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3..1 f ntroduction

The need for non-Gausslan models has long been felt from the

fact that nost stream flows are non-Gausslan. It ls generally

accepted that nost stream flous can be fitted to Gamma

dlstrlbuti.on {Markoviv, L965; Mataras wallis 1973}. Therefore

this study concentrates nainly on Gamma processes.

Recently, several non-Gaussian xrodels (e.g., Gaver and Lewis,

1980; Tavares, 1980b and etc. ) have been developed for describing

correlated tine serles which have Gamma marginal distribution.

They are found superlor to Gausslan moders, especially in

describing time-irreversible Gamrra processes.

Firstly in this chapter, w€ shall devote ourselves to the

study of some ue11 established correlated autoregressive, moving

average and nixed autoregressive-moving average Gamma processes.

l.Je shall also discuss some further properties of 'the GdR(1)

process of Sim (1990) in Section 3.2.2.

Secondly, H€ shall introduce a new time-irreversible

Gamma-li-ke ARttA(t , 1 ) process. The autocorrelation structure,

conditional moment and the bivariate distribution of the proposed

model are discussed and given in Sectlon 3.4.2. The applicability

of this model for skewed river flows is investigated and the

discussion i.s presented in Chapter Four.



For simpllcity, in the following discussions, u€ shall denote
a Gamma randora variable (r.rz. ) with shape parameter k > O and

scale paraneter F > o by G(k, F), lre shall also denote an

ExponentiaL r-v- with parameter t > 0 by Exp(u) and a Beta r.v.
with paraneters m ) 0, n ) O by B(m, n).

The probability density function (p.d.f. ) of a G{k, F) is
gk*k_t 

"_{Jxf"tx) = :-:i*i-, x l 0, S > O, k ) 0,

with .o..*=ponding Laplace-stieltjes transform (t. r. )

( 'rr
d,"(s) = tgl"(, 1F+s,; '

and the p.d.f . of a B(m, n) is

f"(x) =ffi***1 (r-x)n-l

The Gamrna and Beta variafes are

relations are established as follows

TITEORET' 3. 7.

intimately related and their

Let G be a G(a, s) and B be a B(b, c) which is independent of

G, then

E{exp[-{sr+srB)Gl } = t#"J 
u 

rrrru, b; 6+ci ft,,
where 

?FI{o, F; T; z) is the hypergeometric function defined by

@ @) n$3) g r.

,Frtu, F; T; z) =n\o-Fi-/'] ,"

uith (a) = a(a+t\n

The proof of

By taking 
"1

that

. . . ta+n-t) = I'(a+n) /T {a) .

Theorem 3.1 is given in Appendix 3A.

- 0, a = b+c in Theorem 3.1 and using the result

^F. 
(cr, f3; d'l

ZI
zj * $-il-F,



wethenhaveElexp(-srBGll={t+ .{e )b- t^ ' o J = let%,| vrhich leads to

the fol.lowing Lemma of Lewis et. al. (19g6) :

LEI{|.IA 3. 1 : BETA-GA!IItu{ fR/EIrrSfOrutAIIOitr.

The product of two independent r.y.'s G{b+c, e} and B(b, c)

is a 6[b, g), namely,

G(b, e) = 8tb, clC(b+c, o).

3.2 Autoregressive Processes

Some well-known Gamma firsl-order autoregressive models are

the models of YevJevich (1966), Thornas-Fiering (L957),

Klemes-Boruvka (1974.), Gaver and Lelris (1980) etc. In this

section, we shall describe the Beta-Gamrna flrst-order

autoregressive process BGAR(1) of Lewls, €t. al. (1986) and the

Garnma flrst-order autoregressive process GdR(1) of Sim (1990).

The G.dR(t) process of Sin (1990) is used to construct a new

Gamma-like mixed autoregressive-moving average process in Section

3.4.2.

3.2.t The BGAR{1) Process

The Beta-Gamma first-order autoregressive process BGIR(t) of

Lewis, €t. al. (1986) is defined as

Y =BY .+e-n n n-] n
(3. 1)

for n - O, +1, ...., r*here

(a) tlnl is a sequence of i'i"d' r'v''s Btkp' kp)'

(b) {erri is a sequence of i' i'd ' r'v' ' s G(kF' F) '

{c) k } o" B > 0, o 5 P < 1, F= 1-P and

(d)tbetwosequenceg{Bn,and{e,,}aremutuallyindependent.



If

Lemma 3

By

have

E{exp t_ (s, *"zBn)yn_r r } = t_*;l-u[=4=, 
-"

and the joint L.I. of y' and yrr_, ls then given by

#Zt" t, tZ) = E [exp (-srYrr-stYrr_f ) ]

= E{exp[-sr(BJ _1*rr,] - sryrr_r1]

= Elexp(-srerr) J E{expt-(s, +srBn}yn_,I }

( $ lkPr p lkPr B )kp
t-F.'1J tT*rJ tT-*lnJ

Since B , is independent of y _ -. for j = l, Z,n _n_j

autocovariance function of y' and yn_j can be written as

Cov(Yrr, Yn_j) = E(Brr) Cov(yrr_r, yrr_j),

thereby, the autocorrelation functions (a.c.f. ) of the

(3.1) is obtai.ned as

corr(Y-, Y--.1 = ol"il, i =n' n-J

From the definition of

expectation of Yr, given Yn_L = y

Yn-1

. 1, the

taking

E{Ynl"rr*, = y) = E[ (BnYn_'

=vE(B)+E(e'nn

has Gamma(k, B) marginal distribution, then from

resulting Y., is a G(k, F) also.

a = b*c with b -- kp and c = kp in Theorem 3.1, we

(3. Z)

, the

process

0,

Yn

is

+g

+1_-,

in (3. 1),

established

t)lY.r-r = YJ

) = 0-p)k43

(3.3)

the conditional

as

+ Py.



The conditional

f" ty (xlv)
-nl-n-1

p.d.f . of y
,, Eiven Yn_1 glven as=Yis

tkF 
"*p(-kx)

r{k)
r(kp) tr(kp) 12

x/Y)

$herex,y:0.

For an observed

of the parameters I{,

; = g)zrsz ,

8=k/y

and

. f*t,'t 
r, ,

Jo

of

as

p= r n-l

r r!, 
(Y i - 7) (Yi*t - il

t
where y and so are respectively the sample mean and variance.

The Gamna first-order autoregressive process of Sim (19g6) is
a special case of t.he BG,{R(l) process of Lewis et. ar. (19g6). It
is constructed according to the following stochastic equation :

Y =VY - +€n nn-l -n

urhere

(a) {s-} is a sequence of j.i.d. r.v., s Exp(l),n

tb) {v^, is a sequence of i. i.d. random coeff icients r+ithn

standard Power-function distribution, F(v) = v&, or ) 0

defined on the interval [0, 1 ),

(c) the tr.ro sequences {crr} and (l/rr} are mutually independent.

The resulting Y' is a G(u+l, A,).

*ko-1 (t-w)kF-t ,r-"*, exp{kyr+} dw

seri"es {y, }

F and p are

(3.4)

length n, the moment estimates

follows :



The lag-l joint p.d.f . of {yni is
.::

:

(^o*'ro"xp[-](x+y) l rF, 
(a; u+t;\y)/f (a+t ), x>y

fYn*y"rrt"' y) = 
t^o*r"ou*p[_rix+y) 

J rF, 
(a; a+L;A.x)/f(a+1], xsy

c0 (cr), 
pwhere .F., (cr; F; z\ = | -ni ,- is the confluentI I- I- fn) (,1 LrrE ut')IrIIueIlL

1-=t) '' 't, :l:rZ=0 \t" l *'

" Hypergeometric function. Figure 3.1 exhibits the three ,.,

$. i, .., ,,,
$,b.,,. dimensional representation of this joint p.d.f . IF:''i:':.:.
'

l

3.2.2 The CAR(1) Process

The Gamma f irst-order autoregressive process C,4R( 1 ) of Sim

(1990) is constructed according to the autoregressive

representation

Y_= p*Y-n*€_ (3.S)n'n-ln
where the operator ' * ' is defined as

il(y)
p * f - I w.

i=1 t

and

(a) the e*'s are i.i.d. r.v-'s G(y, a) with a, v ) O,n

(b) the ly'.'s are i.i.d. r.v.' s Exp(*,) andI

(c) for each f ixed value of !, il(y) is a Poisson r.v. with

I = pd, 0 s p < 1..

From the definition of the operator ' JF ' , we have the

foll-owing theorem :

Theoren 3.2

(a) OxY=0,

(b) E{p * Y) = pE(Y),

(c) E{pt * ,2. x Y, = E(P.P, * Y) = PtPz E(y)'



Y)

( r-

(d)

te)

flp * (X+f)l =

{tElexp[-s(p' * y
\

where pJ * Y = p * p * * p

(- j tlmes +

The proof of Theorem 3.2 is glven in Appendix

Si.nce p * Yn_1 is independent of r' and

thatthe L.T.of p *YgivenY=yls

,{.*or-s(p * v) r tv = y} = r{"*n[ Ij!]",] 
''

c0

_L
n=0

p"X)+(p*

e { t-pn)s

Note that since

l? + s, the Y 's are

Et {

,,1 +s;

* Y.

38.

by using the resul t

="]E{"*p 
[-"r!,",] ]

=v)

n' 
frvrrt

=irtr*]" t^ri" exp( trv)

= exp[#""J 
,

the I,. T. of

Oy (s)
n

the p.d.f . of

= E{E Iexp (-sY

Yn

) lvn

r{rt"*n(-ser,) I r[*xn[-s(p *

'[[*J' "*o[*fr'"-,J]

t*lu rrn-rtffil

e(t-pnls,-" troF

can then be expressed recursively as

,r-f I )

(3.6)

(3.7)

O=p<1 and

asymptotically

Y 
n-rL r t""-r])

which on solving recursively, yields
nps

QY
n
(s) = tr +

Q = L/u{|-p).

+ (l+gs)-u as

where

Oy (s)
n



distributed Gtv, 
"*1). 

If yO has the equilibrium Gamma

distribution, then d" (s) = (l+es)-u for all n, implying that the
n

Yrr's are identically Gamma distributed r.y.'s.

The l.r. of the joint p-d-f. of yy yz, y' r+as obtained

by Sim (1990) as

drr("t , sz, ,"rr) = lr., * esnl/nl u (3.g)

r+here S", = diag(sr, "2, "rr), In is a nxn identity matrix, Vn

is a nxn positive definite matrix uith elements ,ij = oli-iltz,
i, j = 1, Z, ..,,n and lr{l denotes the deternlnant of .lt.

Consequently, the l.I. of yr,, 
"rd 

yrr*j is derived as

Qj*rLtj*,' o' 0' "t)
= tt * e(s1*rj*r) * e2(l-pJ)"rrr*rl-'

with corresponding bivariate joint p.d.f.,

where I Q)r
of order r.

function.

=

of

ry 
n* j, ,,r{*, y) = [r"*t 

( r-pr)rtrl] 
1 

VrrrtT(v-r)/2

'""o[ (v+y)/o,t-o')] r,-rlrFirerr-nrl]
is the modified Bessel function of the first kind and

Figure 3.2 is a graphical representation of this

By using Theorem 3.2, we have

cov(rrr+.i, Yn) = cov(p * Yn*j*t * Grr*l , Yn)

= Cov{p * Yn+j_1, Yrr)

EIY n(n 
* t ,*;_r r , - E$ 

n)E 
(p * Yrr.,j_1 )

pE(Y Y n*j_1) - pE{Y 
n)E(Y n* j_t)

pcov tYn*.i*1,, Yn). (3.9)

the Gamma CdR(1) process is established asHence, the a.c.f.



corr(t r*r, yrr) = pJ, i = 0.

The 0th order r:onditional moment

of Yn+J given Yr, = y are

E$:*jLYr,= y) .= or

and the conditional variance

.,,1

'1.4. 
,,: :

iii-: : :

e.lr:: :&i.
F,. .':

i,::..
i:f:i
tt; 

t.,

:.

ti-t 
l-ri ,ru( 1-p, )]

var(Yrr*rlYrr= r| = e2(vuitz iilv + 2r" y/O( i-p') l

respectively, where tf,-l t=l ls the generarized Laguerre

of degree €. The first-order conditional variance and

also illustrated respectively in Figures 3.3 and 3.4.

[, 
r r-o',1{

and

polynomial

moment are



.1

05

Figure 3.1 Plot Of

l=1.0anda=3.0
The Joint p.d.f. Of Yn =VY , +enn-I n

0.0
0.05
0. 04
0.0

Figure 3.2 Plot Of The Joint P.d.f.
rsith p = 0.5, v = 3-0, 0 = 1.0 and j

Ot Xn = p ik Yrr_l

= 1.0

+r'



var(Yn+1[vr, = r)

Figure 3.3 Plot Of The Conditional Variance Of y =P:kV n-l +e

E(Yrr+llYn = v)

i-.

1.

0.5

-0.

*1.
*2.

Figure 3.4 Plot Of The Conditional- bloment Of Yr, = P o Yrr-l * n'



3.3 l{oving Average processes

In this section, we shall discuss two first*order moving

average processes, they are the Beta-Gamma first-order moving

average process BGt"IAtl) of Lewis, €t. aI. ( 19g6 ) and the Gamma

flrst-order movlng average process Gamma tlAtt) of sim (1gg?b).

The BGt{r{(l) process of Lewis et. al. (1996) ls used bo const.rucf a
new Gamma-Iike mixed autoregressive-moving average process in
Section 3.4.2.

3.3.1 The tsGHA(11 Process

The 8Gtf,,t ( X ) process of Lewis, €t. al . ( 19g6 ) i.s defined as

(3. r3)

where

(a) {c } isn

(b) {s } isn

(c) the two

(d) 0 s p..I

By using

OX (s) =
n

X =Q +8Gn n -n-n-l

Hence, all of

By taking

3.1, we have

a sequence of i.i.d. r.v.'s

a sequence of i. i.d. r.y.'s

processes {B_} and {C } arenn
't/2, k > 0, O v g and F1 =

Lemma 3.1, the I,.I. of X,

-1G(kp' O ^),

B&n, k(L-Zn|),

mutually independent and

1_p1

ls obtained as

-1G(k, e ') .

+kD^ in Theorem

Elexp(-sXrr) J

( t-kF, r r-kP,
I t+esl ' I t+esl 'r/(J
(t+es)-k.

the X_'s are j.dentically distributedn

a=b+c with r-tp1 and "--xnf

= 
[r.nrr1 

-kr'+xP' 
[r*or"r*"2)] 

-jaP1
E{exp [- (s, +s.B]GJI



and the joint f.f. of X, and

6Z{"t, tZ) = Elexp(-"2X.,*1

= Elexp(-src) I

Xrr*1 can then be obtalned as

-.s"X )lrr)

E(expt-(s,' +s_B)Gl ) Elexp(-s.BC) II Z --r-\ *1

= [r*r'rl-un' Ir*,,"'r'l 
-uFt 

fr.otsr*s,,'l-un, (3. 14)( r/ \ z) L t_z.J

Note that the rag-l. joint L.T. of (xr,, Xn*l) of this process
obtained above has exactiy ilre same form as the 1ag_L jornt L.T.
of (rn, Yn+l) of the BG/R(1) process obLained in section 3.2.7.

similarly, the joint L.T- of xt, x2, X' can be obtained
as

drr("t, sz, 
"")

= f lexp (-srrXrr-sn_1Xn_1 -

= f Iexp(-srrGrr)l f Is, (Bc)] 
tntrr"*ot-(s.*"j*1Bi*1)Grl 

]j=1

r \ -kP, r ., -kF, n-l ( \ -kF1 *kptf 
.,.,,-kpt: 

[1+esr) 'tt.r'r,,| ',I,Ir.,r-J '1 'tLr+o(s.*rj*1,J

The a-c.f- of the BGNA(\) process can arso be delernined

-srX, ) I

directly from (3.13) as

Corr(Xrr, X'*;, = { 
ot

n+J Io
j = 1,

j > r.
Note that the transformation (3.14) is symmetric i' ,1 and

uZ, uhich lmplies that the process is time-reversible. However, a

time-reversible prc,cess is transformable to a Gaussian process,

then theoretically, time reversible models would have little
slgniflcance in the nrodelling of non-Gaussian time-irreversible

processes. rn vi.ew of thls, ln the folrowing sections, we shall

discuss three tlne-irreversible Gamna processes.



3.3.2 The Ganma HA(l) process

The Gamna lf,4(1) process of Sim (19g?b) ls
i.i.d. sequence of G(a+1, f). The Gamma H.{(1)

by the. following noving average representation

xn= ler, + 7n"n*1

uhere

(al )\ > o,

tb) the fr,'" are j. J.d. randon coefflclents defined on the

lnterval [0, 1 ] with standard Power-Function distribution
f'trz)=rr*,G)0,

tc) the c 's are i, i. d. r. y. 's G{a+1, ?} andn - vr'- 
" o t

(d) the sequences {l/r} and terr} are mutually independent.

By settlng b=c, c=1 and g=3l ln Lemna 3.1, the r.u.
Y * Ve ls obtained as a G(cr, t), and the t.I.of X' is

d". (s) = Elexp(-sXrr)I
n

constructed from an

process ls defined

{3.1s}

(3. 16 )

are the sum of two

of X is obtalned asn

= E{exp[-s(]e' n frrrr*1) I ]

EIexp(-s)terr) I E[-s(l/rrerr*, ) I

= t"*1".'[#"J"
It. is clearly shown 1n (3.16) that the Xr,'"

independent r. v. 's 6(s,+1 , T/^) and G(a, T).

By lnverting the l.I. (3.16), the p.d.f.
2a+1 2a

rx_{tl = pfo;fui exp(-rx} ,Frle+1 ; 2ot+1; a(r-t)x/\1 .

,n

Note that the process ls a generallzatioh of the following

t,hree processes, 1.€. ,



(a) when I - 1, {xn} i-s a first-order noving average

Ganma (2a+1, t) ,

(b) when )t = 0, {Xn} is an i.i.d. sequence of G(a, T},
(c) when l = 0 and a = 1, txn) ls an i.i.d. sequence of Exp(t).

Since {crr} is an i . i . d. sequence of G(a+1 , T) , then by

conditioning on l/rr, the double L.r. of the Joint p.d.t. of X' and

Xn*1 ean be obtained from (3.15) as

de("f , tZ) = E{exp(-s1Xn*1-srXrr) }

= Elexp(-"1[n*1"r,*2) I Elexp(-)rsrer,] I

'E{exp [- (lts, +srV 
n)"rr*1 I ]

={ , lf g l"*'l{ , lI z ].l"- ttu{Jl.r.EJ L['.",J t*ry%,f1
The Joint L.T. obtained above rs non-symmetricar in

uZ, uhi.ch indicates that t,he process {Xn} of (S.

t ime-i rreversible.

"r.
1s)

and

is

By uslng the fact t,hat

the covarlance structure of

process ls establi.shed as

s are mutually lndependent r.r.'s,
and X.r*;. fo. this mcving average

aln

xn

tov(Xr+j, Xn) = Cov(Aen*J * vn*.i"n+J+t' ltr, * trrtrr*1)

, ),Zvar(c ) + Var(Vln
={

I co,r(]en*J, vnxn*!

n

)

"rr*1) J=

j>

J=0

J=1
jz2

={

la+(a+1 )xzttvZ

aA,/vZ

0



By dividing the variance

autocovariance function, the

obtained as

of Xn , i.€., when J = O into its
a.c.f. of the process (3. 1S) is

{ ,^'[a+ 

1o*11^z' J=L

jzz
is obtained

to "Z and

The

Pj=

The conditional expectation

by evaluating a
E/*r,*,' *n("t'

of xrr*1 given xr, = t

"z)lrr=o with respect

denslty function of X'

rather complicated form

,F, [a+1 ; 2a+2; r(1-f )x/A]

then dividing tt by the marglnal

condltional expectation takes the

f (Xr,*l lxr, = l) _ a+h a)tx
T Za+L

3.4 llixed Autoregressive-Hoving Average processes

rn this sectlon, we shall first of all, study the first_order
mixed Gamma autoregressive-moving average process TIGARNA (1, 1) of
sim (1987a) 1n sectlon 3.4.i. This model is constructed by

combinlng the Gamma flrst-order autoregresslve process of Sim

(1986) and the Gamma lfd(l) process of section 3.3.2.

secondly, rd€ shal r introduce a new Gamma mixed

autoregresslve*moving average process ln sectlon 3.4.2. This new

process can be used as an alternatlve to the former process and is

constructed by combi.ning the Gl{R( 1} process of sim ( 1990) in

section 3.2.2 and, the SGlfA(1) process of Lewls, €t. al. in section

3.3. 1



3.4.1 The MGARHA{1, 1) process

The mixed Gamma 11GARI{A(1, 1 )

defined by the following stochastlc

process of Sim {19g?a)

dlfference equations

for

(a)

(b)

X-=VY -+KZn n n-l n-n
Y =UY - +Zn nn-l n

I? = t, 2, where

Lh'e Z_' s are i. i. d. r. y. ' sn

the K_ are i.i.d. Bernoullln

u la v.p. e,
t\ n l\̂ F w.p. 1_e.

E{exp[-s(K;f,n + v

E{exp [*s$nZnlll

[".(1-0]t#l]

Exp()tlwith^y0,

r.v.'s with

1S

(3. 17)

(3. 18 )

(c) the u' and v, are i- i.d- randon coefficients defined on the
j'nterval [o, 1) uith distrlbutron function Fn(v) = v&, o ;, 0,

(d) the Zrr, Kn, Un, p' are rnutually independent of each other.
By assuming stati.onarity, the L.T. of the process {xn} is

obtalned as

0X_(") = [[exp(-sXrr]l
n

nvn_1 ) I )

f,{exp t-s(V 
nY n_1 } I }

[*J"
Equation (3.18) virifies the assertion that {Xn} of {3.I2) is a

mixed Gamma process, i.€., the process is the sum of, a G(1, c)

and a r.v. whi.ch is zero with probabitrity e and Exp6/t3) with

probability (1-e).

By inverting the .L.I. (3.18), the p.d.f. of the process is

obtalned as



fX (x) =
n

The

Pj

+ [ t-o ) (or+1 )S

) [a+( t-r?\fizJ

T is given byTY
T

2

{a*1

I t-tp

a. c.

|'I
={

rI

el(Lxle*t 
"*o(-lx) /t (u)

+ (t-s)l{},x)a exp{*Ix) rF,

fof

a. l
A;TJ

cl
"-TJ

)n

[1; a+1; U3-L)Ax/F)/8f (a+1 I

J=1.

(3.1e)
j>1

(3.20)

(3.21 )

For flttlng this model to hydrologic time series, the

parameters 1,, cs, S and g of the nodel are estimated by using the

tnethod of, moments as the method of naximurn likelihood is
computationally difficurt to apply here. In order to pr:eserve the

?variance s-, sker.rness r, the lag-l serial correlation r, and the

Lag--Z serial correlation ,z of the histori.cal data, we shall
solve the following set of equations, vLz,

zs

2,l
2,!

tz

= + [a+(i. -ez)Fzl
),'

=ca+L

oZ*(1*s) (c+1)B

(cr+1) [a+(1 *ez)F?l {3.22)

T- 2[a+{ t-e3)F3] (3.23)
la+(1*sz)Bzf/.

From (3.21), the value of s. can be obtained easily. Hith q.

knorrn, the values of F and O can be evaluated by solving the

si-multaneous non-linear equations (3.22) and (3.23). The value of

I can then be obtained from (3.20). Finally, the mean x of the

historlcal data is presernred by shifting the origin by a magnitude

af c, whose value is given bY



t = * [a+(l-e)F] + c. (3- 24)

This model is fitted to the m.nthly frows of perak river
(January 1948 to December Lg6g) and the simulated seguence bears a

crose resemblance to the historical sequence (sim, 19g7a).

However, there are restrictions in the model that the lag-1

serial correration ,L and the sampre skewness t ale confined to
certain ranges for the solution of the two non-linear simultaneous

equati.ons t3.22) and (3.23) to exist.

In vien of these diff i.cultles,

Ganma-llke .!lRt{A( X, 1} process in the

avoid the non-linear estimations and

moments up to the third order.

we shall introduce a new

next section, which will

yet preserve the sample

r.v.'s Exp{d with c'-X = o(l-pZ)

is a Poisson r.v. with parameter

3.{.2 A New Gamna-Like ARI{A(l, 1) process

This nelr Garnma-rike mixed autoregressive-moving average

process is given by thre following stochastic difference equations,

X- = vY . + B Gn n-l nn
Yn = pz * Yn._t + {t*p}Gn (3.2s)

r+here

(a) the G*'s and 8-'s are as defined in (3.13), i.e., the G,sn n r---v" 
n

are i. i.d. r. y. ' s G&p* B-1) and B_, s are j. j. d . r.tz. , s-L n

B(kp., k(7-2p")), and-l -L

(b) the operator 'r ' is defined as in Section 3.2.2, i.e.,
s(y)

p" * Y = Lv,
i=0

where W.'s are i.i.d.
7

and for f ixed Jl, N(y)

^ 
= upZ, 0 = pZ, 1.



Some General Properties of The New Garuna-Like ARI{A(l, 1) process

It i.s triviat that {t-pr)Gn is a GtknL, [e( L_pZl]-tl and by

taking & = f,et*nr)|-t in the results obtained in section 3.2.2,

the Yrr's are verified as G(kF1 e-1); the (g#n),s are verified as
-1G(kpr, 6 ^ ) by using Lemma 3. 1. Therefore, the L.T. of xn is

given as

f lexp(-sXr,) i

E I exp ( -suYrr_, *s8rrGr, ) I

/ \-kpnr \-kFr
[t.esJ '[r*ue'J - r.

the I,. T. (3.26), we obtain

*k-t "-x/o ,-kit rFr [rnr,--;a;r-

Ox (s) =
n=

By inverting

tX (x) =
n

hence, the a.e.f. of

vtvorp, + oror)
7-

PL * v-PL

l-t r r-,

the

j

is established

in (3.9) of the

XandXisn n+J

j = 1,

t3.27)

> L.

as follow :

(3.26 )

ofX asn

. From the correlation properties a.s shown

GdR{ 1} process, the autocovariance funcLi<;n of

obtained as

Cov(Xrr, Xrr*J) Cov(uJrr_l * B.rGrr, vyn+j_i * Brr*jGrr*J)

cov{uJrrr_r, v!n+j_1) + cov(vln+j_L, BnGn)

"'oJ. var(Jrrr-, t * upzpiz 1 var(Grr)E{Brr}

2 r-1ka'v(vpzpt + nrn)n)' 
,

{Xn} is given by

"r={

xn xn*'J,The joint l.I. of and



Qz(ur, "Z) = E Iexp (-r],Xn*1 -srXn)

E{ exp [ -s, ( u/r, * Br,* 
lGrr* 1 

)

Efexp(-srBG) I E{exp I-s rv(n,

'Elexp GsrvprCn - srB{ )

"z(ul n-L

* /rr-, )

+ errcrr) I )

- szvYn-lll

= [t.r"rJ

_1P1 

t

cr + us1

C['+Ys1+0lASz

z-oPz

] 

no'

2-eD.
t3.28)

PZ* ua{sr+sr) + v"srs,

where the third expectation is evaluated by using Theorem 3.1.

Since QZ{"f, "Z) 
* Qr(sr, "1), it is obvious that the

proposed Gamna-like ARltl(1, 1) process is tirne-irreversible,

therefore the process cannot be transformed to Gaussian process.

By inverting the joint L.T. (3.28), the .joint p.d.f . of Xn

and X-_. " , for r,l = 1, is obtain asn+l

I 
kPt

,F;-J

-2
: (kt1)n (uzprx)n
L^m

l?=u n

nrx) (

"*p I

'' (r- * tkPfn-t\ pz*)

I

. rt" 
tr'

JO

f (k+n)

I- ( kR, ) I' (kp, +n ) f ( kR, +n )

*,"J ["J-"'

f ) 
kpfn-t

["-"J ,fr(kf, i kp!+n; unrtV-u)) du.



I expectation of Xn*1 given X, = x is given by

p1) l

z)pZpt + ,F, (kpr+t; k+1;

,F, 
(krr; k; z)

--L - ,- ( v-l )xwnere = = ---rg-.

Figure 3.5 is a graphical representati.on of
condi t ional expectat ion.

rn order to compare the performance of this nodel to
the itc.d"Rlfd ( 1 , 1 ) model of Sim (79BTa) , we have

this model to the monthly f r.or+s of perak river
computational results are discussed in chapter Four.

that of

fi t ted

and the

E (xrr+t 
I xn = *)

7.

1

Figure 3.5 Plot
Neur

Pr) +

L+1 i

The conditiona

E(Xt*1 lxr, = x)

= J<0 [uprtt-Z

+ 
['F' 

(uot' 't
,1rn2otl*

the above

6.

Of The Conditional
Gamma-Like ARMA(1,1)

Expectation
Process

Of The



Appendix 3A

PROOF OF THEORET"I 3.1

slnce

thus,

E{exp [- (sr+srB)G1 i =

E{BL) = {ffi-*

E{exp[-(sr+srilG], =

EB{Qc(sr+srB11

"[fr-frFJ1
f ^ l"

%J*' -=-l[ ' t.*neJ

t#ql"A-Ji$[A'
tth] 

^ ,'r"' b; 6+ci t+'



Appendix 38

PROOF OF Theorem 3.2

(a) The proof for (a) is trivial.
(b) From the definition of the operator

E[(p * Y )lr = 
"1

'*', ue have

stiv(y) I = py.

pE(X) + pE(Y)

E(p*X)+E(p*y)

E[(p*X)+(p*y)]

r iv(r)
= E[ 

;!; 
'-, 

ty = yJ

= ; rf ; "..| ,.rrr/(y) = nl
r=1 tj=1 ')

= I *t.ttJ(y) =nl
n=1 *

=1c

Hence,

(c) From (b), we

E(p. * (p *'' t 'r2

(d) From (b),

E(P * {x

have

Y)) = pl[(pz *

= prpTE{Y}

= E(ptP| *

Etp*Y)=E{fI(p*y )lr = yl) = pE(y).

Y)

y)

we have

+ Y)) = pE(X + y1



{e) l.lhen j = 1, the

E{exp[-s(p

Ieft-hand side of (e) can be obtained
t Y)l) = f{Elexp(-s(p * y))ly1 }

'Ll,t#1"'^:1"

= r[**nt{Hi]

{q.(7_p)+ ( t_p)s.lu= l.ttt=itt.,J
as the right-hand side of (e) when j = 1.

result holds true for (j_1 ), we have

as

exp (-rr)]

which is the same

Suppose the

(
Elexp[-s(p *

\
(-

.n.rlt]

.*p

times

= +['*ot-"

p

-)

p

j

(p

(-

JF

t imes

*P* * p * y)lJ l(e
+<-

* p *...* p. tr)
(j-1 ) times +

{"1

= r{exnL*HJ (p * p * ...*
+ (j-1 ) times

= (a(t-p)+(I-p, )tl'l.@J.
Hence, by mathematicat induction,

j = 1.

lp * Y)f
)

+

the assertion is true for all


