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ABSTRACT

The purpose of this dissertation is to discuss the hamiltonicity of r-regular 3-connected

planar graphs (rR3CPs) with faces of given types, in particular, r ∈ {3, 4}. In general, let

Gr(k1, k2, . . . , kt) denotes the class of all rR3CPs whose faces are of only t types, namely

k1-, k2-, . . . , kt-gons where ki ≥ 3, ki 6= kj ∀ i 6= j and i, j ∈ {1, 2, . . . , t}. The problem

related to the hamiltonicity of 3R3CPs with only two types of faces are widely discussed

and many results have been found. These results are reviewed in Chapter 2. Chapter 3 is

devoted to the constructions of non-hamiltonian 3R3CPs with only three types of faces.

Here, we show that G3(3, k, l) is empty if 11 ≤ k < l. We also show that for h 6= k 6= l,

there exist non-hamiltonian members in (1) G3(3, k, l) for 4 ≤ k ≤ 10 and l ≥ 7; (2)(i)

G3(4, k, l) for k ∈ {3, 5, 7, 9, 11} and l ≥ 8; and (k, l) ∈ {(3, 7), (6, 7), (6, 9), (6, 11)};

(2)(ii) G3(4, k, k + 5) and G3(4, k + 2, k + 5) for k ≥ 3; (3) G3(5, k, l) for k = 3 and

l ≥ 7; k = 4 and l ≥ 8; and 6 ≤ k < l. Results (1), (2) and (3) are presented in Sections

3.3, 3.4 and 3.5, respectively. Chapter 4 deals with the hamiltonicity of 4R3CPs with

faces of given types. We construct non-hamiltonian members of G4(3, 7) and G4(3, 8).

Additionally, we show that for k 6= l and (k, l) 6∈ {(6, 9), (9, 10), (9, 11)}, there exist

non-hamiltonian members in G4(3, k, l) for k ≥ 4 and l ≥ 7.
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ABSTRAK

Tujuan disertasi ini adalah untuk membincangkan kehamiltonan graf r-sekata 3-terkait

satahan (rS3TS) dengan jenis muka tertentu, khususnya, r ∈ {3, 4}. Secara amnya, biar

Gr(k1, k2, . . . , kt) mewakili kelas semua graf rS3TS yang mempunyai t jenis muka sa-

haja, iaitu k1-, k2-, . . . , kt-gon di mana ki ≥ 3, ki 6= kj ∀ i 6= j dan i, j ∈ {1, 2, . . . , t}.

Masalah yang melibatkan kehamiltonan graf 3S3TS dengan dua jenis muka sahaja telah

dibincangkan secara meluas dan banyak keputusan telah dijumpai. Keputusan-keputusan

ini diulas dalam Bab 2. Bab 3 ditumpukan pada pembinaan graf bukan hamiltonan 3S3TS

dengan tiga jenis muka sahaja. Dalam bab ini, kami menunjukkan bahawa G3(3, k, l)

tidak mempunyai ahli sekiranya 11 ≤ k < l. Kami juga menunjukkan bahawa un-

tuk h 6= k 6= l, terdapat ahli bukan hamiltonan dalam (1) G3(3, k, l) bagi 4 ≤ k ≤

10 dan l ≥ 7; (2)(i) G3(4, k, l) bagi k ∈ {3, 5, 7, 9, 11} dan l ≥ 8; dan (k, l) ∈

{(3, 7), (6, 7), (6, 9), (6, 11)}; (2)(ii) G3(4, k, k+5) dan G3(4, k+2, k+5) bagi k ≥ 3; (3)

G3(5, k, l) bagi k = 3 dan l ≥ 7; k = 4 dan l ≥ 8; dan 6 ≤ k < l. Keputusan (1), (2) dan

(3) masing-masing dibentangkan dalam Seksyen 3.3, 3.4 dan 3.5. Bab 4 adalah berkaitan

dengan kehamiltonan graf 4S3TS dengan jenis muka tertentu. Kami telah membina ahli

yang bukan hamiltonan dalam G4(3, 7) dan G4(3, 8). Tambahan pula, kami menunjukkan

bahawa untuk k 6= l dan (k, l) 6∈ {(6, 9), (9, 10), (9, 11)}, terdapat ahli bukan hamiltonan

dalam G4(3, k, l) bagi k ≥ 4 dan l ≥ 7.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

A graph is hamiltonian if it has a cycle that contains all of its vertices; such a cycle is

called a Hamilton cycle. Hamilton cycles are named after Sir William Rowan Hamilton,

who in 1857 devised a mathematical game called the Icosian Game. The game consisted

of a dodecahedron whose twenty vertices were labelled with the names of twenty cities.

The objective of the game is to travel along the edges of the dodecahedron such that every

city is visited exactly once and the end point is the same as the initial point. In graph

theoretical terms, the aim is to find a Hamilton cycle in a dodecahedron.

The study of Hamilton cycles in cubic planar graphs was originally motivated by Tait

(1880). In his attempt to prove the Four-Colour Theorem (see Theorem 1.1), Tait (1880)

observed that the Four-Colour Theorem is equivalent to the assertion that every simple

2-edge-connected cubic planar graph is 3-edge-colourable.

Theorem 1.1. (Four-Colour Theorem) Every planar graph is 4-colourable.

By assuming that every 3-regular 3-connected planar graph (hereinafter abbreviated to

3R3CP) is hamiltonian, which became known as Tait’s conjecture (see Conjecture 1.1),

he gave a proof of the Four-Colour Theorem. Unfortunately, Tait’s proof is invalid.

Conjecture 1.1. (Tait’s conjecture) Every 3R3CP is hamiltonian.

Tutte (1946) refuted Tait’s conjecture by constructing the counterexample shown in

Figure 1.1, which is a non-hamiltonian 3R3CP with 46 vertices. Once this graph was

discovered, the search for the smallest counterexample intensified. Holton and McKay

(1988) showed that the smallest non-hamiltonian 3R3CP has 38 vertices. They also con-

firmed that the six non-isomorphic graphs discovered independently by Lederberg (1965),

Bosák (1966) and Barnette (1969) are the only such graphs with 38 vertices.

Additionally, the hamiltonicity of various classes of 3R3CPs has been investigated.

Tutte (1972) posed Question 1.1, which concerns the existence of Hamilton cycles in

3R3CPs with faces of given types. Grünbaum and Zaks (1974) also asked a related ques-

tion (see Question 1.2). Answers to these questions and an account of the hamiltonicity

of 3R3CPs whose faces are of only two types will be presented in Chapter 2.
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Figure 1.1: The first non-hamiltonian 3R3CP (Tutte, 1946).

Question 1.1. (Tutte, 1972) Is every 3R3CP with all faces whose number of sides are

congruent to 2 modulo 3 hamiltonian?

Question 1.2. (Grünbaum & Zaks, 1974) Do Hamilton cycles exist in all 3R3CPs whose

faces are of only two types except those graphs that are forbidden by the Grinberg’s

Theorem (see Theorem 1.5)?

One can also ask a similar question: Does every 3R3CP whose faces are of only three

types hamiltonian? Chapter 3 details the constructions of non-hamiltonian 3R3CPs with

only three types of faces. Here, we will construct a large number of such graphs. All

the techniques and subgraphs that we use to construct these graphs will be thoroughly

described.

The last chapter covers the discussion on the hamiltonicity of all 4-regular 3-connected

planar graphs (hereinafter abbreviated to 4R3CPs) with faces of given types. We will show

some known results and briefly describe the method of construction. In addition to that,

we will also construct a number of non-hamiltonian 4R3CPs whose faces are of only two

and three types.

1.2 Definitions

In this section, we shall introduce some basic graph theoretical terms, notations along

with some fundamental results that will be used in the dissertation. Other graph theoretical

terms that are not included in this section will be defined later as they are needed. Further

information can be found in any introductory book on graph theory (see for example,

Beineke & Wilson, 1978; Bondy & Murty, 1976).
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1.2.1 Graphs

A graph G is a pair (V (G), E(G)) where V (G) is a non-empty finite set of elements

called vertices and E(G) is a finite set of unordered pairs of elements of V (G) called

edges. We call V (G) the vertex set of G and E(G) the edge set of G. A subgraph of G is

a graph S = (V (S), E(S)) where V (S) ⊆ V (G) and E(S) ⊆ E(G).

Two vertices u, v ∈ V (G) are said to be adjacent if there is an edge e ∈ E(G) that

joins u and v. In this case, we also say that e is incident to u and v. A loop is an edge

incident to only one vertex. Multiple edges are edges that join a pair of vertices more

than once. A graph is called simple if it has neither loops nor multiple edges. In this

dissertation, we are mainly concerned with simple graphs.

The degree of a vertex v in a graph G, denoted by d(v), is the number of edges incident

to v. If the degree of every vertex in G is r, then G is called an r-regular graph. A

3-regular graph is also called a cubic graph.

An edge sequence in a graph G is a sequence of edges of the form e1e2 . . . et where

ei = vivi+1 is an edge of G that is incident to the vertices vi, vi+1 ∈ V (G) for 1 ≤ i ≤ t. If

these edges and vertices are all distinct, then the edge sequence e1e2 . . . et is called a path

and v1 and vt+1 are called the end vertices of the path. We denote a path with end vertices

v1 and vt+1 by Pv1vt+1 . A path is said to be closed if v1 = vt+1 and is open otherwise. A

closed path is called a cycle.

A spanning path through subgraph S is a path that contains every vertex of S. A

Hamilton path of a graph G is a path that contains every vertex of G. Similarly, a Hamilton

cycle of G is a cycle that contains every vertex of G. A graph that contains a Hamilton

path is called a traceable graph and a graph that contains a Hamilton cycle is called a

hamiltonian graph.

An edge in a hamiltonian graph G is called a compulsory edge if it belongs to every

Hamilton cycle of G, whereas it is called an impossible edge if it does not belong to any

Hamilton cycle of G. The concept of such edges was introduced by Bosák (1966).
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1.2.2 Connectivity

A graph G is said to be connected if there is a path between every pair of vertices of

G and it is disconnected otherwise. Any disconnected graph G can be expressed as the

union of connected graphs, each of which is called a component of G.

A set V ′ of k vertices in a connected graph G is called a k-vertex cut if G − V ′ is

disconnected. Likewise, a set E ′ of k edges in a connected graph G is called a k-edge cut

if G−E ′ is disconnected. A component of G that is disconnected from G by the removal

of E ′ is called a k-piece. An edge in E ′ is called an edge of attachment of a k-piece. We

call a vertex in a k-piece that is incident to an edge of attachment an a-vertex. For an

a-vertex u of a 3-piece S, if u is an end vertex of every open spanning path through S,

then the edge of attachment incident to u is called a compulsory edge of attachment of S.

If no open spanning path through S ends at u, then the edge of attachment incident to u

is called an impossible edge of attachment of S.

The connectivity κ(G) of a connected graph G is the minimum number of vertices

whose removal from G disconnects G. When κ(G) ≥ k, G is said to be k-connected.

Analogously, the edge connectivity λ(G) of a connected graph G is the minimum number

of edges whose removal from G disconnects G. When λ(G) ≥ k, G is said to be k-

edge-connected. Let δ(G) be a minimum vertex degree of a connected graph G, then

κ(G) ≤ λ(G) ≤ δ(G).

A graph is called cyclically k-connected (cyclically k-edge-connected) if it cannot be

disconnected into at least two components, each of which contains a cycle, by the removal

of fewer than k vertices (k edges).

1.2.3 Planar Graphs

A planar graph is a graph that can be embedded on the plane in such a way that no two

edges intersect geometrically except at a vertex to which they are both incident. A graph

embedded on the plane in this way is called a plane graph. A plane graph partitions the

plane into a set of regions called faces. A k-gon is a face of a plane graph bounded by

k edges. Every face of a plane graph G must be bounded by at least three edges, that is

k ≥ 3, if G is simple.
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In the 18th century, Leonhard Euler discovered a relationship between the numbers of

vertices, edges and faces in any connected plane graph. This relationship is known today

as Euler’s formula.

Theorem 1.2. (Euler’s formula) Let G be a connected plane graph with n vertices, m

edges and f faces. Then

n + f = m + 2. (1.1)

It can be verified from Euler’s formula that every planar graph contains a vertex of

degree at most 5. Thus, 3 ≤ r ≤ 5 if G is an r-regular 3-connected planar graph and

we denote such a graph by rR3CP. In addition, let Gr(k1, k2, . . . , kt) denotes the class of

all rR3CPs whose faces are of only t types, namely k1-, k2-, . . . , kt-gons where ki ≥ 3,

ki 6= kj ∀ i 6= j and i, j ∈ {1, 2, . . . , t}.

The following lemma states a well-known necessary condition for the existence of

rR3CPs with fk k-gons where r ∈ {3, 4, 5} and k ≥ 3.

Lemma 1.3. (Grünbaum & Zaks, 1974) For r ∈ {3, 4, 5} and k ≥ 3, let G be an rR3CP

and let fk denote the number of k-gons in G. Then

∑

k≥3

(2r + 2k − rk)fk = 4r. (1.2)

Observe that Equation 1.2 places no restriction on the number of f6 when r = 3 and

f4 when r = 4. Nevertheless, they may not be taken arbitrarily since it can be shown

that there is no 3R3CP with f3 = 4, f6 = 1, fk = 0 for k 6∈ {3, 6} and no 4R3CP with

f3 = 8, f4 = 1, fk = 0 for k > 4 (Malkevitch, 1988). There is also no 5R3CP with

f3 = 22, f4 = 1, fk = 0 for k > 4 (Malkevitch, 1988). Thus, this necessary condition is

not sufficient.

1.2.4 Hamiltonian Planar Graphs

The question of the existence of Hamilton cycles is partially answered for planar graphs

by one of the most celebrated theorems of Tutte (1956) stated below.

Theorem 1.4. (Tutte, 1956) Every 4-connected planar graph is hamiltonian.
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Grinberg (1968) discovered the following necessary condition for a planar graph to be

hamiltonian.

Theorem 1.5. (Grinberg’s theorem) Let C be a Hamilton cycle of a planar graph G.

Let f ′
k denote the number of k-gons in the interior of C and let f ′′

k denote the number of

k-gons in the exterior of C . Then

∑

k≥3

(k − 2)(f ′
k − f ′′

k ) = 0. (1.3)

Grinberg’s theorem has led to the construction of some non-hamiltonian 3R3CPs (see

Grinberg, 1968; Tutte, 1972). One of the applications of Equation 1.3 for constructing

non-hamiltonian planar graphs is stated in the following example:

Example 1.1. Let G be a planar graph. Suppose fi = 0 whenever i 6≡ 2(mod 3)

with exactly one exception that fj = 1 for one particular j 6≡ 2(mod 3). Then G is

non-hamiltonian.

1.2.5 Bipartite Graphs

A bipartite graph is a graph G where the vertex set V (G) can be partitioned into two

non-empty sets V1 and V2 such that no two vertices within the same vertex set are adjacent.

A complete bipartite graph is a bipartite graph in which every vertex in V1 is adjacent to

every vertex in V2 and is denoted by Km,n if |V1| = m and |V2| = n.

Since any cycle in a bipartite graph alternates between the vertices of the two sets, V1

and V2, all cycles are of even length. This implies that all faces in a planar bipartite graph

are 2k-gons where k ≥ 2. If a bipartite graph is hamiltonian, then |V1| = |V2| ≥ 2.

1.3 Some Graphs and k-pieces

In this section, we introduce some graphs and k-pieces that will be used in the con-

structions of non-hamiltonian graphs in subsequent chapters.

A k-piece will be denoted by a capital letter and represented in a labelled circle. The

numbers around the circumference of a labelled circle are the numbers of vertices, which

the k-piece contributes to the adjoining faces of any graph in which it occurs.
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1.3.1 Herschel Graph H

We denote the Herschel graph shown in Figure 1.2 by H. H is a bipartite graph that

has 11 vertices, 18 edges and nine 4-gons.

H :

Figure 1.2: Herschel graph H .

H is non-hamiltonian since it is a bipartite graph with an odd number of vertices.

Furthermore, it is the smallest non-hamiltonian 3-connected planar graph. H can also be

shown to be non-hamiltonian by establishing that it does not satisfy Equation 1.3. By

Grinberg’s theorem, let C be a Hamilton cycle of H, then 2(f ′
4 − f ′′

4 ) = 0. This implies

that f ′
4 = f ′′

4 . However, this is impossible since f ′
4 + f ′′

4 = f4 = 9 is odd. It follows that

no such C exists. Hence, H is non-hamiltonian.

1.3.2 Pentagonal Prism P

We denote the pentagonal prism shown in Figure 1.3 by P . P has five 4-gons and

two 5-gons. Let ei, i = 0, 1, 2, 3, 4 be the five edges of P that join a vertex of the inner

pentagon to a vertex of the outer pentagon.

Lemma 1.6. No Hamilton cycle in P contains both edges ei and ei+2, i = 0, 1, 2, 3, 4

with the subscripts reduced modulo 5.

P: e0

e1

e2

e3e4

Figure 1.3: Pentagonal prism P .
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PROOF: By Grinberg’s theorem, let C be a Hamilton cycle of P , then 2(f ′
4 − f ′′

4 ) +

3(f ′
5 − f ′′

5 ) = 0. Suppose C contains both edges ei and ei+2. This implies that {f ′
4, f

′′
4 } =

{2, 3}. Thus, we have 3(f ′
5 − f ′′

5 ) = ±2, which is impossible since the right-hand side is

not congruent to 0(mod 3). It follows that no such C exists. Hence, the lemma follows.

1.3.3 Graph Q

We denote the graph shown in Figure 1.4 by Q. Q has four 4-gons, four 5-gons and

one 6-gon. Let e1 and e2 be the edges of Q as indicated.

Lemma 1.7. Every Hamilton cycle of Q must contain exactly one of the edges e1 and

e2, as shown in Figure 1.4.

Q:

e1

e2

Figure 1.4: Graph Q.

PROOF: By Grinberg’s theorem, let C be Hamilton cycle of Q, then 2(f ′
4−f ′′

4 )+3(f ′
5−

f ′′
5 ) + 4(f ′

6 − f ′′
6 ) = 0. Since there is only one 6-gon in Q, {f ′

6, f
′′
6 } = {0, 1}. Therefore,

the equation reduces to 2(f ′
4 − f ′′

4 ) + 3(f ′
5 − f ′′

5 ) ± 4 = 0.

If C contains both edges e1 and e2, then the edges separate the two pairs of 4-gons

and so f ′
4 = f ′′

4 = 2. Thus, we have 3(f ′
5 − f ′′

5 ) = ±4, which is impossible since the

right-hand side is not congruent to 0(mod 3).

If C does not contain both edges e1 and e2, then all 4-gons lie on the same side of C

and so {f ′
4, f

′′
4 } = {0, 4}. Thus, we have either 3(f ′

5 − f ′′
5 ) = ±4 or 3(f ′

5 − f ′′
5 ) = ±12.

The former has been dealt with. For 3(f ′
5 − f ′′

5 ) = ±12, we must have {f ′
5, f

′′
5 } = {0, 4},

which means all 5-gons must lie on the same side of C . This is impossible too. Hence,

the lemma follows.
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1.3.4 Tutte’s Triangle T and Ti

Let T be the Tutte’s triangle shown in Figure 1.5. Tutte (1946) constructed T and used

it to construct the first non-hamiltonian 3R3CP (see Figure 1.1). The property of T is

stated in Lemma 1.8.

Lemma 1.8. (Tutte, 1946) The edge of attachment labelled ec, as shown in Figure 1.5,

is a compulsory edge of attachment of T .

T : a
b

c
d

ec

= 4 5

3

ec

T

Figure 1.5: Tutte’s triangle T (Tutte, 1946).

Lemma 1.9 extends Lemma 1.8.

Lemma 1.9. For i ≥ 1 and i is odd, let Ti be the 3-piece shown in Figure 1.6. Then

the edge of attachment labelled ec is a compulsory edge of attachment of Ti.

Ti:

. . .

. . .

ec

= 4 5

3

ec

Ti

Figure 1.6: 3-piece Ti for i ≥ 1 and i is odd.

PROOF: For i ≥ 1 and i is odd, Ti is obtained by replacing the 4-gon abcd of the Tutte’s

triangle T (see Figure 1.5) with a copy of Li shown in Figure 1.7. Li has i 4-gon(s).

Clearly, T1 is T .
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Li:

. . .

. . .a b

cd

= 2 2

1 + i

1 + i

Li

Figure 1.7: 4-piece Li for i ≥ 1.

Let P o be an open spanning path through Ti and let P be Li ∩ P o. Then for all odd

i ≥ 1, P are of the following four forms only: Pab (or by symmetry, Pcd), Pad (or by

symmetry, Pbc), Pab ∪ Pcd and Pad ∪ Pbc. Thus, Li retains the property of T . Hence, the

lemma follows.

1.3.5 3-pieces S∗

a
and S∗

b

Lemma 1.10. For i ∈ {a, b}, let S∗
i be a 3-piece shown in Figure 1.8 where Si is a

3-piece with a compulsory edge of attachment ei. Then the edge of attachment labelled e∗i

is a compulsory edge of attachment of S∗
i .

S∗

a:
Sa

a1

a2 a3 a4

a5

a6

a7

a8

va wa

ua

ea

e∗a

= 2 3

4

e∗a

S∗

a S∗

b :

Sb

b1

b2

b5

b4

b3

b6

b7

b8

vb wb

ub

eb

e∗b

= 3 2

4

e∗b

S∗

b

(a) (b)

Figure 1.8: 3-pieces S∗

a
and S∗

b
.

PROOF: For i ∈ {a, b}, let ui, vi and wi be a-vertices of S∗
i and let it for 1 ≤ t ≤ 8 be

some edges of S∗
i , as shown in Figure 1.8.

First, we show that there exists PS∗

i
, a spanning path through S∗

i , with an end ver-

tex ui that is incident to the edge of attachment labelled e∗i for i ∈ {a, b}. Since ei is

a compulsory edge of attachment of Si, there exists PSi
, a spanning path through Si,

with an end vertex incident to either i7 or i8. It is easy to see that a1a2a3eaPSaa7a5 and

a6a5a4eaPSaa8a2 are spanning paths through S∗
a with an end vertex ua and b1ebPSb

b7b3b4b5

and b6b3b8PSb
ebb2b5 are spanning paths through S∗

b with an end vertex ub.
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Suppose the edge of attachment labelled e∗i is not a compulsory edge of attachment

of S∗
i . Then there exists PS∗

i
, a spanning path through S∗

i , with end vertices vi, wi and

i1, i6 ∈ PS∗

i
.

Let PSi
be Si ∩ PS∗

i
.

For i = a, this implies that a2 /∈ PS∗

a
. Thus, a3, a8 ∈ PS∗

a
. However, a3a8PSaea forms

a cycle in PS∗

a
, which is impossible.

For i = b, this implies that b7 /∈ PS∗

b
, otherwise b1ebPSb

b7b6 forms a cycle in PS∗

b
.

Thus, b3, b8 ∈ PS∗

b
. However, this forces b1ebPSb

b8b3b6 to also form a cycle in PS∗

b
, which

is impossible. Hence, the lemma follows.

1.3.6 4-pieces B1, Bi, B′

i
and B′′

i

Let B1 be the 4-piece shown in Figure 1.9(a). Faulkner and Younger (1974) obtained

B1 by removing any two adjacent vertices from a dodecahedron. The properties of B1 are

stated in Lemma 1.11(1).

Faulkner and Younger (1974) also described the 4-piece B2, which can be easily ex-

tended to Bi for i ≥ 2, as shown in Figure 1.9(b). Bi is obtained by stacking i copies of

B1 and adding an edge between every two consecutive copies of B1. The property of Bi

for i ≥ 2 is stated in Lemma 1.11(2), which extends Lemma 2.3 of (Faulkner & Younger,

1974).

B1:

u1

v1

u2

v2

= 4 4

3

3

B1

Bi:

. . .

. . .

u1

u2

v1

v2

= 3 3

5i − 1

5i − 1

Bi

(b)

(a)

Figure 1.9: 4-pieces B1 and Bi for i ≥ 2 (Faulkner & Younger, 1974).
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Lemma 1.11. (Faulkner & Younger, 1974) For i ≥ 1, let C be a Hamilton cycle of a

3R3CP that contains the 4-piece Bi and let P be Bi ∩ C . Then

1. for i = 1, P are of the following three forms only

(a) Pu1v2 (or by symmetry, Pu2v1),

(b) Pu1u2 (or by symmetry, Pv1v2) and

(c) Pu1u2 ∪ Pv1v2 .

2. for i ≥ 2, P is of the form Pu1v2 (or by symmetry, Pu2v1) only.

Let B ′
i and B ′′

i for i ≥ 2 be the 4-pieces shown in Figure 1.10. Zaks (1980) obtained

B ′
i and B ′′

i by adding one and two edges, respectively, to the sides of Bi. The properties

of B ′
i and B ′′

i for i ≥ 2 are stated in Lemma 1.12.

B′

i:

. . .

. . .

u1

u2

v1

v2

= 3 2

5i

5i

B′

i

B′′

i :

. . .

. . .

u1

u2

v1

v2

= 2 2

1 + 5i

1 + 5i

B′′

i

(a)

(b)

Figure 1.10: 4-pieces B′

i
and B′′

i
for i ≥ 2 (Zaks, 1980).

Lemma 1.12. (Zaks, 1980)

1. Let C be a Hamilton cycle of a 3R3CP that contains the 4-piece B ′
i for i ≥ 2

and let P be B ′
i ∩ C . Then P is of the form Pu1v1 (or by symmetry, Pu2v2) only.

2. Let C be a Hamilton cycle of a 3R3CP that contains the 4-piece B ′′
i for i ≥ 2

and let P be B ′′
i ∩ C . Then P is of the form Pu1v2 (or by symmetry, Pu2v1) only.
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CHAPTER 2: 3-REGULAR 3-CONNECTED PLANAR GRAPHS

WITH ONLY TWO TYPES OF FACES

2.1 Introduction

This chapter deals with the hamiltonicity of G3(h, k), h 6= k, which is the class of all

3-regular 3-connected planar graphs (3R3CPs) whose faces are of only two types, namely

h-gons and k-gons. From Lemma 1.3, it is clear that every 3R3CP must have some 3-, 4-

or 5-gons.

Let us first consider the class of all rR3CPs whose faces are of only one type, Gr(k).

Gr(k) exists only if k ∈ {3, 4, 5} for r = 3 and k = 3 for r ∈ {4, 5}. Each of the

classes G3(3), G3(4), G3(5), G4(3) and G5(3) contains only one member, namely the

tetrahedron, cube, dodecahedron, octahedron and icosahedron, respectively. All of these

members, as shown in Figure 2.1, are hamiltonian.

Dodecahedron Octahedron Icosahedron

Tetrahedron Cube

Figure 2.1: The members of G3(3), G3(4), G3(5), G4(3) and G5(3).

In the following sections, we will present a survey on the hamiltonicity of G3(h, k)

where h ∈ {3, 4, 5} and h < k. The survey will include some answers to Questions

1.1 and 1.2 stated in Chapter 1 and will be divided into three sections, namely Sections

2.2, 2.3 and 2.4, each of which focuses on the classes G3(3, k), G3(4, k) and G3(5, k),

respectively. In the last section, we will present a brief account of the hamiltonicity of

G3(k1, k2, . . . , kt) where 3 ≤ k1 < k2 < . . . < kt ≤ 6.
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2.2 G3(3, k)

In this section, we consider the class G3(3, k) where k ≥ 4. We begin with the result

on the existence of G3(3, k) by Malkevitch (1970).

Theorem 2.1. (Malkevitch, 1970) G3(3, k) is non-empty only if k ≤ 10.

Theorem 2.2. G3(3, 4) contains only hamiltonian member.

PROOF: Let G be a member of G3(3, 4). From Equation 1.2, we have 3f3 + 2f4 = 12,

which can be satisfied only if f3 = 2 and f4 = 3. Since G is 3-connected, no two 3-gons

in G have a common edge. Thus, a 3-gon in G is adjacent to three 4-gons. Furthermore,

a 4-gon is adjacent to at most two 3-gons.

It is then checked that the only member of G3(3, 4) is the graph shown in Figure 2.2,

which has two 3-gons and three 4-gons. The graph is hamiltonian.

Figure 2.2: The member of G3(3, 4).

Theorem 2.3. (Grünbaum, 1967, p. 272) Let G be a member of G3(5, k) and let fk

denote the number of k-gons in G.

1. Then fk 6= 1.

2. When fk = 2, no two k-gons in G have a common edge.

Theorem 2.4. G3(3, 5) contains only hamiltonian member.

PROOF: Let G be a member of G3(3, 5). From Equation 1.2, we have 3f3 + f5 = 12,

which can be satisfied if (f3, f5) ∈ {(1, 9), (2, 6), (3, 3)}. By Theorem 2.3, there is no G

with f3 = 1 and f5 = 9. Since G is 3-connected, no two 3-gons in G have a common

edge. Thus, a 3-gon in G is adjacent to three 5-gons. Furthermore, a 5-gon is adjacent

to at most two 3-gons. If f3 = f5 = 3, then all three 3-gons are adjacent to at least five

5-gons, which is impossible.
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It is then checked that the only member of G3(3, 5) is the graph shown in Figure 2.3,

which has two 3-gons and six 5-gons. The graph is hamiltonian.

Figure 2.3: The member of G3(3, 5).

Theorem 2.5. (Goodey, 1977) G3(3, 6) contains only hamiltonian members.

Goodey (1977) proved that every member of G3(3, 6) is hamiltonian. This result gives

an affirmative answer to Question 1.2 posed by Grünbaum and Zaks (1974).

Theorem 2.6. (Tkáč, 1994) There exists a non-hamiltonian member of G3(3, 7).

Tkáč (1994) constructed the 4-piece M shown in Figure 2.4. Here and in later dia-

grams, a small unlabelled white circle that has number two around the circumference of

the circle represents a 3-gon. M contains two copies of B1 (see Figure 1.9(a)) in which

some of its vertices are replaced by 3-gons.

Let C be a Hamilton cycle of a 3R3CP that contains the 4-piece M and let P be M∩C .

Then P are of the following three forms only: Pu1u2 (or by symmetry, Pu3u4), Pu1u4 and

Pu1u2 ∪ Pu3u4 .

M :

2 2

2

2

2
2

2

2
2

2

2
2

2
2

2

2

2
2

2 2

2

2
2

2

2
2

2
2

2

2

2
2

2

2

2
2

u1

u2 u3

u4

= 3 3

2

3

M

Figure 2.4: 4-piece M (Tkáč, 1994).
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Tkáč (1994) obtained the graph G shown in Figure 2.5 by replacing three vertices of

the pentagonal prism P (see Figure 1.3) with a copy of X, Y and Z. Each of the 3-pieces

X and Y contains two copies of M and as indicated, each has a compulsory edge of

attachment ec. By inspection, G ∈ G3(3, 7). Suppose C is a Hamilton cycle of G. Then

C contains both ec. By shrinking X, Y and Z to single vertices, G is converted into P

and C into a Hamilton cycle of P that contains the edges ec. However, this contradicts

Lemma 1.6. It follows that no such C exists. Hence, G is non-hamiltonian.

ec ec

2

2
2

M

M

2

3
3 3

3

3
2 3

2 2

2

2 2

2

2

2
2

2

2
2

2 2
2

2 2

2

2

2 2

2

2
2

M

M

2

3
3 3

3

3
2 3

=
X Y

Z

2

4

3

2

4

4

2
3

4

ec ec

Figure 2.5: A non-hamiltonian member of G3(3, 7) (Tkáč, 1994).

Theorem 2.7. (Owens, 1984a) There exist non-hamiltonian members of G3(3, k) for

k ∈ {8, 9, 10}.

Owens (1984a) constructed non-hamiltonian members of G3(3, 8) and G3(3, 9) shown

in Figures 2.6 and 2.7, respectively.

2 2

2

2

2
2

2

2 2

2

2 2

2

2 2

ec ec

2 2

2

2 2

2

2
2

2 2 2

2 2

2
2

2
2

2

2

2
2

2
2

2

2 2

2

2

2
2

2 2

2

2 2

2

2 2

2

2
2

2 2 2

2 2

2
2

2
2

2

2

2
2

2
2

2

2 2

2

2

2
2

2 2

2

2 2

2

2 2

2

2 2

2

2
2

2
2

2

2
2

2

2
2

2

2

2 2

2
2 2

2

2 2

2

2
2

2

Figure 2.6: A non-hamiltonian member of G3(3, 8) (Owens, 1984a).
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2 2

2

2 2

2

ec ec

2 2

2

2 2

2
2
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2
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2

2
2

2
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2

2

2
2

2

2

2
2
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2
2

2 2 2

2 2

2
2

2

2 2

2 2

2

2 2

2
2

2

2

2
2

2
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2
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2
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2
2

2

2

2
2

2 2 2

2 2
2

2

2
2

2 2 2

2 2

2
2

2

2 2

2
2

2

2 2

2
2

2

2

2
2

2

2 2

2

2
2

2

2
2

2
2

2

2
2

2

2

2
2

2

2
2

2

2
2

2 2 2

2

2 2

2

2

2 2

Figure 2.7: A non-hamiltonian member of G3(3, 9) (Owens, 1984a).

Owens (1984a) also constructed a non-hamiltonian member of G3(3, 10). The 3-piece

N , as shown in Figure 2.8(a), contains a copy of B1 (see Figure 1.9(a)) in which all of

its vertices are replaced by 3-gons. As indicated, N has a compulsory edge of attachment

ec. He obtained the graph G shown in Figure 2.8(b) by replacing twelve vertices of the

graph Q (see Figure 1.4) with two copies of N and ten copies of 3-gons. By inspection,

G ∈ G3(3, 10). Suppose C is a Hamilton cycle of G. Then C contains both ec. By

shrinking N and 3-gons to single vertices, G is converted into Q and C into a Hamilton

cycle of Q that contains the edges ec. However, this contradicts Lemma 1.7. It follows

that no such C exists. Hence, G is non-hamiltonian.

N :

ec

2 2

2

2 2

2

2 2

2

2
2

2

2 2

2

2

2 2

2 2

2

2

2
2

2
2

2
2

2

2

2
2

2

2

2 2

2 2

2

2

2 2

2

2
2

2

2 2

2

2 2

2

2 2

2 2

2

= 5 5

2

ec

N G:

2

2

2

2

2

2

2
2

2
2

2

2

2
2

2
2

2

2

2
2

2
2

2

2

2

2

2

2

2

2

N

N

5 5

2

5 5

2

ec

ec

v

(a) (b)

Figure 2.8: 3-piece N and a non-hamiltonian member of G3(3, 10)
(Owens, 1984a).

A summary of results for the class G3(3, k) is given in Theorem 2.8.

Theorem 2.8.

1. G3(3, 4), G3(3, 5) and G3(3, 6) (Goodey, 1977) contain only hamiltonian

members.
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2. There exist non-hamiltonian members of G3(3, k) for k = 7 (Tkáč, 1994) and

k ∈ {8, 9, 10} (Owens, 1984a).

3. G3(3, k) is empty for k ≥ 11 (Malkevitch, 1970).

2.3 G3(4, k)

Now, we consider the class G3(4, k) where k ≥ 5.

Theorem 2.9. G3(4, 5) contains only hamiltonian members.

From Equation 1.2, we have 2f4 + f5 = 12, which can be satisfied if (f4, f5) ∈

{(1, 10), (2, 8), (3, 6), (4, 4), (5, 2)}. By Theorem 2.3, there is no 3R3CP with f4 = 1 and

f5 = 10. Jendroľ and Jucovič (1989) showed that to every remaining four cases, there

exists exactly one 3R3CP having those fk k-gons for k ∈ {4, 5}, as shown in Figure 2.9.

Each of these graphs contains a Hamilton cycle. Hence, these graphs are hamiltonian.

(a) (b) (c) (d)

Figure 2.9: Members of G3(4, 5) (Jendroľ & Jucovič, 1989).

A conjecture regarding the existence of Hamilton cycles in bipartite 3R3CPs, which is

known as Barnette’s conjecture (Barnette, 1969), remains open.

Conjecture 2.1. (Barnette’s conjecture) Every bipartite 3R3CP is hamiltonian.

As already stated in Section 1.2.5, each face in a planar bipartite graph is a 2k-gon

where k ≥ 2. If Barnette’s conjecture is true, then all members of G3(4, k) are hamilto-

nian for every even value of k.

Theorem 2.10. (Goodey, 1975) G3(4, 6) contains only hamiltonian members.

Goodey (1975) verified Conjecture 2.1 for the class G3(4, 6) in which he showed that

all members are hamiltonian. At present, there appear to be no known results concerning

the hamiltonicity of G3(4, 2k) for k ≥ 4.
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Theorem 2.11. (Owens, 1984b) There exists a non-hamiltonian member of G3(4, 7).

Owens (1984b) constructed the 3-piece W shown in Figure 2.10(a). W contains a

modified form of the 3-piece T3 (defined in Lemma 1.9). As indicated, W has a compul-

sory edge of attachment ec. He obtained the graph G shown in Figure 2.10(b) by replacing

three vertices of a cube (see Figure 2.1) with three copies of W , in such a way that the

three compulsory edges of attachment ec associated with the three 3-pieces W are inci-

dent to the same vertex. By inspection, G ∈ G3(4, 7). Since the three ec are incident to

the same vertex, no cycle in G can contain them all. Hence, G is non-hamiltonian.

W :

ec

= 2 3

4

ec

W G:

W

W

W
3

2

4

2

3

4

2

3

4

ec

ec

ec

(a) (b)

Figure 2.10: 3-piece W and a non-hamiltonian of member of G3(4, 7)
(Owens, 1984b).

Theorem 2.12. (Owens, 1984b; Walther, 1981) There exist non-hamiltonian members

of G3(4, 9).

Walther (1981) constructed the 3-pieces S, H, I and J shown in Figure 2.11(a) –

(d). Some of these 3-pieces contain L2, L3 or L4 (see Figure 1.7). He obtained the

non-hamiltonian graph G shown in Figure 2.11(e) by replacing ten vertices of a non-

hamiltonian graph constructed by Grinberg (1968) with six copies of H, three copies of I

and one copy of J . By inspection, G ∈ G3(4, 9).

Owens (1984b) also constructed a non-hamiltonian member of G3(4, 9), which has

far fewer vertices than the one constructed by Walther (1981). The graph that was due

to Walther (1981), as shown in Figure 2.11(e), has about 700 vertices while the graph

constructed by Owens (1984b) has 158 vertices only.
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S:

L42

5
2

5

= 4 3

2

S H :

S4 3

2
= 5 4

2

H

I:

L2

L3 L4 S
3

2
3

2

2

4

4

2

2

5 5

2

3

4

2

= 5 5

2

I

J :

L2

L3 L4 S

S

3
2

3

2

2

4

4

2

2

5 5

2

3

4

2

2 4

3

= 5 5

5

J

G:

I J

H H

H I

H

H

H I

2

5

5

5 5

5

4 2

5

4

5

2

2

4

5 5 5

2

2 4

5

2

4

5

5

2

4 2

5 5

(a) (b)

(c)

(d)

(e)

Figure 2.11: 3-pieces S, H , I, J and a non-hamiltonian member of G3(4, 9)
(Walther, 1981).
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Theorem 2.13. (Walther, 1981) There exist non-hamiltonian members of G3(4, k) for

all odd k ≥ 11.

According to Walther (1981), non-hamiltonian members of G3(4, k) for all odd k ≥ 11

can be constructed in a similar way to that of a non-hamiltonian member of G3(4, 9) (see

Figure 2.11).

A summary of results for the class G3(4, k) is given in Theorem 2.14.

Theorem 2.14.

1. G3(4, 5) and G3(4, 6) (Goodey, 1975) contain only hamiltonian members.

2. There exist non-hamiltonian members of G3(4, k) for k = 7 (Owens, 1984b), k = 9

(Owens, 1984a; Walther, 1981) and for all odd k ≥ 11 (Walther, 1981).

2.4 G3(5, k)

It has been conjectured that every member of G3(5, 6) is hamiltonian (see Owens,

1999, Conjecture 5; Walther, 1997, Remarks).

Ewald (1973) proved that every member G of G3(5, 6) contains a cycle that meets

every face of G. This implies that there is a cycle through at least
n

3
vertices of G on n

vertices. Jendroľ and Owens (1995) gave a better bound of
4n

5
. Král’, Pangrác, Sereni,

and Škrekovski (2009) improved the bound to
5n

6
−

2

3
. Erman, Kardoš, and Miškuf (2009)

further improved it to
6n

7
+

2

7
.

Brinkmann and Dress (1998) checked the hamiltonicity of all members of G3(5, 6) on

at most 150 vertices and all were found to have a Hamilton cycle. Brinkmann, Goedge-

beur, and McKay (2012) checked up to 336 vertices.

Theorem 2.15. (Owens, 1981) There exists a non-hamiltonian member of G3(5, 7).

Owens (1981) constructed the 3-pieces U and V shown in Figure 2.12(a) and (b),

respectively. V contains a copy of the Tutte’s triangle T (see Figure 1.5) in which two

of its vertices are replaced by two copies of U . As indicated, V has a compulsory edge

of attachment ec. He obtained the non-hamiltonian graph G shown in Figure 2.12(c)

in a similar way to that of a non-hamiltonian member of G3(4, 7) (see Figure 2.10(b))

described earlier. By inspection, G ∈ G3(5, 7).
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U : = 3 3

4

U

V :

ec

U U3
3

4
3

3

4

= 2 3

4

V G:

V

V

V
3

2

4

2

3

4

2

3

4

ec

ec

ec

(a)

(b) (c)

Figure 2.12: 3-pieces U , V and a non-hamiltonian member of G3(5, 7)
(Owens, 1981).

Theorem 2.16. (Zaks, 1977) There exists a non-hamiltonian member of G3(5, 8).

Zaks (1977) showed that a non-hamiltonian member of G3(5, 8), as shown in Figure

2.14, can be obtained from a non-hamiltonian member of G3(5, 6, 8) (Grinberg, 1968;

Tutte, 1972) (see Figure 2.13) by removing the vertex labelled u from the graph shown in

Figure 2.13 and joined two such copies to six new vertices, vi where 1 ≤ i ≤ 6 to obtain

the graph shown in Figure 2.14.

u

Figure 2.13: A non-hamiltonian member of G3(5, 6, 8)
(Grinberg, 1968; Tutte, 1972).
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v1 v2

v3 v4

v5 v6

Figure 2.14: A non-hamiltonian member of G3(5, 8) (Zaks, 1977).

Additionally, Zaks (1977) coined the term non-grinbergian, which refers to a planar

graph that satisfies the condition fk = 0 for all k 6≡ 2(mod 3). The non-hamiltonian graph

shown in Figure 2.14 is non-grinbergian and it provides negative answer to Question 1.1.

Theorem 2.17. (Zaks, 1982a) There exists a non-hamiltonian member of G3(5, 9).

Zaks (1982a) constructed a non-hamiltonian member of G3(5, 9) shown in Figure 2.15.

The graph contains three copies of B1 (see Figure 1.9(a)). He showed that the graph can be

shown non-hamiltonian by applying Grinberg’s Theorem (see Theorem 1.5). He pointed

out that the graph can also be shown non-hamiltonian by considering all possible spanning

paths through B1 (see Lemma 1.11(1)) from which one easily gets a contradiction.

Figure 2.15: A non-hamiltonian member of G3(5, 9) (Zaks, 1982a).
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Theorem 2.18. (Owens, 1982b) There exists a non-hamiltonian member of G3(5, 10).

Owens (1982b) constructed the 3-piece E shown in Figure 2.16(a). E contains two

copies of B1 . As indicated, E has a compulsory edge of attachment ec. The graph G

shown in Figure 2.16(b) contains three copies of E that are placed in such a way that the

three compulsory edges of attachment ec associated with the three 3-pieces E are incident

to the same vertex. By inspection, G ∈ G3(5, 10). Since the three ec are incident to the

same vertex, no cycle in G can contain them all. Hence, G is non-hamiltonian.

E:

ec

= 4 4

4

ec

E G:

E

E

E
4

4

4

4

4

4

4

4

4

ec

ec

ec

(a) (b)

Figure 2.16: 3-piece E and a non-hamiltonian member of G3(5, 10)
(Owens, 1982b).

Theorem 2.19. (Zaks, 1980) There exist non-hamiltonian members of G3(5, k) for all

k ≥ 11.

Zaks (1980) constructed non-hamiltonian members of G3(5, k) for all k ≥ 11 shown

in Figures 2.17 – 2.23. Each graph in Figures 2.17, 2.18 and 2.19 contains three copies

of B2, B ′
2 and Bi, i ≥ 2, respectively. The graphs in Figures 2.20 and 2.23 contain three

copies of B ′′
i , i ≥ 2 each, whereas the ones in Figures 2.21 and 2.22 contain five copies

of B ′′
i , i ≥ 2 each.

A summary of results for the class G3(5, k) is given in Theorem 2.20.

Theorem 2.20. There exist non-hamiltonian members of G3(5, k) for k = 7 (Owens,

1981), k = 8 (Zaks, 1977), k = 9 (Zaks, 1982a), k = 10 (Owens, 1982b) and k ≥ 11

(Zaks, 1980).
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Figure 2.17: A non-hamiltonian member of G3(5, 11) (Zaks, 1980).

Figure 2.18: A non-hamiltonian member of G3(5, 12) (Zaks, 1980).
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. . .

. . .

. . .

. . .

. . .

. . .

Figure 2.19: A non-hamiltonian member of G3(5, 3 + 5i) for i ≥ 2 (Zaks, 1980).

. . .

. . .

. . .

. . .

. . .

. . .

Figure 2.20: A non-hamiltonian member of G3(5, 4 + 5i) for i ≥ 2 (Zaks, 1980).
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. . .
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. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 2.21: A non-hamiltonian member of G3(5, 5 + 5i) for i ≥ 2 (Zaks, 1980).
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. . .

. . .

. . .
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. . .

Figure 2.22: A non-hamiltonian member of G3(5, 6 + 5i) for i ≥ 2 (Zaks, 1980).

. . .

. . .

. . .

. . .

. . .

. . .

Figure 2.23: A non-hamiltonian member of G3(5, 7 + 5i) for i ≥ 2 (Zaks, 1980).
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As discussed in Sections 2.2 to 2.4, the hamiltonicity of G3(h, k) are known for all h

and k, except those stated in the following two conjectures:

Conjecture 2.2. G3(5, 6) contains only hamiltonian members.

Conjecture 2.3. G3(4, 2k) for k ≥ 4 contains only hamiltonian members.

The search for non-hamiltonian members of G3(h, k) is further refined by imposing

additional restriction on the connectivity of the members. Here, we give a brief summary

of the existence of non-hamiltonian cyclically 5-connected members of G3(5, k).

Theorem 2.21. There exist non-hamiltonian cyclically 5-connected members of G3(5, k)

for

1. k = 8 (Walther, 1997);

2. k ≥ 8 and k 6∈ {13, 16, 18, 21} (Fabrici, Owens, & Walther, 2000); and

3. k = 20 + 8s for s ≥ 0 (Owens, 1982a).

Fabrici et al. (2000) only showed the constructions for k = 10 and k ≥ 17 and noted

that each of the remaining cases needs a special treatment.

2.5 Additional Result

In addition to the classes discussed earlier, here, we consider G3(k1, k2, . . . , kt) for

3 ≤ k1 < k2 < . . . < kt ≤ 6.

Barnette (see Malkevitch, 1988) posed the following open question in which he asked

if a 3R3CP whose biggest faces are 6-gons is hamiltonian.

Question 2.1. Is every member of G3(k1, k2, . . . , kt) for 3 ≤ k1 < k2 < . . . < kt ≤ 6

hamiltonian?

Note that Question 2.1 covers the class G3(h, k) for 3 ≤ h < k ≤ 6 where all

members are known to be hamiltonian (see Theorems 2.8 and 2.14), except h = 5 and

k = 6.
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Aldred, Bau, Holton, and McKay (2000) generated all such graphs on at most 176

vertices and found them all to be hamiltonian. Brinkmann, McKay, and von Nathusius

(2003) extended the computation to 250 vertices with the same outcome. Brinkmann et

al. (2012) confirmed that all such graphs on at most 316 vertices are hamiltonian.

Grünbaum and Walther (1973) (see also Goodey, 1977, Remarks) conjectured that

every 3R3CP whose biggest faces are 6-gons is hamiltonian.

Conjecture 2.4. (Grünbaum & Walther, 1973) G3(k1, k2, . . . , kt) where 3 ≤ k1 < k2 <

. . . < kt ≤ 6 contains only hamiltonian members.
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CHAPTER 3: 3-REGULAR 3-CONNECTED PLANAR GRAPHS

WITH ONLY THREE TYPES OF FACES

3.1 Introduction

This chapter is devoted to the constructions of non-hamiltonian members of G3(h, k, l),

h 6= k 6= l, which is the class of all 3-regular 3-connected planar graphs (3R3CPs)

whose faces are of only three types, namely h-gons, k-gons and l-gons. By Lemma 1.3,

every 3R3CP must have some 3-, 4- or 5-gons. We construct a large number of non-

hamiltonian members of G3(h, k, l) where h ∈ {3, 4, 5}. We will divide our results into

three sections, namely Sections 3.3, 3.4 and 3.5, each of which focuses on the classes

G3(3, k, l), G3(4, k, l) and G3(5, k, l), respectively. The techniques and subgraphs used

in the constructions will be discussed in Section 3.2.

In general, let Sn1,n2,n3

(k1,k2,...,kt)
(Sn1,n2,n3,n4

(k1,k2,...,kt)
) denotes any 3-piece (4-piece) whose inner faces

are of only t types, namely k1-, k2-, . . . , kt-gons where ki ≥ 3, ki 6= kj ∀ i 6= j and

i, j ∈ {1, 2, . . . , t}, that contributes n1, n2 and n3 (n1, n2, n3 and n4) vertices to the

three (four) adjoining faces of any graph in which it occurs. If n = n1 = n2 = n3

(n = n1 = n2 = n3 = n4), then the notation is simplified to Sn
(k1,k2,...,kt)

.

We represent an Sn1,n2,n3

(k1,k2,...,kt)
(Sn1,n2,n3,n4

(k1,k2,...,kt)
) by a labelled circle whose circumference is

surrounded by n1, n2 and n3 (n1, n2, n3 and n4). S2
(3), whose only interior face is a 3-

gon, is represented by a small unlabelled white circle that has number two around the

circumference of the circle, as shown in Figure 3.1(a). S3
(4) and S4

(5), as shown in Figures

3.1(b) and (c), are obtained by removing a vertex from a cube and a dodecahedron (see

Figure 2.1), respectively.

S2
(3): = 2 2

2

S3
(4): = 3 3

3

S3
(4) S4

(5): = 4 4

4

S4
(5)

(a) (b) (c)

Figure 3.1: 3-pieces S2
(3), S3

(4) and S4
(5).
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It is well known that there are 3R3CPs with no Hamilton cycle and among the non-

hamiltonian 3R3CPs that have been constructed, there are graphs that have exactly three

types of faces. The following paragraphs contain a brief discussion of such graphs.

Owens (1981) constructed a non-hamiltonian member of G3(4, 5, 7) shown in Figure

3.2(b). The non-hamiltonian graph G contains three copies of S2,3,4
(4,5,7) (see Figure 3.2(a)),

whose compulsory edges of attachment ec are incident to the same vertex. G is then used

to obtain a non-hamiltonian member of G3(5, 7) shown in Figure 2.12(c).

S
2,3,4
(4,5,7):

ec

= 2 3

4

ec

S
2,3,4
(4,5,7) G:

S
2,3,4
(4,5,7)

S
2,3,4
(4,5,7)

S
2,3,4
(4,5,7)

2

3

4

3

2

4

3

2

4

ec

ec
ec

(a) (b)

Figure 3.2: 3-piece S
2,3,4
(4,5,7) and a non-hamiltonian member of G3(4, 5, 7)

(Owens, 1981).

Hunter (1962) constructed a non-hamiltonian cyclically 4-connected 3R3CP with 58

vertices. The graph is a member of G3(5, 6, 9). Another such graphs with only 42 ver-

tices that were due to Grinberg (1968) and Faulkner and Younger (1974) are members of

G3(4, 5, 8) and G3(4, 5, 11), respectively.

Grinberg (1968) constructed two non-hamiltonian cyclically 5-connected 3R3CPs. One

is a member of G3(5, 8, 9) and another, which was also constructed independently by

Tutte (1972), is a member of G3(5, 6, 8) (see Figure 2.13). Zaks (1982b) presented a

non-hamiltonian non-grinbergian cyclically 5-connected 3R3CP, which is a member of

G3(5, 14, 20).

The girth of a graph G is the length of a shortest cycle in G. In search of a non-

hamiltonian 3R3CP of girth 5 with minimum number of vertices, Aldred et al. (2000)

discovered three non-hamiltonian cyclically 4-connected 3R3CPs whose faces are of only

three types, each of which is a member of G3(5, 6, 9), G3(5, 6, 11) and G3(5, 8, 12).
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3.2 Lemmas

In this section, we discuss the techniques that will be used in the proof of theorems in

subsequent sections. This also includes discussions on subgraphs with properties that are

useful in the constructions of non-hamiltonian members of G3(h, k, l).

Lemma 3 of (Owens, 1984a) states that if a graph H is obtained from a graph G

by shrinking a triangular face of G to a single vertex, then G and H are either both

hamiltonian or both non-hamiltonian. Lemma 3.1 extends Lemma 3 of (Owens, 1984a).

Lemma 3.1. Let S be a 3-piece in a graph G. S has a spanning path through S that

contains any two of its edges of attachment. Suppose G∗ is a graph obtained from G

by shrinking S to a single vertex. Then G and G∗ are either both hamiltonian or both

non-hamiltonian.

Lemmas 3.2 and 3.3 are easily obtained.

Lemma 3.2. For each i = 1, 2, 3, let Si be a 3-piece obtained by removing a set of three

edges from a 3R3CP. Suppose S3 can be obtained from S1 by replacing a vertex with a

copy of S2. Then an edge of attachment of S3 is a compulsory edge of attachment if it is a

compulsory edge of attachment of S1.

Lemma 3.3. Let C be a Hamilton cycle of a 3R3CP that contains a k-piece S for

k ∈ {3, 4}. Suppose S∗ is obtained from S by replacing a vertex with a copy S2
(3) (see

Figure 3.1(a)). Then the resulting 3R3CP contains a Hamilton cycle C∗. Furthermore,

if there is a spanning path through S that ends at its a-vertices u and v, then there is a

spanning path through S∗ that also ends at u and v.

PROOF: For a path that passes through any two edges incident to a vertex in S, there

is a corresponding path through the two edges in S∗, as shown in Figure 3.3. Hence the

lemma follows.

Figure 3.3: Paths through a vertex and a 3-piece S2
(3).
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Lemma 3.4 can be found in (Owens, 1984b).

Lemma 3.4. (Owens, 1984b) For each i = 1, 2, 3, let Si be a 3-piece with a compulsory

edge of attachment ei. If a graph G contains S1, S2 and S3 such that e1, e2 and e3 are

incident to the same vertex, then G is non-hamiltonian.

Lemmas 3.5–3.10 exploit the presence of B1, B2+i, B ′
2+i and B ′′

2+i for i ≥ 0 (see

Figures 1.9 and 1.10) in some k-pieces.

Lemma 3.5. Let S3,5,5
(4,5), S3,6,6

(3,5), S4,7,7
(3,6) and S4,5,5

(4,5,8) be the 3-pieces shown in Figure 3.4.

Then the edge of attachment labelled ec is a compulsory edge of attachment of each 3-

piece.

S
3,5,5
(4,5)

:

c

u1 u2

v1 v2

ec

= 5 5

3

ec

S
3,5,5
(4,5)

S
3,6,6
(3,5)

:

2 2

2

u1 u2

v1 v2

ec

= 6 6

3

ec

S
3,6,6
(3,5)

S
4,7,7
(3,6)

:

2
2

2

2
2

2

2
2

2

2
2

2

2

2
2

ec

= 7 7

4

ec

S
4,7,7
(3,6)

S
4,5,5
(4,5,8)

:

S
2,4,4
(4,5)

4 4

2

ec

= 5 5

4

ec

S
4,5,5
(4,5,8)

(a) (b)

(c) (d)

Figure 3.4: 3-pieces S
3,5,5
(4,5) , S

3,6,6
(3,5) , S

4,7,7
(3,6) and S

4,5,5
(4,5,8).

S
2,4,4
(4,5) :

S3
(4)3 3

3 = 4 4

2

S
2,4,4
(4,5)

Figure 3.5: 3-piece S
2,4,4
(4,5) .
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PROOF: Let c, u1 and u2 be a-vertices of S3,5,5
(4,5) , as shown in Figure 3.4(a). Note that

S3,5,5
(4,5) − c is the 4-piece B1 (see Figure 1.9(a)) described by Faulkner and Younger (1974).

Let C be a Hamilton cycle of a 3R3CP that contains B1 and S3,5,5
(4,5) . Let P and P ∗ be B1∩C

and S3,5,5
(4,5) ∩C , respectively. By Lemma 1.11(1), P are of the following three forms only:

Pu1v2 (or by symmetry, Pu2v1), Pu1u2 (or by symmetry, Pv1v2) and Pu1u2 ∪ Pv1v2 . Now,

consider the following three cases:

Case (1): If P is of the form Pu1v2 (or by symmetry, Pu2v1), then P ∗ takes the form

cPv2u1 (or by symmetry, cPv1u2).

Case (2): If P is of the form Pu1u2 , then P ∗ misses the a-vertex c, which is impos-

sible. If P is of the form Pv1v2 , then cPv1v2c forms a cycle in P ∗, which is impossible

too.

Case (3): If P is of the form Pu1u2 ∪ Pv1v2 , then cPv1v2c forms a cycle in P ∗, which

is also impossible.

Hence, by Case (1), ec is a compulsory edge of attachment of S3,5,5
(4,5).

S3,6,6
(3,5) and S4,5,5

(4,5,8), as shown in Figure 3.4(b) and (d), are obtained by replacing a vertex

of S3,5,5
(4,5) with a copy of S2

(3) and S2,4,4
(4,5) (see Figure 3.5), respectively. S4,7,7

(3,6) , as shown in

Figure 3.4(c), is obtained by replacing five vertices of S3,5,5
(4,5) with five copies of S2

(3). By

Lemma 3.2, the edge of attachment labelled ec is a compulsory edge of attachment of

each of the 3-pieces S3,6,6
(3,5) , S4,7,7

(3,6) and S4,5,5
(4,5,8).

Lemma 3.6. Let S2,6,6
(4,5) and S2,7,7

(3,5) be the 3-pieces shown in Figure 3.6. Then the edge of

attachment labelled ec is a compulsory edge of attachment of each 3-piece.

S
2,6,6
(4,5) :

w1 w2

u1 u2

v1 v2

ec

= 6 6

2

ec

S
2,6,6
(4,5)

S
2,7,7
(3,5) :

2 2

2

w1 w2

u1 u2

v1 v2

ec

= 7 7

2

ec

S
2,7,7
(3,5)

(a) (b)

Figure 3.6: 3-pieces S
2,6,6
(4,5) and S

2,7,7
(3,5) .
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PROOF: S2,6,6
(4,5) and S2,7,7

(3,5), as shown in Figure 3.6, are obtained from S3,5,5
(4,5) and S3,6,6

(3,5)

(see Figure 3.4(a) and (b)), respectively, by adding the vertices w1 and w2 and edges u1w1,

u2w2 and w1w2. This is an easy consequence of Lemma 3.5. Hence, the lemma follows.

Lemma 3.7. Let S3,3,5
(5,6), S3,4,6

(3,7) , S4,4,6
(3,8), S4,4,7

(3,9) and S4,4,8
(3,10) be the 3-pieces shown in Figure

3.7. Then the edge of attachment labelled ec is a compulsory edge of attachment of each

3-piece.

S
3,3,5
(5,6) :

u1 u2

v1 v2

a e

b d

c

ec

= 3 3

5

ec

S
3,3,5
(5,6)

S
3,4,6
(3,7) :

2
2

2

2 2

2

2

2 2

2

2
2

2

2 2

2

2 2

2

2 2

ec

= 4 3

6

ec

S
3,4,6
(3,7)

S
4,4,6
(3,8) :

2 2

2

2
2

2

2

2 2

2

2
2

2
2

2
2

2

2

2
2

2

2 2

2

2

2
2

2

2 2

2 2

2

a e

b d

ec

= 4 4

6

ec

S
4,4,6
(3,8)

S
4,4,7
(3,9) :

2 2

2

2 2

2

2 2

2

2

2 2

2 2

2

2

2
2

2
2

2

2
2

2

2

2 2

2 2

2

2

2 2

2

2
2

2

2 2

2

2 2

2 2

2

a e

b d

ec

= 4 4

7

ec

S
4,4,7
(3,9)

S
4,4,8
(3,10):

2 2

2

2 2

2

2 2

2

2
2

2

2 2

2

2

2 2

2 2

2

2

2
2

2
2

2
2

2

2

2
2

2

2

2 2

2 2

2

2

2 2

2

2
2

2

2 2

2

2 2

2

2 2

2 2

2

a e

b d

ec

= 4 4

8

ec

S
4,4,8
(3,10)

(a)

(b) (c)

(d) (e)

Figure 3.7: 3-pieces S
3,3,5
(5,6) , S

3,4,6
(3,7) , S

4,4,6
(3,8) , S

4,4,7
(3,9) and S

4,4,8
(3,10).

PROOF: Let a, c and e be a-vertices of S3,5,5
(5,6), as shown in Figure 3.7(a). Note that S3,3,5

(5,6)

contains a copy of B1 (see Figure 1.9(a)). Let C be a Hamilton cycle of a 3R3CP that
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contains B1 and S3,5,5
(5,6). Let P and P ∗ be B1 ∩ C and S3,5,5

(5,6) ∩ C , respectively. By Lemma

1.11(1), P are of the following three forms only: Pu1v2 (or by symmetry, Pu2v1), Pu1u2 (or

by symmetry, Pv1v2) and Pu1u2 ∪ Pv1v2 . Now, consider the following three cases:

Case (1): If P is of the form Pu1v2 (or by symmetry, Pu2v1), then bv1, eu2 6∈ P ∗

(or by symmetry, au1, dv2 6∈ P ∗). This implies that cba, de ∈ P ∗ (or by symmetry,

cde, ba ∈ P ∗). Thus, P ∗ takes the form cbaPu1v2de (or by symmetry, cdePu2v1ba).

Case (2): If P is of the form Pu1u2 , then bv1, dv2 6∈ P ∗. This implies that abcde ∈ P ∗.

However, abcdePu2u1a forms a cycle in P ∗, which is impossible. If P is of the form

Pv1v2 , then au1, eu2 6∈ P ∗. This implies that exactly one of ab and ed is in P ∗, otherwise

cbPv1v2dc forms a cycle in P ∗ or P ∗ misses the a-vertex c. However, if abPv1v2dc ∈ P ∗

(or by symmetry, edPv2v1bc ∈ P ∗), then P ∗ misses the a-vertex e (or by symmetry, P ∗

misses the a-vertex a), which is impossible too.

Case (3): If P is of the form Pu1u2 ∪Pv1v2 , then au1, bv1, dv2, eu2 ∈ P ∗. This implies

that exactly one of ab and ed is in P ∗, otherwise cbPv1v2dc or abPv1v2dePu2u1a forms a

cycle in P ∗. Thus, P ∗ takes the form cbPv1v2dePu2u1a (or by symmetry, cdPv2v1baPu1u2e).

Hence, by Case (1) and Case (3), ec is a compulsory edge of attachment of S3,5,5
(5,6).

S3,4,6
(3,7) , S4,4,6

(3,8), S4,4,7
(3,9) and S4,4,8

(3,10), as shown in Figure 3.7(b), (c), (d) and (e), respectively,

are obtained by replacing some vertices of S3,5,5
(5,6) with some copies of S2

(3). By Lemma

3.2, the edge of attachment labelled ec is a compulsory edge of attachment of each of the

3-pieces S3,4,6
(3,7) , S4,4,6

(3,8), S4,4,7
(3,9) and S4,4,8

(3,10).

Lemma 3.8. Let S2,4,4
(5,6,7), S2,5,5

(3,8) , S2,5,5
(3,9) and S2,5,5

(3,10) be the 3-pieces shown in Figure 3.8.

Then the edge of attachment labelled ec is a compulsory edge of attachment of each 3-

piece.

PROOF: S2,4,4
(5,6,7), S2,5,5

(3,8) , S2,5,5
(3,9) and S2,5,5

(3,10), as shown in Figure 3.8, are obtained from

S3,3,5
(5,6) , S4,4,6

(3,8), S4,4,7
(3,9) and S4,4,8

(3,10) (see Figure 3.7(a), (c), (d) and (e)), respectively, by adding

the vertices f and g and edges af , eg and fg. This is an easy consequence of Lemma 3.7.

Hence, the lemma follows.
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S
2,4,4
(5,6,7):

f g

a e

b d

ec

= 4 4

2

ec

S
2,4,4
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Figure 3.8: 3-pieces S
2,4,4
(5,6,7), S

2,5,5
(3,8) , S

2,5,5
(3,9) and S

2,5,5
(3,10).

Lemma 3.9. Let S3,3,9+5i,9+5i

(5) , S3,3,10+6i,11+6i

(3,6) , S4,4,11+6i,11+6i

(3,6) , S3,3,12+7i,12+7i

(3,7) ,

S4,4,14+8i,14+8i

(3,8) , S4,4,20+9i,20+9i

(3,9) , S4,5,15+9i,15+9i

(3,9) , S5,5,16+9i,16+9i

(3,9) and S6,6,18+10i,18+10i

(3,10)

for i ≥ 0 be the 4-pieces shown in Figure 3.9. Let C be a Hamilton cycle of a 3R3CP that

contains each of these 4-pieces and let P be the intersection of each 4-piece and C . Then

P is of the form Pu1v2 (or by symmetry, Pu2v1) only.

PROOF: For the convenience of writing, we shall denote the 4-piece B2+i for

i ≥ 0 (see Figure 1.9(b)) by S3,3,9+5i,9+5i

(5) , as shown in Figure 3.9(a). By Lemma 1.11(2),

S3,3,9+5i,9+5i

(5) ∩ C is of the form Pu1v2 (or by symmetry, Pu2v1) only.

All 4-pieces, as shown in Figure 3.9(b)–(e) and (g)–(i), are obtained by replacing some

vertices of S3,3,9+5i,9+5i

(5) with some copies of S2
(3). By Lemma 3.3, we can apply Lemma

1.11(2) to these 4-pieces. Hence, the lemma follows.

S4,4,20+9i,20+9i

(3,9) , as shown in Figure 3.9(f), is obtained by replacing some vertices of

B ′′
2+i for i ≥ 0 (see Figure 1.10(b)) with some copies of S2

(3). By Lemma 3.3, we can

apply Lemma 1.12(2) to S4,4,20+9i,20+9i

(3,9) . Hence, the lemma follows.
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Figure 3.9: 4-pieces S
3,3,9+5i,9+5i

(5) , S
3,3,10+6i,11+6i

(3,6) , S
4,4,11+6i,11+6i

(3,6) ,

S
3,3,12+7i,12+7i

(3,7) and S
4,4,14+8i,14+8i

(3,8) for i ≥ 0.
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Figure 3.9 (Continued): S
4,4,20+9i,20+9i

(3,9) , 4-pieces S
4,5,15+9i,15+9i

(3,9) , S
5,5,16+9i,16+9i

(3,9)

and S
6,6,18+10i,18+10i

(3,10) for i ≥ 0.

Lemma 3.10. Let S4,5,18+9i,18+9i

(3,9) for i ≥ 0 be the 4-piece shown in Figure 3.10. Let C be

a Hamilton cycle of a 3R3CP that contains S4,5,18+9i,18+9i

(3,9) and let P be S4,5,18+9i,18+9i

(3,9) ∩C .

Then P is of the form Pu1v1 (or by symmetry, Pu2v2) only.

PROOF: S4,5,18+9i,18+9i

(3,9) is obtained by replacing some vertices of B ′
2+i for i ≥ 0 (see

Figure 1.10(a)) with some copies of S2
(3). By Lemma 3.3, we can apply Lemma 1.12(1)

to S4,5,18+9i,18+9i

(3,9) . Hence, the lemma follows.

40

Univ
ers

ity
 of

 M
ala

ya



. . .

. . .

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2

2
2

2

2 2

2

2

2
2 2

2

2

2 2

2

2

2
2

2

2
2 2

2

2

2

2
2 2

2

2
2

2

2
2

2

2

2
2

2

2

2
2 2

2

2
2

2

2

2

2

2

2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2

2 2

2 2

2

2 2

2

2 2

2

2 2

2

2
2

2

2 2

2

2

2
2

2
2

2
2

2

2

2

2
2

2
2

2

2

2
2

2

2 2

2

2 2

2

2 2

2

2 2

u1 v1

u2 v2

= 5 4

18 + 9i

18 + 9i

S
4,5,18+9i,18+9i

(3,9)

Figure 3.10: 4-piece S
4,5,18+9i,18+9i

(3,9) for i ≥ 0.

The following lemma is a simplified version of Lemma 4 of (Zaks, 1980).

Lemma 3.11. Let D be the graph shown in Figure 3.11. D contains three copies of

4-piece S. If S is one of the 4-pieces shown in Figures 3.9 and 3.10, then D is non-

hamiltonian.

D:

S

S

S
u1

u2

v2
v1

u1
u2

v2
v1

u1
u2

v2
v1

w1 w2

e1 e2

e3 e4

e5 e6

e8

e9

e7

Figure 3.11: Graph D.

PROOF: Let u1, u2, v1 and v2 be a-vertices of S, w1 and w2 be some vertices of D and

et for 1 ≤ t ≤ 9 be some edges of D, as shown in Figure 3.11. We shall denote the top,

middle and bottom copies of S by St, Sm and Sb, respectively. Let C be a Hamilton cycle

of D and let Pi be Si ∩ C where i ∈ {t, m, b}. Now, consider the following two cases:

Case (1): Si is one of the 4-pieces shown in Figure 3.9.

By Lemma 3.9, Pi is of the form Pu1v2 (or by symmetry, Pu2v1) only. If Pt is of the

form Pu1v2 , then e1, e2 ∈ E(C) and e7, e8 6∈ E(C). This implies that both Pm and Pb

must also take the form Pu1v2 . Thus, e3, e4, e5, e6 ∈ E(C). Then all three edges incident

to each of the vertices w1 and w2 are in E(C), which is impossible. If Pt is of the form

Pu2v1 , then e7, e8 ∈ E(C). This implies that both Pm and Pb must also take the form
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Pu2v1 . Thus, e9 ∈ E(C). However, this says that C contains a smaller cycle, which is

impossible too.

Case (2): Si is the 4-piece shown in Figure 3.10.

By Lemma 3.10, Pi is of the form Pu1v1 (or by symmetry, Pu2v2) only. If Pt is of the

form Pu1v1 , then e1, e8 ∈ E(C) and e2, e7 6∈ E(C). This implies that Pb must take the

form Pu2v2 . Thus, e6, e9 ∈ E(C) and e5 6∈ E(C). Then e3, e4 ∈ E(C). In this case, Pm is

a union of two disjoint paths. This contradicts Lemma 3.10. A similar conclusion can be

drawn if Pt is of the form Pu2v2 .

It follows that no such C exists. Hence, the lemma follows.

3.3 G3(3, k, l)

This section concerns the class of all 3R3CPs whose faces are 3-, k- and l-gons where

k 6= l 6= 3. In addition to showing that G3(3, k, l) is empty if 11 ≤ k < l, we also

construct non-hamiltonian members of G3(3, k, l) for k and l as stated in Theorem 3.18.

Theorem 3.12 extends Lemma 1 of (Owens, 1984a).

Theorem 3.12. For k < l, G3(3, k, l) is non-empty only if k ≤ 10.

PROOF: Let G be a member of G3(3, k, l). Since G is 3-connected, no two 3-gons in G

have a common edge. Furthermore, a k-gon is adjacent to at most
⌊k

2

⌋

3-gons. Suppose

G∗ is a graph obtained from G by shrinking all 3-gons to single vertices. No face of G∗

has less than k −
⌊k

2

⌋

edges. By Lemma 1.3, every 3R3CP must have some faces with

less than 6 edges. Thus, k −
⌊k

2

⌋

< 6, which implies that k ≤ 10.

Theorem 3.13. There exist non-hamiltonian members of G3(3, k, k+1) for 6 ≤ k ≤ 10.

PROOF: For 7 ≤ k ≤ 10, let Gk be a non-hamiltonian member of G3(3, k) shown in

Figures 2.5–2.8. Note that each Gk contains more than one 3-gon and more than three

k-gons. Furthermore, there is at least one 3-gon in Gk that is adjacent to three k-gons.

Suppose G′
k is a graph obtained from Gk by shrinking a 3-gon to a single vertex. Then

the three k-gons that are adjacent to the 3-gon in Gk are now reduced to (k − 1)-gons

in G′
k. Thus, G′

k ∈ G3(3, k − 1, k) for 7 ≤ k ≤ 10. Hence, by Lemma 3.1, G′
k is

non-hamiltonian.
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Let v be a vertex in G10 that is shared by three adjacent 10-gons, as shown in Figure

2.8. Suppose G′′
10 is a graph obtained from G10 by replacing the vertex v with a 3-gon.

Then the three adjacent 10-gons in G10 have now become 11-gons in G′′
10. Thus, G′′

10 ∈

G3(3, 10, 11). If G′′
10 is hamiltonian, then G10 is hamiltonian by Lemma 3.1. This a

contradiction since G10 is non-hamiltonian. Hence, G′′
10 is non-hamiltonian.

Theorem 3.14. There exist non-hamiltonian members of G3(3, 4, l) for l ≥ 7.

PROOF: The construction of a non-hamiltonian member of G3(3, 4, l) for l ≥ 7 is

shown in Figure 3.12. Let V and W be the 3-pieces shown in Figure 3.12(a) and (b),

respectively. V is obtained by replacing three vertices of T3 (defined in Lemma 1.9) with

two copies of suitable 3-piece X and one copy of suitable 3-piece Y . Here, X and Y are

to be defined later. W is obtained from S∗
a (see Figure 1.8(a)) by replacing Sa and a vertex

with a copy of V and X, respectively. Note that by Lemma 3.2, we can apply Lemma

1.9 to V and Lemma 1.10 to W to conclude that the edge of attachment labelled ec is a

compulsory edge of attachment of each of the 3-pieces V and W .

V :

X

Y

X

j j

j

3 3

3

j
j

j

ec

= 4 5

2 + j

ec

V W :

X

V

j j

j

2
+

j

4

5 ec

ec

= 2 3

3 + j

ec

W

G:

W

W

W

3

2

3 + j

2

3

3 + j

2

3

3 + j

Xj

j

j

ec

ec

ec

(a) (b)

(c)

Figure 3.12: 3-pieces V , W and a non-hamiltonian member of G3(3, 4, 6 + j)
for j ≥ 1.
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Let G be the graph shown in Figure 3.12(c). G is obtained by replacing four vertices of

a cube with three copies of W and one copy of X, in such a way that the three compulsory

edges of attachment ec associated with the three 3-pieces W are incident to X. If X is a 3-

piece listed in Table 3.1, it can be checked that X has the property that there is a spanning

path through X that contains any two of its edges of attachment. We shrink X to a single

vertex and denote the resulting graph by G∗. By Lemma 3.4, G∗ is non-hamiltonian.

Hence, G is non-hamiltonian by Lemma 3.1. By substituting the 3-pieces X and Y listed

in Table 3.1 for those 3-pieces shown in Figure 3.12, we obtain G, a non-hamiltonian

member of G3(3, 4, l) for l ≥ 7 .

Table 3.1: 3-pieces X and Y for the construction of non-hamiltonian members of

G3(3, 4, l) for l ≥ 7.

l X Y

7 A vertex S3
(3,4,7) (Figure 3.13(a))

8 S2
(3) (Figure 3.1(a)) S3

(3,4,8) (Figure 3.13(b))

9 S3
(4) (Figure 3.1(b)) S3

(3,4,9) (Figure 3.13(c))

10 + i, i ≥ 0 S4+i
(3,4,10+i) (Figure 3.14(c)) S3

(4) (Figure 3.1(b))

S3
(3,4,7):

2
2 2

2

2 2

S3
(4)

3 3

3

= 3 3

3

S3
(3,4,7)

S3
(3,4,8): 2

2

2

2

2
2

2

2 2

2

2 2

S3
(4)

3 3

3

= 3 3

3

S3
(3,4,8) S3

(3,4,9):

2
2 2

2
2

2

2

2
2

2

2 2

2

2 2

2

2 2

S3
(4)

3 3

3

= 3 3

3

S3
(3,4,9)

(a)

(b) (c)

Figure 3.13: 3-pieces S3
(3,4,7), S3

(3,4,8) and S3
(3,4,9).
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3
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2 + i
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2

2 + i

3

3 2

2 +
i 2 +

i

2

3

3 2

2 + i

2

2 +
i

3

2

3

= 5 5

5

S5
(3,4,10+i)

S4+i
(3,4,10+i):

LT
i

LT
i LT

i

2 + i 2

2 + i

2
+

i

2 + i

2

2
2 + i

2 + iS5
(3,4,10+i)

5

5 5

= 4 + i 4 + i

4 + i

S4+i

(3,4,10+i)

(a)

(b)

(c)

Figure 3.14: 3-pieces LT
i

, S5
(3,4,10+i) and S

4+i

(3,4,10+i) for i ≥ 0.

Theorem 3.15. There exist non-hamiltonian members of G3(3, 5, l) for l ≥ 7.

PROOF: A non-hamiltonian member of G3(3, 5, 7) is obtained from a non-hamiltonian

member of G3(5, 7) (Owens, 1981) (see Figure 2.12(b)) by replacing two copies of U

with two copies of S3,3,4
(3,5,7) shown in Figure 3.15.

For l ∈ {8, 9, 10}, non-hamiltonian members of G3(3, 5, l) are shown in Figure 3.16.

Let Ga, Gb and Gc be the graphs shown in Figure 3.16(a), (b) and (c), respectively. Ga

is obtained by replacing two vertices of the graph Q (see Figure 1.4) with two copies of

S2,5,5
(3,8) (see Figure 3.8(b)); Gb is obtained by replacing four vertices of Q with a copy of

S3,6,6
(3,5) (see Figure 3.4(b)), S2,5,5

(3,9) (see Figure 3.8(c)), S4,5,5
(3,5) (see Figure 3.17) and S2

(3); and

45

Univ
ers

ity
 of

 M
ala

ya



S
3,3,4
(3,5,7):

2 2

2

2

2 2

2

22
= 3 3

4

S
3,3,4
(3,5,7)

Figure 3.15: 3-piece S
3,3,4
(3,5,7).

Gc is obtained by replacing six vertices of Q with two copies of S3,6,6
(3,5) , S2,5,5

(3,10) (see Figure

3.8(d)) and S2
(3). The edge of attachment labelled ec is a compulsory edge of attachment

of each of the 3-pieces S3,6,6
(3,5) (by Lemma 3.5), S2,5,5

(3,8) and S2,5,5
(3,9) (by Lemma 3.8).

S
2,5,5
(3,8)

S
2,5,5
(3,8)

5 5

2

5 5

2

ec

ec

S
2,5,5
(3,9)

S
4,5,5
(3,5)

S
3,6,6
(3,5)

5 5

2

5
5

4

6 6

3

2

2 2

ec

ec

S
3,6,6
(3,5)

S
2,5,5
(3,10)

S
2,5,5
(3,10)

S
3,6,6
(3,5)

6 6

3

5

2
5

2

5
5

6 6

3

2

2
2

2

2
2

ec

ec

Ga ∈ G3(3, 5, 8) Gb ∈ G3(3, 5, 9) Gc ∈ G3(3, 5, 10)

(a) (b) (c)

Figure 3.16: Non-hamiltonian members of G3(3, 5, l) for l ∈ {8, 9, 10}.

S
4,5,5
(3,5) :

2
2

2

2

2
2

= 5 5

4

S
4,5,5
(3,5)

Figure 3.17: 3-piece S
4,5,5
(3,5) .

Suppose Ci is a Hamilton cycle of Gi for i ∈ {a, b, c}. Then Ci contains both ec. By

shrinking all 3-pieces to single vertices, Gi is converted into Q and Ci into a Hamilton

cycle of Q that contains the edges ec. However, this contradicts Lemma 1.7. Hence, Gi is

non-hamiltonian.
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For l ∈ {11, 12, 13}, a non-hamiltonian member of G3(3, 5, l) is shown in Figure

3.18(b). Let W be the 3-piece shown in Figure 3.18(a). W is obtained from S∗
b (see

Figure 1.8(b)) by replacing Sb and two other vertices with a copy of S2,7,7
(3,5) (see Figure

3.6(b)), S2
(3) and suitable 3-piece X. Here, X is to be defined later. By Lemma 3.6, the

edge of attachment labelled e′c is a compulsory edge of attachment of S2,7,7
(3,5) . Note that

by Lemma 3.2, we can apply Lemma 1.10 to W to conclude that the edge of attachment

labelled ec is a compulsory edge of attachment of W .

W :

X S
2,7,7
(3,5)

j

j

j
7

2

7

2 2

2

e′c

ec

= 2 + j 5

2

ec

W G:

W

W

W

2
+

j

5

2

2 + j

5

2

2 + j

5

22
2

2

ec

ec

ec

(a) (b)

Figure 3.18: 3-piece W and a non-hamiltonian member of G3(3, 5, 10 + j)
for j ∈ {1, 2, 3}.

Let G be the graph shown in Figure 3.18(b). G is obtained by replacing four vertices

of a cube with three copies of W and one copy of S2
(3), in such a way that the three

compulsory edges of attachment ec associated with the three 3-pieces W are incident to

S2
(3). It can be checked that S2

(3) has the property that there is a spanning path through S2
(3)

that contains any two of its edges of attachment. We shrink S2
(3) to a single vertex and

denote the resulting graph by G∗. By Lemma 3.4, G∗ is non-hamiltonian. Hence, G is

non-hamiltonian by Lemma 3.1. We obtain G, a non-hamiltonian member of G3(3, 5, 10+

j) if X is a vertex for j = 1, X = S2
(3) for j = 2 and X = S3

(3,5) (see Figure 3.19(a)) for

j = 3.

For l ≥ 14, a non-hamiltonian member of G3(3, 5, l) is shown in Figure 3.20. Let us

denote the graph by G. G is obtained from the graph D (see Figure 3.11) by replacing

three copies of S and two vertices labelled w1 and w2 with three copies of S3,3,9+5i,9+5i

(5)

(see Figure 3.9(a)) and two copies of suitable 3-piece X. For i ≥ 0, we obtain G, a

member of G3(3, 5, 14 + 5i) if X = S2
(3) and a member of G3(3, 5, 12 + j + 5i) if
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S3
(3,5): 2

2 2

= 3 3

3

S3
(3,5) S4

(3,5):

2 2

2

2
2 2

= 4 4

4

S4
(3,5)

S5
(3,5):

2 2

2

22

2

2
2 2

= 5 5

5

S5
(3,5) S6

(3,5):

2 2

2

22

2

2
2 2

= 6 6

6

S6
(3,5)

(a) (b)

(c) (d)

Figure 3.19: 3-pieces S
j

(3,5) for 3 ≤ j ≤ 6.

G:

S
3,3,9+5i,9+5i

(5)

S
3,3,9+5i,9+5i

(5)

S
3,3,9+5i,9+5i

(5)

3 9 + 5i

39 + 5i

3 9 + 5i

39 + 5i

3 9 + 5i

39 + 5i

u1

u2

v2

v1

u1

u2

v2

v1

u1

u2

v2

v1

X X
j

j
j

j

j
j

Figure 3.20: A non-hamiltonian member of G3(3, 5, 12 + j + 5i) for 2 ≤ j ≤ 6
and i ≥ 0.

X = Sj

(3,5) (see Figure 3.19) for 3 ≤ j ≤ 6. It can be checked that X has the property that

there is a spanning path through X that contains any two of its edges of attachment. We

shrink both X to single vertices and denote the resulting graph by G∗. By Lemma 3.11,

G∗ is non-hamiltonian. Hence, G is non-hamiltonian by Lemma 3.1.
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Theorem 3.16. There exist non-hamiltonian members of G3(3, 6, l) for l ≥ 7.

PROOF: For l = 7, the result follows from Theorem 3.13.

For l ∈ {8, 9, 10}, non-hamiltonian members of G3(3, 6, l) are shown in Figure 3.21.

These graphs are constructed in a similar way to that of non-hamiltonian members of

G3(3, 5, l) for l ∈ {8, 9, 10} (see Figure 3.16). The graph in Figure 3.21(a) is obtained

by replacing four vertices of the graph Q (see Figure 1.4) with two copies of S2,5,5
(3,8)

(see Figure 3.8(b)) and S2
(3); the graph in Figure 3.21(b) is obtained by replacing five

vertices of Q with two copies of S2,5,5
(3,9) (see Figure 3.8(c)) and three copies of S2

(3); and

the graph in Figure 3.21(c) is obtained by replacing four vertices of Q with two copies of

S4,7,7
(3,6) (see Figure 3.4(c)) and S2

(3).

S
2,5,5
(3,8)

S
2,5,5
(3,8)

5 5

2

5 5

2
2

2

2

2
2

2

ec

ec
S

2,5,5
(3,9)

S
2,5,5
(3,9)

5 5

2

5 5

2

2

2
2

2
2

2

2

2 2
ec

ec

S
4,7,7
(3,6)

S
4,7,7
(3,6)

7 7

4

7 7

4
2

2

2

2
2

2

ec

ec

(a) (b) (c)

Figure 3.21: Non-hamiltonian members of G3(3, 6, l) for l ∈ {8, 9, 10}.

For l ∈ {11, 12, 13, 14}, a non-hamiltonian member of G3(3, 6, l) is shown in Figure

3.22(b). The graph is constructed in a similar way to that of non-hamiltonian members of

G3(3, 5, l) for l ∈ {11, 12, 13} (see Figure 3.18). Let W be the 3-piece shown in Figure

3.22(a). W is obtained from S∗
b (see Figure 1.8(b)) by replacing Sb and two other vertices

with a copy of S4,7,7
(3,6) (see Figure 3.4(c)), S2

(3) and suitable 3-piece X. Here, X is to be

defined later.

Let G be the graph shown in Figure 3.22(b). G is obtained by replacing four vertices

of a cube with three copies of W and one copy of S2
(3), in such a way that the three

compulsory edges of attachment ec associated with the three 3-pieces W are incident to

the same vertex. We obtain G, a non-hamiltonian member of G3(3, 6, 10 + j) if X is a

vertex for j = 1, X = S2
(3) for j = 2, X = S3

(3,6,13) (see Figure 3.23(d)) for j = 3 and

X = S4
(3,6) (see Figure 3.23(a)) for j = 4.
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W :

X S
4,7,7
(3,6)

j

j

j
7

4

7

2 2
2

e′c

ec

= 3 + j 5

2

ec

W G:

W

W

W

3
+

j

5

2

3 + j

5

2

3 + j

5

2

2
2

2

ec

ec

ec

(a) (b)

Figure 3.22: 3-piece W and a non-hamiltonian member of G3(3, 6, 10 + j)
for j ∈ {1, 2, 3, 4}.

S4
(3,6):

2 2

2

2 2

2
22

2
= 4 4

4

S4
(3,6) S5

(3,6):

2 2

2

22

2

2

2 2

2
2 2

= 5 5

5

S5
(3,6)

S10
(3,6):

S4
(3,6)

S4
(3,6)

S4
(3,6)

4
4

4

4
4

4

4

4 4

= 10 10

10

S10
(3,6) S3

(3,6,13):
S10

(3,6)

10

10 10

= 3 3

3

S3
(3,6,13)

(a) (b)

(c) (d)

Figure 3.23: 3-pieces S4
(3,6), S5

(3,6), S10
(3,6) and S3

(3,6,13).

For l ≥ 15, non-hamiltonian members of G3(3, 6, l) are shown in Figure 3.24. These

graphs are constructed in a similar way to that of non-hamiltonian members of G3(3, 5, l)

for l ≥ 14 (see Figure 3.20).

The graph in Figure 3.24(a) is obtained from the graph D (see Figure 3.11) by replacing

three copies of S and two vertices labelled w1 and w2 with three copies of S3,3,10+6i,11+6i

(3,6)

(see Figure 3.9(b)), one copy of suitable 3-piece X and one copy of suitable 3-piece Y .

For i ≥ 0, we obtain a non-hamiltonian member of G3(3, 6, 15 + 6i) if X is a vertex

and Y = S2
(3) and a non-hamiltonian member G3(3, 6, 18 + 6i) if X = S4

(3,6) (see Figure

3.23(a)) and Y = S5
(3,6) (see Figure 3.23(b)).
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The graph in Figure 3.24(b) is obtained from D by replacing three copies of S and

two vertices labelled w1 and w2 with three copies of S4,4,11+6i,11+6i

(3,6) (see Figure 3.9(c))

and two copies of suitable 3-piece X. For i ≥ 0, we obtain a non-hamiltonian member of

G3(3, 6, 16+6i) if X is a vertex, a non-hamiltonian member G3(3, 6, 17+6i) if X = S2
(3)

and a non-hamiltonian member G3(3, 6, 15 + j + 6i) if X = Sj

(3,6) for j ∈ {4, 5}.

S
3,3,10+6i,11+6i

(3,6)

S
3,3,10+6i,11+6i

(3,6)

S
3,3,10+6i,11+6i

(3,6)

3 10 + 6i

311 + 6i

3 10 + 6i

311 + 6i

3 10 + 6i

311 + 6i

u1

u2

v2

v1

u1

u2

v2

v1

u1

u2

v2

v1

X Y
j

j
j

1 + j

1 + j
1 + j

S
4,4,11+6i,11+6i

(3,6)

S
4,4,11+6i,11+6i

(3,6)

S
4,4,11+6i,11+6i

(3,6)

3 10 + 6i

311 + 6i

3 10 + 6i

311 + 6i

3 10 + 6i

311 + 6i

u1

u2

v2

v1

u1

u2

v2

v1

u1

u2

v2

v1

X X
j

j
j

j

j
j

(a) (b)

Figure 3.24: Non-hamiltonian members of (a) G3(3, 6, 14 + j + 6i) for

j ∈ {1, 4} and (b) G3(3, 6, 15 + j + 6i) for j ∈ {1, 2, 4, 5} and i ≥ 0.

Theorem 3.17. There exist non-hamiltonian members of G3(3, k, l) for k ∈ {7, 8, 9, 10}

and l ≥ k + 1.

PROOF: For k ∈ {7, 8, 9, 10} and l = k + 1, the results follow from Theorem 3.13.

For k ∈ {7, 8, 9, 10} and k + 2 ≤ l ≤ 3(k − 2), except k = 9 and l ∈ {12, 15, 21}, a

non-hamiltonian member of G3(3, k, l) is shown in Figure 3.25. Let us denote the graph

by G. G is obtained by replacing all vertices of a cube with three copies of W , one copy

of suitable 3-piece X, one copy of suitable 3-piece Y and three copies of suitable 3-piece

Z, in such a way that the three compulsory edges of attachment ec associated with the

three 3-pieces W are incident to X. Here, W , X, Y and Z are to be defined later.
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G:

W

W

W

Y

X

Z

Z

Z
ec

ec

ec

Figure 3.25: A non-hamiltonian member of G3(3, k, l) for k ∈ {7, 8, 9, 10} and

k + 2 ≤ l ≤ 3(k − 2), except k = 9 and l ∈ {12, 15, 21}.

If X is a 3-piece listed in Table 3.2, it can be checked that X has the property that

there is a spanning path through X that contains any two of its edges of attachment. We

shrink X to a single vertex and denote the resulting graph by G∗. By Lemma 3.4, G∗ is

non-hamiltonian. Hence, G is non-hamiltonian by Lemma 3.1.

Table 3.2: 3-pieces W , X , Y and Z for the construction of non-hamiltonian

members of G3(3, k, l) for k ∈ {7, 8, 9, 10} and k + 2 ≤ l ≤ 3(k − 2),

except k = 9 and l ∈ {12, 15, 21}.

k l W X Y Z

7

9
S

3,4,6
(3,7)

(Fig. 3.7(b))

A vertex

A vertex10 S2
(3) (Fig. 3.1(a))

8 + j, 3 ≤ j ≤ 7 S
j

(3,7) (Fig. 3.26)

8

10
S

4,4,6
(3,8)

(Fig. 3.7(c))

A vertex S2
(3) (Fig. 3.1(a))

A vertex11 S2
(3) (Fig. 3.1(a)) S3

(3,8) (Fig. 3.27(a))

9 + j, 3 ≤ j ≤ 9 S
j

(3,8)
(Fig. 3.27) S

1+j

(3,8)
(Fig. 3.27)

9

11 S
4,4,7
(3,9)

(Fig. 3.7(d))

S2
(3) (Fig. 3.1(a))

A vertex
13 S4

(3,9,13) (Fig. 3.28(c))

14
S

2,5,5
(3,9)

(Fig. 3.8(c))

S2
(3)

(Fig. 3.1(a))

S8
(3,9)

(Fig. 3.28(c))

S2
(3)

(Fig. 3.1(a))

16

S
4,4,7
(3,9)

(Fig. 3.7(d))

S7
(3,9) (Fig. 3.28(a))

A vertex
17 S8

(3,9) (Fig. 3.28(b))

18
S8

(3,9)

(Fig. 3.28(c))

S7
(3,9)

(Fig. 3.28(b))

S2
(3)

(Fig. 3.1(a))

19 S10
(3,9,19) (Fig. 3.28(d)) A vertex

20
S

2,5,5
(3,9)

(Fig. 3.8(c))

S2
(3)

(Fig. 3.1(a))

S8
(3,9)

(Fig. 3.28(c))

10
12 S

4,4,8
(3,10)

(Fig. 3.7(e))
A vertex

S2
(3) (Fig. 3.1(a))

A vertex
10 + j, 3 ≤ j ≤ 14 S

j

(3,10) (Fig. 3.29)
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By substituting the 3-pieces W , X, Y and Z listed in Table 3.2 for those 3-pieces

shown in Figure 3.25, we obtain G, a non-hamiltonian member of G3(3, k, l) for k ∈

{7, 8, 9, 10} and k + 2 ≤ l ≤ 3(k − 2), except k = 9 and l ∈ {12, 15, 21} .

S3
(3,7):

S4
(3,7)

4

4 4

= 3 3

3
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2 2

2
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2 2

2 2

2
22

2
= 4 4
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= 5 5
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2 2
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2 2 22
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2
2 2

= 6 6
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(3,7)
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4

4 4

2 2

2

22

2

= 7 7

7

S7
(3,7)

(a)

(b) (c)

(d) (e)

Figure 3.26: 3-pieces S
j

(3,7) for 3 ≤ j ≤ 7.
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Figure 3.27: 3-pieces S
j

(3,8) for 3 ≤ j ≤ 10.
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Each of the 3-pieces S7
(3,9) and S8

(3,9), as shown in Figure 3.28(a) and (b), respectively,

contains three copies of S2,5,5
(3,9), which is shown in Figure 3.8(c).
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(3,9)

8 8

8

8
8

8

8
8

8

2

2 2

= 10 10

10

S10
(3,9,19)

(a) (b)
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Figure 3.28: 3-pieces S7
(3,9), S8

(3,9), S4
(3,9,13) and S10

(3,9,19).
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Figure 3.29: 3-pieces S
j

(3,10) for 3 ≤ j ≤ 6.
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The 3-piece S7
(3,10), as shown in Figure 3.29(e), contains three copies of S2,5,5

(3,10), which

is shown in Figure 3.8(d).
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S
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(3,10)

S
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S
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= 7 7

7
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= 8 8

8

S8
(3,10)

S9
(3,10):

S7
(3,10)

S7
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7 7
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2
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(3,10) S5
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3
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= 11 11
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S11
(3,10) S12
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S4
(3,10) S4

(3,10)
S4
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4
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4
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= 13 13
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2
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(e) (f)
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(i) (j)
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Figure 3.29 (Continued): 3-pieces S
j

(3,10) for 7 ≤ j ≤ 14.
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Non-hamiltonian members of G3(3, 9, 12), G3(3, 9, 15) and G3(3, 9, 21) are shown in

Figure 3.30. Let Ga, Gb and Gc be the graphs shown in Figure 3.30(a), (b) and (c),

respectively. Ga contains three copies of S4,4,7
(3,9) (see Figure 3.7(d)) that are adjacent to the

vertex labelled v and Gb contains three copies of S2,5,5
(3,9) (see Figure 3.8(c)) that are adjacent

to S2
(3). By Lemmas 3.7 and 3.8, the edge of attachment labelled ec is a compulsory edge

of attachment of each of the 3-pieces S4,7,7
(3,9) and S2,5,5

(3,9) , respectively. Suppose Ci is a

Hamilton cycle of Gi for i ∈ {a, b}. Then Ci contains all three ec and omit v and S2
(3) for

i = a and i = b, respectively. This is a contradiction. Hence, Gi is non-hamiltonian.

S
4,4,7
(3,9)

S
4,4,7
(3,9)

S
4,4,7
(3,9)

4

4

7

4

7

4

4

4 7

ec

ec ec

v

S
2,5,5
(3,9)

S
2,5,5
(3,9)

S
2,5,5
(3,9)

5

5

2

5

2

5

5

5 2

ec

ec ec

2 2

2

S
4,4,7
(3,9)

S
4,4,7
(3,9)

S
4,4,7
(3,9)

7

4

4

7

4

4

7

4 4

ec

ec

ec

v

Ga ∈ G3(3, 9, 12) Gb ∈ G3(3, 9, 15) Gc ∈ G3(3, 9, 21)

(a) (b) (c)

Figure 3.30: Non-hamiltonian members of G3(3, 9, l) for l ∈ {12, 15, 21}.

Gc contains three copies of S4,4,7
(3,9) that are placed in such a way that the three compul-

sory edges of attachment ec associated with the three 3-pieces S4,4,7
(3,9) are incident to the

vertex labelled v. By Lemma 3.4, Gc is non-hamiltonian.

For k ∈ {7, 8, 9, 10} and l > 3(k − 2), a non-hamiltonian member of G3(3, k, l) is

constructed in a similar way to that of non-hamiltonian members of G3(3, 6, l) for l ≥ 15

(see Figure 3.24). By substituting the 4-piece S, 3-pieces X and Y listed in Table 3.3

for those shown in Figure 3.24, we obtain a non-hamiltonian member of G3(3, k, l) for

k ∈ {7, 8, 9, 10} and l > 3(k − 2).
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Table 3.3: 4-piece S, 3-pieces X and Y for the construction of non-hamiltonian

members of G3(3, k, l) for k ∈ {7, 8, 9, 10} and l > 3(k − 2).

k l S X Y

7

16 + 7i, i ≥ 0
S

3,3,12+7i,12+7i

(3,7)

(Figure 3.9(d))

A vertex

17 + 7i, i ≥ 0 S2
(3) (Figure 3.1(a))

15 + j + 7i, 3 ≤ j ≤ 7, i ≥ 0 S
j

(3,7) (Figure 3.26)

8

19 + 8i, i ≥ 0
S

4,4,14+8i,14+8i

(3,8)

(Figure 3.9(e))

A vertex

20 + 8i, i ≥ 0 S2
(3) (Figure 3.1(a))

18 + j + 8i, 3 ≤ j ≤ 8, i ≥ 0 S
j

(3,8) (Figure 3.27)

9

22 + 9i, i ≥ 0 S
5,5,16+9i,16+9i

(3,9)

(Figure 3.9(h))

A vertex

23 + 9i, i ≥ 0 S2
(3) (Figure 3.1(a))

24 + 9i, i ≥ 0
S

4,5,18+9i,18+9i

(3,9)

(Figure 3.10)
A vertex

S2
(3)

(Figure 3.1(a))

25 + 9i, i ≥ 0 S
4,4,20+9i,20+9i

(3,9)

(Figure 3.9(f))

A vertex

26 + 9i, i ≥ 0 S2
(3) (Figure 3.1(a))

27 + 9i, i ≥ 0
S

4,5,15+9i,15+9i

(3,9)

(Figure 3.9(g))

S8
(3,9)

(Figure 3.28(b))

S7
(3,9)

(Figure 3.28(a))

28 + 9i, i ≥ 0 S
5,5,16+9i,16+9i

(3,9)

(Figure 3.9(h))

S7
(3,9) (Figure 3.28(a))

29 + 9i, i ≥ 0 S8
(3,9) (Figure 3.28(b))

30 + 9i, i ≥ 0
S

4,5,18+9i,18+9i

(3,9)

(Figure 3.10)

S7
(3,9)

(Figure 3.28(a))

S8
(3,9)

(Figure 3.28(b))

10

25 + 10i, i ≥ 0
S

6,6,18+10i,18+10i

(3,10)

(Figure 3.9(i))

A vertex

26 + 10i, i ≥ 0 S2
(3) (Figure 3.1(a))

24 + j + 10i, 3 ≤ j ≤ 10, i ≥ 0 S
j

(3,10) (Figure 3.29)

Combining Theorems 3.13–3.17, we have the following result.

Theorem 3.18. For k 6= l, there exist non-hamiltonian members of G3(3, k, l) for

4 ≤ k ≤ 10 and l ≥ 7.
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3.4 G3(4, k, l)

This section concerns the class of all 3R3CPs whose faces are 4-, k- and l-gons where

k 6= l 6= 4. Here, we construct non-hamiltonian members of G3(4, k, l) for k and l as

stated in Theorem 3.22.

As previously mentioned in Section 3.1, Owens (1981) constructed a non-hamiltonian

member of G3(4, 5, 7) (see Figure 3.2). In the following theorem, we construct non-

hamiltonian members of G3(4, 5, l) for l ≥ 8. Our construction method of non-hamiltonian

members of G3(4, 5, 8) and G3(4, 5, 11) is different from that of Grinberg’s (1968) and

Faulkner and Younger’s (1974), respectively.

Theorem 3.19. There exist non-hamiltonian members of G3(4, 5, l) for l ≥ 8.

PROOF: A non-hamiltonian member of G3(4, 5, 8) is shown in Figure 3.31. The graph

is constructed in a similar way to that of non-hamiltonian members of G3(3, 5, l) (see

Figure 3.16) and G3(3, 6, l) (see Figure 3.21) for l ∈ {8, 9, 10}. The graph is obtained by

replacing two vertices of the graph Q (see Figure 1.4) with a copy of S3,5,5
(4,5) (see 3.4(a))

and S4,5,5
(4,5,8) (see 3.4(d)).

S
4,5,5
(4,5,8)

S
3,5,5
(4,5)

5 5
4

5 5

3

ec

ec

Figure 3.31: A non-hamiltonian member of G3(4, 5, 8).

For l ≥ 9, a non-hamiltonian member of G3(4, 5, l) is shown in Figure 3.32(c). Let

V and W be the 3-pieces shown in Figure 3.32(a) and (b), respectively. V is obtained by

replacing a vertex of the Tutte’s triangle T (see Figure 1.5) with a copy of suitable 3-piece

X. W is obtained from S∗
a (see Figure 1.8(a)) by replacing Sa and a vertex with a copy of

V and suitable 3-piece Y , respectively. Here, X and Y are to be defined later. Note that

by Lemma 3.2, we can apply Lemma 1.8 to V and Lemma 1.10 to W to conclude that the

edge of attachment labelled ec is a compulsory edge of attachment of each of the 3-pieces

V and W .
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V :

X
2 + j 2 + j

j

ec

= 4 5

2 + j

ec

V W :

Y

V

j j

j

2
+

j

4

5 ec

ec

= 2 3

3 + j

ec

W

G:

W

W

W

3

2

3 + j

2

3

3 + j

2

3

3 + j

Yj

j

j

ec

ec

ec

(a) (b)

(c)

Figure 3.32: 3-pieces V , W and a non-hamiltonian member of G3(4, 5, 6 + j)
for j ≥ 3.

Let G be the graph shown in Figure 3.32(c). G is obtained by replacing four vertices of

a cube with three copies of W and one copy of Y , in such a way that the three compulsory

edges of attachment ec associated with the three 3-pieces W are incident to Y . If Y is a 3-

piece listed in Table 3.4, it can be checked that Y has the property that there is a spanning

path through Y that contains any two of its edges of attachment. We shrink Y to a single

vertex and denote the resulting graph by G∗. By Lemma 3.4, G∗ is non-hamiltonian.

Hence, G is non-hamiltonian by Lemma 3.1. By substituting the 3-pieces X and Y listed

in Table 3.4 for those 3-pieces shown in Figure 3.32, we obtain G, a non-hamiltonian

member of G3(4, 5, l) for l ≥ 9.

Table 3.4: 3-pieces X and Y for the construction of non-hamiltonian members of

G3(4, 5, l) for l ≥ 9.

l X Y

9 S
3,5,5
(4,5) (Figure 3.4(a)) S3

(4) (Figure 3.1(b))

10 S
4,6,6
(4,5,10) (Figure 3.33(a)) S4

(5) (Figure 3.1(c))

11 + i, i ≥ 0 S
5+i,7+i,7+i

(4,5,11+i) (Figure 3.33(d)) S5+i
(4,5,11+i) (Figure 3.33(c))
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S
4,6,6
(4,5,10): = 6 6

4

S
4,6,6
(4,5,10)

L∗

i :

. . .

. . .

= 3 2

3 + i

4 + i

L∗

i

S5+i
(4,5,11+i):

L∗

i L∗

i

L∗

i

2

3

3 + i
4
+

i

3 + i

4 + i

2

3

3 + i 2

3 4
+

i

S4
(5)

4 4

4

= 5 + i 5 + i

5 + i

S5+i

(4,5,11+i)

S
5+i,7+i,7+i

(4,5,11+i) :

L∗

i
L∗

1+i

L∗

1+i

2

3

3 + i

4
+

i

5 + i

4 + i

2

3

5 + i 2

3

4
+

i

S4
(5)

4 4

4

= 7 + i 7 + i

5 + i

S
5+i,7+i,7+i

(4,5,11+i)

(a) (b)

(c)

(d)

Figure 3.33: 3-piece S
4,6,6
(4,5,10), 4-piece L∗

i
, 3-pieces S

5+i

(4,5,11+i) and S
5+i,7+i,7+i

(4,5,11+i)

for i ≥ 0.

Theorem 3.20. For k 6= l 6= 4, there exist non-hamiltonian members of

1. G3(4, k, l) for k ∈ {7, 9} and l ≥ 3; and (k, l) 6= (7, 5); and

2. G3(4, k, k + 5) and G3(4, k + 2, k + 5) for k ≥ 3.

PROOF: Non-hamiltonian members of G3(4, k, l) for k ∈ {7, 9} and (k, l) 6= (7, 5)

can be obtained from Theorems 3.14 and 3.19 for l = 3 and 5, respectively. Similarly,

non-hamiltonian members of G3(4, k, k+5) and G3(4, k+2, k+5) can be obtained from

Theorems 3.14 and 3.19, respectively, for k = 3. For the remaining cases, the graphs

are constructed in a similar way to that of non-hamiltonian members of G3(3, 4, l) for

l ≥ 7 (see Figure 3.12). By substituting the 3-pieces X and Y listed in Table 3.5 for those
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3-pieces shown in Figure 3.12, we obtain a non-hamiltonian member of G3(4, k, l) for

k ∈ {7, 9} and l ≥ 6; G3(4, k, k + 5) and G3(4, k + 2, k + 5) for k ≥ 5.

Table 3.5: 3-pieces X and Y for the construction of non-hamiltonian members of

G3(4, k, l) for k ∈ {7, 9} and l ≥ 6; G3(4, k, k + 5) and G3(4, k + 2, k + 5)
for k ≥ 5.

k l X Y

7
6 + i, i ≥ 0

A vertex
S3

(4,6+i) (Figure 3.34(b) and (d))
9 S3

(4) (Figure 3.1(b))

4 + i, i ≥ 1
9 + i, i ≥ 1

S3+i
(4,4+i) (Figure 3.34(a))

S3
(4) (Figure 3.1(b))

6 + i, i ≥ 1 S3+i
(4,6+i) (Figure 3.34(c))

Each of the 3-pieces S3+i
(4,4+i) and S3+i

(4,6+i) for i ≥ 1, as shown in Figure 3.34(a) and (c),

respectively, contains three copies of Li, which is shown in Figure 1.7.

S3+i
(4,4+i):

Li Li

Li

2

2

1 + i

1
+

i

1 + i

1 + i

2

2

1 + i 2

2 1
+

i

= 3 + i 3 + i

3 + i

S3+i

(4,4+i) S3
(4,6):

S3
(4)

3

3 3

= 3 3

3

S3
(4,6)

S3+i
(4,6+i):

Li Li

Li

2

2

1 + i

1
+

i

1 + i

1 + i

2

2

1 + i 2

2 1
+

i

S3
(4)

3 3

3

= 3 + i 3 + i

3 + i

S3+i

(4,6+i) S3
(4,6+i):

S3+i

(4,6+i)

3 + i 3 + i

3 + i

= 3 3

3

S3
(4,6+i)

(a) (b)

(c) (d)

Figure 3.34: 3-pieces S
3+i

(4,4+i), S3
(4,6), S

3+i

(4,6+i) and S3
(4,6+i) for i ≥ 1.

Theorem 3.21. There exist non-hamiltonian members of G3(4, 11, l) for l ≥ 3 and

l 6= {4, 11}.

PROOF: For l = 3, 5 and 6, non-hamiltonian members of G3(4, 11, l) can be obtained

from Theorems 3.14, 3.19 and 3.20(2), respectively.
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For l ≥ 7, a non-hamiltonian member of G3(4, 11, l) is shown in Figure 3.35(c). The

graph is constructed in a similar way to that of non-hamiltonian members of G3(3, 4, l) for

l ≥ 7 (see Figure 3.12). The 3-piece S3,5,6
(4,11,6+i), as shown in Figure 3.35(a), is obtained by

replacing four vertices of T5 (defined in Lemma 1.9) with one copy of S3
(4,6+i) (see Figure

3.34(d)) and three copies of S3
(4) (see Figure 3.1(b)). The 3-piece S4,5,8

(4,11,6+i), as shown in

Figure 3.35(b), is obtained from S∗
a (see Figure 1.8(a)) by replacing Sa and three other

vertices with one copy of S3,5,6
(4,11,6+i) and three copies of S3

(4), respectively.

S
3,5,6
(4,11,6+i):

S3
(4,6+i)

3

3

3

S3
(4)

S3
(4)

S3
(4)

3

3

3

3

3

3

3
3

3

ec

= 6 5

3

ec

S
3,5,6
(4,11,6+i)

S
4,5,8
(4,11,6+i):

S
3,5,6
(4,11,6+i)

3 6

5

S3
(4)

S3
(4)

S3
(4)

3 3

3

3 3

3

3 3

3

ec

ec

= 4 5

8

ec

S
4,5,8
(4,11,6+i)

G:

S
4,5,8
(4,11,6+i)

S
4,5,8
(4,11,6+i)

S
4,5,8
(4,11,6+i)

4

5

8

5

4

8

5

4

8

ec

ec
ec

(a)

(b) (c)

Figure 3.35: 3-pieces S
3,5,6
(4,11,6+i), S

4,5,8
(4,11,6+i) and a non-hamiltonian member of

G3(4, 11, 6 + i) for i ≥ 1.

The non-hamiltonian graph G, as shown in Figure 3.35(c), is obtained by replacing

three vertices of a cube with three copies of S4,5,8
(4,11,6+i), in such a way that the three com-

pulsory edges of attachment ec associated with the three 3-pieces S4,5,8
(4,11,6+i) are incident

to the same vertex.
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Combining Theorems 3.14 and 3.19–3.21, we have the following result.

Theorem 3.22. For k 6= l 6= 4, there exist non-hamiltonian members of

1. G3(4, k, l) for k ∈ {3, 5, 7, 9, 11} and l ≥ 8; and (k, l) ∈ {(3, 7), (6, 7), (6, 9),

(6, 11)}; and

2. G3(4, k, k + 5) and G3(4, k + 2, k + 5) for k ≥ 3.

3.5 G3(5, k, l)

This section concerns the class of all 3R3CPs whose faces are 5-, k- and l-gons where

k 6= l 6= 5. Here, we construct non-hamiltonian members of G3(5, k, l) for k and l as

stated in Theorem 3.25.

Theorem 3.23. There exists non-hamiltonian members of G3(5, 6, l) for l ≥ 7.

PROOF: For l ∈ {7, 9}, non-hamiltonian members of G3(5, 6, l) are shown in Figure

3.36. These graphs are constructed in a similar way to that of non-hamiltonian members

of G3(3, 5, l) (see Figure 3.16) and G3(3, 6, l) (see Figure 3.21) for l ∈ {8, 9, 10} and

G3(4, 5, 8) (see Figure 3.31). The graphs, as shown in Figure 3.36(a) and (b), are obtained

by replacing two vertices of the graph Q (see Figure 1.4) with two copies of S2,4,4
(5,6,7) (Figure

3.8(a)) and S3,3,5
(5,6) (Figure 3.7(a)), respectively.

S
2,4,4
(5,6,7)

S
2,4,4
(5,6,7)

4 4

2

4 4

2

ec

ec

S
3,3,5
(5,6)

S
3,3,5
(5,6)

3 3

5

3 3

5

ec

ec

(a) (b)

Figure 3.36: Non-hamiltonian members of G3(5, 6, 7) and G3(5, 6, 9).

For l ≥ 8 and l 6= 9, a non-hamiltonian member of G3(5, 6, l) is shown in Figure

3.37. The graph is constructed in a similar way to that of non-hamiltonian members of

G3(3, k, l) for k ∈ {7, 8, 9, 10} and k + 2 ≤ l ≤ 3(k − 2), except k = 9 and l ∈

{12, 15, 21} (see Figure 3.25). The non-hamiltonian graph G, as shown in Figure 3.37, is
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obtained by replacing five vertices of a cube with three copies of S3,3,5
(5,6) (see Figure 3.7(a))

and two copies of suitable 3-piece X, in such a way that the three compulsory edges of

attachment ec associated with the three 3-pieces S3,3,5
(5,6) are incident to one of the 3-pieces

X. By substituting the 3-pieces X listed in Table 3.6 for those 3-pieces shown in Figure

3.37, we obtain G, a non-hamiltonian member of G3(5, 6, l) for l ≥ 8 and l 6= 9.

G:

S
3,3,5
(5,6)

S
3,3,5
(5,6)

S
3,3,5
(5,6)

3

3

5

3

3

5

3

3

5

X

X

j

j

j

j

j

j

ec

ec

ec

Figure 3.37: A non-hamiltonian member of G3(5, 6, 7 + j) for j ≥ 1 and j 6= 2.

Table 3.6: 3-piece X for the construction of non-hamiltonian members of

G3(5, 6, l) for l ≥ 8 and l 6= 9.

l X

8 A vertex

10 S3
(5,6,10) (Figure 3.40(a))

11 S4
(5) (Figure 3.1(c))

12 S5
(5,6,12) (Figure 3.40(b))

13 + i, i ≥ 0 S6+i
(5,6,13+i) (Figure 3.40(c))

S7
(5,6): = 7 7

7

S7
(5,6)

Figure 3.38: 3-piece S7
(5,6).

65

Univ
ers

ity
 of

 M
ala

ya



LD
2+i:

. . .

. . .

. . .

= LD
2+i

2 + i

3

2

4 + i

2

2

4

Figure 3.39: 7-piece LD
2+i

for i ≥ 0.

Each of the 3-pieces shown in Figure 3.40 contains a copy of S7
(5,6), which is shown in

Figure 3.38. The 3-piece S6+i
(5,6,13+i) for i ≥ 0, as shown in Figure 3.40(c), contains three

copies of LD
2+i, which is shown in Figure 3.39.

S3
(5,6,10):

S7
(5,6)

7 7

7
= 3 3

3

S3
(5,6,10) S5

(5,6,12):

S7
(5,6)

7 7

7

= 5 5

5

S5
(5,6,12)

S6+i
(5,6,13+i)

:

S7
(5,6)7

7

7

LD
2+i

LD
2+i LD

2+i

4 + i

2
3

2
+

i 4
2

2

4 + i 2

3

2 + i

4
22

4 + i2

2

4

2
+

i

3 2

= 6 + i 6 + i

6 + i

S6+i

(5,6,13+i)

(a) (b)

(c)

Figure 3.40: S3
(5,6,10), S5

(5,6,12) and S
6+i

(5,6,13+i) for i ≥ 0.

Theorem 3.24. There exists non-hamiltonian members of G3(5, k, l) for 7 ≤ k < l.

PROOF: For k ≥ 7, let Gk be a non-hamiltonian member of G3(5, k) shown in Figures

2.12–2.23, except Figure 2.13. Note that each Gk contains more than three 5-gons. Fur-

thermore, there is at least one vertex in Gk that is shared by three adjacent 5-gons. Let us

denote one of these vertices by v.
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Suppose G∗
k is a graph obtained from Gk by replacing the vertex v with a copy of S4

(5)

(see Figure 3.1(c)). Then the three adjacent 5-gons in Gk has now become 8-gons in G∗
k.

Thus, G∗
k ∈ G3(5, 8, k) for k ≥ 7. If G∗

k is hamiltonian, then Gk is hamiltonian by Lemma

3.1. This is a contradiction since Gk is non-hamiltonian. Hence, G∗
k is non-hamiltonian.

Similarly, we obtain non-hamiltonian members of G3(5, 9, k) and G3(5, 10 + i, k) for

i ≥ 0 and k ≥ 7 by replacing the vertex v in each Gk with a copy of S5
(5,9) (see Figure

3.41(a)) and S6+i
(5,10+i) (see Figure 3.41(b)), respectively.

S5
(5,9):

S4
(5)

4 4

4

= 5 5

5

S5
(5,9)

S6+i
(5,10+i):

S4
(5)4

4

4

LD
2+i

LD
2+i LD

2+i

4 + i

2
3

2
+

i 4
2

2

4 + i 2
3

2 + i

4
22

4 + i2
2

4

2
+

i

3 2

= 6 + i 6 + i

6 + i

S6+i

(5,10+i)

(a)

(b)

Figure 3.41: 3-pieces S5
(5,9) and S

6+i

(5,10+i) for i ≥ 0.

Combining Theorems 3.15, 3.19, 3.23 and 3.24, we have the following result.

Theorem 3.25. There exist non-hamiltonian members of G3(5, k, l) for k = 3 and

l ≥ 7; k = 4 and l ≥ 8; and 6 ≤ k < l.
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Combining Theorems 3.18, 3.22 and 3.25, we have the following result.

Theorem 3.26. For h 6= k 6= l, there exist non-hamiltonian members of

1. G3(3, k, l) for 4 ≤ k ≤ 10 and l ≥ 7;

2. (a) G3(4, k, l) for k ∈ {3, 5, 7, 9, 11} and l ≥ 8; and (k, l) ∈ {(3, 7), (6, 7), (6, 9),

(6, 11)};

(b) G3(4, k, k + 5) and G3(4, k + 2, k + 5) for k ≥ 3; and

3. G3(5, k, l) for k = 3 and l ≥ 7; k = 4 and l ≥ 8; and 6 ≤ k < l.

Remark. The following are some open problems:

1. Is every member of G3(3, 4, 5), G3(3, 4, 6), G3(3, 5, 6) and G3(4, 5, 6) hamiltonian?

2. Is every member of G3(4, 2k, 2l) for 3 ≤ k < l hamiltonain?
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CHAPTER 4: 4-REGULAR 3-CONNECTED PLANAR GRAPHS

WITH FACES OF GIVEN TYPES

4.1 Introduction

This chapter deals with the hamiltonicity of G4(h, k) and G4(h, k, l), h 6= k 6= l,

which are the classes of all 4-regular 3-connected planar graphs (4R3CPs) whose faces

are of only two and three types, respectively. It follows easily from Lemma 1.3 that every

4R3CP must have some 3-gons.

We construct a number of non-hamiltonian members of G4(3, k) and G4(3, k, l). These

graphs will be presented in Sections 4.2 and 4.3, each of which focuses on the classes

G4(3, k) and G4(3, k, l), respectively. In Section 4.2, we will also present some known

answers to Question 4.1 posed by Grünbaum and Zaks (1974), which concerns the exis-

tence of Hamilton cycles in 4R3CPs with only two types of faces.

Question 4.1. (Grünbaum & Zaks, 1974) Do Hamilton cycles exist in all 4R3CPs whose

faces are of only two types?

In this chapter, an a-vertex is called an a
′-vertex if it is of degree three and incident to

exactly one edge of attachment, whereas it is called an a
′′-vertex if it is of degree two and

incident to exactly two edges of attachment (see Figure 4.1).

I
1,2,2
(3) :

a
′

a
′

a
′′

= 2 2

1

I
1,2,2
(3)

Figure 4.1: I
1,2,2
(3) .

Let I-piece and II-piece denote k-pieces that have exactly three a-vertices and other

vertices of degree four (if they exist). For a I-piece, two of its a-vertices are a
′-vertices

and the other a-vertex is an a
′′-vertex, in contrast to that of a II-piece, whose a-vertices

are all a′′-vertices. I-piece and II-piece are sometimes abbreviated to I and II , respec-

tively.
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Additionally, let Im1,m2,m3

(k1,k2,...,kt)
(IIm1,m2,m3

(k1,k2,...,kt)
) denotes any I-piece (II-piece) whose inner

faces are of only t types, namely k1-, k2-, . . . , kt-gons where ki ≥ 3, ki 6= kj ∀ i 6= j and

i, j ∈ {1, 2, . . . , t}, that contributes m1, m2 and m3 edges to the three adjoining faces of

any graph in which it occurs. If m = m1 = m2 = m3, then the notation is simplified to

Im
(k1,k2,...,kt)

(IIm
(k1,k2,...,kt)

).

We represent Im1,m2,m3

(k1,k2,...,kt)
and IIm1,m2,m3

(k1,k2,...,kt)
by labelled triangles whose perimeters are

surrounded by m1, m2 and m3. A dangling edge inside a labelled triangle of a I-piece

that is incident to an a
′-vertex (see Figure 4.1) is to indicate that the a′-vertex is a vertex

of degree three.

I1,2,2
(3) , as shown in Figure 4.1, is a I-piece, which is obtained by removing two edges

of a face from an octahedron (see Figure 2.1). Figure 4.2(a) shows II1
(3), which is a II-

piece whose only interior face is a 3-gon. Apart from the three a
′′-vertices, II1

(3) has no

vertices of degree four. II2
(3), as shown in Figure 4.2(b), is II-piece, which is obtained by

removing three edges of a face from an octahedron (see Figure 2.1).

II1
(3):

a
′′

a
′′

a
′′

= 1 1

1

II1
(3)

II2
(3):

a
′′

a
′′

a
′′

= 2 2

2

II2
(3)

(a) (b)

Figure 4.2: II1
(3) and II2

(3).

4.2 G4(3, k)

This section concerns the class of all 4R3CPs whose faces are 3- and k-gons where

k > 3. It was shown by Owens (1984b) that G4(3, k) contains non-hamiltonian members

for k ≥ 12. This result provides negative answer to Question 4.1.

Theorem 4.1. (Owens, 1984b) There exist non-hamiltonian members of G4(3, k) for

k ≥ 12.

Here, we construct non-hamiltonian members of G4(3, k) for certain k as stated in

Theorem 4.5. First, we shall briefly describe the method used by Owens (1984b) to
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construct non-hamiltonian members of G4(3, k) for k ≥ 12 and then show in detail the

construction for k = 12.

Owens (1984b) constructed the 3-piece S2,4,6
(4,5,6) shown in Figure 4.3(a). S2,4,6

(4,5,6) contains

a copy of the Tutte’s triangle T (see Figure 1.5). Let C be a Hamilton cycle of a 3R3CP

that contains the 3-piece S2,4,6
(4,5,6) and let P be S2,4,6

(4,5,6) ∩ C . By simple analysis, it can be

shown that P are of the following two forms only: Pxz1 and Pyz1 . Thus, the edge of

attachment labelled ec is a compulsory edge of attachment of S2,4,6
(4,5,6).

S
2,4,6
(4,5,6):

x y

z1

z2

z3
z4

z5 z6
z7

z8 z9 z10

ec

= 2 4

6

ec

S
2,4,6
(4,5,6) K:

S
2,4,6
(4,5,6)

S
2,4,6
(4,5,6)

S
2,4,6
(4,5,6)

2

4

6

4

2

6

4

2

6

ec

ec
ec

(a) (b)

Figure 4.3: 3-piece S
2,4,6
(4,5,6) and graph K (Owens, 1984b).

The graph K, as shown in Figure 4.3(b), is obtained from a cube by replacing three

vertices with three copies of S2,4,6
(4,5,6), in such a way that the three compulsory edges of

attachment ec associated with the three 3-pieces S2,4,6
(4,5,6) are incident to the same vertex.

By Lemma 3.4, K is non-hamiltonian. Furthermore, the thirty vertices labelled zi in K for

i ∈ {1, 2, . . . , 10}, which Owens (1984b) called z-vertices, have the following property.

Lemma 4.2. (Owens, 1984b) Every cycle in K omits at least one z-vertex.

Since the three ec are incident to the same vertex, no cycle C in K can contain them

all. This implies that at least one ec is omitted from C and for the corresponding copy of

S2,4,6
(4,5,6), S2,4,6

(4,5,6) ∩C is of the form Pxy. However, it is impossible to have all ten z-vertices

in Pxy. Thus, C does not contain every z-vertex of K. This property of K is essential in

the construction of non-hamiltonian 4R3CPs.

Walther (1969) introduced a method to transform non-hamiltonian 3R3CPs to non-

hamiltonian 4R3CPs. In particular, he showed the transformation of the Tutte’s graph

(see Figure 1.1) to a non-hamiltonian 4R3CP. Owens (1984b) generalised this method
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and called it a 4-transform. A 4-transform is a transformation of a 3-regular planar graph

G to a 4-regular planar graph G∗ where

1. every vertex v of G corresponds to a II-piece of G∗, denoted by IIv; and

2. every edge uv of G corresponds to a vertex of G∗, which is obtained by identifying

an a
′′-vertex of IIu with an a

′′-vertex of IIv.

For instance, Figure 4.4 shows S∗ and K∗, which are 4-transforms of S2,4,6
(4,5,6) and K

(see Figure 4.3), respectively.

S∗:

a
′′

a
′′

a
′′

II1

II2

II3

II4

II5

II6

II7

II8 II9 II10 II11

II12 II13 II14 II15 II16
II17

= 2 4

6

S∗

K∗:

S∗

S∗

S∗

4
2

6

4

2

6

4

2

6

II18

II20

II19

II21 II22

(b) A 4-transform of K (see Figure 4.3(b))

(a) A 4-transform of S2,4,6
(4,5,6) (see Figure 4.3(a))

Figure 4.4: II-piece S∗ and graph K∗ (Owens, 1984b).

72

Univ
ers

ity
 of

 M
ala

ya



In the construction of members of G4(3, k) for k ≥ 12, every II-piece of K∗ that

corresponds to a z-vertex of K contains exactly one copy of II2
(3) (see Figure 4.2(b)).

Thus, there are thirty copies of II2
(3) in K∗ that corresponds to thirty z-vertices in K.

Owens (1984b) called these copies of II2
(3), z-copies.

Lemma 4.3. (Owens, 1984b) No cycle in K∗ enters every z-copy.

Let C∗ be a cycle in K∗. Let IIu and IIv be II-pieces of K∗ that correspond to

vertices u and v, respectively, of K. There is a corresponding cycle C in K that contains

an edge e = uv of K if and only if C∗ contains two adjacent edges eIIu and eIIv where

eIIu ∈ E(IIu) and eIIv ∈ E(IIv). Therefore, v ∈ V (C) if and only if C∗ enters IIv. By

Lemma 4.2, C omits at least one z-vertex. Thus, C∗ does not enter at least one z-copy.

Hence, K∗ is non-hamiltonian. Owens (1984b) also proved that K∗ is 3-connected.

Here, we show the construction of a non-hamiltonian member of G4(3, k) for k = 12

only. For k ≥ 13, the reader is referred to (Owens, 1984b).

II
5,5,8
(3,12):

a
′′

a
′′

a
′′

II1
(3)

II2
(3)

II
1,4,4
(3,12)

II
1,4,4
(3,12)

II2
(3)

II1
(3)

II2
(3) II

1,4,4
(3,12)

II
1,4,4
(3,12)

II2
(3)

II2
(3)

I
I 2

,5
,5

(3
,1

2
)

II2
(3)

II2
(3)

II2
(3)

II1
(3)

II
1,4,4
(3,12)

1

1 1

2

2 2

1

4 4

1

4 4

2

2 2

1

1 1

2

2 2

4

4 1

4

1 4

2

2 2

2

2 2 2

5

5
2

2

2

2

2 2
2

2

2
1

1

1

4

4

1

= 5 5

8

II
5,5,8
(3,12)

Figure 4.5: II
5,5,8
(3,12) (Owens, 1984b).
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II5,5,8
(3,12), as shown in Figure 4.5, is obtained from S∗ (see Figure 4.4(a)) by replacing

all II-pieces with three copies of II1
(3), eight copies of II2

(3) (see Figure 4.2), five copies

of II1,4,4
(3,12) and one copy of II2,5,5

(3,12) (see Figure 4.6).

II
1,4,4
(3,12)

:

a
′′

a
′′

a
′′

= 4 4

1

II
1,4,4
(3,12)

II
2,5,5
(3,12)

:

a
′′

a
′′

a
′′

= 5 5

2

II
2,5,5
(3,12)

(b)

(a)

Figure 4.6: II
1,4,4
(3,12) and II

2,5,5
(3,12) (Owens, 1984b).

The graph G shown in Figure 4.7 is obtained from K∗ (see Figure 4.4(b)) by replacing

three copies of S∗ and five II-pieces with three copies of II5,5,8
(3,12), four copies of II1

(3) and

one copy of II2
(3). By inspection, G ∈ G4(3, 12). By Lemma 4.3, G is non-hamiltonian.

G:

II
5,5,8
(3,12)

II
5,5,8
(3,12)

II
5,5,8
(3,12)

5
5

8

5

5

8

5

5

8

II1
(3)

II1
(3)

II1
(3)

II1
(3)

1

1

1

1
1

1

1

1

1

1

1

1

II2
(3)

2

2

2

Figure 4.7: A non-hamiltonian member of G4(3, 12) (Owens, 1984b).
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Now, we shall describe the method of transformation that we used in the construction

of non-hamiltonian members of G4(3, 7) and G4(3, 8). This method will be used again in

Section 4.3.

Lemma 4.4. The graph H∗ shown in Figure 4.8(b) is a non-hamiltonian 4-regular

planar graph.

H :

b

b

b

g g

g g

g g

w w

H∗:

a
′

a
′

a
′

a
′

a
′

a
′

a
′

a
′

a
′

a
′

a
′

a
′

a
′′

a
′′

a
′′

a
′′

a
′′

a
′′

b

b

b

I1 I2

I6 I3

I5 I4

II1 II2

(b) A 4-transform of H

(a) Herschel graph H

Figure 4.8: The transformation of the Herschel graph H to a non-hamiltonian

4-regular planar graph H∗.

PROOF: Figure 4.8(a) shows the Herschel graph H. All vertices of degree four in H

are labelled b and coloured black. Six vertices of degree three in H that are adjacent to

exactly one vertex of degree three are coloured grey and labelled g. The remaining two

vertices of degree three in H, which are adjacent to vertices of degree three only, are

coloured white and labelled w.
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The Herschel graph H is transformed to a 4-regular planar graph H∗ shown in Figure

4.8(b) in such a way that

1. a vertex g of H corresponds to a I-piece, Ii where i ∈ {1, 2, 3, 4, 5, 6}, of H∗; a

vertex w of H corresponds to a II-piece, IIj where j ∈ {1, 2}, of H∗; the vertices

b remains unaltered; and

2. an edge gb of H corresponds to an a′-vertex of H∗ and an edge gw of H corresponds

to an a
′′-vertex of H∗, which is obtained by identifying an a

′′-vertex of a I-piece

with an a
′′-vertex of a II-piece.

Every inner vertex of I and II is of degree four. Every a
′-vertex of I is adjacent to a

vertex b and every a
′′-vertex of I is identified with an a

′′-vertex of II . Thus, all vertices

of H∗ are of degree four. Hence, H∗ is 4-regular.

Let C be a cycle in H∗. Let S be the set of two II-pieces and three vertices b in H∗.

Since H is bipartite, successive open paths through I-pieces in C are separated either by

a vertex b or by at least two vertices of a II-piece. However, there are six I-pieces and

|S| = 5. Thus, C contains at most five out of six I-pieces. Hence, H∗ is non-hamiltonian.

Theorem 4.5. There exist non-hamiltonian members of G4(3, k) for k ∈ {7, 8}.

PROOF: We obtain a member of G4(3, k) for k ∈ {7, 8} from H∗ (see Figure 4.8(b))

by replacing Ii where i ∈ {1, 2, 3, 4, 5, 6} and IIj where j ∈ {1, 2} with those I- and

II-pieces listed in Table 4.1. By Lemma 4.4, the graphs obtained are non-hamiltonian.

Table 4.1: I- and II-pieces for the construction of non-hamiltonian members of

G4(3, k) for k ∈ {7, 8}.

k Ii for i ∈ {1, 3, 4} Ii for i ∈ {2, 5, 6} IIj for j ∈ {1, 2}

7 I2
(3,7) (Figure 4.9(a)) I

1,2,2
(3) (Figure 4.1) II1

(3) (Figure 4.2(a))

8 I2
(3,8) (Figure 4.9(b)) II2

(3) (Figure 4.2(b))
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I2
(3,7):

a
′

a
′

a
′′

= 2 2

2

I2
(3,7)

I2
(3,8):

a
′

a
′

a
′′

= 2 2

2

I2
(3,8)

(b)

(a)

Figure 4.9: I2
(3,7) and I2

(3,8).

4.3 G4(3, k, l)

This section concerns the class of all 4R3CPs whose faces are 3-, k- and l-gons where

k 6= l 6= 3. Owens (1982b) constructed non-hamiltonian members of G4(3, 4, 8), G4(3, 6, 7),

G4(3, 6, 8) and G4(3, 6, 10). The graphs are shown in Figures 4.10 – 4.13.

Theorem 4.6. (Owens, 1982b) There exist non-hamiltonian members of G4(3, 4, 8) and

G4(3, 6, l) for l ∈ {7, 8, 10}.

Here, we construct non-hamiltonian members of G4(3, k, l) for k and l as stated in

Theorem 4.8 by using some non-hamiltonian members of G4(3, k). Note that every non-

hamiltonian member of G4(3, k) for k ∈ {7, 8} and k ≥ 12 constructed in Theorems 4.5

and 4.1, respectively, contains at least one copy of ∆i where i = k − 3 (see Figure 4.14).

∆k−3 contains only two types of faces, namely 3-gons and a k-gon.
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Figure 4.10: A non-hamiltonian member of G4(3, 4, 8) (Owens, 1982b).

Figure 4.11: A non-hamiltonian member of G4(3, 6, 7) (Owens, 1982b).

Figure 4.12: A non-hamiltonian member of G4(3, 6, 8) (Owens, 1982b).
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Figure 4.13: A non-hamiltonian member of G4(3, 6, 10) (Owens, 1982b).

Lemma 4.7. Let G be a member of G4(3, k) for k ≥ 4 that contains at least three

k-gons and at least one copy of ∆i where i = k − 3 (see Figure 4.14). Suppose G∗ is a

graph obtained from G by replacing exactly one copy of ∆k−3 with exactly one copy of

∆i for i 6= k − 3. Then G∗ is a member of G4(3, k, 3 + i) for k 6= 3 + i. Furthermore, G

and G∗ are either both hamiltonian or both non-hamiltonian.

∆i: . . .

. . .

u0
u1 u2 u3 ui−1

ui

v0

v1 v2 v3 vi

vi+1

x y

= 2 2

1

1 + i

∆i

Figure 4.14: ∆i for i ≥ 1.

PROOF: Let C and C∗ be Hamilton cycles of G and G∗, respectively. Let P and P ∗ be

∆k−3 ∩C and ∆i ∩C∗, respectively. By inspection, P and P ∗ take all the forms of single

paths, union of two disjoint paths or union of three disjoint paths except Px ∪ Pv0vi+1 (or

by symmetry Py ∪ Pv0vi+1) and Pxvi+1 ∪ Pyv0 . Thus, ∆i retains the hamiltonicity of G.

Hence, the lemma follows.

Theorem 4.8. For k 6= l, there exist non-hamiltonian members of G4(3, k, l) for k ≥ 4

and l ≥ 7; and (k, l) 6∈ {(6, 9), (9, 10), (9, 11)}.

PROOF: The construction of a non-hamiltonian member of the above-mentioned classes

is as follows. For l ∈ {7, 8} and l ≥ 12, let Gl be a non-hamiltonian member of G4(3, l)
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(see Theorems 4.5 and 4.1). Note that each Gl contains at least three l-gons and at least

one copy of ∆l−3. Suppose G∗
l is a graph obtained from Gl by replacing exactly one copy

of ∆l−3 with exactly one copy of ∆i for i ≥ 1 and i 6= l − 3 (see Figure 4.14). Then by

Lemma 4.7, G∗
l ∈ G4(3, 3+ i, l) for i ≥ 1, i 6= l− 3, l ∈ {7, 8} and l ≥ 12. Furthermore,

G∗
l is non-hamiltonian since Gl is non-hamiltonian.

For k 6= l, the remaining cases are k ∈ {4, 5, 6, 9, 10, 11} and l ∈ {9, 10, 11}; and

(k, l) 6∈ {(6, 9), (9, 10), (9, 11)}. We obtain a member of G4(3, k, l) for k and l stated

above from H∗ (see Figure 4.8(b)) by replacing Ii where i ∈ {1, 2, 3, 4, 5, 6} and IIj

where j ∈ {1, 2} with those I- and II-pieces listed in Table 4.2. By Lemma 4.4, the

graphs obtained are non-hamiltonian.

Table 4.2: I- and II-pieces for the construction of non-hamiltonian members of

G4(3, k, l) for k 6= l, k ∈ {4, 5, 6, 9, 10, 11} and l ∈ {9, 10, 11}; and

(k, l) 6∈ {(6, 9), (9, 10), (9, 11)}.

k l Ii for i ∈ {1, 3, 4} Ii for i ∈ {2, 5, 6} IIj for j ∈ {1, 2}

4
9

I
2,3,3
(3,k)

(Figures 4.15(a) and 4.16(a))

I3
(3,k)

(Figures 4.15(b) and 4.16(b))
II1

(3) (Figure 4.2(a))
5

4

10
I3
(3,k)

(Figures 4.15(b), 4.16(b) and 4.17(a))
II2

(3) (Figure 4.2(b))5

6

4

11

I
3,4,4
(3,k)

(Figures 4.15(c) and 4.16(c))

I4
(3,k)

(Figures 4.15(d) and 4.16(d))
II1

(3) (Figure 4.2(a))
5

6 I
1,2,2
(3) (Figure 4.1) II5

(3,6) (Figure 4.17(b))

10 I3
(3,10,11) (Figure 4.18) II2

(3) (Figure 4.2(b))
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I
2,3,3
(3,4) :

a
′

a
′

a
′′

= 3 3

2

I
2,3,3
(3,4)

I3
(3,4):

a
′

a
′

a
′′

= 3 3

3

I3
(3,4)

I
3,4,4
(3,4) :

a
′

a
′

a
′′

= 4 4

3

I
3,4,4
(3,4)

I4
(3,4):

a
′

a
′

a
′′

= 4 4

4

I4
(3,4)

(a) (b)

(c) (d)

Figure 4.15: I
2,3,3
(3,4) , I3

(3,4), I
3,4,4
(3,4) and I4

(3,4).

I
2,3,3
(3,5) :

a
′

a
′

a
′′

= 3 3

2

I
2,3,3
(3,5)

I3
(3,5):

a
′

a
′

a
′′

= 3 3

3

I3
(3,5)

I
3,4,4
(3,5) :

a
′

a
′

a
′′

= 4 4

3

I
3,4,4
(3,5)

I4
(3,5):

a
′

a
′

a
′′

= 4 4

4

I4
(3,5)

(a) (b)

(c) (d)

Figure 4.16: I
2,3,3
(3,5) , I3

(3,5), I
3,4,4
(3,5) and I4

(3,5).
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I3
(3,6):

a
′

a
′

a
′′

= 3 3

3

I3
(3,6)

II5
(3,6):

a
′′

a
′′

a
′′

= 5 5

5

II5
(3,6)

(a) (b)

Figure 4.17: I3
(3,6) and II5

(3,6).

I3
(3,10,11):

a
′

a
′

a
′′

= 3 3

3

I3
(3,10,11)

Figure 4.18: I3
(3,10,11) .

Combining Theorems 4.5 and 4.8, we have the following result.

Theorem 4.9. For k 6= l, there exist non-hamiltonian members of

1. G4(3, k) for k ∈ {7, 8}; and

2. G4(3, k, l) for k ≥ 4 and l ≥ 7; and (k, l) 6∈ {(6, 9), (9, 10), (9, 11)}.

Remark. The following are some open problems:

1. Is every member of G4(3, k) for k ∈ {4, 5, 6, 9, 10, 11} hamiltonian?

2. Is every member of G4(3, 4, 5), G4(3, 4, 6), G4(3, 5, 6), G4(3, 6, 9), G4(3, 9, 10) and

G4(3, 9, 11) hamiltonian?
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Tkáč, M. (1994). On shortness coefficients of simple 3-polytopal graphs with only one

type of faces besides triangles. Discrete Mathematics, 128, 407–413.

Tutte, W. T. (1946). On hamiltonian circuits. Journal of the London Mathematical

Society, s1-21, 98–101.

Tutte, W. T. (1956). A theorem on planar graphs. Transactions of the American Mathe-

matical Society, 82, 99–116.

Tutte, W. T. (1972). Non-hamiltonian planar maps. In R. C. Read (Ed.), Graph theory

and computing (pp. 295–301). London, England: Academic Press.
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