CHAPTER THREE

GAMMA PROCESSES

3.1 Introduction

fhe need for non-Gaussian models has long been felt from the
fact that most stream flows are non-Gaussian. It is generally
accepted that most stream flows can be fitted to Gamma
distribution (Markoviv, 1965; Matalas Wallis 1973). Therefore
this study concentrates mainly on Gamma processes.

Recently, several non-Gaussian models (e.g., Gaver and Lewis,
1980; Tavares, 1980b and etc.) have been developed for describing
correlated time series which have Gamma marginal distribution.
They are found superior to Gaussian models, especially in
describing time-irreversible Gamma processes.

Firstly in this chapter, we shall devote ourselves to the
study of some well established correlated autoregressive, moving
average and mixed autoregressive-moving average Gamma processes.
We shall also discuss some further properties of ‘the GAR(1)
process of Sim (1990) in Section 3.2.2.

Secondly, we shall introduce a new time-irreversible
Gamma-like ARMA(1, 1) process. The autocorrelation structure,
conditional moment and the bivariate distribution of the propesed
model are discussed and given in Section 3.4.2. The applicability
of this model for skewed river flows 1is investigated and the

discussion is presented in Chapter Four.



For simplicity, in the following discussions, we shall denote

a Gamma random variable (r.v.) with shape parameter k > 0 and

scale parameter B > 0 by Gk, 8), we shall also denote an

Exponential r.v. with parameter « > 0 by Exp(a) and a Beta r.v.

with parameters m > 0, n > 0 by B(m, n).
The probability density function (p.d.f.) of a G(k, B) is

k k-1 -Bx
- Bx e S
fc(x) 0 » x20, B>0, k>o0,

with corresponding Laplace-Stieltjes transform (L.T.)

k
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and the p.d.f. of a B(m, n) is

I'(m+n) m-1
T *

The Gamma and Beta variates are intimately related and their

fplx) = (1-x)71

relations are established as follows :

THEOREM 3.1.

Let G be a G(a, 8) and B be a B(b, c¢) which is independent of
G, then
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E{exp[—(sl+szB)G]} = [E:EI] ZFl(a’ b; b+c;

where 2F1(a, B; ¥; z) is the hypergeometric function defined by

o (x),(B)
e z) = L 2 28
zFl(an B’ ¥, 2 _ezz:o (3,52 e!
with (a)n = a(a+1l)--+(a+n-1) = I'(a+n)/T'(a).

The proof of Theorem 3.1 is given in Appendix 3A.

By taking s, = 0, a = b+c in Theorem 3.1 and using the result

that

ZFl(‘x’ B; d; z) = (1"2)—3»



s.\-b
we then have E[exp(-szgc)] = [1 + 2) = ( 8

b ,
— 515 ] which leads to

2
the following Lemma of Lewis et. al. (1986)

LEMMA 3.1 : BETA-GAMMA TRANSFORMATION.

The product of two independent r.v.'s G(b+c, 8) and B(b, c)

is a G(b, ©), namely,

G(b, 8) = B(b, c)G(b+c, 8).

3.2 Autoregressive Processes

Some well-known Gamma first-order autoregressive models are
the models of Yevjevich (1966), Thomas-Fiering (1967),
Klemes-Boruvka (1974), Gaver and Lewis (1980) etc. In this
section, we shall describe the Beta-Gamma first-order
autoregressive process BGAR(1) of Lewis, et. al. (1986) and the
Gamma first-order autoregressive process GAR(1) of Sim (1990).
The GAR(1) process of Sim (1990) is used to construct a new
Gamma-like mixed autoregressive-moving average process in Section

3.4.2.

3.2.1 The BGAR(1) Process

The Beta-Gamma first-order autoregressive process BGAR(1) of
Lewis, et. al. (1986) is defined as

Y =BY .*¢€, (3.1)
fqr n=0, *¥1, ..., where
(a) {Bn} is a sequence of i.i.d. r.v.’s B(kp, kp),
(b) {eb} is a sequence of i.i.d. r.v.’s G(kp, B),

(¢c) k>0, >0, 0=<p<1, p=1-pand

(d) the two sequences {Bn} and {en} are mutually independent.



If Yn—l has Gamma(k, B) marginal distribution, then from
Lemma 3.1, the resulting Yn is a G(k, B) also.
By taking a = b+c with b = kp and ¢ = kp in Theorem 3.1, we

have

B \P( g kP
Etexpl-(s +s,B )Y 1} = [B+s1] [13*51*52) ’

and the joint L.T. of Yn and Yn_1 is then given by

¢2(51’ sz) = E[exp(-sZYn—len_l)]

E{GXP[‘SZ(BnYn—1+Cn) - SIYn—I]}

= Elexp(-s,e )] E{exp[—(sl+328n)Yn_1]}
kp kp kp
- (=) [B’fs] (B+sﬁ+s] ' (3-2)
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Since Bn is 1independent of Yn—j for j =1, 2, ..., the

autocovariance function of Yn and Yn—j can be written as

Cov(Y , Y ) =E(B) Cov(iY ., Y .),
n n-j n n-1 n-j

thereby, the autocorrelation functions (a.c.f.) of the process

(3.1) is obtained as

= IJI j = + # 3.3
Corr(Yh, Yn—j) P , J =0, %21, ..., (3.3)

From the definition of Yn in (3.1), the conditional

expectation of Yn given Yn_ = y is established as

1

E(YnIYn~1 =) E[(Bnyn—l ¥ 8n)lYn—l =l

yE(Bn) + E(en) = (1-p)k/B + py.



The conditional p.d.f. of Yn given Yn-l = y 1is given as

fy Y (x|y)
n' " n-1
k) —) kkp exp(-kx)
I'(kp) [T (kp)]
in(1, x/y) _ =
-Jm wk"D 1 (l-w)kp 1 (x-yw) exp(kyw) dw (3.4)
0 . ‘

where x, y = 0.

For an observed series {yi} of length n, the moment estimates

of'’ the parameters k, B and p are as follows :

k = (37)2/52,
B =k/y
and
p=——7 ‘Z (yl. - y)(y1.+1 -y)
(n-1)s"™ i=1

where y and s2 are respectively the sample mean and variance.
The Gamma first-order autoregressive process of Sim (1986) is
a special case of the BGAR(1) process of Lewis et. al. (1986). It
is constructed according to the following stochastic equation :
Yh = Vnyn-l t e n=1,2, ...,
where
(a) {en} is a sequence of i.i.d. r.v.’s Exp(}),
(b) {Vn} is a sequence of i.i.d. random coefficients with
standard Power-function distribution, Fv) = Va, o >0
defined on the interval [0, 1),

(c) the two sequences {sn} and (Vn} are mutually independent.

The resulting Yn is a G(a+1, A).



The lag-1 joint p.d.f. of {Yn} is
Aa+2yaexp[—A(x+y)llFl(a;a+1;Ay)/F(a+1), x>y

fY Y (x, y) =

+ 3
n+l’ n Aa+2xaexp[—h(x+y)]1F1(a;a+1;hx)/F(a+1), x<y

° (@),
where F.(a; B; 2) = ) —u—"r 2 is the confluent
11 ~“ (B, & :
=0 12
Hypergeometric function. Figure 3.1 exhibits the three

dimensional representation of this joint p.d.rf.

3.2.2 The GAR(1) Process

The Gamma first-order autoregressive process GAR(1) of Sim

(1990) is constructed according to the autoregressive

representation

= *
Y p*Y , +e (3.5)

n n

where the operator '* ’ is defined as
N(Y)

p*Y= Y W,
. i
i=1

and

(a) the sn’s are i.i.d. r.v.’s G(v, «) with «, v > 0,

(b) the Wi’s are i.i.d. r.v.’s Exp(a) and

(c) for each fixed value of y, N(y) is a Poisson r.v. with
A=px, 0=pc<1,
From the definition of the operator ’* ’, we have the

following theorem :

Theorem 3.2

(a) 0*Y =0,
(b) E(p * Y) = pE(Y),

(c) E(p1 * P, *Y) = E(plp2 ¥*Y) = PP, E(Y),




(d) Elp * (X+Y)] = El(p * X) + (p * Y)I,

R e R

where pJ *Y=p*p* . *p*y,
<« J times >

The proof of Theorem 3.2 is given in Appendix 3B.

Since p * Yn—l is independent of €, and by using the result
that the L.T. of p * Y given Y = y is

E{exp[—gfgiwi]ly = y}

1=

E{exp[-s(p * Y)Y = y}

)EOE{exp [—sjglwi]} Pr [N(y) = n]
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= exp(—gzgy} (3.6)

the L.T. of the p.d.f. of Yn can then be expressed recursively as
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which on solving recursively, yields

| n, ,-v pns
¢Y (s) = [1 + 6(1-p)s] ¢Y [1 + 6(1~pn)s]
n 0
where 6 = 1/a(1-p). Note that since 0=pc<1 and

¢Y (s) » (1+6s)"Y as n -+ w, the Yn’s are asymptotically

n




1

distributed G(v, 6 ). If Y, has the equilibrium Gamma

distribution, then ¢Y (s) = (1+6s) " for all n, implying that the
n

Yn’s are identically Gamma distributed r.v.’s.
The L.T. of the joint p.d.f. of Yl’ Yz, e Yn was obtained
by Sim (1990) as
_ -V
¢n(sl’ Syr e bn) = [In + eSnan (3.8)

‘where Sn = dlag(sl, Sps v sn). In 1s a nxn identity matrix, Vn

is a nxn positive definite matrix with elements Vij = pll_Jl/Z,
i, j=1, 2, ...,n and |4| denotes the determinant of 4.

Consequently, the L.T. of Yn aﬁd Yn+j is derived as

¢j+1(sj+1’ o, ..., 0, Sl)
- P | -p
= [1 + e(sl+sj+1] + 6 (1-p )Slsj+1]
with corresponding bivariate joint p.d.f.,
i1 . -1 ~(v-1)/2
£, y (X, ¥) = [e (1~pJ)l"(v)] [Xy/p‘]]
n+j’ 'n

-exp[—(x+y)/9(1-pj)] Iv—l[ pjxy/e(l-pj)]

where Ir(Z) is the modified Bessel function of the first kind and

; of order r. Figure 3.2 1is a graphical representation of this
function.

By using Theorem 3.2, we have

- *

Cov(Yn+j, Yn) = Cov(p Yn+j—1 + Gn+1’ Yn)
= *
= Cov(p Yn+j—1’ Y )

j1

Ely (p * Yn+j—1)] - E(Y JE(p * Y __

: PECY.Y . 4) = PECYDE(Y, . ))

1l

pCov(Yn Yn). (3.9)

+j-1’

Hence, the a.c.f. of the Gamma GAR(1) process is established as



Corr(Y Yn) = pJ, Jj =z 0.

n+j’

The €th order conditional moment and the conditional variance

of Yn+j given Yn = y are

£
. 1 . )
E(Yﬁ+j|yn= y) =2 [e(l—pj)] L'g [‘PJY/Q(I-pJ)]

and

- = al(1_nJ 2 J _J
Var(Yn+j|Yn— y) = 67 (1-p")” [v + 2p'yse(1-p7)]

v-

respectively, where LE 1(z) is the generalized Laguerre polynomial

of degree £{. The first-order conditional variance and moment are

also illustrated respectively in Figures 3.3 and 3.4.
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3.3 Moving Average Processes

In this section, we shall discuss two first-order moving
average processes, they are the Beta-Gamma first-order moving
average process BGMA(1) of Lewis, et. al. (1986) and the Gamma
first-order moving average process Gamma MA(1) of Sim (1987b).
The BGMA(1) process of Lewis et. al. (1986) is used to construct a
new Gamma-like mixed autoregressive-moving average process in

Section 3.4.2.

3.3.1 The BGMA(1) Process
The BGMA(1) process of Lewis, et. al. (1986) is defined as
X, =G, *+BG . (3.13)
where |
(a) {G_} is a sequence of i.i.d. r.v.’s G(kﬁl, 8—1),
(b) {Bn} is a sequence of i.i.d. r.v.’'s B(kpl, k(1—2p1)),
(c) the two processes {Bn} and {Gn} are mutually independent and

(d) 0=p, <1/2, k>0, 6 > 0 and 51 = 1-p,

1
By using Lemma 3.1, the L.T. of Xh is obtained as

I

¢X (s)

n

E[exp(-an)]

-kEl —kpl
[1+Gs] (1+es]

(1+es)-k.

i

-1
Hence, all of the Xn’s are lidentically distributed G(k, 6 ).

By taking a = b+c with b = kp, and c = —k51+kp1 in Theorem

3.1, we have

I

\~k51+kp1
[1+9(sl+52)

E{exp[—(sl+szB)G]} = [1+951J



and the joint L.T. of Xn and Xn+1 can then be obtained as

¢2(Sl’ SZ) E[exp(-szxn+ -slxn)]

1

E[exp(~526)] E{expl—(sl+szB)G]} E[exp(-slBG)]

~k§1
(1+le) [1+0$2

~kp, ~kp,
] [1+G(sl+52)] . (3.14)

Note that the lag-1 joint L.T. of (Xn, Xn+1) of this process
obtained above has exactly the same form as the lag-1 joint L.T.
of (Yn, Yn+1) of the BGAR(1) process obtained in Section 3.2.1.

Similarly, the joint L.T. of Xi, XZ’ cen, Xn can be obtained

as

[ - -
Elexp( snX s_ X

n *n-1%p-17" 751 %)]

n-1

Eiexp(-snGn)] E[sl(BG)] iglE{exp[-(si+si+1BI+1)Gi]}

-kp, -kEl n-1 —k51+kp1 ~kp,
1+6s } 1+6s ] i 1+Gs.] 1+6(s .+s . )
1 n ie1 i i i+

4

The a.c.f. of the BGMA(1) process can also be determined
directly from (3.13) as

P, J =1,
Corr(X , Xh+.) = {
n J 0 j > 1.

Note that the transformation (3.14) is symmetric in sS4 and
SZ, which implies that the process is time-reversible. However, a
time-reversible process is transformable to a Gaussian process,
then theoretically, time reversible models would have little
significance in the modelling of non-Gaussian time-irreversible

processes. In view of this, in the following sections, we shall

discuss three time-irreversible Gamma processes.



3.3.2 The Gamma MA(1) Process
The Gamma MA(1) process of Sim (1987b) is constructed from an
i.i.d. sequence of G(a+l, ¥). The Gamma MA(1) process is defined

by the following moving average representation

n n’ Vn€n+1 (3.15)

(b) the Vn’s are i.i.d. random coefficients defined on the
interval [0, 1) with standard Power-function distribution
F. (v) = va, a > 0,
|4
(c) the en’s are i.i.d. r.v.'s Gla+l, ) and
(d) the sequences {Vn} and {en} are mutually independent.
By setting b=«, ¢c =1 and 8 = ¢ in Lemma 3.1, the r.v.

Y = Ve is obtained as a G(«, ), and the L.T.of Xn is

¢X (s)

n

E[exp(—an)]

E{exp[-s(Aen + Vne )1}

n+l1

"

E[exp(—shcn)] E[-s(Vnen )]

+1

a+l o
= | £ (3.16)
Y+AS ¥+s ’

It is clearly shown in (3.16) that the Xh's are the sum of two

independent r.v.’'s G(a+1l, y/A) and G(a, 7).

By inverting the L.T. (3.16), the p.d.f. of Xn is obtained as
200+1 2o

] exp(~-yx)

fx (x) =

“n r(2a+1)A

1F1[<x+1; 2c+1; y(A-1)x/A].

Note that the process is a generalization of the following

three processes, i.e.,



(a) when A =1, {Xn} is a first-order moving average

Gamma (2a+1, 7)),

1

(b) when A

0, {Xn} is an i.i.d. sequence of G(«, 7),

(c) when A

1}

0 and o« = 1, {Xh} is an i.i.d. sequence of Exp(y).
Since {sn} is an i.i.d. sequence of G(a+1, %), then by
conditioning on Vn’ the double L.T. of the joint p.d.f. of Xn and

X ., can be obtained from (3.15) as
n+1

]

¢2(sl, sz) E{exp(-51Xh+1~szxn)}

E[exp(—slvn+len+2)] E[exp(-hszen)]

-E{exp{-(Asl+san)en 1}

+1

o+l o
- ) () )]
w+Asl 7+A52 3r+s1 ¥+As +52 .

1

The joint L.T. obtained above is non-symmetrical in Sy and
Sy which indicates that the process {Xn} of (3.15) is

time-irreversible.
By using the fact that en’s are mutually independent r.v.'s,

the covariance structure of Xn and Xn+j,for this meving average

process is established as

Cov(X ., X ) Cov(ae . +V Ae + V ¢ }
n+j n n

+ j n+j€n+j+1’ n n n+l

2 o
A Var(en) + Var(Vnen+1) Jj=0
Cov(ken+j, Vn€n+1) jz1
lat (a+1)2%1 /72 j=o0
= { oy j=1

0 JE2



By dividing the variance of Xn » 1.e., when j = 0 into its
autocovariance function, the a.c.f. of the process (3.15) is

obtained as

o/ Lot (a+1)A%] j=1

0 jz2

The conditional expectation of Xn+1 given Xn = x is obtained

. a .
by evaluating —5§;¢Xn+1’ X (Sl’ 52)|51=O Wwith respect to S, and
then dividing it by the marginal density function of Xh . The

conditional expectation takes the rather complicated form

X = y) = @A, _ox (Fqplotls 2042 2 (1-2)x/2]
nt1t"n s 20+1 1Fllcx; 20+1; 7 (1-A)x/A]

3.4 Mixed Autoregressive-Moving Average Processes

In this section, we shall first of all, study the first-order
mixed Gamma autoregressive-moving average process MGARMA (1, 1) of
Sim (1987a) in Section 3.4.1. This model is constructed by
combining the Gamma first-order autoregressive process of Sim
(1986) and the Gamma MA(1) process of Section 3.3.2.

Secondly, we shall introduce a new Gamma mixed
autoregressive-moving average process in Section 3.4.2. This new
process can be used as an alternative to the former process and is
constructed by combining the GAR(1) process of Sim (1990) in
Section 3.2.2 and the BGMA(1) process of Lewis, et. al. in Section

3.3.1.




3.4.1 The MGARMA(1l, 1) Process
The mixed Gamma MGARMA(1, 1) process of Sim (1987a) is

defined by the tfollowing stochastic difference equations

X =VyY + K Z

n n n-1 nn
- (3.17)
Yn B UnYn~1 * Zn
for n=1, 2, ..., where

(a) the Zn’s are i.i.d. r.v.’s Exp(A) with A > 0,

(b) the Kn are i.i.d. Bernoulli r.v.’s with

K = { 0 w.p. 6,

n B w.p. 1-6.

(c) the Un and Vn are i.i.d. random coefficients defined on the
interval [0, 1) with distribution function FV(V) = V“, o >0,

(d) the Zn’ Kn’ Un, Vn are mutually independent of each other.
By assuming stationarity; the L.T. of the process {Xn} is

obtained as

¢X (s)
n

E[exp(~an)]

]

E{exp[—s(KnZn + VnY )1}

n-1

E{exp[—s(KnZn)]} E{exp{—s(VnYn_ )1}

1

o
A A
o + oo 25| ()" (2.18)

Equation (3.18) verifies the assertion that {X } of (3.17) is a

mixed Gamma process, i.e., the process is the sum of a G(A, «)

and a r.v. which is zero with probability 6 and Exp(A/B) with

probability (1-8).

By inverting the L.T. (3.18), the p.d.f. of the process is

obtained as



R R U R et Rl ing

£y, () = 0 exp(-ax)/T(a)
n

+ (1-e)a(ax)® exp(~hx)1F1{1; a+l; (B-1)Aax/B)/Br(w+1).

The a.c.f of {Xn} is given by

[ y 2

a | o + (1-08)(a+1)B .
1) (041) [ (1-02) 2] s
pj = S (3.19)
a+1)Pj-1 J > 1

For fitting this model to hydrologic time series, the
parameters A, «, B and 8 of the model are estimated by using the
method of moments as the method of maximum likelihood is
computationally difficult to apply here. In order to preserve the
variance sz, skewness 7y, the lag~1 serial correlation r1 and the

lag-2 sefial correlation r2 of the historical data, we shall

solve the following set of equations, viz,

$2 = -%- [ot (1-62)6%] (3.20)
A
r
2.« (3.21)
r a+l
1
2 2
1 o +(1-8)(«+1)B

r
2 = (3.22)
Ty (a+1) o+ (1-62)B%]

WY

2 [+ (1-62)83]

7:
{a+(1—92)62]3/2

(3.23)

From (3.21), the value of « can be obtained easily. With «
known, the values of $ and ® can be evaluated by solving the
simultaneous nbn;linear equations (3.22) and (3.23). The value of
A can then be obtained from (3.20). Finally, the mean x of the

historical data is preserved by shifting the origin by a magnitude

of ¢, whose vélue is given by



[a+(1-08)B] + c. (3.24)

bl

X =

This model is fitted to the monthly flows of Perak river
(January 1948 to December 1969) and the simulated sequence bears a
close resemblance to the historical sequence (Sim, 1987a).

However, there are res£rictions in the model that the lag-1
serial correlation r and the sample skewness 7y are confined to
certain ranges for the solution of the two non-linear simultaneous
equations (3.22) and (3.23) to exist.

In view of these difficulties, we shall introduce a new
Gamma-like ARMA(1, 1) process in the next section, which will
avoid the non-linear estimations and yet preserve the sample

moments up to the third order.

3.4.2 A New Gamma-Like ARMA(1, 1) Process
This new Gamma-like mixed autoregressive-moving average
process is given by the following stochastic difference equations,

X =Y + B G
n n-1 nn

= * -
Y, =Py * Y, + (1-p,)G_ (3.25)

where

(a) the Gn’s and Bn’s are as defined in (3.13), i.e., the Gn’s

b

are i.i.d. r.v.’s G(kﬁl, 9~1) and Bn’s are i.i.d. r.v.’s

B(kpl, k(1—2p1)), and

(b) the operator '* ’ is defined as in Section 3.2.2, i.e.,

N(Y)

P, *Y=3YW,
2 i=0 i

' . -1
where Wj’s are i.i.d. r.v.’s Exp(a) with «

= 9(1—p2),
and for fixed y, N(y) is a Poisson r.v. with parameter

A:apz, 05p2<1.




Some General Properties of The New Gamma-Like ARMA(1, 1) Process
It is trivial that (1—p2)qn is a G(kil, [e(l—pz)]°1) and by

taking « = [6‘(1-p2)]_1 in the results obtained in Section 3.2.2,

the Yn’s are verified as G(kﬁl, 8—1); the (BnGn)’s are verified as

G(kpl, 6_1) by using Lemma 3.1. Therefore, the L.T. of Xh is

given as
by (s) = EIexp(—an)]
n
= Elexp( -SVYn_ 1 "SBnGn) ]
~kp, ~kp,
= [1+es] [1+ves) . (3.26)

By inverting the L.T. (3.26), we obtain the p.d.f. of Xn as

k-1 -x/6 -kp,

X F. |kp.; k: (v-1)x
X 11 1

fx (x) = Ve

n r(k)e

- From the correlation properties as shown in (3.9) of the

GAR(1) process, the autocovariance functicn of Xn and Xn+ is

J
obtained as
Cov(X_, xn+j) = Cov(vyn_1 +BG., Ypejor Bn+jGn+j)
= Covlvy . vyn+j_1) + Cov(vyn+j_1, B G)
= ,2.J = J-1
=v'p; Var(yn_l) * vp,p, Var(Gn)E(Bn)
2 — - j-1
= ko'vlvp,py + pipy)p;
hence, the a.c.f. of {Xn} is given by
v(vp,p, + p,p,)
2P1 7 P1Pp i=1,
+ vp
- ! 1 (3.27)
P, =
J -1 |
P2 Pj-q Jj> 1

The joint L.T. of Xn and Xn+1 is established as follow :




¢2(51’ sz) = E[exp(—slxn+1—szxn)

E{exp[—sl(vyn + Bn+1Gn+1) - sz(vyn_

Lt BnGn)]}

= E{exp(—slBG)] E{exp[—slv(p2 * y ) - s 1}

n-1 Zvyn-l

-E[exp(—slvaGn - SanGn)

o + vs, + afBs

-kp o + vs kp
[ons) 7 e
1 2

2— —
2— 2
a’p, + va(sl+32) + v $15,

(3.28)

where the third expectation is evaluated by using Theorem 3.1.
Since ¢2(sl, sz) * ¢2(52, sl), it is obvious that the

proposed Gamma-like ARMA(1, 1) process is time-irreversible,

therefore the process cannot be transformed to Gaussian process.

By inverting the joint L.T. (3.28), the joint p.d.f. of Xh

and X , for v = 1, is obtain as
n+1
k+kp,) (= k+kp,) x* 1 OXTOY 4 kP
fix, y) = |a 1lip 1
2 (k) > x
P,
- 2 n
® (kpl)n(a pZX) I'(k+n)
L AN = -
n=0 n F(kpl)r(kp1+n)r(kp1+n)

Jmin(y, pzx)exp( s u]{u}kp1~1(1_ g ]kp1+n—1
0 1—p2 pyX

k51+n—1 _
- \ ; ; ap, (y-u)) du.
; (y u} 1F1(kp1’ kp1+n, apz(y u)) du




The conditional expectation of Xn+1 given Xn = X is given by

E(Xn+1|Xh = x)
= kG[va(l—Zpl) + pl)]

+ [1F1(kp1; k+1; z)pzp1 + 1Fl(kplﬂ; k+1; z)vpzpl]x

lFl(kpi; k; z)

(v-1)=x

where z =
ve

Figure 3.5 1is a graphical representation of the above
conditional expectation.

In order to compare the performance of this model to that of
the MGARHA(l, 1) model of Sim (1987a), we have fitted
this model to the monthly flows of Perak river and the

computational results are discussed in Chapter Four.

E‘Xn+llxn = %)

8.5t

Figure 3.5 Plot Of The Conditional Expectation Of The
New Gamma-Like ARMA(1l,1) Process



Appendix 3A

PROOF OF THEOREM 3.1

E{exp[—(sl+szB)G]} EB{¢G(sl+séB)]

I
rry

since

E(BZ) = Bb+E, c) _ T(b+8)I(b+ec) _ (b),
B(b, c) C'(b)r'(b+c+l) (b+c)£

thus,
- A
E{expl-(s,+s,B)G]1} = [ ) ( J
1 72 e+51‘ Imo (b+c)£ I3 e+s1
e 12 )
= F.(a, b; b+c; ).
(8+31} 21 9+s1



Appendix 3B

PROOF OF Theorem 3.2

(a) The proof for (a) is trivial.
(b) From the definition of the operator '* * we have

El(p*Y )|Y = y]

N(Y)
= E( Y wi|Y = y]

i=1

Hence,

E(p*Y) = E{E[(p *Y J|Y = y1} = pE(Y).

(c) From (b), we have

E(p1 * (p2 *Y)) piE(p2 *Y)
= plpZE(Y)

= E(plp2 *Y)

(d) From (b), we have

E(p* (X +Y)) = pE(X +Y) = pE(X) + pE(Y)

E(p*X) + E(p*Y)

El(p*X) + (p *Y)]




(e) When j = 1, the left-hand side of (e) can be obtained as

E{expl-s(p * Y)]}

)

E{Elexp(=s(p * Y))|Y1}

(2 ()" an”
=E| ¥ ka+1] o exp(—AY)}

-n=0

r-—
= Elexp pasy]]

- [e1=-p)+(1-p)s)Y
a(l-p)+s

which is the same as the right-hand side of (e) when j = 1.

Suppose the result holds true for (j-1), we have
E[exp[—s(p *p* ...*p*px Y)])
« J times >

= E{E[exp[—s(p *p* . ...*xpx*xp= Y)]]l(p *pX* ... % px Y)}

« J times > ¢« (j-1) times >

= FE exp[_zzz](p *p* ... ¥ px*xy)

« (j-1) times >

_ a(l—p)+(1—pj)s v
- a(l-p)+s '

Hence, by mathematical induction, the assertion is true for all

Jj= 1.



