CHAPTER Two

REVIEW AND IMPLEMENTATION OF SEASONAL ADJUSTMENT METHODS

2.1 Introduction

Thet interest in seasonally adjusted series by government
agencies has brought about the development and improvement of many
practical seasonal adjustment techniques.

The use of electronic computers by Shiskin and Eisenpress
(1957) in the deseasoning procedures used in the U. S, Bureau of
the Census, the massive manual computations involved in Seasonal
adjustment procedures have been greatly reduced. As a result,
further accelerates the development and application of seasonal
ad justment techniques by economists, geologists, scientists etc.
and  subsequently stimulated the interest to develop more
sophisticated methods.

Techniques in seasonal ad justment, ranging from the simple
moving average filters to the newer model-based approach, are
mainly used in analysis of economic and business time series. A
detailed review on the current development of seasonal adjustment
methods for economic data is given by Bell and Hillmer (1984).

Comparatively, 1little effort has been made in developing
techniques to decompose hydrologic time series. At present, the
common approach for extracting seasonal effects from hydrologic
time series is to standardize the original data. In the following
section, we shall discuss harmonic analysis which is employed 'in

the studies of hydrologic time series.




In view of the resemblance of hydrologic data to commercial
data in its basic structure and composition, we shall try to
investigate whether techniques that have Dbeen designéd for
deseasoning economic and business time series can also be used for
deseasoning hydrologic time series.

In Section 2.3 and 2.4, we shall discuss and implement two
seasonal adjustment techniques. They are the Census X-11
procedure of  Shiskin and Eisenpress (1957) and the
ARIMA-model-based approach of Hillmer and Tiao (1982). We shall
also appraise and compare the applicability of these techniques in

deseasoning the observed river flows used in this study.

2.2 Harmonic Analysis

Harmonic analysis is basically concerned with approximating a
periodic discrete series by a sum of sine and cosine terms. Its
overall effect is to partition the variability of a series of
length N into components at frequencies 2n/N, 4n/N, ., . The
component at angular frequency wj = 2nj/N 1is <called the jth

harmonic. The jth harmonic is defined as a.cos w.t + bjsin wjt,

which can be rewritten as chos(wjt + ¢j) where

Rj = amplitude of the  jth harmonic

=V (% + b2y,
J J
phase of the jth harmonic
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By the well known Parserval’s Theoren, Ri/z is the
contribution of the jth harmonic to the total variance of the
seriés. Let 52 be the total variance of the series, then the
ratio Ri./Zs2 represents the part of the variation explained by the
Jjth harmonic.

In harmonic analysis, hydrologic time series are assumed to
be composed by deterministic periodic components and a stationary
stochastic component. The periodic components are present in
parameters such as the monthly means and standard deviations of
the series. The stochastic component is superposed on these
periodic components.

From past investigations, monthly time series of river flows
are usually non-stationary and both the monthly mean and standard
deviation follow a periodic movement with a fundamental period of
12-month. Therefore, observationAs for each of the 12 calendar
months in a year can be assumed to be drawings from different
populations, each with its own population mean m_ and population
standard deviation sT, where T =1, 2, ..., 12.

The sample estimates of m_ and s, are respectively

PN

m =
T

S

n
Y x
i=1 "

and

>

1 n 1/2
s_ = [— Y (x, -m )}
T n . i, T T
i=1

where X: . represents the observation for the month T of the year

>

i and n is the total number of years.
The classical method for removing the periodicity in m_ and

Sy from {Xi r} is to apply the simple transformation

»




y, . =-2f T (2.1

The transformed series {yi r} will possess mean zero and standard

deviation unity. The total number of statistics required in this
wtransformation is (vw), where v 1is the number of periodic
parameters each with period w. For example, the above
transformation needs (2x12) statistics, 12 m_ and 12 S.

From the viewpoint of sampling theory, when v and w are
large, the (vw) statistics cannot be estimated accurately. As an
illustration, a daily time process (period = 365) with periodicity
in two parameters will require (2x365) statistics. This is an
unnecessary large number and 1in addition, will entail large
sampling variation. In order to reduce the number of statistics

needed in the transformation, an alternative is to approximate the

periodic parameters m_ and S, by the periodic functions

m = Ay + g (Ak cosg%gr *+ By sinz%gt) (2.2)
k=1
and
M 2nk 2nk
S'I': SAO +k§1 (SAk COS‘—l—zT + SBk Sin'—l‘zf) (2.3)

where M is the number of significant harmonics for the periodic
parameter m_ and M’ is the number of significant harmonics for the
periodic parameter S.- Note that the maximum number of harmonics
for monthly series is M =M = 6. The Fourier coefficients

A , B , A
s

K and SB are given respectively as

k k
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Note that AO = 3 T§1mr and sBO = 3 TEIST are the mean values

of m_ and S respectively.

The above approximation of periodic parameters m_ and S by
harmonic analysis requires a total of 24 statistics. However, not
all of the six harmonics are needed, the first few harmonics are
normally sufficient for generating complex seasonal pattern.

Several methods can be used to determine the significant
harmonics. We shall briefly discuss the method of Fisher and
Whittle (Priestley, 1981, pg. 406 - 411). For testing the
significance of the harmonic with the largest amplitude, Fisher

~uses the test statistics




max R%
1=jsm 7
m

Y R
=1 7

g:

"~ where m is the total number of harmonics. The harmonic with the
largest amplitude is said to be significant at 100a% level if the
calculated value of g exceeds £, where the critical value g, is

chosen such that

Pr(g > ga) = m(l—gm)m.1 - E’—I—(g:—l*l(l—ZgOC)m-'1 + ..
s(-k L —15—%%;§37(1—kga)m'1 (2.4)

and k is the largest integer which is less than 1/ga .
The values of ga can be obtained from the table below,
Table 2.1 Fisher’s ga-critical Values For o=0.01, 0.05,

m=2, 3, ..., 6

m 6 S 4 3 2

o=0.01{0.72179|0.78874|0.78925|0.94226|0.995

«=0.05|0.61615|0.68377[0.68938|0.87090}0.975

Suppose max (Rg) occurs at j = jl (corresponding to the

1=j=m
2nj 2
frequency Ve for m = 6) and R, turns out to be significant for
1
a selected probability level «, the second largest amplitude R%
-2

is then tested by using the statistic,

R®
_ T2
S R 5 5
[ZR.-—R.]
j=1 7 N

and referring to the Fisher’s distribution (equation (2.4)) with m

replaced by m-1. If the second largest harmonic also turns out to



be significant, we then continue with the procedure to test the
third 1largest harmonic and so on until we fail to obtain a
significant result. In this way, we obtain an estimate of M (or
M’ ) for the periodic function (2.2) (or (2.3)).

By using the method of Fisher and Whittle (1981), the first
five harmonics are found significant 1in the observed series.
Figure 2.1 displays the time sequence plot of the seasonally
ad justed series and Figure 2.2 displays the periodogram of the
ad justed series. From Figure 2.2, we observe that the seasonal
cycles of the original series have been removed. The sample ACF
and PACF of the seasonally adjusted series, which are represented
by Figure 2.3 and 2.4 respectively, show that the seasonally
ad justed series has no obvious peaks at seasonal lags. The two

dotted lines on the graphs are the upper and lower standard error

of the estimations.
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2.3 Symmetric Moving Average Filters

Among the various types of available seasonal adjusiment
methods, the most widely used technique is the Bureau of the
_ Census X-11 procedure described by Shiskin and et. al. (1967). It
was introduced by the U. S. Bureau of the Census in the 1950’s.
The basic feature of the procedure is that it uses a sequence of
moving average filters to decompose a time series into a seasonal
component, a trend component and a noise component.

A Symmetric (2k+1)-term Weighted Moving Average (WMA) Filter

is defined as

k .
w(B) = Y w B,
j=k 7

where

(a) k is a non-negative integer,

k
(b) w.s are weight constants such that w_.=w. and } w.=1,
J -J o J
Jj=-k
(c) B is the back shift operator such that BYt = thl'
_ 1 .o .
If Wj = ST for all j=-k, ..., 0, 1, ..., k, then it is known
as Symmetric (2k+1)-term Moving Average (MA) Filter. As an

example, the value of k in a five-term WMA filter is 2, and

1 _ _ 1 - _ 2 . : .
Vo= 3 Wy TV, o W, =W , =g 1s a possible set of weight
constants.

The main purpose of applying these filters is to damp out the
influence of the 1irregular component in order to obtain a
*smooth ° delineation of the trend component. The Census X-11
procedure is constructed based on these symmetric‘ WMA and MA

filters.



-

Generally, the filters used in the Census X-11 procedure are

the 3-term MA; S-term MA; 12-term MA; (3*3)-term MA, which is
obtained by taking.a‘B-term‘MA‘of the&3+term ﬁA already generated;
) <(3‘@'S)-term MA, which is obtained by taking a S5-term MA of thé
3-term MA already generated; centered 12-term MA, which is-
obtained by taking a 2-term M4 of the 12-term MA alréady generated
and etc. |

Before we pro;e;d further to discuss the procedure, we shall
denote the seasonal ,csmponent of a time series, which is the
intra-year variation that repeats constantly or in an evolving
fashion from year to year by S. We shall also denote the
trend;cycL? that includes variation due to long-term trend and
underlyinglcycle by T, and the irregﬁlar component by I. If we
denote the ofigina@ serigs'by Y, then experience indicates that
many time series can be represented by the multiplicative formula

Y=8xTxI. n ' (2.5)

Shiskiﬁ and Eisenpress (1957) have described - two versions of
~the Census X-11 pfoc;dure and compared their applicability. Both
of them are ratio-to-moving average méthods and the second method
is an improved version of the first method.

We shall briefly describe the principal features of Method I

and Method I1I.



(a)

(b)

(c)

(d)

A. Method I

The principal features of Method I are as follows :

Estimate the trend-cycle by applying a 12-month MA filter

to the original series. The trend-cycle is then eliminated

by dividing the 12-month MA into the original data leaving
the seasonal-irregular component.

Fit a OS-term MA to the time series representing the
seasonal-irregular component for each ’of the 12 calendar
months in successive years in order to obtain 12 sets of
seasonal factors. The largest and the smallest
seasona1~irregular ratios in each set of the 5 terms are
dropped from computation before the remaining"three are
averaged. The purpose of doing this is to remove the extreme
ratios.

The seasonal factors for each year are then adjusted so that
their sum is equal to 1200. These adjusted seasonal‘factors
are later divided into the original observations to obtain a
preliminary seasonal adjusted series, which represents the
trend-cycle-irregular component. Note that the sum of
the adjusted seasonal factors for each month is equal to 1200

because the seasonal-irregular components obtained above were

\multiplied by 100 prior to the adjustment.

This series is in turn smoothed by a S5-month MA filter to
provide the second approximation of the trend-cycle. This
curve is more flexible than the one produced by the 12-month
MA filter in (a). In‘other words, the S-month MA filter can

change direction over a shorter interval and produces



smoother peaks.

(e) Divide the second approximation of the trend-cycle into the
original data in order to obtain the second approximation of

the seasonal-irregular component.

(f) Repeat (b)-(c) to get the final seasonally adjusted series.

B. Method 11

Method II uses more complicated WMA filters in place of the
simple MA filters in Method 1I. Instead of using a 5-month MA
filter to obtain the second approximation of the trend component
in (d), Method II uses the Spencer 15-montrx WMA filter. The
weights of the Spencer’s 15-month WMA are as follows :

Table 2.2 Weights wj Used In The Spencer’s

15-Month Moving Average Filter.

J 0 1 2 3 4 S 6 7
-3 -6 -5 3 21 46 67 74
wj 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320

The Spencer 15-month WMA filter has been proven to give
smoother representation of the trend-cycle component than the
irregular curve produced by the S5-month MA filter, so the use of
Spencer 15-month WMA filter 1is more justified in terms of
producing smooth trend curve.

This WMA filter entails the loss of seven values at both the
beginning and the end of the series. In order to fill in the
seven missing values at the end of the Spencer’s 15-month WMA,
which are of considerable importance,’ Shiskin‘ and Eisenpress
(1957) used the average of the last four months of the preliminary
seasonally adjusted series as the estimafe‘of each of the seven

months immediately after the last month of this series, 1l.e.,



= :V o= n-3 n‘z n"l n
Yh+1 Yh+2 e Yh+7 , 4 R

]

where Yn is the last record of the‘preliminary seasonal adjusted

series. Similarly, seven values are added to the beg1nn1ng of the
‘series. This augmented series is then smoothed by the Spencer
15-month WMA filter. On the other hand, Method I uses the last
and the first record of the preliminaryrseasonal ad justed series
to fill the missing values at the end and the beginning of the
series respectively, which assumes that there is no trend in the
seasonal factors at both ends of the series.

Method II also reduces the weights of extreme values more
selectively by using a cohtrol chart to detect and improve extreme
seasonal-irregular ratios. Two Standard erroré are selected as
the upper and lower control limits of each of the»twelve calendar
months (the square of the standard error is defined as the average
of the squared deviations of the ratios from their corresponding
S-term MA values for each calendar month). If a ratio falls
outside these limits, it will be taken as "extreme" and is
replaced by the average of the "extreme" ratio and the ratios
immediately ‘preceding and following. The extreme value is
replaced by the average of the first or the last three values of
the sefies if it is the first or the last ratio respectively.

It has been pointed out by Shiskin and Eisenpress (1957) that
the S5-month MA filter applied in Method I, which is used to
compute seasonal adjﬁstment factors, causes erratic year-to-year
changes in directions."«Method II uses a (3¥3)-term MA filter,
which is equxvalent to a S—term WMA filter to overcome the above

problem. - Moreover, the (3*3)-term MA filter is substituted by a



(3*5)-term MA filter if there is a strongly marked irregular
movement, i.e., more smoothings are needed to be carried out.
Unlike Method 1, Method II smooths thé ratios after they are
centered (i.e., adjusted so that their sum is equal to 1200 for
each calendar year) to avoid distortions of the smoothed éeries.'

The following steps describe Method II of the Census X-11
procedure for deseasoning a monthly time series by using
multiplicative adjustment, this algorithm wuses the Spencer
15-month WMA filter.

(a) Apply a 12-month MA filter to the original data. Center the
resulting data by taking a 2-month MA filter of the smoothed
series. €Six 7 missing ratios at each end of the
seasonal-irregular series are extrapolated by repeating the
first or last available ratios for these months.

(b) Divide the centered 12-month MA into the original series to
get the seasonal-irregular ratios.

(c) Fit a S5-month MA filter to the seasonal-irregular ratios for
each of the twelve calendar months. Determine two control
limits and modify the extreme values. These series are
prior extended by adding two values at both ends, i.e.,

Yl +Y 2 Yn+Yn_ 1

-1 = 1o s—and Y =Y 0= 3

where Y’s are the seasonal-irregular ratios and Yn is the
last record of the series for each calendar month.

(d) Apply ka (3*3)-term MA filter to the modified series for
each calendar month to obtain twelve sets of seasonal
factors. Di?ide “the originaly series by these seasonal

factors to obtain the preliminary seasonal adjusted series.



(e)

(f)

(g)

(h)

(1)

(3)

(k)

(1)

Apply the Spencer 15-month WMA filter to this seasonally
adjusted series to obtain the second gpprcximationvof the
trend curve.k

Divide the original series by the 15-—month WMA to obtain
the second estimate of the seasonal-irregular series.

Divide the preliminary adjusted series by the 15-month WMA
to obtain the irregular ratios. Calculate d, the mean of the
absolute first differences of these ratios.

Repeat (c)-(d) to get the second approximation of the
seasonal adjustment factors.

Divide these seasonal factors into the original series to get

the stable-seasonal adjusted series.'

original

Center the ratios 1S-month WMA

for all the 12 calendar months

in each year.
Apply a (3*5)-term MA filter or a (3*3)-term MA filter to the
previously centered ratios for each of the twelve calendar

months, depending on whether d = 2 percent or d < 2

percent . This is to obtain the final seasonal adjustment
factor.
Divide the final seasonal adjustment factors into the

original series to obtain the final seasonally adjusted

series.

Some¢ shortcomings of Method II have been pointed out by Y. S.

Leong (1962). First of all, the 12-month MA filter tends to cut

corners at turning points of the cycles, especially where the

peaks are steep and valleys are deep, erring in the direction of

the curvature. Furthermore, Method II of Shiskin repeats the



processes of MA and WMA filtering for a nuhber of times, some of
them are complicated graduation formulas, for example, the Spencer

1S5-month WMA filter. He commented that Method II is tedious and

_ygxcessive computation 1is required. To overcome the above

mentioned difficulties, Leong introduced the 6-month iterated-MA
filter with triangular weights, he showed that the trend-cycle
curve produced resembled the trend-cycle movements more closely
than the 12-month MA filter of Method II. |

Burman (1965) also listed some serious criticisms about
Method II of the Census X-11 procedure. He pointed out that the
more logical approach is to perform logarithmic transformation on
(2.5). The model is then of additive seasonality,

log Y = log T + log S + log I
with the condition that the seasonal factors for the 12 calendar
months in a year sum to zero. K

In order to CBmpare the applicability o% the multiplicative
and the additive approaches in our study, a computer program has
been written for the additive model also. The algorithm used is
based on the discussion given in Bovas Abraham and Johannes
Ledolter (1983). The divisions in Method II of the Census X-11
procedure are replaced by subtractions in the additive model, and
the Henderson 5, 9, 13 or 23-term WMA filters are used to obtain
the second estimate of the trend series.

Table 2.3 below exhibits the weights wj used in the

Henderson’ s moving average filters.



Table 2.3 Weights wj Used In The Henderson’s Moving

Averége Filters.

j S5-term {9-term [13-term|23-term
(m=2) (m=4) (m=6) (m=11)
o 0.558 0.330 0.240 0.148
+1 0.294 0.267 0.214 0.138
+2 -0.073 0.119 0.147 0.122
3 -0.010 | 0.066 0.097
*4 -0.041 0.000 0.068
*5 -0.028 0.039
+6 . -0.019 0.013
+7 -0.005
+8 -0.015
B +9 -0.016
+10 -0.011
*11 -0.004

From Figure 2.5, the periodogram of the irregular series
produced by the multiplicative adjustment, we observe that there
is a significant peak at the low frequency, which indicates that
the irregular series follows a low order autoregressive process;
whereas in Figure 2.6, the periodogram of the irreguiar series
produced by the additive adjustment, there is a peak at the
frequency of one cycle every twelve months (the fundamental
frequency), this indicates that there is a 12-month seasonal cycle
in the irregular series. Therefore, we conclude that the additive
model does not seem to remove the seasonal component of the
observed series as effectively as the multiplicative model.

We next perform an logarithmic transformation on the original
series and apply additive adjustment. From the periodogram of the
irregular. series as shown in Figure 2.7, we observe that the
seasonal peaké have been reduced significantly as compared to that
of Figure 2.6, which its original series was not logarithmic
transformed. Figure 2.7 also shows that the irregular series

follows a low-order autoregressive model. Therefore, we conclude



that the multiplicative model describes the river flows used in
this study better than the additive model, and the model of the

series must be identified correctly before applying the

- appropriate adjustment.

For additive adjustment, we used the Henderson 13-term WMA
filter to estimate the trend series of our data. In our
investigation, we found that the 9-term and 23-term filters did
not capture the movements of our data as closely to the original
series as the 13-term filter. Figure 2.8 exhibits the trend
series obtained by using the Henderson 13-term WMA filter. The
movement of the estimated trend series is smooth and seems to
follow the movement of the original series quite closely.

All of these 1linear smoothing filters have often been
criticized for not having an explicit model for the original
series. Moreover, the estimates of the observations at both ends
of the series do not have the same degree of reliability as those
of the central observations. This is because for a moving average
filter of length 2m+l1, the first and the last m observations
cannot be smoothed with the same set of symmetric weights as are
applied to the central of the series (Dagum, 1978). As a
consequence, the Department of Statistics, Canada has developed a
composite method, X-11-ARIMA, which uses ARIMA model to forecast
and backcast the data before the extended series is to be
seasonally: ad justed byﬁfhe filters of Method I1 in the Census X-11

/

procedure.



Dagum (1978) pointed out that the X—ll-AkIMA performs better
than the Census X-11 procedure except for very irregular series.
However, the selected model must fit the data well and generate
7"reasonable" forecasts for the last three years of the observed
data, which according to Dagum are forecasts with a mean absolute
error smaller than S per cent for well behaved series, and smaller
than 10 per cent for very noisy series. The portmanteau test is
used to test the goodness of fit of the model. The following
three ARIMA models were incorporated into the X-11-ARIMA program,

_ nS N _ 2 - a _ 2 _ s
(a) (1-B)(1-B7)(1 ¢1B ¢ZB )Yt = (1-6,B-6.B7) (1 GslB )at

1 2
B (1-6 B-b B> - (1_ _ s _ 2s
(b) (1-B7)(1 ¢1B ¢ZB )Yt (1 elB)(l e_,B 9523 )at
oS _ _ 2 _ _ _ S _ 2s
(c) (1-B)(1-B7)(1 ¢1B ¢ZB )log Yt = (1 elB)(l eslB eszB )at

where s is the length of seasonality in the series.
Finally, Cleveland and Tiao (1976) have shown that the use of
linear filters in the Census-X-11 procedure for time series

decomposition is justified if the series follows the ARIMA model

12

(1-B)(1-B )Yt

= £1:5131(1+0 49B-0 49B2)b + (1-B)(1+0 64Blz+0 83B24)b
- (1-B) ‘ ' 1t ‘ ' 2t
+ (1-B) (1-B"2)e, (2.6)
where blt’ b2t and e, are three independent white noise processes

2 2
which are Normally distributed as N(O, Gbl)’ N(O, obz) and
. 2 ,2 2,2

N(O, oi) respectively with sz/abl = 1.3 and o /o, = 14.4. They

have shown that the conditional expectations of the trend and
seasonal components of this model have the same weights as those
of the filters that are used in the Census X-11 procedure. In

other words, this model represents the underlying stochastic
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mechanism of those filters. However, if the model of the

concerned series differs markedly from model (2.6), then the

decomposition method of the Census X-11 procedure is not

reliable. Therefore the usefulness of the Census X-11 procedure is

limited, because it applies the same filters to all observed

series.

2.4 Model-Based Approach

In the model-based approach, it is assumed that the original
data Yt can be decomposed additively as

Yt = St + Tt + It

where St, Tt and It are respectively the seasonal, trend and
irregular components of the data.

The most primitive model-based approach was introduced in the
1930’s. It was the regression method where the treﬁd and seasonal
components were fitted to functions that depend linearly on some
parameters. Normally, the trend component was described by
polynomials in time, the seasonal component‘was represented by
seasonal means, and the irregular component was assumed to be
white noise. The seasonal component was then subtracted from the
original series to yield a seasonally adjusted series. A drawback
of this technique was that it required explicit specifications of
the mathematical form for the trend and seasonal components.

Recently, many researchers have used the Gaussian ARIMA
models (Box and Jehkin, 1970) in the model-based approach. An
ARIMA stochastic model is first fitted to the original series and

then the three components S, T, and I, are estimated by using the



theory of signal extraction. A drawback of this technique is that

the covariance structures of the seasonal and non-seasonal

components of the original series must be known priorly even

though these components are not observable. Therefore, any

ARIMA-model-based approach must make assumptions that wuniquely

specify the covariance structures of both the seasonal and

non-seasonal components of the series.
Some of the basic assumptions are listed below :

(a) St follows an unknown ARIMA model ¢S(B)St = nS(B)bt where

_..1 .
$.(B) =1 + B +...+ B>"" with s denoting the length of

seasonality and bt 1s a white noise series with distribution
N(O, oi). The order of nS(B) is at most s-1.
(b) Tt follows an unknown ARIMA model ¢T(B)Tt = nT(B)ct where

¢T(B) = (l—B)d with nT(B) of degree at most d and c, is a

white noise series with distribution N(O, Gi).

¢

(c) It follows an unknown ARIMA model ¢I(B)It = nI(B)dt with d

distributed as N(O, oi).

t

(d) bt’ Cy and dt are mutually independent.

(e) Each pair of the autoregressive and moving average
polynomials of the three component models have their zeros
lying on or outside the unit circle and have no common
zeros.

With the above assumptions, it can then be readily shown that
the overall model for Yt is the ARIMA model
@(B)Yt = B(B)at ‘ (2.7)

where

3(B) = (1—B)d¢S(B)¢I(B),



and the moving average polynomial 6(B) and innovation variance @2
a

satisfy the constraint

0(BIO(F) 2 _ nsBing(F)  ,  m.(B)np(F)
eBIF(F) “a = $_(BIp(F) % * ¢ (B)§.(F) T

. WI(B)HI(F) >
¢, (B¢ () °d (2.8)

where F = B‘l, that is FY, = Y
t t+1

Equation (2.8) can be easily verified by noting that as St’
Tt and It are assumed to be mutually uncorrelated, the covariance

generating function of Yt can be written as

7y(B, F) = qs(B, F) + 7T(B, F) + 7I(B, F)
where
(B, F) = s B ns F) o>
¥gihs ¢ (BI$(F) “b ,
T ¢T(B)¢T(F) c,
and
7n,.(B)n, (F)
I i 2
v,(B, F) = §, (81, (F) d

are respectively the covariance generating functions of St’ Tt and

It' The covariance generating function of a process {Xt} is

[2+]
defined as WX(Z) =y 7k2k where {7k} is the autocovariance
-=00

function of the process {Xt}.

Clearly, given the model for Yt’ the models for St’ Tt and It
are not unique. In other words, given oz, 8(B) and &(B) (¢ (B),
¢T(B) and ¢I(B)), there are more than one ways of choosipg 75 (B),

. 2 2
n(B), nI(B) and the innovation variances o,, 0, and o, . Any



choice of the above three moving average polynomials and

inpovation variances that satisfies (2.8) is called an acceptable

decomposition. Hillmer and Tiao (1982) have proved the result

‘that among acceptable decompositions, the decomposition that
- 2 '
maximizes o subject to the constraints in (2.8)

is unique

and it is known as canonical decomposition.

The canonical decomposition can also be defined as the

b

i.e., makes the seascnal and trend components as deterministic as

decomposition that minimizes the innovation variances 02 and 02,
c

possible while remains consistent with the information contained

in the observable series Yt'

The partial fraction of the 1ef£—hand side of equation (2.8)

is an unique decomposition, i.e.

oo 2 _ % F) B P g5 E) 0
3(B)O(F) 2 ¢S(B)¢S(F) ¢T(B)¢T(F) ¢I(B)¢I(F) |
where
SE o, )
QS(B, F) = dos * jglqjs (B + F’),
at e
QT(B, F) = dor * jglqu (BY + F’)
and QI(B, F) can be obtained by subtraction. This partial

fraction is unique because the degrees of the numerators are lower

than the degrees of the corresponding denominators.
By writing B = e—iw and F = e’” with 0 = w = m, the functions
QS(B, F) and QT(B’ F) can be obtained by converting e(B)o(F) and

-iw iw
19,6y = cos w, and

) 1
®(B)®(F) into functions of x, where x = E(e
by applying the result that if a, b, ..., m are roots of the

equation f(x) ; 0 and «, B, ..., M 2are their corresponding



multiplicities so that f(x) = (x-2)%(x-b)B.

be decomposed as

elx) _ Aa Aa—l A1
f = — + ...+ +
) (x-a)® (x-2)* ] (x-a)
M M
+ H, p-1 P Ml
(x—m)“ (x—m)“—1 (x-m)
AR €Y <1 (m)
where Aa—k+1 = —_—, ..., M =2
(k-1)! e Y
(x) (x-a)“ s
with g (x) = -2 2) (k) = X em)”
f(x) m f(x)

..(x—m)u, then ¢ (x)

fx) "

We shall use the model (1—Bs)Yt = (1-92Bs)at to illustrate how to

obtain the function QT(B, F). In
®(B) = (1-B”) = (1-B)¢.(B). Hence

flcos w) = dle )o(e?)

flx) = (1-e 1) (1-e"*1p (7). (™)

= —2(x—1)¢s(e-iw)¢s(e

and X = COS W =

iw
)

1 is one of the roots of f(x) = O.

QT(B, F) can then be evaluated as

‘ _ —2¢(x)
(B, F) = 5y
where ¢(x) = ¢p(cos w)

Note that ¢S(e~1w)¢s(e

iw)

2
(1—92)

x=1 - 2

s

(1—926—lw)(1‘9261w) =

= 52 when cos w = 1.

this

case,

The function

2
1 - 28.x + 62

2

Hillmer and Tiao (1982) proved that this unique decomposition

is acceptable if €, + & +e5 % 0 where



-iw i
Q (e elw

, )
81 = min S i ,
Q (e, i)
82 = min = >q
v Jeple” ™|
and
QI(e-lw, et)
83 = min o5
w ¢, (e |

By comparing (2.8) and (2.9), the three fractions on the

right hand side of (2.8) can be written respectively as

-1 2 2 -1 i
|nS(e 1w)| oy Qs(e 10 - o1y
- = - + T, 20
-iw, 2 - 2 »
6™ EXCIY !
!nr(e—lw)IZUi QT(e_lw, elw2
- = - +TI'.z0
-iw,,2d -iw, 2d 2
|¢.(e ") |ér(e )|
and
InI(e—lw)lzoi QI(e—lw, e'?)
“ieoz “To, 2 *T3=0
6,72 e )
where Fl, FZ and F3 are three constants such that Fl + Fz + F3 =0

and they provide a means to change from the initial partial
fractions decomposition (2.9) to an acceptable decomposition. By
using the definition that canonical decompositién is a
decomposition which minimizes the innovation variances, an unique
canonical decomposition is then implied by the fact that

' +e. =0 fori=1, 2, 3. Therefore (2.9) can be rearranged as
i

* olB, F)  Q.(B, F)
ooy _ %B F) T o 1

+ (2.10)
S(BIB(F) g (BIgg(F) * $, (B4 (F) $,(B)g,(F)




where

¥
*
QT(B, F) = QT(B. F) - ¢T(B)¢T(F)82 (2.12)
and
*
QI(B, F) = QI(B. F) + ¢I(B)¢I(F)s3.

When both the seasonal and trend components and the overall

series are ARIMA models, the minimum mean squared error (MSE)

estimates of the seasonal and trend components S, and Tt are

t
respectively S = WS(B, F)Yt and T = WT(B, F)Yt (Tiao and Hillmer,

1978), where

74(B, F) ai ®(B)&(F)n (B)ng (F)
WS(B, F) = > (B ) = (2.13)
Y o, 0(B)B(B)$,(B) (F)
7T(B, F) o2 Q(B)@(F)nT(B)nT(F)
W.(B, F) = =S (2.14)
T WY(B, F) 2

o, 9(B)6(F)¢T(B)¢T(F)
and 7Y(B, F), WS(B, F), 7T(B, F) are the covariance generating

functions of Yi, St and Tt respectively. The estimate of the

irregular component is obtained by subtracting the seasonal and

trend components from the original series, namely,

It = Yt - Tt - St'

By comparing the corresponding terms in (2.8) and (2.10), and

then substitute them in (2.13) and (2.14), we have

2(B)&(F)Q (B, F)

wStB, F)
6(B)6(F)¢S(B)¢S(F)

and N
@(B)@(F)QT(B. F)

it

W..(B, F) :
T 6(B)6(F)¢,.(B)¢, (F)



* *

where Qs , QT can be evaluated from (2.11) and (2.12), and ¢(B),
6(B) can be estimated from the ARIMA model fitted to {Yt} in
(2.7). |

Hi}lmer and Tiao (1982) have considered the seasonal
decompoéition of the following three seésonal modéls,
(@) (1-B)Y, = (1-e

s
2B )at,

(b) (1~B)(1—BS)Yt = (1—618)(1~8233)at and
...S - - - S
(c) (1-B )Yt (1 BlB)(l 92B )at.

By comparing the autoregressive polynomial of the overall
model with (1—B)d¢S(B)¢I(B), the value of ¢I(B) is found to be
unity for all the three cases. They derived the corresponding
canonical decompositions for all the three models and their study
showed that for the time series of Monthly U. S. Unemployed Males
From Age 16 to 19 (January, 1971 - August. 1979}, the
ARIMA-model-based approach has intuitively pleasing results.

12 12

)Yt = (1-0.33059B) (1-0.82850B )at is

fitted to the monthly flows of Perak river with the standard

The model (1-B)(1-B

errors attached to 0.33059 and 0.82850 being, respectively 0.05902
and 0.03555, and ;i = 1.23443. We shall use this model to
illustrate the performance of the ARIMA-model-base approach.
Since the’§erak river flows are monthly data, we shall let s = 12
for the following discussions.

From the results obtained in Hillmer and Tiao (1982), the

canonical decomposition of the above model is



(1—918)(1—91F)(1—9283)(1~92FS)

(1-B%) (1-F°) (1-B) (1-F)

* *
Q (B, F) Q (B, F) (1+el)2
= + + 0 —
¢s(BIO(F) © ( g)2(1-p)2 2 4
where
2
* 0.(1-6,)
QS(B, F) = QS(B, F), + ¢S(B)¢S(F){c - w_z_ll_____l_____}
* 2 2
QT(B’ F) = QT(B, F) - c(1-B)"(1-F)
with
(1-91)2(1-92)2
QT(B, F) = 5
S
2 2
0.s (1+8,) 2
v |2« —2  E W amanl,
(1—92) 4(1-0,) 12
1
(1-62) (1-62)
Q.(B, F) = < {1-—— ¢ (B¢ (F)}
S a-p?a-n? U &5 3
2 (1-B) (1-F)
+ 0, (1-6,)
1772 q-p?a-m)?
s s 2 (1+6 )2
2 (1-B5)(1-F°)  s“-4 . _ .2 1
- (1_92) > > 5 (1 61) + >
(1-B)“(1-F) 12s 4s
and
5 2
c=—_ 2 {(1-9 12(s%-1) + 3(1+6 )2} s 2
2 1 1
48s




From Figure 2.9, the estimated trend component of Perak river
by using the ARIMA-model-based approach, we observe that the

estimated trend component follows the movements of its original

series quite closely.  Figure 2.10 exhibits the plot of the

estimated seasonal component of Perak river.

By Just looking at Figure 2.9, we would think that the
model-based approach gives pleasing results and most of the
authors also did not go further in the study of the
characteristics of the estimated trend component. However, from
our investigation, we notice that there is a significant peak at
the 12th lag of the sample ACF of the estimated trend component }t
(as shown in Figure 2.11). From Figure 2.12, the sample ACF of
the postulated trend series (l—B)Z%t also exhibits peaks at
seasonal lags. Hence the estimated trend component does not
exhibit the behavior that is close 'to that expected by the
postulated model ¢T(B)Tt = nT(B)ct where ¢T(B) = (1—8)2 and nT(B)
is a polynomial in B with degree at most 2.

To clarify the above unexpected results, we have written to

Hillmer and based on his reply (1989), we note that the covariance

generating functions of Tt and Tt can be obtained respectively as

2
o nT(B)nT(F)

WT(B, F) =
¢T(B)¢T(F)
o*i n (B)n (F) g (B) g (F)
(B, F) = y.(B, F)
71( 1 o*i 6(B)6(F)

Hence, it is clear that the covariance generating functions
2

of the estimated trend component y.(B, F) has seasonal lags in the
T




operators 6(B), 6(F) and ¢S(B), ¢S(F) that appear in y (B, F). As
T

a result, the sample ACF of the estimated trend has an obvious

seasonal peak at the 12th lag and the phenomenon is then

explained.

From the above discussion, it is clear that the model-based

approach is not suitable for deseasoning the observed Perak river
flows because the estimated trend component does not seem to have

the expected characteristics.
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Figure 2.11
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