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ABSTRACT 

The charged-particle-induced nuclear reactions by using cyclotrons or accelerators 

with a moderate energy have become a very vital feature of the modern nuclear 

medicine. Based on the well-measured excitation functions, the optimum production 

parameters of the important radionuclides can be easily determined. Realising the 

importance of excitation functions for the efficient production of radionuclides, a 

comprehensive study of residual radionuclides production cross-sections was performed 

using a stacked-foil activation technique combined with offline HPGe γ-ray 

spectrometry. In the first phase of the study, a 24 MeV deuteron energy was used as the 

bombarding particles on two separate stacks, both containing nickel (Ni) and titanium 

(Ti) foils as the main targets metals. In the 2nd phase, a 50.4 MeV alpha-particle beam 

energy was used as the projectile on a stack containing holmium (Ho), Ti and copper 

(Cu) foils. The experiments were performed using the AVF cyclotron of RI Beam 

Factory, Nishina Centre for Accelerator-Based Science, RIKEN, Wako, Saitama, Japan. 

Deuteron-induced cross-sections of the natNi(d,x)55-58,60Co, 57Ni, 52g,54Mn and 61Cu 

reactions were measured from the respective threshold energies up to 24 MeV. From the 

second phase, the excitation functions of the natCu(α,x)66,67Ga,65Zn,57,58,60Co  nuclear 

reactions have been measured in the energy range of 50 MeV down to 3.2 MeV. 

Similarly, the excitation functions of natT(α,x)43K,43,44m,44g,46-48Sc, 48V and 48,49,51Cr from 

natural titanium as well as the excitation functions of 165Ho(α,nx)165-168Tm radionuclides 

from holmium target have also been measured. The accuracy of the measured cross-

sections was confirmed by, in addition to the beam current, the simultaneously 

measured monitor reaction excitation functions of natT(d,x)48V and natT(α,x)51Cr for the 

first and second phase of the studies, respectively. The results were compared with 

previous experimental data (if available) and with the theoretical TALYS 1.4 and 1.6 
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nuclear reaction codes evaluated in the TENDL-2014, 2015, libraries. Present results 

show reasonable agreement with some of the reported experimental data while a partial 

agreement is found with the evaluated (theoretical) data. The integral thick target yields 

(TTY) of 55Co and 56Co radionuclides via deuteron irradiation on nickel have been 

calculated. From the stack bombarded by the 50.4 MeV alpha beam energy, the present 

study also calculated the integral thick target yields for 43K,43,44m,44g,46-48Sc, 48V 

and 48,49,51Cr from the titanium targets. The measured data are useful to reduce the 

existing discrepancies among the literature, to improve the nuclear reaction model codes 

and to enrich the experimental database towards various applications. The natNi(d,x)61Cu 

cross-sections recommended by the IAEA overestimate recent experimental ones, and 

their upgrade has been proposed. Some of the radionuclides reported in this study have 

been investigated via their study route for the first, second or third time. 
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ABSTRAK 

Tindak balas nuklear yang disebabkan oleh zarah bercas dengan menggunakan 

siklotron atau pemecut dengan tenaga yang sederhana telah menjadi ciri yang sangat 

penting dalam perubatan nuklear moden. Berdasarkan kepada fungsi pengujaan yang 

diukur dengan baik, parameter untuk pengeluaran radionuklid penting yang optimum, 

dapat ditentukan dengan mudah. Menyedari kepentingan fungsi pengujaan untuk 

pengeluaran radioniklid yang berkesan, kajian yang komprehensif telah dijalankan ke 

atas keratan rentas sisa pengeluaran radionuklid dengan menggunakan teknik 

pengaktifan timbunan kerajang logam yang digabungkan dengan spektrometri HPGe 

sinaran-γ luar talian. Dalam fasa pertama kajian ini, tenaga deuteron sebanyak 24 MeV 

telah digunakan sebagai zarah pembedil bagi dua susunan yang berasingan, di mana 

kedua-dua susunan ini mengandungi kerajang logam nikel (Ni) dan titanium (Ti) 

sebagai sasaran logam utama. Dalam fasa kedua, tenaga pancaran zarah alfa sebanyak 

50.4 MeV telah digunakan sebagai peluru pada timbunan yang mengandungi kerajang 

logam holmium (Ho), Ti dan tembaga (Cu). Kajian ini telah dilakukan dengan 

menggunakan siklotron AVF dari RI Beam Factory, Nishina Centre for Accelerator-

Based Science, RIKEN, Wako, Saitama, Jepun. Keratan rentas yang disebabkan oleh 

deuteron, bagi tindak balas natNi (d, x) 55-58,60Co, 57Ni, 52g, 54Mn dan 61Cu, diukur dari 

tenaga ambang masing-masing sehingga 24 MeV. Daripada fasa kedua, fungsi 

pengujaan daripada tindak balas nuklear natCu(α, x)66,67Ga, 65Zn, 57,58,60Co telah diukur 

dalam julat tenaga 50 MeV turun kepada 3.2 MeV. Fungsi pengujaan bagi natT(α, 

x) 43K, 43,44m, 44g, 46-48Sc, 48V dan 48,49,51Cr dari titanium semulajadi dan juga fungsi 

pengujaan bagi radionuklid 165Ho(α, nx) 165-168Tm dari sasaran holmium, juga telah 

diukur. Ketepatan yang diukur keratan rentas telah disahkan oleh arus pancaran serta 

fungsi pengujaan tindak balas panduan oleh natT(d, x)48V dan natT(α, x)51Cr bagi fasa 
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pertama dan kedua kajian , masing-masing. Semua keputusan telah dibandingkan 

dengan data eksperimen terdahulu (jika ada) dan juga dengan teori TALYS 1.4 dan kod 

tindak balas nuklear 1.6 yang dinilai dalam perpustakaan TENDL 2014, 2015. 

Keputusan terkini menunjukkan persetujuan yang munasabah dengan beberapa data 

eksperimen yang telah dilaporkan sebelum ini, manakala persetujuan separa telah 

didapati dengan data (teori) yang dinilai. Kamiran hasil sasaran tebal (TTY) bagi 

radionuklid 55Co, 57Co dan 58Co melalui penyinaran deuteron ke atas nikel telah dikira. 

Dari timbunan yang dibedil oleh 50.4 MeV tenaga pancaran alfa, Kamiran hasil sasaran 

tebal bagi 43K, 43,44m, 44g, 46-48Sc, 48V dan 48,49,51Cr dari sasaran titanium. Data yang 

diukur adalah berguna untuk mengurangkan percanggahan yang sedia ada di antara 

kesusasteraan, untuk meningkatkan kod model tindak balas nuklear dan untuk 

meningkatkan pangkalan data eksperimen terhadap pelbagai aplikasi. Keratan rentas 

bagi  natNi(d, x) 61Cu yang disyorkan oleh IAEA telah memberikan jangkaan yang lebih 

tinggi dalam eksperimen-eksperimen terbaru, dan penaikkan taraf telahpun 

dicadangkan. Sebahagian daripada radionuklid yang dilaporkan dalam kajian ini telah 

disiasat melalui laluan kajian mereka buat kali pertama, kedua atau ketiga. 
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CHAPTER 1: INTRODUCTION 

 
1.1 Introduction 

Nuclear Technology proved to be one of the most important developments of the 20th 

century. The multitude applications of nuclear science in many fields of human 

endeavour we are now witnessing were initially founded by the works of the pioneers in 

this field. In particular, the work of Marie Curie and Pierre Curie formed a spectacular 

foundation to the knowledge of radioactive materials. With the belief of Marie Curie 

that a pitchblende, a material she was working on, contained a more active element than 

uranium, she succeeded in 1898 to isolate two previously unknown elements; polonium 

(after her country of origin, Poland) and radium (named after its high activity). In 1911, 

the first notable practical use of radioactive isotopes was tested by, at that time, a young 

Hungarian student G. de Hevesy, who was working with naturally occurring 

radionuclides in Manchester University. He used the radioisotopes to confirm the 

suspicion he had that the meals they were served at the boarding school were from a 

leftover of the preceded day.  

Another milestone in the history of nuclear physics was recorded in 1919 by Ernest 

Rutherford when he directed the alpha particle emission of a polonium sample on to a 

nitrogen gas. The result he obtained shows that proton was emitted from the 

disintegrated nitrogen. Rutherford, however, realised later that some more energetic 

particles with energy more than the energy of the natural radiation are necessary to 

effectively disintegrate matter and thus the new demand for higher fluxes of energy so 

that man-controlled nuclear reactions can be achieved. For some years there was no 

progress, until in 1928 when independent works by Gurney and Gamov predicted 

tunnelling, and from the development, it was understood that a 500 keV energy could 

just be sufficient to split an atom (Bryant, 1994). In fact, it was documented that a year 
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before this prediction, Rutherford delivered a speech (at the annual address to royal 

society, 1927) where he publicly expressed the need for the scientific community to 

accelerate charged particle  with energy greater than the  natural alpha-decay so that 

nuclides of higher energy than nitrogen could be disintegrated. He then challenged the 

participants to fulfil this, his long-time desire, of the rich supply of higher energy 

projectile particles other than the natural low energy emission (Steere, 2005). With this 

prediction, Rutherford thus immediately encouraged Cockcroft and Walton to start 

designing a particle accelerator capable of delivering 500 keV energy. In 1932, only 

four years after Rutherford’s suggestions, these scientists were able to produce the 

particle accelerator which they used to split the Li atom by 400 keV energy of proton 

(Cockcroft & Walton, 1932a; Cockcroft & Walton, 1932b) and consequently earned 

them the noble price of 1951 (Bryant, 1994). However, their accelerator has energy 

limitation as it was in few keV energy and the further quest for higher energy continue. 

In almost the same period (1929), E. O Lawrence, a young associate professor and non-

German speaking at the University of California, was searching through some German 

publications, when he suddenly came across the work of Wideroe (Steere, 2005), a 

reported work in German on the same acceleration of particle issues. Although 

Lawrence could not understand the German language, the figure he saw was enough to 

motivate him. Inspired by such a figure, he successfully constructed the first cyclotron 

and further works with his graduate students for its enhancement (Lawrence & 

Cooksey, 1936; Lawrence & Livingston, 1932; Sloan & Lawrence, 1931), and the 

period thus becomes the turning point of radioisotope production (Ruth, 2003). 

Lawrence’s contributions were recognised as he later received the Nobel Prize in 1939. 
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Due to the uncovering of the electromagnetic field, as the core principles for 

sustaining accelerations of particles around 1930, this period was quite a remarkable 

one in the history of accelerators.  

Although applications of radioisotope started in the 1920s, the practically limited 

available naturally occurring radioactive isotopes at that time suddenly hindered the 

early development of this field to a wider scope in the period. The practical, full-scale 

potentials of radioisotope applications only began to be realised when artificial 

radioisotopes could be produced. 

1.2 Common Routes for Radionuclides Productions 

While in general term, nuclear reactions can occur naturally through radioactivity, a 

control nuclear reaction requires certain procedures for its occurrence and maintenance. 

To produce specific radioactive products of interest, several considerations are 

necessary ranging from appropriate target selection to the use of specific energy of the 

bombarding particle. In principle, to effectively produce artificial radionuclides, the 

colliding of a projectile (the bombarding particle) onto a target is necessary. There are 

three major techniques for the production of (controlled) radionuclides for hospital 

usage: 

1.2.1 Nuclear Reactor  

In nuclear reactors, the initial reaction of a neutron with 235U pave the way to 

produce more particles such as neutrons, protons, deuterons, alpha particles, and so on. 

These produced particles can be used for further nuclear reactions to produce the 

desired radionuclides. Description of reactor-produced radionuclides is out of the scope 

of this thesis. 
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1.2.2 Generators  

These are useful alternatives to the use of the cyclotron or reactor sources. A 

(radioactive) generator is a long half-life radionuclide called ‘mother” which decays to a 

short-half-life radionuclide called ‘daughter’ that can be used for imaging procedures in 

hospitals. A nuclear reactor is typically utilised to produce this long-lived radionuclide 

and then shipped in a ‘generator’. When needed, the ‘daughter’ radionuclide is 

combined with radiopharmaceuticals for designed application. Replacement of 

generators in hospitals is usually monthly, depending on the half-life of the ‘mother’ 

radionuclide. The very popular radionuclide 99mTc (T1/2= 6.02 h) (daughter) is the most 

prominent radionuclide in use in the hospitals and is derived from the long-lived 99Mo 

(T1/2= 66 h) serving as the ‘mother’. Statistics show that more than 80% of all hospital 

diagnostic procedures (about 36,000 daily medical procedures in the United States) are 

performed using 99mTc (Srivastava, 1996). The ‘mother’ 99Mo is produced in a reactor. 

This system is called ‘99Tc generator’. Studies on ‘daughter’ – ‘mother’ generator 

system are well established, with some studies nowadays focusing on other procedures 

such as electrochemical separation technique, which are useful especially when low 

specific activity parents are used (Chakravarty et al., 2012). In recent years, several 

studies have investigated the direct cyclotron production of 99mTc (Lagunas-Solar et al., 

1991; Takacs et al., 2015) via proton bombardments and much more radionuclides 

(McCarthy et al., 1997; Moustapha et al., 2006). 

1.2.3 Cyclotron  

The use of the cyclotron is by far the most efficient production method for 

radioisotopes. A brief history of cyclotron was already presented in the previous section 

of this chapter. There are many studies on production of radioisotopes using cyclotrons, 

and a lot more are ongoing. The present thesis is a product of experimental 
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measurements from a cyclotron as well. Thus, most part of chapter two is devoted to the 

general description of the main procedures and targets involved in radioisotope 

productions and cross sections measurements. Some clear advantages of accelerator-

produced radionuclides are (Ruth, 2009; Schmor, 2011); 

• Targets and products radionuclides are different chemical elements. This benefit 

is connected to the following other advantages; 

• A suitable physical or chemical separation technique is possible due to the 

variation of target and product. 

• Radioactive impurities can be minimised by proper selection of specific 

irradiation energy window. 

• As the target and products are different elements, a high specific activity (SA) 

preparation is possible. 

More so, regarding widely usage and acceptability, the following three major reasons 

have made the accelerator-produced radionuclides to excel over those from its 

counterpart, the nuclear reactor; 

• Radionuclides produced from accelerator have more favourable decay 

characteristics (half-life, emitted particles, gamma rays, and so on).  

• Reactor only produces radionuclides with, in general term, low specific activities 

(SA). 

• Access to a reactor is usually very limited, owing to political reasons. This has 

earlier been predicted (IAEA, 2008) and has even led to several studies on direct 

cyclotron production of 99mTc. 

As this thesis is on radioisotopes production in a cyclotron, it will, therefore, dwell 

heavenly on this aspect and related procedures throughout the thesis. 
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1.3 Author’s Experience at RIKEN Research Centre 

During the author’s candidature, he was privileged to have been enrolled as a 

research student at Nishina Centre for Accelerator based-science, one of the very active 

research laboratories of RIKEN research centre, Wako, Saitama, Japan. RIKEN is one 

of the world leading scientific research centres, with most of their facilities up to date 

and capable of competing with sister research peers. Recently, one of their contributions 

in scientific world has been recognised by IUPAC through recognition of their 

discovery of element 113 (named recently as nihonium, Nh) (Riken, 2017). 

As a registered research student, the author had the opportunity to visit the centre on 

three different occasions, each time with different set of experiments. In addition to the 

experiments presented in this thesis, the author also participated in some other 

experiments, beyond the scope of this thesis, such as deuteron bombardment of a stack 

of Ti, Ce and Tb in one occasion and Ti, Sc and Al foils in another. 

The experimental exposure provided the author with some volume of practical 

experience regarding target preparations, irradiation and measurements of activities as 

well as very invaluable teamwork experience. Though the author’s work was done using 

the AVF cyclotron of the centre, the author was also opportune to have visited most of 

the accelerators of the centre, including their latest and recently completed 

Superconducting Ring Cyclotron(SRC). Using the SRC, now RIKEN can accelerate the 

heavy ions, up to uranium. 

1.4 Background of the Study 

Studies on radioisotope production via nuclear reactor and proton only cyclotrons for 

medical applications are vast in the literature, and their practical applications in PET are 

well established. Although deuteron production route has recently been attracting large 
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literature, its practical applications are not yet common in the hospitals owing to other 

problems. The radioactive isotope productions via alpha bombardments are yet the less 

investigated production channel and are still work in progress. Exploration of this route 

can play a major role in nuclear data analysis. 

To optimise radionuclides productions, sufficient nuclear data from all production 

routes are crucial. It thus may involve a proper selection of energy range for the 

projectile particle so as to maximise the product (radionuclides) production yield and 

also minimise radioactive impurities (Qaim et al., 2002). In practice, while chemical 

separation is an ideal way of removing non-isotopic impurities, the suppression of the 

isotopic impurities is mainly achieved by using targets of enriched isotopes or through 

careful energy selection of the incident bombarding particle. The selection of 

appropriate energy for particular radioisotope production is possible in cyclotrons with 

large energy interval. The adverse effects of radioactive impurities are; first, the 

additional radiation dose to patients and secondly, it affects the imaging quality through 

its effect on a ‘line spread function’ (Qaim et al., 2002). These disadvantages, therefore, 

jeopardise the importance of the radionuclide in question and thus necessitate the need 

for other production routes of the desired radionuclide instead of the conventional 

method. 

 The cyclotrons produced radionuclides are very efficient in diagnostic and 

therapeutic studies via some popular techniques such as positron emission tomography 

(PET) and Single Photon emission tomography (SPECT). Over the last few decades, 

there has been a sharp increase in the number of cyclotrons, which further enhanced the 

developments of these modalities. The PET technique as an example has now become a 

well-developed imaging modality. The PET is performed through labelling 

radiopharmaceuticals with short-lived positron emitting radionuclides such as 15O (T1/2 
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= 2 min), 11C (T1/2 = 20.4 min), 18F (T1/2 = 110 min), etc. However, the short half-life 

nature of these radionuclides, except 18F, necessitate the need for an on-site cyclotron 

(Aslam & Qaim, 2014) or a (radionuclide) generator system, depending on the 

radionuclide of interest. Furthermore, despite the large success of these radionuclides, 

the use of these short half-lives radionuclides in PET is sometimes associated with other 

problems and thus limit the prospects in the PET technique. More precisely, when 

studies of slow biological processes or labelling of peptides and proteins as in the case 

of brain tumour studies, the short half-lived positron emitting radionuclides are quite 

deficient (Qaim, 2004). The continuous expansions of PET procedures demand that 

more versatile radionuclides be used for diverse applications. The longer-lived 

radionuclides, also called non-standard positron emitters, are required for some more 

successful investigations in slow metabolic procedures (Amjed et al., 2016). The longer 

lived positron emitters could be useful when labelling of compounds of organic origin 

such as halogens, to prepare metallic complexes or even in the pharmacokinetics (Qaim, 

2004).  On the other hand, these radionuclides can also serve as a positron emitting 

analogue label for quantification of the radiopharmaceuticals in SPECT and are also 

very useful as therapeutic radionuclides (Qaim, 2004).  

A recent study strictly emphasises on the need for the developments of new positron 

emitters for the new challenges (Qaim, 2004). The present thesis, therefore, considered 

these non-standard radionuclides (radionuclides with half-lives ranging from few hours 

to several days) as future radionuclides and intend to either validate the available 

literature (where available) or report newly observed radionuclides in the studied 

production routes. 
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1.5 Objectives of the Study 

To effectively study some the non-standard radionuclides for medical applications, 

the following objectives were set in this work: 

• To measure the excitation functions of natNi(d,x)xY nuclear reactions in the 

frame of 24 MeV deuteron beam 

• To study the cross sections and thick target yields of scandium radionuclides 

from 50.4 MeV alpha-induced reactions on nat.Ti 

• To measure the excitation functions of natCu(α,x)66,67Ga,65Zn,57,58,60Co 

• To investigate the excitation functions of the short-lived radionuclides via 

alpha production route on holmium foils. 

1.6 Scope of the Study 

The present thesis is designed as a purely experimental study, with the output of 

Talys code used for cross-checking the agreement between the experimental work and 

the theoretical predictions. Furthermore, the work is designed to use deuteron and alpha 

particles as the main ion beam projectiles of interest to produce several radioisotopes 

from selected targets mention in the objectives. Specifically, the use of proton was not 

considered because of the vast literature on the subject. Similarly, the work reports the 

results obtained from Ni, Cu, Ti and Ho but not all the metals used in the experiments. 

The use of natural targets plays important roles for different reasons. One of such 

advantage is that it helps to estimate the level of such impurities since when enriched 

isotopes are used the product radionuclides may still be contaminated due to a small 

proportion of the natural isotopic composition. The theoretical Talys nuclear reaction 

code, a powerful prediction code, was used via TENDL-library for cross checking the 

agreement between theoretical and the experimental results of this thesis. 
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1.7 Outline of the Thesis 

This section gives a brief overview of the whole thesis based on the sequence of 

chapter presentation style of the thesis. The chapter one of this thesis is designed such 

that a clear picture of the entire study is made. The chapter, therefore, presents a brief 

introduction to the history of radioisotope production, the major methods for the 

practical radioisotopes production for medical applications and challenges encountered 

during the productions. The chapter also describes background or solid foundations 

leading to the study, the scope and objectives of the thesis. 

In chapter two, a general literature review related to the objectives of the thesis is 

presented. The review focuses on the definition of some basic radionuclide production 

terms, the cyclotrons and their major types, and the ion sources in cyclotrons. The 

chapter also examined the previous literature on the use of nickel, titanium and holmium 

targets about the objectives of this thesis. The review of some specific applications 

relevant to each studied radionuclide has not been provided in chapter two but in the 

relevant chapters of which the radionuclide is mentioned. This is in accordance with the 

format of the thesis. 

The method, results and a short conclusion of the first objective of the present thesis 

are presented in chapter three. Using 24 MeV deuteron as the projectile beam on natural 

nickel, the excitation functions of natNi(d,x)55-58g+m,60g+mCo, 57Ni, 52g,54Mn radionuclides 

have been studied and presented in the chapter. The thick target yields of some of the 

radionuclides have also been calculated. The uncertainties in cross sections were 

evaluated in an elaborate way, based on the experimental conditions of the present 

study. 
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Chapter four presents the methodology and results obtained from bombarded 

titanium target. In this chapter, elaborate discussions of the tabulated values of cross 

sections and plotted excitation functions of some scandium and chromium radionuclides 

have been reported. The excitation function of 48V was also presented. Details of 

gamma energy separation of two or more interfering gamma lines (having same or very 

close gamma energies) are also provided in this chapter. The thick target yields of the 

studied radionuclides have been calculated, plotted along with available literature where 

available and presented in this chapter with discussions following the results. A short 

conclusion following the results of the chapter was also provided at the end of the 

chapter. 

In chapter five, results of gamma spectra from copper, a metal that also served as 

energy degrader, were evaluated. The excitation functions 

of natCu(α,x)66,67Ga,65Zn,57,58,60Co nuclear reactions in the alpha beam have been 

reported. 

Chapter six is the last experimental chapter of this thesis. The chapter presents 

relevant experimental procedures on the measured cross sections of thulium 

radionuclides. The excitation functions of the studied thulium radionuclides of this 

work, obtained from the bombardment of holmium foils, as well as the experimental 

literature data,are presented in this chapter. The TENDL-2015 library was used for 

comparing the current result to the theoretical predictions of TALYS nuclear reactions 

code. 

The final chapter, chapter seven, presents the major summaries of the various results 

and conclusions of the previous chapters before it of this thesis, based on the initial set 

objectives. The limitations of the present study are enumerated under this chapter. The 
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chapter also presents, in a more direct way, the main contributions of the study to the 

research area. The final item under this chapter presents some recommendations for 

further research. 

It is acknowledged that, due to the presentation and thesis style adopted in this thesis 

(article style), based on the University of Malaya guide (format), some information may 

be found unavoidably repeated in some sections of the thesis. 

 

 

Figure 1.1: Schematic Summary of the Major Components of this Thesis. 
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CHAPTER 2: LITERATURE REVIEW 

 
2.1 Introduction 

This chapter introduces the concepts of medical applications of radionuclides and 

their production techniques. It also provides basic definitions of some terminologies 

relevant to radioisotope productions as well as introducing the general concept and basic 

developmental stages of nuclear accelerators, especially the cyclotrons, for the 

production of medical isotopes and other applications. Some little information on 

radiopharmaceuticals has also been provided. The chapter ends with some specific 

reviews on the main target metals used for the bombardments in this study, where in 

each case, a tabular summary of the comprehensive review of the previous works has 

been provided. 

In the production of radioisotopes for medical applications by metallic 

bombardments, the light-charged protons are currently the most efficient and widely 

used tools. The production machines are readily available in many hospitals of 

developed and developing countries and research laboratories all over the world. Proton 

only cyclotrons (and sometime deuteron also) are frequently used for Positron Emission 

Tomography (PET) or other related techniques in the medical field  (Qaim et al., 2016). 

However, sometimes, using other charged particles such as deuteron or alpha particles 

can give a tangible result or even better, depending on the requirement or problem at 

hand.   

A recent review (Qaim et al., 2016) on alpha-induced nuclear reactions has 

quantified several applications of alpha-induced nuclear reaction in nuclear medicine, 

nuclear data, material science, and so on. The applications of alpha-induced reactions 

are due to the basic properties of alpha particles in their ability to scatter, ionise or 

activate a matter they encounter. In particular, the accelerators operating at medium 
     

13 

Univ
ers

ity
 of

 M
ala

ya



 

energy alpha particles (below 40 MeV) are of great importance in nuclear research, in 

both the investigative- and application-oriented senses  (Uddin & Scholten, 2016). 

Commercial cyclotrons for alpha bombardments have not yet been available for 

radioisotope productions due to other reasons beyond the scope of this chapter. Despite 

this, more research, especially in the recent years, are developing more interest in the 

use of the deuteron and alpha particles for radioisotope production. These researches 

could likely pave the way for commercial deuteron only and alpha only cyclotrons in 

the near future. In this chapter, the author has reviewed previous works on the 

irradiation of nickel, titanium and holmium metallic targets in relation to the employed 

production routes of the present study (deuteron and alpha-particles beams). The 

summaries of the reviewed information have been presented in several Tables of this 

chapter. 

2.2 Medical Applications of Accelerator-Produced Radionuclides 

The broad applications of radionuclides cannot be confined to a narrow area as their 

applications are found in many fields such as medical applications, scientific research, 

agriculture, oceanography, mineral exploration, etc. Radionuclides or radioisotopes are 

nowadays crucial diagnostic and therapeutic agents in many hospitals.  

The use of radionuclides as tracers for the assessment of functions of certain body 

parts is very much in practice. These radionuclides can usually be injected, embedded, 

ingested or induced by activation in the body (IAEA, 2008; Ruth, 2009; Schmor, 2011). 

On the other hand, therapeutic applications are also standard practice in many tumour 

treatment centres. There are even more expectations of much more radionuclides for 

therapeutic applications (Schmor, 2011).  

     

14 

Univ
ers

ity
 of

 M
ala

ya



 

A review on tracing of tissues and therapeutic potentials of most of the studied 

radionuclides have been presented in various chapters of this thesis relevant to the 

investigated radionuclides. 

2.2.1 Radiopharmaceuticals 

In nuclear medicine, radionuclides are combined with other compounds to form 

radiopharmaceuticals which can localise in body organs (Schmor, 2011). They differ 

from usual pharmaceuticals in that they are administered in a, relatively, very small 

concentration such that they do not elicit any pharmaceutical response (Schmor, 2011). 

The following are properties of an ideal radiopharmaceutical;  

i. Short half-life, 

ii. Rapid biological distribution 

iii. Absence of particulate emissions 

iv. Target specifications 

v. Photon energy range of 150 to 250 keV 

Each of the above properties has some specific advantages. As an example, the use 

of a short half-lived radiopharmaceutical to a patient is to transfer the least possible 

radiation dose to the patient. The longer the half-life of a radionuclide to be used with a 

carrier, the higher or the longer (radiation exposure time) the radiation dose to the 

patient. 

2.3 Circular Accelerators 

The circular form of the accelerator is, in contrast to the linear accelerator, the type 

of machine or accelerator in which charged–particles or ions are constrained to flow in 

closed quasi-circular path or orbit through the action of the magnetic field. All circular 

accelerators possess some characteristics in their design such as having a vertical 
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magnetic field which ensures the bending of the particle trajectories and one or more 

gaps coupled to inductively isolated cavities for the accelerations of particles. 

Resonance circular accelerators are also characterised by synchronisation between 

oscillating acceleration fields and particles revolution frequency. 

One of the major advantages of circular resonance accelerators over resonance 

frequency (RF) LINACS is the particle recirculation. The particles usually pass through 

the same acceleration gap for a significant period (about 102 to 108 times). This gives 

the particle very high energy in a relatively low voltage. The ability to attain high 

energy with smaller length in circular accelerators also serve as another advantage over 

its linear counterpart.  

There are many different designs of circular resonance accelerators now in the world, 

with some having certain advantages over others while others exist only to follow the 

historical development. With the exceptions of some designs, we can broadly classify 

circular resonance accelerators into either cyclotrons or synchrotrons. These exceptions 

are the Microtron, a technologically like LINAC, and synchrocyclotrons. 

2.4 Cyclotrons: Design and Classifications 

This class of circular accelerators is characterised with a constant magnitude of the 

magnetic field and constant RF frequency. The design of cyclotrons is such that they 

generate beam micro-pulses in a continuous manner. The amount of beam energy is 

mainly limited by relativistic effects, which destroys the synchronisation between 

particle orbits and rf fields. Thus, cyclotrons are primarily useful for ion accelerations. 

They have large area magnetic fields which confine ions from zero magnetic fields to 

certain level of output energy. 
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2.4.1 Uniform Field Cyclotron 

In nuclear physics research, the uniform field cyclotron has a historical position. 

They are the first categories of cyclotrons or accelerators used in the generation of 

multi-MeV particle beams. The vertical field is azimuthally uniform. Similarly, the field 

magnitude is almost constant in radial direction, with small positive field index which 

allows vertical focusing. The resonance accelerations of this class of cyclotron are 

dependent on the constancy of the non-relativistic gyrofrequency. This category does 

not have synchronous phase. Uniform-field cyclotrons have an energy range of 15-20 

MeV for light ions beams, determined by a relativistic mass increase as well as a 

decrease in magnetic field strength with radius. 
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Figure 2.1: The layout of the uniform-field cyclotron’s beam acceleration region 

 

 

Figure 2.2: Basic principles of the uniform-field Cyclotrons (Credit: Ruth, 2003) 
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2.4.2 Azimuthally-Variable-Field (AVF) Cyclotrons. 

Sequel to the success achieved in the uniform-field cyclotron, the AVF cyclotron 

serve as a major improvement to the former through improvement in interior designs. 

The confining magnetic field has been improved through attachments of wedge-shaped 

inserts at periodic azimuthal positions of the poles of the magnet. It is possible to 

tolerate an average negative-field index so that the bending field is proportional to the 

cyclotron radius. Vertical focusing is also enhanced through the horizontal field 

component.  Similarly, in the AVF cyclotrons, the magnetic field variation balances the 

relativistic mass increase followed by an achieved constant revolution frequency. These 

important properties are only achieved by careful selection of focusing elements and 

field index variation and such AVF cyclotrons with properties are called isochronous 

AV cyclotrons. AVF cyclotrons offer higher intensity beams through the above 

explained stronger vertical focusing. The AVF cyclotrons have thus take the place of the 

former uniformed-field ones even for low energy applications. 

2.4.3 Separated Sector Ring Cyclotrons.  

A typical limitation of isochronous cyclotron during accelerations of protons 

(ions) is the focusing limit of the magnet. The spiral angle, at a certain stage, cannot 

be further increased, and the only way for increasing the axial focusing is by 

increasing the flutter, F (Heikkinen, 1994). To achieve this, the valleys must be 

decreased. The separated sector cyclotrons are a special class of AVF cyclotrons (or 

isochronous cyclotrons). The variations in the azimuthal field result from, in contrast 

to AVF cyclotrons, the splitting of the bending magnet into several sectors. The 

magnet of a separated sector cyclotron consists of only hill sectors and no iron in the 

valleys. This means practically no magnetic field in the valleys. There is also the 

separate exciting wound of coils around each of the sectors (Craddock & Symon, 

2008). This arrangement or design is not compatible with low-energy injection, thus 
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requiring a pre-accelerator (which can be a smaller cyclotron), leading to an initial 

large orbit radius; thus, the term ring cyclotron. This design makes the separated 

sector cyclotrons to offer two basic advantages:  

• Separation of the functions through the modular magnet construction – this 

allows much freedom in designing how the diagnostic equipment, injection 

and ejection components and RF accelerating cavities are to be mounted in 

the virtually field-free space between sectors. 

• The pole gap can be smaller thereby reducing the power requirements of the 

used magnet and increasing the  flutter, F, so that the F is no longer restricted 

to ≈0 (Craddock & Symon, 2008). 

Though the design does not give the possibility of a particle to be accelerated 

from low energy, this feature may also be of benefit in some cases, especially as 

beam of better coherence (lower emittance) are produced when an independent 

accelerator is used in low energy acceleration. Some of the separated sector 

cyclotrons in the world include the TRIUMF K520 in Vancouver Canada (first 

beam:1974), the GANIL K380 cyclotron in France (first beam:1982), the RIKEN 

K540 in Japan (first beam:1986), and so on. The number of the sectors varies from 4 

to 6. 

2.4.4  Spiral Cyclotron 

As the name implies, the spiral cyclotrons have pole inserts with spiral 

boundaries. Although spiral shaping is also used in the standard separated-sector and 

AVF machines, in a spiral cyclotron, the ion orbits have an inclination at the 

boundaries of the high-field regions. The edge focusing helped in the enhancement of 

the vertical confinement. Thus, the overall effects of the edge focusing and 

defocusing compound to further vertical confinement. 
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2.4.5 Superconducting Cyclotrons (SCC) 

Most of the existing cyclotrons operate using conventional magnets (room 

temperature magnets) in which, due to iron saturation, 2 T is the maximum magnetic 

field. Beyond this limit, superconducting field coils must be used (Heikkinen, 1994). 

On the other hand, SCC can give more than 6 T magnetic field between the hills 

(e.g., MSU K1200 SCC has 6.2 T) (Heikkinen, 1994). With the superconductivity 

(high magnetic field), it is possible to construct cyclotrons with small magnets that 

can deliver relatively high energy. Superconducting coils supply the magnetisation 

force which consumes little power. These cyclotrons can deliver high energy 

particles using small magnets and has a low operation cost as well, an important 

feature of SCC. Structurally, the superconducting cyclotrons are compact machines 

and are operated at high fields, much above the iron poles saturation level. This 

condition allows all magnetic dipoles in the poles to be aligned, leading to accurate 

net field prediction. 

To give some examples of in use SCC, the  following cyclotrons can be are cited: 

The Harper Hospital K100: a  very compact SSC, has 30 cm extraction radius, 50 

MeV focusing limits, 100 MeV bending limits, used for neutron therapy, and is 

comparably light (weighs only 25 US tons), which makes it easy for rotating it 

around a patient during treatment (Heikkinen, 1994). The SCC example can also be 

seen in RIKEN research centre as one of their latest installations. 
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Figure 2.3: The topology of the RIKEN accelerators. 

 

 

Figure 2.4: The AVF cyclotron of RIKEN 
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2.5 Other Types of Circular Cyclotron 

2.5.1 Synchrocyclotron 

Synchrocyclotron represents, on the history line of the accelerator, a stage of the 

conceived idea of expanding the cyclotron observed energy limit.  This class of circular 

machines are thus considered as a preliminary stage of the more advanced stage, the 

synchrotron. Just as in uniform-field class, this category also has similar geometry to 

uniform-field class and constant magnetic field, except that it also has a variable RF 

frequency which during the relativistic regime, helps to maintain particle 

synchronisation. In other words, the focusing limits observed in isochronous cyclotrons 

can be overcome in synchrocyclotron by frequency modulation (FM), in which the 

frequency is decreased as the particle mass increases (Heikkinen, 1994). Furthermore, 

synchrocyclotron present, in comparison to a conventional cyclotron, a much lower 

time-averaged flux. Despite these advantages at higher energies, however, the ability of 

AVF cyclotron to give a continuous flux at sub-GeV energy range (lower energies 

below 1 GeV) make it supervened upon the synchrocyclotron. 

2.5.2 Synchrotron 

These are the modern circular accelerators and are designed such that both RF 

frequency and magnetic field can be varied. This property helps to sustain a 

synchronous particle in the machine at a constant orbit radius, an important feature of 

this class. The significance of this constant-radius property is that the feature helps in 

bending and focusing fields over a small ring-shaped volume, thus minimising the cost 

of the larger magnet while also allowing the possibility of generating high energy up to 

hundreds of GeV ion energy, through the construction of larger-diameter machines. 

This much higher ion energy is usually achievable except due to the cost of the building 

of the machines and availability of site for the construction. Synchrotrons have typical 

15 – 60 Hz range of cycle frequency. Synchrotrons are playing very important roles in 
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particle physics researches and both ions, and charged particles can be accelerated, 

although there is a limitation in energy in the electron synchrotron due to synchrotron 

radiation. 

2.6 The Ion Sources and Beam Extraction System 

The ions for accelerations in cyclotrons can be sourced either within the cyclotron 

(internally ion source) where the ions are generated from the central region of the 

cyclotron or from its outside (external ion source) where the ions are injected into the 

core region of the cyclotron. There are advantages and disadvantages to each type of ion 

source. There are several available ion sources, each having their peculiar operating 

properties. Regardless of the source being internal or external, the ions used in the 

cyclotrons can be either positive or negative. The procedure for the extraction of either a 

positive or negative ion from a source to the central part of a cyclotron is partly 

dependent on the characteristics of the ion source. There are also studies on the 

improvement of the extraction system in many accelerators, one of such study was also 

performed at RIKEN research centre (Kohara et al., 2004) in which a single-turn 

extraction was found to be easily achieved via Flattop acceleration technique. 

2.6.1 The Positive Ion source 

The cyclotrons using positive ions source can have the activation of targets either by 

internal targets (targets inside the cyclotrons) or external targets (outside the cyclotrons) 

through the external beam line. Both methods have the disadvantage of activating the 

cyclotron components. Moreover, a considerable beam loss along the trajectory is also 

observed when the beam is extracted to external targets, and can consequently lead to 

total failure. In this case, the use of internal targets help to avoid this energy loss via 

beam extraction but with high unavoidable residual activation of the components of the 

cyclotron (Schmor, 2011). A positive ion accelerating cyclotron is compact, reliable, 
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versatile and energy–efficient, designed usually to accelerate some range of light ions 

for radionuclides production. 

2.6.2 The Negative Ion Source 

Most of the modern cyclotrons use negative ion source. The negative ion accelerating 

cyclotron can have much higher extracted beam intensities and thus high extraction 

efficiency.  

Electrons, in this case, are generated or stripped from the ion by allowing the beam to 

traverse a thin stripping foil, and the now-positive ion trajectory is altered to exit the 

cyclotron. Beam extracted through this means are of usually high quality and have to be 

further enlarged to meet the target’s energy density limit. The presence of efficient 

vacuum conditions is however necessary in his case for the cyclotron to avoid activation 

of components. The cyclotrons with internal targets are the most cost-effective 

machines, but this solution, however, introduces a gas source and also limit the 

maximum achievable current of the cyclotron (Schmor, 2011). This problem can be 

overcome and thus accelerate larger current with less components activation when the 

cyclotron uses external ion source coupled with greater complicity in the design. 

2.7 Cyclotron Targets and Target Holders 

Production of specific radioisotopes requires proper selection of targets which would 

be irradiated with a beam of the desired projectile. These targets are placed in the path 

of the accelerated beam. In the fast, several cyclotrons use inbuilt target. However, there 

were some obvious shortcomings associated with using inbuilt targets. Most of the 

current cyclotrons use external targets. Accelerator targets can be in the form of solids, 

liquid or gas. The targets are mostly placed in a targets holder or container which are 

usually separated from accelerator vacuum by a thin window (Schmor, 2011).  For the 

improvement of yield and reduction of contaminants in commercial production of 
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specific radionuclides, enriched forms of elements are used. However, the costs of high 

purity enriched isotopes are very high and play roles in the selection of radionuclides of 

interest and the corresponding production pathway. The targets are made such that it is 

possible to quickly remove and transfer them to the hot cell for further action. On the 

other hand, the designed thing window is very critical for optimised radionuclide 

production and must thus be able to withstand pressure difference and beam energy loss 

parameters (like thermal conductivity, Melting temperature, activation, chemical 

reactivity and tensile strength) (Schmor, 2011). 

2.8 Medical Versus Research Cyclotrons 

Since the Lawrence and Livingston’s invention of the first cyclotron 1930 

(Heikkinen, 1994; Schmor, 2011), many cyclotrons have been completed and several 

more under construction. In 1941, the installation of the first dedicated cyclotron to 

medical applications was made in Washington University at St Louis. The cyclotron 

was used in the production of radionuclides of arsenic, iron, sulphur and phosphorus 

(IAEA, 2009a). Since that period, there has been a rapid development of this area, 

especially around the 1980s. Apart from the sourcing medical isotopes from the nuclear 

reactor which has been a much popular way, recently both cyclotron research centres 

and dedicated cyclotrons are good sources of these radionuclides and often supplied to 

hospitals. Commercial production of radionuclides for medical applications is even 

more developed in recent years, with several compact cyclotron designs available in 

hospitals (Schmor, 2011) which only occupy a small space. Some research centres 

readily provide radionuclides to hospitals. The RIKEN research centre, Japan (Goto, 

1989; Kohara et al., 2004; Toprek et al., 1999; Vorozhtsov et al., 2008; Yano, 2007) is a 

well-known centre which also provides radionuclides to their clients, among many other 

centres in America, Canada, and a large part of Europe, etc. There are several reviews 

on cyclotrons usage in medical applications, where details of the produced 
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radionuclides, their specific applications and the class of the cyclotron involved for such 

production are given (Milton & Triumf, 1995; Papash & Alenitsky, 2008; Qaim, 2004; 

Qaim et al., 2002; Schmor, 2011). 

2.9 Radionuclides Production: Principles and Theory 

The principles in radionuclides production show it is a true alchemy, in that atom of 

one element is converted into another. The main feature in the conversion is through 

alteration of the nucleons (proton and or neutrons) of the target atom. If the reaction is 

such that a neutron (reactor is the main source of the neutron) is added to the target and 

without emission of particles, then the produced nuclide would have the same chemical 

properties as of the target atom or nuclide. On the other hand, when charged particles 

(proton, deuteron, alpha, and so on) are used for the target bombardment, the produced 

nuclide is usually an entirely different element. Different kinds of nuclear reactions are 

produced when a charged particle bombards a target nucleus and each of those reactions 

depends on certain parameters such as type and energy of the projectile (bombarding) 

particle. There are a number of online tools such as Qtool system (Qtool, 2011) which 

help to give complete reactions products and threshold energy of the reaction when the 

target and energy of the projectile are completely specified. Under this section some 

important properties and components of radionuclide productions are discussed; 

2.9.1 Nuclear Reactions and Kinematics 

There are several factors involved for certain reaction product to be produced when 

one projectile particle bombards a target. Two potential barriers a charged projectile 

particle should overcome are first, the electrostatic repulsion between its self (positively 

charged) and the positively charged nucleus (Coulomb barrier) and secondly, the Q-

value, which entirely depends on whether the reaction is endothermic or exothermic.  

Nuclear reaction from a classical point of view, between a nucleus and a charged 
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particle, can never occur if the centre-of-mass energy of the two colliding objects is less 

than the Coulomb barrier. Thus, to produce radionuclides in cyclotrons, this means that 

the bombarding charged particle should possess an energy larger than the electrostatic 

repulsion of the target atom given by the following equation; 

𝐵 = 𝑍𝑧𝑒2

𝑅
                                                                                                                        

(2.1) 

Where B represent the barrier of the reaction, Z and z are the respective atomic 

number of projectile and target species, e is the electric charge and R is the distance 

(cm) separating the two species.  

The values of Coulomb barrier of the charged projectile species vary as a function of 

the atomic number (Z values) of the target species, and further details are available 

elsewhere (IAEA, 2009a). 

On the other hand, the Q-value and threshold energy play roles of which reaction 

path-way and exit particles are possible based on the energy of the incident projectile. 

The Figure 2.5 below represents an example such of exit possibilities with the 

corresponding q-values. 
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Figure 2.5: Possible exit channels of alpha bombardment on 63Cu. 

 
2.9.2 Reaction Models and Estimation of Cross-section 

Nuclear reaction cross section represents the total probability of formation and 

decomposition of a compound nucleus via a reaction channel. Thus, the two critical 

stages of a nuclear reaction are  the formation of a compound nucleus from the collision 

of target and projectile; and the decay of the compound nucleus to some reaction 

products. There are some theoretical models that try to estimate the reactions cross 

section when one particle bombard another. The nuclear reaction theoretical models are 

vital in virtually all stages of nuclear data evaluation in both general phenomena of data 

analysis and to estimate cross-section in the cases of insufficient experimental data or 

even where the available data is discrepant. The compound nucleus model, proposed by 

Bohr (Bohr & Wheeler, 1939; Brink, 1990; Mahaux & Weidenmuller, 1979) is the 

major basis of nuclear reaction theory. The pre-equilibrium models, which also received 

modification based on exciton model have been combined with the compound nucleus 

model to form some major computer codes for the estimation of cross sections. In fact, 

these models can be regarded as ‘a model in model’ as most of these models were based 

on some other models. Some of the popular model and codes available are the ALICE, 
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GNASH, and more recently, EMPIRE and TALYS. Each of these models have several 

versions which have been developed over time, making them much more reliable by 

enhancing their predictive powers. Moreover, some online databases are now also 

available for some of the evaluated cross sections based on these models. As an 

example, the Talys code (Koning & Rochman, 2012) has been evaluated for most 

reactions up to 200 MeV and made available on online library called Talys Evaluated 

Nuclear Data Library, TENDL (Koning et al., 2014b), with the latest Library update as 

TENDL-2015 which was evaluated based on Talys 1.8 code. 

2.9.3 Specific Activity 

This is an important property of radionuclide in biological or physiological 

processes. It is the number of radioactive atoms relative to the total number of atoms 

present in the sample. Specific activity (SA) is usually expressed in radiation units per 

mass units, and thus the most traditional unit is Ci/mole (also Ci/g) or even a fraction of 

these (recently being expressed as GBq/mole) (Ruth, 2009). In a situation where the 

only atoms present in the sample are of the radioisotope, in such a case the sample is 

called carrier-free. As an example, if a compound was labelled with 211At, then the 

compound would be carrier-free as all isotopes of astatine are radioactive (unstable). In 

most cases, however, there exist some small quantity of stable atoms (nonradioactive), 

serving as carrier and have similar chemical properties, acting as a pseudo-carrier. The 

short half-lived radionuclides usually have much higher SA.  

Using radioactivity decay equation below, the number of radioactive atoms in a 

given samples can be calculated; 

−𝜆𝑁 = 𝑑𝑁
𝑑𝑡

 ,                                                                 (2.2) 

where 𝜆�𝑙𝑛(2) 𝑡1 2⁄⁄ � is the decay constant and 𝑑𝑁
𝑑𝑡

 is the rate of disintegration. 
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Specific activity of a radiopharmaceutical or an Isotope is useful in determination the 

biological or chemical effect the substance may have on a system under study (Ruth, 

2009). 

2.9.4 Experimental Cross sections and Radionuclide Production Rate 

The reaction cross section of a reaction, A(x,y)B, is denoted by 𝜎 and is measured in 

historically in barns (1 barn =10-28 m2 or 10-24 cm2), with smaller units of barns, such as 

millibarns (mb) also in use. The reaction cross section is also referred to as integral 

cross section when integrated over all angles (Mohamed, 2006). The relationship  

observed (graphically) between the cross sections and the incident projectile energy is 

referred to as the excitation function of the radionuclide(Mohamed, 2006). 

There are several factors which determine the rate at which radionuclides are 

produced from a given bombardment. These include; 

1. The incident energy of the bombarding particle. 

2. The intensity of the projectile beam. This parameter is associated to beam 

current. 

3. The magnitude of the reaction cross section. This is usually expressed as a 

function of energy. 

4. The target thickness (nuclei per cm2). 

We can thus express the rate of production, assuming a constant cross section, as; 

𝑅 = 𝑛𝑇𝐼𝜎                                                                              (2.3) 

In which 𝑛𝑇 represent target thickness in nuclei per cm2. More elaborately, R can be 

express as; 
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−𝑑𝑛
𝑑𝑡

= 𝑅 = 𝑛𝐼�1 − 𝑒−𝜆𝑡� ∫ � 𝜎(𝐸)
𝑑𝐸 𝑑𝑥⁄ � 𝑑𝐸𝐸𝑖𝑛

𝐸𝑠
                                                               (2.4) 

Where; R represent number of formed nuclei per second, n is the target thickness 

(nuclei per cm2), I is for the incident particle flux (this term is related to beam current), t 

is the irradiation period, 𝐸𝑖𝑛 and 𝐸𝑠 are the initial (incident) and final energy of the of 

the incident or projectile particle, x is the distance travel by the projectile particle and  

𝜎(𝐸) represent the cross section. Other symbols in the equation maintain their usual 

meaning. 

There are several simplifications of these formulae. There are also modifications to 

the equation for cases when the target is a compound rather than a pure element. 

Some very commonly used forms of the R and 𝜎 equations for cyclotron produced 

radionuclide, and using gamma counts are given below; 

𝑅 = 𝜆𝐶(𝐸)
εγ𝐼γ𝑁𝑄(1− 𝑒−𝜆𝑡𝑖)(𝑒−𝜆𝑡𝑐)(1− 𝑒−𝜆𝑡𝑚)

 ,                                                                        (2.5) 

 And 

σ (𝐸) = 𝑅𝑁𝑄
𝑡hφ𝑁𝑑

 ,                                                                                                                 (2.6) 

Where; C(E) represent counts (gamma counts for gamma detectors), N is the number of 

target atoms, 𝑁𝑑 is the number density of the target atom, Q is the beam current 𝑡h is the 

target thickness and φ represent the flux. 

2.9.5 Production Yield 

The reaction cross section obtained from a thin targets i considered constant 

throughout the targets due to the light thickness of the target. This is, in other word, due 

to negligible energy loss because of the thin nature of the target when compared to 
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required energy range for the effect to be observed on cross sections. On the other hand, 

the cross section from a thick target would vary along the thickness of the target as the 

thickness could likely be comparable or even larger than the energy of the incident 

particle. 

The production yield (Y) of a radionuclide from a given target thickness in nuclear 

reaction can be express (IAEA, 2009a; Mohamed, 2006) as in the following equation; 

𝑌 = 𝑁𝐴𝐹
𝑀
𝐼𝑏�1 − 𝑒−𝜆𝑡� ∫ � 𝜎(𝐸)

𝑑𝐸 𝑑𝑥⁄ � 𝑑𝐸𝐸𝑖𝑛
𝐸𝑠

                                                                    (2.7) 

From which 𝑁𝐴 is the Avogadro’s constant (6.022045(31) × 1023 atoms per mol), 

𝐹 represent the fraction of the target isotope, 𝐼𝑏 is for beam current, M is the atomic 

weight of the target material, 𝑑𝐸 𝑑𝑥⁄  represent the stopping power of the target, and 

other symbols have their usual meaning. 

 As the beam traverse through the target, the beam energy is gradually loss due to 

stopping power of the target material and thus the cross section is depending on the 

energy degradation. Suppose those values are constant in within a successive thickness 

interval 1 MeV corresponding to stopping power of the material, the yield calculation is 

performed by integrating over the entire energy range irradiation (Mohamed, 2006). 

Many researchers have calculated the yields of various radionuclides in different 

studies (Cata-Danil et al., 2008; Ditrói et al., 2008; Dmitriev, 1986; Dzoyem et al., 

2016; Khandaker et al., 2007; Murakami et al., 2014; Nassiff, 1983; Shahid et al., 

2015a; Shahid et al., 2015b). However, there are several definitions of yield by many 

researcher such that a recent review by EXFOR compilers of IAEA (Otuka & Takacs, 

2015) recommended that researchers should properly define their yield clearly using 

appropriate units. The review further suggested sticking to, to avoid confusions, the 
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units of MBq/uA for the EOB (End of Bombardment) and saturation thick targets yields 

and MBq/C for physical tick target yields. It also discourages researchers from the use 

of MBq/uA.h for the physical tick target yields, except if they want report it separate, in 

addition to MBq/C, for practical reasons. 

The yield values calculated represent the expected maximum values from irradiation 

of a given material (target). In practical sense, the yield obtained under high current runs 

is always lower than the corresponding theoretically calculated ones because of likely 

heterogeneity of incident beam, radiation damage effect, recoil loss of targets material 

(especially thin foil) from energetic beam, and so on. 

2.9.6 Saturation Factor 

As expected, the production reaction rate of a radionuclide is affected by the fact that 

produced radionuclide is itself radioactive (undergoes decay itself), and is even more 

prominent for radionuclides of very short half-lives. In the production of short-life 

radionuclides, since the rate of decay is proportional to the number of radionuclides 

present, the competing nuclear reaction rates, production and decay achieve equilibrium 

at a long and sufficiently irradiation times (Ruth, 2009). This point at which equilibrium 

is reached is called saturation. This indicate that further irradiation does not bring any 

benefit since the production rate already equals the rate of decay and thus no additional 

product would be produced. For the shorter bombardment times, the fraction of the 

yielded product is related to the saturation factor given by �1 − 𝑒−𝜆𝑡�, in which t is the 

irradiation time and 𝜆 is the decay constant of the  decaying radionuclide (Ruth, 2009). 

It has been found that a bombardment equivalent to one half-life usually results to a 

saturation factor of 50%, and for practical reasons, irradiations hardly exceed 3 half-

lives (90% saturation), except in the case of a shortest lived radionuclides (Ruth, 2009). 
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2.9.7 Target Stopping Power 

The stopping power (𝑑𝐸 𝑑𝑥⁄ ) can also be defined as the slowing or loss of kinetic 

energy (by any means) of a charged particle when it traverses through a matter or target. 

The stopping power and ranges of ion in matter is a property of different materials and 

can be calculated using  the well-known code, Stopping and Range of Ions in Matter, 

SRIM/TRIM code (Ziegler, 2004). SRIM code is its self a group of some programs 

which calculate the stopping and range of ions up to 2 GeV/u through matter using a 

quantum mechanical treatment of ion and atom collisions. Its calculations are very 

efficient through the use of statistical algorithms in which free ion jump between 

calculated collisions are allowed and then computing the average of the results of the 

collisions over the intervening gap (Ziegler, 2003).  It is a very powerful code as to can 

be used to perfumed varieties functions in different field of knowledge, including 

material science and nuclear technology. In addition to energy loss application in 

nuclear science, it can also be used to estimate the thickness of some materials. The 

SRIM code has several versions with its recent version being SRIM 2013, available at 

online at (Ziegler, 2003). 

2.10 Effect of Recoil Energy on Cross Sections and Yield Calculations 

Recalling from our basic knowledge of the principle of collisions, that collided 

particles may tend to move together after collision. In this case, when a very high 

energetic beam of particles bombards a group of target atoms, the projectile particle 

may be energetic enough to knock out some of the atoms from the target group of atoms 

to the next available layer behind the target. 

To give more specific example relating to the present thesis, that is during 

radioisotope production, let us consider the following scenario where a projectile 

particle bombards a target as in the following sketch. 
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Figure 2.6: Demonstration of momenta of a projectile, target and compound 
nucleus during nuclear collisions. 

 
The following steps are to simplify description of the collision process: 

a. From the Figure above, a projectile with a mass mp moves with momentum pp, 

just before the nuclear reaction (collision). The projectile approaches a 

stationary target of mass, mt. 

b. After the nuclear reaction, a compound nucleus (CN) is formed with a 

momentum pr. The CN therefore has recoil energy, Er as follows: 

𝑬𝒓  = 𝒑𝒓𝟐

𝟐𝒎𝑪𝑵
                                                        (2.8) 

 where mCN is the mass of compound nucleus.  

c. But the momentum conservation law shows that, pp = pr. 

d. This implies that, 

          𝑝p2 = 𝑝r2                                                                               (2.9) 

And 

2𝑚p𝐸p = 2𝑚CN𝐸r                                              (2.10) 
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𝐸r = 𝑚p

𝑚CN
𝐸p.                           (2.11) 

e. From equation 2.11, we can therefore say that; 

• The recoil energy Er increases as the kinetic energy of projectile Ep increase.  

• If a heavier projectile is used, the recoil energy Er becomes higher (Er is 

proportional to the Ep).  

f. If the produced nucleus has enough recoil energy, Er, to leave the target and 

penetrate a recoil-catcher (foil) behind it (say a metal foil, in the case of a 

stacked foil), it will then penetrate the foil and will be stopped by it or even by 

another foil after the second foil, depending on its energy. 

g. Because of this recoil loss, measured yield in the target (first foil) is lower than 

actual one. 

h. To correct this effect, the yield in the next foil should be added to the measured 

yield of the previous foil (reference foil). 

 

Figure 2.7: Recoil loss demonstration in irradiated stacked foils by a beam. 
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2.11 Review of Nickel Bombardment 

Survey of literature indicates several studies have used nickel (powder, oxide or solid 

metal) as target for deuteron bombardment. Tracing the earliest works in EXFOR 

database, 3 sets of independent studies were reported in 1963 on cross section 

measurement from nickel bombardment by deuteron.  

The Blann and Merkel (1963) first of those groups reported the experimental cross 

sections of 57Ni, 55-57Co and 55Fe radionuclides. A closer look on the experimental 

details of Blann’s group revealed that the authors measured the activities of the reported 

radionuclides using, among other detectors, sodium Iodide crystal detector (NaICR). It 

is also clear that the decay data of the investigated radionuclides have over the years 

been updated in contrast to the data used by the group as at that time, even though the 

literature data found in Exfor database (Otuka et al., 2014) did not explicitly state the 

decay data used by the group. It would be seen latter in chapter 3 that a more 

comprehensive comparison is made by plotting the reported cross-sections of this group 

on the same graph with the present work and other literature data. A certain level of 

discrepancy has been observed from the plots. 

The second observed work on this subject in the same 1963 was the reported work by 

Budzanowski’s group (Budzanowski et al., 1963) which reported only 61Cu 

radionuclide. The work was performed using a 120-cm cyclotron of the Institute of 

Nuclear Physics at Cracow, with a single metal foil and therefore a single data of cross-

section at an energy of 12.8 MeV.  

Similarly, Baron’s group (Baron & Cohen, 1963) was reported to have used deuteron 

beam on nickel within the same period. The available literature data indicate several 

metallic targets, in addition to Ni, were used as targets material for the irradiation in 

either powdered or solid metal form, but does not clearly state the form of nickel target 
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(powder or foil) used. The literature however clearly stated that the group employed 

both 27Al and 209Bi foils to serve as monitors. The other metals used in the experiments 

along with the nickel were gallium, lanthanum and indium targets. 

Slowly, after 1963, the use of nickel as a target for deuteron bombardment for 

radioisotopes production gradually attracts greater attentions from various research 

groups, especially due to growing interest in the radiation technology and also due to 

more potentials of the investigated radionuclides. Some more elaborate potential 

applications of the radionuclides emitted from deuteron bombardment of nickel are 

presented in Chapter 3 of this thesis. Recently, especially around the year 2000 to date, 

more investigations using nickel as a target are observed. In fact, nickel plays important 

role not only as a source of radioisotope of medical importance, but also in nuclear 

technology and has thus recently been given a priority over some other metals by IAEA 

coordinated project on Nuclear Data Library (for Advanced Systems - Fusion Devices) 

(FENDL-3) (Amjed et al., 2013).  

A comprehensive survey of available literature data, comprising the authors and 

publication year, the method used, target information and other useful experimental 

details have been summarised and tabulated in Table 3. Additional information on the 

individual element obtained in the present study has been discussed in Chapter 3 of this 

thesis. 

  

     

39 

Univ
ers

ity
 of

 M
ala

ya



 

Table 2.1 Literature data on deuteron irradiation of nickel 

Author Facility, Method Target Beam Current, 
monitor 

Activity 
separations, 
Detection 

Incident 
Energy (MeV) 

RI reported, data points; 

Blann+, 1963 Cyclotron, Nat Ni NS* RadioChem 
Separation,  
NaICR  

24 57Ni, 24; 55Co, 22; 

Budzanowski+, 1963. Cyclotron, enrich Ni Faraday Cup GM counter 12.8 61Cu, 1 

Baron+, 1963 
  

  

Cyclotron, Stack Elemental and Comp. Faraday Cup GM counter 18.8 57Ni, 1; 55Co, 1; 

    27Al(d, P+A)24Na     59Fe, 1 

    209Bi(d,p)210Bi       

Cogneau+ ,1967 Cyclotron, NS* From electrolysis of 
NiCl, NiN03 

NS*, NS* GM counter 12 61Cu, 25; 57Ni, 20 

Cline., 1971 Cyclotron, Stack enriched Ni 
electroplated on Au 

Faraday Cup NaICR, 
Ge(Li) 

40 Several 

Coetzee+, 1972 VDG (3SAFSUN), enriched Ni 
electroplated on Ta 

Faraday Cup NaICR,  
Ge(Li) 

5.5 61Cu 

Brinkman+, 1977 Synchrocylo, stack Ni foils Faraday Cup Ge(Li) 50.6   

Zhu Fuying, 1981 Cyclotron, stacked foils Ni foils Faraday cup Ge(Li) det. 14.7 55,56Co, 57Ni 

*P.P Dmitriev+, 1983 
  

Cyclotron,  
Thick Target for Yield 
measurement 

Thick Ni   Ge(Li) det. 22 TTY for 55Fe 

    27Al(d,PA)24Na       

Jung., 1987 
  

Cyclotron, foils soldered on 
Cu bar 

Ni foils and Heating power on 
Cu bar 

  14 and 9 56-58Co 

  Alloy   NS*     

Zwait +, 1991 
  

Cyclotron, stacked foils Ni foils Charge integration Ge(Li) 18.9 57Ni,  
55-58Co 

  enriched powered 64Ni         
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Table 2.2 Literature data on deuteron irradiation of nickel (continued) 

Author Facility,  
Method 

Target Beam Current, 
monitor 

Activity separations, 
Detection 

Incident 
Energy (MeV) 

RI reported, data 
points; 

Takacs+, 1997 
  

Cyclotron, stacked foils Ni foils Faraday cup HPGe Det. 20.3 55-58Co, 57Ni,60,61Cu 
    27Al(d,x)24Na       

Takacs+, 2001 
  
  

  

Cyclotron, stacked foils Ni foils Faraday cup Not stated 50 and 30 61,64Cu, 56,57Ni,55-58Co 
    natTi(d,x)23V       
    27Al(d,x)24Na       
    27Al(d,x)22Na       

Hermanne+, 
2007 

  

Cyclotron, stacked 
foils 

Ni foils Faraday cup No Chemical separation 
γ,  

20.4 61,64Cu; 

    natTi(d,x)48V HPGe Det.     
Ochiai+, 2007 

  
Cyclotron, NS* Ni foils Faraday cup HPGe Det. 47.8 55-57Co, 

60, 61Cu 
    27Al(d,x)24Na       

Amjed+, 2013,  
  

Cyclotron, stacked 
foils 

Ni foils Faraday cup HPGe Det. 40 56,57Ni, 55-58Co etc 

  NiBSi alloy 27Al(d,x)24Na       
Hermanne+, 
2013 

  

  

Cyclotron, stacked 
foils 

Ni foils and natTi(d,x)23V HPGe Det. 50 and 20 52,56Mn,55-58Co etc 

  Ga-Ni Alloy 
electroplated 
on Au 

27Al(d,x)24Na       

    27Al(d,x)22Na       
This work 

  
Cyclotron, stacked 
foils 

Ni foils Faraday cup       

    natTi(d,x)48V       
TTY- Thick Target Yield, NS – Not Stated   
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2.12 Titanium Irradiations with Alpha Particles 

Despite lack of commercial alpha only cyclotrons in the hospitals, the study of this 

production route is almost as old as nuclear physics. In particular, the study of 

radioisotope production via alpha irradiation of Ti metal could be traced back to as early 

as 1960, when Iguchi’s research group (Iguchi et al., 1960) used a cyclotron in Institute 

of Nuclear physics, Tokyo, Japan for irradiation of 1.8 mg/cm2 thick titanium for foil 

for the production of 51Cr cross section. Critical observations of the work indicate that 

the 51Cr decay data (T1/2 =27.8 days, Eγ = 325 MeV, and Iγ=9%) used at that 

experimental period has been updated over the years to some new values (T1/2 =27.7025 

days, Eγ = 320.0824 keV and Iγ= 9.910%). This certainly is enough reason to cause a 

large discrepancy between the cross sections of this group and the recent studies, as is 

confirmed from graphical representations in chapter 4 of this thesis. In addition to 

Iguchi’s group, several other groups have over the years participated in production of 

radionuclides using titanium target via alpha production channel and again with various 

discrepancies among the measured data. The use of titanium is also as a result of its 

recommendation by IAEA (Qaim et al., 2002) for alpha beam monitoring purpose in 

nuclear reactions using natTi(a,x)51Cr reaction. The success of natTi(a,x)51Cr reaction in 

beam monitoring is due to the relatively large cross sections of the 51Cr via alpha 

production route and the excellent shape of its corresponding excitation function.  

Table 2.4 represents an up to date summary of basic experimental information of all 

literature data on alpha particles-induced nuclear reactions on titanium targets via 

cyclotron. In chapter 4, each radionuclide produced was considered separately for 

graphical representations of the present work, the available literature data as well as the 

theoretical data from the TENDL-2015 library, which was based on Talys code.  
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Table 2.3: Summary of reviewed previous works on alpha bombardment of titanium 

First 
Author Facility, Method  Target Beam Current Activity Detection Products RI, data 

points  
Energy range 
(MeV) 

Eguchi 1983 Cyclotron, Stack Ti foils Faraday Cup NaICR 51Cr, 13 4.8-30.3 

Chang 1973 Van de Graaff, single foil enriched 48Ti Faraday Cup Si(Li) 51Cr, 7 5.0 - 11.0 

Vlieks 1974 
  

Van de Graaff enriched 46Ti evaporated on 
Au-Cu disc NS NaICR 49Cr, 11 5.89 -10.93 

      Si(Li)     
Howard 
1974 

VDGT Tandem Accel., 
NS 

natTi on Ta backing NS NaICR 49Cr, 23 4.6-10.1 

Weinreich 
1980 

  

Cyclotron, Stack natTi foils Faraday Cup Ge(Li), Chemical 
Processing 

51Cr 8.98-171.5 

    27Al(a,x)24Na   48Cr 19.02-172.4 
Vonach 
1983 Van de Graaff natTi foil *Rutherford 

scattering Ge(Li) 51Cr, 8 5.76-12.87 

Michel 1983 
  
  
  
  
  
  

  

ISOCyclotron, stack foils   Faraday cup Ge(Li) 51Cr, 20 21.42 - 162.18 
    27Al(a,x)22,24Na HPGe for 44Ti 48Cr, 8;  21.42 - 171.07 
        48V 21.42-171.07 
        44Ti 43.07-171.07 
        46Sc, 21; 47Sc, 21; 21.42-171.07 
        44mSc, 20; 29.97-171.07 
        44gSc, 19 36.97-171.07 
        43Sc, 17, etc 51.26-171.07 
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Table 2.4: Summary of reviewed previous works on alpha bombardment of titanium (continued) 

First Author Facility, Method  Target Beam 
Current 

Activity 
Detectio
n 

Products RI, 
data points  

Energy 
range 
(MeV) 

Tarkanyi, 1991 
  

Cyclotron, Stack foils natTi foils Faraday 
Cup Ge(Li), 51Cr, 28 8.58-38.42 

      HPGe     

Morton 1992 Van de Graaff, Pelletron Accl., Single 
oil 

48Ti target made from TiO2 evaporated on 
Au  

Faraday 
Cup Ge(Li) 51Cr, 30 4.99-9.52 

Peng 1998 Cyclotron, Stack foils natTi foils Faraday 
Cup HPGe 48Cr, 6 17.8-26.4 

          51Cr, 11 4.7-26.4 

Hermanne 
1999 
  
  
  
  

  

Cyclotron, Stack foils natTi foils Faraday 
Cup Ge(Li) 48V, 31 16.04-

41.84 

      HPGe 48Cr, 30 16.57-
41.84 

        48Sc, 13 25.1-41.84 

        47Sc, 25 16.57-
41.84 

        46(m+g)Sc, 30 25.1-41.84 

        
44mSc, 8; 44gSc, 
8 

33.25-
41.84 
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Table 2.5: Summary of reviewed previous works on alpha bombardment of titanium (continued) 

First 
Author Facility, Method  Target Beam 

Current 
Activity 
Detection 

Products RI, 
data points  

Energy 
range (MeV) 

Baglin 2004 
  

Cyclotron, Stack foils natTi foils Faraday Cup Ge(Li) 51Cr, 11 6.58-11.16 
      HPGe     

Uddin 2016 
  
  
  

  

Cyclotron, Stack foils natTi foils Faraday Cup HPGe 51Cr, 21 15.5 - 39.2 
    natTi(a,x)51Cr   48Cr, 21 15.5 - 39.2 
        48V, 21 15.5 - 39.2 
        46Sc, 16 15.5 - 39.2 
        48Sc, 11 15.5 - 39.2 

This work 
  

Cyclotron, Stack foils natTi foils Faraday Cup HPGe See Chapter 4 See Chapter 4 
    natTi(a,x)51Cr       
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2.13 Review of Alpha Bombardment on Holmium 

Several radionuclides of thulium (Tm) such as 167Tm and 166Tm have in recent years 

been considered for useful applications in the medical field, especially due to their 

relatively short half-lives and other decay properties. The 167Tm has recently been 

proposed as a useful agent in bone studies and tumour therapy (Sadeghi et al., 2012). 

One of the production routes of the 167Tm isotope is through bombardments of holmium 

(Ho) metal with alpha particles (Sadeghi et al., 2012). 

There are several experimental studies in the literature for the radioisotope 

production through other induced reaction on holmium metals. The review of the 

available experimental works in the literature shows that a significant proportion of the 

earlier research on this subject were performed either using the oxides of holmium 

compound or even alloys in some cases, in contrast to the use of natural or enriched 

targets of most of the present-day studies. Very high purity metals are now recently 

more readily available from various companies with a very high level of reliability. 

The first available experimental studies on production of Tm radionuclides via alpha 

irradiation of holmium target was reported as early as 1949 by G. Wilkinson (Wilkinson 

& Hicks, 1949) of the University of California, Berkeley, United State. The 

experimental work was reported to have been carried out using a 60-inch cyclotron of 

the Crocker Laboratory. Given more details of the experiment, it was learned that the 

authors used a holmium oxide target, which contains 15% dysprosium oxide and about 

5% ytterbium oxide. The experiment involved the bombardment of holmium oxide with 

a 38, 30 and 20 MeV alpha particle beam in several experimental arrangement or 

settings, such as an initial use of the raw form of the holmium oxide, and then separated 

the rare-earth metals later using column method. In the subsequent irradiations, the pure 
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earth metals recovered in the previous stage were then used.  The beam intensities were 

deduced from the instrumental settings of the cyclotrons. 

 Further details of the experiment show that the detecting set-up used by the authors 

were ‘end-on’ type Geiger-Muller counters having 3 mg/cm2 mica windows, filled 

respectively with 0.5 cm and 10 cm of alcohol and argon. Also, used in the studies, was 

a magnetic counter, which allowed the identifications of negative and positive electrons 

and provided a check on the data obtained from the absorption measurements during the 

experiment. 

The Wilkinson experiment was followed 14 years later by another research from the 

group of G.V.S. Rayudu (Rayudu & Yaffe, 1963) of Mc Gill University Canada, using a 

synchrocyclotron. The authors used a sample containing a mixture of ‘spec-pure’ 

erbium oxide and copper oxide.  It was also revealed that the experiment was 

characterised by chemical separation of reaction products and used sodium iodide 

crystal (NaI) for the measurement of activity. The details of the analysis of experimental 

uncertainties were not explicitly stated. 

The first experiment that used holmium foils instead of a compound of the element 

as in the previous studies was reported in 1968 by J. Sau (Sau et al., 1968), which was 

performed at the synchrocyclotron of University de Lyon, France. Using a stacked 

activation method, the stack also contained Al foils as beam degraders in addition to the 

high purity (99.9 %) Ho foils. Two set of Ho foils thicknesses were used: 86.0 in one 

experiment and 48.5 in another. The authors also used a NAI (Tl) detector during the 

measurement of the radioactivities. 

With growing number of cyclotron facilities around the world, the interest of more 

research is increasing even higher with time, and therefore more explorations of 
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different forms of targets, irradiation techniques and activity measuring devices have 

been in various tests under varieties of accelerator settings by various research groups. 

In particular, the target forms employed ranged from Ho-oxalate in 1966 (Martin & 

Pilger, 1966), HoCl3 (Yano, 1975) to the of Ho2O3 (and sediment) (Homma et al., 

1980). 

A particular recent study (Tarkanyi et al., 2010) have reviewed and analysed the 

decay properties used by some previous studies and recommended some corrections on 

the accessed cross sections of the Tm radionuclides by some authors, in some cases the 

correction is as large as a factor of 2.33. 

The increasing potentials of the Tm radionuclides have recently attracted even more 

studies via this production route on holmium target. In this work, all previous studies 

through alpha production pathway on Ho have also been analysed and summarised in 

Table 2.3 based on targets used, activation technique, detection method and radioisotope 

reported. 

From the review of the available literature, it can reliably be deduced that; 

• The employed charge collection technique in some of the previous studies was 

not very reliable and could have affected the estimated beam flux value. 

• The reliability of the activity measurements in several of the earlier studies is 

sometimes questionable. 

• Since targets preparations in several of the studies used varied preparation 

methods of targets, the certainty in target uniformity is also unreliable.  

• During the calculations of the cross sections of investigated radionuclides, the 

decay characteristics of such radionuclides used by different research groups 

were not uniform and had significantly been updated over the years. 
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Evidently, the above reasons are sufficient to affect the values of calculated cross 

sections and also the thick target yields of all studied radionuclides in the previous 

studies, leading to significant discrepancies among the previous measurements. 

Reassessment of the previous studies on many of the reported cross-sections is therefore 

necessary, especially in recent times when more practical uses of these radionuclides are 

being applied. 

Most of the recent studies used metallic foils in very high purity forms as target 

materials and Hyper-Pure Germanium (HPGe) detectors, which offer high resolution, 

for the measurements of activities of irradiated targets 

. 
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Table 2.6: Summary of reviewed previous studies on irradiation of holmium by alpha beam 

Author Method, Facility Target 

Beam 
Current, 
Monitor 
reaction  

Activity separation,  
Detection Products Decay data used 

(T1/2, Eγ, Iγ) 

Energy 
range 
(MeV) 

G. Wilkinson, 1949 
  

  

Cyclotron (60 inch), NS Ho oxide NS* Chemical separation β,  
GM counter 

168Tm; 85 d, NS*, NS*; 19 - 38 

        167Tm; 9.6 d, NS*, NS*; 19 - 38 
        166Tm 7.7 d, NS*, NS* 30 - 38 

G.V.S Rayudu 1963 
  

Synchrocyclotron, stacked 
foils Ho oxide Faraday 

Cup 

No Chemical sepration 
γ,  
NaI (Tl) 

168Tm; 86d, 200, 81%.; 15-25 

        167Tm 9.6 d, 200, 98%. 20-39 

G. C MartinJr et al, 
1966 
  
  

  

Cyclotron, stacked foils Ho oxide NS* Chemical Separation γ,  
NaI (Tl) 

168Tm; 93 d,817-831, 62%; 15.9-
40.1 

  Ho 
oxalate     167Tm; 9.25 d,532, 2%; 15.9-

40.1 

        166Tm; 7.7 h,2057-2083, 
48%; 

24.4-
40.1 

        165Tm 29 h,1131-1184, 5% 32.9-
40.1 
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Table 2.7: Summary of reviewed previous studies on irradiation of holmium by alpha beam (continued) 

Author Method, Facility Target Beam Current, 
Monitor reaction  

Activity separation,  
Detection 

Product
s 

Decay data used 
(T1/2, Eγ, Iγ) 

Energy 
range 
(MeV) 

Y.  Yano, 1975 
  

Cyclotron, HoCl3 NS* NS* 167Tm, 1 NS* 32 
Yield measurement             

Y. Homma, 1980 
  

  

Cyclotron, stacked 
foils 

Ho2O3, 
Sediment 

Beam current 
integrator, 

No Chemical 
separation γ,  
Intrinsic Ge Det. 

168Tm, 
5; 

NS*,198.3, 
53.4%; 

15.6-
24.8 

    Iron foil   
167Tm, 
9; 

9.8 d, 207.9, 
43.0%; 

20.0-
39.8 

        166Tm, 6 7.7 h, 672, 6.3% 27.8-
39.8 

P.P Dmitriev, 
1980 
  
  

  

Cyclotron, stacked 
foils Ho foils 63Cu(α,x)65Zn 

No Chemical 
separation γ, 
 Ge(Li) Det. 

168Tm, 
12; 

93.1 d,84.26, 
3.2%; 

17.0-
43.4 

        
167Tm, 
12; 9.24 d,207.8, 41%; 17.0-

43.4 

        
166Tm, 
7; 

7.7 h, 1275.3, 
14.6%; 

30.4-
43.4 

        165Tm, 4 29.6 h, 296.72, 
25.3% 

37.7-
43.4 

J.  Rama Rao+, 
1987 

  

Cyclotron, stacked 
foils Ho foils 65Cu(α,x)67Ga; 

No Chemical 
separation γ,  
Ge(Li) Det.; HPGe 
Det. 

167Tm, 
22; 9.25 d, 208, 41%; 19.5-

112.9 

    27Al(α,x)22,24Na   
165Tm, 
17 30.06 h, 243, 35% 35.7-

112.9 
NS* - Not stated  
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Table 2.8: Summary of reviewed previous studies on irradiation of holmium by alpha beam (continued) 

Author Method, Facility Target 

Beam 
Current, 
Monitor 
reaction  

Activity separation,  
Detection Products Decay data used 

(T1/2, Eγ, Iγ) 

Energy 
range 
(MeV) 

S. Mukherjee et al., 
1991 
  
  
  
  
  
  
  
  

  

Cyclotron, stacked 
foils 

Ho 
foils 

27Al(α,x)22,24N
a 

No Chemical sepration 
γ,  
Ge(Li) Det.;  
HPGe Det. 

168Tm, 
12; 93.1 d, 184, 16.4%, 16.8-

66.5 

    Faraday cup     198, 50%   
          447.5, 21.9%,   
          815.9, 46.3%;   

        
167Tm, 
12; 9.25 d,207.8, 41%; 22.4-

66.7 
          532, 1.59%   

        
166Tm, 
10; 

7.7 h, 778.8, 
19.7%; 

29.2-
71.4 

        165Tm, 8 30.06 h, 243, 35% 35.4-
66.5 

          297.3, 24.8%   
          806.8, 8.35%   
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Table 2.9: Summary of reviewed previous studies on irradiation of holmium by alpha beam (continued) 

Author Method, Facility Target 

Beam 
Current, 
Monitor 
reaction  

Activity separation,  
Detection Products Decay data used 

(T1/2, Eγ, Iγ) 

Energy 
range 
(MeV) 

N.L Singh, 1992 
  
  
  
  
  
  
  
  
  

  

Cyclotron, stacked foils Ho foils 65Cu(α,2n)67Ga; No Chemical separation γ,  168Tm, 16; 93.1 d, 198, 50%, 14.8-47.2 
      Ge(Li) Det.;    447.5, 21.95%,   
          815.9, 46.3%;   
        167Tm, 16; 9.25 d, 207.8, 41%; 18.9-47.6 
          532, 1.59%   
        166Tm, 10; 7.7 h, 778.8, 19.67%; 27.9-47.6 
          1176.5, 8.39%   
          1273.4, 14.41%   
        165Tm, 7; 30.06 h, 243, 35% 34.0-47.1 
          297.3, 24.77%   
          806.8, 8.35%   
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Table 2.10: Summary of reviewed previous studies on irradiation of holmium by alpha beam (continued) 

Author Method, Facility Target 
Beam Current, 
Monitor 
reaction  

Activity separation,  
Detection Products Decay data used 

(T1/2, Eγ, Iγ) 

Energy 
range 
(MeV) 

B.P Singh 1995 
  
  
  
  
  
  
  
  
  

  

Cyclotron, stacked foils Ho foils Faraday cup No Chemical separation γ,  168Tm, 6; 93.10 d, 184, 16.1%, 15.8-33.9 
      Ge(Li) Det.;    198, 49.1%   
          447, 21.3%,   
          720, 10.7%   
          741, 11.1%   
          815, 45.2%;   
        167Tm, 5; 9.25 d, 208, 41%; 20.3-34.0 
        166Tm, 5; 7.70 h, 215, 5.3%; 27.8-39.3 
          778.8, 15.1%;   
          785, 9.4%   
          1273, 14.4%   
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Table 2.11: Summary of reviewed previous studies on irradiation of holmium by alpha beam (continued) 

Author Method, Facility Target Beam Current, 
Monitor reaction  

Activity separation,  
Detection, Products Decay data used 

(T1/2, Eγ, Iγ) 

Energy 
range 
(MeV) 

M.S. Gadkari, 1997 
  
  
  
  
  
  
  
  
  

  

Cyclotron, stacked foils Ho foils Faraday cup No Chemical separation, γ,  168Tm, 10; 93.1 d, 198.0, 50%, 20.0-65.8 
    27Al(α,α2pn)24Na Ge(Li) Det.;    447.5, 21.95%,   
          815.9, 46.3%;   

        167Tm, 10; 9.25 d, 207.8, 41%; 20.0-65.8 

          532.0, 1.59%   
        166Tm, 8; 7.7 h, 778.8, 19.67%; 29.2-65.8 
          1176.5, 8.39%   
          1273.4, 14.41%   
        165Tm, 7; 30.06 h, 243.0, 35% 35.0-65.8 
          297.3, 24.77%   
          806.8, 8.35%   

F. Tarkanyi, 2010 
  
  

  

Cyclotron, stacked foils Ho foils Faraday cup No Chemical separation, γ  168Tm, 18; 93.1 d, 815.989, 50.03%; 12.2-38.8 

    27Ti(α,x)51Cr HPGe Det. 167Tm, 18; 9.25 d, 207.801, 42%; 17.1-38.8 

        166Tm, 13; 7.70 h, 778.814, 19.1%; 26.9-38.8 
        165Tm, 5; 30.06 h, 242.917, 35.5% 35.4-38.8 

This work 
  
  

  

Cyclotron, stacked foils Ho foils Faraday cup No Chemical separation, γ  168Tm, 18; 93.1 d, 815.989, 50.03%; 
Chapter 6 
  
  

  

    27Ti(α,x)51Cr HPGe Det. 167Tm, 18; 9.25 d, 207.801, 42%; 

        166Tm, 13; 7.70 h, 778.814, 19.1%; 
      165Tm, 5; 30.06 h, 242.917, 35.5% 
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CHAPTER 3: EXCITATION FUNCTIONS OF DEUTERON INDUCED 
REACTIONS ON NATURAL NICKEL UP TO 24 MEV 

 
3.1 Introduction 

This chapter presents the basic summary of method, findings and a short conclusion 

of the first objective of the present work. A comprehensive detail on the target used and 

irradiation technique have been provided under the material and methods section. The 

chapter thus presents the assessed production cross-sections of radionuclides from the 

bombarded natural nickel target by the 24 MeV deuteron beam. 

3.2 Literature Review 

The metallic nickel (Ni), its compounds or its alloys have large industrial 

applications which are perceived to be generally, due to its physical and chemical 

characteristics. This metal is corrosion-resistant, silvery-white and physically lustrous in 

nature. Ni has been given priority over other materials in a recently coordinated research 

program of IAEA FENDLE-3 (Fischer, 2009). On the other hand, Ni can be used as a 

target material for the production of radionuclides by accelerators leading to medical 

and industrial applications. Radionuclides of Co, Cu, Cr, Mn, and Ni can are producible 

via Ni irradiation. The productions are under optimum irradiations and measurements 

conditions since some of these radionuclides have very short half-lives.  Co 

radionuclides such as 55,56,57Co found potential applications in medicine and other basic 

research fields due to their suitable decay characteristics (Heinle et al., 1952; Lagunas-

Solar & Jungerman, 1979). 55Co found important applications in labelling bleomycin 

and the studies of cerebral and cardiac problems via PET. 57Co plays a significant role 

as a calibration standard in γ-ray spectrometry and single photon emission computed 

tomography (SPECT) (Al Saleh et al., 2007). In addition to several industrial 

applications, the decay properties of 57Ni have led to it being recently suggested as a 
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possible candidate in monitoring some nuclear reactions (Oblozinsky, 1997; Takács et 

al., 2007). 

A literature survey conducted on the previous experimental data (Amjed et al., 2013; 

Baron & Cohen, 1963; Blann & Merkel, 1963; Brinkman et al., 1977; Budzanowski et 

al., 1963; Cline, 1971; Coetzee & Peisach, 1972; Cogneau et al., 1967; Fuying et al., 

1983; Hermanne et al., 2013; Hermanne et al., 2007; Jung, 1992; Ochiai et al., 2007; 

Takács et al., 1997; Takács et al., 2001; Takács et al., 2007; Zweit et al., 1991) through 

deuteron irradiations on nickel indicates some considerable discrepancies among the 

published results, leading to the need for further analysis to minimize them. 

Furthermore, available experimental data via the deuteron bombardment technique are 

not sufficient relatively to proton route, leading to further need of enriching the 

database. In this study, natural Ni foil targets in the form of stack were irradiated, using 

an external beam of RIKEN cyclotron and measured the cross sections of the produced 

radionuclides. This work, thus, contributes in minimising te discrepancies of the 

available data and enriching the database. 

3.3 Methodology 

Using the well-established stacked foil activation method for irradiation and HPGe γ-

ray spectrometry for activity measurement, the activation formula was used to 

determine the cross-sections of the natNi(d,x)55-58Co, 57Ni, 52,54Mn reactions for the 

deuteron energy range of 24 MeV down to respective thresholds. Except for some 

specific features relevant to the present study, the overall procedure is similar to some 

earlier studies (Khandaker et al., 2015; Khandaker et al., 2014; Khandaker et al., 2011). 
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3.3.1 Targets and Bombardments 

A foil of nickel (Ni) (purity: 99.99%; thickness: 25.46-μm; Goodfellow, UK) with 

the natural compositions of isotopes (58Ni: 68.077%; 60Ni: 26.223%; 61Ni: 1.140%; 62Ni: 

3.634%; 64Ni: 0.926% ) (Berglund & Wieser, 2011) was the main target material of this 

chapter. Some foils of other natural metals such as titanium from Goodfellow, UK 

company with purity 99.99% and 20.32-μm thick and platinum (from Goodfellow, UK 

with 9.95% purity; 10.48-μm thickness) were inserted in the first stack, while zinc 

(99.99 % purity; 25-μm thickness; Goodfellow, UK) and copper (99.99 % purity; 12.4-

μm thickness; Goodfellow, UK) were in the second stack, in each case serving either as 

energy degrader or for reaction monitoring purpose. Two stacks were made from these 

foils, following the intermittent energy points in the deuteron energy range of 2–24 

MeV.  

There were nine (9) nickel foils in the first stack of 39 total foils, fashioned within 

the irradiated deuteron energy of 10.05 to 23.14 MeV, and in the second stack of 35 

total foils, nine (9) were from nickel, covering the entire energy range from 24 down to 

2.03 MeV. The thicknesses of the used foils were measured using an electronic balance. 

All foils, including the monitor foils, were cut in the same size (15 × 15 mm2) following 

the dimension of the target container so as to ensure equal areas of the monitors and 

targets foils are exposed to the same beam flux. The deuteron beam was collimated to a 

diameter of 9-mm to the centre of the target. The bombardment of the prepared targets 

was done using a water-cooled target holder, serving as a Faraday cup. The first and 

second stacks were respectively bombarded for 2.00 h and 2.07 h, by 24-MeV deuteron 

beam from the AVF cyclotron of RIKEN RI Beam Factory, Japan in which about 200 

nA beam current was recorded. 
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Figure 3.1: An example of Stack formation for deuteron irradiation 

 
The computer program, SRIM-2003 (Ziegler, 2004) was used for the degradation of 

the deuteron energy calculations in the two prepared stacks. The uncertainty in the 

deuteron energy is due to the uncertainties in the initial beam energy, thickness of 

target, and beam straggling. The estimated uncertainties in foil energy range from ±0.43 

MeV to ±1.57 MeV and they are presented together with the cross sections in Tables 

and Figures of this chapter. 

The recommended IAEA natTi(d,x)48V monitor reaction (σ = 217.54 mb at Ed = 23.88 

MeV) (Qaim et al., 2002) was used to determine the average beam current. The beam 

intensity was determined from the activity of the Ti foil placed at the front of the stack 

and considered as a constant within the stack. 

3.3.2 γ-ray Spectrometry 

At the end of bombardment, the targets were transferred from the holder, for the 

measurements of the activation products from the activated samples. The measurements 
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were done with a high resolution (1.85 keV FWHM at 1332.5 keV) HPGe γ-ray 

spectrometer coupled to a 4096 multi-channel analyser with the associated electronics. 

The followings are the specifications of the detector used: ORTEC; GEM-25185P; 

operating voltage: +2000 V; relative efficiency: 25%. The measurements were started 

about eight hours after the irradiation. Detailed information of the cooling period for 

each series measurements have also been provided in Table 3.1. The foils have been 

measured at least 2-cm distances away from the detector to lessen the effects of the pile-

up and dead times during the present studies. The efficiencies of the used detector at 

various foil-to-detector distances were determined with the help of a standard γ-ray 

multi-nuclide source. The Maestro version 7.0 gamma program was used for spectrum 

analysis (Ortec, 2012). 

Table 3.1: Cooling time for different series measurements in this experiment. 

1st stack 2nd stack 
Measurement 

series 
Cooling period Measurement 

series 
Cooling period 

I 8.4 - 10.7 h I 26.7 - 27.6 h 
II 10.9 - 28.5 h II 28.7 - 29.7 h 
III 1.7 - 1.8 d III 1.7 - 1.8 d 
IV 2.9 - 4.0 d IV 2.9 - 3.1 d 
V 5.2 - 5.8 d V 5.0 - 5.8 d 
VI 10.9 - 11.1 d VI 10.8 - 10.9 d 
VII 24.2 - 25.1 d VII 23.9 - 24.2 d 

 

The well-known activation formula (Khandaker et al., 2010; Khandaker et al., 2011; 

Khandaker et al., 2007) was used in the determination of the cross-sections of all the 

assessed radioisotopes. The decay data of the investigated reaction products were 

adopted from the ENSDF library (Bhat, 1998; C.D. Nesaraja et al., 2010; Huo Junde, 

2008a; Huo Junde et al., 2011; Junde Huo et al., 2007; T.W. Burrows, 2006; Yang 

Dong & Huo Junde, 2014), assessed via the NuDat-2.6 interface (NuDat 2.6, 2011), and 

are presented in the Table 3.2. The threshold energies and Q-values were calculated 
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based on the AME mass evaluation (Audi et al., 2003) via online the Q-tool system 

(Qtool, 2011) and they are also presented in Table 3.2.   
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Table 3.2: Relevant decay data for the present work extracted from Nudat 2.6  as well 
as Q-values and threshold energies extracted from Q-tool 

(Bold γ-lines were used in the derivation of the experimental cross-sections in the 
present chapter. The 48V decay properties (T1/2 = 15.9735 d, Eγ = 983.525 keV, Iγ = 

99.98±0.04 %) were used for flux determination but not listed in the Table.) 
Nuclide Half-life Eγ (keV) Iγ (%) Contributing 

reactions 
Q-value 
(MeV) 

Threshold 
(MeV) 

55Co 17.53 h 477.2 20.2 58Ni(d,n+α)55Co −3.56 3.69 
   931.1 75±4    
    1316.6 7.1       
    1408.5 16.9       

56Co 77.236 d 846.770 99.9399±0.00
23 

58Ni(d,α)56Co -6.52 0.0 

  1037.843 14.05 60Ni(d,2n+α)56Co −13.86 

 

14.33 

 
    1238.288 66.46 61Ni(d,3n+α)56Co −21.69 22.40 
    1771.357 15.41       

57Co 271.74 d 122.0607 85.60 ±0.17 58Ni(d,n+2p)57Co −10.40 10.76 
      60Ni(d,n+α)57Co −2.49 2.57 
    136.47356 10.68 61Ni(d,2n+α)57Co −10.31 10.65 
        62Ni(d,3n+α)57Co −20.90 21.58 

58gCo 70.86 d 810.7593 99.450 ±0.010 60Ni(d,α)58Co -6.08 0.0 
       61Ni(d,n+α)58Co −1.74 1.79 
    62Ni(d,2n+α)58CoIT(

100%) decay 
of 58mCo(T1/2=9.10 h) 

−12.33 12.73 

60gCo 1925 d 1173.228 99.85 ±0.03 60Ni(d,2p)60Co -4.27 4.41 
  1332.492 99.9826  61Ni(d,n+2p)60Co -12.09 12.48 
    62Ni(d,α)60Co -5.6 0.0 
    64Ni(d,2n+α)60Co -10.88 11.22 
    IT(99.75%) decay 

of 60mCo(T1/2=10.467 
min) 

  

57Ni 35.60 h 127.164 16.7 58Ni(d,2n+p)57Ni −14.44 14.94 
   1377.63 81.7±2.4    
    1919.52 12.3       

52gMn 5.591 d 744.233 90.0 60Ni(d,2n+2α)52Mn −21.62 22.34 
   935.544 94.5 IT(1.75%) decay 

of 52mMn(T1/2=21.1 
min) 

  

   1434.06 98.3±5.0 58Ni(d,2α)52Mn −1.24 1.28 
54Mn 312.12 d 834.848 99.9760 

±0.0010 
58Ni(d,2p+α)54Mn −8.54 8.84 

       60Ni(d,2α)54Mn −0.63 0.65 
        61Ni(d,n+2α)54Mn −8.45 8.73 
        62Ni(d,2n+2α)54Mn −19.05 19.67 

61Cu 3.333 h 656.008 10.8±2.0 60Ni(d,n)61Cu -2.58 0.0 
    62Ni(d,3n)61Cu -15.84 16.36 

 

The followings were the major sources of uncertainties considered during this 

experiment: (0.3-10%) for γ-ray counting statistics, (~1%) for target thickness, (~5%) 

for beam intensity, efficiency of detector as (~4%), and (~1%) for γ-ray intensity.  All 
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the above uncertainties were added quadratically to obtain the cumulative uncertainty of 

6.6-11.9%. The uncertainties in γ-ray counting statistics were determined in this work 

and those of γ-ray intensities were taken from the literatures (Bhat, 1998; Browne & 

Tuli, 2013; Burrows, 2006; Huo Junde, 2008b; Huo Junde et al., 2011; Junde Huo et al., 

2007; Nesaraja et al., 2010; Yang Dong & Huo Junde, 2014). Other uncertainties such 

as for efficiency of the detector, target thickness, and so on, have been evaluated based 

on the experimental conditions of the present study and are presented together with the 

other uncertainties in Table 3.3. The uncertainties related to the monitor reaction such as 

statistics of γ-ray counting, γ-ray intensity, etc., have not been included in the table. 

Table 3.3: Fractional (%) partial uncertainties in the cross-sections  
(The fractional partial uncertainties have been quadratically added to obtain the 

cumulative uncertainties in the cross-sections. Other uncertainties were assumed). 
Nuclide γ-ray counting 

statistics 

of the nuclide 

beam 
intensity 

detector 
efficiency 

target 
thickness 

γ-ray intensity 

of the nuclide 

Cumulative 
uncertainty 

55Co 0.8-33.9 

5 4 1 

5.333 8.4-34.9 
56Co 0.4-2.9 0.002 6.5-7.1 
57Co 0.3-9.3 0.199 6.5-11.4 
58Co 0.2-1.3 0.010 6.5-6.6 
60Co 8.7-16.1 0.030 10.9-17.3 
57Ni 0.8-13.0 2.938 7.2-14.8 
52gMn 3.2-11.8 5.086 8.8-14.36 
54Mn 9.8-31.6 0.001 11.8-32.3 
61Cu 1.5-4.9 18.519 19.7-20.2 

 

3.3.3 Theoretical Models 

The experimental work is preceded with a clear understanding of the theoretical 

knowledge of the nuclear reactions under consideration. Nuclear reaction codes are 

therefore designed to serve this purpose. Modelling of the nuclear reaction mechanism 

can predict even the energy regions where experiments may not be achievable or 

 

63 

 

Univ
ers

ity
 of

 M
ala

ya



 

reliable. The models can give information on direct particle interaction, pre-equilibrium 

and cumulative or compound nucleus contributions of the interacting nuclei. Several 

models have so far been developed by several research groups. Some of the popularly 

known codes include ALICE, EMPIRE, and TALYS. 

3.3.3.1 Talys code and TENDL library 

One of the most widely known nuclear reaction codes is TALYS. It has been 

developed by the nuclear research and consultancy group, Netherlands. The TALYS 

code is capable of calculating nuclear reaction cross-sections at 1 keV-200 MeV. It is 

characterized as efficient, flexible and user-friendly, capable of simulating most of the 

known nuclear reactions on all isotopes using proton, deuteron, gamma, alpha, neutron, 

triton, or helium-3 as projectiles. The TALYS code has been upgraded and modified 

from the first version, TALYS 1.0 on December 2007, to the most current version, 

TALYS 1.6 on December 2014. Recently, many research groups on this field use 

TALYS-based evaluated nuclear data Library (TENDL). The 8th version is currently 

the latest (TENDL-2015). The measured data of the natNi(d,x) processes were compared 

with theoretical values extracted from TENDL-2014 library, which was entirely 

calculated using default and adjustable TALYS code. 

3.4 Results and Discussions 

The newly measured production cross sections from the bombarded nickel by the 24 

Mev deutron energy are presented in Tables 3.4 and 3.5 of this chapter. The plotted 

excitation functions of the assessed 55-58(g+m)Co, 60(g+m)Co, 57Ni and 52,54gMn 

radionuclides are in the Figs. 3.3 – 3.11 of this chapter where they have been compared 

with the previously reported experimental data extracted from the EXFOR database 

(Otuka et al., 2014). On the other hand, the output of the theoretical Talys code values 

(Koning & Rochman, 2012) were taken from the TENDL-2014 library (Koning et al., 
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2014a). Some of the previous measurements on enriched targets (Baron & Cohen, 1963; 

Blann & Merkel, 1963; Brinkman et al., 1977; Budzanowski et al., 1963; Cline, 1971; 

Cogneau et al., 1967; Fuying et al., 1983) have been normalized to elemental cross 

sections before plotting. More so, the data of (Takács et al., 1997) were adjusted by a 

factor of 1/1.18 following the recommendation of the authors in (Takács et al., 2007). 

The presented cross sections have been used to calculate the integral thick target yields 

of some selected radionuclides by integrating over the whole energy region. 

 

 

Figure 3.2: Excitation function of the natTi(d,x)48V monitor reaction cross-
sections. 
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Table 3.4: Measured production cross-sections for 55,56,57,58,60Co radionuclides. 

Energy  

(MeV) 

Cross-sections (mb) 
natNi(d,x)55Co natNi(d,x)56Co natNi(d,x)57Co natNi(d,x)58g+mCo natNi(d,x)60g+

mCo 

23.71 ± 0.49 22.7 ± 1.71 7.19 ± 0.53  243 ± 16 183 ± 12 14.5 ± 1.3 

23.04 ± 0.48 21.5 ± 1.5 7.29 ± 0.53  219 ±15 192 ± 13 13.2 ± 0.9 

21.94 ± 0.51 23.6 ± 1.6 6.83 ± 0.50  164 ± 11 195 ± 13 12.6 ± 0.7 

21.75 ± 0.51 21.6 ± 1.5 8.10 ± 0.59  166 ± 11 212 ± 14 08.29 ± 1.30 

20.67 ± 0.51 20.7 ± 1.4 8.09 ± 0.58  134 ± 9 223 ± 15 11.83 ± 1.10 

19.31 ± 0.33 18.0 ± 1.2 9.28 ± 0.66  86.1 ± 5.9 226 ± 15 09.51 ± 0.80 

18.10 ± 0.54 17.0 ± 1.2 10.4 ± 0.7  49.2 ±3.4 217 ± 15  

17.45 ± 0.54 14.3 ± 1.0 11.7 ± 0.8  46.9 ± 3.2 229 ±16   

15.48 ± 0.57 10.2 ± 0.7 16.0 ± 1.1  28.6 ± 2.0 215 ± 16  

14.67 ± 0.61 8.17 ± 0.56 17.4 ± 1.2  21.2 ± 1.5 183 ± 12  

14.15 ± 0.60 7.36 ± 0.51 20.7 ±1.4  21.7 ±1.5 202 ± 14  

12.77 ± 0.65 2.95 ± 0.20 26.4 ± 1.8  11.0 ± 0.8 154 ± 10  

11.35 ± 0.66 0.82 ± 0.08 33.4 ± 2.3  6.10 ±0.46 137 ± 9  

9.82 ± 0.54 0.03 ± 0.01 33.2 ± 2.3  0.86 ±0.07 67.2 ± 4.6  

9.15 ± 0.74  31.7 ± 2.2  0.55 ±0.05 60.3 ± 4.1  

7.17 ± 0.86  18.3 ± 1.2  0.21 ±0.02 12.7 ± 0.9  

4.43 ± 0.97  3.10 ± 0.21 0.18 ±0.02 2.68 ±0.18  

1.79 ± 1.11   0.19 ±0.01 1.25 ±0.09  
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Table 3.5: Measured production cross-sections for 57Ni, 52g,54Mn and  61Cu 
radionuclides.  

(The reported cross-section of 52gMn includes the IT decayed 1.75 % of 52mMn.) 
Energy 
(MeV) 

Cross-sections (mb) 
  
natNi(d,x)57Ni natNi(d,x)52gMn natNi(d,x)54Mn natNi(d,x)61Cu 

23.71 ± 0.49 20.9 ± 1.4 1.60 ± 0.12 2.04 ± 0.24  
23.04 ± 0.48 18.6 ± 1.3 1.60 ± 0.12 1.51 ± 0.23 13.7 ± 2.8 
21.94 ± 0.51 17.9 ± 2.7 1.24 ± 0.10 1.09 ± 0.19  
21.75 ± 0.51 13.8 ± 1.0 1.17 ± 0.09 1.16 ± 0.24 12.9 ± 2.6 
20.67 ± 0.51 10.3 ± 0.7 0.92 ± 0.07 0.75 ± 0.19 14.6 ± 2.9 
19.31 ± 0.33 6.87 ± 0.49 0.58 ± 0.05 0.57 ± 0.18 15.1 ± 3.0 
18.10 ± 0.54 4.89 ± 0.35 0.25 ± 0.03     
17.45 ± 0.54 4.64 ± 0.33 0.18 ± 0.02    16.6 ± 3.3 
15.48 ± 0.57 3.42 ± 0.25      20.6 ± 4.1 
14.67 ± 0.61 2.34 ± 0.17       
14.15 ± 0.60 2.49 ± 0.20      23.4 ± 4.6 
12.77 ± 0.65 0.14 ± 0.02      
11.35 ± 0.66 0.53 ± 0.06      33.9 ± 6.7 
9.82 ± 0.54 0.08 ± 0.01      
9.15 ± 0.74       
7.17 ± 0.86       
4.43 ± 0.97       
1.79 ± 1.11       

 

3.4.1 Production Cross-sections of 55Co 

With its relatively long half-life of T1/2 =17.53 h, 55Co was measured after a few 

hours of bombardment via its most distinct and abundant γ line of Eγ = 931.3 keV (Iγ = 

75%). As shown in Table 3.2, two reaction channels are possible for the formation 

of 55Co within the investigated energy region: the nuclear reaction processes via 

the 58Ni(d,nα)55Co (Eth=3.694 MeV) and the possible contribution of 60Ni(d,3nα)55Co 

reaction (Eth=24.75 MeV). The measured cross-sections are in agreement with some 

recently measured data (Amjed et al., 2013; Fuying et al., 1983; Hermanne et al., 2013; 

Ochiai et al., 2007; Takács et al., 2007), while a few earlier results show either large 

(Blann & Merkel, 1963) and slight (Cline, 1971; Zweit et al., 1991) discrepancies. The 

data reported by Cline (Cline, 1971) were scattered. Specifically, the excitation 
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functions reported by Amjed et al. (Amjed et al., 2013) appeared to be slightly lower 

above 18 MeV, while those by (Ochiai et al., 2007) are slightly higher in the same 

energy region. The experimental cross-sections show higher values when compared to 

the TENDL 2014 library particularly at 12 MeV and above. 
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Figure 3.3: Excitation function of natNi(d,x)55Co independent cross-sections 

 
3.4.2 Production Cross-sections of 56Co 

The radionuclide 56Co (T1/2 = 77.27 d) can be measured from any of its four intense γ 

lines listed in the Table. 3.2 (Eγ = 846.770, 1037.843, 1238.288, and 1771.357 keV). 

Since 56Co is formed by only the direct reactions of 58Ni(d,α)56Co (Eth = 0 

MeV), 60Ni(d,2nα)56Co (Eth = 14.33 MeV), and 61Ni(d,3nα)56Co (Eth = 22.4 MeV), the 

measured cross-sections are independent. The measured excitation function shows clear 

discrepancies with the some previous measured cross-sections from Zweit et al. (Zweit 

et al., 1991) and Blann and Merkel (Blann & Merkel, 1963). Although the shape of the 

present excitation function is maintained by that of Takacs et. al., however,  the cross-
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sections reported by the Takacs et al. (Takács et al., 1997) presents somewhat higher 

magnitude as compared in the Figure below, especially around 10 MeV. The measured 

cross-sections agree well with the reported data by some other groups (Amjed et al., 

2013; Fuying et al., 1983; Hermanne et al., 2013; Takács et al., 2007). The predictions 

of the TENDL-2014 library, on the other hand, presents lower values compared to the 

present measured cross-sections. 
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Figure 3.4: Excitation function of the natNi(d,x)56Co reaction. 

 
3.4.3 Production Cross-sections of 57Co 

57Co was identified through one of its intense γ lines (Eγ = 122.1 keV). The cross-

sections of the long-lived 57Co (T1/2 = 271.79 d) could be contributed by all the other 

stable nickel isotopes via the following direct reactions: 58Ni(d,n2p)57Co (Eth = 10.40 

MeV), 60Ni(d,nα)57Co (Eth = 2.75 MeV), 61Ni(d,2nα)57Co (Eth = 10.65 MeV), 

and 62Ni(d,3nα)57Co (Eth = 21.58 MeV). As a result of the indirect contribution to the 

formation of 57Co through the 57Ni (T1/2 = 35.5 h) positron decay, the presented cross-
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sections of this long-lived isotope (57Co) are therefore cumulative. This is because the 

measurements of this radionuclide were made with a long cooling period after 

irradiation, long enough for this contribution to happen. 

Eight previous investigations have been seen in the literatures (Amjed et al., 2013; 

Blann & Merkel, 1963; Cline, 1971; Hermanne et al., 2013; Ochiai et al., 2007; Takács 

et al., 1997; Takács et al., 2007; Zweit et al., 1991) and most of them agree with one 

another up to about 19 MeV. Beyond this region, Blann and Merkel (Blann & Merkel, 

1963) presented relatively larger magnitude of the cross-sections while Cline (Cline, 

1971) reported lower values in comparison with the present investigation. The present 

cross-sections of 57Co indicate agreement with some other reported cross-sections 

(Amjed et al., 2013; Ochiai et al., 2007; Takács et al., 2007), even beyond the 19 MeV. 

On the other hand, the evaluated TENDL-2014 library data show higher cross-sections 

than those presented by the current experiment here, at 18 MeV and beyond. 
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Figure 3.5: Excitation function of the natNi(d,x)57Co reaction cross-sections. 
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3.4.4 Production Cross-sections of 58g+mCo 

58Co exist in states: the relatively short-lived metastable state 58mCo (T1/2 = 9.10 h, 

with low energy and low transition probability of Eγ = 25 keV, and Iγ = 0.04% 

respectively) which is known to decays through IT (100%) to the ground state, and the 

long-lived ground state, 58gCo (T1/2 = 70.86 d, Eγ = 810.7793 keV, with intensity, Iγ = 

99.45%). Because of the extreme low gamma energy (25-keV) and intensity of the 

gamma line, the metastable state could not be measured under the experimental 

conditions of the present work. However, a long waiting time allowed 58mCo to decay 

to 58gCo, and thus the measured cross section of 58gCo is the sum of the meta-stable and 

ground-states cross-sections, 58m+gCo. It is worth noting that there is likely an 

interference in the characteristic 810.7793-keV γ line of 58Co by the characteristic 

811.85-keV γ line of the simultaneously produced 56Ni, which must be considered by 

correcting its measured photopeak area. In Fig. 3.6, the presents cross sections have 

been compared with the earlier experimental data as well as the evaluated data taken 

from the TENDL-2014 library. Most of the previous results, especially the data of 

(Amjed et al., 2013; Hermanne et al., 2013; Jung, 1992; Takács et al., 2007) show 

consistency with the present study via the observed relative similarity in magnitude and 

shape. On the other hand, the data presented by Cline (Cline, 1971) show the lower 

cross-sections at the peak energy region of the excitation function and looks scatted. 

Similarly the reported data by Zweit (Zweit et al., 1991) presented the lowest cross-

sections especially from about 11 MeV and above. The extracted data of TENDL-2014 

show rather higher values for 58g+mCo radionuclide as compared to the present 

experimental data, especially within the investigated energy region of 10 – 25 MeV. 
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Figure 3.6: Excitation function of the natNi(d,x)58g+mCo reaction cross-sections 

 
3.4.5 Production Cross-sections of 60Co 

The cross-sections of the long-lived 60Co (T1/2 = 5.27 y) are normally be measured 

by either of its two abundant γ lines (Eγ =1173.228 keV and 1332.492 keV). Production 

cross-sections for 60Co in the present study are cumulative due to the decay of its 

metastable state, 60mCo (T1/2 =10.467 min) via isomeric transition to the ground state (IT 

= 99.75%). To evaluate the cross-section of 60Co, sufficient measurement time may be 

helpful due its long half-life. Only two earlier studies (Hermanne et al., 2013; Takács et 

al., 2007) reported the cross-sections of 60Co, and they are inconsistent with each other 

as shown in Fig. 3.7. The present data are consistent to those reported by Hermanne 

exp. 2 and 4 (Hermanne et al., 2013). The TENDL-2014 library presented higher cross-

sections than the present experimental measurements. A separate experiment based on 

the optimized experimental condition for 60Co could help to measure a more consistent 

and reliable cross sections of the natNi(d,x)60Co process. 
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Figure 3.7: Excitation function of the natNi(d,x)60g+mCo reaction cross-sections. 

 
3.4.6 Production Cross-sections of 57Ni 

The 57Ni cross-sections (T1/2 = 35.6 h) presented here is independent. The cross-

sections were mainly contributed by the 58Ni(d,2np)57Ni (Eth = 14.94 MeV) reaction 

within the investigated energy region. There may, however, be likely a contribution 

from an EC decay of the short-lived meta-stable state 57Cu (T1/2 = 196.4 min) via 

the 58Ni(d,3n)57Cu (Eth = 24.8 MeV) reaction toward the maximum of the energy 

interval used. Identification and analysis of 57Ni were aided by its strong (Eγ = 1377.63 

keV; Iγ = 81.7%) and weak (Eγ = 127.16 keV; Iγ = 16.7%) γ lines. The measured 

excitation function shows a excellent agreement with the earlier ones (Amjed et al., 

2013; Hermanne et al., 2013; Takács et al., 1997; Takács et al., 2007). There exist, 

however, an obvious disagreement with the reported data (Cogneau et al., 1967; Fuying 

et al., 1983). The data reported here is scanty because, the nearest possible contribution 

reaction threshold is about 15 MeV within the energy interval considered, thereby 
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limiting the number of contributing reactions. The obtained cross-sections generally 

show a good agreement with the data extracted from the TENDL-2014 library. 
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Figure 3.8: Excitation function of the natNi(d,x)57Ni independent reaction. 

 
3.4.7 Production Cross-sections of 52Mn 

Since the measurements considered for this radionuclide was about four days after 

bombardment, the meta-stable state of 52mMn (T1/2 = 21.1 min) was not detected. The 

present study was, therefore, interested in the ground state of 52gMn (T1/2 = 5.59 d; 

decay 100% by the β¯ particle). 52gMn was produced most likely by the 58Ni(d,2α)52Mn 

and 60Ni(d,2α2n)52Mn reactions. The present calculations were made using the strongest 

935.544-keV (Iγ = 94.5%) γ line of 52Mn except for some special cases where other γ 

line in Table 3.2 was used. The present results are presented in Fig. 3.9 together with 

some prior experimental studies (Amjed et al., 2013; Cline, 1971; Hermanne et al., 

2013; Takács et al., 2007) and the theoretical data taken from the TENDL-2014 library. 

The cross-sections presented here agree with some earlier reported experimental values 
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(Amjed et al., 2013; Hermanne et al., 2013; Takács et al., 2007) within the considered 

energy interval of this study. The cross-sections reported by Cline (Cline, 1971) were 

found to be slightly higher and scattered near the upper energy region. Figure 3.9 below 

indicates that the TENDL-2014 library data could not reproduce the present 

experimental data correctly, possibly due to its shortcomings when predicting composite 

particle emission phenomena. The predicted TENDL-library data thus, show lower 

cross sections as compared to the present measured cross-sections. 
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Figure 3.9: Excitation function of the natNi(d,x)52gMn cumulative reaction cross-

sections. 
 

3.4.8 Production Cross-sections of 54Mn 

54Mn (T1/2 = 312.3 d) has a very strong and high-intensity γ line of Eγ = 834.848 keV 

(Iγ = 99.9760%) which was used for identification and radioactivity assessment of this 

isotope. The possible reactions to form 54Mn are 58Ni(d,2pα)52Mn (Eth = 8.84 

MeV), 60Ni(d,2α)52Mn (Eth = 0.65 MeV), 61Ni(d,n2α)52Mn (Eth = 8.75 MeV) 

and 62Ni(d,2n2α)52Mn (E th = 19.67 MeV) within the investigated energy region. Amid 

 

75 

 

Univ
ers

ity
 of

 M
ala

ya



 

some possible reaction channels to produce this radioisotope, such that the emission of 

some combinations of single and composite particles are much likely to occur, the 

excitation curve gives one simple rising shape beginning from 20 MeV and continues 

under the investigated energy region. Present measured cross sections are compared in 

Fig. 3.10 together with four earlier investigations (Amjed et al., 2013; Cline, 1971; 

Hermanne et al., 2013; Takács et al., 2007) and the TENDL-2014 library. While the 

observed shape of the measured excitation function confirmed an overall agreement of 

this study to the earlier reported results, but Hermanne Exp.-2 (Hermanne et al., 2013) 

and Cline (Cline, 1971) cross sections presents slightly lower cross-sections within the 

investigated energy region. The TENDL-2014 predicts the shape of the measured 

excitation function rather well, except for the slightly lower absolute values. 
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Figure 3.10: Excitation function of the natNi(d,x)54Mn independent reaction 

cross-sections. 
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3.4.9 Production Cross-sections of 61Cu 

Sd 61Cu (T1/2 = 3.333 h) was measured via its γ line Eγ = 656.008 keV (Iγ = 

10.8%). 61Cu has a half-life of T1/2 = 3.333 h and decays to 61Ni. The major contribution 

reaction for the production of 61Cu is 60Ni(d,n)61Cu (Q- value = +2.58 MeV) as a result 

of little abundance of other stable Ni isotopes with higher mass numbers. Since the 

target foils were measured about 2 to 3 half-lives after the bombardment, in the first 

target stack and much later in the second stack, the cross-sections for 61Cu of the second 

stack were accompanied with large errors, necessitating the exclusion of the data from 

the stack in the reported cross-sections of this study. There exist 10 earlier 

measurements on the production cross sections of 61Cu (Budzanowski et al., 1963; 

Coetzee & Peisach, 1972; Cogneau et al., 1967; Hermanne et al., 2013; Hermanne et al., 

2007; Ochiai et al., 2007; Takacs et al., 1997; Takács et al., 2001; Takács et al., 2007; 

Zweit et al., 1991). As shown in the Fig. 3.11, the cross-sections of (Zweit et al., 1991) 

and (Cogneau et al., 1967) are larger than the present data and other earlier data at 

around 5 to 12 MeV. Other experimental data agree with each other. The TENDL-2014 

library reproduces the shape of the excitation function but slightly underestimates the 

absolute values above 7 MeV. The (Takács et al., 2007) proposed a renormalization of 

their cross-sections in (Takács et al., 1997) by a factor of 1/1.18. However, present work 

found that the IAEA-recommended cross-sections (IAEA, 2007) reproduce the original 

ones (Takács et al., 1997) before the renormalization. Furthermore, the IAEA-

recommended cross-sections overestimate the recent experimental cross-sections 

(Hermanne et al., 2013; Hermanne et al., 2007; Takács et al., 2007) at the peak region 

around 7 MeV. Therefore, upgrade of the recommended cross-sections must be 

considered. 
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Figure 3.11: Excitation function of the natNi(d,x)61Cu independent cross-sections. 

 
3.5 Integral Thick Target Yield 

The integral thick target yields for 55Co, 57Co, and 58Co radionuclides have been 

calculated and compared with the previous calculations by Amjed (Amjed et al., 2013). 

The numeral values of the calculated thick target yields, at some selected higher energy 

portion of the investigated energy region, are presented in Table 3.6. The calculated 

values also presented together with the literature values in Figure 3.12. Among the 

calculated TTYs, the 55Co radionuclide has the highest (15.6 MBq/µA-hr) at 23.7 MeV 

while 57Co has the least value (3.2 MBq/µA-hr) at the same energy. The calculated 

values have been  compared with the literature values calculated by Amjed group 

(Amjed et al., 2013). The present calculated yields of 55Co are very comparable to the 

value reported by Amjed et al. (2013) at the same energy region. On the other hand, the 

present calculated values for 58Co are higher than the corresponding value reported by 

the same authors (Amjed et al., 2013).   
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Table 3.6: Integral Thick Target Yields, TTY (MBq/µA-hr) for 55Co, 57Co 
and 58Co radionuclides 

En(M

eV) 

55Co 57Co 58Co 

TTY 

(MBq/µA-hr) 

TTY 

(MBq/µA-hr) 

TTY 

(MBq/µA-hr) 

15.5 2.0 0.2 2.5 

17.5 4.2 0.4 3.6 

18.1 5.1 0.5 4.0 

19.3 6.9 0.8 4.7 

20.7 9.4 1.3 5.6 

21.8 11.5 1.9 6.3 

21.9 11.9 1.9 6.4 

23.0 14.1 2.7 7.0 

23.7 15.6 3.2 7.4 

 

 

Figure 3.12: Integral thick target yields for 55Co, 57Co and 58Co radionuclides 
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3.6 Conclusion 

The present studies present new experimental cross-sections on the nuclear processes 

of natNi(d,x)55-58,60Co, 57Ni 52,54Mn and 61Cu within the deuteron energy 1.79 – 24 MeV. 

The measured excitation functions were compared with the earlier experimental data as 

well as the extracted theoretical data from TENDL-2014 library. The presents newly 

measured cross-sections enriched the current database and further confirmed some of 

the earlier reported measurements with added insights. Some of the literature data 

reported much earlier showed larger discrepancies to the present cross-sections. Some 

discrepancies (either in amplitude difference or energy shift etc.) between the 

experiments and the TENDL-2014 library are found for several reaction cross-sections, 

especially for 55,57,58,60Co and 52Mn. Therefore, in addition to previous measurements, 

the present result could play a major role for improvements of the TALYS code. 

On the production of 60Co, the EXFOR library indicated an extensive report on the 

experimental production of this radionuclide via proton and neutron bombardments in 

contrast via deuteron. Since the production of 60Co radionuclide is possible via deuteron 

beam bombardment on Ni, the present study, therefore, recommends further enrichment 

of the EXFOR database on the production of 60Co radionuclide via this production 

route, with more dedicated experimental conditions such as a sufficient irradiation time, 

cooling period and periodic measurements. These would reduce the observed 

discrepancies and in turn, a better understanding of its excitation function. On the other 

hand, the excellent shapes of the excitation functions observed from some of the cobalt 

radionuclides show greater reliance of their cross-sections at different intermittent 

energies. Thus, the measured cross-sections (also influenced by the decay 

characteristics) of some cobalt radionuclides, 56-58Co could be considered as possible 

candidates for the beam monitoring in deuteron bombardments. Present study observed 
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also that the natNi(d,x)61Cu cross-sections recommended by the IAEA overestimate the 

recent measured data, and their upgrade must be considered. 
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CHAPTER 4: EXCITATION FUNCTIONS OF ALPHA-INDUCED REACTIONS 
ON NATURAL TITANIUM UP TO 50.2 MEV 

 
4.1 Introduction 

This chapter presents the experimental procedures and results obtained from the 

bombardment of natural titanium metal by 50.4 MeV alpha beam. One of the main 

purposes of using titanium in the stack was for beam monitoring purpose 

via natTi(a,x)51Cr monitor reaction recommended by IAEA. However, titanium as a 

target also serves as an important source of several radionuclides with potential 

applications in nuclear medicine and other various scientific usage. For this reason, 

therefore, an extensive analysis of the measured activities of titanium after 

bombardment are paramount so as to explore these radionuclides, especially that there 

has been some recent increasing interest in several radioisotopes of scandium. 

Efforts have been made to report several radionuclides and their respective excitation 

functions. To this end, some chromium and potassium radionuclides have been 

investigated and reported. The chapter also reported some scandium radionuclides of 

reported significance in the literature. The thick target yields of the investigated 

radionuclides have been calculated and plotted, together with some previous literature 

data, in some Figures of this chapter. 

4.2 Literature Review 

Applications of some radionuclides such as 131I and 99mTc in diagnostic procedures 

and treatments of ailments are well established. Advancement in nuclear technology 

provides the basis for the production of many potential radionuclides that can reduce 

additional dose to patients and produce better images of tissues during medical 

procedures. Cyclotron-based radionuclides production is one of the most sophisticated 
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technologies that allow producing a range of potential radionuclides to be used in the 

medical field. 

Titanium (Ti) shows various applications due to its desirable physical and chemical 

characteristics. Charged particle irradiation of metallic titanium is an important 

production pathway of some few vital radionuclides of technological and medical 

applications. As an example, the relatively long-lived 47Sc (T1/2 = 3.3492 d) is a 

potential radionuclide for radiotherapy whereas 43Sc and 44Sc are good candidates for 

PET imaging (Duchemin et al., 2015). The 44mSc radionuclide attracts interest to many 

researchers as its relatively long half-life (T1/2 = 58.61 h)  allows ample time in imaging 

and thus greater accuracy in assessment of distribution and absorbed doses to an 

affected organ (Alliot et al., 2015). Also, the emission of a low energy gamma-ray 

of 47Sc (Eγ = 159.381 keV, Iγ = 68.3%) made it suitable for in vivo studies targeted 

imaging, documenting of a status of a disease or even therapeutic efficacy (Mamtimin et 

al., 2015).  Due to the suitable decay characteristics, 46gSc (T1/2 = 83.79 d; Eγ = 889.277 

keV, Iγ = 99.9840%; Eγ = 1120.545 keV, Iγ = 99.987%) could be used in monitoring of 

medium energy alpha beam (Hermanne et al., 2014). The increasing explorations of 

more applications of scandium radionuclides go in phase with the continuous search for 

alternative production routes. Recently, some groups have reported such alternative 

production pathways with a sole aim of production improvement or reduction in the cost 

of production (Deilami-nezhad et al., 2016; Hoehr et al., 2014; Szkliniarz et al., 2016; 

Valdovinos et al., 2015; van der Meulen et al., 2015). 

Apart from this, the 48V has been found suitable as a diagnostic agent in life-science 

(Xuan Tham et al., 2001) and material (Rorat et al., 2005) studies, as well as for 

therapeutic functions during renal artery brachytherapy (Arbabi et al., 2009). Moreover, 

the 48V have also been reported to exhibit some very useful biochemical characteristics 
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like its anti-carcinogenic effect, and thus became a good candidate for labelling 

compounds for in vivo studies (De Cremer et al., 2002). Also, a study searching an 

alternative radionuclide to the conventional use of 68Ge (T1/2 =271 d) in PET for 

improvement of the quality of images has prioritised the use of 48V as a transmission 

source for correction of attenuation in PET (Hichwa et al., 1995). On the other 

hand, 51Cr draws special attention to monitoring alpha particles beams due to its 

excellent decay characteristics and fine shape of its excitation function (IAEA, 2007). 

The 51Cr is also used to label red blood cells for measurements of mass and volume of 

blood (Al-Abyad et al., 2010; Vimalnath et al., 2014). It is also useful in labelling 

platelets to determine their survival period as well as in diagnosis of gastrointestinal 

bleeding through sequestration studies (Vimalnath et al., 2014). In the same way, 

studies of 48Cr cross-sections are of interest due to its consideration as a substitute for 

the medically important 51Cr radionuclide (Weinreich et al., 1980). 

A detailed survey of the literature revealed that production cross-sections of residual 

radionuclides, especially 43,44m,44gSc, were extensively reported via proton and deuteron 

irradiations on titanium targets but scarcely reported via alpha irradiation. Furthermore, 

the available literature data for the chromium radionuclides via the (α,x) reactions show 

significant discrepancies among them. Recognising the aforementioned drawbacks, this 

thesis aimed to minimise or remove the existing discrepancies for the Cr radionuclides, 

and also reports new cross-sections for the scandium and other useful radionuclides via 

the (α,x) nuclear processes. 

4.3 Materials and Method 

Based on some previous basic experimental procedures (Khandaker et al., 2015; 

Khandaker et al., 2014; Khandaker et al., 2011; Usman et al., 2016a), the well-

established stacked-foil activation technique and an offline HPGe γ-ray spectrometry 
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were employed for the determinations of the production cross-sections. The excitation 

functions of several radionuclides with half-lives of more than 30 min have been studied 

herein, and details of the experimental procedure are given below. 

4.3.1 Targets, Stack Formation and Bombardment 

A metallic Ti foil (purity: >99.6%, nominal thickness: 10.40 μm, supplier: 

Goodfellow, UK) with natural isotopic abundances (46Ti: 8.25%; 47Ti: 7.44%; 48Ti: 

73.72%; 49Ti: 5.41%; 50Ti: 5.18%) (Berglund & Wieser, 2011) was used as a target 

material. For degradation of the beam energy, several other natural metallic foils of Cu 

(purity: 99.9%, nominal thickness: 9.71 μm, supplier: Nilaco, Japan) and Ho (purity: 

99%, nominal thickness: 12.29 μm, supplier: Goodfellow, UK) were inserted in 

between the Ti foils in the stack. The stack was arranged such that the Ho foils 

succeeding the Ti foils also served as recoil catcher. All used foils were weighed using a 

high precision electronic balance for an accurate thickness determination. The stack was 

prepared as the same foil area of 15 × 15 mm2 following the dimension of the target 

holder, which ensured the focusing of the incident beam to the centre of all foils in the 

stack. The irradiation of the stacked samples was performed using the beam line of the 

AVF cyclotron of the RI Beam Factory, Nishina Centre for Accelerator-Based Science, 

RIKEN, Japan. Through a tantalum slit in the particle exit channel of the cyclotron, the 

beam was collimated to 9-mm diameter onto the target foils. The stacked samples were 

mounted on a water-cooled target holder, which serves as a Faraday cup, and then 

bombarded for 2.0 h using the 50.4 MeV α beam with an average beam current of 194 

nA. The 50.4 MeV initial alpha beam energy of the RIKEN AVF cyclotron was 

determined by a recent precise measurement using time of flight (TOF) measurement 

system (Watanabe et al., 2014), with reported spread and uncertainty as 0.28% (±0.14 
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MeV) and 0.24% (±0.12 MeV), respectively. Thus, the initial beam energy is 

considered as 50.4±0.2 MeV. 

 

Figure 4.1: Sample of target cutting and preparation 

 

 

Figure 4.2: The target holder for irradiating the prepared foils. 
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4.3.2 Spectrometry of Activation Products 

After the irradiation, the activated foils were dismantled from the target holder and 

taken to an offline gamma ray spectrometry laboratory for activity measurements. The 

emitted γ-rays were measured non-destructively with a high resolution HPGe γ-ray 

spectrometer (ORTEC; GEM-25185P; 55.1-mm crystal diameter and 52.0-mm 

thickness; operating voltage: +2000 V; relative efficiency: 25%) which was coupled to a 

4096-multi-channel analyser and other associated electronics. Since the half-lives of the 

studied radionuclides vary from few minutes to tens of days, the activity measurements 

were repeatedly continued for several days after the end of irradiation (EOI) to ensure 

optimum counting with reduced dead times. Accurate activity measurements of various 

short and long-lived radionuclides were ascertained through progressive reduction of 

source-to-detector distances from 15 cm down to 1 cm. However, to minimise pile-up 

effect and coincidence loss, a 3-cm minimum source-to-detector distance was 

considered during the activity measurements of longer-lived radionuclides. Similarly, 

all measurements were done with dead times less than 10% by adjusting the source-to-

detector distances. The first measurement was started about 3.6 hours after the EOI and 

was continuously repeated to follow the decay of the produced radionuclides. Table 4.1 

shows the details of the measurement periods for each assessed radionuclide. The 

gamma spectrum analysis was performed using the Maestro (Ver. 7.01; ORTEC) 

gamma vision program (Ortec, 2012). 
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Table 4.1: Cooling periods for the accessed radionuclides   

Measurement 
series 

Cooling period Radionuclide 

I 3.6 - 4.2 h 49Cr,43Sc and 44gSc 
III 15.8 - 17.0 h 48Cr 
IV 1.7 - 1.8 d 48Sc, 44mSc 
V 7.3 - 7.5 d 51Cr, 48V, 46Sc and 47Sc 

 

The detector efficiencies at various source-to-detector distances were determined 

with a standard multi-nuclide γ-ray source from DBA Isotopes Products Laboratories 

(USA). Details of complete procedure of the calculations of these efficiencies at various 

source-to-detector-distances were reported in chapter five and in (Usman et al., 2016b). 

4.3.3 Determination of Beam Intensity, Foil Energies and Cross-sections 

The beam intensity was calculated by placing a Ti foil at the front position of the 

stack so as to receive the initial alpha energy delivered by the cyclotron. The IAEA 

recommended natTi(α,x)51Cr monitor reaction (σ = 26.4 mb at Eα = 50 MeV) and the 

corresponding counts of 51Cr from the first Ti foil (Eα = 50.16) MeV) were used to 

determine the α beam intensity (Qaim et al., 2002). The intensity was considered as a 

constant in the stack and was used to deduce cross-sections for each foil in the stack. 

The uniformity of the beam intensity along the stack was confirmed by obtaining the 

cross-sections of 51Cr from the activities of all Ti foils in the stack and then comparing 

the cross-sections with the natTi(α,x)51Cr cross sections recommended by the IAEA 

(Qaim et al., 2002). The use of other metallic foils of different densities and thicknesses 

helped in slowing down the incident alpha beam along the stack. The SRIM-2003 

(Ziegler, 2004) computer program was used for the calculation of the degradation of 

initial incident 50.4 MeV alpha beam energy along the stacked foils, without any further 

adjustment (correction) of the energy for the fitting of the recommended cross-section. 
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The average (incident) alpha-energy on each foil has been reported as the representative 

energy value for the foils during the calculation of the cross-sections. 

The cross-sections for the assessed radionuclide σ(Ei) were computed using the well-

known activation formula (Khandaker et al., 2010; Khandaker et al., 2011; Usman et al., 

2016b): 

σ (𝐸𝑖) = 𝜆𝐶(𝐸𝑖)
εγ𝐼γ𝑡hρφ(1− 𝑒−𝜆𝑡irr)(𝑒−𝜆𝑡coo)(1− 𝑒−𝜆𝑡mea)

 ,                                                      (4.1) 

where λ is the decay constant of the radionuclide, 𝐶(𝐸i) represent the net counts of the 

characteristic gamma-lines of the radionuclide under the photo-peak area at the i-th foil, 

εγ stands for the efficiency of detection for the gamma-line at a particular source-to-

detector distance, Iγ is the emission probability of the gamma-line,  𝑡h is the thickness of 

the Ti foil while ρ is the atomic density of the Ti foil (5.71 × 1022 atoms/cm3). Other 

symbols in the equation are φ for the intensity of the α beam (5.45 × 1011 particle/s), 

whereas tirr, tcoo and tmea are irradiation, cooling and measurement times, respectively. 

The adopted decay data of the investigated reaction products were from the ENSDF 

library (Burrows, 2006, 2007, 2008; Chen et al., 2011; Singh & Chen, 2015; Wu, 2000; 

Xiaolong, 2006) and retrieved via the interface of Live Chart of Nuclides (IAEA, 

2009b). The Q-values and threshold energies were calculated based on the AME mass 

evaluation (Audi et al., 2003), assessed through the Q-tool system (Qtool, 2011), and 

they are also presented in Table 4.2. In the table, symbol ε stands for EC and β+ decay 

while the italicised numbers refer to the last digits of the value (e.g., 99.9840 10 means 

99.9840±0.0010).  
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Table 4.2: Adopted decay data for the assessed radionuclides based on the decay 
data evaluated in the ENSDF library* 

Nuclide Half-life Decay 
mode (%) 

Eγ (keV) Iγ (%) Contributing 
reactions 

Q-Value 
(MeV) 

Threshold 
(MeV) 

51Cr 27.7010 d ε:100 320.0824 9.910 10 47Ti(α,γ)51Cr 8.94 0.00 

          48Ti(α,n)51Cr -2.69 2.911 

          49Ti(α,2n)51Cr -10.83 11.71 

          50Ti(α,3n)51Cr -21.77 23.51 
49Cr 42.3 m ε:100 62.289 16.4 6 46Ti(α,n)49Cr -4.44 4.83 

      90.639 53.2  19 47Ti(α,2n)49Cr -13.32 14.46 

      152.928 30.3 11 48Ti(α,3n)49Cr -24.95 27.03 

          49Ti(α,4n)49Cr -33.09 35.80 

          50Ti(α,5n)49Cr -44.03 47.56 
48Cr 21.56 h ε:100 112.31 96.0 20 46Ti(α,2n)48Cr -15.02 16.33 

      308.24 100.0 20 47Ti(α,3n)48Cr -23.90 25.94 

          48Ti(α,4n)48Cr -35.53 38.50 

          49Ti(α,5n)48Cr -43.67 47.24 
48V 15.9735 d ε:100 944.130  7.870 7 46Ti(α,d)48V -10.36 11.26 

      983.525 99.98  4 47Ti(α,t)48V -12.98 14.09 

      1312.106 98.2  3 48Ti(α,d2n)48V -30.87 33.45 

     49Ti(α,d3n)48V -39.01 42.20 

           EC (100%) decay 
of 48Cr 

  

43K 22.3 h  372.760 86.80 20 46Ti(α,α3p)43K -29.42 31.98 
   617.490 79.2 6 47Ti(α,p3Heα)43K -30.58 33.19 
     48Ti(α,p2α)43K -21.63 23.44 
     49Ti(α,d2α)43K -27.55 29.80 
     50Ti(α,t2α)43K -32.23 34.81 

*See Table 4.3 
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Table 4.3: Adopted decay data for the assessed scandium radionuclides based 
on the decay data evaluated in the ENSDF library* 

Nuclide Half-
life 

Decay 
mode 
(%) 

Eγ 
(keV) 

Iγ (%) Contributing 
reactions 

Q-Value 
(MeV) 

Threshold 
(MeV) 

43Sc 3.891 
h 

ε: 100 372.9 22.5 7 46Ti(α,ndα)43Sc -29.15 31.68 

          47Ti(α,dα2n)43Sc -38.03 41.27 
          48Ti(α,tα2n)43Sc -43.40 47.02 
           EC and β+ (100%) 

decay of 43Ti 
  

44mSc 58.61 
h 

IT: 
98.80 

271.241 86.7 3 46Ti(α,dα)44Sc -19.72 21.41 

    ε: 1.20 1157.002 1.20 47Ti(α,ndα)44Sc -28.60 31.01 
          48Ti(α,dα2n)44Sc -40.22 43.56 
          49Ti(α,tα2n)44Sc -42.10 45.53 
44gSc 3.97 h ε: 100 1157.020 99.9  4 46Ti(α,dα)44Sc -19.45 21.14 
          47Ti(α,ndα)44Sc -28.33 30.74 
          48Ti(α,dα2n)44Sc -39.95 43.29 
          49Ti(α,tα2n)44Sc -41.83 45.26 
          IT decay (98.80%) 

of 44mSc (58.61 h) 
  

46gSc 83.79 
d 

β-: 100 889.277 99.9840 
10 

47Ti(α,pα)46Sc -10.47 11.36 

      1120.545 99.987 
10 

48Ti(α,dα)46Sc -19.87 21.53 

          49Ti(α,ndα)46Sc -28.01 30.30 
          50Ti(α,dα2n)46Sc -38.95 42.07 
     IT decay (100%) 

of 46mSc (18.75 s) 
  

47Sc 3.3492 
d 

β-: 100 159.381 68.3   4 46Ti(α,3p)47Sc -19.23 20.91 

          47Ti(α,p3He)47Sc -20.39 22.13 
          47Ti(α,d2p)47Sc -25.89 28.10 
          48Ti(α,pα)47Sc -11.44 12.40 
          49Ti(α,dα)47Sc -17.36 18.78 
          50Ti(α,ndα)47Sc -28.30 30.57 
48Sc 43.67 

h 
β-: 100 175.361 7.48   

10 
47Ti(α,3p)48Sc -19.88 21.57 

      983.526 100.1   
6 

48Ti(α,d2p)48Sc -29.28 31.72 

      1037.522 97.6 7 49Ti(α,pα)48Sc -11.35 12.28 

      1312.120 100.1 7 50Ti(α,dα)48Sc -20.06 21.67 

ENSDF library*(Burrows, 2006, 2007, 2008; Chen et al., 2011; Singh & Chen, 2015; 
Wu, 2000; Xiaolong, 2006) as extracted from the interface of Live Chart of Nuclides of 
the IAEA (IAEA, 2009b) while the threshold energies and Q-values (Audi et al., 2003) 
were retrieved through the Qtool system (Qtool, 2011). The symbol ε stands for EC 
and/or β+ decay. The italicised numbers refer to the last digits of the value (e.g., 99.9840 
10 means 99.9840±0.0010). 
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4.3.4 General Evaluation of Uncertainties 

The uncertainties on cross-sections were evaluated in the standard error propagation 

approach. From the following quadrature equation, the uncertainties in the cross-

sections were evaluated based on various relative independent sources following the 

experimental conditions of this work. The fractional uncertainties were thus analysed 

and quadratically summed to obtain cumulative uncertainties, and they are presented 

together with the cross-sections in Table 4.5 and 4.6 and Figs. 4.4 – 4.14 of this chapter. 

�Δσ (𝐸𝑖)
σ

�
2

= �ΔC(𝐸𝑖)
C(𝐸𝑖)

�
2

+ �Δφ
φ
�
2

+ �Δεγ
εγ
�
2

+ �ΔIγ
Iγ
�
2

+ �Δth
th
�
2

.                     (4.2) 

In which C(𝐸𝑖), is defined as γ-ray counts of assessed radionuclides as a function of 

gamma energy 𝐸𝑖, ΔC(𝐸𝑖) represents γ-ray counting statistical uncertainty, while other 

symbols maintained their earlier definitions.  

However, the above equation is not applicable for the uncertainty calculations of 

the 44gSc cross-sections due to the interfering gamma lines discussed in the Tables 4.3 

and 4.4, Fig 4.3 and section 4.3.5 of this chapter. The following more suitable equation 

(Usman et al., 2017) was therefore used for the propagation of the 44gSc uncertainty on 

the cross-section: 

�𝛥𝜎(𝐸𝑖)�
2

= �∑ 𝜕𝜎(𝐸𝑖)
𝜕𝑥𝑖

10
𝑖=1 Δ𝑥𝑖�

2
                                                (4.3) 

Where the 𝑥𝑖 runs from 1 to 10 and represents all the contributing factors such as flux, 

gamma intensities of the shared gamma lines, and so on which have effects on the cross-

sections of the 44gSc  

The uncertainties presented in Table 4.4 were based on the following assumed 

fractional partial uncertainties: uncertainties due to beam intensity (5%), γ-ray detection 
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efficiency of the detector (4%) and target thickness (2%). The retrieved uncertainty due 

to γ-ray intensities of the investigated radionuclides (0.001 to 5.833%) was adopted 

from the ENSDF library (Burrows, 2006, 2007, 2008; Chen et al., 2011; Singh & Chen, 

2015; Wu, 2000; Xiaolong, 2006). As indicated in the same Table, the uncertainty due 

to γ-ray counting statistics ranged from 0.2 to 41.4%. Uncertainties due to time scale 

during sample irradiation and measurements were not considered in the cross-section 

calculations as their effects are quite negligible, especially for long-lived radionuclides.  
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Table 4.4: Uncertainties in cross-sections. The uncertainties in the γ-ray 
intensities were taken from the ENSDF library via Live-chart 

(The ENSDF library data source (Burrows, 2006, 2007, 2008; Chen et al., 2011; 
Singh & Chen, 2015; Wu, 2000; Xiaolong, 2006). The uncertainties in the counting 
statistics were determined experimentally. Other sources were given some assumed 
uncertainties.) 

 

On the other hand, the uncertainty in the beam energy spread on each foil solely 

depends on the foil location in the stack. This was due to a beam straggling effect, the 

uncertainties due to thickness of target (~2%) and the initial beam energy (~2.5%). 

Thus, the uncertainty of the average alpha energy on the first Ti foil (the first foil facing 

the beam) was initially estimated as ±0.5 MeV but eventually increased along the stack 

to ±1.3 MeV until it reached on the final Ti foil. The estimated uncertainties in the α-

beam energy for all energy points are indicated in Tables 4.5 and 4.6 and Figs. 4.5 – 

4.15. 

Nuclide of 
interest 

Uncertainties (%) 
γ-ray intensity 

(ΔIγ/ Iγ) 
beam 

intensity 
detector 

efficiency 
Target 

thickness 
γ-ray 

counting 
statistics 

Total 
uncertainty 

51Cr 0.101 

5 4 2 

0.2 – 28.8 6.7 – 29.6 
49Cr 3.571 0.8 – 25.9 7.6 – 27.0 
48Cr 2.000 1.0 – 2.9 7.1 – 7.6 
48V 0.089 1.1 – 11.7 6.8 – 13.5 
43K  

(373 keV) 
0.230 11.4 – 12.77 

13.3 – 14.4 
43K 

 (617 keV) 
0.758 16.19 – 27.97 

17.5 – 28.8 
43Sc 3.111 12.1 – 22.3 14.2 – 23.5 

44mSc 0.346 0.5 – 23.7 6.7 – 24.6 
44gSc 0.400 (I1157,g) 

5.833 (I1157,m) 

0.346 (I271) 

0.071 (b IT) 

1.1 – 2.6 

(1157 keV), 

1.2 – 2.6 
(271 keV) 

6.8 – 7.3 

46g+mSc 0.001 0.9 – 39.5 6.8 – 40.1 
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4.3.5 Correction for Interfering Gamma Lines 

During decay process of radionuclides, some radionuclides share certain (common) 

gamma lines, and this has an inference effect on the cross section. The counts in such 

situation are cumulative for the radionuclides which shared the same gamma line 

energy. Two phenomena related to the present studies in which such gamma line 

interferences are seen, firstly, when one or more radionuclide in a Metastable state 

decays to its corresponding ground state. The second possibility is when two or more 

radionuclides decay to the same final radionuclides, such as the case of 48Sc and 48V, 

both decaying to stable 48Ti. A computational technique may be necessary to separate 

the gamma lines, especially if their half-lives are very close. 

Gamma counts 𝐶γ contributed by both metastable (with properties 𝜆𝑚, f𝑚, 𝐼𝑚,𝜎𝑚) 

and ground state (with properties 𝜆𝑔, f𝑔, 𝐼𝑔, 𝜎𝑔) of a particular radionuclide from a 

specific shared gamma line can be separated computationally by considering all 

contributing processes, as in the following equation (Otuka et al., 2017). 

𝐶γ = 𝑛𝜑εγ(𝐴gs + 𝐴ms + 𝐴msIT),                  (4.4)

  

Where n is the areal atom number density and; 

𝐴gs = 𝜎𝑔𝐼𝑔
𝑓𝑔
𝜆𝑔

,                                                                        (4.5) 

 

𝐴ms = 𝜎𝑚𝐼𝑚
𝑓𝑚
𝜆𝑚

,                                                                          (4.6) 

and 
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𝐴msIT = 𝜎𝑚𝐼IT𝐼𝑔
𝜆𝑚

𝜆𝑚−𝜆𝑔
�𝑓𝑔
𝜆𝑔
− λ𝑔

λ𝑚

𝑓𝑚
𝜆𝑚
�,                                        (4.7) 

And the time related factors 𝑓𝑚 and 𝑓𝑔 are defined as follows; 

𝑓𝑚 = [1 − exp (−𝜆𝑚𝑡𝑖)] exp(−𝜆𝑚𝑡𝑐)[1 − exp (−𝜆𝑚𝑡𝑚)],    (4.8) 

and 

𝑓𝑔 = �1 − exp �−𝜆𝑔𝑡𝑖�� exp�−𝜆𝑔𝑡𝑐��1− exp �−𝜆𝑔𝑡𝑚��,    (4.9) 

Rearranging the above equations, a single formula is obtained. For the computation 

of the independent production cross-section of 44gSc as an example, the equation below 

is obtained. Using C1157 for the net counts via 1157 keV gamma line (with ε1157 as its 

detection efficiency) and C271 as the net counts via the 271 keV gamma line (with ε271 

as its detection efficiency), the independent 44gSc production cross-section (without the 

shared 44mSc cross sections) can be calculated by the following equation (Usman et al., 

2017); 

σ (𝐸𝑖) = 𝜆𝑔
𝑡hρφ(1− 𝑒−𝜆𝑔𝑡𝑖𝑟𝑟)(𝑒−𝜆𝑔𝑡𝑐𝑜𝑜)(1− 𝑒−𝜆𝑔𝑡𝑚𝑒𝑎)

  �𝐶1157(𝐸𝑖)
ε1157

− 𝐶271(𝐸𝑖)
ε271

𝐼1157,𝑚
𝐼271

−

𝐶271(𝐸𝑖)
ε271

𝑏𝐼𝑇
𝐼1157,𝑔

𝐼271

𝜆𝑚
2𝜆𝑔

𝜆𝑚−𝜆𝑔
� 1
𝜆𝑔

2
(1− 𝑒−𝜆𝑔𝑡𝑖𝑟𝑟)(𝑒−𝜆𝑔𝑡𝑐𝑜𝑜)(1− 𝑒−𝜆𝑔𝑡𝑚𝑒𝑎)

(1− 𝑒−𝜆𝑚𝑡𝑖𝑟𝑟)(𝑒−𝜆𝑚𝑡𝑐𝑜𝑜)(1− 𝑒−𝜆𝑚𝑡𝑚𝑒𝑎)
− 1

𝜆𝑚
2��   (4.10)   

Where λg and λm are the decay constants of 44gSc and 44mSc, respectively, I1157,g and 

I1157,m are the emission probabilities of the 1157 keV gamma-lines directly from 44gSc 

and 44mSc, respectively, I271 is the emission probability of the 271 keV gamma line, and 

bIT is the isomeric transition probability of 44mSc (Otuka et al., 2017). All other symbols 

maintain their previous definitions. 
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Figure 4.3 A Sketch of Decay Scheme of 44gSc (adopted from Otsuka et al. 2016) 

 

 

Figure 4.4: A spectrum of titanium foil showing peaks of gamma lines 
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4.3.6 Thick Target Yield Calculation 

Excitation functions and experimental thick target yields are an essential tool in 

nuclear reaction processes and their knowledge in every production route on specific 

metallic targets are very essential for optimisation of the nuclear processes. One of such 

applications of such tools is seen in the processes of developing a high current large-

scale medical system (Otuka & Takacs, 2015). The practical (routine) thick target 

production yields are usually lower than the corresponding measurements made under 

more monitored conditions (the nominal yields). 

The calculation of the integral thick target yield for the assessed radionuclides was 

deduced using the measured cross-sections. Also, the stopping power of natTi within the 

investigated energy region of alpha particles from the threshold of each reaction process 

to the 50.2 MeV maximum energy, such that the total energy is assumed to be absorbed 

in the target. The integral thick target yield was thus calculated using the following 

equation (Bonardi et al., 2002; Shahid et al., 2015a);  

𝑌 = 𝐼𝛼𝜌𝜆 ∫ � σ (𝐸𝑖)
(𝑑𝐸 𝑑𝑥⁄ )𝐸

�𝐸𝑖𝑛
𝐸𝑡ℎ

𝑑𝐸,               (4.11) 

where the integral runs from the threshold energy (Eth) to the initial α particle energy 

(Ein), 𝐼α represents the number of incident α particles per electronic charge 

corresponding to 1 µA×1 h, and (−1/𝜌)(𝑑𝐸 𝑑𝑥⁄ )𝐸  is the stoping power of an α particle 

at the energy E. The other parameters in the equation maintain their previous 

definitions. 

4.4 Results and Discussions 

The measured production cross-sections of 43K,43,44m,44g,46,47,48Sc, 48V and 48,49,51Cr 

radionuclides are tabulated in Tables 4.5 and 4.6 while the corresponding excitation 

functions were shown in Figs. 4.5 – 4.15 together with those in the earlier experimental 
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measurements from the EXFOR library (Otuka et al., 2014) and the evaluated data in 

the TENDL-2014 library (Koning et al., 2014b) which provides the output of the 

TALYS code (Koning & Rochman, 2012). In some cases, the reported isotopic cross-

sections from some the earlier measurements (Baglin et al., 2004; Chang et al., 1973; 

Howard et al., 1974; Iguchi et al., 1960; Levkovskij, 1991; Morton et al., 1992; Vlieks 

et al., 1974; Vonach et al., 1983) were normalized by multiplying by their natural 

isotopic abundances for comparison with the present elemental cross-sections. The 

isotopic cross-sections reported by Levkovskij (Levkovskij, 1991) often cover an 

energy range where several Ti target isotopes may contribute to the production of the 

radionuclide of interest, and their isotopic cross-sections are often not directly 

comparable with our elemental cross-sections. Nevertheless, the Levkovskij’s isotopic 

cross-sections are plotted together with our new data after the above-mentioned 

normalisation but without further discussion. Correction to the recoil loss due to the 

high energy α beam irradiation was considered, except in some few cases where the 

gamma lines could not be seen, because of the complete decay of the short-lived 

nuclides before the measurements of the catcher foils. In the frame of irradiation of our 

very thin Ti target (10.40 μm) by the 50.4 MeV, we observed and corrected an average 

of 10 % recoil loss in most of the studied radionuclides. Specifically, the gamma lines 

of 43Sc, 44gSc, and 48Sc radionuclides were not observed on catcher foils, and thus no 

recoil corrections were made on their cross-sections. 
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Table 4.5: Measured cross-sections for natTi(α,x) 51,49,48Cr, 48V and 43K nuclear 
processes 

Energy 
(MeV) 

Cross-sections (mb) 
natTi(α,x)51Cr natTi(α,x)49Cr natTi(α,x)48Cr natTi(α,x)48V natTi(α,x)43K 

(372.760keV) 
natTi(α,x)43K 

(617.490 keV) 

50.2 ± 0.5 26.4 ± 2.2 
 40.2 ± 3.2 1.8 ± 0.1 133 ± 10 0.29 ± 0.03 0.28 ±0.13 

47.4 ± 0.5 34.3 ± 3.7 50.1 ± 3.9 1.7 ± 0.1 109 ± 08 0.17 ± 0.02 0.13 ± 0.04 

42.9 ± 0.5 35.8 ± 2.4 58.2 ± 4.5 1.6 ± 0.1 58.2 ± 4.6   
38.1 ± 0.6 46.4 ± 3.1 42.4 ± 3.2 2.1 ± 0.2 53.7 ± 4.1   
32.8 ± 0.7 61.8 ± 4.6 28.1 ± 2.3 3.0 ± 0.2 59.1 ± 4.4   
26.8 ± 0.8 72.8 ± 5.2 16.2 ± 1.3 2.9 ± 0.2 56.8 ± 4.1   

19.7 ± 1.0 209.0 ± 14.08 19.6 ± 2.2 1.1 ± 0.1 32.4 ± 2.3   
10.4 ± 1.5 412.6 ± 27.7 17.3 ± 1.3     

 

Table 4.6: Measured cross-sections for natTi(α,x)43,44m,44g,46g+m,47,48Sc nuclear 
processes 

Energy 
(MeV) 

Cross-sections (mb) 

natTi(α,x) 43Sc natTi(α,x) 44mSc natTi(α,x) 44gSc natTi(α,x) 46g+mSc natTi(α,x) 47Sc natTi(α,x) 48Sc 
50.2 ± 

0.5 0.95 ±0.13 16.0 ± 1.2 7.04 ± 0.52 76.8 ± 5.3 16.8 ± 1.1 1.4 ± 0.1 

47.4 ± 
0.5 0.45 ± 0.11 15.0 ± 1.2 6.25 ± 0.46 69.7 ± 4.9 17.5 ± 1.2 1.0 ± 0.1 

42.9 ± 
0.5  10.2 ± 0.9 4.00 ± 0.30 42.4 ± 3.0 18.1 ± 1.3 0.81 ± 0.07 

38.1 ± 
0.6  3.0 ± 0.2 1.04 ± 0.08 16.3 ± 1.2 18.3 ± 1.3 0.38 ± 0.03 

32.8 ± 
0.7  0.08 ± 0.02  4.4 ± 0.5 10.6 ± 0.7 0.19 ± 0.03 

26.8 ± 
0.8    2.1 ± 0.2 3.0 ± 0.2 0.01 ± 0.00 

19.7 ± 
1.0     0.04 ± 0.01  

10.4 ± 
1.5     0.04 ± 0.01  
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4.4.1 Production of 51Cr 

51Cr (T1/2 = 27.7025 d) decays via an EC (100%) process to 51V. The radionuclide 

was measured through its relatively intense gamma-line of Eγ = 320.0824 keV (Iγ = 

9.910%). Several groups previously reported the excitation function of this monitor 

reaction (Baglin et al., 2004; Chang et al., 1973; Hermanne et al., 1999b; Howard et al., 

1974; Iguchi et al., 1960; Levkovskij, 1991; Michel et al., 1983; Morton et al., 1992; 

Peng et al., 1998; Uddin & Scholten, 2016; Vonach et al., 1983; Weinreich et al., 1980). 

The present excitation function is consistent with the recommended IAEA 51Cr monitor 

cross sections and with those by some other research groups as in the Fig. 4.5. The two 

data sets from the Levkoskij group (Levkovskij, 1991) on the enriched samples show 

lower cross-sections from 30 MeV and beyond. The extracted data from the TENDL-

2014 show lower values, especially in the peak region than most of the experimental 

data. 
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Figure 4.5: Excitation function of natTi(α,x)51Cr reaction. 

4.4.2 Production of 49Cr 

49Cr (T1/2 = 42.3 min) usually decays to 49V via an EC+β+ (100%) process. Among 

the three characteristic gamma lines of 49Cr shown in Table 4.2, the most intense Eγ 

=90.639 keV (Iγ = 53.2%) was used to determine its cross-sections. Figure 4.6 shows 

the present new measured cross-sections in comparison with the available previous 

experimental data (Howard et al., 1974; Levkovskij, 1991; Vlieks et al., 1974) and also 

the theoretical data in the TENDL-2014 library. Below 30 MeV, the present cross-

sections show consistency with the previous experimental data and TENDL-2014. In the 

high-energy region, there are considerable discrepancies among the experimental data 

and also with the theoretical data. 
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Figure 4.6: Excitation function of natTi(α,x)49Cr reaction 

4.4.3 Production of 48Cr 

The formation and the characteristic gamma lines of 48Cr (T1/2 = 21.56 h) are 

presented in Table 4.2. The production cross-sections of 48Cr were calculated using its 

intense gamma line of Eγ = 308.24 keV (Iγ = 100%). The measured data are compared 

with the available experimental data (Hermanne et al., 1999b; Levkovskij, 1991; Michel 

et al., 1983; Peng et al., 1998; Uddin & Scholten, 2016; Weinreich et al., 1980) and the 

theoretical data in Fig 4.7. The present results show a good agreement with some of the 

earlier measurements (Hermanne et al., 1999b; Michel et al., 1983; Uddin & Scholten, 

2016). The normalised cross-sections for the enriched isotopes of 46,47,48Ti (Levkovskij, 

1991) show very low cross-sections. TENDL-2014 presents a shape like the present 

experimental excitation function but not in magnitude. 
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Figure 4.7: Excitation function of natTi(α,x)48Cr reaction. 

 
4.4.4 Production of 48V 

As 48V (T1/2 = 15.9735 d) and 48Sc (T1/2 = 43.67 h,) decay to the same stable 

nuclide 48Ti, some of their gamma lines are common as shown in Table 4.2. Thus, in 

this work, a weak but independent gamma line of Eγ = 944.130 keV (Iγ = 7.870%) was 

adopted to determine the activity of 48V. The main contributing reactions to form 48V 

are presented in Table 4.2, including the contribution of 48Cr via an EC decay (100%). 

Four experimental studies (Hermanne et al., 1999b; Levkovskij, 1991; Michel et al., 

1983; Uddin & Scholten, 2016) are available in the literature. In Fig. 4.8, all 

experimental data are not in good agreement with one another. Also, there are three sets 

of the experimental data by (Levkovskij, 1991) on different isotopes of 46,47,48Ti but all 

 

104 

 

Univ
ers

ity
 of

 M
ala

ya



 

show lower values when compared with the present measurement. On the other hand, 

TENDL-2014 presents higher values compared to the present data above 40 MeV. 

 
Figure 4.8: Excitation function of natTi(α,x)48V reaction. 

4.4.5 Production of 43K 

The cross-sections of 43K (T1/2 = 22.3 h) radionuclide are contributed by all the stable 

Ti isotopes via various reaction Q-values listed in Table 4.2. The 43K has a gamma line 

(Eγ = 372.760 keV) very close to that of 43Sc. Thus, to avoid possible contamination of 

the 43K cross-sections by 43Sc, a longer cooling period of over 40 hours were ensured 

before its measurement, as reported in Table 4.1 of this chapter. There was only one 

previous experimental data for comparison in the literature. Two most intense gamma 

lines, Eγ = 372.760 keV, (Iγ = 86.80%) and Eγ = 617.490 keV (Iγ = 79.2%) of this 

radionuclide were both used separately for the calculations of the cross-sections. Both 

results from the gamma lines agree with each other. The new numeral cross-sections for 

both gamma lines have been reported in Table 4.5 while Fig. 4.9 presents the excitation 
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functions for both gamma lines and the literature data. As seen in the Figure, the 

evaluated TALYS code via both the TENDL-2014 (Koning et al., 2014b) and TENDL-

2015 (Koning et al., 2015) have been used for comparison with the present study. 

Although the two libraries agree with each other, however, both the theoretical results 

from the two gamma lines show some deviations to the present experimental cross 

sections. The theoretical results are largely discrepant to the previously reported 

literature data, especially at higher energy. A slight improvement could be seen in the 

prediction capability of the TENDL-2015 library over its older version, the TENDL-

2014. 

 
Figure 4.9: Excitation functions of natTi(α,x)43K reaction. 

 
4.4.6 Production of 43Sc 

43Sc (T1/2 = 3.891 h) decays to the stable 43Ca via an EC decay (100%). The cross-

section of this radionuclide was determined using the only available intense and 
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interference free gamma line (Eγ = 372.9 keV, Iγ = 22.5%). Table 4.6 contains the 

numeral cross-sections of this radionuclides. Figure 4.10 shows the present excitation 

function together with the literature data and the evaluated data of TENDL-2014 library. 

There is only one previous study (Michel et al., 1983) but above the present investigated 

energy region. The consistency of the TENDL-2014 with the present data gradually 

deviates as the energy increases. 

 
Figure 4.10: Excitation function of natTi(α,x)43Sc reaction. 

 
4.4.7 Production of 44mSc 

The formation of 44mSc (T1/2 = 58.61 h) cross sections follows the direct reactions 

mentioned in Table 4.2. The radionuclide decays partly to the stable 44Ca through an EC 

(1.20%) decay process and mostly to 44gSc via an IT (98.80%) process. The cross-

sections of this radionuclide were determined using the high intensity and interference 

free gamma line 271.241 keV (Iγ = 86.7%). The available literature data (Hermanne et 
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al., 1999b; Levkovskij, 1991; Michel et al., 1983), as well as the theoretical evaluated 

data extracted from the TENDL-2014 library, are compared with the present results in 

Fig. 4.11, and show consistency among one another. 

 

Figure 4.11: Excitation function of natTi(α,x)44mSc reaction. 

 
4.4.8 Production of 44gSc 

44gSc (T1/2 = 3.97 h) decays to the stable 44Ca via an EC process (100%). Principally, 

two nuclear processes contribute to the formation of the 44gSc cross-sections: the direct 

nuclear reactions listed in Table 4.3 and the IT decay (98.80%) of 44mSc (T1/2 = 58.61 h). 

From net counts of both 271 and 1157 keV gamma lines in the same spectrum, the 

cross-sections of the 44gSc can be determined by the equation 4.9. With the help of this 

equations, the contributions of 44mSc via the 1157 keV gamma line as well as through 

the isomeric transition to 44gSc were removed. The presented results here are thus 

independent cross-sections of 44gSc, measured within its first half-life and are presented 
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in the Fig. 4.12 and Table 4.6 of this chapter.  Note that the measurement of 44gSc within 

the first half-life helped to minimise the possible slow contribution of 44Ti (T1/2 = 60 y) 

through its gradual decay (EC = 100%) to 44gSc.  

As shown in Fig. 4.12, the present data show reasonable agreement with the previous 

experimental studies (Hermanne et al., 1999b; Levkovskij, 1991; Michel et al., 1983) as 

well as with the theoretical TENDL-2014 data. 

 
Figure 4.12: Excitation function of natTi(α,x)44gSc reaction. 

 
4.4.9 Production of 46m+gSc 

The 46Sc has an isomeric state (46mSc) of very short half-life (T1/2 =18.75 s) which 

could not be measured in the present experimental conditions and eventually decayed 

within five mins of EOI to 46gSc (T1/2 =83.79 d) via an IT (100 %) process. Thus, the 

measured data are the total cross-sections of 46g+mSc. The 46gSc decays to the stable 46Ti 

via an emission of a β- (100%) particle. Identification and analysis of activities of 46gSc 
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were done through its high intensity and interference free gamma line of Eγ = 889.277 

keV (Iγ = 99.9840%). The possible contributing reactions for the formation of 46gSc 

radionuclide are listed in Table 4.6. In Fig. 4.13, the present data are compared with 

those in literature (Hermanne et al., 1999b; Levkovskij, 1991; Uddin & Scholten, 2016) 

and the TENDL-2014 library data. They agree with one another, except for the isotopic 

data normalised from 47Ti given in Levkovskij (Levkovskij, 1991). 

 
Figure 4.13: Excitation function of natTi(α,x) 46g+mSc reaction.  

 
4.4.10 Production of 47Sc 

The relatively long-lived 47Sc (T1/2 =3.3492 d) was formed via the direct reactions 

given in Table 4.3, and decays to the stable 47Ti via an emission of a β- (100%) particle. 

The activity of 47Sc was determined using its characteristic intense gamma line of 

159.381 keV (Iγ = 68.3%). There exist three previous studies (Hermanne et al., 1999b; 

Levkovskij, 1991; Michel et al., 1983) in the literature, whereas (Hermanne et al., 

1999a) is a preliminary report of the experiment published in (Hermanne et al., 1999b). 
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As shown in Fig. 4.14, the new data show consistency with those reported by  

(Hermanne et al., 1999b; Levkovskij, 1991; Michel et al., 1983) except for the 

normalised data of (Levkovskij, 1991) from the 49Ti target nuclide. TENDL-2014 

overestimated the present cross-sections almost for the whole energy region. 

 
Figure 4.14: Excitation function of natTi(α,x)47Sc reaction. 

 
4.4.11 Production of 48Sc 

48Sc (T1/2 = 43.67 h) was formed via the contributing reactions shown in Table 4.3 

and decays via a β- (100%) particle emission to the stable 48Ti. Several gamma lines of 

this radionuclide (see Table 4.3) are shared with 48V. Present cross-sections were 

measured using the independent gamma line of 1037.522 keV (Iγ = 97.6 %). Four 

earlier studies (Hermanne et al., 1999b; Levkovskij, 1991; Michel et al., 1983; Uddin & 

Scholten, 2016) were found in the database. In Fig. 4.15, the present data are compared 

with the earlier measurements as well as TENDL-2014 which slightly overestimates the 
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cross-sections of the present study but agree with those reported in Ref. (Uddin & 

Scholten, 2016). 

 
Figure 4.15: Excitation function of natTi(α,x)48Sc reaction. 

 
4.4.12 Thick Target Yield Calculations 

The thick target yields have been deduced for all the investigated radionuclides. 

There is only one direct measurement of thick target yield in the literature for 51,49,48Cr 

and 48V productions by one group (Abe et al., 1984). The present calculated values have 

been compared with their directly measured thick target yields in Figs. 4.16 and 4.17. 

The discrepancy seen in the 51Cr production is probably due to lack of our experimental 

data point around the peak region of the excitation function (~15 MeV). Figs. 4.18 and 

4.19 show the thick target yields of 43K,43,44g,44m,66,47,48Sc for which direct measurements 

are not seen in the EXFOR library. From the irradiation of the natTi target with 50.2-

MeV α beam, the calculated yields indicate that 49Cr (363.45 MBq/µA-hr) has the 
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highest production yield among all the studied radioactive isotopes. Generally, the 

scandium radionuclides have demonstrated very low integral yields, although their 

corresponding cross sections via the present investigated production route are also very 

low. Therefore, for the scandium radionuclides, the 44gSc has the highest yield (3.35 

MBq/µA-hr) among them radionuclides. Similarly, the observed low integral yield 

of 46gSc (0.080 MBq/µA-hr.) could be attributed to its long half-life (83.79 d).  

 

 
Figure 4.16: Integral thick target yield for 51,48Cr,48V 
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Figure 4.17: Integral thick target yield for 49Cr 

 

 
Figure 4.18: Integral thick target yields for 43K,43, 46g+m, 48Sc 
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Figure 4.19: Integral thick target yields for 44m, 44g, 47Sc 

 
4.5 Conclusions 

In this chapter production cross-sections for, 48,47,46g+m,44g,44m,43Sc, 51,49,48Cr, 48V, 43K 

and radionuclides are reported via α particles bombardment on natural titanium in the 

region of 10. – 50.2 MeV. Apart from this, the integral thick target yields were 

calculated for all the reported radionuclides using the measured cross-sections, 

assuming total energy was absorbed. For the production of 46g+m,48Sc radionuclide, there 

exist only one previous work in the high-energy region and another for 

the 48V and 48,49Cr production in the same high energy region before the present work. 

There is one direct measurement for the thick target yields of 51,49,48Cr and 48V 

radionuclides in the literature, but none for the 43,44m,44g,46,47,48Sc and 43K radionuclides 

before the present study. The newly measured cross-sections were compared with the 

earlier experimental data and with the evaluated data taken from the TENDL-2014 

library. Some of the literature data showed discrepancies to the present results. 
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Similarly, discrepancies between the experiments and the TENDL-2014 library are 

found for several reaction cross-sections of the investigated radionuclides. Therefore, 

the new cross-sections might be useful to remove the discrepancy among the previous 

measurements and to enrich the database on this aspect. The present result could also 

play an important role to enhance the prediction capacity of the TALYS nuclear 

reaction code.  
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CHAPTER 5: EXCITATION FUNCTIONS OF ALPHA-INDUCED   
REACTIONS ON NATURAL COPPER 

 
5.1 Introduction 

This chapter presents the experimental components and findings based on 

bombarded natural copper metal by the alpha beam. The theoretical contributing 

reactions for the formation of each assessed radionuclide have been retrieved via 

relevant online interfaces. The excitation functions of radionuclides are presented along 

with available literature data for comparison, as well as the theoretical prediction of 

Talys code. 

The metallic copper was used in the stack on the one hand as an energy degrader, and 

on the other hand, it also serves as an excellent source of gallium, zinc and some other 

radionuclides. The excellent production cross-sections of several useful radionuclides 

from the metal are too good to be overlooked. 

5.2 Literature Review 

Production of radioactive isotopes (RIs) through the bombardment of metallic targets 

by light charged particles has attracted huge attention, especially as they find increasing 

applications in different fields such as nuclear medicine, environmental science, 

agriculture and various industrial procedures. The multitude of RIs demand is leading to 

more quests for greater accuracy of data, optimised production and alternative 

production routes. Despite increasing number of variable energy cyclotrons in the 

world, production of some radionuclides, especially via α irradiation, has not yet been 

optimised. Studies on production of RIs via (p,x) route are relatively active compared to 

other light charged particle irradiation routes, though (d,x) and (α,x) routes are 

sometimes more effective than the (p,x) route for the production of the same RIs. 
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Natural and enriched isotopes of copper (Cu) have both been used as target materials 

to produce medically and technologically significant RIs such 

as 66,67Ga, 65Zn, 64Cu, 57Co, etc. Among them, in addition to the increasing use of 

gallium (Ga) RIs for beam monitoring, 66Ga has recently been tested as 66Ga-labeled 

nano-graphene in an in vivo study and found to have high potentials for PET imaging of 

vasculature (Hong et al., 2012). The proposal of the positron emitting 66Ga(T1/2 = 9.49 

h) as a potential substitute to 68Ga (T1/2 = 67.71 min) in PET is partly attributed to the 

longer half-life of the 66Ga (Lopez-Rodriguez et al., 2015). Moreover, the suitable decay 

characteristics of 66Ga (EC: 43.5%; β+: 56.5%), symbolized by its abundant unique high 

energy β+ particle (4.15 MeV) emission, is considered to be very useful in therapy 

(mean range in human tissue: 7.6 mm) (Lopez-Rodriguez et al., 2015). It is also useful 

as a tracer in a long-term study of physiological processes and labelling of 

macromolecules with slow pharmacokinetics (Lopez-Rodriguez et al., 2015; Ugur et al., 

2002). The Auger-electron-emitting radionuclides such as 67Ga and 125I have cancer 

therapeutic potentials because of their short-range tissue penetration and high level of 

cytotoxicity (Koumarianou et al., 2014; O'Donoghue & Wheldon, 1996), leading to less 

collateral damage to the neighbouring normal tissues of the cancerous cells. The short 

half-life of 67Ga (T1/2 = 3.2617 d) and its emission of 4.7 Auger and Coster-Kronig 

electrons per decay makes 67Ga-labeled compounds clinically more suitable to patients 

than the prototype 125I (T1/2 = 59.4 d) counterpart (Koumarianou et al., 2014). 

Additionally, besides its popularity as a source in Mössbauer spectroscopy (Adler & 

Ghosh, 2003; Schröder et al., 2006; Tsoncheva et al., 2015), 57Co is similarly used as a 

standard in γ-ray spectrometry calibration as well as single photon emission computed 

tomography (SPECT) (Al Saleh et al., 2007). 60Co radionuclide, with its relatively long 

half-life, is also a popular radionuclide for γ-ray calibration as well as a source for γ-ray 

during simple irradiations of biological samples. 
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A critical review of the vast experimental literature shows that both natural and 

enriched copper isotopes have been employed in the past as targets for the cross-section 

measurements. As an example, a large part of the previous studies focused mostly on 

the production cross-sections of 66,67Ga and 65Zn for monitoring α beam. However, large 

discrepancies exist among the reported data, despite employing similar basic 

experimental procedures. More so, the ongoing Coordinated Research Project by IAEA 

on “Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope 

Production” also concludes that re-examination of α-induced 66,67Ga and 65Zn 

production cross-sections is compulsory (Nichols & Capote Noy, 2013). Furthermore, 

the data on production cross-sections of radionuclides of cobalt through this production 

route are quite scarce. In the present work, new data of the α-particle induced reaction 

cross-sections on natural Cu have been measured hoping to reduce the observed large 

variations among the experimental literature and to also enrich the database, more 

especially for the productions of cobalt radionuclides. 

5.3 Materials and Method 

The experimental procedures are related to those in the previous chapters as well as 

in some previous articles of this group (Khandaker et al., 2015; Khandaker et al., 2014; 

Usman et al., 2016a). The well-established stacked foil activation technique was 

employed together with HPGe γ-ray spectrometry. 

5.3.1 Targets Details and Irradiation 

High purity foils of copper metal (purity: 99.9%; thickness: 9.71 μm; company: 

Nilaco, Japan) with its natural isotopic abundance (63Cu: 69.15%; 65Cu: 30.85%) 

(Berglund & Wieser, 2011) were the main target materials to be presented in this 

chapter. Several other foils of natural titanium (purity: >99.6%; thickness: 10.40 μm; 

company: Goodfellow, UK) and holmium (purity: 99%; thickness: 12.29 μm; company: 
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Goodfellow, UK) were inserted as intermittent fashion in the stack, serving in each case 

either as energy degraders or beam intensity monitors. For beam monitoring purpose, 

the stack was arranged in such a way that a Ti foil took the front position of the stack so 

as to receive the initial beam energy while the subsequent foils received the degraded 

energy along the stack. Accurate determination of thicknesses of the used metallic foils 

was ensured by mass measurements using a high precision electronic balance. For the 

assurance of equal beam to all foils of the targets and monitor, the used foils were 

prepared with equal size of 15 × 15 mm2. The stack prepared was then placed in a 

(water-cooled) target holder that served as a Faraday cup. The targets in the holder were 

then irradiated for 2.0 h by a 51.2-MeV α beam from the AVF cyclotron of the RIKEN 

RI Beam Factory, Japan. The beam was collimated to 9-mm diameter via a tantalum 

slit. A 194 nA average beam current was recorded during the irradiation. 
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Figure 5.1: Beam current recorded by the Faraday-cup-like target holder 

  

 

Figure 5.2: A spectrum of copper foil showing gamma peaks 
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5.3.2 Analysis of γ-ray Spectra 

At the end of the stack bombardment, all the irradiated foils were transferred to the 

hot laboratory for the measurement of γ-rays from the activated foils. The 

measurements were done using a high resolution (1.85 keV FWHM at 1332.5 keV) 

HPGe γ-ray spectrometer (ORTEC; GEM-25185P and 52.0-mm thickness; operating 

voltage: +2000 V; relative efficiency: 25%) coupled to a 4096 multi-channel analyser 

with the associated electronics. The measured gamma activities from the irradiated Cu 

metals were started approximately 20 hours after their bombardment. The analysis of 

the γ lines of the assessed nuclides was done by using some cooling times of 20.9 h to 

22.3 h for 66Ga, 1.8 d to 2.4 d for 67Ga and 22.4 d to 23.9 d for 65Zn, 57,58gCo and 60gCo 

radionuclides. The measurements of the gamma activities were continuously repeated 

for several times to follow the pattern of the assessed radionuclides decay curves. The 

measurements were performed using the 1-, 3-, 5-, 10- and 15-cm sample-to-detector 

positions from the detector cap. The 3-cm minimum sample-to-detector distance was, 

however, the most chosen for the measurements of activities of the long-lived 

radionuclides so as to reduce the dead times and pile-up effect. To determine 

efficiencies of the HPGe detector used, a standard multiple γ-ray emitting point sources 

at each source-to-detector distance. The source comprises of the several radionuclides as 

follows: 241Am, 139Cs, 113Sn, 57Co,109Cd, 203Hg, 137Cs, 88Y, 85Sr and 60Co. The calibration 

mixed standard source was obtained from DBA Isotopes Products Laboratories (USA). 

The use of fifth order polynomial fitting (Khandaker et al., 2013; Nikolic et al., 2015; 

Osae et al., 1999) allowed determination of efficiencies for the γ-energies of interest: 

ln(𝜀) = � 𝑎j
5

𝑗=0
�ln(𝐸)�

𝑗
                                                                        (5.1) 
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(ε: photo-peak efficiency of the detector, E: emitted γ energy of the radionuclide and aj 

fitting coefficient). 

The values in Table 5.1 represent the coefficients (aj) for the fitting of the efficiency 

response of each photon energy from the standard multiple γ-ray emitting point source 

in the detector up to 15-cm distance. The fitted efficiency curves for various source-to-

detector distances are shown in Fig. 5.3. 
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Table 5.1: The coefficients of the polynomial fitting for efficiency of the HPGe 
detector 

Source to 
detector 
distances 

(cm) 

Coefficients of the polynomial fitting Fitting 
Parameter 

(R2) 

a0 a1 a2 a3 a4 a5 

1.0 -8.27E+02 6.85E+02 -2.27E+02 3.75E+01 -3.09E+00 1.02E-01 0.54 

3.0 -5.78E+02 4.64E+02 -1.49E+02 2.38E+01 -1.89E+00 6.00E-02 0.66 

5.0 -5.52E+02 4.42E+02 -1.42E+02 2.26E+01 -1.80E+00 5.72E-02 0.65 

10.0 -5.44E+02 4.33E+02 -1.38E+02 2.21E+01 -1.75E+00 5.56E-02 0.60 

15.0 -4.32E+02 3.34E+02 -1.04E+02 1.62E+01 -1.26E+00 3.90E-02 0.61 
 

 

Figure 5.3: Efficiency response of the HPGe detector as a function of gamma 
energy. 
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5.3.3 Determination of Initial Beam Energy and Intensity and Estimation of foil 

Energies 

As discussed in chapter four, the initial beam energy was determined using the 

recently installed TOF system at the Nishina Centre. The degradation of the initial 50-

MeV alpha energy along the stack of the foils was calculated by the code SRIM-2003 

(Ziegler, 2004), a popular computer program for energy degradation in metallic layers. 

Throughout the stack, foil location is the major cause of the overall beam span and 

uncertainty on each foil. The uncertainty of the incident α energy has thus been 

calculated at ±0.75 MeV for the first Cu foil facing the beam. Alon the stack, the initial 

uncertainty value eventually increased to ±1.90 MeV on the last Copper foil. The 

increase was attributed to the effect of beam straggling, the (~1%) uncertainties 

surrounding the initial alpha beam (MeV) as well as (~1%) uncertainties in target 

thickness. The sum of estimated α-beam energy span and uncertainty for all data points 

are indicated in tables and figures of this chapter. A separate section has discussed the 

uncertainties on cross-sections from all possible contributions. 

The intensity of the alpha beam was calculated from the measured activities of the Ti 

foil made to take the front position of the stack. The IAEA recommended natTi(α,x)51Cr 

monitor reaction (σ = 26.4 mb at Eα = 50 MeV) (Qaim et al., 2002) was used during the 

calculation of the beam intensity. The calculated intensity from the first foil was then 

considered to be constant throughout the stack for the calculation of the cross-sections 

from other foils within the stack. The 51Cr radionuclide cross-sections from the other Ti 

metals of the irradiated stack were also calculated and plotted against the incident 

energies to ascertain further that the beam intensity was constant throughout the stack. 
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Figure 5.4: Excitation function of the natTi(α,x)51Cr reactions for beam 
monitoring. 

 

5.3.4 Computation of Cross-sections of the Assessed Radionuclides 

In the present work, the following popularly known activation equation (Khandaker 

et al., 2010; Khandaker et al., 2011) for cross-section evaluation was employed to 

calculate the cross-sections of the assessed radionuclides: 

σ (𝐸𝑖) = 𝜆𝐶(𝐸𝑖)
εγ𝐼γ𝑡hρφ(1− 𝑒−𝜆𝑡𝑖𝑟𝑟)(𝑒−𝜆𝑡𝑐𝑜𝑜)(1− 𝑒−𝜆𝑡𝑚𝑒𝑎)

 ,                       (5.2) 

From which 𝐶(𝐸i) stands for the net gamma activities (counts) of a photo-peak area 

under consideration, at an i-th position of a foil, λ is the decay constant (𝜆 = ln 2 𝑇1
2

� ) 

of the assessed radioisotupe and εγ is for the gamma ray efficiency of detection at 

certain sample location in the detector. The 𝐼γ stands for the (absolute) γ intensity of the 

used γ energy, 𝑡h for the thickness of the bombarded metallic foil and ρ represents the 

target (foil) atomic density (8.49 × 1022 atoms/cm3). Also, the other symbols and signs 
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used in the formula are φ for the calculated α beam intensity (5.45 × 1011 partc./s) 

whereas the tirr, tmea and tcoo respectively represent the times for irradiation, 

measurement and cooling,. 

The gamma computer program by ORTEC (Maestro; Ver. 7.01) (Ortec, 2012) was 

employed during the spectral analysis. The relevant decay data for the assessed 

radionuclide productions are presented in Table 5.2 and were extracted from the 

ENSDF library (Bhat, 1998; Browne & Tuli, 2010a, 2010b, 2013; Junde et al., 2005; 

Nesaraja et al., 2010). The data was accessed via the NuDat 2.6 interface (NuDat 2.6, 

2011). The Q-values and threshold energies presented in Table 5.2 were computed 

following the atomic mass evaluation (Audi et al., 2003) and accessed via the Q-tool 

system (Qtool, 2011). 
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Table 5.2: The extracted evaluated decay data of the assessed radionuclides 
accessed via the ENSDF library  

(The ENSDF library (Bhat, 1998; Browne & Tuli, 2010a, 2010b, 2013; Junde et al., 
2005; Nesaraja et al., 2010) data were extracted from the Nudat (NuDat 2.6, 2011) 

while the Q-values and threshold energies (Audi et al., 2003) extracted from the Qtool 
system (Qtool, 2011)). 

  
Nuclide Half-life Eγ(keV) Iγ (%) Contributing 

reaction 
Q-value 
(MeV) 

Thresho
ld  
(MeV) 

66Ga 9.49 h 833.5324 5.9 63Cu(α,n)66Ga -7.50 7.98 
  1039.220 37.0 ± 2.0 65Cu(α, 3n)66Ga -25.33 26.89 
67Ga 3.2617 d 93.31 38.81 63Cu(α,γ)67Ga 3.72 0 
  184.576 21.41 65Cu (α,2n)67Ga -14.10 14.97 

  300.217 16.64 ± 0.12    
  393.527 4.56    
65Zn 243.93 d 1115.54 50.04 ± 0.10 63Cu(α,d)65Zn -10.38 11.04 

    63Cu(α,n + p)65Zn -12.60 13.40 
    65Cu(α,n + t)65Zn -21.95 23.30 

    65Cu(α,2n + d)65Zn -28.21 29.94 

    65Cu(α,3n + p)65Zn -30.43 32.31 
    EC+β+decay 

(100%) of 65Ga 
(15.2 min) 

  

57Co 271.74 d 122.0607 85.60 ± 0.17 63Cu(α,2n+ 2α)57Co -24.81 26.38 

  136.4735
6 

10.68 63Cu(α,2t + α)57Co -36.13 38.43 

    63Cu(α,2n+p+t+ 
α)57Co 

-44.62 47.45 

    63Cu(α,3n+3He+ 
α )57Co 

-45.38 48.27 

    63Cu(α,n + d + t + 
α)57Co 

-42.39 45.09 

    65Cu(α,4n+2α )57Co -42.63 45.26 
58gCo 70.86 d 810.7593 99.450± 0.010 63Cu(α,n + 2α)58Co -16.23 17.26 

    63Cu(α,d + t + 
α)58Co 

-33.82 35.97 

    63Cu(α,n + p + t + 
α)58Co 

-36.04 38.34 

    63Cu(α,2n+3He+α)58

Co 
-36.81 39.15 

    63Cu(α,n + 
2d+α)58Co 

-40.08 42.62 

    63Cu(α,2n+p+d+α)58

Co 
-42.30 44.99 

    63Cu(α,3n+2p+α)58C
o 

-44.52 47.36 

    65Cu(α,3n+2α)58Co -34.06 36.16 

    65Cu(α,n+2t+α)58Co -45.39 48.19 
    IT decay (100%) 

of 58mCo (9.10 h) 
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Table 5.3: Decay data of the radionuclides adopted in this studies (continued) 

 

 

5.3.5 Computation of Uncertainties on Cross-sections  

The present work has evaluated and quadratically summed all the possible 

uncertainties from several sources, following the experimental conditions of the present 

work, to get the total uncertainties. These uncertainties have been exclusively reported 

(Table 5.4), and they have also been presented with the cross-sections in Table 5.5 and 

Figs. 5.5 – 5.10. The assumed fractional uncertainties during the evaluation are as 

follows: the (5%) uncertainties from beam intensity, (4%) for detector efficiency and 

(1%) for the thickness of target. The uncertainties for the intensities (0.01 to 5.41%) of 

the assessed γ-ray of the studied nuclides were accessed from the ENSDF library (Bhat, 

1998; Browne & Tuli, 2010a, 2010b, 2013; Junde et al., 2005; Nesaraja et al., 2010). 

Additionally, the uncertainties due to the statistics of γ-ray counting (0.12 to 16.3 %) 

have also been evaluated. 

  

Nuclide Half-life Eγ(keV) Iγ (%) Contributing 
reaction 

Q-value 
(MeV) 

Threshol
d (MeV) 

60gCo 1925 d 1173.228 99.85 ± 
0.03 

63Cu(α,3He+α)60Co -18.86 20.06 

  1332.492 99.9826 63Cu(α,p+d+α)60Co -24.35 25.90 
    63Cu(α,n+2p+α)60Co -26.58 28.27 

    63Cu(α,p+t+3He)60C
o 

-38.67 41.13 

    63Cu(α,n+23He)60Co -39.44 41.95 

    63Cu(α,2d+3He)60Co -42.71 45.42 

    63Cu(α,d+t+2p)60Co -44.17 46.98 

    63Cu(α,n+p+d+3He)6

0Co 
-44.93 47.79 

    63Cu(α,n+3p+t)60Co -46.39 49.34 

    65Cu(α,n2α)60Co -16.11 17.10 

    IT decay (99.75%) 
of 60mCo (10.467 
min) 
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Table 5.4: Uncertainties (%) propagated to the total uncertainty in the cross-
sections 

(The uncertainties in beam intensity, detector efficiency and thickness of target were 
assumed based on the present experimental conditions while the uncertainty in γ-ray 
intensity was taken from the ENSDF library (Bhat, 1998; Browne & Tuli, 2010a, 
2010b, 2013; Junde et al., 2005; Nesaraja et al., 2010). 

 

5.4 Results and Discussions  

The reported production cross-sections for the 66,67Ga, 57,58,60Co and 65Zn have been 

presented with their corresponding uncertainties in Table 5.5. The corresponding 

excitation functions of these radionuclides are presented in the Figs. 5.5–5.10 together 

with the prior reported literature experimental data obtained from EXFOR database 

(Otuka et al., 2014) and the theoretical data of TENDL-2014 library (Koning et al., 

2014). The TENDL-2014 is the database for the compiled evaluated output data of the 

TALYS nuclear reaction code (Koning & Rochman, 2012). The cross-sections reported 

in some works from the isotopes of copper (Bhardwaj et al., 1988; Bryant et al., 1963; 

Didik et al., 1994; Graf & Münzel, 1974; Hille et al., 1972; Houck & Miller, 1961; 

Lebowitz & Greene, 1970; Levkovskij, 1991; Lin & Alexander, 1977; Mukherjee et al., 

1997; Navin et al., 2004; Porges, 1956; Porile & Morrison, 1959; Rao et al., 1991; Rizvi 

et al., 1987; Ruddy & Pate, 1969; Singh et al., 1994; Stelson & McGowan, 1964; 

Watson et al., 1973; Zhukova et al., 1970; Zweit et al., 1987) have been renormalized 

by multiplying their production cross-sections with the corresponding natural 

Product 
Nuclide 

Uncertainties (%) 
γ-ray 

intensity 

(ΔIγ/ Iγ) 

beam 
intensity 

detector 
efficiency 

Target 
thickness 

γ-ray 
counting 
statistics 

Total 
uncertainty 

66Ga 5.41 

5 4 1 

0.8 - 9.0 8.5-12.3 
67Ga 0.72 0.3 - 

16.3 
6.5-17.6 

65Zn 0.20 0.1 - 0.6 6.5-6.5 
57Co 0.20 1.3 - 6.1 6.6-8.9 

58gCo 0.01 0.3 - 1.3 6.5-6.6 
60gCo 0.03 4.9 - 

10.5 
8.1-12.3 
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abundances of the corresponding target isotopes (copper has two stable isotopes: 63Cu 

and 65Cu) employed. The “cumulative cross-sections” defined by the CNEA group 

(Bonesso et al., 1991; Nassiff, 1983; Ozafrán et al., 1989) in their original publications 

have been converted (normalized) in to the corresponding elemental cross-sections by 

multiplying the cross-sections in those publications with the atomic weight (63.5 g/mol) 

of natural copper. Following this conversion and some other renormalization procedures 

performed on the experimental literature data, some definitions are made in the text and 

Figures of this chapter as follows; 

• norm: The reported isotopic cross-sections are multiplied by natural isotopic 

abundances of target nuclides;  

• norm,+: The reported isotopic cross-sections are multiplied by their natural 

abundances and summed over two target nuclides (as a result of two or more 

reports of the same work such that a uniform symbol could be used to 

represent both data sets); 

• norm,*: The reported CNEA “cumulative cross-sections” are multiplied by 

the atomic weight of natural copper. 

The Figure 5.4 indicates that the currently measured monitor reaction, the 

natTi(α,x)51Cr cross-sections, renormalized to the IAEA recommended cross-sections 

(Qaim et al., 2002) are in agreement with the IAEA cross-sections below 50 MeV. 
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Table 5.5: Cross-sections for natCu(α,x)66,67Ga, 65Zn and 57,58,60Co reactions 

Energy 
(MeV) 

Cross-sections (mb) 

natCu(α,x)66Ga natCu(α,x)67Ga natCu(α,x)65Zn natCu(α,x)57Co natCu(α,x)58g+mCo 
natCu(α,x) 6

0g+mCo 
48.8 ± 0.8 86.6 ±7.1 37.9 ± 3.6 245.7 ± 16.1 2.9 ± 0.2 25.2 ± 1.6 3.7 ± 0.3 
45.2 ± 0.9 114.9 ± 9.4 48.6 ± 4.6 236.2 ± 15.5 0.36 ± 0.03 22.1 ± 1.4 2.4 ± 0.2 
40.5 ± 0.9 128.8 ± 10.6 78.3 ± 7.3 311.2 ± 20.4  13.5 ± 0.9 0.86 ± 0.10 
36.0 ± 1.0 86.7 ± 7.1 147.1 ± 13.8 566.0 ± 37.0  2.5 ± 0.2  
30.0 ± 1.2 28.1 ± 2.4 271.5 ± 25.4 813.9 ± 53.3    
23.4 ± 1.4 117.8 ± 9.7 281.4 ±26.3 411.0 ± 26.9    
16.4 ± 1.9 435.6 ± 35.6 22.9 ± 2.2 29.1 ± 1.9    

 

5.4.1 Independent Production Cross-sections of 66Ga 

The formation of 66Ga (T1/2 = 9.49 h) was only possible via the 63Cu(α,n)66Ga (Eth = 

7.98 MeV) and 65Cu(α,3n)66Ga (Eth = 26.89 MeV) reactions. Identification and analysis 

of this radionuclide were done via its intense γ line of Eγ = 1039.22 keV (Iγ = 37.0 %). 

In Fig. 5.5, the present cross-sections of 66Ga are compared with those in the previous 

experimental studies as well as the TENDL-2014 library. A large amount of the 

literature (Bhardwaj et al., 1988; Bonesso et al., 1991; Bryant et al., 1963; Didik et al., 

1994; Hille et al., 1972; Levkovskij, 1991; Nassiff, 1983; Navin et al., 2004; Porges, 

1956; Porile & Morrison, 1959; Rao et al., 1991; Rattan et al., 1986; Rizvi et al., 1987; 

Shahid et al., 2015b; Singh et al., 1994; Sonck et al., 1996; Stelson & McGowan, 1964; 

Szelecsényi et al., 2012; Szelecsényi et al., 2001; Tárkányi et al., 1992; Tárkányi et al., 

2000; Zhukova et al., 1970; Zweit et al., 1987) is available for this radionuclide, and 

they show obvious differences among them. The cross-sections reported in some 

previous studies (Porges, 1956; Porile & Morrison, 1959; Rizvi et al., 1987; Zhukova et 

al., 1970) are generally much lower than the present work. As pointed in (Tárkányi et 

al., 2000), cross-sections reported in the literature are sometimes not clear whether 

elemental or isotopic, especially when they are reported 

as 63Cu(α,n)66Ga+65Cu(α,3n)66Ga cross-section. At around 30 MeV and beyond, the 

reported data of some groups (Bonesso et al., 1991; Levkovskij, 1991; Porges, 1956; 
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Zhukova et al., 1970) are very low compared to the present cross-sections and those 

recommended by the IAEA (Qaim et al., 2002). The too low cross-sections from the 

first data sets (Ex-1) of Refs. (Levkovskij, 1991; Zhukova et al., 1970) above the 30 

MeV are explained by the absence of 65Cu in the target material. On the other hand, the 

present data agree with those recommended by the IAEA (Qaim et al., 2002) and also 

those reported by some other groups (Bryant et al., 1963; Shahid et al., 2015b; 

Szelecsényi et al., 2012; Tárkányi et al., 1992; Tárkányi et al., 2000; Zweit et al., 1987). 

The reported cross-sections by Szelecsényi et al. (Szelecsényi et al., 2001) are slightly 

higher and scattered, while those by some groups (Didik et al., 1994; Sonck et al., 1996) 

are much higher than the present ones around 17 MeV. The cross-sections reported by 

some groups (Levkovskij, 1991; Rizvi et al., 1987; Singh et al., 1994) are obviously 

affected by the energy shift while those by (Nassiff, 1983; Porile & Morrison, 1959) 

give, in addition to the energy shift, an unusual shape of the excitation function. 

Similarly, the evaluated cross-sections in the TENDL-2014 library (Koning et al., 2014) 

could not reproduce the data of the current study and give much lower values. 
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Figure 5.5: Excitation function of the natCu(α,x)66Ga reactions. See the main text 
for the explanation of ‘norm’, ‘norm,+’ and ‘norm,*’. 

 
5.4.2 Independent Production Cross-sections of 67Ga 

The cross-sections for the beam monitor radionuclide 67Ga (T1/2 = 3.2617 d) was 

analysed using its interference-free γ line of Eγ = 300.217 keV (Iγ = 16.64%). The 

present cross-sections are shown in Fig. 5.6 together with the literature data and the 

extracted ones from the TENDL-2014 library. Several research groups (Basunia et al., 

2005; Bhardwaj et al., 1988; Bonesso et al., 1991; Bryant et al., 1963; Cata-Danil et al., 

2008; Didik et al., 1994; Graf & Münzel, 1974; Levkovskij, 1991; Mukherjee et al., 
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1997; Navin et al., 2004; Porges, 1956; Porile & Morrison, 1959; Rao et al., 1991; 

Rattan et al., 1986; Rizvi et al., 1987; Shahid et al., 2015b; Singh et al., 1994; 

Szelecsényi et al., 2012; Szelecsényi et al., 2001; Tárkányi et al., 2000; Watson et al., 

1973; Zhukova et al., 1970; Zweit et al., 1987) have reported the production of this 

radionuclide with, again, unacceptable discrepancy. Two experimental works (Basunia 

et al., 2005; Cata-Danil et al., 2008) show that the 63Cu(α,γ)67Ga cross-section increases 

to 1 mb at about 8 MeV, while the 65Cu(α,2n)67Ga reaction (Eth = 14.97 MeV) explains 

the major peak seen in the literature data. The reported cross-sections in some earlier 

studies (Navin et al., 2004; Porges, 1956; Porile & Morrison, 1959; Rizvi et al., 1987; 

Watson et al., 1973; Zhukova et al., 1970) are much lower than the present ones. The 

excitation function of the data reported by Zweit et al. (Zweit et al., 1987) is extremely 

too low though their 66Ga production cross-sections shown in Fig.2 are reasonable. 

From the shape of the excitation function, energy shift seems to have affected the cross-

section reported by some other authors (Graf & Münzel, 1974; Levkovskij, 1991) while 

other groups (Bonesso et al., 1991; Navin et al., 2004; Porges, 1956; Rizvi et al., 1987; 

Zhukova et al., 1970) reported much lower cross-sections than the present work. Some 

of the reported cross-sections (Mukherjee et al., 1997) gave an unusual shape of the 

excitation function of the studied radionuclide. The present data are in agreement with 

some previous studies (Bryant et al., 1963; Shahid et al., 2015b; Singh et al., 1994; 

Szelecsényi et al., 2012; Tárkányi et al., 2000) and the cross-sections recommended by 

the IAEA (Qaim et al., 2002), while those by Szelecsényi et al. (Szelecsényi et al., 

2001) are slightly higher. On the other hand, the evaluated data in the TENDL-2014 

library give lower values, especially at ≥ 22 MeV. 
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Figure 5.6: Excitation function of natCu(α,x)67Ga  reactions. See the main text 
(Section 3) about ‘norm’ and ‘norm,*’. 

 
5.4.3 Cumulative Production Cross-sections of 65Zn 

The assessment of the long-lived beam monitor radionuclide 65Zn (T1/2 = 243.93 d) 

was done by its interference-free and highly intense γ line of Eγ = 1115.54 keV (Iγ = 

50.04 %). The short-lived 65Ga (T1/2 = 15.2 min) formed by the 63Cu(α,2n)65Ga (Eth = 

17.7 MeV) and 65Cu(α,4n)65Ga (Eth = 36.6 MeV) reactions completely decays to 65Zn 

via EC and β+
 processes. Thus, the measured cross-section for 65Zn is cumulative. 

Although many earlier studies (Bhardwaj et al., 1988; Bonesso et al., 1991; Houck & 

Miller, 1961; Lebowitz & Greene, 1970; Levkovskij, 1991; Lin & Alexander, 1977; 

Navin et al., 2004; Porges, 1956; Porile & Morrison, 1959; Rattan et al., 1986; Rizvi et 
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al., 1987; Ruddy & Pate, 1969; Shahid et al., 2015b; Singh et al., 1994; Tárkányi et al., 

2000; Zhukova et al., 1970; Zweit et al., 1987) are available for the measurement of 

the natCu(α,x)65Zn reaction cross-sections, these studies could not yet address the 

discrepancies among the measured data. The present result is plotted together with the 

previous data in Fig. 5.7. The data reported by several groups (Bonesso et al., 1991; 

Lebowitz & Greene, 1970; Levkovskij, 1991; Navin et al., 2004; Porges, 1956; Porile & 

Morrison, 1959; Rattan et al., 1986; Rizvi et al., 1987; Zweit et al., 1987) are much 

lower than the present ones and also the the IAEA recommended values (Qaim et al., 

2002). On the other hand, present cross-sections are closer to previous studies by some 

groups (Bhardwaj et al., 1988; Houck & Miller, 1961; Shahid et al., 2015b; Singh et al., 

1994; Tárkányi et al., 2000) and the IAEA (Qaim et al., 2002) recommended values. 

The evaluated cross-sections in the TENDL-2014 library (Koning et al., 2014) are lower 

than the present experimental values even if the cross-sections of natCu(α,x)65Ga are 

added to the TENDL-2014 library data, as shown in the Figure below. 
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Figure 5.7: Excitation function of the natCu(α,x)65Zn  reactions. See the main 
text about ‘norm’ and ‘norm,*’. 

 
5.4.4 Independent Production Cross-sections of 57Co 

The independent cross-sections of 57Co (T1/2 = 271.74 d) were assessed via its 

interference-free γ line of Eγ = 122.0607 keV (Iγ = 85.60%). The main contributing 

reactions to the formation of 57Co are listed in Table 5.2. The TENDL-2014 library 

evaluation shows that the 57Co production is solely described by the 63Cu(α,2n2α)57Co 

reaction below 50 MeV. Only two earlier studies (Ozafrán et al., 1989; Rattan et al., 

1986) are available for the production of 57Co via the natCu(α,x)57Co reactions. In Fig. 

5.8, the present data agree with the reported cross-sections of Rattan (Rattan et al., 

1986) but larger than those reported by Ozafran’s group (Ozafrán et al., 1989). The 
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TENDL-2014 library (Koning et al., 2014) reproduced the measured excitation function 

only in shape but not in magnitude. 

 

Figure 5.8: Excitation function of the natCu(α,x)57Co reactions. 

5.4.5 Independent Production Cross-sections of 58g+mCo 

The cross-sections of 58gCo (T1/2 = 70.86 d) were assessed using the γ-ray spectra 

acquired after a sufficient cooling time for a complete IT decay from its metastable 

state 58mCo (T1/2 = 9.10 h). As indicated in Table 5.2, there are nine possible 

contributing reactions for the formation of this radionuclide, with the least threshold 

reaction as 63Cu(α,n2α)58Co (Eth = 17.3 MeV). The identification and analysis of this 

radionuclide were done via its abundant γ line of Eγ = 810.7593 keV (Iγ = 99.450%). As 

shown in Fig. 5.9, the excitation function of the present study agrees with the data of 

Rattan et al. (Rattan et al., 1986) and Shahid et al. (Shahid et al., 2015b). The TENDL-

2014 library (Koning et al., 2014) reproduced well the present results including the 

literature data reported by Shahid (Shahid et al., 2015b) and Rattan (Rattan et al., 1986). 

The reported excitation functions by Levkoskij et al. (Levkovskij, 1991) and Ozafran et 

al. (Ozafrán et al., 1989) show a disagreement with the present study. 
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Figure 5.9: Excitation function of the natCu(α,x)58g+mCo reactions. See the main 
text for the explanation of ‘norm’ and ‘norm,*’. 

 
5.4.6 Independent Production Cross-sections of 60g+mCo 

The long-lived 60Co (T1/2 = 1925 d) is usually assessed by either or both of its two 

abundant γ lines of Eγ =1173.228 keV (Iγ = 99.85%) and 1332.492 keV (Iγ = 

99.9826%). The reported cross-sections are for production of both the ground and 

metastable (T1/2 = 10.467 min) states of 60Co due to the complete IT decay (IT = 

99.75%) of the metastable state. In addition to 65Cu(α,n2α)60Co, which has the least 

threshold energy (Eth = 17.1 MeV), other several nuclear reaction channels are leading 

to the formation of 60Co as indicated in Table 5.2. Despite these possible reaction 

channels, the overall cross-sections are, however, very low. Only one previous work by 

Ozafran et al. (Ozafrán et al., 1989) and one recent study by Shahid et al. (Shahid et al., 

2015b) are available for 60Co production cross-sections. The present data are compared 

in Fig. 5.10 with the data of Shahid et al. (Shahid et al., 2015b) which gives slightly 

higher values above 40 MeV. The cross-sections reported in this work agree with those 
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reported by Ozafran et al. (Ozafrán et al., 1989). The data extracted from the TENDL-

2014 library (Koning et al., 2014) are slightly lower than the present data. 

 
Figure 5.10: Excitation function of the natCu(α,x)60g+mCo reactions.  

 
5.5 Conclusions 

The production cross-sections of 66,67Ga, 65Zn, and 57,58,60Co radionuclides from the 

α-particle-induced reactions on natural copper were measured in the energy range of 50 

MeV down to 16.5 MeV by using a stacked foil activation technique and HPGe γ-ray 

spectrometry. The measured data were compared with the available literature cross-

sections as well as the theoretical data predicted by the TALYS-1.6 code and compiled 

in the TENDL-2014 library. From the reported excitation functions, the cross-sections 

of cobalt radionuclide productions are generally low and only obtainable at the upper 

part of the investigated energy region. Although there are several reported data on the 

production of 66Ga, 67Ga, and 65Zn, they were found to be largely discrepant. The 

present results are useful to enrich the database of the investigated radionuclide 

productions thereby reducing the discrepancies among the previous measurements. 
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More so, the present data are also expected to further improve the prediction capability 

of the TALYS code and other nuclear reaction codes, especially for the Co radionuclide 

productions for which still very few experimental works have been performed so far. 
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CHAPTER 6: EXCITATION FUNCTIONS OF ALPHA-INDUCED REACTIONS 
ON NATURAL HOLMIUM 

 
6.1 Introduction 

This chapter presents the excitation functions of thulium (Tm) radionuclides obtained 

from irradiation of natural holmium targets. The holmium foils were parts of the stack 

bombarded with the 50.4 MeV alpha beam energy. The presented results are a part of 

the major components of this thesis. The Tm radionuclides have been reported to have 

several potential applications and the present chapter therefore exclusively presents only 

the results from the Ho targets. 

Many of the radionuclides intended to investigate had very low gamma ray 

intensities, several interfering gamma lines among them, or, even having very low (less 

than 50 keV) gamma energies. Thus, such investigated radionuclides have not been 

reported in this study as the peaks of the gamma lines were sometimes either ambiguous 

or even not seen in the spectrum. Specifically, the following radionuclides are some of 

the attempts made without achieving the expected results; 161Ho, 164gHo 166gHo, 167Ho, 

as well as some radionuclides of Dy, Tb, Er, Eu, Sm, etc., although the q-tool system 

(Qtool, 2011) and Q-value calculator (QCalc, 2016) have predicted the production 

properties of these radionuclides. The following subsections will provide the details of 

the experimental component related to the holmium bombardment. 

6.2 Literature Review 

Holmium (Ho), a rare-earth metal, plays important roles in nuclear physics. It was 

used in nuclear reactors as a burnable poison due to its ability to absorb nuclear fission 

neutrons (Luo et al., 2015). Recently, there has been growing usage of therapeutic 

radionuclides in nuclear medicine. The rare-earth metals have attracted more attention 

as sources of these therapeutic radionuclides due to their ability to release low energy 
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electrons. They are usually pure emitters of the auger electrons which can transfer large 

local doses on tissues (Hermanne et al., 2009) as well as having outstanding chemical 

properties comparable to lanthanides such that they can be coupled to biomolecules with 

a single class of chelates as in DOTA for cancer treatment (Cutler et al., 2000). Several 

rare-earth metals are excellent sources of thulium radionuclides. Irradiation of these 

sources has recently been done using different charged particles.  

The thulium-167, due to its low energy electrons, has been used as a tracer 

radionuclide during bone and tumour studies (Chandra et al., 1971; Nayak & Lahiri, 

1999; Tárkányi et al., 2010). With a half-life of 9.25 days, 167Tm has been considered as 

a suitable candidate in radiotherapy. In fact, its therapeutic properties are also due to its 

emission of Auger electrons, low energy γ- and X-rays (Tarkanyi et al., 2010; Uusijärvi 

et al., 2006). More precisely, some relatively small tumours, weighing below 1 mg, can 

effectively be treated (Sadeghi et al., 2012). On the other hand, the desirable decay 

characteristics of 165Tm (T1/2 = 1.25 d) radionuclide make it a potential replacement to 

the more popular 167Tm (Nayak et al., 1999) counterpart. 

Table 6.1 presents the major sources of 167Tm via charged-particle-induced nuclear 

reactions (Sadeghi et al., 2012; Tarkanyi et al., 2010). As presented in the Table, 

the 167Tm radionuclide can be produced through direct nuclear reactions as well as, in 

some cases, indirect formation by the decay of an intermediate radionuclide.  
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Table 6.1: Direct and Indirect Production Routes for 167Tm. 

Direct 167Tm production Indirect 167Tm production 
165Ho(α,2n)167Tm 169Tm(p,3n) 167Yb → 167Tm 
167Er(p,n)167Tm natYb(p,xn) 167Lu →  167Yb →  167Tm 
167Er(d,2n)167Tm natHf(p,x) 167Lu →  167Yb →  167Tm 
168Yb(p,x)167Tm (cumulative) natEr(α,x) 167Yb → 167Tm 
natEr(p,xn)167Tm  
natEr(d,xn)167Tm  

 

Aside the medical applications, measurements of low energy nuclear processes via 

(α, n) and (α, γ) reactions are very important in γ-process nucleosynthesis to improve 

determinations of certain astrophysical reaction rates (Kiss et al., 2014). The γ-process 

is the photodisintegration phenomenon of nuclei above Fe in explosive stellar processes 

(Kiss et al., 2014). 

Currently, the production of these therapeutic radionuclides is mainly done via (n,γ) 

processes in nuclear reactors. Alternatively, however, charged-particles induced 

production routes are needed to achieve productions of these radionuclides with high 

specific activity or to produce an end-product at no-carrier-added level. Investigation of 

the various therapeutic radioactive candidates via various production routes has been 

intensified, with alpha production route as also a production pathway. 

A comprehensive study of all previous studies on this production route with holmium 

(foils, compound, block, and so on) as target material from all previous works, as shown 

in a tabular summary in chapter two of this thesis, revealed that many of the previous 

measurements were made with one problem or the other. It would be seen from the 

table, as an example, that while several groups used scintillation detectors with poor 

resolutions, other groups used Ge(Li) detectors for the measurements of activities. The 

decay data used by several groups are also outdated relative to the present (decay) data 

available. Due to the importance and sensitivity of cross section data in nuclear physics 
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and medical applications, it is necessary that precise measurements and small details be 

well understood for optimisation in production since a little detail can make a huge 

difference in these relevant fields of knowledge.  

Given these overwhelming reasons, new measurements are important to understand 

the uncertainties surrounding the previous measurements, and to improve the quality of 

the cross sections by using the most recent decay data of the measured residual 

radionuclides. In this thesis, new measurements are therefore made using a relatively 

large number of holmium foils so as to increase the energy points. Also, the present 

work presents results from relatively higher energy region (50 MeV) in comparison with 

several other studies in the literature. 

6.3 Materials and Method 

The overall procedure employed under this chapter is similar to the previous two 

chapters. The popularly known stack-foils method of activation was employed for 

irradiation. Measurements of activities from the activated target foils were achieved 

using a high resolution HPGe detector for the determination of the production cross 

sections. Further details on the materials and methods relevant to the studies of the 

excitation functions of several radionuclides from holmium bombardment have been 

presented under the following subheadings:  

6.3.1 Selected Targets and Irradiation 

High purity (>99 %,) holmium foils (thickness: 12.29 μm, supplier: Goodfellow, 

UK) served as the main target. The natural holmium has only one isotope (165Ho: 100 

%) (Berglund & Wieser, 2011). Other foils, which have been mentioned in the preceded 

chapters, served here as energy degraders of the initial beam energy down the stack. 

These are metallic foils of natural Cu (purity: 99.9%, nominal thickness: 9.71 μm, 
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supplier: Nilaco, Japan) and Ti (purity: >99.6%, nominal thickness: 10.40 μm, supplier: 

Goodfellow, UK) interleaved in between the Ti foils in the stack. All used foils were 

weighed using a high precision electronic balance for an accurate thickness 

determination. 

 

 

Figure 6.1: Stack arrangement for Ho and other metallic foils 

 
For a successful focusing of the incident beam to the centre of the targets, all the 

holmium foils were prepared with the dimension of 15 × 15 mm2 following the size of 

the target holder. Using the generated beam from the exit channel of the beam line of 

the AVF cyclotron of RKEN, the stack was then irradiated by focusing the alpha beam 

onto the target foils by collimating the beam to 9-mm diameter on the targets. Note that 

the target holder, a water-cooled container serving as a Faraday, held the foils during the 

whole 2.0 h irradiation time by the α beam, from which an average beam current of 194 

nA was observed. 
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Figure 6.2: The beam line to irradiation chamber where target holder is placed. 

 

 

Figure 6.3: The schematic view of the irradiation chamber. 
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6.3.2 Activity Measurements and Data Analysis. 

The irradiated holmium and other foils were removed from the container 

bombardment and transferred to a hot laboratory for measurements of the gamma rays 

of the residual radionuclides. Using a high-resolution gamma-ray HPGe detector, the 

Ho foils were repeatedly measured for the gamma activities to follow the decay of the 

residual radionuclides. Low dead time in detector was maintained during the 

measurements by proper utilisation of the various sample positioning locations from 

detector cap of the detector. Details on the detector specifications used for the 

measurements and other relevant information have been supplied in the previous 

chapters. Since there were 30 holmium foils, in addition to other foils from the other 

targets, with one dedicated detector, radionuclides with a half-life less than 30 mins 

could not effectively be measured. Details on the cooling periods used for each 

measured radionuclide have been presented in Table 6.2.  

 

Figure 6.4: A holmium foil spectrum showing peaks for gamma lines. 
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In chapter 5 (excitation functions of copper-induced reactions) of this thesis, details 

on the procedure for the determination of efficiencies have been fully described. The 

efficiencies at various sample-to-detector distances were determined using a multi-

nuclides gamma ray standard source for each used sample to detector distance. 

Table 6.2: Cooling time used for all the assessed radionuclides 

Measurement 

series 

Cooling 

period 

Radionuclide 

III 7.7 - 20.7 h 166Tm 

IV 0.7 - 1.8 d 165Tm 

VII 9.5 - 18.0 d 167Tm 

VIII 19.3 – 42.6 d 168Tm 

 

The beam intensity was determined from the measured activities of the Ti foils in the 

stack for the cross-sections of the 51Cr radionuclide. The IAEA recommended cross 

sections for the natTi(α,x)51Cr monitor reaction (σ = 26.4 mb at Eα = 50 MeV) were used 

to determine the beam intensity and considered constant throughout the stack (Usman et 

al., 2016b).  

As the beam traversed along the stack, its energy was degraded by the holmium foils 

as well as the other foils until it finally lost its energy toward the final foils in the stack. 

With the help of a computer program, SRIM-2003 software (Ziegler, 2004), the average 

alpha energy in each foil was calculated. The cross sections are therefore reported in 

this chapter as representative for each average foil energy. 

The production cross sections of the studies radionuclides were calculated using the 

well-known activation equation (Khandaker et al., 2010; Khandaker et al., 2011; Usman 
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et al., 2016b). Further details on this aspect have fully been described in the previous 

chapters. The ENSDF library (Baglin, 2000, 2008, 2010; Jain et al., 2006) was the 

principal source of the decay data during the calculations of the cross sections and 

extracted through the Live Chart of Nuclides (IAEA, 2009b). The online Q-tool system 

(Qtool, 2011) was used for accessing of the Q-values and threshold energies for the 

reactions, which were calculated based on AME mass evaluation (Audi et al., 2003). 

Table 6.3 summarises the major relevant decay properties of the assessed radionuclides. 

Table 6.3: Decay data used for the analysis of the thulium radionuclides. 
(The data were obtained from the ENSDF library (Baglin, 2000, 2008, 2010; Jain et 

al., 2006) through the live chart of the nuclide, an IAEA online interface. The Q-values 
were obtained from the Q-tool online system.) 

Nuclide Half-
life 

Decay 
mode (%) 

Eγ (keV) Iγ (%) Contributing 
reactions 

Q-Value 
(MeV) 

Threshold 
(MeV) 

165Tm 30.06 h ΕC β+:100 242.917 35.5 17 165Ho(α,4n)165Tm -31.83 32.60 

297.369 12.7 
166Tm 7.70 h ΕC β+:100 705.333 11.1 165Ho(α,3n)166Tm -24.80 25.40 

778.814 19.1 12 

785.904 904 
167Tm 9.25 d EC:100 207.801 42.0 8 165Ho(α,2n)167Tm -16.07 16.46 

531.54 1.61 
168Tm 93.1 d ΕC, 

β+:99.99 
β-:0.01 

198.251 54.49 165Ho(α,n)168Tm -9.23 9.46 

815.989 50.95 16  

 

6.3.3 Uncertainties Evaluations on Cross-sections and Foil Energies 

Using the procedure for the standard error propagation, all possible sources of 

uncertainties on cross sections were considered and evaluated in this work based on the 

experimental conditions during the experiment. Thus, the individual uncertainties were 

quadratically summed to obtain the cumulative uncertainties. The equations for the 

calculation of the uncertainties have been presented in chapters 4 and 5. The 

uncertainties considered were those enough to manifest and include; the uncertainties in 

gamma rays counts and intensity, the efficiency of the detector, flux and the 
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uncertainties due to the thicknesses of the used targets. Based on the experimental 

conditions, the uncertainties due to time scale were considered negligible and thus not 

included in the general uncertainties evaluations. The overall sources of the 

uncertainties on holmium excitation functions have been summarised in Table 6.4 and 

are also presented together with cross-sections in Table 6.5 and Figs. 6.5 to 6.8 of this 

chapter. 

As the beam pass along the stack, its loses its energy by passing through each foil. 

There are thus uncertainties due to the beam straggling and foil thickness. The 

uncertainties on the energy on each foil depends on the position of the foil on the stack. 

The uncertainty on the first holmium foil was estimated as ±0.72 MeV but gradually 

increased along the stack and was found to be ±3.7 MeV on the last Ho foil. The 

estimated uncertainties in the α-beam energy for all energy points are indicated in the 

tables of cross sections and Figures of excitation functions of this chapter. 

Table 6.4: Summary of uncertainties considered for analysis of holmium data. 

 

6.4 Results and Discussions  

The present section discusses the newly calculated cross-sections of the studied 

radionuclides from the irradiated holmium foils. The production cross-sections for 

the 165-168Tm radionuclides are provided in Table 6.5. Figs. 6.5 – 6.8 show the 

Nuclide Uncertainties (%) 
γ-ray 
intensity 
(ΔIγ/ Iγ) 

beam intensity detector 
efficiency 

Target 
thickness 

γ-ray 
counting 
statistics 

Total 
uncertainty 

165Tm 4.8 

5 4 2 

0.3 – 8.4 8.2 – 11.7 
166Tm 6.3 0.9 – 7.4 9.2 – 11.8 

167Tm 19.0 0.0 – 0.4 
20.19– 
20.20 

168Tm 0.3 0.4 – 3.17 6.7 – 7.4 
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corresponding excitation functions of the presented experimental data of Table.6.5. The 

figures also contain the excitation functions of the earlier experimental measurements 

(Gadkari et al., 1997; Glorius et al., 2014; Homma et al., 1980; Martin & Pilger, 1966; 

Mukhrjee et al., 1991; Rao et al., 1987; Rayudu & Yaffe, 1963; Sau et al., 1968; Singh 

& Prasad, 1995; Singh, 1992; Tarkanyi et al., 2010; Wilkinson & Hicks, 1949) accessed 

from the EXFOR library (Otuka et al., 2014). The evaluated data was extracted from the 

TENDL-2015 library (Koning et al., 2014) which provides the output of the TALYS 

code (Koning & Rochman, 2012). 
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Table 6.5: Cross sections of 165-168Tm radionuclides. 

α - energy 165Ho(α,4n)165Tm 165Ho(α,3n)166Tm 165Ho(α,2n)167Tm 165Ho(α,n)168Tm 
E ∆𝑬 𝝈 ∆𝝈 𝝈 ∆𝝈 𝝈 ∆𝝈 𝝈 ∆𝝈 
(MeV) mb mb mb mb 
49.6 0.7 825.1 68.1 151.3 14.5 35.3 7.1 1.91 0.14 
48.1 0.7 939.9 77.5 206.8 19.6 51.2 10.3 2.15 0.15 
46.9 0.8 987.2 81.4 249.5 23.5 79.0 16.0 3.53 0.25 
46.2 0.8 948.1 78.2 276.3 26.0 74.8 15.1 2.52 0.18 
44.6 0.8 818.7 67.5 339.9 31.8 65.7 13.3 2.75 0.19 
43.9 0.8 853.3 70.4 434.9 40.5 82.9 16.7 3.70 0.25 
42.6 0.8 708.3 58.4 560.6 52.1 86.8 17.5 4.83 0.33 
41.8 0.8 592.2 48.9 635.9 59.0 86.1 17.4 3.57 0.25 
40.1 0.8 496.3 40.9 852.6 78.9 103.4 20.9 4.18 0.29 
39.3 0.9 267.7 22.1 945.4 87.4 92.3 18.6 9.61 0.66 
37.9 0.9 127.2 10.5 1072.8 99.1 109.3 22.1 6.25 0.43 
37.0 0.9 63.3 5.3 1033.7 95.5 135.9 27.4 11.2 0.8 
35.1 0.9 10.7 1.3 1069.6 98.8 161.7 32.6 8.85 0.60 
34.2 0.9 0.76 1.02 1053.3 97.3 249.0 50.3 8.49 0.58 
32.7 1.0 

  
845.0 78.0 281.1 56.8 7.01 0.48 

31.7 1.0 
  

756.2 69.9 385.3 77.8 9.64 0.66 
29.6 1.1 

  
349.3 32.3 607.9 122.8 10.8 0.7 

28.5 1.1 
  

212.0 19.7 790.1 159.5 12.4 0.8 
26.7 1.1 

  
17.4 1.6 816.6 164.9 10.8 0.7 

25.6 1.2 
  

0.73 0.09 831.0 167.8 13.2 0.9 
23.1 1.2 

    
681.3 137.6 24.5 1.7 

21.9 1.3 
    

532.6 107.6 34.3 2.3 
19.6 1.4 

    
206.5 41.7 58.0 3.9 

18.2 1.5 
    

41.9 0.2 38.6 2.6 
14.9 1.7 

      
0.30 0.12 

13.2 1.8 
      

0.09 0.04 
 

6.4.1 Production Cross-sections of 165Tm 

165Tm (T1/2 = 30.06 d) decays via EC β+ (100%) process to 165Er. The formation 

of 165Tm was populated through 165Ho(α,4n)165Tm process. The cross sections of this 

radionuclide were measured via its relatively intense gamma line of Eγ = 242.917 keV 

(Iγ = 35.5%). Within the investigated energy region of 49.6 MeV as the upper region, 

the peak of the excitation function could be studied to some extent. The present study 

indicates a fine shape of the excitation function, showing a peak at around 48 MeV 
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alpha energy. At higher energy, the results of the present work are closer to the data of 

Mukherjee group (Mukhrjee et al., 1991). The theoretical excitation function from 

TENDL-2015 has not reproduced the present results or even the other literature data but 

looked rather energy shifted. 

 

Figure 6.5: Excitation function of 165Ho(α,4n)165Tm reaction 

 
6.4.2 Production Cross Sections of 166Tm 

The production cross sections of 166Tm (T1/2 = 7.7 h) was measured via its Eγ = 

778.814 242.917 keV (Iγ = 19.1%) gamma line. Formation of the 166Tm is 

via 165Ho(α,3n)166Tm reaction with a reaction Q-value of −24.8 MeV. The present 

results have been tabulated in Table 6.5 while the corresponding excitation function is 

presented in Fig. 6.6. From the Fig., present data is slightly higher than the recently 

measured cross sections by Tarkanyi group (Tarkanyi et al., 2010). There is an obvious 

discrepancy also among the previous measurements, with many of the previous works 
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presented much lower cross sections. The TENDL-2015 could not accurately predict the 

excitation function.  

 

Figure 6.6: Excitation function of 165Ho(α,3n)166Tm reaction. 

 
6.4.3 Production Cross Sections of 167Tm 

The popularly important 167Tm (T1/2 = 9.25 d) formation was via 165Ho(α,2n)167Tm. 

The cross section of this relatively long-life radionuclide was measured after sufficient 

cooling time as indicated in Table 6.2. The present cross sections have been plotted 

along other experimental studies in the Fig. 6.7. The results of this study present similar 

shape of some the previous studies. The present cross sections appear between the data 

of (Tarkanyi et al., 2010) and (Martin & Pilger, 1966; Mukhrjee et al., 1991; Singh, 

1992). The prediction of the TENDL-2015 was only correct in shape but not magnitude. 

 

156 

 

Univ
ers

ity
 of

 M
ala

ya



 

 

Figure 6.7: Excitation function of 165Ho(α,2n)167Tm reaction. 

 
6.4.4 Production Cross Sections of 168Tm 

The radionuclide 168Tm (T1/2 = 93.1 d) is formed via 165Ho(α,n)168Tm nuclear 

reactions with the decay properties listed in Table 3. The measurement of this long-lived 

radionuclide was made after a cooling time of 19 to 43 days. The numeral data of the 

cross sections have been presented in Table 6.5 while the excitation function is plotted 

in Figure 6.8. The overall cross sections of this radionuclide are low compared to the 

other assessed radionuclides, with the maximum value seen at around 20 MeV energy. 

The present data agree with the recent earlier data by Tarkanyi group (Tarkanyi et al., 

2010). The prediction of the Talys code via TENDL-2015 has underestimated the 

experimental values, although it maintained the experimental shape.  
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Figure 6.8: Excitation function of 165Ho(α,n)168Tm reaction. 

 
6.5 Conclusions 

Present chapter reports new experimental cross-sections 

of 165Ho(α,4n)165Tm, 165Ho(α,3n)166Tm, 165Ho(α,2n)167Tm   and 165Ho(α,n)168Tm 

reactions in the region of 50.4 MeV down to respective reaction threshold. The new data 

have been compared with previous experimental measurements via same alpha particles 

bombardment on natural titanium. Present data compares well with some of the 

previous studies. The obtained new data has also been compared with Talys code, via its 

most recently calculated values which have been assessed through the TENDL-library 

(TENDL-2015). The prediction of the TENDL-2015 is not fully consistent with the 

measured experimental values. Therefore, the new cross-sections could help to enhance 

the prediction capacity of the Talys code further, average the discrepancies among the 

 

158 

 

Univ
ers

ity
 of

 M
ala

ya



 

previous measurements as well as enrich the database of the experimental studies for 

various applications. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

This thesis presents the author’s original research findings, discussions and 

conclusions of his PhD work. The research focused on the measurements of 

experimental production cross sections of several radionuclides from some selected 

metals using charged particles (deuteron and alpha beam) for the inducement of the 

reactions. The present chapter, therefore, summarises the previously presented results 

and conclusions of the various chapters of this thesis, following the objectives set at the 

beginning of the thesis. The chapter further highlights some limitations of the present 

work and gives some recommendations for future studies. 

7.1 Conclusions 

Just like how the presentation style of this thesis goes, where each chapter, from third 

to the sixth, represents a specific objective, thus, the conclusions would also take the 

same approach. The key experimental findings from those chapters are summarised 

under this section.  

Taking the objectives one after the other, and recalling that the first was: 

 To measure the excitation functions of natNi(d,x)xY nuclear reactions in the frame of 

24 MeV. 

From the natNi(d,x) nuclear processes, studies of production cross sections for the 55-

58,60Co, 57Ni, 52g,54Mn and 61Cu radionuclides have been made, and the numeral values 

have been presented in the Tables 3.4 and 3.5 of chapter 3 while the corresponding 

excitation functions have been graphically presented in the Figs. 3.3 to 3.11 of the same 

chapter. The TENDL-2014 and 2015 libraries, the output of the Talys nuclear reaction 

code, a very popular and efficient nuclear prediction code, were used to compare the 
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present experimental results with the theoretical cross sections. In some instances, such 

as in the production of 57,58(m+g),60Co, the code was found to overestimate the experiment 

cross sections while it underestimated the 55,56Co, 52g,54Mn and 61Cu cross-sections. The 

integral thick target yields for 55Co, 57Co, and 58Co radionuclides have also been 

calculated. 

The following are additional details on the findings of the first objective; 

• New cross-section results are presented for 24 MeV deuteron induced reactions 

on natural nickel. 

• A critical review of the previous experimental data and their normalisations (in 

some cases) were made. The reviewed available experimental data were 

compared with the new measured results on the same graph for each studied 

radionuclide.  

• The present study found that the IAEA recommended monitor reaction cross 

sections for 61Cu are over estimated such that the IAEA values are higher not 

only to the data of the present study but also several recent studies. The 

recommended values, therefore, need to be revised. 

• Before this work, there were only two studies which reported 60Co via deuteron 

production route on Ni. The two previous works have rather scattered data, and 

it was hard to conclude on the best fit. The present results have improved the 

quality of the cross sections. 

• The integral thick target yield calculations of some selected radionuclides have 

been presented. 

 To study the cross sections and thick target yields of scandium radionuclides emitted 

from 50.4 MeV alpha-induced reactions on nat.Ti.  
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From this second objective, above, the present thesis reports new experimental cross-

sections for 43K,43,44m,44g,46,47,48Sc, 48V and 48,49,51Cr radionuclides via alpha particles 

bombardment on natural titanium in the region of 10.4 – 50.2 MeV. The comparison 

with the theoretical nuclear reaction codes was achieved via the TENDL-2014 and 2015 

libraries. 

The following are additional conclusions on the findings of this objective; 

• Some data points for 46,48Sc, 48V and 48,49Cr radionuclides in the high-energy 

region are reported here for the first time (except in the case where Michael et. 

al. 1983 data are available or Weinreich et. al. 1980). 

• Integral thick target yields for the chromium and vanadium radionuclides have 

calculated. There was only one previous calculation in the literature 

• Present thesis calculated the integral thick target yields for the first time for all 

the scandium radionuclides productions under the production route of this 

objective.  The second measurement of 43K has been made as well as its 

calculations of the integral yield. 

 To measure the excitation functions of natCu(α,x)66,67Ga,65Zn,57,58,60Co. 

From the third objective above, using natural copper as the main target, the 

irradiation of the prepared copper foils with 50.4 MeV alpha beam was successfully 

carried out. From the analysed measured data of the bombarded copper target, new 

cross sections in tabular form for natCu(α,x)66,67Ga,65Zn,57,58,60Co nuclear reactions have 

been reported, and the corresponding excitation functions are plotted separately in this 

thesis. A comprehensive evaluation of experimental literature from earlier experimental 

data on the studied radionuclides have been critically reviewed. The reviewed data have 

also been normalised and corrected for various reactions from some research groups 
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following the experimental conditions or definitions of terms of the literature data. For 

each nuclear reaction, the present results have been compared and presented together 

with the corresponding literature on the same Figure. The excitation functions for the 

assessed radionuclides from alpha-induced reactions on copper have also been 

compared with the output of the theoretical Talys nuclear reaction code, via its 

evaluated library, the TENDL-2014. The code underestimated the cross sections of 66Ga 

between 10 to 30 MeV, the cross sections of 67Ga between 20 to 50, the cross sections 

of 65Zn between 22 to 47 MeV and the cross sections of 60m+gCo between 32 to 50 MeV 

while it overestimated 57Co radionuclide via same production route. 

The following could also be drawn from the findings under this objective; 

• Most of the studies before the present on alpha-induced reactions on copper 

reported only the Ga and Zn radionuclides. The recent work has studied, in 

addition to the radionuclides mentioned above, the cobalt radionuclides. 

Specifically, there were only two previous studies each for 57Co and 60Co before 

this work. 

• Despite the relatively sufficient experimental literature data on 66,67Ga and 65Zn, 

a significant portion of the previously reported cross sections was found to be 

largely discrepant, scattered or affected by energy shift. The present work has 

successfully improved the shape of the excitation functions through 

confirmation of some of the available data. 

• The presented results of this thesis on the alpha-induced reactions on natural 

copper are some of the very few that have data points in the higher energy 

region around the 50 MeV. 

The fourth objective of this thesis was as follows:  
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 To investigate the excitation functions of short-lived radionuclides via alpha 

production route on holmium foils. 

For this objective, this thesis reports new experimental cross-sections 

of 165Ho(α,4n)165Tm, 165Ho(α,3n)166Tm, 165Ho(α,2n)167Tm and 165Ho(α,n)168Tm 

reactions in the interval of 50.4 MeV down to respective reaction threshold. The new 

data have been compared with previous experimental measurements via same alpha 

particles bombardment on natural titanium. Present data compare well with some of the 

previous studies. The obtained new data have also been compared with Talys code, via 

its most recently evaluated results, assessed through the TENDL-library (TENDL-

2015). 

7.2 Contributions 

In a much shorter form, the following are some of the most obvious contributions of 

this thesis to this area of research: 

• New results and data points for cross sections have been reported for all the 

assessed radionuclides via deuteron and alpha routes on the selected metals. 

• In particular, the cross sections on natNi(d,x)60Co have been improved. There 

were only two previous works on 60Co via this route. 

• Similarly, from alpha production route of 60Co on Cu irradiation, there were 

only two previous studies for the natCu(α,x)60g+mCo nuclear reaction. The 

shape of the excitation function of this radionuclide has been improved 

following the new data from this thesis. 

• From the Ti irradiation with 50.4 MeV alpha beam, new cross sections have 

been reported for 43K,43,44m,44g,46g+m,47,48Sc, 48V and 48,49,51Cr nuclear 

processes. 
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• There was only one prior report around 51 MeV high energy region 

on 43,44m,44g,46g+m,47,48Sc and another study on 48,49,51Cr radionuclide. Only one 

earlier study has reported on 43K via this production route. 

• The present study does not found any previous work prior to the present work 

to calculate the experimental thick target yields for the scandium 

radionuclides via alpha bombardment on titanium. This work is thus the first 

calculation. 

• New cross sections data have also been reported for 165-168Tm radionuclides 

through alpha production route on the holmium 165Ho. 

•  The general evaluation of uncertainties in the cross sections in this thesis was 

done in a more broad, clear and coherent fashion, by its presentation in a 

separate Table in each experimental chapter of study, as well as the good 

definition of the individual uncertainties in each of these Tables. 

7.3 Limitations of the study 

 Efforts were made to report as many radionuclides as possible from Ho foils. 

A large number of Ho foils (and therefore data points) involved, which were 

shown under the section of results and discussions of chapter six, indicate 

how much reaction processes were intended to investigate from this broad 

energy interval (50 MeV to the threshold for each reaction process). The 

study of irradiation of Ho by alpha beam need more studies due to several 

factors which could not be solved by the present work. The present work, as 

stated earlier, had many Ho foils with the intention to measure many 

radionuclides at various energy points. However, this has some 

disadvantages, especially regarding the workforce and equipment for 

measurements, as the author could not measure the short-lived radionuclides. 
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More so, some gamma peaks from holmium bombardment have looked so 

thick and congested, due to many emission with closer gamma lines by 

several radionuclides. Measurements from these peaks may have some errors, 

even with an effort for separation of the possible interferences. 

 This study could not have sufficient time for certain measurements, especially 

for the long-lived radionuclides and much shorter-lived ones (less than 30 

mins) from all the studied production routes. For the short half-lives 

radionuclides, the gamma-ray detectors used in the studies are offline (in a 

hot laboratory), some few metres away from the irradiation room and the 

irradiated samples are also allowed to cool down so as to minimise radiation 

exposure during activity measurements. 

7.4 Recommendation for Future Works 

The contributions of the present thesis on this old but vibrant area have been 

highlighted in this chapter. However, it is impossible to address all the issues relevant to 

this study. For this reason, the following are some suggestions towards more 

contributions in the studied area. 

• From the reported excitation function of natNi(d,x)60Co, it could be seen that 

further measurements are needed to support the shape of the excitation 

function. The presently measured cross sections of this radionuclide, as well 

as the few available experimental data, do not strongly agree with one 

another. Due to the long half-life of the 60Co, some sufficient and dedicated 

experimental conditions could play vital roles to report a much more 

convincing shape of the excitation function. 

• Despite the presence of several works on the production cross sections of 

the 48Cr radionuclide, the excitation function reported by different studies 
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have not yet convincingly agree with one another. If additional dedicated 

studies are made, the new measurements could provide insights to help to 

determine the primary causes of the discrepancies in the 48Cr production 

cross-sections via irradiation of copper.  

• Future studies can be considered for holmium irradiation via alpha irradiation 

for the possible measurements of radionuclides with short half-lives, low 

gamma energy or low-intensity gamma energy. New work may have to 

employ some sufficient experimental conditions such as the workforce, much 

higher resolutions detectors, and if possible, more than one detector so that 

short half-lived radionuclides can be measured. These can provide better 

measurements of the thulium radionuclides cross sections, minimise the 

surrounding uncertainties on the cross-section as well as better chances of 

reporting new radionuclides that have not been previously reported via this 

production route. The introductory part of chapter six and the section 7.3 

(limitation of the study) of the chapter have presented greater details of such 

(possibly) measurable radionuclides which could not be reported under the 

holmium-alpha production route of this study. 
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