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ABSTRACT 

Neuromuscular Electrical Stimulation (NMES)-evoked muscle contractions confers 

therapeutic and functional gains on persons with Spinal Cord Injury (SCI). However, the 

optimal efficacy of commercial NMES systems’ application is inhibited by the 

imprecision in muscle force/torque production and rapid muscle fatigue. Evidence 

suggests that the application of a muscle mechanical response (force/torque) as a feedback 

to modulate the administration of NMES could optimize the efficacy of the technology 

by enabling muscle force regulation, and delaying the onset of muscle fatigue. Currently, 

a direct muscle force measurement is impractical and there is also lack of a reliable, 

electrical stimulus artifact-free and non-invasive proxy of muscle force to drive the 

NMES systems for enhanced controllability and clinical use. Attempts on the application 

of evoked-electromyography for this purpose remain debatable and clinically limited. As 

a viable alternative, this thesis proposes a non-invasive muscle force/torque measurement 

technique based on the mechanical activity of contracting muscles (Mechanomyography 

or MMG). This investigation was motivated by the knowledge that mechanomyography 

is immune from certain limitations of evoked-electromyography and provides direct 

information on muscle’s mechanical responses to the electrical stimulation. Systematic 

literature survey revealed a lack of clear understanding of the relationship between 

mechanomyography and NMES-evoked torque production in a paralyzed muscle. 

Therefore, the present research introduces mechanomyography as a proxy of NMES-

evoked torque in persons with SCI. At the outset, a hybrid procedure was developed to 

establish mechanomyography as a proxy of muscle force/torque in healthy volunteers and 

persons with SCI. This was used to investigate the pattern of incremental torque 

production and subsequently facilitated the estimation of the torque from 

mechanomyography using a computational intelligent technique based on Support Vector 

Regression (SVR) modelling. This thesis also demonstrated, in a clinical setting, the 
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validity of the mechanomyography as a relevant parameter for studying muscle fatigue 

during critical knee buckling stress i.e. standing-to-failure challenge in persons with SCI. 

Due to the peculiarity of the study participants/target population and the intended clinical 

application of NMES-supported standing, the quadriceps muscle group, widely reported 

for its relevance in studying the knee torque dynamics, was selected as the study site. 

Findings from these studies revealed that the mechanomyographic amplitude is highly 

correlated (r> 0.95; P< 0.05) to the muscle force in persons with SCI as it reliably tracked 

the muscle’s motor unit recruitment pattern during NMES contractions. The SVR 

modelling results demonstrated a good predictive accuracy (R2≥ 89%) with generalization 

capacity and suggested that the quadriceps’ mechanomyography is a good indicator of 

NMES-evoked torque during knee extension tasks. Thus, the signal might be deployed as 

a direct proxy of muscle torque during leg exercise and functional movements in SCI 

populations. Additionally, the reliability (intraclass correlation coefficient range: 0.65-

0.79; P> 0.05) of the mechanomyography during force production might be useful to 

evaluate the recovery or deterioration of motor unit activities following NMES supported 

exercise and as an alternative technique for monitoring the NMES-evoked muscle activity 

for practical control applications. Together, this thesis lays a foundation for the future 

implementation of MMG-driven NMES technologies. 
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ABSTRAK 

Rangsangan kontraksi otot secara Stimulasi Elektrikal Neuromuskular (NMES) 

memberikan banyak faedah terapeutik dan fungsi berguna di kalangan pesakit saraf 

tunjang. Walaubagaimanapun, keberkesanan optimum yang ditawarkan oleh NMES 

komersil terhalang oleh penghasilan daya/tork otot yang tidak tepat dan keletihan otot 

yang berlaku begitu pantas berikutan pembalikan corak perekrutan motor unit semulajadi. 

Bukti menunjukkan bahawa penggunaan sistem maklumbalas terhadap tindakbalas otot 

(daya/tork dan keletihan) bagi mengawal stimulasi NMES boleh mengoptimumkan 

keberkesanan sistem NMES dengan adanya pengawalan daya otot dan melambatkan 

masa untuk berlakunya keletihan otot. Sehingga kini, tiada proksi kepada daya otot/tork 

otot yang boleh dipercayai, mudah dan tidak invasif untuk mendorong sistem NMES 

meningkatkan kadar kawalan dan kegunaan klinikal. Oleh itu, pelbagai percubaan telah 

dilakukan dengan menggunakan rangsangan-isyarat elektrik otot (EEMG), namun masih 

dipersoalkan dan terhad secara klinikal. Hal ini terdorong oleh isu-isu yang melibatkan 

kualiti isyarat yang tidak sempurna disebabkan oleh peluh yang terhasil akibat 

penggunaan otot yang terlalu kerap. Tambahan pula, artifak-artifak yang terdapat di 

permukaan stimulasi elektrikal menepui penguat EEMG dan teknik-teknik lazim bagi 

penghapusan/penindasan artifak tersebut masih belum disempurnakan. Sebagai alternatif, 

tesis ini mencadangkan satu teknik yang tidak invasif untuk mengukur tork berdasarkan 

aktiviti mekanikal dari kontraksi otot-otot (isyarat mekanikal otot atau MMG). Kajian ini 

didorong oleh fakta yang menyatakan bahawa isyarat MMG tidak mempunyai 

kekurangan seperti yang dinyatakan sebelum ini dalam EEMG yang mana ianya tersebar 

melalui tisu lembut dan memberikan maklumat terus dari mekanikal otot yang 

bertindakbalas dengan stimulasi elektrik, dan seterusnya memberikan lebih banyak 

maklumat yang berguna, terutamanya maklumat mengenai neuromuskular yang berkaitan 

dengan aktiviti otot-otot semasa stimulasi elektrik. Maklumat yang telah diperolehi dari 
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kajian literatur menunjukkan bahawa hubungan MMG dan penghasilan tork otot yang 

lumpuh semasa rangsangan-NMES kontraksi masih samar. Oleh itu, kajian ini merupakan 

satu cubaan unik dalam membina tork yang boleh dianggar atau teknik ukuran dari isyarat 

mekanikal otot dalam kalangan pesakit yang mempunyai kecederaan saraf tunjang 

semasa rangsangan kontraksi-NMES. Fokus pertama di dalam tesis ini ialah untuk 

membangunkan prosedur hibrid untuk menghasilkan MMG sebagai proksi kepada 

daya/tork otot, terutamanya dalam kalangan individu sihat dan yang mengalami 

kecederaan saraf tunjang. Ini digunakan untuk mengkaji corak penambahan 

membolehkan penghasilan tork otot berperingkat stabil, hasil dari tork dan seterusnya 

memudahkan membantu penganggaran tork otot dari isyarat mekanikal otot dengan 

menggunakan teknik pengiraan pintar – pemodelan Support Vector Regression (SVR). 

Tesis ini juga bertujuan untuk telah membuktikan bahawa dalam situasi klinikal, 

kesahihan isyarat MMG adalah satu parameter yang relevan dan optimum untuk kajian 

permulaan mengenai dalam mengkaji keletihan otot semasa pembengkokan lutut kritikal 

knee buckling stress, iaitu dalam keadaan berdiri-sehingga-keletihan di kalangan individu 

yang mengalami kecederaan saraf tunjang. Disebabkan oleh keunikan peserta dalam 

kajian ini/populasi sasaran dan tujuan aplikasi klinikal, sebagai contoh, berdiri dengan 

sokongan NMES, otot quadrisep telah dipilih untuk kajian. Kumpulan otot ini telah 

banyak dilaporkan kerana ianya relevan dengan kajian yang melibatkan dinamik tork 

lutut. Dapatan dari kajian ini menunjukkan bahawa amplitude isyarat MMG mempunyai 

hubungkait yang baik bagi penghasilan daya kerana kebolehpercayaannya dalam 

menjejak corak perekrutan motor unit semasa kontraksi-kontraksi otot rangsangan-

NMES. Keputusan pemodelan SVR telah menunjukkan ketepatan ramalan cemerlang 

dengan kebolehannya dalam penyamarataan dan isyarat MMG dari otot quadricep 

dicadangkan sebagai indikator tork rangsangan-NMES yang bagus ketika latihan isometri 

extensi lutut. Berikutan itu, isyarat MMG telah dicadangkan sebagai proksi kepada 
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ukuran tork otot semasa latihan kaki dan pergerakan-pergerakan berfungsi kepada 

populasi dengan kecederaan saraf tunjang. Di samping itu, tahap kebergantungan isyarat 

MMG dalam mengukur daya otot berkemungkinan besar berguna dalam menilai 

pemulihan atau kemerosotan aktiviti-aktiviti MU unit motor selepas latihan NMES dan 

bertindak sebagai alternatif untuk mengetahui aktiviti otot yang dirangsang NMES 

sebagai aplikasi kawalan praktikal. Secara keseluruhannya, tesis ini dapat menjadi 

menyandarkan asas kepada perlaksanaan teknologi NMES dorongan-MMG untuk masa 

depan. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

According to the World Health Organization (WHO), an estimated 250 to 500 

thousand people suffer a spinal cord injury (SCI) each year (Bickenbach et al., 2013). 

Although the incidence rate of SCI is pronounced in the developed economy (Singh et 

al., 2014), the rate is on the rise in the developing countries including Malaysia (Ibrahim 

et al., 2013) and China (Yang et al., 2014). Based on the available data (Figure 1.1), there 

are consistent higher incidences of SCI among adult males—up to 80% of cases 

(Bickenbach et al., 2013). This has negative economic implications on the affected 

persons (and their family members) as there are over 60% unemployment rate in these 

populations, globally (Young & Murphy, 2009). For instance, within the affected 

population in Malaysia, not more than 57% could return to work post-acute care 

(Ramakrishnan et al., 2011).  

Therefore, SCI drastically decreases the quality of life (QOL) of those affected due to 

a partial or total loss of functional capacity below their injury levels (Jacobs & Nash, 

2004). This is often accompanied by secondary complications of a significant impairment 

to their physiological and cardiorespiratory performances which could lead to a marked 

degeneration of the affected neuromuscular functions (Davis et al., 2008; Hasnan et al., 

2013). These changes are worsened by the sedentary lifestyle imposed by the impaired 

neuromuscular function due to the lack of appropriate physical exercise programs 

(Ragnarsson, 2007). 
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Figure 1.1: Incidence rate of SCI by gender and age group.  

Adapted with permission from Vogel et al. (2012). 

Depending on a number of factors such as the type of injury/lesion (upper motor 

neuron or lower motor neuron), severity of the injury, and user preference, neuromuscular 

electrical stimulation (NMES)-evoked muscle contraction has been generally 

recommended and validated for health promotion via exercise therapy and functional 

recovery in the affected populations (Hamid & Hayek, 2008; Ragnarsson, 2007). NMES 

applied via a pair of bipolar stimulating electrodes and over the human neuromusculature 

produces muscle contractions by depolarizing motor axons beneath the stimulating 

electrodes (Collins, 2007). Once the electrical stimulus amplitude exceeds the excitation 

threshold of the axons of the motor neuron, and through the principle of neuromotor 

plasticity (Martin et al., 2012; Singer, 1987), there will be elicitation of muscle 

contraction and force production (Reed, 1997). The product of the electrical stimulus-

evoked muscle force and the muscle length or moment arm generates joint torques needed 

to execute functional tasks. Therefore, the foremost clinical objective of the NMES 

technology in restoring muscle functions is to substitute for the absence of motor function 
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due to the lesion of the central nervous system (Vodovnik et al., 1981; Vrbová et al., 

2008).  

Although the NMES technology is gaining increasing popularity for its huge potentials 

in clinical rehabilitation applications (Peckham & Kilgore, 2013), the conventional 

control strategy of its stimulation parameters (frequency (Hz), current (mA) and pulse 

width (µs)) poses a significant drawback. For example, in most of the commercial surface 

NMES systems, users regulate the stimulation parameters manually via open-loop 

strategy. This is usually administered via "button presses" according to the users’ 

perceived need. This strategy is highly subjective, enforces unnecessary constant 

stimulation intensity and thus, makes the outcome of the NMES suboptimal (Ragnarsson, 

2007) and frustrating.  

Automated NMES control strategy via closed-loop technology has recently become 

attractive (Ibitoye et al., 2016; Popović, 2014) to prolong muscle contraction, as several 

advanced simulations’ results of the strategy have shown promise in enhancing the NMES 

utility and clinical prominence. This is due to the fact that the strategy is more effective, 

relevant and safer when compared to the traditional open-loop strategy (Braz et al., 2009). 

Basically, the closed-loop NMES strategy allows an efficient use of the technology as it 

automates the adjustment of electrical stimulus parameters throughout the entire duration 

of muscle contractions (Peckham & Knutson, 2005). However, one requirement of an 

automated NMES modulation is a reliable interpretation of the muscle response 

information generated as an indicator of neuromotor output following NMES-evoked 

contractions (Kimura et al., 2004; Peckham & Knutson, 2005; Popović, 2014). This is 

essentially required by the NMES controller to regulate muscle responses based on the 

muscle state.  
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Investigators (Hug et al., 2015; Scott, 2004) have identified the muscle force 

production following NMES-evoked contractions as an indicator of motor output. 

Therefore, muscle force could be used as a neural correlate of a muscle’s motor 

performance. However, at the moment, a simple or artifact-free, direct and non-invasive 

measurement of muscle force production by individual muscle during NMES-evoked 

contraction is impractical (Erdemir et al., 2007; Popović, 2014). The estimation of the 

muscle force from other measurable muscle characteristics such as biopotentials has been 

promoted (Peckham & Knutson, 2005) as the control signal source for optimal 

performance of NMES systems.  

Evoked-electromyography (EEMG) of a contracting muscle is the traditional source 

of NMES control signals as the signal is rich in muscle contraction and force information 

(Disselhorst-Klug et al., 2009; Thompson et al., 2011). However, the application of 

EEMG as an NMES control signal has a limited impact on the routine clinical practice. 

This is mainly due to the large size of stimulation artifact current in relation to the EEMG 

signal (Merletti et al., 1992; Yamaguchi et al., 2012) which has continued to challenge 

the reliability of the signal for the estimation of NMES-evoked muscle force (Popović, 

2014). Practically, several strategies have been applied to decode the neural information 

in EEMG embedded in the electrical stimulation artifact but none has been so effective 

for clinical use (Chesler & Durfee, 1997; Hoffer et al., 1996; Popović, 2014). In addition, 

the sensitivity of the signal to the external electromagnetic interferences, variations in 

differential electrode positioning and skin impedance fluctuation due to perspiration 

(Yamamoto & Takano, 1994) often lead to the deterioration of EEMG signals and a 

compromise of its reliability on frequent use.  

Furthermore, EEMG signal is unable to reflect changes in mechanical properties of 

muscle during fatigue stimulation (Orizio et al., 1999). With EEMG, muscle fatigue study 

Univ
ers

ity
 of

 M
ala

ya



5 

is challenging as usually the signal continues to increase with increasing muscle’s motor 

unit recruitment despite a decrease in the muscle effort/force due to muscle fatigue (Falla 

& Farina, 2008). Although EEMG reflects the degree of neural excitation responsible for 

the generation of muscle contractions and force, the muscle fatigue phenomenon, which 

EEMG may not discriminate from fresh contraction (Vøllestad, 1997), is also within the 

continuum of effective muscle contractions (Lei et al., 2011). Thus, quantification of 

NMES-evoked force production by EEMG alone during NMES-evoked contraction is 

deficient (Lei et al., 2011; Levin et al., 2000; Popović, 2014).  

As a less complicated alternative, a mechanical activity of contracting muscles is 

gaining recent prominence as a proxy of muscle force. The surface measurement of the 

mechanical activity is called mechanomyography—MMG (Orizio, 1993; Stokes & 

Blythe, 2001). The rationale for investigating MMG signal as an alternative control signal 

source for NMES technology is as follows: (i) MMG is a mechanical "counterpart" of 

EMG for neuromuscular performance assessment (Croce et al., 2015; Orizio, 1993; Yuan-

Ting et al., 1992), which summates the mechanical activity of active muscle fibre during 

contractions (Orizio et al., 1996) and in addition, reflects the peripheral adaptations in 

mechanical properties of muscle as reflected by muscle’s dimensional changes (Cè et al., 

2015) (ii) the signal readily propagates through the skin surface enabling a non-invasive 

recording of the muscle activity relevance for the estimation of the level of neural 

activation, and (iii) the MMG signal has been used to investigate motor unit (MU) 

activation strategy which is responsible for muscle contractions and force modulation 

(Beck et al., 2004; Orizio, 1993). Collectively, the highlighted MMG signal 

characteristics may allow a non-invasive estimation of muscle state as required for a 

closed-loop NMES operation to implement an automatic modulation of the stimulation 

parameters. An immediate question that may ensue following this preamble is, why is 
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MMG signal important in this setting? The study’s motivation as illustrated in the 

following paragraphs answers this question. 

1.2 Motivation for this Study 

There is compelling evidence that a closed-loop control of NMES supported activity 

promotes the optimal utility of the technology in the clinical rehabilitation of persons with 

SCI. The lack of a direct, artifact-free, non-invasive and reliable proxy of muscle force 

from the stimulated muscles and affected limbs motivated this present study which sought 

to investigate the potential of MMG signals as a proxy of torque for NMES feedback 

applications.  

 However, in order to obtain an approximation of the functional capability and 

characteristics of NMES-evoked contractions of a muscle, its capacity to elicit isometric 

torque production must be assessed (Jaeger, 1986; Mohammed et al., 2012). Specifically, 

for the clinical application of NMES for therapeutic and functional gains, the use of 

muscle contraction signals (i.e., biopotentials) for the assessment of muscle activity has 

been suggested (Peckham & Knutson, 2005; Wannstedt & Herman, 1978) for an effective 

joint control. This is required for neuromuscular training (Shields et al., 2006), in 

particular, during NMES supported knee extension, standing, and ambulation tasks. 

Therefore, a reliable measurement of muscle force, during these muscle activities, by a 

biopotential of muscle contraction origin for application as feedback control signals could 

significantly improve the functional outcomes of NMES-evoked contractions (Nataraj et 

al., 2010). 

Although as a biosignal, several studies have evaluated the voluntary muscle 

performance using MMG signals (Barry et al., 1985; Beck et al., 2004; Ibitoye et al. 2014; 

Orizio, 1993), the specific interpretation and practical relevance of the signal parameters 

during NMES-evoked contraction of paralyzed muscles remain poorly understood. 
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Specifically, there is limited knowledge on the effects of muscle fibre type transformation 

and impaired muscle function following a SCI (Burnham et al., 1997) on the MMG 

characteristics of a muscle during intermittent and sustained NMES-evoked contractions. 

Understanding these may elucidate the relevance of the signal as a proxy of muscle force 

response for NMES control applications and consequently overcoming a technical 

challenge inhibiting the progress in NMES rehabilitation of muscles after SCI. This is 

based on the existing knowledge that the effect of muscle fibre transformation after SCI 

on the muscle force modulation and the associated muscle fatigue characteristics 

(Thrasher & Popovic, 2008) may be tracked by MMG signal responses (Kimura et al., 

2004).  

1.3 Research Objective 

The main objective of this thesis was to develop a mechanomyographic-based NMES-

evoked muscle force/torque estimation technique for feedback applications in NMES 

systems, particularly for use in persons with SCI. To address the main objective, the 

specific tasks carried out were: 

 To develop a hybrid procedure to demonstrate MMG signal as a proxy of 

NMES-evoked muscle force in healthy volunteers. 

 

 To deploy the developed procedure for studying the reliability of MMG signal 

as a proxy of muscle force during NMES supported knee extension task in 

persons with SCI. 

 

 To demonstrate the potential relevance of MMG signal as a useful parameter 

for studying muscle fatigue during a critical knee buckling stress due to a 

sustained NMES-supported standing to fatigue failure task. 
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For a clear perspective, the experiments were designed to evaluate NMES-evoked 

contractions during common musculoskeletal assessment settings including knee 

extension activity against gravity and sustained standing (Clarkson, 2000). Therefore, the 

target muscle group was the quadriceps which has been well-established for its relevance 

in the study of knee torque dynamics during knee extension task, standing and ambulation 

training (Franken et al., 1993).  

Based on this premise, the first specific objective aimed to develop a method to assess 

a healthy quadriceps muscle force via knee extension torque production during ‘seated’ 

NMES-evoked isometric quadriceps contraction using MMG signals. The objective was 

also meant to learn the adjustment required for the deployment of the same protocol in 

persons with SCI. The rationale for this study was based on the well-known knowledge 

of a healthy voluntary knee extension torque assessment and it is as follows:  

The NMES-evoked muscle contraction increases with stimulation intensity as a result 

of an increase in the number of motor unit recruitment, to a certain critical level when the 

motor unit is fully recruited—a point preceding muscle fibre fusion and force saturation 

which may lead to a reduction in the muscle surface oscillation (Orizio et al., 1992). 

Specifically, the correlation between the MMG signal and the incremental NMES-evoked 

muscle force was examined. However, as the joint angle or muscle length influences the 

muscle force production (Pasquet et al., 2005; Rassier et al., 1999), the MMG responses 

to NMES-evoked muscle force at various knee angles could also be investigated. Based 

on this, the reliability of MMG signals as a proxy of muscle force was established, at 

incremental stimulation intensity levels, in order to mimic a typical practical clinical 

application of NMES-evoked muscle contractions for knee extension task. By this 

approach, the validity of the MMG signal to track muscle force production could be 
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resolved while guiding the implementation of the same methodology in persons with 

neurological conditions. 

The second specific objective is an application of the method developed in the first 

objective to study muscle response in persons with SCI. This is necessary as the MMG 

responses in healthy muscle may not adequately represent the situation in denervated or 

paralyzed muscle under neuromuscular provocation (Scott et al., 2007). This objective 

verified that the incremental NMES-evoked knee torque as measured by a commercial 

isokinetic dynamometer can be tracked by the MMG signal. Specifically, the experiment 

was conducted on persons with motor complete SCI; A and B according to the American 

Spinal Injury Association Impairment Scale (AIS, see Table 2.1 for details) (Kirshblum 

et al., 2011) during ‘seated’ NMES-evoked knee extension task for torque production via 

isometric quadriceps contractions. This mode of contraction is clinically relevant as 

NMES-evoked leg extension task involving short bouts of contractions and recovery 

periods has been suggested as an alternative modality to functional ambulation training 

in persons with SCI (Crosbie et al., 2009).  

Subsequently, the data obtained from this experiment were used for knee torque 

estimation from MMG signal using a machine learning technique based on support vector 

regression algorithm. This was necessary to investigate whether the factors that influence 

muscle force modulation including stimulation intensity, knee angle, and the generated 

MMG signal could be intelligently combined to estimate the knee extensor torque. By 

this approach, the established positive correlations between the MMG signal and muscle 

force could be corroborated using a SVR model which is more robust, especially, in 

handling regression tasks, than the traditional regression methods (Yu et al., 2010).   

In the two previously described specific objectives, the experiments were conducted 

in a laboratory and on an isokinetic dynamometer. The third specific objective was 
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conducted in a rehabilitation gymnasium to examine the clinical relevance of the MMG 

signal as a muscle fatigue contraction sensor. The rationale for this experiment was to 

investigate whether MMG signal could track the paralyzed muscle activation pattern 

during a practical standing-to-failure task in persons with motor complete SCI. The 

quadriceps muscle failure as reflected by knee buckle served as an indication of muscle 

fatigue which is typically characterized by a torque reduction (Sayenko et al., 2015). 

As the torque reduction is impractical or difficult to measure directly during NMES-

supported standing tasks, a 300 drop in the knee angle was used as a critical fatigue failure 

indicator. This measurement together with the quadriceps’ MMG signal responses over 

the contraction time allowed an investigation of whether MMG signals could be a reliable 

method for NMES-evoked muscle fatigue assessment. This approach was based on the 

knowledge that the muscle fatigue could be better assessed during NMES contraction as 

the limitation imposed by central nervous system (CNS), such as motivation, is absent 

(Vøllestad, 1997).  

Collectively, the experimental settings adopted in this study was typical of clinical 

NMES applications for sustained muscle contractions to verify whether MMG signal 

could track the changes in motor unit recruitment strategy during fresh and fatigued 

contractions.   

1.4 Research Significance 

Findings from this thesis provide unique insights into the development of an NMES-

evoked muscle force/torque measurement and tracking system using MMG signal in 

persons with SCI. Specifically, the thesis presents the technical assessment and 

implication of the MMG signal generated during NMES-evoked muscle contractions for 

applications in MMG-driven NMES systems. Such a system has the potential to impact 

the quality of life of many potential users, specifically from our rehabilitation program at 
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the Department of Rehabilitation Medicine of the University of Malaya Medical Centre 

(UMMC) and in general, for other patients from among the affected population within 

Malaysia and beyond. Specifically, the following points summarize the significance of 

the thesis. 

 The current open-loop mode of NMES technology has largely confined its 

application to research activities rather than its deployment for routine clinical use. 

The MMG signal proposed in this thesis as a stimulation artifact-free and non-

invasive proxy of muscle force can be applied as a reliable NMES feedback signal 

source to promote the flexibility and efficacy of NMES technologies for routine 

clinical applications. 

 The muscle force assessment method based on MMG signal, as proposed in this 

thesis, can be used to examine the level of NMES-evoked torque generation within 

and outside of laboratory and during NMES exercise for health benefits including 

minimizing muscle atrophy/wasting in paralyzed muscles (Panisset et al., 2016), 

promotion of neural repair (Young, 2015), healing of pressure ulcers (Lala et al., 

2015) and prevention of secondary peripheral nerve deterioration (Lee et al., 2015) 

and joint contracture (Peckham & Kilgore, 2013) in persons with SCI. 

 The thesis sought to provide a new knowledge on the potential application of 

MMG signals as a sensor to monitor the deterioration or improvement of motor 

control activity—responsible for muscle contractions following NMES-evoked 

contractions. This could guide clinicians and other allied health professionals 

administering NMES as a treatment option in rehabilitation and aid the 

development of effective rehabilitation interventions. 

 The thesis also explores a novel approach for tracking muscle fatigue states during 

NMES supported standing based on the muscle’s MMG signals and proposed the 

signal as a fatigue-failure predictor during critical functional tasks.  
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1.5 Research Scope 

The reported studies are limited to the experimental investigations of the MMG signal 

as a proxy of NMES-evoked muscle force/torque during knee extension and standing 

tasks in healthy and spinally injured persons. The implementation of the proposed MMG 

signal as a feedback signal in a real-time NMES control setting was not investigated. The 

thesis also applied the computational intelligent approach of SVR modelling to predict 

torque from MMG signal/datasets. However, the predictive SVR model used was based 

on the standard SVR algorithm as the algorithm gave a good predictive accuracy. This 

was in agreement with the knowledge that SVR often demonstrate an impressive 

performance in comparison with other machine learning algorithms in related fields 

(Ameri et al., 2014; Meyer et al., 2003). Therefore, comparison of SVR with other 

modelling techniques was not covered in this thesis. 

1.6 Thesis Organization 

This thesis is an integration of three major separate but dependent studies. Each study 

is presented in a separate Chapter with subsections including the introduction, literature 

review, methodology, results, discussion and conclusion. As the thesis style is based on 

the article format, there may be certain unavoidable redundant information, particularly 

in introduction and literature review subsections of each Chapter. Also, included in each 

of these Chapters are the relevant theoretical background and assumption that informed 

the selection of the methodology adopted. The publication by the author that is related to 

each Chapter is included within the Chapter.  

Chapter 2 provides the synthesis of an extensive background information to the 

research within this thesis. The Chapter specifically discussed the basic muscle 

physiology as well as neuromuscular principles of an impaired lower limb muscle 

function following a SCI. The Chapter also discussed the principle of NMES technology 
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in evoking muscle contractions, its pattern of motor unit recruitment strategy and the 

limitations of the technology in order to identify the technical challenges militating 

against its optimal performance. As the literature revealed a research gap of a reliable, 

artifact-free, and non-invasive proxy of NMES-evoked muscle force, review of a machine 

learning modelling technique for an intelligent estimation of muscle force from MMG 

was also presented. The Chapter contains a synthesis of the author’s four published 

review articles as listed under the introduction to Chapter 2.  

Chapter 3 reports the procedure used to establish the MMG signal as a proxy of NMES-

evoked quadriceps muscle force/torque in healthy volunteers. Moreover, the Chapter also 

presented the estimation of quadriceps muscles force from the MMG signal using support 

vector regression (SVR) modelling approach. The Chapter contains text from the author’s 

published article: 

Ibitoye, M. O., Hamzaid, N. A., Abdul Wahab, A. K., Hasnan, N., Olatunji, S. O., & 

Davis, G. M. (2016). Estimation of Electrically-Evoked Knee Torque from 

Mechanomyography Using Support Vector Regression. Sensors, 16 (7), 1115. 

Chapter 4 presents the application of the procedure established in Chapter 3 to relate 

the MMG signals with NMES-evoked knee torque in persons with SCI. The Chapter 

contains text from the author’s published article: 

Ibitoye, M. O., Hamzaid, N. A., Hasnan, N., Abdul Wahab, A. K., Islam, M. A., Kean, 

V. S. P., & Davis, G. M. (2016). Torque and mechanomyogram relationships during 

electrically-evoked isometric quadriceps contractions in persons with spinal cord 

injury. Medical Engineering & Physics, 38 (8), 767-775 

Chapter 5 reports the estimation of the paralyzed quadriceps electrically evoked 

muscle force from MMG signal using SVR modelling approach. 
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Chapter 6 describes the protocol for NMES-aided sustained standing to fatigue failure 

in persons with motor complete SCI. This was used to evaluate the validity of MMG 

signal as a proxy of muscle fatigue due to critical knee buckling stress during standing 

challenge task.  

Chapter 7 summarizes the findings of this research study, discusses their implications 

and overall significance. Furthermore, the Chapter also enumerates the limitations of this 

study and provides suggestions for further investigations as applies to NMES control 

systems. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

This Chapter reviewed related literature on muscle physiology and musculoskeletal 

impairment after a spinal cord injury (SCI), particularly for the benefits of the audience 

with an engineering background. The Chapter also discussed the neuromuscular electrical 

stimulation (NMES) technology as a popularly recommended rehabilitative intervention 

for persons after SCI while highlighting the major limitations of the NMES-evoked 

muscle contractions. The prominently identified limitations are (i) imprecision in torque 

production for effective functional applications and (ii) inherent rapid muscle fatigue 

probably due to a reversed or non-physiological recruitment of motor unit (Bickel et al., 

2011).  

Based on the available knowledge in the literature, optimal application of NMES for 

rehabilitative interventions warrants an automatic modulation of the stimulation 

parameters (Ibitoye et al., 2016). Therefore, NMES rehabilitation post-SCI has been 

discussed highlighting the need for biopotential sources for NMES feedback applications. 

Popular biopotential sources which have been used to assess the muscle performance 

(force/torque and fatigue) are also discussed to highlight the need for this thesis. 

Following the provision of a novel insight into the potential of a unique application of the 

muscle contraction characteristics (mechanomyography, MMG) as an NMES control 

signal, the Chapter concluded with a discussion on a machine learning modelling 

technique for muscle force/torque estimation using the MMG signal. 

The literature discussed in this Chapter has been previously published, in part, in the 

following articles which were retrieved with permission from the publishers:  
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(i) Ibitoye, M. O., Estigoni, E. H., Hamzaid, N. A., Abdul Wahab, A. K., & Davis, 

G. M. (2014). The Effectiveness of FES-Evoked EMG Potentials to Assess 

Muscle Force and Fatigue in Individuals with Spinal Cord Injury. Sensors, 14 

(7), 12598-12622.  

(ii) Ibitoye, M. O., Hamzaid, N. A., Zuniga, J. M., & Abdul Wahab, A. K. (2014). 

Mechanomyography and Muscle Function Assessment: A Review of Current 

State and Prospects. Clinical Biomechanics, 29 (6), 691-704. 

(iii) Ibitoye, M. O., Hamzaid, N. A., Zuniga, J., Hasnan, N., & Abdul Wahab, A. K. 

(2014). Mechanomyographic Parameter Extraction Methods: An Appraisal for 

Clinical Applications. Sensors, 14 (12), 22940-22970.  

(iv) Ibitoye, M. O., Hamzaid, N. A., Hasnan, N., Abdul Wahab, A. K., & Davis, G. 

M. (2016). Strategies for Rapid Muscle Fatigue Reduction during FES Exercise 

in Individuals with Spinal Cord Injury: A Systematic Review. PLoS One, 11 (2), 

e0149024. 

2.2 Motor Control in Human 

Humans with intact neuromuscular function have controls over the performance of 

intended muscular activities via nervous system which controls the stimuli, perturbations 

and coordinates body activities (Hu et al., 2012; Rosenbaum, 2010). The nervous system 

is made up of (i) the central nervous system (CNS) which is composed of the brain and 

spinal cord, and (ii) the peripheral nervous system (PNS), that links the CNS with 

“various receptors and effectors” (Keijzer et al., 2013; Mackie, 1990).  Typically, for 

motor and function coordination, there is typical information “signal pickup by sensory 

receptors” which is transmitted back and forth to the CNS through the PNS for processing 

(Keijzer et al., 2013) (Figure 2.1). However, injury to the spinal cord may lead to a 

malfunction of the sensory and/or motor function and coordination as a result of a partial 
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or complete loss of motor or sensorimotor capability based on the severity of the injury 

(McDonald & Sadowsky, 2002; Valenzuela et al., 2016). 

 

Figure 2.1: Basic representation of the nervous system function.  

Adapted from JDifool and Looie496 (2009) according to the creative common 

license from Wikimedia. 

 

2.3 Basic Skeletal Muscle Responses Post Spinal Cord Injury 

An intact spinal cord propagates the motor and sensory information between the brain 

and the peripheral nerves that inerves muscles (Purves et al., 2001). This allows a 

voluntary movement coordination by the nervous system while the postural control and 

joint stability needed for skeletal movements for activity performance are normally 

supported by the skeletal muscle (Blottner & Salanova, 2015; Hogan, 1985). Following 

a SCI due to a disease or trauma to the spinal cord, there is usually partial or total loss of 

skeletal muscle functions. This is as a result of the disruption in the motor and sensory 

information below the injury level (Biering-Sørensen et al., 2009; Hamid & Hayek, 

2008). As the human skeletal muscle which is responsible for movements and activities 
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is innervated by spinal nerves accommodated within a particular segment of the spinal 

cord, injury to that segment logically translate to a loss of muscle activity below the injury 

site (Biering-Sørensen et al., 2009; Hamid & Hayek, 2008).  

The rehabilitative technique or treatment options for the affected persons depends 

largely on the level (Figure 2.2) and severity or completeness of the SCI based on the 

injury classification. Table 2.1 describes the neurological injury classification according 

to the International Standards for Neurological Classification of SCI i.e. American Spinal 

Injury Association Impairment Scale (AIS) (Kirshblum et al., 2011; Waters et al., 1991). 

Furthermore, Figure 2.2 illustrates the relationships between the spinal cord segment and 

the supported functions. 

Table 2.1: American Spinal Injury Association Impairment Scale (AIS)  

(Kirshblum et al., 2011). 

 

Classification Grade A Grade B Grade C Grade D Grade E 

Injury 

completeness 

Sensorimotor 

complete 

Motor 

complete but 

sensory 

incomplete 

Motor and 

sensory 

incomplete 

Motor and 

sensory 

incomplete 

 

Sensorimotor 

function is 

intact 

Interpretation 

Both motor 

and sensory 

functions are 

absent below 

the injury 

level and in 

the sacral 

segment S4-

S5. 

Only sensory 

function is 

preserved 

below the 

injury level 

and in the 

sacral 

segment S4-

S5. 

Motor 

function is 

intact below 

the injury 

level, with 

key muscles 

having 

muscle 

grade < 3 

Motor 

function is 

intact below 

the injury 

level, with 

key muscles 

having 

Muscle 

grade ≥ 3 

 

Normal 

neurological 

function 

Note: Key muscles refer to the muscles below the injury level. 
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Figure 2.2: Classification of the levels of spinal cord injury according to the 

American Spinal Injury Association.  

Reproduced from Bickenbach et al. (2013) under the general distribution terms of the 

World Health Organization. 

 

Depending on the post-injury duration, SCI is also classified as acute (mostly while 

the affected persons is hospitalized for a primary rehabilitation intervention) and chronic 

(post-rehabilitation phase or community dwelling) (Curt et al., 1998) and a stage between 

the two is termed subacute (Fawcett et al., 2007). While there has been no definitive 

consensus on the demarcation of when an acute injury becomes chronic, chronic injury 

implies a relative stability in the body composition as compared to acute SCI (Hamid & 
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Hayek, 2008; Houle & Tessler, 2003). This knowledge is essential as there are differences 

between the physiological responses of a muscle in chronic and acute stages of SCI. Such 

responses are due to the variations in the duration of inactivity associated with the changes 

in the muscle metabolism, blood flow, and fibre composition (Peckham et al., 1976; 

Shields, 2002).  

Consequently, the effect of this transformation confers different fatigue resistance 

capacities on the skeletal muscles during different post-SCI stages (Nguyen et al., 2011). 

For example, unlike during chronic SCI phase, an acutely denervated skeletal muscle 

might be characterized by an unusual muscle fibre composition—as indicated by the 

relative proportion of slow and fast myosin heavy chain isoform expression (Burnham et 

al., 1997). This is as a result of the alteration of fibre type morphology and histochemistry 

after SCI (Burnham et al., 1997; Gorgey et al., 2014). Therefore, there are different 

muscle force and fatigue temporal responses between an acutely-denervated versus 

chronically denervated muscle to a rehabilitative intervention and functional recovery.  

Following a SCI, the main classes of muscle fibre types responsible for variations in 

the muscle responses are slow-twitch/fatigue resistant fibre and fast-twitch/fatigable 

fibre. Fast-twitch fibres' response to a contractile impulse is quicker than that of slow-

twitch fibres, but at the expense of rapid onset of muscle fatigue. While slow-twitch fibres 

are more fatigue-resistant than fast-twitch fibres, response to a contractile impulse in 

slow-twitch fibres is slower in comparison with that of fast-twitch fibres (Bogdanis, 

2012). Although the extent of muscle atrophy due to disuse and the level of physical 

exercise influence the ratio of the fibre types in skeletal muscle, alteration in the 

proportion of the slow-twitch fibre to fast-twitch fibre is a negative neuromuscular 

sequela to SCI (Round et al., 1993; Tanaka et al., 2013).  
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As a consequence of these morphological and histochemical adaptations, resistance to 

rapid fatigue is impaired in denervated or paralyzed skeletal muscles compromised by the 

upper motor neuron lesions in the spinal cord (Hillegass & Dudley, 1999). Accordingly, 

the power output and exercise capacity of the affected muscles are diminished due to the 

inactivity and unloading concomitant with post-SCI wheelchair confinement (Castro et 

al., 1999). This is clearly evident in the decline of the force-generating capacity of the 

muscle (i.e., specific tension (Ncm-2)) (Hunter et al., 1998; Kluger et al., 2013).  

Therefore, there is a significant influence of SCI on the muscle response and general 

health conditions of the affected persons (Davis et al., 2008; Noreau & Shephard, 1995). 

The common consequences of SCI includes: (i) disuse atrophy and consequently, 

osteoporosis with an increased risk of bone fracture, (ii) limited cardiorespiratory fitness 

due to sedentary lifestyle, (iii) decubitus ulcers, (iv) incontinence among various other 

physiological and biomechanical disorders (Davis et al., 2008). This justifies why 

returning the affected persons back to their “productive lives” has become a research 

priority (Boschen et al., 2003; Ditunno & Formal, 1994). 

Thus, a recovery of the lost function or at least a preservation of muscle health integrity 

significantly impacts the quality of life of the affected persons. Evidence (Ditunno & 

Formal, 1994; Nash, 2005) suggests that rehabilitative interventions promote 

independence in “self-care” and “mobility” through exercise in the affected population. 

Thus, SCI-related health problems could be offset by therapeutic and functional 

rehabilitative interventions. One promising engineering technique that has been 

recognized and recommended for exercise is neuromuscular electrical stimulation 

assisted contractions. This technique has been used to offset sedentary lifestyle, and its 

complications, in the affected persons in order to improve their physical capacity (Hamid 

& Hayek, 2008; Ho et al., 2014; Jacobs & Nash, 2004).  
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2.4 Neuromuscular Electrical Stimulation  

Neuromuscular electrical stimulation (NMES) is an engineering technique for 

artificially applying electrical current to the muscle or nerve to generate skeletal muscle 

contractions (Bajd & Munih, 2010; Hamid & Hayek, 2008). The technique is based on 

the discovery of Galvani and Volta (1793) which demonstrated muscle contractions with 

an electrical current propagation along muscle fibres. In clinical settings, NMES is used 

to activate skeletal muscle for rehabilitative purposes while the technique is used in 

research settings for the assessment of muscle performance and for the improvement of 

neuromuscular activation levels (Bickel et al., 2011).  

Technically, NMES systems are made up of a “microprocessor-based electronic 

stimulator that coordinates the modus operandi of the stimulation. The system also has 

stimulation channels that communicate to individual pulses using pairs of stimulation 

electrodes connected to the neuromuscular system” (Hamid & Hayek, 2008; Papachristos, 

2014) and a portable power source with a rechargeable battery (Ragnarsson, 2007). Figure 

2.3 depicts the NMES scheme in open- and closed-loop configurations. Open-loop 

configuration is based on the manual bottom press while in a closed-loop configuration, 

proxies of muscle responses are inputs to the control interface from where the stimulator 

receives the command signals. The electrical stimulus pulses that are generated by the 

controller are delivered to the target muscle via pairs of stimulator electrode depending 

on the number of channels. This results in muscle contractions required for therapeutic 

and/or functional gains. 
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Figure 2.3: Basic component of a surface NMES system.   

 

The stimulator generates a train of pulses (i.e., similar to the neural twitches passing 

through the spinal cord to the peripheral nerves during voluntary contraction in an intact 

spinal cord) below spinal cord lesion to effect artificial muscle contractions (Durand et 

al., 2005; Hamid & Hayek, 2008). Specifically, the generated stimuli triggers action 

potentials in the peripheral nerves within the muscle fibres to activate muscle contractions 

(Rattay et al., 2003). The action potential, being “a fundamental unit of communication 

in the nervous system, is an electrochemical signal that travels along the neurons as a flux 

of ionic current between the extracellular and intracellular matrix” (Grill & Kirsch, 2000). 

Therefore, when NMES current is applied to a pair of stimulating electrodes affixed to 

the skin surface overlying sensorimotor structures, an electric field triggers action 

potentials along the nerve bundle, which leads to muscle contractions (Figure 2.4). This 

is effective as the released ions produce current in the tissue due to the transmission of 

action potentials along the axon to the peripheral nerve innervating the muscle (Durand 

et al., 2005; Grill & Kirsch, 2000).  
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Figure 2.4: Electric field propagation and generation of the action potential to 

evoke muscle contractions during surface neuromuscular electrical stimulation. 

Reproduced from Bajd and Munih (2010) with permission from the publisher. 

 

The propagation of the action potential along the nerve leads to muscle contractions 

through the activation of the PNS (Durand et al., 2005; Grill & Kirsch, 2000). The potency 

of the NMES is based on the system parameters’ setting (intensity (current or voltage), 

pulse width and frequency; Figure 2.5) which determines the extent of muscle fibre 

recruitments, muscle contraction and consequently, muscle force generation (Bhadra, 

2015). These electrical stimulation parameters are functions of the muscle force 

production while pulse frequency, specifically, affects the muscle fatigability (Ibitoye et 

al., 2016). 

Evidence (Bickel et al., 2011) suggests that the NMES’s recruitment pattern of motor 

unit (MU) is nonselective, spatially fixed and synchronous. This implies that the MUs are 

stimulated or activated at the same time without obeying the size principle of Henneman 

(1957). The size principle suggests that the normal physiological recruitment of MUs 

involves a progressive recruitment of slow twitch MUs before fast twitch MUs (Jabre & 

Spellman, 1996). This may justify why a stimulation frequency of 20 Hz and above, 

which is within the “physiologically relevant frequency of motoneuron discharge” (Al-

Majed et al., 2000), is usually required for achieving effective electrical stimulus muscle 
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contractions (Thompson et al., 2014). This is opposed to a voluntary MU activation 

strategy, which is asynchronous and requires a frequency range between 6 Hz and 8 Hz 

(Lynch & Popovic, 2008) for effective muscle contractions.  

 
Figure 2.5: Stimulation parameters.  

The period of stimulation (T (ms)) is the inverse of the frequency of stimulation (F 

(Hz)). PW (µs) stands for pulse width and I (mA) represents the stimulation current. 

 

As earlier mentioned, the NMES is typically administered through pulses of electrical 

signals with specific parameters—current, pulse width, and frequency (Figure 2.5), using 

stimulating electrodes (Hamid & Hayek, 2008). These electrodes can be fixed to the skin 

surface non-invasively (transcutaneous), or surgically implanted and affixed to the 

muscle’s motor point (epimysial), or implanted inside the muscle 

(percutaneous/intramuscular), or surgically wrapped around the nerve (helix or a cuff), or 

inserted (intraneural) within the nerve that innervates the muscle of interest (Popovic & 

Sinkjær, 2000; Ragnarsson, 2007).  

Although implanted-based NMES electrode generally allows good muscle selectivity 

and promote excellent motor unit recruitment (Polasek et al., 2009), the technique may 
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be characterized by infection, low user preference (Rohde et al., 2012) and has not been 

widely approved for clinical use (Peckham & Knutson, 2005). This has resulted in a 

limited “commercial success” of the technology (Peckham & Knutson, 2005). 

Conversely, while surface NMES technology is relatively safer and easier to use 

(Mangold et al., 2004), selective muscle contractions especially of deeper muscles is 

challenging. However, the modality is potentially appealing to the users and more 

commonly used in home and clinical settings (Keller & Kuhn, 2008; Ragnarsson, 2007). 

Therefore, based on the highlighted strengths of the surface stimulation modality, with 

consideration to the main objective of the present thesis and in accordance with previous 

related studies on knee extension (Gorgey et al., 2016; Hillegass & Dudley, 1999) and 

standing (Kralj & Bajd, 1989; Yarkony et al., 1990) tasks, surface stimulation was 

considered suitable and thus adopted for use in the various investigation performed in the 

present thesis.      

On the mode of control of NMES system, the modulation of the stimulation parameters 

can be effected through an open-loop or closed-loop configuration (Ragnarsson, 2007). 

In an open-loop NMES modulation, the operation of the NMES system is dependent on 

the subjective users’ perceived need. Therefore, information of the muscle state in terms 

of muscle force/joint torque and fatigue is absent and could not be compensated for. Other 

than being characterized by a sub-optimal muscle response, the modality predisposes a 

muscle to injury (Fitts, 1994). Although this type of NMES system is mostly available 

for therapeutic applications, its effectiveness for functional applications is limited as the 

modality overstimulates the muscle to ensure sufficient activation—a practice which 

leads to a rapid muscle fatigue (Hoffer et al., 1996).  

Conversely, in a closed-loop NMES system, the real-time information on the muscle 

response/state such as muscle force or joint torque and fatigue status are automatically 
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fed back to the NMES system by peripherally placed sensors to modulate or regulate the 

NMES operations (Peckham & Knutson, 2005). This type of NMES operation is more 

efficient, mostly required for functional activities and reduces “cognitive burden” of 

open-loop NMES systems—where  the user is expected to be conscious of emerging 

perturbations (Hoffer et al., 1996).  

By these two strategies, NMES provides muscle contractions for the restoration of 

movement or function (Bajd & Munih, 2010). The application of NMES therapy to 

promote the ‘restoration’ of purposeful function has been demonstrated in several studies 

(Doucet et al., 2012; Fouad & Tetzlaff, 2012; Scott et al., 2005). Useful clinical 

application of the NMES technology has been applied to maintain, improve or restore 

muscle trophism, promote health and augment functional outcomes after SCI (Collins, 

2007; Deleys et al., 2015), in post-acute care, rehabilitation settings and exercise 

programmes (Fouad & Tetzlaff, 2012; Kebaetse et al., 2005; Mohr et al., 1997). In the 

next session, lower limbs rehabilitation applications of the NMES technology in post-SCI 

care is discussed. 

2.5 NMES Assisted Rehabilitation in the Lower Limbs Post-SCI 

NMES applied over the human neuromusculature produces muscle contractions by 

depolarizing motor axons beneath the stimulating electrodes (Collins, 2007). Previous 

neurophysiological studies have shown that the larger motor units’ axons are more readily 

depolarized, allowing preferential recruitment of fast twitch fibres during NMES-evoked 

contractions (Bickel et al., 2011; Blair & Erlanger, 1933). However, in persons with SCI, 

inactivity following wheelchair confinement leads to disuse atrophy and alters the normal 

physiological muscle response (Castro et al., 1999; Round et al., 1993). To preserve the 

integrity of muscle health in this population, NMES rehabilitative option exploits the 

adaptive potential of skeletal muscle fibres to increase loading effect on joints.  
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Therefore, there is strong evidence (Ho et al., 2014; Sadowsky et al., 2013) that 

NMES-evoked muscle contractions promote the recovery and/or preservation of health, 

and offset the secondary complications of the SCI (Griffin et al., 2009; Hasnan et al., 

2013; Jacobs & Nash, 2004). Specifically, the NMES technology has shown promise in 

the rehabilitation of both the upper and lower limbs as well as human body functions 

mostly in persons with upper motor neuron lesions but intact peripheral nerve/lower 

motor neuron (Kern et al., 2007; Ragnarsson, 2007). In these persons, the affected 

muscles still retain the “ability” to contract and generate force (Biering-Sørensen et al., 

2009).  

However, depending on the type of paralysis, regaining standing and ambulation are 

typical important rehabilitative priorities in persons with paraplegia—those with lower 

limb and trunk paralysis (Ragnarsson, 2007) as well as those with low tetraplegia (Davis 

et al., 2001; Jaeger et al., 1989; Peckham & Knutson, 2005). NMES supported standing 

in these populations has been a major research concern for over five decades with the 

pioneer works of Kantrowitz (1963), Bajd et al. (1981) and Kralj and Bajd (1989). 

Therefore, standing and short distance ambulation represent major purposes of NMES 

application in the lower limbs (Peckham & Knutson, 2005) as the inability to stand or 

ambulate may disallow the affected persons the capacity to manipulate objects within 

their environments, transfer between places and have an equal level interaction (Davis et 

al., 1999; Peckham & Knutson, 2005).  

Figure 2.6 represents an open-loop control of NMES administration for knee 

extension, standing, and ambulation training. In this case, the stimulation is triggered 

manually by a finger switch to effect knee lock in stance phase and unlocks the knee 

during swing phase in order to prevent collapse, while the NMES system consisting of 

about 16-channel stimulation via surface electrodes, moves the ankle. Evidence (Faghri 
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et al., 2001) suggests that the NMES-assisted standing improves a joint range of motion, 

prevents orthostatic hypotension and circulatory hypokinesis and improves 

cardiorespiratory and metabolic functions for the promotion of the quality of life (Rohde 

et al., 2012). In addition, NMES supported standing may prevent disuse atrophy, 

promotes muscle strength and endurance, enhances cardiopulmonary status and tissue 

integrity to prevent pressure sore associated with inactivity (Triolo & Bogie, 1999). 

Moreover, being a requirement (Davoodi & Andrews, 1999) for reaching and 

ambulation, standing allows persons with SCI to fulfill activity of daily living (Simpson 

et al., 2012). The need to channel research activities in line with this concern has 

continued to motivate research activity in this area of lower limb rehabilitation.  

Leading among the NMES supported standing research priorities has been the 

strategies for “standing up”, “sit-to-stand” and “prolonged standing” during stance phase 

(Eng et al., 2001; Kern et al., 1999). These functional activities are often preceded by 

reconditioning of the involved muscles (Peckham & Knutson, 2005) through isometric 

knee extension exercise (Jaeger, 1986) and other strength conditioning modalities which 

could be used to promote the muscle resistant to rapid muscle fatigue for an extended 

contraction duration.  
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Figure 2.6: Typical NMES-assisted lower limb rehabilitation.  

(A) The NMES assisted knee extension exercise for improvement of muscle strength 

and joint range of motion in preparation for standing tasks; (B1) The NMES supported 

sit-to-stand and (B2) standing tasks; and (C) An example of an NMES setting for 

ambulation training. 
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The specific population of SCI that possesses a good upper-limb strength which is 

required for standing may be trained for NMES supported standing to access objects and 

maneuver into places that are ordinarily inaccessible with a wheelchair (Davis et al., 

1999). Standing has both functional (Triolo et al., 1992) and therapeutic benefits (Veltink 

& Donaldson, 1998). The functional standing task involves a stable and an upright posture 

while part of/or whole of upper limbs are used for object manipulations (Triolo et al., 

1992). However, when the upper extremities are mainly used for postural control and 

stability, such a standing task is limited to therapeutic benefits. While the latter may be 

of limited clinical interest, its benefits are equally enormous (Veltink & Donaldson, 

1998), particularly being a simple and cost-effective therapeutic exercise modality (Bajd 

et al., 1999). In both cases, standing benefits can fully be realized if it is considerably 

prolonged (Eng et al., 2001).  

Currently, the dexterity of NMES supported standing is not comparable to that of 

voluntary standing in persons with intact neuromuscular function. For example, in terms 

of metabolic (energy) cost, the effort expended in NMES standing is estimated at 4 to 6 

times higher than that of a normal voluntary standing (Graupe & Kohn, 1998; Jacobs & 

Nash, 2004; Kobetic & Marsolais, 1994). Additionally, an insufficient duration of NMES 

supported standing has been consistently reported and this is a limitation to the clinical 

efficacy of the NMES technology (Peckham & Gorman, 2004; Ragnarsson, 2007) for 

application in standing. Thus, the research interest to prolong the duration and improve 

the efficacy of NMES supported standing has been on the rise recently (Braz et al., 2015). 

To understand the reason behind the inefficient outcome of NMES supported standing 

in persons with SCI, the knowledge of motor activities during voluntary recruitment of 

motor unit is vital. As earlier mentioned, voluntary muscle contraction obeys Henneman’s 

size principle (Henneman, 1957; Henneman et al., 1965). That is, the recruitment order 
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of motor units is from the smallest (slow twitch) to the largest (fast twitch). This has been 

interpreted as orderly recruitments of muscle fibres’ motor units. This phenomenon 

naturally delays the occurrence of muscle fatigue during sustained maximal isometric 

contractions by allowing the “slowing” of motor unit firing rate— muscle wisdom (Boyas 

& Guével, 2011; Garland & Gossen, 2002). One of the exceptions to the Henneman’s 

size principle, however, has been the recruitment pattern of NMES where a reversal of 

the size principle has been commonly reported (Bajd & Munih, 2010; Bickel et al., 2011).   

In addition, the majority of evidence supports that the order of NMES-induced MU 

recruitment is non-selective (Bickel et al., 2011; Maffiuletti, 2010), the consequent of 

which is the exaggerated metabolic cost of NMES-evoked muscle contractions that lead 

to rapid muscle fatigue (Collins, 2007; Maffiuletti, 2010). This limits the duration of 

muscle contractions that NMES may evoke (Jaime et al., 2002). Therefore, while there 

are various therapeutic and functional benefits associated with lower limb rehabilitation 

(Thrasher & Popovic, 2008), the limitation imposed by rapid muscle fatigue demand that 

the NMES modulation is automated for optimal applications.  

The effect of muscle fatigue is particularly significant as it is time-varying and affects 

the response of muscle, specifically, during high-intensity repetitive application of NMES 

for antigravity activities such as in standing-up and sustained standing where muscle 

fatigue may be evident in 60 secs of stimulation (Chesler & Durfee, 1997; Thrasher & 

Popovic, 2008). Consequently, there is an increased tendency for muscle injury associated 

with a prolonged muscle contraction due to the accumulated muscle fatigue (Fitts, 1994) 

without proper monitoring. Therefore, an automated NMES operation allows intelligent 

compensation for changes in the neurostimulated muscle response due to muscle fatigue 

and other perturbations. 
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However, one major limitation of the commercial NMES technologies is the lack of a 

reliable feedback signal source to gain muscle state information including the magnitude 

of the force/torque generation and fatigue contractions (Popović, 2014). This may justify 

why the available clinical NMES systems such as Parastep™ (Sigmedics, Inc., Fairborn, 

OH, USA) still rely on the manual control by hand switches for operation (Ethier & 

Miller, 2015). Till date, the development and validation of sensors to modulate and 

automate the stimulation pattern, during NMES-evoked muscle contractions in order to 

mimic the physiological coordination of muscular activities, is of interest and a wide 

knowledge gap (Ragnarsson, 2007). Indirect measure of neural activities including 

electromyogram (EMG), electroencephalogram (EEG), electroneurogram (ENG) 

(Sinkjaer et al., 2003) and mechanomyogram (MMG) which is the mechanical equivalent 

of EMG (Decker et al., 2010; Gobbo et al., 2006; Orizio, 1993) have been validated as 

physiological signals that is rich in neural information to decode functional intentions 

during muscle contraction.  

These signals are generally promising in the design of biofeedback systems for NMES 

control applications in the research and clinical settings (Hatsopoulos & Donoghue, 

2009). They may be deployed as a proxy of muscle contractions and the generated muscle 

force during fresh and fatiguing contractions or used to study the knee-joint dynamics 

(Sharma et al., 2009) for lower limbs rehabilitation. They may be utilized as 

biopotentials/signal sources for feedback applications to allow NMES systems to receive 

real-time muscle information and consequently modulate the activity of NMES controller 

to regulate the resulting muscle contractions for an effective muscle force production 

(Collinger et al., 2013; Loeb et al., 1980; Ragnarsson, 2007).  The following section 

discussed certain physiological signals related to the neuromuscular system for NMES 

feedback applications. 

Univ
ers

ity
 of

 M
ala

ya



34 

2.6 Major Biopotential Sources for NMES Feedback Applications  

 

2.6.1 Electromyography 

The robustness, optimization, and safety of the future NMES applications appear to be 

dependent on the system’s sensitivity to the electrical stimulus-evoked muscle force and 

reduction of fatigue occurrence. To access muscle state information during NMES 

applications as well as subverting the influence of non-physiological muscle response to 

the NMES, researchers (Ewins et al., 1988; Ibitoye et al., 2016; Sinkjaer et al., 2003) have 

recommended the use of various biopotentials as feedback signal sources for NMES 

control applications. One such biopotential is surface electromyography (SEMG)—

electrical event accompanying muscle contractions (Akataki et al., 2004; Disselhorst-

Klug et al., 2009). The SEMG measured from an activated muscle during NMES-evoked 

contractions is termed evoked EMG (EEMG). The signal is the summation of the motor 

unit action potential of the muscle fibres within the vicinity of the EEMG electrode 

(Fuglevand et al., 1992).  

Based on its relative magnitude in comparison with other relevant biopotentials 

including nerve signals (electroneurogram, ENG) (Haugland & Sinkjaer, 1995) and brain 

signals (electroencephalogram, EEG) (Wolpaw et al., 2000), EEMG signals seemed to be 

mostly explored and favored as a biopotential for NMES feedback applications. This may 

be due to the fact that the EMG is about a thousand times larger in amplitude than the 

EEG (Thakor, 1999), substantially larger in amplitude than ENG (Rahal et al., 2000) and 

therefore, less difficult to interpret. Additionally, EEG and ENG require more critical 

process before they could be deployed to interpret neuromuscular functions due to the 

low information transfer rate (Wolpaw et al., 2000), low signal to noise ratio (Rahal et 

al., 2000) and high sensitivity to the body movement artifacts, eye blink and heartbeat 

(Niedermeyer & da Silva, 2005; Thakor, 1999). However, EEMG reliability and ease-of-
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use as an indicator of muscle activities is disputable and this continues to preclude its 

application as a biopotential or biofeedback signal for NMES control applications (Hoffer 

et al., 1996; Yamaguchi et al., 2012). 

Although an indirect estimation of muscle force/torque production has been 

traditionally assessed by EEMG (Merletti et al., 1992; Thompson et al., 2011), sensitivity 

of the signal to the external electromagnetic interference, variations in differential 

electrode positioning and skin impedance changes due to perspiration (Yamamoto & 

Takano, 1994) presents a significant limitation (Castellini et al., 2014; Orizio, 1993). 

Therefore, the reliability of EEMG estimation of muscle torque generation during NMES-

evoked contractions is debatable (Popović, 2014). 

Unlike voluntary EMG signals the EEMG signals summate the synchronously firing 

motor units, with increasing electrical stimulus-evoked motor unit activation, there is also 

limited sensitivity of EEMG as an indicator of motor unit synchronization which could 

be used to determine the rate of muscle force development (Semmler, 2002; Yue et al., 

1995). This is partly due to the inherent problem of the stimulation artifact i.e. an 

electrical current of larger amplitude that saturates the EEMG amplifier (Merletti et al., 

1992; Popović, 2014; Yamaguchi et al., 2012). 

Therefore, the trend of the investigations in utilizing EEMG signals to assess NMES-

evoked muscle performance generally showed that investigators had to trade-off (i) 

aesthetics or a compact design for a rather complex electrical circuit to remove 

stimulation artifacts and (ii) transcutaneous/surface electrodes for invasive 

percutaneous/implanted stimulation electrodes for useful parameters of EEMG signals or 

M-wave to be derived (Ibitoye et al., 2014).  
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Although there have been recommendations on the strategies to reduce the influence 

of the stimulation artifact, many adjustments required to the EEMG amplifier, as well as 

the complication of the artifact blanking process explain why investigators continuous to 

look beyond EEMG as NMES feedback signal source (Chesler & Durfee, 1997; Hoffer 

et al., 1996; Popović, 2014). Thus, estimation of NMES-evoked muscle force during fresh 

and fatigue contractions by EEMG alone is deficient (Hoffer et al., 1996; Levin et al., 

2000; Vøllestad, 1997). An estimation of muscle force/torque from other relevant muscle 

characteristics i.e. biopotentials of muscle activation, particularly, from physical sensors 

has recently become, necessary, viable and attractive. 

2.6.2 Mechanomyography 

Another relevant biopotential that has been used to monitor neuromuscular activities 

is mechanomyography (MMG), a mechanical equivalent of the EMG (Beck et al., 2004; 

Gordon & Holbourn, 1948; Marek et al., 2005). As with emerging techniques, various 

terminologies have been used to describe MMG based on the characteristics of the sensor 

used for the signal acquisition, namely: accelerometermyography (Lammert et al., 1976), 

muscle sound (Oster & Jaffe, 1980), acousticmyography (Barry et al., 1985), 

soundmyography (Orizio et al., 1989), vibromyography (Keidel & Keidel, 1989), 

phonomyography (Maton et al., 1990), among other terminologies, before the adoption 

of mechanomyography at the CIBA Foundation (now known as Novartis Foundation) 

Symposium in 1995 (Orizio, 1993; Stokes & Blythe, 2001) as the signal is mechanical in 

nature (Beck et al., 2007). The MMG signal refers to any of these terminologies, in the 

present thesis. 
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Figure 2.7: Basic principle of MMG generation during a muscle fibre contraction. 

Note that yT, ɵ, and δ represent the lateral movement of the fibre, “axial twisting” as 

a variant of lateral vibration, and radial thickness in xT direction, respectively. Reprinted 

with permission from Posatskiy (2011). 

 

As a mechanical manifestation of muscle activation signals, evidence (Barry, 1987; 

Frangioni et al., 1987) suggests that the MMG signal is excited by “slow bulk movements 

of the muscle” fibre vibrations at the natural/ eigenfrequency of muscle or due to the 

pressure waves produced by muscle fibre dimensional changes (Orizio, 1993). 

Specifically, during “skeletal muscle contraction, the MMG is generated by three primary 

mechanisms (Figure 2.7): (i) a slow bulk movement of the muscle at the initiation of the 

contraction, (ii) smaller subsequent lateral oscillations occurring at the resonant 

frequencies of the muscle, and (iii) a pressure waves produced by dimensional changes 

of active muscle fibre” (Barry, 1987; Barry & Cole, 1990; Beck et al., 2007; Beck et al., 

2004; Orizio, 1993).  

Essentially,  the MMG signal summates the activity of the muscle fibre’s motor unit 

as each motor unit contributes to the pressure waves produced by the activated muscle 

fibres during muscle contractions (Orizio et al., 2003). The MMG measurement is 

predominantly captured by the lateral oscillation of muscle fibre during contraction 

(Akataki et al., 1999; Frangioni et al., 1987). The MMG signal may estimate MU 

activation strategy better than its “electrical counterpart” i.e. EMG (Akataki et al., 2004) 
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as the formal propagates through soft tissues and may be richer in neuromuscular 

information pertaining to the activity of deeper muscles (Akataki et al., 2004; Orizio, 

1993). The MMG signal can, therefore, be used to study the degree of motor units 

recruitment and their firing frequency (Orizio et al., 2003). Consequently, MMG is 

directly related to the two main force-generating mechanisms of human skeletal muscle—

magnitude and pattern of motor unit recruitment and their firing rates/frequency (Beck et 

al., 2004). 

MMG signal is commonly measured by a physical sensor such as an accelerometer 

(Orizio, 2004). It is interesting to note that unlike electromyography, the MMG signal is 

insensitive to electrical signal artifact (Yamaguchi et al., 2012) and impedance changes, 

and thus, suitable for muscle contraction measurements in the presence of electrical 

artifact noise, and could be subjected to a long time usage (Barry et al., 1986).  

Currently, EEMG and MMG signals have been commonly used as control signal for 

NMES systems, but MMG signal modality has been gaining recent attention for its 

relevance for muscle activity detection for practical daily use “even in electrical noise” 

(Reza et al., 2005; Yamaguchi et al., 2012). For example, due to the convenience of MMG 

signal collection, its insusceptibility to skin impedance (Alves & Chau, 2010a), flexibility 

of its sensing technology (Ibitoye et al., 2014; Silva et al., 2005), and immunity from 

electrical stimulation artifacts associated with NMES (Orizio et al., 1999), the signal has 

been successfully used to classify muscle activity for specific application in controlling 

prostheses (Hong-Bo et al., 2009), and as a control signal for muscle machine interfaces 

(Barry et al., 1986; Silva et al., 2005).  

Additionally, MMG acquisition requires a single point measurement averting the 

issues associated with the standardization of electrode spacing as needed for the common 

bipolar surface EMG configuration (Yamamoto & Takano, 1994). However, the muscle 
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assessment and control applications of MMG signals have been mostly demonstrated 

under well-controlled laboratory conditions and in persons with intact neuromuscular 

function. There is a limited application of the signal in clinical settings and in persons 

with neuromuscular conditions. 

Therefore, the use of the MMG signal as a reliable proxy of muscle force and fatigue 

during NMES contractions remains an open research question as several questions are 

unanswered. Considering the signal strength as earlier highlighted and if the signal’s 

ability to track the muscle actions could be sufficiently validated in the research and 

clinical settings, there may be flexibilities in the applications of NMES technologies, with 

the ultimate goal of optimizing the utility of the technology. However, in order to utilize 

MMG as an NMES control signal, the signal features that reliably relate with muscle state 

are usually employed (Gobbo et al., 2006). The next session discussed the MMG 

measurement techniques and the extraction method of its predominant features in time 

and frequency domain. 

2.7 Mechanomyography Measurement Techniques 

The mechanical response of muscle fibre to contractions has been recently identified 

as a signature or indicator of the level of neural activation and a representation of muscle 

force production (Castellini et al., 2014). Such a mechanical response is related to the 

muscle surface oscillation or pressure waves generated by active muscle fibres’ 

dimensional changes (Barry et al., 1986; Orizio, 1993). This oscillation has been referred 

to as the muscle MMG as the signal is a reflection of the mechanical activity of an 

activated muscle (Orizio, 1993). Essentially, the overall muscle dimensional changes due 

to the mechanical response of actin and myosin cross bridging formation following MU 

activation—for muscle force generation (Webb & Trentham, 2010) could be acquired in 

the form of MMG signal. As the MMG summates the motor unit contributions to muscle 
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contractions (Orizio, 1993; Orizio et al., 1996), the signal has been used to study the motor 

unit activation strategies underlying muscle force modulation during low to high 

contraction intensity levels (Beck et al., 2004; Orizio et al., 1989). 

During skeletal muscle contractions, the MMG signals may be acquired on the surface 

of the skin in the form of acceleration, vibration or sound signal (Orizio, 1993). Typically, 

the characteristics of a reliable MMG transducer/sensor includes the following: (i) high 

sensitivity in the muscle vibrational frequency range, i.e., 1 Hz up to 250 Hz (Beck et al., 

2005) and low sensitivity to random signals (noise); (ii) ease and standardization of the 

sensor attachment; (iii) biocompatibility and applicability in a clinical environment 

(Courteville et al., 1998), to mention only the major considerations. Although the MMG 

signals can be collected by a variety of physical sensors (Watakabe et al., 2003; Yungher 

et al., 2011), accelerometer-based sensors have been widely recommended due to their 

superior features, that have supported their suitability for integration into a 

neurostimulator, in comparison with other sensing modalities (Gobbo et al., 2006; Orizio, 

2004).  

To obtain MMG signals with acceptable integrity, the established technical guidelines 

used for the acquisition and processing of electromyograms are often adapted (Yuan-Ting 

et al., 1992). The uniformity of the MMG sensor’s placement in relation to the intended 

signal site is crucial to ensure a reliable measurement. It has been previously 

demonstrated that different results may be obtained between trials if sensor position varies 

(Smith & Stokes, 1993). There is evidence (Frangioni et al., 1987; Stokes, 1993) that 

higher MMG signal magnitude/power could be collected over the muscle belly than the 

fascia at the muscle border or towards the tendon. This corroborates the significant 

relationship between the magnitude of the signal and the relative distance of the sensor 

from the muscle belly. However, there is an isolated report (Beck et al., 2009) on the high 
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level of association between MMG signals collected with sensors’ placement in different 

axis/plane on the same muscle. Therefore, MMG signal measurement in a single axis has 

been considered sufficient to interpret the neuromuscular activity during muscle 

contraction especially in a bipennate muscle such as “rectus femoris” (Beck et al., 2009). 

Another consideration during MMG acquisition is ensuring the sensor firmness to the 

skin surface and contact pressure standardization to reduce the variability of the signal 

during repeated recordings (Smith & Stokes, 1993). The consistency of the signal 

response also depends significantly on the uniformity of the sensor location between trials 

and sensor firmness on the skin surface (Bolton et al., 1989). However, MMG signals are 

not influenced by changes in the skin impedance, and thus, may not require a rigorous 

skin preparation during acquisition (Alves & Chau, 2010a). Nevertheless, for an 

improved signal integrity, the standard practice for the signal acquisition may include the 

use of double sided adhesive tape to fix signal’s sensor to the skin in order to ensure a 

constant pressure. Isolation of irrelevant muscles through an experimental setup on a 

standard testing device, such as a custom made or a commercial dynamometer, has been 

suggested to limit the effects of cross-talk and movement artifact (Beck et al., 2010).  

In some experimental designs, investigators may seek a comparison between muscles, 

tasks and/or persons, thus, a normalization of the acquired signal has been recommended 

(Burden, 2010). This practice offsets the effect of inter-individual variability that may 

adversely influence the MMG signal integrity including differences in muscle mass, 

length, strength and the thickness of the tissue between the sensor and the participants’ 

muscles. To eliminate the effect of these muscle variations, normalization to a reference 

level has been prescribed (Burden, 2010; Lehman & McGill, 1999).  

Specifically, normalization constitutes a means of adjusting data to conform to a 

common scale for an objective averaging and analysis in order to validly compare 
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between muscles, task and persons (Mathiassen et al., 1995). Moreover, normalization 

facilitates a comparison between electrode sites on the same muscle, two different 

muscles, and between test days (Lehman & McGill, 1999). Therefore, normalization is 

recommended to prevent erroneous conclusions especially if the test is meant to compare 

between trials, between electrode re-applications, between different muscles and persons 

(Burden, 2010).  

In terms of the MMG signal collection, the cut-off frequency of the filter is flexible 

based on the type of sensor used, the muscle of interest and muscle action, but usually 

within 1 Hz and 250 Hz in most reported studies on human subjects (Beck et al., 2005). 

Theoretically, methodological and physiological concerns may dictate the signal 

sampling rate based on the site of the muscle of interest. A common compromise is to 

sacrifice the storage space for a high sampling rate during a signal acquisition process. A 

rule of thumb based on the Nyquist-Shannon sampling theorem goes thus; “for a reliable 

reproducibility and representation, a signal should be sampled at least twice the highest 

frequency content of the signal” (Shannon, 1949, 2001). This suggests that MMG signals 

should be sampled at least twice the highest recorded MMG signal frequency. However, 

the common sampling rate as found in the literature is 1000 Hz (1000 samples/s) or 2000 

Hz (Cescon et al., 2008), presumably to check the aliasing effect which may be due to the 

hardware limitations.  

Furthermore, oversampling enables a “sufficient accuracy of the MMG signals’ cross-

correlation time measurements to detect a delay corresponding to the fastest transverse 

vibration in the muscular medium” (Ouamer et al., 1999). This approach has been used 

to demonstrate that MMG signal reflects the muscle response as a global resonant 

structure to the local fluctuations of pressure during voluntary contractions (Ouamer et 

al., 1999). However, if the concern is to select the highest possible sampling rate, there is 
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usually a point at which sampling above a certain threshold has no additional advantage 

— “a point of diminishing return”. In order to save system storage, it is recommended 

that the sampling frequency is kept within the standard limits. 

Taken together, a reliable MMG signal collection requires an appropriate selection of 

the signal analysis methods (Beck et al., 2005). As with other physiological signals’ 

collection procedures, it is equally pertinent that a clear and proper guide are given to the 

experimental participants in order to perform the experimental trials identically with each 

repetition through training and familiarization with the experimental protocols and 

equipment. As the MMG signals are inherently mechanical, the signal acquisition task 

may be facilitated because the signal can be collected without the need for a separate 

circuitry to eliminate the electrical noise interference in electrically stimulated 

contractions. Additionally, the signal acquisition may be performed with a single uniaxial 

electrode configuration unlike the simplest monopolar configuration of EMG (which is 

rarely used) with a separate reference electrode whereas bipolar and multipolar 

configurations of EMG require even more electrodes. These facts justify the reason for a 

simpler hardware requirements for MMG signal acquisition (Ibitoye et al., 2014; Silva et 

al., 2005) which in effect, may result in the cost effectiveness of the signal acquisition 

and processing (Fara et al., 2013; Silva et al., 2005).  

2.8 Mechanomyography Parameters  

2.8.1 Time Domain Parameters 

One important feature of MMG is the time domain parameter or MMG amplitude 

characteristics. The quantification of the muscle force development (Orizio et al., 1989; 

Stokes, 1993), monitoring of muscle fatigue (Barry et al., 1985) and the examination of 

neuromuscular disorders (Orizio et al., 1997) have been widely delineated by the changes 

in the MMG time domain features which generally signifies changes in the motor unit 
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recruitment during muscle contractions (Barry et al., 1985; Beck et al., 2004; Hu et al., 

2007; Madeleine & Arendt-Nielsen, 2005; Orizio, 1993).  

One important and predominant time domain feature of MMG is the root mean square 

(RMS) amplitude. Before the estimation of RMS amplitude from MMG signals, the 

digitally sampled and acquired time series MMG signal is rectified, smoothed and band-

pass filtered (typically between 1 Hz and 250 Hz (Beck et al., 2005; Goldenberg et al., 

1991; Smith & Stokes, 1993; Szumilas et al., 2015) depending on the type of sensors 

used, the need for muscle tremor reduction and the level of signal conditioning required) 

by a Butterworth filter. Butterworth filter has been commonly used for this purpose as it 

provides a good compromise between the attenuation and phase response by providing a 

“maximally flat magnitude response in the pass-band” (Fara et al., 2013; Murphy et al., 

2008). Furthermore, in comparison with other common filter types, the pulse response of 

Butterworth filters is better than that of Chebyshev filters and its attenuation rate is better 

than that of Bessel filters (Fara et al., 2013; Murphy et al., 2008). These probably make 

Butterworth filter more suitable for use in MMG signal processing.  

The RMS amplitude of MMG (MMG-RMS), as a measure of the magnitude of the 

varying value, is the square root of the mean square value defined for a specific time 

interval, T in secs. An important objective of RMS amplitude calculation is to obtain 

indices of muscle force (Sarlabous et al., 2013). Specifically, the amplitude of the MMG 

signal depends on the muscle fibre activations under tension (Watakabe et al., 2001), and 

it increases with increasing muscle force/effort based on the contraction level (Fara et al., 

2013).  

Thus, the signal amplitude may provide information on the level of muscle activation 

that may be required for functional tasks (Beck et al., 2005). The RMS feature of MMG 

correlates with muscle effort (Alves & Chau, 2010b) and has been used to estimate the 
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level of muscle force/torque production (Lei et al., 2011). For example, Akataki et al. 

(2004) demonstrated an estimation of motor unit activation strategy underlying force 

generation by utilizing the MMG-RMS. Therefore, there is a significant relationship 

between the muscle force and MMG-RMS that may explain why MMG-RMS has been 

considered as the most reliable and useful parameter in the time domain (Basmajian & 

De Luca, 1985).  

The commonly reported patterns of relationships between MMG-RMS amplitude and 

muscle force/torque production have been a parallel increase up to: 100% maximum 

voluntary contraction (MVC)/ effort (Beck et al., 2004; Coburn et al., 2005); and MMG 

amplitude reduction from 60-80% MVC to 100% MVC (Coburn et al., 2004; Maton et 

al., 1990; Orizio et al., 2003) due to a profound plateau or reduction in the muscle stiffness 

and the associated muscle force fusion—a manifestation of muscle mechanical changes 

during contraction (Orizio, 1993; Yoshitake et al., 2002). These patterns of relationships 

depend mainly on the type of muscle fibre and nature of muscle contractions/actions 

(Beck et al., 2005). In general, there have been consistent reports on the reduction or 

plateau in the response of MMG amplitude characteristics at high contraction intensity 

starting from around 60-80% MVC which has been suggested to be due to the fusion of 

muscle fibre or the effect of high contraction rate that reduces the MMG signal amplitude 

(Orizio, 1993; Yoshitake et al., 2002). This shows that MMG amplitude could be used to 

monitor MU recruitment strategy as the submaximal and maximum recruitment of MU 

could be monitored by the MMG signal amplitude. 

Another important MMG amplitude characteristic is the peak-to-peak amplitude 

(MMG-PTP). The MMG-PTP is one of the metrics of the signal amplitude representing 

the distance between the signal’s peak or highest amplitude value and the trough or lowest 

amplitude value. Although not commonly used for a time series amplitude representation 
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in MMG research, MMG-PTP has been adopted by a few isolated MMG studies (Gobbo 

et al., 2006; Orizio et al., 1999; Petitjean et al., 1998) where the variable was applied to 

monitor the changes in mechanical properties of a muscle during fatiguing voluntary 

(Orizio et al., 1999) and electrically-evoked contractions (Gobbo et al., 2006; Petitjean et 

al., 1998). For example, a consistent decrease or lack of recovery in the value of MMG-

PTP amplitude has been used to indicate the reduction of muscle force during the period 

of stretching (Esposito et al., 2011), sustained contractions or muscle fatiguing 

contractions (Gobbo et al., 2006; Orizio et al., 2003).  

Therefore, MMG amplitude could be used to monitor the persistent changes in the 

viscoelastic characteristics of muscle or series elastic component (tendon) which is 

manifested as the reduction in the force-generating capacity of a muscle, in particular, 

during muscle activity involving high level of contractions (Esposito et al., 2011) such as 

in fatiguing contractions. This relationship could be used to infer important characteristics 

about muscle tendon unit stiffness during voluntary or electrical stimulus strengthening 

exercise (Esposito et al., 2011). Additionally, as muscle fatigue has been described as a 

manifestation of the motor-neuro excitation failure or a reflection of the “impairment in 

the action potential propagation” (Sharma, Patre, et al., 2009), this evidence suggests that 

MMG amplitude could provide an important information on the muscle activation 

strategy during incremental voluntary or electrical stimulus-evoked fatiguing contractions 

(Orizio et al., 1999).  

2.8.2 Frequency domain parameters 

As some useful information in the MMG signal may not be ordinarily evident in time 

domain, frequency domain analysis of the signal has been suggested (Beck et al., 2004; 

Orizio et al., 1992). Different patterns in the spectral analysis during muscle contractions 

have been reported during various types of muscle actions (Beck et al., 2004). A shift in 
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the frequency feature of MMG has been generally used to monitor muscle fatigue 

development and track the associated muscle activation pattern (Beck et al., 2007; Orizio 

et al., 1999). The magnitude of the changes is dependent on the type of muscle action, 

i.e., dynamic (eccentric or concentric) or isometric (maximal or submaximal effort) and 

muscle mechanical characteristics including intramuscular fluid pressure and muscle 

stiffness (Beck et al., 2007). The measure of the magnitude and pattern of the MMG’s 

spectral shift (compression or expansion) has been demonstrated (Beck et al., 2004; 

Orizio et al., 1992) by the frequency characteristics of the signal including peak frequency 

(PF), mean power frequency (MPF) and median frequency (MDF) (Beck et al., 2007; 

Orizio et al., 1990).  

During voluntary contraction, the MPF is the most widely used frequency feature of 

the MMG signal compared to the PF and MDF. This is because the MPF is less affected 

by the method of analysis (Figini & Diemont, 1989; Stokes, 1993). Therefore, MPF has 

been an important metric for examining the mechanical changes underlying muscle 

contractions (Diemont et al., 1988). However, investigators (Yoshitake & Moritani, 1999) 

have also continued to explore the use of PF for the analysis of muscle response during 

electrical stimulus contractions. This may be due to that fact that the electrical stimulus 

contraction recruits motor unit synchronously (Orizio, 1993) and there seems to be no 

effect of incremental stimulation intensity on the MMG frequency content especially 

during unfused muscle contraction level (Yoshitake & Moritani, 1999). 

Generally, the frequency content of the MMG signal reflects changes in the global 

firing rate of an unfused activated motor unit during muscle contractions (Ryan et al., 

2008). Specifically, the frequency of MMG is closely related to the firing rates of the 

active motor units during voluntary (Esposito et al., 1996; Yuan-Ting et al., 1992) and 

NMES-evoked muscle contractions (Stokes & Cooper, 1992; Yoshitake & Moritani, 
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1999). While there are other domains for MMG signal analysis, this thesis limits the 

literature discussion to only the time and frequency domains analyses of MMG signal as 

these are the domains used in the present investigation. However, as MMG signal 

characteristics are insufficiently understood (Hu et al., 2007) in some of their area of 

potential applications, one such promising area is their application as a feedback signal 

for NMES systems.  

2.8.3 Potentials of Mechanomyography as an NMES Feedback Signal 

Although the potential use of MMG signal as a proxy of muscle force/ joint torque for 

NMES feedback applications has been poorly understood, the fact that the signal summate 

the muscle fibre twitches following NMES-evoked contractions has been well established 

(Barry, 1992; Orizio et al., 2003; Orizio et al., 1996). Given the complexity of the NMES-

evoked recruitment of motor units, it is pertinent to investigate whether MMG signal 

could be a satisfactory representation of muscle force that has been evoked by electrical 

stimulation, with acceptable reliability. However, this may not be the only requirement 

for a signal to be a proxy of NMES-evoked muscle force as there is a need for the signal 

to be able to provide sensory information regarding muscle force modulation. In line with 

these requirements, the MMG signal has been suggested to be directly related to the two 

main muscle force-generating mechanisms; the magnitude and pattern of motor unit 

recruitment and their firing rates/rate coding (Beck et al., 2004).  

Interestingly, by means of an electrical stimulation evoked muscle contractions, the 

generated MMG signal could be used to assess contractile properties of muscle fibre’s 

motor unit (Orizio et al., 1997). This information may be useful to optimize the NMES-

evoked contraction of a healthy, paretic or paralyzed muscle. An implementation of which 

could be through a feedback of muscle fibre contractile/muscle state information to the 

NMES system in order to automatically regulate the generated muscle force (Gobbo et 
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al., 2006; Kimura et al., 2004). By this strategy, the pattern of neural activation of muscle 

force modulation could be tracked and used to efficiently modulate the NMES-evoked 

muscle force. 

Additionally, being within the continuum of effective muscle contractions, muscle 

fatigue, a reflection of the inability of a muscle to sustain the required force or exercise 

intensity for a muscle action (Edwards, 1983; Fitts, 1994), may also be regulated by 

means of the muscle response feedback signal—MMG. This is clinically useful during 

sustained contractions of lower limb muscles such as in NMES supported knee extension 

exercise or standing where muscle fatigue may be evident within the first 60 sec of 

contractions (Thrasher & Popovic, 2008). Therefore, MMG has been identified as a good 

indicator of fresh and fatigued contractions as the signal could be used to monitor the 

mechanical changes during motor unit activation (Esposito et al., 1998; Orizio et al., 

2003).  

This knowledge is particularly useful in muscle force or joint torque control 

applications in NMES-assisted lower limbs rehabilitation as the control strategies that 

have been widely used have relied on external joint angle sensors or accelerometers 

(Peckham & Knutson, 2005). The investigation on the integration of sensors for NMES 

control is, therefore, an active area of research. This has been feasible by the recent 

progress in the development of control algorithms that allows an automated 

administration of the NMES systems (Peckham & Knutson, 2005).  

As it is easy to measure and useful as a proxy of muscle force, MMG signal is 

potentially relevant as a modulating and control signal for NMES feedback applications 

(Gobbo et al., 2006). Additionally, the simplicity of the surface measurement and 

processing of MMG signal without the influence of stimulation artifact is another 

excellent advantage for the application of the signal as NMES feedback signal source. 
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Moreover, both the muscle force and MMG are mechanical output generated during 

muscle contractions. However, the predictive accuracy of MMG signals for NMES 

evoked muscle force, which is required for practical NMES systems, remains poorly 

investigated. As the MMG signal is a “summation of the mechanical activity of active 

muscle fibres” (Orizio et al., 2003), the summation may not be simple over the entire 

physiological range of muscle contractions (Orizio et al., 1996). This is mainly due to the 

development of fused contractions, in particular, during high contraction intensity 

(Yoshitake et al., 2002). On this basis, the problem associated with the signal pattern that 

may characterize the muscle response during electrical stimulus contractions (Crago et 

al., 1980; Durfee & Palmer, 1994; Rabischong & Chavet, 1997) warrants an application 

of a machine learning technique (Youn & Kim, 2010) for muscle force/ joint torque 

estimation from MMG signals.  

2.9 Machine Learning Methodology 

The application of machine learning or computational intelligent approach has been 

proposed for muscle force or joint torque estimation or prediction from other readily 

available muscle contraction signals as a direct and noninvasive measurement of muscle 

force is impractical (Erdemir et al., 2007). Based on the recent advancement in computer 

software applications and signal processing, a machine learning method uses developed 

algorithms by utilizing empirical data from sensors or databases to enable systems to 

generate programs or behaviors of themselves for estimation or prediction tasks (Al-

Mulla et al., 2011).  

Basically, a good machine learning method in a particular field of study is known to 

have an excellent estimation or predictive accuracy and a fast computational time for 

online implementation (Ameri et al., 2014). One example of machine learning algorithm 

which has increasingly been applied based on its strengths (Meyer et al., 2003; Vapnik et 
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al., 1997) in medical applications (Ameri et al., 2014) is support vector machine through 

its extensions i.e. support vector regression and classification (Noble, 2006). As applied 

to the present thesis, an overview of the support vector machine methodology is discussed 

hereunder. 

2.9.1 Support Vector Machine 

Support vector machines (SVM) are based on the framework of statistical or 

supervised learning theory (Smola & Schölkopf, 2004; Vapnik, 1999a). Through training 

or learning by several examples, the SVM uses an algorithm to develop a model and by 

recognition of what has been learnt following the training, the algorithm can be used to 

solve a classification, prediction or estimation task. Although to the author’s knowledge, 

SVM has not been previously used to estimate NMES-evoked muscle force, a related 

study (Ameri et al., 2014) on voluntary muscle contractions suggested that the technique 

could be applied to predict muscle force that is produced through electrical stimulus 

contractions. This view was supported by the fact that the SVM algorithms could be easily 

applied to perform various numerical computations (Smola & Schölkopf, 2004) including 

regression related tasks (Wu et al., 2007; Xue et al., 2009). 

In order to implement SVM algorithm on a data instance with an input dataset ( x ), the 

mapping of the dataset is performed by projecting it by a function into a higher 

dimensional feature space ( )x (Ameri et al., 2014). This process allows a linear 

estimation of the regression function ( )f x  using the standard regression equation 2.1: 

( ) . ( )f x w x b                                                                                                     (2.1) 

Where b  denotes the “bias term” or “offset” which may be neglected following data 

preprocessing, w  represents “weight vector” while the input data can be multivariate 

(Ameri et al., 2014; Cherkassky & Ma, 2004). 
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The solution of the optimization problem (described in detail in Chapter 3, equation 

3.3 to 3.10) could explain how SVMs typically solve a regression problem and minimizes 

the estimation error. Based on this solution, the basic illustration of a standard SVR as 

applicable to the present thesis is as shown in Figure 2.8. The Figure illustrates the SVR 

methodology and specifically shows that the effect of errors may be unimportant once 

they are within ε-insensitive loss function zone. Additionally, the deviations are linearly 

penalized as revealed in the loss function graph, in which case the “Loss” serves as the 

“penalty” for deviations larger than ε (i.e., data point outside allowable ε) using a non-

negative slack variable i  which represents upper and lower constraints on the system 

output (Granata et al., 2016; Yu et al., 2006). 

 

Figure 2.8: SVR methodology illustrated.  

Adapted with permission from Yu et al. (2006). 

 

For a non-linearly separable data in the input space, the idea of kernel function which 

represents “a dot product in some feature space” (Statnikov et al., 2011) has been 

introduced to transform such data into the feature space where the data could be linearly 

separable (Smola & Schölkopf, 2004). A description of such concept of SVR has been 

shown in Figure 2.8. Typically, the SVR projects a dataset from an original low-

dimensional to a high-dimensional feature space (Noble, 2006) through some non-linear 
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mapping selected a priori (Vapnik, 1999b)—kernel function through “kernel trick”. This 

permit a construction of a linear model in the feature space (Figure 2.8B). Thus, the 

process allows the construction of an optimal separating hyperplane (Vapnik, 1999b) 

between classes of datasets in classification problems. However, in a support vector 

regression analysis problem, such a linear hyperplane is required to correlate the multi-

dimensional input data points or support vectors to the output data points for an estimation 

or a prediction task to be performed. 

The idea of ε-insensitive loss function introduced by Vapnik (1995) allows the SVM 

to be extended to support vector regression (SVR) (Smola, 1996), specifically, to solve 

regression or estimation problems (Fernandez, 1999), including those related to clinical 

estimation and predictions (Ameri et al., 2014). Essentially, the value of ε-insensitive loss 

function influences the number of support vectors that is used to construct a 

regression/predictive learning function (Cherkassky & Ma, 2004). The function measures 

the quality of an estimation (Vapnik et al., 1997) by controlling the “width of the ε-

insensitive zone that is used to fit the training data” (Cherkassky & Ma, 2004; Vapnik, 

1998). Together with the regularization parameter ( C ) (which is another user-defined 

parameter that indicates the tradeoff between the function’s flatness and the amount of 

permitted error beyond ε- insensitive zone (Gupta, 2007)), ε  determine the complexity of 

a regression model (Cherkassky & Ma, 2004). 

Therefore, the selection of user-defined parameters including best kernel function 

 ( , ) ( ). ( )
i j i j

K x x x x  (Smola & Schölkopf, 2004) for a specific problem, to obtain a 

good generalization performance, is not normally direct and determines the performance 

of an SVR model (Cherkassky & Ma, 2004). Investigators (Noble, 2006; Smola & 

Schölkopf, 2004) have suggested many approaches such as “a statistically rigorous” 

method of using cross-validation for optimal selection of kernel parameters.  
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According to Vapnik (1999b), any function that obeys Mercer’s condition can be used 

as a valid kernel function. A list of commonly applied kernel function is a shown in Table 

2.2. 

Table 2.2: Common kernel functions. 

 

Kernel type ( )
i j

K x x  
Mathematical representation 

Linear i jx x  

Polynomial ( 1)d

i jx x   

Gaussian (RBF)  exp
d

i jx x   

Sigmoid tanh( )i jx x r    

Where, γ, r, and d are kernel parameters. 

Therefore, the SVR modelling has been judged a viable alternative prediction or 

estimation technique in comparison with both the traditional and other computational 

intelligence modelling methods (Meyer et al., 2003; Osuna et al., 1997) even with a small 

dataset (Zhao et al., 2015). For example, a recent evidence (Pochet & Suykens, 2006) also 

suggested that SVR outperformed the traditional logistic regression model showing a 

better generalization and higher performance in estimation or prediction tasks. In medical 

related prediction applications, for example, SVR has been reported with a better 

performance, as compared to multivariate linear regression, for prediction of tacrolimus 

blood concentration in patients with liver transplant (Van Looy et al., 2007), and as 

compared to an artificial neural network modelling for “simultaneous myoelectric control 

of multiple degrees of freedom in some upper limb muscles” activities (Ameri et al., 

2014) at a computational speed that is useful for a real-time applications. In all, the 

uniqueness of the datasets used in the present study, based on the SCI participants as well 

as the area of application, is meant to advance the application of SVR modelling technique 

in the biomechanics research and in the rehabilitation of clinical populations. 
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2.10 Summary 

This Chapter has reviewed the literature on muscle responses following a SCI and the 

NMES rehabilitation intervention that is often recommended. Furthermore, the Chapter 

highlighted the limitation of the NMES technology. Specifically, the application of 

NMES for lower limb rehabilitation as applied to the present thesis was also discussed to 

gain a useful insight into the limitation of the current NMES technologies. Major NMES 

feedback signal sources including EEMG and MMG were discussed with more attention 

to MMG due to its relevance to the main objective of the thesis. As the MMG signal has 

been recently promoted as a potential non-invasive and electrical stimulation artifact-free 

NMES feedback signal source, the synthesis of the available knowledge on the potential 

use of the signal as a feedback source was also presented. Furthermore, the Chapter 

discussed the useful parameters of the MMG signal that could be used to intelligently 

estimate muscle force using a SVR model.      

Taken together, it could be inferred from the literature that there is a clear need for a 

reliable proxy of muscle force for implementation of a closed-loop NMES system—

believed to promote the NMES technology among the clinicians and other allied 

professional administering the technology as a treatment option in rehabilitation. On this 

premise, the next Chapter (i.e. Chapter 3) is aimed at establishing the pattern of 

relationship between MMG signal responses and NMES-evoked muscle force/torque in 

healthy volunteers.  
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CHAPTER 3: DEVELOPMENT OF A HYBRID PROCEDURE TO ESTABLISH 

MECHANOMYOGRAPHY AS A PROXY OF NMES-EVOKED TORQUE 

 

3.1 Introduction  

This study sought to elucidate specifically the relationship between 

mechanomyographic (MMG) signals and torque production and to verify whether the 

motor unit activation strategy (recruited motor unit and their firing rates) could be tracked 

using MMG characteristics during incremental neuromuscular electrical stimulation 

(NMES)-evoked isometric contractions in healthy volunteers. The rationale for this study 

was that MMG signal measures muscle surface oscillation, due to the recruited muscle 

fibre’s motor unit. This was based on the knowledge that electrically stimulated muscle 

contractions allows one to measure and analyze the MMG signal generated in a controlled 

settings as the contractions is mainly based on a “synchronous” recruitment of motor unit 

(Orizio et al., 2003).  

This Chapter describes a method for NMES-evoked isometric torque assessment in 

healthy volunteers. Thereafter, an estimation of the knee torque from quadriceps muscle’s 

MMG was demonstrated in eight healthy volunteers. The study described in this Chapter 

is being reproduced under the open access license from a published article by the author: 

Ibitoye, M. O., Hamzaid, N. A., Abdul Wahab, A. K., Hasnan, N., Olatunji, S. O., & 

Davis, G. M. (2016). Estimation of Electrically-Evoked Knee Torque from 

Mechanomyography Using Support Vector Regression. Sensors, 16 (7), 1115. 

While the preliminary finding from this study was accepted for an oral presentation at 

an IEEE Engineering in Medicine & Biology Society (EMBS) International Student 

Conference (ISC) 2016, Carleton University, Ottawa, Canada. 
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3.2 Literature Review  

The magnitude of the muscle force or joint torque generated during NMES-evoked 

contractions has been used as a marker of physical performance in healthy volunteers 

(Brocherie et al., 2005; Parker et al., 2003), as well as a benchmark of functional recovery 

in persons with neurological conditions (Braz et al., 2009; Deley et al., 2015). To optimize 

NMES technology in therapeutic and functional applications, real-time information about 

the generated muscle force or joint torque, of the controlled limb, is vital (Braz et al., 

2009; Popović, 2014). Such information is required; (i) to automate the neuromuscular 

stimulation characteristics based on the muscle state during the onset of fatigue, and (ii) 

to modulate muscle forces based on the requirements of the task (therapeutic or 

functional) to be performed, for example during sit-to-stand and sustained standing 

perturbations. However, joint torque is often impractical or impossible to quantify 

directly during real-time application of NMES (Popović, 2014). Estimation of joint torque 

from readily available muscle characteristics (e.g., biopotentials of nerve and/or muscle 

activation), particularly, from physical sensors has recently become both viable and 

attractive (Popović, 2014). 

One such neuromuscular biopotential is mechanomyographic signal (MMG), which 

quantifies the mechanical equivalent of an electromyographic output generated during 

muscle contractions (Orizio, 1993). The signal originates from the skeletal muscle 

contractions due principally to the shortening of the muscle fibre length and an increase 

in its diameter (Farina et al., 2008). The activation of muscle fibres and their dimensional 

changes during muscle contractions creates pressure waves that can be detected on the 

skin surface and translated into an acceleration obtained by physical sensors, such as an 

accelerometer (Watakabe et al., 1998). The signal can reflect the extent of neuromuscular 

contractions (Yuan-Ting et al., 1992) and has gained recent popularity due to its close 

relationship with muscle force (Beck et al., 2004; Matheson et al., 1997). Specifically, 
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the signal is directly related to the two main force-generating mechanisms of human 

skeletal muscle—magnitude and pattern of motor unit recruitment and their firing 

rates/frequency (Beck et al., 2004; Youn & Kim, 2010). 

Moreover, due to the convenience of MMG signal collection, its insusceptibility to 

skin impedance (Alves & Chau, 2010a), flexibility of its sensing technology (Ibitoye et 

al., 2014; Silva et al., 2005), and immunity from electrical stimulation artifacts associated 

with NMES (Orizio et al., 1999), the signal has been successfully used to classify muscle 

activity for specific application in controlling prostheses (Hong-Bo et al., 2009), and as a 

control signal for muscle machine interfaces (Barry et al., 1986; Silva et al., 2005). In 

addition, during NMES-evoked muscle contractions, MMG signal has been used to track 

muscle fatigue in healthy volunteers (Gobbo et al., 2006). Thus, the signal may be used 

to estimate muscle force during voluntary and NMES-evoked muscle contractions 

(Ibitoye et al., 2014).  

However, relating MMG signals as a direct proxy for NMES-evoked muscle force can 

be practically challenging due to the complexity and diversity of the recruitment of 

muscle’s motor units (Hong-Bo et al., 2009; Orizio, 1993). Accordingly, the application 

of computational intelligence or machine-learning techniques for quantification of muscle 

force via joint torque from MMG signals has been proposed through statistical predictive 

modelling, and then validated during voluntary contractions (Xie et al., 2009; Youn & 

Kim, 2010). 

The use of machine-learning techniques has recently shown promise in estimation, 

prediction and classification tasks. For example, Youn and Kim (2010, 2011) used an 

artificial neural network (ANN) model to estimate elbow flexion force from MMG during 

voluntary isometric contractions. The investigators obtained an estimation accuracy of up 

to 0.892 (Youn & Kim, 2010) and 0.883 (Youn & Kim, 2011) in terms of cross-
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correlation coefficient, and suggested the future application of other machine learning 

techniques including Support Vector Regression (SVR) for probable improvement of 

their model’s estimation accuracy (Youn & Kim, 2011).  

However, due to the advancement in the field of signal processing, several other 

computational intelligence regression techniques have been proposed with SVR yielding 

a good predictive and estimation accuracy, with often low Root Mean Square Errors 

(RMSE) (Shamshirband et al., 2014) and outstanding performance (Xie et al., 2009). 

Being an extension of a support vector machine learning technique, SVR is based on the 

principles of computational intelligence modelling that is built on the kernel method, 

whereby data are mapped into a higher dimensional space in order for the training dataset 

to be linearly separable to facilitate the regression analysis (Vapnik et al., 1997). SVR 

algorithms take into account the error approximation to a dataset with the ability to adapt 

and improve the estimation capability of a model (Shamshirband et al., 2014), particularly 

when the model is used to evaluate an additional dataset for the purpose of generalization 

(Jiang & He, 2012; Yang et al., 2009).  

Moreover, SVR is robust in handling multivariate processes and offsets the limitation 

of traditional regression methods (Yu et al., 2010)—which cannot solve problems with 

high dimensional input dataset (Vapnik et al., 1997). Additionally, the SVR modelling 

only involves a solution to a “convex optimization problems”, and unlike ANN model, it 

is not influenced by the “local minimal problem” (Ziai & Menon, 2011) and the network 

structure needs not to be defined (Shamshirband et al., 2015). Thus, the SVR algorithms 

could be used to build a generalized model and well suited for regression tasks (Vapnik 

et al., 1997). Based on these strengths, the technique has been successfully deployed in 

several fields of applications including physical therapy and rehabilitation engineering 

during voluntary muscle activation (Xie et al., 2009), medical diagnosis (GÜler & Koçer, 
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2005), and a host of other related fields. However, to the author’s knowledge, SVR 

modelling has not been previously used to construct a joint torque estimation model, 

particularly, during electrically stimulated contractions.  

The purpose of this study was, therefore, to apply SVR modelling to predict knee 

extensor torques from MMG signal characteristics during NMES-evoked incremental 

muscle contraction intensities. Since it has been suggested (Youn & Kim, 2010) that a 

combination of muscle contraction signals and related characteristics could compliment 

the estimation accuracy of joint torques, the input parameters (related to the muscle 

contractions) to the SVR model were chosen (MMG signals, level of electrical stimulation 

or contraction intensity, and knee angle) to estimate knee torque accurately. This 

information is particularly applicable to research areas where a real-time proxy of muscle 

force is sought. 

3.3 Materials and Methods 

3.3.1 Experimental Protocol 

To validate the performance of the proposed SVR model, a calibrated commercial 

dynamometer (System 4; Biodex Medical System, Shirley, NY, USA) was used to record 

isometric knee torques produced by NMES-evoked muscle contractions of the knee 

extensors (Figure 3.1). Eight healthy male volunteers aged 23.4 (1.3) year (mean (SD)), 

body mass 70.4 (5.9) kg and height (1.72 (0.05)) m participated in this experiment. All 

participants were in good physical condition and were duly informed about the study 

protocol prior to giving their consents (see Appendix D or E). The study was approved 

by the University of Malaya Medical Ethics Committee (Approval No: 1003.14 (1)) as 

detailed in Appendix A.  

As portrayed in Figure 3.1, the participants were set-up, as has been previously 

described by Brown and Weir (2001) for voluntary isometric knee torque measurements. 
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The dynamometer seat was adjusted so that each participant's lateral femoral condyle was 

aligned with the axle of the dynamometer (Bickel et al., 2004). To ensure consistency of 

body position and dynamometer lever arm, and for subsequent trials, notes were taken of 

each participant’s relevant anatomical positions. 

 

Figure 3.1: Experimental set-up at 90° knee angle.  

The set-up shows an arrangement of stimulation electrodes A cathode, B anode of 

Neuromuscular Electrical Stimulation, and C mechanomyographic signal sensor in a 

representative healthy participant. 

 

3.3.1.1 NMES-Evoked Muscle Contractions and Knee Torque Measurements 

A familiarization session, mimicking the actual test, preceded data collection to 

familiarize the participants to the study protocol and to habituate them to NMES-evoked 

knee extensors muscle contractions of maximally tolerable intensity. Thereafter, NMES 

of square-wave pulses at 30 Hz frequency and 400 μs pulse duration, and incremental 

current amplitude from 20 mA to 80 mA (in 10 mA increments; i.e., seven different 

intensities of NMES or trial levels) was administered to elicit isometric torque of the knee 
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extensors lasting 4 s (Orizio et al., 1992). Stimulation pulses were delivered through a 

commercial computer-controlled neurostimulator (RehaStimTM, Hasomed GmbH, 

Magdeburg, Germany) using 9 × 15 cm2 self-adhesive electrodes (Hasomed GmbH, D 

39114, Magdeburg, Germany) on the dominant lower limb (Adams et al., 1993).  

To preclude voluntary effort, the participants were carefully instructed not to assist or 

resist NMES-evoked muscle contractions. A similar stimulation protocol has been used 

for strength training with tolerable discomfort (Selkowitz, 1985) and without eliciting 

rapid muscle fatigue (Babault et al., 2001). During each trial, the NMES-evoked torque 

at maximum stimulation intensity (80 mA) was taken as the maximum NMES-evoked 

peak torque (PT).  

The PT value was used to normalize the submaximal contraction levels across 

participants’ data. The adopted stimulation electrode position has been recommended by 

Levin et al. (2000)—the anode electrode placed at “~ 5 cm proximal position to the patella 

and the cathode electrode at ~ 8 cm distal to the inguinal area over the rectus femoris (RF) 

muscle belly near the expected location of the motor points” (Figure 3.1). In order to 

accommodate the effect of joint angle on the magnitude of joint torque (Ebersole et al., 

1998; Selkowitz, 1985), the experiment was conducted at three different randomized knee 

angles: 30°, 60°, and 90° (where 0° represented full knee extension). A duration of 48 h 

was allowed between each angle position, and there was a 10 min recovery between each 

trial to minimize potential muscle fatigue. 

3.3.1.2 MMG Acquisition and Processing 

Simultaneous with the NMES-evoked torque, MMG signals were collected using an 

accelerometer-based sensor (Sonostics BPS-II VMG transducer, sensitivity 50 V/g). As 

shown in Figures 3.1 and 3.2, the sensor was attached directly to the muscle belly (i.e., at 

the midpoint between the inguinal crease and the superior border of the patella (Ryan et 

Univ
ers

ity
 of

 M
ala

ya



63 

al., 2008) by means of double-sided adhesive tapes (3M Center St. Paul, MN, USA). The 

MMG signals were collected from the RF muscle as a simple representation of the knee 

extensors and a major contributor to the NMES-evoked knee torque production 

(Shinohara et al., 1998). The signals were collected at 2 kHz sampling frequency and 

were digitally band-pass filtered at 20–200 Hz (Goldenberg et al., 1991), amplified and 

stored by AcqKnowledge data acquisition and analysis software (MP150, BIOPAC 

Systems Inc., Santa Barbara, CA, USA) for offline analysis in the LabVIEW software 

environment (version 12.0, National Instruments, Austin, TX, USA) using custom written 

programs. 

The peak torque values, MMG-root mean square (RMS) and peak to peak (PTP) 

amplitudes were obtained during NMES-evoked isometric contractions from 2 s epoch of 

the 4 s MMG and torque recordings (Katsavelis & Threlkeld, 2014) at each contraction 

level across the three joint angles. The selected 2 s epoch of the signals coincided with 

the middle position at which there was probable maximum muscle recruitment, without 

on-transients or off-transients due to rise in force at the beginning and the end of muscle 

contractions, respectively (Katsavelis & Threlkeld, 2014). 
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Figure 3.2: Schematic representation of the experimental setup.  

Stimulation electrodes (A) cathode, (B) anode NMES electrodes, and (C) MMG 

sensor. 

 

To improve the model performance (Bray & Han, 2004), the MMG signals at each 

contraction level were normalized (by the equivalent value of the MMG signal at the 

highest stimulation intensity/ contraction level (80 mA)) and fed into the proposed SVR 

model for training. Previous investigations (Beck et al., 2004; Orizio, 1993) have 

validated the legitimacy of these MMG features for muscle force assessment, and, 

therefore, they were equally used as joint torque predictors in this study.  

3.3.2 Support Vector Regression Modelling Approach 

SVR algorithm was proposed in this study because of its optimal predictive 

performance even with a small dataset (Shin et al., 2005) and the ability to learn both 

linear and non-linear relationships between predictors and outcome variables. Such 

relationships have been used in establishing a pattern whereby unknown outcomes could 

be predicted accurately (Vapnik et al., 1997; Xie et al., 2009). Theoretically, SVR is 

derived from the statistical learning theory (Burges, 1998; Cortes & Vapnik, 1995) and 

employs ε-insensitive loss function (Vapnik et al., 1997) which measures the flatness of 

the generated pattern as well as maximum allowable deviations of the targets from the 
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predicted values for all given training datasets 1 1
( , ),..........,( , )

k k
x y x y  with k number of 

samples (Gupta, 2007).  

However, a function used for the SVR analysis should not only approximate the 

training data adequately but also predicts accurately the value of y for the future data x  

(Yang et al., 2009) for the purpose of generalization. Such a function, with ,w x  dot 

product in the space of 'R , is represented in linear form by Equation (3.1) for a set of 

training samples. 

( , ) ,f x w x b                                                                                                          (3.1) 

where 'w R   and  b R  

To establish the goal of SVR in ensuring the flatness of the Equation (3.1), small value 

of w  is desired through minimization of the Euclidean norm 
2

w (Smola, 1996) which 

makes the optimization problem of the regression to be governed by Equation (3.2): 

21
minimize 

2

,
 

,

i i

i i

w

y w x b
subject to

w x b y





    
 

    

                                                                                 (3.2) 

Equation (3.2) holds on the assumption (Pal & Goel, 2006) that there exists a function 

that is capable of providing error which is less than   for all training pairs of the dataset. 

The slack variables  * and i i  , which represent the upper and lower constraints on the 

system output, are often introduced in order to permit some errors that are associated with 

real life problems (Burges, 1998; Pal & Goel, 2006). Therefore, Equation (3.2) is 

modified and presented as Equation (3.3). 
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2 *
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k
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w C

y w x b

subject to w x b y

i k

 

 

 

 



 

    
  

    
 

   



                                                               (3.3) 

The regularization parameter i.e. C  is one of the user-defined parameters and also 

indicates the tradeoff between the function’s flatness and the amount of permitted error 

beyond ε- insensitive zone (Gupta, 2007). The optimization problem in Equation (3.3) is 

better solved, through the  -insensitive loss function, by using Lagrangian multipliers 

* *( , ,  and )i i i i     to transform the problem into dual space representation (Gupta, 2007; 

Vapnik, 1999a). Therefore, the Lagrangian for the Equation (3.3) is presented in Equation 

(3.4). 

 

   

2 *

1 1

* * * *

1 1

1
( ) ,

2

,

k k

i i i i i i

i i

k k

i i i i i i i i

i i

L w C y w x b

y w x b

    

      

 

 

       

      

 

 

                                            (3.4) 

It is easier to locate the saddle point of the Lagrangian function defined in Equation 

(3.4) by equating the partial derivatives of the Lagrangian 

*
with respect to , ,  and w b

i i
 

 
 
 
 

  to zero in order to obtain the expressions presented in 

Equations (3.5) – (3.7): 

 *

1

.
k

i i i

i

w x 


                                                                                                       (3.5) 

i iC                                                                                                                   (3.6) 

* *

i iC                                                                                                                 (3.7) 
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Thereafter, the optimization equation is maximized by substituting Equations (3.5) – 

(3.7) in (3.4) to arrive at Equation (3.8): 

       

 

* * * *

1 1 1 1

* *

1

1
maximize - .

2

 to 0, 0  and 

k k k k

i i j j j i i i i i i

i j i i

k

i i i i

i

x x y

subject C

        

   

   



     

   

  



    (3.8) 

The solutions (
*  and i i  ) obtained from Equation (3.8) are substituted in Equation 

(3.1) and presented in Equation (3.9): 

 *( , ) ,
1

k
f x x x bi i i

i
    


                                                                         (3.9) 

However, since the concept of kernel function through ‘’kernel tricks’’ allows SVR to 

solve non-linear problems by mapping the original non-linear data into higher 

dimensional feature space where a linear model could be constructed (Lin et al., 2008), a 

proper selection of kernel function allows optimization of SVR performance (Lin et al., 

2008). The regression function in feature space, after inserting the kernel function 

,iK x x , could be written as presented in Equation (3.10). 

 *( , ) ,
1

k
f x K x x b

i i i
i

    


                                                                       (3.10) 

As the kernel functions help in transforming datasets into hyperplane (Lin et al., 2008), 

its variables determine the structure of high dimensional feature space which controls the 

complexity of the final solution. As applied in the present study, Equations (3.11) – (3.14) 

describe several kernel functions that are obtainable in the literature (Vapnik, 1999b) 

which include Polynomial, Linear, Gaussian (radial basis function (RBF)) and Sigmoid, 

respectively. 
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( , ) ( 1)dK x x x x
i j i j

                                                                                         (3.11) 

( , ) .TK x x x xi j i j                                                                                                  (3.12) 


 

   
 

( , ) exp
i j i j

d
K x x x x                                                                             (3.13)    

 ( , ) tanh( )TK x x x x r
i j i j

                                                                                (3.14)      

where , ,  r and d  are kernel parameters and, ix  and jx  represent vectors in the input 

space—vectors of features computed from training or testing subset (Shamshirband et al., 

2014).   

3.3.2.1 Model Development 

MATLAB software environment (Version 12, The MathWorks, Inc., Natick, MA, 

USA) using SVR coding was used for the computational aspect of this research work. 

Prior to the use of the dataset, the dataset was partitioned into two components to adhere 

to the SVR modelling approach (Shamshirband et al., 2014)—a machine-learning 

“training” subset and a “testing” subset in a ratio of 7:3, via stratified sampling to ensure 

effective random partitioning (Akbani et al., 2004). Specifically, 70% of the dataset was 

used for training and the remaining 30% was used for testing the SVR model via test-set 

cross-validation method. This allowed a regression analysis to be performed on the 

training dataset while estimating the future generalization accuracy, of the model, on the 

remaining testing subset. For further detail on the working principle of the proposed SVR 

model, readers are referred to Smola and Schölkopf (2004) and Vapnik et al. (1997). 

3.3.2.2 Optimal Parameters Search Approach 

The accuracy of an SVR model is dependent on the model parameters’ selection 

(Shamshirband et al., 2014). However, due to the possibility of many different 

combinations of SVR parameters, it is often difficult to obtain optimal SVR parameters 
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(Cherkassky & Ma, 2004). To solve this problem systematically, and in order to obtain 

possible optimized parameters of SVR for an accurate estimation, a hybrid optimization 

search technique, which has been recommended (Rıza, 2009), was adopted and a test-set 

cross-validation technique was deployed (Owolabi et al., 2015).  

 

Figure 3.3: Flow chart of the procedure for obtaining optimal parameters, as 

shown in (Table 3.1), for the proposed SVR model. 

 

The approach is as follows: for every partitioned training and testing subsets, the 

performance measures were noted for the SVR parameters values including the 
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regularization parameter or factor C (bound on the Lagrangian multiplier),   

(conditioning parameter for quadratic programming (QP) methods), ε (epsilon) and η 

(kernel option) as well as the related kernel functions (Akande et al., 2015). Thereafter, 

this computational step was repeated for every available SVR kernel function with an 

incremental step of the parameters’ values. Parameters’ optimal values and the kernel 

function associated with the best performance measure were identified. The search 

procedures are presented summarily in Figure 3.3. 

Table 3.1: Optimal parameters for the proposed Support Vector Regression 

model. 

 

C 879 

Hyper-parameter (Lambda) 2−15 

Epsilon ( ) 0.1205  

kernel parameter 54 

Kernel Gaussian (RBF) 

 

A mathematical implementation (Akande et al., 2015) of the test-set cross-validation 

technique is as described in Algorithm 3.1 as follows: 𝐾𝑖(𝑗) was defined where 𝐾 contains 

all the available kernel functions (and 𝑖, 𝑗 and 𝑘, are the indexes for the kernel functions) 

while 𝑖𝑦, 𝑗𝑦 and 𝑘𝑦 represent the indexes for optimal kernel function. The total number 

of the available kernel function is represented by 𝑛𝑖. The maximum values of 𝐶 and η 

were assumed to be 𝑛𝑗 and 𝑛𝑘, respectively. The recorded performance measures were 

stored in 𝑝𝑓. 

Algorithm 3.1: Optimal parameter search algorithm 

 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛; 𝑖𝑦 = 0, 𝑗𝑦 = 0, 𝑘𝑦 = 0, 𝑞𝑥 = 0 

   𝑓𝑜𝑟 𝑖 = 1: 𝑛𝑖 
      𝑓𝑜𝑟 𝑗 = 1: 𝑛𝑗  𝑝𝑓 = 𝑓(𝐾𝑖(𝑗)) 
         𝑓𝑜𝑟 𝑘 = 1: 𝑛𝑘 
            𝑝𝑓 = 𝑓(𝐾𝑖(𝑗)) [Performance measure for the present parameters combination] 

        𝑖𝑓 𝑝𝑓 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑞𝑥 𝑡ℎ𝑒𝑛 𝑞𝑥 = 𝑝𝑓 
     𝑖𝑦 = 𝑖, 𝑗𝑦 = 𝑗, 𝑘𝑦 = 𝑘 [𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟] 
   𝑒𝑛𝑑 
  𝑒𝑛𝑑 
𝑒𝑛𝑑 
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3.3.2.3 Model Statistical Performance Criteria 

To evaluate the performance of the proposed model, common measures of association, 

between the actual and the estimated values, were employed, including correlation 

coefficient (r) and coefficient of determination (R2) to quantify the “goodness of fit’’, and 

Root Mean Square Error (RMSE) to quantify the error of estimate. For further details on 

their mathematical formulae, readers are referred to Youn and Kim (2011) and Olatunji 

et al. (2014). 

3.4 Results and Discussion 

Table 3.2 describes the actual experimental dataset used in this study. The results of 

the statistical analysis of the dataset are presented in Table 3.3. The suitability and 

applicability of the chosen dataset are revealed from the mean, maximum value, median, 

standard deviation, and minimum value. The MMG-RMS, MMG-PTP, level of electrical 

stimulation or contraction intensity, and knee angle obtained experimentally were the 

input to the SVR model to estimate the knee torque. Results of performance measures 

obtained from the training and testing subsets are as shown in Table 3.4.  

To the author’s knowledge, this is the first attempt to use an SVR modelling technique 

for NMES-evoked knee torque estimation from MMG signals. The outcomes of the 

developed SVR model (Table 3.4) indicated high correlation as well as low RMSE, and 

the model could, therefore, be adjudged as accurate. Moreover, high accuracy of the 

trained model, as evident by the coefficient of determination (R2 = 94%), in predicting 

knee torque confirmed a reliable pattern between the predictors and the outcome which 

might be otherwise difficult to learn using the classical multiple linear regression method 

probably due to the concept of “curse of dimensionality” (Huang et al., 2006). 
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Table 3.2: Summary of the datasets. 

Mechanomyographic signal (MMG) characteristics at seven Neuromuscular Electrical Stimulation (NMES) intensity levels, at three knee angles and 

their respective peak torque values. 

 

Stimulation 

Intensity 

(mA) 

Knee Angle 

30° 60° 90° 

PT RMS PTP PT RMS PTP PT RMS PTP 

20 13.9 (3.7) 14.7 (9.9) 23.6 (16.4) 4.1 (0.7) 17.4 (18.4) 21.7 (23.0) 4.3 (5.7)     20.4 (20.0) 22.0 (26.9) 

30 23.3 (19.7) 51.9 (22.4) 55.8 (24.7) 9.7 (8.5) 37.4 (21.2) 38.7 (19.5) 11.0 (10.2)     51.3 (30.0) 50.8 (30.6) 

40 58.2 (23.6) 75.3 (29.5) 73.54 (19.1) 27.6 (24.2) 77.7 (36.6) 65.88 (19.2) 21.4 (15.0)     93.4 (45.4) 84.0 (34.1) 

50 76.6 (19.3) 84.2 (15.2) 85.04 (14.9) 51.5 (26.2) 82.6 (27.3) 72.7 (14.9) 40.7 (18.5)    115.7 (39.6) 101.0 (33.8) 

60 86.1 (20.2) 104.9 (22.5) 94.86 (18.2) 74.7 (19.2) 94.9 (30.4) 85.27 (14.7) 62.1 (12.3)    104.3 (29.0) 101.1 (28.5) 

70 91.1 (21.5) 100.2 (6.2) 98.34 (5.7) 91.0 (8.2) 88.1 (9.7) 90.57 (14.4) 84.2 (12.3)    118.5 (22.0) 113.2 (10.7) 

80 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 100.0 (0) 

Abbreviations: Stimulation Intensity—level of electrical stimulation or contraction intensity, PT—Peak torque, RMS—Normalized MMG-RMS%, PTP—Normalized MMG-PTP%. Values 

are reported in mean (standard deviation) for N = 8. 
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Table 3.3: Statistical parameters of the datasets. 

 

Input Parameters Mean Max Median Stdev Min 

Participants      

Weight (kg) 70.1 80 69 5.9 63 

Age (years) 23.4 25 23.5 1.3 21 

Stimulation intensity (mA) 50 80 50 20 20 

Knee angle (°) 60 90 60 24.5 30 

Normalized MMG-RMS% 77.8 188.1 86.9 40.0 4 

Normalized MMG-PTP% 75.2 163.5 81.6 34.8 4.6 

Peak torque 53.9 108.4 57.2 38 0 

 

Table 3.4: Performance measures that determined the accuracy of the developed 

model. 

 

Performance Measures Training Testing 

r 0.97 0.94 

R2 94% 89% 

RMSE 9.48 12.95 

 

During the training period of the model, the estimated torques were positively 

correlated with the actual values drawn from the experimental data (actual vs. predicted 

values) for both the training (Figure 3.4A) and testing (Figure 3.4B) subsets. 

In addition, the cross-plots of the “training’’ subsets (actual vs. predicted values) as 

shown in Figure 3.5 also confirmed the high accuracy of the “training” subsets. However, 

since the actual performance of any model is better accessed by the testing outcome 

(Gencoglu & Uyar, 2009), the accuracy of the developed SVR model was tested using 

30% of the available data samples (i.e., the reserved 30% that was not used for the model 

development). It was interesting to note that, the model also performed satisfactorily 

during testing phase with R2 = 89%. 
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Figure 3.4: Plots of the correlation coefficients for the training (A) and testing; (B) 

subsets. 

 

 

Figure 3.5: Cross plots of training sets—actual vs. predicted values.  

The plots show the performance of SVR with Gaussian kernel for torque prediction 

on the training set. 

 

 

This high correlation (r = 0.97; 0.94 for training and testing datasets, respectively) indicated 

that the estimated knee torque by the SVR model was very close to the actual 

experimentally recorded joint torque (from an isokinetic dynamometer) for each data 

sample. For better visualization and understanding of the outcome of this study, the cross-
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plot of testing sets (actual vs. predicted values) has been portrayed in Figure 3.6. The 

level of accuracy in the testing phase (R2 = 89%) of the model development indicates that 

the model is stable, efficient and not over-fitted. This was based on the suggestion of Tay 

and Cao (2001) that an overfitted model could perform excellently on the training set (r 

> 0.90) but will perform poorly on testing set (Tay & Cao, 2001). Therefore, the 

developed SVR model in this study achieved a good performance for both training and 

testing sets. These results are comparable to that of Youn and Kim (2011), where an 

artificial neural network model has been successfully used to estimate elbow force during 

voluntary contractions. Meanwhile, the potential of the SVR model for NMES-evoked 

joint torque estimation, which has not been previously documented, has also been 

demonstrated in the present study. 

 

Figure 3.6: Cross plots of testing set—actual vs. predicted values.  

The plots show the performance of SVR with Gaussian kernel for torque prediction 

on the testing set. 

 

Moreover, Figures 3.5 and 3.6 portrayed the closeness of the predicted torque by the 

proposed SVR model to the actual experimental values. It could be noted that almost all 

the predicted points fit exactly on the experimental point or at least fits very closely to the 

target experimental point. Taken together, it could be inferred that the real-time knee 
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torque information which is vital for the closed-loop implementation of NMES (Braz et 

al., 2009; Popović, 2014) in physical therapy and rehabilitation engineering might be 

reliably estimated by the proposed method. Nevertheless, the following limitations are 

acknowledged in the study design: the performance of the developed model is limited to 

the torque estimation during NMES-evoked isometric knee extension in healthy 

volunteers. In the future studies, the performance of the model will be verified using 

MMG signal and torque data from participants with neurological conditions. This will 

allow us to examine and improve the performance of the model, and to derive clinically 

relevant characteristics about the muscle force recruitment in the clinical populations. 

3.5 Conclusion 

Based on its previous estimation accuracy in relevant fields, SVR modelling was used 

in this study through the integration of relevant variables to predict NMES-evoked knee 

torque. The model was developed through training and testing via test-set cross-validation 

technique with the experimental dataset partitioned into training and testing subsets. 

Using the SVR methodology, the predicted knee torque was positively correlated with 

the actual values drawn from the experimental data for the training subset. Thereafter, to 

check the predictive ability of the model, the trained model was tested using the reserved 

testing subset that was not used in model development. The model performance was 

measured based on the correlation coefficient and RMSE. The outcomes from the 

developed SVR model showed an accurate prediction of the knee torque, characterized 

by a high coefficient of determination—up to 94% and 89%, and low RMSE of 9.48 and 

12.95, for the training and testing cases, respectively. These results indicated a close 

similarity between the estimated joint torque by the SVR model and the actual 

experimental data obtained from the laboratory experiment. Additionally, the present 

study has uniquely shown that an SVR model could estimate NMES-evoked knee torque, 
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generated by a synchronous modulation of muscle fibres’ motor units (Gregory & Bickel, 

2005), from MMG signal in healthy volunteers. Therefore, the good performance 

achieved in this study will motivate further studies in a similar direction to facilitate 

accurate estimations of torque using datasets from clinical populations—in which the 

NMES technology is more relevant, particularly among those with spinal cord injury. 

Moreover, since SVR models can be adapted for classification tasks (Cortes & Vapnik, 

1995); in the future, the developed model will be used to classify fresh and fatiguing 

muscle contractions of knee extensors, from MMG signals, during standing and 

ambulation tasks. Such models might offset the need to contend with the stimulation 

artifacts (Braz et al., 2009; Popović, 2014) often encountered with the application of 

surface EMG signal as NMES feedback source. 
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CHAPTER 4: MECHANOMYOGRAPHY AS A PROXY OF MUSCLE FORCE 

DURING NMES-EVOKED KNEE EXTENSION TASK IN PERSONS WITH SCI 

 

4.1 Introduction 

Non-invasive estimation of muscle force is frequently sought in physical therapy and 

rehabilitation engineering. Therefore, the evaluation of muscle performance through 

torque production is used to grade the functional capability of a muscle in both healthy 

and neurologically impaired persons. The work reported in this Chapter was designed to 

apply the findings from healthy volunteers in persons with spinal cord injury (SCI). This 

was necessary because, although healthy volunteers’ study was deemed required to 

investigate the feasibility of the MMG signal to study NMES-evoked muscle response 

and to learn about the safety of the experimental setting, such results cannot be 

generalized or directly applied to study the muscle activities in persons with SCI (Scott 

et al., 2007). This is as a result of the muscle paralysis in persons with SCI and the 

consequent characteristics of an unusual fibre typing or distribution which may influence 

their muscle responses to the neuromuscular provocation by electrical stimulation.  

Therefore, this Chapter introduces a method for NMES-evoked isometric torque 

assessment in persons with SCI and quantifies the degree of association between MMG 

signals and isometric torque of the quadriceps muscle during incremental NMES-evoked 

muscle contractions at various knee angles. The Chapter also investigates the reliability 

of the MMG signals. The study described in this Chapter contains text from the author’s 

published work reproduced with the permission from the publisher: 

Ibitoye, M. O., Hamzaid, N. A., Hasnan, N., Abdul Wahab, A. K., Islam, M. A., Kean, 

V. S. P., & Davis, G. M. (2016). Torque and mechanomyogram relationships during 
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electrically-evoked isometric quadriceps contractions in persons with spinal cord 

injury. Medical Engineering & Physics, 38(8), 767-775. 

4.2 Literature Review 

The study of motor unit (MU) recruitment to evoke force production is of clinical 

interest, particularly during NMES-evoked contractions of paretic or paralyzed muscles 

in neurological populations (Levy et al., 1990). Incremental MU recruitment during 

voluntary (Matheson et al., 1997; Orizio et al., 1989) and NMES-evoked contractions 

(Petitjean et al., 1998) has been used to describe muscle force modulation in healthy 

persons. However, while NMES-evoked contractions have been utilized for muscle force 

production in persons with SCI (Nash, 2005), the mechanical and morphological changes 

associated with muscle contractions in this population have been poorly understood.  

To evaluate the effectiveness of NMES interventions, it is important to quantify 

electrical stimulus-evoked muscle force. In particular, understanding motor recruitment 

and muscle force characteristics could provide key insights about the contractile 

properties of the muscle (Elek & Dengler, 1995) and this has important implications for 

the use of NMES in rehabilitation. For example, measuring force or strength changes in 

persons with SCI can provide evidence of recovery or deterioration of motor output, as 

well as revealing the efficacy of rehabilitation interventions (Sisto & Dyson-Hudson, 

2007). Beyond promoting the practical applications of NMES training in maintaining 

‘muscle health’ (Shields et al., 2006), the ability to quantify an acute increase in muscle 

force production following NMES exercise (Hornby et al., 2009) could widen the 

application of this assistive technology in the clinical setting.  

Traditionally, isokinetic dynamometers have been used to assess muscle force (via 

joint torque) in a research setting, and they quantify torque throughout the limb range of 
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motion with acceptable reliability (Sisto & Dyson-Hudson, 2007). However, these 

devices lack portability and are relatively expensive and cumbersome to deploy for 

assessments in the clinical or home environment. The estimation of the muscle torque 

from other muscle characteristics, particularly bio-potentials, becomes an attractive 

option.  

While an indirect estimation of torque production has been assessed using 

electromyography (EEMG) (Merletti et al., 1992; Thompson et al., 2011), the signal’s 

sensitivity to the external electromagnetic interference and skin impedance changes as a 

result of perspiration (Yamamoto & Takano, 1994) presents significant limitations 

(Orizio, 1993). Additionally, the reliability of EMG estimation of muscle torque 

generation during NMES-evoked contractions remains debatable (Popović, 2014), largely 

due to the size of stimulation artifact current in relation to the EMG signal (Merletti et al., 

1992). Thus, quantification of electrical stimulus-evoked force production by EMG alone 

during neurostimulation is deficient (Levin et al., 2000). 

A mechanical “counterpart” of the electrical activity of active motor units as measured 

by EMG (i.e., muscle mechanomyogram; MMG) has been proposed for muscle torque 

assessments (Alves et al., 2010; Beck et al., 2005). During skeletal muscle contractions, 

the generated MMG signal is a function of the following mechanisms: “(i) a slow bulk 

movement of the muscle at the initiation of the contraction, (ii) smaller subsequent lateral 

oscillations occurring at the resonant frequencies of the muscle, and (iii) dimensional 

changes of active muscle fibre” (Beck et al., 2005). Therefore, MMG reflects the 

mechanical activity of physiological phenomena underlying muscle contractions. MMG 

quantifies neuromuscular performance, and has been used to gain insights into muscle 

capability during voluntary (Beck et al., 2005) and NMES-evoked contractions (Petitjean 

et al., 1998).  
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In humans with intact neuromuscular functions, Petitjean et al. (1998) reported a 

positive linear relationship between MMG amplitude and MU recruitment (i.e., muscle 

torque) during incremental NMES-evoked contractions of the first dorsal interosseous 

muscle (FDI). The authors suggested that the influence of the muscle fibre type may have 

been responsible for the pattern observed. Consequently, the MMG-torque relationship is 

both muscle fibre-type composition (Stokes & Dalton, 1991) and structure (Yoshitake & 

Moritani, 1999) dependent.  

In addition, MMG frequency content provides information regarding the firing 

rates/frequency of the active motor units during voluntary and NMES-evoked 

contractions (Orizio et al., 2003). Therefore, simultaneous investigation of the time and 

frequency contents of MMG signal has been used to interpret motor control strategy that 

is responsible for muscle force modulation during voluntary (Beck et al., 2005) and 

NMES-evoked (Orizio, 1993) muscle contractions. Thus, the torque output during 

NMES-evoked muscle contractions depends on the degree of MU recruitment, their firing 

rates (Petitjean et al., 1998) and the contractile properties of the activated muscle 

(Yoshitake et al., 2002). Nonetheless, clear interpretation of the specific influence of MU 

recruitment and their firing rates on MMG characteristics during NMES-evoked 

contractions in persons with neurological conditions (i.e. SCI) has been minimally 

investigated.  

Thus, the aims of this study were: (i) to quantify the degree of association between 

MMG signals and isometric torque of the rectus femoris (RF) muscle during incremental 

NMES-evoked muscle contractions at 300, 600, and 900 knee angles; and, (ii) to 

investigate the reliability of MMG signal recorded over RF muscles in persons with SCI. 

The quadriceps muscle group was selected because of its well-established relevance for 

the study of knee torque dynamics (Franken et al., 1993), could be readily stimulated in 
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persons with SCI (Gerrits et al., 2005), and could be easily compared with existing data 

on voluntary contractions (Shinohara et al., 1998; Stokes & Dalton, 1991). RF was 

selected to represent the quadriceps group because it is the major contributor to the 

NMES-evoked quadriceps muscle torque production during knee extension (Richardson 

et al., 1998; Shinohara et al., 1998). To the author’s knowledge, no previous studies have 

reported the relationship between MMG parameters and the quadriceps torque production 

during incremental NMES-evoked isometric contractions in persons with SCI. 

It was hypothesized that the MMG signal would be a reliable proxy of incremental 

torque production since a positive linear relationship has been previously demonstrated 

in FDI, which is of comparable muscle fibre morphology to the quadriceps (Petitjean et 

al., 1998) with a predominance of type II fibres in this muscle group after SCI (Gerrits et 

al., 2005). Furthermore, a significant correlation between the MMG signal and muscle 

torque production would a priori support the validity of the signal as a proxy of muscle 

performance/torque, particularly when a direct measurement of torque might be 

impractical (Popović, 2014), such as in activities of daily living.  

4.3 Materials and Methods 

4.3.1 Participants 

Nine chronic motor complete (American Spinal Injury Association Impairment Scale  

A and B) SCI (Kirshblum et al., 2011) participants with neurological lesions below C4 

were recruited at the Department of Rehabilitation Medicine, University of Malaya 

Medical Centre (UMMC), Kuala Lumpur, Malaysia. Their written informed consent (see 

Appendix D or E) was obtained after a full disclosure of the rationale and procedures of 

the experiment in compliance with the University of Malaya Medical Ethics Committee’s 

approval (Approval No: 1003.14 (1)) as detailed in Appendix A) based on the declaration 

of Helsinki. They were duly informed about the possible sources and discomforts of the 
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dynamometer assessment and electrical stimulation and were advised of their rights of 

withdrawal from the study at any time. Persons with severe spasticity, joint contracture 

or lower motor neuron lesion that might adversely affect the production of modest 

quadriceps torque were excluded from participation. Also excluded were any participants 

who, as a result of incremental NMES current amplitude, produced no relative increase 

in their stimulus-evoked torque values.  

Of the nine participants recruited at the outset, only seven successfully completed the 

full test battery. However, a further participant was excluded due to lack of increase in 

relative torque in response to increasing NMES current intensity. Therefore, the data of 

the remaining six participants (Table 4.1) has been included for analysis. All participants 

retained quadriceps spinal reflexes, and they could sit up on a dynamometer’s chair with 

backrest. As part of clinical conditioning exercises (Bickel et al., 2004), at the time of the 

investigation, participants were already involved in NMES cycle training (2 to 3 times 

per week for at least 7 weeks) but were asked to refrain from the training for at least 48 

hours before testing. 

Table 4.1: Participants’ Physical Characteristics 

 

Participants   Gender Age (y) Body mass (Kg) Height (m) NLL AIS TSI (Yrs.) 

1 M 49 79.6 1.74 T1 A 11 

2 F 47 82.0 1.62 T4 B 24 

3 M 28 62.4 1.71 C7 B 14 

4 M 44 71.6 1.79 C6/C7 B 2.5 

5 M 34 75.9 1.70 C6 A 17 

6 M 33 44.0 1.71 C5/C6 A 13 

Mean± SD  39.2±7.9 69.3±12.9   1.71±0.05      13.6±6.5 

Abbreviation: NLL- Neurological lesion level, AIS- American Spinal Injury Association Impairment Scale, 

TSI- Time since injury, F-Female, M-Male. 
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4.3.2 Experimental Protocol 

Participants were secured to a calibrated isokinetic dynamometer (System 4; Biodex 

Medical Systems, Shirley, NY, USA) by an inextensible restraining straps over the thigh, 

pelvis and the trunk to minimize extraneous movements (Brown & Weir, 2001) and to 

ensure only isometric contractions of the quadriceps could be performed (Bickel et al., 

2004) as depicted in  Figure 4.1. Based on safety considerations of not putting bone health 

at risk (Hartkopp et al., 1998), and to analyze the muscle torque in a range that will mimic 

functionally relevant mode such as in standing up, the maximal torque calculations based 

on the empirical data of Kagaya et al. (1995) was utilized. Those investigators suggested 

that the knee extensor moment/ torque should not exceed that required for NMES 

supported standing in persons with SCI.  

Thus, careful attempts were made to keep the NMES-evoked muscle torque production 

within a range that would not risk bone integrity. Although none of the participants could 

be NMES-provoked to produce the maximum torque, the maximum torque production in 

each participant was limited to 75 Nm as suggested by Gerrits et al. (2005). 

4.3.3 Familiarization 

A familiarization session was conducted (at least a day prior to testing) to acquaint 

participants with the NMES-evoked isometric assessment procedures on the 

dynamometer. Thereafter, participants attended the laboratory on two different test days, 

separated by 48 hours, for each of the knee angles assessed, to quantify test-retest 

reliability. 
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Figure 4.1: Experimental set-up showing the MMG and NMES electrode 

placement over the quadriceps muscle in a representative participant with SCI.  

Letters A and B are the cathode and anode electrodes, respectively, of the 

neuromuscular electrical stimulator while C represents the MMG sensor. 

 

4.3.4 Stimulation Protocol 

Through palpation and visual inspection, the isolated activation of knee extensors was 

ensured to establish that the muscle activation was primarily from quadriceps (Adams et 

al., 1993), using 9 cm×15 cm self-adhesive stimulating electrodes (Hasomed GmbH, D 

39114 Magdeburg, Germany). The cathode NMES electrode was placed 8 cm distal to 

the inguinal area, over the RF belly near the expected location of the motor points (Botter 

et al., 2011), and the position of electrode was then slightly adjusted to a location whereby 
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the maximal response, based on a palpable muscle response and force production, to the 

stimulation could be identified. The anode electrode was affixed 5 cm proximal to the 

patella as recommended by Levin et al. (2000). For both the distal and proximal 

anatomical landmarks, motor points represent the location where the motor branch of a 

nerve accesses the muscle belly whereby the maximal muscle force could be possibly 

obtained for a given electrical stimulus (Botter et al., 2011; Sung et al., 2003). Indelible 

marker was used to identify the electrode position for accurate placement between trials 

and testing days.  

NMES was used to evoke isometric contractions of the knee extensors with the hip 

flexed at about 900, and the knee flexed to 900, 600 or 300 according to the study’s 

protocol. NMES electrodes were connected to a neuromuscular stimulator delivering 

square-wave pulses of current amplitude between 50-120 mA. During each electrical 

stimulus-evoked contraction, a train of electrical stimulation (i.e., repeated bursts of 

pulses at 30Hz, and 400μs pulse duration, with increasing stimulation amplitude (mA); 

RehaStimTM, Hasomed GmbH, Magdeburg, Germany) was imposed to potentiate the 

quadriceps activation.   

4.3.5 Measurements  

4.3.5.1 NMES-evoked isometric torque measurement 

Following submaximal warm-up trials wherein the muscle belly was palpated to 

ensure accurate MMG sensor fixation, 4s of randomly ordered NMES-evoked 

submaximal-to-maximal torque levels were imposed on the participants’ quadriceps 

muscle at 300, 600, or 900 knee angles (00 = full knee extension). The incremental torque 

was evoked by stimulation intensity from 50 mA to 120 mA in 10 mA increments for 

each participant. Previous studies have shown that this protocol elicits optimized 

outcomes as it does not evoke premature muscle fatigue (Bickel et al., 2004). Torque 
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production (Nm) was quantified in real-time by the dynamometer and data were ‘gravity-

corrected’ by subtracting the passive torque produced by the leg mass affixed to the level 

arm. This was effected automatically following the positioning of the knee angle at 450 

from the full knee extension angle (00) while each participant was instructed to remain 

relaxed. The recorded limb weight was automatically used by the dynamometer to “negate 

the gravity effect” on the collected torque data (Biodex (V.4X) operation manual). To 

eliminate any order effect, the administration of contraction intensities (mA) and knee 

angles were randomized. A 10-min recovery was allowed between trials to reduce the risk 

of cumulative muscle fatigue (Thomas et al., 2003). 

4.3.5.2 MMG measurements 

Simultaneously with the torque measurement, MMG signals from the RF were 

obtained using an accelerometer-based vibromyographic sensor (Sonostics BPS-II VMG 

transducer, compatible with Biopac MP150 platform, sensitivity 50 V/g) attached by 

means of double-sided adhesive tapes (3M Center St. Paul, MN, USA) (Barry, 1992) 

directly on the muscle belly (i.e., at the midpoint between the inguinal crease and the 

superior border of the patella (Ryan et al., 2008)), in order to obtain the maximum muscle 

surface oscillation (Figure 4.1). Before attaching the MMG sensor, the skin was shaved 

(as needed) and cleaned with alcohol swabs. As it was sometimes difficult to identify the 

precise location of the quadriceps’ muscle belly (due to muscle atrophy and adipose tissue 

thickening), the determination of the MMG sensor location was assisted by electrical 

stimulation of the muscle. During this procedure, a stimulation current amplitude of 50 

mA (pulse width = 400µs, frequency = 30Hz) was administered to identify the probable 

muscle belly by visual inspection and palpation. This location was standardized for 

subsequent trials by indelible marker. An example of the pattern of MMG signals and the 

torque production during NMES-evoked muscle contractions is as shown in Figure 4.2.  
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4.3.6 Signal Processing 

Signals were acquired and analyzed using AcqKnowledge data acquisition and 

analysis software (MP150, BIOPAC Systems, Santa Barbara, CA, Inc. USA) and a 

customized programme in LabVIEW (Version 12.0, National Instruments, Austin, TX, 

USA). The raw MMG signals were acquired at a sampling rate of 2 kHz and digitally 

band-pass filtered (20-200 Hz), to suppress the influence of artifacts associated with 

tremor and body movement (Goldenberg et al., 1991; Szumilas et al., 2015), for offline 

analysis. The peak torque (PT) obtained from a dynamometer was calculated for each 

NMES-evoked contraction level/stimulation intensity. The PT of the participants, MMG 

root mean square (MMG-RMS), peak-to-peak (MMG-PTP) amplitude and MMG 

frequency characteristic—peak frequency (MMG-PF) were extracted from the NMES-

evoked isometric contraction measurement from 1 s epoch of MMG signal around the 

peak torque (location of probable maximum muscle recruitment) at each contraction 

intensity level.  

The middle 1 s epoch was selected to avoid the on-transient due to a rise in force at 

the beginning and off-transient during the end of muscle contractions (Katsavelis & 

Threlkeld, 2014). The PT value and the MMG parameters at maximum stimulation 

intensity (120 mA) were used to normalize their relative submaximal values, at each knee 

flexion angle, to allow for comparison between participants. Univ
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Figure 4.2: Simultaneous recordings of repetitive NMES-evoked torque and raw 

MMG signal from RF at stimulation current of 90 mA and 600 knee flexion angle 

from a representative participant. 

 

4.3.7 Statistical Analysis  

The test-retest reliability of measurements between days was quantified by intraclass 

correlation coefficient (ICC), using a twoway mixed effects model, and standard error of 

measurements (SEM%) (Weir, 2005) calculated as a percentage of relative mean values 

(i.e., in order to examine the relative and absolute consistency of the parameters). 

Thereafter, paired samples t-tests were performed on the dependent variables to determine 

whether there was a significant mean difference between the test and retest scores. A data 

normality test was conducted using Shapiro-Wilk statistic, and the data were normally 

distributed except for a few (i.e., peak torque at 600 knee angle) that were skewed 

probably due to the study’s small sample size (Table 4.2).  
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Based on the recommendation of Munro (2005), the interpretation of the ICCs were as 

follows: >0.90, very high reliability; 0.70–0.89, high reliability; 0.50–0.69, moderate 

reliability. The significant association between the NMES-evoked torque vs. stimulation 

intensity, MMG-RMS vs. NMES-evoked torque, and MMG-PTP vs. stimulation intensity 

(at 8 levels of torque production) was investigated using Pearson’s correlation coefficient 

(r) (Stokes & Dalton, 1991). Prior to the analyses, MMG data were expressed as a 

percentage of their values at maximum stimulation intensity level (Stokes & Dalton, 

1991). A statistical software package (IBM SPSS for Windows Version 20, NY, USA) 

and Microsoft Office Excel 2013 (Microsoft, Redmond, WA, USA) were used for data 

analyses. A significant level of alpha (α) < 0.05 was set a priori for all statistical tests. 

4.4 Results 

After completing the full test battery and with one participant, out of seven, meeting 

exclusion criteria, six participants, whose physical characteristics appeared in Table 4.1, 

were included in the analyses presented herein.  

4.4.1 Reliability 

In Table 4.2, the ICC, SEM% and their respective probabilities for all the investigated 

parameters were presented. Based on the normative categories previously described, ICC 

ranged from “moderate to very high reliability” (i.e., 0.65 to 0.97). For SEM%, the values 

ranged from 10.1 to 31.6% of their relative mean values. Paired sample t-tests indicated 

that there were no significant differences between the mean values of any parameters (P> 

0.05).  

 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

91 

Table 4.2: Test–retest reliability of torque and MMG measures. 

Probabilities (P-values) were obtained from paired t-test between trials. Standard 

error of measurements (SEM) was expressed as a percentage of mean values. Shapiro-

Wilk (W) and its probability have been reported as a measure of normal distribution. PT 

represents NMES-evoked peak torque. 

 

 

Knee angle 

Inter-day 

 

Parameters 

 

ICC 

 

SEM% 

 

P-value 

Shapiro-Wilk 

(W); P-value 

 

300 

PT 0.82 31.6 0.843 (0.961); 0.187 

MMG-RMS 0.79 15.5 0.080 (0.975); 0.504 

MMG-PTP 0.72 17.1 0.064 (0.972); 0.414 

 

   600 

PT 0.97 11.4 0.996 (0.908); 0.001 

MMG-RMS 0.77 22.6 0.277 (0.947); 0.058 

MMG-PTP 0.73 21.3 0.490 (0.964); 0.227 

 

   900 

PT 0.97 10.1 0.370 (0.082); 0.120 

MMG-RMS 0.65 18.2 0.091 (0.983); 0.720 

MMG-PTP 0.67 15.7 0.219 (0.972); 0.412 

 

 

4.4.2 Torque Production 

Figure 4.3 illustrates MMG recordings at 50 mA (low torque production) and 100 mA 

(high torque production) and the corresponding spectra responses at 600 knee angle. 

Figure 4.4 shows significant (P< 0.05) positive relationships between NMES-evoked 

torques as a function of stimulation intensity (mA) for all the three knee angles. 

4.4.3 MMG and Contraction Intensity 

Figure 4.5 depicts significant (P< 0.05) positive correlations between the normalized 

MMG-RMS and NMES-evoked torque expressed in %PT (20, 40, 60, 80 and 100% PT) 

for 300, 600 and 900 knee angles at eight levels of contraction intensities (50, 60, 70, 80, 

90, 100, 110, 120 mA).  

In Figure 4.6, the relationship between MMG-PTP and stimulation intensity at the 

three knee angles were shown. There were statistically significant (P< 0.05) positive 
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correlations between the two parameters at 300 (r= 0.792); 600 (r= 0.819); and 900 (r= 

0.668) knee angles. 

 

Figure 4.3: MMG recordings of RF at 50mA (A) and 100mA (B) neurostimulation 

current amplitude and the corresponding spectra at 600 knee flexion angle.  

The MMG-PF approximated the stimulation frequency of 30 Hz at both 50 mA and 

100 mA contraction intensity levels, however, harmonics of the peak frequency 

characterizes the stimulation intensity of 100 mA. 

 

4.5 Discussion 

To the author’s knowledge, this is the first study to investigate the degree of 

association between mechanomyographic characteristics and isometric NMES-evoked 

muscle torque in persons with motor ‘complete’ SCI. A moderate to very high test-retest 

reliability, together with strong, positive correlations between the MMG signal and 

contraction/stimulation intensity indicated that the underlying muscle mechanical 

changes could be reliably tracked by the MMG signal. This finding was in agreement 

with a previous investigation (Yoshitake et al., 2002) in healthy volunteers, and suggested 
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the validity of the MMG signal to quantify muscle contractile properties and performance 

of paralyzed quadriceps muscle re-activated by NMES-evoked contractions.  

 

Figure 4.4: Correlations between the NMES-evoked torque and stimulation 

intensity (mA) during quadriceps contractions at 300 (■), 600 (▲) and 900 (●) knee 

angles.  

Values are mean± SD at P < 0.05 significant level. 
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4.5.1 MMG Sensor Reliability 

In the present study, two measures of MMG amplitude (MMG-RMS and MMG-PTP) 

demonstrated a comparable level of relative (ICC) and absolute (SEM) reliability (Table 

4.2). Therefore, while MMG-RMS has been more widely used to ‘track’ muscle effort, 

MMG-PTP could similarly follow the underlying mechanical changes reliably during 

NMES-evoked contractions. This may justify why recent investigations (Cè et al., 2013; 

Gobbo et al., 2006) have adopted the MMG-PTP parameter to track NMES-evoked 

muscle fatiguing contractions in healthy volunteers. Additionally, based on the 

assumption (Currier, 1984; Pincivero et al., 1997) that ICC greater than 0.8 could be 

considered good enough for clinical applications, the findings from the present study 

provide an insight into the potential clinical efficacy of the MMG signal for real-time 

muscle performance grading during NMES-evoked contraction activities. 

4.5.2 NMES-Evoked Torque Production 

The NMES-evoked torque production was shown to be reliable between test days 

(Table 4.2) and varied among knee angles. This is in agreement with a previous 

investigation by Sinclair et al. (2006). The reduction in the torque production at the 

extreme knee angles may be due to a smaller active working range of muscle fibres—

reduced fibre length (Gerrits et al., 2005). These results are in good agreement with those 

studies (Gerrits et al., 2005; Kulig et al., 1984; Sinclair et al., 2006), which suggested that 

muscle torque-generating capacity is knee angle dependent, in part due to the variation in 

fibre type composition following SCI and orientation as a function of the change in 

muscle length (Gerrits et al., 2005).  
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Figure 4.5: Correlations between the normalized MMG-RMS as a function of 

%PT during quadriceps NMES-evoked contractions at 300 (■), 600 (▲) and 900 (●) 

knee angles.  

Data are eight levels of contraction intensities and values are mean ± SD at P < 0.05 

significant level. 
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4.5.3 Mechanomyographic Responses to NMES-Evoked Isometric Torque 

4.5.3.1 MMG amplitude 

MMG-RMS provides physiological information about the activated MU recruitment 

of muscle fibres (Beck et al., 2005; Orizio et al., 2003). The MMG recordings during 

NMES-evoked torque production showed positive linear MMG versus torque 

relationships for the paralyzed quadriceps muscles. Previous studies (Barry, 1992; Beck 

et al., 2005; Gobbo et al., 2006; Munro, 2005; Petitjean et al., 1998; Yoshitake & 

Moritani, 1999) have demonstrated strong positive linear or non-linear correlations 

between MMG signal parameters and NMES-evoked isometric torque in healthy persons. 

To the author’s knowledge, only a single investigation (Decker et al., 2010) has utilized 

MMG amplitude to quantify NMES-evoked contraction levels based on cycling ride time 

in quadriceps muscle of spinally injured persons. However, the present study has uniquely 

investigated the relationship between MMG amplitude and NMES-evoked isometric 

torque at submaximal-to-maximal contraction intensity levels in order to infer 

characteristics about torque production in a SCI population. Such information may be of 

a practical application during NMES supported sit-to-stand, standing, prolonged stance 

or stepping tasks where a direct measurement of muscle force/torque is necessary for 

fatigue estimation but it is impractical to measure with a dynamometer. 

Although the torque values obtained in the present investigation were much lower 

when compared with the previously reported data on voluntary quadriceps contractions 

(Ebersole et al., 1998; Stokes & Dalton, 1991), MMG amplitude in the present study 

comparably tracked the incremental NMES-evoked torque production. This suggests that 

the sensitivity of MMG amplitude to the NMES-evoked muscle contractions is 

independent of the level of torque production. Furthermore, the pattern of MMG 

amplitude response was in good agreement with the previously reported patterns in 
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healthy volunteers (Petitjean et al., 1998; Yoshitake & Moritani, 1999; Yoshitake et al., 

2002).  

 

Figure 4.6: Correlations between the normalized MMG-PTP and stimulation 

intensity (mA) during quadriceps NMES-evoked contractions at 300 (■), 600 (▲) 

and 900 (●) knee angles.  

Values are mean± SD at P < 0.05 significant level. 
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Specifically, MMG-RMS increased linearly up to 80 %PT (for the investigated knee 

angles) before the appearance of plateau due to the muscle stiffness and associated force 

fusion—a manifestation of muscle mechanical changes during contractions (Orizio, 1993; 

Yoshitake et al., 2002). This result suggests a possibility that MMG amplitude follows 

the contraction intensity independently of knee angle up to ~80 %PT. This might be 

sufficient for the implementation of a muscle performance feedback in situations where 

torque information is required to modulate NMES-evoked contractions in order to 

optimize its functional outcomes in persons with SCI as previously suggested by Gobbo 

et al. (2006).  

Furthermore, MMG-PTP amplitude has equally been used to monitor the muscle 

mechanical changes i.e., “the viscoelastic characteristics of the series elastic component” 

(Esposito et al., 2011) during NMES-evoked muscle contractions (Petitjean et al., 1998). 

Petitjean et al. (1998) has previously established a positive linear relationship between 

MMG-PTP and stimulation intensity in FDI and demonstrated that MMG-PTP could 

reflect the summation of the contracting MU. The authors suggested an orderly 

recruitment of the MU as the reason behind their observation. The present results confirm 

this finding and showed a comparable correlation between the MMG-PTP and stimulation 

intensity at the three knee angles investigated. In all, MMG-RMS and MMG-PTP may be 

used as conjoint proxies of muscle force. 

4.5.3.2 MMG frequency 

Unlike involuntary muscle contractions (Cescon et al., 2004), the increase in 

contraction intensity did not appear to influence the MMG peak frequency during NMES-

evoked muscle contractions. At higher stimulation intensity/torque level, multimodal 

frequency characterized the MMG spectrum (Figure 4.3) and their values appeared to be 

the harmonics of the fundamental/peak frequency of the MMG signal. The apparent 
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correspondence of the MMG peak frequency with the stimulation frequency (Figure 4.3) 

suggested that the MMG frequency may represent the MU firing frequency. This 

observation arose from the knowledge that the NMES-evoked muscle contraction is 

“synchronous” and because the participants of the present study had motor complete SCI, 

their muscle contractions were entirely involuntarily modulated. This implied that the 

recorded MMG signals were mainly generated by the synchronously recruited muscle 

fibres (Orizio, 1993).  

This explanation is in good agreement with previous studies (Stokes & Cooper, 1992; 

Yoshitake & Moritani, 1999) which also demonstrated that the MMG peak frequency 

matched the stimulation frequency of contracting muscles. While a clearer interpretation 

of this pattern is beyond the scope of the present study, Stokes and Cooper (1992) and 

Yoshitake and Moritani (1999) have previously suggested that this phenomenon might be 

a function of the type of muscle, properties of the MMG transducer, and valid mainly 

during unfused contractions (Yoshitake & Moritani, 1999). In all, the MMG-PF may only 

approximate the NMES-evoked firing frequency of muscles at submaximal torque 

production levels of predominant fast twitch muscle fibre type, such as in denervated RF.  

4.5.4 Influence of Knee Flexion Angles on Mechanomyographic Response  

Although all the investigated knee angles revealed strong relationships between the 

MMG amplitude and NMES-evoked isometric torque, the pattern of the relationship was 

knee angle specific (Figure 4.5). This is in agreement with a previous investigation by 

Ebersole and co-workers (1998), whereby the relationship between the production of the 

quadriceps voluntary isometric torque and the associated MMG-RMS was knee angle 

dependent. Those investigators (Ebersole et al., 1998) suggested that such differences 

might be due to the variations in muscle stiffness or motor unit activation strategies as a 

reflection of length-tension relationship.  
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4.5.5 Correlations among MMG and NMES-Evoked Torque 

Strong, positive correlations were observed between MMG-RMS and NMES-evoked 

torque, at all the three knee angles. The correlations might be attributed to the sensitivity 

of MMG amplitude to the incremental force modulation. This has a direct implication on 

the possibility of MMG to track the force modulation in paralyzed muscles with 

predominant fast twitch fibre type (Gerrits et al., 2005; Round et al., 1993) and supports 

the earlier suggestion (Yoshitake & Moritani, 1999) of examining muscle’s cellular 

composition with MMG signal. This explanation is consistent with early voluntary 

isometric contraction studies of the quadriceps (Shinohara et al., 1998; Stokes & Dalton, 

1991) which identified that the MMG-RMS of muscles with predominant type II fibre 

could increase up to 100% PT irrespective of the type of MMG sensor used (Shinohara 

et al., 1998).  

Additionally, during NMES-evoked contractions of gastrocnemius muscles (type II 

fast twitch fibres predominant), a positive MMG-RMS linear relationship of up to 80% 

PT has also been reported in healthy volunteers (Yoshitake & Moritani, 1999). The 

present results with MMG-RMS attenuation at around 80% PT, reaffirmed those earlier 

findings and showed that comparable correlations could be obtained in paralyzed 

quadriceps muscle during NMES-evoked contractions. 

4.5.6 Potential Clinical Applications  

There is strong evidence (Crameri et al., 2002; Ibitoye et al., 2016; Jacobs & Nash, 

2004; Panisset et al., 2016; Qin et al., 2010) that muscle deconditioning, due to “non-

use”, following SCI is attributed to a lack of physical activity in the affected populations. 

Therefore, during exercise, MMG signal might be used as a non-invasive measure of 

muscle effort to quantify the effectiveness of NMES training for neurological 

populations. Moreover, the signal might be used as a real-time proto-dynamometer to 
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quantify muscle performance during activity of daily living—especially as a feedback 

signal to up-titrate NMES current amplitude, pulse duration or regulate stimulation 

frequency to optimize NMES activities. This finding also supports the suitability of MMG 

signal as a practical NMES control signal, as it only requires the calculation of MMG 

amplitude parameters for practical implementation (Gobbo et al., 2006). However, MMG 

responses to NMES-evoked torque production in other functionally relevant muscles, 

specifically of different fibre distribution, need to be investigated. Such information will 

give further insight into the physiological relevance of the signal. 

Additionally, as the deconditioning is responsible for muscle fibre wasting which is 

manifested in the loss of muscle strength or functional capacity, there is current research 

interest in preserving muscle integrity not only for the promotion of muscle capacity but 

also for the prevention of secondary complication associated with disuse (Galea, 2012; 

Lam et al., 2010). Thus, the health benefits of the NMES incremental isometric 

contractions strategy used in this study may include; improvement of muscle tone, 

bulk/mass, strength and blood flow in order to offset spasticity, disuse atrophy and 

osteoporosis among other benefits. The collective clinical relevant of these benefits was 

to prepare the musculoskeletal system for a critical task such as standing and ambulation 

training (Kern et al., 2005). 

The following limitations are acknowledged in the study design: (i) the findings were 

dependent on the protocol used, (i.e. modulating the current amplitude while keeping the 

pulse width and frequency constant) (ii) the NMES cycle training baseline of at least 

seven weeks was adopted based on the previous recommendation (Bickel et al., 2004), 

but a longer duration of training  may have yielded different results, (iii) the investigation 

was based on a sample size (n) of six and some data distributions were non-normally 

skewed. Although the sample size was modest in comparison with other studies (Crameri 
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et al., 2002; Sabatier et al., 2005) that have employed persons with motor complete spinal 

cord lesions, the size might have also affected the present findings so these should be 

interpreted with caution. Therefore, a larger test population is warranted in the future 

study to identify how broadly the present findings could be generalized.  

4.6 Conclusion 

The pattern of relationships between the MMG signals and NMES-evoked isometric 

contractions to study the motor unit recruitment strategy in motor complete paralyzed 

quadriceps have been demonstrated with an acceptable reliability of the MMG 

measurements. Useful insights inferred from these findings are: (i) MMG signals were 

sensitive to the incremental NMES-evoked muscle torque measured by a commercial 

dynamometer (i.e. a “gold standard”), and as a physically small sensor, the MMG could 

be a reliable proxy for these dynamometer measurements, (ii) MMG signals correlations 

with NMES-evoked muscle torque could be used to assess the paralyzed quadriceps 

mechanical changes during submaximal-to-maximal NMES-evoked muscle contractions. 

The application of MMG amplitude as a proxy of electrical stimulus-evoked isometric 

muscle force and relevance as a biofeedback source in NMES-evoked activities are 

evident. Whether these results could be generalized to other muscles and mode of 

contractions, specifically, during critical activities—such as NMES-supported standing, 

is a topic of further research. Testing of such hypothesis remains a promising perspective, 

particularly since automated NMES is clinically more relevant, effective and safe when 

compared with the traditional “user-controlled” approach (Braz et al., 2009). 
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CHAPTER 5: MUSCLE FORCE ESTIMATION FROM 

MECHANOMYOGRAPHY IN PERSONS WITH SCI 

 

5.1 Introduction  

In this Chapter, the dataset from the participants with spinal cord injury (SCI) was used 

to construct a model to estimate muscle force from MMG signals collected during NMES-

evoked knee extension task. This was necessary for an intelligent torque estimation from 

the muscle response parameters associated with NMES-evoked torque production in 

order to avoid the “curse of dimensionality” which characterizes the traditional regression 

approaches (Huang et al., 2006). Thus, this Chapter demonstrated the performance and 

investigated the potential application of a statistical computational intelligent technique 

based on support vector regression (SVR) modelling for NMES-evoked muscle torque 

estimation from the quadriceps MMG signals of persons with chronic and motor complete 

SCI in whose NMES-evoked knee extension exercise is crucial (Hamzaid & Davis, 2009), 

particularly, for habituation and reconditioning in preparation for standing and 

ambulation training. 

The study described in this Chapter has been prepared and ready for submission to 

IEEE Sensors Journal under the following heading: 

NMES-Evoked Knee Torque Estimation from Paralyzed Quadriceps 

Mechanomyographic signal Using Support Vector Regression Modelling. 

5.2 Literature Review 

Spinal Cord Injury is one of the catastrophic injuries of the nervous system which may 

lead to permanent neurological impairments (Hamid & Hayek, 2008). This is due to the 

manifestation of deficits in voluntary motor control and sensation, below the level of 

injury, that limits the performance of daily tasks and the overall activity level of those 
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affected (Jacobs & Nash, 2004). Neuromuscular Electrical Stimulation (NMES)-evoked 

muscle contraction has been recommended for motor relearning and strength training in 

the affected population (Jacobs & Nash, 2004).  

Conventionally, the NMES administration has been through manual control based on 

open-loop strategy (Peckham & Knutson, 2005). Although NMES technologies based on 

this approach have gained user preference probably due to their operational simplicity, 

their clinical efficacy is limited (Sun & Morrell, 2014). To implement a closed-loop 

NMES system, whereby the electrical stimulus parameters could be automated by the 

muscle responses for optimization of the NMES utility, it has been suggested (Peckham 

& Knutson, 2005) that the muscle state information is automatically fed back to the 

NMES system by peripherally placed sensors to modulate the NMES operations. This 

explains a recent surge in the research interest on reliable biopotential sensing modalities 

to monitor the physiological and mechanical responses of contracting muscles (Popović, 

2014). 

One such biopotential which has been recently promoted is mechanomyography 

(MMG)—the mechanical equivalent of muscle electromyography (Beck et al., 2004). The 

MMG signal is generated by a lateral movement of activated muscle fibres at the resonant 

frequency of the muscle, and it is reflected as the pressure waves produced by the 

dimensional changes of contractile elements of the muscle (Beck et al., 2004; Orizio, 

1993). It is interesting to note that unlike electromyography, the MMG signal is 

insensitive to electrical signal artifact and impedance changes, and thus, suitable for 

muscle contraction measurements in the presence of electrical artifact noise, and could be 

subjected to a long time usage (Barry et al., 1986). The assessment of muscle contraction 

by MMG signal is primarily effected through changes in the time and/or frequency 

domain characteristics of the signal.  
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Although the signal has mostly been used as a proxy of muscle force during voluntary 

muscle contractions (Ibitoye et al., 2014), emerging evidence suggests its close 

relationship with NMES-evoked torque, mostly in healthy (Gobbo et al., 2006; Orizio, 

1993; Petitjean et al., 1998; Stokes & Cooper, 1992; Yoshitake & Moritani, 1999) and 

rarely in persons with neuromuscular or neurological conditions (Hu et al., 2007; Ibitoye 

et al., 2016; Orizio et al., 1997). Therefore, the application of MMG signals for joint 

torque estimation during electrical stimulus contraction is rudimentary as it has only been 

investigated using traditional regression methodology.  

The traditional regression methodologies are based on some assumptions that may be 

unsuitable for the characteristics of contemporary datasets (Vapnik, 1998). For instance, 

in situations where many factors contribute to a particular event that one intends to predict 

such as in a highly dimensional problem. Solving this kind of a problem by a traditional 

regression method would lead to a phenomenon termed “curse of dimensionality”, 

whereby increasing the dimension of input dataset/independent variables requires an 

exponentially increasing number of terms to be solved (Huang et al., 2006). Additionally, 

real-life datasets may not be necessarily normally distributed and the assumption on 

which the traditional regressions rely will become violated. To evade these limitations as 

well as improve the torque estimation accuracy, statistical machine learning algorithms 

have been recommended (Huang et al., 2006; Vapnik, 1998).  

The estimation of torque from MMG signals using machine learning modelling has 

recently been investigated in some upper limb muscles of healthy volunteers during 

voluntary contraction. For example, Youn and Kim (2010, 2011) studied the accuracy of 

an artificial neural network (ANN) model for elbow joints force prediction from MMG 

signals. The investigators reported estimation accuracies of up to 0.892 (Youn & Kim, 

2010) and 0.883 (Youn & Kim, 2011) and suggested the future development of other 
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machine learning techniques including Support Vector Regression (SVR) to improve the 

accuracy of their model. As an extension of a well-known Support Vector Machine 

(SVM) methodology, SVR depends on the statistical supervised learning theory (Vapnik, 

1999b), as introduced by Vapnik et al. (1997), particularly for complex regression tasks 

(Vapnik et al., 1997; Wang et al., 2003). SVM minimizes a prediction risk through a 

‘trade-off’ between the training error and confidence range (Schölkopf & Smola, 2002; 

Vapnik, 1998). The technique is particularly suitable for high dimensional problems even 

with small sample size datasets (Gupta, 2007; Shin et al., 2005).  

Based on the extension of standard SVM algorithms, SVR has two basic phases of 

implementation, namely: (i) learning phase where a partitioned dataset is used to construct 

a mathematical model to represent a relationship between the actual/target and estimated 

parameters; and (ii) testing phase where the unused dataset for model development is used 

to assess the performance of the developed model (Vapnik et al., 1997). SVR often 

demonstrate an impressive performance, based on standard benchmarking tasks in 

comparison with other machine learning algorithms (Meyer et al., 2003). For instance, as 

compared to an ANN modelling, SVR has been used for a “simultaneous myoelectric 

control of multiple degrees of freedom” of some upper limbs muscle actions (Ameri et 

al., 2014), at a computational speed that is useful for real-time applications. Furthermore, 

our group (Ibitoye et al., 2016) recently reported an accuracy of 94% for NMES-evoked 

isometric knee extension torque estimation from MMG signal in healthy volunteers using 

SVR modelling. Therefore, SVR methodology has been gaining recent prominence for 

estimation and prediction problems in life sciences and medical fields (Van Looy et al., 

2007).  

To date, limited studies (Ibitoye et al., 2016; Youn & Kim, 2010, 2011) have 

investigated the application of machine learning techniques for torque estimation from 
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MMG signal. To the author’s understanding, a torque estimation study using MMG 

collected during NMES-evoked contractions of paralyzed quadriceps has not been 

previously reported and the available information on healthy volunteers could not be 

extrapolated to interpret paralyzed quadriceps force responses (Scott et al., 2007).  

Thus, the present study sought to investigate the estimation accuracy of an SVR model 

for knee torque estimation from the quadriceps MMG signal measured during incremental 

NMES-evoked knee extension task in persons with motor complete SCI. This knowledge 

has an important practical implication in a closed-loop NMES control settings, where a 

measurement of muscle response has been suggested as the preferred feedback signal 

(Ibitoye et al., 2016; Popović, 2014). This is based on the premise that MMG provides 

direct and immediate information on the response of the muscle to the electrical 

stimulation. Therefore, the information derived from the present investigation has a direct 

implication on the optimization of the efficacy of NMES applications in functionally 

relevant modes of muscle activity including knee extension, with short bouts of 

contraction and recovery periods (Crosbie et al., 2009), and standing tasks, where direct 

torque measurement may be required as an NMES modulating signal but impractical to 

measure directly.  

The following section described the experimental investigation conducted to obtain 

the dataset used for the modelling task.  

5.3 Materials and Methods 

5.3.1 Experimental procedures 

This study was granted ethical approval by the University of Malaya Medical Ethics 

Committee (Approval No:1003.14(1), as detailed in Appendix A). Eight chronic motor 

complete persons with SCI [lesion levels between C5 and T7 (mean (SD) age, 39.8 (10.7) 

Univ
ers

ity
 of

 M
ala

ya



 

 

108 

years; stature, 1.7 (0.06) m; body mass, 67.9 (14.0) kg); time since injury, 10.9 (7.3)] 

volunteered for the NMES-evoked isometric knee extension trials, for torque production, 

to examine the accuracy of the SVR model. Participants’ lower limbs were safely 

positioned on a calibrated commercial isokinetic dynamometer (Biodex 4, Shirley Corp., 

NY, USA) for torque measurement (Figure 5.1).  

 

Figure 5.1: Sketch of the experimental setup for measuring the MMG signal and 

torque in a person with SCI. 

 

 

To prevent extraneous movement, participants were firmly secured using 

dynamometer’s thigh, trunk, and pelvic belts. In order to generate incremental torque 

values, the quadriceps muscle was stimulated with a current-controlled proprietary 

stimulator (RehaStimTM, Hasomed GmbH, Magdeburg, Germany) at a constant frequency 

of 30 Hz and pulse width of 400 µs with an incremental stimulation current between 50 

mA and 120 mA in steps of 10 mA (i.e. eight randomly ordered contraction intensity 

levels) for 4 s at each contraction intensity level.  

The experiment was conducted at 600 and 900 knee angles. For an optimal muscle 

response, the stimulation electrodes were placed on the quadriceps muscle group as 
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previously described in Ibitoye et al. (2016) based on the procedures of Botter et al. (2011) 

and Levin et al. (2000). In order to keep the bone health within a safe limit (Kagaya et al., 

1995), the stimulation current was limited to 120 mA. To disallow probable rapid muscle 

fatigue, a 10 min recovery was allowed between trials and 48 hrs between knee angles. 

5.3.2 Signal acquisition and analysis 

While there are various sensors that could be used to measure MMG signal, 

accelerometers have been most widely utilized (Orizio, 2004). Therefore, the MMG 

signals of the Rectus Femoris (RF), as a simple representation of the knee extensor, were 

recorded with an accelerometer sensor (Sonostics BPS-II VMG transducer) compatible 

with the MP150 data acquisition system and simultaneously with the torque generated 

during NMES-evoked contractions. Using double-sided adhesive tape, the MMG sensor 

was fixed on the muscle belly of the RF. The MMG signals were digitized at 2 kHz and 

filtered between 20 and 200 Hz, to subdue the effects of muscle tremor and movement 

artifact (Goldenberg et al., 1991), with a 16-bit analog-to-digital converter using 

AcqKnowledge data acquisition and analysis software (MP150, BIOPAC Systems, Santa 

Barbara, CA, Inc. USA) and a customized programme in LabVIEW (Version 12.0, 

National Instruments, Austin, TX, USA).  

To allow for maximal recruitment contractions in analyses, a middle 1 s epoch of the 

collected signal, while avoiding the on and off transients during the initiation and 

termination of muscle contractions, respectively, at each contraction level was retrieved 

for further analyses (Orizio et al., 1989). The MMG time domain parameters including 

root mean square (RMS) and peak to peak (PTP) amplitudes, that are related (Beck et al., 

2004; Orizio, 1993) to the motor unit recruitment level and measures of motor output 

intensity were extracted for use as input variables to the proposed SVR model. The 

following section briefly describes the development of the proposed SVR model. 

Univ
ers

ity
 of

 M
ala

ya



 

 

110 

5.3.3 Development of the Support Vector Regression Model 

The data obtained from the experiment thus far described was used to train the SVR 

model while the standard SVR coding in MATLAB software (Version 12, The 

MathWorks, Inc., MA, USA) was used to construct the model. To build an SVR model, 

the learning machine requires a training dataset of the form 1 1( , ),.........., ( , )k kx y x y  of 

continuous values. This dataset typically has an approximation function of the form: 

( , ) ,f x w x b   ; where 'w R  and b R                                                       (5.1) 

SVR finds a function ( , )f x   that approximates the target data instance 1y  …., ky . 

The function usually uses an error of approximation, as measured by Vapnik’s alternative 

 -insensitivity error function (Vapnik et al., 1997), to measure the maximum allowable 

deviation from the true value of the target data. That is, the permitted error on a training 

set should be kept within zone. Also, for the avoidance of over-fitting, the function

( , )f x   should be “as flat as possible” (Statnikov et al., 2011). Thus, Smola (1996) has 

identified that minimization of the Euclidean norm 
2

w  is required to achieve the needed 

flatness of the equation (5.1). 

Moreover, for a non-linear SVR model, the kernel function selection represents an 

important step in the regression performance as the models are robust and have the ability 

to explore a given dataset effectively via a nonlinear kernel function (Schölkopf & Smola, 

2002) by mapping the input dataset or original features into a high-dimensional feature 

space. Thus, SVR, through ‘kernel tricks’ computes a regression function in a high 

dimensional feature space—where the input data are mapped via a nonlinear mapping 

function i.e. kernel function (Noble, 2006; Vapnik et al., 1997; Wang et al., 2003). The 

resulting decision function with kernel function ,
i

K x x  is as shown in equation (5.2).    
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 *

1

( , ) ,
k

i i i
i

f x K x x b  


                                                                                  (5.2) 

A detailed description and formulation of the solution to the resulting optimization 

problems could be found in Vapnik (1995), Smola and Schölkopf (2004) and Gupta 

(2007). 

Table 5.1: Typical kernel functions. 

 

Kernel type Mathematical representation 

Linear ( , ) .TK x x x x
i j i j

  

Polynomial ( , ) ( , 1)dK x x x xi j i j   

Gaussian (RBF) 
( , ) exp

d

K x x x xi j i j
 

   
 

 

Sigmoid ( , ) tanh( )T

i j i jK x x x x r   

Where, γ, r, and d are kernel parameters. 

Table 5.1 presents the commonly used kernel functions based on the recommendation 

of Vapnik (1999b) and Schölkopf and Smola (2002). Two classical kernel functions 

namely gaussian and polynomial were evaluated in the present study based on their 

previous (Su et al., 2014) excellent performance in related fields. For example, a gaussian 

kernel based SVR model usually exhibits an excellent nonlinear predictive performance 

and has only a few parameter to be determined for implementation (Su et al., 2014). 

Polynomial kernel, being another commonly used kernel (Gupta, 2007), was also applied 

to the same dataset as a comparison to the gaussian kernel. Another important aspect of 

SVR modelling is the selection of certain user-defined parameters including the kernel 

parameters based on the selected kernel type,  -insensitive zone and the regularization 

parameter (C) which regulates the regression or approximation function’s flatness and the 

amount of permitted error beyond ε- insensitive zone (Gupta, 2007; Yu et al., 2006). The 

usual practice for the optimal selection of these parameters is described next. 
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5.3.4 Optimal parameters search approach 

The selection of the optimized parameters is supposed to be automated, and 

computationally efficient. This process involves multiple iterations. Specifically, the time 

needed for the search or iteration is a function of the data size. The goal is to minimize 

the computational duration. This is necessary for an optimized estimation as the 

performance of an SVR model depends on the selection of optimal input parameters 

(Shamshirband et al., 2014; Vapnik et al., 1997). One approach to minimizing the 

computational duration is by using a partial dataset that could provide a near optimum 

model for support vector learning process (Hens & Tiwari, 2012). Therefore, to optimize 

the search for optimal kernel parameters to build the best model, a test-set cross-validation 

technique was used in the present study and its implementation is as described in Chapter 

3 (Algorithm 3.1). Table 5.2 depicts the optimal values of parameters used to develop the 

final model. 

Before use, the dataset was divided into two independent parts in compliance (Akande 

et al., 2015) with the SVR modelling approach i.e., a training subset was 70% of the 

dataset and a testing subset was the remaining 30% of the dataset. This was done through 

test-set cross-validation method by stratified sampling approach for effective random 

partitioning (Akbani et al., 2004; Hens & Tiwari, 2012). Following this approach, a SVR 

analysis was performed on the training dataset and the generalization accuracy of the 

model was verified on the testing subset.  

Table 5.3 presents the data used in the present study. Apart from being a common 

procedure for optimizing the performance of SVR (Ben-Hur & Weston, 2010), data 

normalization as applied to the current study also compensated for the probable variations 

in the participants’ muscle response to the electrical stimulus intensity. Table 5.4 depicts 

the statistical analysis of the dataset. 
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Table 5.2: Optimal parameters for the proposed Support Vector Regression 

model. 

 

Kernel Gaussian (RBF) Polynomial 

C 879 879 

Hyper-parameter (Lambda) 2-15 2-15 

Epsilon ( ) 0.1205  0.1205 

Kernel option 54 2 
Abbreviations: C = the regularization parameter. 

5.3.5 The statistical performance evaluation of the proposed model 

In order to evaluate the performance or estimation accuracy of the proposed SVR 

model, the coefficient of determination (R2) and root mean square error (RMSE) were 

utilized. Specifically, these measures were used to evaluate the goodness of fit of the 

relationship between the estimated and actual/target outputs as well as the error of 

estimation, respectively. 

Table 5.3: Summary of the datasets. 

MMG characteristics at eight NMES stimulation intensity levels, at two knee angles 

and their respective peak torque values. 

 

Stim. 

Intensity 

(mA) 

Knee angle 

60
0
 90

0
 

Torque RMS PTP Torque RMS PTP 

50 24.00(10.9) 32.67(13.9) 39.80(16.9) 20.55(8.5) 42.76(15.4) 49.44(11.3) 

60 30.14(8.6) 48.73(8.9) 58.14(11.5) 38.04(12.5) 51.40(15.4) 57.76(16.7) 

70 47.04(10.6) 56.55(8.8) 65.22(11.9) 56.90(10.3) 66.13(15.2) 74.51(17.0) 

80 61.11(12.9) 69.54(13.0) 78.85(16.5)  67.67(12.1) 70.04(17.0) 88.24(21.3) 

90 76.42(11.4) 83.77(23.3) 86.91(19.2)   78.61(8.5) 82.17(22.9) 77.76(18.0) 

100 87.47(9.6) 96.18(17.6) 98.11(13.7) 88.44(6.4) 81.12(19.8) 77.96(19.1) 

110 92.88(5.4) 100.88(6.8) 103.71(5.6) 95.16(3.8) 90.30(14.5) 91.22(17.0) 

120 100.00(0) 100.00(0) 100.00(0) 100.00(0) 100.00(0) 100.00(0) 

Abbreviations: RMS- Normalized MMG-RMS %, PTP- Normalized MMG-PTP%. Values are reported in mean 
(standard deviation). 

Table 5.4: Statistical parameters of the datasets. 

 
Input parameters Mean Max Median Stdev Min 

Participants      

   Weight (kg) 67.9 82 73.8 14.0 44 

   Age (years) 39.8 58 39.0 10.7 25 

Stimulation intensity (mA) 85 120 85 22.9 50 

Knee angle (deg) 75 90 75 15 60 

Normalized MMG-RMS% 73.3 128.2 72.5 26.0 15.7 

Normalized MMG-PTP% 78.0 125.4 77.8 24.0 19.5 

Torque 66.5 101.9 71.1 28.3 6.0 
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5.4 Results and Discussion 

In this section, the dataset used for the experiment are described and the results of the 

SVR modelling are presented. A comparison between the two selected kernel functions 

(gaussian and polynomial) is also reported. Furthermore, the implications of the results 

are discussed. Finally, a conclusion on the findings of the study as well as its clinical 

implication is highlighted.  

The present study assesses the predictive accuracy of SVR model to estimate the 

torque measured during an incremental NMES-evoked knee extension task using 

quadriceps MMG signals in persons with motor complete SCI. The input features to the 

proposed model were MMG signal amplitude (MMG-RMS and MMG-PTP), stimulation 

intensity, knee angle, participants’ weight and age with the NMES-evoked torque as the 

target output. The results of the two kernel functions (gaussian and polynomial) were 

compared in terms of the estimation accuracy using the two partitioned datasets (training 

and testing) following the optimal selection of the SVR modelling parameters.  

Figure 5.2 and 5.3 depict the relationship between the target/ experimental torque and 

estimated torque using both kernel functions for the training and testing cases, 

respectively. For the training case, R2, measure of the estimation accuracy, of 95% (with 

RMSE = 6.28) and 92% (with RMSE = 7.99) were obtained with gaussian and polynomial 

kernels, respectively. However, in the case of the testing dataset, R2 of 94% (with RMSE 

= 8.19) and 91% (with RMSE = 9.82) were obtained for the gaussian and polynomial 

kernel, respectively (Table 5.5). Moreover, Figures 5.2 and 5.3 show a slightly better 

performance of gaussian kernel in comparison with the polynomial kernel for both 

training and testing datasets, although both performances were comparably high. 
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Figure 5.2: Relationships between the experimental/actual torque and estimated 

torque using gaussian (A) and polynomial (B) based kernel functions for training 

dataset.  

 

 

Plots in Figure 5.4 (A and B) show a close relationship between the actual and 

estimated torque using the two kernel functions for training and testing subsets suggesting 

a comparable performance of the two kernels used in the present study. The plots revealed 

a slightly higher performance of gaussian kernel over polynomial kernel for torque 

prediction on both the training and testing subsets, although both kernels closely tracked 

the actual torque production. 
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Figure 5.3: Relationships between the experimental/actual torque and estimated 

torque using gaussian (A) and polynomial (B) based kernel functions for the 

testing dataset.  

 

 

Based on the results obtained, the SVR-based model could be used to estimate the 

NMES-evoked torque from MMG signal in persons with SCI. This finding introduces an 

alternative approach for torque estimation with potential applications in research, outdoor 

and clinical settings. Specifically, this technique may be applied to advance the clinical 

assessment of rehabilitation intervention outcomes with a miniature sensor such as an 

accelerometer used to measure MMG signal. Therefore, the knee torque estimation model 
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proposed in this study could lend further guidance for the study and analysis of knee 

extension torque dynamics in SCI populations as a precursor for sit-to-stand, prolonged 

standing or ambulation training as the tracking of changes in mechanical muscle response 

to effect torque control requires that a joint torque must be accurately estimated.  

Table 5.5: The accuracy of the developed model. 

 

 

SVR Kernel 

Training Testing 

r                     R2               RMSE r                     R2               RMSE 

Gaussian (RBF) 0.973            95%               6.28 0.969             94%               8.19 

Polynomial 0.957            92%               7.99 0.952             91%               9.82 

 

5.4.1 Clinical Implications 

A number of approaches have been promoted for assessment of the strength 

improvement following NMES exercise. The isokinetic dynamometer that measures 

muscle strength gains via joint torque is laboratory based, not portable, and does not allow 

an integration to the electrical circuits for flexible NMES applications in the home and 

outdoors settings. With the findings of this present study, it may be possible that the 

mechanical muscle response to the electrical stimulus contractions as a marker of strength 

gain or deterioration (as revealed by the muscle’s MMG), could be monitored. This may, 

therefore, strengthen clinical research with a tool that allows clinicians and other allied 

professionals to monitor the state of the electrically stimulated muscles. Furthermore, a 

predictive NMES-evoked torque control signal to automate NMES system may be 

derived from the MMG signal. This directly relates to the optimization of the efficacy of 

NMES systems as the proposed model could facilitate the controllability and versatility 

of the NMES utility. Moreover, as the electrical stimulation paradigm adopted in this 

study is similar to that used for routine clinical practice for knee extension strength 

training, it can be hypothesized that a similar model may be required for torque estimation 

during the application of NMES for critical tasks in persons with SCI. 
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Figure 5.4: Plots of the actual versus predicted data points for (A) training and (B) 

testing subsets.  

 

5.5 Conclusion 

The present study has elucidated the application of SVR to estimate the NMES-evoked 

knee torque, as measured by an isokinetic dynamometer, using paralyzed knee extensors’ 

MMG signals. The results revealed a good relationship between the actual knee torque 

production as obtained from a laboratory-based dynamometer and the MMG signals 

collected by an accelerometer-based sensor and other related parameters. This study has 

demonstrated that SVR is an alternative and viable computational tool for modelling the 

complex relationship between different parameters used in estimating the NMES-evoked 
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muscle force/torque. Therefore, the proposed SVR model for knee torque estimation is a 

promising tool to access muscle force during real-time application of NMES where this 

cannot be otherwise estimated with a dynamometer. In the future studies, other related 

modelling algorithms will be considered in order to evaluate and improve the proposed 

model. In the meantime, the high accuracy obtained in this study has potential application 

in a variety of NMES related fields. For example, as a mechanomyographic based 

feedback signal for NMES controllers. As the ability to predict torque output response of 

electrically stimulated muscle has important implications for the use of NMES in 

rehabilitation, efforts are under way to apply the developed SVR model for prediction of 

muscle force production and fatigue during functionally relevant tasks such as NMES-

supported standing in persons with neurological conditions. In all, these findings provide 

important new information with implication for the use of MMG signal in regulating the 

NMES parameters for optimal performance. 
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CHAPTER 6: MUSCLE FATIGUE TRACKING DURING NMES STANDING 

TO FAILURE CHALLENGE IN PERSONS WITH MOTOR COMPLETE SCI 

USING MECHANOMYOGRAPHY 

 

6.1 Introduction  

Up to this stage, it has been verified that mechanomyography could be used to 

investigate the recruitment pattern during isometric non-fatigued contractions where the 

recruitment order is somewhat or relatively simple (Orizio et al., 2003). The present 

Chapter reports the pattern of MMG signal to study motor unit recruitment during NMES 

sustained standing to fatigue failure challenge in persons with motor complete spinal cord 

injury (SCI). This study aimed to reveal the pattern of relationship between the MMG 

signals and fatigue contractions during a relatively complex and critical NMES-evoked 

muscle action. The experiment reported herein was conducted at the rehabilitation 

gymnasium of the Department of Rehabilitation Medicine, University of Malaya Medical 

Centre. The rationale for this study was to investigate the clinical relevance of the MMG 

signal by studying the relationship between the signal and muscle response’s decay as 

indicated by knee buckling during fatigue contractions. One important implication of this 

study was to investigate the potential utility of the MMG as a muscle fatigue sensor useful 

as a control signal for NMES-supported standing in persons with SCI.  

The study reported in this Chapter was taken from the following submitted journal 

article to the Medical and Biological Engineering and Computing under the heading: 

Ibitoye, M. O., Hamzaid, N. A., Hasnan, N., Abdul Wahab, A. K., & Davis, G. M. 

(2017) Quadriceps mechanomyography reflects muscle fatigue during FES-sustained 

standing in adults with spinal cord injury: Case series proof of concept, under review 

in Medical and Biological Engineering and Computing.  
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6.2 Literature Review 

Neuromuscular fatigue is generally defined as an exercise-induced reduction in muscle 

effort or ability to sustain muscle contractions (Fitts, 1994; Gandevia, 2001). During 

functional applications of Neuromuscular Electrical Stimulation (NMES), such as in 

upright stance, the agonist muscles are continuously under electrical stimulation-evoked 

contractions. This predisposes the stimulated muscles to rapid fatigue, which is the cause 

of standing failure (Brindley et al., 1979), manifested by a knee buckle.  

Traditionally, muscle fatigue during functional electrical stimulation (FES)-supported 

standing has been monitored by a change in knee angle (Braz et al., 2009), and it is this 

decrease of knee angle that infers a reduction in the muscle’s performance. Moreover, the 

phenomenon of muscle fatigue has also been investigated by monitoring changes of other 

characteristics, such as electromechanical indices (Blangsted et al., 2005), 

neurophysiology and metabolic responses (Levy et al., 1993). These have been often 

measured because a high stimulation intensity and prolonged muscle contraction are 

characterized by significant alterations in neuromuscular physiology, local muscle 

oxygenation, and metabolite concentrations (Allen et al., 2008; Cady et al., 1989). 

However, as “fatiguing contraction” lie within the continuum of effective muscle 

contractions (Scott et al., 2006), efforts to improve standing duration warrant the 

investigation of a possible proxy of muscle fatigue to directly grade muscle performance 

(Dugan & Frontera, 2000). A mechanical proxy of muscle performance may be used to 

titrate FES stimulation parameters in real-time for optimal task duration, such as upright 

stance, especially in persons with an increased susceptibility to rapid muscle fatigue after 

spinal cord injury (SCI). 

Previous investigators (Bajd et al., 1982; Braz, Russold, & Davis, 2009; Ibitoye et al., 

2016) have recommended some strategies to prolong the duration of FES-supported 
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standing by delaying the onset of fatigue-failure. One traditional approach has been to 

maximally stimulate the knee extensors/quadriceps muscle with manual or open-loop 

FES control. Although this strategy is still popular since it can be readily deployed during 

a standing task with the assistance of caregivers, the approach provides a sub-optimal 

standing duration due to rapid muscle fatigue. However, more recent evidence (Braz et 

al., 2009; Popović, 2014) has suggested that automatic titration of key FES parameters 

based on the muscles’ response might delay fatigability and increase standing duration in 

the SCI population. Based on this premise, research efforts to improve standing duration 

have focused on muscle response information, an indirect measure of muscle force and 

performance. However, issues such as cosmesis, reliability, and sensitivity of a muscle 

response sensor continue to inhibit the clinical acceptability of this approach.  

Typically, when FES activates muscle fibers, there is excitation-contraction coupling 

due to depolarization of the motor nerve (Collins, 2007). The generated force, as a result 

of muscle shortening, can be obtained at the joint as a twitch torque (McMillan et al., 

1990), a reduction of which characterizes muscle fatigue. Therefore, peak torque or 

maximal muscle effort has been proposed as a better descriptor of muscle fatigue (Russ 

et al., 2002), although impractical to measure directly during a real-time application of 

FES (Popović, 2014). There have been some previous useful attempts to utilize muscle 

electromyography (EMG) as an indirect indicator of muscle fatigue during surface 

(Chesler & Durfee, 1997; Li et al., 2014; Mizrahi et al., 1997) and implanted stimulations 

(Hayashibe et al., 2011). Unfortunately, electrical stimulation-evoked contraction is 

generally characterized by high stimulation artifacts that saturate EMG circuitry, and the 

option of artifact-blanking often complicates the retrieval of useful parameters of the 

evoked-EMG signal (Chesler & Durfee, 1997; Popović, 2014). This suggests a clear need 
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for an alternative or complementary method to study muscle fatigue contraction, 

especially, during skin-surface repetitive FES contractions. 

One promising technique to quantify muscle performance is mechanomyography 

(MMG) (Orizio et al., 1999). MMG signal is electrical stimulation artifact free 

(Yamaguchi et al., 2012) and has been identified as a useful method to detect impairments 

in excitation–contraction coupling (Søgaard et al., 2003) for muscle performance 

assessments (Herzog et al., 1994) during voluntary isometric fatiguing contractions. The 

MMG signal has been specifically identified as sensitive to muscle performance 

decrements due to the failure of excitation-contraction coupling during muscle fatigue 

(Blangsted et al., 2005). Being a mechanical counterpart of neuromuscular electrical 

activity (i.e. EMG) during muscle contractions, the MMG characterizes the intrinsic 

muscle mechanical properties (Shinohara et al., 1998). Thus, the MMG can reveal a 

fatigue-related impairment of the muscle’s mechanical changes (Blangsted et al., 2005).  

For example, during voluntary isometric fatiguing contractions, MMG amplitude has 

shown a consistent decay in upper extremities muscle groups (Barry et al., 1992; 

Madeleine et al., 2002). Furthermore, variations in the magnitude of MMG amplitude 

have been previously associated with a parallel reduction in force production during 

muscle fatigue of FES aetiology in healthy volunteers (Gobbo et al., 2006; Orizio et al., 

1996). However, apart from the healthy populations investigated in earlier studies, the 

response of the MMG signal to electrical stimulation was only examined at submaximal 

levels, and these findings may not infer MMG signal characteristics in critical situations 

such as in prolonged standing in persons with a neurological impairment. Nevertheless, 

an important proof of concept could be objectively inferred from those previous studies 

that served to guide the present investigation. 
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The current study investigation was undertaken as a “proof of concept” using four case 

studies of adults with chronic motor-complete SCI. We sought to test the following 

hypotheses: (i) there would be an inverse relationship between MMG amplitude 

characteristics and duration of FES-evoked muscle contractions during a sustained 

standing-to-failure task in persons with SCI, and, (ii) the MMG amplitude would be 

sensitive to the variation in the electrical stimulation frequency during a standing 

challenge task. These objectives were meant to determine whether the MMG signal could 

be an adequate “fatigue-failure sensor” during a prolonged standing challenge task in four 

SCI case studies, to provide a justification for its potential application as a real-time 

muscle fatigue sensor worthy of further investigation. The quadriceps muscle 

performance during electrical stimulation was considered because it is the main agonist 

of sustained standing in persons with SCI (Rabischong & Chavet, 1997). While the rate 

of torque decrease remains the best index of muscle fatigue, it is often impractical to 

measure this during activities of daily living, so knee angle reduction and the quadriceps 

MMG amplitude response were used as proxies of muscle force diminution in relation to 

the knee buckle during standing (Mulder et al., 1990). 

6.3 Materials and Methods 

6.3.1 Participant 

Four adults (3 males and 1 female) motor complete SCI participants were drawn from 

the inpatient and outpatient populations at the Department of Rehabilitation Medicine, 

University of Malaya Medical Centre, Kuala Lumpur, Malaysia. Their physical 

characteristics are presented in Table 6.1. Before participation, they were all screened to 

exclude; (i) severe contractures that could interfere with their ankle dorsiflexion, knee or 

hip extension (ii) pressure sores (iii) any other medical contraindications that might 

significantly affect their standing posture. Participants were limited to those with low 
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tetraplegia and paraplegia for whom FES supported standing might be a realistic and 

achievable activity of daily living goal (Jaeger, 1992).  

In addition, the participants were trained FES users and had gone through FES cycling 

exercise for at least 15 weeks previously (2 to 3 times per week) for muscle conditioning. 

However, since they were motor “complete” SCI, none of the participants could 

voluntarily produce muscle contractions to sustain standing. Although all participants 

were medically stable, a physiotherapist was present during testing to monitor vital signs 

throughout the duration of the study. The study was conducted based on the protocol 

approved by the University of Malaya Medical Ethics Committee (MECID.NO: 20164-

2366) as detailed in Appendix B. Prior to the experiment, all participants who 

volunteered, endorsed written informed consent understanding the study activities, its 

risks and benefits, and had a discussion of the study protocol with the chief investigator. 

Table 6.1: Participants’ characteristics. 

 

Variables Characteristics 

Age (yrs.) 41.8 (7.3) 

Stature (m) 1.7 (0.04) 

Body mass (Kg) 70.4 (15.4) 

SCI level T1, T4, C6 and C5/C6 

Time since injury (yrs.) 17.3 (5.0) 
Abbreviation: T – Thoracic level injury; C – Cervical level injury, (A) & (B) refer to AIS – American Spinal 

Injury Association Impairment Scale [31]. Reported values are mean (standard deviation). 

 

6.3.2 Experimental design 

6.3.2.1 Familiarization 

Following a few days of standing training prior to testing sessions to screen for the 

possible occurrence of orthostatic hypotension and for their habituation to standing 

upright (Faghri & Yount, 2002), participants attended two sessions of different FES 

strategies separated by 2 days. On each visit, a particular frequency of neurostimulation 

(either a low stimulation frequency (LF) or high stimulation frequency (HF)) was 
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administered twice with a minimum of 45 min rest to examine the consistency of standing 

duration within the stimulation protocol.  

6.3.2.2 Test protocol 

Based on the recommended stimulation frequency for standing from Kralj et al. (1986), 

two different stimulation frequencies (LF: 20 Hz and HF: 35 Hz), whose experimental 

implementation is as outlined in Appendix C, were used to verify whether the widely 

reported (Eser et al., 2003; Ibitoye et al., 2016) influence of stimulation frequency on 

muscle fatigability during stance (Crosbie et al., 2014) might also be reflected by the 

MMG characteristics. Thus, during FES-evoked contractions at both frequencies, the 

pulse width was held constant, while the current intensity was individualized as required 

to produce “near” full knee and hip extensions’ standing in each participant (Crosbie et 

al., 2014). Specifically, the standing challenge test involved bilateral stimulation of the 

quadriceps and gluteus muscle groups during LF or HF, with pulse width of 300 µs 

sufficient to produce FES-supported standing in these individuals (Table 6.2).  

Table 6.2: Stimulation current for FES-standing based on participants’ responses. 

 

Participant 

 

I (mA) for low frequency protocol I (mA) for high frequency protocol 

R-Quads L-Quads R-Gluts L-Gluts R-Quads L-Quads R-Gluts L-Gluts 

1 100 100 80 80 100 100 80 80 

2 120 120 96 96 120 120 96 96 

3 100 100 80 80 100 100 80 80 

4 80 80 64 64 80 80 64 64 

Abbreviation: I (mA) - current amplitude, R-Quads - Right quadriceps muscles, L-Quads - Left quadriceps 

muscles, R-Glut s- Right gluteus muscles, L-Gluts - Left gluteus muscles. 

Pairs of reusable self-adhesive surface stimulating electrodes (9 cm×15 cm; Hasomed 

GmbH, D 39114 Magdeburg, Germany) were affixed bilaterally over the quadriceps 

femoris and gluteus muscles as shown in Figure 6.1 (Note that the gluteus electrodes 

placement were not shown) and connected to a transcutaneous current-controlled 

neurostimulator (RehaStimTM, Hasomed GmbH, Magdeburg, Germany). As previously 
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recommended by Braz et al. (2015), the stimulation amplitude over the gluteus muscle 

group was set to 80% of that applied to the quadriceps muscle group (Table 6.2). 

For the sustained standing task, the stimulation was continuous to provide repetitive 

contractions, and to stabilize the knee in full extension (Dalton et al., 1992). This resulted 

in substantial muscle fatigue (Levy et al., 1990) and consequent knee buckle in the 

participants. Each trial was terminated once the knee angle dropped by 30deg (Braz et al., 

2015) from the vertical (180deg), as determined by the use of a goniometer (Figure 6.1). 

and this time point of knee buckle was defined as critical “fatigue-failure”.  

6.3.2.3 Standing challenge task 

A modified version of a previously published (Braz et al., 2015) protocol was adopted 

for the present study. Pilot investigations revealed that this methodology could evoke full 

knee extension standing without a premature knee buckle. For safety, the standing 

protocol was performed using a safety harness (Biodex Offset Unweighing System, 

Biodex Medical Systems, Shirley, New York, USA) in the Physiotherapy Gymnasium. 

To allow participants to bear their full body mass during testing, the unweighing facility 

was not used and thus the safety harness provided no active support during standing, 

except trunk stabilization in participants with poor core strength. 

The FES standing was achieved by a continuous bilateral stimulation of the quadriceps 

muscle to stabilize the knee extension while the stimulation of the bilateral glutei 

promoted full hip extension and a stable standing posture. Knee lock was achieved with 

electrical stimulation during sustained standing and the ankle joint was easily stabilized 

without stimulation of the plantar flexors (Bajd et al., 1982). FES-supported standing 

strategies, such as posture switching, was discouraged and the use of hybrid orthosis was 
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avoided to mimic a real-life scenario, and to allow fatigue occurrence as necessary due to 

a continuous stimulation leading to fatigue-failure and knee buckling.  

 

Figure 6.1: Experimental setup for the FES supported standing task.  

  

Upright stance was attained and this was taken as the ability of each participant to bear 

up to ≥ 95% total body weight on their legs for a period of ≥ 1min (Jaeger et al., 1989). 

This was ensured by positioning the participants such that their centre of mass lay 

“almost” in the same plane as their feet (Figure 6.1) to promote stability (Braz et al., 

2009). Ultimately, the stance duration was limited by rapid quadriceps muscle fatigue that 

led to knee buckling.  
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Based on previous recommendations (Chesler & Durfee, 1997; Thrasher & Popovic, 

2008), a 70-s minimum duration of FES-supported standing was used to study MMG 

fatigue effects. In each participant, the stance time to fatigue-failure was noted to ascertain 

the duration of stance and its variability between participants and stimulation frequencies. 

6.3.3 Mechanomyogram 

Throughout the duration of FES-supported standing, MMG signals from the 

quadriceps muscle, due to its key role in “weight-bearing” during standing and walking 

(Mizrahi et al., 1985), were collected with an accelerometer-based vibromyographic 

sensor (Sonostics BPS-II VMG sensor on Biopac MP150 Acknowledge software 

platform, Goleta, USA). The sensor was attached using double-sided adhesive tapes 

(Barry, 1992) directly over the muscle belly. This was necessary to obtain the maximal 

muscle surface oscillation and to secure the sensor in place to ensure a constant pressure 

on the sensor-muscle interface (Bolton et al., 1989) (Figure 6.1). MMG signals were 

obtained unilaterally from the quadriceps, specifically RF. It had been earlier identified 

that bi-articular muscles (Jacobs & van Ingen Schenau, 1992) such as RF "have a unique 

role in controlling the distribution of net moments about the joints" (Kouzaki et al., 1999).  

To extract the relevant MMG characteristics, the standing challenge continued until 

critical-fatigue failures, although fatiguing contractions were evident well before knee 

buckle at 30deg (Figure 6.1).   

6.3.4 Signal processing 

The raw MMG signals were digitized by a 16-bit analogue to digital converter, 

digitally band-pass filtered between 20 and 200 Hz and sampled at 2 kHz (MP150, 

BIOPAC Systems, Inc., Goleta, USA). The first 1 s segment of MMG signal was 

discarded due to the transient phenomenon associated with the initiation of isometric 
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contractions (Orizio et al., 2003). Also excluded were some data segments (as there were 

early MMG amplitude rises in some instances) before the peak MMG amplitude was 

observed to accommodate only the muscle fatigue components in curve fitting and 

statistical analyses. The muscle contraction signal of the remaining segments up to the 

first 70-s of contraction was analyzed in 1 s epoch intervals for the assumption of non-

stationarity to hold for the MMG signal (Beck et al., 2005). This was based on the 

assumption (Chesler & Durfee, 1997; Thrasher & Popovic, 2008) that muscle fatigue is 

typically evident by 60 s of sustained FES-evoked contractions, especially in persons with 

long-standing SCI. The MMG-RMS amplitude for each epoch was computed from the 

digitized signals in the time domain.  

6.4 Data analysis 

Prior to the data analyses, MMG-RMS amplitude values were normalized against their 

highest value across the two frequencies of stimulation in each participant to allow 

comparison between HF and LF. Based on previous recommendations by Rabischong 

and Chavet (1997) and Mizrahi et al. (1997), the relationship between MMG-RMS and 

time during the standing challenge were curve-fitted to a double exponential decay model 

comprising four parameters, as a single exponential gave a lower quality of fit, using the 

curve fitting tools available in the Matlab software (The MathWorks, Inc., Natick, MA, 

USA). The MMG fatigue data modelling is governed by Equation (6.1):                                                                           

𝑦 = 𝑎𝑒−𝑏𝑥 + 𝑐𝑒−𝑑𝑥                                                                                                             (6.1) 

Whereby, 𝑦 denotes MMG-RMS % and 𝑥 represented the duration of standing 

challenge to fatigue failure (s). Parameters, 𝑎, 𝑏, 𝑐 and 𝑑 are the exponential regression 

model coefficients. Our selection of a case series proof of concept research design 

precluded parametric statistical analyses of curve-fitting. Coefficients of determination 

(R2) and root mean square errors (RMSE) values were used to assess the performance of 
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the model. As the present study’s sample size was small, comparison of the standing 

duration between HF and LF strategies were examined by using a nonparametric 

Wilcoxon signed-rank test in SPSS software (Version 20, IBM SPSS for Windows, NY, 

USA). P≤ 0.05 was set as accepted level of statistical significance. 

6.5 Results 

6.5.1 MMG amplitude during muscle fatigue contractions 

The mechanomyogram RMS characteristics followed an expected decline over the first 

70 s of standing, coincidental with FES-induced muscle fatigue in the persons with motor 

complete SCI. Table 6.4 portrays the standing time for the participants under HF and LF 

stimulation protocols. In three of the cases, LF stimulation produced a longer standing 

time to critical failure-fatigue by 31-246 s, although this difference between HF and LF 

was not statistically significant (P>0.05). 

Figure 6.2 shows the plots of MMG-RMS signal over time within the first 70 s of FES-

supported standing. In general, MMG-RMS amplitude, as a proxy of muscle force decline 

over time, due to FES-evoked quadriceps fatigue, were well fit by a double exponential 

decay model (Equation (6.1); Table 6.3). The relationship (𝑀𝑀𝐺 − 𝑅𝑀𝑆 % = 𝑎𝑒−𝑏∗𝑡𝑖𝑚𝑒 

+ 𝑐𝑒−𝑑∗𝑡𝑖𝑚𝑒) yielded high coefficient of determination (R2) between 0.85-0.99 with low 

room mean square errors (RMSE). Furthermore, “visual inspection” of Figure 6.2 

revealed a close relationship between the experimental data (MMG-RMS) and the 

exponential decay model fit, albeit with some variability-scatter around the curve-fits. 

Although parametric statistical analyses of regression coefficients were not performed, 

there was an obviously faster MMG-RMS fatigue response during HF than LF, and both 

displayed a “fast” and “slow” components of MMG amplitude decline. This suggested a 

greater degree of fatigue during HF stimulation in comparison to that of LF stimulation, 

as detected by muscle mechanomyography. 
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Moreover, a longer standing duration during LF stimulation in comparison to HF 

stimulation, that was evident in three out of four participants (Table 6.4), represented a 

reasonable approximation of a practical standing task in persons with motor complete SCI 

(Braz et al., 2015). 

 

Table 6.3: Exponential muscle fatigue regression model and goodness of fit 

coefficients. 

 

 

Participant 

Double Exponential Model 

         HF (a; b; c; d)  R2 (RMSE)       LF (a; b; c; d) R2 (RMSE) 

1 154.6; -0.063; 0.011; 

0.095  

0.98 (4.01) -1.855e+6; -0.027; 

1.856e+6; -0.027   

0.99 (2.12) 

2 102.7; -0.176; 9.875; 

0.006 

0.93 (3.88) 440.7; -0.059; -390.3; -

0.092  

0.96 (6.18) 

3 137.6; -0.054; 0.026; 

0.088 

0.97 (4.61) 71.76; -0.041; 1.571; 

0.026 

0.97 (2.34) 

4 160.4; -0.142; 

18.140; -0.011 

0.97 (3.91) 101; -0.028; 0.838; 

0.048 

0.85 (8.10) 

Abbreviation: HF- High frequency; LF- Low frequency; RMSE: Root mean square error 
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Figure 6.2: MMG-RMS amplitude versus standing time during LF and HF FES-

evoked fatiguing contractions within the first 70 s. 
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Table 6.4: Total standing time to failure during the two stimulation protocols.  

The values reported for each participant represent the mean of two standing trials for 

each stimulation frequency. 

 

       

Participants                                     

Standing time (s) 

HF (35 Hz) LF (20 Hz) Difference (LF-HF) 

1 516.5 447.5 -69 

2 233.5 479.0 245.5 

3 102.5 186 84.5 

4 72.5 103.5 31.0 

Abbreviation: HF- High stimulation frequency; LF- Low stimulation frequency. The values reported for 

the HF and LF are mean values of two standing trials. 

6.6 Discussion 

This study investigated the manifestation of muscle fatigue in MMG amplitude 

characteristics during FES-supported standing until knee buckle, in order to study its 

application as a fatigue-failure proxy during a critical daily-living task in adults with 

motor complete SCI. The relationship between the MMG signal decline and time to 

quadriceps fatigue-failure was also explored between two disparate neurostimulation 

frequencies, known to produce different standing durations in this population (Kralj et 

al., 1986). In a case series of FES-trained individuals, who were capable of short-duration 

(~72 s) to long-duration (~516 s) stance, MMG-RMS displayed fatigue curves similar to 

those observed on a laboratory muscle torque measurement or dynamometer (Barry et al., 

1992; Levy et al., 1990; Rabischong & Chavet, 1997; Russ et al., 2002).  

6.6.1 Relationship between MMG amplitude characteristic and duration of 

sustained standing-to-fatigue failure 

To quantify muscle performance in the present experimental context, MMG-RMS 

amplitude was employed. The MMG amplitude (Gobbo et al., 2006; Orizio et al., 2003) 

has been previously reported as an indicator of muscle fatigue as a change in MMG 

amplitude parameter are related to the motor unit activation pattern during FES-evoked 

muscle fatiguing contraction. Moreover, the MMG amplitude characteristics could reflect 
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the failure in excitation-contraction coupling due to muscle fatigue (Fitts, 1994; Søgaard 

et al., 2003). In the present study, the main outcomes of muscle fatigue measurements 

were the reduction in knee angle (Figure 6.1) and a decline MMG-RMS over the time 

during FES-supported standing to failure. As evident from Figure 6.2, a decline of muscle 

force-generating capacity was apparent as early as the first 10 s of FES-evoked muscle 

contractions. Notably, the muscle fatigue profile in paralyzed quadriceps muscles could 

be accurately characterized by an exponential decay model (Figure 6.2, Table 6.3). This 

may suggest that denervated quadriceps muscle fatigue during standing may follow a 

double exponential behavior (Mizrahi et al., 1997; Rabischong & Chavet, 1997), with 

“fast” (more rapid) and “slow” (later onset) components, and that the associated knee 

angle reduction could be clearly mirrored by MMG amplitude responses. Specifically, 

MMG amplitude adapted quickly to the time variation in muscle responses during 

fatiguing contractions. Therefore, MMG signals could potentially provide an indication 

of muscle performance, and be used to monitor this during continuous repetitive 

neurostimulation-evoked contractions that might be required to effect prolonged standing 

in this population. 

6.6.2 Effects of the stimulation frequency on the MMG response to muscle 

failure 

Muscle fatigue is time-varying and it affects the response of a muscle to the FES-

evoked contractions. In particular, during high-intensity repetitive application of FES for 

antigravity activities (Kralj et al., 1986) such as in standing-up and sustained stance where 

muscle fatigue could be manifested in about 60 s of muscle contractions (Thrasher & 

Popovic, 2008).  

The results obtained, of a generally longer-standing duration in LF neurostimulation 

was comparable to the findings of Kralj and co-workers (1986), who identified that in 
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comparison with an HF protocol, low stimulation frequency delayed the onset of muscle 

fatigue, but usually at the expense of muscle force production (Kralj et al., 1986). Our 

observations on the different stimulation protocols (HF and LF) clearly indicated the same 

pattern of contraction duration with a faster MMG amplitude drop in HF in comparison 

with LF protocol. This may suggest a higher rate of muscle force decay in the HF curve 

as mirrored by the MMG-RMS amplitude. Therefore, the present study compares 

favourably with those of  Kralj and colleagues (1986) who identified a higher rate of force 

decay at high stimulation intensity levels while the changes of MMG-RMS as evident 

from the present study has been consistently described as a good measure of muscle 

fatigue (Søgaard et al., 2003).  

Additionally, the shorter standing duration during HF (Table 6.4) (except for 

participant 1, probably due to his uncontrollable propensity for posture switching, as there 

was no special arrangement for body movement restriction to a particular plane (Jaime et 

al., 2002) was probably due to the greater quadriceps contraction forces produced by a 

continuous stimulation (Braz et al., 2015) at a relatively higher stimulation frequency. 

This has been attributed (Chou & Binder-Macleod, 2007) to the effect of contractile speed 

in relation to the frequency of stimulation. The higher the frequency, the higher the 

muscle force production, but at a reduced time for muscle to fatigue especially in muscle 

with predominantly fast fatigueable fibres (Ibitoye et al., 2016; Kralj et al., 1986). 

Moreover, this phenomenon might be due to an increase in muscle fibres’ recruitment 

and the consequent increase in quadriceps oxygen demand (Braz et al., 2015) which 

suggests a reduction in muscle effort and an indication of a reduced motor activity.  

The following limitations are acknowledged in the present study: based on the 

experimental setting, the muscle force reduction during the standing challenge, as well as 

the individual muscle power, a function of the rate of muscle force generation that is 
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responsible for standing (Crosbie et al., 2014), could not be calculated. Nevertheless, the 

drop in MMG amplitude adopted in the present study to investigate muscle fatigue has 

been previously correlated (Gobbo et al., 2006) with muscle force during “seated” 

electrical stimulus  fatigue contraction in healthy volunteers. Although the fatigue profile 

with an exponential function has been described, phases of the fatigue profile could not 

be identified based on our experimental data. Further studies that seek to address this 

limitation and rigorously validate the generalization ability of the model in larger study 

participants will be of clinical interest. 

Second, although we chose to utilize a case series of SCI individuals with disparate 

FES-evoked standing times in this ‘proof of concept’ study, the authors were unable to 

undertake parametric statistical analyses of curve-fitting regression parameters of HF 

versus LF standing times through traditional repeated-measures analyses, due to the small 

sample size that we had selected. 

6.6.3 Potential clinical implication 

Although to date, the use of FES is commonly based on the manual control of 

stimulation intensity with the associated rapid muscle fatigue, an improved efficient 

control of stimulation parameters based on closed-loop modulation of FES parameters 

(pulse width, frequency, and current or voltage) is a focus of various research centres. 

This is partly due to the fact that other alternatives for restoration of motor function after 

a SCI including stem cell therapy are not currently available (Bryson et al., 2016). A 

realistic alternative is the application of a proxy of generated muscle performance in 

closing the loop of FES systems in order to promote the efficacy of the technology in 

clinical use. Therefore, tracking muscle fatigue pattern during FES-evoked contractions 

remains an important step in ensuring an efficient FES utility to improve muscle response 

as the fatigue profile has been derived by curve-fitting MMG-RMS of quadriceps 
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muscles. Thus, the present finding offers a new knowledge on the probable application of 

the MMG signal as a simple fatigue tracking sensor.  

Moreover, as fatigue profile modeling is vital to the optimization of skeletal muscle 

performance (Dugan & Frontera, 2000), MMG, which is stimulation artifact free 

(Yamaguchi et al., 2012), could be used to track muscle contraction during an FES-

evoked fatigue failure task (Blangsted et al., 2005; Søgaard et al., 2003). This is unlike 

evoked-electromyography which may continue to increase with increasing motor unit 

recruitment even with a reduced muscle effort/force due to fatigue (Falla & Farina, 2008). 

The implication of this finding could be for the use of MMG signals in modulating the 

FES parameters, at least, as to implement a binary switch for FES system as the amplitude 

characteristics of MMG has been shown to change with FES-evoked fatigue contractions 

as previously proposed by Gobbo and colleagues (Gobbo et al., 2006) in healthy 

volunteers.  

6.7 Conclusion 

Although the results of the present investigation should be further verified in larger 

participant size with pathological muscle conditions, the study has shown that MMG 

signal could track the FES-evoked muscle fatiguing contractions. Specifically, the signal 

has been shown to monitor muscle fatigue development during repetitive contractions and 

over an extended contraction duration during FES-supported standing in persons with 

SCI. This result provided further evidence of the potential use of MMG as a proxy of 

fatigue with specific relevance in situations where an objective measure of muscle force 

may be needed, such as in biofeedback control of FES-evoked contractions to prolong the 

contraction duration. Furthermore, as a “known fatigue equation”, the exponential 

function has been shown as a relevant paralyzed quadriceps muscle fatigue model during 

FES-supported standing challenge. The MMG-RMS pattern during sustained isometric 
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contractions of the quadriceps muscle due to fatigue is of particular relevance in using the 

signal as a muscle fatigue sensor in any related tasks that involved repetitive electrical 

stimulation contractions. 
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CHAPTER 7: CONCLUSION AND RECOMMENDATION 

This Chapter summarizes the findings from various experiments and analyses 

conducted within this thesis. In addition, the relationship between each Chapter, 

limitations of the study and recommendation for future works are discussed.  

7.1 Conclusion  

This thesis is generally focused on the experimental investigation of the potential of 

mechanomyography (MMG) as a proxy of NMES-evoked muscle force/torque for NMES 

control applications. The findings from this thesis may also be useful for the application 

of MMG signal to monitor progress in NMES therapies or following NMES rehabilitative 

exercise interventions. As mentioned in the introductory Chapter of this thesis, three 

specific objectives were investigated to actualize the main objective. 

 To develop a hybrid procedure to demonstrate MMG signal as a proxy of NMES-

evoked muscle force in healthy volunteers. 

Findings from Chapter 3 showed that the MMG signal is a promising NMES-evoked 

muscle force or torque proxy. Specifically, the support vector regression (SVR) 

estimation of NMES-evoked torque has been demonstrated using MMG signal in healthy 

volunteers. To the author’s knowledge, the proposed methodology represented a unique 

attempt to assess the knee extensor force via joint torque, though in a controlled laboratory 

setting.   

 To deploy the developed procedure for studying the reliability of MMG signal as a 

proxy of muscle force during NMES supported knee extension task in persons with 

SCI. 

Univ
ers

ity
 of

 M
ala

ya



 

 

141 

Findings from Chapter 4 revealed that the MMG signal is highly correlated with the 

knee extensor torque and the relationship was also reliable. An important new information 

on the sensitivity of MMG signal to the muscle force modulation (i.e., incremental motor 

unit recruitment) was evident. Moreover, in Chapter 5, an NMES-evoked torque 

estimation model was constructed from the paralyzed quadriceps MMG signals using 

SVR modelling with both gaussian and polynomial kernel functions. The finding from 

the Chapter demonstrated a good predictive accuracy of the proposed SVR model with 

capability for generalization. This provided further evidence for MMG signal as a proxy 

of NMES-evoked torque production during isometric knee extension tasks. Therefore, 

findings from Chapter 4 and 5 collectively provide an important new information with 

implication for the use of muscle contractions signal (MMG) to regulate NMES 

parameters. 

  To demonstrate the potential relevance of MMG signal as a useful parameter for 

studying muscle fatigue during a critical knee buckling stress due to a sustained 

NMES-supported standing to fatigue failure task. 

Findings from Chapter 6 preliminarily showed that the MMG signals might track the 

muscle fatigue development during a critical task such as NMES-sustained standing in 

persons with motor complete SCI. The finding suggested that MMG signals may be useful 

as a muscle fatigue sensor in situations where a real-time muscle force and fatigue 

measurement is impractical. Therefore, the signal has an important application in 

biomechanics research pertaining to the evaluation of the “potency” of muscle 

contractions to sustain standing or ambulation task. 

Overall, the feasibility of the muscle MMG signal as a proxy of NMES-evoked torque 

in both healthy and motor complete spinally injured persons has been demonstrated, for 
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the first time, without the need to contend with the issue of stimulation artifact that often 

characterizes the application of the prominent biopotential signal (i.e., electromyography) 

which is used traditionally for an indirect muscle force/torque assessment. In addition, 

the present finding implied that the difficulty of a reliable NMES-evoked muscle force 

estimation may be resolved with a physically small sensor (MMG sensor) as compared to 

the “gold standard” and laboratory-bound isokinetic dynamometer for torque 

measurement. Next, the synergy between the chapters is enumerated. 

(i) The critical systematic literature search conducted in Chapter 2 revealed the 

limitations of the application of current NMES technologies in the routine clinical 

practice. The foremost limitation established was the lack of flexibility in torque 

control which a non-invasive and artifact-free muscle signal source could improve 

through the application of the signal as NMES control signal. Therefore, to 

promote effective NMES therapies and for a wider clinical prominence of the 

NMES technologies, this thesis sought to resolve a number of issues concerning 

a reliable muscle signal (MMG) as a proxy of NMES-evoked torque for feedback 

applications. 

(ii) The first experimental design as presented in Chapter 3 on healthy volunteers, 

revealed that the MMG signal could clearly track the incremental muscle force 

production or motor unit recruitment as measured by a commercial isokinetic 

dynamometer. The study also justified the feasibility of the experimental setting 

and allowed the conception of the adjustment required for the application of the 

same protocol to persons with SCI. 

(iii) Based on the results obtained from the experiment conducted in Chapter 3 and 

apart from the adjustment made for the safety of the participants’ musculoskeletal 

health, a similar experiment performed in persons with motor complete SCI as 
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described in Chapter 4 demonstrated a reliable muscle torque measurement with 

MMG signal amplitude. Meanwhile, the frequency of MMG signal was shown to 

approximate the stimulation frequency and thus, suggestive of motor unit firing 

frequency.  

(iv) In Chapter 5, an estimation of the torque production from MMG signal amplitude 

and other related parameters that may affect the torque production was conducted 

using a SVR model in persons with motor complete SCI. Being robust in handling 

multivariate input parameters, the SVR modelling results demonstrated a good 

torque predictive accuracy. Taken together, the results obtained from Chapters 4 

and 5 showed that MMG signal (input to the model) could be successfully used to 

estimate the NMES-evoked muscle torque (output of the model) as these two 

variables (MMG versus torque) were found to be highly positively correlated. 

(v) Based on the findings from Chapter 4 and 5, Chapter 6 demonstrated the potential 

application of MMG signal as a muscle fatigue sensor during a typical clinical 

critical task i.e. NMES supported standing. The preliminary results obtained in 

four persons with motor complete SCI showed that the signal could be used to 

track the muscle fatigue contractions. However, the advanced technique that may 

have been used to measure muscle force during NMES-evoked standing, such as 

inverse dynamics approach, is outside the scope of this thesis and its complexity 

for force estimation is absent in the proposed MMG signal modality. Therefore, 

the potential application of MMG signal to monitor muscle states during NMES-

evoked fatigue contractions is another important knowledge derived from this 

study. Generally, the implication of these findings favours the implementation of 

a muscle mechanical response-controlled NMES technology as a measure of 

muscle activity can be used as a NMES control signal. Therefore, the present study 

is a part of the current research efforts to apply MMG signal as a muscle force 
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sensor in order to facilitate the implementation of a flexible and portable NMES 

systems which could be used in the routine clinical rehabilitation practice. 

The following are the descriptions of the thesis’s accomplishments followed by 

detailed illustrations. 

 

7.2 Contributions 

To arrive at the conclusion, the following results highlight the specific contributions 

of the thesis:  

(i) Findings from the first objective showed a good association between MMG signal 

amplitude and NMES-evoked torque as revealed by a high coefficient of 

determination (R2) with a low RMSE using gaussian kernel function of SVR 

modelling. This finding suggested the legitimacy of using MMG signals as a 

proxy NMES-evoked muscle force in healthy volunteers and supported further 

investigation in persons with neurological conditions.  

(ii) The second investigation revealed a high correlation coefficient (r) between the 

MMG amplitude characteristics and stimulation/contraction intensity versus 

NMES-evoked torque. This led to the study reported in Chapter 5, on torque 

prediction from MMG signal using SVR modelling, conducted on a wider study 

population. The study demonstrated a high R2 and low RMSE across the study’s 

participants. These findings have implications in some fields including 

biomechanics, rehabilitation medicine and rehabilitation engineering where 

NMES technologies are used as a mode of muscle performance improvement and 

rehabilitative intervention. 

(iii) The implications of the aforementioned findings on the muscle fatigue tracking 

by MMG signal were demonstrated in the third objective in persons with motor 
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complete SCI. Specifically, MMG signal was used to track the NMES supported 

standing until fatigue failure as indicated by knee buckle. Sustained quadriceps 

muscle contractions for 70 s duration between 80-120 mA stimulation intensity 

level resulted in a continuous muscle fatigue as reflected by a simultaneous 

decrease in MMG amplitude and the knee angle reduction over the contraction 

time. Having demonstrated the use of MMG signal to track muscle fatigue 

contractions, this study further supported the legitimacy of MMG signal as a 

feedback signal source for muscle state responses during NMES application for 

critical tasks such as in sustained standing in persons with SCI. 

Collectively, these findings open the possibility of a paradigm shift in the perception 

of a possible wider application of NMES technology to improve function in a wide range 

of neurological disabilities. As the MMG signal has been demonstrated as a simple and 

non-invasive proxy of muscle force, the signal could be further explored to impact clinical 

decisions regarding NMES rehabilitation progression in clinical populations. Moreover, 

the application of MMG as an NMES control signal promises to improve the efficiency 

of the NMES technology and quality of life in persons with SCI. The overall results of 

this thesis suggest the feasibility of the MMG modality as an NMES feedback signal 

source and SVR as valid prediction algorithm.  

Finally, a new method of NMES-evoked muscle force based on MMG signals has been 

presented, together with the hybrid procedure on the acquisition of torque production in 

both healthy and spinally injured populations. Moreover, in a selected group of SCI 

population, who are good candidates for NMES supported standing, i.e. those with low 

tetraplegia (C5-C8) and paraplegia (T1-T12) (Davis et al., 2001), this thesis has 

demonstrated the collection of MMG signal from their quadriceps muscles during NMES-

evoked supported standing for potential application of the signal as fatigue failure sensor. 
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Therefore, it can be safely envisaged that the MMG signal as a muscle force and fatigue 

sensor for feedback applications has an important role in advancing the current status of 

NMES technologies, and therefore worthy of further investigations, either alone or in 

combination with other methods that could be used to sense muscle contraction responses. 

7.3 Study Limitations 

The author acknowledges the following limitations of the thesis: the MMG response 

during electrical stimulus contractions has been demonstrated using data from 

participants with motor complete SCI, whether the same procedure could be used to 

obtain a similar or better results in persons with other classes of neurological lesions was 

not verified. Additionally, the present investigations are based on the 

surface/transcutaneous electrical stimulation, the results may have limited application for 

functional application such as in ambulation training. Specifically, with surface 

stimulation approach, the activation of hip flexors required for an effective ambulation 

(Hardin et al., 2007) may not be directly stimulated (Thrasher & Popovic, 2008). 

Therefore, percutaneous or implanted stimulation approach may be of greater interest in 

relating MMG signal to NMES responses as this stimulation approach is characterized by 

an improved muscle selectively and ability to stimulate deeper muscles required for 

effective ambulation training (Hardin et al., 2007; Kobetic et al., 1997). 

Nevertheless, as the present study is based on the experimental investigation of MMG 

signal as a proxy of NMES-evoked muscle force/torque, the methodology described 

herein could be considered mature enough for the validity of the MMG as a control signal 

for NMES systems. Therefore, this thesis provides a solid platform for the practical 

realization of a closed-loop NMES systems with muscle mechanomyographic signal as a 

potential feedback source. 
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7.4 Recommendation for Future Research 

For more than five decades now, there have been increasing attempts on the application 

of NMES technologies for the restoration of the impaired or lost neuromuscular functions 

following a SCI. To date, the general principle of ensuring a safe activation of 

neuromusculature as well as the methods of generating stable muscle contractions have 

been established. However, integrating these commendable research efforts to provide 

effective therapeutic and functional gains that are clinically significant is still challenging. 

For example, open-loop NMES technologies have been more widely used, particularly 

for therapeutic exercise, which is of limited clinical relevance. While the closed-loop 

NMES technologies have proven to be of a better clinical relevance, their full realization 

remains an interesting open research question, particularly due to the lack of a non-

invasive and reliable method of assessment of NMES-evoked muscle activities (Popović, 

2014).  

Based on this premise, NMES application is still perceived as an experimental 

procedure rather than a routine clinical practice (Thrasher & Popovic, 2008). Therefore, 

NMES technologies have been so far hesitant to fully restore the inactivity associated 

with SCI, identification of a reliable proxy of the response of neuromuscular activity to 

NMES-evoked muscle force has been suggested as a feedback source for NMES closed-

loop control implementation. Thus, the result of this present investigation and related 

studies from other research centres will continue to be relevant to the implementation of 

an effective closed-loop NMES systems for the rehabilitation of persons with 

neurological conditions until the neural stem cell regenerative therapies, which has been 

proposed for neuroregeneration of axons, emerge (Bryson et al., 2016). Even with that, 

“NMES will still be needed to train stem cells to learn” (Popovic, 2012). Accordingly, 

advancing NMES technology to significantly impact the lives of persons with SCI is 
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achievable rather than “waiting for science to find methods to regenerate axons within 

the injured spinal cord” (Ragnarsson, 2007).   

Towards advancing the NMES technology, the present thesis has demonstrated the 

potential relevance of MMG as a biofeedback control signal for NMES feedback 

applications. However, being in early stage, the findings reported herein require further 

research. Specifically, in the development and implementation of MMG-based NMES 

technologies. Such research should focus on identifying an appropriate strategy for 

implementation, as well as determine how to optimally apply the neuromuscular 

information from the MMG signal to implement a closed-loop NMES systems. Such 

effort should also develop as well as integrate control algorithms that will allow an 

automation of muscle performance classification and pattern recognition. Moreover, such 

future studies may also elucidate the best modality for probable commercialization of this 

technology.  

Following an adequate clinical progress, it can be surmised that a new generation of 

NMES systems will be available in the near future based on advances in MMG 

measurements and processes. Such a progress is expected to offer a substantial clinical 

benefit to promote the health of persons with spinal cord injury. 
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