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ABSTRACT

Facial micro-expression analysis has attracted much attention from the computer

vision and psychology communities due to its viability in a broad range of applications,

including medical diagnosis, police interrogation, national security, business negotiation,

and social interactions. However, the micro and subtle occurrence that appears on the face

poses a major challenge to the development of an efficient automated micro-expression

recognition system. Therefore, to date, the annotation of the ground-truths (i.e., emotion

label, onset, apex and offset frame indices) are still performed manually by psychologists

or trained experts. This thesis briefly reviews the conventional automatic facial micro-

expression recognition methods and their related works. In general, an automatic facial

micro-expression recognition system consists of three basic steps, namely: image pre-

processing, feature extraction, and emotion classification. This thesis mainly focuses

on the enhancement of the first two steps over conventional methods in the literature.

Specifically, a hybrid facial regions selection for pre-processing is proposed. This method

is able to eliminate some parts of the face that are irrelevant to any facial emotions. Then,

an effective feature descriptor, namely, optical strain, is utilized to capture the variations

in characteristics and properties of the micro-expressions in the video. Next, a feature

descriptor is developed to encode the essential expressiveness of the apex frame because

the information of a single apex frame exhibits the highest variation of motion intensity,

which is adequate to represent the emotion of the entire video. Finally, this thesis is

concluded by highlighting its contributions and limitations, as well as suggesting possible

future directions related to micro-expression recognition system.
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ABSTRAK

Analisis mikro-ekspresi pada wajah telah menarik banyak perhatian dari komuni-

ti visi komputer dan psikologi, disebabkan oleh kegunaannya dalam pelbagai aplikasi

termasuk diagnosis perubatan, soal siasat polis, keselamatan negara, perundingan perni-

agaan dan interaksi sosial. Namun, kejadian mikro-ekspresi yang kecil dan halus telah

menjadi cabaran utama dalam usaha pembangunan system pengiktirafan mikro ekspresi

automatik yang cekap. Setakat ini, anotasi “ground-truth” (iaitu label emosi, indeks bing-

kai permulaan, puncak dan pengakhiran) masih dibuat secara manual oleh ahli psikologi

atau pakar yang terlatih. Disertasi ini mengkaji dengan ringkas kaedah-kaedah kon-

vensional pengiktirafan mikro-ekspresi wajah automatik dan kerja-kerja yang berkaitan.

Secara umumnya, sistem pengiktirafan mikro-ekspresi wajah automatik terdiri daripa-

da tiga langkah, iaitu: pra-pemprosesan imej, pengekstrakan ciri dan klasifikasi emosi.

Disertasi ini memberi tumpuan kepada penambahbaikan dua langkah pertama daripada

kaedah konvensional dalam kesusasteraan. Terutamanya, satu teknik pemilihan kawasan

wajah hibrid untuk pra-pemprosesan telah dicadangkan. Kaedah ini dapat menghapuskan

bahagian wajah yang tidak berkaitan dengan emosi. Di samping itu, satu deskriptor ciri

yang berkesan, iaitu ketegangan optik, digunakan untuk menangkap sifat-sifat dan ciri-

ciri perubahan mikro-ekspresi dalam video. Selain itu, satu deskriptor ciri telah dicipta

untuk mengekod ekspresi yang penting dalam bingkai puncak sahaja kerana maklumat

bingkai puncak menunjukkan intensiti gerakan tertinggi dan ia tersesuai digunakan un-

tuk mewakili emosi keseluruhan video. Akhir sekali, disertasi ini membuat kesimpulan

tentang sumbangan dan had-had kajian ini, serta cadangan untuk hala tuju masa depan

sistem pengiktirafan mikro-ekspresi.
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CHAPTER 1: INTRODUCTION

1.1 Understanding Micro-expression

Facial expression is the most common form of non-verbal communication that displays

a person’s feeling. It is also known as the universal language of emotion as it is shared

among different cultures. There are six basic classes of emotions, notably happiness, sur-

prise, anger, sad, fear and disgust (Ekman & Friesen, 1971). In general, facial expression

can be categorized into two main types: macro-expression and micro-expression. Macro-

expression, also known as the normal expression, is usually obvious and can be easily

identified in real-time with the naked eye. However, since macro-expression is a volun-

tary expression, it can be exploited to deceive others by imitating or acting out the falsified

expressions and portray them on the face. More precisely, macro-expression goes on and

off on the face, normally between three quarters of a second to two seconds (Shreve et al.,

2009), and can be found at multiple large areas of the face. Automatic macro-expression

recognition is a popular research field and has been intensively studied over the past two

decades.

On the other hand, in recent years, analysis of micro-expression has also attracted

more and more attention in the field of computer vision. Yet, not many papers have

been published. This is because micro-expression has shorter duration (micro) and lower

intensity (subtle) (Ekman & Friesen, 1969). It often occurs at high speed and usually

sustains within one-fifth to one-twenty-fifth of a second (Porter & Ten Brinke, 2008).

Due to its extremely brief and rapid facial muscle movement, as well as the fact that it

may only appear in a few small parts of the face, it is technically challenging to realize

and recognize the micro-expressions in real-time conversations, except for the keen and

trained observers (Ekman, 2009b).
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Figure 1.1: The top row of images show some examples of macro-expression (from
CK+ database) and the second row of images show examples of micro-expression (from
CASME II database). The emotion types are: (a-b) happiness, (c-d) surprise, (e-f) sad-
ness, (g-h) disgust and (i-j): fear

Micro-expressions are provoked involuntary and spontaneously. In other words,

it is uncontrollable, and thus being able to reveal a person’s concealed genuine feel-

ings (Ekman & Friesen, 1969). Figure 1.1 illustrates some images containing either the

macro- and micro-expressions. The attributes between macro- and micro-expressions can

clearly be differentiated using the figure shown. Specifically, the characteristics of micro-

expression makes it advantageous to be recognized and studied, as we are able to interpret

whether someone is concealing his feeling or is trying to tell a lie (Ekman, 2009a). For

instance, the suspects interrogated by the police can be caught lying. Analyzing a per-

son’s emotion can also help improve relationships and understand each other better. In

addition, we can become more aware of our own emotions and manage them more effec-

tively. In short, recognition of micro-expressions is beneficial in both our mundane lives

and also society at large. It can be utilized in a wide range of applications, such as med-

ical diagnosis, community safety, business negotiation, social interactions, etc. (Frank,

Herbasz, et al., 2009; O’Sullivan et al., 2009; Frank, Maccario, & Govindaraju, 2009).

Micro-expressions have been studied intensively in the field of psychology. The

first discovery of micro-expression was made by Haggard and Isaacs (Haggard & Isaacs,

1966), who named it as “micromomentary expression (MME)” and considered it as re-
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pressed emotion. They stumbled upon it while performing analysis on a psychotherapeu-

tic interview film, where they viewed the film frame-by-frame to understand the patient’s

thinking. They observed that the emotion shown by the patient changed dramatically

within three to five frames. Few years later, Ekman and Friesen (Ekman & Friesen, 1969)

introduced the term micro-expression from a case where the patient was trying to conceal

his sad feeling by concealing it with a smile. The therapist detected his genuine feeling

by carefully observing the subtle movements on his face. In fact, the patient was planning

to commit suicide. In addition, they discovered that people who are trying to deceive

others are more likely to attempt in disguising their facial behavior than body movements

(Ekman & Friesen, 1974).

1.2 General framework of a Micro-expression Recognition System

There are three main components in a general facial micro-expression recognition sys-

tem, as illustrated in Figure 1.2. The input of the recognition system is the raw images,

which are extracted from video sequences. The first stage of the system is pre-processing,

which aims to enhance the image features for further analysis. Pre-processing includes

smoothening the distorted image caused by illumination and lighting effects, normalizing

the pixel intensity or scaling the brightness level distribution of the image affected by

non-uniform light, face registration and alignment to transform and standardize all faces

into a uniform size and shape based on a template face, etc. Next, the feature extraction

process combines the large set of raw image data into a compact and discriminative fea-

ture vector. This process forms a compact representation of the image data by reducing

the feature dimension. The resultant feature vector is able to describe the color, shape,

texture and motion which exist in the image. It is also robust to translation, noise, oc-

clusion, rotation, illuminations and scaling. The last step of the system is classification,

which categorizes the emotion classes of the testing data based on the defined training
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Figure 1.2: Block diagram of a facial micro-expression recognition system

data. It involves a learning algorithm that analyzes and organizes the training data into

a finite desired group of clusters with respect to the emotion classes. Then, the emotion

type of the testing data is determined based on the distance or similarity measure. This

thesis focuses on the first two stages, namely pre-processing and feature extraction. In

this research, several efficient and improved pre-processing and feature extraction tech-

niques are proposed and implemented. Results show that they are capable of producing

better recognition performances compared to the current state-of-the-art techniques.

1.3 Problem Statements

As previously explained, the study of micro-expression is still considered as a relatively

new topic compared to that of macro-expression. For macro-expression, there are nu-

merous well-established databases that are publicly available for benchmarking and eval-

uation purpose. Hence, many macro-expression recognition mechanisms have been de-

signed to detect and classify a person’s emotional state. Some of them are robust to

operate in the wild (or the real world environment) and real-time scenario, while others

manage to achieve perfect classification accuracies (around 100%) in certain databases.

On the contrary, the subtlety and minuteness of micro-expressions have profoundly

hindered the progress of its related research works. To date, there are only a few micro-

expression databases with proper data elicitation which provide complete ground-truths,

due to the challenges of triggering the involuntary spontaneous expressions. This brings

to an even greater obstacle in the development of micro-expression detection and recog-

nition algorithms. In the literature, most state-of-the-art techniques achieve poor recogni-

tion accuracies of below 60%, even when they are tested on the entire short (or cropped)
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videos which do not consist of micro-expression-unrelated motion. Furthermore, the

pre-processing and feature extraction techniques employed in these systems are initially

meant for macro-expression analysis, and may not perform well for micro-expressions

due to different attributes and characteristics.

Until now, the labeling of ground-truths for micro-expressions are still performed

manually by trained psychologists or professional experts. The drawbacks of the hand-

labeled practice include: (a) inconsistent reliability - the labels may differ from person to

person; (b) time consuming - requires great amount of effort and concentration for frame-

by-frame evaluation; (c) costly - requires specific trained experts. The aforementioned

issues indicate that it is essential to label the ground-truths automatically. Although there

are some automatic micro-expression detection and recognition systems, there are still

rooms for improvement. In summary, the problem statements for this research are as

follows:

1. Poor performances by existing micro-expression detection and recognition systems

due to the challenges in capturing the quick and minute micro-expressions.

2. Limited scope of exploration in pre-processing stage for micro-expression analysis.

3. Similar facial motion patterns appearing in consecutive frames implies redundancy

and leads to a less discriminative set of features.

1.4 Objectives

This thesis aims to improve the current micro-expression detection and recognition sys-

tems by studying the pre-processing and feature extraction approaches. The primary ob-

jectives of this research are set out as follows:

1. To design a spatio-temporal feature extractor that can effectively describe the local

appearance of micro-expressions.

5

Univ
ers

ity
 of

 M
ala

ya



2. To develop a pre-processing method that removes unwanted facial areas for con-

centrating only on regions that contribute meaningful micro-expression details.

3. To demonstrate that it is sufficient to consider only one frame out of the whole video

sequence when extracting facial micro-expression features for recognition task.

1.5 Scopes and Limitations

The scope and limitation of this study are as follows:

1. The types of emotion for micro-expression classification are strictly limited to only

the emotions provided in the databases. No other types of emotion or subjects’

feeling (i.e., anxiety, guilty, relief, etc.) are analyzed.

2. The databases used in the experiments are elicited under constrained laboratory

conditions, which means that all the images have been pre-processed with face

registration and alignment. There is no micro-expression database recorded in the

wild.

3. The proposed pre-processing and feature extraction techniques are only tested on

micro-expression videos.

4. To recognize the emotion type, only the muscle or skin tissue movements on the

face are studied. Other features that may provide clues for micro-expressions, such

as eye gaze and speech signals, are not considered.

1.6 Contributions

Most existing pre-processing and feature extraction approaches applied on the micro ex-

pression videos are designed for macro-expression analysis. In this thesis, the weaknesses

of these approaches are addressed and solutions are provided to mitigate the issues. The

main contributions of this research are summarized as follows.
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RoI-Selective: A hybrid facial region selection technique, RoI-Selective is proposed to

extract several important parts of the face that contain significant and valuable micro-

expression information. More precisely, it combines heuristic-based and automatic ap-

proaches to exclusively determine the salient facial regions. The heuristic-based approach

relies statistically on the occurrence frequency of the facial action units for all the expres-

sions, whereas the automatic detection of the landmark points is performed using a robust

landmark detector. This work has been submitted to the Journal of Signal Processing

Systems (JSPS).

OSW + OSF: For micro-expression detection and recognition, three distinct spatio-temporal

feature extraction techniques are developed by utilizing optical strain magnitude. Optical

strain is the extension of optical flow that has a higher order derivative, and possesses the

ability to eliminate noises and preserve relative large facial muscle changes. For the three

feature extraction techniques: (a) OSW - the optical strain magnitude is formulated as a

weighting scheme to scale the values of the feature obtained by a baseline feature extrac-

tor called LBP-TOP; (b) OSF - the temporal details for each frame, which are derived

from optical strain technique, are summed up to create a compact and efficient feature

vector, and; (c) OSW + OSF - the two sets of features (i.e., OSW and OSF) are com-

bined to form a more representative feature histogram. This work has been published in

the Asian Conference on Computer Vision Workshops (ACCVW 2014), Intelligent Signal

Processing and Communication Systems (ISPACS 2014) and Signal Processing: Image

Communication (SPIC).

Single Apex: Apex frame in a micro expression video sequence is the frame that depicts

the most expressive emotional state. Apex frame lies between the onset and offset frames,

which are the instant of the beginning and ending of the micro-expression, respectively.
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In this research, a single apex frame is utilized to represent the entire video. An auto-

matic apex frame spotting approach is established to allocate the apex frame for various

scenarios, including short and long videos, with and without onset and offset frame in-

formation. Moreover, a novel feature descriptor called Bi-WOOF is developed to encode

the features obtained from the spotted apex frame. This work has been published in the

IAPR Asian Conference on Pattern Recognition (ACPR2015). The extended work has

been submitted to the Asian Conference on Computer Vision Workshop (ACCVW 2016)

and Neurocomputing Journal.

1.7 Structure of Thesis

This thesis is organized into six chapters. The contents for each chapter, except for Chap-

ter 1, are outlined briefly in this section. Chapter 2 provides literature review on exist-

ing image pre-processing and feature extraction algorithms, as well as micro-expression

databases. In addition, the pros and cons for each method and database are discussed.

In Chapter 3, a novel pre-processing method is proposed, which emphasizes on impor-

tant facial regions to boost the micro-expression recognition performance. Chapter 4

describes the three distinct feature extractors, which have been devised from the optical

strain technique. They are capable of encoding the subtle and short elapsed occurrence of

micro-expressions. Apart from the conventional feature extractors that consider the entire

video sequence or a sub-sequence of it for representation, Chapter 5 proposes a new ap-

proach, which expresses the features of a video based on only a single frame. Chapter 6

draws some conclusions and suggests possible future research directions.
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CHAPTER 2: LITERATURE REVIEW

2.1 Overview

The materials in the literature are studied and presented in this chapter. Firstly, the tech-

niques used in pre-processing are reviewed. Next, some of the popular feature extractors

are discussed. Then, all the publicly available micro-expression databases are reviewed.

Finally, the problems faced by the surveyed literature are identified and discussed.

2.2 Overview of Image Pre-processing

As discussed in Chapter 1.2, it is essential to pre-process the raw micro-expression videos

before conducting any experiment on the datasets. There are several pre-processing tech-

niques in the literature which can effectively extract the image features resulting in better

performances. Three widely-used pre-processing methods are studied, namely: (a) face

registration and alignment; (b) image filtering, and; (c) facial region extraction. Each

pre-processing methodology mentioned are detailed in the following sub-chapters.

2.2.1 Face Registration and Alignment

Due to the spontaneity of micro-expressions, the databases (i.e., Spontaneous Micro-

expression (SMIC) (Pfister et al., 2011) and Chinese Academy of Sciences Micro-Expression

II (CASME II) (Yan, Li, et al., 2014)) have gone through face registration and alignment

processes before being released to the public. Although the datasets are collected under

constrained laboratory condition, the external factors that contribute to feature noises,

such as head movement and the shape of the face, need to be properly addressed.

There are four main steps involved in this process, namely:

1. Model face selection - a frontal face image with neutral expression is detected and

selected as the model face (i.e., as the reference).
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2. Landmark coordinate detection - a detector to allocate the facial landmark coordi-

nates is adopted. Note that the terms facial landmark coordinate and facial fea-

ture point are used interchangeably in this thesis and will be selected based on the

suitability of the context. Typically, there are three techniques commonly used in

locating the facial feature points, namely:Active Shape Model (ASM) (Van Gin-

neken et al., 2002), Constrained Local Model (CLM) (Cristinacce & Cootes, 2006)

and Active Appearance Model (AAM) (Cootes et al., 1998). ASM is employed

to detect the facial landmark points in the micro-expression databases (i.e., SMIC

and CASME II). It is a statistical model of the shape of an object that are repeti-

tively deformed to fit a sample object. ASM is capable of spotting a total of sixty

eight landmark coordinates on the face. The search commences from a mean shape

aligned to the position and size of the face determined by a face detector. Then, the

processes are iterated until convergence.

3. Face transformation - the first frame of each micro-expression sequence is normal-

ized to the model face using a Local Weighted Mean (LWM) (Goshtasby, 1988)

transformation. The rest of the frames are transformed and normalized using the

same transformation matrix. The reason of using the same transformation matrix is

that the occurrence of the micro-expression is too rapid, and the rigid head move-

ment within the duration can be ignored. Additionally, the ASM landmark detector

may not be sufficiently accurate thus it could cause a significant deviation of loca-

tions for the same points even when the face remains stationary. Figure 2.1 shows

an example of face transformation.

4. Face normalization - the eye coordinates of the first frame for each normalized

micro-expressions video clip are located and the face of each frame is cropped

based on the rectangle determined by the eye coordinates.
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Figure 2.1: Face transformation. (a) Model face with feature points detected; (b) Sample
face before transformation; (c) Results of mapping the feature points from sample face to
model face

2.2.2 Image Filtering

In addition to the noise introduced by the capturing device and environment, other factors

including clothing and headset wire may affect the performance of a micro-expression

recognition system. Since the motions characterized by the subtle facial expressions are

very fine, it is likely that the presence of the unwarranted noises will generate false infor-

mation to the micro-expression recognition system. Thus, a feasible pre-processing tech-

nique is required to suppress the unwanted noise to better describe the micro-expressions.

Image filtering is a simple mathematical processing tool that is accomplished through

a convolution operation. It is also a standard process that applies to almost all the im-

age processing systems. Among the filtering processes, smoothing and blurring are the

common ones, with adjustable levels to accommodate for different conditions and appli-

cations. Various types of filter are proposed in the literature, including Gaussian, Wiener,

Sobel, Canny, Prewitt and Roberts. Three prominent image filters are chosen and dis-

cussed in this section, namely, Gaussian, Wiener and Sobel filters.

Gaussian filter is an adaptive filter controlled by a set of parameters based on an

optimization algorithm (Forsyth & Ponce, 2002). It is a low pass filter as it removes high-

frequency components from the image. The Gaussian filter formula can be expressed as

11

Univ
ers

ity
 of

 M
ala

ya



follows:

G(x,y) =
1

2πσ2 e−
x2+y2

2σ2 , (2.1)

where σ is the standard deviation of the Gaussian distribution. It is effective for remov-

ing Gaussian noises from image. In the work by Liu et al. (Z. Liu et al., 2001), Gaussian

filter is adopted to minimize the noises on image in order to compute the change of il-

lumination of a person or Expression Ratio Image (ERI) resulting from deformation of

the person’s face. The main reason Gaussian filter is chosen is that the degree of smooth-

ing on the face can be tailored, where little smoothing is applied on expressional areas,

while significant smoothing in the remaining areas. In other words, different treatment

is applied to different region. Besides that, Gaussian filter is applied as the fundamental

step for the cross-modality 2D-3D face recognition analysis (Jin et al., 2014). It is the

pre-processing step for data enhancement by removing the noise spikes (i.e., the pixels

that have exceptionally low or high pixel intensity values) on the face image collected.

Despite the wide application of Gaussian filter, its smoothing process may reduce the fine

image details. In this study of micro-expression recognition system, the subtle changes

are particularly important. Thus, adjusting the Gaussian window to an optimal value is es-

sential to efficiently filter out the noises while keeping the meaningful information about

fine expression.

On the other hand, Wiener filter is a classic filter that is based on linear time-invariant

estimation of an image (Goldstein et al., 1998). It is a low pass filter that finds the best

reconstruction of a noisy signal by suppressing the overall mean square error in the inverse

filtering and noise smoothing stages. It is able to remove noises that corrupt the signals.

Wiener filter is often applied in the frequency domain. The image after taking the product
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of the Wiener filter W (u,v) is estimated as follows:

Ĝ(u,v) =W (u,v)O(u,v), (2.2)

where O(u,v) is the Discrete Fourier Transform of the original image O(x,y). In the

application of digital image binarization to preserve useful texture information for low

quality digitized documents, Wiener filter has demonstrated its efficiency in removing the

noise areas by highlighting the contrast between background noise and text areas, while

maintaining the desired image features (Gatos et al., 2004). In addition, Wiener filter has

extended its efficacy to patch-based Wiener filter that can achieve near-optimal denoising

(Chatterjee & Milanfar, 2012). It uses both the geometrically and photometrically similar

patches to accurately estimate and learn the parameters. The denoising approach achieved

promising performance on both grayscale and color images. It is worth noting that the

parameters of the method are obtained from analytical formulation and they do not require

further fine-tuning.

Last but not least, Sobel filter, also known as the Sobel-Feldman operator, has been

widely used long before the inception of Gaussian filter and its derivatives. It is a pair of 3

× 3 convolution masks that estimates the gradients of pixel intensity in the horizontal and

vertical directions. Each pixel in the image is convolved by differentiating two rows or

two columns to calculate the gradient. The Sobel gradient approximation for each pixel

in an image is expressed as:

|G|=
√

Gx
2 +Gy

2, (2.3)

where Gx and Gy are the approximated derivatives of the pixels in the horizontal and ver-

tical directions. The main advantage of Sobel filter is its high sensitivity towards noises,

enabling it to highlight the important edges in an image. Pai et al. (Pai & Chang, 2011)

13

Univ
ers

ity
 of

 M
ala

ya



applied Sobel operator to produce a binary edge image (i.e., 1 indicates edge pixel and

0 denotes no edge) that has clear contrast between the face contour and background.

The face and the background are successfully outlined accurately using the skin tone-

segmenting processes. Furthermore, the dominant facial features such as the mouth and

eyes regions are highlighted precisely, hence improving the subsequent recognition task.

Another example of the application of Sobel filter is in skin color detection (Lamsal &

Matsumoto, 2015). The skin color detector is modified by combining it with the Sobel

edge detector (Viola & Jones, 2004). This method produces promising face detection per-

formance, and is able to detect both the color and grayscale images in three facial image

databases. However, Sobel filter is susceptible to noise. As the noise level increases, the

magnitude of the edges decreases, thus affecting the edge detection accuracy.

Figure 2.2 illustrates the output of pre-processing the same image with three different

filters (i.e., Gaussian, Wiener and Sobel filter) discussed above.

2.2.3 Facial Region Selection

Many research papers demonstrated that extracting features from partial face is able to

achieve better facial expression recognition performance, compared to when considering

the entire face (Shan & Gritti, 2008; Fan & Verma, 2009). The main reason is that, these

local facial patches contribute more expressional information towards distinguishing the

expressions, and at the same time, eliminating the parts that do not correspond to the

desired facial movements.

Shan and Gritti (Shan & Gritti, 2008) elicited a finite set of discriminative Regions

of Interest (RoIs) that is more representative, instead of considering the entire face image.

For their methodology, the face image is first divided into several sub-regions, before us-

ing the Local Binary Pattern (LBP) (Ojala et al., 1996) feature descriptor to capture the

local appearance in region level. Finally, the weak classifer Adaboost (Schapire & Singer,

14

Univ
ers

ity
 of

 M
ala

ya



Figure 2.2: A face image before and after applying the filters. (a) Original image; (b)
Gaussian filter; (c) Wiener filter; (d) Sobel filter

1999) is employed to learn and identify the most discriminative sub-regions (in term of

LBP histogram). The method is tested on a facial expression database (i.e., Extended

Cohn Kanade (CK+) (Lucey et al., 2010)), and attains consistently good recognition per-

formances when three different classifiers are adopted. The paper summarized that the

important features are mostly attributed to the eyes and mouth regions. Figure 2.3 shows

the top 20 discriminative sub-regions selected for each individual expression. Nonethe-

less, the selection of the feature length is determined statistically based on the plot of

recognition rate against the number of features.

Fan and Verma (Fan & Verma, 2009) discovered a combination of RoIs that contain

the most important subtle facial motion information. These RoIs are “left eye region”,

“right eye region”, “nose region” and “mouth region”. For analysis, the facial expression

recognition performances are reported separately for each facial region. They discover
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Figure 2.3: Sub-regions selected for the facial expressions: (a) Anger; (b) Disgust; (c)
Fear; (d) Joy; (e) Sadness; (f) Surprise; (g) Neutral

that eyes and mouth achieve better recognition performance than the other facial regions,

such as nose. By locating the most significant areas on the face, an excellent classification

accuracy of 94% is obtained on the face benchmark database, i.e., Facial Recognition

Technology (FERET) (Phillips et al., 1998). However, the size of the facial patches is

sensitive to the feature representation and is completely based on empirically determined

findings from numerous experiments.

2.3 Overview of Feature Extraction

Feature extraction process plays a vital role in a wide range of computer vision tasks, such

as object recognition, image restoration, scene reconstruction, etc. Its main function is

to reduce the image attributes from high dimensional feature space to a lower dimension.

The resultant features possess more meaningful and richer information to better represent

the original image, thereby facilitating the analysis of interest. In this sub-chapter, four

popular low level feature descriptors, which are considered in this study, are described
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in detail, namely: (a) LBP; (b) Local Binary Pattern on Three Orthogonal Planes (LBP-

TOP); (c) Optical Flow (OF), and; (d) Optical Strain (OS). A low level feature refers

to the component which directly deals with pixel intensities, for instance, color, texture,

shape, edge and corner.

2.3.1 Local Binary Pattern

LBP feature descriptor, which was first introduced by Ojala et al. in 1996 (Ojala et

al., 1996), is originally designed for texture analysis. It is an effective image feature

descriptor, not only used for texture interpretation, but has also been further extended

to various fields in computer vision due to its advantage of: (a) discrimination ability;

(b) compact texture representation; (c) low computational complexity, as well as; (d)

invariant to any monotonic gray-level changes. Examples of its application include face

recognition (Xi et al., 2016), facial expression classification (Zhao & Pietikainen, 2007),

event detection (Ma & Cisar, 2009) and even medical image analysis (Nanni et al., 2010;

Mirmohamadsadeghi & Drygajlo, 2011).

LBP operator is a robust descriptor that represents a two-dimensional gray-scale im-

age by converting pixel values into binarized pattern. The concept of LBP operator is

simple, where the intensity value of the center pixel is compared to its circular neighbor-

ing pixels using a thresholding technique. Specifically, given a pixel c at position (xc,yc),

the binary code is computed by comparing the value of pixel c with its neighboring pixels:

LBPP,R(xc,yc) =
P−1

∑
p=0

s(gp−gc)2P,s(x) =


1, x ≥ 0;

0, x < 0,

(2.4)

where P denotes the number of neighboring points equally sampled on a circle of radius

R. gc is the gray value of the center pixel and gp is the gray value of the pixels equally

sampled points around the circular neighborhood of radius R, and 2P is the weight cor-
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Figure 2.4: Example of three different circularly symmetric neighbor sets, [P,R]: (a)
[4,1]; (b) [8,1]; (c) [8,2]

responding to the neighboring pixels. Figure 2.4 shows different [P,R] sets of circular

neighborhood. Figure 2.5 illustrates the basic LBP operator , where each pixel in the

3×3 circular neighborhood is compared to pixel c. The 2P bins histogram is formed by

calculating the occurrences of the LBP code derived across the whole face image.
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LBP also provides different options for texture representation to reduce the number

of histogram bins, such as Uniform LBP (uLBP), Rotation Invariant LBP (riLBP) and

Uniform Rotation Invariant LBP (riuLBP) (Ojala et al., 2002). Specifically, uLBP is a

uniformity measure of pattern: if the total number of transitions from 0 to 1 or from 1

to 0 in the binary codes are less than or equal to 2, they are categorized as important.

Otherwise, they are grouped into the miscellaneous bin in the histogram. For example,

the patterns 000000002 (0 transition), 100000002 (1 transition) and 011000002 (2 tran-

sitions) are uniform whereas the patterns 100010012 (4 transitions) and 110100102 (5

transitions) are not. For riLBP, it is achieved using rotation invariant mapping, where

the binary code circularly rotates until reaching the minimum value. For instance, the

patterns 0101100002 (17610), 0001011002 (4410) and 000010112 (1110) are all mapped

to the minimum code 000010112 (1110).

The block-based LBP was introduced in 2004. It equally divides the face area into

small regions (Ahonen et al., 2004). This is to ensure that the spatial appearance can be

described locally on a regional level. Then, the regional features are concatenated to form

a global description of the face. Figure 2.6 shows the steps of constructing the block-

based LBP feature histogram. The effectiveness of this approach has been validated on

two face databases (i.e., FERET (Phillips et al., 1998) and Olivetti Research Laboratory

(ORL) (Samaria & Harter, 1994)). When comparing to other approaches developed for

face recognition, block-based LBP shows its superiority and robustness against different

facial expressions, lighting condition and aging of the subjects.

Nanni et al. (Nanni et al., 2010) presented several LBP variants by designing new en-

coding schemes for the validation of the local gray-scale differences. Instead of adopting

the original circular shape when thresholding the center pixel to the surrounding pix-

els, four other neighborhood shapes are created, including, ellipse, parabola, hyperbola

and archimedean spiral. The neighborhood topologies developed are shown in Figure 2.7.
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Figure 2.6: Block-based LBP: (a) Face image; (b) Face equally divided into 5×5 blocks;
(c) Histogram for each block; (d) Resultant feature histogram

Their methods are tested on three medical databases: (a) Infant COPE database (Brahnam

et al., 2007) - to categorize the pain states from neonatal images; (b) 2D-HeLa database

(Chebira et al., 2007) - to classify the protein localization starting from fluorescence mi-

croscope images, and; (c) Pap smear database (Jantzen et al., 2005) - to detect abnormal

smear cells. The elliptic neighborhood generates a reliable set of features in all three

databases. Particularly in 2d-HeLa database, it outperformed all the texture descriptors in

the literature.

The first work that applies LBP methodology on human detection task is demon-

strated by Mu et al. (Mu et al., 2008). However, the ordinary LBP operator does not

perform well in detecting the human in a personal album (i.e., INRIA human database

(Dalal & Triggs, 2005)) due to high complexity and semantic consistency issues. Two

feature descriptors, namely, Semantic-LBP and Fourier-LBP, are developed to address

these problems. They are able to encode the features using a more compact representa-
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Figure 2.7: Neighborhood topology of LBP for bio-imaging application: (a) Circular;
(b) Ellipse; (c) Parabola; (d) Hyperbola; (e) Archimedean spiral

tion. Extensive experiments have been carried out to compare the methods with gradient-

based feature descriptors. The better detection accuracy and higher computational speed

achieved further confirm the feasibility of the binary codes in capturing meaningful local

structures on image manifold.

2.3.2 Local Binary Pattern on Three Orthogonal Planes

In 2007, Zhao and Pietikainen (Zhao & Pietikainen, 2007) proposed an extension of the

spatial LBP to spatio-temporal volumes, namely LBP-TOP. The original LBP descrip-

tor describes two dimensional local spatial structure of an image, whereas LBP-TOP

can describe the three dimensional dynamic textures of a video sequence. Rather than

extracting the 2D (i.e., from XY plane) features, the 3D variant of LBP considers the co-

occurrence statistic on three orthogonal planes (i.e., XY, XT and YT). The authors (Zhao

& Pietikainen, 2007) listed several main advantages of LBP-TOP, namely: (a) capable of

extracting the appearance and motion features in three directions; (b) ability to capture

the local spatio-temporal transition information (i.e., pixel, region and volume levels); (c)
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robustness to rotation, translation, illumination or skin color variation, gray-scale changes

and even error in face alignment, as well as; (d) computational simplicity.

Similar to LBP, it has been extended to block-based LBP-TOP to describe more local

attributes. Figure 2.8 shows the process of extracting the block-based LBP features from

three orthogonal planes, followed by concatenating the computed local features into a

resultant histogram.
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The concatenated histogram describes the global motion of the face over a video

sequence, and it can be succinctly denoted as M:

Mb1,b2,d,c = ∑
x,y,t

I{hd(x,y, t) = c} (2.5)

where c ∈ {0, . . . ,2P− 1}, d ∈ {0,1,2}, b1,b2 ∈ {1, . . . ,N}, and 2P is the number of

different labels produced by the LBP operator on the d-th plane for case d = 0 refers to

the XY plane, which describes the appearance; case d = 1 refers to the XT plane, which

describes the horizontal motion, and; case d = 2 refers to the Y T plane, which describes

the vertical motion. As the LBP code cannot be computed at the borders of the 3D video

volume, only the central part is taken into consideration. hd(x,y, t) is the LBP code, i.e.,

Equation (2.4), of the central pixel (x,y, t) on the d-th plane, for x ∈ {0, . . . ,X − 1},y ∈

{0, . . . ,Y −1}, and t ∈ {0, . . . ,T −1}. X and Y are the width and height of image (thus,

b1 and b2 are the row and column indices, respectively), while T is the video length.

As such, the functional term I{A} determines the count of the c-th histogram bin when

hd(x,y, t) = c:

I{A}=


1, if A is true;

0, otherwise.

(2.6)

Hence, the final feature histogram is of dimension 2P×3N2. For an appropriate compar-

ison of the features among video samples of different spatial and temporal lengths, the

concatenated histogram is sum-normalized to obtain a coherent descriptor M:

Mb1,b2,d,c =
Mb1,b2,d,c

nd−1
∑

k=0
Mb1,b2,d,k

. (2.7)
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In this thesis, the LBP-TOP parameters are denoted by LBP-TOPPXY ,PXT ,PY T ,RX ,RY ,RT

where the P parameters indicate the number of neighbor points for each of the three or-

thogonal planes, while the R parameters denote the radii along the X , Y , and T dimensions

of the descriptor.

Unlike other feature extractors, LBP-TOP extracts the dynamic textures over space-

time dimensions. Hence, it remains a popular choice of feature extraction method for var-

ious applications, including gait and action recognition (Kellokumpu et al., 2009; Mattivi

& Shao, 2009), face spoofing (Chingovska et al., 2013), depression analysis (Joshi et al.,

2012) and facial expression recognition (Zhao & Pietikäinen, 2009).

Furthermore, LBP-TOP has became a baseline feature extractor in micro-expression

analysis due to its high discriminating power and impressive texture representation, for

instance, in the databases: (a) SMIC (Pfister et al., 2011); (b) SMIC II (Li et al., 2013);

(c) CASME (Yan et al., 2013); (d) CASME II (Yan, Li, et al., 2014). Specifically, LBP-

TOP is utilized to perform detection and recognition tasks, where the former aims to

classify micro-expressions versus non-micro-expressions, while the latter is to classify the

emotions into different categories (i.e., happiness, surprise, disgust, sadness and others).

Different combination of the parameters (i.e., block size, radii and number of neighboring

points) in LBP-TOP setting generates different detection and classification performance.

Yan et al. (Yan, Li, et al., 2014) provides the recognition performances of different radii

values (i.e., RX , RY and RT ) with fixed 5× 5 block size and neighboring points of 4 in

CASME II database, as tabulated in Table 2.1. Among all the values tested, the best

performance obtained is 63.41% when the radii are RX = 1, RY = 1 and RT = 4.

Wang et al. (Y. Wang et al., 2014) extended the LBP-TOP feature descriptor by

proposing the Local Binary Patterns with Six Intersection Points (LBP-SIP), before eval-

uating it in two micro-expression databases. LBP-SIP reduces redundant intersection

points to encode less unwanted information, and hence leads to a more compact represen-
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Table 2.1: Recognition accuracy in CASME II using different combination of radii values
with fixed block size and neighboring points

RX RY RT Recognition Accuracy (%)
1 1 2 63.01
1 1 3 62.60
1 1 4 63.41
2 2 2 61.38
2 2 3 61.79
2 2 4 62.20
3 3 2 58.54
3 3 3 61.79
3 3 4 58.55
4 4 2 58.94
4 4 3 61.38
4 4 4 60.57

tation and lower computational complexity. With a well-formed representation, LBP-SIP

outperforms the original LBP-TOP in the SMIC II database. In addition, a Gaussian

multi-resolution pyramid is incorporated to the LBP-SIP to capture important facial ex-

pressions in different resolutions. The resultant feature histogram that combines the face

textures from each pyramid level produces a more superior recognition accuracy. How-

ever, the optimal value of the pyramid level that provides the best performance is deter-

mined empirically through experiments.

2.3.3 Optical Flow

Optical flow is one of the basic motion estimation techniques exploited in many computer

vision applications to examine the motion pattern of object. The idea of optical flow was

introduced in 1950 by a psychologist named Gibson (Gibson, 1950). Optical flow was

first proposed to describe the visual perception and stimulus experienced by an animal

when it moves through the world. Later on, optical flow stimulus has been expanded for

the perception by the human observers during their own movement through the environ-

ment. It is the distribution of two-dimensional apparent motion of objects in an image

based on the brightness patterns in an image (Horn & Schunck, 1981). It indicates the
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Figure 2.9: Optical flow estimation of the moving object between temporally-consecutive
images towards the directions of: (a) Left; (b)Upper right

displacement and velocity of each image pixel between temporally-consecutive images

by assuming that the pixel intensity values are translated between subsequent pairs of

frames (D. Fleet & Weiss, 2006). The displacement vector is known as optical flow vec-

tor, expresses in terms of direction and magnitude. For example, Figure 2.9 illustrates the

optical flow estimation of the moving object between adjacent frames.

Conventionally, there are several approaches to accomplish the optical flow compu-

tation. They are broadly classified into the following four main types: (a) differential

(i.e., Horn and Schunk (Horn & Schunck, 1981), Lucas and Kanade (Lucas & Kanade,

1981), Nagel (Nagel, 1983)); (b) region-based matching (i.e., Anandan (Anandan, 1987),

Singh (Singh, 1990)); (c) energy-based (i.e., Heeger (Heeger, 1987)), and; (d) phase-

based method (i.e., Fleet and Jepson (D. J. Fleet & Jepson, 1990)). To investigate and

discover the capability of these four types of optical flow, Barron et al. (Barron et al.,

1994) conducted the experiments by applying them in multiple video sequences. It is

reported that the local differential method achieved the best performance over the other
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three methods. As a result, differential method is opted to approximate the optical flow

motion vectors in this thesis. The following descriptions and derivations of optical flow

are discussed based on the differential method.

In general, five assumptions are made in order to estimate the optical flow: (a) bright-

ness constancy - apparent brightness of the moving objects remains constant between

frames as the changes in the pixel intensity are due solely to motion (highlights, shad-

ows, variable illumination and surface translucency phenomena exists in the images are

ignored); (b) object rigidity - the objects in the scene are rigid and the shape changes are

neglected; (c) temporal persistence - motion of a surface patch changes gradually over

time because the movement between two adjacent frames are small; (d) spatial coherence

- the neighborhood of the object are likely to be situated on the same surface. Thus, the

neighboring points of the object are having similar velocity values, and; (e) continuous

and differentiable - image velocity are approximated from spatio-temporal derivatives of

image intensities by using differential method. Therefore, image flow field is continuous

and differentiable in both the space and time domains (Beauchemin & Barron, 1995).

The optical flow constraint equation is formulated as:

∇I •℘+ It = 0, (2.8)

where I(x,y,t) represents the changes of temporal image brightness in intensity values with

respect to time at point (x,y). ∇I = (Ix, Iy) is the spatial gradient and It is the temporal

gradient of the intensity functions. Assume that the point of interest in the image is

initially positioned at (x,y). After a change in time by dt, it moves through a distance

(dx,dy). The horizontal and vertical components of the optical flow are denoted as:

℘= [p =
dx
dt

,q =
dy
dt

]T . (2.9)
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Figure 2.10: Formation of HOOF with four bins

Optical flow has been employed in a variety of interesting applications, such as facial

expression recognition (Kenji, 1991), human skeleton tracking (Schwarz et al., 2012),

medical imaging (Garcia et al., 2012), vehicle detection (Dawood et al., 2013), object

removal (Hamilton & Breckon, 2016) and many more. In addition, several variants of

optical flow have been designed and optimized to best meet different research objectives.

Histogram of Oriented Optical Flow (HOOF) (Chaudhry et al., 2009) is one of the

techniques developed based on the optical flow. It was first introduced to recognize human

actions by building activity profiles for each frame of a video. The optical flow values

are captured as histogram bins because they are extremely vulnerable to the background

changes and illumination variation. By doing so, it allows the feature representation to

be independent to the direction of the motion and scale variation. To generate HOOF,

optical flow for each pair of adjacent frames is first computed. Then, the orientation

and magnitude are calculated based on the horizontal and vertical flow vectors. Lastly,

the histogram is formed according to the orientation, with magnitude being used as the

weight to highlight the importance of each optical flow. Figure 2.10 shows the formation

of HOOF with bin number of four.
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2.3.4 Optical Strain

Optical strain is the extension of optical flow (Gibson, 1950). In contrast to optical flow,

optical strain is robust to lighting condition, heavy makeup and camouflage (Shreve et

al., 2010; Manohar et al., 2007). Strain is the deformation of an object due to force or

stress, while deformation refers to the motion causing the alteration of surface or vol-

ume of an object (Heimdal et al., 1998). For a small enough facial pixel movement, it is

able to approximate the deformation intensity. As such, it is also sometimes called the

infinitesimal strain tensor (Lee, 1969). In brief, infinitesimal strain tensor is derived from

Lagrangian and Eulerian strain tensors after performing a geometric linearisation with

the assumption of little deformation (Simof & Hughes, 2008). Optical strain can be uti-

lized to measure the intensity of the expression occurred and is therefore useful in facial

expression detection or recognition task. Figure 2.11 shows the visualization of optical

flow and optical strain computed between onset and apex frames. Here, the occurrence

of the micro-expression is called the onset, while the disappearance of the AU is called

the offset. On the other hand, apex is the instant when the expression reaches its peak

intensity. It is observed that optical strain image is able to highlight more precise facial

muscle changes (viz., on the eyes and eyebrow regions).

In terms of displacements, a typical infinitesimal strain ε , can be defined as:

ε =
1
2
[∇~u+(∇~u)T], (2.10)

where~u = [u,v]T is the displacement vector. It can also be re-written as:

ε =


εxx =

∂u
∂x εxy =

1
2(

∂u
∂y +

∂v
∂x)

εyx =
1
2(

∂v
∂x +

∂u
∂y ) εyy =

∂v
∂y

 , (2.11)

where the diagonal strain components (εxx,εyy) are normal strain components and (εxy,εyx)
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Figure 2.11: Optical flow and optical strain computed between the onset and apex frames.
Visualization of (a) Horizontal optical flow; (b) Vertical optical flow; (c) Optical strain

are shear strain components. Normal strain measures the changes in length along a spe-

cific direction, whereas shear strain measures changes in two angular directions that form

the plane experiencing the shear distortion (Yamaji, 2007).

To estimate the strain from the optical strain magnitude (Equation (2.10)), the optical

flow vectors (p,q) in Equation (2.8) can be simplified by differentiating it to the first order

derivatives because the strain components are described in a function of displacement

vectors~u = [u,v]T . Specifically,

p =
dx
dt
≈ ∆x

∆t
=

u
∆t

=⇒ u = p∆t, (2.12)

and

q =
dy
dt
≈ ∆y

∆t
=

v
∆t

=⇒ v = q∆t, (2.13)

where ∆t is the time interval between two image frames. Since the temporal resolution

of a video is constant, ∆t is a also a constant value (i.e., fixed length), and the partial
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derivative of Equation (2.12) and Equation (2.13) are approximated as:

∂u
∂x
≈ ∂ p

∂x
∆t,

∂u
∂y
≈ ∂ p

∂y
∆t,

∂v
∂x
≈ ∂q

∂x
∆t,

∂v
∂y
≈ ∂q

∂y
∆t.

(2.14)

The second order derivatives are approximated by using Finite Difference Approxi-

mation.

∂u
∂x

=
u(x+∆x)−u(x−∆x)

2∆x
=

p(x+∆x)− p(x−∆x)
2∆x

,

∂v
∂y

=
v(y+∆y)− v(y−∆y)

2∆y
=

q(y+∆y)−q(y−∆y)
2∆y

,

∂u
∂y

=
u(y+∆y)−u(y−∆y)

2∆y
=

p(y+∆y)− p(y−∆y)
2∆y

,

∂v
∂x

=
v(y+∆x)− v(y−∆x)

2∆x
=

q(x+∆x)−q(x−∆x)
2∆x

,

(2.15)

where (∆x,∆y) are preset distances of 1 pixel.

The optical strain magnitude for each pixel can be calculated by taking the sum of

squares of the normal and shear strain components, expressed as follows:

|εx,y|=
√

εxx2 + εyy2 + εxy2 + εyx2

=

√
∂u
∂x

2

+
∂v
∂y

2

+
1
2
(
∂u
∂x

+
∂u
∂x

)
2

.

(2.16)

Optical strain has demonstrated its superiority in the literature, especially in the filed

of micro-expression detection and recognition tasks. At this juncture, it is important to

note that spotting or detection refers to the task of identifying the presence of facial ex-

pression (macro- or micro-) without determining the specific type of expression, Whereas
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recognition or categorization is to classify the type of the expression. The work by Shreve

(Shreve et al., 2009) outperformed optical flow in micro-expression detection by attain-

ing 100% detection accuracy with a single false spot. The experiments are conducted on

the USF (Yan, Wang, Liu, et al., 2014) dataset. It is achieved by spotting the peak of

the strain magnitude graph with respect to each face regions (i.e., forehead, cheeks, and

mouth) plotted in time series. The example of the face partition is shown in Figure 2.12(a).

However, the drawbacks of the experiment is that, the dataset contains only seven sam-

ples, which is relatively small. Besides, the micro-expressions spotted are posed rather

than spontaneous stimulation. Thus, the spotting task may be easier to be performed as

the spotted expressions contain larger and more obvious facial motion.

Few years later, the same authors (Shreve, Godavarthy, et al., 2011) carried out a

more extensive test on two more datasets. An improved algorithm is implemented to

spot the micro-expressions. For the existing USF-HD database (Shreve, Godavarthy, et

al., 2011), the micro-expressions are increased to 100 samples. The two extra datasets are

Canal-9 dataset (Vinciarelli et al., 2009) and “found videos” dataset (Ekman, 2009b). The

former contains 24 micro-expressions, while the latter consists of 4 micro-expressions.

The modified algorithm is able to distinguish between universal macro-expressions and

rapid micro-expressions. To capture the local gradient of motion, the face is divided into

eight smaller regions, particularly: forehead, left and right of eye, left and right of cheek,

left and right of mouth and chin. The illustration of the facial segmentation is shown in

Figure 2.12(b). Finally, the peaks in the strain plots (which are obtained from the optical

strain magnitudes for each region) are identified as the spotted expressions. A promising

spotting accuracy of 74% is obtained.

The latest work by the same group of author Shreve et al. (Shreve et al., 2014) is to

examine an enhanced technique to segment out the macro- and micro-expressions frames

in video sequences. The mouth and eyes regions of the face are masked because there
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Figure 2.12: The eyes are masked for privacy concerns. Face is segmented into: (a)
Three regions (i.e., forehead, cheeks, and mouth) (Shreve et al., 2009); (b) Eight regions
(i.e., forehead, left and right of eye, left and right of cheek, left and right of mouth and
chin) (Shreve, Godavarthy, et al., 2011); (c) Four regions (i.e., upper left, lower left, upper
right and lower right) (Shreve et al., 2014)

are noises due to violation of the smoothness constraints and self-occlusions. Instead of

partitioning the face into eight regions (Shreve, Godavarthy, et al., 2011) , they divide

the face into four regions: upper left, lower left, upper right and lower right, as shown

in Figure 2.12(c). The databases considered to evaluate the proposed method are USF-

combination (Shreve et al., 2014) (consists of 37 feigned micro-expression samples) and

SMIC micro (Pfister et al., 2011) (contains 77 micro-expression sequences). The best

performance obtained is nearly 80% true positive rate for spotting micro-expressions with

a 0.3% false positive rate on USF-combination dataset.

Optical strain technique is found to be useful in medical analysis (Shreve, Jain, et

al., 2011). Owing to the fact that optical strain highlights subtle changes between two

images, it can provide a useful measure of the asymmetries at the precise position on
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the face. Therefore, it can potentially allow surgeons to estimate the severity of facial

paralysis in a short period instead of marking them manually, which is time consuming

and requires a great degree of human effort.

2.4 Overview of Micro-expression Databases

Normal expressions have well-established databases and are being studied comprehen-

sively. In contrast, there are relatively few micro-expression databases in the literature.

As a result, the new micro-expression techniques developed have limited databases to be

evaluated and analyzed on, thus hindering the progress in related researches. According to

the benchmark of micro-expression defined by Ekman (Ekman & Friesen, 1969), micro-

expression has to be both micro and subtle. In this section, the existing micro-expression

databases and the problems faced by them are discussed. Each database is elaborated in

each sub-chapter, namely SMIC (Pfister et al., 2011), SMIC II (Li et al., 2013), CASME

(Yan et al., 2013), CASME II (Yan, Li, et al., 2014), and others. Note that the videos

collected are unequally distributed in different classes due to the difficulties in eliciting

some particular types of the micro-expressions.

2.4.1 SMIC

Spontaneous Micro-expression (SMIC) dataset is made up of 77 spontaneous and dy-

namic videos from six participants (three males and three females). The videos are

recorded using PixeLINK PL-B774U camera with a temporal resolution of 100 frames

per second (fps) and spatial resolution of 640 × 480 pixels. The average frame length

is 29 frames (∼ 0.3 s) and the shortest expression is 11 frames (∼ 0.11 s). The videos

are elicited by asking the participants to maintain a neutral face and suppress their gen-

uine feeling whilst watching the clips. The researchers attempt to guess the type of the

video clip episode the participants are watching. If the researchers guess it correctly, the

participants are asked to fill in a long and dull questionnaire. The collected video record-
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ings are then labeled by two coders, whereby the clips are first viewed frame by frame

before repeating the viewing process with increasing speed. This ground-truth labeling

process follows the advice proposed by Ekman (Ekman, 2009a). Lastly, the expression

categories are determined by two coders after considering the self-reported emotions by

the participants.

To establish the baseline performance, all the recorded micro-expression videos un-

dergo three main processes (i.e., pre-processing, feature extraction and classification) to

obtain the expression recognition results. Firstly, in the pre-processing step, a Haar eye

detector (Niu et al., 2006) is adopted to obtain the location of the eyes. Then, ASM

(Cootes et al., 1995) is employed to annotate the facial feature points, which are used for

face segmentation and normalization. LWM (Goshtasby, 1988) is exploited to transform

the feature point from the original face into a pre-defined template face. All the normal-

ized face images are interpolated into a certain frame number by Temporal Interpolation

Model (TIM) (Zhou et al., 2012) to address the problem of short video lengths. A sim-

ple graphical illustration of TIM is shown in Figure 2.13(b), where a video is mapped

onto the curve to generate new video data. Secondly, block-based LBP-TOP (Zhao &

Pietikainen, 2007) is employed as feature descriptor with the block size of 5 × 5 and

8 × 8. Thirdly, three different types of classifier, including: (a) Support Vector Ma-

chine (SVM) (Suykens & Vandewalle, 1999) with Leave-One-Subject-Out Cross Vali-

dation (LOSOCV) setting; (b) Random Forest (RF) (Breiman, 2001), and; (c) Multiple

Kernel Learning (MKL) (Varma & Ray, 2007), are adopted for the detection and recogni-

tion tasks. Detection classifies micro-expressions versus non-micro-expressions, whereas

recognition classifies the type of emotion (i.e., either negative, positive or surprise). For

LOSOCV in SVM, the video sequence of one subject is treated as the testing data and

the remaining frames as the training data. This process is repeated for k times, where k

is the number of subjects in the database. Then, the recognition results for all subjects
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Table 2.2: Detailed information of the SMIC database

SMIC
Participants 16

Camera
Type PixeLINK PL-B774U
Frame rate (fps) 100

Image resolution (pixels) 640×480
Total Expression 77

Frame number
Average 29
Minimum 11

Video duration (s)
Average 0.30
Minimum 0.11

Pre-processing technique

Haar eye detector
ASM
LWM
TIM

Feature Extractor LBP-TOP

Classifier
SVM
RF

MKL

Best Result (%)
Detection 74.30
Recognition 71.40

are averaged to form the final recognition accuracy. The best accuracy results obtained in

SVM classifier is 74.3% for the detection task and 71.4% for the recognition task. The

data composition of SMIC database is tabulated in detail in Table 2.2.

2.4.2 SMIC II

Two years later, a newer Spontaneous Micro-expression (SMIC) dataset is established

by the same group of researchers (Li et al., 2013). This database is named as SMIC II

to clear up the confusion between this database (Li et al., 2013) and the one with the

same name published in 2011 (Pfister et al., 2011). This database contains 164 micro-

expression video clips elicited from 16 participants with an average age of 28.1 years.

It is made up of six females, ten males, where eight Asians and eight Caucasians are

involved. To elicit the micro-expression, the participants are asked to watch several short

emotional video clips and to try to maintain their head position while watching the clips.

The participants are asked to put on a poker face and to not reveal their true feelings.
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Figure 2.13: (a) SMIC sample images; (b) Video mapping on the curve by adopting TIM
to produce a new video

While the participants are watching the films, the researchers stay in the other room to

observe their facial and body movements through the camera, and at the meantime try

to guess which clip they are watching. They are given a short break after watching each

video clip. If they failed to hide their feelings or, in other words, the researchers guess the

correct video clip, the participants are asked to fill in a very long and boring questionnaire

of more than 500 questions. The acquisition setup of micro-expressions elicitation for

SMIC II is shown in Figure 2.14. The camera is placed right on top of the screen to

capture the facial expression of the participants. After collecting the micro-expression

videos, the expression categories are determined by two coders based on the participants’

self-report data. The ground-truths of the dataset are provided, which include the onset,

offset of the expression, the represented expression, and the marked Action Unit (AU).
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Figure 2.14: The acquisition setup for micro-expression elicitation of SMIC II database

SMIC II database consists of two sub-datasets, which are the long video and the

short video. The video sequence that contains only frames from onset to offset is de-

fined as short video. On the other hand, Long video refers to the raw video sequence

which may include the frames with micro-expressions and other irrelevant motions that

present before the onset and after the offset. The sub-datasets grouped under the short

video category are SMIC-HS, SMIC-VIS and SMIC-NIR, which are recorded with dif-

ferent cameras at slightly different positions. The sub-datasets belonging to the long

video category are SMIC-E-HS, SMIC-E-VIS and SMIC-E-NIR. The details of these six

sub-datasets are described in the following sub-chapters. Figure 2.15 shows the graphical

representation of short and long videos with annotated ground-truth labels, including the

onset, apex and offset frames.

2.4.2.1 Short Video

In this sub-chapter, detailed information of the three short video datasets in SMIC II are

discussed, namely, SMIC-HS, SMIC-VIS and SMIC-NIR. In addition, the baseline de-

tection and recognition performances for each dataset are provided. The pre-processing

method exploited in these datasets are ASM and Haar eye detector, while the feature
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Figure 2.15: Example of short and long videos with onset, apex and offset annotations

descriptor employed is block-based LBP-TOP. SVM with LOSOCV configuration is

adopted as the classifier.

Table 2.3 summarizes the general information about short videos in SMIC II database.
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SMIC-HS

This dataset is made up of 164 video clips from 16 participants. The videos are recorded

using PixeLINK PL-B774U camera with a temporal resolution of 100 fps and spatial

resolution of 640 × 480 pixels. The average frame length is 34 frames (∼ 0.34 s); the

longest being 58 frames (∼ 0.58 s) and the shortest being 11 frames (∼ 0.11 s). There are

three emotion classes: surprise (43 videos), positive (51 videos) and negative (70 videos).

A three-class baseline recognition accuracy is reported as 48.78% by employing

block-based LBP-TOP with block size of 8 × 8 as the feature descriptor and TIM of 10

frames. For detection, the accuracy achieved is 65.55% by changing the block size of

LBP-TOP to 5 × 5.

SMIC-VIS

It is a collection of 71 videos obtained from eight subjects. The videos are recorded using

a standard visual camera at a resolution of 640 × 480 pixels at 25 fps. The average frame

length is 10 frames (∼ 0.4 s); the longest is 13 frames (∼ 0.52 s) and the shortest is 4

frames (∼ 0.16 s). The videos are categorized into three classes, namely: surprise (20

videos), positive (28 videos) and negative (23 videos).

The baseline performance for this three-class recognition task is 52.11%. An LBP-

TOP with 5× 5 block partitioning and TIM of 10 frames are adopted. For the detection

task, the block size of LBP-TOP when set to 5 × 5 generates the best result of 62.68%.

SMIC-NIR

It consists of 71 clips from eight subjects. The videos are recorded using a near-infrared

camera with a frame rate of 25 fps at 640 × 480 pixels. The video clips have an average

length of 10 frames (∼ 0.4 s); the longest being 13 frames (∼ 0.52 s) while the shortest
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is 4 frames (∼ 0.16 s). It consists of three classes,namely: surprise (20 videos), positive

(28 videos) and negative (23 videos).

A recognition results of 38.03% is obtained by employing LBP-TOP with block

partitions of 8 × 8 with TIM of 10 frames. The detection accuracy of 59.15% is achieved

when block size is 8 × 8 and TIM is 20 frames.

2.4.2.2 Long Video

In this sub-chapter, detailed information of the three long video datasets in SMIC II are

discussed, namely, SMIC-E-HS, SMIC-E-VIS and SMIC-E-NIR. The detailed informa-

tion for long videos in SMIC II database is tabulated in Table 2.4.
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SMIC-E-HS

It consists of 157 micro-expression clips from 16 subjects (mean age of 28.1 years). The

videos are recorded using PixeLINK PL-B774U camera with a temporal resolution of 100

fps and spatial resolution of 640 × 480 pixels. The average frame length is 590 frames

(∼ 6 s); the longest being 1200 frames (∼ 12 s) while the shortest is 120 frames (∼ 1.2

s). There are three micro-expression classes, including: negative (66 videos), positive (51

videos) and surprise (40 videos).

SMIC-E-VIS

This dataset is made up of 71 micro-expression videos from eight subjects. The videos

are recorded using a standard visual camera with a frame rate of 25 fps at 640 × 480

pixels. The video clips have an average length of 150 frames (∼ 6 s); the longest being

300 frames (∼ 12 s) and the shortest is 30 frames (∼ 1.2 s). It consists of three micro-

expression classes, including: negative (24 videos), positive (28 videos) and surprise (19

videos).

SMIC-E-NIR

It is a collection of 71 micro-expression video sequence obtained from eight subjects. The

videos are recorded with a near-infrared camera at a resolution of 640 × 480 pixels at 25

fps. The average frame length is 150 frames (∼ 6 s); the longest being 300 frames (∼ 12

s) and the shortest is 30 frames (∼ 1.2 s). The micro-expression videos are categorized

into three classes, including: negative (23 videos), positive (28 videos) and surprise (20

videos).
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2.4.3 CASME

The Chinese Academy of Sciences Micro-expression (CASME) database comprises of

195 micro-expressions from 35 subjects (13 females, 22 males) with an average age of

22.03 years and standard deviation of 1.6. There are eight main emotion classes of micro-

expression, in the following distribution: 2 fear videos, 3 contempt videos, 5 amusement

videos, 6 sadness videos, 20 surprise videos, 28 tense videos, 40 repression videos, and 88

disgust videos. The micro-expressions are elicited from the participants by showing them

the video episodes downloaded from the Internet. During the recording period, they are

asked to maintain a neutral face, while keeping their eyes still and their head stationary.

To enhance the elicitation process, the participants are not allowed to show any facial

expressions, or else their remuneration will be deducted. The emotion types are labeled

based on the participants’ self-report and two psychological researchers. A reliability

score of the AU labeling is reported at 0.83. The ground-truths provided include the

onset, apex, offset frames indices, the AUs labels as well as the emotion classes.

There are two sub-categories in this database (i.e., CASME A and CASME B) that

are recorded under different environmental configuration and with different camera type.

More precisely, in CASME A, the videos are collected using BenQ M31 camera at a

spatial resolution of 1280 × 720 pixels and a frame rate of 60 fps. The average total

duration is 289.96 ms (∼ 17 frames), with the average onset duration is 130.32 ms (∼

7 frames). For CASME B, the videos are recorded with a Point Grey GRAS-03K2C

camera at a resolution of 640 × 480 pixels and frame rate of 60 fps. The video clips have

an average total duration of 299.24 ms (∼ 18 frames) and an average onset duration of

123.99 ms (∼ 7 frames).

The contents of CASME A and CASME B databases are summarized and tabulated

in Table 2.5.
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Table 2.5: Detailed information of CASME A and CASME B databases

CASME A CASME B
Participants 35

Camera
Type BenQ M31 Point Grey GRAS-03K2C
Frame rate (fps) 60 60

Image resolution (pixels) 1280×720 640×480

Expression

Fear 2
Contempt 3
Amusement 5
Sadness 6
Surprise 20
Tense 28
Repression 40
Disgust 88

Frame number
Average 17 18
Onset 7 7

Video duration (s)
Average 0.3 0.3
Onset 0.1 0.1

Ground-truth
Onset and offset frame indices

Emotion label
Action unit label

Reliability score 0.83

2.4.4 CASME II

Subsequent to CASME (Yan et al., 2013) database development, the same group of re-

searchers (Yan, Li, et al., 2014) published a newer database with more micro-expression

samples. Similar to SMIC II (refer to Chapter 2.4.2), it consists of two sub-datasets (i.e.,

short videos and long videos). To clarify the difference between the short videos and long

videos in this dissertation, the dataset for short videos is named as CASME II, while the

dataset for the long videos is named as CASME II-RAW. These databases are recorded

using a 200 fps high speed camera, Point Grey GRAS-03K2C, with the image resolution

set to 640 × 480. 26 participants with an average age of 22.03 years and standard devi-

ation of 1.6 are involved in the databases. The elicitation of the micro-expression videos

is similar to that in CASME (Yan et al., 2013), except that several new video episodes

that are used to trigger participants’ expressions are added and some of the old ones are

removed. Besides, the acquisition environment and setup are improved for the record-
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ing process. As illustrated in Figure 2.16, four LED lamps and umbrella reflectors are

meticulously positioned to reduce the illumination variation on the face and to prevent

the flickering light from being captured by the camera. The emotion labels are annotated

based on the action unit labels marked by two coders, participants’ self report and the

content of the video episodes. The reliability score for the action unit labeling performed

by the coders is 0.85. The ground-truths provided include onset, apex, offset frame in-

dices, action unit labels and the emotion classes. Information for CASME II and CASME

II-RAW is elaborated in the following sub-chapters and is summarized in Table 2.6.

2.4.4.1 CASME II

This dataset consists of 247 micro-expression video clips, particularly, 25 surprise videos,

27 repression videos, 33 happiness videos, 60 disgust videos, and 102 others videos. The

video clips have an average length of 68 frames (∼ 0.3 s); the longest being 141 frames

(∼ 0.7 s) and the shortest is 24 frames (∼ 0.1 s). To establish a baseline recognition per-

formance, 5× 5 block partitioning in LBP-TOP is adopted. The features are classified by

SVM with Leave-One-Video-Out Cross Validation (LOVOCV) protocol. For LOVOCV

principle, only one video sequence is treated as testing data and the remainder as train-

ing data. This process is repeated for k times and the results are averaged to obtain the

resultant recognition accuracy, where k is the total number of videos in the database. A

five-class classification of 63.41% is reported.

2.4.4.2 CASME II-RAW

This dataset is a collection of 246 micro-expressions videos. The distribution of the ex-

pression videos is: surprise (25 videos), repression (27 videos), happiness (32 videos),

disgust (63 videos), and others (99 videos). The average frame length is 244 frames (∼

1.22 s), with the longest being 1,024 frames (∼ 5.12 s) and the shortest is 51 frames (∼

0.26 s).
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Figure 2.16: The acquisition setup for micro-expression elicitation of CASME II
database

2.4.5 Other Micro-expression Databases

Apart from the aforementioned datasets, there are also other micro-expression databases

adopted in developing detection and recognition algorithms. This sub-chapter briefly

describes these databases and points out their problems. Specifically, these databases

include: (a) USF-HD (Shreve, Godavarthy, et al., 2011); (b) Polikovsky’s (Polikovsky

et al., 2009), and; (c) YorkDDT (Warren et al., 2009; Pfister et al., 2011). The general

information of these three databases are tabulated in Table 2.7.

USF-HD database contains 100 micro-expressions with six different emotion classes.

Participants are asked to perform macro and micro-expressions and the videos are recorded

at the frame rate of 30 fps with a resolution of 720 × 1280. The main drawback of this

database is that they are posed micro-expressions rather than spontaneous ones, which

is against the principle of micro-expression. Besides, the micro-expression videos have

longer duration (two-third of a second), far exceeding the normal definition of one-fifth

of a second.

In Polikovsky’s database, 10 participants are asked to perform seven basic emotions

with low facial muscle intensity so that they can go back to the neutral face expression as
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Table 2.6: Detailed information of the CASME II and CASME II-RAW databases

CASME II CASME II-RAW
Participants 26

Camera
Type Point Grey GRAS-03K2C
Frame rate (fps) 200

Image resolution (pixels) 640 × 480

Expression

Surprise 25 25
Repression 27 27
Happiness 33 32
Disgust 60 63
Others 102 99
Total 247 246

Frame number
Average 68 244
Maximum 141 1024
Minimum 24 51

Video duration (s)
Average 0.3 1.2
Maximum 0.7 5.1
Minimum 0.1 0.3

Ground-truth
Onset, apex and offset frame indices

Emotion label
Action unit label

Reliability score 0.85

Pre-processing technique
ASM

N/A
LWM

Feature Extractor LBP-TOP N/A
Classifier SVM N/A
Best result (%) Recognition 63.41 N/A

Table 2.7: General information of the USF-HD, Polikovsky’s and YorkDDT databases

USF-HD Polikovsky’s YorkDDT
Participants N/A 10 9
Camera Frame rate (fps) 300 200 N/A
Image resolution (pixels) 720×1280 480×640 320×240

Expression
Type 6 6 N/A
Total 100 42 18

Posed/ Spontaneous Posed Posed Spontaneous

fast as possible. The videos are recorded under a frame rate of 200 fps with a resolution

of 480 × 640. A total of 42 micro-expression samples are collected with six different

emotion categories. Again, the drawback is that they are posed micro-expressions rather

than spontaneous one.

In YorkDDT database, there are 18 micro-expressions elicited from nine participants

51

Univ
ers

ity
 of

 M
ala

ya



(3 males and 3 females). Among the micro-expressions, 7 are from emotional (i.e., truth-

ful) and 11 are from non-emotional (deception) scenarios. The videos are recorded with a

resolution of 320 × 240 pixels. The micro-expressions are spontaneous but incorporated

with other irrelevant facial movements. Besides that, the sample size is small, which is

insufficient for proper experiment.

2.5 Summary and Limitations

An overview of a typical micro-expression recognition system was presented, including

pre-processing and feature extraction stages. For the pre-processing stage, face registra-

tion and alignment steps are the most common processes applied on the datasets. This

is because irrelevant motions that are larger than the micro-expression movements (i.e.,

head movements) can greatly affect the recognition performance. Due to the fact that the

state-of-the-art landmark annotators are incapable of detecting the exact locations of the

facial feature points for each frame, only the first frame of the videos are registered based

on the model face image, while the remaining frames would re-use the transformation

matrix derived from the first frame. The second pre-processing technique is image filter-

ing. Filtering process blurs the face image and minimizes the noises caused by changes in

illumination or light flickering effects. A variety of filters are established in the literature

but the images in different databases may involve different kinds of noise. Thus, a data

driven approach is necessary to determine the ideal filter type. The third pre-processing

procedure is to select facial regions which generate the most significant and meaning-

ful features that best represent the expressions. Nonetheless, to date, there is no perfect

or standard facial patches combination (i.e., size, shape and position) in obtaining good

facial expression recognition results. The RoI extraction technique suggested in the con-

ventional work are evaluated on different databases which incorporate various types of

nature and attribute.
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The next stage in a micro-expression recognition system is the feature extraction

process. The two feature extractors, namely, LBP and LBP-TOP, were discussed in the

earlier sub-chapters. These two feature extractors are highly sensitive to the noises. Any

noises in the image can cause a large impact to the output features. Due to the thresholding

scheme of the feature descriptors, they may not operate consistently on the areas with

constant gray level. On the other hand, optical flow and optical strain feature descriptors

are computationally intensive due to the complexity of the derivative operations. Thus,

a real-time application by implementing optical flow or optical strain is not possible.

Besides, noises in the image poses a great disadvantage againts optical flow estimation,

as optical flow operates by searching the matching pixels between a pair of frames.

In order to evaluate the methods proposed in this study, it is essential to conduct the

experiments on several micro-expression databases. However, to date, there are only a

few micro-expression databases that are eligible for training and testing purposes. The

first requirement on the database is that it has to have a large number of samples to verify

the robustness of the proposed method. Secondly, a camera with high frame rate is re-

quired in order to record sufficient number of frames. Thirdly, a proper acquisition setup

for expression elicitation is crucial to ensure that clear facial movements are recorded,

and to avoid capturing unnecessary noises at the same time. However, there are some

limitations in the current databases. One of the shortcomings is the inconsistency among

the participants when interpreting the video clips displayed on the screen. For instance,

a participant may think of a scene of chewing worms as funny while others may feel dis-

gusting. Furthermore, the video elicitation process is always performed in one specific

constrained laboratory condition, yet the elicited expression may be altered in different

environment. Lastly, most participants have ages between 20 to 30 years. A wider range

of ages may benefit the analysis of the study. Among all the micro-expression databases

discussed above, CASME II and SMIC-HS are the most valid databases to evaluate the
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proposed methods. This is because the micro-expressions in these two databases are

spontaneous, rapid, subtle and contain sufficient number of sample size.
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CHAPTER 3: HYBRID FACIAL REGIONS SELECTION

3.1 Overview

This chapter presents in detail a proposed pre-processing method. Due to the subtlety

and brief duration of the micro-expression occurrence on the face, it is essential to se-

lect particular expressive and meaningful facial areas for efficient recognition of micro-

expressions. Specifically, a facial region selection technique is introduced, namely RoI-

Selective, which is a hybrid of both heuristic-based and automatic approaches. The

heuristic-based identification of important facial regions provides the statistics of the oc-

currence frequency for the facial action units in the micro-expression videos, while the

automatic detection of the landmark points are performed using the state-of-the-art Dis-

criminative Response Map Fitting (DRMF) method. As a consequent of the fusion of

the two approaches, three essential Regions of Interest (RoIs) are formed. Two spatio-

temporal feature extractors, namely, OSF and block-based LBP-TOP, are applied to de-

scribe the local textural and motion features in each facial RoI. Experiments on two recent

spontaneous micro-expression databases confirm the effectiveness of considering only the

most salient facial regions for the purpose of recognizing micro-expressions. A thorough

analysis highlights the range of region-tuning parameters that generates optimum results,

as well as computational savings offered by the proposed method. Results suggest that

the proposed method is appropriate for micro-expression analysis.

3.2 Motivation

Until now, researches on micro-expression recognition are sparsely found. Among the

very few methods proposed: (a) Polikovsky et al. (Polikovsky et al., 2009) employed a

3D-gradient descriptor; (b) Wang et al. (S. J. Wang, Chen, et al., 2014) characterized

a gray-scale video clip of micro-expression as a 3rd-order tensor, using Discriminant
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Tensor Subspace Analysis (DTSA) (S. J. Wang et al., 2011) for feature description and

Extreme Learning Machine (ELM) (G. B. Huang et al., 2004) as classifier; (c) Wang et al.

(S. J. Wang, Yan, et al., 2014) extract Local Spatio-temporal Directional Features (LSTD)

features (Zhao & Pietikäinen, 2013), and; (d) Pfister et al. (Pfister et al., 2011) utilized a

TIM to normalize the frame numbers of micro-expression videos, before applying LBP-

TOP descriptor (Zhao & Pietikainen, 2007) to obtain features. All methods utilize the

entire facial area for feature extraction, with the exception of the work by (c) Wang et al.

(S. J. Wang, Yan, et al., 2014). This is seemingly logical but it is hypothesized that those

facial regions which typically do not contribute to micro-expressions might instead, be

more susceptible towards noise or minor variations at the pixel level. Therefore, are we

looking at where it matters?

3.3 Literature Review

3.3.1 Action Unit

In 1978 (Ekman & Friesen, 1978), Ekman and Friesen established Facial Action Coding

System (FACS) to determine the relation between the facial muscle changes and the emo-

tion state. FACS can be used to identify the exact time spot of the beginning and ending

for each Action Unit (AU), where AUs are elementary components of FACS representing

the action of individual muscles or a cluster of muscles. In 2002, Ekman et al. (Ekman et

al., 2002) revised and updated the FACS to 46 AUs, of which 18 cover the lower face and

12 are for the upper face. Figure 3.1 shows some AUs of the FACS with their interpreta-

tions. The sample images are excerpted from a macro-expression database – CK+ (Lucey

et al., 2010), thus the facial motions are obvious.

The full temporal pattern of the facial expression occurrence is in a sequential order

of neutral-onset-apex-offset-neutral (M. F. Valstar & Pantic, 2007). Specifically, onset is

the span between the first visible AU to the apex of the AU, while offset is defined as the
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span from the end of the apex of the AU until the disappearance of the AU. On the other

hand, apex frame is the location where the AU reaches the peak or the highest intensity of

the facial motion. Noted that the location of the onset, offset and apex for the AUs may

be different for the same emotion. Figure 3.2 illustrates a sample video annotating the

onset, apex and offset frame indices, that shows a ‘Surprise’ expression, taken from the

CASME II database (Yan, Li, et al., 2014).
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FACS expresses the movements of human facial muscles from the appearance. Facial

emotion ratings are based on the categorization of expressions into six classical emotions,

namely, happiness, surprise, anger, sad, fear, and disgust (Ekman & Friesen, 1971). FACS

can describe subtle and ambiguous expressions, thus it is more appropriate to describe the

tiny instant changes on the face. Furthermore, an AU represents the facial muscle move-

ments on a specific facial region in single direction. For example, referring to Figure 3.1,

AU 23 is lip tightener and AU 24 is lip pressor. AUs can occur either singly or in combi-

nation. For instance, both AU 2 and AU 1+2 represent the surprise emotion state, where

AU 1 is the inner brow raiser while AU 2 is the outer brow raiser (Yan, Li, et al., 2014).

The intensity of the AU can be estimated using a six-point scale, from Neutral < (A) trace

< (B) slight < (C) marked/ pronounced < (D) severe/ extreme < (E) maximum.

Facial action unit has been studied intensively, specifically in the analysis on AU

detection, recognition and intensity level estimation (M. F. Valstar et al., 2015; Savran et

al., 2012; M. Valstar & Pantic, 2006; Rudovic et al., 2014; Jiang et al., 2014), and most

recently for micro-expression analysis (S. J. Wang, Yan, et al., 2014) as well. It has been

reported that the accuracy of facial expression recognition can be improved with the prior

knowledge of the AU information. This is intuitive as AUs are essential for establishing

geometrical structure of various facial landmarks. However, a notable challenge with

micro-expressions is that the AUs (or a combination of AUs) that are associated with

each emotion classes not only differ from that of normal expressions, but are themselves

highly variable within each class. For instance, the ‘disgust’ emotion in standard FACS

(Ekman et al., 2002) is encoded by AUs 9, 15 and 16, but psychologists in the micro-

expression domain have labeled it with AUs 9 or 10 or 4+7 (Yan, Li, et al., 2014), or

any combination of these. Figure 3.1 demonstrates the emotions and their AU labels in

CASME II database.
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Figure 3.3: Examples of the emotion and AU labels (facial movements are highlighted)
in CASME II database (Yan, Li, et al., 2014) : (a) Fear - AU 20; (b) Sadness - AU 1; (c)
Disgust - AU L4; (d) Happiness - AU R12; (e) Surprise - AU R2

3.3.2 Region of Interest

Some recent works on expression analysis achieved high recognition rate by considering

a smaller set of descriptive facial patches. For example, Fan and Verma (Fan & Verma,

2009) employed a fusion of four facial regions (i.e., left eye, right eye, nose and mouth)

that contain the most discriminative facial characteristics on human faces to perform face

recognition on FERET database (Phillips et al., 1998). They claimed that the classifica-

tion accuracy obtained using their approach is the best among the previously published

results.

Zhong et al. (Zhong et al., 2015) proposed a two-stage multitask sparse learning

framework to extract discriminative patches (total of approximately one-third of the face),

mostly located around the mouth, nose and eyes regions, as illustrated in Figure 3.4(a).
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They first select some common dominant facial patches across all the expressions, fol-

lowed by expression-specific facial patches learned with the aid of face verification. On a

similar note, another recent method (Happy & Routray, 2015) also extracted salient facial

patches by identifying various facial landmarks initialized by coarse RoIs. The example

of the selected regions is shown in Figure 3.4(b). Albeit good performance on the macro-

expression databases by CK+ (Lucey et al., 2010) and Jaffe (Lyons et al., 1999), their

method appears to ignore the importance of temporal dynamics.

An earlier work by (Anderson & McOwan, 2006) utilized motion velocity informa-

tion by averaging them over specific pre-defined regions (demonstrated in Figure 3.4(c))

of the face in condensed form. The motion values are determined by a robust differ-

ential based optical flow algorithm. In detail, these works tailor their patch selection

methods and subsequent feature representations towards macro-expressions. As micro-

expressions are minute occurrences and can easily be misinterpreted as noises, a learning-

free approach coupled with good facial registration are vital factors towards careful region

selection.

A recent attempt by Wang et al. (S. J. Wang, Yan, et al., 2014) that suggests to extract

the micro-expression features from a specific set of facial regions (i.e., 16 RoIs) with fix

sizes and shapes, achieves some promising expression recognition results. However, the

16 RoIs are highly dependent on precise estimation of a large number of landmarks and

hence it is vulnerable towards registration errors. Moreover, the regions are locked to

a fixed size shape dictated by the landmarks, which may not be the optimal areas that

capture the perfect feature information all the time. Figure 3.4(d) shows that the regions

are determined based on AU knowledge.
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Figure 3.4: Regions of interest suggested by: (a) Zhong et al. (Zhong et al., 2015); (b)
Happy and Routray(Happy & Routray, 2015); (c) Anderson and McOwan(Anderson &
McOwan, 2006); (d) Wang et al. (S. J. Wang, Yan, et al., 2014)

3.3.3 Landmark Coordinate Detector

To extract the features of the facial RoIs at particular locations, it is essential to register

and track the facial feature points in the pre-processing stage. As mentioned earlier in

Chapter 2.2.1, there are three techniques to detect the sets of feature points: (a) ASM

(Van Ginneken et al., 2002); (b) CLM (Cristinacce & Cootes, 2006), and; (c) AAM

(Cootes et al., 1998). Among the feature point detectors, CLM has been reported to

be more robust, effective and precise in tracking when compared to the holistic-based

model (i.e., AAM) method, as demonstrated by Cristinacce and Cootes (Cristinacce &

Cootes, 2008). They examined the superiority of CLM over AAM by conducting several

sets of experiment on medical images, such as magnetic resonance brain images, dental
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Figure 3.5: Example of annotating the 66 landmark coordinates using DRMF method on
a CASME II image

panoramic tomograms and human faces. In general, CLM learns the shape model and the

variation in appearance from a labeled training set and generates a set of template regions

surrounding each individual feature point (Cristinacce & Cootes, 2004).

In 2013, Asthana et al. (Asthana et al., 2013) proposed a fully automatic and rela-

tively quick facial landmark detector – DRMF. It is constructed based on the CLM frame-

work. Using the MATLAB implementation by the authors, it only takes one second of

execution time per image (Asthana, n.d.). In contrast to AAM, it adopts part-based ap-

proach, where each image patch around the landmark points captures the local texture

properties of the object. The sampled regions are then projected onto a reference frame

and an efficient shape constrained search using normalized correlation will generate a

set of response surface maps. It has been reported to outperform previous landmark de-

tection methods (Zhu & Ramanan, 2012; Saragih et al., 2011), with lower computational

time, with features including real-time capabilities and ability to handle faces in-the-wild.

In addition, this framework is the current state-of-the art among all fitting optimization

strategies for CLM.

An example of annotating the 66 landmark coordinates using DRMF method on an

image from CASME II is shown in Figure 3.5.
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3.3.4 Feature Representation

Besides locating the most salient areas, facial information should also be well-represented

in order to properly characterize expressions. For the purpose of experiments of this

chapter, LBP-TOP and optical strain are utilized to describe the facial features. Brief

information of these two feature descriptors are highlighted below.

As mentioned in Chapter 2.3.2, LBP-TOP has been entensively researched and many

variants exist in the literature, with a majority of contribution coming from the area of

texture classification (Guo et al., 2010) and facial analysis (Shan et al., 2009). There

are many benefits of employing LBP-TOP as feature descriptor, such as high discrim-

inating power, computational simplicity, capability in capturing spatio-temporal detail,

concise texture representation as well as robustness to rotation, translation, and illumina-

tion change. Recently, LBP-TOP descriptor has also found its way to micro-expression

recognition (Yan, Li, et al., 2014; Y. Wang et al., 2014; Li et al., 2013).

On the other hand, recall from Chapter 2.3.4, Shreve et al. (Shreve et al., 2009)

verified that expressing the tiny facial movement information using optical strain patterns

resulted in better performances when distinguishing small motion of a two-dimensional

deformable object in an image. They reported a perfect 100% micro-expressions detec-

tion accuracy on their own USF database. In their later work (Shreve et al., 2014), by

validating a newer approach on the USF-Combination dataset with more samples, the

optical strain technique achieved around 80% true positive rate for detecting the micro-

expression frames.

3.3.5 Databases

Two most recent and comprehensive databases that meet the requirements of spontaneous

micro-expression are considered in this chapter, namely SMIC-HS and CASME II. The

detailed information of SMIC-HS and CASME II datasets have been elaborated in Chap-
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ter 2.4.2.1 and Chapter 2.4.4.1, respectively. In brief, they are both publicly available

and comprise of sufficiently large number of video samples for experimental evaluation.

Samples from both SMIC-HS and CASME II are acquired at relatively high frame rates

(i.e., more than 100 fps) to better locate the occurrence of micro-expressions. Hence,

they are conducive for micro-expression recognition research. Since micro-expression

recognition research is still at an early stage, both databases are recorded in a constrained

laboratory condition with the labeling done by two trained annotators. Unemotional facial

movements are also eliminated from the final selected sequences to allow more relevant

expression detail to be captured in the feature extraction process.

3.4 Proposed Facial Regions Selection

In this chapter, a novel hybrid RoIs selection approach is proposed, namely RoI-Selective,

to better recognize spontaneous micro-expressions. To achieve this goal, the RoIs selector

and two feature extractors are put forward as follows:

1. Hybrid RoIs extraction - the position of 66 facial landmark points are automatically

annotated by using the DRMF method. Then, the three RoIs determined heuristi-

cally from the database which contain significant and important micro-expression

information are extracted from the entire frame, based on the coordinate of selected

landmarks.

2. OSF feature extraction - Optical Strain Features (OSF) is employed to describe the

features to compare the reliability of the expression information extracted from the

RoIs only to that of the entire face. For each RoI in each frame, the optical strain

magnitudes in each pixel within the RoIs are calculated from the approximated

optical flow values. Next, the strain magnitudes of the three RoIs are concatenated

into a single row vector and directly represented as features.
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3. LBP-TOP feature extraction - to further verify the effectiveness of the RoIs-based

approach, block-based LBP-TOP is utilized as the second feature descriptor. Simi-

lar to OSF, the features are extracted strictly from those three RoIs only.

The flowchart of the proposed algorithm is illustrated in Figure 3.6, where the feature

extraction process is either OSF or block-based LBP-TOP.
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Table 3.1: Emotion description in terms of facial action units

Emotions Criteria
Happiness AU 6 or AU 12

Disgust AU 9 or AU 10 or AU 4+7
Surprise AU 1+2, AU 25 or AU 2

Repression AU 15 or AU 17 alone or in combination
Tense AU 4 or AU 14 or AU17

Table 3.2: Frequency of the face regions based on the action units for five emotions

Face Regions AU(s) in the region Emotions Frequency
Eye + Eyebrow 1, 2, 4, 7 Tense, Disgust, Surprise 5

Mouth 10, 12, 14, 15, 25 Happiness, Repression, Tense, 5
Disgust, Surprise

Chin 17 Repression, Tense 2
Cheek 6 Happiness 1
Nose 9 Disgust 1

3.4.1 Hybrid RoIs Extraction Approach

In the RoIs extraction fusion process, the micro-expression details are enriched by com-

bining the information from the observed data with the detected landmark point features.

Firstly, the RoIs are empirically selected according to the frequency of the AUs during

the existence of micro-expressions. Table 3.1 shows the AUs corresponding to the emo-

tions provided in the CASME II database (Yan, Li, et al., 2014). Table 3.2 summarizes

the occurrence of the face regions based on the AUs. As shown, the highest frequency

regions (i.e., “eye + eyebrow” and “mouth”) are chosen as the RoIs because these regions

contribute the majority and meaningful micro-expression details among all other areas of

the face.

Secondly, to compare the viability and superiority of the features extracted from the

selected RoIs as opposed to the entire image, the RoIs are extracted out from the face. In

order to automatically remove the unwanted areas of the image, all 66 landmark points

from the first frame of each video are detected by DRMF automated landmark detector

(Asthana et al., 2013). In the DRMF method, the tree-based face detector is used to
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Table 3.3: The landmark points determining the corresponding RoIs bounding boxes

RoIs Top Bottom Left Right
Left eye + left eyebrow 19 or 20 or 21 41 or 42 18 22

Right eye + right eyebrow 24 or 25 or 26 47 or 48 23 27
Mouth 51 or 52 or 53 58 49 55

achieve high accuracy landmark detection. This landmark annotation step is only applied

once (i.e., the first frame only) in each video. The reason is that the motion of the subject

is very small and the video frame rate is high (i.e., more than 100 fps). Therefore, the

landmark points for the remaining frames are assumed to be similar to those in the first

frame.

Next, the bounding boxes of the RoIs are determined according to the neighboring

landmark points. All three RoIs (i.e., “left eye + left eyebrow”, “right eye + right eye-

brow” and “mouth”) are extracted in multiple rectangular boxes. Precisely, the designated

landmark points for each RoI are shown in Table 3.3. The size of each rectangular box de-

pends on the four borders (i.e., top, bottom, left and right) of the corresponding landmark

points. Hence, all RoIs have different dimensions in different videos.

There are three benefits to consider only the three RoIs for feature representation

instead of the entire facial image: (a) to discard the unnecessary parts of the face that do

not contain any facial emotions; (b) to eliminate the existing background noises captured

by the camera, which may affect the original pixel intensities, and; (c) to reduce the

computation time in feature extraction process (i.e., forming the histogram using OSF

and LBP-TOP) due to smaller input size.

The process to segment out the three RoIs from an image with the aid of the DRMF

tool is illustrated in Figure 3.7.
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Figure 3.7: Cropping out the three RoIs: (a) The 66 landmark points marked by DRMF;
(b) The rectangular boxes are set based on the coordinate of the 12 landmark points of the
four borders

3.4.2 Optical Strain Features (OSF) feature extractor

Optical strain is capable of capturing tiny motion between two adjacent frames because

each optical strain magnitude contributes to the information of the expression at the pixel

level. The feature extractor, Optical Strain Feature (OSF) is built mainly from optical

strain.

For clarity, the notations used in this chapter are first explained in detail. A micro-

expression video clip is expressed as:

si = { fi, j|i = 1, . . . ,n; j = 1, . . . ,Fi}, (3.1)

where si is the number of videos in the database. Fi is the total number of frames in the

i-th video sequence, which is taken from a collection of n video sequences.

The magnitude of the optical flow in each position (x,y) is computed by estimating

the motion between two frames. Then, the optical strain magnitudes for each position

(x,y), denoted by εx,y (obtained from Equation (2.16)), is calculated over each flow field

for two adjacent frames ( fi, j, fi, j+1) in the video. Hence, each video contains Fi−1 num-

ber of optical strain maps.
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Each video of resolution X×Y produces a set of Fi−1 optical strain maps, mi, j, each

denoted by:

mi, j = {εx,y|x = 1, . . . ,X ;y = 1, . . . ,Y}, (3.2)

for i ∈ 1, . . . ,n and j ∈ 1, . . . ,Fi−1.

Since only three RoIs are considered, εx,y within the RoIs are computed along all

strain maps in each video si. To summarize the strain values over time into a compact

representation, temporal pooling is performed by summing up εx,y in each pixel location

of all the strain maps in each mi video sequence. The resultant values of εx,y are then

divided by Fi− 1 because each video has different number of frames. Specifically, to

standardize the range of εx,y as well as improving their significance, maximum normal-

ization is performed. It is because the feature length of each video needs to be equal

before proceeding to the classification stage. Therefore, all the pooled strain RoIs are

fixed to constant resolution of r× r pixels by using bilinear interpolation. The process

flow of extracting the OSF from the three RoIs is shown in Figure 3.8.

Figure 3.9 shows the comparison of the normalized optical strain magnitude between

the ‘entire face’ and the three ‘RoIs’, to differentiate the optical strain magnitudes cap-

tured by them. It is observed that the proposed ‘RoIs’ approach yields a distinct peak

optical strain magnitude, while the ‘entire face’ approach may yield more than one peak

(e.g., see Figure 3.9(b)). In addition, for video in which both approaches each yields a

distinct peak, the frame distance from the peak frame to the apex frame is smaller in the

case of ‘RoIs’ (i.e., see Figure 3.9(a),(c)). This implies that the utilization of three RoIs

can better distinguish the frame index that has larger motion (i.e., apex frame). In con-

trast, there may also be some ambiguity in locating a distinct peak frame (Figure 3.9(b))

when the entire face is considered. Therefore, the utilization of three ROIs is indeed ben-
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eficial for better characterization of local movements rather than holistic utilization of the

entire face region.
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3.4.3 Block-based LBP-TOP feature extractor

The second feature descriptor considered is block-based LBP-TOP, which represents the

features in the spatio-temporal perspective. The three RoIs from the frames are first seg-

mented into N×N non-overlapping blocks in order to obtain the features that are local

to each block region. Next, the features extracted from the three orthogonal planes (i.e.,

XY,XT and Y T ) are concatenated to form the final histogram. Refer to Chapter 2.3.2 for

detailed descriptions of block-based LBP-TOP. The procedure to construct the LBP-TOP

features from the three RoIs is illustrated in Figure 3.10.
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3.5 Experiments

3.5.1 Datasets

Based on the pros and cons of the micro-expression databases discussed in Chapter 2.4,

CASME II (Yan, Li, et al., 2014) and SMIC-HS (Li et al., 2013) datasets are selected to

evaluate the proposed algorithm with the primary benefits of large sample size and high

frame rate. Brief information of these datasets is described as follows.

The CASME II dataset consists of 26 subjects and a total of 246 sequences of micro-

expressions, with one video per sequence. It contains five classes of emotions, namely,

happiness (32 samples), disgust (60 samples), surprise (25 samples), repression (27 sam-

ples) and tense (102 samples). The baseline performance reported is 63.41% using 5×5

non-overlapping block-based LBP-TOP as the feature extractor and SVM classifier with

LOVOCV configuration as the classifier.

On the other hand, the SMIC-HS dataset consists of 164 micro-expression samples

from 16 participants. There are three main emotion categories: positive (happiness; 51

samples), negative (sad, fear, disgust; 70 samples), and surprise (43 samples). The three-

class baseline performance reported is 48.78%. Block-based LBP-TOP with 8× 8 par-

tition blocks and SVM with LOSOCV configuration are employed as feature descriptor

and classifier, respectively.

3.5.2 Experiment Settings

The experiments are conducted on the CASME II and SMIC-HS datasets by employing

the feature descriptors of OSF and block-based LBP-TOP. SVM classifier with a poly-

nomial kernel of degree 6 is used to examine the proposed RoI-Selective approach. In

this multi-subject level analysis, both LOSOCV and LOVOCV are utilized to validate the

effectiveness of the proposed approach in all the experiments.

Due to the imbalanced distribution of expression class samples in the databases, F-
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Figure 3.11: A sample video sequence of ‘Surprise’ micro-expression from SMIC-HS
dataset

measure, recall and precision metrics are also adopted to evaluate the performance of the

proposed approach, as suggested by Le Ngo et al. (Le Ngo et al., 2014). This supplements

the conventional accuracy rate, which may not provide a sufficiently fair gauge. Specifi-

cally, recall (exactness) is the ratio of the relevant information extracted by the system to

the total number of relevant records in the database, and precision (completeness) is the

measure of how much information in the system is returned correctly. F-measure is the

harmonic mean of precision and recall. The equations of these three indicators are set out

as follows:

Recall :=
TP

TP + FN
, (3.3)

Precision :=
TP

TP + FP
, (3.4)

F-measure := 2×·Precision×Recall
Precision+Recall

, (3.5)

where TP, FN and FP are true positive, false negative and false positive, respectively.
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For extensive experiment purpose, augmentation of the RoI window size (for all three

RoIs) is performed by enlarging the RoI window by w pixels towards all four directions

(top, bottom, left and right). This enlargement of area further enriches the expression

information in each RoI, and provides another free parameter for further experimentation.

The best performances in this experiment can be attained by enlarging the RoI areas by

w ∈ [6,10] while the RoI areas are resized to r ∈ [15,20] when the OSF method is utilized

for feature extraction. Meanwhile, the LBP-TOP features in each RoI are extracted from

N×N non-overlapping blocks, with N ∈ [3,4].

3.6 Results and Discussions

In this sub-chapter, the parameters to be used are first analyzed and discussed, followed

by the best recognition performances obtained from the optimal range of values and the

computational cost of the system.

3.6.1 Parameter Analysis

The three free parameters, namely, w, r and N, provide us with further clues on the im-

portance of using the three essential RoIs for processing. More precisely, the OSF and

LBP-TOP methods both have two parameters each, namely r and w for OSF, N and w

for LBP-TOP (see Figure 3.12); hence only two parameters are tuned for each feature

extraction method. Instead of increasing or reducing these parameter values in an ad-hoc

manner, it is crucial to analyze and identify the ideal ranges for these parameters system-

atically. For instance, in the case of OSF, the value of one particular parameter is set (i.e.,

w = 6) and the average result of the other parameter is determined within a certain range

(i.e., average result of r ∈ [15,20]). Figure 3.12 reports an analysis of the results obtained

for all four pairings of parameters.
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These parameters are not only intuitive but also provide meaningful insights into

the spatial information found within the frames that contain micro-expression. The three

parameters, i.e., locality (w), dimensionality (r) and scale (N) are described in detail as

follows:

• Locality: w tunes the spread or “locality” of useful features within each RoI. Larger

w might include extra regions that do not contribute to subtle movements while

smaller w might result in missing crucial information around the RoI. This trend

can be clearly seen in Figure 3.12(a) and (b). Interestingly, the RoI-based approach

performs worse than the baselines for both databases when w is very low (i.e.,

0 ∼ 3). On the other hand, high w values are also bad choices, likely due to

encroachment of the regions into the nose area or area above eyebrows.

• Dimensionality: r adjusts the resolution or to be more precise, the “dimension-

ality” of the OSF-extracted features. This measures how much information from

the OSF are encoded. Larger r encodes more information, and vice versa. In Fig-

ure 3.12(c), performance on CASME II improves when the dimension of OSF in-

creases. However, the performance on SMIC-HS is unusual, probably due to the

fact that SMIC-HS has a smaller average sample area size (difference of averages

is approximately 25× 25 pixel), hence more sensitive towards the resizing of the

RoIs. An optimum range is more desirable for SMIC-HS.

• Scale: N is a typical parameter from the block-based LBP-TOP algorithm. Intu-

itively, it “scales” the features to be extracted into histograms. Larger N describes

the statistics of features more locally, while smaller N will provide more global

statistics for the RoIs. Considering that the RoIs themselves are already much

smaller in size compared to the original frame, overly sub-divided blocks (e.g.,

N = 5) might negatively affect the intrinsically captured patterns, while using a sin-
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gle histogram (i.e., N = 1) misses the localized patterns and is equally detrimental

to the results.

From the plots, the range of parameters that yield consistently good results is high-

lighted in yellow. In particular, w ∈ [6,10] is best suited for both OSF and LBP-TOP as

suggested by Figure 3.12 (a) and Figure 3.12(b) ; r∈ [15,20] for OSF as suggested by Fig-

ure 3.12(c), and; N ∈ [3,4] for LBP-TOP as suggested by Figure 3.12(d). These are also

the optimal ranges of operation for the parameters that will be reported in Chapter 3.6.2.

3.6.2 Recognition Performance

The baseline performance is established by reproducing results from the original SMIC (Li

et al., 2013) and CASME II (Yan, Li, et al., 2014) works. The baseline methods con-

sider the entire facial region for block-based LBP-TOP (Zhao & Pietikainen, 2007) fea-

ture extraction. In addition, optical strain features (OSF) (Liong, Phan, et al., 2014)

is also applied as an alternative feature for more comprehensive comparisons. Follow-

ing the original implementations, LBP-TOP4,4,4,1,1,3 with 8× 8 blocks for SMIC and

LBP-TOP4,4,4,1,1,4 with 5×5 blocks for CASME II are applied. The baseline results are

summarized in Table 3.4, with the accuracy measure used in accordance to the original

works.

For the proposed ROI selection scheme, the optimal range of parameters (i.e. r, w

and N) used are described in Section 3.6.1. As demonstrated in Figure 3.13, the utilization

of these selected facial RoIs results in promising performance on both micro-expression

databases considered in this study. The best parameter values from Figure 3.6.1 for dif-

ferent cases yield a performance improvement of approximately:

• 10% at w = 10 and r = 17 with OSF in LOVOCV

• 5.5% at w = 8 and N = 4 with LBP-TOP in LOVOCV
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Table 3.4: Reproduced baseline recognition results (%)

LOSOCV LOVOCV
SMIC-OSF 38.70 46.34
SMIC-LBPTOP 48.17 59.15
CASME-OSF 26.72 48.99
CASME-LBPTOP 35.22 58.30

• 8% at w = 10 and r = 16 with OSF in LOSOCV

• 10.5% at w = 7 and N = 4 with LBP-TOP in LOSOCV

At a more realistic level, the average increment for each scenario is also provided

(see red horizontal line in each plot in Figure 3.13) to gain better insight into the actual av-

eraged performance for each case. Overall, the RoI-based approach produces an average

improvement of around 2.6 ∼ 4.6% for the SMIC-HS dataset, and around 2.8 ∼ 6.5%

for the CASME II database. There is a common trend observed among the plots, that is,

SMIC-HS always performs better under LOVOCV settings while CASME II has a greater

improvement when the LOSOCV method is considered. It suggests that the data fusion

strategy on selecting the salient facial regions has significant improvement on classifying

the micro-expressions compared to considering the entire facial region.

Table 3.5 shows the F-measure, precision and recall results obtained by the pro-

posed RoI-selective approach against their respective baselines. In all cases, the pro-

posed method outperforms the baseline results, except for the solitary case of LOSOCV

in CASME II using the OSF feature extractor. However, in general, the proposed ap-

proach is capable of yielding consistently good results for micro-expression recognition

when compared to the full-face image.

On top of that, the recognition performance of the RoI-Selective approach is com-

pared to the existing methods with the measurements of Accuracy, F-measure, recall and

precision score, as tabulated in Table 3.6. It can be seen that the RoI-Selective approach is
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capable of outperforming the other methods significantly. Notably, substantially superior

results are obtained in SMIC-HS database.
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3.6.3 Discussion on Computational Cost

In addition, execution time is evaluated by randomly selecting one of the videos in SMIC-

HS with LBP-TOP as the feature descriptor. Running on an Intel Core i7-4770 CPU 3.40

GHz machine, the time taken for the feature extraction process by the baseline method

(Li et al., 2013) is 0.0775 s per frame while it takes 0.0642 s per frame in the proposed

RoI-Selective approach. Based on this result, RoI-Selective approach achieves a speed-

up of approximately 17% compared to the baseline method due to the savings from the

smaller input size. Moreover, the feature dimension of the baseline method is 2,880

per video sample while it is only 1,215 in the proposed RoI-Selective approach. With a

much smaller set of features (by nearly 58% of the original set), feature complexity at the

classification stage can also be reduced, which in turn decreases the overall computation

time.
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3.7 Summary

This chapter proposes a novel hybrid approach, namely RoI-Selective, that combines the

heuristic and automatic approaches in extracting the important facial regions for micro-

expressions recognition. The features are extracted from three desired RoIs (specifically

the regions of “left eye + left eyebrow”, “right eye + right eyebrow” and “mouth”) that

contain significant and valuable micro-expression information. Selection of the RoIs are

statistically determined by the frequency of occurrence of the AUs among all the ex-

pressions. The facial landmark points are obtained using the DRMF landmark detector.

Then, this information is utilized to crop out the RoIs from each frame automatically.

Overall, the proposed RoI-selective approach demonstrates promising recognition results

on both the spontaneous micro-expression databases, namely, SMIC-HS and CASME II.

The best average improvement of performance for the SMIC-HS database is around 4.5%

for OSF and 3.5% for LBP-TOP by adopting the LOVOCV protocol. As for the CASME

II database, RoI-selective approach achieved an average increments of 3.7% for OSF and

6.5% for LBP-TOP by adopting the LOSOCV protocol.

This automated micro-expression recognition system can potentially be deployed

in applications such as medical diagnosis, national safety, police interrogation and lie

detection. For future works, more attention will be devoted to handle the issues of empir-

ical parameter tuning. Tuning of the parameters (i.e., w, r, N) towards optimum values

and other settings (i.e., degree of the polynomial kernel) in the feature extractors and

classifiers warrants further investigation to maximize the performance of the system. In

addition, noise filtering schemes can be introduced to minimize the presence of noises

resulting from the computation of optical strain.
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CHAPTER 4: FEATURE EXTRACTION BASED ON FACIAL STRAIN

4.1 Overview

In this chapter, a novel feature extractor for detecting and recognizing micro-expressions

is presented, by utilizing facial optical strain magnitudes to construct optical strain fea-

tures and optical strain weighted features. As mentioned earlier in Chapter 2.3.2, detec-

tion refers to determining the presence of micro-expressions on the face without identifi-

cation of its type, whereas recognition goes a step further to distinguish the exact state or

type of expression shown on the face. This is computationally essential for the relatively

new field of spontaneous micro-expression, where subtle expressions can be technically

challenging to pinpoint. As discussed in Chapter 2.3.4, optical strain is an extension of

optical flow that is capable of quantifying subtle changes on faces and representing the

minute facial motion intensities at the pixel level.

Specifically, the feature histogram of each video sample is designed and constructed

using optical strain information, following three main processes:

1. Optical Strain Features (OSF) - all the optical strain images in each video are tem-

porally pooled, then the strain magnitudes of the pooled image are treated as fea-

tures.

2. Optical Strain Weighted Features (OSW) - optical strain magnitudes are pooled in

both spatial and temporal directions to form a weighting matrix. The respective

weights of each video are then multiplied with the features from the XY -plane ex-

tracted by LBP-TOP.

3. Concatenation the OSF and OSW (OSF + OSW) - the feature histograms from steps

(a) and (b) are concatenated to form the final feature histogram.
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Experiments are conducted on two spontaneous and high speed micro-expression datasets

to verify the performance of the proposed OSF + OSW feature extractor. Both the detec-

tion and recognition results suggest that the feature extractor that is developed based on

optical strain, can effectively reveal and describe the subtle facial muscle changes.

4.2 Literature Review

4.2.1 Optical Strain

Optical strain patterns justify its superiority over the raw image in face recognition as

the computation of the magnitudes is based on biomechanics. It is also robust to lighting

conditions, heavy makeup and camouflage (Shreve et al., 2010; Manohar et al., 2007).

Optical strain pattern is exploited for spotting facial micro-expressions automatically in

several databases, including USF, USF-HD, USF-combination, Canal-9, “found videos”

and SMIC micro (Shreve et al., 2009; Shreve, Godavarthy, et al., 2011; Shreve et al.,

2014). See Chapter 2.3.4 for the details of the algorithms implemented and the out-

standing results obtained when validated on these databases. In short, optical strain has

demonstrated its superiority over optical flow by producing more consistent results in

automatic micro facial expression spotting task. In this chapter, the strengths of optical

strain are leveraged to describe suitable features for detection and recognition tasks.

4.2.2 Block-based LBP-TOP

Block-based LBP-TOP has been discussed in Chapter 2.3.2, hence only basic principles

are recapped in this sub-chapter. Block-based method in feature extraction process is

widely used in detecting or recognizing micro-expressions, as demonstrated in (Zhao

& Pietikainen, 2007; Yan, Li, et al., 2014; Pfister et al., 2011; Li et al., 2013). For

LBP-TOP (Zhao & Pietikainen, 2007) texture descriptor, it has been broadly used in

human activity classification (Mattivi & Shao, 2009), lip-reading (Zhao et al., 2009),

and also facial expression recognition (Shan et al., 2009). It describes the space-time
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texture of a video volume, which encodes the local texture pattern by thresholding the

center pixel against its neighboring pixels. Block-based LBP-TOP partitions the three

orthogonal image planes into N×N non-overlapping blocks, where the final histogram is

a concatenation of histograms from each block volume. This final histogram represents

the appearance, horizontal motion and vertical motion of a video.

4.2.3 Pooling

The large number of pixels in an image or video can be summarized into a more compact

representation of lower dimension. Generally, feature pooling in spatial domain is one

commonly employed technique, which partitions the image into several regions, before

summing up or averaging the pixel intensities of each region. For instance, spatial pool-

ing is employed together with state-of-the-art feature descriptors such as Scale-invariant

Feature Transform (SIFT) (Lowe, 2004) and Histograms of Oriented Gradients (HOG)

(Dalal & Triggs, 2005) to enhance their robustness against noise and clutter.

On the other hand, temporal pooling is able to summarize the features over a period

of time in a compact and efficient manner. Boureau et al. (Boureau et al., 2010) demon-

strated that the performance of the recognition algorithm is attributed to the pooling step

of feature extraction. Besides that, Hamel et al. (Hamel et al., 2011) examined the per-

formance of automatic annotating and ranking music radio by different combination of

pooling methods (i.e., mean, maximum, minimum and variance). Pooling is also adopted

by several researchers to vectorize the feature descriptors in calculating the local or global

bag of features (J. Zhang et al., 2007; Sivic & Zisserman, 2003).

4.2.4 Image Filtering

Gaussian filter is a popular filtering technique that is extensively deployed to process dig-

ital images containing facial expressions. It is one of the adaptive filters that removes

Gaussian noises in image (Forsyth & Ponce, 2002). For example, to track the AUs of
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the facial expressions, a 5 x 5 Gaussian filter is applied with different sizes on different

regions of the face, to achieve locally smoothing effect (Lien et al., 2000). In facial ex-

pression analysis (Z. Liu et al., 2001), Gaussian filter is employed to reduce the noises on

the face images in order to compute the illumination change of one person or Expression

Ratio Image (ERI) resulting from deformation of the person’s face. Detailed advantages

and examples of Gaussian filter are provided in Chapter 2.2.2.

4.3 Proposed Algorithm

To extract the spatio-temporal features by utilizing facial optical strain information, three

main steps are proposed, namely:

1. OSF - the optical strain magnitudes in each frame are derived from the optical flow

values. Then all the optical strain maps in each video are temporally pooled into

a composite strain map. Thereafter, the optical strain magnitudes in the composite

strain map are directly used as the features.

2. OSW - spatio-temporal pooling is applied on the optical strain frames of each

video, then the final matrix of normalized coefficient values obtained are used as

the weights for each video. The weighting matrix (of N×N dimension after pool-

ing) is then multiplied with their respective LBP-TOP-extracted histogram bins on

the XY -plane.

3. OSF + OSW - the feature histograms extracted in steps (a) and (b) are concatenated

into a final feature histogram that represents the video sample.

The architecture overview of the flow of the proposed method is illustrated in Fig-

ure 4.1.
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Figure 4.1: Overview of the proposed algorithm

4.3.1 Optical Strain Features

Since optical strain magnitudes can aptly describe the minute extent of facial deformation

at the pixel level, they can directly be employed as features as well. This sub-chapter

discusses the process of obtaining Optical Strain Features (OSF). The notations used in

the subsequent chapters are first described. A micro-expression video clip is expressed

as:

si = { fi, j|i = 1, . . . ,n; j = 1, . . . ,Fi}, (4.1)

where Fi is the total number of frames in the i-th sequence, which is taken from a collec-

tion of n video sequences.

The optical flow field is first estimated by its 2D motion vector, ℘= (p,q) (from

Equation (2.9)). Then, the optical strain magnitude at each pixel location εx,y (from Equa-

tion (2.16)) is calculated for each flow field over two consecutive frames, i.e., { fi, j, fi, j+1}.

Hence, each video of resolution X ×Y produces a set of Fi−1 optical strain maps, each

denoted as follows:

mi, j = {εx,y|x = 1, . . . ,X ;y = 1, . . . ,Y}, (4.2)

for i ∈ 1, . . . ,n and j ∈ 1, . . . ,Fi−1.

The following steps describe the essential pre-processing steps for noise reduction

and signal attenuation, followed by how OSF is obtained.
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4.3.1.1 Pre-processing

Prior to feature extraction, two pre-processing steps are carried out to reduce unwanted

noises in the optical strain maps.

First, the edges in each strain map mi, j are removed. Since the edges are the gradient

of the moving objects that consist of local maximas, eliminating them is to remove a large

number of irrelevant “fake movements” (which will be detected wrongly as facial muscle

movements in optical flow estimation later) if the strain map is very noisy (Barcelos et al.,

2003). Among the different types of edge detectors, the Sobel filter justifies its feasibility

by two main advantages (Gao et al., 2010): (a) its ability to detect the edges in a noisy

image by introducing smoothing and blurring effect on the image; (b) the differential of

two rows or two columns enhances the strength of important edges. The Sobel operator is

a simple approximation to the concept of 2D spatial gradient, by convoluting a grayscale

input image with a pair of 3×3 convolution mask (Juneja & Sandhu, 2009). Happy and

Routray (Happy & Routray, 2015) demonstrated that horizontal edge detector always

generates a distinct edge on macro facial expression databases (i.e., CK+ (Lucey et al.,

2010) and JAFFE (Lyons et al., 1998)). In this chapter, experiments are conducted on the

micro-expression databases to compare the performance of horizontal and vertical edges.

It is empirically discovered that removing the vertical edges generate better recognition

results than removing the horizontal edges only, as well as both the horizontal and vertical

edges. Therefore, Sobel edge detector is employed to spot the vertical directions in this

experiment.

Secondly, the magnitudes in each optical strain map mi, j are clipped to zero for

εx,y /∈ [Γl,Γu], with the two threshold values Γl and Γu denoting the lower and upper

thresholds, respectively. The values of Γl and Γu are determined using the lower and

upper percentages (τl,τu) of the strain magnitude range, i.e., [εmin = min{εx,y},εmax =
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Figure 4.2: Effect of τl and τu values on micro-expression recognition rate for the SMIC-
HS database

max{εx,y}]. The lower and upper thresholds are computed as follows:

Γl = εmin + τl · (εmax− εmin),τl ∈ [0,1], (4.3)

and

Γu = εmax− τu · (εmax− εmin),τu ∈ [0,1]. (4.4)

Figure 4.2 illustrates the effect of τl and τu on the micro-expression recognition rate.

It is observed that τl = τu = 0.05 yields the best results. Therefore, the clipping tolerance

is set to 5% of the magnitude range of each processed frame.

With each frame properly aligned, the optical strain maps can then be segmented ver-

tically into three regions of equal size (i.e. forehead–lower eyelid, lower eyelid–nostril

and nostril–mouth) to obtain their individual local threshold values. The purpose of per-

forming this segmentation step is to minimize the effects of dominant motions that arise

from a particular region as the range of strain magnitudes differ across the three regions.

Figure 4.3 shows how an optical strain map is divided into the three vertical segments.
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Figure 4.3: Example of vertical segmentation of the optical strain frame into three regions
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4.3.1.2 Extracting Optical Strain Features

In order to describe the optical strain patterns in a compact and consistent representation,

the optical strain maps mi, j are pooled across time (i.e. temporal pooling). Temporal

mean pooling is performed to obtain a composite strain map:

m̂i =
1

Fi−1

Fi−1

∑
j=1

mi, j, (4.5)

where all optical strain magnitudes εx,y for each strain map mi, j are averaged across the

temporal dimension. The intuition behind this pooling step is to help in accentuating

the minute motions in micro-expressions by aggregation of these facial strain patterns.

Mean pooling also ensures that the optical strain magnitudes are normalized based on

their respective sequence lengths. Then, the composite strain map is max-normalized

to increase the significance of its values. In the final step, the composite strain map is

resized to 50×50 pixels and vectorized its rows to form a 2500-dimension feature vector.

Figure 4.4 shows a graphical illustration of the entire process of extracting optical strain

features.

4.3.2 Optical Strain Weighted Features

While the OSF describes pixel-level motion features, the LBP-TOP is capable of encoding

texture dynamics in larger facial patches. In block-based LBP-TOP (Zhao & Pietikainen,

2007), the feature histograms obtained from all blocks are given equal treatment. Since

subtle expressions typically occur in highly localized regions of the face (and this differs

for different expression classes), the feature histogram representing these regions should

be amplified. As such, larger motions will generate larger optical strain magnitudes and

vice versa. A set of weights are then computed to scale the features in each block propor-

tionally to their respective motion strengths. The proposed procedures to obtain Optical

Strain Weighted Features (OSW) are: (a) extracting block-based LBP-TOP features; (b)
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Figure 4.5: OSW histogram formation: (a) Each j-th frame in m1, j is divided into 5×5
blocks before the values of εx,y within each block region are spatially pooled; (b) The
block-wise strain magnitudes zb1,b2 from all frames ( j ∈ 1 . . .Fi−1) are temporally mean
pooled; (c) The weighting matrix W of size N×N is formed; (d) Coefficients of W are
multiplied by their respective XY -plane histogram bins

pre-processing to remove image noises; (c) spatio-temporal pooling on the optical strain

maps and determining the weights; (d) multiplying the optical strain weightage on LBP-

TOP features. The entire process of obtaining the OSW histogram is graphically shown

in Figure 4.5. Details of the entire process are elaborated in the following sub-chapters.
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4.3.2.1 Extracting Block-based LBP-TOP Features

Features are extracted by block-based LBP-TOP from each video clip si, whereby the

entire video volume is partitioned into N×N non-overlapping block volumes. For each

block volume, LBP features are computed from three orthogonal planes (concatenated to

form LBP-TOP) to obtain dynamic texture features that are local to each particular block

region. Finally, the feature histograms from all N×N block volumes are concatenated to

form the final feature histogram.

4.3.2.2 Pre-processing

Upon partitioning into blocks, two blocks that are located at the left and right bottom

corner of the frames are eliminated due to noticeable amount of movements or noises

caused by the background lighting condition, and also the presence of wires from the

headset worn by the subjects (see Figure 4.6 for a frame sample from both SMIC-HS

and CASME II datasets). For simplicity, these two blocks are referred to as noise blocks.

Therefore, these noise blocks are omitted and only the remaining N2− 2 blocks are uti-

lized for building the feature histogram.

Gaussian noise is the most common noise acquired unintentionally during the elici-

tation of the micro-expression videos. It may be caused by non-uniform illumination or

flickering lights captured by the high speed camera. Since the motions characterized by

the subtle facial expressions are fine, it is likely that the Gaussian noises might be incor-

rectly identified as fine facial motions. Thus, all the images are filtered by a Gaussian

filter to reduce noise. The filter size applied is 5× 5 pixels with standard deviation of

σ = 0.5 in order to reduce the existing background noises prior to processing.

4.3.2.3 Determining Weights by Spatio-temporal Pooling

To obtain the weights for each block, spatio-temporal pooling is performed on all optical

strain maps mi, j in the video sequence. Spatio-temporal pooling is considered in a sepa-
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Figure 4.6: Top row: a sample image from SMIC-HS (left) and the corresponding op-
tical strain map (right). Bottom row: a sample image from CASME II (left) and the
corresponding optical strain map (right). Noise block at the bottom left and right corners
are marked

rable fashion, where spatial mean pooling is performed first, followed by temporal mean

pooling.

Firstly, spatial mean pooling averages all the strain magnitudes εx,y within each

block, resulting in a block-wise strain magnitude:

zb1,b2 =
1

HL

b2H

∑
y=(b2−1)H+1

b1L

∑
x=(b1−1)L+1

εx,y, (4.6)

where L= X
N , H = Y

N , the block indices (b1,b2)∈ 1,2, . . .N, and (X ,Y ) are the dimensions

(width and height) of the frame. This process summarizes the encoded features locally in

each block area of the face. Figure 4.5(a) illustrates the spatial pooling process on a strain

map, m.
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Secondly, temporal mean pooling is applied on the spatially-pooled frames, where

the values of zb1,b2 are averaged along the temporal axis across all video frames. The

temporal pooling process is illustrated in Figure 4.5(b). Therefore, for each video, a

unique set of N×N weights is derived, Wi = {wb1,b2}N
b1,b2=1 (see Figure 4.5(c)), where

each weight coefficient w is defined as:

wb1,b2 =
1

Fi−1

Fi−1

∑
t=1

zb1,b2

=
1

(Fi−1)HL

Fi−1

∑
t=1

b2H

∑
y=(b2−1)H+1

b1L

∑
x=(b1−1)L+1

εx,y. (4.7)

4.3.2.4 Weighted XY -Plane Histogram

After obtaining the feature histograms extracted by LBP-TOP and the optical strain weights,

the coefficients of the weight matrix W are multiplied with the XY -plane feature his-

tograms of their corresponding matching blocks. This weighting procedure is performed

only on features from the XY -plane so that the motion strengths are well accentuated in

each local area of the face as shown in Figure 4.5(d).

Specifically, the optical strain weighted histograms can be defined as:

Gb1,b2,d,c =


wb1,b2Mb1,b2,d,c, if d = 0;

Mb1,b2,d,c, otherwise,

(4.8)

where M is the normalized feature histogram for the block (b1,b2) from Equation (2.7).

4.3.3 Concatenating OSF and OSW Features

In the final step, the two extracted features, namely OSF and OSW features, are concate-

nated into a single composite feature histogram, named as OSF + OSW. The concatena-

tion process enriches the variety of features used, providing further robustness towards

104

Univ
ers

ity
 of

 M
ala

ya



the detection and recognition of facial micro-expressions. The dimension of the feature

histogram in LBP-TOP with 5×5 block partitions are 5× 5× 3× 15 (OSW) + 50× 50

(OSF) = 3,625 per video.

4.4 Experiments

4.4.1 Datasets

The experiments are carried out on two high speed micro-expression databases (i.e.,

SMIC-HS and CASME II (Yan, Li, et al., 2014; Li et al., 2013)), which are exactly

the same databases considered in Chapter 3. Note that, all the image data from these

prior-databases are captured under constrained laboratory condition and have undergone

face registration and alignment. The methods proposed are evaluated on two separate

experiments: (a) detection of micro-expressions (SMIC-HS only), and (b) recognition of

micro-expressions (CASME II and SMIC-HS). The detection task determines whether

any micro-expression is present. Meanwhile, the recognition task identifies the emo-

tional state that presents in the video clip. Since CASME II does not provide non-micro-

expression videos, the detection task is not conducted for this database.

4.4.2 Setup

Note that both CASME II and SMIC-HS databases provide the cropped face video se-

quence, where only the face region is retained while the unnecessary background have

been removed. The cropped image frames are directly used in our experiments. These

frames have an average spatial resolution of 340× 280 for CASME II and 170× 140

pixels for SMIC-HS. The parameter setting used in the experiments are established here.

Specifically, the parameters for the feature extractor and classifier are mostly the same

values as in the original work, i.e., CASME II (Yan, Li, et al., 2014) and SMIC-HS (Li et

al., 2013).

In the detection and recognition tasks performed on the CASME II and SMIC-HS
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databases, SVM with linear kernel (c = 10000) is utilized as classifier. For the block

sizes of LBP-TOP, they are selected based on the original works (Yan, Li, et al., 2014;

Li et al., 2013), where the block partitions are 5× 5 and 8× 8. In addition, the num-

ber of neighbouring points and the radii along the three orthogonal planes are set to

LBP-TOP4,4,4,1,1,4. The reason of selecting these parameter configurations is explained

in Chapter 4.5.2.

However, there are some slight differences in the SVM protocol settings for the two

databases. Specifically, the recognition task on CASME II is a five-class problem (i.e.,

disgust, happiness, tense, surprise and repression). It is evaluated using SVM classifier

with LOVOCV setting, adopted from the original work (Yan, Li, et al., 2014). On the

other hand, in SMIC-HS, the recognition task is a three-class classification (i.e., positive,

negative, surprise classes), while detection of micro-expressions is a binary decision (i.e.,

yes / no). Evaluations on SMIC-HS are conducted using SVM classifier with LOSOCV

setting, following the original work (Li et al., 2013).

There are two ways to measure the classification performance in the LOSOCV set-

ting, namely macro- and micro-averaging (Tsoumakas et al., 2010). The macro-averaged

result gives the accuracy computed by averaging across all individual subject-wise ac-

curacy results. On the other hand, micro-averaged result refers to the overall accuracy

result across all evaluated samples. Further performance metrics are also presented, such

as F-measure, precision and recall when the LOSOCV setting is employed. These three

metrics provide a more meaningful perspective than accuracy rates when the datasets used

are naturally imbalanced since each subject has a different number of video frames. Refer

to Chapter 3.5.2 for the derivation of these metrics.

The three proposed methods: (a) OSF, (b) OSW, and (c) OSF + OSW, are then

evaluated and compared to their respective baseline methods (Yan, Li, et al., 2014; Li et

al., 2013) on both detection and recognition experiments.
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Table 4.1: Micro-expression detection and recognition results on SMIC-HS and CASME
II database with LBP-TOP of 5×5 block partitioning

Methods
Detection - SMIC-HS Recognition - SMIC-HS Recognition
Micro-avg Macro-avg Micro-avg Macro-avg CASME II

Baseline .61 .66 .41 .43 .62
OSF .66 .66 .42 .46 .51
OSW .64 .68 .47 .49 .63

OSF + OSW .72 .75 .44 .48 .63

Table 4.2: Micro-expression detection and recognition results on SMIC-HS and CASME
II database with LBP-TOP of 8×8 block partitioning

Methods
Detection - SMIC-HS Recognition - SMIC-HS Recognition
Micro-avg Macro-avg Micro-avg Macro-avg CASME II

Baseline .57 .59 .46 .48 .61
OSF .66 .66 .41 .46 .51
OSW .63 .63 .49 .51 .62

OSF + OSW .73 .74 .52 .58 .62

4.5 Results and Discussions

4.5.1 Detection and Recognition Results

From the results shown in Table 4.1 and Table 4.2, it is observed that the OSF method is

capable of producing reasonably positive results compared to the baselines in some cases.

However, better and more consistent results are obtained using OSW and OSF + OSW

methods for both macro- and micro-averaging measures.

For the detection task on SMIC-HS database (using 5×5 blocks in LBP-TOP), OSF

+ OSW outperforms the baseline by 11% and 9% in micro- and macro-averaged results

respectively, as shown in Table 4.1. In addition, more significant improvement of 16%

(for micro-averaged) is achieved, when the block partition of 8×8 is used, as tabulated in

Table 4.2. Furthermore, Table 4.3 lists the confusion matrices of the detection results on

SMIC-HS database. The proposed method OSF + OSW is able to better distinguish the

micro- and non-micro-expressions. It can be seen that for non micro-expression, there is

a significant increase in recognition rate of approximately 17%.

In the recognition experiment on the SMIC-HS database, it is able to achieve up
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Table 4.3: Confusion matrices of baseline and OSF + OSW methods for detection task
on SMIC-HS database with LBP-TOP of 5×5 block partitioning

(a) Baseline

micro-expression non-micro-expression
micro-expression .65 .35

non-micro-expression .43 .57

(b) OSF + OSW

micro-expression non-micro-expression
micro-expression .70 .30

non-micro-expression .26 .74

to 5% improvement (for macro-averaging) over the baseline results on the concatenated

OSF + OSW method using 5×5 in LBP-TOP (see Table 4.1). This method also registers

a performance improvement of 10% (also for macro-averaging) over the baseline results

when 8×8 block partition is used (see Table 4.2). These results point towards a significant

improvement in feature representation when optical strain information is well-utilized. It

is worth noting that although the OSF method did not perform as well, its contribution

towards the concatenated OSF + OSW method should not be disregarded. The detailed

confusion matrices for the recognition performance on SMIC-HS database utilizing the

baseline and OSF + OSW methods are shown in Table 4.4. It can be seen that ‘Negative’

and ‘Surprise’ expressions can be recognized with higher accuracy when using OSF +

OSW method, while the accuracy of the ‘Positive’ expression remains unchanged at 49%.

On the other hand, for the recognition experiment on the CASME II dataset, it is

observed from Table 4.1 and Table 4.2 that there is a substantial improvement in OSF +

OSW method for both the 5×5 and 8×8 block partitions in LBP-TOP. Table 4.5 shows

the confusion matrices for the recognition results on CASME II database. It can be seen

that ‘Disgust’, ‘Tense’ and ‘Surprise’ are recognized with higher accuracy using the OSF

+ OSW method, but ‘Happiness’ and ‘Repression’ have lower recognition rate compared

to the baseline. However, the average recognition accuracy for the OSF + OSW method
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Table 4.4: Confusion matrices of baseline and OSF + OSW methods for recognition task
on SMIC-HS database with LBP-TOP of 8×8 block partitioning

(a) Baseline

Negative Positive Surprise
Negative .43 .36 .21
Positive .37 .49 .14
Surprise .33 .21 .47

(b) OSF + OSW

Negative Positive Surprise
Negative .46 .36 .19
Positive .39 .49 .12
Surprise .23 .09 .67

Table 4.5: Confusion matrices of baseline and OSF + OSW methods for recognition task
on CASME II database with LBP-TOP of 5×5 block partitioning

(a) Baseline

Disgust Happiness Tense Surprise Repression
Disgust .55 .05 .30 .08 .02

Happiness .06 .55 .15 0 .24
Tense .23 .05 .73 0 0

Surprise .24 .08 .20 .44 .04
Repression .04 .22 .11 0 .63

(b) OSF + OSW

Disgust Happiness Tense Surprise Repression
Disgust .68 .07 .18 .07 0

Happiness .12 .39 .30 .03 .15
Tense .17 .07 .74 .02 .01

Surprise .20 .08 .20 .48 .04
Repression .11 .22 .11 0 .56

is better than that of the baseline.

Other performance metrics (including F-measure, recall and precision) are reported

in Table 4.6 and Table 4.7. The two tables further substantiate the superiority of the pro-

posed OSF + OSW method over the baseline method in both the detection and recognition

tasks. For CASME II recognition task, the performance of the concatenated OSF + OSW

method appears to be as good as that achieved by the baseline.

4.5.2 Discussions

In a nutshell, optical strain characterizes the relative amount of displacement by a moving

object within a time interval. Its ability to capture any small muscular movement on face

can be advantageous to subtle expression research. By simple product of the LBP-TOP
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Table 4.6: F-measure, recall and precision scores for detection and recognition perfor-
mance on SMIC-HS and CASME II database with LBP-TOP of 5×5 block partitioning

(a) Detection - SMIC-HS

Micro-averaging Macro-averaging
Methods F-measure Recall Precision F-measure Recall Precision
Baseline .61 .61 .61 .66 .66 .67

OSF .66 .66 .66 .67 .66 .69
OSW .64 .64 .64 .69 .68 .71

OSF + OSW .72 .72 .72 .77 .75 .79

(b) Recognition - SMIC-HS

Micro-averaging Macro-averaging
Methods F-measure Recall Precision F-measure Recall Precision
Baseline .41 .41 .40 .37 .38 .39

OSF .42 .42 .41 .38 .38 .42
OSW .47 .47 .47 .45 .44 .49

OSF + OSW .45 .46 .44 .37 .37 .41

(c) Recognition - CASME II

Methods F-measure Recall Precision
Baseline .59 .58 .61

OSF .44 .41 .47
OSW .62 .61 .64

OSF + OSW .59 .57 .61

histogram bins with the weights, the resulting feature histograms are intuitively scaled to

accommodate the importance of block regions. The OSF + OSW approach generates con-

sistently promising results throughout the experiments tested on the SMIC-HS database.

The reason why the proposed method did not performed as good on the CASME II dataset

as the experiments conducted on SMIC-HS, is probably due to the high frame rate of its

acquired video clips. Repetitive frames with very little changes in movements might

result in redundancy of input data. Hence, the extracted strain information may be in-

significant (hence negligible) to offer much discrimination between features of different

classes. This is most obvious in the OSF results for CASME II, where there is in fact

a significant deterioration of performance. SMIC-HS videos, on the other hand (at only

half the frame rate of CASME II videos), is able to harness the full capability of optical

strain information where the OSF is seen to complement OSW very well, producing even
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Table 4.7: F-measure, recall and precision scores for detection and recognition perfor-
mance on SMIC-HS and CASME II database with LBP-TOP of 8×8 block partitioning

(a) Detection - SMIC-HS

Micro-averaging Macro-averaging
Methods F-measure Recall Precision F-measure Recall Precision
Baseline .57 .57 .57 .60 .59 .62

OSF .66 .66 .66 .67 .66 .69
OSW .63 .63 .63 .65 .63 .67

OSF + OSW .73 .73 .73 .77 .74 .80

(b) Recognition - SMIC-HS

Micro-averaging Macro-averaging
Methods F-measure Recall Precision F-measure Recall Precision
Baseline .46 .46 .46 .41 .423 .42

OSF .42 .42 .41 .38 .38 .42
OSW .50 .51 .50 .42 .43 .43

OSF + OSW .53 .54 .53 .46 .46 .48

(c) Recognition - CASME II

Methods F-measure Recall Precision
Baseline .58 .56 .60

OSF .44 .41 .47
OSW .59 .57 .61

OSF + OSW .57 .56 .59

better results when combined together.

Since there are background noises in the video frames from both databases, spatial

pooling helps to improve the robustness against these noises. Furthermore, high strain

magnitudes detected in the frame that exceeded the upper threshold (Equation (4.4)) are

treated as noises and not micro-expression movements. On the other hand, low strain

magnitudes below the lower threshold (Equation (4.3)) will also be ignored since they do

not contribute sufficient details towards the micro-expressions.

Another notable observation worth mentioning lies with the radii parameters of the

LBP-TOP feature extractor (which is used by OSW method). As shown in Figure 4.7,

by varying the value of RT (temporal radius), the recognition accuracy is the highest

for both the OSW and baseline (LBP-TOP) methods when RT = 4. Therefore, all the

OSW experiments on the SMIC-HS database are conducted using LBP-TOP4,4,4,1,1,4 to
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Figure 4.7: Micro-averaged accuracy results of the baseline (LBP-TOP) and OSW meth-
ods using different LBP-TOP radii parameters on SMIC-HS database based on LOSOCV

maximize the performance on accuracy.

The block partition settings that are used in the original papers of CASME II (Yan,

Li, et al., 2014) and SMIC-HS (Li et al., 2013) are applied. Specifically, the detection task

in SMIC-HS uses 5×5 blocks, while the recognition tasks in SMIC-HS and CASME II

use 8×8 and 5×5 blocks, respectively. Figure 4.8 demonstrates in detail how the OSF +

OSW fare with different block size configuration, with the baselines indicated by dashed

lines. It can be seen that the larger blocks (i.e. smaller number of partitions, N = 1,2,3)

do not produce better results compared to smaller blocks (i.e. larger number of partitions,

N = 6,7,8) in all scenarios. This is because the local facial appearance and motion that

carry important details at specific facial locations are not well described in large block

areas. Hence, this analysis justifies our choice of using the block settings suggested in

the original works, where the best results using the block-based LBP-TOP feature can

be achieved. On the other hand, it is also clear in Figure 4.8 that the proposed OSF +

OSW method outperforms the baseline LBP-TOP (dashed lines with transparent fill) in a

majority of the experiments.
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Figure 4.8: Recognition accuracy results of the baseline (LBP-TOP) and OSF + OSW
methods using different block partitions in LBP-TOP. The baseline results are denoted by
the dashed lines (with transparent fill)

4.5.3 Comparison with Other Spatio-temporal Features

The accuracy for the detection and recognition tasks are reported in Table 4.8. The pro-

posed OSF + OSW (method #13) method is compared against other spatio-temporal based

features, namely: (a) the optical flow based features OFF + OFW (method #12), which is

constructed in the similar manner (optical flow magnitudes used instead of optical strain

magnitudes); (b) STIP (method #2) or Histogram of Oriented Gradients and Histogram

of Optical Flow, extracted from spatio-temporal interest points (H. Wang et al., 2009),

and; (c) HOG3D (method #3) or 3D Oriented Gradients (Klaser et al., 2008). The last

two descriptors (i.e., (b) and (c)) are popular spatio-temporal features used in various hu-

man action recognition (Kovashka & Grauman, 2010) and facial expression recognition

analysis (Hayat et al., 2012). For both of these methods, the interest points are densely

sampled with their default parameters specified by the authors, and bag-of-words (BOW)
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(H. Wang et al., 2009) representation is used to learn the visual vocabulary and build the

feature vectors. The number of clusters or “bags” used in the vocabulary learning is de-

termined empirically and the best result is reported. For all these methods, SVM classifier

with linear kernel is applied for fair comparison, except for the methods TICS (method

#8) (S. Wang et al., 2015) and MDMO (method #9) (Y. J. Liu et al., 2016), where they

classified the micro-expression in CASME II into four categories (i.e., negative, positive,

surprise and others), instead of five (i.e., disgust, happiness, tense, surprise and repres-

sion). Besides, MDMO utilized polynomial kernel in SVM with heuristically determined

parameter settings.

In Table 4.8, it is observed that STIP and HOG3D features yielded poor results be-

cause they are not designed to capture fine appearance and motion changes. On the other

hand, the performance of OFF + OFW features are more comparable to the baseline per-

formance of the SMIC-HS, but it is inferior to the CASME II baseline by a significant

amount. Overall, the proposed OSF + OSW features yielded promising detection and

recognition results compared to the other spatio-temporal features evaluated. It can be

concluded that the proposed method is capable of describing the spatio-temporal infor-

mation in micro-expressions in a more effective manner.
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4.6 Summary

A novel feature extraction approach is proposed for the detection and recognition of facial

micro-expressions in video clips, which is mainly built on the optical strain technique.

The proposed method describes the fine subtle movements on the face using optical strain

in two different ways. The first, OSF, is a direct utilization of optical strain information as

a feature histogram. Secondly, OSW is the utilization of strain information as weighted

coefficients to LBP-TOP features. Lastly, OSF + OSW is the concatenation of the two

feature histograms to form the resultant feature histogram. The viability of optical strain

information is demonstrated in the experiments by considering two recent state-of-the-

art micro-expression databases, namely SMIC-HS and CASME II. More importantly, the

proposed OSF + OSW feature descriptor is capable of achieving promising results in both

the detection and recognition tasks.

The best detection performance for SMIC-HS is 75% using 5×5 block partition in

LBP-TOP, which translates to a significant improvement of more than 9% compared to

the baseline results. The improvement is more remarkable when 8× 8 block partitions

are used, where OSF + OSW method is able to achieve a maximum improvement of

approximately 15%. In addition, OSF + OSW method is able to attain an improvement of

+5% and +10% on micro-expression recognition performance for the SMIC-HS dataset

using 5× 5 and 8× 8 block partitions, respectively. The aforementioned results tested

on the SMIC-HS dataset are the macro-averaged performance by using SVM with linear

kernel. On the other hand, results of OSF + OSW method on the CASME II are slightly

better when compared to that of the baselines, i.e., +1% for both the 5×5 and 8×8 block

partitions.

There are many avenues for further research. The kernel function used in SVM is

quite sensitive towards the given data, and how this can be better chosen can be further
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studied. In addition, better noise filtering techniques and masking of different face regions

can be applied to alleviate the instability of illumination and intensity changes on the face

areas or background. This can potentially help in reducing the erroneous optical flow and

optical strain computation.
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CHAPTER 5: FEATURE EXTRACTION USING APEX FRAME

5.1 Overview

In this chapter, novel automatic approaches for micro-expression recognition that com-

bine both the spotting and recognition mechanisms, are introduced. More precisely, two

spotting mechanisms are designed separately to examine short and long video datasets.

This is because the attributes of the short and long videos are different, as detailed in

Chapter 2.4.2. To recap, the short videos only comprise micro-expression frames (i.e.,

from onset to offset), whereas the long videos might contain irrelevant micro-expression

movements, such as eye blinking action, which can possibly lead to inaccuracy in apex

frame spotting.

Nevertheless, the basic flow of the entire proposed micro-expression recognition

mechanisms for both the short and long videos are the same, as illustrated in Figure 5.1.

Specifically, in the apex frame spotting task, the index of the apex frame is first identified

from the entire video sequence. The reason of spotting only the apex frame is that it is the

frame that contains the highest intensity of expression changes among all frames. In con-

trast, the first frame of each video is assumed to be the neutral frame, which has the least

expression changes. Next, for the recognition task, a new feature descriptor, Bi-Weighted

Oriented Optical Flow (Bi-WOOF) is proposed, to encode facial micro-expression fea-

tures by utilizing only the apex frame (and the first frame as reference frame) among all

frames of an entire video sequence.

Experiment results suggest that the proposed approach is sufficient to produce high

recognition accuracy. To date, this is the first attempt at recognizing micro-expressions

from videos using only the apex frame. The proposed algorithms are evaluated on four

short video micro-expression databases (i.e., CASME II, SMIC-HS, SMIC-NIR and SMIC-
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Figure 5.1: Flowchart of the apex frame spotting and emotion recognition system

VIS) and four long video databases (i.e., CASME II-RAW, SMIC-E-HS, SMIC-E-VIS

and SMIC-E-NIR). The details of these databases can be found in Chapter 2.4.

5.2 Introduction

This chapter studies two primary elements in micro-expression system, notably, the spot-

ting and recognition tasks. Specifically, spotting task is to indicate the interval of micro-

expression occurrence or the frame indices of some important instants (such as onset,

apex and offset), while recognition task is to classify the expression type (such as disgust,

happiness, repression, surprise and tense) given a micro-expression video sequence. In

the literature, majority of the articles focused on the recognition analysis, that mainly val-

idate the new approaches on the entire video sequence (that comprises micro-expression

frames only).

A short recall from Chapter 3.3.1, micro-expression is a dynamic facial action which

evolves in the following sequence of states: neutral-onset-apex-offset-neutral. Starting

from a neutral state, an onset frame indicates the beginning of a micro-expression where

the facial muscles begin to undergo contraction, while offset frame is the end of the ex-

pression where the intensity of the muscles is reduced to zero. Apex frame is the instant

when the micro-expression reaches its climax (the most intense movement). The apex is

not necessarily located at the middle between the onset and offset frames, but it can be

situated at any frame between the onset-offset range.

Here, the video sub-sequence that is composed of only the frames from onset to

offset is defined as short video. On the other hand, long video refers to the raw video
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sequence which may include the frames with micro-expressions as well as irrelevant mo-

tion that are present before the onset and after the offset. Figure 5.2 illustrates the short

and long video sequences with onset-apex-offset frame annotations. Notice how a micro-

expression sequence (frames 30-120) in a long video can be easily shrouded by frames

outside the onset-offset range that contain eye blinks and head rotations (such as in frames

15 and 150).

5.3 Motivation

In current literature, most works categorized micro-expressions using the pre-cropped

short videos. For these cases, the locations of the onset and offset frames are required.

These annotations can be obtained from the ground-truth, which are manually marked

and verified by trained psychologists or “coders”. However, the precision of ground-truth

labeling is highly dependent on the judgment of the psychologists, who decide the onset

and offset locations using frame-by-frame observation (Yan, Li, et al., 2014; Li et al.,

2013). As such, the reliability and consistency of the marking are directly affected. As

a consequence, imprecise ground-truth information may influence the recognition accu-

racy of the micro-expression recognition system. This chapter aims to search for the apex

frame automatically, to utilize it in the recognition task for the four major benefits: (a)

consistency and high reliability of the labeled data; (b) time and cost saving in data la-

beling, as manual labeling requires intensive human effort and focus; (c) computational

simplicity and high efficiency in processing only the apex frame instead of the entire

video sequence, and; (d) redundancy elimination in extracting the repetitive frames with

very little changes.
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5.4 Literature Review

The following sub-chapters discuss some recent works published for micro-expression

spotting and recognition analysis, as well as the problems that exist in long videos.

5.4.1 Apex Spotting in Short Videos

Yan et al. (Yan, Wang, Chen, et al., 2014) published the first work to automatically

spot the instance of the single apex frame in a video. The micro-expression informa-

tion retrieved from that apex frame is expected to be insightful in both psychological

and computer vision research purposes, because it contains the maximum facial muscle

movements throughout the video sequence. They employed two feature extractors (i.e.,

LBP and CLM) and reported the average frame distance between the spotted apex and

the ground-truth apex. The frame that has the highest feature difference between the first

frame and the subsequent frames is defined to be the apex. However, the CLM feature

performed poorly as it is not able to annotate landmark points to a good degree of ac-

curacy. Furthermore, there are two flaws in Yan et al.’s (Yan, Wang, Chen, et al., 2014)

work, namely: (a) the average frame distance calculated is not in absolute mean, which

lead to incorrect results, and; (b) the method is validated by using only approximately

20% of the video samples in the database (i.e., CASME II), hence the proposed spotting

approach is not conclusive and convincing.

5.4.2 Micro-expression Spotting in Long and Short Videos

There are few conventional methods which attempted to spot the frame instant of the

micro-facial movements in the database. For instance, the work by Moilanen et al.

(Moilanen et al., 2014) searched for the frame indices that contain micro-expressions.

Specifically, a Chi-Squared dissimilarity is utilized to calculate the distribution differ-

ence between the LBP histogram of the current feature frame and the averaged feature

frame. The frames which yield score greater than an empirically determined threshold
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are regarded as frames with micro-expression. The short video databases, CASME A

and CASME B, and the long video databases, SMIC-E-VIS are considered to evaluate

the proposed method. It is able to achieve 52% true positive rate with 30 false positive

in CASME A; 66% spotting accuracy with 32 false positive in CASME B, and; spotting

accuracy of 71% with 23 false positive in SMIC-VIS-E. During the experiment, the au-

thors tried to mask the eye regions of the face images to avoid the spotting performance

from being affected by any eye related events. Yet, masking the eyes did not prevent the

eye blinks to be spotted. Thus, they claimed that the eye blinking movement is consid-

ered one type of the micro-expressions. Since the eye blink attribute is not detailed in the

ground-truth, the frames that contain the eye blinking movements are annotated manually.

A similar approach is carried out by Davison et al. (Davison et al., 2015) to spot the

frames that consist of micro-expressions, except that: (a) a denoising method is added

before extracting the features, and; (b) the Histogram of Gradient (HOG) is employed

instead of LBP. However, the database they tested on is not publicly available. Since

the benchmark video sequences used in this paper (Davison et al., 2015) and that in

(Moilanen et al., 2014) are different, their performances cannot be compared directly.

Similar to the spotting task carried out by Moilanen et al. (Moilanen et al., 2014), the

spotted eye blinking frames are also regarded as true positive.

5.4.3 Micro-expression Spotting and Recognition in Long Videos

To the best of our knowledge, there is only one prior work which combines the spotting

and recognition tasks to categorize the type of micro-expression, performed by Li et al.

(Li et al., 2015). They extended the work by Moilanen et al. (Moilanen et al., 2014),

where after the spotting stage, the spotted micro-expression frames (i.e., those within

the onset and offset range) are concatenated to a single sequence for expression recogni-

tion. In the recognition task, a motion magnification technique is employed to magnify
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the subtle motion so that the micro-expressions are easier to be distinguished. Besides,

a new feature extractor, namely, Histograms of Image Gradient Orientation (HIGO), is

introduced to suppress the effect of illumination variation. However, the spotting thresh-

old is chosen heuristically (at true positive rate of 74.86%) to obtain the spotted micro-

expression sequences which are fed to the recognition component. Although evaluation

on the SMIC-E-VIS showed promising results, the reliance on the annotated onset and

offset frames, as well as the use of a tunable threshold parameter warrants the need for

manual intervention. Besides, the frame rate of SMIC-E-VIS is 25fps, which means that

the maximum frame number in a long video sequence is only 1/5 s × 25 fps = 5 frames.

5.4.4 Eye Blinking Issue in Long Videos

Evaluation of the micro-expression system on long videos is particularly challenging,

primarily because of the presence of unwanted facial movements. These motions corre-

spond to falsely detected micro-expressions, which may appear before the actual onset

frame and after the offset frame. One common irrelevant facial movement that is un-

avoidable during the elicitation of micro-expression database is the eye blinking motion.

Shreve et al. (Shreve et al., 2009) suggested to remove the eye regions because eye blink-

ing can adversely affect optical flow estimation, causing false detection of the micro- and

macro-expressions. In their work, the boundaries of the eye regions are automatically

drawn using a landmark annotator. Unlike the work of Moilanend et al. (Moilanen et al.,

2014) and Davison et al. (Davison et al., 2014), the spotted frames that contained the eye

blinks are manually marked as true positive.

5.4.5 Feature Extraction and Face Representation

5.4.5.1 Regions of Interest

Many research papers demonstrated that extracting the features from certain facial regions

improves the facial expression recognition performance, compared to considering the en-
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tire face. The main reasons are that, those Regions of Interest (RoIs) contribute more fa-

cial changes information towards differentiation of the expressions and can eliminate the

parts that do not correspond to the desired facial movements. Happy and Routray (Happy

& Routray, 2015) introduced an automated salient facial patches selection method, in

which the sub-regions selected depend upon the locations of facial landmarks detected

using DRMF. However, there is no commonly agreed standard for specific combination

of the facial patches on achieving better accuracy on facial expression analysis. More

published works related on utilizing the facial patches are discussed in Chapter 2.2.3.

5.4.5.2 Local Binary Pattern

To describe the texture of the facial movements, the LBP (Ojala et al., 1996) method,

which is a simple operator, is widely used. As a brief review, the intensity value of the

center pixel is compare with its neighboring pixels using thresholding technique. The

result is encoded in a short binary code to represent the pattern of the neighborhood pixel.

Succinctly, LBP has discrimination power, compact representation and low computational

complexity. Detailed information has been discussed in Chapter 2.3.1.

5.4.5.3 Optical Strain

Optical strain can be deployed to measure the intensity of the expression occurred and

is therefore applicable for the facial expression detection and recognition tasks. Shreve

et al. (Shreve et al., 2014) employed optical strain magnitude to spot micro-expressions

and the spotting performances obtained are promising. The capability of optical strain

in computing the temporal motion details for each pixel in each frame robustly, justifies

its utilization in the micro-expression apex frame spotting application. Chapter 2.3.4

elaborates the advantages of optical strain as a feature descriptor and the related published

works.
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Figure 5.3: Flow diagram of apex frame spotting in short video

5.5 Proposed Algorithm

The proposed micro-expression recognition system comprises of two components, namely,

apex frame spotting, and micro-expression recognition. The following sub-chapters detail

the steps involved for both short and long videos.

5.5.1 Apex Frame Spotting in Short Video

The apex frame spotting approach in short videos consists of four steps:

1. Landmark detection - the facial landmark points are first annotated by using a

DRMF landmark detector.

2. RoIs extraction - the RoIs that indicate the facial region with important micro-

expression details are extracted according to the landmark coordinates.

3. Feature extraction - the LBP feature descriptor is adopted to obtain the features of

each frame in the video sequence (i.e., from onset to offset). The feature difference

between the first and the rest of the frames are computed using the correlation

coefficient formula.

4. Peak detection - a peak detector with divide-and-conquer strategy is utilized to

search for the apex frame based on the LBP feature difference. Note that all the

steps proposed above are fully automated and completely rely on the facial loca-

tions marked by the landmark detector.

The process flow diagram of the proposed apex frame spotting approach in short

videos is illustrated in Figure 5.3, with detail of each step elaborated as follows.
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5.5.1.1 Landmark Detection and RoIs Extraction

Yan et al. (Yan, Wang, Chen, et al., 2014) reported that the two most expressive facial

parts are located in the eyebrow and mouth areas. On the other hand, Ringeval et al.

(Ringeval et al., 2015) analyzed the facial features by splitting the landmarks into three

groups, namely, “left eye+eyebrow”, “right eye+eyebrow” and “mouth”. Based on the

statistics of the occurrence of the face regions in the CASME II database (Table 3.1),

“eye+eyebrow” and “mouth” areas are the most expressive regions as they appeared the

most compared to other facial regions in all the video sequences. In other words, these

regions contribute the majority and meaningful micro-expression information and hence

they are treated as the RoIs. Many articles in the literature demonstrated the merit of

extracting the features from parts of the face rather than the whole face, as reviewed earlier

in Chapter 2.2.3 and Chapter 3.3.2. The advantages and the procedure of extracting the

features from the RoIs are discussed in Chapter 3.4.

The DRMF landmark detector is employed to detect 66 facial landmark coordinates,

as shown in Figure 3.7(a). Then, the bounding boxes of the RoIs are determined accord-

ing to the neighboring landmark points. All three RoIs (i.e., “left eye + left eyebrow”,

“right eye + right eyebrow” and “mouth”) are bounded in multiple rectangular boxes, as

illustrated in Figure 3.7(b). Note that, a 10 pixels margin has been added in all four direc-

tions of the boxes to encode more local expression details and to overcome the imprecise

landmark annotation problem.

5.5.1.2 Feature Extraction

The LBP histograms for each RoI in each frame are calculated. Then, the apex frame is

obtained by computing the correlation between the first frame (assumed to be the most
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neutral expression) and the rest of the frames. The correlation coefficient is defined by:

d =

nBins
∑

i=1
h1i×h2i√

nBins
∑

i=1
h2

1i×
nBins
∑

i=1
h2

2i

, (5.1)

where h1 is the gray-scale histogram of the first frame, and h2 is the current frame. Here,

(1 - d) indicates the rate of difference of the LBP features between two frames. The

change in differences are compared among three RoIs, and only the features of RoI with

the highest change in differences is extracted for apex frame investigation.

5.5.1.3 Peak Detection

Instead of spotting the apex frame by determining the maximum peak (the conventional

method) (Yan, Wang, Chen, et al., 2014) in the video sequence, divide & conquer method-

ology is introduced to automatically spot the apex frame in the video sequence. Specifi-

cally, the procedures to spot the apex frame are:

1. The frame index of the peaks/ local maximum in the video sequence are detected

using a peak detector.

2. The frame sequence is divided into two equal halves (e.g., a 40 frames video se-

quence is split into two sub-sequences containing frame 1-20 and 21-40).

3. Magnitudes of the detected peaks are summed up for each of the sub-sequence.

4. The sub-sequence with the higher magnitude will be considered for the next com-

putation step while the other subsets will be discarded.

5. Steps (b) to (d) are repeated until the final peak (also known as apex frame) is found.

The divide & conquer methodology is proposed to spot the apex frame because the

maximum peak of the video sequence might not necessarily represents the apex frame.
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The falsely detected apex frame may be due to inaccurate feature extraction computation

caused by the violation of the smoothness constraints and self-occlusions (Shreve et al.,

2014). Besides, throughout a per-frame analysis in CASME II, the apex frame is likely to

appear in a concentrated peaks area. Algorithm 1 shows the pseudo code of the proposed

divide & conquer strategy.

Algorithm 1 Divide & Conquer Methodology
l← split level
S← set of candidate peaks, pi
Initialize l = 0, Scε∀pi
repeat

Split half Sc to S0,S1
Sc← max(|S0,S1|)
l← l +1

until Si = 1

Figure 5.4 demonstrates the apex frame spotting approach in a sample video. It can

be seen that, the ground-truth apex marked manually by the coder (frame #63) and the

spotted apex by the proposed method (frame #64) differ only by one frame.

129

Univ
ers

ity
 of

 M
ala

ya



Fi
gu

r e
5.

4:
D

em
on

st
ra

tio
n

of
th

e
ap

ex
fr

am
e

sp
ot

tin
g

in
a

vi
de

o
se

qu
en

ce
us

in
g

L
B

P
fe

at
ur

e
ex

tr
ac

to
rw

ith
di

vi
de

&
co

nq
ue

r
st

ra
te

gy

130

Univ
ers

ity
 of

 M
ala

ya



Figure 5.5: Flow diagram of apex frame spotting in long video

5.5.2 Apex Frame Spotting in Long Video

The procedure of the apex frame spotting task for long video is similar to that of short

video as detailed in Chapter 5.5.1. The entire spotting procedure contains five steps,

specifically:

1. Landmark detection - 66 landmark coordinates are annotated by DRMF landmark

detector.

2. Eye masking - before extracting the RoIs, an eye masking approach is introduced

to address the eye blinking issue.

3. RoIs extraction - three RoIs are selected, then each RoI is equally divided into

multiple blocks of smaller size to encode more local appearance features.

4. Feature extraction - optical strain magnitudes are computed for each region and

sum-aggregated for 12 facial blocks.

5. Peak detection - the frame with the highest sum of optical strain magnitudes (from

any region) is chosen as the apex frame.

The process flow diagram of the proposed apex frame spotting approach is illustrated

in Figure 5.5. Details of the aforementioned steps are elaborated in the following sub-

chapters, except for step (a) landmark detection, because it is exactly the same as in

Chapter 5.5.1.
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Figure 5.6: Eye masking process: (a) There are 6 landmark coordinates which marked
the boundaries of the left (landmark points 37, 38, 39, 40, 41 and 42) and 6 on the right
(landmark points 43, 44, 45, 46, 47 and 48) eye regions; (b) The eye regions are removed
after adding some pixel margins

5.5.2.1 Eye Masking

Although eye blinking is a natural motion of rapid opening and closing of the eyelids,

it is not qualified to be considered as a micro-expression. Since the micro-expression

databases are typically recorded at a high frame rate, the blinking action is clearly visible

when displaying the video frame-by-frame, Hence, the changes caused by eye blinking

are significantly more intense compared to that of micro-expressions. Thus, it is a nagging

issue that exists in some of the long video sequences. This issue is overcome by masking

the left and right eye regions to reduce the false spotting of the apex frame. To ensure

this is done automatically, the eye regions are removed based on the location of landmark

points annotated by DRMF landmark detector (Asthana et al., 2013). The process of

eliminating the eye regions is illustrated in Figure 5.6. Here, landmark coordinates 37 to

42 indicate the boundary of the right eye region, while landmark coordinates 43 to 48 are

the boundary points of the left eye region. To overcome potential inaccurate landmark

annotation, a 15 pixel margin is added to expand the eye boundaries.
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Figure 5.7: Illustration of extraction of the three RoIs: (a) 66 landmark coordinates
labeled by DRMF; (b) The four edges (i.e., top, bottom, left and right) are determined
based on the landmark point locations; (c) Each RoI is partitioned into four blocks with
the same size

5.5.2.2 RoIs Extraction

The choice of the region to perform accurate spotting is crucial. Only the “eye and eye-

brow” and “mouth” regions are considered for the feature extraction stage rather than the

whole face region. The steps for the RoIs selection and partitioning are:

1. The facial landmark points annotated earlier (in Chapter 5.5.2.1) are adopted, where

the three RoIs are identified using rectangular bounding boxes determined based on

the landmark locations.

2. The RoI bounding boxes are widened by a margin of 10 pixels on all four edges to

compensate for potentially imprecise landmark annotation.

3. Each RoI is equally divided into four blocks to encode more local appearance fea-

tures. Thus, there is a total of 12 facial region blocks in a frame.

Figure 5.7 illustrates the steps involved in the RoIs extraction.

5.5.2.3 Feature Extraction and Peak Detection

Shreve et al. (Shreve et al., 2009) employed optical strain magnitudes for macro- and

micro-expression spotting. This idea is adopted to better characterize micro motions,

by obtaining optical strain magnitudes based on a reference frame. TV-L1 optical flow
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method (Pérez et al., 2013) is employed for the flow vector estimation. It is able to

preserve flow discontinuities and is arguably more robust compared to the classical optical

flow method by Black and Anandan (Black & Anandan, 1996) as employed in (Shreve et

al., 2009).

The notations to be used in the subsequent chapters are first clarified. A micro-

expression video clip, denoted as si, can be derived from Equation (3.1). Optical flow

vector, namely, ℘, (from Equation (2.9)) between each frame in the video sequence (ex-

cept for the first frame) and the reference frame (the first frame is chosen as it is assumed

to contain the most neutral expression) is computed. Optical strain can be described by

a two-dimensional displacement vector, ~u = [u,v], and its magnitude for each pixel can

be calculated by taking the sum of squares of the normal and shear strain components. A

more detailed discourse on optical strain can be found in Chapter 2.3.4.

As mentioned earlier, there are 12 facial blocks in each frame. The optical strain

magnitudes are calculated for each of these regions after applying eye masking. The

optical strain magnitudes in each block b are summed up and the frame with the highest

block value (or sum of magnitudes) is designated as the spotted apex frame f ∗ for the

sequence:

f ∗ = argmax
j

{
∑
j,b
|ε j,b|

}
, for j ∈ [1,Fi−1],b ∈ [1,12]. (5.2)

5.5.3 Micro-expression Recognition

A new feature descriptor, Bi-Weighted Oriented Optical Flow (Bi-WOOF) is proposed.

It is capable to represent a sequence of subtle expressions by using only two frames. As

illustrated in Figure 5.8, the recognition algorithm contains three main steps:

1. Estimation of optical flow - the horizontal and vertical optical flow vectors between
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Figure 5.8: Obtaining Bi-Weighted Oriented Optical Flow (Bi-WOOF) features

the apex and first frames are estimated.

2. Computation of orientation, magnitude and optical strain - these three components

are computed from the respective two optical flow components.

3. Formation of Bi-Weighted Oriented Optical Flow (Bi-WOOF) - a Bi-WOOF his-

togram is formed based on the orientation, with magnitude locally weighted and

optical strain globally weighted.

5.5.3.1 Estimation of optical flow

Optical flow approximates the changes of an object’s position between two frames that are

sampled at slightly different times. It encodes the motion of an object in vector notation,

which indicates the direction and intensity of the flow of each image pixel.

For each video sequence, si (refer to Equation (3.1)), there is only one apex frame,

fi,a ∈ fi,1, . . . , fi,Fi, and it can be located at any frame index. The optical flow vectors of

the first frame (assumed as neutral expression) and the predicted apex frames are denoted

by fi,1 and fi,a, respectively. Hence, each video of resolution X×Y produces only one set

of optical flow map, expressed as:

νi = {(ux,y,vx,y)|x = 1, . . . ,X ;y = 1, . . . ,Y}, (5.3)

for i ∈ 1, . . . ,n.
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5.5.3.2 Computation of orientation, magnitude and optical strain

Given the optical flow vectors, three characteristics to describe the facial motion patterns

are derived: (a) magnitude: intensity of the pixel’s movement; (b) orientation: direction

of the flow motion, and; (c) optical strain: subtle degree of deformation.

In order to obtain the magnitude and orientation, the flow vectors, ℘= (p,q) (refer

to Equation (2.9)), are converted from euclidean coordinates to polar coordinates:

ρx,y =
√

px,y2 +qx,y2, (5.4)

and

θx,y = tan−1 qx,y

px,y
, (5.5)

where ρ and θ are the magnitude and orientation, respectively.

The next step is to compute the optical strain, ε , based on the optical flow vectors.

Refer to Chapter 2.3.4 for the derivation of optical strain magnitude.

5.5.3.3 Formation of Bi-Weighted Oriented Optical Flow (Bi-WOOF)

In this stage, the aforementioned characteristics (i.e., orientation, magnitude and optical

strain images for every video) are utilized to build a block-based Bi-WOOF.

The three characteristic images are partitioned equally into N×N non-overlapping

blocks. For each block, the orientations θx,y ∈ [−π,π] are binned and locally weighted

according to its magnitude ρx,y. Thus, the range of each histogram bin is:

−π +
2πc
C
≤ θx,y <−π +

2π(c+1)
C

, (5.6)

where bin c ∈ {1,2, . . . ,C}, and C denotes the total number of histogram bins.

Next, to obtain the global weight ζb1,b2 for each block, the optical strain magnitude
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εx,y are utilized as follows:

ζb1,b2 =
1

HL

b2H

∑
y=(b2−1)H+1

b1L

∑
x=(b1−1)L+1

εx,y, (5.7)

where L = X
N , H = Y

N , b1 and b2 are the block indices such that b1,b2 ∈ 1,2, . . . ,N, and

X×Y is the dimensions (viz., width-by-height) of the video frame. Lastly, the coefficients

of ζb1,b2 are multiplied with the locally weighted histogram bins to their corresponding

blocks. The histogram bins of each block are concatenated to form the resultant feature

histogram.

Different from the conventional HOOF (Chaudhry et al., 2009) that has magnitude

votes for the orientation histogram bins, both the magnitude and optical strain values are

considered as the weighting schemes to highlight the importance of each optical flow.

Hence, a larger intensity of the pixel’s movement or deformation contributes more effect

to the histogram, whereas noisy optical flows with small intensities reduce the signifi-

cance of the features.

Figure 5.9 illustrates the steps in obtaining the locally and globally weighted fea-

tures.

137

Univ
ers

ity
 of

 M
ala

ya



Fi
gu

re
5.

9:
B

i-
W

O
O

F
fe

at
ur

es
fo

rm
at

io
n:

(a
)

θ
an

d
ρ

im
ag

es
ar

e
di

vi
de

d
in

to
N
×

N
bl

oc
ks

.
In

ea
ch

bl
oc

k,
th

e
va

lu
es

of
ρ

fo
r

ea
ch

pi
xe

la
re

tr
ea

te
d

as
lo

ca
lw

ei
gh

ts
to

be
m

ul
tip

lie
d

w
ith

th
ei

r
re

sp
ec

tiv
e

θ
hi

st
og

ra
m

bi
ns

;(
b)

It
fo

rm
s

a
lo

ca
lly

w
ei

gh
te

d
H

O
O

F
w

ith
fe

at
ur

e
si

ze
of

N
×

N
×

C
;(

c)
ζ

b1
,b

2
de

no
te

s
th

e
gl

ob
al

w
ei

gh
tin

g
m

at
ri

x,
w

hi
ch

is
de

riv
ed

fr
om

ε
im

ag
e;

(d
)F

in
al

ly
,ζ

b1
,b

2
ar

e
m

ul
tip

lie
d

w
ith

th
ei

rc
or

re
sp

on
di

ng
lo

ca
lly

w
ei

gh
te

d
H

O
O

F

138

Univ
ers

ity
 of

 M
ala

ya



5.6 Performance Metrics

For long videos the effectiveness of apex frame spotting can be determined using the

Mean Absolute Error (MAE), which is also used in (Yan, Wang, Chen, et al., 2014).

MAE indicates the average frame distance between the ground-truth and the spotted apex

frame. It can be computed using the following equation:

MAE =
1
n

n

∑
i=1
|ei|, (5.8)

where n is the total number of video sequence in the database and e is the distance (in

frames) between the ground-truth apex and the spotted apex. However, among the four

long video databases used in the experiments, only CASME II-RAW provides ground-

truth apex frame indices. Thus, to evaluate the performance of apex frame spotting, an-

other measurement, Apex Spotting Rate (ASR) is proposed, which calculates the success

rate in spotting apex frames within the onset and offset range given a long video. An apex

frame is scored 1 if it is located between the onset and offset frames, and 0 otherwise:

ASR =
1
N

N

∑
i=1

δ ,

where δ =


1, if f ∗ ∈ ( fi,onset , fi,o f f set);

0, otherwise.

(5.9)

The classifier adopted in all experiments reported in this study is the SVM with

linear kernel and LOSOCV protocol. The block size for the Bi-WOOF feature extractor

is set to 8 × 8 for CASME II and CASME II-RAW, while 5 × 5 for the SMIC-HS,

SMIC-NIR, SMIC-VIS, SMIC-E-HS, SMIC-E-VIS and SMIC-E-NIR databases. The

recognition accuracy is measured using the F-measure (Equation (3.5)), which conveys

the balance by averaging the precision (Equation (3.4)) and recall (Equation (3.3)).
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5.7 Results and Discussions

Two chapters are designed to discuss the experiment results for short and long video

databases. Specifically, Chapter 5.7.1 reports the performance examined in the short

video databases (i.e., CASME II, SMIC-HS, SMIC-NIR and SMIC-VIS), and Chap-

ter 5.7.2 discusses the performance evaluated in the long video databases (i.e., CASME

II-RAW, SMIC-E-HS, SMIC-E-NIR and SMIC-E-VIS).

5.7.1 Short Videos

5.7.1.1 Results

The micro-expression recognition performance of the proposed method (i.e., Bi-WOOF)

and the other conventional feature extraction methods are shown in Table 5.1. Note that

methods #1 to #11 consider all frames in the video sequence (i.e., frames from onset to

offset). However for methods #12 to #17, only two images are processed to extract the

features, viz., the apex and the first frames.

To further confirm the importance of the apex frame, one frame is randomly selected

in each video sequence before computing the features between that frame and the first

frame using LBP, HOOF and Bi-WOOF. The recognition performances of this random

frame selection approach are reported under methods #12, #14 and #16. This process is

repeated for 10 times. It is observed that the utilization of apex frame always yields better

recognition results when compared to the random ones. As such, it can be concluded that

the apex frame plays an important role in forming discriminative features.

For method #10 (i.e., LBP-TOP), also referred to as the baseline, the experiments are

re-conducted using the same datasets (4 in total) based on the original papers (Yan, Li, et

al., 2014; Li et al., 2013). On the other hand, Bi-WOOF is applied to all frames in the

video sequence. The features are computed by first estimating three characteristics of the

optical flow (i.e., orientation, magnitude and optical strain) between the first frame and
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the subsequent frames (i.e., { fi,1, fi, j}, j ∈ 2, . . . ,Fi ). Next, Bi-WOOF is applied for each

frame in the video and in the computation of the resultant histogram. The recognition

performance is reported under method #11.

For the LBP feature extractor (i.e., methods #12 and #13), the difference image is

first obtained by simply performing the subtraction between the apex / random frame and

the first frame. This operation aims to remove the person’s identity while preserving the

characteristics of facial micro-movements. Then, LBP is applied on the difference image

to compute the features. Next, HOOF feature extractor (i.e., methods #14 and #15) is

employed to form the histogram by binning the optical flow orientation, that is computed

between the apex / random frame and the first frame. Table 5.1 suggests that the proposed

algorithm (viz., method #17) achieves promising results in all four datasets. More pre-

cisely, it outperforms all the other methods in CASME II and SMIC-HS. In addition, for

SMIC-VIS and SMIC-NIR, the results of the proposed method are comparable to those

of method #9, viz., Xu et al. method.
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Table 5.2: Confusion matrices of baseline and Bi-WOOF (apex & first frame) for recog-
nition task on the CASME II database

(a) Baseline

Disgust Happiness Others Surprise Repression
Disgust .20 .11 .66 .02 .02

Happiness .09 .47 .25 0 .19
Others .21 .12 .58 .08 0

Surprise .12 .36 .20 .32 0
Repression .07 .33 .26 .04 .30

(b) Bi-WOOF (apex & first frame)

Disgust Happiness Others Surprise Repression
Disgust .49 .07 .44 0 0

Happiness .03 .59 .28 .03 .06
Others .21 .09 .62 .01 .06

Surprise .04 .12 .08 .76 0
Repression .07 .19 .22 0 .52

5.7.1.2 Discussions

The confusion matrices for the recognition performances on the high frame rate databases,

namely CASME II and SMIC-HS, are recorded in Table 5.2 and Table 5.3, respectively.

It is observed that there are significant improvements in classification performance for

all kinds of expression when employing Bi-WOOF (apex & first frame), compared to

the baselines. In CASME II, the recognition rate of ‘Surprise’, ‘Disgust’, ‘Repression’,

‘Happiness’ and ‘Others’ expressions are improved by 44%, 29%, 22%, 12% and 4%, re-

spectively. Furthermore, for SMIC-HS, the recognition rate of the expressions ‘Negative’,

‘Surprise’ and ‘Positive’ are improved by 32%, 19% and 18%, respectively.
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Table 5.3: Confusion matrices of baseline and Bi-WOOF (apex & first frame) for recog-
nition task on the SMIC-HS database

(a) Baseline

Negative Positive Surprise
Negative .34 .29 .37
Positive .41 .39 .20
Surprise .37 .19 .44

(b) Bi-WOOF (apex & first frame)

Negative Positive Surprise
Negative .66 .23 .11
Positive .27 .57 .16
Surprise .23 .14 .63
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Figure 5.10 exemplifies the components derived from optical flow using the apex

frame and the first frames of the video sequence “s04_sur_01” in SMIC-HS, where the

micro-expression of ‘Surprise’ is shown. According to the labeling criteria of emotions

defined by Yan et al. (Yan, Li, et al., 2014), the changes in facial muscles are centered at

the eyebrow regions. Here, the facial movements in Figure 5.10 (a), 5.10(b) and 5.10(c)

are not obvious. Specifically, the whole face in the images appear to be moving and hence

it is unable to determine which specific parts of the face are important. For Figure 5.10(d),

a noticeable amount of muscular changes occur at the upper part of the face, whereas in

Figure 5.10(e), the eyebrows regions have obvious facial movement. Since magnitude

information emphasizes the amplitude of the facial changes, it is utilized as local weight.

Due to higher order derivatives in obtaining the optical strain magnitudes, optical strain

has the ability to remove noises and preserve large motion changes. These characteristics

are manipulated to build the global weight.

Based on the results of F-measure and confusion matrices, it is observed that ex-

tracting the features of only two images (i.e., apex and first frame) using the proposed

method (i.e., Bi-WOOF) is able to yield superior recognition performance for the micro-

expression databases considered, especially in CASME II and SMIC-HS, which have

high temporal resolution (i.e., ≥ 100fps).

The computation time of Bi-WOOF in SMIC-HS database on both the whole se-

quence and two images (i.e., apex and first frame) are also examined and recorded for

methods #11 and #17 in Table 5.1, respectively. The average duration taken per video

for the micro-expression recognition system is 128.7134s for the whole sequence and

3.9499s for two images in MATLAB implementation. The computation time includes

the time taken for execution of: (a) spotting the apex frame using the divide & conquer

strategy; (b) estimation of the horizontal and vertical components of optical flow; (c)

computation of orientation, magnitude and optical strain magnitudes; (d) generation of
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Bi-WOOF histogram, and; (e) expression classification in SVM. Both experiments are

carried out on an Intel Core i7-4770 CPU 3.40GHz processor. Results suggest that for the

case of two images, it is ∼33 times faster than whole sequence. In other words, a speed

up of ∼97% is achieved. It is indisputable that the method of extracting the features from

only two images is significantly faster than using the whole sequence, because less images

are involved in the computation and in turn, the volume of data to be processed is also

less.

5.7.2 Long Videos

5.7.2.1 Results

The MAE results for apex frame spotting task on the CASME II-RAW dataset are shown

in Table 5.4. It compares the techniques with and without applying eye masking using

two types of feature extractors, i.e., LBP and optical strain. LBP feature is utilized in

(Li et al., 2015) to spot the micro-expression frames while the use of optical strain is

proposed in this study. The lower the MAE (in frames), the closer the spotted apex frame

is to the ground-truth apex frame, implying more accurate spotting. It can be seen that

in Table 5.4, the spotting performance of the optical strain method outperforms that of

LBP. This result also emphasizes the importance of using eye masking (a more detailed

look into the impact of this step can be found in Figure 5.11). Specifically, eye masking

improves the spotting accuracy with optical strain features by 36.38%.

On the other hand, Table 5.5 shows the apex spotting accuracy measured in terms

of ASR. With eye masking, there are tremendous improvements of 20%, 41.68%, 20.02%

and 31.58% on the CASME II-RAW, SMIC-E-HS, SMIC-E-VIS and SMIC-E-NIR databases,

respectively. Based on these results, the elimination of eye regions (but not up to the ex-

tent of eyebrows) from consideration is able to increase the precision of searching for the

apex frame. It is worth mentioning that the overall performance on the SMIC databases is
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Table 5.4: Performance of apex frame spotting with and without eye masking on the
CASME II-RAW database measured by MAE.

Feature Extractor W/o eye mask With eye masked Improvement
LBP 51.86 frames 55.26 frames -6.56%

Optical strain 42.77 frames 27.21 frames 36.38%

Table 5.5: Performance of apex frame spotting with and without eye masking on the long
videos databases measured by ASR

Databases W/o eye mask With eye masked Improvement
CASME II-RAW 0.66 0.82 20.00%
SMIC-E-HS 0.22 0.38 41.68%
SMIC-E-VIS 0.23 0.28 20.02%
SMIC-E-NIR 0.18 0.27 31.58%

still quite low (even with eye masking). This phenomenon is discussed in Chapter 5.7.2.2.

As for the performance of the recognition task, to date, there is no prior work in

the literature that reports the F-measure recognition performance on micro-expression

long videos (i.e., CASME II-RAW, SMIC-E-HS, SMIC-E-VIS and SMIC-E-NIR). Thus,

no direct comparison can be made for the F-measure results. The recognition results

are tabulated in Table 5.6, where optical strain feature is employed in the spotting task.

To recall, method #1 randomly spots the apex frame in the video sequence; method #2

spots the apex frame without masking the eye regions, and; method #3 spots the apex

frame after applying eye masking. It can be seen that the proposed approach (method #3)

achieves the best performance.

The proposed method (method #3, with eye masking) is also compared with Li et

al.’s (Li et al., 2015), which is the only other work that implemented a micro-expression

spotting and recognition system for long videos (see Table 5.7). However, the compari-

son could only be done using the Accuracy measure, and only applicable to one database,

i.e., SMIC-E-VIS. It is observed that the performance of the proposed method is compa-

rable to that of Li et al. (Li et al., 2015) but with several advantages. Specifically, the

proposed method does not rely on the ground-truth onset and offset labels, and it has the
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Table 5.6: Recognition performance for long videos in terms of F-measure

# Methods CASME II-RAW SMIC-E-HS SMIC-E-VIS SMIC-E-NIR
1 Spotting (random) .36 .37 .33 .28

+ recognition
2 Spotting (w/o eye mask) .46 .36 .44 .38

+ recognition
3 Spotting (with eye masked) .59 .47 .53 .43

+ recognition

Table 5.7: Comparison of the recognition accuracy between the state-of-the-art method
and the proposed method on the SMIC-E-VIS database

Methods Recognition Remarks
Li et al. (Li et al., 2015) .57 Onset and offset frames used.

Only correctly spotted sequences used.
Proposed method .53 No onset, offset, apex labels required.

All spotted apices are used.

computational benefit of only needing to find the apex frame for recognition purpose.

5.7.2.2 Discussions

Table 5.8 shows the average percentage of frames (among all frames in the long video)

consisting of micro-expressions. Note that only approximately 6% of the frames contain

micro-expressions in all three SMIC databases. In other words, 94% of the frames have

either neutral faces, macro-expressions or other forms of irrelevant motions such as head

rotations and eyeball movements. This suggests the possibility of macro-expressions and

irrelevant movements becoming more prominent while micro-expressions may occur only

in a few frames. Hence, attempting to spot the apex frame in these circumstances is an

arduous task.

Nonetheless, the proposed method (method #3) is capable of coping with these issues

as suggested by the results tabulated in Table 5.6 for all databases considered. For method

#1, the apex frame is spotted randomly, as a control method. As expected, method #1

yields the worst recognition performance among all evaluated methods in all databases.

This indicates the importance of obtaining the apex frame correctly. Both the spotting and
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recognition results (in Table 5.5 and Table 5.6) support that the eye masking technique

enhances the micro-expression recognition performance by removing noises from eye

blinking, leading to more meaningful features. Figure 5.11 demonstrates the differences

in the selection of spotted apex, with and without applying eye masking. It is observed

that, without applying the eye masking technique (the upper row in Figure 5.11), the

detected apex frame (frame 23) contains an eye closing motion, which is a falsely spotted

micro-expression. This occurred because the facial movement is relatively more intense

among all the frames in the video. On the contrary, the spotted apex frame after the

application of eye masking (frame #109) is significantly closer to the ground-truth apex

frame (frame #119).
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Table 5.8: Average number of frames in the short and long videos of the CASME II and
three SMIC databases

Databases Short Video Long Video Frames with micro-expression
CASME II 67 frames 244 frames ∼27%
SMIC-HS 33 frames 590 frames ∼6%
SMIC-VIS 9 frames 150 frames ∼6%
SMIC-NIR 9 frames 150 frames ∼6%

In Table 5.7, the numerical results (spotting and recognition on the SMIC-E-VIS

database) reported for Li et al.’s method are copied directly from their work (Li et al.,

2015). Although their reported recognition performance is slightly better the proposed

method in this study, there are several glaring differences. Firstly, they utilized the

ground-truth onset and offset frame labels to form a frame interval, which is in turn used

to determine the spotted micro-expression sequence. Secondly, the incorrectly spotted

micro-expression sequences are not considered for recognition. The authors pointed out

that the reported performance is computed by using only the correctly spotted micro-

expression sequences (TPR=74.86%) (Li et al., 2015). On the other hand, the proposed

approach (i.e., spotting apex frame with eye masking) eliminates the need for human

intervention, or in other words, it does not make use of any hand-labeled ground-truth

frames (i.e., onset, apex and offset). It also mimics a fully automatic and realistic system

which considers the likelihood of a less-than-desirable spotted apex. For a closer inspec-

tion into the performance of individual classes, confusion matrices of the recognition task

for CASME-II-RAW and SMIC-E-HS databases are tabulated in Table 5.9.

5.8 Summary

In recent years, a number of research groups attempted to improve the accuracy of micro-

expression recognition by designing a variety of feature extractors that can best capture

the subtle facial changes (Y. Wang et al., 2014; X. Huang et al., 2015; Y. J. Liu et al.,

2016), while others (Le Ngo et al., 2015, 2016; Li et al., 2013) have sought out ways to
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Table 5.9: Confusion matrices for the recognition task on the CASME-II-RAW and
SMIC-E-HS databases using the proposed method

(a) CASME-II-RAW

Disgust Happiness Tense Surprise Repression
Disgust .43 .08 .44 .02 .03

Happiness .06 .56 .25 .06 .06
Others .23 .09 .61 .01 .05

Surprise .12 .04 .16 .68 0
Repression 0 .07 .33 0 .59

(b) SMIC-E-HS

Negative Positve Surprise
Negative .54 .32 .14
Positive .39 .49 .12
Surprise .54 .12 .34

reduce information redundancy in micro-expressions (using only a portion of all frames)

before recognizing them.

This chapter empirically verified that it is sufficient to encode facial micro-expression

features by utilizing only the apex frame (and first frame as reference frame). Thus far,

this is the first attempt at recognizing micro-expressions in video using only the apex

frame. For databases that do not provide apex frame annotations, the apex frame can

be acquired by automatic spotting methods. For the spotting task in long video, a major

problem is the presence of eye blinking motion, which can easily be misclassified as a

micro-expression. To overcome this problem, the eye regions are automatically removed

by applying an automatic eye masking techniques, which depends entirely on the detected

landmark coordinates. For the recognition task, a novel feature extractor is also proposed,

namely Bi-Weighted Oriented Optical Flow (Bi-WOOF), which can precisely describe

discriminately weighted motion features. As its name implies, the optical flow histogram

features (bins) are locally weighted by their own magnitudes while facial regions (blocks)

are globally weighted by the magnitude of optical strain.

Experiments are conducted on four short video micro-expression databases and four
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long video databases. Among the databases tested, CASME II and SMIC-HS (short

videos) achieve the highest recognition rate of 61% and 62%, respectively, when com-

pared to the state-of-the-art methods. For the long video databases, the proposed recog-

nition approach achieves a promising F-measure of 59% in CASME II-RAW database.

5.9 Prima Facie

In this work, two strong propositions are established, which are by no means conclusive

at this juncture as further research is necessary:

1. The apex frame is the most important frame in a micro-expression clip, as it

contains the most intense or expressive micro-expression information. The exper-

iments using random frame selection (as the supposed apex frame) substantiates

this fact. Perhaps, it will be interesting to know to what extent an imprecise apex

frame (for example, a detected apex frame that is located a few frames away) could

influence the recognition performance.

2. The apex frame is sufficient for micro-expression recognition. A majority of

recent state-of-the-art methods promote the use of the entire video sequence, or a

reduced set of frames (Li et al., 2013; Le Ngo et al., 2016). In this work, the op-

posite is advocated that, “less is more”, supported by the hypothesis that a large

number of frames does not guarantee a high recognition accuracy, particularly in

the case when high-speed cameras are employed (frame rate ≥ 100 f ps). Compar-

isons against conventional methods show that the use of a well-spotted apex frame

can provide better information than an array of frames. At this juncture, it is pre-

mature to ascertain the reasons behind this finding. Hence, this warrants a detailed

investigation into how and where micro-expression cues reside within the sequence

itself.
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CHAPTER 6: CONCLUSION

6.1 Summary

A comprehensive study on micro-expression recognition system has been carried out in

this dissertation. The primary focus of this research is to improve both the pre-processing

and feature extraction stages in the recognition system. Experiments are performed on

several latest and comprehensive spontaneous micro-expression databases. The three

main contributions are highlighted as follows.

First of all, a hybrid approach to extract the important facial regions for micro-

expressions recognition is proposed, namely RoI-Selective. It is achieved by combining

both the heuristic and automatic approaches. The heuristic-based determination of salient

facial regions exploits the occurrence frequency of the facial action units for all the ex-

pressions, whereas the automatic detection of the landmark points are performed using a

landmark detector. The fusion of the two approaches results in the formation of the three

essential RoIs (i.e., the two eye/eyebrow regions and mouth region). The RoI-Selective

approach enhances the accuracy of the entire recognition system, by focusing the fea-

ture extraction on facial patches that contribute meaningful and expressive information.

Besides, it reduces the computational complexity and hence speeds up the recognition

process. Extensive experiments have also been carried out to analyze the parameter val-

ues.

Secondly, new feature descriptors are proposed by utilizing facial optical strain mag-

nitudes to construct Optical Strain Features (OSF), Optical Strain Weighted Features

(OSW) and Concatenation of OSF and OSW (OSF + OSW). Specifically, OSF directly

utilizes the optical strain features followed by temporal sum pooling and filtering pro-

cesses, whereas OSW adopts optical strain magnitudes as weight matrices to improve
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the importance of the feature values extracted by LBP-TOP feature extractor in different

block regions. The two sets of features are then concatenated to form the resultant feature

histogram, i.e., OSF + OSW. The concatenation process enriches the variety of features

used, providing further robustness towards the detection and recognition of facial micro-

expressions. Experiment results substantiate the capability of OSF + OSW in capturing

the fine appearance and subtle muscle changes on the face.

Thirdly, a novel approach that encodes features from only two images is proposed

for micro-expression recognition, in contrast to most works published in the literature that

utilize either the entire video sequence or part of it for feature representation. The two

images are the apex frame, which contains the highest intensity of expression changes

among all frames, and the first frame of the video clip, which is assumed to have a neu-

tral expression. To automatically spot the apex frame in the video, two approaches are

designed to handle videos with different attributes, i.e., the short videos and long videos.

For the short videos, a divide & conquer strategy is presented to automatically spot the

apex frame. On other hand, for the long videos, an automated eye masking technique is

proposed to exclude the eye regions in order to prevent ambiguous eye behaviors from

possibly affecting the apex spotting process, and eventually the performance. After ob-

taining the apex frame, a new feature descriptor, called Bi-Weighted Oriented Optical

Flow (Bi-WOOF) is introduced to encode the spotted apex frame and the first frame to

represent the entire video. This method outperforms the state-of-the-art methods when

considering two recent micro-expression databases.

6.2 Limitations

Although promising experiment results are attained, the proposed approaches in this study

still pose several limitations:

1. The determination of the parameter values in the experimental settings can be te-
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dious. For instance, Chapter 3 conducts a thorough analysis to empirically deter-

mine the optimal range of the parameter values, including r and w for OSF, and N

and w for LBP-TOP.

2. Although the feature extractor approach introduced in Chapter 4 works well in the

SMIC-HS database, there is only little improvement in CASME II on the other

hand. This implies that the proposed approach might not be suitable for other

micro-expression databases.

3. In Chapter 5, the first frame of the video is assumed to be the neutral frame, irre-

spective of short or long video sequence. This assumption can possibly be improved

if the neutral frame is detected automatically prior to recognition.

4. For experiments with long video as discussed in Chapter 5, only the eye blink issues

are addressed, but other motions such as: (a) neutral frame; (b) macro-expressions;

(c) head movement, and; (d) other micro-expression irrelevant motions, are not han-

dled as the currently available datasets do not contain many of these cases. Better

apex spotting accuracy can potentially be achieved if large motions are dealt with.

6.3 Future Works

All the approaches proposed in this dissertation involve the computation of optical strain.

One of the major disadvantages of utilizing optical strain is that, it is time consuming due

to high complexity in deriving optical flow and optical strain values. Besides, since opti-

cal strain estimation is based upon optical flow, it is highly dependent on the brightness

pattern in the image. Any subtle change in illumination, such as shadows and highlights,

can lead to disastrous error in the estimation of optical strain.

On the other hand, tuning the parameters (i.e., size of the regions of interest, block

partitioning of the face, etc.) towards optimum values and other settings (i.e., SVM ker-
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nel) in the feature extractors as well as classifiers warrant further investigation to maxi-

mize the performance of the recognition system. Adaptive feature extractor or adaptive

classifier can be introduced to automatically adjust the parameter settings in different ex-

perimental environment. In addition, better noise filtering techniques and masking of

different face regions can be applied to alleviate the instability of illumination and inten-

sity changes on the face area or background. These suggestions can potentially improve

the accuracy of the computation of optical flow / strain.

Last but not least, as pointed out in Chapter 2.4, only a few of micro-expression

databases are available to validate the robustness of the proposed approaches. Specif-

ically, only the SMIC II and CASME II databases are valid for evaluation because the

micro-expressions in these two databases are spontaneous, subtle, high speed, elicited

in proper acquisition setup, and of sufficient number of sample size. Therefore, it is

necessary to construct a new database that fulfills all the requirements for promoting

and encouraging the advancement of research in micro-expression. In order to ensure

practicability and relevancy, a micro-expression video should be recorded in a realistic

environment with as little controlled parameters as possible.
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APPENDIX A: LIST OF PUBLICATIONS AND PAPERS PRESENTED

The following is the list of submitted / accepted journal articles and peer-viewed confer-

ence papers related to this study.

Journals:

[1] Liong, Sze-Teng, John See, Raphael Chung-Wei Phan, Yee-Hui Oh, Anh Cat Le Ngo,

KokSheik Wong, and Su-Wei Tan. (2016). Spontaneous Subtle Expression Detection and

Recognition based on Facial Strain. Signal Processing: Image Communication, Volume

47, (pp. 170–182). Doi: http://dx.doi.org/10.1016/j.image.2016.06.004 (impact factor

2015: 1.602).

[2] Liong, Sze-Teng, John See, Raphael Chung-Wei Phan, and KokSheik Wong. (2016).

Less is More: Micro-expression Recognition from Video using Apex Frame. Neurocom-

puting. (Submitted).

[3] Liong, Sze-Teng, John See, Raphael Chung-Wei Phan, KokSheik Wong. Tan, Su-

Wei. (2016). Hybrid Facial Regions Extractions for Micro-expression Recognition Sys-

tem. Journal Signal Processing Systems. (Submitted on 2 February 2016, revised on 20

October 2016).

International Peer-Reviewed Conferences:

[1] Liong, Sze-Teng, John See, Raphael C-W. Phan, Anh Cat Le Ngo, Yee-Hui Oh, and

KokSheik Wong. (2014). Subtle expression recognition using optical strain weighted fea-

tures. In Asian Conference on Computer Vision, (pp. 644–657). Doi: http://dx.doi.org/10.1007/978-

3-319-16631-5_47

[2] Liong, Sze-Teng, Raphael C-W. Phan, John See, Yee-Hui Oh, and KokSheik Wong.

(2014). Optical strain based recognition of subtle emotions. In Intelligent Signal Process-

ing and Communication Systems, (pp. 180–184). Doi: http://dx.doi.org/10.1109/ISPACS.2014.7024448

[3] Oh, Yee-Hui, Anh Cat Le Ngo, John See, Sze-Teng Liong, Raphael C-W. Phan, and
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Huo-Chong Ling. (2015). Monogenic riesz wavelet representation for micro-expression

recognition. In IEEE International Conference on Digital Signal Processing, (pp. 1237–

1241). Doi: http://dx.doi.org/10.1109/10.1109/ICDSP.2015.7252078

[4] Le Ngo, Anh Cat, Sze-Teng Liong, John See, and Raphael Chung-Wei Phan. (2015).

Are subtle expressions too sparse to recognize? In IEEE International Conference on Dig-

ital Signal Processing, (pp. 1246–1250). Doi: http://dx.doi.org/10.1109/ICDSP.2015.7252080

[5] Liong, Sze-Teng, John See, KokSheik Wong, Anh Cat Le Ngo, Yee-Hui Oh, and

Raphael Phan. (2015). Automatic Apex Frame Spotting in Micro-expression Database.

In 3rd IAPR Asian Conference on Pattern Recognition, (pp. 665 - 669). Doi: http://dx.doi.org/10.1109/ACPR.2015.7486586

[6] Liong, Sze-Teng, John See, KokSheik Wong and Raphael Chung-Wei Phan. (2016).

Automatic Micro-expression Recognition from Long Video using a Single Spotted Apex.

In Asian Conference on Computer Vision Workshop. (Accepted).
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