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ABSTRACT

Onefreeenergy sourcethat is sustainable and renewabl e isthe hydrogen gas. The most
interesting fact about this gas is when used on vehicles or fuel cells, it is more efficient
than the conventional internal combustion engines. When these compounds react with air,
the by-product is just water. Because of these advantages, the hydrogen gas is known as
a low-carbon energy source. This is one solution for modern society, so that the
dependence on fossil fuels can be minimized. Other advantage of the hydrogen gasisthat
it can be produced from various surrounding sources such as water, natural gas, biomass
and organic waste. When viewed in terms of the economy, the selection of hydrogen fuel
as asource of alternative energy is very appropriate.

There are several dternative technologies for the production of biohydrogen process
namely biophotolysis, photofermentation, dark fermentation and microbial electrolysis
cells (MEC). However, MEC is known to be an attractive alternative technology that is
environmentally friendly and can be used for hydrogen production. It involves a bio-
electrochemical process using microorganisms as catalysts. MEC process has advantages
compared with other processes because the microorganisms are capable of oxidizing all
organic substrates to produce hydrogen gas which cannot be extracted by microorganisms
through the photo or dark fermentation process. Microorganisms in the reactor are able
to catalyze the oxidation or reduction reaction at the anode and cathode e ectrodes,
respectively. By increasing the cathode potential in the MEC reactor, it is possible to
continuously produce hydrogen electron exchange assisted by the bacteria. This method
greatly decreases the amount of energy needed to produce hydrogen from organic matter
compared to hydrogen production from water via electrolysis.

Hydrogen production process in the MEC is a highly nonlinear and complex due to
the microbial interactions. Its complexity makes MEC system difficult to operate and

control under optimal conditions. However, these problems can be aleviated using an



integrated process system engineering approach, which involves process modeling,
optimization and control complementing each other. Artificial Neural Networks (ANN)
is one of the most effective and powerful technique to be used to model such complex
processes and unknown systems. ANN is able to cope with non-linear process between
input and output variables without the requirement of explicit mathematical
representation. In the process control system, ANN has been widely used when
conventional control techniques failed to give good performance.

In this work, various schemes including ANN for controlling the current and voltage
of MEC were studied i.e. Direct Inverse Neural Network, Hybrid PID-Neural Network
and Internal Model-based Control schemes. A comparative study has been carried out
under optimal condition for the production of hydrogen gas where the controller output
are based on the correlation of optimal current and voltage to the MEC system. Various
simulation studies involving multiple set-point changes and disturbances rejection have
been evaluated and the performances of both controllers are discussed. On-line model
validation of MEC system and closed loop control for online system are also presented in

thiswork.



ABSTRAK

Satu sumber tenaga bebas yang berkekalan dan boleh diperbaharui adalah gas
hidrogen. Fakta yang paling menarik tentang gas ini adalah apabila digunakan pada
kenderaan atau sel-sel bahan api, ia adalah lebih cekap dari pembakaran dalaman enjin
konvensional. Apabila bahan inibertindak balas dengan udara, produk sampingan
hanyalah air. Oleh kerana kelebihan ini, gas hidrogen dikenali sebagai sumber tenaga
yang mengandungi karbon yang rendah. Ini adalah salah satu penyelesaian bagi
masyarakat moden, supaya pergantungan kepada bahan api fosildapat dikurangkan.
Kelebihan laingas hidrogen adalah dapat dihasilkan daripada pelbagai sumberalam
lainseperti air,gas adli, biomas dan sisa organik. Dari perspektif ekonomi, pemilihan
bahan api hidrogen sebagai sumber tenaga alternatif adalah sangat bersesuaian.

Terdapat beberapa teknologi alternatif bagi pengeluaran proses hidrogen iaitu
biophotolysis, foto fermentas, fermentasi gelap dan sel mikrob elektrolisis (MEC).
Walau bagaimanapun, MEC dikenali sebagai teknologi aternatif yang sangat menarik
dan mesra alam serta boleh digunakan untuk pengeluaran bio-hidrogen. la melibatkan
proses bi o-el ektrokimia menggunakan mikroorganisma sebagai pemangkin. Proses MEC
mempunyai kelebihan berbanding dengan proses lain kerana mikroorganisma mampu
mengoksidakan semua substrat organik untuk menghasilkan gas hidrogen yang tidak
boleh diekstrak oleh mikroorganisma melalui foto atau proses fermentasi gelap.
Mikroorganisma dalam reaktor dapat menjadi pemangkin kepada pengoksidaan atau
tindak balas penurunan pada anod dan katod elektrod. Dengan meningkatkan potensi
katod secara elektrokimia dalam MEC, penukaran hidrogen elektron dengan bantuan
bakteria dapat dihasilkan secara berterusan. Kaedah ini dapat mengurangkan jumlah
tenaga yang diperlukan bagi penghasilan hidrogen daripada bahan organik berbanding

penghasilan hidrogen melalui elektrolisis daripada air.



Proses pengeluaran hidrogen dalam MEC adalah sangat tidak linear dan sangat
kompleks disebabkan interaksi mikrob. Kerumitan ini membuatkan sistem MEC sukar
untuk dikendalikan dan dikawal di bawah keadaan yang optimum. Walau bagai manapun,
masalah-masalah ini boleh diatasi dengan menggunakan pendekatan kejuruteraan sistem
proses yang bersepadu, iaitu melibatkan pemodelan proses, pengoptimuman dan kawalan
yang melengkapi satu sama lain. Rangkaian Neural Buatan (ANN) adalah salah satu
teknik yang paling berkesan dan berkuasa yang akan digunakan untuk pemodelan proses
kompleks dan sistem yang tidak diketahui tersebut. ANN mampu untuk mengendalikan
proses bukan linear di antara pembolehubah masukan dan keluaran tanpa memerlukan
perwakilan matematik yang jelas. Dalam sistem kawalan proses, ANN telah digunakan
secara meluas kerana kegagalan teknik kawalan konvensional memberikan prestasi yang
baik.

Dalam penyelidikan ini, pelbagai skim termasuk ANN untuk mengawal voltan semasa
dan MEC telah dikgji iaitu songsangan neural network langsung, rangkaian hibrid PID-
neural dan skim berasaskan model kawalan dalaman. Satu kajian perbandingan telah
dijalankan di bawah keadaan optimum untuk pengeluaran gas bio-hidrogen di mana
keluaran pengawal adalah berdasarkan korelasise masa arus dan voltan optimum untuk
sistem MEC. Kgian simulasi melibatkan pelbagai perubahan set-titik dan penolakan
gangguan telah dinilai dan prestasi kedua-dua kawalan dibincangkan. Pengesahan model
secara atas talian sistem MEC, dan kawalan gelung tertutup bagi sistem atas talian turut

dipersembahkan dalam kajian ini.
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CHAPTER 1: INTRODUCTION

1.1 Background

One of the great challenges in the coming decade is how to get new renewable energy
sources that are environmentally friendly and to replace high dependency on fossil fuels.
Until recently, almost al of the energy needed is derived from the conversion of fossil
energy sources, such asfor power generation, industrial and transportation equipment that
uses fossil fuels as a source of energy. Fossil fuels are source of non-renewable energy
and also have seriously negative impacts on the environment, e.g. soil, water, air, and
climate. The use of fossil fuels cause excessive global climate change because of the
emissions of greenhouse pollutants and the formation of compounds COx , NOx, SOXx,
CxHy, ash, and other organic compounds that are released into the atmosphere as a result
of combustion (Argun et a., 2008; Kotay & Das, 2008).

Based on the above considerations, in recent years various studies have been
conducted to obtain a sustainable source of energy that can replace fossil fuels and which
do not have a negative impact on the environment. Hydrogen is one alternative fuel
substitute for fossil fuelsand is considered as an "energy carrier" with a promising future.
It has a high energy content of 122 kJg, that is 2.75 times greater than those of
hydrocarbon fuels (Mohan, Babu, et a., 2007).

Hydrogen plays a very important role and contribution in the global erathat is based
on clean renewable energy supplies and sustainably which will provide major
contributions to the world economic growth. Hydrogen fuel is environmentally friendly,
clean and is the most abundant element in the universe in itsionic form. Hydrogen gasis
also colorless, tasteless, odorless, light and non-toxic. When it is used as fuel, it will not

produce pollution to the air but it produces only water as its end-product when it burns



(Hallenbeck & Benemann, 2002). Hydrogen gas which is produced by biological
processes becomes very interesting and promising because they can be operated at
ambient temperature and pressure with minimal energy consumption, and become more
environmentally friendly (Hallenbeck et al., 1978).

Electrochemical systems represent a novel aternative for energy recovery from
organic waste and biomass residue, where microorganisms can be employed to catalyze
electrochemical oxidation-reduction reactions. Microbia Electrolysis Cell (MEC) is
among such bioelectrochemical systems. Performance of MEC largely depends on
anaerobic biofilm occupied by anodophilic (electrogenic) microorganisms, which transfer
electrons to the anode during their metabolism activities (Bond et al., 2002). Though
anodic compartments in all electrochemical systems are similar, the cathode reactions
differ. MEC require a small additional input of electrical energy provided by an external
power supply to facilitate the reaction of hydrogen formation on the cathode (René A
Rozendal et al., 2006).

In the MEC, a small amount of electricity is applied to the anode chamber to suppress
the production of methane and furthermore oxygen is kept out of the cathode chamber to
assist bacterial oxidation of organic matter present in wastewater to produce hydrogen
gas. MEC has tremendous potential in the future and the development of this technique
isdtill initsinfancy. Information about the anode materials and microorganisms, efficient
and scalable designs are required for the successful applications of the microbial
electrolysis process (Hu et al., 2008).

This thesis describes the mathematical model and devel opment of advanced control of
MEC for hydrogen production from wastewater in fed-batch reactor. The model is based
on material balances with the integration of bio-electrochemical reactions describing the
steady-state behaviour of biomass growth, consumption of substrates, hydrogen
production and power current characteristics. The model predicts the concentration of

2



anodophilic, acetoclastic methanogenic and hydrogenotrophic  methanogenic
microorganisms. Cathodic reactions in MEC are represented by two distinctive
electrochemical balances, while the same set of equations are used to describe anodic
compartment balances. This study can also be used to improve the basic and current
knowledge about the performance of the microbial electrolysis cells and electrochemical

fed-batch reactor process in producing hydrogen gas as an alternate fuel.

1.2 Problem statement

MEC isanovel and promising renewable energy technology that can produce Hz and
can also serve for wastewater treatment. At the moment, there are many studies of MEC
involving simulation reported in the literature. The MECs present many technological
challenges that need to be overcome before commercial application. For instance, the
nonlinear and highly complex process in hydrogen production is due to the microbial
interaction. Furthermore, the process also depends on the microbial activity which shows
irregular correlation between current and voltage.

Another important and interesting phenomenon of the MEC system is the competition
between anodophilic and methanogenic microorganisms to consume the substrate in the
anode compartment. Competition among these microbial populations has profound
effects on the performance of the MEC bioreactor. An initial study of this system used a
model involving competition among anodophilic, methanogenic acetoclastic and
hydrogenotrophic methanogenic microorganisms in the biofilm as reported by (Pinto et
al., 2010).

Process control isrequired in the MEC plant so that the process can continue to operate
consistently and hence allowing the production rate of hydrogen gas to be continuously
produced optimally. MEC current and voltage are two important variables that need to be
controlled and observed at all times because it is directly related to the production rate of
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hydrogen gas. The main difficulty encountered in controlling MEC system is how to
determine the amount of applied voltage and MEC current accurately because the
condition of the process is very highly uncertain and nonlinear. Another problem
encountered in the control of the MEC system is the unknown composition of microbes
in the reactor. The effect of internal and external disturbances, time delay and noise
effects are other problem that cannot be ignored, making it difficult to control the system
using conventional control approaches. Therefore, these technical problems can be solved
using a process system engineering approaches, process modelling, optimization, and
control.

There are some advanced solutions that can be applied to enhance the control
performance of MEC reactor and eliminate the nonlinear barrier in the optimal control.
Neural network (NN) isan effective technique and a powerful tool to be used in modelling
and control of complex processes and unknown systems. NNs are able to cope with non-
linear process between input and output variables without the requirement of explicit
mathematical correlation. In the literature, several studies and investigations on the
modeling of biohydrogen production using ANN approach is reported. For example, El-
Shafie (2014), use ANNSs to successfully predict hydrogen yield with the following input:
initial medium pH, initial glucose concentration and reaction temperature. A model was
trained, tested and validated to predict the hydrogen production profile. However, none
of these studiesin the literature involve neural network based controller for bio-hydrogen
gas production in the MEC.

In this thesis, MEC mathematical model will be developed and improved, it will also
be validated by experimental studies, and to design an advanced controller for its control
system. A comparative study between inverse neural network, hybrid PID-neural network
and Internal Model-based Control (IMC) system and control PID will also be discussed.
The performance and assessment of these PID and neural network controller for tuning
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and regjection of the load disturbances and noise will be studied. The requirements for a
good controller for optimal H> gas production are also highlighted in this work, where

better control system for optimum bio-hydrogen gas production can be achieved.

1.3 Objectives of research

The overall goal of thisthesisisto focus mainly on developing amicrobial electrolysis
cell (MEC) mathematical model and the implementation of the controller for the advanced
control system.

The main objectives of this study are outlined as follows:

(1) To study the effect and optimize of the operating and kinetics parameters on the
performance hydrogen production process in MEC fed-batch reactor.

(2) To design of PID controller algorithm, adaptive-PID controller and advanced
control strategy to optimize the hydrogen production rate in fed-batch MEC
reactor.

(3) To design the MEC experimental system and validate the MEC mathematical
model with on-line data and test its performance of MEC system.

(4) To design of PI; PID and neural network closed loop control for online system
for biohydrogen production in fed-batch MEC reactor.

14 Scope of work

Literature review concentrates of the hydrogen gas as a renewable energy source and
microbial electrolysis cells (MEC) process for producing hydrogen from organic waste.
Mathematical model previously developed by (Pinto et al., 2010) will be modified to be
appropriate with the suggested process design parameters in order to construct the
experimental MEC fed-batch reactor setup for validation and control purposes. Statistical
analysis was used to identify some important parameters that have significant effects on
the hydrogen production rate using this reactor. Therefore, current is used to manipulate
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the rate of hydrogen production. In order to determine the optimal production of
hydrogen, several control strategies consist of conventional and advanced control are
implemented. Their performance are tested and simulated to analyze their respective

performance.

15  Structureof Thesis

This thesis is divided into six chapters. In overall outline, the thesis is organized as
follows;

Chapter 1 describes an introduction to the study background, problem statement, and
objectives of the research, scope and structure of research.

Chapter 2 studies the literature on the fundamental concepts and basic mechanism of
biological hydrogen production processes, microbial electrolysis cell, irreversible energy
lossesin MEC and overview of current research on MEC systems. It startswith reviewing
about biophotolysis processes, fermentation processes and el ectrochemical processes.

Chapter 3 discusses the detailed work about microbial electrolysis cell modelling &
computer simulation. This is followed by the fundamental standards of microbial
electrolysis cell consist of extracellular electron transfer, thermodynamic and kinetics.
This chapter ends with overview of activation energy loss, concentration energy losses,
electrode energy loss, ohmic energy losses and overview of current research on MEC
systems. The dynamics simulation, system identification and open loop test to investigate
the dynamics of the process are presented in this chapter. It consists of the MEC model
development, behavior of microbial electrolysis cells, effect of varying changes of initial
concentration on the MEC, influent of applied voltage on MEC current and hydrogen
production rate and Analysis of the effect of internal and external parameter on MEC
current and hydrogen production rate.

Chapter 4 highlightsthe PID, neural network model and controller design performance

in the MEC reactor. PID and neural networks controller for process control design is
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described in detail. This chapter starts with dynamic open loop behavior of MEC reactor,
design of a conventional PID (Proportional-Integral-Derivative) controller of simulated
MEC system and direct inverse neural network controller concepts. The results and
discussion of conventional PID controller and neural network controller in MEC reactor
is presented in this chapter for various set point and disturbance rejection studies. The
neural network controller schemesi.e. internal model control (IMC) and hybrid control
scheme are also designed and their performances investigated.

Chapter 5 presents the experimental reactor design and operation that are required for
on-line measurement and computer studies on MEC reactor system. Description of palm
oil mill effluent (POME) substrate, inoculum preparation and cultivation medium and
pretreatment experiments and analytical method are discussed. In this chapter, the on-line
implementation of advanced control strategies, start-up process value and noise filtering,
open-loop validation models, Process and Instrumentation Diagram (P&ID), online
signal flow diagram, closed-loop control for the online system, Pl Closed |oop control for
online system and implementation of neural network control strategy will be discussed in
detail.

Chapter 6 highlights the conclusions and summary of the thesis, importance of the
proposed research and contributions to knowledge and some perspective and

recommendations for future work are suggested.



CHAPTER 2: LITERATURE REVIEW

21 Introduction

This chapter discusses the detailed studies and literature reviews on mechanisms of
possible biological hydrogen production processes. There are a variety of technologies
for biological hydrogen production mechanisms including biophotolysis, photo
fermentation, dark fermentation and hybrid biohydrogen production by electrochemical
processes. In these studies, a review on the recent developments of biohydrogen
production is presented. First, the theoretical principles of biophotolysis by cyanobacteria
and green micro algae, aswell asdirect and indirect of biophotolysis process on hydrogen
production are described. Secondly, practical aspects and fundamental of biological
hydrogen production processes by photo and dark fermentation are reviewed. A new
hybrid biological hydrogen production processes by using the electrochemical processis
then proposed. Thirdly, the studies of microbial electrolysis cell (MEC), reactor design,
electrode materials of MEC, substrates used in MEC and the unique and advantages of

biohydrogen production processes will be discussed in the next chapter.

2.2 Fundamentals of biological hydrogen production processes

Increasing energy demands from a growing world population, and the depleting
reserves of fossil fuels and their environmental impacts, are leading to a search for novel
energy technologies. Most likely, a diverse portfolio of energy producing technologies
will be needed to replace fossil fuels. These technologies may rely on renewable or non-
renewabl e resources, the former being much moreinteresting because they do not depend
on limited reserves. A portfolio of renewable energy technologies may include a variety

of systems based on sunlight, wind, rain, tides, geothermal heat, and biomass. Hydrogen
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gasisone element of an efficient energy source becauseit has 2.8 timesthe energy content
when compared to the energy in gasoline. Besides being environmentally friendly,
hydrogen gas can also be produced from organic industries wastewater and agriculture

source so that production costs become cheaper (B. E. Logan et al., 2008).

The global interest in hydrogen based economy has been stimulated by possible
harvest for cleaner energy production using hydrogen in fuel cells. A global reduction in
CO:2 emissions will require sustainable hydrogen production based on renewable energy
sources such as solar, wind, and biomasses. Hydrogen can be produced from certain forms
of biomass by biological fermentation, but still the yields are significantly low. This bio-
electrochemically assisted microbial system, when combined with the hydrogen
fermentation process has the potential to produce as much as 8 to 9 mole Hz/ mol of
glucose at energy cost equivalent of 1.2 mol Ho/mole of glucose. Production of hydrogen
by electrochemical process is not limited only to carbohydrates, as in the fermentation
process. Other biodegradable dissolved organic matter can theoretically be used to

generate hydrogen from the complete oxidation of organic matter (Azwar et a., 2014).

According to (Hallenbeck & Benemann, 2002), hydrogen can be produced from
different types of raw materials, including fossil fuels, water, and biomass. Hydrogen
production from renewable sources can be obtained in different ways. There are several
major renewable energy sources to produce from the water that flows, the heat from the
earth, wind, solar, biomass and biological hydrogen production from microorganisms.
Many microorganisms are known to produce hydrogen under certain conditions,
including microalgae such as blue-green agae that use light energy to split water for
hydrogen formation and cyanobacteria that usually use carbohydrates to store energy

from photosynthesisto produce hydrogen from water (Hallenbeck and Benemann, 2002).



Production of biohydrogen has the potential to be a renewable alternative to current
technologies. There are varieties of technologies for biological hydrogen production
mechanisms including biophotolysis, photo fermentation, dark fermentation and hybrid
biohydrogen production by electrochemical processes. Photo-fermentation produces
hydrogen via algae and photosynthetic bacteria under the role of solar energy, so that the
reaction is limited to light condition and intensity makesit slowly progressin application
(Argun et al., 2008). Dark-fermentation produces hydrogen by microbial degradation of
organic materials in an anaerobic environment with the maximum hydrogen yield of 12
mol/mol.glucose theoretically, but the “fermentation barrier” makes it only 2-3 mol in
practice (Kotay & Das, 2008). The problems mainly reflect on: (1) low rate of carbon
source utilization and incomplete substrate conversion which means the intermediate
products cannot be spontaneously converted to Ho; and (2) accumulation of volatile fatty
acids (VFAs) such as acetic acid, propionic acid, and butyric acid make the system

instable.

221 Biophotolysis processes

Biophotolysis is associated with plant-type photosynthesis process, formerly known
as blue-green algae that uses light to split water for hydrogen formation, and takes place
under anaerobic conditions. Biophotolysis indirectly involve cyanobacteria usualy use

carbohydrates to store energy from photosynthesis to produce hydrogen from water.

2.2.1.1 Biophotolysis of water by Cyanobacteria and Green Micro Algae
Biophotolysis process can occur in various species of bacteria and algae, for example
species of bacteria and algae that can produce hydrogen through biophotolysis like
photosynthetic bacteria from soil or natural water, Anabaena species Cyan bacteria, or
eukaryotic alga Chlamydomonas species Reinhardt. The hydrogen gas production in a

sustainable and environmentally friendly to produce clean energy from renewable
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resources can be obtained through biophotolysis of water by cyanobacteria and Green
Micro Algae. Cyanobacteria and green algae can split water into hydrogen and oxygen
molecules by using sunlight (Hallenbeck et al., 1978; Miyamoto et al., 1979) Mechanism
of biohydrogen production through biophotolysis or photoautotrophic process is
hydrogen gas formed from the water by using sunlight and CO: as the sole source for
energy through the process of hydrogenase enzyme by bacteriaand algae (Ghirardi et al.,
2000). Figure 2.1 shows the ahility to photosynthesis produce H> under anaerobic

conditions using green alga Chlamydomonas reinhardtii.
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Figure 2.1: The green alga Chlamydomonas reinhardtii has the ability
to photosynthetically produce H2 under anaer obic conditions. Excer pted
from (Tamburic et al., 2011)
The advantage of biophotolysisis that, there is no requirement of adding substrate as
nutrients. Water is the primary electron donor required for the production of hydrogen

gas. Sunlight and CO: are the basic inputs needed to grow the cyanobacteria or microalga

on biophotolysis process through the hydrogenase enzyme.

Production of hydrogen gas by green algae and cyanobacteria is one of the methods
that produce renewable energy which does not emit greenhouse gas effect with the

availability of abundant resources, namely water as substrate and solar energy as a source
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of energy. Thus, hydrogen gas produced could be used in afuel cell to generate electricity

asshown in Figure 2.2 (Maness et al., 2009).
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Figure 2.2: Schematic representation of the Vision for photobiological Hz
production and itsutilization in a H2 fuel cell. Adapted from (Manesset al.,
2009)

In the biophotolysis process, light energy is absorbed by photosystem (PS and PSI)
of microalgae; this energy isthen transferred through the electron transport chain, in turn
reducing ferredoxin and provides electrons to the hydrogenase enzyme. In certain
circumstances such as in anaerobic conditions, for example at a pressure of hydrogen is
very low or low light, hydrogenases can provide a solution for excess electrons when
carbon fixation component of the photosynthetic chain is disrupted (Akkerman et al.,

2002).

A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular
hydrogen. The main purpose of studying about the hydrogenase is to understand the
mechanism of hydrogen production, control of cell metabolism, and ultimately increase
the production of hydrogen. Hydrogenases play a vital role in biophotolysis by
Cyanobacteria and Green Micro Algae (Adams & Stiefel, 1998; Frey, 2002).
Hydrogenases were classified according to the metals thought to be at their active sites,

three classes were recognized: iron-only ([FeFe]-hydrogenases), nickel-iron ([NiFe]-

12



hydrogenases), and metal-free hydrogenses(P. M. Vignais et al., 2001). Among the three
types of enzymes are most commonly found in various bacterial and algae are [FeFe]-
hydrogenases and [NiFe]-hydrogenases except for metal-free hydrogenases found in
some types of methanogens. Three types of this enzyme are monomeric [FeFe] -
hydrogenases most involved in the evolution of hydrogen, features high sensitivity to

oxygen (O2) and carbon monoxide (CO) (Bleijlevens et al., 2004).

2.21.2 FeFe-Hydrogenases

[FeFe]-hydrogenase is an enzyme which plays a vital role in anaerobic metabolism,
which is produced by green algae and become more efficient catalyst hydrogenases.
[FeFe]-hydrogenase is able to catalyses the reversible oxidation of molecular hydrogen.
Figure 2.3 highlights that the FeFe-hydrogenases only contains a dinuclear iron center
that is attached to a protein with only one bond between cysteine residues and one of the
two iron atoms. [Fe-Fe]-hydrogenases contain [2Fe-25] and additional [4Fe-4] cluster,
an electron shuttle between sites the hydrogen activate, in proteins, and redox partners on
the surface. Cysteine also functions as aligand to a cluster of adjacent [4Fe-4], so there
isasulfur bridge between two metal sites (Maness et al., 2009). Iron atoms from binding
[4Fe-4] center to the structure of proteins by three additional cysteine residues and
linked through a protein cysteine residue to a 2Fe subcluster. Except for cysteine bridging
cysteing, the iron atoms of the 2Fe center coordinated to carbon monoxide (CO) and
cyanide (CN) ligands. With the CO and CN is expected to allow for stabilization of low

oxidation and spin state of iron isrequired for activity (Maness et a., 2009).
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Figure 2.3: Schematic representation of the [FeFe]-hydr ogenases and [NiFe]-
hydrogenases. Adapted from (Maness et al., 2009)

2.2.1.3 Cyanobacterial NiFe-Bidirectional Hydr ogenases

[NiFe]-hydrogenases produced by cyanobacteria consist of the center of several
metals, including Ni-Fe bimetallic sites active, iron-sulfur and Mg?* ions. Ni-Fe active
site is located inside the protein molecules and functions as bidirectional hydrogenases
that involve anumber of linesin the catalytic reaction route like: route of electron transfer,
proton transfer lines and gas-access channels (Rousset & Cournac, 2008; Seibert et al.,

2008; Tamagnini et a., 2002).

[NiFe] hydrogenases function as the metabolism of hydrogen, which are grouped into
two sub-unitsthat are; hydrogenase large and small. Large subunit contains a core double
[NiFe] active site and the small subunit binds at least one [4Fe-4F cluster (P. Vignais &
Colbeau, 2004). While the large subunit [NiFe]-hydrogenase and other nickel
metall oenzymes synthesized as a precursor without metal active sites that experienced a
post-translational maturation process of the complex (Blokesch et al., 2002; Casalot &
Rousset, 2001). Synthesis and insertion of metallocentre of NiFe-hydrogenases is a
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complex process, involving at least seven proteins and chemical components such as
Adenosine triphosphate (ATP), Guanosine triphosphate (GTP), and karbamoilfosfat,

which isthe embryo of cyanide (Blokesch et al., 2002).

The NiFe-hydrogenases have higher levels of similarity and the complex among all
the hydrogenase operons and FeFe-hydrogenases, so that the microbes have a very
important role in hydrogen production process. Figure 2.3indicates that the bidirectional
NiFe-hydrogenase of cyanobacteria consists of five subunits. Large as the center of the
catalytic subunit of pentameric hydrogenase HoxH and containing atoms of Fe and Ni
associated with the ligands CN and CO and sulfur atoms. While the small subunit
hydrogenase, HoxY, contains a cluster [4Fe-4] that are required to transfer electrons to
the large catalytic subunit. For the remaining three subunits that form part of the complex
is HoxF diaphorase, HoxU, and HoxE and function as an electron channel between the
NAD (P) H and hydrogenase active site. The large number of genes involved in the
maturation of the structural subunit of NiFe-hydrogenases, an indication of the

complexity of the molecular structure of hydrogenase (Maness et al., 2009).

2.2.1.4 Direct biophotolysis
Direct biophotolysis is a biological process that can produce hydrogen directly from
water using microalgae photosynthesis system to convert solar energy into chemical

energy in the form of hydrogen, the reaction is generally as follows:

(Pho he )
ZHEO + S e —_— 2H2 + Oz (2.1)

In indirect biophotolysis green algae or cyanobacterium (Figure 2.4), Hydrogen gasis
produced through photosynthesis by using solar energy to split water molecules. In this
process also decrease ferredoxin, hydrogenase or nitrogenase which these compounds are

very sensitive to oxygen (Hallenbeck & Ghosh, 2009).
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Figure 2.4: Direct biophotolysis of green algae or cyanobacteria. Adapted from
Hallenbeck (Hallenbeck & Ghosh, 2009)

The advantage of this process is that, even in low light intentitas, green algae and
anaerobic conditions are still able to convert almost 22% of light energy by using the
hydrogen asan electron donor in the process of fixation of CO». From the results of further
studies, even photosystem |-defective mutants of Chlamydomonas are able to produce
efficiency twice as large as the wild type strain. Hydrogen production by green
microal gae take place in anaerobic conditionsin the dark to induce activation of enzymes
involved in hydrogen metabolism. Hydrogenase sensitivity to oxygen is abig challenge
for this method, so that further research is needed to devel op engineered hydrogenase so
that it is not sensitive to oxygen inactivation. Green microalgae have the genetic
machinery, enzymatic, metabolic, and electron-transport to photoproduce hydrogen so
that hydrogenase is able to combine a proton (H*) in media with and release electrons to
form hydrogen. Synthesis hydrogen permits the flow of electrons through the electron
transport chain, which supports the synthesis of adenosine triphosphate (ATP) (Ghirardi

et al., 2000).
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In photosynthesis, photosystem process occurs in two-stage process, photosystem |
(PSI) and photosystem |1 (PSI11), both processes operate in series. In anaerobic conditions
(lack of oxygen), electron (e-) from reduced ferredoxin (Fd) is used by the hydrogenase
to reduce protons (H*) and evolve hydrogen. Partia inhibition of PS Il can produce
anaerobic conditions for the cells in the photobioreactor, because there is less water

oxidation activitiesto evolve O and Oz residues used by respiration (Wykoff et al., 1998).

2H,0 + i hte >0, T+4H "+ F (r )4e ) > F (r )4e )+

AH* >F (0 )+ H, (2.2)

In photosystem | (PS1) generate reductant for CO» reduction while in photosystem |1
(PS 1), the separation of water and oxygen. In PS |1, P680, the strongest absorption by
the antenna pigments at wavelengths less than 680 nm (due to photon excitation energy
of each) and then transferred to the PS 11 reaction center and produces a strong oxidant
that is able to liberate electrons from water. Reductant that provides reducing equivalents
through a series of electron carriers and cytochrome complex to the oxidized reaction
center of PSI. Whilethe PSI reaction center, the strongest absorption by antenna pigment
at wavelength 700 nm, P700. Thelight energy absorbed by PS1 isnot only used to oxidize
the reaction center, but also to produce a strong reductant capable of reducing oxidized
ni cotinamide adenine dinuclectide phosphate (NADP*) to NADPH (Happe & Kaminski,

2002).
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Cyclic Electron Flow

Figure 2.5: A schematic of the predicted photobiological pathway of hydrogen
production in sulfur deprivation produces anoxic condition for induction of
hydrogenase. Adapted from (Dasgupta et al., 2010)

Figure 2.5 illustrates the mechanism of sulfur deprivation anoxic conditions so that the
induction of hydrogenase and PS |1 partially inhibited and electrons mostly come from
sources of carbon reserves through plastogquinon. Anaerobic conditionsinduce expression
of hydrogenases [Fe]-in algal cells (Forestier et al., 2003; Happe & Kaminski, 2002) so
that continuous hydrogen production can be achieved (Ghirardi et a., 2000). Figure 2.5
also shows that overall sulfate permease mutants can grow without depleting hydrogen
sulfate in the culture medium (H.-C. Chen et al., 2003). Some of the photosystem |1

inhibitors have also been used to inhibit the activity of water oxidation (Happe &

Kaminski, 2002).

(Hallenbeck & Benemann, 2002) reported that the two photons from the water to form
hydrogen gas and simultaneously produce CO: reduction by PS 1. In the group of green
plants, because of the lack of hydrogenase occurred only CO- reduction, contrary
microalgaes and cyabobacteria have the ability to produce hydrogen, because it has a
hydrogenase enzyme. In the process of PSII, the electron istransferred to ferredoxin (Fd)

by using solar energy that is absorbed in PS 1. Since hydrogenase is very sensitive to
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oxygen, then the amount of oxygen levels should be controlled below 0.1% so that the
production of hydrogen can be stored to maximum yield (Hallenbeck & Benemann,

2002).

2.2.15 Indirect biophotolysis

Indirect biophotolysis is a biological process that can produce hydrogen from water
using a system of microalgae and Cyanobacteria photosynthesis to convert solar energy
into chemical energy in the form of hydrogen through several steps:. (i) biomass
production by photosynthesis, (ii) biomass concentration, (iii) dark aerobic fermentation
produces 4 glucose mol hydrogen / mol in the algal cells, together with 2 mol of acetate,
and (iv) conversion of 2 mol of acetate into hydrogen. This process can be classified into
two distinct groups, one of which is depending on the light and the other is light

independent process. The reaction is generally asfollows:

6H,0 + 6C 5+ li ht > CyH, 04 + 60, (2.3)
CoHy Oy + 2H,0 > 4H, +2C 4C  +2C , (2.4)
2C 4  +4H,0+1i ht > 8H, +4C , (2.5)

The overdl reaction as follow:
12H,0 + li ht - 12H, + 60, (2.6)

As above shown reactions, the mechanism of photosynthesis process to separate the
O2 and hydrogen undergo through several phases is highlighted. Oxidation of
cyanobacteria stores carbohydrate and produces hydrogen. The energy required to
produce hydrogen is aso obtained from the starch reserves from previous photosynthetic
activity. In stage two, the system sulfur limits C. reinhardtii to occur under aerobic
conditions separate from the anaerobic conditions, although some of the electrons derived

from the starch in the system. This phase wasincluded in the photosynthesis biophotolysis
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directly due to the operation of cells that are still functioning and provide electrons to

hydrogenases during anaerobiosis (Hallenbeck & Ghosh, 2009).

Figure 2.6 shows the various mechanisms of oxygenic hydrogen production in green
algae through hydrogenase and how the blue-green algae hydrogen produced through
nitrogenase. Phenomenon of driving electrons is produced from photosynthetic
anoxygenic reserve carbon source and hydrogen production in photosynthetic bacteria
through nitrogenase, purple bacteria and green bacteria. In Figure 2.6, itis also seen the
process of separation phase O and hydrogen evolution in cyanobacteria, carbohydrateis
oxidized to Produce hydrogen which took place in indirect phophotolysis (Dasgupta et

al., 2010).

Figure 2.6: Schematic processes of electron flow on oxygenic and anoxygenic
photosynthesis. Adapted from (Dasgupta et al., 2010)

In filamentous cyanobacteria, such asthe genus Anabaena, spatially separating the two
processes by forming heterocysts, nitrogenase is located in heterocycts with functional

PS | then catalyzes the formation of hydrogen product. Where nitrogenase isoenzymes
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vary on how many hydrogen ions paired with fixation. Equation (2.7) and (2.8) showed

significant ATP requirement of nitrogenase (Stal & Krumbein, 1985).

N, +8H*+F (rn ) (BH)+16A —2N 4;+H,+F (0o )+16A +P (27)
8H* +8e” +164A < 4H,+16A + 16P (2.8)
Electrons donated to PS in heterocyst derived from carbon transported from
neighboring photosynthetic cells, so they do not have their own photosynthetic
machinery, which will inhibit the function of the nitrogenase enzyme that catalyzes the

O2-sensitive nitrogen fixation (Brentner et al., 2010).

222 Fermentation processes

Thereareavariety of biological hydrogen production process, fermentationisonevery
effective method, because it can be operated and produce hydrogen continuously without
the need for light. When compared with hydrogen production through biophotolysis, the
hydrogen production by fermentation process has higher stability and efficiency. In
industrial scale, the fermentation process is more appropriate to use because it uses a
simple control system, so that the necessary operational costs are lower. One of the
advantages of hydrogen production viafermentation processis using a variety of organic
wastes as a substrate, so it can play adual role of waste reduction and energy production.
Thus, hydrogen production through fermentation process has received extensi ve attention

from the researchers and scientistsin recent years (Li & Fang, 2007; Wang & Wan, 2008).

Biohydrogen production by fermentation processes by using carbohydrates as a
substrate has received significant attention from the researchers and scientists in recent
years. Here are some reactions of hydrogen production by fermentation of glucose ((2.9),
(2.10) and (2.11)) shows that the most desirable end-products is acetate, with production
levels of four hydrogen mol-* mol glucose (Claassen et al., 1999; F. Hawkes et al., 2002;

Li & Fang, 2007; Mosey, 1983; Rodriguez et al., 2006). Theoretically, the maximum of
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33% of chemical oxygen demand (COD) can be converted from glucose to hydrogen. The

rest of the energy is released as acetate.

Coty Og + 12H,0 - 6H 07 + 12H, + 6H* AG® =241k m ! (2.9)
CoHy O + 4H,0 > 2CHsC O™ + 2H 03 + 4H, + 4H*AG" = —48k m 1

(2.10)
CoHy 0y + 2H,0 - CHyCH,CH,C 0~ +2H 03 +2H, + 3H* AG" =
-137km 1! (2.11)
CeH, Og+ 3H,0 » CH;CH,0 + CH3;C O~ +2H, +3HY AGY°=-97km !
(2.12)

Based on to the theory as shown in reaction (9) above, 12 moles of hydrogen can be
produced from one mole of glucose (Hallenbeck & Benemann, 2002; F. Hawkes et al.,
2002). In reaction (2.9), (2.10), (2.11) and (2.12) looks respective standard Gibbs free
energy at atemperature of 25 °C, AGP value is calculated based on data from (Amend &
Shock, 2001), where production of 12 moles of hydrogen (reaction (9)) is
thermodynamically unfavorable. According to (Claassen et al., 1999), aso due to this
reaction at hyperthermophilic conditions while the transformation of acetate produced to
hydrogen is feasible through photosynthesis in the partial pressure of hydrogen is very

low and temperatures higher than 40 °C.

In contrast to the former reactions, production of propionate (Equation (2.13))
decreases the production of hydrogen (Li & Fang, 2007); (Mosey, 1983) as was proven

experimentally by (F. R. Hawkes et al., 2007; Shin et al., 2004).

CoHy Oy + 2H, > 2CH,CH,C O™ + 2H,0 + 2H* (2.13)

Undesirable consumption of hydrogen (reaction (2.14)) or glucose (reaction (2.15))
can be caused by the activity of homoacetogens such as Clostridium aceticum(F. R.
Hawkes et al., 2007):

2H 03 + 4H, + H* > CHy,C 0™ + 4H,0 (2.14)
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CoHy Oy » 2CH,CH,C 0~ + 2H* (2.15)

In practice, the fermentation with butyrate as the main product is regarded as the most
effective route to produce hydrogen (Lay, 2000; Lin & Chang, 1999). From the
experimental results using the fermentation processes, the maximum hydrogen
production with 2.9 mol of H2 mol glucose was achieved by Clostridium species (Lay,

2000; Taguchi et al., 1996).

2.2.2.1 Photo-Fer mentation

Photo-fermentation is the fermentative conversion of organic substrates by a diverse
group of photosynthetic bacteria that use sun light as energy to convert organic
compounds into hydrogen and CO». For example photo-fermentation with Purple Non-
Sulfur (PNS) bacteria can be used to convert fatty acids into hydrogen and small
molecules between the products of other gases (namely CO»). This process takes placein
anoxic or anaerobic conditions and by using photosynthetic bacteria and sunlight as
energy. Photo-hydrogen production was performed mainly through four species of Purple
Non-Sulfur (PNS) bacteria. There are several types of bacteriathat can be used in photo-
fermentation process such as bacteria Rhodobacter sphaeroides (Sasikala et a., 1991),
Rhodopseudomonas palustris (Barbosa et al., 2001), Rhodobacter capsulatus (Hillmer &
Gest, 1977), and Rhodospirillum rubrum (Miyake et al., 1982) by using small molecule
organic acids like acetate, lactate and butyrate as carbon and energy source of light that
can change the carbon source to produce hydrogen (Shi & Yu, 2005; Uyar et al., 2009).
While dark fermentation is the conversion of organic substrates by various groups of
bacteria that take place in the dark (without the presence of light) with a series of

biochemical reactions and takes place under anaerobic conditions (Redwood et al., 2009).

In the photo-fermentation process, Purple Non-Sulfur (PNS) bacteria is a group of

photosynthetic bacteria has some advantage over compared to cyanobacteria and algae.
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These bacteria use enzyme nitrogenase to catalyze nitrogen fixation for reduction of
molecular nitrogen to ammonia. Nitrogenase has interesting property that it can evolve
hydrogen simultaneously with nitrogen reduction. Stressful concentrations of nitrogen are
therefore required for hydrogen evolution. Photo-heterotrophs make use of energy from
sunlight to oxidize organic compounds and generate the electron potential needed to drive
hydrogen production. By utilizing energy from the sun to drive thermodynamically
unfavorable reactions, PNS bacteria can potentially divert 100% of electrons from an
organic substrate to hydrogen production. In this processes, photo-heterotrophs typically
utilize the smaller organic acids that are often produced but not metabolized, during dark
fermentation. Thus, waste streams from photo-fermentation contain fewer by products as

the organic compounds are fully reduced to form H2 and CO, (Harwood et al., 2008).

In principle, photofermentations are able to fully convert organic compounds into
hydrogen, even against a relatively high hydrogen partial pressure, because hydrogen
evolution isdriven by ATP-dependent nitrogenase and ATP formed is capture light energy
through photosynthesis. Some researchers have conducted a study that non-sulfur purple
photosynthetic bacteria capture light energy and use it to convert organic acids into

hydrogen quantitatively (Basak & Das, 2007; Redwood et al., 2009).
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Figure 2.7: Photo-fermentation processes by Photosynthetic bacteria. Adapted
from (Hallenbeck & Ghosh, 2009)
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Figure 2.7 describes the non-sulfur photosynthetic bacteria to carry out a
photosynthetic anaerobic purple, then captured using solar energy to generate ATP and
high energy electrons through electron flow through, which then reduces ferredoxin.
Reduction of ATP and reduced ferredoxin drives the hydrogen protons with nitrogenase.
The organism is unable to obtain electrons from water and therefore the use of organic

compounds, usually organic acids, as substrates (Hallenbeck & Ghosh, 2009).

Some researchers reported that although the stoichiometric conversion of several
organic acids into hydrogen on photofermentation process can be obtained, but the light
conversion efficiency and the level of production volume is still low. Results of recent
studies have shown that to produce the maximum hydrogen is suggested to use two-stage
system of photo-dark Fermentation (C.-Y. Chen et al., 2008; Nath et al., 2008; Tao et dl.,
2007). Moreover, photo-fermentation bacteria can utilize short chain organic acids which
are produced in dark-fermentation, a combination of dark- and photo-fermentation can be
achieved the highest theoretical hydrogen yield of 12 mol Ho/mol hexose, although results

are still far below the stoichiometric (Miyake et al., 1984).

One group of Proteobacteria which have photosynthetic pigments and capable of
photosynthetic are categorized as Purple Sulfur Bacteria (PSB). They are anaerobic or
microaerophilic, and are often found in hot springs or stagnant water. Unlike plants, algae
and cyanobacteria, they do not use water as their reducing agent, and consequently, do
not produce oxygen. Instead, they use hydrogen sulphide or other reduced sulphur
compounds as electron donor, which is oxidized to produce granules of elemental sulphur,

which become visiblein cells.

2.2.2.2 Dark-Fermentation
Dark Fermentation is the fermentative conversion of organic substrate and biomass

materials to produce biohydrogen which takes place in anaerobic conditions and without
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the presence of light. It is complex process manifested by various groups of bacteria by
involving a series of biochemical reactions (Lay, 2000). Dark hydrogen fermentation has
several advantages compared with other biological methods of hydrogen production such
as photosynthetic and photo fermentation because of its ability to produce hydrogen
continuously without the presence of light, higher hydrogen production rate, process
simplicity, lower net energy input and utilization of low-value waste as raw materials

(John Benemann, 1996; Chen et al., 2006; Levin et al., 2004; Nandi & Sengupta, 1998).

Dark fermentation produces hydrogen from organic compounds by anaerobic
microorganisms (Fan et al., 2006; Noike et al., 2005; Oh et al., 2003; Shin et al., 2004;
Taguchi et a., 1996). Dark fermentation can also produce hydrogen from organic waste

as shown in the following equation (Hawkes et al., 2002; Kraemer & Bagley, 2008):

C, H, O +9H,0 »4C 4,C ~+8H* +4H 03 + 8H, (2.16)

In order to increase the yield of more hydrogen in the dark fermentation process, it is
necessary to control several parameters namely pH, organic food, nutrition, temperature,
solids retention time (SRT), and Px2. One of the most important parameters on hydrogen
production is pH, because pH is one factor that influence on the activities of the enzyme
hydrogenase. There have been severa studies reported that the hydrogenase activity are
directly correlated with dark Fermentation of hydrogen, this indicates that the pH playsa
very important role on hydrogen production (Bhaskar, et al., 2007). Many studies have
reported that the effect of pH in fermentative hydrogen production from glucose and
sucrose using mixed microflora (Cai et al., 2004; Ginkel et al., 2001; Kawagoshi et al.,

2005; Leeet a., 2002; Liu & Fang, 2003).

Many studied have been reported that the pH value is maintained in conditions of low
and shortening the shorter solids retention time (SRT), thus limiting the growth of
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methanogens. In general, studies based on several studies dark fermentation, pH value
was maintained at apH range of 5.5 to 8.0 either by adjusting theinitial pH, buffer usage,
or using an automatic pH controller. By applying these techniques, the maximum
conversion efficiency has been increased by 60-70% (Ginkel et a., 2005). (Fang & Liu,
2002) also have obtained the optimum pH value in the range of 5.5 to the production of
hydrogen in chemostat culture using a mixture of holding time for 6 h so that the growth

of methanogens can be slowed.

Several studies have been conducted for the hydrogen production on a batch, anaerobic
sequencing batch reactor (AnSBR), fed-batch, fluidized bed bioreactor (FBR),
continuously stirred reactor (CSTR) and continuous of dark Fermentation using different
raw materials as shown in Table 3. Sagnak and his team successfully fermented acid
hydrolyzed waste ground wheat using anaerobic sludge as bacterial strains for hydrogen
gas production by anaerobic dark fermentation (Sagnak et al., 2011). Microbia tri-
saccharides species and anaerobic digester sludge were used for dark fermentation of
hexose in batch systems has been done by (Quéméneur et al., 2011). (Ozmihci et al.,
2011) used Clostridium butyricum-NRRL 1024 from waste wheat starch for dark

fermentative bio-hydrogen production using continuously.

2.2.2.3 Photo-Dark Fermentation

The main problem faced by using a dark Fermentation biohydrogen production islow
yield and energy efficiency, for example in dark fermentation for 1 mol hexose can only
produce 2 to 4 moles of hydrogen with acetate and butyrate as byproduct (Su et a., 2009).
In addition to producing hydrogen also byproducts contain many organic acids, which
lead to energy waste and environmental pollution. While in photofermentation, organic
acids can be used side by photosynthetic bacteria for further processing and then be
converted into hydrogen production (Liu et al., 2010). Various efforts have been done so
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that new approaches such as byproduct of organic acid produced by fermentation dark for
further methane and hydrogen production in other processes (Cooney et al., 2007; Zong

et al., 2009).

The best solution to solve this problem is by using sequentially between dark-
Fermentation process and photofermentation. This concept is very promising for the
production of biohydrogen because hydrogen production is greater than the dark phase of
the fermentation process or a single photofermentation. So, the two-stage process
combining dark and photofermentation can improve the hydrogen production, theoretical
from 4 to 12 mol Ha/mol hexoses and from 2 to 10 mol of Ho/mol pentose (Chen et al.,
2008). During the dark fermentation of carbohydrate containing substrate is converted
into organic acids, CO. and hydrogen by mesophilic and thermophilic bacteria. In the
second stage, dark fermentation waste containing organic acids such as acetic and lactic
bacteria used in photofermentation by photosynthetic or Purple Non-Sulfur (PNS) for
hydrogen production further. (Su et al., 2009) also reported that sequential technological
dark and photo-fermentative been used to increase the yield of hydrogen from glucose

and starch cassava

223 Electrochemical processes

Bio-electrochemical system is an alternative technology using microorganisms as
electrochemical catalyst. Microorganisms are capable of catalyzing the oxidation-
reduction reaction at the anode and cathode electrode. Bio-electrochemical systems
(BESs) are divided into two major groups which are microbia fuel cells (MFCs) and
microbial electrolysis cells (MECs). Production of hydrogen from protons and electrons
are produced directly by bacteria with increasing el ectrochemical potential in the cathode

chamber of MEC reactor. The most interesting part of the process of electrochemical is
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the occurrence of two simultaneous processes that produce hydrogen gas and electro-

coagul ation process.

Hydrogen can be produced from certain forms of biomass by biological fermentation
(Nath & Das, 2004), but yields are low. The maximum hydrogen production from

fermentation, assuming only acetate or butyrate is produced from glucose, is

CoHy Og + 2H,0 — 4H, + 2C 5 + 2C,H, 0, (2.17)

CoHy Op = 2Hy + 2C 5 + 2C4Hy 0, (2.18)

4 mol of Hz/mol glucose could be obtained if only acetate was produced, but only 2
mol Hzo/mol if butyrate is the sole end product. Current fermentation techniques produce
a maximum of 2-3 mol Ho/mol glucose. Thus, most of the remaining organic matter is
essentialy wasted as a mixture of primarily acetic and butyric acids, despite a
stoichiometric potential of 12 mol Hz/mol glucose (BE Logan, 2004). The largest
hydrogen yield theoretically possible using microorganisms (without an external source
of energy) istherefore at 4 mol H2/mol glucose based on production of acetic acid. Higher
yields can be achieved using photobiological process and supplemental light, or using
pure enzymes, but neither of these methods so far show promise for economical
production of hydrogen (J Benemann et a., 2004; Miyake et al., 1999; Woodward et al.,
2000). Moreover, of all the different types of biomass available for making hydrogen,

only materials rich in carbohydrates such as glucose are suitable fermentation substrates.

2.2.3.1 Microbial Fuel Cells

Microbia Fuel Cells (MFC) and Microbial Electrolysis Cells (MEC) are among such
bioelectrochemical systems. Together, MFC and MEC could be represented by the
acronym MxC. Performance of MxC largely depends on anaerobic biofilm occupied by
anodophilic (electrogenic) microorganisms, which transfer electrons to the anode during
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their metabolism (Bond et al., 2002). Though anodic compartmentsin all MxC are similar,
the cathode reactions differ. MFC operate with cathodes exposed to air resulting in
oxygen reduction reaction at the cathode and electricity production (B. E. Logan et al.,
2006). In contrast, MEC require a small additional input of electrical energy provided by
an external power supply to facilitate the reaction of hydrogen formation on the cathode
(René A Rozendal et al., 2006). A MFC consists of two electrodes (anode and cathode),
where bacteria grows on organic materials dissolved in the anode chamber in anaerobic
conditions. Due to the activities of bacteria, chemical energy from organic matter in the
wastewater is converted into electrical energy. Microorganisms oxidize substrates to
produce electrons and transfer to the anode electrode. Then electrons through an external
circuit to the cathode electrode and produce an electric current (Hong Liu & Logan,

2004).

By electrochemically augmenting the cathode potential in a MFC circuit it is possible
to directly produce hydrogen from protons and electrons produced by the bacteria. This
approach greatly reduces the energy needed to make hydrogen directly from organic
matter compared to that required for hydrogen production from water via electrolysis. In
atypical MFC, the open circuit potential of the anodeis~ -300 mV (Hong Liu & Logan,
2004; Hong Liu et al., 2004). If hydrogen is produced at the cathode, the half reactions

occurring at the anode and cathode, with acetate oxidized at the anode, are as follows:

Anode : CoH 0, + 2H,0 - 2C 5+ 8e™ + 8H*  (2.19)
Cathode: 8H* + 8e™ - 4H, (2.20)

Producing hydrogen at the cathode requires a potential of at least E°= - 410 mV at pH
7.0 (Plambeck, 1995), so hydrogen can theoretically be produced at the cathode by
applying a circuit voltage greater than 110 mV (i.e,, 410-300 mV). This voltage is

substantially lower than that needed for hydrogen derived from the electrolysis of water,
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which is theoretically 1210 mV at neutral pH. In practice, 1800-2000 mV is needed for
water hydrolysis (under alkaline solution conditions) due to over potential at the

electrodes (X. Chen et al., 2002).

It is shown here that this biochemical barrier can be circumvented by generating
hydrogen gas from acetate using a completely anaerobic microbial fuel cell (MFC). More
than 90% of the protons and electrons produced by the bacteria from the oxidation of
acetate were recovered as hydrogen gas, with an overall Coulombic efficiency (total
recovery of electrons from acetate) of 60-78%. This is equivalent to an overall yield of
2.9 mol Hao/mol acetate (assuming 78% Coulombic efficiency and 92% recovery of
electrons as hydrogen). This bio-electrochemically assisted microbial system, if
combined with hydrogen fermentation that produces 2 to 3 mol of Ha/mol glucose, has
the potential to produce 8 to 9 mol Hz/mol glucose at an energy cost equivalent to 1.2 mol

H2/mol glucose (Hong Liu et al., 2005).

2.2.3.2 Micraobial Electrolysis Cell

Research on the production of hydrogen gas using the MEC has been conducted since
2005, some of the articles relating MEC began publication in 2007 (Bruce Logan et al.,
2007). A MEC isadlightly modified MFC where a small amount of electricity is applied
to the anode chamber to suppress the production of methane and oxygen is kept out of the
cathode chamber to assist bacterial oxidation of organic matter present in wastewater to
produce hydrogen, a gas to become the most attractive energy source in the 21st century.
While Microbial Electrolysis Cell (MEC) has tremendous potential, the development of
this technique is ill in its infancy. Information about the anode materials and
microorganisms used in MFCs are also applicable to MEC systems due to their similar

anodic process. Yet, efficient and scalable designs are required and investigated by
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biologists for the successful applications of the microbial electrolysis process (Hu et al.,

2008).

The dark and photo fermentation process has many disadvantages compared to the
MEC. At this process the formation of other compounds such as volatile fatty acids
(VFASs), so that hydrogen gas cannot be produced optimally. In bioelectrocatalysis
technol ogies such as MEC, the organic material used as an electron donor to be degraded
by bacteria is exoelectrogenic. Because of the drive voltage supplied from the outside,
the compounds VFAs will break down into protons. When protons are released from the
anode and met with electrons in the cathode and then the hydrogen gasformed (Hong Liu
et al., 2005). If compared with other processes, the MEC is one technology that hasavery
bright prospect in the future and when viewed in economic terms, MEC has a market and
commercial potential is very large. To achieve these conditions, some studies need to be
given special attention, such as: how to reduce the required electrical input reactor, the
material for the cathode to be cheaper and how to increase the current density in the

reactor (Hallenbeck & Ghosh, 2009).

2.3 Fundamental of Microbial Electrolysis Cell

One of the newest and promising approaches for the production of hydrogen from
organic materials and wastewater is to use bio-electrochemical system or microbial
electrolysiscell (MEC). Thistechnology has outperformed other processes such as photo-
dark biophotolysis and fementation. In MEC reactor, exoelectrogenic bacteria oxidize the
organic matter then generate electrons, protons and CO.. The electrons released by
bacteria into the anode then combine with the protons at the cathode and react to form
hydrogen gas. Thisreaction does not occur spontaneously but needed supply some energy
from outside. Minimum required electrode potential is suggested at 0.414 V. Such MEC
reactor is a schematic diagram as shown in Figure 2.8.
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Figure 2.8: Schematic construction and operation for MEC reactor with typical
single chamber

Here's one example ofthe reaction between electrons and protons in the MEC reactor

using acetate as a substrate:

C,H0; - C ,+C 5 (2.22)
C ;+4H, > C 4+ 2H,0 (2.22)
H,0+e >0 ~+ H, (2.23)

The following is the reaction in the MEC when acetate is used as the substrate:

Anode:
CH4CO0™ + 4H,0 — 2HCO®*~ + 9H™* + 8e~ (2.24)
Cathod:
8H' + 8¢~ — 4H, (2.25)

23.1 Reactor design

The structure of the MEC reactor is directly related to the internal resistance and
current density, and these factors can affect the rate of hydrogen production. Currently,
there are 3 types of MEC reactor types encountered, i.e. H-type, cube-type and

rectangular-type. The third type of the reactor structure has characteristic and advantages
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of them. As a comparison for each reactor structure, the advantages and disadvantages

can beseenin Table 2.1.

Table 2.1: Compar ative different structures, advantages and disadvantages of

MEC reactor
Structure: Characteristics Advantages and disadvantages
H-type Two bottles separated by a | Structure is simple and the separated
membrane chambers could prevent the mixing of oxygen

and hydrogen; but the electrodes space cause

the large system resistance

Cube-type Single chamber without Significantly increase the current density and
membrane hydrogen recovery rate, enhance the reaction
performance; but the hydrogen could be used
by the methanogens

Rectangular-type Reaction be separated by a | Membrane could prevent the mixing of
membrane into two chambers | oxygen and hydrogen gas; but increase the pH
gradient

When observed from the ion exchange membrane, MEC reactor is divided into two
parts, namely the membranous reactor and reactor membranless. Meanwhile, when
observed from the structure of space, then the MEC reactor chamber can be divided into
single and double chamber. By using the ion exchange membrane, the H> and O- can be
separated so that the oxidation of H> at the anode can be avoided. By using anion
exchange membrane, this will reduce the internal resistance of the reactor, reducing the
pH gradient, reduce energy loss, increase the level of energy recovery, the imbalancesin
the oxidation process at the anode will be better and the production of hydrogen will be
higher. Hence, MEC performance will be optimized so as to boost the production of

hydrogen gasup to 1.1 m3 m-3 d-1 (Call & Logan, 2008; C.-Y. Chen et a., 2008).

MEC reactor with a single chamber without membrane has its own advantages, when

the applied voltage is less than 0.6 V and the distance between the two electrodes is
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controlled at 0.2 cm, the hydrogen yield will reach its maximum value. Optimum
electrode spacing should be a serious concern for researchers in order to prevent the use
of hydrogen ions by hydrogen-consuming microorganism's inhabitation and transform

into methane.

232 Electrode materialsof MEC
2321 Anode

There are several types of material used in the anode MEC reactor such as carbon-
based materials, stainless steel, iron, platinum and others. Carbon-based materialsis one
of the most widely used material as electrode materials in MEC reactor because it has
several advantages such as; low cost, low over-potentials, non-corrosive, abundance in
nature, low toxicity to living organisms, biocompatibility and versatility in morphologies,

and are also excellent conductivity (Logan et al., 2008).

2.3.22 Cathode

In the MEC process, hydrogen gas is formed at the cathode. To encourage the
production of hydrogen gas is formed faster in MEC reactor, the right amount of supply
overpotential is required to be supplied into the reactor. In order to keep overpotentials
lower, the selection of appropriate cathode material has to be done properly. Platinum
(Pt) is one type of material that has overpotentials very low and usualy used as the
catalyst in MEC reactor. But the cost is very expensive, so that the selection of platinum
asthe electrode material becomes |ess attractive to the MEC reactor. Stainless steel isone
aternative to replace platinum as well as low overpotentials and also low cost. Another
advantage of the stainless steel material is stability in highly alkaline solution (Selembo

et al., 2009).
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233 Substratesused in MEC

MEC has been known as one of the renewable technologies that are environmentally
friendly. Thistechnology is one of the alternative methods of producing hydrogen gas by
utilizing different types of organic waste water. Abudukeremu Kadier et al. (2014)
reported that there have been many studies done on the production of hydrogen gas from
a wide variety of organic wastes such as domestic wastewater, swine wastewater,
fermentation effluent, refinery wastewater samples, industrial, food processing,

wastewater, potato processing wastewater & dairy manure wastewater.

Hydrogen gas can also be produced from glucose, cellulose, glycerol, fermentable
organics and various types of substrates nonfermentable such as acetic acid, butyric acid,
lactic acid, valeric acid, propionic acid (Cheng and Logan, 2007). Hydrogen recovery
from the substrate sodium acetate (CH3COONa) approaches the theoretical value that is
4 mol Hz>/ mol acetate. This substrate is the end product of the fermentation general such
as photo and dark fermentation. From the literature it was reported that the final product
of this process is the most widely used in the MEC reactor (Call & Logan, 2008). By
using this substrate highest hydrogen production rate reaches 50 m® Hz / m? d with an

applied voltage of 1V (Jeremiasse et a ., 2010).

24 The uniqueand advantages of biohydrogen production processes

Table 2.2 shows the characteristics, uniqueness and common to each of biohydrogen
production processes. Every of biohydrogen production processes have advantages and
lack of each system. One of the best aternatives to maximize the production of hydrogen
gas is by combining these three processes. The three of processes used in sequence,
namely photo-fermentation, dark-fermentation and bio-electrochemical processes. This
concept is very promising for the maximum biohydrogen production when compared to
the dark-fermentation or photo-fermentation phase only. By using each process separately
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the maximum hydrogen gas obtained only is 60-70%. So, by combining these three
processes in sequence, namely dark-fermentation, photo-fermentation and bio-
electrochemical process can increase the hydrogen gas production to 91% (Call & Logan,
2008).

Table 2.2: Comparison of the unique or common processes of biohydrogen

production by cyanobacteria and green micro algae, photo-fer mentation, dark-
fermentation and bio-electrochemical process

No Processes Common Unique Ref.
1 | Cyanabacteria 1. Usescarbohydrates | 1. Using biophotolysis process. (Miyamoto
and green micro to store energy 2. Norequirement of adding eta., 1979;
agae . Takeplacein substrate as nutrients Ghirardi et
anaerobic condition . Only using water, CO, and al., 2000;
sunlight energy as a source of Akkerman
energy etal., 2003
. Hz can be produced directly & Maness
from water and sunlight et a., 2009)
. It has the ability to fix N2 from
atmosphere
2 | Photo- Usesorganic wastes | 1. Can use avariety of organic (Wykoff et
fermentation as asubstrate wastes as a substrate al., 1998;
. This process takes . Using photosynthesis bacteria.  (Taoet d.,
place in anoxic and . Using sunlight as energy to 2007; Zhua
anaerobic convert organic compoundsinto |et a., 2007
conditions hydrogen & Harwood
. A wide spectral energy canbe  |et al., 2008)
used by photosynthetic bacteria
3 | Dark- . Takesplacein It is ability to produce hydrogen |(Benemann,
fermentation anaerobic continuously without the 1996;
conditions presence of light Taguchi et
Using organic . Thisprocesstake placeindark |al., 1998;
substrate and condition Mulinet al.,
biomass to produce Higher hydrogen production 2004 & Liu
biohydrogen rate. et a., 2010)
Process very simplicity
Lower energy input
Can use low-value organic
waste as raw material
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7. No oxygen limitation

. Can produce several metabolites

as by-products

4 Bio- Takesplacein This processis aso used to (Livetd.,
electrochemical anaerobic remove organic contaminants 2004, Call
process conditions. in wastewater etal.,

. Using organic It is possible to directly produce | 2008)
substrate to hydrogen from protons and
produce electrons produced by the
biohydrogen bacteria
3. Morethan 90% of protons and
electrons produced by the
bacteria

In summary, biological hydrogen production isthe most challenging undertaking issue
in the last decade, while world energy demand increases, fossil fuel resources is reduced
and the need to minimize greenhouse gasis becoming increasingly concerned. Hydrogen
gas will be one of realistic energy future as the growing science of biotechnology so that
it can overcome environmental problems and social changes. It isafact that hydrogen is
clean and efficient energy carrier, produce zero emissions and can be generated by

renewabl e sources such as biomass and waste.

Since steam reforming or partial oxidation hydrocarbon fossil fuels operate at high
temperatures the chemical methods require very high operating costs. It is necessary to
develop a new process to obtain hydrogen fuel with a low production cost. Biological
method has potential as an alternative to the current renewable technologies because it
offers promising advantages such as operating under mild conditions and a specific
conversion. The sources of raw materials can be obtained from avariety of organic-based
starch, cellulose containing solid wastes, food industrial wastewater, industrial waste

biodiesel, palm oil mill effluent etc.
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There are various technologies used for biological hydrogen production is to include
the biophotolysis of water by cyanobacteria and green micro agae, photo fermentation,
dark fermentation, photo-dark fermentation and bio-electrochemical processes. Hydrogen
production using biophotolysis systems by cyanobacteria and green micro-algae to
become an aternative method of gaseous energy recovery and has the potentia to be
applied in the production of renewable energy. Research on photobiological hydrogen
metabolism has increased significantly; further studies need to be more innovative to
increase the effectiveness of photobioreactors. Direct biophotolysisisabiological process
that can produce hydrogen directly from water, even though productivity of hydrogen
production is relatively limited, but has provided new knowledge about the phenomenon
hydrogenases enzymes, biomaterial and the nature of electron carriers in the
photosynthesis system. Indirect biophotolysis has its advantages and potential to enable
hydrogen energy co-generation involves the steps of photosynthesis and biomass

production of dark anaerobic fermentation of biomass to produce hydrogen.

In the dark fermentation, the conversion of organic compounds into hydrogen gas
through acomplex processinvolving adiverse group of bacteriawith acomplex series of
biochemical reactions. While the photo-fermentation, the conversion of organic
compounds into hydrogen gas can only take place in the presence of light. By combining
the two processesisdark and photo-fermentation, this being the most interesting approach
that can be used to increase the production of hydrogen gas. In this process besides having
excesslevelsof hydrogen production, fast and simple operation, also can be used avariety
of organic wastes as substrates. Thus, compared with the production of hydrogen through
the process of photosynthesis, the production of hydrogen fermentation is more suitable

to be used as well as produce a very clean energy and also can treat organic waste.
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One of the advantages of the MEC is able to produce high hydrogen production, H»-
capture efficiency up to 91%. Because the performance of the MEC is determined by the
physiology of microorganisms and on the other hand is also determined by the physical
chemical transport processes involved. Results of high H> and can provide multiple
benefits in terms of maximum H yield and minimize the BOD of the waste. It's one of

the advantages when compared with the fermentation process.
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CHAPTER 3: MATHEMATICAL MODELING AND SIMULATION OF THE
BIOHYDROGEN PRODUCTION PROCESSESIN MICROBIAL

ELECTROLYSISCELL REACTOR

31 I ntroduction

This chapter presents a dynamic modeling and simulation model of microbial
electrolysis cell (MEC) in fed-batch reactor. The MEC model used here has been
simplified from the model presented by Pinto et al. (R. Pinto et al., 2011), ignoring the
conversion of organic matter to acetate hydrolysis process involving fermentation. In
particul ar the emphasisin this chapter wasto study the fundamental of bioelectrochemical
systems as thermodynamic and kinetics for MEC process, irreversible energy potential
losses and the dynamic performance of MEC involving the mathematical model and
electrochemical process for MEC system. In addition, the mathematical model used here
applies to operating MEC on wastewater involving anodophilic (x,), acetoclastic (x,,)
and hydrogenotrophic (x;,) microorganisms and substrate concentration(s).
Furthermore, the behaviour of MEC, effect of the influent of applied voltage, analysis of
the effect of internal and external parameter involving the effect ofvaryingchanges of the
anodic compartment volume (V;), initial concentration of anodophilic microorganisms
(X, ) and the maximum growth rate of the hydrogenotrophic (¢, ) on MEC current

and hydrogen production rate will be discussed in this chapter.

This chapter begins with a literature review focusing on introducing about hydrogen
gas, thermodynamics in bioelectrochemical systems, irreversible energy potential losses
and some of MEC models that were developed in this field and gather the sources of

information and data required to develop a MEC simulation model.
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As aresult of the use of fossil fuels in excess and without considering the negative
impact on the global climate and human health, causing safety ecosystems around the
world is threatened. Dilemmas and concerns over the impact of these resources will not
be resolved without the proper completion. To save future generations, need to be an
exhaustive review of other sources of alternative energy has properties characteristic of
sustainable and renewable, clean, free of greenhouse gas emissions, acid rain and air
pollution. One of the great challengesin the coming decade is how to get new renewable
energy sourcesthat are environmentally friendly and to replace high dependency on fossil
fuels. Until recently, amost all of the energy needed is derived from the conversion of
fossil energy sources, such as for power generation, industrial and transportation
equipment that uses fossil fuels as a source of energy. Fossil fuels are source of non-
renewable energy and also have seriously negative impacts on the environment, e.g. soil,
water, air, and climate. The use of fossil fuels cause excessive global climate change
because emissions of greenhouse pollutants and the formation of compounds COx , NOX,
Ox, CxHy, ash, and other organic compounds that are released into the atmosphere as a
result of combustion (Das & Veziroglu, 2001; Y okoi et al., 2002). One of the other energy
sources that qualify above is hydrogen gas. At the end of this decade, the talk about
hydrogen fuel is not only discussed among scientists alone but has become a major issue
and a hot topic in several car manufacturers, the mass media and even political leaders.
In some developed countries, public enthusiasm was so great, and they had been ready to
welcome the hydrogen gas as avehicle fuel of the future. Thisis one solution for modern
society and as a way out to overcome the threat of global warming accelerating, so that
amost all the country's dependence on fossil fuels can be resolved. One of the interesting
things is that when hydrogen gas used in vehicles or fuel cell, the result is much more
efficient than the internal combustion engine. When these compounds react with air, the
by-product is in the form of water. Because of these advantages that hydrogen gas is
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known as a low-carbon energy source. Mogt likely, a diverse portfolio of energy-
producing technologies will be needed to replace fossil fuels in the future. These
technologies may rely on renewable or non-renewable resources. A portfolio of
renewable energy technologies may include avariety of systems based on sunlight, wind,
tides, geothermal heat, and biomass. Those are much more interesting because they do
not depend on limited reserves (B. E. Logan et a., 2008). Based on the above
considerations, in recent years various studies has been conducted to obtain a sustainable
source of energy that can replace fossil fuels and which do not have a negative impact on
the environment. Hydrogen is one alternative fuel substitute for fossil fuels and is
considered as an "energy carrier" with a promising future. It has a high energy content of

122 kJ/g, that is 2.75 times greater than those of hydrocarbon fuels (Argun et al., 2008).

Hydrogen plays a very important role and contribution in the global erathat is based
on clean renewable energy supplies and sustainably which will provide major
contributions to the world economic growth. Hydrogen fuel is environmentally friendly,
clean and is the most abundant element in the universein itsionic form. Hydrogen gasis
also colorless, tasteless, odorless, light and non-toxic. When itsgasis used as fuel, it will
not produce pollution to the air but it produces only water asits end-product when it burns
(Kotay & Das, 2008). Hydrogen gas which is produced by biological processes becomes
very interesting and promising because they can be operated at ambient temperature and

pressure with minimal energy consumption, and become more environmentally friendly.

Microbia electrolysis cells (MEC) used for wastewater treatment are a novel and
promising renewable energy technology that can produce H2 while the treatment is being
performed. Currently, several studies of the MEC system have been reported in the
literature. Oneimportant and interesting phenomenon of the MEC model isa competition
between anodophilic and methanogenic microorganisms to consume the substrate in the
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anode compartment (Pinto et al., 2010). Competition among these microbial populations

has severe effects on the performance of the MEC bioreactor.

Aninitial study of this system used amodel involving competition among anodophilic,
methanogenic acetoclastic and hydrogenotrophic methanogenic microorganisms in the
biofilm as reported by (R. P. Pinto et al., 2011). Others have reported improvements in
the modeling and simulation of a two-chamber microbial fuel cell (Kato Marcus et al.,
2007), conduction-based modeling of the biofilm anode of a microbial fuel cell (Marcus
et a., 2011), analysis of a microbial electrochemical cell using the proton condition in
biofilm model and a multi-population model of a microbial electrolysis cell (R. Pinto et
al., 2011). (Picioreanu et al., 2008; Picioreanu et al., 2010) provided detailed descriptions
of the mathematical model for microbial fuel cells with anodic biofilms and anaerobic
digestion. The model was based on evaluation of the effect of pH and electrode geometry

on microbial fuel cell performance.

However, the MEC presents many technological challenges that are beyond modeling
studies that need to be overcome before it can be used for commercial applications. For
instance, the nonlinear and highly complex processesin this hydrogen production process
are due to microbia interaction, which depends on the microbial activity. Its complexity
makes the MEC system difficult to operate and control under the best of conditions.
However, these problems can be aleviated using an integrated process system
engineering approach involving process modeling, optimization, and control

simultaneoudly.

3.2 Bioelectr ochemical systems (BESS)
Bio-electrochemical systems (BESs) are an aternative technology that uses microbial
as catalysis in the electrochemical reactions. Microorganisms are known to have

capability of oxidizing a substrate to catalyze oxidation-reduction reactions at the
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electrode surface. In this process, the chemical energy of organic materialsfrom the waste
water can be converted into electrical energy and is known as the microbial fuel cell
(MFC). And from the waste water can also produce hydrogen gas by adding a number of
potential energy into the system, and now more popularly known asmicrobial electrolysis

cell (MEC) process.

The basic principle of bio-electrochemical is the process of oxidation-reduction
between the substrate and enzyme activities that involve certain bacteria or microbesin
the system. In the process, the bacteria transfer electrons to the anode electrode and the
cathodic electrode can be used as a source of energy which later became known as MFC
and MEC process. Reduction oxidation process that occurs at the anode will produce
hydrogen ions and protons diffuse into the cathode to balance the pH of the organic
compound (Bond et al., 2002). In contrast to the reactor MFC, the oxidation-reduction
processthat occurs on the cathode has hindered the formation of hydrogen proton gradient
due to diffusion of air from outside. Both anode-cathode can be connected through an
electrical circuit, so that the energy of the proton gradient that passes from the anode to

the cathode can be utilized as much as possible (Bond et al., 2002; Bond & Lovley, 2003).

Besides knowledge of the basic principlesin abiochemical system, itis necessary also
a broader study on the field of design and process as well as appropriate managerial
preferences so that the loss of energy in the system can be minimized. For example, the
loss of biological and electrochemical cell ohmic resistance and pH gradient should be
minimized as small as possible. Current and voltage are two important variables that need

to be controlled so that the hydrogen gas can be continuously produced optimally.

321 Thermodynamicsin BESs
Figure 3.1 shows a diagram illustrating the mechanism of the difference between the

MFC with MEC. In the MFC and MEC, exoelectrogenic bacteria oxidize organic
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compounds and form a biofilm layer around the solid anode. For the MEC process, all the
oxidation-reduction reaction takes place under anaerobic conditions and allows the
formation of hydrogen gas at the cathode. Especialy in the cathodic reaction, both the
MFC and MEC, through dissociation constant water so that protons and hydroxyl, the

reaction among each other is always in balance.
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Figure 3.1: The mechanism of oxidation-reduction reaction in (A) microbial fuel
cell (MFC) and (B) the microbial electrolysiscell (MEC)

The following is a standard half-reactions and Potential (E°) at the anode and cathode
of an MFC using acetate, ferricyanide and Manganese dioxide as an electron donor. The

anode and cathode half-reactions (B. E. Logan et al., 2008)as given asfollows :

2H 07 +9HY +8e~ > C 4€ ~ +4H,0 E°(V) = 0.187 (3.2)
0, + 4H* + 4e~ - 2H,0 EY(V) =1.229 (3.2
Oy + 2H,0 + 4e™ > 40 ~ EY(V) = 0.401 (3.3)
M ,(s)+4H" +2e~ > M 2% +2H,0 EY(V) =1.230 (3.4)
0, + 2H* + 2e™ - H,0, EY(V) = 0.695 (3.5)
F(C))i+e =»F (C)HE EY(V) = 0.361 (3.6)

And here are the half-reaction of the cathode and anode to MEC process by using

acetate as the electron donor, the reaction as given as follow:

C ,C ~+4H,0->2H 5 +9H" +8e” EY(V) = 0.187 (3.7)
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2H* +2e~ - H, E(V) =0 (3.8)
2H,0 +2e~ > H; +20 ~ EY(V) = -0.828 (3.9
3.22 Thermodynamics Principles
In MFC and MEC, thermodynamic analysisis needed, especialy to assess changesin
the energy and entropy, such as heat absorption and energy released by the system, the
energy consumed or useful for system and others. For example, if the results of
thermodynamic calculations showed that the Gibbs free energy is positive, the required
energy input from the outside is required to drive the reaction. Conversely, if the Gibbs
free energy is negative, then the reaction will occur spontaneously without requiring the

input of energy from outside the system.

Here is the equation to measure the Gibbs free energy in the system or electromotive
force so that electrical energy can flow in acircuit. Standard reaction Gibbs free energy

can be calculated as:

AG, = AGY + R b (I] (3.10)

where AG,. is the Gibbs free energy for the specific conditions, while AG= Gibbs free
energy for standard conditions and it is defined as 298.15 K, whereas R (8.31447 Jmoal)is
the universal gas constant and T (K) isthe absol ute temperature and [] is reaction quotient

of the products divided by the reactants (B. E. Logan et al., 2008).

In the electrochemical system, the overall potential electromotiveforce (E, ) isobtained
from the potential difference between the cathode and the anode. Theoreticaly the
reaction of potential electromotive force (E, ) can be achieved spontaneoudly if the
value E, >0.If thevalue E, <0, the necessary energy from the outside to push the
reaction of non-spontaneous process is required. The relationship between AG, and

E, isobtained from the following equation:
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Wy, =E, .(Q)=E, .(nF)=—-AG, (3.12)

where @ is the charge transferred in the reaction determined by the number of electrons
in the exchange reactions and are expressed in Coulomb (C). Whereas n is the number of
electrons per mole of reaction, and F is Faraday's constant (9.64853x 104 C/ mol). From

the above equation is obtained:

E, =-% (3.12)

If al of the reaction is assumed to standard conditions, [] = 1, then

[y (3.13)

n

According to (B. E. Logan et al., 2006), the maximum conditions of the system on the
standard state will be achieved when Gibbs free energy is negative. Theoretically, the
value of potentials (E, ) can be calculated from the difference between the cathodic and

anodic of MFC or MEC system. The equation can be described as follows:

E., =E. no —Eq (3.149)

Where E, 1, isthe potentia electromotive force of a specific reaction that occurs in
cathodeand £, isthe potential value of electromotive force of a specific reaction that

takes place at the anode chamber section.

3.22.1 Thermodynamicsof MFC

Despite the development of research for the MFC very rapidly, but it still has many
shortcomings such asthe lack of terminology and methodsfor analysis and proper system
performance. It required more in-depth scientific studies, such as on microbiology,
electrochemistry, performance systems, environmental engineering and al things

associated with the MFC process.



In Figure 3.2 shows that the number of microorganisms at the anode compartment to
transfer electrons from an electron donor (substrate) to the anode electrode either directly
or through intermediaries. The electrons then flow to the cathode via an external
resistance and then react with oxygen. The anode compartment also produced a number
of protons which then migrate to the cathode chamber viathe cation exchange membrane

(CEM).

Glucose

—p H’

Anode  Bacterium Membrane Cathode

Figure 3.2: General description of the operating principle of the MFC (Bard et al.,
1985)

In MFC, electrode potentials occurred between interfaces the electrodes and the
electrolyte, which is a measure of energy per unit charge available from oxidation-
reduction reactions. Potential energy occurs because of the transfer of electrons and ions
specific adsorption on the entire interface anode and cathode. Here are a half-cell reaction
in the standard state (at 298 K, 1 bar, 1 M) for acetic acid oxidation by bacteria that occurs

in the anode and the cathode (Bard et a., 1985).

In MFC, electrode potentials occurred between interfaces the electrodes and the
electrolyte, which is a measure of energy per unit charge available from oxidation-

reduction reactions. Potential energy occurs because of the transfer of electrons and ions
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specific adsorption on the entire interface anode and cathode. Half-cell reaction in the
standard state (at 298 K, 1 bar, 1 M) for acetic acid oxidation by bacteria that occursin

the anode and the cathode (Bard et a., 1985).
2H 7 +9HY* +8e~ > C 3 ~+4H,0 (3.15)

The normal hydrogen electrode (NHE) at standard conditions has the potential to zero,
S0 as to obtain the theoretical potential of the anode (£, ) then use the general equation
of the standard cell electromotive force, namely:

r _po _ R [C 3C 7]
Ey =E§ —=n (—[H ;]2[H+]9) (3.16)

The theoretical reduction potential for the anode where acetate is oxidized in certain

conditions can also be written as follows (B. E. Logan et al., 2006):

e _ U _ Rk Le ;¢ ~
B, =Em -3 (g 5]2[H+]g) (3.17)

At the cathode, oxygen is used as an electron acceptor in which oxygen is reduced to
water and can be calculated as in the following equation (B. E. Logan et al., 2006; Rene

A Rozendal et al., 2007).

0, + 4H* + 4e~ - 2H,0 (3.18)
;g0 _R (1
B, =E) ——h (p 2[H+]4) (3.19)

The theoretical reduction potential at cathode part for H* and 0 ~ concentration can

be calculated as in equation 3.20 and 3.21.:

. .0 R 1

bg no =E¢ no w+— both (p 2[f-'.q+',|4) (3.20)
, . R [co -1*

ES ho =E o o -—550 (&) (321)
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where EV

¢ no m+@dEZ ., , - areindicatesasthe standard reduction potentialsfor

reactions 3.2 and 3.3, respectively. b, stand for moles of electrons transferred per mole

of oxygen, pO2 (atm) isthe partial pressure of oxygen and €, - (mol L*)described the

concentration of hydroxyls.

Theoretically, the maximum voltage on the MFC can reach 1.1 V. However, when the
measured value is much smaller at around 0.62 V (Rabaey & Verstraete, 2005) and 0.80
V in open circuit without current flow (Hong Liu et a., 2005). Thisis due to a number of
energy losses in the system and in general, overpotentials of ohmic electrodes and the

loss of the system can be written asfollows;

Ec =E —@na+I¥ndl+1L o) (3.22)

Where E, isstandardcell electromotiveforce; Y n, and Y n.overpotentials that occur

in the anode and cathode, and 1. (; isthe sum of all ohmic losses.

The potential value of electromotive force (E, ) for an MFC with acetate as an
electron donor can be calculated by use of equation 3.13. From theoretical calculations at
pH 7, the maximum voltage value obtained for the difference between the cathodic and
anodic potentialsis1.1 V. Inthe MFC process, because the anodic potential islower than
the cathodic potential so that the reaction can occur spontaneously. The Figure 3.3 shows
a schematic diagram of the electron flow spontaneously from alow potential to a higher

potential for MFC and MEC.
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Figure 3.3: lllustrates the direction of electron flow in the electr ode potential of the
MFC and MEC reactor (B. E. Logan et al., 2006)

ARB

—)

Substrate

CATHODE
m

3.2.2.2 Thermodynamics of H2 production in MEC

One of the advantages of MEC is the microorganism capable of oxidizing organic
substrate to catal yze the oxidation-reduction reaction to produce hydrogen. Many organic
compounds that cannot be extracted by microorganisms through photo or dark
fermentation process such as acid butyric acid, propionate, butane and ethanol, but
however able to be extracted through the MEC process. The compound is a dead end
product of the fermentation process because the bacteria in the process are not able to

extract energy from the reaction.

Conversion of organic compounds generally have a Gibbs free energy (AG,) of
reaction were positive, whereas the main requirement for generating hydrogen gasisthe
Gibbs free energy of reaction must be negative. Following is reaction at standard

conditions (T =25° C, P=1 bar, pH=7) for the oxidation of acetate (Thauer et al., 1977):

C sC ~+4H,0->2H 3 +H*+4H,0 (AG, = +104.6 k /m )  (3.23)

The above reaction is fermentation reaction of acetate to the hydrogen. The main
problem is the Gibbs free energy is positive so that hydrogen should not be formed
spontaneously. It isrequired to supply a number of energy into the system to encourage

the bio-electrochemical reactions, so that the above acetate oxidation reaction can evolve
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releasing hydrogen ions. To overcome the thermodynamic limit the applied voltage must

be greater than (). The reaction to acetate in standard biological conditions:
. AGy 1 ex1®
E, =——t=—"——=-014V (3.24)

where, n is the number of electronsin the reaction, and F= 96 485 C / mol e'lis Faraday

constant.

The negative sign indicates that the Gibbs free energy of reaction (AG,) is positive so that
the reaction cannot take place spontaneously so that the required supply the number of
voltage into the system for to continue the reaction.Equilibrium potential (E, ) value can

be obtained for the theoretical to the anode (£, ) and cathode potentials (E. ) as

E, =E, —E, (3.25)

By using the Nernst equation so that the energy potential anode for acetate in standard

conditions can be calculated as;

C ,C ~+4H,0->2H 5 +9H* +8e” (3.26)
. _ g0 _R [c s:€ 7]
Eq =ES —=n (—[H ;]z[m]g) (3.27)

Where, at the standard conditions, the value of E] =0,187V,R=8,314J/K mol , T
(K) isthe absolute temperature and the anode potential = 0.279 V(B. E. Logan et dl.,
2006). In standard biological conditions, the anode potential equalsto - 0.279 V. Thus,

the cathode potential is theoretically defined as;

2H* +2¢~ > H, (3.28)
. _ _k BH:
Ee =-5:0 (34) (3.29)
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with py, = hydrogen partial pressure and the cathode potential isequal to -0.414 V. Thus,

the equilibrium voltage obtained;

E, =(—0.414V) —(=0.279V) = —0.14V (3.30)

Thisisthe same value calculated with the above equation 3.15, and theoretical energy
requirement of 0.29 kWh/m3H,. The pH value is related to the value of the hydrogen
evolution reaction. At MEC reactor, the higher the pH value of asystem, then the reaction
katodic increasingly negative potential. So that the required energy from the outside to

push for the reaction to take place spontaneously.

Theoretically, the value of reduction potential of acetate both at MFC and MEC for
anodic reaction is 0.27 vs hydrogen evolution reaction at pH 7. For the hydrogen

evolution reaction (HER), equations 3.29 can also be written:

. . R
ES o =E) o —%Fn ([ijﬁ) (3.31)
. ' R
EC ho =E no 0 ——mh (r 20C -1%) (3.32)
where E) ,, ,+ and E{ ,, , - represents the theoretical cathode potential at

standard conditions for reaction 3.8 and 3.9, by, indicates the moles of electrons

transferred per mole of hydrogen and pH: is the partial pressure of hydrogen.

In the MEC reactor, applied voltage (E, ) must be greater than the voltage (E, ),
because of the loss of internal energy system. There are some losses that occur in the
MEC, as losses caused anodic overpotential (¢,), cathodic overpotential (¢,.) and ohmic
losses (I, ), while the potential loss caused by bacterial metabolic included in the

category biocathoda and anode overpotential. The equation is given asfollows:



Ea = Ee - (Z Da + |Z (pcl + 1 .U) (333)

In the MEC, the production of hydrogen gasisdirectly related to the amount of current
in the system. When the amount of voltage added to the system then automatically the
amount of current will also be increased. Hence that the possible loss of energy will also
increased. The voltage applied to the systemisnot entirely lost because most of the energy
isalso stored as chemical energy in the molecules of hydrogen. In other words, the higher
the applied voltage, the input electrical energy per amount of hydrogen (KWh/m3H,)
generated will also be higher. From various experiments, it is show that the amount of
voltage supplied to the reactor must be greater than 0.2 V or equal to 0.43 kWh/m3H..

Hence allowing all to be fully recovered hydrogen ions at the cathode.

The purpose of inserting a number of energy into the system is to encourage the
formation of hydrogen ions reaction can take place in the reactor. But because of the
energy lossin the system, the voltage applied to the MEC reactor must be greater than the
required system. The equation that is the relationship between the voltage applied from

the outside (E, ) with voltage from a power source (E;, ) is given by:

Eq =E, —lig (3.34)

where, E, isasource of applied voltage, I = V /R, is current-voltage resistors, and

£, isthe voltage of the power source.

3.23 Irreversible energy potential lossesin the bioelectrochemical system

In bioelectrochemical system, theloss of energy through the overpotential isassociated
with a voltage efficiency of the system. The potential loss of the system is the reduction
of potential losses determined by the half-reaction thermodynamics. To encourage that
reaction can take place in the system is required recovery more energy than is required of

the system. One cause of increasing overpotential on MFC and MEC are due to the
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increased rate and current density in the system. There are severa other possible causes
of the polarity of the overpotential system iswhen it uses more energy than isrequired of
the system. Thermodynamically anode cell electrolyte should be more positive, and the
cathode is more negative. When energy is supplied to the system isless than required, the
cell anode will have less negative nature. And if the supply of energy to the system at the
cathode is less than that required of thermodynamic calculations, then a cell cathode will
have a less positive nature. In this section, further discussion about the possibility of
overpotential caused by the ohmic voltage loss, overpotentials activation, overpotentials

concentration, and bacterial metabolic losses will be presented.

3.23.1 Ohmic voltage losses

Energy potential |osses due to ohmic voltage is caused by the configuration of the cell
and resistivity difference of various types of conductors such as electrodes, collectors,
cable, membrane, and electrolyte. Overpotential ohmic resistance occurs because of the
transfer and the flow of electrons through the electrode or electrolyte ions. One way to
determine the ohmic voltage |osses on the membrane isto measure the voltage difference
on both sides of the membrane between two electrodes (Ter Heijne et al., 2006). There
are two methods that can be used to measure the resistance ohmic namely the current
interrupt method (Aelterman et al., 2006) or electrochemical impedance spectroscopy (He
& Angenent, 2006; Rene A Rozendal et al., 2007). The mathematic equation for

calculating the ohmic voltage losses are referring to Ohm's law:

Nonm = 1. Ry (3.35)

Where R;; (Q) is the internal resistance of the cell.
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3.2.3.2 Activation Energy L oss

Activation energy losses are the activation energy required for the system to transfer
electrons from the electrodes anolyte. Potential differences in the value of the balance
required to produce current is directly related to the activation energy system. The slow
redox reaction is due to the activation overpotential, the higher the activation
overpotential in the system, the exchange current density becomes lower. Conversely, if
the exchange current density in the higher system, the activation overpotential becomes

lower.

The linear correlation of the exchange current density in the system between the
activation overpotential and logarithmic values can be shown on the Butler-Volmer
equation and Tafel (Freguia et al., 2007; Popat et al., 2012). Activation Energy Loss is
also associated with the type of catalyst used. The better the catalyst activity types used
in the system, the activation losses will decrease. The relationship can be described by
the Butler-Volmer equation for the oxygen reduction reaction (ORR) at MFC are as

follows (Popat et a., 2012):

_ 4 .

co\ [Cr —-a . . - N )
r=ne|G) (@) e (Fgm) e (T (330
2 B

Ht

by PR ]
_ C& —a UzF a ) _ C;-_;"‘ (l_u)bUZF a
1= ;U,C (CSZ) €. (—R j (C£+) €. (—R ) (337)

Where | (A) isindicated as the current intensity, I, stands for the exchange of current
intensity, C*(mol L") is the concentration at the catalyst surface, C5(mol L) is a
concentration at the bulk solution and a is described as the transfer coefficient. Both I,

and a are two parameters associated with the catalyst activity.
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By using the Butler-Volmer equation, the relationship of the activation energy loss
with evaluation hydrogen reaction (HER) at the cathode to the MEC system can be

described in equation 3.38 and 3.39 asfollows:

c* F _ F . C* _ F c
1=l [(C}Tﬁ) e (“Hn%] _ (ng) 5 (%ﬂ (3.38)
2

Ht

Z *
_ —@ mF a &\ (Cou- Chy A-)bu,F q ¢
=1, [e. (L2fa ) (Cgﬁ_) (ng)e (eluaf o c j] (3.39)

In the Butler-V olmer equation above is to describe the electron transfer kinetics on the
cathode. While at the anode, in addition to the electron transfer kineticsis also the process
of enzyme kinetics. Respiration anode bacteria (ARB) serve as a catalyst and can reduce
losses activation of the oxidation reaction. At the anode involves two electron transfer
process as well as the enzyme kinetics and electron transfer kinetics which describe the
process of electron transfer from microorganisms to the anode. On enzyme kineticsisthe
conversion of organic compounds into carbon dioxide, protons and electrons. Nernst-
Monod model below isillustrates the current intensity of kinetics bioanode as a function
of the concentration of the substrate and the potential of the anode. In the Nernst-Monod

model of this, the anode is assumed as afinal electron acceptor (Torres et al., 2008).

I =In ( — )) (=) (3.40)

F
1+e " (Ea

where I, (A) is described as the maximum current intensity determined by the
enzymatic reaction, Ex (V) is demonstrated anode potential, K. (mol L) is an
abbreviation of the substrate concentration at the which the current intensity is half the

I, and C; isthe substrate concentration (mol L-1).
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3.2.3.3 Concentration Energy losses

Concentration losses (1., ) is a phenomenon that involves the decomposition of the
charge-carrier and occurs due to limited diffusion of the reactants or products between
the bulk solution and the electrode surface. Because the rate of the chemical reaction is
so fast that affects the reaction thermodynamics and physical formation of bubbles on the
surface of the electrode. Concentration loss at the cathode and anode can be cal culated

using the following equation:

e «=B; no —E no (3.41)
T u=E -E (3.42)
where, E; ,, andE;  isthebulk solution concentration at cathode and anode, while
E: o and Ej each isthe local electrode concentrations.

At the MFC, in the cathode overpotential concentration related to oxygen, protons and
hydroxyl. Overpotentials associated with oxygen can be ignored so that equation 3.41

may be combined with equations 3.20 and 3.21, so the following equation are obtained:

R cE,

e o= hrt (22) (343)
R cg \*

e =gl (Cg ) (3.44)

Similarly inthe MEC, overpotential associated with the concentration of hydrogen can
be ignored, so that by combining the equation 3.41 with equations 3.31 and 3.32,

respectively, so the equations below can be written as such:

Te o=——un (zi) (3.45)

[ .
’ by, F ¥
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B \2
R (gz ) (3.46)

In the case of proton transport limitations, the overpotentials concentration related to
anodic reaction reactants (acetate), bicarbonate and products (protons). Due to
transportation limitations proton, then the pH value in the biofilm decreased. This will

have an impact on reaction thermodynamics and kinetics bioanodes (biofilm anode).

3.2.3.4 Bacterial metabolic losses

Bacterial metabolic losses are biological activity and biocatalyzing microorganisms
which are directly related to the surface area and the intrinsic electron transfer rate and
the rate of enzyme or redox system. The biological activity of the biocatalyzing
microorganisms is aso influenced by environmental conditions such as temperature, the
composition in the reactor, the electrode potential, and biological competition of microbes
(Cheng & Logan, 2007a; Clauwaert et a., 2007; Hong Liu et al., 2005; Rabaey &
Verstraete, 2005). In bioelectrochemical system, especially on the part of the anode, the
energy metabolism of the bacteria resulting from the difference of the redox potential and
transfer electron substrat to the final electron acceptor (B. E. Logan, 2009). To improve
the performance of MFC and MEC reactor, it would require the selection of the anodic
and cathodic microbial community's to optimize the functionality of microbial

community (Boon et al., 2008).

3.3 Microbial electrolysiscell (MEC) model development

The biohydrogen production process in an MEC is a honlinear and complex process.
One of the ways to overcome the problems posed by the MEC is to build a mathematical
model used for process design, optimization and developing control strategies. This
model makes several assumptions, such as uniform distribution of the carbon sources

from wastewater in the anode compartment and neglecting of the acetate gradient in the
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biofilm (R. Pinto et al., 2011). Because the porosity and circulation rate of the fluid is
very high, it is also assumed that the microorganisms in the anodic compartment are
distributed homogeneously within each layer. Biofilm formation and retention of the
MEC fed-batch reactor in each biofilm layer is based on a two-phase biofilm growth
model with the assumption that pH and temperature are fully controlled and maintained
at a constant value. It is also assumed that there is an absence of biomass growth in the

anodic liquid and perfect mixing in the anode compartment occurs.

The main objective of the model is to ssimulate hydrogen production using organic
waste from wastewater in a simple and easily identifiable dynamic model. The model
equations presented here are based on multi-population MEC models, and the following
modifications were made to modify the model proposed by (R. Pinto et al., 2011) for our

case study.

The model hereis modified for a fed-batch reactor; where the Pinto model assumed a
continuous system but in this proposed model, the biofilm formation and retention
consists of atwo-phase model with biofilm growth incorporating, anodic biofilms (Layer
1) and a cathode biofilm population (Layer 2). The Pinto model uses three phases, an
outer biofilm layer (Layer 1), aninner biofilm (Layer 2) and cathode biofilms (Layer 3),
but using the two-phase model will be more practical and easier to apply in modeling and

controlling the real plant.

This proposed model involves metabolic activities of acetoclastic methanogenic,
anodophilic and hydrogenotrophic microorganisms without involving the fermentation
used in the Pinto model. We also assume in our modeling steps that it is very difficult to
observe two different processes in the same reactor, for instance fermentation and bio-
electrochemical process simultaneously (Picioreanu et al., 2010). The model is applied to

areal pilot plant-scale reactor with a volume of 10 liters. In comparison, Pinto applied
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the model to a lab-scale reactor with a volume of only 50 ml. This modification aims to

make the model closer to areal plant for such a system and more practical in nature.

331 Reactionsat electrodes

The mathematical models presents here simulate the competition of three microbial
populations in the MEC. The model considers competition between anodophilic and
methanogenic microorganisms for the carbon source. The reactions at the anode and

cathode are described as follows:

At anode:
C,H,0, + H,0 +4M, — 4M, +C , (3.47)
4M, —>4M, +8e” +8H* (3.48)
C ,+HC ;+8e +8H*—>C 4C ~ +3H,0 (3.49)
Cathode:
CH,0;, > C ,+C 5 (3.50)
C ,+4H, > C 4+ 2H,0 (3.51)
H,O0+e -0 + H; (3.52)

The overall reaction of acetate acid at the anode and cathode is described as
C 4C ~+43H,0 - HC ;+4H, (3.53)
Acetate isrepresented in the substrate concentration, and Mox and Mreg are the reduced
and oxidized forms of the intracellular mediator (R. Pinto et al., 2011). The proposed
simplified diagram for the MEC reactor system is shown in Figure 3.4. The DAQ system
is aso introduced in the setup for possible implementation of the control system in rea

time.
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Figure 3.4: The simplified diagram for microbial electrolysis cellsfed-batch
reactor

3.32 Massbalances and stoichiometric equations for the MEC system
The dynamic mass balance equations for the components S, Xa, Xm, Xn and Mo in the

reactor system are given below asfollows:

L;_ =—dm ,a ﬁ KMH:_OMO Xa —qdm m ﬁ (3.54)
% =Hm a ﬁf(:—icma Xa — KgaXa — 1Xq (3.55)
dd—’“ =lm m ﬁ — KgmXm — a1xm (3.56)
% =HUm ﬁ —Kanxn — axxp (3.57)
Qn, = Y, (=) = Vw2 e (359)

Where S is the substrate concentration; x,, x,,, and xjare the concentration of the
anodophilic, acetoclastic, and hydrogenotrophic microorganisms, respectively; M, isthe
oxidized mediator fraction per electricigenic microorganism; and @, is the hydrogen

production rate (mL/day).
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3.3.3 Intracellular material balancesfor the MFC and MEC

The rate oxidized of formation of intracellular mediatorsin the MFC and MEC reactor
can be described by using Faraday's law. The reduced form and a constant pool of the
mediator per anodophilic or electricigenic microorganism in the system are assumed. The
following balance equation involves every electricigenic or anodophilic microorganism

and thevalue of M+  are assumed to be constant:

My =M, +M, (3.60)

d o /d =—Yyq, + -2 (3.61)

Where M,, isthe oxidized mediator fraction per anodophilic microorganismand M, is
the reduced mediator fraction per each anodophilic microorganism. My  isto describe
the total mediator fraction per microorganism in the reactor. Y is the mediator yield; y is

the mediator molar mass and misthe number of electronstransferred per mol of mediator.

334 Kinetic equationsfor the MEC

Especially for anodophilic, acetoclastic metanogen and fermentative microorganisms,
the growth rate was assumed only limited by the concentration of organic substrates,
while for electricigenic bacteria, the growth rate is limited by the oxidised form of the
mediator concentrations of substrate. By using the multiplication kinetics Monod

equation, the Kinetic equations can be described as follows:

5
Br =Bm s (3.62)

A Mg
€ KaetAKp+Mg

He =l (3.63)

A

Pm = Mm mi— (3.64)
H-
Pn=Hm ny—o (3.65)



(3.66)

qr =A9m s Ksy+s
A M,
Qe = qm e KnotAKm+My (3.67)
A
dm = 9m ,m KA (3.68)

3.35 Hydrogenotrophic methanogens

The hydrogenotrophic methanogens grow around the biofilm layer. The
hydrogenotrophic consume hydrogen produced in the cathode part, so that the growth is
very dependent on the H> concentration in water. At MEC reactors, gas transfer to liquid
isignored, so it is assumed the concentration of hydrogen dissolved is saturated. While
the MFC, because no hydrogen was produced and the growth rate is equal to zero so that
the concentration of dissolved hydrogen is assumed to be equal to zero. This dependence

can be described by the following equation:

_ Hy=H; ii Qg >0
_ H, 1 2 2 H,
Hpn = Hm n Kp+Hy, 'Whe' { Hz =0 i QHE =0 (369)
Um ii J'M >0
Hn {0 iily =0 (3.70)

Where H, is the hydrogen saturation concentration in water, K is the half-saturation
(Monod) constant and ,, 5 is the maximum growth rate of the hydrogenotrophic

microorganisms.

3.36 Electrochemical Balances

The potential losses of internal resistance can give additional information about the
performance of an MEC, especially when comparing different systems (Y. Fan et al.,
2008). Since the voltage needed for hydrogen production is constant, the current density

depends on the total internal resistance of the system, which in itself is afunction of the
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current density. The total internal resistance is a sum of the partial resistances of the

system (Bard & Faulkner, 2001).

Figure 3.5 gives an overview of partial internal resistancesin an MEC, which can be
represented by a series of resistances in an equivalent circuit. These partial resistances
consist of: (i) counter-electromotiveforce (E. ), (ii) activationloss (r, ), concentration
loss (1. ), ohmicloss (n,mm)- Each of these polarizations has a different magnitude for
different current density degrees. At low current densities, activation losses are dominant
due to reaction energy barriers at the electrode-electrolyte interface, which need to be
overcome to start the reaction. At high current densities, reactant and product diffusion

limitations lead to high concentration losses (Noren & Hoffman, 2005).

Ty
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Figure 3.5: Overview of the potential losses of Microbial Electrolysis Cellsin batch
reactor

Finally, ohmic losses increase linearly with current due to electron and ion conduction

at the electrodes, electrolytes, and contact resistance across each material’s interface, and

interconnections to electrodes. Note that the output voltage of a fuel cell is directly

proportional to the cell current, following Ohm’s law:
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E, =R, I (3.70)

MEC voltage can be calculated using theoretical values of the electrode potentials by
subtracting the ohmic, activation, and concentration losses. Therefore the following

electrochemical balance can be written as (Fuel Cell Handbook, 2005):

—Eq =Ec  —MNonm — Ne —Ha (3.72)

Here, concentration losses at the cathode will be neglected due to the small size of H»
molecules resulting in alarge diffusion coefficient of H2 in a gas diffusion electrode used
as a cathode. The concentration losses at the anode can be calculated using the Nernst

equation (Pinto et al., 2010).

e a=b (5—) (3.73)

My
The cathodic activation losses can be calculated by the Butler-Volmer equation.
Assuming that the reduction and oxidation transfer coefficients that expressthe activation
barrier symmetry are identical, the Butler-Volmer equation can be approximated as
suggested by (Noren & Hoffman, 2005):

e ¢ =;—s. h—l(f”—) (3.74)

Ag A ip

Therefore, the MEC current can be calculated by combining egs. 21-23:

Be +Eq - (E—)-ta cUu ) 4

Iy = r (3.75)

Ry, £+ M,

wheree is constant [mg-M mg-x1]; € ~0, eq.(24) can be written as:

R My
Ec +Eq4 ——“(ﬂ: )—"Ja cUnm )
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To improve model accuracy during the start-up period the R;; values were linked to the

concentration of electricigenic microorganisms (Pinto et al., 2010):

Ry =Ry + Ry —Ry e Kr¥a (3.77)

Which is determines the curve steepness [L mg-x1].

34 Parameter estimation and model revision

A microbial electrolysis cell (MEC) isamodified microbial fuel cell that can produce
hydrogen gas at the cathode from the current generated by bacteria during the breakdown
of organic matter (B. E. Logan et al., 2008). Biohydrogen production process through
microbial electrolysis cell isacomplex and nonlinear processes. One of the solutions to
overcome the problems posed by the MECs is to build a mathematical model that can be

used for process design, optimization and to develop process control strategies.

This study presents amodel for MEC in the batch reactor based on the two-popul ation
MFC model developed by (Pinto et al., 2010), that will be used for analysis and tested
with open-loop identification. MEC model presented here describes the competition
between the three populations of microbes that is anodophilic, hydrogenotrophic and
acetoclastic microorganism. An MEC batch reactor operated on wastewater contains a
complex microbial community consisting of fermentative, hydrogenotrophic
methanogenic, acetoclastic methanogenic and anodophilic microorganisms, it is similar
to anaerobic digestion (Arcand et al., 1994; B. E. Logan & Regan, 2006; Moletta et al.,
1986; Quarmby & Forster, 1995). Many studies have been reported that anodophilic
consume more organic matter at low substrate concentrations due to low substrate half-
saturation constant (Torres et a., 2008), whereas methanogens perform well at high

substrate concentrations.
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Equation model presented here is called unified models describing microbial activity

in the anodic compartment of amicrobial fuel cell and amicrobial electrolysis cell inthe

cathodic reactions leading to hydrogen production. The parameters for system

characteristics, kinetic and stoi chiometric parameters of the model used for the simulation

ispresented in Table 3.1.

Table 3.1: System characteristics, kinetic and stoichiometric parameter s of the
model used for the smulation in MEC

Parameter Value Nomenclature
Big 0.3 The maximum growth rate of the acetoclastic methanogenic
' microorganism [d]
o 197 The maximum growth rate of the anodophilic microorganism [d?]
1 0.5 The maximum growth rate of the hydrogenotrophic microorganism [d™]
Im a 13.14 The maximum reaction rate of the anodophilic microorganism [mg-A
’ mg-x* dl]
5% m 14.12 The maximum reaction rate of the acetoclastic methanogenic
microorganism [mg-A mg-x* d?]
Ksq 20 The half-rate (Monod) constant of the anodophilic microorganism [mg-
’ ALY
K¢ 80 The half-rate (Monod) constant of the acetoclastic methanogenic
’ microorganism [mg-AL™]
Ky 0.01 Mediator half-rate constant [mg-M L]
H, 1 H,, saturation in water [mg-A L]
K, 0.001 Half-rate constant [mg L]
Yy 0.9 The dimensionless cathode efficiency [dimensionless)
2
Y, 0.05 The yield rate for hydrogen consuming methanogenic microorganisms
[mL-Hz mg-x1 d?]
R 8.314 | Theideal gas constant [mL-Hzatm K1 mol-H]
T 298.15 | The MEC temperature [K]
m 2 The number of electrons transferred per mol of Hz[mol-e mol-Hz?]
F 96.485 | The Faraday constant [A d mol-e]
P 1 The anode compartment pressure [atm]
My 800 Mediator fraction [mg-M mg-x!]
B 0.5 The reduction or oxidation transfer coefficient [dimensionless)
A 4 0.01 The anode surface area] m?|
iy 0.005 The exchange current density in reference conditiong] A m??]
Ry 20 The lowest observed internal resistance[Q]
Ry 2000 The highest observed internal resistance[Q]
Ky 0.024 The constant, which determines the curve steepnessL mg-x]
E¢ -0.35 The counter-electromotive force for the MEC [V]
E, 10 The electrode potentials[V]
Xui & 512.5 Anodophilic biofilm space limitation [mg-x L]
X wm 1680/Y | Methanogenic biofilm space limitation [mg-x L]
Kia 0.04 The microbial decay rates of the anodophilic microorganism [d]
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Kim 0.01 The microbial decay rates of the acetoclastic methanogenic
’ microorganism [d]
Kan 0.01 The microbial decay rates of the hydrogenotrophic microorganism [d]
Yy 34.85 | The oxidized mediator yield [mg-M mg-A]
¥ 663400 | The mediator molar mass [Mg-M molmeq™]
v 10 The anodic compartment volume [L]
Fy, 25 The incoming flow rate [L d™?]
Sy 2000 The initial conditions of organic substrate concentration in the influent
and in the anodic compartment.
Xno 10 The initi_al conditions of hydrogenotrophic  methanogenic
microorganisms
X a0 1 Theinitia conditions of anodophilic microorganisms
Xono 50 Theinitial conditions of acetoclastic methanogenic microorganisms

35 The behaviour of Microbial Electrolysiscells

In developing this model made several assumptions earlier that carbon sources or
wastewater is distributed both in the anode compartment and acetate gradient in biofilm
is neglected. Due to the porosity of the fluid and the circulation rate is very high that it is
assumed that the microorganisms in the anodic compartment distributed homogeneously
within each layer (Rauch et a., 1999). Biofilm formation and retention of MEC batch
reactor in each biofilm layer is based on a two-phase biofilm growth model. Layerl
represents the anode biofilm, containing anodophilic and acetoclastic methanogens
microorganisms, while layer 2 is occupied by the cathode biofilm hydrogenotrophic
methanogenic microorganisms.The transformation of organic substrates by glucose to
acetate takes place in anode biofilm layer 1. There after the acetate is consumed by
acetoclastic methanogenic microorganism’s anodophilic and produce methane and
carbondioxideformation. M,, and M, arethereduced dueto oxidation by intracellular
mediator anodophilic microorganisms. Layer 2 assumed the cathode biofilm populated
by hydrogenotrophic methanogenic microorganisms. Hydrogen consumed by microbes
in this layer which convert hydrogen produced at the cathode into methane and resulted
in the formation of biofilm layer adjacent to the cathode. Finally, pH and temperature
assumptions are considered fully controlled and maintained at a constant value. The

absence biomass growth in anodic liquid and mixing in the anode compartment isideal.
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In this works, the model which was previously developed by (R. Pinto et al., 2011)
was used to study the sensitivity of stoichiometric and kinetic parameters on biohydrogen
production via the microbial electrolysis cells (MEC) in batch operation. Detailed
experimental data, characterization, operation and design used in this study can be found
in (R. P. Pinto et a., 2011).In al simulations studies, the total of time was set at 9 days.

Simulation results for each of the cases are given below.

Figure 3.6 shows the behaviour of substrate concentration (S) and hydrogenotrophic
microorganism (X) with time. It is clear from the figure that the concentration of
substrate (S), decreased sharply at the early of period until to 2 days but increased slowly

during 2 to 3.5 days and then decreased slowly till the end of the period.

1500

—— : Substrate concentration (S)
\ Hydrogenotrophic microorganism (Xh)

1000

500 -

Substrate / mg-S/l and hydrogenotrophic microorganism / mg-x/I

Time / days

Figure 3.6: The behaviour of substrate concentration (§)and hydrogenotrophic
micr oor ganism (x)

Initial substrate concentration was 1500 mg/l and then decreased to 80 mg/l. Thisis
due to the carbon source was consumed by the hydrogenotrophic microorganism. Figure

3.6 shows that the occurrence of metabolic activity and increased growth hydrogenophilic
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microorganism is of 0 mg/l to 1600 mg/l for 10 days. The increasing consumption of
organic materials by microorganism hydrogenophilic is as correlation with the increase

in the production of hydrogen gas in the MEC batch reactor.

Figure 3.7 shows the behaviour of anodophilic (x,) and acetoclastic (x,,)
microorganism. It is clear from the figure that the concentration anodophilic (x,),
increased sharply at the beginning of the period up to 2 days and then declined sharply

until the 4" day and then continued to decrease slowly until the end of the period.
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35} \/ -
30 \ i
25} \ i

20 1

15| N

" \
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Time / days

Figure 3.7: The behaviour of anodophilic (x,)and acetoclastic (x,,)
micr oor ganism

Initial condition of anodophilic concentration is 1 mg-x/I and then increased to 10 mg-
x/l. From Figure 3.6 and Figure 3.7, strong competition can be observed between
hydrogenotrophic methanogens and anodophilic microorganisms in using the available
carbon source. From both figures it can be seen that hydrogenotrophic methanogens can
consume microorganisms substrate concentration better and faster compared with the

concentration of substrate consumed by anodophilic microorganisms.
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From figure 3.7, it can be seen that the initial condition of acetoclastic methanogenic
concentration is 50 mg-x/I and fell sharply to O mg-x/I. In this process, acetoclastic
methanogenic microorganisms (x,,) consume most of the carbon source and then
produce methane and carbon dioxide, the reaction occurs at the anode biofilms Layer 1.
From figure 3.7, it is aso are clear that the growth of acetoclastic methanogenic
microorganisms (Xm) is 0, this means that the rate of methane formation can be reduced

in layer 1 so that the rate of formation of H at cathode layer 2 can be increased.

From Figure 3.8, it can be seen that there is close relationship between Imec
current (Iy ) and hydrogen production rate (Q5). The hydrogen production rate (Qy>)
increased sharply with time due to the reduction of substrate and then decreases linearly
with time as shown in Figure 3.8. The effect of methane production in this simulation was
not observed because acetocl astic methanogenic microorganisms were unable to compete
with the anodophilic microorganisms as shown in Figure 3.7. To maintain the level of
hydrogen production in the cathode compartment requiressufficiencarbon source and
supply current to the reactor. Figure 3.8 shows the effect of influent substrate
concentration and applied voltage to the MEC on the hydrogen production. The hydrogen
production rate increased sharply and reached a peak value of 1.52 mL/sec on the 2™ day,
then decreased linearly until was steady at a value of 0.84 mL/sec on the 10" day. The
Imec current increased sharply reaching a peak value of 0.13A on the 2™ day, and then
gradually decreased slowly to remain steady at avalue of 0.10A. It isclear from thefigure
that the hydrogen production rate (Qy5)in the MEC operated mainly depends on influent
substrate concentration and supply current with continuously applied voltage to MEC
reactor. Volumetric of hydrogen production rate also can be improved significantly by
reducing the electrode spacing and increase the ratio of electrode surface area or cell

volume.
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Figure 3.8: The behaviour of MEC current (I, ) and hydrogen production
rate(@q )

In thisinvestigation, the model which was previously developed by (Pinto et a., 2010)
on MEC is used to study the sensitivity of the model predictionsto changesin the values
of the various kinetic parameters included in the model. The effect of varying the anodic
compartment volume (L), varying the electrode potentias (£, ), effect of varying
changes of initial concentration on the MEC and the kinetic will beinvestigated. Changes
of the various parameters to study the sensitivity of the system performance are described

in the following subsections.

3.6 Effect of varying changes of initial concentration on the MEC
3.6.1 Effect of initial concentration (X, )

Figure 3.9 and Figure 3.10 illustrate the simulation results for the effect of anodophilic
microorganismsiinitial concentration (X, ) varied at 0.1 mg/l, 0.5 mg/l, 1.0 mg/l and 1.5
mg/l on the Imec current and the hydrogen production rate profiles. The investigation was

carried out for an anodophilic microorganismsinitial concentration (X, ) rangeof 0.1 <
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X, < 2,thebalance (ie the difference from the base value X, which is 1.0) was either

added to X, .
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Figure 3.9: Effect of anodophilic microorganismsinitial concentration (X, ) on the

Imec current

In this narrow range of investigation, the system performance of Imec current and the

hydrogen production rate were affected significantly by variations in the anodophilic

microorganisms initial concentration (X, ). As the initial concentration of X, is

increased, the Imec and hydrogen production rate also increased which was manifested as

higher of substrate concentrations during at the early of period until to 2 days.
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Figure 3.10: Effect of anodophilic microorganismsinitial concentration (X, ) on
the hydrogen production rate

However it is evident from figure 3.9 and 3.10 that performance of the Ivec current
and the hydrogen production rate were greatly affected by effect of varying changes of

initial concentration of anodophilic microorganisms.

3.6.2 Effect of initial concentration (X )

The result for the effect of varying the hydrogenotrophic microorganism’s initial
concentration (X},,) on the performance of MEC batch reactor isgiven in Figure 3.11 and
Figure 3.12 The investigation was carried out for hydrogenotrophic microorganism’s
initial concentration (X;,) rangeof 1 < X, < 15mg/l. Hydrogenotrophic methanogens
are very sensitive to pH, oxygen, heat, and chemicals(Li & Fang, 2007). Increasing pH in
a MEC batch reactor will impact to bioactivityhydrogenotrophic methanogens
significantly. So that the hydrogen formed in the cathode will be consumed by
hydrogenotrophic methanogens and then converted into methane gas and carbondioxide.

This will have a negative impact on the rate of hydrogen production. From the figures
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shown, the higher value of initial concentration of hydrogenotrophic microorganism led

to a higher hydrogen production rate.

QH2(mL/sec)

b
©o
T

g
=2
I

d
S

g
d

The behaviour of hydrogen production rate

[ [ T T T

— Xho=1
---Xho=5
— Xho=10
— Xho=15

I I ! ! !

10 12 14 16 18
Time,day

20

Figure 3.11: Effect of hydrogenotr ophicmicroorganismsinitial concentration (X )

on the hydrogen production rate

Figure 3.12 illustrates the simulation results for the effect of hydrogenotrophic

microorganisms initial concentration (X;,,) varied at 1 mg/l, 5 mg/l, 10 mg/lI and 15 mg/I

on the Imec current profiles. However it can see from figure 3.12 that the changes in the

initial concentration of hydrogenotrophic microorganisms (X;,) did not provide

significant effect on the performance of Ivec.
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The behaviour of IMEC current

0.14 T T T T 1 1 1 T T
012r .
0.1 .
—— Xho=1
2 0.08 — Xho=50 i
§ —— Xho=100
L) 0g — Xho=150
0,04 A
002f '
0 I I I I I I I [ I

Time,day

Figure 3.12: Effect of hydrogenotr ophicmicroorganismsinitial concentration (X;,)
on the Imec current

3.7 Effect of varying changes of MEC volume (L) and the electrode potentials
(Eq ) on MEC performances
3.7.1  Effect of anodic compartment volume (L)

Anodic compartment volume (L) isan important parameter in MEC bioreactors. Since
hydrogen production rate correlates with the rate of anodic compartment volume (L).
Figure 3.13 shows that the hydrogen production rate increased with increasing volume of
bioreactor and reached a maximum at an anodic compartment volume of 24 L. As
mentioned previously, by increasing the volume of the reactor the hydrogen production
rate also increased, this is due to the increase of organic compounds in the system

available so that microbes can convert the organic compounds into hydrogen gas.
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The behaviour of hydrogen production rate
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Figure 3.13: Effect of varying the anodic compartment volume (L) on the hydrogen
production rate

The Figure 3.14 shows the effect of various anode compartment volume (L) on the

current MEC profilesvariedat 3L, 10L, 17 L and 24 L. As shown in the figure, changes

in the anodic compartment volume (L) in the reactor do not provide significant effect on

the performance of MEC current.

From the literature review donein this study, it does not explain in depth the existence
of adirect relationship between the volume of the reactor to the hydrogen production rate
and the concentration of organic in the MEC reactor isan important parameter in the study
of hydrogen bioreactor. To optimize the processin order to obtain the maximum hydrogen
production so that the volume or the organic loading rate to a certain level is very

important to note.
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The behaviour of IMEC current
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Figure 3.14: Effect of varying the anodic compartment volume (L) on the Imec
current

The MEC system can be dealt with effectively and hydrogen production rate obtained
maximum. Several studies have reported that in some cases the high organic loading rate
is even lower hydrogen gas production (Van Ginkel et al., 2005) while other studies
explain that the higher organic loading rate will increase the hydrogen production rate (H.

Zhang et al., 2006).

3.7.2  Effect of varying the electr ode potentials (E, )

Figure 3.15 and 3.16 show the effect of voltage applied on the performance of MEC
Fed-batch reactor. As shown in the figure, the dependence of hydrogen production and
Imec current are very significant to the voltage applied to the process. In this process the
MEC Fed-batch reactor operates at a voltage variation in the range of 2 < E, <
14 Volt. The behaviour of the system differs significantly asthe value of applied voltage
(E, ) is changed. Applied voltage is given a significant influence on the

performance of MEC. The Figure 3.16 shows the performance at 10V higher than 6V in
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terms of the production of hydrogen, while the minimum voltage of 2V is applied to
achieve ameasurable level of hydrogen production in the MEC system. It is clear that the
hydrogen production rate and Imec current increased with a higher value of electrode

potentials (E, ) to the process.

The behaviour of IMEC current
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Figure 3.15: Effect of varying the electrode potentials (E, ) on the Imec
current
Imec current depends on their action dynamics of anodophilic intracellular mediator in
the process. Mox is afraction of oxidized mediator mediator while Mreq fraction reduced
by microbes anodophilic in the anodic compartment. Since Imec depends on Mox and Mred
thus increasing the voltage applied to the process will increase the concentration of Mox
to achieve maximum value. After concentrations maximum of Mox reached, the current
value will be constant despite Imec applied voltage increasing. So that the MEC of
operating at high voltageswill result inloss of energy and water electrolysis processtakes

place in the process.
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The behaviour of hydrogen production rate
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Figure 3.16: Effect of varying the electrode potentials (E, ) on hydrogen
production rate

3.8 Analysis of the effect of changes of Kinetic Parameters on the hydrogen
production rate
381 Effect of varying the maximum growth rate (i, 4)

The sensitivity analysis of the system performance to the maximum growth rate
(Um .a) by anodophilic microorganism were presented in Figure 3.17 and Figure 3.18
performed in the range 1.5 <, o < 3.0 7. In the range of investigation, this
parameter was determined to have insignificant effect on the system performance. It is
clear that changes in the value of the maximum growth rate only provides a change at the
beginning of the process and not a significant effect on then Imec current and the rate of

hydrogen production.
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Figure 3.17: Effect of varying the maximum growth rate (u,,, ,) by anodophilic
microor ganism on the Imec current
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Figure 3.18: Effect of varying the maximum growth rate (1, ,) by anodophilic
micr oor ganism on the hydrogen production rate
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3.9 Optimum parametersfor H2 production and applied current

From the dynamic studies of the previous model, it is clearly evident that the MEC
system is a highly complex, nonlinear and multivariable system. It also shows that the
internal parameters have a significant effect on the rate of hydrogen production, whichis

closely related to the electrode potential and theI;  current applied to the system.

In thisstudy, the statistical analysis of MEC was performed where the response surface
method (RSM) was applied to identify the optimum process condition. After collecting
the data according to the design procedures, the optimization process is developed with a
variety of process variables along with the RSV procedures. The regression analysis
model was performed to get the optimum process response by using the quadratic models

asfollows (Khan et al., 2014):

Y =B+ X1 Bixi + X1 Buxi + Xid X 1 Bioxix + € (3.78)

where, Y istheresponse, f3, isthe constant coefficient, f;, f;;, and ; arethe coefficients
estimated by the model, pure-quadratic, cross-product effects of the x; and ¢ is the error
vector. In this process, the independent variables considered are concentration of
anodophilic microorganisms (x;), electrode potentials (x,) and MEC current (x). The
independent variables in this process werex;, x, and x; where the low and high levels
were coded as -1 and +1, respectively. The total number of experiments to be conducted
is15 runs and proposed combination parameters for the specific hydrogen production rate
arelisted in Table 3.2. The method used here isthe Box Benhken method by using Design
Expert software. Fifteen (15) runs were suggested for conducting experiments. Six runs
were suggested to be repeated. This suggested repetition is advantageous to obtain the
center point of the devel oped experimental design and to get the standard error of the sum

of squares.



The statistical model was devel oped by applying the least squares method and multiple
regression analysis study using the experimental data for the hydrogen production rate,

which can be described as:

Y=1.17+0.22x,+0.18x,+0.77x4-0.093x, 2+ 0.18x,,%-0.044x,%+0.038x, x., -
0.09x; x5+0.18x,x; (3.79)

Where Y is hydrogen production rate (L/day); x; is anodophilic microorganisms (mg/l);

x5 iselectrode potentia (V); x, is MEC current (A).

Table 3.2: Specific hydrogen production rate at several of initial concentration
of anodophilic microor ganisms, electrode potentials and MEC current

Run  Anodophilic Electrode MEC Maximum hydrogen
microorganisms potentials current production rate
(mg/l) (V) (A) (L/d)
1 425.00 0.80 0.16 117
2 750.00 0.10 0.01 0.74
3 750.00 0.10 0.30 1.74
4 425.00 0.80 0.16 1.17
5 100.00 1.50 0.30 2.22
6 100.00 0.10 0.30 1.54
7 425.00 0.80 0.16 117
8 972.00 0.80 0.16 1.18
9 425.00 1.98 0.16 1.89
10 425.00 0.80 0.16 1.17
11 425.00 0.80 0.16 1.17
12 750.00 1.50 0.01 0.84
13 100.00 0.10 0.01 0.14
14 425.00 0.80 0.16 1.17
15 100.00 1.50 0.01 0.12

The main problem in this case isto determine the value of voltage and current required
without excessive external energy to produce maximum hydrogen gas. In order to address
this challenge, the optimum value of the electrode potentials (V) and MEC current need to
be determined corresponding to this situation, and these values need to be controlled to
continuously produce the maximum and optimal hydrogen gas production. In this study,
the RSM is applied to determine the optimum electrode potentials and counter-
electromotive force conditions to achieve the optimum hydrogen production rate and

current (I, ) inthe reactor. In this process, the hydrogen production rate is affected by
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various levels of process variables such as the concentration of microorganisms
anodophilic, electrode potentials and current MEC. Three-dimensional response surface
plot using equation (3.79) can be used to find the optimal response of the process variable

at the highest point of the surface.
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Figure 3.19: 3D Response surface of electrode potential vs anodophilic
micr oor ganism on hydrogen production rate
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Figure 3.20: Contour plot of electrode potential vs anodophilic microorganism on
hydrogen production rate
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As the rate of hydrogen gas production will increase with increasing current MEC, it
can be observed from the Figure 3.19 and Figure 3.20 that the value of current in the MEC
process showed a positive linear effect on the hydrogen production rate. The optimum
conditions for biohydrogen production rate of this study is a 1.17 |/day, where the
concentration of microorganisms anodophilic obtained at 425 mg/l, the electrode
potential at 0.8 V and the MEC currentisat 0.16 A. From the contour plot, it is clearly
shows that the current decline will lower the rate of hydrogen gas production in the MEC
system while increased concentration acidophilic microorganisms and the electrode
potential does not have significant impact on the rate of production of hydrogen gas. The
red dot area in the figure shows the optimal results of hydrogen gas production while

other colorsindicate alower value of the response.

3.10 Control variable selection
MEC is a technology using electrochemically active microorganisms to oxidize
organic materials. The conversion of biomass which is more efficient and effectiveat the
anode is one factor that is important to generate maximum production of hydrogen gas.
This rate can be maximized without excessive energy consumption by minimizing the
resistance within the MEC reactor. Knowledge of MEC performance changes caused by
variations in the organic load, the nature ofthe carbon source, and hydraulic retention
time, needs to be studied further in order to avoid excessive power consumption. To
optimize the performance of the reactor, it is necessary to supply the optimum amount of
electrical energy from outside which aims to reduce the potential of the cathode within

the MEC reactor (B. E. Logan et al., 2008).

The addition of energy potential can be carried out by supplying of electric current

(DC) into the reactor. Changes energy potential in the anode depends on the type and
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concentration of the substrate, the amount of voltage applied to the system and the type
of microbes used. The production of hydrogen gas can be achieved maximally by
maintai ning the stability and performance of the current density production in the reactor.
One way to evaluate the performance of the electrode potential at MEC Reactor is to
supply a voltage gradually. Experimentally observation shows that the potential
difference between two electrodes increases with the applied voltage (Y. Zhang et al.,

2010).

Knowledge of the internal resistance of the reactor system is indispensable. The
production of hydrogen gas in MEC reactor will increase with the increasing amount of
current in the reactor. One important factor that affects the performance of MEC reactor
is the amount of voltage supplied to the reactor. Loss of energy will be greater if the
amount of voltage supplied to the reactor excessive. To determine the exact voltage value
without excessive external energy supply, it isnecessary to control the amount of current
in a reactor. To optimize the MEC current in the reactor, it is necessary to design
appropriate control systems so that the amount of voltage supplied to the reactor can be
controlled and regulated continuously. To address this challenge, the optimum value of

the electrode potential (V) and MEC current in therector need to be determined.

In this study, the MEC current is controlled by adjusting the electrode potential charge
(V). The performance of the controller is evaluated by observing the response of the
process through tracking the set-point changes when the MEC current is maintained
approximately at the optimal operational value of 0.16 A. To evaluate the performance of
the controller, various smulation tests will be studied involving multiple set-point

changes, disturbances rejection and noise measurement.
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CHAPTER 4: CONTROL OF MICROBIAL ELECTROLYSISCELLSBATCH

REACTOR: SSIMULATION STUDY

4.1 Introduction

This chapter will discussed a wide range of controllers used for MEC reactor system
such as the PID and neural networks for process control design. In the first part of this
chapter will be assessed on various closed loop control system for the MEC reactor
involving proportional integral derivative (PI1D) algorithm and adaptive-PID controllers.
Asfor the second part of this chapter will be discussed about the neural network controller
such as direct inverse neural network (DINN) controller, the design of neural networks
for process control systems, internal model control (IMC) and hybrid neural network
(HNN) controller scheme. Results and discussion of the conventional PID controller and
neural network controller includes closed loop control studiesfor constant set-point study,
multiple set-point tracking study, disturbance rejection and measurement noise,

respectively.

In this chapter, the design and development of the conventional PID and neural
network based controllers performance for MEC process in batch reactor are presented.
The simulation study and controller performance utilizesthe MATLAB R2013b software
(Appendix 2). Prior to considering an advanced control method to the process, it is
important to assess the controllability of the system using conventional control methods.
In this case, a well-known fixed-gain scheme is employed. The design of basic neural
network controller which covers features essential in the development of the neural
network model is studied. Inverse neura network model with feed-forward structure is
used as the controller in this case. The control method proposed utilizes feed forward

neural networks in the direct inverse neural network control method. The proper control
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strategy is developed after preceded by simulation study with using the neural network
based inverse model for set point tracking and disturbance rejection tests. The models
were chosen in an effort to identify the one that best represent the system. The
development includes the selection of input-output variable for the model, the data used
for training and validation, and neural network model formulation. The design and
performance of neural network controller for the basic, internal model -based control and

hybrid schemes are also in this chapter.

4.2 Closed loop control system for the MEC reactor
Before describing in detail about the reasons for the use of neural network based
controllersfor MEC process, it will be presented in advance of the performance of closed

loop control system for proportional integral derivative (PI1D) algorithm.

421 Proportional Integral Derivative (PID) Controllersalgorithm

The PID controller is one of the most widely used feedback controllers and has been
successfully used in various engineering applications such as industrial process control,
flight control, motor drives, automotive, instrumentation, and so on (Isaksson &
Hagglund, 2002; O'Dwyer, 2009). Among the advantages of proportional-integral-
derivative (PID) are its simplicity and robustness for process control application
(Shamsuzzoha & Skogestad, 2010). For this purpose, the well-known conventional
controller, i.e.,, PID controller (with both fixed and adaptive gain schemes), was

employed. The control law for the PID controller can be expressed mathematically as:
u(t) = kee(t) + kctd;—ie(t) + %fute(t)d + ug (4.1)

Where k. isproportional gain, 7; istheintegral actiontime, 7, isthe derivativetime, e(t)

isthe error and u, isthe control action control values when the error.
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In the past few decades, many systems using various PID tuning formulae have been
studied and currently it is easier for the operator to select the appropriate controller gain.
However, conventional PID controller tuning requires repeated trial s because of possible
instability during the tuning or modeling experimental processes (Astrém & Hagglund,
2006). The above equation (4.1) is served in analog form, while for the automatic control
system by using software such as computer control, generally using a digital approach.
For the implementation of digital control, asfor the formula given in the form of discrete

and can be written as follows:

2Ty

w(t) = ulte-2) + £ (145 +59) @) + (-1 = 5 e(te-n) + (i) (42)

wheree(ty) = ¢ — V¢ and subscripts t;, and t,_, denote the sampling time;
tyStands for the current time sampling, t,_4 standsfor the sampling at the previous time

typ—1 and t,_, stands for the sampling at the previoustime t;_.

In digital control implementation, the formulais given in discrete form expressed as

follows:
A k
u(t) = k¢ (et + k_f §=1 ej — A_‘: (er — et—])) (4.3)
Where
u£+1 = ut + Aut (44)
& =Y¥s — M (4.5)

and subscripts t and t—1 denote the sampling time; tstands for the current time

sampling, and t —1 stands for the sampling at the previoustime t —1.
By considering electrode potentials (Eappiied) as the manipulated variable (control

output) and MEC current (I, ) asthe controlled variable, the control law can be written

asfollows:
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At
AE, 1) = Ke (et — €1t k_Jet] (4.6)

Eq (t+1) = Eq o T AE, (t+1) 4.7)

e = (‘.‘M s = J'M J:) (48)
Where Iy, _ isthecurrent set point, and I, , isthe current response.

The performance of the various controllers was assessed in this section based on the
response characteristics, which were investigated by observing the responses of the
process under nominal and varying operating conditions. Because the system is highly
non-linear in nature with constantly changing operating conditions over time, it givesrise
to a difficult problemin terms of identification and control. The block diagram the PID

controller can be seenin Figure 4.1.

Eapptied (K)

IMEC,, + Error, e (k) PID u (k) MEC IMEC (k+1)
Setpoint -‘ Controller Model é

Figure4.1: Block diagram of PID closed loop design

4.21.1 Closed Loop Control studiesfor constant set-point study

Figure 4.2 shows the performance of PID-ZN tuning method for constant set-point
study. The Ziegler-Nichols method (ZN) for the PID controller obtained on the
proportional gain (k.) valueis 9, the integral action time (t;) is 700 and the derivative
time (tq4) is 1.8. The controller performs well and is successful in managing the process
to follow the given set point changes to keep up around at 0.18A. From thisfigure, It can

be seen that the controller performs reasonably well when responding to deviation, but it
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becomes sluggish when responding to large deviations in the process response. However,
the controller is also capable of following the time-varying characteristic of the process

in most conditions.
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Figure 4.3: The dynamic behavior of Hz production rate, Xh, Xm and Xa for



Figure 4.3 illustrates the dynamic behavior of the hydrogen production rate (Qn2),
concentration of hydrogenotrophic microorganism (x;,), concentration of acetoclastic
microorganism (x,,,) and concentration of anodophilic microorganisms(x, ) for the PID-
ZN method. It can be seen that, when the set point is kept at around the nominal value of

0.18 A, operation at the optimal hydrogen production rate can be maintained.

4212 Closed Loop Control studies for constant set-point study with noise and
disturbancerejection

Figure 4.4 shows the performance of the controller when the measurement of the

controlled variable is corrupted by noise under nominal operating conditions. The noises

are assumed to come from the measurement of the MEC current in the reactor. From these

studies, it can be seen that the PID responses are still stable with fewer oscillations.
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Figure4.4: PID controller for constant set-point study with measurement noise

Figure 4.5 shows the PID controller for constant set-point study with disturbance
rejection in the MEC system. The performance of PID controller has tested by using
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counter-electromoative force (V) as the internal disturbance rejection The variation in

disturbance was generated by changing the counter-electromotive force at nominal value

of -0.3V,-0.2V, -0.1Vand 0.1V, respectively. Based on these results, the performance

of this controller is generally acceptable and the PID controller gave smoother responses

in the MEC system.
0.4 T T T T T T
< I : : : : : Setpoint
£ | A | |~ -Response
Eo2f-zadoooootooooo SRR PRy ot
(8] / 1 1 1 1 i~ 1 1 1
(&) 1 1 1 1 1 1 1 1
wl 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1
0 I I I I I I I I
1 2 3 4 5 6 7 8 9 10
> Time,day
> 3 ; ¥ ; ; ¥ I I I
8 ' ' ' ' i| =™ Manipulated variable
E 2F- - +-—--=- - - - A= - —- — = — — [ p——— [Ep————
K] 1 1 1 T 1
o 1 1 1 1 1
Q 1 | 1 | ] 1 ] 1
8 1rf---=-----7----- el el M i [
g I I I l I I I I
0 0 I I I I I I I I
o 1 2 3 4 5 6 7 8 9 10
Time,day
0.5 I‘ Il I! I‘ Il T T T
! ! ! ! 1| = Disturbance rejection
> 1 1 1 1 1
- 1 1 1 1 1 1 1 1
w 0 _____ Vo h W_ 1 v ___ [ o ___ ' __ v
t e s il REEEE EEREEE Rirbils shiiet bty
w 1 1 I 1 1
I \ I I ' J I
_0-5 I I I I I I I I
1 2 3 4 5 6 7 8 9 10
Time,day

Figure 4.5: PID controller for constant set-point studywith disturbancergjection

Figure 4.6 shows the performance of the controller when the measurement of the

controlled variable is corrupted by noise and disturbance regjection under nominal

operating conditions in the set-point tracking study. In this process, the noises and

disturbance are assumed to come from the measurement of the MEC current in the reactor.

From these studies, when the systems reach a steady state and suddenly disturbances and

noise occur together, the PID controller is able to bring the process variable to a set-point.
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In generally, the performance of PID controller is good and can be applied to contral the

MEC reactor.
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Figure 4.6: PID controller for constant set-point studywith disturbanceregjection

and measur ement noise

In summary, from al the results and figures, it can be seen that, despite the
fluctuations, the process can roughly be directed by the controllers to follow the set-point
changes, and disturbance rejection can be performed satisfactorily. However, the
controller is susceptible to noise, leading to severe fluctuations in the controller action as
observed in the profiles shown in Figure 4.4 and 4.6. This is further evident in the
comparison of the error in terms of the Integral Square Error (1SE), Integral Absolute
Error (IAE) and Integral Time Absolute Error (ITAE) for PID controller asshownin Table

4.1.
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Table4.1: Thel SE, IAE and ITAE for PID controller performance

Comparison Control ISE IAE ITAE
Performance for constant
study
Set-point change 0.016945 0.32103 1.6719
Disturbances rejection 0.016966 0.33515 2.3268
Noise measurement 0.020738 0.72437 249153
Disturbances and noise 0.019895 0.68216 20.0381

422 Adaptive-PID controllers

Although PID control has several advantages, such as robustness in operating,
flexibility and has a simple structure, but it is also has many short comings, such as poor
tuning and slow to adapt when the change of parameters or external disturbances on the
system (Mueller et al., 2007). In this study, the adaptive PID controller has been chosen
because it has many advantages when compared with conventional PID controller. The
adaptive PID controller is able to control the process dynamics change rapidly or
unexpectedly and can continuously update the internal model of the process. Furthermore,
adaptive control isagood solution that can serve as afeedback law to achieve the control
objectives so the system can cope with external disturbances (Dey & Mudi, 2009; Golbert
& Lewin, 2004; Yang et al., 2007). However, comparisons were also made with the
controller tuned by the conventional PID Ziegler-Nichols method (ZN) because thisisthe

most popular tuning method used (Dey & Mudi, 2009; Gydngy & Clarke, 2006).

The controller gains are adjusted adaptively depending on the model error with respect
to the changing conditions of the process, represented by the MEC model. The model-
based identifier is the model constructed based on the bounded dynamic characteristic,
which are devel oped based on the overall and simplified dynamic behavior of the complex

nonlinear fed-batch MEC system.

97



In order to operate the MEC effectively at the optimal conditions obtained in the
previous section, the controllerswere applied to the MEC system under various conditions
in association with the change in the electrode potentials (V), which affects the MEC
current and the hydrogen production rate. The performance of the various controllerswas
assessed based on their response characteristics for set-point tracking under nominal and

varying operating conditions, such as with disturbance and noise effects.

Adaptive-PID controller is able to control the system dynamicsin the event of a non-

nominal process condition. Consider the MEC process model given by:
y(k) = Ax(k—1) + A,x(k — 2) + [Byu(k — 1) + Byu(k — 2)u(k) (4.9)

For the case at nominal condition, 4; and B; for i = 1, 2, and 3 are known through

least-square regression technique. The control action is derived as:

Kp Ie(k)+% [Fetoa +1p2elo|- ArxUe-1)+ a,x(k-2)

u(k) = Bru(k—1)+ Byu(k—2) (4.10)
The block diagrams show the method of adaptive PID asin Figure 4.7.
IMEC,_, . emror, e(k) = NEC E{EC{]:«LI..:
! Controlle Model
erTor, £(k)
Adaptive Gain, L. '«

Figure 4.7: Block diagram of PID-Adaptive gain closed loop design
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423 Closed Loop Control studiesfor set-point tracking study

4.23.1 Controller set-point changeswith adaptive gain

In this work, a set-point tracking study is performed when the Ivec current was
maintained at approximately the nominal optimal operation value of 0.18 A. Figure 4.8
shows the process and controller response when using the PID-adaptive gain controllers
for set-point tracking performance under nominal operating conditions. The controller
performs well and is successful in managing the process to follow the given set point
changes to keep up around 0.13 A, 0.16 A and 0.20 A, respectively. However, the PID
conventional gave a higher overshoot and more oscillations than the PID-adaptive gain
method. Thisis also evident in the behavior of the manipulated voltage of the electrode

potential applied for both cases.
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Figure 4.8: PID-adaptive gain for set-point tracking study

Figure 4.9 shows the behavior of the hydrogen production rate (Qw2), concentration of
hydrogenotrophic microorganism (x,), concentration of acetoclastic microorganism
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(x,,) and concentration of anodophilic microorganisms(x,, ) for the PID-adaptive gain
using the set-point tracking study. In Figure 4.9, the maximum hydrogen production rate
increased sharply and reached a peak value of 3.80 | d1, then changed according to the
changing set-point value, then decreased linearly until reaching the steady state value of
1.80 | d*. It can be seen that there is very close relationship between the electrode
potential (volt) and hydrogen production rate (I d1) in these results, which isin agreement

with the previous open-loop results.

From these figures, it can be seen that PID with adaptive gain can provide better
control of the MEC system. It aso shows that the controller performs reasonably well
when responding to deviation, but it becomes duggish when responding to large
deviations in the process response. However, the controller is capable of following the

time-varying characteristic of the processin most conditions.
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Figure 4.9: Theresponse performance of Hz production rate, Xh, Xm and Xa for

PID controller
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4.2.3.2 Noise and disturbancerejection

Figure 4.10 shows the PID-adaptive gain for tracking set-point changes with
disturbances in the system. The disturbance considered in this study was generated
through changes in the counter-electromotive force (V) as the internal disturbance
rejection at nominal value of -0.4V, -0.2V and 0.0 V, respectively. Based on these results,
the performance of this controller is generally acceptable as shown in Figure 4.10, where
the PID-adaptive gain controller gave smoother responses in MEC system when

compared with conventional PID controller.
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Figure 4.10: The performance of PID-adaptive gain for disturbancerejection
study
Figure 4.11 shows the performance of the controller when the measurement of the
controlled variable is corrupted by noise under nominal operating conditions in the set-

point tracking study where the noises are assumed to come from the measurement of the
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MEC current in the reactor. From these studies, it can be seen that the PID-adaptive gain

responses are more stable, with fewer oscillations, compared to the PID controller.
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Figure 4.11: The performance of Pl D-adaptive gain for measur ement noise

Figure 4.12 shows the performance of control strategy using PID-adaptive controller
for multiple setpoint tracking study. The controller is corrupted by noise and disturbance
rejection under nominal operating conditions. Overall, the controller performs well and
is successful in managing the process to follow the given set point changes. From all the
results and figures, it can be seen that, despite the fluctuations, the process can roughly
be directed by the controllers to follow the set-point changes, and disturbance rejection
can be performed satisfactorily. However, the controller is susceptible to noise, leading
to severe fluctuations in the controller action as observed in the profiles shown in Figure

4.6 and 4.12.
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Figure 4.12: PID-adaptive gain for measurement noise and distur bance
rejection

To minimize overshoot, settling time, steady state error and reference tracking error
on the controller, it is require quantification of the performance of the system. For aPID
controlled system, there are some indications that it can be used to describe the
performance of the process, namely Integral Square Error (1SE), Integral Absolute Error
(IAE) and Integral Time Absolute Error (ITAE). Table 4.2 shows the comparison of the
error in terms on the performance index for PID- adaptive controller.

Table 4.2: Integral SquareError (ISE), Integral Absolute Error (IAE) and
Integral Time Absolute Error (ITAE) for PID-Adaptive controller using set-point

changes
Comparison Control ISE IAE ITAE
Performance for constant
study

Set-point change 0.047292 1.2273 31.9586
Disturbances 0.058517 1.5588 58.8346
Noise 0.048129 1.4038 49.4306

Disturbances and noise 0.064401 1.6945 61.991
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In summary, these results show that the MEC reactor can be controlled to give
optimum current and hydrogen production rate using a PID controller. However, the PID
with adaptive gain was able to give more robust and smoother results than the
conventional PID-ZN method because the system dynamics are highly nonlinear as

shown by the open-loop studies.

MECs present many technological challenges that need to be overcome before their
commercia application. For example, the hydrogen-production processes of the MEC
reactor are very nonlinear and highly complex due to the presence of microbial
interactions and highly complex phenomena in the system. Furthermore, the process
depends on microbial activity, which shows an irregular correlation between current and
voltage. Thus, precise control is required for the MEC reactor, so that the amount of
current required to produce hydrogen gas can be controlled according to the composition

of the substrate in the reactor.

4.3 Neural Network Based Controller

Artificia neural networks (ANNS) are simplified models of the central nervous system.
They are networks of highly interconnected neural computing elements that have the
ability to respond to input stimuli and to learn to adapt to the environment. They go by
many names, such as connectionism, parallel distributed processing, neuro-computing,
natural intelligent systems, machine learning agorithms, and artificial neural networks.
It is an attempt to ssimulate within specialized hardware or sophisticated software, the
multiple layers of ssmple processing elements called neurons. Each neuron is linked to
certain of its neighbors with varying coefficients of connectivity that represent the
strengths of these connections. Learning is accomplished by adjusting these strengths to

cause the overall network to output appropriate results.
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Neural networks have greatest promise in the realm of non-linear control problems.
Thisisimplied by their theoretical ability to approximate arbitrary non-linear mappings.
Networks may also achieve more modeling than alternative approximation schemes, e.g.
based on polynomials. It has a highly parallel structure, which lendsitself immediately to
paralel implementation. Such an implementation can be expected to achieve a higher
degree of fault tolerance and speed of operation than conventional schemes. Furthermore,
the elementary processing unit in aneural network has a very simple structure. This also

resultsin an increase of the processing speed.

At present there is a strong interest in the field of neural computation. The recent
upsurge in research on neural networks has made it an attractive method for identifying
nonlinear processes. Studies of neural networks, e.g. (Bhat & McAvoy, 1990; Hussain,
1999), offer a cost-effective method of developing useful process models. In the absence
of reliable sensors for measurement of biomass, substrate and product concentrations,
neural network model has shown to be an effective “software sensor” to estimate the

bioprocess parameters using available measurements.

Neural networks have been used to perform complex functions in various fields of
application including pattern recognition, identification, classification, speech, vision,
and control systems. From the control systems viewpoint the ability of neural networks
to deal with non-linear systems is perhaps most significant. The networks are used to
provide the non-linear systems models required by the techniques for synthesis of non-
linear controllers. The neural networks based methods have an immense value for design
of non-linear adaptive controllers for dynamical systemswith poorly known and difficult
dynamics. Thelearning algorithmsare directly applicable as controller strategiesfor these

different to model systems such as the MEC reactor systems.
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431 Direct Inverse Neural Network Controller

The basic direct neural network model used for the controller concept refers to the
inverse form of the process. Inverse neural network model with feed-forward structureis
used directly as elements within the feedback loop. The diagram of the neural network
inverse model based control strategy implementation to control the MEC current (I, )

controlled in the microbial electrolysis cells fed-batch reactor is shown in Figure 4.13.

Current and past values
of controlled variable

7=
7t
Manipulated variable
Eppired (k) MEC Iypc(k+1)
NECRELS Controlled Variable
7
71

Current and past values
of controlled variable

Figure 4.13: Block diagramsfor neural network inver se based model control

strategy

From thefigure, it can be seen that the inverse model acts asthe controller and provides
the current control action with respect to certain current and past values of the process
variables. In this case, the neural network model is trained to predict the required

manipulated variable i.e. electrode potentials (£, ) and to bring the process to the

set-point i.e. MEC current (I, ).
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4.4 Design of Neural Networksfor Process Control

The NNs controller concept refers to the inverse response of the open loop MEC
process. The diagram of the controller and control strategy are shown in Figure 4.13. In
this case, the neural network model istrained to predict the required manipulated variable,
Electrode potential (E, ) with the given desire of set-point, MEC current (I, ).
Before the neural networks based controllers can be applied, the procedure for obtaining
the modelsi.e. the forward and inverse used in these strategies will have to be performed
together with the method of training the controller. These steps will be discussed in the

next few sections, before showing the control results.

441 Input-output Variable Selection

An important issue in constructing a neural network representation of thissystemisin

the choice of inputs (X, ,U) for the model. In particular how many past samples of each of

X, % and U should be used in order to predict the next value of variablesin MEC. In

keeping up with the model of MEC, the current was arbitrarily being selected to be used

and one past sample of each of X,X% andU . The input data to the neural network will
subsequently look like X, :[xz(n);Xz(n—J);Xl(n);Xl(n—J);u(n);u(n—])] where the

required output is Y, = %,(N+1). Using the current and one past sample of each variable

permits for a limited degree of gradient information. In this case, the neural network
model used for the controller is made in an inverse form of the process. Therefore, the
selection of input and output variablesfor the neural network model isin accordance with
this method. The inputs and the outputs of the neural network are fed through a moving
window approach. The model is made of 16 input and one output nodes, where input
nodes consist of data for substrate (S), anodophilic microorganisms (x,), acetoclastic

microorganism (x,,, ), hydrogenotrophic microorganisms (x;,), oxidized mediator fraction
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(M,, ), hydrogen production rate (@ ), MEC current (I; ) and the one output node is

electrode potentias (E, ) and past and current data for S i.e. S¢y.Si-1); Xq 1.

Xa(t)Xa(t-1)1 Xm 1-€ Xm(e) Xm(t-1)) Xn 1-€ Xn(e)s Xn(e-1): Mo 1. My (0, My (t—1; Im
i.e. ‘fM @® » IM (t—])JM (t+]); ag - i.e QHZ(E) ) QHE(I—]) and output node is the

electrode potentials (£, ).

The center of the moving window initially istaken to be at the third sampling intervals
where each sampling was done at atime step interval, dt = 0.01 hour. The forward model
was shown on the |eft and for inverse model shown in the right side of Figure 4.14. The
forward model is consists of 16 input nodes, the first six pairs of input (S,xg,%m. X5, M, ,
Iy ,Q ,andE, ) matrices, which consist of their current and past values are input
into the network. The desired network output is assigned to be the future MEC
att =t +dt. The output of inverse model is electrode potentias (E,

current, ) at

t =1 hour.

FORWARD MODEL INVERSE MODEL
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Figure 4.14: Assigned neural network inputs and output




442 Training and Validation data

The training of a neural network is done in conjunction with the back-propagation
algorithm. The back-propagation pass is used to calculate the derivatives and the errors
of every neuron in the network. The back-propagation algorithm learns to recognize and
reproduce patterns in an iterative process whereby its weights are adjusted in order to

minimize a selected error criterion.

Data for training the neural network in the simulation work are obtained by solving
the ordinary differential equations (ODE) that govern the sequencing batch reactor as
discussed in the previous chapter. Two sets of data have been prepared for training the
neural network model and one is used for cross validation purposes in order to test the
validity of the trained neural network models. The three training data sets are switched
between each other during the training session in order to improve system identification
by the neural network models (Hussain & Mujtaba, 2001). The training data sets for

training neural network control model are shown in Figure 4.15.

Data set for training neural network control model
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Figure 4.15: Data set for training neural network control model
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4.43 Procedurefor training neural network models.

The procedure for training the neural network models can be summarized as follows:

1. Determine the number of nodesin the hidden layer and the scaling parameters by trial
and error method. The hidden nodes are chosen by trial and error where the network
having the minimum-trained error with the corresponding hidden nodes will be
chosen as the correct number of hidden nodes to be used. The data is scaled down

between 0.05 to 0.95 using the following equations:

Scalevalue = {*—"—""%_1(0.95 — 0.05) + minv (4.12)
The actual valueis given by:
Actual value =0t ~m v _lxbm v om v T, (4.12)

2. Thetraining cycle was repeated with all the sets of input/output pair patterns in data
set, and the iteration is stopped when the error rate is small or reaches its defined
value. The values of the network weighting coefficients were optimized using the
Levenberg-Marquardt method. The performance was measured using the root-mean-
squared-error (RMSE). The prediction resultswere eval uated by the root mean square

error that is defined as:

Roo= BEo0 -0y (413

Where RMSE is the number of training data points, )_/ is the network prediction, Yy

in the target value, and t isanindex of the training data.
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4431 Forward Modeling

The most commonly used neural network architecture is the multilayer feed forward
neural network shown in Figure 4.16. The basic feed forward network performs a
nonlinear transformation of the input data in order to approximate the output data. The
data from the input neurons is then propagated through the network via the
interconnections such that every neuron in a layer is connected to every neuron in the
adjacent layers. It isthe hidden layer structures, which essentially define the topology of
a feed forward network. Each interconnection is associated with it a scalar weight that
actsto modify the strength of the signal passing through it. The output of a hidden neuron

can be represented as follows:

S =Y+ wilp) (4.14)

_ 1
T [1+e  (=9)]

(4.15)

where bisabias, |; istheith input to the hidden neuron, wiis the weight associated with
li, and O is the hidden neuron output. Eg. (4.15) is known as the sigmoidal neuron
activation function and its output isin the range (0, 1). Output layer neurons can also use
the sigmoidal activation function. However, for process modeling applications, output
layers usually use the linear activation function since it can give a wide range of outputs.
Network weights are trained till such atime that the sum of squared network prediction

errorsisminimized. The prediction results are evaluated by root mean square error (MSE).

The forward NNs modeling refers to the open loop response of the MEC process. The
networks have been trained to obtain the weights of every node and map the dynamic
response of the input-output open loop dataset. The dataset is collected through amoving
window approach. The model is made of 16 input nodes; the input nodes consist of data

for substrate (S), anodophilic microorganisms (x,), acetoclastic microorganism (x,,),
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hydrogenotrophic microorganisms (x;,), oxidized mediator fraction (M, ), MEC current
(Iy ), hydrogen production rate (Q ) and the single output node is electrode potentials
(E, ). The procedure of training a neural network to represent the dynamics of the
system isreferred to asforward modeling. Forward modeling refersto training the neural
network model to predict the plant output, MEC current (I, ). Inthis case, connections
between layers, or weights, are changed during training in order to minimize the error
between the actual plant output and the predicted output from the neural network model.
The architecture of forward neural network model can be seen in Figure 4.16. The input

to the network consists of present and past value of S,xg, % Xn, M, , Iy , @ -, and

Eq

Input layer Hidden layer Qutput layer

Se-n
Sie
xa(s—:l)
xm(s}
xml:t—.“l}
‘Im(s)
Lyrpcie—1
Vyrecin
Xhie—1)
Xhit)
Mﬂx(t-l}
M
Qu2ie-1)
M
E

Euppi:’ed(t}

——T ety

ox(t)

ox(t)

applied(t—1

Figure 4.16: The forward model architecturefor microbial electrolysis cell

The desired network output is the future MEC current Iy, (¢+1)) values. Those input

and output values are fed into the network in the moving window approach. From these

training exercises, the neural network architecture produced is a 16 nodes input layer, 28
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nodes of hidden layer and a 1 output layer system. The activation function utilized is the
sigmoidal function in both the hidden and output layer. The forward model can be

expressed mathematically as a function of inputs to the model as shown below:

I (es1)

i (5(5), Se-1) Xa@) Xa(t-1) Xm(t) Xm(t-1) Xnt) Xnt-1) Onzt) Quzt-1) Mo () Mo (:—1),)
v @, Iy (-1 Ea @ Ea (t-1)

(4.16)

The network is said to be properly trained when it satisfies the performance criteria with
an RMSE of less then 0.001.

The validation result for the forward model can be seen in Figure 4.17. The results show
that the neural network model has been properly trained to predict the forward dynamics

of the system.

Validation - Comparison between NNs Prediction and Math-Model :MSE = 9.8729e-09
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Figure 4.17: Forward model of MEC current for Neural Networ ks Prediction

General regression neural network (GRNN) is a neural network architecture that can

solve the problem of function approximation using the standard regression multivariate
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quadratic equations. GRNN is able to estimate the linear or nonlinear regression surface

on the independent variables and does not require repetitive training procedures asin the

feed forward back-propagation method. GRNN has four layers each layer serves as an

input layer, layer pattern, the summation layer and output layer. The A layer of hidden

neurons are used to hold the input vector, and a neuron output is used as a target value.

Figure 4.18 shows the data training, validation and data test for forward model using

regression neural network training.

Output ~= 1*Target + -6e-08
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o
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----Y=T
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o Data -
Fit
----Y=T
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All: R=0.9151
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----Y=T

Figure 4.18: Neural Network training regression for forward model

The variable R is known as the proportion ofthe variability or sum of squares were
used as the coefficient of determination between the model output and measures of the
training. Set oftest data is used as an indicator that describes the numerical value of the

estimated model.
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4.43.2 Inverse Modeling

Inverse modeling refers to the training of the neural network in predicting the input to
the plant given past data of the inputs and outputs together with the desired output. The
inverse model is used directly as the controller within the feedback loop. Similar to the
forward modeling methodol ogy two training data sets were used, those were switch from

one to the other during training to improve the identification process.

However, inverse NNs modelling are the opposite of open loop response which can be
used as an ideal controller inside the control system. Inverse model isdesigned similar to
the forward modeling approach. The 16 inputs node and single manipulated output

variable has been selected; S¢y)Sii—1y; Xa 1-€ Xq (1) Xa-1)) Xm 1-€ Xon() Xom(t—1):Xn 1.€.

Xnwyr Xna-1 Mo 1.8 My ¢y, Mo i-1yy v 1€ Iy @y » Iy (-1) 7 Quz 1€
Qnz(t),Qnzt—1) @nd output node is the electrode potentials (£, ) respectively. The
detail network architecture for NNs controller development can refer to (Hussain &

Mujtaba, 2001).

In determining the inverse model to use as the controller, the network architecture and
activation functions that were chosen are similar to the forward model. For thisinverse
model, the two-layered feed-forward network that has 16 input nodes, 24 hidden nodes
and 1 output node is used. The data sets generated from the training and validating,
transfer functionsand method of training theinverse model used are similar to theforward

model. The architecture of the inverse model can be seen in Figure 4.19.
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Figure 4.19: Theinver se model architecture for MEC Reactor

During training the network is fed with the required future value,ly;  (¢+1), together
with the present and past input and outputs to predict the current input or control action,
E, vy asseenin Figure 4.19. The inverse model can be expressed mathematically as

afunction of inputs to the model as shown below:

Eq ®

—f (S(.s); St-1)r Xa(o) Xa(t-1) xm(.[)!xm(.[—l)th(t)th(L—l)!QH2(£)'QHZ(.[—“I)J)
My oy Mg - Iv @) Im @1 Im  @+1) Ea (t-1)

(4.17)

Figure 4.20 show the performance of the inverse model using validation data. From
the result, it can be seen that the artificial neural network accurately tracks the dynamics
of electrode potentias (E, ). The results show that the neural network has been
adequately trained, with only slight offsets at certain valuesin order to predict the inverse
dynamics of the system and hence ready to be used as a controller in the direct inverse

model based process controller for the MEC system.

116
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Figure 4.20: Inver se modeling of electr ode potentialsfor training data

In the next sections will be discussed about the performance of the various neural
network based controllers. The performance ofthe controller willbe investigated at the
nominal operating conditions for multiple set-point tracking under loading disturbance
rejection and measurement noise. The disturbances considered in this study generated
through potential (V) changes of the counter-electromotive force (E, ) on the MEC
system, which representing as internal disturbance of the system. The sampling time

interval of 0.01 hischosenin al these smulations.

4.4.4  Direct inverse neural network controller scheme

Direct inverse neural network controller is a control strategy of neural network
controller by using the inverse model as acontrol method. In this control scheme, aneural
network inverse models used as a control strategy by feeding it to the appropriate output
control parameters to obtain the desired input targets. In the direct inverse neural network

controller by using a specific value as set-points, then given to the network together with
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the past plant inputs and outputs data to predict the desired current input. In this strategy
the basic direct inverse neural network (DINN) model is used as the controller for the

process and utilized directly as an element within the feedback loop.

Figure 4.21 shows the process and controller response using this strategy for amultiple
set-point tracking study under nominal operating condition. It can be seen that the inverse
model acts as the controller and provides the current control action with respect to certain
current and past values of the process variables. In this case, the neural network model is

trained to predict the required manipulated variable, i.e., electrode potential (£, @)

and to bring the process to the set point, i.e.,, MEC current (I; )
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Figure 4.21: Process and controller response of basic NN controller with
nominal operating condition for multiple set-point tracking study
Figure 4.22 shows the process and controller response of this NN controller under

disturbance and set-point changes simultaneoudly. The disturbance considered in this
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study was generated by changing potential of the counter-electromotive force (V) by
decreasing and increasing it by range-0.2 V10 0.0V and -0.2 Vto-0.4 V from the nominal
value. From Figure 4.22, it can be seen that the controller performs reasonably when
responding to deviation but, it becomes sluggish when responding to large deviations in
the process response and the controller does not reject the disturbance completely as
noticed intheranget = 3to 3.2 h, t=5t0 5.2 h, and t=7 to 7.2 h, respectively. Generally,
it can be concluded that the disturbances slightly affected the system under NN controller

strategy with simultaneously set-point changes.
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Figure 4.22: Process and controller response of basic NN controller for multiple

set-points tracking in dealing with distur bance r gjection study

Figure 4.23 represents the controller’s performance subject to the condition in which
the measurement of the controlled variable is corrupted by 10% noises. From this figure,

it can be seen that, although the changes in set point can be tracked and the disturbances
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can be rejected, the controller action is affected by the noises as significant fluctuations.
It can be also noticed in the above-mentioned figure, in spite of disturbance and noisy
measurement to the process, the controller is aso capable of following the time varying

characteristic of the process response and able to track the set-point changes.
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Figure 4.23: Process and controller response of basic NN controller for multiple
set-pointstracking in dealing with measur ement noise

Figure 4.24 shows the performance of the controller when the measurement of the
controlled variable is corrupted by disturbance and noisy measurement to the process
under nominal operating conditions. The noises are assumed to come from the
measurement of the MEC current in the reactor. However, the disadvantage exhibited by
this controller is that the adaptation action works slowly so that the rise time or settling

time of the process response is long and these capabilities do not cover a wide control
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range. But overall, the performance of this controller is generally acceptable because the

controller is successful to bring the process to follow the given set-point changes.

< 04 T T T T T 4 4
= | | | | | Setpoint
d=.> 1 1 1 1 1
2 1 1 1 1 1
S 0.2F---= e . =
S
o 1 : : 1 1 : I 1
(&] 1 1 1 1 1 1 1 1
g | | | | | | | |
0 ] ] L ] ] ] ] ]
1 2 3 4 5 6 7 8 9 10
> 4 Time,day
o i i | i : :
© I I I I Manipulated variable
b= 1 1 1 1
g 2F---- =T - - - - e e e s et
- 1 ) 1 1
8 A W |
_c 0 ] ] L ] ] ] ] L
(<] 1 2 3 4 5 6 7 8 9 10
"g Time,day
m 0 T T T T T T T T
> | | | \ [ Disturbance rejection
- 1 1 1 T T T T
b 0.2 i ——————— ————
I'uo 1 V 1 1 1 V 1 1
w 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
_0.4 ] L L ] ] L ] ]
2 3 4 5 6 7 8 9
Time,day

10

Figure 4.24: Process and controller response of basic NN controller for multiple
set-pointstracking in dealing with distur bance r g ection study and measur ement

noise

Table 4.3 shows the comparison of the error in terms on the integral square error (1SE),

integral absolute error (IAE) and integral time absolute error (ITAE) for basic neura

network controller.

Table 4.3: Integral SquareError (I1SE), Integral Absolute Error (IAE) and
Integral Time Absolute Error (ITAE) for Direct | nver se Neural Networ k
Controller performance using set-point changes

Comparison Control ISE IAE ITAE
Performance for constant
study
Set-point change 0.016042 0.49603 16.2968
Disturbances 0.016945 0.5821 20.2987
Noise 0.019076 0.71676 27.8716
Disturbances and noise 0.019012 0.76699 28.5656
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4.5 Internal M odel Control (IMC) Scheme

In IMC the role of system forward and inverse models is emphasized (Garcia &
Morari, 1982). In this structure, system forward and inverse models are used directly as
elements within the feedback loop. IMC has been thoroughly examined with the
application of standard robustness and stability analysis. Moreover, IMC extends reality
to non-linear systems control. A system model is placed in parallel with the real system.
The difference between the system and model outputsis used for feedback purposes. This
feedback signal is then processed by a controller subsystem in the forward path; the

properties of IMC using neural networks are straightforward (Hunt & Sbarbaro, 1991).

Some of the control strategy has been applied to control the reactor MEC as adaptive
PID controller (Yahya et al., 2015). However, the conventional control methods cannot
provide good damping performance, so that the necessary design Interna Model Control
(IMC) as one of the control strategy. Development of control strategy is expected to
provide satisfactory performance in the MEC system. IMC design is very suitable for the
conditions of the linear process model and nonlinear. IMC control models can be applied
in bioprocess systems because it has high durability and performance is satisfactory.
However, the performance of the IMC controller will be less stable when applied to
nonlinear processes with various operating conditions. IMC-Neural network is an
aternative solution and controller design for the open-loop system and is one of the
advanced control system based tuning method that has a high programming. Althoughin

practice this method is still very rarely applied among industry.

One alternative approach isto devel op black-box models (neural network) from either
the data collection process of industrial or experimental work. Data nonlinear dynamics
of the process of training the NN results are used as models of IMC, while the other NN
training outcome data are used to study the dynamics of the process upside down and
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used asanonlinear IMC controller (Kanshaet al., 2010). IMC algorithm when combined
with neural network control method is able to adapt and improve the performance of the
IMC, so this idea has been widely used in a variety of disciplines. In this study, the
application of neural network neural network controller is adopted in the design of IMC

showed very satisfactory results.

In the internal model control, both the forward and inverse models are used directly
as elements within the feedback loop. The network inverse model is utilized in the control
strategy, acting as the controller, has to learn to supply at its output, the appropriate
control parameter, £,  for the desired targets, Iy  at itsinput. The neural network
forward model is applied in parallel to compare with the process model and the error
between the plant output and the neural net forward model is subtracted from the set point
before being feedback into the inverse model. The strategy the schematic of the internal

model control isillustrated in Figure 4.25.
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Figure 4.25: Block diagramsfor Internal M odel-based Control (IMC) system of
neur al network (NN) controller
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Internal Model-based Control (IMC) system of neural network (NN) controller is one
of the advanced control strategies by combining both forward and inverse modelsin the
control scheme. In the IMC system, the inverse model is used as acontroller, while the
forward model which represents the dynamic of the process are placed in parallel with
the process/ model of a system. Figure 4.26 shows the process and controller response of
the IMC-NN controller for set-point tracking performance. From the figure, it can be seen
that the error between the process output and the neural network forward model is
subtracted from the set-point changes before being fed into the inverse model. The
controller is successful in managing the process to follow the given set point changes and

IMC-NN controller is able to give offset free response.

Setpoint
= = Response

MEC Current/ A

Electrode potentials / V

Figure 4.26: Process and controller response of IMC for nominal operating
condition

Figure 4.27 shows the Internal Model-based Control (IMC) system of neural network
(NN) controller for tracking set-point changes with injected the disturbances in the

system. The disturbances rejection test is intended to determine the effect of disturbances
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given to the system and to see the controller's ability to regject it. In this test, the
disturbance to the system which includes the change of the counter-electromotive force
(V) by range -0.2 V t0 0.0 V and -0.2 V to -0.4 V from the initial nominal operating
condition of the plant. The results show that the controller is able to bring back the MEC

current to the set-point in a short time with minimal overshoot and fluctuations.

o
»

Setpoint
—= - Response

.‘
I
|
I
)
I
I
|
7

HhpE—-—-—-—-a -_——— =

< :‘
€ |
o |
5 0.2F---- i\ \aliatintipuiatinlaiaiatie il 3
U 1 1 I 1
o 1 1 1 1 1
Lu 1 1 1 1 1
=, ] . h N\
S 1 3 5 6 8 9 10
= Time,day
[72]
s 4 f f f F T F T
;:: \ \ \ \ Manipulated variable
g /= Vo Nt ]
Q 1 1 1 1 I 1 1
e} I I I 1 I I
g 0 r r r r r r r r
k3] 1 2 3 4 5 6 7 8 9 10
(V]
o Time,day
0 I‘ I‘ I‘ |‘ T T T T
> ! ! ! A — Disturbance rejection
T I T | e e e
Lu 1 1 1 1 1 1
LIJO 1 V 1 1 1 V 1 1
_0.4 ] L ] ] ] L ] ]
1 2 3 4 5 6 7 8 9 10

Time,day

Figure 4.27: Process and controller response of IMC for multiple set-points
tracking with disturbancerejection study

The random noisy (u(k)#0) which is added to nonlinear system given by the equation
added to MEC system. The noise level of a process can be calculated by the equation

Signal-to-Noise Ratio (S\R) as follows:

IR () -3)*
s = RGO (4.18)

Where y and v are respectively the output average value and noise value.
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Figure 4.28 shows the performance of the process and controller response of IMC
when the measurement of the controlled variable is corrupted by noise under nominal
operating conditions. In this test, the controlled variable is corrupted by 10% noises and

the controller action is able to handle the noises athough the processis very fluctuating.
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Figure 4.28: Process and controller response of IMC for multiple set-point
tracking study with measurement noise

Figure 4.29 shows the controller response of IMC for disturbance rejection study and
measurement noise. The disturbance and noise introduced in the system simultaneously
throughout the process to observe the performance of the controller and phenomenon of
the process. If observed carefully there are some short comings obtained from the
controller such action adaptation works slowly, therise time or settling time of the process
responseis rather long. Generally, it can be seen that although the disturbance or noiseis
given to the process, the controller is able to track the set-point changes and the controller

is able to follow the time varying characteristic of the process response.
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Figure 4.29: Process and controller response of IMC for multiple set-point
tracking study with disturbancereection study and measurement noise

To overcome some of the problems in the IMC controller and to improve the
performance of the process, especially for the treatment of disturbance, noisy
measurements, and the delay problem, then one solution isto develop a hybrid technique
of neural network controller. Table 4.4 shows the comparison of the error in terms on the
integral square error (I1SE), integral absolute error (1AE) and integral time absolute error

(ITAE) for internal model-based control (IMC) system of neural network (NN) controller.
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Table 4.4: Integral Square Error (1SE), Integral Absolute Error (IAE) and
Integral Time Absolute Error (ITAE) for Internal Model-based Control (IMC)
system of neural network (NN) controller using set-point changes

Comparison Control ISE IAE ITAE
Performance for constant
study
Set-point change 0.019039 0.63646 21.5856
Disturbances 0.019584 0.66506 23.3581
Noise 0.022654 0.85717 32.7788
Disturbances and noise 0.023003 0.92802 34.9735

4.6 Hybrid Neural Network Controller Scheme

The basic principle of artificial neural networks (ANNS) isto mimic the working of the
human brain nervous system where information between one neuron to other neuronsis
connected to each other. Each input-output value of inter-connected with a certain
numerical weight and between one nodes with other nodes adapt to each other and stored
in the inter-unit power of certain connections. Hybrid neural networks (HNNSs) controller
is one of the model control strategy developed by using neural networks and combined

with other components such as PID, fuzzy logic or Kalman Filter.

In this study, the main focus is to develop a hybrid technique of neural network
controller in controlling microbial electrolysis cellsin afed-batch reactor process. Hybrid
Neural Network Controller has a better performance when compared with the Direct
Inverse Neural Network Controller. Although the inverse neural network controller using
neural black-box models have been widely used in applications of biochemical processes
(Thibault et al., 1990), but still have many short comings such as still having a high
overshoot. And the controller performance is still slow when responding to large
deviations in the response process. One solution to overcome this problem is to develop

Hybrid Neural Network Controller. The hybrid scheme is consists of a basic neura
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network (NN) controller and a proportional integral derivative (PID) controller. The

schematic of the hybrid controller isillustrated in Figure 4.30.

PID
Controller

Controlled Variable
II&E:lppliu:t‘l (kj

Erraor, g
]MECS' + A + Ea[lpliﬁd(k) lMEC(k+1)
L ® MEC
Sctpoint —+ MODEL

AEapplitarl (k]

Manipulated variable

Figure 4.30: Block diagramsfor hybrid control system of neural network (NN)
controller combination with proportional integral derivative (PID) controller

The actual control action in this control system is the combination of the two
controllers. The combination is arranged in paralel manner as shown in Figure 4.30
above. Here, the role of the PID controller is to compensate for the possible sluggish

control action resulting from the basic neural network controller.

Consider the following PID control law:
, At k
AE, e = ke (ec + % f-l € — A_g (e, — 3:—1)) (4.19)

where k_, k, and k,are proportional, integral and differential constants, respectively. In
the implementation, thevalueof k_,k, and k,, above were scheduled according to linear

segments based on the reference variable of electrode potentials (E, ). The control

law of this hybrid controller isformulated as follows:

+ AE, P AE, N (4.20)

Eq (t+1) (t+1)

(t+1) = Eq t
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N

Where AE, P isthe output of PID controller and AE, (£21)

(&+1) is the output

of the basic neural network controller.

Figure 4.31 shows the process and controller response of multiple setpoint tracking
study for HNN controller with nominal operating condition. It can be seen that the Hybrid
PID-neural network model-based controller performs reasonably well when responding
to deviation and the controller isalso capable of following the time-varying characteristic

of the process in most conditions.
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Figure 4.31: Process and controller response of set-point tracking performance
for HNN controller with nominal operating condition

Figure 4.32 shows the HNN model-based controller for multiple setpoint tracking with
disturbance rejection study in the MEC system. From the figure, it can be seen that the
variation in disturbance was generated by changing the counter-electromotive force
(nominal value of -0.20 V). Based on these results, the performance of this controller is
generally acceptable and the HNN model-based controller gave smoother responsesin the

MEC system.
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Figure 4.32: Process and controller response of set-point tracking performance for
HNN controller with disturbance regection study

Figure 4.33 shows the performance of the HNN controller when the noises are assumed
to come from the measurement of the MEC current in the reactor. From these studies, it
can be seen that the HNN controller responses are still stable, acceptable and stillable to
bring MEC current closely to the set point with a small overshoot, oscillations and offset

although the controlled variable is corrupted by noise.
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Figure 4.33: Process and controller response of set-point tracking performance for
HNN controller with measur ement noise

Figure 4.34 shows the HNN controller response of set-point tracking study for the
disturbance and noise test. From the figure shows that the occurrence of fluctuation and
oscillations due to the presence of disturbance and noise in the MEC process, so HNN
controller cannot control well to the MEC current value according to the desired set-point.
But overall, from observation it can be seen that the level of resistance HNN controller
due to the influence of fluctuation and oscillations in the MEC process is till within the
range of permissible and the controller performance is better when compared with other

control strategies.
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Figure 4.34: Process and controller response of set-point tracking performance for
HNN controller with disturbance regection study and measur ement noise

When compared with other controllers, the hybrid neural network (HNN) is a more
powerful and flexible controller because it was able to overcome tracking set-point
changes, load disturbance and interrupted of noisein amore efficient manner. Thisproves
its ability and capability to operate in future in real plant of MEC reactor, in which the
hybrid neural network (HNN) based controller has never used before. Table 4.5 shows
the comparison of theintegral square error (ISE), integral absolute error (IAE) and integral

time absolute error (ITAE) for hybrid neural network (HNN) controller.
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Table 4.5: Integral SquareError (ISE), Integral Absolute Error (IAE) and
Integral Time Absolute Error (ITAE) for hybrid technique of neural network
controller using set-point changes

Comparison Control ISE IAE ITAE
Performance for constant
study
Set-point change 0.020488 0.58176 17.6339
Disturbances 0.020559 0.62782 20.2174
Noise 0.022149 0.77702 28.1243
Disturbances and noise 0.024363 0.83611 20.2277

In summary, these results show that the comparative study on the MEC reactor with
various simulation tests have been conducted involving conventional PID, adaptive PID,
direct inverse neural network (DINN), Internal Model Control (IMC) and hybrid neural
network based model (HNN) controller. Neural network is an effective technique and a
powerful tool to be used in modelling of complex processes, unknown systems and
control strategy. Neural network are able to cope with non-linear process between input
and output variables without the requirement of explicit mathematical correlation. This
comparison shows that HNN provides the best control performance in terms of nominal
and MEC model mismatch cases. Overall this indicates that the hybrid neural network
based model (HNN) controller gives better results in terms of lower error and faster
response time. HNN controller gives fast settling time in the response, less overshoots,
minimal offset and able to keep the performance for any variation of disturbance and
noise. Thus, NN controller performances are surpassing the other types of controller and
perform better in al the analyzed cases. To determine the performance of all controllers,
each respective performance can be seen on Table 4.1 to Table 4.5 in previous Chapter 4
to highlight respective performance comparison of each strategy in termson ISE, |AE and

ITAE.
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CHAPTER 5: ON-LINE MODEL VALIDATION AND CONTROL
STRATEGY FOR MICROBIAL ELECTROLYSISCELLS

REACTOR

51 I ntroduction

In this chapter will be presented in detail about the on-line implementation of control
strategies for biohydrogen production in microbial electrolysis cell reactor system. In
general, the discussion in this chapter will be divided into three parts. The first part will
be discussed about the experimental reactor design and operation, instrumentation and
hardware specifications that are required for on-line measurement. In the second part will
be presented about a general description of the specification of substrate used in the MEC
reactor, inoculum preparation and secondary cultivation and experimental pretreatment
and analysis methods.And the last section will be discussed on start-up process value and
noise filtering, open-loop validation models for microbial electrolysis cell (MEC),
Process and Instrumentation Diagram (P&ID), online signal flow diagram, closed-loop
control for the online system, Pl Closed loop control for online system and
implementation of neural network control strategy. Performance comparison between the
PI controller and the Neural Network controller on an on-line test that involves some set-

point change and disturbance rejection will be reviewed and discussed in this chapter.

5.2 Design of Microbial Electrolysis Cell Experinmental Setup
This research will be presented strategy for MEC reactor control on a pilot plant-scale
reactor. Most research has been done but generally still at the lab-scale, using a pilot-scale

plant is expected to make the process conditions closer to the real plant. The MEC for
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reactor design used in thisresearch isto design relevant closed-loop dynamic and develop

an advanced control strategy to regulate the MEC process.

To achieve good control performance at MEC reactor will require an appropriate pilot
plant design. Besides using low-cost materials and a sustained period of time, it should
also be noted that other parameters is very important as electrode potential, current,
reactor temperature, pH and turbidity. Selection of appropriate materials for the design of
the pilot plant could also provide a better quality in the performance of the control. The
time delay can be present during the process is underway, and it will create instability in
the model and the control system. If the pilot plant is designed well, then this delay time

can be reduced to a minimum.

521 MEC Reactor
The MEC pilot plant is located at pilot laboratory of Chemical Engineering
Department, University of Malaya. Figure 5.1, show pilot plant design, instrument and

process of MEC reactor for experimental setup.

Characteristics of the pilot scale reactor used herein were designed using a “single
membrane-less chamber”. The MEC reactor ismade of PVC clear container productswith
athickness of 12 mm and has a 10 liter capacity. Then the reactor was connected to two
tanks with the size of each 5 liter. The first tank that serves as a supply for the substrate
and the second serves as an effluent tank. Because the design of the reactor usinga'single
membrane-less chamber” type so that the cathode and anode installed in series without

separated by membranes.
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1-MEC reactor, 2-Wastewater Tank, 3-Power Supply, 4-Control Panel, 5-AquaPro
Display for pH & Turbidity Sensor, 6-Pump, 7-Effluent Tank.

Figure 5.1: Detailed process plant schematic and instrumentation process for MEC
fed-batch reactor setup

Cathode and anode materials used in this study were a stainless steel plate. The
distance of space between the cathode and anode plate each about 2 mm. Cathode and
anode material is made of stainless steel plate (SS304) with asize of 150 mm x 150 mm
x 2mm. The amount of each of the cathode and anode used in this system is 10 units

(Figure 5.2).
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1-MEC reactor (12 mm PVC clear container), 2-Reactor and SS304 Plate, 3-Cathode
and anode paralel plate design, 4-Upper cover of the MEC reactor

Figure 5.2: Schematic description and design of apparatus for MEC set-up in Fed-
batch Reactor

MEC reactor consists of seven inlets and outlets of flow. Two flow inlets located on
the left side of the reactor, which oneis used as a substrate supply and the other one serves
to supply the nitrogen gas in the reactor. At the top of the reactor consists of two points,
one serves as a collection of outlets for gas flow Hz and one point again function as a pH
regulator and flow inlets nutrients to bacteria. While on the right side of the reactor
consists of a two-point function as inlets and outlets of flow from the reactor to the pH
and turbidity sensors. At the bottom of the reactor there is a stream outlet for liquid waste
disposal. A detailed description of the design of equipment for MEC set-up in Fed-batch

reactor can be seen in Appendix 1.
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522 pH and turbidity sensor

pH sensor is atype of measuring instrument used to measure the degree of acidity or
alkalinity of aliquid that is connected to an electronic device that measures and displays
the pH value. The working principle of the pH sensor is based on the electro-chemical
potential that occurs between the liquid contained in the sensor probe in the form of glass
electrode (glass electrode) by measuring the amount of hydrogen ions or potential of
hydrogen in solution. Glass electrode can be damaged due to dirt or sSludgefilled of liquid
in the reactor. Buffer calibration check is required to keep the value of the error can be
minimized. To optimize the performance of MEC reactor, the catholyte pH is one of the
parameters that need to be considered. Previous research has shown that the production
of hydrogen can level at pH 5 to pH 9 (Call & Logan, 2008; Rene A Rozendal et al.,

2008).

Turbidity testing instrument turbidity meter isafluid which is expressed as a ratio of
the reflected light intensity of the light received by the sensor. Turbidity can be seen from
the insolubility concentration and the presence of particles in liquids measured in
Nephelometric Turbidity Units (NTU). In pam oil mill effluent (POME), high turbidity
value that can be caused by dissolved particles such as organic material, small particles
and microorganisms. In the MEC, the turbidity value can be used asindicators and quality

control to ensure the efficiency and performance of the reactor.

In this study, for pH and turbidity sensors are equipped using AquaPro. One of the
advantages of the device is to have color graphics display and USB data port to transfer
measurement data at various environmental conditions (Figure 5.3). AquaPro digita
sensor is an on-line liquid analytical measurement that are not only capable of measuring
pH and turbidity but also capable of a wide range of other parameters such as ORP, DO,
conductivity, ozone, suspended solids, free chlorine and others. When viewed from the
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specification tool, AquaPro able to measure the pH value from pH = 0-14 and turbidity =
0-4000 NTU, while the current outputs can be configured for O to 20 mA and 4 to 20 mA

in both linear and log formats.

1-pH and turbidity sensor, 2-Flowrate meter setting pump, 3-Graphics display and USB
data port of AquaPro sensor

Figure5.3: AquaPro equipment for pH and turbidity sensors

523 Power Supply

In the MEC process, so that hydrogen gas can form in the reactor, it would require a
supply of energy or voltage from a source outside the system. Voltage monitoring is
required continuously and it is sent to the reactor circuit MEC that obtained from a power
supply. The main function of the power supply is to convert one form of electric energy
in the form of voltage alternating current (AC) and then drain into a series diode and
convert it into direct current (DC). In MEC reactor, additional voltage is supplied from a
power supply connected to the negative termina (anode) and the positive terminal
(cathode) and then sends a current of the second terminal hardware to the computer via
the"DataAcquisition”. Theamount of current and voltage in the reactor was continuously
monitored and controlled automatically using a computer program. In this study, a power

supply with the brand "New PL and PL-P Series' with voltage ranges from OV to 15 V
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with 10 mV resolution and current ranges of 0-5 A with 1 mA resolution are used. Power

supply is aso equipped with "Digital Bus Interface RS232, USB and LAN" (Figure 5.4).

1-New PL and PL-P series power supply, 2-Digital Mass Flow meter, 3-Silicagel for
hydrogen gas dryer, 4-Outlet flow for hydrogen gas.

Figure 5.4: Description and design of apparatusfor power supply and mass flow
meter

524 Digital massflow meter

Digital massflow meter is one of the measuring instruments used to measure the flow
velocity or flow rate and total mass or volume of liquid or gas. In the digital mass flow
meter equipped with a sensor and indicator function to read the parameters of the flow of
a gas or liquid that is displayed the form of data or numbers. And then the data is
forwarded to produce electricity or signals that can be used as a control input system. In
this experiment, XFM series Mass Flow Meters are used to measure the flow rate of
hydrogen gas produced from MEC reactor and controlled continuously using computer
software. Thisinstrument comes with calibrated 0-5 VDC or 4-20 mA output signals and
optional local connection 2x16 characters LCD (Figure 5.5). The workings of this
measure is the first flow of gas entering the Mass Flow transducer is split by shunting a

small portion of the flow through the capillary tube stainless steel sensor, then the flow
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rate measured in the sensor tube is directly proportional to the total flow through the
transducer. The resulting output signal is a function of the amount of heat carried by the

gases to indicate mass flow rate based molecules.

1-Digital Mass Flow meter, 2-Silicagel for hydrogen gas dryer, 3-Inlet-valve flow from
pH and turbidity sensor, 4-Outlet-valve flow to flow meter pump.

Figure 5.5: Design of appar atus for mass flow meter and hydrogen gas dryer

525 DataAcquisition (DAQ) Display

To maximize the performance of MEC pilot plant, it is necessary to observe, measure
and controls every variable in the process continuously. Each value measurement of
process variables such as current, voltage, hydrogen production rate, pH and turbidity is
still in the form of analog signals. Data acquisition or DAQ is a data acquisition system
that is able to convert from analog signal to digital data, or better known as anal ogue-to-
digital transformers (ADC), and converting digital data into analogue signals, known as

digital-to-analogue transformers (DAC) (Figure 5.6).

At the end of this decade, DAQ has been widely recognized for |aboratory automation,

industrial monitoring and control. Usually the device is connected to a PC to perform the

142



functions of measurement and control instrumentation applications. DAQ module used

in thiswork is National |nstruments USB-6009.

i
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t 1 | '
Digital AT DAC Digital
Inputs T t Outputs

| Multiplever | | Multiplever |

ITTT ¢4

Anslos Inputs | | Amnalog Outputs

TTTT b4y

Inputs from senson | Cutputs from Controk |

Figure 5.6: Simplified block diagram of DAQ for ADC and DAC.

The data acquisition has eight analog input (Al) channels, two analog output (AO)
channels, 12 digital input / output (DIO) channels, and the 32-bit counter when using a

full speed USB interface (Figure 5.7).
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Figure5.7: Design of National I nstruments USB-6009 for data acquisition
(DAQ)

53 Substrates used in MEC reactor

Substrate is one of the most important parameters for MEC reactor, aswell as serve as
a source of fuel but also used as a nutrient for the growth of cellsin MEC reactor. MEC
microbial growth processin the reactor involves ametabolic process starts from transport
nutrients from the medium into the cells, then the conversion of nutrientsinto energy and
cell congtituents, chromosome replication, increasing the size and age of cell growth and
cell division in the reactor. In MEC reactor, the substrate is not only integral effect on the
composition of the bacterial communitiesin the biofilm anode, but also affectsthe overall
performance of MEC include coulombic efficiency (CE), the ratio of the electron and

current efficiency (Darus, 2011).

Hydrogen gas fuel can be produced from a variety of substrates are non-fermentable
and fermentable organics. One of the non-fermented organic substrates most widely used
in MEC is the end product of the fermentation general and dark fermentation is acetic

acid. (Jeremiasse et a., 2010) reported on several studies conducted that acetate is one
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substrate that gives the best performances to MEC with the level of hydrogen production
rate of 50 m® Ho/m? day and nearing the theoretical value of around 4 mol Hz/mol of

acetic (Call & Logan, 2008).

The most popular substrate of fermentable organics is bio-ethanol or carbohydrate
polymers such as cellulose, hemicellulose and aromatic polymers (lignin). Biomass
wastes generated from various industrial sectors of agriculture and forestry for example
stovers corn, bagasse, straw, saw mill and paper mill waste are other examples of substrate
fermentabl e organics. Because of the abundant lignocellul osic materialsfrom agricultural
and forestry residues, making raw materials from biomass has become very popular and
promising for cost-effective energy production. The main problem is the efficiency of
hydrogen production is lower than the hydrogen production from volatile fatty acids
(VFAs). This is because of lignocellulosic biomass cannot be used directly by
microorganisms in the MEC reactor, and must be first converted into monosaccharides or

other compounds that lower molecular weight (Cheng & Logan, 2007b).

The first time the introduction of MEC technology, the researchers only use smple
substrates such as acetate and glucose for yielding hydrogen gas. Then in the last few
years, the use subtract as a raw material to produce hydrogen gas has expanded in the
remaining liquid waste disposal. One of the most interesting is the hydrogen gas can be
produced from a wide variety of sewage containing organic materials such as domestic
wastewater, industrial effluent fermentation and food processing wastewater, winery
wastewater, potato processing wastewater, dairy manure wastewater, wastewaters from
molasses and others. Domestic wastewater has a dual function, as well as serves as a
substrate to produce hydrogen gas, can also function as wastewater treatment. By using

the MEC process, the value of BOD and COD can be reduced to the range of 87-100%
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and is capable of producing a maximum coulombic efficiencies up to 26% at a voltage of

0.41V and the hydrogen recovery was 42% at a voltage of 0.5V (Ditzig et a., 2007).

54 Inoculum preparation and cultivation medium

In this study, the substrate and seed sludge used were obtained from an aerobic digester
of a palm oil mill treatment plant at east oil mill. Sime Darby plantation, Carey Island,
Selangor, Maaysia. The characteristics of sludge consist of 33 g/L volatile suspended
solids (VSS), 65.1 g/L total solid (TS), pH 7.2 and 1,350 mg/L akalinity as CaCO3. To
eliminate dissolved oxygen in the substrate and seed sludge, both samples are thoroughly

cleaned using nitrogen gas and stored in the dark at 4 °C for five days.

The steps inoculum preparation and cultivation medium is asfollows: the first process
of cultivation media by using a solution of sucrose, 5 g/ I, which weighed as much as 5
grams of sucrose, then dissolved in aliter of aguades and and stored in arefrigerator. The
next step to make 1 liter of nutrient solution and then stored in dark bottles to avoid
contact with light. The composition of each liter of nutrient stock solution containing 2.0
g of NH4HCO3, 1.0 g of KH2PO4, 0:01 g of MgS0a4.7H20, 0.001 g of NaCl, 0.001 g of
NaM004.2HO, 0.001 g of CaCl2.2H20, 0.0015 g of MgSOs. 7H20, 0.00278 g of FeCl>,
which was dlightly modified from Lay (Fan et al., 2002). Take a sucrose solution of 90
ml at no.1 and input into the baker duran 100 ml, set up in five bottles, the bottle should
be tightly closed. Then take 10 ml of nutrient solution at no.2 and insert it into each
bottle. Prepare a solution of pH regulator ie NaOH 3 M and H>SO4 3 M, each of 500 ml.
Then the sample at no. 3 and no. 4 mixed and measured pH value, prepare some media at
pH 5.5 by adding a pH regulator solution that has been prepared. Note: Keep afew bottles
with the original pH value. Then take the sludge as much as 5 grams and insert it into the
media which has been set at pH 5.5. Place the inoculum no.7 into sacker with rotation at
150 rpm for 3x24 hour and test the generated hydrogen gas. The volume of biogas was
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determined using glass syringes. Finally, take 10% palm oil mill effluent (10 ml) of
inoculum volume (100 ml) and mix it into a solution no.8, then in sacker again for 24
hour and do testing hydrogen gas production. The reactors were incubated at 36 +1 °C
and mixed on an orbital shaker rotated at 150 rpm to provide better contact among

substrates, nutrients and microorganisms.

55 Start-up process value and noise filtering

Almost all industrial processes, especially in bioprocess plant, the results of the online
real data are always disrupted by noise. Basically, the noise in the MEC plant process is
known as noise input and output noise. For input noise associated with the process noise
or disturbance, while the noise at the output is associated with noise measurement. The
presence of noisein the process of making the plant becomes volatile and very dangerous
when the plant is operated. Noise that interfere MEC process can be anticipated by using
one of the robust controllers such as Neural Network Model-Based Controller. The

presence of measurement noise can degrade the performance of MEC reactor.

In this section will be described in detail related to real noise disturbance on the
measurement data. The main problem why real measurement data becomes inaccurate, it
is because the resulting noise is recorded along with real data from the MEC. Noise can
be defined as a disorder or waves that interfere with the signal from the measurement
data. Noise comes at atime of recording real data from MEC processes both in the form
of random error or gross error. With the noise in the plant this process led to real data

from MEC process becomes very difficult to interpret.

Figure 5.8 is an example of real data for closed loop online system that has been
disrupted by noise. It shows that the relationship between the hydrogen production rate,
MEC current and electrode potential. The purpose of this study is how to maintain the

level of hydrogen production rate in the reactor continuously. One way to maintain the
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level of hydrogen production rate is by controlling the amount of supply current in a

reactor.
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Figure 5.8: The MEC process and open loop online system for constant set-point
studies
To control the amount of current in areactor optimally, then the supply voltage applied
to the system must be maintained at a certain value. In Figure 5.8 shows that athough
there are some amount of voltage supplied to the reactor at a constant value that is 1.8 V,
but the movement of MEC currents and the rate of formation of hydrogen gas are varied
and tend to fluctuations. This is because both of these parameters have been affected by

the signal from the noise.

Figure 5.9 showsthat the measurement val ues of the MEC processisoperated in closed
loop online system for multiple set-point studies. The hydrogen production rate, as well
as determined by the concentration of the substrate in the reactor, also largely determined

by the supply voltage from outside. From the results of the study indicated that the effect
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of the number of supply voltages and currents are applied to the MEC reactor is very

determining the level of hydrogen production rate.

The amount of voltage supplied to the reactor MEC is varied and gradually increased
startingat 1.5V, 1.8V to 2 V. From Figure 5.9 it appears that when the voltage was raised
to 2V, the current movement in the reactor rose sharply and very fluctuation that reached
its peak value at 0.5 A. And then the movement of currents in the system continuously
varies by the amount of voltage supply to the reactor. It indicates that the effect of noise
in the system is very dominant, so this is one of the factors causing the declining
performance of MEC reactor. Because almost al parameters in the system were disrupted
by noise, the movement of currentsin thereactor isvery difficult to predict. Time-varying

median filter method is the one right solution to reduce noise in the MEC process.
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Figure 5.9: The MEC process and open loop online system for multiple set-point
studies
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In data processing, the noise in the measurement data can be eliminated or reduced by
using filtering techniques. In Figure 5.10 describes a comparison between the raw data
from the measurement results prior to filtering with the raw data after filtering. From
Figure 5.10 shows that the “Butherworth Lowpassfilter method ", ableto reduce the noise

in the measurement data with excellent performance.

Filter isaprocess of separation of the signals of certain frequenciesto be desired from
the real data and discard unneeded signals. The purpose of filtering is to produce valid
data. Thistechnique is very effective to recover the signal from the noise that interferes

with plant processes.
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R aws
Filtered Low passed
CE T S A R S— (71 SRR NN SRR
P || ||| — LT — W oabtt---f -1 HH - H-HE
: ¥
Eaof---4------- kR beemo s Z o03f
' ' ' ' =
' ' ' ' =
20 T u.zJ‘—— LR il |
10 . o R e oaf-p--f{--H-th
o " L o
a 0.2 o4 o6 0.2 1 a 400
Hommalised DFT Bins Time,min
(2) (b)

Figure5.10: (a) Fourier transform for frequency analysisand (b) Comparison for
raw and filtered signals

In this study, the filtering techniques used are “Butherworth Lowpass filter method”.
A number of real data from experimental work then analyzed and processed using
computing program MATLAB (Appendix 2). Lowpass filter is one method that has been

used effectively to reduce noise and is very well known among engineers.
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Figure 5.11 showsthe performance of MEC process after the raw datais screened from
the influence of noise. In the Figure shows that the electrode potential is supplied to the
reactor and kept at a constant value of 1.8 volts. In the figure 5.11 shows that the

correlation between the current and the hydrogen production rate in the reactor.

The bubbles of hydrogen gas produced in the reactor are strongly influenced by the
amount of current flow to the voltaic elements. The hydrogen production rate tends to
follow the trend of current flow in the reactor. As seen in Figure 5.11 that when the MEC
current rise in the value of 225 mA, the hydrogen gas production also increased to 0.2
mL/min. Conversely, when the MEC current in the reactor decreases slowly until steady

state conditions, the rate of hydrogen gas production also decreased following the trend

of the MEC current.
MEC Process Open Loop Response for On-line Model Validation
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Figure 5.12 shows the performance of MEC process after filtering data from the
influence of noise. These tests are conducted for multiple set-point studies with the
number of electrode potential supplied to the reactor is raised varied and gradual. In the
first stage electrode potential is increased from 1.5 V to 2 V, then decreased gradually
from2Vto1.8Vand 1.5V. Tota supply electrode potential into the reactor continuously

varies every 15 minutes.
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Figure 5.12: The MEC proses performance after using filtering techniques for
multiple set-point studies

In Figure 5.12, it can see that although the amount of electrode potential supplied to
the reactor is constantly changing with time, but no significant effect on the movement of
current flow and the rate of hydrogen production system. Thisis because the performance
of MEC reactor and the rate of hydrogen gas production, as well as determined by the

supply of energy from the outside but is aso determined by other factors such as the
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amount of substrate, pH and temperature in the reactor. However, various studies
literature states that the rate of hydrogen gas production in the MEC system is very

dominant influenced by the amount of electrode potential supplied to the reactor.

5.6 Model Validation for microbial electrolysiscell (MEC)

MEC mathematical model is a representation or formalization of MEC systems. With
modeling studieswill facilitate in determining the information and mechanisms of various
kinds of interaction processes. And will assist in the calculation of scale-up and also
facilitate the optimization study or control. To ensure a simulation of amodel that will be
designed to produce a precise simulation, it is necessary to verify and validate the output

of the simulation models.

Model validation is needed to test whether the model simulations obtained realy an
accurate representation of the real system or thereal plant. Plant test is needed to confirm
the validity of the model and other important things that arise from the study models. A
model is said to be valid if the comparison between the outputs of simulation with

experimental systems have no significant differences.

Figure 5.13 represents a comparison between the mathematical models and on-line
real data on the MEC Process. The purpose of validation of the model output is to see
whether the model is able to more accurately reflect or represent of the real system. The
mathematical model used here is a modified version of the Pinto model so that it can

represent the actual process conditions of areal system or on a pilot plant scale.

There are several modifications and assumptions made at the Pinto model and then
adapted to the pilot plant scale. The formation of biofilm in the reactor islimited only two
Layer. The first layer (Layer 1) is called the biofilm anodic and second layer (Layer 2)
called biofilm cathode. The microorganisms in the anode compartment is assumed to be

153



perfectly and homogeneously distributed in each layer. To approach to the real conditions
of the process, then in smulating the models, there are several on-line datais entered into
the model equations. Reactor assumed a volume of 5 liters and takes place in fed-batch
system, while the substrate concentration, pH and temperature of the reactor is controlled

and maintained at a certain value.
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Figure 5.13: Comparison response per for mance between mathematical model and
on-linereal datafor MEC proses

Figure 5.13 above shows that the model is able to represent on the real system of the
pilot plant. It can also be concluded that in general the MEC model is able to predict the
value of current and hydrogen production rate of the data signal pilot plant. So that these
models can be used in the study of optimization, control and MEC reactor design on a

larger scale.
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5.7 Piping and I nstrumentation Diagram (P&1D)

Piping and Instrumentation Diagram (P&1D) is a process flow diagram that describes
a system that can provide more information about equipment and instruments used in a
process. At MEC plant, an overview of P&ID is needed to get the right information about

the whole process and operation of the MEC system.

The P&ID for the MEC plant that includes pipelines, Instrumentation, equipment,
valves and fittings, measuring element, flow direction, controller, and the final
element.The following will explain several critical components used in the control setup
online at MEC plant. For the control system has 4 elements of the process, the measuring
element, controller, and the final element. A detailed description of the P&ID for MEC

plant can be seen in the Figure 5.14.

L Setpoint

Parallel Anode -

Wastewate

Magnetic Stirrer
Effluent tank

Figure5.14: P&1D for close-loop online control of MEC plant
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In online control setup, adigital domain has being carried out in this study. The digital

domain can be formulated as in equation below.

y(k) = y(ht) = f(x,u) (5.1)

Where y(k)the output of process (hydrogen production litre/hour), k is the time unit
that corresponding to sampling time and unit time. As refer to Figure 5.14, flow
transmitter for Hydrogen production rate has been selected as measurement element that
can produced signal from 4 to 20 mA. Voltage regulator is the final element that can be
used to regulate the voltage supply to reactor in range of O to 15 Volts. The behaviour of
the system differs significantly as the value of applied voltage is changed and given a
significant influence on hydrogen production rate.lt is demonstrated that the rate of
hydrogen production could be maximized without excessive energy consumption by
minimizing the apparent resistance of the MEC. Figure 5.15 shows signal flow diagram

feedback control system.
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Figure 5.15: Signal flow diagram for feedback control system

5.8 Pl Closed loop control for online system

The online control implementation has to done in digital domain wherein the close
loop system, computer with DAQ is used. The control strategy like neural network and
PID controller that discussed in Chapter 4 are implemented in computer platform
(MATLAB/Simulink). In order for computer to understand the signal from the plant,
DAQ hardware is needed. This hardware consists of anal ogue-input and anal ogue-output
converter. After the signal conversion, computer are able to give a command to process
reactor via voltage regulator while, it can receives how much hydrogen produces at
certain time. Figure 5.16 shows the close-loop for PI online system that being carried out

for this study.
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Figure 5.16: Pl Closed loop control for online system using multiple set-point
tracking study

Figure 5.17 shows the process and PI controller response for closed-loop control on
online system using constant set-point study. The controllers have worked well and
satisfactorily manage the process when changes in the set point value of 40 mA to 30 mA.
It also shows that the change in electrode potentia is following the change of trend in the
current MEC system, while Hx production rate continuesto rise gradually until the end of
the process. In Figure 5.17 shows the behavior of the MEC current and the hydrogen
production rate, it is a representation of Figure 5.12. From the figure, it can be seen that
the hydrogen production rate increased sharply at the beginning of the period up to 230

minutes and then continued to decrease slowly until the end of the period.

Generally, it can be concluded that the controller is able to follow the changes in the
characteristics of time even though there is a delay when the large deviations in the

process. From the figure, it shows that although the controller is still slow in responding,
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especially early in the process, but the overall controller isstill able to manage the process

despite the change of set-point value.

Pl Closed loop control for online system
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Figure5.17: PI controller for online system using constant set-point study

Figure 5.18 shows the process and PI controller response to an online system for
multiple set-point tracking. In this process set-point value varied with time starting at 40
mA, 20 mA, 25 mA, 35 mA and 20 mA, respectively. From Figure 5.18 it can be seen
that the performance of the PI controller is very good in responding to MEC process. In
the picture also shows that the value of overshoot and oscillation is greater at the
beginning of the process and then slowly decreased and reached a stable condition at the
end of the process. The hydrogen production rate in the system is increasing gradually

until it reaches the peak value of 0.17 mL / min at 200 minutes. From Figure 5.18, it can
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be concluded that although there are still fluctuations in the process, but overall the PI
controller has excellent performance and satisfying to manage the process despite at the

condition of multiple setpoint changes.

Pl Closed loop control for online system
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Figure5.18: PI controller for online system using multiple set-point tracking
study

5.9 Neural Network Inverse Controller Close-loop for online control system

In this part, the design and development of the neural network based controllers for
online control system are presented. Prior to considering an advanced control method to
the process, it isimportant to assess the controllability of the system using conventional
control methods. Therefore, before it is discussed in detail about neural network based

controller then has been discussed in advance of the performance of the Pl controller.
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The design of basic neural network controller which covers direct inverse neura
network on the online system will be studied. Inverse neural network model with feed-
forward structure is used as the controller in this case. The control method proposed

utilizesfeed forward neural networksin the direct inverse neural network control method.

NN Inverse Controller Control system
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Figure 5.19: Structure of Neural Network closed-loop block diagram for on-line
MEC control strategy

The proper control strategy is developed by using the neural network based inverse
model for set point tracking and disturbance rejection tests. The models were chosen in
an effort to identify the one that best represent the system. The development includes the
selection of input-output variable for the model, the data used for training and validation,
and neural network model formulation. The design and performance of neural network
controller for the basic schemes are discussed in this study. Figure 5.19 shows the block
diagram of the closed loop on-line control system for Neural Network Inverse Controller
strategy in MEC reactor.
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Figure 5.20 shows the open-loop test which is used asinput and output datafor training
Neural Network controller. Variable input and output data, which is used as a neural

network model and then the datais fed through a moving window approach.

Open loop test for the input and output data
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Figure 5.20: Open loop test to the input and output data set for training Neur al
Network controller

Neural network models are used as input and output data sets for training neural
network controller in on-line control system is made up of 4 inputs and one output node.
Input and output nodes consist of past and current data from the electrode potential and
current MEC. The past and current datais used as input nodes of a neural network model

of electrode potential i.e. E, x) Ea #-1) and of the MEC current i.e.
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Iv -1, (- While current data from current MEC used as an output node

iely  (k+1)-

Figure 5.21 shows the input and output data sets are used for training inverse Neural
Network. One data set of electrode potential and current MEC was obtained from open-
loop test on the on-line system. Then the data set is used to train the neural network
model.In neural network-based controller using the inverse modd refers to the inverse
form of the process as a control strategy.For the network architecture and activation
functions, the inverse model has two-layered feed-forward network with 4 input, 8 hidden

nodes and 1 output node.
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Figure 5.21: Data set of training neural network control model for online
control system
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Figure 5.22 shows that the inverse neural network training model used for neural
network-based controller on the online system. To get the best value from the inverse
neural network training, the training cycle should be repeated in order to get the value of

asmall error in the input and output of data sets.
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Figure 5.22: Training Inver se Neural Network model for online control system

From Figure 5.22, it can be seen that the artificial neural network is able to accurately
track the trend dynamics of electrode potential and MEC current in the system.From the
results of training artificial neural network can be concluded that the inverse neura
network model that has been obtained is very suitable for use in the neural network-based

controller on the online system.
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Figure 5.23 show that the performance of the neural network controller and
comparison with PID controller for online control system. Training inverse neural
network shown in Figure 5.22 with a feed-forward structure is then used as a controller.
From Figure 5.23, it can be seen that the neural network controller is able to accurately

track the trend dynamics of electrode potential and current MEC in the system.

Comparison of PID controller and Neural Network Controller for online control system
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Figure 5.23: Neural network controller for online system using multiple set-
point tracking study

Figure 5.24 shows detailed view about the performance of the neural network
controller for online system in the time period of 6200 seconds to 8000 seconds. From
the Figure 5.24, it can be seen that the performance of the neural network controller is
better at responding to the set point compared to the tuned PID process controller. The
neural network controllers have out performed and successfully regulate the M EC process
when changes in the set point value of 32 to 42 mA are introduced in the system.

The figure also highlights the comparison of the error in terms of the performance

index for the PID and neural network controllers. MSE value of the neural network
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controller is 2.63, much smaller than the M SE value of the PID controller which is 4.95.
It significantly suggested that the performance of the neural network controller is much

better than the PID controller can offer.

comparison of PID controller and Neural Network Controller for online control system
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Figure 5.24: The performance of the neural network controller for online system in
the time period 6200 seconds to 8000 seconds.

In summary, from the online performance comparison of the two tested controllers,
results showed and concluded that the neural network controller able to provide a good
control performance when responding to irregularities and were able to follow the time-
varying characteristics of the MEC process. Neural network controller has respectively
smaller overshoots, oscillations and offset compared to the tuned PID controller.
Therefore, the neural network controller is concluded to be more efficient and able to
cope with changesin the set-point, load disturbance and noise from the process with better

and more efficient.
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

6.1

WORK

Conclusions and summary of work

In this work, studies involving modeling, optimization and control of an integrated

approach to the design of the MEC reactor have been discussed in detail. An explanation

of the MEC model describing substrate consumption and biomass growth behavior as

anodophilic, hydrogenotrophic and acetoclastic microorganisms has also studied. MEC

models that have been modified from the Pinto model and then using the computer

program codes have been developed in Matlab development environment. From the

overall discussion of the thesis, the author can conclude several important conclusions as

follows;

The mathematical MEC model has been successfully used to predict the hydrogen
production by improving the internal and external parameters. For example:
substrate concentration(S); hydrogenotrophic microorganism (X},) ; anodophilic
(x,) and acetoclastic (x,;) microorganism; the electrode potentials (E, );

I\, current and the maximum growth rate (1, ).

. The optimum parameters of anodophilic microorganisms obtained at 425 mg/l,

the electrode potentia at 0.8 V, and MEC current at 0.16 A gave the maximum
hydrogen production rate of 1.17 L/day.

From the validation between MEC mathematical models and experimental work,
the value of Current MEC Model validation is obtained with fitness R2 =92.9%

and Hydrogen Model with R = 92.7%,
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iv. The hybrid neural network based model (HNN) controller provides better control
of the MEC system compared with others controller. HNN controller gives fast
settling time in the response, less overshoots, minimal offset and able to give good

performance for any variation of disturbance and noise.

6.2 Major Contribusions of thiswork

In general, the results of this work have provided some important contributions in
several aspectsrelated to the MEC process. All theimportant things that have been studied
in this thesis include modeling, optimization and on-line implementation of advanced
control strategies for biohydrogen production in MEC reactor system. Here are some of

the significant contribution that has been done in this work includes the following:

i.  Theauthor has collected all the important information from various studiesin the
literature relating to the production of biohydrogen gas, mathematical models and
control strategies of the MEC.

ii. The MEC model chosen and used in the simulation is the MEC model that has
been devel oped by Pinto. Then the model is modified in accordance with the MEC
reactor design. Modifications models include several aspects such as Fed-batch
process operations, the phase of biofilm growth, metabolic activities, and the
reactor size. The smulation model is written in a computer program code using
Matlab software. Data from the ssmulation of the dynamic process of open loop
has been collected and analyzed for purposes of control system design.

iii. Response surface methods (RSM) were used to identify the parameters that have
a significant influence on the hydrogen production rate. As for some important
parameters that are relevant then tested using statistical analysis, namely: initial
concentration of microorganisms anodophilic, electrode potentials, counter-
electromotive force and current MEC.
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iv. A pilot plant for MEC reactor together with its control loop has been designed to

implement the ssimulation work. The results of model simulations were then
validated by on-line data from the MEC experimental work.

Control strategies have been designed to regul ate the MEC process and a closed
loop system has been described in detail. As several control strategies that have
been developed include conventional PID algorithm, adaptive PID controller,
direct inverse neural network (DINN) controller, Internal Model Control (IMC)
and hybrid neura network based model (HNN) control strategies. The purpose of
the implementation of advanced controller isto control the MEC current in reactor
and keep the potential energy supply from outside the system so that the gas

biohydrogen can be produced continuousdly.

6.3 Recommendations and futur e work

Thefollowing will present anumber of new research that can be studied and analyzed

about the MEC reactor. The possibility of several important recommendations related to

the reactor design, modified model and development of control strategies. Some of the

important works in the future that can be done are proposed as follows:

To improve the performance of MEC reactor, new strategies that MxC
cogeneration unit is proposed. These strategies shall apply the concept of a
combination of MFC and MEC reactor. This strategy has many advantages,
because in addition to producing the hydrogen gas in the same time as well asto
treat wastewater. Another advantage is the current produced from MFC reactors
can be used directly as the voltage applied to the MEC reactor, so that there is not

need for any external source of energy supply.

. To improve the design of the pilot plant, a new model based Model MxC can be

developed and further improved. As for the approach to the real process it is
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necessary to modify an existing model by adding some new parameters such as
the effects of pH, and temperature konduktivity reactor. These parameters are very
important because it has a direct influence on the performance of MxC reactor
such as the mechanism of electron transfer, substrate consumption kinetics and
reactor internal resistance.

To improve further the performance of MEC reactor, it is necessary to develop
more sophisticated control strategies such as hybrid models and fuzzy logic
controller, neuro-fuzzy control strategy, sliding mode control, and genetic

algorithm control model-based controller.
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