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ABSTRACT 

During the service life of various civil, mechanical and aerospace structures, damage can 

nucleate, accumulate and propagate leading to out-of-service conditions which are 

dangerous and can sometimes collapse. Therefore, Structural Health Monitoring (SHM) 

is a crucial tool for identifying the presence and the evolution of possible damage. This 

thesis, investigates rigorously two paramount concerns of the SHM: damage detection 

and parametric system identification. 

The first proposed method is applied to detect crack damage in a structure. The location 

of the crack is identified by defining the damage index called relative wavelet packet 

entropy (RWPE). Then, the damage severities at the identified locations are assessed 

using genetic algorithm (GA), through defining a database to reveal the relationships 

between the energies obtained and damage severities. However, most of existing damage 

detection methods requires reference data which are not always available. Meanwhile, 

there has also been a pressing need for real-time monitoring to avoid sudden catastrophic 

disasters. Therefore, a new reference-free damage detection algorithm is proposed. The 

RWPE measurements of different sensor-to-sensor pairs are applied for defining the 

reference-free damage index (RDI) of each sensor location. To improve the proposed 

algorithm, GA was utilized to identify the best choice for ‘‘mother wavelet function” and 

“decomposition level” of the signals by means of the fundamental fitness function. This 

resulted in the high accuracy of the damage detection algorithm. 

The second proposed method seeks to identify damage in the structural parameters of 

linear and nonlinear systems. Initially, the connection coefficients for the scaling function 

of the proper selection of Daubechies wavelets are developed to derive the velocity and 

displacement from the measured acceleration responses. Then, the next step is to define 

the dominant components according to the relative energy distributions of wavelet packet 

transform (WPT) components of the acceleration responses, and transforming the 
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equations of motion of the system in the time-domain to a reduced representation of the 

equations of motion based on the WPT. Finally, the least square error minimization 

method is implemented across the dominant components to determine the structural 

parameters of a linear system. Moreover, wavelet multiresolution analysis is applied to 

identify the tangent stiffness matrix and the hysteresis-restoring force of nonlinear 

structural systems without prior assumptions about the nonlinear characteristics of the 

systems. 

To demonstrate the validity and accuracy of the methods, numerical and experimental 

studies are conducted on a beam element and subsequently on a three-story building 

model. Results indicate that the wavelet-based damage detection method precisely 

identified the location and severity of damages even without reference data. In addition, 

the structural parameters of a system can be accurately estimated through the proposed 

system identification methods for both cases of linear and nonlinear conditions. 

Moreover, the accuracy and reliability of the proposed methods are investigated on 

various damage scenarios with different levels of severity, and noise levels. 
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ABSTRAK 

Semasa jangka hayat sesebuah struktur awam, struktur mekanikal dan struktur angkasa, 

kerosakan boleh menyebabkan kelumpuhan pada tahap rekabentukperkhidmatan dan 

merbahaya sehingga boleh menyebabkan kepada kerosakan menyeluruh sesebuah 

struktur. Maka Pemantauan Kesihatan Struktur (SHM) adalah mekanisme yang penting 

untuk mengenalpasti sebarang perubahan dan keberangkalian kerosakan dalam sesebuah 

struktur. Dalam kajian tesis ini, tumpuan diberikan kepada dua aspek iaitu; mengenalpasti 

kerosakan dan sistem parametrik. 

Kaedah pertama dalam kajian adalah untuk mengenalpasti jenis kerosakan dalam 

struktur. Lokasi retak dapat dikenalpasti dengan indeks kerosakan yang dipanggil entropi 

paket wavelet relatif (RWPE). Kemudian tahap kerosakan yang teruk di lokasi dapat 

dinilai menggunakan kaedah algoritma genetik (GA) dengan menggunakan pengkalan 

data untuk melihat hubungkait antara tenaga dan juga tahap kerosakan. Secara amnya, 

kaedah yang sedia ada memerlukan data rujukan yang pada kebiasaannya tidak mudah 

diperolehi. Sementara itu, keperluan yang kritikal dalam pemantauan secara langsung 

adalah penting untuk mengelakkan bencana yang datang secara tiba-tiba. Maka, sebuah 

kaedah yang tidak menggunakan data rujukan diperkenalkan dalam kajian ini. Ukuran 

RWPE dalam sensor yang berlainan digunakan dalam menilai indeks kerosakan tanpa 

data rujukan (RDI) untuk setiap lokasi sensor. Untuk menaiktaraf algoritma, GA 

digunakan untuk mengenalpasti fungsi wavelet induk dan tahap penguraian isyarat yang 

terbaik menggunakan fungsi kecergasan asas. Ini menerbitkan ketepatan yang tinggi 

dalam mengenalpasti kerosakan dalam algoritma. 

Kaedah kedua yang diperkenalkan dalam kajian adalah untuk mengenalpasti kerosakan 

dalam parameter struktur sistem linear dan juga tidak linear. Pada awalnya, pemalar 

penghubung untuk fungsi skalar untuk pemilihan wavelet Daubechies dihasilkan untuk 

menilai kelajuan dan anjakan daripada tindakbalas pecutan yang direkodkan daripada 
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sensor. Langkah berikutnya adalah mengenalpasti komponen dominan berdasarkan 

penyebaran tenaga relatif daripada komponen paket transformasi wavelet (WPT) untuk 

tindakbalas pecutan dan membuat perubahan dalam persamaan pergerakan sistem dalam 

domain masa untuk mengurangkan gerakan persamaan dengan menggunakan WPT. 

Akhir sekali, kaedah ralat kurang persegi digunakan ke atas dominan komponen untuk 

mengenalpasti parameter struktur dalam sistem linear. Seterusnya, analisa wavelet 

resolusi kepelbagaian digunakan untuk mengenalpasti matrik kekukuhan tangen dan 

kuasa ulangan kembali dalam sistem tidak linear tanpa beranggapan tentang sifat tidak 

linear di dalam sistem. 

Untuk memastikan kaedah adalah jitu dan tepat, kajian simulasi dan eksperimen 

dijalankan ke atas struktur rasuk dan model bangunan tiga tingkat. Keputusan 

menunjukkan kaedah wavelet adalah amat tepat untuk mengenalpasti lokasi kerosakan 

dan tahap kerosakan tanpa menggunakan data rujukan. Tambahan lagi, parameter struktur 

sesebuah sistem dapat dianggar secara jitu dengan menggunakan kaedah yang 

diperkenalkan untuk kes keadaan linear dan juga keadaan tidak linear. Ketepatan dan 

kesesuaian kaedah yang diperkenalkan juga disiasat dengan kepelbagaian keadaan 

kerosakan dengan tahap kerosakan dan tahap bising yang pelbagai.  
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1 CHAPTER 1: INTRODUCTION 

 Background  

During the service life of various civil, mechanical and aerospace structures, damage can 

accumulate, nucleate and propagate leading to out-of-service conditions, and, sometimes, 

leading to failure. In order to raise the level of public safety and to improve the 

maintainability of new and existing structures, the knowledge of structural health 

monitoring (SHM) plays an increasingly important role and has become an efficient, 

reliable and economical method which is capable of monitoring the structural 

performance and making accurate maintenance decisions by localizing damage and 

evaluating the structural integrity and serviceability. Therefore, detection of damage and 

its location are the main tasks of SHM. Rytter (1993) distinguishes four levels of damage 

identification in the structure, as follows: 

Level 1 (Damage Detection): Determination of the presence of damage in the structure; 

Level 2 (Damage Localization): Level 1 plus determination of the damage location; 

Level 3 (Damage Quantification): Level 2 plus quantification of severity of the damage; 

Level 4 (Life Prediction): Level 3 plus prediction of the remaining service life of the 

structure. 

The four-level damage identification method provides a sequence to evaluate the 

structural damage. Since prediction in Level 4 requires knowledge of other fields such as 

structural design, fracture mechanics, materials aging studies, and damage mechanism, it 

is therefore not included in this research.  

Most non-destructive damage detection methods can be divided into two categories of 

either local or global, depending on the scale level at which they operate. Local damage 

detection methods refer to non-destructive methods, such as the ultrasonic or acoustic, 
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radiographic, eddy-current, magnetic-field, and thermal-field methods, where the 

existence and location of local damage can be detected. One of the major advantages of 

these methods is that they do not require information drawn from the intact/healthy 

structures. Nevertheless, these methods are just useful on simple and small structures. 

Some information of damage location is needed when one is evaluating complicated and 

large structures to avoid a time-consuming and expensive process. 

Global damage detection methods, such as vibration-based damage detection methods, 

have been applied to identify damage across the entire structure by using dynamic 

characteristics of the structures (e.g., mode shapes, natural frequencies and modal 

damping). The fundamental idea for global damage detection methods is that damage-

causes change in some structural parameters (e.g., mass, damping and stiffness), and that 

change will accordingly alters structural dynamic properties. Therefore, structural state 

can be evaluated globally, by examining the changes in dynamic properties of a structure. 

Hence, these methods are known as optimal methods. In the past few decades, these 

vibration-based damage detection methods have attracted considerable attention from 

members of the civil, aerospace, and mechanical engineering communities and that 

interest in turn has prompted the extensive research carried out by Carden and Fanning 

(2004), Sohn et al. (2004), Yan et al. (2007) and Fan and Qiao (2011). Although vibration-

based damage detection methods have demonstrated various degree of success, 

nevertheless, detection of damage in large-scale civil infrastructures is still a challenging 

task. 

Toward successful damage detection, system identification is a profound stage. System 

identification deals with the problem of developing or improving mathematical models 

of dynamic systems based on input-output measurements. System identification methods 

can be applied to: (i) determination of structural system's properties such as damping 

ratios, stiffness, natural frequencies and so on; (ii) nondestructive damage evaluations, 
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where input-output measurements are applied to nondestructively assess the damage 

location and severity in an existing structure; (iii) health monitoring of the global or local 

conditions of structures; and (iv) vibrational control for minimizing the risk of structural 

failure and improving the integral performance of structural systems. In the last few 

decades, the interest in the general topics of system identification has increased greatly 

(Loh et al., 2000; Hung et al., 2003; Kijewski & Kareem, 2003; Farrar & Worden, 2007; 

Wang et al., 2013).  

Generally, system identification methods can be classified into either parametric or 

nonparametric, depending on the basis of their search space. Parametric methods seek to 

determine the value of the structural parameters (such as mass, damping, and stiffness) 

for an assumed model of the system to be identified. In other words, they search the 

suitable value in a more or less structural parameter space, while nonparametric methods 

produce the best functional representation for structural elements of the system without 

making any former assumptions about the system model. In short, they search the 

functional space; e.g., the Chebyshev polynomial series, Volterra series, and so on. 

Widely utilized system identification methods for linear structural systems are built on 

the platform of parametric methods (Lingener & Doege, 1988; Agbabian et al., 1991). 

The mathematical model for linear structural systems is usually represented by the 

second-order differential equations using mass, stiffness, and damping matrices. The 

identification problem aims at determining these matrices by utilizing system responses, 

natural frequencies and corresponding mode shapes measured from experiments.  An 

optimization approach targets the problem associated with the identification method to 

minimize the errors between the simulated (estimated) values and the measured values of 

system responses obtained from the tests. Another way to formulate the problem is to 

minimize the error in the estimated and known eigenvalues and/or eigenvectors.  
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The nonparametric methods present the best functional representations for the unknown 

properties of structural elements of the system without a priori assumptions about the 

system model. In contrast to the parametric methods, the equation of motion for a 

structural system is defined by a function which contains the displacement and velocity 

dependent restoring forces implicitly. This function can be expressed by several types of 

polynomials such as the power series (Yang & Ibrahim, 1985), the Volterra series 

(Distéfano & Todeschini, 1973), and the Chebyshev polynomials (Masri & Caughey, 

1979). 

In addition, one significant subject facing the SHM field is that damage in the structure 

is usually a time-varying behavior and the structure will normally respond into nonlinear 

behavior when subjected to large excitations. To understand the system during its lifetime 

in more detail, nonlinear identification is required for early detection, localization and 

assessment of possible damages. After a proper characterization of nonlinear 

phenomenon, some properties of these systems can be taken for a better system design, 

better control performance, and other useful applications which linear systems cannot 

provide. However, such identification of nonlinear behavior is a very challenging task. 

The main purpose of this research is to develop a hybrid damage detection and system 

identification method as an effective SHM tool which can provide precise and reliable 

vibration-based SHM technique. 

 Motivation of research 

Recently, SHM-related technologies for civil infrastructure have increasingly developed 

by applications of model updating technologies, advanced system identification, signal 

processing algorithms for diagnosis and hardware for high speed data processing. 

However, there are still challenges to overcome until state-of-the-art vibration-based 

SHM technologies can be applied to actual large-scale civil infrastructure. 
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Complexity of large-scale civil infrastructures including buildings, dams, power plants 

and bridges involves structural configuration, details and materials. In detail, these 

complexities encompass issues such as different types of connection like welding, 

anchoring, bolts, rivets or different types of members including beams, links, struts, slabs, 

bearings and anchored foundation or different structural materials like steel, prestressed 

concrete, reinforced concrete, structural plastics, FRP composites, wood and glasses. Due 

to the fact that modal properties could be insensitive to early damage in local regions, to 

resolve the complexity of civil structures, more information of structural response beyond 

modal properties is required.   

Uncertainty of monitoring in-situ structures leads to false alarm in SHM system. Ambient 

environment such as traffic loading, changes of temperature and humidity, and 

measurement noise and errors are sources of uncertainties that negatively affects 

reliability of the vibration-based damage detection. Hence, in order to keep track of life-

time structural conditions and successful statistical analysis of monitored data, there is an 

urgent need for long-term monitoring. 

Early damage detection in civil infrastructure has been considered critical for preventing 

catastrophic major disasters. Notably, most of large-scale civil infrastructure consists of 

a number of structural members and joints with different materials.  In the past several 

decades numerous modal-based damage detection methods have presented promising 

results, however, early development of damage only based on structural dynamic modal 

properties is still a challenge. In order to tackle this difficulty, local diagnosis methods 

have been applied to compensate limitations of vibration-based damage detection 

methods. This solution suffered a problem which was expensive costs of dense array of 

sensors for local diagnosis of ordinary structures with less importance. Nevertheless, 

developing damage signatures with high sensitivity for early damage detection in large-

scale structures will be a strategic approach for future SHM systems. 
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Moreover, one of the main challenges of current damage detection applications has 

always been availability of reference data taken from pristine undamaged states of 

structure. Absence of such data for most of infield structures has given rise to 

development and applications of reference-free damage detection approaches.  

More challenges go to the realization of real-time SHM system. This is because of 

computational burdens associated with current damage detection logics and algorithms. 

Higher possibility of detecting damage at early stages, while operations are going on, has 

caused the real-time SHM system to gain more attention, since more time is provided for 

evacuation of users and for timely maintenance. Such apparent advantages of real-time 

SHM of structures ensure both serviceability and safety before any catastrophic disaster 

takes place. 

In the realm of SHM research and practices, fast or real-time monitoring have always 

gained attention, thanks to advances in information technology for overcoming the 

disadvantage of updating-based SHM system and for rendering the real-time SHM. This 

system would overload due to intensive computations associated with large number of 

model parameters and theoretical rationales employed. In most damage detection 

techniques and vibration based SHM, changes in model properties and structural stiffness 

and damping are directly related and this yields tremendous computational time for such 

model-based diagnosis methods. Hence, model-based diagnosis methods are not 

applicable to real-time monitoring of large-scale structures. Taking into account all of the 

aforementioned aspects, the current dissertation is designated and carried out to address 

and overcome the common challenges in SHM practices. 

 Objectives of research 

In order to improve present SHM technologies and practices, current research aims to 

develop a damage detection method along with a system identification, based on the 
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wavelet theory. With these developed methods, it is possible to investigate the occurrence, 

location, and severity of damage. Thus the main objectives of this study are outlined 

below: 

i) To propose an advanced hybrid wavelet-based damage detection algorithm for 

localization and severity evaluation of damage. 

ii) To propose and improve the robust and viable wavelet-based real-time 

reference-free damage detection algorithm.  

iii) To develop the wavelet-based system identification algorithm for identifying 

the structural parameters of beam structure and three-story building model in 

linear and nonlinear conditions.  

 Scope of research 

Scope of this thesis is devoted to the development of a deterministic damage detection 

and a system identification algorithm in beam structures and a three-story building model. 

To accomplish such developments, the following activities are planed:  

Proposing of a hybrid approach will be accomplished using the wavelet multiresolution 

analysis and GA to determine the location and severity of damage. This approach contains 

two parts; first part combines the WPT with entropy analysis to determine an effective 

damage index, RWPE, for investigating the location of damage. Then, damage severities 

at the identified locations will be assessed in the second step using GA. The WPT 

component energies for each damage depth used in the first step and the severity 

evaluation database required for the second step will reveal the relationships between the 

energies and damage severities. 

To make real-time monitoring possible in SHM systems, a reference-free damage 

detection algorithm will be developed by applying an effective damage index and GA. 

The RWPE measurements of different sensor-to-sensor pair are utilized for defining 
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reference-free damage index, 𝑅𝐷𝐼, for each sensor location. To ameliorate the algorithm, 

GA will be applied to optimize the algorithm so as to determine the best values for mother 

wavelet function and decomposition level of the signals by means of the fundamental 

fitness function. This will result in high accuracy of the damage identification algorithm.  

The proposed wavelet-based system identification algorithm will be developed for 

identification of structural parameters of linear and nonlinear systems. Initially, the 

velocity and displacement will be derived from measured acceleration responses, since 

response signals from a structure are measured in the form of accelerations. This 

procedure will be performed by connection coefficients for the scaling function of the 

proper selection of Daubechies wavelet function. In the next step, the dominant 

components will be defined based on the distribution of relative energies of the WPT 

components of the acceleration responses to make the data size smaller along with saving 

important features of the system. This will be carried out by extracting discriminatory 

features of the signal and eliminating redundancy in the signal to enhance length-

reduction of the data. Finally, the structural parameters can be identified by implementing 

the least square error minimization method over the dominant components. Moreover, 

wavelet multiresolution analysis will be utilized for identification of both the tangent 

stiffness matrix and the hysteresis-restoring force of nonlinear structural systems. Such 

process will be independent of any prior assumptions regarding the nonlinear 

characteristics of the systems.  
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2 CHAPTER 2: LITERATURE REVIEW 

 Introduction 

This chapter presents a review of the literature on damage assessment and system 

identification. Section 2.2, presents the comprehensive review on vibration-based damage 

detection methods by the classification using the features extracted for damage detection. 

Section 2.3 studies advanced damage detection methods on the basis of the wavelet theory 

only and on combinations of that theory with other methodologies (e.g., Hilbert-Hang 

transform and neural networks). Section 2.4, reviews different types of wavelet 

transforms, e.g., continuous wavelet transform and discrete wavelet transform and the 

way they have been utilized in the identification of linear time-invariant, time-varying 

systems and nonlinear systems. 

 Vibration-based damage detection techniques 

2.2.1 Frequency change 

Reliability of structural damage detection has been attributed only to alteration of 

structure frequency due to immature mode identification techniques. Those researches 

addressing frequency-change based damage detections are so many (Salawu, 1997). In 

general, there are two types of methods. In the first type of methods, the damage detection 

problem is treated as forward problem, where the patterns of the measured frequency 

changes for all possible damage cases and then the damage case which produces the best 

match to the measured frequency changes is regarded as the suspected one. The advantage 

of this type is that some patterns of measured frequency alteration are directly related to 

the damage location only. Liang et al. (1992) studied the frequency sensitivity for simply 

supported and cantilevered beam. The considered damage scenario included one crack. 

An analytical relationship was developed between the severity and location of the damage 
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and the first order change in the eigenfrequencies. The frequency sensitivity of a cracked 

beam was then evaluated by Morassi (1993) explicitly through a general perturbation 

approach. Ling’s and Morrassi’s approaches were developed according to Bernoulli beam 

theory and both modeled crack as a massless, infinitesimal rotational spring. All of the 

earlier mentioned explicit expressions are applicable only to small defects. A cracked 

symmetric uniform beam case was studied by Kasper et al. (2008) who derived the 

explicit expressions of wavenumber and frequency shift. Those expressions could only 

apply to beams with both shallow and deeper cracks, but not for the fundamental beam 

mode and for a crack spotted in a boundary near field due to dependency of expressions 

on high frequency approximation. 

The second type of methods is the model updating methods, deal with damage detection 

as an inverse problem and is capable to identify damage magnitude and location. Study 

on this type dates back to 1978 and started by Adams et al. (1978) who utilized natural 

frequencies of longitudinal vibrations for damage detection of a one-dimensional 

component case.  

A correlation coefficient namely the multiple damage location assurance criterion 

(MDLAC) was proposed by Messina et al. (1998). Two methods for estimation of the 

size of defects in a structure were introduced. This method is function of the sensitivity 

of the frequency associated with each mode measured from damage in each location. A 

single damage indicator (SDI) was proposed by Kim and Stubbs (2003) to locate and 

quantity of a crack in beam type structures with the aid of variation in a few natural 

frequencies. Two models for a crack location and a crack size were formulated through 

relating fractional changes in modal energy to changes in natural frequencies due to 

damage. Zhong et al. (2008) introduced an approach capable of detecting damage by 

using the output-only time history of beam-like structures. This approach was based on 

the auxiliary mass spatial probing. 
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Also, due to the facts that firstly modal frequency is a global property of a structure and 

secondly frequencies generally cannot provide spatial information about structural 

changes, there is no assurance that variation of this parameter is a true factor to identify 

more than the mere existence of damage. In case of a symmetrical structure, natural 

frequencies alterations caused by damages at two symmetric locations are exactly the 

same. Therefore, the frequency-based method fails to correctly identify the location of 

damage. At higher modal frequencies, local modes which are created in part by high 

modal density are associated and difficult to identify due to insufficient number of 

frequencies with considerable changes to uniquely determine the damage location 

because of the practical limitations.  

Frequency-based methods have several advantages listed in the following: 

i) independency of frequency information from sensor position, 

ii) not many measuring points are needed, 

iii) lesser contamination of natural frequency due to measurement noise compared to 

other modal parameters such as low-level energy input originated by normal traffic which 

causes ambient variation, while continuous structural health monitoring and extraction of 

the resonant frequencies are still viable through this approach.  

2.2.2 Mode shape change 

Mode shapes fundamentally encompass the special information associated with structural 

changes. When it comes to the case of damage identification which is a local change of 

structure condition, mode shape is a potential factor. With the development of modal 

testing techniques especially in sensor technology and computing speed, many researches 

devoted their efforts in detecting damage by applying measured mode shape information. 

West (1984) first introduced modal assurance criteria (MAC) to identify the level of 

correlation between the modes obtained from damaged and undamaged structure. Fox 

(1992) experimentally found that variation measurement associated with single vibration 
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mode, like MAC, was somehow insensitive to damage in a beam structure caused by saw 

cut. Therefore he extended MAC and found that a node-line MAC which was based on 

measurement point close to a node point for a particular mode can be a more sensitive 

indicator of mode shape variation induced by damage. Mayes (1992) developed a method 

based on the ratios of relative modal displacement, i.e. rotational and translational error 

checking, through which structural stiffness difference between two different sets of 

degrees of freedom could be assessed according to changes in the mode shapes. 

The concept of MAC was further extended by Lieven and Ewins (1988) and a coordinate 

modal assurance criterion (COMAC) was proposed for localizing damage. Later on a 

method was by Ko et al. (1994) employing MAC, COMAC and sensitivity analysis 

combined together to detect damage in steel framed structure. By this method, the most 

relevant DOFs were determined by computing the sensitivities of the analytically derived 

mode shapes corresponding to particular damage locations. Although results revealed the 

possibility of damage indication by particular mode pairs, however, in case all mode pairs 

were used, those were not sensitive to the damage could prevent the damage 

identification. 

The damage localization method was extended by Shi et al. (2000a) based on a multiple 

damage location assurance criterion; (MDLAC) proposed by Messina et al. (1998), which 

employed incomplete mode shape instead of modal frequency. Preliminary the damage 

could be localized by utilizing incomplete measured mode shapes and in the second step 

the damage site was detected along with its extent by employing measured natural 

frequencies. Pascual et al. (2005) proposed a general procedure based on an optimized 

choice which led to satisfactory results. 

2.2.3 Mode shape curvature/strain mode shape 

As an alternative to mode shapes, mode shape derivatives such as curvatures can be used 

to detect damage. This is because changes in mode shapes are so small and therefore 
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difficult to detect. However, the mode shape curvature of a structure can be obtained from 

the modal displacement or acceleration. For structures such as shells, beams and plates, 

the relationship between bending strain and curvature is direct, so the practical possibility 

for calculating the curvature directly from measuring strain has been examined by 

researches. 

Pandey et al. (1991) considered an analytical cantilever and a simply supported beam 

model and discussed that the absolute changes in the curvature mode shapes are localized 

in the region of damage and hence can be used to detect damage in a structure. 

Performance of both curvature and displacement mode shape was studied by Salawu and 

Williams (1994) and effectiveness of the approach as well as its sensitivity as a damage 

indicator was confirmed. 

On the other hand, the drawbacks of mode shape curvature have been discussed since its 

sensitivity has been questioned by several researchers. Ratcliffe (2000) experimentally 

showed that the modal curvature is not sensitive enough by itself to locate small damages. 

Chance et al. (1994) improved the mode shape curvature result by applying measured 

strains instead of direct measurement of curvature. Nwosu et al. (1995) measured the 

variation of strain associated with a crack in a tabular T-joint. Changes were found greater 

than any frequency shift and measurable at a large distance to the crack. Abdo and Hori 

(2002) used measurement of mode shapes through a finite element analysis to localize 

damage in a cantilevered and a simply-supported plate. They concluded that rotation of 

mode shape had better performance in multiple damage case than displacement mode 

shape itself. 

2.2.4 Modal flexibility change 

Another class of damage detection methods uses the dynamically measured flexibility 

matrix to estimate changes in the static performance of the structure. Typically damage 

is detected by comparing the synthesized flexibility matrices associated with the modes 
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of damaged and undamaged structure. It has to be mentioned that in the lower-frequency 

modes of the structure, flexibility matrix is sensitive to changes because of the inverse 

relationship to the square of the modal frequencies. 

Flexibility matrix technique was applied by Pandey and Biswas (1994) to detect the 

damage in several numerical examples and to an actual spliced beam. It was shown that 

estimation of damage location and condition could be achieved by the first two modes of 

the structure. Zhang and Aktan (1998) used weighted average of mode shapes which is 

an extension to the modal flexibility and its derivatives namely uniform load surface 

(ULS). ULS was found less sensitive to noise in compared to mode shapes. Later on ULS 

was employed by Wu and Law (2004) to localize the damage in plate structure and 

sensitivity of ULS curvature to local damages even with presence of noisy measurements 

was reported to be acceptable.   

Those damage detection methods which are associated with modal flexibility have the 

advantage of approximately synthesized matrix from few lower natural frequencies and 

mode shapes. On the other hand, compared to the stiffness matrix, flexibility matrix is 

insensitive to mass alteration, (Berman & Flannelly, 1971). The disadvantage however is 

the need for modal mass or mass normalized mode shapes for estimation of modal 

flexibility. Therefore, in case of ambient variation tests out of which the mass-normalized 

mode shapes cannot be exploited, it is not possible to estimate the modal flexibility 

through the output-only measurements unless certain assumptions or approximations are 

considered.  

2.2.5 Modal strain energy change 

Damage detection method based on the modal strain energy change is one of commonly 

used methods in the discipline. Some studies revealed that the modal strain energy is the 

very efficient indicator in structural damage localization. When a particular vibration 

mode stores a great amount of strain energy in a particular structural load path, the shape 
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and frequency of that mode are highly sensitive to variations in that load path. This 

method was developed by Stubbs et al. (1992) for beam type structures and is based on 

evaluating the reduction in modal strain energy between two structural DOFs. Later, 

Stubbs and Kim (1996) used this approach to introduce a damage index based on 

alteration in energy of modal strain to identify the damage location and its size with no 

baseline modal properties. Shi et al. (1998) introduced the concept of elemental modal 

strain energy (EMSE) along with the modal strain energy change ratio (MSECR) as a 

suitable damage indicator. Shi et al. (2000b) and Shi et al. (2002) proposed two damage 

quantification algorithms on the basis of sensitivity analysis of modal strain energy. 

Application of both flexibility method and strain energy method for damage detection in 

a simply supported beam was discussed by Alvandi and Cremona (2006). Random force 

excitations were utilized to measure modal parameters and discussion concluded that both 

methods are capable of damage detection. Nevertheless, in case of simultaneous and 

complex damages, the flexibility method was reported to be less efficient and strain 

energy method was demonstrated to be stable in the presence of noisy signals. 

Despite the fact that damage identification methods on the basis of mode shape changes 

and their derivatives provide spatial information about location of damage in structure, in 

practical applications they suffer from some disadvantages listed in the following: 

i)  For a complex structure, the required array of measuring points has to be dense. 

ii) Random errors cause more statistical variation compared to resonant frequencies due 

to sensitivity of mode shape measurements. 

iii) Mode-shape approaches, especially the curvature techniques are not fully applicable 

for structures with complexity in their configuration. 

iv) Although rotational mode shapes have higher sensitivity to structural changes 

compared with translational mode shapes, they are still difficult to be measured by current 

modal test techniques. 
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2.2.6 Model Updating Methods 

Modal updating methods are another class of damage identification approaches and their 

basic idea is the modification of a structural model in order to reproduce the measured 

static or dynamic responses obtained from the damaged structure as closely as possible. 

Modal updating algorithms deal with obtaining the updated matrices on the basis of the 

original model, the governing equations of structural motion and the measured data. The 

model is built up on the stiffness, mass and/or damping matrices obtained from finite 

element theory. Indication of the location and extent of damage is provided through the 

comparison between updated matrices to the original model correlated to the intact 

structure. 

The aim of model improvement is to seek an accurate model correlated to the actual 

structure for estimating the response of the structure to disturbances and suggesting the 

modifications in the structural configuration for performance improvements. In the 

construction of the original finite element model it is usual to make some simplifying 

assumptions. Often there are detailed features in the geometric representation of the 

structure that cannot be modeled by a computationally economical finite element mesh, 

or the boundary conditions and joints between components are seldom fully understood. 

In such cases the analyst may, according to experienced engineering judgments, manage 

to find a compromise with acceptable results. 

The damage detection applications aim to recognize variations in mass, damping and 

stiffness matrices originated by damage. The modal updating methods utilize common 

basic set of equation, while differences in various damage detections can be classified as 

follows: i) objective function to be minimized; ii) constraints placed on the problem; iii) 

numerical scheme applied to perform the optimization. They, either for damage detection 

application or model improvement, can be categorized into three groups: i) Optimal 
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matrix updating method; ii) Sensitivity-based updating method; iii) Eigenstructure 

assignment method. 

Optimal matrix update methods utilize a closed-form direct solution to estimate the 

structural parameter matrices of the damaged structure or the matrix perturbations caused 

by the damage. Basically, the optimal matrix update problem, as it has been formulated 

by such researchers as  Kabe (1985) and Berman and Nagy (1983), is to minimize the 

Frobenius norm, a common cost function, of the global parameter matrix perturbations 

under the constraints of zero modal force error and preservation of the matrix symmetry. 

Smith (1992) presented an iterative technique to the optimal update problem that enforces 

the sparsity of the matrix at each iteration step. The sparsity is enforced by multiplying 

each entry in the stiffness update by either one or zero, depending on the correct sparsity 

pattern. The minimum rank perturbation theory is also proposed to apply in the matrix 

updating methods. Doebling (1996) presented a method to compute a minimum-rank 

update for the elemental parameter vector, rather than for global or elemental stiffness 

matrices.  

Although the optimal matrix update method, with constraints based on structural vibration 

mechanics and physical connectivity, may be useful in an engineering sense for the model 

refinement problem, its applicability for damage detection is doubtful. It is because the 

damage typically causes local changes in the stiffness matrix only at some locations, 

whereas the optimal matrix update would tend to have the changes throughout the entire 

stiffness matrix and it could not identify the damage location. 

Sensitivity based model update method is based on the solution of first-order Taylor series 

that minimizes a function of residual errors caused by structural parameter matrices 

perturbation. In general, the sensitivity matrix is obtained utilizing an analytic model by 

finding derivatives of the natural frequencies with respect to stiffness perturbations at 

each potential location of damage. The updating process typically iterates the solution 
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until the damage variables have satisfactorily converged to the true system perturbations. 

However, this formulation only works if the structural modification (that is, the amount 

of damage) is small. Ricles and Kosmatka (1992) utilized a sensitivity-based matrix 

approach to locate potential damaged regions and evaluate the damage estimation based 

on the first-order Taylor series. Hemez and Farhat (1995) utilized a sensitivity-based 

matrix method that formulates the sensitivities at the element level, with the advantage of 

being calculated more efficiently than the sensitivities at the global matrix level. Lu and 

Law (2007) proposed a method directly using sensitivity of acceleration response with 

respect to structural parameters for damage detection. The merits of the method lie in the 

use of a few sensors in the measurement. 

Eigenstructure assignment method is another type of matrix update method which is 

based on the design of a fictitious controller that minimizes the modal force error. The 

controller gains are then interpreted as parameter matrix perturbations to the undamaged 

structural model. Therefore, by inspecting the changes in the matrices of the model, the 

extent of damage can be estimated. Notable among the researchers who have formulated 

such procedures based on the eigenstructure assignment theory are Zimmerman and 

Widengren (1990),  Zimmerman and Kaouk (1992), Lim and Kashangaki (1994), and 

Cobb and Liebst (1997). 

2.2.7 Neural network and genetic algorithm  

Computational intelligence techniques, such as the neural networks and genetic 

algorithm, also have been used to deal with the difficulty of damage assessment, because 

of their excellent capability in pattern recognition. In recent years, many authors have 

comprehensively explored the optimization problem using neural networks (Tsou & 

Shen, 1994) and genetic algorithms (Mares & Surace, 1996; Hao & Xia, 2002), by 

examining the variation of localized damage as a function of modal data. In contrast to 

the traditional mathematical methods, one of the significant characteristics of 
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computational intelligence techniques is their robustness and efficiency when it comes to 

coping with noise, insufficient information, and uncertainty. 

Neural networks (NNs) can be used to the damage assessment of structures due to the 

versatility in dealing with various types of input and output and quick computational 

capability. Wu et al. (1992) applied the back propagation NNs technique to recognize the 

locations and the extent of individual member damage of a simple three-story frame. Yun 

and Bahng (2000) proposed a sub-structural identification method for complex structures 

using multilayer perceptron. Lee et al. (2002) applied the NN technique utilizing the 

modal data to health monitoring of bridges. Hadzima-Nyarko et al. (2011) implemented 

a multilayer perception (MLP) neural network to model the relationship between the 

structure parameters and the damage ratio coefficient, for examining the damage level of 

a bridge.  

Genetic algorithms (GAs) have been recognized as promising intelligent search 

techniques for difficult optimization problems. That is why special attention has been 

given to the design of an effective damage detection procedure. Friswell et al. (1998) 

applied the GA and eigensensitvity algorithms to identify the location and extent of 

damage in a structure by optimizing a discrete weighted objective function based on the 

error between identified and analytical frequencies and mode shapes with a penalty term. 

Hao and Xia (2002) applied a genetic algorithm with real number encoding to identify 

the structural damage by minimizing the objective function, which directly compares the 

changes in the measurements before and after damage. Three different criteria were 

considered, namely, the frequency changes, the mode shape changes, and a combination 

of the two. The algorithm did not require an accurate analytical model and provided better 

damage detection results for the beam than the conventional optimization techniques. 

Vakil-Baghmisheh et al. (2008) successfully applied the genetic algorithm to predict the 
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size and location of a crack in a cantilever beam by minimizing the cost function, which 

was based on the difference of measured and calculated natural frequencies. 

 Advanced damage detection methods based on wavelet transform 

Although for the majority of damage detection algorithms (Doebling et al., 1998; Ren & 

De Roeck, 2002; Pothisiri & Hjelmstad, 2003; Fan & Qiao, 2011), the focus has been on 

modal analysis of response signals in the time domain by extracting frequency and mode 

shape information, in recent years, a rapid growth in the application of algorithms based 

on the wavelet theory to damage assessment has been observed.   

The wavelet transform (WT) has emerged as a promising tool for structural health 

monitoring and damage detection due to its potential characteristics such as singularity 

detection, good handling of noisy data and being very informative about damage 

location/time. In particular, wavelets have advantages when structural dynamic responses 

are complex and non-stationary. It was Newland (Newland, 1993; Newland, 1994)  who 

first observed such potential of the wavelet transform and hence, introduced wavelet 

functions to vibration analysis. Zeldin and Spanos (1996), then applied the wavelet theory 

to random field synthesis. Basu and Gupta analyzed the non-stationary seismic responses 

of dynamical linear (Basu & Gupta, 1997, 1998) and non-linear systems (Basu & Gupta, 

1999a; Basu & Gupta, 1999b) by using wavelet functions.  

Wavelet functions are included in the family of basis functions that are capable of 

depicting a signal in a localized frequency (or scale) and time (or space) domain. The 

main advantage obtained by using wavelets was the capability to execute local analysis 

of a signal, i.e. zooming in on any interval of space or time. Wavelet analysis is capable 

of demonstrating some hidden features of the data that conventional Fourier analysis fails 

to detect.  The WT analysis has been widely used in many engineering fields (Taha et al., 

2006b; Jiang & Adeli, 2007; Jiang & Mahadevan, 2011).  
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WT is categorized into continuous wavelet transform (CWT), discrete wavelet transform 

(DWT) and wavelet packet transform (WPT). Numerous studies have used different types 

of the wavelet transform for detecting structural damage. 

2.3.1 Continuous wavelet transform 

A CWT has been employed to divide a continuous-time function into wavelets. A CWT 

provides a redundant; with more detailed description of a signal. Application of the CWT 

extends to machinery diagnostics and condition monitoring which considered by many 

researchers (Staszewski & Tomlinson, 1994; Wang & McFadden, 1995; Staszewski et 

al., 1999; Peng & Chu, 2004). Staszewski and Tomlinson (1994) presented an application 

of the WT in detection of a damaged tooth in a spur gear based on a similarity analysis of 

patterns obtained from the modulus and phase of the wavelet transform. Wang and 

McFadden (1995) used the WT to analyze actual gearbox vibration signals in the time 

domain and found their local features. It was shown that the gear damage could be 

correlated to features in the wavelet domain. Staszewski et al. (1999) used a cross-wavelet 

analysis to improve the interpretation of Lamb wave data related to defects in a carbon 

fiber composite plate. Also, Peng and Chu (2004) conducted a systematic survey on 

wavelet analysis and its applications in mechanical vibration signal analysis, including 

the topics such as time–frequency analysis via wavelet scalogram, singularity detection 

and denoising based on wavelet transform. 

A relatively recent area of research in structural damage detection and localization is 

based on the wavelet transform and its application into mode shapes. The wavelet 

transform acts as a differential operator and can be applied effectively even for noisy 

signals. Substantial vibrations of wavelet coefficients originated by local abnormalities in 

a signal obtained from the neighborhood of damage, pave the way for observing the 

damage which cannot be identified directly from mode shapes. Gentile and Messina 

(2003) explained the potential of the WT for detecting damage in structures in a more 
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rational manner. They highlighted the ability of the CWT to identify damage by means 

of performing an equivalent derivative of the signal. Damage identification was 

performed by applying the CWT to the mode shapes at certain scales. The Haar and 

Gaussian mother wavelet were used during the wavelet analysis. Damage detection result 

was clearly better for mother wavelet with large vanishing moments. Chang and Chen 

(2005) detected the locations and sizes of multi-cracks in a beam by wavelet analysis. 

The crack type was open crack and was represented as a rotational spring. The mode 

shapes of the multi-cracked beam under free vibration were analyzed by WT. The 

positions of the cracks were observed as a sudden change in the plot of wavelet 

coefficients. The natural frequencies of the beam were used to predict the depth of the 

cracks through the characteristic equation. The limitation of this method was that there 

were two peaks near the boundaries in the wavelet plot and the crack could not be detected 

when the crack was near the boundaries. Zhong and Oyadiji (2011) proposed a technique 

for damage detection in beam-like structures with small cracks without baseline modal 

parameters. The technique was based on the difference of the CWTs of two sets of mode 

shape data which corresponded to the left half and the right half of the modal data of a 

cracked simply-supported beam. They analyzed the effect of the sampling distance, and 

they introduced a spline interpolation to increase the number of input points for the WT. 

They also proposed a damage parameter based on the addition of the results for all the 

mode shapes. Jiang et al. (2012) proposed a method for crack detection in beams by using 

slope of the mode shape to detect cracks. They introduced the angle coefficients of 

complex CWT. This method detected the exact locations of singularities in an easier way 

compared with the CWT of the mode shape. 

Previous numerical studies have shown high level of accuracy and very good efficiency 

of the wavelet transform with no consideration of experimental verification while for 

practical applications of the wavelet damage detection techniques, experimental data is a 
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necessity. Measurement precision and sampling distance are two vital factors that 

contribute in applicability of the wavelet detection techniques. Douka et al. (2003) found 

fundamental vibration modes of a cracked cantilever beam using CWT to estimate the 

location and size of the crack. Rucka and Wilde (2006) applied CWT to the fundamental 

mode shape of beam and plate structures by using the reverse biorthogonal wavelet to 

identify the damage location. The main disadvantage of this method was the need of 

numerous sensors, which were mounted on the surfaces of the specimens, to obtain the 

mode shapes of the damaged structures. Location of damage was indicated by a peak in 

the spatial variation of the transformed response. Gökdağ and Kopmaz (2009) conducted 

the WT on the experimental mode shapes of a damaged beam to prove the feasibility of 

their numerical simulation. The undamaged mode shape as an approximation function 

was extracted from the damaged mode shape by DWT. A damage index was then obtained 

by calculating the difference between the CWT coefficients of the damaged mode shape 

and the approximation function. Generally, acquiring modal shapes in practice, involves 

installing a large number of sensors which is not always straight forward or practical. This 

not only makes the installation process labour intensive, but can also influence 

structural/vibrational properties. Such approaches have two common drawbacks: (i) 

adding sensors can add undesirable damping effects on the structure; altering its modal 

properties (Quek et al., 2001b); (ii) the total number of sensors deployable are largely 

limited by the physical form of the accelerometers, this places a bottleneck on the spatial 

resolution of the acquired modal shapes, which makes damage localization less accurate 

(Radzieński & Krawczuk, 2009). In addition, if accelerometers are not wireless, a 

significant amount of cabling must also be laid throughout the structure. 

To reduce the quantity of the sensors used for the experiment and to facilitate the 

operation, another spatial data was used for damage detection based on the dynamic 

response of structure. Quek et al. (2001a) employed Haar wavelet and Gabor wavelet 
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functions on static deflection profiles of simply-supported and fixed end beams to 

examine the sensitivity of the wavelet technique in detection of cracks. Other parameters 

including crack characteristics as length, orientation, width of slit, and boundary 

conditions were also investigated. Zhu and Law (2006) proposed a method for damage 

identification of bridge structures based on CWT. For that purpose, they developed a 

model for calculating dynamic deflections of a cracked simply supported bridge subjected 

to a moving load. Damage was detected by applying the CWT to dynamic displacement 

influence lines calculated at one selected point in the bridge beam. The detection was 

done using the Gauss 2 mother wavelet from scales one to 512 with unit increments. The 

larger scales contained the information necessary to perform the damage location 

identification. Spanos et al. (2006) also applied CWT to damage detection problems in 

which the difference between the displacement response of the damaged and the 

undamaged beams under various loading conditions was used. Umesha et al. (2009) 

applied the CWT and Symlet wavelet to detect the location and also to quantify the 

damages in model beams by using the deflection response as an input signal. This method 

emphasized on measuring the deflection at a particular point for various locations since 

in real application it is often difficult to measure deflection at several points due to a large 

amount of instrumentation. They utilized a fixed beam with single damage to demonstrate 

the method. The damage was modeled as a reduced stiffness element in finite element 

analysis. 

As mentioned above, while majority of researches have been conducted on the damage 

detection of beams by using wavelets, very few studies have been carried out on 

estimation of the severity of the damage. Hong et al. (2002), however, were able to 

develop a consistent mathematical framework for the wavelet analysis of damaged beams. 

They showed that the singularity of the vibration modes can be described in terms of 

Lipschitz regularity by utilizing the Mexican hat wavelet function. Magnitude of the 
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Lipschitz exponent was employed as a useful indicator of damage extent. More 

specifically, they found that the Lipschitz exponent became smaller as the damage got 

more severe. 

A more rational method for calculating the severity of damage was proposed by Douka 

et al. (2003). In this method, the location of damage was determined by the sudden change 

in the spatial variation of the CWT with the Symlet mother wavelet with four vanishing 

moment applied to the mode shapes of a beam. The size of the single open crack was 

calculated through an intensity factor related to the Lipschitz exponent of the CWT at the 

crack location. A numerical and experimental model of a cantilever beam was done to 

test the proposed method. One year later, Loutridis et al. (2004) proposed a similar 

procedure for numerical and experimental analysis of a cantilever beam with two open 

vertical cracks. The results were similar to those obtained by Douka et al. (2003).  

A common point considered by several researchers is the dependence of the wavelet 

coefficients to the damage location. Two cracks located in the cantilever beam with the 

same crack depth can have different wavelet coefficients. This is caused by the slope of 

the fundamental mode shape which is different for the two crack positions. Such problem 

can be generalized into cases like evaluation of the damage severity of several cracks 

present in the beam. Pakrashi et al. (2007) applied the CWT for detecting and locating 

damage in a beam. As opposed to other studies which also used the CWT to detect 

damage, they improved the efficiency of this technique by applying a partial windowing 

to the deflected (static or dynamic) shapes. Moreover, they proposed to measure the 

severity (crack depth) of the damage using the kurtosis of the transformed wavelet 

deflected shape. The methodology for damage detection was proved in a simulated and 

experimental simply supported beam by using Coiflet 4 mother wavelet with 8 vanishing 

moments. 
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2.3.2 Discrete wavelet transform 

The DWT was invented by the Hungarian mathematician Alfred Haar (Haar, 1910). Like 

other WTs, DWT can transform discrete time-domain signals into wavelet coefficients in 

time-frequency domain. The transformation is achieved by decomposing signals into two 

components through low pass and high pass filter, each of which carries information of 

the original signals. 

Deng and Wang (1998) directly applied the DWT to structural response signals to locate 

a crack along the length of a beam. Wang and Deng (1999) discussed the feasibility of 

the DWT of spatially distributed structural response measurements. They found that 

presence of a crack can be detected by observing sudden changes in the spatial variation 

of the decomposed response. However, no discussion regarding quantification of damage 

extent was provided. Al-Khalidy et al. (1997) used the DWT to detect the fatigue damage 

in structures, modeling damage as a random impulse in the input signal. Hou et al. (2000) 

examined the potential of the DWT for detecting the precise time of damage occurrence. 

They proved that damage caused by change of stiffness in structures may be detected by 

spikes in the first details of the wavelet decomposition of the response data. For that 

purpose they used a simple numerical model with three parallel breakable springs. In 

addition, similar results were shown with the data collected from roof of building during 

1971 San Fernando earthquake. Lu and Hsu (2002) conducted a research on the wavelet 

transform for structural damage detection. The DWTs of two sets of vibration signals in 

the space domain obtained from damage and undamaged structures were compared and 

occurrence of defects as well as their number and location were detected. It was shown 

that even a minor localized defect can lead to considerable changes in the wavelet 

coefficient of the vibration signals.  Hera and Hou (2004) applied the DWT approach to 

the FEM model of the ASCE structural health monitoring benchmark study. They found, 

similar to (Hou et al., 2000), that the time when the damage occurs can be detected by 
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looking at the spike of the details at level 1 of the DWT, while the damage location can 

be identified by looking at patterns in the spatial distribution of spike; in other words, the 

distribution of spikes in the response signals was found to be related to the distance of 

response signals to the damage location. Grabowska et al. (2008) used DWT with 

propagating Lamb waves for identification of the fatigue crack. Beskhyroun et al. (2010) 

applied DWT for structural damage detection and health monitoring. The method was 

based on only the output data without the need for measuring the excitation forces, any 

modal identification or numerical models. The applicability of utilizing piezoelectric 

actuators for exciting large structures such as steel bridges was also investigated. Several 

damage scenarios were introduced to the test structure by removing bolts from some 

stiffeners located on the web of the main girder. Many researchers observed that structural 

damage or the change in system stiffness could be detected by irregular spikes in details 

of the wavelet transform of the response data. The most obvious difference was that the 

DWT uses scale and position values based on powers of two. 

Although stand-alone CWT- or DWT-based approaches have been shown to be beneficial 

for damage assessment, more recently, wavelet analysis has been extended to the WPT-

based approaches and to approaches incorporating the WTs with other methodologies, 

e.g., statistical theory, the Hilbert transform (HT), Hilbert-Huang transform (HHT), 

empirical mode decomposition (EMD), and neural networksto obtain a more effective 

algorithm for damage detection by bringing forth the strengths of each application.  

2.3.3 Wavelet packet transform 

Nikolaou and Antoniadis (2002) used the WPT, instead of the DWT, to detect faults by 

analyzing vibration signals coming from bearings having localized defects. Yan et al. 

(2004) detected the crack in a honeycomb sandwich plate by using two structural 

vibration damage feature indexes: natural frequency and WPT energy index. Energy of 

the response of cracked structures, as compared to that of the response of the intact 
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structure in some special frequency bands, exhibited some remarkable differences, since 

the structural damage suppressed or enhanced some components of response in special 

frequency bands. It was found that the energies of the various WPT components yielded 

ample information on structural damage, and that the energy variation of one or several 

components can indicate a special status of structural damage; therefore, the index 

extracted from the WPT component energy can be utilized to reveal the special 

characteristics of a damage case. Moreover, Law et al. (2005) presented a WPT 

sensitivity-based method to detect damage in a structure. Measured response signals from 

a structure were first decomposed into the WPT components. Then components that 

contained much of the structural system information were identified, and their energy and 

first-order sensitivity to local damage were computed. In short, the sensitivity of the WPT 

component energy with respect to local change in the system parameters was derived 

analytically to detect damage in structures. Ding et al. (2008) developed a procedure for 

damage alarming of frame structures by introducing a damage alarming index, ERVD, 

based on energy variations of structural dynamic responses decomposed by WPT. The 

ASCE structural benchmark data was used to present the practicability of the damage 

alarming procedure for the frame structure. The damage alarming index ERVD was found 

sensitive to local damage in presence of actual measurement noise. Efficiency of the 

proposed index ERVD associated with lower decomposition level and dominant 

frequency bands, for detection of damage occurrence was illustrated. Amiri and Asadi 

(2009) compared the wavelet and WPT in processing ground motion records. The signal 

was expressed as linear combination of time-frequency atoms which were obtained by 

dilations of the analyzing functions, and were organized into dictionaries as wavelet 

packets. Mikami et al. (2011) employed a new approach for damage identification in 

beam-like structure using a wavelet packet-based technique without baseline modal 

parameters of intact structure. The measured dynamic signals were decomposed into the 
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wavelet packet decomposition components. Then, the power spectrum density (PSD) of 

each component was estimated and a damage localization indicator was computed to 

indicate the structural damage. Also, the effect of damage location and the influence of 

wavelet type and the decomposition level were investigated. The results demonstrated the 

efficiency of the proposed method for damage detection. 

2.3.4 Combining wavelet transform with other techniques  

An effective damage index is a critical factor to detect damage. Many damage indices 

were studied based on the wavelet transform. In particular, Ren and Sun (2008) suggested 

the combination of information entropy and discrete wavelet transform, as (Rosso et al., 

2006), having a damage-sensitive feature to characterize the level of irregularity in the 

measured signals to identify the occurrence and location of damage in beam structures. 

Wavelet entropy, relative wavelet entropy and wavelet-time entropy were employed to 

identify and locate damage. Two laboratory test cases along with numerically simulated 

harmonic signals were considered to investigate these features. Wavelet-time entropy was 

demonstrated as a sensitive damage feature for detection of abnormality in measured 

successive vibration signals. Occurrence and location of damage, the two parameters to 

detect from vibration signals, could be measured from the damaged and intact structures. 

Relative wavelet entropy was a suitable feature to do so; and flexibility of relative wavelet 

entropy made it a good method for choosing the reference signal obtained from 

undamaged location of the target structure. Tsai et al. (2009) proposed a complex CWT–

based entropy method for damage identification of wind turbine blades and distinguishing 

the healthy and impaired blades.  Feasibility of the method in the blade damage detection 

was discussed along with computational requirement regarding wavelet entropy of the 

healthy blades, which is not always available in practical applications. Yun et al. (2011) 

applied wavelet entropy to detect spatial locations of damage. In order to realize 

decentralized damage identification, DWT was carried out in Imote2 wireless sensors. 
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Recently, Lee et al. (2014) proposed a new reference-free damage detection algorithm 

based on the continuous relative wavelet entropy (CRWE) for truss bridge structures. The 

damage-sensitive index (DSI) of each sensor’s location was defined by CRWE 

measurements of different sensor-to-sensor pairs. The CRWE was reported to be able to 

detect damage but with considerably large computation cost for the real time monitoring 

algorithm.  

The feasibility of damage assessment, based on statistical analysis combined with the 

WPT, was shown by both Sun and Chang (2004) and Han et al. (2005). Sun and Chang 

(2004) proposed a statistical pattern classification method based on the WPT. The 

acceleration signals of a structure excited by a pulse load were decomposed into WPT 

components. The energies of these wavelet packet components were calculated and sorted 

by their magnitudes. Components having only slight signal energy were discarded, since 

they were easily contaminated by measurement noise. The remaining dominant energies 

were defined as constitutive elements of the wavelet packet signature (WPS). Two 

damage indicators were then formulated, based on the WPS. Basically, these two 

indicators quantified the deviations of the WPSs from the baseline reference. The 

statistical control process was used to determine the threshold value for the damage 

indicators and to monitor any changes in them. Any indicator that exceeded the threshold 

would set off a damage alarm. Furthermore, Han et al. (2005) proposed a damage 

detection index, called the wavelet packet energy rate index (WPERI), for detecting 

damage in beam structures. To establish threshold values for damage indexes, WPERIs, 

X-bar control charts were constructed, which utilized the probabilistic control limits 

based on the estimate of the process mean, and one-sided confidence limits were set as 

thresholds for damage alarming. The proposed approach was applied across three damage 

scenarios in the laboratory to a simulated simply supported beam and to steel beams. Both 

the simulated and the experimental studies showed that the WPT-based energy rate index 
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was a good candidate index, sensitive to local structural damage. Law et al. (2013) 

developed an approach based on WPT and statistical analysis to describe the damage 

extent of the structure. The developed method was not dependent on reference baseline 

measurement and there was no need of model for the damage assessment and monitoring 

of the structure with alarms at a significant level. Structure was first subjected to an 

impact load and the corresponding response signal was normalized and decomposed into 

WPT component, whose energies were then computed to get to the energy distribution. 

In order to classify the structure from variations in the WPT energy distribution, an F-test 

based statistical similarity comparison was used along with development of a statistical 

indicator to describe the damage extent of the structure. 

A combination of the WPT and the neural network (NN) approaches to damage diagnosis 

was utilized by Yen and Lin (2000), Sun and Chang (2002),  Yam et al. (2003), and Diao 

et al. (2006). Sun and Chang (2002) combined the WPT and neural-network models to 

assess structural damage. First, the energies of the WPT components were calculated, 

then those that were both significant in value and sensitive to change in structural rigidity 

were selected as damage indices and were employed as inputs into the NN models. The 

numerical simulations were conducted by using a three-span continuous bridge under 

impact excitation. It was concluded that the WPT component energy was a sensitive 

condition index for structural damage assessment, and that this index was sensitive to 

changes in structural rigidity but insensitive to measurement noise. Yam et al. (2003) 

presented an integrated method for damage identification based on the energy variation 

of the WPT components of the structural vibration response and neural networks. They 

constructed a non-dimensional damage feature proxy vector to be used in detecting 

damage in composite structures. The damage feature proxy vector was calculated based 

on energy variation in the WPT components of the structural response before and after 

the occurrence of damage, and neural networks were used to establish the mapping 
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relationship between the damage feature proxy and damage status (i.e., damage location 

and severity). This approach required accurate model information for both healthy and 

damaged conditions in order to train the neural networks; that proved to be difficult and 

challenging in practice, especially for complicated structures.  Diao et al. (2006) proposed 

a two-step structural damage detection approach based on wavelet packet analysis and 

neural networks. Initially, the location of the damage member was localized by 

probabilistic neural network according to the wavelet packet node energy change. Then, 

the damage extent of the damaged member was obtained by back-propagation network 

according to the wavelet packet node energy.  

Prominent among the researchers who have sought to achieve enhanced algorithms for 

damage assessment by combining the wavelet theory with some other signal processing 

technique (e.g., the HT, HHT, or EMD) are Shinde and Hou (2005), Hou et al. (2006), 

and Chen et al. (2007).  

Shinde and Hou (2005) incorporated a WPT-based sifting process with the classical HT 

for structural health monitoring. The original signal was decomposed into its components 

by a wavelet packet analysis with a symmetrical mother wavelet. Both the energy entropy 

and the Shannon entropy were utilized as sifting criterion. The dominant components of 

the WPT of a signal were sifted out based on the percentage contribution of entropy of an 

individual component, to the total one of the signal. The dominant component of the 

original signal from the WPT-based sifting process had a quite simple frequency 

characteristics and was suitable for use with the HT. The transient frequency content or 

the so-called instantaneous frequency of the component was obtained from the phase 

curve of the HT of the component. Since, for a healthy structure, the associated 

instantaneous frequency was time-invariant, any reduction in the instantaneous frequency 

could be applied as an indicator of structural damage to reflect structural damage. The 

viability of the proposed sifting process, used both for detecting abrupt loss of structural 
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stiffness and for monitoring development of progressive stiffness degradation, was 

demonstrated by two case studies.  

In addition, Hou et al. (2006) applied the improved shifting process of Shinde and Hou 

(2005) to the structural health monitoring of earthquake-excited structures; they applied 

the concept of the confidence index (CI) to validate the results obtained for normalized 

mode shapes.  A cantilever composite box was considered by Chen et al. (2007) to extract 

the structural damage information from its response signals through an improved HHT. 

The WPT was first employed to decompose the signal into sub-signals which were then 

decomposed again into multiple intrinsic mode function (IMF) components by EMD. In 

order to eliminate the unrelated IMF components, the IMF selection criterion was 

employed. The HHT was then applied to transform the retained components to obtain the 

instantaneous energy of all the sub-signals. These researchers found, by comparing the 

instantaneous energy corresponding to the IMFs of an intact wingbox with that of a 

damaged one, that some instantaneous energy was obviously changed. Based on this fact, 

they defined the variation quantity of instantaneous energy as a feature index vector, and 

showed that this vector was sensitive to even a very slight damage. 

 System identification based on the wavelet transform 

A commonly adopted approach to the identification of a structural system is through 

modal analysis. Identification of the modal characteristics of a structure can be carried 

out either by time-domain or frequency-domain methods. When it comes to considering 

a system's properties with respect to time, frequency domain methods are not so 

adaptable. On the other hand, time domain methods are usually sensitive to noise due to 

the presence of all the frequency components in the data. To overcome these difficulties, 

several techniques have been developed in recent years that utilize time-scale or time-

frequency domain analysis. Many of these methods are based on wavelet analysis, with 
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application to linear and non-linear systems, because of the ability to retain information 

of local frequency content and variation with time, together with the advantage of flexible 

windowing over short-time Fourier transform (STFT). The use of the wavelet transform 

is particularly advantageous in problems related to system identification. The properties 

of frequency localization, for instance, can be useful in detecting and separating 

individual vibration modes of MDOF linear systems. During the identification process, 

the property of multi-resolution analysis in discrete wavelet transform can filter out the 

measurement noise from the structural response without the use of additional filters. 

Furthermore, the wavelet transform coefficients can be associated directly with the 

structural parameters (Joo, 2012).  

The wavelet-based identification approaches of system parameters can be divided into 

two groups. Researchers in the first group employed the continuous wavelet transform 

(CWT)-based approach, whereas those in the second group used the discrete wavelet 

transform (DWT)-based approach. 

2.4.1 Continuous wavelet transform 

Initially, it was the CWT-based approaches that were used to identify linear systems. A 

class of identification method was developed by Ruzzene et al. (1997) and Staszewski 

(1998) based on the CWT by using the Morlet wavelet function to identify the natural 

frequencies and damping ratios of a structural system. More specifically, Ruzzene et al. 

(1997) demonstrated that when high damping was present in a system, the HT-based 

approach produced more errors in estimating the envelope and the instantaneous 

frequency. A consistent improvement could be achieved when the CWT-based approach 

was used, rather than the HT, to approximate the envelope signal and its instantaneous 

frequency while seeking to identify modal parameters. Staszewski (1997) presented that 

the CWT approach can be employed to identify the damping ratios and natural 

frequencies of MDOF systems having either close or well-separated vibrational modes. 
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This was done by decoupling the impulse response of MDOF systems into the time-scale 

domain and then identifying each damping ratio for each decoupled signal; such identified 

damping ratios were shown to be quite accurate.  

Lardies and Gouttebroze (2002) developed a CWT approach to identify damping ratios 

of closely spaced mode systems, an approach that applied a modified Morlet wavelet 

function and demonstrated better resolution than the CWT approach developed by 

Staszewski (1997). Slavič et al. (2003) employed a CWT approach based on the Gabor 

wavelet function to estimate damping ratios.  

Staszewski (1998), Lardies and Gouttebroze (2002) and Slavič et al. (2003) applied their 

identification methods to proportionally damped MDOF systems, but made no attempt to 

identify the mode shapes. However, Argoul and Le (2003) presented a method based on 

the Cauchy wavelet function to identify natural frequencies and damping ratios, as well 

as the mode shapes of viscous damped MDOF systems. Sone et al. (2004) identified the 

system parameters based on the Mexican hat wavelet using only the acquired acceleration 

signals. In terms of CWT, the multi-resolution property was utilized to filter out 

measurement noise, and the localization property was used to separate different modes in 

the MDOF case. Le and Paultre (2012) proposed a method that directly used the raw 

ambient response with CWT by modifying the formulation of the CWT of the ambient 

response. The wavelet analysis of the free responses of a linear mechanical system was 

used to estimate its natural frequencies, viscous damping ratios, and mode shapes, using 

either the modulus or the phase of the wavelet transform with ridge and skeleton notions. 

Staszewski (1998) and Yan and Miyamoto (2006) introduced the CWT to an extentded 

area of application called time-varying or nonlinear systems. To identify the 

instantaneous characteristics of nonlinear systems out of impulse response,  Staszewski 

(1998) proposed an approach and analyzed two simulated examples with the Morlet 

wavelet function. These examples were conisted of a SDOF system with cubic stiffness 
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nonlinearities and coulomb friction and a 2DOF system with cubic stiffness 

nonlinearities: such nonlinearities were identified but not quantified. In a comparison 

conducted between CWT approach with Morlet wavelet function and HT or HHT for 

estimation of the modal parameters, Yan and Miyamoto (2006) reported better 

performance of the former one. 

Further research works that aimed at identifying nonlinear systems by utilizing the CWT 

were carried out by Garibaldi et al. (1998), Staszewski (2000), Lenaerts et al. (2004), 

Joseph and Minh-Nghi (2005), Ta and Lardies (2006) and  Wang et al. (2013).  

Staszewski (2000) summarized the wavelet applications for the analysis and identification 

of nonlinear systems. The contents include backbone identification based on wavelet 

ridges and skeletons, damping estimation procedures, wavelet-based frequency response 

functions, cross-wavelet analysis, solving nonlinear different equations and fractal 

analysis. Garibaldi et al. (1998) identified only nonlinear damping mechanisms based on 

the CWT, while Lenaerts et al. (2004) identified a nonlinear system by utilizing two 

different method: a method based on the CWT and a method using the restoring force 

surface. Both methods exploited the system free response and results in the estimation of 

linear and nonlinear structural parameters provided experimental data. Joseph and Minh-

Nghi (2005) used the modified Morlet wavelet function to identify and quantify the 

damping in a non-linear oscillator using its free decay response.  For parameter 

identification, two methods were presented to estimate instantaneous frequency, damping 

and envelope of the system. The first method was used cross-sections of the CWT and 

the second method was based on ridges and skeletons. The earlier method was general 

and gave accurate results in the case of noisy non-linear oscillators.  

In another study by Ta and Lardies (2006), the ridges and skeletons of the CWT were 

used to identify the weak nonlinearities on damping and stiffness. It was assumed that the 

nonlinear signal can be taken as a linear combination of monocomponents and each 
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monocomponent was associated with a kind of nonlinearity. The type and order of 

nonlinearity for each monocomponent were then identified by a least squares estimation 

using the instantaneous characteristics from wavelet transforms and the predefined class 

of models. With weak nonlinearity assumption, the effects of nonlinear damping and 

nonlinear stiffness on the system response were separated, in such a way that the nonlinear 

damping could only affect the decaying envelope and the nonlinear stiffness could only 

affect the instantaneous frequency. However, this assumption was not true for strong 

nonlinearity. Wang et al. (2013) proposed a method based on the wavelet ridges of CWT 

for the instantaneous frequency identification of time-varying structures. To eliminate 

noise effect, a penalty function was first imposed, and then the dynamic optimization 

technique was implemented for wavelet ridge extraction. The instantaneous frequencies 

were then identified from the extracted wavelet ridges. 

2.4.2 Discrete wavelet transform 

Another class of identification method which utilized discrete wavelet transform (DWT) 

for linear time-invariant systems was introduced by Robertson et al. (1998a, 1998b). They 

used discrete Daubechies (DB) wavelet transform to extract the impulse response 

functions from input and output data of linear dynamic systems. This approach was then 

used along with the eigensystem realization method, to obtain the damping parameters 

and mode shapes of a system subjected to various excitations. Lamarque et al. (2000) 

proposed a logarithmic decrement formula, having the CWT coefficients, similar to the 

logarithmic decrement formula for free vibration of a SDOF system. They were able to 

derive a discrete wavelet-logarithmic decrement formula using the approximation 

coefficients of the DWT to estimate the damping of MDOF systems. Also, Hans et al. 

(2000) applied the method presented in Lamarque et al. (2000) to obtain the damping of 

a building subjected to shock and harmonic excitations. Huang et al. (2005) applied the 

DWT to discrete equations of motion and determined modal parameters such as natural 
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frequencies, damping ratios, and mode shapes of structures using either earthquake or 

free decay responses.  

In addition, the DWT-based approaches for identification of linear time-varying and 

nonlinear systems were further explained by Ghanem and Romeo (2000), Luk and 

Damper (2006), Chen et al. (2006), Pawlak and Hasiewicz (1998), Xu et al. (2012) and 

Li et al. (2012). Ghanem and Romeo (2000) proposed a discrete wavelet identification 

approach to analyze time-varying structures which was associated with a differential 

equation model that related input and output responses using wavelet Galerkin approach. 

Chen et al. (2006) developed an approach on the basis of the DWT by utilizing the Haar 

wavelet function to identify linear time-varying systems. Similarly, Pawlak and 

Hasiewicz (1998) applied the multiresolution analysis of the Haar wavelet function to the 

construction of nonparametric identification techniques of nonlinear systems. A wavelet-

based state-space method was developed by Xu et al. (2012) to identify dynamic 

parameters in linear time-varying systems. The method did not require computation of 

the second connection coefficients, as compared with the linear time-varying 

identification method presented by Shen and Law (2006). Li et al. (2012) proposed an 

approach using the extended Kalman filter (EKF) and wavelet multiresolution for 

identifying the tangent stiffness matrix and the hysteresis curves of structures during 

strong earthquakes. This method required the structural response from only a limited 

number of DOFs. The identification could then be divided into two stages. In first stage, 

the structural responses at all DOFs were estimated utilizing the EKF method based on 

the structural model at previous step. In second stage, based on the estimated full states, 

wavelet multiresolution analysis was utilized to identify the tangent stiffness matrix and 

the hysteresis-restoring force curves of the structure. 
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 Summary 

In this chapter, a comprehensive literature reviews of existing vibration-based damage 

detection methods, applications of wavelet transform in damage detection and system 

identification were presented. Vibration-based damage detection methods have shown 

promising results and still under fast advances in relevant technologies such as sensing, 

system identification, monitoring systems, algorithms and logics in signal processing, etc. 

Modal parameters such as natural frequencies and mode shapes are the most commonly 

used measurements for vibration-based damage detection and model updating methods. 

For the practically viable damage detection system, real-time and reference-free features 

in damage detection will upgrade current SHM technology.  

In addition, many researchers have reported the benefits and applicability of multiple 

formulations of the wavelet theory in achieving damage detection and system 

identification tool for SHM, to overcome the limitations and drawbacks of other signal 

processing techniques in the framework of structural dynamics. A considerable amount 

of research carried out over the last three decades and very well demonstrated that the 

wavelet theory can be utilized to achieve satisfactory damage detection and system 

identification.  

A brief description of each issue was presented to show various ways in which the wavelet 

theory has been applied to solve the typical problems associated with damage detection 

and system identification. This review discussed various types of the WTs (e.g., the CWT, 

and DWT) with the whole range of applications used in damage diagnosis and system 

identification of structures of different scales ranging from relatively small (e.g., gear 

boxes) to notably large (e.g., buildings and bridges). 

Moreover, this chapter has closely looked into various features of the theory of wavelet 

and has demonstrated the way researchers and pioneers have employed these features to 

obtain damage detection and system identification. The performance of the wavelet-based 
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approaches, as stand-alone methods, has been reported to be efficient in damage detection 

and system identification, whereas in combination of wavelet theory and other signal 

processing techniques such as neural networks and statistical theory, better results were 

obtained. Although much research has been conducted in this area, nevertheless, further 

study for the wavelet theory as a widespread method of achieving efficient and intelligent 

SHM is still on demand. 
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3 CHAPTER 3: THE WAVELET THEORY 

 Introduction 

This chapter aims to provide a general idea of the wavelet theory through presenting the 

relevant developments. Furthermore, an outline of the properties of wavelets and wavelet 

transform are discussed. Initially, an investigation over the general characteristics of 

wavelet functions of continuous wavelet transform will be carried out. In the second step, 

the DWT will be developed through discretizing the continuous wavelet transform in 

conformity with the frame theory. Then, the basic features of scaling functions will be 

presented. The third step will deliver a multi-resolution analysis to describe the roles of 

the wavelet functions in the analysis of a response signal. The final step will discuss and 

indicate the WPT as a general form of the DWT. 

 Development of wavelet theory 

The significant issue in structural dynamics is the identification of certain properties of 

dynamic systems, such as modal parameters (e.g., mode shapes, natural frequencies, and 

damping ratios) and structural parameters (e.g., mass, stiffness, etc) obtained from 

structural response in the time domain. In order to represent the essential characteristics 

of the response signals in the time domain there are many types of problems faced since 

integral transforms such as the Fourier transform, STFT and so on, are needed to transfer 

the response signals in the time domain to other domains. 

The commonly used transformation method in signal analysis is the Fourier transform 

(FT). The basic idea of the FT is to represent a signal by means of an infinite series of 

trigonometric functions. However, the FT does not provide information about how the 

frequency contents of the signal vary with respect to time, since trigonometric functions 

have infinite times. Therefore, the Fourier analysis is not particularly suitable for the 
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examination of non-linear and non-stationary problems. To overcome such deficiency, 

the STFT proposed by Gabor can be used. This windowing technique analyzes only a 

small section of the signal at a time. The STFT maps a signal into a 2-D function of time 

or space and frequency. The transformation has a disadvantage that the information about 

time or space and frequency can be obtained with only limited precision determined by 

the size of the window. A higher resolution in both time and frequency domain cannot be 

achieved simultaneously since once the window size is fixed, it is the same for all 

frequencies. This is one of the principal reasons for the creation of the WT. The basic 

ideas of the wavelet functions are included in the family of basis functions that are capable 

of depicting a signal in a localized frequency (or scale) and time (or space) domain. The 

main advantage obtained by using wavelets is the capability to execute local analysis of 

a signal, i.e. zooming in on any interval of space or time. Wavelet analysis is capable of 

demonstrating some hidden features of the data that conventional Fourier analysis fails to 

detect. 

 Continuous wavelet transform  

In contrast to the frequency-domain methods, the time-frequency methods can be used to 

analyze any non-stationary event localized in time domain. Physically, a wavelet 

(function) is a localized small wave centered on a given position in time with a fast decay 

to zero away from the center. The support of a wavelet function is defined as the interval 

outside of which wavelet has zero value. In mathematical terms, the wavelet is said to 

have compact support (i.e., a closed and bounded support). In addition, a wavelet function 

can be complex or real. A complex wavelet function is preferable for capturing the 

oscillatory behavior of a signal since a complex wavelet has information about both 

amplitude and phase, while a real wavelet function is often utilized to isolate peaks or 

discontinuities. 
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In wavelet analysis, the mother wavelet 𝜓 (𝑡) localized in both space and frequency 

domains is used to generate a family of wavelets 𝜓𝑎,𝑏(𝑡) formulated as 

𝜓𝑎,𝑏(𝑡) = |𝑎|
−1 2⁄ 𝜓 (

𝑡−𝑏

𝑎
),     b ∈ R, a ∈ R, a≠ 0                                                       (3.1) 

where a and b are the scale and translation parameters, respectively. For a specified pair 

of a and b, 𝜓𝑎,𝑏(𝑡) depicts a single wavelet function. The translation parameter b denotes 

the location of the wavelet function 𝜓𝑎,𝑏(𝑡) along the time axis. In addition, the scale 

parameter a controls the width or support of the wavelet function 𝜓𝑎,𝑏(𝑡).  

For time-frequency analysis of a signal, the CWT of a signal 𝑓(𝑡) is defined as:  

CWT(a,b)= ∫  
+∞

−∞
𝑓(𝑡)𝜓𝑎,𝑏

∗ (𝑡)𝑑𝑡 = ∫  
+∞

−∞
𝑓(𝑡)

1

√𝑎
𝜓(

𝑡−𝑏

𝑎
) =< 𝑓(𝑡), 𝜓𝑎,𝑏(𝑡)  >        (3.2) 

where the symbols * and <, > denote complex conjugate and inner product, respectively. 

CWT(a,b) is called the CWT coefficient which is the correlation of 𝑓(𝑡) with the 

corresponding scaled and translated wavelet. The frequency localization is controlled by 

the scale a which is proportional to the reciprocal of the frequency. Due to the fixity of 

time-frequency resolution at different frequency ranges, the STFT has a limitation, 

however, since time resolution becomes arbitrarily good at high frequencies, while the 

frequency resolution becomes arbitrarily good at low frequencies, therefore, such 

deficiency is resolved.  

In general, the specifications of the CWT are dependent on a given mother wavelet 

function 𝜓 (𝑡), since the wavelet functions 𝜓𝑎,𝑏(𝑡) which are utilized in the CWT, are 

created from their mother wavelet function 𝜓 (𝑡) with the scale and translation 

parameters. Hence, the features of the mother wavelet function determine the 

specifications of the corresponding CWT. 

Several properties of a wavelet function 𝜓 (𝑡) to become the basis function in wavelet 

transform (Mallat, 1999) are explained in the following. 

First, a wavelet 𝜓 (𝑡) must have zero mean 
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∫ 𝜓 (𝑡) 𝑑𝑡 = 0
+∞

−∞
                                                                                                        (3.3) 

Second, a wavelet 𝜓 (𝑡) must have finite energy: 

𝐸ψ = ∫  
+∞

−∞
|𝜓 (𝑡) |

2𝑑𝑡 < ∞                                                                                                          (3.4)  

Here 𝐸ψ is the energy of a wavelet function 𝜓 (𝑡) . Equation (3.4) indicates that a wavelet 

function is also square integrable, that is, 𝜓 (𝑡)∈L2(R). Frequently, the wavelet function 

𝜓 (𝑡) is normalized so that it has unit energy: 

𝐸ψ = ∫  
+∞

−∞
|𝜓 (𝑡) |

2𝑑𝑡 = 1                                                                                                  (3.5) 

In the current study, we consider that the wavelet function has unit energy so that the 

wavelet transform energy of a signal will be identical to the energy of the original signal.  

Third, the mother wavelet 𝜓 (𝑡) should satisfy the admissibility condition defined as 

𝐶ψ = ∫
|H(𝜔)|2

𝜔

∞

0
   satisfied    0 < 𝐶ψ < ∞                                                                                  (3.6)  

Here H(ω ) denotes the Fourier transform of 𝜓 (𝑡). The Inverse CWT is defined as: 

𝑓(𝑡) =
1

𝐶ψ
∫  
+∞

𝑎=−∞ ∫  
+∞

𝑏=−∞

1

|𝑎|2
𝐶𝑊𝑇(𝑎, 𝑏)𝜓𝑎,𝑏(𝑡) 𝑑𝑎 𝑑𝑏                                                   (3.7)  

considering that 𝐶ψ for a specified wavelet 𝜓 (𝑡) exists. The admissibility condition 

confirms the existence of the inverse CWT.  

The last property is the number of vanishing moments of the wavelet, where the kth 

moment of 𝜓 (𝑡) is expressed as: 

𝑚𝑘 = ∫ 𝑡𝑘𝜓 (𝑡)𝑑𝑡
+∞

−∞
                                                                                                           (3.8) 

A wavelet 𝜓 (𝑡) has n vanishing moments if the following equation is satisfied 

∫ 𝑡𝑘𝜓 (𝑡)𝑑𝑡 = 0
+∞

−∞
   for   k=1, 2, …, n-1                                                                              (3.9)  

If the support of 𝜓𝑎,𝑏(𝑡) contains a singularity at a certain point of 𝑓(𝑡), that means, it is 

not differentiable at a point where 𝑓(𝑡) changes from one polynomial to another, then the 

CWT coefficients will have relatively large values. 
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 Discrete wavelet transform  

CWT calculates the wavelet coefficients by continuously shifting a scalable basis 

function over a signal and calculating the correlation between the two at every possible 

scale. Its computation may consume significant amount of time and resources, depending 

on the resolution required. Moreover, the CWT has informational redundancy because 

the number of the resulting CWT coefficients in the scale-time domain is much larger 

than the number of time samples in the original signal 𝑓(𝑡). In general, redundancy is not 

desirable since more computations and more computational memory would be necessary 

to process a signal with redundancy. In order to remove the difficulty in the numerical 

operation and the redundancy of the resulting coefficients in the CWT, the DWT is 

introduced by discretizing the continuous scale a and translation b parameters. 

A practical way to sample the continuous parameters a and b is to use a logarithmic 

discretization of the scale parameter a and associate the scale, in turn, with the size of 

steps taken between b locations. In other words, the scale parameter a is discretized first 

on a logarithmic grid. The translation parameter b is then discretized with respect to the 

scale parameter a, i.e., a different sampling rate is used for every scale parameter. 

Therefore, the form of the wavelet function for the discretization of the CWT is taken 

from Equation (3.1). 

For the discrete WT, the scale and translation parameters become discrete values which 

form as: 

𝑎 = 𝑎0
𝑗
,     𝑏 = 𝑘𝑏0𝑎0

𝑗
     for   𝑎0 > 1,   𝑏0 > 1   j, k∈ 𝕫 (set of integers)                (3.10) 

Therefore, the wavelet function for the discretization of the CWT shown in Equation (3.1) 

can be written in the following way: 

𝜓𝑗,𝑘
 (𝑡) =

1

√𝑎0
𝑗
𝜓(

𝑡−𝑘𝑏0𝑎0
𝑗

𝑎0
𝑗 )                                                                                                (3.11)  
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For practical purposes and computational efficiency, the discrete parameters 𝑎0
  and 𝑏0 in 

Equation (3.11) are generally used to be 2 and 1, respectively. This results in a dyadic 

translation of 𝑘2𝑗 and a binary scaling of 2𝑗. The dyadic grid wavelet can be obtained by 

substituting a0 = 2 and b0 = 1 into Equation (3.11), as 

𝜓𝑗,𝑘
 (𝑡) =

1

√2𝑗
𝜓(

𝑡−𝑘2𝑗

2𝑗
) = 2−𝑗 2⁄ 𝜓(2−𝑗𝑡 − 𝑘)                                                          (3.12) 

where 𝜓𝑗,𝑘
 (𝑡) is the kth translation of the wavelet function at scale index 𝑗. The DWT is 

defined by using discrete wavelet functions in Equation (3.11), as: 

𝐷𝑊𝑇(𝑗, 𝑘) = ∫ 𝑓(𝑡)𝜓𝑗,𝑘
∗ (𝑡)𝑑𝑡 =< 𝑓(𝑡),

+∞

−∞
𝜓𝑗,𝑘
 (𝑡) >                                                        (3.13) 

Here 𝐷𝑊𝑇(𝑗, 𝑘) is the DWT coefficient at a scale-translation sampling set 𝑗 and 𝑘. Such 

a DWT is specified by the choice of a scale and translation parameters through analyzing 

wavelet 𝜓(𝑡) in the framework of the frame theory. The frame theory provides a general 

framework for studying the properties of discrete wavelets (Daubechies, 1992). 

 Wavelet multiresolution analysis 

The multiresolution analysis (MRA) of wavelet is a significant property in the multilevel 

approximation of engineering problems (Wang et al., 2010). The concept of MRA for 

square-integrable signals in the context of wavelet analysis was elaborated further by 

Mallet (1989). The concept of MRA leads to the reach theory of the scale-based structure 

of signals by representing a function as a limit of successive approximation, which 

responds to different level of resolution. 

A multiresolution analysis can be defined as a sequence of nested subspaces {𝑉𝑗}𝑗𝜖ℤ
in 

L2(R) such that the following conditions hold:  

(a) 𝑉𝑗  Vj−1 for all 𝑗 ∈ ℤ 

(b) lim
𝑗→−∞

𝑉𝑗 = ⋃𝑗=∞
−∞  𝑉𝑗 = 𝐿

2 (ℝ)    

(c) ⋂𝑗=∞
−∞ 𝑉𝑗 = {0} 
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(d) 𝑓(𝑡) ∈ 𝑉𝑗  if and only if 𝑓(2𝑡) ∈ 𝑉𝑗−1 for all 𝑗 ∈ ℤ 

(e) There exists a function, called a scaling function ∅(t), such that the subspace 𝑉𝑗  is 

formed by the function: 

{∅𝑗,𝑘(𝑡)}𝑘∈ℤ
=  {2−𝑗 2⁄ ∅ (2−𝑗𝑡 − 𝑘)}

𝑘∈ℤ
                                                                                         (3.14)  

The system of function {∅𝑗,𝑘(𝑡)}𝑘∈ℤ
 forms an orthonormal basis of  𝑉𝑗 . 

Condition (e) shows that the subspace 𝑉𝑗  is the linear span for the set of {∅𝑗,𝑘(𝑡)}𝑘∈ℤ
  

 𝑉𝑗 = Span{∅𝑗,𝑘(𝑡)}              𝑘 ∈ ℤ                                                                                                      (3.15) 

scaling function ∅(t) which satisfies the scaling condition, has the following properties 

Property 1: 𝜙 (𝑡) = ∑ 𝑐(𝑘) 
𝑘∈𝕫 𝜙 (2𝑡 − 𝑘)                                                                      (3.16) 

Such a characteristic, represented by Equation (3.16), is called the two-scale relation for 

the scaling function 𝜙(𝑡). 

Property 2: ∫ 𝜙 (𝑡)𝑑𝑡 =
+∞

−∞
1                                                                                            (3.17) 

Property 3: {𝜙 (𝑡 − 𝑘)}𝑘∈𝕫 is a Riesz sequence.  

Property 4: the Fourier transform H(𝜔) of 𝜙 (𝑡) is continuous at zero frequency and not 

equal to zero at this point. 

Equation (3.15) means that for any 𝑓(𝑡) ∈ 𝑉𝑗 , we have 

𝑓𝑗(𝑡) = ∑ 𝑎(𝑗, 𝑘)𝜙𝑗,𝑘
 (𝑡)  

𝑘∈𝕫                                                                                        (3.18) 

Mathematically, the approximation function of signal 𝑓 (𝑡) at the scale index 𝑗, or 𝑓𝑗(𝑡), 

can be achieved with the orthogonal projection of a signal 𝑓 (𝑡) ∈ L2(R) onto a scale 

subspace 𝑉𝑗 . 

𝑓𝑗(𝑡) = ∑ 𝑎(𝑗, 𝑘)𝜙𝑗,𝑘
 (𝑡)  

𝑘∈𝕫                                                                                        (3.19) 

where 𝑓𝑗(𝑡) depicts the orthogonal projection of  𝑓 (𝑡) onto space 𝑉𝑗 . In addition, the kth 

approximation coefficient at the scale index 𝑗 can be expressed as: 

𝑎(𝑗, 𝑘) = ∫ 𝑓(𝑡)𝜙𝑗,𝑘
 (𝑡)𝑑𝑡     

+∞

−∞
                                                                                        (3.20)  
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In general, the MRA suggests that the scaling functions play an important role in the 

piecewise approximation of the continuous function 𝑓(𝑡) in L2(R) and are related to the 

scale index of the scale subspace that is approximated in. The quality of approximations 

of the continuous function 𝑓(𝑡) can vary. Hence, the MRA is often referred to as a 

multiresolution approximation. 

The nested sequence {𝑉𝑗}𝑗∈𝕫
 of MRA subspaces stimulates the description of the 

difference space 𝑊𝑗  between the two-scale subspaces 𝑉𝑗−1 and 𝑉𝑗  and the creation of the 

basis that spans such a difference space 𝑊𝑗 . The wavelet space 𝑊𝑗  is called the detail 

subspace, such that 

𝑉𝑗−1 = 𝑊𝑗   𝑉𝑗        for  𝑗 ∈ 𝕫                                                                                    (3.21) 

where  is the orthogonal summation of spaces. Equation (3.21) indicates that the detail 

subspace 𝑊𝑗  and scale subspace 𝑉𝑗  are orthogonal. This leads to an orthogonal 

decomposition of 𝑉𝑗−1, that is 

𝑉𝑗−1 = 𝑊𝑗   𝑊𝑗+1  …𝑊𝑗𝑚𝑎𝑥   𝑉𝑗𝑚𝑎𝑥                                                                       (3.22) 

where 𝑗𝑚𝑎𝑥 > 𝑗 and also 𝑗 and 𝑗𝑚𝑎𝑥  are integers. In addition, an orthogonal 

decomposition of  𝑉−∞ =L2(ℝ)  is 

L2(ℝ) = 𝑗=−∞
∞ 𝑊𝑗                                                                                                             (3.23) 

 𝑉∞ is equal to zero based on the conditions (a) and (c). 

Analogous to condition (e) for the scaling function, there exists a wavelet function 𝜓(𝑡) ∈

𝑊𝑗  such that {𝜓𝑗,𝑘(𝑡)}𝑘∈ℤ
 constitutes an orthonormal basis for 𝑊𝑗 . The subspace 𝑊𝑗  is 

spanned by the wavelet functions as 

𝑊𝑗 = Span {𝜓𝑗,𝑘(𝑡)}                                                                                                   (3.24)   

           𝑘 ∈ ℤ  

 

Furthermore, owing to the orthonormality of the scale and detail subspaces at the scale 

index 𝑗 in Equation (3.21), the wavelet functions are orthonormal to the scaling functions 

at the scale index 𝑗, that is 
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< 2−𝑗 2⁄ ∅ (2−𝑗𝑡 − 𝑘), 2−𝑗 2⁄ 𝜓(2−𝑗𝑡 − 𝑙) >= 0    for   𝑗, 𝑘, 𝑙 ∈ 𝕫                                      (3.25) 

Since the wavelet functions are orthogonal to each other at a specified scale index, and as 

well, 𝑊𝑘  and 𝑊𝑙  are orthogonal for 𝑘 ≠ 𝑙 in Equation (3.22), the wavelet functions 

𝜓𝑗,𝑘(𝑡) have the following relation: 

(2−𝑘 2⁄ 𝜓 (2−𝑘𝑡 − 𝑚), 2−𝑙 2⁄ 𝜓(2−𝑙𝑡 − 𝑛) ≥ {
1   𝑘 = 𝑙    and   𝑚 = 𝑛

 
0  otherwise                  

                      (3.26) 

Similar to Equation (3.19), the detail function 𝑔𝑗(𝑡) of a signal 𝑓 (𝑡) at the scale index 𝑗 

can be achieved with the orthogonal projection of 𝑓 (𝑡) onto detail subspace 𝑊𝑗 .  

𝑔𝑗(𝑡) = ∑ 𝑑(𝑗, 𝑘)𝜓𝑗,𝑘
 (𝑡) 

𝑘∈𝕫                                                                                                   (3.27) 

 where 𝑔𝑗(𝑡) is the orthogonal projection of  𝑓 (𝑡) onto the space 𝑊𝑗 . Also, the kth detail 

coefficient at the scale index 𝑗 is expressed as:  

𝑑(𝑗, 𝑘) = ∫ 𝑓(𝑡)𝜓𝑗,𝑘
 (𝑡)𝑑𝑡    

+∞

−∞
                                                                                            (3.28) 

 From Equation (3.21), it follows that the relation between the detail subspace and scale 

subspace can be expressed as 

𝑊𝑗   𝑉𝑗−1                                                                                                                                  (3.29) 

 This relation suggests that, since 𝜓(𝑡), one of the basis vectors in detail subspace 𝑊𝑗 , 

resides in scale subspace 𝑉𝑗−1, 𝜓(𝑡) can be expressed in terms of {𝜙𝑗−1,𝑘
 (𝑡)}𝑘∈ℤ, the basis 

vectors in 𝑉𝑗−1: that is, 

𝜓 
 (𝑡) = ∑ 𝑏(𝑘) 

𝑘∈𝕫 𝜙 
 (2𝑡 − 𝑘)                                                                                  (3.30) 

Equation (3.30) is called the two-scale relation for the wavelet function  𝜓 
 (𝑡) and 

{𝑏(𝑘)}𝑘∈𝕫 ∈ 𝐿
2(𝕫) which are the coefficients for this relation.  

From Equations (3.19), (3.21), and (3.27), it can be deduced that the orthogonal projection 

of 𝑓 (𝑡) ∈ 𝐿
2(ℤ) onto 𝑉𝑗  is equal to summation of the orthogonal projection of 𝑓 (𝑡) onto 

𝑉𝑗+1 and the orthogonal projection of 𝑓 (𝑡) onto 𝑊𝑗+1, which is: 

𝑓𝑗(𝑡) = 𝑓𝑗+1(𝑡) + 𝑔𝑗+1(𝑡)                                                                                                       (3.31) 
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 In addition, 𝑓𝑗+1(𝑡) can be decomposed as: 

𝑓𝑗+1(𝑡) = 𝑓𝑗+2(𝑡) + 𝑔𝑗+2(𝑡)                                                                                      (3.32) 

Therefore, Equation (3.31) can be rewritten as: 

𝑓𝑗(𝑡) = 𝑓𝑗+2(𝑡) + 𝑔𝑗+2(𝑡) + 𝑔𝑗+1(𝑡)                                                                        (3.33) 

Generally, the approximation function 𝑓𝑗(𝑡) can be expressed as: 

𝑓𝑗(𝑡) = 𝑓𝑗𝑚𝑎𝑥(𝑡) + ∑ 𝑔𝑖(𝑡)
𝑗 𝑚𝑎𝑥
𝑖=𝑗+1                                                                                                  (3.34) 

 or, equivalently 

𝑓𝑗(𝑡) = ∑ 𝑎(∞
𝑘=−∞ 𝑗𝑚𝑎𝑥, 𝑘)𝜙𝑗𝑚𝑎𝑥,𝑘(𝑡) + ∑  

𝑗𝑚𝑎𝑥
𝑖=𝑗+1

∑ 𝑑∞
𝑘=−∞ (𝑖, 𝑘)𝜓 

 
𝑖,𝑘
(𝑡)                   (3.35) 

 where 𝑗𝑚𝑎𝑥 > 𝑗 and 𝑗𝑚𝑎𝑥 and 𝑗 are integers. On the other hand, 𝑓𝑗(𝑡) can be depicted as 

the sums of the orthogonal projection of  𝑓 (𝑡) onto detail subspace 𝑊𝑗  for 𝑖 = 𝑗 + 1, 𝑗 +

2, … , 𝑗𝑚𝑎𝑥 and the scale subspace 𝑉𝑗𝑚𝑎𝑥  for the given 𝑗𝑚𝑎𝑥. 

3.5.1 The Daubechies wavelets  

Among all of the wavelets that have been applied in the multiresolution analysis, the 

orthonormal Daubechies wavelets are the most commonly used ones for signal analysis 

and synthesis. This is because it satisfies the two crucial requirements, i.e., the 

orthogonality of local basis functions and second or higher-order accuracy (Daubechies, 

1988, 1992). 

Daubechies wavelet includes the Daubechies wavelet functions and scaling functions. 

The Nth order family of Daubechies wavelets, specified by DBN, has no explicit 

expression with the order N, excluding for DB1, which is named the Haar wavelet. 

Accordingly, Equations (3.16) and (3.30) become: 

𝜙 (𝑡) = ∑ 𝑐(𝑘) 𝜙 (2𝑡 − 𝑘)
2𝑁−1
𝑘=0                                                                                             (3.36)  

 𝜓 
 (𝑡) = ∑ 𝑏(𝑘) 𝜙 (2𝑡 − 𝑘)

2𝑁−1
𝑘=0 =  ∑ (−1)𝑘 𝑐2𝑁−1−𝑘  𝜙 (2𝑡 − 𝑘)

2𝑁−1
𝑘=0                           (3.37) 

 A Daubechies wavelet of order N always satisfies the following conditions: 

 It is compactly supported in the interval [0, 2𝑁 − 1], 
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 𝜓 
 (𝑡) has N vanishing moment:  

∫ 𝑡𝑚𝜓𝑁(𝑡)
∞

−∞
    𝑚 = 0,… ,𝑁 − 1                                                                                        (3.38) 

 With an increasing number of vanishing moments, i.e. with higher order of N, the wavelet 

function becomes smoother. Figures 3.1 and 3.2 illustrate the DB wavelet and scaling 

functions with the orders of 1, 2, 4, and 5, respectively. 

  

  

Figure 3.1: The Daubechies wavelet functions for DB1, DB2, DB4 and DB5 

 

  

  

Figure 3.2: The Daubechies scaling functions for DB1, DB2, DB4 and DB5 
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3.5.2 Fast wavelet transformation 

To calculate the scaling function 𝜙 (𝑡) and the corresponding wavelet function 𝜓 
 (𝑡) of 

Daubechies wavelets, the two-scale relations introduced by Equations (3.16) and (3.30) 

should be employed. Therefore, certain conditions or requirements on the sequence 𝑐(𝑛) 

and 𝑏(𝑛) beget certain characteristics of the scaling function 𝜙 (𝑡) and of the wavelet 

function  𝜓 
 (𝑡). Some of these conditions are summarized as follows: 

Condition 1: ∑ 𝑐(𝑛) = 22𝑁−1
𝑛=0                                                                                                (3.39) 

 Two additional conditions that must be satisfied by the coefficients 𝑐(𝑘) are the condition 

of accuracy, 

Condition 2: ∑ (−1)𝑛𝑛𝑚𝑐(𝑛) = 02𝑁−1
𝑛=0  ,      𝑚 = 0, 1, 2,… ,𝑁 − 1                                 (3.40) 

and the condition of orthogonality 

Condition 3: ∑ 𝑐(𝑛)𝑐(𝑛 + 2𝑚) = 0
(2𝑁−1−2𝑚)
𝑛=0  ,      𝑚 = 0, 1, 2,… ,𝑁 − 1                     (3.41) 

 In addition, the orthogonality of the scaling function results in: 

Condition 4: ∑ 𝑐(𝑛)2 = 12𝑁−1
𝑛=0                                                                                               (3.42) 

 The scaling function coefficients 𝑐(𝑛) of a Daubechies wavelet of order N can be 

determined using Equations (3.39) to (3.42). Table 3.1 presents the coefficients 𝑐(𝑛) and 

𝑏(𝑛) for Daubechies orders 1, 2, 4 and 5. 

Table 3.1: The coefficients of two-scale relations for DB1, DB2, DB4, and DB5 

wavelet functions and scaling functions 
 n 𝒄(𝒏) 𝒃(𝒏)  n 𝒄(𝒏) 𝒃(𝒏) 

DB1 0 

1 

1 

1 
 

1 

-1 
 

DB5 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0.226419 

0.853944 

1.024327 

0.195767 

-0.34266 

-0.0456 

0.109703 

-0.00883 

-0.01779 

0.004717 
 

0.004717 

0.017792 

-0.00883 

-0.1097 

-0.0456 

0.342657 

0.195767 

-1.02433 

0.853944 

-0.22642 
 

DB2 0 

1 

2 

3 

0.68301 

1.18301 

0.31699 

-0.18301 
 

-0.18301 

-0.31699 

1.18301 

-0.68301 
 

DB4 0 

1 

2 

3 

4 

5 

6 

7 

0.325803 

1.010946 

0.8922 

-0.03958 

-0.26451 

0.043616 

0.046504 

-0.01499 
 

-0.01499 

-0.0465 

0.043616 

0.264507 

-0.03958 

-0.8922 

1.010946 

-0.3258 
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Replacing 
𝑡

2𝑗+1
−𝑚 for t in Equations (3.16) and (3.30), gives the general expressions: 

𝜙𝑗,𝑚
 (𝑡) =

1

√2
∑ 𝑐(𝑘)𝑘∈ℤ 𝜙𝑗−1,2𝑚+𝑘

 (𝑡)                                                                     (3.43) 

𝜓𝑗,𝑘
 (𝑡) =

1

√2
∑ 𝑏(𝑘)𝑘∈ℤ 𝜙𝑗−1,2𝑚+𝑘

 (𝑡)                                                                   (3.44) 

Rewriting Equation (3.20) by substituting the Equation (3.43) into the Equation (3.20), it 

is expressed as: 

𝑎(𝑗,𝑚) = ∫ 𝑓(𝑡)
1

√2
∑ 𝑐(𝑘)𝑘∈ℤ 𝜙𝑗−1,2𝑚+𝑘

 (𝑡)𝑑𝑡    
+∞

−∞
                                                           (3.45) 

 which can be further expanded as: 

𝑎(𝑗,𝑚) =
1

√2
∑ 𝑐(𝑘)𝑎(𝑗 − 1, 2𝑚 + 𝑘)𝑘∈ℤ = 

1

√2
∑ 𝑐(𝑛 − 2𝑚)𝑎(𝑗 − 1, 𝑛)𝑚∈ℤ          (3.46) 

Equation (3.45) indicates that, by knowing the coefficients 𝑐(𝑛), it is feasible to achieve 

the coefficients 𝑎(𝑗,𝑚) at scale index 𝑗 from the coefficients 𝑎(𝑘,𝑚) at scale index 𝑘, 

where  𝑘 < 𝑗, by repeating the procedure explained in Equation (3.46). 

Similar to Equation (3.46), note that the coefficients 𝑏(𝑛) are known, the coefficients 

𝑑(𝑗,𝑚) can be obtained at scale index 𝑗 from the coefficients 𝑎(𝑘,𝑚) at scale index 𝑘, 

where 𝑘 < 𝑗,  by the following equation: 

𝑑(𝑗,𝑚) =
1

√2
∑ 𝑏(𝑘)𝑎(𝑗 − 1, 2𝑚 + 𝑘)𝑘∈ℤ = 

1

√2
∑ 𝑏(𝑛 − 2𝑚)𝑎(𝑗 − 1, 𝑛)𝑚∈ℤ            (3.47) 

 In general, while the approximation coefficients have been obtained at a specific scale 

index 𝑗, the approximation and detail coefficients can be achieved at any scale index 

greater than 𝑗, by applying the two-scale relations for the scaling function and the wavelet 

function in Equations (3.16) and (3.30). This decomposition algorithm is called the fast 

wavelet transform. 

In addition, Equation (3.31) can be expanded by using Equations (3.43) and (3.44): 

𝑓𝑗(𝑡) = ∑ 𝑎(𝑗 + 1, 𝑙)𝑙∈ℤ
1

√2
∑ 𝑐(𝑛 − 2𝑙)𝑛∈ℤ ∅𝑗,𝑛(𝑡)  

           +∑ 𝑑(𝑗 + 1, 𝑙)𝑙∈ℤ
1

√2
∑ 𝑏(𝑛 − 2𝑙)𝑛∈ℤ 𝜙𝑗,𝑛(𝑡)                                                               (3.48) 
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 Since 𝑓𝑗(𝑡) can be expanded according to 𝑎(𝑗, 𝑛) and ∅𝑗,𝑛(𝑡) of Equation (3.18). 

Accordingly, Equation (3.48) can be rewritten as: 

𝑎(𝑗, 𝑛) = 𝑎̃(𝑗 + 1, 𝑛) + 𝑑̃(𝑗 + 1, 𝑛)                                                                                    (3.49)    

where  

𝑎̃(𝑗 + 1, 𝑛) =
1

√2
∑ 𝑎(𝑗 + 1, 𝑙)𝑙∈ℤ 𝑐(𝑛 − 2𝑙)                                                          (3.50) 

𝑑̃(𝑗 + 1, 𝑛) =
1

√2
∑ 𝑑(𝑗 + 1, 𝑙)𝑙∈ℤ 𝑏(𝑛 − 2𝑙)                                                                         (3.51) 

 Generally, Equation (3.49) demonstrates that the approximation coefficients at the scale 

index 𝑗 can be reconstructed based on the combination of detail and approximation 

coefficients at the scale index 𝑗 + 1. This reconstruction algorithm is known as the inverse 

fast wavelet transform. 

In order to demonstrate the fast wavelet transform and the inverse fast wavelet transform 

from a digital filtering point of view, initially ℎ0(𝑛), ℎ1(𝑛), ℎ̃0(𝑛) and ℎ̃1(𝑛) are defined 

as: 

ℎ0(𝑛) =
𝑐(𝑛)

√2
 ; ℎ0(𝑛) =

𝑏(𝑛)

√2
; ℎ̃0(𝑛) = ℎ0(𝑛); ℎ̃1(𝑛) = ℎ1(𝑛)                             (3.52) 

Substituting Equation (3.52) into Equations (3.46) and (3.47), they are rewritten as: 

𝑎(𝑗, 𝑛) = ∑ 𝑎(𝑗 − 1,𝑚)𝑚∈ℤ ℎ̃0(2𝑛 − 𝑚)                                                                        (3.53) 

𝑑(𝑗, 𝑛) = ∑ 𝑎(𝑗 − 1,𝑚)𝑚∈ℤ ℎ̃1(2𝑛 − 𝑚)                                                                       (3.54) 

Equation (3.53) indicates that 𝑎(𝑗, 𝑛) is achieved from the convolution of 𝑎(𝑗 − 1,𝑚) 

with the sequence ℎ̃0(𝑘) and by retaining only the even indexed samples. It means passing 

𝑎(𝑗 − 1,𝑚)  through a digital filter 𝐻0 with impulse response ℎ̃0(𝑘), followed by down-

sampling by a factor of 2. Similarly, Equation (3.54) demonstrates that 𝑑(𝑗, 𝑛) is achieved 

by the convolution of 𝑎(𝑗 − 1, 𝑚) with a digital filter 𝐻1 with impulse response ℎ̃1 and 

down-sampling by a factor of 2. 

Substituting Equation (3.52) into Equations (3.50) and (3.51), they can be rewritten as:  
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𝑎̃(𝑗 + 1, 𝑛) = ∑ 𝑎(𝑗 + 1, 𝑙)𝑙∈ℤ ℎ0(𝑛 − 2𝑙)                                                           (3.55) 

 𝑑̃(𝑗 + 1, 𝑛) = ∑ 𝑑(𝑗 + 1, 𝑙)𝑙∈ℤ ℎ1(𝑛 − 2𝑙)                                                             (3.56) 

Equations (3.55) and (3.56) can be explicated as embedding zeros among adjacent 

samples of the sequences 𝑎(𝑗 + 1, 𝑙) and 𝑑(𝑗 + 1, 𝑙), i.e. up-sampling, and filtering the 

outcoming sequences through the filters 𝐻0 and 𝐻1 with impulse responses ℎ0(𝑘) and 

ℎ1(𝑘), respectively. Consequently, the reconstructed approximation coefficients 𝑎(𝑗, 𝑛) 

can be achieved by the sum of two outcoming sequences 𝑎̃(𝑗 + 1, 𝑛) and 𝑑̃(𝑗 + 1, 𝑛) in 

Equations (3.55) and (3.56). Figure 3.3 indicates the performance of the fast wavelet 

transform and inverse fast wavelet transform.  

 

 

Figure 3.3: The fast and inverse wavelet transform from a digital filter point of view 

 

3.5.3 Wavelet decomposition of signals through filters   

The multiresolution analysis always begins with approximation of continuous signals or 

functions. In real applications, only sampled values of measured signals at a specified 

time interval ∆𝑡 are accessible. Otherwise, it is not feasible to correctly calculate such 

approximation coefficients of discrete signals. In brief, there may be a question on how 

the set of approximation coefficients is evaluated from the discrete signals, in such a way 

that it can be applied in the multiresolution analysis.  

Practically, because the scaling function operates as the Dirac Delta Function for a lower 

level of scale index and convolving a continuous function 𝑓 (𝑡) with the time-delayed 
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Dirac Delta Function is identical to time-delay 𝑓 (𝑡) by the same amount. Accordingly, 

the approximation coefficients at that scale index can be taken into account as a sampling 

of 𝑓 (𝑡). If the sampling of 𝑓 (𝑡) is more than the Nyquist rate, the samples can be 

considered the approximation coefficients at a specified scale index. This implies that 

detail coefficients are not required at that scale index. For instance, if a signal is defined 

and sampled at 2−10 in the time interval 0 ≤ 𝑡 < 1 sec,  the samples of this discrete signal 

can be indicated as approximation coefficients in the expansion of the original signal 

based on the scaling functions at scale index 𝑗 = −10 , i.e., {𝜙−10,𝑘
 (𝑡)}

𝑘=1,2,3,…,210−1
. 

Hence, the fast wavelet transform can be employed to a discrete signal while the discrete 

signal can be demonstrated as approximation coefficients at a specific scale index. If the 

sampling rate of a discrete signal is known, the highest frequency that the signal X[n] can 

have is determined.  The highest frequency of the discreet signal X[n] can be achieved 

whenever the sampling rate of that signal is known. As depicted in Figure 3.4, the discrete 

signal X[n] with given sampling rate and the sampling points of 2𝑛 is passed through the 

half band high-pass filter 𝐻1 and low pass filter 𝐻0, followed by down-sampling by 2. 

The outcome of the high-pass filter 𝐻1 has 2𝑛−1 samples and only contains the 

frequencies between 
𝑓𝑚𝑎𝑥

2
 and 𝑓𝑚𝑎𝑥 . These samples are called the detail coefficients at 

level 1, indicated by  𝐷1[𝑛]. Similarly, the output of the low-pass filter 𝐻0 has 2𝑛−1 

samples and includes the frequency range between 0 to 
𝑓𝑚𝑎𝑥

2
, representing the 

approximation coefficients at level 1, indicated by 𝐴1[𝑛]. At the second level, only 

approximation coefficients, 𝐴1[𝑛], are passed through the high-pass filter 𝐻1 and low-

pass filter 𝐻0, and detail coefficients 𝐷1[𝑛] are transferred to level 2 without any change. 

The approximation coefficients at level 2 of discrete signal X[n] are represented by 𝐴2[𝑛], 

with 2𝑛−2 samples and the frequency range [0,
𝑓𝑚𝑎𝑥

4
] and also, the detail coefficients at 

level 2, are indicated by 𝐷2[𝑛], with 2𝑛−2 samples and the frequency range [
𝑓𝑚𝑎𝑥

4
,
𝑓𝑚𝑎𝑥

2
]. 
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This process can carry on until approximation coefficients at a specific level disappear. 

Accordingly, The original discrete signal X[n] at decomposition level 𝑁𝑑, will result in 

the sets {𝐴𝑁𝑑, 𝐷𝑁𝑑, 𝐷𝑁𝑑−1, … , 𝐷2, 𝐷1}, where the frequency range of 𝐴𝑁𝑑 is [0,
𝑓𝑚𝑎𝑥

2𝑁𝑑
] and 

the frequency range of 𝐷𝑗  for 1≤ 𝑗 ≤ 𝑁𝑑 is [
𝑓𝑚𝑎𝑥

2𝑗
,
𝑓𝑚𝑎𝑥

2𝑗−1
]. 

 

 
Figure 3.4: A schematic diagram of the DWT at decomposition level 3 

 

 Wavelet packet transform 

The WPT can be considered as an extension of the DWT.  The difference between WPT 

and DWT is that, the WPT decomposes not only the approximation but also the detail 

coefficients at each level of decomposition. This leads to the tree structure of 

decomposition depicted in Figure 3.5. By comparing this structure with the DWT 

decomposition, presented in Figure 3.4, it can be seen that at each level of decomposition 

in the DWT algorithm, the detail coefficients are transferred to the next level without 

change. However, in the WPT algorithm, all of the coefficients at each level are further 
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decomposed. Therefore, it is more flexible and has wider base for the analysis of signals. 

The purpose of separating the signal into packets is to obtain an adaptive partitioning of 

the time frequency plane depending on the signal. 

 As shown in Figure 3.4, letters A and D produce the approximation and detail 

components of the previous set of coefficients through low-pass filtering with 𝐻0 and 

high-pass filtering with  𝐻1, followed by down-sampling by 2, respectively. The letter A 

or D is added to the left of the name of the coefficient to present the most recent filtering 

process. For instance, the original signal X[n] can be decomposed into the set 

{AAA, DAA, ADA,DDA, AAD,DAD, ADD,DDD}, at decomposition level 3 by the WPT. In 

addition, the decomposed signal X[n] with 2𝑛 samples in terms of the WPT at level 𝑁𝑑 

have identical samples 
2𝑛

2𝑁𝑑
 and frequency range of [

(𝑖−1)𝑓𝑚𝑎𝑥

2𝑁𝑑
,
(𝑖)𝑓𝑚𝑎𝑥

2𝑁𝑑
].  

 

 
Figure 3.5: A Schematic diagram of the WPT at decomposition level 3 
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 Summary 

In this section, the principal features of the wavelets and the main aspects of the wavelet 

theory are briefly presented. Due to the localization in time and property of vanishing 

moments, wavelets are able to represent certain functions, such as piecewise polynomials, 

in a sparse manner. As the wavelet transform coefficients computed at locations where 

the function is smooth will be zero, only a few significant coefficients will be sufficient 

to correctly approximate the function. In addition, their simultaneous localization in 

frequency and time of wavelets makes them potentially effective building blocks for non-

stationary signals whose spectral characteristics evolve over time. 

Generally, three various types of the wavelet transform can be specified: the continuous 

wavelet transform, discrete wavelet transform and wavelet packet transform. The 

continuous wavelet transform is carried out by the inner product of a signal and wavelet 

functions. The resulting coefficient of continuous wavelet transform at a given set of 

specific scale and translation parameter depicts a measure of the similarity among the 

wavelet function and the signal with a set of the scale and translation parameter. In the 

discrete wavelet transform, the multiresolution structure inherent to orthogonal wavelets 

performs two useful objects: (1) it enables the creation of fast decomposition and 

reconstruction algorithms, and (2) it can analyze the dynamic state of a system 

simultaneously at several scales chosen to reflect the actual physical processes underlying 

the observed behavior as closely as possible. The wavelet packet transform indicates the 

detailed information of a signal in high-frequency range, thus, the deficiency that the 

discrete wavelet transform suffers from a relative low resolution in the high-frequency 

range is resolved. 

 In this chapter, wavelet theory and its utilizations, which are of highest interest for 

damage detection and system identification, have been presented. Nevertheless, wavelet 

analysis has an extensive range of applications such as signal analysis, control 
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applications, numerical analysis and audio applications. Wavelet theory can be used in 

numerical analysis for solving ordinary and partial differential equations. For signal 

analysis, the wavelet transform coefficients of signals can be manipulated in various 

techniques to achieve several consequences, e.g., for feature extraction, classification, 

compression, and denoising. In addition, wavelet analysis can be applied for modeling 

and controlling the dynamical systems behavior and separating and partitioning of system 

responses. Eventually, wavelets are effective tools for the analysis and adaption of audio 

signals. 
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4 CHAPTER 4: DAMAGE DETECTION AND SYSTEM 

IDENTIFICATION ALGORITHMS 

 Introduction 

This chapter describes the formulations of (1) the proposed RWPE-based damage 

detection algorithms for accurately determining the location and severity of damages, and 

of (2) the proposed wavelet-based system identification method for identifying the 

structural parameters of linear and nonlinear systems. In Section 4.2, first deals with the 

development of a new hybrid approach using wavelet multiresolution analysis and genetic 

algorithm to accurately determine the location and severity of the damage. This approach 

contains two steps; first step detects damage locations by defining the damage index 

called RWPE, and in the next step, genetic algorithm optimization method estimates the 

damage severities at the identified locations through introducing a database. Secondly, an 

optimized damage identification algorithm is introduced by using the effective damage 

index and GA, in a reference-free manner. The RWPE measurements of different sensor-

to-sensor pair are utilized for defining reference-free damage index (𝑅𝐷𝐼) for each sensor 

location. In Section 4.3, dealing with parametric system identification, initially the 

equations of motion of the system in the time domain are converted into the wavelet 

domain by applying the connection coefficients of the scaling function. Next step is 

defining the dominant components based on the relative energy of WPT components of 

the acceleration responses, and creating the equations of motion in the wavelet domain 

according to the dominant components. Finally, the structural parameters of a linear 

system, estimated by implementing the least square error minimization method across the 

dominant components, are demonstrated to converge to the correct values. Moreover, 

wavelet multiresolution analysis is used to identify the tangent stiffness matrix and the 

hysteresis-restoring force of nonlinear structural systems. The tangent stiffness of the 
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structural system can be approximated in terms of the scaling functions at specific scale 

index.  

 Damage detection algorithms based on wavelet multiresolution and GA 

Vibration-based structural damage identification aims at comparing structural parameters 

extracted from measured vibration signals. When structural damage occurs, a 

corresponding change is produced according to the damage features that evolve from the 

structural response signals. The key issue in structural damage identification is how to 

identify and quantify this change. This section deals with the development of a hybrid 

approach using wavelet multiresolution analysis and GA to accurately determine the 

location and severity of the damage. 

4.2.1 Wavelet packet component energies 

In the context of signal processing, the energy of a signal is an important physical factor, 

since its distribution over time and frequency can reflect the main characteristics of the 

signal. The theory of wavelet, as regards with the energy concept, can offer noteworthy 

information as to the distribution of the energy related with the various WPT components. 

It is stated that the energies of wavelet packet component are sensitive parameters and 

could be used as damage indices to identify the damage locations (Yen & Lin, 2000; Sun 

& Chang, 2004; Han et al., 2005; Law et al., 2005). The wavelet packet energy 𝐸𝑓 of a 

signal is defined as: 

𝐸𝑓 = ∫ 𝑔2(𝑡)𝑑𝑡 = ∑  2𝑗

𝑚1=1
∑  2𝑗

𝑚2=1
∫ 𝑔𝑗

𝑚1(𝑡)𝑔𝑗
𝑚2(𝑡)𝑑𝑡

∞

−∞

∞

−∞
                                     (4.1) 

Where 𝑔𝑗
𝑚1  and

 
𝑔𝑗
𝑚2  stand for decomposed wavelet components. The total signal energy 

can be expressed as the summation of wavelet packet component energies when the 

mother wavelet is orthogonal: 
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𝐸𝑓 = ∑ 𝐸𝑔𝑗
𝑖 = ∑  2𝑗

𝑖=1 ∫ 𝑔𝑗
𝑖(𝑡)2𝑑𝑡

∞

−∞
2𝑗
𝑖                                                                             (4.2) 

Then, the relative energy of each WPT component can be written as: 

𝑝𝑖𝑗 =
𝐸
𝑔𝑗
𝑖

𝐸𝑓
                                                                                                                             (4.3)  

The 𝑝𝑖𝑗  values correspond to a ratio of the energy of a particular coefficient 𝐸𝑔𝑗
𝑖  to the 

total energy. Hence, 𝑝𝑖𝑗 values sum to one. Furthermore, value of 𝑝𝑖𝑗  performs as a 

probability distribution of the energy; it provides information about the relative energy 

associated with various frequency ranges indicated in the signal and their corresponding 

degrees of importance. 

4.2.2 Relative wavelet packet entropy (RWPE) 

The entropy is a quantitative measurement of the amount of disorder in measured signals. 

The thermodynamic concept of entropy was presented by Shannon (Shannon, 1996) in 

the field of communication for measuring  the estimation error in a signal. While a finite 

number of 𝑁 incidents 𝑋 = (𝑥𝑖|𝑖 = 1, 2,… ,𝑁) take place with a probability 

distribution 𝑃 = (𝑝𝑖|𝑖 = 1, 2,… ,𝑁), they can be illustrated as  

𝑃≡(𝑝1 ,𝑝2 ,𝑝3,…,𝑝𝑁)
𝑇

𝑋≡(𝑥1 ,𝑥2 ,𝑥3,…,𝑥𝑁)𝑇
                                                                                                (4.4)                         

The mathematical definition of entropy is expressed by the following equation:  

 𝑆(𝑃) = −𝑘 ∑ 𝑝𝑗ln 𝑝𝑗
𝑁
𝑗                                                                                                       (4.5) 

In which 𝑆(𝑃) indicates the entropy of 𝑃 and it is the unique family of functions; 𝑘 is a 

positive constant, and ln denotes the natural logarithmic function. Through Equation 

(4.5), the general level of disorder in the system can be quantified. Figure 4.1 

demonstrates a mapping relationship among entropy i.e., 𝑆 = −𝑘. 𝑝 . ln( 𝑝) , and the 

probability distribution related to a finite number of incidents (𝑋). 

With increasing the extent of damage, the degree of disorder of the measured structural 

vibration signals rises. For instance, crack in structural components or missing or 
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loosening a bolt in connection and welded joints decreases the structural stiffness and 

increases nonlinearity owing to frictions and gaps. Such changes in a system are due to 

physical damage and cause uncertainty, increase of the amount of signal disorder because 

of complex energy dissipation mechanisms and considerable increments in the number of 

interacting energy dissipation events. As a special case, pure white noises indicate 

approximately uniform probability distribution while all amplitudes of noisy signals are 

probably to occur with an identical probability. On the other hand, the structural vibration 

signals are expected to indicate a certain probability distribution, for instance, adjacent to 

the normal distribution. As depicted in Figure 4.1, a pure white noise has greater values 

of entropy compare with those of structural vibrational signals. Hence, if damage takes 

place at every location, the disorder magnitude of the structural vibrational signals will 

rise and a greater value of entropy will be also achieved. Thus, the wavelet entropy can 

efficiently measure variations of the probabilistic distribution of wavelet component 

energies. 

 
Figure 4.1: Probability distribution and entropy comparison 

 

Wavelet packet entropy is a combination of multiresolution WPT with information 

entropy to obtain information about the relative energy correlated with various frequency 

bands presented in structural response segments for investigating damage location. Ren 

and Sun (2008) applied the concept of the wavelet entropy to structural damage detection 

Univ
ers

ity
 of

 M
ala

ya



65 

 

problems. The wavelet entropy spectra represents the level of order/disorder of vibration 

signals (Rosso et al., 2006). According to the Shannon entropy theory and the wavelet 

energy ratio defined above, wavelet packet entropy is given as: 

𝑆𝑊𝑃𝐸 = 𝑆𝑊𝑃𝐸(𝑝) = −∑   𝑗 ∑ 𝑝𝑖𝑗 . 𝑙𝑛𝑝𝑖𝑗
 
𝑖                                                                              (4.6)  

in which the range of 𝑗 depends on the selection of decomposition level of a signal and it 

is a constant value in the case of the WPT. Entropy of the wavelet changes by damage in 

a structure. Therefore, in order to characterize the location and quantification of damage, 

such changes in the wavelet packet entropy before and after occurrence of damage can be 

taken to formulate the damage detection problem. To identify the change of vibration 

signals of a structure, the relative wavelet packet entropy (RWPE) is defined as: 

𝑆𝑅𝑊𝑃𝐸
 (𝑝  |𝑞 ) = ∑   𝑗 ∑ |𝑝𝑖𝑗

 ln (
𝑝𝑖𝑗
 

𝑞𝑖𝑗
 )|

 
𝑖                                                                                   (4.7) 

where 𝑝 and 𝑞 denote the relative energy of a particular WPT component from damaged 

and undamaged state, respectively. As can be deduced from the equation, in case of 

identical quantity for relative wavelet energy ratios 𝑝𝑖𝑗
  and

 
𝑞𝑖𝑗
 , the RWPE value is zero 

and when structure is subjected into damage, these values change and, consequently, the 

RWPE value increases. The RWPE proposed in this study is obtained by slight 

modification of the relative Kullback-Shanoon entropy (Rosso et al., 2006). It is 

noteworthy that the measured acceleration responses in the same direction should be 

employed in calculations of RWPE. Consider the direction of accelerations, RWPE can 

be rewritten as (Tsai et al., 2009): 

𝑆𝑅𝑊𝑃𝐸
𝑘 (𝑝𝑘|𝑞𝑘) = ∑   𝑗 ∑ |𝑝𝑖𝑗

𝑘 𝑙𝑛 (
𝑝𝑖𝑗
𝑘

𝑞𝑖𝑗
𝑘)|

 
𝑖 ,      𝑘 = 𝑥, 𝑦, 𝑧                                                       (4.8)  

Damage at a location influences the vibration signals in each direction, thus a damage 

index based on the RWPE is defined as: 

𝐷𝐼𝑅𝑊𝑃𝐸 = ∑ 𝑆𝑅𝑊𝑃𝐸
𝑘 (𝑝𝑘 |𝑞𝑘)

𝑥,𝑦,𝑧 
𝑘=1                                                                                        (4.9) 

WPT component energy improves the capability of RWPE-based structural damage 

identification to extract the irregular information of a signal originated by damage. 
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Efficiency of the RWPE is significant at analysis of high frequency especially when the 

related information is important. 

4.2.3 Damage severity evaluation using RWPE and GA  

4.2.3.1 The genetic algorithm method 

GAs are stochastic search algorithms, which are based on the mechanics of natural 

selection and natural genetics designed to efficiently search large, non-linear, discrete and 

poorly understood search spaces, where expert knowledge is scarce or it is difficult to 

model and where traditional optimization techniques fail, (He et al., 2001b). In GA, a 

population of chromosomes is generated by randomly creating a set of candidate 

solutions. These solutions are then encoded into binary strings. Each chromosome in the 

population is then subjected to an evaluation where a fitness value is assigned to each 

chromosome based on how well the stated objective is satisfied. Generally, a simple GA 

consists of three operations: (1) selection, (2) crossover, and (3) mutation.  

Some basic concepts and operators of a GA are introduced in the following before the 

description of the suggested algorithm is presented. 

4.2.3.1.1 Selection 

In order to reproduce the future populations, chromosomes are selected according to their 

fitness. In case only the most highly fit chromosomes are involved in the selection, due 

to the lack of diversity, a very limited solution-space may be achieved although the quality 

of a chromosome is measured by its fitness value. This is why the selection is a key step 

within GA solution. On the other hand, increase of the future generations' fitness is not 

guaranteed by arbitrary selection of chromosomes. 

Several selection procedures have been applied in GA programs such as roulette wheel, 

ranking, tournament, and etc. Roulette wheel selection depends on the ratio of fitness 
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value of a string to the average fitness value of the population. Selection of strings is 

dependent on their contribution to the mean value of the population, such that those 

strings which have more contribution are selected for reproduction. Furthermore, strings 

are linearly ranked in ranking selection according to their fitness and high-ranked strings 

are chosen for reproduction. In another procedure, namely tournament selection, the 

strings are usually grouped into pairs of strings in a random manner and the fittest of all 

groups are selected for mating with each other. 

4.2.3.1.2 Crossover 

Crossover is the most significant operator in a GA. This operator carries out the mating 

between two or more parents that are chosen through the selection operator in the previous 

step. In order to create new pairs of strings (offspring) with an improved performance 

index, crossover exchanges pieces of information (bits) among promising pairs of string 

(parents). Fitter children are created by stronger parents. These parent strings exchange 

portions of their strings at one or n randomly selected bit positions. 

Among the crossover operators family, single-point crossover, two-point crossover, 

uniform crossover and arithmetical crossover are the common ones. Due to the lack of 

variety in the population of strings, selection and crossover suffer from probable loss of 

some effective genetic information in the strings and sometimes may even converge to a 

local optimum, to avoid this and to ensure sufficient variety, the third operator known as 

mutation is required. 

4.2.3.1.3 Mutation 

Mutation is a variation in a randomly selected bit of a string; in binary coding this means 

changing a 0 to 1 and conversely. So, a small probability of mutation should be applied 

in order to avoid excessive randomness in the search space. This is typically carried out 

in the range 0.001 and 0.01, while higher values can also be taken, in some cases, to 
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increase the variety of the population. However, the closer the selected probability of 

crossover to 1, the higher the exchange of effective information is ensured. Combination 

of the earlier mentioned operators; selection, crossover, and mutation, originates the 

global nature of search as opposed to when each operator is used individually. 

4.2.3.2 Damage severity assessment 

In this section, the GA optimization method is applied to estimate the damage severities 

at the identified locations through defining a database to reveal the relationships between 

the energies obtained in the previous steps and damage severities.  

For this purpose, a binary GA with tournament selection is used to pick individuals to 

undergo crossover and mutation. The two-point crossover is employed for every 

chromosome of the chromosome-pair with a 50% probability of selection; the two parents 

selected for crossover are in charge of exchanging information that lies between two 

randomly generated points within the binary string. The chromosomes are the 

representations of tentative solutions, which can be evaluated by a fitness function. The 

fitness function determines the fitness of the chromosome. These chromosomes undergo 

genetic operations to produce next-generation chromosomes. This occurs repeatedly until 

chromosomes of acceptable solutions are discovered. 

The selected chromosome has two kinds of variable: the damage locations, and severities 

of damage. The GAs use bit strings to represent their chromosomes. Consequently, each 

gene of the chromosome may be either 0 or 1. Therefore, bit strings may be directly used 

to encode the candidate solution. In other words, the solution for the true damage 

configuration is a bit string whose substrings indicate the related parameters. Figure 4.2 

depicts the proposed chromosome in a case with two damage locations with different 

severities. 
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Figure 4.2: Proposed chromosome for GA for two damage location and severities 

 

In order to formulate the damage severity problem as an optimization problem, the 

following fitness function is applied to search for the “best fit” severities from the 

evaluation database:  

min f = ‖
∑ 𝐹𝛼𝑘

𝛽𝑘𝑛𝑑
𝑘=1 −𝐹𝑚

∑ 𝐹𝛼𝑘
𝛽𝑘𝑛𝑑

𝑘=1

‖
2 

                                                                                                                           (4.10)  

Where ‖. ‖2 is the Euclidean norm, F=∑   𝑗 ∑ 𝑝𝑖𝑗
 
𝑖 (𝛼1 , 𝛼2, … , 𝛼𝑛) is the discrete function 

of the 𝑛 damage severities 𝛼𝑛 at specified locations (it is reflected by the severity 

evaluation database). The severity search space is limited to minimum and maximum 

range of constraint, 𝑘 is the number of damage locations, 𝛽 is the sensor locations and Fm 

is the summation of measured energies in damage locations for each severity of damage. 

To sum up, GA is used to optimally search for locations and severities of damages, which 

can be reflected by the values of the energies. Figure 4.3 depicts the whole scheme of the 

damage identification algorithm.  

Damage severities Damage locations 

α2 α1 

0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 

location 11 location 13 
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Figure 4.3: Flowchart of the proposed identification algorithm 

 

4.2.4 RWPE-based Reference-free damage identification algorithm  

Most of the challenges of existing damage identification methods require reference data 

which is not always available. There have also been urgent requirements for real-time 

monitoring to avoid sudden catastrophic disasters. Therefore, application of reference-

free damage identification can be vital to most of in-field degraded structures.  

Accordingly, a new reference-free wavelet signal processing algorithm, based on the 

RWPE, has been proposed. The method does not require the reference data from an 

undamaged beam because of its effective comparative approach of response signals of 

different locations, which is defined as: 
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𝑅𝑆𝑅𝑊𝑃𝐸
𝑘 (𝑝λ𝑘|𝑝𝜃𝑘) = ∑   𝑗 ∑ |𝑝𝑖𝑗

λ𝑘 𝑙𝑛 (
𝑝𝑖𝑗

λ𝑘

𝑝𝑖𝑗
𝜃𝑘)|  

 
𝑖   𝑘 = 𝑥, 𝑦, 𝑧                                                             (4.11)  

where λ and 𝜃 indicate location where the data is measured. Since damage at a location 

affects vibration signals in each direction, the reference-free damage index at a location 

“λ” is defined as: 

𝑅𝐷𝐼𝑅𝑊𝑃𝐸
λ = ∑ ∑  𝑁

𝛽=1 𝑆𝑅𝑊𝑃𝐸
𝑘 (𝑝λ𝑘|𝑝𝜃𝑘)  

𝑥,𝑦,𝑧 
𝑘=1                                                                   (4.12)  

In which N indicates the whole number of locations that correspond to the number of 

sensors. Based on this equation, the vibration signal at a reference point is compared with 

signals from other measured points, and thus allows the possibility of damage detection 

without using data from the undamaged state. In this regard, the proposed RWPE-based 

reference-free 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  at various locations 𝑅𝐷𝐼𝑅𝑊𝑃𝐸

 1 , 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
 2 , ..., 𝑅𝐷𝐼𝑅𝑊𝑃𝐸

 𝑛  are 

calculated. Suppose that location 𝑥 is damaged; the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
 𝑥  becomes a larger value than 

other values of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  which correspond to other locations because all the terms of 

𝑅𝑆𝑅𝑊𝑃𝐸
 (𝑝𝑥|𝑝1), 𝑅𝑆𝑅𝑊𝑃𝐸

 (𝑝𝑥|𝑝2), ..., 𝑅𝑆𝑅𝑊𝑃𝐸
 (𝑝𝑥|𝑝𝑛−1) and 𝑅𝑆𝑅𝑊𝑃𝐸

 (𝑝𝑥|𝑝𝑛) indicate 

larger amounts, excluding 𝑅𝑆𝑅𝑊𝑃𝐸
 (𝑝𝑥|𝑝𝑥) which has the value equal to 0. Figure 4.4, 

graphically illustrates the calculations of two RWPE-based reference-free 

𝑅𝐷𝐼𝑠𝑅𝑊𝑃𝐸
 

 
 with 𝑁 sensors. For instance, while only one location of beam, where sensor 

3 is placed, is damaged, 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
 3  has a larger value than other ones, 𝑅𝐷𝐼𝑅𝑊𝑃𝐸

 𝑘  , 𝑘 =

1, 2, 4, … , 𝑁. 

 

 
Figure 4.4: Calculation of reference-free damage index (𝑅𝐷𝐼𝑅𝑊𝑃𝐸

 
 
 ) 
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In order to determine the location of damage clearly, it is proposed to establish a threshold 

value for damage indicators through applying statistical properties and the one-side 

confidence limit of the damage indicators from successive measurements (Han et al., 

2005; Xia et al., 2005): 

𝑈𝐿 = 𝜇 + 𝑍𝛼̅(
𝜎

√𝑁
)                                                                                                            (4.13) 

in which 𝑁 stands for the whole number of sensors distributed in a structure where a total 

of 𝑁 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  values can be achieved. When the mean value and the standard deviation 

of these 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  values are represented as 𝜇 and 𝜎, 𝑈𝐿 expresses the one-side (1 − 𝛼) 

upper confidence limit for these 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  values, while 𝑍𝛼̅ is the value of a standard 

normal distribution with zero mean and unit variance such that the cumulative probability 

is 100(1 − 𝛼)%. This limit can be considered as a threshold value which is an entrance 

point of possible abnormality in the damage indicator indicated by the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
 . The 

advantage of this damage identification is that setting of the threshold value is according 

to statistical properties of the damage indicator measured with sensors. The location of 

sensors whose the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  values exceed the threshold will represent where possible 

damage takes place. 

4.2.4.1 Choice of wavelet using GA 

The wavelet-based techniques are completely dependent on the mother wavelet function 

and accurate detection of damage locations can be achieved by choosing a proper mother 

wavelet function and selecting a suitable resolution level. This is mostly because the 

correlation between the mother wavelet functions and the signal is calculated as wavelet 

coefficients. Ingrid Daubechies invented what is called ‘compactly supported 

orthonormal wavelets’– thus making discrete wavelet analysis practical (Daubechies, 

1992). In structural health monitoring, wavelet functions in the Daubechies family are 

often chosen for signal analysis and synthesis because it satisfies the two crucial 
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requirements; the orthogonality of local basis functions and second or higher-order 

accuracy which is generally determined by trial and error methods based on intrinsic 

characteristics of the data. Apart from the reliance on the mother wavelet function, the 

wavelet-based methods link up with the decomposition level at which the wavelet 

analysis must be carried out. Specification of an appropriate level is not known in advance 

and depends on a wide range of parameters including the characteristics of the structure, 

the nature of the signal and the type, location and severity of the damage, etc. Several 

researchers have suggested trying different decomposition levels, (Ovanesova & Suarez, 

2004; Shinde & Hou, 2005; Taha et al., 2006a; Sun & Chang, 2007; Ren et al., 2008; 

Mikami et al., 2011). Basically, there is no computational logic behind the optimum 

selection of Daubechies order for damage identification. It has to be noted that calculation 

of the wavelet coefficients is in direct relation with the shape of the mother wavelet; the 

correlation between mother wavelet and signal is calculated as wavelet coefficients. 

Hence, in this section, an effectual algorithm is proposed to eliminate the shortcoming 

arising from the similarity of Daubechies family functions with adjacent order (e.g. DB4 

and DB5), as depicted in Figure 4.5. 

 

 

Figure 4.5: Order of Daubechies wavelet function 
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In the proposed algorithm, the GA is employed in order to search for the optimal 

Daubechies order and decomposition level of the signals by means of the fundamental 

fitness function as: 

max 𝐹𝑖𝑡 =  ‖1 −
𝑚𝑒𝑎𝑛(𝑅𝐷𝐼𝑅𝑊𝑃𝐸

 𝛾
 )

∑ 𝑅𝐹
𝑘
𝛽𝑛𝑑

𝑘=1

‖
2 

                                                                                (4.14)         

where ‖. ‖2 is the Euclidean norm, 𝛾 is number of sensor locations (𝛾 = 1, 2,… ,𝑁), 𝑅𝐹 

is the RWPE-based reference-free, 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
 

 
 , at identified location 𝛽, (𝛽 =1,2, ..., 𝑘), 

and 𝑘 is the number of damage locations. 

The procedure of employing GA begins by defining a chromosome, i.e. an array of 

variables whose values need to be optimized. The proposed chromosomes contain five 

genes for the Daubechies mother wavelet function and three genes for the decomposition 

level of signals, as shown in Figure 4.6. The fitness function generates an output from a 

set of input variables of a chromosome. These chromosomes undertake genetic operations 

to produce next generation chromosomes. This process is repeated until the convergence 

condition is reached. The convergence condition is obtained when either the best 

chromosome has not changed for a number of generations or the number of generations 

reaches its given maximum value. 

 
Figure 4.6: Proposed chromosome for GA for the optimal search of DB order and 

decomposition level 

 

Figure 4.7 depicts the whole scheme of the reference-free damage detection optimization 

processes.  
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Figure 4.7: Entire proposed reference-free damage identification algorithm 

 

 Parameter identification using wavelet multiresolution analysis  

Identification of structural properties is an important task for condition assessment, damage 

diagnosis, maintenance and repair and life cycle management. In this section, a method for 

identifying the structural parameters of linear and nonlinear systems is proposed based on the 

wavelet multiresolution analysis. 

4.3.1 Equation of motion according to the scaling function 

Generally, two subjects occur when one is identifying structural parameters i.e., stiffness, 

damping, and mass from the equations of motion of a structural system. One subject is 
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related with the fact that, in dynamic analyses, measured responses is usually in the form 

of acceleration response, and consequently the corresponding velocity and displacement 

is derived from the acceleration by means of integration process. However, retrieving the 

velocity and displacement from the acceleration response is intricate, while the degree of 

resolution of the integrated signal relies on several factors such as frequency content, 

sampling rate, and nature of the signal. The other subject is indicated by the manner that 

input data (e.g., accelerations, velocities, displacements, and excitations) can be 

manipulated without missing essential information about the system. This section 

ascertains how the scaling function plays an important role in deriving the velocity and 

displacement from the given acceleration. 

 The force-vibration differential equations of motion of an N-DOF linear system is given 

as: 

M𝑥̈(𝑡) + C𝑥̇(𝑡) + K𝑥(𝑡) = f(t)                                                                                       (4.15) 

in which 𝑥̈(𝑡), 𝑥̇(𝑡), 𝑥(𝑡), and f(t) are the length-N vectors of acceleration, velocity, 

displacement, and external force vectors, respectively; M, C, and K are N× N mass, 

damping, and stiffness matrices, respectively. 

In the Daubechies wavelet system with a given scaling function 𝜙(𝑡) and corresponding 

wavelet function 𝜓(t), the acceleration 𝑥̈ℎ(𝑡) and the excitation 𝑓ℎ(𝑡) with the 𝑛 + 1 data 

point can be demonstrated in terms of the scaling functions 𝜙𝑗,𝑘
 (𝑡) and corresponding 

coefficients 𝑎ℎ(𝑗, 𝑘) and 𝑝ℎ(𝑗, 𝑘) (t) at the ℎ𝑡ℎ degree-of-freedom (1 ≤ ℎ ≥ 𝑁), as 

follows: 

𝑥̈ℎ(𝑡) = ∑ 𝑎ℎ(𝑗, 𝑘)
𝑛
𝑘=0 𝜙𝑗,𝑘(𝑡)                                                                                         (4.16) 

𝑓ℎ(𝑡) = ∑ 𝑝ℎ(𝑗, 𝑘)𝜙𝑗,𝑘(𝑡)
𝑛
𝑘=0                                                                                           (4.17) 

where 𝑗 indicates the scale index and the approximation coefficients 𝑎ℎ(𝑗, 𝑘) and 𝑝ℎ(𝑗, 𝑘) 

can be attained as: 

𝑎ℎ(𝑗, 𝑘) = ∫ 𝑥̈ℎ(𝑡)𝜙𝑗,𝑘(𝑡) dt
∞

−∞
                                                                                       (4.18) 
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𝑝ℎ(𝑗, 𝑘) = ∫ 𝑓ℎ(𝑡)𝜙𝑗,𝑘(𝑡)
∞

−∞
𝑑𝑡                                                                                        (4.19) 

The velocity 𝑥̇ℎ(𝑡) and displacement 𝑥ℎ(𝑡) can be derived using functional integration of 

the 𝑥̈ℎ(𝑡) acceleration data: 

𝑥̇ℎ(𝑡) = ∑ 𝑎ℎ(𝑗, 𝑘)
𝑛
𝑘=0 ∫ 𝜙𝑗,𝑘(𝜏)𝑑𝜏

𝑡

−∞
                                                                              (4.20) 

𝑥ℎ(𝑡) = ∑ 𝑎ℎ(𝑗, 𝑘)
𝑛
𝑘=0 ∫ [∫  

𝜏1
−∞

𝜙𝑗,𝑘(𝜏)𝑑𝜏] 𝑑𝜏1  
𝑡

−∞
                                                             (4.21) 

Differently written as 

𝑥̇ℎ(𝑡) = ∑ 𝑎ℎ(𝑗, 𝑘)
𝑛
𝑘=0 ȴ1{𝜙𝑗,𝑘(𝑡)}                                                                                   (4.22) 

𝑥ℎ(𝑡) = ∑ 𝑎ℎ(𝑗, 𝑘)
𝑛
𝑘=0 ȴ2{𝜙𝑗,𝑘(𝑡)}                                                                                  (4.23) 

where 

ȴ1{𝜙𝑗,𝑘(𝑡)} = ∫ 𝜙𝑗,𝑘(𝜏)𝑑𝜏
𝑡

−∞
                                                                                           (4.24) 

ȴ2{𝜙𝑗,𝑘(𝑡)} = ∫ [∫  
𝜏

−∞
𝜙𝑗,𝑘(𝜏)𝑑𝜏] 𝑑𝜏1 

𝑡

−∞
                                                                         (4.25) 

𝑥̇ℎ(𝑡) and 𝑥ℎ(𝑡) can be indicated in the form of 𝑥̈ℎ(𝑡) by multiplying 𝜙𝑗,𝑘(𝑡) in Equations 

(4.22) and (4.23) and taking the integral from − ∞ to + ∞, respectively, as follows: 

𝑥̇ℎ(𝑡) = ∑ 𝑣ℎ(𝑗, 𝑙)
𝑛
𝑙=0 𝜙𝑗,𝑙(𝑡)                                                                                            (4.26) 

𝑥ℎ(𝑡) = ∑ 𝑑ℎ(𝑗, 𝑙)
𝑛
𝑙=0 𝜙𝑗,𝑙(𝑡)                                                                                     (4.27) 

where 

𝑣ℎ(𝑗, 𝑙) = ∑ 𝑎ℎ(𝑗, 𝑘)
𝑛
𝑘=0 ∫ ȴ1{𝜙𝑗,𝑘(𝑡)}𝜙𝑗,𝑙(𝑡)

∞

−∞
𝑑𝑡                                                    (4.28) 

𝑑ℎ(𝑗, 𝑙) = ∑ 𝑎ℎ(𝑗, 𝑘)
𝑛
𝑘=0 ∫ ȴ2{𝜙𝑗,𝑘(𝑡)}𝜙𝑗,𝑙(𝑡)

∞

−∞
𝑑𝑡                                                   (4.29) 

Equations (4.16-17) and (4.26-27), show that the equation of motion in the time domain 

depicted in Equation (4.15) can be converted into those according to the scaling functions 

𝜙𝑗,𝑙(𝑡) and the corresponding coefficients 𝑎ℎ(𝑗, 𝑘), 𝑣ℎ(𝑗, 𝑙), 𝑑ℎ(𝑗, 𝑙) and 𝑝ℎ(𝑗, 𝑘). Such a 

conversion according to the scaling functions at the specific scale index 𝑗 and the 

corresponding coefficients can be expressed as follows: 
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M{∑ 𝑎𝐾(𝑗, 𝑙)
𝑛
𝑙=0 𝜙𝑗,𝑙(𝑡)}𝐾= 1,2,…,ℎ,…,𝑁 + C{∑ 𝑣𝐾(0, 𝑙)

𝑛
𝑙=0 𝜙0,𝑙(𝑡)}𝐾= 1,2,…,ℎ,…,𝑁 +

k{∑ 𝑑𝐾(𝑗, 𝑙)
𝑛
𝑙=0 𝜙0,𝑙(𝑡)}𝐾= 1,2,…,ℎ,…,𝑁 = {∑ 𝑝𝐾(𝑗, 𝑙)𝜙𝑗,𝑙(𝑡)

𝑛
𝑙=0 }𝐾= 1,2,…,ℎ,…,𝑁                     (4.30) 

4.3.2 Wavelet connection coefficients 

In previous section, the equations of motion indicated in Equation (4.30) are obtained in 

terms of the scaling functions 𝜙𝑗,𝑙(𝑡) as well as the known coefficients 𝑎ℎ(𝑗, 𝑘) and 

𝑝ℎ(𝑗, 𝑘) and unknown coefficients 𝑣ℎ(𝑗, 𝑙) and 𝑑ℎ(𝑗, 𝑙) (𝑙 = 0, 1, 2, … , 𝑛). In Equations 

(4.28-29) the unknown coefficients 𝑣ℎ(𝑗, 𝑙) and 𝑑ℎ(𝑗, 𝑙) can be calculated from the first 

and second integration ȴ𝑛{𝜙𝑗,𝑘(𝑡)} 𝑛=1,2 of the given scaling function ∅𝑗,𝑙(𝑡) and known 

coefficient 𝑎ℎ(𝑗, 𝑘).  

By definition, the connection coefficients (CHEN et al., 1996; Restrepo & Leaf, 1997; 

Romine & Peyton, 1997; Zabel, 2003; Zhou, 2004; Mishra, 2011; Joo, 2012) are integrals, 

with the integrand being the product of the scaling functions and their integrals or 

derivatives. The integrals of the product of the scaling function 𝜙𝑗,𝑙(𝑡) are determined 

with 𝛤𝑗
𝑙−𝑘  of the first integral ȴ1{𝜙𝑗,𝑘(𝑡)} and 𝛺𝑗

𝑙−𝑘  of the second integral ȴ2{𝜙𝑗,𝑘(𝑡)}, 

defined as: 

𝛤𝑗
𝑙−𝑘 = ∫  

+∞

−∞
ȴ1{𝜙𝑗,𝑘(𝑡)}𝜙𝑗,𝑙(𝑡)𝑑𝑡 = ∫  

+∞

−∞
ȴ1{𝜙𝑗,0(𝑡)}𝜙𝑗,𝑙−𝑘(𝑡)𝑑𝑡                                   (4.31) 

𝛺𝑗
𝑙−𝑘 = ∫ ȴ

2
{𝜙𝑗,𝑘(𝑡)}

+∞

−∞
𝜙𝑗,𝑙(𝑡)𝑑𝑡 = ∫  ȴ2{𝜙𝑗,0(𝑡)}

+∞

−∞
𝜙𝑗,𝑙−𝑘(𝑡)𝑑𝑡                                  (4.32) 

For the purpose of simplicity, Equations (4.31-32) are examined in scale index 𝑗 equal to 

0, accordingly: 

𝛤0
𝑙−𝑘 = ∫  

+∞

−∞
ȴ1{𝜙0,0(𝑡)} 𝜙0,𝑙−𝑘(𝑡)𝑑𝑡                                                                              (4.33) 

𝛺0
𝑙−𝑘 = ∫  ȴ2{𝜙0,0(𝑡)}

+∞

−∞
𝜙0,𝑙−𝑘(𝑡)𝑑𝑡                                                                             (4.34) 

The coefficients 𝛤0
𝑞

 and 𝛺0
𝑞

 are named the fundamental connection coefficients for the 

first and second integration with regard to the 𝑙 − 𝑘, respectively. Supposing that 𝑙 − 𝑘 is 

equal to 𝑞 in Equations (4.33-34), that is: 
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𝛤0
𝑞
= ∫  

+∞

−∞
ȴ1{𝜙0,0(𝑡)}𝜙0,𝑞(𝑡)𝑑𝑡                                                                                     (4.35)     

𝛺0
𝑞
= ∫  ȴ2{𝜙0,0(𝑡)}

+∞

−∞
𝜙0,𝑞(𝑡)𝑑𝑡                                                                                    (4.36)  

Before calculating 𝛤0
𝑞

 and 𝛺0
𝑞

 in Equations (4.35-36), a brief mention of the properties of 

the Daubechies wavelet is given, as depicted in Section 3.5.1. The Daubechies wavelet 

with the 𝑁𝑡ℎ order family referred to DB𝑁, is governed by a set of 𝐿 = 2𝑁 coefficients 

𝑏(𝑘), 𝑘 = 0, 1, 2,… , 𝐿 − 1, and a set of 𝑐(𝑘), 𝑘 = 0, 1, 2,… , 𝐿 − 1. In addition, the two-

scale relation for the scaling function 𝜙(𝑡) and property 2 of the scaling function 𝜙(𝑡) =

𝜙0,0(𝑡)  in Equations (3.30-31), respectively, can be represented as follow:    

𝜙 (𝑡) = ∑ 𝑐(𝑘)𝐿−1
𝑘=0 𝜙 (2𝑡 − 𝑘)                                                                                          (4.37) 

∫ 𝜙 (𝑡)𝑑𝑡 =
𝐿−1

0
1                                                                                                               (4.38)  

By inserting the two-scale relation for the scaling function 𝜙(𝑡), into Equations (4.24-

25), and then expand the definition of ȴ1{𝜙(𝑡)} as follows: 

ȴ1{𝜙(𝑡)} = ∫ 𝜙 (𝜏)𝑑𝜏
𝑡

−∞
  

                  = ∫ ∑ 𝑐(𝑗){𝜙(2𝜏 − 𝑗)}𝐿−1
𝑗=0 𝑑𝜏

𝑡

−∞
  

                  =
1

2
∑ 𝑐(𝑗)𝐿−1
𝑗=0 ∫ {𝜙(𝜏1)}𝑑𝜏1

2𝑡−𝑗

−∞
  

                  =
1

2
∑ 𝑐(𝑗) ȴ1{𝜙(2𝑡 − 𝑗)}
𝐿−1
𝑗=0                                                                             (4.39) 

Similar to Equation (4.39), the definition of ȴ2{𝜙(𝑡)} can also be expressed as 

ȴ2{𝜙(𝑡)} = (
1

2
)
2
∑ 𝑐(𝑗) ȴ2{𝜙(2𝑡 − 𝑗)}
𝐿−1
𝑗=0                                                                       (4.40) 

Equations (4.39-40) are called the two-scale relations for ȴ𝑛{𝜙0,0(𝑡)} 𝑛=1,2, which are 

analogous to the two-scale relation for 𝜙(𝑡) seen in Equation (4.37). 

From Equation (4.38), it is possible to indicate the physical meaning of the integrals 

ȴ1{𝜙0,0(𝑡)} and ȴ2{𝜙0,0(𝑡)}, as: 

Univ
ers

ity
 of

 M
ala

ya



80 

 

ȴ1{𝜙0,0(𝑡)} =

{
 
 

 
 

0
 

ȴ1{𝜙0,0(𝑡)}
 
1

             

𝑡 ≤ 0
 

0 < 𝑡 < (L − 1)
 

𝑡 ≥ (𝐿 − 1)

                                                       (4.41) 

  

ȴ2{𝜙0,0(𝑡)} =

{
 
 

 
 

0
 

ȴ2{𝜙0,0(𝑡)}
 

ȴ2{𝜙0,0(𝐿 − 1)} + 𝑡 − (𝐿 − 1)

             

𝑡 ≤ 0
 

0 < 𝑡 < (L − 1)
 

𝑡 ≥ (𝐿 − 1)

                       (4.42)  

 

From Equations (4.41-42) can be deduced that ȴ1{𝜙0,0(𝑡)} and ȴ2{𝜙0,0(𝑡)} for 𝑡 ≤ 0 are 

zero, while, ȴ1{𝜙0,0(𝑡)} and ȴ2{𝜙0,0(𝑡)} for 0 < 𝑡 < (L − 1) cannot be explicitly 

depicted, since the scaling function 𝜙(𝑡) = 𝜙0,0(𝑡) for 0 < 𝑡 < (L − 1) has no explicit 

form. In addition, for 𝑡 ≥ (𝐿 − 1) the value of  ȴ1{𝜙0,0(𝑡)} is equal to one and ȴ2{𝜙0,0(𝑡)} 

is a linear function with slope equal to one, as follows:  

ȴ1{𝜙0,0(𝑡)} = ∫ 𝜙0,0(𝑡) 𝑑𝑡
𝐿−1

0

⏞          
=1

+ ∫ 𝜙0,0(𝑡) 𝑑𝑡
𝑡

𝐿−1

⏞        
=0

= 1                                                     (4.43) 

 

ȴ2{𝜙0,0(𝑡)} = ∫ [∫ 𝜙0,0(𝑡) 𝑑𝑡
𝑡

−∞
]

⏞          

=ȴ1{𝜙0,0(𝑡)}

𝑡

−∞
𝑑𝑡 = ∫ ȴ1{𝜙0,0(𝑡)}

𝐿−1

−∞

⏞          

=ȴ2{𝜙0,0(𝐿−1)}

+ ∫ ȴ1{𝜙0,0(𝑡)}
⏞      

=1
𝑡

𝐿−1
        

                       = ȴ2{𝜙0,0(𝐿 − 1)} + 𝑡 − (𝐿 − 1)                                                               (4.44) 

From Equations (4.35-36), it can be observed that 𝛤0
𝑞

 and  𝛺0
𝑞

 are functions of 𝑞, and 

𝜙0,𝑞(𝑡) is supported from 𝑞 to shift over time, while the support of ȴ𝑛{𝜙0,0(𝑡)} 𝑛=1,2 is 

constant over time, with support 0 ≤ 𝑡 ≤ ∞.  

In general, since the interval of integration (−∞,∞) for computing 𝛤0
𝑞

 and  𝛺0
𝑞

 in 

Equations (4.35-36) can be replaced through the overlapped interval among 𝜙0,𝑞(𝑡)  and 

ȴ𝑛{𝜙0,0(𝑡)} 𝑛=1,2, the value of 𝑞, representing the position of 𝜙0,𝑞(𝑡) in 

time, with support 𝑞 ≤ 𝑡 ≤ 𝑞 + 𝐿 − 1, can be considered under the four following cases: 

(i) 𝑞 ≤ −(𝐿 − 1), (ii) − (𝐿 − 1) < 𝑞 < 0, (iii) 0 ≤ 𝑞 < (𝐿 − 1), and (iv) 𝑞 ≥ (𝐿 − 1).  
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In the first case 𝑞 ≤ −(𝐿 − 1), as indicated in Figure 4.8, 𝛤0
𝑞

 and  𝛺0
𝑞

 in Equations (4.35-

36) are equal to zero, while 𝜙0,𝑞(𝑡) = 𝜙(𝑡 − 𝑞) has no overlap with ȴ𝑛{𝜙0,0(𝑡)} 𝑛=1,2. 

 
Figure 4.8: The location of 𝜙0,𝑞(𝑡) in terms of time in the first case, 𝑞 ≤ −(𝐿 − 1) 

 

In the second case −(𝐿 − 1) < 𝑞 < 0, as indicated in Figure 4.9, 𝜙0,𝑞(𝑡) has partly 

overlapping 0 ≤ 𝑡 ≤ 𝑞 + 𝐿 − 1 with theses ȴ𝑛{𝜙0,0(𝑡)} 𝑛=1,2, since, it is arduous to 

modify the integrals in Equations (4.35-36). Accordingly, 𝜙0,𝑞(𝑡) and ȴ𝑛{𝜙0,0(𝑡)} 𝑛=1,2 

are unknown functions even in partly overlap. Hence, for now, abandoned 𝛤0
𝑞

 and  𝛺0
𝑞

 are 

considered as follows: 

𝛤0
𝑞
= 𝛤0

𝑞|
−(𝐿−1)<𝑞<0

                                                                                                         (4.45) 

𝛺0
𝑞
= 𝛺0

𝑞|
−(𝐿−1)<𝑞<0

                                                                                                        (4.46) 

 
Figure 4.9: The location of 𝜙0,𝑞(𝑡) in terms of time in the second case, −(𝐿 − 1) < 𝑞 < 0 

 

In the third case 0 ≤ 𝑞 < (𝐿 − 1), as indicated in Figure 4.10, obviously, the overlapped 

interval can be 𝑞 ≤ 𝑡 ≤ 𝑞 + 𝐿 − 1, which is the support of 𝜙0,𝑞(𝑡), hence the supports of 

ȴ𝑛{𝜙0,0(𝑡)} 𝑛=1,2 completely contain the support of 𝜙0,𝑞(𝑡). Accordingly, 𝛤0
𝑞

 and  𝛺0
𝑞

 can 

be modified by using Equations (4.41-42), as follows 
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Figure 4.10: The location of 𝜙0,𝑞(𝑡) in terms of time in the third case, 0 ≤ 𝑞 < (𝐿 − 1) 

 

𝛤0
𝑞
|
0≤𝑞<(𝐿−1)

= ∫  
+∞

−∞
ȴ1{𝜙(𝑡}𝜙 (𝑡 − 𝑞)𝑑𝑡  

                     = [ȴ1{𝜙(𝑡)} ȴ1{𝜙(𝑡 − 𝑞)}]𝑞
𝑞+𝐿−1

− ∫  
+∞

−∞
ȴ1{𝜙(𝑡 − 𝑞)} 𝜙(𝑡) 𝑑𝑡  

                     = [ȴ1{𝜙(𝑞 + 𝐿 − 1)}
⏞          

=1

ȴ1{𝜙(𝐿 − 1)}
⏞         

=1

     ] − [   ȴ1{𝜙(𝑞)}
⏞      

 

ȴ1{𝜙(𝐿 − 1)}
⏞        

=0

 ] 

                          −∫  
+∞

−∞
ȴ1{𝜙(𝑡

′)} 𝜙(𝑡′ + 𝑞) 𝑑𝑡′
⏞                  

=𝛤0
−𝑞

   

                       = 1 − 𝛤0
−𝑞|

0≤𝑞<(𝐿−1)
                                                                                                  (4.47) 

 

𝛺0
𝑞
|
0≤𝑞<(𝐿−1)

= ∫  
+∞

−∞
ȴ2{𝜙(𝑡}𝜙 (𝑡 − 𝑞)𝑑𝑡  

                     = [ȴ2{𝜙(𝑡)} ȴ1{𝜙(𝑡 − 𝑞)}]𝑞
𝑞+𝐿−1

− ∫  ȴ1{𝜙(𝑡)}
+∞

−∞
ȴ1{𝜙(𝑡 − 𝑞)} 𝑑𝑡       

                        = [ȴ2{𝜙(𝑡)} ȴ1{𝜙(𝑡 − 𝑞)}]𝑞
𝑞+𝐿−1

− ([ȴ1{𝜙(𝑡)} ȴ2{𝜙(𝑡 − 𝑞)}]𝑞
𝑞+𝐿−1

 

                          −∫  𝜙(𝑡)
+∞

−∞
ȴ2{𝜙(𝑡 −   𝑞)} 𝑑𝑡) 

                           = ȴ2{𝜙(𝑞 + 𝐿 − 1)}ȴ1{𝜙(𝐿 − 1)}⏞        
=1

 − ȴ2{𝜙(𝑞)}  ȴ1{𝜙(0)}
⏞      

=0

− (ȴ1{𝜙(𝑞 + 𝐿 − 1)}
⏞          

=1

 ȴ2{𝜙(𝐿 −

                                1)} − ȴ1{𝜙(𝐿)} ȴ2{𝜙(0)}⏞      
=0

+ ∫  𝜙(𝑡 + 𝑞)
+∞

−∞
ȴ2{𝜙(𝑡)} 𝑑𝑡 )    

                          = ȴ2{𝜙(𝑞 + 𝐿 − 1)}⏞          

=𝑞+(𝐿−1)+ȴ2{𝜙(𝐿−1)}−(𝐿−1)

− ȴ2{𝜙(𝐿 − 1)} + ∫  𝜙(𝑡 + 𝑞)
+∞

−∞
ȴ2{𝜙(𝑡)} 𝑑𝑡  

                     = 𝑞 + 𝛺0
−𝑞|

0≤𝑞<(𝐿−1)
                                                                                       (4.48) 

It is notable that, in Equation (4.48), ȴ2{𝜙(𝑞 + 𝐿 − 1)} − ȴ2{𝜙(𝐿 − 1)} is identical to 𝑞, 

hence ȴ2{𝜙(𝑡)} is the linear function with slope identical to one for 𝑡 ≥ 𝐿 − 1. In general, 
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while the 𝛤0
𝑞

 and the 𝛺0
𝑞

 for 0 < 𝑞 < (𝐿 − 1) have been calculated, the 𝛤0
𝑞

 and the 𝛺0
𝑞

 

for the second case, i.e., −(𝐿 − 1) < 𝑞 < 0, in Equations (4.45-46) can be achieved from 

Equations (4.47-48). 

In the fourth case 𝑞 ≥ (𝐿 − 1), as indicated in Figure 4.11, where the overlapped interval 

is 𝑞 ≤ 𝑡 ≤ 𝑞 + 𝐿 − 1, 𝛤0
𝑞

 and 𝛺0
𝑞

 can be calculated through inserting ȴ1{𝜙0,0(𝑡)} = 1 and 

ȴ2{𝜙0,0(𝑡)} = 𝑡 + ȴ2{𝜙0,0(𝐿 − 1)} − (𝐿 − 1), from Equations (4.41-42), into 𝛤0
𝑞

 and 𝛺0
𝑞

 

in Equations (4.35-36), respectively, as follows: 

 
Figure 4.11: The location of 𝜙0,𝑞(𝑡) in terms of time in the fourth case, 𝑞 ≥ (𝐿 − 1) 

 

𝛤0
𝑞|
𝑞≥(𝐿−1)

= ∫  
+∞

−∞
ȴ1{𝜙(𝑡}𝜙 (𝑡 − 𝑞)𝑑𝑡  

                     = ∫  
𝑞+𝐿−1

𝑞
ȴ1{𝜙(𝑡}
⏞    

=1

𝜙 (𝑡 − 𝑞)𝑑𝑡

⏞                  
=1

  

                     = 1                                                                                                                 (4.49) 

 

𝛺0
𝑞|
𝑞≥(𝐿−1)

= ∫  
+∞

−∞
ȴ2{𝜙(𝑡}𝜙 (𝑡 − 𝑞)𝑑𝑡  

                     = ∫ (𝑡 + ȴ2{𝜙 (𝐿 − 1)} − (𝐿 − 1)) 𝜙 (𝑡 − 𝑞)𝑑𝑡
𝑞+𝐿−1

𝑞
  

                     = ∫ 𝑡𝜙 (𝑡 − 𝑞)𝑑𝑡 + (ȴ2{𝜙 (𝐿 − 1)} − (𝐿 − 1))  ∫ 𝜙 (𝑡 − 𝑞)𝑑𝑡 
𝑞+𝐿−1

𝑞

𝑞+𝐿−1

𝑞
  

                     = 𝑡[ȴ1{𝜙 (𝑡 − 𝑞)}]𝑞
𝑞+𝐿−1⏞              

=(𝑞+𝐿−1)

− ∫ ȴ1𝜙 (𝑡 − 𝑞)𝑑𝑡 
𝑞+𝐿−1

𝑞

⏞              

=[ȴ2{𝜙 (𝑡−𝑞)}]𝑞
𝑞+𝐿−1

+ (ȴ2{𝜙 (𝐿− 1)} − (𝐿 − 1))
 

  

                   = 𝑞                                                                                                                 (4.50) 

The aforementioned results indicate that the following relations of 𝛤0
𝑞

 and 𝛺0
𝑞

, depending 

on 𝑞, according to the DB𝑁 scaling function 𝜙(𝑡) with the support of 0 ≤ 𝑡 ≤ 𝐿 − 1:  
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𝛤0
𝑞
=

{
  
 

  
 
0                      𝑞 ≤ −(𝐿 − 1)

 
𝛤0
𝑞
         − (𝐿 − 1) < 𝑞 < 0

 
1 − 𝛤0

−𝑞
        0 ≤ 𝑞 < 𝐿 − 1

 
1                             𝑞 ≥ 𝐿 − 1

           𝛺0
𝑞
=

{
  
 

  
 
0                     𝑞 ≤ −(𝐿 − 1)

 
𝛺0
𝑞
        − (𝐿 − 1) < 𝑞 < 0

 
1 − 𝛺0

−𝑞
       0 ≤ 𝑞 < 𝐿 − 1

 
𝑞                             𝑞 ≥ 𝐿 − 1

            (4.51) 

 

From Equation (4.51) is inferred that all the values of 𝛤0
𝑞

 and 𝛺0
𝑞

 for −∞ < 𝑞 < ∞ can 

be achieved, provided that 𝛤0
𝑞

 and  𝛺0
𝑞

 for 0 ≤ 𝑞 < 𝐿 − 1 are computed. Hence, in order 

to ascertain the values of 𝛤0
𝑞

 and  𝛺0
𝑞

 for 0 ≤ 𝑞 < 𝐿 − 1, the two-scale relations for 𝜙 (𝑡), 

ȴ1{𝜙(𝑡)} and ȴ2{𝜙(𝑡)}, in Equations (4.37), and (4.39-40) are applied to Equations (4.35-

36), as following expressions: 

𝛤0
𝑞
= ∫

1

2
∑ 𝑐(𝑗) ȴ1{𝜙(2𝑡 − 𝑗)}
𝐿−1
𝑗=0 ∑ 𝑐(𝑘) 𝜙(2(𝑡 − 𝑞) − 𝑘) 𝑑𝑡 𝐿−1

𝑘=0
∞

−∞
  

       =
1

2
∑  𝐿−1
𝑗=0 ∑ 𝑐(𝑗)𝐿−1

𝑘=0 𝑐(𝑘) ∫ ȴ1{𝜙(2𝑡 − 𝑗)}𝜙(2𝑡 − 2𝑞 − 𝑘) 𝑑𝑡
∞

−∞
  

       =
1

2
∑  𝐿−1
𝑗=0 ∑ 𝑐(𝑗)𝐿−1

𝑘=0 𝑐(𝑘)
1

2
∫ ȴ1{𝜙(𝑡

′)}𝜙(𝑡′ + 𝑗 − 2𝑞 − 𝑘) 𝑑𝑡′
∞

−∞

⏞                        

= 𝛤0
−𝑗+2𝑞+𝑘

  

       = (
1

2
)
2
∑  𝐿−1
𝑗=0 ∑ 𝑐(𝑗)𝐿−1

𝑘=0 𝑐(𝑘)𝛤0
−𝑗+2𝑞+𝑘

                                                                     (4.52) 

 

𝛺0
𝑞
= ∫ (

1

2
)
2
∑ 𝑐(𝑗) ȴ2{𝜙(2𝑡 − 𝑗)}
𝐿−1
𝑗=0 ∑ 𝑐(𝑘) 𝜙(2(𝑡 − 𝑞) − 𝑘) 𝑑𝑡 𝐿−1

𝑘=0
∞

−∞
  

       = (
1

2
)
2
∑  𝐿−1
𝑗=0 ∑ 𝑐(𝑗)𝐿−1

𝑘=0 𝑐(𝑘) ∫ ȴ2{𝜙(2𝑡 − 𝑗)}𝜙(2𝑡 − 2𝑞 − 𝑘) 𝑑𝑡
∞

−∞
  

       = (
1

2
)
2
∑  𝐿−1
𝑗=0 ∑ 𝑐(𝑗)𝐿−1

𝑘=0 𝑐(𝑘)
1

2
∫ ȴ2{𝜙(𝑡

′)}𝜙(𝑡′ + 𝑗 − 2𝑞 − 𝑘) 𝑑𝑡′
∞

−∞

⏞                        

= 𝛺0
−𝑗+2𝑞+𝑘

  

       = (
1

2
)
3
∑  𝐿−1
𝑗=0 ∑ 𝑐(𝑗)𝐿−1

𝑘=0 𝑐(𝑘) 𝛺0
−𝑗+2𝑞+𝑘

                                                                    (4.53) 

By substituting 𝑞 = 0, 1, 2,… , 𝐿 − 2 into Equation (4.52) and considering the Equation 

(4.51), the following linear system of equations can be obtained for the coefficients 𝛤0
𝑞

 

for 0 ≤ 𝑞 < 𝐿 − 1: 
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{
 
 
 
 

 
 
 
 
𝛤0
0

𝛤0
1

⋮

𝛤0
𝑛

⋮

𝛤0
𝐿−2}
 
 
 
 

 
 
 
 

 =

[
 
 
 
 
 
 
 
 
𝐸0,0 𝐸0,1 ⋯ 𝐸0,𝑛 ⋯ 𝐸0,𝐿−2

𝐸1,0 𝐸1,1 ⋯ 𝐸1,𝑛 ⋯ 𝐸1,𝐿−2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐸𝑚,0 𝐸𝑚,1 ⋯ 𝐸𝑚,𝑛 ⋯ 𝐸𝑚,𝐿−2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐸𝐿−2,0 𝐸𝐿−2,1 ⋯ 𝐸𝐿−2,𝑛 ⋯ 𝐸𝐿−2,𝐿−2]
 
 
 
 
 
 
 
 
−1

{
 
 
 

 
 
 
𝑐0

𝑐1

⋮

𝑐𝑚

⋮

𝑐𝐿−2}
 
 
 

 
 
 

           (4.54) 

 

where 

𝐸𝑚,𝑛 = (
1

2
)
2
[−∑ 𝑐(𝑟)𝑐(𝑟 + 𝑛 + 2𝑚) + ∑ 𝑐(𝑟)𝑐(𝑟 + 𝑛 − 2𝑚) 

𝑟𝜖ℤ − ∑ 𝑐(𝑟)𝑐(𝑟 + 
𝑟𝜖ℤ

 
𝑟𝜖ℤ

               2𝑚)𝛿0,𝑛 − 𝛿𝑚,𝑛                                                                                                                (4.55)  

𝑐𝑚 = (
1

2
)
2
[𝛿0,𝑚∑ 𝑐(𝑟)𝑐(𝑟 + 𝐿 − 1) − ∑   

𝑣=1,2,3,… ∑ 𝑐(𝑟)𝑐(𝑟 + 2𝑚 + 1 + 𝑣) 
𝑟𝜖ℤ

 
𝑟𝜖ℤ   

          − ∑   
𝑣=1,2,3,… ∑ 𝑐(𝑟)𝑐(𝑟 − 2𝑚 + 1 + (𝐿 − 2) + 𝑣) 

𝑟𝜖ℤ ]                                         (4.56) 

 

in which 𝛿𝑚,𝑛 is the Kronecker delta. The vector 𝛤 
 = {𝛤0

0, 𝛤0
1, … , 𝛤0

𝐿−2}−1 can be 

computed through solving the linear system depicted in Equation (4.54). 

In addition, it is feasible to achieve the linear system of equations for the unknown vector 

𝛺 form Equation (4.53), by following the same procedure presented for 𝛤, as follows: 

 

{
 
 
 
 

 
 
 
 
𝛺0
0

𝛺0
1

⋮

𝛺0
𝑛

⋮

𝛺0
𝐿−2}
 
 
 
 

 
 
 
 

 =

[
 
 
 
 
 
 
 
 
𝐵0,0 𝐵0,1 ⋯ 𝐵0,𝑛 ⋯ 𝐵0,𝐿−2

𝐵1,0 𝐵1,1 ⋯ 𝐵1,𝑛 ⋯ 𝐵1,𝐿−2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐵𝑚,0 𝐵𝑚,1 ⋯ 𝐵𝑚,𝑛 ⋯ 𝐵𝑚,𝐿−2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐵𝐿−2,0 𝐵𝐿−2,1 ⋯ 𝐵𝐿−2,𝑛 ⋯ 𝐵𝐿−2,𝐿−2]
 
 
 
 
 
 
 
 
−1

{
 
 
 

 
 
 
𝑦0

𝑦1

⋮

𝑦𝑚

⋮

𝑦𝐿−2}
 
 
 

 
 
 

          (4.57) 

where 

𝐵𝑚,𝑛 = (
1

2
)
3
[∑ 𝑐(𝑟)𝑐(𝑟 + 𝑛 + 2𝑚) + ∑ 𝑐(𝑟)𝑐(𝑟 + 𝑛 − 2𝑚) 

𝑟𝜖ℤ − ∑ 𝑐(𝑟)𝑐(𝑟 + 
𝑟𝜖ℤ

 
𝑟𝜖ℤ

2𝑚)𝛿0,𝑛 − 𝛿𝑚,𝑛]                                                                                                                             (4.58) 
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𝑦𝑚 = (
1

2
)
3
[−𝛿0,𝑚∑ 𝑐(𝑟)𝑐(𝑟 + 𝐿 − 1) + ∑   

𝑣=1,2,3,… ∑ 𝑐(𝑟)𝑐(𝑟 + 2𝑚 + 1 + 
𝑟𝜖ℤ

 
𝑟𝜖ℤ

𝑣) {𝑣 + 1} − ∑   
𝑣=1,2,3,… ∑ 𝑐(𝑟)𝑐(𝑟 − 2𝑚 + 1 + (𝐿 − 2) + 𝑣) 

𝑟𝜖ℤ {𝐿 − 1 + 𝑣}]        (4.59)  

 

The vector 𝛺 
 = {𝛺0

0 , 𝛺0
1 , … , 𝛺0

𝐿−2}−1 can be computed by solving the linear system 

indicated in Equation (4.57). 

In general, while the 𝛤0
𝑞

 and the 𝛺0
𝑞

 for −∞ < 𝑞 < ∞ have been acquired from Equations 

(4.51), (4.54) and (4.57), the velocity 𝑥̇ℎ(𝑡) and displacement 𝑥ℎ(𝑡) can be obtained from 

the known acceleration 𝑥̈ℎ(𝑡), as follows: 

𝑥̇ℎ(𝑡) = ∑  𝑛
𝑙=0 ∑ 𝑎ℎ(0, 𝑘) 𝛤0

𝑙−𝑘  𝜙0,𝑙(𝑡)
𝑛
𝑘=0                                                                       (4.60) 

𝑥ℎ(𝑡)  = ∑  𝑛
𝑙=0 ∑ 𝑎ℎ(0, 𝑘) 𝛺0

𝑙−𝑘  𝜙0,𝑙(𝑡)
𝑛
𝑘=0                                                                      (4.61) 

4.3.3 Definition of dominant component 

This section indicates that the equations of motion depicted in Equations (4.30) can be 

decomposed by applying the WPT. The dominant component can be defined according 

to the distribution of the relative energies of the WPT components at a certain level of 

decomposition of the acceleration response. 

One can then convert the equations of motion according to the complete representation 

set of the WPT components depicted in Equations (4.62-63), into those according to the 

reduced representation sets, i.e., dominant components, and thereby performs the 

subsequent step of implementing the least square error minimization method over the 

dominant components. 

4.3.3.1 Equations of motion according to the WPT 

The equations of motion according to 𝑎ℎ(0, 𝑙), 𝑣ℎ(0, 𝑙), 𝑑ℎ(0, 𝑙), and 𝑝ℎ(0, 𝑙) depicted in 

Equation (4.30) can be represented in terms of the WPT as follows: 

M[𝑈𝑖,𝑗
𝑋̈ ]
𝐷
+ C[𝑈𝑖,𝑗

𝑋̇ ]
𝐷
+ K[𝑈𝑖,𝑗

𝑋 ]
𝐷
= [𝑈𝑖,𝑗

𝐹 ]
𝐷

                                                                       (4.62) 

Equation (4.62) can be written as: 
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[
 
 
 
 
 
 
 
 
𝑚1 0 ⋯ 0 ⋯ 0

0 𝑚2 ⋯ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ 𝑚ℎ ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ 0 ⋯ 𝑚𝑁]
 
 
 
 
 
 
 
 

 

{
 
 
 
 

 
 
 
 
{𝑈𝑖,𝑗

𝑋̈ [{𝑎1(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷

{𝑈𝑖,𝑗
𝑋̈ [{𝑎2(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷

⋮

{𝑈𝑖,𝑗
𝑋̈ [{𝑎ℎ(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷

⋮

{𝑈𝑖,𝑗
𝑋̈ [{𝑎𝑁(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷}

 
 
 
 

 
 
 
 

 

+

[
 
 
 
 
 
 
 
 
𝑐1 + 𝑐2 −𝑐2 ⋯ 0 ⋯ 0

−𝑐2 𝑐2 + 𝑐3 ⋯ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ 𝑐ℎ + 𝑐ℎ+1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ −𝑐𝑁

0 0 ⋯ −𝑐𝑁 ⋯ 𝑐𝑁 ]
 
 
 
 
 
 
 
 

 

{
 
 
 
 

 
 
 
 
{𝑈𝑖,𝑗

𝑋̇ [{𝑣1(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷

{𝑈𝑖,𝑗
𝑋̇ [{𝑣2(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷

⋮

{𝑈𝑖,𝑗
𝑋̇ [{𝑣ℎ(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷

⋮

{𝑈𝑖,𝑗
𝑋̇ [{𝑣𝑁(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷}

 
 
 
 

 
 
 
 

 

+

[
 
 
 
 
 
 
 
 
𝑘1 + 𝑘2 −𝑘2 ⋯ 0 ⋯ 0

−𝑘2 𝑘1 + 𝑘2 ⋯ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ 𝑘ℎ + 𝑘ℎ+1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ −𝑘𝑁

0 0 ⋯ −𝑘𝑁 ⋯ 𝑘𝑁 ]
 
 
 
 
 
 
 
 

 

{
 
 
 
 

 
 
 
 
{𝑈𝑖,𝑗

𝑋 [{𝑑1(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷
{𝑈𝑖,𝑗

𝑋 [{𝑑2(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷

⋮

{𝑈𝑖,𝑗
𝑋 [{𝑑ℎ(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷

⋮

{𝑈𝑖,𝑗
𝑋 [{𝑑𝑁(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷}

 
 
 
 

 
 
 
 

  

=

{
 
 
 
 

 
 
 
 
{𝑈𝑖,𝑗

𝑋 [{𝑝1(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷
{𝑈𝑖,𝑗

𝑋 [{𝑝2(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷
⋮

{𝑈𝑖,𝑗
𝑋 [{𝑝ℎ(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷

⋮

{𝑈𝑖,𝑗
𝑋 [{𝑝𝑁(0, 𝑙)}𝑙=0,1,2,…,𝑛]}𝑖=𝐷}

 
 
 
 

 
 
 
 

                                                                                (4.63) 

where 𝑈𝑖,𝑗
𝑌  is 𝑖𝑡ℎ signal decomposition at the decomposition level 𝑗 of the signal Y, i.e. 

acceleration, velocity and displacement, in terms of WPT and 𝐷 depicts the set 

{1, 2, … , 2𝑗}. Accordingly, Equations (4.62-63) can be considered as the equations of 

motion decomposed in terms of the WPT. 

According to the distribution of relative energies over the WPT components at a specified 

decomposition level of a signal, the dominant component 𝐷𝑐 of the signal are defined as 
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𝐷𝑐 = {𝑠1, 𝑠2, … , 𝑠𝑐}                                                                                                          (4.64) 

in which 𝑠𝑐 shows the sequence number of the WPT component having the 𝑐𝑡ℎ highest 

relative energy. At a certain level of decomposition 𝑗, a dominant component 𝐷𝑐 can be a 

subset of the 𝐷 = {1, 2,… , 2𝑗} of the WPT components of the signal. In general, the 

dominant component 𝐷𝑐 is the reduced representation set, by the information with regards 

to the sequence numbers of the WPT components, in terms of energy. 

 Technically, while the input and output data are excessively large to be process and are 

supposed to be redundant, the data are converted into a reduced representation set of 

features. If the extracted features are accurately selected, the features set will include the 

relevant information from the input and output data, and make it possible to perform the 

desired task utilizing this reduced representation instead of the full size of input and 

output data. 

Therefore, the purpose of defining the dominant components is to produce the reduced 

representation set in order to carry out the least squares error minimization over the 

dominant components. In structural dynamics, the responses of a linear model consist of 

a linear combination of modal responses and the coefficients of modal vectors. 

Sometimes, in the presence of a node in the modal vectors, a response does not have the 

contribution from the corresponding modal response, which instead can be quite 

important. Therefore, in defining the dominant components, it is important to consider 

multiple responses rather than one specific response.  

In general, the dominant components can be achieved as follows: first, the relative 

energies of the WPT components at a certain level of decomposition of acceleration 

responses at all floors are computed; second, individually, the average of the relative 

energies of the WPT components of the same direction is computed; third, the dominant 

components can be defined from the average energy distribution over the WPT 

components at that specific level. 
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Based on the fact that the dominant components can be achieved by the average relative 

energy distribution over the WPT components of the system's acceleration responses, the 

equations of motion for the system at the certain level 𝑗 can be transformed into those in 

terms of the dominant component 𝐷𝑐,  

M[𝑈𝑖,𝑗
𝑋̈ ]
𝐷𝑐
+ C[𝑈𝑖,𝑗

𝑋̇ ]
𝐷𝑐
+ K[𝑈𝑖,𝑗

𝑋 ]
𝐷𝑐
= [𝑈𝑖,𝑗

𝐹 ]
𝐷𝑐

                                                                  (4.65) 

These equations of motion according to one particular dominant component, 𝐷𝑐 , can be 

observed as the reduced representation of those in terms of the WPT in Equations (4.30). 

The aim is to carry out the least square error minimization method over the dominant 

components, as opposed to being forced to apply the complete data.  

4.3.4 Least square error minimization procedure 

Equations (4.65) can be observed as a linear inverse problem involving the estimation of 

structural parameters such as the mass, damping, and stiffness components. The 

determination of such parameters can be obtained by formulating an optimization 

problem, such as: 

‖𝔽𝑐‖ → min                                                                                                                     (4.66)         

where  

𝔽𝑐 = M[𝑈𝑖,𝑗
𝑋̈ ]
𝐷𝑐
+ C[𝑈𝑖,𝑗

𝑋̇ ]
𝐷𝑐
+ K[𝑈𝑖,𝑗

𝑋 ]
𝐷𝑐
− [𝑈𝑖,𝑗

𝐹 ]
𝐷𝑐

                                                         (4.67) 

in which 𝔽𝑐 is a vector including the unknown components of mass, damping, and 

stiffiness matrices, according to the chosen dominant component 𝐷𝑐.  

By utilizing the least square error minimization procedure depicted in Equation (4.66) on 

𝐷1, 𝐷2, ..., 𝐷𝑐𝑗 , ..., 𝐷𝑐 , the corresponding 𝔽1, 𝔽2, ..., 𝔽𝑐𝑗 , ..., 𝔽𝑐 can be achieved. The 

variation among the identified 𝔽𝑐  and 𝔽𝑐−1  will be affected directly by the WPT 

component with 𝑐𝑡ℎ highest relative WPT component energy. Evidently, as 𝑐 increases, 

the variation among 𝔽𝑐  and 𝔽𝑐−1 becomes smaller, up to a point where, at a given 𝑐𝑗 , 

such a variation can be considered negligible. This implies that the WPT components 
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with 𝑐𝑗𝑗
𝑡ℎ highest component energy for 𝑐𝑗𝑗

 ≥ 𝑐𝑗  cannot be helped in improving the 

identification results.  

By iterating the least square error minimization procedure over the dominant components 

𝐷𝑐 for 𝑐 = 1, 2, 3,…, one can find that 𝔽𝑐 converges to the correct values. It can also be 

observed that the dominant component where 𝔽𝑐 starts converging to the correct ones is 

the most accurate dominant component. Noteworthy that in real application, it is not 

essential to start implementing the least square error minimization procedure from the 

first dominant component 𝐷1.  To avoid time-consuming iterative computations for 

convergence, implementing the least square method can be started from a given dominant 

component 𝐷𝑐𝑠 that includes the WPT components Cs with large relative WPT component 

energies. 

4.3.5 Nonlinear parameter estimation using wavelet multiresolution 

When structural damage occurs, nonlinearity usually exists in damaged structures. Hence, 

in this section, wavelet multiresolution technique is used to identify the nonlinear 

structural parameters. 

4.3.5.1 Procedure for nonlinear system 

For the 𝑁-DOF nonlinear system, the equation of motion can be expressed as: 

 M𝑥̈(𝑡) + fR(𝑥̇(𝑡), 𝑥(𝑡)) = f(t)                                                                                       (4.68) 

where M is the N× N diagonal mass matrix of mass, 𝑥(𝑡) is the length-N vector of 

structural displacement, fR(𝑥̇(𝑡), 𝑥(𝑡)) is nonlinear restoring force vector, and f(t) is the 

system's external excitation.  

Suppose that mass remain constant during the excitation, while damping of the system 

has piecewise linear characteristics and the stiffness is a function of displacement, once 

the structure enters a nonlinear stage and require to be identified. If we presume that the 
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stiffness matrix remain constant within every time step, then Equation (4.68) is easily 

converted into incremental representation as follows: 

 M∆𝑥̈(𝑡) + C(t)∆𝑥̇(𝑡) + S(t)∆𝑥(𝑡) = f(t)                                                                      (4.69) 

in which C(t) is piecewise linear damping matrix and S(t) is tangent stiffness matrix at 

the beginning of each time step. Supposing that there is an 𝑁-story shear-type building 

model, Equation (4.69) can be written as: 

 

[
 
 
 
 
 
 
𝑚1 0 0 ⋯ 0 0

0 𝑚2 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ 𝑚𝑁−1 0

0 0 0 ⋯ 0 𝑚𝑁]
 
 
 
 
 
 

 

{
  
 

  
 
∆𝑥̈1(𝑡)

∆𝑥̈2(𝑡)

⋮

∆𝑥̈𝑁−1(𝑡)

∆𝑥̈𝑁(𝑡) }
  
 

  
 

  

+

[
 
 
 
 
 
 
𝑐1(𝑡) + 𝑐2(𝑡) −𝑐2(𝑡) 0 ⋯ 0 0 0

−𝑐2(𝑡) 𝑐2(𝑡) + 𝑐3(𝑡) −𝑐3(𝑡) ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ −𝑐𝑁−1(𝑡) 𝑐𝑁−1(𝑡) + 𝑐𝑁(𝑡) −𝑐𝑁(𝑡)

0 0 0 ⋯ 0 −𝑐𝑁(𝑡) 𝑐𝑁(𝑡) ]
 
 
 
 
 
 

 

{
  
 

  
 
∆𝑥̇1(𝑡)

∆𝑥̇2(𝑡)

⋮

∆𝑥̇𝑁−1(𝑡)

∆𝑥̇𝑁(𝑡) }
  
 

  
 

  

+

[
 
 
 
 
 
 
𝑠1(𝑡) + 𝑠2(𝑡) −𝑠2(𝑡) 0 ⋯ 0 0 0

−𝑠2(𝑡) 𝑠2(𝑡) + 𝑠3(𝑡) −𝑠3(𝑡) ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ −𝑠𝑁−1(𝑡) 𝑠𝑁−1(𝑡) + 𝑠𝑁(𝑡) −𝑠𝑁(𝑡)

0 0 0 ⋯ 0 −𝑠𝑁(𝑡) 𝑠𝑁(𝑡) ]
 
 
 
 
 
 

  

{
  
 

  
 
∆𝑥1(𝑡)

∆𝑥2(𝑡)

⋮

∆𝑥𝑁−1(𝑡)

∆𝑥𝑁(𝑡) }
  
 

  
 

  

=

{
  
 

  
 
∆𝑓1(𝑡)

∆𝑓2(𝑡)

⋮

∆𝑓𝑁−1(𝑡)

∆𝑓𝑁(𝑡) }
  
 

  
 

                                                                                                                     (4.70) 

 

where 𝑚ℎ, 𝑐ℎ(𝑡) and 𝑠ℎ(𝑡) (ℎ = 1, 2, … , 𝑁) are mass, damping and tangent stiffness 

coefficients at ℎ𝑡ℎ story, respectively; and  ∆𝑥̈ℎ(𝑡),∆𝑥̇ℎ(𝑡) and ∆𝑥ℎ(𝑡) are incremental 

acceleration, velocity and displacement at ℎ𝑡ℎ story, respectively. Matrix Equation (4.70) 

can be rewritten as: 

𝑐ℎ(𝑡)[∆𝑥̇ℎ(𝑡) − ∆𝑥̇ℎ−1(𝑡)] + 𝑠ℎ(𝑡)[∆𝑥ℎ(𝑡) − ∆𝑥ℎ−1(𝑡)] = ∑ [−𝑚𝛼∆𝑥̈ℎ(𝑡) + ∆𝑓𝛼]
𝑁
𝛼=ℎ   

(2 ≤ ℎ ≤ 𝑁)                                                            
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𝑐ℎ(𝑡)∆𝑥̇1(𝑡) + 𝑠ℎ(𝑡)∆𝑥1(𝑡) = ∑ [−𝑚𝛼∆𝑥̈ℎ(𝑡) + ∆𝑓𝛼]
𝑁
𝛼=1                                              (4.71) 

where ∆𝑥ℎ(𝑡) = 𝑥ℎ(𝑡) − 𝑥ℎ(𝑡 − ∆𝑡) indicates the incremental displacement; ∆𝑥ℎ(𝑡) −

∆𝑥ℎ−1(𝑡) and ∆𝑥̇ℎ(𝑡) − ∆𝑥̇ℎ−1(𝑡) are incremental inter-story drifts and velocity, 

respectively. The tangent stiffness 𝑠ℎ(𝑡) can be approximated using a scaling function at 

scale index 𝑗, as follow: 

𝑠ℎ(𝑡) = ∑ ӄℎ(𝑗, 𝑘)𝜙ℎ(2
−𝑗𝑡 − 𝑘)𝑙

𝑘=0                                                                                (4.72) 

where k is translation parameter of scaling function 𝜙ℎ(𝑡) and ӄℎ(𝑗, 𝑘) is the integral 

coefficients of the scaling functions. With substituting Equation (4.72) into (4.71) creates 

the incremental governing equation of the ℎ𝑡ℎ story: 

𝑐ℎ(𝑡)[∆𝑥̇ℎ(𝑡) − ∆𝑥̇ℎ−1(𝑡)] + ∑ ӄℎ(𝑗, 𝑘)𝜙ℎ(2
−𝑗𝑡 − 𝑘)𝑙

𝑘=0 [∆𝑥ℎ(𝑡) − ∆𝑥ℎ−1(𝑡)]                            

   = ∑ [−𝑚𝛼∆𝑥̈ℎ(𝑡) + ∆𝑓𝛼]
𝑁
𝛼=ℎ          (2 ≤ ℎ ≤ 𝑁)                                                            

𝑐ℎ(𝑡)∆𝑥̇1(𝑡) + ∑ ӄℎ(𝑗, 𝑘)𝜙ℎ(2
−𝑗𝑡 − 𝑘)𝑙

𝑘=0 ∆𝑥1(𝑡)  

   = ∑ [−𝑚𝛼∆𝑥̈ℎ(𝑡) + ∆𝑓𝛼]
𝑁
𝛼=1                                                                                          (4.73) 

For notational convenience, let us set ∆𝜀ℎ(𝑡) = ∆𝑥ℎ(𝑡) − ∆𝑥ℎ−1(𝑡) and ∆𝜀ℎ̇(𝑡) = ∆𝑥̇ℎ −

∆𝑥̇ℎ, Equation (4.73) can be rewritten as:  

𝑐ℎ(𝑡)[∆𝜀ℎ̇(𝑡)] +∑ ӄℎ(𝑗, 𝑘)𝜙ℎ(2
−𝑗𝑡 − 𝑘)𝑙

𝑘=0 [∆𝜀ℎ(𝑡)] = ∑ [−𝑚𝛼∆𝑥̈ℎ(𝑡)+ ∆𝑓𝛼]
𝑁
𝛼=ℎ          (4.74)  

Substitution of the structural responses at 𝑡 = 𝑡1~𝑡𝑛 into Equation (4.74) yields  

𝑉ℎ = ℎ𝐴ℎ                                                                                                                      (4.75) 

where 

𝑉ℎ,𝑛 ×(𝑙+𝑒+1)

=

[
 
 
 
 
 
 
 
 
 
 
∆𝜀ℎ̇(𝑡1) 0 … 0 𝜙ℎ(2

−𝑗𝑡1)∆𝜀ℎ(𝑡1) … 𝜙ℎ(2
−𝑗𝑡1 − 𝑙)∆𝜀ℎ(𝑡1)

⋮ ⋮ ⋱     
∆𝜀ℎ̇(𝑡𝑓) 0      

 ∆𝜀ℎ̇(𝑡𝑓+1)  ⋮    

 ⋮ ⋱  ⋮ ⋱ ⋮
 ∆𝜀ℎ̇(𝑡𝑔)   ⋮  ⋮

⋮ 0  0    
 ⋮ ⋱ ∆𝜀ℎ̇(𝑡𝑟)     
 ⋮  ⋮    
0 0 … ∆𝜀ℎ̇(𝑡𝑛) 𝜙ℎ(2

−𝑗𝑡𝑛)∆𝜀ℎ(𝑡𝑛) … 𝜙ℎ(2
−𝑗𝑡𝑛 − 𝑙)∆𝜀ℎ(𝑡𝑛)]
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ℎ,(𝑙+𝑒+1)×1 =

[
 
 
 
 
 
 

𝑐1
𝑐2
⋮
𝑐𝑒

ӄℎ(𝑗, 0)
⋮

ӄℎ(𝑗, 𝑙)]
 
 
 
 
 
 

 , 𝐴ℎ,𝑛×1 =

{
 
 

 
 
∑ [−𝑚𝛼∆𝑥̈ℎ(𝑡1) + ∆𝑓𝛼]
𝑁
𝛼=ℎ

⋮

∑ [−𝑚𝛼∆𝑥̈ℎ(𝑡𝑛) + ∆𝑓𝛼]
𝑁
𝛼=ℎ }

 
 

 
 

 

 

in which 𝑐1for 𝑡1 ≤ 𝑡 ≤ 𝑡𝑓;  𝑐2 for 𝑡𝑓+1 ≤ 𝑡 ≤ 𝑡𝑔; ... 𝑐𝑒 for 𝑡𝑟 ≤ 𝑡 ≤ 𝑡𝑛. 𝑉ℎ and 𝐴ℎ are 

known matrices composed of observations, estimated state, and scaling functions. The 

unknown parameters, vector ℎ are obtained by least square method, 

   ℎ = (𝑉ℎ
𝑇𝑉ℎ)

−1𝑉ℎ
𝑇𝐴ℎ                                                                                                   (4.76)  

where  𝑉ℎ
𝑇 is the transpose of matrix 𝑉ℎ

 , while ℎ is the calculated tangent stiffness 𝑠ℎ(𝑡) 

which can be approximated by substituting ӄℎ(𝑗, 𝑘) into Equation (4.72). Accordingly, 

the time-varying tangent stiffness can be obtained using wavelet multiresolution analysis 

in every time step. Furthermore, the incremental nonlinear restoring force in every story 

is computed through multiplying the tangent stiffness by the incremental inter-story drift, 

and the nonlinear restoring force can be achieved by summing all incremental nonlinear 

restoring forces. Consequently, the hysteresis curves of every story can be easily obtained.  

An index λ𝑖  is used to quantitatively evaluate the error between the exact and nonlinear 

restoring force estimated through the proposed method and is defined as: 

λ𝑖 =
∑ (RF𝑖𝑟−RF̂𝑖𝑟)

2𝑛
𝑟=1

∑ (RF𝑖𝑟)2
𝑛
𝑟=1

× 100                                                                                             (4.77) 

where 𝑛 is the number of data points; RF𝑖𝑟 presents simulated restoring force responses 

of the ith floor at time tr and RF̂𝑖𝑟 stands for unbiased estimation of RF𝑖𝑟.  

Furthermore, to obtain accurate estimation and minimize the computational effort in the 

proposed system identification method, the GA is used for the selection of wavelet type, 

by introducing a fitness function to search for the optimal Daubechies order  

min ‖
 𝑚𝑒𝑎𝑛(𝐴𝐹𝑗)

∑ 𝐴𝐹𝑙𝑜
𝐷̃
𝑙𝑜=1

‖
2 

                                                                                                              (4.78)  
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where ‖. ‖2 is the Euclidean norm, 𝐴𝐹𝑗  is average of the relative energies of the WPT 

components at decomposition level 𝑗 of the acceleration responses and 𝐷̃ is number of 

dominant energies of 𝐴𝐹𝑗  which is related to structural frequencies. The proposed 

chromosomes contain five genes for the Daubechies mother wavelet function and hence, 

the Daubechies order search space is limited to DB1 to DB31. The whole scheme of the 

proposed system identification method is given in the block diagram of Figure 4.12. 

 

 
Figure 4.12: Block diagram of the proposed system identification method 

 

 Summary 

In this chapter, to examine the structural health condition, at first the multiresolution 

wavelet packet transform is combined with entropy analysis to determine an effective 

damage index, RWPE, to obtain the information about the relative energy correlated with 

various frequency bands presented in structural response segments for investigating the 

Nonlinear Linear system 

Determining the dominant component from the 
average relative WPT component energy of the 

acceleration responses 

 

Fulfilling the least squares error minimization 

over the selected dominant components 

Estimating the structural parameters at each 

dominant component 

Approximating the tangent stiffness 
using the scaling function in specific 

scale index 

Calculating the nonlinear restoring 

force at each story  

Identifying the hysteresis curves at 

each story of the structure 

Measured response 

Determining the best value of DB orders by employing GA 

Using the connection coefficients to derive the velocity and displacement 
from the acceleration responses 
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location of damage. Then, the GA optimization method is applied to estimate the damage 

severities by defining a database to reveal the relationships between the energies obtained 

in the previous step and damage severities. However, for most of in-field structures, the 

monitored data from initial pristine structural states are not available. Therefore, the 

reference-free damage detection algorithm is proposed based on the RWPE. The 

procedure does not require vibration signals from an undamaged structure because the 

proposed method is effectively capable of comparing signals from different locations in 

the existing state. To ameliorate the algorithm, GA was utilized to identify the best choice 

for ‘‘mother wavelet function” and “decomposition level” of the signals by means of the 

fundamental fitness function to optimize the algorithm.  

Moreover, the wavelet multiresolution analysis is applied for the identification of 

structural parameters of linear and nonlinear systems. In this way, first, velocity and 

displacement responses are derived from the acceleration response through applying the 

connection coefficients. To enhance the accuracy of system identification the best DB 

order is determined by using GA; Second, defining the dominant components of 

acceleration responses by introducing the concept of energy to the wavelet components; 

and next, identifying the accurate structural parameters of the linear system via 

implementing the least square error minimization over the dominant components.  In 

addition, the scaling function of multiresolution analysis can be used to approximate 

tangent stiffness matrix and subsequently identified the hysteresis-restoring force curves 

of the structures. The proposed algorithms will be verified with experimental and 

numerical structural models. 
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5 CHAPTER 5: EXPERIMENTAL WORK 

 Introduction 

This chapter focuses on the illustration of numerical and experimental setup considered 

in this research work to evaluate the proposed damaged detection and system 

identification methods. In the first part, configurations of steel I-beam and three-story 

building model with various damage scenarios associated with different damage locations 

and damage severities are presented. In the second part, for the assessment of system 

identification method, different damage cases with linear and nonlinear conditions have 

been numerically simulated and tested; beam structure under flexural vibration and three-

story building model. Also, to simulate the damage during the experimental test a variable 

stiffness device is introduced to reduce the stiffness of some stories. Finally, experimental 

instrumentations such as excitation types and sources, data acquisition, accelerometers 

and force transducer are explained. 

 Illustrative models for damage detection 

The numerical and experimental studies of I-section steel beam and three-story building 

model with various damage scenarios are conducted for assessment of the proposed 

damage detection methods. 

5.2.1 I-Beams 

5.2.1.1 Numerical study 

 

In this study, numerical simulations of five 3000 mm-span-length steel-I beams with 

considered damages are carried out, as shown in Figure 5.1(a). Beams' flange width and 

section depth is 75 mm and 150 mm, respectively. Thickness of flange and web is 7 mm 
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and 5 mm, respectively, as shown in Figure 5.1(b). Beam 0 is considered as the reference 

beam without damage while Beam 1 is the single damage scenario with damage located 

at point 5. Beam 2 has two points of damage at locations 11 and 13. Beam 3 has three 

points of damage at locations of 9, 11 and 13, and Beam 4 has three damage points 

induced at the middle of the beam and at locations 10 and 12. Damage is simulated in the 

form of a 3mm-width notch. Let 𝑡𝑛
𝑑 stands for damage depth in which 𝑛 is a number 

assigned to each damage depth case (𝑛 =1, 2, ..., 25). The damage depth is increased 

gradually for all beams from 3mm up to 75mm, as depicted in Figure 5.1(b). The damage 

severity is introduced by 𝛼𝑛 which is to be calculated by Equation (5.1). The mass density 

and modulus of elasticity of the beam material are 7850 𝑘𝑔 𝑚3⁄  and 2.1 GPa, 

respectively. The Poisson’s ratio is 0.33. 

𝛼𝑛 =
𝑡𝑛
𝑑

𝑡
                                                                                                                              (5.1) 

The time history acceleration responses of beams are computed by the finite-element 

based software (ABAQUS) using transient dynamic analysis. To simulate an impulse 

load, the force-time history is applied at location 14 on the beam. This location is not a 

node point for the first five flexural mode shapes. If a node point of a mode shape is 

situated at the excitation point, then this mode cannot be excited and identified. Location 

15 is very close to the support and can be affected by the support, thus it cannot be chosen 

as the excitation point. Also, locations 10, 11 and 13 have node points of modes 5, 3 and 

4, respectively. Hence these nodes are not considered as excitation point as well. 

Therefore, location 14 is chosen against locations 8 and 12 for the following reasons: (i) 

Mid-span of the beam, labeled as location 8 is the node point for modes 2 and 4; (ii) The 

damage locations in beam 3 are very close to location 12 and cannot be selected as the 

excitation point. Thus, to provide a better excitation, location 14 is chosen as an excitation 

point in this study. The node acceleration responses of the beam subjected to the impulse 

load are obtained from sixteen locations on the top flange, as shown in Figure 5.1(a) at a 
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sampling frequency of 2000 Hz to identify the characteristics of damage in beams. Also, 

the frequency bands of the WPT components at decomposition level 6, as well as the 

relation between the WPT components and the frequencies of Beam 0 are demonstrated 

in Table 5.1. 

 

 
Figure 5.1: I-section specimen. (a) Dimension and damage depth of beams, (b) damage 

location of beams 

 

 

Table 5.1: Frequency bands of the WPT Components at decomposition level 6 of 
undamaged Beam 

 The sequence of WPT Frequency bands of WPT components 

 (Hz) 

Natural frequencies 

 (Hz) 
1 [0-15.625] 12.888 

2 [15.625-31.25] 25.784 

3 [31.25-46.875] ------ 

4 [46.875-62.5] 52.80 

⋮ ⋮ ⋮ 
15 [187.5-203.125] 201.64 

⋮ ⋮ ⋮ 
28 [421.875-437.5] 429.67 

⋮ ⋮ ⋮ 
48 [703.125-718.75] 714.90 

⋮ ⋮ ⋮ 
64 [984.375-1000] ------ 
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5.2.1.2 Experimental study 

The steel I-beam, with previously described geometry, as the first structure in this study 

is investigated experimentally. Vibration tests are carried out on four I-section steel beams 

with a length of 3200 mm including a 100 mm overhang at both end supports ends under 

undamaged and various damage states, as depicted in Figure 5.2. The damage is induced 

by introducing a saw cut at the prescribed locations on the beam with varying depths of 

cut, as described in Table 5.2.  

 

 

 

 

                           (a)                                                              (b) 
 

 

Figure 5.2: Dynamic test in laboratory. (a) Tested beams, (b) experimental setup and 

data acquisition system 

 

 

Table 5.2: Beam damage scenarios 
Damage case Damage scenario Damage location Width of damage  

(mm) 

Depth of damage  

  (mm) 

Beam 0 Undamaged - -  -  

Beam 1 Single 5 3 3 up to 75 

Beam 2 Double 11, 13 3 3 up to 75 

Beam 3 Triple 9, 11, 13 3 3 up to 75 

Beam 4 Triple Middle of beam, 10,12 3  3 up to 75 

 

Each of the four beams is tested individually in its datum state to determine the dynamic 

characteristics of the structure. All the beams are identical, but they are tested one by one 

as there might be some differences during the manufacturing of the materials, 

experimental set up and support conditions. The beam is excited at node 14, using a 
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Labworks ET-132 shaker with a rated force of 22 N. PCB 208C02 force transducer is 

used to measure the input force with a measurement range of 449 N in both tension and 

compression and a frequency range of 0.001 Hz to 36 kHz. The analogue data from the 

sensors is converted via an analysis digital center using the OROS OR35 analyzer. The 

signal analyzer is capable of generating all the different forms of signals, including white 

noise, which is used in this test. The acceleration response of the K-shear Kistler 

accelerometers is measured at sixteen locations on the top flange along the beam. These 

accelerometers have a frequency range of 0.5 to 10 kHz and a sensitivity of 100 mV/g. 

The sampling rate is set to 5.12 kS/s to achieve the frequency band width of 2000 Hz.  

5.2.2 Three-story building model 

5.2.2.1 Model test building 

For this experiment, one small building model is designed and constructed. The model 

contains two theoretical assumptions: 1) the rigid floor; 2) the rigid connections. As 

shown in Figure 5.3, the model is 120 cm tall and consisted of 3 floors (steel slabs) and 

16 columns (steel flat bars). Each floor is supported on four columns. The clear height for 

each story is 40 cm. Dimensions of steel slabs and flat bars are listed in Table 5.3. To 

prevent rotation and drift, the foundation slab is fixed to the ground as shown in Figure 

5.3. 
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Figure 5.3: Three-story test building model 

 

Table 5.3: Dimension and amount of building model components 
 

Component 

Dimension 

Height × Width 

(cm × cm) 

 

Thickness 

(cm) 

 

Amount 

 

Location 

Steel slab 

(Floor) 
50 × 50 1 3 1-3 floor 

60 ×60 2 1 foundation 

Steel Flat Bar 

(Column) 
40 × 3.5 0.4 12 1-3 floor 

 

For easy removal and replacement of the columns for different damage scenario 

simulations, bolts are used to connect the steel slab and the steel flat bar. To make a rigid 

connection between the steel slab and the steel flat column, eight pieces of steel angles 

(0.4×7×7; length: 3.5 cm) are bolted on each face of the floor plates in the y-direction 

(see Figure 5.4). A total of twenty four pieces of steel angles are used. To prevent rotation 

and drift, the foundation slab is fixed to the ground as shown in Figure 5.3. 

X Y 

Z 
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Figure 5.4: Slab and flat bar connection 

 

5.2.2.1.1 Test set up and damage scenarios 

The test setup is configured to measure structural vibration response of the building model 

with different types of damage scenarios under white noise excitation. Figure 5.5 

indicates columns and floors identification numbers to distinguish damage and sensor 

locations. To shake the structure in y-direction, the Labworks ET-132 shaker is attached 

at point 34. The feasibility and sensitivity of the proposed damage identification 

algorithms are validated through five different damage scenarios in terms of the number 

and location of damages in the model. Table 5.4 presents the description of the considered 

damage scenarios which are more illustrated in the following. 

 

Table 5.4: The detail description of damage scenarios in the building model 
Damage type Damage 

scenario 

Damage location depth of 

damage 

(mm) 
Column 

number 

Point 

Notch cutting Double DS1 II Between points 3 and 4 3.5 up to 17.5 

IV Between points 8 and 9 3.5 up to 17.5 

DS2 II Between points 3 and 4  3.5 up to 17.5 

V Between points 10 and 11 3.5 up to 17.5 

DS3 IV Between points 8 and 9 3.5 up to 17.5 

VIII Between points 20 and 21 3.5 up to 17.5 

Triple DS4 IV Between points 8 and 9 3.5 up to 17.5 

X Between points 27 and 28 3.5 up to 17.5 

XI Between points 30 and 31 3.5 up to 17.5 

DS5 III Between points 6 and 7, 3.5 up to 17.5 

V Between points 10 and 11 3.5 up to 17.5 

VI Between points 13 and 14 3.5 up to 17.5 
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Figure 5.5: Columns and floors numbers of three-story building model 

 

Damage scenario 1 (DS1):  two damages are located on the same planar face of the 

building model at columns II and IV, between points 3-4 and 8-9, respectively (Figure 

5.6(a)). 

Damage scenario 2 (DS2): two damages are located at the same story at columns II and 

V, between points 3-4 and 10-11, respectively (Figure 5.6(b)). 

Damage scenario 3 (DS3): two damages are located on different planar faces of the 

building model at columns II and V, between points 8-9 and 20-21, respectively (Figure 

5.6(c)). 
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(a) 

 

 

 

(b) 

 

 
 

 

 

(c) 

Figure 5.6: Double damage scenarios of thee-story building model. (a) DS1, (b) DS2 

and (c) DS3 

 

Damage scenario 4 (DS4): three damages are located at different stories on different 

planar faces of the building model at columns IV, X and XI (Figure 5.7(a)). 

 

Notch cutting  
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Damage scenario 5 (DS5): three damages are located on the same planar face of the 

building model at columns III, V and VI (Figure 5.7(b)). 

 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

Figure 5.7: Triple damage scenarios of thee-story building model. (a) DS4, (b) DS5 
 

A 4mm-thick electrical saw is used to cut pieces of the steel flat bars. All damage 

scenarios are simulated by notch cuts on one side of steel flat bars as shown in Figure 5.8. 

Five different levels of cuts are considered for each damage scenario increasing gradually 

from 3.5 mm up to 17.5 mm with 3.5 mm increment at each step as shown in Figure 5.8. 
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o
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The simulated damage scenarios are implemented on the structure by replacing damaged 

columns at designated locations. For this test, twelve shear Kistler accelerometers are 

installed in building model at locations: 2, 4, 6, 9, 11, 13, 19, 21, 23, 26, 28 and 30, to 

measure the acceleration responses. The sampling rate is set to 5.24 kS/s to achieve the 

frequency band width of 2048 Hz.   

 

 
Figure 5.8: Different levels of cuts in steel flat bars 

 

  Illustrative models for system identification 

In this section, the numerical and experimental studies of the beam structure under 

flexural vibration and the three story building model with various damage cases in linear 

and nonlinear conditions are conducted for assessment of the proposed system 

identification methods. 

5.3.1 Beam structure under flexural vibration 

5.3.1.1 Numerical study 

In this section, a numerical example of a damaged beam is considered to test the proposed 

method. For this purpose, the time history acceleration responses of the beam are 
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computed by the ABAQUS software using a time increment of 4.8828 × 10−4s, which 

corresponds to a sampling rate of 2048 Hz.  

Consider a fixed supported beam with length 𝑙𝑥= 1 m, width 𝑙𝑦= 0.08 m, and thickness of 

𝑡 = 0.005 m. The node acceleration responses of the beam under loading are obtained 

from nine locations on the beam, as shown in Figure 5.9. The force-time history is applied 

at location 5 on the beam. An undamaged case and two different damage cases with 

varying locations are investigated, as shown in Figure 5.9. Case 1 is the single damage 

scenario with damage located at point 4 while Case 2 has two points of damage, at 

locations 4 and 5. The modulus of elasticity of the steel, the Poisson’s ratio and the mass 

density is, 2.1 GPa, 0.33 and 7850 𝑘𝑔 𝑚3⁄ , respectively. 

 

 

(a) 

 

(b) 

Figure 5.9: Dimensions and damage locations of beams under flexural vibration. (a) 

Case 1, (b) Case2 

 

5.3.1.2 Experimental study 

In this section, an experimental study is carried out on a steel beam with fixed supports, 

as shown in Figure 5.10. Dimensions of the beam are following the same sizes mentioned 

in the preceding section. The mass is known and equal to 3.207 kg. Damage is simulated 

by cutting slots in the beam at the selected locations, as described in Table 5.5. 
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The model is divided into four intervals along the X axis; each interval is 25 cm long, 

which produced three nodes in the middle and one node at each support. Acceleration of 

each node is measured in the Y axis using K-Shear Kistler accelerometer. 

 

Table 5.5: Damage scenarios of beam under flexural vibration 
Damage 

Case 

Damage 

Scenario 
Damage Location 

Width of Cut 

(mm) 

Depth of Cut 

(mm) 

Case 0 Undamaged - - - 

Case 1 Single Between nodes 2 and 3 2 2 

Case 2 Double 
Between nodes 2 and 3, 

node 3 
2 2 

 

 

 
(a) (b) 

Figure 5.10: Experimental setup using beam under flexural vibration. (a) Data 

acquisition system, (b) damage locations of tested beam 
 

The beam is excited (white noise) at node three, in the middle of the beam, using a 

Labworks ET-132 shaker. The analogue data from the sensors is converted and recorded 

using an OROS-OR35 data logger/analyzer. The sampling rate is set to 5.24 kS/s with 

frequency band width of 2048 Hz. 
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5.3.2 Three-story building model 

5.3.2.1 Numerical study  

The efficiency of the proposed system identification method is demonstrated through a  

numerical study on a shear beam building model. This building is a three-dimensional 

three-story frame structure with MDOF, as shown in Figure 5.11. The two degrees of 

freedom (DOFs) considered in each floor (rigid floor assumption) are two translational 

displacements in x-and y-directions. Thus, this simplified model has a total of 6 DOFs. 

The size and dimensions of the building model are in accordance with those of test 

specimen described in Section 5.2.2. The nominal (undamaged) stiffness coefficient is 

assumed to be identical for each floor and is 30358.92 N/m along y-direction, and 

2134053.31 N/m along x-direction. Thus, the configuration of this model is symmetrical 

with respect to both x- and y-directions. The lumped mass of all three floors is 27 kg.  

 

 

Figure 5.11: The model of a three-story frame structure 

 

The structural damping of the model is assumed to be of the Rayleigh type. The two 

constants of the Rayleigh damping matrix have been chosen so to have a 1% damping 
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ratio for the first two vibration modes in the y-direction. The modal properties of the 

model are listed in Table 5.6.  

 

Table 5.6: Structural modal properties of the original mode 
 Mode Natural frequencies (Hz) Damping ratios 

x 1 

2 

3 

19.9335 

55.4085 

79.2628 

0.0206 

0.0548 

0.0781 

y 1 

2 

3 

2.6986 

7.4814 

10.5813 

0.0100 

0.0100 

0.0123 

 

5.3.2.1.1 Basic description of numerical simulation 

For this study, a band-limited white-noise excitation force within the frequency range of 

0-100 Hz is applied to the top floor of the building model to measure the responses of the 

model with the sampling rate of 2.048 kHz. 

Various combinations of simulation are given in this section to verify the validity and to 

evaluate the accuracy of the proposed method. In general, the building is subjected to two 

different types of damage state: linear and nonlinear damage states. In particular, various 

damage cases are defined including Damage Case 1 (DC1) which is a linear model with 

a change in stiffness parameter of the first story, Damage Case 2 (DC2) that consists a 

linear model with a change in stiffness parameter of the first and second stories and 

Damage Case 3 (DC3) which presents a bilinear model, i.e., a piecewise linear stiffness 

is used in the third floor to simulate the nonlinearity behavior in the structure.  

The proposed method uses acceleration time history of the response output. In the 

numerical simulations, the mass and the exact structural parameters of the original model 

are obtained from the explicit dynamic analysis conducted by ABAQUS software. 
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5.3.2.2 Experimental study  

In this section, an experimental study is performed on the three-story shear-beam building 

model, as shown in Figure 5.12, with identical material properties and test configurations 

as described in the Section 5.2.2. Mass coefficient of each floor is m1=m2=27.7 kg and 

m3=25.1 kg. The first three natural frequencies of the test specimen are 2.875, 7.625 and 

10.5 Hz, respectively, as shown in Figure 5.13. The linear stiffness of each story is 

obtained from experimental static test as k1= k2= 29800 and k3=29500 N/m. Three 

damage cases are considered along with the original model, as described in Table 5.7. To 

simulate structural damage, a variable stiffness device is utilized in this study to change 

the stiffness of stories. 

 

Table 5.7: Damage scenarios in three-story shear-beam building model 

Damage case Type of damage Damage location 

Case 1 Linear First story 

Case 2 Linear Second story 

Case 3 Piecewise linear First story 

 

 

 

 

 

(a)                           (b) 

 Figure 5.12: (a) Experimental setup of three-story building model, (b) data acquisition 

system 
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A random white noise force excitation is applied to the top floor of the building model in 

a band-limited frequency range of 0-70 Hz, using a Labworks ET-132 shaker as shown 

in Figure 5.12(b). The input force is measured using a PCB 208C02 force transducer with 

a frequency range of 0.001Hz to 36 kHz. During the tests, each floor is installed with one 

K-Shear Kistler accelerometer to measure the floor responses. The analogue data from 

the sensors is converted and recorded using an OROS-OR35 data logger/analyzer. The 

sampling rate is set to 5.24 kS/s to achieve the frequency band width of 2048 Hz. 

 

 
 

Figure 5.13: Frequency domain response of acceleration response signal in building 

model 

 

5.3.2.2.1 Variable stiffness device (VSD)  

Damage in a story of the shear structure is supposed to be reflected by variation of its 

stiffness. To simulate the stiffness variations in a selected story, a VSD with an effective 

stiffness is mounted in the selected story. In the experimental test, the effective stiffness 

of the VSD is degraded to zero for simulating the reduction of the stiffness caused by 

damage. The innovative concept for the VSD is motivated by the so-called resettable semi 

active stiffness dampers, (Yang et al., 2000; He et al., 2001a; Chase et al., 2006; Yang et 

al., 2007), described in the following.  
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Consider a device consisting of a hydraulic cylinder-piston (HCP) system with one valve 

on each side of the piston as shown in Figure 5.14. When both valves are closed, the HCP 

operates as a stiffness component in which the stiffness is generated by the bulk modulus 

of the fluid or pressurized gas in the cylinder. When both valves are open, the piston is 

free to move and the HCP provides only a very small level of damping without stiffness. 

To simulate the reduction of stiffness in a given story, the HCP is mounted to a bracing 

system and it is fixed in the given story as shown in Figure 5.15. In this figure, the HCP 

is installed along with the bracing system and the piston is connected to upper floor. 

Therefore, the bracing system and the HCP are connected in series. The whole system, 

including the bracing system and the HCP is referred to as the variable stiffness device.  

 

 

Figure 5.14: Schematic diagram of the hydraulic cylinder-piston system 

 

 

Figure 5.15: A three story building model equipped with VSD 
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If the horizontal stiffness of the HCP and bracing system in nth story are denoted by Kfi 

and Kbi, respectively, since Kbi and Kfi are connected in series, then the effective stiffness 

of the entire VSD (Agrawal & Yang, 2000), represented by Khi, is given by 

Khi=Kfi Kbi/(Kfi+Kbi)                                                                                                    (5.2) 

In experimental setup, the stiffness of the HCP is lower than that of the bracing system, 

i.e., Kbi≫Kfi, therefore, the effective stiffness of the VSD is almost identical to that of the 

HCP, i.e., Khi=Kfi. Installation of the VSD in the first story as depicted in Figure 5.12 

increases the stiffness of the first story by Khi.  

Stiffness of the HCP depends on the amount of gas pressure in the cylinder, as discussed 

by Bobrow et al. (2000); Jabbari and Bobrow (2002); Chase et al. (2006); Yang et al. 

(2007), and that can be expressed as follows: 

Kfi = (2. A
2. . P0) υ0⁄                                                                                                   (5.3) 

where A is the piston area, υ0 stands for the initial volume, P0 represents the initial 

pressure and  is ratio of specific heats. For small motion approximation, it can be 

assumed that υ0 is identical in both side of the piston. Therefore, stiffness of the HCP is 

linearly related to the gas pressure P0: 

Kfi=CP0                                                                                                                         (5.4) 

where C is a constant and it depends on the dimension of the cylinder and the property of 

the fluid or gas. Therefore, the desirable stiffness of the VSD can be obtained by adjusting 

the P0 in the cylinder. On the other hand, the selected value of P0 depends on the amount 

of the stiffness, Khi, to be decreased in the selected story. 

The cylinder applied in this study is capable of peak pressure of 36.36 MPa with a 1.67 

cm bore and a 7.3 cm stroke. Area of the piston is 2.2 cm2, so the peak force level of about 

8 kN can be achieved. During the test, the valves of the VSD are open at the instantaneous 

time, tr, thus the Khi becomes zero, consequently the stiffness of the selected story is 

reduced by an amount of Kfi at t = tr. 
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 Instrumentation 

In order to determine real-life dynamic response characteristics of a system, it is necessary 

to conduct non-destructive experimental tests on the structure concerned. Thus, data 

acquired from the experimental tests can be used to characterize structural response 

behavior. In general, experimental testing involves three major components: (i) excitation 

sources; (ii) data acquisition system; and (iii) measurement sensors. 

5.4.1 Excitation 

There are three types of excitation, including free vibration, force vibration and ambient 

vibration. In this study, force vibration is applied to excite the structures. Shakers and 

impact hammers are commonly used for forced vibration of structures. One advantage of 

the force vibration test is that the input force is strong enough to dominate other noise 

disturbance, resulting in a strong signal to noise ratio. In force vibration, by using a known 

forcing function, many of the uncertainties in data collection and processing can be 

avoided. In this study, force vibration excitation of structures is implemented through the 

use of a shaker. Shakers are attractive systems of excitation because they are capable of 

providing a wide variety of excitation functions, both periodic and random. In this study 

a Labworks ET-132-2 Electro dynamic transducer permanent magnet shaker with a 

dimension of 5.5"H x 3.6"W x 3.5L“is used to excite the structure, as shown in Figure 

5.16. This shaker is suited for modal analysis and laboratory research.  

 

Figure 5.16: ET-132-2 Electrodynamic shaker 
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5.4.1.1 Source of excitation  

5.4.1.1.1 Power Amplifier 

Signals from the excitation sources and the accelerometer give small charges. As a result, 

the signals need to be amplified by using a charge amplifier. The charge amplifier is used 

to match the characteristics of the transducer to the input electronics of the digital data 

acquisition system. In this study, a Power Amplifier type APS 125 with a 500 VA is 

applied, as depicted in Figure 5.17.  

 

Figure 5.17: APS-125 Power amplifier 

 

5.4.2 Data Acquisition system 

In data acquisition, the data is amplified, filtered, converted from analogue to digital 

format and stored in the computer. In this research, a noise and vibration analyzer called 

OROS OR38 is used to converts the analogue input signal from the transducer into a 

digital form (Figure 5.18). This device provides 40 kHz of real-time bandwidth on its 24 

bit ICP inputs. The input signals can go up to ±40 V. It is equipped with a 40 GB internal 

hard disk and any external device such as laptop or PC can be connected to it via its 100 

Mb/s Ethernet port. Its interface program is NVGate. This analyzer is useful instrument 

for data acquisition, real-time analysis and post-analysis. The acquired continuous signal 

is first sampled and then converted into a discrete time series digital signal. 

The time interval between two samples is equal to the inverse of the sampling frequency. 

Once the measured data is converted to a digital signal it may be processed by computer 

hardware. The signal at this stage is in the time domain and represents the force input to 
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the structure, and its response is a function of time, but is measured at discrete sampling 

instants. 

 

Figure 5.18: OROS38 with 32 channels 

 

 

A NVGate program running on computer controls the Analyzer. This program is used to 

start data logging, set sampling frequencies, check sample saturation and save the data. 

NVGate version 8.00 for the OROS OR38 analyzer is used as a release in this research 

work. NVGate can export results from the recorder to text, UFF and Matlab. Connection 

of Analyzer (hardware) and NVGate (Software) is shown in Figure 5.19. 

 

 

Figure 5.19: The setup of analyzer and NVGate 

 

5.4.3 Accelerometers 

The accelerometer used in the experimental test is K-shear Kistler type 8702B50M1 as 

shown in Figure 5.20. This type of accelerometer is very useful for vibration measurement 

and modal analysis. Some of the important characteristics of this accelerometer contain 

low impedance voltage mode, low thermal transient response and ground isolated. This 

Univ
ers

ity
 of

 M
ala

ya



118 

 

accelerometer is single axis linear, with a mass of 9.7g. Sensitivity is measured in terms 

of (mV/g) in accelerometers and is 100 mV/g and frequency range is 0.5 to 10k Hz. 

 

Figure 5.20: K-shear accelerometer 

 

In general, the optimum accelerometer has high sensitivity, wide frequency range and 

small mass.  

5.4.4 Force transducer 

Transducers convert the physical motion to electrical signals. When a structure is excited, 

its physical motion is captured by transducers. The piezoelectric type is the most widely 

used in vibration testing.  

Piezoelectric transducers are electromechanical sensors that generate an electrical output 

when subjected to vibration and have wide frequency and dynamic operational ranges 

and good linearity. Among the operating specifications to consider are sensitivity, 

frequency range of operation and resonant frequency. In this research as shown in Figure 

5.21 a multi-purpose force transducer PCB 208C02 with sensitivity 11.241 mV/N and 

measurement range of 449 N in both tension and pressure is used. 

 

 

Figure 5.21: Force transducer 
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 Summary 

In this chapter, a set of numerical and experimental test was performed to measure the 

vibration responses of the beam structures and three-story building model at different 

damage conditions for assessment of the proposed damage detection and system 

identification methods. In the context of damage detection, firstly, the experimental 

model of four I-section steel beam and its corresponding numerical simulations with 

various damage scenarios at different locations were conducted. Damage was induced in 

the form of notch at designated locations on the beam with varying depth of cut. The 

acceleration response were measured at sixteen locations on the top flange along the beam.  

Secondly, the experimental work was conducted on the three-story steel building model. 

The experimental model was built up by using steel slab (floor) and steel flat bar 

(column). To create a rigid connection between the steel slab and the steel flat columns 

at each story, the steel angles were bolted on each face of the floor plates. Various damage 

scenarios were made by replacing damaged columns at designated locations of the 

structure. All damage scenarios are simulated by notch cuts on one side of steel flat bars 

and the twelve accelerometers were installed in building model at specified locations to 

measure the acceleration responses.   

For assessment of the proposed system identification method, initially, a fix support beam 

with two different damage cases was tested. Local structural damage was simulated by 

cutting slots in the beam at the selected locations. Then, a numerical study of three-story 

building with different damage cases in linear and nonlinear conditions were conducted. 

In addition, to simulate the structural damage in experimental building model, a variable 

stiffness device was proposed to change the stiffness of stories. 
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6 CHAPTER 6: VERIFICATION OF PROPOSED ALGORITHMS 

 Introduction 

This chapter aims to verify the performance, efficiency, and accuracy of both the 

proposed damage identification algorithms to determine the location and extent of 

damage in the structures, and the proposed system identification method based on the 

wavelet multiresolution analysis for estimating the structural parameters of linear and 

nonlinear systems. The verification will be conducted on numerical simulations and 

experimental validations of beam structures and subsequently of three-story building 

model, with respect to various damage scenarios with different level of severity, noise 

levels and so on. This chapter consists of five main parts. Section 6.2 verifies a two-step 

damage identification approach based the effective damage index, RWPE, and GA in 

beam structures. Section 6.3 verifies RWPE-based reference-free index, 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
 , in 

beam structures. Section 6.4 the efficiency and practicability of the proposed damage 

detection algorithms are verified in the experimental three-story building model. Section 

6.5 verifies the proposed system identification in beam structures under flexural vibration. 

Section 6.6 the verification of the proposed system identification algorithm on more 

challenging examples is conducted of three-story building model with both linear and 

nonlinear systems. 

 Damage identification in beam structures 

6.2.1 Two-step damage identification approach 

The methodology proposed in this study deals with the development of a hybrid approach 

using RWPE and GA by defining a database to accurately determine the location and 

severity of the damage in beam structures. This approach contains two steps, i.e. the first 

is detecting damage locations and the second is to determine the damage severities at 
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identified locations. The wavelet packet component energies for each damage depth used 

in the first step and the severity evaluation database required for the second step to reveal 

the relationships between the energies and damage severities are obtained using a 

multiresolution WPT. In addition, to evaluate the influence of changing the wavelet 

function and level of decomposition on the accuracy of identifying damage location, the 

wavelet functions DB1 to DB10 are used for beams.  

6.2.2 Numerical investigation 

6.2.2.1 Damage location identification 

To verify the proposed damage identification method, the three simulated simply 

supported beams (i.e., beams 1, 2 and 3 shown in Section 5.2.1.1) with damage elements 

are considered. The RWPE at 16 locations are calculated for each damage scenario based 

on Equation (4.9), as shown in Figure 6.1. According to these figures, the value and 

distribution of RWPEs changed considerably after damage. In cases with small damage, 

there is not much frequency difference in signals. This highlights that the type of mother 

wavelet and decomposition level play a key role in damage identification. Hence, in the 

single damage scenario, several wavelet functions and different levels of decomposition 

are investigated. More accurate results for these cases are obtained when the wavelet 

function DB2 and decomposition level 5 are used for differentiating the damages, as 

shown in Figure 6.1(a). The damage location can be clearly identified with the significant 

change in values of RWPE at location 5. However, the peak values of RWPE of the 

multiple damage scenarios for beam 2, where the damages are located at points 11 and 

13, are identified by using the DB5 and decomposition level 6, as shown in Figure 6.1(b). 

The damage index is noticeably greater at point 11. Furthermore, in beam 3, DB10 with 

6 levels of decomposition is found to be the appropriate DB order for damage 
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identification. Figure 6.1(c) depicts that the peak value of the RWPE at point 9 is larger 

than that of point 11 and point 13. 

 

 
(a) 

 
(b) 

  

 
(c) 

 

Figure 6.1: The values of RWPE for each depth of damage. (a) Beam1, (b) beam 2, (c) 

beam3 

 

In order to indicate the influence of changing the wavelet function on the accuracy of 

identifying the damage location, various wavelet functions DB1 to DB10 are applied for 

the considered beams. The standard difference percentage of RWPE 

([(∑ 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
max

𝑖 − ∑𝑅𝐷𝐼𝑅𝑊𝑃𝐸
ave ) ∑𝑅𝐷𝐼𝑅𝑊𝑃𝐸

ave )⁄ ] × 100, 𝑖 = number of damage scenarios) 

for each damage scenario at every specific depth of damage is calculated, as shown in 

Figure 6.2. For beam 1, the standard difference percentage is obtained in decomposition 

level 5, as illustrated in Figure 6.2(a). A comparison of the histograms associated with 

every depth of damage for all considered DBs indicates that wavelet function DB2 is the 

suitable wavelet function order. However, in beam 2, as shown in Figure 6.2(b), the values 
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of DB5 with 6 levels of decomposition are larger than those of the other DBs. The results 

for beam 3 with multiple damages, as depicted in Figure 6.2(c), reveal that DB10 and the 

decomposition level of 6 can precisely identify the damage locations along the beam 

length compared with other Daubechies wavelet functions. 

 

  
(a) (b) 

  

 
(c) 

 

Figure 6.2: Damage identification results using different wavelet function. (a) Beam1, 

(b) beam2, (c) beam3 

 

In addition, Figure 6.3 depicts the values of RWPE in beam 2 to demonstrate the 

difference between various orders of Daubechies wavelets in discrimination of damage 

locations. Evidently, the damage locations are distinguishable in these histograms with 

RWPE reaching a maximum value at locations 11 and 13, which are the exact damage 

locations. By comparing the considered Daubechies orders shown in Figure 6.3, it can be 

observed that the peak of RWPE is not as clearly distinguishable in DB6 even though it 
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has the identical location and severity of damages. In addition, DB5 shows a significant 

difference in the values of RWPE relative to the other DBs for each depth of damage. For 

DB2, the shortcomings are identical to that of DB6 but produced more accurate results. 

DB10 is not a worthy consideration since it is not able to precisely indicate the damage 

location. It is considerable to note that the accuracy of differentiating the damage cannot 

be compared to DB5 for the two damage scenario. 

 

Mother wavelet =DB2 

 

Mother wavelet =DB5 

 
  

  

 

Mother wavelet =DB6 

 

 

Mother wavelet =DB10 

 
  

Figure 6.3: Histograms of RWPE in beam 2 with different orders of Daubechies 

wavelets 

 

From the above observations, it may be construed that an increase in the damage depth 

of beams influences the vibration response signal, and, consequently, the RWPE values. 

Comparison of the peak values of RWPEs in the region of damage reveals that larger 

intensities of the RWPE occurs when the damage is located near the center of the beam 

since the local perturbations caused by the damage take place at a far distance from the 
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support. On the other hand, the presence of damage adjacent to the support results in a 

singularity around the support, which cannot be found with a predetermined DB. The 

problem with one predetermined DB arises when multiple damages are located on the 

beam and the proper selection of the mother wavelet function influences the accuracy of 

damage location identification. 

Therefore, the selection of a proper mother wavelet for wavelet-based methods is 

important, as it can affect the performance improvement of the proposed method in order 

to achieve accurate results. The type of mother wavelet function plays a key role in 

reducing the false positives adjacent to the damage locations, as depicted in Figures 6.2 

and 6.3. This is mostly because the correlation between the mother wavelet functions and 

the signal is calculated as a wavelet coefficient. 

6.2.2.2 Effect of measurement noise 

The presence of noise in the recorded signal is unavoidable in real life applications. 

Therefore, to investigate the effect of measurement noise on the performance of the 

proposed method, white Gaussian noise (WGN) is added to the generated acceleration 

signals of the test cases to simulate the uncertainties of real-life problems such as the 

environmental conditions during an experimental work. The noise intensity is defined by 

the signal-to-noise ratio (SNR): 

SNR(dB)=20 log10
𝐴𝑆

𝐴𝑁
                                                                                                         (6.1) 

where AS and AN are the root-mean-square (RMS) value of the acceleration signal and the 

noise, respectively. In present applications, the effect of different levels of noise on 

damage identification is investigated by applying SNRs 2, 5 and 10 dB. Figure 6.4 shows 

the noise-contaminated original acceleration signals at location 8 for the undamaged case. 

Beam 3 with three damage scenarios is analyzed for noise effect, and the identified results 

in terms of the noise levels are shown in Figure 6.5. It can be observed that the presence 
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of noise did not have an adverse effect on the histograms regardless of noise level  and 

that the RWPE values are identical to the noiseless case.  This could because the noise is 

assigned to the different wavelet functions and the noise effect in each bandwidth is 

reduced. Hence, it can be inferred that the proposed method will work satisfactorily in the 

presence of measurement noise. 

 

 

 

 

 
 

 

 

 
 

Figure 6.4: Different levels of noise contamination in the measured signal at location 8 

for the undamaged case 
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 (a) 

 
 

(b) 

 
 

(c) 

 

Figure 6.5: Damage identification results in beam 3 after adding different levels of 

noise. (a) SNR= 2 dB, (b) SNR= 5 dB, (c) SNR= 10 dB 

 

6.2.2.3 Damage severity evaluation 

To evaluate the damage severity, the beams with ten different severity combinations 

specified by various magnitudes of 𝛼, presented in Table 6.1, are considered. For the 

purpose of simulation, only the noise-contaminated signals calculated by Equation (6.1) 

are employed to obtain energies in each frequency band. The GA is applied with the 

proposed fitness function to calculate the damage severity. Some preliminary tests are 

performed to decide the GA set up parameters. The final set up parameters used in this 

work are shown in Table 6.2. 
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Table 6.1: Considered damage cases in beams 
 
 

Case 

 

Damage severity 

Beam1  Beam 2  Beam 3 

Damamge location (DL) 

𝐃𝐋𝟓  𝐃𝐋𝟏𝟏 𝐃𝐋𝟏𝟑  𝐃𝐋𝟗 𝐃𝐋𝟏𝟏 DL13 

1 0.02  0.02 0.02  0.02 0.04 0.02 

2 0.04  0.1 0.4  0.08 0.02 0.48 

3 0.1  0.06 0.04  0.14 0.14 0.14 

4 0.16  0.16 0.16  0.2 0.24 0.28 

5 0.22  0.2 0.1  0.26 0.3 0.4 

6 0.28  0.12 0.28  0.32 0.16 0.34 

7 0.34  0.3 0.3  0.38 0.42 0.38 

8 0.4  0.42 0.34  0.44 0.12 0.22 

9 0.44  0.48 0.12  0.5 0.18 0.46 

10 0.5  0.5 0.5  0.06 0.06 0.36 

 

Table 6.2: GA set up parameters for beams 
Number of  generation 500 

Population 100 

Selection function Tournament 

Fitness normalization Rank 

Crossover Pc=0.7, Two-point, uniform 

Mutation Pm=0.05, Uniform 

 

Figure 6.6 shows the search convergence process for different damage scenarios. The 

results of the damage severity detection of beam 1 for each damage case are shown in 

Table 6.3 and Figure 6.6(a). It can be observed from the histograms that the proposed 

algorithm precisely follows the corresponding specified crack location and severity for 

the damage cases.  

More difficult cases are encountered in multiple damage scenarios with different 

severities as in beams 2 and 3. Beam 2 relates to two points of damage whose depths are 

different in each case. Beam 3 has three points of damage, which simulates an even more 

complicated damage scenario due to the variety of depth values. To show the robustness 

and sensitivity of the proposed algorithm, the GA is assigned to obtain the damage 

severity in the specified locations. Table 6.3 presents the predicted value of damage 

severities. As shown in Figure 6.6 (b) and (c), estimation of the proposed algorithm 

accurately follows the corresponding values. 
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The evaluation errors for severities of damages in beams 1 and 2 are in the range of 0% 

to 6% with mean values of 1.20%, 2.00% and 2.20%. Also, with the increase of damage 

severities in beam 3, the prediction errors vary in an acceptable range from 0- 8% with 

mean values of 2.20%, 3.00% and 2.60%. Therefore, the proposed algorithm is effective 

in evaluating the damage severities and yields reasonably good results when the data 

contain a certain level of noise. 

 

  
 

(a) (b) 

 
(c) 

 

Figure 6.6: The damage severity evaluation results by using GA. (a) Beam1, (b) beam2, 

(c) beam3 

 

Table 6.3: The damage severity results obtained by GA 
 

Case 

Predicted value  Error (%) 

Beam1 Beam2 Beam 3  Beam1 Beam2 Beam 3 

 𝐃𝐋𝟓
∗  𝐃𝐋𝟏𝟏

∗  𝐒𝐋𝟏𝟑
∗  𝐃𝐋𝟗

∗  𝐃𝐋𝟏𝟏
∗  𝐃𝐋𝟏𝟑

∗   𝜺𝟏
𝒂  𝜺𝟏

𝒂  𝜺𝟐
𝒂  𝜺𝟏

𝒂  𝜺𝟐
𝒂  𝜺𝟑

𝒂  

1 0.02 0.02 0.04 0.04 0.02 0.02  0 0 2 2 2 0 

2 0.06 0.14 0.34 0.12 0.02 0.42  2 4 6 4 0 6 

3 0.1 0.04 0.06 0.14 0.16 0.1  0 2 2 0 2 4 

4 0.16 0.16 0.16 0.26 0.2 0.24  0 0 0 6 4 4 

5 0.2 0.26 0.08 0.26 0.32 0.36  2 6 2 0 2 4 

6 0.24 0.14 0.26 0.34 0.1 0.34  4 2 2 2 6 0 

7 0.32 0.26 0.34 0.4 0.42 0.36  2 4 4 2 0 2 

8 0.4 0.42 0.34 0.4 0.2 0.22  0 0 0 4 8 0 

9 0.46 0.5 0.1 0.5 0.12 0.48  2 2 2 0 6 2 

10 0.5 0.48 0.5 0.04 0.06 0.4  0 2 0 2 0 4 

Mean error  1.20 2.20 2.00 2.20 3.00 2.60 

a The detection error, 𝜀𝑝
 = |𝐷𝐿𝑝

∗ − 𝐷𝐿𝑝| × 100%;  𝑝 =location of damage in each damage scenario. 
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6.2.3 Experimental investigation 

To validate the effectiveness of the proposed method, the experimental study is conducted 

on the test beam. Most of the vibration-based damage detection techniques obtained from 

the measured signals requires modal properties, which are sensitive to measurement error 

and noise. The proposed damage detection technique has to be validated using real 

measurement data from vibration tests in the presence of measurement errors and noise. 

Vibration tests are carried out on three I-section beams (i.e., beams 1, 2 and 3), as shown 

in Section 5.2.1.2, 

6.2.3.1 Experimental results 

For evaluation of the location of damage through the measured acceleration responses, 

the RWPE is implemented for each considered beam as shown in Figure 6.7. It is observed 

that the damage location in beam 1 can be precisely identified with DB2 and 

decomposition level 6 based on the change of RWPE values shown in Figure 6.7(a). In 

beam 2, DB 5 with 6 levels of decomposition is chosen for the two-damage scenarios, 

since the damage locations presented in Figure 6.7(b) are distinguishable in these 

histograms with RWPE reaching a peak value at locations 11 and 13. Moreover, location 

11 has a relatively larger damage index while location 13 has a comparatively lower 

RWPE. The reason lies in the damage location, which is adjacent to the support. It should 

be mentioned that selection of a non-suitable type of wavelet may causes a false-negative 

indication. 

A similar trend of damage index, as in beam 2, is observed for beam 3 by using DB10 

and decomposition level 6 with three damage locations at points 9, 11 and 13, as shown 

in Figure 6.7(c). Evaluation of the RWPE associated with beam 3 shows the damage 

locations precisely with respect to the support, as mentioned earlier for beam 2.  

The presented results demonstrate that the proposed damage index (RWPE) can identify 

the damage location accurately in all damage scenarios from the dynamic measurement. 
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In addition, varying operational and environmental conditions of the structure raise a 

discrepancy, i.e., false alarm, which can be reduced by choosing an appropriate mother 

wavelet function and decomposition level.  

 

 
 

(a) (b) 

 

(c) 

Figure 6.7: RWPE for different damage cases. (a) Beam 1, (b) beam 2, (c) beam 3 

 

After identification of the damage locations, the analysis evaluates the severity of the 

damage. The optimization algorithm presented in Section 4.3 is employed for detection 

of the severity of damage. All of the considered beams with different damage scenarios 

and various levels of severity are subjected to damage severity detection by the proposed 

algorithm where   is varied from 0.02 to 0.5 with the step length of 0.02. The detection 

results for each damage scenario of the GA are found to be accurate and identical to the 

real values of severity. For instance, the results of GA encoded as a binary number 
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associated with case 3 with three depth ratios of α23=0.46, α9=0.18 and α25=0.5 are 

shown in Figure 6.8.  

 

 

Figure 6.8: Encoded damage severity result for beam3 with different levels of severity 

 

Based on the above results obtained by the proposed algorithm, it can be inferred that the 

selections of a proper mother wavelet function and decomposition level are crucial to 

improve the performance of the proposed algorithm. On the other hand, the wavelet-based 

techniques are absolutely dependent on the mother wavelet function, whose correlation 

with the signal is influenced by the locations and number of points of damages. It should 

be highlighted that utilization of a specific mother wavelet and a decomposition level 

does not necessarily successfully identify various damage scenarios that are located on a 

beam. Once the damages are located, the severity evaluation database is defined in terms 

of the relationships between the component energies and the damage severities. The GA 

optimization is then used to evaluate the damage severities by exploring the database. 

 Reference-free damage identification in beam structures  

6.3.1 Reference-free damage identification approach 

For most of in-field structures, the monitored data from initial pristine structural states 

are not available. Therefore, this section deals with the proposed reference-free damage 

detection method in beam structures. The procedure does not require vibration signals 

from an pristine structure because the RPWE measurements of different sensor-to-sensor 

pairs are used for defining the reference-free damage index, 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
 , of each sensor 
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location. To improve the proposed method, GA is utilized to identify the best choice for 

‘‘mother wavelet function” and “decomposition level” of the signals by means of the 

fundamental fitness function to optimize the algorithm. 

6.3.2 Numerical investigation 

6.3.2.1 Tested damage scenarios 

To verify the efficiency and accuracy of the proposed reference-free damage 

identification algorithm, numerical simulations are conducted on three I-section steel 

beams (i.e., beams 1, 2 and 4), as shown in Section 5.2.1.1. A total of three damage 

scenarios are tested for small-scale damage, i.e., 3 mm, with different sensor locations, as 

depicted in Table 6.4. For damage scenarios SS1 (single damage 1), DS1 (double damage 

1) and TS1 (triple damage 1) all sensors are located at 16 specified locations. In DS2 

scenario, fifteen sensors are distributed at points 1 to 16, except point number 13. The 

purpose of DS2 is to verify that the proposed algorithm does not indicate any false alarm 

when the sensor is not located at the damage location. In addition, the TS2 scenario with 

the fifteen number of sensors is deployed (see Table 6.4), demonstrate the influence of 

sensor position in identification of damage location. 

 

Table 6.4: Damage scenarios with different sensor deployments on damaged beams 
Damage 

type 

Damage 

scenario 

Damage location (point) Sensor location 

Notch 

cutting 

Single  SS1 5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16 

Double  DS1 11,13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16 

DS2 11,13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

14, 15, 16 

Triple  TS1 Middle of beam, 10,12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16 

TS2 Middle of beam, 10,12 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 

13, 14, 15, 16 
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6.3.2.2 Damage location identification 

The applicability of the proposed RWPE-based reference-free damage identification 

algorithm is validated with several considered damage scenarios, shown in Table 6.4. 

With regard to the identification of damage location in the single damage scenario, SS1, 

by running the GA with the predefined parameters which are exploited in this study and 

tabulated in Table 6.5, DB2 and level 5 have been selected as the best values for 

Daubechies order and decomposition level, respectively, and subsequently the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 

values for every point are calculated, as depicted in Figure 6.9(a). It can be observed that 

the magnitude of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 at point 5 is greater than those from the other locations 

corresponding to the exact damage location. To determine the damage location distinctly, 

the threshold value for damage indices are established through applying the statistical 

properties and the one-side confidence limit of the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 values. With a 98% 

confidence interval (𝛼 = 0.02), the histogram of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 values after considering the 

damage threshold for SS1 damage scenario is depicted in Figure 6.9(b).  It is evident that 

the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  arise at sensor location 5, which indicates the actual damage location. In 

addition, the sensitivity of results are confirmed by comparing of the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 values 

before and after the damage in SS1 damage scenario, as illustrated in Figure 6.9(c). The 

significant increase in the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 can be depicted at the damage location. Thus, the 

index 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 is considered an effective measure in the proposed damage detection 

algorithm. 

 

Table 6.5: GA parameters used in RWPE-based reference-free algorithm 
Number of  generation 200 

Population 30 

Selection function Tournament 

Fitness normalization Rank 

Crossover Pc=0.7, Single-point, uniform 

Mutation Pm=0.2, Uniform 

 

 

Univ
ers

ity
 of

 M
ala

ya



135 

 

  
(a) (b) 

 
(c) 

Figure 6.9: Damage identification in beam1. (a) Histogram of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
 ,  (b) histogram 

of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  after consider damage threshold, (c) comparison of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸

  before and 

after damage 

 

In the multiple damage cases, the optimal DB order and decomposition level 

corresponding to each damage scenario have been selected by using GA, as shown in 

Table 6.6. In addition, the results of double and triple scenarios with various number of 

sensor locations are presented in Figure 6.10. It can be observed that, in the first damage 

scenario (DS1), Figure 6.10(a), the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  arises clearly at sensor locations 11 and 13, 

which coincide with real damage locations. As indicated in Figure 6.10(b), when the 

sensor is not located at damage location 13, no peak is observed in 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 values to 

indicate the damage location 13. The histogram of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  with consideration of 

damage threshold values obtained from statistical analysis is depicted in Figure 6.10(b). 

From this figure, it can be seen that only the sensor at location 11 is able to successfully 

identify the location of damage. In addition, comparison of the peak values of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  

in DS1 damage scenario, reveals that higher intensity of the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  takes place when 

the damage is situated close to the center of the beam, since the local perturbations caused 
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by the damage occurs at a far distance from the support. In general, the distance of the 

damage from the support is a key parameter in damage identification analysis. The farther 

the distance from the support, the higher the clarity and accuracy of damage identification. 

On the other hand, the presence of damage adjacent to the support results in a singularity 

around the support, which can reduce the accuracy of the identification.  

 

Table 6.6: GA optimized variables in beams 
Variable name Range Optimized value 

Beam 1 Beam 2 Beam 4 

Daubechies  order DB1-DB31 DB2 DB5 DB15 

Decomposition level 2-7 5 5 6 

 

The results of triple damage scenarios with different number of sensors are also presented 

in Figure 6.10(c) and (d), respectively. Based on the result in TS1 damage scenario shown 

in Figure 6.10(c), it can be seen that the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  arise at locations 8,9,10 and 12, which 

coincided with damage locations. In addition, the results indicated that the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  for 

sensor locations 8 and 9 have lower intensity and sensitivity relative to the sensor location 

10, even though they are located in the middle of the beam span. The reason for such 

behavior is caused by the influence of damage and signal attenuation, when it is located 

adjacent to sensor locations the signal attenuates and a part of signal energy decays once 

it is recorded by the sensor. As shown in Figure 6.10(d), the TS2 damage scenario with 

fifteen sensor deployment can also successfully identify the damage locations.  

By comparing the results, it can be demonstrated that, the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  value at damaged 

location for single damage scenario (Figure 6.9) is considerably larger than the one for 

triple damage scenario (Figure 6.10). It means that as the number of damage locations 

increases, the number of sensors are also required to increase in order to secure sufficient 

specificity for identifying multiple damage locations. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 6.10: Damage identification in multiple damage scenarios with different sensor 

locations. (a) DS1, (b) DS2, (c) TS1, (d) TS2  
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6.3.2.3 Identification of progressive damage  

Verification of the proposed algorithm is also carried out with progressive damage 

scenarios, i.e., starting from small scale damage, of the simulated simply-supported 

beams. Figure 6.11 shows the values of indices 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  for beam 1 with a single damage 

scenario. By using the GA, DB2 and level 5 are selected as the best values for the 

Daubechies order and decomposition level, respectively. Figure 6.11 clearly depicts the 

difference between various orders of Daubechies to discriminate the location and severity 

of damage. As can be seen, the damage locations are distinguishable in these histograms 

with 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  reaching a maximum value at location 5 which is the exact damage 

location. However, the peak of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿 is not as clearly distinguishable in DB15 even 

though it has the same location and severity of damage. Furthermore, the changes in 

values of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿 for each depth of damage are not as comparable to DB2. For DB11, 

the shortcomings are identical to that of DB15 but gave more appropriate results. DB5 is 

not a worthy consideration since it is not able to precisely indicate the damage location. 

It is significant to note that the accuracy of differentiating the damage cannot be compared 

to DB2 for the single damage scenario. 
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Figure 6.11: Histograms of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  in beam1 with different Daubechies orders 

 

In order to clarify the estimated values, the performance of the fundamental fitness 

function at the fifth level of decomposition is also calculated manually through the 

percentage of standard difference between the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 values at damage locations and 

average of the remaining points ([(∑ 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
max

𝑖 − ∑𝑅𝐷𝐼𝑅𝑊𝑃𝐸
ave ) ∑𝑅𝐷𝐼𝑅𝑊𝑃𝐸

ave )⁄ ] ×

100;  𝑖 = number of damage scenarios) at every specific depth of damage. The results are 

tabulated in Table 6.7. Comparison of each column associated with every depth of 

damage for all the considered DBs indicates that from manual calculations, wavelet 

function DB2 is the suitable wavelet function order. This coincides with the outcome of 

GA estimation. For instance, in the case of 30 mm damage depth, the maximum value of 

standard difference is associated with DB2 by 90.10% compared to other DBs. A similar 

trend is observed for other considered damage depths.  

To extract the relevant information from Table 6.7 for all DBs in each depth of damage, 

the one-way ANOVA followed by Duncan's multiple-range test are employed. 

Significant differences between DBs (F=23.43, p<0.01) and DB2 are found in the 
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statistical analysis. The results revealed that the mean of DB2 (M= 50.82) is significantly 

greater than other DBs. 

 

Table 6.7: Daubechies wavelets comparison for each damage depth for beam 1  
Wavelet 

function 

order 

Standard difference (%)  

Damage depth (mm) Mean* 

3 6 12 21 30 39 48 57 66 75  
DB 2 28.74 28.12 36.13 41.41 46.08 59.43 59.54 70.10 69.40 69.34 50.83a 

DB 3 14.51 15.11 17.27 18.33 23.81 23.34 27.75 26.79 26.37 27.78 22.11cdef 

DB 4 13.09 14.87 15.72 17.16 23.73 25.39 27.49 25.50 24.34 26.64 21.39cdef 

DB 5 20.09 30.34 23.64 26.77 34.09 40.68 46.92 42.29 41.83 41.97 34.86b 

DB 6 14.08 13.32 18.80 18.31 19.92 20.53 28.24 29.37 28.57 28.94 22.01cdef 

DB 7 13.11 13.05 14.17 16.18 16.62 17.35 19.45 19.85 17.70 19.98 16.75fgh 

DB 8 6.45 7.96 10.85 10.54 11.15 12.63 14.17 13.06 15.72 15.47 11.8h 

DB 9 9.97 9.87 12.01 13.14 14.19 16.69 16.40 17.13 20.06 19.97 14.94gh 

DB 10 15.13 15.67 15.42 18.23 27.16 27.26 30.30 31.34 30.39 31.52 24.24cd 

DB 11 17.94 19.22 24.37 22.79 30.23 31.82 35.45 31.80 29.61 29.99 27.32c 

DB 15 17.45 17.09 20.73 21.90 26.39 26.86 26.67 25.53 24.99 26.59 23.42cde 

DB 16 12.99 12.90 13.23 14.35 18.01 18.28 20.82 20.97 19.26 21.58 17.24efgh 

DB 17 14.19 13.88 13.97 15.16 19.55 19.72 21.38 23.80 23.07 23.79 18.85defg 

DB 18 9.64 11.31 12.19 12.21 12.54 12.46 13.87 12.92 12.94 13.38 12.34h 

DB 19 8.36 9.68 11.81 12.37 12.20 13.34 15.73 15.78 15.39 15.84 13.05gh 

DB 20 14.50 15.84 15.26 21.73 23.56 23.22 30.22 31.14 29.98 31.36 23.68cd 

DB 21 10.29 11.53 12.00 12.00 13.12 13.04 13.80 14.48 13.38 13.89 12.75gh 

*Mean values with the same letter are not significantly different. 

 

In beam 2, the GA is utilized to identify the most accurate location and severity of damage 

by maximizing the fitness function. The outcome of the GA analysis, which is depicted 

in Figure 6.12, revealed that DB5 with 5 level of decomposition performed better in two 

damage scenarios compared to other Daubechies orders. Firstly, by comparing the 

considered Daubechies orders shown in Figure 6.12, it can be seen that for DB11, the 

damage locations are not easily identified while DB5 clearly identified damage locations 

11 and 13 together with appropriate representation by the histograms i.e. values of 

𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  at damage locations compared to other Daubechies orders. Meanwhile, by 

scrutinizing the histograms, the damage locations in DB2 and DB15 can be identified. In 

addition, from the histograms it can be observed that the intensity of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿   at location 

11 is relatively larger than location 13 although both have similar damage severity. This 

is possibly due to location 11 being close to the middle of the beam while location 13 is 

close to the support. 
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Figure 6.12: Histograms of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  in beam 2 with different Daubechies orders 

 

For beam 4 with multiple damages, DB15 with 6 level of decomposition is found to be 

the appropriate DB order for damage identification. The advantage of DB15 compared to 

other Daubechies orders is that the value of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿 , as shown in Figure 6.13, precisely 

shows the damage locations along the beam length. The intensity of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿 is 

influenced by the notch locations as well as the distance from the supports. The 

corresponding intensity of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  for the damage located at the middle of the beam is 

expected to be larger than those closer to the support. However, due to the signal 

attenuation effect raised by the presence of damage between two sensor locations, the 

intensity of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  of the damage between locations 8 and 9 is lower than that of 

location 10. 
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Figure 6.13: Histograms of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  in beam 4 with different Daubechies orders 

 

To verify the estimated values, Table 6.8 shows the mean values of standard difference 

percentage of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 values for multiple damage scenarios at specified level of 

decomposition without using GA. Analysis performed by ANOVA indicated the 

significant differences among the DB5 and DB15 with other DBs in each damage 

scenario. Comparison of results showed that the mean value of DB5 and DB15 are 

considerably greater than other DBs in each damage scenario. Hence, it can be inferred 

that not only does the GA has the potential to verify the proposed algorithm to obtain the 

optimal solution but also provides evidence for the accuracy of the parameters for 

adjustment of the algorithm. 
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Table 6.8: Daubechies wavelets comparison for multiple damage scenarios  
 

Wavelet function order 

Mean* 

Beam 2 Beam 4 

DB 2 179.67bc 450.22cde 

DB 3 158.36def 426.83ef 

DB 4 156.84ef 397.60g 

DB 5 223.12a 462.16c 

DB 6 166.28cdef 447.53cde 

DB 7 153.57f 435.12de 

DB 8 173.07bcd 441.83cde 

DB 9 168.26cdef 450.44cde 

DB 10 167.76cdef 456.26cd 

DB 11 169.38bcde 494.83b 

DB 15 181.18bc 531.31a 

DB 16 163.28def 432.90de 

DB 17 162.98def 433.85de 

DB 18 158.54def 442.19cde 

DB 19 162.21def 407.38fg 

DB 20 182.88b 496.71b 

DB 21 166.30cdef 457.11cd 

*Mean values with the same letter are not significantly different. 

 

Results have demonstrated that the locations of notches can be successfully determined 

from the measured time history acceleration responses through variation of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿 . In 

addition, the respective amplitude levels of the histograms can be used as a criterion to 

identify severity of damage, although not quantitatively. Therefore, selection of a proper 

mother wavelet for wavelet-based methods is crucial to improve the performance of the 

proposed method in order to achieve accurate results. The type of mother wavelet function 

plays a key role in reducing the false positives adjacent to damage locations, as depicted 

in Figures 6.11, 6.12 and 6.13. This is mostly because the correlation between the mother 

wavelet functions and the signal is calculated as a wavelet coefficient and this is the 

significance of the proposed method. 

6.3.3 Experimental investigation  

To validate the proposed algorithm by experimental data where measurement error and 

noise are present, vibration tests are conducted on three I-section steel beams (i.e., beams 

1, 2 and 4) with different damage scenarios, as shown in Section 5.2.1.2.  
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6.3.3.1 Experimental results 

The following observations are made based on the structural response signal of damaged 

beams. By running the GA on the first damage case i.e. beam 1 with a single damage as 

shown in Figure 6.14(a), Daubechies order 2 and decomposition level 6 are chosen as the 

best parameters for the adjustment of the algorithm for differentiating the damages. The 

damage location at position 5 can be clearly identified with the significant change in 

values of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿 .  In beam 2 with the double damage scenario as depicted in Figure 

6.14(b), the influence of changing the wavelet function as well as level of decomposition 

on the accuracy of damage identification is investigated by using the GA. As a 

consequence, Daubechies wavelet function with order of 5 and decomposition level 6 are 

selected as the best function for identification of damage location and severity. 

Furthermore, the intensity of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  at damage location 11 which is located at the 

middle of the beam are slightly higher than that of damage location 13 which may be due 

to its close distance to the support. In beam 4 with the multiple damage scenarios as shown 

in Figure 6.14(c), Daubechies order 20 and decomposition level 6 are selected as the 

suitable function by GA and both damage locations and severities can be identified.  

However, for the whole set of data, the maximum value of the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  is always 

detected at the exact damage location. 

The results have demonstrated that for wavelet-based methods, the choice of the mother 

wavelet function is of paramount importance to improve the performance of the 

algorithm. However, as indicated in this study, it is possible to have satisfactory algorithm 

performance with a particular mother wavelet function. Moreover, from the comparison 

of histograms in different damage scenarios, the values of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  are found to be 

proportional to damage severity. Therefore, this reference-free damage index can be used 

to quantify the damage severity. Also, by comparing results corresponding to the damage 

cases, it can be seen that changes in damage location causes a scenario which requires a 
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different suitable mother wavelet function. Hence, the final outcome obtained from GA 

is found to have great potential to determine the optimal solution and to investigate the 

reliability of the parameters for algorithm adjustment.  

In addition, varying operational and environmental conditions of the structure raise a 

discrepancy, i.e., false alarm, which is reduced because of the reference-free nature of the 

proposed method. Since all sensors are subjected to the same environmental condition 

and measured the vibration signals at the same time. Thus the vibration signals measured 

at a location can act as reference signals to other location that has comparable structural 

feature. 

 

  

(a) (b) 

 

  

 

(c) 

Figure 6.14: Histograms of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  in (a) beam 1, (b) beam 2, and (c) beam 4 with 

different Daubechies orders 
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 Damage identification algorithms for three-story building model 

To demonstrate the capability and accuracy of the proposed damage identification 

algorithms, experimental studies are conducted on the small-scale three-story steel 

building which is described in Section 5.2.2. 

6.4.1 RWPE-based damage identification  

In this section, the RWPE-based damage identification algorithm is verified through five 

different damage scenarios in terms of the number and location of damages in the model, 

as shown in Section 5.2.2.1.1. 

6.4.1.1 Damage location identification 

Figures 6.15 and 6.16 shows the calculated values of RWPE at 12 sensor locations for 

each damage scenario. According to these figures, the value and distribution of RWPEs 

changed significantly after occurrence of damage. In cases with small damages, type of 

mother wavelet and decomposition level is important for accurate identification of 

damage location. Therefore, several wavelet functions, i.e., DB1 to DB10, and different 

levels of decomposition are investigated. In two-damage cases, more accurate results for 

DS1 and DS3 scenarios are achieved, when the wavelet function DB2 and decomposition 

level 8 are used for differentiating the damages, as indicated in Figure 6.15 (a) and (c). 

The damage locations can be identified with significant variation of RWPE values at 

designated locations. However, the peak values of RWPE for DS2, where the damages 

are located at the same story, are clearly identified by using the DB5 and decomposition 

level 8, as indicated in Figure 6.15(b). By comparing the results, it can be demonstrated 

that, the accuracy of identification results are affected by location of the damages. On the 

other hand, the proposed method can provide high-accuracy identification results, when 

damages are located at different stories. 
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(a) (b) 

 
(c) 

Figure 6.15: The values of RWPE for each depth of damage. (a) DS1, (b) DS2, (c) DS3 
 

Similar trend of RWPE-based damage index, as in double damage scenarios, has been 

observed for triple damage scenarios by applying DB10 and decomposition level 8 as 

indicated in Figure 6.16. Evaluation of the RWPE, associated with each damage case, 

precisely shows the damage locations when RWPE reaches its peak value at damaged 

points. 

From the obtained results, it can be confirmed that the RWPE values show increasing 

tendency in damage identification as damage extent is progressively increasing. In 

addition, Comparison of the peak values of RWPEs in the region of the damages indicated 

that larger values of the RWPE take place when the damage is located at upper stories. 

Experimental test results clearly showed consistency and reliability in identifying 

damaged locations under various damage scenarios in the three-story building model. It 

Univ
ers

ity
 of

 M
ala

ya



148 

 

is worth mentioning that, appropriate selection of mother wavelets can effectively help 

improving accuracy of the results and reducing false alarms. 

 

  
(a) (b) 

Figure 6.16: The values of RWPE for each depth of damage. (a) DS4, (b) DS5 

 

6.4.1.2 Damage severity evaluation 

After identification of damage locations, damage severities of the corresponding damaged 

elements in the building model can be determined using the GA. Accordingly, to evaluate 

the damage severities 𝛼𝑛(𝑛 = 1,2,… , 5) in the model, seven different severity combinations 

of each damage scenario, indicated in Tables 6.9 and 6.10, are considered. To obtain more 

accurate severity evaluation database, 𝛼𝑛 is varied from the upper and lower bound of severity 

(depth). Therefore, the constraint 𝛼𝑛 limits the severity search space from 0.1 to 0.5. In this 

investigation, through several test runs the parameters of the GA are setup as follows: 

population size–– 40; two-point crossover with crossover probability (Pc)––0.7, mutation 

probability (Pm)––0.05; and maximum number of generation is 200. 
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Table 6.9: Considered damage cases in double damage scenarios of the building model  
 

 

Case 
 

Damage severity 

DS1 DS2 DS3 

Damage location (𝐃𝐋) 

𝐃𝐋𝟒 𝐃𝐋𝟗 𝐃𝐋𝟒 𝐃𝐋𝟏𝟏 𝐃𝐋𝟗 𝐃𝐋𝟐𝟏 

1 0.1 0.1 0.1 0.1 0.1 0.1 

2 0.2 0.2 0.2 0.2 0.2 0.2 

3 0.3 0.3 0.3 0.3 0.3 0.3 

4 0.4 0.4 0.4 0.4 0.4 0.4 

5 0.5 0.5 0.5 0.5 0.5 0.5 

6 0.3 0.4 0.3 0.4 0.5 0.3 

7 0.2 0.5 0.2 0.5 0.3 0.1 

 

 

 

Table 6.10: Considered damage cases in triple damage scenarios of the building model 
 

 

Case 
 

Damage severity 

DS4 DS5 

Damage location (DL) 

𝐃𝐋𝟗 𝐃𝐋𝟐𝟖 𝐃𝐋𝟑𝟎 𝐃𝐋𝟔 𝐃𝐋𝟏𝟏 𝐃𝐋𝟏𝟑 

1 0.1 0.1 0.1 0.1 0.1 0.1 

2 0.2 0.2 0.2 0.2 0.2 0.2 

3 0.3 0.3 0.3 0.3 0.3 0.3 

4 0.4 0.4 0.4 0.4 0.4 0.4 

5 0.5 0.5 0.5 0.5 0.5 0.5 

6 0.4 0.3 0.2 0.2 0.2 0.1 

7 0.5 0.2 0.1 0.5 0.3 0.1 

 

Tables 6.11 and 6.12 show the damage severity detection results of each damage scenario 

with different severities combination. As indicated in the tables, evaluation errors for 

different damage scenarios are within the range of 0% to 20% with the mean values of 

7.14% to 12.86%. 

To examine the effect of damage location on evaluation of damage severities, evaluation 

results of double damage scenarios for seven cases are compared (Table 6.11). The results 

show that when the damages are located at the same floor, i.e., DS2, amount of the mean 

errors are varied from 11.43% to 12.86%, while in DS1 and DS3, variation range of the 

mean errors are reduced to the lower range of 7.14% to 10%. These results suggest that 

if damages are located at different levels better evaluation results are obtained. 

Additional analysis is also performed on three damage scenarios for seven cases. The 

severity detection results are summarized in Table 6.12. As indicated in the table, amount 

of mean errors for damage scenarios DS4 and DS5 are within the range of 8.57% to 
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12.86%, which illustrates that variation of mean error is in acceptable range of accuracy 

even with rise in number of damages.  

 

Table 6.11: Damage severity evaluation results using two damage scenarios 
 

Case 

Predicted value Error (%) 

DS1 DS2 DS3 DS1 DS2 DS3 

𝐃𝐋𝟒
∗  𝐃𝐋𝟗

∗  𝐃𝐋𝟒
∗  𝐃𝐋𝟏𝟏

∗  𝐃𝐋𝟗
∗  𝐃𝐋𝟐𝟏

∗  𝜺𝟒
𝒂  𝜺𝟗

𝒂  𝜺𝟒
𝒂  𝜺𝟏𝟏

𝒂  𝜺𝟗
𝒂  𝜺𝟐𝟏

𝒂  

1 0.2 0.1 0.3 0.2 0.2 0.2 10 0 20 10 10 10 

2 0.3 0.1 0.3 0.1 0.3 0.1 10 10 10 10 10 10 

3 0.4 0.2 0.5 0.1 0.2 0.4 10 10 20 20 10 10 

4 0.5 0.3 0.5 0.3 0.4 0.5 10 10 10 10 0 10 

5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 

6 0.4 0.3 0.2 0.5 0.4 0.4 10 10 10 10 10 10 

7 0.3 0.4 0.4 0.3 0.1 0.3 10 10 20 20 20 20 

Mean error 8.57 7.14 12.86 11.43 8.57 10.0 

a The detection error, 𝜀𝑝
 = |𝐷𝐿𝑝

∗ − 𝐷𝐿𝑝| × 100%;  𝑝 =location of damage in each damage scenario. 

 

Table 6.12: Damage severity evaluation results using three damage scenarios  
 

Case 

Predicted value Error (%) 

DS4 DS5 DS4 DS5 

𝐃𝐋𝟗
∗  𝐃𝐋𝟐𝟖

∗  𝐃𝐋𝟑𝟎
∗  𝐃𝐋𝟔

∗  𝐃𝐋𝟏𝟏
∗  𝐃𝐋𝟏𝟑

∗  𝜺𝟗
𝒂  𝜺𝟐𝟖

𝒂  𝜺𝟑𝟎
𝒂  𝜺𝟔

𝒂  𝜺𝟏𝟏
𝒂  𝜺𝟏𝟑

𝒂  

1 0.1 0.1 0.2 0.1 0.2 0.2 0 0 10 0 10 10 

2 0.1 0.4 0.2 0.3 0.3 0.1 10 20 0 10 10 10 

3 0.5 0.4 0.1 0.5 0.4 0.1 20 10 20 20 10 20 

4 0.5 0.3 0.2 0.3 0.5 0.3 10 10 20 10 10 10 

5 0.5 0.5 0.4 0.5 0.4 0.4 0 0 10 0 10 10 

6 0.5 0.1 0.4 0.1 0.4 0.2 10 20 20 10 20 10 

7 0.3 0.1 0.2 0.4 0.4 0.3 20 10 10 10 10 20 

Mean error 10.0 10.0 12.86 8.57 11.43 12.86 

a The detection error, 𝜀𝑝
 = |𝐷𝐿𝑝

∗ − 𝐷𝐿𝑝| × 100%;  𝑝 = location of damage in each damage scenario. 

 

Based on the above observations it can be concluded that selection of proper mother wavelet 

function and decomposition level are crucial to improve the performance of the proposed 

method in an accurate identification of damage locations. Furthermore, results of the 

damage severity evaluation demonstrates that the GA is successful in evaluating damage 

severities by exploring the database and it yields precise estimations even with increasing 

number of damages. 
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6.4.2 RWPE-based reference-free damage identification 

For demonstration of the proposed RWPE-based reference-free damage identification 

algorithm of the building model (shown in Section 5.2.2), a total of five damage scenarios 

with various sensor locations are tested, as depicted in Table 6.13. 

 

Table 6.13: Damage scenarios of reference-free damage identification 
Damage 

type 

Damage 

scenario 

Damage location Sensor location 

Column 
number 

Point 

Notch 

cutting 

Double DS1 II Between points 3 and 4 2, 4, 6, 9, 11, 13, 19, 

21, 23, 26, 28, 30 
IV Between points 8 and 9 

DS2 II Between points 3 and 4  2, 4, 6, 9, 11, 13, 19, 

21, 23, 26, 28, 30 V Between points 10 and 11 

DS3 IV Between points 8 and 9 2, 4, 6, 11, 13, 19, 21, 

23, 26, 28, 30 VIII Between points 20 and 21 

Triple DS4 IV Between points 8 and 9 2, 4, 6, 9, 11, 13, 19, 

21, 23, 26, 28, 30 X Between points 27 and 28 

XI Between points 30 and 31 

DS5 III Between points 6 and 7, 2, 4, 6, 9, 11, 13, 15, 

16, 17, 19, 21, 23, 26, 

28, 30, 32, 33, 34 
V Between points 10 and 11 

VI Between points 13 and 14 

 

For damage scenarios DS1 and DS2, all sensors are located at twelve identical locations 

namely points 2, 4, 6, 9, 11, 13, 19, 21, 23, 26, 28 and 30. In DS3 scenario, all the sensors 

are distributed at eleven locations at points 2, 4, 6, 11, 13, 17, 19, 21, 23, 26, 28 and 30, 

but the damage is located at column number IV which is not one of the sensor locations. 

The purpose of DS3 is to verify that the proposed algorithm does not indicate any false 

alarming when all sensors are located at other columns. In addition, tests with triple 

damage scenarios, i.e., DS4 and DS5, are performed with different numbers of sensors 

which are randomly distributed at columns, as shown in Table 6.13.  

6.4.2.1 Damage location identification 

In order to evaluate the feasibility of the proposed reference-free damage identification 

algorithm, firstly, variation of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  before and after damage are confirmed by DS1 

damage scenario with 10.5 mm damage depth.  By running the GA with the same 
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parameters given in Table 6.5, DB15 and decomposition level 8 have been selected as the 

best values. According to the results indicated in Figure 6.17(a), 𝑅𝑆𝑅𝑊𝑃𝐸
 (𝑝λ|𝑝𝜃) values, 

corresponding to the damaged locations, are higher than those from the other locations. 

In addition, comparison between the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  values before and after the damage, 

presented in Figure 6.17(b), shows a drastic increase of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  at the damage locations. 

  

 

 
 

(a) 

 
(b) 

Figure 6.17: RWPE-based reference-free damage identification results for DS1 damage 

scenario at 10.5mm depth of damage. (a) 𝑅𝑆𝑅𝑊𝑃𝐸
 (𝑝λ|𝑝𝜃), (b) comparison of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸

  

before and after damage 

 

 

The consistency and reliability of the proposed algorithm are investigated with various 

damage scenarios (Table 6.13) at 10.5 mm depth of damage, as depicted in Figure 6.18. 

In DS2 damage scenario, by employing the GA, the DB15 and decomposition level 8 are 
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selected and the corresponding 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  values are indicated in Figure 6.18(a). In DS3 

damage scenario, sensors are not located at the damaged column IV and by running the 

GA, the DB20 and 8th level of decomposition have been chosen and the corresponding 

results are shown in Figure 6.18(b). It can be observed that the damage at column VIII 

can be identified accurately, while no peculiar difference of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  values is observed 

in other sensor locations. In addition, the sensitivity of the proposed reference-free 

damage identification algorithm is considered for triple damage scenarios with various 

numbers of sensors. The results of DS4 and DS5 scenarios are obtained from DB20 at 8 th 

level of decomposition, as shown in Figure 6.18(c) and (d), respectively.  

By comparing the results of the damage scenarios, it can be observed that the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸 

values of the damaged locations for DS1 and DS2 cases (Figure 6.17(b) and 6.18(a)) are 

almost two times larger than DS4 case (Figure 6.18(c)), with regard to identical number 

of sensors. It means that as the number of damage locations increases, the number of 

sensors also requires to increase in order to secure adequate specificity for identifying 

multiple damage locations, as shown in Figure 6.18(d). This is an important suggestion 

for practical application of the proposed algorithm. Moreover, for damage over a large 

area, some of the sensors are needed to be located over the healthy area. 
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(a) (b) 

  
(c) (d) 

Figure 6.18: Result of damage identification by RWPE-based reference-free for 

10.5mm damage depth. (a) DS2, (b) DS3, (c) DS4, (d) DS5 

 

6.4.2.2 Identification of progressive damage  

In addition to previous five damage scenarios, the proposed method is also verified 

through progressive cutting of columns starting from relatively small-scale damage, 

3.5mm up to 17.5mm for each damage scenario. 

Figure 6.19 shows the results of each progressive damage scenario after considering the 

damage threshold values obtained by the statistical analysis. Obviously, the proposed 

method is able to identify the location of damages even for slight extent of damage. It can 

be observed that by increase of damage extent, the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  values at the damaged 

elements increase, although increase of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  values in small-scale damages is not 

significant but still are clearly discernible. This is mostly due to the fact that proper 

estimation of functions by GA, improves the performance of the algorithm. In addition, 

the farther the distance of damage from the first floor, the higher clarity and accuracy of 

damage identification can be achieved. 
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(a) (b) 

 

  
(c) 

 

(d) 

 
(e) 

Figure 6.19: Result of damage identification by RWPE-based reference-free for 

progressive damage after considered threshold values. (a) DS1, (b) DS2, (c) DS3, (d) 

DS4, (e) DS5 

 

Figure 6.20 obviously indicates the effect of different DB orders to discriminate the small-

scale damages, i.e., 3.5mm and 7mm, in DS4 damage scenario after considering the 

damage threshold. As it can be seen, the damage locations can be clearly discriminated 

in all of them owing to the appropriate DB order. Nonetheless, the damage at column XI, 

i.e., sensor location 30, is not as clear as the others in DB2 although there is identical 

severity in the damage. Besides, the changes in values of 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  at sensor location 30 
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in each case are not as satisfactory as DB20. In DB11, the drawbacks are the same as 

DB2 but results are relatively more appropriate. DB15 is not a worthy case for detection 

of damage locations, but there is still a slight difference between the damage and healthy 

locations. Most significantly, the preciseness of discriminating the damages cannot be 

compared with DB20. In DB15, the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
𝑈𝐿  values for the sensor locations 30 are not 

distinguished as easily as DB20 especially in incipient stages of the damage. 

Consequently, Daubechies wavelet function with the order of 20 is selected as the most 

proper function by GA for damage identification. It means that for wavelet-based 

methods, the selection of mother wavelet function is mandatory to increase the 

performance of the algorithm. On the other hand, proper selection of mother wavelet 

function plays a key role in reducing the false positives and consequently more accurate 

results can be obtained. 

  
  

  

  
 

Figure 6.20: Histogram of  𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  in DS4 damage scenario with different DB orders 

after considering the damage threshold 
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Based on the results obtained by the proposed algorithm, the following conclusions can 

be made on the basis of the experimental tests: 

(1) the RWPE-based reference-free, 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
 , proved to be damage-sensitive and able to 

detect damage locations accurately without any reference data from the initially pristine 

state. In addition, the efficiencies of the proposed algorithm are illustrated for progressive 

damage, starting from slight damage level to sever level.  

(2) another advantage of the proposed algorithm is precise identification of the location 

of small-scale damages, i.e., 3.5 mm and 7 mm, with appropriate selection of wavelet 

function and decomposition level by using GA. 

 (3) under the progressive damage which starts from slight level (~3.5 mm) the 𝑅𝐷𝐼𝑠𝑅𝑊𝑃𝐸
  

indicated satisfactory sensitivity to the variations of damage level. 

(4) with constant number of sensors and increasing number of damage locations, the 

specificity of 𝑅𝐷𝐼𝑠𝑅𝑊𝑃𝐸
  lessens owing to finite wavelet energy. However, increasing the 

number of sensors is able to resolve this subject in practical applications. 

(5) in comparison with another Lamb wave–based technique (Anton et al., 2009; Bagheri 

et al., 2013), the proposed algorithm does not require the need for identical sensor-to-

sensor distance, material properties and spatially uniform structural features among 

sensors. 

 Wavelet-based system identification in a beam structure under flexural 

vibration 

6.5.1 Wavelet-based system identification approach 

As in the formulation of the wavelet-based system identification method proposed in 

Chapter 4 (Section 4.3), the method being proposed includes a three-step procedure: (1) 

the connection coefficient of the scaling function is used for deriving the responses of 

displacement and velocity from the acceleration responses; (2) defining the dominant 
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components based on the relative energies of the WPT components of the acceleration 

responses; and (3) the least squares error minimization is used iteratively over the 

dominant components to obtain the best estimation of the stiffness parameters of the 

model. 

6.5.2 Numerical investigation 

In this section, the efficiency and accuracy of the wavelet-based system identification 

method are examined for the beam structure under flexural vibration which is described 

in Section 5.3.1.1. 

6.5.2.1 Evaluation of damage severity in terms of the stiffness parameter 

The performance of the algorithm presented in Section 4.3 is illustrated in this section. 

The proposed method uses the time-history acceleration of the output response. The mass 

parameters are assumed to be known, since in the numerical simulation, the true structural 

parameters of the original model are known. The proposed method can be evaluated by 

studying the accuracy in terms of the percentage loss of stiffness between the identified 

structural parameters and the true primary values. 

To investigate the proposed algorithm based on the WPT, Figure 6.21 depicts the 

distribution of the relative energies of the acceleration response for the undamaged case 

by applying DB15 at decomposition level 6. These components provide information 

about the relative energy associated with the various frequency bands existing in the 

response signals. Table 6.14 shows the frequency bands of the corresponding WPT 

components. 
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Figure 6.21: The relative energy distribution of the acceleration response for the 

undamaged case 

 

Table 6.14: Frequency bands of the WPT components at level 6 and modal properties 

of the undamaged case 

The sequence  

of WPT 
1 2 3 … 6 … 15 … 29 … 48 … 64 

Frequency  

bands of WPT 

components (Hz) 

0–16 16–32 32–48 … 80–96 … 224–240 … 448–464 … 752–760 … 1008–1024 

Natural 

frequencies (Hz) 
9.29    83.65  232.48  456.03  754.64   

Damping ratios 0.01    0.01  0.025  0.049  0.081   

 

The Rayleigh model is employed to calculate the damping matrix: 

C=a1K+a2M                                                                                                                  (6.2) 

where a1 and a2 are the mass-proportional and the stiffness-proportional constants, 

respectively. The two constants of the Rayleigh damping matrix have been chosen so as 

to have a 1% damping ratio for the frequencies of the first two modes. The modal 

properties of the model are demonstrated in Table 6.14. 

From the distribution of the component energies in Figure 6.21, it can be observed that 

the sixth WPT component with the frequency band of 80–96 Hz, which includes the 

natural frequency 83.65 Hz, has the maximum WPT component energy among the others. 

Consequently, the WPT components that contain the principal frequencies of the signal 

provide the greatest energy associated with the signal. The dominant components can be 

obtained by the relative energy distribution over the wavelet components of the system's 
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acceleration responses, the equations of motion for the system at the given level can be 

transformed into those in terms of the dominant components. 

To identify the stiffness based on the inverse solution of equations of motion of a 

structural system in the wavelet domain, the input force and response data containing 

acceleration, velocity, and displacement are required. For this purpose, by using the 

connection coefficients of the scaling function, as expressed in Chapter 4 (Section 4.3.2), 

the velocity and displacement are obtained from the measured acceleration responses at 

location 5 in terms of the DB15. In order to validate the accuracy of the purposed solution 

method, these velocities and displacements are compared with those obtained from the 

explicit dynamic analysis conducted using ABAQUS software, as depicted in Figure 6.22. 

 

 
(a) 

 

 
(b) 
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Figure 6.22, continued 

 
(c) 

 

 
(d) 

 

Figure 6.22: Input and response data at location 5 for undamaged case. (a) Input force, 

(b) exact acceleration responses, (c) comparison of the exact velocity to the calculated 

velocity, (d) comparison of the exact displacement to the calculated displacement 

 

6.5.2.1.1 Discussion on the Considered Cases 

From the above analysis, for Case1 with the single damage scenario, the distribution of 

relative energy of acceleration responses at decomposition level 6 is demonstrated in 

Figure 6.23. The best estimation for the structural stiffness at each dominant component, 

e.g., D1={6}, D2={6, 15},…, D10={6, 15, 1, 29, 18, 5, 48, 16, …, 36, 49}, is obtained by 

implementing the least squares procedure iteratively over the dominant components. 

Therefore, the results converge to the exact values. To evaluate the damage severity in 

terms of the loss of stiffness, as depicted in Figure 6.24, it can be found that the estimated 

percentage values converge to the exact ones, presented by a red-colored dashed line at 

each dominant component beginning from D4. In addition, the obtained value at dominant 

component D16 in terms of the percentage loss of stiffness is the best and most accurate 
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among all the dominant components. Moreover, with the increment in dominant 

components to D17 or higher orders, the estimated values degrade, as shown in Figure 

6.24. This can be due to the numerical integration error in the derived displacement 

responses. In addition, the percentages for the loss of stiffness in Case1 between the 

damaged and undamaged structure, in terms of dominant components D15, D16, and D17, 

are 0.702977%, 0.702992%, and 0.702577%, respectively. Generally, the accumulation 

of error in a numerical integration occurs for two reasons. The first source is the local 

error, which appears at each step of the integration, while the second source is caused by 

the cumulative effect of previous errors, which stems from many integrations. Since the 

proposed method depends on the numerical integration procedure, these types of error are 

unavoidable. 

 

 

Figure 6.23: The relative energy distribution of the acceleration response for Case 1 

 

 

Figure 6.24: Loss of stiffness identification in Case 1 
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For Case 2, with the two-damage scenario, the relative energy distribution of the 

acceleration response at decomposition level 6 is depicted in Figure 6.25. To optimize the 

value of each dominant component, the least squares error minimization is performed. 

Figure 6.26 shows the convergence of the percentage loss of stiffness for each component 

together with the exact values. According to Figure 6.26, the onset of convergence takes 

place around D4 and the most accurate result is associated with D19, with the appropriate 

value of 1.4188%. From dominant component D20, with the value of 1.4156% onward, 

the convergence keeps decreasing. 

The above results indicate that the proposed algorithm is effective in evaluating the 

damage severity in terms of the loss of stiffness. In addition, the results demonstrate that 

the identification of stiffness parameters can be achieved with less data. 

 

 

Figure 6.25: The relative energy distribution of acceleration response for Case 2 
 

 

Figure 6.26: Loss of stiffness identification in Case 2 
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6.5.3 Experimental investigation 

To validate the effectiveness of the proposed method, an experimental study is carried 

out on a steel beam with fixed supports, as described in Section 5.3.1.2. Figure 6.27 shows 

the input force and output acceleration versus time at location 3 of Case 0 (undamaged). 

Velocity and displacement are obtained from the acceleration response in terms of DB15 

scaling function. 

 

 
 

  

Figure 6.27: Input and structural response data at location 3 of Case 1: (a) force;  (b) 

acceleration; (c) velocity; (d) displacement 

 

6.5.3.1 Experimental Results 

The optimization scheme is employed for the identification of damage severity in terms 

of the loss of stiffness. For this purpose, the relative energy distributions of the 

acceleration response related to the structural frequencies (Figure 6.28) are achieved by 

employing DB15 and decomposition level 5 for undamaged beam, as depicted in Figure 

6.29. Among these distributions, the WPT component energy of 17and 1, whose 

frequency bands are 512–544 Hz and 0–32 Hz, respectively, are larger than the others. 

Therefore, the dominant components are D1= {17}, D2= {17, 1}, …, D5={17, 1, 16, 10, 
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4} and so on. By applying the least squares error minimization in dominant components, 

the stiffness values corresponding to each dominant component can be obtained. 

Figure 6.28: Frequency domain response of acceleration response signal at location 3  

 

 

Figure 6.29: The relative energy distribution over the wavelet packet components at 

level 5 for undamaged beam 
 

With respect to the accuracy of the identification results, Figure 6.30 shows the 

percentage loss of stiffness in each dominant component for Case 1. It appears that the 

obtained values have converged at three regions, as illustrated in Figure 6.30. Based on 

the numerical output, the best and appropriate results can be found in the first converged 

region, whereas in the second and third regions, more uncertainty is included due to the 

inclusion of higher-order dominant components. This is because the large input and 
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output data are considered to be redundant; therefore, it is possible to obtain accurate 

results by applying the dominant components instead of the full size of data. The 

percentage loss of stiffness in the first convergence region, in terms of each dominant 

component, is presented in Table 6.15. In the first region, the estimated values begin to 

converge at D5 and deviate from D13 onward. 

 

 

Figure 6.30: Loss of stiffness identification in each dominant component in Case 1  
 

In Case 2, with two damage scenarios, the percentage loss of stiffness in each dominant 

component is shown in Figure 6.31. The first convergence region with an appropriate 

result has been specified with respect to the accuracy of the identification parameters. The 

estimated results start to converge at dominant component D5. In addition, the obtained 

percentage loss of stiffness corresponding to D15 is found to be the best result with the 

highest possible precision in the indicated convergence region, as given in Table 6.15. 

Other higher-order dominant components, e.g., from D16 onward, are reduced. 

 

 
Figure 6.31: Loss of stiffness identification in each dominant component in Case 2 
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Table 6.15: Estimated values of loss of stiffness in the first convergence region 

Dominant Component 
Loss of Stiffness (%) 

Case 1                Case 2 

D5 0.938 1.883 

D6 0.939 1.889 

D7 0.939 1.924 

D8 0.944 1.924 

D9 0.942 1.925 

D10 0.945 1.933 

D11 0.966 1.936 

D12 0.978 1.939 

D13 0.986 1.941 

D14 1.336 1.943 

D15 1.342 1.943 

 

Based on the above results obtained by the proposed method it can be deduce that, the 

proposed system identification based on the wavelet multiresolution analysis can identify 

the severity of damage by investigating the accuracy of the result in terms of the loss of 

stiffness in the model between the parameters obtained before and after the damage 

occurrence. It is noteworthy that in real applications the implementation of the least 

squares error minimization method is not required from the first dominant component. In 

addition, to avoid time-consuming iterative computations for convergence and in order to 

obtain an accurate result with less data, the least squares error minimization can be 

performed across the dominant components until the first convergence region is achieved. 

 Wavelet-based system identification algorithm for three-story building model 

6.6.1 Numerical results  

The performance and robustness of the proposed method in identifying the structural 

parameter such as stiffness and damping coefficients is demonstrated via a numerical 

study on the shear beam building model, as described in Section 5.3.2.1. The proposed 

method can be evaluated by comparing the accuracy in terms of percent relative error 

(PRE) between the identified structural parameters and their exact values. Also, the 

optimal Daubechies wavelets from the orthogonal wavelets family are chosen by GA 
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through minimizing the fitness function, in the search range of DB1 to DB31. Table 6.16 

explore the parameters of the GA exploited in proposed system identification algorithm. 

 

Table 6.16: GA parameters used in wavelet-based system identification algorithm 

Number of  generation  100 

Population  30 

Selection function  Tournament  

Fitness normalization Rank  

Crossover  Pc=0.7, Single-point, uniform 

Mutation  Pm=0.1, Uniform 

 

6.6.1.1 Evaluation of original numerical model 

To investigate the proposed algorithm based on the WPT in the original model, Figure 

6.32 shows the time histories of the structural acceleration at each floor along y-direction. 

Distribution of the relative energy is derived from the acceleration response of each floor 

by using DB15 with 9 levels of decomposition, as indicated in Figure 6.33. These 

components provide information about the relative energy associated with the various 

frequency bands existing in the response signals.  

 

 

 

 

Figure 6.32: Acceleration responses at each floor of the original model along y-

direction 
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WPT component energies of first floor acceleration 

 

WPT component energies of second floor acceleration 

 

WPT component energies of third floor acceleration 

 

Figure 6.33: The relative energy distribution of acceleration response at decomposition 

level 9 for the original model 

 

From this distribution of component energies, it can be observed that: (1) for acceleration 

responses of first and third floor, the relative energy of the fourth WPT component, 

including the natural frequency (7.4814 Hz), is larger than other WPT components; (2) 

WPT component energy of the second WPT component at the second floor, 

encompassing the lowest natural frequency (2.6986 Hz), has a significant increase 

compared with other floors whereas the WPT component energy of the second WPT 
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component of the third floor acceleration response is similar to that of the second WPT 

component of the first floor acceleration response; (3) acceleration responses of all floors 

associated with the first, third and fifth WPT components, whose frequency bands are [0-

2 Hz], [4-6 Hz] and [8-10 Hz], respectively, have some (relative) energy, even though 

they are not related to the structural frequencies. This stems from the fact that the 

acceleration responses at all floors are affected by the forces whose dominant frequency 

components are between 0 and 70 Hz. 

As shown in Figure 6.34(a), the average relative energy distribution can be derived from 

the relative energy distribution of the WPT components of the system's acceleration 

response at each floor with the sequence numbers of 1 to 30 among the 29 WPT 

components. Therefore, the dominant components can be adjusted based on the average 

relative energy distribution, e.g., D1={4}, D2={4, 2},…, D7={4, 2, 6, 5, 1, 3, 11}, and so 

on. The best estimation for the structural stiffness at each dominant component is obtained 

by performing the least squares procedure iteratively over the dominant components, 

depicted in Figure 6.34(b). It can be observed that for each stiffness parameter, the 

estimated value at each dominant component converges to the correct value starting from 

dominant component D6, with a very close estimation to the corresponding exact values. 

In particular, for D63, the identified and the exact stiffness values of the first floor are 

30358.92N/m and 30348.29N/m, respectively, and the corresponding PRE is 0.035%. 

Similarly, the PREs of the identified stiffness values of the second and third floors are 

0.02% and 0.01%, respectively. 

In addition, based on the identified results for each stiffness parameter, as shown in Figure 

6.34(b), the estimated values corresponding to the dominant component D63 are the most 

accurate ones among other dominant components. From dominant component D64 

onward, the convergence of the estimated values degrades, which is due to the numerical 

integration error of the derived displacement responses and inclusion of WPT 
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components of the 64th WPT component energy. This phenomenon happened for the other 

higher order dominant components accordingly.  

 

 

(a)Average relative energy distribution of acceleration response at decomposition level 9  

 

 

 

 

(b) Stiffness parameters identification at each floor 

 

Figure 6.34: Identified results for original numerical model in y-direction 

 

It should be noted that the total error in a numerical integration is a combination of errors 

which have roots in two causes. The first one is the local error that occurs at the each 

integration step, while the second cause arises from the cumulative error takes place due 

to repetition of integration over the past errors. Thus, these kinds of errors are unavoidable 
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in numerical integration process. For instance, Figure 6.35 shows the difference (error) 

between the exact and derived displacement responses at the first floor. It can be seen that 

the difference gets larger as the numerical integration proceeds over time. Note that this 

deviation is also observed in the derived displacement responses at other floors. For the 

velocities, such errors are not limited to a specific WPT component. 

 

 
Figure 6.35: The difference (error) between the exact and derived displacement 

responses at the first floor. 

 

In order to examine the proposed method on more challenging parameters, identification 

of damping and stiffness parameters is carried out on the original model. Figure 6.36 

presents the corresponding PREs of the identified values in terms of damping and stiffness 

parameters. The PREs of the identified damping and stiffness parameters in the converged 

line are between 15 to 19% and 11 to 15%, respectively. Estimated values converge to 

the correct ones at around D9 while due to inclusion of the components of the first WPT 

components, deviation at D50 and higher orders has taken place. 
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(a) Damping parameters identification at each floor 

 

 

 

 

(b) stiffness parameters identification at each floor 

 

Figure 6.36: Identified results for original numerical model 
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By Comparing between the identified results, shown in Figures 6.34 and 6.36, reveals 

that the accuracy of the identified results in terms of damping and stiffness parameters is 

lower than that in terms of stiffness parameters, but still is very close to exact values. 

In order to determine the stiffness parameters of the original model in x-direction, the 

average relative energy distribution is obtained from the WPT components with sequence 

numbers of 1 to 40, at decomposition level 9 of the acceleration responses, as depicted in 

Figure 6.37(a). The stiffness parameters can be estimated at each dominant component 

by performing the least squares error minimization over the dominant components. As 

shown in Figure 6.37(b), it seems that the estimated values start to converge at dominant 

component D7. The PREs of the identified values, in terms of the stiffness parameter, for 

the first, second and third story are 0.05%, 0.03% and 0.02%, respectively. Note that 

similar to the results obtained in Y-direction, the PREs are all under 0.2%, confirming 

that the proposed method is successful in identifying the unknown structural parameters. 

 

 
(a) Average relative energy distribution at decomposition level 9 
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Figure 6.37, continued 

 

 

(b) Stiffness parameters identification at each floor 

Figure 6.37: Identified results for original numerical model in x-direction 

 

6.6.1.2 Case1: Damage in first story (linear model) 

In this section, the shear building structure is subjected to DC1. DC1 is conducted through 

applying auxiliary structure which is constructed by adding extra spring with stiffness of 

750 N/m to the mass center of the first floor of the original model along the y direction, 

shown in Figure 6.38, Gladwell (2004). 

 
Figure 6.38: The proposed auxiliary structure at the first floor in y-direction 

 

 

To consider the proposed method for the stiffness identification process, based on the 

WPT components, by running the GA, DB 15 has been selected as the best value for 
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Daubichies order. Figure 6.39(a) and (b) show the average relative energy distribution at 

decomposition level 9 of acceleration responses, and the corresponding PREs for each 

stiffness parameter, respectively. Except for the first floor, the PREs in other floors, in 

terms of the stiffness parameters, are less than 0.10%. 

 

 

(a) Average relative energy distribution at decomposition level 9  

 

 

 

 

(b) Stiffness parameters identification at each floor 

Figure 6.39: Identified results for DC1 
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6.6.1.3 Case2: Damage in first and second stories (linear model) 

In order to examine the proposed method on more challenging examples, two auxiliary 

structure systems are generated by adding extra springs along the y-direction in first and 

second floor with stiffness values of 500N/m and 750 N/m, respectively, as shown in 

Figure 6.40. 

 
Figure 6.40: The proposed auxiliary structure at first and second floor in y-direction 

 

Figures 6.41(a) and (b) present the average relative energy distribution of the WPT 

components with Daubechies order 20 at decomposition level 9 for the acceleration 

responses in y-direction, and the corresponding PREs of the identified values in terms of 

stiffness parameters, respectively.  

 
(a) Average relative energy distribution at decomposition level 9 
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Figure 6.41, continued 

 

 

 

(b) Stiffness parameters identification at each floor 

Figure 6.41: Identified results for DC2 
 

A comparison between the obtained results of DC1, shown in Figure 6.39 and DC2, 

depicted in Figure 6.41, and those gathered from original model, demonstrated in Figure 

6.34, reveals that first in terms of accuracy, the PREs of the estimated stiffness values 

obtained from the considered DCs are generally slightly higher those of the original 

model, but still are very low. Second, for the original model, the convergence seems to 

start at the sixth dominant component D6, while for DC1 and DC2, it happens to start at 

the dominant components D8 and D9, respectively. This is related to the relative energy 

of the WPT components on the dominant components, required to converge. On the other 

hand, for the original model, the WPT components on the sixth dominant component D6 

has sufficiently large relative energy (i.e., 56.24%) to converge, while for the DC1 and 

DC2, the relative energies (i.e., 43.19% and 39.19% , respectively) of the WPT 

components on the dominant components D6 are not sufficient. Note that for DC1, the 

relative energy of the WPT components on D8 is 53.26% and the relative energy of the 
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WPT components, in DC2, on D9 is 51.38%. In short, depending on the stiffness variation, 

the relative energy of the WPT components on the dominant component needed for 

convergence is different. Similar procedure can be used when auxiliary structures are 

placed in other directions. 

6.6.1.4 Case3: Damage in third story (bilinear model) 

To investigate the efficiency of the proposed method in the state estimation and model 

identification for the scenario in which the nonlinearity behavior occurs in a frame 

structure, the third story is assumed to be soft, and the drift of this story exceeds the yield 

displacement during the excitation, while other stories remain within the elastic stage. 

The load-deformation rules of the model are depicted in Figure 6.42. 

 

 

 

Figure 6.42: load-deformation rules. (a) Linear model, (b) bilinear model 

 

In DC3, the damping coefficient is assumed to be constant during excitation. The wavelet 

function DB15 is applied in each time step, and the scaling functions belong to the seventh 

lower-resolution subspaces are employed to approximate the tangent stiffness and the 

hysteresis-restoring force curves at each story of the structure. The matrix equation 

P𝑖
TP𝑖 𝑖 = P𝑖

TAi is solved by the Choleski decomposition to get 𝑖 . 

Figure 6.43 shows the simulated and identified restoring forces at each story of the 

structure. The corresponding estimated errors λ𝑖  of identified values for the first, second 

and third stories are 0.28%, 0.49% and 1.48%, respectively. In addition, Figure 6.44 
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presents the corresponding simulated and identified restoring force-drift hysteresis 

curves. It can be seen that restoring force-drift relationship of third floor exhibits 

hysteresis curves while the response of other stories remain within the elastic range 

indicating that the proposed approach can estimate the tangent stiffness and hysteresis 

curves at each story of the structure remarkably well, even in a case where there are 

considerable material nonlinearities.  

 

 

 

 

Figure 6.43: Simulated and identified restoring force responses of the structure in 

which the third floor is soft. 
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Figure 6.44: Simulated and identified restoring force-drift hysteresis curves 
 

6.6.1.5 Effect of measurement noise  

Presence of noise is unavoidable at real measurements, that is why to investigate the effect 

of measurement noise on performance of the proposed method in the system identification 

different levels of noise are considered by adding Gaussian white noise signals 

corresponding to different SNR in the acceleration responses of the original model. In 

this investigation, values of SNR of the noise signals equal to 2, 5, and 10 dB will be 

considered. 

Figures 6.45-6.47 depict distributions of average relative energy at decomposition level 

9, and the corresponding identification results associated with various considered levels 
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of noise. From Figures 6.34(a) and 6.45(a)-6.47(a), it can be observed that the distribution 

of average relative energies remain unchanged regardless of the level of noise.  

In terms of accuracy of the identification results, as depicted in Figures 6.45-6.47(b), a 

larger value of PRE is obtained when noise is involved in comparison with the noiseless 

case shown in Figure 6.34(b). For instance, values of the PREs at the first floor for the 

noiseless case and for three levels of noise with SNR equal to 2, 5, and 10 dB are 0.035%, 

2.68%, 0.91%, and 0.31%, respectively. PRE results of the identified linear stiffness 

parameters in other cases with different levels of noise are also obtained and summarized 

in Table 6.17. 

Similarly, In DC3 which demonstrates nonlinear behavior at third floor, the estimated 

errors λ𝑖  of the identified restoring force values at the third floor for the noiseless case 

and for three levels of noise are 1.48%, 5.46%, 3.36% and 1.74%, respectively. In 

addition, a comparison between Figure 6.48, which presents identified restoring force-

drift hysteresis curves of the third floor associated with different levels of noise, and 

Figure 6.44, depicting noiseless cases shows that larger errors occur with rise of noise. 

Based on the earlier discussion, noise has a negative effect in achieving a precise 

identification results through the proposed method. Nevertheless, accuracy can still be 

considered as quite satisfactory even in presence of measurement noise. 

 

Table 6.17: Effect of different levels of noise in identified stiffness parameters 
 

Damage case 

 

Noise level 

(dB) 

PRE (%) 

Story 

1 2 3 

 

Original model along with 

damping 

2 3.83 3.79 3.81 

5 1.28 1.35 1.32 

10 0.44 0.32 0.26 

 

DC1 

 

2 7.43 5.12 2.29 

5 2.86 2.08 1.98 

10 0.76 0.5 0.26 

 

DC2 

 

2 10.25 7.95 4.89 

5 3.96 3.18 2.34 

10 1.01 0.93 0.59 
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(a) Average relative energy distribution of acceleration response at decomposition level 9 

 

 

 

 

 

(b) Stiffness parameters identification at each floor 

Figure 6.45: Identified results for original numerical model with noise level of 

SNR=2dB 
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(a)Average relative energy distribution of acceleration response at decomposition level 9 

 

 

 

 

 

(b) Stiffness parameters identification at each floor 

Figure 6.46: Identified results for original numerical model with noise level of 

SNR=5dB 
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(a)Average relative energy distribution of acceleration response at decomposition level 9 

 

 

 

 

 

(b) Stiffness parameters identification at each floor 

 

Figure 6.47: Identified results for original numerical model with noise level of 

SNR=10dB 
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(a) (b) 

  

 

(c) 

Figure 6.48: The identified restoring force-drift hysteresis curves after adding different 

level of noise. (a) SNR=2 dB, (b) SNR=5 dB, (c) SNR=10 dB 
 

6.6.2 Experimental results  

To validate the applicability of the proposed method, the experimental study is carried 

out on the three-story shear-beam building model, as described in Section 5.3.2.2. 

6.6.2.1 Evaluation of original experimental model 

In order to identify the structural parameters of original experimental model, time 

histories of the applied input force and of the structural acceleration at each floor are 

measured (Figure 6.49). Subsequently, the corresponding velocities and displacements 

are derived from the acceleration responses in terms of DB15 scaling function and 

depicted in Figure 6.50. 
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(a) Acceleration response at the first floor (b) Acceleration response at the second floor 
  

  

(c) Acceleration response at the third floor (d) Input force at the third floor 

  

Figure 6.49: Measured acceleration responses and input force for original model  

 

  

  

  

Figure 6.50: Derived the velocities and displacements from acceleration responses at 

each floor of the original experimental model in terms of DB15 scaling function 
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Figure 6.51(a) shows the average relative energy distribution of the acceleration 

responses associated with structural frequencies at decomposition level 9 with the 

sequence number 1 to 30 among 29 WPT components. From these distributions, it can be 

observed that the second WPT component with the frequency band of [2-4 Hz], including 

the lowest natural frequency (2.875 Hz), has a great amount of relative energy among 

other WPT components. Also, the relative WPT component energy of the sixth WPT 

component, whose frequency band is [6-8 Hz], has a higher energy compared with the 

fourth WPT component. Therefore, the dominant components can be set as D1={2}, D2= 

{2, 6},…, D7={2, 6, 4, 5, 1, 3, 7} and so on. By applying the least squares error 

minimization over those dominant components, the structural parameters corresponding 

to each dominant component can be estimated.  

Figure 6.51(b) demonstrates the identified stiffness parameters in each dominant 

component. It appears that the obtained values converge to the exact values at around D7 

and deviates from D57 onward. The PREs of the obtained values in terms of the stiffness 

parameters for the first, second and third floor are 4.21%, 4.37% and 4.33%, respectively. 

In addition, the damping parameters can be accurately identified in the first converged 

region, based on the numerical output, whereas in the other regions, more uncertainty is 

included caused by inclusion of higher-order dominant components. The obtained values 

in terms of damping parameters for the first and second floors are equal to 28.37 N.s/m 

and for the third floor is 27.76 N.s/m. 
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Figure 6.51: Identified results for original experimental model 

 

6.6.2.2 Case1: Damage in first story (linear model) 

In this test, a VSD including a bracing system and a HCP system, is mounted in the first 

story. The cylinder is filled by air with air pressure of P0= 600 kPa. So that, the effective 

stiffness of VSD is Khi= 5.1 kN/m. Hence, the stiffness of the first story is k1=34.9 kN/m, 

while the stiffness of other stories are k2= 29.8 kN/m and k3=29.5 kN/m.  

Figure 6.52 presents the distribution of average relative energy of the acceleration 

responses at decomposition level 9 and the corresponding PREs for each stiffness 
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parameter. Looking at results in Figures 6.51 and 6.52, it can be observed that in Figure 

6.51(b) the convergence starts at seventh dominant component D7, while for case 1, 

Figure 6.52(b), convergence begins at around D9. This is because of the relative energy 

of the WPT components on dominant component which affects the convergence rate. In 

addition, in terms of the accuracy of identification results, The PREs of the obtained 

values for the first, second and third floors are 6.38%, 5.23% and 4.75%, respectively, as 

shown in Figure 6.52(b). This shows that the proposed method is capable of identifying 

the stiffness parameter with sufficient accuracy and that leads to detection of structural 

damages. 

 

 
(a) Average relative energy distribution at decomposition level 9 
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Figure 6.52, continued 

 

 

(b) Stiffness parameters identification at each floor 

Figure 6.52: Identified results for Case 1 of experimental model 
 

6.6.2.3 Case2: Damage in second story (linear model) 

In this test, a VSD with an initial air pressure P0=400 kPa is mounted in the second story 

of the building model to simulate the damage. The weight of the HCP is 3.6 kg, which 

should be added to the first floor. Thus, mass of the first floor is m1=31.3 kg and masses 

of the second and third floor are 27.7 and 25.1, respectively. The effective stiffness of 

HCP with the air pressure of 400 kPa is 3.4 kN/m, which is added to the stiffness of the 

second story. Therefore, prior to the test, values of stiffness of stories are k1= 29.8 kN/m,  

k2=33.2 kN/m and k3=29.5 kN/m. 

Figure 6.53 shows the distribution of average relative energy over the WPT components 

at decomposition level 9, and the corresponding PREs of the identified stiffness values. 

Also, Table 6.18 demonstrates variation of the identified stiffness parameters for the 

damage cases. A comparison between the original model and the considered damage 

cases shows successful detection of the damage. It can be observed that, the damage area 

for case 1 has occurred in the first floor owing to the large amount of stiffness variation, 

i.e., 19.55%. Similarly, it can be seen from Table 6.18, for case 2 the maximum change 

in the stiffness, i.e., 12.20%, has occurred at the second floor, Whereas, variation of the 
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stiffness parameters of other stories can be neglected, since they are very small and are 

produced by the process of identification itself. 

 

 

(a) Average relative energy distribution at decomposition level 9 

 

 

 

 

(b) Stiffness parameters identification at each floor 

 

Figure 6.53: Identified results for Case 2 of experimental model 
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Table 6.18: Identified stiffness parameters and natural frequencies, 𝜔, of the original 

model and damage cases 1 and 2. The units of  k, 𝜔 are N/m and Hz, respectively 

  

Original experimental 

model 

 

Case 1 

 

Case 2 

Variation (%) 

Case 1 Case 2 

k1 31054.58 37126.62 31284.04 19.55 0.74 

k2 31102.26 31358.54 34896.51 0.82 12.20 

k3 31090.34 30901.24 30921.90 0.61 0.54 

𝜔1 2.875 3.021 2.929 5.08 1.88 

𝜔2 7.625 7.866 7.693 3.16 0.89 

𝜔3 10.5 10.592 10.813 0.87 2.98 

6.6.2.4 Case3: Damage in first story (piecewise linear model) 

In this test, the experimental configuration is similar to case 1 depicted earlier, except that 

the air pressure of the VSD mounted in the first story is P0= 400 kPa and consequently 

the effective stiffness of the VSD is 3.4 kN/m.  Therefore, the stiffness of each story 

before damage is k1= 33.2, k2= 29.8 and k3=29.5 kN/m. During the test, valves of VSD 

are open simultaneously at t=4s, result in the stiffness of the first story reduced abruptly 

from 33.2 to 29.8 kN/m.  

The wavelet function DB15 is applied in all time steps, and the scaling functions are used 

to identify the tangent stiffness in each 1/32 of the total duration. In addition, a piecewise 

linear damping coefficient is determined for each step. Therefore, the unknown scaling 

function coefficients and one damping coefficient are identified in each step. 

Figure 6.54 presents the identified stiffness parameters for all stories with blue curves, 

also shown in the same figure by red curves are the results obtained from the static test 

for comparison. The PREs of the identified stiffness values which are regressed by a 

straight line are obtained and tabulated in Table 6.19. In addition, the identification of 

damping coefficients is given in Figure 6.55. It can be observed that the damping 

coefficients of the first floor is declined at t=5s compared with those of other floors. 

There is a trade-off between number of piecewise linear damping coefficients and 

accuracy of the identification results. Hence, parametric studies are carried out for 

choosing number of the piecewise linear coefficients, in which accuracy of the 
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identification process is ameliorated with appropriate selection of the number of the 

damping coefficients.  

 

 

 

 

Figure 6.54: Identified stiffness parameters for Case 3 of experimental model 

 

Table 6.19: The PRE of identified stiffness parameters in damage Case 3 

Story 
PRE(%) 

Before damage After damage 

First 7.12 6.85 

Second 5.84 5.84 

Third 4.79 4.79 
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Figure 6.55: Identified damping coefficients for case 3 of experimental model 

 

 Summary  

In this chapter, the proposed damage detection and the wavelet-based system 

identification algorithms are evaluated by using numerical and experimental examples. 

In first, the RWPE-based damage detection algorithm was tested and verified using beam 

structures and the three-story building model. The damage locations were accurately 

identified by using damage index based on the RWPE. The effectiveness of the proposed 

method was examined by both numerical simulation and experimental tests with different 

damage scenarios. Based on the results it can be concluded that selection of a proper 

mother wavelet function and decomposition level has been crucial to improve the 

performance of the proposed method. Then, the GA optimization was used to evaluate 

the damage severities by exploring the database. Evaluation of the detected errors of 

different severity combinations in multiple damage cases demonstrated the sensitivity and 

accuracy of the proposed algorithm in identification of damage severities. In addition, 
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evaluation of the severity could reach to a higher level of accuracy in the building model, 

provided that damage locations were at different stories. 

The RWPE-based reference-free damage detection algorithm was also tested and verified 

with numerical and experimental studies on beam and three-story building model. The 

feasibility of using the 𝑅𝐷𝐼𝑅𝑊𝑃𝐸
  as damage-sensitive index was studied and verified. In 

general, the proposed method does not require vibration signals from undamaged 

structures because of its effective comparison methodology of signals from different 

locations at current state. Whereas, in the course of this research, accurate detection of 

damage locations depended on the proper selection of mother wavelet function and 

decomposition level which was optimally selected by GA. Moreover, performance of the 

proposed algorithm was demonstrated for progressive damage starting from small-scale 

level, i.e., 3mm. According to various numerical and experimental demonstrations and 

verifications, the proposed damage detection algorithm was proven to be very effective 

in detecting various damage scenarios without reference data from undamaged structures. 

The physical parameters of three-story building model can be identified by using the 

proposed wavelet-based system identification algorithm. In numerical simulations, the 

auxiliary structures are proposed by adding extra spring to the mass center of the 

considered floors to illustrate the stiffness variations. The precision of the identified 

parameters was evaluated with PRE of their exact values, conducted by ABAQUS 

software. Moreover, the numerical tests demonstrated that the proposed method can 

accurately identify the tangent stiffness parameters and nonlinear hysteresis curves of the 

building model. In experimental investigations, to simulate the structural damage during 

the test, a VSD with an effective stiffness was proposed to reduce the stiffness of building 

stories. Different damage scenarios were simulated and tested. The structural parameters 

were identified reasonably well based on the proposed algorithm. 
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7 CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 

 Introduction 

In this thesis, current challenges in vibration-based SHM were addressed focusing on 

damage detection and system identification. The SHM is central to the aim of maintaining 

civil engineering structures safely and efficiently, and thereby securing people's lives and 

property. In addition, it plays a crucial role in infrastructure design at a fraction of the 

capital cost of construction. Therefore, the desire of all those effort in this field to fully 

exploit the information about the vibration of structures is putting structural responses to 

good use in the areas of damage detection and system identification. The wavelet-based 

methods through WPT have been proposed for identification of damage locations and 

system parameters from data generated in vibration tests of the structures.  

This chapter presents the conclusions and recommendations of the current research for 

the future improvements and higher efficiency of the damage detection and system 

identification techniques. 

 Conclusions 

This study initially proposed a two-step vibration-based damage detection algorithm in 

the framework of the wavelet multiresolution analysis and optimization techniques. This 

algorithm was then tested and verified with beam-like structures and a three-story 

building model. In the first step, in order to investigate the damage location, the 

multiresolution wavelet packet transform was combined with entropy analysis to 

determine an effective damage index, RWPE, and obtain the information about the 

relative energy correlated with various frequency bands presented in structural response 

segments. In the second step, the GA optimization method was applied to estimate the 

damage severities by defining a database to reveal the relationships between the energies 
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obtained in the first step and damage severities. Through the numerical and experimental 

verifications, the results demonstrated that the proposed method and the proposed 

algorithm can be used to identify the damage locations with different severity 

combinations for each damage scenario with a high accuracy even in the presence of 

noise. It has to be mentioned that the appropriate selection of wavelet types affected the 

performance of the proposed damage identification algorithm. 

To make real-time monitoring feasible in SHM systems, a new RWPE- based reference-

free damage detection algorithm was developed and verified for beam-like structures and 

a three-story building model. The RWPE measurements of various sensor-to-sensor pairs 

were applied for defining the damage index, 𝑅𝐷𝐼𝑅𝑊𝑃𝐸, of each sensor location. The 

RWPE-based reference-free damage identification proved to be damage-sensitive and 

able to identify the damage locations without signals of intact states of structures with a 

considerable accuracy, and showed sufficient sensitivity to the changes in damage level. 

In addition, from the results, it can be concluded that the wavelet-based techniques are 

absolutely dependent on the mother wavelet function. On the other hand, the most 

inevitable challenge in wavelet analysis for damage identification, as shown in previous 

research works, has been the determination of mother wavelet function and 

decomposition level through trial and error, based on intrinsic characteristics of the data. 

This has limited earlier researches to use a specific mother wavelet function and 

decomposition level for various damage scenarios. However, the consistency and 

accuracy of the proposed method has been verified by using various mother wavelet 

functions and decomposition levels for every damage scenario at different locations. The 

mother wavelet and decomposition level were optimally chosen by GA which can resolve 

the problem of wavelet-based damage detection methods. The reference-free methods 

suffer from presence of multiple-damage scenario in several locations throughout a beam 

or in a floor of a building. Therefore, the difficulty in implementation of mother wavelet 
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function through trial-and-error based methods is eliminated and consequently the 

proposed RWPE-based reference-free damage identification algorithm can be directly 

applied to monitor structures continuously in real-time. 

With regards to system identification, a new optimization method was presented to 

identify the structural parameters of linear and nonlinear systems based on the inverse 

solution of equation of motion in wavelet domains. For the proposed method, the 

measurements of excitation forces and response data containing displacements, 

velocities, and accelerations, at each degree of freedom are required. For this purpose, the 

connection coefficients of the scaling function were applied to derive the velocity and 

displacement from the output-only measured acceleration responses. This numerical 

integration process may unavoidably introduce error to the estimated structural 

parameters. Therefore, by utilizing the GA for proper selection of Daubechies wavelet 

functions and defining the dominant components based on the relative energies of 

acceleration responses, the equations of motion in the time domain of the system were 

transformed to a reduced representation of the equations of motion in terms of the wavelet 

packet transform. The best estimation of the structural parameters was obtained by using 

the least square procedure iteratively over each selected dominant component. Also, in 

cases where there were material nonlinearities in structural building, the tangent stiffness 

matrix and the hysteresis-restoring force curves of the building model were identified, by 

applying the wavelet multiresolution analysis based on the structural responses at each 

degree of freedom. The numerical and experimental results demonstrated that the 

proposed wavelet-based system algorithm can identify the structural parameters 

accurately, even in case of material nonlinearity. To simulate the structural damage in the 

experimental model, a variable stiffness device was proposed to change the stiffness 

parameter in some building stories. Moreover, the accuracy and reliability of the proposed 

algorithm was investigated for various damage cases and noise levels.  
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 Recommendations for future work 

The damage detection and system identification in structural dynamics under different 

damage cases were addressed in this thesis using the wavelet multiresolution analysis. 

The accuracy of the obtained results from numerical and experimental examples proved 

the robustness of the proposed methods. However, all the applications were limited to 

beam structures and small-scale shear-beam building models. It is desirable to verify the 

reliability of the methods by applying them to a full-scale structure in the field, which 

will suggest further improvements. 

In the future, the proposed RPWE-based reference-free real-time damage detection 

application can be applied not only in the damage localization application in real 

structures but also it will be useful to monitor the abnormality of signals caused by sensor 

failures or local failure of structural components as was demonstrated in this research.  

In addition, the proposed wavelet-based system identification algorithm demonstrated a 

promising potential for parameters identification of a nonlinear system through the 

numerical simulations. However, investigation of nonlinear behavior of the experimental 

models was not fully addressed in this research. Hence, the experimental verification of 

the proposed system identification algorithm for estimation of nonlinear structural 

parameters can be further pursued. 
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