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ABSTRACT 

This work describes some general procedures for the synthesis and characterization of 

monometallic and heterobimetallic single source precursors 

[Cu2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (1), [Co2Ti4(μ-O)6(TFA)8(THF)6]·THF (2),  

[Mg2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (3), [Mn(dmae)2(TFA)4] (4) and 

[Sn(dmae)(OAc)]2 (5) and their disposal for the growth of thin films for electrochemical 

applications. The complexes have been characterized by m.p, elemental analyses, FT-IR, 

TG/DTG and single crystal X-ray analysis. The precursors (1), (2) and (3) were applied 

as a single source for the fabrication of CuO-2TiO2 and CoTiO3-TiO2 composites and 

MgTi2O5 solid solution thin films, whereas film precursor (4) has been applied as a dual 

source along with Ag(I) acetate for the deposition of Ag-Mn2O3 composite thin film by 

aerosol assisted chemical vapour deposition (AACVD). The electric field directed aerosol 

assisted chemical vapor deposition technique (EFDAACVD) was used to make thin films 

of SnO2, Mn2O3, Fe2O3, NiO, CuO, ZnO, CdO and PbO from precursor (5) and their 

respective acetates. Further CuPbI3 was synthesized by heating co-precipitated mixture 

of copper(I) iodide and lead(II) iodide in an evacuated Pyrex ampule at 630 oC. The films 

of CuPbI3 were decorated by electrophoretic deposition method. The phase purity, 

particle size and crystallinity of deposited thin films were examined by X-ray powder 

diffraction (XRPD) and Raman spectroscopy, while X-ray photoelectron spectroscopy 

(XPS), field emission scanning electron microscopy and energy dispersive X-ray 

spectroscopy (EDX) were used to investigate the oxidation states, electronic structure, 

surface morphology, shape and elemental composition of the involved elements. In the 

case of mesoporous nanostructure of SnO2 microballs surface area 136 m2g-1 was 

determined by BET. The optical band gaps of films were determined by UV-visible 

spectrophotometry and found to be  were 1.8, 3.4, 3.8, 1.2, 2.2, 1.9,0.9,3.2, 2.2, 1.9 and 
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1.82 eV for Ag-Mn2O3, MgTi2O5, SnO2, Mn2O3, Fe2O3, NiO, CuO, ZnO, CdO, PbO and 

CuPbI3 films, respectively. The applicability of fabricated CuO-2TiO2 and CoTiO3–TiO2 

composite electrodes in electrochemical sensors has been investigated towards the 

sensitive and selective detection of NO2
− ions and dopamine (DA), respectively. The 

CuO-2TiO2 electrode showed the limit of detection (LoD) of 16.6 nM with the linear 

range of 10 to 200 μM at +1.0 V due to the oxidation of NO2
− ions. The CoTiO3–TiO2 

electrode showed good electrocatalytic activity for DA with the (LoD) of 0.083 μM and 

a linear range of 20 to 300 μM. The SnO2 micro balls provide unique network pores that 

could be easily penetrated by the electrolyte to give high reversible recycling stability for 

application in lithium ion batteries. The photoelectrochemical activity (PEC) of Ag-

Mn2O3, MgTi2O5, Mn2O3, Fe2O3, NiO, CuO, ZnO, CdO, PbO and CuPbI3 thin films 

determined by the linear sweep voltammetry (LSV) show photocurrent densities of 3, 0.4, 

1.2, 0.12, 0.23, 0.13, 0.23, 0.26, 0.20 and 0.25 mAcm-2 at 0.7 V vs Ag/AgCl/3M KCl, 

respectively. The improved photoelectrochemical behaviour of Ag-Mn2O3, MgTi2O5, 

Mn2O3, Fe2O3, NiO, CuO, ZnO, CdO, PbO and CuPbI3 electrodes was attributed to the 

increased photon absorption ability, increased surface area, and more efficient 

electron/hole transfer which were confirmed by LSV, Chronoamperometery, 

electrochemical impedance spectroscopy and Mott‐Schottky plot.  
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ABSTRAK 

Kerja ini menerangkan beberapa prosedur umum untuk sintesis dan pencirian prekursor 

monologam dan heterodwilogam [Cu2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (1), [Co2Ti4(μ-

O)6(TFA)8(THF)6]•THF (2), [Mg2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (3), 

[Mn(Dmae)2(TFA)4] (4) dan [Sn (Dmae)(OAc)]2 (5) dan penggunaan precursor-

prekursor ini untuk pertumbuhan filem nipis untuk aplikasi elektrokimia. kKompleks 

yang disintesis ini telah diciri melalui analisis takat lebur, unsur, FT-IR, TG / DTG dan 

sinar-X hablur tunggal. Prekursor (1), (2) dan (3) digunakan sebagai sumber tunggal 

untuk fabrikasi komposit CuO-2TiO2 dan CoTiO3-TiO2 dan  filem nipis larutan pepejal 

MgTi2O5 melalui pemendakan wap kimia dibantu aerosol (AACVD) manakala prekursor 

(5) digunakan sebagai sumber dwi bersama-sama dengan Ag(I) asetat untuk pemendapan 

filem nipis komposit Ag-Mn2O3 oleh AACVD. Teknik pemendapan wap kimia dibantu 

aerosol diarah oleh medan elektrik  (EFDAACVD) telah digunakan untuk fabrikasi filem 

nipis SnO2, Mn2O3, Fe2O3, NiO, CuO, ZnO, CdO dan PbO, daripada asetat masing-

masing  dan precursor (4) telah digunakan untuk fabrikasi serbuk bebola nano SnO2 dan 

filem nipisnya atas substrat kaca FTO. Seterusnya, CuPbI3 telah disintesis melalui 

pemanasan campuran ko-mendakan plumbum(II) iodida dan kuprum(I) iodida dalam 

ampule pyrex tervakum pada 620oC. Filem CuPbI3 dihiasi dengan teknik pemendapan 

elektroforetik. Fasa ketulenan, saiz zarah dan penghabluran filem nipis termendap diuji 

dengan pembelauan sinar-X (XRD) dan spektroskopi Raman, manakala spektroskopi 

fotoelektron sinar-X (XPS), mikroskop elektron imbasan pemancaran medan dan 

spektroskopi tenaga serakan X-ray (EDX) digunakan untuk menyiasat keadaan 

pengoksidaan, struktur elektron, morfologi permukaan, saiz habluran, bentuk dan 

komposisi unsur bagi unsur-unsur yang terlibat. Dalam kes struktur nano bebola mikro 

SnO2 yang berliang meso, luas permukaan yang ditentukan oleh BET didapati ialah 136 

m2 g-1. Jurang jalur optik bagi semua filem-filem yang difabrikasi diuji oleh 
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spektrofotometri UV dan didapati adalah 1.8, 3.4, 3.8, 1.2, 2.2, 1.9, 0.9 ,3.2, 2.2, 1.9 dan 

1.82eV masing-masing bagi filem Ag-Mn2O3, MgTi2O5, SnO2, Mn2O3, Fe2O3, NiO, CuO, 

ZnO, CdO, PbO dan CuPbI3. Aplikasi elektrod komposit CuO-2TiO2 dan CoTiO3-TiO2 

yang difabrikasi dalam sensor elektrokimia telah disiasat terhadap pengesanan senstif dan 

terpilih masing-masing bagi ion NO2 dan dopamin (DA). Elektrod CuO-2TiO2 

menunjukkan had pengesanan (LoD) sebanyak 16.6 μM dengan julat linear dari 10 

hingga 200 μM pada +1.0 V disebabkan oleh pengoksidaan ion NO2. Elektrod CoTiO3–

TiO2 menunjukkan aktiviti electromangkinan yang baik untuk DA dengan  (LoD) 

sebanyak.0.083 μM dan julat linear dari 20 hingga 300 μM. Bebola mikro SnO2 

menyediakan liang-liang rangkaian unik yang mudah ditembusi oleh elektrolit untuk 

memberi kestabilan kitaran semula berbalik yang tinggi untuk aplikasi dalam bateri ion 

litium. Aktiviti fotoelektrokimia (PEC) filem nipis Ag-Mn2O3, MgTi2O5, Mn2O3, Fe2O3, 

NiO, CuO, ZnO, CdO, PbO dan CuPbI3 seperti ditentukan oleh voltammetri penyapuan 

linear (LSV) masing-masing menunjukkan ketumpatan arus foto sebanyak 3, 0.4, 1.2, 

0.12, 0.23, 0.13, 0.23, 0.26, 0.20 dan 0.25 mA cm-2 pada 0.7 V vs Ag/AgCl/3M KCl. 

Peningkatan sifat fotoelektrokimia bagi elektrod Ag-Mn2O3, MgTi2O5, Mn2O3, Fe2O3, 

NiO, CuO, ZnO, CdO, PbO dan CuPbI3 adalah disebabkan oleh peningkatan keupayaan 

penyerapan foto, peningkatan luas permukaan, dan pemindahan elektron/lubang yang 

lebih cekap yang telah disahkan oleh pengukuran voltammetri penyapuan linear,  

kronoamperometri, spektroskopi impedans elektrokimia dan plot Mott-Schottky. Univ
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PREFACE 
 

The thesis entitled “Fabrication and Characterization of Ceramic thin films for 

Electrochemical Studies” is divided into five different chapters 

The chapter 1 describes the scope of ceramic thin films for electrochemical applications 

in field of science and technology. The chapter 2 comprises of a detailed studies of 

background to ceramic materials, their properties and suitable techniques for the 

deposition of ceramic thin films. A detailed history of deposition techniques, 

characterization and electrochemical applications of thin films have been described. The 

materials used and method adopted for the synthesis of precursors and their utilization in 

the deposition of thin films by AACVD, EFDAACVD and EPD methods have been 

described in chapter 3. 

The chapter 4 is further divided into seven sections. The first four sections deal with 

discussion on the chemistry of precursors and their conversion to composite oxide thin 

films by AACVD technique. The fifth and sixth sections elaborate the deposition of metal 

oxide thin films by EFDAACVD method. The last part describe the deposition of metal 

halide films by EPD technique. After a proper discussion on characterization each section 

ends with a brief discussion of electrochemical sensing, optical and photoelectrochemical 

results of films. At the end of the thesis, conclusions regarding this research work have 

been given in chapter 5.
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CHAPTER 1: INTRODUCTION 

 

Ceramic films deposited on substrates exhibit versatile properties and have revolutionized 

many technological areas specially the energy (Harrison, Levene, Rajeshwar, McConnell, 

& Licht, 2008) and environmental sectors (Jun Zhang, Bang, Tang, & Kamat, 2009). 

Micro and nano structured transition metal oxide/ halide materials with high surface area 

and controlled size, shape and morphology have found diverse applications in optical, 

optoelectronic, photovoltaic, supercapacitors, batteries and gas sensing devices (J. Chen, 

Xu, Li, & Gou, 2005; Clavero, 2014; Gao, Grätzel, & Nazeeruddin, 2014; Lang, Hirata, 

Fujita, & Chen, 2011). Such materials offer a unique combination of their structural, 

optical, electrical and photoelectrochemical properties. The photoactive materials have 

been designed and developed with the aim to fix the main photoelectrochemical problems 

such as proper conduction/valence band position, narrowing of the band gap to harness 

visible light, fast electron/hole pair separation/transportation (Baker & Kamat, 2009; 

Gonçalves, Leite, & Leite, 2012; Le Formal, Grätzel, & Sivula, 2010; Leung et al., 2010; 

G. Li et al., 2013; Momeni, Ghayeb, & Davarzadeh, 2015; Sivula et al., 2010; J. Su, Feng, 

Sloppy, Guo, & Grimes, 2010; M. Wang et al., 2013; Yan, Ye, Wang, Yu, & Zhou, 2012), 

however, these extensive studies could not find an individual material which can 

overcome all these issues at once. The main criteria for photocatalytic material is low 

cost, environment friendly and highly efficient.  

Ceramic films are commonly nonselective, while some selectivity could be achieved by 

modifying the optical, electronic, electrochemical characteristics and the use of solid 

solution and composite materials (Lazar & Daoud, 2013). Diverse electroactive ceramic 

thin films of NiO, Fe2O3, Mn3O4, SnO2 and Co3O4 have been broadly reported in 

literature. Some work has been done on their fabrication methods, structure, controlled 

surface morphology and electrochemical studies (Nakata & Fujishima, 2012; Park, Park, 
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Kim, & Choi, 2013; Rehman, Ullah, Butt, & Gohar, 2009). However photo activity can 

be improved by defect engineering, doping of non-metal, coupling with other 

semiconductor or metal oxides, deposition of noble metal nanoparticles (Jinlong Zhang, 

Wu, Xing, Leghari, & Sajjad, 2010). Defect engineering indicates inclusion of inherent 

defects, such as vacancies, interstitials, and antisites, while doping infers the addition of 

impurities into the crystal lattice (Djurisic, Leung, & Ching Ng, 2014). The recent work 

showed that coupling with other semiconductor or metal oxide (Dhanalakshmi, 

Pandikumar, Sujatha, & Gunasekaran, 2013) and deposition of noble metal nanoparticles 

(Pandikumar, Murugesan, & Ramaraj, 2010) results in enhances the charge transfer at the 

electrode electrolyte interface and minimization in the charge recombination. Therefore, 

the method of catalytic (Rossetti, 2013) and photocatalytic oxidation of organic molecules 

(Y. J. Kim et al., 2009) and water (Jiao et al., 2013) and application as anode materials 

for Li-ion batteries (S. Guo et al., 2015) can occur by transfer of an electron to the 

semiconductor surface (Shinde, Bhosale, & Rajpure, 2013).  

The physical and chemical properties of metal oxide and metal halide solid solution thin 

films are intensely affected by the composition and microstructure of their particles, 

which depend on the research method used in their synthesis. A number of procedures are 

introduced for the fabrication of metal oxide and halide ceramic thin films (Babuji, 

Balasubramanian, Radhakrishnan, & Kasilingam, 1980; Corneille, He, & Goodman, 

1995; C.-L. Huang, Wang, Chen, Li, & Lin, 2012; Korotcenkov, Brinzari, Schwank, 

DiBattista, & Vasiliev, 2001; M. Nirmala, 2010; Mondal, Bhattacharyya, & Mitra, 2013; 

Ozegowski, Meteva, Metev, & Sepold, 1999; Scott, 2008). Nevertheless, the reported 

methods have shortcomings of not distributing the precise stoichiometric composition and 

fail to provide phase purity of the materials (Mansoor, Ismail, et al., 2013; M. Veith, Haas, 

& Huch, 2004). Therefore, in order to use of chemical vapour deposition it is necessary 

to modify the physio-chemical properties of the complex to improve process parameters. 
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To attain this, the molecular structure design method is based on the selection of a proper 

molecular structure type and competing it with ligands providing the required donor 

atoms. The growth of materials with complexes composition in micro or nanometers can 

define the surface morphology and physical properties, which recently focus on single or 

dual source precursor comprising of molecules containing all required elements in the 

appropriate ratios and decompose in a controllable way under normal conditions.  

The aim and objective of the work is to study the performance of electro ceramic materials 

and devices depends on the complex interplay between processing, chemistry, structure 

at many levels and device physics and so requires truly interdisciplinary effort by 

individuals from many fields. Topical areas cover a wide spectrum with recent active 

areas including sensors and actuators, electronic packaging, photonics solid state ionics, 

defect and grain boundary engineering, magnetic recording, non-volatile ferroelectric 

memories, wide band gap semiconductors, high Tc superconductors, integrated dielectric 

and nanotechnology. Improvements in the numerous categories of electroceramics have 

paralleled the development of new technologies.  

The present research work focuses on the design and development of single and 

dual source molecular precursors that contain all the components of target material, 

for the deposition of metal/mixed metal oxides, composites and solid solution thin 

films by using the AACVD, EFDAACVD and EPD techniques. The deposited 

films were characterized by XRD, XPS, FESEM/EDX, Raman spectroscopy and 

UV-visible spectroscopy for their microstructure, morphology, stoichiometry, 

thickness, chemical sates of constituent metals and optical band gap. A further 

scope of these fabricated films electrodes towards electrochemical studies is 

investigated. 
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 CHAPTER 2: LITERATURE REVIEW 

  

2.1  Ceramic Materials 

Ceramics consist of a wide range of synthetic materials based on inorganic non-metallic 

compounds, primarily oxides, sulphides, nitrides, carbides, silicides and silicates (Da 

Silva, 2016; Gryshkov et al., 2016; Lahcen et al., 2014; Y.-C. Liang, Wang, & Lo; H.-H. 

Lu & Chen, 2016; Secu, Secu, & Bartha, 2016; J. Wei et al., 2016; Y. Yang et al., 2015; 

Yeh et al., 2013). The essentially ionic, covalent, non-metallic compounds that constitute 

ceramics are compounds formed between metals and non-metals. The crystallinity of 

ceramic materials ranges from highly oriented to semi-crystalline, and not fully 

amorphous. The advantageous properties of these ceramics are hardness, rigidity, 

chemical inertness, toughness and nonconductors of heat and electricity. Ceramics in the 

form of thin films, powders, single crystals and composites, have showed important role 

in medical field, electronics, chemical, energy and manufacturing industries (Affatato, 

Ruggiero, & Merola, 2015; N. Choudhary & Kaur, 2016; Kose et al., 2016; Saji, Venkata 

Subbaiah, Tian, & Tiwari, 2016; Sommers et al., 2010; S. Zhang et al., 2015). 

Ceramics can be classified into two main categories. Structural ceramics and functional 

ceramics. Structural ceramics have potential to tolerate mechanical and thermal loading 

exposed to aggressive, severe chemical and thermal environment. They combine the 

properties and benefits of ceramics like chemical inertness, high temperature capability 

and rigidity, high strength, toughness, stiffness, hard, corrosion and thermal shock 

resistance and long term durability (Booth et al., 2016). The lifetime of ceramics in 

several structural applications is sensitive to unusual measures including brittle failure 

during mechanical or thermal loading, pitting by corrosion, dielectric breakdown and 

fatigue crack initiation. Structural ceramics are also used to investigate for employment 

in many high performances applications including metal cutting and shaping tools. 
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Because of high temperature and corrosion resistant properties structural ceramics are 

mainly valuable to resolve a large number of today’s material challenges in process 

industries, power generation, aerospace, transportation and military applications (M. 

Rahman, Haider, Akter, & Hashmi, 2014). 

 Functional ceramics have good electrical, magnetic, and optical properties and find vast 

application in the field of optics, optoelectronics, catalysis, photovoltaics, sensors, 

biomedical, biotechnological and environmental applications etc (Maglia, Tredici, & 

Anselmi-Tamburini, 2013; Treccani, Yvonne Klein, Meder, Pardun, & Rezwan, 2013). 

A variety of deposition techniques such as chemical vapor deposition, RF sputtering, 

Chemical bath deposition, electrodeposition and molecular beam epitaxial growth have 

been applied to synthesize functional ceramic thin films with preferred characteristics. 

Functional ceramics also attract attention of many researchers because they have ability 

to interact with the surrounding to detect, act upon and generate power. However, by 

reducing the dimension of the devices, development in terms of sensitivity, proficiency, 

and portability can be improved. For these reasons micro-electromechanical systems have 

been widely used in the field of science and technology.  Lead zirconate titanate (LZT) a 

renowned functional ceramic displays a variety of composition and has been applied in a 

range of ultrasound, supercapacitors, batteries, transducers, actuators and sensor devices 

(Izyumskaya et al., 2007). Functional metal oxide and halide materials are the hot research 

topics due to their bonding and structures in the field of electrochemistry and 

photocatalysis.  

As most of the metallic element are reactive towards oxygen, oxides exist in stable single 

or mixed phases. Oxides is the largest group of ceramic materials that have chemical 

inertness, good properties at high temperature and resistance to oxidation. As the oxygen 

is the most electronegative divalent element, most oxides have significant degree of ionic 
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bonding. As a result, they generally have the characteristics of ionic crystals, optical 

transparency, high electrical resistivity, low thermal conductivity, diamagnetism and 

chemical stability. There are some exceptions in which oxides of indium and tin are 

electrically conductive while others such as beryllium oxide have high thermal 

conductivity.    

2.2  Properties of Ceramic Materials 

 

The property of ceramic material is its characteristic features expressed in terms of the 

measured response to specific imposed stimulus. While ceramics have traditionally been 

admired for their mechanical and thermal stability, their unique electrical, optical and 

magnetic properties have become of increasing importance in many key technologies 

including communications, energy conversion and storage, electronics and automation. 

Such materials are now classified as electroceramics to distinguish them from other 

functional ceramics such as advanced functional ceramics. 

2.2.1 Electrical Properties  

 

The performance of electroceramic materials and devices depends on the complex 

interplay between processing, chemistry, structure at many level and device physics and 

so requires a truly interdisciplinary effort by individuals from many fields. Materials can 

be categorized in various ways on the basis of their capacity to conduct electricity. 

Depending upon their capacity to conduct electric current (an ease of flow of electron) 

ceramic have been classified as conductors, semiconductors and insulators. The borders 

between the three sets are somewhat adjustable and some overlap happens. There are, 

however, basic differences between the mechanism of conduction in metals 

semiconductors and insulators (Hensel, Slocombe, & Edwards, 2015). The electrical 

features of solid-state materials depend on their band structure. The highest filled 

electronic state at 0 K is called the Fermi energy Ef.  
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Figure 2.1: Energy level diagrams representing (a) insulators. (b) semiconductors and 

(c) conductors (Copyright permission from Hensel, et al., 2015) 

Figure 2.1 shows that conductor such as copper, tungsten and silver which has a partially 

filled outermost band. Each copper atom has one 4s electron to make 4s band half filled. 

Electrons in this band are free to travel when an electric field is applied. However, in the 

case of magnesium, there is an overlap between the 3s and 3p band.  On the other hand 

in insulators electrons are restricted within the valence band (VB) while conduction band 

(CB) is totally empty. The band gap, which is of some electron volts, makes it difficult to 

promote the electron from valence band to conduction band. For semiconductors a small 

gap splits the wholly filled valence band from an empty CB, because of which electrons 

can gain enough energy to promote into the empty CB. 

Most of the structural ceramics are electric insulators, while some are electroceramics. 

Semiconducting functional ceramics can be either p-type or n-type depending on the 

access of number of holes or electrons. They mostly undergo redox reactions, i.e., 

oxidation-reduction reactions with surroundings and they are highly suitable for gas 

sensors. Developments in the various subdivisions of electroceramics along the growth 

of developing technologies. Dielectric materials are electrical insulators, used mainly in 

capacitors and electrical insulators. For practical uses, they have high electric strength, 
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able to endure high voltages without undergoing depletion and become electrical 

conductive as well as own low dielectric loss i.e., in an alternating electric field, the 

electrical energy loss in the form of heat should be lessened. When a potential difference 

is applied across a dielectric, polarization of charge within the material will take place, 

while long range movement of ions or electrons cannot occur (Figure 2.2). The 

polarization disappears as the voltage is removed. If a dielectric is placed between two 

plates of the capacitor, the total charge already stored in it will change which depends 

upon the polarizability of the material under an electric field. The change in charge 

storage is examined by the dielectric constant or permittivity of the ceramic material. 

High dielectric constants are necessary for high capacity applications. 

 

Figure 2.2: Plolatization of dielectric material by applying electric field 

If a material contains polar molecules, they will generally be in random orientations when 

no electric field is applied. When the electric field is applied, the materials get polarized 

orienting the dipole moments of polar molecules. This decrease the effective electric field 

between the plates and will increase the capacitance of parallel plate structure. The 

dielectric must be a good electric insulator so as to minimize any DC leakage current 

through a capacitor.  
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2.2.2 Magnetic Properties 

Magnetic materials are classified into five types by their response to externally applied 

magnetic fields as dimagnetism, paramagnetism, ferromagnetism, antiferromagnetism 

and ferrimagnetism. This classification based on magnetic properties such as ordering, 

sign, magnitude and temperature that influence magnetic susceptibility. 

Diamagnetic materials have very weak negative susceptibility, typically of the order of -

10-5 and relative permeability is less than one. These are the materials which do not have 

native magnetic moment but magnetic field (H) is applied show negative susceptibility 

and acquire magnetization. The orbital motion of electrons creates tiny atomic current 

loops, which produce magnetic fields. When an external magnetic field is applied to a 

material, these current loops will tend to align in such a way as to oppose the applied field 

(Figure 2.3). This may be observed as an atomic form of Lenz's law: induced magnetic 

fields tend to oppose the change which produced them.  

 

Figure 2.3: The atomic dipole orientation for a diamagnetic material in presence and 

absence of magnetic field. 

 

Materials in which this effect is the only magnetic response are called diamagnetic. 

Diamagnetism is the residual magnetic behavior when materials are neither paramagnetic 

nor ferromagnetic. Ionic crystals and inert gas atoms are diamagnetic e.g. PbS, FeS2.  
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Paramagnetic materials is class of materials, some of the atoms or ions in the material 

have a net magnetic moment due to unpaired electrons in partially filled orbitals. One of 

the most important atoms with unpaired electrons is iron. However, the individual 

magnetic moments do not interact magnetically, and like diamagnetism, the 

magnetization is zero when the field is removed. In the presence of a field, there is now a 

partial alignment of the atomic magnetic moments in the direction of the field, resulting 

in a net positive magnetization and positive susceptibility. The materials show a 

magnetization which is proportional to the applied magnetic field in which the material 

is placed. These materials are said to be paramagnetic. These materials show no net 

magnetic moment in the absence of an applied magnetic field. The presence of a 

permanent magnetic moment is often the result of unpaired electron spins. In such 

materials, the magnetic moment is non zero for each atom, but average to zero over many 

atoms. If a magnetic field is applied across the material and the atoms are free to oscillate, 

they will associate with the magnetic field, amplifying the strength (Figure 2.4). e.g. O2 

paramagnetic behavior. When a paramagnetic material is placed in a magnetic field, the 

magnetic moments experience a torque and they tend to orient themselves in the direction 

of magnetic field. At room temperature, paramagnetic susceptibilities are much less, 

typically about 10-5 barely exceeding the diamagnetic susceptibility. 

Unlike paramagnetic materials, the atomic moments in these materials exhibit very strong 

interactions. These interactions are produced by electronic exchange forces and result in 

a parallel or antiparallel alignment of atomic moments. Exchange forces are very large, 

equivalent to a field. In addition, the efficiency of the field in aligning the moments is 

opposed by the randomizing effects of temperature. This results in a temperature 

dependent susceptibility, known as the Curie Law. 
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Figure 2.4: The atomic dipole orientation for a paramagnetic materials in the presence 

and absence of magnetic field. 

At normal temperatures and in moderate fields, the paramagnetic susceptibility is small 

(but larger than the diamagnetic contribution). Unless the temperature is very low (<<100 

K) or the field is very high paramagnetic susceptibility is independent of the applied field. 

Under these conditions, paramagnetic susceptibility is proportional to the total iron 

content. Many iron bearing minerals are paramagnetic at room temperature. The 

paramagnetism of the matrix minerals in natural samples can be significant if the 

concentration of magnetite is very small. In this case, a paramagnetic correction may be 

needed.  

Ferromagnetic materials exhibit parallel alignment of moments resulting in large net 

magnetization even in the absence of a magnetic field (Figure 2.5). The elements Fe, Ni, 

and Co and many of their alloys are typical ferromagnetic materials. Two distinct 

characteristics of ferromagnetic materials are their (a) spontaneous magnetization and (b) 

magnetic ordering temperature. Univ
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Figure 2.5: The atomic dipole orientation for a Ferromagnetic materials.  

The spontaneous magnetization is the net magnetization that exists inside a uniformly 

magnetized microscopic volume in the absence of a field. The magnitude of this 

magnetization, at 0 K, is dependent on the spin magnetic moments of electrons. The 

saturation magnetization is the maximum induced magnetic moment that can be obtained 

in a magnetic field (Hsat); beyond this field no further increase in magnetization occurs. 

The difference between spontaneous magnetization and the saturation magnetization has 

to do with magnetic domains (more about domains later). Saturation magnetization is an 

intrinsic property, independent of particle size but dependent on temperature. There is a 

big difference between paramagnetic and ferromagnetic susceptibility. As compared to 

paramagnetic materials, the magnetization in ferromagnetic materials is saturated in 

moderate magnetic fields and at high (room-temperature) temperatures: 

Even though electronic exchange forces in ferromagnetic materials are very large, thermal 

energy eventually overcomes the exchange and produces a randomizing effect. This 

occurs at a particular temperature called the curie temperature (Tc). Below the Curie 

temperature, the ferromagnetic is ordered and above it, disordered. The saturation 

magnetization goes to zero at the Curie temperature. In addition to the Curie temperature 

and saturation magnetization, ferromagnets can retain a memory of an applied field once 

it is removed. This behavior is called hysteresis and a plot of the variation of 

magnetization with magnetic field is called a hysteresis loop. 
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Another hysteresis property is the coercivity of remanence (Hr). This is the reverse field 

which, when applied and then removed, reduces the saturation remanence to zero. It is 

always larger than the coercive force. The initial susceptibility (χ0) is the magnetization 

observed in low fields, on the order of the earth's field (50-100 μT) (Figure 2.6). 

The various hysteresis parameters are not solely intrinsic properties but are dependent on 

grain size, domain state, stresses, and temperature. Because hysteresis parameters are 

dependent on grain size, they are useful for magnetic grain sizing of natural samples. 

 

Figure 2.6: Hysteresis loop of a ferroelectric (Copyright permission from Shahid, 

2009). 

Antiferromagnetism involves materials in which atoms, ions, or molecules have 

permanent ferromagnetic materials. The crystals have domain structure, as in 

ferromagnetic materials, but alternating ions within a domain have their magnetic 

moments oriented in opposite directions, so the domain as a whole has zero 

magnetization, or zero magnetic susceptibility. An example of an antiferromagnetic 

material is manganese oxide, in which manganese ion has a magnetic moment. Such 

materials are generally antiferromagnetic at low temperatures. If the sublattice moments 
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are exactly equal but opposite, the net moment is zero. This type of magnetic ordering is 

called antiferromagnetism (Figure 2.7). 

 

Figure 2.7: The atomic dipole orientation for  antiferromagnetic manganese oxide. 

In ionic compounds, such as oxides, more complex forms of magnetic ordering can occur 

as a result of the crystal structure (Muralt, 2000). One type of magnetic ordering is call 

ferrimagnetism (Damjanovic, 1998). A simple representation of the magnetic spins in a 

ferrimagnetic oxide is shown here. The magnetic structure is composed of two magnetic 

sublattices (called A and B) separated by oxygens. The exchange interactions are 

mediated by the oxygen anions. When this happens, the interactions are called indirect or 

super exchange interactions. The strongest super exchange interactions result in an 

antiparallel alignment of spins between the two sublattice. In ferrimagnets, the magnetic 

moments of the sublattices are not equal and result in a net magnetic moment. 

Ferrimagnetism is therefore similar to ferromagnetism. It exhibits all the hallmarks of 

ferromagnetic behavior- spontaneous magnetization, Curie temperatures, hysteresis, and 

remanence. However, ferro- and ferrimagnets have very different magnetic ordering. Like 

ferromagnetics and antiferromagnetics, there is a domain structure and like 

antiferromagnetic, alternate magnetic moments are pointing in opposite directions. 

However, this does not result in complete cancellation of the magnetization of a domain. 
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This often results if the alternating atoms or ions within domain are different species, with 

unequal magnetic moments. Magnetite (Fe3O4) is a well-known ferrimagnetic material. 

Indeed, magnetite was considered a ferrimagnet until Neel in the 1940's, provided the 

theoretical framework for understanding ferrimagnetism (Figure 2.8). 

 

Figure 2.8: The atomic dipole orientation for a Fe (II) and Fe(III) ions in Fe3O4 

2.2.3 Optical Properties  

In a semiconductor, conductor, or insulator the valence electrons occupy the valence 

band, which is separated from the conductance band, by a forbidden gap of energy (band 

gap). In a conductor the two bands overlap resulting in the flow of electrons within the 

conduction band creating an electric current. Insulators have very large band gaps (> 5eV) 

and do not conduct electricity because electrons cannot be promoted from the VB to CB. 

However, an insulator can be made to conduct electricity if thermal energy or energy from 

an externally applied field contributes enough energy for the electrons in the filled valence 

band to jump to the conduction band. Semiconductors are elements or compounds with a 

small band gap (~1.4-5.0 eV) that can conduct electricity under some conditions (Figure 

2.1). Therefore it is a good medium for the control of electrical current making it very 

attractive for applications in electronic devices. Additionally, metal oxides display optical 
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characteristics and their studies have directly showed the ground state electronic 

structures as well as numerous excitations of charge, spin, orbital, and lattice degrees of 

freedom. The optical features of metal oxides have broaden their field of technological 

applications including optical and optoelectronic devices by applying the optical 

responses, magneto-optical effect, photo-refractive effect and elasto-optic effect. 

Moreover, the conductivity of a semiconductor depends on the current or voltage applied 

to a control electrode or on the intensity of irradiation by infrared (IR), visible light, 

ultraviolet (UV) or X-ray. 

2.3 Ceramic Thin Films 

Thin film technology is the basis of astonishing development in solid state electronics 

(Kern, 2012). The utility of the optical properties of ceramic or semiconductor films, and 

scientific interest about the activity of two-dimensional solids has been responsible for 

the great interest in the area of science and technology of the thin films. Thin film studies 

depend on thickness, geometry, and structure of the film (Prellier, Singh, & Murugavel, 

2005). The thickness of thin film ranges between tenths of nanometer (nm) and several 

micrometers (μm). So the properties of thin film particularly can be controlled by the 

thickness parameter. Thin films are especially suitable for applications in the field of 

microelectronics, optoelectronic, photonic, magnetic devices, integrated optics, IR 

detectors, interference filters, solar cells, polarizer’s, temperature controller in satellite, 

superconducting films, anticorrosive and decorative coatings (Muralt, 2000). Amorphous 

and crystalline thin films have been produced mostly by deposition, either physical or 

chemical methods. The vast varieties of thin film materials, their deposition techniques 

and fabrication methods, spectroscopic characterization and optical characterization 

inquiries that are used to produce the devices (Niesen & De Guire, 2001). It is possible to 

categorize these techniques in two ways. (a) Physical method and (b) Chemical method. 
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Physical method includes the fabrication methods which depends on the evaporation or 

discharge of the material from a source such as evaporation and sputtering. Structure-

property relationships are the important characteristics of such devices and basis of thin 

film technologies. Primarily the performance and economy of thin film depends on the 

deposition techniques in a specific chemical reaction. Thus chemical reactions may 

depend on thermal effects, as in vapour phase deposition and thermal growth. However, 

in all these cases a definite chemical reaction is required to get the final film. In order to 

classified deposition of films by chemical methods into two categories. The first of these 

category is concerned with the chemical formation of the film from medium involved are 

electroplating, chemical reduction plating and vapour phase deposition. While second one 

is that of production of thin film from the precursor ingredients like iodization, gaseous 

iodization (Hass, Francombe, & Hoffman, 2013), thermal growth, sputtering ion beam 

implantation (Windischmann, 1987), chemical vapour deposition (CVD) (Minegishi et 

al., 1997) and vacuum evaporation (Hass, et al., 2013). The techniques are summarized 

in table 2.1 are often capable of forming films. The films thickness of 1 μm or less are 

defined as thin films while thick films have thickness of 1 μm or more.  

Furthermore, there are several techniques which are only able to produce thick films such 

as screen printing (Ito et al., 2007), glazing, electrophoretic deposition (EPD) (Kawachi 

et al., 2001), flame spraying and painting (Kawachi, et al., 2001). Controlled morphology 

and thickness of thin films can be used for optical and photoelectrochemical studies 

(Kawachi, et al., 2001; Hongkang Wang et al., 2014). Multiple layers of thin films can 

also enhance the optical efficiency (H. Wang, et al., 2014). Ceramic thin films extensively 

applied for solar cells (Chopra, Paulson, & Dutta, 2004; Poortmans & Arkhipov, 2006), 

photovoltaic devices (Izaki et al., 2007), Dye sensitizes solar cell (DSSC) (Chopra, et al., 

2004; Mor, Shankar, Paulose, Varghese, & Grimes, 2006), gas sensor (Suchea, 

Christoulakis, Moschovis, Katsarakis, & Kiriakidis, 2006; Traversa, Gnappi, Montenero, 
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& Gusmano, 1996), fuel cells (Minh, 1993),  supercapacitors (Yao et al., 2011) and in 

rechargeable batteries (Bates et al., 1993; Dudney, 2005). Semiconductor ceramic thin 

films are in the form of oxides, sulphides and nitrides have attract the attention of 

researchers in the last few decades (Suresh, 2013). These semiconducting films are highly 

important for electrochemical applications. Metal oxide and metal halide thin films are 

also used in making transparent transistors, which are of low cost, stable and environment 

and economic friendly. On behalf of phase separation, ceramic oxide thin films can be 

classified as:  

i) Solid solution ceramic thin films  

ii) Composite ceramic thin films. 

2.3.1 Solid Solution Ceramic Thin Films 

 

These ceramic thin films are mixture of two crystalline solid materials that exist together 

as a new crystalline solid, or crystal lattice. It can be done by mixing of two solids in their 

molten state at temperature higher than their melting point and then cooling that produce 

a new form of solid or by fabricating vapors of the precursor materials onto the substrates 

to deposit thin films. As compared to liquids solids have different criteria of mutual 

solubility, depending on their crystalline structure and chemical properties, which define 

how their atoms fix together in the combined crystal lattice. The combined lattice can be 

substitutional, in which the atoms of one crystal substitute those of the other, or 

interstitial, in which the atoms inhabit vacant position in the lattice other crystal. The 

solids may be soluble to some extent or entire range of relative concentrations, result a 

crystal with variable properties as compared to starting precursor (Handoko & Goh, 2013; 

Mansoor, Ehsan, et al., 2013). This offers a way to modify the properties of the solid 

solution for different applications. Solid solutions of ceramic semiconductors are of 

remarkable technological importance, as in the mixture of aluminum arsenide (AlAs), 
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gallium arsenide (GaAs) with gallium phosphide (GaP), or indium arsenide (InAs) 

(Askeland & Wright, 2015; Fulay & Lee, 2013; Voitsekhovskii, Drobyazko, & Mityurev, 

1995). The properties of these solid solutions can be altered to final product by modifying 

the relative proportions of the starting materials; for example, the band gap for mixtures 

of InAs and GaAs can be adjusted in any range between the value for pure InAs (0.36 

electron volt (eV) and that for pure GaAs (1.4 eV), depending on required electrical and 

optical properties of materials. This approach makes ceramic semiconducting solid 

solutions efficient towards optical and electronic devices, including solar cells, 

transistors, light-emitting diodes (LEDs), infrared detectors, and semiconductor lasers. 

Similar examples of solid solution ceramic thin films are PbSxSe1-x, CdxZn1− xS, Bi-Sb, 

Cr-Me-Si, MnCo2O4 (K. J. Kim & Heo, 2012; Kud, Ieremenko, Likhoded, Uvarova, & 

Zyatkevich, 2012; Z. Liu et al., 2013; Noro, Sato, & Kagechika, 1993; Raviprakash, 

Bangera, & Shivakumar, 2009; Uusi-Esko, Rautama, Laitinen, Sajavaara, & Karppinen, 

2010). 

2.3.2 Composites Ceramic Thin Films 

These are materials prepared from two or more different materials with distinct physical 

or chemical properties, that when mixed, produce a material with properties changed from 

the isolated components (Ehsan, Naeem, Khaledi, Sohail, Saeed, et al., 2016; Ehsan, 

Naeem, McKee, et al., 2016). Each component remains dissimilar within the final 

product. Using this explanation, large number of engineering materials can be found in 

this class. For example when glass fibers are embedded in a polymer produces fiber glass 

sheet which is a composite. 

Composite materials possess two phases. First one is the reinforcing phase like fibers, 

particles or sheets that are embedded in the second phase called the matrix phase. Both of 

the phases can be ceramic, metal or polymer. Mostly, matrix materials comprises of tough 
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or ductile materials whereas reinforcing are strong materials having low density. Some 

common composite thin films are TiO2–Cu2O used for superhydrophobic coatings (Aytug 

et al., 2014), Cu2O–CoO composites employed for optical band gap. The incorporation 

of reduced graphene oxide (rGO) on a TiO2 surface has been used for 

photoelectrochemical (PEC) studies (Aytug, et al., 2014) and ZnS–SiO2 composite 

ceramics utilized thermal shock resistance materials (G.-S. Kim, Shin, Seo, & Do Kim, 

2008). 

2.4 Thin Film Deposition Techniques 

Several fabrication techniques have been established over time as the concern in thin film 

formation has continued to build up (Hartnagel, Dawar, Jain, & Jagadish, 1995). In broad 

terms these techniques can be categorized as either physical or chemical deposition 

techniques (Humphreys et al., 1990; Mahan, 2000; R. Mane & Lokhande, 2000; Nair & 

Nair, 1991). The benefits and problems pertaining to these methodologies are summarized 

in Table 2.1. 
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Table 2.1: Classifications of thin films deposition techniques  

Thin Films Deposition Techniques 

PHYSICAL CHEMICAL 

Sputtering Evaporation Gas Phase Liquid Phase  

1) Glow discharge 

DC Sputtering 

1) Vacuum 

evaporation 

1) Chemical  vapour 

deposition (CVD) 

1) Electro-deposition 

2) Triode  

Sputtering 

2) Resistive heating 

evaporation 

2) Atmospheric 

pressure CVD 

(APCVD) 

2) Chemical bath 

deposition (CBD) 

3) Arrested 

precipitation technique 

(APT) 

3) Getter 

Sputtering 

3) Flash Evaporation 3)  Low-pressure 

CVD (LPCVD) 

4) Electroless 

deposition 

4) Radio Frequency 

sputtering 

4) Electron beam 

evaporation 

4)  Metal-organic 

CVD (MO-CVD) 

5) Anodisation 

5) Magnetron 

sputtering 

5) Laser evaporation 5) Photo enhanced 

CVD (PHCVD) 

6) Sol-gel 

7) Spin Coating 

6) Ion beam 

sputtering 

6) Reactive 

Evaporation 

6)  Laser induced 

CVD (PCVD) 

8) Spray-pyrolysis 

technique (SPT) 

7) A.C sputtering 7) Arc Evaporation 7) Electron 

enhanced CVD 

9) Ultrasonic SPT 

8) Molecular beam 

epitaxy (MBE) 

10) Polymer assisted 

deposition (PAD) 
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2.4.1 Electrophoretic Deposition (EPD) 

The term ‘electrodeposition’ is often used to refer to either electroplating or 

electrophoretic deposition (EPD). It usually refers to the former term which exhibits the 

difference between the two processes deposition process (Santos et al., 2015). EPD is one 

of the colloidal method in semiconductor or ceramic formation and has benefits of less 

deposition time, require simple apparatus, slight limit on the shape of substrate, no need 

of binder burn out as the green coating do not contain organics. EPD also control the 

thickness and morphology of a deposited film through simple modification of the 

deposition time and applied potential. In EPD process, charged powder particles, 

dispersed or suspended in a liquid medium are attracted and deposited on a conductive 

substrate of opposite charge in the presence of electric field. There are two types of 

electrophoretic deposition depending on which electrode the deposition occurs. When the 

particles are positively charged, the deposition occurs on the cathode and the process is 

termed as cathodic electrophoretic deposition (Zhitomirsky, 1998). The deposition of 

negatively charged particles happens on an anode is named as anodic electrophoretic 

deposition (Hanaor et al., 2011) (Figure 2.9). 

The EPD method has been used effectively for thick film of silica, nano size zeolite 

membrane (Shan et al., 2004), hydroxyapatite coating on metal substrate for biomedical 

applications (Pang & Zhitomirsky, 2005), luminescent materials, high-Tc 

superconducting films, gas diffusion electrodes and sensors (Hossein-Babaei & 

Taghibakhsh, 2000), multi-layer composites (Chang et al., 2010), glass and ceramic 

matrix composites by infiltration of ceramic particles onto fiber fabrics (A. R. Boccaccini, 

Kaya, & Chawla, 2001), oxide nanorods (Cao, 2004), carbon nanotube film (Aldo R. 

Boccaccini et al., 2006), functionally graded ceramics, layered ceramics, superconductors 
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and piezoelectric materials (Besra, Compson, & Liu, 2006; Besra, Zha, & Liu, 2006; 

Besra & Liu, 2007). 

 

Figure 2.9: Schematic representation of the two types of cathodic electrodeposition 

processes: (a) electroplating and (b) electrophoretic deposition (EPD) (Copyright 

permission from Santos, et al., 2015). 

2.4.1.1 Factors Influencing EPD 

The EPD technique involve charged particles in a suspension being deposited on substrate 

in the presence of an applied electric field. Two groups of parameters define the features 

of this method related to; (i) the suspension, and (ii) the process including the physical 

factors such as nature of the electrodes and electrical conditions including 

voltage/intensity relationship, deposition time, etc.  

(i)   Effect of deposition time 

Deposition rate for a fixed applied field decreases with increased or prolonged deposition 

time. A typical deposition characteristics of ZnO coating on copper electrode at different 

applied potentials, with increasing time of deposition (Wong & Searson, 1999). It is 

clearly evident that the deposition is linear during the initial time of deposition. But as 

more and more time is allowed, the deposition rate decreases and attains a plateau at very 

high deposition times. In a constant voltage EPD, this is expected because: while the 

potential difference between the electrodes is maintained constant, the electric field 
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influencing electrophoresis decreases with deposition time because of the formation of an 

insulating layer of ceramic particles on the electrode surface. But during the initial period 

of EPD, there is generally a linear relationship between deposition mass and time. 

(ii)   Applied voltage 

For a higher applied field, which may cause turbulence in the suspension, the coating may 

be disturbed by flows in the surrounding medium, even during its deposition. In addition, 

particles can move so fast that they cannot find enough time to sit in their best positions 

to form a close-packed structure. Finally, in high field situations, lateral motion of the 

particles once deposited, also are restricted on the surface of the already deposited layer, 

because higher applied potential exerts more pressure on particle flux and movement, the 

applied field affects the deposition rate and the structure of the deposit. It is observed that 

the unstable current density effects the surface morphology of deposited films. It was 

found that quantity of YSZ deposition from the n-propanol increased with increasing 

applied voltage (Jia et al., 2006). However, the microstructures, texture and surface 

morphologies of the EPD deposited film were found to be smooth at low voltages and 

rough at high voltage.  

(iii)   Concentration of solid in suspension 

The concentration of solid in the suspension play a significant part for multi-component 

EPD. In some cases, although each of the particle species have same sign of surface 

charge, they could deposit at different rates depending on the volume fraction of solids in 

the suspension. If the volume fraction of solids is high, the powders deposit at an equal 

rate. If however, the volume fraction of solids is low, the particles can deposit at rates 

proportional to their individual electrophoretic mobility. 

(iv)  Conductivity of substrate 
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The uniformity and conductivity of substrate electrode is an important parameter critical 

to the quality of the deposition of films by EPD. Peng and Liu (Peng & Liu, 2001) noticed 

that low conductivity of the La0.9Sr0.1MnO3 (LSM) substrate deposit the non-uniform 

green films by EPD. Chen and Liu (F. Chen & Liu, 2001) observed that when LSM 

(LaSrMnO3) or LSM–YSZ composite pellets have been used as conductive substrate for 

EPD, the deposition rate of non-uniform YSZ (yittria-stabilized zirconia) film was slow. 

Therefore, the green YSZ film obtained was of high quality.  

2.4.2 Chemical Vapour Deposition (CVD)  

2.4.2.1 Basic Principles of CVD 

Chemical Vapour Deposition (CVD) is a main process that has found wide application in 

modern industry for the production of microelectronic devices, optical, decorative 

coatings, in order to produce a broad range of new materials, such as ceramic based thin 

films. The CVD process of creating a film has to be reproducible and controllable. As a 

result, the intrinsic properties such as the purity, composition, thickness, adhesion, 

microstructure and surface morphology have to be reproducible for the same reactor 

conditions.  

Conventional CVD is an extensively-used method to growth of thin films of material of 

interest on substrate. The technique involves different steps including transfer of activated 

precursor by the inert carrier gas (argon/nitrogen/air/oxygen) to the reactor zone where 

the substrates are placed (Figure 2.10). Once the precursor approaches reactor zone it 

undergoes systematic reaction either in gaseous phase or onto the substrate surface. Both 

the possibilities of reactions result in the formation of thin film on the surface of substrate. 

Thus, CVD reactions can be homogenous or may be heterogeneous. Most CVD reactions 

are likely to be heterogeneous because they occur at the surface of substrate rather than 

gaseous or vapour phase. Homogenous process involves nucleation of particles in gaseous 
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phase resulting in powder coating that neither strongly adheres to substrate nor 

completely pure (Özgür et al., 2005).  

 

Figure 2.10: A representation of chemical vapour deposition (CVD) involving physical 

changes: [a] precursor reaction in vapour state; [b] diffusion of precursors on the surface 

of substrate; [c] precursor adsorptions and reaction on substarte; [d] elimination of 

volatile by-product; [e] adatoms get diffused on substrate sites; [f ] nucleation and 

formation of thin film on substrate.  

CVD technique is now considered as an important process in many industrial fields and 

solid-state microelectronics. Thin films of conductors (W, Mo, Al etc), semiconductors 

(Si, GaAs etc.) and insulators, dielectrics (oxides, silicates, and nitrides) are broadly used 

in the progress of solid state devices (Cahill, Goodson, & Majumdar, 2002). Most of these 

CVD reactions were used for the coating of the substrates at low pressure, often at high 

temperatures (Pierson, 1999). Recent developments emphasis on low or moderate 

temperature for deposition through CVD, such as plasma-CVD, and photo-CVD, 

MOCVD, and atomic layer deposition (ALD). These assisted techniques of chemical 

vapour deposition are widely applied in semiconductor industry, microelectronics, hard 

coatings corrosion and wear resistance applications at reduced fabrication temperatures 

thus facilitating utilization of substrates in a broader spectrum.  

2.4.2.2 Variations of CVD 

The improvement of CVD technique has developed in a many directions, leads to variety 

of variations of the process. The process selected for the deposition of any target material 
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is depending on the precursors used and type of thin film required. Some of the variations 

of CVD are plasma enhanced CVD (PECVD) (Hozumi & Takai, 1997), metal– organic 

CVD (MOCVD) (J. L. Yang, An, Park, Yi, & Choi, 2004), atmospheric pressure CVD 

(APCVD) (Manning, Parkin, Pemble, Sheel, & Vernardou, 2004), low pressure CVD 

(LPCVD) (X. Li et al., 2011), liquid injection CVD (Jones et al., 1998), laser Assisted 

CVD (LACVD) (Herman, 1989) and molecular beam epitaxy (Y. Chen et al., 1997). In 

this work we will through on two of significant variation of CVD known as Aerosol 

Assisted Chemical vapour deposition (AACVD) and electric field directed aerosol 

assisted chemical vapour deposition (EFDAACVD), are the latest modified assistance of 

CVD. 

2.4.2.3 Aerosol-Assisted Chemical Vapour Deposition (AACVD) 

Aerosol-assisted chemical vapour deposition (AACVD) is a liquid-phase variation of the 

conventional CVD process that involves first preparation of a clear soluble solution of 

precursor in some suitable volatile solvent from which an aerosol particles are formed by 

using ultrasonic humidifier (nebulizer), generating a mist of precursor solution, which is 

then transferred to a hot chamber of furnace (reactor), where the substrates are already 

placed, by a carrier gas. Once the aerosols approaches substrate in hot zone of reactor due 

to high temperature solvent gets evaporated and leaving behind the vapourized precursor 

in its gaseous state, followed by the deposition onto the substrate resulting in the 

formation of target material.  

One main development of AACVD over conventional CVD techniques is any precursor 

that can be easily soluble in any volatile (preferably organic) solvent is required. The 

parameter for volatile precursor is excluded (Marchand, Hassan, Parkin, & Carmalt, 

2013). However, inorganic molecular precursors are very stable and less sensitive towards 

air; possess less volatility, therefore require elevated temperatures and low pressure for 
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fabrication. Fabrication of gold films possess robust and strongly adhered by AACVD 

making it suitable to work at industrial scale (Hannon, Kodambaka, Ross, & Tromp, 

2006). Hydrogen tetrachloroaurate, [HAuCl4], was not suitable for conventional CVD 

due to its low decomposition temperature (175 °C) and poor volatility. However, 

[HAuCl4] has revealed to be the best precursor in the growth of gold films via AACVD 

(Palgrave & Parkin, 2007). Another important advantage of AACVD arises from use of 

an ultrasonic humidifier to produce aerosol particles of precursor solution rather than 

focusing on the evaporation of precursors to transport it to the reaction chamber. This 

makes it simple to transport the precursor, thus becomes economical promising deposition 

method. Another favorable feature of AACVD is the utilization of carrier gas to deliver 

the precursor droplets to CVD reactor which requires adequate pressure to deliver the 

aerosols. For this purpose, the optimum gas flow rate during the process has to be 

established enabling increased the deposition rate due to the higher mass transfer of 

precursor on to the substrate. In a nutshell, AACVD is a versatile method to create thin 

films of a multicomponent material with controlled stoichiometry by chemical reaction 

of precursor on the substrate surface. 

2.4.2.4 Deposition Conditions and their Influence on Morphology 

The deposition conditions or parameters employed in a system during deposition are 

important to produce thin films with the required architecture and morphology. During 

an AACVD, the structure and morphology of the deposited thin films can be changed 

depends upon a variation in certain factors/conditions, for example the use of precursor, 

temperature, solvent and substrate. Field emission scanning electron microscopy (FE-

SEM) is an important technique for defining the morphology of thin films by changing 

these factors. There are some main highlighted variables from which and how we can 

determine the variation in morphology. 
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a) Precursor 

The selection of a precursor or complex plays a vital part in the deposition of thin film. It 

has been revealed that when different precursor were used for the fabrication of zinc oxide 

(ZnO) thin films via AACVD process, different topography, architectures and surface 

morphologies were obtained as shown in Figure 2.11. Walters et al. used Zn (acac)2 as 

basic precursor for the growth of ZnO thin films (Walters & Parkin, 2009). They reported 

that the surface morphology of pristine ZnO films formed at 450 oC was round shape. 

However, hexagonal shaped nanoparticles (Figure 2.11a,b) could have been the 

subsequent growth of ZnO crystallites from the round shaped particles. In spite of using 

a normal precursor, Hamid et al. effectively fabricated ZnO films by  using a zinc 

complex, Zn6(OAc)8(μ-OH)2(dmae)2(dmaeH)2 (OAc = acetate and dmaeH = N,N′-

dimethylaminoethanol) at a temperature of 350 °C  via AACVD process (Hamid et al., 

2008). 
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Figure 2.11: (a) SEM images of thin ZnO thin films fabricated by using different 

precursors (a,b) zinc acetate at 450 oC (Copyright permission from Walters & Parkin, 

2009), (c) Zn6(OAc)8(μ-OH)2(dmae)2(dmaeH)2 at 350 oC (Hamid, et al., 2008) and (d) 

Zn6 (OAc)8(μ-O)2(dmae)4 (OAc) at 400 oC (Copyright permission from M. Shahid, et 

al., 2012) by AACVD on FTO sunbstrate. 

b) Deposition Temperature 

The temperature can influence the texture of a film fabricated by AACVD. For example, 

Shahid et al. reported that when ZnO films were fabricated at various temperatures 

different morphologies had been experienced (M. Shahid, et al., 2012). Films fabricated 

at 250 °C had small, poorly defined individual grains in the range of 0.1–0.3 μm, while 

relatively large individual grains size of 0.2–0.7 μm were observed for the films 

fabricated at 475 °C. At temperatures of 325 and 400 °C, the films were more dense and 

flatter, with uniformly discrete grains as shown in Figure 2.12. The sphere-shaped 

particles had a good orientation and definite grain boundaries. . The various morphologies 

can be observed for the ZnO thin films, as shown in Figure 2.11 c, and it is establish that 

the zinc oxide thin film had a dense, compact, continuous, and smooth morphology. The 

spherical shaped particles have good orientation and clear well-defined grain boundaries.  

Univ
ers

ity
 of

 M
ala

ya



 

31 

 

Figure 2.12: Surface morphology of ZnO thin films deposited from Zinc precursor at  

(a) 250, (b) 325, (c) 400 and  (d) 475 oC on glass substrate (Copyright permission from 

M. Shahid, et al., 2012). 

Furthermore, Shahid et al. also used a novel hexanuclear zinc complex, Zn6 (OAc)8(μ-

O)2(dmae)4 (1) (OAc = acetato, dmae = N,N-dimethyl aminoethanolato) for the growth 

of ZnO films (M. Shahid et al., 2012). They stated that the ZnO film exhibited a more 

regular look, as compactly packed rectangular-shaped particles that were uniformly 

distributed, as shown in Figure 2.11d. They also reported that the production of well-

developed isolated crystalline particles was due to the homogeneous decomposition 

pathway in AACVD approach. The formation of a well-defined ZnO nanostructure rather 

than the aggregation of nanoparticles is also well supported by the deposition of ZnO thin 

films using single source precursors (SSP) (AzadáMalik, 1994; Ying Wang, Li, Zhou, Zu, 

& Deng, 2011). These interpretations showed that the morphology of the semiconductor 

thin film significantly depend upon the choice of the precursors 
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c) Solvent 

The effect of solvents on the morphologies of films grown by AACVD can be important 

and depending on the precursor. Titanium dioxide (TiO2) thin films deposited by a 

AACVD using titanium (IV) isopropoxide (TTIP) with various solvents (hexane, ethanol, 

methanol, isopropanol and dichloromethane ) which were used to deposit on glass and 

steel substrates at 550 °C as shown in Figure 2.13 (Edusi, Sankar, & Parkin, 2012).  

 

Figure 2.13: Different morphologies of TiO2 thin films fabricated by using (a) 100% 

ethanol, (b) 100% methanol, (c) 10% methanol and 90% ethanol, and (d) 25% methanol 

and 75% ethanol from (a) chloroform and (b) chloroform/toluene (1:1) on steel via 

AACVD Copyright permission from (Edusi, et al., 2012). 

Edusi, et al. reported that the solvent effected the phase of the fabricated TiO2 film, it 

display either an anatase or rutile phase, or a combination of the two phases. As 

demonstrated in Figure 2.13, the influence of solvents on the phase of TiO2 phase has 

been explained via AACVD. In case of methanol solvents under same conditions titania 
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films produce the rutile phase, while the other solvents only produced the anatase phase. 

More surprisingly, a mixture of ethanol and methanol as the solvent produced only the 

rutile phase at a mixture as low as 90% ethanol and 10% methanol as shown in Figure 

2.13. This displays that the methanol has a directing influence on the formation of the 

rutile phase. They also exhibited that the TiO2 films grown on steel substrates are 

photochemical active, and the rutile phase is less active than the anatase phase. Moreover, 

Panjawi et al. described the AACVD deposited titania thin films on gas-sensor substrates 

at 450 °C by using solution of titanium isopropoxide in toluene (N. Panjawi, A. Naik, M. 

E. Warwick, G. Hyett, & R. Binions, 2012).  

d) Effect of Electric Field on AACCVD  

Previous studies already reported the effect of an electric field during CVD, with 

crystallographic orientation, microstructure, and functional properties being the most 

influenced features (Naik et al., 2013; N. Panjawi, A. Naik, M. E. A. Warwick, G. Hyett, 

& R. Binions, 2012; Shaw, Parkin, Pratt, & Williams, 2005). This effect was also 

observed for titania thin films (Romero & Binions, 2013). These changes in morphology 

are thought to be a result of the interaction between a permanent or induced dipole in the 

CVD precursor species (or partially decomposed gas phase and/or surface species 

(Romero & Binions, 2013)) and the applied electric field and the application of 

EFDAACVD reactions (Crane, Warwick, Smith, Furlan, & Binions, 2011). It has 

previously been observed that there has been an enhancement of growth rate due to the 

introduction of an electric field in the deposition process. This has been attributed to the 

increase of kinetic energy of aerosol droplets which, in turn, increases the likelihood of 

nucleation on the substrate, or through bond activation due to the molecule being stretched 

along the direction of its dipole (Naik, et al., 2013), however in this instance it is unlikely 

that there is a strong interaction between the electric field and gas-phase species as the 
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TTIP precursor does not have a permanent dipole, as such gas-phase effects are not 

expected to dominate in this work.  

 

Figure 2.14: FE-SEM of  TiO2 films fabricated via  EFD-AACVD of  Ti(OiPr)4 

solution in toluene at 450 °C by applying an electric field: A) no field. B) 1.11 × 104,C) 

2.22 × 104, D) 1.11 × 105, E) 2.22 × 105, F) 4.44 × 105 and G) 6.67 × 105Vm−1 

(Copyright permission from Panjawi, et al., 2012) 

It is possible that the aerosol droplet may be charged: As the droplet approaches the heated 

substrate surface, the solvent evaporates and interaction with the electric field ceases. It 

is more likely, however, that the film growth is dominated by the interaction of the electric 

field with species on the substrate, most likely through the formation of surface dipoles, 

which direct the crystal growth via a strong localized electric field (Panjawi, et al., 2012; 

Romero et al., 2015). In this work, they examined the effect of the potential difference on 
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the architecture and surface morphology of the fabricated films. The electric field applied 

across the electrodes led to some differences in the morphology of the deposited films 

(Figure. 2.14B–G). Increasing the potential between 1.11 × 104 and 2.22 × 104 Vm−1 

(Figure 2.14B and C) shows small 5 μm diameter of the sphere-shaped aggregates. The 

size of octahedral shaped particles was also uniformly decreased. By increasing the 

electric field strength (Figure 2.14C–G) larger aggregates are formed, and separate 

agglomerates were difficult to distinguish in the thick film. 

2.5 Precursors for Ceramic Thin Films 

The precursors can be widely categorized into three types. 

i) The inorganic precursors, which do not contain carbon. 

ii) The metal-organic precursors which contain organic ligands, but do not have 

metal-carbon bonds 

iii) The organometallic precursors, which contain both organic ligands and metal-

carbon bonds. 

These kinds of precursors contain one or more atoms or group of atoms that are 

components of the target material. Target materials are produced by decomposition of 

precursor during synthesis process. Metal-organic and organometallic precursors have 

brought a great attention due to their ability to improve the structure, stoichiometry and 

the ligand framework, e.g. if a same metal of interest is surrounded by different types of 

hydrocarbons will finally change the chemical reactivity as well as physical properties of 

the different precursors for the same target material. Thus controlling these parameters is 

important for good precursor engineering.  
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Figure 2.15: Coordination modes of  alkoxide ligands 

 

 

Figure 2.16: Coordination modes of carboxylate ligands. 

Coordination modes of metal with alkoxide and carboxylate ligands are described in 

Figure 2.15 and Figure 2.16. Inorganic molecular precursors include binary hydrides or 

halides, owe chemical simplicity but they do not give similar degrees of freedom as in 

case of organo-metallic precursors. These inorganic precursors can also leave some halide 

contaminations in the target material at normal temperature of deposition. 
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2.5.1 Precursor Requirements for CVD 

The struggle to prepare precursors is considered important that have a combination of 

exact characteristics which make them suitable for the basic of ceramic thin film 

deposition. Achievement of a precursor for adsorption and deposition depends on the 

grade of these characteristics and potential. However, the problem starts when the 

precursor preferably starts to react in vapour phase rather than on the surface of substrate 

during thin film fabrication by AACVD. This difficulty can be diminished by lessening 

the precursor concentration in a reaction chamber. Furthermore, the droplets that are 

created by reaction in vapour phase can contaminate the thin film. So it is compulsory to 

use precursor that preferably reacts or decomposes on substrate surface rather than in 

gaseous state during AACVD technique. For these types of systems precursor must be 

able to tolerate high temperature for short period of time before reaching the tube furnace 

for decomposition. So the necessary requirements for precursor design to fabricate the 

ceramic thin films have to meet the following properties. 

Solubility: For film fabrication by CVD the first and primary demand for a precursor is 

to soluble in some appropriate, less dense and low boiling solvent. Which can allow the 

solution in making aerosol droplets to travel in the reactor region. The precursors should 

also have good volatility and easily travelled to the reactor zone.   

Stability: A suitable precursor is the one which is stable in air and can be stored under 

normal conditions. Thus, it minimize the need of any inert or special conditions during 

film deposition. The precursor must be chemically and thermally stable during thermal 

decomposition to avoid premature decomposition and inimitable film growth.   

Toxicity: Precursors with non-toxic or less toxic nature is always favored, if not then 

special storage and safety will be required during CVD. 
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Precursor Purity: One of the important demand is to synthesize pure precursor to improve 

fabrication of thin film that is free from residual impurities. Then it should be purified 

through suitable purification methods during the preparation of precursors. The 

decomposition of precursor should be clean, thus no residual contaminations can be 

incorporated in the ceramic thin film. 

Precursor Reactivity: A suitable precursor for CVD is the one which decomposes on the 

substrate surface rather than in gaseous form. For good deposition it is necessary to heat 

the substrate before precursor decomposition in the tube furnace. 

 Synthesis in bulk: If a precursor is appropriate for CVD of thin film then it must also be 

easy to synthesize it in large amount without facing main difficulties. 

Environment and cost effective: The precursor should be non-toxic, non-pyrophyric, non-

flammable and non-explosive It should also be recyclable and its decomposition is either 

free from carbon dioxide (CO2) emission or with very less quantity which can be 

controlled from environmental pollution. At the same time the CVD precursor must be 

easy to synthesize at low cost with high yield and stability in both air and moisture 

environment. 

2.6    Characterization Techniques 

2.6.1 Characterization of Precursors 

2.6.1.1 Microanalysis 

Microanalysis or elemental analysis is the qualitative and quantitative identification of 

chemical elements (atoms or ions) in a specimen. Results of elemental analysis face 

difficulties in determining the exact of stoichiometry heterometallic complexes due to the 

alteration in ratio of metals and ligands. However, by the help of atomic absorption 

analysis of metallic elements, the CHN results may become helpful to obtain the 
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composition of the heterometallic compounds. The validation of these results are further 

confirmed by single crystal X-ray analysis.  

2.6.1.2 Infrared Spectroscopy 

Infrared (IR) spectroscopy is a useful method for the determination of organic and 

inorganic moieties present in a sample. The IR spectrum is recorded by passing IR 

radiation through a sample and measured the absorption frequencies that correspond with 

the structural properties of molecules. The different functional groups attached to a 

molecule produce characteristics absorption in IR spectrum. The IR spectroscopy is 

known technique for the structural determination in the samples. The IR spectrum ranges 

from 14,000 cm-1 to 10 cm-1. The region of most consideration for chemical interpretation 

is the mid-infrared regions (4000-400cm-1). Which determines changes in vibrational 

energies within the molecules. The far-infrared region (400-10cm-1) esteemed for 

molecules including inorganic compounds but needs somewhat particular laboratory 

techniques. IR spectra represents valuable data for the compounds with functionalized 

ligands, which face difficulties in structural determination of heterometallic schemes 

because of the screening of significant bands. The IR spectra becomes very complex 

because of crowded ligand climate and definite absorption band could not easily 

determined. The O-H group nature either bonded with central metal or may be a part of 

ligand can be known by the absorption frequency. The coordination performance of 

carboxylate to metal can be planned by identifying the factor ∆v = (v(COO)asym and 

v(COO-)sym by IR spectroscopy, if ∆v is less than 200 cm-1 the carboxylate behave as a 

bridging ligand. This technique also has been used to find out the presence of numerous 

alkoxy groups as every metal ligand bond produces a characteristic absorption such as 

vOMe = 1185, vOEt = 1020, vOPr = 839,1124 and 1158 cm-1, respectively in different mixed 

metal alkoxides. The terminal and bridging alkoxy groups in various heterobimetallic 
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species may be determined on the behalf of IR absorption bands present in the area  

around 1022-1181 and 939-1072 cm-1, respectively. Heterometallic diketonates shows 

two absorption bands around 1565-1573 due to C=O and 1510-1514 cm-1 due to C=O 

stretching vibrations. The presence of the absorption frequency due to bonded “dmae” 

bridging moiety appeared between  1070-1075 cm−1 varied from those reported for free 

“DmaeH” at 1040 cm-1. A band identified in the region less than 550 cm-1 may be relate 

to M-O stretching vibrational band for the samples. 

In case of inorganic compounds IR spectroscopy is very useful technique to determining 

the nature, and added impurities both in powder and thin films. FTIR was also useful for 

the evaluation of Hydrogen (H) and moisture contents on deposited films. The IR 

spectroscopy has verified to be a helpful analytical method for industrial and 

environmental areas. 

2.6.1.3 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis (TGA) is an analytical method used to approach the thermal 

stability of the materials. It also helps to obtain the components by observing the weight 

changes that occur when a sample is heated. Thermogravimetric measurements are 

generally carried out in air or an inert atmosphere (He, Ar and N2) and weight loss is 

calculated as a function of raising temperature. Furthermore, differential scanning 

calorimetry (DSC) instrument can also record the temperature differences or heat flow 

between the sample and reference pans. DSC can be used to calculate the melting point, 

enthalpy, energy released or absorbed through chemical reaction during heating process. 

During TG analysis, when materials are heated they can lose weight whether by a sample 

drying process. In this study TGA analysis is performed to examine the pyrolysis 

temperature of the complex to give stable metal oxide or halide end product.  
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2.6.1.4 X-ray Crystallography 

X-ray crystallography is a device that can see inside of crystals to determine their atomic 

and molecular structure. Which allow us to completely identify their structures, 

geometries and unit cell size. Based on the diffraction pattern obtained from X-ray 

scattering off the orderly arranged atoms or molecules in the crystal, the electron density 

map can be refined to generate valuable information about their atomic positions, bond 

length and angles and disorder and various other information. In single crystal X-ray 

diffraction the crystalline atoms cause a beam of incident X-rays to diffract into many 

specific directions, construct a diffraction pattern of spots called reflection. Each 

reflection relates to one set of planes within the crystal and the density of electrons is 

obtained from position and brightness of the several reflections collected as the crystal is 

gradually rotated in X-ray beam. For single crystals with a sufficient purity and 

uniformity, X-ray diffraction data can evaluate the mean of bond angle and bond length 

in few thousands of an angstrom and within a few tenth of a degree, respectively. X-ray 

crystallography is useful in determining identified materials, analyzing novel materials 

and differentiating materials that appear alike by other experiments. The single X-ray 

crystallography technique includes three steps to model the crystal structure. First step is 

to develop an appropriate crystal of the material under investigation. The crystal should 

be effectively large, stoichiometry pure, regular structure and free of defects like cracks. 

In second step rising of crystal in an intense beam of monochromatic X-ray, produce the 

arrangement of reflections. The third step is refinement of the thousands of the reflection 

intensities composed by the full reflection of the crystal. The reflection data are collected 

computationally with analogous chemical details to develop and refine a model of the 

location of atoms with in the crystal structure.  
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2.6.2   Characterization of Thin Films  

2.6.2.1 X-ray Powder Diffractions 

X-ray powder diffraction is a rapid technique primarily to identify crystalline phase and 

degree of crystallinity of thin films and powder. The diffraction pattern allows the 

detection of phase composition and texture of the film, favored orientation and size of 

crystallites and existence of film stress. By scanning the sample through a range of 2θ 

angles, all possible diffraction directions of the lattice should be achieved due to the 

random orientation of the thin films. It is difficult to identify the crystal structure for the 

high symmetry crystals. A large library of spectra of famous compounds is available at 

JCPDS (Joint Committie for Powder Diffraction Standards) files. When the powder 

pattern of the sample are collected and miler indices, d-spacing and lines intensity are 

displayed, these can be matched with the standard reference pattern of identified 

compounds in the library. 

2.6.2.2 Raman Spectroscopy 

Raman spectroscopy is an efficient and non-destructive spectroscopic technique based on 

the scattering of monochromatic light. Photons of the monochromatic light are absorbed 

by the samples and then remitted. Frequency of reemitted photons is shifted up and down 

in comparison with the original monochromatic frequency called a raman shift. This shift 

provides information about vibrational, rotational and other low frequency modes in the 

molecules. Raman shift in wavelength of the scattered radiation that provides the chemical 

and structural information. Raman shifted photons can be of either higher or lower energy, 

depending upon the vibrational state of the molecule under study. 
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2.6.2.3 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is an important and widely used surface and 

subsurface analysis technique in a many fields of study in physics and chemistry such as 

microelectronics, heterogeneous catalysis, environmental geochemistry etc. XPS 

investigates the energy distribution of electrons removed from the solids by irradiation of 

X-ray and the photoelectric effect: the electrons contain information about chemical 

oxidation state, electronic structure, binding energy and elemental composition of the 

compounds being studied. Thus, surface composition as well as the electronic 

environment can be determined. Since the photoelectrons examined come only from the 

topmost atomic layer of the solid surface being analyzed, the method is powerful tool for 

studying the interfacial phenomena at the solid-solid and solid-gas boundaries. XPS is 

usually accomplished by exciting the surface with mono-energetic Al kα x-rays causing 

photoelectrons to be escaped from the sample surface. An electron energy analyzer is 

used to measure the energy of the ejected photoelectrons. From the binding energy and 

intensity of a photoelectron peak, the elemental identity, chemical state, and quantity of 

a detected element can be identified. A typical XPS spectrum is a plot of the number of 

electrons detected versus the binding energy of the electrons identified. Each element 

produces a characteristic set of XPS peaks at specific binding energy values that directly 

find each element that exists in or on the surface of the material being studied. The XPS 

data explains about surface layers or thin film structures is important for many industrial 

and research applications where surface or thin film composition plays an important part 

in performance including: nanomaterials, photovoltaics, catalysis, corrosion, adhesion, 

electronic devices and packaging, magnetic media, display technology, surface treatments 

and thin film coatings used for several applications. 
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2.6.2.4  BET Analysis 

Brunauer–Emmett–Teller (BET) study provides a detailed specific surface area 

estimation of materials by nitrogen multilayer adsorption measured as a function of 

relative pressure using a fully automated analyzer. The technique includes external area 

and pore area evaluations to investigate the total specific surface area in m2/g yielding 

important information to study the effects of surface porosity and particle size in many 

applications. While Barrett-Joyner-Halenda (BJH) analysis can also be used to find out 

the pore area and specific pore volume using adsorption and desorption method. This 

method characterizes pore size distribution independent of external area due to particle 

size of the sample. 

2.6.2.5 Field Emission Scanning Electron Microscope (FE-SEM) and Energy 

Dispersive X-ray Analysis (EDX) 

Field emission scanning electron microscope (FE-SEM) uses a focused electron analysis 

to extract structural chemical data from required area in a thin film. The high resolution 

spectra of FE-SEM make it a useful tool to characterize a broad range of materials at 

several nm and µm. FESEM offers high magnification with greater depth then optical 

microscopes. FESEM images may be distorted by the surface potential which improves 

an insulator level defects at sharp contours. Nonconductive samples are decorated by 

conductive layer of Au, Pt or carbon to disperse the surface charge.  FE-SEM images at 

high magnification describe the surface morphology or architecture and film thickness.  

The most usual extension to the FE-SEM is the energy dispersive x-ray spectrometer 

(EDX). The energy level for EDX systems is from 1.0 to 220 KeV, which detects the 

elemental composition or chemical characterization in the composite thin films. When 

EDX detectors with thin protective layers functioned in high vaccum systems, allow the 
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analysis of the lighter elements down to B. The analysis depth depending on the path 

length of the X-ray not on the primary electron beam. As a results EDX signals may arise 

from the depth of 0.5 µm or more. Due to pulse counting mode of EDX system, it has 

ability to detect the characteristic X-ray of all elements above F in the periodic table. 

However, EDX takes a lesser time to scan the complete spectrum as compared to 

wavelength dispersive X-ray analyzer. The simultaneous development of the high-

brightness, high beam current thermal field emission gun-SEM has provided an electron-

optical platform that ideally matches the performance of the silicon drift detector (SDD-

EDS).  

2.7  Electrochemical Applications of Ceramic Thin Films 

Micro and nanostructured thin films of metal oxides and metal halides for electrochemical 

applications has been recognized recently, but the number of studies is increasing 

suddenly. The recent importance of renewable energy sources has sparked research on 

very fundamental and applied levels. The most prominent applications in Li-ion batteries, 

fuel cells, gas sensors and photovoltaic devices. The most important drawback is the 

material, which is either very expensive noble metal or lacking in performance and 

stability. It is therefore one of the main future task to identify a material which is cost 

effective, stable and environment friendly. Ceramic thin films deposited by AACVD, 

EFDAACVD and EPD are therefore the potential candidate to test their activity and 

stability for application in electrochemical devices, some of these are discussed below.  

2.7.1 Batteries and Supercapacitors 

Many chemically deposited metal oxide thin films including ruthenium oxide, iridium 

oxide, manganese oxide, cobalt oxide, nickel oxide, tin oxide, iron oxide, pervoskites, 

ferrites, etc. have been applied in supercapacitors.(Fujimoto, Kuwata, Matsuda, 
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Kawamura, & Kang, 2015; C. D. Lokhande, D. P. Dubal, & O.-S. Joo, 2011) The thin 

film deposition methods involving the growth from solution are called as chemical 

methods. Depending on applications, one would prefer thin films which have a special 

texture, low grain boundary density, or smooth surfaces. Amongst the numerous metal 

oxide materials, only RuO2, MnO2, NiO and Co3O4 thin film based systems have gained 

more attention due to superior electrochemical capacitor response. Apart from the 

scientific quest for high capacitance of metal oxide thin films, the long-term cycling 

stability of these electrodes is a technological issue that must be addressed to evaluate the 

commercial development of metal oxide thin film based aqueous supercapacitors. Other 

issues such as self-discharge, corrosion of the current collector, low temperature 

performance etc should also be studied. Considering that metal oxide thin film based 

supercapacitor technology is still in its beginning, future research and development 

should ultimately yield high-performance, low cost, and safe energy storage devices. 

Synthesis of phase-pure SnO2 hierarchical structures with different morphologies such as 

nanorods, nanosheets, and nanospheres, as well as their modifications by doping and 

compositing with other materials. They studied the design of SnO2-based nanostructures 

with improved performance in the field of lithium-ion batteries (LIBs), supercapacitors 

and energy conversion performance (J. S. Chen & Lou, 2013; Q. Zhao, Ma, Zhang, Wang, 

& Xu, 2015). SnO2-based nanostructures, such as anode materials, demonstrate superior 

cycle performance of lithium storage by doping (J. S. Chen & Lou, 2013). In the 

supercapacitors, the prepared SnO2-based nanostructures provide fast ion and electron 

transfer, which led to a prominent supercapacitor performance. Therefore, SnO2-based 

nanostructures with a proper design can possess advanced physical and chemical 

properties, which are vital for a variety of energy and environment applications. 

Nanostructured V2O5 has potential application in the fields of lithium-ion batteries, the 

as-prepared vanadium hollow microspheres can be calcined into crystalline V2O5 without 
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changing their morphologies. These V2O5 products exhibit improved electrochemical 

properties when they are used as cathode material in lithium-ion batteries and show good 

application potential. The prepared V2O5 exhibits desirable electrochemical properties 

such as high capacity and remarkable reversibility when it is used as cathode material in 

a lithium-ion battery (A. M. Cao, Hu, Liang, & Wan, 2005). Mesoporous Co3O4 nanowire 

arrays (Y. Li, Tan, & Wu, 2008), Mn3O4−graphene hybrid (Hailiang Wang et al., 2010), 

Fe3O4-based Cu nano-architecture (Taberna, Mitra, Poizot, Simon, & Tarascon, 2006), 

reduced graphene oxide/Fe3O4 (Guangmin Zhou et al., 2010; X. Zhu, Zhu, Murali, Stoller, 

& Ruoff, 2011) electrode nanocomposites were employed as a high-capacity and rate 

capability anode material for lithium ion batteries applications. 

2.7.2 Fuel Cells 

Fuel cells, due to their high efficiency and low environmental effect, have been paid more 

attention in these years. The fuel cell is the most potential tool for automotive, portable, 

and stationary applications. Although hydrogen is an ideal fuel for polymer electrolyte 

membrane fuel cells (PEMFC), it is very dangerous to store it under high pressure. The 

hydrogen production is still challenging. To avoid these drawbacks, the direct methanol 

fuel cell (DMFC) has been developed with a simplified structural system, using aqueous 

methanol as the fuel. It is widely established that carbon monoxide (CO) species produced 

in the process of methanol electro-oxidation are the main poisoning intermediate that 

slows down the oxidation kinetics and rate of reaction. To resolve this issue, Pt-based 

binary catalysts (PtRu (Koper, Lukkien, Jansen, & van Santen, 1999) and (Q. Lu, Yang, 

Zhuang, & Lu, 2005), PtMo (Russell, Ball, Maniguet, & Thompsett, 2007) , PtSn (Y. 

Guo, Zheng, & Huang, 2008), etc.) and ternary catalyst ( PtRuNi (Moreno, Chinarro, 

Pérez, & Jurado, 2007)) have been established to enhance the catalytic activity of Pt 

through bifunctional mechanism. Besides this, it has been found that Pt with metal oxides 
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like (Rolison, Hagans, Swider, & Long, 1999) TiO2 (Song, Qiu, Guo, & Li, 2008), Al2O3, 

ZrO2 (Ribeiro, Mendes, Perez, Souza, & Schmal, 2008), MoO2 (Ioroi et al., 2006), etc. 

can efficiently improve the electro-oxidation of methanol and reduce the CO poisoning. 

Firstly, metal oxides stabilize Pt particle dispersion, which increase the surface area of 

the catalyst. Secondly, metal oxide have a good ability for storing and releasing oxygen, 

which plays a vital role in COads (adsorbed CO) methanol oxidation. At the same time, 

the low cost and the abundance of metal oxides can help to reduce the price of DMFC. 

Therefore, metal oxides are suitable additives for Pt catalysts. Direct methanol fuel cells 

(DMFCs) have some benefits such as high energy density, low temperature operation and 

convenient operation (Y. Huang et al., 2014), thus they have been considered as a 

potential candidate for power generation in portable electronic devices and hybrid electric 

vehicles. 

After the hydrothermal reaction, (graphene oxide) GO sheets evolved into (reduced 

graphene oxide) RGO sheets and well-crystallized Mn3O4 nanoparticles uniformly 

distribute on RGO sheets, followed by the spontaneous deposition of Pt on Mn3O4/RGO 

surface via the galvanic replacement process between Mn3O4 and PtCl4
2−  (Y. Huang, et 

al., 2014). By combining the advantages from the small-sized and well-dispersed Pt 

nanoparticles, the possible synergetic effect from the ternary components, and the strong 

metal-support interaction, the Pt/Mn3O4/RGO catalyst exhibited higher electrochemical 

surface area (ECSA), better tolerance toward CO and outstanding electrocatalytic activity 

than the Pt/RGO catalyst, and long-time stability than the conventional Pt/C catalyst. 

Thus, this work supplied an important and efficient way to build up various two-

dimensional sandwich-like nanomaterials that provide an important platform for many 

advanced industrial fields, such as electrocatalysis, photocatalysis and sensors. Moreover, 

metal oxides (CeO2, TiO2 and SnO2) and Pt nanoparticles were successively decorated on 

carbon nanotubes (CNT). The effect of metal oxides on the catalytic behaviour of Pt for 
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electro-oxidation of methanol has been studied by cyclic voltammetry (CV), 

chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) methods, 

purpose to establish the most suitable catalyst for fuel cells. Different Pt/MO2/CNT 

catalysts (M = Ce, Ti, Sn) were synthesized and the electrocatalytic activity in respect to 

the electro-oxidation of methanol in H2SO4 solution were examined. The CV revealed 

that the current density of the oxidation peak increases for Pt/CeO2/CNT as compared to 

Pt/CNT catalysts, showed the highest catalytic activity. The kinetics of methanol 

oxidation, rate of reaction, maximum frequency, charge recombination life time were 

studied by using electrochemical impedance spectroscopy. It was establish that metal 

oxides can promote the electro-oxidation of COads, which was verified by a decrease of 

the charge-transfer resistance at a low potential region. The accumulation process of 

COads was not observed as it was on the Pt/CNT electrode. In addition, the decreased rate 

of charge-transfer resistance was determined by the metal oxides added, which indicated 

different reaction activity of COads oxidation with hydroxyl groups on various metal 

oxides (Yuan, Guo, Qiu, Zhu, & Chen, 2009). In the present investigation, the potential 

of formation of solid electrolyte thin film on ceramic substrates has been demonstrated 

using spray pyrolysis technique (SPT). Analysis of (gadolinia-doped ceria/ galdolinium-

doped ceria) GDC/GDC structure revealed that electrolyte-grade substrates could be 

coated with ultra-thin protective layer using SPT to avoid the interfacial reactions. 

Besides, the studies on GDC films deposited on NiO–GDC substrate depicted that the 

electrolyte-grade GDC films could also be deposited using SPT. However, some 

modification, as mentioned, should be employed in the process. Further, the choice of 

material for solid electrolyte film i.e. GDC and NiO–GDC as substrate (precursor 

composite ceramic anode) would enable to utilize the prepared structure (GDC/NiO–

GDC) for fabrication half-cell in low temperature solid oxide fuel cells (SOFCs). 

Electrical characterization of GDC/NiO–GDC structure showed that there is only a 
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nominal decrease in overall ionic conduction of the structure over the bare substrate, 

indicating good quality film/substrate interface. Such synthesized structures along with a 

layer of suitable cathode material, could find promising application in low temperature 

SOFCs (Myung, Ko, Lee, Lee, & Hyun, 2012). In practical application of direct methanol 

fuel cells (DMFC), methanol concentration plays a vital role. In this regard effect of 

methanol concentration was studied by varying the concentration of methanol in the 

presence of CuO–1.5ZrO2 composite oxide film modified Pt electrode deposited by 

AACVD at a scan rate of 50 mV s−1 in the presence of 0.1 M KOH can be noticed that 

anodic peak current increases and the anodic peak potential have a slightly shifted to 

positive potential while increase in the methanol content due to the saturation of active 

catalytic sites at the CuO–1.5ZrO2 composite oxide film modified Pt electrode surface. 

2.7.3 Electrochemical Sensor 

Electrocatalysts are occasionally employed in the development of electrochemical 

sensors. It has recently been shown that composite electrodes of transition-metal oxides 

are electrocatalytically active for range of different analytes. Lead (IV) oxide is a noted 

electrocatalyst and is characterized with good electrical conductivity, mechanical stability 

and chemical inertness, and high oxygen evolution overpotential. Lead dioxide electrodes 

are particularly attractive since they do not require voltage pretreatment to attain their 

electrocatalytic activity (Biljana Šljukić, Craig E. Banks, Alison Crossley, & Richard G. 

Compton, 2007). These properties suggest applications in a variety of fields, particularly 

the generation of oxygen (Ho, Filho, Simpraga, & Conway, 1994) and ozone (Feng, 

Johnson, Lowery, & Carey, 1994) and electro-oxidation of organic compounds, both for 

their synthesis (Amadelli, De Battisti, Girenko, Kovalyov, & Velichenko, 2000; Treimer, 

Feng, Scholten, Johnson, & Davenport, 2001) and degradation of organic contaminants 
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in water (Grimm, Bessarabov, Maier, Storck, & Sanderson, 1998; Hyde, Jacobs, & 

Compton, 2004; Saterlay et al., 2001).  

Transition metals have attracted the attention of researchers due to their multiple 

oxidation which make them suitable candidates for electron-transfer processes (El Khatib 

& Abdel Hameed, 2011; Rafiee & Fakhari, 2013). Because transition metallic 

nanoparticles (NPs) increase their surface area, enhance mass transport and hold good 

biocompatibility, the metallic nanoparticles can be used as modification for sensors and 

biosensors (Lin, Lin, & Chen, 2013). Especially, transition metal oxides combine physical 

with chemical properties, which make them become the promising electrode materials 

(Azaceta et al., 2012). Nanomaterials are gaining increasing interest in the development 

of several research fields. Among various nanomaterials, nickel oxide (NiO) and copper 

oxide (CuO) are attractive electro-catalysts in electrochemical different catalytic 

application (Arredondo Valdez, García Jiménez, Gutiérrez Granados, & Ponce de León, 

2012; Ripolles-Sanchis, Guerrero, Azaceta, Tena-Zaera, & Garcia-Belmonte, 2013). Due 

to relatively low cost and high catalytic activity, NiO and CuO can be ideal modifying 

agent. Some effort have been made on determination of glucose (Lin, et al., 2013) and 

(X. Wang, Liu, & Zhang, 2014), H2O2 (Gao & Liu, 2015) and other biomolecules (S. 

Zhou et al., 2013) by using nanostructured NiO and CuO materials (B. Liu et al., 2016). 

CuO–2TiO2 electrode in electrochemical sensor was investigated towards the detection 

of NO2
− ions and the electrode showed the limit of detection (LoD) of 0.0166 μM with 

linear range of 10 to 200 μM. Beyond this, present sensor electrode is more selective 

towards NO2
− ions in the presence of other common interfering species. This CuO–2TiO2 

electrode is more ideal candidate for the selective and sensitive detection of toxic NO2
− 

ions from environmental remediation aspect (Ehsan, Naeem, McKee, et al., 2016).     
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Furthermore, Pt-based GO modified nano-catalysts not only maximize the availability of 

nano-sized electro-active surface area for electron transfer but also provide better mass 

transport of reactants to the electro-catalyst and sensors for dopamine (DA), ascorbic acid 

(AA), uric acid (UA), catecholamines and acetaminophen (AP) (Alothman, Bukhari, 

Wabaidur, & Haider, 2010; Atta, El-Kady, & Galal, 2010; S. A. Kumar, Tang, & Chen, 

2008; B. Liu, et al., 2016). The NiO–CuO/Graphene/Glassy carbon electrode enhanced 

the oxidation peak currents towards DA, acetaminophen (AP) and tryptophan (Trp) and 

the negative shift of the oxidation peak potentials, which were attributed to the 

incorporation of transition metal oxides providing larger specific surface and electro-

catalytic activity (B. Liu, et al., 2016). This modified electrode exhibited that the linear 

response ranges for detecting DA, AC and Trp were 0.5–20 μM, 4–400 μM and 0.3–

40 μM, respectively, and the detection limits were 0.17 μM, 1.33 μM and 0.1 μM 

(S/N=3). The proposed method for GO–La/CPE electrode provides an effective linear 

calibration ranges of 0.01–0.1 μM and 0.1–400.0 μM, low detection limit of 0.32 nM, 

good repeatability and stability. Thus, the developed GO–La/CPE sensor presents good 

potential application in the selective detection of DA (F. Ye et al., 2015). CoTiO3–TiO2 

electrode in electrochemical sensors has been investigated towards the detection of DA. 

The results indicate that the CoTiO3–TiO2 electrode showed good electrocatalytic activity 

for DA with the limit of detection (LoD) of 0.083 μM and a linear range of 20 to 300 μM 

(Ehsan, Naeem, Khaledi, Sohail, Hakeem Saeed, et al., 2016). The improvement of 

various nanostructured metal-oxide such as ZnO, CuO, CuO2, MnO2, Mn2O3, TiO2, CeO2, 

SiO2, ZrO2 have been used as glucose biosensors (M. M. Rahman, Ahammad, Jin, Ahn, 

& Lee, 2010).The study on H2O2 detection is of practical significance for both academic 

and industrial purposes. Electrochemistry can offer simple, rapid, sensitive, and cost 

effective means since H2O2 is an electroactive molecule (W. Chen, Cai, Ren, Wen, & 

Zhao, 2012). 
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2.7.4 Photoelectrochemical (PEC) performance of ceramic thin films  

Now a days the progress of clean energy has become a main attention among the 

scientists. Water using sunlight has attracted attention as a new renewable energy source 

to generate hydrogen gas with negligible pollution. Because the other energy sources such 

as fossil fuel, coal, oil and natural gas is quickly being reduced. Hydrogen gas has 

developed as a new alternate energy supply that offers several benefits as compared to 

other fuels, including a decrease in global warming carbon dioxide (CO2) emissions, 

developments in air quality and the capability to reduce the energy crises. On one hand, 

the wide use of fossil fuel leads to a decline in natural resources. While on the other hand, 

the energy requirements have enormous effect on society include financial troubles and 

environmental pollution. Since climate alertness has raised in society, the hydrogen 

generation has suffered difficulties in the form of greenhouse effect and global warming 

issues. Hydrogen is secondary and alternate energy carrier that allows the normal energies 

such as coal, oil, gas and nuclear fission to join the clean sustainable energies. 

Furthermore, hydrogen has distinct properties that make it a potential candidate for future 

clean energy, which are described below: 

i. It is recyclable and can be efficiently converted into electricity  

ii. Abundantly available water is a raw material for hydrogen generation.  

iii. It can be kept as a liquid, gas, or solid in the form of metal hydrides. 

iv. It can be easily carried through large distances by using pipelines or by other ways. 

v. It can be transformed into other energy forms than any other fuel. 

vi. As an energy carrier, hydrogen is environment friendly and economical.  

The quest to split water into oxygen and hydrogen has explored a huge variety of 

nano/micro photcatalyst materials and solar energy techniques that can actively perform 

this ambitious goal (Shi et al., 2015; Hisatomi, Kubota, & Domen, 2014). However, 
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highly efficient hydrogen production by photocatalytic water splitting is limited by many 

factors such as non-ideal photocatalyst materials, complex thermodynamics of the 

reactions and ambiguous mechanisms and therefore is still far from industrialization 

levels (Ma et al., 2014; Martin et al., 2015). Continuous efforts are being made to resolve 

these problems and to make solar photocatalytic hydrogen production feasible. A variety 

of photoactive materials have been designed and developed with the aim to fix the main 

PEC obstacles such as proper conduction/valence band position, narrowing of the band 

gap to harness visible light, fast electron/hole pair separation/transportation (Baker & 

Kamat, 2009; Gonçalves, et al., 2012; Le Formal, et al., 2010; Leung, et al., 2010; G. Li, 

et al., 2013; Momeni, et al., 2015; Sivula, et al., 2010; J. Su, et al., 2010; M. Wang, et al., 

2013; Yan, et al., 2012), however, these extensive studies could not find an individual 

material which can overcome all these issues at once. The main criteria for photocatalyst 

material is low cost, environmentally friendly, high efficiency and stability under visible 

light irradiation (Serpone & Emeline, 2012; Walter et al., 2010). TiO2 is a strong 

candidate due to its high stability in aqueous solutions and high photovoltaic and 

photocatalytic activity (Nowotny, Bak, Nowotny, & Sheppard, 2007; Fujishima, Zhang, 

& Tryk, 2008) but it is restricted to work under UV light due to its large a band gap (3-

3.2 eV) limitations.  

Photoelectrochemical water splitting cells require semiconductor materials with 

following characteristics: 

i. An ideal optical band gap. 

ii. Holes diffusion length should be small 

iii. Able to support rapid charge transfer at a semiconductor/electrolyte interface 

iv. Show stability to photocorrosion 

v. Space-charge layer should be relatively large. 
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In the photoelectrochemical mechanism, when light is absorbed by the semiconductors 

metal oxide electron hole pairs are generated as a result photolysis of water take place 

and oxidation reduction reaction occurs at anode and cathode for the production of 

hydrogen and oxygen.   

                                   222 21 OHOH hv                                                      (2.1) 

                                             hehv 222                                                       (2.2) 

                                
  HOOHh g 2212 )(22                                              (2.3) 

The electron and holes get separated due to potential produced at interface of the 

semiconductor-electrolyte due to band bending. The holes migrate to the interface and 

reacts with the water to produce oxygen.   

                            )(222 gHHe  
                                                      (2.4)                  

 

Figure 2.17: Illustration of a photoelectrochemical cell that consists of a 

semiconducting photoanode. 

The electron move to an external circuit and arrive at interface between counter electrode 

and electrolyte, where hydrogen ion is reduced to hydrogen as gas. These overall photo-
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induced charge separation obtained for the semiconductor in the photoelectrochemical 

cells are schematically shown in Figure 2.17.  

 

Figure 2.18: Schematic representation for the photo induced charge-separation process 

at metal oxide thin film in a photoelectrochemical cell (Copyright permission from 

Naeem et al., 2015). 

Overall photoelectrochemical decomposition of water is shown in Figure 2.18. Numerous 

PEC cells using thin film electrodes have been established especially for the cleavage of 

water. But suitable electrodes with ideal band gap and stable towards photocorrosion are 

still under research. 

 An optical band gap is the energy gap, usually apply to the energy difference (in electron 

volts) between the top of the valence band (VB) and the bottom of the conduction band 

(CB) in semiconductors and insulators. The optical band gap describes that which part of 

the solar spectrum a photovoltaic cell absorbs. In case of semiconductors, there band 

gap is always one of two types, a direct band gap or an indirect band gap. The band gap 

is called "direct" if the momentum of electrons and holes is the same in both the CB and 

the VB; an electron can directly emit a photon (Figure 2.19). In case of "indirect" gap, a 

photon cannot be emitted because the electron must travel through an intermediate state 

and transfer momentum to the crystal lattice (phonon). 
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Figure 2.19: Optical transitions in semiconductors with a direct and an indirect 

bandgap. The indirect transition requires assistance of a phonon with energy hv 

(Copyright permission from Seo & Hoffmann, 1999). 

The optical band gap of thin films can be examined by the Tauc equation, if the top of the 

VB and bottom of the CB are expected to have a parabolic shape. The Tauc’s equation is  

α = A(hν–Eg)γ/hν 

where, α is the linear absorption coefficient of the material, hν is the energy of photon, A 

is a proportionality constant and γ is a constant depending on the band-gap nature;  γ= 

1/2 for direct band gap and γ = 2 for indirect band gap (Seo & Hoffmann, 1999). 

The water splitting potential is 1.23 V (G = +237.7 KJ/mol). Which relates to photon 

below about 1000 nm and covers a large part of spectrum. For water splitting reaction to 

be thermodynamically favorable, the band gap of the semiconductor phorocatalyst should 

have these reduction potentials. The conduction band should have higher energy (more 

negative potential) than the hydrogen evolution potential (H2/H
+) and the valence band 

should be lower in energy (more positive potential than the oxygen evolution potential 

(H2O/O2). So electrons can lower their energy being transferred to hydrogen ions in 

solution and holes lower their energy being transferred to water molecules through a short 

circuited reaction and balancing the charges transferred to the solution. The final results 
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are H2 and O2 molecules. If the position of valance and conduction band energy state is 

not achieved an external bias has to be applied in order to promote the photo-oxidation 

process. Figure 2.20 shows band levels of various semiconductor materials to fulfil the 

requirement for the PEC cell. This means the photocatalytic materials have a very strong 

water splitting ability to enhance the photoelestrochemical performance.  

 

Figure 2.20: Relationship between band structure of semiconductor and redox 

potentials of water splitting (Copyright permission from S. Choudhary et al., 2012). 

Furthermore, photocatalytic behavior under visible light could be attained by defect 

engineering, doping of non-metal, combining with other semiconductor (Dhanalakshmi, 

et al., 2013) and decoration of noble metal nanoparticles (Pandikumar, et al., 2010; 

Jinlong Zhang, et al., 2010) results in better interfacial charge transfer, thus reducing the 

charge recombination and decrease in band gap. Defect engineering indicates controlled 

introduction of innate defects, such as vacancies, interstitials, and antisites, while doping 

implies controlled introduction of impurities into the crystal lattice (Djurisic, et al., 2014). 

Therefore, the photocatalysis process takes place by moving of an electron from noble 

metal to semiconductor due to surface plasmon resonance effect (SPR) (Figure: 2.21).  
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Figure 2.21: Charge transfer mechanism between Au nanoparticles and TiO2 in visble 

and UV light (Copyright permission from F. Su et al., 2013). 

The performance of electro ceramic materials and devices depends on the complex 

interplay between processing, chemistry, structure at many levels and device physics and 

so requires truly interdisciplinary effort by individuals from many fields.  

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

60 

CHAPTER 3: MATERIALS AND METHODS 

 

3.1 General Consideration  

All the manipulations were carried out under an inert atmosphere of dry argon, using 

Schlenk tubes and vacuum line attached to a RZ 6 ROTARY VANE PUMP (Model: 

698132). All flasks are evacuated and then purged with argon at least three times prior to 

use, with external heat applied where considered necessary. Liquid air sensitive reagents 

were transferred to Schlenk tube by using cannula filter. Most of the chemicals and 

reagents used such as SnCl2(anhydrous), Y(OAc)3. xH2O, Mn(OAc)2, Co(OAc)2.4H2O, 

Zn(OAc)2.2H2O, Cd(OAc)2.2H2O, Pb(OAc)4, Ti(OPro)4, Mg(OAc)2.4H2O , Ag(OAc), 

Cu(OAc)2.2H2O, Ni(OAc)2.2H2O, Fe(OAc)2, CuI, Pb(NO3)2, KI, Triethylamine, N,N-

Dimethylaminoethanol (dmaeH), Trifluoroacetic acid (TFAH) and sodium  were 

purchased from Sigma Aldrich. The solvents like tetrahydrofuran (THF) and toluene were 

rigorously dried on sodium benzophenoate and distilled immediately before use. N,N-

Dimethylaminoethanol (dmaeH) was purified by refluxing over K2CO3 for 10 hrs and 

distilled immediately before use. The melting point was determined in a capillary tube 

using an electrothermal melting point apparatus; model MP.D Mitamura Riken Kogyo 

(Japan). The elemental analysis were performed using Leco CHNS 932. FT-IR spectra 

were recorded on an attenuated total reflectance (ATR) instrument (4000–400 cm-1, 

resolution 4 cm-1). The controlled thermal analysis was investigated using a METTLER 

TOLEDO TGA/ SDTA 851e Thermogravimetric Analyzer with a computer interface. 

The 1H -NMR were recorded by JEOL DELTA2 NMR Spectrometer at field strength of 

400 MHz using deuterated chloroform (CDCl3) and dimethyl sulfoxide (DMSO-d6) as 

solvent.  The thermal measurements were carried out in an alumina crucible under an 

atmosphere of flowing nitrogen gas (25 cm3 min-1) with a heating rate of 10 oC min-1.  
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The surface morphology and cross-sectional view of thin films were determined by 

using a field-emission gun scanning electron microscope (FESEM, FEI Quanta 400) 

coupled with Energy Dispersive X-ray spectrometer EDX INCA Energy 200 (Oxford 

Inst.) at an accelerating voltage of 10-20 kV and a working distance of 3-9 mm. The phase 

purity and crystallanity were characterized using X-ray diffraction (XRD) on a D8 

Advance X-Ray Diffractometer- Bruker AXS using Cu-Kα radiation (λ = 1.542 Å) at a 

voltage of 40 kV and current of 40 mA at ambient temperature).  Raman spectra of the 

thin films were acquired using a Renishaw inVia Raman microscope with green laser 

excitation (532 nm). The UV-visible spectrum of the thin film was measured on a Lambda 

35 Perkin-Elmer UV-visible spectrophotometer in the wavelength range of 300-900 nm 

and the film thickness was also obtained by using profilometer KLA Tencore P-6 surface 

profiler. The PEC studies of thin film electrodes were recorded by using a electrochemical 

workstation with a conventional three-electrode system. The thin films were used as a 

working electrode, platinum as a counter and Ag/AgCl as a reference electrode. For 

photocurrent measurement, the metal oxide thin films were dipped into the supporting 

electrolyte (0.1 M Na2SO4 and 1M NaOH) and irradiated with a 150-W xenon arc lamp 

(Newport, Model 69907) containing a simulated AM 1.5G filter. The effective area of the 

film was adjusted to 1 × 1 cm. Frequency response analysis (FRA) software was used in 

the EIS experimental and simulation experiments while general purpose electrochemical 

software (GPES) was used in the linear scan voltammetry (LSV) by Autolab PGSTAT-

302N. The scan rate for LSV was 50 mV s-1 between -0.2 V to 1V while the EIS 

measurements were carried out at a frequency range of 100 kHz-10 mHz. 
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3.2 Syntheses  

3.2.1   Synthesis of [Cu2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF  (1) 

Complex (1) was prepared by mixing stoichiometric amounts of 0.50g (2.50 mmol) 

of Cu(CH3COO)2∙H2O and 1.49mL (5.03mmol) of Ti(OCH(CH3)2)4 followed by 

the addition of 1.14mL (10.05mmol) of CF3COOH in 25mL of THF in a 50mL 

Schlenk tube. The reaction mixture was stirred for 4h and solvent was evacuated 

under vacuum to obtain a green powder which was dissolved in THF. The resulting 

transparent clear green solution was cannula-filtered and placed at room 

temperature for overnight to obtain green block shaped crystals of precursor (1) in 

70% yield. Mp: 225 °C (decomposition).  Elemental analysis, (Found: C, 27.96; H, 

2.87. C44H58F24O29Cu2Ti4 requires C, 28.89; H, 3.17 %). IR: max/cm-1 3290br, 

1715s, 1671s, 1544m, 1471s, 1442w, 1197s, 1146s, 1054w, 1025s, 891s, 797s, 

722s, 682w, 623w, 581w, 522s. TGA: 51-134 °C (11.1% wt. loss); 139-240 °C 

(25.8% wt. loss); 241-277 °C (14.0% wt. loss), 280-500 °C (22.3% wt. loss) 

(Residual mass of 26.80%); (Cal. for CuO-2TiO2 26.18%). 

3.2.2   Synthesis of [Co2Ti4(μ-O)6(TFA)8(THF)6]∙THF  (2)  

Complex (2) was prepared by mixing stoichiometric amounts of 0.50 g (2.0 mmol) 

of Co(CH3COO)2∙4(H2O) and 1.19 mL (4.0 mmol) of Ti(OCH(CH3)2)4 followed 

by the addition of 1.21 mL (16.0 mmol) of CF3COOH in 25 mL of THF in a 50mL 

Schlenk tube. The reaction mixture was stirred for 4h and solvent was evacuated 

under vacuum to obtain a red powder which was again dissolved in THF. The 

resulting transparent clear red solution was cannula-filtered and placed at room 

temperature for 2 days to obtain the red block shaped crystals of complex (2) in 

75% yield. Mp: 195 °C (decomposition). Elemental analysis, (Found: C, 26.98; H, 

2.17. C44H54F24O29Co2Ti4 requires C, 28.89; H, 2.97 %). IR: max/cm-1 2989w, 
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2904w, 1717s, 1681s, 1469s, 1388w, 1329w, 1198s, 1148s, 1025w, 1038w, 899w, 

792s, 722s, 681w, 654w, 618s, 585w, 493s, 474s. TGA: 50-95 °C (1.53% wt. loss); 

100-180 °C (7.2% wt. loss); 181-225 °C (23.6% wt. loss), 250-500 °C (40.17% wt. 

loss) (Residual mass of 27.50%); (Cal. for CoTiO3-TiO2 25.80%). 

3.2.3   Synthesis of [Mg2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF  (3)  

Complex (3) was isolated by mixing stoichiometric amounts of 0.50g (2.33 mmol) 

of Mg(OAc)2∙4H2O and 1.38mL (4.66mmol) of Ti(iPro)4 followed by the addition 

of 0.70mL (9.36 mmol) of TFAH in 25mL of THF in a 50mL Schlenk tube. The 

reaction mixture was stirred for 4 hours and solvent was evacuated under vacuum 

to obtain a white powder which was re-dissolved in THF. The resulting transparent 

solution was cannula-filtered and placed at room temperature overnight to obtain 

colourless block shape crystals of complex (3) in 75% yield. Mp: 220 °C 

(decomposition). Elemental analysis, (Found: C, 27.06; H, 2.77. 

C44H58F24O29Mg2Ti4 requires C, 28.89; H, 3.17 %. IR: max/cm-1 3318br, 2988w, 

1721w, 1636s, 1453s, 1192s, 1143s, 1034s, 845s, 797s, 722s, 619s, 509w, 480w. 

TGA: 73-130 °C (3.6 % wt. loss); 135-235 °C (19.0 % wt. loss); 238-575 °C (56.5 

% wt. loss), (Residual mass of 20.9 %); (Cal. for MgTi2O5 20.6%). 

3.2.4   Synthesis of [Mn(dmae)2(TFA)4] (4) 

0.40 g (2.31 mmol) of Mn(CH3COO)2 and 0.5ml ( 6.2mmol) of trifluoroacetic acid were 

added to 50ml Schlenk tube containing 20ml of THF under argon atmosphere. The 

mixture was stirred for 6 h to obtain a clear solution. The solvent was then evaporated 

under vacuum to obtain  a powder which was re-dissolved in 5 ml of THF followed by 

the addition of 0.228mL (2.28 mmol) N, N-dimethyl-2-aminoethanol in a 50mL Schlenk 

tube. The resulting transparent solution was cannula-filtered and placed at -10 oC for one 
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week to obtain the transparent crystals of complex (4) in 70% yield. Crystals suitable for 

single crystal X-ray analysis were grown from THF solution.  m.p: 83 °C 

(decomposition).  Elemental analysis: % calculated (found) for [Mn(dmae)2(TFA)4] C, 

21.11 (20.83), H, 1.77 (1.69), N, 2.05 (1.95). IR (cm−1): 1728(s), 1635(s), 1444(m), 

1420(s), 1391(w), 1177(s), 1130(s), 1074(s), 1048(m), 986(s), 852(m), 727(s), 600(m), 

502(m). TGA: 179-260°C (72.77% wt. loss) and 260-550 °C (7.06% wt. loss); (Residual 

mass of 20.40%); (Cal. for Mn2O3 23.10%).  

3.2.5   Synthesis of [Sn(dmae)(OAc)]2 (5) 

A solution of 0.97g (0.40 mmol) of bis(dimethylaminoethanolato)tin(II), Sn(dmae)2, 

(Wakeshima & Kijima, 1972) prepared as reported earlier,(Wakeshima & Kijima, 1972) 

in 10 mL of toluene was transferred to a suspension of 0.10 g Y(OAc)3. xH2O in 10 mL 

of toluene. The reaction mixture was then stirred at room temperature for 6 h for the 

completion of the reaction. Filtration through a cannula gave a clear white solution which 

was evaporated to dryness under vacuum, and the solid residue was re-dissolved in 5 mL 

of toluene to give a 65% yield of white crystals after 5 days at -10°C. mp: 147°C. Micro 

analysis for [Sn( (dmae) OAc)]2: Calculated (found) % C, 27.10 (27.28); H, 4.90 (5.04); 

N, 5.28(5.12). Selected FT-IR absorption (cm-1): 2810w, (NCH3); 1615s, (C= 0); 593s, 

(Sn- O); H1NMR: (SI Figure 3) 1.9 (3H, s, Me), 2.3 (6H, s, NMe), 2.6 (2H,b, CH2N), 3.4 

(2H, b, CH2O). TGA: 177-258 0C (51.46 wt % loss) (Residue = 48.53 %). 

3.2.6   Synthesis of CuPbI3  

0.50 g (2.62 mmol) copper(I) iodide was suspended in 20 mL distilled water in a 100 mL 

beaker. 0.87 g (2.64 mmol) lead(II) nitrate solution in 10 mL of distilled water was added 

drop by drop to the suspension of copper(I) iodide with constant stirring for 1 h. 0.87 g 

(5.28 mmol) potassium iodide dissolved in 10 mL of distilled water was added very 
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slowly to the vigorously stirred mixture for 2 h. The obtained yellow-brown precipitates 

were filtered and washed several times with distilled water until free from lead, nitrate 

and iodide ions. Finally, the precipitates were washed with ethyl alcohol and dried in air. 

The obtained yellow-brown powder was charged in a 5 mL Pyrex glass ampule and 

evacuated for several hours. The ampule was sealed under vacuum and heated at 620 oC 

for 72 h in a tube furnace (Titilayo A. Kuku & Salau, 1987). The furnace was allowed to 

cool to room temperature before the ampule was taken out. The ampule was opened 

carefully and mustard colour solid was carefully scratched from the ampule and ground 

to fine powder in an agate pestle mortar. The finely ground  powder of copper lead iodide 

was washed with several 5 mL portions of DMF to remove excess of unreacted lead(II) 

iodide to give crystals of CuPbI3 (m.p. 307 oC). 

3.3 Crystallography and Structure Refinement 

The data of complex (1) were collected at 150(2)K on a Bruker-Nonius Apex II CCD 

diffractometer using MoKα radiation (α = 0.71073Å) and were corrected for Lorentz-

polarisation effects and absorption (SADABS) (Krause, Herbst-Irmer, Sheldrick, & 

Stalke, 2015). The structure was solved by dual space methods (SHELXT) (Sheldrick, 

2015) and refined on F2 using all the reflections (SHELXL-2014) (Sheldrick, 2015). The 

central section, comprising most of the molecule is disordered and was modelled with 

50% occupancy of two positions related by a center of symmetry (reduction of the space 

group symmetry did not reduce the disorder). The data for complex (2) collected on a 

Agilent Supernova diffractometer equipped with a MoK Microfocus X-ray source ( = 

0.71073 Å).  The Agilent CrysAlisPro software was used for data collection, cell 

refinement, data reduction and absorption collections.  Molecular graphics were drawn 

by using the XSEED and Mercury software were collected at 150(2)K on a Bruker Apex 

II CCD diffractometer using MoKα radiation (λ = 0.71073Å). The structure was solved 
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by direct methods (SIR-2004) and refined on F2 using all the reflections (SHELX) 

(Sheldrick, 2015). All the non-hydrogen atoms were refined using anisotropic atomic 

displacement parameters and hydrogen atoms were inserted at calculated positions using 

a riding model.   

Diffraction data for the crystal (3) were collected on an Agilent SuperNova Dual 

diffractometer with an Atlas detector (graphite-monochromatized Mo-Kα radiation, λ = 

0.71073 Å) at 100(2) K. The data were processed using CrysAlisPro, Agilent 

Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171.NET) and empirical 

absorption correction using spherical harmonics implemented in SCALE3 ABSPACK 

scaling algorithm. The structure was solved using the program SHELXT and was refined 

by the full matrix least-squares method on F2 with SHELXL-2014/7 (Sheldrick, 2008). 

All the non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were 

placed at calculated positions and were treated as riding on their parent atoms. The 

structure exhibits a whole molecule disorder with the two components being related by a 

pseudo-inversion center. The occupancy of the main component refined to 0.640(2). The 

structure was also refined as a racemic twin with the twin parameter of 0.46(4). Drawing 

of the molecule was produced with Mercury (Macrae et al., 2006).  Crystal data:  

C44H56Co2F24O29Ti4, Mr = 1814.34, pink block, 0.49 × 0.28 × 0.26 mm3, orthorhombic, 

Pca21, a = 19.2672(4), b = 20.5759(5), c = 17.2453(4) Å, V = 6836.7(3) Å3, Z = 4, Dc = 

1.763 Mg/m3, 135126 measured reflections, 19480 unique reflections (Rint = 0.0517), 

14499 observed reflections [(I > 2σ(I)], final R indices [(I > 2σ(I)]: R1 = 0.0858, wR2 = 

0.2091. CCDC No. 1453304.  

Diffraction data for the crystal (4) were collected on an Agilent SuperNova Dual 

diffractometer with an Atlas detector (graphite-monochromatized Mo-Kα radiation, λ = 

0.71073 Å) at 100(2) K. The data were processed using CrysAlisPro, Agilent 
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Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171.NET) and empirical 

absorption correction using spherical harmonics implemented in SCALE3 ABSPACK 

scaling algorithm. The structure was solved using the program SHELXT and was refined 

by the full matrix least-squares method on F2 with SHELXL-2014/7.The data of crystal 

(5) were collected at 150(2)K on a Bruker-Nonius Apex II CCD diffractometer using 

MoKα radiation ( = 0.71073Å) and were corrected for Lorentz-polarisation effects and 

absorption (SADABS) (Krause, Herbst-Irmer, Sheldrick, & Stalke, 2015). The structure 

was solved by dual space methods (SHELXT) (Sheldrick, 2015) and refined on F2 using 

all the reflections (SHELXL-2014) (Sheldrick, 2015). 

3.4 Thin Film Deposition Techniques 

The semiconducting solid solution and composite thin films were developed by using the 

precursor (1-5). The thin films of precursor (1-4) were tailored on commercially available 

FTO-coated glass substrates using a self-designed AACVD assembly. Precursor (5) and 

metal acetates of (Mn, Fe, Cu, Ni, Zn, Cd and Pb) were fabricated on FTO substrate by 

an in house built EFDAACVD method.  CuPbI3 films were deposited by EDP technique. 

The general procedure of all these methods are described below: 

3.4.1 Aerosol Assisted Chemical Vapor Deposition  

The FTO-coated glass substrates purchased from Sigma Aldrich were cut to the 

dimension of 25.4 x 12.7 x 2.2 mm (L x W x D) and then prepared by ultrasonically 

washing with distilled water, acetone and then ethyl alcohol. Finally, they were washed 

with distilled water, kept in ethanol and dried in air before use. Substrate slides of the 

dimension of 25.2 mm × 12.7 mm were placed inside a tube furnace chamber and then 

heated up to the deposition temperature for 10 min before carrying out the deposition. 

The aerosol of the precursor solution was formed by keeping the round-bottom flask in a 
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water bath above the piezoelectric modulator of an ultrasonic humidifier. The aerosol 

particles generated by the complexes were transferred into the hot wall region of the 

reactor by the carrier gas, whose flow rate was measured by a LIX linear flow meter and 

adjusted at 120 mL/min (Figure 3.1). In the last step of deposition, the aerosol assembly 

was turned off and a carrier gas was streamed over the substrates till the chamber cools 

down to normal temperature before they were removed for analysis.   

 

Figure 3.1: Schematic diagram of Aerosol-Assisted Chemical Vapour Deposition. 

3.4.2 Electric Field Directed Aerosol Assisted Chemical Vapor Deposition  

The deposition of thin films on the commercially available fluorine-doped tin oxide 

(FTO) substrate dimension of 25.2 mm × 12.7 mm were carried out using an in-house 

built EFDAACVD technique as  shown in  Figure 3.2. Prior to the deposition, the FTO 

substrates were cleaned ultrasonically by washing with distilled water, acetone and ethyl 

alcohol. Finally, they were washed with distilled water, stored in ethanol and dried in air 

before use. The aerosol of the metal precursor  was generated by keeping the reaction 

mixture in a two necked round bottom flask in a water bath above the piezoelectric 

modulator of an ultrasonic humidifier. The generated aerosol droplets of the precursor 

were transferred through an injection needle anode that was connected to a power supply. 

The distance between the edge of the needle (anode) and the substrate was kept at 6 inches 
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and the substrate connected to the cathode was placed on the heater. Argon gas was passed 

through the aerosol mist at a flow rate of 200 mL/min to carry the aerosol droplets.  

 

Figure 3.2: An in-house built experimental set up the orientation of the spray-needle 

was directed horizontally orthogonal to the plane of the substrate for Electric Field-

Directed Aerosol-Assisted Chemical Vapour Deposition. 

A potential of 9.5 kV was applied across the terminals while the aerosol was flowing 

through the needle and the deposition were conducted at 400 °C for 45 min. The power 

supply and the ultrasonic humidifier were switched off and the aerosol line was closed. 

The substrate was then coolled down to room temperature before it was removed from 

the heating plate to obtain thin films. As the coated area and the deposition rate are 

strongly dependent on the angle of the needle tip to the substrate, the aerosol spray-needle 

must be mounted in a horizontal position and perpendicular to the substrate surface at a 

suitable distance. It was observed that a relatively shorter distance between needle and 

substrate reduces the spinning time of the aerosol to yield a higher deposition rate and 

small coated areas having irregular particle shape. The increase in voltage and adjustment 

of distance between the needle tip and the substrate resulted in an evenly distributed thin 

film of precursor particles. 
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3.4.3 Electrophoretic Deposition  

CuPbI3 modified FTO electrodes were prepared by adopting EPD technique as reported 

in the literature (Tajabadi et al., 2015) (Figure 3.3). In a typical experiment a two 

milligrams of the as-synthesized CuPbI3 powder was dispersed in 40 mL of 0.025 M 

Mg(NO3)2 in isopropanol.  

 

Figure 3.3: Schematic diagram of electrophoretic deposition of charged particles on the 

anode of an EPD cell with planar electrodes. 

The mixture was sonicated for 30 min to obtain a homogeneous suspension containing 

0.05 mgL-1 of CuPbI3.  The pH of the suspension was adjusted at 3 by utilizing 1 M HCl 

solution before carrying out EPD experiment. The FTO glass substrates with an area of 

10 mm × 20 mm were immersed in a 5% HF solution for a few minutes to remove the 

native oxide layer followed by washing in acetone and distilled water prior to being 

vertically immersed into the suspension. The linear distance between the electrodes was 

maintained at 10 mm and the DC potential and deposition time were adjusted to 80 V and 

5 min, respectively. The coated film was dried at 50 °C in a vacuum oven to remove the 

excess solvent from the EPD process. 
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3.5    Photoelectrochemical Behavior  

Photoelectrochemical activities of semiconducting metal oxides and metal halide films 

were examined by the use of three electrode system fitted with quartz window. Three 

electrode electrochemical cell consist of metal oxide/halide thin film as working, 

Ag/AgCl/3M KCl used as reference and Pt wire as counter electrode respectively. 0.1M 

Na2SO4 and 1M NaOH were used as electrolyte solution to evaluate the PEC behavior of 

particular photoelectrodes. The surface of FTO substrate of working electrode was 

employed as a mean for electrical contact, connected to crocodile clip coated with gold 

and kept beyond the electrolyte surface. A potentiostat (Eco Chemie micro-Autolab type 

III) was used to set the potential to photoelectrode in range of -0.2 to 1.2 V, while the 

cells were illuminated by an AM 1.5 Class A solar simulator (Solar Light 16S-300 solar 

simulator), at 100 mW cm-2 light intensity from 150 W xenon arc lamp, adjusted by a 

silicon pyrometer (Solar Light Co., PMA2144 Class II).  The active area of the film was 

arranged to 1 × 1 cm. The light enters the electrochemical cell through quartz window. 

Generally working electrode is irradiated for two minutes before the cell is turned ON so 

that electrons can travel to the conduction band. 

3.6    Electrochemical Sensor Studies 

Sensor studies of semiconducting bimetallic oxide thin films were performed in a single 

compartment three–electrode cell at room temperature using a PAR-VersaSTAT-3 

Electrochemical workstation. The CoTiO3-TiO2 composite thin film and a platinum wire 

were used as working and counter electrodes, respectively. Silver/silver chloride 

(Ag/AgCl) electrode was used as a reference electrode. All studies for DA were carried 

out at pH 7.0 using a phosphate buffer solution. All solutions for electrochemical 

experiments were prepared with Millipore water having a resistivity of 18.2 M (Purelab 

Classic Corp., USA). 
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Table 3.1: Parameters for the fabrication of thin films from their respective precursors. 

Precursors  Solvent Deposition 

Temperature  

Method Carrier 

Gas  

Deposition 

Time  

Composition of 

Fabricated Thin 

Films 

  oC  mL/min min  

[Cu2Ti4 (O) 2(OH)4(TFA)8 

(THF)6]∙THF (1) 

Methanol, 

Ethanol 

550 AACVD Air/150 40 CuO-2TiO2 

[Co2Ti4(μ-O)6(TFA)8(THF)6]. 

THF (2) 

Methanol, 

Ethanol 

500, 550, 600 AACVD Air/150 40 CoTiO3-TiO2 

[Mg2Ti4(O)2(OH)4(TFA)8(TH

F)6]∙THF (3) 

Methanol, 

Ethanol 

500, 550, 600 AACVD Air/150 40 MgTi2O5 

[Mn(dmae)2(TFA)4] (4) + 

Ag(OAc) 

Methanol 450 AACVD Ar/120 45 Mn2O3, 

Ag-Mn2O3 

[Sn(dmae)(OAc)]2 (5) Toluene 400 EFDAACVD Ar/200 30 SnO2 

Mn(OAc)2 THF 400 EFDAACVD Ar/200 45 Mn2O3 

Fe(OAc)2..2H2O THF 400 EFDAACVD Ar/200 45 Fe2O3 

Cu(OAc)2..2H2O THF 400 EFDAACVD Ar/200 45 CuO 

Ni(OAc)2..H2O THF 400 EFDAACVD Ar/200 45 NiO 

Zn(OAc)2.2H2O   THF 400 EFDAACVD Ar/200 45 ZnO 

Cd(OAc)2.2H2O  THF 400 EFDAACVD Ar/200 45 CdO 

Pb(OAc)2.4H2O  THF 400 EFDAACVD Ar/200 45 PbO 

CuPbI3  Isopropyl 

alcohol 

50 EPD Air 5 CuPbI3 Univ
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3.7    Attempted Reactions 

Some chemical reactions that might not produce the desired products were tried. The 

common method utilized in the attempted reactions is as follows: In a stirred mixture of 

Tin dimethhylamino ethanol Sn(dmae)2 and metal alkoxide/carboxylate in dry Toluene 

was added few drops of triflouroacetic acid to result a clear solution after several hours, 

which was evaporated under vaccum to a dry solid. The solid was dissolved in 2-3 mL 

Tolune to give a clear solution which was filtered by cannula and kept for crystallization 

at -10 oC as well as room temperature. 

The quantities of reactants used are given below 

i) Reaction between Sn(dmae)2 and Titanium isopropoxide 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II) ; 0.093 mL (0.34 mmol) 

Titanium isopropoxide; 20 mL Toluene. 

ii) Reaction between Sn(dmae)2 and Iron (II) acetate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.06g (0.34 mmol) Iron (II) 

acetate (anhydrous); 20 mL Toluene. 

iii) Reaction between Sn(dmae)2 and Manganese (II) acetate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.058g (0.34 mmol) 

Manganese (II) acetate (anhydrous); 20 mL Toluene. 

iv) Reaction between Sn(dmae)2 and Zinc (II) acetate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.07g (0.34 mmol) Zinc (II) 

acetate dihydrtate; 20 mL Toluene. 

v) Reaction between Sn(dmae)2 and Nickle (II) acetate 
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4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.08g (0.34 mmol) Nickle 

(II) acetate tetrahydrate; 20 mL Toluene. 

vi) Reaction between Sn(dmae)2 and Silver (I) acetate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.056g (0.34 mmol) Silver 

(I) acetate (anhydrous); 15 mL Toluene. 

vii) Reaction between Sn(dmae)2 and Copper (II) acetate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.07g (0.34 mmol) Copper 

(II) acetate monohydrate; 20 mL Toluene. 

viii) Reaction between Sn(dmae)2 and Lead (IV) acetate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.15g (0.34 mmol) Lead 

(IV) acetate; 25 mL Toluene. 

ix) Reaction between Sn(dmae)2 and Iron (II) acetate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.06g (0.34 mmol) Iron (II) 

acetate (anhydrous);   20 mL Toluene. 

x) Reaction between Sn(dmae)2 and Cadmium (II) acetate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.07g (0.34 mmol) 

Cadmium (II) acetate dihydrate; 20 mL Toluene. 

xi) Reaction between Sn(dmae)2 and Cobalt (II) acetate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.08g (0.34 mmol) Cobalt 

(II) acetate tetrahydrate; 15 mL Toluene. 

xii) Reaction between Sn(dmae)2 and Cerium (III) acetylacetonate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.06g (0.34 mmol) Cerium 

(III) acetylacetonate; 25 mL Toluene. 

xiii) Reaction between Sn(dmae)2 and Chromium (III) acetylacetonate 

4.4 g (0.34 mmol) bis (dimethylaminoethanolato)tin (II); 0.12g (0.34 mmol) 

chromium (III) acetylacetonate Iron (II) acetate (anhydrous); 20 mL Toluene.  
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CHAPTER 4: RESULTS AND DISCUSSION 

 

Metal carboxylates with their unique properties of high volatility, suitable decomposition 

temperature and stability during transport in the gas phase make them versatile CVD 

precursors for the fabrication of thin layers of metal oxides for various technological 

applications (Joshi & Cole, 2000; Niederberger & Pinna, 2009). The different 

coordination modes (monodentate or terminal, chelating, bridging and bridging chelating) 

of the carboxylate ligand force the metal into strict molecular regimes that enhance their 

potential to perform as CVD precursor (Chandler, Roger, & Hampden-Smith, 1993; 

Hubert‐ Pfalzgraf, 1992; Norman, Perez, Schulz, & Waechtler, 2008). Metal oxide core 

covered by organic surrounding making the precursor soluble in suitable organic solvents 

(Chandler, et al., 1993; Hasenkox, Hoffmann, & Waser, 1998). Semiconducting 

nanostructured metal oxide/halide thin films have been fabricated by different chemical 

and physical techniques and studied widely for their material based applications (Jagadish 

& Pearton, 2011; C. Lokhande, D. Dubal, & O.-S. Joo, 2011; Ohring, 2001).  These 

materials have been offer a significant role in field of telecommunication, 

microelectronics, optoelectronics, sensors, actuators, computer memories, optical 

wavelength guide, infrared detectors and fuel cell (Beckel et al., 2007; Hotovy, Huran, 

Spiess, Hascik, & Rehacek, 1999; Kessler, 2003). A variety of newly synthetic routes are 

now capable to yield desired products under mild conditions are known as the Soft 

chemistry approach (Graf et al., 2011; Kessler, 2003; Lepage, Michot, Liang, Gauthier, 

& Schougaard, 2011; Niederberger, Pinna, Polleux, & Antonietti, 2004). These 

techniques including non-hydrolytic Sol-Gel processing, Metal Organic Deposition 

(MOD) or Chemical Vapour Deposition (CVD) and others involve the utilization of 

metal-organic compounds or metal complexes. These metal complexes can be easily 

hydrolytically or thermally decomposed and are usually described as molecular 
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precursors. Single source precursors (SSP) are molecules containing all necessary 

elements required by the final material in proper ratio have proven extremely versatile as 

they often decompose cleanly under mild conditions and in a controllable manner.  

Here, we report a deposition method of solid solution and composite metal oxide/halide 

thin films using the AACVD, EFDAACVD and EPD technique. Different metal oxide 

complexes such as [Cu2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (1), [Co2Ti4(μ-

O)6(TFA)8(THF)6].THF (2), [Mg2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (3), 

[Mn(dmae)2(TFA)4] (4) and [Sn(dmae)(OAc)]2 (5) were prepared using Lewis-acid base 

adduct methodology (Michael Veith et al., 2000), which is unique procedure for the 

design of mono and bimetallic oxides.  

The syntheses of these precursors involves the reaction of matal alkoxides, carboxylates 

and β-diketonates in presence of more volatile and strongly bonding trifluoroacetic acid 

(TFAH) or dimethylaminoethanol (dmaeH) (Nicholas & Tuley, 2012). The replacement 

of alkoxides, carboxylates and β-diketonates by trifluoroacetato (TFA) and 

dimethylaminoethanolato (dmae) provides a stable mono and bimetal complex of that is 

soluble in various organic solvents and able to deliver a target material either as a single 

or dual source of respective metals in the form of a thin film on the FTO substrate without 

carbonaceous contamination. 

The semiconducting photoactive thin films of CuO-2TiO2, CoTiO3-TiO2 and MgTi2O5 

were fabricated from single source precursors (1), (2) and (3) respectively,  whereas thin 

film of Ag-Mn2O3 were grown from dual source using  (4) via AACVD. SnO2, Mn2O3, 

Fe2O3, CuO, NiO, ZnO, CdO and PbO films were deposited from the precursor (5) and 

respective metal acetates (Mn, Fe, Cu, Ni, Zn, Cd and Pb) precursors by EFDAACVD 

technique. While metal halide CuPbI3 deposited by EPD method. After possible 

characterizations, photoelectrochemical response of these thin films (except for CuO-
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2TiO2, CoTiO3-TiO2 and SnO2) was investigated in order to evaluate their photocurrent 

and solar energy harvesting properties. CuO-2TiO2 and CoTiO3-TiO2 thin films were 

tested for electrochemical sensing of NO2
-1 ion and dopamine (DA), whereas SnO2 for 

lithium ion batteries. 

4.1. Synthesis and Characterization of [Cu2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (1) 

The chemical interaction between diacetatocopper(II) and 

tetrakisisopropoxytitanium(IV) in the presence of trifluoroacetic acid yields a 

heterobimetallic complex [Cu2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (1). The 

isopropoxo and acetato groups attached to titanium and copper centres are 

completely exchanged by the stronger trifluoroacetato ligands as the reaction 

progresses in forward direction. The complex (1) prepared in a good yield, has 

copper to titanium ratio of 1:2, is stable in air and finds high solubility in common 

organic solvents such as methanol, ethanol, acetonitrile and tetrahydrofuran. The 

overall reaction for the formation of (1) is shown below in equation 1.  

Chemical equation 1 

CHOHCHCHCOOHOHCOHCCOOCFOHOTiCu

COOHCFCHOCHTiOHCOOHCHCu THF

2384684834242

3423223

)(164].)()()()([

8))((4.)(2




 

The heterometallic architecture of the complex (1) has been framed on the basis of 

elemental analysis, FT-IR, and single crystal X-ray analyses as described in experimental 

section. The FT-IR spectrum of complex (1) shows the presence of characteristic 

vibrations of functional groups attached to the copper and titanium atoms. The typical 

symmetric and asymmetric (C=O) absorptions of trifluoroacetato ligand arose at 1671 

and 1471 cm-1 respectively. The difference in value of 208 cm-1 between symmetric and 

asymmetric (C=O) absorption bands reveals the bidentate behaviour of the carboxylato 
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group of trifluoroacetato ligand that is bonded to different metal centres (Ehsan, Khaledi, 

Pandikumar, Rameshkumar, et al., 2015; Ehsan et al., 2011). Similarly, the peak at 1195 

cm-1 confirms the presence of C–F bonds in complex (1) (Ehsan, Khaledi, Pandikumar, 

Rameshkumar, et al., 2015; Ehsan, et al., 2011). 

4.1.1 Molecular Structure of Complex [Cu2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (1) 

The structure of (1) was solved in space group Pbca , and is disordered about the centre 

of symmetry. The core of the molecule consists of a tetrahedron of Ti(IV) ions (Figure 

4.1). Each edge of the tetrahedron is bridged by an oxygen atom (O2 or OH), generating 

a Ti4O6 adamantane-type cage. Four of the bridging species are hydroxo ions; the 

remaining two are oxo ions which are also coordinated to Cu(II) ions. The disorder arises 

from titanium ions occupying alternative sites, generating a second, overlapping 

adamantine with the oxygen atoms in the same positions. All the non-hydrogen atoms 

were refined using anisotropic atomic displacement parameters and hydrogen atoms were 

inserted at calculated positions using a riding model. Parameters for data collection and 

refinement are summarised in Table 4.1.  

Table 4.1: Crystal data and refinement parameters for complex 

[Cu2Ti4(O)2(OH)4(TFA)8(THF)6]THF (1) 

C40H52Cu2F24O28Ti4·C4H8O V = 6863.3 (7)  Å3 

Mr = 1827.60 Z = 4 

Orthorhombic, Pbca Mo Kα radiation,  = 0.71073 Å 

a = 18.8071 (11) Å μ = 1.20 mm-1 

b = 17.3656 (10) Å T = 150 K 

c = 21.0146 (12) Å 0.43 × 0.32 × 0.24 mm 

R[F2 > 2σ(F2)] = 0.067 59386 measured reflections 

wR(F2) = 0.217 7057 independent reflections 

S = 1.01 4097 reflections with I I) 

∆˃max = 0.65 e Å-3 1810 restraints 

∆˃min = -0.67 e Å-3 910 parameters 
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Figure 4.1: Perspective view of the core of (1). CF3COO− ions are represented by OCO 

links; terminal O atoms represent THF molecules, bold bonds highlight the Ti4O2(OH)4 

adamantane core. Atoms with suffix “A” generated by symmetry operation 1-x, 1-y, 1-

z. 

 

Figure 4.2: Perspective view of the [Cu2Ti4(O)2(OH)4(CF3COO)8(THF)6] (1) molecule. 

Bold bonds highlight the metal coordination spheres. Disorder and H atoms are omitted 

for clarity. 

 

Four trifluoroacetate (CF3COO−) ions are bonded to each copper ion; each trifluoroacetate 

also bridges to a titanium ion. All of the metal ions are six-coordinate, the last binding 
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site being filled by one coordinated THF molecule for each metal ion (Figure 4.2). There 

is also a (disordered) non-coordinated THF solvate molecule in the lattice. 

 

4.1.2 Thermal (TG/DTG) Analysis of Complex [Cu2Ti4(O)2(OH)4(TFA)8(THF)6]∙ 

THF (1) 

The thermal decomposition behaviour of the complex (1) was studied by 

simultaneous thermogravimetric (TG) and derivative thermogravimetric (DTG) 

analysis under an inert dinitrogen atmosphere with a flowing rate of 25 cm3 min−1 

and a heating rate of 10 °C min−1 and the results are presented in Figure 4.3.  

 

Figure 4.3: TG (black) and DTG (red) profiles representing thermal decomposition of 

complex (1) as a function of temperature. 

The TG/DTG curves impart that thermal degradation of (1) completes in four 

continuous weight loss steps and maximum heat intakes sequentially occur at 81, 

225, 250 and 306 °C giving weight loss of 11.1 %, 25.8%, 14.0%, and 22.3% 

respectively. The thermal decay process in (1) ends at 500 °C leaving an invariable 

residue that amounts to 26.80 % of its original mass. The weight of the residue 

(26.18%) reasonably accords with the formation of the expected 1:2 CuO: TiO2 
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composite oxide material from (1). Further sintering of the observed residue to the 

higher temperature of 900 °C did not experience any change in weight, suggesting 

that (1) decomposes quantitatively to endow CuO-2TiO2 as a stable final product. 

Based on TGA information, quantitative pyrolysis of (1) has been indicated in 

equation below: 

Chemical equation 2: 

VolatilesTiOCuOTHFTHFTFAOHOTiCu C   

2

500

684242 22].)()()()([  

4.1.3  Structural Analysis of CuO-2TiO2 

Thin films were developed via AACVD method on FTO glass substrate at 

temperature of 550 °C from 0.1M solution of precursor (1) in ethanol and methanol 

solvents respectively, using air as a carrier gas. The phase formation and degree of 

crystallinity of the deposited films were examined by XRD technique and X-ray 

diffractograms are comparatively overlapped in Figure 4.4. The XRD peak patterns 

seem identical in terms of their peak positions and 2θ values and both the 

diffractograms are dominated by the diffraction peak located at 2θ = 25.27° and 

37.81°. XRD qualitative phase analysis was performed on each XRD pattern shown 

in Figure 4.4, which reveals the growth of tenorite CuO (ICSD 98-001-6025) 

(Åsbrink & Norrby, 1970) and a mixture of anatase (98-000-9853) (E.P. Meagher, 

2002) and rutile (98-003-1321) (Mumme, Cranswick, & Chakoumakos, 2002) 

TiO2 phases as crystalline end product in both the cases. The prepared CuO exists 

in a monoclinic crystal system with space group C12/c1 and produced 

characteristic peaks indicated by (Z) at 2θ = 32.58, 35.60, 48.84, 58.36, and 75.16˚ 

as observed by their Miller indices (110), (11-1), (20-2), (202) and (004) 

respectively. The emergence of peaks at 2θ = 25.27 (011), 37.80 (112), 48.0 (020) 
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70.39 (220) and 73.59˚ (017) denoted by (X) are well indexed to tetragonal anatase 

TiO2. 

 

Figure 4.4: XRD patterns of the CuO-2TiO2 composite thin films prepared from 

solutions of (1) in ethanol (green line), methanol (blue line), on FTO glass at 550 °C in 

air ambient; Inset shows the proportion of crystalline phases present in CuO-2TiO2 

composite films from (i) ethanol: 48%  anatase TiO2 (X), 17% rutile TiO2 (Y), 35% 

tenorite TiO2 (Z);  (ii) methanol:  67%  anatase TiO2 (X), 17% rutile TiO2, (Y) 16% 

tenorite CuO (Z). 

Furthermore, the peaks marked by (Y) at 2θ = 27.46° (110), 36.0° (011) and 41.27° 

(111) are attributed to tetragonal rutile TiO2. The X-ray diffractograms also 

demonstrate the overlapped peaks between CuO and anatase TiO2 phases at 2θ 

values of 53.95°, 68.89° and 80.62˚. A few common reflections originating from 

both anatase and rutile TiO2 phases appear at 2θ values of 36.45 and 62.75°. No 

possible crystalline impurities such as metallic copper or Cu2O were detected from 

these XRD patterns.  

The XRD qualitative phase analysis has established that both the copper oxide-

titania composite films deposited from two different solvents are comprised of 
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similar crystalline phases including tenorite CuO and a mixture of anatase and 

rutile TiO2. The proportion of crystallinity of each phase in the composite product 

was determined by XRD semi-quantification analysis. The crystalline composition 

of CuO-2TiO2 deposit obtained from ethanol is poised at 48% anatase TiO2 (X), 

17% rutile TiO2 (Y) and 35% tenorite CuO (Z), respectively (inset Figure 4.4(i)). 

The film deposited from methanol contains the crystalline contents of 67% anatase 

TiO2 (X), 16% rutile TiO2 (Y) and 17% tenorite CuO (Z), respectively (inset Figure 

4.4(ii)).  

The crystalline contents of the CuO-2TiO2 films deposited from different solvents 

varies from each other which suggest that solvents play a vital role in decorating 

the crystalline phases of the films on substrate surface by AACVD and not just act 

as a transport medium. In aerosol deposition, solvents play an important role in the 

determination of the extent of a reaction.  The precursor can react differently in 

various solvents in the gas phase which may lead to the formation of different 

intermediates and thus to different phases of the deposit. There have been similar 

reports whereby a variety of solvents have been used to alter the phase composition 

of titania using sol-gel approach, spray pyrolysis and AACVD (Edusi, et al., 

2012),(Xiaoxin, Zhengguo, Shaojing, & Tao, 2005). 

4.1.4 Raman Spectroscopy of CuO-2TiO2 

Further the structural analysis of CuO-2TiO2 composites thin films deposited from 

two different solutions was carried out by Raman spectroscopy and results are 

displayed in Figure 4.5. The Raman scattering vibration modes detected at 151, 

400, 519 and 630 cm−1, corresponds to anatase TiO2 phase (Nolan, Seery, & Pillai, 

2011) and peaks located at 280 and 630 cm−1 signify the presence of CuO phase 

(Nguyen, Nguyen, Ung, & Nguyen, 2013). The characteristic peaks for rutile TiO2 
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which are expected to appear at 246, 446 and 601 cm-1 are merged in the broad 

bands at 280, 400 and 630 cm− 1 (Hardcastle, 2011).  Hence the CuO and mixture 

of anatase and rutile TiO2 phases determined from our XRD analysis are further 

validated from Raman spectroscopy.  

 

Figure 4.5: Raman spectra of the CuO-2TiO2 composite thin films prepared from 

solutions of (1) in ethanol (green line), methanol (blue line), on FTO glass substrate at 

550 °C in air ambient. 

4.1.5 Micro-structural Properties of CuO-2TiO2 

The micro-structural properties of the films deposited from 0.1 M (20 mL) solution 

of precursor (1) in ethanol and methanol at 550 ˚C in air atmosphere were analysed 

by SEM.  

Figure 4.6 depicts the surface and cross sectional SEM images of CuO-2TiO2 

composite films.  Figure 4.6(a) shows the surface topography of the film, prepared 

from ethanol solution, is composed of interconnected spherical objects of 

heterogeneous design, shape and size which are developed in the vertical direction of 

substrate plane. One type of microspherical object attains donuts shape structure while 
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the other exists as round ball shaped entity of size range 0.5-1.3µm (Appendix 1(a2)). 

The low resolution surface SEM images (Appendix 1(a1)) reveal that these 

microspherical objects are homogenously distributed though out the film matrix. 

The cross sectional view of CuO-2TiO2 composite film of average thickness 4.0 

µm, deposited from ethanol solution, displayed in Figure 4.6(b) and (Appendix 1. 

(b1)), show growth of small grains on the boundary layer of the FTO substrate. 

Figure 4.6 (b) shows that the surface architecture of the film obtained from 

methanol solution is made up of small and big sized spherical objects which are 

discretely grown in upward direction. The high resolution image (Appendix 1(c2)) 

demonstrates that the surface of these spherical bodies is fully covered with buds. 

The low resolution surface SEM image (Appendix 1. Figure 1(c1)) depicts that 

these objects are uniformly furnished on substrate surface however the surface of 

the substrate is not fully covered as observed in the film deposited from ethanol 

solution. 

The shape of the thin-film cross sections is shown in Figure 4.6(d) and (Appendix 

1 (d1)) and a layer of spheroid objects of thickness range 1.77-4.40 µm can be 

clearly seen on the surface of the FTO substrate. 
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Figure 4.6: (a) and  (c) show surface and (b) and (d) indicate the cross sectional SEM 

images of  CuO-2TiO2 composite thin films deposited on FTO glass substrate at 550 °C 

from solution of precursor (1) in (a, b) ethanol (c, d) methanol, respectively. 

The elemental composition of CuO–2TiO2 composite oxide thin films were analyzed by 

energy dispersive X-ray (EDX) analysis and spectra are presented in (Appendix 2(i & ii)). 

The  EDX analysis  performed on several randomly selected large regions  revealed that 

the metallic ratio of Cu:Ti in the films is  close to 1: 2 confirming the retention of the 

same metallic ratio in the films as found in complex (1).  

Further EDX map analysis was performed to establish the composite nature of the CuO–

2TiO2 films. The distribution of the constituent  Cu, Ti and O atoms has been highlighted  

by using different color schemes  as shown in Figure 4.7 (a & b) which  reveals the even 

distribution of these atoms throughout the films matrix. 
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Figure 4.7a: : EDX Elemental map showing the distribution of Cu, Ti and O atoms in 

CuO–2TiO2 composite thin film deposited from ethanol solution of precursor (1). 

 

Figure 4.7b: EDX Elemental map showing distribution of Cu, Ti and O atoms in CuO–

2TiO2 composite thin film deposited from methanol solution of precursor (1). 

 

4.1.6 XPS Analysis of CuO-2TiO2 

The XPS analysis was employed to determine the surface composition and chemical 

states of the Cu, Ti, and O elements in CuO-2TiO2 composite oxide thin film prepared 

from ethanol solution of precursor (1) at 550 °C.  
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Figure 4.8: (a) Survey scan XPS spectrum of CuO-2TiO2 composite thin films prepared 

from ethanol solution; High resolution spectra of CuO-2TiO2 for (b) Ti 2p (c) O 1s (d) 

Cu 2p 

The survey scan spectrum in Figure 4.8(a) shows the binding energy peaks at  458.4, 

529.5 and 933.4 eV which are attributed to Ti 2p, O 1s and Cu 2p respectively. In the high 

resolution Ti 2p spectrum Figure 8(b), binding energies of 458.6 and 464.3 eV are 

indicative of Ti 2p3/2 and Ti 2p1/2 respectively which correspond to Ti4+ and  matches 

well with the published data for TiO2 (S. S. Lee, Bai, Liu, & Sun, 2013). Meanwhile, the 

peaks at 529.7 and 530.1 eV are evidence of O1s in CuO and TiO2 Figure 4.8(c). The Cu 

2p peak of the CuO-2TiO2 is shown in Figure 4.8(d). The Cu 2p3/2 is allocated at 934 eV 

with a shakeup satellite peak at about 943.5eV and Cu 2p1/2 lies at 954 eV with a satellite 

peak at about 962.5eV, which is consistent with earlier reports (Dar, Nam, Kim, & Kim, 

2010; D. Tahir & Tougaard, 2012). The presence of shakeup satellite features for Cu 2p 

rules out the possibility of presence of Cu2O phase. The gap between Cu 2p1/2 and Cu 

2p3/2 is 20eV, which is in agreement with the standard CuO spectrum (L. Zhu, Hong, & 

Ho, 2015).   
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4.1.7 Electrochemical Detection of Nitrite Ions by CuO-2TiO2 Film Electrodes  

The CuO–2TiO2 composite film deposited from ethanol solution of (1) was used for the 

electrocatalysis and sensing of NO2
− ions in 0.1 M phosphate buffer solution (PBS) (pH 

7.2).  

 

Figure 4.9: Cyclic voltammograms obtained for the CuO–2TiO2 composite thin film in 

the (a) absence and (b) presence of 5 mM NO2
− ions in 0.1 M PBS (pH 7.2) at a scan 

rate of 50 mV s-1 

The CuO–2TiO2 composite electrode displayed an intense anodic peak current in the 

cyclic voltammogram for 5 mM  NO2
− at +1.0 V due to the electrocatalytic oxidation of 

NO2
−,  Figure 4.9(b), and  did not show any voltammetric response in the absence of NO2

−,  

Figure 4.9(a). During the electrocatalytic oxidation of NO2
− , two electrons were 

transferred and thus to form NO3
− as a product.(Guidelli, Pergola, & Raspi, 

1972),(Pandikumar, Yusoff, Huang, & Lim, 2014) Further, influence of the scan rate on 

the electrocatalytic oxidation peak potential (Epa) and peak current for NO2
− at the CuO–

2TiO2 film electrode in 0.1 M PBS (pH 7.2) were studied using CV, as shown in Figure 

4.10(a).  
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Figure 4.10: (a) Cyclic voltammograms recorded for the CuO–2TiO2 electrode in the 

presence of 1 mM NO2
− ions in 0.1 M PBS (pH 7.2) at various scan rates of ((a)–(m)) 

10–300 mV s-1. (b) Plot of anodic peak current vs square root of the scan rate obtained 

for the CuO–2TiO2 electrode. 

The current values were found to be increased with an increase in the scan rate from 10 

to 300 mV s−1, Figure 4.10(a). The linear relationship between the anodic peak currents 

and the square root of the scan rate is shown in Figure 10(b). As can be seen, the anodic 

peak current (Ipa) for the 1 mM NO2
− varied linearly with the square root of the scan rate 

(ν1/2), with a linear regression equation of (Ipa (μA) = 0.205ν1/2 + 20.48) and a correlation 

coefficient R2 = 0.971. This result indicates that the electron transfer of the CuO–2TiO2 

composite film is mainly controlled by a diffusion-controlled electrochemical process 

(Ikhsan et al., 2015).  
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The sensitivity of the sensor under the optimized detection for NO2
− conditions were tried, 

and a series of linear sweep voltammetry (LSV) curves were recorded in 0.1 M PBS (pH 

7.2) with different NO2
− concentrations at the CuO–2TiO2 electrode as shown in Figure 

4.11(a). It could be observed that the anodic peak current increased linearly with an 

increase in the concentration of  NO2
− in the range of 10 to 200 μM, with a linear regression 

equation of Ipa = 0.0415 M + 1.4336 μ (R2 = 0.9994), Figure 4.11(b). The sensitivity is 

determined from the slope of the calibration plot. The Figure 4.11(b) shows the standard 

addition line, limit of detection (LoD) for NO2
− was calculated as 16.6 nM (S/N = 3). It 

can be seen that this present detection limit is comparable as well as lower than detection 

limits obtained for other oxides by different electrochemical methods.  

The sensing performance of the CuO–2TiO2 composite film was compared with other 

previously reported sensor materials for the detection of NO2
− and the results are 

summarized in Table 4.2 which indicates that the detection limit of the present sensor is 

better than the other oxide materials.  
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Figure 4. 11:(a) Linear sweep voltammograms (LSV) obtained for the CuO–2TiO2 

composite thin film for various concentration of NO2
− ions in 0.1 M PBS (pH 7.2) at a 

scan rate of 50 mV s-1. (b) Correlation between the concentration of NO2
− and peak 

current for the CuO–2TiO2  electrode. 
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Table 4.2: Comparison of analytical performance of various electrochemical sensors for 

nitrite (NO2
−) detection. 

Sensor material Analytical technique Limit of detection 

(LOD) 

Ref. 

MnO2-CP-E Linear sweep voltammetry 1.2μM (Langley, 

ŠLJUKIC, 

Banks, & 

Compton, 

2007) 

Cobalt oxide Cyclic voltammetry 20 mM (Salimi, Hallaj, 

Mamkhezri, & 

Hosaini, 2008) 

CuO–graphite Cyclic voltammetry 0.6 μM (Biljana 

Šljukić, Craig E 

Banks, Alison 

Crossley, & 

Richard G 

Compton, 

2007) 

PbO2 –graphite Cyclic voltammetry 0.9 μM (Biljana 

Šljukić, Craig E 

Banks, Alison 

Crossley, & 

Richard G 

Compton, 

2007) 

f-ZnO@rFGO Linear sweep voltammetry 33 µM (Pandikumar, et 

al., 2014) 

ZnTiO3–TiO2 Amperometry 3.98 μM (Ehsan, 

Khaledi, 

Pandikumar, 

Rameshkumar, 

et al., 2015) 

CuO–2TiO2 Linear sweep voltammetry 16.6 nM Present work 

 

The selectivity of the CuO–2TiO2 electrode for the determination of NO2
− investigated by 

adding various possible interferents and observing the change in current (Figure 4.12). 

The LSV was continuously recorded for the addition of common interferents such as NaF, 

NH4Cl, KCl, NaNO3 and MgSO4 in a homogeneously stirred of 0.1 M PBS (pH 7.2) and 

Univ
ers

ity
 of

 M
ala

ya



 

94 

there is no significant current response found due the interferents. Upon addition 100 μM 

NO2
−, the electrode showed the response signal (Figure 4.12). This observation clearly 

demonstrates that the selective detection of NO2
− even in the presence of common 

interferents is possible and the CuO–2TiO2 composite possesses high selectivity toward 

NO2
− over other common interferents. 

 

Figure 4.12: LSV response obtained for CuO–2TiO2 composite thin film for the 

addition of  and each 1000 μM addition of other interferences such as  KCl, MgSO4, 

NaF, NH4Cl , NaNO3 and 100 μM NO2
− ions  in 0.1 M PBS (pH 7.2) at scan rate of 50 

mV s-1. 

4.2   Synthesis of Complex [Co2Ti4(μ-O)6(TFA)8(THF)6]∙THF  (2) 

The synthetic protocol of heterobimetallic precursor  

[Mg2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (2) involves the reaction of 

diacetatomagnesium(II) tetrahydrate with tetraisopropoxytitanium(IV) in presence 

of trifluoroacetic acid in THF. As the reaction progresses, the more labile 

isopropoxy ligands are exchanged by stronger chelating TFA groups which bind 

Mg and Ti atoms through its carboxylate oxygen atoms.  The exchange of ligands 

and progress of the reaction can be observed by dissolution of salts to result in a 

clear solution. The transparent solution was then evaporated in vacuum to obtain a 
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white powder which was re-dissolved in 3 mL THF and kept at room temperature 

to grow the first 70% yield of translucent white crystals of the precursor (2). The 

overall reaction for the formation of (2) is shown below in equation .  

Chemical equation 3 

CHOHCHCOOHCHOHCOHCCOOCFOTiCo

COOHCFCHOCHTiOHCOOHCHCo THF

2338468483642

3423223

)(164].)()()([

8))((44.)(2






 

The substitution of carboxy with TFA groups not only aids binding of Mg and Ti atoms 

in one framework but also co-ordinatively saturates each metal centre, making the 

precursor more volatile as well as soluble in organic solvents such as chloroform, THF, 

methanol and ethanol, rendering it a suitable precursor to produce single phased MgTi2O5 

thin films by the AACVD method. The stoichiometric composition of complex (2) was 

recognized by single crystal X-ray diffraction and further confirmed by FTIR and 

TG/DTG analysis. The FT-IR spectrum of Mg-Ti precursor showed strong absorption 

bands at 1654 and 1453 cm-1 due to the asymmetric and symmetric (C=O) vibrations of 

the  95carboxylate group of the TFA ligands respectively. The difference of value Δasy- 

Δsy = 200 cm-1 is consistent with the bidentate bridging behavior of TFA ligand. 

Similarly, a sharp peak at 1192 cm-1 confirms the existence of C–F bonds in complex (2). 

The IR spectrum is closely related to those reported previously for similar 

heterobimetallic compounds. 

4.2.1 Molecular Structure of Complex [Co2Ti4(μ-O)6(TFA)8(THF)6]·THF (2)   

The molecular structure of the Co-Ti complex is depicted in Figure 4.13 and a schematic 

drawing for the molecule is given in Figure 4.14. The structure of the Co-Ti complex 

resembles those of the analogous Fe-Ti (Ehsan, et al., 2011), Cd-Ti (Ehsan, Khaledi, 
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Pandikumar, Huang, et al., 2015) and Zn-Ti (Ehsan, Khaledi, Pandikumar, 

Rameshkumar, et al., 2015) complexes, being isostructural with the latter two complexes.  

 

    

Figure 4.13: Crystal structure of complex [Co2Ti4(μ-O)6(TFA)8(THF)6]THF 

(2). The minor component of disorder, hydrogen atoms, and the solvate THF molecule 

are not shown. 

 

 

Figure 4.14: Schematic diagram of complex [Co2Ti4(μ-O)6(TFA)8(THF)6]THF (2). 
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The molecule has a non-crystallographic D2 point symmetry and consists of a Ti4O6 core 

arranged in an adamantane-like structure. Two of the core O atoms (O1, O6) are of the 

μ3-type that bridge pairs of the tetrahedrally located Ti’s to the two CoII centers. The other 

four O atoms (O2, O3, O4, O5) link only pairs of the Ti atoms. Each metal center in the 

structure is in an octahedral coordination environment made of six O atoms from the 

Ti4O6 cage, TFA’s and THF ligands. Table 4.3 lists the coordination bond lengths for the 

structure. The Ti-Ti separations are between 3.328-3.352 Å which are comparable to 

those in the analogous structures.  

Table 4.3: Coordination bond lengths for [Co2Ti4(μ-O)6(TFA)8(THF)6]· THF (2) 

Co(1)-O(1)  2.175(6) 

Co(1)-O(7)  2.111(7) 

Co(1)-O(8)  2.039(8) 

Co(1)-O(10)  2.064(7) 

Co(1)-O(12)  2.083(8) 

Co(1)-O(14)  2.079(8) 

Co(2)-O(6)  2.154(7) 

Co(2)-O(18)  2.108(6) 

Co(2)-O(19)  2.030(11) 

Co(2)-O(21)  2.035(8) 

Co(2)-O(25)  2.041(8) 

Co(2)-O(23)  2.046(8) 

Ti(1)-O(1) 1.853(7) 

Ti(1)-O(2) 1.809(8) 

Ti(1)-O(3) 1.792(8) 

Ti(1)-O(9)  2.092(13) 

Ti(1)-O(11)  2.085(10) 

Ti(1)-O(16)  2.155(10) 

Ti(2)-O(1) 1.938(7) 

Ti(2)-O(5) 1.813(8) 

Ti(2)-O(4) 1.870(8) 

Ti(2)-O(13)  2.080(12) 

Ti(2)-O(15)  2.108(10) 

Ti(2)-O(17)  2.168(9) 

Ti(3)-O(2) 1.860(8) 

Ti(3)-O(4) 1.744(8) 

Ti(3)-O(6) 1.881(7) 

Ti(3)-O(20)  2.079(13) 

Ti(3)-O(22)  2.101(12) 

Ti(3)-O(27)  2.179(8) 

Ti(4)-O(3) 1.851(8) 

Ti(4)-O(5) 1.782(8) 

Ti(4)-O(6) 1.925(7) 

Ti(4)-O(24)  2.067(9) 

Ti(4)-O(26)  2.116(11) 

Ti(4)-O(28)  2.161(9) 

Ti(1)-Ti(2)  3.347(4) 

Ti(1)-Ti(3)  3.328(4) 

Ti(1)-Ti(4)  3.345(4) 

Ti(2)-Ti(3)  3.347(4) 

Ti(2)-Ti(4)  3.338(4) 

Ti(3)-Ti(4)  3.352(4) 
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4.2.2 Thermal (TG/DTG) of complex [Co2Ti4(μ-O)6(TFA)8(THF)6]·THF (2)   

The thermal pyrolysis of complex (2) was investigated by thermogravimetric (TG) and 

derivative thermogravimetric (DTG) analysis in a flowing N2 atmosphere at the rate of 

25 cm3 min−1 and a heating rate of 10 °C min−1 and results are displayed in Figure 4.15.  

 

Figure 4.15: TG (red) and DTG (dotted black) traces of thermal decomposition of 

complex (2) as a function of temperature 

The TG (red) and DTG (black) curves in Figure 4.15                                                                                                                                                                            

indicate that complete thermal degradation of complex (2) occurs in five 

consecutive weight loss stages of 1.53, 7.2, 16.8, 6.8 and 40.17% which appear at 

maximum heat intake steps at 72, 160, 195, 218, and 292 ˚C respectively. The 

weight loss phases are completed at 500 °C yielding steady residues of 27.5 % of 

its original mass which is equitable with the formation of the expected 1:1 of 

CoTiO3: TiO2 (25.80%) composite oxide material from (2). Further sintering of the 

observed residue to the higher temperature of 900 °C did not produce any change 
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in weight, suggesting that complex (2) decomposes quantitatively to endow 

CoTiO3–TiO2 as a stable final product. Based on TGA information, quantitative 

pyrolysis of (2) has been indicated in equation below: 

Chemical equation 4: 

VolatilesTiOCoTiOTHFTHFTFAOTiCo C   

23

500

68642 2].)()()([   

4.2.3 XRD Analysis of CoTiO3-TiO2 Thin Films  

The ability of complex (2) to act as a single source precursor (SSP) for the formation of 

advanced composite oxides thin film was investigated by AACVD and film deposition 

experiments were carried out on FTO glass substrate at three different temperatures of 

500, 550 and 600 ˚C using ethanolic solution of complex (2) in air ambient.  

The structural characterization of crystalline deposit was made by XRD analysis and 

resultant patterns as function of substrate temperature are overlaid in Figure. 4.16. Each 

XRD pattern in Figure 4.16 was analyzed by qualitative phase analysis which   indicates 

the presence of similar cobalt titanium oxide CoTiO3 (ICSD 98-001-6548) (Newnham, 

Fang, & Santoro, 1964) and rutile TiO2 (ICSD 98-001-6636) (Tomaszewski, 2002) phases 

in all the cases. In all films, the prepared CoTiO3 exists in a hexagonal crystal system with 

space group R-3 and produced characteristic peaks indicated by (X) at 2θ = 23.9, 32.8,  

35.4, 40.5, 49.0,  53.5, 61.9 and 63.6 ˚ as observed by their Miller indices (012), (104), 

(2-10), (2-13), (024), (116), (214) and (030), respectively. The emergence of peaks at 2θ 

= 27.4 (110), 36.0 (011), 41.3 (111), 44.0 (120) and 54.3˚ (121) denoted by (Y) are well 

indexed to tetragonal rutile TiO2.  

The X-ray diffractograms also demonstrate overlapped peaks between CoTiO3 and rutile 

TiO2 phases at 2θ values of 56.7, and 68.9˚.  Peaks indicated by (*) are originated from 
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crystalline SnO2 of the FTO substrate. Interestingly, all the XRD patterns show similar 

phases of ilmenite CoTiO3 and rutile TiO2 as end product prepared at different 

temperatures and no sign of phase transformation or growth of impurity phases such as 

CoO, Co3O4 and other titania varieties is perceived from these XRD results. 

In comparison with recent literature, the cobalt titanate material is usually prepared at 

higher temperature of 600 ˚C and prolong heating is often required to improve the 

crystallinity of the product (Kapoor, Uma, Rodriguez, & Klabunde, 2005; G Zhou, Lee, 

Kim, Kim, & Kang, 2006; Chuang et al., 2010). This post sintering process deteriorates 

the phase purity of the product by generating various unwanted phases and undermines 

the worth of the material for technological applications. 

 

Figure 4.16: XRD patterns of CoTiO3-TiO2 composite films deposited on FTO glass 

substrate at different temperatures of 500 ˚C (black line), 550 ˚C (green line) and 600 ˚C 

(red line) from ethanolic solution of precursor (1). (X) indicates peaks originating from 

ilmenite-CoTiO3 ((ICSD 98-001-6548)), (Y) specifies peaks related to rutile TiO2 

(ICSD 98-001-6636 ). 

In comparison well crystallized CoTiO3-TiO2 composite oxide is formed at lower 

temperature of 500 ˚C and product remain pure and stable until 600 ˚C which is unique 

aspect of AACVD based SSP method. 
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4.2.4 Raman Spectroscopy of CoTiO3-TiO2 thin films 

The chemical structure and identity of cobalt titanate and titanium dioxide phases in the 

composite films were further characterized from FT-Raman spectroscopy and the spectra 

of as-deposited films at different temperatures are comparatively shown in Figure 4.17.  

 

Figure 4.17: FT-Raman spectra of CoTiO3-TiO2 composite films deposited at different 

temperatures of 500 ˚C (black line), 550 ˚C (green line) and 600 ˚C (red line). 

According to the literature, the Raman scattering modes appeared at 207, 235, 267, 335, 

382, 604 and 696 cm−1 witness the presence of ilmenite CoTiO3 phase in all cases (G 

Zhou, et al., 2006; Shilpy, Ehsan, Ali, Hamid, & Ali, 2015).  The most typical feature of 

CoTiO3 is the strong Raman mode observed near 700 cm−1. This mode arises from the 

highest frequency vibrational mode of CoO6 octahedra that is the symmetric stretching 

mode (A1g symmetry for regular Oh octahedral) (G Zhou, et al., 2006). The characteristic 

Raman active band for ruitle TiO2 (Hardcastle, 2011; Nolan, et al., 2011) phase is 

observed at 447 cm-1, while the other expected absorptions bands of 246 and 601 seem to 
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merge with the broad peaks of 235 and 604 of CoTiO3. These results indicate formation 

of phase pure CoTiO3 and rutile TiO2 in all cobalt titanate-titania composite films 

prepared at different temperatures of 500, 550 and 600 ˚C. 

4.2.5  Microstructural properties of CoTiO3-TiO2 thin films 

The surface morphology, architectures and cross sectional views of CoTiO3-TiO2 

composite films developed at 500, 550 and 600 °C from ethanol solutions of the 

precursor (2) are shown in Figure 4.18. Figure 4.18a shows that the surface 

topography of the CoTiO3-TiO2 film deposited at 500 ˚C is composed of spherical 

objects of two different types of microspheres which are grown in horizontal and 

vertical directions of the substrate surface and are in the size range of 0.3-0.9µm. 

The surface of one type of microsphere contains buds while others are relatively 

bare. The cross sectional view of CoTiO3-TiO2 composite film prepared at 500 ˚C 

is displayed in Figure 4.18(b) where small grains developed on the boundary layer 

of the FTO substrate can be clearly seen and film average thickness was measured 

to be 4.5 µm. 

When the deposition temperature increases to 550 ˚C, the substrate surface is 

decorated with a new designs of CoTiO3-TiO2 spherical entities and Figure. 4.18 

(c) displays that the surface of one kind of spherical object of size 1.12 µm contains 

tiny particles on its surface while the other type of microsphere of size 0.55 μm 

exhibits a smooth and plain texture. Figure 4.18(d) designates the cross sectional 

view of the CoTiO3-TiO2 composite film and it is observed that film thickness 

increases to 7.8 µm with the rise in temperature from 500 to 550 ˚C. Further 

increasing the deposition temperature to 600 °C results in formation of mixture of 

donuts and round shaped crystallites of CoTiO3-TiO2 as displayed in Figure 4.18 

(e) and the shape of the thin-film cross sections is shown in Figure 4.18 (f) where 
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a layer of spheroid particles of thickness 18 µm is visibly displayed on the surface 

of the FTO substrate.  

 

Figure 4.18: (a), (c) and I show surface and (b), (d) and (f) indicate the cross sectional 

SEM images of  CoTiO3-TiO2 composite thin films deposited on FTO glass substrate 

from ethanolic solution of precursor (2) at temperatures  (a, b) 500 ˚C (c, d) 550 ˚C and  

(e, f) 600 ˚C, respectively. 

The surface compositions of all films were analysed by energy dispersive analysis 

(EDX) analysis.  EDX spectra shown in (Appendix 3(i, ii and iii) were recorded at 

various arbitrary large areas of the films which  revealed that the percent atomic 

ratio of Co: Ti in the films is almost 1: 2 which is in accordance with the expected 

1: 2 elemental ratio present in precursor (2). These results confirm that the films 
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grown at different temperatures 500, 550 and 600 ˚C retain the same metallic ratio 

as found in complex (2).  

Further the heterogeneity and distribution of cobalt, titanium and oxygen  atoms in 

CoTiO3-TiO2 composite films was examined by EDX mapping and results are shown in 

Figure 4.19 (a- c) which  reveal that these atoms are evenly distributed throughout the 

films matrix confirming the composite nature of all films prepared at different 

temperatures.  

 

Figure 4.19a: Elemental Map showing the distribution of Co, Ti and O elements in 

CoTiO3-TiO2 composite film deposited at 500 oC 
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Figure 4.19b:  Elemental Map showing the distribution of Co, Ti and O elements in 

CoTiO3-TiO2 composite film deposited at 550 oC  

 

 

Figure 4.19c:  Elemental Map showing the distribution of Co, Ti and O elements in 

CoTiO3-TiO2 composite film deposited at 550 oC  
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All CoTiO3-TiO2 films were translucent and light green in colour. The films 

deposited at lower temperature of 500 and 550 ̊ C were robust and adhered strongly 

on the FTO substrate as verified by the ‘‘Scotch tape test’’ while the film prepared 

at 600 ˚C showed poor adhesive properties and was failed to qualify the adherence 

test.  

4.2.6  XPS Analysis of CoTiO3-TiO2 thin films 

The CoTiO3-TiO2 composite film prepared at 550 ˚C was further examined by X-ray 

photoelectron spectroscopy (XPS) and results are presented in Figure 4.20. The XPS 

survey scan spectrum in Figure 4.20 (a) indicates that cobalt, titanium, and oxygen are 

the major components at the surface of the film. After elements identification, their 

chemical and valence states were analyzed by narrow scans and results are shown in 

Figure 4.20 (b-d). 

In the high resolution Ti 2p spectrum , Figure 4.20 (b), the binding energies of 458.7 and 

464.4 eV are indicative of Ti 2p3/2 and Ti 2p1/2 respectively which correspond to Ti4+ 

and  matches well with the published data for TiO2 (G Zhou, et al., 2006; Chuang, et al., 

2010).  Figure 7(c), represents O1s spectra where a primary peak at 530 eV can be further 

divided into sub peaks centered at  529.7 and  530.2 eV  attributing to  Ti–O , Co–O in 

CoTiO3, respectively (G Zhou, et al., 2006; Chuang, et al., 2010). Two peaks at 531.4 and 

532.6 eV are assigned to the  adsorbed oxygen and hydroxyl oxygen, respectively.  

The high resolution Co 2p spectrum is shown in Figure 4.20(d). Two main peaks at 

binding energies of 781.5 and 797.3 eV correspond to Co 2p3/2 and Co 2p1/2. The 

difference (∆) between Co 2p1/2 and Co 2p3/2 orbital is nearly 16 eV, which implies the 

fundamental oxidation state of high-spin Co2+, and is very similar to those reported earlier 

for CoTiO3 (Y. Liang et al., 2013; Shilpy, et al., 2015). Moreover, the splitting of the Co 
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2p1/2–Co 2p3/2 orbital components ∆ is usually 15 eV for the low-spin Co3+ . Toward 

the left of each main peak is a satellite peak known as a shake-up line which occurs when 

Co (II) resides in a high spin state. Thus, the XPS results strongly suggest the formation 

of phase pure CoTiO3-TiO2 composite oxide films.  

 

Figure 4.20: (a) XPS spectra of CoTiO3-TiO2 composite thin films prepared at 550 ˚C 

from ethanol solution of precursor (1) ; High resolution spectra CoTiO3-TiO2 for (b) Ti 

2p (c) O 1s (d) Co 2p. 

4.2.7 Electrochemical detection of dopamine (DA) by CoTiO3-TiO2 film electrode 

4.2.7.1 CV behavior of DA 

The CoTiO3-TiO2 composite film deposited at 550 ˚C was used for the electrocatalysis 

and sensing of dopamine (DA) in 0.1 M phosphate buffer solution (PBS) (pH 7.0).  Figure 

4.21 represents cyclic voltammograms (CVs) both in absence and presence of DA in a 

phosphate buffer solution, also containing 10 mM of Ascrobic acid (AA), a common 

interfering specie for DA.  
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Figure 4.21: Cyclic voltammograms (a) absence, (b) presence of 15 μM DA obtained 

with the CoTiO3-TiO2 composite electrode; (c) absence and (d) presence of 50 μM DA 

recorded with the bare FTO electrode in the in 0.1 M PBS (pH 7.0) at a scan rate of 50 

mV s-1. 

The potential was scanned between – 0.2 to + 0.6 V. It is evident from Figure 4.21(a) that 

no redox peaks were observed in the absence of DA, which also infers that AA was not 

electrochemically active in this potential window. Figure 4.21(b) represents that the 

CoTiO3-TiO2 composite electrode displayed an intense and sharp anodic peak current at 

+0.215 V due to the electrocatalytic oxidation of dopamine when 15 μM of DA was present 

in the buffer solution. The corresponding reduction peak appeared at +0.075 V but with much less 

current density representing the quasi-reversible redox behavior of DA.  The sharp peak for DA 

oxidation at +0.215 V was also indicative of fast electrode kinetics for the DA oxidation (Ping, 

Wu, Wang, & Ying, 2012; L. Wu, Feng, Ren, & Qu, 2012). To observe contribution from FTO 

towards DA oxidation, CVs in presence and absence of DA were recorded with bare FTO 

electrode as shown in Figure 4.21(c,d).  The voltamograms indicate that in the absence of DA no 

redox peaks were observed and background current was higher than the CoTiO3-TiO2 
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composite electrode. In the presence of 50 μM of DA and AA, only a slight increase in 

current was observed with a broad oxidation peak starting from approximately 0.22 V and 

extending up to 0.6 V. These results clearly indicate that the CoTiO3-TiO2 composite 

electrode is capable to catalytically oxidize DA with a sharp oxidation peak within the 

tested potential window. 

4.2.7.2  Effect of scan rate on CV studies 

Further, influence of the potential scan rate on the electrocatalytic activity of DA at the 

CoTiO3-TiO2 film electrode surface was studied in the PBS (pH = 7.0) using CV, as 

shown in Figure 4.22. Increase in scan rate from 25 to 200mV/s led to the increase in both 

DA oxidation and reduction peaks with a slight shift in the peak potential. The shift in 

peak potential was due to the quasi-reversible redox process (D. Wu et al., 2013). The 

linear relationship between the peak currents (Ip) and the square root of the scan rate was 

observed for both oxidation and reduction processes as shown in the inset of Figure 4.22.  

It is evident that, the anodic peak currents (Ipa) for the 10 μM DA varied linearly with the 

square root of the scan rate (ν1/2), with a  linear regression equation, for anodic peak 

current Ipa (μA) = 0.0563ν1/2 + 11.40 and a correlation coefficient R2 = 0.985. This 

behavior suggests that the electrode kinetics is mainly diffusion controlled 

electrochemical reaction.  
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Figure 4.22: Cyclic voltammograms recorded for the CoTiO3-TiO2 electrode in the 

presence of 10 μM DA in 0.1 M PBS (pH 7.0) at various scan rates 25–200 mV s-1. 

(Inset) Plot of anodic peak current vs. square root of the scan rate obtained with the 

CoTiO3-TiO2 electrode. 

4.2.7.3 Effect of pH 

pH plays a crucial role in the redox behavior of DA at the CoTiO3-TiO2 film electrode 

surface. In fact, in CV experiments, redox couple of DA shifted towards the negative 

direction upon increasing the pH from 5-9, Figure 4.23. This infers that electrocatlaytic 

behavior of DA is pH dependent. For practicality purposes, pH 7 was chosen for further 

analysis of DA with the CoTiO3-TiO2 composite electrode.  
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Figure 4.23: (a-c) Cyclic voltammograms recorded at CoTiO3-TiO2 electrode for 2 μM 

of DA in 0.1 M PBS with different pH values at scan rate of 50 mVs−1. 

4.2.7.4   Analytical utilization 

A series of linear scan voltammetry (LSV) curves were recorded in 0.1 M PBS (pH = 7.0) 

with different DA concentrations at the CoTiO3-TiO2 composite as shown in Figure 4.24 

(a). It could be observed that the anodic peak current increased linearly with an increase 

in the concentration of DA in the range of 20 to 300 μM, with R2 = 0.993 (Figure 4.24b). 
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The sensitivity is determined from the slope of the calibration plot. The Figure 4.24 (b) 

shows the standard addition line with linear regression equation. The detection limit found 

was 0.083 μM (S/N = 6) by LSV. The sensitivity found from the slope was 0.325 μA. 

μM-1.cm2. 

 

Figure 4.24: (a) LSV curves obtained with the CoTiO3-TiO2 composite electrode for 

various concentration of DA 0.1 M PBS (pH 7) at a scan rate of 50 mV s-1. (b) 

Correlation between the concentration of DA and peak current for the CoTiO3-TiO2 

electrode. 
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4.2.7.5 Selectivity and stability studies 

The selectivity of the CoTiO3-TiO2 electrode towards DA oxidation was also investigated 

by LSV. Common interfering species AA, uric acid (UA), glucose, sulphate, nitrate and 

chloride were chosen and their effect on DA oxidation signal was evaluated as represented 

in Figure 4.25. It is evident that even when 100-fold higher concentration of an 

interference source is used in a homogeneously stirred of 0.1 M PBS (pH 7), there is no 

significant current response in the potential window used for DA analysis. This clearly 

suggested that DA oxidation at the fabricated CoTiO3-TiO2 composite was more selective 

and not affected in the presence of common interferences. 

 

 

Figure 4.25: LSV response obtained with the CoTiO3-TiO2 composite electrode for 100 

μM of each interferent and 10μM Dopamine in 0.1 M PBS (pH 7) at scan rate of 50 mV 

s-1. 

The stability of CoTiO3-TiO2 composite electrode was also monitored over the period of 

study. There was no significant loss observed in response for DA over 4 weeks with the 

standard deviation (RSD) of 3.4 %.   Such a high stability of the CoTiO3-TiO2 composite 

Univ
ers

ity
 of

 M
ala

ya



 

114 

electrode can be accredited to inherent properties of metal oxides compared to electrodes 

modified with pure metallic gold or platinium nanoparticles (J. Li et al., 2012).  

Table 4.4: Comparison of analytical performance of various electrochemical sensors for 

DA detection 

Sensor Material 

 

Analytical techniques 

 

Limit of detection 

(LoD) 

(μM) 

Ref. 

 

Au-Pt/GO-ERGO  Cyclic voltammetry 0.02  (Y. Liu et 

al., 2015) 

NiO–CuO/GR/GCE Square Wave voltammetry 

 

0.10  (B. Liu, et 

al., 2016) 

GO–La/CPE Differential pulse 

voltammetry 

0.00032  (F. Ye, et 

al., 2015) 

EPPGE-SWCNT–

Fe2O3 

 

Square Wave voltammetry 

 

0.36  (Adekunle, 

Agboola, 

Pillay, & 

Ozoemena, 

2010) 

GO/SiO2–MIPs/GCE 

 

Amperometry 

 

0.03  (Zeng, 

Zhou, 

Kong, 

Zhou, & 

Shi, 2013) 

ZnO- GCE 

 

Amperometry 0.06 

 

(Xia, 

Wang, 

Wang, & 

Guo, 2010) 

Graphene–AuNPs Differential pulse 

voltammetry 

1.86 (J. Li, et al., 

2012) 

CoTiO3-TiO2  Linear scanning  

voltammetry 

0.083 Present 

work 

ERGO = Electrochemically reduced graphene oxide, GCE = glassy carbon electrode,  CPE = 

Carbon paste electrode 

GO = graphene oxide , MIP = molecularly imprinted polymers, EPPGE  = edge-plane pyrolytic 

graphite electrode 

The sensing performance of the CoTiO3-TiO2 film electrode was compared with other 

previously reported sensor materials for the detection of DA and the results are 
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summarized in Table 4.4 which reveals that the present electrocatalyst performs equally 

good to the other bimetallic or metal oxide composite with carbon nanotubes (CNTs) and 

graphene oxide (GO) for the oxidation of DA.  

It is very well known that the use of CNTs and GO provides large network for collecting 

electrons from oxidation process thereby assisting efficient current generation to improve 

the detection performance of electro catalyst. However, considering the prolong synthetic 

methods of these catalysts and  high cost of Pt and Au metals, present catalyst prepared 

from AACVD technique is suitable alternative to Pt and Au free electrocatalyst for the 

DA oxidation with low cost and ease of fabrication.  

4.3 Synthesis and Characterization of Complex [Mg2Ti4(O)2(OH)4(TFA)8(THF)6]∙ 

THF (3)  

The synthetic protocol of heterobimetallic precursor  

[Mg2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (3) involves the reaction of 

diacetatomagnesium(II) tetrahydrate with tetraisopropoxytitanium(IV) in presence 

of trifluoroacetic acid in THF. As the reaction progresses, the more labile 

isopropoxy ligands are exchanged by stronger chelating TFA groups which bind 

Mg and Ti atoms through its carboxylate oxygen atoms.  The exchange of ligands 

and progress of the reaction can be observed by dissolution of salts to result in a 

clear solution. The transparent solution was then evaporated in vacuum to obtain a 

white powder which was re-dissolved in 3 mL THF and kept at room temperature 

to grow the first 70% yield of translucent white crystals of the precursor (3). The 

overall reaction for the formation of (3) is shown below in equation .  

Chemical equation 5 
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CHOHCHCOOHCHOHCOHCCOOCFOHOTiMg

COOHCFCHOCHTiOHCOOHCHMg THF

2338468434242

3423223

)(164].))(()()([

8))((44.)(2




 

The substitution of acetate with TFA groups not only aids binding of Mg and Ti atoms in 

one framework but also co-ordinatively saturates each metal center, making the precursor 

more volatile as well as soluble in organic solvents such as chloroform, THF, methanol 

and ethanol, rendering it a suitable precursor to produce single phased MgTi2O5 thin films 

by the AACVD method. The stoichiometric composition of (3) was recognized by single 

crystal X-ray diffraction and further confirmed by FTIR and TG/DTG analysis. The FT-

IR spectrum of Mg-Ti precursor showed strong absorption bands at 1654 and 1453 cm-1 

due to the asymmetric and symmetric (C=O) vibrations of the carboxylate group of the 

TFA ligands respectively. The difference of value Δasy- Δsy = 200 cm-1 is consistent 

with the bidentate bridging behavior of TFA ligand. Similarly, a sharp peak at 1192 cm-1 

confirms the existence of C–F bonds in (3). The IR spectrum is closely related to those 

reported previously for similar heterobimetallic compounds. 

4.3.1  Molecular Structure of Complex [Mg2Ti4(O)2(OH)4(TF)8(THF)6]∙THF (3)   

The structure of (3) is isomorphous with that of the copper analog 

[Cu2Ti4(O)2(OH)4(CF3COO)8(THF)6]∙THF and shows the same severe disorder. The 

structure was solved in space group Pbca , and is disordered about the centre of symmetry. 

The core of the molecule consists of a tetrahedron of Ti(II) ions (Figure 4.26). Each edge 

of the tetrahedron is bridged by an oxygen atom (O2 or OH), generating a Ti4O6 

adamantane-type cage. Four of the bridging species are hydroxo ions; the remaining two 

are oxo ions which are also coordinated to Mg (II) ions. The disorder arises from titanium 

ions occupying alternative sites, generating a second, overlapping adamantine with the 

oxygen atoms in the same positions. Four trifluoroacetate ions are bonded to each 

magnesium ion; each trifluoroacetate also bridges to a titanium ion. All of the metal ions 

Univ
ers

ity
 of

 M
ala

ya



 

117 

are six-coordinate, the last binding site being filled by one coordinated THF molecule in 

each case (Figure 4.27). There is also a non-coordinated THF solvate molecule in the 

lattice. 

 

Figure 4.26: Perspective view of the core of (3). CF3COO− ions are represented by 

OCO links; terminal O atoms represent THF molecules, bold bonds highlight the 

Ti4O2(OH)4 adamantane core. Atoms with suffix “A” generated by symmetry operation 

1-x, 1-y, 1-z. 

 

Figure 4.27: Perspective view of the [Mg2Ti4(O)2(OH)4(CF3COO)8(THF)6] (3) 

molecule. One component of the disorder and H atoms are omitted for clarity. 
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Table 4.5: Crystal data and refinement parameters for 

[Mg2Ti4(O)2(OH)4(TF)8(THF)6]THF (3) 

C40H52F24Mg2O28Ti4·C4H8O V = 6956.1 (4) Å3 

Mr = 1749.14 Z = 4 

Orthorhombic, Pbca Mo Kα radiation,  = 0.71073 Å 

a = 19.2879 (7) Å μ  = 0.60 mm-1 

b = 17.3364 (6) Å T = 150 K 

c = 20.8027 (7) Å 0.28 × 0.26 × 0.23 mm 

Data collection 

Bruker APEX 2 CCD  

diffractometer 

8627 independent reflections 

Absorption correction: multi-scan  

SADABS v2012/1, (Krause et al., 2015) 

6572 reflections with I I) 

Tmin = 0.677, Tmax = 0.746 Rint = 0.050 

69548 measured reflections  

Refinement 

R[F2 > 2 σ (F2)] = 0.088 2012 restraints 

wR(F2) = 0.230 H-atom parameters constrained 

S = 1.09 ∆˃ max = 0.58 e Å-3 

8627 reflections ∆˃ min = -0.68 e Å-3 

955 parameters  

 

4.3.2  Thermogravimetric Analysis of Precursor [Mg2Ti4(O)2(OH)4(TFA)8(THF)6] 

∙THF (3) 

Prior to thin film growth from precursor (3), thermogravimetric (TG) and 

derivative thermogravimetric (DTG) analysis were performed to study the step-by-

step decomposition of the precursor compound and the evolution of the target 

material that may experience subtle phase changes during analysis. The optimal 

temperature suitable for the complete pyrolysis of the precursor was also probed 

and applied for the deposition of thin films.   
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Figure 4.28: TG (black) and DTG (red) curves showing pyrolysis of precursor (3) as a 

function of temperature under an inert nitrogen ambient and heating rate of 10 ˚C min-1 

TGA/DTG profiles (Figure 4.28) of precursor (3) displayed an unceasing three-

step degradation process with a rapid weight loss of 3.6%, 19.0% and 56.5% at 112 

°C, 215 °C and 282 °C, respectively. The weight of the remaining residue at 575 

˚C is 20.9%, which corresponds to MgTi2O5 (calculated percentage 20.6 %). 

Further sintering of the observed residue to the higher temperature of 800 °C did 

not bring any appreciable change in weight, suggesting that precursor (3) 

decomposes quantitatively to endow MgTi2O5 as a stable final product. Based on 

TGA information, quantitative pyrolysis of (3) has been indicated in equation 

below: 

Chemical equation 6: 

 [Mg2Ti4(O)2(OH)4(TFA)8(THF)6]  THF 2MgTi2O5   +    Volatiles
500 

o
C
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4.3.3 XRD Analysis of MgTi2O5 thin film 

Magnesium dititanate films via AACVD were grown at three different 

temperatures of 500, 550 and 600 °C from ethanolic solution of precursor (3) using 

air as a carrier gas. XRD analysis was carried out to obtain information on chemical 

formula and purity of the deposited phase and diffraction patterns as function of 

substrate temperature are depicted in Figure 4.29. Apparently, all the XRD patterns 

look similar in terms of their peak positions and 2θ values however the diffraction 

peak intensities displayed a notable increase with the rise in deposition 

temperature. Each XRD pattern, in Figure 4.29 was carefully matched with the 

standard Inorganic Crystal Structure Database which reveals the formation of 

“Armalcolite (Fe-free) MgTi2O5” ICSD = [98-003-7232] as a crystalline product in 

each case. The as-synthesized MgTi2O5 crystallizes in the orthorhombic crystal 

system with a = 3.7450, b = 9.7280, c = 9.9900 Å and α = β = γ = 90˚. As shown 

in Fig. 4, each peak related to MgTi2O5 have been indexed by its standard reflection 

plane and peaks labelled by (*) correspond to the SnO2 layer of the FTO substrate.  

No obvious impurity peaks of TiO2, MgTiO3 or Mg2TiO4 phases appeared in these 

XRD patterns. This clearly indicates that the precursor (3) decomposes cleanly at 

all temperatures of 500, 550, 600 °C to yield the pure crystalline orthorhombic 

phase of MgTi2O5. This formation temperature is considerably lower than the 

temperature reported (1000-1200 °C) in recent works for MgTi2O5 powder 

synthesis through solid state techniques. Although the synthesis of MgTi2O5 nano 

powders had been achieved even at the lower temperature of 600 ˚C by various wet 

processes. The formation of phase pure MgTi2O5 thin films via SMP based 

AACVD route coincides well with previous investigations (N. Zhang et al., 2015; 

N. Zhang, Qu, Pan, Wang, & Li, 2015).   
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Figure 4.29: XRD patterns of MgTi2O5 ICSD = [98-003-7232] films deposited on FTO 

glass substrate at different temperatures of 500 (black line), 550 (blue line) and 600 ˚C 

(green line) from ethanolic solution of precursor (3). 

4.3.4 Surface Morphologies and Compositions of MgTi2O5 Thin Film 

Figure 4.30 shows FESEM micrographs of the surface microstructure of MgTi2O5 thin 

films developed at different temperatures of 500, 550 and 600 ˚C from ethanol solution 

of the precursor (3) on FTO glass substrates. At 500 ˚C, an obvious growth of spherical 

objects can be observed by low resolution SEM image (Figure. 4.30a), although the 

substrate surface is not fully covered by these objects. An increase in the deposition 

temperature to 550 ˚C, intensified the thin film growth rates and the substrate surface is 

completely decorated with these spherical objects. The nucleation and growth of spherical 

objects further increases with increase in deposition temperature to 600 ˚C which results 

in formation of compact and uniform spherical features of MgTi2O5. High resolution 

images, Figure 4.30 (b, d and f) indicate that the shape and design of these microspheres 
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remain unaffected by rise in deposition temperature and porous MgTi2O5 microspheres 

in size range of  0.3- 1.8μm have been observed at all temperatures. 

 

Figure 4.30: (a,c, e) low resolution (2KX) and (b, d, f) high resolution(20KX) FESEM 

images of MgTi2O5 thin films deposited on FTO glass substrate from ethanolic solution 

of precursor (3) at temperatures (a, b) 500 ˚C (c, d) 550 ˚C and  (e, f) 600 ˚C, 

respectively. 

The FESEM images display the regularly interconnected porous spherical microstructure 

of the film prepared at 600 ˚C; this is highly suitable for PEC applications where liquid 

electrolytes can penetrate in the interior of the film to provide the required large area of 

solid/electrolyte interfaces for charge transfer reactions (Malengreaux et al., 2014). 
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The elemental stoichiometry of all the films were probed by energy dispersive X‐ray 

(EDX) analysis and spectra are shown in Appendix 4 (i, ii and iii) which indicates that 

the metallic ratios of Mg and Ti is about 1:2, that matches well with the expected 

elemental ratio present in the precursor complex (3) and MgTi2O5 formula identified from 

XRD results. The various peaks originating from substrate elements (Sn, Si, Ca, Na, F) 

were not omitted from EDX spectra. 

4.3.5 XPS Analysis of MgTi2O5 Thin Film 

MgTi2O5 film obtained at 600 ˚C was employed to XPS analysis for the investigation of 

chemical and valence states of the constituent elements and results are depicted in Figure 

4.31. The survey scan spectrum in Figure 4.31a confirms that Mg, Ti and O are major 

components at the surface of the film. The high resolution spectrum (Figure 4.31b) 

indicates that strong peak at 49.6 eV is indicative of Mg2+ ion and is in good agreement 

with the reported data for Mg 2p3/2 (N. Zhang, Y. Qu, et al., 2015; N. Zhang, K. Zhang, 

et al., 2015). The binding energies of 458.66 and 464.37 eV are indicative of Ti 2p3/2 and 

Ti 2p1/2 respectively which correspond to Ti4+ and matches well with the published data 

for TiO2. (Figure 4.31c) Meanwhile, the peak at 529.94 eV, in Figure 4.31(d) is accredited 

to Ti–O and Mg–O in MgTi2O5. Two small peaks at 531.13 and 532.15 eV are assigned 

to the atmospheric oxygen and hydroxyl oxygen, respectively. 

Taken together, the XRD, EDX and XPS data confirm that pure orthorhombic phase 

MgTi2O5 films have been successfully prepared from precursor (3). 
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Figure 4.31: (a) XPS spectra of MgTi2O5 film prepared at 600 ˚C from precursor (3) ; 

High resolution spectra of MgTi2O5 for (b) Mg 2p, (c) Ti 2p (d) O 1s. 

4.3.6 Optical Band Gap of MgTi2O5 Thin Film 

The optical properties of MgTi2O5 film deposited at 600 °C were investigated using UV–

vis spectrophotometry; the absorption spectrum shown in Figure 4.32 reveals that no 

significant absorbance occurs in visible region and MgTi2O5 film exhibits steep 

photoabsorption features in wavelength range from 350-390 with absorption tail at 

450nm. The Tauc’s formula, αhv = A(hv‐Eg)
γ, for the optical band gap determination was 

employed, where, α is the linear absorption coefficient of the material, hν is the photon 

energy, A is a proportionality constant. Among these, γ determines the characteristics of 

the transition in a semiconductor, a value γ = ½ signifies allowed direct band gap and γ = 

2 stands for indirect band gap. The inset Tauc plot in Figure 4.32 demonstrates a direct 

band gap of 3.4 eV for MgTi2O5 film which is in good agreement with the literature 

reported value for phase pure magnesium dititanate (Suzuki & Shinoda, 2016). This 
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observation suggests that   the impurity free MgTi2O5 film developed in this work acts as 

a photocatalyst under UV light irradiation. 

 

Figure 4.32: (a) UV-visible spectrum of MgTi2O5 film deposited from precursor (3) at 

600 °C on the FTO substrate. The inset shows the Tauc's plot of (αhν)2 vs photon 

energy (eV) obtained for the MgTi2O5 film. 

 

4.3.7   Photoelectrochemical Performance of MgTi2O5 thin film 

The MgTi2O5 (MT) film electrodes developed at three different temperatures were further 

investigated for photoelectrochemical water splitting for H2 production. The PEC 

performance of the microspherical electrodes, MT-500, MT-550 and MT-600 designed 

at 500, 550 and 600 oC respectively, were investigated in presence of 1 M NaOH under 

dark (D) and simulated solar irradiation (L) of AM 1.5G (100mW/cm2) (Saremi-

Yarahmadi, Tahir, Vaidhyanathan, & Wijayantha, 2009) and their corresponding Linear 

Scanning Voltammograms (LSVs) are shown in Figure 4.33a. The dark current from -0.6 

V to +0.7 V(vs. Ag/AgCl) of all MgTi2O5 electrodes was almost zero due to inactivation 

of electron-holes phenomenon. Interestingly, when MgTi2O5 electrodes are exposed to 
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light, they exhibit significantly enhanced photocurrent response due to the triggering of 

photo-induced electro-hole pair separation. It has been observed that MT-600 electrode 

produces maximum photocurrent density of 400 μA cm-2 at 0.7 V as compared to the film 

electrodes MT-500 and MT-550   that produce photocurrent density of 148 and 226 μA 

cm-2 respectively. This difference in the PEC performances of these electrodes can be 

explained on the basis of different thin film deposition temperatures that significantly 

affect the thickness, crystallinity and porosity of MgTi2O5 electrodes (Figure 4.30). The 

more thick and compact microspherical architecture  of MgTi2O5 electrode developed at 

600 ˚C (Figure 4.30c to c2) is found more attractive for unidirectional charge transport 

while its regularly connected porous structure allows the electrolyte to penetrate via the 

pinholes thereby enhancing the PEC efficiency as compared to the films fabricated at  500 

and 550 ˚C. Although the MT-500 and MT-550 electrodes are also comprised of 

crystalline porous microspherical entities but they are loosely bonded and their lower film 

thicknesses are responsible for the decrease in their photocurrent densities.  The 

maximum photocurrent density of 400 μA cm-2 measured for MT-600 electrode is 

significantly improved than the previously reported photocurrent densities for MgTi2O5 

(102 μA cm-2) and Mg1.2Ti1.8O5 (61 μA cm-2) nanocrystals electrodes (N. Zhang, K. 

Zhang, et al., 2015; N. Zhang, Y. Qu, et al., 2015).  

To authenticate the PEC performances of MgTi2O5 photoanodes, amperometric I–t 

studies were performed at 0.7 V vs. Ag/AgCl under on–off illumination conditions.  

Figure 4.33 (b) shows that all MgTi2O5 photoanodes exhibit steady and reproducible 

photocurrent responses and no significant decrease in the photocurrents was observed 

during various on-off illumination cycles for 1 hour which indicate the higher efficiency 

and good stabilities of all photoelectrodes prepared at different temperature. Moreover, 

the transient photocurrents recoded for MT-500 (148 μA cm-2), MT 550 (226 μA cm-2) 

and MT-600 (400 μA cm-2) agree well with their LSV results and strengthened the PEC 
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performance of the MgTi2O5 electrodes. Again, the amperometric photocurrent response 

is found to be better and durable than those observed previously for MgTi2O5 and 

Mg1.2Ti1.8O5 nanocrystal electrodes (N. Zhang, Qu, Pan, Wang, & Li, 2016; N. Zhang et 

al., 2015). 

 

Figure 4.33: (a) Linear Sweep Voltammograms and (b) transient photocurrent response 

recorded for MgTi2O5 film electrode in 1M NaOH under simulated AM 1.5 illumination 

of 100 mWcm-2 

The charge separation and transportation are key factors in establishing the photocatalytic 

performances of a semiconductor material; therefore, electrochemical impedance 

measurements (EIS) were conducted to demonstrate the charge separation and transfer 

dynamics in MgTi2O5 photoelectrodes. The Nyquist plots obtained from the EIS 
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measurements under light and dark conditions for the MgTi2O5 films deposited at 500, 

550 and 600 ˚C in the presence of 1 M NaOH in the frequency range of 0.1 Hz-10 kHz 

are displayed in Figure 4.33 (a) and (b), respectively. 

Under dark condition each MT-500, MT-550 and MT-600 electrodes exhibited a 

semicircle like Nyquist plot (Figure 4.34a) with higher the electron transfer resistance 

(Rct) values (Table 4.6) which suggests hindrance to the electron-transfer kinetics at the 

electrode surface (Figure 4.34a). While under illumination, the electron transfer resistance 

(Rct) values in all the film electrodes is decreased as compared to the dark indicating better 

charge electron transfer with low charge resistance (Figure. 4.34b, and Table 4.6). 

Moreover, under illumination, MT-600 electrode produced lowest Rct value as compared 

to MT-550 and MT-500 electrodes, indicating the efficient charge separation and transfer 

across the electrode-electrolyte interface as well as reducing the possibility of charge 

recombination at the surface of the film fabricated 600 ˚C than those prepared at 500 and 

550 ˚C. These results indicate that the formation of tightly packed mesoporous 

microspherical design of MT-600 plays a vital role in charge transfer mechanism under 

light which are in good agreement with LSV results.  

 

Figure 4.34: EIS Nyquist plots obtained for the MgTi2O5 films fabricated at 500, 550 

and 600 ˚C at frequency range of 0.1 Hz-10 kHz in (a) dark and (b) light conditions 
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Table 4.6: Charge transfer resistance, maximum frequency and recombination lifetime 

calculated for MgTi2O5 film electrodes fabricated at 500, 550 and 600 ˚C via AACVD. 

Film electrode Rct  

(ohm) 

fmax 

(Hz) 

τn 

(msec) 

MT 500 (D) 4603 48.8 3.27 

MT 500 (L) 1301 0.85 187 

MT 550 (D) 3128 23.2 6.89 

MT 550 (L) 730 0.44 363 

MT 600 (D) 2775 11.06 14.4 

MT 600 (L) 600 0.19 842 

Rct – Charge transfer resistance; fmax – Maximum frequency; τn – recombination lifetime. 

The frequency dependence phase angle plots (Bode plot) were recorded for detailed 

understanding of the charge-transfer resistance phenomenon in MgTi2O5 electrodes. The 

Bode phase plots obtained for the MgTi2O5 electrodes under dark and light conditions are 

shown in Figure 4.35 (a) and (b) respectively. It has been observed that the characteristic 

frequency peaks are shifted under dark and light conditions for the MgTi2O5 electrodes 

fabricated at different temperatures. Figure 4.35 (a) shows that MT-500, MT-550 and MT 

600 electrodes showed the frequency peak maximum (fmax) at 48.8, 23.2 and 11.06 

respectively in dark condition. However, the shifting of peaks toward the low frequency 

region below 0.1 Hz in presence of light indicates (Figure 4.35b) the rapid electron-

transfer behavior of all MT electrodes. The conducting nature of MT-600 under light 

facilitates the peak shift in the Bode plot. The phase angle of the plot under illumination 

is less than 90˚ at higher frequency and there is lesser log z value in low frequency range 

of 1-100 Hz which suggests that electrode does not behave like ideal capacitor (M. M. 

Shahid et al., 2015). These characteristic frequencies can be used to calculate the electron 

recombination lifetime (τn) of the material with following relationship (Lim et al., 2014):  

𝜏𝑛 =  1
2𝜋𝑓𝑚𝑎𝑥

⁄  
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Where fmax is the frequency peak maximum. The calculated recombination life time (τn) 

for MT-500, MT-550 and MT-600 in absence and presence of light are listed in Table 4.6 

which indicates that the lifetime of charge carriers in MgTi2O5 electrodes is prolonged 

effectively under light compared to dark conditions. The highest τn is calculated for MT-

600 (L) confirming the production of highest current density in MgTi2O5 film fabricated 

at 600 ˚C. 

 

Figure 4.35: Bode phase plots obtained for the MgTi2O5 films fabricated at 500, 550 

and 600 ˚C at frequency range of 0.1 Hz-10 kHz in (a) dark and (b) light conditions. 

The Mott–Schottky (MS) approach is a usual way to obtain information about flat band 

potential and the charge density values and type of semiconductor material. Figure 4.36 

shows the MS plot of MgTi2O5 film measured as a function of applied potential at a 

frequency of 1 kHz using 1M NaOH in dark condition which indicates that MgTi2O5 is a 

n-type semiconductor due to the positive slope in MS plot, as expected for n-type 

materials. The flat band potential values measured from the slope and intercept of the MS 

curve were found to be -1.35V. It is well-known that the materials with a more negative 

flat band potential have a better ability to facilitate charge transport in PEC applications.  
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Figure 4.36: Mott –Schottky plot of MgTi2O5 film obtained at frequency of 1kHz  in 

1M NaOH. 

Thus, the porous spherical designed MgTi2O5 photoelectrode developed from precursor 

(3) displays higher photocurrent density, smaller interface impedance and higher charge 

density. These results indicate that the PEC response is very auspicious and competitive 

as compare to the outcomes of other well established magnesium titanate nanocrystal 

materials (N. Zhang, Qu, Pan, Wang, & Li, 2016; N. Zhang et al., 2015). 

We tentatively attribute this enhancement to the higher purity achieved in the MgTi2O5 

phase through SSP (3) which, because of its exact metallic ratio (Mg/Ti 1:2), eliminates 

the growth of impurity phases of TiO2, MgTiO3 and Mg2TiO4. Another key factor is the 

formation of porous and well-connected microspherical architecture in MgTi2O5 which 

gives the film a large effective surface area, amplified photo absorption ability and an 

increased electrode electrolyte interfacial area, leading to a reduction in electron-hole 

recombination as the photogenerated hole travels through fewer material before being 

collected at the electrode/electrolyte interface   and hence increasing cell efficiency (T. 

W. Kim & Choi, 2014). 
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4.4   Synthesis and Characterization of Complex [Mn(dmae)2(TFA)4] (4)  

A mononuclear Mn-complex [Mn(dmae)2(TFA)4] (4) (TFA = triforoacetato, dmae = N, 

N-dimethylaminoethanolato) was prepared by the replacement of the acetate ligands by 

the more strongly chelating TFA and  dmae moieties in stoichiometric quantities of 

manganese(II) acetate dehydrate and trifuoroacetic acid in THF solution as shown in the 

following chemical equation. 

Chemical equation 7:  

Mn(CH3COO)2 4H2O  +   4CF3COOH    +   2(CH3)2NCH2CH2OH

[Mn((CF3COO)4(O(CH2)2N(CH3)2]    +   2 CH3COOH   +   4H2O

THF

 

The above reaction produced complex (4) in 75 % yield in form of transparent white 

crystals that are stable in air and moisture and soluble in common organic solvents such 

as methanol, ethanol and THF. The stoichiometric composition of the complex was first 

ascertained by single crystal X-ray diffraction analysis and was supported by elemental 

analysis, FT-IR and thermogravimetry. Elemental analysis: % calculated (found) for 

[Mn(dmae)2(TFA)4] C, 21.11 (20.83), H, 1.77 (1.69), N, 2.05 (1.95). The FT-IR spectrum 

of complex (4) clearly indicates the presence of the asymmetric and symmetric ν(C=O) 

vibrations of trifluoroacetato ligand have been located at 1635 and 1444 cm-1 respectively. 

The difference of 191 cm-1 between asymmetric and symmetric ν(C=O) vibrations 

designates the bidentate nature of the carboxylate groups of trifuoroacetato ligands that 

are bonded to different Mn centre (Mansoor, Mazhar, McKee, & Arifin, 2014; Mansoor 

et al., 2016). Similarly, the peak at 1177 cm-1 confirms the presence of C–F bonds in 
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complex (4). The absorption at low frequency of 502 cm-1 is due to stretching vibration 

mode of (M-O). 

4.4.1  Single Crystal Analysis of Complex [Mn(dmae)2(TFA)4] (4) 

The molecular structure of complex (4) is presented in Figure 4.37 while geometric 

parameters and structure refinement details are provided in Table 4.7 and 4.8, 

respectively. [Mn(dmae)2(TFA)4] is a monomeric coordination complex in which “Mn 

(IV)” cation lies at the center of symmetry. Mn (IV) is coordinated to four oxygen donor 

atoms from four independent TFA anions and two oxygen atoms from two different dmae 

molecules which occupy the equatorial position, thus, completing the approximate 

coordination sphere around the metal center. The co-ordination behavior of each TFA 

anion is monodentate and four oxygen atoms are coordinated with both syn and anti-

geometry. Similarly, each dameH molecules also act as a monodentate ligand. No 

distortion from linearity is observed at the Mn(IV) center and there are not any notable 

interactions found in the crystal structure.  

 

Figure 4.37: ORTEP diagram of complex (4) at the 50 % probability level. 
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Table 4.7: Crystal data and structure refinement. 

Identification code   

Empirical formula  C16 H24 F12 Mn N2 O10 

Formula weight  687.31 

Temperature  114(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P b c a 

Unit cell dimensions a = 9.0076(6) Å 

= 90°.  

 b = 16.6072(12) Å 

= 90°.  

 c = 18.0267(11) Å 

 = 90°.  

Volume 2696.6(3) Å3 

Z 4 

Density (calculated) 1.693 Mg/m3 

Absorption coefficient 0.623 mm-1 

F(000) 1388 

Crystal size 0.500 x 0.300 x 0.300 mm3 

Theta range for data collection 3.197 to 28.694°. 

Index ranges -8<=h<=11, -22<=k<=21, -

20<=l<=24 

Reflections collected 13593 

Independent reflections 3427 [R(int) = 0.0350] 

Completeness to theta = 25.242° 99.8 %  

Absorption correction "multi-scan" 

Max. and min. transmission 0.4329 and 0.3934 

Refinement method Full-matrix least-squares on 

F2 

Data / restraints / parameters 3427 / 51 / 207 

Goodness-of-fit on F2 1.108 

Final R indices [I>2sigma(I)] R1 = 0.0458, wR2 = 0.1153 

R indices (all data) R1 = 0.0538, wR2 = 0.1211 

Extinction coefficient n/a 

Largest diff. peak and hole 0.805 and -0.549 e.Å-3 
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Table 4.8:   Selected Bond lengths [Å]  

Mn(1)-O(3)#1  2.1065(15) Mn(1)-O(3)  2.1065(15) 

Mn(1)-O(5)  2.2005(14) Mn(1)-O(5)#1  2.2005(14) 

Mn(1)-O(1)#1  2.2175(14) Mn(1)-O(1)  2.2175(14) 

  

4.4.2 Thermogravimetric Analysis of Complex [Mn(dmae)2(TFA)4] (4) 

The thermal degradation of (4) has been examined by thermogravimetric (TGA) and 

differential thermogravimetric (DTG) analyses performed under flowing nitrogen 

ambient at a flow rate of 25 cm3/min with a heating rate of 10 ˚C/min (Figure 4.38).  

 

Figure 4.38: TGA (black line) and DTG (red line) plot of complex (4) under nitrogen 

flow rate of 25 cm3 min-1 and heating rate of 10 oCmin-1 

The thermogram shows that the decay process in complex (4) occurs in two successive 

stages and the first major and rapid decomposition occurs in the temperature range of 179 

to 260 oC with weight loss of 72.77 %. The second pyrolysis step is relatively slower and 

befalls in a wide temperature range of 260 to 550 oC giving a weight loss of 7.06%. The 

residual mass of 20.17 % observe at 550 ˚C indicates the formation of expected Mn2O3 

oxide material from complex (4) as shown in following equation. 
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Chemical equation 8: 

2[Mn((CF3COO)4(O(CH2)2N(CH3)2] Mn2O3  +   Volatile
550 

o
C

 

4.4.3  XRD Analysis of Pristine Mn2O3 and Ag-Mn2O3 

Methanol solution of precursor (4) and its mixture with Ag(CH3COO) were employed in 

AACVD for the formation of pristine Mn2O3 and Ag-Mn2O3 composite films, 

respectively,  on FTO glass substrate at a temperature of 450 ˚C. The resultant films were 

examined by XRD analysis to identify the crystalline and chemical nature of the deposit 

and both the difrractograms are overlaid in Figure 4.39. In both the cases, the common 

Mn2O3 phase is in good agreement with standard ICDD card No [98-000-9091] (Appendix 

5(i)) and belongs to cubic crystal system. The characteristics peaks of Mn2O3 indicated 

by (♦) at 2θ = 23.0˚, 33.1˚, 38.3˚, 45.0˚ and 55.2˚ are originated from their Miller indices 

(012), (112), (222), (004) and (044) respectively. In Ag-Mn2O3 composite XRD pattern 

(Figure 4.39b), the metallic Ag is identified from its peaks at 2θ = 38.1 (111), 44.2 (002), 

64.5 (022), 77.6 (113) and 81.9˚ (222) denoted by symbol (●) and corresponds well to 

standard ICDD pattern number [01-071-6549] (Appendix 5(ii)). Peaks indicated by (*) 

are obtained from crystalline F:SnO2 of the FTO substrate. These XRD patterns do not 

show any probable crystalline impurities such as MnO, MnO2 and Mn3O4, Ag2O or AgO. 

Therefore, we can infer that methanol solution of precursor (4) and its mixture with silver 

acetate are capable of generating phase pure Mn2O3 and Ag-Mn2O3 composite films, 

respectively, at 450 ˚C through AACVD method.  
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Figure 4.39: XRD patterns of pristine (a) Mn2O3 and (b) Ag- Mn2O3 composite thin 

films grown on FTO at 450 oC via AACVD 

4.4.4 Raman Spectroscopy of Pristine Mn2O3 and Ag-Mn2O3 

Pristine Mn2O3 and Ag-Mn2O3 composite films were further examined are comparatively 

shown in Figure 4.40. Figure 4.40 showed four Raman active modes at 195, 309, 644 and 

691 cm-1 in pristine Mn2O3 as reported in the literature (Han et al., 2007; Javed et al., 

2012). These vibrational modes appeared to be out of plane band, asymmetric and 

symmetric bridging oxygen species Mn-O-Mn. On Ag-Mn2O3 composite formation 

scattering mode at 196 cm-1 disappears and band at 309 cm-1 remains at its place. The 

other two modes at 644 and 691 cm-1 are shifted to lower wave numbers of 601 and 

641cm-1. This is perhaps the Mn-O band is effected by the presence of Ag metal. No 

characteristic peak for metallic Ag has been observed due to as pure metals do not exhibit 

raman scattering (Lewis & Edwards, 2001). 
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Figure 4.40: FT-Raman spectra of (a) pristine Mn2O3 and (b) Ag- Mn2O3 composite 

thin film deposited on FTO substrate by AACVD at 450 oC. 

4.4.5 Surface Morphology of Pristine Mn2O3 and Ag-Mn2O3 

The surface morphologies and microarchitectures of pristine Mn2O3 and Ag-Mn2O3 

composite films developed at 450 °C via AACVD were examined by FESEM analysis 

and images are presented in Figure 4.41. The surface morphology of pristine Mn2O3 is 

consist of cubical shaped particles with sharp edges which are regularly grown on FTO 

substrate and making the film compact in nature. However Ag-Mn2O3 composite film 

grown at 450 ˚C exhibits a different kind of surface topography and various multi-shaped 

particles including triangular, octahedral, rod like objects in size range 200-400nm with 

clear grains boundary can be observed on FTO substrate  Figure 4.41b. The composite 

nature of Ag-Mn2O3 was established by EDX map analysis (Figure 4.42) and results show 

that Ag, Mn and O atoms are uniformly dispersed throughout the film matrix. 
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Figure 4.41: FESEM images (a) pristine Mn2O3 (b) Ag-Mn2O3 composite thin films 

grown at 450 ˚C on FTO substrate. 

 

Figure 4.42: Elemental map showing the distribution of Ag, Mn and O elements in Ag-

Mn2O3 composite thin film. 

The surface compositions of both types of films were analyzed by energy dispersive 

analysis (EDX) analysis.  EDX spectra recorded at various arbitrary large areas 

(Appendix 6(i and ii)) revealed that the pristine manganese oxide films contains only Mn 
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atoms throughout the film matrix. While the metallic ratio of Ag: Mn in composite films 

is found to be 1:2 which exactly matches with the formula of target Ag-Mn2O3 material. 

4.4.6 XPS Analysis of Pristine Mn2O3 and Ag-Mn2O3 

The pristine Mn2O3 and Ag-Mn2O3 composite films were employed to X-ray 

photoelectron spectroscopy (XPS) to investigate the composition, oxidation states and 

electronic structure of the involved atoms and results are presented in Figure 4.43. The 

survey scan spectra (Figure 4.43a) reveals that, except for the O 1s (530 eV) and Mn 2p 

(640 eV) peaks, the Ag 3d peaks emerged with strong relative intensities, showing that 

the Mn2O3 was mainly coated with Ag nanoparticles. In high resolution Mn 2p spectrum, 

Figure 4.42c, two main peaks at binding energies of 641.10 eV and 653.12 eV correspond 

to Mn 2p3/2 and Mn 2p1/2. The difference (∆) between Mn 2p3/2 and Mn 2p1/2 is 12 eV 

which implies a typical value for Mn3+ and is very similar to those reported earlier for 

Mn2O3 (Chigane & Ishikawa, 2000). The higher resolution XPS spectrum of the Ag 3d 

was fitted to two peaks at 368.43  and 374.43 eV for Ag3d3/2 and Ag3d5/2, respectively 

(Sun et al., 2009; D. Wang et al., 2012) (Figure 4.42b). The difference (∆) between 

Ag3d3/2 and Ag3d5/2 peaks is about the ∼6eV indicating that Ag mainly exists in the Ag0 

state on the Mn2O3 surface. 

Meanwhile, the high resolution XPS spectrum of O1s, Figure 4.42d, exhibits asymmetric 

contours at about 530 eV, attributed with Mn–O in Mn2O3. The small peaks at 531 and 

532 eV are assigned to the  adsorbed oxygen and hydroxyl oxygen, respectively (Sekhar, 

Babu, & Kalaiselvi, 2015; Smith Stegen, 2015). The identical electronic structure (Mn 

2p, O1s) confirms the formation of analogues Mn2O3 phases in both pristine Mn2O3 and 

Ag-Mn2O3 composite films. On the basis of XRD, EDX and XPS results, we infer that 

pristine Mn2O3 and Ag-Mn2O3 composite were successfully fabricated by AACVD in this 

work. 
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Figure 4.43: (a) Survey scan XPS spectra of pristine Mn2O3 (blue line) and Ag-Mn2O3 

(red line).  High resolution spectra for (b) Ag 3d, (c) Mn 2p (d) O 1s. 

4.4.7  Optical Band gap of pristine Mn2O3 and Ag-Mn2O3 

The optical band gap of as-synthesized pristine Mn2O3 and Ag-Mn2O3 composite thin 

films were recorded in UV-visible region of 350-800 nm and is shown in Figure 4.44 (a 

and b) respectively. It is obvious from the spectra that both the films continuously absorb 

in visible region from 400-750nm. The UV-vis data were applied to Tauc’s formula and 

direct bandgaps Eg of 2.0 and 1.8 eV were measured for pristine Mn2O3 and Ag-Mn2O3 

composite films, and from their respective Tauc’s plots (Insets Figure). The bandgap of 

2.0 eV is in good agreement with previous reported values for pure Mn2O3 prepared by 

different method (Naeem et al., 2015).   
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Figure 4.44: UV-Vis spectra of absorbance as function of wavelength and inset Tauc 

plot ((αhv)2 Vs E/eV) of (a) Mn2O3 and (b) Ag-Mn2O3 thin films deposited at 450 oC on 

FTO substrate by AACVD. 

The lowering of bandgap in case of Ag-Mn2O3 composite film is attributed with the 

plasmonic effect of metallic Ag on Mn2O3 oxide. The plasmonic effect of Ag on Mn2O3 

is also evident from Raman scattering where two bands at 644 and 691 cm-1 are shifted 

to lower frequency region. Similar plasmonic effect imparted by silver in attaining low 

band gap with better absorbance in the visible region of light have been reported in metal 

integrated metal oxide composites (Kharade et al., 2013; Lim, Pandikumar, Huang, & 

Lim, 2014).  
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4.4.8  Photoelectrochemical Studies of Pristine Mn2O3 and Ag-Mn2O3 

The PEC properties of pristine Mn2O3 and Ag-Mn2O3 composite electrodes were 

evaluated using a three electrode system having Pt wire and standard Ag/AgCl as counter 

and reference electrodes, respectively. The Mn2O3 and Ag-Mn2O3 thin films were used as 

the working electrode. 0.1M Na2SO4 aqueous solution was used as an electrolyte. The 

separation of the photo generated electron-hole pairs was evaluated by measuring 

photocurrents and Figure 4.45a shows a comparative study of Linear Scanning 

voltammograms (LSVs) of both pristine Mn2O3 and Ag-Mn2O3 composite films at scan 

rate of 50mV/s. The dark current from -0.2 V to 1.0 V (vs. Ag/AgCl) of each sample was 

very low. Upon illumination, the Ag-Mn2O3 electrode showed a significant enhancement 

in photocurrent density (3.0 mA cm-2) as compare to pure Mn2O3 (1.8 mAcm-2) at a 

potential of 0.7 V versus Ag/AgCl. This pronounced photocurrent could be ascribed to 

the decoration of Ag on Mn2O3, resulting in a higher separation efficiency of the 

generated electron–hole pairs and enhanced visible light absorption due to the surface 

plasmon resonance (SPR) effect (Linic, Christopher, & Ingram, 2011; Warren & 

Thimsen, 2012).  

The Mn2O3 and Ag-Mn2O3 photoelectrodes were further tested under on–off cycle 

illumination conditions to determine whether the measured photocurrents were associated 

with the absorption of light (Figure 4.45b).  
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Figure 4.45: (a) Linear sweep Voltammetry (LSV) of pristine Mn2O3 and Ag-Mn2O3 

composite thin films in dark and light (b) Chronoamperometry (I–t) profiles (on-off 

cycles) of pristine Mn2O3 and Ag-Mn2O3 composite thin films at an applied potential of 

+0.7 V versus Ag/AgCl under 100 mW cm−2 illumination (AM 1.5) in 0.1 M Na2SO4 

aqueous solution. 

 

Figure 4.45b shows the photocurrent generated under visible light irradiation of Mn2O3 

and Ag-Mn2O3 electrodes. A steady and stable photo response  of  1.8 and 3.0 mA cm-2 

within 5 on-off cycles could be observed over a 5 min period (Figure 4.45b) revealing the 
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higher efficiencies and good stabilities of Mn2O3 and Ag-Mn2O3 photoelectrodes. 

Moreover, the transient photocurrents agrees well with LSV results and  strengthened the 

PEC performance in the visible light region, as well as indicating the existence of the SPR 

effect of Ag nanoparticles on Mn2O3.  

Electrochemical impedance spectroscopy (EIS) was performed to scrutinize the 

conductivity of electrode material, charge transport in the electrode–electrolyte interface 

and mechanistic analysis of interfacial processes. Figure 4.46a displays the Nyquist plots 

of both pristine Mn2O3 and Ag-Mn2O3 composite films in the frequency range of 0.1 Hz 

to 10 kHz in 0.1M Na2SO4 electrolyte under dark and visible light illumination. As shown 

in Figure 4.46a, the diameter of the pristine Mn2O3 was much larger than that of Ag-

Mn2O3 composite in the dark as well as under visible light irradiation. The diameter of 

the semicircle in the Nyquist plots at high frequency represents the charge transfer 

resistance (Rct), which is associated with the electronic properties of the electrode. Under 

illumination, the Rct of Ag- Mn2O3 (∼127 Ω) is considerably lower than Rct of Mn2O3 

(∼195 Ω). The decrease of the charge transfer resistance of Ag- Mn2O3 is attributed to 

the larger number of charge carriers in the electrode sample. It is believed that these 

charge carriers are produced only because of the presence of Ag inside the Mn2O3 which 

facilitates fastest electron transport and shortest ion-diffusion path inside the Ag- Mn2O3 

electrode. Normally, the smaller arc radius on the EIS Nyquist plot indicates an effective 

separation of photo-generated electron– hole pairs and a fast interfacial charge transfer 

process (Ge et al., 2016). This implies that Ag decoration significantly facilitated the 

electron mobility by reducing the recombination of electron–hole pairs and contributing 

to the enhanced PEC performance induced by Ag- Mn2O3 . 
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Figure 4.46: (a)  EIS in the Nyquist plots of pristine Mn2O3 and Ag-Mn2O3 composite 

thin films in 0.1 M Na2SO4 aqueous solution. (b) Bode angle phase plots of the Mn2O3 

and Ag-Mn2O3 composite thin films. 

The frequency dependence phase angle plot (Bode plot) of both pristine Mn2O3 and Ag-

Mn2O3 composite electrodes were recorded for the detailed understanding of the charge-

transfer resistance phenomenon in these materials. The Bode phase plots found for the 

Mn2O3 and Ag-Mn2O3 thin films are shown in Figure 4.46b where the characteristic 

frequency peaks were affected under dark and light conditions. In dark environment, the 

Mn2O3 and Ag-Mn2O3 films showed the frequency peak maxima (fmax) at 13.7 and 9.79 
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Hz respectively, suggesting larger charge-transfer resistance at the electrode/electrolyte 

interface due to a lack of availability for electroactive species.  However the fmax is 

observed to shift toward the low frequency region (~1 Hz) in presence of light indicating 

the rapid electron-transfer (conductive) behavior of the Mn2O3 and Ag-Mn2O3 films. It is 

worth noticing that the phase angle values of Mn2O3 and Ag-Mn2O3 are increased in dark, 

revealing the conducting nature of the films. Approaching the phase angle to towards -

90° signifies the ideal capacitor behavior of the electrode (Sheng, Sun, Li, Yuan, & Shi, 

2012). In the present case, still the phase angle of the pristine Mn2O3 and Ag-Mn2O3 in 

dark and under illumination is much less than 90˚ suggests that the electrode does not 

behave like an ideal capacitor. These characteristic frequencies can be used to calculate 

the electron recombination lifetime (τn) of the corresponding material with following 

relationship (Lim, Pandikumar, et al., 2014):                                                                             :  

𝜏𝑛 =  1
2𝜋𝑓𝑚𝑎𝑥

⁄  

Where fmax is the frequency peak maximum. The recombination life time (τn) values for 

the pristine Mn2O3 and Ag-Mn2O3 composite films are calculated to be are 11.6 and 16.2 

ms, respectively in the absence of light. It is well known that when Ag nanoparticles are 

deposited on metal oxide surface, the plasmon resonance energy transfer (PRET) from 

Ag to metal oxide would occur (Jana et al., 2009). This PRET process would establish an 

oscillating electric field which would reduce the recombination of photo-generated 

electron–hole pairs. Therefore, the lifetime of charge carriers in Ag-Mn2O3 is prolonged 

effectively compared to pristine Mn2O3. 

Further Mott–Schottky (MS) experiments for pristine Mn2O3 and Ag- Mn2O3 composites 

were conducted to deduce information about the type of semiconductor, flat band 

potential and the charge density values (Figure 4.47).  
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Figure 4.47: Mott–Schottky curves for (a) pristine Mn2O3 and (b) Ag-Mn2O3 composite 

thin films. 

Figure 4.47 shows that both the Mn2O3 and Ag- Mn2O3 show a positive slope in the MS 

plots, as expected for the n-type semiconductor. Importantly, the considerably smaller 

slope of Ag- Mn2O3 composite in MS plot represents higher carrier concentration compare 

to pure Mn2O3. The flat band potential of Ag- Mn2O3 composite, −0.91 V/SCE, is 

observed to be lower than  −0.22 V/SCE of pristine Mn2O3 , indicating better 

transportation of the photogenerated carriers in the Ag- Mn2O3 composite case. Also the 
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carrier densities of both pristine and composite films were calculated to be 1.62 × 1013 

and 3.09 × 1013 cm−3 respectively. In Ag-Mn2O3 composite thin film, Ag is the source of 

extra charge carriers. A higher charge carrier concentration in the composite film has an 

influence on changing the work function of the material which enhances the charge 

transfer at the electrode electrolyte interface and an improved PEC performance. 

The markedly enhanced photocurrent of Ag- Mn2O3 film electrode is a direct consequence 

of the synergetic effects of the uniformly dispersed Ag on to Mn2O3 structure.  On the 

basis of PEC results, we have proposed a mechanism of electrons transportation from Ag 

to Mn2O3 as shown in Figure 4.48.  

 

Figure 4.48: Charge transfer mechanism between Ag particles and Mn2O3 in visible 

light. 

Under visible light irradiation, Ag nanoparticles could be photo-excited and generate hot 

electrons on its surface due to the surface plasmon resonance. Electrons are excited from 

valence band to conduction band by illumination with visible light and then migrate to 

Ag metal. The plasmon-induced hot electrons are introduced into the conduction band of 
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Mn2O3, and then to the FTO substrate through the Mn2O3 backbone. Finally, the electrons 

were transferred to the Pt electrode to reduce water and generate hydrogen. As a result, 

Ag nanoparticles attached on Mn2O3 could increase the photocurrent intensity under 

illumination of the entire solar spectrum. 

4.5 Synthesis of Complex [Sn(dmae)(OAc)]2 (5) 

The new single source dimeric complex (5) was readily prepared by ligand exchange 

reaction of equimolar quantities of bis(dimethylaminoethanolato)tin(II), Sn(dmae)2 

(Wakeshima & Kijima, 1972; Hollingsworth et al., 2006; Nawar & Hosny, 2000; M. 

Veith, Haas, & Huch, 2004; B.-H. Ye, Li, Williams, & Chen, 2002) and Y(OAc)3 xH2O 

in (10 mL) of dry toluene. The complex is soluble in toluene and has a melting point of 

147 oC. The overall reaction for the formation of (5) is shown below in equation 6 

Chemical Equation 9 

))(()()((

)(()()(

)(2)()(2

332232322

2322222323

352233522
3

OOCCHNCHCHOCHSnCOOHCHYCHNCHOCHSn

CHNCHOCHSnOHCHNCHCHOCHSn

NHClHCOCHSnNHCSnCl

Toluene

OHCH

 



 

 

The single crystal analysis indicated that precursor 5 is stabilized by the establishment of 

an intramolecular coordinate Sn←N bond and the orthorhombic crystal system with space 

group Pna2(1). 

4.5.1 Crystal Structure of Complex [Sn(dmae)(OAc)]2 (5) 

The X-ray crystal and structure refinement data for [Sn (OAc)(dmae)]2  (5), selected 

bond lengths, bond angles and crystal parameters are listed in Table 4.9 and 4.10 

respectively. 
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Table 4.9: X-ray crystal and structure refinement data for [Sn (dmae) (OAc)]2 (5) 

Empirical Formula C12 H26 N2 O6 Sn2 
Limiting indices 

-19<=h<=19, -7<=k<=7, -

24<=l<=24 

Formula weight 531.73 
Reflections 

collected / unique 

15567 / 3889 [R(int) = 

0.0266] 

Temperature 100(2) K 
Completeness to 

theta = 26.50 
100.0 % 

Crystal system, 

space group 
Orthorhombic, Pna2(1) 

Max. and min. 

transmission 
0.9003 and 0.3474 

Unit cell 

dimensions 

α = 15.6753(4) Å   alpha = 

90o. 

β = 6.1527(2) Å    beta = 

90o 

γ = 19.5022(6) Å   gamma 

= 90o 

Refinement 

method 

Full-matrix least-squares 

on F2 

Volume 1880.90(10) Å3 
Data / restraints / 

parameters 
3889 / 1 / 205 

Z, Calculated 

density 
4,  1.878 Mg/m3 

Goodness-of-fit 

on F2 
1.040 

Absorption 

coefficient 
2.681 mm-1 

Final R indices 

[I>2sigma(I)] 
R1 = 0.0137, wR2 = 0.0327 

F(000) 1040 
R indices (all 

data) 
R1 = 0.0140, wR2 = 0.0329 

Crystal size 0.50 x 0.04 x 0.04 mm 
Absolute 

structure 

parameter 

10(10) 

Theta range for 

data collection 
2.09 to 26.50 deg. 

Gest diff. peak 

and hole 
0.605 and -0.255 e.Å-3 

 

Table 4.10: Bond lengths [Å] and angles [o] for complex [Sn(oAc)(dmae)]2 (5) 

Sn1-O1 2.1190(17) O6-C11 1.225(3) 

Sn1-O2 2.1530(17) O1-Sn1-O2 89.13(7) 

Sn1-O4 2.2339(16) O1-Sn1-O4 68.52(6) 

Sn2-O1 2.2282(17) O2-Sn1-O4 85.28(6) 

Sn2-O4 2.1179(17) O1-Sn1-N1 72.41(7) 

Sn2-O5 2.1482(18) O2-Sn1-N1 80.21(7) 

Sn1-N1 2.497(2) O4-Sn1-N1 138.35(7) 

Sn2-N2 2.513(2) O4-Sn2-O5 89.82(7) 

O1-C1 1.419(3) O4-Sn2-O1 68.64(6) 

O2-C5 1.297(3) O5-Sn2-O1 85.28(7) 

O3-C5 1.227(3) O4-Sn2-N2 72.47(7) 

O4-C7 1.415(3) O5-Sn2-N2 79.71(6) 

O5-C11 1.302(3) O1-Sn2-N2 138.17(6) 
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The molecular structure (Figure 4.49) indicates that the centre of inversion lies at the 

centre of a Sn2O2 four-membered ring. Each tin(II) atom adopts a distorted trigonal 

bipyramidal geometry with the lone pair of electrons situated at the equatorial position. 

The stronger interactions between the lone pair of electrons and the bonding pairs of 

electrons push the other two bonding pairs at the equatorial positions towards the axial 

positions, thus giving rise to a distorted trigonal pyramidal geometry at the two tin sites 

as can be evidenced from the axial N2-Sn2-O1 and N1-Sn1-O4 bond angles of 138.17(6)o 

and 138.35(7)o, respectively.  

 

Figure 4.49: The Ortep plot of complex [Sn (OAc)(dmae)]2 (5) showing 30% 

probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn 

as spheres of arbitrary radii. 

The two covalent Sn-O bond distances are at Sn1-O1 and Sn2-O4 are 2.119(2) and 

2.118(2) Å respectively while the other two bridging oxygen coordinate bonds, Sn1-O4 

and Sn2-O1 bond distances are longer at, 2.339(2) and 2.282(2) Å respectively, to form 
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a four-membered Sn2O2 ring. The terminal Sn-O bonds are somewhat longer than the 

bridging Sn-O bonds. The Sn1-N1 and Sn2-N2 bond distances are 2.497(2) and 2.513(2) 

Å, respectively. The four membered Sn2O2 ring is planar (RMS deviation from planarity 

= 0.0294Å) whereas the chelate rings formed by Sn1 O1 C1 C2 N1 and Sn2 O4 C7 C8 

N2 are puckered with RMS deviation from planarity of 0.1814 and 0.1856Å, respectively. 

These two chelate rings make an angle of 22.40(8)o and 19.99(9)o, respectively with the 

four-membered ring. The long separation of 3.5922(2) Å between the two tin atoms in 

the dimeric unit shows that there is no significant bond interaction between the two tin 

atoms. The marked difference in the C-O bond distances of the 153arboxylate group (O6-

C11= 1.225(3), O5-C11= 1.302(3) Å and O2-C5= 1.297(3), O3-C5 = 1.227(3) Å) 

indicates that there is no intramolecular interaction between the carbonyl oxygen of the 

carboxylate and the tin atom. 

4.5.2 Thermogravimetric Analysis of Complex [Sn(dmae)(OAc)]2  (5) 

The thermal decomposition pattern of complex (5) was examined by 

thermogravimetric/derivative thermogravimetric (TG/DTG) analysis, performed under a 

flow of N2 (25 mL/min) at a heating rate of 10 oC/min. The (TG/DTG) (Figure 4.50) 

shows two stages of weight loss. The first minor weight loss of 5.33 % regime exists at 

177 oC. Immediately after the first weight loss, the second major pyrolysis step begins at 

178oC and is completed at 258.19 oC to yield 51.46 % of the solid residue. This 

decomposition step involves a total weight loss of 48.54 %. The weight of the residue 

agrees very well with the theoretically expected yield (51.15 %) of tin(IV) oxide from the 

precursor (5). Further heating of the residue to 900 oC did not bring any change in weight 

indicating complete decomposition of precursor 1 to furnish a residual mass of SnO2 as 

expected from the complete decomposition of [Sn (OAc)(dmae)]2. The FTIR study of the 

residue obtained from TG studies showed strong absorption at 588.6 cm-1 that agrees well 
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with the reported value for SnO2 (Hollingsworth, et al., 2006; M. Veith, et al., 2004; B.-

H. Ye, et al., 2002). Further no C-H vibrations were recorded indicating absence of any 

carbonaceous impurity in the residue. The residual mass of 51.47 % observe at 258 ˚C 

indicates the formation of expected SnO2 oxide material from complex (5) as shown in 

following equation. 

Chemical equation 10: 

VolatilesSnOOAcdmaeSn C   

2

260)])(([  

 

Figure 4.50: The TG and DTG plots of precursor (5) recorded under an inert 

atmosphere of nitrogen gas with constant flow of 25cm3/min and heating rate of 20 
oC/min. 

4.5.3 XRD Analysis of SnO2 

The XRD pattern displayed in Figure 4.51 confirms the formation of crystalline SnO2 

mesoporous micro balls. The weak diffraction peaks at 2θ values of 26.7o, 34.0o, 38.2o, 

52.1o, 54.6o and 65.0o are associated with (110), (101), (200), (211), (220) and (301) 

planes and are in complete match with the literature values reported in (JCPDPS card no. 
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41-1445) for tetragonal structure (Patil GE, Kajale DD, Gaikwad VB, & GH, 2012; Z. 

Wang, Luan, Boey, & Lou, 2011). Further sintering of the sample at 500 oC for two hours 

did not bring any change in the XRD pattern indicating ability of the micro balls to retain 

their morphology and structure at high temperature. The FTIR of the micro balls showed 

only one stretching absorption band at 588.67 cm-1 due to Sn-O vibration confirming 

carbonaceous impurity-free SnO2.  

 

Figure 4.51: The XRPD pattern of the SnO2  micro balls thin film on plain glass 

substrate deposited from a toluene solution of precursor (5) and sintered at 450 oC for 6 

hours in air atmosphere 

4.5.4 XPS Analysis of SnO2 

The XPS is appreciated technique to study the surface and sub surface chemical states of 

the prepared samples as the binding energy values of core levels are, to a certain extent 

dependent on the molecular environment. The 3d core of Sn splits in to 3d 5/2 (486.6 eV) 

and 3d 3/2 (495.0 eV) which are consistent with the reported values of 486.4(3d5/2) and 

494.8 eV (3d3/2) for SnO2 as shown in Figure 4.52(a).  Also the binding energies found 

for O 1s core level from Si oxide (532.8eV) is clearly distinguishable from O1s of Sn 

oxide (530.7 eV) and are in good agreement with the previously reported values. The XPS 

data clearly shows the micro balls consist of only SnO2. 
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Figure 4.52: The XPS spectra of SnO2 micro ball thin films deposited on glass substrate 

(a) Sn 3d (b) O 1s. 

4.5.5 Surface Morphology of SnO2  

The FESEM results indicate that the aerosol generated from toluene solution of Sn 

(IV) precursor and deposited onto plain and FTO coated glass substrates under the 

influence of electric fields and then annealed at 450 oC for 6 hours, led to the growth of 

amorphous mesoporous SnO2 micro balls (Figures 4.53b) of uniform lateral dimensions 

in the range of 195-632 nm. The exterior porosity is visible in the form of small holes 

with pore sizes from 56-66 nm in Figure 4.53c. The interior surface of the particles seems 

to be rough, having pores of various sizes ranging from 8-160 nm as revealed by FESEM 

image of the milled balls by Focussed Ion Beam (FIB) at an ion acceleration of 30 keV 

with a milling and cleaning cross section current of 2 nA and 10 pA, respectively Figure 

4.53d.The deposited films, as observed from the outer surface are highly homogenous 

and possess smooth features.  The FESEM image of the films deposited by AACVD, 

without application of an electric field, on FTO substrate show formation of non-porous  

smooth surface micro balls as shown in (Appendix 7). When aerosol generated particles 

experience an electric field, these charged particles move in certain orientations. When 

deposited on the substrate certain orientations make the material porous as observed in 

Figure 4.53. While for AACVD without an electric field did not experience these 

Univ
ers

ity
 of

 M
ala

ya



 

157 

orientations show smooth spherical morphology. Further the EDAX analysis (Appendix 

8) confirmed that only tin and oxygen are present in the nanoball thin films. 

 

Figure 4.53: Illustrate SEM images of SnO2 micro balls thin films deposited on FTO 

glass substrates and (a) agglomerization of micro balls , (b) lateral dimensions, (c) pores 

of the exterior and (d) the interior surfaces of the micro balls. 

4.5.6 Optical Band gap of SnO2 

The optical absorption spectrum of SnO2 micro-ball thin films deposited at 400oC using 

toluene and having a thickness of 310 nm was recorded on a Lambda 35 Perkin-Elmer 

UV-Vis spectrophotometer in the wavelength range of 310-710 nm using FTO. The UV-

Vis spectrum of SnO2 micro ball thin films shows an absorption edge at 360 nm and the 

band gap was calculated by plotting Tauc plot of energy versus (αhυ)2 to give a value of 

3.8eV (Figure 4.54). 
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Figure 4.54: UV-Vis absorption spectrum of wavelength versus absorption and inset 

Tauc plot of energy versus (αhυ)2 of SnO2 microball thin films deposited from precursor  

using EFDAACVD showing a sharp absorption edge at 360 nm. 

4.5.7 BET Analysis of SnO2 

The surface area of 136m2/g and 191.6m2/g of the tin oxide micro balls powder 

scratched from FTO substrate deposited by EFDAACVD was estimated by Brunauer- 

Emmett-Teller (BET) and Langmuir methods, respectively. The adsorption-desorption 

isotherm was shown in Figure 4.55a indicating hysteric loop characteristic of mesoporous 

materials. The pore volume and pore size determined by Barret-Joyner-Halenda (BJH) 

adsorption-desorption method is about 0.05 ml/g and 45Ao respectively Figure 4.55b. The 

high surface area is due to high porosity in the interior and exterior surfaces and is about 

two and a half times more than the previously reported values for SnO2. Univ
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Figure 4.55: (a) Nitrogen adsorption-desorption isotherm and (b) BJH pore size 

distribution for mesoporous SnO2 micro balls. 

4.5.8 Electrochemical Studies of SnO2 

Electrochemical impedance measurements of the SnO2 microball coated FTO electrodes 

were conducted in a three electrode electrochemical cell in order to determine the 

resistance of the electrode/electrolyte interface. The resistance of the electrode/electrolyte 

interface can be determined from the high frequency x-axis intercept from the Nyquist 
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plot, shown in Figure 4.56. The resistance was found to be 80 Ω which indicates that the 

SnO2 microballs have suitable conductivity for application in batteries.   

 

Figure 4.56: Impedance measurement (a) Nyquist Plot of the SnO2 microball electrode 

conducted in a 3-electrode electrochemical cell, using an Ag/AgCl reference electrode 

and a Pt counter electrode in a 1 M LiPF6-EC:DMC (1:2 by volume) electrolyte at open 

circuit potential.  (b) Expanded plot of showing the high frequency region of the 

Nyquist plot. 

Tin (Sn)-based and tin oxide (SnO2)-based anodes in Li-ion batteries typically show 

enhanced performance and improved cycle life only when incorporated with nanoscale 

or composite particles. The reaction mechanism of SnO2 with lithium has been proposed 

to take place as indicated in the following two steps: 

OLiSneLiSnO 22 244  
                          (4.1) 

                       SnLiexLiSn x  4 (0 ≤ x ≤ 4.4)                       (4.2) 

In the first reaction, SnO2 is reduced to metallic Sn, which is partially irreversible. The 

second reaction is the Sn alloying/de-alloying reaction with lithium, which is usually 

reversible in most cases. 

However, SnO2 nanowires covered with Sn nanoclusters have exhibited an exceptional 

capacity of > 800 mAhg-1 over hundred cycles. The reaction of SnO2 with Li ions, 
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electrolyte decomposition, and solid electrolyte interface formation are believed to be 

some of the reasons for large irreversible capacity during the first cycle. This involves an 

additional step of formation of SnO which subsequently reduces to Sn. 

             OLiSnOLiSnO 22 2  
                            (4.3) 

                                 OLiSneLiSnO 222  
                          (4.4) 

                                 SnLixexLiSn x 
(0 ≤ x ≤ 4.4)                (4.5) 

In addition to the pulverization of SnO2 particles due to large volume expansion during 

cycling, agglomeration of the primary particle can drastically reduce the surface-to-

volume ratio causing diminishing of the electrochemical activity. Several strategies have 

been utilized to mitigate the pulverization and particle agglomeration. In the past decade, 

great efforts have been devoted to synthesizing SnO2 nanostructures with varying 

morphologies. Nanocrystalline SnO2 with various crystallite sizes (Z. Wang, et al., 2011), 

SnO2 nanomaterials with a hollow structures (Lou, Wang, Yuan, Lee, & Archer, 2006) 

uniform SnO2 nanoboxes have been synthesized and tested for the anode material in Li-

ion batteries. 

Recent studies have shown that even 1-d SnO2 nanostructures show low capacities 

ranging from 300 to ∼ 620 mAhg-1 after 50 cycles (D.-W. Kim et al., 2007). SnO2 

nanowires and hetero-structured SnO2/In2O3 nanowires retain a capacity of ∼700 mAhg-

1 up to 15 cycles, but quickly fade to ∼ 300 mAhg-1 after 50 cycles. Similarly, SnO2 

nanorods have been shown to retain a capacity of only ∼400 mAhg-1 after 60 cycles 

(Yong Wang & Lee, 2004). 
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Figure 4.57: (a) Charge-discharge curves of SnO2 micro ball electrode measured in 

coin cell configuration in the voltage range of 2.2-0.005 V with a current of 100 mA/g. 

(b) Charge-discharge capacities vs. cycle number of SnO2 electrode SnO2 micro ball 

electrode measured in coin cell configuration in the voltage range of 2.2-0.005 V with a 

current of 100 mA/g. (c) Charge-discharge capacities vs. cycle number of SnO2 micro 

ball electrode in the voltage range of 2.2 V-0.005V at varying current densities of 100, 

200, 500 mA/g, 1.0A/g, and 2.0 A/g. 

Therefore, the significantly enhanced performance of stand-alone SnO2 micro-ball 

nanostructures without incorporating any supporting materials/strategies to increase the 

stability with high capacity retention is a useful information for the community who work 

in the energy storage area. 

The charge-discharge curves of SnO2 micro ball anode electrodes at the voltage range of 

2.2-0.005 V using a current density of 100 mA/g are shown in Figure 4.57a. It has an 
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initial large discharge capacity of 2066 mAh g1 during the first cycle. The high initial 

discharge capacity is believed to be due to the reduction of tin oxide to tin and the 

intercalation of Li into SnO2. The initial capacity loss is mainly due to the solid-

electrolyte-interface formation and the reduction of SnO2 to Sn. During subsequent 

charge-discharge processes, SnO2 micro ball anode shows the discharge capacities of 997, 

788, 704, 649, 593, 542 mAhg1 after 2nd, 10th, 20th, 30th, 40th and 50th cycles, respectively.  

Figure 4.57b summarizes the charge-discharge capacities vs. cycle number of SnO2 micro 

ball electrode in the voltage range of 2.2-0.005 V with a current of 100 mAg−1. The initial 

discharge capacity of 2066 mAh g1 during the first cycle is seen to fade away, but 

remains over 540 mAh g-1 after 50 cycles.  

Figure 4.57c shows the rate capability of SnO2 micro ball electrodes at varying current 

densities of 100, 200, 500, 1000, and 2000 mAh g−1. The discharge capacity decreased 

with increasing current density as expected. The initial discharge capacity of the SnO2 

micro ball electrodes at current density of 100 mAg−1 remains 1691 mAhg−1 and at 200, 

500, 1000 and 2000 mA g−1 current densities it shows an initial discharge capacities of 

569, 399, 258, and 100 mAhg−1, respectively. When the current density is reduced to 

500 and 200 mAg−1 after the initial rate performance testing, the SnO2 micro balls can 

still provide discharge capacity close to formerly measured value of 382, and 430 

mAhg−1, indicating its good reversibility and high rate capability. The reversibility, high 

rate capacity and relative stability shown by SnO2 micro-ball based anodic materials 

appeared to be strongly related to the specific morphology and texture of the materials we 

prepared and used in our study. Further work is currently underway to understand this 

phenomena. 
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4.6  Deposition of Mn2O3, Fe2O3, CuO, NiO, ZnO, CdO and PbO Thin Film 

by EFDAACVD Method 

Metal carboxylates because of their distinct characteristics of high volatility, solubility, 

stability and suitable decomposition temperature during transport in gas phase make them 

favorable CVD precursor for the deposition of thin layers of metal oxides for 

photoelectrochemical applications. The different coordination modes of the carboxylate 

ligands force the metal into strict molecular regime that improves their potential to 

perform as CVD precursor. Metal oxide center enclosed by organic environment making 

the precursor soluble in suitable organic solvents like toluene, THF, methanol, ethanol 

and acetonitrile etc. We therefore selected carboxylates of Manganese, Iron, Copper, 

Nickle, zinc, cadmium and lead for the fabrication of thin films of Mn2O3, Fe2O3, CuO, 

NiO, ZnO, CdO and PbO and by using unique EFDAACVD method. The motive behind 

use EFDAACVD was to obtain films of well-defined uniform morphology, stoichiometry 

and structure that is reproducible in a single step with the instantaneous reduction in CVD 

parameters. The thin films produced by EFDAACVD were analyzed by XRD, XPS, 

Raman scattering, Uv-visible spectroscopy, FESEM and EDX and investigated for their 

photo electrochemical behavior.   

4.6.1 XRD Analysis of Mn2O3, Fe2O3, CuO, NiO, ZnO, CdO and PbO Thin Films 

Figure 4.58 shows the XRD patterns of Mn2O3, α-Fe2O3, NiO, CuO, ZnO, CdO and PbO 

thin films fabricated on the FTO by the EFDAACVD technique. The peaks indexed by 

the symbol (♦) correspond to the SnO2 in the FTO substrate (A. Chen et al., 2009; Klahr, 

Martinson, & Hamann, 2010; Mansoor, Mazhar, McKee, & Arifin, 2014; Sialvi et al., 

2013; A. A. Tahir, Mazhar, Hamid, Zeller, & Hunter, 2009; A. A. Tahir, Wijayantha, 

Saremi-Yarahmadi, Mazhar, & McKee, 2009).  The XRD pattern of  cubic Mn2O3 with 

(211), (400) and (622) diffraction planes observed at 2θ values of  22.5°, 37.8° and 65.6° 

Univ
ers

ity
 of

 M
ala

ya



 

165 

respectively matched well with the JCPDS card No. 00-002-0896 (Dakhel, 2006).  Figure 

4.58 shows three strong peaks, namely, (012), (104) and (110), which are the reflections 

of α-Fe2O3 (hematite) as indicated in JCPDS card No. 86-0550 (A. A. Tahir, Wijayantha, 

et al., 2009). The X-ray diffraction data have been recorded for NiO thin films as shown 

in Figure 4.58 displaying distinct peaks at 2θ values of 37.1°, 43.1° and 62.6°. These 

peaks have been assigned to cubic NiO crystallites with various diffracting planes (111), 

(200) and (220) respectively revealing the formation of the NiO cubic phase (JCPDS card 

No. 47-1049) (Johan, Suan, Hawari, & Ching, 2011 ).  The two broad peaks at 2θ values 

of 35.5° and 38.7° match the reflections from the (111) and (200) planes respectively, 

which is attributed to the structure of cubic CuO (JCPDS card No. 01–085–1326) (Necmi, 

Tülay, Şeyda, & Yasemin, 2005; M. Shahid, Mazhar, Tahir, Rauf, & Raftery, 2014). The 

XRD pattern of well-crystallized stoichiometric ZnO were observed at the 2θ values of 

31.7°, 34.3°, 36.2°, 47.5°, 56.5° and 62.7° with hkl lattice planes (100), (002), (101), 

(102), (110) and (103) and are in good agreement with those given in the standard data 

(JCPDS: 98-002-6170) for hexagonal ZnO (Cheng, Zhao, Huo, Gao, & Zhao, 2004). For 

comparing observed peaks of CdO thin film the (JCPDS: 96-101-1004) card was referred.  

The main peaks for (111), (200), (220), (311) and (222) reflections originated at the 2θ 

values of 33.1°, 38.5°, 55.3°, 66.5° and 69.4° which indicated the cubic phase of CdO 

(Maity & Chattopadhyay, 2006; R. S. Mane, Pathan, Lokhande, & Han, 2006). PbO thin 

film examined by XRD was identified by (JCPDS card No. 96-900-5762) for diffraction 

planes (111), (020), (200) and (111) at the 2θ values of 29.2°, 30.1°, 32.4° and 53.7° 

shows the tetragonal structure of PbO (Madsen & Weaver, 1998). 
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Figure 4.58: XRD pattern of EFDAACVD-deposited thin films of Mn2O3, α-Fe2O3, 

NiO, CuO, ZnO, CdO and PbO on an FTO glass substrate at 400 oC.  
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4.6.2 Raman Analysis of Mn2O3, Fe2O3, CuO, NiO, ZnO, CdO and PbO Thin 

Films 

Raman scattering is a sensitive means to reveal the crystallinity and phase purity of a 

material. The Raman spectra of synthesized nanoballs of Mn2O3, α-Fe2O3, NiO and CuO 

recorded in the range of 200 to 1000 cm-1 as shown in Figure. 4.59 are indicated by a 

strong peak at 620 cm-1 with a left shoulder at 580 cm-1 which is associated with a 

symmetric Mn-O stretching vibration as reported earlier (Dokko, Mohamedi, Anzue, Itoh, 

& Uchida, 2002).  Iron oxide exists in several forms such as magnetite (Fe3O4), hematite 

(α-Fe2O3), maghematite (γ-Fe2O3) and wustite (FeO). Raman spectroscopy can identify 

each of these forms better than any other tool.  The Raman spectrum of iron oxide Figure 

4.59 shows the entire three strong bands at 222, 288, 401 cm -1 and one peak of medium-

strong intensity at 659 cm -1 as reported in the literature that are characteristic for α-Fe2O3. 

However, the Raman band for the magnetite (Fe3O4), maghematite (γ-Fe2O3) and wustite 

(FeO) also fall at 663 cm-1 (Bersani, Lottici, & Montenero, 1999). The possibility of the 

existence of FeO is excluded because of the absence of its characteristic peak at 655 cm-

1 while the existence of maghematite is eliminated because its phase is formed only at 

temperatures above 400 oC.  It can therefore be safely concluded that the thin film consists 

of mainly hematite (α-Fe2O3) with a minor impurity of magnetite. The Raman spectrum 

of NiO,  Figure 4.59, shows a characteristic strong peak at 505 cm-1 with a shoulder at 

407 cm-1 and a weak signal at 706 cm-1 (S.-H. Lee et al., 2001). It is reported in the 

literature that the Raman spectrum, Figure 4.58, of CuO has three Raman active modes at 

297, 337 and 558 cm-1 (A. Chen, et al., 2009). All these modes of vibration have been 

identified in the spectrum and assigned to CuO with no extra peak due to Cu2O found. 

Therefore, it can be inferred that CuO nanoball thin film is free from Cu2O impurity. 
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Figure 4.59: Raman spectra of EFDAACVD-deposited thin films of Mn2O3, α-Fe2O3, 

NiO and CuO, ZnO, CdO and PbO on  FTO glass substrate at 400 oC in THF. 
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A broad band that corresponds to symmetry mode of ZnO is observed at ∼418 cm-1. The 

onset and offset of this peak are at 320 and 518 cm-1 respectively. Immediately after the 

offset a shoulder appears at 533 cm-1 which ends at 625 cm-1 (Saw, Ibrahim, Lim, & Chai, 

2007; X. Q. Wei et al., 2007). The Raman spectra of CdO contain one broad intense 

feature spanning from 200 to 500 cm-1 and a weaker band located at ~960 cm-1.The weak 

broad band at 561 and 960 cm-1 are in good agreement with the experimental values  

(Cuscó et al., 2010; S. Kumar, Ojha, & Singh, 2014). The Raman shift at 259cm-1 is 

attributed to the litharge modification of PbO. (Madsen & Weaver, 1998). It is concluded 

form the Raman spectrum Mn2O3, α-Fe2O3, NiO and CuO ZnO, CdO and PbO thin films 

deposited by EFDAACVD have hexagonal, cubic and litharge tetragonal structures 

respectively and agree very well with the XRD findings. 

 

4.6.3 Surface Morphology of Mn2O3, Fe2O3, CuO, NiO, ZnO, CdO and PbO  

The field emission scanning electron micrographs of metal oxide thin films at 

magnification 100,000 are presented in Figure 4.59.The surface morphology of the thin 

films deposited on FTO by EFDAACVD affects the surface morphology of the films as 

compared with AACVD (Warwick, Smith, Furlan, Crane, & Binions, 2010). The 

application of electric field is one of the key process parameters to control the morphology 

of the deposited film by chemical vapour deposition. The effect of electric field on the 

morphology of the films was studied by depositing films using air as a carrier gas at 400 

°C substrate temperature. In the presence of an electric field, the morphology of the thin 

films showed particles caked as nanoballs onto the substrate surface. The smooth surface 

spherical shaped nanoballs of α-Fe2O3, NiO and CuO appeared on the FTO surface while 

the surface morphology of the Mn2O3 films turned into independent nanoballs sticking on 

the rough surface of the bulk. The precursor was assumed to be completely deposited on 
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the substrate in the presence of an electric field of 9.5 kV.  The distance of needle from 

the substrate, deposition time, and strength of the electric field play an important part in 

the morphology control of metal oxides thin films. The Mn2O3 aggregated rough-surfaced 

nanoballs and the spherical shaped smooth-surfaced α-Fe2O3 nanoball thin films have 

average sizes ranging from 396 to 898 and 325 to 529 nm respectively. The NiO films by 

AACVD adopted a columnar structure with flower-like surface morphology (Mat-Teridi 

et al., 2014), while with EFDAACVD method nanoballs with average sizes of 273 to 471 

nm were formed. The morphology of the thin films of CuO fabricated by simple AACVD 

gave densely packed globular aggregates (Barreca et al., 2009) with particle sizes of 600 

to 800 nm while the film deposited in the presence of the electric field yielded nanoballs 

of CuO with sizes ranging from 195 to 401 nm. The architecture of thin films fabricated 

by EFDAACVD process is influenced by the deposition conditions such as presence of 

electric field, physical properties of solvent ( boiling point, heat of combustion viscosity, 

specific heat capacity and coordination ability), as well as the growth temperature and 

nature of the substrate. When films were deposited in the presence of electric field using 

THF solution, different morphologies of ZnO, CdO and PbO were detected on FTO 

substrate by using argon as a carrier gas at 400 °C are presented in Figure 4.59. The center 

of the thin film of ZnO consists of urchin like structure surrounded by okra like particles. 

(Deng et al., 2004). While the CdO thin film consist of agglomerates of particle (R. S. 

Mane, et al., 2006) and PbO thin films have compact slate like morphology. All these 

observations indicate that the morphology and size of the thin films can be controlled by 

the application of an electric field of appropriate strength independent of the nature of the 

metal precursors. 

 The EDX analysis of large areas of Mn2O3, α-Fe2O3 , NiO, CuO, ZnO, CdO and PbO thin 

films confirms the presence of only Mn, Fe, Ni, Cu, Zn, Cd, Pb and O elements 

respectively and is shown in (Appendix 9). The tin and fluorine signals appear from the 
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FTO substrate. The EDX analysis recorded at randomly different places confirms the 

uniform distribution of all the components of the metal oxide in the respective thin films.  

 

Figure 4.60: FESEM images of Mn2O3, α-Fe2O3, NiO, CuO, ZnO, CdO and PbO thin 

films deposited at 400 °C from THF solution of metal acetates on FTO glass substrates 

deposited by EFDAACVD. 
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4.6.4 Optical Studies of Mn2O3, Fe2O3, CuO, NiO, ZnO, CdO and PbO Thin 

Films 

The optical absorption spectra of EFDAACVD-deposited thin films were recorded in the 

wavelength range of 300 − 900 nm using a similar FTO coated glass substrate as a 

reference to exclude substrate contribution in the spectrum. The UV−visible spectra of 

the Mn2O3, α-Fe2O3 , NiO, CuO, ZnO, CdO and PbO  nanoball thin films were used to 

calculate the band gaps by means of Tauc’s plot of (αhν)2 versus energy, Tauc’s plot 

(Dolgonos, Mason, & Poeppelmeier, 2016) method by using the following equation given 

below.  

α = A(hν–Eg)1/2/hν      

where α, Eg, and A are the absorption coefficient, band-gap energy and a constant, 

respectively. Figure 4.61, to give the values of 1.2, 2.2, 1.9 and 0.9 eV respectively for 

the direct band gaps. The band gap values for Mn2O3 and α-Fe2O3 are in good agreement 

with the corresponding values of 1.2 and 2.2 eV (Mansoor, et al., 2014a; A. A. Tahir, 

Wijayantha, et al., 2009), while the band gap values for NiO and CuO films showed lower 

band gap energies of 1.9 and 0.9 eV respectively as compared to the reported values of 

3.2 and 1.7 eV (Mat-Teridi, et al., 2014; Johan, et al., 2011 ). This lower band gap energy 

may be due to absorption involving defect states. 3.1, 2.2 and 1.8 eV were obtained by 

extrapolation of the linear region in the plots of (αhν)2 versus E/eV for the ZnO, CdO and 

PbO thin films respectively as depicted in Figure 4.61. The band gap energy values for 

all the three oxides are in good agreement with the reported values of 3.2, 2.3 and 1.9 eV 

for ZnO, CdO and PbO respectively (Aly, Kaid, & El-Sayed, 2013; Carballeda-Galicia et 

al., 2000; Ilician*, Caglar, & Caglar, 2008). 
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Figure 4.61: UV-vis spectrum shows Tauc’s plot of energy versus (αhʋ)2 for Mn2O3, α-

Fe2O3, NiO, CuO, ZnO, CdO and PbO thin films deposited at 400 ∘C from THF solution 

of metal acetates on FTO glass substrates by EFDAACVD. 

This scatter in reported values may be attributed to two factors. First, the optical properties 

depend critically on the physical properties of the films, which are subsequently affected 

by the deposition and post-deposition conditions. Secondly, different models have been 

used to extract the optical properties from measured quantities. For example, α, α2, (αE)2, 
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(αE)2/3, and (αE)1/2 were all plotted against the photon energy to determine the band gap. 

This not only affects the value of the band gap but also affects the interpretation of the 

nature of the gap i.e. direct or indirect.  

4.6.5 Photoelectrochemical Studies of Metal Oxide Thin Films 

The photoelectrochemical behavior of the EFDAACVD-produced metal oxide (Mn2O3, 

α-Fe2O3, NiO and CuO) thin films were investigated for water oxidation using linear 

sweep voltammetry (LSV) technique under simulated solar AM 1.5G irradiation in the 

presence of 0.1 M Na2SO4 at a scan rate of 50 mV/s. Under applied bias, the metal oxide 

thin films undergo photo-induced charge separation thereby promoting the valence band 

electrons to the conduction band resulting in the formation of holes at the valence band. 

The holes produced at the valence band can be readily scavenged through water oxidation 

that produces O2 and H+ ions. The electron present in the conduction band can be collected 

as a photocurrent generated by this EFDAACVD-produced metal oxide thin films.  These 

overall photo-induced charge separation obtained for the metal oxide thin films in the 

photoelectrochemical cells are schematically shown in Figure 2.17. The photocurrent 

density-applied voltage responses observed for the various metal oxide thin films indicate 

that with increasing applied potential, the photocurrent density increases as depicted in 

Figure 4.62. It can be seen that among the various thin films, the Mn2O3 thin film showed 

a higher photocurrent density than the α-Fe2O3, NiO and CuO thin films due to its 

hierarchical and roughened morphology. The lowest photocurrent density was generated 

by the α-Fe2O3 thin film (120 µA/cm2), whereas the maximum photocurrent density of 

1.132 mA/cm2 at 0.70 V potential versus Ag/AgCl (∼1.23 V versus RHE) was found for 

the manganese dioxide (Mn2O3) thin film. In the case of CuO and NiO thin films, 

photocurrent densities of 129 and 226 µA/cm2 respectively, were obtained.   

Univ
ers

ity
 of

 M
ala

ya



 

175 

 

Figure 4.62: LSV plot obtained for the EFDAACVD- produced metal oxide  (a) 

Mn2O3, α-Fe2O3, NiO, CuO and (b) ZnO, CdO, PbO thin films were dipped in to a 

solution containing 0.1 M Na2SO4 at a scan rate of 50 mV/s under dark and simulated 

solar AM 1.5G irradiation 

 

The photocurrent LSV responses (Figure 4.62) observed for all the three metal oxide thin 

films shows that with increase in the applied potential, the photocurrent density increases. 

It can be seen that among the three oxides, CdO which has band-gap value of 2.2 eV and 

granular morphology, shows higher photocurrent density as compared with the ZnO and 

PbO thin films. Although band gap of PbO is lower than CdO yet the photocurrent 
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produced by it is lesser than CdO. This observation suggests that in addition to band gap 

energy of the photocatalyst, other parameters such as microstructure, morphology, 

particle size and shape etc of the thin film play important role in photoelectrochemical 

events and hence these parameters need to be controlled during the deposition of thin 

films. These two factors significantly accelerated photocurrent generation in terms of 

light absorption, charge recombination and charge transport.  

The variations in the photocurrent responses of the thin films were further understood by 

recording the electrochemical impedance spectroscopy (EIS) measurements in the 

frequency range of 0.01 Hz to 10 kHz. The Nyquist plots obtained from the EIS 

measurements in the presence of 0.1 M Na2SO4 are displayed in Figure 4.63.  

It can be seen that the Mn2O3, NiO and CuO thin films show a well-defined semicircle 

due to the  charge transfer resistance of the thin films, whereas the α-Fe2O3 thin film 

exhibits a straight oblique line, which shows better conductivity and an increase in charge 

carriers due to low interfacial charge transfer resistance. Moreover, the Mn2O3 thin film 

shows a semicircle with a small diameter, which reveals a lower charge transfer resistance 

between the electrode and the electrolyte. It is known from the literature (Yusoff et al., 

2015) that the corresponding value of the intercept on the X-axis at high frequency 

represents the ohmic resistance of the electrolyte and the internal resistance of the 

electrode (Rs).  The lower values of Rs and Rct for the Mn2O3 thin films result in an efficient 

charge transfer across the electrode-electrolyte interface, thereby minimizing charge 

recombination and enhancing the photocurrent response. The Nyquist plots obtained from 

the EIS measurements for the ZnO, CdO and PbO thin films are displayed in Figure 4.63. 

The ZnO thin film showed a semi-circle like oblique straight line due to the high charge 

transfer resistance (Rct) value of 5225 Ω. In the case of CdO thin film, it showed well 

defined semicircle with the (Rct) value of 3570 Ω. Interestingly, the PbO thin film showed 
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a very small semi-circle with a straight-line and it showed the (Rct) value of 6.5 Ω (Inset 

of Figure. 4.63) along with the residual phase element.  The smaller in the Rct causes 

better conductivity and an increase in charge carriers due to low interfacial charge transfer 

resistance and also lower charge transfer resistance between the electrode and the 

electrolyte interfaces. 

The Bode phase plots obtained for the EFDAACVD-deposited metal oxide thin films are 

depicted in Figure 4.64. The characteristic frequency peak for different metal oxide thin 

films are as follows: Mn2O3 (794.3 Hz), α-Fe2O3 (5.851 Hz), NiO (5.011 Hz),CuO (7.943 

Hz), ZnO (15.851 Hz), CdO (24.99 Hz) and PbO (1995 Hz). These obtained characteristic 

frequencies can be related to the electron recombination lifetime (τn) of the corresponding 

metal oxide thin films by referring to the equation below (Lim et al., 2014): 

𝜏𝑛 =  1
2𝜋𝑓𝑚𝑎𝑥

⁄  

Where fmax is the frequency peak maximum. Among different metal oxide thin films, 

Mn2O3 showed a very low recombination life time (τn) value (0.0002 sec) compared to 

other metal oxide thin films (α-Fe2O3, NiO and CuO). Hence variations in τn values make 

a difference in the photocurrent values for different metal oxide thin films (Table 4.11). 
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Figure 4.63: Nyquist phase plots obtained for the Mn2O3, α-Fe2O3, NiO, CuO, ZnO, 

CdO and PbO thin films in the presence of 0.1 M Na2SO4 at frequencies ranges of 0.1 

Hz to 10 kHz. 
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Figure 4.64: Bode phase plots obtained for the Mn2O3, α-Fe2O3, NiO, CuO, ZnO, CdO 

and PbO thin films in the presence of 0.1 M Na2SO4 at frequencies ranges of 0.1 Hz to 

10 kHz. 
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Table 4.11: Charge transfer resistance, maximum frequency and recombination lifetime 

calculated for the EFDAACVD deposited metal oxide thin films. 

Thin films Rct 

(ohm) 

fmax 

(Hz) 

τn 

(sec) 

Mn2O3 102 794.3 0.0002 

Fe2O3 750 5.851 0.0271 

NiO 4600 5.011 0.0317 

CuO 3800 7.943 0.0200 

ZnO 5225 15.85 167.44 × 10-5 

CdO 3570 24.99 637.19× 10-5 

PbO 6.5 1995 7.98× 10-5 

Footnote: Rct – Charge transfer resistance; fmax – Maximum frequency; τn – recombination 

lifetime.  

Contribution of various morphology and band-gap causes difference in the recombination 

life time and thus significantly influence the photoelectrochemical performance.   

4.7   Copper Lead Iodide (CuPbI3) 

The solid state synthesis of CuPbI3 was carried out by using a precipitated mixture of 

copper(I) iodide and lead(II) iodide from an aqueous solution. Lead(II) iodide is soluble 

in dimethylformamide (DMF) while copper(I) iodide is insoluble. Therefore, we 

precipitated lead(II) iodide in slight excess over copper(I) iodide to ensure complete 

utilization of the latter in solid state reaction, while excess of the former was removed 

from the product by washing with DMF. Henceforth a dry mixture of co-precipitated 

copper(I) iodide- lead(II) iodide (1.65 g) was charged in a 5 mL pyrex glass ampule, then 

evacuated and sealed under vacuum. The charged ampule was placed in a horizontal tube 

furnace and heated at 620 oC for 72 hours before it was cooled to room temperature. The 
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mustard coloured final product was mechanically removed from the ampule, ground to a 

fine powder in an agate pestle and mortar and washed with several 5 mL portions of DMF 

to ensure complete removal of unreacted PbI2 to yield 99.9% pure CuPbI3 m.p. 307 oC. 

The synthesized CuPbI3 is stable in air and is insoluble in common polar and non-polar 

solvents. 

 4.7.1 Thermal Studies of CuPbI3 

The thermal decomposition pattern of CuPbI3 was examined by 

thermogravimetric/derivative thermogravimetric (TG/DTG) analyses, performed in the 

temperature range of 50- 900 oC, under a flow of dinitrogen (20 cm3min-1) at a heating 

rate of 20 oCmin-1
 (Figure 4.65). The (TG/DTG) plot (Figure 4.65) shows no appreciable 

loss in weight till the temperature reaches to 432 oC where its pyrolysis begins. This 

pyrolysis step is sharp and is completed at 693 oC with a mass loss of 53.31% of the 

original weight of the sample. TG/DTG curves also indicate that there is no mentionable 

loss in weight at the start in the temperature range of 50 to 400 oC, which indicates that 

CuPbI3 is thermally stable from room temperature to above its melting point of 307 oC. 

Further heating to 900 °C yields a stable residual mass of 41.53% of the original weight 

of the sample indicating formation of Cu-Pb (1: 1) alloy with liberation of iodine as 

indicated in the following chemical equation. 

Chemical equation 11: 

CuPbI3
Cu-Pb (alloy) + 1.5 I2  
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Figure 4.65: The simultaneous TG and DTG plots of CuPbI3 recorded under an inert 

atmosphere of nitrogen gas with constant flow of 20 cm3min-1 and heating rate of 20 
oCmin-1. 

DSC trace of CuPbI3 recorded under an inert atmosphere of nitrogen gas with constant 

flow of 20 cm3min-1 and heating rate of 20 oC min-1 is shown in Figure 4.66. The DSC 

curve displays two endothermic peaks at 240 oC and 307 oC. The well-defined sharp 

endotherm at 307 oC indicates melting point of CuPbI3. The onset melting begins at 

294.51 °C and melting process is completed at 315oC with maximum heat flow at 307 oC.  

The sharp and well-defined endotherm at 307 oC indicates that material is highly 

crystalline in nature needing enthalpy of -19.00 J.g-1 for melting. A weak endotherm with 

small enthalpy value of -2.79 J.g-1 in DSC plot further suggests that CuPbI3 passes through 

a phase change process at 240 oC before melting. 
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Figure 4.66: The DSC trace of CuPbI3 recorded under an inert atmosphere of nitrogen 

gas with constant flow of 20 cm3min-1 and heating rate of 20 oCmin-1. 

4.7.2 XRD Analysis of CuPbI3 

X-ray diffraction patterns of the powder and electrophoretically deposited film of CuPbI3 

are displayed in Figure 4.67 and (Appendix 10) respectively. The XRD pattern of 

powdered CuPbI3 agrees well with the pattern obtained for the films of CuPbI3. This 

observation suggests that FTO does not chemically interfere during electrophoretic 

fabrication of CuPbI3 film. The diffraction peaks at 2θ values of 12.9, 25.7, 39.7 and 52.5 

corresponds to (002), (004), (302) and (312) planes of the hexagonal CuPbI3 lattice is in 

good agreement with literature data (T. A. Kuku, 1998; Titilayo A. Kuku & Salau, 1987). 

The crystallite size of the CuPbI3 film is obtained by Debye Scherer formula L = k 

λ/cosθ whereas k represents the Scherer constant,  λ is the wavelength and θ the Braggs 

angle .The estimated crystallite size of CuPbI3 is L = 62.5 nm which agrees well with the 

literature value (T. A. Kuku, 1998).  
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Figure 4.67: A comparison of powder XRD diffraction pattern of (a) as-synthesized  

CuPbI3 powder with  (b) reported in the literature (T. A. Kuku, 1998). 

The XRD pattern of powdered CuPbI3 agrees well with the pattern obtained for the films 

of CuPbI3. This observation suggests that FTO does not chemically interfere during 

electrophoretic fabrication of CuPbI3 film. The diffraction peaks at 2θ values of 12.9, 

25.7, 39.7 and 52.5 corresponds to (002), (004), (302) and (312) planes of the hexagonal 

CuPbI3 lattice is in good agreement with literature data (T. A. Kuku, 1998; Titilayo A. 

Kuku & Salau, 1987). The crystallite size of the CuPbI3 film is obtained by Debye Scherer 

formula L = k λ/cosθ whereas k represents the Scherer constant,  λ is the wavelength 

and θ the Braggs angle .The estimated crystallite size of CuPbI3 is L = 62.5 nm which 

agrees well with the literature value (T. A. Kuku, 1998).  

4.7.3 Raman Spectroscopy of CuPbI3 

Raman spectroscopy with polarized laser beams (λ = 514 nm) at dissimilar geometries 

with respect to the crystal orientation should be used to investigate the distinguish Raman 
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active modes of different symmetries. The Raman scattering of as-synthesized CuPbI3 

film was recorded in the range of 100 – 1000 cm-1 and is shown in Figure 4.68.  

 

Figure 4.68: Raman spectrum of CuPbI3 film 

It is reported in the literature that pure CuI show Raman scattering mode at 140 cm-1 

(Irish, Stolberg, & Shoesmith, 1985), while an intense peak was observed at 120 cm-1 

which is attributable to the Pb-I bond vibration (Quarti et al., 2014) further PbI2 modes 

are observed at 112 and 164 cm-1 (Baibarac et al., 2015; Preda et al., 2008). It is found 

that Raman active modes related to CuI in CuPbI3 fall at lower wave number with a 

difference of 4 cm-1 and detected at 136 cm-1 (Safdari, Fischer, Xu, Kloo, & Gardner, 

2015). The broad band at 165 cm-1 characteristic of PbI2 has been found at its place as 

reported (Preda, et al., 2008). A new broad and intense Raman scattering mode that 

appeared at 213 cm-1 is considered as characteristic mode for CuPbI3 (Quarti, et al., 2014).  
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4.7.4 Surface Morphology of CuPbI3 

The surface morphology of the EPD deposited films have been investigated by FE-SEM 

and are shown in Figure 4.69(a). The CuPbI3 films consist of compact grain structure with 

better surface coverage in the form of strips.  

 

Figure 4.69: (a) Illustrates FESEM image of CuPbI3 film deposited by Electrophoresis 

on FTO substrate, c(i) red, c(ii) green and c(iii) violet colour represent EDX mapping of 

Cu, Pb and I respectively 

Films prepared by electrophoresis tend to grow with small grains grouped together in 

clusters of different sizes and show smooth uniform surfaces with presence of some 

randomly scattered voids in layers. This uniform, compact and granular morphology 

shows better performance for photocatalytic applications. The cross sectional view of 

CuPbI3 film prepared by EPD is displayed in (Figure 4.69b).The growth of small grains 

on the boundary layer of the FTO substrate can be seen and the average film thickness 

was measured to be 96 µm.  The results of FE-SEM examination combined with EDX 

mapping for the elements Cu, Pb and I are shown in Figure 4.69c (i, ii and iii). The bright 
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regions with different colors correspond to the presence of the elements Cu, Pb and I, 

respectively, and indicate all these elements are distributed uniformly maintaining 

stoichiometric proportion of 1:1:3 throughout the whole area as indicated in (Appendix 

11). The atomic concentration of Cu, Pb and I elements were also determined by XPS and 

compared with EDX results. 

4.7.5 XPS Analysis of CuPbI3 

The surface and sub surface chemical states were investigated by high resolution narrow 

scan XPS spectra in the Cu2p, Pb4f and I3d region of CuPbI3 film and is recorded as 

Figures 4.70(a, b and c). Figure 4.70a shows the binding energy of Cu 2p3/2 as 931.5 eV 

which is closer to the 931.9 eV that was found in CuI (M. Yang, Xu, Xu, Zhu, & Chen, 

2004).  The binding energies of Pb 4f7/2 and Pb 4f5/2 (Figure 4.70b) are 137.3 eV and 

142.1eV respectively, indicating a spin orbital splitting of 4.8eV. These values are in good 

agreement for the reported energy values for Pb in Cs0.2FA0.8PbI3 and PbI2 (Morgan & 

Van Wazer, 1973; Yi et al., 2016; J. Zhang et al., 2015).  The binding energies of the 

peaks I3d5/2 and I3d3/2 (Figure 4.69c) are 618.0 eV and 629.3 eV respectively which are 

in close agreement to the I3d values reported for I in CuI, Cs0.2FA0.8PbI3 and PbI2 (M. 

Yang, et al., 2004; Yi, et al., 2016; J. Zhang, et al., 2015). 

For the precise measurement of the valance band maximum (VBM) energy position, 200 

measurement scan cycles were carried out. A plot of normalized intensity and binding 

energy ranging from -6 to 8 eV is shown in Figure 4.71 (d). The valance band maximum 

was determined by linear extrapolation method and was found to be at 1.20 eV vs NHE. 

The position of conduction band minimum (CBM) was estimated on the basis of band 

gap energy determined by UV-vis spectrophotometry and VBM energy determined by 

XPS. The value obtained for CBM of CuPbI3 was found to be -0.62 eV vs NHE as shown 

in Figure 4.72.  
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Figure 4.70: The XPS spectra of (a) Cu 2p3/2 (b) Pb 4f7/2, 4f5/2  (c) I 3d5/2, I3d3/2 and (d) 

plot of normalized intensity and binding energy ranging from -6 to 8 eV  of CuPbI3 film. 

 

4.7.6 Optical Band Gap of CuPbI3 

The optical band gap of CuPbI3 film was studied by measuring the UV- visible absorption 

spectra recorded in the wavelength range of 300 - 900 nm using a similar FTO substrate 

as reference to minimize the contribution from the substrate. It can be seen that the Uv-

vis spectrum (Figure 4.71) of the CuPbI3 thin film shows wide range absorption which 

gradually increases towards lower wavelengths and shows the maximum absorption in 

the range of 330 - 790 nm. The Tauc’s plot of energy versus (αhv)2 (Figure 4.71 inset) 

shows direct optical band gap energy of 1.82 eV.     
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Figure 4.71: (a) UV-vis spectra of wavelength versus absorbance and (b) shows Tauc’s 

plot of energy versus (αhʋ)2  CuPbI3 film deposited by electrophoretic technique. 

This optical band gap value  agrees well with the band gap value calculated for   

CH3NH3PbI3 by Uv-visible spectroscopy (Y. Zhao & Zhu, 2016). It is also reported that 

presence of methylammonium cation or Cs+ does not affect the band gap region and it is 

the inorganic component of metal halide perovskites that plays dominant role in 

ascertaining the band gap energy. (Brivio, Walker, & Walsh, 2013; Yin, Shi, & Yan, 

2014) In case of CuPbI3 the band gap energy value remains unchanged inferring that 

replacement of CH3NH3
+ or Cs+ by a univalent transition d10 metal ion e.g Cu+ did not 

affect the band gap. After successful deposition of high purity film of CuPbI3 and 

evaluation of its thermal properties, structure, stoichiometric composition, surface 

morphology and optical band gap, we investigated its photoelectrochemical (PEC) 

behavior. 
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Figure 4.72: Shows energy of conduction band minimum calculated from XPS 

determined valence band maximum and Uv-visible band gap of CuPbI3 film. 

4.7.7 Photoelectrochemical Studies of CuPbI3 

The photoelectrochemical behavior of the CuPbI3 film was investigated to evaluate its 

ability to perform water oxidation using linear sweep voltammetry (LSV) technique under 

simulated solar AM 1.5G irradiation in the presence of 0.1 M Na2SO4 at a scan rate of 50 

mV/s. Under applied bias, the film undergoes photo-induced charge separation thereby 

promoting the valence band electrons to the conduction band resulting in the formation 

of holes at the valence band. The holes produced at the valence band can be readily 

scavenged through water oxidation that produces O2 and H+ ions. The electron present in 

the conduction band can be readily collected as a photocurrent generated by the film. The 

H+ ions are transported through the electrolyte towards the counter electrode where they 

react with photo generated electrons to produce hydrogen. Further enhancement in 

photocurrent can be brought about by improving film thickness, morphology, surface 

roughness, structure and geometry. The photoelectrode shows active response under 

illumination and represents an anodic photocurrent pattern. The onset of photocurrent 

begins at -0.1 V under illumination and increases with increasing applied potential as 

depicted in Figure 9a. In the dark, however, no current can be observed until a bias of 0.1 

V and after that small currents appear before it increases sharply beyond 0.8 V (vs. 
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Ag/AgCl). Moreover, the most important and notable point in this case is that the CuPbI3 

requires an over-potential of +0.62 V vs Ag/AgCl, pH 7, which is similar to 1.23 V vs 

RHE i.e. the thermodynamic potential required for water oxidation according to the 

equation given below :(Yourey & Bartlett, 2011). 

𝐸𝑅𝐻𝐸 = 𝐸𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.059 𝑉. 𝑝𝐻 + 0.199 𝑉          (4.6) 

 

Figure 4.73: (a) Photocurrent density – applied voltage (J-V) plots obtained for the 

electrophoretic produced CuPbI3 films dipped in 0.1M Na2SO4 at a scan rate of 50mV/s 

in light and dark. (b) Chronoamperometry (I–t) profiles (on-off cycles) of CuPbI3 films 

at an applied potential of +0.65 V versus Ag/AgCl under 100 mW cm−2 illumination 

(AM 1.5) in 0.1 M Na2SO4 aqueous solution. 

Under illumination, a photocurrent density of 220 µA/cm2 can be observed at the 

thermodynamic potential of +0.62 V vs Ag/AgCl, pH 7. However, the dark current for 

the CuPbI3 film has slightly increased probably due to the leakage of electrons from the 
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electrolyte to the FTO due to the pin hole effect. Nevertheless, many of the pin holes 

already have been cover by the compact thin film as seen in high resolution SEM picture 

shown in the Figure 5(a). We assume that the low band gap and compact morphology 

facilitates better electronic flow under illumination that enhances photocurrent density.    

The role of Cu+ with d10 configuration is just to balance the charge, it does not have any 

important contribution for the conduction and valence band states except for donating one 

electron to the Pb–I framework as is reported for CH3NH3
+ and Cs+ ion in CH3NH3PbI3 

and CsPbI3 respectively(Y. Zhao & Zhu, 2016) (Umebayashi, Asai, Kondo, & Nakao, 

2003). The molecular orbital diagram of [PbI3]
-1 ion (Appendix 13) depicts that I, (EN: 

2.5) atomic orbitals (AO) are at low energy and Pb, (EN: 2.0) AO are at high energy. 

After linear combination of atomic orbitals these orbitals split into two sets of valence 

band and conduction band orbitals. The valence band orbitals are further divided into two, 

lowest and middle order energy state orbitals while, conduction band orbitals are highest 

energy orbitals. Hence σ Pb 6p – I 5s and σ Pb 6p – I 5pz are in the lowest energy state of 

the valence orbitals while nonbonding Pb 6s, I 5px and 5py orbitals that are of intermediate 

energy remain as nonbonding orbitals. Pb 6s nonbonding orbital is at slightly high energy 

state than I 5px and 5py. After crossing fermi level there begins a region where empty 

conduction band orbitals σ* Pb 6p – I 5pz and σ* Pb 6p – I 5s are located. The process of 

photoelectrochemical water splitting begins with the photo activation of VBM Pb 6s 

nonbonding electron that on solar activation cross fermi level (Ef) and fall into σ* Pb 6p 

– I 5pz conduction band orbitals from where they are removed by the applied bias. The 

hole generated by the photo activation reacts with water to split water into oxygen and H+ 

ions. It is believed that mostly Pb electrons are being used in photocatalytic process 

(Brivio, et al., 2013; Filippetti & Mattoni, 2014; Q. Liu et al., 2014; Umebayashi, et al., 

2003; Yin, et al., 2014; Kang et al., 2015; Mansoor, Ehsan, et al., 2013). 
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The CuPbI3 photoelectrode was further tested under on–off cycle illumination conditions 

to determine the stability of material. Figure 4.73b shows the photocurrent generated 

under visible light irradiation of CuPbI3 electrode. A photo response  of  CuPbI3 within 

18 on-off cycles could be observed over a 60 min period (Figure 4.73b) revealing the 

efficiency and stability of  CuPbI3 photoelectrode. Initially the film is stable at 224 μA 

cm-2 for 15 min the current is dropped to 190 μAcm-2. Moreover, the transient 

photocurrents agree well with LSV results and strengthened the PEC performance in the 

visible light region, as well as indicating the stability of CuPbI3 films after 40 minutes. 

The CuPbI3 has distinct advantages of its environmental stability, wide light absorption 

range due to its appropriate band gap and efficient charge transport due to structural 

defects. The combination of these unique properties enables this class of halide materials 

to adopt solar cell structure in which high efficiencies could be possible to achieve.  
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CHAPTER 5: CONCLUSION 

 

It is concluded that reproducible and robust CuO-TiO2, CoTiO3-TiO2 and MgTi2O5 

composites and SnO2 thin films can easily be designed from single source precursors 

[Cu2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (1)., [Co2Ti4(μ-O)6(TFA)8(THF)6]·THF (2),  

[Mg2Ti4(O)2(OH)4(TFA)8(THF)6]∙THF (3) and [Sn(dmae)(OAc)]2 (5) respectively, 

While the Ag-Mn2O3 semiconducting thin films can be deposited from dual sources  of 

[Mn(dmae)2(TFA)4] (4)  and Ag(I) acetate by AACVD method. 

All the precursors (1-5) are prepared viably in a quantitative yield by simple chemical 

reactions of their respective metal alkoxides in the presence of TFAH/dmaeH using THF 

or toluene as solvent. The stoichiometry of all the complexes are determined by elemental 

analyses, FT-IR, 1H NMR, thermogravimetry and single crystal X-ray diffraction 

analysis. All complexes have adaptable physical and chemical characteristics are stable 

in air or moisture, highly soluble in many organic solvents and decompose at relatively 

low to normal temperatures making them suitable precursors for CVD to deposit metal 

oxide composite thin films in temperature range of 450 to 630 oC.  

Thin films of SnO2, Mn2O3, Fe2O3, NiO, CuO, ZnO, CdO and PbO prepared under 

EFDAACVD indicate that morphology of the films can be controlled precisely by this 

technique but the PEC studies indicate a little improvement in photocurrent as compared 

to the films prepared in absence of electric field. UV-visible studies of thin films of Ag-

Mn2O3 and MgTi2O5 indicate the band gap values of 1.8 and 3.4 respectively. While thin 

films of SnO2, Mn2O3, Fe2O3, NiO, CuO, ZnO, CdO and PbO prepared under 

EFDAACVD depict band gap values of 3.8, 1.2, 2.2, 1.9, 0.9, 3.2, 2.2 and 1.9eV 

respectively. Thin film of CuPbI3 prepared by electrophoretic technique indicate a band 

gap of 1.82eV. The electrochemical measurement of all fabricated thin films conducted 
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in conventional three-electrode electrochemical set-up employing an Ag/AgCl/ 3M KCl 

as the reference electrode and a platinum wire as the counter electrode studied by cyclic 

voltammetry, linear sweep voltammentry, chronoamperometery, electrochemical 

impedance spectroscopy and Mott schotty plot. These investigations that the thin films of 

CuO-2TiO2 and CoTiO3–TiO2 are provides an attractive for the sensitive and selective 

detection of nitrite ion and dopamine, respectively. The reversibility, high rate capacity 

and relative stability shown by SnO2 micro-ball based anodic materials in lithium ion 

batteries. The good photoelectrochemical behavior of Ag-Mn2O3, MgTi2O5, Mn2O3, 

Fe2O3, NiO, CuO, ZnO, CdO, PbO and CuPbI3 thin films shows that these films could be 

a potentially valuable tool for photoelectrochemical water splitting.   
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Future Research Plan 

The improvement of clean energy has become a main interest among recent research 

work. However, many routes to generate hydrogen have been introduced include both 

reforming and non-reforming hydrogen production. Further work is to develop trimetallic 

photocatalyst thin films electrodes by AACVD is under investigation to achieve high 

performance cells. In future effort is being carried out towards establishing stacked solar 

cells by connecting the photoelectrodes in series. Further improvement in photocurrent of 

the synthesized materials can be determined by producing dye sensitizes solar cells 

(DSSC). In future we will further expand the applications of ceramic-based 

nanostructures in fuel cells, supercapacitors, sensors, batteries and PEC to meet the 

environment- and energy-related demands. 
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