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ABSTRACT 

Mobile Ad Hoc Cloud (MAC) enables the use of a multitude of proximate resource-rich 

mobile devices to provide computational services in the vicinity. MAC is a candidate 

blueprint for future compute-intensive applications with the aim of delivering high 

functionalities and a rich experience to mobile users. However, inattention to mobile 

device resources and operational heterogeneity-measuring parameters, such as CPU 

speed, number of cores, and workload, when allocating task in MAC, causes inefficient 

resource utilization that prolongs task execution time and consumes large amounts of 

energy. Task execution is remarkably degraded because the longer execution time and 

high energy consumption impede the optimum use of MAC. In this study, we minimize 

execution time and energy consumption by proposing heterogeneity-aware task 

allocation solutions for MAC-based compute-intensive tasks. Results reveal that 

incorporation of the heterogeneity-measuring parameters guarantees a shorter execution 

time and reduces the energy consumption of the compute-intensive tasks in MAC. We 

develop a mathematical model to validate the proposed solutions’ empirical results. In 

comparison with random-based task allocation (RM), the proposed five solutions based 

on CPU speed (SO), number of cores (CO), workload (WO), CPU speed and workload 

(SW), and CPU speed, core, and workload (SCW) reduce execution time up to 56.72%, 

53.12%, 56.97%, 61.23%, and 71.55%, respectively. In addition, these heterogeneity-

aware task allocation solutions save energy up to 69.78%, 69.06%, 68.25%, 67.26%, 

and 57.33%, respectively. Furthermore, we apply Mann-Whitney U test and Vargha and 

Delaney’s A12 statistics to find the significance of differences between the results. Our 

findings from both tests reveal that the proposed solutions have significant statistical 

and practical differences compared to RM-based solution. For this reason, the proposed 

solutions significantly improve tasks’ execution performance, which can increase the 

optimum use of MAC. 
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ABSTRAK 

Mobile Ad Hoc Cloud (MAC) membolehkan penggunaan pelbagai peranti yang kaya 

dengan sumber proksimat mudah alih yang menyediakan perkhidmatan 

pengkomputeran kepada pengguna mudah alih di persekitaran pelaksanaan tugas 

intensif pengiraan. MAC disifatkan sebagai calon cetakan biru untuk aplikasi intensif 

pengiraan masa depan yang bertujuan untuk menyampaikan fungsian tinggi dan 

pengalaman impresif beraneka untuk pengguna mudah alih. Walau bagaimanapun, 

kecuaian sumber peranti mudah alih dan kepelbagaian pengendalian, seperti kelajuan 

CPU, bilangan teras, dan beban kerja, semasa memperuntukkan tugas dalam MAC, 

menyebabkan penggunaan sumber yang tidak cekap yang memanjangkan masa 

pelaksanaan tugas dan menggunakan lebih tenaga. Prestasi pelaksanaan tugas ketara 

amat merosot kerana masa pelaksanaan yang lebih panjang dan penggunaan tenaga yang 

tinggi yang menghalang realisasi MAC. Dalam kajian ini, kami menyasarkan untuk 

meminimumkan masa pelaksanaan dan penggunaan tenaga dengan mencadangkan 

mekanisme peruntukan tugas sedar-keheterogenan untuk tugas-tugas intensif pengiraan 

berasaskan MAC. Analisis penyelesaian yang dicadangkan menunjukkan bahawa 

penggabungan keheterogenan yang mengukur parameter menjamin pengurangan dalam 

masa pelaksanaan dan penggunaan tenaga bagi tugas intensif pengiraan dalam MAC. 

Kami mengesahkan dan menentusahkan cadangan penyelesaian kami masing-masing, 

menggunakan pemodelan matematik dan perbandingan. Berbanding dengan peruntukan 

tugas secara rawak, cadangan lima penyelesaian yang berdasarkan kepada hanya 

kelajuan CPU, hanya teras, hanya beban kerja, kelajuan campur beban kerja, dan 

kelajuan CPU campur teras dan beban kerja, mengurangkan masa pelaksanaan sehingga 

masing-masing 56.72%, 53.12%, 56.97%, 61.23%, dan 71.55%. Di samping itu, 

penyelesaian peruntukan tugas sedar-keheterogenan membantu menjimatkan tenaga 

masing-masing sehingga 69.78%, 69.06%, 68.25%, 67.26%, dan 57.33%. Tambahan 
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pula, kami menggunakan dua ujian statistik yang terkenal, iaitu ujian statistik Mann-

Whitney U dan Vargha & Delaney A12 untuk mengetahui kepentingan perbezaan di 

antara keputusan. Penemuan kami dari hasil kedua-dua ujian mendedahkan bahawa 

penyelesaian yang dicadangkan mempunyai perbezaan statistik dan praktikal ketara 

berbanding dengan penyelesaian berasaskan rawak. Oleh itu, keputusan penilaian ini, 

menyokong bagi menerima pakai cadangan penyelesaian kami boleh meningkatkan 

prestasi pelaksanaan tugas yang meningkatkan kebolehgunaan MAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



vi 

 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my supervisors Professor Dr. Abdullah 

Gani and Associate Professor Salimah Mokhtar, for their invaluable suggestions, 

support, and guidance throughout my doctoral study. In addition, I would like to thank 

Dr. Ejaz Ahmed for his continuous support and guidance. Moreover, I am in deeply 

indebted to my fellow friends, Ibrahim Abaker Targio Hashem, Abdullah Yousafzai, 

Dr. Syed Adeel Ali Shah, Abdelmuttlib Ibrahim Abdalla Ahmed, and Ali Abo-Hammad 

for thought-provoking discussions. I would also like to express my special appreciations 

to Dr. Muhammad Imran, Dr. Anjum Naveed, and Dr. Muhammad Zubair Khan for 

their continuous support. Their presence added a significant impact on my study and 

achievements. 

I would also like to thank Bright Sparks Unit and Faculty of Computer Science and 

Information Technology, University of Malaya, for offering me a prestigious research 

scholarship throughout my doctoral study. Lastly, I would like to include a special note 

of appreciation to my parents and siblings. Without their precious spiritual support and 

prayers, it would never have been possible to reach this stage of life.    

Univ
ers

ity
 of

 M
ala

ya



vii 

 

TABLE OF CONTENTS 

 

ABSTRACT .................................................................................................................... iii 

ABSTRAK....................................................................................................................... iv 

ACKNOWLEDGEMENTS ........................................................................................... vi 

TABLE OF CONTENTS .............................................................................................. vii 

LIST OF FIGURES ..................................................................................................... xiv 

LIST OF TABLES ...................................................................................................... xvii 

LIST OF ACRONYMS ................................................................................................ xix 

CHAPTER 1: INTRODUCTION .................................................................................. 1 

1.1 Background ............................................................................................................ 1 

1.1.1. Cloud Computing ...................................................................................................... 1 

1.1.2. Mobile Cloud Computing ......................................................................................... 2 

1.1.3. Mobile Ad Hoc Cloud ............................................................................................... 3 

1.2 Research Motivation .............................................................................................. 4 

1.3 Statement of Problem ............................................................................................. 5 

1.4 Statement of Objectives ......................................................................................... 6 

1.5 Proposed Research Methodology ........................................................................... 7 

1.6 Thesis Layout ......................................................................................................... 8 

CHAPTER 2: MOBILE AD HOC CLOUD ............................................................... 12 

2.1 State-of-the-art in MAC ....................................................................................... 12 

2.1.1. Task Offloading ...................................................................................................... 15 

2.1.2. Task Scheduling and Allocation ............................................................................. 16 

2.1.3. MAC Formation ...................................................................................................... 18 

2.1.4. Privacy and Security ............................................................................................... 21 

2.1.5. Incentives and Mobility ........................................................................................... 24 

2.1.6. Resource Management ............................................................................................ 26 

Univ
ers

ity
 of

 M
ala

ya



viii 

 

2.2 Taxonomy of MAC .............................................................................................. 27 

2.2.1. Architectural Components ...................................................................................... 29 

2.2.2. Applications ............................................................................................................ 29 

2.2.3. Objectives ................................................................................................................ 30 

2.2.4. Characteristics ......................................................................................................... 30 

2.2.5. Execution Models.................................................................................................... 30 

2.2.6. Scheduling Types .................................................................................................... 31 

2.2.7. Formation Technologies .......................................................................................... 31 

2.2.8. Node Types ............................................................................................................. 32 

2.3 Principles for Enabling MAC Computing ............................................................ 32 

2.3.1. Attractive Incentives ............................................................................................... 32 

2.3.2. Optimal Task Allocation ......................................................................................... 34 

2.3.3. Lightweight Formation ............................................................................................ 34 

2.3.4. Agile Security.......................................................................................................... 35 

2.3.5. Stability ................................................................................................................... 35 

2.3.6. Autonomy ................................................................................................................ 36 

2.4 Open Research Issues ........................................................................................... 36 

2.4.1. Heterogeneity-aware Task Allocation ..................................................................... 36 

2.4.2. Incentives ................................................................................................................ 37 

2.4.3. Mobility ................................................................................................................... 37 

2.4.4. Minimal Data Exchange .......................................................................................... 38 

2.4.5. Security and Privacy ............................................................................................... 38 

2.5 Conclusion ............................................................................................................ 39 

CHAPTER 3: PROBLEM ANALYSIS ...................................................................... 40 

3.1 Empirical Study: Experimental Setup .................................................................. 40 

3.1.1. Mobile Device ......................................................................................................... 40 

3.1.2. Multi-Threaded Matrix Multiplication .................................................................... 41 

3.2 Performance Measuring Parameters..................................................................... 41 

Univ
ers

ity
 of

 M
ala

ya



ix 

 

3.2.1. Execution Time ....................................................................................................... 42 

3.2.2. Energy Consumption ............................................................................................... 42 

3.3 System Variables .................................................................................................. 42 

3.3.1. Task Size ................................................................................................................. 42 

3.3.2. Workload ................................................................................................................. 43 

3.3.3. Processor Speed ...................................................................................................... 43 

3.3.4. Number of Cores ..................................................................................................... 43 

3.4 Results and Discussions ....................................................................................... 43 

3.4.1. Workload Impact on Execution Time ..................................................................... 44 

3.4.2. Workload Impact on Energy Consumption ............................................................. 45 

3.4.3. Varying Number of Cores’ Impact on Execution Time .......................................... 46 

3.4.4. Varying Number of Cores’ Impact on Energy Consumption .................................. 47 

3.4.5. Varying  Processor Speeds’ Impact on Execution Time ......................................... 48 

3.4.6. Varying Processor Speeds’ Impact on Energy Consumption ................................. 49 

3.4.7. Varying Task Sizes’ Impact on Execution Time..................................................... 50 

3.4.8. Varying Task Sizes’ Impact on Energy Consumption ............................................ 51 

3.5 Analysis of Random-based Task Allocation Mechanism .................................... 52 

3.6 Discussions ........................................................................................................... 53 

3.7 Conclusion ............................................................................................................ 54 

CHAPTER 4: HETEROGENEITY-AWARE TASK ALLOCATION 

ALGORITHMS ............................................................................................................. 55 

4.1 Heterogeneity-aware Task Allocation .................................................................. 55 

4.1.1. Proposed Algorithms ............................................................................................... 56 

4.2 MAC Framework ................................................................................................. 61 

4.2.1. Context Monitor ...................................................................................................... 62 

4.2.2. Task Handler ........................................................................................................... 62 

4.2.3. Task Manager .......................................................................................................... 62 

4.2.4. Communication Agent ............................................................................................ 63 

Univ
ers

ity
 of

 M
ala

ya



x 

 

4.3 Illustration of Task Handler using Sequence Diagram ........................................ 63 

4.4 Mathematical Equations for Node Selection and Calculating Energy 

Consumption ................................................................................................................... 64 

4.5 Mathematical model for Execution Time............................................................. 66 

4.6 Distinctive Features of the Proposed Algorithms ................................................ 69 

4.6.1. Resource and Operational Heterogeneity-awareness .............................................. 69 

4.6.2. Appropriate Resource Utilization............................................................................ 69 

4.6.3. Time Minimization .................................................................................................. 70 

4.6.4. Deadline-based Task Execution .............................................................................. 70 

4.6.5. Energy Efficiency .................................................................................................... 70 

4.7 Conclusion ............................................................................................................ 70 

CHAPTER 5: EVALUATION ..................................................................................... 72 

5.1 Performance Evaluation ....................................................................................... 72 

5.1.1. Experimental Setup ................................................................................................. 73 

5.2 Performance Measuring Parameters..................................................................... 74 

5.3 Evaluation Methods.............................................................................................. 76 

5.3.1. Descriptive Statistics ............................................................................................... 76 

5.3.2. Confidence Interval ................................................................................................. 76 

5.3.3. Inferential Statistics ................................................................................................. 77 

5.3.3.1. Null Hypothesis ...................................................................................................... 77 

5.3.3.2. Mann-Whitney U Test ............................................................................................ 77 

5.3.3.3. Vargha and Delaney’s A12 statistics ....................................................................... 77 

5.3.3.4. Pearson’s Correlation Coefficient .......................................................................... 78 

5.4 Data Collected For Mathematical model Validation............................................ 78 

5.5 Data Collected for Analyzing the Impact of Heterogeneity-aware Task Allocation 

on Execution Time .......................................................................................................... 89 

5.5.1. SO vs. RM ............................................................................................................... 89 

Univ
ers

ity
 of

 M
ala

ya



xi 

 

5.5.2. CO vs. RM .............................................................................................................. 90 

5.5.3. WO vs. RM ............................................................................................................. 92 

5.5.4. SW vs. RM .............................................................................................................. 93 

5.5.5. SCW vs. RM ........................................................................................................... 95 

5.6 Data Collected for Analyzing the Impact of Heterogeneity-aware Task Allocation 

on Energy Consumption .................................................................................................. 96 

5.6.1. SO vs. RM ............................................................................................................... 97 

5.6.2. CO vs. RM .............................................................................................................. 98 

5.6.3. WO vs. RM ........................................................................................................... 100 

5.6.4. SW vs. RM ............................................................................................................ 101 

5.6.5. SCW vs. RM ......................................................................................................... 103 

5.7 Data Collected for Comparison of Five Heterogeneity-aware Task Allocation 

Solutions with Random-based Task Allocation ............................................................ 104 

5.7.1. Execution Time ..................................................................................................... 104 

5.7.2. Energy Consumption ............................................................................................. 108 

5.8 Conclusion .......................................................................................................... 110 

CHAPTER 6: RESULTS AND DISCUSSION ......................................................... 111 

6.1 Mathematical Model Validation......................................................................... 111 

6.1.1. Execution Time of CPU Speed-based Task Allocation ........................................ 112 

6.1.2. Execution Time of Core-based Task Allocation ................................................... 113 

6.1.3. Execution Time of Workload-based Task Allocation ........................................... 114 

6.1.4. Execution Time of  Two parameters-based (CPU Speed and Workload) Task 

Allocation .............................................................................................................................. 115 

6.1.5. Execution Time of Three Parameters-based (CPU Speed, Core, and  Workload) 

Task Allocation ..................................................................................................................... 116 

6.2 Impact of Various Weights on Execution Time ................................................. 117 

6.3 Comparison of  Proposed Heterogeneity-aware Task Allocation Solutions based 

on Execution Time ........................................................................................................ 118 

Univ
ers

ity
 of

 M
ala

ya



xii 

 

6.3.1. SO vs. RM ............................................................................................................. 118 

6.3.1.1. Statistical Analyses (SO vs. RM) ......................................................................... 119 

6.3.2. CO vs. RM ............................................................................................................ 120 

6.3.2.1. Statistical Analyses (CO vs. RM) ........................................................................ 120 

6.3.3. WO vs. RM ........................................................................................................... 121 

6.3.3.1. Statistical Analyses (WO vs. RM) ....................................................................... 122 

6.3.4. SW vs. RM ............................................................................................................ 122 

6.3.4.1. Statistical Analyses (SW vs. RM) ........................................................................ 123 

6.3.5. SCW vs. RM ......................................................................................................... 124 

6.3.5.1. Statistical Analyses (SCW vs. RM) ..................................................................... 124 

6.4 Comparison of  Proposed Heterogeneity-aware Task Allocation Solutions based 

on Energy Consumption ................................................................................................ 125 

6.4.1. SO vs. RM ............................................................................................................. 126 

6.4.1.1. Statistical Analyses (SO vs. RM) ......................................................................... 126 

6.4.2. CO vs. RM ............................................................................................................ 127 

6.4.2.1. Statistical Analyses (CO vs. RM) ........................................................................ 127 

6.4.3. WO vs. RM ........................................................................................................... 128 

6.4.3.1. Statistical Analyses (WO vs. RM) ....................................................................... 128 

6.4.4. SW vs. RM ............................................................................................................ 129 

6.4.4.1. Statistical Analyses (SW vs. RM) ........................................................................ 130 

6.4.5. SCW vs. RM ......................................................................................................... 130 

6.4.5.1. Statistical Analyses (SCW vs. RM) ..................................................................... 131 

6.5 Overall Comparison of Proposed Heterogeneity-aware Task Allocation Solutions 

with Random-based Task Allocation ............................................................................ 132 

6.5.1. Execution Time ..................................................................................................... 132 

6.5.1.1. Statistical Significance of the Proposed Solutions’ Execution Time Results 

Compared to RM-based Task Allocation .......................................................................... 134 

6.5.2. Energy Consumption ............................................................................................. 135 

Univ
ers

ity
 of

 M
ala

ya



xiii 

 

6.5.2.1. Statistical Significance of the Proposed Solutions’ Energy Consumption Results 

Compared to RM-based Task Allocation .......................................................................... 138 

6.6 Conclusion .......................................................................................................... 138 

CHAPTER 7: CONCLUSION ................................................................................... 140 

7.1 Reappraisal of the Research Objectives ............................................................. 140 

7.2 Contributions of the Research ............................................................................ 142 

7.3 Research Scope and Limitations ........................................................................ 147 

7.4 Future Work ....................................................................................................... 148 

REFERENCES ............................................................................................................ 150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



xiv 

 

LIST OF FIGURES 

Figure 1.1: Illustration of cloud computing ...................................................................... 2 

Figure 1.2: A simplified example of MCC ....................................................................... 3 

Figure 1.3: A typical MAC environment .......................................................................... 4 

Figure 1.4: Proposed research methodology ..................................................................... 8 

Figure 2.1: Context-based literature taxonomy ............................................................... 14 

Figure 2.2: MAC taxonomy based on literature .............................................................. 27 

Figure 2.3: Identified key Principles for deployment of successful MAC...................... 33 

Figure 3.1: Impact of applications running in the background on execution time.......... 45 

Figure 3.2: Impact of applications running in the background on energy consumption . 46 

Figure 3.3: Impact of number of CPU cores on execution time ..................................... 47 

Figure 3.4: Impact of number of CPU cores on energy consumption............................. 48 

Figure 3.5: Impact of various processor speeds on execution time ................................ 49 

Figure 3.6: Impact of various processor speeds on energy consumption ....................... 50 

Figure 3.7: Impact of various task sizes on execution time ............................................ 51 

Figure 3.8: Impact of various task sizes on energy consumption ................................... 52 

Figure 3.9: Impact of random-based task allocation on execution time ......................... 53 

Figure 4.1: Task handler module..................................................................................... 56 

Figure 4.2: The task handler module in MAC framework .............................................. 61 

Figure 4.3: Sequence of steps for performing task allocation using task handler ........... 63 

Figure 4.4: Task execution times .................................................................................... 68 

Figure 5.1: Pearson's correlation coefficient results (CPU speed-based task allocation) 79 

Figure 5.2: Pearson's correlation coefficient results (Core-based task allocation) ......... 81 

Figure 5.3: Pearson's correlation coefficient results (Workload-based task allocation) . 83 

Figure 5.4: Pearson's correlation coefficient results (CPU Speed and workload-based 

task allocation) ................................................................................................................ 85 

Univ
ers

ity
 of

 M
ala

ya



xv 

 

Figure 5.5: Pearson's correlation coefficient results (CPU speed, core, and workload-

based task allocation). ..................................................................................................... 87 

Figure 6.1: Comparison of execution time (SO) empirical results with mathematical 

model execution time .................................................................................................... 112 

Figure 6.2: Comparison of execution time (CO) empirical results with mathematical 

model execution time .................................................................................................... 113 

Figure 6.3: Comparison of execution time (WO) empirical results with mathematical 

model execution time .................................................................................................... 114 

Figure 6.4:  Comparison of execution time (SW) empirical results with mathematical 

model execution time .................................................................................................... 115 

Figure 6.5: Comparison of execution time (SCW) empirical results with mathematical 

model execution time .................................................................................................... 116 

Figure 6.6: Impact of combinations of two parameters’ weights on execution time .... 117 

Figure 6.7: Impact of combinations of three parameters’ weights on execution time .. 118 

Figure 6.8: Execution time empirical results measured using SO-based task allocation

 ....................................................................................................................................... 120 

Figure 6.9: Execution time empirical results measured using CO-based task allocation

 ....................................................................................................................................... 121 

Figure 6.10: Execution time empirical results measured using WO-based task allocation

 ....................................................................................................................................... 122 

Figure 6.11: Execution time empirical results measured using SW- and RM-based task 

allocation ....................................................................................................................... 124 

Figure 6.12: Execution time results measured using SCW- and RM-based task 

allocation ....................................................................................................................... 125 

Figure 6.13: Energy consumption results measured using SO- and RM-based task 

allocation ....................................................................................................................... 127 

Univ
ers

ity
 of

 M
ala

ya



xvi 

 

Figure 6.14: Energy consumption results measured using CO- and RM-based task 

allocation ....................................................................................................................... 128 

Figure 6.15: Energy consumption results measured using WO- and RM-based task 

allocation ....................................................................................................................... 129 

Figure 6.16: Energy consumption results measured using SW- and RM-based task 

allocation ....................................................................................................................... 130 

Figure 6.17: Energy consumption results measured using SCW- and RM-based task 

allocation ....................................................................................................................... 131 

Figure 6.18: Comparison of execution time empirical results obtained from five 

proposed solutions with random-based task allocation ................................................. 132 

Figure 6.19: Comparison of energy consumption empirical results obtained from five 

proposed solutions with random-based task allocation ................................................. 136 

 

  

Univ
ers

ity
 of

 M
ala

ya



xvii 

 

LIST OF TABLES 

Table 1.1: Thesis Layout ................................................................................................... 9 

Table 2.1: Comparison of task offloading based proposed solutions ............................. 16 

Table 2.2: Comparison of task scheduling and allocation based proposed solutions ..... 17 

Table 2.3: Comparison of MAC formation based proposed solution ............................. 20 

Table 2.4: Comparison of security and privacy based proposed solutions ..................... 23 

Table 2.5: Comparison of incentives and mobility based proposed solutions ................ 25 

Table 2.6: Comparison of resource management based proposed solutions................... 27 

Table 2.7: Literature comparison based on objectives .................................................... 28 

Table 3.1: Specification of mobile device ....................................................................... 41 

Table 3.2: Tasks for evaluations of various parameters .................................................. 44 

Table 4.1: Description of the symbols used in the algorithms ........................................ 56 

Table 4.2: Description of the symbols used in the mathematical model......................... 67 

Table 5.1: Specification of mobile device used in simulation ........................................ 73 

Table 5.2: Data traces for evaluations of various parameters ......................................... 75 

Table 5.3: Validation of mathematical model with simulation results (execution time) of 

CPU speed-based task allocation. ................................................................................... 80 

Table 5.4: Validation of mathematical model with simulation results (execution time) of 

core-based task allocation. .............................................................................................. 82 

Table 5.5: Validation of mathematical model with simulation results (execution time) of 

workload-based task allocation ....................................................................................... 84 

Table 5.6: Validation of mathematical model with simulation results (execution time) of 

two parameters (CPU speed and workload) based task allocation .................................. 86 

Table 5.7: Validation of mathematical model with simulation results (execution time) of 

three parameters (Speed, core, and workload) based task allocation .............................. 88 

Table 5.8: Data collected through SO- and RM-based task allocation ........................... 90 

Univ
ers

ity
 of

 M
ala

ya



xviii 

 

Table 5.9: Data collected through CO- and RM-based task allocation ........................... 91 

Table 5.10: Data Collected through WO- and RM-based task allocation ....................... 93 

Table 5.11: Data collected through SW- and RM-task allocation .................................. 94 

Table 5.12: Data collected through SCW- and RM-based task allocation ...................... 96 

Table 5.13: Energy consumption data collected through CPU SO- and RM-based task 

allocation ......................................................................................................................... 97 

Table 5.14: Energy consumption data collected through CO- and RM-based task 

allocation ......................................................................................................................... 99 

Table 5.15: Energy consumption data collected through WO- and RM-based task 

allocation ....................................................................................................................... 100 

Table 5.16: Energy consumption data collected through SW- and RM-based task 

allocation ....................................................................................................................... 102 

Table 5.17: Energy consumption data collected through CPU SCW- and RM-based task 

allocation ....................................................................................................................... 103 

Table 5.18: Comparison of the execution time results obtained from proposed solutions 

with random-based task allocation ................................................................................ 105 

Table 5.19: Verification of execution time results obtained from proposed solutions 

using Mann-Whitney U test and Vargha and Delaney statistics ................................... 107 

Table 5.20: Comparison of the execution time results obtained from the proposed 

solutions with each other ............................................................................................... 107 

Table 5.21: Comparison of the energy consumption results obtained from proposed 

solutions with random-based task allocation ................................................................ 108 

Table 5.22: Verification of energy consumption results obtained from five proposed 

solutions using Mann-Whitney U test and Vargha and Delaney statistics ................... 110 

 

 

Univ
ers

ity
 of

 M
ala

ya



xix 

 

LIST OF ACRONYMS 

3G THIRD GENERATION 

ACM ASSOCIATION FOR COMPUTING MACHINERY 

CCS CONNECTED AD HOC CLOUDLET SERVICE 

CO CORE-BASED SOLUTION  

DT DATA TRACE 

IEEE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 

MAC MOBILE AD HOC CLOUD 

MANET MOBILE AD HOC NETWORK 

MCC MOBILE CLOUD COMPUTING 

MIPS MILLION INSTRUCTIONS PER SECOND  

OCS OPPORTUNISTIC AD HOC CLOUDLET SERVICE 

QoS QUALITY OF SERVICE 

RCS REMOTE CLOUD SERVICE 

RM RANDOM-BASED SOLUTION 

SCW CPU SPEED,  CORE, AND WORKLOAD (BASED SOLUTION) 

SO CPU SPEED-BASED SOLUTION 

SW CPU SPEED AND WORKLOAD (BASED SOLUTION) 

TMC TRUST MANAGEMENT SYSTEM 

US UNITED STATES 

VS VERSUS 

WO WORKLOAD-BASED SOLUTION 

WiFi WIRELESS FIDELITY 

Univ
ers

ity
 of

 M
ala

ya



1 

 

CHAPTER 1: INTRODUCTION 

This chapter presents an overview of the research carried out in this thesis. First, we 

provide the background information to familiarize the readers with Mobile Ad Hoc 

Cloud (MAC) paradigm. The motivation to undertake the research work is described. 

We state the research problem investigated and addressed. The aim and objectives of the 

research are outlined. The research methodology proposed to address the problem is 

discussed. Lastly, organization of the thesis is described. 

 The chapter is organized into six sections. In Section 1.1, we discuss the 

background of MAC. Section 1.2 presents the motivation for this research. Section 1.3 

highlights the research gap, briefly explains the problem of task allocation and 

summarizes the statement of problem. Section 1.4 enlists the research objectives of the 

study conducted in this thesis. Section 1.5 summarizes the methodology followed in the 

research. Finally, Section 1.6 sketches the layout for the rest of the thesis. 

1.1  Background 

 This section provides a brief discussion on cloud computing and Mobile Cloud 

Computing (MCC) that leads to the MAC. The purpose is to familiarize the readers with 

MAC paradigm.    

1.1.1. Cloud Computing 

 Cloud computing is a paradigm for enabling ubiquitous, convenient and on-

demand network access to a shared pool of configured computing resources (e.g., 

networks, server, storage, application, and services). These resources can be rapidly 

provisioned and released with minimal management effort or service provider 

interaction (Mell et al., 2009). Figure 1.1 depicts a typical environment of cloud 

computing (Yaqoob et al., 2016). Cloud computing provides users with different 

capabilities to store and process their data in third-party data centers. It focuses on 

optimizing the effectiveness of the dynamically shared resources in an on-demand 
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manner (Armbrust et al., 2010; Buyya et al., 2009). For instance, cloud computing 

resources allocated to North American users during their working hours with a specific 

application (e.g., a web server) can be reallocated to their European counterparts during 

respective job timings with a different application (e.g., email). 

Database

SwitchAccess Point

End Users

Cloud

 
Figure 1.1: Illustration of cloud computing 

1.1.2. Mobile Cloud Computing 

 MCC has emerged as a distributed computing paradigm that enables the 

execution of compute-intensive applications by augmenting the resources of constrained 

mobile devices. Figure 1.2 articulates a simplified environment of MCC (Ahmed et al., 

2015). MCC alleviates resource limitations of mobile devices by using various 

augmentation strategies, such as storage augmentation, energy augmentation, screen 

augmentation, and application processing augmentation (Bahl et al., 2012). It has three 

types of computing models to augment the resources of mobile devices: (a) remote 

cloud, (b) server-based cloudlet, and (c) mobile ad hoc cloudlet (Pedersen et al., 2012; 

Satyanarayanan et al., 2009; Shaukat et al., 2015). In the case of a remote cloud-based 

computing model, mobile devices act as a thin client while accessing the cloud through 

wireless technologies. This model can provide many benefits, such as low computation 

time, high computation power, and on-demand availability of resources. However, the 

application suffers from high latency, jitter, and packet losses (Abolfazli et al., 2014). In 
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the case of server-based cloudlet, mobile devices offload their computations to the 

locally available resource-rich devices, such as servers. In the absence of any server-

based cloudlet, the mobile devices share their resources to enable the execution of 

compute-intensive applications. This computing model is known as MAC (Guo et al., 

2016).  

 
Figure 1.2: A simplified example of MCC  

1.1.3. Mobile Ad Hoc Cloud 

 Noticeable advances in MCC have paved the way towards new computing 

paradigm called MAC. MAC is a group of mobile devices in the vicinity that share their 

resources with each other by taking some incentives, as shown in figure 1.3 (Yaqoob et 

al., 2016). MAC is a new type of MCC. It is usually deployed over Mobile Ad Hoc 

Networks (MANETs) which allows the execution of compute-intensive applications by 

leveraging the resources of other mobile devices (Zaghdoudi et al., 2015). As an 

alternative solution, MAC is an emerging paradigm that mitigates several bottlenecks of 

server-based cloudlets, such as longer delay and low throughput. Moreover, MAC offers 

a viable solution for a mobile device to execute an application when there is no or weak 

wireless Internet connection to the remote cloud or the nearby server-based cloudlet is 

not available (Loke et al., 2015). In MAC, mobile devices are expected to manage the 

cloud, authenticate the users, monitor the resources, and schedule the tasks besides 

executing the application. Such additional functionalities consume mobile device energy 
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and processor cycles. Finally, local stationary devices, such as personal computers, set-

top boxes can also become members of MAC. 

Inside Cloud - Provider Nodes
Outside Cloud - Consumer Nodes

 

Figure 1.3: A typical MAC environment 

1.2 Research Motivation 

 Recent studies reveal that mobile devices are a great source of idle resources. It 

is reported that per hour usage of the mobile phones is less than 25% (Falaki et al., 

2010). Another research indicates that mobile supercomputing is not always the solution 

because of the high cost of 3G networks (Miluzzo et al., 2012). WiFi connectivity is 

always not present (e.g., less than 20% connectivity is not present in US cities) 

(Balasubramanian et al., 2010). The study done by Golchay et al. (2016) reveals that 

most of the devices surrounding users in a nearby future will be mobile devices, and 

able to perform the processing of compute-intensive tasks smoothly. Hence, these 

statistics provide a strong motivation for carrying research in MAC paradigm as 

performing task execution using local mobile device resources will become a core 

component of the future computing landscape.   

  In MAC, mobile device resources are not free and some incentives need to be 

paid for lending the computing services from the nearby mobile devices (Miluzzo et al., 

2012). Therefore, performing task allocation in MAC without considering the mobile 

device resources and operational context can be very expensive in terms of incentives. 
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The task allocation must be done in such a way that it ensures efficient resource 

utilization. The efficient utilization of the mobile device resources not only minimize 

and stabilize the incentive cost, but also improves task execution experience of the user 

by minimizing the task execution time and energy consumption that leads to the success 

of MAC. Thus, these factors motivate to carry research in the MAC with respect to 

heterogeneity-aware task allocation.  

 MAC applications where heterogeneity-aware task allocation solutions can play 

an important role are numerous: gaming, unmanned vehicular surveillance, battlefields, 

disaster recovery, and vehicular safety. In gaming, players share the resources to run the 

game in the distributed manner. The devices connectivity is considered stable as the 

players tend to stay in the same place while playing the game. In the unmanned 

vehicular surveillance, a group of unmanned vehicles forms the MAC to monitor the 

area and run the information fusion algorithms. Similarly, the battlefields, disaster 

recovery, and vehicular safety applications can also be run on the group of cloud 

provider nodes to perform the compute-intensive tasks on the resource-constrained 

mobile devices.  

1.3 Statement of Problem  

 The devices forming MAC usually have different specifications and operational 

contexts. These devices have a different level of workload running on their background. 

The higher workload on the device increases the execution time in the MAC. The CPU 

speed and number of cores of the mobile devices can also vary which affect the 

application performance and lifetime of the MAC.  

 The execution of larger size task on a device that has high specification can 

reduce the execution time of the task compared to low specification devices. The 

complexity of the task also affects its execution time. The task with high complexity 

takes more time in execution.    
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 The existing random-based task allocation solution does not incorporate the 

mobile device resource and operational heterogeneity during task allocation process. 

However, task allocation is performed in a random manner. In addition, random-based 

task allocation does not consider the operational context of the mobile devices. 

Therefore, there is a need of heterogeneity-aware task allocation algorithms to minimize 

the execution time and energy consumption in MAC. 

 Based on this discussion, it can be argued that the problem of inefficient task 

allocation has not been addressed. Thus, the highlighted research gap leads to the 

following statement of problem. 

MAC is a group of mobile devices in the vicinity that share their resources with each 

other to execute compute-intensive tasks. However, negligence of mobile device 

resources and operational heterogeneity-measuring parameters, such as CPU speed, 

number of cores, and workload, when allocating task in MAC, causes inefficient 

resource utilization that prolongs task execution time and consumes large amounts of 

energy. Task execution performance is remarkably degraded because of the longer 

execution time and high energy consumption that impede the realization of MAC. 

1.4 Statement of Objectives 

 This research work aims to address the problem of inefficient task allocation that 

results in longer execution time and high energy consumption. The following objectives 

are defined to achieve the aim of this research. 

1. To review the state-of-the-art on MAC for obtaining insights with respect to 

task allocation issue. 

2. To investigate the impact of heterogeneity-measuring parameters and random-

based task allocation on task execution performance.  
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3. To propose and develop five heterogeneity-aware task allocation solutions for 

minimizing the task execution time and energy consumption, and devise a 

mathematical model. 

4. To evaluate the performance of the proposed heterogeneity-aware task 

allocation solutions with random-based task allocation in terms of execution 

time and energy consumption, and validate the developed mathematical model. 

1.5 Proposed Research Methodology 

 The research work is divided into four phases, as shown in figure 1.4 to achieve 

the set of objectives defined in Section 1.4. Each research phase is targeted to achieve 

an objective. In the first phase, we review the state-of-the-art research carried out in the 

MAC domain to identify the research gap. We investigate several problems inhibiting 

the adoption of MAC and review the corresponding solutions by classifying the 

literature. The investigation reveals that the research in MAC is in its infancy and many 

issues associated with this domain are remain to be solved. Among these issues, we 

identify one task allocation issue because the random-based task allocation solution 

does not enable the controller to consider the resource and operational heterogeneity of 

mobile devices while allocating tasks in MAC.  

 The second phase of research involves investigating the research problem by 

conducting experiments on real mobile devices. In this context, a multithreaded matrix 

multiplication application is developed to use as compute-intensive tasks. The impact of 

mobile device resource and operational heterogeneity, such as CPU speed, number of 

cores, and workload is measured on task execution performance to establish the 

research problem. 
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Figure 1.4: Proposed research methodology 

 Five heterogeneity-aware task allocation algorithms are proposed in the third 

phase of the research. Implementation of the solutions is also carried out in this phase. 

The proposed solutions aim to minimize the execution time of the compute-intensive 

tasks and save the energy consumption in MAC. The execution time and energy 

consumption are minimized by incorporating heterogeneity-measuring parameters. A 

mathematical model is developed to validate the execution time results obtained from 

the proposed solutions. 

 Evaluation of the implemented algorithms and validation of the developed 

mathematical model are performed in the fourth phase. The developed multi-threaded 

matrix multiplication application is tested with different specifications of the mobile 

devices. The mathematical model is validated against the empirical results obtained 

from five proposed heterogeneity-aware task allocation solutions. Furthermore, 

statistical analyses are applied to signifying the results. Lastly, comparison of the five 

proposed solutions is done with the random-based task allocation in MAC paradigm. 

1.6 Thesis Layout 

Table 1.1 presents organization of the thesis. This thesis is organized into seven 

chapters as follows:  
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Table 1.1: Thesis Layout 

What? Why? How? 

Introduction 

(a) Highlighting the reason for the research 

(b) Stating the research  problem and 

presenting the research objectives 

(c) Discussing the thesis organization 

(a) Stating the rationale for 

undertaking the research 

(b) Formally writing the statement of 

problem and statement of objectives 

Literature Review: 

Mobile Ad Hoc 

Cloud 

(a) Investigating the state-of-the-art research 

in MAC for identifying the research problem 

 

 

(a) Analyzing the critical aspects of 

the existing solutions 

(b) Classifying and categorizing the 

literature by devising two taxonomies 

 (c) Performing comparison based on 

objectives, strengths, and weaknesses 

(d) Identifying the open research 

issues 

Problem Analysis 

(a) Establishing the identified research  

problem  to understand the impact of the 

problem 

(a) Conducting empirical study to 

analyze the impact of heterogeneity- 

measuring parameters on task 

execution performance in  MAC 

paradigm  

(b) Analyzing the impact of the 

random-based task allocation on task 

execution performance 

Heterogeneity-

aware Task 

Allocation 

Algorithms 

(a) Giving the clear understanding of the 

proposed heterogeneity-aware task allocation 

solutions to the readers 

(b) Measuring reliability of the proposed 

solutions 

 

(a) Presenting the pseudo-codes of 

the proposed five algorithms 

(b) Discussing the mathematical 

model of the proposed five solutions  

(c) Highlighting the distinct features 

of the proposed five solutions to 

measure their effectiveness 

Evaluation 

(a) Presenting the collected data and  

discussing the statistical methods used to 

measure the accuracy of the collected data 

(b) Finding whether or not  differences 

between the results obtained from proposed 

and random-based task allocation are 

significant   

  

(a) Reporting the collected data 

(b) Explaining the tools used for 

evaluating the proposed solutions 

(c) Applying statistical methods on 

the collected data  to find the 

statistical and practical differences 

between the results obtained from 

proposed solutions’ and  random-

based task allocation 

(c) Analyzing the differences 

between the mathematical model and 

proposed solutions results through 

various statistical methods/tests. 

Results and 

Discussion 

(a) Highlighting the trustworthiness and 

effectiveness of the proposed heterogeneity-

aware task allocation solutions by validating 

and analyzing the simulation results 

 

(a) Discussing the insights obtained 

from the proposed solutions results 

(b) Comparing the performance of 

heterogeneity-aware task allocation 

solutions with random-based task 

allocation  

(c) Discussing the statistical 

significance of the proposed 

solutions’ results  

(d) Validating  the mathematical 

model by comparing it with the 

results obtained from the proposed 

solutions 

Conclusion 

(a) Summarizing the findings of the research 

work and highlighting the importance and 

deficiencies of the proposed solutions 

 

(a) Reporting the re-examination of 

the research objectives 

b) Summarizing the findings of the 

research work and  highlighting the 

significance of the proposed solutions 

(c) Discussing the limitations of the 

research work and suggesting future 

directions of the research 
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 Chapter 2 presents a review of the state-of-the-art research carried out in the 

MAC domain. We analyze several obstacles to the adoption of MAC and review the 

solutions by devising a taxonomy. Moreover, MAC roots are analyzed and taxonomized 

as architectural components, applications, objectives, characteristics, execution model, 

scheduling type, formation technologies, and node types. The similarities and 

differences among existing proposed solutions by highlighting the advantages and 

disadvantages are also investigated. We also compare the literature based on objectives. 

Furthermore, the chapter discusses several new principles for the deployment of MAC. 

Lastly, several open research issues are presented. Among these issues, we identify one 

as a research problem. 

 Chapter 3 presents the experimental study to analyze the impact of mobile 

device resource and operational heterogeneity on task execution performance in MAC. 

This chapter aims at establishing the research problem. The effect of resource and 

operational heterogeneity is investigated with respect to different aspects as follows: (a) 

CPU speed, (b) number of cores, and (c) workload. Moreover, the impact of random-

based task allocation on task execution performance is also investigated. 

Chapter 4 presents five heterogeneity-aware algorithms that aim to solve the 

issue of longer execution time and high energy consumption in MAC. These algorithms 

are presented in form of pseudo-codes in the chapter. The distinctive features of the 

proposed algorithms are also discussed. Furthermore, a mathematical model of the 

solutions in terms of execution time is presented. 

 Chapter 5 presents the data collected for the evaluation of the proposed 

solutions. It explains the tools used for evaluating the proposed solutions, performance 

measuring parameters, and the statistical methods that help to analyze the accuracy of 

the collected data obtained from the mathematical model and proposed solutions. In 
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addition, statistical and practical significance of the results compared to random-based 

task allocation is also discussed in this chapter. 

 Chapter 6 discusses the effectiveness of the proposed solutions by analyzing the 

collected results reported in Chapter 5. It analyzes the different aspects of task 

allocation regarding execution time and energy consumption. Moreover, this chapter 

provides a discussion on the validation of the mathematical model with the simulation 

results. Furthermore, the performance of the proposed solutions is compared with the 

random-based task allocation in terms of execution time and energy consumption. 

 Chapter 7 concludes the thesis by reflecting on the sets of objectives. It 

summarizes the findings of the research work, highlights the significance of the 

proposed solutions, discusses the limitations of the study, and recommends future 

directions of the research. 
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CHAPTER 2: MOBILE AD HOC CLOUD 

This chapter aims to identify the most significant of MAC’s shortcomings. To achieve 

this, we investigate the recent research efforts directed at MAC. We analyze several 

problems hindering the adoption of MAC and review corresponding solutions by 

devising a taxonomy. MAC roots are analyzed and taxonomized as architectural 

components, applications, objectives, characteristics, execution model, scheduling type, 

communication technologies and nodes types. The similarities and differences among 

proposed solutions are analyzed in terms of their advantages and disadvantages. We 

also compare the literature based on objectives. Furthermore, the chapter advocates that 

the problems stem from the intrinsic characteristics of MAC by identifying several new 

principles. Finally, several open research issues are presented for further investigation. 

 The chapter is organized into five sections. In Section 2.1, we investigate the 

latest research conducted in the MAC domain. Section 2.2 discusses the taxonomy of 

MAC. In Section 2.3, we identify and discuss the key principles for successful 

deployment of MAC. Section 2.4 discusses open research issues in realizing the vision 

of MAC. Finally, we provide concluding remarks in Section 2.5. 

2.1 State-of-the-art in MAC  

 MAC is in its infancy and a very limited literature is available on the subject. 

The purpose of this section is to discuss the research carried out in MAC domain. In this 

context, we investigate several problems inhibiting the adoption of MAC and review 

corresponding solutions by devising a taxonomy shown in figure 2.1 (Yaqoob et al., 

2016). Furthermore, we compare the existing solutions in the context of task offloading, 

task scheduling and allocation, MAC formation, security and privacy, mobility and 

incentives, and resource management in tables 2.1-2.6, respectively (Yaqoob et al., 

2016). 
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Figure 2.1: Context-based literature taxonomy 
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2.1.1. Task Offloading 

 The study done by B. Li et al. (2015) focused on the decision problem about 

how to offload computation-intensive applications in MAC. To address the problem, a 

set of online and batch scheduling heuristics, namely MinHop, MetComm, MCTComm, 

MinMinComm, MaxMinComm, and SufferageComm were proposed that offload the 

independent tasks among nodes in a dynamic manner. The MinHop heuristic assigns a 

task based on a minimum number of hops from the client node. The METComm 

heuristic assigns task to that device that can take minimum execution time to complete 

the task. The MCTComm heuristic assigns tasks based on the minimum expected 

completion time on a device. The remaining heuristics are used to assign a task by 

considering the communication cost. To investigate the performance of proposed 

heuristics different metrics, such as average makespan, the average waiting time, the 

average slowdown and the average utilization are used. The results suggested that the 

expected completion time must be taken into account while mapping the tasks. 

Moreover, the proposed heuristics are efficient in terms of performance, however, only 

the matter of problem is complexity.    

 A novel service mode called opportunistic ad hoc cloudlet service (OCS) was 

proposed in (Chen et al., 2015). Moreover, a new architecture of cloudlet was presented. 

Classification of the offloading is categorized into three modes, namely remote cloud 

service (RCS), connected ad hoc cloudlet service (CCS), and (OCS). In addition, the 

OCS is further classified into three categories, namely OCS (back & forth), OCS (one 

way-3G/4G), and OCS (one way-WiFi). The OCS mode is treated as intermediate 

between RCS and CCS mode. The OCS mode can enable the energy-efficient and 

intelligent strategy to offload compute-intensive task using ad hoc cloudlet in cost-

effective and flexible manner. Despite many advantages of the OCS, selecting reliable 

and secure nodes to form ad hoc cloudlet to offload the task is a major problem.  
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Table 2.1: Comparison of task offloading based proposed solutions 

Proposed Solutions Specified Focus Advantages Disadvantages 

MinHop 

MetComm MCTComm 

MinMinComm 

MaxMinComm 

SufferageComm 

(B. Li et al., 2015) 

To focus on the 

decision problem about 

how to offload 

computation-intensive 

applications in MAC. 

 High performance 

 Optimal task 

Offloading 

 High complexity 

 Longer time in 

decision-making 

process 

OCS 

RCS 

CCS  

(Chen et al., 2015) 

To enable the energy-

efficient and intelligent 

strategy to offload 

compute-intensive task 

using ad hoc cloudlet. 

 Cost-effective  

 Flexible 

 Selection of 

reliable and secure 

nodes is difficult. 

2.1.2. Task Scheduling and Allocation 

 To solve the problem of task allocation in heterogeneous wireless environment, 

algorithms were proposed in (Lu et al., 2015). The objective of this study was to 

minimize average task response time for an entire set of tasks by determining whether 

they need to be distributed or not and on which device they should be executed. 

Moreover, the algorithm also considered the parameters, such as communication delay, 

processing delay, and queuing delay while allocating the task. Furthermore, the authors 

proved the task allocation problem as NP-hard and proposed two approaches named 

offline centralized and online distributed to solve the problem. The results were very 

promising in terms of response time in different scenarios. Despite many benefits of the 

proposed approaches, load imbalance problem will remain a challenging issue that 

needs to be solved in future. 

A new cyber foraging-based system called Scavenger was proposed in 

(Kristensen et al., 2010). It enables the task distribution and scheduling mechanism 

among the nodes taking part in communication. To perform the scheduling, scavenger 

considers multiple factors, such as data locality, network capability, device strength, and 

task complexity. Moreover, the scheduler helps to determine whether the task execution 

would be feasible on the local device or in a remote environment. The proposed system 

shows significant performance improvement in mobile applications execution and also 
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results in saving energy consumption. However, scheduling a small task in Scavenger 

leads to time wastage because it requires more time than the actual execution time. 

 Shi et al. (2016) formulated the energy efficient task scheduling problem in local 

mobile clouds. In this context, an adaptive probabilistic scheduler was proposed that 

helps to schedule different tasks by satisfying the task’s time constraints while keeping 

the low energy consumption for compute-intensive real-time applications. The proposed 

scheduler provides many advantages such energy-efficient scheduling, scalability, and 

flexibility. However, high complexity is one of the disadvantages. 

 A new task allocation mechanism with the objective of reducing the energy 

consumption and the computational cost was proposed in (Guo et al., 2016).  Moreover, 

a two-stage Stackelberg game was formulated to determine the number of execution 

units that slave nodes are willing to offer, while master node sets the price strategies for 

the different slave nodes according to their shared resources. Although proposed 

solution helps to solve the task allocation problem in the ad hoc mobile cloud, however, 

negligence of resource and operational heterogeneity of mobile devices while allocating 

the tasks is one of the disadvantages. 

Table 2.2: Comparison of task scheduling and allocation based proposed solutions 

Proposed Solutions Specified Focus Advantages Disadvantages 

Scavenger (Kristensen et 

al., 2010) 

To enable the task 

distribution and 

scheduling mechanism 

among the nodes taking 

part in communication. 

 Performance 

enhancement 

 Energy saving 

 

 Wastage of time 

Offline centralized and 

online distributed (Lu et 

al., 2015) 

To minimize average 

task response time for an 

entire set of tasks by 

determining whether 

tasks need to be 

distributed to a mobile 

device or not and on 

which mobile device it 

should be executed. 

 Fast task execution 

 Energy efficient 

 Imbalance  load 

balancing 

Adaptive probabilistic 

scheduler  (Shi et al., 

2016) 

To schedule the tasks 

while keeping low 

energy consumption. 

 Energy-efficient 

scheduling 

 Scalable 

 Flexible 

 High complexity 

Task allocation 

mechanism  (Guo et al., 

2016) 

To enable task allocation 

for ad hoc mobile clouds. 
 Optimal task 

allocation helps to 

reduce energy 

consumption  and 

computational cost 

 Negligence of 

mobile device 

resource and 

operational 

heterogeneity 
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2.1.3. MAC Formation 

 C-Protocol was proposed in (Zaghdoudi et al., 2015). It is responsible for the 

management and deployment of P2P mobile cloud over MANET. To establish the 

MAC, c-protocol uses four types of messages, such as cloud setup, add provider, add 

customer, and cloud setup. The proposed protocol manages the mobile nodes in a 

dynamic manner. In the infrastructure-less environment, mobile nodes can easily divide 

their compute-intensive tasks to perform the execution by using proposed architecture 

of MAC platform. The establishment of MAC can provide several advantages, such as 

ubiquity, availability, affordability, opportunity, and spontaneity. However, challenges, 

such as how to convince users to contribute through their mobile devices as a provider 

nodes and lightweight formation require attention.  

 A collaborative platform named transient cloud was proposed in (Penner et al., 

2014). It allows nearby mobile devices to share their resources with each other. 

Moreover, modified version of Hungarian method to perform the task assignment within 

the ad hoc cloud is proposed that provides many advantages, such as load balancing, 

and collocating executions. The proposed platform allows users to create MAC using 

on-the-fly mobile devices available in the vicinity. The only limitation of the work is 

that the current technologies only allow partial implementation of transient cloud but 

still it can show the potential of MAC. 

 A sporadic cloud-based mobile augmentation (S-CMA) solution was proposed 

in (Ordonez-Morales et al., 2015). It enables the users to lend the resources from ad hoc 

cluster of moving mobile devices. In the solution, a virtualization layer is used to tackle 

the complexity that is derived from the mobility of the cluster. S-CMA enables sharing 

and allocation of resources in mobile ad hoc cluster. Moreover, it provides a solution to 

existing approaches that can improve the experience of mobile users towards adapting 

the mobile ad hoc cluster platform. Furthermore, the proposed S-CMA helps to cope 
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with many challenges associated with traditional CMA, such as noticeable computation, 

communication cost of migrating compute-intensive tasks to remote servers, and 

network latency. Despite many merits of S-CMA, challenges, such as enabling 

autonomy and coping with mobility problem are yet to be investigated.   

 An ad hoc cloudlet-based gaming architecture was proposed in (Chi et al., 

2014). The architecture is comprised of two modules. The first module enables the 

mobile users to download the gaming resources from the cloud servers or nearby mobile 

users.  The second module is based on cloudlet-based task allocation that enables the 

users to execute their tasks on local nearby available mobile devices in a dynamic 

manner. To formulate the problem for both of modules, several algorithms have been 

proposed that result in minimizing the energy consumption cost compared to cloud-

based gaming architecture. The only problem in the proposed algorithms is ignoring 

heterogeneous resources of mobile devices forming mobile ad hoc cloudlet while 

allocating task that causes wastage of resources in terms of energy consumption and 

execution time. 

 A distributed platform (i.e., Hyrax) was proposed in  (Hamza et al., 2012). It 

allows mobile devices in the vicinity to execute compute-intensive tasks. It uses fault 

tolerance mechanism of Hadoop to minimize frequent disconnections with mobile 

servers. Mobile devices can access remote cloud if the nearby resources are not 

available. Hyrax server has two client-side MapReduce processes, called NameNode 

and JobTracker, to manage computation process among a group of mobile devices. 

These devices employ two Hadoop processes (i.e., TaskTracker and DataNode) to 

receive tasks from the JobTracker. These devices connect to the server and other 

devices via IEEE 802.11g technology. The Hyrax transparently uses distributed 

resources and provides interoperability across heterogeneous platforms. However, the 

Hyrax has high overhead because of the complexity of Hadoop algorithm. 
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 A fine-grained cloudlet architecture was proposed in (Verbelen et al., 2012) that 

helps to manage applications at the component level. The proposed architecture enables 

the users to dynamically form the cloudlet by finding mobile devices with available 

resources within a local area network. Moreover, the proposed cloudlet architecture also 

provides a framework that is responsible for managing and distributing component 

based applications. These applications usually have strict real-time requirements. 

Despite many benefits of the proposed architecture, such as fast execution of compute-

intensive applications and rapid data analysis, several challenges with respect to 

deployment, calculation and scheduling are yet to be considered.  

 Considering the ad hoc nature of MAC, the authors in (Alnuem et al., 2014; 

Imran et al., 2013) proposed a localized and distributed algorithm for segregation of 

critical and non-critical nodes. Based on limited topology information (i.e., 1-hop, 2-

hop), each node determines whether it is critical or not. A node is determined as critical 

if its removal (due to failure or movement) partitions the network into disjoint segments, 

non-critical otherwise. The proposed algorithm can help to avoid engaging critical 

nodes for compute-intensive task execution.  

Table 2.3: Comparison of MAC formation based proposed solution 

Proposed Solutions Specified Focus Advantages Disadvantages 

C-Protocol (Zaghdoudi 

et al., 2015) 

To manage and deploy 

P2P mobile cloud over 

MANET. 

 Ubiquity 

 Availability 

 Affordability   

 Spontaneity 

 Lack of incentive 

schemes 

Transient Cloud 

(Penner et al., 2014) 

To enable the nearby 

mobile devices to share 

their resources as a 

cloud. 

 Enable compute 

 intensive task 

 execution in a 

 distributed manner. 

 Partial 

implementation 

 Lack of incentive 

schemes 

S-CMA (Ordonez-

Morales et al., 2015) 

To enable the users to 

lend the resources from 

ad hoc cluster of 

moving mobile devices. 

 Noticeable 

computation 

 Minimized 

communication 

cost  

 Low network 

 Latency 

 Negligence of 

mobility  factor      

Ad hoc 

cloudlet (Chi et al., 

2014) 

To propose a gaming 

architecture that is 

based on ad hoc 

cloudlet. 

 Alternative solution 

for infrastructure 

 less environment 

 Costly due to 

incentives 
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Table2.3: continued, 

Proposed Solutions Specified Focus Advantages Disadvantages 

Hyrax (Hamza et al., 

2012) 

To provide a distributed 

platform of mobile 

devices in a local 

proximity to execute the 

compute-intensive tasks 

on available mobile 

devices. 

 Interoperability 

 Parallel task 

 Processing 

 High overhead 

 Complexity 

A fine-grained cloudlet 

architecture (Verbelen 

et al., 2012) 

To enable the users to 

dynamically form the 

cloudlet by finding 

mobile devices with 

available resources 

within a local area 

network 

 Fast execution 

 Rapid data analysis 

 Inefficient  

scheduling 

 Complex 

calculation 

Ad hoc mobile cloud 

(Maly et al., 2015) 

To enable the mobile 

devices to form ad hoc 

mobile cloud. 

 Secure formation  Partial 

implementation 

 Lack of rigorous 

evaluation 

 Ad hoc mobile cloud computing-based solution called m-cloud was proposed in 

(Maly et al., 2015). Due to the openness of the Android platform’s source code, the 

solution is implemented in it. Proof-of-concept application can dynamically download 

modules from a server and then it is possible to run them. The proposed m-cloud 

enables the mobile devices to use the mobile technologies in emergency situations. In 

addition, a security policy has also been introduced to avoid the downloading and 

running of malicious code. Despite many advantages of the work, lack of full 

implementation and rigorous evaluation are some of the limitations that would be 

investigated in the future as discussed in the study.  

2.1.4. Privacy and Security 

 A trusted algorithm with the objective of securing spontaneous ad hoc mobile 

cloud network was proposed in (Lacuesta et al., 2014). The algorithm ensures the 

reliability and security of the nodes responsible for transmission and communication in 

the MAC. Furthermore, the algorithm also helps to manage the joining and leaving 

nodes mechanism. The algorithm is based on AES encryption that employs simple key 

management feature. The algorithm can ensure the secure communication among nodes 
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forming MAC. The only problem of the algorithm is delay caused by encryption 

mechanism compared to without security procedure. 

 The study (Gong et al., 2015) investigated the privacy issues and proposed a 

framework that ensures the location privacy while allocating the task to mobile devices 

in MAC. The framework is based on differential privacy and geo cast that enables the 

devices to share their resources in mobile ad hoc cloudlet by ensuring the privacy of 

location information. Moreover, analytical model and task allocation strategies have 

been developed. The proposed framework is not only ensuring privacy without affecting 

the quality of services (QoSs) but also minimizes the system overhead in MAC. Despite 

many benefits of the proposed framework, such as location privacy assurance, low 

system overhead, and high QoS, however, integrity, and confidentiality of user data are 

remaining concerns.  

 A trust management system (TMC) for ad hoc mobile clouds was proposed in 

(Hammam et al., 2013). The goal of the proposed system is to prevent the malicious 

mobile nodes from participating in ad hoc mobile cloud. TMC has built over 

PlanetCloud that was introduced in terms of ubiquitous computing. It monitors the 

nodes once ad hoc cloud is formed and identifies good and bad nodes by looking at their 

behavior. After observing the behavior, TMC computes the trust value and store it in the 

cloud repository. The mobile devices validate the trust value from the stored values and 

then allow to any mobile node for participating in ad hoc mobile cloud. The node with 

larger trust value will be considered more reliable and secure. The only problem 

associated with TMC is the overhead of trusted value storage in the cloud.  

 The authors in (Mandal et al., 2015) proposed a solution that helps in enabling 

pairwise key establishment and distribution for the devices participating in the MAC. 

The objective of this study was to enable secure communication among the mobile 

devices forming the MAC. The results demonstrated that the solution reduced up to 
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75% in the number of SekGens required to establish keys in the MAC compared to non-

optimized naive schemes. However, the proposed scheme is based on centralized 

approach instead of distributed which results in a lack of parallel execution support.  

 The study done by Idowu et al. (2012) revealed how QoS can be improved for 

critical infrastructure systems using probabilistic model. The model can help in 

detecting vulnerabilities, synchronizing mobile sensors using ad hoc and secure 

Bayesian networks in cloud computing. The proposed model ensures high QoSs in 

critical infrastructure protection by deploying SaaS and PaaS in cloud computing. 

Moreover, the proposed model helps in monitoring and predicting wireless nodes 

behavior to mobile users. The proposed model can provide many advantages, such as 

reliable detection and recognition of a condition that can enable to mitigate the risk for 

the critical system protection. The only problem with the proposed model is its 

implementation and evaluation that seems very complex. 

Table 2.4: Comparison of security and privacy based proposed solutions 

Proposed Solutions Specified Focus Advantages Disadvantages 

TMC (Hammam et al., 

2013) 

To prevent the malicious 

mobile nodes from 

participating in MAC. 

 Trust assurance 

 Reliability 

 Security 

 Overhead of 

trusted value 

storage 

Location privacy 

(Gong et al., 2015) 

To ensure the location 

privacy while allocating 

the task to mobile 

devices in MAC. 

 Location privacy  

assurance 

 Low system 

overhead   

 High quality  

of service 

 Lack of  

confidentiality 

and integrity of 

data 

Trust assurance 

(Lacuesta et al., 2014) 

To ensure the reliability 

and security of the nodes 

responsible for 

transmission and 

communication in MAC. 

 Secure 

communication 

 Delay in 

 communication 

A probabilistic model 

for 

vulnerability detection 

(Idowu et al., 2012) 

To detect vulnerabilities, 

and synchronizing 

mobile sensors using ad 

hoc and secure Bayesian 

networks in cloud 

computing. 

 Reliable detection  

 Recognition of  

Condition 

 Complex 

implementation 

and evaluation 

A pairwise Key 

establishment scheme 

(Mandal et al., 2015) 

To enable pairwise key 

establishment for the 

devices participating in 

MAC. 

 Minimization of 

number of SekGens 

executions 

 Secure 

communication 

 Lack of  parallel 

execution 

support 
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2.1.5. Incentives and Mobility 

 A vision and initial design considerations of MAC was provided in (Miluzzo et 

al., 2012). The concept of the cloud provider and cloud customer nodes were also 

introduced. Moreover, the incentive scheme with mathematical examples was also 

proposed. The authors envisioned that mobile devices will be able to form an ad hoc 

cloud due to their high processing and memory capabilities. The goal of the study was 

to provide a vision to the researchers that in future MAC will be a new computing 

paradigm that can enable the users to execute their compute-intensive task in the 

dynamic and infrastructure-less environment. 

A virtual cloud framework that enables MAC computing using the mobile 

devices in the local vicinity was proposed in (Huerta-Canepa et al., 2010). The 

framework detects the nodes available in a specific area by checking its stability and 

mobility pattern and form a virtual cloud that can allow the mobile devices to execute 

compute-intensive tasks. The architecture of the proposed framework is comprised of 

five components, namely application manager, resource manager, context manager, p2p 

component and offload manager. The work was a preliminary and open door for future 

research in terms of task management (when the node executing the task and suddenly 

leaves the cloud) and selection of secure mobile node for job execution. 

 A workload distribution scheme was proposed in (Truong-Huu et al., 2014) that 

considers the randomness of the connection time among the cooperating devices by 

adopting a multi-stage stochastic programming approach. The scheme enables the 

mobile devices to form MAC and distribute their workload with each other by 

considering the mobility factor. Once the ad hoc cloud is formed and the workload is 

distributed to the neighboring devices, difficulty arises when provider nodes may move 

out of the range before sending results back to the source node. To cope with this 

problem, stochastic programming approach is employed that enable optimal decision 
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making. Furthermore, to make the optimal workload distribution, parameters, such as 

computing capacity, network bandwidth, and energy constraints have been proposed. 

The evaluation results show that the stochastic approach not only enables optimal 

workload distribution but also deals with the randomness of connection time problem 

that occurs after the workload distribution. However, to motivate users to participate in 

the execution of compute intensive tasks, incentive mechanisms must be provided. 

 Tang et al. (2016) proposed a double-sided bidding mechanism in mobile cloud 

where each user who wants to execute his task and the supplier who is willing to share 

the device resources can submit a bid though demand resource-price function and 

supply resource-price function, respectively. Despite many advantages of the proposed 

mechanism, such as attractive and nominal, however, the bidding mechanism causes 

unnecessary energy consumption.  

Table 2.5: Comparison of incentives and mobility based proposed solutions 

Proposed Solutions Specified Focus Advantages Disadvantages 

Stochastic 

programming approach 

(Truong-Huu et al., 

2014) 

To distribute the 

workload by 

considering the 

randomness of the 

connection time among 

the cooperating devices 

by adopting a multi-

stage stochastic 

programming 

approach. 

 Optimal workload 

distribution  

 Randomness of 

       connection time 

 Low-level QoS 

 

Virtual cloud 

computing (Huerta-

Canepa et al., 2010) 

To enable ad hoc cloud 

computing using the 

mobile devices in the 

local vicinity. 

 Incorporation of 

 mobility pattern while 

forming  MAC 

 Significant delay 

while forming ad hoc 

cloud due to decisions 

involvement. 

Incentive scheme 

(Miluzzo et al., 2012) 

To motivate the mobile 

user to opt-in MAC 

participation. 

 Nominal 

 Truthful 

 It is not designed by 

considering the 

rationality of 

 Individual mobile 

users. 

Directory-based 

architecture  

(Yousafzai et al., 

2016) 

To keep track of the 

retribution and reward 

valuations 

 Provide motivation to 

the user to participate 

in MAC 

 Third party 

involvement can raise 

management  security 

and privacy concerns 

Double-sided bidding 

mechanism (Tang et 

al., 2016) 

To facilitate the user 

and supplier by 

providing a double-

sided bidding 

mechanism. 

 Attractive 

 Nominal 

 Unnecessary energy 

consumption   

 

Univ
ers

ity
 of

 M
ala

ya



 

26 

 

 A directory-based framework was proposed in (Yousafzai et al., 2016) to keep 

track of the retribution and reward valuations (in terms of energy saved and consumed) 

for devices even after they move from one ad hoc environment to another. The proposed 

framework can help to motivate the mobile users to share their devices in MAC 

environment. However, the involvement of the third party that keeps track of retribution 

and reward valuations can raise some management, privacy, and security concerns.  

2.1.6. Resource Management 

 A multihop mobile ad hoc cloud  (MMADC) framework was proposed in 

(Malhotra et al., 2014). The framework improves the resource utilization and also copes 

with the scalability and connectivity issues in MAC. The MMADC is comprised of 

three types of nodes, namely, mobiles nodes (CN), consumer nodes (PN), and 

matchmakers node (MN). If CN wants to execute some task, it first sends a request to 

MN that keeps the list of available PN, in this way a cloud is formed. The MN is usually 

multiple hops away from the CN that can degrade the performance of the task in terms 

of overall systems performance. The proposed framework coped with this problem by 

dividing the ad hoc network into static and dynamic clusters. While the former divides 

the cluster into fixed size, the later divides into dynamic sizes. The proposed framework 

can help to solve many problems related to scalability, memory space, and processing 

capabilities. The only disadvantage of the work is the extra time that is required to select 

cluster head. 

 PlanetCloud was proposed in  (Khalifa et al., 2014b). It provides intrinsic 

support for highly mobile and heterogeneously-compostable MAC. Moreover, it enables 

the MAC to adapt the real-time dynamics variations in its underlying infrastructure by 

isolating the hardware and code management concerns. The PlanetCloud is powered by 

an application layer that is responsible for encapsulating cloud applications and enable 

safe and reliable execution in the resource heterogeneous MAC environment. The 
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evaluation results of the PlanetCloud platform show that it can perform very well in 

terms of execution time with very less number of VM migrations even in the case when 

a large number of nodes left the MAC.  Despite many advantages of PlanetCloud, such 

as fast execution time and minimum delay overhead, however, complexity is a major 

concern.    

Table 2.6: Comparison of resource management based proposed solutions 

Proposed Solutions Specified Focus Advantages Disadvantages 

MMADC (Malhotra et 

al., 2014) 

To improve the 

resource utilization and 

also cope with the 

scalability and 

connectivity issues in 

MAC 

 Scalability 

 Memory space 

 Processing 

capabilities 

 Cluster head 

selection causes 

wastage of time 

PlanetCloud (Khalifa et 

al., 2014b) 

To provide intrinsic 

support for highly 

mobile and 

heterogeneously-

compostable MACs. 

 Fast task execution  

  Minimum delay 

Overhead 

 Complexity 

2.2 Taxonomy of MAC 

 Figure 2.2 shows the taxonomy of MAC where the following parameters are 

considered for the classification of the research work. a) architectural components, b) 

applications, c) objectives, d) characteristics, e) execution model, f) scheduling type, g) 

formation technologies, and h) node types (Yaqoob et al., 2016). Furthermore, in this 

section comparison of literature based on objectives is also presented in table 2.7 

(Yaqoob et al., 2016).  

 
Figure 2.2: MAC taxonomy based on literature 
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Table 2.7: Literature comparison based on objectives 

 
MAC 

Formation 
Mobility Incentives 

Quality 

of Service 

Resource 

Management 

Task 

offloading & 

Allocation 

Energy-

Efficient 

Cost-

effective 
Security Privacy 

(B. Li et al., 2015)           
(Kristensen et al., 2010)           
(Zaghdoudi et al., 2015)           
(Lacuesta et al., 2014)           
(Idowu et al., 2012)           
(Chi et al., 2014)           
(Verbelen et al., 2012)           
(Lu et al., 2015)           
(Miluzzo et al., 2012)           
(Malhotra et al., 2014)           
(Huerta-Canepa et al., 2010)           
(Khalifa et al., 2014b)           
(Gong et al., 2015)           
(Ordonez-Morales et al., 2015)           
(Hammam et al., 2013)           
(Hamza et al., 2012)           
(Truong-Huu et al., 2014)           
(Chen et al., 2015)           
(Penner et al., 2014)           
(Mandal et al., 2015)           
(Maly et al., 2015)           
(Tang et al., 2016)           
(Yousafzai et al., 2016)           
(Shi et al., 2016)           
(Guo et al., 2016)           
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2.2.1. Architectural Components 

 MAC is comprised of five main components that are responsible for performing 

various functions to maintain the system. These components are application manager, 

resource manager, context manager communication manager, and task offloading 

manager. The application manager is in charge of launching and modifying an 

application to add the offloading support and proxy creation. The resource manager is 

responsible for application profiling and monitoring of resources on the mobile devices. 

For each application, the profile is defined in terms of a number of mobile devices 

required to form the MAC and amount of resources required for offloading. The context 

manager collects and synchronizes the contextual information from different widgets 

and provides it to other processes. The communication manager handles the 

communication between the consumer and mobile devices. The offloading manager is 

responsible for dispatching jobs from consumer to provider mobile devices, getting back 

the results, and creating protected space for the offloaded jobs coming from other 

devices.  

2.2.2. Applications 

 MAC enables the execution of various applications on resource-constrained 

mobile devices by sharing their resources (N. Fernando et al., 2016). Few example 

applications can be gaming, unmanned vehicular surveillance, battlefields, disaster 

recovery, and vehicular safety. In gaming, players share the resources of the MAC to 

run the game in the distributed manner. The devices connectivity is considered stable as 

the players tend to stay in the same place while playing the game. In the unmanned 

vehicular surveillance, a group of unmanned vehicles forms the MAC to monitor the 

area and run the information fusion algorithms. Similarly, the battlefields, disaster 

recovery, and vehicular safety applications can also be run on the group of cloud 
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provider nodes to perform the compute-intensive tasks on the resource-constrained 

mobile devices. 

2.2.3. Objectives 

 The objectives attribute indicates the primary objective of the proposed work in 

MAC. Current MAC solutions aim to attain a number of objectives, such as latency 

minimization, resource sharing, maximizing resource utilization, capabilities 

enhancement, and security enhancement (Loke et al., 2015).   

2.2.4. Characteristics 

 The MAC has some special characteristics that make it unique from server-

based cloudlet and the remote cloud. These characteristics are mainly inherited from the 

MANET on which the cloud will be deployed (Niroshinie Fernando et al., 2011). These 

characteristics are dynamic topologies, variable link capacity, finite resources, power 

constrained operations, and limited physical security (Sciarrone et al., 2015). The key 

factor that contributes in the dynamic topologies is the user mobility. The variable link 

capacity is because of the varying noise and interference level for each device as well as 

the data rate supported by the device. The mobile devices manufacturing companies 

keep the finite resources for making them more portable. The size of mobile devices 

increases if the resources increase. The operations performed in the MAC are power 

constrained due to battery powered nature of the devices. The frameworks and 

algorithms designed for MANETs should be lightweight. The physical security in MAC 

is limited due to more prone nature of wireless networks to physical security threats 

than that of fixed wired networks.  

2.2.5. Execution Models 

 The execution models for the MAC can be categorized into two main categories, 

namely centralized and distributed. In centralized MAC, a server node is responsible for 

managing the execution and distribution of the application in ad hoc cloud of mobile 
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devices. On the other hand, a group of mobile devices is responsible for the 

management of the application execution in distributed MAC without centralized 

control.  

2.2.6. Scheduling Types 

 In MAC, task scheduling can be categorized into online and offline. The online 

takes task scheduling decisions at the run-time considering the process characteristics 

and context of the MAC. However, in the batch scheduling, also known as offline 

scheduling, task scheduler makes task scheduling decisions before actual execution of 

the application in MAC (W. Zhang et al., 2016). In batch/offline task scheduling, a table 

is created that contains possible scheduling decisions for use at runtime. The table 

generation completely depends on the prior knowledge of application execution 

behavior.   

2.2.7. Formation Technologies 

 To establish MAC, three wireless communication technologies are prominent 

i.e., WiFi-direct, Blue-tooth, and ZigBee. WiFi-direct is a new addition to the android 

operating system that enables the mobile devices to connect with other over WiFi and 

exchanges data. In WiFi-direct, one device acts as a group owner and rest of the devices 

need to be connected with the owner to perform the specified task; whereas, Blue-tooth 

is a wireless technology standard comes in mobile devices for short distance 

communication. Blue-tooth enables the mobile devices to form piconet to communicate 

with each other. Piconet comprises of master nodes and slave nodes. The master node 

can talk with seven slave nodes in a piconet. Blue-tooth is better for mobile devices as it 

consumes less power. However, ZigBee is a high-level communication protocol that can 

help in forming the Personal area network (PAN) with low-power digital radios. 
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2.2.8. Node Types 

 MAC comprises of two types of mobile nodes, namely providers and consumers 

(Khalifa et al., 2014a). The provider nodes share their resources to facilitate the other 

mobile devices in terms of running their applications. The consumer nodes leverage the 

resources of provider nodes to perform their compute-intensive tasks. A device can be 

consumer node at one time and provider at the other time. 

2.3 Principles for Enabling MAC Computing 

 We have identified several principles from the literature as presented in Section 

2.1. These principles provide straightforward guidelines for designing the frameworks 

that can satisfy the performance metrics for the mobile user’s compute-intensive 

applications execution in MAC. The principles for enabling MAC are categorized into 

six main categories, namely attractive incentives, optimal task allocation, lightweight 

formation, agile security, stability, and autonomy. Here, we discuss each of the 

principles in detail. Figure 2.3 shows the principles for deployment of successful MAC 

(Yaqoob et al., 2016). 

2.3.1. Attractive Incentives 

 To enable the MAC computing by leveraging the resources of nearby available 

mobile devices requires some attractive incentive schemes. The designing of incentive 

schemes should be comprised of three steps, namely analysis, design, and evaluation. 

The term analysis means investigating about the mobile user’s incentive choices. For 

example, what type of incentives mobile users want to participate in MAC. After 

conducting analysis, the incentive schemes should be designed according to the need of 

the mobile users. Finally, the incentive schemes should be evaluated by applying 

appropriate evaluation methods. Moreover, while proposing any incentive scheme in 

MAC, the factors, namely budget balance, individual rationality, and truthfulness must  
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Figure 2.3: Identified key Principles for deployment of successful MAC 
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be taken into account. Without any attractive incentive scheme, mobile users may not 

agree to share their device in MAC because it will not give any benefit to them. 

Therefore, the framework designers should incorporate all possible incentives to enable 

the successful deployment of MAC.     

2.3.2. Optimal Task Allocation 

 To facilitate the mobile users to execute compute-intensive tasks in an optimal 

manner requires new task allocation mechanisms (Rashidi et al., 2016). The task 

allocation framework should have the ability of dynamic decision making regarding 

partitioning matters, such as individual or distributed processing. After partitioning 

phase, the framework must be able to allocate the task to other mobile devices by taking 

into account the heterogeneity of mobile device resources in terms CPU speed, number 

of cores, background workload, and stability and energy level. The consideration of 

these parameters while allocating the task can enable proper utilization of the resources 

that can result in fast task execution and energy saving.   

2.3.3. Lightweight Formation  

 To make the MAC adoptable, the formation mechanism must be lightweight. 

Before designing any framework with regard to resource discovery, maintenance, and 

releasing information, the constraints of the mobile devices, such as limited processing 

capabilities and the battery should be incorporated within the framework (Egbe et al., 

2016; McGilvary et al., 2015; Mtibaa et al., 2013). The node discovery mechanism 

should be transparent and lightweight. Once the MAC is formed scheduling of tasks 

should be optimal enough to execute the given tasks in minimum turnaround by meeting 

the expectation of mobile users. The latency in forming MAC can cause wastage of 

resources that may not be free of cost because of incentive mechanisms. Moreover only 

minimal data should be exchanged while forming a cloud of mobile devices. In 

addition, non-duplicated and incremental updates based mechanism can ensure the 
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minimal data exchange that can result in saving energy and processing of mobile 

devices opted in MAC participation.  

2.3.4. Agile Security  

 To facilitate the adoption of MAC proper agile security mechanisms are required 

(Shila et al., 2016). The agility can be achieved by using the lightweight and user 

transparent techniques. The MAC framework designers should incorporate off-the-shelf 

authorization and authentication mechanisms for ensuring proper security in a 

lightweight manner. The authentication and authorization mechanisms should be 

designed in such a way that it requires minimal interaction and time from the mobile 

user to enable task execution. Apart from the above-presented principles, QoS of the 

communication channel is also mandatory to be monitored for enabling smooth 

collaboration among mobile devices. The incorporation of these presented principles 

can help the mobile users to enable secure MAC computing. 

2.3.5. Stability  

 In MAC, only the nodes having higher stability value should be selected for task 

execution. The stability pattern of the nodes needs to be incorporated dynamically while 

developing any new framework for MAC. The nodes participating in MAC are of 

dynamic nature in terms of movement that can lead towards incomplete task execution 

(C. Li et al., 2016). The stability of nodes can be measured by taken into account the 

mobility measuring parameters, namely consistency, high speed, and high connectivity. 

Once the node stability is measured then mobile users demand, such as maximum 

throughput and reduce traffic latency can be fulfilled. After classifying the nodes into 

lower and higher stability pattern categories then it does not mean that lower stability 

pattern devices are not useful, but these devices can be used to run a backup of the task 

by giving fewer incentives to overcome the failure chances. 
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2.3.6. Autonomy 

 The MAC platform requires minimal human interaction to access the devices for 

task execution purpose. The automated service should be based on automatic task 

partitioning and its offloading. Once the controller device receives some compute-

intensive task, it's partitioning, and the offloading decision should be taken in an 

automatic manner. The MAC-based automated service provisioning can be 

implemented in three steps: (a) developing a model that can predict the resources and 

QoS required for the given compute-intensive task, (b) allocating task according to the 

prediction model, (c) Periodically monitoring of tasks in terms of defined QoS rules 

(Akinola et al., 2015). Despite difficulties are involved in all the three steps of 

automated service provisioning, the automated service access process is essential for 

MAC. 

2.4 Open Research Issues  

 This section discusses the open research issues related to the MAC. The purpose 

of discussing the open issues is to give research directions to new researchers in the 

domain. 

2.4.1. Heterogeneity-aware Task Allocation 

 In MAC, where heterogeneous resource constrained devices participate to 

execute some compute-intensive tasks, inefficient task allocation has become a 

significant problem. The negligence of the heterogeneous mobile device resources, such 

as CPU speed, background workload, and number of cores while allocating task can 

cause inefficient resource utilization that results in longer execution time and high 

energy consumption. The incorporation of these parameters has become very 

challenging due to complexity and overhead. In the context of task allocation, several 

research efforts have been carried out in (Fang et al., 2014; B. Li et al., 2015; Lu et al., 
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2015; Zhou et al., 2015). These proposed research works are in their infancy and require 

further optimization and extension. 

2.4.2. Incentives 

 To convince the mobile users to opt-in to MAC participation requires nominal 

incentives mechanisms. Without giving some advantage, it would be very difficult to 

convince a mobile user to share their available device resources with others. Therefore, 

to enable the MAC computing, some proper incentives mechanisms are required to be 

proposed that can motivate the people to share their mobile device resources. The 

finding of proper incentive mechanisms that can motivate the mobile users encountered 

to agree on the load offloading has become very difficult due to individual rationality 

and different demands of the mobile user. Although several researchers have proposed 

some incentives mechanisms, these solutions are in their infancy (Al Noor et al., 2014; 

Miluzzo et al., 2012; Tang et al., 2016; Yousafzai et al., 2016). To design appropriate 

and practical incentive mechanisms requires some future research.  

2.4.3. Mobility 

 Once MAC is formed and sub-tasks of a task are distributed to the selected 

mobile devices, the mobility can affect the overall task execution time. As can be seen 

in a scenario where the mobile device leaves the MAC after taking some subtask to 

execute, which can cause all the sub-tasks to be rescheduled that results in wastage of 

resources of mobile devices in terms of energy and processing. Moreover, rescheduling 

of the tasks can be costly in terms of incentives. To cope with the mobility problem 

several research efforts have been carried out in MANETs that can be applied in the 

MAC after applying some modifications (Basarkod et al., 2013; Gavalas et al., 2010; 

Kaur, 2014; Khalifa et al., 2014b; Ordonez-Morales et al., 2015; Rahimi et al., 2013; D. 

Zhang et al., 2014). In future high attention needs to be paid to address the mobility-

related challenges in MAC.   
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2.4.4. Minimal Data Exchange 

 Once the compute-intensive task is divided into sub-tasks and distributed to 

mobile devices, then devices usually share their task execution state in terms of 

processing after a specific interval of time that can affect the battery power consumption 

(Benkhelifa et al., 2016). The mobile devices usually have limited resources, and no one 

wants to waste their device resources for unimportant purposes. Therefore, the amount 

of data exchange is required to be minimized to perform task execution in the MAC. In 

this context, several research efforts have been carried out in MCC, where to cope with 

the problem of minimal data exchange researchers have classified data into three 

categories: (a) configuration data, such as states information, (b) input data, and (c) OS 

image and application migration data (Ahmed et al., 2015). The amount of the 

configuration data transferred can be reduced by only moving the essential 

configuration data. Although these research efforts cannot be applied directly in MAC, 

provide basic guidelines to the researchers for designing minimal data exchange based 

frameworks.  

2.4.5. Security and Privacy 

 Due to a random selection of mobile nodes that usually participate in MAC, 

security and privacy have become a major concern. Most of the applications of MAC 

are very sensitive in nature . Therefore, security risks are needed to be measured at 

priority. The joining of any malicious node in MAC can increase the overall task 

execution time that can lead towards performance degradation. Moreover, the privacy of 

the location is also a serious concern for the users who share their devices. To cope with 

the security and privacy problems off-the-shelf authentication and authorization 

mechanisms are required that can prevent the malicious node to participate in the MAC 

by protecting the location privacy. To cope with security and location privacy in MAC, 

several research efforts have been carried out in (Gong et al., 2015; Hammam et al., 

Univ
ers

ity
 of

 M
ala

ya



 

39 

 

2013; Lacuesta et al., 2014; Thapa et al., 2016) but these efforts are in its infancy. The 

further extension is required within these proposed mechanisms that can ensure more 

reliable and secure communication.     

2.5  Conclusion 

 Momentous advances in MCC have paved the way for a new computing 

paradigm called MAC. Although there are studies of MCC and ad hoc computing, the 

convergence of these two areas grants further academic efforts for the flourishing of 

MAC. In this chapter, we reviewed the state-of-the-art research carried out in the MAC 

domain. We analyzed several problems inhibiting the adoption of MAC and reviewed 

the corresponding solutions by devising a taxonomy. We compared the proposed 

solutions by highlighting their advantages and disadvantages. We then devised another 

taxonomy based on reviewed literature of MAC. In addition, we compared the literature 

based on objectives. We identified and discussed the key principles that can guide the 

framework designers to incorporate specific features for enabling successful MAC. We 

also presented open issues and selected the important one of inefficient task allocation 

for remediation. Finally, it is concluded that MAC is in its early stage of development 

and must pay close attention to the presented issues –especially inefficient task 

allocation –to facilitate the adoption of MAC, which will be a core component of the 

future computing landscape.   
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CHAPTER 3: PROBLEM ANALYSIS 

This chapter establishes the problem of inefficient task allocation causes by ignorance 

of heterogeneity-measuring parameters, while making task allocation decisions in 

MAC.  These heterogeneity-measuring parameters are CPU speed, number of cores, and 

workload. We perform an in-depth investigation of the problem by conducting an 

experimental study to show that ignorance of the heterogeneity-measuring parameters 

and random-based task allocation can considerably prolong the tasks’ execution time 

and consumes large amounts of energy. The reason to analyze their impact on tasks’ 

execution time and energy consumption is to show the gravity of the problem. 

 The rest of the chapter is organized as follows. Section 3.1 discusses the 

applications and mobile devices that are used to analyze the problem. Section 3.2 

describes the performance-measuring parameters. Section 3.3 discusses the system 

variables used to conduct the experiment. Section 3.4 presents results and its 

discussions. Section 3.5 presents the analysis of random-based task allocation in terms 

of execution time. Discussions based on the empirical data analysis are summarized in 

Section 3.6. We reiterate the findings of the analysis conducted in Section 3.7. 

3.1 Empirical Study: Experimental Setup  

This section presents the empirical study conducted to establish the problem. We 

discuss the experimental setup including mobile devices and the compute-intensive 

tasks that are developed to perform the analysis.   

3.1.1. Mobile Device 

 Samsung S II i9100g smartphone is used to conduct the experiment; 

specification details are provided in table 3.1. The effect of heterogeneity on tasks’ 

execution time and energy consumption is investigated by changing sizes of tasks, CPU 

speed, workload, and number of cores of the mobile devices. To customize the CPU 

speed (e.g., 600MHZ, 800MHZ, 1008MHz, and 1200MHz) and number of cores (e.g., 1 
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and 2) two applications, Master CPU and Kernel Tuner are used, respectively (AnTuTu, 

2011; Čokulov, 2014). In addition, Power Tutor application is used to measure the 

energy consumption (L. Zhang et al., 2010).  

Table 3.1: Specification of mobile device 

Mobile components Specification 

CPU Dual core 1.2GHz 

RAM 1 GB 

OS Android Jellybeans 4.1 

Processor Architecture ARMv7 rev3(v71) 

3.1.2. Multi-Threaded Matrix Multiplication 

 A multi-threaded matrix multiplication application is designed to study the 

impact of heterogeneity of mobile device resources and workload on execution time and 

energy consumption when allocating tasks in MAC. This application represents the 

class of compute-intensive applications. In the past, matrix multiplication has been used 

in image processing and MCC to perform analysis of specified problems (ShirazAhmed 

et al., 2014; Shiraz & Gani, 2014). The application takes a set of the matrix as an input 

and gives a result after the multiplication. The application divides the matrix 

multiplication task and distributes it among the number of available mobile devices. The 

matrix multiplication is performed on the local device to compute the results. The 

applications and corresponding task sizes selected for the experiment are presented in 

table 3.2. In addition, we develop an infinite loop application to analyze the workload 

impact on task execution time and energy consumption. 

3.2 Performance Measuring Parameters 

 Execution time and energy consumption are selected as performance-measuring 

parameters to evaluate the impact of heterogeneous resource availability and different 

background workloads in the MAC environment.  
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3.2.1. Execution Time 

 The execution time of the given task is defined as the number of seconds needed 

by the system to complete a task, including the time spent executing run-time or system 

services on its behalf. The task execution time depends on the task size, processor 

speed, and number of background tasks being executed on the mobile device. The 

execution of the compute-intensive task on a slow device can prolong the execution 

time. Therefore, task allocation based on the specification of the mobile devices can 

significantly improve task performance.  

3.2.2. Energy Consumption 

 Energy consumption is the number of millijoules (mJ) used to execute a task. 

Similar to execution time, energy consumption is more for large tasks and less for 

smaller tasks. We have evaluated each performance-measuring parameter by running 

multi-threaded matrix multiplication and infinite loop applications in different 

scenarios.  

3.3 System Variables 

This section discusses different system variables used to investigate the impact 

of heterogeneity on tasks’ performance in terms of execution time and energy 

consumption. These variables are named task size, workload, CPU speed, and number 

of cores. These variables are investigated by conducting experiments on Samsung 

mobile device. This performance evaluation study enables us to know the impact of 

diverse resources of mobile devices and workload on execution time and energy 

consumption. 

3.3.1. Task Size 

 The execution time of different tasks depends on the processing capabilities of 

the mobile device being used. The size of the task is directly proportional to the 

execution time and energy consumption. As the task size grows, execution time 
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becomes longer. This parameter is chosen to show that each task requires a different 

processing time and consumes different level of energy. Therefore, the task should be 

assigned by considering the mobile device specification and workload in MAC. 

Consideration of the specification and workload while designing new algorithms can 

assist in ensuring the fast execution of tasks by consuming less amounts of energy. 

3.3.2. Workload 

 An infinite loop application is developed and run to investigate this parameter.  

Workload is analyzed by running the infinite loop applications on a mobile device. This 

parameter is selected to measure its impact on execution time and energy consumption.  

3.3.3. Processor Speed 

 Different CPU speeds as a parameter help evaluate the tasks’ execution 

performance. In MAC, where each mobile device has a different processor, execution 

time of a specific task will vary. The measurement of the impact of different CPU 

speeds on specified task execution can help to analyze whether or not this parameter 

should be considered when allocating tasks in MAC.  

3.3.4. Number of Cores 

 This parameter is selected to measure the impact of number of CPU cores on the 

performance of the specific tasks in terms of execution time and energy consumption. 

Consideration of this parameter can help making efficient task allocation in MAC, 

where different mobile devices have different numbers of cores for task execution. 

3.4 Results and Discussions 

 In this section, we discuss the experimental results by running specified tasks. 

The impact of differences in task sizes, workload, CPU speed, and customizing the 

number of cores on execution time is investigated. The details of tasks used to evaluate 

against individual parameter are listed in table 3.2. 
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Table 3.2: Tasks for evaluations of various parameters 

Parameters Running Tasks Mobile Settings using “CPU 

Master” Application 

 Task Size  100 times 100100 size 

matrices multiplication 

 200 times 200200 size 

matrices multiplication 

 300 times 300300 size 

matrices multiplication 

 400 times 400400 size 

matrices multiplication 

 500 times 500500 size 

matrices multiplication 

 Scaling interactive 300MHz 

to 1200 MHz 

  Workload 

 (Running two, 

 four, six, eight, and ten 

applications) 

 

 300 times 300300 size 

matrices multiplication 

 Scaling interactive 300MHz 

to 1200MHz 

 Processor speed (300MHz, 

600MHz, 800MHz, 

 1008MHz, and 1200MHz) 

 

 300 times 300300 size 

matrices multiplication 

 Scaling hotplug  300MHz to 

1200 MHz 

 Number of Cores (1 and 2)  300 times 300300 size 

matrices multiplication 

 Scaling interactive 300MHz 

to 1200MHz 

3.4.1. Workload Impact on Execution Time  

 Figure 3.1 shows that execution time of the specified task is 235s with no 

applications running in the background, 535s with two applications running in the 

background, 710s with four applications running in the background, 896s with six 

applications running in the background, 1066s with eight applications running in the 

background, and 1237s with 10 applications running in the background. The size of 

background application is the same, but we run it multiple times to investigate its 

impact on the execution of specified task (table 3.2). When there are up to two 

applications running in the background, then task execution time is shorter. The task 

execution time increases when there are between four and six applications running in 

the background. However, the largest increase in execution time is measured when there 

are between eight and 10 applications running in the background. The investigation 

concludes that failure to consider background traffic load parameters when making the 

task allocation decision in MAC where devices have heterogeneous background load 

can significantly prolong the execution of delay-sensitive applications. 
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Figure 3.1: Impact of applications running in the background on execution time 

3.4.2. Workload Impact on Energy Consumption 

 To measure the energy consumption of specified task, we use the Power Tutor 

application. The analysis reveals that changes in the background traffic can affect 

energy consumption. The energy consumption is 872mJ for the task execution with no 

background application running, 1300mJ with two, 1400mJ with six, 1600mJ with 

eight, and 1700mJ with 10. Figure 3.2 shows the effect of an increase in background 

traffic on energy consumption. This analysis concludes that when allocating tasks in 

MAC, background traffic or workload must be considered because when the task is 

assigned to a mobile device with less of a background traffic load, it consumes less 

energy.      
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Figure 3.2: Impact of applications running in the background on energy consumption 

3.4.3. Varying Number of Cores’ Impact on Execution Time 

 To run the multi-threaded application on a single core and multi-cores CPUs, the 

Kernel Tuner application is used to customize the number of CPU cores. Processors 

with more cores can execute a task faster than a single-core processor. Figure 3.3 shows 

the execution time of running task on a single- and dual-core processor. Our analysis 

indicates that when the task runs on a single-core CPU its execution time is 364s and on 

a dual-core CPU its execution time is 231s. The analysis recommends that this 

parameter must be considered when allocating tasks in MAC because if a small task is 

assigned to a multi-core processor mobile device and a large task to a single core 

processor mobile device, performance is degraded. Moreover, task assignment can be 

performed more efficiently by assigning large tasks to a multi-core processor mobile 

device and small tasks to a single-core mobile device (assuming that both the single- 

and multi-core processor mobile devices have no other workload). 
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Figure 3.3: Impact of number of CPU cores on execution time 

3.4.4. Varying Number of Cores’ Impact on Energy Consumption 

 To measure the energy consumption of the mobile device, we used the Power 

Tutor application.  Energy consumption increases when a single processor is used to 

execute a task. The energy consumption of task execution is 1006mJ by using 1CPU 

core and 514mJ by using both CPU cores. Figure 3.4 shows the effect of using a single 

CPU core and dual CPU cores on energy consumption. This analysis reveals that 

selection of mobile devices with a higher number of CPU cores when allocating tasks 

can conserve the MAC’s energy resources.    
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Figure 3.4: Impact of number of CPU cores on energy consumption 

3.4.5. Varying  Processor Speeds’ Impact on Execution Time 

 Figure 3.5 shows the execution time of a specified task on heterogeneous CPU 

frequencies. The execution time is 1541s with 300 MHz CPU frequency, 349s with 

600MHz CPU frequency, 260s with 800MHz CPU frequency, and 205s with 1008MHz 

CPU frequency, 185s with 1200MHz CPU frequency. The execution time of task 

increases slightly at the lower level of CPU frequencies and decreases at a higher level. 

To tune the CPU speed, we used the Master CPU android application. This analysis 

reveals that consideration of CPU speed as a parameter when allocating tasks in MAC 

where devices have different processing capabilities can significantly shorten the 

amount of time needed to carry out a task. Univ
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Figure 3.5: Impact of various processor speeds on execution time 

3.4.6. Varying Processor Speeds’ Impact on Energy Consumption 

 Figure 3.6 shows energy consumption of task is 503mJ with 300MHz CPU 

frequency, 641mJ with 600 MHz CPU frequency, 770mJ with 800 MHz CPU 

frequency, 880mJ with 1008 CPU frequency, and 993mJ with 1200 MHz CPU 

frequency.  Energy consumption slightly increases with the mobile device’s CPU 

frequencies. The reason for this low rate of energy consumption is that at lower CPU 

frequency task is executed very slowly and its does not heat up the whole board of 

mobile devices. This analysis concludes that consideration of this parameter when 

allocating tasks in MAC can be very useful. For example, in MAC, if certain mobile 

devices with high CPU speed have lower battery power then we can assign the task to a 

mobile device with a slower CPU speed (assuming that fast execution is not required).    
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Figure 3.6: Impact of various processor speeds on energy consumption 

3.4.7. Varying Task Sizes’ Impact on Execution Time 

 Figure 3.7 shows the execution time of several tasks: 2s for task 1, 31s for task 

2, 235s for task 3, 856s for task 4, and 1813s for task 5. Table 3.2 gives details about 

these tasks. The study of this parameter reveals that a slight increase in task size can 

prolong its execution time. Large tasks have a longer execution time. The reason for this 

analysis is to show that tasks of different sizes require different execution times.  

Keeping this parameter in mind when allocating tasks in MAC can minimize task 

execution time. Moreover, in MAC, different users have tasks of different sizes, so 

execution time can be minimized by assigning tasks according to the specification of 

mobile devices participating in MAC. 
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Figure 3.7: Impact of various task sizes on execution time 

3.4.8. Varying Task Sizes’ Impact on Energy Consumption 

 Figure 3.8 shows that energy consumption is 513mJ for task1, 725mJ for task 2, 

842mJ for task3, 1080mJfor task4, and 1300mJ for task 5. Energy consumption 

increases slightly with task size. This analysis reveals that consideration of this 

parameter when allocating tasks in MAC where mobile devices have heterogeneous 

resources particularly in terms of energy consumptions can be useful. With this analysis, 

the tasks that require more energy can be assigned to mobile devices which have more 

battery power by proposing new task allocation solutions. 
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Figure 3.8: Impact of various task sizes on energy consumption 

3.5 Analysis of Random-based Task Allocation Mechanism  

 Figure 3.9 shows the execution times of the various tasks which are determined 

by running them on different compute nodes. In figure 3.9, the X and Y axes represent 

the task ID and execution time, respectively. In addition, circles of different colors 

represent the available nodes for task execution. The large circles give an indication of 

the node selection for the specific task. The execution time of the task ID 1 is measured 

as 1500s, 1785s, 2250s, and 3000s while performing its execution on available compute 

nodes 1 to 4, respectively. The execution time of the task ID 2 is measured 620s, 738s, 

930s, and 1239s while running it on nodes 1 to 4, respectively. The execution time of 

the task ID 3 is measured as 196s, 234s, 294s, and 392s while running it on available 

nodes 1 to 4, respectively. The execution time of task ID 4 is measured as 39s, 234s, 

58s, and 78s while running it on available nodes 1 to 4. The execution time of task ID 5 

is measured as 2s, 3s, 4s, and 5s while running it on available nodes 1 to 4.  Our 

analysis demonstrates that the random-based task allocation mechanism can cause 

inappropriate selection of the compute nodes, significantly prolonging task execution 

time. As can be seen in the figure, task ID 1 requires minimum execution time at node 

1; however, the random task allocation based mechanism selects node 3. Similarly, 
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tasks having IDs 2 to 5 can also be executed quickly if they were run on node 1 instead 

of nodes 2 and 4. 

 
Figure 3.9: Impact of random-based task allocation on execution time 

3.6 Discussions  

 The empirical results highlight the following: 

 Performing task allocation without considering the heterogeneous resources of 

mobile devices forming the MAC can lead to inefficient task allocation. 

 The inefficient task allocation results in longer execution time which remarkably 

degrades the performance of the task and impedes the realization of MAC. 

 The existing random-based task allocation solution has merits; however, the 

significantly higher execution time and energy consumption for the compute-

intensive tasks are challenges that need to be addressed. In addition, random-

based task allocation usually wastes resources.  

 This section clearly shows the serious drawbacks of ignoring resource and 

operational heterogeneity-measuring parameters, such as CPU speed, number of cores, 

and workload on task execution time.  
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3.7 Conclusion 

 In this chapter, we conducted experiments to analyze the impact of heterogeneity 

and random-based task allocation on the execution time of a specified task in MAC. We 

evaluated the impact of heterogeneity-based parameters on the performance of task 

execution in terms of time and energy consumption by varying task size, workload, 

CPU speed, and number of CPU cores. We also analyzed the impact of a random-based 

task allocation mechanism on task execution.  

 Based on the analysis results, it is concluded that inattention to heterogeneity-

based parameters and random-based task allocation mechanism can remarkably degrade 

the performance of task execution in MAC. In random-based task allocation, the tasks 

are assigned without looking into the specifications of the compute nodes that most of 

the times result in longer execution time and high energy consumption. Moreover, 

through random-based task allocation, sometimes a larger task is assigned to a slower 

device that uses resources inefficiently. Inefficient resource use prolongs the execution 

time. In the next chapter, we propose heterogeneity-aware task allocation algorithms. 

The adoption of our proposed solutions can shorten execution time and reduce energy 

consumption, thereby increasing the usability of MAC.   
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CHAPTER 4: HETEROGENEITY-AWARE TASK ALLOCATION 

ALGORITHMS 

This chapter aims to propose five heterogeneity-aware task allocation algorithms for 

minimizing tasks’ execution time and energy consumption in MAC. The proposed five 

algorithms incorporate heterogeneity-measuring parameters, such as CPU speed, 

number of cores, and workload while performing task allocation. These algorithms are 

presented in form of pseudo-codes in the chapter. The distinctive features of the 

proposed algorithms are also discussed. Furthermore, a mathematical model of the 

solutions in terms of execution time is presented. 

 The chapter is organized into seven sections. Section 4.1 presents the proposed 

algorithms for the incorporation of heterogeneity-measuring parameters when allocating 

task in MAC. Section 4.2 elaborates the MAC framework with respect to the proposed 

solutions. Section 4.3 depicts the proposed solutions in a sequence diagram. Section 4.4 

explains the mathematical equations used for node selection and calculating the energy 

consumption. The mathematical model for execution time is presented in Section 4.5. 

The mathematical model of the execution time will be used in chapter 6 to validate the 

simulation results of the research. Section 4.6 highlights the distinctive features of the 

proposed algorithms. Section 4.7 summarizes and concludes the chapter. 

4.1 Heterogeneity-aware Task Allocation 

 MAC is comprised of two types of nodes: controller and compute. The 

controller node manages all the compute-intensive tasks and is responsible for their 

execution; the compute node offers its own resources for computation through some 

incentive mechanisms. The random-based task allocation mechanism degrades task 

execution by extending the execution time and energy consumption. Moreover, lack of 

incorporation of the heterogeneity-measuring parameters, such as CPU speed, number 

of cores, and workload in the solution contributes to prolonging the task execution time. 
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In this context, we propose five algorithms that consider the heterogeneity-measuring 

parameters while allocating compute-intensive tasks. Figure 4.1 illustrates the task 

allocation handler module. The proposed task allocation algorithms are implemented in 

that module. The details of the proposed algorithms are provided in the following 

subsections. 

Sets of Tasks Controller 
Node Task Handler Selection

Allocate Task 
Based on 

Defined Policy 
Yes

Compute 
Node 1

Compute 
Node 2

Compute 
Node 3

Stop

No

 
Figure 4.1: Task handler module 

 

4.1.1. Proposed Algorithms 

 Algorithm 1 presents the pseudo-code of the task allocation based on mobile 

device CPU speed in MAC. In the algorithm, N, T, and 𝑆𝑁 are used as input parameters. 

(See table 4.1 for the description of the symbols.)  

Table 4.1: Description of the symbols used in the algorithms 

Symbol Description 

N Number of mobile devices 

T Number of given tasks or sub-tasks 

𝑆𝑁 CPU speed of N mobile device that is computed by multiplying 

it with number of cores 

𝐶𝑁 Number of cores of N mobile device 

𝑪𝑵 Total capacity of N mobile device 

𝑅𝑇  Real execution time of the task 

𝑹𝑵 Residual capacity of N mobile device in terms of workload 

CPI 
Cycle per instruction of specified CPU architecture of mobile 

device 

EtL
n  Expected workload on nth node (because of the task execution) 

^ 
All symbols with ^ represent the maximum or minimum value 

returned by the function (arg) 

To enable task allocation based on CPU speed, several steps are performed. First, tasks 

of different lengths are sorted in descending order (line 2 in Algorithm 1). 

Subsequently, as the controller node tracks the compute nodes in terms of specification 
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and task size, allocating the tasks at that time based on mobile device CPU speed results 

in fast execution and less energy consumption. One device that has a faster processor 

speed is selected, and all the tasks are assigned to that device (lines 4-9 in algorithm 1). 

Thus, the solution helps the controller node to assign the task in a way that minimizes 

task execution time. However, further reduction in execution time is possible if the task 

allocation decision is based on several parameters instead of just one. 

 

 To show the procedure of task allocation based on cores, algorithm 2 presents 

the pseudo-code. In algorithm 2, N, T, and 𝐶𝑁 are used as input parameters. (See table 

4.1 for the description of the symbols.) Once MAC is formed, compute nodes share 

their specifications in terms of number of cores with the controller node. When the tasks 

need to be assigned to compute node, first they need to be sorted in descending order 

(line 2 of algorithm 2). The controller then selects the compute nodes to perform the 

task execution based on the higher number of cores that are associated with the 

available mobile devices (lines 4-7 of algorithm 2). Basing task allocation on the 

number of cores can minimize the execution time as multi-threaded tasks are executed 

on the selected devices. Although using a core-based solution minimizes execution 

time, further reductions are also possible if other parameters, such as workload and CPU 

speed are incorporated. In addition, task allocation based on multiple parameters can 

lead to an optimal reduction in execution time compared to core-based solution. 
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 The pseudo-code of the task allocation procedure based on the workload 

parameter is presented in algorithm 3. In the algorithm, N, T, CPI, 𝑪𝑵, 𝑅𝑇, and 𝑹𝑵 are 

used as  input parameters (See table 4.1 for the description of the symbols.) To perform 

the task allocation based on workload parameter, first load on the each device is 

determined (line 5 algorithm 3). Subsequently, the value of the estimated load is 

subtracted to the total capacity of the each node to find the residual capacity of the each 

compute node (line 7 in algorithm 3). Thus, the workload on the each device is 

determined in this way and device is selected based on the residual capacity of the 

device. In this way, the tasks are allocated to the selected compute nodes with respect to 

task sizes. Although this solution can help to minimize the execution time, further 

reduction in execution time is also possible. In certain scenarios, workload on the low 

speed devices is lighter than in high-speed mobile devices; however executing the task 

on a high-speed mobile device could be a better option. Therefore, allocating tasks 

based on two parameters, such as CPU speed and workload can further shorten task 

execution time.  
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 The incorporation of CPU speed and workload when allocating tasks is 

discussed in the form of pseudocode in algorithm 4. In the algorithm, N, 𝑆𝑁, T, 𝑪𝑵, CPI,  

𝑅𝑇, and 𝑹𝑵 are used as an input parameters. (See table 4.1 

for the description of the symbols.) To find the residual workload on the compute node, 

first expected workload of each task to be executed on the compute node is calculated 

(lines 5-7 of algorithm 4). Afterward, a weighted average graph formula is used to 

incorporate the two parameters, such as CPU speed and workload when allocating tasks 

to the compute nodes (lines 9-11 of algorithm 4). On the one hand, the task is allocated 

based on the maximum values derived from the weighted average formula and on the 

other hand, weight is assigned to each parameter, such as CPU speed and workload, 

based on their significance impact that is measured as 0.05 and 0.95, respectively. These 

weight values are identified through measuring the impact of many combinations. This 

combination shows the shortest execution time, so these weight values are selected (See 

figure 6.6 in chapter 6). 
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 The procedure of task allocation by considering the resources and operational 

heterogeneity, such as CPU speed, number of cores, and workload in MAC is presented 

as a pseudo-code in algorithm 5 where N, SN, T, CN, 𝐂N, CPI,  RT, and RN are used as 

input parameters. (See table 4.1 for the description of the symbols.) Once the controller 

device has received a set of tasks, they are sorted in descending order (lines 1-3 of 

algorithm 5). After the tasks are sorted, the devices are selected to execute the tasks 

according to their resources and operational heterogeneity, such as CPU speed, number 

of cores, and workload that are measured through weighted average formula (lines 5-12 

in algorithm 5). Moreover, in order to determine the load which each task puts on the 

compute node is calculated through an equation (line 5 of algorithm 5). In addition, the 

weights are assigned to each individual parameter, such as CPU speed, cores, and, 

workload according to their impact which is measured as 0.15, 0.20 and 0.65, 

respectively. This combination of weights is chosen because it executes the task the 

fastest (See figure 6.7 in chapter 6). Lastly, once the compute nodes have been selected 

according to the defined algorithm criteria in the algorithm, workload information is 

updated after task execution (lines 13-14 of algorithm 5). 
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4.2 MAC Framework  

 Figure 4.2 depicts the key components of the MAC framework: context monitor, 

decisioner module, and task manager. The proposed heterogeneity-aware task allocation 

algorithms are implemented in the task handler module. This section provides the 

details of the proposed task handler module. A discussion of other modules that are 

linked to perform execution of compute-intensive tasks in MAC paradigm is also 

provided.  
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Figure 4.2: The task handler module in MAC framework 
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4.2.1. Context Monitor 

 It allows multiple parameters to be profiled at run time. The information of 

context-awareness gathered from the context monitor used as an input for task handler 

module that can lead to accurate decision making. The context monitor profiler tracks 

the number of instructions running on the compute nodes, data sizes of input, and 

workload running in the background. Moreover, the context monitor module is 

responsible for keeping track of the specification of the devices in terms of CPU speed 

and number of cores. Later, the context monitor passes this information to the task 

handler that is responsible for task partitioning, making a decision and allocating the 

task based on the criteria defined in proposed heterogeneity-aware task allocation 

algorithms. 

4.2.2. Task Handler 

 This module decides where and how to send the compute-intensive tasks to 

compute nodes. In addition, it determines whether or not the task needs to be divided 

into sub-tasks. The task handler usually uses the information given by the context 

monitor module and passes it to the decisioner module, allocates tasks based on defined 

criteria as discussed in the five proposed algorithms. In the case of multi-parameters 

based task allocation, the weighted average formula is used. In this context, the weight 

of the each parameter is identified. Lastly, once the decisioner has decided where to 

send the task, it forwards the information to the allocator.  

4.2.3. Task Manager 

 The task manager module is a middle layer between the allocator and 

communication manager. Once the allocator receives the information from the 

decisioner about sending the task based on the proposed solutions criteria, it transmits 

that information to the task manager. The task manager then sends this task to the 

communication manager. Later, the communication manager performs task allocation 
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based on the information. Once the task is allocated to the compute node, the context 

monitor module updates the context-awareness information into its databases. The task 

manager also sends the task result back to the mobile device that initiated the task 

execution request.  

4.2.4. Communication Agent 

 The communication agent handles the connection and transfers the data between 

the controller and compute nodes according to the defined policy of task manager. 

Moreover, it is responsible for initiating the node discovery procedure. To form the 

MAC, the communication agent initiates and maintains communication between the 

compute and controller nodes.  

4.3 Illustration of Task Handler using Sequence Diagram 

 Figure 4.3 shows a sequence of steps that are required for performing task 

allocation in the MAC environment. In the figure, CH, TAM, TH, CM, CN1, CN2, and 

CN3 are used to represent communication agent, task allocation manager, task handler, 

context monitor, compute node 1, compute node 2, and compute node 3, respectively.  

User CH TAM CN1 CN2 CN3TH CM

Registration()

Registration()

Registration()

Selected Compute Node

Selected Compute Node

Selected Compute node

Successfully Join

Successfully Join

Successfully Join

Specification Update

Request()

Accepted

Task Handling

Decision Policy

Context Information

Decision Made

Forward Decision

Result

Result

Result

Result

Context Monitor

 
Figure 4.3: Sequence of steps for performing task allocation using task handler 
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 First, compute nodes perform registration after receiving the node discovery 

request. Subsequently, MAC is formed through WiFi-direct or Bluetooth. Once MAC is 

formed, the nodes are divided into compute and controller nodes. One device is selected 

as the controller node and others are compute nodes. The responsibility of the controller 

node is to collect the set of tasks from the users and perform their computation on the 

available compute nodes. When CH receives tasks it sends them to the TAM which then 

forwards the tasks to the proposed TH module. The proposed module helps to select the 

appropriate nodes to execute the task. In this context, proposed task TH module first 

sends the request to CM to collect the information related to the compute nodes 

specifications in terms of CPU speed and number of cores. Moreover, CM keeps 

information about workload running in the background on the compute nodes. After 

receiving the request from TH, CM sends back this information to the TH module. The 

proposed TH module uses the information given by CM as an input to perform the 

selection decision. Once the TH decides where to submit the task, it passes the 

information to TAM. The TAM forwards this information to CH and it allocates the 

task to the compute nodes as defined by TH module. The selected compute node 

executes this task and sends it back to the CH.  Later, CH sends the results back to the 

user who initiated the request for task execution. 

4.4 Mathematical Equations for Node Selection and Calculating Energy 

Consumption  

 In these algorithms, task allocation is based on CPU speed, number of cores, and 

workload. In algorithms 1 and 2, task allocation is based only on high processor speed 

and number of cores. In these algorithms, the controller checks the specification of the 

available compute nodes and allocates the tasks to the compute nodes that have high 

CPU speed and number of cores. In Algorithm 3, task allocation is based on the 

workload-only parameter. According to this criterion, the device having the lightest 
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workload is selected for task execution. In this context, the workload is estimated on the 

compute nodes through equation 4.1.  

𝐸 = 𝑂𝑛_𝐷𝑖 = (
𝑛𝐼𝑆 ∗

1
𝐶𝑃𝑈 𝑆𝑝𝑒𝑒𝑑

∗ 𝐶𝑃𝐼

𝑟𝑒𝑎𝑙 − 𝑡𝑖𝑚𝑒
) ∗ 100 

(4.1) 

Where e is the estimated load of the specified task and 𝑂𝑛_𝐷𝑖 is the workload on device 

i. In addition, nIS represents the number of instructions calculated through Valgrind. 

The value of E is updated and sent back to the controller node from time to time. In 

order to measure the residual capacity of the compute nodes to make the task allocation 

decision based on workload parameter, equation 4.2 is used. In algorithms 4 and 5, the 

same equation is used to calculate the workload. 

𝑅𝑗 = 𝑇𝑖 − 𝐸        (4.2) 

Where Rj is the residual capacity on J node, Ti is total CPU capacity in terms of load, 

and E is the estimated load on the device. The value of E is 0 when there is no workload 

as in the start of the task allocation procedure. Once the load is estimated for the 

compute nodes, selection is performed using information from equation 4.3. 

𝑊 = ∑ 𝑅𝑗      

𝑛

1

                
(4.3) 

In algorithm 4, task allocation is performed based on two parameters, such as CPU 

speed and workload. To make one metric from two parameters, the weighted average 

formula is used, as seen in equation 4.4. This equation helps to make one metric from 

two parameters. In addition, the workload value is calculated with the same equation 

used in the algorithm 3. 

𝑆𝐷𝑖 = 𝛼𝑤 + 𝛾 𝑠    (4.4) 
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In algorithm 5, the task allocation is performed based on three parameters: CPU speed, 

workload, and number of cores. To make one metric from three parameters, the 

weighted average formula is used, as seen in equation 4.5. This equation helps to make 

one metric from three parameters. In addition, the workload value is calculated with the 

same equation used in algorithm 3.   

𝑆𝐷𝑖 = 𝛼𝑤 + 𝛽𝑠 + 𝛾 𝑐     (4.5) 

Algorithms 4 and 5 select the mobile device as compute nodes to perform the task 

allocation based on the maximum value calculated through equation 4.6. Where SDi is 

the status of the device I, 𝛼 is the weight of workload, 𝛽 is the weight of CPU speed and 

𝛾 is the weight of number of cores. To normalize the units of different variables, such as 

CPU speed, number of cores and workload, equation 4.7 is used, where V represents the 

value. 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝐷𝑒𝑣𝑖𝑐𝑒 = max{𝑆𝐷1, 𝑆𝐷2, … 𝑆𝐷𝑛}           (4.6) 

f ∶  a → b =  [𝑉𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑉𝑀𝑖𝑛𝑖𝑚𝑢𝑚] ∗ [
1

[𝑉𝑀𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑉𝑀𝑖𝑛𝑖𝑚𝑢𝑚]
]              

(4.7) 

Equation 4.8 calculates the energy consumption. 

𝑃𝑐 ×
𝐂

M
 

 

 

 

(4.8) 

Where 𝑃𝑐 is the power consumption of the processor when it is in an active state (i.e. 

when it is performing the computation, approximately 600 milliwatt (mW)), whereas C 

represents the number of instructions of the tasks and M represents the speed of mobile 

devices. 

4.5 Mathematical model for Execution Time 

 The mathematical model to compute the task execution time is formally 

formulated in this section. The description of the symbols is provided in table 4.2. 
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Table 4.2: Description of the symbols used in the mathematical model 

Symbol Description 

 𝑻𝒊 ith task 

  I𝑇𝑖 Number of instructions of ith task executed in execution time slots 

  O𝑇𝑖 Number of instructions of background tasks executed in execution time slots 

P Processor speed 

T Set of tasks 

 𝑇𝑖  Execution time of ith task 

C Number of cores 

𝑆𝑖 Size of ith slot 

𝑥, 𝑦, 𝑎, 𝑏, 𝑙, 𝑚 Variables used in the Lambda expression 

Execution time of a certain task in ith slot without background workload can be 

formally modeled as follows: 

𝜆𝑥𝑦.
𝑥

𝑦
(𝐼𝑻𝒊)(𝜆𝑎𝑏. 𝑎𝑏)(𝑃)(𝐶)                                           (4.9) 

The time of background tasks in the ith slot can be modeled using equation 4.10. 

(𝜆𝑙𝑚.
𝑙

𝑚
) (𝑂𝑻𝒊)(𝜆𝑎𝑏. 𝑎𝑏)(𝑃)(𝐶) 

         (4.10) 

The total task execution time can formally be modeled by merging equation 4.9 and 

4.10 as can be seen in equation 4.11. The simplest form of the equation 4.11 is provided 

in equation 4.12.  

𝑇𝑖  ∀𝑖=1…|𝑻|𝑎𝑛𝑑 𝑻𝟏<𝑻𝟐 … <𝑻|𝑻|
 

=  ∀ 𝑠𝑢𝑚(𝑖, 1) ((𝜆𝑥𝑦.
𝑥

𝑦
) (𝐼𝑻𝒊)(𝜆𝑎𝑏. 𝑎𝑏)(𝑃)(𝐶) +  (𝜆𝑙𝑚.

𝑙

𝑚
) (𝑂𝑻𝒊)(𝜆𝑎𝑏. 𝑎𝑏)(𝑃)(𝐶)) 

(4.11) 

Or               𝑇𝑖 =   ∑ (
𝐼𝑇𝑖

P×C
+ 

𝑂𝑖

P×C
)n

i=1  
 

 

(4.12) 

For the calculation of the execution time of a task, it is necessary to divide the entire 

execution time of a task into slots. The slot size is based on the number of tasks 

executed in the time interval. The slot changes when either the running task execution is 

completed or a new task starts. Therefore, the time slot size varies with the workload on 

the device. Figure 4.4 shows task execution time in terms of slots. 
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Slot 1 Slot 2 Slot 3 Slot 4

Task 1

Task 2

Task 3

Task 4

Timeline  
Figure 4.4: Task execution times 

Where the execution time of an ith task is the sum of all the time slots taken by that task 

for the execution. The size of the time slot varies with the arrival of new tasks and 

completion of old ones. The size of the first slot depends on the number of tasks being 

executed in that slot and the size of the smallest task. The size of the remaining time 

slots depends on the difference between the sizes of the slot numbered task and the 

next-smaller task.  

The size of the slot in terms of time can be modeled by using the number of instructions 

need to be executed, processor speed, P, and number of cores C. First slot size can be 

calculated as follows: 

(𝜆 𝑙𝑚.
𝑙

𝑚
) ((𝜆𝑥𝑦. 𝑥𝑦)(min(𝑻))(|𝑻|))((𝜆𝑎𝑏. 𝑎𝑏)(𝑃)(𝐶)) 𝑖𝑓 𝑖 = 1 

           (4.13) 

 

The size of the rest of the slots can be measured through equation 4.14. 

(𝜆 𝑙𝑚.
𝑙

𝑚
) ((𝜆𝑣𝑢. 𝑣𝑢)((𝜆𝑎𝑏. 𝑎 − 𝑏)(𝑻𝒊)(𝑻𝒊−𝟏))((𝜆𝑥𝑦. 𝑥 − 𝑦)(|𝑻|)(𝑖 + 1)) ) ((𝜆𝑎𝑏. 𝑎𝑏)(𝑃)(𝐶)) 

 

           (4.14) 

 

The complete form of the model used for calculating the slot size can be as follows:  

𝑆𝑖 = {
(𝜆 𝑙𝑚.

𝑙

𝑚
) ((𝜆𝑥𝑦. 𝑥𝑦)(min(𝑻))(|𝑻|))((𝜆𝑎𝑏. 𝑎𝑏)(𝑃)(𝐶)) 𝑖𝑓 𝑖 = 1

(𝜆 𝑙𝑚.
𝑙

𝑚
) ((𝜆𝑣𝑢. 𝑣𝑢)((𝜆𝑎𝑏. 𝑎 − 𝑏)(𝑻𝒊)(𝑻𝒊−𝟏))((𝜆𝑥𝑦. 𝑥 − 𝑦)(|𝑻|)(𝑖 + 1)) ) ((𝜆𝑎𝑏. 𝑎𝑏)(𝑃)(𝐶)) 𝑖𝑓 𝑖 > 1

 

             

(4.15) 

 

Or           Si =  {
(min(𝑻)  × |𝑻|)/(𝑃 × 𝐶)                           

(𝑻𝑖 − 𝑻𝑖−1) × (|𝑻| − (𝑖 + 1))/(𝑃 × 𝐶)  
 if  𝑖 ≥ 1   

(4.16) 
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4.6 Distinctive Features of the Proposed Algorithms  

 The proposed algorithms have five distinctive features. One of these features is 

that proposed algorithms incorporate the resource and operation heterogeneity in the 

MAC. The algorithms ensure efficient resource utilization. Moreover, the algorithms 

help to minimize the execution time and are very valuable when there is a deadline for 

tasks execution. Furthermore, the proposed algorithms consume less energy. Additional 

details of these features are provided in this section.  

4.6.1. Resource and Operational Heterogeneity-awareness 

 The mobile devices forming MAC usually have different CPU speeds and 

numbers of cores. The proposed solutions consider the mobile device resources while 

performing any computation. In addition, the proposed solutions incorporate the 

workload running in the background as an operational heterogeneity-measuring 

parameter when allocating tasks to the compute nodes. The consideration of these 

parameters while making task allocation decision can ensure faster task execution than 

random-based task allocation. 

4.6.2. Appropriate Resource Utilization 

 The proposed five solutions ensure the appropriate resource utilization in MAC 

environment. Once the controller node receives any task, the proposed solution helps 

the controller to select the device based on the defined policies in the algorithms. The 

proposed algorithms ensure that tasks of different lengths are executed according to the 

capacity of the available mobile devices. Thus, proposed solutions enable the controller 

to execute larger tasks on devices that have high specifications. Efficient resource 

utilization also helps in saving cost in terms of incentives. In the MAC environment, 

mobile device owners usually share their resources by taking incentives. Therefore, the 

resources in the MAC are needed to be considered very carefully and used efficiently.    

 

Univ
ers

ity
 of

 M
ala

ya



 

70 

 

4.6.3. Time Minimization 

 The proposed algorithms help to minimize tasks execution time by enabling 

appropriate compute node selection. The tasks of different computation lengths require 

different processing capabilities at the time of execution in MAC.  The proposed 

algorithms enable the controller to assign larger tasks to devices that have high 

specifications and less workload running in the background. Thus, the proposed 

algorithms can minimize the task execution time better than random-based task 

allocation. In random-based task allocation, larger tasks are assigned to a device that has 

low processing capabilities that can prolong its execution time.     

4.6.4. Deadline-based Task Execution 

 One of the features of proposed algorithms is that it can help in meeting the 

deadlines of the tasks defined by the users. The proposed algorithms enable the 

controller to assign tasks with short deadlines to devices that have high processing 

capabilities, according to the defined criteria in each algorithm. In this way, the 

proposed algorithms can help to meet the deadlines.   

4.6.5. Energy Efficiency 

 One of the key features of the proposed algorithms is that they help to minimize 

the energy consumption. Most of the devices participating in the MAC have limited 

processing capabilities and battery resources. Therefore, the algorithms are designed to 

consume less energy. The incorporation of the heterogeneity-awareness leads to the 

appropriate resource utilization that results in saving energy.   

4.7 Conclusion 

 In this chapter, we presented the proposed heterogeneity-aware task allocation 

solutions in the form of pseudo-codes that help to simplify the understanding of the 

solutions. The distinctive features of the proposed algorithms are discussed to prove 

their effectiveness. The proposed algorithms perform task allocation in light of the 
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specifications and workload running in the background on the available mobile devices 

that are acting as compute nodes. The first proposed solution is based on CPU speed 

which enables the controller node to select that compute node with respect to high CPU 

speed. The second algorithm bases task allocation on number of cores. The device with 

more cores is selected to execute the task. The third proposed algorithm helps to select 

that compute node that has less workload running in the background. In the fourth 

algorithm, task allocation is based on two parameters (CPU speed and workload) and in 

the fifth algorithm, it is based on three parameters (CPU speed, number of cores, and 

workload). The additional decrease in the execution time can be measured when task 

allocation is based on two and three parameters (Algorithm 4 and 5).  Based on the 

pseudo-codes described in the proposed five algorithms and looking into their 

distinctive features, it is concluded that the proposed five heterogeneity-aware task 

allocation algorithms help to shorten the execution time and conserve energy that ensure 

the effectiveness of the algorithms. In the following chapters, details of the 

implementation of the proposed algorithms, validation of the results collected from 

mathematical model and simulation, and verification of five proposed solutions with 

random-based task allocation mechanism are discussed.    
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CHAPTER 5: EVALUATION 

This chapter presents the data collected through proposed heterogeneity-aware task 

allocation solutions in MAC environment. The chapter discusses the experimental setup 

used to test the performance of the proposed algorithms, performance-measuring 

parameters and statistical methods that include the Mann-Whitney U test, Vargha and 

Delaney’s A12 statistics, and Pearson’s correlation coefficient. These methods (Mann-

Whitney U test and A12 statistics) help to know whether or not the differences between 

the results are significant. Furthermore, descriptive statistics are applied to analyze the 

accuracy of the collected data.  

The chapter is organized into eight sections. Section 5.2 explains the 

experimental setup, length of computational sub-tasks used in data traces, performance 

metrics, and data gathering and processing. Section 5.3 describes the evaluation 

methods used to access the reliability and validity of the collected data. Section 5.4 

presents the data collected to validate the accuracy of the developed mathematical 

model by comparing the results obtained from the mathematical model with simulation 

results. Section 5.5 reports the differences between the execution time data obtained 

from each proposed and random-based task allocation solution. Section 5.6 reports the 

differences between the energy consumption data obtained from each proposed and 

random-based task allocation solution. Section 5.7 presents the data collected for the 

performance comparison of five heterogeneity-aware task allocation solutions with 

random-based task allocation. Section 5.8 concludes the chapter. 

5.1 Performance Evaluation 

 This section presents the methodology used for the evaluation of five 

heterogeneity-aware task allocation solutions. In this context, details of experimental 

setup, length of computational sub-tasks used in data traces, and performance-

measuring parameters are discussed. 
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5.1.1. Experimental Setup 

 We implemented heterogeneity-aware task allocation algorithms in distributed 

form of MAC environment that is simulated in MATLAB. All of the proposed 

algorithms are implemented on controller node in MAC group. To conduct the 

experiments, we have simulated four mobile devices with different specifications, 

discussed in table 5.1. Task allocation has been simulated by enabling controller node in 

MAC that distributes the tasks to compute nodes. The testing of these devices that were 

simulated in the MATLAB was performed by comparing the results obtained from 

problem analysis results on certain specifications. In this context, we ran the same tasks 

that were used in problem analysis, in the simulated environment and compared their 

execution time and energy consumption with the execution time on the real mobile 

devices. The execution times were nearly identical. Thus, we found that the devices 

were configured in the same way as real devices. Processing speed in terms of million 

instructions per second (MIPS) on the simulated mobile device has been matched with 

the speed on the real mobile devices. These speeds were calculated using equation 5.1. 

MIPS=  
Processor Clock Frequency

Average Cycles Per instruction (CPI)×1000000
 = 

Cycles/Second

Cycles/Instruction 
 =  

Million instructions

Second 
 (5.1) 

Table 5.1: Specification of mobile device used in simulation 

Mobile Processor Speed  Number of Core 

Mobile 1 1300MIPS Quad-core 

Mobile 2 1008MIPS Single-core 

Mobile 3 800MIPS Dual-core 

Mobile 4 600MIPS Octa-core 

 

 Multi-threaded matrix multiplication application is used for compute-intensive 

tasks. The application takes a set of the matrix as an input and gives result after the 

multiplication. The application divides the matrix multiplication task and distributes it 

among the number of available mobile devices. In order to use the application in a 

simulated environment, we computed the number of instructions of the applications by 

using Valgrind’s Lackey tool (Ejaz, 2016). Table 5.2 presents the computational lengths 

of the tasks that were used for the experiments (One task or data trace is comprised of 
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five sub-tasks). In addition, the mathematical model is implemented in MATLAB to 

generate the results. 

5.2 Performance Measuring Parameters 

 We select execution time and energy consumption as performance-measuring 

parameters to evaluate the impact of proposed heterogeneity-aware task allocation 

solutions based on CPU speed, number of cores, workload, CPU speed plus workload  

(two parameters), and CPU speed plus workload and number of cores (three parameters) 

on task execution time and energy consumption.  

 The execution time of the given task is defined as the time (in seconds) spent by 

the system executing that task, including the time spent executing run-time or system 

services on its behalf. The task execution time depends on the task size, processor 

speed, and number of background tasks (workload) being executed on the mobile 

device. The execution of the compute-intensive task on the slow device can prolong the 

execution time and vice versa. Therefore, task allocation based on the specification of 

the mobile devices and workload can significantly improve task performance.  

Energy consumption (in mJ) represents the amount of energy consumed to execute the 

task. To measure the performance of the proposed solutions, energy consumption is 

selected as a performance-measuring parameter. 
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Table 5.2: Data traces for evaluations of various parameters 

Data Trace # Computational Lengths of Five Sub-tasks (equal to one task) 

Data Trace-1 1.0e+12  0.0016    1.0e+12  0.0419    1.0e+12  0.2355    1.0e+12  0.7434    1.0e+12  

1.9649 

Data Trace-2 1.0e+12 × 0.0017    1.0e+12 × 0.0468    1.0e+12 × 0.2396    1.0e+12 × 0.7368    1.0e+12 

× 1.8003 

Data Trace-3 1.0e+12 × 0.0016    1.0e+12 × 0.0430    1.0e+12 × 0.2392    1.0e+12 × 0.7411    1.0e+12 

× 1.9595 

Data Trace-4 1.0e+12 × 0.0024    1.0e+12  0.0402    1.0e+12  0.2385    1.0e+12  0.7431    1.0e+12  

1.6787 

Data Trace-5 1.0e+12  0.0026    1.0e+12  0.0452    1.0e+12  0.2339    1.0e+12  0.7392    1.0e+12  

1.1712 

Data Trace-6 1.0e+12  0.0025    1.0e+12  0.0402    1.0e+12  0.2328    1.0e+12  0.7306    1.0e+12  

1.0971 

Data Trace-7 1.0e+12  0.0027    1.0e+12  0.0449    1.0e+12  0.2332    1.0e+12  0.7433    1.0e+12  

1.0344 

Data Trace-8 1.0e+12  0.0021    1.0e+12  0.0427    1.0e+12  0.2377    1.0e+12  0.7411    1.0e+12  

1.1869 

Data Trace-9 1.0e+12  0.0022    1.0e+12  0.0431    1.0e+12  0.2365    1.0e+12  0.7399    1.0e+12  

1.7547 

Data Trace-10 1.0e+12  0.0018    1.0e+12  0.0448    1.0e+12  0.2366    1.0e+12  0.7323    1.0e+12  

1.1190 

Data Trace-11 1.0e+12  0.0022    1.0e+12  0.0467    1.0e+12  0.2334    1.0e+12  0.7382    1.0e+12  

1.2238 

Data Trace-12 1.0e+12  0.0026    1.0e+12  0.0418    1.0e+12  0.2351    1.0e+12  0.7398    1.0e+12  

1.8909 

Data Trace-13 1.0e+12  0.0029    1.0e+12  0.0438    1.0e+12  0.2314    1.0e+12  0.7321    1.0e+12  

1.2575 

Data Trace-14 1.0e+12  0.0027    1.0e+12  0.0418    1.0e+12  0.2381    1.0e+12  0.7334    1.0e+12  

1.9293 

Data Trace-15 1.0e+12  0.0020    1.0e+12  0.0414    1.0e+12  0.2325    1.0e+12  0.7386    1.0e+12  

1.4733 

Data Trace-16 1.0e+12  0.0020    1.0e+12  0.0458    1.0e+12  0.2359    1.0e+12  0.7377    1.0e+12  

1.9172 

Data Trace-17 1.0e+12  0.0019    1.0e+12  0.0453    1.0e+12  0.2375    1.0e+12  0.7353    1.0e+12  

1.5678 

Data Trace-18 1.0e+12  0.0015    1.0e+12  0.0404    1.0e+12  0.2353    1.0e+12  0.7409    1.0e+12  

1.9340 

Data Trace-19 1.0e+12  0.0016    1.0e+12  0.0440    1.0e+12  0.2347    1.0e+12  0.7302    1.0e+12  

1.3371 

Data Trace-20 1.0e+12  0.0017    1.0e+12  0.0456    1.0e+12  0.2331    1.0e+12  0.7374    1.0e+12  

1.1656 

Data Trace-21 1.0e+12  0.0024    1.0e+12  0.0418    1.0e+12  0.2365    1.0e+12  0.7396    1.0e+12  

1.7482 

Data Trace-22 1.0e+12  0.0021    1.0e+12  0.0406    1.0e+12  0.2323    1.0e+12  0.7428    1.0e+12  

1.1524 

Data Trace-23 1.0e+12  0.0027    1.0e+12  0.0438    1.0e+12  0.2400    1.0e+12  0.7311    1.0e+12  

1.4427 

Data Trace-24 1.0e+12  0.0016    1.0e+12  0.0467    1.0e+12  0.2300    1.0e+12  0.7408    1.0e+12  

1.8173 

Data Trace-25 1.0e+12  0.0028    1.0e+12  0.0406    1.0e+12  0.2340    1.0e+12  0.7336    1.0e+12  

1.8001 

Data Trace-26 1.0e+12  0.0021    1.0e+12  0.0464    1.0e+12  0.2318    1.0e+12  0.7337    1.0e+12  

1.1455 

Data Trace-27 1.0e+12  0.0016    1.0e+12  0.0461    1.0e+12  0.2358    1.0e+12  0.7377    1.0e+12  

1.1450 

Data Trace-28 1.0e+12  0.0028    1.0e+12  0.0444    1.0e+12  0.2335    1.0e+12  0.7372    1.0e+12  

1.4018 

Data Trace-29 1.0e+12  0.0015    1.0e+12  0.0417    1.0e+12  0.2312    1.0e+12  0.7326    1.0e+12  

1.2400 

Data Trace-30 1.0e+12  0.0021    1.0e+12  0.0403    1.0e+12  0.2390    1.0e+12  0.7432    1.0e+12  

1.4909 
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5.3 Evaluation Methods 

We apply several statistical methods to access the reliability and validity of the 

data generated by running five heterogeneity-aware task allocation solutions and 

random-based task allocation. This section aims to describe the statistical methods 

applied on the collected data. 

5.3.1. Descriptive Statistics 

 Descriptive statistics summarize the data. These statistics reveal the pattern 

among datasets, and thus allow us to reach some conclusion after analyzing the data 

(Ferreira, 2011). There are two types of descriptive statistics: measures of central 

tendency and measures of spread. In measures of central tendency, trends are captured 

and calculated from the data, and are expressed as mean, median, and mode. A mean 

shows the average of all the collected data. The median is the middle point of the data 

distribution. The mode value shows the common value presented in the given dataset. 

The measures of spread show the way in which data is distributed and relates to each 

other. This type of descriptive statistics usually includes, among others, a range of the 

values by expressing the minimum and maximum values, frequency distribution, 

quartiles, variance, and standard deviation. These statistics are very useful to identify 

trends within the data. In this study, some of the methods belong to both of the types of 

descriptive statistics are applied to measure the accuracy and summarizing purposes.  

5.3.2. Confidence Interval 

 We present the execution time and energy consumption that is measured by 

running five proposed solutions. For reliability assurance, we iterate the data collection 

of each solution 30 times (30 data traces). Instead of presenting point estimate for the 

corresponding execution time of each data trace of proposed solutions, we use a 95% 

interval estimate. Therefore, we raise the confidence and reliability of results to 95% 

when reporting the results of execution time and energy consumption. 
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5.3.3. Inferential Statistics 

 Inferential statistics allows the identification of trends in the characteristics of a 

sample that is drawn from a large population (Sheskin, 2003). There are two types of 

inferential statistics: parametric and non-parametric. In the former, data must normally 

be distributed, whereas in the latter there is no assumption about such normal data 

distribution. In this study, non-parametric tests are conducted to determine whether or 

not the differences are significant.   

5.3.3.1. Null Hypothesis 

 The null hypothesis is used in inferential statistics, a general statement that 

shows there is no relationship between two measured phenomena and denoted by H0 (H-

naught). It is the opposite of the alternative hypothesis. The rejection of null hypothesis 

ensures statistical significance in given set of values. In this context, P-value is used that 

helps to determine the statistical significance of the results. The value of P provides 

evidence to reject the null hypothesis when it is less than or equal to 0.05. 

5.3.3.2. Mann-Whitney U Test 

 The Mann-Whitney U test is a non-parametric test, used to determine whether or 

not the differences between two samples are truly significant (Arcuri et al., 2011). It is 

applied when data is not normally distributed (In the specific case of our collected data). 

The test helps to rank the data for each condition using equation 5.2. 

𝑈𝑥 =  𝑁𝑥. 𝑁𝑦 +  
𝑁𝑥(𝑁𝑥+1)

2
− ∑ 𝑟𝑥           

(5.2) 

Where Ux is the Mann-Whitney calculation for sample X, N is number of samples and 

Σrx is the sum of the ranks of sample x. 

5.3.3.3. Vargha and Delaney’s A12 statistics 

 Vargha and Delaney’s A12 statistics test is used to evaluate the effective size. 

The range of A12 (0-1) is divided into three categories, such as small, medium and large. 

“Values of A12 such that 0.36 < A12 ≤ 0.44 or 0.56 ≤ A12 < 0.64 indicate small effect 
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size. Values of A12 such that 0.29 < A12 ≤ 0.36 or 0.64 ≤ A12 < 0.71 indicate medium 

effect size. Values of b A12 such that 0 ≤ A12 ≤ 0.29 or 0.71 ≥ A12 ≤ 1 indicate large 

effect size. A value of 0.5 indicates no difference between the populations (Holt et al., 

2014).”  The equation that is used to estimate the value of A is provided below (Vargha 

et al., 2000). 

𝐴12 =
(

𝑅𝑘

𝑚 −
(𝑚 + 1)

2 )

𝑛
 

(5.3) 

Where R is the rank of sample k, whereas m represents the number of samples and n 

represents the total entries.  

5.3.3.4. Pearson’s Correlation Coefficient 

 This statistics measure is used to find the strength of the association between 

two continuous variables (Ahlgren et al., 2003). To investigate this relationship, scatter 

plot is used to check the linearity. When there is no linearity, the correlation coefficient 

cannot be calculated because it shows no relationship between two variables. Moreover, 

in terms of axis representation any variable can be plotted on the x- or y-axis. Once this 

statistics measure is applied, the value of Pearson’s r indicates the strength of the 

relationship between two variables; an r that is close to 1 indicates a strong association. 

The scattered point plotted through the Pearson’s correlation coefficient must be near 

the straight line, when there is a strong association between two variables. We used this 

measure to validate the model results. 

5.4 Data Collected For Mathematical model Validation 

 The correctness of the developed mathematical model is validated by comparing 

the results obtained from the experimental results. The execution time is used as a 

parameter for validation of the mathematical model. To ascertain that there are no 

significant differences between the results obtained from simulation and mathematical 

model, three statistical methods – Pearson’s correlation coefficient, Mann-Whitney U 
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test, and Vargha and Delaney’s A12 statistics – are applied. The reason of applying three 

statistical methods is to perform rigorous verification of the differences and similarity 

between the mathematical model and simulation results. 

 Figure 5.1 presents the results obtained from the Pearson’s correlation. The x 

and y axes represent the execution time results (in seconds) obtained through simulation 

and mathematical model of CPU speed-based task allocation solution, respectively. The 

statistical method reveals that the results obtained from simulation and mathematical 

model are very closely related as the value of Pearson’s r is 0.99618. Figure 5.1 

indicates that scattered points of two variables are very close to a straight line. Hence, 

the small difference validates the model results.      
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Figure 5.1: Pearson's correlation coefficient results (CPU speed-based task allocation) 

Table 5.3 presents the results obtained through mathematical model and 

simulation of CPU speed-based task allocation to perform the validation. The first row 

represents the execution time and the first column represents the different data traces. 

To prove that there is no significant difference between the execution time obtained 

from model and simulation, Mann-Whitney U test and Vargha and Delaney’s A12 

statistics are applied. The results of the tests indicate that differences in execution time 

measured through the mathematical model and simulation results are not significant (as 
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the P value found greater than 0.05, and effect size is small). Hence, the small amount 

of difference validates the model results. 

Table 5.3: Validation of mathematical model with simulation results (execution time) of CPU speed-

based task allocation. 

Data Trace # Simulation Results Mathematical model 

Data Trace-1 574.4807692 545.3598475 

Data Trace -2 543.3076923 527.6710354 

Data Trace -3 573.9230769 553.3846172 

Data Trace -4 519.7884615 503.8650337 

Data Trace -5 421.5576923 404.6150567 

Data Trace -6 404.4615385 372.9923819 

Data Trace -7 395.8653846 366.9688122 

Data Trace -8 425.0961538 403.7541642 

Data Trace -9 533.9230769 499.9186359 

Data Trace -10 410.4807692 394.7918476 

Data Trace -11 431.5961538 407.8212667 

Data Trace -12 559.6538462 537.022677 

Data Trace -13 436.0961538 405.7858181 

Data Trace -14 566.4038462 535.4998481 

Data Trace -15 478.4230769 459.6856248 

Data Trace -16 565.1153846 540.3200967 

Data Trace -17 497.6538462 473.7421221 

Data Trace -18 567.7115385 539.7852783 

Data Trace -19 451.4615385 422.2742418 

Data Trace -20 419.8846154 389.7908817 

Data Trace -21 532.4038462 511.8833446 

Data Trace -22 417.3461538 388.7521003 

Data Trace -23 473.1346154 445.0326553 

Data Trace -24 545.4615385 527.2093038 

Data Trace -25 540.5961538 523.2162002 

Data Trace -26 415.2884615 390.3211805 

Data Trace -27 416.5769231 382.3820439 

Data Trace -28 465.3269231 443.5192085 

Data Trace -29 432.1153846 405.4100296 

Data Trace -30 483.75 464.2737612 

P-Value (Mann-Whitney U 

Test) 0.06288  

Z-Score 1.85545  

Vargha and Delaney A12   0.64  

Effect Size Small  

Significant Difference   No  
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Figure 5.2 presents the results obtained from the Pearson’s correlation. The x and y axes 

represent the execution time results (in seconds) obtained through simulation and 

mathematical model of core-based task allocation solution, respectively. The statistical 

method reveals that the results obtained from simulation and mathematical model are 

very closely related as the value of Pearson’s r is 0.99781. Figure 5.2 indicates that 

scattered points of two variables are very close to a straight line. Hence, the small 

difference validates the model results.      
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Pearson's r 0.99781
Adj. R-Square 0.99547

Value Standard Erro
Mathematical Intercept -21.54533 6.61129
Mathematical Slope 0.99959 0.01253

 
Figure 5.2: Pearson's correlation coefficient results (Core-based task allocation) 

 Table 5.4 presents the correctness of the developed mathematical model that is 

validated by comparing the simulation results obtained from core-based task allocation. 

The first row represents the execution time and the first column represents the different 

data traces. To prove that there is no significant difference between the execution time 

obtained from model and simulation, Mann-Whitney U test and Vargha and Delaney’s 

A12 statistics are applied. The results of the tests indicate that differences in execution 

time measured through the mathematical model and simulation results are not 

significant (as the P value found greater than 0.05, and effect size is small). Hence, the 

small amount of difference validates the model results. 
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Table 5.4: Validation of mathematical model with simulation results (execution time) of core-based 

task allocation. 

Data Trace # Simulation Results Mathematical model 

Data Trace-1 622.3542 606.2164 

Data Trace -2 588.5833 572.7741 

Data Trace -3 621.75 598.788 

Data Trace -4 563.1042 536.4167 

Data Trace -5 456.6875 427.6773 

Data Trace -6 438.1667 421.2181 

Data Trace -7 428.8542 405.3218 

Data Trace -8 460.5208 438.48 

Data Trace -9 578.4167 563.2381 

Data Trace -10 444.6875 424.6307 

Data Trace -11 467.5625 450.1298 

Data Trace -12 606.2917 579.3774 

Data Trace -13 472.4375 452.7693 

Data Trace -14 613.6042 590.6762 

Data Trace -15 518.2917 500.8069 

Data Trace -16 612.2083 588.1786 

Data Trace -17 539.125 520.1804 

Data Trace -18 615.0208 590.2096 

Data Trace -19 489.0833 463.7451 

Data Trace -20 454.875 428.6527 

Data Trace -21 576.7708 555.0127 

Data Trace -22 452.125 435.8677 

Data Trace -23 512.5625 494.1278 

Data Trace -24 590.9167 562.2166 

Data Trace -25 585.6458 568.3602 

Data Trace -26 449.8958 422.5086 

Data Trace -27 451.2917 428.2165 

Data Trace -28 504.1042 474.1621 

Data Trace -29 468.125 451.9524 

Data Trace -30 524.0625 502.4223 

P-Value (Mann-Whitney U 

Test) 0.1096  

Z-Score 1.60411  

Vargha and Delaney A12   0.621111  

Effect Size Small  

Significant Difference   No  

 Figure 5.3 presents the results obtained from the Pearson’s correlation. The x 

and y axes represent the execution time (in seconds) results obtained through simulation 

and mathematical model of workload-based task allocation solution, respectively. The 

statistical method reveals that the results obtained from simulation and mathematical 
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model are very closely related as the value of Pearson’s r is 0.99606. Figure 5.3 

indicates that scattered points of two variables are very close to a straight line. Hence, 

the small difference validates the model results. 
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Figure 5.3: Pearson's correlation coefficient results (Workload-based task allocation) 

 Table 5.5 presents the results obtained from mathematical model and simulation 

of workload-based task allocation to perform the validation. The first row represents the 

execution time and the first column represents the different data traces. To prove that 

there is no significant difference between the execution time obtained from model and 

simulation, Mann-Whitney U test and Vargha and Delaney’s A12 statistics are applied. 

The results of the tests indicate that differences in execution time measured through the 

mathematical model and simulation results are not significant (as the P value found 

greater than 0.05, and effect size is small). Hence, the small amount of difference 

validates the model results. 
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Table 5.5: Validation of mathematical model with simulation results (execution time) of workload-

based task allocation 

Data Trace # Simulation Results Mathematical model 

Data Trace-1 574.1731 557.0378 

Data Trace -2 542.9808 514.9056 

Data Trace -3 573.6154 548.7319 

Data Trace -4 519.3269 488.7459 

Data Trace -5 412.8654 383.5646 

Data Trace -6 403.9808 370.9064 

Data Trace -7 387.2308 354.4123 

Data Trace -8 424.6923 403.009 

Data Trace -9 533.5 504.5251 

Data Trace -10 410.1346 391.1784 

Data Trace -11 422.6154 407.0046 

Data Trace -12 551.6154 521.7339 

Data Trace -13 427.6731 402.6726 

Data Trace -14 558.3654 533.7669 

Data Trace -15 478.0385 444.944 

Data Trace -16 564.7308 537.5334 

Data Trace -17 497.2885 469.9351 

Data Trace -18 567.4231 535.2342 

Data Trace -19 451.1538 420.0441 

Data Trace -20 419.5577 393.0233 

Data Trace -21 531.9423 513.2839 

Data Trace -22 416.9423 397.1437 

Data Trace -23 464.7115 431.9813 

Data Trace -24 545.1538 529.5804 

Data Trace -25 532.7885 507.9904 

Data Trace -26 414.8846 396.5261 

Data Trace -27 416.2692 381.6956 

Data Trace -28 456.7885 427.5346 

Data Trace -29 431.8269 406.8175 

Data Trace -30 483.3462 458.9244 

P-Value (Mann-Whitney U 

Test) 0.06148  

Z-Score 1.87023  

Vargha and Delaney A12   0.641111  

Effect Size Small  

Significant Difference   No  
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 Figure 5.4 presents the results obtained from the Pearson’s correlation. The x 

and y axes represent execution time (in seconds) results obtained through simulation 

and mathematical model of two parameters (CPU speed and workload) based task 

allocation solution, respectively. The statistical method reveals that the results obtained 

from simulation and mathematical model are very closely related as the value of 

Pearson’s r is 0.99249. Figure 5.4 indicates that scattered points of two variables are 

very close to a straight line. Hence, the small difference validates the model results.      
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Figure 5.4: Pearson's correlation coefficient results (CPU Speed and workload-based task 

allocation) 

 Table 5.6 presents the results obtained through mathematical model and 

simulation of two parameters (CPU speed and workload) based task allocation to 

perform the validation. The first row represents the execution time and the first column 

represents the different data traces. To prove that there is no significant difference 

between the execution time obtained from model and simulation, Mann-Whitney U test 

and Vargha and Delaney’s A12 statistics are applied. The results of the tests indicate that 

differences in execution time measured through the mathematical model and 

experimental are not significant (as the P value found greater than 0.05, and effect size 

is medium). Hence, the small amount of difference validates the model results. 
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Table 5.6: Validation of mathematical model with simulation results (execution time) of two 

parameters (CPU speed and workload) based task allocation 

Data Trace # Simulation Results Mathematical model 

Data Trace-1 528.8846 493.4529 

Data Trace -2 496.9038 470.6625 

Data Trace -3 527.6154 480.0475 

Data Trace -4 466.1923 417.5726 

Data Trace -5 367.3846 330.113 

Data Trace -6 351.4808 314.2495 

Data Trace -7 341.8654 308.4224 

Data Trace -8 371.1731 323.6717 

Data Trace -9 480.1538 445.9227 

Data Trace -10 364.6346 336.8545 

Data Trace -11 377.3077 332.8014 

Data Trace -12 505.9038 471.1604 

Data Trace -13 382.6154 351.5731 

Data Trace -14 512.0577 476.9599 

Data Trace -15 433.3269 405.9156 

Data Trace -16 510.9423 482.643 

Data Trace -17 443.2692 394.718 

Data Trace -18 522.1731 473.2697 

Data Trace -19 406.0192 366.639 

Data Trace -20 374.7308 348.2363 

Data Trace -21 478.4231 447.5536 

Data Trace -22 372.2692 338.4403 

Data Trace -23 418.0385 372.5086 

Data Trace -24 500.9231 475.538 

Data Trace -25 487.25 461.1744 

Data Trace -26 361.3846 332.1599 

Data Trace -27 370.9231 329.6952 

Data Trace -28 411.3462 368.0531 

Data Trace -29 387.3654 346.1717 

Data Trace -30 437.3846 401.1115 

P-Value (Mann-Whitney U 

Test) 

0.0139  

Z-Score 2.46161  

Vargha and Delaney A12 0.685556  

Effect Size Medium  

Significant Difference   No  
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 Figure 5.5 presents the results obtained from the Pearson’s correlation. The x 

and y axes represent the execution time results obtained through simulation and 

mathematical model of three parameters (CPU speed, core, and workload) based task 

allocation solution, respectively. The statistical method reveals that the results obtained 

from simulation and mathematical model are very closely related as the value of 

Pearson’s r is 0.99781. Figure 5.5 indicates that scattered points of two variables are 

very close to a straight line. Hence, the small difference validates the model results.      
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Figure 5.5: Pearson's correlation coefficient results (CPU speed, core, and workload-based task 

allocation). 

 Table 5.7 presents the results obtained through mathematical model and 

simulation of three parameters (CPU speed, core, and workload) based task allocation to 

perform the validation. The first row represents the execution time and the first column 

represents the different data traces. To prove that there is no significant difference 

between the execution time obtained from model and simulation, Mann-Whitney U test 

and Vargha and Delaney’s A12 statistics are applied. The results of the tests indicate that 

differences in execution time measured through the mathematical model and 

experimental are not significant (as the P value found greater than 0.05, and effect size 

is small). Hence, the small amount of difference validates the model results. 
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Table 5.7: Validation of mathematical model with simulation results (execution time) of three 

parameters (Speed, core, and workload) based task allocation 

Data Trace # Simulation Results Mathematical model 

Data Trace-1 418.0833 401.9455 

Data Trace -2 384.8125 369.0032 

Data Trace -3 417.1875 394.2255 

Data Trace -4 350.2292 323.5417 

Data Trace -5 244.5417 215.5315 

Data Trace -6 229.0833 212.1347 

Data Trace -7 216.0625 192.5301 

Data Trace -8 256.1667 234.1258 

Data Trace -9 374.5417 359.3631 

Data Trace -10 242.4583 222.4015 

Data Trace -11 264.6875 247.2548 

Data Trace -12 394.4792 367.5649 

Data Trace -13 262.5833 242.9151 

Data Trace -14 402.5 379.572 

Data Trace -15 315.5625 298.0778 

Data Trace -16 408.9583 384.9286 

Data Trace -17 336.0625 317.1179 

Data Trace -18 411.3333 386.5221 

Data Trace -19 287.7292 262.3909 

Data Trace -20 252.3333 226.1111 

Data Trace -21 372.9167 351.1585 

Data Trace -22 248.5417 232.2843 

Data Trace -23 301.125 282.6903 

Data Trace -24 388.3333 359.6333 

Data Trace -25 375.6042 358.3185 

Data Trace -26 248.3125 220.9252 

Data Trace -27 248.1458 225.0707 

Data Trace -28 292.625 262.683 

Data Trace -29 267.0208 250.8482 

Data Trace -30 319 297.3598 

P-Value (Mann-

Whitney U Test)   

0.12356  

Z-Score   1.54497  

Vargha and Delaney 

A12   

0.616667  

Effect Size Small  

Significant Difference   No  
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5.5 Data Collected for Analyzing the Impact of Heterogeneity-aware Task 

Allocation on Execution Time 

 This section presents the execution time data, collected by running the proposed 

solutions and random-based task allocation. The Mann-Whitney U test and Vargha and 

Delaney statistics are used to analyze the differences between the collected data. In the 

collected data tables, column attributes represent the execution time and row attributes 

represent the data traces. Moreover, symbols such as SO, CO, WO, SW, and SCW are 

used to represent the proposed solutions that are based on CPU speed, number of cores, 

workload, CPU speed and workload, and CPU speed, number of cores and workload, 

respectively. RM represents a random-based task allocation. 

5.5.1. SO vs. RM 

 Table 5.8 presents execution time data that is collected by running 30 data traces 

using SO- and RM-based task allocation. The Mann-Whitney U test and Vargha and 

Delaney statistics A12 are applied to measure whether the differences are significant or 

not. These tests help to find the significant differences and effectiveness in 30 data 

traces of SO, in comparison with RM. The objective of these tests was to fail the 

following null hypothesis: 

H0-execution time: There are no differences in execution time measured through SO when 

compared with RM. 

 The rejection of the null hypothesis ensures that the proposed solution 

outperforms the RM. The P-value measured through Mann-Whitney U test that was 

found less than 0.05. This value indicates that SO has significant differences from RM 

in execution time results. At the same time, the A12 statistics also reveals a large effect 

on execution time results. These two tests conclude that the proposed solution has 

significant statistical and practical differences from RM that leads to the rejection of the 

null hypothesis. 
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Table 5.8: Data collected through SO- and RM-based task allocation 

Data Trace # RM SO 

Data Trace-1 1949.305556 574.4807692 

Data Trace -2 1125.1875 543.3076923 

Data Trace -3 2916.468254 573.9230769 

Data Trace -4 465.9375 519.7884615 

Data Trace -5 398 421.5576923 

Data Trace -6 1813.194444 404.4615385 

Data Trace -7 341.8653846 395.8653846 

Data Trace -8 228.6538462 425.0961538 

Data Trace -9 1975.396825 533.9230769 

Data Trace -10 1005.654762 410.4807692 

Data Trace -11 1214.087302 431.5961538 

Data Trace -12 1183.4375 559.6538462 

Data Trace -13 729.1666667 436.0961538 

Data Trace -14 460.8125 566.4038462 

Data Trace -15 2194.345238 478.4230769 

Data Trace -16 1226.875 565.1153846 

Data Trace -17 1555.357143 497.6538462 

Data Trace -18 1918.650794 567.7115385 

Data Trace -19 835.6875 451.4615385 

Data Trace -20 224.1538462 419.8846154 

Data Trace -21 1118.75 532.4038462 

Data Trace -22 490.9375 417.3461538 

Data Trace -23 901.6875 473.1346154 

Data Trace -24 491.9423077 545.4615385 

Data Trace -25 2017.956349 540.5961538 

Data Trace -26 1136.40873 415.2884615 

Data Trace -27 965.7738095 416.5769231 

Data Trace -28 962.9960317 465.3269231 

Data Trace -29 726.7857143 432.1153846 

Data Trace -30 931.8125 483.75 

P-Value (Mann-

Whitney U Test) 

0.000058  

Vargha and Delaney 

A12 

0.802222222  

Effect Size Large  

Result SO > RM  

Significance Yes  

5.5.2. CO vs. RM 

 Table 5.9 presents the execution time data that is collected by running thirty data 

traces using CO- and RM-based task allocation. The Mann-Whitney U test and Vargha 

and Delaney statistics A12 are applied to measure whether the differences are significant 
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or not. These tests help to find the significant differences and effectiveness in 30 data 

traces of CO, in comparison with RM. The objective of these tests was to fail the 

following null hypothesis: 

H0-execution time: There are no differences in execution time measured through CO when 

compared with RM. 

Table 5.9: Data collected through CO- and RM-based task allocation 

Data Trace # RM CO 

Data Trace-1 1949.305556 622.3541667 

Data Trace -2 1125.1875 588.5833333 

Data Trace -3 2916.468254 621.75 

Data Trace -4 465.9375 563.1041667 

Data Trace -5 398 456.6875 

Data Trace -6 1813.194444 438.1666667 

Data Trace -7 341.8653846 428.8541667 

Data Trace -8 228.6538462 460.5208333 

Data Trace -9 1975.396825 578.4166667 

Data Trace -10 1005.654762 444.6875 

Data Trace -11 1214.087302 467.5625 

Data Trace -12 1183.4375 606.2916667 

Data Trace -13 729.1666667 472.4375 

Data Trace -14 460.8125 613.6041667 

Data Trace -15 2194.345238 518.2916667 

Data Trace -16 1226.875 612.2083333 

Data Trace -17 1555.357143 539.125 

Data Trace -18 1918.650794 615.0208333 

Data Trace -19 835.6875 489.0833333 

Data Trace -20 224.1538462 454.875 

Data Trace -21 1118.75 576.7708333 

Data Trace -22 490.9375 452.125 

Data Trace -23 901.6875 512.5625 

Data Trace -24 491.9423077 590.9166667 

Data Trace -25 2017.956349 585.6458333 

Data Trace -26 1136.40873 449.8958333 

Data Trace -27 965.7738095 451.2916667 

Data Trace -28 962.9960317 504.1041667 

Data Trace -29 726.7857143 468.125 

Data Trace -30 931.8125 524.0625 

P-Value (Mann-Whitney 

U Test)   

0.000173  

Vargha and Delaney A12   0.782222222  

Effect Size Large  

Result CO > RM  

Significance Yes  
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 The rejection of the null hypothesis ensures that the proposed solution 

outperforms the RM. The P-value derived through Mann-Whitney U test is measured as 

0.000173. This value indicates that CO has significant differences from RM in 

execution time results. On the other hand, the A12 statistics also reveals a large effect on 

execution time results. These two tests conclude that the proposed solution has 

significant statistical and practical differences from RM that leads to the rejection of the 

null hypothesis. 

5.5.3. WO vs. RM 

 Table 5.10 presents execution time data that is collected by running thirty data 

traces using WO- and RM-based task allocation. The Mann-Whitney U test and Vargha 

and Delaney statistics A12 are applied to measure whether the differences are significant 

or not. These tests help to find the significant differences and effectiveness in 30 data 

traces of CO, in comparison with RM. The objective of these tests was to fail the 

following null hypothesis: 

H0-execution time: There are no differences in execution time measured through WO when 

compared with RM. 

 The rejection of the null hypothesis ensures proposed that the solution 

outperforms the RM. The P-value derived through Mann-Whitney U test is measured as 

0.000051. This value indicates that WO has significant differences from RM in 

execution time results. On the other hand, A12 statistics also reveals a large size effect on 

execution time results. These two tests conclude that the proposed solution have 

significant statistical and practical differences from RM that leads to the rejection of the 

null hypothesis. 

 

 

  

Univ
ers

ity
 of

 M
ala

ya



 

93 

 

Table 5.10: Data Collected through WO- and RM-based task allocation 

Data Trace # RM WO 

Data Trace-1 1949.305556 574.1730769 

Data Trace -2 1125.1875 542.9807692 

Data Trace -3 2916.468254 573.6153846 

Data Trace -4 465.9375 519.3269231 

Data Trace -5 398 412.8653846 

Data Trace -6 1813.194444 403.9807692 

Data Trace -7 341.8653846 387.2307692 

Data Trace -8 228.6538462 424.6923077 

Data Trace -9 1975.396825 533.5 

Data Trace -10 1005.654762 410.1346154 

Data Trace -11 1214.087302 422.6153846 

Data Trace -12 1183.4375 551.6153846 

Data Trace -13 729.1666667 427.6730769 

Data Trace -14 460.8125 558.3653846 

Data Trace -15 2194.345238 478.0384615 

Data Trace -16 1226.875 564.7307692 

Data Trace -17 1555.357143 497.2884615 

Data Trace -18 1918.650794 567.4230769 

Data Trace -19 835.6875 451.1538462 

Data Trace -20 224.1538462 419.5576923 

Data Trace -21 1118.75 531.9423077 

Data Trace -22 490.9375 416.9423077 

Data Trace -23 901.6875 464.7115385 

Data Trace -24 491.9423077 545.1538462 

Data Trace -25 2017.956349 532.7884615 

Data Trace -26 1136.40873 414.8846154 

Data Trace -27 965.7738095 416.2692308 

Data Trace -28 962.9960317 456.7884615 

Data Trace -29 726.7857143 431.8269231 

Data Trace -30 931.8125 483.3461538 

P-Value (Mann-Whitney 

U Test):   

0.000051  

Vargha and Delaney A12   0.804444444  

Effect Size: Large  

Result WO > RM  

Significance Yes  

5.5.4. SW vs. RM 

 Table 5.11 presents execution time data that is collected by running thirty data 

traces using SW- and RM-based task allocation. The Mann-Whitney U test and Vargha 

and Delaney statistics A12 are applied to measure whether the differences are significant 

or not. These tests help to find the significant differences and effectiveness in 30 data 
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traces of SW, in comparison with RM. The objective of these tests was to fail the 

following null hypothesis: 

H0-execution time: There are no differences in execution time measured through SW when 

compared with RM. 

Table 5.11: Data collected through SW- and RM-task allocation 

Data Trace # RM SW 

Data Trace-1 1949.305556 528.8846154 

Data Trace -2 1125.1875 496.9038462 

Data Trace -3 2916.468254 527.6153846 

Data Trace -4 465.9375 466.1923077 

Data Trace -5 398 367.3846154 

Data Trace -6 1813.194444 351.4807692 

Data Trace -7 341.8653846 341.8653846 

Data Trace -8 228.6538462 371.1730769 

Data Trace -9 1975.396825 480.1538462 

Data Trace -10 1005.654762 364.6346154 

Data Trace -11 1214.087302 377.3076923 

Data Trace -12 1183.4375 505.9038462 

Data Trace -13 729.1666667 382.6153846 

Data Trace -14 460.8125 512.0576923 

Data Trace -15 2194.345238 433.3269231 

Data Trace -16 1226.875 510.9423077 

Data Trace -17 1555.357143 443.2692308 

Data Trace -18 1918.650794 522.1730769 

Data Trace -19 835.6875 406.0192308 

Data Trace -20 224.1538462 374.7307692 

Data Trace -21 1118.75 478.4230769 

Data Trace -22 490.9375 372.2692308 

Data Trace -23 901.6875 418.0384615 

Data Trace -24 491.9423077 500.9230769 

Data Trace -25 2017.956349 487.25 

Data Trace -26 1136.40873 361.3846154 

Data Trace -27 965.7738095 370.9230769 

Data Trace -28 962.9960317 411.3461538 

Data Trace -29 726.7857143 387.3653846 

Data Trace -30 931.8125 437.3846154 

P-Value (Mann-Whitney 

U Test):   

0.000008  

Vargha and Delaney A12   0.836111111  

Effect Size: Large  

Result SW > RM  

Significance Yes  
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 The rejection of the null hypothesis ensures that the proposed solution 

outperforms the RM. The P-value derived through Mann-Whitney U test is measured as 

0.000008. This value shows that SW has significant differences from RM in execution 

time results. At the same time, A12 statistics also reveals a large effect on execution time 

results. These two tests conclude that the proposed solution has significant statistical 

and practical differences from RM that leads to the rejection of the null hypothesis. 

5.5.5. SCW vs. RM 

 Table 5.12 presents execution time data that is collected by running thirty data 

traces using SCW- and RM-based task allocation. The Mann-Whitney U test and 

Vargha and Delaney statistics A12 are applied to measure whether the differences are 

significant or not. These tests help to find the significant differences and effectiveness in 

30 data traces of SCW, in comparison with RM. The objective of these tests was to fail 

the following null hypothesis: 

H0-execution time: There are no differences in execution time measured through SCW when 

compared with RM. 

 The rejection of the null hypothesis ensures that the proposed solution 

outperforms the RM. The P-value derived through Mann-Whitney U test that is 

measured as 0.000000029537. This value indicates SCW has significant differences 

from RM in execution time results. On the other hand, A12 statistics also reveals a large 

effect size on execution time results. These two tests conclude that the proposed 

solution has significant statistical and practical differences from RM that leads to the 

rejection of the null hypothesis.  
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Table 5.12: Data collected through SCW- and RM-based task allocation 

Data Trace # RM SCW 

Data Trace-1 1949.305556 418.0833 

Data Trace -2 1125.1875 384.8125 

Data Trace -3 2916.468254 417.1875 

Data Trace -4 465.9375 350.2292 

Data Trace -5 398 244.5417 

Data Trace -6 1813.194444 229.0833 

Data Trace -7 341.8653846 216.0625 

Data Trace -8 228.6538462 256.1667 

Data Trace -9 1975.396825 374.5417 

Data Trace -10 1005.654762 242.4583 

Data Trace -11 1214.087302 264.6875 

Data Trace -12 1183.4375 394.4792 

Data Trace -13 729.1666667 262.5833 

Data Trace -14 460.8125 402.5 

Data Trace -15 2194.345238 315.5625 

Data Trace -16 1226.875 408.9583 

Data Trace -17 1555.357143 336.0625 

Data Trace -18 1918.650794 411.3333 

Data Trace -19 835.6875 287.7292 

Data Trace -20 224.1538462 252.3333 

Data Trace -21 1118.75 372.9167 

Data Trace -22 490.9375 248.5417 

Data Trace -23 901.6875 301.125 

Data Trace -24 491.9423077 388.3333 

Data Trace -25 2017.956349 375.6042 

Data Trace -26 1136.40873 248.3125 

Data Trace -27 965.7738095 248.1458 

Data Trace -28 962.9960317 292.625 

Data Trace -29 726.7857143 267.0208 

Data Trace -30 931.8125 319 

P-Value (Mann-Whitney 

U Test):   

0.000000029537  

Vargha and Delaney A12   0.916666667  

Effect Size: Large  

Result SCW > RM  

Significance Yes  

5.6 Data Collected for Analyzing the Impact of Heterogeneity-aware Task 

Allocation on Energy Consumption 

 This section presents the energy consumption data, collected from running five 

proposed solutions. The Mann-Whitney U test and Vargha and Delaney statistics are 
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used to analyze the differences between the collected data. In the data collection tables, 

columns represent energy consumption and row attributes represent data traces.  

5.6.1. SO vs. RM 

 Table 5.13 presents energy consumption data that is collected by running 30 data 

traces using SO- and RM-based task allocation. The Mann-Whitney U test and Vargha 

and Delaney statistics A12 are applied to measure whether the differences are significant 

or not. These tests help to identify the significant differences and effectiveness in 30 

data traces of SO, in comparison with RM. The objective of these tests was to reject the 

following null hypothesis: 

H0-energyconsumption: There are no differences in energy consumption data obtained through 

SO when compared with RM. 

 The rejection of the null hypothesis ensures that the proposed solutions 

outperform the RM. The P-value derived through Mann-Whitney U test that is 

measured as 0.000012. This value indicates that SO has significant differences from RM 

in energy consumption results. The A12 statistics also reveals a large effect on energy 

consumption results. These two tests conclude that the proposed solution has significant 

statistical and practical differences from RM that results in the rejection of the null 

hypothesis.  

Table 5.13: Energy consumption data collected through CPU SO- and RM-based task allocation 

Data Trace # RM SO 

Data Trace-1 2259093 344688.5 

Data Trace -2 1655913 325984.6 

Data Trace -3 1054491 344353.8 

Data Trace -4 2013722 311873.1 

Data Trace -5 1500307 252934.6 

Data Trace -6 190264.5 242676.9 

Data Trace -7 917765.8 237519.2 

Data Trace -8 1272169 255057.7 

Data Trace -9 1969781 320353.8 

Data Trace -10 950930 246288.5 

Data Trace -11 595363.1 258957.7 

Data Trace -12 228943.2 335792.3 
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                                                                Table 5.13: continued,  

Data Trace # RM SO 

Data Trace -13 842041.1 261657.7 

Data Trace -14 651022.6 339842.3 

Data Trace -15 1197252 287053.8 

Data Trace -16 669060.6 339069.2 

Data Trace -17 315580.4 298592.3 

Data Trace -18 862806.1 340626.9 

Data Trace -19 627752.1 270876.9 

Data Trace -20 1678109 251930.8 

Data Trace -21 2071569 319442.3 

Data Trace -22 522465.5 250407.7 

Data Trace -23 315525 283880.8 

Data Trace -24 939443.6 327276.9 

Data Trace -25 162178.8 324357.7 

Data Trace -26 1038804 249173.1 

Data Trace -27 1314719 249946.2 

Data Trace -28 311803.1 279196.2 

Data Trace -29 189995.1 259269.2 

Data Trace -30 469763.5 290250 

P-Value (Mann-Whitney 

U Test)   

0.000012  

Vargha and Delaney A12   0.828889  

Effect Size Large  

Result SO > RM  

Significance Yes  

5.6.2. CO vs. RM 

 Table 5.14 presents energy consumption data that is collected by running 30 data 

traces using CO- and RM-based task allocation. The Mann-Whitney U test and Vargha 

and Delaney statistics A12 are applied to measure whether the differences are significant 

or not. These tests help to identify the significant differences and effectiveness in 30 

data traces of CO, in comparison with RM. The objective of these tests was to reject the 

following null hypothesis: 

H0-energyconsumption: There are no differences in energy consumption data obtained from 

CO when compared with RM.  
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Table 5.14: Energy consumption data collected through CO- and RM-based task allocation 

Data Trace # RM CO 

Data Trace-1 2259093 373412.5 

Data Trace -2 1655913 353150 

Data Trace -3 1054491 373050 

Data Trace -4 2013722 337862.5 

Data Trace -5 1500307 274012.5 

Data Trace -6 190264.5 262900 

Data Trace -7 917765.8 257312.5 

Data Trace -8 1272169 276312.5 

Data Trace -9 1969781 347050 

Data Trace -10 950930 266812.5 

Data Trace -11 595363.1 280537.5 

Data Trace -12 228943.2 363775 

Data Trace -13 842041.1 283462.5 

Data Trace -14 651022.6 368162.5 

Data Trace -15 1197252 310975 

Data Trace -16 669060.6 367325 

Data Trace -17 315580.4 323475 

Data Trace -18 862806.1 369012.5 

Data Trace -19 627752.1 293450 

Data Trace -20 1678109 272925 

Data Trace -21 2071569 346062.5 

Data Trace -22 522465.5 271275 

Data Trace -23 315525 307537.5 

Data Trace -24 939443.6 354550 

Data Trace -25 162178.8 351387.5 

Data Trace -26 1038804 269937.5 

Data Trace -27 1314719 270775 

Data Trace -28 311803.1 302462.5 

Data Trace -29 189995.1 280875 

Data Trace -30 469763.5 314437.5 

P-Value (Mann-Whitney 

U Test)   

0.000018  

Vargha and Delaney A12   0.822222  

Effect Size Large  

Result CO > RM  

Significance Yes  

 The rejection of the null hypothesis ensures that the proposed solution 

outperforms the RM. The P-value derived through Mann-Whitney U test that is 

measured as 0.000018. This value indicates that CO has significant differences with RM 

in energy consumption results. The A12 statistics also reveals a large effect size on 

energy consumption results. These two tests conclude that proposed solution has 
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significant statistical and practical differences from RM that results in the rejection of 

the null hypothesis. 

5.6.3. WO vs. RM 

 Table 5.15 presents energy consumption data that is collected by running 30 data 

traces using WO- and RM-based task allocation. The Mann-Whitney U test and Vargha 

and Delaney statistics A12 are applied to measure whether the differences are significant 

or not. These tests help to identify the significant differences and effectiveness in 30 

data traces of WO, in comparison with RM. The objective of these tests was to reject the 

following null hypothesis: 

H0-energyconsumption: There are no differences in energy consumption data obtained through 

WO when compared with RM. 

 The rejection of the null hypothesis ensures proposed that the solution 

outperforms the RM. The P-value derived through Mann-Whitney U test that is 

measured as 0.000012. This value indicates that WO has significant differences from 

RM in energy consumption results. The A12 statistics also reveals a large effect size on 

energy consumption results. These two tests conclude that proposed solution has 

significant statistical and practical differences from RM that results in the rejection of 

the null hypothesis.  

Table 5.15: Energy consumption data collected through WO- and RM-based task allocation 

Data Trace # RM WO 

Data Trace-1 2259093 345456.2 

Data Trace -2 1655913 326800.4 

Data Trace -3 1054491 345121.6 

Data Trace -4 2013722 313024.7 

Data Trace -5 1500307 274624 

Data Trace -6 190264.5 243876.6 

Data Trace -7 917765.8 259064.7 

Data Trace -8 1272169 256065.4 

Data Trace -9 1969781 321409.5 

Data Trace -10 950930 247152.2 

Data Trace -11 595363.1 281366.8 

Data Trace -12 228943.2 355850.2 
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 Table 5.15: Continued,  

Data Trace # RM WO 

Data Trace -13 842041.1 282675.3 

Data Trace -14 651022.6 359900.2 

Data Trace -15 1197252 288013.6 

Data Trace -16 669060.6 340028.9 

Data Trace -17 315580.4 299504 

Data Trace -18 862806.1 341346.7 

Data Trace -19 627752.1 271644.7 

Data Trace -20 1678109 252746.5 

Data Trace -21 2071569 320594 

Data Trace -22 522465.5 251415.4 

Data Trace -23 315525 304898.4 

Data Trace -24 939443.6 328044.7 

Data Trace -25 162178.8 343839.7 

Data Trace -26 1038804 250180.8 

Data Trace -27 1314719 250713.9 

Data Trace -28 311803.1 300501.6 

Data Trace -29 189995.1 259989 

Data Trace -30 469763.5 291257.7 

P-Value (Mann-Whitney 

U Test):   

0.000012  

Vargha and Delaney A12   0.828889  

Effect Size: Large  

Result WO > RM  

Significance Yes  

5.6.4. SW vs. RM 

 Table 5.16 presents energy consumption data that is collected by running thirty 

data traces using SW- and RM-based task allocation. The Mann-Whitney U test and 

Vargha and Delaney statistics A12 are applied to measure whether the differences are 

significant or not. These tests help to identify the significant differences and 

effectiveness in 30 data traces of SW, in comparison with RM. The objective of these 

tests was to reject the following null hypothesis: 

H0-energyconsumption: There are no differences in energy consumption data obtained through 

SW when compared with RM. 

 The rejection of the null hypothesis ensures that the proposed solution 

outperforms the RM. The P-value derived through Mann-Whitney U test that is 

measured as 0.000388. This value indicates that SW has significant differences from 
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RM in energy consumption results. The A12 statistics also reveals a large effect size on 

energy consumption results. These two tests conclude that proposed solution has 

significant statistical and practical differences from RM that results in the rejection of 

the null hypothesis. 

Table 5.16: Energy consumption data collected through SW- and RM-based task allocation 

Data Trace # RM SW 

Data Trace-1 2259093 458109.3 

Data Trace -2 1655913 441398.9 

Data Trace -3 1054491 459550.2 

Data Trace -4 2013722 436754.7 

Data Trace -5 1500307 376932 

Data Trace -6 190264.5 364847.4 

Data Trace -7 917765.8 361103.8 

Data Trace -8 1272169 380204.4 

Data Trace -9 1969781 445028.6 

Data Trace -10 950930 360289.1 

Data Trace -11 595363.1 383100.7 

Data Trace -12 228943.2 459482.8 

Data Trace -13 842041.1 384094.8 

Data Trace -14 651022.6 464973.3 

Data Trace -15 1197252 399139 

Data Trace -16 669060.6 464157.1 

Data Trace -17 315580.4 424318.1 

Data Trace -18 862806.1 453925.9 

Data Trace -19 627752.1 383913.9 

Data Trace -20 1678109 364226 

Data Trace -21 2071569 443802.7 

Data Trace -22 522465.5 362422.8 

Data Trace -23 315525 410442.7 

Data Trace -24 939443.6 438058.6 

Data Trace -25 162178.8 447210.7 

Data Trace -26 1038804 372469.5 

Data Trace -27 1314719 363511 

Data Trace -28 311803.1 402795.8 

Data Trace -29 189995.1 370600.8 

Data Trace -30 469763.5 405480.2 

P-Value (Mann-Whitney 

U Test):   

0.000388  

Vargha and Delaney A12   0.766667  

Effect Size: Large  

Result SW > RM  

Significance Yes  
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5.6.5. SCW vs. RM 

 Table 5.17 presents energy consumption data that is collected by running thirty 

data traces using SCW- and RM-based task allocation. The Mann-Whitney U test and 

Vargha and Delaney statistics A12 are applied to measure whether the differences are 

significant or not. These tests help to identify the significant differences and 

effectiveness in 30 data traces of SCW, in comparison with RM. The objective of these 

tests was to reject the following null hypothesis: 

H0-energyconsumption: There are no differences in energy consumption data obtained through 

SCW when compared with RM. 

 The rejection of the null hypothesis ensures that the proposed solution 

outperforms the RM. The P-value derived through Mann-Whitney U test that is 

measured as 0.000015. This value indicates that SCW has significant differences from 

RM in energy consumption results. The A12 statistics also reveals a large effect size on 

energy consumption results. These two tests conclude that proposed solution has 

significant statistical and practical differences from RM that results in the rejection of 

the null hypothesis.  

Table 5.17: Energy consumption data collected through CPU SCW- and RM-based task allocation 

Data Trace # RM SCW 

Data Trace-1 2259093 363984.6 

Data Trace -2 1655913 343745.2 

Data Trace -3 1054491 363608.7 

Data Trace -4 2013722 328037.5 

Data Trace -5 1500307 264221.2 

Data Trace -6 190264.5 253250 

Data Trace -7 917765.8 247491.3 

Data Trace -8 1272169 266880.8 

Data Trace -9 1969781 337640.4 

Data Trace -10 950930 257478.8 

Data Trace -11 595363.1 271174 

Data Trace -12 228943.2 353999 

Data Trace -13 842041.1 273776.9 

Data Trace -14 651022.6 358419.2 

Data Trace -15 1197252 301618.3 

Data Trace -16 669060.6 357944.2 
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Table 5.17: Continued, 

Data Trace # RM SCW 

Data Trace -17 315580.4 314102.9 

Data Trace -18 862806.1 359611.5 

Data Trace -19 627752.1 284156.7 

Data Trace -20 1678109 263576.9 

Data Trace -21 2071569 336653.8 

Data Trace -22 522465.5 261878.8 

Data Trace -23 315525 297778.8 

Data Trace -24 939443.6 345200 

Data Trace -25 162178.8 341693.3 

Data Trace -26 1038804 260633.7 

Data Trace -27 1314719 261399 

Data Trace -28 311803.1 292701.9 

Data Trace -29 189995.1 271593.3 

Data Trace -30 469763.5 304973.1 

P-Value (Mann-Whitney U 

Test):   

0.000015  

Vargha and Delaney A12   0.825556  

Effect Size: Large  

Result SCW > RM  

Significance Yes  

5.7 Data Collected for Comparison of Five Heterogeneity-aware Task 

Allocation Solutions with Random-based Task Allocation  

 This section presents the data collected to verify five proposed heterogeneity-

aware task allocation solutions with RM in terms of execution time and energy 

consumption. After collecting the data, descriptive statistics, Mann-Whitney U test, and 

Vargha and Delaney statistics are applied. These statistics provide summaries and 

evidence of significant differences that help to draw some conclusions about 

performance evaluation. 

5.7.1. Execution Time 

 Table 5.18 presents the execution time data collected to compare five proposed 

heterogeneity-aware solutions – SO, CO, WO, SW, and SCW – with RM. The row 

attributes of the table represent the type of solution and the column attributes represent 

the execution time for 30 data traces. The average execution time of five proposed 

solutions is less than RM for all data traces.  
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Table 5.18: Comparison of the execution time results obtained from proposed solutions with 

random-based task allocation 

Data Trace # RM SO CO WO SW SCW 

Data Trace-1 1949.305556 574.4807692 622.3541667 574.1730769 528.8846154 418.0833 

Data Trace -2 1125.1875 543.3076923 588.5833333 542.9807692 496.9038462 384.8125 

Data Trace -3 2916.468254 573.9230769 621.75 573.6153846 527.6153846 417.1875 

Data Trace -4 465.9375 519.7884615 563.1041667 519.3269231 466.1923077 350.2292 

Data Trace -5 398 421.5576923 456.6875 412.8653846 367.3846154 244.5417 

Data Trace -6 1813.194444 404.4615385 438.1666667 403.9807692 351.4807692 229.0833 

Data Trace -7 341.8653846 395.8653846 428.8541667 387.2307692 341.8653846 216.0625 

Data Trace -8 228.6538462 425.0961538 460.5208333 424.6923077 371.1730769 256.1667 

Data Trace -9 1975.396825 533.9230769 578.4166667 533.5 480.1538462 374.5417 

Data Trace -

10 

1005.654762 410.4807692 444.6875 410.1346154 364.6346154 242.4583 

Data Trace -

11 

1214.087302 431.5961538 467.5625 422.6153846 377.3076923 264.6875 

Data Trace -

12 

1183.4375 559.6538462 606.2916667 551.6153846 505.9038462 394.4792 

Data Trace -

13 

729.1666667 436.0961538 472.4375 427.6730769 382.6153846 262.5833 

Data Trace -

14 

460.8125 566.4038462 613.6041667 558.3653846 512.0576923 402.5 

Data Trace -

15 

2194.345238 478.4230769 518.2916667 478.0384615 433.3269231 315.5625 

Data Trace -

16 

1226.875 565.1153846 612.2083333 564.7307692 510.9423077 408.9583 

Data Trace -

17 

1555.357143 497.6538462 539.125 497.2884615 443.2692308 336.0625 

Data Trace -

18 

1918.650794 567.7115385 615.0208333 567.4230769 522.1730769 411.3333 

Data Trace -

19 

835.6875 451.4615385 489.0833333 451.1538462 406.0192308 287.7292 

Data Trace -

20 

224.1538462 419.8846154 454.875 419.5576923 374.7307692 252.3333 

Data Trace -

21 

1118.75 532.4038462 576.7708333 531.9423077 478.4230769 372.9167 

Data Trace -

22 

490.9375 417.3461538 452.125 416.9423077 372.2692308 248.5417 

Data Trace -

23 

901.6875 473.1346154 512.5625 464.7115385 418.0384615 301.125 

Data Trace -

24 

491.9423077 545.4615385 590.9166667 545.1538462 500.9230769 388.3333 

Data Trace -

25 

2017.956349 540.5961538 585.6458333 532.7884615 487.25 375.6042 

Data Trace -

26 

1136.40873 415.2884615 449.8958333 414.8846154 361.3846154 248.3125 

Data Trace -

27 

965.7738095 416.5769231 451.2916667 416.2692308 370.9230769 248.1458 

Data Trace -

28 

962.9960317 465.3269231 504.1041667 456.7884615 411.3461538 292.625 

Data Trace -

29 

726.7857143 432.1153846 468.125 431.8269231 387.3653846 267.0208 

Data Trace -

30 

931.8125 483.75 524.0625 483.3461538 437.3846154 319 

Mean 1116.91 483.2961538 523.5708333 480.5205 432.9980769 317.7006

944 

Standard 

Error 

121.5258 11.40366766 12.3539733 11.48988 11.43966688 12.34525

821 

Median 985.7143 475.7788462 515.4270833 471.375 425.6826923 308.3437

5 

Standard 

Deviation 

665.624 62.46046017 67.66549852 62.93265 62.65763601 67.61776

402 
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Table 5.18: continued, 

Data Trace # RM SO CO WO SW SCW 

Sample 

Variance 

443055.4 3901.309085 4578.61969 3960.519 3925.97935 4572.162

012 

Confidence 

Level 

(95.0%) 

248.5481 

 

23.32311913 25.26671239 

 

23.49944 

 

23.3967458 

 

25.24888

804 

 

 Table 5.19 and 5.20 present the results of the Mann-Whitney U test and Vargha 

and Delaney statistics (Holt et al., 2014). These tests help to find the significant 

differences and effectiveness in 30 data traces of SO, CO, WO, SW, and SCW, in 

comparison with RM and each other (finding the best solution among proposed 

solutions). The objective of these tests was to fail the following two null hypotheses: 

H0-execution time: There are no differences in execution time measured through SO, CO, 

WO, SW, and SCW when comparing with RM. 

H0-execution time: There are no differences in execution time measured through SO, CO, 

WO, SW, and SCW when comparing with each other. 

 The rejection of first null hypothesis ensures proposed solutions outperform the 

RM. Whereas, the rejection of the second hypothesis helps to know which proposed 

solution is best among five. In the context of the first hypothesis, table 5.19 presents the 

P-value derived from the Mann-Whitney U test that is measured as 0.000058, 0.000173, 

0.000051, 0.000008, and 0.000000029537. These values show that SO, CO, WO, SW, 

and SCW have significant differences with RM in execution time results. On the other 

hand, A12 statistics also reveals large effect size for all tests regarding execution time 

results. These two tests conclude that proposed solutions have significant statistical and 

practical differences from RM that fail the null hypothesis. Hence, it is concluded that 

the proposed five solutions are preferable to RM in terms of execution time. 
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Table 5.19: Verification of execution time results obtained from proposed solutions using Mann-

Whitney U test and Vargha and Delaney statistics 

Null Hypothesis (H0) P-Value A12 Effect Size Results  Significance 

SO = RM  0.000058 0.802222222 Large SO > RM Yes 

CO = RM  0.000173 0.782222222 Large CO > RM Yes 

WO = RM 0.000051 0.804444444 Large WO > RM Yes 

SW = RM  0.000008 0.836111111 Large SW > RM Yes 

SCW = RM 0.000000029537 0.916666667 Large SCW > RM Yes 

 In the second hypothesis, table 5.20 shows the P-values derived through Mann-

Whitney U test that are measured as 0.013549, 0.700686, 0.003848, 0.0000000001537, 

0.009267, 0.000029, 0.000000000028719, 0.004745, 0.00000000024879, and 0.000002. 

These values show that SO, CO, WO, SW, and SCW have significant differences with 

each other in execution time results. On the other hand, A12 statistics also reveals large 

effect size for seven tests, such as SW=SO, SCW=SO, SW=CO, SCW=CO, SW=WO, 

SCW=WO, and SCW=SW regarding execution time results. A medium effect is noted 

for CO=SO, and WO=CO. However, no effect size was found for SO=WO. Finally, our 

findings from both tests revealed that proposed solutions have significant statistical and 

practical differences from each other that fail the null hypothesis. Hence, it is concluded 

that SCW is the best solution and preferable to SW, CO, WO, and SO in terms of 

execution time. 

Table 5.20: Comparison of the execution time results obtained from the proposed solutions with 

each other 

Null Hypothesis (H0) P-Value A12 Effect Size Results 

CO = SO 0.013549 0.314444444 Medium SO > CO 

WO = SO 0.700686 0.528 888889 No Effect SO = WO 

SW = SO 0.003848 0.717222222 Large SW > SO 

SCW = SO 0.0000000001537 
0.981111111 

Large SCW > SO 

WO = CO 0.009267 0.695555556 Medium CO > WO 

SW = CO 0.000029 0.814444444 Large SW> CO 

SCW = CO 0.000000000028719 1 Large SCW> CO 

SW = WO 0.004745 0.712222222 Large SW > WO 

SCW = WO 0.00000000024879 
0.975555556 

Large SCW > WO 

SCW = SW 0.000002 
0.857777778 

Large SCW > SW 
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5.7.2. Energy Consumption 

 Table 5.21 presents the energy consumption data collected to compare five 

proposed heterogeneity-aware solutions – SO, CO, WO, SW, and SCW – with RM. The 

row attributes of the table represent the type of solution, whereas column attributes 

represent the execution time for 30 data traces. The average energy consumption of five 

proposed solutions is less than RM for all data traces. 

Table 5.21: Comparison of the energy consumption results obtained from proposed solutions with 

random-based task allocation 

Data 

Trace # 

RM SO CO WO SW SCW 

Data Trace-1 2259093 344688.5 373412.5 345456.2 458109.3 363984.6 

Data Trace -

2 

1655913 325984.6 353150 326800.4 441398.9 343745.2 

Data Trace -

3 

1054491 344353.8 373050 345121.6 459550.2 363608.7 

Data Trace -

4 

2013722 311873.1 337862.5 313024.7 436754.7 328037.5 

Data Trace -

5 

1500307 252934.6 274012.5 274624 376932 264221.2 

Data Trace -

6 

190264.5 242676.9 262900 243876.6 364847.4 253250 

Data Trace -

7 

917765.8 237519.2 257312.5 259064.7 361103.8 247491.3 

Data Trace -

8 

1272169 255057.7 276312.5 256065.4 380204.4 266880.8 

Data Trace -

9 

1969781 320353.8 347050 321409.5 445028.6 337640.4 

Data Trace -

10 

950930 246288.5 266812.5 247152.2 360289.1 257478.8 

Data Trace -

11 

595363.1 258957.7 280537.5 281366.8 383100.7 271174 

Data Trace -

12 

228943.2 335792.3 363775 355850.2 459482.8 353999 

Data Trace -

13 

842041.1 261657.7 283462.5 282675.3 384094.8 273776.9 

Data Trace -

14 

651022.6 339842.3 368162.5 359900.2 464973.3 358419.2 

Data Trace -

15 

1197252 287053.8 310975 288013.6 399139 301618.3 

Data Trace -

16 

669060.6 339069.2 367325 340028.9 464157.1 357944.2 

Data Trace -

17 

315580.4 298592.3 323475 299504 424318.1 314102.9 

Data Trace -

18 

862806.1 340626.9 369012.5 341346.7 453925.9 359611.5 

Data Trace -

19 

627752.1 270876.9 293450 271644.7 383913.9 284156.7 

Data Trace -

20 

1678109 251930.8 272925 252746.5 364226 263576.9 

Data Trace -

21 

2071569 319442.3 346062.5 320594 443802.7 336653.8 

Data Trace -

22 

522465.5 250407.7 271275 251415.4 362422.8 261878.8 

Data Trace -

23 

315525 283880.8 307537.5 304898.4 410442.7 297778.8 

Data Trace -

24 

939443.6 327276.9 354550 328044.7 438058.6 345200 
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Table 5.21: continued, 

Data 

Trace # 

RM SO CO WO SW SCW 

Data Trace -

25 

162178.8 324357.7 351387.5 343839.7 447210.7 341693.3 

Data Trace -

26 

1038804 249173.1 269937.5 250180.8 372469.5 260633.7 

Data Trace -

27 

1314719 249946.2 270775 250713.9 363511 261399 

Data Trace -

28 

311803.1 279196.2 302462.5 300501.6 402795.8 292701.9 

Data Trace -

29 

189995.1 259269.2 280875 259989 370600.8 271593.3 

Data Trace -

30 

469763.5 290250 314437.5 291257.7 405480.2 304973.1 

Mean 959621.0821 289977.692 314142.5 296903.578 409411.485 304640.801 

Standard 

Error 

113095.6624 6842.2006 7412.38398 6890.47626 6962.06917 7411.04547 

Median 890285.9432 285467.308 309256.25 295380.861 404137.981 299698.558 

Standard 

Deviation 

619450.4548 37476.2761 40599.2991 37740.6928 38132.8233 40591.9678 

Sample 

Variance 

3.83719E+11 1404471271 1648303088 1424359894 1454112213 1647707848 

Confidence 

Level 

(95.0%) 

231306.6012 

 

13993.8715 

 

15160.0274 

 

14092.6063 

 

14239.0302 

 

15157.2899 

 

 Table 5.22 presents the results obtained by conducting the Mann-Whitney U test 

and Vargha and Delaney statistics (Holt et al., 2014). These tests help to measure the 

significant differences and effectiveness in 30 data traces of SO, CO, WO, SW, and 

SCW, in comparison of RM. The objective of these tests was to fail the following null 

hypothesis: 

H0-energyconsumption: The proposed solutions, SO, CO, WO, SW, and SCW consume the 

same amount of energy as RM. 

 The rejection of the null hypothesis ensures that the proposed solutions consume 

less energy than RM. The P-values derived through Mann-Whitney U test that are 

measured as 0.000012, 0.000018, 0.000012, 0.000388, and 0.000015. These values 

indicate that SO, CO, WO, SW, and SCW have significant differences from RM in 

energy consumption results. At the same time, A12 statistics reveals large effect size for 

all tests regarding energy consumption results. These two tests conclude that proposed 

Univ
ers

ity
 of

 M
ala

ya



 

110 

 

solutions have significant statistical and practical differences from RM that fail the null 

hypothesis.  

Table 5.22: Verification of energy consumption results obtained from five proposed solutions using 

Mann-Whitney U test and Vargha and Delaney statistics 

Null Hypothesis (H0) P-Value A12 Effect Size Results  Significance 

SO = RM 0.000012 

 

0.828889 Large SO > RM Yes 

CO = RM 0.000018 

 

0.822222 Large CO > RM Yes 

WO = RM 0.000012 

 

0.828889 Large WO > RM Yes 

SW = RM 0.000388 

 

0.766667 Large SW > RM Yes 

SCW = RM 0.000015 

 

0.825556 Large SCW > RM Yes 

 

5.8 Conclusion 

 In this chapter, the performance of the proposed heterogeneity-aware solutions is 

evaluated by implementing them in the simulated MAC environment. The 

benchmarking is done by evaluating the designed multi-threaded tasks on the simulated 

controller and compute nodes. Data are collected by sampling the evaluation parameters 

for 30 data traces for each proposed solution. The point estimator for each experiment is 

measured by applying descriptive statistics. The validation of the mathematical model 

with simulation results is performed through Pearson’s correlation coefficient, the 

Mann-Whitney U test, and Vargha and Delaney’s A12 statistics. Moreover, verification 

of the proposed solutions by comparing them with random-based task allocation is done 

through the Mann-Whitney U test and Vargha and Delaney’ A12 statistics.  

 Based on the obtained results, it is concluded that proposed solutions outperform 

the random-based task allocation mechanism. The statistical tests validated and verified 

that there are significant statistical and practical differences between the results obtained 

from each proposed and random-based solution. Hence, the statistical tests ensure that 

the proposed heterogeneity-aware task allocation solutions can help significantly to 

improve the task performance in terms of execution time and energy consumption.    
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CHAPTER 6: RESULTS AND DISCUSSION 

This chapter evaluates the performance of five heterogeneity-aware task allocation 

solutions and offers insights into the performance of the proposed algorithms by varying 

the parameter values. The chapter discusses the analysis of the collected results 

presented in chapter 5 for signifying the usefulness of the proposed five task allocation 

solutions. The chapter discusses the validation of the mathematical model with the 

simulation results. The chapter also verifies the proposed solution by comparing five 

proposed solutions’ execution time and energy consumption results with random-based 

task allocation. 

 The rest of the chapter consists of six sections. Section 6.1 discusses the 

validation of the mathematical model by comparing the results of five proposed 

solutions execution time obtained from the mathematical model with simulation results. 

Section 6.2 discusses the weights identified for multiple parameters based task 

allocation solutions. Section 6.3 compares the individual proposed solution with 

random-based task allocation in terms of execution time. Section 6.4 compares the 

proposed solutions with random-based task allocation in terms of energy consumption. 

Section 6.5 presents the comparison of the proposed heterogeneity-aware task allocation 

solutions with random-based task allocation using the mean values. Section 6.6 

concludes the chapter by highlighting the significance of the proposed solutions. The 

usefulness of the proposed solutions is signified by analyzing the simulation results 

collected in different scenarios. 

6.1 Mathematical Model Validation 

 The correctness of the developed mathematical model is validated by comparing 

the results obtained from a mathematical model with that of simulation. The execution 

time is used as a parameter to validate the mathematical model. The statistical analyses 

are also applied to verify the results.  
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6.1.1. Execution Time of CPU Speed-based Task Allocation  

 Figure 6.1 shows the comparison of execution time measured through the 

simulation of CPU speed-based solution with the mathematical model results. The X 

and Y axes show five data traces and execution times (in seconds), respectively. The 

graph shows that the experimental results of five data traces are closer to the results 

obtained from the mathematical model. The differences in execution time through 

simulation results and mathematical model are measured at 5.06% of data trace 1, 

2.87% of data trace 2, 3.57% of data trace 3, 3.06% of data trace 4, and 4.01% of data 

trace 5. To prove that the differences are not significant, three statistical methods, 

namely Pearson’s correlation coefficient, Mann-Whitney U test, and Vargha and 

Delaney’s A12 were applied (in table 5.3). The results of these statistical methods 

indicated that differences in execution time were not significant. Hence, the small 

differences validate the model results with those collected from the simulation. 
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Figure 6.1: Comparison of execution time (SO) empirical results with mathematical model 

execution time 
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6.1.2. Execution Time of Core-based Task Allocation 

 Figure 6.2 shows the comparison of execution time measured through simulation 

of core-based solution with the mathematical model results. The X and Y axes show 

five data traces and execution times (in seconds), respectively. The graph shows that the 

experimental results of five data traces are closer to the results obtained from the 

mathematical model. The differences in execution time through simulation results and 

mathematical model are measured at 2.59% of data trace 1, 2.68% of data trace 2, 

3.69% of data trace 3, 4.73% of data trace 4, and 6.35% of data trace 5. To prove that 

the differences are not significant, three statistical methods, namely Pearson’s 

correlation coefficient, Mann-Whitney U test, and Vargha and Delaney’s A12 were 

applied (in table 5.4). The results of these statistical methods indicated that differences 

in execution time were not significant. Hence, the small differences validate the model 

results with those collected from the simulation. 
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Figure 6.2: Comparison of execution time (CO) empirical results with mathematical model 

execution time 
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6.1.3. Execution Time of Workload-based Task Allocation 

 Figure 6.3 shows the comparison of execution time measured through simulation 

of workload-based solution with the mathematical model results. The X and Y axes 

show five data traces and execution times (in seconds), respectively. The graph shows 

that the experimental results of five data traces are closer to the results obtained from 

the mathematical model. The differences in execution time through simulation results 

and mathematical model are measured at 2.98% of data trace 1, 5.17% of data trace 2, 

4.33% of data trace 3, 5.88% of data trace 4, and 7.09% of data trace 5. To prove that 

the differences are not significant, three statistical methods, namely Pearson’s 

correlation coefficient, Mann-Whitney U test, and Vargha and Delaney’s A12 were 

applied (in table 5.5). The results of these statistical methods indicated that differences 

in execution time were not significant. Hence, the small differences validate the model 

results with those collected from the simulation. 
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Figure 6.3: Comparison of execution time (WO) empirical results with mathematical model 

execution time 
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6.1.4. Execution Time of  Two parameters-based (CPU Speed and Workload) 

Task Allocation 

 Figure 6.4 shows the comparison of execution time measured through simulation 

of two parameters (CPU speed and workload) based solution with the mathematical 

model results. The X and Y axes show five data traces and execution times (in seconds), 

respectively. The graph shows that the experimental results of five data traces are closer 

to the results obtained from the mathematical model. The differences in execution time 

through simulation results and mathematical model are measured at 6.69% of data trace 

1, 5.28% of data trace 2, 9.01% of data trace 3, 10.42% of data trace 4, and 10.14% of 

data trace 5. To prove that the differences are not significant, three statistical methods, 

namely Pearson’s correlation coefficient, Mann-Whitney U test, and Vargha and 

Delaney’s A12 were applied (in table 5.6). The results of these statistical methods 

indicated that differences in execution time were not significant. Hence, the small 

differences validate the model results with those collected from the simulation. 
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Figure 6.4:  Comparison of execution time (SW) empirical results with mathematical model 

execution time 
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6.1.5. Execution Time of Three Parameters-based (CPU Speed, Core, and  

Workload) Task Allocation  

 Figure 6.5 shows the comparison of execution time measured through simulation 

of three parameters (CPU speed, core, and workload) based solution with the 

mathematical model results. The X and Y axes show five data traces and execution 

times (in seconds), respectively. The graph shows that the experimental results of five 

data traces are closer to the results obtained from the mathematical model. The 

differences in execution time through simulation results and mathematical model are 

measured at 3.85% of data trace 1, 4.10% of data trace 2, 5.50% of data trace 3, 7.62% 

of data trace 4, and 11.86% of data trace 5. To prove that the differences are not 

significant, three statistical methods, namely Pearson’s correlation coefficient, Mann-

Whitney U test, and Vargha and Delaney’s A12 were applied (in table 5.7). The results 

of these statistical methods indicated that differences in execution time were not 

significant. Hence, the small differences validate the model results with those collected 

from the simulation. 
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Figure 6.5: Comparison of execution time (SCW) empirical results with mathematical model 
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6.2 Impact of Various Weights on Execution Time      

 Figures 6.6 and 6.7 indicate execution time against numerous combinations of 

weights that are identified to know the significance of each parameter used in two and 

three parameters-based task allocation solutions. The rationale for identifying the 

weights is that it can help to minimize the execution time of the compute-intensive tasks 

through knowing the significance of each parameter on which task allocation decision 

can be made in MAC. In this study, the proposed solutions presented in algorithms 4 

and 5, perform task allocation based on two and three parameters, such as CPU speed 

and workload, and CPU speed, core, and workload, respectively. The significance of 

each parameter is measured by assigning different weights to each parameter and then 

analyzing their impact on task execution. 
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Figure 6.6: Impact of combinations of two parameters’ weights on execution time 

 The best weight combination is selected based on the shortest execution time. In 

the proposed solution that is based on two parameters, a shorter execution time was 

found on this combination (Alpha 0.95 and Beta 0.05), where Alpha is weight of 

workload and Beta is CPU speed. Whereas, in three parameters-based solution, a shorter 

execution time was found on this combination (Alpha 0.65, Beta 0.15 and Gamma 

0.20), where Alpha is weight of workload, Beta is CPU speed, and Gamma is core. 
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Figure 6.7: Impact of combinations of three parameters’ weights on execution time 

 

6.3 Comparison of  Proposed Heterogeneity-aware Task Allocation Solutions 

based on Execution Time  

 In this section, we compare the execution time results of 30 data traces obtained 

from proposed heterogeneity-aware task allocation solutions with random-based task 

allocation. The x and y axes used in the graphs represent the data traces and execution 

time, respectively. The execution time is measured in seconds. Moreover, SO, CO, WO, 

SW, and SCW are used to represent the proposed solutions that are based on CPU 

speed, number of cores, CPU speed and workload, and CPU speed, number of cores and 

workload, respectively. RM and DT are used to represent a random-based task 

allocation solution and data trace, respectively. Furthermore, we verify the execution 

time results obtained from the proposed solutions and random-based task allocation 

solution using two statistical methods Mann-Whitney U test and Vargha and Delaney’s 

A12 statistics. 

6.3.1. SO vs. RM 

 Figure 6.8 shows the execution time of 30 data traces, measured by running the 

SO- and RM-based task allocation. The results indicate a significant reduction in 

execution time compared to the random-based solution in most of the cases. The reason 
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for the reduction in execution time is that through proposed solution the task assignment 

decision is made based on CPU speed. In this context, the tasks are sorted in ascending 

order and then assigned to the compute nodes on the basis of the CPU speed. Thus, the 

allocation of the larger task on high-speed mobile device helps to minimize the 

execution time; however, in random-based solution, most of the time this task is 

assigned to a device that has low processing capabilities. In the simulation scenario, this 

was found to cause inefficient resource utilization. The inefficient resource utilization 

can degrade tasks performance by delaying the execution time. In addition, inefficient 

resource utilization can increase energy consumption in the MAC environment.  

6.3.1.1. Statistical Analyses (SO vs. RM) 

 We applied Mann-Whitney U test and Vargha and Delaney’s A12 statistics to 

measure whether or not the differences between the execution time results obtained 

from SO and RM were significant (in table 5.8). The P-value derived through Mann-

Whitney U test was measured 0.000058. This value indicated that SO has significant 

statistical differences with RM in execution time results (as the value of P found less 

than 0.05). At the same time, the A12 statistics also revealed a large effect size on 

execution time results. These two tests concluded that SO has significant statistical and 

practical differences from RM. 
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Figure 6.8: Execution time empirical results measured using SO-based task allocation 

6.3.2. CO vs. RM 

 Figure 6.9 depicts the execution time of 30 data traces obtained from CO- and 

RM- based task allocation. The results indicate that the proposed solution helps to 

execute most of the data traces in a fast manner as their execution time was found much 

lower compared to the random-based mechanism. In random-based task allocation, the 

controller node assigns tasks to the compute nodes without considering the specification 

of the compute nodes as noticed in the simulation scenario. Therefore, random-based 

task allocation results in delaying the execution time in most of the data traces 

execution. Although using core-based solution execution time can be minimized, further 

reduction in execution time is possible if other parameters, such as workload and CPU 

speed are incorporated. In addition, multiple parameters-based task allocation solutions 

can help to obtain an optimal reduction in execution time.  

6.3.2.1. Statistical Analyses (CO vs. RM) 

 We applied Mann-Whitney U test and Vargha and Delaney’s A12 statistics to 

measure whether or not the differences between the execution time results obtained 

from CO and RM were significant (in table 5.9). The P-value derived through Mann-
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Whitney U test was measured 0.000173. This value indicated that CO has significant 

statistical differences with RM in execution time results (as the value of P found less 

than 0.05). At the same time, the A12 statistics also revealed a large effect size on 

execution time results. These two tests concluded that CO has significant statistical and 

practical differences from RM. 
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Figure 6.9: Execution time empirical results measured using CO-based task allocation 

 

6.3.3. WO vs. RM 

 Figure 6.10 presents the execution time of 30 data traces that is measured 

through WO- and RM-based task allocation. The results reveal that workload-based task 

allocation helps to execute most of the data traces in a fast manner compared to the 

random-based mechanism. In our simulation scenario, it has been noticed that in 

random-based task allocation, the controller node assigns tasks to such compute nodes 

that have lower processing capabilities. Therefore, random-based task allocation 

prolongs the execution time. However, through the workload-based task allocation such 

compute nodes were being selected in the simulation scenario that have high 

specification as they have a lighter workload running in the background. Although the 
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use of workload-based solution can minimize execution time, further reduction in 

execution time is also possible if task allocation decision is based on two or three 

parameters instead of single. 

6.3.3.1. Statistical Analyses (WO vs. RM) 

 We applied Mann-Whitney U test and Vargha and Delaney’s A12 statistics to 

measure whether or not the differences between the execution time results obtained 

from WO and RM were significant (in table 5.10). The P-value derived through Mann-

Whitney U test was measured 0.000051. This value indicated that WO has significant 

statistical differences with RM in execution time results (as the value of P found less 

than 0.05). At the same time, the A12 statistics also revealed a large effect size on 

execution time results. These two tests concluded that WO has significant statistical and 

practical differences from RM. 
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Figure 6.10: Execution time empirical results measured using WO-based task allocation 

6.3.4. SW vs. RM 

 Figure 6.11 shows the execution time of the 30 data traces that is obtained 

through SW- and RM-based task allocation. The results reveal that the execution time 
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measured through two parameters-based task allocation is much lower compared to a 

random-based solution in most of the cases. The simulation scenario reveals that 

through random-based task allocation, most of the time the tasks were allocated to 

slower devices for the execution. Thus, the tasks took longer to complete. However, the 

proposed solution ensures minimization in task execution time due to the involvement 

two parameters (CPU speed and workload) when the task allocation decision was made. 

In our simulation scenario, through the proposed solution devices that have high 

specifications which ensure minimization in execution time are selected. Although 

performing task allocation based on two parameters helps to minimize the execution 

time compared to single parameter-based task allocation, further reduction in execution 

time is also possible if task allocation decision is based on three parameters. 

6.3.4.1. Statistical Analyses (SW vs. RM) 

 We applied Mann-Whitney U test and Vargha and Delaney’s A12 statistics to 

measure whether or not the differences between the execution time results obtained 

from SW and RM were significant (in table 5.11). The P-value derived through Mann-

Whitney U test was measured 0.000008. This value indicated that SW has significant 

statistical differences with RM in execution time results (as the value of P found less 

than 0.05). At the same time, the A12 statistics also revealed a large effect size on 

execution time results. These two tests concluded that SW has significant statistical and 

practical differences from RM. Univ
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Figure 6.11: Execution time empirical results measured using SW- and RM-based task allocation 

6.3.5. SCW vs. RM 

 Figure 6.12 illustrates the execution time of 30 data traces obtained through 

SCW- and RM-based task allocation. The results show that the proposed solution 

executes 30 data traces, in most of the time in less time compared to random-based task 

allocation. The reason is that in the simulation scenario, most of the time larger tasks 

were almost always allocated to devices that have lower processing capabilities. 

However, through three parameters-based task allocation, compute nodes that have high 

processing capabilities were selected in our simulation scenario. Therefore, the 

proposed solution outperforms the random-based task allocation in most of the data 

traces execution in terms of execution time. Thus, it is concluded that performing task 

allocation based on CPU speed, core, and workload running in the background can lead 

to efficient resource utilization in MAC. This efficient resource utilization minimizes 

the execution time of the tasks more than the random and other four proposed solutions.  

6.3.5.1. Statistical Analyses (SCW vs. RM) 

 We applied Mann-Whitney U test and Vargha and Delaney’s A12 statistics to 

measure whether or not the differences between the execution time results obtained 
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from SCW and RM were significant (in table 5.12). The P-value derived through Mann-

Whitney U test was measured 0.000000029537. This value indicated that SCW has 

significant statistical differences with RM in execution time results (as the value of P 

found less than 0.05). At the same time, the A12 statistics also revealed a large effect 

size on execution time results. These two tests concluded that SCW has significant 

statistical and practical differences from RM. 
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Figure 6.12: Execution time results measured using SCW- and RM-based task allocation 

6.4 Comparison of  Proposed Heterogeneity-aware Task Allocation Solutions 

based on Energy Consumption  

 This section discusses the proposed heterogeneity-aware task allocation 

solutions in terms of energy consumption, in comparison with random-based task 

allocation. The x and y axes used in the graphs represent the data traces and energy 

consumption, respectively. The energy consumption is measured in mJ. Furthermore, 

we verify the energy consumption results obtained from the proposed solutions and 

random-based task allocation solution using two statistical methods Mann-Whitney U 

test and Vargha and Delaney’s A12 statistics. 
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6.4.1. SO vs. RM      

 Figure 6.13 presents the results of 30 data traces obtained from SO- and RM-

based task allocation. The results reveal that random-based task allocation consumes 

more energy compared to CPU speed-based task allocation in most of the cases. The 

reason is that the random-based task allocation performs task assignment to slower 

devices in most of the cases as it has been noticed in the simulation scenario. The 

allocation of tasks to slower devices leads to energy wastage. However, CPU speed-

based task allocation enables the controller node to assign all the tasks only to such 

devices that have high CPU speed which helps to execute a task by consuming less 

energy.    

6.4.1.1. Statistical Analyses (SO vs. RM) 

 We applied Mann-Whitney U test and Vargha and Delaney’s A12 statistics to 

measure whether or not the differences between the energy consumption results 

obtained from SO and RM were significant (in table 5.13). The P-value derived through 

Mann-Whitney U test was measured 0.000012. This value indicated that SO has 

significant statistical differences with RM in energy consumption results (as the value of 

P found less than 0.05). At the same time, the A12 statistics also revealed a large effect 

size on energy consumption. These two tests concluded that SO has significant 

statistical and practical differences from RM. Univ
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Figure 6.13: Energy consumption results measured using SO- and RM-based task allocation 

 

6.4.2. CO vs. RM 

 Figure 6.14 presents the results of 30 data traces that are obtained from the CO- 

and RM- based task allocation. The results reveal that random-based task allocation 

most of the time consumes more energy due to performing allocation of tasks to slower 

devices, in most of the cases as it has been noticed in the simulation scenario. However, 

core-based task allocation enables the controller node to select only the devices for task 

execution that have the most cores. Thus, core-based task allocation helps to select such 

devices for computation that have high processing capabilities. In this way, this solution 

not only minimizes the execution time but also saves energy compared to random-based 

task allocation. 

6.4.2.1. Statistical Analyses (CO vs. RM) 

 We applied Mann-Whitney U test and Vargha and Delaney’s A12 statistics to 

measure whether or not the differences between the energy consumption results 

obtained from CO and RM were significant (in table 5.14). The P-value derived through 

Mann-Whitney U test was measured 0.000018. This value indicated that CO has 

significant statistical differences with RM in energy consumption results (as the value of 
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P found less than 0.05). At the same time, the A12 statistics also revealed a large effect 

size on energy consumption. These two tests concluded that CO has significant 

statistical and practical differences from RM. 
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Figure 6.14: Energy consumption results measured using CO- and RM-based task allocation 

6.4.3. WO vs. RM 

 Figure 6.15 illustrates the results of energy consumption obtained from WO- and 

RM- based task allocation. The results clearly show that random-based task allocation 

most of the time usually consumes more energy for executing different data traces. 

However, workload-based task allocation consumes less. The reason is that, particularly 

in our simulation scenario, the devices selected based on workload criteria have high 

processing capabilities. Therefore, this solution consumes less energy than random-

based task allocation. 

6.4.3.1. Statistical Analyses (WO vs. RM) 

 We applied Mann-Whitney U test and Vargha and Delaney’s A12 statistics to 

measure whether or not the differences between the energy consumption results 

obtained from WO and RM were significant (in table 5.15). The P-value derived 
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through Mann-Whitney U test was measured 0.000012. This value indicated that WO 

has significant statistical differences with RM in energy consumption results (as the 

value of P found less than 0.05). At the same time, the A12 statistics also revealed a 

large effect size on energy consumption. These two tests concluded that WO has 

significant statistical and practical differences from RM. 
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Figure 6.15: Energy consumption results measured using WO- and RM-based task allocation 

6.4.4. SW vs. RM 

 Figure 6.16 presents the results obtained from SW- and RM-based task 

allocation. The results show that the proposed solution outperforms the random-based 

task allocation. The graph shows that most of the data traces are consuming more 

energy through random-based task allocation in most of the cases. The reason is that in 

our simulation scenario, it was observed that through random-based task allocation, 

controller node most of the time assigns larger tasks in terms of computational lengths 

to slower devices that lead to the consumption of extra energy. However, the compute 

nodes selected through the proposed solution had high processing capabilities. 

Therefore, the proposed solution consumes less energy than random-based task 

allocation. 
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6.4.4.1. Statistical Analyses (SW vs. RM) 

 We applied Mann-Whitney U test and Vargha and Delaney’s A12 statistics to 

measure whether or not the differences between the energy consumption results 

obtained from SW and RM were significant (in table 5.16). The P-value derived through 

Mann-Whitney U test was measured 0.000388. This value indicated that SW has 

significant statistical differences with RM in energy consumption results (as the value of 

P found less than 0.05). At the same time, the A12 statistics also revealed a large effect 

size on energy consumption. These two tests concluded that SW has significant 

statistical and practical differences from RM. 
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Figure 6.16: Energy consumption results measured using SW- and RM-based task allocation 

6.4.5. SCW vs. RM 

 Figure 6.17 presents the results obtained from SCW- and RM-based task 

allocation. The results reveal that random-based task allocation results in consuming 

more energy than the proposed solution, in most of the cases. The reason is that through 

random-based task allocation tasks are being assigned to the slower devices as noted in 
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the simulation scenario. However, the proposed solution ensures that tasks are allocated 

to devices that have high CPU speed, core, and less workload. Based on this defined 

task allocation criteria, the devices that have high specifications were being selected for 

task execution in our simulation scenario. Thus, such selection helps to ensure minimum 

energy consumption than random-based task allocation.  

6.4.5.1. Statistical Analyses (SCW vs. RM) 

 We applied Mann-Whitney U test and Vargha and Delaney’s A12 statistics to 

measure whether or not the differences between the energy consumption results 

obtained from SCW and RM were significant (in table 5.17). The P-value derived 

through Mann-Whitney U test was measured as 0.000015. This value indicated that 

SCW has significant statistical differences with RM in energy consumption results (as 

the value of P found less than 0.05). At the same time, the A12 statistics also revealed a 

large effect size on energy consumption. These two tests concluded that SCW has 

significant statistical and practical differences from RM. 
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Figure 6.17: Energy consumption results measured using SCW- and RM-based task allocation 
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6.5 Overall Comparison of Proposed Heterogeneity-aware Task Allocation 

Solutions with Random-based Task Allocation  

 In this section, we provide the comparison of the proposed solutions with 

ransom based task allocation in terms of execution time and energy consumption. The 

comparison is based on means values presented in chapter 5 (tables 5.18 and 5.21). 

Moreover, the Mann-Whitney U Test and Vargha and Delaney’s A12 statistics are 

applied to verify the proposed solutions’ performance with random-based task 

allocation. 

6.5.1. Execution Time 

 Figure 6.18 presents the execution time of five tasks. The x and y axes represent 

different types of proposed algorithms and execution time, respectively. The execution 

time is measured in seconds. The comparison results reveal that proposed solutions 

outperform the RM based task allocation.  
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Figure 6.18: Comparison of execution time empirical results obtained from five proposed solutions 

with random-based task allocation 
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 In RM-based task allocation, tasks of various sizes are assigned to the available 

mobile devices without considering resource and operational heterogeneity in MAC 

paradigm. This causes inefficient resource utilization that can prolong the execution 

time of the task. In this context, five task allocation solutions are proposed. One of the 

solutions proposed to reduce the task execution time is to base the decision on CPU 

speed while performing task allocation. The execution of the tasks that are performed 

based on high CPU speed mobile devices helps to shorten the task execution time than 

low CPU speed mobile devices that can be selected by random-based task allocation. 

Thus, results of the solution based on high CPU speed show that it can shorten the task 

execution time by as much as 56.72% compared to random-based task allocation.  

 The second possible solution is based on the number of cores. First, it needs to 

be clear that core-based solution is different than CPU speed-based task allocation. In 

the experiment, the devices were selected so that high-speed CPU devices do not have a 

higher number of cores, otherwise the result of the high CPU speed and the core-based 

proposed solution could remain same. Thus, the results of core-based proposed solution 

indicate that performing task allocation based on the higher number of cores help to 

minimize the execution time up to 53.12% compared to random-based task allocation.  

The reason for the shorter execution time is that the tasks that required more computing 

power were being executed on resource-rich mobile devices with a higher number of 

cores. The device with a higher number of cores ensures parallel processing of multi-

threaded tasks. 

 The third proposed solution is based on workload parameter. In MAC, the 

devices may have a different workload running in the background. Therefore, basing 

task allocation only on high CPU speed and a larger number of cores may not be useful 

when the workload on high-speed mobile devices is very high. In such cases, basing 

task allocation on high CPU speed or core can degrade the performance of the tasks 
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compared to devices that have low CPU speed and fewer cores; however, the 

background workload on the devices is very low. In this context, workload-based task 

allocation can minimize the task execution time. Thus, the workload-based solution can 

improve the task execution up to 56.97% compared to random-based task allocation. 

 Although performing task allocation based on a single parameter helps to 

minimize the execution time, a greater reduction in execution time is possible by 

selecting compute nodes based on two and three parameters. Moreover, the solution of 

task allocation by considering only single parameter does not guarantee optimal 

reduction in the task execution time. To see a shorter execution time, the nodes for 

performing task execution must be selected based on high CPU speed and a lighter 

running workload. This criterion ensures improvement in task execution time up to 

61.23% compared to random-based solution. Although much reduction in execution 

time is seen in these four solutions, a further reduction in execution time is also possible 

by basing task allocation on three parameters together, such as CPU speed, number of 

cores, and workload. The consideration of these parameters together leads to 

appropriate resource utilization than random-based task allocation solution. Efficient 

resource utilization enables the mobile devices to execute the task quickly. Thus, the 

results show a substantial increase in the performance by reducing the execution time up 

to 71.55% through final proposed task allocation solution (SCW) that is based on three 

parameters, such as CPU speed, workload, and number of cores. In addition, the three 

parameters-based solution is analyzed as one of the best of the five in terms of 

execution time in our scenario. 

6.5.1.1. Statistical Significance of the Proposed Solutions’ Execution Time Results 

Compared to RM-based Task Allocation 

 The Mann-Whitney U test and Vargha and Delaney statistics were applied (in 

table 5.19 and 5.20) to find the significant differences and effectiveness in 30 data traces 
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of SO, CO, WO, SW, and SCW, in comparison with RM and each other (finding the 

best solution among five proposed solutions). 

The P-values derived from the Mann-Whitney U test were measured 0.000058, 

0.000173, 0.000051, 0.000008, and 0.000000029537. These values indicated that SO, 

CO, WO, SW, and SCW have significant statistical differences with RM in execution 

time (as the P values found less than 0.05). On the other hand, A12 statistics also 

revealed large effect size for all tests regarding execution time results. These two tests 

concluded that proposed solutions have significant statistical and practical differences 

from RM.  

 Table 5.20 presented the P-values derived through Mann-Whitney U test that 

were measured as 0.013549, 0.700686, 0.003848, 0.0000000001537, 0.009267, 

0.000029, 0.000000000028719, 0.004745, 0.00000000024879, and 0.000002. These 

values indicated that SO, CO, WO, SW, and SCW have significant statistical 

differences with each other in execution time results (as the P values found less than 

0.05). On the other hand, A12 statistics also revealed large effect sizes for seven tests, 

such as SW=SO, SCW=SO, SW=CO, SCW=CO, SW=WO, SCW=WO, and SCW=SW 

regarding execution time results. A medium effect was noted for CO=SO, and WO=CO. 

However, no effect size was found for SO=WO. Finally, our findings from both tests 

revealed that proposed solutions have significant statistical and practical differences 

from each other. Hence, we concluded that SCW was the best solution and preferable to 

SW, CO, WO, and SO in terms of execution time. 

6.5.2. Energy Consumption 

 Figure 6.19 presents the results of energy consumption that are obtained through 

proposed heterogeneity-aware task allocation solutions. The purpose of this section is to 

discuss the performance of proposed solutions in terms of energy consumption. 
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The results of the CPU speed-based task allocation show that it consumes less 

energy than the random-based solution. The reason for less energy consumption is that 

the proposed solution enables the controller node in a way that always assigns the task 

to a high-speed mobile device that executes it quickly. Because of the fast execution, 

energy consumption is also minimized. However, in random-based task allocation, 

controller node allocates the task to the slower device as it does not consider the 

compute node resources that prolong its execution time and also consumes more energy. 

Thus, the CPU speed-based task allocation solution helps to save energy up to 69.78%.  
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Figure 6.19: Comparison of energy consumption empirical results obtained from five proposed 

solutions with random-based task allocation 

 The results of core-based task allocation are also promising than random-based 

task allocation in terms of energy consumption. In random-based task allocation, most 

of the time, resources are not utilized in an efficient way. Inefficient resource utilization 

wastes energy. However, core-based task allocation ensures efficient resource utilization 

which leads to minimizing the energy consumption. The reason of minimizing the 

energy consumption is that proposed solution enables the controller to select such 
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compute nodes that have more number of cores. Thus, the selection of such device helps 

to execute the task in a quick manner than random-based task allocation because of its 

high processing capabilities. In this way, the core-based solution helps to reduce the 

energy consumptions up to 68.25% compared to random-based task allocation. 

 The workload-based task allocation solution enables the controller node to select 

only that device which has a lighter workload running in the background. Based on the 

workload criteria, much energy can be saved than random-based task allocation. In 

random-based task allocation, the larger tasks can be allocated to such devices that have 

already much workload running in the background which causes higher energy 

consumption. However, the workload-based selection of compute node helps to 

minimize the energy consumption. Thus, the results show that workload-based task 

allocation helps to save energy up to 69.06%. 

 The results of the two parameters-based (CPU speed and workload) task 

allocation reveal that it helps to reduce energy consumption compared to random-based 

task allocation. Although performing task allocation based on two parameters helps to 

reduce energy consumption up to 67.26% compared to random-based task allocation, 

single parameter-based task allocation helps to save more energy. The reason is that 

through single parameter-based task allocation, the tasks are being executed only on one 

device that usually has high specifications; whereas, through multiple parameters-based 

task allocation, tasks are usually allocated to more than one device as noted in our 

simulation, where specifications of the compute nodes were quite diverse. In that 

simulation scenario, although execution time could be minimized due to time slots 

factor compared to single parameter-based task allocation, energy consumption could 

not be minimized, in comparison with single parameter-based task allocation. Such is 

also the case with two and three parameters-based task allocation solutions (SW and 

SCW). Although the results of SW and SCW show that the solutions save energy 
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consumption up to 67.26 % and 57.33%, respectively, these results were not better than 

two single parameter-based task allocation solutions, such as SO and WO.  

Hence, the discussion concludes that proposed heterogeneity-aware task 

allocation solutions use less energy than the random-based task allocation. In addition, 

the CPU speed-based task allocation is one of the most energy-efficient solutions in our 

simulation scenario. 

6.5.2.1. Statistical Significance of the Proposed Solutions’ Energy Consumption 

Results Compared to RM-based Task Allocation 

 The Mann-Whitney U test and Vargha and Delaney’s A12 statistics were applied 

(in table 5.22) to measure the significant differences and effectiveness in 30 data traces 

of SO, CO, WO, SW, and SCW, in comparison with RM.  

 The P-values derived through Mann-Whitney U test were measured 0.000012, 

0.000018, 0.000012, 0.000388, and 0.000015. These values indicated that SO, CO, WO, 

SW, and SCW have significant differences from RM in energy consumption results (as 

the P values found less than 0.05). At the same time, A12 statistics revealed large effect 

size for all tests regarding energy consumption results. These two tests concluded that 

the proposed solutions have significant statistical and practical differences from RM.  

6.6 Conclusion 

 Heterogeneity-aware task allocation helps to address the issue of longer 

execution time and greater energy consumption by enabling the controller node to make 

an efficient task allocation decision. The proposed solutions help to minimize the task 

execution time and energy consumption for MAC-based task execution. The proposed 

solutions are implemented in controller node that is responsible for allocating the task in 

MAC environment. We validated the mathematical model presented in chapter 4 using 

simulation results. The differences between the execution time results obtained from the 

mathematical model and the results of each proposed solution were not significant as we 
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have investigated this through the Mann-Whitney U test, Pearson's correlation model, 

and Vargha and Delaney statistics. The verification of the proposed solutions 

performance with random-based task allocation in terms of execution time and energy 

consumption has also been performed. The performance evaluation results reveal that 

the heterogeneity-aware task allocation solutions, such as SO, CO, WO, SW, and SCW, 

outperform the random-based solution by reducing the execution time up to 56.72%, 

53.12%, 56.97%, 61.23%, and 71.55%, respectively. In addition, these heterogeneity-

aware task allocation solutions help to save energy up to 69.78%, 69.06%, 68.25%, 

67.26%, and 57.33%, respectively. Based on the obtained results, we concluded that the 

proposed solutions help to improve task performance in terms of execution time and 

energy consumption, in comparison with random-based solution. These results have 

been verified by applying different statistical methods. The results of statistical analyses 

revealed that the differences were significant between the each proposed and random-

based task allocation results. Hence, these statistical methods verified that our proposed 

solutions were statistically and practically superior to the random-based solution.   
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CHAPTER 7: CONCLUSION 

We conclude the thesis by reporting on the re-examination of the research objectives 

defined in the first chapter. The purpose of this chapter is to summarize the research 

contributions and recommend future directions. 

 The chapter is organized into four sections. Section 7.1 discusses the 

reassessment of the objectives of this research. Section 7.2 highlights the contribution of 

the study. Section 7.3 examines the scope and limitation of the research work. Section 

7.4 suggests future research directions of the study. 

7.1 Reappraisal of the Research Objectives 

 The problem of inefficient task allocation causes by ignorance of heterogeneity- 

measuring parameters and its adverse impacts on task execution time and energy 

consumption have been investigated and addressed in this thesis. We revisit the four 

objectives and describe how this research study meets the objectives that were defined 

in Section 1.4. 

 The first objective was to review the state-of-the-art on MAC for obtaining 

insights with respect to task allocation issue. This has been achieved by analyzing the 

several problems inhibiting the adoption of MAC and reviewing corresponding 

solutions by devising a taxonomy. To study the state-of-the-art research carried out in 

MAC, online digital libraries including IEEE, ACM, Springer, and Elsevier have been 

used. Thus, numerous papers in the broader domain of MAC have been studied. 

Qualitative exploration was being done to analyze the strengths and weaknesses of the 

state-of-the-art literature and to identify the research issues that remain to be addressed. 

Among these issues, we have identified inefficient task allocation as a research problem. 

 The second objective was to investigate the impact of heterogeneity-measuring 

parameters and random-based task allocation on task execution performance. To 

achieve this objective, we have run a designed multi-threaded matrix multiplication 
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application and analyzed its impact on task execution time by varying the specifications 

and background workload on the mobile device. The empirical analysis revealed that 

performing random-based task allocation by ignoring the resource and operational 

heterogeneity in MAC prolongs the execution time and consumes high energy. 

Moreover, the analysis revealed that existing random-based task allocation mechanism 

was unable to adequately mitigate the impact of resource and operational heterogeneity 

on MAC-based task execution. Hence, this established the problem. 

 The third objective was to propose and develop five heterogeneity-aware task 

allocation solutions for minimizing the task execution time and energy consumption, 

and devise a mathematical model. The developed heterogeneity-aware task allocation 

algorithms helped to tackle the issue of longer execution time and high energy 

consumptions during the task execution in MAC paradigm. The proposed solutions 

enable the controller node to make task allocation decisions by considering the 

processing capabilities and operational context of compute nodes. Thus, proposed task 

allocation solutions help to reduce a significant amount of execution time and energy 

consumption by assigning compute-intensive tasks to such devices that can execute 

them in a fast manner.  

 The final objective was to evaluate the performance of the proposed 

heterogeneity-aware task allocation solutions with random-based task allocation in 

terms of execution time and energy consumption, and validate the developed 

mathematical model. The proposed solutions have been implemented in a simulated 

MAC environment. The performance evaluation results revealed that the proposed 

heterogeneity-aware task allocation solutions outperform the random-based task 

allocation. In comparison with the random-based task allocation, the proposed five 

solutions SO, CO, WO, SW, and SCW, reduce the execution time up to 56.72%, 

53.12%, 56.97%, 61.23%, and 71.55%, respectively. In addition, these heterogeneity-
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aware task allocation solutions save energy up to 69.78%, 69.06%, 68.25%, 67.26%, 

and 57.33%, respectively. We have also applied two statistical tests to find whether or 

not the differences between the results obtained from the heterogeneity-aware task 

allocation solutions and random-based task allocation were significant. Our findings 

from both of the tests revealed that proposed solutions have significant statistical and 

practical differences compared to random-based solution. We have validated the 

developed model by comparing the execution time results obtained from the model with 

the five proposed solutions. To prove that the differences were not significant between 

the model and simulation results, three statistical methods Pearson’s correlation 

coefficient, Mann-Whitney U test, and Vargha and Delaney’s A12 have been applied. 

The results of these statistical methods indicated that differences in execution time were 

not significant. Hence, the small differences validated the model results with those 

collected from the simulation. 

7.2 Contributions of the Research 

 The contributions of this work to the body of knowledge are as follows: 

 Taxonomies: We analyzed several problems inhibiting the adoption of MAC 

and reviewed the critical aspects of the corresponding solutions by devising the 

taxonomy. Moreover, MAC roots were also analyzed and taxonomized by 

classifying the literature. The literature review contributed to identifying open 

issues that remain to be addressed in MAC. 

 Empirical Analyses of Ignoring Heterogeneity-Measuring Parameters and 

Random-based Task Allocation Impact on Tasks’ Execution Performance:  

We contributed to the body of knowledge by investigating and demonstrating 

the adverse impacts of inefficient task allocation problem causes by ignorance of 

heterogeneity-measuring parameters, while making task allocation decisions in 

MAC. We perform an in-depth investigation of the problem by conducting an 
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experimental study to show that ignorance of the heterogeneity-measuring 

parameters and random-based task allocation can considerably prolong the 

tasks’ execution time and consumes large amounts of energy in chapter 3. 

 Heterogeneity-Aware Task Allocation Algorithms: We proposed five 

heterogeneity-aware task allocation algorithms that enable the controller node in 

MAC to address the issue of longer execution time and high energy 

consumption. Unlike the contemporary approach for handling the task execution 

in MAC, proposed algorithms reduce the execution time with minimal energy 

consumption. The existing random-based task allocation solution fails to 

perform task execution in such a way that it can help to minimize the execution 

time. On the contrary, heterogeneity-aware task allocation algorithms reduce the 

energy consumption by executing the task in a fast manner.  

 Mathematical Model for Validation: We developed a mathematical model 

with respect to execution time. The model captures the key features of the 

heterogeneity-aware task allocation solutions and represents in mathematical 

form. The developed model is validated by comparing the results of the model 

with the execution time results obtained from the proposed solutions in a 

simulated environment. 

 Performance Evaluation of Heterogeneity-Aware Task Allocation 

Algorithms: We performed evaluation by comparing the execution time and 

energy consumption results of five proposed heterogeneity-aware task allocation 

solutions with random-based task allocation solution. The evaluation results 

revealed that, in comparison with the random-based task allocation (RM), the 

proposed five solutions based on CPU speed (SO), number of core (CO), 

workload (WO), CPU speed and workload (SW), and CPU speed, core, and 

workload (SCW) reduce execution time up to 56.72%, 53.12%, 56.97%, 
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61.23%, and 71.55%, respectively. In addition, these heterogeneity-aware task 

allocation solutions save energy up to 69.78%, 69.06%, 68.25%, 67.26%, and 

57.33%, respectively.  

 Statistical Analyses: We contributed to the body of knowledge by identifying 

and discussing the statistical and practical differences between the results 

obtained from random and proposed heterogeneity-aware task allocation 

solutions. We applied Mann-Whitney U test and Vargha and Delaney’s A12 

statistics to find the significance of differences between the results. Our findings 

from both tests revealed that proposed solutions have significant statistical and 

practical differences compared to random-based solution. In addition, we also 

applied Mann-Whitney U test, Vargha and Delaney’s A12 statistics, and 

Pearson’s correlation coefficient model to validate one of the developed 

mathematical model results with empirical results obtained from the five 

proposed solutions. The statistical analyses results revealed that there are no 

practical and statistical differences between the mathematical model and 

proposed solutions’ results. Hence, it validated the mathematical model.    

We have successfully published our work in well-reputed journals. 

 Accepted Article on Research Topic 

Ibrar Yaqoob, Ejaz Ahmed, Abdullah Gani, Salimah Mokhtar, Muhammad Imran,  
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Mobile Computing, 16(2016), 2572-2589 (Impact Factor 0.92). 

Ibrar Yaqoob, Ejaz Ahmed, Abdullah Gani, Salimah Mokhtar, Muhammad Imran,     

Heterogeneity-Aware Task Allocation in Mobile Ad Hoc Cloud, IEEE Access, 5 

(2017): 1779-179 (Impact Factor 1.27). 
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 Accepted Article on Other Research Topic 

Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Yasir Mehmood, Abdullah Gani,  

Salimah Mokhtar, Sghaier Guizani, Enabling Communication Technologies for 

Smart Cities, IEEE Communications Magazine, 55.1 (2017): 112-120 (Impact 

Factor 5.12). 

Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Abdullah Gani, Salimah Mokhtar,  

Ejaz Ahmed, Nor Badrul Anuar, Anthanasios Vasilakos, Big Data: From 

Beginning to Future, International Journal of Information Management, 36(6), 

1231-1247 (Impact Factor 2.69). 

      Ibrar Yaqoob,  Ejaz Ahmed, Ibrahim Abaker Targio Hashem, A. I. A. Ahmed,  

 Abdullah Gani, Muhammad Imran, Mohsen Guizani, Internet of Things     

Architecture: Recent Advances, Taxonomy, Requirements, and Open     

Challenges, IEEE Wireless Communications, 2017(Impact Factor 4.14). 

Ibrar Yaqoob, Iftikhar Ahmad, Ejaz Ahmed, Abdullah Gani, Muhammad Imran,  

Nadra Guizani, Overcoming the key challenges of establishing vehicular 

communication: Is SDN the answer?, IEEE Communications Magazine, 2017 

(Impact Factor 5.12). 

 Accepted Article on Other Research Topic with Group Collaboration 

Ejaz Ahmed, Ibrar Yaqoob, Abdullah Gani, Muhammad Imran, Mohsen  

Guizani, Social-Aware Resource Allocation and Optimization for D2D 

Communication, IEEE Wireless Communications, vol.PP,no.99, pp.2-9, 2017 

(Impact Factor 4.14). 

     Ejaz Ahmed, Ibrar Yaqoob, Arif Ahmed, Abdullah Gani, Muhammad Imran,  

Sghaier Guizani, Green Industrial Networking: Recent Advances, Taxonomy, 

and Open Research Challenges, IEEE Communications Magazine, 54(10), 38-45 

(Impact Factor 5.12). 
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    Ejaz Ahmed, Ibrar Yaqoob, Abdullah Gani, Muhammad Imran, Sghaier  

Guizani, Internet of Things based Smart Environments: State-of-the-art, 

Taxonomy, and Open Research Challenges, IEEE Wireless Communications, 

23(5), 10-16 (Impact Factor 5.12). 

Yasir Mehmood, Farhan Ahmad, Ibrar Yaqoob, Asma Adnane, Muhammad Imran,  

Sghaier Guizani, Internet-of-Things Based Smart Cities: Recent Advances and 

Challenges, IEEE Communications Magazine, 2017(Impact Factor 5.12). 

      Ibrahim Abaker Targio Hashem, Victor Chang, Nor Badrul Anuar, Kayode 

 Adewole, Ibrar Yaqoob, Abdullah Gani, Ejaz Ahmed, and Haruna Chiroma, The 

 role of big data in smart city, International Journal of Information 

 Management 36, Volume no. 5 (2016): 748-758 (Impact Factor 5.12). 

      Aisha Siddiqa, Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Mohsen Marjani,  

Shahabuddin Shamshirband, Abdullah Gani, and Fariza Nasaruddin, A Survey 

of Big Data Management: Taxonomy and State-of-the-Art, Journal of Network 

and Computer Applications, Volume no. 71(2016): 151-166 (Impact Factor 

2.22) 

       Ibrahim Abaker Targio Hashem, Nor Badrul Anuar, Abdullah Gani, Ibrar Yaqoob,  

Feng Xia, and Samee Ullah Khan, MapReduce: Review and open 

challenges, Scientometrics, Volume no. 109 (2016):389-422 (Impact Factor 

2.03). 

       Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah  

Mokhtar, Abdullah Gani, and Samee Ullah Khan, The rise of “big data” on 

cloud computing: Review and open research issuesm, Information Systems, 

Volume no. 47(2015): 98-115 (Impact Factor 1.76). 
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        Nawsher Khan, Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Zakira Inayat,  

Waleed Kamaleldin Mahmoud Ali, Muhammad Alam, Muhammad Shiraz, and 

Abdullah Gani, Big data: survey, technologies, opportunities, and  challenges,  

The Scientific World Journal, Vol. 2014, Article ID 712826, 18 pages, 2014 

(Impact Factor 1.73). 

7.3 Research Scope and Limitations 

 The proposed heterogeneity-aware task allocation algorithms are effective for all 

MAC-based compute-intensive tasks execution. In MAC, the controller node can adopt 

this solution to make any task allocation decision that can help to minimize the 

execution time and energy consumption. In addition, cloudlet based applications can 

also take advantage of these algorithms in a particular case when execution is performed 

in a distributed manner.   

 Despite many advantages of the heterogeneity-aware task allocation solutions, 

there are some limitations. In the proposed single parameter-based task allocation 

solutions, particularly in CPU speed (SO) and number of core (CO) based task 

allocation, the tasks are only being executed on a single compute node because of the 

defined selection criteria in the algorithms. Thus, this causes wastage of the resources as 

other mobile devices are not selected and utilized for performing computation in those 

cases. Similarly, the proposed solutions usually require the complete specification and 

workload information of the compute nodes to make the task allocation decision that 

poses significantly higher overhead on the controller node. Moreover, one of the 

limitations is that once controller collects all the information of the specifications and 

workload from the compute nodes, it makes task allocation decision based on the 

defined policy in the proposed algorithms; however, the workload information may be 

changed in between task assignment process on the compute nodes. Thus, in such 

situation, the proposed heterogeneity-aware task allocation solutions do not incorporate 
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any feature that enables the controller to change the task allocation policy at the run 

time.   

7.4 Future Work 

 This study does not investigate all the aspects of task allocation problem in 

MAC. However, numerous research efforts have been carried out into this study. To 

explore the open research issues, several future research directions are suggested in 

which carrying further research can extend this study. This research work is only 

focused on the incorporation of the heterogeneity-awareness while making task 

allocation decision in MAC. However, after performing task allocation -if certain 

compute node leaves the MAC or task is allocated to such device that has more 

resources, but low battery power- then managing these situations are the key concerns 

that remain to be addressed. 

Future directions of this research are as follows: 

 

 The issue of identifying that which compute nodes have more stability patterns is 

aiming to be addressed in the future research. The compute nodes mobility 

information must be shared in the initial phases of MAC formation. In this context, 

there should be some mechanism that can enable the mobile devices to find their 

mobility pattern information and share it during the MAC formation. Thus, this 

requires extensive research work to be done. 

 Performing task allocation by considering the battery power information of the 

compute nodes is remained to be addressed as a future research direction. The 

proposed solutions are not considering mobile battery power information while 

making task allocation decision that can cause real problems in certain cases if its 

battery dies after receiving the task for the execution. Thus, this can be done in the 

future.  
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 Currently, we are only aware of these possible future research directions. 

However, there might be multiple other research areas which we are not aware of at this 

time. No matter how complete the research study is, the fascinating minds are always 

ready to come up with new ways to improve the state-of-the-art work and contribute to 

the body of knowledge.   
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