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ABSTRACT 

Observers are computational algorithms designed to estimate unmeasured state 

variables due to the lack of appropriate estimating devices or to replace the high-priced 

sensors in a plant. It is always important to determine those unknown variables before 

developing state feedback laws for control, preventing process disruptions and plant 

shutdowns. Due to high-nonlinearities of the chemical process systems, a single observer 

may not be sufficient to estimate the variables resulting in offsets and slow estimation 

rates. Therefore, a hybrid approach will be the best solution. In this research, a hybrid 

observer is designed using the combination of artificial intelligence (AI) algorithm and 

conventional observer. The conventional observer chosen is the sliding mode observer 

(SMO) and it is merged with fuzzy logic to become the hybrid fuzzy-sliding mode 

observer or fuzzy-SMO.  The fuzzy-SMO is designed in such a way that it can be adjusted 

to estimate several parameters without re-designing the overall structure of the observer. 

This feature is unique and different from the observers available in the literature. The 

estimated parameters are then used as the measured parameters to develop a model 

predictive control (MPC) for overall control of the process system. The MPC is embedded 

with an integrator to avoid offsets and is designed in three cases to imitate ideal and 

practical conditions. The first case is the known initial state without constraint, which is 

the ideal case for study or more likely for programming validation purposes. The second 

case is the unknown initial state without constraint, which also include the proposed 

hybrid fuzzy-SMO. The third case is the unknown initial state with input and output 

constraints incorporated in the system. Both the second and third cases are behaving like 

practical cases. Polymerization reactor for producing polyethylene plant is chosen as the 

case study to observe the performances of both the fuzzy-SMO and the embedded 

integrator MPC. In addition, the estimator is also validated using the experimental data 
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from the polymerization pilot plant to observe the precision of the simulated data towards 

the real plant.   
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ABSTRAK 

Pemerhati merupakan satu algoritma pengiraan yang dibentuk bagi menganggarkan 

pemboleh ubah yang tidak dapat diukur kerana terdapat kekurangan alat-alat penganggar 

yang sesuai ataupun untuk menggantikan sensor yang mahal di dalam sesebuah loji kimia. 

Pemboleh ubah tersebut amat penting untuk dianggarkan sebelum mendapatkan maklum 

balas bagi sistem kawalan, mencegah gangguan proses dan penutupan loji. Proses kimia 

merupakan proses yang tidak linear, oleh itu pemerhati tunggal sahaja tidak mencukupi 

bagi menganggarkan pemboleh ubah dan boleh menyebabkan ofset serta 

memperlahankan kadar penganggaran, maka pendekatan hibrid merupakan penyelesaian 

yang terbaik. Dalam kajian ini, pemerhati hibrid yang direka menggabungkan ‘artificial 

intelligence’ (AI) dan pemerhati konvensional untuk menganggarkan pemboleh ubah 

tersebut. Pemerhati konvensional yang dipilih adalah ‘sliding mode observer’ (SMO) dan 

digabungkan dengan ‘fuzzy logic’ untuk menjadi hibrid ‘fuzzy-sliding mode observer’ 

atau ‘fuzzy – SMO’. Pemerhati fuzzy – SMO ini dibentuk sedemikian rupa agar dapat 

diselaraskan untuk menganggarkan beberapa parameter tanpa mengubah keseluruhan 

strukturnya. Ciri ini adalah unik dan berbeza daripada pemerhati lain yang terdapat dalam 

kesusasteraan. Parameter yang telah dianggarkan akan digunakan sebagai parameter 

terukur bagi membentuk ‘model predictive control’ (MPC) bertujuan mengawal 

keseluruhan proses. MPC ditambah dengan penyepadu bagi mengelakkan ofset dan 

dibentuk dalam tiga kes yang berbeza untuk menunjukkan keadaan yang ideal dan 

praktikal. Kes pertama merupakan keadaan awal yang dikenali tanpa had kekangan, yang 

merupakan kes ideal atau bertujuan untuk mengkaji keberkesanan program simulasi. Kes 

kedua adalah keadaan awal yang tidak diketahui tanpa had kekangan serta melibatkan 

penggunaan pemerhati hibrid ‘fuzzy – SMO’. Kes ketiga adalah keadaan awal yang tidak 

diketahui dengan had kekangan terhadap input dan keluaran yang dimasukkan ke dalam 

sistem. Kes kedua dan ketiga adalah bercirikan kes yang praktikal. Reaktor pempolimeran 
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bagi penghasilan polietilena dipilih sebagai kes kajian untuk menentukan prestasi kedua-

dua fuzzy-SMO dan MPC dengan penyepadu. Keberkesanan pemerhati juga dikenalpasti 

dengan menggunakan data dari eksperimen yang dijalankan pada reactor pempolimeran 

berskala kecil. Ini dilaksanakan bagi menetukan kepadanan data dari program simulasi 

dengan data sebenar. 
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CHAPTER 1: INTRODUCTION  

 

1.1 Chapter overview 

In this first chapter of the thesis, the background on the necessity of the observer, 

controller and its validation have been introduced. The problem statements that lead to 

the motivations are also emphasized, which has initiated the five important objectives of 

the work. Besides that, the overview of each chapter is also given as an early indication 

of the research. 

1.2 Background 

All state variables being accessible through online measurement is a common 

assumption before implementing a feedback control law in a plant. However, in practice, 

some of them are unmeasured due to the lack of appropriate sensors. Nevertheless, it is 

important to identify these variables to prevent process disruption and fault, which in the 

worst scenario may lead to plant shutdown. Therefore, devices known as observers or 

estimator are developed to estimate those difficult-to-measure variables. They are 

software-based computational algorithms designed to cater for the lack of appropriate 

estimating devices as well as replacement of the high-priced hardware sensors. It is also 

an effort to reduce the parametric error within the process since the states are continuously 

being predicted at the current time. Those observers are also applied to estimate the actual 

states and feedback to the system to provide an early warning before system failures or 

emergency shutdown occur in the plant.  

Observers are initially developed using linear formulation or better known as linear 

observers. They have been applied to estimate states or unknown variables in linear 

processes with the presence of noise and disturbances (Bara et al., 2001; Bejarano et al., 
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2007; Bejarano & Fridman, 2010; Bodizs et al., 2011; Busawon & Kabore, 2001; Assoudi 

et al., 2002; Fissore, 2008; Jafarov, 2011; Lee, 2011; Oya & Hagino, 2002; Vries et al., 

2010). Later, nonlinear observers have been introduced in order to adapt to the highly 

nonlinear behavior exhibits in most chemical processes (Bitzer & Zeitz, 2002; 

Boulkroune et al., 2009; Busawon & Leon-Morales, 2000; Assis & Filho, 2000; Ciccio 

et al., 2011; Dong & Yang, 2011; Farza et al, 1997, 2011; Floquet et al., 2004; Hashimoto 

et al., 2000; Kalsi et al., 2009; Kazantzis & Kravaris, 1998, 2001; Kazantzis et al., 2000; 

Ko & Wang, 2007; Kravaris et al., 2007; Maria et al., 2000; Schaum et al., 2008). 

After that, researchers have utilized artificial intelligence (AI) algorithms as estimators 

(Mohd Ali, Hussain, Tade, & Zhang, 2015). By definition, AI is the capability of 

computers to perform tasks which require human intelligence and expertise. It has been 

widely used in many fields such as medicine, science, education, manufacturing, finance 

and engineering including process control. In process control specifically, AI has not only 

been applied to control and modeling but also as estimators. Those AI elements such as 

expert systems (ES), , fuzzy logic, artificial neural network (ANN) and genetic algorithm 

(GA) have been successfully applied as estimators in chemical process systems according 

to several works by various researchers (Ahmad et al., 2004; Araúzo-Bravo et al., 2004; 

Beigzadeh & Rahimi, 2012; Islamoglu, 2003; Molga & Cherbański, 2003; Patnaik, 1997; 

Rezende et al., 2008; Rivera et al., 2010; Shen & Chouchoulas, 2001; Singh et al., 2005, 

2007; Sivan et al., 2007; Turkdogan-Aydınol & Yetilmezsoy, 2010). (Chuk et al., 2005; 

Kumar & Venkateswarlu, 2012). 

Such use of single observers, however, may produce unsatisfactory results such as 

offsets and slow estimation rate especially due to the highly nonlinear behavior in many 

systems. Therefore, the hybrid approach has emerged as one of the solutions in order to 

overcome those limitations. Hybrid observers have been developed based on three 
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combinations. The first combination is the merging between two or more conventional 

observers to improve the estimation performances. For example, extended Luenberger 

observer (ELO) is coupled with the asymptotic observer whereas sliding mode observer 

(SMO) is combined with the proportional observer (Aguilar-López & Maya-Yescas, 

2005; Goffaux, Wouwer, & Bernard, 2009; Hulhoven & Bogaerts, 2002; Hulhoven, 

Wouwer, & Bogaerts, 2006). The second combination is the merging between 

conventional observers and AI algorithms. In this combination, for instance, fuzzy logic 

is combined with the extended Kalman filter (EKF) to produce the hybrid fuzzy Kalman 

filter (FKF) (Chairez, Poznyak, & Poznyak, 2007; Porru, Aragonese, Baratti, & Alberto, 

2000; Poznyak, García, Chairez, Gómez, & Poznyak, 2007; Senthil, Janarthanan, & 

Prakash, 2006). The last combination is the merging between two or more AI algorithms 

such as when fuzzy logic is merged with ANN to establish fuzzy-neural network (fuzzy-

NN) for improving the estimation (Chitanov, Kiparissides, & Petrov, 2004; Khazraee & 

Jahanmiri, 2010; Ng & Hussain, 2004; Wilson & Zorzetto, 1997; Yarlagadda & Teck 

Khong, 2001).  

In this work, I apply the second combination type, which is combining the 

conventional observer with an AI algorithm. The conventional observer used is the sliding 

mode observer (SMO) while the AI algorithm utilized is the fuzzy logic. SMO is selected 

since it is a type of observer that provides a stable, fast and accurate estimation. Besides 

that, it does not require precise input assumptions during the design procedure and is 

suitable for complex nonlinear systems (Spurgeon, 2008). On the other hand, fuzzy logic 

is chosen since it is a simple algorithm compared to other AI elements such as genetic 

algorithm (GA) and neural network (NN) when applied in the hybrid observer design 

framework. Fuzzy logic has rules that can be easily manipulated in search of the best 

results without changing other parameters such as the membership function and 

defuzzification type in the fuzzy framework. However, when NN is applied all the 
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training steps must be repeated to find the best solutions and the whole network may also 

need to be changed. In addition, if GA is combined with SMO, the reproduction, 

crossover and mutations steps must be redefined to achieve the best generation (output) 

since the first generation is always based on random numbers or values (Hussain & 

Ramachandran, 2003).  

The motivation behind choosing this second combination is to improve the estimation 

performances shown by the single SMO in such a way that simpler formulation and 

computation methods are utilized. Furthermore, the hybrid framework must be flexible to 

allow expansion for estimating more variables, thus it can be applied in chemical process 

systems that deal with many unknown parameters such as the polymerization process 

utilized as the case study for this research. The ethylene polymerization process is used 

as a medium to observe the performances of the hybrid observer. The difficult-to-measure 

parameters including the ethylene concentration, butene concentration and melt flow 

index (MFI) in the process are estimated for this purpose. Once the observer has been 

successfully designed and applied, a controller is added for overall control of the system. 

A controller may be required to enhance the overall control of the process system and 

an appropriate controller design shall be based on the measured states. Unfortunately, not 

all states are measurable therefore observer will estimate them prior to design the 

controller. The observer will help in improving the performance of the controller by first 

estimating the unknown parameters and then convey the information to the controller 

during its application. In this research, to enhance the overall control of the ethylene 

polymerization process, the embedded integrator model predictive control (MPC) 

strategy is applied to control the temperature of the reactor. The reactor temperature is 

controlled to achieve the desired product and to maintain the quality of the polyethylene 

product.    
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MPC is a model-based control strategy, which uses a model to predict the future output 

of a process and calculates the future control signals by minimizing an objective function 

as the system output approaches a reference trajectory (Camacho & Bordons, 2004). The 

optimization penalizes deviation of the future output from the intended future trajectory 

and the control effort within a specified number of output predictions (prediction horizon) 

and control moves (control horizon). However, out of all the calculated future control 

signals, only the first set of signals are applied in the multiple-input multiple-output 

(MIMO) system.  In the next instant, the control moves for the whole control horizon are 

recalculated and the first of these optimum control moves are then applied to the system. 

This is the concept of receding horizon, which continuously repeats the calculation at 

each instant and implements only the first set of control signals on the system (Green & 

Perry, 2008). In addition, MPC is also suitable for MIMO control problems as it interacts 

between manipulated and controlled variables for finding the optimum control moves. It 

will accommodate inequality constraints on both input and output variables efficiently 

(Green & Perry, 2008).  These inequality constraints include the upper and lower limits 

to restrict the parameter to a certain range of value, which is a common practice in the 

real plant (Camacho & Bordons, 2004). 

This advanced control strategy is also capable of withstanding several industrial 

challenges especially tighter specification of the products’ quality, rising and rapid 

changes in the demand for productivity and new environmental regulations set by the 

authority. In addition, MPC is also favorable in the industry mainly to be operated by 

employees with low expertise on control. This is because of its intuitive concepts and 

easy tuning methods. MPC can also be applied for controlling varieties of processes 

ranging from that with simple dynamics to high complex systems, which include unstable, 

non-minimum phase and long-time delay elements. MPC in this work is included with an 

integrator by modifying the state space model formulation as an alternative to 
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guaranteeing offset free results from the controller during application. State space model 

is chosen as the prediction model in developing the MPC controller.  

Both the hybrid observer and controller will be first designed in the simulation 

environment. This is important to test the formulation and readiness of the designs before 

they can be verified or implemented on-line. The real data from the polymerization pilot 

plant will be used to validate the hybrid observer. Validation is a method to decide 

whether the model represents the correct conceptual description of the process system 

(Trucano, Swiler, Igusa, Oberkampf, & Pilch, 2006). Validation is often carried out as a 

preliminary step before implementing the design in the real plant. In this work, the 

experimental data obtained from a polymerization pilot plant is considered as the 

validation benchmark to validate the effectiveness of the proposed observer.    
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1.3 Problem statement 

The highly nonlinear behavior of an ethylene polymerization reactor is a factor that 

triggering the existence of many unknown parameters, which can disrupt the process and 

may lead to failures if they are not measured. Although the plant has always been 

equipped with sensors, they are expensive and are unreliable to estimate unknowns that 

appear unexpectedly due to disturbances and mismatches. Therefore, observers or 

estimators have been designed to reconstruct the state vector for estimating those 

parameters and help in reducing the usage of the high-priced hardware sensors. Those 

software-based sensors are cheaper, accurate, easy to design and retune.  

Nevertheless, unsatisfactory results can also be observed from some conventional 

observers. Therefore, an alternative way has been introduced, which is to hybrid the 

observer for enhancing the performances. Although several hybrid observers have been 

successfully applied, the formulation of the observers is complicated and frequently 

limiting to a particular parameter estimation. If more parameters are required to be 

estimated, the whole structure of the observer must be modified. Furthermore, selecting 

the type of observers to be merged can be very challenging and time-consuming. In order 

to cater for these issues, it is essential to design a hybrid observer with a simple 

formulation and is able to estimate several parameters without redesigning the structure 

of the observer.  

Furthermore, it is significant to control and maintain the product quality in a process 

by using a controller and is coupled with an observer for better control. The observer will 

estimate the parameters and deliver the information to the controller allowing it to receive 

only states at the current time for optimum performances. Choosing a controller to be 

used is often a tedious task and dependent on the type of process and controlled variables. 

Besides that, a controller tends to deviate from the setpoint producing poor results and 
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offsets. Therefore, it is important to develop a suitable controller to be combined with the 

observer and at the same time eliminating the limitation for maintaining good results by 

adding an integral factor or integrator in the formulation. 

In addition, simulation environment may not be sufficient enough to prove the 

effectiveness of the observer especially when there is a plan for on-line implementation 

in the future. Therefore, validation is necessary and will help in verification of the 

simulation programming or coding for this case.   
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1.4 Objective 

This research has five objectives as follows: 

i. To design a hybrid observer, which combines the conventional observer and 

AI element for several parameters estimation without redesigning the whole 

structure of the observer in an ethylene polymerization process. 

ii. To compare the hybrid observer with other single-based observers, the AI 

element used in the proposed observer and another hybrid observer to highlight 

its effectiveness. 

iii. To develop an embedded integrator MPC controller using state space model as 

the prediction model to control the reactor temperature for maintaining the 

product quality based on the measured states estimated from the hybrid 

observer as well as an additional advantage of the controller to guarantee free 

of offsets during application. 

iv. To compare the MPC with conventional control method, MPC without 

integrator and MPC without both observer and integrator to highlight its 

advantages. 

v. To validate the hybrid observer using the experimental data from a 

polymerization pilot plant. 
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1.5 Thesis overview 

This thesis is organized as follows: 

 Chapter 1 is the introduction section that explains the background, motivation, 

problem statements, objectives, the scope of the research and the overview of the thesis. 

 Chapter 2 is the literature review section, which emphasizes on the previous works 

related to the various types and application of observers in chemical process systems that 

initiates and motivates this research. 

Chapter 3 is the methodology section that provides the overview of the methods 

applied in designing the hybrid observer, the MPC controller and the validation testing. 

Chapter 4 is the hybrid fuzzy-sliding mode observer (fuzzy-SMO) design section, 

which shows the step by step formulation of the hybrid observer and its performances in 

estimating parameters in the ethylene polymerization reactor.   

Chapter 5 describes the design of the embedded integrator model predictive control 

(MPC) section that provides the formulation of the MPC design and its performances in 

controlling the reactor temperature in the reactor. 

Chapter 6 describes the estimator validation using experimental data section, which 

provides the validation of the hybrid observer based on the experimental data from the 

polymerization pilot plant. 

Chapter 7 includes the conclusions and future work sections that summarize the work 

and provide suggestions for the future of the research.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Chapter overview  

In this second chapter, observers applied in chemical process systems are reviewed. 

These observers are classified into six classes based on their structure and formulations. 

Next, the study of the artificial intelligence (AI) algorithm applied as observers in the 

chemical process systems is carried out. This is followed by the survey of the model 

predictive control (MPC). Summary and analysis are provided after the review to 

highlight and decide the best method to be used.       

2.2 Applications of observers in chemical process systems 

David G. Luenberger was the person responsible for introducing the observers since 

1960’s through his famous theories, the Luenberger observer while Rudolf E. Kalman 

had developed Kalman filter (KF) also in 1960 (Luenberger, 1964, 1966, 1967, 1971; 

Welch & Bishop, 1995). Many observers today, are the modification and extended 

version of the Luenberger observer or KF (Mohd Ali, Hoang, Hussain, & Dochain, 2015). 

Over the years, observer research areas have becoming popular and challenging because 

of their accuracy, good performances, cheap, easy to retune and to maintain (Gonzalez, 

Aguilar, Alvarez-Ramirez, & Barren, 1998; Lombardi, Fiaty, & Laurent, 1999). Various 

types of observers designed have been proven to accurately estimate variables in linear 

and nonlinear processes including the fixed gain observers, periodic resetting based and 

for on-line estimation usage (Aguirre & Pereira, 1998; del-Muro-Cuellar, Velasco-Villa, 

Jiménez-Ramírez, Fernández-Anaya, & Álvarez-Ramírez, 2007; Huang, Patwardhan, & 

Biegler, 2010; Pedret, Alcántara, Vilanova, & Ibeas, 2009). They have also been utilized 

either theoretically or practically through simulation and real plant testing respectively.  
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Researchers have also designed observers due to the requirement of a system to handle 

uncertainties including disturbances and mismatches. Nowadays, many different types of 

observers but with closely similar design formulations, aiming at overcoming the 

limitations of one another have been developed (Mohd Ali, Hoang, Hussain, & Dochain, 

2015). For instance, to estimate disturbances, the disturbance observer (DOB) has initially 

been introduced followed by the perturbation observer (POB) (Radke & Zhiqiang, 2006), 

extended state observer (ESO), modified disturbance observer (MDOB) (Yang, Li, Chen, 

& Li, 2011), fractional-order disturbance observer (FO-DOB) and Bode-ideal-cut-off 

observer (BICO-DOB) (Olivier, Craig, & Chen, 2012). Another example is the fault 

detection based observer where the unknown input observer (UIO) (Sotomayor & 

Odloak, 2005) has first been designed followed by the nonlinear unknown input observer 

(NUIO) (Zarei & Poshtan, 2010), quasi-unknown input observer (QUIO) (Rocha-Cózatl 

& Wouwer, 2011) and unknown input fault detection observer (UIFDO) (Zarei & 

Poshtan, 2010). Besides UIO, the proportional observer has also applied for estimating 

error and faults with its extended version such as the proportional-integral observer (Nagy 

Kiss, Marx, Mourot, Schutz, & Ragot, 2011).  

In chemical process systems, Alvarez-Ramirez has constructed a Luenberger observer 

for estimating concentration in CSTR and applied numerical simulation for monitoring 

the performance. It was found to be robust against modeling deviation and bounded to 

additive noise (Alvarez-Ramírez, 1995). Luenberger observer has been utilized for 

reconstructing concentration and temperature in an unstable tubular reactor resulting in a 

stable convergence factor (Alonso, Kevrekidis, Banga, & Frouzakis, 2004). Besides that, 

extended Luenberger observer (ELO) has been applied in estimating crystal mass in a 

sugar crystallization unit and has shown good estimation even without perfect initial 

condition (Damour, Benne, Boillereaux, Grondin-Perez, & Chabriat, 2010). Whereas in 

a fed-batch crystallizer, ELO has been used to estimate solutes concentration with high 
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accuracy that is robust against modeling error (Mesbah, Huesman, Kramer, & Van den 

Hof, 2011). Another approach involving ELO was studied by Quintero-Marmol et al. for 

controlling multi-component batch distillation column and predicting compositions in 

reboiler, trays and reflux drum using measured feed, tray pressure and temperature based 

on only one gain value (Quintero-Marmol, Luyben, & Georgakis, 1991). In addition, ELO 

has been applied to estimate polymer concentration, mass transfer coefficient and specific 

surface in a polymerization reactor with satisfactory convergence rate (Appelhaus & 

Engell, 1996). Furthermore, Appelhaus and Ensell have also developed EKF in similar 

work to improve the rate of convergence in the process (Appelhaus & Engell, 1996).  

Scali et al. has utilized the extended Kalman filter (EKF) for measured and unmeasured 

disturbances estimation in a polymerization reactor (Scali, Morretta, & Semino, 1997) 

while in a freeze-drying (lyophilisation) process, EKF has been applied in predicting the 

dynamic temperature interface within the primary drying stage (Velardi, Hammouri, & 

Barresi, 2009). Apart from that, EKF has been used in an isothermal batch reactor 

(Terwiesch & Agarwal, 1995), a reactive distillation column (Olanrewaju & Al-Arfaj, 

2006) and a fed-batch crystallizer (Mesbah et al., 2011) to estimate reactant concentration, 

liquid compositions and solutes concentration respectively. Furthermore, the unscented 

Kalman filter (UKF) has been applied in a fed-batch crystallizer to accurately estimate 

the solutes concentration (Mesbah, Huesman, Kramer & Van den Hof, 2011) and in a 

semi-batch reactor for particle size distribution estimation (Mangold et al., 2009). The 

ensemble Kalman filter (EnKF) has also been employed to estimate similar solutes 

concentration in the fed-batch crystallizer as a comparison to the UKF (Mesbah, 

Huesman, Kramer & Van den Hof, 2011).  

On the other hand, the sliding mode observers have been applied in both papers by 

Pico et al. and De Battista et al. in a fed-batch bioreactor and a fermentation process 
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respectively (De Battista, Picó, Garelli, & Vignoni, 2011; Picó, De Battista, & Garelli, 

2009). Relay-based sliding mode observer (Hajatipour & Farrokhi, 2010) has been 

applied in a bioreactor to estimate uncertainties of the process where the estimator has 

guaranteed stability and good convergence performances. Besides that, Sheibat-Othman 

et al. have used the adaptive state observer (ASO) for estimating radical concentration in 

a polymerization process (Sheibat-Othman, Peycelon, Othman, Suau, & Févotte, 2008). 

Another application is in the debutanizer studied by Amiya et al. for estimating vapor 

flow rate, liquid flow rate and distribution coefficient in reboiler (Jana, Samanta, & 

Ganguly, 2009).  Jana et al. have designed an ASO, which precisely estimated the plant 

parameters under mismatch condition and is suitable for on-line implementation (Jana et 

al., 2009). Apart from that, the adaptive high-gain observer was used in an aeration tank 

in a waste treatment plant for approximating uncertainties (Lafont, Busvelle, & Gauthier, 

2011).  

In addition, Aamo et al. have developed a reduced order observer for state estimation 

in a gas-lift well to estimate the downhole pressure where the estimated pressure is able 

to be stabilized (Aamo, Eikrem, Siahaan, & Foss, 2005). The approach has been 

continued later by Salehi and Shahrokhi, which developed a reduced-order observer to 

control the temperature in a CSTR by first estimated the reactor concentration (Salehi & 

Shahrokhi, 2008). Further used of the reduced-order observer is to estimate the substrate 

concentration in a bioreactor designed by Kazantzis et al. (Kazantzis, Huynh, & Wright, 

2005). After that, Jana has used this similar observer for top tray compositions estimation 

(Jana, 2010). Whereas an interval observer has been used to estimate reactant 

concentration in both the plug flow reactor and the mineral separator unit (Aguilar-

Garnica, García-Sandoval, & González-Figueredo, 2011; Meseguer, Puig, Escobet, & 

Saludes, 2010). 
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Unknown disturbances can disrupt the process systems and lead to failure, therefore 

disturbance observers such as MDOB, FO-DOB and BICO-DOB have been developed 

specifically to estimate those disturbances (Olivier et al., 2012; J. Yang et al., 2011). DOB 

has been used to estimate disturbance in a solid feeding conveyor in a grinding mill 

resulting in a smooth estimation (Chen, Yang, Li, & Li, 2009) while Yang et al. have 

applied MDOB for disturbance estimation in a jacketed stirred tank heater (Yang et al., 

2011). Besides that, in a cyclone also in a grinding mill, the observer is used together with 

the Q-filter that offers an additional tuning freedom in optimizing the performance even 

in the presence of disturbances (Olivier et al., 2012). Olivier et al. have also developed 

the FO-DOB and BICO-DOB to approximate those disturbances (Olivier et al., 2012).  

Researchers have then developed the fault detection observers to estimate fault and 

unknown parameters for diagnosing the fault in the process units. In a CSTR, the modified 

proportional observer has been introduced to verify the state variables and satisfactory 

performance has been observed in both the simple and complex systems during 

application (Aguilar-López & Martinez-Guerra, 2005). On the other hand, for fault 

diagnosis in the polymerization reactor, an unknown input observer (UIO) has been used 

to estimate states (Sotomayor & Odloak, 2005) while Zarei and Poshtan have developed 

the UIO to detect sensor’s fault in a CSTR (Zarei & Poshtan, 2010). Besides that, Zarei 

and Poshtan have also highlighted few types of fault detection observers including robust 

observer, extended unknown input observer (EUIO) and nonlinear unknown input 

observer (NUIO). Another extended version of UIO has also been introduced namely the 

quasi-unknown input observer (QUIO) for estimating concentration, flow rates and light 

intensity in phytoplantonic cultures with satisfactory results achieved in both simulation 

and experimental testing (Rocha-Cózatl & Wouwer, 2011). The robust observer has been 

applied to estimate the average molecular weight and mass fraction in a CSTR and 
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distillation column respectively for fault analyzing in the process systems (Zambare, 

Soroush, & Ogunnaike, 2003). 

Furthermore, researchers have introduced the hybrid observer to overcome the 

limitations of the single-based observers. Hybrid observer, looking at its name, is a 

combination of more than one observer to obtain better estimating performances, for 

instance, ELO is merged with an asymptotic observer (AO) (Hulhoven, Wouwer, & 

Bogaerts, 2006). The type of observers to be combined is based on their advantages as 

given in Table 2.1. The hybrid observer has been applied in approximating biomass 

concentration in a bioreactor according to the work carried out by Hullhoven et al. 

(Hulhoven et al., 2006) while Aguilar-Lopez et al. have applied a continuous-discrete 

observer also for biomass concentration estimation in a batch reactor.  (Aguilar-López & 

Martínez-Guerra, 2007). A continuous-discrete observer has also been applied by Elicabe 

et al. for reaction rate estimation in a semi-continuous reactor (Elicabe, Ozdeger, 

Georgakis, & Cordeiro, 1995).  

Moreover, Ricardo et al. have estimated the monomer concentration, molecular weight 

of the polymer and the temperature in a polymerization reactor using a proportional-type 

sliding mode observer (Aguilar-López & Maya-Yescas, 2005). Whereas, a continuous-

discrete interval observer has been found to be good at managing uncertainties in green 

algae cultures according to the work done by Goffaux et al. (Goffaux, Wouwer, & 

Bernard, 2009). A continuous-discrete observer has also been combined with EKF for 

biomass and substrate concentration in a bioreactor while a proportional integral observer 

was applied to estimate uncertainties in waste water treatment plant (Bogaerts & Wouwer, 

2004; Kiss et al., 2011).  

Another type of hybrid observer is the combination of the conventional observers with 

the AI elements. In their work, Prakash and Senthil have designed the fuzzy Kalman filter 
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(FKF) and state fuzzy Kalman filter (ASFKF) for estimating the temperature and 

concentration in a CSTR (Prakash & Senthil, 2008). It is a combination of KF with the 

‘IF-THEN’ rules of the fuzzy logic. First, the FKF was designed, but since it had shown 

unfair results during the presence of disturbances in the input and output, ASFKF 

mechanism has been established to handle mismatches. Two more examples are the 

differential neural network observer (DNNO), which has been applied in a contaminated 

model soil for estimating contaminant and ozone concentration (Poznyak, García, 

Chairez, Gómez, & Poznyak, 2007) and the combination between EKF and neural model 

to approximate the outlet reactor concentration in a heterogeneous gas-solid reactor 

(Porru, Aragonese, Baratti, & Alberto, 2000).  
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Table 2.1: Advantages of observer for hybrid purposes 

Observer Advantages of observers for hybrid purposes 

EKF Fast convergence time 

ELO Good convergence time but need accurate model kinetics 

Asymptotic observer  Do not need kinetic data but dynamics depends on 

operating condition 

SMO Fast convergence and stable, do not need unknown input 

assumptions 

Interval observer Robust against disturbances 

Exponential observer Do not need kinetic data but dynamics do not depend on 

operating conditions 

Proportional observer Good for fault detection 

Backstepping observer Guaranteed convergence 

Geometry observer Can overcome ill-condition 

Disturbance observer Good for predicting disturbances 

Moving horizon Robust against model deviation 

Specific observer Robust against modelling error 

Generic observer Robust against modelling error 

High-gain observer Less oscillations 

Adaptive state observer  Good convergence factor 

Low-order observer For high dimensional systems 

Reduced-order observer For certain parameters estimation only 

Integral observer Easy implementation and robust against uncertainties 

Continuous observer Mainly for continuous process 

Discrete observer Mainly for discrete-time process 
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All the observers that have been applied in chemical process systems above can be 

classified into six classes according to their structure and formulations as tabulated in 

Table 2.2. These classes consist of the Luenberger-based observers, the finite-

dimensional system observers, the Bayesian estimators, the disturbances and fault 

detection observers, the artificial intelligence-based observers and the hybrid observers 

(Mohd Ali, Hoang, Hussain, & Dochain, 2015). 

The Luenberger-based observers class is the first category. It combines all observers 

which designed are based on the Luenberger observer methodology (Alonso et al., 2004; 

Dochain, 2003; Fissore et al., 2007; Tronci et al., 2005; Vries et al., 2010). The extended 

Luenberger observer (ELO), adaptive state observer (ASO), sliding mode observer 

(SMO) and geometric observers are examples of observers in this class. This type of 

observer is relatively suitable for linear systems with less complex and simpler 

computation (Bejarano et al., 2007).  

The finite-dimensional system observers class is the second category that has been 

designed for chemical process systems whose dynamics are described by the ordinary 

differential equations (ODEs) such as the reduced-order, low-order, high-gain and 

exponential observers (Bitzer and Zeitz, 2002). Their implementations are easy and 

straightforward, thus suit systems that are less kinetic information. Nevertheless, the 

accuracy of the convergence rate is often uncertain, for example, the convergence rate of 

the asymptotic and exponential observers can only be obtained if the operating conditions 

are bounded by the dilution rate (Dochain et al., 1992; Dochain, 2000; Sadok and Gouze, 

2001; Hoang et al., 2013).  

On the other hand, the third class is the Bayesian estimators, which is based on the 

probability distribution estimation of the state variables using available data from the 

system (Chen et al., 2004). Here, all variables are assumed as stochastic in nature, thus 
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the distribution of the state variables is achievable through the measured variables (Mohd 

Ali, Hoang, Hussain, & Dochain, 2015). The examples of the Bayesian estimators are the 

particle filter (PF), extended Kalman filter (EKF) and moving horizon estimator (MHE). 

Since they are based on the probability distribution, they are consistent and versatile 

estimators that are highly recommended for fast estimation (Abdel-Jabbar et al., 2005; 

Fan and Alpay, 2004; Patwardhan and Shah, 2005).  

The fourth class is the disturbance and fault detection observers. Both observers are 

combined in the same class since they are frequently applied to estimate irregularities in 

the system, either through disturbances or faults (Olivier et al., 2012). Fault detection 

observers have also been used for estimating parameters prior to diagnosing fault in 

chemical process systems. The examples of the disturbance and fault detection observers 

are the disturbance observer (DOB), the modified disturbance observer (MDOB) and the 

nonlinear unknown input observer (NUIO) (Mohd Ali, Hoang, Hussain, & Dochain, 

2015). These observers focus only on estimating variables related to disturbances and 

fault detection (Chen et al., 2009; Rocha-Cozatl and Wouwer, 2011; Sotomayor and 

Odloak, 2005; Yang et al., 2011). They are mostly suitable to estimate disturbances and 

faults to provide an early warning before disruptions occur to the systems (Sotomayor 

and Odloak, 2005; Zarei and Poshtan, 2010). 

 Next class is the artificial intelligence (AI)-based observers, which consists of AI 

algorithms such as expert systems (ES), fuzzy logic, genetic algorithm (GA) and artificial 

neural network (ANN). However, here it focuses only on the AI-based observers that 

coupled with the conventional observers such as fuzzy Kalman filter (FKF) and the EKF-

neural network observers (Porru et al., 2000; Prakash and Senthil, 2008). These AI-based 

observers will help to overcome the limitations of the single-based observers and are 

appropriate for systems with incomplete model structure and lack of information. 
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However, the development of the formulation of these AI-based observers may be 

difficult and time-consuming compared to the other type of hybrid observers depending 

on the type of the systems (Senthil et al., 2006). Furthermore, the AI elements must be 

adapted before being implemented on-line (Himmelblau, 2008; Lashkarbolooki et al., 

2012; Rivera et al., 2010). 

 The final or the sixth class is the hybrid observers, which are combinations of two 

or more observers for improving the estimation performances. For example, the 

combination of the asymptotic observer (AO) and the extended Luenberger observer 

(ELO) (Hulhoven et al., 2006). AO can estimate parameters without needing the kinetics 

data while ELO provides good convergence factors. Therefore, their combination will 

result in an improved observer which replicates both features. Hybrid observers are 

capable of overcoming the limitations of the single observer, even though finding the 

appropriate combination can be tedious and time-consuming (Lopez and Yescas, 2005; 

Bogaerts and Wouwer, 2004; Goffaux et al., 2009). This class of observer is usually 

suitable when the single-based observer has provided less accuracy in the estimation, for 

instance, to compensate offsets resulting from the use of the single observer for parameter 

estimation (Hulhoven et al., 2006). The applications of these observers in chemical 

process systems under their classes are listed in Table 2.3 while their comparisons in 

terms of attributes, advantages and limitations are tabulated in Table 2.4.  
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Table 2.2: Observers categorized under different classes (Mohd Ali, Hoang et al., 2015) 

C
la

ss
 

Luenberger-based 
observers 

Finite-
dimensional system 

observers 

Bayesian 
Estimators 

Disturbance and 
Fault Detection 

observers 

Artificial 
Intelligence- based 

Observers 
Hybrid Observers 

Sp
ec

ifi
c 

O
bs

er
ve

r 

1. Extended Luenberger 
observer (ELO) 

2. Sliding Mode observer 
(SMO) 

3. Adaptive State observer 
(ASO) 

4. Zeitz nonlinear 
observer 

5. Discrete-time nonlinear 
recursive observer 
(DNRO) 

6. Geometric observer 
7. Backstepping observer 

1. Reduced-Order 
observer 

2. Low-Order 
observer 

3. High gain observer 
4. Asymptotic 

observer 
5. Exponential 

observer 
6. Integral observer 
7. Interval observer 

1. Particle Filter (PF) 
2. Extended Kalman 

Filter (EKF) 
3. Unscented Kalman 

Filter (UKF) 
4. Ensemble Kalman 

Filter (EnKF) 
5. Steady state 

Kalman Filter 
(SSKF) 

6. Adaptive Fading 
Kalman Filtering 
(AFKF) 

7. Moving horizon 
estimator (MHE) 

8. Generic observer 
9. Specific observer 

1. Disturbance observer 
2. Modified 

Disturbance observer 
(MDOB) 

3. Fractional- Order 
Disturbance observer 

4. Bode-Ideal Cut-off 
observer 

5. Unknown input 
observer (UIO) 

6. Nonlinear unknown 
input observer 

7. Extended unknown 
input observer 

8. Modified 
proportional 
observer 

1. Fuzzy Kalman 
Filter 

2. Augmented Fuzzy 
Kalman Filter 

3. Differential Neural 
Network observer 

4. EKF with Neural 
Network model 

1. Extended 
Luenberger-
Asymptotic observer 

2. Proportional-Integral 
observer 

3. Proportional-SMO 
4. Continuous-Discrete 

observer 
5. Continuous-

Discrete- Interval 
observer 

6. Continuous-
Discrete-EKF 

7. High-gain-
continuous-discrete 
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Table 2.3: Application of observers in chemical process systems under different classes (Mohd Ali, Hoang et al., 2015) 

Class 1: Luenberger-based Observers 
Observer Objective /Estimate(s) System Positive Highlight(s) Ref 

ELO Crystal mass Crystallization unit Good estimation without perfect 
initial condition 

Damour et al. 
(2010) 

ELO Solutes concentration Fed-batch crystallizer Robust against model deviation Mesbah et al. 
(2011) 

ELO Process kinetics, influent 
concentrations 

Fixed bed reactor Easy to implement, simple structures Mendez-Acosta et 
al. (2008) 

SMO Substrate concentration, specific 
growth rate 

Fermentation process Smooth estimates Pico et al. (2009) 

SMO Specific growth rate Fed-batch bioreactor Accurate and error free estimation  Battista et al. 
(2011) 

SMO Substrate concentration Bioreactor Proven stability factor Gonzalez et al. 
(2001) 

SMO  Biomass and substrate concentration Bioreactor Proven stability factor Hajatipour & 
Farrokhi (2010) 

DNRO Reactor parameters CSTR Stable estimator Huang et al. (2010) 
ASO Growth rate, kinetic coefficient Bioreactor Guaranteed convergence factor Zhang & Guay 

(2002) 
ASO Liquid, vapor flow rate, reboiler 

coefficient  
Debutanizer Precise estimates under mismatch 

condition 
Jana et al. (2009) 

ASO Radical concentration Polymerization 
process 

Estimates without information of 
initiator  

Othman et al. 
(2008) 

ASO Distribution coefficients Distillation column Guaranteed convergence factor Jana et al. (2006) 
ASO Compositions, partially known 

parameters 
Batch distillation 
column 

Good convergence factor Murlidhar & 
Jana (2007) 

Backstepping  Concentrate and tailing grade Solid-solid 
separation unit 

Guaranteed convergence, zero 
estimation error 

Benaskeur & 
Desbiens (2002) 
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Class 1: Luenberger-based Observers (continued) 
Zeitz nonlinear 
observer 

Nitrogen oxide (NOx) inlet 
concentration, outlet reactant 
conversion 

Loop reactor  Fast, reliable estimates Fissore et al. 
(2007) 

Geometric  Product compositions Distillation column  Overcomes ill-conditioning of the    
 observability matrix 

Tronci et al. (2005) 

Geometric Compositions, solid mass fraction, 
production rate 

Copolymerization 
reactor 

 Accurate estimation  Lopez & Alvarez 
(2004) 

     
Class 2: Distributed Parameter System Observer 

Observer Objective /Estimate(s) System Positive Highlight(s) Ref 
Reduced-order Down hole pressure Gas-lift well Stable estimates Aamo et al. (2005) 
Reduced-order Reactor concentration  CSTR Good concentration estimates Salehi & 

Shahrokhi (2008) 
Reduced-order Substrate concentration  Bioreactor  Robust estimation Kazantzis et al. 

(2005) 
Low-order Steady state profiles 30-tray distillation 

column 
Robust against noise Singh and Juergen 

Hahn (2005b) 
High-gain Reaction heat CSTR Robust against noise and disturbances Aguilar et al. 

(2002) 
High-gain Reactor concentration and temperature CSTR Precise estimates Biagiola & 

Figueroa (2004b) 
Exponential  Reactor concentration Tubular reactor* Good estimation without process 

kinetics 
Dochain (2000) 

Exponential  Top tray compositions Batch distillation 
column 

Good convergence properties Jana (2010) 

Exponential  Microorganisms concentration Bioreactor Guaranteed convergence  Assoudi et al. 
(2002) 

AO Concentrations, enthalpy CSTR Good estimation, not sensitive to 
noise 

Dochain et al. 
(2009) 
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Class 2: Distributed Parameter System Observer (continued) 
AO Reactor concentration Tubular reactor* Good estimation without process 

kinetics 
Dochain (2000) 

AO Growth rate Activated sludge 
process 

Precise estimation without process 
kinetics 

Sadok & Gouze 
(2001) 

Interval  Organic concentration, growth rates Activated sludge 
process 

Converge towards bounded interval Sadok & Gouze 
(2001) 

Interval  Reactant concentration Plug flow reactor* Robust estimation Garnica et al. 
(2011) 

Interval  Residual parameters Separator (grinding 
process) 

Good convergence factor Meseguer et al. 
(2010) 

Integral  Heat of reaction CSTR Robust estimation Lopez (2003) 
 
Class 3: Bayesian Estimators 

Observer Objective /Estimate(s) System Positive Highlight(s) Ref 
SSKF Time-delay Stirred tank heater Consistent estimates even with noise (Patwardhan & 

Shah, 2005) 
SSKF Product compositions  Batch distillation 

column 
Stable estimation  (Venkateswarlu & 

Avantika, 2001) 
EKF Interface temperature  Freeze-drying 

process 
Good estimation without perfect 
initial condition 

Velardi et al. 
(2009) 

EKF Component’s concentration Batch distillation 
column 

Simple observer design yet accurate 
estimation  

Yildiz et al. (2005) 

EKF Product compositions Batch distillation 
column 

Precise estimate even with noise (Venkateswarlu 
and Avantika, 
2001) 

EKF Outlet reactor concentration CSTR Accurate concentration estimation (Himmelblau, 
2008) 
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Class 3: Bayesian Estimators (continued) 
EKF Liquid compositions Reactive distillation 

column 
Robust against modeling error (Olanrewaju & Al-

Arfaj, 2006) 
EKF Top tray compositions and flow rates  Distillation column Guaranteed convergence factor Jana et al. (2006) 
EKF Solutes concentration Fed-batch 

crystallizer 
Robust against model deviation Mesbah et al. 

(2011) 
 

UKF Solutes concentration Fed-batch 
crystallizer 

Robust against model deviation Mesbah et al. 
(2011) 

UKF Particle size distribution Semi-batch reactor Good estimation without accurate 
model 

Mangold et al. 
(2009) 

UKF Biomass concentration Fermentor Effective estimation despite using the 
simplified mechanistic model  

Wang et al. (2010) 

UKF Uncertain parameters Hybrid tank system Effective control and good estimation Prakash et al. 
(2010) 

EnKF Solute concentrations Fed-batch 
crystallizer 

Robust against model deviation Mesbah et al. 
(2011) 

EnKF Unmeasured disturbances Hybrid tank system Effective control and good estimation Prakash et al. 
(2010) 

AFKF Product compositions Batch distillation 
column 

Precise estimate despite noisy 
conditions 

(Venkateswarlu & 
Avantika, 2001) 

AFKF Temperature Heat exchanger Good estimation without coefficient 
adjustment 

Bagui et al. (2004) 

PF Yield parameter Fermentor Good estimation based on 
maximization algorithm theory 

Chitralekha et al. 
(2010) 

PF Conditional density CSTR Few assumptions required for 
estimation 

Negrete et al. 
(2011) 

PF Conditional density Batch Reactor Few assumptions required for 
estimation 

Negrete et al. 
(2011) 
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Class 3: Bayesian Estimators (continued) 
MHE Solutes concentration  Fed-batch 

crystallizer 
Robust against model deviation Mesbah et al. 

(2011) 
MHE Molecular weight distribution Polymerization 

reactor 
Smooth estimates (Negrete & Biegler, 

2012) 
MHE Tray efficiencies Binary distillation 

column 
Able to handle constraint during 
estimation 

(Negrete & Biegler, 
2012) 

MHE Biomass concentration Animal cell cultures Accurate estimates Raissi et al. (2005) 
Generic observer Carbon and nitrogen concentrations Sequential batch 

reactor 
Robust against modeling error Boaventura et al. 

(2001) 
Specific observer Carbon and nitrogen concentrations Sequential batch 

reactor 
Robust against modeling error Boaventura et al. 

(2001) 
     

Class 4: Disturbances and Fault Detection Observers 
Observer Objective /Estimate(s) System Positive Highlight(s) Ref 

DOB Disturbances related to time delay  Conveyor (grinding 
process) 

Overcome the effect of internal 
disturbances 

Chen et al. (2009) 

FO-DOB Disturbances due to mismatch Cyclone (grinding 
process) 

Optimize the estimation even with 
huge disturbances 

Olivier et al. (2012) 

BICO-DOB Disturbances due to mismatch Cyclone (grinding 
process) 

Optimize the estimation even with 
huge disturbances 

Olivier et al. (2012) 

MDOB Closed-loop system disturbances Jacketed stirred tank 
heater 

Smooth disturbances estimate Yang et al. (2011) 

Modified 
proportional  

Uncertainties in reactive concentration, 
reactor and jacket temperature 

CSTR Robust against uncertainties (Lopez & Guerra, 
2005) 

UIO Fault in actuator and sensor Polymerization 
reactor 

Accurate estimation (Sotomayor & 
Odloak, 2005) 

UIO Fault in input sensor CSTR Accurately estimating fault even in 
the presence of disturbances 

(Zarei & Poshtan, 
2010) 
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Class 4: Disturbances and Fault Detection Observers (continued) 
QUIO Faults in concentration, flow rates, light 

intensity 
Bioreactor Satisfactory estimates (Cozatl & Wouwer, 

2011) 
 

NUIO Fault in residuals CSTR Acting as alternative fault alarm (Zarei & Poshtan, 
2010) 

EUIO Fault in residuals CSTR Acting as alternative fault alarm (Zarei & Poshtan, 
2010) 

 
Class 5: AI-based Observers 

Observer Objective /Estimate(s) System Positive Highlight(s) Ref 
FKF Reactor temperature and concentration CSTR Unbiased estimation (Prakash & 

Senthil, 2008) 
ASFKF Reactor temperature and concentration CSTR Satisfactory unbiased estimates (Prakash & 

Senthil, 2008) 
     
DNNO Anthracene dynamics decomposition 

and contaminant concentration 
Microreactor Good agreement with the actual 

value  
Poznyak et al. 
(2007) 

DNNO Formic acid, fumaric acid, maleic 
acid, oxalic acid 

Wastewater treatment 
plant 

Guaranteed small estimation error Chairez et al. 
(2007) 

EKF-NN Outlet reactor concentration Heterogeneous reactor Further reduction in estimation error 
compared to EKF 

Porru et al. (2000) 
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Class 6: Hybrid Observers 
Observer Objective /Estimate(s) System Positive Highlight(s) Ref 

ELO-AO Biomass concentration Bioreactor  Stable rate of convergence Hulhoven et al. 
(2006) 

Continuous-discrete Biomass concentration Batch reactor Robust against modeling error (Lopez & 
Guerra, 2007) 

Continuous-discrete-
interval 

Process kinetics  Bioreactor Avoids growth of interval sizes during 
estimation 

Goffaux et al. 
(2009) 

Continuous-discrete-
EKF 

Biomass, substrate concentration Bioreactor  Accurate estimates, reduced error  (Bogaerts & 
Wouwer, 2004) 

Proportional-SMO Polymer molecular weight, monomer 
concentration, reactor temperature 

Polymerization 
reactor 

Robust against noise and uncertain 
parameters 

(Lopez & 
Yescas, 2005) 

Proportional-integral Unknown inputs  Wastewater treatment 
plant 

Stable estimation rate Kiss et al. (2011) 

High-gain-
continuous-discrete 

Rate coefficient Polymerization 
process 

Estimates without information of 
initiator 

Othman et al. 
(2008) 
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Table 2.4: Observer’s evaluation based on class (Mohd Ali, Hoang et al., 2015) 

No. Class of 
Observers 

Example of Observer Equation Attributes Advantages Limitations Guidelines for 
practicing 
engineers 

1 Luenberger-
based 
observers 

For sliding mode observer: 
! = #! + %& + '()*+(- − /!) 

Extension of 
classical 
Luenberger 
observer 

Simple 
computational 
methods 

Design is always 
based on the perfect 
knowledge of system 
parameters  

For less complex 
linear systems, this 
type of observer is 
sufficient for 
crucial parameter 
estimation  

2 Finite-
dimensional 
system 
observers 

For exponential observer: 
12
13 = 42 + 5!6 − '76 + 78 

Knowledge of 
process system 
kinetics is not 
necessary 

Easy implementation 
and simple 
formulation 

Convergence factor 
depends strongly on 
the operating 
condition 

Suitable for 
systems with less 
kinetics 
information 

3 Bayesian 
estimators 

For Extended Kalman Filter: 
9: :;6 = 4:;69:;6 :;64:;6< + => 

Based on 
probability 
distribution and 
mathematical 
inference of the 
system 

Fast estimation based 
on prediction-
correction method 
and versatile 
estimators 

The complexity of 
their computational 
method is sometimes 
infeasible for high 
dimensional systems 

For fast estimation 
results based on 
probability theory, 
Bayesian 
estimators may be 
applied 
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Table 2.4 (continued) 
4 Disturbance 

and fault 
detection 
observers 

For disturbance estimation: 
? ( = ?6 ( + ?8 ( + ⋯+ ?A(() 
 

Focus on 
estimating 
disturbances and 
detecting faults 
within the system 

Good at estimating 
disturbances and 
predicting faults 
before they can affect 
the unit operations of 
the plant 

May ignore other 
uncertainties during 
the estimation process 

If the objective is 
to estimate 
disturbances and 
parameters to 
predict faults, then 
these types of 
observers are the 
most appropriate 

5 AI-based 
observers 

According to AI-elements, example 
using fuzzy logic where the IF-THEN 
rule is: 
 
B4	D	)(	+D*E3)FD	(GEHH	#I?	∆D	)(	KDLM	  
NOPI	!QRSTUVSQW = 	!VXSYVZ 
 

Combination of 
observers with AI 
elements 

Overcome limitations 
of single observer 
and suitable for 
systems with 
incomplete model 
structure 

May be difficult and 
time consuming 
 
For online 
implementation, the 
AI elements must first 
be adapted to the 
system 

For highly 
nonlinear systems 
with an incomplete 
or unknown model  

6 Hybrid 
observers 

For combination of extended 
Luenberger and asymptotic observer: 
  

1[(3)
13 = ? 3 [ 3 + #6&6 3

+ #8&8 3  

Combination of 
two or more 
observers 

Overcome the 
limitations of a single 
observer 

Choosing appropriate 
combination may be 
tedious  

This is suitable for 
systems where a 
single type of 
observer is not 
accurate enough 
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2.3 Artificial intelligence applied as estimator in chemical process systems  

Artificial intelligence (AI), which has been established since 1934 have been utilized 

as estimators apart from other conventional observers explained in section 2.2. They are 

also addressed as virtual sensors, which involve several algorithms such as expert system 

(ES), fuzzy logic, genetic algorithm (GA) and artificial neural network (ANN). Those 

algorithms have been successfully used as estimators or observers in chemical process 

systems.  

ANN has been applied as an estimator in a distillation column for predicting the 

distillate composition based on the research by Singh et al., where it is able to handle the 

multi-components in the system to provide accurate estimation (Singh, Gupta, & Gupta, 

2005). Besides that, Gonzalez et al. have applied ANN for estimating the mole fractions 

of the distillate product while Canete et al. have estimated the product composition in 

binary distillation columns (de Canete, del Saz-Orozco, Gonzalez, & Garcia-Moral, 2012; 

González, Aguilar, Alvarez-Ramı́rez, Fernández, & Barrón, 1999). Furthermore, Bahar 

and Ozgen have predicted the product composition in a reactive distillation column using 

ANN with satisfactory results (Bahar & Özgen, 2010). Ana Frattini et al. have also 

applied it for estimating the reflux ratio, top and bottom compositions of a batch 

distillation column (Frattini, Fileti, Cruz, & Pereira, 2000). ANN has also been utilized 

for product composition estimation in batch and packed distillation columns (Sharma, 

Singh, Singhal, & Ghosh, 2004; Zamprogna, Barolo, & Seborg, 2001). Another study has 

been performed by Fortuna et al. that used ANN to estimate gasoline and butane 

concentrations in a debutanizer (Fortuna, Graziani, & Xibilia, 2005). Besides that, ANN 

has also been used for predicting density, viscosity and refractive index of a binary 

distillation system that results in less than 1% of errors (Mehlman, Wentzell, & McGuffin, 

1998). 

Univ
ers

ity
 of

 M
ala

ya



33 
 

33 

ANN has acted as estimators in several reactors such as bioreactor, batch reactor, 

continuous stirred tank reactor (CSTR) and polymerization reactor. Himmelblau has used 

ANN to predict the polymer product in a polymerization reactor and the outlet 

concentration of CSTR (Himmelblau, 2008) while Chen and Peng have utilized ANN for 

estimating the heat transfer coefficients and the heat of reaction in a CSTR (Chen & Peng, 

1999). Furthermore, in bioreactors ANN has estimated several parameters including 

biomass concentration (Acuña, Latrille, Béal, & Corrieu, 1998), cellular concentration 

(Silva, Pinotti, Cruz, Giordano, & Giordano, 2008), kinetics parameters (de Assis & 

Filho, 2000), oxygen uptake rate and the evolution rate of carbon dioxide (Komives & 

Parker, 2003). Other applications of ANN as estimators can be found in stirred tank 

reactors (STR), fed-batch reactor and stirred cell reactor for estimating the mass transfer 

coefficient, the ethanol concentrations and the reaction rates accordingly (Gadkar, Mehra, 

& Gomes, 2005; Garcı́a-Ochoa & Castro, 2001; Molga & Cherbański, 2003). On the other 

hand, in polymerization reactors ANN has been used to estimate several parameters 

including the chain length, reactive impurities, monomer concentration, fouling, heat of 

reactions, melt index and jacket temperature (Aziz, Hussain, & Mujtaba, 2000; Barton & 

Himmelblau, 1997; Horn, 2001; Kuroda & Kim, 2002; Yang, Chung, & Brooks, 1999; 

Zhang, 1999; Zhang, Morris, Martin, & Kiparissides, 1999; Zhang, Morris, Martin, & 

Kiparissides, 1998).  

Besides reactors, ANN has also been applied to estimate ethanol concentration, 

chemical potency and sugar concentration. Rivera et al. have predicted the ethanol 

concentration while Dai et al. have estimated both the chemical potency and sugar 

concentration. (Dai, Wang, Ding, & Sun, 2006; Rivera, Atala, Filho, Carvalho da Costa, 

& Filho, 2010). Furthermore, Jin et al. have employed ANN for estimating glucose, 

galactose and carbon source concentrations while Yet-Pole et al. have used ANN to 

estimate optical density and sugar concentration, all of which in the fermentation 

Univ
ers

ity
 of

 M
ala

ya



34 
 

34 

processes (Jin, Ye, Shimizu, & Nikawa, 1996; Yet-Pole, Wen-Tengu, & Yung-Chuan, 

1996). Further studies are performed to predict biomass concentration and to estimate 

process kinetics in fermenters (James, Legge, & Budman, 2002; Valdez-Castro, Baruch, 

& Barrera-Cortes, 2003). 

Other parameters that has been estimated by ANN are the pressure drop in rotating fed 

bed, activated carbon cloth (ACC) in an absorber, the fluid particle temperature and Biot 

number (Bi) in fluid-particle systems, the conversion rate of iron oxide and the thermal 

conductivity in gas chromatography (Faur-Brasquet & Le Cloirec, 2003; Jalali-Heravi & 

Fatemi, 2000; Lashkarbolooki, Vaferi, & Mowla, 2012; Sablani, 2001; Wiltowski et al., 

2005). On the other hand, heat transfer rate and heat flux are also predicted using ANN 

in heat exchangers (Islamoglu, 2003; Su et al., 2002). In addition, the particle size in a 

cyclone, coal combustion rate and hydrogen content have been estimated using ANN in 

combustion processes (Du, del Villar, & Thibault, 1997; Linko, Zhu, & Linko, 1999; Yao, 

Vuthaluru, Tadé, & Djukanovic, 2005; Zhu, Jones, Williams, & Thomas, 1999). ANN 

has also estimated the slurry velocity in a pipeline and dynamic process compositions in 

a chemical plant with satisfactory results (Lahiri & Ghanta, 2008; Yeh, Huang, & Huang, 

2003). Whereas in an evaporator and membrane separator, ANN has been applied as 

estimator to estimate the conductivity in a sugar cane factory and to predict permeate and 

residue hydrogen concentrations respectively (Devogelaere, Rijckaert, Leon, & Lemus, 

2002; Lei Wang, Shao, Wang, & Wu, 2006).  

Several structures of ANN have been considered for estimating those parameters in 

chemical process systems such as the feed forward neural networks (FFN), internally 

recurrent net (IRN), externally recurrent net (ERN), radial basis function networks 

(RBFN), and the shape-tuneable neural network (MNN) (Chen & Chang, 1996). Each 
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structure has their unique features and their comparisons are listed in Table 2.5 (Mohd 

Ali, Hussain, Tade, & Zhang, 2015). 

Table 2.5: Comparisons of several ANN structures (Mohd Ali, Hussain et al., 2015) 

No. Types of 
ANN 

Key Features Advantages Limitations 

1 Feed forward 
neural 
networks 
(FFN)  

§ Fixed function 
and require large 
amount of training 
data 
 

§ Accurately 
approximate 
continuous 
functions 

§ Easy to implement 

§ Slow convergence 
§ Lack dynamics 
§ Mainly used for 

static function 
approximation 

2 Internally 
recurrent net 
(IRN)  

§ Characterized by 
time-delayed 
feedback 
connections from 
output of hidden 
nodes back to 
inputs of hidden 
nodes 

§ Capable of 
estimating process 
with changing 
variable dynamics  

§ No limit for the 
number of states 

§ Difficult to 
initialize 

§ Training can be 
time consuming 
 

3 Externally 
recurrent net 
(ERN) 

§ Contain time-
delayed feedback 
connections from 
output layer to a 
hidden layer 

§ Easy to initialize 
§ Simple design and 

can use current 
values to initialize 
states 

§ Number of states 
must be the same 
as model outputs 

§ Training can be 
time consuming 

4 Radial basis 
function 
neural 
networks 
(RBFNN) 

§ Basis function 
used can be 
Gaussian or 
wavelets 

§ Do not apply back-
propagation for 
training 

§ Less sensitive to 
sensor noise 

§ Faster training 

§ Most suitable for 
classification 
problem 

§ Large number of 
hidden nodes 
needed 

5 Recurrent 
trainable 
neural 
network 
(RTNN) 

§ Hidden layer is 
the recurrent layer 
and the other two 
layer is based on 
back propagation 

§ Faster convergence 
§ Less complexity in 

the design 
 

§ Not versatile 
§ Slow training due 

to sequential 
structure 

6 Shape-
tuneable 
neural 
network 
(MNN) 

§ Allow tuning of 
weight between 
neurons and its 
saturation 
function of each 
neurons 
simultaneously 

§ Sensitive to plant 
changes but still 
provide good 
estimation even with 
varied parameters 

§ Greatly depends on 
sampling time and 
initial parameters 
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Fuzzy logic is another AI algorithm that has been used as estimators. It is applied for 

estimating the specific O2 uptake rate and the specific CO2 evolution rate to obtain high 

yield and productivity in a fermentor (Hisbullah, Hussain, & Ramachandran, 2003).  It is 

also used to estimate the energy efficiencies in a furnace (Geng, Han, Gu, & Zhu, 2012).  

Furthermore, fuzzy logic has approximated the population size of algae and fault in a 

wastewater treatment plant and digestion reactor accordingly (Cong, Yu, & Chai, 2010; 

Shen & Chouchoulas, 2001). In a pipeline, fuzzy has been applied as the estimator to 

predict heat flux while in a fed-batch reactor for estimating the product concentration 

(Chen & Lee, 2008; Patnaik, 1997). Besides that, fuzzy logic has also been utilized in a 

digester for biogas and methane production rate estimations and to predict faults in both 

residual evaluation and gasoline sample (Brudzewski, Kesik, Kołodziejczyk, Zborowska, 

& Ulaczyk, 2006; Frank & Köppen-Seliger, 1997; Turkdogan-Aydınol & Yetilmezsoy, 

2010). Liu has also utilized fuzzy logic for estimating melt index in a fluidized bed reactor 

of LDPE plant while Genovesi et al. have applied fuzzy logic for estimating sensor and 

process faults in a digestion reactor (Genovesi, Harmand, & Steyer, 1999; J. Liu, 2007).  

Apart from that, GA and ES have also been used as estimators. GA has been applied 

in several unit operations including distillation column and wastewater treatment plant. It 

has estimated the process input parameter with higher conversion and is able to increase 

the productivity (Rezende, Costa, Costa, Maciel, & Filho, 2008). In a CSTR, GA has been 

used to predict the reactor temperature, which provided superior ability as well as to 

predict the learning parameters in a fruit dehydration process (Abdul Wahab, Hussain, & 

Omar, 2007; Mohebbi, Shahidi, Fathi, Ehtiati, & Noshad, 2011). ES, on the other hand, 

has been applied for estimating the effluent colour of the waste produced for further 

treatment in a wastewater treatment process (Paraskevas, Pantelakis, & Lekkas, 1999). 

ES has also been utilized to predict product flow and temperature in a crude oil distillation 
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column and to approximate probability of odour in a waste treatment plant (Kordon, 

Dhurjati, & Bockrath, 1996; Motlaghi, Jalali, & Ahmadabadi, 2008).  

In addition, AI elements have been merged with one another to form hybrid estimators 

for increasing the estimation performances such as fuzzy neural network (FNN), hybrid 

neural network (HNN), expert system neural network (ES-NN) and adaptive neuro-fuzzy 

inference systems (ANFIS) (Sivan, Filo, & Siegelmann, 2007). ANFIS has been applied 

as estimator to predict compositions in a reactive distillation column and to estimate 

emulsion stability in the water-in-oil mixtures as well as to predict the friction factor in a 

coiled tubes (Beigzadeh & Rahimi, 2012; Khazraee & Jahanmiri, 2010; Yetilmezsoy, 

Fingas, & Fieldhouse, 2011).Whereas FNN has been used to estimate the fault in a valve, 

melt index and molecular weight average (Mw) in a polymerization reactor (Chitanov, 

Kiparissides, & Petrov, 2004; Korbicz & Kowal, 2007; X. Liu & Zhao, 2012). Besides 

that, FNN has also been applied to predict viscosity and biomass concentration in a 

bioreactor (Araúzo-Bravo et al., 2004). Moreover, fuzzy-rough set or FuREAP has also 

estimated the population size of algae in a wastewater treatment plant (Shen & 

Chouchoulas, 2001).  

Furthermore, HNN has been utilized in several process systems such as to predict the 

production yield and gas compositions in fluidized bed gasifier, to estimate temperature 

and monomer concentration in a polymerization reactor, for pressure and injection time 

estimations in a plastic injection moulding process, to estimate the porosity in food drying 

process and to approximate the liquid heads in tanks (Guo, Li, Cheng, Lü, & Shen, 2001; 

Hussain, Rahman, & Ng, 2002; Ng & Hussain, 2004; Wilson & Zorzetto, 1997; 

Yarlagadda & Teck Khong, 2001). Besides that, a structure approaching hybrid neural 

network (SAHNN) has been applied in a batch reactor to predict the reactant 

concentrations with rapid convergence shown while hybrid mechanistic-neural network 
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rate function model (HMNNRFM) has been utilized in a fixed bed reactor for estimating 

the reaction (Kumar & Venkateswarlu, 2012; Wang, Cao, Wu, Li, & Jin, 2011). 

ANN has once been combined with GA known as GNN for critical heat flux estimation 

in the heated tubes (Wei, Su, Qiu, Ni, & Yang, 2010). Other combinations are the expert 

system with fuzzy (Fuzzy-ES) and neural network (ANN-ES).  Fuzzy-ES has been 

applied to predict the froth density in a flotation column (Chuk, Ciribeni, & Gutierrez, 

2005) while ANN-ES is used to estimate sulphur and silicon concentrations in a furnace 

(Radhakrishnan & Mohamed, 2000). Moreover, fuzzy logic has been merged with GA to 

estimate the kinetic parameters in a sulphuric acid catalyst preparation process (Yang & 

Yan, 2011). Both fuzzy logic and neural network have also been combined with GA in a 

plastic injection moulding process to estimate the weight distribution (Li, Jia, & Yu, 

2002). The applications of all the AI elements applied as observers in chemical process 

systems above are tabulated in Table 2.6. 
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Table 2.6: Various application of AI as observers in chemical process systems 
(Mohd Ali, Hussain et al., 2015) 

a) ANN as estimators in chemical process systems 
Types Objective 

/Estimate(s) 
Systems Applied Positive 

Highlights 
Ref 

FFN Conductivity Evaporator Small validation 
error (7%) 

(Devogelaere, et 
al., 2002) 

ANN Gasoline and 
butane 
concentration 

Debutanizer  Able to 
overcome delay 

(Fortuna, et al., 
2005) 

ANN Distillate 
composition 

Distillation 
column 

Good for binary 
distillation 
without multi-
component 

(Singh, Gupta, & 
Gupta, 2005) 

ANN Distillate 
composition 

Distillation 
column 

Handle many 
inputs with 
accurate results 

(Singh, Gupta, & 
Gupta, 2007) 

Adaptive 
Neural 
Network 

Product 
composition 

Binary distillation 
column 

High accuracy 
with faster 
response 

(de Canete, et al., 
2012) 

ANN Mole fraction of 
distillate product 

Binary distillation 
column 

Satisfactory 
estimation 
performance, 
help to enhance 
overall control 

(González, Aguilar, 
Alvarez-Ramı ́rez, 

Fernández, & 
Barrón, 1999) 

ANN Product 
composition 

Reactive 
distillation column 

Allow error 
refinement  

(Bahar & Özgen, 
2010) 

ANN Top, bottom 
composition, 
reflux ratio 

Batch distillation Able to speed up 
training for 
better prediction 

(Frattini Fileti, 
Cruz, & Pereira, 

2000) 
RANN Product 

compositions 
Batch Distillation Good agreement 

with actual value 
(Zamprogna, 

Barolo, & Seborg, 
2001) 

ANN Faults  Packed distillation 
column 

Consistent 
results even with 
disturbances 

(Sharma, et al., 
2004) 

IRN Polymer product 
quality 

Polymerization 
reactor 

Excellent 
prediction 
especially in 
grade transition 
region 

(Himmelblau, 
2008) 

IRN Outlet reactor 
concentration 

CSTR Good prediction 
compare with 
Extended 
Kalman filter 
(EKF) 

(Himmelblau, 
2008) 

MNN Heat of reaction, 
heat coefficient 

CSTR Handle system 
with noise 

(Chen & Peng, 
1999) 

ANN Kinetic 
parameters 

Bioreactor Good estimation 
for on-line 
application 

(de Assis & Filho, 
2000) 

RANN Biomass 
concentration 

Bioreactor  Stable estimation 
based on 
corrective action 
during training 

(Acuña, Latrille, 
Béal, & Corrieu, 

1998) 

     

Univ
ers

ity
 of

 M
ala

ya



40 
 

40 

     
a) ANN as estimators in chemical process systems (continued) 
MLPFF Cellular 

concentration 
Bioreactor Accurate 

estimation at all 
three phases (lag, 
exponential, 
stationary) 

(Silva, et al., 2008) 

FFN Oxygen uptake 
rate, carbon 
dioxide 
evolution rate 

Bioreactor High accuracy 
even the training 
data is reduced 
and save cost 
due to the 
reduction 

(Komives & 
Parker, 2003) 

ANN Oxygen mass 
transfer 
coefficient 

STR Good prediction 
even with noise 

(Garcı ́a-Ochoa & 
Castro, 2001) 

ANN Overall reaction 
rates of 
anhydrite 

Stirred cell reactor Good estimation 
even without 
initial 
assumption 

(Molga & 
Cherbański, 2003) 

ANN Substrate, 
ethanol 
concentration 

Fed-batch reactor 
(Experimental) 

Estimation can 
be done outside 
domain 

(Gadkar, Mehra, & 
Gomes, 2005) 

ANN Heat-released Batch reactor Accurate and 
fast estimation 

(Aziz, Hussain, & 
Mujtaba, 2000) 

 
FFN Reactive 

impurities, 
polymer product 
quality 

Polymerization 
reactor 

Effective 
estimation if 
based only on 
the initial batch 
condition of 
reactive 
impurities 

(Zhang, Morris, 
Martin, & 

Kiparissides, 1998) 

Stacked 
NN 

Reactive 
impurities, 
fouling 

Polymerization 
reactor 

Good prediction 
with impurities 

(Zhang, Morris, 
Martin, & 

Kiparissides, 1999) 
ANN Initiator 

concentration, 
heat of reaction 

Polymerization 
reactor 

Only need 
measurement of 
one variable for 
training 

(Horn, 2001) 

ANN Monomer, 
Initiator 
concentration 

Polymerization 
reactor 

Satisfactory 
estimation 
performance 

(Yang, Chung, & 
Brooks, 1999) 

MLRN Chain length Polymerization 
reactor 

Good estimation 
that allow 
variety of 
measured 
variables during 
training 

(Meert & Rijckaert, 
1998) 

ANN Reactor 
temperature 

Polymerization 
reactor 

Small estimation 
error 

(Kuroda & Kim, 
2002) 

Bootstrap 
NN 

Weight and 
number of 
average MW 

Polymerization 
reactor 

Reduce 
estimation error 

(Zhang, 1999) 
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a) ANN as estimators in chemical process systems (continued) 
IRN Polymer product 

quality 
Polymerization 
reactor 
(Experimental) 

Accurate 
prediction over 
wide range of 
transition period 

(Barton & 
Himmelblau, 1997) 

ANN Ethanol 
concentration 

Flash fermentor Optimum 
performances 

(Rivera, Atala, 
Filho, Carvalho da 

Costa, & Filho, 
2010) 

ANN Sugar 
concentration, 
chemical 
potency 

Fermentation 
process 

Good agreement 
with the value 
from production 
process 

(Dai, Wang, Ding, 
& Sun, 2006) 

ANN Glucose and 
Galactose 
concentration, 
residual carbon 
concentration 

Fermentor 
(Experimental) 

Error of 
estimation is 
almost zero 
(0.06%) 

(Jin, Ye, Shimizu, 
& Nikawa, 1996) 

ANN Consumed sugar 
concentration, 
optical cell 
density 

Fermentor 
(Experimental) 

Satisfactory 
despite variation 
in substrate 

(Yet-Pole, Wen-
Tengu, & Yung-

Chuan, 1996) 

FFN, 
RBFNN 

Biomass 
concentration 

Fermentor Good estimation 
even with 
variation in yield 
coefficient 

(James, Legge, & 
Budman, 2002) 

ANN Fluid and 
particle 
temperature, 
Biot number (Bi) 

Fluid-particle 
system 

Able to reduce 
the error of 
estimation 

(Sablani, 2001) 

RNNM Process kinetics Fermentor 
(Experimental) 

Reliable 
estimates and 
able to avoid 
over-fitting of 
NN during 
learning 

(Valdez-Castro, 
Baruch, & Barrera-

Cortes, 2003) 

ANN Density, 
viscosity, 
refractive index 

Binary system 
(water-methanol-
acetonitrile-
tetrahydrofuran 
mixtures) 

Small estimation 
error 

(Mehlman, 
Wentzell, & 

McGuffin, 1998) 

ANN Heat transfer 
rate 

Heat exchanger Consistent 
prediction value 
compared with 
actual value 

(Islamoglu, 2003) 

ANN Heat flux Heat exchanger Prediction is 
based on known 
experimental 
data 

(Su, et al., 2002) 

ANN Pressure drop Rotating fed bed Accurate 
estimation 
compare with 
actual values in 
wet bed 

(Lashkarbolooki, et 
al., 2012) 

ANN Activated 
carbon  

Absorber Satisfactory 
prediction 
performance 

(Faur-Brasquet & 
Le Cloirec, 2003) 
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a) ANN as estimators in chemical process systems (continued) 
ANN Iron oxide 

conversion rate 
Iron oxide 
reduction process 

High 
convergence 

(Wiltowski, et al., 
2005) 

ANN Thermal 
conductivity 
response factor 

Gas 
chromatography 

Good agreement 
with actual value 

(Jalali-Heravi & 
Fatemi, 2000) 

ANN Particle size Cyclone (grinding 
process) 

Simple 
formulation 

(Du, et al., 1997) 

FFN Coal combustion 
rate 

Coal combustion 
process 

High accuracy 
and robust 
compared with 
actual value 

(Zhu, Jones, 
Williams, & 

Thomas, 1999) 

BPNN Hydrogen 
content of coal 

Coal combustion 
process 

Prediction is 
based on 
proximate 
analysis 

(Yao, Vuthaluru, 
Tadé, & 

Djukanovic, 2005) 

ANN Slurry velocity, 
solid 
concentration 

Pipeline for 
conveying bulk 
material 

Suitable for 
difficult model 
development 
process  

(Lahiri & Ghanta, 
2008) 

FFN Dynamic 
compositions  

Tennessee 
Eastman plant 

Reliable 
estimates upon 
calibration of the 
estimator 

(Yeh, et al., 2003) 

ANN Lipase, biomass 
concentration 

Enzyme process 
(Experimental) 

Good estimation 
based only one 
online measured 
parameters 

(Linko, Zhu, & 
Linko, 1999) 

RBFNN Permeate and 
residue 
hydrogen 
concentration, 
permeate gas 
flux 

Gas membrane 
separator  

Predict by 
omitting many 
boundary values 

(Wang, et al., 
2006) 

FFN Moisture content 
of bananas 

Fruit dehydration 
process 

Superior ability 
in predicting 
moisture content 

(Mohebbi, et al., 
2011) 

ANN Critical odour 
release 

Waste water 
treatment plant 
(refinery) 

Good prediction 
even when 
number of nodes 
are reduced 

(Kordon, et al., 
1996) 
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b) Fuzzy Logic as estimators in chemical process systems 
Types Objective 

/Estimate(s) 
Systems 
Applied 

Positive Highlights Ref 

Fuzzy 
Takagi-
Sugeno 
(FTS) 

Fouling 
parameters 

 Heat exchanger Accurate estimate 
without any 
additional sensors 

(Delrot, et al., 
2012) 

Fuzzy 
Takagi-
Sugeno 
(FTS) 

Specific CO2 
evolution rate, 
specific O2 
uptake rate 

Fermentor Eliminate 
defuzzification part 
since output can be 
directly obtained 
from rule part  

(Hisbullah, 
Hussain, & 

Ramachandran, 
2003) 

Fuzzy  Energy 
efficiencies of 
ethylene 

Furnace High efficiencies, 
able to reduce more 
than 50% of the 
cost 

(Geng, Han, Gu, 
& Zhu, 2012) 

Fuzzy Size of Algae 
population 

Wastewater 
treatment plant 

High accuracy that 
able to improve the 
runtime 

(Shen & 
Chouchoulas, 

2001) 
Intelligent 
Fuzzy 
Weighted 

Heat flux Thermal fluid 
hollow cylinder 
pipeline  

Fast convergence (Chen & Lee, 
2008) 

Fuzzy Product 
concentration 

Fed-batch 
reactor 

Easy design (Patnaik, 1997) 

Fuzzy 
matching 

Cost Chemical plant 
(Chem. Systems 
Ltd.) 

Accurate with 
minimal estimation 
effort 

(Petley & 
Edwards, 1995) 

Fuzzy 
(Mamdani 
inferences) 

Biogas, 
methane 
production rate 

Digester Satisfactory 
performance with 
small deviation  

(Turkdogan-
Aydınol & 

Yetilmezsoy, 
2010) 

Fuzzy c-
means 
(FCM) 

Melt index Fluidized bed 
reactor 

Reduce input 
variables 
dimension 

(Liu, 2007) 

Fuzzy 
(Mamdani 
inferences) 

Fault on pH 
sensor and 
sodium 
hydroxide 
frequency 

Digestion 
reactor 
(Experimental) 

Satisfactory even 
with varied 
operating condition 

(Genovesi, 
Harmand, & 
Steyer, 1999) 
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c)  ES as estimators in chemical process systems 
Types Objective 

/Estimate(s) 
Systems 
Applied 

Positive Highlights Ref 

ES Probability of 
odour 

Waste water 
treatment plant 

Good prediction even 
when number of nodes 
are reduced 

(Kordon, et al., 
1996) 

ES Effluent waste 
colour 

Wastewater 
treatment plant 

Provide early warning 
for further treatment 
process 

(Paraskevas, 
Pantelakis, & 
Lekkas, 1999) 

ES Product flow, 
temperature 

Crude oil 
distillation 
column 

Able to minimise the 
error 

(Motlaghi, Jalali, & 
Ahmadabadi, 2008) 

 
 
d)  GA as estimators in chemical process systems 
Types Objective 

/Estimate(s) 
Systems Applied Positive 

Highlights 
Ref 

GA Size of Algae 
population 

Wastewater 
treatment plant 

High accuracy 
that able to 
reduce the cost 

(Shen & 
Chouchoulas, 

2001) 
GA Friction factor Helically coiled 

tubes 
(Experimental) 

High accuracy by 
improving the 
mean relative 
error 

(Beigzadeh & 
Rahimi, 2012) 

GA Hydrogen 
concentration, 
temperature of 
coolant and 
reactant  

Catalytic reactor High conversion (Rezende, Costa, 
Costa, Maciel, & 

Filho, 2008) 

GA Temperature CSTR Minimize error 
between the 
estimated and set 
point temperature 

(Wahab, 
Hussain, & 

Omar, 2007) 

GA Moisture content 
of banana 

Fruit dehydration 
process 

Superior ability 
of on-line 
estimation 

(Mohebbi, et al., 
2011) 

GA Fuel input 
parameter 

Palm oil mill Consistent 
prediction 

(Ahmad, Azid, 
Yusof, & 

Seetharamu, 
2004) 
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e)  Hybrid systems as estimators in chemical process systems 
Types Objective 

/Estimate(s) 
Systems Applied Positive 

Highlights 
Ref 

FuREAP Size of Algae 
population 

Wastewater 
treatment plant 

High accuracy 
that able to 
improve the 
runtime 

(Shen & 
Chouchoulas, 

2001) 

ANFIS Compositions Multi-component 
reactive 
distillation 
column 

Reliable and 
accurate 
estimation 

(Khazraee & 
Jahanmiri, 2010) 

FNN Fault signal in 
valve 

Control valve  Good estimation 
despite model 
mismatch 

(Korbicz & 
Kowal, 2007) 

FNN Melt index Polymerization 
reactor 
(Experimental) 

Able to settle the 
online training 
efficiency 
problem  

(Liu & Zhao, 
2012) 

FNN MW average Polymerization 
reactor 

Fast estimation (Chitanov, 
Kiparissides, & 
Petrov, 2004) 

FNN Biomass 
concentration, 
viscosity 

Bioreactor Fast convergence (Araúzo-Bravo, 
et al., 2004) 

ANFIS Emulsion 
stability 

Water-in-oil 
mixtures 

Satisfactory 
performance with 
small deviation 

(Yetilmezsoy, et 
al., 2011) 

ANFIS Friction factor Helically coiled 
tubes 

High accuracy by 
improving the 
mean relative 
error 

(Beigzadeh & 
Rahimi, 2012) 

HNN Injection time, 
injection 
pressure 

Plastic injection 
moulding 
process 

Small estimation 
error without the 
knowledge of 
injection 
moulding 

(Yarlagadda & 
Khong, 2001) 

HNN Product yield, 
gas 
compositions 

Fluidized bed 
gasifier 

Powerful 
estimator 
especially for 
complex process  

(Guo, Li, Cheng, 
Lü, & Shen, 

2001) 

HNN Monomer 
concentration  

Polymerization 
reactor 

Accurate 
estimation 
without the 
knowledge of 
model structure 

(Ng & Hussain, 
2004) 

HNN Monomer 
concentration, 
temperature 

Polymerization 
reactor 

Good validation 
results, fast 
convergence 

(Wei, Hussain, & 
Wahab, 2007) 

HNN Liquid heads 3-tanks in series Able to handle 
noise and 
variation of the 
stochastic process 

(Wilson & 
Zorzetto, 1997) 

HNN Food porosity Food drying 
process 
(Experimental) 

High accuracy 
based on 
increasing 
number of inputs 

(Hussain,  
Rahman, & Ng, 

2002) 
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e)  Hybrid systems as estimators in chemical process systems (continued) 
SAHNN Reactants rates 

and 
concentration 

Batch reactor Fast convergence 
rate 

(Wang, Cao, Wu, 
Li, & Jin, 2011) 

HMNNRFM Reaction rate Fixed bed reactor Good prediction 
without use of 
model equation 

(Kumar & 
Venkateswarlu, 

2012) 
ANN-GA 
(GNN) 

Critical heat flux Heated tubes Fast convergence, 
consistent 
prediction 

(Wei, Su, Qiu, 
Ni, & Yang, 

2010) 
FFN-ES Silicon, sulphur 

compositions 
Furnace  Small estimation 

error 
(Radhakrishnan 

& Mohamed, 
2000) 

Fuzzy-ES Froth density Flotation column 
(Experimental) 

Satisfactory 
despite variation 
in feed rate 

(Chuk, Ciribeni, 
& Gutierrez, 

2005) 
Fuzzy-GA Kinetic 

parameters 
Sulphuric acid 
catalyst 
preparation 
process 

Effective 
convergence, able 
to avoid 
premature 
convergence 

(Yang & Yan, 
2011) 

Fuzzy-
Neural-GA 

Injection 
velocity and 
cooling water 
temperature 

Plastic injection 
moulding 

Good 
generalization 
capabilities 

(Li, Jia, & Yu, 
2002) 
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2.4 Applications of model predictive control in chemical process systems 

MPC has been applied in many industries such as in the distillation column, drying 

towers, cement industry and PVC plant. Various types of MPC algorithms have been 

developed such as Model Algorithmic Control (MAC), Generalized Predictive Control 

(GPC), Predictive Functional Control (PFC), Dynamic Matrix Control (DMC), Extended 

Prediction Self Adaptive Control (EPSAC), and Extended Horizon Adaptive Control 

(EHAC). Their characteristics and formulations in determining the control law that make 

them different from each other (Camacho & Bordons, 2004). 

Cutler and Ramaker have developed the Dynamic Matrix Control (DMC), which has 

been widely used in various industries especially petrochemicals (Cutler & Ramaker, 

1980). DMC uses the step response model for prediction. The process has to be assumed 

stable without integrators and DMC tends to show unusual dynamic behavior, which is 

incapable to be demonstrated by the transfer function model. However, the size of the 

model must be first identified, thus not suitable for the unstable process. Only the future 

error or both the future error and control effort will be included in the cost function of 

DMC as given in Eq. (2.1) (Camacho & Bordons, 2004). 

 ! "#"$"% = 	 (	 ) * + + ) − + − . + + ) $"$

)/"#
+	 0	 ) 1% + + ) − # $"%

)/#

  (2.1)  

On the other hand, the disturbances have remained the same along the control horizon 

and are equal to the measured value of output (23) minus the estimated model output 

(2 4 4 ).	The predicted value is described in Eq. (2.2) (Camacho & Bordons, 2004). 

 2 4 + 7 4 = 	 89Δ; 4 + 7 − 1
=
9/> +	 89Δ; 4 + 7 − ?

@
9/=A> +	B 4 + 7 4  (2.2) 
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Model Algorithmic Model (MAC) has been classified as the simplest and most 

intuitive MPC algorithm. It has been recognized as Model Predictive Heuristic Control 

(MPHC). MAC uses impulse response model, which is suitable for a stable process with 

equivalent disturbances along the horizon. MAC do not apply the control horizon concept 

since the number of control signals is similar to the number of future outputs. The output 

prediction is given in Eq. (2.3) (Camacho & Bordons, 2004). 

 2 4 = ℎ9; 4 − D
@
E/> = 	F GH> ;(4)                                         (2.3) 

Besides that, Predictive Functional Control (PFC) algorithm uses the state space model 

of the process that allows nonlinearity and instability. PFC has two characteristics namely 

the basis functions and the coincidence points. According to the basis function theory, the 

control signal is parameterized using a set of polynomial, which specifies the relative 

complex input profile over a huge range of horizon. A coincidence point, on the other 

hand, is a concept that simplifies the calculations by considering only a subset of points 

in the prediction horizon. In order to correspond to the point, the desired and predicted 

future outputs are required. The cost function needed for minimization has been given in 

Eq. (2.4). Here, J(4 + ℎE) represents a first-order approach to a known reference 

(Camacho & Bordons, 2004). 

 K = 	 2 4 + ℎE − J(4 + ℎE)
LMN

E/>
                                 (2.4) 

The remaining three algorithms of MPC use transfer function models and are 

applicable for unstable processes. The algorithms are the Extended Horizon Adaptive 

Control (EHAC), Extended Predictive Self Adaptive Control (EPSAC), and Generalized 

Predictive Control (GPC), which are differentiated by their disturbances. Disturbances of 
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EPSAC is measurable but not for GPC while EHAC is able to neglect the disturbances 

(Camacho & Bordons, 2004). 

MPC has influenced process control during the past twenty years with its early 

technology evolved principally in industrial settings, followed by many types of research 

that analyze the theoretical basis (Froisy, 2006). Its methodology has been very appealing 

to the practitioner because input and state constraints are explicitly accounted in the 

controller. Many industrial applications have applied MPC using the integrated software 

including the QDMC, IDCOM-M, HIECON, SMCA and SMOC. All these have been 

commercialized as the new version of MPC (Qin & Badgwell, 2003). 

AlGhazzawi and Lenox have emphasized that the sustaining performance of MPC in 

a system depended on various factors such as lack of experienced operators and support 

personnel, lack of condition monitoring, significant process modifications, poor 

controller tuning and inaccurate model as well as the unresolved basic PID control 

problem (AlGhazzawi & Lennox, 2009). Besides that, Wang and Young have proposed 

a new design of MPC, which is based on the non-minimal type of the state space model 

(Wang & Young, 2006). A state variable here has been chosen as a set of measured input 

and output variables alongside their past values. In addition, Palma and Magni have 

specified that MPC can be applied starting from the black box or other model structures 

(Di Palma & Magni, 2007).  

In the polymerization process though, MPC has been developed with several 

approaches such as linear MPC (LMPC), nonlinear MPC (NMPC), neural network MPC 

(NNMPC) and INCA or the new technology of MPC to cater for the demand driven 

process (Brempt et al., 2001). All the approaches have been successfully applied to 

control the parameters including temperature, pressure, molecular weight distribution 

(MWD) and reaction rate of the process to obtain acceptable rate of the polymer produced 
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(Shamiri, Hussain, Mjalli, Mostoufi, & Hajimolana, 2013). Emad and Mohammad have 

applied NMPC to control the MWD of the polyethylene process in a gas-phase reactor by 

manipulating the hydrogen content and the catalyst (Ali & Ali, 2010). NMPC has also 

been applied by Seki at al. to control the temperature to maximize the monomer feed rate 

in a semi-batch polyethylene reactor (Seki et al., 2001). They applied the NMPC using 

successive linearization approach.  

In the fluidized bed catalytic reactor (FCR), MPC has been applied to control the 

emulsion temperature and the propylene production rate (Ho, Shamiri, Mjalli, & Hussain, 

2012) and to minimize the set point error (Ibrehem, Hussain, & Ghasem, 2008). In 

addition, Ali et al. have used the NMPC to control bed temperature and total pressure of 

an ethylene polymerization reactor by manipulating the bleed and inlet coolant flow (Ali, 

Al-Humaizi, & Ajbar, 2003). Temperature is one of the common industrial controls 

besides the total pressure because of the perseverance of the total mass and energy as well 

as steady state operation it has provided (Ali et al., 2003). In several MPC designs, 

researchers have also included the estimation techniques such as Extended Kalman Filter 

(EKF) to reduce the amount of parametric error that lead to model-plant mismatches (Ali 

et al., 2003) and causing offsets and persistence oscillation (Ahn, Park, & Rhee, 1999; 

Hedengren, Allsford, & Ramlal, 2007; Jacob & Dhib, 2012; Ramlal, Allsford, & 

Hedengren, 2007). The applications of different types of MPC in chemical process units 

are also summarized in Table 2.8.Univ
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Table 2.7: MPC applications in chemical process systems 

Type of MPC Objective /Estimate(s) Systems Applied Positive Highlights Ref 
NMPC Stream temperature Heat exchanger Increase the flexibility and resiliency of the 

heat exchanger 
(Akman & Uygun, 1999) 

NMPC Electrical circuits/ electrodes Electric arc furnace Efficient in environment protection, extract 
hazardous gas 

(Bekker, Craig, & 
Pistorius, 2000) 

On-Off MPC pH control, minimise CO2 lost Micro-algal tubular 
photo-bioreactor 

Avoid cycle time delay, reduce oscillation at 
appropriate sampling time 

(Berenguel, Rodrı ́guez, 
Acién, & Garcı ́a, 2004) 

Constrained DMC Feed flowrate, dilution water 
flowrate 

Grinding process (Ball 
mill grinding 

Overcome sluggish due to imperfect model (Chen, Li, & Fei, 2008) 

NMPC Set point tracking of crystal 
mass 

Crystallization process 
(CSTR) 

Good set point tracking even in the presence 
of vacuum accident data 

(Damour, Benne, 
Grondin-Perez, & 
Chabriat, 2010) 

DMC Permeate flux, flowrate, 
conductivity 

Desalination unit Good control even with large variation of 
process gain 

(Abbas, 2006) 

Linear MPC  Particle size distribution Continuous granulation 
plant 

Robustness and efficiency increased (Glaser et al., 2009) 

NMPC Dissolved O2 concentration WWTP (aerobic 
reactor) 

Good performance in controlling the 
concentration 

(Holenda, Domokos, 
Rédey, & Fazakas, 2008) 

Linear MPC Product concentration Bioreactor Good control and achieve high concentration 
of product 

(Ashoori, Moshiri, 
Khaki-Sedigh, & 
Bakhtiari, 2009) 

NMPC Control MWD of online 
polymer, manipulate H2 
content 

Gas-phase PE reactor Achieve good control even when there is 
model errors 

(Ali & Ali, 2010) 

MPC (INCA) Melt index, density, 
temperature and prod rate 

Gas-phase fluidized bed 
PE reactor (HDPE) 

Low implementation cost, present new 
method of off-line trajectory optimization 
with feedback control 

(Brempt et al., 2001) 
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Table 2.7 (continued) 
NMPC using successive 
linearization 

Maximize monomer feed rate, 
Temperature 

CSTR (Semi-batch 
polypropylene reactor) 

Satisfactory result with heat removal 
constraints 

(Seki et al., 2001) 

NNMPC (neural network 
MPC) 

Minimize setpoint error Fluidized bed catalytic 
reactor 

Small offsets, small oscillation compare to 
PID 

(Ibrehem et al., 2008) 

APMBC (Adaptive 
predictive model based 
control) 

Control propylene production 
rate, emulsion phase 
temperature 

Fluidized bed reactor 
(propylene) 

Excellent regulatory control properties (Ho et al., 2012) 

NMPC Bed temperature, total 
pressure 

Gas-phase polyethylene 
reactor 

Multivariable control of PE reactor using two 
approaches 

(Ali et al., 2003) 
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2.5 Summaries and analysis of the literature review 

Based on the review, observers have been widely applied in chemical process systems 

to estimate parameters or unknown states. Those observers include the six classes as 

discussed in section 2.2 and the AI elements applied as estimators explained in section 

2.3.  The trend of those observers has changed from single to hybrid as depicted in Figure 

2.1. Although single-based observers will still be used, its pattern is inconsistent and is 

limited to particular estimation in certain systems.  

On the other hand, the hybrid observers, which made its debut around 2000 have 

shown increasing in usage. The existence of many types of observers that can be merged 

and the availability of software are among the reasons for the increased. Besides that, 

those hybrid observers also tend to produce better results such as improving the rate of 

estimation. Therefore, it is clear that hybrid observers are significant contributions for 

adding knowledge to the whole observer related research area. 

 

Figure 2.1: Current and future trend of observer in chemical process systems 
(Mohd Ali, Hussain et al., 2015) 
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Several single observers that have been combined to establish hybrid observers for 

parameters estimation in chemical process systems are the extended Luenberger observer 

(ELO), extended Kalman filter (EKF), reduced-order observer, sliding mode observer 

(SMO), interval observer and asymptotic observer. The reduced-order observer has been 

merged three times while ELO, EKF, SMO, continuous and discrete observer two times 

according to the literature survey. Interval, full-order, adaptive, asymptotic and 

proportional observers are combined once so far. The number of combinations has been 

illustrated in Figure 2.2.  

Type of observers to be merged depends on the availability information of the plant 

and the rate of convergence. For example, if kinetics data is not accessible, asymptotic or 

exponential observer is appropriate, and it may be combined with EKF, interval, sliding 

mode or adaptive observer for improving the rate of convergence. Apart from that, several 

observers have never been merged before including the adaptive state observer (ASO), 

backstepping, specific, generic, geometric, pole-placement, profile positions and 

disturbance observers. Those observers are also eligible for merging based on their 

characteristics. 

Figure 2.2: Number of times observers applied in hybrid framework 
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In this research, SMO is combined with fuzzy logic. The combination is chosen based 

on the outstanding characteristics of the SMO, which provides stable, fast and accurate 

estimation. Besides that, it does not require precise input assumptions during the design. 

Meaning that if the initial value of the parameter is wrong, SMO can still recalculate the 

value until achieving the correct value during the estimation. For simple formulation yet 

obtaining the best results, SMO is merged with fuzzy logic. SMO has not been combined 

with another conventional observer to avoid complex formulation during the design and 

fuzzy logic is a simpler algorithm compared to other AI elements when used with SMO 

in the hybrid observer design framework. 

Then, knowing that the overall control of a system will be enhanced if a controller is 

coupled with the observer, the MPC controller has been developed in this work. Previous 

work has also proved that this estimation based control method able to provide better 

control in the system. For example, KF has been combined with a state feedback 

controller to maintain the control of drying process by estimating the material moisture 

content despite disturbances (ambient air temperature, humidity and feed flow rate) in a 

fluidized bed dryer (Abdel-Jabbar, Jumah, & Al-Haj Ali, 2005).  

Then, globally linearized control (GLC) has been added with EKF and ASO to 

estimate the compositions and flow rates of the top tray as well as distribution coefficients 

with inadequately known parameters in a distillation column (Amiya Kumar Jana, Nath 

Samanta, & Ganguly, 2006). Besides that, EnKF and UKF have also been coupled with 

NMPC for unmeasured disturbances estimation in a hybrid tank system (Prakash, 

Patwardhan, & Shah, 2010). Nagy et al. have applied proportional integral observer to 

predict the states in a waste treatment plant (Kiss et al., 2011). Other works include 

disturbance observer with multivariable controller for estimating disturbances in grinding 

mill, dissipative observer with on-off controller in non-monotonic reactor for predicting 

reactor’s properties and profile position observer with generic model control (GMC) in 
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debutanizer (Chen et al., 2009; Gupta, Ray, & Samanta, 2009; Schaum, Moreno, Díaz-

Salgado, & Alvarez, 2008). Besides that, Yang et al. has also combined MDOB with MPC 

to stabilize the jacketed stirred tank reactor and to enhance the control performance of a 

batch distillation column, Murlidhar and Jana have applied ASO with GMC (Murlidhar 

& Jana, 2007; Yang et al., 2011). 

All those works have motivated the coupling of the observer with the MPC controller. 

Furthermore, an integrator has been added to the MPC to avoid offset while controlling 

the temperature of the reactor. This embedded integrator MPC has previously been 

applied in many single-input single-output (SISO) systems and the modifications to suit 

the multiple-input multiple-output (MIMO) system of the polymerization process for this 

case are performed. In addition, MPC is chosen since the design also involves the state 

space model similar with the hybrid observer. Thus, simplicity of the formulation is 

expected to be achieved.  
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CHAPTER 3: METHODOLOGY 

 

3.1 Chapter overview 

In this third chapter, the general methodologies of the research for developing the 

proposed hybrid observer and MPC controller are explained. The ethylene polymerization 

process used to evaluate the performance of the observer and controller is also provided. 

3.2 General methodology of research 

Information gathering through literature surveys is the initial step in every research 

project so as to understand the requirements of such research area. Survey will also 

provide analysis to ensure the project is a novel work and different from the previous 

works, thus adding new knowledge to the field of study. Once the information has been 

gathered, they are analyzed in order to decide on the type of observers to be merged and 

the AI elements to be applied. The early approach is to hybrid two conventional observers 

and later added the AI element to improve the performances. Upon deciding the type of 

observers and AI algorithm, the design of observers will begin with the aid of SIMULINK 

and MATLAB.  

The modelling of a polyethylene plant is the next step focusing on the fluidized bed 

reactor and deciding on the unknown parameters to be estimated by the observer. A test 

run will be carried out in two different conditions, which are with and without noise to 

observe the performances. If positive results are obtained, the embedded integrator MPC 

will be developed based on the previous parameters that have been accurately estimated.  

The set point tracking and disturbances rejection tests are performed for observing the 

MPC and overall control performances in the system. 
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The simulated result will then be validated and compared with the actual pilot plant 

data for further verification. Once all the results and findings have been completed, they 

will be analyzed to make conclusions. The workflow of the general methodology is 

illustrated in Figure 3.1. 

Figure 3.1: General methodology of the research 
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3.3 Ethylene polymerization process  

The polymerization process applied here is based on the well-mixed UNIPOL model 

designed by McAuley to produce polyethylene in the year of 1990 as illustrated in Figure 

3.2 (McAuley, MacGregor, & Hamielec, 1990; McAuley, Talbot, & Harris, 1994). The 

feed gas is merged with the recycled gas before entering the reactor together with four 

major components namely the monomer (ethylene), co-monomer (butene), hydrogen (H2) 

and nitrogen (N2). 

Those gases act as the fluidization agents and heat transfer media to supply reactants 

for the growing particles in the reactor. N2 is also used to transport the catalyst powder 

and maintain the column pressure at its desired value. On the other hand, the cooling 

water flowrate is used to control the temperature of the reactor. Ziegler-Natta catalyst is 

fed continuously into the reactor and the products are withdrawn at a constant bed height. 
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Figure 3.2: Ethylene polymerization reactor 
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By using !" as ethylene, !# as butene, !$ as hydrogen and !% as nitrogen, the mole 

balances are given by (Ali & Ali, 2010): 

&'
()*+
(,

= 	/0+ − 20+3, − 40+        (3.1) 

&'
()*5
(,

= 	/05 − 2053, − 405        (3.2) 

&'
()*6
(,

= 	/06 − 2063, − 4         (3.3) 

&'
()*7
(,

= 	/07 − 2073,         (3.4) 

With 40+ = 80+9:;<"=	
>
?
(" ABC" ABDE)         (3.5) 

405 = 8059:;<#=	
>
?
(" ABC" ABDE)        (3.6) 

Where &' is the reactor volume, 80+, 805, 806, 807 are the concentration of ethylene, 

butene, hydrogen and nitrogen. /0+, /05, /06, /07	are the molar flow rates of ethylene, 

butene, hydrogen and nitrogen.	20+, 205, 206, 207	are the mole fraction of ethylene, 

butene, hydrogen and nitrogen. 3, is the bleed volumetric flow rate and 40+, 405, 4	are 

the gases constant. 40+ depends on the ethylene propagation rate constant (denoted by 

;<+), 405 depends on the butene propagation rate ;<5) and 4 is the ideal gas constant. 9: 

is the number of mole at catalyst site, H is the activation energy for propagation, IJ		and 

IJKL are the bed/reactor and reference temperature, respectively.  

The time variation of number of moles at the catalyst site is given by (Ali & Ali, 2010):  

(MN
(,
= 	/:O: − ;(9: − P<9:/3R        (3.7) 

With P< = !R+40+ +	!R5405        (3.8) 
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Here O: is the active site concentration, /: is the catalyst flow rate, P< is the polymer 

outlet rate, 3R is the mass of polymer, ;( is the deactivation rate constant and !R+, 	!R5 

are the molecular weight of ethylene and butene respectively.  

The equation related to the bed/reactor temperature is given as (Ali & Ali, 2010): 

(!J8TJ + 3R8T<)
(AB
(,
= 	U/ + UV − U4 − UIJ − UW    (3.9) 

While the equation represents the recycle stream temperature is as follows: 

!'8TR
(AX

(,
= /'8T' I'YZ − I' + /R8TR IRYZ − IR[\,     (3.10) 

Where  U/ = /0+8T0+ + /058T05 + /068T06 + /078T07    (3.11) 

 UV = /'8T'(I' − IJKL)       (3.12) 

UIJ = (/' +	3,)8T'(IJ − IJKL)      (3.13) 

UW = P<8T<(IJ − IJKL)       (3.14) 

 U4 = !R+40+∆UJ          (3.15) 

The total pressure of the reactor is given by (Ali & Ali, 2010): 

W, = 	 (80+ + 805 + 806 + 807)4IJ       (3.16) 

And the relation of cooling water with the temperature is given by: 

/R8TR IRYZ − IR[\, = 0.5ab IR[\, + IRYZ − I'YZ + I'    (3.17) 

Where !J8TJ is the vessel thermal capacitance, 8T< is the heat capacity of polymer, U/, 

UV, UIJ, UW are the sensible heat of fresh feed, recycle gas, bed and product accordingly 
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while U4 is the enthalpy generated from the polymerization. !' is water holdup in heat 

exchanger, whereas 8T' and 8TR are the heat capacity of recycle gas and water. 

Furthermore, 	/R	, /'	 are the cooling water and recycle flow rate respectively, IRYZ, IR[\, 

are the cooling water temperature (before and after cooling) while I'YZ, I' are the recycle 

temperatures (before and after cooling). 8T0+,8T05,	8T06,	8T07 are the heat capacity of 

ethylene, butene, hydrogen and nitrogen respectively. W, is the total pressure, ∆UJ is the 

heat of reaction and ab is the overall heat transfer coefficient, (a) multiplied by the heat 

transfer area, (b). 

The melt index equation is represented by Eq. (3.18) below (Ali, Betlem, Weickert, & 

Roffel, 2007): 

(0c

(,
= de

)*6
)*+

− !f /0.9        (3.18) 

Here, d is a tunable parameter with initial value of 0.88, e is a constant parameter which 

is 6818.3 and !f is the melt index (Ali et al., 2007).  

All the equations are used for the modelling of the ethylene polymerization reactor to 

obtain the actual value and generate the state space equation for calculating the gain and 

formulating the equation of the observer. 
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3.4 Hybrid observer design 

In this research, a hybrid observer called the fuzzy-sliding mode observer (fuzzy-

SMO) is proposed. It is the combination of the sliding mode observer (SMO) and fuzzy 

logic for estimating the ethylene and butene concentrations as well as the melt flow index 

(MFI). SMO is chosen because it offers fast convergence and stable estimation without 

requiring accurate initial assumption by generating the sliding motion on the measured 

error and the output error (Spurgeon, 2008). On the other hand, fuzzy logic is an artificial 

intelligence element that able to simplify the design of the proposed hybrid observer but 

yet give high accuracy and fast convergence rate.  

Fuzzy logic is selected because it is a simpler algorithm to implement when combined 

with SMO in the hybrid observer design formulation compared to other AI elements such 

as genetic algorithm (GA) and artificial neural network (ANN). Fuzzy logic consists of 

rules that are easy to be manipulated without changing the parameters in the fuzzy 

framework including the membership function and defuzzification types to obtain best 

results. However, if GA is coupled with the SMO, all the steps including the reproduction, 

crossover and mutation need to be redefined for obtaining the best generation (output) 

especially as it totally depends on the random number from the first generation created 

(Hussain & Ramachandran, 2003). Whereas, if ANN is applied, all the training steps have 

to be repeated to find the best output and the network may also require changes. 

 The process model discussed in the section 3.3 will be used as the case study to 

develop and observe the performances of the hybrid fuzzy-SMO. In general, the first step 

before designing the observer is to consider the detectability or observability condition of 

the system because observers have to be designed for a detectable or observable system 

(Mohd Ali, Hoang, Hussain, & Dochain, 2015). Observability is defined as the condition 

where all the initial states are visible. For a system to be observable if, for any initial state 
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vectors, its internal states must be inferred by its external states or outputs’ knowledge 

(Evangelisti, 2011; Moreno & Dochain, 2008; Soroush, 1997). On the other hand, 

detectability is a weaker condition than observability, where the non-observable states 

may asymptotically decay to zero (Evangelisti, 2011; Moreno & Dochain, 2008). Both 

concepts will influence the feasibility conditions of the observers (Hoang, Couenne, Le 

Gorrec, Chen, & Ydstie, 2012; Mohd Ali, Hoang, Hussain, & Dochain, 2015; Moreno & 

Dochain, 2008).  

Two types of observability conditions typically applied for observer designs are the 

observability matrix and the observability Gramian (Mohd Ali, Hoang, Hussain, & 

Dochain, 2015). The observability matrix appears with the alteration of the state space 

models such as conversion to canonical forms, while the observability Gramian arises 

when considering the operator properties including system reduction and optimal linear 

quadratic regulators (Curtain & Zwart, 1995; Singh and Hahn, 2005). Both the 

observability matrix and the observability Gramian provide sufficient conditions for the 

observability of a system (Mohd Ali, Hoang, Hussain, & Dochain, 2015). The 

observability matrix however, is related to the differential properties, while the 

observability Gramian is based on the integral conditions (Tsakalis, 2013). Furthermore, 

the type of observability used to detect the observable condition will depend on the 

formulation of the systems (Mohd Ali, Hoang, Hussain, & Dochain, 2015). In this work, 

we have applied the observability matrix in finding the observable of the system, thus 

observability Gramian is not discussed in details. 
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3.4.1 Observability Matrix 

The main interest of the observability of a dynamic system is that it allows a priori to 

come up with an observer which rebuilds the system states with certain rate of 

convergence (Mohd Ali, Hoang, Hussain, & Dochain, 2015). 

Consider a discrete-time system in the form of steady state: 

2 ; + 1 = b(2 ;          (3.19) 

With output measurement given by:  

i ; = 8(2 ;                    (3.20) 

If 2 0  is known then the state variables at every instant of the discrete-time system 

can also be determined. This is proven for ; = 0,1, … , k − 1 as follows based on the 

substitution of k value into Eq. (3.19) and (3.20). 

At  ; = 0:  

 2 1 = b(2 0         (3.21) 

 i 0 = 8(2 0         (3.22) 

At  ; = 1:  

 2 2 = b(2 1         (3.23)  

 i 1 = 8(2 1         (3.24) 

Substituting Eq. (3.21) into Eq. (3.22):  

 i 1 = 8(2 1 = 8(b(2 0                 (3.25) 

At  ; = 2:  

 2 3 = b(2 2         (3.26)           

 i 2 = 8(2 2         (3.27) 

Substituting Eq. (3.21) and (3.23) into Eq. (3.27):  

 i 2 = 8(2 2 = 8(b(
#2 0        (3.28)             
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As a summary, from ; = 0 until k − 1, assuming the k-dimensional vector 2 0  has k 

unknown components, thus give: 

 i 0 = 8(2 0                                                                     

 i 1 = 8(2 1 = 	8(b(2 0                                                            

 i 2 = 8(2 2 = 8(b(
#2 0                                                             

 ⋮ 

 i k − 1 = 8(2 k − 1 = 8(b(
ZC"2 0      (3.29)           

The matrix blocks 8(, 8(b( , 8(b(#  , ..., 8(b(ZC" each with dimension T×k will stack 

on top of each other with overall dimension of the matrix is kT×k.  

 

i(0)
i(1)
i(2)
⋮

i(k − 1)

(Z<)×"

=

8(
8(b(
8(b(

#

⋮
8(b(

ZC"

(Z<)×Z

         (3.30)                      

It will have unique solution provided the system matrix has rank k	(order of the system).  

 pOk;

8(
8(b(
8(b(

#

⋮
8(b(

ZC"

= k           (3.31)   

Therefore, the observability matrix, denoted by q, must equal to rank k (i.e. rank q =

k)	to determine the initial condition, 2(0). 

 q(b(, 8() =

8(
8(b(
8(b(

#

⋮
8(b(

ZC"

(Z<)×Z

      has rank k   (3.32)  

Now consider the linear continuous-time system: 

2 r = b2 r          (3.33)                          

With output measurement given by:  

i r = 82 r          (3.34)  
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The knowledge of 2 rs  is sufficient to determine 2 r  at any time instant. At  r = rs:  

 2 rs = b2 rs         (3.35)  

 i(rs) = 82 rs         (3.36)  

By taking the derivative in the continuous-time measurements, for first derivative:  

 i(rs) = 82 rs         (3.37)  

Substituting Eq. (3.35) into Eq. (3.37): 

 i rs = 82 rs = 8b2 rs        (3.38)  

For second derivative: 

 i rs = 82 rs = 8b#2 rs        (3.39)                                    

For (k − 1)th derivative: 

 iZC"(rs) = 82ZC"(rs) = 8bZC"2(rs)     (3.40)  

As a summary, the following equation is obtained: 

 i(rs) = 82 rs                                                                     

 i rs = 82 rs = 8b2 rs                                           

 i rs = 82 rs = 8b#2 rs                                             

 ⋮ 

 iZC"(rs) = 82ZC"(rs) = 8bZC"2(rs)     (3.41) 

Thus 

i(rs)
i rs
i rs
⋮

iZC"(rs)

(Z<)×"

=

8
8b
8b#

⋮
8bZC"

(Z<)×Z

×2(rs)        (3.42) 

It will have unique solution provided the system matrix has rank k	(order of the system).  

 pOk;

8
8b
8b#

⋮
8bZC"

= k            (3.43)  
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Therefore, the observability matrix, denoted by q, must equal to rank k (i.e. rank q =

k)	to determine the initial condition, 2(rs). 

 q(b, 8) =

8
8b
8b#

⋮
8bZC"

(Z<)×Z

      has rank k    (3.44)

              

Once the system dynamics have fulfilled the observability or detectability conditions, 

observers can be designed to estimate the state variables. In this respect, the choice of a 

suitable observer according to the six classes emphasized in Section 2.2 of Chapter 2 is 

therefore of great importance (Mohd Ali, Hoang, Hussain, & Dochain, 2015). The 

flowchart of designing an observer according to those classes is depicted in Figure 3.3. 

The second step is to define the estimated variables. They are variables which are difficult 

to be measured and intend to be estimated using the observers.  

These variables are also system-dependent and not specific to one parameter for a 

particular process unit (Liu, 1999) such as solid mass fraction and production rate in a 

polymerization reactor (Lopez & Alvarez, 2004), the specific growth rate in a bioreactor 

(Battista et al., 2011) or the reactor concentration in a CSTR (Salehi & Shahrokhi, 2008). 

Furthermore, the estimated variables decided are usually the crucial or critical parameters 

that can affect the product quality and potentially lead to uncertainty in the process 

(Alanis et al., 2010; Fan & Alpay, 2004; Mesbah et al., 2011; Olivier et al., 2012). The 

parameters should also be updatable for online implementation and able to eliminate bias 

between the simulation and the on-line estimation (Sandink et al., 2001). 

After that, the kinetics information will be identified. Kinetics information will 

determine the nonlinearity of the system based on its mathematical model (Biagiola & 

Figueroa, 2004b). This information will aid in selecting the appropriate observers. The 
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Luenberger-based observer is appropriate for a system where the information is complete 

and system parameters are known while the Bayesian estimator is suitable for systems 

where only certain parameters are accessible (Dochain, 2000; Dochain, 2003). 

Furthermore, for less kinetic information availability, exponential or asymptotic 

observers may be applied (Dochain, 2000; Assoudi et al., 2002; Sadok & Gouze, 2001; 

Hoang et al., 2013; Hulhoven et al., 2008) while for systems with incomplete model 

information, AI-based observers are more appropriate.    

Next step is to design the observer equation and compute the gain. The equation is 

developed to determine the observer structure for the system based on its dynamic 

knowledge and incorporated with the gain and the error dynamic equation (Bitzer & Zeitz, 

2002; Cacace et al., 2010). For a model-based observer, the state space representation is 

preferably used to represent the formulation of the observer, which also involves the 

measurement equation (Fuhrmann, 2008; Patwardhan et al., 2006; Patwardhan & Shah, 

2005; Senthil et al., 2006). The number of measured variables will also affect the 

sensitivity of the estimation (Venkateswarlu & Avantika, 2001). Furthermore, the design 

of the observer structure will require an appropriate gain (Dochain, 2003), and it is usually 

chosen based on the stability of the error dynamics of the system (Busawon & Kabore, 

2001) (Yang et al., 2012). The observer gain can be solved using the Butterworth 

polynomial or the Ackermann formula (Ruscio, 2009). Additionally, the Riccati equation 

may also be applied to determine the gain value by considering the error dynamic output 

(Farza et al., 2011).  

The design of the observer is now complete and the performance testing will be carried 

out to observe the effectiveness of the observer. During the test run, the estimated values 

are compared to the actual values to determine the performance of the proposed observer 

(Aamo et al., 2005; Battista et al., 2011; Hajatipour & Farrokhi, 2010; Jana et al., 2006; 
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Kiss et al., 2011; Salehi & Shahrokhi, 2008). The test is not only important for the design 

of the single-based observer but also determines whether a hybrid observer is further 

needed to be developed and implemented (Goffaux et al., 2009; Hulhoven et al., 2006; 

Othman et al., 2008). If there are huge discrepancies between the actual and estimated 

values, a hybrid observer may be designed to improve the performances. Furthermore, if 

the systems are complex and the models are difficult to obtain from the first principles, a 

hybrid AI-based observer may be a suitable choice (Chairez et al., 2007; Porru et al., 

2000; Prakash & Senthil, 2008). Once those design and performance testing have been 

completed and analyzed in the simulation environment using MATLAB software, the 

credibility of the observer will be then validated using the experimental data from the real 

polymerization pilot plant. 
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Figure 3.3: The general methodology of observer design according to classes (Mohd Ali, Hussain et al., 2015)Univ
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3.5 Model predictive control design 

The MPC applied in this research is designed using the state space model as the 

prediction model. It is modified in such a way as to include an integrator, which is another 

alternative to guarantee offset-free control results from the controller. The design also 

considers the measured state estimated from the hybrid fuzzy-SMO as an additional 

approach to reduce parametric error within the controlled process (Ahn et al., 1999; 

Hedengren et al., 2007; Mohd Ali, Hoang, Hussain, & Dochain, 2015; Mohd Ali, Hoang, 

Hussain, & Dochain, 2016; Ramlal et al., 2007).  

The observer will aid in improving the implementation of the MPC since it will first 

estimate the unknown states and deliver the information prior to applying the controller. 

The proposed MPC is used to control the reactor temperature to maintain the quality of 

the product. The results also compare the conditions with and without the observer to 

show the effectiveness of this estimation technique in increasing the performance of the 

controller, and therefore, of the overall system. The procedure of developing the 

embedded integrator MPC is illustrated in Figure 3.4. 

Similar state space equation from the observer design formulation will be applied in 

the MPC design since the same process has been considered as the case study. The 

embedded integrator MPC is developed using the state space as the prediction model and 

is utilized to control the temperature. It will also be compared to the conventional 

proportional-integral-derivative (PID) controller and MPC without integrator to highlight 

its effectiveness that able to outstand the other controllers. The results are then compiled 

and analyzed.   
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Figure 3.4: Methodology of the MPC design 
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CHAPTER 4: HYBRID FUZZY-SLIDING MODE OBSERVER 

 

4.1 Chapter overview 

The hybrid fuzzy-sliding mode observer design is emphasized in this fourth chapter of 

the thesis. The formulation is shown step by step accompanied by the necessary 

explanation. The hybrid observer is used to estimate the ethylene concentration, butene 

concentration and the melt flow index (MFI) in the ethylene polymerization reactor. 

Furthermore, the hybrid observer has been compared with the single sliding mode 

observer, single extended Luenberger observer (ELO), fuzzy logic and hybrid 

proportional-sliding mode observer (SMO-proportional).   

4.2 Design of hybrid fuzzy- sliding mode observer (fuzzy-SMO) 

The observer design will begin by identifying the observability conditions of the 

systems as explained earlier in Section 3.4 of Chapter 3 followed by defining the state 

("), input ($) and measured variables (%). After that, the gain of the observer is computed 

together with the development of the observer’s equation ((Mohd Ali, Hoang, Hussain, 

& Dochain, 2015). In this work, a single sliding mode observer (SMO) is first developed 

and the performances are evaluated based on the estimation of the parameters namely the 

ethylene concentration, butene concentration and melt flow index (MFI) in the ethylene 

polymerization process.  

However, due to the unsatisfactory preliminary results obtained, especially in handling 

noisy conditions, the SMO has been combined with fuzzy logic. The proposed hybrid 

fuzzy-sliding mode observer (fuzzy-SMO) has been able to improve the estimation for 

both with and without noise conditions. The methodology is depicted in Figure 4.1. Other 

observers including the single SMO, single extended Luenberger observer (ELO), fuzzy 
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logic and hybrid proportional-sliding mode observer (SMO-proportional) have been 

compared with the proposed fuzzy-SMO.  

For the formulation development, first considers a general system (Drakunov & Utkin, 

1995; Floquet, Edwards, & Spurgeon, 2007):  

" = '" + )$           (4.1) 

% = *"           (4.2) 

Then, define the state variables that need to be estimated, which are the ethylene 

concentration, *+,, butene concentration, *+- and melt flow index, ./ for this case. 

After that, identify the input and measured variables. The process inputs are the input 

variables, which are the 0+1(molar flow rates of ethylene), 0+2	(molar flow rates of 

butene), molar 0+4	(molar flow rates of hydrogen), 0+5 (molar flow rates of nitrogen), 

06	(cooling water flow rate), 07	 (recycle flow rate), 08 (catalyst flow rate) and 	9: (feed 

temperature) while the measured variable is the reactor temperature, 9; . Once those 

variables have been identified, the observer is formulated by using the state space 

equation prior to obtain the model (Mäder, 2010) in the form of matrix ', ) and * to be 

applied in Eq. (4.1) and (4.2).  
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Figure 4.1: The procedure of designing the hybrid fuzzy-SMO 
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System identification is used for finding the state space model before the observer is 

developed. The state space model is estimated using the linear parametric model's option 

by first dividing the input signal data into two parts for estimation and validation. The 

accurate model can be achieved if both data are matched. For generating the state space 

model, the subspace N4SID from the MATLAB function is applied and the sampling 

interval is set as one all the time (Moscinski & Ogonowski, 1995). The highest percentage 

of the best-fitted value or the model output obtained will determine the final state space 

model that will be used. Best-fit values describe the balancing between robustness and 

accuracies. Thus, the fourth order is chosen as the order of the state space model since it 

provided 100% best-fit value compared to other orders that have been randomly tried as 

given in Figure 4.2. The parameters of this state space will represent the plant model and 

will be used in the design procedure (Mohd Ali, Hoang, Hussain, & Dochain, 2016). 

 

 

Figure 4.2: The best-fit percentage of state space model 
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The observability condition must be determined prior to developing the observer to 

ensure the system is observable. It must have unique solution provided the system matrix 

has rank !	(order of the system) and for this case: 

#$!%

&
&'
&'(
&')

  for ! = 4 according to the state space order number          (4.3) 

Therefore, the observability matrix, , must also has rank ! (rank , = !)	for the 

system to be observable (Mohd Ali, Hoang, et al., 2015). 

,(', &) =

&
&'
&'(
&')

(01)×0

  has rank ! = 4     (4.4) 

Since both rank from Eq. (4.3) and Eq. (4.4) above is equal to 4, the system is said to 

be observable and applicable for designing the observer. 

After that, the augmented state space model in the form of matrix  '3, 43 and &3 is 

defined. It is different from the original state space model matrix ', 4 and & above. The 

augmented model however, does not change the underlying algorithm conceptually and 

the properties of the original state space matrix ', 4 and & are retained. This augmented 

model will be used throughout the estimation process to add additional dynamics to the 

original model for increasing the state vector dimension. It is because most model-based 

estimation algorithms usually assumed that disturbances are noise with zero means, but 

it is not reliable for many practical applications. In addition, the augmented models can 

provide simpler method for adjusting the disturbance and noise that acted on the 

augmented states compared to the original model states (noise colouring). Besides that, 

augmented models are also able to be applied for online estimation of the system 
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parameters (Mäder, 2010). Because of those advantages, the augmented model is applied 

for estimating the states. 

Using SMO, the equation is defined as follows: 

53 = '353 + 437 + 89:;<=!(> − &353)       (4.5) 

Where 89: is the observer gain and is calculated based on the pole location using the 

formula given in Eq. (4.6) and ;<=! is understood as the component wise for the vector 

argument @ = ABC(@D, … , @0) and ;<=! @ = ABC(;<=! @D , … , ;<=! @0 )(Drakunov & 

Utkin, 1995)  

89: = FC$AG	('3, &3,ℳ)         (4.6) 

From Eq. (4.6), ℳ is the characteristics equation for the closed loop poles of the 

system that is the desired location for the error dynamics. On the other hand, the initial 

value, 53 is assumed with any value in the beginning since SMO can handle any wrong 

assumptions and help to recalculate them until the desired truth-values are achieved. Then 

the error of the SMO is defined as in Eq. (3.7), where 53	is the estimated value and 51 is 

the actual plant value. By obtaining the set of error (G#) values, the set of change of error 

(∆G#) values are also computed and used as the inputs for the fuzzy logic framework to 

develop the hybrid observer. 

G#(J) = 51(J) − 53(J)         (4.7) 

The fuzzy framework is designed using Mamdani inferences and two Gaussians 

membership functions for the input and a Triangular-shaped membership function for the 

output. It is a rule-based algorithm consisting of several linguistic variables, which are 

NV (Negative), ZV (Zero) and PV (Positive). Those variables are combined to form a set 

of rules with the format of IF (antecedent) and THEN (consequence) as given in in Table 
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4.1. Four rules have been tested before deciding the best rule to be applied in the fuzzy 

framework since the generation of the rules are based on trial and error. We named the 

four different rules as Rule 1, Rule 2, Rule 3 and Rule 4.  Each rule consists of different 

antecedents and consequences.  

Table 4.1: The IF and THEN rules for Fuzzy-SMO  

	 ∆G#	

G#	 NV	 ZV	 PV	

NV	 PV	 ZV	 NV	

ZV	 ZV	 ZV	 ZV	

PV	 NV	 ZV	 PV	

 

The set of rules are given below with the output as the new error to be used in the 

proposed hybrid observer. As an example, when the error of the sliding mode observer 

shows a negative value (NV) and the change of error also show a negative value (NV), 

then the output will be a positive value (PV). This will be recognized by the fuzzy logic 

framework to generate the output.  

KL	(G#	<;	MN) AND 	∆G#	<;	MN  OPQM	 JℎG	B7JF7J	<;	SN   

KL		(G#	<;	MN) AND 	∆G#	<;	TN  OPQM	 JℎG	B7JF7J	<;	TN    

KL		(G#	<;	MN) AND 	∆G#	<;	SN  OPQM	 JℎG	B7JF7J	<;	MN 	 

KL		 G#	<;	TN  AND 	∆G#	<;	MN  OPQM	 JℎG	B7JF7J	<;	TN  

KL		(G#	<;	TN) AND 	∆G#	<;	TN  OPQM	 JℎG	B7JF7J	<;	TN  

KL		(G#	<;	TN) AND 	∆G#	<;	SN  OPQM	 JℎG	B7JF7J	<;	TN 	 
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KL		(G#	<;	SN) AND 	∆G#	<;	MN  OPQM	 JℎG	B7JF7J	<;	MN  

KL	(G#	<;	SN) AND 	∆G#	<;	TN  OPQM	 JℎG	B7JF7J	<;	TN  

KL		(G#	<;	SN) AND 	∆G#	<;	SN  OPQM	 JℎG	B7JF7J	<;	SN              (4.8) 

Rule 1, which contains 9 antecedents and 9 consequences has been selected as the best 

rule based on the fastest response with closest to zero error as shown in Figure 4.3 

(Castillo, Neyoy, Soria, Melin, & Valdez, 2015; Hušek & Cerman, 2013). Other rules that 

have been applied during the trial and error process to obtain the best set of rules are Rule 

2 which consists of 4 antecedents and 4 consequences, Rule 3 with 25 antecedents and 25 

consequences while Rule 4 with 49 antecedents and 49 consequences. The comparisons 

of the output according to all the rules are also given in the figure when implemented in 

the hybrid observer formulation. Rule 1 has provided the most accurate output as desired 

while the other three rules resulted in some errors.  

 

Figure 4.3: Comparisons of output for different fuzzy rules 
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Then the hybrid fuzzy-SMO for estimating the parameters is given in Eq. (4.9), where 

GU is the output from the fuzzy logic based on the rules given in Table 4.1. 

53V = '353 + 437 + 89:;<=!(GU)      (4.9) 

where 53V is the notation for the states that are estimated using the hybrid fuzzy-SMO. 

Since the polymerization process incorporates many unknown states or variables, the 

observer is also designed in such a way it can be applied to estimate several parameters 

without adjusting the whole observer’s structure. Therefore, from Eq. (4.5) we formed 

Eq. (4.10) for the single SMO. 

53W

53X

53Y

= '3
53W
53X
53Y

+ 43
7
7
7
+

89:DD 89:D( 89:D)
89:(D
89:)D

89:(( 89:()
89:)( 89:))

;<=!
>
>
>
− &3

53W
53X
53Y

 (4.10) 

Here, subscript 1,2,3 represent ethylene, butene concentration and melt index 

respectively. Whereas for fuzzy-SMO, we define Eq. (4.11) from Eq. 4.9) as follows: 

53VW

53VX

53VY

= '3
53W
53X
53Y

+ 43
7
7
7
+

89:DD 89:D( 89:D)
89:(D
89:)D

89:(( 89:()
89:)( 89:))

;<=!
GUD
GU(
GU)

   (4.11) 

Besides that, to imitate a real situation, noise and disturbance are also added to the 

model. The noise incorporated is a 5% noise variation in the polymerization plant model 

to illustrate the effectiveness of the proposed approach. 
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4.3 Ethylene polymerization parameters estimation using fuzzy-SMO 

Three parameters have been chosen in order to show the effectiveness of the hybrid 

observer. The parameters are the difficult-to-measure parameter (MFI) and less difficult-

to-measure parameter (ethylene concentration) where the related process model is 

adapted to the observer’s structure.  It is difficult to measure the MFI when there are 

variations in the temperature. Therefore, it must be observed to obtain the accurate MFI 

values for maintaining the product quality. On the other hand, the ethylene concentration 

observation in the reactor is important as to determine the amount of the unreacted 

ethylene for finding accurate overall conversion.  

Another parameter, which is butene concentration is estimated to show the uniqueness 

of the hybrid observer design that allows certain parameters estimation using the same 

observer structure. Butene concentration is also another favorable parameter to be 

observed in the polymerization process since it will affect the molecular weight 

distribution (MWD) of polymer produced. The lower the distribution of the 

concentration, the higher the MWD of the polymer. This hybrid observer, which allows 

extension and able to estimate many parameters without redesigning the whole structure 

is advantageous to be implemented in real plant due to the limitations of the sensors that 

focus only on estimating specific parameter and are unreliable to estimate unknowns that 

are due to disturbances and mismatches.  

The process is first run in simulation using the initial condition as given in Table 4.2 

(Ali & Ali, 2010) to obtain the actual value of the ethylene, butene concentrations and 

melt flow index for both with and without noise conditions. After that, the hybrid fuzzy-

SMO observer is applied to estimate the parameters and compared with the actual value. 

The error and change of error are also computed to observe the discrepancies between 

both the actual and the estimated value. Besides that, the hybrid fuzzy-SMO was also 
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compared with the estimation results obtained from the single SMO, fuzzy logic, 

extended Luenberger observer (ELO) and SMO-proportional observers to highlight the 

effectiveness of the proposed observer.  

Table 4.2: Parameters and variables for the polymerization reactor 

Parameter Values Parameter Values 

LZW 131.13 mole/s LZY 2.52 mole/s 

LZX 3.51 mole/s LZ[ 1.6 mole/s 

L\ 2 kg/h &ZW 297.06 mole/m3 

&ZY 105.78 mole/m3 &Z[ 166.23 mole/m3 

O]^U 360 K &ZX 116.17 mole/m3 

OU 293 K ∆S 3 atm 

 

4.4 Estimation results and discussion 

Ethylene concentration result is given in Figure 4.4. Based on the figure, good 

estimation performances were obtained when the hybrid fuzzy-SMO was applied. It 

reacted fast towards the actual value to provide accurate estimation in both with and 

without noise conditions for estimating the ethylene concentrations. In addition, there 

were no oscillations or offsets found during the estimation, thus giving a smooth and 

accurate estimation. Regarding the rate of convergence, however, we could not precisely 

define the exact convergence time since fuzzy logic has been developed based on the ‘IF 

and THEN’ rules where the ‘IF and THEN’ scenario will only take place after SMO has 

been implemented at certain time, which is a priori unpredictable.  

On the other hand, SMO was also able to provide satisfactory estimation when noise 

is not present in the process. It managed to adjust the estimation value towards the actual 

value starting from 200 seconds onwards. However, this was not the case once noise has 
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been added. It oscillated and was unable to estimate the ethylene concentration even after 

running the simulation for 1000 seconds. Similar conditions have been observed when 

fuzzy logic and SMO-proportional were used respectively. Fuzzy logic has been able to 

estimate the concentration when the noise was not included in the process, while 

oscillations are found during noisy conditions. As for SMO-proportional, the oscillations 

are very high and deviated far from the actual values. Furthermore, when ELO is applied, 

it was unable to estimate the ethylene concentration for both conditions. Oscillations are 

observed with high discrepancies found as compared to the actual values.   

The results of butene concentration estimation are illustrated in Figure 4.5. The 

proposed hybrid fuzzy-SMO provides better estimation performances compared to other 

observers.  Only fuzzy-SMO has been able to estimate the butene concentration in both 

with and without noise conditions. It has shown faster estimation and no discrepancies 

from the actual value were observed. Moreover, there were no oscillations and offsets 

found during the estimation. 

 For SMO and fuzzy logic, both were able to estimate the butene concentration when 

noise has not been included in the polymerization process. However, the estimated values 

tend to oscillate and deviate from the actual value once the noise was added. This proved 

that the single observer was unable to handle noise satisfactorily for the ethylene 

polymerization process. Furthermore, SMO-proportional and ELO were unable to 

estimate the butene concentration for both the conditions. SMO-proportional has been 

able to provide close estimation values with minor oscillation for the case without noise 

and high oscillations pattern are observed during noisy condition. Similarly, ELO has 

shown oscillations for both cases and was not able in estimating the butene concentration. 

In estimating the melt flow index, fuzzy-SMO was again the best observer that was 

able to provide satisfactory estimation performances regardless of any condition in the 
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ethylene polymerization process. The other observers, unfortunately, did not perform well 

and were unable to estimate the melt index. SMO, fuzzy logic and SMO-proportional 

have provided oscillation during the estimation with SMO-proportional showing the 

worst oscillation patterns. Besides that, offsets are observed when ELO was used as the 

observer. The results are given in Figure 4.6.   

In general, for all the parameters estimated, the hybrid fuzzy-SMO has shown the best 

results especially in terms of noise handling. There were no discrepancies between the 

actual and the estimated values when the hybrid fuzzy-SMO had been applied to estimate 

the three critical parameters in the ethylene polymerization process. In addition, fast and 

accurate results have been observed during the estimation without any oscillation or 

offsets. Single SMO or fuzzy logic might be applied as the estimator to the system if noise 

were not available in the process. However, this is not applicable especially in the 

practical point of view where the real processes are incorporated with many sorts of 

disturbances and noise. Therefore, the proposed hybrid fuzzy-SMO is the best approach 

to be implemented in the ethylene polymerization process specially to cater the noise 

effect in the process. Furthermore, it is capable to estimate several parameters without 

significant adjustment in the structure of the observer. 

In conclusion, the proposed hybrid fuzzy-SMO has provided accurate, fast and stable 

estimation despite noisy conditions compared to the single SMO, fuzzy logic, ELO and 

SMO-proportional observers in predicting three parameters namely ethylene, butene 

concentrations and melt flow index in an ethylene polymerization process. It is also 

unique since it can be adjusted to estimate several parameters by only adding the related 

process model without redesigning the structure of the whole observer. The hybrid fuzzy-

SMO is also easy to compute by manipulating the estimation error and the change of error 

in the fuzzy IF-THEN rules.   
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Type of observer Condition without noise Condition with noise 

a) Fuzzy-SMO 

  

Figure 4.4: Ethylene concentration estimation using various observers namely a) Fuzzy-SMO, b) SMO, c) Fuzzy logic, d) SMO-proportional and e) ELO 
for both conditions with and without noise in the process 
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b) SMO 

 

 

c) Fuzzy Logic 

  

Figure 4.4 (continued) 
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d) SMO-Proportional 

  

e) ELO 

  

Figure 4.4 (continued)
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Type of observer Condition without noise Condition with noise 

a) Fuzzy-SMO 

  

Figure 4.5: Butene concentration estimation using various observers namely a) Fuzzy-SMO, b) SMO, c) Fuzzy logic, d) SMO-proportional and e) ELO for both 
conditions with and without noise in the process 
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b) SMO 

  

c) Fuzzy Logic 

  

Figure 4.5 (continued) 
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d) SMO-Proportional 

  

e) ELO 

  

Figure 4.5 (continued) 
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Type of observer Condition without noise Condition with noise 

a) Fuzzy-SMO 

  

Figure 4.6: Melt index estimation using various observers namely a) Fuzzy-SMO, b) SMO, c) Fuzzy logic, d) SMO-proportional and e) ELO for both 
conditions with and without noise in the process 
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b) SMO 

  

c) Fuzzy Logic 

  

Figure 4.6 (continued) 
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d) SMO-Proportional 

  

e) ELO 

  

Figure 4.6 (continued)
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CHAPTER 5: EMBEDDED INTEGRATOR MODEL PREDICTIVE CONTROL  

 

5.1 Chapter overview 

The design of the embedded integrator model predictive control (MPC) is emphasized 

in this fifth chapter of the thesis. Three cases of the MPC design will be explained starting 

from the formulation until the performance testing. It has been coupled with the hybrid 

observer for enhancing overall control of the system and is compared with the 

proportional-integral-derivative (PID) controller, MPC without integrator and MPC 

without observer. All results are compiled and analyzed. 

5.2 Design of embedded integrator model predictive control (MPC) 

Model predictive control (MPC) in this research is designed in three cases specifically 

MPC with known initial state without constraints, MPC with unknown initial state 

without constraints and MPC with unknown initial state with constraints. The first case 

is an ideal case while the second and third cases are more practical. The difference 

between the second and third cases is that the second case is practical, but it is limited to 

the non- existence of constraints.   

It is also incorporated with an integrator to ensure offset-free control especially for 

applying in the multiple-input multiple-output (MIMO) system. This is done by replacing 

! with ∆! in the state space formulation as a new notation to represent the integral factor. 

∆! acts as the integral effects that enhances the MPC designed by helping in eliminating 

offsets (Wang, 2009). Therefore, the embedded integrator MPC is better than the ordinary 

MPC as it can reduce the steady state error, which can decrease the set points deviation 

closest possible to zero (Perry & Green, 2008).  
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Besides that, the design considered also the measured state estimated from the hybrid 

fuzzy-SMO emphasized in Chapter 4. This will help to improve the performance of the 

MPC since unknown states in the plant tend to disrupt the process and may result in 

unsatisfactory performances. Besides that, the reason for adding an observer is to directly 

measure the state variable and as a replacement to a sensor in a control system (Ogata, 

1995). The embedded integrator MPC is applied to control the temperature in the ethylene 

polymerization reactor at its desired setpoint. The schematic design diagram is illustrated 

in Figure 5.1. The figure can be separated into three elements namely the ethylene 

polymerization process, the hybrid fuzzy-SMO and the MPC controller. There are many 

unknowns that can eventually arise from the disturbances and affected the parameters in 

the reactor thus the hybrid observer will be used to estimate the parameters and convey 

the information to the controller during the design. The controller, on the other hand, 

consists of the prediction model that has been modified to add the integral factor for 

offset-free guaranteed. It is applied to control the reactor temperature at the desired 

setpoint. 

 
Figure 5.1: The schematic diagram of embedded integrator MPC design 
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5.2.1 Case 1: MPC with known initial state and without constraint 

The MPC with known initial state is the ideal case and has been designed using the 

state space as the prediction model. This means that the state variable at the current time 

is always being used for future prediction (Camacho & Bordons, 2004). The state space 

model is determined using the system identification with details have been explained in 

section 4.2 of Chapter 4. The augmented state space model will also be used in this MPC, 

which is in the form of matrix #$, %$ and &$. The discrete model components are 

described in Eq. (5.1) and Eq. (5.2). Here, !(() is the manipulated or input variable, 

*(()	is the process output and ,$(() is the state variable vector (Wang & Young, 2006). 

,$ ( + 1 = 	#$,$ ( + %$!(()        (5.1) 

* ( = 	&$,$ ( 		          (5.2) 

The input !(() is assumed not to be affected to the output * (  at the same time based 

on receding horizon principle where current plant information is needed for the prediction 

and control. Taking difference equations on both sides of Eq. (5.1) gives Eq. (5.3). 

,$ ( + 1 −	,$ ( = 	#$(,$ ( −	,$ ( − 1 + %$(! ( − ! ( − 1 ) (5.3) 

With the increment of ,$ and !((), Eq. (5.4), Eq. (5.5) and Eq. (5.6) are achieved 

(Liuping Wang & Young, 2006). 

∆,$ ( + 1 = ,$ ( + 1 − ,$ (            (5.4) 

∆,$ ( = ,$ ( − ,$ ( − 1         (5.5) 

∆! ( = ! ( − ! ( − 1         (5.6) 
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Merging both the Eq. (5.3) and Eq. (5.2), Eq. (5.7) is obtained which is the difference 

state space equation with integral factor, ∆! (  as the input (Wang & Young, 2006). 

∆,$ ( + 1 = #$∆,$ ( − %$∆! (        (5.7) 

Then, ∆,$(() is connected to * (  and a new state variable vector is introduced as 

Eq. (5.8) and superscript 1 is a transpose matrix notation (Wang & Young, 2006). 

, ( = 	 ∆,$ ( 2	*(() 		2        (5.8) 

Note that, 

 * ( + 1 − * ( = 	&$(,$ ( + 1) − ,$ (  

																														= 	&$∆,$ ( + 1        

																														= 	&$#$∆,$ ( + &$%$∆! ( 	       (5.9) 

Both Eq. (5.8) and Eq. (5.9) are combined to form Eq. (5.10) and Eq. (5.11) to be able 

to apply to MIMO system. 3$ = 0	0… 	0
67

  and 8 is the identity matrix suited for the 

system. 

∆,$ ( + 1
*(( + 1)

9(:;<)

=
#$ 3$2

&$#$ 8

=>

∆,$ (
*(()

9(:)

+	
%$
&$%$

?>

∆!(()     (5.10) 

* ( = 	 3$ 8

@>
∆,$ (
*(()

        (5.11) 
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Once the formulation of the new augmented model has been completed, the predictive 

control system will be designed. It is to predict the output and compute the control signal. 

Optimization is one of the key factors that must be considered in the MPC design. The 

sampling instant is assumed to be (A, where (A > 0	and ,((A) is the state variable that is 

available throughout the measurement. The future control trajectory is given in Eq. (5.12) 

with control horizon,	CD that reflects the number of parameters for the trajectory (Wang 

& Young, 2006). 

∆!((A), ∆!((A + 1), … . , ∆!((A + CD − 1)      (5.12) 

Future state variables are predicted according to number of CG which is the prediction 

horizon as shown in Eq. (5.13). Here, , (A + H (A  is the predicted state variable at  

(A + H	with known ((A).  

, (A + 1 (A , , (A + 2 (A , … , , (A + H (A , … , , (A + CG (A     (5.13) 

Based on state space model parameters #$, %$ and &$, the future state variables are 

calculated using the future control parameters as given in Eq. (5.14) (Wang & Young, 

2006). 

, (A + 1 (A = #$, (A +	%$∆!	((A)  

, (A + 2 (A = 	#$, (A + 1 (A +	%$∆!	 (A + 	1   

																								= 	#$
J, (A +	#$%$∆!	 (A +	%$∆!((A + 1)    

                      ⋮  

, (A + CG (A = 	#$
LM, (A + #$

LMN7%$∆!	 (A +	#$
LMNO%$∆!((A + 1) + ⋯+

																																		#$
LMQLR%$∆!((A + CD − 1)	       (5.14) 
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The predicted output is achieved and given in Eq. (5.15). 

* (A + 1 (A = &$#$, (A +	&$%$∆!	((A)  

* (A + 2 (A = &$#$
J,((A) +	&$#$%$∆!((A) + &$%$∆!	 (A + 	1   

					* (A + 3 (A = 	&$#$
T, (A +	&$#$

J%$∆!	 (A +	&$#$%$∆!((A + 1) +

&$%$∆!	 (A + 	2      

                      ⋮  

* (A + CG (A = &$#$
LM, (A + &$#$

LMN7%$∆!	 (A +	&$#$
LMNO%$∆!((A +

1) + ⋯+ %$∆!((A + CD − 1)	         (5.15) 

All predicted variables are formulated in terms of current state variable information 

,((A) and future control movement ∆!((A + U), where U = 0, 1, …	CD − 1. Then, the 

vectors are defined as Eq. (5.16) and Eq. (5.17).  

V = 	 * (A + 1 (A , * (A + 2 (A , … , * (A + 3 (A , … , * (A + CG (A
2
  (5.16) 

∆! = ∆!((A)	∆!((A + 1)∆!((A + 2)…	∆!((A + CD − 1)
2   (5.17) 

Combining both Eq. (5.15) and Eq. (5.16) with (5.17), Eq. (5.18) is obtained. 

V = W	,((A) + ∆!          (5.18) 
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Here, 

W = 	

&$#$
&$#$

J

&$#$
T

⋮
&$#$

LM

	; 	∅ =

&$%$ 0 0 … 		0
&$#$%$ &$%$ 0 … 		0

&$#$
J%$ &$#$%$ &$%$ … 0

⋮
&$#$

LMN7%$ &$#$
LMNO%$ &$#$

LMNZ%$ … &$#$
LMQLR

  (5.19) 

As it is known, the model predictive control is to predict the output by minimizing the 

cost function, [ to be as close as possible to the desired set point or reference trajectory. 

The cost function, [ given by Eq. (5.20) where the first term is to minimize the errors 

between predicted output and set points while the second term is the size of the control 

parameter, ∆! when it was minimized (Wang, 2009).  

 

																			[ = \] − V
2 \] − V +	∆^2\	∆^                            (5.20) 

Here, \	 = 	 _̀ 8LR×LR and _̀  is the tuning parameters for the desired closed loop 

performances. Whereas \] is a vector that content the setpoint information. The optimal 

control parameter, ∆^ can be found by using Eq. (5.17) and the cost function can be 

denoted by Eq. (5.18).  

[ = \] − W,((A)
2 \] − W,((A) − 	2∆^2∅2(\] − W,((A)) + ∆^

2(∅2∅ + \	)∆^ 

 (5.21) 

 

      First Second term 
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Then, take bc
b∆d

= 0, the optimal solution of the cost function is as follows: 

∆^ = (∅2∅ + \	)Q<∅2(\] − W,((A))       (5.22) 

By connecting Eq. (5.22) to the set point signal, _((A) and state variable, ,((A) the 

optimal solution for finding the control parameter, ∆! is given below: 

∆^ = ∅2∅ + \	 Q<∅2(\]_((A) − W,((A))      (5.23) 

5.2.2 Case 2: MPC with unknown initial state and without constraint 

The second case of MPC is the unknown initial state without constraints and is 

designed similarly with case 1, but now the proposed hybrid fuzzy-SMO is included in 

the design for estimating the unknown states. Therefore, the earlier derivations and steps 

for the MPC and hybrid observer designs will not be repeated in this section. Similar 

observer equation is applied with small modification as to couple with the MPC that is 

given in Eq. (5.24) below.   

,	(() = #$,(( − 1) + %$!(( − 1) + efghijk(lm)     (5.24) 

Then, by comparing both Eq. (5.1) and (5.3) with Eq. (5.24), it is realized that the 

observer gain, efg is added here as to include the state estimation framework in the early 

stage of the MPC formulation. This is to ensure that the MPC will always get the current, 

or the updated states before proceeding with the control. The performances of this second 

type of MPC will also be observed based on similar temperature setpoint control as the 

previous case 1 for comparison. 
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5.2.3 Case 3: MPC with unknown initial state and with constraint 

The third type of the controller design is the MPC with unknown initial state and with 

inequality constraints. It is similar to the case 2 but with additional of constraints. 

Therefore, only the equations related to constraints are presented in this section. 

Hik
<

J
∆^2n, +	o2∆^         (5.25) 

The value of n and o are found by taking the last two terms of Eq. (5.21) by setting 

the first term constant, which is denoted in Eq. (5.20) (Wang & Young, 2006). 

 

	[ = −	2∆^2∅2(\] − W,((A)) + ∆^
2(∅2∅ + \	)∆^                              (5.26) 

Note that, Eq. (5.25) is modified to suit Eq. (5.20) by dividing those terms (denoted by 

p and q) by 2 to obtain Eq. (5.27).  

[ = −∅2(\] − W,((A)
2∆^ +

<

J
∆^2(∅2∅ + \	)∆^  

[ =
<

J
∆^2n +	o2∆^         (5.27) 

Comparing both Eq. (5.25) and (5.27), yields the value of n and o as follows: 

n = (∅2∅ + \	)∆^                    (5.28) 

o = −	∅2(\] − W,((A))                    (5.29) 

  

p q 
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Three types of constraint are taken into account specifically the constraints on the 

control variable of incremental variations (∆!$A6 ≤ ∆!(() ≤ ∆!$s9), constraints on the 

amplitude of the control variable (!$A6 ≤ !(() ≤ !$s9), and output constraints 

(*$A6 ≤ *(() ≤ *$s9). The output constraints, however, can be defined as the ‘soft’ 

constraints. ‘Soft’ constraints are constraints that are modified with slack variable to avoid 

constraints conflict occurrence (Liuping Wang & Young, 2006). At time instance, the 

predictive control scheme predicts the future. The future samples by considering the three 

first steps, ∆!((A), ∆!((A + 1), ∆!((A + 2) are obtained as Eqs. (5.30), (5.31) and (5.32) 

(Liuping Wang & Young, 2006). 

∆!$A6 ≤ ∆!(((A) ≤ ∆!$s9      (5.30) 

∆!$A6 ≤ ∆!((A + 1) ≤ ∆!$s9      (5.31) 

∆!$A6 ≤ ∆!((A + 2) ≤ ∆!$s9      (5.32) 

Now, the three cases of embedded integrator MPC has been completely developed. 

Tuning is also required to find the optimal control performances (Mahramian, Taheri, & 

Haeri, 2007; Shridhar & Cooper, 1997). This is done by setting the temperature at a 

constant value and varying the prediction horizon (CG), the control horizon (CD) and the 

tuning parameters for close loop (_̀ ) (Ibrehem, 2011; Kiashemshaki, Mostoufi, & 

Sotudeh-Gharebagh, 2006). The best value of those parameters are CG= 30, CD= 10 and 

_̀ = 100 that provides the least oscillation and overshoot.  
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5.3 Reactor temperature control using the embedded integrator MPC 

It is well-known that temperature is one of the standard control variables in the industry 

that will significantly affect the quality of the product (Ali et al., 2003; Van Brempt et al., 

2001). In the polymerization process, the heat removal is limited due to constraints on the 

cooling water flow rate. The temperature of the reactor will go up high when the cooling 

water flow rate is saturated; thus the monomer feed has to be reduced manually. The high 

temperature can cause catalyst degradation and at the same time affect the process (Seki 

et al., 2001). In addition, the reduction of the monomer will lead to the reduction of the 

production rate. Therefore, temperature must be controlled precisely to maintain the 

stability and production rate of the process (Seki et al., 2001).  

Furthermore, constraints are added as well in the process since in real situation, all 

processes are subjected to some form of constraints or another (Camacho & Bordons, 

2004). For example, actuators have a limited slew rate and range of action.  In practice, 

the operating points of plants are determined to satisfy economic goals and lie at the 

intersection of certain constraints. The control system usually operates close to the limits 

and constraint violations are likely to occur (Bequette, 2003). Therefore, predictive 

control systems have to anticipate constraint violations and correct them in an appropriate 

way. A plant that failed to consider constraint on manipulated variables may result in 

higher values of the objective function and bad performances whereas violating 

constraints on the controlled variables tend to be costly and dangerous as it could cause 

damage to equipment and losses in production (Bequette, 2003). 

Case 1 has been designed for verification purpose to give insight into the importance 

of the state observer. This ideal case is developed with known initial state and without 

specifying any constraint. The value of ∆! is calculated and the initial condition is refined. 

This is a simple simulation case to observe the readiness of the MPC. It will then be 
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extended in case 2 by adding an observer or a state estimator without specifying the initial 

condition. The observer is applied to estimate the unknown states. It is a replacement of 

sensors in control systems which are rather expensive in nature. In addition, the observer 

also helps to measure how well the internal states of a system may react by knowing its 

external outputs (Ogata, 1995).  

Next, I have developed the case 3, which is also a practical case. It was developed 

without specifying the initial condition and adding inequality constraints. This case is a 

practical case as all processes are subjected to constraints and the initial state is unknown. 

In this case, inequality constraints are added and the objective function is formulated 

using quadratic programming. The cases are then evaluated by changing the temperature 

setpoint from 450C to 550C and 750C (Ibrehem, 2011; Kiashemshaki et al., 2006) with 

and without noise as well as disturbance conditions.  

The temperature 450C is chosen since the reaction will begin from within 450C and 

obtain the optimum production rate at around 600C. Therefore, 550C that is in the range, 

has been chosen as the second setpoint (Ibrehem, 2011; Kiashemshaki et al., 2006). In 

addition, I have also considered the pilot plant of the polymerization reactor that will be 

used as the validation benchmark, which operates at the temperature ranging from 700C 

to 800C. Because of this 750C is taken as the final setpoint for the performance testing. 

Setpoint tracking is important as it may need to be set at different desired condition and 

if MPC or controller is not able to act towards this changes, then it will disrupt the whole 

process and can cause problems (Seborg, Mellichamp, Edgar, & Doyle III, 2010).  
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5.4 MPC performances and discussions 

All three cases using the MPC have shown good results by settling to the desired 

setpoints in a short time even in the presence of noise and disturbances in the process. 

The results are given in Figures 5.2 and 5.3. Case 1 showed the worst results with higher 

overshoot but without oscillation since the observer is not included in the design. The 

unknown states are unable to be estimated thus difficult for the controller to reject the 

overshoot. As for case 2, when the observer is added, the states are estimated before the 

control signal value is computed. Therefore, the overshoot is reduced and a better 

temperature control can be observed compared to the case 1. However, when disturbances 

are added up to the worst scenario, Case 2 has shown unusual behaviour of the 

temperature that dropped to -3000C. Therefore, it is not a reliable controller compared to 

the proposed Case 3. Furthermore, case 3 has the best results, with small overshoot and 

without oscillation.  

The MPC controllers are also compared based on the merit score of error, namely ISE 

(Integral Squared Error) that penalized large error responses, IAE (Integral Absolute 

Error) that considered all errors in a uniform manner and ITAE (Integral-Time weighted 

Absolute Error) that penalize long time errors that occurred in the response. The score is 

tabulated in Tables 5.1 and 5.2 for with and without noise by considering the temperature 

setpoint equal to 750C as an example. We have chosen one out of three setpoints 

temperature just to show the effectiveness of the controller to handle noise and 

disturbances.
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Set Point Case 1 (without observer, no constraint) Case 2 (with observer, no constraint) Case 3 (with observer and constraints) 

 

!"# = 45°( 

 

   

 

!"# = 55°( 

 

  
 

 Figure 5.2: The effect of set points to MPC for without noise/disturbance conditions 
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 Figure 5.2 (continued) 
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Set Point Case 1 (without observer, no constraint) Case 2 (with observer, no constraint) Case 3 (with observer and constraints) 
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Figure 5.3: The effect of set points to MPC for with noise/disturbance conditions Univ
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 Figure 5.3 (continued)
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Table 5.1: The Merit score for the MPC without noise condition 

 ITAE IAE ISE 

Case 1 8.624e4 1742 3.066e4 

Case 2 5069 102.4 105.9 

Case 3 943.6 19.06 3.671 

 

Table 5.2: The Merit score for the MPC with noise/ disturbance conditions 

 ITAE IAE ISE 

Case 1 1.45e4 293 867.3 

Case 2 5069 102.4 105.9 

Case 3 1356 27.4 7.582 

 

Based on the ITAE, IAE and ISE values tabulated in Table 5.1 and Table 5.2, it is 

proven that the best controller is the embedded integrator MPC for case 3, which is 

incorporated with the hybrid observer and constraints. This also revealed that MPC is able 

to handle constraints efficiently.  Besides that, when the observer is combined with the 

MPC, the observer will estimate the states (including the disturbances and noise) thus 

giving a smooth temperature control. 

In addition, the proposed MPC has also been compared with MPC without both 

observer and integrator; MPC with observer only; and PID controller to prove its 

performances. Results are illustrated in Figures 5.4 and 5.5 for various setpoints with and 

without noise conditions respectively. Based on the figures, PID has shown higher 

overshoot with no oscillation and the setpoint are achieved at an average of 25s when 

noise is not available. However, when noise is added to the system, oscillations are 

Controller 
Merit 

Controller 
Merit 
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observed and the PID controller is unable to handle the conditions and the desired setpoint 

could not be achieved. As for MPC without both the observer and integrator, large offsets 

are seen and the controller is unable to reach the setpoint regardless the conditions in the 

process. Those results are then being improved by adding the observer in the MPC design. 

The observer will first estimate the unknown states, which include the noise and 

disturbances and conveys the information to the MPC controller to obtain better 

performance. Here, we can observe the removal of offsets that due to the integral factor 

or integrator added in the formulation. Therefore, a guaranteed offset-free control has 

been accomplished.  

When the MPC is equipped with both the observer and integrator, small overshoot 

with no oscillation have been observed. The setpoints are also achieved faster with an 

average of 10s for every setpoint tested. The merit scores of error is also given in Tables 

5.3 and 5.4. Small merit score can be seen from the proposed MPC compared to the other 

controllers. Therefore, it can be summarized that for all the setpoints, MPC with 

embedded integrator performed better than the other controllers by being able to reach 

the desired setpoints or the steady state conditions faster and more accurate with less 

overshoot and no oscillation. Besides that, all the results (Figure 5.4 and Figure 5.5) and 

merit scores (Table 5.3 and Table 5.4) given have proved that the most appropriate 

controller for controlling the temperature for the ethylene polymerization process, in this 

case, is the proposed MPC with embedded integrator.   
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Set point PID MPC (without observer and 
integrator) 

MPC (with observer, without 
integrator) 

MPC (with both observer and 
integrator) 
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= 55°( 

 

 

    

Figure 5.4: Comparison between proposed MPC, MPC without integrator, MPC without observer and integrator as well as PID (without noise 
condition) 

 Univ
ers

ity
 of

 M
ala

ya



 

116 

!"#
= 75°( 

 

 

 
    

Figure 5.4 (continued) 

  

Univ
ers

ity
 of

 M
ala

ya



 

117 

Set 
point 

PID MPC (without observer and 
integrator) 

MPC (with observer, without 
integrator) 

MPC (with both observer and 
integrator) 
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Figure 5.5: Comparison between proposed MPC, MPC without integrator, MPC without observer and integrator as well as PID (with noise 

condition) 
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Figure 5.5 (continued)
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Table 5.3: The Merit score for the controllers without noise condition 

 ITAE IAE ISE 

PID 2897 282.2 4954 

MPC (without observer and integrator) 1.358e6 2.743e4 7.602e6 
MPC (with observer, without 

integrator) 
1.438e5 2904 8.519e4 

MPC (with both observer and 
integrator) 

943.6 19.06 3.671 

 

Table 5.4: The Merit score for the controllers with noise/ disturbance conditions 

 ITAE IAE ISE 

PID 6482 341.3 5068 

MPC (without observer and integrator) 4.531e6 9.153e4 8.462e7 
MPC (with observer, without 

integrator) 
1.888e6 3.813e4 1.469e7 

MPC (with both observer and 
integrator) 

1356 27.4 7.582 
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CHAPTER 6: VALIDATION USING EXPERIMENTAL DATA 

 

6.1 Chapter overview 

In this sixth chapter of the thesis, the validation of the hybrid observer is discussed. 

Experimental data from a real polymerization pilot plant is compared with the simulated 

plant. The validation benchmark, which is the fluidized bed reactor is introduced and the 

data are obtained from two experimental runs. All results are compared and analyzed.  

6.2 Validation Benchmark 

Validation and verification are the terminologies used to describe or to confirm 

whether the simulation code is adequately representing the process model or algorithms. 

Validation is a process of deciding that the model accurately represents the conceptual 

description while verification is a process of determining that the model accurately 

represents the conceptual based on the real scenario or situation on the perception of the 

model used (Trucano, Swiler, Igusa, Oberkampf, & Pilch, 2006). Those concepts are 

often applied in many fields, including process system engineering to verify the precision 

of a simulation code compared to the pilot or real plant data in order to ensure the 

capability of the simulation code designed by the researcher. In this work, the similar 

concept is adapted to define the accuracy of the simulation based hybrid observer design 

compared to the data obtained from a polymerization pilot plant.  

The benchmark considered in this validation procedure is the pilot-scale fluidized bed 

catalytic reactor for production of polyolefin as depicted in Figure 6.1. This unit consists 

of the fluidized bed and a disengagement section, where the bed has the height of 150 cm 

and diameter of 10 cm, while the volume of the disengagement section is 652 cm3. The 

reactor contains a specially-fabricated catalyst unit that is located at about 9cm above the 
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metallic mesh plate distributor. Besides that, the polymer powder is retained in the bed 

for maintaining the good mechanical stability. The temperature of the reactor is kept 

between 700C - 800C to allow the reaction and for obtaining best product quality. In 

addition, a temperature sensor is installed to capture the profile and is located vertically 

at various points in the pilot plant.  If the temperature of the gas mixture is high, the 

remaining mixture will be directed to the heat exchanger to cool it down. On the other 

hand, the overall system pressure is stabilized by using an air plunge compressor and the 

fluctuations of the pressure are balanced by the aid of a buffer container in the form of 

nitrogen (!"). A control valve is applied to regulate the inlet gas flow circulation within 

the reactor. The reactor is designed to tolerate pressure up to 30 bar. Thus, a relief valve 

is installed to prevent excess pressure buildup. 

 

Figure 6.1: Pilot-scale fluidized bed catalytic reactor 

The experiment will begin when the gas is fed at the base reaction zone of the reactor. 

The feedstock contains nitrogen (!"), hydrogen (#") and the monomer, where the feed 

gases also act as the heat transferring agent. !" acts as the reactant carrier gas while #" 

acts as polymer chain disassembly gas. Then, the catalyst (Ziegler-Natta) is fed near top 

of the reactor and it will move downwards to start the reaction for producing the product. 
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A co-catalyst is also added to the reaction mixture for preserving the moisture levels in 

the reactor to activate the catalyst. The co-catalyst flow could be adjusted between regular 

and fast speed depending on the amount needed with the help of a control valve. Polymer 

will grow on the catalyst by increasing its weights and sizes and particle segregation will 

then occur in the reactor based on the difference in the weight. Next, the polymer particles 

are continuously withdrawn through the discharge line located at the base of the reactor 

just close to the distributor. Overall conversion can be as high as 98% provided proper 

solid fluidization processes are practiced. In order to maintain the proper fluidization, 

sufficient recycle and make-up gas flowrate must be sustained through the distributor. 

Finally, the unreacted and unused gases are recycled to a cyclone, which consists of four 

different filters. The filters are also applied to remove the fine grain particles from the 

reactor. In addition, contamination is eliminated by keeping the Ziegler-Natta catalyst 

above the atmospheric pressure level while other gases traces are removed by using 

purifiers. Furthermore, the separation of the unreacted gases and the solid particles takes 

place in the disengaging region. The schematic diagram is illustrated in Figure 6.2.  

 

Figure 6.2: Schematic diagram of the pilot-scale fluidized bed catalytic reactor 
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Data obtained from the experimental will be saved in the data acquisition software 

system. It is worth to note that due to the complex nature of the pilot plant especially in 

dealing with the co-catalyst, the process of obtaining reliable sets of data is time 

consuming and costly. The monomer concentration values are extracted from the data and 

used to validate the proposed hybrid fuzzy-SMO. In addition, the MPC controller has not 

been validated since there were no on-line setup for MPC controller in the pilot-scale 

fluidized bed catalytic reactor.  

6.3 Fuzzy-SMO validation  

For this validation, the data are obtained from two historical data obtained from the 

pilot-scale fluidized bed catalytic reactor. The monomer concentration values were taken 

between 15-30 minutes within 2 hours of experiment as tabulated in Table 6.1 and Table 

6.2. The value of the time in the tables are in hour while the concentration is in weight 

(%) and have been used to compare with the simulated plant. The validation will be 

performed once the design and analysis of the hybrid fuzzy-SMO observer in the 

simulation environment have been completed. it is to demonstrate the effectiveness of the 

proposed observer in estimating the real process parameter. This procedure is given in 

Figure 6.3. The monomer concentrations that have been extracted from the real pilot plant 

data will be used as the actual value in the validation. It first value is taken as the reference 

value and the proposed hybrid fuzzy-SMO is reapplied to estimate the parameter. The 

new estimated values are then compared with the actual values obtained from the pilot 

plant.  

The validation has also considered the comparison of the fuzzy-SMO with the single 

SMO and fuzzy logic to highlight its advantages. The results of the validation are 

observed and discussed. In normal validation procedure, the basic check of the real plant 

versus the simulation will be performed before validating the observer or the controller. 
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However, the simulated plant has been modified to meet the characteristics of the 

validation benchmark provided, thus the basic check is not required (Trucano et al., 2006). 

In addition, there are no on-line data available for melt flow index (MFI) and the co-

monomer concentration therefore the monomer concentration will be used as the 

indication for validating the proposed hybrid fuzzy-SMO.  

Table 6.1: Monomer concentration from first experiment 

Time (hour) Monomer concentration (wt %) 
0.0 71.4806 
0.4 70.3533 
0.6 69.7008 
0.7 63.3154 
0.9 60.0068 
1.0 58.7446 
1.2 56.0126 
1.3 56.9316 
1.5 56.9201 
1.7 56.3201 
1.9 55.4752 
2.3 52.0061 

 

 

Table 6.2: Monomer concentration from second experiment 

Time (hour) Monomer concentration (wt%) 
0.0 64.9458 
0.3 64.4089 
0.4 64.7252 
0.6 63.7534 
0.8 60.3486 
1.0 52.7796 
1.2 43.7147 
1.5 37.7083 
1.9 33.7533 
1.9 33.8104 
2.1 31.2704 
2.3 30.2726 
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6.4 Validation results and discussions 

The validation results are illustrated in Figure 6.4 and 6.5 for the first and second run 

of the experiments respectively. Based on Figure 6.4, the single sliding mode observer 

(SMO) and fuzzy logic have not able to estimate the monomer concentration accurately 

compared to the hybrid fuzzy-SMO. Fuzzy-SMO has estimated the monomer 

concentration the closest possible to the actual plant value. However, some reading is not 

able to be accurately estimated due to the modeling discrepancies between the real pilot 

plant and the simulation framework.  

This situation is also related to the choice of the validation benchmark (Trucano et al., 

2006). The difference between the benchmark and the simulation will lead to the 

inaccuracies of the estimation. For this case, the simulated plant is a well-mixed process 

while the validation benchmark is the two-phase polymerization process. However, to 

increase the accuracy, the simulated plant has been modified by changing the input 

parameters as tabulated in Table 6.3. The validation benchmark need not be exactly 

similar to the simulation model since adjustment can be made to the programming to align 

the actual and the estimated value (Trucano et al., 2006). Unfortunately, due to this 

reason, small discrepancies are obtained from the results. 

Table 6.3: Input parameters modified for validation purposes 

Parameter Values Parameter Values 

!"# 151 mole/s !"$ 3.92 mole/s 

!"% 4 mole/s !"& 1.78 mole/s 

!' 1.08 kg/h ∆) 20 atm 

*+ 348 K   
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A similar situation is also observed for the validation using the second experimental 

data from the pilot plant as in Figure 6.5. Here, the hybrid fuzzy-SMO has managed to 

estimate the concentration with acceptable result compared to the single SMO and fuzzy 

logic. Besides that, SMO and Fuzzy logic alone in both Figure 6.4 and 6.5 have shown 

huge deviations but when it is combined, reasonable results are observed. SMO has the 

ability to generate the sliding motion on the error between the actual and the estimated 

value and if the error is big, huge deviations are observed. As for fuzzy logic, the huge 

deviations exist because of its priori unpredictable IF and THEN rules that unable to 

ensure the convergence of the estimation. These rules will only take place after certain 

time and is based on trial and error procedure dependent of the system. Besides that, the 

combination is based on the errors from the single SMO that have been manipulated as 

the fuzzy rules and helped to reduce the deviations to give better result. This is the 

uniqueness of the proposed hybrid observer, which did not require complicated design 

formulation to obtain good results. 
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Type of observer Validation performances 

Sliding Mode Observer (SMO) 

 

Fuzzy Logic 

 

Fuzzy-SMO 

 

Figure 6.4: Validation result for the first experiment run  
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Type of observer Validation performances 

Sliding Mode Observer (SMO) 

 

Fuzzy Logic 

 

Fuzzy-SMO 

 

Figure 6.5: Validation result for the second experiment run  
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

 

7.1 Chapter overview 

In this final chapter of the thesis, the work is summarized and conclusions are given 

together with the contributions of the research. Several recommendations are also 

provided for the future work related to the observer and control in the polymerization 

field.  

7.2 Concluding remarks and contributions 

In conclusion, a hybrid fuzzy-sliding mode observer (fuzzy-SMO) has been designed 

to estimate unknown parameters in the ethylene polymerization reactor. It was important 

to identify the unknowns to avoid disruptions and failures in the process. Sensors have 

been installed in the plant for measuring the parameters, however they were expensive 

and unreliable to estimate all the unknowns especially those that have appeared 

unexpectedly due to disturbances and mismatches as explained in Chapter 1, thus, a better 

approach such as an observer was introduced. Due to certain limitations of the single and 

hybrid observers available in the literature at present including low rate of estimation, less 

accuracy and unable to estimate many parameters at once the hybrid fuzzy-SMO has been 

proposed. Good performances have been obtained from the proposed observer in 

estimating the parameters, which provided accurate, fast and stable estimation in the 

system.   

The step by step formulation of the hybrid fuzzy-SMO that combined the conventional 

observer (SMO) with and artificial intelligence (AI) elements (fuzzy logic) was 

demonstrated in Chapter 4, all of which satisfied the first objective of this research. It was 

unique since fuzzy logic has never been combined with SMO before and this type of 
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combination was new in the polymerization process application, thus a novel contribution 

has emerged. Furthermore, it was also designed in such a way that the formulation could 

be modified to estimate many parameters without redesigning the whole structure of the 

observer. Three parameters were estimated namely the ethylene concentration, butene 

concentration and melt flow index (MFI) by adding only the equation related to the 

parameter in the observer’s formulation. This was another novel contribution since 

observers available in the literature as emphasized in Chapter 2 have usually being applied 

to estimate specific parameter and if more parameters are needed to be estimated, the 

whole structure of the observer must be changed.  

Illustrative results were given in supporting and highlighting the effectiveness of the 

observer in both with and without noise conditions. It was also compared with the single 

SMO, single extended Luenberger observer (ELO), fuzzy logic and hybrid sliding mode– 

proportional observer (SMO-proportional), which matched the second objective of the 

research. The comparisons displayed clearly that the fuzzy-SMO was the best observer to 

be used in the ethylene polymerization process, where it showed fast, accurate and stable 

estimation even in the presence of noise in the system. 

Further to the use of estimators and to show its usefulness in the control system, a 

controller was developed to maintain the reactor temperature at it desired setpoint. For 

this purpose, the MPC as in Chapter 5 was designed considering the measured states 

estimated by the hybrid fuzzy-SMO earlier, which was also the third objective in this 

work. The performance of the controller would be enhancing when it was coupled with 

the observer since the observer would first estimate the states and conveyed the 

information to the controller.  

In addition, an integral factor or integrator was added to the MPC design or better 

known as the embedded integrator MPC. It was included to add advantage to the MPC 
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controller to guaranty offset-free throughout the application. Three cases of the proposed 

MPC was developed representing one ideal and two practical cases. The first ideal case 

(Case 1) was designed intentionally to test the readiness of the programming while the 

other two cases were more practical to imitate real plant situation. Case 2 was where the 

hybrid fuzzy-SMO was included as to estimate the unknowns, whereas constraints were 

introduced in both the inputs and outputs parameters in Case 3. All the MPC performances 

in controlling the temperature are analyzed to prove the ability of the controller. Case 3 

showed the best performances that able to maintain the temperature at any setpoint desired 

with a small mean of error although disturbances and noises were included in the process, 

thus suitable to be applied to the ethylene polymerization process. It was also compared 

with the proportional-integral-derivative (PID) controller, MPC without integrator and 

MPC without observer for further highlighting its performances and to complete the 

fourth objective of the research.  

  The ethylene polymerization process has been incorporated with the hybrid fuzzy-

SMO and the embedded integrator MPC, where in general the methodology of the project 

was explained in Chapter 3. The development and performance testing were carried out 

in the simulation environment with the aid of MATLAB software. Once the results are 

compiled and analyzed, they were validated with the experimental data from a 

polymerization pilot plant. Validation was performed mainly to verify the simulation 

reliability and to support the ability of the design as well as to achieve the final objective 

of the research. The validation procedures and outcomes were discussed in Chapter 6 

together with the validation benchmark or the pilot plant utilized. Only small 

discrepancies were observed from the simulated fuzzy-SMO compared to the 

experimental data and should be able to be improved provided an exact benchmark was 

available.  
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The research was completed upon performing the validation, whereby a hybrid 

observer and the MPC controller have been developed, formulated, tested, analyzed and 

validated in the ethylene polymerization process. All the objectives were accomplished 

and the contributions were highlighted. To sum up, a hybrid fuzzy-SMO coupled with the 

embedded integrator MPC for estimation and advanced control of an ethylene 

polymerization process has been successfully designed.         

7.3 Future works  

In future, several works may be performed as follow: 

i. Other polymerization parameters such as chain length, molecular weight 

distribution (MWD) and heat transfer coefficient shall be estimated using the 

proposed hybrid fuzzy-SMO. It is recommended that those parameters are 

estimated since they are among others the critical parameters that will affect 

the product quality in the polymerization process.  

ii. The parameters will be used as the known states to implement the embedded 

integrator MPC controller to control the hydrogen concentration and pressure 

of the reactor. Hydrogen concentration has the biggest influence in determining 

the polymer product quality while a maintained pressure value will help in the 

reaction.  

iii. On-line implementation of the hybrid observer and MPC controller will also 

be scheduled to become the future tasks based on the promising results 

obtained throughout the research work.  
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