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ABSTRACT 

 

This research focuses on the parameter estimation, outlier detection and imputation of 

missing values in a linear functional relationship model (LFRM). This study begins by 

proposing a robust technique for estimating the slope parameter in LFRM. In particular, 

the focus is on the non-parametric estimation of the slope parameter and the robustness 

of this technique is compared with the maximum likelihood estimation and the Al-Nasser 

and Ebrahem (2005) method. Results of the simulation study suggest that the proposed 

method performs well in the presence of a small, as well as high, percentage of outliers. 

Next, this study focuses on outlier detection in LFRM. The COVRATIO statistic is 

proposed to identify a single outlier in LFRM and a simulation study is performed to 

obtain the cut-off points. The simulation results indicate that the proposed method is 

suitable to detect a single outlier. As for the multiple outliers, a clustering algorithm is 

considered and a dendogram to visualise the clustering algorithm is used. Here, a robust 

stopping rule for the cluster tree base on the median and median absolute deviation 

(MAD) of the tree heights is proposed. Simulation results show that the proposed method 

performs well with a small value of masking and swamping, thus implying the suitability 

of the proposed method. In the final part of the study on the missing value problem in 

LFRM, the modern imputation techniques, namely the expectation-maximization (EM) 

algorithm and the expectation-maximization with bootstrapping (EMB) algorithm is 

proposed. Simulation results show that both methods of imputation are suitable in LFRM, 

with EMB being superior to EM. The applicability of all the proposed methods is 

illustrated in real life examples. 
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ABSTRAK 

 

Kajian ini memberi tumpuan kepada penganggaran parameter, pengesanan data terpencil 

dan kaedah imputasi untuk nilai lenyap bagi model linear hubungan fungsian (LFRM). 

Kajian ini dimulakan dengan mencadangkan teknik yang kukuh untuk menganggar 

kecerunan model linear hubungan fungsian. Khususnya, kajian ini berfokus kepada 

anggaran kecerunan model menggunakan kaedah tidak berparameter, dan kekukuhan 

pendekatan ini dibandingkan dengan kaedah kebolehjadian maksimum dan kaedah Al-

Nasser dan Ebrahem (2005). Daripada keputusan simulasi, kaedah yang dicadangkan 

memberi keputusan yang bagus ketika peratusan data terpencil rendah dan tinggi.  

Seterusnya, kajian ini memberi tumpuan kepada pengesanan data terpencil bagi LFRM. 

Kaedah mengesan satu data terpencil menggunakan statistik “COVRATIO” dicadangkan 

bagi model LFRM dan simulasi dijalankan untuk memperoleh titik potongan. Keputusan 

simulasi menunjukkan kaedah yang dicadangkan ini berjaya dalam mengesan satu data 

terpencil. Apabila wujudnya data terpencil berganda, penggunaan algoritma berkelompok 

dipertimbangkan serta ilustrasi menggunakan dendogram digunakan. Kaedah yang lebih 

kukuh dicadangkan untuk nilai potongan bagi pokok kelompok berdasarkan median dan 

median sisihan mutlak (MAD) bagi ketinggian pokok tersebut. Keputusan simulasi 

menunjukkan kaedah yang dicadangkan berjaya mengesan data terpencil berganda di 

dalam sesebuah set data dan menunjukkan prestasi yang bagus dengan nilai “masking” 

dan “swamping” yang rendah. Bahagian akhir kajian ini mengambil kira nilai lenyap 

dalam LFRM dan penggantian menggunakan kaedah moden, iaitu kaedah maksima 

kebarangkalian (EM) dan kaedah maksima kebarangkalian dengan “bootstrap” (EMB) 

dicadangkan. Keputusan menunjukkan kedua-dua kaedah sesuai digunakan dalam model 

LFRM, dengan kaedah EMB lebih memuaskan daripada kaedah EM. Penggunaan 

kesemua kaedah yang dicadangkan ditunjukkan menggunakan contoh data set yang 

sebenar. 
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CHAPTER 1: RESEARCH FRAMEWORK 

1.1 Background of the Study 

 

Errors-in-variables model (EIVM) or known as measurement error model has 

become an important topic since a century ago when studying the relationship between 

variables. It dates back in 1878 when Adcock wanted to fit a straight line to bivariate data 

when the bivariate information is measured with error. Since then, the EIVM study has 

been expanded and several literatures can be found over years (Lindley (1947),  

Madansky (1959), Anderson (1976), Fuller (1987), Gillard and Iles (2005), Tsai (2010)). 

EIVM are regression models that take into account the measurement errors in the 

independent variables (Koul and Song, 2008). In contrast, the standard regression model 

assumes that the variables involved are measured exactly, or observed without error. If 

errors in the explanatory variables are ignored, the estimators obtained by classical or 

traditional regression are biased and inconsistent (Buonaccorsi, 1996). In real life, for 

example in biology, ecology, economics and environmental sciences, the variables 

involved cannot be recorded exactly (Gencay & Gradojevic (2011)). 

 To give an example, in the field of environmental sciences, measuring the level 

of household lead is an error-prone process as lead levels are exposed to many other media 

such as air, dust, and soil with possibly correlated errors (Carroll, 1998). Another 

example, when measuring nutrient intake, measurement error in a nutrient instrument can 

also be very huge, as there are daily and seasonal variability of an individual’s diet thus 

resulting in the loss of power to detect nutrient-cancer relationship. In studies which 

include the case-control disease and serum hormone levels, measurement error also 

occurs due to a within-individual variation of hormones and also various laboratory 

errors. Therefore in real life examples, when the purpose is to estimate the relationship 

Univ
ers

ity
 of

 M
ala

ya



2 

 

between groups or populations, measurement errors arise (Patefeild (1985), Elfessi and 

Hoar (2001), Gillard (2007)).   

Over the past 50 years, many researchers have been working on the problem of 

estimating the parameters in the linear functional relationship model (LFRM), a subtopic 

in the EIVM. However, the methods in the literature are mostly based on normality 

assumption, and it can be erroneous to use the normality assumption when there are 

outliers in the data set (Al-Nasser and Ebrahem, 2005). In other words, when there are 

outliers, a robust method is necessary to diminish the effect of the outlier. In 2005, Al-

Nasser and Ebrahem proposed a new nonparametric method to estimate the slope 

parameter in a simple linear measurement error model in the presence of outliers. The 

nonparametric estimation method is a statistical inference which does not depend on a 

specific probability distribution. A significant advantage of using nonparametric method 

is that it is robust to outliers. This research has extended the study by Al-Nasser and 

Ebrahem (2005), by proposing a robust nonparametric method to estimate the slope 

parameter in LFRM. 

Another area of the research is on identifying outliers, namely detecting a single 

outlier and multiple outliers in LFRM. An outlier is a point or some points of observation 

that is outside the usual standard pattern of the observations. Outlier occurs when the data 

is mistakenly observed, recorded, and inputted into the computer system (Cateni et.al., 

2008). In linear models, Rahmatullah Imon (2005) and Nurunnabi et al. (2011) proposed 

group deleted version to identify outliers. In this study, the suitability of the COVRATIO 

procedure will be considered in detecting a single outlier for the data in the LFRM. The 

reason for choosing COVRATIO is that it is simple and is widely used in detecting 

outliers (Belsley et al., 1980). As mentioned earlier, the presence of multiple outliers 

situation are also taken into account. For multiple outliers, the clustering technique is 

considered, a method that is widely used to identify multiple outliers in a linear regression 
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model (Serbert et al., 1998; Adnan, 2003; Loureiro et al., 2004). In this study, the 

algorithm is developed that caters for data that can be model by the LFRM, where both 

the measurements are subject to errors.  

The third area of this research is on the analysis of missing value in data sets. 

Missing data is unavoidable and is a significant problem that needs to be address. Some 

reasons that may cause the data to be missing include equipment malfunctioned, mistakes 

done during data entry, questions being omitted by respondents, and a subject being 

discarded due to the insufficient health condition. In this study, the two modern imputing 

approaches namely expectation-maximization (EM) and expectation-maximization with 

bootstrapping (EMB) are proposed for two kinds of LFRM models, namely LFRM1 for 

linear functional relationship model when slope parameter is estimated using a maximum 

likelihood estimation approach and LFRM2 for linear functional relationship model when 

slope parameter is estimated using a nonparametric approach.  
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1.2 Problem Statement  

 

The area of parameter estimation in LFRM has been studied by several authors 

(Lindley, 1947; Kendall & Stuart, 1973; Wong, 1989; and Gillard & Illes, 2005). 

However, there has been insufficient work on the robust slope parameter estimator in 

LFRM.  

In the first part of this study, the unidentifiable problem is overcomed by 

proposing a robust nonparametric method to estimate the slope parameter in LFRM. The 

second part of this study is related to the outlier problem and missing value problem in 

analysing quantitative data. It is crucial to identify a single outlier and multiple outliers 

as they give a tremendous impact in the statistical analysis stage. Several studies have 

been done on the identification of outliers problem in the linear regression model and 

circular regression model (Belsley et al., 1980; Rousseeuw & Leroy, 1987; Maronna et al., 

2006, Ibrahim et al., 2013). However, methods of identifying outliers in the linear 

functional model are somewhat limited. Another common problem when analysing 

quantitative data is the presence of missing values (Little & Rubin, 1989). Missing data 

in the regression model and structural equation modeling (Little, 1992; Allison, 2003) has 

received a massive attention among researchers, however missing data in linear functional 

model has not received much attention. Therefore, in this study, the methods of handling 

missing data in LFRM is addressed. 
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1.3 Objectives of Research  

 

The primary objective of this study is to propose a new robust parameter estimation and 

outlier detection method for linear functional relationship model. The specific objectives 

of this study are: 

1. to propose a robust technique using nonparametric method to estimate the slope 

parameter in LFRM. 

2. to propose the COVRATIO technique in detecting a single outlier in LFRM. 

3. to propose the clustering technique in identifying multiple outliers in LFRM.  

4. to identify a feasible modern imputation technique in handling missing values 

problem in LFRM. 

 

Model verification of all the proposed method performed in this study is done by 

simulation studies. The applicability of the models is illustrated using Goran et al. (1996) 

data sets and two classical data used by Serbert et al. (1998). 
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1.4 Flow Chart of Study and Methodology 

 

 

The flow chart of this study is outlined in Figure 1.1. First, a thorough literature 

review is conducted on the history and current issues and problems related to the errors-

in-variable model, linear functional relationship model (LFRM), nonparametric 

estimation, outliers, and missing values. From the literature review, a robust method is 

developed using the nonparametric procedure for the slope parameter in LFRM. Then the 

robustness of this proposed method is compared with the existing Maximum Likelihood 

Estimation (MLE) method as well as with Al-Nasser and Ebrahem (2005) method.  

Next, the COVRATIO technique to detect a single outlier for LFRM and propose 

a clustering technique to detect multiple outliers in LFRM is proposed. Finally, the 

missing values in LFRM is identified using the modern imputation technique. For the 

topics mentioned, simulation studies are conducted using S-Plus and R Programming to 

assess the performance of the proposed methods. The proposed methods are applied in 

real data sets for practical and illustration.  
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===================== 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Flow chart of the study 

 

 

 

 

 

 

 

 

 

 

Literature Review 

Development of a robust technique using nonparametric 

method to estimate the slope parameter for LFRM. 

Identifying missing values in LFRM using modern imputation 

methods. 

 

 

Propose clustering technique to identify multiple outliers for 

LFRM. 

 

 

 

Propose COVRATIO technique in detecting a single outlier for 

LFRM 

 

Comparing the proposed method with the Maximum 

Likelihood Estimation (MLE) method as well as with Al-

Nasser and Ebrahem (2005) method. 
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1.5 Source of Data 

 

In this study, the following data for illustration and application are used. Full data sets 

are given in Appendix A. The following are the background of the data sets used in this 

study. 

1) Goran et al. (1996) data  

The purpose of this study was to examine the accuracy of some widely used body-

composition techniques for children through the use of the dual-energy X-ray 

absorptiometry (DXA) technique. Subjects were children between the ages of 4 

and 10 years. The fat mass measurements taken on the children are by using two 

techniques; skinfold thickness (ST) and bioelectrical resistance (BR). 

2) Hertzsprung-Russel Star Data 

The data in Rousseeuw and Leroy (1987) are based on Humphreys et al. (1978) 

and Vansina and De Greve (1982) where 47 observations correspond to the 47 

stars of the CYG OB1 cluster in the direction of Cygnus. The x  variable in the 

second column is the logarithm of the effective temperature at the surface of the 

star, (Te), and the y  variable in column 3 is its light intensity (L / L0). This data 

set contains four substantial leverage points which are the giant stars that 

corresponds to observations 11, 20, 30, and 34 that greatly affect the results of the 

regression line. 

3) Telephone Data  

In this telephone data, Rousseeuw and Leroy (1987) give data on annual numbers 

of Belgian’s phone calls, with x  variable is the year from 1950 to year 1973, and 

y  variable in the next column is the number of calls in tens of millions.  
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1.6 Thesis Organization 

 

This thesis consists of seven chapters. Chapter 1 discusses the research framework 

which includes the background of EIVM, followed by the research objectives and the 

flow of the study. Chapter 2 reviews the literature and historical background of the 

research topics in this study. Chapter 3 proposes a robust nonparametric method to 

estimate the slope parameter in LFRM while Chapter 4 proposes a COVRATIO statistic 

to detect an outlier in the LFRM. Chapter 5 further extends the outlier problem by 

proposing the clustering technique to detect multiple outliers in LFRM. Chapter 6 reviews 

the missing value estimation methods for data that are in LFRM. Finally, Chapter 7 

concludes the research findings and highlights some suggestion for future works. 
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CHAPTER 2: LITERATURE REVIEW  

 

2.1 Introduction  

 

 This chapter reviews the errors in variable model (EIVM) and the theoretical 

framework of the subtopic in EIVM, particularly the linear functional relationship model 

(LFRM). A brief historical review on the parameter estimation of LFRM is given. This 

section reviews the background information on the topics of outliers, particularly the 

single outlier detection method and the multiple outliers detection method. A literature 

review on the traditional and modern missing values problem is given at the end of this 

chapter. 

 

2.2 Errors-in-Variable Model 

 

Errors-in-variables model (EIVM) has been an important topic since a century 

ago, when Adcock (1878) investigated the estimation properties in ordinary linear 

regression models when both variables x  and y  are subject to errors with a restrictive 

but realistic assumptions. If the errors in the explanatory variables are ignored, then the 

estimators obtained using ordinary linear regression will be biased and inconsistent. 

Adcock obtained the least squares solution for the slope parameter by assuming both 

variables have equal error variance. In 1879, Kummel extended this study by assuming 

the error variance is known, but not necessarily equal to one. Later on in 1901, Pearson 

extended Adcock’s findings of the equal error variance, to finding a solution for the p

variate situation. Later on Deming’s (1931) proposed orthogonal regression which was 

then included in his book and this method is sometimes known as Deming’s (1931) 

regression. 

In 1940, Wald proposed a different approach which does not take into account the 

error structure. Wald divided the order of the explanatory variables into two groups and 
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used the mean for the group to obtain the slope estimator. Later on, to get a more efficient 

estimator for the slope, Bartlett (1949) developed the grouping method by splitting the 

order of the explanatory variables into three groups, instead of two. Several grouping 

methods to group the explanatory variables has been reviewed by Neyman and Scott 

(1951), and Madansky (1959). 

Another parameter estimation procedure that has been used in EIVM is the 

methods using the moments. Geary (1949) published an article using the method of 

moments. This is followed by Drion (1951) which uses the moments method and obtained 

new findings on the variance of the sample moments. Other studies on method of 

moments are by Pal (1980) and Van Montfort (1989) which focuses on getting optimal 

estimators using estimators that is based on higher moments.  

Lindley and El-Sayyad (1968) proposed a Bayesian approach in EIVM regression 

problem and concluded that the likelihood approach may be misleading in some ways. 

Later on, Golub and Van Loan (1980) and Van Huffle and Vanderwalle (1991) introduced 

the total least square method in estimating the parameters in EIVM.  

Application of EIVM can be shown in several fields. The total least square method 

has been widely used in dealing with optimization problem with an appropriate cost 

function in computational mathematics and engineering. Doganaksoy and van Meer 

(2015) have also applied the EIVM model in semiconductor device to assess their 

performance.  

A new approach using the application of wavelet filtering approach which does 

not require instruments and gives unbiased estimates for the intercept and slope 

parameters has been introduced by Gencay and Gradojevic (2011). However, this 

approach still requires a lot more research, for example in cases with less persistent 

regressors. Another work by O’Driscoll and Ramirez (2011) focuses on the geometric 

view of EIVM. This method measures the errors using a geometric view to have an insight 
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on various slope estimators for the EIVM, which includes an adjusted fourth moment 

estimator proposed by Gillard and Iles (2005) in order to remove the jump discontinuity 

in the estimator of Copas (1972).  

To summarize, the EIVM area of research has gain wide attention in studying the 

relationship between variables and dates back to as early as 1878. 

To elaborate on the EIVM model, consider the following equation,      

     XY   ,                              (2.1) 

where both variables X  and Y  are linearly related but both are measured with error. 

Parameter   is the intercept, and   is the slope parameter. In reality, these two variables 

are not observed directly as their measurements are subject to error. For any fixed ,iX  

the ix  and iy  are observed from continuous linear variable subject to errors i  and i  

respectively, i.e. 

    iii Xx   and iii Yy  ,         (2.2) 

where the error terms i  and i  are assumed to be mutually independent and normally 

distributed random variables, i.e.  

     2,0~  Ni  and  2,0~  Ni .   (2.3) 

 

This shows that the variances of error term are not dependent on i  and therefore are 

independent of the level of X  and Y . Substituting equation (2.3) into equation (2.2), the 

following equation is obtained,  

     iiii xy   .               (2.4) 

 

This shows that the observable errors ix  and iy  are correlated with the error term 

 ii    and is independent of the slope parameter,  . 
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There are three models under the EIVM, namely the functional relationship, 

structural relationship, and ultrastructural relationship model as mentioned by Kendal and 

Stuart (1973), and are given as follows: 

i) Functional relationship model between X  and Y , is when X  is a 

mathematical variable or fixed constant. 

ii)  Structural relationship model between X  and Y , is when X  is a random 

variable. 

iii) Ultrastructural relationship model is when there is a combination of the 

functional and structural relationship as introduced by Dolby (1976).  

 

This study will focus on the linear functional relationship model (LFRM) which defines 

the X variable as a mathematical variable.   

   

2.2.1 Linear Functional Relationship Model (LFRM)   

 

 

 As mentioned earlier, the linear functional relationship model (LFRM) is one 

example of an EIVM, which the underlying variables are deterministic (or fixed). Over 

the past three decades, many authors have been working on this functional model in 

EIVM (Lindley, 1947; Kendall & Stuart, 1973; Wong, 1989; and Gillard & Illes, 2005). 

Most of the study in LFRM have used maximum likelihood estimation method to estimate 

the parameters, with the assumption that the dependent and independent variables are 

joint normally and are identically distributed. Lindley (1947) first used the maximum 

likelihood estimation and realized that some assumptions on the parameter need to be 

made as there are some inconsistencies in the equation. Therefore, Lindley proposed the 

ratio of two errors to be known.  
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Since then, several authors did a rigorous research on handling the problem of 

estimating the parameters in LFRM. These findings include the geometric mean 

functional relationship by Dent (1935), two-group method of Wald and Wolfowitz 

(1940), maximum likelihood method by assuming known ratio of error variances by 

Lindley (1947), Housner and Brennan’s method (1948), three-group method of Bartlett 

(1949), Durbin’s ranking method (1954) and instrumental variables method mentioned 

by Kendall and Stuart (1961) and Fuller (1987). A detailed explanation for each method 

is given in Section 2.2.2. 

Further study was done by Dorff and Gurland in 1961, and he extended this 

functional model as replicated and unreplicated functional relationship models, with 

certain recommendation. For unreplicated cases, the estimators by Wald and Wolfowitz 

(1940), Bartlett (1949) and Housner and Brennan’s method (1948) have been considered 

and they found that Housner and Brennan’s method (1948) of estimation is more robust 

than the Wald and Wolfowitz (1940) and Bartlett (1949) method and thus recommends 

the usage of it as compared to the others.  

In the LFRM as given in equation (2.1) and (2.2), there are  4n  parameters, 

which are ,,,, 22

  and the incidental parameters nXX ,...,1 . One complication arise 

as when the number of observations increase, the number of parameters will also increase. 

In this case when there is only a single observation at each point, the likelihood function 

is unbounded, and to overcome this problem, some constraint needs to be imposed, or the 

replicated data needs to be obtained. Some constraint includes making some assumptions 

on the variances and covariance of the errors, which includes:  

i)    ii VarVar  ,  and  iiCov  ,  are all known. 

ii) 
 
 







i

i

Var

Var
 is known and 0),( iiCov  . 
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Moberg and Sundberg (1978) mentioned that both the above conditions are 

necessary to find the maximum likelihood estimation of parameters in a linear functional 

relationship model with normally distributed errors. If only one of the error variances is 

known, then they show the likelihood equation for   is a cubic equation, which has a 

root corresponding to a plausible local maximum likelihood estimate of right sign only 

when the error variance is relatively small.  This situation may cause the estimate to be 

inconsistent as the sample size increases. Another situation is to obtain replication of the 

information, which could be used to obtain consistent estimates of parameters, in 

particular for the   estimate. This research will focus on the estimate of   when 

replicates are not available.  

 In a linear functional relationship model, X  and Y  are mathematical variables 

which are linearly related, but are observed with error. For any fixed iX , the ix  and iy  

are observed from continuous linear variable, subjected to errors i  and i  respectively, 

i.e. 

iii Xx   and iii Yy  , where ii XY   , 

for ni ...,,2,1 ,    (2.5) 

where the   is a constant and   is the slope function. The i  and i  are assumed to be 

mutually independent and normally distributed random variables, that is  2,0~  Ni  

and  2,0~  Ni . This model as in (2.5) is known as the unreplicated linear functional 

relationship model as there is only a single observation for each level of i .   

 There are  4n  parameters to be estimated, which are ,,,, 22

  and the 

incidental parameters nXX ,...,1 . In estimating the parameters, the majority attention 

usually focuses on estimating  , that is the slope parameter, as from a theoretical 

viewpoint, the role of  , the intercept parameter is minor (Cai and Hall, 2006). 
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The log likelihood function is given by  

 nnni yyxxXXL ...,,,...,,;...,,,,,,log 11

22

   

 
   

2

2

2

22

22
log

2
log

2
2log











 





iiii XyXxnn
n .   (2.6) 

    The likelihood in equation (2.6) is unbounded, let say when putting ii xX ˆ  and 

considering 2

   approaches to 0, the likelihood function will approach infinity, 

irrespective of the values of  ,  and 2

 . Therefore, to avoid an unbounded problem in 

this equation, additional constraint is assumed, 22

   , where   is known (Lindley, 

1947). The log likelihood function becomes 

 nnni yyxxXXL ...,,,...,,,;...,,,,,log 11

2      

     








  
22

2

2 1

2

1
loglog

2
2log iiii XyXxn

n
n 






 .       (2.7) 

There are  3n  parameters to be estimated, namely 2,,   and the incidental 

parameters, nXX ,...,1 . Differentiating Llog  with respect to parameters 2,,   and ,iX

the parameters 
2ˆ,ˆ,ˆ
  and iX̂  can be obtained, given by 

,ˆˆ xy    

  
xy

xyxxyyxxyy

S

SSSSS

2

4ˆ
2

1

22





 , 

 

 
    ,ˆˆˆ

1ˆ
2

1
ˆ 2

2
2












   iiii XyXx
n




  

 

and  
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 
2ˆ

ˆˆ
ˆ








 ii

i

yx
X  , 

 

where  iy
n

y
1

,  ix
n

x
1

, 

 

            ,
2

  xxS ixx
  

2
yyS iyy and     yyxxS iixy  . (2.8)

 

              Further details of the parameter estimation can be found in the literature 

(Sprent 1969, Kendall and Stuart 1973, Al-Nasser and Ebrahem, 2005). As for the 

variance of the parameter estimate, Patefield in 1977 derived a consistent asymptotic 

covariance matrix of the ML estimates for   and   by partitioning the following 

information matrix, given by 















)ˆ(ˆ)ˆ,ˆ(ˆ

)ˆ,ˆ(ˆ)ˆ(ˆ





raVvoC

voCraV
, 

where  
    ,

ˆ
ˆ1

ˆˆˆ
ˆˆ 2

22
















 

n

S
Tx

S
raV

xy

xy

 

     T
S

raV
xy

ˆ1
ˆˆˆ

ˆˆ
22







  ,  and 

     ,ˆ1
ˆˆˆ

ˆ,ˆˆ
22

T
S

x
voC

xy







   

          where , 
  xyS

n
T

2

2

ˆ

ˆˆ
ˆ



 


 .    (2.9)
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2.2.2 Parameter Estimation of Linear Functional Relationship Model 

 

As mentioned in Section 2.2.1, one complication arises in LFRM, as when the 

number of observations increase, the number of parameters will also increase. When the 

LFRM has only a single observation at each point, the likelihood function is unbounded, 

and to overcome this problem, some constraint is imposed or the replicated data is 

obtained. As mentioned, Lindley (1947) propose the case when the ratio of the error 

variance    is known. This study focuses on the slope parameter estimation for LFRM as 

knowledge on the slope parameter is also crucial. 

From literature, there are several methods of estimating the slope parameters. 

Dent in 1935 propose the geometric mean functional relationship estimator, which is  

  
 

 

2

1

2

2

,ˆ





















xx

yy
yxCovSign

i

i ,    (2.10) 

and this slope estimator has been widely used in fisheries research. This estimator is 

symmetric in both x  and y  and thus still preserve the inherent symmetry of the functional 

relationship model. Sprent (1969) mentioned that this estimator has an intuitive appeal, 

but is usually not consistent, as it only ignores the identifiability problem, and assumes 

normality without knowing the error variance.  

 Later on Wald (1940) proposed a two-group method to find a consistent estimator 

for  . He computed the arithmetic means  11, yx  for lower group of observations. Then 

the higher group of observations,  22 , yx  is computed, after it is arranged in ascending 

order by the basis value of ix . Then, these values are divided into two equal sub-groups, 

and the slope parameter is estimated by,  

 
 12

12ˆ
xx

yy




 .      (2.11) 
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This estimation method gives consistent estimate of  , even though it is not the most 

efficient as its variance does not have the smallest possible values. However, it seems that 

this method of estimation is not symmetric in x  and y , as the upper and lower groups 

are not necessarily the same when ranked on iy . One way to make this method symmetric 

is by taking the average of this with the equivalent one based on ranking them by the base 

of the iy .  

 Next, in 1949 Bartlxett proposed the method which is same idea with the two-

group method, that is the observations are arranged in ascending order on the basis of ix

values, and he extended the method by dividing them into three equal groups. If the 

number of observations is not exactly divisible by 3, then he will make it approximately 

equal. The middle group will be ignored, then the arithmetic means ),( 11 yx  for the lowest 

group and ),( 33 yx for the highest group is calculated, and the slope parameter   is 

estimated using this formula,  

 
 13

13ˆ
xx

yy




 .     (2.12) 

This method generally gives a consistent estimate for  , and performs more efficient 

than the two-group method. However, the estimator is not symmetric in x  and y , as the 

upper and lower groups are not necessarily the same when ranked on base on iy . 

 Housner-Brennan (1948) proposed a consistent estimate of  , where first, the ix

values are arranged in ascending order, as )()2()1( ... nxxx  , and the associated values 

of y  which may not be in ascending order are taken. The estimate of   is given by  
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1̂ ,      (2.13) 

however, this slope estimator is not symmetric in x  and y . 
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 Durbin’s “ranking” method (1954), suggested that the estimate of   is given by,  

     

  







3

2

ˆ
xx

yyxx

i

ii
 ,    (2.14) 

 

where x ’s and y ’s are ranked in ascending order, on the basis of x values. Later on 

interchange them and arrange the y values in ascending order. From this proposed 

method, the estimator is still not symmetric in x  and y . 

  Cheng and Van-Ness (1999) then proposed the modified least squares, when the 

variance ratio of  
2

2




   is assumed to be known. The slope estimator will be, 
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where  
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1
.  

The method proposed here leads to the same estimates as mention in Section 2.2.1, but 

without requiring the normality assumption. 

Al-Nasser and Ebrahem in 2005 proposed a nonparametric approach for the slope 

parameter, where it does not require a normality assumption. A nonparametric procedure 

has several strengths, such as no prior knowledge on the distribution of the model is 

needed, and in the presence of “noises” in a data set, this nonparametric procedure will 

still be useful to estimate the trends of the data (Sprent & Smeeton, 2016). In his proposed 

method, the ix  values are arranged in ascending order, as      nxxx  ...21  and the 

associated values of y  which may not be in ascending order are taken. He then listed 

down all the possible paired of slopes and find the median of all the slopes listed to be the 

final slope parameter. 
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From the above literature, only few studies use nonparametric assumption. Al-

Nasser and Ebrahem (2005) studied on the parameter estimation method when outliers 

are present in the data. However, this method is only robust when the outliers is 20% or 

more of the total observation. It is also crucial to identify outliers as low as 1%, 5% and 

10% from the total observation. In this research, a robust nonparametric estimation 

method which is an extension from the study by Al-Nasser and Ebrahem (2005) method 

in the presence of outliers is proposed and will be elaborated in Chapter 3. 

 

2.3 Outliers  

 

In this section, the observation that gives a huge impact in data analysis namely 

the outliers are discussed. The study of outliers is very important and is considered to be 

as old as the subject of statistics. An outlier is a point or some points of observation that 

is outside the usual pattern of the other observations. As mentioned by Chen et al. (2002) 

“Outliers are those data records that do not follow any pattern in an application”. Outlier 

occurs when the data is mistakenly observed, recorded, and inputted in the computer 

system (Cateni, 2008). According to Hampel et al. (1986), it is common to have 1% to 

10% of outliers in a data set; in fact, the data set that has the best quality is also prone to 

have at least a very small amount of outliers. Studies on outliers in linear model can be 

seen in Wong (1989), Cheng and Van Ness (1994) and Elfessi and Hoar (2001), Satman 

(2013), and Hussin et al. (2013). 

In fitting a linear regression model by the least squares method it is often observed 

that a variety of estimates can be substantially affected by one observation or a few 

observations (Rousseeuw and Leroy (1987), Maronna et al. (2006)). It is important to locate 

such observations and assess their impact on the model, either it gives a huge impact to 

the model or just a low impact on the model.  
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An outlier is a point that falls away from the other data points. If the parameter 

estimates change significantly when a point is removed from the calculation, then this 

point is considered to be influential. From Figure 2.1, one outlier can be seen. This outlier 

lies away from the other observations. When including outlier 1 in the analysis of the least 

square regression and plotting the points, the black line is produced. However, if the 

outlier is deleted, a new regression line is obtained, which is the red line. This means that 

outlier 1 is an influential observation, as it changes the regression line and there is an 

extreme value in Y. 

 

 

Figure 2.1: Example of an outlier 

 

Next, the leverage point. Points with extreme values of X  are said to have high 

leverage, which means that high leverage points have a greater ability to move the line. 

As an example, outlier 2 in Figure 2.2 is a high leverage point, because when removing 

this outlier, the regression line shifts from the black line to the red line. Outlier 3 on the 

other hand, is a good leverage as when removing this point, it does not change the 

regression line.  
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Figure 2.2: Example of a high leverage X point. 

 

A number of outlier diagnostics are available in the literature include Cook’s 

distance, Difference in fits (DIFFITS), Difference in Beta (DFBETA), Covariance Ratio 

(COVRATIO) (Belsley et al., 1980) and many others.  

Cook (1979) proposed a measure of Cook’s Distance, iCD  using the studentized 

residuals and the variances of residuals and predicted values. The ith Cook’s distance 

provides a measure of how much the parameter estimates change when a point is remove 

from the calculation, which is introduced as  

     
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

,   (2.16) 

where  i̂   is the estimated parameter of   when the ith observation is deleted, and k  

are independent variables in the model. 

 The ith difference in fits (DFFITS) is also used to show how influential a point 

is in a statistical regression, and is defined by 

   ,
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where  )(ˆ i

iy  are the fitted responds, )(
ˆ

i  are the estimated standard error when the ith 

observation is deleted and iih  is the leverage. A small value of DFFITS  indicates a low 

leverage point. 

DFBETAS  statistics are used to measure the change in each parameter estimate 

and are calculated by deleting the 
thi  observation, 

 jji

jij

j

XXs

bb
DFBETAS

'

)(

)(
 ,    (2.18) 

where   jjXX '  is the  thjj,  element of   1' 
XX . A large value of DFBETAS  indicate 

that the observations are influential in estimating the parameter.  

 Another measure of outliers is COVRATIO which is use as a statistical measure 

to identify the change in the determinant of the covariance matrix of the estimates by 

deleting the 
thi  observation, and is defined by  

)(

)(

i

i
COV

COV
COVRATIO



  ,     (2.19) 

where COV is the determinant of covariance matrix of full data set and )1(COV  is that 

of the reduced data set by excluding the 
thi  row. COVRATIO has been well established 

in regression modelling by Belsley et. al. (1980) and has also been used in functional 

relationship model for circular variable by Hussin and Abuzaid (2012). Recently, Ibrahim 

et al. (2013) identified outliers in circular regression model by using the COVRATIO 

procedure. In LFRM, however, methods of identifying outliers are somewhat limited. As 

this simple linear functional relationship model has a close resemblance of the linear 

regression model, and due to its simplicity and widely usage, the COVRATIO technique 

in detecting a single outlier will be proposed in this LFRM in Chapter 3.   
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2.3.1 Cluster Analysis  

 

Outlier cases happen when there is a single outlier or when there are multiple 

outliers. Identifying a single outlier is quite simple from the analytical and computational 

side, but when there is more than one outlier, then it becomes even challenging. 

Identifying multiple outliers become more complicated due to masking and swamping 

effects. Masking happens when an outlier is unable to be detected as a true outlier, while 

swamping happens when a "clean" observation, or an inlier is falsely detected as an 

outlier. Masking seems to be a more serious issue than swamping, but both these effects 

should be identified so that appropriate analysis can be done on the data set (Sebert et al., 

1998).  

In general, there are two ways to classify the multiple outlier detection procedures, 

which are the direct method and the indirect method (Hadi and Simonoff, 1993). The 

direct method are procedures base on least square and are specifically designed algorithm 

to detect multiple outliers. The indirect method on the other hand, uses the result from 

robust regression estimates, and when there are outliers, the least square methods will 

differ significantly from when there is no outlier.  

Some direct methods include the study by Swallow and Kianifard (1996). In this 

study, they suggest that recursive residuals to be standardized by a robust estimate of 

scale, to classify the multiple outliers. Sebert et al. (1998) proposed a clustering algorithm 

using the single linkage algorithm and Euclidean distance, which helps to find the single 

largest cluster, and identify them as inliers. Fernhloz et al. (2004) proposed a new method 

for detecting outliers based on the multihalver, or known as the delete-half jacknife and 

is also applicable for multivariate data.  

The indirect method is through a robust regression estimate, which includes the 

techniques by Rousseeuw (1984), Hawkins and Olive (1999) and Agullo (2001). 

Rousseeuw (1984) introduced the high breakdown (as high as 50%) for Least Median of 
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Squares (LMS) estimator whereby the LMS estimator ̂  is obtained from minimizing 

the median of squared errors. Hawkins and Olive (1999) proposed the use of least 

trimmed sum of absolute deviations (LTA) as an alternative to LMS, where the 

computational complexity is lower than the LMS. The LTA is particularly attractive for 

large data sets and it is used as a tool for modelling data sets that deals with missing values 

on the predictors. In 2001, Agullo proposed two new algorithms to compute the LTS 

estimator, where the first algorithm is probabilistic and refer to the exchange procedure. 

The second algorithm is exact and is based on a branch and bound (BAB) technique that 

guarantees global optimality and without exhaustive evaluation. The BAB is 

computationally feasible for 50n and 5p , which seems to be a very small data set.  

In this study, the focus will be on the direct method to identify multiple outliers, 

namely the clustering procedure. Several studies have been using clustering procedure for 

the outliers problem, such as detecting outliers in regression model (Sebert et al., 1998; 

Adnan and Mohamad, 2003), and detecting erroneous data in foreign trade transaction 

(Loreiroe et al. 2004). However, detecting outliers using clustering method has not been 

explored for LFRM.  

As the linear regression model resembles the LFRM, the clustering algorithm as 

proposed by Sebert et al. (1998) to identify multiple outliers will be developed for this 

LFRM. Sebert et al. (1998) cluster analysis begins by taking a set of n  observations on

p  variables. Next, a measure of similarity between observations are obtained, by 

employing a certain inter-observation similarities. An important procedure that one must 

decide before applying the clustering algorithm is the variables to use, the measure of 

similarity to use, and finally which clustering algorithm to use.  
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2.3.2 Similarity Measure for LFRM 

 

 To group the "variables" or items into their own groups, it is necessary to have a 

certain measurement of "similarity" or a measure of dissimilarity between the items. 

There are four types of similarity measure which are correlation coefficient, distances 

measures, association coefficients and probabilistic similarity coefficients (Aldenderfer 

& Blashfield, 1984). 

 All these four methods have its own strengths and drawbacks, so it is necessary 

to choose the best measurement that fits the model. The most commonly used similarity 

measure is Euclidean distance, defined as 

 



p

k

jkikij xxd
1

2 ,    (2.20) 

where ijd  is the distance between i and j , and ikx  is the value of the kth variable for the 

ith observation.  

Another type of measurement distance or known as the city-block metric is the 

Manhattan distance, which is defined by  
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Minkowski metrics which is a more specific forms of the special class of metric distance 

function can be defined as  
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1
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
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


 



 .    (2.22) 

Another distance is the generalized distance (Malahanobis) which is defined as 

     

jijiij XXXXd 1     (2.23) 

where   is the pooled within-groups variance-covariance matrix, and iX and jX  are 

vectors of the values of the variables for observation i  and j .  
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 For this LFRM model, the Euclidean distance will be used as the similarity 

measure. Euclidean distance has been widely used and commonly accepted when 

grouping multivariate observations (Everitt, 1993). Euclidean distance, defined as in 

equation (2.20) has been popular because it can be easily applied, where by similar 

observations are identified by relatively small distance, while a dissimilar observation is 

identified by a relatively large distance. 

 

2.3.3 Agglomerative Hierarchical Clustering Method  

 

As mentioned by Estivil-Castro (2002), it is important to understand the “cluster 

model” as this is the key to differentiate each of these clustering algorithm. The typical 

cluster model includes the following. First is the connectivity models as an example, 

the hierarchical clustering builds models which is based on distance connectivity. Next, 

the centroids models for example, the k-means which represents each cluster by its 

mean. The distribution models on the other hand, clusters the observation using a 

statistical distribution. Another cluster model is the density model that defines clusters as 

connected dense regions in a certain data space. Besides that, a group models cluster the 

observation by just providing the grouping information.  And finally, a graph-based 

model which is a subset of nodes in a graph where every two nodes in the subset are 

connected by an edge can be identified as a form of cluster. Each of these models 

represent a different algorithm and it is important to choose a specific clustering method 

that is compatible with the nature of the classification in this field of study.  

Among the most popular used algorithm is the hierarchical clustering as it is 

simple and easy to use (Dasgupta and Long, 2005). This type of cluster is useful for 

analyst as it requires no prior specification of the number of clusters. This hierarchical 

cluster operates based on the similarity matrix in order to construct a tree depicting 

specified relationship between each observation. Figure 2.3 illustrates the branches and 

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)


29 

 

root in a hierarchical clustering, where the agglomerative methods build a tree from 

branches to root, while the divisive methods build a tree from the root, and finishes at the 

branches.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Illustration of branches and root in a hierarchical clustering 

methods. 

 

The agglomerative hierarchical method begins with a series of successive merging 

between individual observations as clusters. First, the objects that have a similarity are 

grouped, then later on they are merged based on the similarity measure. As the similarity 

decreases, all the subgroups are fused in a single cluster and are nested, which means they 

are permanently merged together. The divisive hierarchical methods are the opposite of 

agglomerative, which means it builds a tree from the root, and finishes at the branches. 

The results from both the agglomerative and divisive hierarchical clustering may be 

displayed in the form of a dendogram, or usually define as the tree diagram.   
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There are three major clustering techniques in agglomerative hierarchical 

clustering as follows (Kaufman and Rousseeuw, 1990). 

1. Linkage method 

 Single linkage (nearest neighbor), uses the smallest 

dissimilarity between a point in the first cluster and a point 

in the second cluster. 

 Complete linkage (farthest neighbor), uses the largest 

dissimilarity between a point in the first cluster and a point 

in the second cluster. 

 Average linkage (average neighbor), uses the average of 

the dissimilarities between the points in one cluster and the 

points in the other cluster. 

2. Centroid methods use the Euclidean distances as the dissimilarity 

between two means of the clusters. The centre will move as the 

clusters are merged. 

3.  Ward’s method or known as error sum of squares method. This 

method is basically looking at the analysis of variance problem, 

instead of using distance metrics or measures of association.  

 

Representation of the major clustering techniques in agglomerative hierarchical 

are shown in Figure 2.4, where it can be seen that the single and complete linkage methods 

are simple (Mirkin 1998).  Single linkage clusters are isolated and have a noncohesive 

shape, while the complete linkage clusters are very cohesive but is not isolated 

(Chowdury, 2010). The other linkages, namely the average, centroid and Ward method 

represent the “middle way” and are rather close to each other in order to construct a tree 

diagram (Mirkin 1998). Among the ways to cluster the data, single linkage is found to be 
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the easiest mathematically in constructing the clusters and has been widely used since it 

was introduced by Sneath and Sokal (1973) in the field of biology and ecology, and later 

on by Aldenderfer and Blashfield (1984) in computational statistics. 

 

 

Figure 2.4: Representation of the major clustering techniques in 

agglomerative hierarchical; (a) Single linkage, (b) Complete linkage,  

(c) Average linkage, (d) Centroid 

 

 The focus of this study is on the single linkage method, as it is easy to compute, 

and as the area of multiple outliers in LFRM is new, a computationally easy approach is 

practically needed. Single linkage method operates on a similarity coefficient between 

groups, which is revised as each successive level of the hierarchical is generated. The 
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term single is used, because clusters are joined when the objects in different clusters have 

sufficiently small distances, as if a single link is use to connect the clusters. The inputs to 

this linkage is either the distances or similarities between pairs of objects. Then, the 

groups are formed from individual entities by merging nearest neighbours which is 

obtained from the smallest distance or from the entities with the largest similarities. This 

study attempts to develop a single linkage clustering algorithm technique for identifying 

multiple outliers in linear functional relationship model. A detail discussion on this topic 

is given in Chapter 5.  

 

2.4 Missing Values Problem  

  
 

Presence of missing value is unavoidable in all fields of quantitative research. They 

can be seen in the field of economics (Takahashi & Ito, 2013), medical (Dziura et al. 

2013), environmental (Razak et al. 2014; Zainuri et al. 2015), life sciences (George et al. 

2015), and social sciences (Acock 2005; Schafer & Graham 2002). It has been established 

that ignoring missing values may result in biased estimates and invalid conclusions (Little 

& Rubin, 1987; Guan & Yusoff 2011). There are several reasons that may cause a data to 

be missing. First is when nonresponse occur, where the item seems sensitive to 

individuals, thus they choose to leave the item blank, let’s say the monthly income. 

Dropout may occur mostly when studying a research over a certain period of time, where 

a few participants may drop out before the experiment ends. Another reason why data 

may be missing is due to equipment malfunction or mistakes during data entry. 

In the field of psychology, it is a real challenge for longitudinal research as the 

data obtain from a multiple wave of measurement on the same individual may cause it to 

be incomplete. From among 100 longitudinal studies obtained from three developmental 

journals- Child Development, Developmental Psychology, and Journal of Research on 
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Adolescence, 57 of the cases have been reported either having missing values or had 

discrepancies in sample sizes (Jelicic et al., 2009). 

 Impact of missing data is also a challenge in the field of gene expressions, where 

the experiments often contain missing values, due to insufficient resolution, image 

corruption, and due to contaminants such as dust or scratches on the chip (de Souto et al., 

2015). In environmental research, obtaining the air quality data it will also be of a 

challenge as data are likely to be missing due to machine failure and insufficient sampling 

(Zainuri et al., 2015). In short, inadequate approach of handling missing data in a 

statistical analysis will lead to erroneous estimates and incorrect inferences.  

Missing data can be classified as missing completely at random (MCAR), missing 

at random (MAR), or missing not at random (MNAR). MCAR is when the missing in X

variable is not related to any other variables, or the X  variable itself. An example of 

MCAR situation is when a participant misses a scheduled survey, due to a doctor’s 

appointment and not because of the things related to the survey question. Next, MAR 

mechanism is when the missing data is correlated with the other study-related variables 

in the analysis. As an example, the increase of substance usage, will relate to chronic 

absenteeism, leading to an increase in the probability of data missing for the self-esteem 

measure. The MNAR on the other hand is when the probability of missing data is 

completely related to the values that are missing. An example is when there are missing 

data on the reading scores and this is completely related to a person’s reading ability 

(Baraldi & Enders, 2010). 

In general terms, techniques to deal with missing values can be categorised as 

traditional or modern approach. Some review on the traditional and modern missing data 

techniques are given in the next section. 
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2.4.1 Traditional Missing Data Techniques 

 

 

 Some commonly used traditional ways are listwise deletion and pairwise 

deletion. As for imputation methods, mean imputation, hot-deck imputation, and 

stochastic imputation are among the commonly used ones (George et al., 2015). Listwise 

deletion is when an individual in a data set is deleted from an analysis if there are missing 

data on any of the variable in the study. It is a simple approach to handle the missing 

values and it gives a complete set of data, but it creates even larger problem to the 

statistical analysis stage. When the missing data are deleted, it reduces the sample size, 

and this is a huge disadvantage if the total number of missing item is high. Hence, lack of 

statistically significant estimates of conclusion occur (Tsikriktsis, 2005)  

Another commonly used method in handling missing data is pairwise deletion or 

also known as the available case analysis (Peugh and Enders, 2004). In pairwise deletion, 

the missing data are removed on an analysis-by-analysis basis, such that when a particular 

variable has a missing value, other variables that has no missing values can still be used 

during the analysing stage. The pairwise deletion maximizes all the data that is available, 

thus increases the power in the analysis. However, the disadvantage of this pairwise 

deletion is that the standard of errors computed by most of the software packages uses the 

average sample size across analyses, thus making the standard of errors underestimated 

or overestimated. 

Another common technique that is use in handling missing data is the single 

imputation method, which means the researchers imputes the missing data with some 

suitable replacement values (Baraldi and Enders, 2010). There are different types of 

imputation techniques, but the most common approach from the single imputation is mean 

imputation, regression imputation, hot-deck imputation and stochastic imputation. For 

mean imputation, the mean is obtained from the arithmetic mean of the available data are 

replaced in the missing values (Tsikriktsis, 2005; Baraldi and Enders, 2010). The mean 
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imputation is easy to use, but the variability in the data is reduced, thus making the 

standard deviation and variance estimates being underestimated. For example, if there is 

20% of the total observation to be missing, this means that 20% of the data will have zero 

variance after the mean imputation technique is implied. This situation will be 

problematic, especially when the missing value is high (Acock, 2005). 

In regression imputation, it involves a regression equation which uses the 

available data that are not missing, to predict the expected values for the missing data. To 

simplify, the missing values are the outcome variable, while the other variables in the data 

set are the predictors. The technique give a good “guess” as it obtains information from 

the complete variables, however this method produces biases in the variances and 

covariances (Graham et al., 2003).  

Another imputation method is the hot-deck imputation method where this method 

is based on matching the case of the missing data with similar cases without missing data. 

Correlation matrix is used to determine the most highly correlated variables. It is an 

advantage if the sample is large, as similar case can easily be identified. However, a 

drawback of this method is that it involves a single value which reduces the amount of 

variations in the data (Schlomer et al., 2010). Stochastic regression implies the regression 

imputation with some modification, where a random value is added to the imputed 

predicted value. This imputation technique are centered at zero, therefore they do not 

change the mean, thus provide the same unbiased means as does the regression technique. 

However, with this stochastic values, it introduces variance in the imputed data, which 

results in unbiased variance estimates (Little & Rubin, 1987). These traditional methods 

are basically easy to use, but they also cause several drawbacks which makes these 

methods unlikely to be used by researchers. Some modern techniques to handle missing 

data has been developed few years later. 
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2.4.2 Modern Missing Data Techniques   

 

Modern missing techniques are later introduced, which some of them are 

integrated from traditional techniques. These modern approaches include those based on 

maximum likelihood and multiple imputations (Acock 2005). Expectation-maximization 

(EM) algorithm is an example of maximum likelihood and some examples of multiple 

imputations include Markov Chain Monte Carlo, Fully Conditional Specification, and 

Expectation-maximization with bootsrapping (EMB) algorithm (Baraldi & Enders, 2010; 

Barzi & Woodward, 2004; Gold & Bentler, 2000; Little & Rubin, 1987).  

Maximum likelihood estimation approach uses the available data, either complete 

or incomplete, and finds the parameter that will have the highest probability of creating 

the sample data. Multiple imputation approaches creates multiple copies of the data set 

and each copy will have different imputed values. Therefore for this approach, there will 

be three stages which is the imputation stage, analysis stage, and pooling results stage 

(Baraldi & Enders, 2010).  

These modern approaches are superior to the traditional approach as they produce 

unbiased estimates for both MCAR and MAR data, and no data are “thrown out”, thus 

making the method more reliable. In this research, a feasible modern imputation method 

is identified to apply in the data that can be modelled by the LFRM and will explain in 

detail in Chapter 6.  
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CHAPTER 3: NONPARAMETRIC ESTIMATION FOR SLOPE OF LINEAR 

FUNCTIONAL RELATIONSHIP MODEL 

 

3.1 Introduction 

 

 In this chapter, a robust nonparametric method to estimate the slope parameter of 

a LFRM in which both parameters are subject to error is proposed. In this case, the error 

variance ratio is assumed known, that it is equal to one. Section 3.2 briefly describes the 

nonparametric method for estimating the parameter. Section 3.3 proposes a new 

estimation method for a slope parameter of the LFRM. A simulation study is conducted 

in Section 3.4 to compare the proposed slope estimation method with the existing MLE 

method and the nonparametric method by Al-Nasser and Ebrahem (2005). Simulation 

results and discussion are presented in Section 3.5. Finally, the application of a real life 

data using the proposed nonparametric estimation method is illustrated in Section 3.6. 

 

3.2 Nonparametric Estimation Method of LFRM 

 

As mentioned earlier for LFRM in Section 2.2.1, where XY   , both of the 

two variables X  and Y  are observed with errors, with   and   is the intercept and 

slope parameter respectively.  For any fixed iX , the ix  and iy  are observed from 

continuous linear variable subject to errors i  and i  respectively. The error terms i  

and i  are assumed to be mutually independent and normally distributed random 

variables, with mean 0 and variance 2

  and 2

  respectively. In this parametric LFRM, 

there are  4n  parameters that need to be estimated, namely 22,,,    and the 

incidental parameters nXX ,...,1 . However, with these incidental parameters, it leads to 

inconsistencies of the estimators. Thus, some information is needed to overcome the 
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inconsistencies of the estimators, which is, either one of the variances or the ratio of the 

two variances is known (Fuller, 1987). 

Several methods of estimation of LFRM have been suggested in previous studies 

such as Kendall and Stuart (1979), Fuller (1987), Cheng and Van Ness (1999), Huwang 

and Yang (2000) and Al-Nasser (2004). However, the methods in the literature are mostly 

based on normality assumption, and it can be erroneous to use the normality assumption 

when there are outliers in the data set. In other words, when there are outliers, a robust 

method is necessary to diminish the effect of the outlier. 

The nonparametric estimation method is a statistical inference which does not 

depend on a specific probability distribution. As mentioned by Hajek (1969), this method 

is widely used and also easy to perform. An important advantage of using nonparametric 

method is that it is generally robust to outliers. A number of researchers have studied the 

nonparametric estimation methods, such as Dent (1935), Housner-Bernnan’s (1948), 

Theil (1950) and Cheng and Van-Ness (1999). These traditional estimation methods 

however, do not consider the presence of outliers in the data. A study by Al-Nasser and 

Ebrahem (2005) which incorporated the presence of outliers, compared his proposed 

method with the other traditional estimators. From the study, when the percentage of 

outliers are 20% or more, Al-Nasser and Ebrahem (2005) method seems to be robust to 

outliers, unlike all the other traditional methods. However, in real life experiment, outliers 

also exist in small amount of numbers. Hence, it is crucial to identify when there are small 

percentage of outliers in an experiment, such as when there is a single, 5% and 10% of 

outliers. Therefore, in this chapter, a robust nonparametric method to estimate the slope 

parameter in LFRM is proposed by further improving the nonparametric method as 

proposed by Al-Nasser and Ebrahem (2005), and comparing it with the existing MLE 

method as well as with the Al-Nasser and Ebrahem (2005) method.  
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3.3 The Proposed Robust Nonparametric Estimation Method 

 

The following are the steps involved in the proposed method. Firstly, arrange the 

observed pairs  ii yx , ’s, where ;...,,2,1 ni   according to the magnitude of x  value, by 

taking into account that all the values of x  are distinct. Next, sort these observations into 

several groups to obtain all the possible paired of slopes. Later on, determine another 

possible paired of slopes by arranging the observed pairs according to the magnitude of 

y  value. The following are the steps to estimate the slope parameter in LFRM:  

Step 1:  

 Arrange the observations in ascending order, based on x  value, i.e., 

.... )()2()1( nxxx   The associated values of y  which may not be in ascending order are 

taken, i.e., .,...,, ][]2[]1[ nyyy  The new pairs will be ),( ][)( ii yx . The i  values that are in a 

bracket,    indicates that they are arranged in ascending order, while i  values that are in 

a square bracket,    indicates that they are not arranged in ascending order. 

Step 2:  

 All the data are divided into m subsamples. These subsamples contains r  

elements, such that nrm  . The samples are arranged in the following form:  

 ),( ]1[)1( yx    ),( ]2[)2( yx    …   ),( ][)( rr yx   

 ),( ]1[)1(  rr yx    ),( ]2[)2(  rr yx    …   ),( ]2[)2( rr yx     , 

                                                            

),( )]1()1[())1()1((  rmrm yx         …                …   ),( ][)( mrmr yx  

 

           (3.1) 

 

where m  is the maximum divisor of n , such that rm . As an example, if ,50n  then 

5m  and 10r  respectively.  
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Step 3:  

 Find all the possible paired slopes.

 

 

              

   

mkrjji
xx

yy
kb

ij

ij

ijx ...,,2,1;...,,3,2;1...,,2,1; 
















                (3.2) 

           

 

Step 4:  

 Repeat Steps 1 to 3 by interchanging y  and x  to get another possible paired 

slopes of ijy kb )( . 

        

   

mkrjji
xx

yy
kb

ij

ij

ijy ...,,2,1;...,,3,2;1...,,2,1; 
















                (3.3) 

 

 

Step 5:  

 Find the median of all these slopes. 

 
ijyijxnew kbkbmedian )(,)(ˆ             (3.4) 

 

The steps described in Step 1 till Step 3 for estimating the slope parameter is based 

on the nonparametric estimation method as introduced by Al-Nasser an Ebrahem (2005). 

In this proposed method, the method is extended by adding two more steps in the 

procedure to ensure the robustness of this method. In other words, the median of all the 

slopes when x  is arranged in ascending order, and similarly when y  is arranged in 

ascending order is found. The reason why median of all the slopes in Step 5 is used is that 

the median is found to be more robust than using the mean, when outliers are present in 

the data (Hampel et al., 2011). 
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3.4 Simulation Study 

 

A simulation study is performed to compare the proposed method of estimation 

with the standard MLE method and the nonparametric method by Al-Nasser and Ebrahem 

(2005). Cases when there are no outlier and also when there are different percentages of 

outliers are considered. Begin by simulating observations from the LFRM where the 

parameters are set to 1 , 1 , 1.02  , and 1  respectively. The following 

equations are: 

,1 ii XY    iii Xx   and ,iii Yy   

where 
n

i
X i 10  and  ,1.0,0~, Nii   with ....,,2,1 ni                     (3.5) 

Setting 
n

i
X i 10 , and assuming that X  is a mathematical or fixed variable, 

means that it does not have a specific distribution. If X  is a random variable which has 

a specified distribution then this is termed a structural relationship model between X and 

Y . Later on the data is contaminated at different levels by replacing the original 

observation by the contaminated observations. The contaminated observations are 

generated using the given relationship where )25,0(~ Ni . The performance of these 

methods are examined by looking at the mean square error (MSE) of the slope and also 

the estimated bias (EB) of the parameters in 10,000 trials. The MSE and EB are defined 

by, 

 

 

   21
ww

s
MSE j


and wwEB  ˆ ,       (3.6) 
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where w  is the generic term for the parameters, and s  is the sample size.  

For each simulation, generate a sample size with 50,20n  and 100 from the 

sampling distribution as in (3.5). In order to investigate the robustness of the proposed 

method, the non-normal error terms are also considered whereby the error terms i  and 

i  are generated from three different Beta distributions. The probability density function 

of the standard Beta distribution can be written as, 

         
 
 qpB

xx
xf

qp

,

1
)(

11  
       0,;10  qpx ,    (3.7) 

where p and q  are the shape parameters, and ),( qpB can be noted as the Beta function. 

In this study, the symmetric Beta distribution is considered with parameters (3, 3), right 

skewed Beta distribution (2, 9) and left skewed Beta distribution (9, 2), respectively using 

the same above relationship as shown in Figure 3.1. 

 

 

 

Figure 3.1: Three different non-normal error distribution for i  and i  
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3.5 Results and Discussion 

 

The MSE of the slope parameter are summarised in Table 3.1 to Table 3.4, while 

the EB of the slope parameter are summarised in Table 3.5 to Table 3.8. Looking at Table 

3.1 where the errors i  and i are normally distributed, the MSE of the proposed method 

is somewhat similar to that of the MLE and the nonparametric method by Al-Nasser and 

Ebrahem (2005) when no outlier exists in the data. However, a great difference can be 

observed when the data is contaminated. The MSE of the slope estimator using MLE 

method breaks down easily and becomes huge. Examining closely the proposed method 

with the nonparametric method by Al-Nasser and Ebrahem (2005) when there is a single 

outlier, 10%, 20% and 30% outliers, the MSE values of the proposed method has smaller 

values than the MSE of Al-Nasser and Ebrahem (2005) method. In short, the proposed 

method outperforms the MLE and the nonparametric method by Al-Nasser and Ebrahem 

(2005). 
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Table 3.1: MSE of the slope for normal-case 

 

Contamination 
        Sample Size 

Methods 
20 50 100 

No outlier 

MLE 1.1825E-04 4.7854E-05 2.4419E-05 

Al-Nasser and 

Ebrahem (2005) 
1.5459E-04 5.7457E-05 2.9538E-05 

Proposed 1.5464E-04 5.5672E-05 2.7677E-05 

Single outlier 

MLE 4.4369E+01 6.4742E-01 8.7298E-02 

Al-Nasser and 

Ebrahem (2005) 
2.2430E-04 7.2124E-05 2.1181E-02 

Proposed 2.2419E-04 6.6974E-05 4.0672E-04 

10% 

MLE 1.5929E+02 1.6038E+02 1.6043E+02 

Al-Nasser and 

Ebrahem (2005) 
4.8663E-04 4.7335E-04 4.4865E-04 

Proposed 4.8642E-04 4.4584E-04 4.0672E-04 

20% 

MLE 3.9998E+01 4.0067E+01 4.0083E+01 

Al-Nasser and 

Ebrahem (2005) 
4.3560E-03 3.5335E-03 3.5644E-03 

Proposed 4.3562E-03 3.3497E-03 3.2682E-03 

30% 

MLE 3.1452E+01 3.1495E+01 3.1498E+01 

Al-Nasser and 

Ebrahem (2005) 
2.6180E+00 3.4945E-02 3.6090E-02 

Proposed 2.6179E+00 3.1784E-02 3.1157E-02 

 

Meanwhile, for Table 3.2 where the errors i  and i  are skewed to the 

right with Beta distribution (2, 9), the MSE of the proposed method also show 

similar results to that of the MLE and the nonparametric method by Al-Nasser and 

Ebrahem (2005) in the case when no outlier is present. When the data gets 

contaminated, the MSE of the slope estimator using MLE method breaks down 
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easily. However, the MSE values for the proposed method and nonparametric 

method by Al-Nasser and Ebrahem (2005) are not affected by the outliers even 

when the percentage of outliers increase. Comparing the proposed method with 

Al-Nasser and Ebrahem (2005) method, at each level of contamination, the 

proposed method shows consistently smaller values of MSE than that of Al-

Nasser and Ebrahem (2005) method.  

Table 3.2: MSE of the slope for right skewed case, Beta (2, 9) 

 

Contamination 
          Sample Size 

Methods 
20 50 100 

No outlier 

MLE 1.5133E-04 6.0594E-05 3.0176E-05 

Al-Nasser and 

Ebrahem (2005) 
1.9075E-04 6.8761E-05 3.4546E-05 

Proposed 1.9064E-04 6.6482E-05 3.2149E-05 

Single outlier 

MLE 4.4529E+01 6.4764E-01 8.7356E-02 

Al-Nasser and 

Ebrahem (2005) 
2.7768E-04 8.6845E-05 4.0448E-05 

Proposed 2.7693E-04 7.9988E-05 3.4972E-05 

10% 

MLE 1.5966E+02 1.6054E+02 1.6055E+02 

Al-Nasser and 

Ebrahem (2005) 
6.0344E-04 5.7011E-04 5.3175E-04 

Proposed 6.0091E-04 5.2728E-04 4.7306E-04 

20% 

MLE 4.0002E+01 4.0076E+01 4.0081E+01 

Al-Nasser and 

Ebrahem (2005) 
5.3034E-03 4.3112E-03 4.2902E-03 

Proposed 5.2779E-03 4.0164E-03 3.8901E-03 

30% 

MLE 3.1461E+01 3.1494E+01 3.1501E+01 

Al-Nasser and 

Ebrahem (2005) 
2.6401E+00 4.3176E-02 4.3854E-02 

Proposed 2.6394E+00 3.8207E-02 3.7091E-02 
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Next, from Table 3.3, where the errors i  and i  are skewed to the left with Beta 

distribution (9, 2) the MSE obtained are consistent for the MLE method, the 

nonparametric method by Al-Nasser and Ebrahem (2005) and the proposed method when 

no outlier is present in the data. However, when there is a single outlier, 10%, 20% or 

30% outlier in the data set, the MSE for MLE method becomes very huge. The MSE for 

the proposed method and the nonparametric method by Al-Nasser and Ebrahem (2005), 

on the other hand are consistently small and has no effect in the presence of the outliers. 

A closer look of the MSE values for both these two methods show that the proposed 

method gave smaller values than the method proposed by Al-Nasser and Ebrahem (2005). 

 

Table 3.3: MSE of the Slope for left skewed case, Beta (9, 2) 

 

Contamination 
         Sample Size 

Methods 
20 50 100 

No outlier 

MLE 1.5120E-04 6.0583E-05 3.0172E-05 

Al-Nasser and 

Ebrahem (2005) 
1.9106E-04 6.8610E-05 3.4436E-05 

Proposed 1.9089E-04 6.5936E-05 3.1775E-05 

Single outlier 

MLE 4.4658E+01 6.4804E-01 8.7271E-02 

Al-Nasser and 

Ebrahem (2005) 
2.7683E-04 8.6440E-05 4.0811E-05 

Proposed 2.7580E-04 7.9212E-05 3.5052E-05 

10% 

MLE 1.5982E+02 1.6046E+02 1.6037E+02 

Al-Nasser and 

Ebrahem (2005) 
5.9557E-04 5.6534E-04 5.3778E-04 

Proposed 5.9307E-04 5.2404E-04 4.7994E-04 

20% 

MLE 3.9997E+01 4.0071E+01 4.0081E+01 

Al-Nasser and 

Ebrahem (2005) 
5.3072E-03 4.2962E-03 4.3022E-03 

Proposed 5.2842E-03 4.0062E-03 3.9089E-03 
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30% 

MLE 3.1455E+01 3.1498E+01 3.1499E+01 

Al-Nasser and 

Ebrahem (2005) 
2.6396E+00 4.2998E-02 4.3809E-02 

Proposed 2.6388E+00 3.8164E-02 3.7132E-02 

   

 

For Table 3.4, with errors i  and i  that are non-normal symmetric case with Beta 

distribution (3, 3) all three methods show somewhat similar MSE values when no outlier 

exist in the data. However, when there are outliers in the data, the MSE of the slope for 

MLE method breaks down quickly and becomes huge. The MSE of the slope for the 

proposed method and the nonparametric method by Al-Nasser and Ebrahem (2005), on 

the other hand, remain small and are not affected by the presence of outliers. Comparing 

the MSE of the nonparametric method by Al-Nasser and Ebrahem (2005) with the 

proposed method, it can be observed that the proposed method gives a more satisfactory 

result in the presence of outliers by having smaller values of MSE. 
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Table 3.4: MSE of the Slope for non-normal symmetric case, Beta (3, 3) 

 

Contamination 
           Sample Size 

Methods 
20 50 100 

No outlier 

MLE 4.1847E-04 1.7195E-04 8.6134E-05 

Al-Nasser and 

Ebrahem (2005) 
5.7502E-04 2.2126E-04 1.1804E-04 

Proposed 5.6131E-04 2.0281E-04 1.0113E-04 

Single outlier 

MLE 4.5718E+01 6.4956E-01 8.7330E-02 

Al-Nasser and 

Ebrahem (2005) 
8.6448E-04 2.9515E-04 1.4889E-04 

Proposed 8.1974E-04 2.4402E-04 1.1237E-04 

10% 

MLE 1.6275E+02 1.6150E+02 1.6107E+02 

Al-Nasser and 

Ebrahem (2005) 
1.8795E-03 1.8761E-03 1.8190E-03 

Proposed 1.7693E-03 1.5884E-03 1.4830E-03 

20% 

MLE 4.0043E+01 4.0100E+01 4.0091E+01 

Al-Nasser and 

Ebrahem (2005) 
1.5717E-02 1.3294E-02 1.3519E-02 

Proposed 1.4875E-02 1.1492E-02 1.1323E-02 

30% 

MLE 3.1459E+01 3.1504E+01 3.1501E+01 

Al-Nasser and 

Ebrahem (2005) 
2.7694E+00 1.2712E-01 1.2854E-01 

Proposed 2.7570E+00 9.9070E-02 9.6533E-02 

 

From Table 3.1 to Table 3.4, it can be seen that the MLE method breaks down 

easily when outliers are present in the data. In contrast, the nonparametric method 

proposed by Al-Nasser and Ebrahem (2005) and the proposed method have a more 

satisfactory result in the presence of outliers. However, the MSE values shows that the 

proposed method gives a consistently smaller values than the nonparametric method by 

Al-Nasser and Ebrahem (2005).  

Univ
ers

ity
 of

 M
ala

ya



49 

 

In addition to the MSE of the slope for each method, the EB of the slope parameter 

after 10,000 simulation process is measured. The results are shown in Table 3.5 to Table 

3.8 respectively. 

 

Table 3.5: EB of the slope: Normal-Case 

 

Contamination  

      Sample size 

Methods 

20 50 100 

No outlier 

MLE 1.9350E-04 9.7890E-06 2.3213E-05 

Al-Nasser and 

Ebrahem (2005) 
2.8836E-04 4.4696E-04 7.1954E-04 

Proposed 2.9352E-04 2.0146E-05 4.3393E-05 

Single outlier 

MLE 6.6469E+00 8.0430E-01 2.9533E-01 

Al-Nasser and 

Ebrahem (2005) 
6.8065E-03 3.3655E-03 2.0164E-02 

Proposed 6.8007E-03 2.8622E-03 1.9165E-02 

10% 

MLE 1.2604E+01 1.2657E+01 1.2662E+01 

Al-Nasser and 

Ebrahem (2005) 
1.6510E-02 1.9768E-02 2.0164E-02 

Proposed 1.6504E-02 1.9161E-02 1.9165E-02 

20% 

MLE 6.3234E+00 6.3293E+00 6.3306E+00 

Al-Nasser and 

Ebrahem (2005) 
6.1905E-02 5.7962E-02 5.8935E-02 

Proposed 6.1905E-02 5.6511E-02 5.6492E-02 

30% 

MLE 5.6076E+00 5.6116E+00 5.6120E+00 

Al-Nasser and 

Ebrahem (2005) 
1.6177E+00 1.8411E-01 1.8853E-01 

Proposed 1.6177E+00 1.7623E-01 1.7557E-01 
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Table 3.6: EB of the slope: Right skewed case, Beta (2, 9) 

 

Contamination  

        Sample size 

Methods 

20 50 100 

No outlier 

MLE 5.0579E-05 3.5651E-05 1.2450E-04 

Al-Nasser and 

Ebrahem (2005) 
3.0781E-05 6.2823E-04 8.4873E-04 

Proposed 3.9226E-07 1.3998E-05 1.1493E-04 

Single outlier 

MLE 6.6558E+00 8.0437E-01 2.9540E-01 

Al-Nasser and 

Ebrahem (2005) 
7.7383E-03 3.8063E-03 2.4013E-03 

Proposed 7.7029E-03 3.1258E-03 1.4051E-03 

10% 

MLE 1.2614E+01 1.2662E+01 1.2666E+01 

Al-Nasser and 

Ebrahem (2005) 
1.8366E-02 2.1643E-02 2.1941E-02 

Proposed 1.8318E-02 2.0764E-02 2.0655E-02 

20% 

MLE 6.3236E+00 6.3299E+00 6.3305E+00 

Al-Nasser and 

Ebrahem (2005) 
6.8161E-02 6.3939E-02 6.4639E-02 

Proposed 6.8031E-02 6.1831E-02 6.1615E-02 

30% 

MLE 5.6084E+00 5.6115E+00 5.6122E+00 

Al-Nasser and 

Ebrahem (2005) 
1.6245E+00 2.0457E-01 2.0769E-01 

Proposed 1.6242E+00 1.9321E-01 1.9149E-01 
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Table 3.7: EB of the slope: Left skewed case, Beta (9, 2) 

 

Contamination  

        Sample size 

Methods 

20 50 100 

No outlier 

MLE 1.0542E-04 2.6538E-05 8.8454E-05 

Al-Nasser and 

Ebrahem (2005) 
1.6405E-04 5.8414E-04 1.0377E-03 

Proposed 1.9086E-04 4.3450E-05 8.8449E-05 

Single outlier 

MLE 6.6646E+00 8.0462E-01 2.9526E-01 

Al-Nasser and 

Ebrahem (2005) 
7.4805E-03 3.7438E-03 2.5641E-03 

Proposed 7.4449E-03 3.0662E-03 1.5910E-03 

10% 

MLE 1.2622E+01 1.2659E+01 1.2659E+01 

Al-Nasser and 

Ebrahem (2005) 
1.8092E-02 2.1578E-02 2.2095E-02 

Proposed 1.8052E-02 2.0722E-02 2.0835E-02 

20% 

MLE 6.3232E+00 6.3296E+00 6.3305E+00 

Al-Nasser and 

Ebrahem (2005) 
6.8118E-02 6.3858E-02 6.4751E-02 

Proposed 6.7989E-02 6.1780E-02 6.1778E-02 

30% 

MLE 5.6078E+00 5.6119E+00 5.6120E+00 

Al-Nasser and 

Ebrahem (2005) 
1.6243E+00 2.0408E-01 2.0763E-01 

Proposed 1.6240E+00 1.9305E-01 1.9160E-01 
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Table 3.8: EB of the slope: Non-Normal Symmetric case, Beta (3, 3) 

 

Contamination  

             Sample size 

Methods 

20 50 100 

No outlier 

MLE 1.1409E-04 3.9695E-05 4.2878E-05 

Al-Nasser and 

Ebrahem (2005) 
1.0258E-03 2.6493E-03 3.4802E-03 

Proposed 1.6671E-04 2.2886E-05 1.8443E-04 

Single outlier 

MLE 6.7108E+00 8.0489E-01 2.9508E-01 

Al-Nasser and 

Ebrahem (2005) 
1.4711E-02 8.3751E-03 6.2885E-03 

Proposed 1.3715E-02 5.5138E-03 2.9021E-03 

10% 

MLE 1.2697E+01 1.2684E+01 1.2679E+01 

Al-Nasser and 

Ebrahem (2005) 
3.3244E-02 3.9754E-02 4.0872E-02 

Proposed 3.1964E-02 3.6266E-02 3.6692E-02 

20% 

MLE 6.3254E+00 6.3312E+00 6.3309E+00 

Al-Nasser and 

Ebrahem (2005) 
1.1801E-01 1.1276E-01 1.1498E-01 

Proposed 1.1514E-01 1.0498E-01 1.0532E-01 

30% 

MLE 5.6076E+00 5.6122E+00 5.6121E+00 

Al-Nasser and 

Ebrahem (2005) 
1.6633E+00 3.5140E-01 3.5582E-01 

Proposed 1.6596E+00 3.1183E-01 3.0923E-01 

 

 

These simulation study includes cases when the errors i  and i  are normally 

distributed, skewed to the right with Beta distribution (2, 9), skewed to the left with Beta 

distribution (9, 2), and non-normal symmetric case with Beta distribution (3, 3) 

respectively. Results from all the four cases mentioned show that when there are no 

outliers, all the methods of estimation show somewhat similar results for EB values. 
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However, as the percentage of contamination increases, the EB values for the MLE 

method increase dramatically. Comparing the proposed method with Al-Nasser and 

Ebrahem (2005) method, note that the proposed method always gave smaller EB values 

in situation when there are no outliers, as well as in situation when there is a single, 10%, 

20%, and 30% outliers. 

To summarise, the extension on the nonparametric method by Al-Nasser and 

Ebrahem (2005) in estimating the slope parameter is considered a robust method as it 

gives a more satisfactory result in terms of small MSE values and small EB values. The 

extension made which includes arranging the data according to the magnitude of y  

observations as well as finding the median of all the slopes, result in a more robust 

estimation even with the existence of high percentage of outliers. 

 

3.6 Practical Example  

 

In this section, the proposed nonparametric technique is applied to real life data 

and the three estimation methods namely the MLE method, the nonparametric method by 

Al-Nasser and Ebrahem (2005), and the proposed method are compared. By considering 

a real data set from a study conducted by Goran et al. (1996), the data set comprises of 

96 observations that are free from any outliers. The study was to examine the accuracy of 

some widely used body-composition techniques for children between the ages of 4 and 

10 years by two different techniques, namely skinfold thickness (ST) and bioelectrical 

resistance (BR). Measurement error are assumed to occur in either variable of this 

experiment to make the relationship as given in (2.1).  

  In order to apply the proposed method to estimate the slope parameter, these data 

sets are divided into 8 groups, with each group having 12 elements. Next, to examine the 
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effect on the slope with the presence of outlying observation, Goran et al. (1996) data is 

modified by inserting several outliers to create different outlier situation. The outliers are 

inserted by following Kim (2000) and Imon and Hadi (2008) where a certain percentage 

of the observations are removed and replaced with the outliers’ observation. The 

contaminated observation were generated based on the given relationship where 

 25,0~ Ni . In this study, these cases are being considered; when there is a single 

outlier, 10%, 20%, and 30% outliers respectively. The estimated slopes by using three 

different methods are shown in Table 3.9. 
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Table 3.9: The Slope Estimates using Three Different Methods from Goran et al. 

(1996) 

Contamination  Methods Slopes 
Standard 

deviation 

No outlier 

MLE 1.0988 0.0576 

Al-Nasser and 

Ebrahem (2005) 
1.0016 0.0544 

Proposed 1.0268 0.0548 

Single outlier 

MLE 3.7150 1.8907 

Al-Nasser and 

Ebrahem (2005) 
1.0093 1.0737 

Proposed 1.0274 1.0691 

10% 

MLE 21.3319 37.5925 

Al-Nasser and 

Ebrahem (2005) 
1.0274 10.8514 

Proposed 1.0579 10.7201 

20% 

MLE 27.9859 57.5872 

Al-Nasser and 

Ebrahem (2005) 
1.0961 15.1723 

Proposed 1.1056 15.1074 

30% 

MLE 49.5205 175.3813 

Al-Nasser and 

Ebrahem (2005) 
1.0806 28.3873 

Proposed 1.1011 28.1275 

  

From Table 3.9 when there are no outliers in the data set, all the three methods 

show somewhat similar results in terms of the slope parameter. However, as the 

percentage of outlier increases, the slope for MLE method changes significantly 

compared to when there is no outlier. To conclude, the MLE estimation method breaks 

down easily with the increase of percentage of outliers, as compared to the nonparametric 
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method by Al-Nasser and Ebrahem (2005) and the proposed method. Looking closely to 

the slopes parameter of the nonparametric method by Al-Nasser and Ebrahem (2005) and 

the proposed method, both these estimation methods are not much affected by the 

presence of outliers. However, comparing the standard deviation of the nonparametric 

method by Al-Nasser and Ebrahem (2005) and the proposed method when outliers exist, 

this proposed method results in a lower value of standard deviation, which indicates that 

the data are clustered close to the mean, thus being more reliable.  

3.7 Summary 

 

In this chapter, a robust nonparametric method to estimate the slope parameter of 

the LFRM is proposed. From the simulation study, all the three methods give somewhat 

similar results when no outlier exists in the data. However, as the percentage of outlier 

increases, the MLE method shows to break down quickly as compared to the 

nonparametric method by Al-Nasser and Ebrahem (2005) and the proposed method. 

Comparing the MSE and the EB of the nonparametric method (Al-Nasser and Ebrahem, 

2005) and the proposed method, it can be summarized that the proposed method gives a 

more satisfactory result in the presence of outliers.  

 The applicability of these methods are illustrated in a real data set by Goran et al. 

(1996) and to conclude, when no outliers exist in the data set, all the three methods show 

somewhat similar results in terms of slope parameter; however, as the percentage of 

outlier increases, the MLE method shows to break down easily. Comparing Al-Nasser 

and Ebrahem (2005) and the proposed method, it can be concluded that the slope 

parameters are not much affected by the presence of outliers, and based on the standard 

deviation of both methods, the proposed method shows to be more accurate by having 

smaller values of standard deviation as compared to the nonparametric method by Al-

Nasser and Ebrahem (2005) at each percentage of data missing. To summarise, the 
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proposed method to estimate the slope parameter of the LFRM which is an extension 

from Al-Nasser and Ebrahem (2005) nonparametric method, is considered as the best 

method as it shows to perform well in the presence of small percentage of outliers as well  

as high percentage of outliers. 
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CHAPTER 4: SINGLE OUTLIER DETECTION USING COVRATIO 

STATISTIC 

4.1 Introduction 

 

 This chapter derives a test statistic based on COVRATIO to detect an outlier in 

the LFRM. Section 4.2 describes the COVRATIO statistic for LFRM. Next, the 

procedure for determining the cut-off points for detecting an outlier is given in Section 

4.3. Section 4.4 covers the measure of power performance of the COVRATIO statistic 

in determining an outlier. Section 4.5 illustrates the applicability of the COVRATIO 

statistic using a practical example, followed by a real data illustration in Section 4.6. 

Finally, a summary of the chapter is given in Chapter 4.7. 

4.2 COVRATIO Statistic for Linear Functional Relationship Model 

 

The analysis of errors-in-variable model (EIVM) may be subjected to the 

occurrence of outliers (Hadi et al., 2009). Several researchers have studied the outliers 

problem for different models; for example Belsley et al. (1980) and Barnet and Lewis 

(1994) have thoroughly discussed the problem of outliers in a linear regression. Abuzaid 

et al. (2011) on the other hand, discussed the identification of outliers in a circular 

regression by using a new definition of circular residuals via different graphical and 

numerical methods. Recently, Ibrahim et al. (2013) proposed the COVRATIO procedure 

to detect outliers in a circular regression model. 

The COVRATIO procedure dates back to Belsley et al. (1980) in which they 

proposed a numerical statistic to identify outliers in a linear regression models. This 

numerical statistic is based on the determinantal ratio of covariance matrix for a full data 

set and a reduced data set by excluding one observation in turn. If the ratio is close to 1, 

then there is no significant difference between them. In other words, the thi  observation 
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is consistent with the other observations. Alternatively, if the value of 1)( iCOVRATIO  

is close to or larger than 








n

p3
, then it indicates that the thi  observation is a candidate of 

an outlier, where p  is the number of parameters, and n  is the sample size. In this chapter, 

this idea is extended to the LFRM in which the cut-off values and formulas will be 

derived. 

 As a starting point, the determinantal ratio is applied to the LFRM to obtain the 

cut-off point. The determinant of the covariance matrix is given by 

      

                            2ˆ,ˆˆˆˆˆˆ  voCraVraVCOV     (4.1) 

where 
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The COVRATIO statistic for the 
thi  observation is given by  
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)(

)(

i

i
COV

COV
COVRATIO



  ,    (4.2) 

whereby COV  is the 

 covariance matrix for the full data set and 
)( iCOV 

is the corresponding covariance matrix 

after deleting the thi observation. Any observation with 1)( iCOVRATIO  that exceeds 

the cut-off points will be identified as an outlier. The cut-off points are obtained through 

simulation studies.  

 

4.3 Determination of Cut-off Points by COVRATIO Statistic 

 

The cut-off points of the COVRATIO statistic to identify the outliers in the LFRM 

are obtained by applying Monte Carlo simulation method. Fifteen different sample sizes 

of  250,150...,,60,50,40,30n  and 500, and five values of 
 = 0.2, 0.4, 0.6, 0.8, and 

1.0 respectively are used. For each sample of size n  and 
 , a set of normal random 

errors are generated from the normal distribution with mean 0 and 
  respectively. 

Assume both 
ii   , and proceed with the following steps:  

Step 1.  Generate 









n

i
X i 10 of size n , with ,...,,3,2,1 ni   where n  is the sample 

size. Without loss of generality, the slope and intercept parameters of LFRM 

are fixed at 1  and 0  respectively. 

Step 2.  Generate two random error terms 
i  and 

i  of size n from ),0( 2

N
 
and 

),0( 2

N  respectively, as in (2.3).  

Step 3.  Calculate the observed values of 
ix  and 

iy  using (2.2). 
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Step 4.  Fit the generated data by using the parametric LFRM from (2.2). 

Step 5. Calculate COV  by using (4.1). 

 

Step 6. Exclude the thi
 row from the generated sample, where i  = 1, 2, 3,…, n . Then 

for all ,i  repeat steps 4 till step 6 to obtain 
)( iCOV 

.  

Step 7. Calculate  iCOVRATIO  by using (4.2) and find the value of 

  1iCOVRATIO  for all i .  

Step 8. State the maximum value of   1iCOVRATIO . 

 

These steps are repeated for 10,000 times for each combination of sample size n   

and 
 . After that, the 1%, 5%, and 10% upper percentiles of the maximum values of 

  1iCOVRATIO  are calculated. These upper percentiles are used as the cut-off points 

in identifying the outliers for the LFRM. The R programming code for this simulation 

process is given in Appendix B. 

 The plots in Figure 4.1 to Figure 4.6 respectively gives the 1%, 5%, and 10% 

upper percentile values of   1iCOVRATIO  against 
 , for selected n  namely 

,250,150,100,70,50n  and 500. For other sample sizes, 130,120,110,90,80,60n and 

140, the plots of the 1%, 5%, and 10% upper percentile values of   1iCOVRATIO  

against 
  can be found in Appendix C. From these figures, it is noted that the 1%, 5% 

and 10% upper percentile values of   1iCOVRATIO  are independent of 
  for all n . 
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Figure 4.1: The upper percentile points of   1iCOVRATIO for 50n  

 

 

 

 

 

Figure 4.2: The upper percentile points of   1iCOVRATIO for 70n  
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Figure 4.3: The upper percentile points of   1iCOVRATIO for 100n  

 

 

 

 

Figure 4.4: The upper percentile points of   1iCOVRATIO for 150n  
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Figure 4.5: The upper percentile points of   1iCOVRATIO for 250n  

 

 

  

 

 

Figure 4.6: The upper percentile points of   1iCOVRATIO  for 500n  
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Alternatively, the results can be tabulated at different levels of significant. Table 

4.1 gives the cut-off points for various sample sizes of n , at 1% significant level while 

Table 4.2 gives the cut-off points for various sample sizes at 5% significant level. Table 

4.3 shows the cut-off points for various sample sizes of n , at 10% significant level. From 

all the three tables, the cut-off points show a decreasing function of sample size n .  

 

Table 4.1: The 1% upper percentile points of 1)( iCOVRATIO , 

at 
  = 0.2, 0.4, 0.6, 0.8 & 1.0. 

 

 

 

n  
1% at  

 = 0.2 

1% at 

 = 0.4 

1% at 

 = 0.6 

1% at 

 = 0.8 

1% at 

 = 1.0 

30 5.6119 5.6667 5.8076 5.9329 6.2449 

40 3.2652 3.2951 3.3952 3.4786 3.6240 

50 2.2340 2.2385 2.2868 2.3487 2.4118 

60 1.6404 1.6456 1.6940 1.7417 1.8106 

70 1.3935 1.4088 1.4318 1.4715 1.5024 

80 1.1327 1.1428 1.1666 1.1891 1.2179 

90 0.9556 0.9615 0.9812 1.0137 1.0353 

100 0.8373 0.8469 0.8576 0.8718 0.8928 

110 0.7505 0.7537 0.7556 0.7732 0.7851 

120 0.7013 0.7076 0.7157 0.7315 0.7495 

130 0.6434 0.6532 0.6569 0.6738 0.6926 

140 0.5813 0.5877 0.5960 0.6044 0.6147 

150 0.5364 0.5437 0.5533 0.5621 0.5753 

250 0.3161 0.3209 0.3245 0.3317 0.3405 

500 0.1533 0.1545 0.1561 0.1593 0.1641 
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Table 4.2: The 5% upper percentile points of 1)( iCOVRATIO , 

at   = 0.2, 0.4, 0.6, 0.8 & 1.0. 

 

 

n  
5% at  

 = 0.2 

5% at 

 = 0.4 

5% at 

 = 0.6 

5% at 

 = 0.8 

5% at 

 = 1.0 

30 3.3150 3.3731 3.4121 3.4876 3.5920 

40 2.0774 2.1014 2.1265 2.1702 2.2423 

50 1.4795 1.4991 1.5160 1.5468 1.5740 

60 1.1647 1.1750 1.1926 1.2136 1.2386 

70 0.9699 0.9817 0.9980 1.0150 1.0421 

80 0.8196 0.8277 0.8392 0.8529 0.8744 

90 0.7165 0.7202 0.7303 0.7370 0.7533 

100 0.6260 0.6294 0.6381 0.6490 0.6646 

110 0.5659 0.5711 0.5774 0.5914 0.6053 

120 0.5240 0.5286 0.5363 0.5454 0.5577 

130 0.4788 0.4848 0.4902 0.4985 0.5110 

140 0.4450 0.4498 0.4576 0.4637 0.4739 

150 0.4124 0.4146 0.4206 0.4284 0.4388 

250 0.2463 0.2491 0.2514 0.2556 0.2614 

500 0.1279 0.1293 0.1307 0.1329 0.1357 
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Table 4.3: The 10% upper percentile points of 1)( iCOVRATIO , 

at   = 0.2, 0.4, 0.6, 0.8 & 1.0. 

 

n  
10% at  

 = 0.2 

10% at 

 = 0.4 

10% at 

 = 0.6 

10% at 

 = 0.8 

10% at 

 = 1.0 

30 2.5623 2.5694 2.6108 2.6740 2.7568 

40 1.6616 1.6767 1.7001 1.7407 1.7828 

50 1.2189 1.2273 1.2449 1.2677 1.3039 

60 0.9709 0.9799 0.9941 1.0118 1.0404 

70 0.8183 0.8235 0.8370 0.8532 0.8732 

80 0.6957 0.7028 0.7136 0.7258 0.7428 

90 0.6140 0.6186 0.6232 0.6332 0.6484 

100 0.5427 0.5465 0.5531 0.5640 0.5789 

110 0.4941 0.5002 0.5058 0.5155 0.5263 

120 0.4565 0.4605 0.4665 0.4756 0.4853 

130 0.4168 0.4209 0.4250 0.4329 0.4413 

140 0.3902 0.3928 0.3975 0.4033 0.4124 

150 0.3624 0.3653 0.3712 0.3784 0.3869 

250 0.2207 0.2217 0.2238 0.2274 0.2327 

500 0.1157 0.1167 0.1179 0.1201 0.1225 

 

Recall for the linear regression model, Belsley et al. (1980) defined 








n

p3
 as the cut-off 

formula for 1)( iCOVRATIO  statistic at 5% significant level, where p  is the number 

of parameters, and n  is the sample size. This idea is extended to find the cut-off points 

for LFRM. Averaging the values of 1)( iCOVRATIO  for each 
  at 1%, 5%, and 

10%, the curves are plotted as shown in Figure 4.7 to Figure 4.9. Fitting the curve with 

the power series equation by finding the least square, the equation of the series trend 

line is  obtained as  
145.163.135  ny  for 5% significant level. Similar formulations of 
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the trend lines are obtained for the 1% and 10% significant level and they are presented 

in Table 4.4. 

 

Figure 4.7: Graph of the Power Series in Finding the General Formula for the Cut-Off 

Point at 1% Significant Level. 

 

 

Figure 4.8: Graph of the Power Series in Finding the General Formula for the Cut-Off 

Point at 5% Significant Level 
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Figure 4.9: Graph of the Power Series in Finding the General Formula for the Cut-Off 

Point at 10% Significant Level. 

 

Table 4.4: General formula for cut-off points at 1%, 5% and 10% upper percentile, 

where n  is the sample size. 

 

Upper 

Percentile 

General Formula for Cut-off 

Points 

1% 262.104.321  ny  

5% 145.163.135  ny  

 10% 090.144.89  ny  
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4.4 Power of Performance for COVRATIO Statistic 

 

In detecting an outlier in the LFRM, the performance of 1)( iCOVRATIO  is 

examined by applying Monte Carlo simulation method. Four different sample sizes, n  

are used, namely 150,70,50n  and 500 respectively. The data using the same procedure 

as described in Section 4.3 are generated. To assess the performance of the COVRATIO 

statistic, randomly introduce an outlier at a certain observation, for example, at the thd

observation. For the thd  observation, generate the data from the normal distribution with 

mean 0 and variance 
2

d , where 2

d  2, 4, 6, 8, 10 and 12. The data generated is then 

fitted by using the model in (2.2) and then the COV  is calculated using (4.1). Later on, 

the thi  row is excluded consequently from the sample, where ni ...,,1 . The reduced data 

is refitted by calculating )( iCOVRATIO    using (4.2) and the maximum value of the 

1)( iCOVRATIO  is specified. The power of performance for 1)( iCOVRATIO  

statistic is calculated by computing the percentage of correct detection of the 

contaminated observation at the thd  observation. The R programming code for finding 

the power of performance for COVRATIO statistic can be found in Appendix D. 

For illustration, Figure 4.10 shows the power of performance of 

1)( iCOVRATIO  statistic for 50n  for   0.2, 0.4, 0.6, 0.8, and 1.0. From this plot, 

it can be concluded that as 
  decreases, the power of performance in detecting the 

correct outlier increases. For other sample sizes of ,150,70n and 500, all these plots 

give similar results whereby, as   decreases, the power of performance in detecting the 

correct outlier increases. The results can be found in Appendix D. 
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Figure 4.10: Power of performance for 1)( iCOVRATIO when n 50 

 

The power of performance for a fixed   is investigated and the sample sizes, n  

are varied. Figure 4.11 shows the power of performance of 1)( iCOVRATIO  statistic 

for 2.0   for 150,70,50n  and 500. From this result, it can be said that the power 

of performance is independent of the sample size. When 8.0,6.0,4.0 and 1.0, all 

these results gave consistent results whereby they are also independent of the sample size. 

Results can be found in Appendix D. In summary, the simulation study provides empirical 

evidence that as the variance of contamination increase, the power performance also 

increases.  
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Figure 4.11: Power of performance for 1)( iCOVRATIO when   0.2 

 

 

4.5 Practical Example 

 

 

 For illustration, generate 80n  data from LFRM, by setting the parameters 

,0,1,1,0   and 
222 4.0   . The R Programming simulation code and 

the simulated data sets are presented in Appendix E, where the 20th observation of the 

data set is randomly contaminated by generating the contamination using  16,0~ Ni . 

The scatterplot of the generated data sets which includes the contaminated observation 

are presented in Figure 4.12. From the scatterplot, no outliers can be identified clearly. 

Even the 20th observation does not look like a candidate of an outlier. 
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Figure 4.12: The scatter plot for the simulated data, n = 80 

 

The COVRATIO  statistic for each of the value is calculated and the results are 

given in Appendix F. Based on the formulation as given in Table 4.4, the cut-off point for 

80n  is calculated and the value 0.8538 is obtained as the cut-off point at 5% significant 

level. From Figure 4.13, it clearly shows that the 20th observations exceeds the cut-off 

points of 0.8538. To conclude, the developed test statistic is able to detect an outlier in 

the LFRM data set. 
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Figure 4.13: Graph of 1)( iCOVRATIO for simulation data, n = 80 

 

4.6 Real Data Example 

 

 As another illustration, consider a real data set from a study conducted by Goran 

et al. (1996). The study was to examine the accuracy of some widely used body-

composition techniques for children between the ages of 4 and 10 years by two different 

techniques, namely skinfold thickness (ST) and bioelectrical resistance (BR) and the data 

is given in Appendix A. The data fits in the LFRM, by having 0  and 1  with 

additional assumption that the measurement error can occur in either variable of this 

experiment, as noted in Equation (2.1). The data are plotted in a scatterplot as shown in 

Figure 4.14. From the scatterplot, it is not easy to identify which observation is an outlier, 

if any. Even by looking at the 45th observation, it cannot be simply said that it is a 

candidate of an outlier, as other observation also seem to be quite far from the fitted line. 

20th position 

Cut-off point = 0.8538 
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To confirm this, the COVRATIO statistic is applied by plotting the 1)( iCOVRATIO  

against the observation. From this plot, it can be seen that the 45th observation in Figure 

4.15 has a value of 1)( iCOVRATIO = 2.749. This value exceeds the cut-off point of 

0.6855 for determining an outlier for sample size 97n . Therefore, a conclusion can be 

made that the 45th observation is in fact, an outlier. Details of the R Programming to plot 

Figure 4.15 can be found in Appendix G. 

 

 

Figure 4.14: The Scatterplot for the real data, Skinfold Thickness (ST)  

and Bioelectrical Resistance (BR) 

 

0

5

10

15

20

25

0 5 10 15 20 25b
io

el
ec

tr
ic

al
 r

es
is

ta
n
ce

 (
B

R
).

skinfold thickness (ST) 

Scatterplot real data

45th observation

Univ
ers

ity
 of

 M
ala

ya



76 

 

 

Figure 4.15: Graph of 1)( iCOVRATIO for real data with .97n  

 

 After detecting the single outlier in Goran et. al (1996) data, the standard deviation 

(SD) of the parameters when outlier is present in the data and also when the outlier is 

excluded from the data is compared.  The SD of the parameter estimation for both these 

two situation is given in Table 4.5. Looking at the SD of the parameters when no outlier 

exists in the data, the values of the SD of the parameters are much smaller compared to 

when there is an outlier in the dataset. This means that with the exclusion of the single 

outlier, the parameter estimates becomes more accurate. Therefore, identifying an outlier 

is necessary, so that the outlier observation can be excluded from the data, thus causing 

the parameter estimates to be more reliable. 
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Table 4.5: Parameter estimation and standard error of the estimated parameters 

 Goran et al. (1996) 

n=97, when outlier is included in the 

data 

Goran et al. (1996) 

n=96, when outlier is excluded from the 

data 

Parameter 

estimation 

Parameter 

estimation 

Standard 

deviation 

Parameter 

estimation 

Parameter 

estimation 

Standard 

deviation 

̂  0.0273 0.4610 ̂  0.0787 0.3287 

̂  1.1285 0.0810 ̂  1.0997 0.0572 

̂  1.4400 1.2027 ̂  1.0703 1.0346 

 

 

4.7 Summary 

 

 

 In this chapter a test statistic based on COVRATIOis derived to detect a single 

outlier in the LFRM. A cut-off point can be expressed by the function 
262.104.321  ny   

or 0.01 level of significant, 
145.163.135  ny  for 0.05 level of significant, and 

090.144.89  ny  for 0.10 level of significant respectively. Examining the power of 

performance for the cut-off points, it shows that the performance increases as the 
  

decreases, for any n . Illustration using simulated and real data shows that the statistic 

works well in detecting a single outlier in LFRM. 
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CHAPTER 5: MULTIPLE OUTLIERS DETECTION IN LINEAR 

FUNCTIONAL RELATIONSHIP MODEL USING CLUSTERING TECHNIQUE 

 

5.1  Introduction 

 

 In this chapter, an efficient technique to identify multiple outliers in linear 

functional relationship model by using the clustering technique is proposed. This work is 

an extension of the clustering algorithm as proposed by Sebert et al. (1998), which have 

been focused on the linear regression data. Section 5.2 describes in detail the similarity 

measure for identifying a cluster group for LFRM. This is followed by a single linkage 

clustering algorithm for LFRM in Section 5.3. Next, a robust stopping rule is proposed in 

clustering for LFRM as described in Section 5.4. In Section 5.5, a robust technique to 

identify the multiple outliers using a clustering method for LFRM is given. A simulation 

study in Section 5.6 is conducted to test the performance of this clustering algorithm in 

the LFRM. Finally, the usage of this clustering technique have been applied to classical 

data sets in Section 5.7. A summary is provided in the final section of this chapter. 

 

5.2 Similarity Measure for LFRM 

 

 To group the variables or items into their own groups, it is necessary to have a 

certain measurement of similarity or a measure of dissimilarity between the items (Sebert 

et al., 1998). Therefore, finding the similarity measure is the first rule to cluster the items. 

There are four types of similarity measure which are correlation coefficient, distances 

measures, association coefficients and probabilistic similarity coefficients (Aldenderfer 

and Blashfield, 1984). All these four methods have its own strengths and drawbacks, so 

it is necessary to choose the best measurement that fits this model.  
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The most commonly used similarity measure by using the distance measure type 

is the Euclidean distance, defined as  

 



p

k

jkikij xxd
1

2 ,    (5.1) 

where ijd  is the distance between i  and j , and ikx  is the value of the thk  variable for the 

thi  observation (Wang et al., 2005). For the LFRM model, the Euclidean distance is used 

as the similarity measure because it can easily be applied, where by similar observations 

are identified by relatively small distance, while a dissimilar observation is identified by 

a relatively large distance. The following is an example of using the Euclidean distance 

as a similarity measure in LFRM, as summarized in Table 5.1. 

 

 Table 5.1: Observations x  and y  to illustrate Euclidean as a similarity measure 

Observation x  y  

1 4.5525 4.2636 

2 2.8234 6.0888 

3 3.8888 5.1175 

4 5.4915 8.0412 

5 10.4554 14.1576 

 

 As an illustration, calculate the matrix of distance (similarity matrix) between all 

the possible pair of variables. The distance between observation 1 and 2, is calculated as  

22

12 )0888.62636.4()8234.25525.4( d  

   3314.39898.2   

   =  2.5142 

Initially, since there are five observations in this illustration, place them in a square 

matrix with five rows and five columns. Then, the distance for jiij dd   is written in a 

similarity matrix in an upper triangular matrix. Table 5.2 shows the similarity matrix for 

this five observation. 
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Table 5.2: The similarity matrix for five observation 

Observation 1 2 3 4 5 

1 0 2.5142 1.0815 3.8926 11.5211 

2  0 1.4417 3.3061 11.1064 

3   0 3.3342 11.1733 

4    0 7.8695 

5     0 

 

 

5.3 Single Linkage Clustering Algorithm for LFRM  

 

After finding the suitable similarity measure for this model, the next step is to 

cluster the data. From Chapter 2, there are three major clustering techniques namely 

linkage, centroid, and Wards. In this study, the single linkage method is applied as the 

calculation is mathematically easy and has been widely used (Aldenderfer and Blashfield, 

1984). Single linkage algorithm uses the smallest dissimilarity between a point in the first 

cluster and a point in the second cluster, and also defined as using the nearest neighbour 

(Kaufman and Rousseeuw, 1990). 

The general steps for single linkage clustering algorithm in LFRM is explained in 

Figure 5.1. Find the smallest distance in  ikdD  , and merge the corresponding objects, 

say U and V , to get  UV . To calculate the distances between  UV  and other clusters, 

W as in Step 3 from Figure 5.1, compute the following,  

 

 VWUWWUV ddd ,min)(  ,    (5.2) 

 

where UWd  and VWd  are distances between the nearest neighbours of clusters U and W , 

and clusters V and W , respectively. 
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Figure 5.1: The general sequence in single linkage clustering algorithm 

  

Here an example of the single linkage algorithm for a linear functional 

relationship model from five observations are illustrated in Table. 5.1. At the beginning, 

there will be five clusters, with one element at each cluster. Next, the distance (similarity 

matrix) is calculated, using Euclidean method as in (5.2) between all possible pairs of 

cluster. The matrix of distances for this particular illustration is given in Table 5.2. 

 Using a single linkage algorithm, merge the pair of clusters with the smallest 

distance first. From Table 5.2, the smallest distance is seen in cluster 1 and 3, which is 

1.0815. In this step, cluster 1 and 3 is merged first, then the row 1 and column 3 in the 

similarity matrix are deleted. Table 5.3 shows the new similarity matrix with the new row 

and column which is added to cluster (1, 3). 

 

 

Step 1
• Starting with N clusters, each containing a single multivariate observation.

Step 2
• Calculate the matrix of distances between all possible pairs of clusters. 

Step 3  

• Find the pair(s) of clusters with the smallest distance between them and merge 
these clusters into a single cluster.

Step 4
• In the distance matrix, delete the rows and columns corresponding to the 

merged cluster(s). Add a single row and column for each merged cluster from 
step 3.

Step 5
• Repeat step 2 if more than one cluster remains.
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  Table 5.3: The new similarity matrix when (1, 3) is added 

Observation 2 4 5 (1,3) 

2 0 3.3061 11.1064 1.4417 

4  0 7.8695 3.8926 

5   0 11.5211 

(1,3)    0 

 

 As the single linkage is based on the “nearest neighbours”, the distance between 

cluster 2 and cluster (1, 3) is measured based on observation 2 and 3. Next, the distance 

between cluster 4 and cluster (1, 3) is measured based on observation 1 and 4. Meanwhile, 

the distance between cluster 5 and cluster (1, 3) is obtained based on observation 1 and 5. 

Later on, the corresponding column and row of cluster 2 and (1, 3) are deleted. Table 5.4 

presents the similarity matrix with new row and column when cluster (2(1,3)) is added. 

 

Table 5.4: The new similarity matrix when (2(1,3)) is added 

Observation 4 5 2(1,3) 

4 0 7.8695 3.8926 

5  0 11.5211 

2(1,3)   0 

  

 From Table 5.4, the shortest distance is between cluster 4 and (2,(1,3)), or known 

as cluster 4 and (1, 3), with the value 3.8926. Next, merge cluster 4 and (2(1,3)). Table 

5.5 shows the similarity matrix with the new row and column when (4(2(1,3))) is added.  

 

Table 5.5: The new similarity matrix when (4(2(1,3))) is added 

Observation (4(2(1,3))) 5 

(4(2(1,3))) 0 7.8695 

5  0 

 

 Finally, merge cluster 5 and cluster (4(2(1,3))) where all the observations are 

combined together in one cluster. The distance between cluster 5 and cluster (4(2(1,3))) 

is calculated using the distance between cluster 5 and 4, that is 7.8695. The results of the 
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single linkage clustering algorithm can be displayed in a form of a dendogram, or usually 

referred to as the “cluster tree” diagram. Figure 5.2 shows a general example of a cluster 

tree. The branches in the cluster tree represents clusters. The branches merge at nodes, 

positioning along a distance (or known as similarity) axis, that indicates the level at which 

the fusions take part, and in this example, the similarity axis is labelled as height. 

1
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8

H
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ig
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t

cut height = 1

cut height = 3

cut height = 7

height = 1.0815

height = 1.4417

height = 3.8926

height = 7.8695

 

Figure 5.2: A general cluster tree for the single linkage algorithm 

 

 R Programming is used to illustrate the single linkage algorithm as a similarity 

measure in LFRM. The command line and output of the illustration is shown in Figure 

5.3. The command line d <- dist(data, method = "euclidean") and  

H.fit <- hclust(d, method="single") shows that the similarity measurement used is 

the Euclidean distance, and the linkage method used is single linkage method. 
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Figure 5.3: The command in R programming for agglomerative hierarchical clustering 

 

5.4 A Robust Stopping Rule for Outlier Detection in LFRM 

  

 After a cluster is obtained from the data, a user has to decide on the number of 

groups (if any) in the data set. The cluster tree needs to be portioned or “cut” at a certain 

height. As stated by Sebert et al. (1998), the number of cluster groups depend upon where 

the tree is cut. From the cluster tree in Figure 5.2, if the tree is cut at height equals to one, 

the data will be divided into three groups, and if the tree is cut at 7, the data will be divided 

into two groups. 

 Studies on stopping rule has been done by Milligan and Cooper (1985), but the 

difficulty is in a two clusters scenario which sees that a two-cluster case is the most 

difficult format to identify the stopping rules. Mojena’s stopping rule on the other hand 

is widely used for linear variables (Mojena, 1977). Mojena’s stopping rule, or known as 

“cut height” is ,hsh  where h  is the mean of heights for all 1N clusters, and hs  is 

the unbiased standard deviation of the heights which is denoted in a specified constant. 

Mojena initially suggested that   should be specified in the range 2.75-3.50 as it gave 

the best overall results. However, Milligan and Cooper (1985) did an evaluation on 30 

 
data<-read.csv(file.choose(), header=TRUE)           # to call the data from excel 
 
head(data)       # the header of the column are the variables being used 
 
d <- dist(data, method = "euclidean")                 #similarity measurement 
 
H.fit <- hclust(d, method="single")             # to plot the hierarchical cluster 
 
h2<-H.fit 
 
plot(h2)        # to display the dendogram of the clusters 
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rules to determine the optimal number of clusters and concluded that the best overall 

performance of Mojena’s stopping rule is when 25.1 .  

 The stopping rule proposed by Mojena (1977) uses the mean and standard 

deviation of the heights and this measurement may easily be affected in the presence of 

outliers (Hampel et al., 2011). In this chapter, a new stopping rule that will be more robust 

in the presence of outliers is proposed by using the relationship of the median and the 

median absolute deviation (MAD) of the tree heights. This method was introduced earlier 

by Midi (2010) to identify high leverage points in logistic regression model and they 

suggested the constant, c  may be appropriately chosen as 2 or 3. 

 For this LFRM study, the following is proposed as a stopping rule to the clustering 

tree,  

),(hcMADh      (5.3) 

where h  are the cluster heights, h  is the median of the heights for all 1N clusters, 

3c  is the proposed constant variable for LFRM and )(hMAD is the mean absolute 

deviation of the heights, defined by 

.)(()( hmedianhmedianhMAD      (5.4) 

It can be said that with 95% confidence level that the cluster groups that exceeds this 

stopping rule will be classified as the potential outliers.  
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5.5 An Efficient Procedure to Detect Multiple Outliers in LFRM 

 

To recap, in clustering multivariate data, an analyst must decide the point of 

variables to use, the measure of similarity to choose, and the clustering algorithm to use. 

Using the residual plotted against the corresponding predicted values is a good way to 

assess the model adequacy and is also a valuable tool to identify multiple outliers (Sebert 

et al., 1998). If there are no outliers present in the data, the observations will generally 

have a linear relationship that can be seen in the plot of the predicted and residual values. 

In this section, an efficient clustering algorithm based on the single linkage 

method is proposed to cluster the points based on the predicted values and the residual 

values for the linear functional relationship model. The focus is to see how the clustering 

algorithm works, and how this clustering method is applicable to identify multiple outliers 

in LFRM. To summarize, the proposed algorithm consists of the following: 

 

1) Variables to use: Predicted and residual values obtain from LFRM. 

2) Measure of similarity to use: The Euclidean distance. 

3) Clustering algorithm to use: Single linkage algorithm. 

4) Stopping rule: The proposed robust cut tree as in (5.3). 

 

 Figure 5.4 presents the clustering algorithm that will be implement in LFRM. In 

this study, the Euclidean distance and the single linkage method is used to group the 

observation via clustering. The cluster that exceeds the proposed robust stopping rule will 

be identified as the potential outliers. Generally, the cluster groups with the largest 

observations are considered the clean observations, and all the other observations in a 

smaller cluster are considered as outliers (He et al., 2003). R programming for this 

algorithm is given in Appendix H. Next, the power of performance of the proposed 
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clustering technique in LFRM will be investigated via simulation study, which will be 

explained in Section 5.6. 

 

 

 

Figure 5.4: Flow chart of the steps in the proposed clustering algorithm for LFRM 

 

 

5.6 Power of Performance for Clustering Algorithm in Linear Functional 

Relationship Model 

 

There are two main issues that needs to be highlighted in identifying the multiple 

outliers, which are the masking and swamping affects. Masking occurs when an outlier is 

not detected, while swamping occurs when the inlying observation is mistakenly 

identified as an outlier. Masking may cause a more severe problem than swamping, as the 

inability to detect an influential observation can cause a dramatic influence to the model 

(Sebert et al., 1998). 

Step 1
• Obtain the predicted and residual values from LFRM.

Step 2

• Obtain the similarity measure using Euclidean distance, between pairs of 

predicted values and residual values for LFRM.

Step 3

• Cluster the observation using single linkage algorithm to obtain the cluster 

tree.

Step 4
• Cut the cluster tree using the proposed robust cluster tree.

Step 5

• Identify the cluster group, with largest size of observation as the inliers, which 

are free from outliers. The other observations in cluster groups with minority 

observation are considered as potential outliers.
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Therefore, in this study, the performance of the proposed clustering algorithm in 

LFRM is investigated by measuring the “success” probability as well as the probability 

of swamping and masking obtained from the simulation study. Figure 5.5 shows how the 

performance of this clustering method is identified, whether it is swamping or masking. 

 

 

 

Figure 5.5: Flow chart of the clustering performances to check for swamping or 

masking cases 

 

Assessment of the clustering method using this computation has been used by 

Sebert et al. (1998), Adnan and Mohamad (2003), and Satari (2014) respectively but for 

different models. “Success” defines the following clustering algorithm successfully 

identifies all the outlying observations, and no masking occurs in the observation. On the 

other hand, if the following clustering method is successful in identifying the outliers but 

Does candidate subset 
contain all the outliers?

"Failure"

MASKING 
OCCURED

x 

"False Alarm"

x

SWAMPING 
OCCURED

How many inliers in the 
candidate subset?

"Success"
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it also includes inlying observations as candidates of outliers (swamping occurs), then 

this will be identified as a “false alarm”. 

 

5.6.1 Simulation study 

 

A simulation study is performed to assess how the level of contamination behave 

and to obtain the power of performance for the proposed clustering technique in LFRM. 

R Programming is used to perform the simulation study, as given in Appendix H. Random 

sample of sizes, 70,50n  and 100 are generated respectively where the parameters are 

set to ,1 1 , 1.02  , and 1 respectively. The following equations would 

be, 

  ,,1 iiiii XxXY   and iii Yy  , 

  where 
n

i
X i 10  and )1.0,0(~, Nii      (5.5) 

From the generated sample, the predicted value, iX̂  and the residual value, iV̂  are 

calculated from the following equations; 

                 
2ˆ

)ˆ(ˆ
ˆ
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


 ii
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yx
X  and  iii xyV  ˆˆˆ  ,       (5.6) 

where xy  ˆˆ  , 
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 
2

  yyS iyy
and   yyxxS iixy  . 

 

The errors i  and i  are generated by using )1.0,0(~, Nii  . In order to make some 

observation as outliers, randomly contaminate the observation by replacing the mean of 

the contamination,   with 1, 2, 3, up until 10 respectively.  

For example, at point  d  of the response variable y , the observation  dv  is 

contaminated as  

     dvdv * ,    (5.7) 

where  dv *  is the contaminated observation at position  d  and   is the degree of 

contamination in the range of .101    With this, it allows the outlying observation to 

be placed away from the inliers. In this study, for each data set, randomly insert five 

outliers at certain points  54321 ,,,, ddddd . Then the clustering algorithm is used to 

identify these planted outliers for data sets ,70,50n  and 100 respectively. This 

simulation process is repeated 1000 times. 

The power of performance of the proposed procedure is measured using the 

“success” probability (pop), masking error probability (pmask), and swamping error 

probability (pswamp). Let s be the total number of simulations and out is the number of 

planted outliers in the data set. Thus, the probability of planted outliers which are 

correctly detected (pop) is  

s

success
pop

""
 ,      (5.8) 

where “success” is the number of data set that the method successfully identified all of 

the planted outlying observations. The probability of planted outliers that is falsely 

detected as inliers (pmask) is 

))((

""

sout

failure
pmask  ,                           (5.9) 
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where “failure” is the number of outliers in the data set that is detected as inliers.  Also, 

the probability of clean observations that is detected as outliers (pswamp) is 

         
soutn

false
pswamp

)(

""


 ,                                   (5.10) 

where “false” is the number of inliers in the data set that are detected as outliers.  

 

5.6.2 Results and Discussion for Simulation Study 

 

 The simulation results of the power of performance for the clustering technique 

in LFRM with 50n  are shown in Table 5.6, that presents the power performance of 

the clustering method using the “success” probability (pop), the probability of masking 

(pmask) and also the probability of swamping (pswamp).  From Table 5.6, for ,50n  the 

probability of “success” increases as the mean of contamination,   increases. As the 

contamination level reaches 5, the “success” probability shows the highest value of  

,1pop  and this value suggest a good performance. Looking at the value of pmask, as 

the level of contamination increases, the value of pmask decreases to a value of  close to  

zero at .5  As for the pswamp, the value is also close to zero. A small value of pmask 

and pswamp is good as it shows that the clustering technique is reliable and is not affected 

by the fundamental problem usually seen in the clustering algorithm. 
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Table 5.6: The power of performance of the clustering method in LFRM using 

“success” probability (pop), probability of masking (pmask) and probability of 

swamping (pswamp) for 50n . 

 

 

 

 

 

 

 

 

 

Alternatively, the results of the power of performance of the clustering method 

using the pop, pmask, and pswamp for 50n  can be plotted in a graph, as shown in 

Figure 5.6. It can be seen that the pop increases as the mean of contamination,   

increases. From the pswamp graph, it can be observed that as the mean of contamination 

  increases, the pswamp probability value decreases. Looking at the pmask graph, it is 

genereally consistent at the 0 value, even when the mean of contamination,   increases.  

 

 

Mean of 

contamination,   
Pop Pswamp pmask 

1 0.0570 0.0000 0.7366 

2 0.5250 0.0000 0.2834 

3 0.9510 0.0000 0.0162 

4 0.9990 0.0000 0.0002 

5 1.0000 0.0000 0.0000 

6 1.0000 0.0000 0.0000 

7 1.0000 0.0000 0.0000 

8 1.0000 0.0000 0.0000 

9 1.0000 0.0000 0.0000 

10 1.0000 0.0000 0.0000 
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Figure 5.6: The plot of the “success” probability (pop), the probability of masking 

(pmask) and also the probability of swamping (pswamp) for 50n . 

 

Similar conclusions can be made when the power performance of sample size 

70n  and 100 are calculated. The results of the power of performance of the clustering 

method using the pop, pmask and pswamp for 70n  and 100 are given in Appendix J 

and Appendix K.  

In conclusion, from the “success” probability (pop), masking error (pmask) and 

swamping error (pswamp), the proposed clustering method to identify multiple outliers 

in LFRM performs very well on simulated random data set. In general, at a higher level 

of contamination,   the proposed method for LFRM gives a high value of pop, and a low 

value of pmask and pswamp and to summarize, the proposed clustering method performs 

the most efficient way if the outlying observation is located far from the remaining inlying 

observations.  
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5.7 Application to Real Data 
  

 As an illustration, two data sets are considered to demonstrate the applicability of 

the proposed clustering algorithm in a LFRM. The data sets are obtained from data sets 

that are used in many multiple outliers problem in linear regression model by Sebert et 

al. (1998). These data sets are usually referred to as “classic” multiple outlier data sets. 

Table 5.7 summarizes the methodology used by Sebert et al. (1998) in identifying the 

outliers in a linear regression model. In the table, p  represents the number of regressor 

variables and n  is the total number of observations in the data set. The outlying 

observation are the observations that are the potential outliers. The following two columns 

are the outlying observation that has been manage to identify using Sebert et al. (1998) 

methodology. The last column shows the number of observations that has been noted as 

swamping observation in the study. 

 

Table 5.7: Sebert’s et al. (1998) methodology performance on classical multiple outlier 

data sets 

No Data Sets 
Outlying 

observation 

Outlying 

observations 

identified 

Number of 

observations 

swamped 

Number of 

observations 

masked  

1 

Hertzsprung-

Russell Stars Data 

(Rousseuw and 

Leroy, 1987) 

11,20,30 and 

34 

11,20,30,34,7 

and 14 
2 0 

2 

Telephone Data  

(Rousseuw and 

Leroy, 1987) 

15-24 15-24 0 0 

 

 

 First, the Hertzsprung-Russell Stars Data is used, and assuming measurement 

errors can occur at both variables, the proposed clustering algorithm in LFRM is applied. 

The x  and y  variables are plotted in a scatterplot as shown in Figure 5.7. From the 
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scatterplot, there are four observations that seems to be lying away from the other 

observations, which are observation 11, 20, 30 and 34. To correctly identify whether they 

are the outlying observation, the clustering process is applied in the LFRM and the 

proposed robust stopping rule to cut the tree.  

 

Figure 5.7: The scatterplot of Hertzsprung-Russell Stars Data 

 

A clustering algorithm is done by clustering the predicted, iX̂  and residual, iV̂  

values from the LFRM using the single linkage algorithm, and the Euclidean distance as 

the similarity measure. Based on the proposed robust stopping rule as in (5.3), the tree 

will be cut at 4903.0)(3  hMADh . From the R Programming result, as given in 

Appendix I, two clusters are formed, one cluster containing the majority of the 

observation, and another smaller cluster containing observation 7, 11, 14, 20, 30, and 34 

as shown in Figure 5.8. It can be seen that the proposed clustering technique for the data 

in the LFRM successfully identified outliers in observation 11, 20, 30 and 40. 

Observations 7 and 14 have been detected as the swamping observation in this study. 
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      Figure 5.8: The cluster tree for Hertzsprung-Russell Stars Data 

 

Next, the proposed clustering procedure for LFRM is applied to the Telephone 

Data by Rousseuw and Leroy, 1987. The scatterplot of x  and y  variables are shown in 

Figure 5.9. From the graph, observation 15 till observation 24 seems to be lying away 

from the other observation. Next, the clustering process in LFRM is applied and the 

proposed robust stopping rule at 1.4398 is obtained, as shown in Figure 5.10. It can be 

seen that the cluster tree is cut, leaving three clusters. One cluster contains the majority 

of the observations, and another two smaller clusters containing the outlying 

observations, which are observation 15 till observation 24.  It can be seen that that the 

proposed clustering technique for the data in the LFRM successfully identified all the 

outliers in the classic Telephone Data. 

 

 

1
7

1
9

2
9

3
5

3
2

7 2
1

1
5

2
2 1
8

3
1

9 1
1

0
2

5 2
3

4
7

1
6

2
6

2
8 5
4

1
3

6
2 4

3
2 6

3
9

1
3

3
7

4
3 4

6
2

4
4

2
3

3
3

8
4

0
1

2
4

4
8

4
5

3
4

1
1

2
0

3
0

7
1

4

0
.0

0
.5

1
.0

1
.5

Cluster Dendrogram

hclust (*, "single")

d

H
e

ig
h

t

Cut tree= 0.4903 

outliers Inliers 

Univ
ers

ity
 of

 M
ala

ya



97 

 

 

 

Figure 5.9: The scatterplot for Telephone Data 

 

 

 

Figure 5.10: The Cluster tree for Telephone Data 
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5.8 Summary  

 

 An efficient procedure to identify multiple outliers in the LFRM is proposed using 

the single linkage algorithm and Euclidean distance as the similarity measure as proposed 

by Sebert et al. (1998) in a regression model. In this study, a robust cut tree using the 

relationship of the median and the median absolute deviation (MAD) of the tree heights 

is proposed and say that with 95% confidence level that the cluster group that exceeds 

this proposed cut tree, )(3 hMADh   will be classified as the potential outliers.  

From the simulation study, this proposed method is able to identify the planted 

multiple outliers in different sample sizes, n  and with different mean of contamination 

on the outliers,  . The probability of swamping and masking is practically small and at 

certain level of contamination, it becomes zero and this is good as the two main issues in 

multiple outlier detection is able to solve. Application in real data also shows that this 

proposed clustering method for the LFRM successfully detects the outliers as found in 

other classical data sets. 
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CHAPTER 6: MISSING VALUE ESTIMATION METHODS IN LINEAR 

FUNCTIONAL RELATIONSHIP MODEL 

 

6.1 Introduction 

 

  This chapter reviews the missing value estimation methods for data that are in the 

LFRM. Section 6.2 describes the expectation-maximization (EM) algorithm and the 

expectation-maximization with bootstrap (EMB) algorithm as a modern imputation 

technique to handle missing values. Section 6.3 investigates the applicability of the EM 

and EMB methods in dealing with missing values for two types of LFRM. Section 6.4 

measures the performance of the imputation method by using the EM and the EMB 

algorithm. A simulation study is performed to investigate the performance of EM and 

EMB in Section 6.5, while Section 6.6 illustrates the application of EM and EMB in real 

data example. Summary of the chapter is given in Section 6.7. 

 

6.2 Imputation Methods 

 

  In the literature review chapter, the traditional and the modern techniques to 

handle missing value problems is discussed. Imputation methods are the most commonly 

used method to solve missing data (Little & Rubin, 2014). Traditional imputation 

methods include mean imputation, hot-deck imputation, and stochastic imputation 

(George et al., 2015). On the other hand, the modern imputation approaches include those 

based on maximum likelihood and multiple imputations (Acock, 2005). EM algorithm is 

an example of maximum likelihood and some examples of multiple imputations include 

Markov Chain Monte Carlo, Fully Conditional Specification, and EMB algorithm 

(Baraldi & Enders, 2010; Barzi & Woodward, 2004; Gold & Bentler, 2000; Little & 

Rubin, 2014). Modern approaches are favourable over the traditional approaches as they 
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require less assumption, they give less biased estimates, and they are advantageous as the 

data are not “thrown away” (Baraldi & Enders, 2010). In this chapter, two modern 

imputation techniques are compared, which are the expectation-maximization algorithm 

and the expectation-maximization with bootstrapping algorithm, which will be 

abbreviated as EM and EMB, respectively. 

 

6.2.1 Expectation-Maximization Algorithm (EM) 

 

 EM algorithm is one example of an imputation method using the maximum 

likelihood, where it finds the maximum likelihood estimates through an iterative 

algorithm when there are missing values in the dataset (Little & Rubin, 2014).  In short, 

EM will “fill in” the misY , which are the missing data, based on an initial estimate of 

(where by the estimate of   is found by using only the data that are observed). Then, 

  is re-estimated based on obsY  , which are the data that are observed, and the filled-in 

misY , and this process is iterated until the estimates converge (Howell, 2008).  

Figure 6.1 describes the EM process. To elaborate, EM comprises of two steps 

namely the expectation or E-Step, and the maximization or M-Step. In the E-step, the 

missing values are imputed by replacing misY  with the expected value of ),( obsmis YYE , 

by assuming )(t  . Next, in the M-step, the expected value that is obtained from E-step 

will be maximised. These two steps will be done iteratively until it converges to a local 

maximum of the likelihood function (Schafer, 1997). A detailed explanation on the 

convergence properties of EM algorithm can be found in some literature, as an example 

by Wu, 1983.  
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Figure 6.1: Flow chart of the expectation-maximization (EM) process 

 

 EM algorithm has become popular because of its simplicity, the generality of its 

theory and because of its wide application (Dempster et al. 1977). Several examples of 

the applicability of the EM include handling missing data in air pollutants studies (Schafer 

1997), in survival model (Wang & Miao 2009) and in the linear regression model (Junger 

& de Leon 2015). 

 

6.2.2 Expectation-Maximization with Bootstrapping (EMB) Algorithm  

 

 The emerging EMB algorithm is similar to the regular EM algorithm. However, 

it involves multiple nonparametric bootstrap samples of the original incomplete data. 

Figure 6.2 explains this algorithm in detail. The EMB algorithm performs multiple 

imputations that “fills in” the missing values in the incomplete data set. Multiple 

imputations are less biased and its efficiency is higher than the listwise deletion (Honaker 

et al., 2013; Rancoita et al., 2015).  

Initialize guess – 

replace missing 

values by the 

estimated value. 

E-Step – Estimate 

the parameters,   

M-step – Estimate the 

missing values by 

assuming   is correct. 

Iterate until it 

converges to a local 

maximum of the 

likelihood function. 
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Figure 6.2: Multiple imputation using Expectation-maximization with bootstrap 

(EMB) algorithm 

 

Applying multiple imputations can be challenging as the nature of its algorithm 

can be quite complicated, but with the available of high performance computing, it can 

help perform the multiple imputations in a much advanced way (Honaker et al. 2013). 
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6.3 Application of the EM and EMB method in Linear Functional Relationship 

Model  

 

  Studies on handling missing values using EM have been largely explored for the 

univariate data (Schafer, 1997), the linear regression data (Faria and Soromenho, 2010), 

the survival data, and the linear structural model (Mamun et al., 2016). The application 

of EM in handling missing data in LFRM, however, has not been explored. In this chapter, 

the EM and EMB methods in dealing with missing values for a type of model called the 

LRFM is proposed. A LRFM is often employed when the objective of the study is to 

compare two sets of data with both observable errors. The parameter estimates of LRFM 

can be obtained by the maximum likelihood estimates, which is referred as the full model 

LFRM with the acronym LFRM1, and when the slope parameter of LFRM is estimated 

using nonparametric approach, which is referred with the acronym LFRM2.  

  

6.3.1 Linear Functional Relationship Model for Full Model (LFRM1) 

 

 As mentioned earlier, LFRM can be expressed by XY    where both 

variables X  and Y  are linearly related but observed with error. Parameter   is the 

intercept value, and   is the slope parameter. For any fixed ,iX  the ix  and iy  are 

observed from continuous linear variable subject to errors i  and i  respectively, as given 

in (2.2). The error terms i  and i  
are assumed to be mutually independent and normally 

distributed random variables, as seen in (2.3). There are )3( n  parameters to be 

estimated, namely 
2,,   and nXX ,...,1 , the incidental parameters respectively and 

these parameters can be obtained from (2.5). Here, as the ̂  is estimated using the 

maximum likelihood estimation method, it will be denoted as the LFRM1.  
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6.3.2 Linear Functional Relationship Model with nonparametric slope parameter 

estimation (LFRM2) 

 

Alternatively, the parameter ̂  can be obtained using nonparametric estimation 

as explained in Chapter 3. Hence, by assuming known slope as given by the new̂  in (3.4), 

a robust estimate of the parameters in the linear functional relationship model is denoted 

by LFRM2.  

  

6.4 Performance Measurement of EM and EMB 

 

 In order to measure the performance of the imputation using EM and EMB 

algorithm, several measurements are used, namely the mean absolute error (MAE), the 

root-mean-square error (RMSE) and the estimated bias (EB). MAE is the average of the 

difference between the predicted and actual data points (Junninen et al., 2004) and is 

given by 

             ii OP
N

MAE
1

  ,                                   (6.1) 

where N is the number of imputations, iP  are the imputed values, and iO  are the 

observed data values. Values of MAE can be from 0 to infinity in which a value of zero 

is an indicative of a perfect fit. 

 RMSE measures the differences between the predicted and actual data points, and 

is given by                

     


N

i
ii OP

N
RMSE

1

21
 ,           (6.2) 
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with N is the number of imputations, iP
 
and iO  are the imputed and observed data points, 

respectively (Lindley 1947). A small value of RMSE suggests a good fit and large value 

otherwise.  

Mean of estimated biased (EB) of a parameter on the other hand is defined by 

 ii EOmeanEB  ,         (6.3) 

where the mean of the absolute difference of iO , the estimated value of the parameters 

obtained from the observed data and iE , the estimated value of the parameters obtained 

from the data after imputing the missing values is calculated. A small EB is indicative of 

a reliable performance estimator (Lindley, 1947). 

 

6.5 Simulation Study 

 

 A simulation study is conducted to investigate the performance of these two 

imputation methods namely the EM and the EMB method. For the first simulation study, 

the LFRM1 is used as in 2.1, where without any loss of generality, the parameters are set 

to ,1  ,1  ,1.02   and 1 , with sample sizes, 50n  and 100 respectively. 

For the simulation study, the missing data are assumed to be missing at random (MAR), 

and are inserted randomly at 5%, 10%, 20% and 30% levels respectively (Howell, 2008). 

This simulation is conducted for 5000 trials, and the MAE, RMSE and EB of these two 

imputation methods, namely EM and EMB are analysed. 

   From Table 6.1 and Table 6.2, it can be observed that both methods perform well, 

with small MAE and small RMSE at each .n  The EMB algorithm has significantly smaller 

MAE and RMSE values compared to the EM method for 50n  and 100 respectively. 

For each level of percentage missing namely at 5%, 10%, 20% and 30% respectively, the 

EMB algorithm consistently gives smaller MAE and RMSE values as compared to the 
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the EM algorithm. Looking at the RMSE for ,50n  at 5% missing values, the EMB 

algorithm show values which are different at only two decimal points from the EM 

algorithm. It is worthwhile to note that the percentage change from the EM to the EMB 

shows a significant difference of about 8.99% of improvement in the RMSE values.  

Another example, for the 20% missing value at ,50n  the difference is significant with 

15.23% improvement from the EM to the EMB algorithm. This proves that even though 

the difference of RSME is at two decimal places, it shows a huge improvement of the EM 

to the EMB algorithm. Note that as the sample size increase from 50n  to 100n , the 

RMSE values of the EMB decrease at all levels of percentage of missingness. This 

suggest that at a higher n , it leads to a smaller RMSE and a smaller bias. 

 

Table 6.1: MAE and RMSE for LFRM1 using two imputation methods for 50n  

 

 

 

 

 

Percentage 

of missing 

(%) 

      Performance 

                 Indicator 

Method       

MAE 

Percentage 

change of 

MAE (%) 

RMSE 

Percentage 

change of 

RMSE (%) 

5% 
EM 3.7530 

25.13 
5.4943 

8.99 
EMB 2.8100 5.0003 

10% 
EM 6.2616 

19.82 
5.1894 

6.62 
EMB 5.0210 4.8457 

20% 
EM 5.3612 

17.85 
4.9344 

15.23 
EMB 4.4042 4.1827 

30% 
EM 5.2312 

13.21 
5.4744 

11.31 
EMB 4.5404 4.8550 
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Table 6.2: MAE and RMSE for LFRM1 using two imputation methods for 100n  

  

 

 

          From Table 6.3 and Table 6.4, it can be observed that using the EM and the EMB 

algorithm, both methods give small value for the mean of the estimated bias for all the 

parameters ,,  and 
2

 . Imputation using EMB method, however gives better 

precision with consistently even smaller bias values for all parameters as compared to the 

EM method. Looking at the standard error of each parameter in the parenthesis, it shows 

that at each level of missingness, the EMB outperforms the EM by having smaller values 

of standard error. These observations clearly indicate the superiority of  the EMB method 

in comparison to the EM method.  

 

 

 

 

Percentage 

of missing 

(%) 

         Performance 

                 Indicator 

Method       

MAE 

Percentage 

change of 

MAE (%) 

RMSE 

Percentage 

change of 

RMSE (%) 

5% 
EM 4.6860 

30.04 
5.6699 

32.43 
EMB 3.2781 3.8314 

10% 
EM 5.2109 

31.64 
4.7434 

16.36 
EMB 3.5623 3.9672 

20% 
EM 5.6734  

49.06 
6.1135 

26.60 
EMB 2.8900 4.4872 

30% 
EM 4.4952 

25.22 
5.5477 

17.99 
EMB 3.3617 4.5497 
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Table 6.3: Mean of estimated bias and (standard error) of the parameters for LFRM1 

using two imputation methods for 50n  

 

 

 

 

 

 

Percentage 

of missing 

(%) 

      

Parameters/ 

Methods 

  

(standard error) 

  

(standard error) 

2

  

(standard error) 

5% 

EM 
3.621E-02 6.600E-03 5.101E-04 

(3.001E-02) (5.321E-03) (4.231E-04) 

EMB 
3.024E-02 6.071E-03 4.403E-04 

(1.503E-02) (2.952E-03) (3.395E-04) 

10% 

EM 
2.986E-02 5.643E-03 8.028E-04 

(2.228E-02) (4.225E-03) (7.220E-04) 

EMB 
2.865E-02 5.510E-03 6.829E-04 

(2.208E-02) (4.217E-03) (5.599E-04) 

20% 

EM 
3.086E-02 5.613E-03 1.147E-03 

(2.291E-02) (4.193E-03) (1.010E-03) 

EMB 
2.939E-02 5.496E-03 9.250E-04 

(2.176E-02) (4.076E-03) (7.372E-04) 

30% 

EM 
2.144E-02 3.915E-03 7.425E-04 

(1.619E-02) (2.942E-03) (6.027E-04) 

EMB 
2.079E-02 3.895E-03 5.904E-04 

(1.552E-02) (2.909E-03) (4.477E-04) 
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Table 6.4: Mean of estimated bias and (standard error) of the parameters for LFRM1 

using two imputation methods for 100n  

 

Percentage of 

missing (%) 

     

Parameters/ 

Methods 

  

(standard error) 

  

(standard error) 

2

  

(standard error) 

5% 

EM 
2.012E-02 3.909E-03 3.837E-04 

(1.538E-02) (2.983E-03) (3.437E-04) 

EMB 
2.000E-02 3.907E-03 3.157E-04 

(1.485E-02) (2.899E-03) (2.456E-04) 

10% 

EM 
2.064E-02 3.944E-03 5.340E-04 

(1.545E-02) (2.960E-03) (4.489E-04) 

EMB 
1.989E-02 3.827E-03 4.301E-04 

(1.514E-02) (2.894E-03) (3.375E-04) 

20% 

EM 
2.132E-02 3.892E-03 7.952E-04 

(1.616E-02) (2.974E-03) (6.492E-04) 

EMB 
2.053E-02 3.847E-03 6.271E-04 

(1.567E-02) (2.915E-03) (4.905E-04) 

30% 

EM 
2.244E-02 3.923E-03 9.732E-04 

(1.675E-02) (2.956E-03) (7.761E-04) 

EMB 
2.093E-02 3.835E-03 7.636E-04 

(1.612E-02) (2.921E-03) (5.913E-04) 

 

 

 

 The study is also replicated for the LFRM2, in which the slope parameter   is 

estimated using a nonparametric method. From the results as presented in Table 6.5 and 

Table 6.6, both methods of imputations are good, but EMB algorithm shows consistently 

smaller MAE and RMSE as compared to the EM algorithm for both 50n  and 100. 

Note that, as the percentage of missing data increases, the EMB outperforms the EM in 
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terms of smaller MAE and RMSE values. Similar to LFRM1, the RMSE values of EM 

and EMB differs at only two decimal places but by looking at the percentage of 

improvement from EM to EMB, the change is significant. Again, the superiority of EMB 

applies for the LFRM2. Likewise, as n  increases from 50 to 100, both MAE and RMSE 

suggest a better precision for the LFRM2. 

 

Table 6.5: MAE and RMSE for the LFRM2 by using two imputation methods 

for 50n  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Percentage 

of missing 

(%) 

         Performance 

                 Indicator 

Method       

MAE 

Percentage 

change of 

MAE (%) 

RMSE 

Percentage 

change of 

RMSE (%) 

5% 
EM 7.3911 

27.67 
9.0257 

39.02 
EMB 5.3460 5.5041 

10% 
EM 5.6922 

48.60 
7.3679 

15.72 
EMB 2.9257 6.2096 

20% 
EM 5.3877 

4.52 
5.7500 

7.44 
EMB 5.1443 5.3224 

30% 
EM 3.4405 

6.86 
4.8878 

10.43 
EMB 3.2045 4.3782 
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Table 6.6: MAE and RMSE for the LFRM2 by using two imputation methods 

for 100n  

 

 

For the measure of estimated bias as given in Tables 6.7 and 6.8, both methods 

give small values for the mean of the estimated bias for all the parameters ,,  and .2



Imputation using the EMB method, however gives better precision with smaller bias 

values for all parameters as compared to the EM method. From the standard error of each 

parameter in the parenthesis, it shows that at each level of missing data, the EMB method 

outperforms the EM method by having smaller values of standard error. These 

observations clearly indicate the superiority of the EMB algorithm in comparison to the 

EM algorithm. 

 

 

` 

Percentage of 

missing (%) 

         Performance 

                 

Indicator 

Method       

MAE 

Percentage 

change of 

MAE (%) 

RMSE 

Percentage 

change of 

RMSE (%) 

5% 
EM 6.0935 

36.73 
5.4978 

2.60 
EMB 3.8556 5.3549 

10% 
EM 5.1017 

53.49 
5.2083 

-0.67 
EMB 2.3729 5.2433 

20% 
EM 3.7023 

6.07 
5.4531 

25.83 
EMB 3.4775 4.0445 

30% 
EM 3.9048 

18.18 
4.3791 

4.73 
EMB 3.1950 4.1721 
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Table 6.7: Mean of estimated bias and (standard error) of the parameters for LFRM2 

using two imputation methods for n =50 

 

Percentage 

of missing 

(%) 

      

Parameters/ 

Methods 

  

(standard error) 

  

(standard error) 

2

  

(standard error) 

5% 

EM 
3.069E-02 5.944E-03 4.899E-04 

(2.329E-02) (4.511E-03) (4.812E-04) 

EMB 
3.032E-02 5.915E-03 4.320E-04 

(2.280E-02) (4.451E-03) (3.857E-04) 

10% 

EM 
3.125E-02 5.930E-03 7.795E-04 

(2.407E-02) (4.588E-03) (7.035E-04) 

EMB 
3.027E-02 5.828E-03 6.445E-04 

(2.294E-02) (4.432E-03) (5.249E-04) 

20% 

EM 
3.258E-02 6.007E-03 1.153E-03 

(2.436E-02) (4.523E-03) (9.966E-04) 

EMB 
3.169E-02 5.976E-03 9.235E-04 

(2.404E-02) (4.489E-03) (7.311E-04) 

30% 

EM 
3.390E-02 5.968E-03 1.449E-03 

(2.543E-02) (4.511E-03) (1.225E-03) 

EMB 
3.292E-02 6.081E-03 1.190E-03 

(2.451E-02) (4.498E-03) (9.659E-04) 
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Table 6.8: Mean of estimated bias and (standard error) of the parameters for LFRM2 

using two imputation methods for n =100 

 

 

          

 

 

 

 

 

Percentage 

of missing 

(%) 

    

Parameters/ 

Methods 

  

(standard error) 

  

(standard error) 

2

  

(standard error) 

5% 

EM 
5.895E-02 1.165E-02 9.344E-04 

(4.489E-02) (8.898E-03) (1.128E-03) 

EMB 
5.889E-02 1.163E-02 8.523E-04 

(4.353E-02) (8.614E-03) (1.055E-03) 

10% 

EM 
2.283E-02 4.389E-03 5.323E-04 

(1.721E-02) (3.285E-03) (4.367E-04) 

EMB 
2.240E-02 4.366E-03 4.339E-04 

(1.690E-02) (3.265E-03) (3.334E-04) 

20% 

EM 
2.365E-02 4.391E-03 8.042E-04 

(1.771E-02) (3.303E-03) (6.577E-04) 

EMB 
2.258E-02 4.299E-03 6.466E-04 

(1.712E-02) (3.244E-03) (4.948E-04) 

30% 

EM 
2.432E-02 4.377E-03 1.064E-03 

(1.880E-02) (3.344E-03) (8.295E-04) 

EMB 
2.337E-02 4.358E-03 8.284E-04 

(1.738E-02) (3.255E-03) (6.307E-04) 
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 In summary, results of the simulation studies suggest that imputing missing 

values using both the EM and the EMB algorithm are good, with the EMB algorithm 

outperforms the EM algorithm for models of the linear functional relationship type as 

they give smaller values of MAE, RMSE, and smaller values of the standard error of the 

estimated bias in the parameters.  

            The EM algorithm has largely been used in solving maximum-likelihood 

parameter estimation problems (Dempster et al., 1977; Bilmes, 1998; Bock & Murray, 

1981). It has also become popular in handling missing data because of its simplicity, in 

spite of its slow convergence rate (Couvreur, 1996). Nevertheless, EM has wide 

application in addressing missing data in medical data (Dziura et al., 2013) and 

environmental data (Razak et al., 2014; Zainuri et al., 2015). 

 In this paper, the EM algorithm is improved by integrating bootstrap in the EM 

procedure. Simulation studies indicate the superiority of the EMB algorithm in both 

LFRM1 and LFRM2 models. The re-sampling method of EMB made the estimator 

improved by creating a multiply-imputed values for each missing data. As a result, the 

average value of the imputed data set contributes towards making the estimates more 

accurate with smaller standard errors. 

 

6.6 Application to Real Data 

 

To illustrate with a practical example, a data set which consists of 96 observations 

that are free from any outliers (Goran et al. 1996) is considered. The study was to examine 

the accuracy of some widely used body-composition techniques for children, using the 

dual-energy X-ray absorptiometry (DXA). The sample comprises of children ages from 

four to ten years. They assessed the children's body fat by using two variables, namely 

the skinfold thickness (ST) and bioelectrical resistance (BR). The assumption made is 
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that the measurement error can take place in either variable of this experiment and the 

relationship between these two variables can be expressed in a LFRM as given in (2.1). 

 In the interest of measuring the performance of the EM algorithm and the EMB 

algorithm, the dependent variable is randomly made missing at 5%, 10%, 20%, and 30% 

respectively. Both LFRM1 and LFRM2 models are applied in this experiment. Table 6.9 

shows the values of MAE and RMSE for LFRM1, using both imputation methods of EM 

and EMB. It can be seen that there is a consistency in the results whereby the EMB 

algorithm has smaller MAE and RMSE values as compared to using the EM algorithm. 

Similar conclusion can be made for the results in Table 10, in which the values of bias 

using the EMB algorithm are smaller in comparison to the EM algorithm. 

 

Table 6.9: MAE and RMSE for LFRM1 for real data using two imputation methods 

 

 

 

 

Percentage 

of missing 

(%) 

         Performance 

                 Indicator 

Method       

MAE 

Percentage 

change of 

MAE (%) 

RMSE 

Percentage 

change of 

RMSE (%) 

5% 
EM 5.2256 

10.97 
4.6518 

28.20 
EMB 4.6521 3.3400 

10% 
EM 5.5593 

27.81 
5.3013 

6.14 
EMB 4.0135 4.9756 

20% 
EM 4.9928 

26.13 
4.9781 

5.25 
EMB 3.6883 4.7166 

30% 
EM 5.1355 

20.27 
5.5337 

5.95 
EMB 4.0946 5.2044 
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    Table 6.10: Estimated bias of parameters using LFRM1 for real data 

 

 

 

  As mentioned earlier in Section 6.3, the LFRM model is considered where 

the slope parameter is estimated using a nonparametric method, namely LFRM2. Table 

6.11 indicates the MAE and RMSE values of the slope for LFRM2 while Table 6.12 

illustrates the EB of the parameters of the slope for LFRM2. From both tables, it is 

noted that the EMB algorithm proves to be better with smaller values of EB, MAE and 

RMSE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Percentage of 

missing (%) 

        Parameters 

Methods 
    2

  

5% EM 0.4926 0.0997 0.0782 

EMB 0.3975 0.0997 0.0573 

10% EM 0.6098 0.0997 0.1821 

EMB 0.4895 0.0997 0.1036 

20% EM 0.5243 0.0997 0.1625 

EMB 0.4366 0.0997 0.0772 

30% EM 0.6315 0.0997 0.1017 

EMB 0.6236 0.0997 0.0524 
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Table 6.11: MAE and RMSE for LFRM2 for real data using two imputation 

methods 

 

 

 

 

 

 

 

 

 

 

 

 

               Table 6.12: Estimated bias of parameters for LFRM2 for real data 

 

 

 

Percentage 

of missing 

(%) 

         Performance 

                 Indicator 

Method       

MAE 

Percentage 

change of 

MAE (%) 

RMSE 

Percentage 

change of 

RMSE (%) 

5% 
EM 3.6671 

39.49 
5.5610 

40.53 
EMB 2.2190 3.3070 

10% 
EM 2.7472 

12.79 
3.7241 

4.69 
EMB 2.3959 3.5494 

20% 
EM 2.6680 

36.36 
5.2740 

15.77 
EMB 1.6978 4.4424 

30% 
EM 3.2698 

18.21 
3.8403 

25.61 
EMB 2.6744 2.8568 

Percentage of 

missing (%) 

      Parameters 

  

Methods 

    2

  

5% 
EM 0.0236 0.0080 0.0963 

EMB 0.0067 0.0080 0.0128 

10% 
EM 0.0508 0.0080 0.1865 

EMB 0.0406 0.0080 0.0196 

20% 
EM 0.1538 0.0080 0.1775 

EMB 0.0373 0.0080 0.1194 

30% 
EM 0.1950 0.0080 0.2707 

EMB 0.1543 0.0080 0.1381 
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It can be inferred that from this practical application, both methods of imputations 

namely the EM and the EMB algorithm demonstrate good results based on the 

measurement of EB, MAE and RMSE values. It is shown that imputing missing values 

using EMB gives a better approach than the EM in handling missing values for data that 

can be modelled by the linear functional relationship formulation. In this practical 

example, it is proven that EMB has improved the precision in the algorithm and this is 

reflected by its superior performance. 

 

6.7 Summary 

 

 In this chapter, two modern approaches of handling missing values have been 

investigated, namely the EM and the EMB algorithm for datasets that can be modelled by 

the linear functional relationship model. Results from the simulation study suggest both 

methods of imputation can be applied for two forms of the linear functional relationship 

model. Even in the presence of high percentage of missing values (to as high as 30%), 

both methods adequately handle the problem. These can be seen with small bias measure 

of parameter and small MAE and RMSE. When comparing the two imputation methods, 

EMB is superior to the EM. Again, this is evidenced by the MAE and RMSE values.  

EMB has several advantages where it can be easily applied to LFRM, the bootstrapping 

method gives better precision to the parameter estimates, and the computational time is 

practically fast. 

 A real data set that compares the relationship between two variables 

measurements have been illustrated. The results obtained shows that if in the case when 

the real data set has missing values for a percentage to as high as 30%, both methods of 

imputation are suitable for handling missing values with EMB being superior than EM.  
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CHAPTER 7: CONCLUSION AND FURTHER WORKS 

 

7.1 Conclusion and summary 

 

 The primary goal of this research was to study the parameter estimation, outlier 

detection and missing values imputation in the LFRM. All four objectives of this study 

have been successfully achieved. For the first objective on the parameter estimation as 

given in Chapter 3, a robust technique using the nonparametric estimation approach is 

proposed to estimate the slope parameter in a LFRM. Results from the simulation study 

showed that the proposed method outperforms the MLE and the nonparametric method 

as proposed by Al-Nasser and Ebrahem (2005), by having smaller mean square error of 

the slope parameter and smaller estimated bias of the parameters. As for the application 

in real data, the proposed method suggests a more accurate estimation by having smaller 

values of standard deviation as compared to the MLE and the method proposed by Al-

Nasser and Ebrahem (2005).  

 For the second objective, the COVRATIO statistic is proposed to identify a single 

outlier in LFRM as given in Chapter 4. The cut-off points of the COVRATIO statistic is 

determined to obtain the 1%, 5% and 10% upper percentiles respectively by using the 

Monte Carlo simulation method. The observation that exceeds this cut-off points are 

identified as outliers. From the simulation study and application to real data, the cut-off 

point at 5% level of significance is obtained by 
145.163.135  ny  and this cut-off point 

successfully identifies the presence of a single outlier for the data that can be modelled 

by LFRM.   

 In the third objective as explained in Chapter 5, an efficient procedure to identify 

the multiple outliers in a LFRM is proposed. The single linkage algorithm with the 

Euclidean distance as the similarity measure is used and a new stopping rule to identify 

the potential outliers is proposed. Here, a robust stopping rule is proposed by using the 
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median and median absolute deviation (MAD) of the tree heights. Results from the 

simulation study suggest that this proposed method successfully identifies the planted 

outliers in different sample sizes with different mean of contamination of the outliers. At 

a higher level of contamination, this proposed clustering method for the LFRM gives a 

high value of “success” probability (pop) and a low value of masking error (pmask) and 

swamping error (pswamp) and this indicates that this method is efficient in detecting 

multiple outliers. When applying to real data sets, it also proves that the proposed new 

stopping rule successfully detects the outliers as found in other classical data sets.  

 Finally, for the last objective on the missing value problem in LFRM as given in 

Chapter 6, two modern imputation techniques are proposed, namely the expectation-

maximization (EM) algorithm and the expectation-maximization with bootstrapping 

(EMB) algorithm. The simulation study and real data application reveal that both of these 

methods are feasible in handling the missing value problem in LFRM with the EMB 

method being superior to the EM method.  

 

7.2 Contributions 

 

Several contributions from this study are given here. First, the proposed robust 

nonparametric estimation to estimate the slope parameter in a LFRM is a new method 

and it is robust to outliers. This nonparametric estimation approach makes it appealing as 

it does not require any assumption on the probability distribution of the data and this 

method is easy to apply.  

Next, the identification of outliers in a LFRM is a new topic and has not been 

explored. With the cut-off point obtained using the COVRATIO statistic, researchers will 

be able to identify a single outlier in a much easier way. As for the multiple outliers 

identification, a new stopping rule is developed using the median and median absolute 

deviation (MAD) of the tree heights, and this stopping rule is efficient as it is able to 

Univ
ers

ity
 of

 M
ala

ya



            

121 

 

identify outliers and having low values of masking error probability (pmask) and 

swamping error probability (pswamp). This stopping rule is novel and has an advantage 

as it is robust to outliers. 

Finally, for the missing value problem in LFRM, the EMB algorithm is superior 

to the EM. This bootstrapping method gives better precision to the parameter estimates 

and as the computational time is practically short, it makes the EMB algorithm more 

appealing and is a good alternative to handle missing values for data that can be modelled 

by the linear functional relationship model.  

7.3 Limitation of the Study and Further Works  

 

 In Chapter 3 of this research, the focus was only on estimating the slope 

parameter,   of the LFRM using the nonparametric approach. Further research can be 

done on estimating the other parameters of the LFRM, such as the error of the variance 

for this model which are, 
2

  and 
2

  as not much study has been done on the following 

parameters. As the slope parameter estimation in this chapter is based on an unreplicated 

LFRM, where there is only a single observation for each level of i  as in (2.5), further 

investigation may be valuable to study for the replicated form and the simultaneous form 

of the LFRM, as mentioned by Fuller (1987). This work that is based on the simple LFRM 

can also be extended to the multiple LFRM. 

 In the identification of outliers in a LFRM, from Chapter 4 and Chapter 5, this 

study only examined situations when the multiple outlier is at the response variable, y .  

Further works can be extended by taking into account other outlier scenarios, such as 

outliers in the x  variables or outliers in both x  and y
 variables. The distance measure 

used in this clustering algorithm is the Euclidean measure. It would be a possible area of 

research to compare the performance of this Euclidean distance with other measurement 
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distances, such as the Manhattan distance and the Malahanobis distance in identifying 

outliers in the LFRM. Moreover, this study begins by considering agglomerative 

hierarchical clustering algorithm to cluster the observations. Future research might 

explore other advanced techniques in identifying multiple outliers such as the K-means 

cluster technique and by considering different stopping rules.  

As for the missing value techniques in Chapter 6, the data are only considered 

when missing at random (MAR). It will be worthwhile to discuss further with other 

different missing mechanism, such as when the data are missing completely at random 

(MCAR), and when the data are not missing at random (MNAR). It is shown in this 

chapter that the EMB algorithm is superior to the EM algorithm. Another possible future 

work would be comparing the performance of this EMB algortithm with other modern 

imputation techniques, such as the Markov Chain Monte Carlo and Fully Conditional 

Specification (Baraldi & Enders, 2010). 
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