

SERVICE BASED LOAD BALANCE MECHANISM USING
SOFTWARE-DEFINED NETWORKS

AHMED ABDELAZIZ ABDELLTIF OSMAN

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

SERVICE BASED LOAD BALANCE MECHANISM USING

SOFTWARE-DEFINED NETWORKS

AHMED ABDELAZIZ ABDELLTIF OSMAN

THESIS SUBMITTED IN FULFILMENT

OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Ahmed Abdelaziz Abdelltif Osman

Matric No:WHA120043

Name of Degree:Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Service Based Load Balance Mechanism Using Software-Defined

Networks

Field of Study:Computer Networking

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or

reference to or reproduction of any copyright work has been disclosed

expressly and sufficiently and the title of the Work and its authorship have

been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that

the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University ofMalaya (“UM”), who henceforth shall be owner of the copyright

in this Work and that any reproduction or use in any form or by any means

whatsoever is prohibited without the written consent of UM having been first

had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed

any copyright whether intentionally or otherwise, I may be subject to legal

action or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

The proliferation of servers on the Internet has led to the emergence of server

load balance as an important service in cloud aiming to optimize resource usage,

maximize throughput and minimize the response time. Server load balance is the

process and technology that distributes incoming requests among several servers in

order tominimizethe response time and maximize the utilization of servers. The existing

schemes of the load balance (dynamic or static) do not consider the service types as well

as the size of the request. Besides, these schemes are implemented either in dedicated

hardware devices called load-balancer or built intothe Operating System (OS) such as

Linux Virtual Server (LVS). It is difficult to customize the built-in LB scheme during

runtime. Additionally, load balancer experiences problems due to the same scheme

being used for different type of services. In the cloud, most Service Providers (SP) host

various kinds of services that require different load balancing schemes. This requires

theinstallation of additional load-balancers for each service or a manual reconfiguration

of the device to handle the new services. Such operation is time-consuming and

expensive(Marc Koerner & Kao, 2012).

To address aforementioned problems, we proposed a service based load balance (SBLB)

mechanism using Software-Defined Networks (SDN). The SDN controller is leveraged

to provide online flow classification. The proposed mechanism is evaluated using

benchmarking experiments and validated using a statisticalmodel. We investigate the

impact of the different type of requests (compute and data) on SBLB mechanism in

homogeneous and heterogeneous environments. The results demonstrate that SBLB can

provide faster response time, higher throughput as compared to the other load balance

solutions. For example, SBLB mechanism can reduce the average response time (ART)

up to 5% and reply time (RT) up to 3% as compared to HAproxy load balance in the

Univ
ers

ity
 of

 M
ala

ya

iv

homogeneous environment. In the heterogeneous environment, SBLB mechanism

demonstrates 51% decrease in average response time and 47% decrease in reply time as

compared to theHAproxy load balancer. Besides, our proposed mechanism also

outperforms round robin algorithm in both environments. SBLB shows 7% increases in

request per second (RPS) in the homogeneous environments and 20% increases in

request per second in the heterogeneous environment as compare to aRound-Robin

algorithm.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Kepesatan pelayan di Internet membawa kepada kemunculan pengimbangan

beban pelayan sebagai suatu perkhidmatan yang penting dalam awan. Perkhidmatan ini

bertujuan untuk mengoptimumkan penggunaan sumber, memaksimumkan pemprosesan

dan meminimumkan masa tindak balas. Pengimbangan beban pelayan adalah proses dan

teknologi yang mengedarkan permintaan di antara beberapa pelayan untuk

mengurangkan masa tindak balas dan memaksimumkan penggunaan pelayan. Skim-

skim pengimbangan beban yang sedia ada (dinamik atau statik) tidak mengambil kira

jenis perkhidmatan serta saiz permintaan. Selain itu, skim yang sedia ada dilaksanakan

sama ada dalam peranti perkakasan khusus dipanggil beban pengimbang atau dibina

dalam Sistem Operasi (OS) seperti Linux Virtual Server (LVS). Ia adalah sukar untuk

mengubah skim LB yang terbina dalam masa pemprosesan. Tambahan pula, perkakasan

pengimbangan beban mengalami masalah akibat skim yang sama digunakan untuk

pelbagai jenis perkhidmatan. Dalam awan, kebanyakan pembekal perkhidmatan (SP)

menyediakan pelbagai jenis perkhidmatan yang memerlukan skim pengimbangan beban

yang berbeza. Oleh demikian, ia memerlukan pemasangan tambahan pengimbangan

beban bagi setiap perkhidmatan atau konfigurasi secara manual peranti untuk

mengendalikan perkhidmatan baru. Operasi tersebut memakan masa dan mahal. Bagi

menangani masalah di atas, kami mencadangkan satu mekanisme pengimbangan beban

berasaskan perkhidmatan (SBLB) dengan menggunakan Software-Defined Networks

(SDN). Pengawal SDN ditambahbaik untuk menyediakan klasifikasi aliran dalam talian.

Mekanisme yang dicadangkan dinilai dengan menggunakan eksperimen penanda aras

dan disahkan menggunakan pemodelan statistik.Kami menyiasat impak mekanisme

SBLB ke atas permintaan yang berbeza. (pengkomputeran dan data) di persekitaran

homogen dan heterogen. Keputusan menunjukkan bahawa SBLB dapat

mempercepatkan masa tindak balas dan menawarkan pemprosesan yang lebih tinggi

Univ
ers

ity
 of

 M
ala

ya

vi

berbanding dengan pengimbangan beban yang lain. Sebagai contoh, mekanisme SBLB

boleh menurunkan purata masa tindak balas (ART) sebanyak 5% dan masa balasan

(RT) sebanyak 3% berbanding pengimbangan beban HAproxy di persekitaran

homogeny. Dalam persekitaran heterogen, mekanisme SBLB menunjukkan penurunan

51% dalam purata masa tindak balas dan 47% dalam masa balasan berbanding

pengimbangan beban HAproxy. Selain itu, mekanisme yang dicadangkan juga

mengatasi algoritma round robin dalam kedua-dua persekitaran. SBLB menunjukkan

kenaikan 7% dalam permintaan sesaat (RPS) di persekitaran homogen dan peningkatan

20% RPS di persekitaran heterogen berbanding algoritma round robin.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

All Praise and thanks to ALLAH for this help and guide me to complete this

thesis. I owe my deepest gratitude to my supervisor Dr. ANG TAN FONG for his

advice, guidance, and supervision from the very early stages of this study through to the

completion of this thesis. This research will never be accomplished without his

supervision. Ialso like to extend my gratitude to my Co-supervisors, Prof Dr.

ABDULLAH GANI and for his deep commitments and continued help and support.

I would also like to express my sincerest gratitude and special appreciation to

my Father. No words can express my real feelings, so I dedicate my first achievement in

my life as a small gift to him. My hearty thanks must go to my mother for all the prayers

that help me to go through this lonely journey of research.

I am very thankful and grateful to my uncle Salah for his great support in

various possible ways. My special thanks to my wife Selwan for her endless love and

support during my study journey

I would like to express my deep appreciation to my dear lab friends, who provided

so much support and encouragement throughout this research and studies process. I am also

grateful to the University of Malaya for giving me the opportunity to further my study at

FCSIT, UM.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

Abstract .. iii

Abstrak .. v

Acknowledgements ... vii

Table of Contents ... viii

List of Figures ... xv

List of Tables.. xviii

List of Abbreviations... xx

List of Appendices ... xxiv

CHAPTER 1: INTRODUCTION .. 1

1.1 Background .. 3

1.1.1 Load Balance in Cloud ... 3

1.1.2 Services Based Classification ... 4

1.1.3 Software Defined Network (SDN) ... 5

1.2 Research Motivation .. 6

1.3 Statement of the Problem... 8

1.4 Statement of the Objectives ... 9

1.5 Scope of the research ... 10

1.6 Proposed Methodology .. 11

1.7 Contribution of the research .. 12

1.8 Layout of the thesis .. 12

CHAPTER 2: LITERATURE REVIEW .. 16

2.1 Load balance Background ... 17

2.1.1 Domain Name System (DNS) .. 17

Univ
ers

ity
 of

 M
ala

ya

ix

2.1.2 Hardware and Software load balance ... 19

2.1.2.1 Hardware load balancer (HLD) (Load Balancer) 19

2.1.2.2 Software Load Balancer (SLB) ... 20

2.1.3 The Application Delivery Controller (ADC) ... 21

2.2 SDN background ... 22

2.2.1 SDN Architecture ... 25

2.2.1.1 Controller Layer .. 25

2.2.1.2 Data layer .. 26

2.2.1.3 Application Layer .. 27

2.2.1.4 Southbound Interfaces (SBI) ... 28

2.2.1.5 Northbound Interfaces (NBI) .. 28

2.3 SDN-SLB Server architecture Vs Traditional Load Balancing architecture 28

2.4 Classification of SDN-SLB ... 34

2.4.1 Approaches /Techniques .. 34

2.4.1.1 Slices technique ... 36

2.4.1.2 Wildcard Technique .. 37

2.4.1.3 Genetic based technique .. 37

2.4.1.4 L2 Direct Server Return .. 38

2.4.1.5 Flow-oriented approach ... 39

2.4.2 SDN Controller ... 40

2.4.2.1 Open Source Controllers ... 41

2.4.2.2 Commercial Controller .. 44

2.4.3 LB Algorithms .. 47

2.4.3.1 Round Robin ... 48

2.4.3.2 Random ... 49

2.4.3.3 Server-Based Load Balancing Algorithm (SBLB) 49

Univ
ers

ity
 of

 M
ala

ya

x

2.4.4 Experimental environment ... 50

2.4.4.1 Mininet .. 51

2.4.4.2 Real environment .. 51

2.5 SDN-SLB: State-of-the-art .. 52

2.5.1 SDN- SLB module (application module) ... 53

2.5.2 Load balancing with NAT services .. 54

2.5.3 Load balancing for specific type of traffic ... 55

2.5.4 SDN server load balance first project ... 56

2.5.5 SDN-SLB in virtual environment ... 57

2.5.6 SDN scalable server load balance .. 57

2.5.7 Slice load balancing .. 58

2.5.8 A heuristic load balance ... 59

2.6 The important of the service based load balance ... 63

2.7 Identification types of the services .. 64

2.7.1 Port-based Approach .. 64

2.7.2 Deep packet Inspection (DPI) Approach .. 65

2.7.3 Behavioral and Statistical Patterns Approach .. 66

2.7.4 Statistical information Approach .. 66

2.8 Challenges, Open issues, and future research direction .. 67

2.8.1 Monitoring .. 67

2.8.2 Scalability ... 68

2.8.3 Load balances with different type of services .. 69

2.8.4 Reactive Flow and load balance ... 70

2.8.5 Multi-tenancy and load balance.. 70

2.8.6 Server Load balance and services chain ... 71

2.9 Conclusion ... 72

Univ
ers

ity
 of

 M
ala

ya

xi

CHAPTER 3: SERVICE BASED LOAD BALANCE MECHANISM: PROBLEM

ANALYSIS………… .. 73

3.1 LB System Description .. 73

3.1.1 System Definitions ... 74

3.1.2 Experimental setup and network model ... 75

3.1.3 Experimental Model ... 77

3.2 Empirical Analysis of user’s request into load balancing system 79

3.2.1 Analysis of the Average Response Time (RT) ... 79

3.2.2 Analysis of the Reply Time (RT) ... 83

3.2.3 Request per second (RPS) .. 86

3.3 Impact of the requests on a host load... 88

3.4 Conclusion ... 89

CHAPTER 4: SERVICE BASE LOAD BALANCE (SBLB): DESIGN AND

IMPLEMENTATION .. 91

4.1 Development of the Modules in Floodlight ... 91

4.2 System Architecture of SBLB ... 94

4.3 The building blocks of the proposed load balance mechanism. 96

4.3.1 Service Classification Module(SCM) .. 96

4.3.1.1 The method of identifying the type of Request 96

4.3.1.2 MemoryStorageSource service ... 98

4.3.2 Dynamic Load-balancing Module (DLM) ... 99

4.3.2.1 Calculating the load of hosts ... 99

4.3.2.2 SBLB Algorithm ... 101

4.3.2.3 Selecting the best server .. 102

4.3.3 Monitoring Module (MM) .. 103

4.3.3.1 Statistics collection service ... 103

Univ
ers

ity
 of

 M
ala

ya

xii

4.3.3.2 Bandwidth Statics information .. 104

4.3.4 Use-case and flow-sequence diagram .. 109

4.3.4.1 System configuration Process ... 109

4.3.4.2 Create host pool ... 109

4.3.4.3 Added member to Pool .. 110

4.3.4.4 Send request .. 110

4.3.4.5 Data structure for storing ... 111

4.3.4.6 PacketIn receive .. 111

4.3.4.7 Process PacketIn .. 111

4.3.4.8 Packet classification .. 111

4.3.4.9 Load balancing .. 112

4.3.4.10 Check the host load ... 112

4.3.4.11 Direct host response and VIP response 112

4.3.5 Conclusion .. 113

CHAPTER 5: EVALUATION ... 114

5.1 Performance Evaluation... 115

5.1.1 Experimental Setup .. 116

5.1.2 System Topology .. 116

5.1.3 The components of the experiments ... 117

5.1.3.1 Floodlight Controller ... 117

5.1.3.2 Open VSwitch ... 118

5.1.3.3 OpenStack: .. 118

5.1.3.4 SBLB Application modules and performance metrics 118

5.2 Data collection method .. 118

5.3 Statistical model... 119

5.4 Performance Analysis .. 120

Univ
ers

ity
 of

 M
ala

ya

xiii

5.4.1 Data Collected for SBLB mechanism that is carried out in simulation and

real environments ... 121

5.4.2 Data Collected to analysis data and compute request in homogeneous and

heterogeneous environments .. 124

5.4.3 Data Collection for the comparison of SBLB mechanism and HAproxy in

homogeneous and heterogeneous environments 130

5.4.4 Data Collected for performing comparison of SBLB and RRA in

homogeneous and heterogeneous environments 136

5.5 Conclusion ... 142

CHAPTER 6: CHAPTER RESULTS AND DISCUSSION 144

6.1. Analysis of SBLB mechanism in simulation and real environment 144

6.2. Collection data of compute and data request in SBLB mechanism..................... 147

6.3. Comparison between SBLB and RRA .. 153

6.4. Comparison between SBLB mechanism and HAproxy load balancer software . 159

6.5. Conclusion ... 165

CHAPTER 7: CONCLUSION ... 167

7.1 Re- examining the objectives of the research .. 167

7.2 Contributions of the study ... 169

7.1.1 Taxonomy of SDN Server Load Balance ... 169

7.1.2 Studying the impacts of the request on load balance system 169

7.1.3 Proposing Service Based Load Balance (SBLB) Mechanism 170

7.1.4 Enhancing OpenFlow protocol to provide traffic classification............. 170

7.1.5 Evaluation and validation of the proposed solution 171

7.3 Limitations and Delimitations ... 171

7.4 Future research directions .. 172

Univ
ers

ity
 of

 M
ala

ya

xiv

7.5 Conclusion ... 173

References ... 174

List of Publications and Papers Presented .. 185

Appendix A: T Test Table.. 187

Appendix B: Code of the RESTful API ... 189

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF FIGURES

Figure 1.1 Load balance architecture in cloud environment ... 3

Figure 1.2 Regional SDN segment forecast .. 7

Figure 1.3 Research Methodology .. 11

Figure 2.1 The evolution stages of load balance ... 17

Figure 2.2 SDN architecture ... 24

Figure 2.3 SDN load balance architecture .. 30

Figure 2.4 The flow chart of the load balance packetIn .. 32

Figure 2.5 Traditional load balance architecture... 33

Figure 2.6 Taxonomy of SDN-SLB .. 35

Figure 2.7 CURL configuration of Floodlight load balance ... 42

Figure 2.8 The OpenState process using FSM .. 43

Figure 2.9 State-of-the-art topics .. 53

Figure 3.1 Configuration of the load balancing system .. 75

Figure 3.2 The network topology used in Mininet .. 76

Figure 3.3 Mininet command to run a custom topology ... 76

Figure 3.4 Relation between request rate and number of the request 79

Figure 3.5 Impact of the number of different request with ART 80

Figure 3.6 Size of the file and response time .. 82

Figure 3.7 Reply Time per percentage .. 84

Figure 3.8 The request per second .. 87

Figure 4.1 Floodlight modules processing steps ... 93

Figure 4.2 SBLB system architecture ... 95

Figure 4.3 Service classification process .. 97

Univ
ers

ity
 of

 M
ala

ya

file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479318988
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479318989
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479318991
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479318992
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479318993
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479318994
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479318995
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479318997
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479318998
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479319000
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479319001
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479319008
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479319009
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479319010

xvi

Figure 4.4 Pseudo-code of the SBLB algorithm ... 102

Figure 4.5 Statistics collector algorithm ... 104

Figure 4.6 Enable the statistical function .. 105

Figure 4.7 System flow sequence ... 107

Figure 4.8 Use-Case diagram ... 108

Figure 4.9 Send JSON message to Floodlight .. 109

Figure 5.1 System topology .. 117

Figure 6.1 ART of the Mininet and OpenStack for SBLB. .. 146

 Figure 6.2 RT of the Mininet and OpenStack SBLB ... 146

Figure 6.3 RPS of the Mininet and OpenStack for SBLB. ... 147

Figure 6.4 ART of data and compute request in the homogeneous environment for

SBLB. .. 148

Figure 6.5 RT of data and compute request in the homogeneous environment for SBLB.

 ... 149

Figure 6.6 RPS of data and compute request in the homogeneous environment for

SBLB. .. 150

Figure 6.7 ART of data and compute request in a heterogeneous environment for SBLB.

 ... 151

Figure 6.8 RT of data and compute request in heterogeneous for SBLB 152

Figure 6.9 RPS of data and compute request in heterogeneous environment for SBLB

 ... 153

Figure 6.10 ART of the SBLB and RRA in homogeneous environment 154

Figure 6.11 RT of the SBLB and RRA in homogeneous environment 155

Figure 6.12 ART of the SBLB and RRA in a heterogeneous environment. 156

Figure 6.13 RT of the SBLB and RRA in a heterogeneous environment. 157

Figure 6.14 RPS of the SBLB algorithm and RRA in homogeneous environment 158

Figure 6.15 RPS of the SBLB and RRA in heterogeneous environment...................... 158

Univ
ers

ity
 of

 M
ala

ya

file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479319014
file:///C:/Users/ahmed/Dropbox/Research%20Report/Correction%20vesion/AngCommnets/ThesisV10.docx%23_Toc479319015

xvii

Figure 6.16 ART of the SBLB and HAproxy in homogeneous environment 160

Figure 6.17 RT of the SBLB and HAproxy in homogeneous environment 161

Figure 6.18 RPS of the SBLB and HAproxy in homogeneous environment................ 162

Figure 6.19 ART of the SBLB and HAproxy in heterogeneous environment 163

Figure 6.20 RT of the SBLB and HAproxy in heterogeneous environment 164

Figure 6.21 RPS of the SBLB and HAproxy in heterogeneous environment 165

Univ
ers

ity
 of

 M
ala

ya

xviii

LIST OF TABLES

Table 1.1 Summary of the Thesis Layout ... 13

Table 2.1 Pros and cons of different SLB approach ... 22

Table 2.2 Comparison between conventional SLB and SDN-SLB 34

Table 2.3 Approaches and techniques of SDN-SLB ... 40

Table 2.4 Commercial SDN-SLB solutions .. 47

Table 2.5 Comparison between various load balance solutions 61

Table 2.6 Open issues, challenges, and future research direction 67

Table 3.1 SDN-SLB Components ... 74

Table 3.2 System specification of the Mininet ... 76

Table 3.3 The list of the parameters and metrics .. 77

Table 3.4 Average response time with increasing number of the requests 81

Table 3.5 The impact of the request size into RT ... 83

Table 3.6 The percentage of the request and RT of different request number................ 85

Table 3.7 The impact of the type of the request into RPS .. 88

Table 4.1 SBLB Symbols parameters ... 99

Table 5.1 Specification of hosts in OpenStack environment .. 115

Table 5.2 Systems specification of the computer.. 116

Table 5.3 Average response time of Mininet and OpenStack 121

Table 55.4 Reply Time of Mininet and OpenStack .. 122

Table 5.5 Request per Second of Mininet and OpenStack.. 123

Table 5.6 The average response time of the compute and data request in homogeneous

environment using ... 125

Table 5.7 Reply time of the data and compute request in homogenous environment .. 126

Univ
ers

ity
 of

 M
ala

ya

xix

Table 5.8 Request per second of the data and compute request in homogenous

environment... 127

Table 5.9 The average response time of the compute and data requests in heterogeneous

environment... 128

Table 5.10 The reply time of the compute and data requests in heterogeneous

environment... 129

Table 5.11 Request per second of the compute and data requests in the heterogeneous

environment... 130

Table 5.12 The average response time in SBLB mechanism and HAproxy load balancer

in a homogeneous environment. ... 131

Table 5.13 The Reply Time in SBLB and HAproxy in homogeneous environment 132

Table 5.14 Request per Second (RPS) of SBLB and HAproxy load balancer in

homogeneous environment ... 133

Table 5.15 The average response time of SBLB and HAproxy in heterogeneous

environment... 134

Table 5.16 The reply time of SBLB and HAproxy in heterogeneous environment 135

Table 5.17 Request per second of the SBLB mechanism and HAproxy in heterogeneous

environment... 136

Table 5.18 Average response time of the SBLB and RRA in homogeneous environment

 ... 137

Table 5.19 Reply time of the SBLB and RRA in homogeneous environment 138

Table 5.20 Request per second of the SBLB and RRA in homogeneous environment 139

Table 5.21 Average response time of the SBLB and RRA in heterogeneous environment

 ... 140

Table 5.22 Reply time of the SBLB and RRA in heterogeneous environment 141

Table 5.23 Request per second of the SBLB and RRA in heterogeneous environment

 ... 142

Univ
ers

ity
 of

 M
ala

ya

xx

LIST OF ABBREVIATIONS

ACL : Access Control Lists

ACO : Ant Colony Optimization

ADC : Application Delivery Controller

API : Application programing Interface

ARP : Address Resolution Protocol

ART : Average Response Time

AWS : Amazon Web Service

CC : Cloud Computing

CLS : Command Line Interface

CPU : Central Process Unit

CPU : Central Processing Unit

CR : Compute Request

URL : Uniform Resource Locator

CURL : Client Uniform Resource Locator

DC : Data Center

DLBM : Dynamic Load Balance Module

DNS : Domain Name System

DPI : Deep Packet Inspection

DR : DataRequest

DSR : Direct Server Return

FSM : Finite State Machines

FTP : File Transfer Protocol

FTP : File Transfer Protocol

FV : Flow Visor

Univ
ers

ity
 of

 M
ala

ya

xxi

GSLB : global server load balancing

GUI : Graphical User Interface

HTTP : Hypertext Transfer Protocol

HTTP : Hypertext Transfer Protocol

HTTPS : Hypertext Transfer Protocol Secure

IANA : Internet Assigned Numbers Authority

ICMP : Internet Control Message Protocol

LB : Load Balance

LBaas : Load-Balancing-as-a-Service

LLDP : Link Layer Discovery Protocol

MAC : Media Access Control Address

ML : Machine Learning

MM : Monitoring Module

NAT : Network Address Translation

NBI : North Bound Interface

NetPDL : Network Packet Description Language

NFV : Network Function Virtualization

NLB : Network Load Balance

NOX : Network Operating X

OF : OpenFlow

OFS : OpenFlow Slice Algorithm

OS : Operating System

OVS : Open Virtual Switch

OVS : Open vSwitch

OVSDB : Open vSwitch Database Protocol

OVX : Open VirteX

Univ
ers

ity
 of

 M
ala

ya

xxii

P2P : Peer-to-Peer

QoS : Quality Of Service

RAM : Random Access Memory

RAM : Random-access memory

RPS : Request Per Second

RR : Reply Rate

RRA : Round Robin Algorithm

RT : Reply Time

RTP : Real-time Transport Protocol

SBI : South Bound Interface

SBLB : Service Based Load Balance

SCM : Classification Module

SDDC : Software-Defined Data Center

SDN : Software Defined Networking

SIP : Session Initiation Protocol

SLB : Software Load Balance

SNAT : Secure Network Address Translation

SNMP : Simple Network Management Protocol ()

SP : Service Provider

TC : Traffic classification

TCP : Transmission Control Protocol

TR : Transfer Rate

TS : Table Service

UDP : User Datagram Protocol

VDC : Virtual Data Center

VE : Virtual Environment

Univ
ers

ity
 of

 M
ala

ya

https://devcentral.f5.com/articles/f5-synthesis-open-secure-and-production-ready-sddc
https://en.wikipedia.org/wiki/Session_Initiation_Protocol

xxiii

VIP : Virtual IP address

VM : Virtual Machine

Univ
ers

ity
 of

 M
ala

ya

xxiv

LIST OF APPENDICES

Appendix A: T-test Table …………………………………………….………... 198

Appendix B: Code of the FULL-REST API …………………….………....... 190

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

The expansion growth of cloud ecosystem (Fortis, Munteanu, & Negru, 2012)

has influenced modern software vendors to develop their software on cloud

environment and deploy them on a number of server instances. It resulted in an increase

in the number of servers that hosted various types of the services. In turn, the servers

can be accessed by multi-tenant users from different locations (Krebs, Momm, &

Kounev, 2012). Such users expect to get a faster response regardless of the size of the

request, type of services, or the number of requests. This raises the issue of balanced

distribution, control, and utilization of the available resources over the system’s

environment. To address this issue, Load Balance (LB) (Randles, Lamb, & Taleb-

Bendiab, 2010) emerged as a technique used for distributing the incoming traffic among

various servers in order to minimize the response time and maximize the utilization of

the servers.

This technique started in the mid-1990s (Bourke, 2001) due to the rapid increase

of websites and additional servers that raised the need for the websites to be expanded.

The development of LB in the cloud has been fast since the introduction of Domain

Name System (DNS) LB (O'neil, Nerz, & Aubin, 2000) that can balance the load

between multiple web servers over the Internet. It used the Round-robin scheduling

scheme to distribute the traffic without considering the server status and capacity.

However, this approach became ineffective after the tremendous growth of services.

Due to the above drawback, the clustering technique (Randles et al., 2010) was then

used to distribute single application into multiple servers that improve the scalability of

the systems. In line with the popularity of clustering technique, the importance of LB

then rose to a higher status, and several load balancer devices and applications have

been introduced over the last decade. Nevertheless, this technique has some limitations

Univ
ers

ity
 of

 M
ala

ya

2

where it does not support dynamic multiple scheduling algorithms and uses only one LB

schema for all the services and applications

The rapid growth of Cloud Computing (CC) (Armbrust et al., 2010) in the last few

years, has led to a massive increase in service requests to cloud servers. Thus, there is a

need for cloud load balancing technique that maximizes application performance and

enhances the reliability of the services. There are many cloud providers that offer cloud

load balancing service, including Amazon Web Services (AWS), Google, Microsoft

Azure and Rackspace. The Load Balance as a Service (LBaaS) is the commonly used

model in the cloud ecosystem. Nonetheless, most of the LBaaS solutions not concern

about the mutual intervention among applications deployed on the same server.

Therefore, a server with multiple deployed applications needs a proper scheduling

policy to guarantee the effectiveness of load balancing. Software-Defined Networking

(SDN) (Kreutz et al., 2015) is believed to provide an effective load balancing for the

dynamism of the traffic requests. By integrating the service awareness with SDN, the

issues of load balancing can then be addressed. This chapter is divided into eight

sections. In section 1, a brief background of the load balance techniques in the cloud as

well as the related service based traffic classification is presented. The section also

discusses Software Defined Networking (SDN) as the technology to enhance the traffic

management in the cloud. In section 2, the motivation of the study is presented. Section

3 then highlights the research gap and identifies the statements of the problem addressed

in this study. The objectives and the scopes of the research are discussed in sections 4

and 5 respectively. The proposed methodology is then presented in section 6 while the

contributions are listed in section 7. The chapter then concludes with Section 8 where

the thesis layout is given.

Univ
ers

ity
 of

 M
ala

ya

3

1.1 Background

1.1.1 Load Balance in Cloud

The proliferation of servers on the Internet (Abdelzaher & Lu, 2000) led to the

emergence of load balance as an important service in cloud aiming to optimize resource

usage, maximize throughput and minimize the response time. Load balance in the cloud

is the process and technology that distributes incoming requests among several servers

in order to minimize the response time and maximize the utilization of servers (Chang

& Tang, 2010a). Figure 1.1 illustrates the load balancing system architecture, whereas

the load balancer is located in between the firewall and the server pool. Users send their

requests to the server pool through a Virtual IP (VIP), and the load balancer will

distribute the load among the servers in the pool upon receiving the requests.

There are various types of load balance implementations namely; Application Load

Balance (ALB) (H.-j. LIN, PENG, & LI, 2007), Hardware Load Balance (HLB)

(Gandhi et al., 2015) and Application Delivery Controller (ADC) (Chiong, 2013). ALB

is a software based load balance service that is integrated into the server’s operating

system such as Windows servers or Linux servers. ALB has the capabilities to distribute

the network traffic between clustered servers or server farms. Application developers

can customize the load balance policy (algorithm) based on the characteristics of the

Figure 1.1 Load balance architecture in cloud environment

Univ
ers

ity
 of

 M
ala

ya

4

related application as well as the resource information. HLB has emerged as a powerful

solution that increases the system’s scalability and availability (Saito, Bershad, & Levy,

2000). The hardware load balancer can distribute the load across multiple servers and

redirect the load to other servers in case of server or application failure. The

manageability function allows the administrator to dynamically scale-out the load

balance by adding more servers to the server pool on the fly. HLB uses thespecialized

processor to provide high capacity, but, it is expensive and characterized by alack of

flexibility in terms of handling different types of traffic requests. HLB has evolved into

Application Delivery Controllers (ADCs) over the past 10 years. Typically, in the data

center, ADC is a load balancing device that sits between the firewall and the Web farm.

ADC has the ability to inspect the packet headers and distribute the traffic to the

selected servers based on this information. In addition, ADC has a monitoring system

that allows the checking of the server’s health status and ADC can provide content-

aware service that is used for quality of service (QoS) and security purposes. However,

ADC does not have the ability to identify exactly the types of the service. The

importance of the service aware is essential in order to maximize resource utilization

and optimize the execution time of the services.

1.1.2 Services Based Classification

Identifying the type of the service is a critical network processing task because

of the complexity and dynamic characteristics of the network traffic. Besides, dramatic

increases of services in various forms that are deployed in the cloud, along with

dynamic communication protocols, have attracted numerous researchers to introduce

several service classification solutions. The main objective of service classification is to

identify which service is offered by the servers using different approaches of the Traffic

Classification (TC) (Bernaille, Teixeira, Akodkenou, Soule, & Salamatian, 2006). TC is

a mechanism that is used to identify the type of services or applications for different

Univ
ers

ity
 of

 M
ala

ya

5

purposes such as security, Quality of Service (QoS) and/or network statistics. There are

a variety of traffic classification approaches which include Port-based classification

(Dainotti, Pescape, & Claffy, 2012), Deep Packet Inspection (DPI) (Becchi, Franklin, &

Crowley, 2008) and statistical information that are widely used with Machine Learning

(ML) algorithms (Nguyen & Armitage, 2008). In the port-based technique, the port is

used to define the service type. Even though the technique is fast, it is still not accurate.

This is due to the fact that, most services are running on dynamic ports or communicate

over the HTTP. Moreover, the port-based approach can lead to misclassification as new

services may end up either reusing the port number or randomly selecting port numbers

or in some cases a user selecting a port based on their preferences. Hence, this is

currently no longer used because of the above-mentioned limitations. The DPI approach

depends on the inspection of the actual payload of the packet to identify the type of

service or application. However, the approach is more accurate, it is still slow and

involves high computation cost.At the same time, it requires manual signature

maintenance. Furthermore, most services today are transmitted over encrypted channels

such as HTTPS in which the payload cannot be accessed. In order to to overcome this

limitation, statistical information with Machine learning (ML) was then proposed as an

alternative. This approach identifies the network features and uses them to define the

related type of services. These features, attributes of flows or packets, are statistical

information that can be calculated to label the respective traffic.

1.1.3 Software Defined Network (SDN)

In the past few years, Software Defined Network (SDN) (Nunes, Mendonca,

Nguyen, Obraczka, & Turletti, 2014) was raised as a new generation network

architecture to address the problems that were encountered by traditional networks such

as security, traffic management, and virtualization. SDN architectures decouple network

control and forwarding functions, enabling network control to become directly

Univ
ers

ity
 of

 M
ala

ya

6

programmable and the underlying infrastructure to be abstracted from applications and

network services. Such abstraction provides unified cloud resources that can be

managed by the SDN controller. SDN controller manages the edge devices (switch and

router), defines network policy topology centrally, and manages multiple interfaces

southbound protocols. SDN comes with several advantages(Feamster, Rexford, &

Zegura, 2013): 1) Decoupling control plane from the data plane whereas a switch is

responsible for forwarding the packet based on the instructions of thecontroller. 2)

Centralizing control of the network by the controller that has a complete view of the

network. 3) Open interfaces between the control plane and the data plane by using

astandard protocol such as OpenFlow. 4) Programmability of the network which allows

network administrators to develop their own network applications module on top of the

controller.

1.2 Research Motivation

Grand View Research (G. V. Research, 2016), a market research company,

reported that traffic in the data centre is expected to reach 9965 Exabyte by 2020 as

compared to 4515 Exabyte in 2015, and market penetration of cloud-based data centre

traffic is anticipated to increase from over 58% to over 75% by 2020. Such explosive

growth of traffic is an evidence of the increasing use of load balance services that are

required to balance the traffic on the cloud.

Another study from Microsoft search lab (Parveen Patel et al., 2013) compared

the Internet traffic ratio and inter-service traffic ratio in one week for 8 data centers. The

study discovered that 44% of the total traffic is VIP which represents the load balance

traffic or SNAT, 30% is inter-service traffic while the rest, 26% is to the Internet traffic.

Since most traffic must pass through the load balancer, the authors in (Poddar, Vishnoi,

& Mann, 2015) showed that 70% of total VIP traffic is managed within the same data

center. The load balancers are usually placed after a firewall and handle all VIP traffic.

Univ
ers

ity
 of

 M
ala

ya

7

The dedicated hardware load balancers (HLB) are too expensive and roughly cost about

the US $80,000. The study was conducted in a data center containing 40.000 servers

with 100 Tbps of internal data center traffic and more than 400 Gbps of external traffic.

In order to handle this amount of traffic, 40 load balancers were required for external

traffic and 10,000 load balancers deployed for the intra-DC traffic, and in turn, both

incurred a cost of about (The US $3.2 million) and (The US $800 million) respectively.

Figure 1.2 shows the regional SDN segment forecast from 2015 to 2020 ($

billion). The graph illustrates the rapid growth of SDN in the Asian Pacific, North

America and Europe. SDN has the potential to simplify network management and

enable innovation and evolution of the computer networks. It is a natural fit for load

balance because the controller has a global view of network resources and knowledge of

application requirements to optimize the load. Thus, SDN brings new possibilities for

improving balancing techniques that faced several problems in the traditional network

load.

Today’s solutions in the cloud for load balancing are effective but have limited

flexibility in terms of customization. Typically, in the cloud environment, service

providers host various types of services and applications with multi-tenants services that

Figure 1.2Regional SDN segment forecast

 (Years) Univ
ers

ity
 of

 M
ala

ya

8

require specific load balance schemes. Therefore, customizing the load balance system

is quite hard and might also require different load balancers for each of the offered

services, and that might be too costly

1.3 Statement of the Problem

The network congestion and server overloading have become a serious problem

in most of the cloud environments due to the increment of network traffic.

Consequently, load balancing for the cloud has turned out to be a very important

research area (Handigol, Flajslik, Seetharaman, McKeown, & Johari, 2010). Several

types of the load balance approaches and techniques using SDN technology are

proposed. Such techniques/approaches aim to minimize the response time and maximize

the throughput without causing overhead to the SDN Controller.

Typically, the load balance scheme is categorized into two; Static and Dynamic.

The static scheme (Venkata Krishna, 2013) distributes the load without considering

nodes capacity such as the server processor, RAM and links’ bandwidth. However,

thestatic scheme is simple to implement, with less overhead and suitable for

homogenous servers but generally is not flexible, and is incapable of considering the

dynamic changes to the attributes. For example, if one server received a huge number of

tasks, after acertain time another task will be sent to the same server regardless of the

capacity of the server or size of the task. Dynamic scheme (Guo et al., 2014) on the

other hand, distributes the load based on the current status of network nodes. This

means that at the run time, the load-balance system checks the server’s load and links’

capacity. Nevertheless, dynamic schema neglects the type and the size of the user

request and can use only one algorithm (Handigol, Seetharaman, Flajslik, McKeown, &

Johari, 2009) for all different services. For example, in thecloud, the load balancer is

normally configured with one algorithm; least connections to deal with different

services like HTTP and FTP that require adifferent schema. Typically, the request

Univ
ers

ity
 of

 M
ala

ya

9

processing time of each service is different, thus, taking into account the service type is

important to provide optimal load balance.

The existing schemes (dynamic or static) do not consider the service types as well as the

size of the request. Besides, these schemes are implemented either in dedicated

hardware devices called load-balancer or built into the Operating System (OS) such as

Linux Virtual Server (LVS)(W. Zhang, Jin, & Wu, 1999) or Microsoft Network Load

Balancing (NLB) (Dutta, Vidovic, & Vrsalovic, 2003). It is difficult to customize the

built into LB scheme during runtime. Additionally, load balancer experiences problems

due to the same scheme being used for different type of services. In the cloud, most

Service Providers (SP) host various kinds of services that require different load

balancing schemes (Ragalatha P, 2013). In turn, needs installation of additional load-

balancers for each service or a manual reconfiguration of the device to handle the new

services. Such operation is time-consuming and expensive (Marc Koerner & Kao,

2012). In addition, to identify the type of the service for each request, online traffic

classification method must be implemented. As SDN controller has the ability to view

and monitoring network nodes via OpenFlow messages, therefore, designing and

implementing online traffic classification can be achieved with minimum network

overhead,

Although, several studies (Chou, Yang, Hong, Hu, & Jean, 2014), (Bays & Marcon,

2011), (Shang et al., 2013) have proposed load balancing solutions based on the SDN

technology in the cloud. However, all these studies have neglected the various types of

services that require different load balancing schema.

1.4 Statement of the Objectives

The aim of this study is to utilize the SDN technology in providing an effective

service-based load balancing mechanism that maximizes the throughput and minimizes

the response time. The objectives of this thesis are listed below:

Univ
ers

ity
 of

 M
ala

ya

11

1. To perform a gap analysis review on the approaches/techniques of the SDN load

balancing schemes in the cloud.

2. To propose a service based load balancing mechanism with the SDN technologyto

maximize throughput and minimize the response time.

3. To leverage the OpenFlow protocol for providing online traffic classification that

identifies service types

4. To evaluate the proposed solution and compare the performance with the existing

load balancing solutions.

1.5 Scope of the research

Server Load Balance (SLB) is widely implemented in the cloud for various

purposes. For example, it can be used for Quality of Service (QoS) or during the DDoS

attacks as a means of mitigation by leveraging the session’s persistence. In addition, a

load balancing system in software or hardware is usually designed with additional

functions to address several issues such as server’s scalability, availability, and security.

Therefore, in this thesis; we focus on a load balancer that distributes the incoming

traffic among a number of servers while considering the type of services. This is done

so as to provide a dynamic load balancing scheme that minimizes the response time and

maximizes the throughput. In order to achieve the research objectives during the given

period, it is necessary to outline the scope and limitation of this research work;

 The study on the technology includes a load balancing system that can be

implemented in thedata center.

 The OpenFlow protocol version deployed for this research is OpenFlow 1.3

 The evaluation of the proposed technique is carried out in the cloud environment

using OpenStack.

Univ
ers

ity
 of

 M
ala

ya

11

 The metrics used for the experiment are Response Time (RT), Reply Time (RT),

and Request per Second (RPS)

1.6 Proposed Methodology

The research is basically conducted as an empirical research study that is

comprised of four phases which are as depicted inFigure1.3.

Phase 1: The research begins with a study of cloud environment to identify the

current relevant issues and problems in terms of load balancing. Then, the existing load

balancing solutions are explored. A gap analysis review on the approaches/techniques of

the SDN load balancer in the cloud is performed. Subsequently, the problem statements

and research objectives are defined.

Figure 1.3 Research Methodology

Phase 2: In this phase, the problem is analyzed by conducting numbers of

empirical experiments. Then, a mathematical representation of the load balancing

Research Methodology

Review

Problem identification-
Objectives defined

Problem establishment

Propose and develope SBLB
Mechanism

Implementation

Evaluation

Future work

Phase 2

Phase 1

Phase 3

Phase 4

Univ
ers

ity
 of

 M
ala

ya

12

problems is formulated. After that, a Service Based Load Balance (SBLB) mechanism

using the Software Defined Networks (SDN)architecture is proposed.

Phase 3: The proposed service based load balancing mechanism is developed,

and a suitableSDN controller is selected for the implementation.

Phase 4: In this phase, several experiments are conducted to evaluate the

performance of the SBLB. The proposed mechanism is evaluated based on several

metrics in homogeneous and heterogeneous environments.The performance analysis is

conducted between the proposed mechanism and existing load balance solutions. In

addition, the future works are highlighted.

1.7 Contribution of the research

The research study provides information on the issues of SLB using SDN

technology which provides several solutions to current cloud problems. Further, we will

show the virtues of this new technology to enhance the performance of load balance.

 Designing and implementing dynamic load based on the service type.

 Besides, this study also enhances the OpenFlow Protocol by extending SDN

controller and OpenFlow switch functions to support online traffic

classification.

 A dynamic load balance algorithm that calculates the load of the each host

based on request type is developed. This algorithm adjusts the parameters

according to theservice type.

1.8 Layout of the thesis

Table 1.1 presents a summary of the contents of the thesis. This thesis includes

seven chapters that are organized as follows:

Univ
ers

ity
 of

 M
ala

ya

13

Table 1.1 Summary of the Thesis Layout

Chapter What? Why? How?

1 Introduction To give a brief background about

the research

 To show the motivation of the

study

 To define the problem and state

the objectives

 To describe the thesis layout

 Explain the research title

 Illustrate the motivation

and formally writing the

statement of problem

and set the objectives

2 Literature Review To investigate the pros and cons

of existing solutions

 To review the currently used

techniques

 To present the open issues and

challenges

 Perform a gap analysis

review

 Explain in details the

used architecture (SDN)

 Point out the issue that is

addressed in the study

3 Problem Analysis To deeply understand the impact

of user requests into load

balancing system for the purpose

of analyzing the problem

 Empirical study using

simulation tools

 Implement/Conduct

mathematical analysis

4 SBLB mechanism

design and

implementation

 Giving the clear understanding

of the proposed system

 Explain the system’s architecture

in details

 Show implementation steps

 Elaborations of the

system modules

 Explaining the system

5 Evaluation of the SBLB

mechanism
 Presents the experiment’s setup

 Analysis, testing and comparison

study of the proposed system to

respective benchmarks

 Simulate the cloud

environment

(configuring Pools,

Members, VIPs and

controller modules)

 Explaining the tools used

for evaluating the

proposed solution

 Generating traffic and

measure the metrics

(Response Time (RT),

Reply Time (RT),

Request per Second

(RPS)

6 Results and discussion Compared the results with

existing load balance systems

 Highlight the effectiveness of the

proposed system

 Comparing of thethe

performance of the

proposed mechanism

with the existing

software load balancer

such as (HAproxy).

 Compared SBLB

algorithm with Round-

Robin (RRA)

7 Conclusion Summary of the research

findings

 Show the limitations and future

work

 point out the significance

of the work reported in

this thesis

Chapter 2presents a comprehensive review of the load-balance solutions that

uses SDN. The chapter begins with a brief overview of load balancing schemes in the

cloud, followed by the explanation of the SDN technology. Then, the load balancing

Univ
ers

ity
 of

 M
ala

ya

14

solutions in the SDN are presented, and the taxonomy is derived. A gap analysis review

is conducted for the solutions. Besides, the different types of traffic classification

techniques are investigated. The chapter ends with a number of open research issues and

challenges with respect to load balancing in the cloud.

Chapter 3 presented an analysis of the problem to show the impact of user’s

requests on a load balancing system and the related host’s response. For provingthat,

several experiments were conducted in the Mininet, and various types of requests were

generated.

Chapter 4 describes the development and implementation of the proposed

service-based load balance mechanism. A presentation of thesystem architecture is

given together with the functionalities of the three sub-modules namely; Service-based

Classification, Load Balancing, and Monitoring.Besides, a use-case diagram is

illustrated to show the interaction between the client and the proposed load balance

mechanism.

Chapter 5 presents the data collection for examining the proposed SBLB. First,

the experimental setup and the components of the experimentsare explained. The

benchmarking that is used to evaluate the mechanism in homogenous and

heterogeneous environments is presented. In addition, the data collection methods and

the statistical model that are used to evaluate the proposed mechanism is presented in

this chapter

Chapter 6 presents the performance of SBLB mechanism and compares it with

other load balance solution.Three parameters namely Average Response Time (ART),

Reply Time (RT), and Request Per Second (RPS) are used to evaluate the performance

of SBLB. The experiments are carried out in homogeneous and heterogeneous

environments.

Univ
ers

ity
 of

 M
ala

ya

15

Chapter 7 discusses the outcomes of the research and how the objectives have

been achieved.Then, the limitations and delimitations of the proposed mechanism are

discussed. The chapter ends with the suggestions of the future research directions.

Univ
ers

ity
 of

 M
ala

ya

16

CHAPTER 2: LITERATURE REVIEW

This chapter aims to conduct a review on Server Load Balancing (SLB) in the

cloud and analyze existing solutions that are related to the problem. First, we discuss the

development stages of the SLB in the cloud. Then, we present the fundamental concept

of the SDN along with the comparison of traditional and SDN networks in terms of the

load balancing service in the cloud. Subsequently, we classify the current SDN-SLB

solutions and introduce a thematic taxonomy based on different criteria including;

approaches/techniques, controller and controller modules, algorithms and experimental

environment. We discussed in detail the latest existing SDN-SLB solutions. Such

solutions depict the current system state of SDN-SLB in both academics and industries.

Moreover, we present a discussion on traffic classification approaches that are

implemented to provide service classifications. Finally, we summarize the chapter by

discussing the challenges of SDN-SLB as well as open issues and future research

direction that highlight the problem of the study.

The remainder of this chapteris organized as follows: In section 2.1, we present

a brief background of SLB in the cloud. The fundamental concept of the SDN layer

architecture is illustrated in section 2.2. Then, a comparison between traditional SLB

and SDN-SLB architecture is presented in Section 2.3. In section 2.4, we discuss in

details the thematic taxonomy of the SDN-SLB. Subsequently, the existing state-of-the-

art SDN-SLB solutions are presented in section 2.5. Traffic classification approaches

that are used for the identification of service types are then shown in section 2.6.

Section2.7 discusses the challenges, future directions, and open issues related to SDN-

SLB. The chapter is then concluded in section2.8.

Univ
ers

ity
 of

 M
ala

ya

17

2.1 Load balance Background

The proliferation of servers on the Internet led to the emergence of the SLB as a

valuable service in the cloud (Radojević & Žagar, 2011). Its aim is to avoid overload of

the server, optimize resource usage, maximize throughput and minimize the response

time. SLB is simply a process and technology that distributes incoming request among

several servers. This technique was initiated in the mid-1990s when a rapid increase of

websites and additional servers were required to expand the applications (Wellman,

2004). From that time onwards, this technique has rapidly evolved and became one of

the important service models in the cloud namely load balancing as services (LBaaS)

(Rahman, Iqbal, & Gao, 2014). Besides, clustering technique (Gonzalez, Rojas, Ortega,

& Prieto, 2002) was introduced to improve the scalability of the systems and help

distribute thesingle application to multiple servers. In this section, we discuss the

evolution of load balancing in the cloud that is illustrated in Figure 2.1, from simple

Domain Name System (DNS) (Mockapetris & Dunlap, 1988) service to a dedicated

hardware device that provides multi functions along with load balancing service.

2.1.1 Domain Name System (DNS)

Round-robin DNS is the first technique implemented to distribute the load across

multiple servers over the Internet. The techniquewas used when a server is

Figure 2.1 The evolution stages of load balance

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/wiki/Throughput

18

overloadedby users’requests, and additional servers are deployed to balance the load

and expand the applications. This process is executed in such a way that the user is

obscured from the knowledge that there are multiple servers dealing with the requests

(Cardellini, Colajanni, & Philip, 1999). In this approach, a single DNS name has a

number of unique internal IP addresses, each of which represents a server that hosts the

website. The usersends a request to a specific DNS system which consists of all servers’

IPs that host the same website. The DNS system then selects an appropriate server in

response to the user request. The DNS selects a server in a rotational and sequential

manner, which is called Round-Robin DNS (Gulbrandsen & Esibov, 2000). When a

user sends arequest to the website,the DNS forwards the request to the first IP. If the

second user tries to access the website, the request will send to the second IP address,

and other requests will be sent to the third IP and so forth.

Although this approach solves the scalability issue of the system that is hostedon

distributed servers, it limits its reliability and efficiency (Bryhni, Klovning, & Kure,

2000). For instance, a number of servers that can add to the DNS system arelimited, and

the system needs to be configured manually by the administrator through Command

Line Interface (CLS) or Graphical User Interface (GUI). Another drawback is that the

DNS works without the knowledge of the server’s status (Bryhni et al., 2000), this

means that the DNS can send a request to the server that is unavailable or overloaded.

Recently, many solutions have been suggested to address this problem such aslab

named(Schemer, 1995), a modified DNS solution that allowsreporting serverstatus

periodically. But, the DNS only knows the servers based on IPs without considering the

port and IP addresses which can be contained or stored in the caches of other name

servers (McClain & Thatcher, 2004). Therefore, requests may keep on arrivingat the

loaded server.

Univ
ers

ity
 of

 M
ala

ya

19

2.1.2 Hardware and Software load balance

2.1.2.1 Hardware load balancer (HLD) (Load Balancer)

Due to the restriction of the DNS load balance approach, HLD was introduced by

several manufacturers in the mid-1990s (Ju, Xu, & Yang, 1995). Decoupling load

balance function from application enables the DNS to use network layer techniques

such as Network Address Translation (NAT) (Srisuresh & Egevang, 2001) or Direct

Server Return (DSR) (Bansal, Warkhede, & Venketesan, 2012)(Kopparapu, 2002) to

send inbound and outbound traffic to the servers. Such techniques are used to process

the requests and replies to the client. In the case of using DSR, when the server

responds, the load balancer will not translate the IP address of the server but will only

change the MAC address. This approach is useful and performs better if the load

balancing is the bottleneck. To configure DSR, the load-balancer and real server must

be in the same Layer 2 domain, and loopback IP address must be configured in all

physical servers. For the security purpose, NAT technique is used with a load-balancer,

whereas IP and MAC addresses are translated. Therefore, users send their requests to a

virtual IP (VIP) without knowing about the private IP addresses of the servers and get a

response from the destination via NAT.

The load balancer introduced server health-checking(Kopparapu, 2002) that was not

enabled in the DNS approach. By configuring time interval, the load balancer is capable

of checking the availability of the server as well as its traffic load. For distributing the

incoming traffic, load balancer implements a series of steps; first, it must ensure the

availability of all servers by querying them via pings. If a server reply, it will be added

to the available list, if a server fails to respond, the load balancer will consider this

server as dead. Various query techniques are used, depending on the type of the load

balancer or vendors’ specifications. For example, healthy-check can be carried on layer

2 by sending Address Resolution Protocol (ARP) (Adelman, Kashtan, Palter, & Derrell,

Univ
ers

ity
 of

 M
ala

ya

21

2000) request to get the MAC address for a given IP address, or via layer 7, application

layer, that is used for well-known applications such as Hypertext Transfer Protocol

(HTTP) (Narendran, Rangarajan, & Yajnik, 2000) and File Transfer Protocol (FTP)

(Narendran et al., 2000) servers.

2.1.2.2 Software Load Balancer (SLB)

Atypically, SLB can be implemented into server OS such as Windows Server

2016 (Huh & Seo, 2016) or Red Hat’s High Availability Linux Server (Cash et al.,

2016). Most of the existing solutions are focused on distributed network traffic between

clustered servers or server farms. SLB is flexible for cloud visualization environment in

which the servers have individual OSs, or share an operating system. SLB in a cluster

environment that allows scaling of the network services where additional servers can be

added dynamically to the cluster. SLB distributes the load between servers, while a

server cluster provides fault tolerance in the system. For example, in Virtual Load

Balancer that is implementedon a Linux server, the servers in a cluster listen to a

"cluster IP" or VIP in addition to their physical IP address. The users send requests to

the cluster IP. The system then selects a server from the cluster based on the load

balancing policy. The NAT technique can be configured, but DSR is not used in SLB.

One of the important features of SLB is that the application developers can customize

the load balancing policy (algorithm) because of a variety of information about the

server that can be used to determine which server the client should connect to. For

example, least connection algorithm (Nuaimi, Mohamed, Nuaimi, & Al-Jaroodi, 2012)

is widely implemented since the cluster has a count of how many sessions each server is

already serving in a given session.

Univ
ers

ity
 of

 M
ala

ya

21

2.1.3 The Application Delivery Controller (ADC)

The proliferation of dynamic content led to the delivery of dynamic services,

content-rich applications that need to understand the application-specific traffic. The

traditional load balancer could not cope with these growing requirements. Therefore,

LBH has evolved into Application Delivery Controllers (ADCs) (Salchow Jr, 2007)

over the past ten years. Typically, in the data center, ADC is a device that sits between

the firewall and a web farm to provide several tasks (Doron & Sekiguchi, 2013). One of

these tasks is loading the traffic between web servers. ADC can inspect packet headers

and distribute the traffic to a selected server based on this information. In addition, ADC

comes with a monitoring system that allows the checking of the server’s health status

beyond the traditional health check approach that uses a PingTool(Jindal, Lim, Radia, &

Chang, 2001). Such a monitoring system can be configured for specific health criteria to

enhance the reliability and at the same time avoiding a potential disruption.

Furthermore, ADCs provide more features, such as real-time and historical analysis for

all traffics, with several metrics including round-trip time, latency (Ben-Shaul, Cidon,

Kessler, Lev-Ran, & Unger, 2005) and bandwidth usage. Such features help

administrators to identify the cause of a problem in the network and optimize the

application server’s performance. For example, the administrator can offload many of

the computational-intensive tasks that affect the CPUs for a specific server and transfer

these tasks to another server within the cluster. On the other hand, ADC can manage

global server load balancing (GSLB) (Hsu, Cheung, & Jalan, 2013) i.e.load balancing of

server clusters in different geographical locations, to provide high availability and faster

response time. This section presented different phases of the development of the server

load balance and showed the importance of this service in the cloud. Table 2.1 shows

the pros and cons of the SLB approach mentioned above.

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Web_farm

22

Table 2.1 Pros and cons of different SLB approach

SLB solutions Pros Cons

Domain Name System (DNS) Allows to host a website into

multi-servers

Presents a problem that

limits its reliability and

efficiency

Load balancer (Software and

Hardware)

Provide healthy check for the

servers and applications

Single point of failure

Application Delivery

Controller (ADC)

Customize the load balancing

policy (algorithm)

Enhance the reliability

and avoiding a potential

disruption.

SDN Load Balancer Centralized view that provides

effective monitoring of network

resources

Causes delay due to

PacketIn process time

2.2 SDN background

Univ
ers

ity
 of

 M
ala

ya

23

OpenFlow (OF) (McKeown et al., 2008), is the first implementation of SDN

which was initiated in 2008 as a project at Stanford University by Professor Nick

McKeown that put forward the concept of SDN (Haleplidis et al., 2015). In the same

year, ACM SIGCOMM published a paper titled "OpenFlow: Enabling Innovation in

Campus Networks" (McKeown et al., 2008). This paper introduced in detail the concept

of OpenFlow. In December 2009, the first version of OpenFlow specification (1.0) was

released to be used in commercial products. In March 2011, again Professor Nick

McKeown et al., was responsible for the inception and establishment of Open

Networking Foundation (ONF), which focused on the development of the SDN

architecture. In April 2012, ONF released a white paper in SDN titled “Software-

Defined Networking: The New Norm for Networks” (Fundation, 2012), whereas the

three layer SDN architecture were introduced and gained widespread recognition in

industry and academia. Figure 2.2 shows the SDN architecture. The ONF constitutes

seven core members of organizations namely; Google, Facebook, Verizon, Deutsche

Univ
ers

ity
 of

 M
ala

ya

24

Telekom, Microsoft, Yahoo and currently has reached more than 100 members with

several versions of OF being released under ONF such as 1.1, 1.2, 1.3, 1.4 and 1.5.

The OpenFlow concept is no longer just a research model that can remain within the

boundaries of academia but has been rapidly moved to the production environment.

In April 2012, Google announced that its backbone network has been fully

operational in OpenFlow, with 10Gbps network link located in 12 data centers around

the world. After the implementation of SDN, the utilization of the WAN lines has

increased from 30% to near saturation. Later in April 2013, big companies such as

Cisco and IBM, Microsoft, Big Switch, HP and Red Hat worked together to develop

SDN applications and established OpenDayLight (Medved, Varga, Tkacik, & Gray,

2014) controller, which is an industrial-grade open source SDN controller.

 Application Layer

Control Layer

Data Layer

AP

P

AP

P

AP

P

AP

P

Northbound

Interface

Standard

Southbound Interface

Figure 2.2 SDN architecture

Univ
ers

ity
 of

 M
ala

ya

25

2.2.1 SDN Architecture

The SDN architecture (Bozakov & Sander, 2013) consists of three main

components: SDN controller, which is called the control layer; SDN device (switch,

routers), which refers to the data layer; and SDN application layer in which all

network applications are executed . The main feature of the SDN architecture is that the

controller and data layer are decoupled and abstracted from each other. In addition,

programmability is a key feature that enables users to develop their own applications at

the application layer using northbound interface that provides a programmable API

and high-level policy applications and services. Moreover, the southboundinterface

provides standard APIs that facilitate the communication between the controller and the

switch via OpenFlow protocol. In the next section, we discuss SDN architecture

components in details.

2.2.1.1 Controller Layer

SDN controller is a network operating system (Clayman, Mamatas, & Galis,

2016) that views a comprehensive network topology and manages OpenFlow switch via

a secure communication channel. It is responsible for managing, controlling, and

manipulating flow tables (Kuźniar, Perešíni, & Kostić, 2015) in the switch. SDN

controller communicates with two interfaces that include asouthbound and a northbound

interface. The northbound interface provides programmable API that interacts with the

application layer, while southbound interface communicates with the Data layer via a

secured channel. A programmable API (Jarschel, Zinner, Hoßfeld, Tran-Gia, &

Kellerer, 2014b) provides an abstract view of the network and delivers specific network

functions in order to fulfill the network operator’s needs. Server messages are

interchanged between the controller and data layers via a southbound interface for

establishing a connection and retrieving information. For example, SDN Controller

manages the forwarding table for each switch based on the header of the PacketIn

Univ
ers

ity
 of

 M
ala

ya

26

message that is sent from the switch. The controller then replies to this message by

sending “PacketOut” that informs the switch on how to deal with this packet based on

the network policy. SDN supports two modes of deploying a controller, centralized

mode whereas one controller can manage the entire network and distributed mode

where two or more controllers control the whole network. Each controller, called the

domain controller, is responsible for managing a number of switches and shares the

network information with the other controller. Another mode of distributed controller

(Schmid & Suomela, 2013) is the Master/slave mode whereas the slave controller

serves as a back up to the Master controller in case of any failure. Two metrics are taken

into account when measuring a controller’s performance; flow setup time and a number

of flows per second that the controller can handle. These metricshave heavy influence

when additional SDN controllers are deployed. To date, different types of SDN

(compatible) controllers have been developed.

2.2.1.2 Data layer

Data layer consists of a set of networking equipment (such as switches, routers,

and middlebox), known as OpenFlow switches, which communicate to formulate a

single network. The OpenFlow switch is responsible for capturing, manipulating, and

matching packets against flow table entries. The main function of SDN switch is to

process the transit traffic based on the controller’s policy which decides what to do with

packets headed to an ingress interface. It manages a number of flow tables, and each

flow entry is associated with a set of instructions or actions that change a packet. When

an incoming packet matches the rule in the flow entry, an action is required. The action

might be forwarding a packet to a specified port or dropping the packet. OpenFlow

involves two types of actions: required and optional (Shahmir Shourmasti, 2013). A

required action must be supported in switches; whereas optional action is set based on

the network requirements and could be a query by an OpenFlow controller. In addition,

Univ
ers

ity
 of

 M
ala

ya

27

OpenFlow switch supports multiple flow tables and a different group table that

sometimes refers to an OpenFlow pipeline (El-Azzab, Bedhiaf, Lemieux, & Cherkaoui,

2011), in which a packet interacts with these flow tables. There are two types of SDN

switches pure (OpenFlow-only) and hybrid (OpenFlow-enabled) (Azodolmolky, 2013).

Pure OpenFlow switches have no legacy features or onboard control. These switches

completely rely on the controller to forward decisions. Hybrid switches support

OpenFlow as well as traditional operation and protocols. There are two approaches to

manage flow tables in OpenFlow specification; Proactive Flow (P. Lin et al., 2013) in

which the controller sets up flows in advance; Reactive Flow (Dusi, Bifulco, Gringoli,

& Schneider, 2014), whereas controller responds to PacketIn events and dynamically

updates the flow table.

2.2.1.3 Application Layer

Application layer consists of various network application services (Feamster,

Rexford, & Zegura, 2014) that run on top of the SDN controller. It interacts with the

controller through the northbound API interface. These application services can be used

to configure the flows to be forwarded based on the changes in the network. For

example, load balancing application distributes the traffic across multiple servers or

paths according to the current load status. SDN applications communicate with SDN

controller via APIs to manipulate network information. These APIs depend on the

controller itself, whether the controller provides reach APIs that enable developers

to design their applications or not. Usually, most of the open sources and

commercial controllers provide REST-FUL-API (Zhou, Li, Luo, & Chou, 2014) that

can easily be enabled to use any language. Recently, HP launches the network

application store that includes various numbers of applications listed in its

category.

Univ
ers

ity
 of

 M
ala

ya

28

2.2.1.4 Southbound Interfaces (SBI)

SBI (Ros & Ruiz, 2014)enables the SDN controller to manipulate the behavior

of data plane and make changes according to real-time demands and needs. The main

function of the SBI is to facilitate communication between a controller and a network

switch (both physical and virtual) so that the switch can discover network topology,

define network flows and implement requests relayed to it via Standard API. Several

standards are available such as DevoFlow,OF-Config and Cisco's OpFlex. Cisco

OpFlex is the most popular standardized southbound API for OpenFlow.

2.2.1.5 Northbound Interfaces (NBI)

NBI (Zhou et al., 2014) is a layer that sits between the SDN controller and high-

level services and applications to enable the exchange of information between the

controller and network applications. Each controller provides API interface to allow the

user to interact with the lower level details of network functions. For example,

controllers such as OpenDaylight, Floodlight, and Ryu define their own APIs that

depend on the programming language deployed to develop the controller, but most of

them provide REST-API. Therefore, Open Networking Foundation (ONF) created NBI

working group that aims to develop standards for the interface that can be used by all

the controllers. Recently, a number of the domain languages like Frenetic and Pyretic

have been introduced to abstract the inner details of the controller and switch. In

addition, the NBI is designed to be integrated with the cloud such as OpenStack and

CloudStack.

2.3 SDN-SLB Server architecture Vs Traditional Load Balancing

architecture

Over the past few years, the SDN architecture has emerged as a new network

paradigm (Shukla, 2015) to provide management of the network services via

abstraction. Such abstraction providesunified cloud resources that can be managed by

Univ
ers

ity
 of

 M
ala

ya

https://www.sdxcentral.com/sdn/definitions/sdn-controllers/sdn-controllers-comprehensive-list/
https://www.sdxcentral.com/sdn/definitions/who-is-open-networking-foundation-onf/
https://en.wikipedia.org/wiki/Abstraction

29

the SDN controller (Blial, Ben Mamoun, & Benaini, 2016). The separation of data plane

from the control plane and management of network traffics via a controller that has an

entire view of the network can provide optimal load balancing services (Godfrey &

Stoica, 2005). Therefore, server load balancing is one of the challenges that can be

addressed by the SDN (Handigol et al., 2010). In this section, we compare between the

SDN architecture and traditional network architecture in terms of server load balancing

and discuss the capabilities of the SDN in enhancing the load balancing services.Lastly,

we highlighted the comparison between conventional SLB and SDN-SLB in terms of

monitoring, scalability, configuration, innovation and management.

The SDN has the potential to simplify network management and enables innovation

that brings about evolution to computer networks. It is a natural fit for load balancing

since the controller has a global view of network resources and with knowledge of

application requirements to optimize the load. Thus, the SDN brings new possibilities

for improving load balancing techniques that faced several problems in the traditional

network. Today’s solutions in the cloud for the load balance are effective but have

limited flexibility in terms of customization. Typically, in the cloud environment,

service providers host various types of services and applications with multi-tenant

services that require specific load balancing schemes. Consequently, customizing the

load-balance for thousands of applications can be difficult and may require different

load balancers for various services and in turn, can be too costly in terms of price.

Univ
ers

ity
 of

 M
ala

ya

31

Figure 2.3shows the SDN load balance architecture whereas the decoupling between

SDN controller and OpenFlow enabled switch is presented. The controller has a

complete view of the network components including switches, links, and server pools.

The clustered controllers can be used for scalability (Wu, Huang, Kong, Tang, &

Huang, 2015) to avoid a single point of failure. In the SDN network, when a new

request is sent by the client, the switch checks the flow table; if there is any

entrymatched, the switch carries out the action and forwards the flows to the

corresponding server. If no match is found, the first packet of the flow is then sent as

PacketIn to the controller.

Sending packetsIn messages causes delays in responding to the user, but after the flow

entry setup, traffic will flow normally between a server and the client. Thus, the SDN

supports two modes of forwarding; reactive mode(Ding, Qi, Wang, & Chen, 2015) and

proactive mode (Mayoral, Vilalta, Munoz, Casellas, & Martinez, 2015). Reactive mode

is the default behavior of SDN whereas packetsautomatically are forwarded to the

controller in case of the miss-match field presented in the flow table, while proactive

mode setup the flow entry in advance.

Both the approaches have pros and cons in the load balancing system. Proactive

mode minimizes the response time, but the forwarding is implemented without

involving the controller that causes a bottleneck problem. The reactive mode allows the

controller to make a decision based on the status of the current server. The status

information of the links and servers are reported via statistical messages between the

controller and the switch. Such messages can be configured to be sent periodically (W.

Chen, Shang, Tian, & Li, 2015), for example, after every 5 seconds, the controller

requests the network nodes for their status. The controller runs the load balancing

module in the application layer on top of the controller to manage the server pool. The

Figure 2.3 SDN load balance architecture

Univ
ers

ity
 of

 M
ala

ya

31

controller executes this module that is responsible for handling the incoming packets

based on the load policy.

Server Pool is a group of hosts that provides one or different services; each pool

associated with VIP and specific type of the traffic, for example, TCP, UDP or ICMP.

Two pools cannot share the same VIP, and each pool can be programmed with a

specificalgorithm. This allows dynamic changes to the algorithm based on the traffic

pattern or service type. In addition, it allows flexible, and dynamic scale-out/scale-in

load balancing system by adding or removing a server from the pool. The main

difference between SDN-SLB and traditional SLB is thatthe SDN provides

programming APIs that facilitate more functions. Traditional load balancing is a pre-

configured system carried out by the administrator, and it is limited to a certain load

balancing policy.

Figure 2.4 illustrates the flow chart of the typically SDN-SLB PacketIn flow steps.

Initially, the flow-table in the switch is empty and consists of single action called

Controller that sends any packet to the controller. Before sending PacketIn to VIP,

MAC address of VIP must be advertised to all servers and client. It can be done by

using Pingall command that builds ARP table in the network. When the packet is sent

to the VIP, the load balancing module is executed. The first step is to check the ARP in

order to get the MAC addresses of the source and destination.

If the source MAC address belongs to the VIP, the ARP will reply. Otherwise, the

controller will flood the packet. In the second step, the controller checks the IPv4 traffic

whether it is TCP, UDP, or ICMP. After that, the controller selects the load balancing

policy and the algorithm that handle this traffic. The current implementation of load

balancing modules in most SDN controllers is designed to give one VIP for each server

pool.

Univ
ers

ity
 of

 M
ala

ya

32

This means the load balancing module will select a server from a specific pool. This

is one of the limitations of the current load balancing module. Another limitation is that

each server pool is associated with one type of traffic such as TCP or UDP. In addition,

each pool has only one algorithm that is configured before the load balancing module is

executed. After the server is identified by the controller in respond to the user, a flow

entry is then sent to the switch as a packetOutmessage and the rest of the packets will be

transferred to the same server without involving the controller. This approach is called

reactive mode whereas the controller is responsible for redirecting the PacketInbased on

the application that runs on the controller.

Pack-In Message

ARP Reply

STOP

NO

If -ARP-Request

If- IPv4 Packets

Flood

If -DIP=VIP

No

Forward to the

DIP

If-DIP=VIP Yes

Yes

No

Select the load balance

Algorithm

According to the policy select

the server

Forward to the

DIP

Yes

Yes

NO

Push Flow Entry

Figure 2.4The flow chart of the load balance PacketIn

Univ
ers

ity
 of

 M
ala

ya

33

In the second approach, known as proactive mode, the load balancer sends PacketOut in

advance to the switch so to facilitate management of the incoming packet without

involving the Controller. Figure 2.5 illustrates a conventional load balancing system

(Okano, Ochi, Mochizuki, & Takaba, 2004) in a cloud environment whereas the load

balancer located after the firewall maintains the VIP address. Users send their requests

to the VIP without knowing about the IP addresses of the physical servers. The load

balancing system which is either a software-oriented such as HAProxy (Tarreau, 2012)

or hardware-oriented such as F5, represents a single point of failure. In addition, it is

designed to serve a specific type of services that are pre-configured into the system.

Thus, deploying new services requires additional load-balancers that may incur extra

cost to the Service Provider (SP). We can summarize typical steps of traditional load

balancing system as follows:

1. Load balancer receives the incoming requests from the clients.

2. Check the request’s type (e.g. HTTP or FTP) and builds a request queue.

3. Checks the current load status of the servers in the server pool periodically using

a server monitor tool.

4. Uses a load balancing strategy/algorithm/heuristic to select the appropriate

server.

Table 2.2 showsa list of the comparisons between SDN load balance and traditional

Figure 2.5 Traditional load balance architecture

Univ
ers

ity
 of

 M
ala

ya

34

load balance system in terms of monitoring, scalability, configuration, innovation and

management.

Table 2.2 Comparison between conventional SLB and SDN-SLB

Issues Conventional Load Balancing

System

SDN Load Balance

Monitoring Use extra tools that cause overhead in

the system

Centralised monitoring with a

dynamic global view

Scalability Adds a load balancer for each new

service

Auto-scales out and scale in

Configuration Static configuration and error prone Dynamic configuration with

programmable API’s

Innovation Difficult to implement new load

balancing algorithm

Innovates new load balancing

schemes

Management Difficult to manage for

interconnection of many proprietary

unify cloud resources

2.4 Classification of SDN-SLB

In this section, we discuss a thematic taxonomy of the SDN-SLB. It is categorised

based on four criteria namely; approaches/techniques, controllers, algorithms and

experimental environments. The taxonomy is illustrated in Figure 2.6.

2.4.1 Approaches /Techniques

This section discusses various approaches and techniques that are used with the

SDN network to provide server load balance.

Univ
ers

ity
 of

 M
ala

ya

35

Figure 2.6 Taxonomy of SDN-SLB

Univ
ers

ity
 of

 M
ala

ya

36

2.4.1.1 Slices technique

 Slices technique arose from the SDN network virtualization that introduced a virtual

layer on top of the physical network infrastructure. This layer provides network

virtualization by constructing several virtual networks. In turn, the virtual networks,

contain virtual resources such as nodes, switches, and routers which also need to be

controlled and managed. The control is implemented through a transparent proxy that

acts as links between switches on one side and multiple controllers on the other

side,(Kashiri, Tsagarakis, Van Damme, Vanderborght, & Caldwell, 2016). FlowVisor

(Sherwood et al., 2009) and OVX (Al-Shabibi et al., 2014) are the examples of proxy

controllers which are used to create a slice for each virtual network. Multiple service

load balancing architecture that uses the slicing technique is proposed by (Marc Koerner

& Kao, 2012). The idea aims at using multiple controllers where each controller is

utilized per network service and is connected to the FlowVisor (FV) controller for the

provision of load balancing strategies. This technique uses a slicing mechanism to

manage different controllers in various parts of the network. In the FV slices, the

mechanism depends on the header field information of the packet and will forward the

packets based on respective policies. For example, a new request with destination port

80 is sent to the HTTP load balancing controller while a request with destination port 21

is sent to the FTP load balancing controller. Initially, the request arrives at FV which is

responsible for managing all the network slices and for defining all the related services.

Based on the packet header information (Costa & Costa, 2015), FV inserts flow entry

into the switch, and the incoming packet is sent to the corresponding controller. This

process defines the forwarding rule, and the path is then identified based on the load

balancing algorithm. The round-robin algorithm is used as load balancing scheme that

runs on the NOX controller. The module was written in C++ (Stroustrup, 1986), and the

experimental evaluation was carried out in the “TU Berlin testbed” (Kwak & Jung,

Univ
ers

ity
 of

 M
ala

ya

37

2015). The drawback of this technique is that the proxy controller represents a single

point of failure where it manages the entire traffic between multi-controllers and

switches.

2.4.1.2 Wildcard Technique

Another technique used to provide load balancing is based on “wildcard rules”,

that directs incoming requests based on the clients’ IP addresses. In the paper (R. Wang,

Butnariu, & Rexford, 2011), the authors statedthatinsertingseparaterules for each packet

flow leads to a huge number of rules in the flow table. This approach causes a heavy

load on the controller since the controller needs to manipulate every PacketIn message.

For overcoming, this problem, a new load balancing algorithm was proposed to

calculate concise wildcard rules which are automatically adjusted for different load-

balancing policies. The approach uses a proactive mode that inserts flow entry without

involving the controller. The partition algorithm is proposed todetermine a minimal set

of wildcard rules, and transition algorithm is used to change the rules for adapting new

load balancing weights of the servers. For example, suppose the client traffic matching

0* indicates the rule that traffic should shift from server 1 to server 2. The controller

needs to examine the next packet of each connection to decide whether to direct the

traffic to the new server, server 2 or the previous server (server 1). In this case, the

controller installs a rule directing all 0* traffic to the controller for further inspection;

upon receiving a packet, the controller installs a high-priority micro-flow rule for the

remaining packets of that connection. Mininet simulation is used with NOX controller

and Open VSwitch OVS (Pfaff et al., 2015) to prototype the network, and Mongoose

(Williams, 2015) is used as an emulator for the web server (Williams, 2015).

2.4.1.3 Genetic based technique

 SDN load balance policy-based architecture with aGenetictechnique for distributing

large data from clients to different servers was proposed by (Chou, Yang, Hong, Hu, &

Univ
ers

ity
 of

 M
ala

ya

38

Jean, 2014). The technique redirects the traffic flows to achieve optimal load-balance.

This study assumed that there were a number ofNflows, and each flow has a different

load. In turn, each server in the server’s pool had a different workload. In order

tominimize the server’s coefficient, the fitness function was proposed. The architecture

consists of two main components: OpenFlow switch and SDN controller. On top of the

Controller, three modules are built: flow control module, a decisionmodule, and monitor

module. OpenFlow switch component includes flowing modification module, OpenFlow

handler module, and Packet-Mirror module. Four load balancing algorithms were

compared namely: Genetic-based, Load-based, Random and Round-robin. The Genetic-

based showed significant performance compared to the other algorithms. The

experiment was carried out in a simulation environment (Keti & Askar, 2015) with a

simple topology.

2.4.1.4 L2 Direct Server Return

Typically, there are two common modes of operations for load balancing

schemes which are NAT-based and Proxy-based. The mechanism of NAT works in

layer-4 (MacDonald & Lowekamp, 2010) and it is based on rewriting the destination

values of the IPs or MACs of the packets. The NAT and Proxy-based load balancers are

responsible for observing and managing both incoming and outgoing network

traffics.The authors (Michael Koerner & Kao, 2013) state that the performance of NAT

in the conventionalnetwork is not suitable to provide an optimal load-balancing

solution. For that, they proposed Layer 2 Direct Server Return model (L2DSR). The

model implements a layer 2 concept (Jain & Paul, 2013) to improve the performance of

OpenFlow switch that forwards the packet and replaces the source MAC address with

its MAC address. The system architecture consists of Load Balancer Controller (LBC)

that separates the servers from network to avoid addressing conflicts, and thus there is

no need to use virtual IP (VIP). The LBC does not directly send any L2 traffic, and the

Univ
ers

ity
 of

 M
ala

ya

39

controller forces the switch to act as a device with an own non-transparent interface. In

order to avoid layer three address conflicts, the broadcast of all MAC addresses is not

flooded in the server network. In the case of no information available, the switch will

forward the packet to the user according to the balancing algorithm and replace the

source MAC address with the OpenFlow Switch MAC address. On the other hand,

when the user replies, the switch then sends traffic with its IP and replaces the

destination MAC address with the address of the server. The experiment was

implemented in OFELIA (Suñé et al., 2014)testbed that consisted of three switches

supporting OpenFlow version 1.0 (Consortium, 2009) and three servers. One of them is

an NOX controller with a plug-in model written in C++. The solution was carried out

with a round-robin algorithm.

2.4.1.5 Flow-oriented approach

 The centralization of the SDN controller enables the traffic flow to be re-directed

dynamically when any changes occur in the network. The flow-oriented load balancing

approach using the SDN technology is proposed by (Bays & Marcon, 2011). The

approach is built based on a number ofpolicies that dictate the direction of all data flow

to intended servers. Data flow-oriented approach assumes that the communication

between clients and servers is established when a client sends a request to the server,

and the flow remains active even after a certain period of inactivity. These flows are

distributed among existing servers via switches that redirect the packets according to a

load balancing policy. Three policies are adopted in this study namely; Random policy,

Time slice policy, and weighted policy. Random is a simplepolicy that randomly

allocates the flows to servers and does not consider the capacity and current load of

servers. This policy is not effective in heterogeneous distributed server farm

(González‐Vélez & Cole, 2010) that includes servers with different capacities. In the

time-slice policy, each certain time controller will select a server for responding to the

Univ
ers

ity
 of

 M
ala

ya

41

request, and this selection is implemented randomly bearing in mind that each server

has one slice-time. Thus, the only information required to be stored in this policy is “a

server with specificslice-timeperiod”, and this policy is not a concern for the current

load of the servers. The Weighted balancing policyrecords the numbers of flows

processed in each server. For the new incoming flows, the controller selects the server

that has minimum load level; that is, a server with thesmallest number of connected or

communicating clients. The controller uses the counter field (E.-D. Kim, Lee, Choi,

Shin, & Kim, 2014) to calculate the number of flows that can be handled by each server.

Table 2.3 shows the approaches and techniques with the related SDN layer and the flow

modes that have been used.

Table 2.3 Approaches and techniques of SDN-SLB

Approaches/ Techniques SDN Layer Managing flow table Mode

Slices technique Controller Reactive mode

Wildcard technique Data layer Proactive mode

Genetic based technique Application layer Reactive mode

L2 Direct Server Return Data layer Reactive and Proactive modes

Flow-oriented approach Application layer Reactive mode

2.4.2 SDN Controller

The SDN controller is called the “network brain” (Jarschel, Zinner, Hoßfeld, Tran-

Gia, & Kellerer, 2014a) which manages a collection of network application modules to

perform different network tasks. Typically, these applications communicate with the

core controller modules via an API (Zhou et al., 2014) to enhance more advanced

capabilities. In this section, we discuss the server load balance modules that are widely

implemented in various Open Source and Commercial SDN controllers. In the open

source controller, the SLB moduleis carried out in application layer as part of the

controller system, while in the commercial controller, it is a standalone application

intergraded with the controller to utilize the APIs.

Univ
ers

ity
 of

 M
ala

ya

41

2.4.2.1 Open Source Controllers

Since the beginning of the SDN in Stanford University, several open source

controllers have been introduced such as Trema (Khattak, Awais, & Iqbal, 2014),

ONOS (Berde et al., 2014) and the Pox (Mccauley, 2014).These controllers come with

network application modules that provide specific services like load balancing. This

section focuses on well-known controllers that provide the server load balance service

as a network application module.

OpenDaylight controller: OpenDaylight (Baucke, Mestery, Shaikh, & Wright, 2013)

is an open source project which has focused on accelerating adoption of the SDN by

providing a robust platform on which the industry can build and innovate. It can provide

load balancing service in the cloud by integrating an SLB module into a cloud operating

system such as OpenStack. OpenDaylight exposes the OpenStack (Sefraoui, Aissaoui,

& Eleuldj, 2012) Neutron APIs service to manage the load balance services. Different

bundles constitute the Neutron APIs (Denton, 2014) such as Northbound API and

Neutron Southbound provider interface (SPI). The Neutron southbound interface

provides collections of several classes that include load balancer, load balancer health,

load balancer listener, and the load balancer pool. A Neutron northbound interface is

used to create a VIP which will map a pool of servers within a subnet. The pools consist

of members that are identified by an IP address. OpenDaylight comes with two types of

load balancing services; 1) load balancing service that deals with balancing traffic to

back-end servers based on the source address and source port for each incoming packet.

This service is implemented in Hydrogen(Gomez, 2013), the first version of

OpenDaylight with the basic round-robin and random algorithms, 2) used OVSDB

protocol to create L3-L4 state-less load-balancer (Brandt, Khondoker, Marx, &

Bayarou, 2014) in OVS and can be used in the virtual environment. Both types of load

Univ
ers

ity
 of

 M
ala

ya

https://www.sdxcentral.com/articles/news/opendaylight-challenger-aims-att-microsoft-new-years/2013/12/
http://www.opendaylight.org/software/downloads/hydrogen-service-provider-10

42

balance systems can be used with a session-preserving and use active and proactive

modes.

Flood Light Controller is a high-performance open source OpenFlow controller that is

written in Java. It was developed on the basis of Beacon controller, an experimental

OpenFlow controller from Stanford University, and it is now supported by a large

developer community. Currently, Floodlight supports OpenFlow version 1.4

(Specification, 2013) and works with various physical and virtual OpenFlow-enabled

devices. Floodlight comes with built-in load balancer application for the ping, TCP, and

UDP flows. Typically, these applications are designed for the developer to understand

how to develop Floodlight module, and for the usage of APIs. The load balance module

can be configured via a REST API (Zhou et al., 2014) that supports the basic creation of

the VIP and Pools and adds members to that pool. However, this module has two

limitations. It uses Static Flow Pusher module (Ivancic, Lumezanu, Balakrishnan,

Dennis, & Gupta, 2014) that sets the flow timeout as 0. This means that the flow entry

is not purged after use, and in turn, the flow-table will be overflowed over a certain

time. The second limitation is that the module uses static simple load balancing policies

such as Round Robin and Random schema.

In addition, health monitoring feature is not yet implemented with the module.

Figure 2.7 shows the simple script that can be used to configure a load balancing

module through CURL tool.CURL is a tool uses to transfer data to SDN controller via

HTTP request. This request includes variables and values, and the IP addredd of the

Figure 2.7 CURL configuration of Floodlight load balance

Univ
ers

ity
 of

 M
ala

ya

43

controller must be included in each request . In figure 2.7,HTTP curl- POST used to

addVIP name vip1 and associated with specific IP address (10.0.0.10) and port (8). The

pool is created , named (pool1) and this pool can only accept TCP traffic. The rest of the

CURL codes are added to the host to that pool in which one service is used.

RYU Controller: the Ryu (Khondoker, Zaalouk, Marx, & Bayarou, 2014) controller

has an advantage over other controllers due to its compatibility in supporting the higher

versions of OpenFlow (v1.5) (Specifiation, 2014). It also supports the OpenState switch

(Bianchi, Bonola, Capone, & Cascone, 2014) that provides State-Full forwarding in the

data plane using Finite State Machines (FSM) (H. Kim et al., 2015). Such state

machines are implemented in switches to reduce the need for relying on the remote

controller and execute the logic of forwarding consistency. Server Load balancing based

on FSM was introduced with the Ryu controller. In this module, the selection of the

server is performed via a new group entry type that selects randomly one of the action

buckets for a group entry.

Figure 2.8 presents the new state table that includes a key which is associated with a

specificstate. For example in the load balancer, the incoming packet is first processed by

a key extractor that uses the header fields. If an entry is found, then the corresponding

state label is returned. Otherwise, it is set to 0 (default) state that is associatedwith the

packet. By implementing this mechanism, the response time of the server is minimized.

Key State timeout

… … …

… …. …

… … ….

*(any) Default r/a

Match

Actions headers state

… …. …

… … ….

….. … …

 Key Extractor

Key Extractor

Pkt header

 + action

Set-state

Pkt Header State
Flow Table

State Table

Figure 2.8 The OpenState process using FSM Univ
ers

ity
 of

 M
ala

ya

44

2.4.2.2 Commercial Controller

SDN rapidly moved from research area to industry where big companies such as

Microsoft, Cisco, and HP adopted this technology to provide solutions for the cloud. In

effect, and according to Infonetics Research (I. Research), the SDN market will grow

129% and is expected to reach $18 billion by 2018. SLB is one of these solutions that

areavailable in the market to address traditional load balancing issues. This section

discusses several of SLB systems that are integrated with the commercial controller to

provide load balancing services in the cloud.

F5 LineRate Point Load Balancer:F5 is a leading company for load balancing

solutions that introduced LineRate Point Load Balancer(L. P. L. Balancer). It is a Layer

7 load balancer that can be used in a virtual environment for the Software-Defined Data

Center (SDDC) environments (Kerravala, 2013). This solution aims to reduce the costs,

on-demand application deployment, and automation. Moreover, the system is easy to

configure through Graphical User Interface (GUI), Command Line Interface (CLI) or by

utilizing the APIs. The main idea for this solution is that each application or services are

paired with their own load balancing instances. This means that the system can be

scaled accordingly when a new service or application is being deployed. Thus, it is

based on the fully automated operation, and it supports multiple loads balancing

algorithms. LineRate Point Load Balancer comeswith a number offeatures such as

supporting HTTP/HTTPS, layer 4 TCP protocol (but it does not support UDP),

application health monitoring and SSL offload (Jethanandani, Bashyam, Bagepalli, &

Patra, 2006). In addition, the solution provides persistence when the users’ request

returns to the same server. Currently, it can be integrated with HP SDN VAN controller

(Tourrilhes, Sharma, Banerjee, & Pettit, 2014) to monitor all aspects of the server’s

health and performs visibility on thousands of metrics via the REST API or Simple

Univ
ers

ity
 of

 M
ala

ya

https://devcentral.f5.com/articles/f5-synthesis-open-secure-and-production-ready-sddc
https://devcentral.f5.com/articles/f5-synthesis-open-secure-and-production-ready-sddc

45

Network Management Protocol (SNMP) (Frey, Bicket, Herbert, Malhotra, & Chambers,

2016).

KEMP Adaptive Load Balancer: the KEMP SDN Adaptive load balancer (K. S. l.

balancer) is a dynamic load balance application with a delivery value that utilizes the

HP VAN SDN Controller capabilities. KEMP can serve as a driver for Neutron LBaaS

with the capability to manage features that are not supported by the OpenStack. On the

other hand, KEMP provides a layer 4–7 load balance which is also integrated with the

HP Virtual Application Network (VAN) SDN Controller to solve the problem of end-

to-end visibility of network paths that was present in traditional networks. This load

balancer has visibility of the upper layer application-level information (request load

time, SSL TPS, application response throughout, just to name a few). Therefore, KEMP

pulls information across the Northbound Interface (Shin, Nam, & Kim, 2012)(NBI),

extending its visibility by adding the circuit information received from the controller.

KEMP-HP combined with SDN controller can improve the performance of a new

application across existing infrastructures and can be implemented in Hyper-V,

VMWare.

AricentLoad-Balancer Application: Aricent’s SDN Load Balancing application

(Load-Balancer) is a dynamic and scaled SDN load-balancing solution which supports

multiple OpenFlow switches. It comes with various features such as dynamic server

configuration, wildcard forwarding, supporting various protocols and multiple flows

from a client. In addition, it has northbound REST API that allows managing the

distribution of traffic amongst servers using Weighted Round Robin (Devi & Uthariaraj,

2016), Weighted Least Connection (Yang & Yu, 2003), or custom algorithms.

Thus,users can customize their own load algorithms dynamically and then integrate

them accordingly into the SDN controller application. On the other hand, Aricent Load-

Balancer enables the addition or removal of servers dynamically through the Web-based

Univ
ers

ity
 of

 M
ala

ya

46

graphical user interface (Y. Li & Brodlie, 2003) and manages the monitoring of

available bandwidth in real-time.

Software Load Balancing: the Software Load Balancing (SLB) is an SDN load

balancing system that was introduced by Microsoft in Windows Server 2016 (2016). It

allows the distribution of tenant and tenant customer network traffic among virtual

network resources with high availability and scalability. SLB provides links between

virtual IP addresses (VIPs) that represent specific server pool in the cloud, and dynamic

IP addresses (DIP), the IP addresses of the VMs (Maltz, Greenberg, Patel, Sengupta,

&Lahiri, 2012) of the pool behind the VIP. The system stores all VIPs in the

Multiplexer (MUX) that is managed by the Network SDN Controller and performs

mapping among VM IPs and VIPs. When incoming traffic arrives, the MUX then

checks the traffic, in which it includes the VIP as a destination, and maps and rewrites

the traffic so that it will arrive at a particular DIP. One of the great features of SLB is

implementing Direct Server Return that minimizes the server response time and

provides low-latency. For example, when tenant VMs respond and send network traffic

back, NAT is performed by the Hyper-V (Velte & Velte, 2009) host and the traffic then

bypasses the MUX and goes directly to the edge router from the Hyper-V host. The

system includes various features such as Health probe, full support of virtualization with

high availability and scalability.

TechM Server Load Balancer: the TechM's is agent based SDN load balancer that can

be deployed either on the servers or switches without the use of additional applications

or agents. It is built on the rich set of RESTful APIs exposed on the various SDN

controllers including HP VAN SDN Controller, ODL, and ONOS. It leverages end-to-

end network visibility and network delay parameters for routing application traffic

efficiently and dynamically. TechM provides load balancing using any L3 to L7 and

supports several algorithms such as Round Robin, Least Connections, and Weighted

Univ
ers

ity
 of

 M
ala

ya

47

Round Robin. Table 2.4 shows commercial SDN-SLB solutions from different vendors.

The table illustrates each solution and their features as well as the related

implementation that the SDN controller can be integrated with.

Table 2.4 Commercial SDN-SLB solutions

Solutions Implementation Vendor Features

LineRate Point Load

Balancer

integrated with HP

SDN

F5 Automated operation and

supports multiple loads

balancing algorithmsREST-

based API, CLI and GUI

interfaces

KEMP Adaptive Load

Balancer

With HP VAN KEMP End-to-end visibility of

network pathsLayer 4–7 load

balancer

A recent Load-Balancer

Application

OpenDayLight

Floodlight

HP VAN

Aricent Add or remove servers from

the load balancer on-the-

flyBuilt upon custom

Algorithm

Software load balancing With Windows

server 2016

Windows Direct Server Return

(DSR)Support VMs and

multi-tenants

TechM Server

LoadBalancer

With HP VAN

ONOS,ODL

TechM Rich set of RESTful APIs

exposed SDN controllerPrior

configurations and application

signatures to determine

balanced load paths and the

servers

2.4.3 LB Algorithms

In order to select the best server to handle incoming request, various scheduling

algorithmsare implemented in SDN load balance system. Typically, these algorithms

can be divided into two types namely; Static(Leland & Hendrickson, 1994) and

Dynamic(Shabtay, 2010) algorithms. For software and hardware load balancing system,

these algorithms are pre-configured and assigned by the administrator. The

configurations include selecting specific types of the traffic pattern and assigning one

algorithm for them. For example, the administrator can configure the load balancer to

handle all HTTP, FTP, and ICMP with Least Connections algorithm. Therefore, to

change the algorithm, the administrator needs to reconfigure it or utilize the load

balancer API manually. On the other hand, most load balancers are designed with a

limited number of algorithms (Berde et al., 2014) such as Random, Round Robin, and

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Scheduling_algorithm

48

Weighted least connections(Khattak et al., 2014). Thus, current data centers are moving

towards software load balancing systems that can provide flexible load balancing in

terms of diversity of the algorithms. In this section, we discussed the SLB algorithms

that were applied in the SDN environment; we focused on three static algorithms:

Round Robin, Random, and one dynamic algorithm: Server Based Load Balancing

(SBLB) that have been implemented in most SDN-LB related papers.

2.4.3.1 Round Robin

Round Robin Algorithm (RRA) (Singh, Goyal, & Batra, 2010) is a popular static

algorithm that is implemented in SDN load balancing systems. It divides the incoming

traffics between servers in a round robin manner. In fact, it is suitable for homogeneous

environments (Pu Wang, Sahinoglu, Pun, Li, & Himed, 2011) and it produces good

results. In the SDN, the clustered servers (Berde et al., 2014)are organized into pools,

and each pool is designed with a specific algorithm. The request from a client is sent to

the VIP that can handle all incoming traffics. In the case of not matching field in the

flow table, the first packet is sent as PacketInto the controller to apply load balancing

policy. First, the controller will check whether it is IPv4 or IPv6 traffic. If the traffic is

IPv4, then again the controller will check on whether the type of the traffic is TCP or

UDP. After that, the controller selects the server pool to handle the request. At this

point, a load balancing algorithm will be selected. Thus in the SDN, each server pool

can be run with a specific algorithm. If the number of the servers in the pool is little, the

RRA will not be effective. For example, if we have only 3 or 4 servers in the pool, then

there is a chance that more requests will end up on the same server while the current

request is still being processed. This led to creating a queue of requests causing a delay

in response time. For overcoming this problem, the work in (Drutskoy, Keller, &

Rexford, 2013) proposed the scalability function in a virtualization environment. The

system is designed to add a VM to a pool in case of all VMs are busy with other

Univ
ers

ity
 of

 M
ala

ya

49

requests while there is a new incoming request. The system can automatically add a new

VM to handle this request based on a threshold value that determines the maximum load

of each pool.

2.4.3.2 Random

This algorithm selects the servers in a random manner (Chang & Tang, 2010b). The

process involves utilizing an underlying random number generator to choose the server

in the pool for responding to the incoming requests. Unlike the RRA that distributes the

request in order, the Random algorithm selects a server randomly. Therefore, the

number of servers in one pool affects the performance of the algorithm. On the other

hand, the capacity of the servers also affects the performance of this algorithm

(Mccauley, 2014). For example in the heterogeneous server pool, the algorithm selects a

server without considering its capacity; this leads to ineffective load distribution. Each

time when a flow is established, the controller will choose a server in a random way.

This is the simplest policy, where it is not necessary to store any data; however, the

current load of each server is not considered.

2.4.3.3 Server-Based Load Balancing Algorithm (SBLB)

This is a dynamic algorithm based on the feedback of the current server status and

adopted by various SDN solutions (Sefraoui et al., 2012)(Gomez, 2013). However,

thesesolutions are different in terms of feedback implementation and specifically on

how the controller can obtain the feedback from each server. The feedback includes the

server’s current load that is calculated based on three parameters: CPU occupancy rate,

Memory occupancy rate, and the Bandwidth. These parameters are reported periodically

to the controller, and then each server will gain a weighted measure that represents the

current load. When a new request is sent, the controller then checks the weight of all

servers in the pool and sends a request to the server that has themaximum value of

Univ
ers

ity
 of

 M
ala

ya

51

weight to handle the request. The following equation shows the calculation of the server

load

L(Si) = wi L (Scpu) + wi L (Smem) + wi L (Sband) , (2.1)

However, some papers consider other parameters, for example, the work in

(Sefraoui et al., 2012) introduced three variables to get the current server load which

includes; CPU, Mem and Response time. We noted that the way and the time in which

the parameters are collected are different from solution to another. For example in the

paper by (Baucke et al., 2013), the authors used SNMP protocol to collect the

information every 5 seconds while another paper (Specification, 2013) used LLDP

messages that are originally used for topology discovery.Actually, LLDPdoes not show

acomplete status of the servers because it is designed to update the network topology,

and used here to get some metrics information of the devices in the network. On the

other hand, gathering the server information on the runtime causes overhead to the

controller, especially with all the related information being reported to the controller in

short time. Thus, implementing an optimal monitoring system for load balancing in

SDN must be considered.

2.4.4 Experimental environment

The experimental environment is a vital part of the balanced load system. This

section discusses the two main experimental environments that have been implemented

in SD-SLB solutions. Frist, asimulationenvironment that is mostly carried out in the

Mininet simulation. Although, the Mininet allows easy to customize the network

topology, but it is limited to the server and link resources. The second experimental

environment is a real environment that is implementedin a cloud environment such as

OpenStack or that utilized a real Testbed.

Univ
ers

ity
 of

 M
ala

ya

51

2.4.4.1 Mininet

Mininet (Mininet) is an SDN simulation aimed at developing and testing of SDN

solutions. It is allowed to create and manage prototype of large networks on a single

computer. More than 100 researchers in more than 18 institutions use Mininet to

develop and test SDN applications (Lantz, Heller, & McKeown, 2010). Mininet can

create SDN elements such as Host, Switch, Links, and Controller. Such elements can be

fully customizedin terms of resources and then shared with real network devices. In

addition,SDN controller can run on aremote computer and easily can connect to Mininet

with customized topology. Regarding, load balancing, Mininet provides three ways to

create network topology; 1) via CLI that allows the customization of the topology and

resources such as link bandwidth, speed, and delay, including the number of CPUs for

various Hosts. 2) Writing a script, that utilizesPython API in which users can customize

their topologies. For example, asimple script can simulate clustered servers distributed

in the data center network contacted to SDN controller with numbers of “OF” enabled

switches. 3) Via Graphical User Interface (UI), Mininet provides GUIs to create

various network topologies connected to SDN controller with the option to use an OF-

enable switch, legacy switch, or a router. Although, Mininet has been used in most

studies of SDN server load balancing, nevertheless, Mininet has a number of

defects(Ortiz, Londoño, & Novillo, 2016) such as a long time to setup and launch its

program especially when the network size is large

2.4.4.2 Real environment

Real experimental environment means the the test that carried out on the physical

servers, VMs server in OpenStack or using Remote Testbed that uses slice techniques

for separating user traffic(Khondoker et al., 2014). Based on our review, a few papers

have used real environment, and 90% of them implemented their simulation

Univ
ers

ity
 of

 M
ala

ya

52

environment such as Mininet. However, Mininet provides the ability to customize the

server’s resources (Bianchi et al., 2014) such as the amount of (CPUs), cores as well as

links’ bandwidth, delay and queue size, but is still limited to the computer resources that

hosts the Mininet simulations. Such resources affect the load balancing measurement

metrics such as response time (Specifiation, 2014). For example, in dynamic load

balancing that depends on the server’s load status which is indicated by CPU, RAM and

bandwidth may give inaccurate results. On the other hand, using real experimental

environment with a few number of servers (for example, two or three) is not reflective

of the reliability of the system. Another issue of real environment is the lack of support

for the latest version of “OF” specification. Therefore, we noted that in a real

environment that implemented in (Poddar et al., 2015)using IBM cloud and in (Parveen

Patel et al., 2013) that used Microsoft Azure cloud. The experiment, are used OpenFlow

switch that supports 1.0. In addition, most testbeds currently support theold version of

OpenFlow while simulation environments are usually updated with last OF

specification (H. Kim et al., 2015). For example, the last version of Mininet 2.2.1

supports Open vSwitch 2.5 that can currently work with OpenFlow 1.5.

2.5 SDN-SLB: State-of-the-art

Several SDN solutions have been introduced to address the issues of load balancing.

These solutions focused on separation of the data plane from the control plane and

centralized SDN controller to provide dynamic load balancing. Figure 2.9 illustrates

state-of-the-art topics that are discussed in this section. At the end of this section, the

comparison of these solutions is presented in Table 2.5 based on the taxonomy

discussed in section 2.4. In our discussion, we focus on the proposed solutions that used

SDN with other technologies to provide server load balancing. The comparison

parameters include; acontroller, algorithms, experimental environment, and Open Flow

switch. The controller parameter indicates which controller and language are used for

Univ
ers

ity
 of

 M
ala

ya

53

implementing the load balancing system. The parameter “algorithms” refers to the

proposed algorithms that are introduced with such solutions. Experimental environment

parameter shows the simulation, generated traffic tools, topology, and measurement

metrics. For OpenFlow switch, we focus on the type of the switch (physical/virtual) and

OF specifications that have been used.

Figure 2.9State-of-the-art topics

2.5.1 SDN- SLB module (application module)

The first load balancing application based on OpenFlow switch was introducedby Uppal

et.al (Uppal & Brandon, 2010). In this application module, each server has a static IP

address, and a web server emulator is configured with the specific port. The server pools

are connected to the OF switches that are managed by the NOX controller. When a new

request arrives, OpenFlow switch will check the header of the packet and match it with

the entries in the flow table. If the header of the packetmatch, the counter will then

increment the number of the bytes and the necessary action is performed accordingly. If

there is no match, the switch will send PacketIn message to the controller and then wait

for PacketOut message that is sent from the controller to instruct the switch how to

handle the flow. On top of the NOX controller, load balancing module is executed to

determine how the switch can handle the flow by inserting new flow rule via OpenFlow

protocol. Typically, clients send their requests to the VIP without knowing the physical

IP address of the servers. The load balancing module is designed to modify the

destination IP and MAC addresses and inserts the real MAC and IP addresses of the

server that will handle the respective request. When a server responds to the client,

SDN-SLB

State-of-the-art

SLB module (application module)

SDN server load balance project

SDN-SLB in virtual envirmant

SDN scalable server load balance

Load balance with NAT services

Load balance for specific type of traffic

Slice Load Balancing

A heuristic load balance

Univ
ers

ity
 of

 M
ala

ya

54

again the module will modify the packet header (VIP and MAC address) to show that

the response is sent from the VIP. Servers report their current load to the NOX

controller periodically. NOX canlisten to a separate thread on a UDP socket. When a

new request is sent, the controller will check the servers’ statuses and assign the request

to the server with the lowest load and then increments that server’s load to prevent a

flooding of the flows going to the same server. In this work, a load balance module was

written in C++ language. The solution has been carried out in a real environment with

HP 5412zl OF switch that supports 1.0 specification. The Latency and Throughput of

the algorithm show outperformance compared with other solutions.

 Another load balance application module is a dynamic aware-load-balancing

system that usedFloodlight controller (Shang, Chen, Ma, & Wu, 2013). In this work, the

load-based scheme is introduced and compared with other two schemes such as round-

robin and random. The controller selects the server with a minimum load according to

the weighted least connections where the nodes are selected based on the number of

active connections. To getting the load of the server, the number of active connections is

divided by the weight of the server. The experimental test was implemented in the

Mininet simulation.

2.5.2 Load balancing with NAT services

A dynamic load balancing technique with NAT function was proposed by (W. Chen, Li,

Ma, & Shang, 2014). The authors argued that the load balancing systems in traditional

network fail to achieve optimal load balance. For example, the DNS load balancing

system is unable to know about the capacity of the servers and cannot reflect the current

status of the server. In addition, load balancers that use NAT technology to map a public

IP address for multi private IP addresses are relatively close to the bottom of the

network infrastructure and expensive at the same time. In this solution. Floodlight

controller was used with a virtual IP address and connected to the servers with a private

Univ
ers

ity
 of

 M
ala

ya

55

IP address. All servers share this virtual address, and the users only know the virtual IP

address. All users’ requests are sent to the virtual address and get a reply from the same

virtual IP address. Thus, the controller can provide NAT services without any additional

hardware devices. (W. Chen et al., 2014)proposed Server Based Load Balancer (SBLB)

algorithm and compared it with random and round-robin algorithms. In SBLB, the

dynamic feedback was developed to report the current server’s load based on the

Processor occupancy rate, memory occupancy rate, and response time. The author state

that the ability of SDN to provide a global view of the network helps to deliver the

content to the clients with high availability and performance.

2.5.3 Load balancing for specific type of traffic

Selin (Tourrilhes et al., 2014) proposed a server load-balance framework to enhance

the QoS for video streaming services. The framework used OpenFlow protocol for

providing dynamic server load balancing that monitors the loads at the video streaming

servers continuously and redirects the client to the corresponding server with less load.

This solution aims to utilize the server resources by developing controller application

with two functions; monitoring function and flow update function. In the first function,

the controller predefines threshold of load and keep track on whether the server load has

exceeded this threshold or not. The monitoring function calculates the bandwidth usage

between the servers and switches by dividing byte counts with a time interval. When

bandwidth usage exceeds the threshold, then the author considered this scenario case as

one where congestion has occurred. To avoid wrong decisions, the controller records

non-congestion events after congestion detection. After the controller determines the

threshold of a server, the controller then selects a new streaming server considering the

two factors; packet loss of the link between server and client and delay that is measured

based on the geographical location of the server. In the second function, anupdate

function, after the previous flow has been detectedthen, the controller updates the flow

Univ
ers

ity
 of

 M
ala

ya

56

table by adding a new flow entry that redirects incoming packets to the new server.

Additional PC was used which is called the “traffic loader.”to simulate a client’s

request, and one node is used to monitor the severs’s load, and sent it to the controller.

2.5.4 SDN server load balance first project

Aster*X(Kerravala, 2013) is the first project that is targeted to provide load

balancing using SDN architecture. The project aimed at providing network load balance

that can be implemented in the WAN, and server load balancing that is used in the data-

center. Aster*X analyzed the load balance of the traditional network that carried out by

load balancer device and pointed out to several limitations. The first limitation is that

load balancer is a choke point whereas it is placed on the entry of the network and all

traffic must pass through it. In addition, this can cause a problem of a single point of

failure. The second weakness of convention load balance is that servers are static

especially in the virtual data center that allows VMs to move around for making

efficient use.Moreover, load balancer had been designed to work in a regular network

structure such as data center network, but in an enterprise network, it is difficult to

support such type of load balancing systems. To overcome all these limitations, Aster*X

came up with new SDN load balance with specific characteristics. The load-balance is

distributed throughout the network for high scalability and logically centralized by SDN

controller that has the entire overview of the network. Moreover, load balance system

must be flexible to allow each service used the schema according to the service

requirements. To achieve such load-balance system using SDN, Aster*x proposed three

SDN modules; Flow Manager that controls and manages routes flow according to the

specific load-balancing algorithm, Net Manager that is responsible for tracking network

topology, and Host Manager to monitor the servers’ state. Aster*x supports proactive

and reactive modes as well as individual and aggregated requests.

Univ
ers

ity
 of

 M
ala

ya

57

2.5.5 SDN-SLB in virtual environment

In atraditional network, load balancer has some restrictions in Virtual Environment

(VE), whereas, in Virtual Data Center (VDC), VMs are distributed to provide various

services. For example, one VM can host more than one application or services that need

different load balancing schemes. Thus, (Jethanandani et al., 2006) introduced dynamic

load balancing architecture for clustered servers in VE. The architectureconsists of three

components: Floodlight SDN controller, OpenFlow switch that support OF 1.3, and

SAN storage. A Load balancing module was developed to manage the balance between

the servers. The load of the servers is calculated based on three parameters: CPU, RAM,

and response time. Such parameters are reported periodically to the controller that uses

weight to indicate loads of each server when a new request is sent to the VIP. To

differentiate between various services that are hosted in one VM, a parameter R was

then introduced. In this solution, the architecture is designed for a

heterogeneousenvironment. Thus the processing ability of each VM is considered. On

the other hand, the probability ofselecting a server is implemented to avoid overload of

the server node. This architecture has been tested in the real environment that included

four virtual machines and iSCSI shared storage.

2.5.6 SDN scalable server load balance

The scalability of server load balancing in the SDN is one of the issues that has been

addressed by various researchers. Ananta(Parveen Patel et al., 2013) and HAVEN

(Poddar et al., 2015)are examples of the solutions that are focused on the the scalability

of load balance with multi-tenant in the cloud environments. Ananta is layer-4 load

balancing system that scale-out the web services. Ananta divided the data plane

functionality into three separate tiers that includenetwork layer (layer-3), multiplexer’s

layer, and state-full NAT layer. Ananta can provide scaling and reliable load balancing.

The proposed architecture consists of Ananta Manager (AM), control planeof the

Univ
ers

ity
 of

 M
ala

ya

58

system, Mux Pools as well as monitors of DIP health. The Host Agent provides Direct

Server Return (DSR) and NAT function across the layer-2 domain. The Multiplexer

(Mux) receives incoming traffic and forward it to the appropriate DIPs. In addition, the

proposed system supports multi-tenants for the Quality of Service (QoS) by dividing

CPU, memory, and bandwidth resources based on the tenants’ weights. The

implementation of the system was carried out in the public cloud using Windows Azure

with 20 VMs as the server and 10 VMs as clients. The measurements metrics focused

on Fast-Path, response time and latency.

The second solution is HAVEN that provides scale-up and scale-down services. In

HAVEN, when the PacketInis received from the client, the controller will start to

calculate the Score Computation (SC) of each Pool.If the total of SC is greater than a

threshold value, the system will then start scaling up by providing more VMs to that

server pool. On the other hand, if the SC is less than the threshold, the system will then

start a scale down the process by reducing the resource utilization across all the active

pool members. The solution was deployed in a real cloud environment using OpenStack

with seven servers that connected to 14 OpenFlow-enabled switches. The OpenDaylight

controller was installed and configured on the physical server to manage the load

balance system. The systemwas compared with HAProxy, a software load balance

system, in terms of response time, latency, and overheating of the system. However, the

HAProxy performance overcomes the HAVEN in terms of latency due to first PacketIn

processing, but HAVEN showed better results in the response time and less overhead

compared to HAProxy.

2.5.7 Slice load balancing

In the OpenFlow-based slice, the authors (Jarschel et al., 2014a) proposed a new

SDN load balancing solution called “slice load balancing” that classified the traffic flow

into two types. The firsttype is known as aggressive flows that include the packets with

Univ
ers

ity
 of

 M
ala

ya

59

high rate and minimum arrival time. The second type is known as the normal flow that

includes the rest of the flows except aggressive flows. To identify aggressive flows,

temporal locality is used based on the window size, the number of packets, and the time

of packets’ arrival. An experimental test was carried out in the real environment that

included eight OpenFlow-enabled switches and three nodes as well as two Floodlight

controllers that were installedon a different host. OpenFlow Slice Algorithm (OFS) is

proposed and compared with Random and Probability Stride algorithms.

2.5.8 A heuristic load balance

The authors (Khattak et al., 2014) stated that the scheme of dynamic load balancing

for the multipath that has been utilized in the datacenter (with congestion control) are

not effective enough to provide load-balance. Therefore, they proposed SDN-based LB

with a heuristic method to manage the load balancing in the datacenter. The system

aimed to integrate Ant Colony Optimization (ACO) with SDN controller to select the

best path and best server. Two parameters were considered to perform load balancing;

(CPU) cycles to execute a job in a note and delay traveling on the link. The results of

the proposed system were compared with the static algorithm and round-robin

algorithms. This comparison is not satisfactory since the round robin does not consider

the dynamic load balance parameter such as CPU, RAM while ACO algorithm is

dynamic and take into account these parameters.

Table 2.5 shows acomparison of the numbers of the SDN- LB solutions that used

different controllers, algorithms and OpenFlow switches that implemented in real and

simulation environment. Most of these studies used OpenFlow protocol with OVS or

real switches. In the table, the name of the controller and programming language that

are used to develop the load balance module are shown. The proposed algorithms that

carried out in each solution are presented along with compared algorithms. In the

experimental environments, we focused on measurement metrics, traffic generating

Univ
ers

ity
 of

 M
ala

ya

61

tools. In addition, the number of the hosting pool and version of the OpenFlow protocol

are considered. These parameters are derivedfrom taxonomy mentioned in section 2.4.

Univ
ers

ity
 of

 M
ala

ya

61

Table 2.5 Comparison between various load balance solutions

No

Solutions Controller Algorithm Experiment Environment OpenFlow Switch

Controller

Name

Model

language

Compared

Algorithm

Proposed

Algorithm

Measurement

Metrics

Traffic Tools Simulation Servers

Pools

OF Type of

switch

1 (Uppal &

Brandon, 2010)

Nox C++ Random,

Round-Robin

Load-

Based

First Packet, Latency,

Throughput

Zipf distribution Real 3 server

1 Pool

1.0 HP 5412zl

2 (Shang et al.,

2013)

Floodlight Java Randomized

Round-Robin

Load based

Algorithm

- - Mininet - 1.0 OVS

3 (W. Chen et al.,

2014)

Floodlight, Java Round-Robin

 Random

SBLB response timeSystem

utilization (CPU-

RAM

Ping – Send

Real Traffic

Real 3 server 1.0 -

4 (Yilmaz, Tekalp,

& Unluturk, 2015)

OpenDaylight Java - Load-

balancing

OpenFlow

controller

Delay Real video

streaming

app(VLC)

Real 2 servers - -

5 (Govindraj,

Jayaraman,

Khanna, &

Prakash, 2012)

Floodlight Java - - throughput

bandwidth,

Iperf Mininet 6 servers 1.1 OVS

7 (Surya Prateek &

Ying, 2013)

NOX C++ - Flow

Algorithm

- - - 3 clients

3 servers

1.0 OVS

8 (Koushika &

Selvi, 2014)

Floodlight Java Round-Robin ACO

algorithms

Response Time

Delay

- Mininet 2 server

1 client

1.0 OVS

9 (Peng Wang, Lan,

& Chen, 2014)

Floodlight Java FLARE

TSBN

OFS

Algorithm

delay Iperf Mininet - 1.1 OVS

10 (H. Zhang & Guo,

2014)

Floodlight Java Round-Robin - Average response time httping Mininet 3 servers 1.0 OVS

11 (Y.-J. Chen, Shen,

& Wang, 2014)

OpenDaylight Java - - Service delay - Real 3 servers 1.0 TP-Link

WR1043N

D SDN

switches

12 (Kaur, Singh,

Kumar, &

Ghumman, 2015)

POX Python Random

Round-Robin

Comparing

Round

Robin with

Random

Transactions Per

second (TPS),

Response

Time (RT)

OpenLoad Mininet 3 server 1.1 OVS Univ
ers

ity
 of

 M
ala

ya

62

13 (Qilin &

WeiKang, 2015)

OpenDayLight Script

Python

Used

API

- - - Real traffic Mininet 3 server 1.0 OVS

14 (Ghaffarinejad,

2015)

OpenDaylight Java Random

Round-Robin

- File transfer

Split rate

Real traffic Real

Environmen

t

3 Servers 1.1 -

15 (W. Chen et al.,

2015)

Floodlight, Java Round-Robin

Random

SBLB Throughput

Response time

Servers’ utilization

- KVMvirtual

Machines +

Mininet

3 servers - OVS

16 (Yong, Xiaoling,

Qian, & Yuwen,

2016)

Pox Python - a hybrid

load

algorithm

Throughput Spirent

TestCenter SPT-

2U

Mininet 6 servers - OVS

17 (Handigol et al.,

2010)

NOX - - - - - Real - 1.0 -

18 (Poddar et al.,

2015)

OpenDayLight Java - Scale out

and scale in

Transactions Per

second (TPS),

ResponseTime (RT)

HTTPerf

ping

Real 12 1.3 OVS

Univ
ers

ity
 of

 M
ala

ya

 63

2.6 The important of the service based load balance

Due to the increasing number of users and extensions of service types, the low

performance and poor scalability of a single server make it the bottleneck of network

services. The service pool system has higher performance and extensibility and is more

convenient for management and maintenance. The pools is a set of independent

computers interconnected through a high-speed network and managed as a single

service. The internal structure of pool is transparent to clients.

The purpose of the load balancing is to distribute the network load to each host

in thepool as fairly as possible. In the circumstances of heavy load, load balancing

ensures quick service response using the set of server nodes with scalability and high

performance.

The basic principle in service-based load balance traffic classification is that

knowing which service is offered at given “network coordinates” (IP address and

TCP/UDP port pair). Therefore, service-based classification relies on the observation of

how hosts usually interact and on the assumption that certain hosts, typically called

servers, perform similar interactions, usually offering a service

Numbers of researches related to the dynamic load balancing schema are proppsed. For

example, (Jian Liu et al. ,2005)proposed a load balancing based on dynamic feedback

which considers the performance and the actual load at each node.(Qi Zheng et al. 2011)

proposed another load balancing method based on the classification of contents, which

fully consider the user requests and the differences between the server nodes. It

classified the user requests and distributed them to each node fairly, thus guaranteeing

that each node gets roughly the same amount of requests.However, these dynamic load

balancing method usually focus on only one type of service. When various services

coexist, they treated all services as the same and deal with them in the same way, which

may not be desirable in real world scenarios

Univ
ers

ity
 of

 M
ala

ya

 64

2.7 Identificationtypes of the services

For categorizingthe types of various services, Traffic Classification (TC)

(Dainotti et al., 2012) is utilized with different approaches. TC is a method used to

classify the network traffic for different purposes such as security, QoS and traffic

management. This section aims to review the traffic classification approaches that are

used to classify traffic with the goal of identifying the service type for load balancing

purpose. A variety of approachesare proposed for network traffic, and so in this section,

we discussed these approaches which include; port number, deep packet inspection

(DPI), Statistical information based and Behavioural and Statistical Patterns.

2.7.1 Port-based Approach

The first and common approach that is used in the traffic classification is port-

based (Valenti et al., 2013). This approach depends on examining the communication

ports of TCP/UDP that exist in a given packet’s header and compares it with well-

known TCP/UDP port numbers that are assigned by the Internet Assigned Numbers

Authority (IANA). This approach provides fast flow classification because a port

number can be accessed easily and is not affected by encryption. Thus, Access Control

Lists (ACL) and firewalls utilize this approach that can achieve high precision and

speed-up the processing of the comparison between incoming packet and stored rules.

In addition, this approach is mostly useful for well-known protocols such as SMTP and

FTP that use port 25 and 21 respectively. Nonetheless, the port-based approach is

unreliable and incapable of classifying all protocols in a modern network environment

such as SDN. For instance, some protocols such as passive FTP, SHTTP and Peer-to-

Peer (P2P) bypass or use a temporary port that hides the original port and associates the

application with other ports to avoid traffic filters or to hack the system. Another

example is the Session Initiation Protocol (SIP) that is implemented with Real-time

Transport Protocol (RTP) and uses random ports to negotiate the terms of the call.

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/wiki/Session_Initiation_Protocol

 65

Moreover, this approach fails when it comes to implementation in tunnels or Network

Address Port Translation (NAPT) whereas certain protocols can be identified. In this

manner, port-based number as a classification approach are considered obsolete, and

other approaches have been developed to address port-based limitations. One of these

approaches is the Deep Packet Inspection (DPI) that differs from the port-based as it

looks to the payload of the packet instead of the packet’s header.

2.7.2 Deep packet Inspection (DPI) Approach

DPI is the approach (Bujlow, Carela-Español, & Barlet-Ros, 2013) that saves

signatures of the application protocols in the database and match incoming packet or

flow with the stored signatures making it a very accurate approach. It only checks the

payload of the packet and ignores the header of the packet. Such an approach is not

implemented for only the network traffic classification but also utilized to identify

malicious data for security purpose. Because it is effective, the DPI can be used in all

solutions where accuracy is crucial. Nevertheless, in terms of computational power and

high-speed networks, the DPI approach may be unfeasible because of the inspection

process for each packet. Consequently, this approach can affect the performance of the

network, and therefore other mechanisms have been proposed to check only a part of a

packet or few packets of each flow to avoid the overhead in the network. In addition to

performance issues, DPI faces legal issues when it inspects the contents of a packet due

to privacy and confidentiality bounds. The main disadvantage of the DPI approach is

that when traffic is encrypted, then it is unable to access the payload contents to get

packet’s signature. Moreover, DPI cannot classify specific packets without payload

which may be malicious. The modification of the protocol or upgrading of the

application may lead to changes in the signatures of the packet which in turn can

prevent the packet from being classified or affect the DPI’s performance. For example,

if the DPI approach depends on specific applications signatures, and if these

Univ
ers

ity
 of

 M
ala

ya

 66

applications change or that the traffic generated by other applications use the same

protocol DPI then the approach may fail to classify the packet.

2.7.3 Behavioral and Statistical Patterns Approach

To identify application-level protocols, the DPI approach that has been

discussed in the previous section is not often considered as a valid option. Thus, a new

approach has been developed, referred to as behavioral and statistical patterns (Gill,

2014), which collects host-related information and then associates it to one or more

application types. Three methods are implemented in this approach; Heuristics, Social

Behavior, and Behavioural Signatures. In heuristics method, the number of hosts that

act both as servers is considered as well as an IP that uses the same transport port more

than certain times. Social Behaviour isdesigned to capture the behavior of hosts in terms

of role in the connection (server or client), the transport layer information and the

average packet size. The last method, Behavioural Signatures or Statistical Fingerprints

is mainly used in P2P traffic whereas failed connections, the ratio of incoming and

outgoing connections, and the information on the use of unprivileged ports are

collected. Although this approach can store archives and easily be applied to unknown

protocols, it is still characterizedby less accuracy level compared to other approaches.

2.7.4 Statistical information Approach

Typically, statistical information approach (Soysal & Schmidt, 2010) relies on

flow or packet level features such as flow duration and size, inter-arrival times, IP

addresses, TCP and UDP port numbers, TCP flags and packet size. This approach

sometimes calls flow features that are utilized, individually or combined, to calculate

statistical values. It can use simple measures as average or variance, or complex

measures such as the probability density function. Generally, such an approach requires

a learning phase to build a reference model that can be used to classify unknown traffic.

Univ
ers

ity
 of

 M
ala

ya

 67

Machine learning is always used to build the classification model. The advantage of this

approach is that there is no packet payload inspection involved.

2.8 Challenges, Open issues, and future research direction

In this section, we discuss the open issues and challenges related to the server

load balancing in the cloud computing environment. In effect, we highlight the key

areas and future research direction that needs to be addressed. Some issues are due to

SDN architecture itself, such as reactive flow mode and service chain, while other

issues are common load balancing issues. Table 2.6 presents open issues with their

related challenging factors, including the proposed solutions that can be applied in the

future to overcome the problems.

Table 2.6 Open issues, challenges, and future research direction

Open issues Challenges Future research

direction

Addressed

Monitoring Overhead in the

controller

Design accurate and

timely statistical

monitoring system without

overhead in the controller

Partially

Scalability Dynamically added

members to server

pools

Building Auto scale load

balancing system

Addressed, but still

some limitations

are remain

Load balancing with

different types of

services

Dynamically apply

load balancing

algorithm based on

application type

Adaptive load balancing

using traffic classification

approach for building

application aware load

balancing

Not addressed

Reactive Flow and load

balance

Extra latency due to

processing PacketIn

Minimize the flow setup

rate in the controller

Not addressed

Multi-tenancy and load

balancing

Customizing the

server load balancing

services based on

Service Level

Agreement (SLA)

Developing a load

balancing system taking

into account multi-tenant

users in virtualization

environment

Partially

Load balance and

Services chain

Response time of the

servers

Auto and dynamic setup of

server load balancing

service

Not addressed

2.8.1 Monitoring

The ability to determine the health of the server is a crucial part of the load

balancing system (Okamoto, 2001). Its related metrics, such as CPU load, memory load,

and I/O must be reported to the controller for calculating the current load of each server.

Univ
ers

ity
 of

 M
ala

ya

 68

Without this knowledge, the load balancing functionality could perform incorrectly and

send falsified connection requests to different devices that are overloaded. Therefore,

the controller must continuously monitor performance metrics of the server. Thus,

accurate and timely statistics on network resources at different aggregation levels (such

as flow, packet, and port) must be implemented. This is so in order to quickly adapt

forwarding rules in response to the changes in servers’ workload. However, confidential

monitoring solutions such sFlow(M. Wang, Li, & Li, 2004), JFlow (Myers, 1999) and

NetFlow (Estan, Keys, Moore, & Varghese, 2004) that collect either complete or

sampled traffic statistics, send them to a central collector that imposes significant

measurement overhead. Therefore, these approaches may not be as efficient solutions to

be applied in SDN systems, such as large-scale data center networks. Even the SDN

solutions that have been implemented to collect static information of network must seek

more efficient monitoring mechanisms in order to achieve both high accuracy, and low

overhead to provide effective load balancing mechanism.

2.8.2 Scalability

We can look to the scalability(Zhou et al., 2014) issue of load balancing in SDN

from two perspectives; 1) the number of server pools that are managed by a single

controller; 2) the number of server members in the single pool. Typically, load

balancing in the cloud is required to create Virtual IP Address (VIP) that accepts all

users’ requests and distribute them to the physical server based on the specificpolicy

such as static or dynamic. The server is added to the server pool associated with a

specificprotocol, for example, TCP, UDP or ICMP. The number of server pools that are

associated with VIP affects the performance of the load balancing, for

instance,managing a large number of server pools with a different type of protocols may

cause controller overhead (Tootoonchian, Gorbunov, Ganjali, Casado, & Sherwood,

2012). In addition, a number of server members in one pool also cause low-latency for

Univ
ers

ity
 of

 M
ala

ya

 69

network performance especially in dynamic load balancing in which each server reports

the load metrics to the controller periodically.

2.8.3 Load balances with different type of services

Currently, in virtualized data centers (Urgaonkar, Kozat, Igarashi, & Neely, 2010),

one server can host different services and more services will be deployed by

differentusers, and they will be moving around. Therefore, implementing

one load balancing scheme for all services is not efficient. For example, when a user

sends a request to the web server then the response must be returned as quickest as

possible, and in this case, load balancing system must consider the CPU and RAM of

the serverwithout considering the bandwidth of the channel. While a large file transfer

such as FTP requires more bandwidth, load balancing system must consider this metric

for the load-balance system. For this reason, different types of services require different

sort of load balancing schemes. Typically, adaptive schemes in load balancing (Lee &

Riley, 2005), used traffic classification to identify users’ request. Based on the type of

user requests, load balancing system can change the schema or adjust the load balancing

parameters. In addition, load balancing as a service (LBasS) in the cloud provides load

balance for multi-tenancy with different services that require different Service-Level

Agreement (SLA). Currently, SDN load balancing solutions focus on providing

dynamic load balancing via application controller without identifying the flow type that

can be implemented in the data plane layer. Qosmos Company (Qosmos, 2016)

produced a real-time traffic classification system that can be implemented in Open

vSwitch to recognize traffic up to Layer 7 using Deep Packet Inspection DPI (Bujlow et

al., 2013). Other solutions provided by (OVS, 2016) have added additional interface of

DPI engine on top of Open vSwitch to manage the flow classification. The integration

of these techniques with load balancing applications can produce effective LB systems.

Univ
ers

ity
 of

 M
ala

ya

 70

2.8.4 Reactive Flow and load balance

There are two approaches to managing flow table in OpenFlow specification such as

a) proactive flow (P. Lin et al., 2013) in which the controller sets up flows in advance

and b) reactive flow (Dusi et al., 2014) where the controller responds to the PacketIn

messages and dynamically update the flow table. In the load balancing system, response

time is an important factor to measure the performance of the system. Thus, sending

every packet that does not match in the flow table can cause extra latency due to

processing packetIn messages in the controller. In addition, reactive mode costs extra

overhead to the network due to frequently updating of flow tables (Kuźniar et al., 2015).

On the other hand, setting up the flows in advance is not suitable for a load balancing

system especially in the dynamic load balancing where the server load reports regularly

to the controller. A good example, in this case, is that, after every 5 seconds, the flow

table is updated based on the server load. To addressed this problem, a hybrid approach

where some traffic is handled proactively and some are handledreactivelycan be used.

Another solution is based on OpenState (Bianchi et al., 2014; Capone, Cascone,

Nguyen, & Sanso, 2015), a Stateful data plane, that uses state machines implemented in

the switches to reduce the need to rely on the remote controllers. Currently, only RYU

controller can support this approach.

2.8.5 Multi-tenancy and load balance

One of the key challenges of load balancing in the cloud is to ensure the availability,

scalability, and performance of all applications and tenant infrastructure, while

continuously providing customized services per each tenant (Bezemer & Zaidman,

2010).To cope with dynamically increasing demands from multiple tenants, cloud

service providers need to manage load balancing for the applications and services

dynamically. Load balancing service in the cloud can be provisioned by sharing a load-

balancer between different tenants or provide dedicated load balancing systems for each

Univ
ers

ity
 of

 M
ala

ya

 71

tenant or even for each tenant’s application. Sharing a load-balancer between different

tenants may introduce tight interdependency between each tenant application. In

addition, Service Level Agreement (SLA) (Pankesh Patel, Ranabahu, & Sheth, 2009)

must be considered for the multi-tenancy (Tsai, Sun, Shao, & Qi, 2010) load balance

especially when using LBaaS in the cloud environment. For example, a single cloud

may provide multiple services, and each of these services can use a subset of the

tenants. In such a tenant-partitioned deployment, the load balancers themselves need to

be tenant-aware, in order to be able to route the requests to the proper tenant clusters. In

other words, the load balancer has to be tenant-aware as well as service-aware.

2.8.6 Server Load balance and services chain

Service chain (John et al., 2013) refers to an ordered networking services such as

firewall, load balancing, and IDS, into the path of applications. The traditional network

service chains (Jung, 2011) are more complex, static, and error-prone because they

require careful planning of the respective topology that is difficult to manage due to its

traditional network. Although SDN and Network Function Virtualization (NFV)

(Matias, Garay, Toledo, Unzilla, & Jacob, 2015) enable easy, agile, and manage

deployment of service chain, still, in terms of server load balancing, several factors must

be considered including position of SLB services into a service’s chain, the length of a

service chain, and auto configuration of the services.

In traditional networks, the load balancer (Tian, Zhao, Zhong, Xu, & Jing, 2011) is

located after the firewall and provides additional services such as the NAT process

(Gilly, Juiz, & Puigjaner, 2011). Therefore the position of the SLB into services chain is

critical and has an effect on the performance of the services. The second factor is the

length of a service chain that affects the process of the load balancing. For example, if

the service chain is prolonged and it includes numbers of the services then the

communication between users and servers will take longer time resulting into large

Univ
ers

ity
 of

 M
ala

ya

 72

response time. In addition, the auto-configuration(L. E. Li & Woo, 2011) of the SLB

service allows dynamically setting up the load balancing policy that always changes

according to the tenant requirements

2.9 Conclusion

In this chapter, we have reviewed SDN solutions in terms of the server load

balancing. First, we introduced the SDN architecture and then compared it with the

traditional network architecture while focusing on the SLB service in the cloud. In the

process, we developed the SLB taxonomy that is divided into four parts. In the first part,

we pointed out the approaches and techniques that are integrated with the SDN to

provide SLB solutions. In the second element of the taxonomy, we presented various

open source and commercial controllers that facilitate SLB. We focused on the

Floodlight controller that is used in this study. The load balance algorithms, both static

and dynamic that have been implemented in the existing SD-SLB solutions were also

discussed. In addition, we reviewed the experiments’ environments that are used in the

SD-SLB solutions; it is shown that most of the solutions use Mininet simulation.

Further, the approaches that are utilized to recognize the type of services have been

illustrated as well. Finally, as a result of this review, we have highlighted a number of

open issues and the related challenges of the SDN-SLB especially the SLB with

different types of services in the cloud. In the next chapter, we will discuss the solution

that addresses the problems. Univ
ers

ity
 of

 M
ala

ya

 73

CHAPTER 3: SERVICE BASED LOAD BALANCE MECHANISM: PROBLEM

ANALYSIS

This chapter aims to analyses the problem that was highlighted in chapter 1 and

conducts a deep investigation to show the impact of the user’s requests in the SLB

system. We focused on the impact of the different types of requests that use the same

Load Balancing (LB) scheme. This scheme used different algorithms that aim to select

the best server for handling the incoming request. In order to analysis the problems,

various experiments are performed with statistical analysis.

This chapter is divided into four sections; in section 3.1, we explain the LB

system discretion that includes pre-steps involved in conducting the experiment,

definitions and the configuration of Virtual IP (VIP). The experimental setup and the

related network model adopted in these experiments are discussed as well. In addition,

experimental model along with the performance metrics, prototype application, and the

benchmark is presented in this section. In section 3.2 we analyze various empirical

experiments to show the influence of the users’ requests on the load balancing system.

This section is further divided into subsections that focus on different metrics which

include Average Response Time (ART), Reply Time (RR) and Request per Second

(RPS). In section 3.3, we illustrated some example of the impact of the user’s requests

on the hosts’ performance. This chapter is concluded in section 3.4.

3.1 LB System Description

The problem has been analyzed through a series of experiments conducted in

Mininet(Kuźniar et al., 2015), SDN simulation environment. Floodlight (Govindraj et

al., 2012) controller is the controller of choice in this study which was installed on a

separate computer and configured to connect the network mode in Mininet. Before we

explore on the experiments, pre-steps are discussed to explain how the load balancer

works.

Univ
ers

ity
 of

 M
ala

ya

 74

3.1.1 System Definitions

In this section, we discuss the details of the configuration and operation of load

balancing in the cloud using SDN and outlining the system definitions. In the SDN

network, a controller can connect to one OF(McKeown et al., 2008) switch or more, and

this switch is connected to another OF switch or a normal switch. Each switch connects

to a number of Hosts which are called Host Pool. A Host Pool consists of several host

nodes that provide different services such as HTTP, FTP. Each host pool can be viewed

as one virtual server by the users. The SDN controller receives a request from a user (as

PacketIn message)(Phemius & Bouet, 2013), then, chooses the best host to process the

request, and updates the flow table in the switch based on the load balancing policy. The

SDN load balancing system components are listed in Table 3.1 below.

Table 3.1 SDN-SLB Components

Components Definition

Host Pool The container of the Host associated with specific VIP

Members Number of the Hosts in one Pool

Host The server that is hosted in the pool

VIP Acts as the proxy between the users and the server Pool

Controller SDN controller (Floodlight)

OpenFlow switch OpenFlow device (OVS)

Typically, before starting the load balancing system, the configuration of pool and VIP

is important. Therefore, we utilized the Restful API that is provided by Floodlight

controller to configure the load balancing system. Figure 3.1 shows the load

balancingconfiguration in the Floodlight controller. Univ
ers

ity
 of

 M
ala

ya

 75

In the first step, the VIP is created and given a unique name; this name is

associated with the IPv4 address and TCP or UDP protocol with aspecific port. Then,

the Pool is set up. The last step is to add the Host to the Pool; each host has a name and

ID linked with a physical IP address of the Host. This configuration is different from the

controller to other. For example, OpenDayLight(Medved et al., 2014) controller defines

the load balancing policy in the configuration steps while Floodlight allows the

selection of policy inside the module.

3.1.2 Experimental setup and network model

In our experiments, we configured the load balancing system and identified two

server pools, HTTP service pool, and FTP service pool. Each one includes five host

members. Two hosts are selected as clients to send a request to the VIP that can accept

the request and distribute the traffic based on the implemented policy. We used Mininet

for the network emulation; The SDN simulation allows developing SDN solutions, as

well as creatingand managing the prototype of the system. Mininet can create SDN

network elements such as host, switch, links and controller on a standard Linux

environment. It allows customizing the network topology in a single desktop/laptop. A

simple network can be created by using a command-line tool; thatis “mn.” Mininet has

an API that allows customizingthe topology via a python script. To design a custom

network topology, we developed a Python script which in turn created a network

topology as required. Figure 3.2 below shows the network topology that was deployed

in our experiments. The topology consists of the two pools that connect with traditional

Figure 3.1 Configuration of the load balancing system

Univ
ers

ity
 of

 M
ala

ya

 76

switchesand two hosts that are used for sending the requests. Each pool includes five

hosts with adifferent type of services. The first pool runs HTTP service and second pool

runs FTP service. SDN controller is connected with OF switch that links to three normal

switches. H12 and H11 used as aclient to send a request to the hosts

Table 3.2 shows the specification of the VM that used to run Mininet simulation.

Floodlight controller and OVS are installed in same VM.

Table 3.2 System specification of the Mininet

Software and Hardware Specifications

Processor Core i7

RAM 2 GB

Operation System Ubuntu 14.04

SDN controller Floodlight 1.0

Open VSwitch Version 2.3 support OF 1.0

 In order to launch a customized network topology, the following command in

Figure 3.3 is executed in Mininet CLI:

Figure 3.3 Mininet command to run a custom topology

After execution of the above command, a network model is created with the

followingparameters:

Figure 3.2 The network topology used in Mininet

Univ
ers

ity
 of

 M
ala

ya

 77

 12 virtual hosts , each having an IP address ranging from 10.0.0.1 to 10.0.0.13

 1 OpenFlow VS with supporting OF 1.3 and two traditional switches.

 MAC address of each host being set as equal to its IP address.

 The first five hosts (1~5) represent Pool-1 and the second batch of hosts (6~10)

represent Pool-2, 11 and 12 are the clients that send traffics to these pools.

 The Controller is run on the local host (127.0.0.1) and connects to the switch via

port (6653).

3.1.3 Experimental Model

In this section, we explain the experimental model that includes performance

metrics, prototype application, and benchmark tools. For ensuring accuracy and

reliability of obtained data, the execution process for each value is repeated 30 times. In

addition, experiments are performed for 15 different sample workloads. The confidence

interval’s attribute shows the possible range of the sample means with 95% confidence for

the sample space of 15 values in each experiment. A simple script is developed for data

collection after each experiment for analysis based on the parameters and metrics that

are used inthis analysis. Various types of metrics are adopted in this analysis.

Table 3.3The list of the parameters and metrics

Our objective is to propose a mechanism of SBLB that can minimize the

response time and maximize the throughput of the system. Consequently, these two

parameters are selected, where the average response time (ART) is used as a metric

Parameters Metrics Definition Types

Response Time

(RT)

Average Response Time

(ART)

Time spent between

sending the last byte of

the request and receiving

the first byte of the

response

Time

Throughput Reply Time (RT) Time spent between

receiving the first byte of

response and the last

byte of the response

Time

Request per second (RPS) Total number of requests

processed per second

Number(requests)

Univ
ers

ity
 of

 M
ala

ya

 78

representing the response time while for the throughput we used four metrics named

Reply Time (RT), and Request per Second (RPS). Table 3.2 shows the definitions of

parameters that are associated with the metrics as well as the type of the metric.

We used the default prototype load-balance application by the Floodlight

controller. To enable the application, we changed the Floodlight configuration

properties to load the application when the controller is running. The application has

been used with basic load balancing scheme that includes Round-Robin and Random

algorithms. The application used static-flow-pusher API to insert flow entry into a flow

table. This API used 0 idle-time-out, meaning that the flows’ rules will remain in the

flow table and applied for all incoming traffic. For example, when a client sends a

request to the VIP that selects one host, say H1, after some time, if the same client sends

a request, then, the switch will forward it to the same host H1. We changed the Idle-

time-out to become 5 seconds. This means that after 5 seconds, the flow entry will be

removed to allow new request being handled by another host.

Three different types of the benchmark tools were deployed in these experiments

in the Mininet simulation environment. We used these to generate various types of

traffic in terms of different number, types, and size of the requests with respect to the

number of concurrent users in the system. For example, Figure 3.4 presents a different

number of requests with different connection rates. Typically, a connection rate is less

than the number of the connections. As depicted in Figure 3.4, when the number of

requests is 190, the connection rate is recorded as 180. While in the first three requests

of 50, 60 and 70, the request rate is not much different. To avoid the increasing of

dropped packets due to the high number of requests.We opted to stick with only 15

samples for each experiment.

Univ
ers

ity
 of

 M
ala

ya

 79

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

0

20

40

60

80

100

120

140

160

180

200

R
e

q
u
e

s
t
R

a
te

Number of data and compute Request

 % Request Rate

Figure 3.4Relation between request rateand number of the request

3.2 Empirical Analysis of user’s request into load balancing system

In this section, we discuss our empirical findings concerning the impact of user’s

requests on the performance of the load balancing system. We first present the average

response time. This is followed by; reply time and request per second and finally, the

impact of the user request on the host are presented.

3.2.1 Analysis of the Average Response Time (RT)

Average response time is one of the critical metrics in load balancing systems. It

is interpreted as the amount of time taken to return the results of a request to the user.

The response time is affected by various factors, for instance, bandwidth, the number

ofusers who access the system at the same time, thenumber of requests and average

thinking time. to get faster responses, a high number of requests per second must be

processed.Thus, we can calculate the response time as follows:

RT = UN/RN - Tt (3.1)

Univ
ers

ity
 of

 M
ala

ya

 80

Whereas UNis a number of the concurrent users and RN= a number of the requests per

second, Tt = Thinking time per request. For example, if we assume that the maximum

number of users that can access the system at the same time are 4000, and the maximum

requests that can be handled per second is 1000. Moreover, if the average thinking time

per request is 3 seconds then we can calculate the response time as follows:

ART = (4000/ 1000) - 3 sec. = 4 - 3 sec = 1 second

The response time is 1 second. In the SDN environment that uses reactive mode, the

thinking time for the first packet may take more than 3 seconds because of PacketIn

setup rate.

40 60 80 100 120 140 160 180 200

3.8

4.3

4.8

5.3

5.8

6.3

6.8

7.3

4.0

4.5

5.0

5.5

6.0

6.5

7.0

R
es

p
o

n
se

 T
im

e
(S

ec
o

n
d

)

Number of data and compute request

 Response Time

Figure 3.5Impact of the number of different request with ART

There are several factors that affect PacketIn setup rates such as the type of

controller used, the number of switches connected to the controller and the packet

forwarding rate of the switch(Kuźniar et al., 2015). Figure 3.5 presents the effect of the

Univ
ers

ity
 of

 M
ala

ya

 81

number of requests to response time. We increase the number of requests gradually

from 50-190 requests per second. The first average response time was recorded as

5.2s.tThis wasdue to the additional time for processing packetIn. The default flow-entry

action of the Floodlight controller is “controller” which means “send the packet to the

controller.”We can note that the ART decreased from 5.2s to 4.6s when the number of

requests increased from 50 to 60 requests. However, the ART started increasing

gradually to reach 6.9s with the increasing number of requests from 60 to 190. The

request rate, in this case, increased from 48.2 with the lowest number of requests to

180.1 with the 190 requests and the 6.9s ART.

Table 3.4 Average response time with increasing number of the requests

Number of requests Request Rate ART

50 48.2 5.2

60 58.1 4.6

70 67.5 4.8

80 77.6 4.9

90 88.9 5.0

100 98.6 5.1

110 105.3 5.2

120 118.5 5.2

130 127.8 5.3

140 137.1 5.5

150 148.5 5.7

160 155.4 5.9

170 163.7 6.2

180 172.2 6.8

190 180.1 6.9

Therefore, when the number of the requests increases the response time

increased as well. Table 3.3 shows 15 samples of the different number of requests with

various request rates. The request rate illustrates that the number of the rate for each

sample is usually less than the number of the requests. For example when we send 70

requests then the request rate is 67.5. The maximum request rate is 180.1 of 190

requests per/second. This is simply due to the fact that, not all requests are being

processed at the same time.

Univ
ers

ity
 of

 M
ala

ya

 82

500 1000 1500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
o
n
d
)

Size of the file (Kb)

 Response Time

Figure 3.6 Size of the file and response time

The second metric that can affect the ART is the size of the request. We

implemented the second experiment with three different sizes of the request and

captured the ART for first 5 experiments. Figure 3.6 illustrates that when the size of the

request is 500K, then the response time is recorded as 2.5s with 50 requests per second.

Thus, as the size of request increases further, the RT then starts to increase as well. The

results for different request sizes along with a various number of requests for each

sizeare presented in Table 3.4.

Univ
ers

ity
 of

 M
ala

ya

 83

Table 3.5The impact of the request size into RT

File size Number of requests Request rate Standard deviation ART

500K 10 9.9 0.4 1.5

20 19.6 1.3 1.0

30 29.1 2.5 1.2

40 38.3 3.9 2.1

50 47.4 5.8 2.5

1000k 10 9.9 0.4 1.2

20 19.6 1.3 1.2

30 29.1 2.4 1.1

40 38.3 4 1.8

50 47.4 5.8 2.9

1500K 10 9.9 0.4 1.2

20 19.6 1.3 0.9

30 29.1 2.4 1.2

40 38.3 4 2.1

50 47.4 5.8 3.5

3.2.2 Analysis of the Reply Time (RT)

It is sometimes called Transfer time which equals the time between the first byte

of response and the last byte of response. Typically, it is less than Average Response

Time ART and impacted by the user requests. The following equation (Equation 3.2)

illustrates the formula involved in calculating the RT.

RT = Tfb + Tlb(3.2)

Whereas Tfb is the time of the first byte of the response,while Tlbis the time of the last

byte of response, RT is normally measured in seconds.Figure 3.7 shows the percentage

of the RT for 50 requests per second. In the 50 requests, 50% of the requests could be

replied within 1055 msec while with the 80% of the requests, the RT increased slightly

to 1109 msec. We note that when the percentage of the requests is 90%, the RT then is

increased sharply to reach 3013msec. This sometimes happens due to the capacity of the

host or availability of the bandwidth. However, in general, we found that when the

number of the requests increases then the RT increases as well.

Univ
ers

ity
 of

 M
ala

ya

 84

In this experiment, we recorded the RT for the specific number of requests and

presented it in the percentage form

50% 66% 75% 80% 90% 95% 98% 99% 100% --

750

1250

1750

2250

2750

3250

1000

1500

2000

2500

3000

3500

R
ep

ly
 T

im
e

-
M

il
li

se
co

n
d

s

Percentage of the Request

 Reply Time

Figure 3.7 Reply Time per percentage

 For example, with the 70 requests, 50% of the requests are replied to

within1064ms,while the total RT of the 70 requests is recorded as 7063ms. We notethat

in Table 3.5, the average difference of the RT between 50 requests and 100 requests is

44%. This indicates that the number ofrequests impacts the RT.

Univ
ers

ity
 of

 M
ala

ya

 85

Table 3.6 The percentage of the request and RT of different request number

Number of requests percentage Reply Time (msec)

50 50% 1055

66% 1076

75% 1087

80% 1109

90% 3013

95% 3016

98% 3132

99% 3132

100% 3132

60 50% 1095

66% 3017

75% 3028

80% 3048

90% 7018

95% 7031

98% 7034

99% 7055

100% 7055

70 50% 1064

66% 3006

75% 3025

80% 3058

90% 7018

95% 7037

98% 7044

99% 7063

100% 7063

80 50% 1045

66% 1108

75% 3012

80% 3029

90% 7023

95% 7051

98% 7062

99% 7073

100% 7073

90 50% 1074

66% 3007

75% 3019

80% 3030

90% 7022

Univ
ers

ity
 of

 M
ala

ya

 86

95% 7036

98% 7067

99% 7081

100% 7081

100 50% 1022

66% 1057

75% 3007

80% 3009

90% 3065

95% 7019

98% 7022

99% 7074

100% 7090

3.2.3 Request per second (RPS)

To understand the impact of requests on the load balancing system, this section

discusses the RPS that measures how many requests are processed in the load balance

system per second. This can be calculated by the given equation 3.4.

𝑅𝑃𝑆 = (
R1 + R2 + ⋯ + RN

∑𝑇
) 3.4

If we can take the HTTP service as an example, then one request to the web site

may call 20 to 100 images per page, and the size of these images are varied (e.g. 2 MB

to 50MB per images). In this case, the number of the RPS will increase. By contrast, a

request that targeted simple text pages will produce a higher number of the request per

second. This is due to the fact that simple text can be processed by the web server itself

while a big size of the image requires expensive processing that takes some time before

the response is sent.
Univ

ers
ity

 of
 M

ala
ya

 87

40 60 80 100 120 140 160 180 200

3.8

4.3

4.8

5.3

5.8

6.3

3.5

4.0

4.5

5.0

5.5

6.0

 R
eq

u
es

t
p
er

 s
ec

o
n
d
 (

se
co

n
d
)

Number of data and compute request

 Request per second

Figure 3.8The request per second

Figure 3.8 shows the variety of the RPS in the conducted experiment that placed

different number and types of the requests to analyze the impact of these requests on the

RPS. It can be seen, in 80 requests per second, the RPS recorded a value of 4.6 while in

70 requests the RPS was observed to be 4.25. Table 3.6 presents 15 samples of the

experiment that show the RPS and time per request. In addition, the capacity of the host

to handle the requests affect the RPS as well. Thus, in the next section, we will discuss

the impact of the requests on a host.

Univ
ers

ity
 of

 M
ala

ya

 88

Table 3.7The impact of the type of the request into RPS

Concurrent

users

Request

number

Time of

test(Seconds)

Requests per

second(mean)

Time per(MS)

10 50 8.266 6.05 165.32

10 60 16.097 3.73 268.285

10 70 16.467 4.25 235.242

10 80 17.378 4.60 217.22

10 90 20.517 4.39 227.97

10 100 20.555 4.86 205.552

10 110 25.134 4.38 228.492

10 120 27.539 4.36 229.493

10 130 28.563 4.55 2019.715

10 140 29.34 4.77 209.572

10 150 29.576 5.07 197.174

10 160 31.637 5.06 197.731

10 170 35.661 4.63 215.803

10 180 35.661 5.05 198.114

10 190 34.596 5.49 182.087

3.3 Impact of the requests on a host load

For understanding the impact of the user requests on a host’s load; three factors

must be considered. These factors are; Observation time OT, the total amount of time

that the server is being monitored, Busy time BT which is the total amount of time that

the server is active during OT) request a total number of requests that have been

completed during OT.

Therefore, from the above factors, we can calculate the CPU Utilisation using the

following equation.

U = BT/OT 3.5

The equation can show the percentage of CPU capacity during a specific period of time.

For example, if we observed the host for 60 seconds OT and during this time say 90

requests (R) were completed, then the busy time of the host is actually 48 seconds BT.

So, CPU utilization is 80% which is simply 48/60 x 100%.

Univ
ers

ity
 of

 M
ala

ya

 89

In addition, we can get the Average Request Time ART, meaning the amount of time

that a request need to be processed, sometimes it is called the Average Reply Time

ART. Equation 3.6 shows that.

ART =BT/R 3.6

Whereas BT and Rare 48 and 90 respectively, therefore the ART is 0.53/sec. Moreover,

we can get the throughput of the system by dividing the number of completed requests

by the observation time as we can see in the equation 3.7. By using the above case, the

throughput is 1.5 request per second, where R=90 requests and OT=60sec. This means

that the host can handle the average of 1.5 requests in every second.

Throughput = R/OT 3.7

To know the capacity of the CPU for handling the number of servers, we can use

equation 3.8.

CP= 1/ART 3.8

So in the above example, we can say it is 1/0.53 = 1.875 request/sec. Typically, when a

number of requests are sent to the host, then the host will create a queue in which the

requests will wait to be processed. To get the length of this queue, we can use equation

3.9.

Q= U (1 –U) 3.9

Giving (0.8/1-0.8) = 4 requests, where U is the CPU utilization. In turn, this shows the

average number of requests during a specific period of time.

3.4 Conclusion

This chapter aimed to analysis the problem of the impact of theusing some load

balance schema with adifferent type of the servicesand the related host’s response.

Several experiments were conducted in the Mininet, and various types of requests were

generated. First, we covered the setup for the experimental environment and then

developed the Python script which allowed the creation of a custom topology. Such

Univ
ers

ity
 of

 M
ala

ya

 90

script configured two server pool connected to the Floodlight controller that runs the

default load balancing application. Two hosts were used as clients to generate the

required traffic.

Various types of requests were generated to show their impact on the load

balancing system. The type of the requests, the size of the request, and the number of

the requests were analyzed. Enhancing Httperf tool was utilized to generate the traffic,

where this tool can generatedifferent types of the treffic such HTTP, FTP.In this

chapter, we analyzed the problem by simulating two pools (HTTP and FTP) and used

two hosts as clients to send requests to VIP.In each experiment, we used to send data

requests constituting of 50% as simple HTTP requests while the other 50% is containing

the FTPrequests. Three parameters were utilized to study the influence of the requests

on the load-balancing system; these parameters include; average response time, reply

time and request per second. Moreover, we presented a study on the impact of the

requests on the host and showedby means of illustration some examples demonstrating

the effect of the requests on CPU, and throughput of the host.

Univ
ers

ity
 of

 M
ala

ya

 91

CHAPTER 4: SERVICE BASE LOAD BALANCE (SBLB): DESIGN AND

IMPLEMENTATION

In this chapter, we present the system design and implementation of Service Based

Load Balance mechanism (SBLB). The proposed mechanism aims to minimize the

response time and maximize the throughput. First, we discuss the application modules

of the SDN controller. Subsequently, with the use of schematic diagrams, the system

architecture is illustrated. Then, the functionality of each module is discussed in details.

Finally, the system design and implementation of the proposed SBLB mechanism are

presented.

This chapter is divided into four sections. In section 4.1, we present the steps to

develop application modules and utilize the core modules of Floodlight controller. The

comprehensive description of the system architecture of the SBLB mechanism is

presented in section 4.2. In section 4.3, we discuss the building blocks of the system

architecture of SLB mechanism that includes three sub-modules namely service

classification, load balance, and monitoring. In section 4.4, we show the use-case

diagram that illustrates the process flow of SBLB. The conclusion of the chapter is

presented in section 4.5.

4.1 Development of the Modules in Floodlight

Currently, there are several SDN controllers available, e.g., NOX(Tavakoli, Casado,

Koponen, & Shenker, 2009), Beacon(Boero, Cello, Garibotto, Marchese, & Mongelli,

2016), Floodlight, OpenDaylight, BVC and HP VAN Controller(Tourrilhes et al.,

2014). Some are Open-source while others are commercial and proprietary. Typically,

the standard southbound interface such as OpenFlow can be used with all controllers,

but the southbound interface is different from one controller to another. It depends on

the technology that is used to develop the controller such as platform, framework,

programming language and operating system that the controller supports. In this

Univ
ers

ity
 of

 M
ala

ya

 92

study,we used Floodlight controller version 1.2 with OF specification 1.3. Floodlight is

an open source controller, Apache-license, and Java-based. The Floodlight core

architecture is modular, with components including topology management, device

management (MAC and IP tracking), path computation, infrastructure for web access

(management), counter store (OpenFlow counters), and a generalized storage

abstraction for state storage. The Floodlight controller realizes a set of common

functionalities to control and inquire an OpenFlow network, while applications on top

of it realize different features to solve different user needs over the network. Floodlight

can be configured to load different modules to accommodate different applications. A

lot of applications have been built to work with Floodlight through three main i.e. APIs,

REST applications, Module applications, and OpenStack (Karacali & Tracey, 2016)

applications. We utilized these three APIs to build our SBLB mechanism. The steps are

illustrated in Figure 4.1. First, we define the scope and functionalities of the modules by

defining the interfaces dependencies and constraints of each module. For example, in

our SBLB module, ILoadBalancerService, IOFMessageListener and IFloodlightModule

interfaces are implemented, and all dependencies that allowexploiting other core

functions of the controller are declared in the initfunction. In the second step, we define

the event and how the module handles the PacketIn messages. In addition, we define the

store and thread to collect server’s information. This function is implemented in

monitoring module that collects the host's information every five seconds and sends it to

the load balance module.

After that, we created our Java (Gosling, 2000) classes and imported the libraries

that are used in each class. The subclass such as LBVIP, LBMembers, and LBPoolare

constructed with necessary variables.

Univ
ers

ity
 of

 M
ala

ya

 93

In step four, we write a basic operation that allows the modules to be loaded and

initialize the data structure by takingFloodlightModuleContext as input. The last step is

concerned with writing the functions of the modules. We listed the main functions with

abrief explanation of each one below:

1. Receive function: in this function, the controller receives the message from the

switch. When the message arrives at the switch, and there is no flow entry is setup,

the controller will check if the message is PacketInmessage or not, if yes, the packet

is sent to processPacketInfunction.

2. Process PacketIn function: Once the PacketIn message is received, the message is

verified to check if it is an IPv4 traffic or not, if yes, the packet is parsed to get the

details such as sourceIP, desinationIP, traffic pattern (TCP, UDP, and ICMP) and

Figure 4.1 Floodlight modules processing steps

Univ
ers

ity
 of

 M
ala

ya

 94

the type of services. Then, the server member is selected from the pool to handle the

PacketIn message based on the load balance policy.

3. VipProxyArpReply function: this function is responsible for broadcasting the VIP

and MAC among the clients by implementing Pingall that builds the ARP table in

the network.

4. PushPacket function: this function sends the PacketOut from the controller to the

switch and instructs it on how to deal with the packet.

5. PushBidirectionalVipRoutes function: itis responsible for getting source IP of the

PacketIn (VIP) and changes it to physical host IP that handles the incoming request.

This operation is the reversed process of the PacketOut which is sent to the client.

4.2 System Architecture of SBLB

Our system architecture consists of two parts; the application modules that run ontop

of the SDN controller and servers pools that connect to the controller through

OpenFlow switches. For the implementation of the SDN application modules, we use

the Floodlight controller which is one of the well-known SDN controllers written in

Java. For the implementation of the server pools part, we used RESTFULL

(Representation State Transfer) API to communicate with SDN controllers and

OpenFlow switches. In addition, since we need dynamically modify the OpenFlow

table, we use Open vSwitch [62] which is the OpenFlow reference implementation.

Univ
ers

ity
 of

 M
ala

ya

 95

Figure 4.2 shows the SBLB system architecture. The application modulesconsist of

three functional modules namely Service Classification Module (SCM), Dynamic Load

Balance Module (DLBM) and Monitoring Module (MM). These modules run ontop of

each SDN controller. Monitoring module runs on intfunction of Floodlight to collect

hosts information every five seconds and sends it to the load balance module. The main

function of SCM is to identify the type of request to define the service type and send it

to load balance module. DLBM is the main module that manages the load balance

system by adjusting the corresponding parameters. A controller works as a master

controller that handles all packetIn messages coming from OpenFlow switch. In

addition, the controller manages the host pools and maintains the host's load in real

time. Each server has a static IP address connected to the OpenFlow switch, and each

pool has a virtual IP with virtual MAC-address. All users send their requests to virtual

MAC-address, without knowing the physical address of the host, the OpenFlow switch.

Figure 4.2 SBLB system architecture

Univ
ers

ity
 of

 M
ala

ya

 96

The switch checks its flow table once a request arrives to find a matching entry. If the

client packet header is matched, the switch carries out the actions in the flow entry. If

there are no flow entries matches, the switch sendsPacketIn message to the controller

that executes the modules. Then, the controller inserts the corresponding flow entry to

the switch through OpenFlow protocol. In the following section, the building blocks of

the system are discussed in details.

4.3 The building blocks of the proposed load balance mechanism.

In this section, the system building block that includes three modules namely

service classification module, dynamic load balance module and monitoring module are

discussed in depth. Load balance is the main module that receives the type of request

from the service classification module and gets the current server load from the

monitoring module.

4.3.1 Service Classification Module(SCM)

This section aims to discuss the implementation of service classification module.

To support real-time traffic classification in Floodlight controller in order to identify the

request type, we developed an online service classification module based on statistical

information that is collected from both hosts and clients during the communication. In

this section, we will discuss the following:

 The method of identifying the type of request.

 MemoryStorageSource service.

4.3.1.1 The method of identifying the type of Request

Various approaches are proposed for service classification. In our module, we

adopted the approach that is implemented in a traditional network using Network Packet

Description Language (NetPDL). For using this approach, OpenFlow protocol is

leveraged by adding an additional function that can classify the flows. Service

classification relies on observation of how hosts and clients communicate with each

Univ
ers

ity
 of

 M
ala

ya

 97

Session
From 10.0.0.1 to : 10.0.0.10

Get Source IP: 10.0.0.10

Get Port80

Get protocol :HTTP

ST – Table
IP Port protocol
10.0.0.10 80 http
… .. ….
… .. ….
… … ….

2

1 3

4
SDN Controller

User 1

User 2

Figure 4.3 Service classification process

other in the network. In the case of a client-server network, typically, a large number of

clients connect to a single host or multiple hosts that provide the same service. Thus, we

identify the host or the VIP of the load balance system as the main actor. The aim of the

service classification is to identify which service is offered at an IP address, port, and

protocol. Consequently, a classifier can infer that all future sessions that contain these

three factors will be directed toward the host that provides such service. As we see

inFigure4.4, when client A establishes a session and starts sending a request to VIP, the

service classification module will first extract the packet information to get the value of

the factor and save it into the Service Table (ST) that is stored in MemoryStorageSource

service. When a new request is sent to VIP, the classification module first checks the

ST. If the three values are matched, the service name is sent to the load balance module

to adjust the parameters according to the request type.

Univ
ers

ity
 of

 M
ala

ya

 98

For example, if the classifier module recognizes that server 1 with IP address

(192.168.5.2) that runs a web service on TCP port 8080, it can classify all sessions

established to this IP address, port, and protocol as HTTP services. Our classification

approach is different from the port-based approach that focuses on the port number.

This approach extracts the two values; IP address and port from the header of the field

while the protocol is extracted from the payload of the packet. The process of storing

and retrieving values from the ST will be discussed in the next section.

4.3.1.2 MemoryStorageSource service

Floodlight controller provides MemoryStorageSource service that allows storing

some information about the network temporarily. It is the memory of NoSQL storage

utilized for storing and retrieving information of the PacketIn for service classification

purpose. To use this service when the controller starts, we configure it in Floodlight

configuration file. In addition, we import two other dependencies,

IDebugCounterService and IRestApiService that this MemoryStorageSource service

uses. To create ST, we call IStorageSourceService interface in our SBLB module to be

able to create, delete and modify data in the memory storage source. For retrieving data

from ST, we implement anIStorageSourceListener interface that allows sharing all data

in other modules.Initially, we configure MemoryStorageSource service to run when the

first PacketIn is sent to the controller. Floodlight Controller will check if the destination

IP is VIP of the Load balance module, then we parse the PacketIn and get the three

parameters (Source IP, Port number, and Protocol). Then, the PacketIn will be classified

through the service-based method discussed in the previous section. After that, any

incoming packet with this “known service” can subsequently be classified directly into

the information stored in the ST as described above without any further processing (e.g.,

payload inspection). Since Service Table ST is stored in memory that has limited space,

we introduced Service Idle Timeout SIT to remove the entry of ST that does not match

Univ
ers

ity
 of

 M
ala

ya

 99

for certain time. Such SIT will reduce the number of service entries in the ST and speed

the processing time of classifying incoming packets.

4.3.2 Dynamic Load-balancing Module (DLM)

This section aims to explain the implementationof the dynamic load balancing

module that calculates and distributes the incoming traffic to the server with the

consideration of service type. A load of each host is calculated based on the three

parameters; CPUutilization, Memory utilization and Bandwidth utilization. By

considering the type of service, we divide the request into two types compute request

(CR) and data request (DR) and then adjust the above parameters accordingly. CR

refers to a request that does not need many network resources such as Bandwidth. For

example, simple HTTP request (static) that does not includeserver-side scripting (e.g.

PHP, ASP, and JSP) may consume less bandwidth. Conversely, DR is a request that

relies more on bandwidth. To identify the type of request, the PacketIn is captured by

Service Classification Module in which the packet is classified and sent back to this

module. Therefore, in this module two tasks are implemented; calculating the load of

each host and selecting the best server to handle the incoming request. Finally, we

integrate these two tasks into our proposed mechanism.

4.3.2.1 Calculating the load of hosts

This section we explained the calculation of a load of each host according to

theservice type. We assume that the clients send various requests to the pools that

provide different services. Inside each pool, we have different hosts with various

workloads. The complete set of SBLB parameters that are used in this section is listed in

Table 4.1.

Table 4.1SBLB Symbols parameters

Symbols Description

Univ
ers

ity
 of

 M
ala

ya

 100

P Pools

H Hosts

R Request

HL Host Load

HC Host Capacity

CPUr CPU ratio

MEMr Memory ratio

Bandr Bandwidth ratio

α CPU weight

β Bandwidth weight

µ Memory weight

It is assumed that we have a set of Pools, P= (P1, P2 …..PN), that are associated with the

set of services, S= (S1, S2….SN). In each pool, we have a number of host members with a

different load, HL = (HL1, HL2 …… HLN). Clients can send a request to VIP Pool. Let’s

say that R is a set of requests need to be scheduled: R= (R1, R2…….RN). First, we can

calculate the load of the pool in equation 4.1

 𝑃𝐿𝑖 = ∑ HL𝑖 (4.1)

𝑛

𝑖=0

We can simply get the load of the each host member in the pool as equation 4.2:

HLi= CPUr + MEMr + Bandr(4.2)

Since we have heterogeneous hosts, thus, we consider the capacity of each host, so the

following equation 4.3 is used

HCi = CPUr + MEMr + Bandr (4.3)

To calculate the CPU proportion of the each host, we utilized /proc filesystem

that is provided by Linux kernels. A simple java class calledCpuRamRatio is devoted to

getting the CPU and memory utilization and report it to the Floodlight Controller every

five seconds. The formula to get the CPU ratio from /proc file is 100.0 * (1.0 - IdleTime

/ TotalTime). The ratio of the memory is calculated based on this formula 100.0 *

(TotalMemoryUse + MemorySwap/ TotalMemory). In terms of the bandwidth, we

utilized an OpenFlow switch to reporting the bandwidth of each link, this function is

explained in section 4.3.3.2.

Univ
ers

ity
 of

 M
ala

ya

https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

 101

To calculate the load of the hots, we proposed α, β and µ values. This value is

multiplied with each load balance factors to adjust the parameters based on the type of

the request. Meanwhile, different types of requests are available (N types). In this

research, we divided the users request into two type ComputeRequests CR, and Data

Requests DR. Thus, we can define the different weight values for each type of requests.

In order to calculate the load of the each host based on the different type of request, we

used the following equation 4.4.

HLi = α*CPUr + µ*MEMr + β*Bandr (α, β, µ) <=1 (4.4)

In which the total of the three parameters must be less than 1. Different types of

therequest will have different weight values for CPU, memory, and bandwidth. For

example, in thecase of the compute request the load of the hosts are calculated as

follow:

HLi= α *CPUr + µ *MEMr + β *Bandr (α= µ, α > β and α + β + µ =1)(4.5)

In the above equation, the value of the bandwidth is less because this type of the request

does not need much bandwidth. However, in case of the request is the data request, the

load of the hosts is calculate based on equation 4.6

HLi = α *CPUr + µ *MEMr + β *Bandr (α= µ, µ< β and α + β + µ =1) (4.6)

To achieve the load balancing over the proposed mechanism, we proposed a new load

balancing algorithm that considers both real-time host’s load and type of the request.

4.3.2.2 SBLB Algorithm

This section explains dynamic SBLB algorithm that calculates hostsload

according to theservice type. Figure 4.5 presents the pseudo-code for the proposed load

balance mechanism. The input consists of multiple requests from different clients.

When the controller has received the requests, the requests will be classified into two

different classes namely, compute request and data request based on the type of request.

Then, the controller selects the host with minimum load to process the client request

Univ
ers

ity
 of

 M
ala

ya

 102

depending on the type of the request. This information is updated each time the loads on

the servers change.

Algorithm 1 : Service-Based Load Blanca Algorithm (SLBA)

Input: Set of the incoming request (R1,R2……………..RN)

Set of the Host (H1,H2,………HN)

Current host status (CPU, RAM, BAN)

Output: Select best Host to handle incoming request (Hi)
Wi(α, β, µ)

Foreach 1 in ST.RThen

 If Ri= ComputeRequest then

 GetResourceUtilization(CPU, RAM, BAN)

 Hi.cpuCPU

 Hi.ramRAM

 Hi.bandBand

L(Hi)= α*CPUr + β*RAMr + µ*Bandr (α= µ, α > β and α + β + µ =1)

 H(C) ; *// calculate the capacity of the Host

 P(Hi) ; *// Probability of the task for the host

Elseif Ri= DataRequest then

L(Hi) = α *CPUr + β*RAMr + µ*Bandr (α= µ, µ < β and α + β + µ =1)

 H(C) ; *// calculate the capacity of the Host

 P(Hi) ; *// Probability of the task for the host

Endif

End

Figure 4.4Pseudo-code of the SBLB algorithm

4.3.2.3 Selecting the best server

This section explained how to select a host to response for user request after the

calculation of a load of thepool. If we always choose the host with the smallest load for

request distribution, all the requests may be assigned to the same host in a short time,

the host’s load will increase quickly, and then requests will be assigned to the host with

the second-smallest load.

 (4.7)

The cluster system will generate jitter. Therefore, we use the random probability

distribution method. When distributing requests, we firstly choose those hosts with the

smaller load as candidate hosts constituting the hosts set for distribution, then, we

Univ
ers

ity
 of

 M
ala

ya

 103

allocate the requests according to the probabilities of hosts in the set, ensuring that the

distribution of requests is uniform and the jitter is avoided.

4.3.3 Monitoring Module (MM)

In this section, we discussed the statistics collection method that used for

monitoring hosts and links. We devoted monitoring module that upsized APIs of the

controller andruns on the top of the Floodlight controller.

For the purpose of obtaining the network and host status, we gather two types of

data from the network nodes; 1) resource utilization of the hosts that include server

information such as CPU utilization and memory utilization. 2) Link bandwidth

statistics that are reported by switches periodically. This information is collected by

controller every five seconds. In this section, we explain in details how we implement

these tasks.

4.3.3.1 Statistics collection service

To carry out these tasks, we implement statistics collector services in which all

information are gathered. Figure 4.6 shows two functions that collect the values of

resources and bandwidth of the links and calculate the real state of each node in the

network.

Univ
ers

ity
 of

 M
ala

ya

 104

Figure 4.5Statistics collector algorithm

4.3.3.2 Bandwidth Statics information

OpenFlow specification provides many statistics messages that allow the

controller to query the switch for information such as flow stats, meter stats, queue stats,

aggregate stats, table stats, and port stats. The ability to collect this information is great,

but it must be reported at the real time. For example, when the controller receives a

status reply message, the values within the message are most likely out of date and do

not reflect the real-time state of the switch anymore. To avoid this, we utilize collect

switch statistics service in Floodlight to gather bandwidth values every five seconds.

But the problem is that OpenFlow switch provides raw byte counters without providing

the times of these counters. Therefore, we collect and modify some statistics that

depend on time such as bandwidth. A bandwidth is a number of packets that can travel

through a link for a given amount of time. Therefore, it refers to Byte per the second

Univ
ers

ity
 of

 M
ala

ya

 105

amount. The following equation is used to calculate the bandwidth of links each 5

seconds

Bw= C/T (4.8)

Where C is the size of counter and T is time. Since time is not given, we count the byte

counters returned at two points in time Ci = T1 <---->T. The difference between these two

counters divided by the time passed between the points of each counter value returns the

bandwidth

For calculating the bandwidth, there are two methods:

 Compute the bandwidth frequently to ensure that we have real-time bandwidth

consumption.

 Less frequent update to avoid network overhead.

The first approach produces more errors due to computing timestamps, but it is

accurate than the second approach, while the second approach is not accurate but it does

not cause network overhead. To avoid these two issues, we adopted 5s as a rate to

collect links information to avoid causing overhead for the Floodlight controller

The statistics module in Floodlight is not enabled by default. This means we must

enable it in the Floodlight default properties file to make it start when the controller

runs. Figure 4.7 shows the commands that enable statistics module with an interval of

5s.

Figure 4.6Enable the statistical function

To integrate this module in our SBLB mechanism, we implement Thread that

handles the statistics request and response.The Thread will be initialized via

Univ
ers

ity
 of

 M
ala

ya

 106

IThreadPoolService, Floodlight service that is provided by another module. Three

parameters will be collected portStatsInterval_1, portStatsInterval_2, TimeUnit per

second. Statics collation service implements a Runnable class that contains the run

function, which will be invoked by the executor at the times and interval set as

described above. To get Bandwidth statistics counter of each link, we pass two

parameters the DatapathId and Pot number that return the rxBytesCounted and

txBytesCounted.

Univ
ers

ity
 of

 M
ala

ya

 107

OVS switch Traffic

Classification

Dynamic Load

Balancing

Hosts

Monitoring

Floodlight

Controller

Send request Check match

Forward

PacketIn

 Packet

Classification

Forward for decision

Load balance calculation

Send response

Packetout

Server’s statues

Select specific schema

Clients System

Configuration

Create VIP

Addmember to

the pool

Cerate Pool

Figure 4.7 System flow sequence

Univ
ers

ity
 of

 M
ala

ya

 108

<<

Includ

e>>

<<

Inc

lud

e>

>

<< Extend>>

<< Extend>>

<<

Incl

ude

>>

<<

Inc

lud

e>

>

<<

Inc

lud

e>

>

<<

Inc

lud

e>

>

<<

Inc

lud

e>

>

<< Include>>

<<

Inc

lud

e>

>

Create VIP

Create Server
Pool

Add member to

Pool

Send a request

Data structure for

storing connection

PacketIn
receive

ProcessPacketIn

Packet classification

Load
balancing

Check the host

load

VIP response

Direct server
Response

System
Configuration

<<

Incl

ude

>>

User

Figure 4.8 Use-Case diagram

Univ
ers

ity
 of

 M
ala

ya

 109

4.3.4 Use-case and flow-sequence diagram

This section explained the use-case diagram that shows the interaction of the user

with SBLB as well as the flow sequence diagram in which all SBLB steps are explained

in details. Figure 4.8 shows the use case diagram for SBLB mechanism. The use case

diagram is used to identify the interactions between the proposed load balance

mechanism and the users. In the use case diagram, the use cases or processes are drawn

as an oval shape whereas the actors or the users are represented as a stick figure. The

compulsory procedure is shown using the <<Include>> relationship whereas the

<<extend>> relationship indicates the optional procedure for the SBLB processes.

4.3.4.1 System configuration Process

In the beginning, the user must configure the server pools and added VIP for

each pool as well as define the types of traffic such as TCP or UDP. The configuration

depends on a number of the server pool and the number of members added to each pool.

In our proposed system, we have 4 server pools; two is TCP and two for UDP traffic.

Figure 4.6 show the script of CURL command that adds pools and sends it as JSON

message to Floodlight controller.

Figure 4.9Send JSON message to Floodlight

4.3.4.2 Create host pool

Floodlight Controller providesIRestApiService services that handle the mid-level

details of the configuring Restful API. In the first line of the script, we created

TCPVIP1 for TCP traffic associated with L3 VIP, the MAC Address of this VIP is

created in LBVip class inside the module. We must define the port which is port number

Univ
ers

ity
 of

 M
ala

ya

 110

8, a unique port for each VIP based on the Floodlight Rest API configuration, and then

define the URI that includes controller IP.The server pool must implement with a

unique name, to associate this pool with VIP, the ID of TCPVIP1 is added with the

same type of traffic. Also, the URI of the pool is addedwith the physical IP of the

controller.

4.3.4.3 Added member to Pool

Clustered servers are the member of each pool, for example, HTTP servers are

added to TCPVIP1 pool while FTP servers are added to TCPVIP2 pool. The members

will be added by their L3 IP address and associated with a same port of VIP. The user’s

request sends to VIP; then classification module will identify the request type. Based on

the request type, parameters will be adjusted, and the best host will be selected to handle

this request.

4.3.4.4 Send request

We set the default action in the switch is (Controller) so that the first traffic is

sent to the controller. The controller will check the type of messageand ignore all

messages except PacketIn message. Then, we will send the message to

ProcessPacketInfunction with the same parameters. When the PacketIn message

received by the process function, it will extract the message using

IFloodlightProviderService and get the payload which includes all header information

of the packet. Since the VIP only consists of MAC address and is not known to another

computer in the network, we need to advertise the MAC address with VIP by

implemented pingall command. When we pingall,thePacketIn will send to the controller

thattrigger the Forwarding moduleto send all MAC address to all port in the switch for

recognizing each other. In the process PacketIn function, ARP message will be

checked, and vipProxyArpReply procedure will be implemented to send MAC address

associated with VIP to all network devices. Therefore, clients have the ability to

Univ
ers

ity
 of

 M
ala

ya

 111

communicate with VIP. For normal IPv4 traffic, the destination IP address and the

protocol type such as TCP and UDP are identified.

4.3.4.5 Data structure for storing

To get the information of the user who sends the request and identifiesthe

request send to which VIP, we implemented Class named IPClient that define;

IPv4Address,IpProtocol, TransportPortof the source (client) as well as TransportPort

of the host (destination). This parameter also helps to maintain the session between the

host and the client as well as used for classifying the request

4.3.4.6 PacketIn receive

utilizePacketIn receive function; we extend the IOFMessageListener interface in

our module; Itincludes three parameters; IOFSwitch, OFMessage,

FloodlightContext.This function will check the type of message, in our module, we will

ignore all messages except PacketInmessage. Then, we will send the message to

ProcessPacketInfunction with same parameters.

4.3.4.7 Process PacketIn

When the PacketIn message comes to process function, it will extract the

message using IFloodlightProviderService and get the data which includes all header

information of the packet. Frist, in process PacketIn function, ARP message will be

checked, and vipProxyArpReply procedure will be implemented to send MAC address

associated with VIP to all network devices. Therefore, clients have the ability to

communicate with VIP. For normal IPv4 traffic, first, will check the destination IP

address and identify the protocol type such as TCP and UDP.

4.3.4.8 Packet classification

For classifying the packet, the TCP/UDP packet header must be analyzed as we

mentioned early using statistical information that collects from both host and clients

during the communication. In this process, the controller extracts the three values; IP

Univ
ers

ity
 of

 M
ala

ya

 112

address, ports, and protocols from the header of the field. To reduce the transmission

overhead and increase the performance of controller during checking of the PacketIn,

we will check only the three values mentioned above. To store information of the packet

and used for incoming packet we used MemoryStorageSource that can store all packet

information and retrieved by the controller to select appropriate parameters for load

balancing.

4.3.4.9 Load balancing

In this process, three functions are implemented namely; schema selection, host

load calculation, and decision making. In the first process, after received the type of the

traffic from the classification module, the schema of the data or compute request is

selected. The load balance module will calculate the load of the each host based on

equation 4.5 or 4.6 that are used based on the type of the traffic. After that, the best host

to handle the request is selected based on question 4.7.

4.3.4.10 Check the host load

Our proposed system implemented the dynamic load balance, whereas the hosts

report their load ratio such as CPU, RAM, and the controller collects the link bandwidth

that is reported by the switches periodically. This information is sent to the controller

every 5 seconds to avoid the controller be overheated. In addition, 5 second is default

timeout that used in Floodlight controller. This means automatically after 5 seconds

flow entry will be removed.

4.3.4.11 Direct host response and VIP response

These two processes are optional, where we can use one of them to response to

the clients. In the first option, the hostcan senda response to the client directly by

showing the IP address of the host in the PacketOut message. This can decrease the

response time. However, it is not secure and is not commonly used in load balance

system.In the second option, the VIP response process where the Floodlight controller

Univ
ers

ity
 of

 M
ala

ya

 113

will change the distention IP of the PacketOut to the VIP address, so the client does not

know which host response to.

4.3.5 Conclusion

 In this chapter, we propose Service Based Load Balance SBLB mechanism that

takes into account the type of the service. SBLB aims to minimize the response time and

maximize the throughput. The development process of the module using Floodlight

controller is discussed. Then, the system architecture is presented to illustrate the

characteristics of the proposed mechanism. The SBLB system architecture consists of

the three main modules is discussed in details. We explained the load balance module

that dynamically adjusts the load balance parameters based on service type. The

operation of the classification module that responsible for classifying the incoming

request using Service Table ST is discussed. The function of the monitoring module that

is reported the links status and the current host's load is described. In addition, the

SBLB algorithm is presented as well to show how it is dynamically select the hosts

based on the type of the services. Lastly, the use-case and flow-sequence diagrams are

illustrated to show the interaction between client and the proposed load balance

mechanism.

Univ
ers

ity
 of

 M
ala

ya

 114

CHAPTER 5: EVALUATION

This chapter discusses the evaluation of the proposed solution. A data collection

technique is used to analyze the results of the SBLB mechanism. A statistical model is

implemented to evaluate the accuracy of the data. In addition, the chapter presents the

experiment setup and tools used to evaluate the performance of the SBLB. Three

metrics namely Average Response Time (ART), Reply Time (RT), and Request Per

Second (RPS) are used for the SBLB evaluation.

The chapter begins with the evaluation of the results for real and simulation

environments. Then, the data and compute request in homogeneous and heterogeneous

environments are analyzed. Thisis followed by the results of SBLB and HAproxy load

balancer software. After that, a performance evaluation of SBLB and Round-Robin in

homogeneous and heterogeneous environments is presented.

This chapter is organized as follows: Section 5.1 describes performance evaluation

that includes the experimental setup and components of the experiments. Section 5.2

presents the data collection method. Section 5.3 discusses the statistical model that is

implemented for evaluating the results. Section 5.4 discusses the performance analysis of

SBLB. This section consists of four subsections. Section 5.4.1 shows the comparison of

the results of Mininet with OpenStack. Section 5.4.2 presents data collection for

analyzingcompute, and data request in homogeneous and heterogeneous environments.

Section 5.4.3 shows the comparison in between SBLB and HAproxy load balance in the

homogeneous and heterogeneous environments. In section 5.4.4, we discuss the

evaluation of the SBLB and round-robin algorithm in homogeneous and heterogeneous

environments. Finally, Section 5.5 concludes the chapter.

Univ
ers

ity
 of

 M
ala

ya

 115

5.1 Performance Evaluation

In this section, we explain the experimental setup and the components that are used

for the performance evaluation. In addition, we highlight the data collection method and

statistical tools that are used to verify the correctness of the data.

SBLB is a dynamic load balance mechanism that uses to adjust the load according to

services types in a different environment. The proposed mechanism are evaluatedin

ahomogeneous and heterogeneous environment with adifferent type of requests. In

ahomogeneousenvironment, all hosts have thesame specification in term of CPU, RAM,

and bandwidth while in aheterogeneousenvironment, these specifications are varied.The

CPU, RAM and bandwidth ratio are used to calculate the host load in each request.

Table 5.1 shows the configuration of hosts in the experiments for thehomogeneous

and heterogeneous environment. Unlike the experiments in chapter three that are carried

out in asimulation system, Mininet, for analyzing the problem, these experiments are

implemented in acloud environment using OpenStack. Due to the limit of the resources,

we implemented the experiments with thespecification that illustrates in table 5.1.

Table 5.1 Specification of hosts in OpenStack environment

Specification homogeneous heterogeneous

CPU 3.40.0 GHz 2.60GHz -3.40 GHz

RAM 512MB 256MB - 512MB

Bandwidth 100Mbps 50Mbps – 100Mbps

To evaluate thedifferent type of services in SBLB, we used enhanced HHTperf tool

that can generate HTTP, FTP, and video streaming traffic. We assumed that HHTP is a

compute request that relativelygenerates a small data with high intensity. In addition, we

assumed that FTP and video streaming services are data request,a larger amount of data

that requires some computation work.

Univ
ers

ity
 of

 M
ala

ya

 116

5.1.1 Experimental Setup

We implement SBLB mechanism in the cloud environment that is installed and

configured on a single desktop computer where the OpenStack is implemented. Multiple

VMs were implemented in one physical machine to represent the cloud environment.

We have deployed OpenStack using devStack script. The specifications and the software

versions of the computer are listed in Table 5.1.

Table 5.2 Systems specification of the computer

Software and Hardware Specifications

Processor Core i7

RAM 12 GB

Operation System Ubuntu 14.04

SDN controller Floodlight 1.2

OpenStack Grizzly

Open VSwitch Version 2.9 support OF 1.3

5.1.2 System Topology

Figure 5.1 shows the network topology that configures in an OpenStack cloud

environment. Five host pool are created with three different hosting pool. Each pool

includes five hosts. Floodlight controller is installed in remote VM connected to

OVS inside OpenStack. Host A and B are used as a client to generate traffic using

enhanced HTTPerf tool. The tool can generate three types of the traffic namely

HTTP, FTP, and video streaming.

Univ
ers

ity
 of

 M
ala

ya

 117

Figure 5.1 System topology

5.1.3 The components of the experiments

The components of the experiments are summarized below:

5.1.3.1 Floodlight Controller

In this experiment, we used Floodlight controller version 1.2 that supports OF

1.3. The controller is open source written in Java language and supports FULL-REST

API that uses HTTP requests to program the controller. In appendix 2, the code of the

FULL-REST API to configure hosts pool of the controller is presented

 Two options are available to develop an application in this controller. The first

option is writing a java code in (/floodlight/src/main/resources) directory and configure the

modules to start when the controller is running by adding the modules in

floodlightproperties file. The second option is using another language such as python or

simple script by utilizing the REST API. In this study, we develop SBLB modules using

java and implement the proposed algorithm. Also, we have written some scripts using

CUR

Univ
ers

ity
 of

 M
ala

ya

http://searchwindevelopment.techtarget.com/definition/HTTP

 118

L and REST API to configure the server pools and added the members to that

pool with a specific type of traffic. For example, we added five server pools, and each

one can handle a specific type of services such as HTTP, FTP, Video stream service.

5.1.3.2 Open VSwitch

OVS is an open source software layer switch that supports OF

and OVSDB management protocol. It is a virtual switch that can be placed in physical

server or VM. In this experiment, we configured OVS to manage the hosts inside

OpenStack by configuring plug-in. All hosts and the controller are connected to OVS

interfaces to direct traffic among hosts. The range of IP addresses is 192.168.0.1 -

192.168.0.30.

5.1.3.3 OpenStack:

We implement OpenStack Grizzly that was recommended by Floodlight project

in our experiment with Neutron v2.0.

5.1.3.4 SBLB Application modules and performance metrics

We install Floodlight controller in separate VM using Oracle VirtualBox to make

the controller connect to OpenStack. We configure the following steps:

 Configure DevStack script with Neutron Plugin to install OpenStack Grizzly

 Configure the Floodlight resource file that is located in

(src/main/resources/neutron.properties)

 Install OpenVswitch and configure it for running on each of the nova-compute

nodes.

5.2 Data collection method

The results of the experiments are obtained via testing the SBLB mechanism in both

simulation environments that are implemented in Mininet and in a real environment that

is carried out in OpenStack. Moreover, we compared between different type of requests

by dividing the requests into two types; compute request and data request to study the

Univ
ers

ity
 of

 M
ala

ya

https://www.sdxcentral.com/cloud/open-source/definitions/what-is-ovsdb/

 119

impact of user’s request on our proposed mechanism. In addition, we conducted another

experiment in a conventional network using HAproxy, load balancer software, for the

comparison purpose.

The above-mentioned experiments are carried out in two different scenarios. In the

first scenario, we used homogeneous server (hosts with the same specification) while in

the second scenario we implemented on theheterogeneous server (hosts with different

specification and various link capacity). These scenarios aim to test and evaluate the

proposed mechanism in different environments.

5.3 Statistical model

As mentioned earlier in the previous section, the results are obtained by conducting

several experiments in different scenarios. The data is collected for all the benchmark

tools that are used in this study in 15 experiments. Each experiment is tested 15 times to

evaluate the metrics based on sample statistic.

In the data sample, the measurement of the central tendency is calculated based

on the sample mean (-X) that can achieve a better point estimate of the population

compared to median or mode. A sample includes a range of intervals determined by the

specified confidence level, a statistic, and a margin of error. The level of confidence is

the probability that the metric is truly captured by the confidence range. The common

Confidence Levels (CL) are 90%, 95%, and 99%. According to the sample central limit

theorem, the sample size that is less than 30 (n>= 30), then approximately 95% of the

sample means within 1.96 standard deviations should be used. To calculate the margin

of error in the sample, we used equation 5.1 below:

M = 𝑍 ∗ (
𝜕

√𝑛
)5.1

Where M is the margin of error, and Z is value based on a percentage of the confidence

interval and 𝜕 is standard deviation, and N is the number of samples. The confidence

Univ
ers

ity
 of

 M
ala

ya

 120

interval estimates for each sample mean (X) of the primary data are calculated with a

95% confidence interval using the following equation.

𝜇 = 𝑋 ± 𝑍 (
𝜕

√𝑛
)5.2

We also performed paired sample T-test to ensure that there is a significant difference

between the results when we compare SBLB mechanism with existing solutions. The

question 5.3 is used to calculate the T value and P value.

 5.3

 5.4

Correlation analysis between the simulation and real environment results are also

calculated based on equation 5.4. The following section presents the data collected

during different experiments for the evaluation of the SLBM as applied to the different

environments.

5.4 Performance Analysis

In this section, we discuss the performance analysis of SBLB mechanism. First, we

validate the results that are obtained from the simulation and real environments. In

addition, we analyze the impact of data and compute requests in the homogeneous and

heterogeneous environments. Then, we compare SBLB with HAproxy software load

balance in the homogeneous and heterogeneous environments. Lastly, SBLB is

compared with round-robin.

Univ
ers

ity
 of

 M
ala

ya

 121

5.4.1 Data Collected for SBLB mechanism that is carried out in simulation and

real environments

We conducted the experiments in two different environments; simulation

environment that is carried out in Mininet and real cloud environment that is

implemented in theOpenStack environment. This section verifies the correctness of

results obtained from these two environments during the execution of SBLB modules.

The first step is to collect the simulation data; then, we compare the data of the

simulation, under the same conditions with data that is generated when using real

OpenStack environment. Then, we validate the results by employing statistical analysis

tools for the statistical validation; in this case, we use a confidence interval and Pearson

coefficient. Average response time, reply time and request per second are the metrics that

are used for validating the results. The topology used in this experiment includes five

pools with different types of services, each pool connected with OF switch and one

switch connected to Floodlight controller. In both environments, the controller is

installed on a separate computer that manages the network remotely (Remote

Controller). We create a simple script that collects the results in runtime and saves them

in CSV file. To prevent requests from queuing and being delayed, we increased the

timeout to 15 seconds in between each sample.15 data samples are used for each

experiment with an incremental request that is started by 50 requests per second up to 190

requests. In Mininet, it is noticed that when the client sends more than 190 requests, the

dropped packet is increased and few packets are processed. This is due to the limitation of

the buffer of sending and receiving data. Therefore, the maximum number of requests is

190 requests in our experiment

Table 5.3 Average response time of Mininet and OpenStack

Number of requests Mininet OpenStack

50 4.12 4.88

60 4.64 5.00

Univ
ers

ity
 of

 M
ala

ya

 122

70 4.88 5.28

80 4.94 5.57

90 5.07 5.69

100 5.15 5.91

110 5.21 6.00

120 5.24 6.04

130 5.32 6.26

140 5.50 6.34

150 5.70 6.48

160 5.91 6.64

170 6.20 6.71

180 6.80 6.74

190 6.90 6.79

Mean 5.438782 6.0226376

SD 0.762228 0.6307562

Correlation Coefficient 0.913830188

CI 0.385734 0.3192008

Table 5.2 shows the average response time in Mininet and OpenStack

environment. The first column of the table represents a number of requests that are sent

in each experiment, while the second and third columns show the average response

time. As we can see, there is no big difference between the two results. The R value of

the correlation coefficient (cc) shows 0.91 which means there is a strong positive

correlation between the two data traces.

Table 55.4 Reply Time of Mininet and OpenStack

Number of requests Mininet OpenStack

50 2.81 2.72

60 3.26 2.87

70 3.30 2.88

80 3.35 2.89

90 3.41 3.02

100 3.45 3.58

110 3.46 3.65

120 3.60 3.81

130 3.63 3.93

140 3.65 4.12

150 3.93 4.22

160 4.41 4.23

Univ
ers

ity
 of

 M
ala

ya

 123

170 4.57 4.24

180 4.62 4.58

190 4.67 4.60

Mean 3.742052 3.69385

SD 0.57073 0.67005

Correlation Coefficient 0.890022617

CI 0.288824 0.33909

Table 5.3 illustrates the reply time through Mininet and OpenStack. In the

bottom of the table, the average reply time of the Mininet and OpenStack are 3.7 and

3.6respectively. This small amount of difference validates the results obtained from

both experiments. We notice that after 160 requests, Mininet environment recorded high

reply time compared with OpenStack environment because of the buffer of the receiver.

For example, in a real environment, each host has its own buffer that has a queue that

stores the incoming requests. Conversely, in asimulation environment, this buffer

cannot handle all incoming requests because of its buffer's limitation.

Table 5.5 Request per Second of Mininet and OpenStack

Number of requests Mininet OpenStack

1000 175.48 175.20

1000 140.69 140.80

1000 172.73 173.20

1000 159.08 160.10

1000 170.58 171.20

1000 180.01 182.20

1000 179.74 180.40

1000 173.61 173.50

1000 167.07 167.20

1000 160.31 159.20

1000 165.74 165.10

1000 131.51 130.00

1000 130.82 132.10

1000 146.04 146.20

1000 130.44 130.10

Mean 158.923 159.10

SD 18.2446 18.692

Univ
ers

ity
 of

 M
ala

ya

 124

Correlation Coefficient 0.998854644

CI 9.23286 9.4593

Table 5.4 shows the number of requests that can be handled per second in both

simulation and real environment. In this experiment, we send 1000 requests in each

sample trace and record the RPS. As we can see, The R value of the correlation

coefficient (cc) shows0.99, which indicates strong positive correlation.

5.4.2 Data Collected to analysis data and compute request in homogeneous and

heterogeneous environments

In this data collection, the comparison between the data request and compute

request in a homogeneous environment is conducted. The compute request is relatively

a small data with high intensity. This type of requests does not need much bandwidth

and thus are characterized by fast CPU processing time. One example of this request is

HTTP requests whereas HTTP GET must be returned as quickly as possible and should

concern only on the capacity of the host, especially CPU. As we mentioned in chapter

4, the calculation of the host's load is implemented based on the type of the request. In

the caseof the compute request, the W value of the CPU and RAM is large compared to

the W value of the bandwidth.

The data request is a larger amount of data that requires some computation work.

It represents real-time audio/video services or FTP file in which a big size file is to be

transferred. One example of this type of the request is downloading files using

protocols such as FTP. This type of request should be concerned on the bandwidth of

the links. Therefore, the weightvalue is large.

In this experiment, the compute request includes simple HTTP GET while data

request consists of FTP with the size of 500MB, real-time audio and video. In the first

test, we send only data request in a heterogeneous environment and record the response

Univ
ers

ity
 of

 M
ala

ya

 125

time, reply time and request per second. We carried out the same test in a heterogeneous

environment. In turn, these two tests are applied to data request as well.

Table 5.6The average response time of the compute and data request in homogeneous

environment using

Number of requests Data request in SBLB Compute request in SBLB

500 6.33 4.21

600 6.34 4.22

700 6.40 4.41

800 6.63 4.50

900 6.70 4.55

1000 6.85 4.55

1100 6.99 4.67

1200 7.02 4.69

1300 7.14 4.70

1400 7.25 4.86

1500 7.40 4.87

1600 7.59 4.88

1700 7.60 4.92

1800 7.69 4.96

1900 7.73 5.07

Mean 7.04 4.67

SD 0.49538 0.26262

T-test 16.4131

CI 0.25069 0.1329

P Value 0.00001

In Table 5.5, the average response time of the compute and data request are

illustrated. The compute request shows less ART compared to a data request in all 15

samples traces. According to T test table, thecritical value of the samples is 2.08

(appendix A). The calculated t exceeds the critical value (16.4131>2.08), and so this

means that the two results are significantly different.

Univ
ers

ity
 of

 M
ala

ya

 126

Table 5.7Reply time of the data and compute request in homogenous environment

Number of requests Data request in SBLB Compute request in SBLB

500 3.11 2.03

600 3.15 2.05

700 3.27 2.23

800 3.29 2.26

900 3.30 2.30

1000 3.50 2.61

1100 3.77 2.67

1200 3.80 2.71

1300 3.85 3.01

1400 3.91 3.26

1500 3.92 3.27

1600 3.92 3.33

1700 4.03 3.40

1800 4.05 3.51

1900 4.06 3.60

Mean 3.66 2.82

SD 0.35119 0.5564

T-test 4.9794

CI 0.17773 0.28157

P Value 0.000029

The reply time (RT) of the data and compute request are presented in Table 5.6.

The Mean shows 25.9% difference between data and computes request. The RT of the

data request ranges between 3.11 to 4.06 second for 500 and 1900 request respectively.

The statistical analysis shows the significant difference, whereas T value is

(4.9794>2.064) and P value shows 0.000029 < 0.05

Univ
ers

ity
 of

 M
ala

ya

 127

Table 5.8Request per second of the data and compute request in homogenous

environment

Number of requests Data request in SBLB Compute request in SBLB

1000 148.3 168.8

1000 110.9 129.1

1000 146.6 166.1

1000 116.5 136.5

1000 142.4 161.9

1000 133.8 152.9

1000 107.9 128.5

1000 126.9 146.8

1000 131.6 150.7

1000 134.8 154.9

1000 155.6 174.7

1000 138.1 157.4

1000 151.6 170.6

1000 156.0 174.9

1000 152.9 173.2

Mean 136.9 156.5

SD 15.90 15.80

T-test 3.3804

CI 8.02119 7.9957

P Value 0.002148

The request per second (RPS) for both data and compute requests are presented

in Table 5.7. T value shows 3.3804 which is a value less than the critical value (2.048).

This means that there are significant differences between the two values. In addition, P

value is 0.002148 < 0.05.

Table 5.8 and 5.9 present the average response time and reply time of data and

compute requests in aheterogeneous environment. The impact of the data request on

average response time clearly appears where the mean of the 15 experiments shows 6.10

while compute request shows only 3.60. Similarly, the reply time in a heterogeneous

environment of the data and compute requests shows 4.83 and 3.24 respectively. The T-

Testshows a significance difference between data and compute requests in

heterogeneous environment

Univ
ers

ity
 of

 M
ala

ya

 128

Table 5.9The average response time of the compute and data requests in heterogeneous

environment

Number of requests Data request in SBLB Compute request in SBLB

500 5.25 3.04

600 5.38 3.05

700 5.47 3.07

800 5.58 3.14

900 5.58 3.39

1000 5.96 3.51

1100 5.98 3.59

1200 6.08 3.70

1300 6.17 3.70

1400 6.18 3.71

1500 6.55 3.75

1600 6.60 3.96

1700 6.68 4.08

1800 6.70 4.09

1900 7.27 4.17

Mean 6.10 3.60

SD 0.58 0.39

T Test 13.802

CI 0.29 0.20

P Value 0.00001

Univ
ers

ity
 of

 M
ala

ya

 129

Table 5.10The reply time of the compute and data requests in heterogeneous

environment

Number of requests Data request in SBLB Compute request in SBLB

500 3.98 2.42

600 4.05 2.55

700 4.23 2.59

800 4.32 2.63

900 4.51 2.82

1000 4.52 2.97

1100 4.76 2.97

1200 4.80 3.20

1300 4.95 3.27

1400 4.96 3.41

1500 5.12 3.82

1600 5.33 3.89

1700 5.45 3.96

1800 5.69 4.01

1900 5.75 4.07

Mean 4.83 3.24

SD 0.56658 0.59107

T Test 7.5324

CI 0.28673 0.29912

P value 0.00001

Table 5.10 shows the request per second of the compute and data requests in a

heterogeneous environment. The average RPS of the data request is 158.3 while

compute request is 134.0. The difference between them is almost 24 request per second.

The T-testproves the significant difference of the data and compute requests in a

heterogeneous environment.

 Univ
ers

ity
 of

 M
ala

ya

 130

Table 5.11Request per second of the compute and data requests in theheterogeneous

environment.

Number of requests Data request in SBLB Compute request in SBLB

1000 136.5 161.3

1000 124.4 149.6

1000 152.0 175.2

1000 152.4 173.5

1000 113.6 139.5

1000 128.9 151.3

1000 128.2 152.8

1000 135.9 161.6

1000 132.9 154.6

1000 144.8 170.1

1000 102.4 127.6

1000 139.9 165.8

1000 151.9 175.8

1000 114.7 139.3

1000 151.6 176.5

Mean 134.0 158.3

SD 15.6 15.11

T-test 4.3369

CI 7.87395 7.64413

P value 0.000169

5.4.3 Data Collection for the comparison of SBLB mechanism and HAproxy in

homogeneous and heterogeneous environments

In this section, we compare SBLB with theHAproxy load balancer. HAproxy is

an open source software load balancer that is widely used to provide TCP/HTTP load

balancing. In this experiment, HAproxy is configured with five pools; each pool

includes five hosts. Hosts are configured to run on the OpenStack, and HAproxy is

installed in a separate computer. Three metrics are used to measure the results namely;

Average response time, reply time and request per second.

Univ
ers

ity
 of

 M
ala

ya

 131

Table 5.12The average response time in SBLB mechanism and HAproxy load balancer

in a homogeneous environment.

Number of requests SBLB HAproxy

500 4.88 5.95

600 5.00 6.06

700 5.28 6.10

800 5.57 6.11

900 5.69 6.22

1000 5.91 6.22

1100 6.00 6.23

1200 6.04 6.33

1300 6.26 6.37

1400 6.34 6.57

1500 6.48 6.62

1600 6.64 6.73

1700 6.71 6.95

1800 6.74 7.00

1900 6.79 7.17

Mean 6.02 6.44

SD 0.63076 0.37816

T Test 2.2129

CI 0.3192 0.19137

P Value 0.035198

The average response time (ART) is the first indicator and provides us with an

idea about the performance of the SBLB when we compare it with other solutions.

Thus, we start with the presentation of the data for the ART in table 5.11. In the

benchmark, the values of other parameters are set as follows; the connection rate is set

to 100 per second, and the session is configured to be 10 sessions that represent the

number of concurrent users. The interval time between each sample is set to five

seconds to ensure that the responses are received by the users. The user’s requests that

are sent from different clients that contain 50% of compute request and 50% of thedata

request. These requests include different services such as HTTP, FTP, and video stream.

For validating the results, a T-test is used, and the P value is calculated. The T-test

shows 2.2129 that indicates a significant difference between the two values, and we

found that the P value is 0.00001 <0.05.

Univ
ers

ity
 of

 M
ala

ya

 132

Table 5.13The Reply Time in SBLB and HAproxy in homogeneous environment

Number of requests SBLB HAproxy

500 2.72 3.01

600 2.87 3.20

700 2.88 3.43

800 2.89 3.43

900 3.02 3.45

1000 3.58 3.52

1100 3.65 3.59

1200 3.81 3.78

1300 3.93 3.79

1400 4.12 4.04

1500 4.22 4.12

1600 4.23 4.27

1700 4.24 4.35

1800 4.58 4.73

1900 4.68 4.76

Mean 3.69 3.83

SD 0.67005 0.53135

T Test 0.619

CI 0.33909 0.2689

P Value 0.540873

Table 5.12 shows the Reply Time (RT) of SBLB and HApoxy for different types of

request. The two experiments are carried out under the same conditions. The number of

sessions for the experiments was set as (10, 5, 2). The ten indicates the number of

sessions and each session consists of five calls that are spaced out by two seconds. The

collected data shows that the RT increases as the number of requests increase. This is

because the connection rate is increased by 100 requests in each experiment. The

statistical analysis shows that there is no significant difference in terms of the RT

between the SBLB and HAproxy in thehomogeneous environment through all the

fifteen experiments. This result indicates that the performance of HAproxy and SBLB

mechanism in thehomogenous environment are almost the same.

Univ
ers

ity
 of

 M
ala

ya

 133

Table 5.14 Request per Second (RPS) of SBLB and HAproxy load balancerin

homogeneous environment

Number of requests SBLB HAproxy

1000 175.5 169.2

1000 140.7 133.2

1000 172.7 161.2

1000 159.1 151.2

1000 170.6 162.3

1000 180.0 172.4

1000 179.7 172.2

1000 173.6 170.2

1000 167.1 159.0

1000 160.3 155.4

1000 165.7 161.2

1000 131.5 126.3

1000 130.8 125.3

1000 146.0 140.2

1000 130.4 126.0

Mean 158.9 152.353

SD 18.2446 17.5825

T-test 1.0026

CI 9.23286 8.89783

P Value 0.32465

Table 5.13 presents the data collection for SBLB and HAproxy in terms of RPS.

The request per second indicates the throughput of the load balance system to handle a

certain request per second. Based on the statistical analysis, we found that there isno

significant difference between SBLB and HAproxy in ahomogeneous environment. This

is due to the factors that affect RPS such as the capacity of the host, and the link

utilization is not considered in this experiment.This experiment is conducted in

aheterogeneous environment for SBLB and HAproxy to achieve realistic and

representative results in our evaluation. The links are configured with 100 Mb/s of

throughput while others only have 50 Mb/s. The same is used for the latency that ranges

from 10ms to 20 ms. In addition, the CPU and the RAM of the hosts vary. For example,

some hosts are configured with 2GHz and 1024 RAM, while others are set to 1GHz and

512 RAM. We used the same metrics that were implemented in the homogeneous

Univ
ers

ity
 of

 M
ala

ya

 134

environment to show the differences between SBLB and HAproxy in both

environments.

Table 5.15The average response time of SBLB and HAproxy in heterogeneous

environment

Number of requests SBLB HAproxy

500 4.91 6.83

600 5.06 7.58

700 5.19 7.64

800 5.24 7.88

900 5.35 7.96

1000 5.35 8.15

1100 5.36 8.66

1200 5.50 8.77

1300 5.51 8.84

1400 5.77 8.89

1500 5.85 8.96

1600 6.01 9.03

1700 6.10 9.17

1800 6.38 9.38

1900 6.45 9.55

Mean 5.60 8.49

SD 0.47018 0.77329

T-test 12.3459

CI 0.23794 0.39133

P Value 0.00001

In table 5.14, the average response time of SBLB and HAproxy in

aheterogeneous environment for 15 experiments are presented. The statistical

information at the bottom shows that the value of the T-test exceeds the critical value

(12.3459>2.069). So, the means are significantly different, and P value is (0.00001 <

0.05)

Univ
ers

ity
 of

 M
ala

ya

 135

Table 5.16The reply time of SBLB and HAproxy in heterogeneous environment

Number of requests SBLB HAproxy

500 2.55 5.16

600 2.57 5.34

700 2.76 5.80

800 3.57 6.02

900 3.81 6.12

1000 4.04 6.29

1100 4.17 6.31

1200 4.21 6.45

1300 4.24 6.62

1400 4.30 6.62

1500 4.35 6.63

1600 4.42 6.70

1700 4.48 6.90

1800 4.55 6.94

1900 4.62 7.01

Mean 3.91 6.33

SD 0.71836 0.55634

T-test 10.3036

CI 0.36353 0.28154

P Value 0.00001

In terms of reply time (RT), Table 5.15 presents the data collection for SBLB

and HAproxy in the heterogeneous environment. The mean shows 47.2% difference in

between two values. The absolute value of the calculated T test exceeds the critical

value (10.3069>2.056) which proves there is a significant difference between the two

results.

 Univ
ers

ity
 of

 M
ala

ya

 136

Table 5.17 Request per second of the SBLB mechanism and HAproxy in heterogeneous

environment

Number of requests SBLB HAproxy

1000 143.0 129.3

1000 158.3 142.2

1000 162.4 148.4

1000 154.4 141.1

1000 170.2 155.8

1000 153.7 140.3

1000 156.5 140.7

1000 172.0 156.3

1000 140.9 127.5

1000 133.6 117.5

1000 134.8 119.7

1000 179.8 166.7

1000 177.5 164.9

1000 162.2 147.5

1000 130.7 115.3

Mean 155.3 140.9

SD 15.9 16.4

T-test 2.44639

CI 8.07261 8.30505

P Value 0.010484

Table 5.16 shows the request per second of the SBLB and HAproxy in the

heterogeneous environment. The T value shows 10.3069 which is a value greater than

the critical value (2.056). This means that there are significant differences between the

two values. In addition, P value is 0.010484 < 0.05.

5.4.4 Data Collected for performing comparison of SBLB and RRA in

homogeneous and heterogeneous environments

In this section, we compare the performance of SBLB and Round-Robin

Algorithm (RRA) in homogeneous and heterogeneous environments. RRA is load

balance algorithm that is widely used to distribute the load of the server. It divides the

incoming traffic in between hosts in a round robin manner. In fact, it is suitable for the

homogeneous environments with a large number of hosts (P. Wang et al., 2011). In

Univ
ers

ity
 of

 M
ala

ya

 137

these experiments, we used five pools with adifferent type of services, and each pool

consists of five hosts. Three parameters are used in this comparison; average response

time, reply time and request per second. The following tables show the results of SBLB

and RRA with different number and type of requests.

Table 5.18Average response time of the SBLB and RRA in homogeneous environment

Number of requests SBLB RRA

500 4.88 7.21

600 5.00 7.30

700 5.28 7.38

800 5.57 7.57

900 5.69 7.67

1000 5.91 7.92

1100 6.00 8.01

1200 6.04 8.29

1300 6.26 8.35

1400 6.34 9.14

1500 6.48 9.15

1600 6.64 9.29

1700 6.71 9.42

1800 6.74 9.74

1900 6.79 10.47

Mean 6.02 8.46

SD 0.63076 1.009368

T-test 7.9403

CI 0.3192 0.5108013

P value 0.00001

Univ
ers

ity
 of

 M
ala

ya

 138

Table 5.17 presents the results of average response time (in seconds) of the SBLB

and RR algorithms in the homogeneous environment for 15 different experiments. The

results show that the superior performance of the SBLB in the 15 experiments. The

mean of ART for the SBLB is 6.02 while the mean of ART for the RRA is 8.46. Such a

significant difference in between the two values indicates that SBLB performs better in

the homogeneous environment as compared to RRA. The T value shows 7.9403 which

is a value greater than the critical value (2.145). This means that there is a significant

difference in between the two results.

Table 5.19 Reply time of the SBLB and RRA in homogeneous environment

Number of requests SBLB RRA

500 2.72 5.26

600 2.87 5.52

700 2.88 6.03

800 2.89 6.27

900 3.02 6.50

1000 3.58 6.79

1100 3.65 7.45

1200 3.81 7.56

1300 3.93 8.14

1400 4.12 8.21

1500 4.22 8.48

1600 4.23 8.50

1700 4.24 8.63

1800 4.58 9.35

1900 4.68 9.39

Mean 3.69 7.47

SD 0.67005 1.343103161

T-test 21.0588

CI 0.33909 0.679691491

P value 0.00001

Table 5.18 shows the results of the reply time (in seconds) of the SBLB and RRA

in the homogeneous environment for all 15 different experiments. Thestatistical

information in the bottom of the table shows that there is a significant difference of

reply time over the 15 experiments. The means of the SBLB and RRA are 3.69 and 7.47

Univ
ers

ity
 of

 M
ala

ya

 139

respectively. It is observed that the value of the T-test exceeds the critical value

(9.7481>2.145), and P value is (0.00001 < 0.05).

Table 5.20 Request per second of the SBLB and RRA in homogeneous

environment

Number of requests SBLB RRA

1000 190.7 175.5

1000 155.6 140.7

1000 185.9 172.7

1000 172.5 159.1

1000 186.8 170.6

1000 192.3 180.0

1000 191.4 179.7

1000 186.0 173.6

1000 180.1 167.1

1000 173.8 160.3

1000 179.3 165.7

1000 145.4 131.5

1000 145.1 130.8

1000 160.3 146.0

1000 145.2 130.4

Mean 172.7 158.9

SD 17.7646 18.24457542

T-test 2.0957

CI 8.98994 9.232859409

P value 0.045272

Univ
ers

ity
 of

 M
ala

ya

 140

Table 5.19 presents the results of the request per second (in number) of the

SBLB and RRA in the homogeneous environment for 15 different experiments. Based

on the statistical analysis, we found that there is asignificant difference in between

SBLB and HAproxy in the homogeneous environment. Such a difference clearly

appears in the means attribute. For example, RRA shows 158.9 RPS while SBLB

algorithm shows 172.7 RPS. The difference in between the two values is almost 14

requests per second. Moreover, the value of T-test exceeds the critical value (2.0957 >

2.0145), and P value is (0.00001< 0.05).

Table 5.21 Average response time of the SBLB and RRA in heterogeneous

environment

Number of requests SBLB RRA

500 4.91 9.23

600 5.06 9.48

700 5.19 9.72

800 5.24 9.76

900 5.35 10.01

1000 5.35 10.06

1100 5.36 10.86

1200 5.50 10.98

1300 5.51 11.05

1400 5.77 12.00

1500 5.85 12.21

1600 6.01 12.48

1700 6.10 12.58

1800 6.38 12.74

1900 6.45 12.95

Mean 5.60 11.07

SD 0.47018 1.3188889

T-test 15.1187

CI 0.23794 0.6674376

P value 0.00001

Table 5.20 shows the results of average response time (in second) of the SBLB

and RRA in the heterogeneous environment for 15 different experiments. According to

the statistical information, the mean attribute of ART for SBLB algorithm is 5.60, while

Univ
ers

ity
 of

 M
ala

ya

 141

the mean attribute of ART for RRA is 11.07. In these experiments, the critical value is

2.145 (appendix A). The absolute value of the calculated T exceeds the critical value

(15.118 > 2.145), and so, the means are significantly different.

Table 5.22 Reply time of the SBLB and RRA in heterogeneous environment

Number of requests SBLB RRA

500 2.55 7.12

600 2.57 7.73

700 2.76 7.89

800 3.57 8.32

900 3.81 8.32

1000 4.04 8.35

1100 4.17 8.39

1200 4.21 8.47

1300 4.24 8.81

1400 4.30 8.98

1500 4.35 8.98

1600 4.42 9.15

1700 4.48 9.30

1800 4.55 9.32

1900 4.62 9.50

Mean 3.91 8.58

SD 0.71836 0.6656832

T-test 18.4739

CI 0.36353 0.336876

P value 0.00001

Table 5.21 depicts the results of the reply time (in seconds) of the SBLB and

RRA in the heterogeneous environment for 15 different experiments. In the bottom of

the table, the statistical analysis presents the means of RT of SBLB that shows 3.91.

The mean of RT of RRA shows 8.58. Such a significant difference in between the two

means is presented by a T value that exceeds the critical value (18.493>2.145),and a P

value is (0.00001 < 0.05).

Univ
ers

ity
 of

 M
ala

ya

 142

Table 5.23 Request per second of the SBLB and RRA in heterogeneous

environment

Number of requests SBLB RRA

1000 173.2 143.0

1000 188.9 158.3

1000 194.2 162.4

1000 186.3 154.4

1000 202.5 170.2

1000 186.0 153.7

1000 188.9 156.5

1000 204.7 172.0

1000 173.7 140.9

1000 166.3 133.6

1000 167.9 134.8

1000 212.9 179.8

1000 210.7 177.5

1000 196.5 162.2

1000 165.4 130.7

Mean 187.9 155.3

SD 15.9 16.0

T-test 5.591

CI 8.06016 8.0726101

P value 0.00001

Table 5.22 shows the results of the request per second (in number) of the SBLB and

RRA in the heterogeneous environment for 15 different experiments. The average

request per second of the SBLB algorithm is 187.9 while RRA is 155.3. The T-test

value illustrates the significant difference in between the two results where P value is

less than (0.05).

5.5 Conclusion

This chapter presented the data collection to evaluate the proposed SBLB based on

three parameters: average response time, reply time and request per second. The results

are collected by sampling the evaluation parameters with 15 different experiments. The

data collection is carried out by sampling the parameters considering two factors; (1)

Type of the request (data or compute) (2) the number of requests (100 to 1900 requests).

Univ
ers

ity
 of

 M
ala

ya

 143

The SBLB mechanism is tested on the real environments, and the benchmarking is used

to evaluate the mechanism in homogeneous and heterogeneous environments. Multiple

VMs were implemented in one physical machine to represent the cloud environment.

We started by explaining the experimental setup as well as components of the

experiments. The data collection methods and the statistical model that were used to

evaluate the proposed load balance mechanism were presented in this chapter. The

results are presented in four steps. In the first step, we evaluated the simulation results

by comparing it with the real environment. This result showed that the simulation and

real results were closely matched. In the second step, we illustrated the results that

showed the impact of the data and compute requests on SBLB mechanism. In the third

step, we showed the results that were used for performing an evaluation of SBLB

mechanism by comparing the proposed mechanism with HAproxy load balancers.

Lastly, the data collection that compared the SBLB and Round-Robin algorithms were

presented in this chapter.

It is concluded that SBLB mechanism leveraged the load balance service in the

cloud and successfully implemented dynamic load balance based on the type of service.

Univ
ers

ity
 of

 M
ala

ya

 144

CHAPTER 6: CHAPTER RESULTS AND DISCUSSION

This chapter evaluates the performance of SBLB mechanism and compares it with

other load balance solution. Three parameters namely Average Response Time ART,

Reply Time RT, and Request Per Second RPS are used to evaluate the performance of

SBLB. These parameters are related to our main objective that aims to minimize the

response time and maximize the throughput.

First, we analyze the result that was collected from Mininet, the SDN simulation

tools, and then, the real test was conducted in OpenStack, a real cloud computing

environment. The result was analyzed based on the data and compute request to show

the impact of SBLB. In these experiments, SBLB modules are run in the Floodlight

controller, and the requests are sent to the hosts. The three parameters namely ART, RT,

and RPS are captured. The chapter also focuses on the comparison of the SBLB

mechanism results with existing software load balance application such as HAproxy.

Besides, SBLB algorithm is also compared with Round Robin algorithm. All the

experiments mentioned above are carried out in homogeneous and heterogeneous

environments.

This chapter includes five sections. Section 6.1 presents the analysis of SBLB

mechanism in the simulation and real environments. The analysis of the data and

compute request are presented in section 6.2. The comparison of SBLB with Round-

Robin Algorithm(RRA) is discussed in section 6.3 while the comparison of SBLB with

HAproxy load balancer software is presented in section 6.4. Section 6.5 concludes the

chapter by highlighting the significance of SBLB mechanism.

6.1. Analysis of SBLB mechanism in simulation and real environment

This section analyses the results obtained from the simulation environment that is

implemented in Mininet, and real cloud environment that was carried out in OpenStack.

The results are presented in Table 5.2, 5.3 and 5.4 in the previous chapter. In these

Univ
ers

ity
 of

 M
ala

ya

 145

experiments, a few numbers of requests are sent in each data trace. This is due to the

limit of buffer for sending and receiving data when we use enhanced HTTPerf.

Therefore, the maximum number of the requests is 190 request per second.

We configure the hosts to use a different type of services such as HTTP,

FTP,and video streaming service. EnhancingHTTPerf is used to generate the traffic.

This tool can generate various types of request to measure the performance of the SBLB

in both environments. We discover that the relationship between the number of requests

and the ART and RT are exactly linear. Thus, when we increase the number of

requests, these two parameters are increased as well.

Figure 6.1 presents the comparison of average response time through simulation

and real environments. In the figure, the y-axis shows the ART that is measured in

seconds and the x-axis represents the number of requests of the six different data traces.

The results of the Mininet for all six data traces are closer to the results obtained from

the OpenStack. The difference in ART for Mininet and OpenStack are 0.63s, 0.62s, and

0.76sin the last three data traces. This small amount of difference validates the results

collected from the simulation when compared to the results of real environments.

Univ
ers

ity
 of

 M
ala

ya

 146

50 60 70 80 90 100

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
v
e

ra
g

e
 r

e
s
p

n
s
e

 t
im

e
 (

S
e

c
o
n

d
)

Number of data and compute requests

 Mininet

 OpenStack

Figure 6.1 ART of the Mininet and OpenStack for SBLB.

50 60 70 80 90 100

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
ep

ly
 ti

m
e

(S
ec

on
d)

Number of data and compute request

 Mininet

 OpenStack

Figure 6.2 RT of the Mininet and OpenStack SBLB

Figure 6.2 shows the reply time of Mininet as compared to OpenStack for

sixsamples trace. We can note that two results are close to each other. The RT of both

environments is presented in between 2.5s and 3.5s. For example, the mean in Mininet

and OpenStack is 3.6s and 3.7s, with the difference of 0.10s. This small amount of

difference validates the simulation results with the ones collected from real

Univ
ers

ity
 of

 M
ala

ya

 147

environments. In 100 requests, Mininet shows higher RT compared to OpenStack; this

is due to the limit of virtual host’s capacity that is used in Mininet.

Figure 6.3, presents the request per second for Mininet and OpenStack for six

samples trace. The aim of this experiment is to calculate the number of requests that

both environments can achieve per second. We divided the number of requests 1000 by

the total time of the experiments. The average difference between the simulation and

real environment is two requests per second in all data trace. This small amount of

difference validates the simulation results with the ones collected from real

environments.

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Trace 6

0

20

40

60

80

100

120

140

160

180

200

R
e
q
u
e
s
t
p
e
r

s
e
c
o
n
d

Number of request (1000 requests per trace)

 Mininet

 OpenStack

Figure 6.3 RPS of the Mininet and OpenStack for SBLB.

6.2. Collection data of compute and data request in SBLB mechanism

In this section, we analyze the ART, RT,and RPS for data and compute request in

homogeneous and heterogeneous environments. The aim of this analysis is to compare

the different type of request running in thehomogeneous and heterogeneous

environment on SBLB mechanism.

Univ
ers

ity
 of

 M
ala

ya

 148

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

A
v
e

ra
g

e
 R

e
s
p
o

n
s
e

 T
im

e
 (

S
e

c
o
n

d
)

Number of data and compute request

 Data

 Compute

Figure 6.4 ART of data and compute request in thehomogeneous environment for

SBLB.

Figure 6.4 presents average response time of data and compute request in the

heterogeneous environment. The y-axis shows the ART in seconds and x-axis

represents the number of the request. The ART of the compute request ranges from 4.21

to 5.07 seconds, while in the data request, the ART ranges from 6.33 to 7.73 seconds.

The highest value of the ART of the compute requests is 4.74s that is lesser thandata

request by 2.39s. This big difference indicates that data request has a great impact on

SBLB. Because of data request consumes more resources and the hosts take more time

to process the request.

Univ
ers

ity
 of

 M
ala

ya

 149

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

R
e

p
ly

 T
im

e
 (

S
e

c
o
n

d
)

Number of data and compute request

 Data

 Compute

Figure 6.5 RT of data and compute request in thehomogeneous environment for SBLB.

Figure 6.5 shows the reply time of data and compute request in the

homogeneous environment. The x-axis represents the number of different requests, and

they-axis represents the reply time per second. As depicted from Figure 6.5, when the

compute request is 1400, the RT is 3.26 second. The RT for 700 data request achieved

almost the same value which is 3.27 second. This value indicates that compute request

in SBLB mechanism can achieve twice the number of request compared to the data

request. In addition, we notice that RT of the compute request is increased rapidly in the

homogeneous environment. For example, with 500 requests, the RT is 2.03 and reaches

3.26 in 1400 requests. In turn, RT of the data request starts from 3.11 up to 3.26 in 1400

requests. This is because of the default idle-time-out of the flow table in Floodlight is

set to five seconds. This means, after five seconds if there is no flow to be matched, the

flow entry will be removed automatically. The data requests are considered as Elephant

Flow that remains in the flow table. But, the compute requests are Normal Flow that is

removed from the flow table after 5 seconds.

Univ
ers

ity
 of

 M
ala

ya

 150

Trace1 Trace2 Trace3 Trace4 Trace5 Trace6

0

20

40

60

80

100

120

140

160

180

re
q

u
e

s
t
p

e
r

s
e
c
o

n
d

Number of request (1000 requests per trace)

 Data

 Compute

Figure 6.6 RPS of data and compute request in thehomogeneous environment for

SBLB.

Figure 6.6 shows the request per second of data and compute request using

SBLB mechanism in the homogeneous environment. As depicted from the graph, the

RPS of the data request is less than the compute request. For example, in the first and

second experiments, the compute request shows 168.8 and 129.1 while the data request

shows only 148.3 and 110.9. Moreover, the average of the RPS in data request is 136.9

while the average of RPS in compute request is 156.5. Typically, compute request can

produce more request per second compared to the data request. The results indicate that

different type of requests has agreat impact on RPS in the homogeneous environment. Univ
ers

ity
 of

 M
ala

ya

 151

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

A
v
e

ra
g

e
 r

e
s
p

o
n

s
e
 t

im
e

Number of data and compute request

 Data

 Compute

Figure 6.7 ART of data and compute request in aheterogeneous environment for SBLB.

Figure 6.7 presents the average response time of the data and compute request

based on various numbers of the request in the heterogeneousenvironment. The graph

shows that the ART increases when the number of requestsincreases. For instance, when

the client sends 500 requests, the ART is 5.25 seconds, with the 1400 requests, the ART

shows 6.18 seconds. Two points are noteworthy in this graph. First, the clear differences

of ART between data and compute requests over the 10 trace samples. For example, the

highest value of ART of the compute request is 3.71 seconds in 1400 requests, while the

lowest value of data request is 5.25 in 500 requests. This is because data requests

consume more resources in the hosts, and need longer time to be processed. Secondly,

the number of requests does not greatly affect the difference of relevant ART values. In

500 requests, the difference between the data and compute request is 2.21 seconds, and

in the 1400 requests, the difference between data and compute requests is 2.48 seconds.

Univ
ers

ity
 of

 M
ala

ya

 152

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

R
e
p
ly

 t
im

e
 (

S
e
c
o
n
d
)

Number of data and compute request

 Data

 Compute

Figure 6.8 RT of data and compute request in heterogeneous for SBLB

Figure 6.8 shows reply time of the data and compute requests based on different

numbers of the request in the heterogeneousenvironment. Similar to the ART in the

heterogeneousenvironment, the differences between data and compare request clearly

appear. For example, the rate of differences between data and compute request in 500,

and 1400 requests are 48.7% and 37.0% respectively. This significant variance between

the values indicates that the data request needs longer time to handle user request

compared to the compute request. Throughout experiments that started by 500 requests

up to 1400 requests, the differences between data and compute request remained steady,

around the average of 1.63 seconds. Univ
ers

ity
 of

 M
ala

ya

 153

Trace1 Trace2 Trace3 Trace4 Trace5 Trace6

0

20

40

60

80

100

120

140

160

180

R
e
q

u
e
s
t
p
e
r

s
e
c
o
n
d

Number of request (1000 requests per trace)

 Data

 Compute

Figure 6.9 RPS of data and compute request in heterogeneous environment for SBLB

In Figure 6.9, the request per second of data and compute request in the

heterogeneous environment is presented. The graph shows clearly the significant

differences between data and the compute request in terms of RPS in the heterogeneous

environment. For example, the minimum difference between data and compute requests

is 21.1 request per second that appears in the fourth experiment, while,compute request

is recorded as 173.5 RPS, while data request shows 152.4 RPS. Thus, the average

differences between data and compute requests over 10 experiments is 24.3 RPS. This

big amount of differences between data and compute request prove that the compute

request can perform better that data request in the heterogeneous environment compared

to homogeneous environment.

6.3. Comparison between SBLB and RRA

In this section, we compare between SBLB and Round-robin algorithm. The

comparisons are carried out in homogeneous and heterogeneous environments.

Univ
ers

ity
 of

 M
ala

ya

 154

400 600 800 1000 1200 1400

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

A
v
e

ra
g

e
 r

e
s
p

o
n

s
e
 t

im
e
 (

s
e
c
o

n
d

)

Number of data and compute request

 SBLA

 RRA

Figure 6.10 ART of the SBLB and RRA in homogeneous environment

In Figure 6.10, the results of the average response time of the server-based load

balance algorithm and round robin algorithm in 10 different experiments are presented.

The ART for SBLB is less than RRA in a different number of requests. For example, in

500 and 600 requests, the ART of SBLB mechanism is 4.88 and 5.0 while RRA shows

7.21 and 7.30. The mean of ART for SBLB mechanism and RRAis 6.02 and 8.46

respectively. This significant difference demonstrates that our proposed algorithm

performs better than RRA in the homogeneous environment.

Univ
ers

ity
 of

 M
ala

ya

 155

400 600 800 1000 1200 1400

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

R
e
p
ly

 t
im

e
 (

s
e
c
o
n
d
)

Number of data and compute request

 SBLA

 RRA

Figure 6.11 RT of the SBLB and RRA in homogeneous environment

The results of reply time for SBLB and RRA in homogeneous environments are

presented in Figure 6.11. The results compare between SBLB algorithmand RRA in 10

different experiments. The graph shows that the RT of SBLB algorithm is less than

RRA. In addition, the reply time of SBLB is almost steady compared to RRA that

increases sharply. For example, with 500 requests, the reply time of RRA shows 5.25

seconds and increases to 8.21 seconds with 1400 request. Although, previous studies

(Kaur et al., 2015) prove that RRA performs well in the homogeneous environment, but

SBLB appears to outperform RRA. This could be due to the small number of hosts

involved in these experiments. Univ
ers

ity
 of

 M
ala

ya

 156

400 600 800 1000 1200 1400

1

2

3

4

5

6

7

8

9

10

11

12

A
v
e

ra
g

e
 r

e
s
p

o
n

s
e
 t

im
e
 (

s
e
c
o

n
d

)

Number of data and compute request

 SBLA

 RRA

Figure 6.12 ART of the SBLB and RRA in aheterogeneous environment.

Figure 6.12 presents the comparison of average response time in between SBLB

and RRA in 10 different experiments. The graph illustrates that SBLB performs better

than RR over all experiments. As we can see, ART of SBLB is range between 5 to 6

seconds while RRA shows 9.23 seconds in the first experiment and increases to 12

seconds with 1400 requests. This significant difference proves that our proposed

algorithm performs effectively as compared to RRA in the heterogeneous environment.

Moreover, increasing the number of requests has a slight impact on the average

response time of SBLB algorithm in the heterogeneous environment. In contrast, the

number of requests affects RRA.

Univ
ers

ity
 of

 M
ala

ya

 157

400 600 800 1000 1200 1400

1

2

3

4

5

6

7

8

9

R
e

p
ly

 t
im

e
 (

s
e
c
o

n
d

)

Number of data and compute request

 SBLA

 RRA

Figure 6.13 RT of the SBLB and RRA in aheterogeneous environment.

Figure 6.13 shows the result of comparison between the reply time of SBLB and

Round-robin algorithm in the heterogeneous environment. The graph illustrates that the

reply time of SBLB is less than the reply time of the RRA in the heterogeneous

environment. For example, the RT for RRA is 7.0s, 7.7s, and 7.9s higher thanthe RT of

SBLB in the first three data traces respectively. The high reply time for RRA in the

heterogeneous environment is because of sending an incoming request to the host that is

already loaded. SBLB performs better because it can dynamically calculate the host

load and adjust the parameters according to the type of the service

Univ
ers

ity
 of

 M
ala

ya

 158

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0

20

40

60

80

100

120

140

160

180

200

R
e
q
u
e
s
t
p
e
r

s
e
c
o
n
d

Number of request (1000 requests per trace)

 RRA

 SBLA

Figure 6.14 RPS of the SBLB algorithmand RRA in homogeneous environment

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0

50

100

150

200

R
e

q
u
e

s
t
p

e
r

s
e
c
o

n
d

Number of request (1000 requests per trace)

 RRA

 SBLA

Figure 6.15 RPS of the SBLB and RRA in heterogeneous environment

The request per second of SBLB and round-robin algorithm in the homogeneous

and heterogeneous environmentsis presented in Figure 6.14 and 6.15s. The mean of the

RPS for SBLB and RRA in ahomogeneous environment is 171.4 and 185.9

respectively,and the different between the two values is 14.5 RPS.

In the heterogeneous environment, we can see that the SBLB performs better

than RRA and the differences of RPS in all experiments are clearly illustrated. For

example, in Table 5.14, the mean of RPS for SLBA is 158.9 and for RRA is 171.4. So,

Univ
ers

ity
 of

 M
ala

ya

 159

the average difference between RRA and SLBA is 13 requests per second. This number

indicates the superior performance of SLBA over the RR. This is because RRA does not

assume the capacity of the host and link when a new incoming request is sent, while

SLBA dynamically calculates a load of each server based on the type of service.

6.4. Comparison between SBLB mechanism and HAproxy load balancer

software

In this section, we compare the performance of SBLB mechanism with HAProxy

load balancer software in the homogeneous and heterogeneous environment. The

parameters used for the comparison are average response time, reply time and request

per second. Ten different experiments are used for these comparisons. Although in the

homogeneousenvironment there are slight differences between our proposed mechanism

and HAproxy load balancer software but in the heterogeneousenvironment, the

differences obviously appear. Thus, the results of SBLB are much better in the

heterogeneous environment because of the parameters weights that are assigned

according to the type of request.

First, we analyze the average response time, reply time and request per second

by comparing the results obtained from SBLB mechanism and HAproxy in the

homogeneous environment. The aim of this comparison is to highlight the performance

differences between SBLB mechanism and HAproxy load balance.

Univ
ers

ity
 of

 M
ala

ya

 160

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

A
v
e

ra
g

e
 r

e
s
p

o
n

s
e
 t

im
e
 (

S
e

c
o
n

d
)

Number of data and compute request

 SBLB

 HAproxy

Figure 6.16 ART of the SBLB and HAproxy in homogeneous environment

Figure 6.16 compares the ART of SBLB and HAproxy. The x-axis and y-axis

coordinates show the ART and the number of requests. Figure 6.16 clearly shows that

SBLB achieved better results in all 10 experiments compared with HAproxy. This is

because the SBLB module calculates the load of the host and adjusts the parameters

according to the type of service. For example, if the client sends a data request to the

controller, it will first check the type of service and use the data request equation

(equation 4.5) to calculate the load of all hosts that provide this type of service. While in

the HAproxy, the load balancer only used one schema for all type of services.

Figure 6.17 depicts the comparison of SBLB and HAproxy in terms of reply

time in 10 experiments. The graph illustrates that the RT of SBLB is better than

HAproxy in first five experiments

Univ
ers

ity
 of

 M
ala

ya

 161

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
e

p
ly

 t
im

e
 (

S
e

c
o
n

d
)

Number of data and compute request

 SBLB

 HAproxy

Figure 6.17 RT of the SBLB and HAproxy in homogeneous environment

For instance, when there are 500 requests, the RT in SBLB and HAproxy are

recorded as 2.72 and 3.01 respectively. We notice that after 1000 requests, the RT of the

SBLB and HA proxy are almost the same. In thehomogeneous environment, all hosts

have the same specification in term of CPU, RAM, and requests are divided equally

among the hots. When the requests are increased (1000 requests), the five hosts reach

their maximum capacity to process more request. This small difference is also due to

both solutions used a dynamicscheme that takes into account the host’s load in the

homogeneous environment. Univ
ers

ity
 of

 M
ala

ya

 162

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0

20

40

60

80

100

120

140

160

180

200

R
e

q
u
e

s
t
p

e
r

s
e
c
o

n
d

 (
S

e
c
o

n
d

)

Number of request (1000 requests per trace)

 SBLB

 HAproxy

Figure 6.18 RPS of the SBLB and HAproxy in homogeneous environment

Figure 6.18 shows request per second for the SBLB and HAproxy load balancer

for 10 different experiments. As we can see, the number of the RPS are diverse, but all

RPS are ranging from 130 to 180 requests per second. The traffic generating tool

calculates the RPS every 10 seconds by dividing the total time, and reply rate e.g.

suppose that in 10 seconds, the reply rate is 1566 byte, then the RPS should be 156.6

requests per second. As we can see, the difference between SBLB and HAproxy in term

of RPS in the homogeneous environment is not as big as in the heterogeneous

environment. For example, the highest difference shows 11.5 RPS in the third

experiment. This is because both solutions used dynamic schema and the host’s

resources are the same. But SBLB considers the type of request and calculate the host

load base on that, while in HAproxy this factor is not considered.

In this section, we analyze the average response time, reply time and request per

second by comparing the results of the SBLB and HAproxy in the heterogeneous

environment.

Univ
ers

ity
 of

 M
ala

ya

 163

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1

2

3

4

5

6

7

8

9

10

A
v
er

ag
e

R
es

p
o

n
se

 T
im

e
(S

ec
o
n
d

)

Number of data and compute request

 SBLB

 HAproxy

Figure 6.19 ART of the SBLB and HAproxy in heterogeneous environment

Figure 6.19 shows the ART of the SBLB and HAproxy in the heterogeneous

environment for 10 experiments. The y-axis shows the ART in seconds and x-axis

represents the number of requests. We notice from Figure6.19 that SBLB performed

better than HAproxy load balancer in all 10 experiments. For example, when clients

send a total of 500 requests, the ART of the SBLB shows 4.91 seconds as compared to

HAproxy load balancer that shows 6.83 seconds for the same number of requests. The

ART in both solutions is increased when the number of requests increases. The peak

value of ART is presented in 1400 requests for SBLB and HAproxy. SBLB shows

better performance as compared to HAproxy. Univ
ers

ity
 of

 M
ala

ya

 164

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

R
e

q
u
e

s
t
T

im
e
 (

S
e

c
o
n

d
)

Number of data and compute request

 SBLB

 HAproxy

Figure 6.20 RT of the SBLB and HAproxy in heterogeneous environment

Figure 6.20 illustrates the reply time of SBLB and HAproxy in the heterogeneous

environment. The result shows that the reply time of SBLB is shorter as compared to

HAproxy load balancer over 10 experiments. For example, the RT of SBLB with 500,

600 and 700 requests are 2.55s, 2.57s, 2.76s respectively, while in HAproxy, RT show

5.16s, 5.34s, 5.80s for the same number of requests. Although, the RT of SBLB

increases after 800 requests but the significant difference between SBLC and HAproxy

remains.

Univ
ers

ity
 of

 M
ala

ya

 165

Trace1 Trace2 Trace3 Trace4 Trace5 Trace6

0

20

40

60

80

100

120

140

160

180

re
q

u
e

s
t
p

e
r

s
e
c
o

n
d

Number of request (1000 requests per trace)

 SBLB

 HAproxy

Figure 6.21 RPS of the SBLB and HAproxy in heterogeneous environment

In Figure 6.21, the request per second of the SBLB and HAproxy in the heterogeneous

environment is presented. We observed from the results that SBLB could produce a

high number of requests as compared to HAproxy and the differences between them are

clearly visible. The average difference between SBLB and HAproxy is 14.5 request per

second. This is because in the heterogeneous environment the bandwidth of the link and

hosts resource vary. In SBLB, the controller calculates the host load and adjusts the load

balance parameters according to the type of request, while HAproxy uses a simple

dynamic load balance without taking into account this factor.

6.5. Conclusion

In this chapter, the experimental result of SBLB is discussed to prove the efficiency

of the proposed mechanism on the basis of the average response time, reply time and

request per second.The experiments were investigated based on two criteria such as (1)

number of request, (2) type of request. In addition, the experiments are carried out in

homogeneous and heterogeneous environments.

Univ
ers

ity
 of

 M
ala

ya

 166

First, we validated our results by comparing between simulation and real

environment. Then, we analyzed the data and compute request in homogeneous and

heterogeneous environments. We observed that compute request showed an average of

4.67s in average response time and 2.82s in reply time in the homogeneousenvironment.

These numbers are decreased by 1.07 in ART and 0.42 in RT in the heterogeneous

environment. Then, our proposed load balance algorithm was compared with Round-

robin algorithm. SBLBhas clearly outperformed the RRA in homogeneousand

heterogeneous environments. Lastly, we compare between SBLB and HAproxy load

balancer software. The comparison showed that in the homogeneousenvironment the

performance of HAproxy and SBLB mechanism is the same in terms of ART and RT.

But in the heterogeneousenvironment, the SBLB mechanism shows less ART and RT as

compared to HAproxy.

In summary, SBLB performs better in the heterogeneous environment as

compared to homogeneous environment. Moreover, the analysis of the data and

compute request reveals that the performance of the proposed mechanism shows less

ART and RT in the heterogeneous environment.

 Univ
ers

ity
 of

 M
ala

ya

 167

CHAPTER 7: CONCLUSION

This chapter aims to present the epilogue and summary of the research that is carried

out in this study. First, the objectives of the study are re-examined to make sure that

each objective is accomplished within the scope of the study. Secondly, we discussed

the contributions of the studyin details. Moreover, the scopes, limitations, and

delimitations of the study are presented. Lastly, the suggestions for the future research

directions are highlighted.

The organization of this chapter is as follows. Section 7.1 explains how the

objectives have been achieved. In section 7.2, the contributions of the research are

provided. Section 7.3 shows the scope as well as the limitations and delimitations.

Section 7.4 highlights the open issues and future research direction.

7.1 Re- examining the objectives of the research

This study aims to solve a problem of using single load balance scheme with

different types of request. The proposed solution aims to provide a load balance

mechanism that can minimize response time and maximize the throughput. In the

following, we show how the research objectives that are presented in Chapter 1 are

accomplished.

In the first objective, we performed a gap analysis review on the

approaches/techniques of the load balancing solutions in the cloud. A survey was

conducted to study the state-of-the-art of load balance solution that utilizes SDN. Based

on the study, we listed the limitations of the existing load balancers that are widely used

in the cloud. Besides, the open source and commercial SDN load balancing solutions

are revised and classified. Based on this classification, a thematic taxonomy is proposed

after studying more than 200 papers that explained the concept and implementation of

the SDN. Over and above, the study focused on SDN-SLB solutions that include 30

papers and was further summarized into 18 solutions as presented in Table 2.7 in

Univ
ers

ity
 of

 M
ala

ya

 168

chapter 2. We used qualitative analysis to identify the open research issues of the server

load balance in SDN. This ledto defining the research problem that was analyzed and

proved in chapter 3.In the second objective, a service based load balancing mechanism

was presented. The mechanism is designed to provide load balance using software

defined network. The mechanism was geared to provide load balance based service to

minimize the response time and maximize the throughput. Three modules are developed

to run on the top of the selected SDN controller (Floodlight). The first module was

service classification that categorized the request into two types namely computer

request and data request, based on the type of the service. The second module was that

dynamically load balance the request based on the request type. This module was

designed to receive the type of request from the service classification module as well as

the status of the hosts and network link from monitoring module. Based on the

information and the load balance mechanism, the module distributed the incoming

request to the best hosts. The third module is the monitoring module that periodically

reported the status of the hosts and network links to the controller. In order to avoid the

overhead of the controller, the current load of the link bandwidth and hosts status are

sent every five seconds.

In the third objective, we leveraged the OpenFlow protocol to provide online

traffic classification that can identify the type of request. The classification approach

that relied on port member and protocol type, as well as, IP address for identifying the

type of the request was proposed. Then, we utilizedMemoryStorageSource service that

was provided by Floodlight controller to build service table in which PacketIn

information is stored.In the last objective, the proposed load balance mechanism was

evaluated and compared with existing load balancing solutions. Some experiments were

carried out in a different environment to evaluate the mechanism. First, we used Mininet

simulation to analyze the proposed solution; the network topology was simulated to

Univ
ers

ity
 of

 M
ala

ya

 169

connect to Floodlight controller that is installed on theremote computer and is connected

remotely to the Mininet. In the real cloud environment, we used OpenStack to create

VMs that works as hosts, and two additional computers are used as a client to send the

traffic. We evaluated the result obtained from both environments, and different type of

requests are analyzed and evaluated. In addition, we compared the proposed load

balance mechanism with existing software load balance that was implemented in the

traditional network. The comparison of the proposed mechanism with another load

balance algorithm was carried out as well.

7.2 Contributions of the study

This section presents several contributions that were highlighted in chapter 1. The

contributions were described as follows:

7.1.1 Taxonomy of SDN Server Load Balance

We reviewed more than 150 papers that discussed the implementation of load

balance in SDN. Based on this review, a thematic taxonomy was proposed to provide a

conceptual knowledge in terms of the server load balance in SDN. The taxonomy was

categorized based on four parameters; approach/techniques, controller, algorithms, and

experiment’s environment. This work was presented in Chapter 2.

7.1.2 Studying the impacts of the request on load balance system

In the second contribution, we investigated the impact of user's request on load

balance system by analyzing the request from adifferent perspective. We found that

several factors could affect the server load balance. First, we studied the impact of the

number of the request on average response time and reply time . We proved that by

conducting several experiments, the number of the request had a significant effect on

the load balance system. The other two factors that impact load balance were the size

and type of the request. In addition, we studied the impact of the request on hosts load

Univ
ers

ity
 of

 M
ala

ya

 170

by calculating Request per Second (RPS) which each server can handle during a

specific time.

7.1.3 Proposing Service Based Load Balance (SBLB) Mechanism

The SBLB mechanism represented the main contribution of the study. In this

mechanism, three module are implemented and integrated into Floodlight controller.

Such modules were written in Java language, the language that is used to develop

Floodlight controller, and additional shell scripts were used to configure the server

pools and VIP. In the service classification module, we developed a hybrid approach to

identify the type of the request that is divided into two types; computer and data

request. Moreover, Service Table (ST) was created to store information about the

packetIn in the controller. This information is utilized to provide service classification.

In the load balance module, the parameters of the hosts were calculated based on the

type of the service provided by the monitoring module. In turn, the parameters were

adjusted according to the request type. The monitoring module is responsible for

collecting the hosts and link utilization periodically and send to the Floodlight

controller.

7.1.4 Enhancing OpenFlow protocol to provide traffic classification

In this contribution, the OpenFlow protocol was enhanced to provide online traffic

classification that is used to identify the type of request. We utilized the receive function

to parse the PacketIn information that includes the number of the port, protocol and IP

address of the server. Based on this information, when the PacketIn is sent to the

controller, the Service Table (ST) is verified to get the type of the service and send it to

the load balance module. This table includes all Host IP address associated with

protocol and port number. The ST is created when the controller is initially run. During

the running of the system hosts, we can dynamically add hosts, and the controller can

detect the IP, service type and port number and then saves them in the ST.

Univ
ers

ity
 of

 M
ala

ya

 171

7.1.5 Evaluation and validation of the proposed solution

In the last contribution, the results were evaluated and validated using different

statistical approach. Several experiments wereconducted in the simulation and real

environment toevaluate the response time and throughput of the SBLB mechanism. The

comparison between SBLB mechanism and exciting software load balance was carried

out in the homogeneous and heterogeneous environment in terms of of average

response time, reply time and request per second. We analyzed thedifferent type of the

request in various conditions.

7.3 Limitations and Delimitations

In this section, we highlighted the limitations and delimitations of the study. First,

we presented the delimitations that include the boundaries that were set by the

researcher in this study. The following were delimitations;

 During reviewing the papers related to SDN load balance, several problems were

raised, such as server load balance with multi-tenancy in the cloud,

virtualization, and server load balance, the impact of the service chain on load

balance. However, we focused on the problem of the load balancing that used

the same schema for a different type of the service. Thus, we proposed service

based load balance mechanism that can minimize the response time and

maximize the throughput of the system.

 The second delimitation was that the availability of sufficient resources for the

experiment. Nevertheless, we implemented the experiment in the real

environment using OpenStack, but few numbers of the VMswere used as hosts.

This number is limited to five servers per pool.

 Another delimitation was that thousands of the services are provided in the

cloud, but we selected the common and known services. However, the proposed

Univ
ers

ity
 of

 M
ala

ya

 172

mechanism can be used for any number of the services, and load balance

parameters can be adjusted according to the service requirements.

 There are several metrics which are used to measure the effect of the load

balance system. In this research, we focused on Average Response Time (ART),

Reply Time (RT) and Request per Second (RPS).

 Secondly, the limitations of the study can be summarized as follows:

 We used virtual switch (Open VSwitch) instead of the real OpenFlow switch.

 The hosts are simulated to run adifferent type of services by developing Python

script that runs on each host when they initially run.

 Due to the limit of the resource of the hosts, the interval time between sending

and receiving the request was configured to be five seconds.

 The main objective of the study focused on load balance mechanism that

canminimize the response time and maximize the throughput. Traffic

classification module is developed. However, this research was not concerned

with the related accuracy, precision, and recall of traffic classification.

7.4 Future research directions

In the following, we present possible future research directions that further studies

can be conducted to extend the SBLB mechanism. We identify four specific areas of

research that may effectively enhance the SBLB mechanism.

 First, this study only focused on load balance that minimizes the response time

and maximizes the throughput. The scalability of the load balance is not

addressed in this study. For example, Adding hosts to existing pool dynamically

when all members of the pool are overloaded could be used with the proposed

mechanism.

Univ
ers

ity
 of

 M
ala

ya

 173

 One possible feature that may be added is to use multiple controllers with SBLB

mechanism to avoid asingle point of the failure problem and to check how the

other controllers can balance the load when the master controller goes down.

 Other future works include proposing different traffic classification approach to

identify the application instead of the service. So, the load balance can be based

on the type of the application instead of the service

7.5 Conclusion

This chapter aims to present the epilogue and summary of the research that is carried

out in this study. First, the objectives of the study are re-examined to make sure that

each objective is accomplished within the scope of the study. Secondly, we discussed

the contributions of the studyin details. Moreover, the scopes, limitations, and

delimitations of the study are presented. Lastly, the suggestions for the future research

directions are highlighted.

The organization of this chapter is as follows. Section 7.1 explains how the

objectives have been achieved. In section 7.2, the contributions of the research are

provided. Section 7.3 shows the scope as well as the limitations and delimitations.

Section 7.4 highlights the open issues and future research direction.

Univ
ers

ity
 of

 M
ala

ya

 174

REFERENCES

Abdelzaher, T. F., & Lu, C. (2000). Modeling and performance control of internet servers.

In Decision and Control, 2000. Proceedings of the 39th IEEE Conference on (Vol. 3,

pp. 2234-2239). IEEE.

Adelman, K. A., Kashtan, D. L., Palter, W. L., & Derrell, D. P. I. (2000). U.S. Patent No.

6,078,957. Washington, DC: U.S. Patent and Trademark Office.

Al-Shabibi, A., De Leenheer, M., Gerola, M., Koshibe, A., Parulkar, G., Salvadori, E., & Snow,

B. (2014, August). OpenVirteX: Make your virtual SDNs programmable.

In Proceedings of the third workshop on Hot topics in software defined networking (pp.

25-30). ACM.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . . Stoica, I.

(2010). A view of cloud computing. Communications of the ACM, 53(4), 50-58.

Azodolmolky, S. (2013). Software Defined Networking with OpenFlow: Packt Publishing Ltd.

Balancer, K. S. l., https://kemptechnologies.com/sdn-adaptive-load-balancing/,[accessed:

27/06/2016].

Balancer, L. P. L, https://linerate.f5.com/,[accessed: 25/05/2016].

Bansal, D., Warkhede, P. R., & Venketesan, T. (2012). U.S. Patent No. 8,266,204. Washington,

DC: U.S. Patent and Trademark Office.

Baucke, S., Mestery, K., Shaikh, A., & Wright, C. (2013). OpenDaylight: An Open Source SDN

for your OpenStack Cloud. An Open-Stack Summit, Hong Kong.

Bays, L. R., & Marcon, D. S. (2011). Flow based load balancing: Optimizing web servers

resource utilization. Journal of Applied Computing Research, 1(2), 76-83.

Becchi, M., Franklin, M., & Crowley, P. (2008, September). A workload for evaluating deep

packet inspection architectures. In Workload Characterization, 2008. IISWC 2008.

IEEE International Symposium on (pp. 79-89). IEEE.

Ben-Shaul, I., Cidon, I., Kessler, I., Lev-Ran, I., & Unger, O. (2005). U.S. Patent No.

6,976,090. Washington, DC: U.S. Patent and Trademark Office.

Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., ... & Parulkar, G. (2014,

August). ONOS: towards an open, distributed SDN OS. In Proceedings of the third

workshop on Hot topics in software defined networking (pp. 1-6). ACM.

Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., & Salamatian, K. (2006). Traffic

classification on the fly. ACM SIGCOMM Computer Communication Review, 36(2), 23-

26.

Bezemer, C. P., & Zaidman, A. (2010, September). Multi-tenant SaaS applications:

maintenance dream or nightmare?. In Proceedings of the Joint ERCIM Workshop on

Software Evolution (EVOL) and International Workshop on Principles of Software

Evolution (IWPSE) (pp. 88-92). ACM.

Bianchi, G., Bonola, M., Capone, A., & Cascone, C. (2014). OpenState: programming

platform-independent stateful openflow applications inside the switch. ACM

SIGCOMM Computer Communication Review, 44(2), 44-51.

Univ
ers

ity
 of

 M
ala

ya

 175

Blial, O., Ben Mamoun, M., & Benaini, R. (2016). An Overview on SDN Architectures with

Multiple Controllers. Journal of Computer Networks and Communications, 2016.

Boero, L., Cello, M., Garibotto, C., Marchese, M., & Mongelli, M. (2016). BeaQoS: Load

balancing and deadline management of queues in an OpenFlow SDN switch. Computer

Networks, 106, 161-170.

Bourke, T. (2001). Server load balancing: " O'Reilly Media, Inc.".

Bozakov, Z., & Sander, V. (2013). OpenFlow: A Perspective for Building Versatile Networks

Network-Embedded Management and Applications (pp. 217-245): Springer.

Brandt, M., Khondoker, R., Marx, R., & Bayarou, K. (2014). Security Analysis of Software

Defined Networking Protocols—OpenFlow, OF-Config, and OVSDB. Paper presented

at the The 2014 IEEE Fifth International Conference on Communications and

Electronics (ICCE 2014), DA NANG, Vietnam.

Bryhni, H., Klovning, E., & Kure, Ø. (2000). A comparison of load balancing techniques for

scalable web servers. Network, IEEE, 14(4), 58-64.

Bujlow, T., Carela-Español, V., & Barlet-Ros, P. (2013). Comparison of Deep Packet

Inspection (DPI) Tools for Traffic Classification: Universitat Politècnica de Catalunya.

Capone, A., Cascone, C., Nguyen, A. Q., & Sanso, B. (2015, March). Detour planning for fast

and reliable failure recovery in SDN with OpenState. In Design of Reliable

Communication Networks (DRCN), 2015 11th International Conference on the (pp. 25-

32). IEEE.

Cardellini, V., Colajanni, M., & Philip, S. Y. (1999). Dynamic load balancing on web-server

systems. IEEE Internet computing, 3(3), 28.

Cash, S., Jain, V., Jiang, L., Karve, A., Kidambi, J., Lyons, M., . . . Patel, N. (2016). Managed

infrastructure with IBM Cloud OpenStack Services. IBM Journal of Research and

Development, 60(2-3), 6: 1-6: 12.

Chang, H., & Tang, X. (2010, December). A load-balance based resource-scheduling algorithm

under cloud computing environment. In International Conference on Web-Based

Learning (pp. 85-90). Springer Berlin Heidelberg.

Chen, W., Li, H., Ma, Q., & Shang, Z. (2014, June). Design and implementation of server

cluster dynamic load balancing in virtualization environment based on OpenFlow.

In Proceedings of The Ninth International Conference on Future Internet

Technologies (p. 9). ACM.

Chen, W., Shang, Z., Tian, X., & Li, H. (2015). Dynamic server cluster load balancing in

virtualization environment with OpenFlow. International Journal of Distributed Sensor

Networks, 11(7), 531538.

Chen, Y. J., Shen, Y. H., & Wang, L. C. (2014, December). Traffic-Aware Load Balancing for

M2M Networks Using SDN. In Cloud Computing Technology and Science (CloudCom),

2014 IEEE 6th International Conference on (pp. 668-671). IEEE.

Chiong, J. (2013). U.S. Patent Application No. 13/791,760.

Chou, L. D., Yang, Y. T., Hong, Y. M., Hu, J. K., & Jean, B. (2014). A genetic-based load

balancing algorithm in openflow network. In Advanced Technologies, Embedded and

Multimedia for Human-centric Computing (pp. 411-417). Springer Netherlands.

Univ
ers

ity
 of

 M
ala

ya

 176

Clayman, S., Mamatas, L., & Galis, A. (2016, April). Efficient management solutions for

software-defined infrastructures. In Network Operations and Management Symposium

(NOMS), 2016 IEEE/IFIP (pp. 1291-1296). IEEE.

OpenFlow Switch Consortium. (2009). OpenFlow Switch Specification Version 1.0. 0.

Costa, V. T., & Costa, L. H. M. (2015). Vulnerabilities and solutions for isolation in FlowVisor-

based virtual network environments. Journal of Internet Services and Applications, 6(1),

18.

Dainotti, A., Pescape, A., & Claffy, K. C. (2012). Issues and future directions in traffic

classification. IEEE network, 26(1), 35-40.

Denton, J. (2014). Learning OpenStack Networking (Neutron): Packt Publishing Ltd.

Devi, D. C., & Uthariaraj, V. R. (2016). Load Balancing in Cloud Computing Environment

Using Improved Weighted Round Robin Algorithm for Nonpreemptive Dependent

Tasks. The Scientific World Journal, 2016.

Ding, W., Qi, W., Wang, J., & Chen, B. (2015). OpenSCaaS: an open service chain as a service

platform toward the integration of SDN and NFV. Network, IEEE, 29(3), 30-35.

Doron, E., & Sekiguchi, M. (2016). U.S. Patent No. 9,386,085. Washington, DC: U.S. Patent

and Trademark Office.

Drutskoy, D., Keller, E., & Rexford, J. (2013). Scalable network virtualization in software-

defined networks. Internet Computing, IEEE, 17(2), 20-27.

Dusi, M., Bifulco, R., Gringoli, F., & Schneider, F. (2014, August). Reactive logic in software-

defined networking: Measuring flow-table requirements. In Wireless Communications

and Mobile Computing Conference (IWCMC), 2014 International (pp. 340-345). IEEE.

Dutta, P. P., Vidovic, N., & Vrsalovic, D. F. (2003). U.S. Patent No. 6,546,423. Washington,

DC: U.S. Patent and Trademark Office.

El-Azzab, M., Bedhiaf, I. L., Lemieux, Y., & Cherkaoui, O. (2011, November). Slices isolator

for a virtualized OpenFlow node. In Network Cloud Computing and Applications

(NCCA), 2011 First International Symposium on (pp. 121-126). IEEE.

Estan, C., Keys, K., Moore, D., & Varghese, G. (2004). Building a better NetFlow. ACM

SIGCOMM Computer Communication Review, 34(4), 245-256.

Feamster, N., Rexford, J., & Zegura, E. (2013). The road to SDN. Queue, 11(12), 20.

Feamster, N., Rexford, J., & Zegura, E. (2014). The road to SDN: an intellectual history of

programmable networks. ACM SIGCOMM Computer Communication Review, 44(2),

87-98.

Fortis, T. F., Munteanu, V. I., & Negru, V. (2012, June). Towards a service friendly cloud

ecosystem. In Parallel and Distributed Computing (ISPDC), 2012 11th International

Symposium on (pp. 172-179). IEEE.

Frey, C. A., Bicket, J., Herbert, K. P., Malhotra, V. S., & Chambers, B. A. (2016). Methods for

exchanging network management messages using udp over http protocol: US Patent

20,160,094,688.

Univ
ers

ity
 of

 M
ala

ya

 177

Fundation, O. N. (2012). Software-defined networking: The new norm for networks. ONF White

Paper2, 2-6.

Gandhi, R., Liu, H. H., Hu, Y. C., Lu, G., Padhye, J., Yuan, L., & Zhang, M. (2015). Duet:

Cloud scale load balancing with hardware and software. ACM SIGCOMM Computer

Communication Review, 44(4), 27-38.

Ghaffarinejad, A. (2015). Comparing a Commercial and an SDN-Based Load Balancer in a

Campus Network. Arizona State University.

Gill, J. (2014). Bayesian methods: A social and behavioral sciences approach (Vol. 20): CRC

press.

Gilly, K., Juiz, C., & Puigjaner, R. (2011). An up-to-date survey in web load balancing. World

Wide Web, 14(2), 105-131.

Godfrey, P. B., & Stoica, I. (2005, March). Heterogeneity and load balance in distributed hash

tables. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings IEEE (Vol. 1, pp. 596-606). IEEE.

Gomez, L. (2013). A Brief Introduction to SDN and OpenDaylight.

González‐Vélez, H., & Cole, M. (2010). Adaptive structured parallelism for distributed

heterogeneous architectures: A methodological approach with pipelines and farms.

Concurrency and Computation: Practice and Experience, 22(15), 2073-2094.

Gonzalez, J., Rojas, H., Ortega, J., & Prieto, A. (2002). A new clustering technique for function

approximation. Neural Networks, IEEE Transactions on, 13(1), 132-142.

Gosling, J. (2000). The Java language specification: Addison-Wesley Professional.

Govindraj, S., Jayaraman, A., Khanna, N., & Prakash, K. R. (2012). Openflow: Load balancing

in enterprise networks using floodlight controller. The university of Colorado.

Gulbrandsen, A., & Esibov, L. (2000). A DNS RR for specifying the location of services (DNS

SRV).

Guo, Z., Su, M., Xu, Y., Duan, Z., Wang, L., Hui, S., & Chao, H. J. (2014). Improving the

performance of load balancing in software-defined networks through load variance-

based synchronization. Computer Networks, 68, 95-109.

Haleplidis, E., Pentikousis, K., Denazis, S., Salim, J. H., Meyer, D., & Koufopavlou, O.

(2015). Software-defined networking (SDN): Layers and architecture terminology (No.

RFC 7426).

Handigol, N., Flajslik, M., Seetharaman, S., McKeown, N., & Johari, R. (2010, November).

Aster* x: Load-balancing as a network primitive. In 9th GENI Engineering Conference

(Plenary) (pp. 1-2).

Handigol, N., Seetharaman, S., Flajslik, M., McKeown, N., & Johari, R. (2009). Plug-n-Serve:

Load-balancing web traffic using OpenFlow. ACM Sigcomm Demo, 4(5), 6.

Hsu, I. P. S., Cheung, D. C. Y., & Jalan, R. R. (2013). U.S. Patent No. 8,504,721. Washington,

DC: U.S. Patent and Trademark Office.

Huh, J.-H., & Seo, K. (2016). Design and test bed experiments of server operation system using

virtualization technology. Human-centric Computing and Information Sciences, 6(1), 1.

Univ
ers

ity
 of

 M
ala

ya

 178

Ivancic, Franjo, Cristian Lumezanu, Gogul Balakrishnan, Willard Dennis, and Aarti Gupta.

"Network Testing." U.S. Patent Application 14/270,445, filed May 6, 2014.

Jian Liu, Lei Xu, Weiming Zhang, A load balancing algorithm based on dynamic feedback,

Computer Engineering and Science, 25 (2003), 65-68

Jain, R., & Paul, S. (2013). Network virtualization and software defined networking for cloud

computing: a survey. Communications Magazine, IEEE, 51(11), 24-31.

Jarschel, M., Zinner, T., Hoßfeld, T., Tran-Gia, P., & Kellerer, W. (2014a). Interfaces,

attributes, and use cases: A compass for SDN. Communications Magazine, IEEE, 52(6),

210-217.

Jarschel, M., Zinner, T., Hoßfeld, T., Tran-Gia, P., & Kellerer, W. (2014b). Interfaces,

attributes, and use cases: A compass for SDN. IEEE Communications Magazine, 52(6),

210-217.

Jethanandani, M., Bashyam, M., Bagepalli, N., & Patra, A. (2006). U.S. Patent Application No.

11/383,093.

Jindal, A., Lim, S. B., Radia, S., & Chang, W. L. (2001). U.S. Patent No. 6,324,580.

Washington, DC: U.S. Patent and Trademark Office.

John, W., Pentikousis, K., Agapiou, G., Jacob, E., Kind, M., Manzalini, A., ... & Meirosu, C.

(2013, November). Research directions in network service chaining. In Future

Networks and Services (SDN4FNS), 2013 IEEE SDN for (pp. 1-7). IEEE.

Ju, J., Xu, G., & Yang, K. (1995). An intelligent dynamic load balancer for workstation

clusters. ACM SIGOPS Operating Systems Review, 29(1), 7-16.

Jung, J. J. (2011). Service chain-based business alliance formation in service-oriented

architecture. Expert Systems with Applications, 38(3), 2206-2211.

Karacali, B., & Tracey, J. M. (2016, April). Experiences evaluating openstack network data

plane performance and scalability. In Network Operations and Management

Symposium (NOMS), 2016 IEEE/IFIP (pp. 901-906). IEEE.

Kashiri, N., Tsagarakis, N. G., Van Damme, M., Vanderborght, B., & Caldwell, D. G. (2016).

Proxy-Based Sliding Mode Control of Compliant Joint ManipulatorsInformatics in

Control, Automation and Robotics (pp. 241-257): Springer.

Kaur, S., Kumar, K., Singh, J., & Ghumman, N. S. (2015, March). Round-robin based load

balancing in Software Defined Networking. In Computing for Sustainable Global

Development (INDIACom), 2015 2nd International Conference on (pp. 2136-2139).

IEEE.

Kerravala, Z. (2013). The Software-Defined Data Center is Key to IT-as-a-Service. Cell, 301,

775-7447.

Keti, F., & Askar, S. (2015, February). Emulation of Software Defined Networks Using Mininet

in Different Simulation Environments.In Intelligent Systems, Modelling and Simulation

(ISMS), 2015 6th International Conference on (pp. 205-210). IEEE.

Khattak, Z. K., Awais, M., & Iqbal, A. (2014, December). Performance evaluation of

OpenDaylight SDN controller. In Parallel and Distributed Systems (ICPADS), 2014

20th IEEE International Conference on (pp. 671-676). IEEE..

Univ
ers

ity
 of

 M
ala

ya

 179

Khondoker, R., Zaalouk, A., Marx, R., & Bayarou, K. (2014, January). Feature-based

comparison and selection of Software Defined Networking (SDN) controllers.

In Computer Applications and Information Systems (WCCAIS), 2014 World Congress

on (pp. 1-7). IEEE.

Kim, E. D., Lee, S. I., Choi, Y., Shin, M. K., & Kim, H. J. (2014, February). A flow entry

management scheme for reducing controller overhead. In Advanced Communication

Technology (ICACT), 2014 16th International Conference on (pp. 754-757). IEEE.

Kim, H., Reich, J., Gupta, A., Shahbaz, M., Feamster, N., & Clark, R. J. (2015, May). Kinetic:

Verifiable Dynamic Network Control. In NSDI (pp. 59-72).

Koerner, M., & Kao, O. (2012, June). Multiple service load-balancing with OpenFlow. In High

Performance Switching and Routing (HPSR), 2012 IEEE 13th International Conference

on (pp. 210-214). IEEE.

Koerner, M., & Kao, O. (2013, October). Optimizing openflow load-balancing with l2 direct

server return. In Network of the Future (NOF), 2013 Fourth International Conference

on the (pp. 1-5). IEEE.

Kopparapu, C. (2002). Load balancing servers, firewalls, and caches: John Wiley & Sons.

Koushika, A. M., & Selvi, S. T. (2014, April). Load valancing Using Software Defined

Networking in cloud environment. In Recent Trends in Information Technology

(ICRTIT), 2014 International Conference on (pp. 1-8). IEEE.

Krebs, R., Momm, C., & Kounev, S. (2012). Architectural Concerns in Multi-tenant SaaS

Applications. CLOSER, 12, 426-431.

Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S.

(2015). Software-defined networking: A comprehensive survey. Proceedings of the

IEEE, 103(1), 14-76.

Kuźniar, M., Perešíni, P., & Kostić, D. (2015, March). What you need to know about SDN flow

tables. In International Conference on Passive and Active Network Measurement (pp.

347-359). Springer International Publishing..

Kwak, B., & Jung, H. (2015). Virtualized Testbed Development using Openstack.

Lantz, B., Heller, B., & McKeown, N. (2010, October). A network in a laptop: rapid

prototyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM

Workshop on Hot Topics in Networks (p. 19). ACM.

Lee, Y. J., & Riley, G. F. (2005, March). A workload-based adaptive load-balancing technique

for mobile ad hoc networks. In Wireless communications and networking conference,

2005 IEEE (Vol. 4, pp. 2002-2007). IEEE.

Leland, R., & Hendrickson, B. (1994, May). An empirical study of static load balancing

algorithms. In Scalable High-Performance Computing Conference, 1994., Proceedings

of the (pp. 682-685). IEEE.

Li, L. E., & Woo, T. (2011). U.S. Patent Application No. 12/571,271.

Li, Y., & Brodlie, K. (2003, December). Soft Object Modelling with Generalised ChainMail—

Extending the Boundaries of Web‐based Graphics. In Computer Graphics Forum (Vol.

22, No. 4, pp. 717-727). Blackwell Publishing.

Univ
ers

ity
 of

 M
ala

ya

 180

LIN, H.-j., PENG, H., & LI, J. (2007). Design and realization of tendency load-balance for

application server [J]. Computer Engineering and Design, 14, 034.

Lin, P., Hart, J., Krishnaswamy, U., Murakami, T., Kobayashi, M., Al-Shabibi, A., ... & Bi, J.

(2013, August). Seamless interworking of SDN and IP. In ACM SIGCOMM computer

communication review (Vol. 43, No. 4, pp. 475-476). ACM.

Load-Balancer, A. https://saas.hpe.com/marketplace/sdn/aricent-sdn-load-balancer-application.

[accessed: 28/06/2016].

MacDonald, D., & Lowekamp, B. (2010). NAT behavior discovery using session traversal

utilities for NAT (STUN) (No. RFC 5780).

Maltz, D. A., Greenberg, A. G., Patel, P. K., Sengupta, S., & Lahiri, P. (2012). U.S. Patent No.

8,160,063. Washington, DC: U.S. Patent and Trademark Office.

Matias, J., Garay, J., Toledo, N., Unzilla, J., & Jacob, E. (2015). Toward an SDN-enabled NFV

architecture. IEEE Communications Magazine, 53(4), 187-193.

Mayoral, A., Vilalta, R., Munoz, R., Casellas, R., & Martánez, R. (2015, July). Performance

analysis of SDN orchestration in the cloud computing platform and transport network

of the ADRENALINE testbed. In Transparent Optical Networks (ICTON), 2015 17th

International Conference on (pp. 1-4). IEEE.

Mccauley, J. (2014). Pox: A python-based openflow controller.

McClain, C. B., & Thatcher, J. E. (2004). U.S. Patent No. 6,772,214. Washington, DC: U.S.

Patent and Trademark Office.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., . . .

Turner, J. (2008). OpenFlow: enabling innovation in campus networks. ACM

SIGCOMM Computer Communication Review, 38(2), 69-74.

Medved, J., Varga, R., Tkacik, A., & Gray, K. (2014, June). Opendaylight: Towards a model-

driven sdn controller architecture. In A World of Wireless, Mobile and Multimedia

Networks (WoWMoM), 2014 IEEE 15th International Symposium on (pp. 1-6). IEEE.

Mininet,http://mininet.org/, accessed: 28/06/2016].

Mockapetris, P., & Dunlap, K. J. (1988). Development of the domain name system (Vol. 18, No.

4, pp. 123-133). ACM.

Myers, A. C. (1999, January). JFlow: Practical mostly-static information flow control.

In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (pp. 228-241). ACM.

Narendran, B., Rangarajan, S., & Yajnik, S. (2000). U.S. Patent No. 6,070,191. Washington,

DC: U.S. Patent and Trademark Office.

Nguyen, T. T., & Armitage, G. (2008). A survey of techniques for internet traffic classification

using machine learning. IEEE Communications Surveys & Tutorials, 10(4), 56-76.

Nuaimi Al, K., Mohamed, N., Al Nuaimi, M., & Al-Jaroodi, J. (2012, December). A survey of

load balancing in cloud computing: Challenges and algorithms. In Network Cloud

Computing and Applications (NCCA), 2012 Second Symposium on (pp. 137-142).

IEEE.

Univ
ers

ity
 of

 M
ala

ya

http://mininet.org/

 181

Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A survey

of software-defined networking: Past, present, and future of programmable networks.

IEEE Communications Surveys & Tutorials, 16(3), 1617-1634.

O'Neil, Kevin, Robert Nerz, and Robert Aubin. "System for balancing loads among network

servers." U.S. Patent Application No. 10/162,419.

Okamoto, K. (2001). U.S. Patent Application No. 09/900,891.

Okano, T., Ochi, A., Mochizuki, T., & Takaba, K. (2004). Load balancing system: Google

Patents.

Ortiz, J., Londoño, J., & Novillo, F. (2016, October). Evaluation of performance and scalability

of Mininet in scenarios with large data centers. In Ecuador Technical Chapters Meeting

(ETCM), IEEE (Vol. 1, pp. 1-6). IEEE.

OVS, D. i.,http://kspviswa.github.io/dpi-enabled-ovs/,[accessed: 28/07/2016].

Patel, P., Bansal, D., Yuan, L., Murthy, A., Greenberg, A., Maltz, D. A., . . . Wu, H. (2013).

Ananta: cloud scale load balancing. ACM SIGCOMM Computer Communication

Review, 43(4), 207-218.

Patel, P., Ranabahu, A. H., & Sheth, A. P. (2009). Service level agreement in cloud computing.

Pfaff, B., Pettit, J., Koponen, T., Jackson, E. J., Zhou, A., Rajahalme, J., ... & Amidon, K.

(2015, May). The Design and Implementation of Open vSwitch. In NSDI (pp. 117-130).

Phemius, K., & Bouet, M. (2013, October). Monitoring latency with openflow. In Network and

Service Management (CNSM), 2013 9th International Conference on (pp. 122-125).

IEEE.

Poddar, R., Vishnoi, A., & Mann, V. (2015, January). HAVEN: Holistic load balancing and

auto scaling in the cloud. In Communication Systems and Networks (COMSNETS),

2015 7th International Conference on (pp. 1-8). IEEE.

Qilin, M., & Weikang, S. (2015, June). A Load Balancing Method Based on SDN. In Measuring

Technology and Mechatronics Automation (ICMTMA), 2015 Seventh International

Conference on (pp. 18-21). IEEE.

Qi Zheng, Gguangping Zhou, Content classification load balancing algorithm in cluster,

Computer Systems and Applications, 20 (2011), 47-50

Qosmos.,http://www.qosmos.com/sdn-nfv/dpi-module-for-vswitch/,[accessed: 22/08/2016].

Radojević, B., & Žagar, M. (2011, May). Analysis of issues with load balancing algorithms in

hosted (cloud) environments. In MIPRO, 2011 Proceedings of the 34th International

Convention (pp. 416-420). IEEE.

Ragalatha P, M. C., Sundeep Kumar. K. (2013). Design and Implementation of Dynamic load

balancer on OpenFlow enabled SDNs. IOSR Journal of Engineering, 3(8), 32-41.

Rahman, M., Iqbal, S., & Gao, J. (2014, April). Load balancer as a service in cloud computing.

In Service Oriented System Engineering (SOSE), 2014 IEEE 8th International

Symposium on (pp. 204-211). IEEE.

Univ
ers

ity
 of

 M
ala

ya

http://kspviswa.github.io/dpi-enabled-ovs/
http://www.qosmos.com/sdn-nfv/dpi-module-for-vswitch/

 182

Randles, M., Lamb, D., & Taleb-Bendiab, A. (2010, April). A comparative study into

distributed load balancing algorithms for cloud computing. In Advanced Information

Networking and Applications Workshops (WAINA), 2010 IEEE 24th International

Conference on (pp. 551-556). IEEE.

Research, G. V, http://www.grandviewresearch.com/industry-analysis/software-defined-

networking-sdn-market-analysis,accessed: 28/06/2016].

Research, I,http://www.infonetics.com/pr/2016/Carrier-SDN-Market-Highlights.asp,[accessed:

27/06/2016].

Ros, F. J., & Ruiz, P. M. (2014, August). Five nines of southbound reliability in software-

defined networks. In Proceedings of the third workshop on Hot topics in software

defined networking (pp. 31-36). ACM.

Saito, Y., Bershad, B. N., & Levy, H. M. (2000). Manageability, availability, and performance

in porcupine: a highly scalable, cluster-based mail service.ACM Transactions on

Computer Systems (TOCS), 18(3), 298.

Salchow Jr, K. (2007). Load Balancing 101: The Evolution to Application Delivery

Controllers.F5 White Paper.

Schemers, R. (1995, September). lbnamed: A Load Balancing Name Server in Perl.

In LISA (pp. 1-12).

Schmid, S., & Suomela, J. (2013, August). Exploiting locality in distributed SDN control.

In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software

defined networking (pp. 121-126). ACM.

Sefraoui, O., Aissaoui, M., & Eleuldj, M. (2012). OpenStack: toward an open-source solution

for cloud computing. International Journal of Computer Applications, 55(3).

Shabtay, L. (2010). Dynamic load balancer: Google Patents.

Shahmir Shourmasti, K. (2013). Stochastic Switching Using OpenFlow.

Shang, Z., Chen, W., Ma, Q., & Wu, B. (2013, November). Design and implementation of

server cluster dynamic load balancing based on OpenFlow. In Awareness Science and

Technology and Ubi-Media Computing (iCAST-UMEDIA), 2013 International Joint

Conference on (pp. 691-697). IEEE.

Sherwood, R., Gibb, G., Yap, K. K., Appenzeller, G., Casado, M., McKeown, N., & Parulkar,

G. (2009). Flowvisor: A network virtualization layer. OpenFlow Switch Consortium,

Tech. Rep, 1-13.

Shin, M. K., Nam, K. H., & Kim, H. J. (2012, October). Software-defined networking (SDN): A

reference architecture and open APIs. In ICT Convergence (ICTC), 2012 International

Conference on (pp. 360-361). IEEE.

Shukla, V. S. (2015, March). SDN transport architecture and challenges. In Optical Fiber

Communications Conference and Exhibition (OFC), 2015 (pp. 1-3). IEEE.

Singh, A., Goyal, P., & Batra, S. (2010). An optimized round robin scheduling algorithm for

CPU scheduling. IJCSE) International Journal on Computer Science and Engineering,

2(07), 2383-2385.

Univ
ers

ity
 of

 M
ala

ya

http://www.grandviewresearch.com/industry-analysis/software-defined-networking-sdn-market-analysis
http://www.grandviewresearch.com/industry-analysis/software-defined-networking-sdn-market-analysis
http://www.infonetics.com/pr/2016/Carrier-SDN-Market-Highlights.asp

 183

Soysal, M., & Schmidt, E. G. (2010). Machine learning algorithms for accurate flow-based

network traffic classification: Evaluation and comparison. Performance Evaluation,

67(6), 451-467.

Specifiation, O. S. (2014). v1. 5, Open Network Foundation, September 27, 2013.

Specification, O. S. (2013). Version 1.4. 0, October 14, 2013.

Srisuresh, P., & Egevang, K. (2001). Traditional IP network address translator (Traditional

NAT): RFC 3022, January.

Stroustrup, B. (1986). The C++ programming language: Pearson Education India.

Suñé, M., Bergesio, L., Woesner, H., Rothe, T., Köpsel, A., Colle, D., . . . Channegowda, M.

(2014). Design and implementation of the OFELIA FP7 facility: The European

OpenFlow testbed. Computer Networks, 61, 132-150.

Surya Prateek, S., & Ying, Q. (2013). Cloud Server with OpenFlow: Load Balancing. Paper

presented at the 1st International Workshop on Cloud Computing and Information

Security.

Tarreau, W. (2012). HAProxy-the reliable, high-performance TCP/HTTP load balancer.

Tavakoli, A., Casado, M., Koponen, T., & Shenker, S. (2009). Applying NOX to the Datacenter.

Paper presented at the HotNets.

Tian, W., Zhao, Y., Zhong, Y., Xu, M., & Jing, C. (2011, September). A dynamic and

integrated load-balancing scheduling algorithm for Cloud datacenters. In Cloud

Computing and Intelligence Systems (CCIS), 2011 IEEE International Conference

on (pp. 311-315). IEEE.

Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., & Sherwood, R. (2012). On

Controller Performance in Software-Defined Networks. Hot-ICE, 12, 1-6.

Tourrilhes, J., Sharma, P., Banerjee, S., & Pettit, J. (2014). The Evolution of SDN and

OpenFlow: A Standards Perspective. IEEE Computer Society, 47(11), 22-29.

Tsai, W. T., Sun, X., Shao, Q., & Qi, G. (2010, November). Two-tier multi-tenancy scaling and

load balancing. In e-Business Engineering (ICEBE), 2010 IEEE 7th International

Conference on (pp. 484-489). IEEE.

Uppal, H., & Brandon, D. (2010). OpenFlow based load balancing. CSE561: Networking

Project Report, University of Washington.

Urgaonkar, R., Kozat, U. C., Igarashi, K., & Neely, M. J. (2010, April). Dynamic resource

allocation and power management in virtualized data centers. In Network Operations

and Management Symposium (NOMS), 2010 IEEE (pp. 479-486). IEEE.

Valenti, S., Rossi, D., Dainotti, A., Pescapè, A., Finamore, A., & Mellia, M. (2013). Reviewing

traffic classification Data Traffic Monitoring and Analysis (pp. 123-147): Springer.

Velte, A., & Velte, T. (2009). Microsoft virtualization with Hyper-V: McGraw-Hill, Inc.

Wang, M., Li, B., & Li, Z. (2004). sFlow: Towards resource-efficient and agile service

federation in service overlay networks. In Distributed Computing Systems, 2004.

Proceedings. 24th International Conference on (pp. 628-635). IEEE.

Univ
ers

ity
 of

 M
ala

ya

184

Wang, P., Lan, J., & Chen, S. (2014). OpenFlow based flow slice load balancing.

Communications, China, 11(12), 72-82.

Wang, P., Sahinoglu, Z., Pun, M.-O., Li, H., & Himed, B. (2011). Knowledge-aided adaptive

coherence estimator in stochastic partially homogeneous environments. Signal

Processing Letters, IEEE, 18(3), 193-196.

Wang, R., Butnariu, D., & Rexford, J. (2011). OpenFlow-Based Server Load Balancing

GoneWild. Hot-ICE, 11, 12-12.

Wellman, B. (2004). The three ages of internet studies: ten, five and zero years ago. New media

& society, 6(1), 123-129.

Williams, A. (2015). A comparison of the performance and scalability of relational and

document-based web-systems for large scale applications in a rehabilitation context.

arXiv preprint arXiv:1510.00216.

Wu, J., Huang, Y., Kong, J., Tang, Q., & Huang, X. (2015). A Study on the Dependability of

Software Defined Networks. Paper presented at the International Conference on

Materials Engineering and Information Technology Applications (MEITA 2015).

Yang, L.-H., & Yu, S.-S. (2003). A variable weighted least-connection algorithm for

multimedia transmission. Journal of Shanghai University (English Edition), 7(3), 256-

260.

Yilmaz, S., Tekalp, A. M., & Unluturk, B. D. (2015, February). Video streaming over software

defined networks with server load balancing. In Computing, Networking and

Communications (ICNC), 2015 International Conference on (pp. 722-726). IEEE.

Yong, W., Xiaoling, T., Qian, H., & Yuwen, K. (2016). A dynamic load balancing method of

cloud-center based on SDN.China Communications, 13(2), 130-137.

Zhang, H., & Guo, X. (2014, November). SDN-based load balancing strategy for server

cluster.In Cloud Computing and Intelligence Systems (CCIS), 2014 IEEE 3rd

International Conference on (pp. 662-667). IEEE.

Zhang, W., Jin, S., & Wu, Q. (1999). Creating Linux virtual servers. Paper presented at the

LinuxExpo 1999 Conference.

Zhou, W., Li, L., Luo, M., & Chou, W. (2014, May). REST API design patterns for SDN

northbound API. In Advanced Information Networking and Applications Workshops

(WAINA), 2014 28th International Conference on (pp. 358-365). IEEE.

Univ
ers

ity
of

Mala
ya

 185

LIST OF PUBLICATIONS AND PAPERS PRESENTED

ISI Journal paper

Ahmed Abdelaziz, TF Ang, M Sookhak, S Khan, A Vasilakos, CS Liew, Survey on

Network Virtualization Using OpenFlow: Taxonomy, Opportunities, and Open Issues

(2016) KSII Transactions on Internet and Information Systems 10 (10), 4902-4932

Suleman khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Ahmed Abdelaziz et.

al, Towards an Applicability of Current Network Forensics for Cloud Networks: A

SWOT Analysis, IEEE Access, Accepted 09 November 2016

Suleman khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Ahmed Abdelaziz, et.

al, Software-defined Network Forensics: Motivation, Potential Locations,

Requirements, and Challenges, IEEE Networks, Accepted 23 August 2016

Thomas, Bimba Andrew, Ahmed abdelaziz et al. "Towards Knowledge Modeling and

Manipulation Technologies: A Survey." International Journal of Information

Management (2016).

Akhunzada, A., Gani, A., Anuar, N. B., Ahmed Abdelaziz. , Khan, M. K., Hayat, A., &

Khan, S. U. (2016). Secure and dependable software defined networks. Journal of

Network and Computer Applications , 61, 199-221.

Univ
ers

ity
 of

 M
ala

ya

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=UMSsOboAAAAJ&sortby=pubdate&citation_for_view=UMSsOboAAAAJ:_Qo2XoVZTnwC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=UMSsOboAAAAJ&sortby=pubdate&citation_for_view=UMSsOboAAAAJ:_Qo2XoVZTnwC

 186

Conference paper:

Ahmed Abdelaziz, Ang Tang Fong, “Application-Aware load balance system in cloud

using SDN,” 4th International Conference on Computer Science and Computational

Mathematics, ICCSCM 2015, Malaysia ,Langkawi

Suliman Kan , Ahmed Abdelaiz , FML: A novel Forensics Management Layer for

Software Defined Networks" , Confluence 2016 Conference-India 2016

Univ
ers

ity
 of

 M
ala

ya

