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ABSTRACT

This research utilized seven novel nanocomposites as non-enzymatic hydrogen
peroxide (H202) sensor viz. glassy carbon electrode (GCE) as substrate. The composites
were prepared with various combinations of polypyrrole (Ppy), reduced graphene oxide
(rGO), copper and silver nanoparticles (CuNPs and AgNPs) via different
electrodeposition processes. Sensors which were prepared by one-step electrodeposition
of rGO-CuNPs and rGO-AgNPs showed a linear detection range up to 18 and 24 mmol.L
! with LOD of 0.601 and 0.016 pmol.L?, respectively towards H.O,. Their good
performance is attributed to high surface area and synergetic effect of AgNPs and CuNPs
with rGO. Polypyrrole was electrodeposited into the composite as a matrix on which
nanometals could embed. The investigations revealed the type of dopants is highly
effective in morphology and electrocatalytic performance of sensor. Polypyrrole was
fabricated layer-by-layer electrodeposition method in the form of nanofiber when lithium
perchlorate was used and showed the best performance. The synergetic effect of rGO,
AgNPs and PpyNFs made (rGO-AgNPs)/PpyNFs composite an excellent H2O, sensor
with LOD of 1.099 pumol.L* with the wide linear range up to 90 mmol.L™. Layer-by-layer
electrodeposition of (rGO/PpyNFs/CuxO) led to a sensor which showed the best
electrocatalytic response to H.O> among all modified electrodes where LOD of 0.030
umol.Lt and wide linear range detection up to 100 mmol.L™? were recorded. This
electrode was further tested as amperometric glucose sensor and showed satisfactory
performance with detection range of 0.038 pumol.L™! at the same linear range, which
enable it to be used for dual analytes detection. Therefore, along with sensing H2O>, this
sensor was used as detector for glucose. To further look into the effect of rGO on sensor
performance, PpyMTs-CuNPs and PpyNFs/AgNPs were prepared via one-step and layer-
by-layer electrodeposition, respectively in the absence of rGO. PpyMTs-CuNPs electrode
showed good response towards H,O2 with LOD of 0.900 pmol.Ltand linear range up to



110 mmol.L?, whereas PpyNFs/AgNPs showed good electroreduction response to H202
with LOD of 0.115 umol.L* with detection range up to 120 mmol.L™. It is believed the
rGO wrinkle-like morphology was able to increase the surface roughness and
consequently acted as an excellent underneath layer. Polypyrrole showed an excellent
substrate as a suitable matrix for incorporating nanometals and enhanced speed,
sensitivity, selectivity and versatility of the prepared sensors for H2O, detection. Metal
nanoparticles (AgNPs and CuNPs) exhibited a narrow size distribution, enhanced
electrocatalytic activity and increased electrocatalytic selectivity with wide linear range
and the detection of H.O> at low potential. These unique properties of the silver and
copper nanoparticles could be ascribed to their excellent electron transfer abilities as well

as the ultra-high surface area derived from their nanoscale size.



ABSTRAK

Penyelidikan ini menggunakan tujuh nanokomposit sebagai penderia bukan
enzim hidrogen peroksida (H20.) dengan menggunakan elektrod berkaca karbon (GCE)
sebagai substrat. Komposit-komposit telah dihasilkan menerusi kombinasi polypyrrole
(Ppy), graphene oksida terturun (rGO), nanopartikel tembaga dan perak (CuNPs dan
AgNPs) menerusi proses pengelektroenapan yang berbeza. Penderia yang dihasilkan
menerusi pengelektroenapan satu-langkah daripada rGO-CuNPs, dan rGO-AgNPs
masing-masing menunjukkan julat pengesanan linear sehingga 18 dan 24 mmol.L?,
dengan LOD 0.601 dan 0.016 pumol.L?, terhadap H,O-. Prestasi yang bagus ini adalah
disebabkan kawasan permukaan yang luas dan kesan sinergi daripada AgNPs dan CuNPs
dengan rGO. Pengelektroenapan polypyrrole ke dalam komposit sebagai matriks
membolehkan pembenaman nanologam. Penyiasatan ini mendedahkan pemilihan jenis
bahan dop sangat berkesan dalam pembentukan morfologi dan prestasi
elektropemangkinan penderia tersebut. Polypyrrole telah difabrikasi menerusi kaedah
pengelektroenapan lapisan-demi-lapisan dalam bentuk nanofiber semasa litium perklorat
digunakan dan menunjukkan prestasi penderia yang amat baik. Kesan sinergi rGO,
AgNPs and PpyNFs menjadikan (rGO-AgNPs)/PpyNFs komposit sebagai penderia H20:
yang cemerlang dengan LOD 1.099 pumol.L* bersama julat linear yang luas sehingga 90
mmol.L . Pengelektroenapan lapisan-demi-lapisan daripada rGO/PpyNFs/CuxO
menghasilkan satu penderia yang menunjukkan kesan elektropemangkinan terhadap
H20. yang terbaik di dalam kalangan semua elektrod yang diubahsuai di mana LOD
0.030 pumol.L? dan julat linear yang luas sehingga 100 mmol.L? telah direkodkan.
Elektrod ini telah diuji selanjutnya sebagai penderia amperometrik glukosa dan
mempamerkan prestasi yang memuaskan dengan julat pengesanan 0.038 pmol.L™ dalam
julat linear yang sama, dan ini menunjukkan ia boleh digunakan sebagai penderia dua
analit. Oleh itu, bersama penderiaan H202, penderia ini digunakan untuk mengesan
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glukosa. Kajian seterusnya dilihat dalam kesan rGO ke atas prestasi penderia selanjutnya,
PpyMTs-CuNPs dan PpyNFs/AgNPs masing-masing telah disediakan melalui kaedah
pengelektroenapan satu langkah dan lapisan-demi-lapisan, dalam keadaan ketiadaan
rGO. Elektrod PpyMTs-CuNPs menunjukkan respons yang baik terhadap H20. dengan
LOD 0.900 pmol.L? dan julat linear sehingga 110 mmol.L™, manakala PpyNFs/AgNPs
menunjukkan respons pengelektroturunan yang memuaskan terhadap H-O> dengan LOD
0.115 umol.L™ dan julat pengesanan sehingga 120 mmol.L™X. Morfologi rGO yang kedut
dipercayai dapat meningkatkan kekasaran permukaan dan seterusnya bertindak sebagai
lapisan bawah yang sangat baik. Polypyrrole telah menunjukkan ia sebagai matriks yang
sesuai bagi substrat untuk penggabungan nanologam dan meningkatan kelajuan,
sensitiviti, tahap pemilihan bagi penderia yang disediakan untuk mengesan H>Oo.
Nanopartikel logam (AgNPs dan CuNPs) mempamerkan taburan saiz terhad, aktiviti dan
pemilihan elektropemangkinan yang telah dipertingkatkan dengan julat linear luas dan
pengesanan H>O> pada keupayaan rendah. Ciri-ciri unik yang dipamerkan oleh
nanopartikel perak dan tembaga boleh disifatkan sebagai kebolehan pemindahan elektron
yang cemerlang serta kawasan permukaan ultra-tinggi yang diperolehi daripada saiz nano

mereka.
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CHAPTER 1: INTRODUCTION

An electrochemical biosensor is an analytical tool which, by integrating biological
sensing, converts the concentration of an analyte into an electrical signal. Sensors are
simple to use, portable and high specificity analytical devices. They have good
performances in a variety of fields such as pollution monitoring, health care, pharmacy,

agricultural product processing, food, etc.

More than 220 million of people around the world are suffering from diabetes
which is a highly extensive disease bringing about metabolic disorders. Testing the blood
glucose (GLC) is very crucial for diabetic patients and helps to evade the clustering of

blood GLC (in the range of 4.4-6.6 mM).

During the last decades, numerous attempts have been done to develop low cost,
selective, sensitive and reliable glocuse and hydrogen peroxide sensors because of the
importance of measuring the human blood glucose levels (Chen et al., 2012). The
following reaction shows the reaction in a glucose biosensor used to determine the

glucose concentration:

Glucose + O, — Gluconic acid + H20; (Eq. 1.1)

H,0, — O + 2H" + 26" (Eq. 1.2)

The amount of hydrogen peroxide produced in Eq. 1.1 is commonly measured

using an amperometric method as presented in Eq. 1.2 (Shin et al., 2010).



For several decades, hydrogen peroxide has exhibited to be an extremely
significant analyte as an intermediate in several biological devices as well as in many
industrial systems. The unique oxidizing properties make H>O> as an important
compound. Decomposition of H20- leads to formation of hydroxyl radicals, which are
employed as oxidizing agents for degradation of organic pollutants from water such as
the azo dye materials employed in the textile industry, which are toxic to aquatic life and
carcinogenic to humans. H202 and its derivatives can also be employed as powerful

oxidizing agents in the synthesis of many organic compounds (Chen et al., 2012).

In addition, the H.O> decomposition gives an extremely important performance
in the production of industrial water electrolyzers, secondary fuel cell and metal-air
batteries. Beside its many industrial applications, hydrogen peroxide can also be
problematic, its excessive concentration as a product of industrial and atomic power
stations affects the environment (Shin, 2010). With respect to medical applications, H.O>
plays a main role in reactive oxygen species (ROS) in living organisms and is a central
factor in causing several life-threatening human diseases. H20 is the most valuable
marker of oxidative stress, which is connected to aging and severe human diseases such
as cancer, cardiovascular disorders, Alzheimer and related neurodegenerative diseases
(Shin, 2010). Many enzymatic reactions also create H-O> as a product so its concentration
can be used as an indicator of the progress of the reaction. Due to these wide and varied

applications, its determination shows a significant analytical issue.

The electrochemical enzymatic sensors have been extremely used in
determination of H2O> due to their high sensitivity and their good selectivity. Horseradish
peroxide and hemoglobin enzymes have been mostly used for preparation of modified
enzymatic electrodes for amperometric determination of H>O2 (Shin, 2010). The most

unavoidable disadvantage of such modified electrode is chemical and thermal instability,



which is inevitable part of the intrinsic nature of the enzymes. This disadvantage has
diverted the recent studies to carry out a direct detection of H2O2 by using enzyme-less
electrodes. Accordingly, studies on the materials for direct detection of H.O. could

develop new generation of enzyme-less sensors.

Subsequently, the availability of such systems to both personal health and
environmental quality has beneficial impact on society. Thus, the investigation of any
technique, which could decrease the development costs and times, reveals other possible
system designs and consequently enhances the rate at which new devices are brought to

the market, is of utmost importance.

1.1  Background of study

Hydrogen peroxide (H202) is one of the most important analytes nowadays.
Firstly, H2O: is always referred to in different fields including pulp and paper bleaching,
cleaning product, textile industry, food processes, pharmaceutical research, biochemistry
and minerals processes (Shin, 2010). Secondly, H20- is involved in many biological
events and intracellular pathways and is the byproduct of oxidases such as glucose
oxidase, cholesterol oxidase, glutamate oxidase, urate oxidase, lactate oxidase, and also
Is a substrate for the enzyme horseradish peroxidase (Zhang et al., 2013; Das & Prusty,
2013; Jang et al., 2013; Kumar & Jampana, 2012; Palanisamy et al., 2012). Thirdly, as a
powerful oxidizing agent, H2O> can be applied in many organic compound synthesis
reactions and is also employed as an oxidant for liquid-based fuel cells (Zhang et al.,
2013; Das & Prusty 2013; Jang et al., 2013; Kumar & Jampana, 2012; Palanisamy et al.,
2012). Therefore, the reliable, accurate, low-cost, rapid and sensitive determination of

hydrogen peroxide has been practically important and widely investigated.



Evolved from the original Clark-oxygen electrode (Clark & Yons, 1962), the
oxidation of the analyte at the platinum surface causes the signal from H>0. (Guilbault &
Lubrano, 1973). Clark modified his original design by employing a membrane where
glucose oxidase (GOD) was immobilized amid a polycarbonate and polyacrylamide
membrane and placed on a platinum electrode (Clarke & Santiago, 1977). When the mass
transfer of both hydrogen peroxide and glucose is the rate limiting process, a linear
dependence of the signal is achieved. Additionally, the linear range of the sensor depends
on the oxygen concentration necessary in the enzymatic conversion of glucose by GOD.
The most important benefits of the hydrogen peroxide sensor over other kinds of sensors
are the relatively easy manufacturing process and the possibility of designing them in

small sizes (Wientjes, 2000).

Several analytical methods such as titrimetry, chemiluminscence,
chromatography, fluorescence, phosphorescence, spectrophotometry and electrochemical
methods have been used for H2O> determination. Nevertheless, most of them present their
own technical disadvantages including low sensitivity and selectivity, time consuming,

susceptibility to interferences and complicated or expensive instrumentation.

With high sensitivity and selectivity, fast response, practicality, simplicity, low-
cost and convenient operation, electrochemical sensors have been an optimal choice to
actualize the accurate and sensitive detection of H2O2 (Chen, 2012). In recent years,
intensive research interest has been put into the design of novel H>0O2 sensor as well as
the improvement of their analysis performances. Various materials have been employed
to increase the sensing properties including nanomaterials (Mahmoudian et al., 2014),
conducting polymers (Kumar & Jampana, 2012), surfactants (Ge et al., 2011) and sol-
gel materials (Elzanowska et al., 2004) and biomaterial such as DNA (Shao et al., 2010),

fibroin