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SYNOPSIS

Persistent systemic inflammatory response syndrome is a serious health condition that may
lead to multiple organ dysfunction, organ failure, and ultimately death. It leads to both
acute inflammation, caused by either infective (microbes or lipopolysaccharide [LPS]) or
non-infective (chemicals) sources, and sepsis, an infection caused by a lethal dose of LPS
(endotoxemia). These conditions have similar inflammatory mediators such as cytokines,
nitric oxide (NO), high-mobility group box-1 (HMGB1), and heme oxygenase-1 (HO-1),
suggesting that they may result from similar pathogenic mechanisms. Previous studies have
investigated the applications of natural products in targeting these inflammatory mediators.
Honey, for example, is used to treat inflammation and heal wounds. Gelam honey is most
commonly in Malaysia. The floral source of Gelam honey is Melaleuca cajuputi Powell,
traditional Melaleuca cajuputi Powell has been used to treat many diseases and it has
medicinal antiseptic, antibacterial, anti-inflammatory, and anodyne properties. However, it
is currently unknown whether Gelam honey has a protective effect against systemic
inflammatory response during acute inflammation and sepsis. We first investigated the
effects of honey, honey methanol extract (HME), and honey ethyl acetate extract (HEAE)
on acute inflammation, using animal models. These products inhibited edema and pain, in
correlation with their potent inhibitory activities against NO and prostaglandin E2 (PGEy
in all models. Phenolic compounds have been implicated in these inhibitory activities. We
also evaluated the anti-inflammatory activity of Gelam honey extracts using High-
Performance Liquid Chromatography (HPLC) and liquid chromatography—mass
spectrometry (LC-MS). Subsequently, HME and HEAE were tested in vitro for their effect

on NO production in stimulated macrophages, as well as for their effects on tumor necrosis



factor-o (TNF-a) cytotoxicity in 1929 cells. These extracts protected cells against TNF
cytotoxicity and inhibited NO production, with HEAE exhibiting greater activity.
Moreover, we investigated the effect of the intravenous injection of honey in rats with LPS-
induced endotoxemia. We found that cytokines (TNF-a, IL-1B, and 1L-10), HMGB1, and
NO levels decreased, and HO-1 levels increased significantly in the honey-treated groups.
We also found that Gelam honey protects organs from lethal doses of LPS, as evidenced by
improved blood parameters, reduced neutrophil infiltration, and decreased myeloperoxidase
activity, as well as reduced mortality in honey-treated groups compared with untreated
groups. We also examined the ability of Gelam honey to scavenge peroxynitrite during
immune responses mounted by the murine macrophage cell line RAW 264.7. Significantly,
improved viability of LPS/IFN-y-treated RAW 264.7 cells and significant inhibition of NO
production were observed, similar to those observed with an inhibitor of inducible NOS. In
addition, Gelam honey inhibited peroxynitrite production from the synthetic substrate SIN-
1 as well as peroxynitrite synthesis in LPS-treated rats (endotoxemia). Thus, by suppressing
the production of cytotoxic molecules such as NO and peroxynitrite, honey may attenuate
the inflammatory responses that lead to cell damage and, potentially, to cell death. The
results therefore suggest that honey has therapeutic uses for a wide range of inflammatory

disorders.



SINOPSIS

Sindrom tindak balas keradangan sistemik berterusan merupakan keadaan kesihatan
yang serius yang boleh menyebabkan disfungsi organ berganda, kegagalan organ, dan
akhirnya kematian. la boleh membawa kepada kedua-dua keradangan akut, yang
disebabkan oleh sama ada sumber berjangkit (mikrob atau lipopolysaccharide yang [LPS])
atau tidak berjangkit (kimia) ,sepsis, dan jangkitan yang disebabkan oleh dos maut LPS
(endotoxemia). Syarat-syarat ini mempunyai radang mediator yang sama seperti sitokin,
nitrik oksida (NO), kumpulan kotak tinggi mobiliti-1 (HMGBL1), dan heme oxygenase-1
(HO-1), mencadangkan bahawa mereka mungkin diakibatkan oleh mekanisma patogenic
yang sama. Kajian sebelumnya telah menyiasat aplikasi produk semulajadi dalam
mensasarkan mediator radang. Madu, contohnya, digunakan untuk merawat keradangan
dan menyembuhkan luka. Madu Gelam yang paling biasa digunakan di Malaysia (sumber
bunga:. tradisional Melaleuca cajuputi Powell, telah digunakan untuk merawat pelbagai
jenis penyakit dan ia mempunyai ubat antiseptik, antibakteria, anti-radang, dan hartanah
anodyne. Walau bagaimanapun, buat masa ini tidak diketahui sama ada produk semula jadi
ini (Gelam madu) mempunyai kesan perlindungan terhadap tindak balas radang sistemik
semasa keradangan akut dan sepsis. Kami mula menyiasat kesan madu, madu ekstrak
metanol (HME), dan ekstrak madu etil asetat (HEAE) pada keradangan akut, menggunakan
model haiwan. Produk-produk ini menghalang bengkak dan kesakitan, dan ini berhubungan
dengan aktiviti perencatan mujarab mereka terhadap NO dan PGE2 dalam semua model.
Sebatian fenolik telah terbabit dalam aktiviti perencatan. Kami juga menilai aktiviti anti-
radang ekstrak madu Gelam menggunakan HPLC dan LC -MS. Selepas itu, HME dan
HEAE telah diuji secara in vitro untuk kesan mereka ke atas pengeluaran NO dalam

makrofaj dirangsang, serta kesannya terhadap nekrosis tumor faktor-a (TNF-a) sitotoksiti
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dalam sel-sel L929 . Ekstrak ini melindungi sel daripada sitotoksiti TNF dan menghalang
pengeluaran NO, dengan HEAE ia mempamerkan aktiviti yang lebih besar. Lebih-lebih
lagi, kami juga menyiasat kesan suntikan intravena madu dalam tikus dengan endotoxemia
akibat LPS. Kami mendapati bahawa tahap cytokine (TNF-a, IL-1B, dan IL-10) , HMGB1,
dan NO menurun, dan tahap HO-1 meningkat dengan ketara dalam kumpulan yang dirawat
dengan madu . Kami juga mendapati bahawa madu Gelam melindungi organ daripada dos
maut LPS, seperti yang dibuktikan oleh parameter darah yang lebih baik, penyusupan
neutrophil dikurangkan, dan myeloperoxidase menurun aktivitinya, serta kematian
dikurangkan dalam kumpulan yang dirawat dengan madu berbanding dengan kumpulan-
kumpulan yang tidak dirawat. Kami juga mengkaji keupayaan madu Gelam untuk mencari
peroxynitrite semasa tindakbalas imun yang dipasang oleh garis sel macrophage murine
yang RAW 264,7 daya maju Ketara bertambah baik LPS / IFN-y dirawat RAW 264,7 sel-
sel dan perencatan dengan pengeluaran NO yang ketara diperhatikan, sama seperti yang
diperhatikan dengan perencat NOS inducible. Di samping itu, madu Gelam menghalang
pengeluaran peroxynitrite dari sintetik substrat SIN-1 serta sintesis peroxynitrite dalam
tikus yang dirawat dengan LPS (endotoxemia). Oleh itu, dengan pengeluaran pembenteras
molekul sitotoksik seperti NO dan peroxynitrite, madu boleh melemahkan tindak balas
keradangan yang menyebabkan kerosakan sel dan berpotensi menyebabkan kematian sel.
Satu lagi komponen aktif madu, caffeic asid phenethyl ester, mempamerkan ciri-ciri
antioksidan, antimitogenic, anticarcinogenic, aktiviti anti-radang, dan immunomodulateri.
Apabila diuji dalam LPS / IFN-y-sel dirawat 264,7 RAW dan-tikus yang dirawat di LPS,
keputusan yang diperolehi adalah serupa dengan apa yang diperolehi dengan madu Gelam,

dan ini menyediakan bukti untuk potensi terapeutik yang serupa.
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CHAPTER 1. INTRODUCTION

1.1. General overview

Sepsis is defined as a type of systemic inflammatory response syndrome (SIRS)
caused by microbial infection (Kibe et al., 2011; Matsuda N, 2006). Sepsis has systemic
effects, including hemodynamic and cardiovascular instability, decreased ejection
fraction, and reduced systemic vascular resistance, which are indistinguishable from the
signs of acute inflammation (Wilson et al., 1998; Yoon, 2012). Inflammation is an
immune response that occurs in the tissue. It is a nonspecific reaction to any cell-
injuring agent, either physical (such as heat or cold), chemical (such as a concentrated
acid or alkali or any other caustic chemical), or microbiological. It has a rich history
intimately linked to war wounds and infections (Goris, 1996; Seth et al., 2012).
Although the complex pathophysiology of acute and chronic inflammation is gradually
becoming better understood, in modern hospitals, acute inflammation continues to be a
main threat to patient health. Local inflammation is tightly regulated by the immune and
nervous systems, combating invading pathogens and removing injured cells. If the local
inflammatory response fails to contain the insults, systemic inflammation may occur. In
general, SIRS is an entire normal response to injury or infection. It may lead to
excessive leukocyte activation, multiple organ dysfunction syndromes (MODSs), organ
failure, and ultimately death. At the late irreversible stage, even the removal of initial
local inflammatory stimulus may have no effect on the progression of organ failure and
mortality (Fernandes et al., 2012; Latifi SQ, 2002; Milam et al., 2010). Moreover, acute
inflammation and sepsis share many inflammatory mediators (Kuper et al., 2012;
MacGarvey et al., 2012; Seija et al., 2012; Setoguchi et al., 2012). Neutrophil

infiltration and activation is a hallmark of SIRS. Neutrophils play an important role in



host defense by releasing many proteolytic enzymes and producing free radicals such as
reactive oxygen species (ROS) to degrade internalized pathogens. However, excessive
production of these lytic factors by overwhelming numbers of activated neutrophils may
correlate with host tissue damage and organ failure during sepsis. The incidence of
sepsis and the number of sepsis-related deaths are increasing; previous studies have
confirmed that there are more than 750,000 cases of severe sepsis per year in the United
States, resulting in an annual national hospital cost of $16.7 billion (Angus et al., 2001).
Therefore, new immune-modulating therapeutic approaches for sepsis are needed to
control neutrophil migration and infiltration during sepsis; reduce systemic cytokines,
NO, and HMBG1,; induce HO-1 activation and thus increase the survival rate.
The aim of the present study is to validate the hypothesis that modulation of immune
response during sepsis with natural products such as honey can protect against systemic
inflammatory response, using animal models of inflammation and sepsis. Moreover, our
study also aims to reveal some underlying activities of these natural products in vitro
and in vivo through monitoring their effects on cytokines, HMGB1, NO, HO-1,
myeloperoxidase, and on peroxynitrite scavenging, as well as on systemic inflammatory
response during sepsis development and, consequently, on the survival rate of animals.
This study looked into the extraction of Gelam honey and evaluation of the anti-
inflammatory activity of these extracts. Honey extracts were analyzed using liquid
chromatography-mass spectrometry (LC-MS) to identify phenolic compounds and then
the extracts were also tested for their effects on tumor necrosis factor alpha (TNF)
cytotoxicity in L929 cells and nitric oxide in RAW 264.7. The major phenolics in the
extracts were ellagic, gallic, and ferulic acids, myricetin, chlorogenic acid, and caffeic
acid. Other compounds found in lower concentrations were hesperetin, p-coumaric acid,

chrysin, quercetin, luteolin and kaempferol. Honey and its extracts inhibited NO during



immune response and  protection from TNF cytotoxicity. Rats’ paws induced with
carrageenan in the non-immune inflammatory and nociceptive model, and
lipopolysaccharide (LPS) in the immune inflammatory model inhibited edema and pain
in inflammatory tissues as well as showing potent inhibitory activities against NO and
PGE; in both models. The decrease in edema and pain correlates with the inhibition of
NO and PGE,. Phenolic compounds have been implicated in the inhibitory activities.
However, local immune response is not like systemic inflammatory response syndrome
such as sepsis so we have to confirm if Gelam honey can protect from sepsis. We
investigated the effect of the intravenous injection of honey in rats with LPS-induced
sepsis. The results showed that after 4 h of treatment, honey reduced cytokine (tumor
necrosis factor-a, interleukins 1f, and 10) and NO levels and increased heme
oxygenase-1 levels. After 24 h, a decrease in cytokines and NO and an increase in HO-1
were seen in all groups, whereas a reduction in HMGBL1 occurred only in the honey-
treated groups as well as Honey-treated rats which showed reduced mortality after
sepsis compared with untreated rats. We then investigated the role of Gelam honey
against sepsis-induced organ failure. Treatment with honey showed protective effects on
organs through the improvement of organ blood parameters, reduced infiltration of
neutrophils, and decreased myeloperoxidase activity. Honey-treated rabbits also showed
reduced mortality after sepsis compared with untreated rabbits. Honey may have a
therapeutic effect in protecting organs during sepsis. During immune response and
sepsis cell produces a high toxic and oxidant molecules that lead to cell death and
tissues damage. Peroxynitrite is a short-lived oxidant and a potent inducer of cell death.
It induces lipid, protein and DNA damage and the potential biological targets of
peroxynitrite include membrane as well as cytosolic and nuclear receptors. Conditions

in which the reaction products of peroxynitrite have been detected and in which



pharmacological inhibition of its formation or its decomposition have been shown to be
of benefit include sepsis, vascular diseases, ischaemia—reperfusion injury, inflammation,
pain and neurodegeneration, therefore we further showed the ability of Gelam honey to
scavenge peroxynitrite during sepsis and immune responses mounted in the murine
macrophage cell line RAW 264.7 when stimulated with lipopolysaccharide/interferon-y
(LPS/IFN-y) and in LPS-treated rats and also significantly improved the viability of
LPS/IFN-y—treated RAW 264.7 cells and inhibited nitric oxide production—similar to
the effects observed with an inhibitor of inducible nitric oxide synthase. Furthermore,
honey inhibited peroxynitrite production from the synthetic substrate 3-
morpholinosydnonimine (SIN-1) and prevented the peroxynitrite-mediated conversion
of dihydrorhodamine 123 to its fluorescent oxidation product rhodamine 123. Honey
inhibited peroxynitrite synthesis in LPS-treated rats and thus, honey may attenuate
inflammatory responses that lead to cell damage and death, suggesting its therapeutic
uses for the pharmacological strategies to attenuate the toxic effects of peroxynitrite in

immune response and sepsis.



CHAPTER 2. LITERATURE REVIEW

2.1.  Sepsis

The word “sepsis” is derived from the Latin origin Sepsios, meaning musty; it is
a condition that is not accepted passively by living organisms. The discovery of
microbes in 1674 by Antony van Leeuwenhoek was the main event that helped
elucidate the origin of sepsis. The determination of the body’s systemic responses to
defend itself against microbial pathogens and their toxins took several hundred years of
rigorous studies (Hoffmann et al., 1999). Sepsis is a systemic inflammatory process
caused by infection. It develops from SIRS, and severe sepsis then leads to MODS. An
epidemiological study has reported that more than 750,000 patients develop sepsis
annually in the United States alone (Angus et al., 2001), with an estimated cost per year
for treatment of $18 billion. The mortality rate of sepsis high, i.e., from 30% to 50%
(Riedemann et al., 2003). It affects the whole body, with the most common sites of
infection being the lungs, abdominal cavity, urinary tract, and primary infections of the
bloodstream (Agnello et al., 2002). Invading pathogens, including gram-negative and
gram-positive bacteria, viruses, parasites, and fungi, may be the initial cause of sepsis.
The immune response starts in the innate immune system, which employs special
receptors to recognize the highly conserved components of these pathogens, i.e.,
pathogen-associated molecular patterns (PAMPSs). The Toll-like receptors (TLRs) are
the most important of these receptors. They consist of many members, most of which
are expressed in human neutrophils (Hayashi, 2003). TLR4 acts as the central receptors
for LPS, whereas TLR2 acts as the main receptor for gram-positive cell wall
components, yeast cell wall zymosan, and mycobacterial cell wall components
(Hildebrand et al., 2012; Underhill, 1999). After the TLRs are activated by their ligands,

MyD88 is associated with TLR complex as the adaptor molecule, which leads to the



formation of the TNF-associated factor 6 (TRAF6)/IL-1 receptor associated kinase 4
(IRAK4)/IRAK-1 complex (Ye, 2002). This complex interacts with another complex
comprising transforming growth factor-beta-activated kinase 1 (TAK1), TAK1-binding
protein 1 (TAB1), and TAB2 (Shibuya, 1996; Takaesu et al., 2000). TAK1 is
subsequently activated in the cytoplasm, leading to the activation of | kappa B kinase
kinases (IKKs) (Shibuya, 1996). IKK activation leads to phosphorylation and
degradation of | kappa B, translocation of NF-kB into the nucleus, and upregulation of
inflammatory cytokines. TLRs activate many cells such as neutrophils, macrophages,
and epithelial and endothelial cells to produce inflammatory mediators including
cytokines (TNF-a, IL-1pB, etc.) and NO. The expression of adhesion molecules on
endothelial cells is induced either directly by TLR activation or indirectly through the
proinflammatory cytokines TNF-aand IL-1 (Parker et al., 2005) . These events promote
neutrophil migration to the site of inflammation during sepsis.

2.2.  Immune response to sepsis

Neutrophils have a key regulatory role in vascular inflammation. The hallmark of
MODS or acute respiratory distress syndrome (ARDS) is infiltration of neutrophils into
the microvasculature of the organ involved, such as the lung (Phillipson & Kubes, 2011,
Shah et al., 2010). Sepsis causes endothelial injury and neutrophil infiltration into
tissues, leading to local injury, disturbed capillary blood flow and enhanced
microvascular permeability, disseminated intravascular coagulation, circulatory
collapse, hypoxia and, ultimately, multiple organ failure (Cohen, 2002). Sepsis-induced
acute lung injury (ALI) remains a major clinical problem with significant morbidity and
mortality (Razavi et al., 2004). A pathological hallmark of acute lung injury is
subsequent tissue infiltration of neutrophils and pulmonary microvascular sequestration

(Kindt et al.,, 1991; Tate & Repine, 1983). Enhanced pulmonary neutrophil



sequestration and infiltration during sepsis changes the neutrophil profile by increasing
neutrophil surface expression and activating cell-cell adhesion molecules, and
enhancing the release of soluble mediators, production of cytokines, and generation of
reactive oxygen species, NO, and ONOO (Brown et al., 1995; Goode & Webster,
1993; Novelli, 1997; Skoutelis et al., 2000). Neutrophils express adhesion molecules
that enable them to adhere to the microvascular endothelium and sequester in vital
organs. Various proinflammatory mediators released during the sepsis response are
supposed to increase and activate the expression of adhesion molecules on the surface
of both neutrophils and endothelial cells, such as intracellular adhesion molecule-1
(ICAM-1) and B1-integrins CD11/CD18 (Alves-Filho et al., 2006). The toxicity of
PMNs stems not only from their adhesive and migratory properties but also from their
ability to generate ROS. The mechanism of ROS generation is assumed to involve
nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) stimulation of
neutrophils with TNF-a, IL-1B, and LPS, which results in the assembly of the NADPH
complex and the production of the superoxide radical (AW, 2006). NADPH is a
membrane-bound enzyme that catalyzes the formation of superoxide anion from
molecular oxygen. Superoxide is subsequently converted to hypochlorous acid and
hydrogen peroxide, which are both unstable and highly reactive oxygen species. ROS
produced by neutrophils are capable of direct DNA damage, lipid peroxidation, and
interference with actin metabolism, leading to changes in cellular function and organ
damage. NADPH inhibition by apocyanin has been shown to decrease lung injury in
guinea pigs (Deng et al., 2012; Grommes & Soehnlein, 2011). The NO synthase (NOS)
pathway is another pathway that may also be involved in the generation of free radicals
by neutrophils. NO knockout mice have been shown to have decreased lung injury when

injected with LPS. Phenolic compounds reduce sepsis-induced remote organ injury, at



least in part, through their ability to balance oxidant-antioxidant status, to inhibit
neutrophil infiltration and to regulate the release of inflammatory mediators (Kolgazi et
al., 2006). Cells of the monocyte/macrophage family are the basis of the innate immune
system; they play a vital role in the immune response against microorganisms.
Monocytes derived from bone marrow circulate in the blood for less than 48 hours and
enter tissues to differentiate into macrophages. Macrophages perform different
biological activities depending on the type of the tissue microenvironment.
Macrophages have a longer life span and more heterogeneous functions than monocytes
(Wu et al., 2005). Although the role of an innate immune reaction is to eradicate the
invading microorganisms, a hyperinflammatory monocyte system contributes to the
etiology and progression of SIRS. Macrophages are critical in recognizing LPS,
lipoteichoic acid (LTA), or other bacterial components through various pattern
recognition cellular receptors such as the Toll receptors. The interaction between
macrophages and pathogens results in the beginning of inflammatory mediators and
coagulation cascades. These pathways produce many soluble mediators that function in
autocrine or paracrine loops and further activate the proinflammatory cascades (Panda
et al., 2012). Macrophages can release a series of inflammatory mediators, including IL-
1, IL-6, TNF-a, platelet activating factor (PAF), eicosanoids, NO, and ROS, when
stimulated with bacterial products (Bergenfelz et al., 2012; Kleiman et al., 2012; Risco
et al., 2012; Vandevyver et al., 2012). They are also a source of intracellular superoxide
and hydrogen peroxide (H,0;), responsible for killing phagocytosed microorganisms.
During sepsis, macrophages exist in an overactive state and can release some
inflammatory mediators and ROS that contribute to tissue damage (Van Amersfoort et
al., 2003) . Further, activated macrophages increase their expression of CD40 and TNF-

a receptors, and secrete TNF-o. This autocrine stimulus synergizes with interferon-y



(IFN-y) secreted by T helper 1 (TH1) cells to increase the antimicrobial action of the
macrophage, in particular by inducing the production of NO and ROS (Van Amersfoort
et al., 2003). Previous studies showed that natural product such as flavonoids, phenolic
acid and polyphonic inhibit the activation of macrophage through NF-«kB activity or
DNA binding, IKK, COX2, iNOS and cytokines inhibition (Cho et al., 2003; Jeong &

Jeong, 2010; Joo et al., 2012; Kanters et al., 2003; Sgambato et al., 2001).

TNF-a is produced by monocytes and macrophages after inflammation; it is a
pivotal cytokine in the pathogenesis of inflammatory diseases. It is the major early
mediator of sepsis and has been reported to have role in the development of MODS in
sepsis (Mira et al., 1999; Qiu et al., 2011). Two hours after exposure to LPS, TNF-a
will be in its highest level in serum where it can activate many cell types; initiate the
proinflammatory cascade with up-regulation of adhesion molecules on neutrophils; and
stimulate the release of IL-1, IL-6, eicosanoids, and PAF, among others (Agnello et al.,
2002), thus initiating inflammatory cell migration into tissues. TNF-a upregulates
phospholipase A2, cyclooxygenase, and NOS (Bhatia & Moochhala, 2004) . It is a
potent activator of NF-kB. and TNF-a antibodies and soluble TNF-a receptors have
been used in humans . Furthermore, it has been confirmed that neutralized monoclonal
antibodies against TNF-a can diminish the production of some inflammatory mediators
and other proinflammatory cytokines (Brennan FM, 1989). Reactive oxygen species
(ROS) play a critical role in mediating TNF-a-induced cytotoxicity (Kunnumakkara et
al., 2008). It was shown that such cytotoxicity can be blocked by specific free radical
scavengers (Goossens et al., 1995). Previous research has reported that Malaysian
honey has free radical scavenging activity (Aljadi & Kamaruddin, 2004). Therefore, it is
believed that the free radical scavenging capacity of flavonoids identified in the honey

extracts may play a role in protecting cells from this cytotoxicity (Middleton et al.,



2000). In fact, Habtemariam (Habtemariam, 2000) reported that phenolics, such as
caffeic acid, effectively inhibit TNF-induced cytotoxicity in L929 cells. It also inhibits

TNF in vivo and reducing the mortality in sepsis (Fidan et al., 2007).

IL-1B is a proinflammatory cytokine produced by many cell types, such as
monocytes/macrophages, fibroblasts, and endothelial cells, and is involved in
inflammatory and immunological processes (Dinarello, 2011b) . It has a vital role in
endotoxemia and also contributes to the development of severe sepsis and MODS, and
induces the production of other cytokines and inflammatory mediators involved in
sepsis (CA, 2000; Dinarello, 2011a; Yoza & McCall, 2011). Further, an IL-1 receptor
antagonist (IL-1ra) has been characterized to be structurally related to I1L-1, and in vitro
has been demonstrated to protect against endotoxin-induced lung injury in rats and to
improve survival rate after lethal endotoxemia in mice (Dinarello, 2011a; Tsuchiya et
al., 2012). There are some natural product such as ethanol extract of propolis ,
mushroom and Epigallocatechin-3-gallate, a Green Tea-Derived Polyphenol, ellagic
acid have been shown a potent inhibiting of IL-1 3 (Blonska et al., 2004; Jedinak et al.,

2011; Wheeler et al., 2004; Yu et al., 2007).

IL-6 is a pro- and anti-inflammatory cytokine. It is produced by
macrophages/monocytes, endothelial cells, and smooth muscle cells, and its expression
increases in response to endotoxin, TNF-a, and IL-1p (Agnello et al., 2002). IL-6 is an
important cytokine that is up-regulated during sepsis (Gouel-Cheron et al., 2012;
Kruttgen & Rose-John, 2012). It has been demonstrated to increase in post-burn injuries
and after surgery (Nijsten et al., 1991) . It mediates the synthesis of acute phase
proteins, including C-reactive protein (CRP) (Castell JV, 1989). Serum IL-6 level is a
biomarker that can be used in identifying patients at risk of progression to sepsis, severe

sepsis, septic shock, and MODS early in the infective and inflammatory processes (Qiu
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et al., 2012). Natural product such as green tea , propolis ,some phenolic compounds
from plant such as (-)-epigallocatechin-3-gallate, chrysin, quercetin and resveratrol
have shown a potent inhibition of IL-6 and protect from sepsis (Cernada et al., 2012;

Lin et al., 2010; Liu et al., 2005; Woo et al., 2005; Zhong et al., 1999).

IL-10 is anti-inflammatory cytokine produced mainly by monocytes/macrophages
and, to a lesser degree, by lymphocytes. It plays an important role in sepsis (Howard,
1993; Standiford, 1995). It has been identified as a vital modulator of the lethal
excessive production of inflammatory cytokines. It inhibits the in vitro synthesis of IL-
la, IL-1B, TNF-a, and IL-6 (de Vries, 1995; Fiorentino et al., 1991). It is an important
mediator of endotoxemia-induced immunosuppression, and is a critical mediator of
macrophage and leukocyte deactivation during LPS desensitization and endotoxemia
(Pils et al., 2010; Steinhauser et al., 1999; Urbonas et al., 2012). Administration of
recombinant IL-10 has been shown to significantly protect animals from sepsis (Gerard,
1993; Hickey et al., 1998; Standiford, 1995). IL-10 is a potent suppressor of
macrophage production of important activating and/or chemotactic cytokines
(Cassatella, 1993; Kasama, 1994; Rolph, 1992). Furthermore, in vitro, IL-10 cytokine
directly inhibits neutrophil and macrophage bactericidal activity and phagocytosis
(Laichalk, 1996; Ocuin et al., 2011; Oswald, 1992). Both in humans and in animal
models, the period that follows septic events has been shown to result in the preferential
expression of anti-inflammatory cytokines, particularly 1L-10 (O’Sullivan, 1995). IL-10
administration in animal models of SIRS has been shown to protect from organ injury;
no animal studies are available to date (Mittal et al., 2010) . HMGBL1 is a ubiquitous
nuclear factor released by activated immune cells such as neutrophils and macrophages;
it mediates organ damage in severe sepsis and is released by necrotic cells (Wang, 1999;

Yang, 2004). HMGB1 has been implicated in some diseases such as
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ischemia/reperfusion injury of the lung and liver (Wang H, 1999). It is capable of
stimulating the release of proinflammatory cytokines, such as TNF, and upregulating
endothelial adhesion (Andersson et al., 2000). It also contributes to activation of
NADPH oxidase via a TLR4 signaling pathway in PMNs (Fan et al., 2007) . HMGBL1 is
a necessary and sufficient mediator of organ damage in severe sepsis (Chavan et al.,
2012). It has been shown that administration of HMGB1 to experimental animals causes
epithelial cell dysfunction and lethal organ damage (Wang, 1999; Yang, 2004). In
contrast, administration of anti-HMGBL1 antibodies prevents epithelial dysfunction and
organ damage during sepsis in mice (Chavan et al., 2012). Previous studies showed that
polyphenolic compounds (-)-epigallocatechin-3-gallate from green tea, oleanolic acid

inhibited HMGB and protect from sepsis (Kawahara et al., 2009; Li et al., 2007).

Hemeoxygenase (HO) is an enzyme that catalyzes the degradation of heme to
produce biliverdin, iron, and carbon monoxide. HO consists of constitutive and
inducible isozymes (HO-1, HO-2) (Ryter et al., 2006). HO-1, which is released during
endotoxemia, is a protein associated with oxidative stress protection. HO-1 is regulated
by apoptotic stimuli, including heme, TNF-a, and apoptotic compounds. It has
antiapoptotic, antioxidant, and immunomodulatory functions (MacGarvey et al., 2012;
Ryter et al., 2006). Upregulation of HO-1 inhibits the release of cytokines, HMGBI,
and NO, which may have a protective effect against the effects of endotoxemia in rats.
HO-1 protects against severe inflammation, and its upregulation has been shown to
inhibit the release of cytokines (e.g., TNF-a and IL-1B), HMGBI1, and NO, which may
have a protective effect against endotoxemia in animals (Bortscher et al., 2012; Yu &
Yao, 2008). HO-1 also inhibits NF-xB, thereby modulating cytokine release and
inhibiting inducible NOS, with a subsequent decrease in NO (Bellezza et al., 2012;

Brouard et al., 2002; Carchman et al., 2011). Flavonoids were shown to induce HO-1
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gene expression (Scapagnini et al., 2002). Similarly, potent HO-1-inducing abilities
were identified in other natural products (such as (-)-epigallocatechin-3-gallate
(EGCG)); moreover, these natural products include immunomodulators of LPS-induced
HMGBL release, and their administration increases the survival of HO-1-deficient mice

(Li et al., 2007; Takamiya et al., 2009).

Prostaglandin is a very important mediator of all types of inflammation. It is
synthesized by the enzyme cyclooxygenase (COX) which is stimulated in the
inflammatory phase by pro-inflammatory mediators, such as cytokines, LPS and
carrageenan. Previous studies have shown that COX-2 is responsible for increased
prostaglandin production in inflamed tissue (DeWitt, 1991). Previous studies have
shown that phenolic compounds inhibited COX-2 such as phenolic acid and flavonoids
(Yang et al., 2009). Honey has been proven to have a potent activity against gastritis
and stomach ulcers (Kandil et al., 1987b). Specific inhibition of COX-2 expression at
the transcriptional level is a potent mechanism in the treatment of inflammatory disease
(O'Banion et al., 1992). It is possible that honey and its extracts are selective inhibitors
of COX-2 because honey has no side effects on the gastrointestinal system. In relation
with the above results, the inhibition of PGE, by honey extracts is more pronounced.
Ellagic acid has an inhibitory effect on PGE;, release from monocytes and other
phenolic compounds in such as quercetin, chrysin and luteolin which have been
demonstrated to have inhibitory effects on interleukin, 1B, and cyclooxygenase-2
(COX-2) expression, prostaglandin E2 (PGE;) synthesis and NF-xB (Gutierrez-Venegas
et al.,, 2007; Romier et al., 2008). Nitric oxide (NO) is a pleiotropic mediator of
inflammation and was first discovered as a factor released from endothelial cells that
causes vasodilatation by relaxing vascular smooth muscle (Furchgott, 1980). It has a

short half-life (5-10 seconds), is derived from L-arginine, and is rapidly converted to
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nitrate and nitrite after being secreted (Boveris A, 2002). NO is synthesized by the NOS
family of enzymes, which includes the calcium-independent, inducible isoforms and the
calcium-dependent, constitutive (cNOS) isoforms (Wang et al., 2012). It plays a
controversial role in sepsis and septic shock. It has vasodilatory effects in sepsis
(Landry & Oliver, 2001) ; has pro- and anti-inflammatory as well as antioxidant and
oxidant properties (Enkhbaatar et al., 2009; Wink et al., 2001); and acts as a “vital
poison” in the immune and inflammatory network (Dugas et al., 1995) . NO also causes
increased leukocyte adhesion in the liver and lungs, as well as inhibits acute-phase
protein production. The late phase of hypotension, cellular suffocation, apoptosis,
vasoplegia, lactic acidosis, and multi-organ failure in endotoxic shock or severe sepsis is
implicated with the levels of NO and its derivatives such as (ONOO-) (C, 2003). LPS
was found to increase endothelial NO release, further suggesting that NO may be
responsible for induction of hypotension in severe sepsis. NO is therefore a key
contributory mediator of tissue damage in SIRS (Ishikawa et al., 2012; Iskit & Guc,
2003). An understanding of the biological, pharmacological, and pathological activity of
NO during inflammatory diseases and sepsis has provided a new strategy for identifying
therapeutic targets in the management of sepsis (Anderson, 2012). Nitric oxide (NO) is
known to be an important mediator of inflammation (Misko et al., 1993). Inducible
nitric oxide synthase (iNOS) is the enzyme responsible for NO production in the
inflammatory response. Aminoguanidine, a highly selective inhibitor of iINOS (Romier
et al., 2008), totally inhibited NO production in activated macrophages at 1mM.
Similarly, HME and HEAE dose-dependently inhibited the production of NO without
affecting the viability of RAW 264.7 cells. Some flavonoids, including hesperetin, and
naringin; induce HO-1 and can inhibit LPS-induced NO production. Moreover,

genistein, kaempferol, quercetin, and daidzein inhibit the activation of the signal
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transducer and activator of transcription 1 (STAT-1), another important transcription
factor for INOS (Hamalainen et al., 2007). Additionally, quercetin, caffeic acid, chrysin,
ellagic acid and various polyphenolic compounds are known for their down-regulation
of NF-kB (Del Boccio & Rotilio, 2004), this in turn reduces biosynthesis of iNOS, and
ultimately inhibits the production of nitric oxide. Most of the phenolic compounds
mentioned above were identified in this study; it can therefore be assumed that the
inhibition of nitric oxide production by the honey extracts was due to these compounds.
Although the concentrations of the phenolics identified were higher in HME, the in vitro
anti-inflammatory activity seemed to be better for HEAE. It was reported that ethyl
acetate extracts will contain a higher concentration of bioactive compounds; an example
being the anti-inflammatory compound caffeic acid phenethyl ester (CAPE) (Del
Boccio & Rotilio, 2004; Habtemariam, 2000; Song et al., 2002). This supports the
observation that HEAE showed better activity. Peroxynitrite (ONOQ") is produced by
the reaction of superoxide and nitric oxide; it is a short-lived and highly oxidant
molecule. Its decomposition to nitrate and nitrite is intimately coupled with the redox
biochemistry of this species. It is a very active molecule and targets all parts of the cell
from the membrane to the nucleus. Peroxynitrite levels increase during inflammation,
which leads to the inactivation of interleukins and decrease in inducible NOS activity
(Freels, 2002; Lanone, 2002; Zouki, 2001). Also, peroxynitrite enhances nuclear factor-
kB (NFxB)-mediated proinflammatory activity (Seija et al., 2012; Shacka, 2006). It is a
potent inducer of cell death through different pathways such as MLK/p38/JNK, and
stimulates the release of apoptosis-inducing factor (AIF) from the mitochondria, which
subsequently triggers DNA fragmentation processes (Hao et al., 2011; Shacka, 2006;
Zhang, 2002). Some physiological inhibitors of peroxynitrite, such as uric acid, have

been used in many studies and showed valuable effects in animal models of
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inflammation, sepsis and reperfusion injury (Kooy, 1994; Lanone, 2002; Nin et al.,
2011; Robinson, 2004; Scott, 2002, 2005; Seija et al., 2012; Soriano et al., 2011;
Whiteman, 2002). Recent studies show that peroxynitrite stimulates the release of the
mitochondrial apoptosis-inducing factor, which subsequently triggers DNA
fragmentation (Zhang et al., 2002), release of mitochondrial pro-apoptotic factors, and
cytochrome c-dependent apoptosis in the cytosol through peroxynitrite-dependent
oxidation of the mitochondrial permeability transition pore. The key role of
peroxynitrite in promoting mitochondrial dysfunction is clearly exemplified in
experimental sepsis, in which peroxynitrite production results in the inhibition of
mitochondrial respiration in the diaphragm in a process associated with mitochondrial
protein nitration. The latter is prevented by NO synthase inhibitors and Mn-porphyrin
therapy (Nin et al., 2004). Peroxynitrite-induced activation of the MLK/p38/JNK
pathway also plays a crucial role in apoptosis (Dubuisson et al., 2004; Rhee et al., 2005;
Trujillo et al., 2004). Earlier studies showed that inhibit NO production, and thus
peroxynitrite formation, thereby reducing the effects of these cytotoxic compounds both
in vitro and in vivo. Moreover, scavengers of peroxynitrite are known to be protective
against tissue damage (Szabo et al., 2007). Some scavengers of peroxynitrite, such as
uric acid, ebselen, mercaptoalkylguanidines, N-acetylcysteine, and dihydrolipoic acid,
and some chemicals that work as decomposition catalysts of peroxynitrite, such as
metalloporphyrins of iron and manganese, can attenuate the toxic effects of
peroxynitritein vitro and in vivo (Daiber et al., 2000; Hooper et al., 1998; Klotz & Sies,
2003; Lancel et al., 2004; Noiri et al., 2001; Ploner et al., 2001; Scott et al., 2005;
Spitsin et al., 2000; Szabo, 2003; Szabo et al., 1997). These compounds can reduce 3-
nitrotyrosine immunoreactivity in various pathophysiological conditions and have

beneficial effects in animal models of inflammation, sepsis, and reperfusion injury
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(Beckman, 1996; Briviba et al., 1996; Brodsky et al., 2004; Crow, 2000, 2006; Nin et
al., 2004; Noiri et al., 2001; Tabuchi et al., 1995; Wang et al., 2003). Many phenolic
compounds such as gallicacid, caffeic acid, kaempferol, ferulic acid, p-coumaric, and
quercetin have been shown to inhibit peroxynitrite. Monohydroxylated phenolic
compounds, such as ferulic acid and p-coumaric acid, act as peroxynitrite scavengers by
nitration. On the other hand, compounds with a catechol moiety, such as caffeic acid
and chlorogenic acid, reduce peroxynitrite by electron donation (Klotz & Sies, 2003;

Pannala et al., 1998).
2.3.  Multiple Organ Dysfunction Syndromes (MODSs)

MODSs arise because of uncontrolled immune-inflammatory response and is
characterized by generalized and persistant inflammation. This process results in
cellular damage at the level of the endothelium, decreasing the endothelial permeability
to fluid, proteins, and cells, as well as to gut bacteria. Cytokine and coagulation
cascades are promoted, resulting in microvascular thrombosis and infiltration of organs
with various leukocytes. Cellular death occurs in local and regional environments
secondary to hypoxia, causing further release of toxic oxygen species and inflammatory
mediators (Emura & Usuda, 2010; Luo et al., 2009). Thus, both hemorrhagic as well as
septic shock have been recognized as the leading causes of MODS. In the 1980s,
however, MODS was thought to arise secondarily to an overwhelming infectious
process. Approximately 90% of multiple organ failure MOF in these patients was due to
a septic source (Emura & Usuda, 2010). To date, several studies have concluded that
MODS after a trauma represents the bridge from mild organ dysfunction to death;
however, the process itself begins as early as within 24 hours of the original insult.
Coagulopathy ensues, as well as hyperglycemia, dysfunction of the gut, and adrenal

insufficiency, followed by CNS dysfunction and eventually death (de Montmollin &
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Annane, 2011). Septic shock is the main cause of MODS in intensive care units, and the
intensity of MODS is correlated directly to mortality (Carrillo Esper et al., 2011; de
Montmollin & Annane, 2011). Former studies showed that phenolic compounds such as
Caffeic acid phenethyl ester and thymoquinone protect organs from sepsis-induced
injury (Alkharfy et al., 2011; Fidan et al., 2007).

2.4.  Animal models of inflammation and sepsis

Many animal models are used to study acute and chronic inflammation. In acute
inflammation, the most common models are paw and ear edema induced with various
chemicals such as carrageenan (Kumar & Kuttan, 2009; Murta & Ferrari, 2012; Nikota
& Stampfli, 2012; Ogino et al., 2009; Tweedie et al., 2012), acetic acid (Whittle, 1964),
xylene (Kou et al., 2005), phorbolmyristate acetate (Griswold et al., 1998), formalin
(Wheeler-Aceto et al., 1990), and oxazolone (Beaulieu et al., 2007); some enzymes and
fatty acids; histamine (Amann et al., 1995) and arachidonic acid (Romay et al., 1998);
and components of bacterial cell wall such as LPS. In chronic inflammation, the most
commonly used model is cotton pellet-induced granuloma (Shahavi & Desai, 2008).
Sepsis models can be divided into exogenous administration of a toxin (such as LPS or
endotoxins), a viable pathogen such as bacteria, or by alteration of the animal’s
endogenous protective barrier (inducing colonic permeability, allowing bacterial
translocation) (Buras et al., 2005; Li et al., 2011; Orman et al., 2011, 2012; Sadowitz et
al., 2011). LPS is a major constituent of gram-negative bacterial cell walls. It typically
consists of lipid A and O-antigen. LPS is found both on the surface of phagocytic cells
and as soluble proteins in the bloodstream. It is scavenged by neutrophils and
macrophages through complex mechanisms and is transported by LPS-binding protein
as well as membrane-bound or soluble CD14, enabling its interaction with TLRs on the

phagocyte membrane. CD14 is a receptor of LPS in mice and in humans. The prototype
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model for innate immune responses is leukocyte activation by LPS. Gram-negative
bacterial infection accounts for approximately 60% of cases of sepsis in humans , and it
causes sepsis in animal models (Brudecki et al., 2012). LPS has an important role in the
pathogenesis of sepsis, and it is a highly stable and toxic molecule. It can activate
numerous cells of the immune system to produce proinflammatory cytokines (e.g.,
TNF-a, IL-1, IL-6, IL-8, IL-12, and IFN) and ROS. Understanding the physiological
effects of LPS on the cellular and molecular levels holds the key to understanding the
responses of innate immunity (Merrill et al., 2011; Yamanishi et al., 2012). Cecal
ligation and puncture (CLP) belongs to the endogenous category and is considered the
best standard for sepsis research (Parker & Watkins, 2001). The CLP model was
designed to simulate ruptured appendicitis or perforated diverticulitis in humans (Jung
et al., 2012). The technique involves midline laparotomy, exteriorization of the cecum,
ligation of the cecum distal to the ileocecal valve, and puncture of the ligated cecum.
This procedure generates bowel perforations with leakage of fecal contents into the
peritoneum, which establishes an infection with mixed bacterial flora and provides an
inflammatory source of necrotic tissue. The CLP technique has achieved popularity
because of its ease of use, general reproducibility, and similarity to human disease
progression. Most markedly, the CLP model recreates the hemodynamic and metabolic
phases of human sepsis (Dejager et al., 2011). Moreover, apoptosis of selected cell
types and host immune responses seem to mimic the course of human disease, adding
further clinical validity to this model (Ayala & Chaudry, 1996; Hotchkiss & Karl,
2003). One comparison study has shown that LPS causes a rapid induction of cytokines,
followed by an early decline in mice, whereas CLP induces a slower sustained increase
of cytokines in both the plasma and peritoneum, which mimic the responses in sepsis

patients (Dejager et al., 2011).
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2.5. Natural product

Throughout human history, herbal medicine has formed the basis of folk
remedies for various inflammatory ailments. The use of willow bark extract to reduce
pain and fever was documented by a Greek physician (Hippocrates) in the 5™ century
BC, and the subsequent discovery of salicylic acid as its pain/fever-relief active
component gave rise to the first synthetic anti-inflammatory drug, aspirin, and the birth
of the pharmaceutical industry (Yang & Landau, 2000). Honey is a sweet and viscous
fluid produced by bees from floral nectars. It includes over 400 different chemical
compounds, more than 95% of which mainly consist of sugars and water. Its major
components are carbohydrates (glucose and fructose, as well as disaccharides such as
maltose and sucrose, and trisaccharides such as melezitose (Lazaridou et al., 2004).
Proteins, enzymes, organic acids, mineral salts, vitamins, phenolic acids, flavonoids,
free amino acids, and volatile compounds constitute the minor components of honey
(Alissandrakis, 2005). The moisture content in honey usually amounts to 20%, reaching,
in some exceptional cases, almost 23% in heather honey. The characteristics of the
moisture content depend on the water activity in the honey. In liquid honeys, water
activity reaches values from aw = 0.53 for 15.8% of water content to aw = 0.69 for

22.20% of water content (Sanz S., 1994).

Honey is alluded to in the ancient Sumerian and Babylonian cuneiform writings,
the Hittite code, the sacred writings of India (Vedas), and in the ancient writings of the
ancient Egyptians, Chinese, Greeks, and Romans (Jackson, 1995). Muslim physicians
use honey to heal a variety of human diseases. In the Qur’an and many Prophetic
narrations, honey is described as a universal healing agent. “And your Lord inspired
the bee, saying: ‘Take you habitations in the mountains and in the trees and in

what they erect. Then, eat of all fruits and follow the ways of your Lord made easy
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for you.” There comes forth from their bellies a drink of varying color wherein is
healing for mankind. Verily, in this is indeed a sign for people who think.” (Al-
Qur’an 16:68-69).The Muslim traditionalist Abu Sa’id al-Khudri related that a man
came to the Prophet (peace and the blessings of Allah upon him) and said: “My brother
has some abdominal trouble.” The Prophet (peace and the blessings of Allah upon him)
said to him “Let him drink honey.” The man returned to the Prophet (peace and the
blessings of Allah upon him) and said, “O Messenger of Allah! I let him drink honey
but it caused him more pain.” The Prophet (peace and the blessings of Allah upon him)
said to him, “Go and let him drink honey!” The man went and let his brother drink
honey, then returned back and said, “O Messenger of Allah, it did not cause him except
more pains.” The Prophet (peace and the blessings of Allah upon him) then said, “Allah
has said the truth, but your brother's abdomen has told a lie. Let him drink honey.” So
he made him drink honey and he was healed (Compiled by Bukhari (a).Narrated by Ibn
‘Abbas). The Prophet (peace and the blessings of Allah upon him) said, “Healing is in
three things: cupping, a gulp of honey or cauterization, (branding with fire) but I forbid
my followers to use cauterization (branding with fire).” (Bukhari (b), Muslim). It is also
reported that the Prophet (peace and the blessings of Allah upon him) said, “Make use

of the two remedies: honey and the Qur’an”.

Honey is a naturally sweet viscous fluid produced by bees from floral
nectar. To date, more than 400 different chemical compounds have been identified in
many varieties of honey (Lazaridou et al., 2004), including proteins, enzymes, organic
acids, mineral salts, vitamins, phenolic acids, flavonoids, free amino acids, fatty acids
and small quantities of volatile compounds (Gheldof et al., 2003; Weston &
Brocklebank, 1999). Carbohydrates are the major components in honey, which are

mainly monosaccharides such as glucose (30.31%) and fructose (38.38%). The next
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major components are the disaccharides such as sucrose, maltose, turanose, isomaltose,
and maltulose. In addition, honey also contains oligosaccharides (Rizelio et al., 2012;
Sereia et al., 2011; White, 1980). Many organic acids have been discovered in honey
including formic, butyric, gluconic, acetic, citric, maleic, oxalic, lactic, succinic, and
pyroglutamic acids (White, 1978a), in addition to glycolic, pyruvic, a-ketoglutaric, 2- or
3-phosphoglyceric, and tartaric acids; glucose-6-phosphate; and o- or -
glycerophosphate. Many amino acids are also present in honey, proline being the most
dominant (Daniele et al., 2012; White, 1978b). Some antibiotic peptides (e.g.,
lysozymes, apidaecin, and abaecin) were found in the body fluid of bees that had been
injured and infected by bacteria, showing that honey has a nonperoxide antibacterial
activity (Casteels, 1993; Fujiwara, 1990; Hultmark, 1996; Weston, 2000). Enzymes are
another important constituent of honey; they play important roles in the production of
honey from the nectar of the plant. Additionally, enzymes are heat sensitive and their
activities are decreased during storage, which can be used as indicators of the freshness
of honey (Crane, 1979). The enzymes in honey are known to have antioxidant
properties. Glucose oxidase is a highly specific enzyme, the nonenzymatic hydrolysis of
which using molecular oxygen spontaneously releases hydrogen peroxide from gluconic
acid (Chaplin, 1990; Uhlig, 1998). Invertase (a-glucosidase) is added to the nectar by
the bees during the process of harvesting and ripening of honey. Amylase (a- and B)
(diastase) break down starch. Catalase breaks down hydrogen peroxide, which is
responsible for antimicrobial activity. Moreover, acid phosphatase has been detected in
nectar, but the activity of this enzyme in honey is not yet known. Honey contains
several essential vitamins, particularly B, C, and E (Crane, 1979). It also contains
several minerals including calcium, chlorine, potassium, sulfur, sodium, phosphorus,

magnesium, silica, iron, manganese, and copper (White, 1980). The interest in phenolic
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compounds in honey has only recently increased due to their potential roles in
biological activity and as biochemical markers for authenticating the geographical
(Martos, 2000b; Tomas-Barberan, 1993a) or botanical origins of honeys (Andrade,
1997b, 1997a; Tomas-Barberan, 1989, 2001) or both (Anklam, 1998; Anklam, 2001;
Martos, 2000b, 1997). Many groups of phenolic compounds, such as flavonoids,
phenolic acid, and other polyphenolic compounds, are found in honey. Flavonoids are a
group of phenolic compounds that are relatively lipophilic and act as antioxidants
(Shahidi, 1992). Flavonoids in honey can originate from nectar, propolis, or pollen
(Ferreres, 1992). In general, the flavonoid concentration in honey is approximately 20
mg/kg (Ferreres, 1994c). The concentration of flavonoid in honey is much lower than in
propolis (Bogdanov, 1989; Ferreres, 1991). More than 30 flavonoids have been
identified in honey, such as chrysin, quercetin, luteolin, kaempferol, and apigenin
(Boudourova-Krasteva, 1997). Many flavonoids are used to treat diseases such as
inflammation and cancer (Jang et al., 1997). Phenolic acids act as potent antioxidants.
Over 70 other phenolics have been identified from honey and propolis (Andrade, 1997b,
1997a; Bankova, 1987; Joerg, 1996; Joerg, 1992, 1993; Sabatier, 1992b; Tazawa, 1999).
The most common phenolic acids found in honeys are benzoic acids and cinnamic
acids, and their esters such as caffeic acid and its ester caffeic acid phenyl ester
(Sabatier, 1992a). Like flavonoids, many phenolic compounds are also used to treat
diseases such as inflammation and cancer (Jang et al., 1997). The antimicrobial activity
of honey has been proven by many studies. The active factors identified concerning this
antimicrobial activity include hydrogen peroxide, phenolic compounds, and other
chemical compounds, which are responsible for the acidity and osmolality of honey
(White, 1963). Hydrogen peroxide was the first and the major antimicrobial factor

discovered in honey. It has been shown to confer good protection against some harmful
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microorganisms (White, 1963). The Malaysian Gelam honey, for example, has been
reported to have antimicrobial activities (Aljadi A. M. , 2003). Besides its many
beneficial properties as discussed above, the viscosity of honey provides protection in
the affected area, allows absorption of edema fluids, and accelerates the formation of
new granulation tissues (Bulman, 1953). Honey is a popular wound healing dressing
owing to its anti-inflammatory, antioxidant, and antimicrobial activities. It is also
known to reduce pain, is nontoxic, is self-sterile, and is nutritive. Honey has been shown
to promote wound healing in ulcer, gangrene, and skin graft (Postmes, 1997; S.E, 1993).
Malaysian honey has been proven to stimulate fibroblast cells, activate epithelization,
and accelerate the healing process (Aljadi A. M. , 2003). Infections of the intestinal
tract are extremely common. It affects humans of all ages worldwide. Honey has a
bactericidal activity against many enteropathogenic organisms, including Shigella and
Salmonella species and E. coli (Jeddar, 1985). Previous studies showed that a 20%
solution of honey inhibited Helicobacter pylori in vitro. In contrast, H. pylori exhibited
resistance to other antimicrobial agents (AT, 1991). Honey has been used to treat
patients with gastritis, duodenitis, and duodenal ulcers. After recovery following
treatment, it was found that the hemoglobin levels of most patients had increased and
that fecal blood loss had decreased (Salem, 1982). Previous animal and clinical studies
have also shown that honey reduces the secretion of gastric acid. Additionally, gastric
ulcers have been successfully treated by the use of honey as a dietary supplement
(Kandil et al., 1987a). Topical application of honey has been reported to reduce
inflammation (Subrahmanyam, 1998), edema, and exudation (Subrahmanyam, 1996).
Honey has also been shown to reduce the number of inflammatory cells infiltrating the
wound area (Postmes, 1997), and has been demonstrated to show anti-inflammatory

activity . Honey antioxidant activity is one of the most important properties of honey
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due to the diversity of its components that can act as antioxidants (Tonks et al., 2003).
The antioxidant sources and, consequently, the activity of these antioxidants depend on
the flora of honey (Gheldof, 2002b). The sources of antioxidant in honey are phenolic
compounds (e.g., flavonoids, phenolic acid, and polyphenolic acid), vitamins (e.g.,
vitamin C and E), enzymes (e.g., glucose oxidase, catalase), organic acid, carotenoid-
like substances, and Maillard reaction products (Frankel, 1998; Gheldof, 20023,
Gheldof, 2002c). Many studies have implicated antioxidant activity with protection
from many diseases such as cancer and cardiovascular, autoimmune, and inflammatory
diseases (Briviba et al., 1996; Brodsky et al., 2004; Grimble, 1994; Nuttall et al., 1999;

Taylor et al., 1994).
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CHAPTER 3. RESULTS

Results are presented as compilation of all papers.
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Natural honey has been used in traditional medicine of different cultures throughout the world.
This study looked into the extraction of Malaysian honey and the evaluation of the anti-
inflammatory activity of these extracts. It was hypothesized that honey extracts contain varying
amounts of phenolic compounds and that they possess different in vitro anti-inflammatory activities.
Honey extracts were analyzed using liquid chromatography—mass spectrometry to identify and
compare phenolic compounds, whereas high-performance liquid chromatography was used for their
quantification. Subsequently, honey methanol extract (HME) and honey ethyl acetate extract
(HEAE) were tested in vitro for their effect on nitric oxide production in stimulated macrophages.
The extracts were also tested for their effects on tumor necrosis factor—o (TNF) cytotoxicity in
L929 cells. The major phenolics in the extracts were ellagic, gallic, and ferulic acids; myricetin;
chlorogenic acid; and caffeic acid. Other compounds found in lower concentrations were hesperetin,
p-coumaric acid, chrysin, quercetin, luteolin, and kaempferol. Ellagic acid was the most abundant of
the phenolic compounds recorded, with mean concentrations of 3295.83 and 626.74 ug/100 g of
honey in HME and HEAE, respectively. The median maximal effective concentrations for in vitro
nitric oxide inhibition by HEAE and HME were calculated to be 37.5 and 271.7 ug/mL,
respectively. The median maximal effective concentrations for protection from TNF cytotoxicity by
HEAE and HME were 168.1 and 235.4 ug/mL, respectively. In conclusion, HEAE exhibited
greater activity in vitro, whereas HME contained a higher concentration of phenolic compounds per
100 g of honey.
© 2010 Elsevier Inc. All rights reserved.

Honey extracts; Chromatography, High-performance liquid chromatography (HPLC); Electrospray ionization
mass spectrometry (ESI mass spectrometry); Tumor necrosis factor—o (TNF); Nitric oxide (NO); Reactive oxygen
species (ROS)

DMEM, Dulbecco modified Eagle medium; ECso, median maximal effective concentrations; ESI-MS,
electrospray ionization mass spectrometry; HEAE, honey ethyl acetate extract; HME, honey methanol extract;
HO-1, heme oxygenase-1; HPLC, high-performance liquid chromatography; IFN-7, interferon-y; iNOS,
inducible nitric oxide synthase; LC-MS, liquid chromatography—mass spectrometry; LPS, lipopolysaccharide;
MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MW, molecular weight; NO, nitric oxide;
OD, optical density; TNF-o/TNF, tumor necrosis factor—a.
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1. Introduction
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Honey, which is consumed worldwide, is increasingly
being used as a substitute for granulated sugar [1]. In
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addition to its sweetening properties and lower glycemic
load [2]; honey is an important natural source of antioxidants
and has potential therapeutic value in the treatment of heart
disease, cancer, cataracts, and several inflammatory diseases
[3]. The therapeutic actions of honey include antioxidant
capacity and antimicrobial properties, as well as wound-
healing and anti-inflammatory activities [4,5].

Of particular interest in this study is honey’s anti-
inflammatory activity. Inflammation is a nonspecific re-
sponse of mammalian tissues to a variety of hostile agents
[6]. There are many mediators of inflammation, examples of
which are some cytokines and nitric oxide (NO). Tumor
necrosis factor—o (TNF-o) is a pleiotropic cytokine that
induces a wide range of biological effects, including
production of inflammatory cytokines, cell proliferation,
differentiation, and death [7]. Nitric oxide is known to be an
important mediator of acute and chronic inflammation [8].
Although the anti-inflammatory activity of honey has been
studied previously [9], this is the first time, to the best of our
knowledge, that the effects of Malaysian honey extracts on
TNF activity and NO inhibition have been evaluated in vitro.
Natural products present in our daily diet were revealed to be
potential chemopreventive compounds due to their ability to
adjust and modify cellular responses to abnormal proinflam-
matory stimuli [10]. In fact, flavonoids, such as those found
in many plants and honey, show various cytoprotective
effects [11,12]. It is hoped that, via empirical evidence of its
benefits, more individuals will turn to incorporating honey, a
highly nutritious and healing food, into their daily diet as a
prophylaxis for inflammation.

There are various components in honey; and its
antioxidant activity can be attributed to the following
elements: flavonoids, phenolic acids, ascorbic acid, catalase,
peroxidase, carotenoids, and products of the Maillard
reaction [13]. The quantity of these components varies
widely according to the floral and geographical origin of the
honey [14]. Phenolic compounds are one of the important
groups of compounds that occur in plants. These compounds
are reported to exhibit anticarcinogenic, anti-inflammatory,
antiatherogenic, antithrombotic, immune-modulating, and
analgesic activities, among others, and exert these functions
as antioxidants [15-17].

Because of the presence of various phenolic compounds
in honey [18], it is hypothesized that different extraction
methods and solvents will yield extracts containing differing
phenolic concentrations. Furthermore, because honey has
been used for various therapeutic purposes, we also propose
that the extracts will exhibit anti-inflammatory effects in
vitro. In addition, as it has been demonstrated that the
phenolic content of honey correlates with various biological
activities [3,19], it is then assumed that the extracts and their
differing phenolic contents will have distinctive anti-
inflammatory activities. The objectives of this study were
to identify and quantify phenolic compounds in honey, most
of which are bioactive flavonoids, subsequent to the
extraction of honey with 2 different solvents, namely,

methanol and ethyl acetate. Liquid chromatography—mass
spectrometry (LC-MS) and high-performance liquid chro-
matography (HPLC) were used for the identification and
quantification of these compounds, respectively. Honey
methanol extract (HME) and honey ethyl acetate extract
(HEAE) were tested on 2 in vitro models of inflammation
with the specific aim of evaluating the extracts’ ability both
to inhibit NO production by stimulated macrophages and to
protect L929 cells from TNF-mediated cytotoxicity.

2. Methods and materials
2.1. Materials

Fresh Malaysian honey (Gelam, collected by Apis
mellifera; Brix value = 21%) was obtained from the National
Apiary, Department of Agriculture, Parit Botak, Johor;
Malaysia. The physical characteristics of honey were a
smooth, amber liquid appearance with a strong penetrating
odor and a solubility of 99.9% in warm water. All chemicals
and reagents used were of analytical grade.

2.2. Extraction of phenolic compounds from honey by
XAD-2 resin

The honey extract was prepared as described in previous
studies [14,20] with some modifications. Liquefied honey
(100 g) was thoroughly mixed with acidified deionized water
(500 mL), adjusted with concentrated hydrochloric acid to
pH 2 for 60 minutes (with no heating), until completely
dissolved. The resulting solution was filtered by vacuum
suction to remove particles. The filtrate was mixed with 150
g of clean, swelled XAD-2 resin and stirred slowly with a
magnetic stirrer for 60 minutes. The XAD-2 resin/honey
solution slurry was poured into a glass column (42 x 3.2 cm);
and the resin was washed at a rate of 10 mL/min with
acidified water (300 mL, pH 2), followed by rinsing with
deionized water (500 mL at 10 mL/min) to remove all sugars
and other polar constituents of honey.

The phenolic compounds adsorbed onto the column were
eluted with methanol (1000 mL, adjusted to pH 7). The
extract was concentrated to dryness on a rotary evaporator at
40°C under reduced pressure. The extract was divided into 2
portions: one was redissolved in 1 mL methanol (HPLC
grade) and filtered through a 0.45-um membrane filter before
HPLC analysis, whereas the other was redissolved in
deionized water (5 mL) and extracted with ethyl acetate (5
mL x 3) instead of diethyl ether [14]. It can be presumed that
ethyl acetate can extract more flavonoids and other phenolic
compounds than diethyl ether, as the former is a more polar
solvent [14]. Methanol and honey ethyl acetate extracts and
standard phenolic compounds prepared at a concentration of
100 pug/mL were evaporated to dryness by flushing with
nitrogen while being warmed on a hot plate. The dried
residues were redissolved in 1 mL methanol. The solutions
were filtered through a 0.45-um membrane filter before LC-
MS analysis.
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2.3. HPLC analysis

Twenty microliters of each sample was injected into the
HPLC machine. The phenolic compounds were detected
using UV absorption spectra monitored at 290 and 340 nm;
the majority of honey flavonoids and phenolic acids
demonstrate their UV absorption maximum at these 2
wavelengths [14]. The column used was a reversed-phase
C18 column, Agilent ZORBAX Eclipse XDC18 (3 x 250
mm; particle size, 5 um) (Agilent Technologies, Santa
Clara, Calif). The mobile phase constituted of 0.25% formic
acid and 2% methanol in water (solvent A) and methanol
(solvent B) at a constant solvent flow rate of 1 mL/min. The
following gradient was used according to the previously
mentioned method with minor modifications: there was an
isocratic flow through the column with 10% solvent (B) and
90% solvent (A) for 15 minutes, before increasing to 40%,
45%, 60%, 80%, and 90% at 20, 30, 50, 52, and 60 minutes,
respectively. Isocratic elution followed with 90% methanol
(B) from the 60th to 65th minute. Finally, the gradient was
changed to 10% methanol from the 65th to 68th minute; and
the composition was held until the 73rd minute. A
calibration curve of caffeic acid at 290 nm was used to
calculate phenolic acids concentrations, whereas calibration
curves of quercetin and ellagic acid at 340 nm were used for
flavonoids and other polyphenolics, respectively. This is
because the different phenolic compounds are absorbed
better at these wavelengths [14]. The calibration curves of
the standards were used to determine the concentrations of
the phenolic compounds in the extracts [21].

2.4. LC-MS condition

Analyses of phenolic compounds by LC-—electrospray
ionization (ESI)-MS were carried out using a Thermo Finnigan
LCQ ion trap mass spectrometer (Thermo Finnigan Co, San
Jose, CA) equipped with an electrospray interface. Liquid
chromatography separation was performed on a reversed-phase
Zorbax SB-C18 column (250 x 4.6 mm; particle size, 5 um;
Agilent Technologies) at 25°C. The conditions of LC-MS were
the same as HPLC, although solvent A was replaced with 1%
acetic acid in water in the mobile phase. The UV detector was
set to an absorbance wavelength of 280 to 340 nm. The ESI
parameters were as follows (optimized depending on com-
pounds): nebulizer, 30 psi; dry gas (nitrogen) flow, 10 uL/min;
and dry gas temperature, 325°C. The ion trap mass
spectrometer was operated in negative and positive ion
modes with a scanning range of m/z 50 to 800.

2.5. Activity of honey extracts in vitro

2.5.1. Cell culture

Murine fibrosarcoma cell line L929 was purchased from
American Type Culture Collection (Manassas, VA). Murine
macrophage cell line RAW264.7 was obtained from the
Department of Biotechnology, University Putra Malaysia.
Cells were maintained in high glucose Dulbecco modified
Eagle medium (DMEM) with 10% fetal bovine serum and no

antibiotics, undergoing passage every 2 to 3 days with
standard aseptic techniques. Cells from 70% to 90%
confluent flasks with greater than 90% viability were seeded
in 96-well culture plates by dispensing 100 uL per well. Cell
density was 1 x 10° (L929) or 1 x 10° (RAW264.7) cells per
milliliter of culture medium. The plates were incubated for
24 hours (L929) or 2 hours (RAW264.7) at 37°C, after which
they were treated with honey extracts and a combination of
agents, as detailed in “Section 2.5.2.”

2.5.2. Cell viability and cytotoxicity

In both assays, cell viability was assessed with the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) colorimetric assay as described by Mosmann [22]
with some modifications. Following 24-hour incubation of
the cells with the extracts and controls, culture medium was
replaced with 100 uL fresh DMEM and 20 uL of 5 mg/mL
MTT and incubated for 1 hour. Subsequently, the cell
medium was aspirated; and 100 uL of 100% dimethyl
sulfoxide was added to all wells to dissolve the insoluble
purple formazan product into a colored solution, the
absorbance of which was measured at a wavelength of 570
nm using a microplate reader (Hidex Chameleon, Turku,
Finland). The optical density (OD) of the samples was
compared with that of the negative control to obtain the
percentage viability, as follows: cell viability (%) = [(ODs7q
(sample)/ODs7q (negative control)) x 100].

2.5.3. TNF-a cytotoxicity assays

To measure the ability of the extracts to protect against
TNF-a—induced cytotoxicity, 2 methods were used as
described in previous studies [23-25] with some modifica-
tions. In the first method, L929 cells seeded in 96-well plates
were pretreated with various concentrations of the honey
extracts (50-250 ug/mL) and actinomycin D (1 pug/mL) for 30
minutes. Tumor necrosis factor—o. was added to the treated
wells at a final concentration of 1 ng/mL [23]. The same
method was applied for the second assay, but excluded
actinomycin D [25,26]. Cells treated with anti—-TNF-o were
used as a positive control in both assays. The plates were
incubated for another 24 hours, after which viability was
assessed by microscope examination and the MTT colorimet-
ric assay. The viability of cells in treated wells was compared
with that of the dimethyl sulfoxide—treated negative control.

2.5.4. NO inhibition assay

Tests were prepared as described in previous studies [27,28]
with some changes. Murine macrophage RAW264.7 cells were
seeded in 96-well plates with a cell density of 5 x 10 cells per
well and incubated for 2 hours. The cells were stimulated with
interferon-y (IFN-y) and lipopolysaccharide (LPS) with final
concentrations of 200 U/mL and 10 pg/mL, respectively, in
DMEM without phenol red. Stimulated cells were treated either
with the honey extracts at different concentrations (0, 25, 50,
75, and 100 ug/mL) or with the inducible nitric oxide synthase
(iNOS) inhibitor aminoguanidine at 1 mmol/L as a positive
control; untreated cells were used as negative controls. The final
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volume per well was 100 uL. The plates were then incubated
for 16 to 20 hours at 37°C, 5% COs,.

Following incubation, NO inhibition was assessed by
quantifying nitrite (NO, ) released in the culture medium
via the Griess reaction [29]. Fifty microliters of cell
supernatant from treated and untreated wells was mixed
with an equal volume of the Griess reagent. The resulting
color was measured at 550 nm with a microplate reader
(Tecan Sunrise, Grodig, Austria). The absorbance values
were compared with a standard sodium nitrite curve and
converted to corresponding nitrite concentrations (in
micromoles per liter). The percentages of NO inhibition
by the extracts were calculated as follows:

% Inhibition = 100 X [([NOZ_} control —[NOZ_] sample)
/[NO, ] control]

2.6. Statistical analyses

The values represent the mean + standard deviation of 5
replicates for HPLC and LC-MS analyses of the honey
extracts. On the other hand, data were collected from 3
independent experiments for in vitro assays. Data were
expressed as the mean + standard deviation. Data were
analyzed using either unpaired ¢ test or 1-way analysis of
variance followed by Tukey multiple comparison tests, as
indicated. Graph Pad Prism (version 4; GraphPad Software
Inc., La Jolla, Calif) statistical software was used for the
analysis, and P value < .05 was considered statistically
significant. Post hoc power analysis was conducted using the
software Primer of Biostatistics (version 6.0; McGraw-Hill,
New York, NY); the range of power of the tests conducted
was 0.8 to 0.95, where o = .05.

mAbs
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The median maximal effective concentrations (ECsg) for
the inhibition of NO production in RAW264.7 cells and
inhibition of TNF cytotoxicity in L929 by the honey extracts
were calculated using sigmoidal dose-response (variable
slope) equation under nonlinear regression (curve fit) with
Graph Pad Prism 4.

3. Results

One hundred grams of liquefied fresh Malaysian honey
Apis mellifera yielded 52 + 0.17 and 10 + 0.13 mg of
methanol and ethyl acetate extracts, respectively. The yield
was significantly different for the 2 extracts when compared
with unpaired ¢ test (P <.001). The yield ratio for HEAE to
HME was ca 1:5 for every 100 g of honey.

3.1. Identification and quantification of phenolic
compounds in Malaysian honey by HPLC and LC-MS

Compared with the methanolic extract, a lower recovery
of gallic acid and ellagic acid was observed in HEAE in
chromatograms recorded at 290 and 340 nm. Fig. 1 shows
the UV absorption chromatogram of Malaysian honey at 290
nm, following isolation by XAD-2 then extraction with ethyl
acetate. Standard compounds eluted from XAD-2 resin
showed the following recovery ranges: 18% to 45% for
phenolic acids, except for gallic acid that had a recovery of
3%. The flavonoids had a recovery of 35% to 90%, and the
polyphenol ellagic acid had a recovery of 4%. The
concentrations of phenolic compounds in Malaysian honey
calculated from peak areas of the compounds found in both
HME and HEAE are summarized in Table 1.

Ellagic acid recorded the highest concentration among the
phenolic compounds in Malaysian honey in both extraction
methods, with a total of 3295.83 ug/100 g of honey in XAD-
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Fig. 1. Absorption chromatogram at 290 nm of honey phenolic acids and flavonoids detected in Malaysian honey using HPLC: 2.7 minutes = gallic acid, 8.6
minutes = chlorogenic acid, 9.5 minutes = caffeic acid, 13.8 minutes = p-coumaric acid, 16.3 minutes = ferulic acid, 22.3 minutes = ellagic acid, 24.1 minutes =
myricetin, 27.8 minutes = quercetin, 30.1 minutes = hesperetin, 30.9 minutes = luteolin, 34.9 minutes = kaempferol, 45 minutes = chrysin.



654 M. Kassim et al. / Nutrition Research 30 (2010) 650-659

Table 1
Concentrations of phenolic compounds detected in Malaysian honey using
HPLC (each value represents the mean + SD)

Retention 1g/100 g honey at  ug/100 g honey Compounds
time (min)  290/340 nm ethyl at 290/340 nm

acetate extract methanol extract
2.7 3537+2.8 341.01 £28 Gallic acid
8.6 34.84 +£3.1 153.65 + 12.5 Chlorogenic acid
9.5 37.36 £2.9 15839+ 17.4 Caffeic acid
13.8 39.90 £3.7 80.68 £ 7.6 p-Coumaric acid
16.3 78.99 £9.3 239.08 +19.4 Ferulic acid
22.3 626.74 £ 56.2 3295.83 + 38.6 Ellagic acid
24.1 93.01 +12.3 223.57 +£27.1 Myricetin
27.8 22.63+1.9 66.50 = 7.2 Quercetin
30.1 46.5+5.6 109.27 £ 13.5 Hesperetin
30.9 8.60 + 1.1 33.61 £4.2 Luteolin
34.9 10.71 £ 1.3 16.12+ 1.9 Kaempferol
45 8.75+0.9 69.01 + 8.7 Chrysin

The HEAE and HME were analyzed with HPLC with the UV detector set at
290/340 nm. The unknown concentrations of the phenolic compounds in the
honey extracts were derived by calculating the peak area from the calibration
curves of the standards used. Values represent mean concentration =+
standard deviation of 5 replicates (HME: n = 5, HEAE: n = 5).

2 without ethyl acetate extraction and 626.7 ug/100 g in
XAD-2 with ethyl acetate extraction. Liquid chromatogra-
phy—MS was used for the identification of some phenolic
compounds. Fig. 2 depicts the peak of chrysin detected in
Malaysian honey using negative ESI-MS. Summarized in
Table 2 are the mass spectra, UV spectra, and fragments of
the identified compounds using positive and negative

100 253.28

90 chrysin

Relative Abundance
(42}
o

25 960.35

762.95

54315 75520| 83704

ionization. Some compounds did not ionize under the
conditions used for analysis. In addition, as displayed in
Table 2, negative ESI-MS was more useful for identifying
compounds in the extracts than positive ESI-MS.

Liquid chromatography—MS analysis for the identifica-
tion of the phenolic constituents in honey extracts demon-
strated the presence of phenolic compounds in free form
(aglycones), derivative, as well as conjugated forms (sugar
moieties). As presented in Table 2, the peaks at 8.39 and
11.53 minutes were both identified as ferulic acid (molecular
weight [MW] = 194) [M — H] —193 m/z at 8.39 minutes and
[M — H — H,0] 175 m/z at 11.53 minutes after water loss.
The peak at 23.51 minutes was identified as ellagitannin
(MW =802) [M + H] +803 m/z, which is in agreement with a
previous study [30].

Some phenolic compounds appeared as a sugar moiety,
such as ellagic 3-O-glucoside, rhamnosyl naringenin, and
quercetin-3-O-glucoside. Hesperetin, ellagic acid, and quer-
cetin have identical MWs of 302 g/mol; however, it has been
reported that the MS™ fragmentation pattern can be used to
distinguish between these compounds. Further ionization
produced major fragments at m/z 271, 255, 179, and 151,
which demonstrated the presence of quercetin as an
aglycone, but not ellagic acid [31], whereas further
fragments of hesperetin produced major ions at m/z 286,
188, and 164 [32]. Besides the fragmentation patterns,
retention time and UV spectra are also very important to
differentiate between hesperetin, quercetin, and ellagic acid.
Moreover, some compounds were identified using both
positive and negative ionization such as elenolic acid

1295.73

1000 1200 1400 1600 1800 2000
m/z

Fig. 2. Electrospray ionization—mass spectra negative ionization for chrysin. MW = 254.242 g/mol, ESI-MS [M — H] = 253.28.
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Table 2
Phenolic compounds identified in Malaysian honey using LC-MS

655

Retention time (min) MW MS ESI-MS [M + H] UV band (nm) Fragment ions Compound names
8.39 194 175 - 296, 324 Ferulic acid

11.53 194 193 - 296, 324 175 Ferulic acid

21.35 299 298 - 242,172, 158 Kaempferide

21.66 464 463 - 361, 303, 199, 172 Ellagic-glucoside
22.64 242 243 + 235, 260, 350, 385 Elenolic acid

2243 242 241 - 235, 260, 350, 385 Elenolic acid

23.51 801 803 + 235, 285 161, 261, 303 Ellagitannin

23.64 302 301 - 242,199, 155 Quercetin

24.63 302 303 + 235, 280, 235 263, 203 Ellagic acid

27.23 302 303 + 270,290 249, 188 Hesperetin

29.35 299 298 - 172, 158 Kaempferide

29.39 299 300 + 172, 158 Kaempferide

33.26 254 253 - 260, 295, 320, 335 178 Chrysin

38.09 229 + — 195, 183 Unknown

55.22 462 463 + 303, 271, 165 Quercetin-3-0-glucoside
59.95 418 272 + 273, 204 Rhamnosyl naringenin

The phenolic compounds above were identified in Malaysian honey using LC-MS. This was achieved by comparing the mass spectrometric data with standards
and literature data. Both positive and negative ionizations were used to detect the MS and fragment ions. Data shown are from a single experiment and are

representative of 3 experiments.

[M +H] 243 m/z and [M — H] 241m/z, and kaempferide [M +
H] 300 m/z and [M — H] 298 m/z.

3.2 Viability and cytotoxicity

3.2.1. Effect of honey extracts on L929 and RAW264.7
cells viability

The effect of the extracts on the viability of cells is
important to distinguish between their toxic and therapeutic

A: The effect of honey extracts on L929 viability
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effects. This is especially important in the NO assay to
indicate that the reduction of NO release is due to the
inhibition of inflammatory pathways rather than cell death,
which will also alter the concentration of NO. As can be seen
in Fig. 3, the honey extracts caused no significant cytotoxicity
at the tested concentrations of (1-250 pg/mL) in L1929 cells
and (3.125-100 ug/mL) in RAW264.7 cells. However,
although the differences were not statistically significant
(P>.05), HEAE seemed to cause a mild toxicity in L929 cells.

B: The effects of honey extracts on RAW264.7 cells
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Fig. 3. The honey extracts did not cause significant toxicity to L929 cells at the tested doses (P> .05 when compared with cells in DMEM alone) (A). The extracts
did not affect the viability of RAW264.7 cells (B) at the tested doses (P> .05 when compared with stimulated cells in media only. Data shown are means + SD of
3 independent observations. Stim indicates cells stimulated with LPS + IFN-y; AG, aminoguanidine.
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Fig. 4. Treatment of L929 cells with TNF (1 ng/mL) led to 70% cytotoxicity; this was reversed significantly and dose-dependently with the honey extracts. Data
shown are means + SD of 3 independent observations (¥***P < .001 and **P < .005 when compared with cells treated with TNF alone).

3.2.2. Effect of honey extracts on TNF-o. cytotoxicity

3.2.2.1. Effect of honey extracts on L929 cells treated with
TNF and actinomycin D. In this method, neither HME
nor HEAE caused a significant protective effect (data
not shown).

3.2.2.2. Effect of honey extracts on L929 cells treated with
TNF alone. The cytotoxicity in cells treated with TNF-o
alone was more than 70% as shown in Fig. 4. Both honey
extracts appeared to significantly inhibit TNF cytotoxicity.
At the highest concentration tested (250 ug/mL), HEAE and
HME almost fully reversed the cytotoxic effects of TNF,
with a viability of 94% and 84%, respectively. Moreover, the
extracts showed dose-dependent protective effects. The
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Nitric oxide concentration (pM)
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calculated ECs, for protection from TNF cytotoxicity by
HEAE and HME were 168.1 and 235.4 ug/mL, respectively.

3.2.3. Effect of honey extracts on NO production in
RAW264.7 cell induced with LPS and IFN-7y

This test was performed to assess the potential anti-
inflammatory activity by evaluating the effects of honey
extract on NO production in LPS- and IFN-y—stimulated
macrophages. As seen in Fig. 5 (stimulated cells), there was a
20-fold increase in NO concentration in RAW264.7 cells
supernatant after 16 to 20 hours of LPS and IFN-y
stimulation. Fig. 5 depicts the inhibition of NO production
in cells treated with honey extracts. The highest inhibition
percentages were 80% (4.3 umol/L of NO) and 40% (16
umol/L) for HEAE and HME (100 ug/mL), respectively.

B HEAE
I = HME
E Control

Stim. Unstim. AG

3.125ug/ml 8.25ug/ml 12.5ug/ml  25ug/ml

50ug/ml 75ug/ml  100ug/ml

Extract conc. pg/ml

Fig. 5. Honey ethyl acetate extract dose-dependently reduced the concentration of NO produced from stimulated RAW264.7. Cells were tested at the indicated
doses (3.125-100 pg/mL) of honey extracts with LPS and IFN-y (10 pug/mL and 200 U/mL, respectively) for 16 to 20 hours. The NO concentration in the
medium was measured using Griess reagent and converted to equivalent micromolar concentrations as compared with a sodium nitrite standard curve. Data
shown are means + SD of 2 independent observations. Unstim indicates cells in media alone.
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Fig. 6. Both honey extracts (HEAE and HME) significantly inhibited NO production from stimulated RAW264.7 cells when compared with stimulated cells
(Stim = 0% inhibition). The protection was more profound in the ethyl acetate extract when compared with the methanol extract. All data shown are means = SD

of 3 independent observations (***P < .001, **P < .005, and *P < .05).

The concentration of NO was inhibited in a dose-dependent
manner in the presence of honey extracts as seen in Fig. 6,
although the inhibition was more profound for HEAE. The
calculated ECs( for NO inhibition by HEAE and HME were
37.5 and 271.7ug/mL, respectively.

4. Discussion

The phenolic compounds in honey are bound to sugar
moieties, making them more soluble in water; this could
explain the poor recovery of gallic and ellagic acid in this
study, which is in agreement with a previous report [33]. The
poor recovery can also be attributed to weak binding of these
compounds to XAD-2 resin and their strong solubility in
water. Although HPLC did not provide information about
some compounds and their derivatives and conjugates, the
identification of some phenolic compounds and their
derivatives, such as ellagic acid and ellagitannin and their
conjugates, was possible with LC-MS.

Most phenolic compounds identified from the honey
extracts possess antioxidant activity [12,13,19]. This in turn
lead to exploration of the use of honey extracts as
chemopreventive agents in diseases known to involve free
radicals, such as cancer and inflammation [4]. There is
increasing evidence that dietary phenolic compounds play a
role in preventing cancer [34-36], a disease strongly
associated with chronic inflammation [10]. The inhibition
of inflammatory mediators, such as TNF and NO, which
were explored in this study, is one of the important steps in
controlling inflammation.

Reactive oxygen species play a critical role in mediating
TNF-a—induced cytotoxicity [37]. It was shown that such
cytotoxicity can be blocked by specific free radical
scavengers [38]. Our findings show that both types of the
honey extracts had a dose-dependent protective effect in
TNF-a—mediated cytotoxicity. Previous research has
reported that Malaysian honey has free radical scavenging
activity [19]. Therefore, it is believed that the free radical
scavenging capacity of flavonoids identified in the honey
extracts may play a role in protecting cells from this
cytotoxicity [11]. In fact, Habtemariam [39] reported that
phenolics, such as caffeic acid, effectively inhibit TNF-
induced cytotoxicity in L929 cells.

Another mechanism by which phenolics may protect the
cells is by either inducing or acting as a substrate for
cytoprotective enzymes such as heme oxygenase—1 (HO-1).
Flavonoids were shown to induce HO-1 gene expression
[40]. Actinomycin D, a transcription inhibitor used in this
study [41], inhibits de novo protein synthesis such as HO-1
expression [42]. This could explain the reason for the
protective effect of the extracts on cells treated with TNF
alone compared with the absence of significant bioactivity in
L929 cells treated with TNF and actinomycin D. Further-
more, the cytotoxicity mechanisms involved in treatment
with TNF alone or TNF + actinomycin D were shown to be
different [38]. It may be appropriate, therefore, to presume
that the protection of the extracts is due to, at least in part, the
induction of HO-1 and inhibition of reactive oxygen species.

Nitric oxide is known to be an important mediator of
inflammation [43]. Inducible nitric oxide synthase is the
enzyme responsible for NO production in the inflammatory
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response. Aminoguanidine, a highly selective inhibitor of
iNOS [44], totally inhibited NO production in activated
macrophages at 1 mmol/L. Similarly, HME and HEAE dose-
dependently inhibited the production of NO without
affecting the viability of RAW264.7 cells.

Some flavonoids, including hesperetin and naringin,
induce HO-1 and can inhibit LPS-induced NO production.
Moreover, genistein, kaempferol, quercetin, and daidzein
inhibit the activation of the signal transducer and activator of
transcription 1, another important transcription factor for
iNOS [45]. In addition, quercetin, caffeic acid, chrysin,
ellagic acid, and various polyphenolic compounds are known
for their down-regulation of nuclear factor—xB [46]; this in
turn reduces biosynthesis of iNOS and ultimately inhibits the
production of NO. Most of the phenolic compounds
mentioned above were identified in this study; therefore, it
can be assumed that the inhibition of NO production by the
honey extracts was due to these compounds.

Although the concentrations of the phenolics identified
were higher in HME, the in vitro anti-inflammatory activity
seemed to be better for HEAE. This could be explained by
the fact that the concentrations were reported for every 100 g
of honey extracted. The dry extract yield ratio of the HEAE
to the HME had been 1:5 for every 100 g of honey, hence
overrepresenting the concentrations of the phenolic com-
pounds in the methanol extract. This introduced a limitation
in this study, as it was not possible to compare between the
extracts’ phenolic content (ie, for every milligram of extract).
On the other hand, it was possible to compare the extracts’ in
vitro activities because of adequate presentation of their
concentration. It was reported that ethyl acetate extracts will
contain a higher concentration of bioactive compounds, an
example being the anti-inflammatory compound caffeic acid
phenethyl ester [40,47,48]. This supports the observation
that HEAE showed better activity.

In conclusion, we accept the hypothesis for this study
because of the fact that the results of this study indicated that
different extraction methods and solvents will yield different
concentrations of phenolic compounds in honey. In addition,
this study’s findings also supported our hypothesis that
Malaysian honey extracts would display varying anti-
inflammatory activities in the 2 in vitro models of
inflammation used. This bioactivity may be attributed, at
least in part, to the phenolic compounds within the extracts.
As such, this study has made a contribution to the elucidation
of the potential therapeutic value of honey and its extracts in
inflammatory conditions, thus highlighting the nutritional
value of this food.
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We investigated the effects of honey and its methanol and ethyl acetate extracts on inflammation
in animal models. Rats’ paws were induced with carrageenan in the non-immune inflammatory
and nociceptive model, and lipopolysaccharide (LPS) in the immune inflammatory model. Honey
and its extracts were able to inhibit edema and pain in inflammatory tissues as well as showing
potent inhibitory activities against NO and PGE, in both models. The decrease in edema and pain
correlates with the inhibition of NO and PGE,. Phenolic compounds have been implicated in the
inhibitory activities. Honey is potentially useful in the treatment of inflammatory conditions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Honey is a viscous, liquid, natural product with a complex
chemical composition. It is made up of carbohydrates, free
amino acids, vitamins, trace elements and phenolic com-
pounds [1]. It possesses both antioxidant and antibacterial
activities [2]. Many animal and clinical studies have investi-
gated the activity of honey against various microorganisms.
It has been shown to have a broad-spectrum antimicrobial
activity on gram-negative and gram-positive bacteria [3]. It
is used both in modern medicine to treat infected wounds
[2] and as an important ingredient in traditional alternative
therapies due to its antimicrobial and anti-inflammatory prop-
erties. Animal and clinical studies have shown that honey aids
in the healing of gastric ulcers and may even accelerate the
healing process compared with nonsteroidal anti-inflammatory
drugs [4].

Gelam honey has been shown to stimulate fibroblast cells,
activate epithelialization, and accelerate wound healing in an
animal model study. It has antibacterial activity against bacteria

* Corresponding author. Tel.: +60 3 79492052; fax: +60 3 79674957.
E-mail address: zoobeadi@yahoo.com (M. Kassim).

0367-326X/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.fitote.2010.07.024

including Methicilline Resistant Staphylococcus aureus (MRSA),
as well as demonstrating a high antioxidant capacity and free
radical scavenging activities [5]. Inflammation is an immuno-
logical and pathophysiological response of tissues. It can be
caused by infectious organisms, cancer, autoimmune diseases,
toxic chemical substances or physical injury and leads to the
local accumulation of plasma fluid and blood cells. Pain, heat,
redness, and swelling are all markers of the natural inflamma-
tory processes. Phospholipase A, then causes arachidonic acid
to be released when the integrity of a cell's membrane becomes
compromised. It is then transformed into prostaglandins and
thromboxanes through the action of COX. Nitric oxide (NO) is
a gaseous free radical. It is highly labile with a half-life of less
than 10 seconds in the presence of oxygen. NO is rapidly
metabolized to nitrate and nitrite [6]. It is produced from the
amino acid L-arginine by the enzymatic action of nitric oxide
synthase (NOS). There are three isoforms of NOS, two of which
are constitutive (cNOS: eNOS) and the other which is inducible
NOS (iNOS). Co-factors for NOS include oxygen, NADPH,
tetrahydrobiopterin and flavin adenine nucleotides. The activ-
ity of iNOS is stimulated during inflammation by bacterial
endotoxins such as lipopolysaccharide (LPS) and cytokines
such as tumor necrosis factor (TNF) and interleukins. During
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inflammation, the amount of NO produced by iNOS may be
1,000-fold greater than that produced by cNOS [7].

In this study, we investigated the anti-inflammatory and
anti-nociceptive activities of Gelam honey and its extracts in
the inflammatory tissue of immune and non immune animal
models, focusing on the inflammatory mediators, PGE, and
NO.

2. Materials and methods
2.1. Materials

Fresh Malaysian honey Apis mellifera (Gelam) was ob-
tained from the National Apiary, Department of Agriculture,
Parit Botak, Johor, Malaysia. All chemicals and reagents used
were of analytical grade.

2.2. Methods

2.2.1. Preparation of extraction from honey by solid phase
extraction (SPE)

C18 cartridges of SPE were preconditioned for neutral
flavonoids and phenolics by sequentially passing 8 ml of
methanol and 4 ml of deionized water adjusted to pH 7.0. For
phenolic acids, cartridges were preconditioned by passing
4 ml of 0.01 M HCl instead of deionized water [8]. The honey
was prepared as described by Martos [9] with certain
modifications. In each condition, the honey (100 mg) was
thoroughly mixed with deionized water for 30 min, 5 times,
until completely dissolved. The resulting honey solution was
then filtered under vacuum to remove any solid particles.
This solution was divided into two parts. The first part was
adjusted to pH 7.0 with diluted NaOH solution, loaded onto
the neutral fractionating C18 column, and washed with 10 ml
of pH 7.0 deionized water. The second part was adjusted to
pH 2.0 with 2.0 M HCl, passed through the preconditioned
acidic column and washed with 5 ml of 0.01 M HCL. For the
methanol extract, the adsorbed fractions were eluted with
12 ml of methanol and evaporated using a rotary evaporator
until dry at 40 °C with a water bath. The residues from all
the above conditions were re-dissolved individually in 1 ml of
methanol for HPLC and after that they were dried again. The
dried methanol extract was divided into two portions. One
portion was used as the methanolic fraction and the second
portion was redissolved in deionized water (1 ml) and re-
extracted with ethyl acetate (1 mlx3) [9]. 20 I of each ex-
tract was then injected into the HPLC system.

2.2.2. HPLC analysis

Samples of a volume of (20 ul) each were injected. The
phenolic compounds were detected using UV absorption
spectra and monitored at 290 nm and 340 nm. The majority
of the honey flavonoids and phenolic acids show their UV
absorption maximum at these two wavelengths [9]. The
column used was a reversed phase C18 column, Agilent
ZORBAX Eclipse XDC-18 (3 x 250 mm, particle size 5 um). The
mobile phases were 0.25% formic acid and 2% methanol
in water (solvent A) and methanol (solvent B), at a constant
solvent flow rate of 1 ml/min. The following gradient was
used, according to the method devised by Martos [9], except
for minor modifications: 10% methanol (B) flowed through

the column isocratically with 90% solvent A for 15 min which
was then was increased to 40% methanol (B) for 20 min, to
45% methanol (B) for 30 min, to 60% methanol (B) for 50 min,
to 80% methanol (B) for 52 min, to 90% methanol for 60 min,
and then followed by isocratic elution with 90% methanol (B)
for 65 min. Finally, the gradient was changed to 10% methanol
for 68 min, and this composition was held until 73 min.

2.2.3. Animals

For this study, male Sprague Dawley rats with an average
weight of 200-250 g were kept in individual cages under
standard conditions (Temperature at 22 +2 °C12 hlight, 12 h
dark), fed on Purina lab chaw and given water ad libitum. Five
groups (n=6) were used for each model.

2.2.4. Formation and measurement of paw edema

Edema was induced by a sub-plantar injection of carra-
geenan or LPS into the footpad of the right hind paw of all
animals in the study groups in both models. The animals
were pretreated for one hour by injecting 500 ul (i.p.) the
following: Honey (800 mg/kg, 1:1 in H,0); honey methanolic
extract (HME) and honey ethyl acetate extract (HEAE)
(180 mg/kg in 5% DMSO); indomethacin (5 mg/kg in 2%
NaHCOs3 solution); and saline with 5% DMSO). All animals
in both models were injected with (200 pl/paw) 1% g/ml
carrageenan (\-Carrageenan from Eucheuma Spinosa (Sigma))
in saline in the non-immune model; and with(200 pl/paw ) mg/
ml LPS from Escherichia coli (sigma) in saline in the immune
model. The paw volume was then measured every hour from
0 to 9hours and also at 24 hours employing the volume
displacement technique using a Plethysmometer (Ugo Basile,
Italy). Edema was calculated as follows: Edema = paw volume
at every hour - the paw volume at zero hours.

2.2.5. Measurement of PGE, and NO in paw tissue

Twenty-four hours after injecting carrageenan and LPS,
the rats were sacrificed and the paw tissues were removed.
The tissues were centrifuged with 100 pl dH,O to extract the
PGE, and NO products from the muscles and were stored
at -20 °C until analysis. The analysis was done with an ELISA
kit for PGE,, following the manufacturers’ (Cayman Chemi-
cal) guidelines. Nitrate reductase enzyme from E.coli was used
to measure NO products also following the manufacturers’
(Sigma) guidelines.

2.2.6. Measurement of nociceptive activity

A plantar test was used to assess nociceptive responses
to thermal stimuli according to the method introduced by
Hargreaves [10]. Rats were placed in a transparent plastic
chamber. The rats were allowed to habituate in this envi-
ronment for 20 min prior to testing. After the acclimatization
period, an infra-red (IR) source was positioned under the
glass floor directly beneath the hind paw and activated. Paw
withdrawal latency in response to radiant heat was measured
using the plantar test apparatus (Ugo Basile, Comerio, Italy).
A digital timer connected to the heat source automatically
recorded the response latency for paw withdrawal to the
nearest tenth of a second. A cut-off time of 22 seconds was
used to prevent tissue damage. The reaction time was mon-
itored at 15 and 30 minutes, and thereafter half- hourly,
the total time of the study being 7 hrs. The paw withdrawal
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latency of each rat was measured three times at each test
interval and the median score was recorded.

2.2.7. Statistical analysis

Results are expressed as mean 4 SD. Statistical analysis of
the results was performed using one- way ANOVA followed
by Tukey's multiple comparison test and the results were
considered significant at P<0. 05.

3. Results

3.1. Phenolic compounds in Gelam honey extracts fractionated
by HPLC

The methanol in both conditions (acidic and neutral) and
ethyl acetate extracts of Gelam honey were applied to SPE
(C18) and HPLC, and similarly with commercial phenolic
compounds. The identification of phenolic compounds in
all conditions was compared with commercial standards
depending on retention time and the wavelength of the
phenolic compounds. Most of the phenolic acids appeared at
290 nm while most of the flavonoids and other polyphenolics
appeared at 340 nm. All phenolic compounds were present
in both extracts (methanol and ethyl acetate). However,
the quantities of the compounds varied, being higher in the
methanol extraction. In the acidic condition, some flavonoids
and other polyphenolics appeared, while in the neutral con-
dition the phenolic acids were absent. The highest levels of
gallic acid were found in the acidic condition, whilst ellagic
acid was found at the highest levels in neutral conditions as
indicated in Figs. 1 and 2.

3.2. Measurement of paw edema volume

The subplantar injection of carrageenan and LPS to both
models led to a time dependent increase in paw volume
which peaked at 6 hrs for carrageenan, at 3 hrs for LPS and
remained elevated thereafter for 24 hrs. Edema in the paw
was measured by a plethysmometer in both models. HME,
HEAE and honey significantly reduced the edema as shown in
Figs. 3 and 4. The. P value was <0.05.

3.3. Measurement of anti-nociceptive activity

The results depict the anti-nociceptive activity measured
through infrared withdrawal latency in all groups. HME, HEAE

mAbs

and honey significantly reduced the pain as shown in Fig. 5.
The P value was <0.05.

3.4. Measurement of NO and PGE, in paw edema

The concentrations of NO and PGE, in exudates of paw
tissues in all groups of both models were measured. The
LPS groups had higher concentrations compared with the
carrageenan groups with the exception of the indomethacin
groups (which showed approximately the same quantity).
HME, HEAE and honey significantly inhibited the NO and
PGE; as shown in Figs. 6 and 7. The P values were significant
when P<0.05.

4. Discussion

Our study investigates the anti-inflammatory and anti-
nociceptive activities of Gelam honey in vivo and analytical
conclusions about the potential therapeutic use of honey, a
cheap and readily available natural product. To date, research
findings have been inconclusive in terms of defining the role
of honey in nociceptive activities. To the best of our
knowledge, this is the first report on the inhibition of NO
and PGE, specifically in inflamed paw tissue in immune and
non immune animal models by using honey and its extracts.
Honey and its extracts were found to downgrade inflamma-
tory activity by reducing cardinal inflammatory signs and
markers of inflammation. This was observed through the
inhibition of swelling, the decrease in pain, as well as the
reduction of the mediators of inflammation tested (PGE,,
NO). The anti-inflammatory activity of honey and its extracts
is attributed to the phenolic compounds present in the honey.
We are able to demonstrate enhanced anti-inflammatory
activity in the methanol and ethyl acetate extracts of honey
models as compared to the wholesome honey model.

It has been documented that carrageenan and LPS induced
rat paw edema form a suitable in vivo model to predict
the value of an agent's anti-inflammatory activity [11]. The
results of this study (Figs. 3 and 4) indicate that the volume of
edema differed between the two models. The LPS model
showed a faster development of edema, with the largest
edema volume being recorded at 3 hrs. On the other hand, the
carrageenan model induced a larger edema volume, and the
development of edema occurred over a longer period with
the largest edema volume being recorded at 6 hrs. The effects
of honey and its extracts were significant in both models but

40 60 ]
min

Fig. 1. Chromatograms of acidic condition of methanolic extracts of Gelam honey by using SPE (C18) and detected by HPLC-UV absorption at 290 nm. A = Caffeic
acid, B = p-Coumaric acid, C = Ferulicacid, D = Ellagic acid, E = Myrectin, F = Qurecetin, G = Hesperetin, H = Luteulin, | = Kaempferol, ] = Chrysin, K = Gallic acid.
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Fig. 2. Chromatograms of neutral condition of methanolic extortion of Gelam honey by using SPE (C18) and detected by HPLC-UV absorption at 340 nm. A =
Ellagic acid, B = Myrectin, C = Qurecetin,D = Hesperetin,E = Luteulin,F = Kaempferol,G = Chrysin.

were more pronounced in the carrageenan model. This may
be attributed to the fact that carrageenan is known to destroy
macrophages [12].

The extracts (HME and HEAE) showed higher inhibition of
edema in both of the models compared with honey. This was
indicative of the role of phenolic compounds in the inhibition
of edema, and it appeared that, particularly in HME, it
contains the highest concentrations of phenolic compounds,
specifically ellagic acid and gallic acid. The role of ellagic acid
will be explained below, while gallic acid has been reported to
inhibit iNOS, COX2, decrease histamine release, and suppress
pro-inflammatory cytokine production in macrophage and
P-selectin-mediated inflammation both in vitro and in vivo
[13,14]. 1t is suggested that the mechanism of action of
phenolic compounds may be the inhibition of molecular
vasodilators, such as NO, as well as the inhibition of PGE,.

Pain is a common symptom of injuries and inflammatory-
related conditions. The perception of pain, commonly known
as nociception, depends on integrated receptors and molec-
ular pathways. Inflammatory mediators are involved in the
genesis, persistence, and severity of pain [15]. The inflamma-
tory milieu that usually precedes and accompanies pain is
transcriptionally regulated [16]. The nuclear factor NF-xB
is a transcription factor essentially involved in controlling
the release of inflammatory mediators, which may exacer-
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Fig. 3. The edema volume of the rats’ paws after injection with carrageenan
for all groups. Saline, indomethacin, honey, honey methanolic extract (HME),
and honey ethyl acetate extract (HEAE), P value is significant when P<0.05.

bate pain, hyperalgesia and nociception [17]. Carrageenan
is used in hyperalgesia as a thermal stimulus as indicated
by decreased withdrawal latency [18]. PGE, and NO were
established as playing a significant role in nociceptive
processing [19]. In this model, a decrease in paw withdrawal
latency to radiant heat and withdrawal threshold was ob-
served throughout the 30 min - 7 hrs time period after induc-
tion of the paws by carrageenan. The results in Fig. 5 depict
that honey and its extracts showed potent anti-nociceptive
activity which is caused by the inhibition of PGE, and NO.
The extracts were more significant supporting the above
suggestion for the involvement of phenolic compounds in this
activity.

Nitric oxide (NO) is known to be an important mediator
of acute and chronic inflammation. The inducible nitric oxide
synthase (iNOS) is up-regulated in response to inflammatory
and pro-inflammatory mediators, and their products can
influence many aspects of the inflammatory cascade. Aspirin
(widely used to treat inflammation) and indomethacin in-
hibit NF-kB activation [20]. Certain natural products inhibit
NF-kB activation and decrease the level of iNOS and COX-2
expression caused by stimulation with LPS [21]. The results
in Fig. 6 show that honey and it extracts inhibited NO in
inflammatory tissues in both models. In the carrageenan
model, the inhibition was more pronounced than that of
the LPS model. The inhibition activity was more significant in
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Fig. 4. The edema volume of the rats’ paws after injection with LPS for all
groups. Saline, indomethacin, honey, honey methanolic extract (HME), and
honey ethyl acetate extract (HEAE), P value is significant when P<0.05.


image of Fig.�2
image of Fig.�3

1200 M. Kassim et al. / Fitoterapia 81 (2010) 1196-1201

20 - —+— saline Indomethacin == Honey
:E 18 == HME  — HEAE control
8 16
Q
L 141
g 12
c
2 10
&

R
s °]
g 4
=
2 2]

0

1 2 3 4 5 6 7
Time per hr

Fig. 5. Antinociceptive effect of honey and its extracts on rats’ paws using
infrared light after injection with carrageenan for 7 hrs. Tested honey,
indomethacin, honey methanolic extract (HME) and honey ethyl acetate
extract (HEAE) significantly inhibited the nociceptive response; P value is
significant when P<0.05.

honey extracts. Phenolic compounds are fully implicated for
NO inhibition but the mechanism is still unclear. The major
phenolic compounds in the methanol and ethyl acetate
extracts were gallic acid, ellagic acid, caffeic acid, luteolin,
chrysin and quercetin. The anti-inflammatory activity corre-
lates positively with the radical-scavenging activity and total
phenolic content [22]. It has been reported that Gelam honey
has potent free radical scavenging activity [5]. Phenolic
compounds showed a clear and strong correlation between
ROS scavenging activity and decreased cytotoxicity. Phenolic
compounds in Gelam honey such as quercetin, caffeic acid,
chrysin and ellagic acid are known for their downregulation
of NF-kB. This, in turn, reduces the biosynthesis of iNOS [23],
and ultimately inhibits the production of nitric oxide. Phe-
nolic compounds in honey and its extracts may be able to
inhibit NO through the inhibition of NF-kB and scavenging
activity of the NO radical.

7 -
W carrageenan LPS

6 .

5 | :|'
— 4 T
£
D 3
o
= 5 I

L | i

0 T T T T T

o\' Q‘o ‘?‘5/ Q <)O go
-1 6$ A ‘23/ Q\oe N %?9

Fig. 6. Effect of honey and its extracts on NO production in paw tissue in
the carrageenan and LPS models, indomethacin (INDO), honey methanolic
extract (HME), and honey ethyl acetate extract (HEAE), P value is significant
when P<0.05.

204 m carrageenan LPS
18
16
E 14 4
S 121
c
~ 10
o 8
o 64
4 4
2 4
0 4
Control HEAE Honey INDO  Saline

Fig. 7. Effect of honey and its extracts on PGE, production in paw tissues in
the carrageenan and LPS models. Indomethacin (INDO), honey methanolic
extract (HME), and honey ethyl acetate extract (HEAE), P value is significant
when P<0.05.

Prostaglandin is a very important mediator of all types
of inflammation. It is synthesized by the enzyme cycloox-
ygenase (COX) which is stimulated in the inflammatory
phase by pro-inflammatory mediators, such as cytokines, LPS
and carrageenan. Previous studies have shown that COX-2 is
responsible for increased prostaglandin production in in-
flamed tissue [24]. The results shown in Fig. 7 indicate that
honey and its extracts inhibit the PGE, in inflammatory
tissues of both inflammation models. Phenolic compounds
have a major role in the inhibition of PGE; in inflammatory
tissues since methanol and ethyl acetate extracts were more
involved in the inhibition of PGE, production than the whole
honey. Nevertheless, t the mechanism is still unclear. Honey
has been proven to have a potent activity against gastritis
and stomach ulcers [4]. Specific inhibition of COX-2 expres-
sion at the transcriptional level is a potent mechanism in
the treatment of inflammatory disease [25]. It is possible
that honey and its extracts are selective inhibitors of COX-2
because honey has no side effects on the gastrointestinal
system. In relation with the above results, the inhibition of
PGE, by honey extracts is more pronounced. Ellagic acid, the
major phenolic compound in Gelam honey, has an inhibitory
effect on PGE, release from monocytes and other phenolic
compounds in Gelam honey such as quercetin, chrysin and
luteolin which have been demonstrated to have inhibitory
effects on interleukin, 13, and cyclooxygenase-2 (COX-2)
expression, prostaglandin E2 (PGE;) synthesis and NF-xB
[23,26]. These phenolics in Gelam honey and its extracts
may have inhibited PGE, through the inhibition of COX-2
and NF-kB.

In conclusion, phenolic compounds in Gelam honey and
its extracts do appear to have anti-inflammatory effects
against the inflammatory mediators NO and PGE; in tissues.
Effects on NO and PGE, correspond with the reduction in
paw edema volume and the inhibition of pain. Honey and its
extracts are, therefore, potentially useful for treating inflam-
matory conditions.
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Malaysian Gelam honey has anti-inflammatory and antibacterial properties, a high antioxidant
capacity, and free radical-scavenging activity. Lipopolysaccharide (LPS) stimulates immune
cells to sequentially release early pro- and anti-inflammatory cytokines and induces the
synthesis of several related enzymes. The aim of this study was to investigate the effect of the
intravenous injection of honey in rats with LPS-induced endotoxemia. The results showed that
after 4 h of treatment, honey reduced cytokine (tumor necrosis factor-c, interleukins 13, and
10) and NO levels and increased heme oxygenase-1 levels. After 24 h, a decrease in cytokines

Honey and NO and an increase in HO-1 were seen in all groups, whereas a reduction in HMGB1

Endotoxemia

Cytokines

High-mobility group box 1
Nitric oxide

Heme oxygenase-1

occurred only in the honey-treated groups. These results support the further examination of
honey as a natural compound for the treatment of a wide range of inflammatory diseases.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Honey is a naturally sweet viscous fluid produced by bees
from floral nectar. To date, more than 400 different chemical
compounds have been identified in many varieties of honey
[1], including proteins, enzymes, organic acids, mineral salts,
vitamins, phenolic acids, flavonoids, free amino acids, fatty
acids and small quantities of volatile compounds [2,3]. As early
as 5000 BC, honey was used by Egyptians in wound manage-
ment, while the Greeks, Chinese, and Romans exploited its
antiseptic properties as a topical agent for the treatment of sores
and skin ulcers [4]. The ability of honey to induce the activation
and proliferation of peripheral blood cells, including lympho-
cytic and phagocytic activity, is well-established, as its role
in combating infection by stimulating the anti-inflammatory,

* Corresponding author. Tel.: +60 3 79492052; fax: +60 3 79553705.
E-mail address: zoobeadi@yahoo.com (M. Kassim).

0367-326X/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.fitote.2012.05.008

antioxidant, and proliferative activities of the immune system
[5,6]. It was reported in a clinical experiment that when wound
infected with bacteria was treated with honey, infection was
more quickly eradicated [7-9]. Immunomodulatory effects
were demonstrated in vitro by cytokine release from human
peripheral monocytes and the monocytic cell line Mono Mac 6
after incubation with honey [10]. All of these properties have
been determined in Gelam honey. Specifically, Gelam honey
inhibits the release of both nitric oxide (NO) and tumor necrosis
factor (TNF)-a in vitro and in vivo [11]. The floral source of
Gelam honey is Melaleuca cajuputi Powell, it has medicinal
antiseptic, antibacterial, anti-inflammatory and anodyne prop-
erties, and it is used traditionally against pain, burns, colds,
influenza and dyspepsia. Cajeput oil is produced from the M.
cajuputi leaves by steam distillation. It is used for the treatment
of coughs and colds, against stomach cramps, colic, asthma,
relief of neuralgia and rheumatism. It has been approved for
food use by the Food and Drug Administration (FDA) of the
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United States [12,13]. The active compounds in Gelam honey
include ellagic acid, gallic acid ,chrysin, quercetin, caffeic acid
phenethyl ester, luteolin, kaempferol, and hesperetin [11,14],
many of which have anti-inflammatory and immunomodula-
tory properties [15-17]. Gelam honey also antagonizes the
lipopolysaccharide (LPS)-induced immune response in vitro
and in vivo [11,14]. LPS is a cell-wall component of Gram
negative bacteria and a potent inducer of the host immune
system, including the overproduction of numerous pro- and
anti-inflammatory cytokines, an increase in oxidative stress,
and the induction of nitric oxide synthase (iNOS) and heme
oxygenase-1 (HO-1). Together, these events result in severe
tissue injury. Moreover, LPS causes endotoxemia, which is
associated with multiple organ failure and is often lethal
[18,19]. Given the complexity of the immune response to
LPS-induced endotoxemia and the many anti-inflammatory
properties of honey, we examined the ability of Gelam honey
to induce several key immunomodulators (TNF-c, IL-1, IL-6,
IL-10, NO, and HO-1) and HMGB1 in a rat model of LPS-
induced endotoxemia.

2. Materials and methods
2.1. Materials

Fresh Malaysian honey (Gelam, from Apis mellifera) was
obtained from the National Apiary (Department of Agricul-
ture, Parit Botak, Johor, Malaysia) and then sent to the
Malaysian Nuclear Agency for sterilization using a cobalt-60
source (model JS10000). Prior to use, the Gelam honey was
diluted in saline and then filter-sterilized through a 0.20-um
syringe filter. All chemicals and reagents used were of analy-
tical grade.

2.2. Extraction of phenolic compounds from honey by strong
acid hydrolysis

Extraction and hydrolysis conditions for the honey sam-
ple were performed to obtain their corresponding aglycones
in 50% (v/v) aqueous methanol, containing hydrochloric
acid (6 M) as described in Ref. [20] with a modified. For the
extraction of phenolic compounds of Gelam honey, 5 g was
dissolved in 30 ml 50% (V/V) aqueous methanol with added
HCl. The mixture was stored at 35°C for 24 h. Then the
extract was evaporated under pressure at 40 °C after that,
the residues were diluted with 5 ml water and 5 ml ethyl
acetate repeated three times. All ethyl acetate extracts were
collected and then flushed with N; the dry residues were
redissolved in methanol, and then filtrated through a
membrane (45pml). 20pml of resultants extract was
injected to Liquid chromatography-mass spectrometry
(LC-MS) to identify the compounds present. The LC-MS
conditions were similar to the previously describe [11]

2.3. Animals

Male Sprague Dawley (SD) rats weighing 300-350 g were
kept in individual cages under standard conditions (12-h
light and 12-h dark conditions). They were fed a diet of
Purina lab chow and given water ad libitum. The study was
carried out in accordance with the University of Malaya

Animal Ethics Committee guidelines for animal experimen-
tation. Approved protocols were followed and a project
license, ANES/14/07/2010/MKAK (R), was obtained.

2.4. Toxicity test

The toxicity of Gelam honey in rats (n=8) was evaluated
for 1 month prior to the study. Four different doses of honey
(10, 60, 300, and 600 mg/kg diluted in 1 ml of saline) were
injected daily through the tail vein. The control group re-
ceived a similar volume of saline. Both the honey- and the
saline-treated rats were observed for 3 h after injection.

Symptoms and mortality were recorded for all groups. At
the end of the study, all of the rats were sacrificed and their
blood and organs collected. Compared with the control
group, the treated groups showed no abnormalities as deter-
mined by biochemical and histopathological analyses of the
liver, lungs, and kidneys (data not shown).

2.5. Induction of endotoxemia in rats by LPS stimulation and
treatment with honey

The rats were divided into six groups (n=6/group) and
were treated as described below. Endotoxemia was induced
in four groups by intravenous injection of 5 mg/kg LPS (B:
0111; Sigma, St. Louis, MO, USA) prepared in saline. One of
the four groups served as the positive control (LPS only),
while the other three received one of three different concen-
trations of honey: 60 mg/kg (H60), 300 mg/kg (H300), and
600 mg/kg (H600), diluted in saline. The fifth group served as
the negative control and was given saline only, while the
sixth group was given honey (600 mg/kg in saline) but no
LPS. All doses were administered in a volume of 1 ml and
were prepared immediately prior to injection.

Five groups of 10 rats were used for survival rate analysis.
Endotoxemia was induced in four groups by intravenous
injection of 5 mg/kg LPS as described above; the fifth group
was left untreated (control). The viability of all 50 rats was
monitored every 12 h for 15 days.

2.6. Quantification of cytokines, NO, HO-1, and HMGB1 levels

Blood samples were collected 4 and 24 h after treatment,
after which all of the rats were killed. Samples were collected
after 4 h of treatment and serum levels of TNF-a, IL-1, IL-6,
IL-10, NO, and HO-1 were measured using an enzyme-linked
immunosorbent assay (ELISA; R&D Systems, Minneapolis,
MN, USA). The ELISA was repeated after 24 h. Serum HMGB1
levels were also examined after 24 h using an ELISA (Shino-Test:
326054329, Japan) according to the manufacturer's instructions.

2.7. Statistical analysis

Data are expressed as the mean 4 standard deviation and
analyzed using a non-parametric one-way analysis of vari-
ance (ANOVA) followed by Tukey's multiple comparison test.
All analyses were carried out using GraphPad Prism 5
statistical software (San Diego, CA, USA). Survival data were
subjected to Kaplan-Meier analysis. P<0.05 was considered
statistically significant.
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3. Results

3.1. Identification of phenolic compounds in Gelam honey by
LC-MS

LC-MS was used for the identification of some phenolic
compounds. Fig. 1S shows the peaks of gellic acid, ferulic acid,
quercetin, ellagic acid, Hesperetin, and chrysin detected in
Gelam honey using positive and negative ESI-MS. Figs. 2S-6S
show the fragments of the identified compounds using
positive and negative ionization (ESI-MS). Some compounds
did not ionize under the conditions used for analysis. The
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negative ionization was more useful for identifying com-
pounds in the extracts than positive ESI-MS.LC-MS analysis.

3.2. Effect of honey on cytokines, HMGB1, NO, and HO-1

Cytokine production was lower in rats injected with LPS
and subsequently treated with honey than in rats injected
with LPS alone. A significant reduction in TNF-a level oc-
curred at 4 h, but was no longer apparent at 24 h (Fig. 1).
Honey also showed potent inhibitory activity against IL-13
and IL-10; however, in contrast to its short-lived effect on
TNF-o level, highly significant differences in the levels of
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Fig. 1. Effect of honey on cytokine and high mobility group protein B1 (HMGB1) levels in rats. Rats were injected with lipopolysaccharide (LPS) and then treated
with varying doses of honey. Cytokines and HMGB1 were measured using an ELISA at 4 h and 24 h. Six groups were examined (n= 6/group), and all groups
received injections into the tail vein. The LPS group was treated with 5 mg/kg LPS in 1 ml saline, the negative control group with 1 ml saline, the honey-treated
groups with injection of 60, 300, and 600 mg/kg honey plus 5 mg/kg LPS in 1 ml saline, and the final control group with only 600 mg/kg honey in 1 ml saline. Data
are presented as the mean + standard deviation. (***P<0.005; **P<0.003; and *P<0.001).
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these two cytokines between the honey-treated groups and
the LPS-only control group were evident both at 4 h and 24 h
(Fig. 1). The specific immunomodulatory effects of honey
were demonstrated by the observation that IL-6 levels
remained unchanged after honey treatment, and did not
differ from those of the control groups, while serum HMGB1
levels decreased only at 24 h (Fig. 1). Furthermore, honey
induced a significant reduction in NO production at 4 h and
to a lesser extent at 24 h (Fig. 2). Honey was also a potent
inducer of HO-1, with significant differences between the
honey-treated groups and the LPS-only control group evident
at 4 h and at 24 h (Fig. 3).

3.3. Survival

At 12 h after LPS injection, only 70% of the rats in the
H60 group survived; however, all the LPS-injected rats in
the H300 or H600 groups were still alive. At 24 h, survival
in the LPS, H60, H300, and H600 groups decreased to 30%.
By 36 h, all rats in the LPS and H60 groups had died, while
survival in the H300 and H600 groups decreased to 38%. By
contrast, the negative control group, which received saline
only, survived for an average of 15 days. Kaplan-Meier ana-
lysis revealed a significantly shorter time to death in the
LPS-only group than in the H300 and H600 groups (Fig. 4).

4. Discussion

In our study, Gelam honey was injected intravenously, as
this is the fastest route of delivery for the majority of drugs.
The rapid transit of the injected agent through the blood-
stream allows immediate exposure to the blood and immune
cells. In addition, intravenous injection preserves the activity
of the many vitamins, minerals, enzymes, and active com-
pounds present in the honey, whereas the acid environment
of the stomach encountered following oral administration
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Fig. 2. Effect of honey on nitric oxide (NO). NO production was measured
(as nitrate and nitrite) in rats stimulated with 5 mg/kg LPS 4 h and 24 h after
treatment. The groups of rats were treated as described in Fig. 1. Data are
presented as the mean + standard deviation. (***P<0.003 and *P<0.001).
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Fig. 3. Effect of honey on heme oxygenase-1 (HO-1) levels. Rats were
injected with 5 mg/kg LPS and HO-1 levels were measured 4 h and 24 h
later. The six groups of rats (n=6/group) were the same as those described
in Fig. 1. Data are presented as the mean = standard deviation. (**P<0.003).

would result in their destruction [21-23]. Previous study
reported that no side effects with the use of intravenous
honey in sheep [24]. This study demonstrated that intrave-
nous injection of honey into LPS-treated rats inhibited
cytokine production, including that of TNF-o, IL-1, and
IL-10, as well as HMGB1 and NO release, while at the same
time inducing HO-1. Thus, consistent with in vitro studies
demonstrating the immunomodulatory effects of Gelam honey
on cytokines and NO released in L929 and RAW 264.7 [11],
our results show that Gelam honey inhibits cytokines, NO
and protects rats from endotoxemia. Upregulation of HO-1
inhibits the release of cytokines, HMGB1 and NO. Furthermore,
upregulation of HO-1 may protect rats from the effects of
endotoxemia, which may reflect the decrease in systemic levels
of cytokines, HMGB1, and NO. The cytokine levels observed in
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Fig. 4. Effect of honey on survival. Five groups of rats (n=10/group)
received a 1-ml injection of LPS (5 mg/kg) into the tail vein. The survival rate
of the group injected with LPS alone is depicted by white squares. The
survival rates of the groups treated with LPS plus 60, 300, 600 mg/kg honey
are depicted by white circles, black squares, and black triangles, respectively.
Control rats received saline only (white triangles). Honey was injected daily
for 3 days after LPS treatment. Kaplan-Meier analysis showed a significantly
shorter time to death for the untreated LPS group (LPS) than for the groups
treated with LPS+ 300 mg/kg honey (LPS+H300) or LPS+ 600 mg/kg
honey (LPS + H600) (***P<0.005).
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the blood and tissues are attributable to activation of
neutrophils, macrophages, and lymphocytes and their subse-
quent infiltration into the tissues, and to the activation of other
cells such as endothelial in different tissues such as blood,
vessels, lung and liver. In endotoxemia, the levels of cytokines,
HMGBT1 and NO, are increased in the blood and tissues due to
activation of nuclear factor (NF)-kB. Inhibition of cytokines, NO,
and HMGBT1, and the induction of HO-1 induced in response to
LPS are important for protection against endotoxemia [25]. The
release of cytokines and NO contributes to inflammation-
related pathologies and mortality; therefore, inhibition of
cytokines and NO provides protection from endotoxemia-
induced mortality in both animals and humans [26]. The
mechanism by which honey inhibits both pro-inflammatory
cytokines (such as TNF-a and IL-1P), and NO is unclear, but it
may involve the inhibition of NF-«B. A previous study shows
that NF-xB prevents the release pro-inflammatory cytokines
and inhibits the release of iNOS [27,28]. However, the
inhibitory effect of honey on the anti-inflammatory cytokine,
IL-10, remains a matter for speculation. IL-10 is a potent
anti-inflammatory cytokine that inhibits the synthesis of
TNF-a, IL-1a, IL-1B, and IL-6 in vitro [29-31]. It is also an
important mediator of endotoxemia-induced immunosuppres-
sion and of macrophage deactivation during LPS desensitiza-
tion and endotoxemia [30,32]. High circulating levels of IL-10
lead to immunoparalysis [31,33], an effect that is compounded
by the presence of secondary factors, including LPS; in such
cases, temporary immunoparalysis can become chronic, with a
concomitantly higher risk of infection [34,35]. The enzyme
HO-1 protects animals from severe inflammation, and a clear
relationship has been determined between HO-1 activation
and decreased HMGBT1 levels which, in turn, protects animals
from endotoxemia. In addition, the induction of HO-1 improves
animal survival during lethal endotoxemia, and inhibits the
production of both NO and cytokines such as TNF-a and IL-1p
[36]. Consistent with our suggestion that honey exerts its
effects, at least in part, via NF-xB, HO-1 also inhibits NF-«B,
thereby modulating cytokine release and inhibiting iNOS, with
a subsequent decrease in NO [37,38]. Our results showed that
honey inhibited HMGB1 while inducing HO-1 and increasing
the survival of LPS-treated rats. Similarly, potent HO-1-inducing
abilities were identified in other natural products (such as (—)-
epigallocatechin-3-gallate (EGCG)); moreover, these natural
products include immunomodulators of LPS-induced HMGB1
release, and their administration increases the survival of HO-
1-deficient mice [19,39].

The active components in honey include phenolic acid,
flavonoids, and polyphenols such as caffeic acid phenethyl
ester and quercetin [40-42], which inhibit HMGB1.

5. Conclusion

In addition to its well-known properties as a natural
sweetener, honey has many anti-inflammatory properties.
These include the ability to stimulate HO-1 production and to
inhibit the release of both pro- and anti-inflammatory
cytokines (TNF-c, IL-1, IL-10), HMGB1, and NO. Together,
these effects suggest a mechanism by which honey is able to
protect animals from the lethal effects of LPS-induced endo-
toxemia. Therefore, honey should be further explored with
respect to its anti-inflammatory and immunomodulatory

properties for the use in the treatment of inflammatory
diseases.

Declaration of competing interests

There are no competing interests to declare.

Acknowledgments and funding

This work was supported in part by grants PV009/
2011B, RG031/09HTM, and RG225/10HTM from the University
of Malaya.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.fitote.2012.05.008.

References

[1] Lazaridou A, Biliaderis CG, Bacandritsos N, Sabatini AG. Composition,
thermal and rheological behaviour of selected Greek honeys. ] Food Eng
2004;64:9-21.

[2] Gheldof N, Wang XH, Engeseth NJ. Buckwheat honey increases serum
antioxidant capacity in humans. ] Agric Food Chem 2003;51:1500-5.

[3] Weston R], Brocklebank LK. The oligosaccharide composition of some
New Zealand honeys. Food Chem 1999;64:33-7.

[4] White R. The benefits of honey in wound management. Nurs Stand
2005;20:57-64 [quiz 66].

[5] Molan PC. Potential of honey in the treatment of wounds and burns.
Am ] Clin Dermatol 2001;2:13-9.

[6] Al-Jabri AA. Honey, milk and antibiotics. Afr ] Biotechnol 2005;4:
1580-7.

[7] Al-Waili NS, Saloom KY. Effects of topical honey on post-operative
wound infections due to gram positive and gram negative bacteria
following caesarean sections and hysterectomies. Eur J] Med Res
1999;4:126-30.

[8] Albietz JM, Lenton LM. Effect of antibacterial honey on the ocular flora
in tear deficiency and meibomian gland disease. Cornea 2006;25:
1012-9.

[9] Simon A, Traynor K, Santos K, Blaser G, Bode U, Molan P. Medical honey
for wound care—still the ‘latest resort’? Evid Based Complement
Alternat Med 2009;6:165-73.

[10] Tonks AJ, Cooper RA, Jones KP, Blair S, Parton ], Tonks A. Honey
stimulates inflammatory cytokine production from monocytes. Cyto-
kine 2003;21:242-7.

[11] Kassim M, Achoui M, Mustafa MR, Mohd MA, Yusoff KM. Ellagic acid,
phenolic acids, and flavonoids in Malaysian honey extracts demon-
strate in vitro anti-inflammatory activity. Nutr Res 2010;30:650-9.

[12] Hassan UV, Jambari A, Aspllaha SM. Biocidal and medicinal properties
of a triterpene from the bark of Melaleuca cajuputi. Weed Sci Soc Pak
2003;9:241-2.

[13] Rattiwanich T, Karuhapattana B, Kittirattrakarn T, Anantachoke C.
Melaleuca cajuputi Powell leaves oil from Toedaeng swamp forest.
Annual Conference of Forestry; 1992. p. 361-7.

[14] Kassim M, Achoui M, Mansor M, Yusoff KM. The inhibitory effects of
Gelam honey and its extracts on nitric oxide and prostaglandin E(2) in
inflammatory tissues. Fitoterapia 2010;81:1196-201.

[15] Kotanidou A, Xagorari A, Bagli E, Kitsanta P, Fotsis T, Papapetropoulos A,
et al. Luteolin reduces lipopolysaccharide-induced lethal toxicity and
expression of proinflammatory molecules in mice. Am ] Respir Crit Care
Med 2002;165:818-23.

[16] Fidan H, Sahin O, Yavuz Y, Kilbas A, Cetinkaya Z, Ela Y, et al. Caffeic acid
phenethyl ester reduces mortality and sepsis-induced lung injury in
rats. Crit Care Med 2007;35:2822-9.

[17] Tang D, Kang R, Xiao W, Zhang H, Lotze MT, Wang H, et al. Quercetin
prevents LPS-induced high-mobility group box 1 release and proin-
flammatory function. Am ] Respir Cell Mol Biol 2009;41:651-60.

[18] Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: under-
standing the role of innate and acquired immunity. Shock 2001;16:
83-96.

[19] Takamiya R, Hung CC, Hall SR, Fukunaga K, Nagaishi T, Maeno T, et al.
High-mobility group box 1 contributes to lethality of endotoxemia in


http://dx.doi.org/10.1016/j.jnutbio.2011.10.012

M. Kassim et al. / Fitoterapia 83 (2012) 1054-1059 1059

heme oxygenase-1-deficient mice. Am ] Respir Cell Mol Biol 2009;41:
129-35.

[20] Hertog MGL, Hollman PCH, Katan MB. Content of potentially antic-
arcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed
in the Netherlands. ] Agric Food Chem 1992;40:2379-83.

[21] Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high
protein concentration formulations. ] Pharm Sci 2004;93:1390-402.

[22] Shaji ], Patole V. Protein and peptide drug delivery: oral approaches.
Indian ] Pharm Sci 2008;70:269-77.

[23] Chang Q, Zuo Z, Ho WK, Chow MS. Comparison of the pharmacokinetics
of hawthorn phenolics in extract versus individual pure compound.
J Clin Pharmacol 2005;45:106-12.

[24] Al-Waili NS. Identification of nitric oxide metabolites in various
honeys: effects of intravenous honey on plasma and urinary nitric
oxide metabolites concentrations. ] Med Food 2003;6:359-64.

[25] TsoyiK, Lee TY, Lee YS, Kim H]J, Seo HG, Lee JH, et al. Heme-oxygenase-1
induction and carbon monoxide-releasing molecule inhibit lipopoly-
saccharide (LPS)-induced high-mobility group box 1 release in vitro
and improve survival of mice in LPS- and cecal ligation and puncture-
induced sepsis model in vivo. Mol Pharmacol 2009;76:173-82.

[26] Sunden-Cullberg ], Norrby-Teglund A, Rouhiainen A, Rauvala H,
Herman G, Tracey K], et al. Persistent elevation of high mobility group
box-1 protein (HMGB1) in patients with severe sepsis and septic shock.
Crit Care Med 2005;33:564-73.

[27] Abraham E. Nuclear factor-kappaB and its role in sepsis-associated
organ failure. ] Infect Dis 2003;187(Suppl. 2):5364-9.

[28] Matsumori A, Nunokawa Y, Yamaki A, Yamamoto K, Hwang MW,
Miyamoto T, et al. Suppression of cytokines and nitric oxide production,
and protection against lethal endotoxemia and viral myocarditis by a
new NF-kappaB inhibitor. Eur ] Heart Fail 2004;6:137-44.

[29] Chen J, Raj N, Kim P, Andrejko KM, Deutschman CS. Intrahepatic
nuclear factor-kappa B activity and alpha 1-acid glycoprotein tran-
scription do not predict outcome after cecal ligation and puncture in
the rat. Crit Care Med 2001;29:589-96.

[30] Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O'Garra A. IL-10
inhibits cytokine production by activated macrophages. J Immunol
1991;147:3815-22.

[31] de Vries JE. Immunosuppressive and anti-inflammatory properties of
interleukin 10. Ann Med 1995;27:537-41.

[32] Steinhauser ML, Hogaboam CM, Kunkel SL, Lukacs NW, Strieter RM,
Standiford TJ. IL-10 is a major mediator of sepsis-induced impairment
in lung antibacterial host defense. ] Immunol 1999;162:392-9.

[33] Allen ML, Hoschtitzky JA, Peters MJ, Elliott M, Goldman A, James |, et al.
Interleukin-10 and its role in clinical immunoparalysis following
pediatric cardiac surgery. Crit Care Med 2006;34:2658-65.

[34] Randow F, Syrbe U, Meisel C, Krausch D, Zuckermann H, Platzer C, et al.
Mechanism of endotoxin desensitization: involvement of interleukin
10 and transforming growth factor beta. ] Exp Med 1995;181:1887-92.

[35] Wolk K, Docke W, von Baehr V, Volk H, Sabat R. Comparison of
monocyte functions after LPS- or IL-10-induced reorientation: impor-
tance in clinical immunoparalysis. Pathobiology 1999;67:253-6.

[36] Yu JB, Yao SL. Protective effects of hemin pretreatment combined with
ulinastatin on septic shock in rats. Chin Med ] (Engl) 2008;121:49-55.

[37] Bellezza I, Tucci A, Galli F, Grottelli S, Mierla AL, Pilolli F, et al. Inhibition
of NF-kappaB nuclear translocation via HO-1 activation underlies
alpha-tocopheryl succinate toxicity. ] Nutr Biochem. in press, http://
dx.doi.org/10.1016/j.jnutbio.2011.10.012

[38] Brouard S, Berberat PO, Tobiasch E, Seldon MP, Bach FH, Soares MP.
Heme oxygenase-1-derived carbon monoxide requires the activation
of transcription factor NF-kappa B to protect endothelial cells from
tumor necrosis factor-alpha-mediated apoptosis. ] Biol Chem 2002;
277:17950-61.

[39] Li W, Ashok M, Li ], Yang H, Sama AE, Wang H. A major ingredient of
green tea rescues mice from lethal sepsis partly by inhibiting HMGB1.
PLoS One 2007;2:e1153.

[40] Lin HC, Cheng TH, Chen YC, Juan SH. Mechanism of heme oxygenase-1
gene induction by quercetin in rat aortic smooth muscle cells.
Pharmacology 2004;71:107-12.

[41] Scapagnini G, Foresti R, Calabrese V, Giuffrida Stella AM, Green (],
Motterlini R. Caffeic acid phenethyl ester and curcumin: a novel class of
heme oxygenase-1 inducers. Mol Pharmacol 2002;61:554-61.

[42] Min KS, Lee HJ, Kim SH, Lee SK, Kim HR, Pae HO, et al. Hydrogen
peroxide induces heme oxygenase-1 and dentin sialophosphoprotein
mRNA in human pulp cells. ] Endod 2008;34:983-9.



3.4 Gelam honey has a protective effect against lipopolysaccharide

(LPS)-induced organ failure

Co-author Names

Prof. Dr. Marzida Binti Mansor
Role: Helped in development of work, manuscript
Email: marzida@um.edu.my

Prof. Dr. Kamaruddin Mohd Y usoff
Role: Designed the work
Email: Mykamar77@gmail.com

Nazeh Mohammed Al-Abd
Role: Performed the experiments
Email: nazehali78@yahoo.com

51


mailto:marzida@um.edu.my
mailto:Mykamar77@gmail.com
mailto:nazehali78@yahoo.com

Int. J. Mol. Sci. 2012, 13, 6370-6381; doi:10.3390/ijms13056370

OPEN ACCESS
International Journal of

Molecular Sciences

ISSN 1422-0067
www.mdpi.com/journal/ijms

Article

Gelam Honey Has a Protective Effect against
Lipopolysaccharide (LPS)-Induced Organ Failure

Mustafa Kassim »*, Marzida Mansor !, Nazeh Al-Abd 2 and Kamaruddin Mohd Y usoff 3

1

Department of Anesthesiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur,
Malaysia; E-Mail: marzida@gmail.com

Department of Biotechnology , Faculty of Science,University of Malaya, 50603 Kuala Lumpur,
Malaysia; E-Mail: nazehali78@yahoo.com

Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canik Basari
University, Samsun, Turkey; E-Mail: mykamar77@gmail.com

Author to whom correspondence should be addressed; E-Mail: zoobeadi@yahoo.com;
el.: +603-79492052; Fax: +603-79553705.

Received: 5 April 2012; in revised form: 4 May 2012 / Accepted: 7 May 2012 /
Published: 23 May 2012

Abstract: Gelam honey exerts anti-inflammatory and antioxidant activities and is thought
to have potent effects in reducing infections and healing wounds. The aim of this study was
to investigate the effects of intravenously-injected Gelam honey in protecting organs from
lethal doses of lipopolysaccharide (LPS). Six groups of rabbits (N = 6) were used in this
study. Two groups acted as controls and received only saline and no LPS injections. For
the test groups, 1 mL honey (500 mg/kg in saline) was intravenously injected into two
groups (treated), while saline (1 mL) was injected into the other two groups (untreated);
after 1 h, all four test groups were intravenously-injected with LPS (0.5 mg/kg). Eight
hours after the LPS injection, blood and organs were collected from three groups (one from
each treatment stream) and blood parameters were measured and biochemical tests,
histopathology, and myeloperoxidase assessment were performed. For survival rate tests,
rabbits from the remaining three groups were monitored over a 2-week period. Treatment
with honey showed protective effects on organs through the improvement of organ blood
parameters, reduced infiltration of neutrophils, and decreased myeloperoxidase activity.
Honey-treated rabbits also showed reduced mortality after LPS injection compared with
untreated rabbits. Honey may have a therapeutic effect in protecting organs during
inflammatory diseases.
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1. Introduction

Honey is a natural, sweet and viscous fluid produced by bees from floral nectar, which comprises
more than 400 different chemical compounds [1], including proteins, enzymes, organic acids, mineral
salts, vitamins, phenolic acids, flavonoids, free amino acids, and small quantities of volatile
compounds [2]. Historically, honey has been used as a treatment for a broad spectrum of injuries,
including wounds, burns and ulcers [3,4]. Honey has also been reported to stimulate the immune
system (monocytes, neutrophils) [5-7]. It also clears infection by boosting the immune system,
exerting anti-inflammatory and antioxidant activities, and stimulating cell growth [8]. Gelam honey
inhibits nitric oxide (NO) and cytokine release both in vitro and in vivo [9,10].

Lipopolysaccharide (LPS) stimulates innate immune responses that mediate the cellular release of
NO and various proinflammatory cytokines and chemokines, as well as inducing macrophage
migration and contributing to the pathogenesis of sepsis [11]. Injection of animals with high doses of
LPS causes multiple organ failure, characterized by circulatory failure, systemic hypotension,
hypo-reactivity to vasoconstrictors, subsequent problems with organ perfusion and the development of
functional abnormalities [12], which reflect systemic inflammatory response syndrome and septic
shock, rather than endotoxin-induced failure of lung, liver, and renal tissues [13].

Sepsis is the leading cause of death worldwide, with more than 750,000 cases of sepsis diagnosed
annually and mortality rates ranging from 30 to 60%; this systemic inflammation accounts for
approximately 200,000 deaths per year in the US alone [14]. Sepsis causes endothelial injury and
neutrophil infiltration into tissues, leading to local injury, disturbed capillary blood flow and enhanced
microvascular permeability, disseminated intravascular coagulation, circulatory collapse, hypoxia and,
ultimately, multiple organ failure [15]. The aim of the current study was to investigate whether
intravenous injection of honey can protect organs from lethal doses of LPS that induce sepsis in rabbits.

2. Results
2.1. Effect of Gelam Honey on Biochemical and Hematological Tests, Histopathology, and MPO Activity

Intravenous injection of honey resulted in potent protection against a lethal dose of LPS as
evidenced by improved liver, kidney, cardiac and lipid profiles. Compared to the untreated group, the
honey-treated group showed significant reductions in the levels of alanine transaminase (ALT),
aspartate aminotransferase (AST), y-glutamyltransferase (y-GT), alkaline phosphatase (ALP),
cholesterol, triglycerides, creatine kinase, creatinine, urea and amylase. Moreover, the honey-treated
group showed higher RBC, WBC and thrombocyte counts than the untreated group (Table 1). Arterial
blood gases and pH values were determined for all groups (Table 1). The honey-treated group showed
mild respiratory alkalosis, while in the untreated group, the arterial blood pH was closer to acidosis.
Blood pCO, was lowered by LPS injection, but to the same level in the honey-treated group and
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untreated group, indicating that honey injection did not prevent the reduction in pCO,. Blood HCO3
and PO, were higher in the honey-treated group than in the untreated group. There was clear evidence
of hypoxia in the untreated group, as shown by the reduction in the pO, value (Table 1). Neutrophil
infiltration was reduced in the treated group; however, MPO activity in the honey-treated group was
significantly lower than that in the untreated group (Figure 1). In addition, more histopathological
changes were observed in the untreated group, as evidenced by cellular infiltration of the lungs
(Figure 2). Finally, 66.7% of rabbits in the untreated group died compared with 33.3% in the treated
group (Figure 3). Survival rates were monitored over a 2-week period.

Figure 1. Effect of honey on neutrophil infiltration into lung tissues induced by a lethal
dose of lipopolysaccharide (LPS). Myeloperoxidase (MPO) activity was measured in all
groups (n = 6 per group) 8 h after LPS injection. MPO activity was significantly higher in
the untreated (saline + LPS 0.5 mg/kg) group than in the treated (honey, 500 mg/kg + LPS
0.5 mg/kg) group. *** P < 0.002.
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Figure 2. (A) Immune-cell infiltration and tissue damage in the lungs of rabbits from the
untreated group 8 h after LPS injection; (B) Immune-cell infiltration and tissue damage in
the lungs of rabbits from the honey-treated group 8 h after LPS injection; (C) Normal lung
tissues in rabbits treated with saline. Hematoxylin and eosin staining; magnification 10

scale bar, 30 pm.
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Figure 3. The effect of honey on the survival of rabbits injected with LPS (0.5 mg/kg).
Rabbits in all three groups (n = 6 per group) received 1 mL injections of LPS into the ear
vein. The survival rates in the untreated and honey-treated (60, 300, and 600 mg/kg)
groups injected with 0.5 mg/kg LPS are shown as black triangles and black squares,
respectively. Control rabbits received saline only (black circles). Honey was administered
daily for 3 days after LPS treatment. Kaplan—Meier analysis showed significantly better

survival rates in the honey-treated group (500 mg/kg + LPS) than in the untreated LPS
group (LPS). *** P < 0.005.
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Table 1. Assessment of organ damage in the control group and in honey-treated and
untreated groups given a single intravenous injection of lipopolysaccharide.

Parameter Normal Rabbits (N=6) Untreated (N=6) Honey-treated (N = 6)
Urea (mmol/L) 5.85 +0.20 55.85+25 10.5 +0.23°
Creatinine (mmol/L) 83.71+25 154 +6.16 72 +£2.87°
ALT (1U/L) 54,125 +1.8 108.75 £3.6 78.75+1.98°
AST (IU/L) 27.75 x0.9 577.33 £19.2 2315+76°
ALP (IU/L) 131.5+41 542.75 £15.5 308.75+11.4°
GGT (IU/L) 10 +0.32 38.4 +0.6 25+1.7°"
Triglyceride (mmol/L) 0.885 +0.03 10.434 £0.4 2.47 £0.13°
Total cholesterol (mmol/L) 1.1125 +0.04 3.16 0.1 1.8+0.08°
HDL (mmol/L) 0.65 %0.03 0.25 %0.006 0.545 +0.02°
LDL (mmol/L) 0.202 +=0.005 0.45 £0.01 0.32 £0.012
Creatine kinase (1U/L) 1327.4 £5.3 2168.3 £34 998.6 +26.8 °
pH (KPa) 7.38 £0.3 7.36 +0.3 7.5+0.27°"
pCO, (KPa) 43 +0.17 3+0.12 3+0.12
pO, (KPa) 16.21 +0.53 7.65 +0.23 19.3+0.77°
HCO; (mmol/L) 19 +£0.71 15 +0.51 19 +0.54°
Platelet (10e9/L) 194.3 +6.4 1445 +4.3 183.4 +7.6°"
Amylase (IU/L) 181.3+7.2 2155 +6.2 180 +5.2°
RBC (10el12/L 9.27 £0.31 4.83 £0.15 8.3475 +0.32°
WBC (10e9/L) 15+0.6 6.05 £0.25 11.65 +£0.36 %

? P < 0.001; significant effect of untreated group vs. honey-treated group; ® P < 0.003; significant
effect of untreated group vs. honey-treated group; © P < 0.005; significant effect of untreated group vs.

honey-treated group.
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3. Discussion

Previous studies have shown that honey has antioxidant, antimicrobial, and anti-inflammatory
properties [16]. This study identified a protective role for honey against systemic damage induced by
lethal doses of LPS in a rabbit model. These effects were evidenced by decreased blood chemistry
parameters of organ dysfunction, decreased cellular infiltration into the tissues, and decreased
mortality. To the best of our knowledge, this is the first study showing that honey can protect organs
from lethal doses of LPS. The results indicate that honey can counteract the effects of LPS, which is a
compound that can lead to organ and multi-organ failure.

When immune responses are insufficient, infections can lead to sepsis [17]. Many studies report
that sepsis is a complicated pathophysiological and immunological process that causes alterations in
the structure and characteristics of blood cells and tissues, leading to multi-organ failure. Lethal doses
of LPS in animals induce a variety of organ and systemic changes that lead to organ failure and,
ultimately, to death [18,19]. Previous studies have shown that the acute exposure of rabbits to LPS is
associated with necrosis in organs such as the lungs and liver. The presence of polymorphonuclear
leukocytes (PMNLs) was noted in association with necrosis in the lung and liver as well as an
apoptotic cellular appearance in the LPS group. In addition, LPS stimulates the production of many
cellular substances, such as cytokines, NO, vasoactive peptides, pro-coagulant factors, and
prostaglandins, both in vitro and in vivo [15]. Earlier reports indicate that LPS and cytokines, such as
TNF-a and IL-1p, induce apoptotic necrosis in cells and tissues [20,21]. Furthermore, LPS activates
NF-xB, which activates many mediators including pro- and anti-inflammatory cytokines such as
TNF-a ,IL-1pB, IL6 and IL-10 [22]. These cytokines enhance vascular permeability, stimulate the
expression of adhesion molecules on endothelial cells, and induce infiltration of cells from the blood to
tissues [23]. Sepsis-induced acute lung injury is a major clinical problem with significant morbidity
and mortality [24-26]. PMNLSs are thought to contribute significantly to the pathophysiologic features
of acute lung injury [27-31]. A pathological hallmark of acute lung injury is subsequent tissue
infiltration of neutrophils and pulmonary microvascular sequestration [32,33]. Enhanced pulmonary
neutrophil sequestration and infiltration during sepsis changes the neutrophil profile by increasing
neutrophil surface expression and activating cell-cell adhesion molecules, and enhancing the release of
soluble mediators, production of cytokines, and generation of reactive oxygen species, NO, and
ONOO [34-38]. Acute lung injury is characterized by increased MPO activity, a marker of neutrophil
infiltration, increased expression and activity of cytokines and iNOS, high-protein pulmonary edema,
and oxidant stress [31,39]. Pulmonary microvascular neutrophil sequestration and tissue infiltration are
hallmarks of the pathogenesis of acute lung injury [33,40,41]. The present study is in agreement with
previous studies showing that sepsis induces changes in pulmonary microvascular neutrophil
sequestration and alveolar neutrophil infiltration, [34-36,42] as clearly shown in the untreated group
but not in the honey-treated group (Figures 1 and 2). In addition, honey treatment decreased lung
injury by inhibiting MPO activity. Therefore, as reported in our previous studies, honey may decrease
lung injury through systemic inhibition of cytokines such as PGE; and NO [9,10].

In this study, the reductions in RBC, WBC, and platelet counts observed in the untreated group
confirm those seen in earlier reports [43,44]. Treatment with honey significantly attenuated the severe
reductions in blood counts (WBC and RBC) and thrombocytopenia, suggesting that honey has a
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protective role against sepsis-induced disseminated intravascular coagulation. LPS causes disseminated
intravascular coagulation, which is associated with coagulation disorders and loss of platelets. In the
liver, LPS causes increases in AST, ALT, y-GT, and lipid profiles [43,45-49], which are all markers of
hepatic damage [44,49,50]. Our results confirm that sepsis caused liver failure, as shown by
significantly elevated serum levels of AST, ALP, and y-GT in the untreated group; honey inhibited
these increases. Improved liver function tests after honey treatment indicate that honey may potentially
protect liver cells from sepsis. Lipid profiles showed that cholesterol, triglycerides, and LDL levels
were significantly increased in the LPS-induced untreated sepsis group but not in the honey-treated
group. However, the HDL levels were significantly lower in the untreated group. Injection of LPS into
animals induces renal dysfunction characterized by increased blood urea nitrogen and plasma
creatinine levels [45,51]. Urea nitrogen and plasma creatinine levels were increased by LPS injection,
but were lower in the honey-treated group than in the untreated group. Both our previous studies and
the above results show that LPS increased the levels of hepatic damage markers, modified lipid
metabolism, and increased lipid profiles, hematological values, and renal dysfunction [52]. Our results
also show that Gelam honey protects organs from immune responses induced by lethal doses of LPS.
Our previous study showed that Gelam honey contains many phenolic compounds with antioxidant and
anti-inflammatory activity. In addition, its inhibitory effect on cytokines (TNF-a, IL-1p, and IL-10),
high-mobility group protein 1 (HMG-1), and NO both in vitro and in vivo were studied [9,10,53].
Gelam honey also showed potent induction of HO-1, a molecule related to oxidative stress [53]. These
activities, including the inhibition of cytokines and NO during severe sepsis, suggest that honey may
be useful for the treatment of sepsis. The phenolic compounds in Gelam honey play a role in protecting
tissues from LPS and free radicals due to their antioxidant activity, such as scavenging oxygen radicals,
NO, and lipid radicals [54], and preventing cancer and various inflammatory disorders, such as
arthritis and septic shock induced by endotoxemia [55-58]. The beneficial effects of honey, which
include preventing histological changes and hypoxia in the organs of rabbits treated with LPS, may be
directly related to its antioxidant activity, or indirectly related to the inhibition of PMNL chemotaxis,
thereby preventing the production of the chemotactic agents implicated in tissue damage. We showed
previously that Gelam honey has potent antioxidant activity and inhibits mediators of inflammation,
such as cytokines, NO and PGE2 [9,10,53]. Allergic reactions constitute a potentially serious
contraindication for injecting people with honey because honey contains bee-secreted and plant pollen-
derived proteins that are known to induce allergic reactions [59].

4. Experimental Section
4.1. Preparation of Honey

Malaysian Gelam honey (Melaleuca spp.) was purchased from the department of Agriculture, Batu
Pahat, Johor, Malaysia, and sent to Malaysian Nuclear Agency for sterilization using a Cobalt-60
source (Model JS10000). Honey was mixed with saline and filtered through a 0.20 pm syringe filter
before injection.
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4.2. Animals

Mice Balb/c mice (67 weeks of age) and New Zealand white male rabbits weighing 25 g and 2 kg,
respectively, were kept in individual cages under standard conditions (12 h light and 12 h dark
conditions); water and chow diet were available ad libitum. The study was carried out in accordance
with the University of Malaya Animal Ethics Committee guidelines for animal experimentation and
followed the approved protocols outlined in the project license (ANES/14/07/2010/MKAK (R)).

4.3. Toxicity Tests

The toxicity of Gelam honey was evaluated in mice (n = 8) for 1 month prior to the study. Four
different doses of honey (10, 60, 300, and 600 mg/kg diluted in saline) were administered daily by
injection into the tail vein (final volume, 100 pL). The control group received a similar volume of
saline. Mice were observed for 3 h after injection. Symptoms and mortality were recorded for all
groups. At the end of the study, all mice were sacrificed, and blood and organs were collected.
Compared with the control group, the treated groups showed no abnormalities on biochemical and
histopathological analysis of the liver, lungs, and kidneys (data not shown).

4.4. Induction of an Immune Response in Rabbits by LPS Stimulation and Treatment with Honey

New Zealand white male rabbits were divided into six groups (N = 6) of six animals (n = 6) and
each group was treated as described below. An immune response was induced in four groups by
intravenous injection of 0.5 mg/kg LPS (B: 0111; Sigma, St. Louis, MO, USA) diluted in saline. One
hour before LPS injection, honey (500 mg/kg diluted in saline) was injected into the rabbits from two
groups (treated group), while saline was injected into the rabbits from another two groups (untreated
groups). The two remaining groups acted as negative controls and were given saline only and no LPS.
All doses were administered in a final volume of 1 mL and were mixed immediately prior to injection.
Three groups, one from each treatment stream, were used for biochemical and histopathological
studies and assessment of myeloperoxidase (MPO) activity as described below, while the remaining
three groups were used to assess survival rates. Survival was monitored every 12 h for 15 days.

4.5. Biochemical Analysis

Blood samples were collected from the ears of rabbits after 8 h of LPS injection. Serum was
separated by centrifugation at 3000 < g at 23 <C, and hematological and biochemistry analysis were
performed using an automated hematology cell counter analyzer (Sysmex XE-2100, Sysmex America, Inc.)
and Advia 2400 Chemistry System (Siemen, Eschborn, Germany), respectively, in the clinical
diagnostic laboratory at University of Malaya Medical Center. Biochemical analyses included
measurement of glucose, liver, and kidney functions. The parameters used for hematological analysis
were red blood cell count (RBC), white blood cell count (WBC), and platelet counts. Arterial blood
samples were collected to measure pH, pO,, pCO,, and HCO3 using a blood gas analyser at the same
time as the other biomedical tests were performed.
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4.6. Myeloperoxidase Assay

Neutrophil infiltration into the lungs was monitored by measuring MPO activity as previously
reported [60]. Briefly, tissue specimens were homogenized at 50 mg/mL in PBS (50 mM, pH 6.0)
containing 0.5% exadecyltrimethylammonium bromide (Sigma-Aldrich). Samples were freeze-thawed
three times and centrifuged at 13,000 rpm for 20 min. The supernatants were diluted 1:30 in assay
buffer (50 mM PBS pH 6.0 containing 0.167 mg/mL o-dianisidine; (Sigma-Aldrich) and 0.0005%
H,0,), and the colorimetric reaction was measured at 450 nm for between 1 and 3 min in a
spectrophotometer (Microplate reader, Model 680, Life Science Research, Bio-Rad). MPO activity/g
of wet tissue was calculated as follows: MPO activity (U/g wet tissue) = (A450) (13.5)/tissue weight (g),
where A450 is the change in the absorbance of 450 nm light between 1 and 3 min after the initiation of
the reaction. The coefficient 13.5 was empirically determined such that 1 U MPO activity
corresponded to the amount of enzyme that reduced 1 umol peroxide/min.

4.7. Histopathology

Liver, lung, heart, and kidney tissues were fixed in 10% formalin after the organs were dehydrated
using graded ethanol solutions, cleared with xylene, paraffin embedded, sectioned, and stained with
hematoxylin and eosin. Pathological changes were evaluated under a light microscope by a pathologist.

4.8. Statistical Analysis

All data are expressed as the mean xconfidence interval. Data were analysed using GraphPad prism
statistical software (San Diego, CA, USA) for non-parametric analysis of variance. Kaplan—Meier
analysis was used to compare survival rates. Differences were considered statistically significant at
P <0.05.

5. Conclusions

In summary, Gelam honey protects organs from lethal doses of LPS by improving organ functions,
reducing infiltration by PMNSs that cause tissue damage, reducing MPO activity and increasing the
survival rate.
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Abstract: Monocytes and macrophages are part of the first-line defense against bacterial,
fungal, and viral infections during host immune responses; they express high levels of
proinflammatory cytokines and cytotoxic molecules, including nitric oxide, reactive
oxygen species, and their reaction product peroxynitrite. Peroxynitrite is a short-lived
oxidant and a potent inducer of cell death. Honey, in addition to its well-known sweetening
properties, is a natural antioxidant that has been used since ancient times in traditional
medicine. We examined the ability of Gelam honey, derived from the Gelam tree
(Melaleuca spp.), to scavenge peroxynitrite during immune responses mounted in the
murine macrophage cell line RAW 264.7 when stimulated with lipopolysaccharide/
interferon-y (LPS/IFN-y) and in LPS-treated rats. Gelam honey significantly improved
the viability of LPS/IFN-y-treated RAW 264.7 cells and inhibited nitric oxide
production—similar to the effects observed with an inhibitor of inducible nitric oxide
synthase (1400W). Furthermore, honey, but not 1400W, inhibited peroxynitrite production
from the synthetic substrate 3-morpholinosydnonimine (SIN-1) and prevented the
peroxynitrite-mediated conversion of dihydrorhodamine 123 to its fluorescent oxidation
product rhodamine 123. Honey inhibited peroxynitrite synthesis in LPS-treated rats. Thus,


mailto:marzida@gmail.com
mailto:gracieo@um.edu.my

Int. J. Mol. Sci. 2012, 13 2

honey may attenuate inflammatory responses that lead to cell damage and death,
suggesting its therapeutic uses for several inflammatory disorders.

Keywords: inflammation; honey; nitric oxide; peroxynitrite; macrophage

1. Introduction

Monocytes and macrophages play critical roles in innate immunity. Specifically, these cells act as a
part of the first-line defense against bacterial, fungal, and viral infections during host immune
responses [1] by expressing high levels of proinflammatory cytokines such as tumor necrosis factor
(TNF)-a, interferon (IFN)-y, and interleukin (IL)-1p, and cytotoxic molecules such as nitric oxide (NO)
and reactive oxygen species (ROS) [2,3]. The inflammatory response is accompanied by the
upregulation of a lipopolysaccharide (LPS)-inducible isoform of NO synthase (iNOS) [4], the
expression of which is correlated with the degree of inflammation [5] as well as the presence of NO.
However, in addition to their defensive roles, proinflammatory responses can damage DNA and other
cellular structures, activating necrosis, apoptosis, and potentially, tumorigenesis [6,7].

Of the inflammatory modulators produced in response to LPS, NO is implicated in both acute and
chronic models of inflammation, including septic shock [8], where there is extensive damage to host
tissues. The damage is, in part, due to the reaction of NO with superoxide radicals, resulting in the
formation of peroxynitrite (ONOOQO"). This short-lived oxidant species profoundly influences the
inflammatory response at multiple cellular levels and is a potent inducer of cell death [9]. The
biological targets of peroxynitrite include membrane, cytosolic, and nuclear receptors [9]. During
inflammation, peroxynitrite also reacts with inflammatory mediators such as interleukins, and
with iNOS, either triggering or enhancing proinflammatory pathways mediated by nuclear factor
(NF)-xB [10]. Furthermore, the reaction products of peroxynitrite are detected in several pathological
conditions, including vascular diseases, ischemia-reperfusion injury, circulatory shock, inflammation,
pain, and neurodegeneration. Conversely, studies in animal models of inflammation and reperfusion
injury have shown a protective effect for compounds that either inhibit peroxynitrite formation or
accelerate its decomposition [9,11-16].

Honey is a well-known natural sweetener; this property is conferred by its complex mixture of
carbohydrates, which are the main constituents of honey and are produced by honeybees from nectar
sucrose. Monosaccharides, including fructose and glucose, are the major carbohydrates in honey;
disaccharides (such as maltose and sucrose), trisaccharides (such as maltotriose and panose), and
oligosaccharides are also present in honey [17-22]. In addition, honey also contains minerals, vitamins,
enzymes, flavonoids, and phenolic compounds, making it a natural antioxidant [23]. Indeed, honey has
been used in traditional medicine since ancient times [24]. It has potential effects in high oxidative
stress conditions, and its ability to modulate antioxidant enzymes as well as its antioxidative properties
provide protective effects against oxidative stress [25,26]. Recent studies demonstrated a strong
correlation between the content of phenolic compounds in honeys from various floral sources and their
antioxidant capacity and beneficial effects in human health [27-31]. One of the potential benefits of
phenolic compounds is that they stabilize cell membranes by reducing lipid peroxidation and
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scavenging free radicals, [32] and they simultaneously enhance membrane integrity against several
chemical and physical stress conditions [33]. Various studies investigated the potential protective
effects of phenolic compounds against oxidative damage to red blood cells [34,35]. Honey
demonstrated strong reducing activity against free radicals, with significant suppression/prevention of
cell damage, complete inhibition of cell membrane oxidation and intracellular ROS production, and
recovery of intracellular glutathione in cultured endothelial cells. This protective effect is mainly
attributed to phenolic acids and flavonoids [36]. The phenolic compounds in honey were found to
scavenge free radicals and prevent the production of malondialdehyde, a biomarker of oxidative
damage, in a concentration-dependent manner [36,37].

Gelam honey is derived from the nectar of the Gelam tree (Melaleuca spp.), which grows in the
forests of Malaysia. [38,39]. Gelam honey is reported to have a high phenolic content, with many
phenolic compounds isolated from it, such as gallic acid, chlorogenic acid, caffeic acid, p-coumaric
acid, ferulic acid, ellagic acid, quercetin, hesperetin, luteolin, kaempferol, and chrysin [40]. A previous
study showed that Gelam honey exhibited antibacterial activity and free radical scavenging activity
because of its phenolic compounds; furthermore, Gelam honey inhibited inflammation in vitro and
in vivo [38-42]. It is also a potent inducer of heme oxygenase-1 (HO-1) and significantly reduces
DNA damage and plasma malondialdehyde levels [41,43]. In this study, we tested the ability of Gelam
honey to scavenge peroxynitrites in LPS/IFN-y-stimulated murine macrophages (RAW 264.7) in vitro,
and in a rat model of inflammation in vivo. Therefore, in this study, we carefully examined the
cytoprotective effects of Gelam honey under the cellular damage conditions induced by two doses of
LPS. In parallel, the effect of NO on murine macrophage (RAW 264.7) cell viability was
also examined.

2. Results
2.1. Effect of Gelam Honey on Untreated and LPS/IFN-y-Stimulated Cells

In RAW 264.7 cells, none of the doses of honey resulted in cytotoxicity, and the concentrations of
honey did not affect cell viability (Figure 1). However, the viability of cells stimulated with 1 pg/mL
LPS and 35 ng/mL IFN-y was <68% of the control (untreated) value.

In contrast, as shown in Figure 2A, pretreatment with honey had a protective effect on
LPS/IFN-y-stimulated cells, significantly increasing their viability to >76% (p < 0.03), whereas the
viability of cells pretreated with 1400W was >90% (p < 0.001). Increasing the LPS concentration to
3 pug/mL significantly reduced the viability of the untreated cells to <50% of the control value, whereas
the addition of honey increased viability to >69% (p < 0.001), and the addition of 1400W resulted
in >79% viability (p < 0.001) (Figure 2B).
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Figure 1. Effect of honey and the iNOS inhibitor 1400W on the viability of RAW 264.7
macrophages. Cells were treated or not treated (control) with the indicated concentrations
of honey or 100 uM 1400W. Cell viability was determined by the mitochondrial reduction
of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Data are expressed
as the mean £ SEM of five independent experiments performed in triplicate. The viability
of untreated cells was defined as 100%.
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Figure 2. Cytoprotective effect of honey against LPS/IFN-y-induced cytotoxicity. RAW
264.7 cells were incubated with either 1 pg/mL LPS and 35 ng/mL IFN-y (A) or 3 pg/mL
LPS and 35 ng/mL IFN-y (B), and with various concentrations of honey or 100 uM of the
iINOS inhibitor 1400W. The negative control was completely untreated (control), and the
positive control was treated only with LPS/IFN-y (LPS). After 24 h incubation, cell
viability was determined using an MTT assay. *** p < 0.001 and ** p < 0.003 indicate
significant differences compared with the LPS/IFN-y group.

120 =

110 A

100 = — * %

AN Esmss =

E 70 120 B
S s0 10 kw0
_(% 100
— 50 = 90 R
= 40 = 80 p
2 704
30 = § 604
20 = S 50
40
10 = 30
o L] L] L] L] L] L] L] L] L] L] L] ig_
PO RN S It NI BV P e s s e
© hd 6»\} (,@\\0 \9@$\}°\:§, VY T Y Q@ 0-@
N \'ch’ ! - i
Concentration of honey (mg/mL) v Concentration of honey (mg/mL)

Honey also significantly inhibited NO formation in cells that were stimulated with the indicated
concentration of LPS (1 pg/mL or 3 pg/mL). A dose-dependent effect was observed at higher
concentrations of honey (Figure 3).
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Figure 3. Effect of honey on NO production. NO production was estimated in RAW 264.7
macrophages pretreated for 1 h with the indicated concentrations of honey or the iINOS
inhibitor 1400W (100 uM) and then exposed to 1 pg/mL LPS and 35 ng/mL IFN-y (A) or
3 pg/mL LPS and 35 ng/mL IFN-y (B) for 24 h. Nitrite accumulation in the supernatant
was measured by the Griess reaction. All results are expressed as a percentage of the
LPS/IFN-y control (mean = SEM of 5 independent experiments performed in duplicate).
***p <0.001, ** p <0.003, and * p < 0.05 indicate significant differences compared with
the LPS/IFN-y group.
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2.2. Effect of Gelam Honey on Peroxynitrite in vitro and in vivo

An increase in the oxidation of dihydrorhodamine 123 (DHR-123) is indicative of the presence of
peroxynitrite. In the 3-morpholinosydnonimine (SIN-1) model, honey was found to be a potent
scavenger of peroxynitrite, inhibiting the SIN-1-induced oxidation of DHR-123 to rhodamine 123
with a half-maximal inhibitory concentration (ICsp) of 0.148 mg/mL. Highly significant levels of
oxidation were recorded in the presence of the iNOS inhibitor 1400W and in the (untreated) positive
control (Figure 4A). To directly confirm the peroxynitrite scavenging activity of honey, peroxynitrite
was incubated with or without different concentrations of honey (Figure 4B). In these experiments,
honey also inhibited DHR-123 oxidation, presumably by scavenging peroxynitrite, with an 1Cs, of
0.68 mg/mL. However, oxidation was not inhibited by 1400W because the level of rhodamine 123
fluorescence was the same as that in the untreated control (Figure 4B). The addition of Gelam honey to
RAW 264.7 cells that were induced with LPS/IFN-y for 24 h also completely attenuated peroxynitrite
activity and had an ICso of 0.254 mg/mL (Figure 4C). In this experiment (unlike the previous
2 experiments), peroxynitrite synthesis was inhibited, and DHR-123 was not converted to its
fluorescent product because cellular INOS was blocked by 1400W (100 puM) (Figure 4C).
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Figure 4. Effect of honey on the peroxynitrite-induced oxidation of DHR-123. (A) SIN-1,
a peroxynitrite donor, was incubated for 2 h with different dilutions of honey (in PBS),
1400W (100 pM), and DHR-123, and the formation of rhodamine 123 was measured;
(B) Honey (different dilutions in PBS) or 1400W (100 uM) were incubated for 15 min
with DHR-123 and peroxynitrite, and the formation of rhodamine 123 was measured;
(C) RAW 264.7 cells were incubated with honey (different dilutions in PBS), 1400W
(100 uM), and DHR-123 for 60 min. Then, LPS/IFN-y was added, and the cultures were
incubated for an additional 24 h, after which the formation of rhodamine 123 was
measured. Results are expressed as a percentage of the control (mean = SEM of
3 independent experiments performed in triplicate). *** p < 0.001 and ** p < 0.003.
Rhodamine 123 formation in the untreated control was defined as 100%.

A B
120+ 120-
Q Q
S 1004 Iy p=— — 100 =
:DE: % **x *kKx
I 80 * Kk [a) 801 |
iS) | S 4l
E 60- 5 60
8 40- g 401
2 <
T T Hinln
S M 8
(0] T T T T T T T T A—p—. 0 T T T T T T T T T
RS SRCIIC S B S & QQ@ BRI LI S
& W OT o7 o7 o & O o
Honey (mg/mL) Honey (mg/mL)
C

1201

100 | e

% Oxidation of DHR 123
(o))
9

Honey (mg/mL)

Pretreatment with 50 mg/kg or 500 mg/kg of honey also significantly inhibited peroxynitrite
formation in rats, albeit not in a dose-dependent manner. Inhibition was determined by a reduction in
3-nitrotyrosine, which is an in vitro marker of peroxynitrite (Figure 5).
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Figure 5. Effect of honey on the concentration of 3-nitrotyrosine in rat serum. Treated
groups of animals were intravenously injected with either honey (50 or 500 mg/kg diluted
in saline) or saline alone. One hour later, the treated animals were injected with LPS
(5 mg/kg), and 4 h later, the treated and untreated rats were killed. The sera were collected
and assayed for the presence of 3-nitrotyrosine. Data are expressed as the mean + SEM.
*** 1 <0.001 and * p < 0.05 compared with the positive (LPS alone) control.
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3. Discussion

This study investigated the ability of honey to modulate peroxynitrite-induced cell damage in
LPS/IFN-y-stimulated cultured macrophages and in a rat model of LPS-induced inflammation. The
data presented here suggest that honey, through its antioxidant properties, is able to protect host
immune cells from the inflammation-mediated cytotoxicity that develops in response to LPS
stimulation. Gelam honey prevented the LPS-mediated decrease in RAW 264.7 cell viability caused by
the high production of cytotoxic molecules such as cytokines, ROS, NO, and peroxynitrite [1]. Honey
apparently scavenged peroxynitrite in RAW 264.7 cells induced with LPS/IFN-y in vitro. Inhibitory
effects were also observed upon incubation with the substrate SIN-1, a peroxynitrite donor, and with
peroxynitrite itself. The ability of honey to scavenge peroxynitrite in tissues in vivo was demonstrated
by the absence of 3-nitrotyrosine, a peroxynitrite marker, from rat serum.

Excess NO production is cytotoxic and has a broad spectrum of cellular effects. In RAW 264.7
macrophages, there was a pronounced increase in NO production and a significant decrease in cell
viability after stimulation with LPS/IFN-y, which is known to induce iNOS and thus increase cellular
NO concentrations. This decrease in viability was much less pronounced in the presence of 1400W,
suggesting that cytotoxicity was induced by iNOS and NO. In fact, NO production, measured as nitrite
in the Griess reaction, was almost completely inhibited by iNOS inhibition.

The mechanism by which NO mediates toxicity includes the generation of reactive nitrogen
derivatives such as peroxynitrite, which acts upon multiple cellular targets, including DNA and various
proteins [44]. Thus, cellular exposure to high concentrations of peroxynitrite often leads to rapid,
necrotic-type cell death due to acute and severe cellular energetic derangements [11,45,46]. In contrast,
lower concentrations of peroxynitrite trigger delayed apoptosis that is mainly dependent on the activation
of caspases 3, 2, 8, and 9, similar to other forms of oxidant/free radical-mediated apoptosis [47-50].
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The effects of NO on cell viability are proportional to the cellular non-heme iron content. Thus, NO
induces apoptosis in cells with a low non-heme iron level, such as RAW 264.7 macrophages, whereas
it induces necrosis in cells with a high non-heme iron level, such as hepatocytes [51]. For example, NO
induces both caspase-3 activation and cytochrome c release in apoptotic RAW 264.7 cells, and a
caspase-3 inhibitor prevents NO-mediated RAW 264.7 apoptotic cell death [51]. NO readily reacts
with non-heme iron to form iron-nitrosyl complexes [52,53], which are thought to protect cells from
NO-induced toxicity by a scavenging mechanism [53]. Alternatively, NO may be converted to
S-nitrosylating species, which act as potent regulatory molecules in a variety of cell types and cellular
functions [54,55].

Recent studies show that peroxynitrite stimulates the release of the mitochondrial apoptosis-inducing
factor, which subsequently triggers DNA fragmentation [56], release of mitochondrial pro-apoptotic
factors, and cytochrome c-dependent apoptosis in the cytosol, through peroxynitrite-dependent
oxidation of the mitochondrial permeability transition pore. The key role of peroxynitrite in promoting
mitochondrial dysfunction is clearly exemplified in experimental sepsis, in which peroxynitrite
production results in the inhibition of mitochondrial respiration in the diaphragm in a process
associated with mitochondrial protein nitration. The latter is prevented by NO synthase inhibitors and
Mn-porphyrin therapy [57]. Peroxynitrite-induced activation of the MLK/p38/JNK pathway also plays
a crucial role in apoptosis [58-60]. This study shows that honey can inhibit NO production, and thus
peroxynitrite formation, thereby reducing the effects of these cytotoxic compounds both in vitro and
in vivo. Moreover, scavengers of peroxynitrite are known to be protective against tissue damage [9].
Some scavengers of peroxynitrite, such as uric acid, ebselen, mercaptoalkylguanidines, N-acetylcysteine,
and dihydrolipoic acid, and some chemicals that work as decomposition catalysts of peroxynitrite,
such as metalloporphyrins of iron and manganese, can attenuate the toxic effects of peroxynitrite
in vitro and in vivo [11,16,61-68]. These compounds can reduce 3-nitrotyrosine immunoreactivity in
various pathophysiological conditions and have beneficial effects in animal models of inflammation,
sepsis, and reperfusion injury [57,68-77]. Many phenolic compounds, such as gallic acid, caffeic acid,
kaempferol, ferulic acid, p-coumaric, and quercetin have been shown to inhibit peroxynitrite.
Monohydroxylated phenolic compounds, such as ferulic acid and p-coumaric acid, act as peroxynitrite
scavengers by nitration. On the other hand, compounds with a catechol moiety, such as caffeic acid
and chlorogenic acid, reduce peroxynitrite by electron donation [66,78]. Interestingly, all of the above
phenolic compounds were identified in Gelam honey [40]. Data from this study was in agreement with
that of previous studies as described earlier. Moreover, a direct interaction through nitration and
electron donation between honey and peroxynitrite is suggested by the results of the experiments
involving SIN-1 and the direct incubation of honey and peroxynitrite. In addition, the presence of
phenolic compounds in Gelam honey that act as potent scavengers of peroxynitrite, as described above,
supports this hypothesis. In our previous studies, we demonstrated the anti-inflammatory activity of
Gelam honey and its methanol and ethyl acetate extracts, on the basis of their abilities to suppress NO
production in macrophages and rat inflammation models, inhibit the release of NO-induced cytokines
(such as TNF-a, IL-1B, and IL-10) and high mobility group protein 1 (HMGB1), induces HO-1 in
animal models, and protects organs from lethal doses of LPS that induce sepsis [39-41,79]. Gelam
honey also inhibited iINOS protein expression in an animal model [80]. The results of this study
support these previous findings, confirming the protective effects of honey mediated through the
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inhibition of NO and its derivatives (ONOO) and, thus, its ability to prevent inflammatory-type
cytotoxicity both in cultured macrophages and in animals.

The antioxidant and radical-scavenging abilities of Gelam honey are attributable to its phenolic
compounds, which were also identified and quantified in previous studies [38]. The potential of Gelam
honey to reduce LPS-induced inflammation is also mediated by its ability to reduce the release of
proinflammatory cytokines and prostaglandin (PG) E,, both of which play a central role in
inflammation [39,79]. In these studies, the reduced release of cytokines such as TNF-a, IL-1, and IL-10
was quite dramatic in an endotoxemia model. This finding is particularly relevant to macrophages,
where these mediators play a fundamental role in cell activation because they are released during the
early stages of the inflammatory cascade [81]. In addition, honey may suppress NF-kB activation
through other biologically active components, and consequently, inhibit iNOS induction [82,83].
Taken together, our work supports further investigations into the use of honey as a natural antioxidant,
based on its ability to protect cells by inhibiting NO production, scavenging peroxynitrite, and
modulating other inflammatory mediators such as PGE,; HMGB1, HO-1, and cytokines. The
involvement of mechanisms other than iNOS inhibition, NO production, and peroxynitrite scavenging
in these processes is suggested because low doses of honey had no effect on NO synthesis but did
increase the viability of cells treated with LPS.

4. Experimental Section
4.1. Preparation of Gelam Honey

Fresh Malaysian honey, Apis mellifera (Gelam), was obtained from the National Apiary
(Department of Agriculture, Parit Botak, Johor, Malaysia) and sent to the Malaysian Nuclear Agency
for sterilization using a cobalt-60 source (model JS10000). Before its use in the in vitro and in vivo
experiments described below, the sterilized honey was passed through a 0.20-um filter syringe. The
following concentrations were tested: 0.039, 0.078, 0.15, 0.31, 0.62, 1.25, 2.5, and 5 mg/mL.

4.2. Animals

Male Sprague—Dawley rats weighing 300-350 g were housed in individual cages under standard
conditions (12 h light and 12 h dark). The animals were fed a diet of Purina lab chow and given water
ad libitum. The study was carried out in accordance with the guidelines for animal experimentation of
the University of Malaya Animal Ethics Committee and the protocols were approved under the terms
set out: project license ANES/14/07/2010/MKAK (R).

4.3. Cell Culture and Reagents

The murine macrophage cell line RAW 264.7 was maintained in Dulbecco’s Modified Eagle
Medium (DMEM), supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS), 100 U/mL
penicillin, and 100 U/mL streptomycin in a humidified 37 °C, 5% CO, incubator. DMEM without
phenol red, FBS, and antibiotics (penicillin, streptomycin) were purchased from Nacalai Tesque
(Kyoto, Japan). LPS (Escherichia coli 0111 B4), iNOS inhibitor (1400W), and IFN-y were purchased
from Sigma-Aldrich (St. Louis, MO, USA).
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4.4. LPS/IFN-y Stimulation of RAW 264.7 Cells

RAW 264.7 cells were grown in 10% FBS-DMEM and seeded at a density of 2 x 10° in a 24-well
plate, followed by incubation for 24 h at 37 °C. The cells were then washed with PBS and resuspended
in fresh medium containing different concentrations of Gelam honey (0.039-5 mg/mL) or 100 uM of
1400W. Untreated cells were included as positive or negative controls in each experiment. One hour
later, 1 or 3 pg/mL of LPS and 35 ng/mL of IFN-y were added to the cultures, followed by incubation
for 24 h at 37 °C and 5% CO, [84]. The cells were then processed for viability or NO or peroxynitrite
detection as described below.

4.5. Measurement of Mitochondrial Respiration

The viability of RAW 264.7 macrophages was determined in cultures treated or not treated with
LPS/IFN-y and different concentrations of Gelam honey or 1400W. The viability was measured in
terms of cellular respiration as assessed by the mitochondrial-dependent reduction of MTT to
formazan. Cells were cultured, stimulated with LPS, and treated with honey or 1400W as described
above, after which 100 pL of MTT (5 mg/mL) was added to each well, followed by 1 h incubation
under the same conditions. The MTT solution was then removed and the cells were solubilized in
200 pL DMSO with shaking for 5 min. The absorbance was measured at 550 nm using a microplate
reader (GloMax®-Multi Microplate detection; Promega, Madison, W1, USA) [85]. All experiments
were repeated 5 times in triplicate.

4.6. Nitric Oxide Assay

Nitric oxide has a half-life of only a few seconds before it is quickly converted to nitrate and nitrite.
These products can be measured using the colorimetric Griess reaction to indirectly determine the NO
concentration. Therefore, RAW 264.7 cells were cultured and treated as described in Subsection 4.4
(LPS/IFN-y stimulation of RAW 264.7 cells), after which 100 pL of the culture was placed in a
96-well plate, together with an equal amount of Griess reagent (50 puL of 1% sulfanilamide in 5%
concentrated H3PO, and 50 pL of 0.1% naphthylethylenediamine dihydrochloride in distilled water).
The reaction between the Griess reagent and the nitrite present in the supernatant yields a pink
derivative that can be spectrophotometrically quantified from a concentration curve prepared from a
nitrite standard [40].

4.7. DHR-123 Oxidation Assay
4.7.1. DHR-123 Oxidation Using SIN-1

SIN-1 spontaneously releases NO and superoxide under physiological conditions. At pH 7.4, SIN-1
is converted to SIN-1A via base-catalyzed ring opening. During ring opening, the oxygen undergoes
univalent reduction to O, . SIN-1A then releases NO and is converted to the stable metabolite SIN-1C,
whereas the O, radical reacts with NO to form peroxynitrite (ONOO ). The oxidation of DHR-123 by
ONOO results in the formation of fluorescent rhodamine 123, the amount of which can be measured
by fluorometric analysis (GloMax®-Multi Microplate) at an excitation wavelength of 460-530 nm and
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an emission wavelength of 530-590 nm. In experiments examining the effects of honey on
peroxynitrite scavenging, 100 uM of SIN-1 was used and the reactions were carried out in PBS, with
the incubation of the samples for 2 h at 37 °C [84].

4.7.2. DHR-123 Oxidation Using Peroxynitrite

The ability of peroxynitrite to oxidize DHR-123, thus converting it to rhodamine 123, was also
measured directly as previously described [9]. Briefly, 10 uM peroxynitrite was mixed in PBS
containing 20 uM DHR-123, in the absence or presence of either honey (0-5 mg/mL) or 100 uM of
1400W. After a 15-min incubation period at room temperature, the fluorescence of the rhodamine
123 reaction product was measured (GloMax®-Multi Microplate) at an excitation wavelength of
460-530 nm and an emission wavelength of 530-590 nm.

4.7.3. DHR-123 Oxidation by LPS/IFN-y-Treated RAW 264.7 Cells

Cells were cultured, stimulated with LPS, and treated with honey or 1400W as described in
subsection 4.4 (LPS/IFN-y stimulation of RAW 264.7 cells) in the presence of 10 uM DHR-123. After
24 h, 100 pL of the culture suspension was removed, and the amount of rhodamine 123 was
determined fluorometrically.

4.8. Induction of an Immune Response in LPS-Stimulated Rats and the Effects of Honey

Rats were divided into four groups of six animals each. An immune response was induced in the
animals in three of the four groups by intravenous injection of 5 mg/kg LPS (0111B4; Sigma) diluted
in saline. One of these groups served as the positive control (LPS only), whereas the other two groups
were intravenously injected with 50 or 500 mg/kg honey diluted in saline. The fourth (negative control)
group was given saline only. All doses of LPS and honey were prepared immediately before injection,
and 0.5 mL of the preparations were injected. The blood was collected (by cardiac puncture) from rats
4 h after the immune response was induced. The levels of 3-nitrotyrosine in the sera were measured
using an ELISA kit according to the manufacturer’s protocol (Cell Biolabs Inc., San Diego, CA, USA).

4.9. Statistical Analysis

Student’s t-test and a non-parametric one-way ANOVA were used to determine the statistical
significance of differences between the experimental and control groups, with p < 0.05 considered to
be statistically significant.

5. Conclusion

In conclusion, our data showed that honey is a potent peroxynitrite scavenger in vitro and in vivo
that has cytoprotective effects against peroxynitrite-mediated cellular injury and death. Moreover, the
preservation of cellular viability from peroxynitrite-mediated damage is critical to any consideration of
the potential therapeutic value of peroxynitrite scavengers in many diseases, including inflammation
and sepsis. This finding suggests that honey has therapeutic applications for a wide range of
inflammatory disorders.
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CHAPTER 4. GENERAL DISCUSION AND CONCLUSION

4.1 Discussion

Although HPLC did not provide information about some compounds and their
derivatives and conjugates, the identification of some phenolic compounds and their
derivatives, such as ellagic acid and ellagitannin and their conjugates was possible with
LC-MS. The inhibition of inflammatory mediators, such as TNF and NO, which were
explored in this study, is one of the important steps in controlling inflammation.
Reactive oxygen species (ROS) play a critical role in mediating TNF-o-induced
cytotoxicity (Kunnumakkara et al., 2008). It was shown that such cytotoxicity can be
blocked by specific free radical scavengers (Goossens et al., 1995). Our findings show
that both types of the honey extracts had a dose-dependent protective effect in TNF-a-
mediated cytotoxicity. Previous research has reported that Malaysian honey has free
radical scavenging activity. Although the concentrations of the phenolics identified
were higher in HME, the in vitro anti-inflammatory activity seemed to be better for
HEAE. This could be explained by the fact that the concentrations were reported for
every 100 g of honey extracted. The dry extract yield ratio of the HEAE to the HME
had been 1:5 for every 100 g of honey, hence over-representing the concentrations of
the phenolic compounds in the methanol extract. Phenolic compounds in Gelam honey
and its extracts do appear to have anti-inflammatory effects against the inflammatory
mediators NO and PGE; in tissues. Effects on NO and PGE; correspond with the
reduction in paw edema volume and the inhibition of pain. Honey and its extracts are,
therefore, potentially useful for treating inflammatory conditions. The immune model
(LPS) showed a faster development of edema, with the largest edema volume being
recorded at 3 hrs. On the other hand, the non-immune model (carrageenan) induced a

larger edema volume, and the development of edema occurred over a longer period with
82



the largest edema volume being recorded at 6 hrs. The effects of honey and its extracts
were significant in both models but were more pronounced in the carrageenan model.
This may be attributed to the fact that carrageenan is known to destroy macrophages
(Ogata et al., 1999). In this model, a decrease in paw withdrawal latency to radiant heat
and withdrawal threshold was observed throughout the 30 min - 7 hrs time period after
induction of the paws by carrageenan. The results depict that honey and its extracts
showed potent anti-nociceptive activity which is caused by the inhibition of PGE; and
NO. The extracts were more significant supporting the above suggestion for the

involvement of phenolic compounds in this activity.

Nitric oxide (NO) is known to be an important mediator of acute and chronic
inflammation. The results show that honey and it extracts inhibited NO in inflammatory
tissues in both models. In the carrageenan model, the inhibition was more pronounced
than that of the LPS model. The major phenolic compounds in the methanol and ethyl
acetate extracts were gallic acid, ellagic acid, caffeic acid, luteolin, chrysin and
quercetin. The anti-inflammatory activity correlates positively with the radical-
scavenging activity and total phenolic content (Terra et al., 2007). Prostaglandin is a
very important mediator of all types of inflammation. Previous studies have shown that
COX-2 is responsible for increased prostaglandin production in inflamed tissue
(DeWitt, 1991). The results indicate that honey and its extracts inhibit the PGE; in
inflammatory tissues of both inflammation models. Specific inhibition of COX-2
expression at the transcriptional level is a potent mechanism in the treatment of
inflammatory disease (O'Banion et al., 1992). It is possible that honey and its extracts
are selective inhibitors of COX-2 because honey has no side effects on the
gastrointestinal system. Different extraction methods and solvents yield different
concentrations of phenolic compounds in honey. In addition the study’s findings

resulted in Malaysian honey displaying varying anti-inflammatory activities in the two
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in vitro models of inflammation used. This bioactivity may be attributed, at least in part,
to the phenolic compounds within the extracts, thus, highlighting the nutritional value of
this food. In addition to its well-known properties as a natural sweetener, honey has
many anti-inflammatory properties. These include the ability to stimulate HO-1
production and to inhibit the release of both pro- and anti-inflammatory cytokines
(TNF-a, IL-1, IL-10), HMGBL1, and NO. Together, these effects suggest a mechanism
by which honey is able to protect animals from the lethal effects of LPS-induced
endotoxemia. Therefore, honey should be further explored with respect to its anti-
inflammatory and immunomodulatory properties for use in the treatment of
inflammatory diseases. Intravenous injection of honey into LPS-treated rats inhibited
cytokine production, including that of TNF-a, IL-1, and IL-10, as well as HMGB1 and
NO release, while at the same time inducing HO-1. Thus, consistent with in vitro
studies demonstrating the immunomodulatory effects of gelam honey on cytokines and
NO released in L929 and RAW 264.7(Kassim et al., 2010), our results show that Gelam
honey inhibits cytokines, NO and protects rats from endotoxemia. Upregulation of HO-
1 inhibits the release of cytokines, HMGB1 and NO. The enzyme HO-1 protects
animals from severe inflammation, and a clear relationship has been determined
between HO-1 activation and decreased HMGB1 levels which, in turn, protects animals
from endotoxemia. Our results have been shown that honey inhibited HMGB1 while
inducing HO-1 and increasing the survival of LPS-treated rats. Gelam honey protects
organs from lethal doses of LPS by improving organ functions, reducing infiltration by
PMNs that cause tissue damage, reducing MPO activity and increasing the survival rate.
When immune responses are insufficient, infections can lead to sepsis (Molan, 2001).
Sepsis-induced acute lung injury is a major clinical problem with significant morbidity
and mortality (Luce, 1998; Vincent et al., 2003; Bernard et al., 1994). The present study

is in agreement with previous studies showing that sepsis induces changes in pulmonary
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microvascular neutrophil sequestration and alveolar neutrophil infiltration, (Doerschuk,
2001; Brown et al., 1995; Skoutelis et al., 2000; Razavi et al., 2004) as clearly shown in
the untreated group but not in the honey-treated group. The reductions in RBC, WBC,
and platelet counts observed in the untreated group confirm those seen in earlier reports
(Aoki et al., 2000; Chiou et al., 2002). Treatment with honey significantly attenuated
the severe reductions in blood counts (WBC and RBC) and thrombocytopenia,
suggesting that honey has a protective role against sepsis-induced disseminated
intravascular coagulation. Our results confirm that sepsis caused liver failure, as shown
by significantly elevated serum levels of AST, ALP, and y-GT in the untreated group;
honey inhibited these increases. Improved liver function tests after honey treatment
indicate that honey may potentially protect liver cells from sepsis. Lipid profiles showed
that cholesterol, triglycerides, and LDL levels were significantly increased in the LPS-
induced untreated sepsis group but not in the honey-treated group. However, the HDL
levels were significantly lower in the untreated group. Injection of LPS into animals
induces renal dysfunction characterized by increased blood urea nitrogen and plasma
creatinine levels (Chen et al., 1999; Wellings et al., 1995). Urea nitrogen and plasma
creatinine levels were increased by LPS injection, but were lower in the honey-treated
group than in the untreated group. Both our previous studies and the above results show
that LPS increased the levels of hepatic damage markers, modified lipid metabolism,
and increased lipid profiles, hematological values, and renal dysfunction (Memon et al.,
1993). Our data showed that honey is a potent peroxynitrite scavenger in vitro and in
vivo that has cytoprotective effects against peroxynitrite-mediated cellular injury and
death. Moreover, the preservation of cellular viability from peroxynitrite-mediated
damage is critical to any consideration of the potential therapeutic value of peroxynitrite
scavengers in many diseases, including inflammation and sepsis. This finding suggests

that honey has therapeutic applications for a wide range of inflammatory disorders. The
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data presented here suggest that honey, through its antioxidant properties, is able to
protect host immune cells from the inflammation-mediated cytotoxicity that develops in
response to LPS stimulation. Excess NO production is cytotoxic and has a broad
spectrum of cellular effects. In RAW 264.7 macrophages, there was a pronounced
increase in NO production and a significant decrease in cell viability after stimulation
with LPS/IFN-y, which is known to induce iNOS and thus increase cellular NO
concentrations. This decrease in viability was much less pronounced in the presence of
1400W, suggesting that cytotoxicity was induced by iNOS and NO. In fact, NO
production, measured as nitritein the Griess reaction, was almost completely inhibited
by INOS inhibition. Earlier studies show that peroxynitrite stimulates the release of the
mitochondrial apoptosis-inducing factor, which subsequently triggers DNA
fragmentation (Zhang et al., 2002), release of mitochondrial pro-apoptotic factors, and
cytochrome c-dependent apoptosis in the cytosol through peroxynitrite-dependent
oxidation of the mitochondrial permeability transition pore. This study shows that
honey can inhibit NO production, and thus peroxynitrite formation, thereby reducing the
effects of these cytotoxic compounds both in vitro and in vivo. Moreover, scavengers of
peroxynitrite are known to be protective against tissue damage (Szabo et al., 2007).
These compounds can reduce 3-nitrotyrosine immune reactivity in various
pathophysiological conditions and have beneficial effects in animal models of
inflammation, sepsis, and reperfusion injury (Crow, 2000Crow, 2000; Briviba et al.,
1996; Tabuchi et al., 1995; Batinic-Haberle et al., 2004; Noiri et al., 2001; Wang et al.,
2003; Brodsky et al., 2004; Gealekman et al., 2004; Nin et al., 2004; Crow, 2006;

Beckman, 1996).
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4.2 Conclusion

In conclusion, this study indicated that different extraction methods and solvents
will yield different concentrations of phenolic compounds in honey. Additionally, this
study's findings also supported our hypothesis that Gelam honey extracts would display
varying anti-inflammatory activities in the two in vitro models of inflammation utilized.
This bioactivity may be attributed, at least in part, to the phenolic compounds within the
extracts. As such, this study has made a contribution to the elucidation of the potential
therapeutic value of honey and its extracts in inflammatory conditions, thus highlighting
the nutritional value of this food. Phenolic compounds in Gelam honey and its extracts
do appear to have anti-inflammatory effects against the inflammatory mediators NO and
PGE; in tissues. Effects on NO and PGE; correspond with the reduction in paw edema
volume and the inhibition of pain. In addition to its well-known properties as a natural
sweetener, honey has many anti-inflammatory properties. These include the ability to
stimulate HO-1 production and to inhibit the release of both pro- and anti-inflammatory
cytokines (TNF-a, IL-1, 1L-10), HMGB1, and NO. Together, these effects suggest a
mechanism by which honey is able to protect animals from the lethal effects of LPS-
induced endotoxemia. Gelam honey protects organs from lethal doses of LPS by
improving organ functions, reducing infiltration by PMNs that cause tissue damage,
reducing MPO activity and increasing the survival rate. Honey inhibited peroxynitrite
synthesis in vitro and vivo (endotoxemia). Thus, by suppressing the production of
cytotoxic molecules such as NO and peroxynitrite, honey may attenuate the
inflammatory responses that lead to cell damage and, potentially, to cell death,
suggesting it has therapeutic applications for a wide range of inflammatory disorders.
Suggestion, honey should be further explored with respect to its anti-inflammatory and

immunomodulatory properties for use in the treatment of inflammatory diseases.
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Figure S1: Chromatograms for the phenolic compounds of gelam honey using electrospray ionisation-mass spectra (ESI-MS), the based
peaks (black colour), positive ionisation [+ESI-MS] (red colour) and negative ionisation [-ESI-MS] (green colour). gellic acid at 2.02 min ,

ferulic acid at 11.53 min, quercetin at23.64 min , ellagic acid at 24,58 min, Hesperetin at 27.23 min , and chrysin at 33.26 min.
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Figure S2: Electrospray ionisation-mass spectra negative ionisation (-ESI-MS) for

ferulic acid , MW =Molecular weight (MW= 194 g/mol), ESI-MS [M-H-H,0] = 193.
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Figure S3: Electrospray ionisation-mass spectra (ESI-MS) negative ionisation for

quercetin, MW =Molecular weight (MW=302 g/mol), ESI-MS [M-H] = 301
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Figure S4: Electrospray ionisation-mass spectra (ESI-MS) negative ionisation for

ellagic acid, MW =Molecular weight (MW=302 g/mol), ESI-MS [M-H] = 301.
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Figure Sb5: Electrospray ionisation-mass spectra (ESI-MS) posittive ionisation for

Hesperetin, MW =Molecular weight (MW=302 g/mol), ESI-MS [M+H] = 303
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Figure S6: Electrospray ionisation-mass spectra (ESI-MS) negative ionisation for
chrysin, MW =Molecular weight (MW=254.242g/mol), ESI-MS [M-H] =
253.28.A, P. S. (2002). procedure to identify a honey type. Food Chemistry, 79, 401-

406.
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