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ABSTRACT

Recently there has been a growing interest in integer-valued volatility models. The
need for such time series models arises in different areas including biomedicine, insur-
ance and finance. Here, we look at a class of integer-valued GARCH time series models
which are of interest to the practitioners. The models are assuming the form of GARCH
model such that the conditional distribution of the process follows one of the following
distributions; Poisson, negative binomial and zero-inflated Poisson.

In this study, a general theorem on the moment properties of the class of integer-
valued volatility models is derived using martingale transformation with much simpler
proofs. We show the first two moments obtained in the recent literature as special cases.
In addition, we derive the closed form expressions of the kurtosis and skewness formula
for these three models. The results are very useful in understanding the behaviour of the
processes.

We then estimate the parameters of the class of integer-valued volatility models via
the quadratic estimating functions theory. Specifically, the optimal estimating functions
for each process are derived. Through a finite sample size investigation, we compare
the performance of the quadratic estimating functions (QEF) method with the maximum
likelihood and estimating functions (EF) methods. We show that the quadratic estimating
functions method performs better in terms of unbiasness and mean square error. For

illustration, we fit the models on real data sets.
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ABSTRAK

Sejak kebelakangan ini, minat terhadap model-model volatiliti siri masa taburan data
bilang telah bertambah. Keperluan kepada model siri masa tersebut telah meningkat di
dalam pelbagai bidang termasuk biomedik, insurans dan kewangan. Di sini, kami me-
numpukan kajian terhadap satu kumpulan model GARCH yang bertaburan data bilang
yang menjadi minat untuk pengguna. Model-model ini mengikuti bentuk model GAR-
CH dimana taburan sandarannya mengikut salah satu daripada taburan berikut; Poisson,
negatif binomial dan Poisson sifar melambung.

Dalam kajian ini, kami menerbitkan teorem am berkaitan dengan sifat-sifat momen
untuk kelas model volatiliti siri masa taburan data bilang dengan pembuktian yang lebih
mudah dengan menggunakan transformasi martingale. Dua sifat momen pertama yang
boleh didapati di dalam kesusasteraan telah dibuktikan sebagai kes khas. Tambahan pula,
kami menerbitkan formula bentuk tertutup untuk ukuran kurtosis dan kepencongan bagi
ketiga-tiga model tersebut. Penemuan formula ini sangat berguna untuk memahami sifat-
sifat proses tersebut.

Kami kemudiannya menganggar parameter untuk model volatiliti tersebut melalui
teori fungsi anggaran kuadratik (QEF). Secara spesifiknya, kami menerbitkan fungsi ang-
garan optimal bagi setiap model. Melalui kajian saiz sampel terhingga, kami memban-
dingkan prestasi kaedah QEF dengan kaedah kebolehjadian maksimum (MLE) dan ka-
edah fungsi anggaran linear (LEF). Untuk ilustrasi, kami memadankan model tersebut

dengan data sebenar.

iv



ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude and appreciation to my super-
visors, Prof. Dr. Ibrahim bin Mohamed, Prof. Dr. Aerambamoothy Thavaneswaran and
Prof. Dr. Mohd Sahar bin Yahya for their continuous encouragement and supervision
throughout my study.

Secondly, special thank goes to my beloved husband, Mohd Zulkarnain bin Sham-
suddin for his continuous support and encouragement at all stages of this study. To my
parents and parents in law, Hj Mohamad bin Mahmud, Hjh Saudah binti Salleh, Sham-
sudin bin Hassan and Siti Hazarah binti Salleh, I would like to express my gratitude for
their continuous love and prayers. Not forgotten my beloved daughters, Nur Aqgilah Ba-
trisya and Nur Agilah Basyasya. With their blessing and prayers, I am very grateful to
eventually complete this study.

Thirdly, I would like to express my appreciation to the International Islamic Univer-
sity Malaysia (IITUM) and Ministry of Higher Education (MOHE) for the opportunity to
further my study in the field of statistics.

Finally, to all my friends (in particular, Huda Zuhrah Abd Halim, Adzhar Rambli,
Lily Wong and Nadhirah Abd Halim) and staff members of the Institute of Mathematical
Sciences, University of Malaya (paricularly Dr Ng Kok Haur and Puan Budiyah binti

Yeop), I would like to say thank you so much for their assistance and support.



TABLE OF CONTENTS

AADSTIACT ..ttt st ettt ettt b e sane et e s iii
ADSTIAK ..ttt et es v
ACKNOWIEAZEMENLS ......oeeiiieiiiieeiie ettt ettt e et e st e st e et e esnaeesaaeesnseeeaaeeeanes A%
Table Of CONLENLS .....eouviiiieiiieieeteet ettt ettt ettt e eees vi
LISt Of FIGUIS ...eeineiieeiie ettt ettt et e sttt e st e e esaaeeeanes X
LSt OF TADIES....ceneiiiieiieeeee ettt Xi
List of Symbols and Abbreviations............cocueeeriiieriieenieeniee et Xiv
CHAPTER 1: INTRODUCTION ......ccociiiiiiiiiiieieeeeseee e 1
1.1  Background of the StUAY ......ccccuieriiiiiiieiieeeeee e 1
1.2 Statement of the Problem ..........cooiiiiiiiiriiiiiee e 5
|G I 0 o) <ol 4 L TSR 5
1.4 Significance of T€SEATCI ........ccuiiriiiiiiiiiie e 5
1.5 TheSiS OULHNE .....ceouviiiiiiieeieee ettt st et 6
CHAPTER 2: LITERATURE REVIEW ..ot 7
2.1 INErOQUCHION. ...eiuiiiiiieiieeieeeet ettt st ettt st e eees 7
2.2 Development of INGARCH(p,q) Model ........cceivuiierineieinieieeieeeeeeeee, 8

2.2.1  ARCH MOdEl......oiiiiiiiiiiiiiiiiieeiteteeeee et 8

222 GARCH (p,q) MOGEL.......coruiieiiiiieieieieeeeieeeeee e 9
2.3 The Development of Quadratic Estimating Functions............ccccceceevienicniennnen. 10

2.3.1 Parameter EStIMAtion ..........ccoceevuieriiriieiniienicniecieenie e 10

2.3.2 The Estimating FUNCHON ......coceeiiiriiiiieiienieniecieeeene e 12

2.3.3 Derivation of Optimum EF........c..coccoiiiiiiiniiiiececceen 13

CHAPTER 3: MOMENT PROPERTIES OF SOME
INTEGER-VALUED TIME SERIES MODEL .............cccccooe.... 16

3.1 IIEOAUCTION ...ttt ettt ettt e e e et e e ettt eeeeeseeeeeeteaasaaaaaeseseeeeeesaennnnns 16

vi



3.2 The Class of Integer-Valued GARCH Models...........ccocueerviiiniiiiniiiniiiiieenen 16

3.3 First and Second Moments of The Model ..............ccccooiiiiiiniini, 17
3.4  Skewness and KUITOSIS.....ccueeuerriieriiriieiiteniente ettt 19
34.1 Exampleon p=1and g =1.....cccccomiiminiiniiiiiieieeeee e 20
3.5 Feigin’s Theorem on Stationary Distribution Of A; and Xj......ccecevveerinieennennee. 23
3.6 Summary of The Chapter.........cccoviiiiiiiiiiiiieeeeeeeee e 24
CHAPTER 4: THE QUADRATIC ESTIMATING FUNCTIONS ..........cccccoeee. 25
4.1 INErOAUCTION .....eoiiiiieiieeieeeee ettt ettt 25
4.1.1 General Model and Method............cocceevieriiiniiiiniiiiiniecceeeeceee 26
4.2 Zero-inflated MOdEl .........cociiiiiiiiiiiiieer e 28
4.2.1 Basic zero-Inflated Poisson Model...........ccociiiiiiiniiiniiniieceee 29
4.2.2 Zero-Inflated Poisson Regression Model .........ccccccoovieiniiiniiiiniieennieens 31
4.3 Summary of The Chapter..........ccooviiiiiiiiiiiiieeee e 33
CHAPTER 5: INGARCH(p,q) MODEL...........coccooiiiiiiiiieeeeeeee e 34
5.1 INrOAUCHION. ...couiiiiiieiii ittt s 34
5.2 The Moment PrOPEITIES ......ccccueiiiiiiiiiiiiiiieeiie ettt 34
5.2.1 The Moment Properties of Conditional Distribution of
INGARCH(p,q) MOdEl ...t 35
5.2.2 The Moment Properties of Unconditional Distribution of
INGARCH(p,q) MOl ...c.oiiiiiiiiiiiciiiiceiceee e 36
5.2.3  Empirical STUAY ....cc.coveeriiiiiiiieiienieeiectee e 38
5.3 Quadratic Estimating Functions on INGARCH(p, q) Model............cccccccerunnence. 38
5.4 Performance of The Estimation Method in INGARCH (1,1)....cccccccevneininnenene. 42
5.4.1 Conditional LS Derivation of INGARCH (1, 1) c.cccccovvviineinneinnnennes 42
5.4.2 MLE Derivation of INGARCH (1,1) ..ccooeiiiniiininiinincinecreceeene 43
543 QEF of INGARCH (1, 1) weoiiiiieiiiiieieieieesieeeeeee e 43
544  SImMulation StUAY ....c..eeeiiiiiiiiii e 44
SA45  The ReSUIt...couiiiiiiiiee e 45

vii



5.5 Real EXAMPIE .....oooiiiiiiiiiiiieeee et

5.6 Summary of The Chapter.........ccooouiiiiiiiiiiiiieeie ettt

CHAPTER 6: NBINGARCH (p,q) MODEL ..........cccooeiiiiiiieeeeeeee
6.1 INETOAUCTION......eiiiiiiiiie ettt e sttt e st e st e et esabee s
6.2  The Moment PrOPEITIES ......ccccueiiriiiiriieiiiieeiie ettt ettt s

6.2.1 The Moments of Conditional Distribution in NBINGARCH(p, q)

6.2.2 The Moments Properties of Unconditional Distribution in
NBINGARCH(p,g) MOdEl......cooueuiiiiiiiricieieeeseie e

6.2.3  Empirical Study ......cccoeeiiiiiiiiieiieceee e
6.3 Quadratic Estimating Functions on NBINGARCH(p,g) Model .......................
6.4 Performance of The Estimation Methods in NBINGARCH (1,1)........ccceeu....
6.4.1 MLE Derivation of NBINGARCH (1, 1) ceevvvvvvvvvovoveeeeeeeeeeeeeercrssssssesseess
6.4.2  EF Derivation of NBINGARCH (1, 1).c.ccccceotriinneinniiincceceeene
6.4.3 QEF Derivation of NBINGARCH (1, 1)..cccccccteiniiiiinieieenieieeieeiees
6.4.4  SIMUulation StUAY .......eeeiiiiiiiiiiiie e
6.4.5 The ReSUlt....ccccooiiiiiiiiiiieee e
6.5 Real EXaMPIE.....cooiiiiiiiiiiiiiicccceetee e

6.6 Summary of The Chapter.........ccccceoiiiiiiiiiiiieeeceee e

CHAPTER 7: ZIPINGARCH(p,q) MODEL .........cccoooiiiiiiieeeeee
7.1 INErOAUCHION.....cuiiiiiiiiiiiiiiicie e
7.2 The Moment PrOPEIties .......ccceevuiiiiiiiiiniirieeieesiesreeeetesee et

7.2.1 The Moment Properties of Conditional Distribution in
ZIPINGARCH (P, q) MOdel ......coooviieiiiiieiieieieieeeeeeee s

7.2.2 The Moment Properties of Unconditional Distribution on
ZIPINGARCH(p, q) MOdel .....c.ooeeeiiieiiiiiieiceeeee e

7.2.3  Empirical StUAY .....ccceeeiiiiiiiieiieeee e
7.3 Quadratic Estimating Functions on ZIPINGARCH(p,q) Model........................

7.4 Performance of The Estimation Methods on ZIPINGARCH (1,1) ......cccen..ee.



7.4.1 MLE Derivation of ZIPINGARCH (1, 1) ccocceoveiviiiiiieieeeceeeeeee 96

7.4.2  EF Derivation of ZIPINGARCH (1, 1) .ccccoviiieiiiieieieeeeeeeiees 96
7.4.3  QEF Derivation of ZIPINGARCH (1,1) ..cccveininiinincinicencceeeene 97
7.4.4  SImulation StUAY ......cccoviiiiiiiiii e 97
TA.S5  The RESUIL...co.oiiiiiiiieec e 97
7.5 Real EXAMPIE ...c.oiiiiiiiiiiiiiiiieeeeeee e 109
7.6 Summary of The Chapter ..........coooiiiiiiiiiiiiiee e 111
CHAPTER 8: CONCLUSION .....c.oooiiiiiiiiiteeeteneeest ettt 112
8.1 Summary of The StUAY ...c..cooouiiiiiiiiinieie e 112
8.2  Further ReSEArch ........cociiiiiiiiiiiiiiicceeee e 113
REFEIEIICES ..ottt ettt 115
APPEIIAICES ...ttt ettt ettt et e et e st e et e e et e b 120

ix



Figure 5.1:

Figure 5.2:

Figure 6.1:

Figure 6.2:

Figure 7.1:

Figure 7.2:

LIST OF FIGURES

The monthly strike data from January 1994 to December 2002 ............. 56
(a)The Pearson residual plot. (b)The periodagram plot .............cccceuneeee. 58
The Polio data in the United State from 1970 to 1983 ..........cccceviiienins 83
(a)The Pearson residual plot. (b)The periodagram plot ...........c.ceeuuee..e. 85
The monthly counts of arson in the 13th police car beat plus in

Pittsburgh from January 1990 until December 2001 ..........c.ccocerieennnenee. 109

(a)The Pearson residual plot. (b)The periodagram plot .............ccoueeen..e. 111



Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 5.6:

Table 5.7:

Table 5.8:

Table 5.9:

Table 5.10:

Table 5.11:

Table 5.12:

Table 5.13:

Table 5.14:

Table 6.1:

Table 6.2:

Table 6.3:

LIST OF TABLES

Generated data and true values for the moment structures with

Simulation results for INGARCH (1, 1) with
Y=0.1,01 = 0.2,andﬁ1 = 0.3 e

Simulation results for INGARCH (1, 1) with
Y=0.2,00 = 0.4,a0d Bl = 0.1 «ooveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e ees e

Simulation results for INGARCH (1, 1) with
Y=0.3,01 = 0.1,a0d Bl = 0.4 ovvoooeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseeessees e seeeeseeen

Simulation results for INGARCH (1, 1) with
Y =0.3,00 = 04,200 By = 0.2 wooovooooooeeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeee oo

Simulation results for INGARCH (1, 1) with
Y =0.5,00 = 0.2,a0d B = 0.3 woovvvoooooeeoeeooeoeoeeeeeeeeeeeeeeeeeeeeeeeeee e

Simulation results for INGARCH (1, 1) with
Y=0.1,0; =0.6,and B] = 0.3 ..cocoverieieeeeeeeeee

Simulation results for INGARCH (1, 1) with
Yy=0.1,01 = 0.7,andﬁ1 = 0.2 e

Simulation results for INGARCH (1, 1) with
Y=0.2,00 = 0.8,a0d Bl = 0.1 «erveereereeeeeeeeeeseeeeeeeeeeeeeeeeee e

Simulation results for INGARCH (1, 1) with
Y=0.3,00 = 0.1,a0d Bl = 0.8 eroveeeeereeeeeeeeeeeeeeeeeeeeeeeeeesee s

Simulation results for INGARCH (1, 1) with
Y=0.4,01 = 0.3,a0d Bl = 0.6 eovveereeeeeereeeerereseeeseeeereeeeseeeesesesseeesesessenen

The estimated parameter of INGARCH(1, 1) model..........c.cccoovveiinnnene.
AIC and BIC for INARCH(1) and INGARCH (1, 1) models. .....oooo......

Diagnostics for INGARCH(1,1) model ..........ccccoovveiviiiieniiinniieiieeeeeee

Generated data and true values for the moment structures with

Simulation results for NBINGARCH (1, 1) with
Y=0.1,a1 = 0.2,andﬁ1 = 0.3 e

Simulation results for NBINGARCH (1, 1) with
Y=0.2,00 = 0.4,a0d Bl = 0.1 werveeeeeeeeeee oo eeeeeeeeeeeeeeeeee e ees e

X1



Table 6.4:

Table 6.5:

Table 6.6:

Table 6.7:

Table 6.8:

Table 6.9:

Table 6.10:

Table 6.11:

Table 6.12:

Table 6.13:

Table 6.14:

Table 6.15:

Table 7.1:

Table 7.2:

Table 7.3:

Table 7.4:

Table 7.5:

Table 7.6:

Table 7.7:

Simulation results for NBINGARCH (1, 1) with

Y=0.3,04 :0.1,andﬁ1:0.4 ................................................................. 75
Simulation results for NBINGARCH (1, 1) with
Y=0.3,00 = 0.4,a0d Bl = 0.2 oorooeooeeeceoeeeeeeeeeeeee oo 76
Simulation results for NBINGARCH (1, 1) with
Y=0.5,00 = 0.2,a0d Bl = 0.3 covvvveeeereeeeeeeeeeseeeeeeeessseseseeeseeseeeee s 77
Simulation results for NBINGARCH (1, 1) with
Y=0.1,00 = 0.6,a0d Bl = 0.3 covvvveeeeeeeeeeeeeeeeeeeeeeesseeseseeeeeeseeeeesseseeeeeee 78
Simulation results for NBINGARCH (1, 1) with
Y=0.1,00 = 0.7,a0A Bl = 0.2 wovvvveeeeeeeeeeeeeeeeeeeeeeesseeeeseeeeeeseseeeseeeeeeeees 79
Simulation results for NBINGARCH (1, 1) with
Y=0.2,00 = 0.8,a0d B1 = 0.1 werroeeoreeeeeeoeeeeeeeeeeeeoeseeeessseeeeeeeeeseeee e 80
Simulation results for NBINGARCH (1, 1) with
Y=03,01=0.1,and ] = 0.8 .ooerriiiiiiiiiccci e 81
Simulation results for NBINGARCH (1, 1) with
Y= 04,00 = 0.3,a0A B = 0.6 weoeooeeoeeeesoeseeeeeeeeeeoeeeeeeeeeeeeee s 82
AIC and BIC values for NBINGARCH (1, 1) c.coeevinieinineiieiccene 83
The estimated parameter of NBINGARCH(1, 1) model ...........cccccenee.ne. 83
AIC and BIC for INGARCH (1, 1) and NBINGARCH (1, 1) models. .... 84
Diagnostics for NBINGARCH(1,1) model........cccccooviiiiniiiniiiiiieiieeee, 85

Generated data and true values for the moment structures with

Simulation results for ZIPINGARCH (1, 1) with
Y=0.1,00 = 0.2,a0d B = 0.3 wooovoovooooeeeeoeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 99

Simulation results for ZIPINGARCH (1, 1) with
Y=02,00 =0.4,and B = 0.1 oo 100

Simulation results for ZIPINGARCH (1, 1) with
Y=03,00 =0.1,and ] = 0.4 oo 101

Simulation results for ZIPINGARCH (1, 1) with
Y=0.3,00 = 0.4,a0d Bl = 0.2 eovoeeeeeeeeeeeeeeseeeeeeeeeeeeee e 102

Simulation results for ZIPINGARCH (1, 1) with
Y=0.5,00 = 0.2,a0d Bl = 0.3 rrseeeeoeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeee e 103

Simulation results for ZIPINGARCH (1, 1) with
Y=0.1,00 = 0.6,a0d Bl = 0.3 +ereveeerereereereeeseereeeseesseeeeeseeeeeseseeeseseeeee 104

xii



Table 7.8: Simulation results for ZIPINGARCH (1, 1) with

Y=0.1,00 = 0.7,a0A Bl = 0.2 wovvvveeeeeeeeeeeeeeeeeeeeeeeeeeeeee oo 105
Table 7.9: Simulation results for ZIPINGARCH (1,1) with

Y=0.2,00 = 0.8,a0d Bl = 0.1 wovvoveeeereeeeeeeeeeeeeeeeeee oo 106
Table 7.10: Simulation results for ZIPINGARCH (1, 1) with

Y=0.3,00 = 0.1,a0d B = 0.8 oeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesesesee 107
Table 7.11: Simulation results for ZIPINGARCH (1, 1) with

Y= 04,00 =0.3,a0A Bl = 0.6 rrreeeeeeeeeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeneesee e 108
Table 7.12: The estimated parameter of ZIPINGARCH(1,1) model...............cc......... 110
Table 7.13: Diagnostics for ZIPINGARCH(1,1) model ...........cccceviviiiiinniiiiieiiieees 110

xiii



LIST OF SYMBOLS AND ABBREVIATIONS

X; The time series process

u The mean

o2 The variance

Y Autocovariance

p Autocorellation

I Skewness

Corr(X;,Xs) The correlation

Cov(X;,X;) The covariance

K Kurtosis

3X | The o—field generated by X, _1,X;—2,...,X]
10, 0, B; Parameters in the model

A, Intensity parameter

o Inflation parameter

g,(0) Optimal QEF

Ly (0) Information for the optimal QEF
a;_, and b;_, Coefficient in QEF method
my, Sy, hy,u; martingale differences

(my) variance of my

(s;) variance of s,

(m,s),; covariance of m, and s,

IVTS Integer-valued time series

INAR Integer-valued Autoregressive
ARCH Autoregressive conditional heteroskedasticity

GARCH Generalized Autoregressive conditional heteroskedasticity

Xiv



INGARCH Integer-valued GARCH

NBINGARCH Negative binomial integer-valued GARCH
ZIPINGARCH Zero-inflated Poisson integer-valued GARCH
EF Estimating functions

QFEF Quadratic Estimating functions

LIK Likelihood

XV



CHAPTER 1

INTRODUCTION

1.1 Background of the study

In the real world, we are bounded with time and space. In order to understand the
events or incidents around us, observations are frequently made sequentially over time, for
example, the yearly dengue cases, monthly unemployment figures, daily money exchange
rates and share prices. These data are known as time series data where the observations
{X;} are being recorded at specific times. To be specific, according to Brockwell & Davis
(1991), a time series model can be defined as a specification of the joint distributions
(or possibly only the means and covariances) of a sequence of random variables {X;} of
which {x, } is postulated to be a realization.

In the past, various time series models have been proposed in the literature. The
well-known time series model is the autoregressive integrated moving average model
(ARIMA) which can be identified by the Box-Jenkins methodology. The model is devel-
oped by looking at several important concepts including stationary condition, the autocor-
relation function and white noise process. The stationary properties depends on the first
and second order moments of X;. Generally, we have two types of stationary properties,
which are called weakly stationarity and strictly stationarity. The time series {X; } is said
to be weakly stationary if the mean function of X;, say ux(¢), is independent of # and the
covariance function, denoted by yx (f + A,t), is independent of ¢ for each integer h. There-
fore, we can say that a weakly stationary time series has the mean and variance constant
over time. Meanwhile, strict stationarity of a time series is defined by the condition that
(X1,...,X,) and (Xy44,.-.,X,14) have the same joint distributions for all integers 4 and
n > 0. For autocorrelation property, we are measuring the correlation of the observation
at time ¢ with the kth past observations where k=1,2,.... is called a lag k autocorrelation
for the process. It is very useful in the determination of the order of ARIMA models and

can also be used to indicate a white noice process. A time series process is said to be



white noise if the correlation between {X;} and {X;} is zero for all # # s, that is,

Corr(X;X;) =0 for all 7 # s.

In real life applications, we frequently have time series data with nonconstant vari-
ance especially in finance and medicine. Examples include stock price in Baillie & Boller-
slev (2002) and campylabacterosis cases in Ferland et al. (2006). Hence, there is a strong
need to develop non-linear time series models for such data. Engle (1982) proposed an
autoregressive conditionally heteroscedastic model namely ARCH(p), where p > 1 is the
order of the model, to model the financial time series that exhibit time-varying volatility.
The basic idea of ARCH(p) model is that the process {X;} is dependent although the
series are uncorrelated and the dependence can be described in a simple quadratic func-
tion of its lagged values. Specifically, the model is assumed to have zero mean, serially
uncorrelated processes with nonconstant variances conditional on the past, but constant
unconditional variances. The ARCH(p) model has been shown to be useful not only in
the dynamic volatility and correlation modeling, but also forecasting, risk management,
market microstructure modeling, duration modeling and ultra-high-frequency data anal-
ysis (see Diebold (2004)). However, there were some shortcomings encountered with
ARCH(p) model. Tsay (2014) highlighted four such weaknesses. Firstly, the positive
and negative observations have the same effect since it depends on the square of previous
observations. Secondly, some condition of the ARCH(p) model limits its ability to cap-
ture excess kurtosis of the process. Thirdly, the model may fail to provide insight on the
cause of the variation observed. Finally, the model might also overpredict the volatility
due to a slow response to large isolated shock.

Later, Bollerslev (1986) extended the ARCH(p) model process by proposing the
generalized autoregressive conditional heteroscedasticity, GARCH(p, g) models to allow
for a longer memory and more flexible lag structure. The GARCH(p,q) model is actu-
ally ARCH (e0) model with the error is conditionally normally distributed. The major
advantage of this model is that the model allows time-varying volatility and leads to a
fundamental change to the approaches used in finance. Tsay (2014) stated that this model

enable us to construct volatility term structure for an observation and eventually improves



the modelling and prediction of autoregressive moving average (ARMA) models. Later,
the GARCH(p, ¢) model has been extended to other forms. For instance, Nelson (1991)
proposed exponential GARCH model, namely EGARCH( p, g), by considering the weight
innovation to allow for asymmetric effects between positive and negative assets returns. In
addition, Engle & Ng (1993) introduced a nonsymmetric GARCH(p, ¢) model called as
NGARCH(p, ¢) which can capture the asymmetric volatility response to the positive and
negative observations while Gray (1996) introduced Markov-switching GARCH (MSW-
GARCH) model to determine the short term interest rate by an unobservable Markov-
process.

Time series data might involve count data, for example, in observing the changes of
disease activity, the occurrence of virus infection, the count of price changes, the number
of customers to be served and the incident in a city over a period of time (see Harvey &
Fernandes (1989), Li et al. (2014), Ferland et al. (2006) and Davis et al. (2016)). This
leads to the development of integer-valued time series models. For example, McKen-
zie (1985) introduced integer-valued autoregressive, INAR(p) model as the extension of
AR(p) model. The model is essentially Markov chains, but is structurally autoregres-
sions, and depends on only a few parameters. Then, Al-Osh & Alzaid (1987) investigated
the properties of INAR(1) model and showed that the process can have negative value of
autocorrelation. Later, various number of extension of INAR(p) model had being sug-
gested, for instance, Kachour (2009) presented rounded INAR model namely RINAR(p)
model, Pedeli & Karlis (2011) applied the classical integer-valued uutoregressive (INAR)
model to the bivariate case known as bivariate Poisson INAR(p) model and Nasti¢ et
al. (2012) introduced the combined geometric integer-valued autoregressive with order
p > 0, namely CGINAR(p) model using the negative binomial thinning. On the other
hand, other types of count data time series also can be found in the literature. For example,
Aly & Bouzar (1994) extended the ARMA model into integer-valued cases, Carvalho &
Tanner (2007) proposed a model based on local mixtures of Poisson autoregressive mod-
els, Davis & Wu (2009) studied the generalized linear models for time series of counts
where the latent observation is modeled by a negative binomial distribution and House-
man et al. (2006) proposed a nonstationarity negative binomial model for time series in

modeling the enterococcus disease cases in Boston Harbor.



In addition, zero-inflated models are also frequently used when the time series data
have the number of zeroes observed greater than what would be expected for the model.
For example, Wang (2001) discussed the distribution changes in two-state of Markov
chain for zero-inflated Poisson (ZIP) regression model, Yau et al. (2004) proposed a zero-
inflated Poisson mixed autoregression model to analyze the incidence of workplace in-
juries in a hospital among cleaners, Lukusa et al. (2015) introduced a parameter estima-
tion which is the inverse probability weighting (IPW) method to estimate the parameters
of the ZIP regression model with missing covariates and Sellers & Raim (2016) suggested
a model to model the relationship between explanatory and response variables namely
zero-inflated Conway Maxwell Poisson (ZICMP) regression.

In our research, we are interested in the time series of count model introduced by
Ferland et al. (2006). The authors suggested an integer-valued analogue of the classical
generalized autoregressive conditional heteroskedastic, GARCH(p, g) model with condi-
tional distribution follows Poisson namely INGARCH(p, q). Later, Zhu (2011) proposed
error which following negative binomial instead of Poisson to overcome the overdisper-
sion and zero-inflated model which are zero-inflated Poisson (ZIPINGARCH (p,q)) and
zero-inflated negative binomial (ZINBINGARCH (p,q)). In this thesis, one of the con-
tribution is to derive the higher order of moments via martingale difference.

Parameter estimation plays an important role in analyzing the time series analy-
sis. Various estimation methods have been proposed to estimate the parameter of in-
terests, for instance, the traditional methods including maximum likelihood estimation
(MLE), least squares (LS) estimator and method of moments estimator (MME) and mod-
ern approaches to estimation methods including linear estimating function (EF) estimator
and generalized method of moments (GMM) estimator. In estimation approaches for the
INGARCH(p, q) model, Ferland et al. (2006) used MLE method to estimate the param-
eters of the process. But, the evaluation of the matrices in MLE is a cumbersome task.
Meanwhile, for NBINGARCH(p, ¢) model, Zhu (2011) used three methods which are
Yule-Walker (YW), MLE and LS estimators. MLE shows the best performance compared
to LS and YW. However, the asymptotic theory of the MLE need geometric ergodicity
of the process {X;}. On the other hand, the common method of parameter estimation for

ZIP models is MLE. However, as pointed by Nanjundan & Naika (2012), the MLE of
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ZIP models have no closed form expressions. Therefore, in this research work, we use
the quadratic estimating functions (QEF) approach proposed by Liang et al. (2011) as an
alternative method in the parameter estimation of INGARCH(p,q), NBINGARCH(p, q)
and ZIPINGARCH(p, ¢) models.

1.2 Statement of the problem

In real life, we may deal with count data which lead to the development of integer-
valued time series (IVTS) model. The model of our interest is a class of INGARCH
model assuming that the conditional distribution of the variable follows Poisson, negative
binomial or zero-inflated Poisson distributions. The first two moments of such models
have been discussed in literature. In this study, we derive the higher order moments
for these models via martingale difference. On the other hand, a number of estimation
methods have been used for the IVTS models but with shortcomings. Here, we will
develop the estimation theory for the QEF method for the IVTS models and show its

superiority compared to the other existing methods. .

1.3 Objectives
Based on the statement of problem above, the researcher has outlined the following

objectives for this study:

1. Derive simpler form of the moments up to order four for a class of IVTS models

via martingale representation.
2. Show the superiority of QEF method on zero-inflated models.

3. Develop new estimation theory based on QEF approach to estimate the parameters

of the class of IVTS models.
4. Apply the methodology into real data sets.
1.4 Significance of research
The findings from this study will be advantageous in the following ways:

1. Contribute to the knowledge in statistics regarding the modeling of IVTS data and

their higher order moments.



2. Optimize the estimation of parameters in IVTS model using QEF method.

3. Provide an alternative methods of estimations to be applied in real count data set.

1.5 Thesis outline

This research attempts to develop statistical methodologies for some problems in
IVTS models. This research is outlined as follows:
Chapter 2 provides a literature review on the integer-valued time series models. We re-
view the development of INGARCH (p, ¢) and the quadratic estimating function (QEF)
method.
Chapter 3 discusses the moment properties of IVTS models. We present the class of IN-
GARCH (p, ) models. Then, we derive the moment properties of the model up to order
four.
Chapter 4 explains the QEF method. Here, we talk about the general method of QEF
techniques and provide two examples of a command modeling for illustration.
Chapter 5, Chapter 6 and Chapter 7 consider INGARCH (p,q), NBINGARCH (p,q)
and ZIPINGARCH (p, ¢) models respectively. In each chapter, we find the skewness and
kurtosis formula of the model. We then derive the optimal QEF function and do a simu-
lation study using R-cran programming to compare the performance of QEF method with
other estimation methods. We provide the algorithm in solving the optimal QEF. We also
apply such parameter estimation on a real data set and do some diagnostic checking using
Pearson Residual to ascertain whether the data fit with the models.
Chapter 8 presents the summary of this research work. We also give some suggestions

for extending the research work in the future.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Integer-valued time series or count data time series is widely used in many areas and
field including epidemiology, criminal cases, insurance policy and public health surveil-
lance. The importance of count data time series modeling have been discussed in the
literature. For example, Aly & Bouzar (1994) underlined the theory of integer-valued au-
toregressive moving average model, Nasti€ et al. (2012) presented the combined geomet-
ric integer-valued autoregressive (CGINAR) model and Ferland et al. (2006) discussed
on GARCH model for discrete data. The importance of discrete-valued time series also
can be referred in MacDonald & Zucchini (1997) and Cameron & Trivedi (2001).

In practice, especially in medical field, many count data sets have high frequency
of zeroes. For example, the rare diseases with low infection rates, the observed counts
typically contain a high frequency of zeroes but the counts can also be very large dur-
ing outbreak period. Therefore, Lambert (1992) introduced zero-inflated Poisson (ZIP)
regression model in modeling such data sets. His study showed that ZIP model is not
only easy to interpret, but also leads to more refined data analysis as the model can ac-
commodate overdispersion. Following the findings of Lambert (1992), many studies and
applications of ZIP model have been put forward. For instance, Mullahy (1997) pro-
posed the hurdle model, Zhu (2011) studied the errors of GARCH model that follow the
zero-inflated Poisson and negative binomial and Yang (2012) stressed the importance of
zero-inflated model. On the other hand, the wide use of such models led to the creation
of ZIM package in R software (see Yang et al. (2014)).

The growing interest in studying the various nature and origin of IVTS led to the de-
velopment of new models. For example, Ferland et al. (2006) proposed INGARCH(p, q)
model as analogue of GARCH (p,g) process with Poisson deviate instead of normal de-
viate. As an INGARCH(p, q) involves the Poisson variates, the conditional mean and

conditional variance are the same, referred as equi-dispersion. But, in practice, fre-



quently the data are overdispersed, with the variance is greater than the mean which may
lead to poor performance in the existence of potential extreme observations. Therefore,
to account for overdispersion and deal with potential extreme observations, Zhu (2011)
introduced a new version of Ferland’s model with negative binomial deviates namely
NBINGARCH(p,q) model. On the other hand, Zhu (2012) used the same approach as
INGARCH(p, q) model by modeling the process with high frequency of zeroes data sets
known as ZIPINGARCH(p,q) model. These three models will be discussed and ex-
plained in detail for our research work.

The estimation approach is very important in time series analysis. For our models,
namely, INGARCH(p,¢q), NBINGARCH(p,q) and ZIPINGARCH(p,¢q), the common
estimation method used is MLE. However, the MLE approach has some drawbacks : (i)
for INGARCH(p, q), Ferland et al. (2006) noted that the evaluation of the matrices is
difficult to handle and needs to use the bootstrap technique which renders the estimation
of the parameters of interest very complicated. (ii) for NBINGARCH(p,g) model, Zhu
(2011) found that the geometric ergodicity of the process {X;} is needed in the theory of
MLE asymptotics and (iii) for ZIPINGARCH(p, ¢), the conditional distribution follows
ZIP model where the likelihood is divided into two parts which are the likelihood for
zero and non-zero observations. Therefore, the MLE of this model have no closed form
expressions (see Nanjundan & Naika (2012) and Zhu (2012)). In this research, we use the
quadratic estimating functions (QEF) approach as the alternative method to estimate the

parameters of interest. The theory of the QEF method will be discussed in section 2.3.

2.2 Development of INGARCH(p,q) Model

2.2.1 ARCH model

In real world application, the variance or volatility changes with time and this is
typical of many classes of time series. Such changing known as heteroscedastic. It causes
problems in predicting the future volatility pattern whether it is increasing or decreasing
per time period.

Therefore, Engle (1982) introduced an autoregressive conditionally heteroscedastic
model namely ARCH(p) originally to describe U.K. inflationary uncertainty as a function

of past errors. It is called autoregressive since the model allows an AR (p) structure
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for the conditional heteroscedasticity with & ~ WN (0,02), with WN is white noise,
oy >0, >0fori=1,2,...,pand Gtz is the variance of process. The model is defined

as

X, = 0:&; VI,

p
of = o+ ) ouX’ 2.1)
i=1

Introduction of ARCH (p) models led to significant changes in financial modeling

in which modeling of asset price volatility became more efficient.

2.2.2 GARCH (p,q) Model

Generalized Autoregressive Conditional Heteroskedasticity (GARCH(p, ¢)) was first
introduced by Bollerslev (1986) to solve the problems encountered in ARCH (p) model
with high order by allowing for more flexible lag structure. It is sometimes useful to
consider the ARCH (o) representation of a GARCH (p,q) process or one can say that
the GARCH model is an infinite order ARCH model and often provides a highly par-
simonious lag shape. Using the same approach corresponding to ARMA models, this
extension of ARCH process is used to reduce the infinite number of estimated param-
eter. The GARCH (p,q) process uses values of the past squared observations and past
variances to model the variance at time ¢ whereby, in order word, the process {X;} con-
ditioned on the past value, the o-field generated from X;_1,X;_»,..., X1, Sf‘_l follows

normal distribution with mean zero and variance, 4;. It can be defined as

X[3y ~ N(O), 2:2)
)4 q
he = w+) X2+ Y Bl 2.3)

i=1 j=1

From Equation (2.2), it is clearly stated that the conditional variance of X; given the
past follows normal distribution with mean, y = 0 and variance, #;. GARCH(p, ¢) models
have been widely used in many areas especially in financial field.

Since the mid-1980s, these models have become actively discussed and studied

among both academics researchers and practitioners and lead to several extensions of



GARCH (p,q) being developed. For example, integrated GARCH model (IGARCH)
model was suggested by Engle & Bollerslev (1986) whereby the model is defined to be
integrated in variance. Such model is argued to be both theoretically important for the
asset pricing models and empirically relevant. On the other hand, Nelson (1991) pro-
posed the exponential GARCH model known as EGARCH in order to capture the lever-
age effect of the stock market. In 1995, Sentana (1995) introduced quadratic GARCH
model (QGARCH) to cope with asymmetric effects of shocks on volatility. In addition,
the parameters in the GARCH (p,q) model change according to the sign or the size of
shock & which lead the model being interpreted as a regime-switching model known
as Markov-Switching GARCH (MSW-GARCH) model. This model developed by Gray
(1996) assumes that the regime is determined by an unobservable Markov-process.
Since the many different approaches have been proposed to model time series count
data, Ferland et al. (2006) proposed an integer-valued GARCH (p,q) model known as
INGARCH(p,q). This is inspired by GARCH (p,q) model using the integer-valued as
the conditional distribution. The model use the identity link function for the conditional
mean and assume the observations, conditionally on its past, to follow a Poisson distri-
bution. Later, Zhu (2011) extended the INGARCH (p,q) model by assuming the condi-
tional distribution follows negative binomial, denoted as NBINGARCH (p,g) model to
overcome the shortcoming of the previous model. Then, the increasing number of data
with high frequency of zeroes encourage Zhu (2012) to propose INGARCH(p, g) model
with conditional distribution follows zero-infalted Poisson, ZIPINGARCH(p, ). These
three models will be studied and explored in our research work. The details can be refer

to Section 5, 6 and 7 respectively.

2.3 The Development of Quadratic Estimating Functions

2.3.1 Parameter Estimation

The estimation of parameters is very important in time series analysis. There are
some desirable properties of estimators. Firstly, an estimator is said to be consistent if the
estimated parameter converge to the true value as the sample size increases. Then, the
estimator should be unbiased. The bias is defined as the deviation of the estimator from

the true value. Here, we seek for the unbiased estimator whereby the deviation is close to
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zero. Lastly, the efficiency. It means that the estimator should give small variance.
The common and very well known estimator is the maximum likelihood estimation
(MLE). In this method the estimator is obtained by maximizing the likelihood of the

observed data. It is formally defined as

A

0 = argy max LIK (0, y),

where 0 is the set of parameters, LIK is the likelihood and y is the vector of time se-
ries observations. But, MLE are not always the best under all circumstances. Bahadur
(1958) claimed that not all MLE are consistent by giving two examples to show the in-
consistency on MLE method in some cases and later, Le Cam (1990) add another six
more examples. Using such examples, therefore, it is support that, for some cases, the
MLE procedure cannot be recommended and need the alternative estimation method to
estimate the parameters of interest.

In addition, Bera & Bilias (2002) reviewed important phases in the development of
parameter estimation in both the statistical and econometric literature. He claimed that the
optimality of MLE rests on the assumption that the true density function is known. But, in
practise, the true distribution is seldom known which leads econometricians and statisti-
cians to move away from applying MLE in estimating the estimated parameters. Besides,
Vinod (1997) stated that MLE is sensitive to misspecification of the likelihood function.
This is supported by Ng & Peiris (2013) by showing that incorrect likelihood function
will affect the parameter estimates in terms of the mean and standard error. Moreover,
according to Crowder (1987), in some cases, MLE may fail to give reasonable results by
providing some examples. In his first example, he showed that the MLE fails to use the in-
formation on the parameters in the second moment of observations given. Then, in second
example, the author illustrated that if the variance specification is not precisely correct,
the consequences can be asymptotically disastrous. For the last example, he demonstrated
that the MLE does not yield consistent estimator for some parametric function.

Therefore, various estimation methods have been proposed as alternative to MLE es-
timator. One of them is estimating functions (EF) (see details in Section 2.3.2). The work

on estimating functions approach starts with the introduction of Godambe’s information
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criterion in Godambe (1960) and later extended to discrete time stochastic processes, in
Godambe (1985). This method have been studied and widely used by many authors in-
cluding Bera & Bilias (2002), Merkouris et al. (2007) and Allen et al. (2013b).

There are many advantages of EF compared to MLE. Godambe & Heyde (2010)
proved that the EF estimator yields asymptotically shortest confidence interval. More-
over, Ng & Peiris (2013) declared that the EF method is more computationally efficient
and easy to apply in practise rather than MLE. In their research, they find that since the
true distribution is rarely known, the EF is more useful and it gives a good approach
and very reliable estimates. In addition, Bera & Bilias (2002) compared some estimation
methods and noted that the EF approach is much easier to combine and it is invariant un-
der one-to-one transformation of parameters. They discovered that the EF is well suited
for semiparametric models because it only requires the assumption of a few moments.
Furthermore, the result presented in Ng & Peiris (2013) proved that there is no significant
difference in forecasting ability of EF compared to MLE in terms of computation. They
also argued that the EF is more easier to evaluate and the estimates can be obtained with-
out the knowledge of distribution of errors. Besides, Allen et al. (2013a) found that the
computation time of EF is shorter than MLE (also can be see in Ng & Peiris (2013) and
Ng et al. (2014)).

Liang et al. (2011) extended EF approach to quadratic estimating function (QEF)
approach. They showed that the applications of QEF method are superior than EF method
in some nonlinear time series models. The details of QEF estimator will be explained in
Chapter 4. Thavaneswaran et al. (2012) and Thavaneswaran et al. (2015) used the QEF to
jointly estimate the parameters of RCA models with GARCH errors and for generalized
duration models respectively. In this research work, we will apply the QEF methods to

integer-valued time series and compare the performance with MLE and EF estimators.

2.3.2 The Estimating Function
Fisher (1935) noted that the estimate of parameter @ can be obtained by solving an
equation,

gn(X:0) =0, 2.4
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where g (X; 0) is a function of the observation vector X = (X;,# = 1,2,...,n) and param-
eter @. The classic approach of estimation required conditions on the resulting estimator
é, such as unbiasedness, consistency, invariance and minimum variance. But, EF has a
different approach. Instead of looking at the properties of estimator 0, it is more con-
cerned on the properties of EF itself. For instance, we will think about an unbiased EF

rather than an unbiased é, 1.e, we need
Elgn(X;0)]=0. (2.5)

The significant role of unbiasedness and sufficiency were discussed in detail by Kimball
etal. (1946). Another criterion of a good estimator is optimality. Durbin (1960) said that,
"it seems reasonable to develop the idea of unbiased estimating equation with minimum

variance". Therefore, such idea leads to the derivation of optimal linear unbiased EFs.

2.3.3 Derivation of Optimum EF

Godambe (1960) was the first person who introduced regular estimating function
(EF) that satisfies certain conditions and came up with the procedure to choose an optimal
EF. The required conditions for a function g(X; 0) to be a regular EF are:

() Elg(X;0)] = [¢(X;0)f(X;0)dX =0,

(i1) % exists for all @ € @, where @O is the parameter space,

(iii) [g(X;0)f(X;0)dX is differentiable under the sign of integration,

(i) E [2552) | "5 0, forall 0 € ©,

(v) Var[g(X;0)] = E[g*(X;0)] < o, where f(X;0) is the density function of extreme
value distribution.

According to Godambe (1960), to find the optimal function of EF, denoted as g* (X; 0),
two criteria should be satisfied. First, the estimated parameter should be as close as
possible to the true value. It means that the variance, Var[g(X;0)] = E [¢* (X;0)]
should be minimized, therefore E [g** (X;0)] < E [g*(X;0)] where g* (X;8) is the op-
timal estimating functions. The second criteria is the expected value of derivatives of
function g (X;0) with respect to 0 , {E [%]} should be as large as possible i.e

{E [%’;9)] } > {E [%} } That measure of sensitivity requirement can be ob-
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served as an identification condition. By applying both principles, the g* (X;0) can be

defined.

Definition 2.3.1. A g* € ¥ is said to be optimal if

E[g*(X:0)]
E [dg*%;e } T {E dg%m]}z

forall g* € 4 and 0 € O and where ¥ is denoted as the class of all regular EFs.

Further, Godambe (1985) studied the inference of discrete stochastic processes using
EF. He constrained the research to the class L of linear combination of martingale differ-
ences, say /;’s and the optimal function given as {g: g(0) =Y" ,a;_1h} where a,_; be
p x q matrices depending on {X;,X>,...,X,} and 8 with E (k|3 ) =0 as 3X | is the
o —field generated by the process {X|,X>,...,X;—1}. Theorem (2.3.1) is the Godambe’s

(1985) result on optimal EF for the dependent case.

Theorem 2.3.1. Define the EF as {g:g(0)=Y_,a;,_1h/} where h; and a;_, are as-
sumed to be differentiable with respect to 0 fort =1,2,... n. Therefore, the optimal es-
E[¢*(X:0)]

timating function g* that minimized m is {g =Y", afﬁlht} where a;_| =

[dht‘s } de
[ht2|3t71] ’

The proof is available at Appendix A.
Furthermore, for multi-parameter case, the definition for the optimal EF is defined

as Definition 2.3.2 below.

Definition 2.3.2. A g* € ¥ is said to be optimal if

Var(gs] < Varlg,] (2:6)

or g; < g 2.7

or DY Dot <D 'Y DY (2.8)
8" 8

dg(X,0) _
T} and g;(X,0) =

Dgl g (X, 0) is the standardized vector EF i.e: the difference of the left hand side matrix

where Y, = Var[g(X,0)] = E[g(X,0)¢'(X,0)], D, :E[

from the right side matrix is nonnegative for all g € 9.
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The proof is available in Bera et al. (2006).

This method further developed onto QEF method. Such estimator was first intro-
duced by Liang et al. (2011) whereby the authors studied the quadratic martingale es-
timating functions and showed that when the conditional mean and variance of the ob-
served process depend on the same parameter of interest, then the QEF method shows
better performance compared to EF method. Furthermore, from Liang et al. (2011), the
QEF method is shown to be more informative compared to EF method by comparing
their information. The methodology proposed later has been investigated by many au-
thors including Ng et al. (2015) and Thavaneswaran et al. (2015). They showed that QEF
method give the superior results either in simulation studies or real examples in ACD
model compared to existing methods. However, the method has not been investigated to
IVTS model. For this research, we attempt to apply QEF method to estimate the parame-

ters of the IVTS models. The detail of QEF is given in Chapter 4.
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CHAPTER 3

MOMENT PROPERTIES OF SOME INTEGER-VALUED TIME SERIES
MODEL

3.1 Introduction

IVTS models are broadly applied in various fields especially biomedicine, epidemi-
ology, economics and meteorology. For example, Zeger (1988) studied the monthly cases
of Polio infection in US from 1970 to 1983, while Johansson (1996) looked at the effect
of lowering the speed limits on the number of accidents and Li et al. (2014) studied the
implication of crime cases over time. Hence, there is a strong need for IVTS models to
be studied and consequently improved further, which is the focus of this study.

Ferland et al. (2006) proposed a new integer-valued time series model as an analogue
of the generalized autoregressive conditional heteroskedastic (GARCH (p, ¢)) model with
Poisson as conditional distribution. This model will be explained in detail in Chapter 5.
It is later extended, for example, by Weil3 (2013) in modelling time series of counts deal-
ing with overdispersion. Zhu (2011) introduced NBINGARCH(p,g) while Zhu (2012)
suggested ZIPINGARCH(p,g) model. Fokianos et al. (2009) considered geometric er-

godicity and likelihood-based inference for linear and nonlinear Poisson autoregression.

3.2 The Class of Integer-Valued GARCH Models

In this thesis, we focus on three IVTS models, namely,

(2) INGARCH(p, q):
X|3% ~P(Ap)

p
Ap=7+)Y X i+
i=1 j

q
BjAi—jp
=1

(b) NBINGARCH(p, q):

XI|S§—1 ~ NB(nA'ﬁNB)

1— p q
M NB = ppt =7+ ) aXi—i+ Y, Bih—jnB
t i=1 =1

16



(c) ZIPINGARCH(p, q):
X,|SX ~ ZIP(A z1p, ©)

p
Aizip =Y+, 06X _i+
i=1 j

q
Bjﬁi—j,ZIP
=1

where p; is the probability of successes trials, ® is the inflation parameter lies between
zeo and unity, r is the number of succeses trials, A, is the intensity parameter, 3{1 is
the o—field generated by X;_1,X;—2,..., X1, y>0, 0 >0, i=1,2,...,p, B; > 0 and
j=12,....q

The above models can be written as follow:

E(X|3Y)) = akrp (3.1)
p q

Mop = Y+ Y, 0Xi—i+ Y Bilijrp (3.2)
i=1 =1

where TP = P,NB or ZIP, a is the coefficient of the conditional mean witha=1anda=r
are for INGARCH and NBINGARCH models respectively while for ZIPINGARCH, it is
givenasa=1-withy>0, >0, i=1,2,...,pand B; >0, j=1,2,...,q. Each

of these models will be explained in detail in Chapters 5-7 respectively.

3.3 First and Second Moments of The Model
The new class of models can be written in standard ARMA representation. Us-
ing martingale transformation, u, = X; — E(X,|Sf£1) = X; —aX rp with E(y;) = 0 and

var(u;) = o2 and multiplying Equation (3.2) by a gives
p q
akrp=ay+a Z oX;—ita Z BiA—jrp-
i=1 =1

The Equation then can be rewritten as

14 q

Xi—u = a’y—}—az 0iX;—i+ Z B; (Xt—j - Mt—j)
i=1 =1

p q q
(Xt—aZa,Xt_,-— ZﬁjX,_j) = ay+tu — Z ﬁju,_j. (3.3)
j=1 j=1

i=1

Since {u,} is martingale difference sequence and {X;} is a time series process, Equation
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(3.3) can be written in backshift operator as

P .04 . 9 .
1—a) aB =Y BB/ | Xi=ay+|1-Y BB |u. (3.4)
i=1 j=1 j=1
From (3.4), the mean of the process is:

E

)4 g )
(1 —a) B - ﬁj31> X;
i=1 j=1
b4 . q , 9q .
(1 —a) aB - ﬁjBJ) E[X] = ay+ (1 -Y ﬁjBJ) E [u;],
i=1 j=1
p q
(e £ - o
1= Jj=
P q
(1—a2a,-— ZB;) Ho= ay,
i=1 j=1
ay

-4 . 3.5
g l_aZf;lO‘i_Z?:lﬁj G-

Now, from Equation (3.4), let ¢(B) = 1 — (aZfZl o;B' +Xi B;B’ ) and 0(B) =

1— Z‘;:l B;B’. Therefore Equation (3.3) can be represented in the following form:
®(B)X; =ay+ 0(B)u. (3.6)
We shall make the following stationarity assumptions for prosess {X; } having an ARMA(R, q)
representation with R = max(p,q):
* All zeroes of the polynomial ¢ (B) lie outside of the unit circle.

* Yo l[/jz < oo where the y’s are obtained from the relation y(B)¢(B) = 6(B).

These assumptions ensure that the u,’s are uncorrelated with zero mean and finite variance
and that the process {X; } is weakly stationary. In this case, the autocorrelation function of
{X;} will be exactly the same as that for a stationary ARMA(R,q) model. The Equation

(3.6) can be written as X; — u = y(B)u,, i.e,

Xi—p=) Wju (3.7)
j=0
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and the variance of X; is given by

o = 0'321//]2. (3.8)
=0

The first interest here is to derive the general formula for the first two moments,
autocovariance and autocorrelation of the integer-valued process {X; }. The result is given

in Proposition 1.

Proposition 1. Under the stationarity assumption, the mean, variance, autocovariance

and autocorrelation of the the integer-valued process {X,; } are
ay
(a) mx = :
l—ay o~ Z(j]':l Bj

0 =Y v}
j=0

() % =o; Z ViVjrk
j=0

Yo ViVt
Yo ‘VJZ

(d) pii =
The proof is available at Appendix C.

3.4 Skewness and Kurtosis

In the literature only the first two moments and the autovovariance are given for
integer-valued volatility models considered. In this section, following Thavaneswaran et
al. (2015), we obtain a general expression for the skewness and kurtosis for conditionally

Poisson, negative binomial and zero-inflated Poisson distributions.

Proposition 2. Under the assumption of stationarity and finite fourth moment, the process
in the form X; — U = Z;":O Vu;—j where L is the mean of the random process, {u;} is an

uncorrelated noise process with mean zero, variance, 02, skewness, '™ and kurtosis,

u’

K", Define S; = (X; — u)>. Then,

2
o varts) = (k9-3) ot £t 20 (£ 1)
j=0 j=0
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oo 31 (u
(X) Zj:O Wj F( )

b) = ce a7
( (ijo ‘/’%)3/2
K0 3) ¥yt
(c) K(X)=3+< > 2]20 j»
(Z;‘o:o ‘I/j)
2
@ S (KW =2) 70 wiv2 +2 (E70 Viwin)
k — :

2
(KW =3) L7 vj+2 (Z;OZO vi )

The proof is available at Appendix D.

34.1 Exampleonp=1andg=1

From Section 3.3, the class of IVTS models considered in this study can be written

in ARMA representation as Equation (3.7) with parameter ;. For the case of p = 1 and

g =1, we can find the weight of y; by using ¢(B) = aa;B+ 3B and Equation (3.7),

therefore, we have

- . 1-pBiB

Using geometric series, Equation (3.9) become

iuwﬂ = {1+¢B+¢°B*+¢°B +...} (1—BiB).
j=0

Hence, the weight of y; is given as

Yo

L4

%]

Y3

Y

-
= ¢— B = (a0 +B1) — B = aau,

= 02— 9By = (acy + B1)> — Bi (ac + Br) = (acu + B1) (acy + B1 — i)
— o (aoy +Br),

= 03— 0By = (a0 +B)} — Bi (acy + B1)* = (acy + B1)* (acy + By — By)

= oy (aq +B1)2,

= oy (aci+Br) " (3.10)
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In a nutshell, it is shown that the weight y; = aq; (aq +B1) 7! for wy =1, for j =
1,2,... where a = 1, for INGARCH (1,1), a = r for NBINGARCH (1,1) anda=1—
for ZIPINGARCH (1,1).

Then, using the results obtained in Equation (3.10), power summation for the weight

of y; are given as:

Z II’,2 = 1+(aoc1)2+(aoc1 (aay +[3]))2+.,,+ (aa1 (aoy +ﬁ])j_1)2+m

- 1+(aa1)2{1+<aa1+ﬁ1)2+...+(aa1+/31)2H+...}. (3.11)

Then, we summarize Equation (3.11) giving

o - e 1
j;ol,/j l‘l‘( 051) [1—(aa1+ﬁl)2

1 — (ao + B1)*+ (ac; )?

= . (3.12)
1— (aoy + Bi)*
By using the same approach finding } 7" I;IJ2 , we have
> 5 1-3aia’B; —3a0ypi B
Yy = 3 , and
j=0 1— (a(x1 —l—ﬁl)
i 1114 - 1 —4a3a13ﬁ1 — 6a20612[312 —4aa1[313 — [314
J 4 :
j=0 1-— (aOCl —f—ﬁl)
On the other hand, we can find Z?:o YV, using the following steps.
Z ViV = |aoy (aa1 —l—ﬁ])k_l] +aoy [a(xl (aOC1 +ﬁl)k}
j=0
+aoy (aoq + [31) [aal (aa1 + [31)k+1]
+aoy (aoy + Br)? [dal (a0 + ﬁl)k+2] +...
= aqq(aoyq + Py )ki1 +aoy [61061 (aoy + ﬁl)k}
+aoy [61061 (ClOC1 +,B1)k+2}
“+ao [61061 (61061 + ﬁl)k_‘—ﬂ +.... (3.13)
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Equation (3.13) can be summarized as

o i 1 +aa; (aoy + Bi) +aoy (acy + Bi)’
Y Vv = ao(aar+pBi)" ’

J=0 5
+ao (aa1 +131) +...

o 1+ (aon +B1)* +

= ao (aa1 —i—ﬁl 14+a0y (aOCl + [31)

(a0 +B)*+ ...

\

Treating the Equation using geometric series, we have:

1
1—(aoy +Bi)*

J

2

(3.14)

ViVipe = aoy(aoy + )t {1+aa1 (aoy + Br)
-0

= aay (a oy T
= aoy(aoy + Br) {1—(410614‘[31)2}.

Meanwhile, we use the same technique for Y7 y; Vitk and we obtain }.5" Y3 Vi as

below:

i ) 1—(aoy +p )4+a2a2 (aoc1+ﬁ1)2

2.2 22 2k—2 1+ P1 i

yiyi =a-ai (aa + Br) . (3.15)
];) A : { 1—(aa1+[31)4

Using Equation (3.11) and (3.14), the variance, autocovariance and autocorrelation for

the models with order p =1 and g = 1 are given by

= 1-2 — B}
var(X;) = 63 Z l//j2 = 0'3 a% by le , (3.16)
j=0 1— ((lal +ﬁ])
- 1 J 1—aoup — B}
cov(XiX,1) =62 Y wivi i = 62aoy (aay + B k=1 Ly, (3.17)
( t l+k) ;{) J V¥ j+k ( ) 1—(aa1+ﬁ1)2
and
Gz o . k—1 1— _ R2
corr (XX, ) = Yo ViVitk _ao (ac + By) ( aoy By [31) 3.18)

o2 T 0V; 1—2a0u B — B
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respectively.

3.5 Feigin’s Theorem on Stationary Distribution Of A, and X,.
Let count time series, X; at time 7, when conditioned on A, is assumed to have a
Poisson distribution, P(.). Feigin et al. (2008) defined a single source of error (SSOE)

model as

Xi| A ~ P (A) (3.19)

M=A+0A_ —I—OC(X,,1 —7(4,1), fort=2,3,...,T, (3.20)

where the restrictions A > 0,¢ > a > 0 and ¢ < 1. Here, for illustration, we consider
only on first-order lags. Defining ¢, = (A1,X1,X2,...,X;—1), from Equation (3.19) it
follows that, conditional on ¢,_;, the mean and variance of X; is A;.

In seeking to characterize the stationary distribution of A, when ¢ < 1, Feigin et
al. (2008) derived the expression for their Laplace transform. The Laplace transform of
X; and A; denoted as Ly,(.) and L, (.) respectively. For conditional distribution of the

process, X;|¢;_ follows Poisson distribution, then,
Ly(u)=E (™) =E[E(e )| =E[-A(1—e )] =L, (1—¢7").

If the limit of L, (.), say L, (.), exists, hence the Laplace transform of the stationary

distribution of X;, say Ly (.) will also exist and satisfy
Ly(u)=Ly (1—e™"). (3.21)

Feigin et al. (2008) proposed the following Theorem 3.5.1 for stationarity distribution.

Theorem 3.5.1. Given 0 < ¢ < 1, Ly (v) converges to

Ly (v) = exp {—z y g(k><v>} ,
k=0

as t — oo where g(0) = g(0;8,0) =8+ (1 —e ) with1 >8=¢ —a >0, g (v)
is the function of g(v) with power k and Y;°_, gW (V) < oo,
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The proof is available at Appendix B. Hence, under this theorem, we can conclude that,
our IVTS process are stationary as t — co. Using the stationarity condition, E(X;) = 1
and for large ¢, E(A;) converge to A. Using this convergence in mean, we can apply that

limieoE (4] = E [|A], where 4 = .

3.6 Summary of The Chapter

In this chapter, we introduced a class of IVTS models inspired by GARCH(p, ¢)
model with unconditional distribution following Poisson, negative binomial and zero-
inflated Poisson namely INGARCH(p,q), NBINGARCH(p, ¢) or ZIPINGARCH(p,q)
models respectively. Then, we represented these models in ARMA representation and
achieved our first objective by producing general close form expressions for the first four
moments (mean, variance, skewness and kurtosis). Martingale differences were used to
simplify the derivations and for the special case of p = 1 and g = 1, the y; weights were
obtained explicitly. However, for the existence of first four moments, only Ferland et al.
(2006) showed the existence of moments for all order for INGARCH(p,q) model and
for the other two models, NBINGARCH(p, ¢) and ZIPINGARCH(p, g), their existence
of higher order of moments are still in discussion. Such existence for INGARCH(p, q)
model can be found through the additive property of its conditional distribution which
is Poisson distribution. Through such property, the process is built and its sequences are
obtained using a cascade on a random variable via a sequence of i.i.d Poisson random vari-
ables, known as thinning operation. Unfortunately, such property does not work for the
other two models, which are, NBINGARCH( p, ¢) and ZIPINGARCH(p, ¢) models. For
NBINGARCH(p, q) model, where its conditional distribution follows negative binomial
distribution, such property is applicable only on same p;’s while for ZIPINGARCH(p, q)
model, nobody have looked at the problems. In fact, neither the thinning operation in
Ferland et al. (2006) nor the coupling technique discussed in Franke (2010) in building
the model can be applied on zero-inflated cases. Therefore, since the construction can-
not be shown, its existence higher order moments also cannot be shown. To prove such
existence, a new technique should be developed and implemented where it is still under

discussion among the statisticians.
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CHAPTER 4

THE QUADRATIC ESTIMATING FUNCTIONS

4.1 Introduction

Since the introduction by Godambe (1960), estimating functions (EF) had been ap-
plied in many areas including time series and related models (see Allen et al. (2013b),
Thavaneswaran & Abraham (1988), Li et al. (2014), Chandra & Taniguchi (2001) and
Thavaneswaran et al. (2015)). It is shown that in many studies, EF is computationally
more efficient and easy to apply in real cases compared to the traditional parameter esti-
mation, MLE.

Later, the EF method have been extended to quadratic estimating functions (QEF) by
Liang et al. (2011). In their study, it is shown that QEF methods are more informative than
the EF method when the first four conditional moments of the model are known (see Tha-
vaneswaran et al. (2012) and Thavaneswaran et al. (2015)). In addition, Thavaneswaran
etal. (2015), Liang et al. (2011), Merkouris et al. (2007) and Crowder (1987) showed that
this extension leads to improvement in terms of the efficiencies of resulting estimates.
At the same time, QEF method removes the problem of identifiability. Furthermore, ac-
cording to Thavaneswaran et al. (2015), QEF method has standard asymptotic properties
such as consistency and asymptotic normality compared to EF method. Moreover, the
result of Monte Carlo simulation study presented in Ng et al. (2015) showed that the QEF
estimators outperform the EF estimators in almost all cases in autoregressive conditional
duration (ACD) model.

Since QEF estimator has not been discussed and applied on IVTS model, in our
research work, we will focus on studying the performance of QEF method on these pro-
cesses. We will compare the results with other estimation methods. This method will be

explained in the next section.
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4.1.1 General Model and Method

In order to use the quadratic estimating functions (QEF), it is necessary that the first
four conditional moments are known. Consider a discrete time stochastic process, {X;,t =
1,2,...} conditonal on 3% | where 3% | is the o-field generated from X,_1,X;_2,...,X].

The first four conditional moments are

m(0) =E XS], @)
o7(8) =E |(X; — () [SY] . (42)
L (60) = —yrgoE (4 —1u(0)) 181 @3
and
5(0) = 7B (% —m(0)" 3 -3, (4.4

For the skewness and the excess kurtosis of the process {X;}, we assume that such
moment properties do not contain any additional parameters. For QEF method in es-
timating the parameter of interest, @ based on the observations Xi,...,X,, we consider
two classes of martingale differences {m;(0) = X; — w(0),t = 1,...,n} and {5(0) =

2

m?(0)—c?(0),t=1,...,n}. The variance and covariance of such martingale differences,

m; and s;, can be described as:

(mh = B[n2(0)I3 ] =E[(X ~ w(0)IS¥ ] = 62(8), +5)
() = E[Stz(eﬂsgil]
= EB[(X—w(0))* +0(8)—207(8)(X; — 1:(0))*[3% 1],

= 6'(0)(x:(0)+2), (4.6)
(m,s); = E[m(0)s(0)[3 ] =E[(X, —1:(0))’ — 67 (8)(X; — 11:(6))|3 1],

= G’ (0)I:(0). (4.7)

Here, skewness and the excess kurtosis are assumed to have no additional parameters.

The optimal estimating functions also can be found for each martingale difference
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m; and s;, that are

" E<a”ge()e)|3§—1) "0
. _ 9 (6) m(0)
ds; (0
E( o 1S 952(0) 5,(0)

g:(0) = Zn: E(S;2|SX ))Sz(6>zn:

Then, the corresponding information for each component of g3,(0) and g¢(0) are
amt omy

I, (0) — i< §1551) (E15315) _ g 2u(0) 91(0) |

o =1 E [mm}|S) || & 00 00" (m)

o (EI531350) (EI551350]) o, 962(8) 902(6) 1
I (8) = ; E [5:5]13% ] :,:Zl 00 00 (s)

~

For the discrete time stochastic process, {X; }, the following Theorem 4.1.1 provides the

optimal function and optimal information matrix of the QEF for the multiparameter case.

Theorem 4.1.1. For the general model in (4.1) to (4.4), in the class of all quadratic
estimating functions of the form 9y = {gp(0) =Y | (a,_1m,(0) +b,;_15(0))},
(a) the optimal estimating functions is given by g,(0) = L, (a7 ,m(0)+b;_,5:(0)),

where

() (5 R

and

= () (5w

(b) the information Ig*Q(O) is given by

i(l_ (m,s)2 ) (8u,(0)3ut(9) 1 +8ct2(6)8o-t2(0)i

= )e(S)r 20 96’ (m), 96 00 (s)
B (8,ut(9) dc7(0) 4 o2 (0) 8/4,(6)) (m,s) ) .
6 00 00 00" ) (m)(s) )’

(c) the gain in information Iga(e) —1Ig: (0) is given by

Lo (mys); 1 01(0) 9 (8) (m,s)? do}(0)dc () 1
Z<1 m>,<s>,) (ae 20" milsy 90 98 (5

t=1
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B <8uz(6)&6t2(0) +86,2(0) 8,ut(6)) (m,s); )
6 906’ 00 90" ) (m)(s) )’

(d) the gain in information Ig*Q(O) —I:(0) is given by

Lo (ms)? 9 (0) I (8) 1 9c2(8) IcA(8) (m,s);
zzzl(l <m>t<5>z) ( 76 06’ <m>,+ d6 20" (m)(s); — (m,s)?

<8ut(9)86,2(6) 86,2(6)8u,(0)) (
- +

m,s)

<m>t<3;t) '

0 90’ 0 00’

The proof is available at Appendix E

Corollary 4.1.2. When the conditional skewness 'y and kurtosis K are constants, the op-
timal QEF and associated information, based on the martingale differences m;(0) =

X; — u;(0) and s,(0) = m;(0)*> — 0,(0)?, are given by

Fm 92(0
(0 Py e 1 | @ e e
000)= (1-15) L) 2
+L{y8ur(9)_ I 80;(0)}3
ki2\V 96 @) a0 (%
and
( )
o, (8) do? ()
20 26’
P\ Y 1
k@= (1) (@@ LYo -
907(6) 91 (6)
\ ae ae/ V,

4.2 Zero-inflated Model

In this section, to investigate theoretically the performance of QEF method com-
pared with EF method when applied on several count models, we derive the the optimal
function and information gain using EF and QEF methods by considering two types of
zero-inflated models, namely basic zero-inflated Poisson and basic zero-inflated Poisson

regression models. We compare the results based on the information gain.
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Zero-inflated count data models have probability function given by

0+ (1—w)g(y) fory=0
fy) = (4.8)
(1—w)g(y) fory=1,2,3,...

where y is a count-valued random variable, @ € [0, 1] is a zero-inflation parameter (the
probability of a strategic zero), and g(-) is the probability function of the parent count

model. The mean of the zero-inflated count data model is

E0) = Y y/(0) = (1 - 0)Eq(y) “9)
y=0

where E,(y) denotes the mean of the parent distribution. A fully parametric zero-inflated
count data model is obtained once the probability function of the parent count model is

specified.

4.2.1 Basic zero-Inflated Poisson Model

The simplest example would be the ZIP model obtained from (4.8) by taking

— e
g(%%)z%, A>0 (4.10)
t-

with mean E,(y;) = A,y = E(y;) = (1 — @)A and up = E(y?) = A(1 — ®)(A + 1). The
parameter set is 8 = (A, a))/. Following Kharrati-Kopaei & Faghih (2011), we define
two martingale differences as m; = y, — 1 and s; = y> — l,. The expression for (m), =
E[m?|3X || = o131, (s); = E[s?|3X |] = 022 and (m,s), = E[m5,|3X || = o012 are given

below. The derivative of 1 and u, with respect to 0 are

% =(1-w,—A) and 88_%2 =((1-w)(1+21),— (A +1%))

!

Using results in Kharrati-Kopaei & Faghih (2011), the variances and covariance of the

martingale difference are:
o =Var(y) =A(1—0)(1+1)—A%(1 — 0)?,
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612 = Cov(yy?) = A (1 — @) (12+3)L—|-1—(1 — ) ()wl—lz)), and
G2 = Var(y?) = A (1 — o) <7L3+6/12+7l+1—(1—w)7t(1+l)2>.

Hence, using Theorem 4.1.1, the optimal QEF for each parameter are:

O11 011022

1-— 1-— 1+24
bA) = (1-—12—
gQ( ) ( 611622)

n ((1 - 6())(712 n (1 — CO)(I —I—ZA)Glz) 5

011022 022

n (—622+612(1—|—21))m,+
= (-o) <611022—012) ;
(o12—011(1421)) s

2 -1 2 5
g)(®) = (1_&) KL_(AH )611)mt_< ron | (A+A )olz)&}
011022 O11 011022 011022 02

1 n
-4 (m) ,:Zi (62— (1+A)012)m + (011(1+A) — 012)5) -

The information matrix of the optimal 0 is

0 0}
I)L/l I?Lw
Ig*Q =
12, 18,

where

0 _ n(1=0)° (0 +[1+2A][(1 +24) 011 —2012])

pa 611022—0122 ’
, (622+on(1+x)2—2(1+x)cn)
I(D(D_ 9

2
011022 — O

0 0 _nl(l—a))(—Gzz—Gn (1—{-31—1—22‘2)4—0'12(2—4-31»
and 1, =17, = .

2
011022 — O

For illustration, we compare only the information gain for parameter A. The infor-
mation for each martingale differences, m, and s, are I3, = n(1 — ®)?/oy; and L, =
n(1 — @)?(142A)/0y, respectively. Therefore, we can clearly see that the value of de-

nominator of I T, is smaller than that /}", and value of numerator is larger than that of
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I3, which leads to a greater gain information for I/% compared to I3, and I3, . That is
1 % > IT)L and I)%l > Ii A Similarly for Igw as well. Hence, one can say that, the combined

estimating functions are more informative than the information from each component.

4.2.2 Zero-Inflated Poisson Regression Model
In some cases, we may parameterize both A and @ in terms of exogenous explanatory
variables, say x and z where z can be identical to x, overlap with x or completely distinct

from x. Following the definition given by Staub & Winkelmann (2013), we assume that

exp (6o + 612)

A =exp(Ap+A1x) and ® = T exp(8o 1 010)°

.11

!

The parameter is @ = (Ap, A1, 8, 01) . The conditional expectation function of the corre-

sponding ZIP model is given by

E(y|x,2) = (1— )4 = PR+ A1) 4.12)

~ 14exp(8y+6i2)

Here, we consider independent counts y;, ¢t = 1,2,...,n, with parameters A, and @ aris-

ing from Equation (4.11). Hence, the mean, variance, skewness and kurtosis of the pro-

Cess are
exp(Ao + A1x;)
0) =
HO®) = T exp(8+ 8121)”
o2(0) — PP+l +exp(d +8iz) +expllo A+ +6iz)
’ [T +exp(3y + 8122 !
2 2,32
I (6) = Lr3ho+A wt—:Z/lt ] , and
He [1+ A ]2
k(0) = o A7 (607 — 60 +1) + 6wy A7 (20 — 1) + T, + 1
t - .

(1—o) A (1+oA)

respectively. We take the martingale differences to be m,(0) =y, — 1;(0) and 5;(0) =

m?(0) — c7(8). The derivative of 1, (@) with respect to each parameter is expressed as

O (0)/96 = (By;,By,,B3,,Bs,;) where

B :8ut(9): exp(Ao + A1x;) B :8,u,(6): exp(Ao + Arx; ) x;
MU0k Ttexp(B+8iz) Y Ok 1texp(8o+1z)
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_ Jw(0) _eXP(AO+7lez+50+51Zt)

B3, = = d
3t dd [1+exp(8y+61z:)]*2 an
By — ou;(0) _ exp(Ao+Aixe + S + 8120z
o 261 [1+exp(do + &1z)]>

—02(0) (k(8)+2—(1+Aay))

Let Y =[1/(n:0;(8))] +DG;(9)(Yt—IJz(9))< 1+ A0+ (Y, — 1(0)) > ’

—0;(0)I(6)

where 1, = 1(0) +2 — ¥>(@), t=1,2,---,n, and therefore, the optimal QEF for A,
A, &y and &) are

!

25(0) = (g5(),g85(A1),85(6),26(81))

n n n n
= (Z Y,Bis,Y YiBr;, Y YB3, ZYZB4,t> :
=1 t=1 t=1 t=1

On the other hand, the information matrix for QEF is

2
BIJ BI,IBZJ Bl,tB3,t BI7IB4,I

0,(0) (K (0) +2)W? ByBi; B3, By;B3; BaBy,

N

—2I,(0)W, B3,Bi; BBy, B3, B3Ba;

t

By/Bi; Ba/By; BaB3, B,

where R, = 67 (0)n, and W, = exp (Ao + A1x; + 8 + 812;) /exp (8 + 812 ). For compar-
ison purpose, we focus only on the parameters Ay and A; and the information gain by
the estimating functions based on the single element of martingale differences m;,(0)
and 5;(0) are derived as follows: For m,(0), the information matrix based on parame-
ter A are I3, = Y, B},/0(8) and I, = Y/ B3,/07(8). On the other hand, for
5:(0) we have Lo, = Xiei [1/((0,]WIZB%J and I3 , =¥, 1/ ] WZZB%J where & =
c}(0)(x(0)+2). In a nutshell, it is obvious that [AQOAO > I3, and I)LQO)10 > 15, 38
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0 m 0 m :
well as IM Py > IM Py and I)Ll Py > I/11 A From the comparison, one can say that, follow-
ing the determinant optimality discussed in Bera et al. (2006), the determinant of the
combined estimating function is larger than the determinants of the information matrices

associated with the components estimating functions. That is |Ig»é(0)| > [Ig: (0)] and

g, (0)] = [1g;(0)].

4.3 Summary of The Chapter

In this chapter, we discussed the theory on QEF method proposed by Liang et al.
(2011) when applied on count data. Here, we derived the EF and QEF estimators for
two types of ZIP models namely the basic ZIP and ZIP regression. In addition, we have
also obtained closed form expressions of the information matrices for all the models and
show that the QEF with combined estimating functions is more informative than EF with
the component estimating functions. Thus, QEF method has improved the efficiency of
the estimation of parameter @ compared to the EF method. Hence, we can say that, the
derivation of optimal QEF function and their information matrix have shown the superi-

ority of QEF method when applied on selected zero-inflated models.
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CHAPTER 5
INGARCH(p, g) MODEL

5.1 Introduction
Since GARCH models have given rise to new directions for research in probability
and statistics and towards developing more parsimonious models for count time series
data, Ferland et al. (2006) considered the model known as integer-valued GARCH model,
namely INGARCH(p,g) where it is a GARCH(p, q) process with Poisson conditional
distribution. He defined an INGARCH(p, q) process to be an integer-valued {X;} such
that
X3 ~ P(k) (5.1

14
A=7+ Z oiX—i +
i=1 J

q
BiAi—, (5.2)
=1

where 35(,1 is the o—field generated by X;_1,X;—2,...,X1, v>0,a;>0,i=1,2,...,p,
and §; >0, j=1,2,....q.

From the definition of INGARCH(p,¢) model, it is clear that INGARCH (p,0)
model actually an INARCH(p) process. It should be noted that the second-order sta-
tionarity of the process is satisfied if and only if the summation of parameter lies within
zero and one, whereby 0 < Zf’zl a; + 2?21 Bj < 1.

This model is originally proposed to model the number of cases of campylobactero-
sis infections from January 1990 to the end of October 2000 in the north of the Province
of Quebec in Ferland et al. (2006). In this chapter, we will further study this model to

explore its moment properties by using martingale transformation of the model.

5.2 The Moment Properties

The first objective of our study is finding the moment properties of unconditional
distribution for all three models. The derivation of this unconditional moments need the
conditional moment properties. Therefore, in this section, the moments for both uncondi-

tional and conditional distribution of INGARCH( p, ¢) model will be derived up to order
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four.

5.2.1 The Moment Properties of Conditional Distribution of INGARCH(p, q) Model
In INGARCH(p,q) set up, the conditional distribution of X; given Sfﬁl follows
Poisson. To simplify, let ¥; = Xt]Sf(_l follows the Poisson distribution with parame-
ter A, denoted as ¥; ~ P(A;). The moment properties of Poisson model can be ob-
tained via its probability generating function (pgf) which is G (z) = exp[A(z—1)]. We
can get the moments of the model by finding its derivatives with evaluated at z = 1.

The first three derivatives of such pgf are G'(z) = %’Jz—lm = AeMlz=l) G (z) =

dAy (ePrle=1)) _ ltze(l,[z—l}) and G (z) = dAf (M)

7 75 7Lt3e()‘f[z_l]) respectively. In gen-

eral, we can show that, for the kth derivative, the pgf of Poisson distribution is in the form
of G (z) = Akek (D),

The mean of Poisson is given as i, = G'(1) = E(y;) = A,. The second derivative
is G"(1) = E(y(y, — 1)) = A%. By expanding that, we will get E (y7) — E (yr) = A%
2 _

Rearrange it, then, E (ytz) = A2+ A. The variance of Poisson distribution is Oy

E(O?) —EWm)?* = A2+ 4 — A2 =A. For the third derivative is G"(1) = E(y:(y, —
1)(y; —2)) = A7. This derivative can be expanded as E (y; —3y? +2y;) = A>. There-

fore, E (y}) = A7 +3A7 + A;. Using this result, the third moment is

E[0i=2)] = E(7 =32 +30A2 = 2Y),
= E(3)-3E(})L+3E()A}— 47,
= A 302+ —3A3—3A2 4313 - A7,

~ (5.3)

Using Equation (D.5) in Appendix D, (5.3) and 62, the skewness is obtained in the fol-

lowing form:

wn _ Eloewr]
‘ (var(y))*? "
A
-
I (5.4)
VA
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Now, we find the kurtosis of Poisson distribution. The fourth derivatives of the pgf
is G'""(1) = E (y; (vy — 1) (s — 2) (ys — 3)) = A*. Again, we expand the factorization to
obtain E (y}) whereby E (yf — 6y} + 11y7 —6y;) = A* and will lead to E (y{) = A} +

6A> + 742 + A,. Therefore, the fourth moment is

E [(yz —%)4} = E(} -4yl A +6252 — 4y A — 24,

= E <Y?) —4E (y,3) A+ 6AE (ytz) —4E (y) A2 — A4,

= AMHOATHTAR A — 4 (AP 4322+ A) +6A7 (A2 + A) —4A3 A, + A,

= A HOAP+TAF N —4A — 1207 — 4+ 641 +6A° —4art + A1,

= 307+ A
Using (D.2) in Appendix D, 6y2 and Equation (5.5), the kurtosis of Poisson is
4
E [()’t — ) }
P _
Kl‘ - 4 )
Oy
302+ A
A
_ o34 (5.6)
A '

5.2.2 The Moment Properties of Unconditional Distribution of INGARCH(p,q)
Model

Using the martingale difference, u; and the results in section 3.3, we obtain the mean
as U = 62 = E (). For large t, 62 = A = u and using Theorem 3.3.1 (b), the variance

of INGARCH(p,g) model become

Now, we find the skewness and kurtosis of INGARCH(p, ¢g) model. We first have to find
the skewness and kurtosis of the martingale difference, ') and K respectively. For the

skewness of u;, we have

rw _ _EG@)

{E@)}”
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E(E (0% - w}3,1)*))

o

b

= g;” ). (5.7)

Similarly, using the result above on Equation (5.7), the excess kurtosis of the process

(5.1) is given by

= — > 3, (5.8)

Under large ¢, Equations (5.7) and (5.8) become

=

rw —

=
~
S

—_

— (5.9)

|

and

3ul+pu
o

l. (5.10)
U

Substituting Equation (5.9) into Equation (D.5) and Equation (5.10) into Equation (D.2),
the skewness and kurtosis for INGARCH(p, g) are

o 3
rt = 2i=0Y; 3/2
VE(Z70v3)
and |
L3I
KX =34 (“ : > :
():7:0 %2)
respectively.
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Ferland et al. (2006) showed the moment properties of unconditional INGARCH(p, q)
distribution only for p = 1 and g = 1 case. It should also be noted that, with our finding,

we are able to find this moments up to order four for all cases of p and q.

5.2.3 Empirical Study

To demonstrate the moments structure are correctly derived, we do the empirical
study for the cases when the process is close and far from the boundary of stationarity.
Here, we generate 500 samples of size 2000 and calculate the mean and the mean square
error of the estimated moments as tabulated in Table 5.1. It can be seen that the estimated
values are close to the true values.

Table 5.1: Generated data and true values for the moment structures with y = 0.1

a;=0.1 a;=0.5
Estimated | True MSE Estimated | True MSE
B=02
5% 0.9012 | 0.9018 | 8.85E-06 1.028 1.027 | 1.14E-05
ox 09158 | 09162 | 3.58E-04 | 1.1158 | 1.1162 | 4.12E-04
) 1.258 1.262 | 1.88E-04 1.052 1.059 | 9.48E-05
KX 4.125 4.108 | 5.22E-03 4.123 4215 | 1.21E-04
B=04
Ux 0.7581 | 0.7588 | 1.26E-05 1.125 1.129 | 1.25E-05
ox 09147 | 09158 | 1.28E-04 1.088 1.093 | 4.12E-04
%) 1.228 1.305 | 1.06E-03 1.235 1.244 | 1.21E-03
KX | 4113 | 4212 | 412E-04 | 4215 | 4.198 | 7.53E-04
5.3 Quadratic Estimating Functions on INGARCH(p, ¢) Model

In this section, we derive the optimal quadratic estimating functions, g*Q(G) for
INGARCH(p, g) model as described in Section 4.1.1.
In order to extract the g, (@), the first four conditional moments of INGARCH(p, g)

should be known. From Section 5.2.1, we obtained the first four conditional moments

w(0)=21(6), (5.11)
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o2(0) = (8), (5.12)

1
r,(0) = , 5.13
(9) % (0) (5.13)
and
K (0) = p (19) (5.14)

where O =y, 0,...,0,,B1,..., By
In QEF method, we use two martingale differences, namely m; and s;. They are
defined as m; (8) = X; — A,(0) and for s, (0) = m?>(0) — A, () fort = 1,2,....n. The

variances and covariance of such martingale differences are

(m); = E[m;(68)[3}]

= 1,(0), (5.15)

() = t(8)(x(6)+2),
_ 2o (1
= 20 (57972).
B 1+24(0)
- 20 (V7).

— 2(0)(1+24(8)), (5.16)

and

(m,s); = Gt4(e)rf(6)7
1
2 (6)’
= 1A' (0). (5.17)

— 2*(8)

: atives IHi(0) 907(8) ; s
Next, we find the partial derivatives =75~ and —%5—. Since the conditional mean,

2

Y; and conditional variance, o; are the same, we have

du;(8) do?(8) I (6)
0 96 98
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The partial derivative of A, () with respect to parameter 0 are given as:

<aa¢(e> 94,(8)  9A(8) IA(8) aw))’

/
A’l(e) 8}/ ’ 8061 [ AR aap ) aﬁl ey aﬁq

azt i

l

= <1+Zﬁj —i(6) ZBJ lzJ ZBk aﬁ, ),>;

wherei=1,2,....,pand j=1,2,...,q

From Theorem 4.1.1 (a), the optimal estimation function can be achieved by finding

a’ , and b;_,. Since

(“%ﬁ)_l - (1_%2(0)?32162)&(9)))_1’

_1+2M4(0)
“24(8)
we have
at . — . 8)7 aﬂt 1 da?(8) (m,s):
1 ( >t> ( m>,+ 30 (m) s>>’
B 1+2)¢ A:(0)
- [ Ivol o) MO A (0))326 >]
- —M
= a¢<e>
and

o= (1 <§nn;<>§)l (e w50 )

)
- Sy M (z@reaen) -+ (zerrrmen) |
= 0.

Since bff 1 1s zero, we can say that, for INGARCH(p, q), the QEF estimator reduces to

EF estimator. Hence, the optimal estimating functions for each parameter are:

* — - 1
gQO/) IZ:I 'y—|-zl 1 06X ,-+Z§:1ﬁj7‘¢—j(9)
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dA—;(0)

F+i&

j=1

p q
(Xt —{r+ Z ;X + Z B]A'fj(e)}> )
i=1 j=1
! (5.18)
B(®) = L YT aX T B O)

< IN_;(0
Xi—i+ Zﬁj%
j=1

i

P q
<Xt —{r+ Z} 0 Xy + Zl szf—j(e)}> ,and
i= j=

ey n 1
gQ(ﬁj) t; Y+ Zle o X +Z(j]~:1 Bj%*j(e)

~+(6)

A +Zﬁk 3B,

(Xt —{r+ i 0GX;—i + i ﬁklr—k(o)}> 5
i=1 k=1

(5.20)

fori=1,2.....,pand j=1,2,....q.
On the other hand, using Theorem 4.1.1(b), the information for the optimal QEF can

be obtained by

- (m, s); ou,(8)du;(6) 1 do?(8)dci(8) 1
I,(0) = ,;(1_ ><s>,) ( 96 00 (mh ' 06 08 (s

_ (8“f(9) do}(0)  957(0) () (m,s) )

J0 00’ 00 00’ (m);(s);
_ 1424 9A4 94 (1+ L, M )
24 0000'\ A A (1+24) TAZ(1+24)
1 JA A
Let My; = 87;—(;)’ M, = 8;47(:) fori=1,2,...,p and M3, = a;k(f) for j =
1,2,...,q or can be written as:

oy _ 907 _ (a&(e) IA(8)  9M(8) IA(6) 8%(6))

26 d6 dy ' day, 7 da, T 9B 7 9B,

- (Ml.,laMZ,i,h v 7M2,p,t7M3,j,l7 s 7M3,q,l) )

and N; = —, therefore, the information matrix of the optimal quadratic estimating func-

A
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tions for 0 is

Z;/l:l NtMlzJ Z;l:l NlMl athviat Z:l:l NtMl7tM3a.]7t

I, 0)=| Yo N M, Y NM3, Y NiMoiMsj,

Z;’:l NtM37j7tM17[ Z;l:l NtM37j7[M27i7[ Z?:l NtM%,j,[

5.4 Performance of The Estimation Method in INGARCH (1,1)
Here, we compare the performance of QEF in INGARCH (1, 1) model with EF and

MLE estimators. The process of INGARCH (1,1) is :

X|3i ~ P ((8)),

M(0)=v+ouXi 1 +Pi1A41(0). (5.21)

Note that the QEF estimator and the EF estimator are the same for this model. To
evaluate the performance of QEF, MLE and LS methods, a simulation study was carried
out with N = 500 replications and two sample sizes, n = 100 and n = 2000. The simula-

tion is carried out using R-cran software to obtain the estimated parameters of interest.

5.4.1 Conditional LS Derivation of INGARCH (1,1)

Lehmann & Casella (1991) defined the least square estimator as in Definition 5.4.1

Definition 5.4.1. Let Y = f(X) + noise. Suppose f is known up to a finite number p < n
of parameters @ = (04, ...,0,), the least squares estimator, denoted by 0 is that value of

0 that minimizes Y, (yi— E (;))°, that is
0 =min)_ (yi—E (yi)).
i=1

The INGARCH (1,1) is defined by Equation (5.1) and (5.2) with mean, y, = 4.

Therefore, using Definition 5.4.1, the LS of such model can be derived as

6=min) (X,—p)*. (5.22)
i=1
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We minimize the Equation above to obtain the value of estimated parameters via simula-

tion in R-cran software using n/minb command.

5.4.2 MLE Derivation of INGARCH (1,1)
The most well-known and traditional parameter estimation is MLE estimator. Ac-

cording to Casella & Berger (2002), MLE can be defines as in Definition (5.4.2)

Definition 5.4.2. Let X1,X>,...,X, be a random sample from distribution that depends on
one or more unknown parameters 0y, 0,, ..., 0, with probability mass or density function
(pdf/pmf) f(01,6s,...,6,). Suppose that 61,6,,...,0, is restricted to a given parameter

space Q. Then, the maximum likelihood estimator for 6; fori =1,2,...,nis
0 = argy max L(0, x) = argy £ (0, x),

where L(01,0,...,60,,x) =TI, f(xi;61,6s,...,6,) and max {L(0, x)} = £ (0, x).

Therefore, from Definition 5.4.2, to obtain the value of estimated parameter using
MLE, we have to maximize the loglikelihood of the model. Using Equation (5.1) and

(5.2), the loglikelihood of INGARCH (1,1) is

maxLikelihood = £ = Y {=X+X, In X, —In (X,!)}. (5.23)

t=1

We minimize the negative likelihood using n/minb command in R-cran software in order

to estimate the parameters of interest.

54.3 QEF of INGARCH (1,1)
From Section 5.3, we derive the QEF method for INGARCH(p,q) model. Using

such derivation via Equation (5.19)-(5.20), we can simply find the optimal functions for

INGARCH (1,1) as follow:

* _ 4 1
g1 = t;7+a1Xt_1+B1/'\¢_1(6)
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{1 +ﬁ182¢5—;}9)] X —{y+auXi—1 +BiA-1(0)}),
(5.24)
2@ = X aX  BA(0)

[Xt—ﬁﬁlma—;fe)} (X, — {7+ X1 + BiA—1(6)}),and
(5.25)
< 1
- SvrtaXei+Bik-1(8)

{zﬂ . m(“g—ﬁlf"’} (X — {7+ aXi 1 + B (0)}).

(5.26)

By letting g*Q(O) = 0, the simultaneous Equations can be solved using R-cran soft-

ware to give the QEF estimate of the parameters.

5.4.4 Simulation Study

Here, we discuss the steps to estimate parameters for INGARCH(1,1) model using

LS, MLE and EF/QEF methods:

e Step 1- Generate the data: We first generate the data for a given parameter vector
(7,01, Br) of size n = 100. We choose 10 parameter vectors which are closed to boundary
and also not close to boundary. The parameter vectors are: (0.2,0.4,0.1), (0.1,0.6,0.3),
(0.3,0.4,0.2), (0.1,0.7,0.2), (0.4,0.3,0.6), (0.2,0.8,0.1), (0.3,0.1,0.8), (0.1,0.2,0.3),
(0.3,0.1,0.4) and (0.5,0.2,0.3).

e Step 2: Initialize Parameters: Following Wurtz et al. (2009), in the second step, we set
the initial values for a; = 0.1 and ; = 0.8 On the other hand, we take the value of y to be

the mean of generated data in step 1, Ly, = ,namely, y = 0.1uy,, (see Ferland

_r
1—oq—py
et al. (2006)). The choice of initial values does not influence the final estimates. It only
impact on the computational time.

e Step 3- Parameter estimation: The estimated values of 7, @; and f; can be obtained as

follows:
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¢ For LS and MLE methods, we use command in R-cran to minimize the Equation
(5.22) and negative likelihood in Equation (5.23).
¢ For QEF method, we solve the simultaneous optimal Equations (5.25)-(5.26) using
command in R-cran.
e Step 4- Replication: Step 1- Step 3 are repeated N = 500 times and compute the empir-
ical mean, bias, standard error and mean square error for each parameter.

These steps are repeated for series of length n = 1500 and n = 2000.

5.4.5 The Result
The performance is measured based on mean, bias, standard error(SE) and mean

squared error (MSE) for each parameters in LS, MLE and QEF estimators as shown in

Table 5.2-5.11.

Discussion

The simulation results are shown in Tables 5.2-5.11. A number of interesting results
can be highlighted. Firstly, for the set of parameters in stationarity cases, Table 5.2-5.6,
the QEF method is comparable with MLE method and outperforms LS method such that
smaller values of biasness, SE and MSE are observed for QEF. Secondly, when the data
are close to non-stationarity cases, that is when a; + | approaches unity, we can see
from Table 5.7-5.11, QEF is clearly superior than MLE and LS in some the measures
especially their SE. Thirdly, as n increases from small sample size, n = 100 to large
sample sizesm n = 1500 and n = 2000, the results show that there is a decrease in the
values of the biasness, standard errors and mean square standard error for all parameters
for QEF method as shown in all tables. Hence, we can conclude that QEF method perform

well compared to LS and MLE methods in this IVTS model.
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5.5 Real Example

We consider 108 monthly strike data from January 1994 to December 2002 found
in Jung et al. (2005). The data are available at U.S. Bureau of Labor Statistics web-
site (http://www.bls.gov/wsp/). It describes the number of work stoppages leading to
1000 workers or more being idle in effect in the period. The number of workers consid-
ered are those who participated in work stoppages that began in the calendar year and
were counted more than once if they are involved in more than one stoppages during the
given period. WeiB (2010) fitted the INARCH(1) model to the data and showed that the
mean and variance of such model become closer to the empirical values indicating the
INARCH(1) model is a good choice. Therefore, we now consider INGARCH(1,1) model
which can be as the generalized model of INARCH(1) to investigate the adequacy of the
model to the data. The line plot of the data is given in Figure 5.1 where the plot shows
a possible change in mean. However, it does not effect on model estimation since the
INGARCH model set up the conditional mean is presented as a function of variances at
previous times and previous observations

Upon fitting the INGARCH(1,1) model, we obtain the parameter estimates 8 and
standard errors in parentheses using two methods, MLE and QEF estimators as shown
in Table 5.12. QEF methods show smaller AIC and BIC compared to MLE method.
Besides, the standard errors in QEF method also give the smaller value compare that in

MLE method.

Monthly strike data

strike

wwwwwwwwwww
mmmmmmmmmmm

Figure 5.1: The monthly strike data from January 1994 to December 2002
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Hence, from Table 5.12, our fitted model via QEF estimator for the data is
X[3X . ~ P2 (8)): 4 (8) =1.56+0.546X, 1 +0.1392 (5.27)

All the parameter estimates 6 = (f/, O?l,ﬁl> gained using QEF method are positive and

the summation of d; + BAI lies between zero and one indicating the process is stationary.

Table 5.12: The estimated parameter of INGARCH(1, 1) model

A

Method ’)7 d; [31 AIC BIC
MLE  1.53(0.028) 0.535 (0.041) 0.157 (0.036) 385.09 377.07
QEF  1.56(0.023) 0.546 (0.037) 0.139 (0.038) 383.45 375.43

The mean and variance obtained from our fitted model are 4.98 and 7.68 respectively.
Meanwhile, the empirical mean and empirical variance are 4.94 and 7.92 accordingly.
Weif3 (2010) applied the data into INARCH( 1) and obtained the variance as 8.37. There-
fore, from the mean and variance for this model, we can see that the INGARCH (1,1)
have the smaller variance. Therefore, we can claim that the data fit better in INGARCH
(1,1) model compared to the INARCH(1). But, to strengthen the claim, next, we will
investigate the Akaike information criterion (AIC), Bayesian information criterion (BIC)

on INARCH(1) and INGARCH (1, 1) models.

Table 5.13: AIC and BIC for INARCH(1) and INGARCH (1, 1) models.

AIC  BIC
INARCH(1)  463.97 468.54
INGARCH(1,1) 383.45 375.43

From Table 5.13, it is clear that the INGARCH(1, 1) model gives the smallest AIC
and BIC compared to INARCH(1). It indicates that the INGARCH(1, 1) model fits the
data better. To investigate the model fitting adequacy, we consider the Pearson residual
defined as z; = (X, - L(é)) / m . According to Kedem & Fokianos (2005), under
the specified model, there are two requirements should be satisfied. First, the sequence of
z; should have mean and variance close to 0 and 1 respectively and secondly, the sequence

does not have serial correlation. For our data, we found that the mean and variance
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of Pearson residuals is close to zero and unity which are 0.032 and 1.009 respectively.
Therefore, the first condition of specified model is satisfied. For the second condition, we

use the Ljung-Box (LB) statistics to determine the existence of a serial correlation.

Table 5.14: Diagnostics for INGARCH(1,1) model

LB3o(z) LB3o(z)
x> 24.3 21.6
p-value  0.758 0.868

From Table 5.14, the p-value is larger that the significance level, & = 0.05 indicat-
ing that there is no significant serial correlation in the residual. Therefore, the second
requirement is fulfilled. We conclude the INGARCH (1, 1) model fits the data well.

On the other hand, the model fitting adequacy can also be investigated using the
randomness of Pearson residual plot and the cumulative periodagram plot. For the latter,
according to Brockwell & Davis (2013), the model is adequate if the plot do not cross the

dotted line.

The residuals versus time Cumulative periodgram plot

time

(a) (b)

Figure 5.2: (a)The Pearson residual plot. (b)The periodagram plot

Figure 5.2(a) gives the plot of z; given ¢. It is clearly shown that such residuals
are randomly distributed and do not have specified trend. From Figure 5.2(b), we can
obviously see that the plot does not exceed the dotted line. Thus, we conclude that the

INGARCH(1, 1) models fit the data well.
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5.6 Summary of The Chapter

In this chapter, we focussed only on INGARCH( p, ¢) model. We presented a general
approach for any p and g instead of given by Ferland who gives the results only for p = 1
and g = 1. We derived the optimal QEF functions and their information matrix. To see
the performance of this method, we carried out a simulation study in which the QEF was
compared to MLE and LS. The results show that the QEF estimator is superior compared
to MLE and LS methods. Lastly, we applied the methodology on a set of real data and
showed that the INGARCH(1, 1) model was a good fit and that the QEF worked well in

this case.
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CHAPTER 6
NBINGARCH(p, ) MODEL

6.1 Introduction
Zhu (2011) highlighted that the INGARCH(p, ¢) model has few disadvantages. Firstly,
it does not accommodate covariates. Secondly, the ACF is always positive and lastly the
conditional distribution of INGARCH( p,q) model following Poisson, meaning that the
conditional mean and conditional variance are the same which will lead to overdispersion
Therefore, to overcome these drawbacks, Zhu (2011) proposed the same model with
negative binomial as conditional distribution which is denoted as NBINGARCH(p, q) .

The model is defined as

(XI|S§(—1) ~ NB(rapl)v

1—p 1
=Nk = Y+ Z 0 Xr—i+
Pt i=1 j

q
Bii—. (6.1)
=1

where y>0,0; >0,i=1,2,...,p, j=1,2,...,q, ris the number of successes trials, 3?(_]
is the o—field generated from X;_1,X;_7,...,X] and p; is the probability of successes.
Here, as in INGARCH(p, q) model, the model satisfies the stationarity if and only if

0<ryl oi+¥l Bi<l.

6.2 The Moment Properties
In this Section, we will derive the moments of both unconditional and conditional

distribution of NBINGARCH( p, ¢) model up to order four.

6.2.1 The Moments of Conditional Distribution in NBINGARCH(p,q) Model

For NBINGARCH(p, q) process, the conditional distribution follows negative bino-
mial distribution. To simplify, let ¥; = X; |Sf£1 follows the negative binomial distribution,
Y; ~ NB(r, p;) where p; is the probability of successes. According to Johnson et al. (2005),

probability generating function (pgf) of negative binomial distribution is G(z) = (11_;;’»
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with ¢; = 1 — p;. The first derivative can be obtained as below:

d (1—q\'
G = —
& dz (1 —‘]tZ)

= L0-a)(-q2)”
= (1=q) (-n)(1-=2) """ (—q)
= rg(1—q) (1—qz)" " (6.2)

Using the same approach, the second and third derivatives are

G"(@) =gt (1 =) (r+1) (1 —ai2) "2,

and
G/”(Z) _ n]t3 (1 _qt)r (r+1)(r+2)(1 —(]tZ)_r_3 )

respectively. Therefore, the k-th derivative is
G (e) = rgf (1—a)" (r+ 1) (r+2)...(r+k—1) (1= gi2) ",

From Equation (6.2), the mean is:

rq:

[.L[:E(y[>:G/(1): l_qt (6.3)
The second derivative is
2
rq; (r+1
G"(1)=E (12) ~ E(y) = 1),
(1 —Qt)

Rearrange it to be E (yz) , therefore,

£ ()’zz) _ rq,2 (r+1)

1—a) TR W ek ) L S (%H),
—4qr

(1—q,)? l—q 1-g\1-g

then, the variance for negative binomial distribution is:

var(y;) = E (y;z) —[EG)],
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_ rq: (”%"’1)_( rq: )2
Il—g \ 1—¢q 1 —gq; ’
rq:
_ A 1—
(T2 "1

S (6.4)

(1—q)?*

Using the same approach, we obtain

’
E(}) = 2 (Pq2+3rq+1+4q)
(1 - Qt)

and

"

E(y}) = ﬁ (P + 67 +Trq +4rg? + ¢¢ + 1 +4q;)

— Yt

which lead to
rq
Ekrﬂ@ﬂz — (1+4)
( —Qt)
and
4 rq: 2
E [(y_“f) } = ——— (3rqi +q; +1+4q,)
(1 _Clt)

respectively. Therefore, the skewness of the negative binomial distribution is given by:

E [ —m)’]

FI(NB) _
(var(y))*
rq:
_ (I—g:) (1+4q:)
( qr >3/2
(1-g;)°
_ 1 +q; 6.5)
rq;’
and the kurtosis for negative binomial is:
4
(var(y:))
(122)4 (3rq: +q7+1 +44q;)
= 2 5
rqr
((1*‘11)2>
_ 3rgitqi+1+4q 66)
rg; .
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We can represent the moment properties of negative binomial distribution in terms of A,

where define

}sz 1_pt
Pt

Therefore, the first four moments of negative binomial distribution are:

W= rh, o =rk(1+4),

pve — _142% e _ AT Grad) 42272441 oo

Vi (T+2) A (1+2)

6.2.2 The Moments Properties of Unconditional Distribution in NBINGARCH(p, q)
Model

The mean of the NBINGARCH(p,q) is u = E(X;) = E [E (X|3¥,)] = E[rA],
therefore, under large ¢, we have u = rA. The variance of the martingale difference u;

is
o; = E(u})=rEN)+rE(A?). (6.8)

For the skewness and kurtosis of the u;, we have

E (u}) E (rd +3rA2 +2rA?)

re — =
{E@)Y? [E(a+md)]

(6.9)

Moreover, for the excess kurtosis of the model, using the same approach as skewness of

Uy, F(M) )

Ew)
{E(})}}?
E(E[(x-mst)’])

KW —

o
_ E (rzltz —8rA2 —4rk + r227L,3 — 4r7tt3) ' (6.10)
[E (rAe+127)]
For large t and A = %, Equations (6.8), (6.9) and (6.10) become
of = w1+, 6.11)
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w(rr+3rp+2u?)

(w) _—
r rl/z(ru—|—/.12)3/2 , and (6.12)
2.2 2 2. 3 3
" wore—8ucr—8ur-+ur—4u
KW = at ) (6.13)

respectively.
Hence, by using Equations (6.11), (6.12) and (6.13), we can find the variance, skew-

ness and kurtosis of NBINGARCH(p, ¢) process which are

u (e o]
of = u(1+5) X vl
Jj=0
2 2 oo 3
o [,L(r +3ru+2u )Zjoll’é/z, an
P2 (et p2)*? (Z?’:o Wf)
2.2 2 2 3 3 o
K0 3+(,ur —8ur—8ur-+u 1’—4,12)2]-_01//;1
(r+ ) (Z70¥3)

d

accordingly.

Zhu (2011) derived only on the mean and variance of unconditional distribution in
the NBINGARCH(p,q) model. The derivation for variance presented in Zhu’s work is
very complicated and with the order of g to be zero. Here we produced a closed form
expression for the moments up to order four for all p and g cases and the derivation is
easier to understand. This finding is very important in understanding the behavior of the

model through its higher order moment properties.

6.2.3 Empirical Study

Again, similar to Section 5.2.3, to demonstrate the moments structure are correctly
derived, we do the empirical study for the cases when the process is close and far from
the boundary of stationarity. Here, we generate 500 samples of size 2000 and fixed the
value r = 2, then, calculate the mean and the mean square error of the estimated moments
as tabulated in Table 6.1. It can be seen that the estimated values are close to the true

values.
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Table 6.1: Generated data and true values for the moment structures with y = 0.1

o =0.1 o =0.5

Estimated | True MSE Estimated | True MSE

B=02
ux | 0.8127 |0.8213 | 7.21E-05| 1.142 | 1.151 | 1.22E-04
oX | 08177 |0.8156 | 1.23E-03 | 1315 | 1.329 | 8.12E-03
& | 1.581 1.567 | 1.66E-04 | 1.079 | 1.082 | 5.58E-05
K% | 4032 | 4.108 | 4.11E-03 | 4.014 | 4.025 | 1.28E-05
B =04

pux | 0.8213 | 0.8236 | 1.44E-03 | 1.774 | 1.792 | 5.23E-03
oX | 0.8321 |0.8344 | 9.12E-03 | 1.158 | 1.167 | 3.11E-03
r® | 1210 | 1.251 | 821E-03 | 1.582 | 1.596 | 4.53E-03
KX | 4234 | 4247 |5.14E-03 | 4771 | 4.785 | 8.11E-03

6.3 Quadratic Estimating Functions on NBINGARCH( p, q) Model
The third contribution of this study is to find the optimal quadratic estimating func-
tions for each of our models. To apply the QEF in estimating the parameters of interest,

the first four conditional moments of NBINGARCHY(p, q) are required and they are

u(0)=rk(0), (6.14)
62(0)=rA(0)(1+2(0)), (6.15)
1421, (0)
I,(0)= , 6.16
SN SR OIETACI) (610
and
2

A (0)(14+24(8))
The martingale differences of m, and s; for such model are defined to be m; (0) =
yr — 1A (@) and s, (@) = m?(0) — 67 (0) for t = 1,2,...,n. Then, their variances and

covariance can be easily found as shown below:

(m)y = 62(0)=rA(0)(1+2(0)), (6.18)

() = c(8)(K:(68)+2),
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A2 (0) —4A(0)—4
2 (8) (14 4,(0)) “}’

rA? — — 7 2
= Da(O) (14 (0 | PO E S T IR 6],

= 2 (0)(1+A4(0)) [A2(8) {1+2r} +24,(8) {r—2}—4],  (6.19)

and (m,s), = o'(0)[(0),
1+24, () ]

_ 1 3/2
26 (1+ 2 (8)) [wwmm(e»
= 2 (8)(1+2,(6))[1+22,(6)]. (620)

A (8) (14 4,(0)) [

On the other hand, in applying the QEF estimator, we have to find the derivatives of

. . 91(8) 9o} (6) :
the mean and variance with respect to the parameter 6, =5~ and =55~ respectively

o (6) _ 9(rA(0))

0 20
= A/ (0), (6.21)
and
907 (6)  d[rA(8)(1+4(0))]
R 26 , (€22
= rA/(0)[1+2(6)]+2/(0)rA (),
= A (0)[1+24(0)]. (6.23)
The parameters of interests are given as @ = (y,0,..., &, B1, B, . .. ,Bq),. Therefore,

o (8) _ <raz4<e> M (6)  9X(8) 9M(8) /“4“”)
06 dy  da U da, T 9B 7 9B, )

= (BB Baps B Bagn) -

20

where D; = r(1+2A(0)), B(; ) is the partial derivative of the mean with respect to

i,jt)

each parameter and H|; ;) is the partial derivative of the variance with respect to each
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2\ —1
parameter. In order to obtain the optimal function, we let R, = (1 — %) , Bkmt =

—By, m __ Hk,z<m~,5>t v o Bk,t<m75>t v _ —H: : : :
T HkJ = 0.0, TkJ = o) and Zk,z = Therefore, the optimal estimating

function for NBINGARCH(p,q) is given by

n
g0(0) = Z (af_ym +b;_1s1)
=1
where
“ B’(ﬂl,t) +HH7I)’B’(71271J) JrH(nil,r)’ o ,BE”ZM) JrH(rg,p,t)’
a_ =R :
B?é’17t) +H('73l717t)’ e ,B’(/’é7q7t) +H(m3’q7t)
1% 1% 1% % 1% v
. _p Ty 200 Tean T2 Tepn T2p
—1 = R
T30t 26000 T30 T 2040

Thus, the optimal quadratic estimating functions for each component of 0 are

g(1) = éRt [(B’("m +H€’}J)> my + (T(Vm +z(vm) s,} ,
gplon) = éRt[(B’("z,i7,)+H(”§’iJ)>mt—l—(7"(V27i7t)+Z(V27i7t)>s;}, i=1,p,
) (6.24)
(B = [éRt[(BE%’J.J)+HZ’§’J.J))m,+<T(V37j’t)+Z(V37j7t)>sl], i=1,....q
(6.25)

To estimate the parameters of interest, we can solve g’é(e) using R-cran software. The

information matrix of the optimal estimating function for 0 is given by
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0 0 0
Iy Iy I?’ﬁj
Ig*Q(e) - Igi?’ Igiai Ioc,'ﬁj

0 0 0
Iﬁﬂ’ Iﬁj Q Iﬁjﬁj

- [i%;;?f’;%ﬁ <<";‘ ?;]

Il%ﬁ, :Zl:lRt [Bf;;:) +H§z7>j’t) 2B(3,ji)H(3,j.) << \ Z>;

I%j _ tzn}Rt [3(3,2;25(1,& n H(3,j<,;)>fl(1,t) —(BunHa jn +HunBs ) <§Z§;2;J
IOQCI,[;JA _ té R, {B(z,izr)ji&j,t) I B(z,i,g;i(&j,t) —(BoinHa jo T HoinBa,js) <§Z;;2;J

and I(X,")/ - I’}’(X," Iﬁ]»y - Iyﬁ] and Iﬁjai - Ialﬁ]

The optimal estimating function and associated information based on m; is given by

. B " Ju (0) X, —rA (0)
(@) ==X 59 {m<e><1+z,<e>>} (6:26

and the optimal estimating function and associated information based on s; is given by

m; (8) — o} (6)

& 06 {r)g (0)(1+2(8)) [A?(0){1+2r} +24,(0) {r—2} —4]
(6.27)

We then obtain the corresponding information matrix using estimating functions based
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on m;(0) and s;(6) denoted as Iy: (6) and Iy: (@) respectively such that

I %’ L ?r/nai I%j [;7 IJS/OQ I;ﬁ i

L, (0) = Iy 1o Igliﬁj - 1 (6)= Ioiy oo, Igtiﬁj
m m m ) £} \)

Iﬁj Y Iﬁj o Iﬁj B; Iﬁj Y Iﬁj o Iﬁj Bj

where the elements for Igi‘n in the matrix are

=1 t=1 =1 t

n [B2 n [B2, .
m (1,) m (2,i)t)
= I =
144 Z [<m>z] > oo Z [ <m>t

n [B )
. m _ 7]7t .
’ Iﬁjﬁj_zl (m) ]

" [BninB By i B " B inBi
m (2vlat) (17[) . m (37]7t) (17I) m v (2al7t) (37]7[)
= 1 | = L P e = 1| |

t=1 =1 m) =1 (m);

and the remaining elements are obtained by symmetry. The elements Iy are

n [H? n [HZ, n [HZ .
S (17t) S (2,l,l) S (37]7t)
L, = s Loy, = s Ig g = — |

=1 =1 t=

n THy: H n THp o nH n TH,
S _ (2717t) (]7t) . S _- (37J7t) (lvt) 0 _ (2117
o= 1P = B TR amd 1 = 1|

=1 =1 =1

From the information obtained using QEF and information via its components, 17,(0)
and s;(0), itis clearly seen that I%, > Iy, I%, > Iy, Ig.ai > It 5 Igai > Lo, IﬁQjﬁj >

79

0 @ p
Iye, > L a3 > Ig;iai’ I(Xiﬁj = I‘Sx"a"’ IO‘!'BJ' > IE;BJ"

m Q S Q m
BiBj’ Iﬁjﬁj > Iﬁjﬁj’lmi > 1 s

144
and Ig B> Ils}j B Based on these, we conclude that the QEF is more informative than the
JEJ J

component estimating functions (see Ghahramani & Thavaneswaran (2009)).

6.4 Performance of The Estimation Methods in NBINGARCH (1,1)

In this section, we compare the performance of QEF method with EF and MLE
methods in NBINGARCH (1, 1) model by a simulation study with replication N = 500,
and two sample size, n = 100 and n = 2000.

NBINGARCH (1, 1) process is defined as:

(X13%1) ~NB(r,p),
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1—pi
Pt 2(8) = y+ouXeoi + Bk, (6.28)

6.4.1 MLE Derivation of NBINGARCH (1, 1)
In order to apply the MLE for the model, we first have to find loglikelihood of NBIN-

GARCH (1,1) which is

L= é {ln{ (r(f’;)r!&t i)i)! }} trin (ﬁ) + (X —7) In (%) .

To obtain the parameters of interest, we have to maximize the likelihood function using

nlminb command in R-cran.

6.4.2 EF Derivation of NBINGARCH (1,1)
The derivation of EF for NBINGARCH (1, 1) can be obtained from Equation (6.26)

whereby

< 3Nt(9){ Xi —rk (0) }
rA (0)(1+2.(0)) )’

— _V Xl_r;l't(e)
3 Z’“"){rzaeﬂlm(e))}’

. _n / Xl_r}t't(e)
- m(‘”{&(e)(lm(e))}'

Therefore, the optimal EF function for the parameters are:

X~ (@) r {14 g 250}

ge(y) = —;} ROESRO) : (6.29)
* 0 X = (0)hr{rXmr + B P50 |
gp(on) = —t; ROESRG) , (6.30)
* 0 X = (0)hr { Ao+ Py g8}
gg(B1) = _t; 7 (0) (117 (0)) 6.31)

To obtain the estimates, we solve the simultaneous Equations from Equation (6.29) until

Equation (6.31), by letting them equal to zero using nlegsl/v command in R-cran software.
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6.4.3 QEF Derivation of NBINGARCH (1,1)
From Equation (6.24)-(6.25) in Section (6.3), we can simply find the QEF optimal

functions for NBINGARCH (1, 1) process where

gh(r) = Xn‘i R -(B’(’;J) —l—H(”]’J))mt—f—(Tlv—i—Zf)stH , (6.32)
o |[%]

golon) = l_fl :Rr :(B'(’E,l,z) +Hf§,1,r)) my + <T(V2,1,z) +Z(Vz,1,t)> St“ ,  (633)

B = Y R (Bl +HE o )t (T + 200 ) 5| |- 639)

~
—

Using R-cran software through nlesqv command, we can solve the simultaneous Equa-

tions (6.33)-(6.34).

6.4.4 Simulation Study

We use R-cran to obtain the parameter estimates using MLE, EF and QEF methods
for NBINGARCH (1,1) model. The steps in the algorithm are the same as those in
Section 5.4.3. In Step 3, we use nlminb command in R-cran to minimize the negative
likelihood of NBINGARCH (1, 1) model and for both EF and QEF methods, the optimal

Equation g* can be solved using nlegslv in R-cran.

6.4.5 The Result

In this section, we investigate the performance of QEF method compared to MLE
and EF methods in the NBINGARCH (1,1) model based on mean, bias, standard er-
ror(SE) and mean squared error (MSE). The results are presented in Table 6.3 to Table
6.6. We perform the simulation with sample size n = 100, n = 1500 and n» = 2000 and

for different sets of values of the parameters for the cases r =2 and r = 3.

Discussion
We assess the performance of MLE, EF and QEF methods through a simulation
study for NBINGARCH( p,q) model using R-cran software. From all tables, which are,
Table 6.2 - Table 6.11, the results show that, the QEF method gives the value of estimated
parameters closest to the true values for all cases for n = 100, n = 1500 and n = 2000.
In comparing EF and QEF estimators, from all tables, we can obviously see that, the
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QEF method outperforms such that smaller values of biasness, SE and MSE are observed
for QEF indicating the QEF method is superior estimation than EF method. Besides, in
comparing with MLE estimator, for stationarity cases, see Table 6.2-6.6, we can clearly
see that the value of the standard errors and mean square errors of MLE estimator are
fluctuate with QEF method for almost combination set of parameters indicating that QEF
method is comparable with MLE method. However, when the values of parameters ap-
proach nonstationarity condition, see Table 6.7-6.11, the MLE gives a slightly bigger
standard errors and mean square errors. The results indicate that the QEF methods are
better estimators compared to MLE method.

Besides, when we increase the number of sample size from n = 100 to large sample
size, n = 1500 and n = 2000, the results show that the value of standard errors, biasness
and mean square error for EF and QEF methods are decrease for all combination sets
of parameters but fluctuate in MLE method. Therefore, it indicate that the EF and QEF
estimators are more consistent compared to MLE estimator.

Hence, in a nutshell, we can conclude that QEF method is superior estimation method

compared to EF and MLE methods for this integer-valued time series model.

6.5 Real Example

Following Zhu (2011), we apply the NBINGARCH(p, ¢) model on Polio data found
in Zeger (1988). The data represent counts of poliomyelitis cases in the United State from
1970 to 1983 as reported by the Centres of Disease Control and has shown a long-term
decrease in the rate of U.S. polio infection. The data also are available in Morbidity and
Mortality Weekly Report Annual Summary. The disease mainly affects children under 5
years of age and may lead to irreversible paralysis, paralysed and immobilized breathing
muscles. Such disease is caused by a virus that invades the nervous system and it can
be spread via faecal-oral route and multiplies in the intestine. Zhu (2011) applied the
NBINGARCH (1, 1) model for this data and estimated the parameters using MLE. Here,

instead of using MLE, we use QEF estimates to fit such model.
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The plot is given in Figure 6.1.

Polio Data

Number of Polio cases

mmmmmmmmmmmmmmmmm
wwwwwwwwwwwwwwwww
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Figure 6.1: The Polio data in the United State from 1970 to 1983

We first identify the best value of » by comparing the AIC and BIC values for selected

values of r as given in Table 6.12. It is clearly indicates the choice of r = 2.

Table 6.12: AIC and BIC values for NBINGARCH(1, 1)

Initial value of » 1 2 3 4 5
AIC 521.325 519.321 522.369 526.128 530.965 -
BIC 522965 521.684 536.541 539.586 542.581

Then, we compare the performance of MLE, EF and QEF methods based on the
information criteria AIC and BIC as shown in Table 6.13 with r = 2. The table presents

the parameter estimates é, standard error in parenthesis, AIC and BIC values.

Table 6.13: The estimated parameter of NBINGARCH(1, 1) model

A

Method 7 d i AIC BIC
MLE  0.312(0.008) 0.185 (0.003) 0.182 (0.018) 522.356 532.351
EF  0.325(0.026) 0.190 (0.004) 0.192 (0.021) 520.833 532.168
QEF  0.321(0.002) 0.183 (0.001) 0.185 (0.002) 519.321 521.684

We see that, the QEF method presents the smallest AIC and BIC compared to EF and
MLE estimators indicating the fitted model via QEF method fit well to the data. The
parameter estimates (¥, @, ;) using QEF method are positive and the summation of
ray + Py lies between zero and one, showing that the process satisfies the stationary re-

quirement.
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From Figure 6.1, it is clearly shown that, the data has an outlier at November 1972,
which indicate that NBINGARCH(1, 1) model is preferable compared to INGARCH(1, 1)
model. To prove the claim, we then compare the AIC and BIC based on QEF estimates

for INGARCH(1, 1) and NBINGARCH(1, 1) models.

Table 6.14: AIC and BIC for INGARCH (1, 1) and NBINGARCH (1, 1) models.

AIC  BIC
INGARCH (1,1) 55023  563.77
NBINGARCH (1,1) 519321 521.684

The results of AIC and BIC values in Table 6.14 clearly shown that the improvement
of fit with using the NBINGARCH(1, 1) model is significant compared to INGARCH(1, 1)
model. It indicating such model can deals with both overdispersion and potential extreme
observations. Therefore, we can conclude that NBINGARCH(1, 1) model fits the data
better than INGARCH(1, 1) model.

In order to check the model adequacy, we first define the residual of the fitted model.

In this NBINGARCH (1, 1) process, we define the Pearson residual as

o= (X = (8) /\/ (1+2(8)).

Using such residual z;, we find the mean and variance as 0.0256 and 1.088 respectively

whereby we can clearly see that the mean and variance of this Pearson residuals close to
zero and unity which satisfy the first condition on specified model by Kedem & Fokianos
(2005). To see whether the second condition is satisfied or not, we use the Ljung-Box
(LB) statistics to determine the existence of serial correlation in the data. From Table
6.15, the p-value obtained is greater than the significance level o = 0.05 for both z
and ztz. Therefore, one can conclude that there is no significant serial correlation in the
residual which satisfies the second requirement. Therefore, the process NBINGARCH

(1,1) is adequate for the data discussed.
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Table 6.15: Diagnostics for NBINGARCH(1,1) model

LB3o(z) LBso(z7)
x° 29.1 14.1
p-value  0.513 0.994

In addition, the randomness of Pearson residual plot and the cumulative periodagram
plot can be used in investigating the model fitting adequacy. Both plots shown in Figure
6.2 satisfy the specified model conditions by Brockwell & Davis (2013). Hence, we

conclude that the model is adequate for the Polio data.

The residuals versus time Cumulative periodgram plot
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Figure 6.2: (a)The Pearson residual plot. (b)The periodagram plot

6.6 Summary of The Chapter

In this chapter, we derived moments up to order four for NBINGARCH(p, ¢) model.
We also derived the optimal QEF function and its information gain for this model. The-
oretically, the information gain by QEF estimator is more informative compared to its
individual components. Furthermore, we carried out the simulation studies to see the per-
formance of QEF estimator compared to EF and MLE methods. The results show that
the QEF method performed well compared to other two methods for this integer-valued
model. Therefore, we can conclude that the performance of QEF estimator is superior
compared to EF and MLE methods. Finally we applied the methodology on real data set

found in Zeger (1988). We found that the NBINGARCH(1, 1) is fitted the data well.

85



CHAPTER 7

ZIPINGARCH(p, g) MODEL

7.1 Introduction

High occurrence of zeroes in data set may be observed especially in some areas of
public health. For rare diseases with low infection rates, the observed counts typically
contain a high frequency of zeroes (zero-inflation) but the counts can also be very large
during outbreak period. Concerning with this excess zeroes issues, Neyman (1939) and
Feller (1943) introduced the concept of zero-inflation to address the problem of excess
of zeros. Following their findings, many studies and applications of zero-inflated models
have been put forward, especially in regression context. For example, Lambert (1992)
introduced zero-inflated Poisson (ZIP) regression model, Baksh et al. (2011) proposed
the overdispersion test for the ZIP model and Lim et al. (2014) studied the ZIP mixture
regression model.

Extensive studies related to the development of zero-inflated processes are also seen
in time series analysis. A model introduced by Zhu (2012) is known as ZIPINGARCH(p, q)
model. The model is inspired by GARCH (p,q) model with ZIP as conditional distribu-

tion. It is defined as

X,|3X | ~ZIP (A, @), (7.1)
P q
A=v+ Z OGyr—i+ Z BiA—j (7.2)
i=1 j=1

where y >0, >0,i=1,2,...,p, Bj >0,j=1,2,...,q, 3;_1 is the o-field generated
from X;_1,X;—2,...,X; and the inflation parameter, 0 < @ < 1. Therefore, in this chapter,
we study the ZIP time series model namely ZIPINGARCH(p, q) process focusing on its

moments up to order four and apply the QEF method as the estimation method.
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7.2 The Moment Properties
Similar as INGARCH(p, g) and NBINGARCH(p, ¢) models, the moment properties

for conditional and unconditional distributions of ZIPINGARCH( p, ¢) model are derived.

7.2.1 The Moment Properties of Conditional Distribution in ZIPINGARCH(p,q)
Model

In ZIPINGARCH(p, ¢) model, the conditional distribution follows zero-inflated Pois-
son (ZIP). Let Y; = X; |Sf£1 follows the zero-inflated Poisson distribution with parameter
A, and ® which is ¥; ~ ZIP(A;,®). Zero-inflation models occur when zero counts is
greater than expected for the Poisson distribution. According to Johnson et al. (2005) the
distribution of Poisson known as zero-inflated Poisson where the zero class is misreported

or over reported. The probability mass function (pmf) is

o+ (1—w)e ™ fory, =0
fln) = (7.3)

A
(1-0) % fory, =123,...

It is a special case of finite mixture models, that is useful for count data contain-
ing many zeros. The probability generating function is G(z) = @ + (1 — @) e* 1 (see
Johnson et al. (2005) page 353). The mean of such distribution is the first derivatives of
the pgf withz =1

d
G(z) = = o+ (1— )M

W= Ep)=G1)=4(1-0)=(1-0)k.

Using the same step in INGARCH(p, ¢) and NBINGARCH(p, g), the kth derivative of
ZIP’s pgfis G*(z) = (1 — @) €MD Ak, To find the variance of ZIP, we first have to obtain

the value of E (ytz) whereby from the second derivative of pgf, that is

G'"(1)=E((y—1))=E ()’tz) —E(y;)=(1— w)kz2~

This implies that E (y7) = (1 — @) A, (A, + 1) and consequently, the variance is given by

02 =E(37) —[EG)] = (1-0) 4 (1 +40).
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By finding the third and fourth derivatives, we can find E (y;) and E (y}). We have
G"(1) =E (yi(y:— 1) (3 —2)) = E (¥}) —=3E (37) +2E(y) = (1 — ©) A and G""(1) =
E (=1 —=2)(v =3)) =E () =6E (37) + 11E (y7) —6E(y1) = (1 — @) A" leads
0E(y})=(1-0)A (A?+34+1) and E (y}) = (1— 0) A, (A7 + 64>+ 74 +1) . Us-

ing E (yf) , we can find the third moment of ZIP model such that
E 31 3 2 2 3,3
(i-(-0)a)?| = EHI-37(1-0)4+3n[(1- o)A - (1- )4},
Then, using the expectation properties, we have

E (yt—(l—w)b)ﬂ — E(})-3E(}) (1-0) A +3EG) [(1-0) 47— (1-0)’ 2,
= (1-@) A {34 +1}-3(1-0)* A2 {4 +1}

31—’ —1-w)A’. (7.4)
Lastly, we factorize Equation (7.4) giving

E|i—(1-o)k)’| = (1—w)2¢{)t,2+37t¢+1—3(1—w)ﬂ4[2¢+1]—(1—w)zlf},

A2 434 +1-3A7 34 +30A% - 30

42147 — 4020+ 202 @
= (1-0)A{1+30k -} o+21 0} . (7.5)

And, for the fourth moment, apply the same approach, giving

W —4(1—0) Ly} +6y7 (1- ©)* A2
Eli-(-w)a)'| = E ,

—4y, (1-— )’ 22+ (1—w)* 2}

= E()—4(1-0)LE(3}) +6E () (1 - 0)* A}

—4E(y)(1— o) 22+ (1 —w)* A% (7.6)
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Substituting E (y;) , E (y?).E (y}) and E (y}) into Equation (7.6), we have

E|(y—(1 —a))/l,)4] = (1-0) 4 {0’ (30° —30+1)+60°A7 + A (40+3)+1} .
(7.7)

Using (7.5) and the variance, the skewness for ZIP, F,(ZIP) can be obtained

ztpy  E(i— w)’

(var(y))**’

(1-0) 4 {14304 — 2?0 +21 0}
(1- @) & (1+A0)?

1430k — Ao+ 207 0? 7.8)

J-o)a(1+20)7

Y

For kurtosis, K #!P ), we substitute (7.7) and the variance into (D.2) :

K2y _ E ()’t—ﬂt)4
(var(y)*
(1-0) 4 {wi? Bo*—3w+1)+6A70* + 4 (40+3)+1}
(1= @) (1+4o)? ’
0l (30 —30+1)+6A0* + X (40 +3)+1
(1-@) 4 (1+40)? |

(7.9)

7.2.2 The Moment Properties of Unconditional Distribution on ZIPINGARCH(p, q)
Model

Applying the same approach as in Section (5.2.2) and Section (6.2.2), we first find u

in terms of A via mean of the model. The mean of ZIPINGARCH(p, g) is
u=EX)=E[E(X[SL)] =E[(1-0)A]
and for large 7, A, approaches A, a constant. Hence,

u=(l-w)A. (7.10)
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Therefore, we rewrite Equation (7.10) as A = % The variance of the martingale differ-

ence u; 1s given as

\S)

o, = E(utz)

= (1-0)E(A)+(1 - 0)0E (37). (7.11)

On the other hand, the skewness of u; is

E ()

[E ()]
_ 0o+ 1E (A?) +30E (A4)+1 7.12)
E[(1- o)k (1+ o)

rw —

Similarly, using the result in Equation (7.12), the excess kurtosis of the process is given

by

K(u) _ E(”?) _3
[E (7))
_ 0(60*—6w+1)E (A7) +60(20—1)E (A?) +T0E (A)+1 7.13)
N E{((1- o)) (1+0k)} o

Thus, we can rewrite Equations (7.11), (7.12) and (7.13) , therefore, we have the

variance, skewness and kurtosis of u; as

2 ou
op = nll+y—), (7.14)

—w)? — ) — 12 22
W _ (1—w)"+3uow (1 — ) ua)+2uco, (7.15)

Ji-ou(i-o+uo)
ou? (30 =30 +1) +60°u> (1 - o)+ 1 (1 - 0)* (4o +3)+ (1 - o)’
(1-0)u(l-o+po) '

(7.16)

Therefore, the variance, skewness and kurtosis of ZIPINGARCH(p,¢) can be obtained
by substituting Equations (7.14), (7.15) and (7.16) into Theorem 1(b), Theorem 2(b) and
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(c) respectively which are

(oo}

of = nil+i—) ) Ow?,

rx _ (1-w)’ +3#w(1—w)—u2w+2u2w223.°:01,/]37
\/(l—w)u(l—w+uw)3():;;O%Zf/z

K0 ww(3w2_3w+1)+6w2u2(1_w)+u(1_w)2(4w+3)+(1_w)sz?,zowj}.

(1-0)p(-o+po) (5 w})z

Here, we compare our moment properties of unconditional ZIPINGARCH(p, q)

model with Zhu (2012) who obtained only the first two moments of the model with the

order p = 1 and ¢ = 1. In the thesis, we form a closed form expression for the moments

of the model up to order four for all p and g.

7.2.3 Empirical Study

To demonstrate the moments structure are correctly derived, we do the empirical

study for the cases when the process is close and far from the boundary of stationarity.

Here, we generate 500 samples of size 2000, fixed the inflation parameter, ® = 0.2 and

calculate the mean and the mean square error of the estimated moments as tabulated in

Table 7.1. It can be seen that the estimated values are close to the true values.

Table 7.1: Generated data and true values for the moment structures with y = 0.1

o =0.1 a;=0.5
Generated | True MSE Generated | True MSE
B =02
puy | 09881 |0.9892 | 1.23E-03 | 1.152 | 1.159 | 1.35E-04
oX | 08741 | 0.8753 | 7.12E-04 | 1.068 | 1.076 | 5.69E-04
r) | 1335 1.358 | 1.88E-03 | 1.368 | 1.438 | 7.25E-03
KX | 4125 4137 | 5.21E-03 | 4.745 | 4.751 | 8.27E-04
B =04
ux | 0.7661 | 0.7682 | 1.25E-03 | 1.021 | 1.035 | 2.04E-03
oX | 0.8768 | 0.8753 | 5.11E-03 | 1.367 | 1.355 | 5.11E-03
) 1.621 1.612 | 4.15E-03 | 1.812 | 1.827 | 8.01E-03
KX | 4.147 4159 | 9.11E-04 | 4.132 | 4.144 | 8.29E-03
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7.3 Quadratic Estimating Functions on ZIPINGARCH(p, ¢) Model
In order to apply the QEF method, we first consider the first four conditional mo-
ments of the model (see Liang et al. (2011)). The mean, variance, skewness and kurtosis

of y, conditional on 3% | of ZIPINGARCH(p, g) model are
W (0) = (1-0)A(0),

02(0) = (1 - 0)A(8) (1+wi(8)),

0o+ 1)A7(0)+3wA(0)+1
(1 0)4,(6))2 (1+ wi(8))**

0607 — 60 +1)A3(8) + 60 (20 — 1)A2(8) + 70 (8) + 1
(1-0)A(6)) (1+ w(6))>

Then, by taking the martingale differences as m,(0) =y, — 1;(0), 5,(8) = m?(0) —
62 (0), we have (m); = 62(0), (s); = 6:(0)(x;(0)+2) and (m,s); = 6(0)%(0). Using

K(0) =

arguments similar to those in the other models, the derivatives of mean and variance with

2
respect to 0, a‘g(ee) and acgé()) are

I4:(6) (-%,(1—(9)”4 - )P ...,(1—(0)%),

00 oy’ doy,’ B’ B,
= (A1LnA20AG L) AG A (4.0.))
90/(0) _ oA, A oA I
ao - —%(1—}—2(02,1),1{[%,...,Rta—a‘;,Rta—ﬁl,...,Rta—ﬁ;7 )

= (S16:82:53,10)- - SGpa)s S 105> S(da0)s) -

where define R, = (1 — ®)(1 +2w0A,(0)), A ;) is the partial derivative of the mean

with respect to each parameter and §; ;) is the partial derivative of the variance with

respect to each parameter. Now, we let A}, = 75k > Sy, = f}’;gt 7 >>’ b = ?"%’t’l(’;)t’, and

o), = p S k Hence the optimal estimating function is given by

(a;_ym; +b;_y51),

M:

80(0) =

t=1
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where
* _ m m m m m m m m m m
a | =R (AT, + ST, AT 4+ S5, 30830 AL 1S40 4,q,t+S4,q,t)7

* _ Vv \4 \% \% 1% \4 vV \4 vV v
b =R <P1,z + Q1 P31 O30 B35 03 50 Pat Qa1 Pag, + Q4,q,t> :

Hence, for each component of 0, the optimal quadratic estimating functions can be

formed as follow:

n
go(®) =Y R ((AT, +ST,)m+ (P}, + 0} ,) s1)
=1
n
go() =Y. R (A5 +55)m+ (P, +05,)s1)

=1

sol) = Y R, (At + Sty ) et (P + Qo) 5t)  i=Toowsp and

N
I
—_

o8 = LR ((Ath o) +hs0) mot (Pl +@ago) ) J=10a

The parameters of interest can be estimated by solving the optimal quadratic esti-
mating functions, g*Q(O). Here, we use R-cran via nlminb to obtain the estimates.
We also can find the information matrix of the optimal estimating function for 0

using Theorem 4.1.1(b) and this is given as

IaQ)a) Igoco Igai Ia)ﬁj

oo ooy ooy Iaiﬁj

Bjo “Bjag B Iﬁjﬁj

where the elements in the matrix are

n A2 SZ <
0 1 1t m,s);
I5, = Ri |+~ 28151+~ |,
o0 = LR | T 0t s RO
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IQ _ ZR A%,t + & B 2A2 SZ <m75>f
(201 = t <m>[ <S . A2t <m>[<s>[ )

(Al | S (m,s);
1§56, = ZRI o), + (s, 2A(3,i,z)S(3,i,t)m] :
0 2 2

8= ;R, _A<(:1’§’;) + S({:;l’t) - 2A(4,j,t)5(4,j,z)%] :

[ s
wa, ZRI [ ;ll + Sl.’[(i(;m — (A118@3,i0) +Sl,tA(3,i,z))%] ,

:; Rt{ A +Sl,éf>(j,i) — (A1sS@in) +S1A@ir) <:<Z;t2;t :
a= L[ méfz” FE e ]
= LR [ e+ S |
lop, = ;Rr {AS? ) L +A(3’J'<)SS>(Z4’J"I) —(A<3,i,r>5<4,j,r>+S<3,i,z>A<4,j,z>)%}

and remaining elements can be obtained by the symmetry of the matrix: Iy, = Ipoy,

I(XiCO - ICO(X," Iﬁ]ﬂ) — Iwﬂj, Iaiao — Iaoai, IB]a() - Ia()ﬁj and Iﬁjai - Iaiﬁj'

In addition, we can also derive the optimal estimating function m, which is given by

8.ut X —(1-w)A(6)
Z { CO)L(G)(IJr(l—a))L(e))} (7.17)

and the optimal estimating function on s; given by

ao, 2 (0) — o (6)
Z { o (1 +2) } 719

Then, the corresponding information matrices for m;(0) and s;(0) identified as Iy (6)

and I+ (@) respectively are
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I%/ 1%,- 1;1 ; I)Ta) I7S/Y Iis’ai Ijs/[i.,- ]"f’w
., Iy, IV V& L., L. I I
iy TGO Otiﬁj Yo oy T0iQ; (X,'ﬁj Yo
Ip: (0) = ; 1y, (0) =
m m m m S S S S
Iﬁﬂ/ Iﬁjai Iﬁjﬁj Iy IﬁjY Iﬁjai Iﬁjﬁj Iyo
1y e Iy T Ty Toa T Too

. The elements of Ig: matrix are

t=1 1

A7, n | A3, < Aéir) : A%‘U’)
= I = =15 Iy = | Ig s =
<m>t] YY Z [<m>t ;0 Z (m); BjBj ; (m),

m AAre ] L TALAGL) ] AiA@jn]
= P = X G =

=1

m C Az’lA(3>i7[) . m C A27IA(47j7t) 3 m _ - A(37i>t)A(47j7t)
o= 1 | = B [P o = 1 [P

=1

m - S%t m < S%f m 5 5%3’”) m < S%4jt)
Iwa) - g W ’ IYY_ Z <m> ’ I(Xi(xi - Z <m>t ’ Iﬁjﬁj - Z <m>t ’
mo 1t Sl’zsz’[ Com 1 Sl,lS(37i,t) Com ! s (4,j,l) X
loy= Z { (m), } s g, = Z { (m), > Tof T Z (m), ’

L [82,8(3 it)} L [52 tS(4jt):| z [5(3 iS4, r)]
Ly, = ——=|; I = = =L and I, = AL iV
s [ (m); vP; z_zi (m); oibj > (m);

From the information gain using QEF over its components, m;(0) and s,(0), it is clearly

seen from I5e > Iy, 80 > Lye, 15y > I, 19, > Iy 180, > I 160y > I, Igj 5, >

I8 5 T5 > 1 5 Toy > Ty Toy > Loy Too, > I Toos > T To, > T+ Tog. > Tog
15 15

m S Q m Q N Q m Q S 1 1 _
yai > Lyoys Tyoy > Lyg Iy[i_,- > IyBj’ Iyﬁj > Iyﬁ,»’ Ioc,ﬁj > Itxiﬁi’ and Ia,-ﬁj > IociBi' Since the infor

mation associated with QEF is larger than the information associated with the component

estimating functions. Therefore, we can say that QEF estimator is more informative than

the EF estimator.
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7.4 Performance of The Estimation Methods on ZIPINGARCH (1,1)
To evaluate the performance of QEF, MLE and EF methods, a simulation study on
ZIPINGARCH (1,1) was carried out with the inflation parameter @ = 0.2, replication

N =500, and two sample sizes, n = 100 and n = 2000. The process is defined as

X,|S5 ) ~ ZIP (A, 0), (7.19)

A =y+aXi—1+BiA-1. (7.20)

7.4.1 MLE Derivation of ZIPINGARCH (1,1)
Since ZIPINGARCH (1, 1) has two separate probability mass functions (pmf), the

loglikelihood for a model has two parts namely

Zf’zlln{a)—l—(l—a))e_)”} for X; =0,

(7.21)
Yo {In (1—0)—A+X Ind —In(X,))} forX,=1,23,...

We then maximized the loglikelihood to extract the estimated parameter of interest in

R-cran.

7.4.2 EF Derivation of ZIPINGARCH (1,1)
Using the same approach as Section 6.4.2, we derive the optimal EF function through

Equation (7.17). The derivative of mean, i, with respect to @ given in following form

2/[ f 9260
8/,;,;6) = . (7.22)
_(1_0‘))2’1/ for 6 :%051731-
Hence, from Theorem 1, the optimal for each component g7 (0) of the model are:
= RPE M 7.23
gE(Y)_;; A (1t ok) X —(1-w)k)|, (7.23)
. o [ —Xz—l—ﬁl%
. n [ [ A —B1%
i) = L\ Zarer) (K-0-94)|, (7.25)
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noToX, (1
gp(w) = tZI (1_0)()(1?&)) . (7.26)

We solve the simultaneous Equation of optimal gy = 0 using nlegs/v command in R-cran

to get the estimates of interest.

7.4.3 QEF Derivation of ZIPINGARCH (1,1)
For the QEF method on the model, we use the derivation in Section (7.3) which leads

to

gZ((D) = ZRI (( T,t +ST,I) m; + (Plv,t+Q‘1},t) St) )

80(V) = YL Re (A%, +85,) me+ (P, + Qb,) 1)

N
|

golan) = iR, ((A’(g,l,t) +S’(1§,1J)> m; + (P(VMJ) +Qf3’17t)> st> and

t=1

g5(B1) = gR, (At +Sta) it (Pl + Qi) 51)

Again, we solve such simultaneous Equation gz = 0 using nlesqv command in R-cran

software.

7.4.4 Simulation Study

The steps of QEF algorithm for ZIPINGARCH (1, 1) are almost the same as in Sec-
tion 5.4.3. Since we have one extra parameter, ®, in this model, in Step 1, the data are
generated for a given value of the vectors of parameters (®, 7, o, ;). In Step 2, the IN-
GARCH (1,1) model will be changed to ZIPINGARCH (1, 1) model and for Step 3, we

use the similar method as in Section 6.4.4.

7.4.5 The Result
The performance is measured based on the mean, bias, standard error(SE) and mean
squared error (MSE) from the repetitions (N = 500) for each parameter from EF, MLE

and QEF estimators. These are shown in Tables 7.2-7.11 .
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Discussion

Since the MLE for this model does not have a closed form, we need to search for
the maximum value of the likelihood function. Note that in this model the likelihood is
divided into two parts with the zero and nonzero observed data. Therefore, the EF and
QEF methods are computationally more efficient and easy to apply in practice than MLE
method.

From Tables 7.2-7.11, we can see that, in term of biasness, the QEF method pro-
duce the smallest bias compared to other two methods. Furthermore, the QEF method
produce the better result in terms of estimated bias, standard error and mean square error
compared to EF estimator in all tables, either small sample size, n = 100 or large sam-
ple sizes, n = 1500 and n = 2000. The simulation results obtained support theoretical
results observed earlier in the study. Therefore, we can conclude that the QEF estimator
is superior compared to EF estimator.

On the other hand, although MLE method gives slightly smaller value of standard
errors mean square errors compared EF and QEF methods in some cases, specifically we
can see from Table 7.2-7.6, which are satisfied the stationarity condition, but the values
increase as the combination set of parameters approach the non-stationarity conditions
as shown in Table 7.7-7.11. Compared with EF and QEF methods, the value remain
small and do have no effect on these combination set of parameters for all sample sizes.
Therefore, we can say that, the EF and QEF estimators are better compared to MLE
method for ZIPINGARCH(1, 1) case.

Therefore, from the results obtained, we can say that the QEF method performs well
compared to EF and MLE methods. Hence, we can conclude that, the QEF estimator is

better estimation method in this IVTS model.

98



€0-970°'T | €0-960°T €0-A10'T €0-AVI'T €0-dTr'T | €0-AVL'T €0-dr¥'S | €0-dIT9 | €0-dLES ASIN
€100 6200 910°0 w00 960°0 ¥20°0 $60°0 vI1°0 6600 as
€000 8200 2100 800°0 €€0°0 2100 810°0 8200 1200 serg
€020 8TT°0 881°0 8020 €€T0 881°0 81C°0 82T°0 1220 LER)
Q
€0-960'T | €0-d8T'T €0-961°1 €0-dL8'1 €0-9¥8'C | €0-9TC’T | €0-48C°9 | €0-HLEO | €0-HIEO ASIN
8500 SLO0 SLO'0 ¥L0°0 7800 9L0°0 r1°0 S1°0 TS1°0 as
2000 1100 7200 €000 9200 1200 0S0°0 $S0°0 €500 serg
20€°0 11€°0 T°E0 L6T0 9Z€0 12€°0 0S€°0 §S€°0 €5€°0 LER)
'g
€0-970°T | €0-H60'T €0-920'1 €0-96€°1 €0-dC8'C | €0-dES'T | €0-HOS'S €0-999'8 €0-9¥S°8 dSIN
€€0°0 o0 1#0°0 ¥S0°0 900 LY00 6900 6L0°0 SLOO as
100°0 L000 790°0 €000 0100 1900 800 €600 7600 serqg
661°0 €61°0 8€1°0 L61°0 01T0 6€1°0 o LOT0 801°0 LR
Y
€0-980°T | €0-H6I'T €0-dLT'T €0-d6¥'1 €0-9TL’1 €0-90€'T €0-d8€'S | €0-dS8'S | €0-dET’S 4SIN
S10°0 9100 S10°0 7€0°0 9500 0€0°0 7800 160°0 L80°0 as
£00°0 9000 1€0°0 8000 6000 0€0°0 S¥0°0 6%0°0 1500 serq
#01°0 901°0 690°0 801°0 601°0 LO0 §S0°0 1500 6%0°0 LR
¢
490 44 TN J40 d4 TN J40 d4d TN
000z=u 00ST=u 001=U

g0="gpue‘zo="0170=~4 W (17) HOIVONIAIZ 10J SINSI uone[nuwIg :'/ d[qe],

99



€0-9L0'T | €0-AVTT €0-9S0°T €0-499'1 €0-HETY | €0-HV9'T €0-49T°L | €0-dI€L | €0-98TL ASIN
7000 6£0°0 00 L000 080°0 0L0°0 S80°0 160°0 $60°0 as
900°0 S10°0 €600 2100 0200 1600 ¥60°0 101°0 801°0 serg
¥61°0 G81°0 LOT°0 881°0 081°0 601°0 901°0 6600 2600 LER)
Q
€0-96€°T | €0-9T0°C | €0-d10°C | €0-dI8€ | €O-HLV'L | €0-HSO'L | €0-H886 | COHAIIT | CTO-HECT dSIN
#00°0 ¥10°0 €100 €100 1200 S10°0 €800 2600 960°0 ds
£00°0 L000 6100 1100 S10°0 6100 1S0°0 $S0°0 €500 serg
¥01°0 LOT0 611°0 I11°0 SIT°0 6110 IST°0 SST°0 €S1°0 L)
'g
€0-970°T | €0-dLO'T €0-9L0°T €0-dST'1 €0-dLT'T €0-arI'1 €0-dST'1 €0-dL1'T €0-ar1'1 dSIN
€100 1900 0900 $S0°0 SLOO $90°0 SS0°0 SLOO $90°0 as
$0-920'1 ¥00°0 €800 9100 9L0°0 7800 9100 9L0°0 #80°0 serg
10-9666'¢ 96£°0 LTIE0 91¥°0 ¥Te0 91€0 910 ¥T€0 91€0 LR
0
€0-9L8'T | €0-dT¥'T | €0-A8F'C | €0-HIK'T | €OHVEY | €0-HI9E €0-d8€'6 | €0-dTS'6 | €0-dIE6 ASIN
S10°0 800 800 9¢0°0 L80°0 €700 6L0°0 180°0 8L0°0 as
2000 000 00 L000 8100 €700 7500 850°0 190°0 serq
861°0 961°0 8ST1°0 €61°0 T81°0 LST0 8%1°0 wio 6€1°0 L)
¢
490 44 TN J40 d4d TN J40 d4d TN
000z=u 00ST=u 001=u

1'0="gpue‘y'0=1070=4pm (1'1) HOIVONIdIZ 10f SHNSAI uone[awIs :¢*/ dAqeL

100



€0-910'T | €0-9LTT €0-d1T'T €0-d9¥' €0-dLL'E €0-dLT'E €0-dI¥'L | €0-d¥S'L | €0-H6EL ASIN
S10°0 1€0°0 00 6200 0%0°0 150°0 1L0°0 €L0°0 9L0°0 as
100°0 ¥10°0 1200 LT0°0 €€0°0 0200 1¥0°0 6%0°0 €500 serg
102°0 v1T0 6L1°0 LTTO €€T0 081°0 6510 IST°0 L¥Y1°0 LER)
Q
€0-980°T | €0-H9T'T €0-HET'T €0-deS'e | €0-dLS8'E €0-dI1T°E €0-9C€9 | €0-988'9 | €0-dI€9 ASIN
6000 S10°0 €100 0500 €900 S20°0 900 1L0°0 SLO0 as
2000 800°0 LEO0 L10°0 6100 LT00 6500 1L0°0 SLO'0 serg
070 800 LEYO L1%°0 6170 LTV 0 Iv€0 65€°0 §T€0 LER)
'g
$0-960°6 | €0-9T0'T €0-920'1 €0-dST'1 €0-9dSL'T | €0-dSL'T €0-d81°S | €0-dIES | €0-dIl'S dSIN
LT00 6100 S10°0 700 6£0°0 6200 SLOO 7800 LS00 as
100°0 6000 6200 L000 2100 0€0°0 8¢0°0 €500 $S0°0 serqg
101°0 160°0 1L0°0 LOT°0 8800 0L0°0 7500 L¥00 S¥0°0 LR
Y
€0-9€0°T | €0-H9T'T €0-dST°1 €0-d6€'C | €0-A¥TS | €0-HE6'E €0-dIT6 | €0-dI€6 | €0-dLT6 4SIN
100°0 L00°0 8000 000 0100 LEO0 990°0 SLO'0 7800 as
Y0-9TT'L 7000 $90°0 2000 S00°0 6500 TLO0 080°0 €800 serq
10€°0 20€°0 SET0 T0€0 S0€0 1¥T0 8TT°0 0TT0 L1TO LR
¢
490 44 TN J40 d4 TN J40 d4d TN
000z=u 00ST=u 001=U

’'0="1gpue‘ 0= "0¢0o=4wm (1'1) HOIVONIdIZ 10f SHNSAI uOne[WIS :f'/ dqEL

101



$0-97S’L | €0-980°T €0-9LO'T €0-dT8'T €0-d1T°¢ | €0-API'CT | €0-HEO'L | €O-HITS | €0-dSI'S ASIN
7100 8€0°0 LEO0 7200 ¥L0°0 00 7900 6L0°0 7800 as
YO-dETL 1000 100°0 2000 ¥00°0 €000 7500 #S0°0 €500 serg
102°0 102°0 661°0 2020 961°0 L61°0 75T0 9670 €520 UBQIA[
@
€0-970°T | 9€-HOT'T €0-AIT'T €0-d€6°€ €0-90T9 | €0-d10°S | €0-9ST1'8 €0-dev'8 | €0-99¢'8 dSIN
L000 0500 9100 2100 L60°0 160°0 8110 821°0 121°0 as
S00°0 1100 €200 0100 1200 €200 6£0°0 8700 7500 serg
SO0 1120 €220 0120 1220 €720 6£C°0 8¥C°0 TsT0 UBQIA
g
€0-°v0'T | €0-HOT'T €0-460'T €0-94S9'C | €0-9SL'T | €0-d89'C | €£0-H60'8 €0-9d87'8 | €0-dEl'8 dSIN
T€0°0 1700 LEOO S¥0°0 1S0°0 1%0°0 9L0°0 800 6800 as
800°0 S10°0 6%0°0 7200 LEOO $90°0 9L0°0 880°0 2600 serg
8070 G8€°0 1S€°0 8LE0 €9€°0 SE€0 ¥T€0 TIg0 80€°0 UBQIA[
o
€0-910°T | €0-HSTT €0-9LT'1 €0-dLY'1 €0-9¢S'1 €0-919°1 €0-d9¥'L | €0-9S8'L | €0-dTEL dSI
110°0 ¥20°0 2100 LEO0 0S0°0 S¥0°0 $S0°0 6500 7900 as
900°0 €100 680°0 1200 8200 6800 601°0 811°0 611°0 serq
620 L8T0 1120 6LT0 TLTo 1120 161°0 T81°0 181°0 UBIIN
¢
490 d4d TN J40 d4d TN J40 J4d TN
000z=u 00ST=u 001=u

zo="'gpue'y'0=10¢0 =4 (1'1) HOIVONIdIZ 10f SHNSAI uOne[awWIS :G*/ dqeL

102



$0-96¢’L | ¥0-d80'8 | +0-HLO'S €0-920'T €0-d8I'T €0-460'T €0-980'6 | €0-9dST6 | €0-d10'6 ASIN
8000 ¥10°0 810°0 8100 6£0°0 0€0°0 6500 €L0°0 9L0°0 as
S00°0 1200 010°0 0100 0£0°0 0100 S€00 1¥0°0 1+0°0 serg
S120 1220 061°0 0120 0€20 061°0 $91°0 6510 6S1°0 LER)
Q
v0-o11'8 | ¥0-A¥S6 | +0-dLS6 | €0-AV9'1 €0-40¥'C | €0-dL¥'T | €0-H6I'9 | €0-HES'O | €O-HII'L ASIN
0100 200 €100 €100 T€0°0 L10°0 7700 9500 7900 as
60070 L100 7900 1900 #90°0 7500 1L0°0 8800 1600 serg
60€°0 LTIE0 29¢°0 19€°0 ¥9€°0 1S€°0 1LE0 88€°0 16£°0 LER)
'g
$0-966'L | PY0-ALT'S | tO-AY6’L | €0-H60'1 €0-9ET’T €0-d¥0'1 €0-94€0°S | €0-dLTS | €0-961°S dSIN
9200 LY00 LT0°0 8€0°0 950°0 1€0°0 6¥0°0 2900 9900 as
€000 S10°0 €900 810°0 S70°0 7900 LSOO 8900 1L0°0 serqg
L61°0 G81°0 LETO T81°0 SLT0 8€1°0 €r1°0 4AN0 621°0 LR
Y
€0-971'T | €0-HT6'1 €0-926'1 €0-d¥Ty | €0-dTSY | €0-HICY | €0-H6E'L | €0-HIS'L | €O-HSE'L ASIN
7100 €100 1100 9200 1£0°0 ¥10°0 1€0°0 6£0°0 €700 as
010°0 ¥10°0 950°0 9200 8700 S¥0°0 8500 €900 890°0 serq
060 980 €vr0 vLY'0 4540 SSH0 o LEYO 4340 LR
¢
490 44 TN J40 d4 TN J40 d4d TN
000z=u 00ST=u 001=U

g0="gpue‘zo="0'co=4~4pm (17) HOIVONIAIZ 10J SINSAI uone[nWIgS :9°/ dqe],

103



#0-989°6 | €0-dT0'1 20-410°1 €0-dI1S°T €0-90ST | T0-d9%'1 €0-dT€'9 | €0-HCS'8 | <TO-HSL'6 ASIN
S00°0 0100 11%°0 €100 610°0 vIv°0 6800 €110 €190 as
€000 800°0 0£0°0 1100 2100 0200 6100 1200 7500 serg
€020 8070 0€T°0 681°0 881°0 081°0 181°0 6L1°0 8%1°0 LER)

Q
€0-997'T | €0-dSTT | TO-HETT | €0-H09'S | €0-H0TL | TO-HITL | €0-H80'I €0-d€€’T T0-9ET'T ASIN
9100 ¢e00 SEV'0 0v0'0 8%0°0 170 S80°0 201°0 1850 as

100°0 L000 1200 9000 0100 1200 810°0 1200 6500 serg
6620 €620 12€°0 620 0620 12€°0 7870 6LT°0 1720 LER)
'g
€0-o1T'T | €0-dI8T TO-ALL'T €0-d8L'S | €0-d96'L | <T0-A¥8'9 | €0-dI0'8 €0-d€T'8 | T0-988°6 ASIN
#10°0 6£0°0 8EY0 0500 180°0 €VY0 7800 1600 T19°0 as
€000 800°0 810°0 010°0 2100 8100 ¥20°0 7€0°0 8500 serqg
L6S°0 2650 7850 0650 2190 7850 9L5°0 895°0 s 0 LER)
Y
€0-9€0°T | €0-d8I'T 209911 €0-420'C | €0-98S'T | TO-HS6'I €0-dITL | €0-dTe'8 10-489°¢ ASIN
800°0 100 60€°0 ¥20°0 6200 L1140 611°0 LTT0 689°0 as
100°0 8000 1€0°0 1100 S10°0 1€0°0 7500 6500 €800 serq
101°0 801°0 690°0 680°0 SIT°0 6900 8%0°0 1700 L10°0 LUER)
¢
490 d4d TN J40 44 TN J40 44 TN
000z=u 00ST=u 001=u

€0="gpue‘gg="o10=~4 P (17) HOIVONIAIZ 10J SINSaI uone[nuwis :/°/ dqe],

104



€0-9L0'T | €0-dIT'T T0-HS0'T €0-91T°€E €0-d18'S | TO-dIlE €0-d80°L | €0-466'8 | TO-dEEL'6 ASIN
6£0°0 7900 8EY0 8L0°0 8800 aadl €800 €210 w90 as
€000 ¥00°0 9000 #00°0 L000 #00°0 0100 S10°0 6200 serg
€020 070 9020 ¥0T0 LOT0 070 0120 S1T0 62C°0 LER)
Q
€0-o¥8'1 | €0-d¥0C | TO-HEOT | €0-dTH'T | €0-dLL'E | TOAV6'T | €0-HLE'S €0-d81°6 | TO-dES'L ASIN
L000 T€0°0 o 1700 SS0°0 6¥7°0 6600 LY10 7580 as
S00°0 6000 7200 1100 0200 7200 ST0°0 7€0°0 1500 serg
S61°0 6020 TTT0 1120 0220 70 §TT0 €00 1520 LER)
'g
€0-997'T | €0-HE9CT | TO-H99CT | €0-d8¥'CT | €0-dE€6'9 | TO-H6S'L | CTO-HS0'I T0-d1S'C 10-H1€°C dSIN
61070 6200 9T¥'0 8200 680°0 12940 1020 €170 2190 as
900°0 1100 200 1100 6100 1100 €100 1200 ¥S0°0 serqg
£69°0 6890 89°0 689°0 61L°0 689°0 €1L°0 12L°0 990 LR
Y
€0-970°T | €0-H61'T 20-920'1 €0-d8€'C | €0-°6LT | TO-H6S'I €0-dITL | €0-9S€6 | T0-d88'8 4SIN
0100 S10°0 01+°0 L100 LT0°0 4540) $90°0 TLO0 €180 as
1000°0 #00°0 820°0 $000°0 S00°0 8200 1€0°0 7500 7800 serq
1001°0 Y01°0 TLO0 20-9S6'6 S01°0 TLO0 6900 TST1°0 810°0 LR
4
490 44 TN J40 d4 TN J40 d4d TN
000z=u 00ST=u 001=U

co="'gpue‘’,0="070=4wm (1'7) HOIVONIdIZ 10f SHNSAI uone[awIs :g°/ dAqeL

105



€0-969°] €0-dL6'1 20-d86°1 €0-d10'¥ €O-HLEY 20-d86°¢ 20-d8¢C'1 CO-dI1'¢C 10-HET' T HSIN
+0-9CC'8 100°0 905°0 1000 €000 6050 €900 8L0°0 L1880 ds
Y0-dIS°L 1000 00°0 €000 6000 €000 1100 LTI00 2S00 selq
10-2800°C 661°0 0C0 €0T0 60C°0 S61°0 1120 LITO SY1°0 UBIN
Q
€0-2L0°1 €0-dLO°1 C0-dLOT €0-d8S°¢C €0-d€6°C 20-dT¥'C €0-d68°L €0-d6€°8 C0-dTT'6 dSIN
L0000 6100 Bizdl] 1€0°0 700 9¢+°0 €600 6v1°0 7S9°0 ds
200°0 8000 €200 100 8100 1200 200 €00 ¢S00 selq
2010 801°0 SCro 14880 8IT0 1210 ¥ClI0 celo ¢ST0 UBIN
g
€0-9LT€ €0-d6T°¢ ¢0-d9¢°¢ €0-dILS €0-d88°¢ 20-d0s°S €0-d9C'8 €0-dL6'S ¢0-dTT'8 dSIN
S10°0 7€0°0 0 [+0°0 ¢s00 S0 LOT°0 €cro CILo dS
L0070 1€0°0 80°0 1100 890°0 800 180°0 L60°0 01°0 selq
€6L°0 6vL0 9IL0 68L°0 Lo 9IL0 61L°0 €0L’0 969°0 UBN
p
€0-9GT°'1 €0-d91°¢ c0-dsv'e €0-dCT'C €O-dLI'Y ¢0-d8¢v €O-dvi'L €0-d8C°6 C0-HSE'S HSIN
6100 c00 SIv0 9200 €v00 (4440, 8L0°0 6600 8190 dS
110°0 8100 LY00 €00 £€00 9%0°0 8700 €500 180°0 selq
681°0 ¢81°0 €S1o €20 L91°0 7S1°0 ¢s10 LY1°0 611°0 UBIN
4
J90 d4d TN d40 d4 TN J40 d4 TN
000C=4 00S1=u 001=u
['0=gpue‘go="0C0=4ym (1°7) HOIVONIJIZ 10} S}NSI UOne[WIS :6°/ S[QEL

106



€0-970°'T | €0-9LI'T 20-H61°1 €0-468'T €0-d8%'¥ | TO-d8I'E €0-d80°L | €0-dLT'8 | T0-dS8'6 ASIN
9200 w00 TIvo w00 #90°0 vIv°0 190°0 L60°0 €150 as
600°0 800 0900 ¥20°0 L¥0°0 0900 S€00 7500 8L0°0 serg
161°0 291°0 0920 ¥TT0 €S1°0 0r1°0 $91°0 8%1°0 7o LER)
Q
€0-961'T | €0-d8T'T T0-HCE’T €0-d20'c | €0-98Sv | TO-H9S¥ | €0-HITO | €0-HIS'L | COHITS ASIN
#00°0 8100 8150 910°0 0£0°0 §TS0 LSOO 8800 €6L°0 as
1000 9000 9200 L000 S10°0 S10°0 8100 1€0°0 L¥0°0 serg
66L°0 908°0 9280 €6L°0 SI8°0 SI8°0 T8L°0 69L°0 €SL°0 LER)
'g
€0-910°T | €0-d80°T T0-H80'1 €0-dST'1 €0-dIT'C | CTOHEl'] €0-dCE’S | €0-dLT'8 | TO-A8S'L dSIN
€100 €900 [1%°0 8500 2900 v1v0 €600 8110 €190 as
2000 800°0 %200 S10°0 9100 ¥20°0 1200 6200 w00 serqg
201°0 801°0 9L0°0 SIT°0 9110 9L0°0 1210 621°0 1o LR
Y
€0-916'T | €0-HCT'T 20-9TT'1 €0-460'C | €0-dES'T | TO-HEO'T | €0-H69'L | €0-HLI'S | CTO-HIE6 4SIN
L00°0 S¥0°0 8050 1200 0900 1150 SLO'0 8800 €160 as
800°0 LS00 S10°0 1100 SLO0 1100 1200 8200 1500 serq
80€°0 LSE0 S8T°0 6870 SLED 11€°0 1220 87€°0 1S€°0 LR
4
490 44 TN J40 d4 TN J40 d4d TN
000z=u 00ST=u 001=U

g0=Ilgpue‘ro=

g0 =4 pm (1°7) HOYVONIAIZ 10§ SHNSAI UONR[NWIS O] L J[qeL

107



$0-96¢'8 | €0-H8T'I 20-9ET'T €0-90¢’1 €0-d8¥'C | T0-HE0'T | €0-d8€9 | €0-HASS'S | CTO-HIEO ASIN
6000 €10°0 01+°0 0200 120°0 €10 LS00 801°0 8IL0 as
800°0 0100 000 1100 €100 000 €700 ¥S0°0 8800 serg
807°0 0120 0¥T0 1120 €120 0¥T0 €vT0 ¥ST0 887°0 LER)
Q
€0-99L°T | €0-d¥I'C | TO-HLOC | €0-H6ET | €O-HSL'E | CTO-HOL'E €0-94S9°L | €0-998'6 | TO-dEI'8 dSIN
9000 €10°0 o €100 0€0°0 STr o L60°0 821°0 TILo ds
Y0-9€T'8 1100 ¥10°0 1000 €100 ¥10°0 1€0°0 8¢0°0 9500 serg
10-9266°S 119°0 ¥19°0 6650 €190 #19°0 1€9°0 890 9590 UBIIA
'g
€0-010°T | €0-9+0°T 20-Av0'1 €0-96€°1 €0-9¥9'1 20-9SS'1 €0-d8S'L | €0-dLT'8 | T0-H66'6 dSIN
¥20°0 1500 SIY'0 6L0°0 6600 L0 1020 SIT0 €190 as
100°0 L10'0 201°0 €800 1600 101°0 8600 701°0 LETO serg
6620 LTE0 861°0 LITO 16€°0 661°0 2020 861°0 €91°0 LR
0
€0-96¢'T | €0-9¥9°1 T0-968'1 €0-dSL’e | €0-dISy | TO-HOL'E €0-912'8 €0-dEE6 | T0-H6E'8 ASIN
6£0°0 ¥S0°0 LEY0 1900 £90°0 el 8600 S01°0 8950 as
1000 S10°0 6£0°0 8%0°0 8800 9€0°0 §€0°0 8700 990°0 serq
10¥°0 SIv'0 19€°0 8¥°0 880 ¥9€°0 SEV0 8¥7°0 99%°0 L)
¢
490 44 TN J40 d4d TN J40 d4d TN
000z=u 00ST=u 001=u

90=lgpue‘¢co=

040 =4 pim (1°7) HOYVONIAIZ 10§ SHNSAI UONR[NWIS ][/ J[qeL

108



7.5 Real Example

Arson is the crime of intentionally burning any type of property where they are not
only a home, building, structure, or a place with people inside, but also ones can commit
arson by burning either personal property, buildings or land. Nowadays, such criminal
widely occurs to show their protests and objections especially for the police. The people
who commit arson are called as arsonist. The punishment for the arsonists depending on
the degree of property damage and each country has their own law for such people.

For the model, we consider a count arson data from The Forecasting Principles site
in the section Crime data. The data represent 144 monthly counts of arson in the 13th
police car beat plus in Pittsburgh from January 1990 until December 2001. The data has
61 zeroes that is 42.4% of the series. Motivated from the high number of zeroes in the
data, the ZIPINGARCH(p,q) model seems like a good candidates to be considered for
this data set. The zero-inflation index for the data is 0.1815 where the index is defined as

(see Puig & Valero (2006))
log (po)
Hp

zZi=1+

where py is the proportion of zeroes and L, is the mean. The plot of the data is given in

Figure 7.1.

Monthly count of arson

ooooo

Time in month

Figure 7.1: The monthly counts of arson in the 13th police car beat plus in Pittsburgh
from January 1990 until December 2001

We fit the model and obtain the parameter estimated 6 and standard error in paren-

thesis using MLE, EF and QEF methods as shown in Table 7.12.
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Table 7.12: The estimated parameter of ZIPINGARCH(1, 1) model

A

Method 7 da B @ AIC BIC
MLE  0.279(0.007) 0.087 (0.014) 0.213 (0.051) 0.214(0.017) 396.146 405.634
EF  0.281(0.012) 0.084 (0.023) 0.233 (0.067) 0.208(0.019) 397.231 408.372
QEF  0.277(0.007) 0.089 (0.015) 0.217 (0.049) 0.214(0.017) 395.146 405.355

Zhu (2011) fitted the data into ZIPINARCH(2) model to this data by estimating the pa-
rameter using the MLE method. The mean and variance obtained from this fitted model
were 1.0369 and 1.3952 respectively while the empirical mean and empirical variance
are 1.0417 and 1.3829 accordingly. But, using our fitted model based on QEF estima-
tor as obtained in Table 7.12, the mean and variance are 1.0405 and 1.3821 respectively
where they are closer to the empirical mean and empirical variance. From Table (7.12),
it is clear that the QEF method gives the smallest AIC and BIC compared with EF and
MLE methods. Therefore, we can say that, the estimated parameter obtained from QEF
estimator produces the best fitted model compared to other two methods.

Now, we focus only on fitted model by QEF estimator. The parameter estimates
<f/, d, B]) are positive and the summation of (1 — ®)d; + ﬁl lies between zero and one,
indicating the process is stationary. To examine the model fitting adequacy, we define the

Pearson residual for the process as

o= (X~ (1-®)A(8)) /\/M(B)(1 - 6)(1+2,(8)).

The mean and variance of Pearson residuals are close to zero and unity which are 0.039
and 0.992 respectively indicating adequacy of the model. To examine the serial in the

sequence, we perform Ljung-Box (LB) test and the results are given in Table 7.13.

Table 7.13: Diagnostics for ZIPINGARCH(1,1) model

LB3o(z) LBso(z7)
x? 25.4 24.22
p-value  0.705 0.762

The results indicate that there is no significant serial correlation in the residuals
showing that the ZIPINGARCH(p, ¢) model fit the data well.

110



Cumulative periodgram plot
The residuals versus time Be plo
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Figure 7.2: (a)The Pearson residual plot. (b)The periodagram plot

Figures 7.2(a)and (b), a time series plot of the residuals and a cumulative peri-

odogram plot, confirm that the model fits the data adequately.

7.6 Summary of The Chapter

In this chapter, we discussed the ZIPINGARCH(p,q) model based on the moment
properties, QEF estimator and the associated information matrix. Regarding moment
properties, we obtained the first four moments using a simpler method (martingale differ-
ence) compared with Zhu (2012) who derived only the mean and variance. We showed the
superiority of QEF method on the information gain and simulation studies. In addition,

we applied the method to a set of count time series data.
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CHAPTER 8

CONCLUSION

This chapter provides a short summary of the main results presented in the thesis and

discuss important challenges for future research.

8.1 Summary of The Study

This study focused on integer-valued time series models analogue of the general-
ized autoregressive conditional heteroscedastic, GARCH(p, g), with the conditional dis-
tribution following the integer-valued distributions, Poisson, negative binomial and zero-
inflated Poisson. The models are known as INGARCH(p,q), NBINGARCH(p,q) and
ZIPINGARCH(p, ¢) models respectively.

Firstly, we derived the moments of the models up to order four using martingale dif-
ference. The first and second moment properties are available in literatures but not for the
third and fourth moment properties which are skewness and kurtosis. Zhu (2012) stated
that the derivation of the unconditional distributions are complicated for these models
and needs further investigation. Therefore, we found a general closed form expressions
of skewness and kurtosis for these models in closed form expression. The theorem and
derivation of general form of skewness and kurtosis of these models were shown in Chap-
ter 3. In Chapter 5, 6 and 7, we obtained the skewness and kurtosis for each model by
finding the skewness and kurtosis of each martingale difference of the model. This finding
1s very important in line with the opinion of Patton (2004) who stated that the knowledge
of these higher moments, skewness and kurtosis will make a significant better forecast on
assets, both statistically and economically.

Secondly, in time series analysis, one of important interest is to have a good param-
eter estimation method. Instead of the traditional MLE we consider the optimal QEF
method proposed by Liang et al. (2011). The theory on QEF method was discussed in
Chapter 4. We also gave some examples for simple integer-valued time series models

based on zero-inflated poisson distribution namely basic zero-inflated Poisson and zero-
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inflated Poisson regression models. This method of parameter estimation have been stud-
ied and applied into continuous time series models, for example random coefficient au-
toregressive (RCA) model by Thavaneswaran et al. (2015) and autoregressive conditional
duration (ACD) model (see Ng et al. (2015)). However, there were no study using QEF
method on the integer-valued time series model. Therefore, in this research, we studied
and discussed the methodology on integer-valued time series models to see its perfor-
mance compared to other parameter estimations methods. Here, we derived the optimal
QEEF functions and their information matrices for each process. Theoretically, we com-
pared the information gain by QEF method with each component of estimating functions.
We conducted simulation studies to see the performance of QEF method compared to
other estimation methods namely MLE and EF methods via R-cran programming. From
the results obtained, we saw that the QEF estimators outperform MLE, LS and EF es-
timators in almost all cases especially for near non-stationary cases. Therefore, we can
conclude that, the QEF estimator can be an efficient alternative method for parameter
estimation on these models.

Lastly, we applied the methodology on real-world data set. We fitted these models
(INGARCH(p, q), NBINGARCH(p, q) and ZIPINGARCH(p, q) models) in Chapter 5,
6 and 7 and estimated parameters using MLE, LS/EF and QEF. In each case, the model
fit was examined by the AIC, BIC methods, Pearson residuals and their plots, Ljung-Box
tests, and cumulative periodogram tests. In all cases we found that the models considered
fitted well to the data sets.

From this study, we concluded that the findings are very important and will be benefi-
cial to the statistical area. This research can adds more knowledge to the area of modeling
integer-valued time series data and their properties at the higher order up to order four.
The new methods of deriving moments using the martingale differences and other simpler

methods will be useful for other statistical researchers.

8.2 Further Research
In this section, we discuss the possibilities for further research on the work presented

in this thesis. Some suggestions are given as follows:
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1. Extend the theory on zero-inflated negative binomial GARCH (ZINBINGARCH(p, q))

model.

From the research done, we can extend the moment properties to ZINBINGARCH(p, )
model. The moments properties for both conditional and unconditional for this model are
quite complicate because of the complex expressions for the factorial cumulant. Due to
this reason, it deserve a further investigation to simplify the derivation on the moments
for conditional distribution of ZINBINGARCH(p,q) model and then plug in the result
obtained into our Theorem 1 and Theorem 2 to have the unconditional moment properties

of unconditional distribution of ZINBINGARCH(p, ¢) model.

2. Apply the QEF estimator on other integer-valued time series models.

In this research, we apply the QEF method on the class of integer-valued GARCH(p, q)
models. We show that the estimator performs well compared to MLE and EF methods.
Hence, the method should be extended for other class of integer-valued time series mod-

els, such as INAR(p) and etc.

3. Extend the use of higher moment properties of INGARCH(p, ¢) family especially in

forecasting the volatility of the models.

Forecasting plays an important part in both linear and nonlinear time series cases. Tha-
vaneswaran et al. (2005) mentioned that the kurtosis of a time series model can be used
to forecast the error variance while Patton (2004) highlighted that significant of higher
moments, namely skewness and kurtosis, can lead to better forecasts. Therefore, it is pos-

sible, we can extend the use of skewness and kurtosis of the models to forecast volatility.
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