen et al., (2010), where these three methods were compared in τ-event tagging

for H± → τ±JK → hadrons in the MSSM phenomenology, as illustrated in Figure 4.4

(Right).

	 85

Figure 4.4: The BDT and ANN (labelled as MLP) gave higher purity

results for classification than the LDA (labelled as Fisher) in classification

of R∗± in Badala et al., (2008) (left), a study on S event tagging by

Heikkinen et al., (2010) (right).

4.3 Clustering Algorithm Review

The term 'clustering' has been defined in several ways by various authors.

However, the simplest definition is given as:

“Clustering is the unsupervised classification of pattern (observation,

data item or feature vectors) into group.”

(Jain et al., 1999, p. 264)

“Clustering is a mathematical technique designed for revealing

classification structures in the data collected on real-world

phenomena.”

(Mirkin, 1997, p. 176)

	 86

Meanwhile, for more complex definition, clustering can be said as;

“Clustering (or cluster analysis) aims to organize a collection of data

items into clusters, such that items within a cluster are more “similar”

to each other than they are to items in the other clusters.”

 (Grira et al., 2004, p. 1)

“Data clustering (or just clustering), also called cluster analysis,

segmentation analysis, taxonomy analysis, or unsupervised

classification, is a method of creating groups of objects, or clusters, in

such a way that objects in one cluster are very similar and objects in

different clusters are quite distinct.”

(Gan et al., 2007, p. 3)

From these various definitions, it can be said that the central idea of clustering is

to find an underlying structure or pattern for a given dataset (Backer & Jain, 1981), which

can be a form of summary of the dataset (Fahad et al., 2014). Clustering methods are vital

to present day scientific research, in which high-dimensional data are generated at an

exponential rate. Thus, a clustering action transforms a very complex dataset to a

summary of patterns that is more understandable.

From the various definitions provided, it can be concluded that clustering has

three main objectives, as listed in Figure 4.5;

	 87

Figure 4.5: The three main objectives of clustering (Jain, 2010; Mirkin,

1997)

 Clustering methods are also heavily used in many areas of studies, such as

computer vision, and data mining; a comprehensive survey can be found in Jain et al.,

(1999) and Jain and Dubes (1988).

4.3.1 Clustering Algorithm

The most conventional clustering algorithm is undoubtedly the K-Means

clustering. The algorithm has been proven to be robust and fast in clustering datasets. Let

T = !U , W = 1,… , Y	 be the set of points with n dimension of feature to be clustered in

to K number of cluster, Z = {\], ' = 	1, … , G}. The K-Means algorithm works by

minimizing the sum of the squared error between an instance and the empirical means,

/] of the cluster, given in equation (4.2) (Jain, 2010);

_ Z = 	 `a − /]
4

bc∈ef

g

gh0	

 (4.2)

Clustering Underlying structure:
To gain insight into data, generate hypotheses, detect anomalies,
and identify salient features

Natural classification:
To identify the degree of similarity among forms or organisms
(phylogenetic relationship) and to assist in classification design

Compression:
As a method for organizing the data and summarizing it through
cluster prototypes

	 88

 However, the difference between instance vector,	`a and the hypothesize cluster

mean, /] reduces as the dimension increases. Thus, the K-Means algorithm is known to

be a poor classifier for high-dimensional datasets and tends to generate a cluster with a

normal distribution. The reduction in measurable dissimilarity among instance as the

dimension increase is known as the ‘Curse of Dimensionality’ and is discussed in detail

in subchapter 5.3.

Over the years, numerous extensions of K-means have been developed to better adapt

real world data, including:

• Fuzzy c-means (Bezdek, Ehrlich, & Full, 1984; Dunn, 1973)

• Bisecting K-means (Steinbach, Karypis, & Kumar, 2000)

• Kd-tree (Pelleg, & Moore, 1999)

• X-means (Pelleg, Pelleg, Moore, & Moore, 2000)

• Kernel K-means (Schölkopf, Smola, & Müller, 1998)

• K-medoids (Kaufman, & Rousseeuw, 1987)

In this research, another extended version of K-Means, also known as the Dirichlet

Process Gaussian Mixture Modelling (DPGMM), had been used.

4.3.2 Dirichlet Process Gaussians Mixture Modelling Algorithm

Equation (4.2) shows that the K-mean algorithm requires users to hypothesize the

number of cluster K, before clustering. However, in practical application the value of K

cannot be known precisely.

	 89

Hence, the Dirichlet Process Gaussian Mixture Modelling (DPGMM) extends the

K-Means algorithm so that it no longer requires the K hyperparameter to be specified. It

introduces a new hyperparameter alpha, i, which is the instance density in a given cluster.

In this research, the DPGMM was used to cluster a trained SOM centroid in as will be

discussed in Chapter 7. However, it is important to note that DPGMM still exhibit the

low clustering capability for high-dimensional dataset as K-Means algorithm (Markou,

& Singh, 2003). The theoretical background for DPGMM is beyond the scope of this

study; however, interested readers are directed to the writing of Görür and Edward (2010).

4.3.4 Clustering in Particle Physics

Algorithms, such as kt, anti-kt, and Cambridge/Aachen, which are used for jet

reconstruction (Cacciari, Salam, & Soyez, 2008), can be said to be a form of clustering

algorithm. These algorithms are strongly infused with the particle physics knowledge;

making it a ‘domain-specific’ algorithm and impractical to be used outside the field.

Furthermore, to the best of author’s knowledge, there is no strong practice in using

a non-physics domain-specific clustering algorithm in particle physics analysis. A rare

example is the study done by Chekanov (2006), where the K-Mean algorithm was

employed for jet reconstruction from heavy particle events.

The aim of this research is to study whether it is practical to use a non-physics

domain-specific clustering algorithm such as the SOM and the DPGMM in analysing

particle physics dataset.

	 90

4.4 Introduction to Self-Organizing Map

The Self-Organizing Map (SOM) is the core of this research. This clustering

algorithm has been used in several scientific disciplines, including signal processing,

computational network analysis, and genetic study (Honkanen, Liuti, Carnahan, Loitiere,

& Reynolds, 2009).

Teuvo Kohonen developed the algorithm in 1982, taking inspiration from the

human brain which consist of different areas carrying out different cognitive functions.

He further described the algorithm as (Kohonen, 1982, 2013);

‘a projection mapping similar to vector quantization with the addition of

being 'spatially-globally ordered'.

In most literature, the SOM is categorized under ANN-based algorithm (Acat, &

Heikkinen, 2007; Dittenbach, Merkl, & Rauber, 2000; Gan et al., 2007; Jain et al., 1999;

Lange, Hermanoski, & Freiesleben, 1997). However, the author is more inclined to the

view of Fahad et al., (2014), who classified it as a modelling-based algorithm, as

presented in Figure 4.6. Description of each clustering algorithm stated in Figure 4.6

can be found in Fahad et al., (2014).

	 91

Figure 4.6: The classification of different clustering algorithms by Fahad

et al., (2014).

 The different view of which category the SOM algorithm should be classified in

is caused by the fact that the algorithm is composed of smaller learning units similar to

ANN, as illustrated in Figure 4.7. For ANN, the fundamental learning unit is called a

‘neuron’, and several authors have used the same terminology in naming the SOM

learning unit. However, the SOM and the ANN learning units are very different to one

another, both in terms of learning mechanics and learning output.

Since the SOM learning unit does not learn the same way as a neuron, the author

used the label ‘centroid’ to name the SOM learning unit, analogous to the naming

convention for the basic unit of the K-Means clustering algorithm. The reason for this

naming convention is provided in the following subchapter.

	 92

Figure 4.7: General depiction of neural network (Right) and SOM (left)

fundamental units. For a neural network, this unit is called neuron, while

the SOM unit is called centroid. Image Source: Du & Swamy (2014), and

Kohonen (2013), respectively.

4.4.1 How the SOM Model Learns?

 Creating a SOM model starts with creating a map of centroids, which is called

a feature-map or SOM map, where the common map is a 2-dimensional plane with the

centroids having equal distance to one another, as shown in Figure 4.8. Each centroid has

a position (x, y) and a vector called a weight-vector (`j). The initiation process also

transforms every instance in the dataset into a vector notation, (4.3) which allows all

instances to be treated as vectors.

! = !0, !4, … !k → `a = (`5, `6, … `l) (4.3)

The SOM model training starts by randomly selecting an instance (in a vector

format) from the training dataset. Then, the similarity between this instance and each

centroid weight-vector is determined and measured by a given ‘similarity function’. The

centroid with the least difference is chosen as the winning centroid. The next action is to

	 93

perturb the weight-vector for the winning centroid and all centroids with a smaller

distance to the winning centroid than mnob, with equation (4.4).

`j,kp0 =
`j,k + D q ∙

mnob − sk,t

mnob
∙ `a − `j,k , sk,t ≤ mnob

`j,k, sk,t > mnob

(4.4)

mnob = w(q) (4.5)

 where D q 		and	w(q) are the learning-rate function and radius-decay function

respectively. Commonly, the learning-rate function and the radius-decay function are

defined as a decay function over the training iteration, q. Thus, the learning-rate value and

the maximum radius mnob will decay over the course of the training, creating a

convergence on the centroid weight-vector value.

The process of randomly selecting an instance, followed by determining the

winning centroid and then perturbing the winning centroid, as well as the selected

centroids, is considered as one (training) iteration. This iteration is repeated until the

training phase ends. When the training phase is completed, an SOM model has been

created.

	 94

Figure 4.8: Each circle denotes a centroid, while the square is the

collection of centroids with a distance from the winning centroid (mi), less

than xyz`

 From the explanation given earlier, it can be argued that the SOM learning method

is distinct from those practiced in ANN modelling. ANN model is developed from a

supervised learning method, whereas the SOM model is generated via the unsupervised

learning method.

4.4.2 Example of SOM in Particle Physics Research

Compared to other ML algorithms, the implementation of SOM in particle physics

is limited, with most SOM models used predominantly for improving background-event

rejection (Honkanen et al., 2009). Two examples refer to the study conducted by Lange,

Hermanoski, and Freiesleben (1997), as well as Lange, Fukunaga, Tanaka, and Bozek,

	 95

(1999); in the 1997 publication, the SOM model was used in the COSY-TOF experiment

for background-event rejection for pion analysis in a pp collision (pp → pnπp	, pp →

ppπ:, pp → dπp). Meanwhile, the 1999 publication mentions the use of the SOM

technique as an event filter for the BELLE experiment. What is interesting about both

publications is that they used a modified version of SOM, which included a novel concept

called ‘node-gravity’.

In the original SOM algorithm, which is equation (4.3), there are two free

variables known as the learning-rate and the radius-decay function. In these two

publications, the concept of node-gravity simply combines these two parameters into one

single parameter, α, and describes it as the gravitational pull strength between the

centroids (see Lange and Freiesleben (1996) for further details).

In this research, the concept of node-gravitational pull was not implemented since

the two functions in the original equation of (4.3) had been perceived to be a positive

attribute of SOM as it allows the equation to be flexible and adaptive to multiple data

types.

It is worth mentioning here that Tryba and Goser (1991) modified the SOM

equation with the Schrodinger equation. Among the few SOM usages in particle physics

research, one of the most exceptional is the work of by Honkanen et al., (2009). While

other studies used SOM for background discrimination analysis, this research employed

SOM as a stochastic optimizer in selection/fitting of Parton Distribution Function (PDF).

No modification was done on the SOM algorithm in this research, except that the author

used an SOM training mode called ‘batch-mode’. In batch mode, the centroid weight-

vector is not perturbed in an iterative training method, but it is done in a single operation,

	 96

giving a faster computational execution. However, the 'batch-mode' training was not used

in this research as insufficient researches are available to validate that both batch mode

and iterative methods could produce the same model. Especially for SOM model that is

generated from unconventional learning-rate function and similarity matrix.

4.5 Development of Self-Organizing Map

One of the objectives of this research had been to develop an application that

creates an SOM model for clustering and classification of particle physics events. The

development of the application had to be done from scratch as other SOM

implementations were not designed to process big datasets common in particle physics.

Even though this research also used various other ML algorithms, only the code for SOM

was developed by the author. All other ML codes were taken from another ML module

library.

The SOM code was fully written in the Python language (version 2.7) with several

non-standard libraries, including scipy, numpy, scikit, pyplot, and pandas. Scipy and

numpy are Python modules that are developed for scientific research, thus provide the

necessary code to do statistical processing, statistical analysis, and vector manipulation.

Meanwhile, the pandas module plays a crucial role in the implementation as it provides

the necessary code to manipulate datasets in a datasheet object that dramatically reduces

the execution runtime. Datasheet object is an object in the python language that act as a

datasheet. Other than that, pyplot, as its name suggests, provides the module for data

visualization.

	 97

Scikit, on the other hand, is a Python ML library that provides the clustering and

classification API. Details regarding this module can be found in Pedregosa et al., (2012).

In this research, this module had been heavily used for a dataset pre-processing, as well

as for the classification algorithm implementation. The development of the SOM code is

comprised of three stages; initiation phase, training phase, and post-processing phase.

4.5.1 Initiation Phase

Two processes have to be carried out during the initiation phase, dataset

normalization and SOM feature-map initialization. Normalization is important for any

ML algorithm that uses similarity functions, as it maps the different value range between

features to a scale between 1 and -1. Without it, feature(s) with a larger magnitude (or

range) will have a more dominant affect upon the similarity measurement than instances

with lower magnitude.

In fact, there are two common normalization methods; Z normalization (equation

4.5) and min-max normalization (equation 4.6). Only Z normalization is implemented in

the code as it only requires the mean, } and the standard deviation, ~ from the original

dataset (training dataset). ! is the instance that is required to be normalize, while !nUk

and !nob are the minimum and maximum values in a given dataset. �	and !Ä are the

normalized value using the Z normalization and min-max method respectively

� = 	
! − }

~

(4.5)

!Ä =
! − !nUk

!nob − !nUk

(4.6)

	 98

The second step is to initialise the SOM feature-map itself; this requires the

number, the topology, and the initial weight-vector of the centroid to be defined. In this

research, the most common configuration for the feature-map is defined to be a 30 × 30

square-shaped map, as shown in Figure 4.9 (left), while the SOM model for the dimuon

dataset is set at a size of 100 × 100.

 The initial weight-vector for each centroid is also assigned randomly. The

randomization creates asymmetry distribution across the SOM map, as depicted in Figure

4.9 (right), as well as diversity in the weight-vector among centroids. These ensure that

the SOM algorithm will construct a diverse similarity matrix (matrix that is constructed

by a similarity function on multiple instances or points) during the training phase.

Figure 4.9: (Left) SOM centroids with 30 × 30 square shape distribution,

(Right) randomized initial centroid where Z-axis is the value of the

centroid weight-vector.

4.5.2 Training Phase

 The implementation of the training phase is same as described in subchapter 4.4.1,

and summarized in Table 4.1;

x-axis

y-
ax
is

m
agnitude

	 99

There are several functions in the training phase that require mathematical

definition: similarity function (to create the similarity matrix), the learning-rate function,

and also the radius-decay function. There are various methods for calculating the

similarity between vectors; the conventional SOM implementation uses the Euclidean

distance (Kohonen, 2013). Nevertheless, in this research, several other similarity

measurement methods had been used to create the similarity matrix, which are explained

in detail in Chapter 5.

Table 4.1: The implemented training phase for SOM algorithm

 For t ≤ max training iteration:

 Randomly choose instances vector from the training dataset

Create similarity matrix between instance vector and centroid weight-

vector

 Most similar centroid is the winning centroid

 Calculate sk,t for the current training iteration

 Select centroid with distance to the winning centroid less than sk,t

Calculate the current learning-function, D q for the current training

iteration

 Perturb winning and selected centroids with equation 4.3

 As stated earlier, D q and w(q) have been commonly taken as a decay function

over the training iteration, t. The learning-rate and the radius-decay function play a

significant role in the SOM modelling as they;

	 100

1. create convergence on the centroid value during training, and

2. create a globally ordered centroid distribution.

The creation of globally ordered centroid can be seen in Figure 4.10, in which the

initial (randomized) distribution of the centroid weight-vector becomes ‘smoother’

relative to its neighbour as the training iteration increases. This smoothing effect is

attributed to the learning-rate function; thus, it is also referred to as the ‘smoothing

function’. The importance of a globally ordered distribution is that it forces the centroid

weight-vector to be approximately similar to its neighbour, as shown in Figure 4.11.

	 101

Figure 4.10: The evolution of the centroid weight-vector magnitude

across the SOM map from 1%, 30%, 50%, and 100% of the maximum

number of training iteration.

Iteration – 1% Iteration - 30%

Iteration - 50% Iteration - 100%

	 102

Figure 4.11: Centroids that are close to each other (group) have more

similar.

The exact mathematical equation for D q and w(q) has never been discussed in

the literature, thus it is open to interpretation. The effect of different learning-rate function

on the SOM model is done in the next chapter.

4.5.3 Mapping Phase

After the training phase is completed, mapping of instances to the SOM map can

be done by pairing each instance to the centroid with a weight-vector most similar to the

instance vector. After this process, a group of instances (known as Local Instance Cluster,

LIC) is created for the majority of the centroids whose instances share similar values. A

very small number of centroids will not have any LIC as no instances is mapped to them.

For example, in Figure 4.12, centroid C1 has a weigh vector that is almost similar to

instances Xa, Xb, and Xc vector. These three instances are then mapped to centroid C1,

Distribution of centroid vector magnitude according to group

100 X 100 SOM map

Magnitude

	 103

forming C1-LIC.. Likewise, instances Xd, Xe, and Xf are mapped to centroid C2 and form

C2-LIC.

Besides, Figure 4.11 shows that the neighbouring centroid has the tendency to

share similar weight-vector. Thus, it can be said that neighbouring centroids also form a

cluster of centroids with similar weigh vector. Multiple LIC in the centroid cluster form

a Global Instance Cluster (GIC), as presented in Figure 4.12.

Figure 4.12: Instances Xa, Xb, and Xc have a vector similar to the C1

weight-vector and form C1-LIC. Likewise, Xu, Xu, and Xu form the C2-

LIC. Since centroids C1 and C2 are similar, their instances collectively

form C1C2 –GIC. However, centroid C3 does not have a weight-vector

similar to C1 and C2, and thus its instances do not belong to C1C2 –GIC.

C1 LIC
Xa= (X1, X2, X3, … Xn,)
Xb= (X1, X2, X3, … Xn,)
Xc= (X1, X2, X3, … Xn,)

C2 LIC
Xd= (X1, X2, X3, … Xn,)
Xe= (X1, X2, X3, … Xn,)
Xf= (X1, X2, X3, … Xn,)

C1C2 GIC

C3 LIC
Xg= (X1, X2, X3, … Xn,)
Xh= (X1, X2, X3, … Xn,)

SOM Map

C2

C1

C3

	 104

4.5.4 Post-Processing Phase

 After the training and the mapping phases are completed, the SOM model is

saved. It is worth noting here that saving the model is essential since there are two random

processes in the SOM model creation. The first randomization occurs in the centroid

weigh-vector initial value, while the second randomization occurs in selecting instances

during the training phase. Thus, even if two SOM model are created using the same

dataset and configuration, these two models will not be exactly the same due to these two

randomize processes.

In this implementation, the initial training condition, as well as the final SOM

output, is saved in the format of comma-separated-values (.csv) since this format is

readily readable by other software programs. The other process that occurs during the

post-processing is the data visualization process, where various histograms, 3D-Plots, and

contour plots are made for validation and analysis purposes.

The complete code architecture of SOM processing included the post-processing

phase is given in Appendix A.3.

4.5.5 SOM Development Conclusion

The self-organizing map (SOM) is a clustering algorithm that learns through

unsupervised method. Thus, an application based on the SOM algorithm for clustering

particle physics instances have been developed. The application comprised of four

phases; initiation, training, mapping, and post-processing. The SOM model was

	 105

developed by first normalizing the dataset and then creating the centroid map (SOM map)

in the initialization phase. Afterwards, each of the centroid's weight-vector was perturbed

in the training phase with equation (4.4). Once the training phase had been completed,

the dataset instances were mapped to the SOM map in the mapping phase. The post-

processing phase ended the process by providing visualization and analysis of the

completed model.

4.6 Parallelization

The SOM modelling runtime increases sharply as the number of centroids

increases (Cuadros-Vargas et al., 2003; Fahad et al., 2014); even for a small-sized SOM

map, the model would require higher computing time than most clustering algorithms.

One way to decrease the computation time is by executing the training phase in a parallel

manner. Relevant literature regarding SOM model parallelism has been written by

Seiffert and Jain (2002).

 In fact, several methods are available for transforming a recursive computational

execution into a parallel execution, however in this research, the multiprocessing solution

was selected. The benefits of the multiprocessing approach include:

1. The SOM training phase requires a large memory overhead therefore, it is not

suitable for the multithreading technique.

2. The application is built by using the Python language, which discourages the use

of multithreading since it uses the ‘global interpreter lock’ upon variable

assignment.

3. The multiprocessor architecture allows it to be easily scaled up to a multi machine

design easily.

	 106

To achieve this high-level of computing efficiency in the multiprocessor method, it is

necessary to make each sub-process as independent as possible from the main process

and to minimize the need for inter-process communication. For these condition to be

satisfied, the centroids developed during the initiation phase have to be divided equally

between the sub-processes. Then, the values for the learning-rate function and the radius-

decay function are pre-computed and given to all sub-processes before the training phase

starts. Now each sub-processes have enough information to run nearly independently in

the training phase. After the training is completed, all the centroids are joined back

together, forming a single SOM map.

Nevertheless, this is not an ‘embarrassingly parallel’ method as process are not fully

independent to one another. In each training iteration, the child-process is required to

communicate with the main process to give the updated similarity matrix and then obtain

the position of the new winning centroid. All sub-processes are idle during this step, as

depicted in Figure 4.13.

The requirement for inter-process communication during the training phase is a

bottleneck for the current implementation. It also places a limitation on the number of

sub-process that can be spawned during any training iteration. If the number of sub-

process increases beyond this limit, the total execution time will increase sharply as the

intercommunication time between the sub-processes will be longer.

	 107

Figure 4.13: The intercommunication between the main and the sub-

processes in the training phase, where all sub-processes are idle after step

3 until the next iterative.

4.6.1 Training On the Cloud

Keeping the number of sub-process below the limit means that an individual sub-

process has a higher computational workload, which in return, requires a larger memory

allocation for each sub-process. In certain cases, one physical machine (computer) would

not contain enough memory to support all the sub-process memory requirements, thus,

the SOM modelling process has to be extended beyond one machine.

 As the training process is fragmented to run on multiple CPUs concurrently, the

actual physical locations of the CPUs are independent of the main process physical

location. Whether all the CPUs are on a single physical computer or scattered across the

globe, the training and the mapping processes still can be executed in the same manner.

Sub-process
1 – Perturb centroids
2 – Construct Similarity matrix

Main Process
4 – Calculate the new wining centroid

5 – Give new wining centroid position

3 – Give similarity matrix information

	 108

 Moreover, the advance of cloud computing in recent time has allowed the

deployment of new server(s) anywhere in the world easily. Besides, leveraging the cloud-

based solution permits the scaling up of the SOM training phase into a multi machine

process at the global scale. Hence, in this scenario, the amount of memory (or CPU)

available for the SOM modelling is no longer bounded to the computing resources in a

single.

Another advantage of using cloud computing for SOM model training is that the

overall performance would not degrade considerably upon executing the training on a

virtual-CPU (vCPU). The reason for this is that in every training iteration, there will

always be a period when the CPU is idle (Figure 4.13). Unutilized CPU time can be used

by another vCPU that is mapped to the same physical CPU.

4.6.2 Cloud-Based SOM Prototype

From the development point of view, the most obvious solution for up-scaling the

SOM training beyond one physical machine is to use a computer cluster architecture

rather than cloud-based computing. Nevertheless, there is little difference between a

cloud-based solution and computing cluster in terms of system architecture. Inter-node

communication in a computing-cluster will usually use the Message Passing Interface

(MPI), while the inter-node communication in cloud can be handled by using the

Transmission Control Protocol (TCP), however, the message that is being transmitted

remains the same. Thus, the only substantial differences between these two systems are

the network latency and the stability. An application that can be deployed in the cloud

can be easily ported to also work in a computing cluster, such as UM-sifir.

	 109

Therefore, a rapid prototype of a cloud-based SOM algorithm was developed to

study the practicality of running such an algorithm. The network latency and the stability

were measured in terms of idle time, which referred to the period spent by the worker

server in idle in waiting for the master server respond. The Amazon Elastic Cloud

Compute (EC2) environment was chosen as the cloud infrastructure as it allowed a virtual

server to be deployed at different countries across the globe.

4.6.3 Cloud vs CRAB3

 Before going through the cloud implementation, is it worth noting that the CMS

grid computing could not be used for multi-machine SOM modelling. The CRAB3 that

had been developed for the CMS collaboration does allow personal algorithms to be run

on its grid computing infrastructure. However, in a conventional grid architecture, a sub-

process (in grid-computing, it is called a task) does not have the authority to communicate

with other processes (sub or main). Without inter-process communication, the training

process, as shown in Figure 4.13, could not be performed, thus the SOM model could

not be created in the CMS grid environment.

Nevertheless, cloud computing has always been part of the CMS computing

ecosystem, acting as an opportunistic computing resources. For example, the work done

by Evans et al., (2011) showed that the EC2 infrastructure could be used to provide

additional temporary resource when there was a spike in usage. Additionally, Hufnagel

(2015) stated that the CMS Tier-0 would also be ported to the CERN internal cloud

computing infrastructure. Thus, cloud computing will have a more significant role in the

CMS computing ecosystem in the near future.

	 110

The SOM mapping phase is an embarrassingly parallel job, which decouples the

need for interconnection between servers and it can be executed on the CMS grid

infrastructure. However, the mapping of large instances to the SOM model can be

executed in a very short period of time in a single-multicore machine; less than 15 minutes

for 15,000 instances. Thus, developing and executing such task on the CMS grid is

deemed unnecessary and was not pursued in this thesis.

4.6.4 Prototype Implementation

The cloud implementation only requires the pre-processing phase and the training

phase to be redeveloped to match a cloud framework. In this framework, there was no

sub/main process, since all processes are a main process in nature. However, the role of

the machine (cloud servers) was divided between ‘master’ and ‘worker’ machines.

The master server role handled the inter-communion between all worker servers,

besides determining the winning centroid in each training iteration (similar to the main

process). The worker servers were designed to perturb the centroid weight-vector and to

construct a similarity matrix (similar to the sub-process task). The physical locations of

these virtual servers were in Universiti Malaya, Singapore, Sydney, Frankfurt, Sao Paulo,

Ireland, and California, as shown in Figure 4.14. All servers, except that at Uni. Malaya,

were EC2 servers and in each location, only one server was deployed:

	 111

Figure 4.14: Physical location of the servers across the globe

 Furthermore, in order to test network stability and latency, the idle time was

recorded under the following configurations:

1. One-to-one connection with the master server in Uni. Malaya, while the

worker server was in California

2. One-to-one connection with the master server in Uni. Malaya, while the

worker server was in Frankfurt

3. One-to-one connection with the master server in Frankfurt, while the worker

server was in California

4. One-to-one connection with the master server in Singapore, while the worker

server was in Frankfurt

5. One-to-many connections (5) with the master server in Uni. Malaya, while the

worker servers were in California, Ireland, Singapore, Sydney, and Frankfurt

Ireland Frankfurt

Uni. Malaya Singapore

Sydney

São Paulo-Worker

	 112

4.6.5 Recorded Idle Time

 Figure 4.15 and Table 4.2 show the characteristics of the idle time recorded for

one-to-one connection between the master and the worker servers located in different

cities;

Figure 4.15: The idle time for one-to-one connection based on master and

worker server locations.

Table 4.2: Idle time mean and standard deviation (STD) according to server locations

for one-to-one connection.

Server Location
Idle Time (s)

Mean STD

Frankfurt-California 0.1714 0.0006

Singapore-Frankfurt 0.2500 0.0004

Uni.Malaya-California 0.2789 0.0075

Uni.Malaya-Frankfurt 0.3784 0.0812

	 113

 Figure 4.15 and Table 4.2 show that the location of the server had a very strong

effect on the idle time, as consequence of the training period for the SOM model.

Connection to/from Malaysia displayed a tendency to have a higher variance

(Uni.Malaya-Frankfurt had an STD of 135 times from that of Frankfurt-California) and a

longer idle time. Thus, if a Cloud-based SOM were to be deployed in production, it should

be done outside of Malaysia to ensure lower idle time. Other than that, in terms of

multiconnection, Figure 4.16 and Table 4.3 present the characteristics of idle time for

the worker-server locations with the master server located at Uni. Malaya;

Figure 4.16: The idle time for 5-way multiconnection based on worker server locations.

	 114

Table 4.3: The idle time mean and standard deviation (STD) for worker servers located

at different cities

Worker Server

Location

Idle Time (s)

Mean STD

Sydney 1.339 1.775

Frankfurt 1.759 2.334

Ireland 1.889 2.307

California 2.078 3.117

Singapore 2.161 3.082

 As shown in Figure 4.16 and Table 4.3, the idle time for the 5-way connection

was approximately 1.8 seconds, making it almost 7 times longer than a one-to-one

connection. The recorded idle time also demonstrated that in multiconnection, single

network connection speed and stability did not have any significant importance in the

overall performance of the worker server that completed executing earlier, as it still had

to wait for other worker servers to finish running.

4.6.6 Conclusion for the Cloud-Based SOM

 The results obtained in the previous subchapter demonstrate that it is possible to

run the SOM training on a global cloud infrastructure. A common SOM model training

iteration is usually configured to have a value between 10,000 – 15,000 iterations and

Table 4.3 suggests that the idle time for a single training iteration on the cloud is

approximately 1.8 seconds. Then, the total training time for a cloud-based SOM would

approximately take 5 – 7 hours in total, which is an acceptable execution time. Thus,

training an SOM on a global cloud infrastructure had been proven to be feasible.

	 115

CHAPTER 5

SELF-ORGANIZING MAP HYPERPARAMETER

‘The real problem is that programmers have spent far too much time worrying

about efficiency in the wrong places and at the wrong times; premature

optimization is the root of all evil (or at least most of it) in programming.’

 (Knuth, 1974, p.671)

5.1 Chapter Introduction

Every machine learning algorithm can be thought of as a modelling analysis, in

which the hyperparameter configurations determine the algorithm learning behaviour and

output. The self-organizing map (SOM) algorithm has notably more hyperparameters

than other clustering algorithms, given that it combines several machine learning tasks

into one. Although the algorithm originally developed for unsupervised clustering tasks,

it also decomposes (reduces) the feature dimension to a lower dimension (commonly to

2 dimensions) and at the same time, quantizes the instance vector.

 To the best knowledge of the author, there is as yet no research that studies the

impact of various hyperparameter configurations on the overall SOM model performance.

Thus, an established guide on how to configure the SOM hyperparameters does not exist,

particularly for a complex and big volume dataset, such as a particle physics dataset.

Hence, the objective of this chapter is to determine the set of hyperparameters that can

produce the most optimized SOM model for the Higgs and SUSY dataset.

For this reason, a focused study on the SOM hyperparameter; its function and

effect towards the modelling outcome should be done accordingly. The findings in this

	 116

chapter were used as the guideline for configuring the SOM hyperparameter in the

subsequent chapter. Details regarding the developed SOM application are given in the

previous chapter. The experiments carried out in this chapter were mainly executed on

the UM sifir cluster, described previously in Chapter 3. Meanwhile, information about

particle physics is given in Chapter 2. All SOM model hyperparameter configurations

shown in this chapter are given in Appendix A.4.

5.2 Developed Hyperparameter

Table 5.1 lists some of the possible SOM hyperparameters and whether or not its

effects upon the modelling outcome are studied in this research;

Table 5.1: List of several SOM hyperparameters

Aspect Hyperparameter Studied

SOM Map

Map size – centroid/instance ratio Yes

Map topology (discrete/continuous) No

Map dimension No

SOM Model Training

Similarity function Yes

Learning-rate / Smoothing function

(Homogenous/Heterogeneous)
Yes

Radius-decay function Yes

Training length Yes

Mapping technique Global cluster creation No

	 117

5.2.1 Centroid and Instance Number

 In the beginning of the SOM model development, several aspects regarding the

SOM feature-map had to be defined, including the number of centroids, the map topology,

and the initial centroid weight-vector value. The ratio between the number of centroids in

the SOM map and the number of instances in the dataset is a crucial hyperparameter. In

fact, two aspects of the final SOM model would be directly affected by this ratio:

1. A smaller number of centroids will create a model with lower variance, but higher

bias

2. The global instance cluster (GIC) boundary between the centroids is less defined

for a model with low number of centroids.

To put in a simple context, a higher ratio of centroid number to instance numbers

would result in a better SOM model. However, an SOM model with a high centroid

number will take significantly more computing resources and execution time. In this

research, the standard number of centroids was set at 30 × 30, as depicted in Figure 5.1

(a), as it offered a balance between the resolution and the execution time.

 In terms of SOM map topology, this research focused on the square-shaped SOM

map, as shown in Figure 5.1 (a), as this kind of map is easier visualize and interpreted.

In another research, more complex centroid distribution topology had been demonstrated,

for example, most studies conducted by Kohonen employed a hexagonal-shaped

distribution, as given in Figure 5.1 (b). The advantage of using a hexagonal topology is

that the number of the nearest neighbouring centroids is increased from 4 (square) to 6.

An example of continuous SOM topology is the research conducted by Wu and Takatsuka

(2005, 2006), in which they used a geodesic topology, as presented in Figure 5.1(c).

	 118

Figure 5.1: Different SOM map topologies from various studies, (a) is the

shape of SOM map that had been used in this research, (b) from Kohonen

(2013), and (c) from Wu and Takatsuka (2006)

Besides, it is worth noting that by placing the centroid in a hypothetical plane, as

in Figure 5.1, the SOM centroid acquired a spatial parameter (XY-coordinate) that is

independent of the instances value during the training phase.

5.2.2 Training Iteration Length

 Configuring the training iteration should take into account the number of instances

in the dataset, the number of centroids, and the acceptable run time. Higher training

iterations would allow the centroid weight-vector to converge to a value that better reflect

the topology of instances in the dataset. A more in-depth study on the effect of training

iterations is given in subchapter 5.4.3 In this research, a value between 2,700 and 50,000

(a) (b)

(c)

	 119

iteration steps was taken, depending on how large the dataset and the number of centroids

were.

5.2.3 Learning-Rate Function and Radius-Decay Function

The configuration of the learning-rate function has a direct effect on the

convergence level of the centroid weight-vector. The convergence level of the centroid

weight-vector, in turn, affects how the SOM model clusters instances. Thus, the learning-

rate function is a vital hyperparameter for SOM modelling.

To the best knowledge of the author, there have been no studies on the effect of

using different forms of learning-rate functions upon the outcome of the SOM model. In

this research, four different learning-rate functions had been studied, the logistic

regression equation (5.1), reverse logistic regression (5.2), derivative hyperbolic tan (5.3),

and a form of a damped sinusoidal wave equation (5.4), where Ç is defined in equation

(5.5):

1

1 + É3Ñ
 (5.1)

1 −
1

1 + É3Ñ
 (5.2)

1

cosh −Ç 4
 (5.3)

1

2
∙ É3]Ü ∙ cos áq (5.4)

Ç = 	−'(q −
à

2
) (5.5)

	 120

Where T, t, and k are the maximum training length, the training iteration step, and

steepness of the curve respectively. The effect of k on the equation form is show in Figure

5.2. However, the linear function (such as the '! + Z) was not studied as it was assumed

that it would give results comparable to those given by the logistic regression and reverse

logistic regression.

In this research, k was set to be equal to 10 for logistic and reverse logistic

functions, while k = 5 for derivative hyperbolic tan and damped sinusoidal wave. These

two value was chosen as it produce a curve that is neither too steep (as k = 100) or too

flat (as k = 2.5). For the radius-decay function, this research only used the reverse logistic

regression with the minimum value set to 1 centroid.

Figure 5.2: Different forms of learning-rate function with different values

of k.

	 121

5.2.4 Homogenous and Heterogeneous Learning-rates

The SOM equation that is shown in equation (4.4) shows that the learning-rate

function depends only on the training iteration, thus, the learning-rate value is same

(homogenous across the SOM map) for all centroids in each training iteration. However,

not all centroid’s weight-vector is perturbed in each training iteration. Only centroids with

distance less than mnob from the winning centroid will have it weight-vector perturbed.

Thus, at any given training iteration, different centroids would have different numbers of

times its weight-vector have been perturbed.

Figure 5.3 shows the ratio between the number of times a centroid was perturbed

in the training phase and the maximum training iteration, across the SOM map. It is

apparent that the ratio was not homogenous across the map, in which centroids closer to

the edges were perturbed less than those at the centre.

This condition should be take into account in creating the SOM model by

changing the factor on which the learning-rate function from the training iteration, q , into

the number of times a centroid has been perturbed in the previous training iteration, qâ,

via equation (5.6). In this way, the learning-rate values would be specific to each centroid

and the learning-rate value is heterogeneous across the SOM feature-map.

D q 	→ 	D qâ (5.6)

	 122

Figure 5.3: The ratio between the number of times a centroid had been

perturbed in the training phase to the maximum training iteration

For example, a SOM model was being created with its training iteration is set to

be 1000 steps. An arbitrary centroid located in the middle of the SOM map is label as ‘A’

while another arbitrary centroid located at the edge of the SOM map is label as ‘B’.

During the 500th training iteration, centroid-A weight-vector has already been perturbed

480 times while centroid-B weight-vector has only been perturbed only 200 times. If a

homogenous type learning-rate was used, then both centroid-A and centroid-B will have

their learning-rate equal to l(500) in their 500th training iteration. On the other hand, for

a heterogeneous type learning-rate mode, centroid-A will have a learning-rate equal to

l(480) while centroid-B will have learning-rate equal to l(200).

Total Perturbation Count
Max Training Iteration

	 123

 In Figure 5.3, changing the learning-rate from a homogenous (Homo, left

column) to a heterogeneous (Hetero, Right column) learning-rate function did not change

the overall distribution shape. In the figure, the derivative hyperbolic tan had been

denoted as Dtanh, reverse logistic regression as Revlogis, damped sinusoidal wave as

Dsin, and logistic regression as Logis, equation (5.1-5.5).

However, Figure 5.4 shows that there is an apparent difference in the total

learning-rate for by each centroid between homogenous and heterogeneous learning-rate

modes. For derivative hyperbolic tan (Dtanh) and logistic regression (Logis) learning-rate

functions, the learning-rates were more homogenous (a bigger red spot) when they were

in a homogenous mode. Meanwhile, damped sinusoidal wave (Dsin) and reverse logistic

regression (Revlogis) learning-rates were more homogenous when they were used in a

heterogeneous mode.

	 124

Figure 5.4: The total learning-rate distribution for each learning-rate

function in both homogenous (Homo) and heterogeneous (Hetero) modes

5.2.5 Similarity Function

 A distance function in a certain feature space can be used to measure the similarity

between two vectors. In most ML literature, the terms ‘distance function’ and ‘similarity

function’ are used interchangeably. The SOM algorithm uses the similarity function to

select the winning-centroid in each training iteration.

This research studied the effect of using various similarity/distance functions on

the SOM modelling outcome. Previous studies by other authors have studied the impact

Total
learning rate

received

	 125

of using Euclidean distance, dot product, and Cosine similarity on SOM modelling. This

work expands this to include other distance functions, as shown in Table 5.2.

A summary of these functions is given subsequently in the text, nevertheless,

readers who are interested in an in-depth discussion are directed towards publications

made by Cha (2007), Wang and Sun (2015), as well as Yang and Jin (2006). These

publications surveyed the different types of distance/similarity functions and their

application to machine learning and data mining.

It is vital to point out here that in using a similarity function, the smaller the value

obtained, the more similar the two vectors are, whereas the higher the value obtained, the

more dissimilar the two vectors are.

Firstly, the similarity functions that fall under the Minkowski family are given in

equation (5.7) (Cha, 2007):

distance = 	 åU − çU
é

è

Uh0

ê

 (5.7)

 The Minkowski distance is the generalization of the city-block (Manhattan),

Euclidean, and Chebyshev distances, where each corresponds to a p value of 1, 2, and

approaching ∞ respectively. Kohonen (2013) stated that Euclidean distance is the

standard choice for constructing the similarity matrix in SOM modelling.

	 126

Table 5.2: Similarity/distance functions studied in this research, all functions were

taken from Cha (2007), except correlation distance, which had been taken from the

scipy module

Formula Name Formula

Euclidean Distance ë = åU − çU
4

è

Uh0

City-block Distance ë = åU − çU

Uh0

Correlation Distance 1 −
(å − å) ∙ (ç − ç)

(å − å) (ç − ç)

Cosine Distance ë =
åUçU

è
Uh0

åU
4è

Uh0 çU
4è

Uh0

Chebyshev Distance íì!U åU − çU

As for the city-block function, the equation behaves well for instances with high

dimension, since city-block function has a p value of 1, increasing the similarity

measurement (generally) as the dimension increases. This property has the effect of

amplifying minute differences between the two instances, even though such differences

are scattered across multiple features. As such, the city-block measures the differences

between the instances in terms of their magnitude rather than their direction.

 As for the cosine similarity function, it is frequently used by text processing

software, where the count of each word in a given text can be used to determine the genre

the text belongs to (Wang & Sun, 2015). The function measures the angle between the

two vectors rather than its distance, thus providing a means to gauge the difference in the

	 127

direction between the two instances. This method is very useful if the variation in a dataset

feature is high and separable only by using the instance direction in the feature space.

 The last distance formula presented is the correlation distance, which measures

the independence of one instance from another. The function is not a pair-wise distance

measurement as cosine and Minkowski functions are, but a similarity measurement over

a sample of instances. Thus, it is more closely related to functions, such as Mahalanobis,

Sørensen, and Canberra distances. In principle, it is a misuse to construct an SOM

distance matrix with the correlation distance formula, however, the author was interested

to see how it affected the SOM module outcome.

5.3 Higgs Dataset Feature Engineering

 Each similarity function can only measure the similarity among instances for

finite number of dimensions. As the feature dimension increases, the measurable

dissimilarity between two vectors will diminish, a phenomenon commonly known as the

‘curse of dimensionality’ (Bellman, 1961). Thus, in machine learning, feature

engineering is done prior to ML modelling. In feature engineering, the features of a

dataset are cherry-picked, as well as transformed and/or decomposed to reduce its

dimension. In certain cases, the results from feature engineering dictate the machine

learning algorithm that is suitable for the dataset.

The objectives of the following subchapter are:

1. To identify the similarity function that can provide optimum dissimilarity between

signal and noise instances at high feature dimension for the Higgs dataset

	 128

2. To identify the feature group that provides optimum dissimilarity between signal

and noise instances for the Higgs dataset

Only the Higgs dataset had its features analysed because it was the only dataset

that was used in the supervised learning method, hence, the label of each instance was

identified by the learning algorithm. This also allowed the differences in similarity

distribution between signal and noise instances to be measured before the model training.

The Higgs dataset feature can be grouped into several groups, as shown in Table

5.3 (Baldi et al., 2014).

Table 5.3: Higgs dataset feature groups

High-level
features

Raw features
Lepton Missing energy (MET) Jet 1 Jet 2 Jet 3 Jet 4

 mjj lepton pt missing energy
magnitude jet1 pt jet2 pt jet3 pt jet4 pt

mjjj lepton eta missing energy phi jet1 eta jet2 eta jet3 eta jet4 eta

mlv
lepton

phi jet1 phi jet2 phi jet3 phi jet4 phi

mjlv jet1 b-
tag

jet2 b-
tag

jet3 b-
tag

jet4 b-
tag

mbb
mwbb
mwwbb
Group Feature Group

Group 1 High-level

Group 2 High-level + Lepton

Group 3 High-level + Lepton + MET
Group 4 High-level + Lepton + MET + Jet1

Group 5 High-level + Lepton + MET + Jet1 + Jet2

Group 6 High-level + Lepton + MET + Jet1 + Jet2 + Jet3
Group 7 All

The SUSY and the Dimuon datasets were used in the unsupervised learning

method. In this method, the label for each instance was removed during the SOM model

training. Without the label, the features or the feature groups that provided the best

	 129

separation between signal and noise could not be established, therefore, feature

engineering could not be conducted in this situation.

5.3.1 Measurement Method for the Single Higgs Sub-dataset

This subchapter describes study on how the increase in the feature dimension

affected the similarity measurement between the signal instance and the noise instance

from the Higgs dataset.

First, the study limits its measurement to only three Higgs sub-datasets. Each

dataset contained only 300 randomly chosen instances. Two of the sub-datasets contained

only noise instances, and were labelled as 'ctr-noise', and 'test-noise', while the third was

created only for signal instances and was labelled as 'test-signal'.

Initially, each sub-dataset feature was limited to the high-level feature group

shown in Table 5.3. After preparing these three sub-datasets, the following steps were

taken:

1. An instance from the ctr-noise was chosen and the this similarity of this instance

to all instances in the test-noise was measured using the Euclidean distance

function. The obtained values were recorded.

2. The previous step was repeated all other instances in the ctr-noise.

3. Steps 1 and 2 were repeated with the test-noise replaced with the test-signal sub-

dataset.

4. Steps 1, 2, and 3 were repeated with the feature dimension increased for all sub-

datasets by including another feature group in Table 5.3. This step was repeated

until all feature groups were included.

	 130

5. Steps 1, 2, 3, and 4 were repeated with the Euclidean distance replaced with other

similarity function.

5.3.2 Measurement Results for The Single Higgs Sub-dataset

The recorded similarity value for a given similarity function is shown as a

cumulative distribution in Figure 5.5 - Figure 5.9. In each figure, the subplots (a) - (g)

represent the cumulative combination of groups 1 - 7 respectively, as listed in Table 5.3.

In addition, the absolute mean of the difference between noise-noise and noise-signal

similarity measurements versus the feature dimension number is shown in subplot (h).

Note that any result that comes from this measurement is specific to the three Higgs sub-

datasets only.

	 131

Figure 5.5: The cumulative distribution of similarity between noise-noise

and noise-signal under different feature combinations for Euclidean

Distance (a-g). (h) the scattered plot of absolute average different versus

the feature dimension.

	 132

Figure 5.6: The similarity measurement cumulative distribution between

noise-noise and noise-signal under different feature combinations for

City-block (a-g). (h) the scattered plot of absolute average different versus

the feature dimension.

	 133

Figure 5.7: The similarity measurement cumulative distribution between

noise-noise and noise-signal under different feature combinations for

Chebyshev (a-g). (h) the scattered plot of absolute average different versus

the feature dimension.

	 134

Figure 5.8: The similarity measurement cumulative distribution between

noise-noise and noise-signal under different feature combinations for

Cosine (a-g). (h) the scattered plot of absolute average different versus the

feature dimension.

	 135

Figure 5.9: The similarity measurement cumulative distribution between

noise-noise and noise-signal under different feature combinations for

Correlation (a-g). (h) the scattered plot of absolute average different

versus the feature dimension.

	 136

5.3.3 Discussion for Higgs Sub-Dataset Feature Engineering

 An idle similarity function will give a value that approaches zero between two

noise instances, but gives a high positive value between a signal and noise instance. The

result for each similarity function is discussed in the following:

Euclidean Distance: The cumulative plot shown from Figure 5.5 a-h, shows that the

high-level features (listed in Table 5.3) did not give a high measurable dissimilarity

between noise and signal instances. Only a small portion of signal instances had a higher

magnitude in certain feature(s) when compared to noise instances, which contributed to

the slight increase of the noise-signal curve (blue) after similarity magnitude of 4. For

Euclidean distance, the Lepton group give the highest dissimilarity, follow by (in no

particular order) MET, Jet 1, and Jet 2. On the other hand, Jet 3 group dramatically

decreased the dissimilarity, and Jet 4 group appeared do not contribute to any significant

effect in Figure 5.5(h).

City-block Distance: The cumulative distribution of Figures 5.6 b-e, show that the noise-

signal similarity curve (blue) was regularly above the noise-noise similarity curve (red),

indicating that the majority of the noise-signal similarity measurement had a lower

magnitude than the noise-noise measurement. Figure 5.6 (h) also shows that the absolute

mean difference between this distribution increased as more feature groups were added

until it plateaud at a dimension > 20. Similar to the Euclidean distance measurement, the

high-level features did not give any significant dissimilarity between noise and signal

instances, whereas the Jet 3 group decreased the dissimilarity.

	 137

Chebyshev Distance: The cumulative distribution of similarity measurement by using the

Chebyshev function was similar to the output produced by the Euclidean and City-block,

as shown in Figure 5.7 (a). The highest dissimilarity increased between the noise and the

signal due to the contribution of the Lepton group and peaked when the MET group was

incorporated. Incorporating additional dimensions only decreased the dissimilarity

measurement, thus, it can be said that Chebyshev distance was insensitive to dissimilarity

(for this sub-dataset) at high dimension. The discontinuities in Figure 5.7 d – f was due

to the b-tag parameters which have discrete values, with a maximum value of 2.17307.

Cosine Similarity: The cosine similarity measures the angle difference between two

vectors. The cumulative similarity distribution of Figures 5.8 a – f have similar

characteristics as the previous two cumulative similarity distribution figures. The only

difference is that the absolute mean difference scatter plot, Figure 5.8 (h), shows that

angle difference had been the highest when the Lepton and the Jet 2 groups were

incorporated into the feature, whereas other feature groups exhibited a weaker or

declining effect. However, the increase in feature dimension did not affect greatly the

dissimilarity measured by using these functions.

Correlation Distance: The cumulative plot of Figure 5.9 (a) shows that a certain portion

of the noise-signal curve was below the noise-noise sub-dataset. This indicated that by

using the only high-level feature with correlation distance function, certain noise

instances were measured to be more similar to a signal instance than another noise

instance, making the result obtained to have a higher error level than any other similarity

function. Moreover, Figure 5.9 (h) shows that the function had higher sensitivity towards

increase in dimension than any other similarity functions. In spite of this, the function

	 138

still showed a high jump in dissimilarity value for the Jet 3 feature group and a steep

increase for Lepton feature group.

 The results obtained here show that different combinations of features and

similarity functions led to different similarity values between the noise and the signal

instances. This is specifically for the three sub-datasets, the Lepton and the Jet 2 feature

groups displayed the highest dissimilarity measurement between signal and noise

instances. Moreover, the Cosine similarity, the Euclidean distance, and the City-block

distance functions showed less sensitivity to an increase in feature dimension, whereas

Chebyshev and Correlation performances dropped significantly as the dimension

increased.

5.3.4 Multiple Higgs Sub-Dataset Similarity Measurement

 In the previous subchapter, the measurement had been limited to three sub-

datasets. In this subchapter, the measurement is generalized. Multiple new sub-datasets

were created for each type of sub-dataset (ctr-noise, test-noise, and test-signal). The same

method described in subchapter 5.3.2 was then repeated for all new sub-datasets.

The mean for the absolute difference between noise-noise similarity values and

noise-signal similarity values for each of these datasets are shown in the scatter plots in

Figure 5.10 and Figure 5.11.

	 139

Figure 5.10: The absolute difference in mean between noise-noise

similarity values and noise-signal similarity versus feature dimension

number for Euclidean and City-block functions

Figure 5.11: The absolute difference in mean between noise-noise

similarity values and noise-signal similarity versus feature dimension

number for Correlation, Cosine, and Chebyshev Functions

	 140

 The results shown in Figure 5.10 and Figure 5.11 did not indicate that the Lepton

and the Jet feature groups (points at dimension = 10 & 20 respectively) offered better

discrimination than other feature group combinations. Furthermore, the higher-level

feature group (Table 5.3, corresponding to points at dimension = 7) showed a stronger

dissimilarity measurement for the Euclidean and Chebyshev than expected from the

previous result.

The primary objective of this subchapter is to demonstrate that for the Higgs

Dataset, no one feature combination can consistently provide the largest dissimilarity

measurement between signal and noise instances. Each smaller dataset (sub-dataset)

instances had individual feature combinations that gave maximum dissimilarity.

In the context of machine learning practice, this is a strong indication that the

Higgs dataset required algorithms that leveraged information available at a subspace

level, please see Skurichina & Duin, (2002,) for discussion on subspace classifier. The

best machine learning methods that can do this are ‘Ensemble’ type algorithms, such as

the Random Forest algorithm, which use the bagging method to create subspaces. The

SOM algorithm, indirectly, creates subspace clustering by diversifying the centroid

weight-vector during the training phase.

 In addition to these, Figure 5.10 and Figure 5.11 shows that the Euclidean, the

city-block, and the cosine was less affected by the increase in dimension, compared to

the Chebyshev and Correlation functions. Thus, only these three functions (Euclidean,

city-block, and cosine) should be used in the Higgs dataset for SOM modelling.

	 141

5.4 Subspace in SOM Feature-map

 Subspace clustering is the ability for an ML algorithm to change dynamically its

feature(s) selection for a given instance that it is trying to cluster or classified. The

objective of this subchapter is to demonstrate the subspace property in an SOM map.

 The SOM training phase transforms the initially random weight-vector in the

SOM map, Figure 4.4 (Right), into a map with weight-vectors arranged in a smooth

manner. Figure 5.12 shows the magnitude of each centroid weight-vector on the Higgs

SOM map that was trained with different learning-rate functions. The distribution of

certain features on the trained SOM map is shown in Figure 5.13 for the Higgs dataset,

while Figure 5.14 shows the distribution of the trained SUSY SOM model.

Each plot in Figure 5.13 and Figure 5.14 shows that the distribution of the

weight-vector’s magnitude is complex and non-linear. The magnitude of a particular

feature was high in some regions of the SOM map, while small in others. A large

magnitude indicates that a particular feature has a significant influence in clustering

instance. Conversely, a low magnitude shows that the feature is redundant for clustering

instances in that area of the SOM map. Thus, the feature(s) used for clustering instances

can dynamically change across the SOM map.

	 142

Figure 5.12: The distribution of centroids vector magnitude for different

SOM maps, trained with different learning-functions. X-axis and Y-axis

refer to the position of each centroid on the XY plane of the SOM map.

The Z-axis and colour share the same scale, which indicate the weight-

vector magnitude corresponding to a particular point on the SOM map.

Reverse Logistic Regression

Damped Sinusoidal Wave Derivative Hyperbolic Tan

Logistic Regression

Hyperparameter Value Hyperparameter Value

Train Dataset 900 Higgs Instances Learning Function Various

Shape 30 X 30 Centroid Similarity Function Euclidean

Training Iteration 5000 Iteration Feature Original Dataset Feature

	 143

Figure 5.13: The distribution of various features on the trained SOM map

for the Higgs dataset. Please see Figure 5.12 for information about the

scale.

Hyperparameter Value Hyperparameter Value

Train Dataset 900 Higgs Instances Learning Function Derivative Hyperbolic Tan

Shape 30 X 30 Centroid Similarity Function Euclidean

Training Iteration 5000 Iteration Feature Original Dataset Feature

	 144

Figure 5.14: The distribution of various features on the trained SOM map

for the SUSY dataset. Please see Figure 5.12 for information about the

scale.

Hyperparameter Value Hyperparameter Value

Train Dataset 900 SUSY Instances Learning Function Derivative Hyperbolic Tan

Shape 30 X 30 Centroid Similarity Function Euclidean

Training Iteration 5000 Iteration Feature Original Dataset Feature

	 145

For clarity, the following example is given, Figure 5.15 shows the lepton pt,

MET, jet 1 pt, and jet 2 pt feature-maps that belong to the same Higgs SOM model. Two

regions, compromising centroids along the x = 3 and x = 23 axes, are marked by the black

solid and dashed line respectively. The combination of feature value for each of these

centroids, along with these two axes, is shown in Figure 5.16.

Figure 5.15: The feature-map for lepton PT, MET, Jet1 PT, and Jet2 Pt

of the Higgs SOM. Values for each of the features for Figure 5.16 is taken

along the dashed (x = 23) axes and solid line (x = 3).

	 146

Figure 5.16: The value of 4 different features for each centroid along the

x = 3 (Reg1) and x = 23 (Reg2) axes from the SOM model in Figure 5.15.

As shown in Figure 5.16, each centroid along the x = 3 and x =32 axes had a

different combination of values for each feature. Instances with a higher value of Lepton

Pt than any other feature value will be mapped in region 0 < y < 10 and x = 3 (region A).

On the other hand, instances with high value for all features except MET, will be mapped

to centroids between 20 < y < 30 and x = 23 (region B). Thus, from this example it shows

that each feature has different significant in different region of the SOM map. Hence

subspace clustering occurs in the SOM map.

In addition, the SOM algorithm can duplicate and at the same time simplify the

abstract feature space geometry in the original dataset. This ability is labelled as

'topology-preserving' and has been extensively studied by Amerijckx et al., (1998),

Ferreira et al., (2001), Vesanto and Alhoniemi (2000), and Villmann et al., (1997). In

other words, the SOM could recreate and simplify the subspace(s) that exist in the training

dataset.

	 147

A careful reader will realize that there is a contradiction in the above paragraph,

when the SOM model is said to be Topology preserving, but also a subspace simplifier.

In the author’s opinion, the SOM model does not entirely preserve the original topology,

but it simplifies the topology without losing the information that is stored in the original

topology. This agree with Kohonen’s description of SOM being a vector quantization

algorithm.

5.5 SOM Model Optimization

Kohonen further described SOM as a projection mapping similar to vector

quantization with the addition of being spatially globally ordered (Kohonen, 1982).

Vector quantization is a data compression technique that reduces the number of bits

required to represent information. However, vector quantization is a lossy data

compression technique since a small portion of information can be lost in the process.

In the author’s opinion, a SOM model is consider to be optimized when the loss

of information is minimized. Loss of information can be reduced by configuring the SOM

model with the correct hyperparameters for a given dataset. In this subchapter, two

aspects of the SOM model had been measured to ensure that the model produced is the

best model in representing the information stored in the original dataset:

1. The first aspect is to compare the general distribution of instances in a feature

space volume created in a SOM model relative to the original dataset feature space

volume. This can plausibly to be measured by using an equation that measures the

determinant between two covariance matrices of two feature space volumes (Ho,

& Bernadó-Mansilla, 2006). Such an equation is the modified Multivariate

	 148

Bhattacharyya Distance (MB-Distance), as given in equation (5.8) (Hong Y. et

al., 2015);

2. The second aspect is to gauge the loss of information (entropy divergence) in the

SOM model relative to the information available in the original dataset. This was

measured by using the g (KL-Distance) (5.10, taken from Pardo L., (2005)), as

this equation is a well-known method for measuring information loss in encoding.

wîï =
1

8
/ó − /ò

ôΣ30 /ó − /ò +
1

2
ln

det Σ

det Σâ − det Σj

 (5.8)

Σ = 	
Σâ + Σj

2
 (5.9)

wgõ =
1

2
qs Σj

30Σâ + (/ò − /ó)
ôΣj

30(/ò − /ó) − ' + ln	(
det	Σj	

det	Σâ
) (5.10)

Where / , Σ , and k are the means, covariant matrix, and feature dimension

respectively, while s and c denote the training dataset and the SOM map distribution

respectively. For both these equations, the smaller the distance (wîï	,wgõ) obtained, the

more optimized the SOM model would become.

As stated before, this research employed three kinds of datasets, SUSY, Higgs,

and Dimuon datasets. The SOM modes for the SUSY and the Higgs datasets have

relatively fewer centroids (30 x 30 centroids) than the Dimuon dataset (100 x 100). Hence,

both SUSY and Higgs SOM models had a relatively shorter training time than the Dimuon

SOM model. The short training time allows the multiple SOM model to be created with

different hyperparameter configurations in an acceptable length of time.

On the other hand, the Dimuon SOM model required a training time that was

approximately twice as long as the Higgs and the SUSY SOM model training time. The

	 149

long training time inhibits the production of multiple Dimuon SOM models with different

hyperparameters. Hence, the most optimized version of the Dimuon SOM model was not

investigated.

5.5.1 Results for Feature Engineering

 Figure 5.17 – Figure 5.22 show the box and whisker plot of the recorded MB-

Distance and KL-Distance for both the Higgs SOM and the SUSY SOM. The top and

bottom of the box is the first (Q1) and third quartile (Q2) of the distribution while the red

line inside the box represent the mean. The whisker at the top is equal to ú3 + 1.5	(ú3 −

ú1) whereas the whisker at the bottom is equal to ú1 − 1.5	(ú3 − ú1). Cross above and

below this whisker are outlier.

Higgs Dataset: In this subchapter, the effect of cherry-picking the feature for the SOM

algorithm to module is presented. The MB-Distance and KL-Distance for training the

SOM with different feature combinations are shown in Figure 5.17:

	 150

Figure 5.17: The MB-distance and the KL-Distance for the SOM model

that had been trained by using various feature selections for the Higgs

dataset.

	 151

Supersymmetry Dataset:

Figure 5.18: The MB-distance and the KL-Distance for the SOM model

that had been trained by using various feature selections for the SUSY

dataset.

	 152

5.5.2 Results for Different Training Iterations

Higgs Dataset: The results obtained concerning the MB and KL distances for training

the SOM with different training iterations are given in Figure 5.19 for the Higgs dataset:

Figure 5.19: The MB-distance and the KL-Distance for SOM model that

had been trained by using various training iterations for the Higgs dataset.

Supersymmetry Dataset: The results concerning MB and KL distances for training

SOM with different training iterations are given in Figure 5.20 for the Higgs dataset:

Higgs Dataset

	 153

Figure 5.20: The MB-distance and the KL-Distance for SOM model that

had been trained by using various training iterations for the SUSY dataset.

5.5.3 Results for Different Learning-Rate Function Iterations

Higgs Dataset: The results obtained for MB and KL distances in training SOM with

different learning-rate functions are given in Figure 5.21 for the Higgs dataset. The

learning-rate functions that had been studied were derivative hyperbolic tan (Dtanh),

reverse logistic regression (Revlogis), damped sinusoidal wave (Dsin), and logistic

regression (Logis) on the Homogenous (glb) and the heterogeneous (lcl) modes, as

described in subchapters 5.1.3 and 5.1.4:

SUSY Dataset

	 154

Figure 5.21: The MB-distance and the KL-Distance for SOM model that

had been trained by using various learning-rate functions with the indicate

modes for Higgs dataset.

Supersymmetry Dataset: The results obtained for MB and KL distances after training

SOM with different learning-rate functions are given in Figure 5.22 for the SUSY

dataset:

	 155

Figure 5.22: The MB-distance and the KL-Distance for SOM model that

had been trained by using various learning-rate functions with the indicate

modes for Higgs dataset.

	 156

5.5.4 Discussion on SOM Model Optimization based on MB and KL Distances

Higgs Dataset: The SOM model for the Higgs dataset had been used for classification

purposes; this required the model to represent the original instance vector in the dataset

with minimal divergence. Hence, the SOM model is optimized when the difference

between the instance and the centroid weight-vector is minimum; therefore, the reduction

in Kullback-Leibler divergence (distance) is greater importance than the MB distance.

In line with this, the SOM model was optimized better when it was developed

without the Eta and the Phi feature types. The removal of these features from the model

creation reduced the KL Distance by a factor of almost 2, from the original value of

approximately 4.5k to approximately 1.5k, as shown in Figure 5.17 (Right). On the other

hand, inclusion or exclusion of B-tag types into the SOM modelling did not produce any

noticeable changes in the KL-Distance. Thus, it should be kept to preserve information

store in this feature.

Training iteration above 7,500 steps did not produce any significant reduction in

the KL distance and the MB distance, as illustrated in Figure 5.19. The logistic regression

learning-rate on Homogenous mode (glb-logis) generated the SOM with the lowest KL-

Distance, as shown in Figure 5.21. Hence, the training iteration should be done at 7500

iterations with glb-logis as the learning-rate function.

Supersymmetry dataset: The SOM model that was developed by using the

supersymmetry dataset will be used in the unsupervised clustering analysis. In this

situation, the multivariate Bhattacharyya Distance is more crucial than the KL distance,

	 157

since the clustering algorithm analyses the location of instances in the SOM feature space

to create clusters.

In this regard, the SOM model created without the Eta and the Phi features

displayed a reduced MB distance of approximately 1.4, whereas the original SOM

(trained with all feature) had an MB-distance of approximately 2.6, as shown in Figure

5.18. Thus this features is remove from the SOM model training.

In addition, Figure 5.20 shows that both the MB distance and the KL distance

continued to drop as the training iteration increased. Hence, the SOM model should be

trained at the maximum training iteration of 15,000. As for the learning-rate function,

Figure 5.22 shows that the SOM model trained with Reverse logistic regression at

heterogeneous mode (lcl-revlogis) produced the lowest MB distance, so this function

should be used.

5.6 SOM Hyperparameter Conclusion

The objective of this chapter was to determine the hyperparameter configuration

that produced the most optimized SOM model for the Higgs and the SUSY datasets. The

first half of this chapter provides the introduction to various SOM hyperparameters and

the mathematical equations that of them. One of the common practices in optimizing an

ML model is to do future engineering. However, it was found that the Higgs dataset did

not have one single future or future combination that offered the highest dissimilarity

measurement between the signal and the noise instances. This means that the

classification of the Higgs dataset required an ML that can do subspace clustering, such

as the SOM model.

	 158

The optimization level of the SOM model was measured by using the modified

Multivariate Bhattacharyya Distance equation and the modified Multivariate Kullback-

Leibler distance. By using these two quantities, it was found that the Higgs SOM model

was optimized when it was trained by using the logistic regression learning-rate on

Homogenous mode at 7,500 training iterations. On the other hand, the SUSY SOM model

was optimized when it was trained by using the Reverse logistic regression at the

heterogeneous mode at 15,000 training iterations. The optimized hyperparameters

configuration determined in this chapter is further used in chapters 6 and 7.

	 159

CHAPTER 6

SOM FOR CLASSIFICATION

The ultimate test of any classification model is its performance. If

discriminant analysis gives a satisfactory predictive power for

nonnormal samples, don’t let the rigor of theory stand in your way

(Narsky & Porter, 2013, p.226)

6.1 Chapter Introduction

The SOM algorithm was not designed to create a classification model, but instead

a clustering model. However, due to the fact that SOM that can create subspace clustering,

pairing an SOM model with another classification algorithm may enhance the classifier

accuracy. This chapter therefore focus on developing two classification models by pairing

Linear Discrimination Analysis (LDA) with SOM to create the SOM+LDA model, and

pairing Quadratic Discrimination Analysis (QDA) together with SOM to create the

SOM+QDA model. The classification results obtained from these two methods were

compared to those of QDA only, LDA only, SVM and RF algorithms.

The details of the application used to create the SOM model are given in Chapter

4, while optimization of the SOM model is discussed in Chapter 5. The main hardware

that was used to generate all the ML models in this chapter was the UM sifir cluster,

previously discussed in Chapter 3. Details on QDA, LDA, SVM and RF algorithm has

been provided in Chapter 4.

	 160

6.2 SOM-Q/LDA Higgs Dataset Classification Method

In this research, a ‘stacking-model’ model is created in which the Quadratic /

Linear discrimination analysis, is employed together with the SOM to construct a

classification model shown in Figure 6.1. In this method, the first step was to create and

to train an SOM model based on the training dataset. Once the training was completed,

instances from the training dataset were mapped back to the SOM model. The mapping

process resulted in the creation of LIC on most of the centroids on the SOM map.

Discussion regarding the SOM mapping method and the LIC are given in subchapter

4.5.3.

Figure 6.1: The adopted stacking model for classifying the Higgs dataset

instances.

For each centroid with an LIC count of more than 50 instances, a local LDA/QDA

model was created solely based on the LIC, thus, an LDA/QDA model that was unique

Trained
SOM
Model

Train Dataset
Train local
Classifier

(QDA / LDA)

Test Dataset

Test local
classifier

Mapping instance
to SOM map

ResultTraining Path
Test Path

	 161

to each centroid on the SOM map was generated. To test the developed model, the

instances from the test dataset were then mapped on the SOM model, and classified by

the local LDA/QDA model. The classification results were compared with other

classification algorithms.

6.2.1 Mapping Results

Subchapter 5.2.3 showed that the similarity functions that should be used for the

Higgs dataset were Euclidean Distance, City-block, and Cosine function, due to that fact

that these functions were better suited for a high-dimensional dataset. Additionally, it was

also established in subchapter 5.3.5 that an optimized SOM model for the Higgs dataset

could be created by using logistic regression learning-rate in a Homogenous mode with

7,500 training iterations.

Once the SOM model had been trained with this hyperparameter configuration,

each instance from the dataset was mapped to a centroid with the most similar weight-

vector, explained previously in subchapter 4.3.3. The similarity between instance and

centroid was measured by the same similarity function that was used in the SOM model

training, as discussed in subchapter 5.1.5. The distribution of instance count in each

centroid LIC on the SOM map for all similarity functions is shown in Figure 6.2.

Figure 6.2 shows that instance number is varied between each centroid’s LIC.

These numbers were almost independent of which dataset was being mapped to the SOM

map, since the dataset was randomised. Thus, the distribution of LIC count across the

SOM map is reproducible for any given dataset.

	 162

Figure 6.2: The distribution of LIC count across the SOM map that was

created by different similarity functions. The colour-bar denotes the

number of instances at each centroid.

To prove that the LIC count distribution is same for any given randomised Higgs-

dataset, another Higgs-dataset (labelled as dummy-dataset) was mapped on to the

previous SOM map. The difference in the LIC count between the training and the dummy

dataset is shown in Figure 6.3 and Table 6.1;

	 163

Figure 6.3: The difference in number of instances for each centroid LIC

across the SOM map between the training dataset and the dummy dataset for each

similarity function.

Table 6.1: Comparison of mean and standard deviation (STD) for instance number per

centroid LIC between training and dummy datasets for each similarity function

Similarity Function
Training Dataset Dummy Dataset Difference
Mean STD Mean STD Mean STD

Euclidean 555.556 618.018 555.556 621.086 0.000 33.857
City-block 555.556 964.332 555.556 964.929 0.000 32.831
Cosine 555.556 564.929 555.556 569.603 0.000 32.115

	 164

 Figure 6.3 and Table 6.1 show that there is no major difference in the LIC number

for each centroid between the training and the dummy datasets. Table 6.1 shows there is

no difference in the average (mean) LIC count between the two SOM map and the

different in the standard deviation is only around 0.5% which is negligible. Thus, it can

be concluded that the LIC count across the SOM map (population density) was

independent of the dataset being used, provided that it is a randomised dataset.

6.2.2 Local QDA and LDA Classification Results

 One all the instances from the dataset has been mapped to the SOM map, any

centroid with LIC count more than 49 will have an its own LDA/QDA. Each LDA/QDA

classifier is trained using their own LIC.

For centroids with LIC count less than 50 does not have its own LDA/QDA, and

instances that were mapped to these centroids were re-mapped to the next most similar

centroid. Commonly, the number of rejected centroids would be less than 5% of the total

centroids in the SOM model.

After each LDA/QDA classifier had been developed, all instance from the training

and test dataset were classified by their respective centroid’s LDA / QDA. The results

from this local classification are shown in Table 6.2 and Table 6.3; the results obtained

here are used later to study the model variance and bias properties. With regard to Tables

6.2 and 6.3, the formula for accuracy and sensitivity are given by equations (6.2) and (6.3)

respectively;

Accuracy =
à£ + àY

à£ + àY + §Y + §£	
 (6.2)

	 165

Sensitivity =
à£

à£ + §Y	
 (6.3)

where Tp, Tn, Fn, and Fp stand for true positive count, true negative count, false positive

count, and false negative count, respectively.

Table 6.2: The results of SOM-LDA Classification for the Higgs training and test

datasets.

SOM-Local-LDA Training Dataset
Similarity
Function

No. Local
Classifier

Mean
Accuracy

Mean
STD

Mean
Sensitivity

Sensitivity
STD

Euclidean 896 0.730 0.066 0.693 0.080
City-block 854 0.738 0.075 0.700 0.085
Cosine 888 0.729 0.065 0.697 0.065

SOM-Local-LDA Test Dataset
Euclidean 896 0.691 0.073 0.665 0.106
City-block 854 0.691 0.077 0.653 0.077
Cosine 888 0.688 0.072 0.667 0.108

Table 6.3: The results of SOM-QDA Classification for the Higgs training and test

datasets.

SOM-Local-QDA Training Dataset
Similarity
Function

No. Local
Classifier

Mean
Accuracy

Mean
STD

Mean
Sensitivity

Sensitivity
STD

Euclidean 896 0.653 0.158 0.651 0.294
City-block 854 0.686 0.166 0.689 0.280
Cosine 888 0.634 0.156 0.649 0.292

SOM-Local-QDA Test Dataset
Euclidean 896 0.586 0.119 0.560 0.286
City-block 854 0.601 0.122 0.551 0.288
Cosine 888 0.578 0.118 0.567 0.289

 Table 6.2 shows that the SOM+LDA model has a lower classification accuracy

for the test dataset then the training dataset, with the difference in the score between

0.039-0.047. The sensitivity also decreases by 0.028-0.047. The reduction in score

	 166

suggest that the model has a slightly higher degree of variance over bias; however, the

difference is so small that it can be neglected.

Table 6.3 show that the SOM+QDA accuracy and sensitivity score decreased

when it is classifying the test dataset compare to the training dataset. The score for the

test dataset is only just slightly better than a random classifier (score = 0.5). This result

shows the SOM+QDA has a much higher variance then the SOM+LDA since its score

drop when classifying test dataset.

6.2.3 Comparison with Other Classifiers

 The Higgs test dataset contained 1,500,000 instances with signal to noise ratio of

1.1244. The classification results for support vector machine (SVM), random forest (RF),

LDA, and QDA are given in Table 6.4. In the table, S.No., N.No., Tp, Tn, Fp, and Fn

denote the signal instances number, noise instances number, true positive count, true

negative count, false positive count, and accuracy. Furthermore, Table 6.4 shows the

higher metric evaluation on the same algorithm and datasets, with precession calculated

by using the formula given in (6.4), while Figure 6.5 shows the Receiver Operating

Characteristic (ROC) plot.

Precession	 = 	
à£

§£ + à£	
 (6.4)

	 167

Table 6.4: Comparison of results between the different types of classification

algorithms for the Higgs dataset

Algorithm Tp / S.No. Tn / N. No. Fp / N.No. Fn / S.No.
SVM 0.795 0.608 0.392 0.205
RF 0.719 0.747 0.253 0.281
LDA 0.664 0.606 0.394 0.336
QDA 0.802 0.465 0.535 0.198

SOM+LDA
Euclidean 0.708 0.679 0.321 0.292
City-block 0.707 0.679 0.321 0.293
Cosine 0.706 0.682 0.318 0.294

SOM+QDA
Euclidean 0.551 0.496 0.416 0.370
City-block 0.522 0.532 0.369 0.398
Cosine 0.532 0.516 0.398 0.384

Table 6.5: Comparison of results between different typed of classification algorithms

for the Higgs dataset using higher evaluation metric.

Algorithm Accuracy Precession Sensitivity ROC -AUC
SVM 0.707 0.695 0.795 0.777
RF 0.732 0.761 0.719 0.814
LDA 0.637 0.655 0.664 0.684
QDA 0.644 0.628 0.802 0.712

SOM+LDA
Euclidean 0.694 0.713 0.708 0.757
City-block 0.694 0.712 0.707 0.756
Cosine 0.695 0.714 0.706 0.758

SOM+QDA
Euclidean 0.573 0.598 0.598 0.554
City-block 0.578 0.614 0.568 0.564
Cosine 0.573 0.600 0.581 0.553

	 168

Figure 6.4: The ROC curve of various classification algorithms for the Higgs

dataset.

6.2.4 Classification Results Discussion

 Table 6.5 and Figure 6.4 show that the random forest was the best classifier for

the Higgs dataset, as the algorithm recorded the highest score in accuracy, precession,

and ROC-Area Under the Curve (ROC-AUC). Meanwhile, SVM displayed the highest

sensitivity, followed by RF, and SOM+LDA. The SOM+LDA only had a higher precision

score compared to SVM, thought it was the third highest in all other categories. The QDA

result was ignored since the results depicted in Table 6.5 show that the algorithm label

almost all instance as a signal.

What is more important to be highlighted here is that the LDA performance had

improved when coupled with SOM. For example, the cosine SOM+LDA model improved

its performance when compare to the LDA model without SOM by +9.09%, +9.03%,

N
eg

at
iv

e
Tr

ue
 R

at
e

False Positive Rate

SVM

	 169

+6.36%, and +10.83% for accuracy, precision, sensitivity, and ROC-AUC values

respectively. On the other hand, the SOM did not improve the result for the QDA model,

as shown in Tables 6.4 and Table 6.5.

 Furthermore, Tables 6.4 and Table 6.5 also demonstrate that changing the

similarity function that was used to create the SOM map did not have any significant

impact on the classification score of the model. This fact is true for both the SOM+LDA

and the SOM+QDA models.

6.2.5 Role of SOM in LDA Classification

 The ROC plot in Figure 6.4 and the ROC-AUC value that is tabulated in Table

6.5 show that the SOM model improved the classification capability of LDA; from a

weaker classifier to a stronger classifier, with classification score almost equal to the

SVM. Since the SOM+LDA with cosine similarity function gave the highest AUC score

in Table 6.5, the following discussion is based solely on the result of the cosine SOM

model.

The enhancement provided by the SOM in the SOM+LDA model is derived from

its capability to recluster a large dataset into multiple LIC, which was more easy for the

LDA to be classify.

As stated in Table 6.3, the Cosine SOM+LDA model had a total of 888 local LDA

classifiers for each selected centroid on the SOM map. Figure 6.5 shows each of these

888 local LDA classifiers plotted in a 3-Dimensional scatter plot. Two of the plot axes

indicate the training dataset LIC count and its purity for a given LDA classifier. The third

	 170

axis indicates the accuracy in classifying LIC from the test dataset. Figure 6.6 represents

the same information in a 2-Dimensional representation for better visualization. The local

instance purity for each centroid cluster is given by equation (6.5).

Purity = 	
®©\ìD	™W´YìD	Z©åYq − ®©\ìD	¨©W≠É	Z©åYq

®©\ìD	ÆY≠qìY\É	Z©åYq	
 (6.5)

Figure 6.5: The scatter of each local SOM+LDA classifier based on the

model local training instance count, local instance purity, and

consequence test accuracy.

	 171

Figure 6.6: (Left) Scattering of local classifier based on their local

training instance count and subsequent test accuracy, while (Right) is the

scattering of local classifier based on the local instances purity and

subsequent test accuracy.

The dashed line in Figure 6.6 (Left) shows that when the number of local training

instances increased, the minimal test accuracy also increased. Thus, the accuracy of

classifying the Higgs instances (test dataset) has some correlation with the number of

training instances that were used to train the local LDA model.

On the other hand, Figure 6.6 (Right) shows that the test accuracy also had a

strong correlation with the purity of the LIC. The majority of the local classifiers had a

test accuracy of more than 0.73 (above the blue dashed line) when the training LIC purity

was greater than 0.5 (more signal) or lower than -0.5 (more noise). Other than that, the

local classifier with instance purity between -0.5 and 0.5 had a test score mostly below

0.73 (below the blue dashed line), similar to the accuracy obtained for normal LDA

without SOM.

From the above, it can be concluded that the test accuracy score increased as the

number of local training instances increased and/or the local training instances had high

absolute purity.

For any given centroid, the purity of a local instances cluster had no detectable

correlation with the local instances count, although a majority of the LIC with high purity

had low LIC number (less than 100). This condition is shown in Figure 6.7 where the 2-

	 172

dimnesional histogram shows the number of centroids with a given LIC purity and LIC

number (local training instance count) for different similarity functions.

Figure 6.7: The 2-Dimensional Histogram of Absolute Instance purity

versus Training Instance Count for different similarity functions. The

circled region portrays high-level of purity and instance count.

In this research, it was found that the similarity function used to train and map the

SOM model affected the number of centroids with high local instance purity (||Purity|| ³

0.8). This is shown by a cumulative histogram of the LIC purity for each similarity

function SOM model as shown in Figure 6.8. The figure indicates that the Euclidean

SOM model exhibited higher cumulative purity distribution over other similarity

functions; however, it still had a lower AUC score (Table 6.5) than the SOM model with

A
bs

(L
oc

al
 I

ns
ta

nc
es

 P
ur

ity
)

A
bs

(L
oc

al
 I

ns
ta

nc
es

 P
ur

ity
)

A
bs

(L
oc

al
 I

ns
ta

nc
es

 P
ur

ity
)

	 173

Cosine similarity. This is due to the fact the SMO-Cosine model had centroid with a high

number of instances and purity, as encircled in Figure 6.7.

Figure 6.8: (Left) The cumulative count for each local instance purity for

different SOM similarity functions, (Right) the zoomed plot for region in

the dashed line box.

6.2.6 SOM+LDA Classification Conclusion

The following conclusion can be made regarding the application of SOM+LDA for

Higgs instance classification;

1. SOM improved the LDA classification results by creating small numbers of

local clusters with high instance purity, in which the LDA essentially did not

play any classification role since a majority (> 80%) of the instances already

Absolute Cell Instance Purity Absolute Cell Instance Purity

C
um

ul
at

iv
e

C
ou

nt

C
um

ul
at

iv
e

C
ou

nt

	 174

belonged to a certain class (noise or signal class). The clusters with ||Purity|| ³

0.50 had 0.809 accuracy, 17.2% higher than LDA alone.

2. In this research, it was found that the number of LIC with a high-level of purity

depends on which similarity function was used to train and map the SOM

model.

6.3 Cluster Purity Analysis

It had been proven that one of the factors that gave the SOM+LDA model a higher

classification accuracy than the LDA model is due to the SOM ability to produce LIC

with high purity for noise or signal instances. The LIC purity, in turn, is determined by

the centroid weight-vectors that were used in the mapping process. This situation is shown

in Figure 6.9, which includes the distribution of several features (a, b, c) as well as the

resulting LIC purity (d) across the same Euclidean SOM map.

	 175

Figure 6.9: The distribution of Jet-3-Pt (a), Lepton-Pt (b), and jlv mass

(c) across the Euclidean SOM map with the purity shown (d).

6.3.1 Correlation Between Weight-vector and Purity

 A simple study was done to examine if a linear correlation exists between the

weight-vector of an LIC and the purity it has. Table 6.7 show the correlation between the

weight-vectors and the purity for a given feature for two SOM models. As shown in Table

6.7, no feature had a positive correlation with the LIC purity, on the other hand, the

Lepton pt, mwbb, MET, mwwbb, and mbb feature had a considerably more negative

correlation with the LIC purity.

Jet-3-Pt (a) Lepton-Pt (b)

jlv mass (c) Purity (d)

	 176

Table 6.7: The correlation between the weight-vector value for a particular feature and

the LIC purity for Euclidean and Cosine SOM.

Feature Euclidean Cosine
jet4 pt 0.102 0.053
jet1 pt 0.097 0.149
jet2 pt 0.072 0.057
jet3 pt 0.053 0.031
mjj 0.053 0.009
mjjj 0.048 0.023
mlv 0.009 0.011
jet4b-tag -0.012 0.011
jet3b-tag -0.038 -0.061
jet1b-tag -0.070 -0.041
jet2b-tag -0.092 -0.068
mjlv -0.141 -0.075
Lepton pt -0.213 -0.224
m wbb -0.233 -0.280
MET -0.270 -0.218
mwwbb -0.331 -0.367
mbb -0.416 -0.396

 Figure 6.10 and 6.11 show a 2-dimensional histogram of the LIC purity versus

the value of a particular feature for Euclidean and Cosine SOM models, respectively.

Only the three features with the lowest correlation is shown in Figure 6.10 and Figure

6.11 as comparison to other randomly pick feature that has more positive correlations.

Figure 6.10 shows that the LIC purity declined as the magnitude of mbb, mwwbb,

and MET increased. Whereas the jet 4 pt, mjj, and mlv did not have any correlation with

the LIC purity. The figure also shows that LIC with high number of purity had a tendency

to have the magnitude (of mbb mass, mwwbb, and MET) in a specific interval; around ~1

for mbb and mwwbb, between 0.5 -1.5 for MET. The mlv mass plot is narrow because

majority of the instance in the training dataset has value of ~1.

	 177

Figure 6.10: The 2-dimensional histogram of LIC purity versus with

indicated feature for the Euclidean SOM model. Where shown, the dotted

lines indicate the correlation between purity and the value of the variable.

 The same trend is visible in the Cosine SOM model, as shown in Figure 6.11,

with the addition that high purity LICs tended to have mwbb also at around 1.

m_bb m_wwbb

MET

Euclidean SOM model

	 178

Figure 6.11: The 2-Dimensional histogram of centroid purity versus

certain feature magnitude for the Cosine SOM model

From this result, it can be concluded that if the signal were to be separate from the

background using a simple form of "cuts". The separation should be done by using the

lepton pT, mwbb, MET, mwwbb and mbb as the parameters and the threshold values be

around 1.

m_bb m_wwbb

m_wbb

Cosine SOM model

	 179

6.4 SOM +LDA/QDA Model Conclusion

In many other investigation, ANN, BDT, RF, and SVM scored higher than the

LDA in various classification metrics (accuracy, sensitivity, AUC, etc.). However, the

result from an LDA model is easier to interpret than other ML algorithms. The research

carried out in this chapter proves that creating a stacking classification model with an

SOM model such as the SOM+LDA improve the result. The improvement was shown to

be due the capability of SOM to create local instance clusters (LIC) with high purity.

However, the stacked model of SOM+QDA did not produce any worthwhile

improvement in comparison to the QDA model alone. The correlations between the

centroid LIC purity and the centroid weight-vector feature revealed that Lepton Pt, mwbb,

MET, mwwbb, and mbb provide the best signal-noise discriminations.

	 180

CHAPTER 7

SOM FOR CLUSTERING

“Ignorant readers are apt to judge a writer by his reputation. For my

part, I read only to please myself. I like nothing but what makes for my

purpose.”

(Voltaire, 1759, p.84)

7.1 Chapter Introduction

 In this chapter, the application of SOM in finding a hidden pattern in a particle

physics dataset is demonstrated. The first half of the chapter depicts the clustering of the

SUSY dataset instance using a stacked model named SOM+DPGMM. The SUSY dataset

had been chosen since the difference between signal and noise in this dataset is more

distinct than in the Higgs dataset. The signal and noise instances in the Higgs dataset too

similar, requiring a large size SOM map to fully extract the hidden pattern.

The second half of this chapter demonstrates the usage of SOM on a real CMS

result dataset, the dimuon dataset. The SOM was used to uncover the hiddent resonances

signal that were hidden in the invariant-mass spectrum by the Drell-Yang process.

The details of the development pertaining to the application used to create the

SOM model is given in Chapter 4, while the explanation regarding the hyperparameter

configuration used to create the model is given in Chapter 5. The main hardware used to

generate all the ML models in this chapter was done on the UM sifir cluster, previously

	 181

discussed in Chapter 3. The physics behind the SUSY and the Dimuon datasets is

provided in Chapter 2.

7.2 SOM+DPGMM Model

The SUSY dataset was first used to create the required SOM model. The model

has a map size of 30 ×	30 centroid, thus producing 900 local instance cluster (LIC).

Analyzing each of the 900 LIC one by one would be inefficient.

Therefore, the DPGMM algorithm was used to cluster the trained SOM centroids

based solely on their weight-vector and then forming several classes of centroid. By doing

this, the DPGMM also indirectly clustered the instances that were mapped to a given

centroid. For example, instances Xa –Xc and Xd – Xf in Figure 7.1 were mapped to

centroids 1 and 2 respectively, while the DPGMM algorithm clustered both centroids 1

and 2 in the same centroid class. Hence, instances Xa –Xc and Xd – Xf belonged to the

same instance class. In this thesis, the class generated by the DPGMM is termed as

‘DPGMM-class’, thus instances Xa –Xc and Xd – Xf belonged to the same DPGMM-

class.

Therefore, in this method, the instances were clustered by the SOM model

centroid, while the DPGMM clustered the centroid of the SOM model. The DPGMM

implementation was taken from the Scikit-learn python module, described by Pedregosa

et al., (2012).

	 182

Figure 7.1: DPGMM cluster for both centroids 1 and 2 in the same cluster,

thus all inherited instances (Xa –Xc and Xd – Xf) belonged to the same

instance cluster.

7.3 SOM Algorithm Sanity Check

Before using the developed SOM algorithm (described in Chapter 4) on the SUSY

dataset, the algorithm had to be validated to ensure it possessed the capability to cluster

simpler datasets. The ‘sanity-check’ was done by using a dataset that contained 900

instances of points originated from 3 different ‘blobs’ distributed in a 3-Dimensional

Euclidean space, as portrayed in Figure 7.2.

In the original dataset, each instance was labelled according to which blob-cluster

it belonged to. However, the label information was dropped from the dataset when it was

used to train the SOM model, thus the SOM algorithm did not have any information

regarding instance labels (unsupervised learning). The hyperparameters that were used

for the SOM model training are given in Table 7.1.

Instances
(a)

Xa= (X1, X2, X3, … Xn,)
Xb= (X1, X2, X3, … Xn,)
Xc= (X1, X2, X3, … Xn,)

(b)
Xd= (X1, X2, X3, … Xn,)
Xe= (X1, X2, X3, … Xn,)
Xf= (X1, X2, X3, … Xn,)

(c)
Xg= (X1, X2, X3, … Xn,)
Xh= (X1, X2, X3, … Xn,)

1

2

3

SOM Map

DPGMM

	 183

Once the training phase had been completed, the dataset instances were mapped

back to the SOM map and they were re-labelled with their original label. The distribution

of instances and their blob labels on the SOM feature-map is shown in Figure 7.3;

Table 7.1: The hyperparameter for the sanity check training

Hyperparameter Value or type

Size 30 X 30 centroid

Shape Square

Learning-Rate function Derivative hyperbolic tan

Similarity function Euclidean distance

Training iteration 2700

 Figure 7.3 shows that the instances that belonged to the same blob tended to form

clusters on the same area on the SOM feature-map albeit class 0 and 2 are defragmented.

The results obtained here proved that the developed code was capable of forming correct

clusters even without knowing the original instance label.

	 184

Figure 7.2: Scattering of points for the sanity-check dataset, which

contained 900 instances of point.

Figure 7.3: The distribution of instances on the SOM feature-map, which

are colour coded dependent on their original blob cluster in Figure 7.2

x-position

y-
po
si
tio
n

x
z

y

	 185

7.4 Supersymmetry Dataset Clustering

The objective of this study was to test the capability of the SOM+DPGMM model

to cluster the supersymmetry instance into clusters that consisted purely of noise or signal

instances.

The SUSY dataset was clustered by using the SOM+DPGMM clustering model

previously explained in subchapter 7.2. The dataset contained 500,000 instances, with

signal-noise ratio of 0.5, however, the label of each instance in the dataset was removed

during SOM modelling, mapping, and DPGMM clustering. As for the SOM model, it

was trained by using the hyperparameters shown in Table 7.2. The reason for this

configuration was discussed previously in subchapter 5.3.5.

Once the SOM model had been trained, centroids were clustered by the DPGMM

algorithm, creating several DPGMM classes. The results from the DPGMM clustering

are given in the next subchapter.

Table 7.2: The hyperparameter for the SUSY SOM

Hyperparameter Value or type

Size 30 X 30 centroid

Shape Square

Learning-Rate function Hetero- Reverse Logistic Regression

Similarity function Various

Training iteration 15 000

	 186

7.4.1 Clustering Results

 The spectrum of magnitude for each centroid’s weight-vector in the SOM model

is shown in Figures 7.4 (a-c), for Euclidean, City-block, and Chebyshev similarity

functions. Meanwhile, Figure 7.4 (d) shows the distribution of angle between each

centroid weigh-vector and the mean weight-vector for the cosine SOM model.

Figure 7.4: The distribution of centroid weight-vector magnitudes for

Euclidean (a), city-block (b), and Chebyshev (c) SOM models, as well as

the angle distribution for the Cosine SOM model (d).

Each distribution in Figure 7.4 has a strong resemblance to the Gaussian mixture

distribution; thus, it had been logical to cluster each distribution by using the Dirichlet

Gaussian Mixture Model (DPGMM).

Using the DPGMM algorithm, the centroids in the SOM model were grouped into

several classes based on their weight-vector. Figure 7.5 shows the redistribution of the

(a) (b)

(c) (d)

	 187

centroid weigh-vector (for Euclidean, city-block, and Chebyshev models) and the angle

(for cosine) for each DPGMM-class, whereas Figure 7.6 shows the label of each centroid

on a given SOM map based on their DPGMM-class.

Figure 7.5: The distribution of centroid vector magnitudes (angle for

cosine SOM) based on the group created by the DPGMM algorithm.

Overall
0
1
2
3
4
5

Overall
0
1
2
3
4
5
6

	 188

Figure 7.6: Centroid labels based on their DPGMM cluster for different

SOM models

7.4.2 DPGMM class Purity Results

 As stated before, the objective of this research was to study the capability of the

SOM+DPGMM algorithm in developing a cluster of pure signal or noise instances. The

instance purity of each DPGMM-class, %w%Ø∞∞, was calculated based on equation (7.1),

as shown in Table 7.3. A DPGMM cluster is said to be pure of signal if its %w%Ø∞∞ = 1,

have an equal mix of signal and noise instances if the %w%Ø∞∞ = 0, and purely noise

instance if the %w%Ø∞∞ = −1 .

Overall
0
1
2
3
4
5

Overall
0
1
2
3
4
5
6

	 189

%≤≥¥îî =
(™W´YìD	ÆY≠qìY\É	Z©åYq − ¨©W≠É	ÆY≠qìY\É	Z©åYq)

à©qìD	ÆY≠qìY\É	Z©åYq
 (7.1)

Table 7.3: The purity of each class generated by the DPGMM algorithm for

various SOM models trained by using different similarity functions

Class Instance Count Purity Class Instance Count Purity
Euclidean City-block
0 105954 -0.065 0 2619 0.521
1 275361 -0.199 1 13714 0.994
2 15815 0.513 2 4798 0.980
3 68218 0.298 3 184371 -0.137
4 17257 0.995 4 57008 0.610
5 17395 0.928 5 185271 -0.290

Chebyshev 6 52219 0.469
0 15994 0.996 Cosine
1 202336 -0.133 0 92478 0.267
2 102403 -0.188 1 331237 -0.234
3 118942 0.193 2 41922 0.583
4 31118 -0.370 3 4514 -0.226
5 29207 0.648 4 29849 0.983

 It was apparent when analysing Table 7.3 that there is a relationship between the

DPGMM class purity and the class instance count, as Figure 7.7 shows that the purity of

class tend to decrease as the class instance count increased. This relationship is similar

the results in classifying Higgs instances by using SOM+LDA.

	 190

Figure 7.7: The purity of the class versus the number of instances

 Before discussing the results obtain here, a more detailed discussion at instance

mapping by the SOM is given.

7.4.3 SOM Model Instance Mapping Results

 The two important parameters that should be reviewed after all instances have

been mapped to the SOM model are the LIC count distribution and the LIC purity

distribution across the SOM map. See subchapter 4.3.3 for an explanation of LIC and

SOM mapping methods. Table 7.4 gives a parametric review regarding the LIC count for

each centroid on the SOM map, while Figure 7.8 shows the LIC count distribution for

all centroids across the SOM map.

	 191

Table 7.4: The mean, the standard deviation (STD), the min, and the max of centroid

LIC count for SOM trained with various similarity functions.

Similarity
Function

Centroid LIC count
Mean STD Min Max

Chebyshev 555.556 258.423 67 1918
Euclidean 555.556 266.395 50 1848
Cosine 555.556 327.529 55 2038
City-block 555.556 356.330 12 2386

Figure 7.8: The distribution of centroid LIC count across the SOM

feature-map.

The centroid LIC purity was measured by using equation (6.5). Figure 7.9

illustrates the LIC purity distribution across the SOM map, and a parametric review is

given in Table 7.5. }≥, and }≥ refer to the mean purity of all centroids and the absolute

	 192

purity of all centroids for a given SOM model, respectively. Table 7.5 also shows the

percentage of centroid for a given SOM model with a purity value, P, exceeding 0.0, 0.5,

and 0.8. Colour is used in table to indicate which box has the highest or lowest value for

a given purity percentage. In addition, Figures 7.10 – 7.13 are 2-dimensional histograms

of centroid LIC purity versus centroid LIC count. The colour in the histogram show the

number of centroid that has a given LIC count and LIC purity.

Table 7.5: The mean, }≥ , and the absolute mean, }≥ , for centroid purity for each

SOM model, as well as the percentage of centroids with purity exceeding 0.0, 0.5, and

0.8

Similarity Function }≥ }≥
% centroid

% > 0.0 % > 0.5 % > 0.8
Euclidean 0.139 0.524 0.523 0.342 0.233
City-block 0.256 0.565 0.607 0.441 0.276
Chebyshev 0.062 0.463 0.451 0.264 0.166
Cosine 0.195 0.525 0.572 0.381 0.231

	 193

Figure 7.9: The purity of each centroid on the SOM feature-map for

different SOM models.

	 194

Figure 7.10: Centroid LIC purity vs LIC count for the Euclidean SOM

Figure 7.11: Centroid LIC purity vs LIC count for the Cosine SOM

Centroid	LIC	Count

Ce
nt
ro
id
	L
IC
	P
ur
ity

Euclidean

Centroid	LIC	Count

Ce
nt
ro
id
	L
IC
	P
ur
ity

	 195

Figure 7.12: Centroid LIC purity vs LIC count for the City-block SOM

Figure 7.13: Centroid LIC purity vs LIC count for the Chebyshev SOM

Centroid	LIC	Count

Ce
nt
ro
id
	L
IC
	P
ur
ity

Centroid	LIC	Count

Ce
nt
ro
id
	L
IC
	P
ur
ity

	 196

7.4.4 SOM+DPGMM Clustering Discussion

The objective of this research was to study the capability of SOM+DPGMM

model to cluster the SUSY dataset into clusters of pure signal and noise. The clustering

was done in an unsupervised manner, in which the algorithm did not have any information

regarding the original label (signal/noise) of each instance and had to cluster instance

solely based on the value of the feature parameters.

The results portrayed in Table 7.3 indicate that each SOM+DPGMM model was

capable of producing a DPGMM class that contained purely signal instances, but failed

to generate any class purely of noise instances. The Euclidean model created the DPGMM

class (combination) with the highest signal instance, followed in order by the cosine, city-

block, and Chebyshev models. The results obtained here further substantiate the claim

made by Kohonen (2013) that the Euclidean distance function is the most suitable

similarity function for the SOM model.

The DPGMM algorithm created classes based on the centroid weight-vector, but

information regarding the content of the centroid ILC was not given. Thus, any DPGMM

class purity is determined by the ILC purity of its affiliated centroid. Hence, the purity of

any DPGMM class is determined by the outcome of the SOM modelling, and not the

DPGMM algorithm. Figures 7.10 - 7.13 show no centroid created by any of the SOM

models had high noise purity (LIC purity < -0.8). Thus, it would be unlikely for the

DPGMM algorithm to produce a class that contains purely noise instances as verified

Table 7.3.

	 197

It is interesting to note that since Figures 7.10 - 7.13 displayed no centroid with

ILC purity < -0.8, signal instances had been spread throughout the SOM map, whereas

noise instances were focused in a particular region in the SOM map. This is verified in

Figure 7.14, where the noise instances tend to cluster at the middle area section of the

SOM map, while the signal instances were spread out across the SOM map. This indicates

that the noise instance feature values had less variance compared to the signal instances.

The noise instances are derived from a particle physics event with 4 final products

(DpD3µµ) and only two undetectable particles, whereas the signal instance derived from

an event that had six final products (DpD3µµ∂:∂:) and four undectable particles. Thus,

the signal instance had a higher number of final particles and hence a broader spectrum

(high variance) of missing energy compared to the noise instance. This explains why the

noise instance feature value exhibited less variance compared to the signal instances.

Figure 7.14: Comparison between the signal and the noise instance

distributions on the Euclidean SOM map.

Noise Instance Signal Instance

	 198

 The missing momentum and ∞∑	
ô (defined by equation 2.7) are the two important

features that differentiated the signal from noise in the SUSY dataset. The spectra of these

two features for the DPGMM class with purity, P > 0.95, for each SOM model is given

in Figures 7.15 and 7.16. In both figures, the Euclidean model had almost similar

distribution with the real signal distribution for both ∞∑
ô	and missing momentum features.

This shows that the Euclidean distance had been the most suitable similarity function in

creating a SUSY SOM.

Figure 7.15: The missing momentum spectrum for signal dominant

DPGMM-class

Missing Momentum Spectrum

	 199

Figure 7.16: The MTR spectrum for signal dominant DPGMM-classes

7.4.5 Significance

Several clustering algorithms have been employed in particle physics analysis,

including the kt and anti-kt jet clustering; however, these algorithms are particle physics

domain specific and cannot be used outside particle physics analysis. The result obtained

in Table 7.3 clearly show that the SOM can create a class of pure signal, in the case of

the city-block SOM model, a purity of 0.994 was recorded. This result is the most

important in the thesis as it demonstrates that a non-particle physics algorithm can be

used as a clustering tool in particle physics.

Another point that the author would like to point out is the usage of classification

algorithm versus clustering algorithm. Several examples of classification algorithm usage

have been given in Chapter 6, however, a classification algorithm is designed to only

classify instances to a predefined class or label. This means; a classification algorithm

	 200

would classify a novel data (or an abnormal data) into a predefined class, instead of

creating a new class as a clustering algorithm would. An algorithm that can automatically

generate a new class for abnormal data can avoid the mistake of accidentally removing

abnormal data that otherwise may lead to a significant scientific discovery.

7.5 Dimuon Clustering

 Several cases before this showed that centroids with low LIC number store more

valuable information than an LIC with high number. For example, in the SOM+LDA

classifier model, centroids with low LIC count were seen to have e a higher purity and

increased the overall ROC-AUC score. For the SOM+DPGMM case, Figure 7.17 shows

that centroids with LIC purity > 0.8 tend to have a LIC count of fewer than 500, while

LIC with lower purity (purity < 0.8) had a mean count of 616.849 and 615.893 for

Euclidean and Cosine SOM models, respectively. Both these examples seem to imply

that, for SOM model, valuable information or pattern tends to be stored inside centroids

with a low LIC count.

The previous two datasets (SUSY and Higgs datasets) that had been used were

simulated datasets. In the subsequent text, a dataset of real recorded particle events at the

CMS detector has been used to train the SOM model. The dataset is the dimuon dataset

which discussed in subchapter 2.2.2. The objective of the next subchapter is to study the

possibility of finding a hidden pattern (with physical meaning) among SOM centroids

with low LIC count.

	 201

Figure 7.17: The comparison of centroid LIC count between centroid

with LIC purity < 0.8 and > 0.8 for Cosine and Euclidean SOM models.

7.5.1 Dimuon SOM model

 The dimuon SOM model was trained by using the hyperparameter configuration

stated in Table 7.6. The momentum on x, y, and z-axes and the energy for both muons

was chosen as the features to be used to generate the SOM model. The invariant mass of

the dimuon was excluded in the training feature, thus, the SOM model that had been

developed did not have any direct information regarding the dimuon invariant mass.

Centroid LIC Count

C
en

tro
id

 C
ou

nt

	 202

Table 7.6: The hyperparameter for to train the SOM model on the dimuon dataset.

Hyperparameter Value or type

Size 100 X 100 centroid

Shape Square

Learning-Rate function Homo- derivative hyperbolic tan

Similarity function Cosine

Training iteration 10,000

Once the training had been done, the dataset was mapped back to the SOM model.

The log of LIC count for each centroid on the SOM map is given in Figure 7.18 centroids

with LIC count = 0 are given the value of -1.

Figure 7.18: The log LIC count distribution on the SOM map for the

dimuon dataset. Centroid with LIC count = 0, is given the value -1.

Log LIC Count Distribution

	 203

7.5.2 Dimuon Invariant Mass

Figure 7.19 show the mean of the invariant mass in log scale for each instance in

a centroid LIC, with centroid with LIC count = 0 given the value -1 in the spectrum.

Figure 7.20 show the distribution of the same parameter (mean of the log-invariant mass)

for each centroid across the dimuon SOM map.

Figure 7.19: The spectrum of the centroid LIC average log-invariant

dimuon mass, centroid with LIC = 0, was given the value -1.

ΥJ/"	 "(2S) Z

	 204

Figure 7.20: The average of log-invariant mass of dimuon for each

centroid on the SOM map.

7.5.3 Low Count LIC Centroid

 Figure 7.21 shows the 2-dimensional histogram of the log-LIC count versus the

log of the average invariant mass, (centroids with LIC count = 0 neglected) for all centroid

in the dimuon SOM model. In this figure, a pattern emerged among centroids with log

LIC count < 1.39 (LIC count < 4). In this region, there was a sudden increase in the

number of centroids (relatively more red to its adjacent bin) when the average of log-

invariant mass was equal to a given resonance mass.

Υ

J/"	
"(2S)

Z

	 205

Figure 7.21: 2D-Histogram of centroid log LIC count versus the centroid

log average invariant mass.

The invariant mass of all instances from LIC that has instance-count less than 4 is

shown in Figure 7.22. From this histogram, the peak from _/π and Υ(1s) can clearly

been seen above the background. Only the π 2™ . The higher number of centroids having

average log invariant mass at a resonance invariant mass is shown more clearly in Figure

7.22, where all LIC that had count < 4 had been plotted in a histogram the LIC average

log invariant mass. This figure clearly shows that several centroids peaked about its

neighbouring bin when the average invariant mass had been equal to a resonance mass.

Moreover, Figure 7.22 displays the three peaks for the three upsilon resonance, which

were missing in Figure 7.19. Only the resonance of π(2™) is not clearly visible in Figure

7.22.

ΥJ/"	"(2S) Z

	 206

Figure 7.22: The number of centroids for a given log average invariant

mass, for centroid in the SOM model with LIC count < 4

 The significance of Figure 7.22 is that it shows that the SOM was able to cluster

the large bulk of noise instances (produced by the Drell-Yang process) to only certain

centroids, which were subsequently discarded in the analysis for having high LIC count

(>= 4). Meanwhile, the centroid with low LIC, (< 4), count produced a pattern of invariant

mass distribution with a physical meaning. Another significant attribute of this figure is

that the resonance peaks had been more apparent in comparison to those illustrated in the

original invariant mass spectrum in Figure 2.6.

7.6 SOM Clustering Conclusion

The results of the study derived from this chapter demonstrate that the

SOM+DPGMM model could generate cluster(s) with high signal purity level for the

SUSY dataset in an unsupervised learning manner. It stands as an example that a non-

particle physics-domain specific clustering method can still be used for particle physics

	 207

study. It was also found that the SOM model with Euclidean similarity function offered

the best separation between signal and noise instances for the SUSY dataset.

On another hand, the results obtained from the dimuon SOM model showed that

the SOM algorithm could extract hidden pattern from an experimental dataset. In both

SOM models (SUSY and Dimuon SOM models), valuable information had been retrieved

from centroids with low LIC count. Moreover, the SOM output from both datasets

showed that noise displayed a tendency to cluster together, as well as to generate clusters

with a high number of instances.

	 208

CHAPTER 8

CONCLUSION

8.1 Conclusion

 The work carried out in this thesis examined holistically various computational

methods employed in the particle physics analysis. This began with the computational

practice of the Compact Muon Selenoid (CMS) Collaboration that operates a global

computational grid infrastructure. The CMS experiment uses various middleware to

manage users and resources available under the grid infrastructure, including PhEDEx,

DAS, WMAgent, and CRAB. The WMAgent and CRAB are the front ends for the

production and the analysis workflow respectively, with both the workflow submitted to

their computing jobs to the grid infrastructure through the glideinWMS global pool.

Other than providing means for users to submit their personal analyses to the grid,

CRAB also shields the end-users from the technical complexity of the CMS grid. CRAB

version 3 (CRAB3) was developed to replace as older version (CRAB2), and various

efforts by the author to these application developments. The contributions include the

improvement of CRAB3 error-reporting mechanism, validation of users’ read/write

permission, parallel remotecopy, and the CRAB3-Client API.

In addition, a significant development effort was also undertaken in establishing

a new HPC for University Malaya called sifir, acting as a CMS Tier-2 site. Effort were

made to make sifir a computing cluster-centric rather than grid-centric.

	 209

Another computational technique that is commonly employed in particle physics

analysis is Machine Learning (ML). This term covers various algorithms, including

Artificial Neural Network (ANN), Random Forest (RF), Support Vector Machine (SVM),

Self-Organizing Map (SOM), Linear/Quadratic Discrimination Analysis (L/QDA), and

K-Means. Since other implementations of SOM could not scale to the size and the

complexity of particle physics datasets, a new SOM implementation was developed from

scratch for this research. This implementation permitted various hyperparameters to be

configured in order to adapt to the size and the complexity of a given dataset.

The effect of different hyperparameter configurations on the overall SOM

centroid weight-vector has been studied; this included , training-iteration length, and

learning-rate function. It was found that the best hyperparameter configuration for the

SOM model designed to be applied to the Higgs data set was to have the logistic

regression learning-rate on a homogenous mode as and the training iteration set to 7,500.

Meanwhile, the SUSY SOM model was best configured to have hyperparameters that

included the reverse logistic regression in heterogeneous mode as the learning-rate

function and a training iteration of 15,000 steps.

Using the given hyperparameter configurations for the Higgs SOM model, two

new classification models were proposed; the SOM+LDA and the SOM+QDA models.

In the study conducted, the SOM+LDA displayed better classification capability on the

Higgs dataset, in comparison to the LDA and the QDA models alone. The model also

exhibited greater precision than SVM, but it did not perform better than the RF in any

classification scoring parameter. The SOM model was found to enhance the classification

performance by creating a sub-cluster that was purely or almost purely of signal or noise

	 210

instance. The SOM+QDA also failed to give a better performance compared to any other

classification model in any scoring parameter.

This research also introduced the SOM+DPGMM model, which was used to

cluster the instances from the SUSY dataset. In this model, the SUSY instance was first

clustered by the SOM centroids to produce multiple LIC. After that, the DPGMM model

clustered the SOM centroids, which indirectly clustered the LICs, to form different

classes of instances. Through this method, one or two class(es) with signal purity

exceeding 92% was successfully produced. The ability of the SOM+DPGMM model in

producing class(es) with highly pure signal instance demonstrated that a non-physics-

domain clustering algorithm indeed possessed the potential to cluster particle physics

events.

The final research topic that was conducted was to study the SOM algorithm

clustering capability on the dimuon dataset. It was found that by removing instances that

were mapped to the centroid with high LIC count, sufficient noise was removed to reveal

several particle resonance peaks in the invariant mass spectrum. Hence, this study

establishes that the SOM model had the potential to uncover hidden patterns in a particle

physics dataset.

8.2 Suggestions

One of the original objectives of this research was to study several methods that

could be used as a novel detection technique in particle physics analysis. Such novel

detection model presented an immense potential to provide an analysis that are physics-

model-independent. However, due to lack of maturity in the novel detection algorithm,

	 211

as well as limited computing resource, such objective could not be achieved. The obvious

choice when conducting the novel analysis is to use either the Mahalanobis distance

statistics, nevertheless, the author suspected that coupling it with the SOM sub-clustering

mechanism, a more powerful novel detection can be established.

The Mahalanobis distance is also another form of the similarity function.

However, the function was not implemented in the development of the SOM model as

the function is prone to singular matrix error in constructing the covariance matrix.

Another function that can be exploited as a similarity function is the Kullback-Leibler

divergence, however, this function is not a pair-wise function. Thus, further research has

to be carried out to identify the type of modification that has to be done on the equation

for it to be appropriate in the SOM modelling context.

Furthermore, in this research, inadequate study was made on the appropriate

technique to leverage the GIC generated by the SOM map. In the past studies, the U-

matrix had been employed to construct the boundary between the GIC, whereas in this

research, the DPGMM algorithm was applied. Obviously, various methods are available

to construct the GIC boundary, such as the Density-Based Spatial Clustering of

Application with Noise (DBSCAN), as well as several hierarchical clustering algorithms.

Thus, a closer look on this matter should be given consideration.

	 212

REFERENCE

Acat, P., & Heikkinen, A. (2007). Separation of Higgs boson signal from Drell-Yan
background with self-organizing maps.

Adelman, J., Alderweireldt, S., Artieda, J., Bagliesi, G., Ballesteros, D., Bansal, S., …

Zvada, M. (2014). CMS computing operations during run 1. Journal of Physics:
Conference Series, 513(3), 32040. http://doi.org/10.1088/1742-6596/513/3/032040

ALEPH Collaboration. (1990). ALEPH: A detector for electron-positron annihilations

at LEP. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 294(1–2), 121–
178. http://doi.org/10.1016/0168-9002(90)91831-U

Alwall, J., Herquet, M., Maltoni, F., Mattelaer, O., & Stelzer, T. (2011). MadGraph 5:

going beyond. Journal of High Energy Physics, 2011(6), 128.
http://doi.org/10.1007/JHEP06(2011)128

Amerijckx, C., Verleysen, M., Thissen, P., & Legat, J.-D. (1998). Image compression

by self-organized Kohonen map. IEEE Transactions on Neural Networks, 9(3),
503–507. http://doi.org/10.1109/72.668891

Andreeva, J., Belov, S., Berejnoj, A., Cirstoiu, C., Chen, Y., Chen, T., … Urbah, E.
(2008). Dashboard for the LHC experiments. Journal of Physics: Conference
Series, 119(6), 62008. http://doi.org/10.1088/1742-6596/119/6/062008

ATLAS. (2012). Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC. Physics Letters, Section B:
Nuclear, Elementary Particle and High-Energy Physics, 716(1), 1–29.
http://doi.org/10.1016/j.physletb.2012.08.020

ATLAS Collaboration. (2012). Searches for supersymmetry with the ATLAS detector

using final states with two leptons and missing transverse momentum in sqrt(s)=7
TeV proton–proton collisions. Physics Letters B, 709(3), 137–157.
http://doi.org/10.1016/j.physletb.2012.01.076

ATLAS Collaboration. (2013). Search for a multi-Higgs-boson cascade in WWbb

events with the ATLAS detector in pp collisions at sqrt(s) = 8 TeV. Physical
Review D, 89, 52005. http://doi.org/10.1103/PhysRevD.89.032002

ATLAS Collaboration. (2014). Search for direct production of charginos, neutralinos

and sleptons in final states with two leptons and missing transverse momentum in

	 213

pp collisions at sqrt(s) = 8 TeV with the ATLAS detector. Journal of High Energy
Physics, 2014(5), 71. http://doi.org/10.1007/JHEP05(2014)071

ATLAS Collabration. (2014a). A neural network clustering algorithm for the ATLAS

silicon pixel detector. Journal of Instrumentation, 9(9), P09009–P09009.
http://doi.org/10.1088/1748-0221/9/09/P09009

ATLAS Collabration. (2014b). Search for the Standard Model Higgs boson decay to uu

with the Atlas detector. Physics Letters B, 738, 68–86.
http://doi.org/10.1016/j.physletb.2014.09.008

BaBar Collaboration. (2002). The BABAR detector. Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 479(1), 1–116. http://doi.org/10.1016/S0168-
9002(01)02012-5

Backer, E., & Jain, A. (1981). A Clustering Performance Measure Based on Fuzzy Set

Decomposition. Pattern Analysis and Machine Intelligence, (1), 66–75. Retrieved
from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4767051

Badala, A., Blanco, F., La Rocca, P., Pappalardo, G. S., Pulvirenti, A., & Riggi, F.

(2008). Identification of the K*± resonance decay by topological cuts and
multivariate discrimination methods. The European Physical Journal C, 56(1), 17–
26. http://doi.org/10.1140/epjc/s10052-008-0657-8

Bakhet, N., Khlopov, M. Y., & Hussein, T. (2015). Neural Networks Search for

Charged Higgs Boson of Two Doublet Higgs Model at the Hadrons Colliders.
Retrieved from http://arxiv.org/abs/1507.06547

Balcas, J., Belforte, S., Bockelman, B., Colling, D., Gutsche, O., Hufnagel, D., …

Wissing, C. (2015). Using the glideinWMS System as a Common Resource
Provisioning Layer in CMS. Journal of Physics: Conference Series, 664(6), 62031.
http://doi.org/10.1088/1742-6596/664/6/062031

Baldi, P., Sadowski, P., & Whiteson, D. (2014). Searching for exotic particles in high-

energy physics with deep learning. Nature Communications, 5, 4308.
http://doi.org/10.1038/ncomms5308

Belforte, S., Gutsche, O., Letts, J., Majewski, K., McCrea, A., & Sfiligoi, I. (2014).

Evolution of the pilot infrastructure of CMS: towards a single glideinWMS pool.
Journal of Physics: Conference Series, 513(3), 32041. http://doi.org/10.1088/1742-

	 214

6596/513/3/032041

Bellman, R. E. (1961). Adaptive Control Processes: A Guided Tour (Vol. 4). Princeton

university press.

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering

algorithm. Computers & Geosciences, 10(2–3), 191–203.
http://doi.org/10.1016/0098-3004(84)90020-7

Bird, I., Bos, K., Brook, N., Duellmann, D., Eck, C., Fisk, I., … Wenaus, T. (2005).

“LHC computing Grid. Technical design report” CERN-LHCC-2005-024.
Retrieved from https://cdsweb.cern.ch/record/840543/files/lhcc-2005-024.pdf

Bjorken, J. D., & Paschos, E. A. (1969). Inelastic Electron-Proton and γ -Proton

Scattering and the Structure of the Nucleon. Physical Review, 185(5), 1975–1982.
http://doi.org/10.1103/PhysRev.185.1975

Bloom, E. D., Coward, D. H., DeStaebler, H., Drees, J., Miller, G., Mo, L. W., …

Kendall, H. W. (1969). High-Energy Inelastic e − p Scattering at 6° and 10°.
Physical Review Letters, 23(16), 930–934.
http://doi.org/10.1103/PhysRevLett.23.930

Bloom, K. (2015). CMS Software and Computing : Ready for Run 2 arXiv : 1509 .

08180v2 [physics . comp-ph] 30 Sep 2015.

Bloom, K., Boccali, T., Bockelman, B., Bradley, D., Dasu, S., Dost, J., … Zvada, M.

(2015). Any Data, Any Time, Anywhere: Global Data Access for Science.
Retrieved from http://arxiv.org/abs/1508.01443

Blumenfeld, B., Dykstra, D., Lueking, L., & Wicklund, E. (2008). CMS conditions data

access using FroNTier. Journal of Physics: Conference Series, 119(7), 72007.
http://doi.org/10.1088/1742-6596/119/7/072007

Boudoul, G., Franzoni, G., Norkus, A., Pol, A., Srimanobhas, P., & Vlimant, J.-R.

(2015). Monte Carlo Production Management at CMS. Journal of Physics:
Conference Series, 664(7), 72018. http://doi.org/10.1088/1742-6596/664/7/072018

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123–140.

http://doi.org/10.1023/A:1018054314350

Breiman, L. (2001). Random Forest. Machine Learning, 45(1), 5–32.

	 215

http://doi.org/10.1023/A:1010933404324

Buckley, M. R., Lykken, J. D., Rogan, C., & Spiropulu, M. (2014). Super-razor and

searches for sleptons and charginos at the LHC. Physical Review D, 89(5), 55020.
http://doi.org/10.1103/PhysRevD.89.055020

Buncic, P., Sanchez, C. A., Blomer, J., Franco, L., Harutyunian, A., Mato, P., & Yao,
Y. (2010). CernVM – a virtual software appliance for LHC applications. Journal of
Physics: Conference Series, 219(4), 42003. http://doi.org/10.1088/1742-
6596/219/4/042003

Cahn, R. N., & Goldhaber, G. (2001). The Experimental Foundations of Particle

Physics. Cambridge: Cambridge University Press.
http://doi.org/10.1017/CBO9780511609923

Cha, S. (2007). Comprehensive Survey on Distance / Similarity Measures between

Probability Density Functions. International Journal of Mathematical Models and
Methods in Applied Sciences, 1(4), 300–307. http://doi.org/10.1007/s00167-009-
0884-z

Chacko, Z., Luty, M. A., Nelson, A. E., & Pontón, E. (2000). Gaugino mediated

supersymmetry breaking. Journal of High Energy Physics, 2000(1), 003–003.
http://doi.org/10.1088/1126-6708/2000/01/003

Cinquilli, M., Spiga, D., Grandi, C., Hernàndez, J. M., Konstantinov, P., Mascheroni,

M., … Vaandering, E. (2012). CRAB3: Establishing a new generation of services
for distributed analysis at CMS. Journal of Physics: Conference Series, 396(3),
32026. http://doi.org/10.1088/1742-6596/396/3/032026

CMS Collaboration. (n.d.). The CMS muon project, technical design report, CERN-

LHCC-97-032. Retrieved from http://cdsweb.cern.ch/record/343814

CMS Collaboration. (2008). The CMS experiment at the CERN LHC. Jinst, 8004.

http://doi.org/10.1088/1748-0221/3/08/S08004

CMS Collaboration. (2010a). Measurement of the Inclusive Upsilon production cross

section in pp collisions at sqrt(s)=7 TeV.
http://doi.org/10.1103/PhysRevD.83.112004

CMS Collaboration. (2010b). Performance of the CMS hadron calorimeter with cosmic

ray muons and LHC beam data. Journal of Instrumentation, 5(3), T03012–T03012.
http://doi.org/10.1088/1748-0221/5/03/T03012

	 216

CMS Collaboration. (2011). J/psi and psi(2S) production in pp collisions at sqrt(s) = 7

TeV, 12. http://doi.org/10.1007/JHEP02(2012)011

CMS Collaboration. (2012a). Observation of a new boson at a mass of 125 GeV with

the CMS experiment at the LHC. Physics Letters, Section B: Nuclear, Elementary
Particle and High-Energy Physics, 716(1), 30–61.
http://doi.org/10.1016/j.physletb.2012.08.021

CMS Collaboration. (2012b). Performance of CMS muon reconstruction in pp collision

events at √s = 7 TeV. Journal of Instrumentation, 7(10), P10002–P10002.
http://doi.org/10.1088/1748-0221/7/10/P10002

CMS Collaboration. (2014). Searches for electroweak production of charginos,

neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp
collisions at 8 TeV. The European Physical Journal C.
http://doi.org/10.1140/epjc/s10052-014-3036-7

CMS Collaboration. (2015). Search for a standard model-like Higgs boson in the uu and

ee decay channel at LHC. Physics Letters B, 744, 184–207.
http://doi.org/10.1016/j.physletb.2015.03.048

CMS Collaboration. (2016). Search for neutral MSSM Higgs bosons decaying to µ+µ−

in pp collisions at. Physics Letters B, 752(1), 221–246.
http://doi.org/10.1016/j.physletb.2015.11.042

CMS Collaborations. (2012). Search for a light pseudoscalar Higgs boson in the dimuon

decay channel in pp collisions at radicals = 7 TeV. Phys Rev Lett, 109(12), 121801.
http://doi.org/10.1103/PhysRevLett.109.121801

CMS Collaborations. (2014). Searches for heavy Higgs bosons in two-Higgs-doublet

models and for t → c h decay using multilepton and diphoton final states in p p
collisions at 8 TeV. Physical Review D, 90(11), 112013.
http://doi.org/10.1103/PhysRevD.90.112013

Craig, N. (2013). The State of Supersymmetry after Run I of the LHC, 72. Retrieved

from http://arxiv.org/abs/1309.0528

Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines

and Other Kernel-based Learning Methods. Cambridge: Cambridge University
Press. http://doi.org/10.1017/CBO9780511801389

217

Cuadros-Vargas, E., Romero, R., & Obermayer, K. (2003). Speeding up Algorithms of
the SOM Family for Large and High Dimensional Databases. Proceedings WSOM,
(i), 167–172. Retrieved from http://www.ni.tu-
berlin.de/fileadmin/fg215/articles/cuad_03_wsom.pdf

D0 Collaboration. (2009). Evidence of W W and W Z Production with lepton +
jets</mte. Physical Review Letters, 102(16), 161801.
http://doi.org/10.1103/PhysRevLett.102.161801

D0 Collaboration. (2011). Search for the Standard Model Higgs Boson in the H →
WW → l ν q ′ q ¯ Decay C. Physical Review Letters, 106(17), 171802.
http://doi.org/10.1103/PhysRevLett.106.171802

D0 Collaboration. (2012a). Measurements of W W and W Z Production in W
+ jets Final States in <m. Physical Review Letters, 108(18), 181803.
http://doi.org/10.1103/PhysRevLett.108.181803

D0 Collaboration. (2012b). Search for the Standard Model Higgs Boson in Z H →
ℓ + ℓ − b b ¯ Product. Physical Review Letters, 109(12), 121803.
http://doi.org/10.1103/PhysRevLett.109.121803

D0 Collaboration. (2014). Observation and studies of double J = ψ production at the
Tevatron, 111101, 1–9.

de Alwis, S. P. (2008). Anomaly mediated supersymmetry breaking. Physical Review
D, 77(10), 105020. http://doi.org/10.1103/PhysRevD.77.105020

Collaboration. (1991). The DELPHI detector at LEP. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 303(2), 233–276. http://doi.org/10.1016/0168-
9002(91)90793-P

Dittenbach, M., Merkl, D., & Rauber, a. (2000). The growing hierarchical self-
organizing map. Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks. IJCNN 2000. Neural Computing: New
Challenges and Perspectives for the New Millennium, 6(FEBRUARY 2000).
http://doi.org/10.1109/IJCNN.2000.859366

, K.-L., & Swamy, M. N. S. (2014). Neural Networks and Statistical Learning. London:
Springer London. http://doi.org/10.1007/978-1-4471-5571-3

	 218

Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters. Journal of Cybernetics.
http://doi.org/10.1080/01969727308546046

Ellert, M., Grønager, M., Konstantinov, A., Kónya, B., Lindemann, J., Livenson, I., …

Wäänänen, A. (2007). Advanced Resource Connector middleware for lightweight
computational Grids. Future Generation Computer Systems, 23(2), 219–240.
http://doi.org/10.1016/j.future.2006.05.008

Evans, D., Fisk, I., Holzman, B., Melo, A., Metson, S., Pordes, R., … Tiradani, A.

(2011). Using Amazon’s Elastic Compute Cloud to dynamically scale CMS
computational resources. Journal of Physics: Conference Series, 331(6), 62031.
http://doi.org/10.1088/1742-6596/331/6/062031

Evans, J., Kilminster, B., Luty, M., & Whiteson, D. (2012). Searching For Resonances

inside Top-like Events. http://doi.org/10.1103/PhysRevD.85.011104

Fahad, a, Alshatri, N., Tari, Z., Alamri, a, Khalil, I., Zomaya, a, … Bouras, a. (2014).

A Survey of Clustering Algorithms for Big Data: Taxonomy & Empirical
Analysis. IEEE Transactions on Emerging Topics in Computing, 2(3), 1–1.
http://doi.org/10.1109/TETC.2014.2330519

Fajardo, E., Gutsche, O., Foulkes, S., Linacre, J., Spinoso, V., Lahiff, A., … Mohapatra,

A. (2012). A new era for central processing and production in CMS. Journal of
Physics: Conference Series, 396(4), 42018. http://doi.org/10.1088/1742-
6596/396/4/042018

Fajardo, E. M., Dost, J. M., Holzman, B., Tannenbaum, T., Letts, J., Tiradani, A., …

Mason, D. (2015). How much higher can HTCondor fly? Journal of Physics:
Conference Series, 664(6), 62014. http://doi.org/10.1088/1742-6596/664/6/062014

Falkowski, A., Lee, H. M., & Lüdeling, C. (2005). Gravity mediated supersymmetry

breaking in six dimensions. Journal of High Energy Physics, 2005(10), 090–090.
http://doi.org/10.1088/1126-6708/2005/10/090

Ferreira Costa, J. A., & de Andrade Netto, M. L. (2001). Clustering of complex shaped

data sets via Kohonen maps and mathematical morphology. In B. V. Dasarathy
(Ed.), Data Mining and Knowledge Discovery: Theory, Tools, and Technology III
(pp. 16–27). http://doi.org/10.1117/12.421088

Gan, G., Ma, C., & Wu, J. (2007). Data Clustering: Theory, Algorithms, and

Applications. ASASIAM Series on Statistics and Applied Probability (Vol. 20).

	 219

http://doi.org/10.1111/j.1751-5823.2007.00039_2.x

GFAL2 utility tools. (n.d.). Retrieved January 19, 2016, from

https://dmc.web.cern.ch/projects/gfal2-utils

Giffels, M., Guo, Y., Kuznetsov, V., Magini, N., & Wildish, T. (2014). The CMS Data

Management System. Journal of Physics: Conference Series, 513(4), 42052.
http://doi.org/10.1088/1742-6596/513/4/042052

Giudice, G. F., & Rattazzi, R. (1999). Theories with gauge-mediated supersymmetry

breaking. Physics Reports, 322(6), 419–499. http://doi.org/10.1016/S0370-
1573(99)00042-3

Görür, D., & Edward Rasmussen, C. (2010). Dirichlet Process Gaussian Mixture

Models: Choice of the Base Distribution. Journal of Computer Science and
Technology, 25(4), 653–664. http://doi.org/10.1007/s11390-010-9355-8

Griffiths, D. (1987). Introduction to Elementary Particles. (D. Griffiths, Ed.).

Weinheim, Germany: Wiley-VCH Verlag GmbH.
http://doi.org/10.1002/9783527618460

Grira, N., Crucianu, M., & Boujemaa, N. (2004). Unsupervised and Semi-supervised

Clustering: A Brief Survey. A Review of Machine Learning Techniques for
Processing Multimedia Content, Report of the MUSCLE European Network of
Excellence (6th Framework Programme), 1–12. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.4074

Gross, K. (2012). LCG Utilities. Retrieved January 19, 2016, from

https://twiki.opensciencegrid.org/bin/view/Documentation/Release3/LcgUtilities

Gupta, L., Upadhye, A. M., Denby, B., Amendolia, S. R., & Grieco, G. (1992). Neural

network trigger algorithms for heavy quark event selection in a fixed target high
energy physics experiment. Pattern Recognition, 25(4), 413–421.
http://doi.org/10.1016/0031-3203(92)90089-2

H.E.S.S Collaborations. (2009). Probing the ATIC peak in the cosmic-ray electron

spectrum with H.E.S.S. Astronomy and Astrophysics, 508(2), 561–564.
http://doi.org/10.1051/0004-6361/200913323

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning.

New York, NY: Springer New York. http://doi.org/10.1007/978-0-387-84858-7

	 220

Heikkinen, A., Kaitaniemi, P., Karimäki, V., Kortelainen, M. J., Lampén, T., Lehti, S.,
… Wendland, L. (2010). Ideal τ tagging with the multivariate data-analysis toolkit
TMVA. Journal of Physics: Conference Series, 219(3), 32010.
http://doi.org/10.1088/1742-6596/219/3/032010

Ho, T. K., & Bernadó-Mansilla, E. (2006). Data Complexity in Pattern Recognition. In

M. Basu & T. K. Ho (Eds.), . London: Springer London.
http://doi.org/10.1007/978-1-84628-172-3

Hong, Y., Singh, N., Kwitt, R., & Niethammer, M. (2015). Group Testing for

Longitudinal Data (pp. 139–151). http://doi.org/10.1007/978-3-319-19992-4_11

Honkanen, H., Liuti, S., Carnahan, J., Loitiere, Y., & Reynolds, P. R. (2009). New

avenue to the parton distribution functions: Self-organizing maps. Physical Review
D - Particles, Fields, Gravitation and Cosmology, 79(3).
http://doi.org/10.1103/PhysRevD.79.034022

Hufnagel, D. (2015). The CMS TierO goes Cloud and Grid for LHC Run 2. Journal of

Physics: Conference Series, 664(3), 32014. http://doi.org/10.1088/1742-
6596/664/3/032014

Ingo, S., & Andreas, C. (2008). Support Vector Machines. New York, NY: Springer

New York. http://doi.org/10.1007/978-0-387-77242-4

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition

Letters, 31(8), 651–666. http://doi.org/10.1016/j.patrec.2009.09.011

Jain, A. K., & Dubes, R. C. (1988). Algorithms for Clustering Data. Englewood Cliffs,

New Jersey: Prentice Hall.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM

Computing Surveys, 31(3), 264–323. http://doi.org/10.1145/331499.331504

Kaufman, L., & Rousseeuw, P. J. (1987). Clustering by means of medoids. Statistical

Data Analysis Based on the L 1-Norm and Related Methods. First International
Conference, 405–416416.

Khan, S. S., & Madden, M. G. (2010). A Survey of Recent Trends in One Class

Classification (pp. 188–197). http://doi.org/10.1007/978-3-642-17080-5_21

Knuth, D. E. (1974). Computer programming as an art. Communications of the ACM,

	 221

17(12), 667–673. http://doi.org/10.1145/361604.361612

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43(1), 59–69. http://doi.org/10.1007/BF00337288

Kohonen, T. (2013). Essentials of the self-organizing map. Neural Networks, 37, 52–65.

http://doi.org/10.1016/j.neunet.2012.09.018

Koide, Y. (2009). Charged lepton mass spectrum and supersymmetric yukawaon model.

Physics Letters B, 681(1), 68–73. http://doi.org/10.1016/j.physletb.2009.09.065

Lange, J. S., & Freiesleben, H. (1996). A parameter-free non-growing self-organizing

map based upon gravitational principles: Algorithm and applications (pp. 827–
832). http://doi.org/10.1007/3-540-61510-5_139

Lange, J. S., Fukunaga, C., Tanaka, M., & Bozek, A. (1999). Transputer self-organizing

map algorithm for beam background rejection at the BELLE silicon vertex
detector. Nuclear Instruments and Methods in Physics Research, Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 420(1–2), 288–
309. http://doi.org/10.1016/S0168-9002(98)00661-5

Lange, J. S., Hermanoski, P., & Freiesleben, H. (1997). A parameter free \mboxself-

organizing map for the analysis of pp-reactions at COSY. Nuclear Instruments and
Methods in Physics Research A, 389(August), 214–218.
http://doi.org/10.1016/S0168-9002(97)00120-4

LHCb Collaborations. (2014). Measurement of Υ production in p p collisions at $$

=2.76TeV s = 2.76 TeV. The European Physical Journal C, 74(4), 2835.
http://doi.org/10.1140/epjc/s10052-014-2835-1

MAGIC Collabration. (2007). The MAGIC Project: Contributions to ICRC 2007.

Retrieved from http://arxiv.org/abs/0709.3763

Marco, C., Fabio, C., Alvise, D., Antonia, G., Francesco, G., Alessandro, M., …

Francesco, P. (2009). The gLite Workload Management System (pp. 256–268).
http://doi.org/10.1007/978-3-642-01671-4_24

Markou, M., & Singh, S. (2003). Novelty detection: a review—part 1: statistical

approaches. Signal Processing, 83(12), 2481–2497.
http://doi.org/10.1016/j.sigpro.2003.07.018

	 222

Martin, S. P. (1997). A Supersymmetry Primer. Retrieved from http://arxiv.org/abs/hep-
ph/9709356

Mascheroni, M., Balcas, J., Belforte, S., Bockelman, B. P., Hernandez, J. M.,

Ciangottini, D., … Vaandering, E. (2015). CMS distributed data analysis with
CRAB3. Journal of Physics: Conference Series, 664(6), 62038.
http://doi.org/10.1088/1742-6596/664/6/062038

Massie, M., Li, B., Nicholes, B., Vuksan, V., Alexander, R., Buchbinder, J., … Pocock,

D. (2012). Monitoring with Ganglia Tracking Dynamic Host and Application
Metrics at Scale. O’Reilly Media.

Metson, S., Bonacorsi, D., Ferreira, M. D., & Egeland, R. (2010). SiteDB: Marshalling

people and resources available to CMS. Journal of Physics: Conference Series,
219(7), 72044. http://doi.org/10.1088/1742-6596/219/7/072044

Minh, H. Q., Niyogi, P., & Yao, Y. (2006). Mercer’s Theorem, Feature Maps, and

Smoothing. In Learning Theory, Lecture Notes in Computer Science (pp. 154–
168). http://doi.org/10.1007/11776420_14

Mirkin, B. (1997). Mathematical Classification and Clustering. Journal of the

Operational Research Society, 48(8), 852–852.
http://doi.org/10.1057/palgrave.jors.2600836

Narsky, I., & Porter, F. C. (2013). Statistical Analysis Techniques in Particle Physics.

Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
http://doi.org/10.1002/9783527677320

Olive, K. A. (2014). Review of Particle Physics. Chinese Physics C, 38(9), 90001.

http://doi.org/10.1088/1674-1137/38/9/090001

Open Grid Scheduler. (n.d.). Retrieved January 23, 2016, from

http://gridscheduler.sourceforge.net/

Ovyn, S., Rouby, X., & Lemaitre, V. (2009). Delphes, a framework for fast simulation

of a generic collider experiment. Retrieved from http://arxiv.org/abs/0903.2225

Pardo, L. (2005). Divergence Measures. In Statistical Inference Based on Divergence

Measures (pp. 1–53). Chapman and Hall/CRC.
http://doi.org/doi:10.1201/9781420034813.ch1

	 223

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., …
Duchesnay, É. (2012). Scikit-learn: Machine Learning in Python, 12, 2825–2830.
Retrieved from http://arxiv.org/abs/1201.0490

Pelleg, D., & Moore, A. (1999). Accelerating Exact k-means Algorithms with

Geometric Reasoning. In Proceedings of the Fifth International Conference on
Knowledge Discovery in Databases (pp. 277--281).
http://doi.org/10.1145/312129.312248

Pelleg, D., Pelleg, D., Moore, A. W., & Moore, A. W. (2000). X-means: Extending K-

means with efficient estimation of the number of clusters. In Proceedings of the
Seventeenth International Conference on Machine Learning table of contents (pp.
727–734). Retrieved from http://portal.acm.org/citation.cfm?id=657808

Perkins, D. H. (1987). Introduction to High Energy Physics. Addison-Wesley

Publishing Company.

Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy, A., … Quick, R.

(2007). The open science grid. Journal of Physics: Conference Series, 78, 12057.
http://doi.org/10.1088/1742-6596/78/1/012057

Riahi, H., Wildish, T., Ciangottini, D., Hernández, J. M., Andreeva, J., Balcas, J., …

Vaandering, E. W. (2015). AsyncStageOut: Distributed user data management for
CMS Analysis. Journal of Physics: Conference Series, 664(6), 62052.
http://doi.org/10.1088/1742-6596/664/6/062052

Riordan, M. (1992). The discovery of quarks. Science (New York, N.Y.), 256(5061),

1287–1293. http://doi.org/10.1126/science.256.5061.1287

Robichaud-Véronneau, A. (2013). Searches for Supersymmetry and Exotics phenomena

with the ATLAS detector. Journal of Physics: Conference Series, 455(32), 12012.
http://doi.org/10.1088/1742-6596/455/1/012012

Rogan, C. (2010). Kinematical variables towards new dynamics at the LHC. Retrieved

from http://arxiv.org/abs/1006.2727

Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear Component Analysis as a

Kernel Eigenvalue Problem. Neural Computation.
http://doi.org/10.1162/089976698300017467

Seiffert, U., & Jain, L. C. (Eds.). (2002). Self-Organizing Neural Networks (Vol. 78).

Heidelberg: Physica-Verlag HD. http://doi.org/10.1007/978-3-7908-1810-9

	 224

Sfiligoi, I., Bradley, D. C., Holzman, B., Mhashilkar, P., Padhi, S., & Wurthwein, F.

(2009). The Pilot Way to Grid Resources Using glideinWMS. In 2009 WRI World
Congress on Computer Science and Information Engineering (pp. 428–432). IEEE.
http://doi.org/10.1109/CSIE.2009.950

Singler, J. A. (1996). Education: Ends and Means (Lynchburg College Symposium

Readings) Vol. 9. University Press of America,.

Sjöstrand, T., Mrenna, S., & Skands, P. (2006). PYTHIA 6.4 physics and manual.

Journal of High Energy Physics, 2006(5), 026–026. http://doi.org/10.1088/1126-
6708/2006/05/026

Skurichina, M., & Duin, R. P. W. (2002). Bagging, Boosting and the Random Subspace

Method for Linear Classifiers. Pattern Analysis & Applications, 5(2), 121–135.
http://doi.org/10.1007/s100440200011

Steinbach, M., Karypis, G., & Kumar, V. (2000). A Comparison of Document

Clustering Techniques. KDD Workshop on Text Mining, 400, 1–2.
http://doi.org/10.1109/ICCCYB.2008.4721382

Ster, D. C. van der, Elmsheuser, J., García, M. Ú., & Paladin, M. (2011).

HammerCloud: A Stress Testing System for Distributed Analysis. Journal of
Physics: Conference Series, 331(7), 72036. http://doi.org/10.1088/1742-
6596/331/7/072036

Thain, D., Tannenbaum, T., & Livny, M. (2005). Distributed computing in practice: the

Condor experience. Concurrency and Computation: Practice and Experience,
17(2–4), 323–356. http://doi.org/10.1002/cpe.938

The ATLAS Collaboration. (2012). Search for the Standard Model Higgs boson

produced in association with top quarks in proton-proton collisions at √s = 7 TeV
using the ATLAS detector. ATLAS-CONF. Retrieved from
https://cds.cern.ch/record/1478423%5Cnhttps://atlas.web.cern.ch/Atlas/GROUPS/
PHYSICS/CONFNOTES/ATLAS-CONF-2012-135/

Tryba, V., & Goser, K. (1991). A modified algorithm for self-organizing maps based on

the Schrödinger equation. In Artificial Neural Networks (pp. 33–47).
Berlin/Heidelberg: Springer-Verlag. http://doi.org/10.1007/BFb0035875

Uzan, J.-P., & Leclercq, B. (2008). The Natural Laws of the Universe. New York, NY:

Praxis. http://doi.org/10.1007/978-0-387-74081-2

	 225

Vaiciulis, a. (2002). Support Vector Machines in Analysis of Top Quark Production, 8.

http://doi.org/10.1016/S0168-9002(03)00479-0

Vannerem, P., Mueller, K.-R., Schoelkopf, B., Smola, A., & Soldner-Rembold, S.

(1999). Classifying LEP Data with Support Vector Algorithms, 7.
http://doi.org/10.1.1.46.8631

Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE

Transactions on Neural Networks, 11(3), 586–600.
http://doi.org/10.1109/72.846731

Villmann, T., Der, R., Herrmann, M., & Martinetz, T. M. (1997). Topology

preservation in self-organizing feature maps: exact definition and measurement.
IEEE Transactions on Neural Networks, 8(2), 256–266.
http://doi.org/10.1109/72.557663

Wan Abdullah, W. A. T. (1992). A Two tier neural network for b tagging. Fifth Asia-

Pacific-Physics Conference, 435–438.

Wang, F., & Sun, J. (2015). Survey on distance metric learning and dimensionality

reduction in data mining. Data Mining and Knowledge Discovery, 29(2), 534–564.
http://doi.org/10.1007/s10618-014-0356-z

Whiteson, S., & Whiteson, D. (2009). Machine learning for event selection in high

energy physics. Engineering Applications of Artificial Intelligence, 22(8), 1203–
1217. http://doi.org/10.1016/j.engappai.2009.05.004

Wildish, T. (2015). Understanding the T2 traffic in CMS during Run-1. Journal of

Physics: Conference Series, 664(3), 32034. http://doi.org/10.1088/1742-
6596/664/3/032034

Wu, Y., & Takatsuka, M. (2005). The Geodesic Self-Organizing Map and its error

analysis. Conferences in Research and Practice in Information Technology Series,
38, 343–352.

Wu, Y., & Takatsuka, M. (2006). Spherical self-organizing map using efficient indexed

geodesic data structure. Neural Networks, 19(6–7), 900–910.
http://doi.org/10.1016/j.neunet.2006.05.021

Yu, H. (2003). SVMC: Single-class classification with support vector machines. IJCAI

	 226

International Joint Conference on Artificial Intelligence, 567–572.

ZEUS Collaboration. (1993). The ZEUS Detector. Retrieved January 15, 2016, from

http://www-zeus.desy.de/bluebook/bluebook.html

	 227

LIST OF PUBLICATIONS

CMS collaboration. Search for diphoton resonances in the mass range from 150 to 850
GeV in pp collisions at. Physics letters B 750 (2015): 494-519.

CMS collaboration. Search for neutral MSSM Higgs bosons decaying to µ+ µ− in pp

collisions at. Physics letters B 752 (2016): 221-246.

Mascheroni, M., Balcas, J., Belforte, S., Bockelman, B. P., Hernandez, J. M.,

Ciangottini, D., … Vaandering, E. (2015). CMS distributed data analysis with
CRAB3. Journal of Physics: Conference Series, 664(6), 62038.
http://doi.org/10.1088/1742-6596/664/6/062038

